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PREFACE

This text is concerned with Bayesian learning, inference and forecasting in
dynamic environments. We describe the structure and theory of classes of
dynamic models and their uses in forecasting and time series analysis.
The principles, models and methods of Bayesian forecasting and time se-

ries analysis have been developed extensively during the last thirty years.
This development has involved thorough investigation of mathematical and
statistical aspects of forecasting models and related techniques. With this
has come experience with applications in a variety of areas in commercial,
industrial, scientific, and socio-economic fields. Much of the technical de-
velopment has been driven by the needs of forecasting practitioners and
applied researchers. As a result, there now exists a relatively complete
statistical and mathematical framework, presented and illustrated here. In
writing and revising this book, our primary goals have been to present
a reasonably comprehensive view of Bayesian ideas and methods in mod-
elling and forecasting, particularly to provide a solid reference source for
advanced university students and research workers.
In line with these goals, we present thorough discussion of mathematical

and statistical features of Bayesian analyses of dynamic models, with many
illustrations, examples and exercises. Much of the text will be accessible
to advanced undergraduate and graduate/postgraduate students in statis-
tics, mathematics and related fields. The book is suitable as a text for
advanced courses in such disciplines. On the less mathematical side, we
have attempted to include sufficient material covering practical problems,
motivation, modelling and data analysis in order that the ideas and tech-
niques of Bayesian forecasting be accessible to students, research workers
and practitioners in business, economic and scientific disciplines.
Prerequisites for the technical material in the book include a knowledge

of undergraduate calculus and linear algebra, and a working knowledge of
probability and statistics such as provided in intermediate undergraduate
statistics courses. This second edition includes many more exercises. These
exercises are a mixture of drill, mathematical and statistical calculations,
generalisations of text material and more practically orientated problems
that will involve the use of computers and access to software. It is fair to
say that much insight into the practical issues of model construction and
usage can be gained by students involved in writing their own software,
at least for the simpler models. Computer demonstrations, particularly
using graphical displays, and use of suitable software by students, should
be an integral part of any course on advanced statistical modelling and
forecasting.
Since the first edition appeared in 1989, the field has experienced growth

in research, both theoretical and methodological, as well as in developments
in computation, especially via simulation methods, and in more diverse
applications. The revision for this second edition involved updates and re-
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finements of original material, together with additional material based on
research and development in the field during the early 1990s. In terms of
new or substantially revised material, we note novel theory and method-
ology of dynamic linear model (DLM) analyses, including developments
in retrospective time series analysis (Section 4.8), model estimation and
diagnostics (Section 4.9), and in the theory of limiting results in time se-
ries dynamic linear models (Section 5.5). New material has been added
on stationary time series models (Sections 5.6 and 9.4), on important new
methods of time series decompositions in the state-space framework (Sec-
tions 9.5, 9.6 and 15.3), on time-varying parameter autoregressive DLMs
(Section 9.6), and on inference and application of autoregressive component
DLMs (Section 15.3). New results and methods of model monitoring and
assessment, developed from a Bayesian decision analytic viewpoint (Section
11.6), complement original material on intervention and model assessment.
Substantial new material has been added on statistical computation and
simulation methods for Bayesian analysis of non-linear models, including,
in particular, a new chapter, Chapter 15, focussed mainly on Markov Chain
Monte Carlo approaches in dynamic models. This rapidly growing area rep-
resents one of the currently critical research frontiers in statistics, and in
time series modelling and analysis specifically. Throughout the book the
new and revised material includes additional illustration and references, as
well as theory and methods, and new exercises in several chapters.
Following the publication of the first edition, we developed a related

text that discusses and illustrates application of a standard class of dy-
namic linear models, essentially those of Chapters 10 and 11 here. That
1994 text, Applied Bayesian Forecasting and Time Series Analysis by Andy
Pole, Mike West and Jeff Harrison, includes an extensive guide to the use
of the BATS software package that implements the model class. BATS,
written in C by Andy Pole, and with support from Chris Pole, runs under
Windows95 and DOS. BATS was developed from original versions in APL;
many of the examples and graphs here were produced using the APL ver-
sion. More examples appear in the 1994 text, which readers may find to be
a useful adjunct to the current, more comprehensive reference text. S-Plus
software for dynamic modelling, forecasting and retrospective analysis is
available from the second author in collaboration with Robin Reed (Harri-
son and Reed 1996). Additional software for time-varying autoregressions
and time series decompositions (developed in Section 9.5, 9.6 and 15.3)
is available in Matlab and Fortran90/S-Plus code from the first author in
collaboration with Raquel Prado. This can be found at the Duke web site,
http://www.stat.duke.edu/.
The field continues to develop and flourish. Readers interested in keeping

up with at least some of the post-publication developments of the authors
and their coauthors can explore the resources and links at the Duke web
site, as indicated above.
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Thematically, material in the book can be loosely partitioned into four
sets, each of three consecutive chapters, a final set of four chapters on more
advanced topics, and an appendix.

A. Introduction

The first three chapters provide a broad introduction to the basic prin-
ciples, modelling ideas and practice of Bayesian forecasting and dynamic
models. In Chapter 1 we discuss general principles of modelling, learning
and forecasting, and aspects of the role of forecasters within decision sys-
tems. Here we introduce basic elements of dynamic modelling and Bayesian
forecasting. Chapter 2 is devoted to the simplest, and most widely used, dy-
namic model, known as the first-order polynomial model, or steady model.
In this setting, the simplest mathematical framework, we introduce the
approach to sequential learning and forecasting, describe important the-
oretical model features, consider practical issues of model choice and in-
tervention, and relate the approach to well-known alternatives. Chapter 3
continues the introduction to dynamic modelling through simple, dynamic
regression models. Readers will be familiar with standard regression con-
cepts, so that the rather simple extension of straight line regression models
to dynamic regression will be easily appreciated.

B. Dynamic linear model theory and structure

Chapters 4, 5 and 6 provide a comprehensive coverage of the theoreti-
cal structure of the class of dynamic linear models (DLMs) and Bayesian
analyses within the class. Chapter 4 is key. Here we introduce the funda-
mental concepts, principles, general framework, definitions and notation,
and fully develop the distribution theory associated with dynamic linear
models. This includes complete and detailed descriptions of entire joint
distributions relevant to sequential learning, forecasting and retrospective
analysis. Chapter 5 is concerned with a special subclass of DLMs, referred
to as time series models, that relate naturally to most existing methods
for time series forecasting. In this second edition, a new elegant proof of
variance convergence for constant DLMs is given, more convergence re-
sults are provided, and new material on stationary time series models is
included. Chapter 6 focuses on two important aspects of model design and
specification, namely component modelling and discounting.

C. Classes of dynamic models

Chapters 7, 8 and 9 describe in greater detail the structure of important
special classes of dynamic models and their analyses. Chapter 7 is devoted
to time series models for polynomial trends, particularly important cases
being first-order polynomials of Chapter 2 and second-order polynomials,
or linear trend models. Chapter 8 concerns dynamic linear models for
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seasonal time series, describing approaches through seasonal factor repre-
sentations and harmonic models based on Fourier representations. Chapter
9 concerns relationships between time series modelled through dynamic re-
gressions, extending Chapter 3, and extended models for transfer effects
of independent variables. This second edition substantially expands dis-
cussion and development of classical ARMA and related models, and con-
nections with dynamic linear modelling, in Chapter 9, including new and
practically useful developments in time-varying parameter autoregressive
models.

D. DLMs in practice, intervention and monitoring

Chapter 10 illustrates the application of standard classes of dynamic
models for analysis and forecasting of time series with polynomial trends,
seasonal and regression components. Also discussed are various practical
model modifications and data analytic considerations. Chapter 11 focuses
on intervention as a key feature of complete forecasting systems. We de-
scribe modes of subjective intervention in dynamic models, concepts and
techniques of forecast model monitoring and assessment, and methods of
feed-forward and feed-back control. The second edition expands this chap-
ter with new material on model assessment based on Bayesian decision
analysis, with consequent links to cusum methods of model monitoring.
Chapter 12 is concerned with multi-process models by which a forecaster
may combine several basic DLMs for a variety of purposes. These in-
clude model identification, approximation of more complex models, and
modelling of highly irregular behaviour in time series, such as outlying
observations and abrupt changes in pattern.

E. Advanced topics

Chapters 13, 14, 15 and 16 are concerned with more advanced and re-
cently developed models. In Chapters 13 and 14 we consider approaches
to learning and forecasting in dynamic, non-linear models, where the neat
theory of linear models does not directly apply. Chapter 13 describes some
standard methods of analytic and numerical approximations, and also some
more advanced approaches based on numerical integration; this leads into
new developments in Bayesian computation based on stochastic simulation.
Chapter 14 develops non-normal models and explores methods and appli-
cations in the class of dynamic generalised linear models. Chapter 15, a
completely new chapter for the second edition, is wholly concerned with
dynamic model analysis via methods of stochastic simulation, discussing,
in particular, recent advances in Gibbs sampling with application to au-
toregressive component DLMs. In Chapter 16 we return to primarily linear
models but consider aspects of modelling and forecasting in multivariate
settings.
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CHAPTER 1

INTRODUCTION

1.1 MODELLING, LEARNING AND FORECASTING
1.1.1 Perspective
This book concerns modelling, learning, and forecasting. A basic view of
scientific modelling is that a model is a “simplified description of a system
... that assists calculations and predictions” (Oxford English Dictionary).
Broadly, a model is any descriptive, explanatory scheme that organises
information and experiences, thus providing a medium for learning and
forecasting. The prime reason for modelling is to provide efficient learning
processes that will increase understanding and enable wise decisions.
In one way the whole operation of an organisation can be viewed as

comprising a sequence of decisions based upon a continual stream of infor-
mation. Consequently there is an accumulation of knowledge that, in prin-
ciple, should lead to improved understanding and better decisions. Suitably
formulated and utilised, descriptive models provide vehicles for such learn-
ing.
The foundation for learning is the Scientific Method. It is often assumed

that scientific investigation and learning are concerned with the pursuit
and identification of a single “true” model, but this is certainly not our
position. Models do not represent truth. Rather they are ways of viewing
a system, its problems and their contexts, that enable good decisions and
enhance performance both in the short and long term. Within a model
framework, the scientific learning process facilitates the routine, coherent
processing of information, that leads to revised views about the future and
hence to rational actions.
Since a model organises personal experiences and information, it is al-

ways a subjective picture anchored in the past. Consequently, a derived
forecast, being a hypothesis, conjecture, extrapolation, or speculative view
about something future, may well prove to be “far from the mark”, result-
ing in a sizeable forecast error. But, it is exactly the forecast errors that
stimulate learning and a good system will efficiently utilise them in order to
improve performance through model enhancement. Forecasting systems of-
ten ignore the wider aspects of learning and are founded on myopic models
incapable of development and only able to make overly restricted predic-
tions.
One desirable property of a forecasting and learning system is that the

way of viewing should not change radically too frequently; otherwise con-
fidence is impaired, communication breaks down, and performance dete-
riorates. Hence the fundamentals of an operational model should remain
constant for considerable periods of time, regular change only affecting
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small details. That is, there should be a routine way of learning during
phases when predictions and decisions appear adequate, and an “excep-
tional” way when they seem unsatisfactory. The routine adjustment will
generally be concerned with small improvements in the estimates of model
quantities whereas the exceptions may involve basic model revision.
The principle by which such systems operate is that of Management by

Exception, an important part of the Scientific Method. Essentially, infor-
mation is routinely processed within an accepted conceptual and qualita-
tive framework within which the major features of an operational model
remain unchanged, minor quantitative modifications are accommodated,
and the relative merits of any rival models noted. Exceptions arise in two
main ways. The first occurs when non-routine expert information antici-
pates a future major change that will not properly be reflected by routine
learning. The second occurs when performance monitoring, using quality
control techniques applied to the forecast errors, identifies deficiencies, thus
questioning model adequacy and prompting expert intervention. In either
case, for effective communication, the model structure must be descriptive,
robust and meaningful.

1.1.2 Model structure
Model structure is critical to performance. A good structure will provide
model properties that include

• Description

• Control

• Robustness

Consequently we view the structuring of a model through a triple

M : {C,F,Q}.

The component C describes the conceptual basis, F the model form, and
Q the quantified form.

C : The concepts C provide an abstract view of a model. They may
express decision centre objectives; scientific or socio-economic laws;
behavioural characteristics etc. As such they are expected to be
very durable and rarely changed. Further, at any moment in time,
rival models representing alternative views may be founded upon
the same conceptual base C (although this is not always the case).

F : The qualitative form F represents the conceptual in descriptive
terms, selecting appropriate variables and defining relationships.
For example a government may be seen as a decision centre wishing
to retain power. This may be a part of a general conceptual view of
an economic sector, which helps to express the type of decisions to
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be taken as circumstances evolve. At any time there may be choices
about the way in which general objectives are accomplished. With
one policy, the relevant control variables will be from set A, say, and
at a time of policy revision, they may suddenly change to a set B.
Form defines the relevant sets of variables and their relationships,
perhaps in terms of algebraic, geometric, graphical, and flow sheet
representations.

Q : Often many, if not all, rival models will have a common qualitative
parametric form and differ only at the quantitative level Q, in the
values given to the parameters. Then a single form is often durable
for reasonable periods of time. It is at the quantitative level that
frequent change occurs. Here the merits of rival parametric values
are continually changing as new information is received. Generally
these are small changes that are in accord with the uncertainty
conditional upon the adequacy of both concept and form.

Description aims at providing meaning and explanation in an acceptable
and communicative way. This is necessary for unifying all concerned with
a decision process and its effects. It brings confidence from the fact that all
are working and learning together with a well defined view. In particular, it
encourages growth in understanding, participation, and progressive change.
In most decision situations, anticipation of major change is the critical
factor upon which the life of an organisation may depend. Hence it is vital
to promote creative thinking about the basic concepts and form, and to
improve intervention at all levels. Two important aspects of an effective
description are parsimony and perspective. Parsimony means simplicity.
It excludes the irrelevant and uses familiar canonical concepts, forms, and
learning procedures, bringing all the power of past experience to bear.
Perspective is concerned with the relative importance of the various model
characteristics and what they do and do not affect.

Control is usually taken to mean actually influencing the behaviour of
the system being modelled. Given such control there is great opportunity
for effective learning by experimenting. In process control this may mean
carrying out dynamic experimentation, as embodied in the principles and
practice of evolutionary operation (Box and Draper 1969). All the princi-
ples and power of the statistical design of experiments can then be utilised.
Another aspect of control occurs when the system being modelled cannot
be controlled or can only be partially controlled. Then the decision makers
may still have control in the sense of having freedom to respond wisely
to predictions about systems that they cannot influence. For example a
farmer who assesses the weather in order to make farming decisions can-
not directly influence the weather but can utilise his forecast to control his
actions, perhaps waiting until “the time is ripe”. Currently there is much
power in the hands of remote, centralised organisations that can bring
disaster to those they control simply because of their selfish desires and
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ignorance of the systems they control. It is then vital that the true nature
of the “controlled” system be understood along with the motivations and
reactive responses of the power centre. One look at the past control of
European agriculture and industry illustrates this point only too well.

Robustness is a key property for a learning system. Essentially the aim
is to structure so that at “exceptional” times, intervention is efficiently and
economically accomplished. This means only changing that which needs
changing. Thus the objective is to extract the maximum from history
so that all relevant information is retained whilst accommodating the new.
The structure {C,F,Q} provides a major source of robustness. It offers the
opportunity of carrying out major changes at the quantitative levelQ whilst
retaining the model form F . It provides a way of retaining the conceptual
C whilst drastically altering aspects of form F . However, it is also crucial
to structure within each of these levels so that major changes affect only the
relevant aspects and do not damage others. At the quantitative level, when
operating within a parametrised form, modelling component features of a
system through distinct though related model components is recommended.
Each component describes a particular aspect such as price elasticity, the
transfer response of an input flow change, a seasonal effect, or a trend.
Then if intervention necessitates a major change concerning any particular
component this can be accomplished without affecting other components.

1.1.3 The role of mathematics
The role of mathematics and statistics is as a language. It is a very power-
ful language since far-reaching implications can often be deduced from very
simple statements. Nevertheless, the function of mathematics must be seen
in perspective. It expresses a view in a way analogous to that of paint on
canvas. In this sense it is only as good as the artist who uses the materials
and the audience who see the result. Like all sources of power, mathematics
can be well used or abused. Selective, marginal, and conditional interpreta-
tions are the key weapons of the deceiver. Any modeller, just like an artist,
must of necessity select a view of the context under study and is thus, ei-
ther innocently or deliberately, likely to mislead. Choosing an appropriate
view is often very hard work. It may have nothing to do with mathematics,
although of course it can involve some data analysis. Many modellers pay
scant regard to this vital preliminary effort in their eagerness to play with
computers and equations. Consequently, so many mathematical models
are inappropriate and misleading. With today’s computing power it is not
far from the truth to say that if a system can be coherently described then
it can be expressed mathematically and modelled. To summarise, our po-
sition is that modelling is an art; that the first task is to define objectives;
the second to select a consistent view of the system; and only later, and if
appropriate, to use a mathematical description.
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1.1.4 Dynamic models
Learning is dynamic. At any particular time a model describes a routine
way of viewing a context, with possible competing views described through
alternative models. However, because of uncertainty, the routine view itself
is likely to comprise a set of models. For example, consider the view that
an output variable Y is related to an input variable X according to a
parametrised form

Y = Xθ + ε.

Here θ is an uncertain parameter and ε an uncertain, random error term.
Further suppose that the forecaster’s beliefs about the parameter θ are
expressed through a probability distribution P (θ). Then the view may
be described as comprising a set of models, one for each possible value of
θ, each with measurable support P (·). This embodies one form of model
uncertainty. The dynamic nature of processes and systems demands also
that uncertainty due to the passage of time be recognised. Then, because
the model form is only locally appropriate in time, it is necessary to rou-
tinely characterise θ as slowly evolving. Further, at some future time, the
model form may change, possibly involving quite different input variables.
Such typical applications require dynamic models, defined generally as
“sequences of sets of models”.
At any given time, a dynamic model M will comprise member models

M , with the forecaster’s uncertainty described through a prior distribution
P (M), (M ∈ M). In producing a forecast from the dynamic model for
an output Y , each member model M will provide a conditional forecast
in terms of a probability distribution P (Y |M). In the above example M
relates directly to the parametrisation θ and thus to the component Q of
the model. This is typical. More widely, however,M may involve uncertain
aspects of form F and even conceptual descriptions C. The forecast from
the dynamic modelM is then simply defined by the marginal probability
distribution, namely

P (Y ) =
∫
M∈M

P (Y |M)dP (M).

Alternative dynamic models are rivals in the sense that they compete with
the routine model for its prime position, thus providing a means of per-
forming model monitoring and assessment. Although it is often the case,
a dynamic model is not restricted to members having the same form and
conceptual base; the framework is entirely general.

1.1.5 Routine learning
Bayesian methodology offers a comprehensive way of routine learning that
is not dependent upon any particular assumptions. For simplicity consider
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a dynamic model M with member models M . Before receiving an obser-
vation of uncertain quantities Y , for each M ∈ M, the forecaster has a
prior probability P (M) describing the relative uncertainty concerning the
truth of M . Each member model M provides a means of forecasting Y
through a conditional probability distribution P (Y |M), which specifies the
view about future possible values of Y , conditional upon the truth of that
particular description M .
By the laws of probability, these two sets of probabilities combine to

provide a joint probability distribution, written in terms of densities as

p(Y,M) = p(Y |M)p(M).

When Y is observed to take a value Y ∗, say, the updated probability
distribution for M given Y = Y ∗ is defined by the conditional density

p(M |Y ∗) ∝ p(Y ∗,M),

or equivalently

p(M |Y ∗) ∝ p(Y ∗|M)p(M).

This means of updating or learning is often expressed as

Posterior ∝ Observed likelihood × Prior.

The proportionality constant is simply the normalising quantity p(Y ∗),
the prior density for Y at the observed value Y ∗, which ensures that the
“posterior” density over M ∈ M is normalised to unit probability. Hence,
for any observed value of Y , the Bayes’ theorem representation is

p(M |Y ) = p(Y |M)p(M)/p(Y ), (M ∈M).

Given the dynamic modelM, all the routine information contained in the
observation Y is expressed through the likelihoods p(Y |M).

1.1.6 Model construction
Some forecasters approach model building in an unsatisfactory way, often
resorting to processing historical output data by computer and accepting
whatever mathematical expression emerges. Such people are always asking
“Where do you get your models from?” The answer is very simple. We
apply the natural scientific approach to model building.
As previously stated, the first step is to clarify objectives. If both macro

and micro decisions are to be made using the model, think about the value
of structuring the model hierarchically; initially modelling within hierar-
chical levels whilst not losing sight of the relationships between levels. The
next step is to decide upon the conceptual basis, and then to consider signif-
icant factors and relationships. In particular, the aim is to explain as much
of the significant variation as possible. This may involve identifying “sure
thing” relations that arise because of accepted physical laws, relationships,
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constraints etc. Often “lead” variables are involved. For example, if you
are predicting beef supply at the butchers, it is clear that there is a lag of
three years from impregnation of a cow to the resulting meat reaching the
shop. Within a “closed” community it is obvious that the decision point
for expansion at retail level is three years previously. It is also very clear,
from biological considerations, that “in order to expand you must first con-
tract”. That is, more heifers will have to be taken back into the breeding
herd at the expense of next year’s meat supply. Germinal decision points
and these delayed response dynamics appear in many systems only to be
completely ignored by many modellers and “fire brigade” decision makers.
Hence the reason for so many problems that arise, not only in agriculture
(Harrison and Quinn 1978), but in many other economic sectors.
Another key step is to assess the nature of the process being studied. Is it

purposeful? It is no use studying the detailed flow of a river in forecasting
its path; the main thing is to recognise that all rivers follow the principle of
steepest descent. Similarly, when studying a process dependent upon other
decision makers, it may be critical to assess their purposes, what effect
the environment will have on them, how their perceptions match reality,
and how their statements match their actions. In selecting model factors,
control factors are to be prized.
When, and only when, any significant structure has been modelled should

the modeller resort to time series. A time series model is essentially a con-
fession of ignorance, generally describing situations statistically without
relating them to explanatory variables. That is not to say that pure time
series models are useless. For example, time series models involving polyno-
mial trends and seasonal components may be very useful in, say, short-term
sales forecasting, where experience, perhaps across many similar products
has led to empirical growth laws and defensible arguments for seasonality.
The danger arises when mathematical expressions, such as general station-
ary noise models, are adopted without any substantial foundation. Then
historic peculiarities are likely to suggest totally inappropriate models.
The key message for the modeller is “THINK, and do not sacrifice your-

self to mathematical magic.” This is not to rule out exploratory data anal-
ysis. History and data may be used both to assess contending models and
to stimulate creative thought, but data analysis should not replace prelim-
inary contextual thinking, nor should it promote mathematical formulae
that have no defensible explanations. All analytic methods have some con-
tribution to offer, but they must be seen as servants of explanatory thought
and not its usurper.
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1.2 FORECAST AND DECISION SYSTEMS
1.2.1 Integration
As Dr Johnson said, “People need to be reminded more often than they
need to be instructed.” This is true in modelling, especially when dealing
with open decision systems. There is much that we know or are able to
recognise but that we are not anxious to see or practise. Good modelling
demands hard thinking, and good forecasting requires an integrated view
of the role of forecasting within decision systems.
The consequences of failing to harmonize forecasts and decisions is sharp-

ly, and rather humorously, exemplified in the following incident that oc-
curred over thirty years ago in the brewery trade. At the end of the sum-
mer of 1965, one of us received a call from “Peter.” Peter had just moved
to a famous brewer and had been given the responsibility for short-term
forecasting. Since he knew very little about this, he sought advice. Upon
visiting, he said that his task was to produce beer forecasts for two weeks
ahead. He did not appear to be enthralled about this, and when asked
what decisions rested on the forecasts his reply was “I am not interested in
the decisions. My job is simply to forecast.” Pressed further, he said that
the forecasts would be used in production planning. However, he would
not see the importance of integrating forecasting and control. Prior to his
visit, some of his data had been examined using the ICI MULDO package
(Harrison and Scott 1965; Harrison 1965); the data appears in Figure 1.1.
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Figure 1.1 Barrels of beer (in thousands) sold in a sector of the
UK market during 1961 to 1966
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As is evident from the figure, the data showed a marked seasonal ef-
fect with a summer peak, a pronounced festive component, particularly at
Christmas, and a declining trend. A few months later Peter telephoned
to announce that he was in trouble. He did not volunteer the extent of
his misfortunes. “No, I have not been following the methods you advised.
I simply estimated based upon the last few weeks. This seemed to give
as good forecasts as yours and to begin with I did fine.” Six weeks later
it become clear just how his misfortunes had grown. The story made the
front page of a number of national daily newspapers, with the colourful
Daily Mirror version reproduced below in Figure 1.2. The reader is left to
speculate how a computer came to be blamed when apparently Peter had
never had access to one.

Computer sends the beer for a Burton
It happened, of all places, in Burton-upon-Trent, the town made
famous by beer.
First, they found they had TOO MUCH beer.

Thousands of gallons too much — all because a computer went wrong.
The computer over-estimated how much thirsty revellers could swal-
low over the Christmas and New Year holidays — and now the beer
is too old for use.
Brewery officials in the Staffordshire beer “capital” ordered: “Down
the drain with it . . . ”

Secret

The throwaway beer — more than 9,000 casks of best bitter and
pale ale produced by the Bass-Worthington group — is worth about
£100,000.
Tankers are pouring it down the drain at a secret spot.
But now the brewery officials are feeling sour once again . . .

Some pubs in the town yesterday reported a beer SHORTAGE.
Production of fresh supplies has been disrupted — again because of
the Christmas and New Year holidays.
A brewery spokesman said: “We were caught on the hop.”

Figure 1.2 Caught on the hop. (Daily Mirror, January 12th 1966)
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1.2.2 Choice of information
Often there is a choice concerning the observed information on which fore-
casts are based. Modellers are generally aware that they may need to
allow for differences in numbers of working days, seasonal holidays, de-
flated prices, etc. However, there are other considerations. It is clear that
in controlling a system, information that is relatively independent of the
performance of that system is preferable to that which is dependent upon
it. In many cases little thought is given to the matter or its consequences.
As an example, in short-term sales forecasting for stock control and pro-
duction planning, modellers may, without question, accept sales statistics
as their routine observations. The real objective is to forecast customer
requirements. Clearly, sales statistics represent what is sold. As such they
reflect the ability of the system to meet requirements, and not necessarily
the actual requirements themselves. The use of sales statistics may result in
excessive variation, particularly when products compete for manufacturing
capacity, as illustrated by the graph in Figure 1.3.
There can also be an insensitivity to increases in demand, particularly

when manufacture is continuous. Other problems include recording delays,
due to waiting for suitable transport, and the possibility of negative figures
when returns occur. In general it is preferable to collect order or demand
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statistics, although even these can mislead on requirements in periods of
shortage when customers deliberately request more than they need, know-
ing that they will only receive a partial allocation. However, the short-term
problem is then one of allocation.
Another example of care is when one of us correctly forecast a bumper lin-

seed harvest, but then, without thinking, converted it into its oil equivalent.
Unfortunately this proved to be a significant over-estimate of the available
oil since crushing capacity was limited. So, although the abundant harvest
materialised, the oil price did not fall nearly as far as predicted.
These examples suffice to remind modellers to consider both the direct

relevance and the quality of their observations.

1.2.3 Prospective intervention
A major problem for many mathematically based learning systems has
been that of accommodating subjective information. This is particularly
important at times of major change. Consider the example of the history
of UK sulphuric acid production. Production statistics from 1870 to 1987
are shown in Figure 1.4 (Source: Monthly Digest of Statistics).
Clearly there were major changes that, if not anticipated, would have

been extremely costly to producers. The feature of these changes is the
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sharp decline and demise of previously significant end uses due to tech-
nological and social change. The first end use to suffer was the Leblanc
process for the production of soda. The ammonia-soda process uses no sul-
phuric acid and finally superseded Leblanc around the end of 1920. More
recently, hydrochloric acid has challenged in steel pickling since it offers a
faster process and is recoverable. The importance of an early awareness and
assessment of the effect of these developments and consequent prospective
intervention is self-evident (Harrison and Pearce 1972).
The vital role of a model structure facilitating expert intervention has

already been stressed. Usually, at times of intervention, there is additional
uncertainty with an accompanying sharp change in beliefs about the future.
Being phrased in terms of meaningful probabilities, the Bayes’ approach
offers a natural way of accommodating such uncertain information, thus
facilitating intervention. This is one of the prime reasons for its adoption
as the routine learning method within management by exception systems.
As an example, consider short-term forecasting of the UK retail price

index, (RPI) as in Figure 1.5, with a routine view based on local linear ex-
trapolation. In June 1979, the chancellor’s announcement that the value-
added tax (VAT) was to be raised from 10% to 15% makes intervention
essential to sustained short-term forecasting accuracy. Prior to this the
July price level might have been assessed by a forecaster as 221.5 with an
associated uncertainty represented by a standard deviation of 1. However,
upon hearing of the change in VAT, the forecaster is likely to assess the
effect as increasing the RPI by an extra 3.5%, leading to a revised esti-
mate of 229.5, with the increased uncertainty being reflected by a standard
deviation of 3. The actual mechanics of the change can, and should, be
designed with the intervener in mind. Direct communication in terms of
statistical terminology is not at all necessary, provided the chosen interven-
tion method can be statistically interpreted. Figure 1.5 further illustrates
the VAT incident, representing simple forecasts based on the foregoing in-
tervention. The forecasts are one-step ahead, that for each monthly value
of the RPI being made the previous month, and are plotted with associated
uncertainties represented simply by intervals of one standard deviation (sd)
either side of the point forecasts.
Some people object to intervention on the grounds of subjectivity. Let

us be quite clear: as soon as anyone starts to model they are being sub-
jective. Of course, any facility that enables subjective communication is
open to abuse, but the answer is to monitor and control subjectivity rather
than stupidly prohibiting it. This may be accomplished within the rou-
tine monitoring system or otherwise. It is important that such monitoring
be performed as part of the learning process, for upon first encountering
complete learning and forecasting systems, decision makers are tempted to
intervene on ill-founded hunches, on situations that are already accommo-
dated in the routine model, or simply due to wishful thinking.
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Figure 1.5 UK RPI forecasting with intervention

1.2.4 Monitoring
A continual assessment of the performance of any regularly used forecast-
ing and decision system is vital to its effective use. Model monitoring is
concerned with detecting inadequacies in the current routine model M ,
and, in particular, in signalling significant forecast errors caused by ma-
jor unanticipated events. Practitioners will be familiar with such schemes
as applied in quality control and inventory management. Of course it is
hoped that expert intervention will anticipate relevant major events, but in
the absence of such feed-forward information, monitoring systems continu-
ally assess the routine model, signalling doubtful performance based on the
occurrence of unexpectedly large forecast errors. At such times, relevant
explanatory external information may be sought or automatic procedures
applied, that are designed to correct for specified types of change.
Within the Bayesian approach, the extent to which observations accord

with predictions is measured through predictive probabilities, possibly with
an associated specified loss function. Writing P (Y |M) as the predictive
probability distribution for a future quantity Y based on model M , model
adequacy may be questioned if the eventually observed value Y = y does
not accord with P (y|M). The initial task in designing any monitoring sys-
tem is to decide what constitutes bad forecasting, that is, how to measure
accord with forecast distributions in the context of decisions that are de-
pendent upon these forecasts.
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1.2.5 Retrospective assessment
In addition to learning and prediction, retrospection is often informative.
Typically this is called a “What happened?” analysis. In the light of all
the current information, the objective is to estimate what happened in the
past in order to improve understanding and subsequent performance.
A typical marketing example occurs when a novel promotional campaign

is undertaken. Initially, prospective intervention communicates the pre-
dicted effects, which are likely to involve increased sales estimates, and their
associated uncertainties over the campaign period. This is necessary in or-
der to ensure that appropriate product stocks are available. The progress
of the campaign’s effect will be suitably monitored. Then, some time af-
ter completion, the campaign will be retrospectively assessed in order to
increase the store of market knowledge. This involves properly attributing
effects to the many contributing sources of variation such as price, season-
ality, competitive action, etc. Retrospective analysis is particularly useful
for examining what happened at times of major change, especially where
there is debate or ignorance about possible explanations. As such it is an
integral part of a good learning system.

1.2.6 Utilities and decisions
A statistician, economist, or management scientist usually looks at a deci-
sion as comprising a forecast, or belief, and a utility, or reward, function.
In a simple horse-racing situation, you may have beliefs about the relative
merits of the runners that lead you to suppose that horse A is the most
likely to win and horse B the least likely to win. However, the bookmaker’s
odds may be such that you decide to bet on horse B.
Formally, in a simple situation, you may have a view about the outcome

of a future random quantity Y conditional on your decision a expressed
through a forecast or probability distribution function P (Y |a), possibly
depending on a. A reward function U(Y, a) expresses your gain or loss if
outcome Y happens when you take decision a. Thus, for each decision a it
is possible to calculate the merit as reflected in the expected reward

r(a) =
∫
U(Y, a)dP (Y |a).

The optimal Bayes’ decision is that a that maximises r(a), as in De Groot
(1971) and Berger (1985).
Accepting this formulation, it is clear that in general, for a given fore-

cast distribution, provided the utility favours a particular decision strongly
enough, that decision will be chosen. Also, for a given utility function,
if the probability distribution or forecast relating to decisions sufficiently
favours a particular decision, then that decision will be chosen.
A decision maker occupies a powerful situation and often has strong self

interests that lead to utilities quite different from those of others. On the
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other hand, often the decision maker cannot openly express his selfish util-
ities and is therefore forced to articulate in terms of a utility function that
is acceptable to others who may later authorise the decision or participate
in implementation. In such a situation, forecasting offers a major source of
power, which can be used to manipulate decisions. Furthermore, the ex-
tent of forecast manipulation in business, government, etc. should not be
underestimated. As Bertrand Russell (1921) remarks, “It becomes neces-
sary to entertain whole systems of false beliefs in order to hide the nature
of what is desired.” It is not uncommon for practitioners to be asked to
undertake forecasting exercises where the directive is that a given decision
should result. For example, “you must not show that this plant should not
be built,” and “we must show that television advertising does not influ-
ence the total alcoholic drinks market, but only the shares of competing
brands.” The former case involving extended capacity occurs regularly. On
one occasion one of us was strongly reprimanded for carrying out a check
that revealed that the current market of a recently formed organisation was
over 40% less than the figures being used to justify extended capacity. The
reasons for such exhortations are clear. Unless the plant is built, “I will be
out of a job”, “we banks cannot lend money”, “unemployment statistics
will increase”, etc., so that many powerful groups have very strong and
similar utility functions.
The key weapon of the manipulator is selection. This may be data se-

lection, the selection of a particular set of circumstances to illustrate an
argument, the reference to forecasts from other, similarly interested organ-
isations, the selection of consultants and forecasters who need business, the
selection of an inexperienced project team, etc.
There is, as readers will be well aware, a recent history in gross over-

forecasting across a host of sectors by business and government, the follow-
ing examples being typical.

EXAMPLE 1.1. Consider a forecast of UK consumption of low density
polyethylene, denoted LDP, made in 1971 (Harrison and Pearce 1972). The
history to that date is shown in Figure 1.6. Historically, trend curves backed
by end use analysis had performed exceedingly well in estimating UK con-
sumption and the predicted fast growth had supported past decisions to
extend production capacity. In 1971, the same approach estimated a 1980
market of about 470 thousand long tons, which did not suit the utility of
managers. The only new significant use was in plastic refuse sacks, and no
end use argument could be proposed for increasing this forecast other than
surprise or the imposition of unfounded growth constraints. The basic use
of trend curves is as a control mechanism. Historically, various empirical
rules have been derived such as “the percentage growth in demand decreases
with time”, “real production costs decrease with cumulative output’, etc.
These form a standard by which proposals can be judged.
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Figure 1.6 UK consumption of LDP (long tons×106)

Basically, if a case conforms to these rules, it may be safe to sanction
extension proposals. If however, the case rests on a vastly different forecast
then there must be a very sound and strong reason why the future will
evolve in such an unexpected way. In the LDP situation the growth rate
had already fallen to 10% and could be expected to fall further to about
6% by 1980. Thus, all empirical evidence pointed to a struggle for the
market to exceed 500 thousand long tons by 1980. However, the suppliers
of the raw material ethylene had produced an incredible 1980 forecast of
906 thousand long tons. Furthermore, the board of the plastics company
for whom the forecasts were produced decided to plump for an unjustified
figure of 860 thousand long tons. To come to fruition, both these forecasts
needed an average growth rate of about 13% over the next ten years. To say
the least, such a growth rate recovery would have been most remarkable,
and any proposal based upon this would certainly have had to have been
very well founded. The market researcher who did the end use analysis
was retired. Extensions were sanctioned, and throughout the next decade,
regretted. From the mid 1970s onwards capacity in Western Europe was
generally between 30 and 40% over capacity and in 1979 estimated forecasts
continually lowered, finally reaching the region of the 470 mark.

EXAMPLE 1.2. The above example is not mentioned as an isolated case
but as typical of decision makers. For example, Figure 1.7 shows how
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Figure 1.7 Official UK ethylene forecasts (tonnes×106)

official forecasts for ethylene production were continually reduced over the
years throughout the 1970s (Source: Financial Times, August 9th 1978).

EXAMPLE 1.3. The profits figures and official forecasts shown in Figure
1.8, for a period ending around 1970, should cause no embarrassment now.
Up to this time, this particular company had never under-forecast profits.
Usually at a boom time, which then regularly occurred with the business
cycle at about five-year intervals, the forecast profits over the next three
“recession” years would be about fifty percent too high. It was said that
even if improved forecasts could be obtained, they could not be issued and
used because of the consequences in the “City”. Hence totally inappropri-
ate forecasts were adopted, resulting in great losses in efficiency as projects
were cancelled, workers laid off, etc.
It is evident that the profits figures show a cyclic behaviour typical of

the second-order dynamics generated by reactive control trying to force a
system to violate its natural characteristics. Essentially, over this period,
the UK government operated a deflation/reflation policy governed by the
state of UK unemployment and trade balance; unions took advantage of
boom periods to negotiate inappropriate wage rates and “golden” shifts;
and companies took actions to expand activities and profits.
Figure 1.9 (from Harrison and Smith 1980) gives an insight into what

was happening. In 1971, a dynamic systems model led to the forecast that
the mid 1970s would experience the deepest depression since the 1930s.
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This soundly based forecast was received with both astonishment, abuse,
and absolutely no rational counter arguments. So in that year, one of us
wagered that UK unemployment would exceed 2 million before 1980. Al-
though this figure was not officially achieved until later, in 1980 it was
conceded that the bet had been successful, since in order to depress un-
employment statistics, the government had introduced new compilation
methods that omitted previously included groups. However, we refused
this concession on the grounds that a professional forecaster should have
anticipated manipulation of the figures.

1.2.7 Macro and micro forecasts
The production of the above profit figures is interesting and is illustrative of
a major point. The process was conducted from the bottom up over thou-
sands of products. Individual point forecasts would be produced, generally
judged on their merits as sales targets and summed through a hierarchy
into a single figure, that could be amended by the treasurer but was rarely
altered in any significant way. The merits of this system are that it virtually
guarantees that top management get a forecast that satisfies their desires
and for which they can shelve a good measure of responsibility. The prop-
erties of this forecast system are that it focuses on point forecasts which are
sales targets, nearly always exceeding the immediate previous achievement,
and that it completely ignores the major factors causing profit variation.
This last point is critical for a forecaster. For example, in 1970 within

this company there was much argument about the effect of the business
cycle. One camp would argue that because it did not affect product A, or
product B, or any other individual products, then it did not exist. Others
would say that it quite clearly existed if one looked at the total business.
The difference of opinion arises because of a lack of appreciation of the law
of large numbers which one of us demonstrated easily as follows.
Suppose that, at time t, there are a thousand products with sales Yi,

modelled simply as

Yi = µi +B + εi, i = 1, . . . , 1000,

where the µi’s are known means, the εi’s are independent error terms with
zero means and variances 99, denoted by εi ∼ [0, 99], and B ∼ [0; 1] is a
common source of variation. Clearly, each Yi has variance V[Yi] = 100, with
the negligible common factor B accounting for only 1% of the individual
product variance, or 0.5% of the standard deviation.
Now consider the total sales S, given by

S = µ+ 1000B +
1000∑
i=1

εi.
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The variance of S is

V[S] = 106V[B] +
1000∑
i=1

V[εi] = 1099× 103.

Now the common factor B accounts for 91% of the total variance and over
95% of the total standard deviation. The example can be generalised but
the key point is vitally clear, namely that factors that dominate a system at
one level of aggregation may be insignificant at other levels and vice-versa
(Green and Harrison 1972; Harrison 1985 ).
One important message to be drawn from this is that a model should

focus on a limited range of questions and not try to answer both macro and
micro questions unless it is particularly well structured hierarchically with
models within models. On the other hand, forecasts from a range of models
for parts, subtotals, totals, etc., often need to be consistent. Appreciating
how to combine and constrain forecasts is a necessary skill for a forecaster.
In the above example, stock control forecasts for the thousand individual
products may be produced individually using a simple time series model.
However, for macro stock decisions, a model of the total business needs to
be made that can anticipate major swings in product demand which, in
turn, can affect the total stock policy by their translation into action at
the individual product level.
Unlike traditional forecasting methods, the Bayes’ approach offers easy,

natural ways of combining and deriving consistent forecasts.

1.3 BAYESIAN MODELLING AND FORECASTING
1.3.1 Preliminaries
This book is primarily concerned with modelling and forecasting single time
series with attention focusing on the mathematical and statistical structure
of classes of dynamic models and data analysis. Whilst of necessity the
emphasis is on detailed features of particular models, readers should not
lose sight of the wider considerations relevant to real-life modelling and
forecasting as discussed above. This noted, a full understanding of detailed
structure is necessary in order to appreciate the practical implications.
Bayesian statistics is founded on the fundamental premise that all uncer-

tainties should be represented and measured by probabilities. Its justifica-
tion lies in the formal, axiomatic development of the normative framework
for rational, coherent, individual behaviour in the face of uncertainty. In-
dividuals desiring to behave (at least in principle) in this way are led to
act as if their uncertainties are represented using subjective probability.
In addition to ensuring coherence, the Bayesian paradigm provides simple
rules for the management of uncertainties, based on the laws of proba-
bility. Analyses of complex problems, with possibly many different but
interacting sources of uncertainty, become problems of mathematical ma-
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nipulation, and so are well-defined. The laws of probability then apply to
produce probabilistic inferences about any quantity, or collection of quanti-
ties, of interest. In forecasting, such quantities may be future values of time
series and model parameters; related forecasts being the model’s predictive
probability distributions. Thus Bayesian forecasting involves the provision
of forecast information in terms of probability distributions that represent
and summarise current uncertain knowledge and beliefs. All probabilities
are subjective, the beliefs represented being those of an individual, the
forecaster or modeller responsible for the provision of forecast information.
Throughout the book, many underlying principles and features of the

Bayesian approach are identified and described in the contexts of vari-
ous forecasting models and problems. Routine manipulation of collections
of probability distributions to identify those relevant to forecasting and
related inferences are performed repeatedly. This provides a useful intro-
duction to general Bayesian ideas for the inexperienced reader, although
it is no substitute for more substantial introductions such as can be found
in the works of Lindley (1965), De Groot (1971), Berger (1985), O’Hagan
(1994) and Bernado and Smith (1994).

1.3.2 Basic notation
Notation is introduced in the context of modelling a series of real-valued
quantities observed over time, a generic value being denoted by Y . The
time index t is used as a suffix for the time series, so that Yt denotes the
tth value of the series. Conventionally, observations begin at t = 1, the
series developing as Y1, Y2, . . . , or Yt, (t = 1, 2, . . . , ). There is no need
for the series to be equally spaced in time although for convenience Yt
will often be referred to as the observation at time t. Random quantities
and their outcomes or realised values are not distinguished. Thus, prior
to observing the value of the series at time t, Yt denotes the unknown, or,
more appropriately, uncertain random quantity, which becomes known, or
certain, when observed. The context and notations used in the specification
of models and probability distributions make the distinctions as necessary.
Throughout the book all probability distributions are assumed discrete or

continuous, having densities defined with respect to Lebesgue or counting
measures as appropriate. Generally, continuous distributions with continu-
ous densities are used, models being mainly based on standard and familiar
parametric forms such as normal, Student T, and so forth. Fuller notational
considerations are given in the first Section of Chapter 17, a general math-
ematical and statistical appendix to the book. Some basic notation is as
follows. Density functions are denoted by p(·), and labelled by their argu-
ments. Conditioning events, information sets and quantities are identified
as necessary in the argument, following a vertical line. For example, the
distribution of the random quantity Y conditional on an information set D
has density p(Y |D), and that given D plus additional information denoted
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by H is simply p(Y |D,H) or p(Y |H,D). The joint density of two random
quantities Y and X given D is p(Y,X|D) or p(X,Y |D). Conditional upon
X taking any specified value, whether hypothetical or actually observed,
the conditional density of Y given both D and X is simply p(Y |X,D)
or p(Y |D,X). Note here that the distinction between X as an uncertain
random quantity and as a realised value is clear from the notation. In
referring to the distributions of random quantities, this notation is used
without the p. Thus we talk of the distributions of Y , (Y |D), (Y,X|D)
and (Y |X,D), for example. Expectations of functions of random quan-
tities are denoted by E[·]; thus E[Y |D] is the conditional expectation, or
mean, of (Y |D). Variances and covariances are represented using V[·] and
C[·, ·] respectively; thus V[Y |D] is the variance of (Y |D) and C[Y,X|D] the
covariance of (Y,X|D).
Conventionally, both uppercase and lowercase roman characters are used

for quantities that are either known or uncertain but observable. Thus, at
any time point t, the observed values of the time series Y1, Y2, . . . , Yt will
usually be known, those of Yt+1, Yt+2, . . . , being uncertain but potentially
observable at some future time. Uncertain, unobservable random quanti-
ties are denoted by Greek characters, and referred to as unknown model
parameters. For example, the mean and variance of a random quantity will
be denoted by roman characters if they are known, but by Greek charac-
ters if they are unknown distributional parameters. In the latter case, the
uncertain nature of the parameters will usually be made explicit by their
inclusion in the conditioning of distributions. Thus p(Y |µ,D) is the density
of Y given the information set D and in addition, the value of an uncer-
tain random quantity µ. On the other hand, not all assumed quantities are
recognised in the conditioning.
Notation for specific distributions is introduced and referenced as neces-

sary. Distributions related to the multivariate normal play a central role
throughout the book, so the notation is mentioned here with further details
in Sections 17.2 and 17.3. In particular, (Y |D) ∼ N[m,V ] when (Y |D) is
normally distributed with known mean m and known variance V . Then
X = (Y − m)/

√
V has a standard normal distribution, (X|D) ∼ N[0, 1].

Similarly, (Y |D) ∼ Tk[m,V ] when (Y |D) has a Student T distribution on
k degrees of freedom, with modem and scale V . If k > 1 then E[Y |D] = m;
if k > 2 then V[Y |D] = V k/(k−2). X = (Y −m)/

√
V has a standard T dis-

tribution, (X|D) ∼ Tk[0, 1]. Similar notation applies to other distributions
specified by a small number of parameters. In addition, (Y |D) ∼ [m,V ]
signifies E[Y |D] = m and V[Y |D] = V, whatever the distribution.
Vector and matrix quantities are denoted by bold typeface, whether Ro-

man or Greek. Matrices are always uppercase; vectors may or may not
be depending on context. The above notation for distributions has the
following multivariate counterparts as detailed in Section 17.2: let Y be a
vector of n random quantities having some joint distribution, m a known
n−dimensional vector, and V a known n × n non-negative definite ma-
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trix. Then (Y|D) ∼ N[m,V] when (Y|D) has a multivariate normal dis-
tribution with known mean m and known variance matrix V. Similarly,
(Y|D) ∼ Tk[m,V] when (Y|D) has a multivariate Student T distribution
on k degrees of freedom, with mode m and scale matrix V. If k > 1 then
E[Y|D] =m; if k > 2 then V[Y|D] = Vk/(k−2). Finally, (Y|D) ∼ [m,V]
when E[Y|D] = m and V[Y|D] = V, with the distributional form other-
wise unspecified.

1.3.3 Dynamic models
Mathematical and statistical modelling of time series processes is based
on classes of dynamic models, the term dynamic relating to changes in
such processes due to the passage of time as a fundamental motive force.
The most widely known applied subclass is that of normal dynamic linear
models, referred to simply as dynamic linear models, or DLMs, when the
normality is understood. This class of models forms the basis for much of
the development in the book.
The fundamental principles used by a Bayesian forecaster in structuring

forecasting problems through dynamic models are discussed in detail in
Section 4.1 of Chapter 4 and comprise

• parametric models with meaningful dynamic parameters;
• a probabilistic representation of information;
• a sequential model definition utilising conditional independence;
• robust conditionally independent model components;
• forecasts derived as probability distributions;
• a facility for incorporating expert information;
• model quality control.

A sequential model definition and structuring is natural in the time se-
ries context. As time evolves, information relevant to forecasting the future
is received and may be used to revise the forecaster’s views, whether this
revision be at the quantitative, the form, or the conceptual level in the gen-
eral model structure M of Section 1.1. The sequential approach focuses
attention on statements about the future development of a time series con-
ditional on existing information. Suppose, with no loss of generality, that
the time origin t = 0 represents the current time, and that existing infor-
mation available to, and recognised by, a forecaster is denoted by the

initial information set: D0.

This represents all the available relevant starting information that is used to
form initial views about the future, including history and all defining model
quantities. In forecasting ahead to any time t > 0, the primary objective
is the calculation of the forecast distribution for (Yt|D0). Similarly, at
any time t, statements made concerning the future are conditional on the
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existing

information set at time t: Dt.

Thus, statements made at time t about any interesting random quantities
are based on Dt; in particular, forecasting ahead to time s > t involves
consideration of the forecast distribution for (Ys|Dt). As time evolves,
so does the forecaster’s information. Observing the value of Yt at time t
implies that Dt includes both the previous information set Dt−1 and the
observation Yt. If this is all the relevant information, thenDt = {Yt, Dt−1},
although often, as discussed earlier, further relevant information will be
incorporated in revising or updating the forecaster’s view of the future.
Denoting all additional relevant information at time t by It leads to the

information updating: Dt = {It, Dt−1}, (t = 1, 2, . . . ).

The sequential focus is emphasised by describing the future development
of the series via a probability distribution for Yt, Yt+1, . . . , conditional on
past information Dt−1. Usually such a distribution depends upon defin-
ing parameters determining distributional forms and moments, functional
relationships, and so forth. Focusing on one-step ahead, the beliefs of the
forecaster are structured in terms of a parametric model,

p(Yt | θt, Dt−1),

where θt is a defining parameter vector at time t. This mathematical
and statistical representation is the language providing communication be-
tween the forecaster, model and decision makers. As such, the parameters
must represent meaningful constructs. Indexing θt by t indicates that the
parametrisation may be dynamic. In addition, although often the number
and meaning of the elements of θt will be stable, there are occasions on
which θt will be expanded, contracted or changed in meaning according to
the forecaster’s existing view of the time series. In particular, this is true
of open systems, such as arise in typical social, economic, and biological
environments, where influential factors affecting the time series process are
themselves subject to variation based on the state of the system generating
the process. In such cases, changes in θt may be required to reflect sys-
tem learning and the exercise of purposeful control. Such events, although
recognisable when they happen, may be difficult to anticipate and so will
not generally be included in the model until occurrence.
The model parameters θt provide the means by which information rele-

vant to forecasting the future is summarised and used in forming forecast
distributions. The learning process sequentially revises the state of knowl-
edge about such parameters. Probabilistic representation of all uncertain
knowledge is the essence of the Bayesian approach, whether such knowl-
edge relates to future, potentially observable quantities or unobservable
model parameters. At time t, historical information Dt−1 is summarised
through a prior distribution for future model parameters: prior, that is,
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to observing Yt, but of course posterior to the information set Dt−1. The
prior density p(θt | Dt−1) and the posterior p(θt | Dt) provide a concise,
coherent and effective transfer of information on the time series process
through time. In addition to processing the information deriving from
observations and feeding it forward to forecast future development, this
probabilistic encoding allows new information from external sources to be
formally incorporated in the system. It also extends naturally to allow for
expansion or contraction of the parameter vector in open systems, with
varying degrees of uncertainty associated with the effects of such external
interventions and changes. Further, inferences about system development
and change are directly drawn from components of these distributions in a
standard statistical manner.
Two very simple models, the subjects of Chapters 2 and 3, exemplify

the class of dynamic models, giving concrete settings for the above general
ideas. The first is an example of a particular univariate normal dynamic
linear model which is briefly defined in order to introduce the quadruple
notation used in those chapters.

Definition 1.1. For each t, the univariate, uniparameter normal dynamic
linear model, represented by the quadruple {Ft, λ, Vt,Wt}, is defined by:

Observation equation: Yt= Ftµt + νt, νt ∼ N[0, Vt],

System equation: µt= λµt−1 + ωt, ωt ∼ N[0,Wt],

Initial information: (µ0 |D0) ∼ N[m0, C0],

where the error sequences νt and ωt are independent, and mutually inde-
pendent. In addition, they are independent of (µ0 | D0). The values of the
variance sequences Vt and Wt may be unknown, but the constant λ and
relevant values of the sequence Ft are known.

EXAMPLE 1.4. An archetype statistical model assumes that observations
are independent and identically normally distributed, denoted by (Yt|µ) ∼
N[µ, V ], (t = 1, 2, . . . ), This is the trivial DLM {1, 1, V, 0}. Changes over
time in the mean, and sometimes the variance, of this model may be un-
avoidable features when observations are made on a process or system that
is itself continually evolving. Such changes are usually gradual, reflecting
continuous slow changes in environmental conditions. However, changes
are occasionally more abrupt, often responses to significant shifts in major
influential factors. For example, a normal model may be assumed as a
suitable representation of the random variation in “steady” consumer de-
mand for a product, but the level of demand will rarely remain absolutely
constant over time. A simple extension of the archetype incorporating
a time varying mean provides a considerable degree of flexibility. Then,
subscripting µ by t, (Yt|µt) ∼ N[µt, V ], or

Yt = µt + νt, and νt ∼ N[0, V ],
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where µt represents the level of the series at time t, and νt random, obser-
vational error or noise about the underlying level.
One of the simplest, non-degenerate ways in which the level can be dy-

namically modelled is as a random walk. In such a case, time evolution of
the level, defining the process model, is represented as

µt = µt−1 + ωt, and ωt ∼ N[0,W ],

where ωt represents purely random, unpredictable changes in level between
time t− 1 and t. This is the standard DLM {1, 1, V,W}. Chapter 2 is de-
voted to the study of such models, which find wide application in short-term
forecasting. In product demand forecasting and inventory management, for
instance, underlying levels may be assumed to be locally constant, but will
be expected to change significantly over longer periods of time. The zero-
mean and independence assumptions for the ωt series are consistent with
a view that this longer-term variation cannot be systematically predicted,
being described as purely stochastic.
With reference to the earlier general discussion, if the variances V andW

are known, then the model parameter θt at time t represents the uncertain
level µt alone. Otherwise, θt may include uncertain variances for either
or both of νt and ωt. With known variances, their values are included
in the initial information set D0, so with parameter θt = µt for all t,
p(Yt|θt, Dt−1) = p(Yt|µt, D0) is the density of (Yt|µt, D0) ∼ N[µt, V ]. The
historical information set Dt−1, which includes all past values of the Y
series, leads to the prior distribution for θt = µt given Dt−1. In demand
forecasting, for example, historical values of the Y series may lead the
forecaster to believe that next month’s demand level, µt, is most likely to
be in the region of about 250, but is unlikely to be below 230 or to exceed
270. One possible representation of this prior view is that

(µt|Dt−1) ∼ N[250, 100],

having an expected and most likely value of 250, and about 95% probability
of lying between 230 and 270. This sort of model structuring is developed
extensively in Chapter 2.

EXAMPLE 1.5. Regression modelling is central to much of statistical prac-
tice, being concerned with the construction of a quantitative description of
relationships between observables, such as between two time series. Con-
sider a second time series represented by observationsXt, (t = 1, 2, . . . ), ob-
served contemporaneously with Yt. Regression modelling often focuses on
the extent to which changes in the mean µt of Yt can be explained through
Xt, and possibly past values Xs for s < t. Common terminology refers to
Yt as the response or dependent variable series and Xt as the regressor or
independent variable series. Then µt is the mean response, related to the
regressor variable through a mean response function µt = rt(Xt, Xt−1, . . . )
defining the regression. For example, a simple linear model for the effect
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of the current Xt on the current mean is µt = α+ βXt, where the defining
parameters α and β take suitable values. Models of this sort find wide use
in prediction, interpolation, estimation, and control contexts. Construction
of models in practice is guided by certain objectives specific to the problem
area, such as short-term forecasting of the response series. For some such
purposes, simple static linear models may well be satisfactory locally, but
as in the previous example, are unlikely to adequately describe the global
relationship, i.e. as time evolves and as Xt varies. Flexibility in modelling
such changes can be provided simply by allowing for the possibility of time
variation in the coefficients, so that

µt = αt + βtXt.

Thus, although the form of regression model is linear in Xt for all t,
the quantified model may have different defining parameters at different
times. This distinction, between an appropriate local model form and an
appropriate quantified local model, is critical and fundamental in dynamic
modelling. Often the values of the independent variable Xt change only
slowly in time and an appropriate local model description is that above,
µt = αt + βtXt, where the parameters vary only slightly from one time
point to the next. As in the previous example, this may be modelled using
random walk type evolutions for the defining parameters, such as

αt = αt−1 + δαt,

βt = βt−1 + δβt,

where δαt and δβt are zero-mean error terms. These evolution equations
express the concept of local constancy of the parameters, subject to varia-
tion controlled and modelled through the distribution of the evolution error
terms δαt and δβt. Small degrees of variation here imply a stable linear
regression function over time, larger values modelling greater volatility and
suggesting caution in extrapolating or forecasting too far ahead in time
based on the current quantified linear model. The usual static regression
model, so commonly used, is obviously obtained as a special case of this
dynamic regression when both evolution errors are identically zero for all
time.
Finally, the primary goals of the forecaster are attained by directly ap-

plying probability laws. The above components provide one representation
of a joint distribution for the observations and parameters, namely

p(Yt,θt | Dt−1) = p(Yt | θt, Dt−1) p(θt | Dt−1),

from which the relevant one-step forecast may be deduced as the marginal

p(Yt | Dt−1) =
∫
p(Yt,θt | Dt−1)dθt.
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Inference for the future Yt is simply a standard statistical problem of sum-
marising the forecast distribution and a coherent optimal decision policy
may be derived with the introduction of a utility function.

1.4 HISTORICAL PERSPECTIVE AND BIBLIOGRAPHIC
COMMENTS

Our approach to modelling and forecasting synthesises concepts, models
and methods whose development has been influenced by work in many
fields. It would be impossible to fully document historical influences. As
already discussed, much is involved in modelling that cannot be routinely
described using formal, mathematical structures, particularly in the stages
of model formulation, choice and criticism. However, in line with the fun-
damental concepts of scientific method, we identify the Bayesian approach
as the framework for routine learning and organisation of uncertain knowl-
edge within complete forecasting systems. Over the last fifty years there
has been rapidly increasing support for the Bayesian approach as a means
of scientific learning and decision making, with notable recent acceptance
by practitioners driven by the need to adopt the common-sense principles
on which it is founded. Axiomatic foundations notwithstanding, decision
makers find it natural to phrase beliefs as normed or probability measures,
as do academics, though some prefer not to recognise the fact. This seems
to have been done ever since gambling started — and what else is decision
making except compulsory gambling? We all face “one-off” decisions that
have to be made with no chance of repeating the experience, so the value
of classical statistics is very limited for decision makers.
Important influences on current Bayesian thinking and practice may be

found, in particular, in the books of Box and Tiao (1973), De Finetti
(1974/75), De Groot (1971), Jeffreys (1961), Lindley (1965), and Savage
(1954). More recent recent contributions include Berger (1985), O’Hagan
(1994) and Bernardo and Smith (1994), which include useful bibliographies.
Concerning approaches to practical forecasting, little had been done in

industry and government in the way of mathematical or socio-economic
modelling before the arrival of computers in the 1950s. Exponentially
weighted moving averages, EWMAs, and Holt’s (1957) linear growth and
seasonal model began to find use in the mid to late 1950s in forecasting
for stock control and production planning, with one of us (PJH) involved
in pioneering their use at Imperial Chemical Industries Ltd., (ICI). In this
company, Holt’s method became established, and apart from taking over
the routine of forecasting, led to great improvements in the accuracy of
forecasts. In fact, the methods were used in conjunction with interventions
so that a complete forecasting system was in operation at that time. This
involved the product sales control department in adjusting the computer
forecasts whenever they felt it necessary, though initially these adjustments
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did not always improve the forecasts, probably because hunches and wish-
ful thinking appeared to them as definite information. Methods developed
then are still in use now in sales forecasting and stock control.
The work of Brown (1959, 1962), promoting the use of discount tech-

niques in forecasting, was and still is a major influence for practitioners.
A parsimonious concept anchored to the fundamental familiar principle of
discounting is very attractive. Work at ICI at the start of the 1960s used
the principle of discounting in models for series with trend and seasonal-
ity, but applied two discount factors, one for trend and one for seasonality.
As far as we know, this was the first development of multiple discount-
ing, incorporated in two forecasting programmes, Seatrend and Doubts, in
1963, presented at the Royal Statistical Society’s annual conference held at
Cardiff in 1964 and later published in Harrison (1965). However, what will
not be known by a literature search is what really happened in develop-
ment. The society had asked for a paper to be circulated in advance, and
this presented the multiple discount methods but concluded that, because
of simplicity, it was preferable to use a single discount factor as in Brown’s
exponentially weighted regression (EWR) approach. However, because of
the difficulties in programming, numerical comparisons were unavailable at
the time of writing. Almost as soon as the paper was sent to the RSS the
results were obtained, and surprisingly indicated the enormous improve-
ments to be obtained using multiple discounting. This led to a reversal of
the issued conclusions through a quickly written seven page addendum that
was circulated at the conference. One reader wrote “the paper read like a
thriller: the rise and fall of Brown”. However, as is usual with research, the
published paper shows no trace of how the work actually progressed. Basi-
cally, the conclusion was that different model components need discounting
at different rates, a view that now dominates in structuring models using
discounting ideas in Bayesian forecasting.
Further developments at ICI were described in a paper presented to the

Operational Research Society Conference in 1965, the manuscript never
being published but available in its original form as a Warwick Research
Report (Harrison and Scott 1965). The contents will surprise many peo-
ple; they include discussion of complete forecasting systems emphasising
intervention and monitoring and present several specific dynamic models.
Some of the modelling work was based on developments by Muth (1960),
Nerlove and Wage (1964), Thiel and Wage (1964), and Whittle (1965),
though a major concern was with more general models, with an empha-
sis on sensitivity to departures from optimal adaptive parameters, partially
motivated by unfounded, inexperienced opposition to discounting from cer-
tain academics. The monitoring work in that paper was largely based on
the backward cusum controller developed initially in 1961 from cusums in
quality control and published in Harrison and Davies (1964). Much of this
followed developments by Page (1954), Barnard (1959), the work of ICI
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through Woodward and Goldsmith (1964), and of British Nylon Spinners,
later to become part of ICI, through Ewan and Kemp (1960).
So by 1964, simple, parametrised, structural models were in use, employ-

ing double discounting and emphasising the approach through complete
forecasting systems operating according to the principle of management by
exception, enabling prospective and retrospective interventions. By the end
of the 1960s, the basic models had been extended and generalised to a wide
class of dynamic linear models (though not then referred to as such), and
to multi-process models that were to model outliers and sudden changes
in structure. Some indication of the extent of the developments, both the-
oretical and practical, was then reported in Harrison and Stevens (1971).
Implemented forecasting systems based on this took full advantage of the
intervention facilities of the Bayesian approach and also performed auto-
matic model discrimination using multi-process models. Important also for
the use of subjective and quantitative information is the 1970 application in
the mail order business reported rather later in Green and Harrison (1973).
At about the same time, in 1969, it became clear that some of the math-

ematical models were similar to those used in engineering control. It is
now well known that in normal DLMs with known variances, the recur-
rence relationships for sequential updating of posterior distributions are
essentially equivalent to the Kalman filter equations, based on the early
work of Kalman (1960, 1963) in engineering control, using a minimum
variance approach. It was clearly not, as many people appear to believe,
that Bayesian forecasting is founded upon Kalman filtering (see Harrison
and Stevens 1976a, and discussion; and reply to the discussion by Davis
of West, Harrison and Migon 1985). To say that “Bayesian forecasting
is Kalman Filtering” is akin to saying that statistical inference is least
squares.
The late 1970s and 1980s have seen much further development and appli-

cation of Bayesian forecasting models and methods. Notable amongst these
are procedures for variance learning (West 1982; Smith and West 1983),
discounting (Ameen and Harrison 1984, 1985a and b), monitoring and in-
tervention (West 1986; West and Harrison 1986; West, Harrison and Pole
1987; Harrison and Veerapen 1994; Pole, West and Harrison 1994), non-
normal and non-linear model structures (Souza 1981; Smith 1979; Migon
1984; Migon and Harrison 1985; West, Harrison and Migon 1985), refer-
ence analyses (Pole and West 1987), and many others. Since the revolution
in computational statistics, beginning in 1990, major new directions in re-
search, model development and application have been opened up, involving
analysis using simulation methods. Much of the dynamic modelling activ-
ity is discussed in Chapter 15, a new chapter in the second edition, with
references to the key areas and recent developments.
Computing developments have led to wider usage, easing communica-

tion with less technically orientated practitioners. We do hold the view
that modelling is an art, and particularly so is Bayesian forecasting. Any
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software package is just that: a package of specific, selected facilities, and
the limitations of such software are too easily seen by some as the limita-
tions of the whole approach. Indeed, the early Bayesian forecasting package
SHAFT, produced in the 1970s by Colin Stevens, led to a widespread view
that Bayesian forecasting was the single model discussed in Harrison and
Stevens (1971). This is like defining an animal as a fox. However, it is
now abundantly clear that to treat the armoury of the Bayesian approach
as a paint box without even a numbered canvas is not going to get many
pictures painted. Some results of our approaches to the problem are the
software packages mentioned in the Preface.
The above discussion concentrates closely on what we identify as direct

influences on Bayesian forecasting and dynamic modelling as we present
the subject in this book. There has, of course, been considerable develop-
ment of dynamic modelling and related forecasting techniques outside the
Bayesian framework, particularly in control engineering. Good references
include Anderson and Moore (1979), Jazwinski (1970), Sage and Melsa
(1971), for example. Details of work by statisticians, econometricians and
others may be found, with useful references, in Duncan and Horne (1972),
Harvey (1981), Spall (1988), Thiel (1971), and Young (1984), for example.
The field continues to develop and flourish. As we approach the new

millenium, we see exciting developments in new fields of application, and
increasing sophistication in modelling developments and advanced compu-
tation. Interested readers might explore some recent studies in Aguilar and
West (1998a,b), Aguilar, Huerta, Prado and West (1999), Cooper and Har-
rison (1997), and Prado, Krystal and West (1999), for example. Readers
interested in contacting at least some of the more recently documented de-
velopments, publications and software, can explore the resources and links
on the author web site indicated in the Preface.



CHAPTER 2

INTRODUCTION TO THE DLM:
THE FIRST-ORDER POLYNOMIAL MODEL

2.1 INTRODUCTION
Many important concepts and features of dynamic linear models appear
in the simplest and most widely used first-order polynomial model.
Consequently it offers an excellent introduction to DLMs and is examined
in detail in this chapter. This DLM is the simple, yet non-trivial, time
series model in which the observation series Yt is represented as

Yt = µt + νt, νt ∼ N[0, Vt]

where µt is the level of the series at time t and νt is the observational
error. The time evolution of the level is then modelled as a simple random
walk, or locally constant mean,

µt = µt−1 + ωt, ωt ∼ N[0,Wt],

with evolution error ωt.
The observational and evolution error sequences comprise internally and

mutually independent normal random variables. So, for all t and all s with
t �= s, νt and νs are independent, ωt and ωs are independent, and νt and
ωs are independent. To begin it is also assumed that the variances Vt and
Wt are known for each time t. The foregoing observational and evolution
equations may also be expressed for each t = 1, 2, . . . , as

(Yt | µt) ∼ N[µt, Vt],

(µt | µt−1) ∼ N[µt−1,Wt].

Figures 2.1 (a) and (b) show time graphs {Yt, µt, t} of such series. In
each the starting value is µ0 = 25, and the observation variance Vt = 1
is constant. The evolution variances are also constant, with W = 0.05 in
(a) and W = 0.5 in (b). Thus in (a) the evolution variance, W = V/20,
is small compared to the observational variance leading to a typical locally
constant level, whereas in (b) the variance, W = V/2, is ten times larger,
resulting in much greater variation in the level µt.
This model is used effectively in numerous applications, particularly in

short-term forecasting for production planning and stock control. For ex-
ample, in modelling market demand for a product, µt represents true un-
derlying market demand at time t with νt describing random fluctuation,
which arises in the actual placement of customer orders, about this level.
Locally in time, that is, a few periods forwards or backwards, the underlying
demand µt is characterised as roughly constant. Significant changes over
longer periods of time are expected, but the zero-mean and independent
nature of the ωt series imply that the modeller does not wish to anticipate
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the form of this longer term variation, merely describing it as a purely sto-
chastic process. It is useful to think of µt as a smooth function of time µ(t)
with an associated Taylor series representation

µ(t+ δt) = µ(t) + higher-order terms,

with the model simply describing the higher-order terms as zero-mean
noise. This is the genesis of the first-order polynomial DLM: the level
model is a locally constant (first-order polynomial) proxy for the under-
lying evolution. Sometimes, although a little misleadingly, the DLM has
been referred to as a steady model. A guide as to the model’s suitability for
particular applications is that, upon forecasting k−steps ahead from time
t, the expected value of the series conditional on the current level is just

E[Yt+k | µt] = E[µt+k | µt] = µt.

At time t, given the existing information Dt, the forecaster’s posterior
distribution for µt will have a mean mt depending on past data, so that
the forecast function ft(·) is constant, being given by

ft(k) = E[Yt+k | Dt] = E[µt | Dt] = mt,

for all k > 0. Consequently, this DLM is useful only for short-term ap-
plication, and particularly in cases in which the observation variation, as
measured by Vt, is considerably greater than the systematic level varia-
tion, measured by Wt. Such design considerations are discussed later in
Section 2.3.

2.2 THE DLM AND RECURRENCE RELATIONSHIPS
2.2.1 Definition
In accord with Definition 1.1, for each time t this model is characterised
by the quadruple {1, 1, Vt,Wt} and formally defined as follows:

Definition 2.1. For each t, the DLM {1, 1, Vt,Wt} is defined by

Observation equation: Yt= µt + νt, νt ∼ N[0, Vt],

System equation: µt= µt−1 + ωt, ωt ∼ N[0,Wt],

Initial information: (µ0 |D0) ∼ N[m0, C0],

where the error sequences νt and ωt are internally independent, mutually
independent, and independent of (µ0|D0).
Initial information is the probabilistic representation of the forecaster’s

beliefs about the level µ0 at time t = 0. The mean m0 is a point estimate of
this level, and the variance C0 measures the associated uncertainty. Each
information setDv comprises all the information available at time v, includ-
ing D0, the values of the variances {Vt,Wt : t > 0}, and the values of the
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observations Yv, Yv−1, . . . , Y1. Thus, the only new information becoming
available at any time t is the observed value Yt, so that Dt = {Yt, Dt−1}.

2.2.2 Updating equations
The following theorem provides the key probability distributions necessary
for effective forecasting, control, and learning.

Theorem 2.1. In the DLM of Definition 2.1 the one-step forecast and level
posterior distributions for any time t > 0 can be obtained sequentially as
follows:

(a) Posterior for µt−1 : (µt−1 | Dt−1) ∼ N[mt−1, Ct−1].

(b) Prior for µt : (µt | Dt−1) ∼ N[mt−1, Rt],

where Rt = Ct−1 +Wt.

(c) 1-step forecast: (Yt | Dt−1) ∼ N[ft, Qt],

where ft = mt−1 and Qt = Rt + Vt.

(d) Posterior for µt : (µt | Dt) ∼ N[mt, Ct],

with mt = mt−1 +Atet and Ct = AtVt,

where At = Rt /Qt , and et = Yt − ft.

Proof. Two methods of deriving (d) will be used, each instructive and
illuminating in its own right. The first, most important, and generally
applicable method employs Bayes’ theorem and standard Bayesian calcu-
lations. The second method, appropriate for all DLMs, provides an elegant
derivation using the additivity, linearity, and distributional closure prop-
erties of normal linear models. Although this latter method extends to all
normal DLMs, the former is required as a general approach for non-normal
models. Both methods use standard results associated with normal distri-
butions and Bayesian normal procedures as detailed in some generality in
Section 17.2.
Proof is by induction. Assume the truth of the distribution in (a). Then

conditional on Dt−1, µt is the sum of two independent normal random
quantities µt−1 and ωt, and so is itself normal. The mean and variance are
obtained by adding means and variances of the summands, leading to (b):

(µt | Dt−1) ∼ N[mt−1, Rt], where Rt = Ct−1 +Wt.

Similarly, conditional upon Dt−1, Yt is the sum of the independent normal
quantities µt and νt and so is normal, leading to (c):

(Yt | Dt−1) ∼ N[mt−1, Qt], where Qt = Rt + Vt.
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As mentioned above, (d) is derived twice, using two different techniques:

(1) Updating via Bayes’ Theorem
The Bayesian method is general, applying to all models, no mat-
ter what the distributional assumptions. The observation equation
provides the observational density function

p(Yt | µt, Dt−1) = (2πVt)−1/2 exp[−(Yt − µt)2/(2Vt)].

From (b), the prior for µt given Dt−1 has probability density func-
tion (pdf)

p(µt | Dt−1) = (2πRt)−1/2 exp[−(µt −mt−1)2/(2Rt)].

On observing Yt, the likelihood for µt is proportional to the observed
density viewed as a function of µt. So with Dt = {Dt−1, Yt}, from
Bayes’ theorem, the posterior for µt is

p(µt | Dt) = p(µt | Dt−1)p(Yt | µt, Dt−1)/p(Yt | Dt−1).

Concentrating on this as a function of µt alone, ignoring multi-
plicative factors depending on the now known value Yt and other
constants, leads to the proportional form of Bayes’ theorem,

p(µt | Dt) ∝ p(µt | Dt−1)p(Yt | µt, Dt−1)

∝ exp[−(µt −mt−1)2/2Rt − (Yt − µt)2/2Vt].

In applications of Bayes’ theorem the natural logarithmic scale pro-
vides simpler additive expressions. So with differing constants ki,

2 ln[p(µt | Dt)] = k1 − (µt −mt−1)2R−1
t − (Yt − µt)2V −1

t ,

= k2 − (R−1
t + V −1

t )µ2
t + 2(R−1

t mt−1 + V −1
t Yt)µt,

= k3 − (µt −mt)2C−1
t ,

where, with At = Rt/Qt = Rt/(Rt + Vt), and et = Yt −mt−1,

Ct = 1/[R−1
t + V −1

t ] = RtVt/Qt = AtVt

and

mt = Ct(mt−1/Rt + Yt/Vt) = mt−1 +Atet.

Upon exponentiating, p(µt | Dt) ∝ exp[−(µt −mt)2/2Ct], so that
(µt | Dt) ∼ N[mt, Ct] as stated in (d).

(2) Proof based on standard normal theory.
Within this special normal, linear framework, a more specific proof
based on the bivariate normal distribution is derived by
(i) calculating the joint distribution of (Yt, µt | Dt−1), and
(ii) deducing the conditional distribution (µt | Yt, Dt−1).
Any linear function of Yt and µt is a linear combination of the in-

dependent normal quantities νt, ωt, and µt−1, and so, conditional on
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Dt−1, is normally distributed. Then by definition, (Yt, µt | Dt−1) is
bivariate normal. To identify the mean vector and variance matrix,
note that (µt | Dt−1) ∼ N[mt−1, Rt] and (Yt | Dt−1) ∼ N[ft, Qt] as
the marginal distributions in (b) and (c). Using additivity and the
independence of µt and νt, the remaining covariance is

C[Yt, µt | Dt−1] = C[µt + νt, µt | Dt−1] = V[µt | Dt−1] = Rt.

Hence the joint distribution is(
Yt
µt

∣∣∣∣Dt−1

)
∼ N

[(
mt−1
mt−1

)
,

(
Qt Rt

Rt Rt

)]
.

General multivariate normal theory (Section 17.2) may be applied to
obtain the required distribution conditional on Yt, but the particular
characteristics of the bivariate normal are used here. The correlation
ρt = Rt/(RtQt)1/2 is clearly positive, with ρ2

t = Rt/Qt = At. So
using the referenced material,

(µt | Yt, Dt−1) ∼ N[mt, Ct],

with

mt = mt−1 + ρ2
t (Yt −mt−1)

and

Ct = (1− ρ2
t )Rt = RtVt/Qt = AtVt.

In this case At can be interpreted as both the squared correlation
and the regression coefficient of µt on Yt.

The result (d) has been established in two ways conditional upon (a).
The complete proof follows by induction since (a) is true for t = 1 directly
from Definition 2.1.

�

Some discussion of the various elements of the distributions is in order.
First, et is the one step ahead forecast error, the difference between the
observed value Yt and its expectation ft. Second, At is the prior regression
coefficient of µt upon Yt and, in this particular case, is the square of their
correlation coefficient; clearly 0 ≤ At ≤ 1. The results are computationally
simple and elegant due to the use of normal distributions for each model
component. Using these results, sequential updating and revision of fore-
casts is direct. It is worth noting that an alternative representation for mt

is

mt = AtYt + (1−At)mt−1,
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Figure 2.2 Probability contours of a bivariate normal

showing that mt is a weighted average of the prior level estimate mt−1
and the observation Yt. The adaptive coefficient At, or weight, defining
this combination lies between 0 and 1, being closer to 0 when Rt < Vt
so that the prior distribution is more concentrated than the likelihood,
and being closer to 1 when the prior is more diffuse, or less informative,
than the likelihood. In addition, the posterior is less diffuse than the prior
since Ct < Rt, representing an increase in information about µt due to the
additional observation Yt.
A simple case with mt−1 = 0, Rt = 0.25 and Vt = 0.75 is illustrated

in Figure 2.2 which provides a contour plot of the joint density. Here
At = 0.25, and the plotted regression line, mt = Yt/4, simply expresses mt

as a function of Yt.

2.2.3 Forecast distributions
At time t, the two main forecast distributions are the marginals (Yt+k | Dt)
and (Xt(k) | Dt), where Xt(k) = Yt+1 + Yt+2 + · · ·+ Yt+k, for k > 0. The
former is the k-step ahead forecast and the latter the k-step lead time
forecast.
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Theorem 2.2. For k > 0, the following distributions exist:

(a) k-step ahead: (Yt+k | Dt) ∼ N[mt, Qt(k)],

(b) k-step lead-time: (Xt(k) | Dt) ∼ N[kmt, Lt(k)],

where

Qt(k) = Ct +
k∑

j=1

Wt+j + Vt+k

and

Lt(k) = k2Ct +
k∑

j=1

Vt+j +
k∑

j=1

j2Wt+k+1−j .

Proof. From the evolution equation for µt and the observational equation
for Yt, for k ≥ 1,

µt+k = µt +
k∑

j=1

ωt+j ,

Yt+k = µt +
k∑

j=1

ωt+j + νt+k.

Since all terms are normal and mutually independent, (Yt+k | Dt) is normal
and the mean and variance follow directly. For the lead time, note that

Xt(k) = kµt +
k∑

j=1

jωt+k+1−j +
k∑

j=1

νt+j ,

which is clearly normal with mean kµt. Using the independence structure
of the error terms,

V[Xt(k) | Dt] = k2Ct +
k∑

j=1

j2Wt+k+1−j +
k∑

j=1

Vt+j ,

and the stated form of Lt(k) follows.

�

2.3 THE CONSTANT MODEL
2.3.1 Introduction
The special case in which the observational and evolution variances are
constant in time is referred to as a constant model. It is characterised by
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the quadruple {1, 1, V,W} and defined as

Observation equation: Yt= µt + νt, νt ∼ N[0, V ],

System equation: µt= µt−1 + ωt, ωt ∼ N[0,W ],

Initial information: (µ0 |D0) ∼ N[m0, C0].

The important, positive constant r =W/V relates to the engineering con-
cept of a signal-to-noise ratio, measuring the sustained system variance
relative to the ephemeral observation variance. Since the information sets
Dt = {Yt, Dt−1} contain no information external to the time series, the
model is called closed (to external information). Although apparently
restricted, the closed, constant, first-order polynomial model is of practi-
cal and theoretical interest, allowing the derivation of important limiting
results, which illuminate the structure of more general DLMs and relate
directly to classical time series models and popular point forecasting meth-
ods.

EXAMPLE 2.1. A pharmaceutical company markets KURIT, an ethical
drug, which currently sells an average of 100 units per month. Medical
advice leads to a change in drug formulation that is expected to result in
wider market demand for the product. It is agreed that from January,
t = 1, the new formulation with new packaging will replace the current
product, but the price and brand name KURIT remains unchanged. In
order to plan production, stocks and raw material supplies, short-term
forecasts of future demand are required. The drug is used regularly by
individual patients, so that demand tends to be locally constant in time.
So a constant first-order polynomial DLM is adopted for the total monthly
sales. Sales fluctuations and observational variation about demand level are
expected to considerably exceed month-to-month variation in the demand
level, so that W is small compared to V . In accord with this, the constant
DLM {1, 1, 100, 5}, which operated successfully on the old formulation, is
retained for the new formulation.
In December, t = 0, the expert market view for the new product is that

demand is most likely to have expanded by about 30%, to 130 units per
month. It is believed that demand is unlikely to have fallen by more than
10 units or to have increased by more than 70. This range of 80 units is
taken as representing 4 standard deviations for µ0. Hence the initial view
of the company prior to launch is described by m0 = 130 and C0 = 400, so
that

(µ0 | D0) ∼ N[130, 400].
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Table 2.1. KURIT example

Month Forecast Adaptive Datum Error Posterior
Distribution Coeff. Information

t Qt ft At Yt et mt Ct

0 130.0 400
1 505 130.0 0.80 150 20.0 146.0 80
2 185 146.0 0.46 136 −10.0 141.4 46
3 151 141.4 0.34 143 1.6 141.9 34
4 139 141.9 0.28 154 12.1 145.3 28
5 133 145.3 0.25 135 −10.3 142.6 25
6 130 142.6 0.23 148 5.3 143.9 23
7 128 143.9 0.22 128 −15.9 140.4 22
8 127 140.4 0.21 149 8.6 142.2 21
9 126 142.2 0.21 146 3.8 143.0 20
10 125 143.0 0.20

Consequently, the operational routine model for sales Yt in month t is

Yt= µt + νt, νt∼ N[0, 100],

µt= µt−1 + ωt, ωt∼ N[0, 5],

(µ0 | D0) ∼ N[130, 400].

Here r = 0.05, a low signal-to-noise ratio typical in this sort of application.
Observations over the next few months and the various components of

the one-step forecasting and updating recurrence relationships are given in
Table 2.1. Figure 2.3a provides a time plot of the observations and one-
step forecasts, and Figure 2.4a is a time plot of the adaptive coefficient At,
both plots extending to September, t = 9, for Table 2.1. Initially, at t = 0,
the company’s prior view of market demand is vitally important in making
decisions about production and stocks. Subsequently, however, the value
of this particular subjective prior diminishes rapidly as data is received.
For example, the adaptive coefficient A1 takes the value 0.8, so that

m1 = m0 + 0.8e1 = (4Y1 +m0)/5.

Thus, the January observation is given 4 times the weight of the prior mean
m0 in calculating the posterior mean m1. At t = 2, A2 = 0.46 and

m2 = m1 + 0.46e2 = 0.46Y2 + 0.43Y1 + 0.11m0,

so that Y2 is also relatively highly weighted andm0 contributes only 11% of
the weight of information incorporated inm2. As t increases, At appears to
decay rapidly to a limiting value near 0.2. In fact, the next section shows
that At does converge to exactly A = 0.2 in this example. Finally, the
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coefficient of m0 in mt is simply (1 − At)(1 − At−1) . . . (1 − A1), so that
m0 contributes only 1% of the information used to calculate m10, and as t
increases the relevance of this subjective prior decays to zero.

2.3.2 Intervention to incorporate external information
Model closure is unwise: it precludes the use of extra external information,
which is essential in coping with exceptional circumstances, and it is just
not acceptable in applied dynamic systems. One of the major advantages
of the Bayesian approach lies in the ease with which subjective information
and model/data information combine. In the example, at t = 9, the level
posterior and one-step ahead forecast distributions are

(µ9 | D9) ∼ N[143, 20],

(Y10 | D9) ∼ N[143, 125].

Suppose that information is now received concerning the pending with-
drawal from the market of a major competitive drug BURNIT due to sus-
pected side effects. This will occur at t = 10, when patients who were
prescribed BURNIT will switch to a competitor. This information is re-
ceived at t = 9 and is denoted by S9. It is known that BURNIT currently
accounts for roughly 50% of the market, which leads the company to esti-
mate a 100% increase in KURIT demand, E[µ10 | D9, S9] = 286. However,
uncertainty about this figure is high, with estimated increased demand
ranging within the company’s marketing department from a pessimistic
value of 80 units to an optimistic 200. After discussion, it is agreed to
model the change in demand at time 10 as

(ω10 | D9, S9) ∼ N[143, 900],

leading to the revised one-step ahead forecast distributions

(µ10 | D9, S9) ∼ N[286, 920]

and

(Y10 | D9, S9) ∼ N[286, 1020].

Consequently, A10 increases from 0.2 to 0.9, providing much faster adap-
tation to the immediately forthcoming data than would happen without
intervention. Observing Y10 = 326 implies e10 = 40 and

(µ10 | D10) ∼ N[322, 90].

Note that the conditioning information set here is D10 = {Y10, D9, S9}.
Figures 2.3b and 2.4b show the continued time graphs for the following six
months, from t = 10 to t = 15.
When unexpected and relevant external information of this sort becomes

available, intervention is of paramount importance for good decision mak-
ing. From this example, it is clearly unsatisfactory to confine intervention
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to an alteration of the mean estimate of demand, although this is unfor-
tunately an approach adopted by some forecasters. The associated large
variance reflects the true increase in uncertainty, leads to less weight being
associated with data prior to the change, adapts more quickly to the imme-
diately forthcoming forecast errors, and results in more reliable forecasts.

2.3.3 Limiting behaviour and convergence
In the closed model, the rate of adaptation to new data, as measured by
the adaptive coefficient At, rapidly converges to a constant value as follows.

Theorem 2.3. Define r =W/V . As t→∞, At → A and Ct → C = AV ,
where

lim
t→∞

At = A =
r

2

(√
1 +

4
r
− 1

)
.

Proof. Since 0 < At < 1 and Ct = AtV , it follows that Ct is bounded,
with

0 < Ct ≤ V, for all t.

So, using the recursions C−1
t = R−1

t + V −1 and Rt = Ct−1 +W ,

C−1
t − C−1

t−1 = R−1
t −R−1

t−1 = Kt(C−1
t−1 − C−1

t−2),

where Kt = Ct−1Ct−2/(RtRt−1) > 0. So Ct is a monotonic and bounded
sequence and its limit, say C, exists. Consequently, Rt converges to R =
C +W . Also, using Ct = RtV/(Rt + V ), it follows that C = RV/(R+ V ),
implying

C2 + CW − VW = 0.

This quadratic has just one positive root,

C = rV (
√
1 + 4/r − 1)/2.

Since Ct = AtV , then At converges to A = C/V, which is the required
function of r. A useful inversion of this relationship leads to

r = A2/(1−A).

�

A is a function of r = W/V alone, the relationship being illustrated in
the following table of values of 1/r and A:

1/r 9900 380 90 20 6 0.75 0.01
A 0.01 0.05 0.10 0.20 0.33 0.67 0.99
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Summarising the above results and some easily deduced consequences we
have:

(i) At → A = r(
√
1 + 4/r − 1)/2 with r = A2/(1−A),

(ii) Qt → Q = V/(1−A),

(iii) Ct → C = AV,

(iv) Rt → R = AQ,

(v) W = A2Q and V = (1−A)Q.
Ct is monotonic increasing/decreasing according to whether the initial vari-
ance C0 is less/greater than the limiting value C. Similar comments apply
to the form of convergence of the sequence At.
An exact expression for At is derived in Harrison (1985a), the details

of the proof given here in the Appendix to this chapter, Section 2.7. In
summary, the result is as follows: Define δ = 1 − A. Clearly 0 < δ < 1,
and for large t, mt ≈ δmt−1 + (1 − δ)Yt. Given C0, the initial adaptive
coefficient is A1 = (C0 +W )/(C0 +W + V ) and

At = A

[
(1− δ2t−2)A+ (δ + δ2t−2)A1

(1 + δ2t−1)A+ (δ − δ2t−1)A1

]
,

from which the following are deduced:

(a) In the case of a very vague initial prior in which C−1
0 is close to

zero, A1 ≈ 1, and At is monotonically decreasing with

At ≈ A(1 + δ2t−1)/(1− δ2t),
or, writing δt = 1−At,

δt ≈ δ(1− δ2t−2)/(1− δ2t).
(b) At the other extreme, when the initial prior is very precise with C0

close to zero, then A1 ≈ 0 and At is monotonically increasing with

At ≈ A(1− δ2t−2)/(1 + δ2t−1),

or

δt ≈ δ(1 + δ2t−3)/(1 + δ2t−1).

(c) Convergence is exponentially fast, being monotonically increasing
for A1 < A, and monotonically decreasing for A1 > A.

2.3.4 General comments
The case A = 1 corresponds to V = 0, when At = 1 for t ≥ 2. This
is implied in practical cases by r → ∞ and reduces the model to a pure
random walk, Yt = Yt−1 + ωt. Then mt = Yt and the model is of little



46 2. Introduction to the DLM

use for prediction. Often, when applied to series such as daily share, stock
and commodity prices, the appropriate values of V in a first-order model
may appear to be close to zero or very small compared to the systematic
variance W . In other words the DLM appears to imply that all movement
between daily prices may be attributed to movement in the underlying price
level µt. This feature has led many economic forecasters to conclude that
such series are purely random and that no forecast of future prices better
than (Yt+k | Dt) ∼ N[Yt, kW ] is available. Such conclusions are quite
erroneous and reflect myopic modelling; clearly the model is restricted and
inappropriate as far as forecasting is concerned. It is rather like looking at
a cathedral through a microscope and concluding that it has no discernable
form. In other words, other models and ways of seeing are required.
The major applications of the constant model are in short-term forecast-

ing and control, when the main benefit is derived from data smoothing.
Denoting the forecasting horizon by L sampling periods, it is advisable to
choose a sampling interval such that 1 ≤ L ≤ 4 and 20 ≤ 1/r ≤ 1000.
In the limit as t → ∞, the point predictor is mt = AYt + (1 − A)mt−1.
Clearly, if A = 1 then mt = Yt and any changes in Yt are fully reflected in
the predictor. On the other hand, if A is close to zero, then mt ≈ mt−1
and none of the changes in the series will be captured by the predictor.
The larger the value of A, the more sensitive is the predictor to the lat-
est values of the observation series. So there is a dilemma arising from
the conflict between sensitivity and robustness requirements. Note that
Yt = µt−1 + ωt + νt. On the one hand, it is desirable to have a large value
of A so that any sustained changes that occur through the signal ωt are
fully incorporated in the estimate mt; on the other hand, a small value is
desirable in order that the corrupting random noise, νt, be excluded from
the estimate. The selected value of A reflects the relative expected varia-
tion in ωt and νt through the ratio r. Applications should always employ
the Principle of Management by Exception, embedding the routine model
within a complete forecasting system. So r is chosen to give good routine
forecasts and treats occasional sharp level changes and maverick observa-
tions as exceptions, which will either be anticipated by experts or signaled
by the forecast monitoring system and referred to experts. Relevant expert
subjective information is combined with data as illustrated in the previous
“Kurit” example. Further details of such important topics are left until
later chapters.

2.3.5 Limiting predictors and alternative methods
In the formal sense that limt→∞(mt−mt−1−Aet) = 0, the limiting one-step
ahead point forecast, ft+1 = mt = E[Yt+1 | Dt], may be written

mt = (1−A)mt−1 +AYt = mt−1 +Aet.
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Several commonly used point forecasting methods, and the Box–Jenkins
ARIMA(0,1,1) predictor, adopt this limiting forecast function of the con-
stant first-order polynomial DLM:

(a) Holt’s point predictor
Holt (1957) introduced a widely used point forecasting method,

ft(k) =Mt, where Mt = αYt + (1− α)Mt−1,

which is equivalent to the asymptotic form of mt with α = A. For
finite t, and at times of intervention, Holt’s method is insufficiently
responsive, the most recent observation always receiving the same
weight, as is seen on writing δ = 1−A, when

Mt = AYt +
t−1∑
j=1

δjYt−j + δtM0.

(b) Exponentially weighted moving averages (EWMA)
For a parameter 0 < δ < 1, the EWMA of a sequence Yt, . . . , Y1, is

Mt =
(1− δ)
(1− δt)

t−1∑
j=0

δjYt−j .

Practitioners usually apply and refer to an EWMA in its limiting
form

Mt = (1− δ)Yt + δMt−1,

which, with δ = 1 − A, is identical to Holt’s predictor. Formally,
given m0 in the closed, constant DLM, an EWMA M0, and any
ε > 0, we have

lim
t→∞

Pr(|mt −Mt| > ε) = 0.

(c) Brown’s exponentially weighted regression (EWR)
Brown’s (1962) forecast function for a locally constant mean of an
infinite data set Yt, . . . , Y0, . . . , is ft(k) = µ̂t, where, for a given
discount factor 0 < δ < 1, the EWR estimate µ̂t = µ minimizes the
discounted sum of squares

St(µ) =
∞∑
j=0

δj(Yt−j − µ)2.

It is easily shown that µ̂t is unique and equal to the EWMA Mt.

In each of the three foregoing cases, the classical point predictors use a
forecast function equivalent to the limiting forecast function of the closed,
constant DLM. Unlike the DLM however, these forecasting methods are ad
hoc devices that, although simple to apply, have no coherent basis. With
little relevant data their limiting forms are inappropriate, they are difficult
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to interpret, they have none of the DLM flexibility, and with the exception
of EWR, they do not easily generalize.

(d) An alternative ARIMA(0,1,1) model representation
The predictors of Box and Jenkins (1976) founded on ARIMA mod-
els are very popular. Their widely applied ARIMA(0,1,1) predictor
produces identical point predictions to those of Holt and Brown, so
corresponding to the limiting predictor of a closed, constant, first-
order polynomial DLM. This is demonstrated as follows:
Given a series Yt generated by the DLM {1, 1, V,W}, for t > 1,

Yt − Yt−1 = νt − νt−1 + ωt.

So the first difference of the observation series may be represented
as an ARIMA(0,1,1) process

Yt − Yt−1 = at − δat−1, at ∼ N[0, Q],

where δ = 1−A and the at are independent random variables.
From the two relationships mt−1 = Yt−et and mt = mt−1+Atet,

Yt − Yt−1 = et − (1−At−1)et−1,

so that

lim
t→∞

[Yt − Yt−1 − et + δet−1] = 0.

The Box–Jenkins ARIMA(0,1,1) predictor is

Yt − Yt−1 = et − δet−1,

thus assuming the limit form and replacing the unknown random
variable at by the observed one step ahead forecast error et. It can
be shown that as t increases, (et − at) converges in probability to
zero. But clearly, as happens with little data or at times of interven-
tion, if Qt differs from Q, equating et and at is quite inappropriate.

2.3.6 Forecast distributions
At time t, the k-step ahead and k-lead time forecast distributions are special
cases of those in Theorem 2.2. Using that theorem,

(a) k-step ahead: (Yt+k | Dt) ∼ N[mt, Qt(k)],

(b) k-step lead time: (Xt(k) | Dt) ∼ N[kmt, Lt(k)],

where

Qt(k) = Ct + kW + V

and

Lt(k) = k2Ct + kV + k(k + 1)(2k + 1)W/6.
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It is of interest to note that the lead time forecast coefficient of variation,
defined as Lt(k)1/2/(kmt), is monotonically decreasing for k less than or
equal to the integer part of k0 =

√
(0.5 + 3/r), and monotonically increas-

ing for k > k0. Note that k0 is independent of Ct, being a function only
of r. For example, a value of r = 0.05, corresponding to A = 0.2, implies
that k0 = 8. Then, with the limiting value of variance C = 0.2V substi-
tuted for Ct, it follows that Lt(8)/(64Lt(1)) = (0.62)2, so that the limiting
coefficient of variation for the one-step ahead forecast is 61% greater than
that for the 8-step lead time forecast.

2.4 SPECIFICATION OF EVOLUTION VARIANCE Wt

The forecasting performance of a first-order polynomial DLM {1, 1, Vt,Wt},
constant or otherwise, depends heavily on choosing appropriate values for
the variances, Vt andWt. The problem of the former variance is considered
in Section 2.5 below; here the choice of the latter is examined.

2.4.1 Robustness to values of W in the constant model
Suppose that a forecaster applies the constant model with observational
variance V and signal to noise ratio r when the data are truly generated by a
model with values V0 and r0. Of course this example is purely hypothetical
since no mathematical model can exactly represent a “true” process, but
it provides important insight into the questions of robustness and choice of
variances. Convergence is fast, so consider the limiting form of the model,

Yt − Yt−1 = et − δet−1,

where δ = 1 − A and the forecaster assumes (et | Dt−1) ∼ N[0, Q] with
Q = V/δ. The true limiting model is such that

Yt − Yt−1 = at − δ0at−1,

where δ0 = 1 − A0, and, in fact, (at | Dt−1) ∼ N[0, Q0] with Q0 = V0/δ0.
Equating the two expressions gives et − δet−1 = at − δ0at−1, so that

et = at + (δ − δ0)
t−2∑
j=0

δjat−j−1.

Given the independence of the true error sequence at, it follows that the
true initial prior mean of the model errors is E[et | D0] = 0, and as t→∞,
the corresponding limiting variances are

V[et | D0] = Q0[1 + (δ − δ0)2/(1− δ2)].

It is immediately apparent that a gross penalty is incurred if the value of
r, and hence W , is too low. As r → 0, then δ → 1, and the true variance of
the above error sequence becomes infinite, whereas the forecaster uses the
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Figure 2.5 Limiting error variance with misspecified A

value V from the model! At the other extreme, as r →∞, then δ → 0, and
the true variance tends to Q0(1 + δ20). Hence, in an unmonitored system,
choosing r too large is preferable to choosing it too small, over adaptation
limiting the margin for error. The case r = 0 implies a constant level
µt = µ, a model that has been much used in practice but whose pitfalls
are now clear. Figure 2.5 illustrates this feature by plotting the function
v0(A) = [1 + (δ − δ0)2/(1 − δ2)]/δ0 as a function of the assumed value of
A = 1− δ for various true values A0 = 0.05, 0.2, 0.5, 0.8.
Additionally, misspecification leads to correlated errors. Clearly, the true

covariance between the model forecast errors et and et−k is

C[et, et−k | D0] = Q0(δ − δ0)δk−1(1− δδ0)/(1− δ2),

giving correlations

C0(k) = (δ − δ0)(1− δδ0)δk−1/(1− 2δδ0 + δ20),

instead of zero as assumed in the model. If δ > δ0, so that A < A0, the et
are positively correlated; otherwise they are negatively correlated. In the
limit, as δ0 → 1, so that µt is actually constant,

0 > C0(k) = −δk−1(1− δ)/2.
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At the other extreme, as δ0 → 0, so that Yt is a pure random walk,

0 < C0(k) = δk.

Thus an under-adaptive model (δ > δ0) leads to positively correlated fore-
cast errors, and an over-adaptive model (δ < δ0) leads to negatively corre-
lated errors. Further details and discussion appear in Harrison (1967) and
Roberts and Harrison (1984).

2.4.2 Discount factors as an aid to choosing Wt

By definition, for the constant model, Rt = Ct−1 +W , and in the limit,
R = C + W = C/(1 − A). Thus, W = AC/(1 − A), so that W is a
fixed proportion of C. This is a natural way of thinking about the system
variance: between observations, the addition of the error ωt leads to an
additive increase ofW = 100A/(1−A)% of the initial uncertainty C. Since
δ = 1−A, it follows that R = C/δ. Choice of δ by reference to the limiting
rate of adaptation to data then guides the choice of W . For A = 0.1,
δ = 0.9 and W ≈ 0.11C; this increases to 0.25C for δ = 0.8. Bearing
in mind that in this DLM the limiting behaviour is rapidly achieved, it is
convenient and natural to adopt a constant rate of increase of uncertainty,
or decay of information, for all t rather than just in the limiting case. Thus,
for a given discount factor δ, typically between 0.8 and 1, choosing

Wt = Ct−1(1− δ)/δ

for each t implies

Rt = Ct−1/δ.

This DLM is not a constant model but quickly converges to the constant
DLM {1, 1, V, rV } with r = (1− δ)2/δ, as is easily seen upon noting that

C−1
t = V −1 +R−1

t = V −1 + δC−1
t−1 = V −1[1 + δ + · · ·+ δt−1] + δtC−1

0 ,

so that the limiting value of Ct is C = (1− δ)V = AV .
Further discussion of this and more general discount models appears

in later chapters. Here the concept is introduced as a simple and natural
way of structuring and assigning values to the Wt sequence in the first-
order polynomial model. Note that it applies directly to the general model
with variances Vt and Wt since Wt, as defined above, depends only on
the values of Ct−1 and δ, which are known at time t − 1. Furthermore,
with the assumption of the known values of the Vt sequence in the initial
information set D0, Wt is also known at t = 0 and is calculated from the
above recursion as a function of δ, C0, and Vt−1, . . . , V1.
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2.5 UNKNOWN OBSERVATIONAL VARIANCES
2.5.1 Introduction
Typically, the observational variance sequence Vt will not be precisely
known, although forecasters will usually have prior beliefs about partic-
ular features of the sequence. Examples include Vt = V as in the constant
model but with V unknown; weighted variances Vt = Vkt where the weight
sequence kt is known but V is unknown; Vt = Vkt(µt) where kt(·) is a pos-
sibly time dependent variance function of the mean, such as the common
power function kt(µt) = µp

t for some power p, and V is unknown; etc. In
each case, the forecaster may also suspect that the nominally constant scale
factor V does, in fact, vary slowly in time, reflecting natural dynamics of
the time series observational process, as well as allowing for errors of ap-
proximation in the model. All these cases are of practical importance and
are developed further in later chapters. Here only the case of the first-order
polynomial model, in which Vt = V is an unknown constant, is considered.
Often working with the reciprocal of V , or the precision φ = 1/V , clari-
fies and simplifies proceedings. Refer to Section 17.3 for a wider theoretical
discussion of normal linear models with unknown variance.
A simple, closed-form Bayesian analysis of the DLM with unknown, con-

stant variance V is available if a particular structure is imposed on the Wt

sequence and on the initial prior for µ0. This structure enables a conjugate
sequential updating procedure for V , equivalently for φ, in addition to that
for µt. To motivate this structure, recall that in the constant model it is
natural to specify the evolution variance as a multiple of the observational
variance for all time. Applying this to the general model suggests that at
each time t, for known V ,

(ωt | V,Dt−1) ∼ N[0, V W ∗
t ].

Thus, W ∗
t is the variance of ωt if V = 1, or equivalently φ = 1. With

this structure, suppose that C0 is very large compared to V . In particular,
as C0 increases, C1 ≈ V , and for t > 1, Ct is given by V multiplied by
that value obtained from the standard model in which V = 1. Indeed, this
always happens eventually, whatever the value of C0, since the effect of
the initial prior rapidly decays. So the form of the Ct sequence as deduced
from the data leads to scaling by V just as with W ∗

t above. In particular,
if C0 is scaled by V directly, then so is Ct for all t. This feature is the
final component of the required model structure for the following closed,
conjugate analysis.

2.5.2 The case of a constant unknown variance
The analysis for V follows standard Bayesian theory as detailed in Section
17.3. The conjugate analysis is based on gamma distributions for φ, and



2.5 Unknown Observational Variances 53

thus inverse gamma distributions for V , for all time, and derives from the
following model definition.

Definition 2.2. For each t, the model is defined by

Observation equation: Yt= µt + νt, νt∼ N[0, V ],

System equation: µt= µt−1 + ωt, ωt∼ N[0, V W ∗
t ],

Initial information: (µ0 | D0, V )∼ N[m0, V C
∗
0 ],

(φ | D0)∼ G[n0/2, d0/2],

for some known m0, C
∗
0 , W

∗
t , n0 and d0. In addition, the usual indepen-

dence assumptions of Definition 2.1 hold, now conditional on V .

The final component is a gamma prior with density

p(φ | D0) =
(d0/2)n0/2

Γ(n0/2)
φn0/2−1e−φd0/2, φ > 0.

Ignoring the normalisation constant,

p(φ | D0) ∝ φn0/2−1e−φd0/2.

The mean of this prior is

E[φ | D0] =
n0

d0
=

1
S0
,

where S0 is a prior point estimate of the observational variance V = φ−1.
Alternative expressions of the prior are that when n0 is integral, the mul-
tiple d0 of φ has a chi-square distribution with n0 degrees of freedom,

(d0φ | D0) ∼ χ2
n0
,

or that (V/d0 | D0) has an inverse chi-squared distribution with the same
degrees of freedom. Notice that in specifying the prior, the forecaster must
choose the prior estimate S0 and the associated degrees of freedom n0, in
addition to m0 and C∗

0 . The starred variances C∗
0 and the sequence W ∗

0 ,
assumed known, are multiplied by V to provide the actual variances when
V is known. Thus they are referred to as observation-scale free variances,
explicitly recognising that they are independent of the scale of the obser-
vations determined by V .
The results obtained below are based on Student T distributions for the

level parameters and forecasts. Again details are given in Section 17.3 but
for convenience, a short summary is now given. A real random quantity
µ has a T distribution with n degrees of freedom, mode m and scale C,
denoted by

µ ∼ Tn[m,C],



54 2. Introduction to the DLM

if and only if the density of µ is given by

p(µ) ∝
[
n+

(µ−m)2

C

]−(n+1)/2

.

The quantity (µ −m)/
√
C has a standard T distribution on n degrees of

freedom, so
µ−m√

C
∼ Tn[0, 1].

As n increases, this distribution converges to the standard normal distri-
bution, and the notation is chosen by analogy with this case. The analogy
is important; the usual, known variance model is based on normal distribu-
tions that are replaced by T forms when V is unknown. Note that E[µ] = m
when n > 1 and V[µ] = Cn/(n− 2) when n > 2, so V[µ] ≈ C for large n.
From the model definition, unconditionally (with respect to V ),

(µ0 | Do) ∼ Tn0 [m0, C0],

where C0 = S0C
∗
0 is the scale of the marginal prior T distribution. In

specifying the initial prior, the forecaster specifies
(i) the distribution of V via n0 and d0, and
(ii) the distribution of µ0 via m0 and C0.
These may be considered separately. Note that from the T prior, if

n0 > 2, V[µ0 | D0] = C0n0/(n0 − 2), and that for large n0, V ≈ S0 so that

(µ0|D0) ≈ N[m0, C0].

Theorem 2.4. With the above model, the following distributional results
obtain at each time t ≥ 1:

(a) Conditional on V :
Define R∗

t = C∗
t−1 +W ∗

t , ft = mt−1, Q
∗
t = R∗

t + 1, et = Yt − ft and
At = R∗

t /Q
∗
t . Then

(µt−1 | Dt−1, V ) ∼ N[mt−1, V C
∗
t−1],

(µt | Dt−1, V ) ∼ N[mt−1, V R
∗
t ],

(Yt | Dt−1, V ) ∼ N[ft, V Q∗
t ],

(µt | Dt, V ) ∼ N[mt, V C
∗
t ],

with

mt = mt−1 +Atet and C∗
t = R∗

t −A2
tQ

∗
t = At.

(b) For the precision φ = V −1:

(φ | Dt−1) ∼ G[nt−1/2, dt−1/2],

(φ | Dt) ∼ G[nt/2, dt/2],
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where

nt = nt−1 + 1 and dt = dt−1 + e2t/Q
∗
t .

(c) Unconditional on V :
Define St−1 = dt−1/nt−1, Ct−1 = St−1C

∗
t−1, Rt = St−1R

∗
t , Qt =

St−1Q
∗
t , Ct = StC

∗
t , and St = dt/nt. Then

(µt−1 | Dt−1) ∼ Tnt−1 [mt−1, Ct−1],

(µt | Dt−1) ∼ Tnt−1 [mt−1, Rt],

(Yt | Dt−1) ∼ Tnt−1 [ft, Qt],

(µt | Dt) ∼ Tnt
[mt, Ct],

(d) Operational definition of the updating equations:
Defining Qt = Rt + St−1 and At = Rt/Qt,

mt = mt−1 +Atet,

Ct = (St/St−1) [Rt −A2
tQt] = AtSt,

nt = nt−1 + 1,

dt = dt−1 + St−1e
2
t/Qt,

St = dt/nt.

Proof. The results in (a) are the known variance results of Theorem 2.1.
The remainder of the proof is by induction. From (a)

p(Yt | Dt−1, φ) ∝ φ
1
2 exp(−φe2t/2Q∗

t ).

Now, by Bayes’ Theorem, the posterior for φ is

p(φ | Dt) ∝ p(φ | Dt−1) p(Yt | Dt−1, φ).

Using the prior from (b) and the above likelihood,

p(φ | Dt) ∝ φ(nt−1+1)/2−1 exp[−(dt−1 + e2t/Q
∗
t )φ/2],

thereby establishing (φ | Dt) ∼ G[nt/2, dt/2] as in (b) with updated pa-
rameters {nt, dt} as in (d).
Results (c) follow directly from the normal/gamma/T theory mentioned

earlier, and as reviewed in detail in Sections 17.3.1 and 17.3.2: simply
integrate the conditional normal distributions in (a) with respect to the
appropriate prior/posterior gamma distribution for φ in (b). Noting that
the results are true for t = 1, the inductive proof is complete.

�

This theorem provides the key results. At time t, the prior mean of
φ is E[φ | Dt−1] = nt−1/dt−1 = 1/St−1, where St−1 = dt−1/nt−1 is a
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prior point estimate of V = 1/φ. The posterior estimate is St = dt/nt.
The updating equations for the parameters defining the T prior/posterior
and forecast distributions are essentially the same as the standard, known
variance equations with the estimate St−1 appearing as the variance. The
only differences are the scaling, St/St−1, in deriving Ct and the scaling of
e2t/Qt, by St−1, in calculating dt, both to correct for the revised estimate of
V . Equations (d) may be used in practice, the starred, scale free versions
appearing only to communicate the theoretical structure.
The estimate St of the variance V can be written in the recursive form

St = St−1 + (e2t/Qt − 1)St−1/nt.

For a fixed h, St = St−1 + h(e2t −St−1) was recursively used by some early
EWMA systems as an estimate of the one-step forecast variance rather than
of the observational variance V , an important distinction. Such an estimate
is obviously suspect, particularly when t and/or nt are small. The predic-
tion variance is actually given, from the Student T forecast distribution, as
V[Yt+1 | Dt] = Qt+1nt/(nt− 2), when nt > 2. For large nt, this variance is
approximately Qt+1. If the model is constant, then Qt+1 ≈ St/δ as t and
nt increase, so that the one-step variance is approximately St/δ. In this
special case, as t→∞, the limiting prediction variance may be written in
the above mentioned ad hoc form, as

V[Yt+1 | Dt] ≈ V[Yt | Dt−1] + (δ/nt)(e2t −V[Yt | Dt−1]).

2.5.3 Summary
Key aspects of model structure, updating and forecasting are summarised
in the table below (continued on the following page).

First-Order Polynomial DLM, with Constant Variance V

Observation: Yt = µt + νt, νt ∼ N[0, V ],
System: µt = µt−1 + ωt, ωt ∼ Tnt−1 [0,Wt].

Information: (µt−1 | Dt−1) ∼ Tnt−1 [mt−1, Ct−1],

(φ | Dt−1) ∼ G
[
nt−1

2 , nt−1St−1
2

]
.

Forecast: (µt | Dt−1) ∼ Tnt−1 [mt−1, Rt],

(Yt | Dt−1) ∼ Tnt−1 [ft, Qt],

with ft = mt−1, Rt = Ct−1 +Wt, Qt = Rt + St−1.
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Updating Recurrence Relationships

(µt | Dt) ∼ Tnt [mt, Ct],

with mt = mt−1 +Atet,
Ct = AtSt.

(φ | Dt) ∼ G
[
nt

2 ,
ntSt

2

]
,

with nt = nt−1 + 1,

St = St−1 +
St−1
nt

(
e2t
Qt
− 1

)
,

where et = Yt − ft, and At = Rt/Qt.

k-Step Forecast Distributions

(Yt+k | Dt) ∼ Tnt
[mt, Qt(k)],

(Xt(k) | Dt) ∼ Tnt [kmt, Lt(k)],

with Qt(k) = Ct +
∑k

j=1Wt+j + St,

and Lt(k) = k2Ct +
∑k

j=1 j
2Wt+k+1−j + kSt,

where for j > 0 and scale free variances W ∗
t+j ,

Wt+j = StW
∗
t+j .

2.6 ILLUSTRATION
The series of Table 2.2 represents the first differences of the logged monthly
USA/UK exchange rate $/£ from January 1975 to July 1984. From the
time plot in Figure 2.6 it is evident that there was considerable short-term
variation about a changing level.
The data are examined using a first-order polynomial DLM simply to

demonstrate analyses using several closed DLMs that differ only in the
values of their evolution variances {Wt}. As recommended in Section 2.4,
these variances are specified by a discount factor δ, the four models exam-
ined having discount values of 0.7, 0.8, 0.9 and 1.0, the last corresponding
to the degenerate static model with Wt = 0, characterising the observa-
tions as a simple normal random sample. In each case the initial prior
distribution is defined by m0 = 0, C0 = 1, n0 = 1 and d0 = 0.01. This
vague, uninformative, joint prior specification implies that given D0, µ0
lies between −0.1 and 0.1 with probability 0.5, and between −0.63 and
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Table 2.2. USA/UK exchange rate index (×100)

Year Month (Jan – Jun) & (Jul – Dec)

75 1.35 1.00 −1.96 −2.17 −1.78 −4.21
−3.30 −1.43 −1.35 −0.34 −1.38 0.30

76 −0.10 −4.13 −5.12 −2.13 −1.17 −1.24
1.01 −3.02 −5.40 −0.12 2.47 2.06

77 −0.18 0.29 0.23 0.00 0.06 0.17
0.98 0.17 1.59 2.62 1.96 4.28

78 0.26 −1.66 −3.03 −1.80 1.04 3.06
2.50 0.87 2.42 −2.37 1.22 1.05

79 −0.05 1.68 1.70 −0.73 2.59 6.77
−0.98 −1.71 −2.53 −0.61 3.14 2.96

80 1.01 −3.69 0.45 3.89 1.38 1.57
−0.08 1.30 0.62 −0.87 −2.11 2.48

81 −4.73 −2.70 −2.45 −4.17 −5.76 −5.09
−2.92 −0.22 1.42 3.26 0.05 −0.95

82 −2.14 −2.19 −1.96 2.18 −2.97 −1.89
0.12 −0.76 −0.94 −3.90 −0.86 −2.88

83 −2.58 −2.78 3.30 2.06 −1.54 −1.30
−1.78 −0.13 −0.20 −1.35 −2.82 −1.97

84 2.25 1.17 −2.29 −2.49 −0.87 −4.15
−0.53

0.63 with probability 0.9. The data and sequences of one-step point fore-
casts from the two models with δ = 0.8 and δ = 1.0 appear in Figure 2.7.
As expected, the degree of adaptation to new data increases as δ decreases,
leading to more erratic forecast sequences. To compare the models, and
hence the suitability of the different discount factors, Table 2.3 displays
various summary quantities.
The first two are commonly used measures of forecast accuracy, namely

the mean absolute deviation, MAD =
∑115

t=1 |et|/115, and mean square
error, MSE =

∑115
t=1 e

2
t/115, for the entire series. The third summary is

based on the observed predictive density

p(Y115, Y114, . . . , Y1 | D0) =
t=115∏
t=1

p(Yt | Dt−1),

the product of the sequence of one-step forecast densities evaluated at the
actual observation, and provides a measure of predictive performance of
the model that is actually a likelihood for δ, since the DLMs differ only
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Figure 2.6 USA/UK exchange rate index
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Table 2.3. Exchange rate Index example

δ MAD
√
MSE LLR 90% Interval SD

1.0 0.019 0.024 0.00 −0.009 −0.001 0.025
0.9 0.018 0.022 3.62 −0.024 0.000 0.023
0.8 0.018 0.022 2.89 −0.030 0.002 0.022
0.7 0.018 0.023 0.96 −0.035 0.003 0.021

with respect to their known discount factors. Viewing δ as an uncertain
quantity, we could now introduce a prior distribution and hence calculate a
posterior for δ. However, for illustrative purposes, just the above likelihoods
are examined to obtain a rough data-based guide. For convenience a log
scale is used and the measures defined relative to the model with δ = 1.
Thus, LLR is the log-likelihood ratio for the values 0.9, 0.8, 0.7 relative to
1.0, larger values indicating a higher degree of support from the data.
From Table 2.3, the MSE and MAD measures indicate better predictive

performance for δ between 0.8 and 0.9 than otherwise, the latter more in
favour of the smaller value 0.8. The LLR measure, however, favours 0.9 due
to the fact that it takes into account the variances of forecast distributions
that are ignored by the MAD and MSE. In this measure, there is a balance
between forecast accuracy as measured by the et sequence and forecast
precision as measured by the spread of the predictive distributions. The
value of 0.8 for δ leads to more diffuse distributions than that of 0.9, which
counts against the model in the LLR measure of predictive performance. In
particular, note that by comparison with the others on all three measures
of performance, the static model is clearly unsatisfactory.
Further information provided in the table indicates final values of some of

the interesting quantities. In particular 90% posterior probability intervals
for the final level µ115 based on the posterior T distributions are given.
The estimated standard deviation SD =

√
S115 is also quoted. Note that

as expected, smaller values of δ lead to

(i) faster decay of information about the level between observations and
so wider posterior intervals;

(ii) smaller estimates of observational variance, as indicated by the stan-
dard deviations.

In this example the differences in the estimates of the observation vari-
ance V are not large. In some applications, as illustrated in the next chap-
ter, the observational variance can be markedly over-estimated by models
with discount factors too close to 1, leading to much more diffuse forecast
distributions than those from models with suitably lower discount values.
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2.7 APPENDIX
The exact expression for At in the constant model is derived. In the closed,
constant model Ct = AtV , Rt = At−1V +W , and Qt = Rt + V . So,
with limt→∞ At = A, δ = 1−A, and r =W/V ,

At+1 =
Ct +W

Ct +W + V
=

At + r

At + r + 1
,

with limiting value

A =
A+ r

A+ r + 1
.

Define ut = 1/(At −A) for each t, and note that by subtraction,

ut+1 = ut(At + r + 1)(A+ r + 1).

Now, r = A2/δ, so A+r+1 = 1/δ and At+r+1 = 1/ut+1/δ, whereupon
δ2ut+1 = ut + δ, and so

ut =
δ(1− δ2(t−1)) + u1(1− δ2)

(1− δ2)δ2(t−1) .

Note that 1− δ2 = A(1 + δ) and substitute for u1 = 1/(A1 −A) to get

At −A =
A(A1 −A)(1 + δ)δ2(t−1)

(1 + δ2t−1)A+ (δ − δ2t−1)A1
.

After rearrangement, the general solution is

At = A
(1− δ2t−2)A+ (δ + δ2t−2)A1

(1 + δ2t−1)A+ (δ − δ2t−1)A1
.

2.8 EXERCISES
Unless stated otherwise, the exercises relate to the first-order polynomial
DLM {1, 1, Vt,Wt} with known variances {Vt,Wt} and/or discount factor
δ and with Dt = {Yt, Dt−1}:

Yt =µt + νt νt ∼N[0, Vt],
µt =µt−1 + ωt ωt ∼N[0,Wt],

(µt−1 | Dt−1) ∼ N[mt−1, Ct−1].

(1) Write a computer program to graph 100 simulated observations from
the DLM {1, 1, 1,W} starting with µ0 = 25. Simulate several series
for each value ofW = 0.05 and 0.5. From these simulations, become
familiar with the forms of behaviour such series can display.

(2) For the DLM {1, 1, Vt,Wt} show that
(a) the posterior precision of (µt|Dt) is the sum of the prior pre-

cision of (µt|Dt−1) and the observation precision of (Yt|µt),
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namely

C−1
t = R−1

t + V −1
t ;

(b) the posterior mean of (µt|Dt) is a weighted average of the sum of
the prior mean E[µt|Dt−1] and the observation Yt with weights
proportional to the precisions R−1

t and V −1
t , namely

mt = Ct(R−1
t mt−1 + V −1

t Yt).

(3) Consider the DLM {1, 1, Vt,Wt} extended so that νt ∼ N[v̄t, Vt] and
ωt ∼ N[w̄t,Wt] may have non-zero means. Obtain the recurrence
relations for {mt, Ct}
(a) using Bayes’ theorem;
(b) deriving the joint distribution (µt, Yt | Dt−1) and using normal

theory to obtain the appropriate conditional distribution.
(4) Show that the static DLM {1, 1, V, 0}, is equivalent to the model

(Yt|µ) ∼ N[µ, V ],

(µ|D0) ∼ N[m0, C0].

Now suppose that C0 is very large relative to V, so that V C−1
0 ≈ 0.

Show that

(a) m1 ≈ Y1 and C1 ≈ V ;

(b) mt ≈
1
t

t∑
j=1

Yj and Ct ≈
V

t
.

Comment on these results in relation to classical estimates.
(5) For the constant DLM {1, 1, 100, 4}, if (µt|Dt) ∼ N [200, 20], what

are your forecasts of

(a) (Yt+4|Dt), (b) (Yt+1 + Yt+2|Dt), (c) (Yt+3 + Yt+4|Dt) ?

(6) Suppose that Yt is a missing observation, so that Dt = Dt−1. Given
(µt−1|Dt−1) ∼ N[mt−1, Ct−1], obtain the distributions of

(µt|Dt) and (Yt+1|Dt).

Do this for the constant DLM {1, 1, 100, 4} when
(µt−1|Dt−1) ∼ N[200, 40].

(7) Bearing in mind the previous question, suggest a method for cop-
ing with outliers and general maverick observations with respect to
subsequent forecasts.

(8) For the DLM {1, 1, Vt,Wt}, with (µt|Dt−1) ∼ N[mt−1, Rt],
(a) obtain the joint distribution of (νt, Yt|Dt−1).
(b) Hence prove that the posterior distribution for νt is

(νt|Dt) ∼ N[(1−At)et, AtVt].
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(c) Could you have deduced (b) immediately from (µt|Dt)?
(9) It is often of interest to perform a retrospective analysis that looks

back in time to make inferences about historical levels of a time
series based on all the current data. As a simple case, consider
inferences about µt−1 based on Dt = {Yt, Dt−1}.
(a) Obtain the joint distribution (µt−1, Yt|Dt−1);
(b) hence with Bt−1 = Ct−1/Rt deduce that

(µt−1|Dt) ∼ N[at(−1), Rt(−1)],
where

at(−1) = mt−1 +Bt−1(mt −mt−1)

and

Rt(−1) = Ct−1 −B2
t−1(Rt − Ct).

(c) Write these equations for the discount DLM of Section 2.4.2.
(10) For the constant DLM {1, 1, V,W}, (µt−1|Dt−1) ∼ N[mt−1, Ct−1],

suppose that the data recording procedure at times t and t+1 is such
that Yt and Yt+1 cannot be separately observed, but X = Yt+Yt+1
is observed at t+ 1. Hence Dt = Dt−1 and Dt+1 = {Dt−1, X}.
(a) Obtain the distributions of (X|Dt−1) and (µt+1|Dt+1).
(b) Generalise this result to the case

X =
k∑

v=0

Yt+v and Dt+k = {X,Dt−1}.

(c) For integers j and k such that 0 ≤ j < j + k, find the forecast
distribution of

∑j+k
v=j Yt+v given Dt−1.

(11) There is a maxim, “When in doubt about a parameter value err on
the side of more uncertainty.” To investigate this, repeat the exercise
of Example 2.1 using in turn the following prior settings:

(a) (µ0|D0) ∼ N[650, 100000];

(b) (µ0|D0) ∼ N[130, 4];

(c) (µ0|D0) ∼ N[11, 1];

In particular, examine the time graphs of {At}, {ft, ft ±Q
1/2
t , Yt},

and of {mt, Yt}. What conclusions do you draw? We once designed
a more general forecasting system which the customer tried to break
by setting priors with silly prior means m0 and large variances C0.
He drew the conclusion that the system was so robust it could not
be broken. How would you show that it could be broken if it were
not protected by a monitoring system?

(12) Another maxim is, “In a complete forecast system higher rather
than lower values of the discount factor are to be preferred.” In-
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vestigate this by redoing Example 2.1 using the prior (µ0|D0) ∼
N[130, 400] but employing the discount DLM so that Rt = Ct−1/δ.
Use in turn the discount factors δ = 0.8, 1.0 and 0.01. In particular,
examine time graphs of the {ft, Yt} in each case. What conclu-
sions do you draw? Do you see any mimicry? Too many systems
fall between two stools in trying to select adaptive/discount factors
that will not overly respond to random fluctuations yet will quickly
adapt to major changes; the result is an unsatisfactory compromise.
A complete forecasting system generally chooses high discount fac-
tors, usually 0.8 ≤ δ < 0.99, to capture the routine system move-
ments but relies on a monitoring system to signal major changes
that need to be brought to the notice of decision makers and that
require expert intervention.

(13) In the constant DLM {1, 1, V,W}, verify the limiting identities

R = AV/(1−A), Q = V/(1−A), W = A2Q.

(14) In the closed, constant DLMwith limiting valuesA, C, R, etc., prove
that the sequence Ct decreases/increases as t increases according to
whether C0 is greater/less than the limiting value C. Show that the
sequence At behaves similarly.

(15) Discount weighted regression applied to a locally constant process
estimates the current level at time t as that valueMt of µ that given
Y1, . . . , Yt, minimises the discounted sum of squares

St(µ) =
t−1∑
j=0

δj(Yt−j − µ)2.

(a) Prove that Mt is a discount weighted average of the t observa-
tions

Mt =
1− δ
1− δt

t−1∑
v=0

δvYt−v.

(b) Show that writing et = Yt −Mt−1, neat recurrence forms are

Mt =
1− δ
1− δtYt +

1− δt−1

1− δt δMt−1

and

Mt =Mt−1 +
1− δ
1− δt et.

(c) Show that as t → ∞ the limiting form of this recurrence rela-
tionship is that of Brown’s method of EWR, Section 2.3.5(c),

Mt = δMt−1 + (1− δ)Yt =Mt−1 + (1− δ)et.



2.8 Exercises 65

(16) In the context of question (16) on DWR, note that as t→∞,

V[et|Dt−1]→ Q and (Yt+1 − Yt − et+1 + δet)→ 0.

This suggests that the process can be modelled as

Yt+1 − Yt = at+1 − δat,

where at ∼ N[0, Q] are independent random variables. Then an
estimate of Q given Yt+1, . . . , Y1 is

Q̂(t+ 1) =
1
t

t∑
v=1

(Yv+1 − Yv)2
1 + δ2

.

(a) Do you consider this a reasonable point estimate of Q?
(b) Show that

Q̂(t+ 1) = Q̂(t) +
1
t

{
(yt+1 − yt)2

1 + δ2
− Q̂(t)

}
,

and that a reasonable point estimate of V[Yt|Dt−1] is

Q̂t =
{
δ +

(1− δ)(1− δt)
(1− δt−1)2

}
Q̂(t− 1),

with t− 1 degrees of freedom.
(17) In the {1, 1, V,Wt} discount DLM with constant discount factor δ,

suppose that C0 is very large relative to V . Show that

(a) Ct ≈ V (1− δ)/(1− δt), for all t ≥ 1;

(b) mt ≈
(1− δ)
(1− δt)

t−1∑
j=0

δjYt−j ,

(c) mt ≈
1− δ
1− δtYt +

1− δt−1

1− δt δmt−1,

(d) mt ≈ mt−1 +
1− δ
1− δt et.

(e) Compare these results with those of the relevant DWR ap-
proach in question (16) above. What do you conclude? What
do you think about applying that variance estimate Q̂t of Q,
from question (16), to this DLM? If you do adopt the method,
what is the corresponding point estimate of V ?

(18) In the constant DLM {1, 1, V,W}, show that Rt = Ct−1/δt, where δt
lies between 0 and 1. Thus, the constant DLM updating equations
are equivalent to those in a discount DLM with discount factors δt
changing over time. Find the limiting value of δt as t increases, and
verify that δt increases/decreases with t according to whether the
initial variance C0 lies below/above the limiting value C.
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(19) Consider the lead time forecast variance Lt(k) in Section 2.3.6.
(a) Show that the value of k minimising the lead time coefficient of

variation is independent of Ct. What is this value when V = 97
and W = 6?

(b) Supposing that Ct = C, the limiting value, show that the cor-
responding value of Lt(k)/V depends only on k and r =W/V.
For each value of r = 0.05 and r = 0.2, plot the ratio Lt(k)/V
as a function of k over k = 1, . . . , 20. Comment on the form of
the plots and the differences between the two cases.

(20) Become familiar with just how heavy-tailed Student T distributions
with small and moderate degrees of freedom are relative to normal
distributions. To do this graph the distribution using an appropriate
computer package and find the upper 90%, 95%, 97.5% and 99%
points of the Tn[0, 1] distribution for n =2, 5, 10 and 20 degrees
of freedom, comparing these with those of the N[0, 1] distribution.
Statistical tables can also be used (Lindley and Scott, 1984, p45).

(21) Perform analyses of the USA/UK exchange rate index series along
the lines of those in Section 2.6, one for each value of the discount
factor δ = 0.6, 0.65, . . . , 0.95, 1. Relative to the DLM with δ = 1,
plot the MSE, MAD and LLR measures as functions of δ. Comment
on these plots. Sensitivity analyses explore how inferences change
with respect to model assumptions. At t = 115, explore how sen-
sitive this model is to values of δ in terms of inferences about the
final level µ115, the variance V and the next observation Y116.

(22) In the DLM {1, 1, 1,W}, define Zt = Yt+1−Yt. Show that for integer
k such that |k| > 1,

E[Zt] = 0, V[Zt] = 2 +W, C[Zt, Zt−1] = −1
and C[Zt, Zt+k] = 0. Based upon n+1 observations (Y1, . . . , Yn+1),
giving the n values (Z1, . . . , Zn), the usual sample estimate of the
autocorrelation coefficient of lag k, C[Zt, Zt+k]/V[Zt], is

rk =
n−k∑
i=1

Zi+kZi

/ n∑
i=1

Z2
i .

Using the computer program of question 1, generate 100 values of zi
and plot the sample autocorrelation graph {rk, k : k = 0, . . . , 12}
forW = 0.05 and alsoW = 0.5. Assuming the model true, the prior
marginal distribution of rk, for every |k| > 1, is roughly N [0, 1/

√
n].

Do the data support or contradict the model? This is an approach
used in identifying the constant DLM and an ARIMA(0,1,1) model.
Supposing the more general DLM {1, 1, Vt,Wt}, show that again

C[Zt, Zt+k] = 0 for all |k| > 1, so the graph {rk, k : k > 1}
is expected to look exactly the same. Note also that if Vt/Wt is
constant, the whole graph {rk, k} is expected to look exactly the
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same. What is rk now measuring and what are the implications for
identifying the constant DLM and the ARIMA(0,1,1)?

(23) Suppose an observation series {Yt} is generated by the constant
DLM {1, 1, V ∗,W ∗}. We can write Yt − Yt−1 = at − δ∗at−1 where
at ∼ N[0, Q∗] are independent random variables and Q∗ is the as-
sociated limiting one-step forecast variance. In order to investigate
robustness, suppose a non-optimal DLM {1, 1, V,W} is employed,
so that in the limit, Yt − Yt−1 = et − δet−1 where the errors will
have a larger variance Q and no longer be independent. Show that
for integer k such that |k| ≥ 1,

Q = V[et] = [1 + (δ − δ∗)2/(1− δ2)]Q∗

and

C(k) = C[et+k, et] = δ|k|−1Q∗(δ − δ∗)(1− δδ∗)/(1− δ2).

Examine graphs of {δ, Q/Q∗} and of {δ, C(1)/Q} for the typical
practical cases δ∗ = 0.9, δ∗ = 0.8 and for the atypical case δ∗ = 0.5.

Administrator
ferret



CHAPTER 3

INTRODUCTION TO THE DLM:
THE DYNAMIC REGRESSION MODEL

3.1 INTRODUCTION
In this chapter some basic concepts underlying the general DLM theory
are introduced and developed in the context of dynamic linear regression.
The general multiple regression model is discussed, but details of analysis
and examples are considered only for the very special case of straight line
regression through the origin. Although seemingly trivial, this particular
case effectively illustrates the important messages without the technical
complications of larger and more practically important models.
Regression modelling concerns the construction of a mathematical and

statistical description of the effect of independent or regressor variables on
the response time series Yt. Considering a single such variable, represented
by a time series of observations Xt, regression modelling often begins by
relating the mean response function µt of the original series to Xt, and
possibly Xs, for s < t, via a particular regression function. For example, a
simple linear model for the effect of the current Xt on the current mean is

µt = α+ βXt,

where the defining parameters α and β take suitable values. Models of this
sort may be used in a variety of prediction, interpolation, estimation and
control contexts, such as

(i) Prediction using a lead variable, or indicator: For example, for
month t, µt is the current underlying monthly demand for roofing
tiles, Yt the corresponding observed demand, and Xt the number of
new housing starts made nine months previously, in month t− 9;

(ii) Prediction using a proxy variable: For example, in predicting pop-
ulation growth, Xt = t is time itself;

(iii) Control using a control variable: For example, the temperature level
µt of water from a shower can be related to the setting Xt of the
tap mixing incoming hot and cold water flows;

(iv) Interpolation: Suppose that the response Yt represents a measure-
ment of the latitude of a satellite at time t, when interest lies in
describing and estimating the trajectory up to that time from t = 0,
described by µt = α+ βt.

In each of the above cases both Yt and Xt are scale measurements. How-
ever, practically important and interesting models often include categorical
regressor variables that classify the response into groups according to type,
presence or absence of a control, etc. Classificatory regressor variables such
as these are treated just like measured values of scale variables. In some
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Figure 3.1 Local linearity of µt as a function of Xt

applications the Yt series will also be a series of discrete, categorical vari-
ables, so that normal models are clearly inappropriate. Non-normal models
for this sort of problem are developed in a later chapter.
In practice, model construction is guided by specified objectives. Rarely

is a modeller seeking to establish an all embracing model purporting to rep-
resent a “true” relationship between the response and regressor. Rather,
the model is a way of looking at the problem that is required to capture
those features of importance in answering specific questions about the re-
lationship. A frequent objective, for example, is short-term forecasting of
the response series.
Suppose that there really is an underlying, unknown and complex rela-

tionship f(µt, Xt, t) = c between the level of the series µt, the regressor
variable Xt, and time itself. If the modeller believes that this relationship
is sufficiently smooth and well-behaved locally as a function of both Xt and
t, then for short-term prediction, that is, local inference, a local approx-
imating model of the form µt = αt + βtXt may well satisfy the specific
objectives. Note the word form and the t index of the coefficients α and β.
The form of a linear model may adequately describe the qualitative local
characteristics of the relationship for all Xt and t, but the quantification
of this form may well have to change according to the locality. For illus-
tration suppose that the true relationship between the mean response and
the regressor is as given in Figure 3.1 for all t.
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It can be seen that the general form µ = α + βX is always locally
appropriate as represented by the tangent at X. However, in region 1, β
must be negative, whereas in region 2 it is clearly positive. Similarly, the
intercept coefficient α differs markedly between the two regions.
The distinction between an appropriate local model form and an appro-

priate quantified local model is a critical, fundamental concept in dynamic
modelling. Often in practice, the values of the independent variable Xt

change rather slowly in time, so that an appropriate local model descrip-
tion is that above, namely

µt = αt + βtXt,

where the parameter values vary only slightly from one time point to the
next. In modelling this quantitative variation, the modeller develops a
dynamic model. For example, a simple important representation of slowly
evolving parameters is that of a random walk, with

E [αt | αt−1, βt−1] = αt−1

and

E [βt | αt−1, βt−1] = βt−1,

together with a measure of the variance associated with these changes. This
random walk model is a characteristic of the regression DLM.
Modellers must continually be aware that model building is always a

selective process. Often there are several, if not many, independent vari-
ables that may be considered as useful and important predictors of Yt. The
modeller typically identifies just a few of these variables that are judged to
be of greatest importance. Those that are judged unimportant, or indeed,
of which the modeller is not conscious, are omitted from the model, with
the result that their effects are either carried via those regressors in the
model or, commonly, lumped together into error terms with some broad
statistical description. It is important that this selectivity be identified as
potentially contributing to inadequacies in the chosen model.
As a simple example suppose that Yt is the percentage yield of a chemical

process that operates under different temperature and pressure controls.
Over the operating region, the mean yield µt is related to temperature Xt

and pressure Zt according to

µt = 80− (Xt − 100)2 − 2(Xt − 100)(Zt − 2)− 10(Zt − 2)2. (3.1)

This relationship, shown in Figure 3.2, is typical of the elliptical nature of
a yield response function of temperature and pressure in the region of the
optimum operating conditions. In this case, mean yield is maximised at
Xt = 100 and Zt = 2.
Consider now two chemical plants running the same process. The first

operates with constant pressure Zt = 1 for which, from above,

µt = 70− (Xt − 100)2 + 2(Xt − 100), (3.2)
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so that the effect of raising temperature from 98◦ to 102◦ is to increase the
mean yield by about 13% from 62 to 70. The second plant operates with
constant pressure Zt = 3, so that

µt = 70− (Xt − 100)2 − 2(Xt − 100), (3.3)

and here the effect of the above temperature increase is to decrease the
mean yield by about 11% from 70 to 62! Suppose that each plant currently
operates with Xt = 100, so that they both have a mean yield of 70%.
Ignoring the difference in pressure settings will lead to a sharp difference
of opinion between plant managers on the effect of raising temperature;
one will claim it to be beneficial, the other detrimental. Consideration of
pressure as a contributory factor clearly identifies the source of confusion
and conflict.
The general point of this example is that all models are conditional,

although the conditions under which they are constructed are often not
explicit. Thus, quite frequently, various conflicting models may be pro-
posed for equivalent situations, each supported by empirical evidence and
associated statistical tests. The truth may be that although each model is
conditionally correct, the conditioning may be so restrictive as to render
the models practically useless.
Further study of the example provides valuable insight and a pointer

to possible useful modification of simple conditional models. Consider the
operating model for the first plant (3.2). If, due to uncontrollable cir-
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cumstances, pressure begins to increase, moving from Zt = 1 to Zt = 3,
then the model becomes invalid and practically misleading. In this and
more complex situations, and particularly in modelling open systems, the
lack of awareness of the variation in, and the interaction with, excluded or
unidentified variables causes confusion and misleading inferences. Simple
modifications of conditional models to provide a small degree of flexibility
of response to changing external conditions and variables are possible. In
the example, the operating model may be rewritten as

µt = α(Zt) + β(Zt)Xt + γX2
t ,

where the coefficients α(·) and β(·) (and in more complex situations γ too)
are functions of pressure Zt. If it is assumed that pressure changes only
slowly in time, then the concept of local modelling described earlier suggests
that to account for some of the variability due to the unidentified pressure
variable (and possibly others too), a simple local model would be that
above with coefficients α(·) and β(·) replaced by time-varying quantities,
to give

µt = αt + βtXt + γX2
t .

A simple dynamic model for the coefficients, such as a random walk, will
now provide a means of responding and adapting to changes in underlying
conditions and related variables.
It is worth exploring the distinction between the qualitative, that is,

the local model form, and the quantitative by reference to Taylor series
expansions. Temporarily suppressing the dependence on time, suppose
there exists some unknown, complex, but smooth underlying relationship
between the mean response function µ and an independent variable X, of
the form µ = f(X,Z), where Z represents a set of possibly many related
but omitted variables. For any given Z, the functional dependence on X
can be represented locally in a neighbourhood of any point X0 by the form

µ = f(X0, Z) +
∂f(X0, Z)

∂X0
(X −X0),

or

µ = α0(Z) + β0(Z)X.

In considering the use of a linear regression on X for the response function
over time, it is clear that two factors are important in assessing the worth
of such a model:

(a) the adequacy of the linear approximation as a function of X for any
given Z; and

(b) the implicit assumption of constancy as a function of Z.

Situations in which X and Z vary slowly over time, or in which Z varies
slowly and the response is close to linear in X for given Z, provide the
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most satisfactory cases. Here the response function can be adequately
represented as

µt = αt + βtXt,

with the coefficients changing slowly over time according to the simple
random walk (

αt

βt

)
=
(
αt−1

βt−1

)
+ ωt,

where ωt is a zero-mean random vector. This expresses the concept of
local constancy of the parameters, subject to variation controlled by the
variance matrix of ωt, say V[ωt] =Wt. Clearly, small values ofWt imply
a stable linear function over time, larger values leading to greater volatility
and suggesting caution in extrapolating or forecasting too far ahead in
time based on the current quantified linear model. The common static
regression model is obviously the special case of this dynamic regression in
which ωt = 000 for all t.
The foregoing discussion has identified some of the potential dangers in

employing simple static models and also reveals reasons why they often
prove inadequate in practice. A final point concerns the suggestion that
the above type of dynamic model is likely to break down if there happens to
be a large, abrupt change in either X or Z, or both. In the chemical plant
example, a sudden change in pressure from 1 to 3 leads to an enormous shift
in the locally appropriate pair of coefficients α and β, with the latter even
reversing its sign. However, in spite of this marked quantitative change,
it is still the case that the qualitative form is locally durable with respect
to large changes in either X or Z. Furthermore, the changes in parameter
values may be estimated and adapted to by introducing larger variances,
Wt, for abrupt change points. In later chapters models that can cope with
discontinuous changes in an otherwise smooth process are a prominent
feature of our practical approach.

3.2 THE MULTIPLE REGRESSION DLM
For reference, before considering the case of a single regressor variable in
detail, the structure of the general dynamic regression model is specified.
Suppose that n regressor variables are identified and labelled X1, . . . , Xn.
The value of the ith variable Xi at time t is denoted by Xti, with the
convention that a constant term is represented by Xt1 = 1, for all t. The
regression DLM is now defined.

Definition 3.1. For each t, the model is defined by

Observation equation: Yt = F′
t θt + νt , νt ∼ N[0, Vt],

System equation: θt = θt−1 + ωt , ωt ∼ N[000,Wt],
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where Ft = (Xt1, . . . , Xtn)′ is the regression vector, θt is the n × 1 re-
gression parameter vector, andWt is the evolution variance matrix
for θt.
The standard static regression model has the above form with Wt = 000

for all t, so that θt = θ is constant in time. Following the introductory
discussion, the regression DLM assumes that the linear regression form
is only locally appropriate in time, with the regression parameter vector
varying according to a random walk. The evolution error term ωt describes
the changes in the elements of the parameter vector between times t−1 and
t. The zero mean vector reflects the belief that θt is expected to be constant
over the interval, whilst the variance matrixWt governs the extent of the
movements in θt and hence the extent of the time period over which the
assumption of local constancy is reasonable. Finally, the error sequences
νt and ωt are each assumed to be independent sequences. Additionally, νt
is independent of ωs for all t and s.
An important special case obtains when n = 1 and a constant term is

included in the model. The result is a straight line regression on X = Xt

specified by Ft = (1, Xt)′ and θt = (αt, βt)′. Then

Yt = αt + βtXt + νt, νt ∼ N[0, Vt],

αt = αt−1 + ωt1,

βt = βt−1 + ωt2,

where ωt = (ωt1, ωt2)′ ∼ N[0,Wt].

3.3 DYNAMIC STRAIGHT LINE THROUGH THE ORIGIN
3.3.1 Introduction and definition
For illustrative purposes the simple dynamic straight line through the origin
is considered. Formally, this is a special case of the straight line model for
which αt = 0 and θt = θt = βt for each t. Thus it is assumed that a straight
line passing through the origin models the local relationship, but that in
different localities the appropriate slope values differ. For illustration, three
data sets are now given and examined later in Sections 3.3.4 and 3.4.2.
In Table 3.1, for t = 1970 to 1982, the response series Yt is the USA

total annual milk production, and Ft the total number of milk cows, with
θt representing the average annual milk output per cow in year t. The
model is not of primary interest for forecasting the Yt series but rather for
assessing changing productivity over time.
Table 3.2 concerns a leading indicator that is used to forecast annual

product sales. Here Yt is the change in annual sales between years t − 1
and t, and Ft is the lead indicator measured as the change in an industrial
production index between the years t− 2 and t− 1.
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Table 3.1. USA annual milk production and milk cows

Year t 1970 1971 1972 1973 1974 1975 1976

Yt: Milk (lbs ×109) 117.0 118.6 120.0 115.5 115.6 115.4 120.2
Ft: Cows ×106 12.0 11.8 11.7 11.4 11.2 11.1 11.0

Year t 1977 1978 1979 1980 1981 1982

Yt: Milk (lbs ×109) 122.7 121.5 123.4 128.5 130.0 135.8
Ft: Cows ×106 11.0 10.8 10.7 10.8 10.9 11.0

Table 3.2. Change in annual sales and industrial production

Year t 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Yt 12 11 9 5 3 0 -5 -7 -6 -3 7 10 13 12

Ft 4 4 3 2 1 -1 -3 -4 -3 -1 2 3 4 4

Table 3.3. Company sales/ Total market data

Company Sales Y Total Market F

Quarter Quarter
Year 1 2 3 4 1 2 3 4

1975 71.2 52.7 44.0 64.5 161.7 126.4 105.5 150.7
1976 70.2 52.3 45.2 66.8 162.1 124.2 107.2 156.0
1977 72.4 55.1 48.9 64.8 165.8 130.8 114.3 152.4
1978 73.3 56.5 50.0 66.8 166.7 132.8 115.8 155.6
1979 80.2 58.8 51.1 67.9 183.0 138.3 119.1 157.3
1980 73.8 55.9 49.8 66.6 169.1 128.6 112.2 149.5
1981 70.0 54.8 48.7 67.7 156.9 123.4 108.8 153.3
1982 70.4 52.7 49.1 64.8 158.3 119.5 107.7 145.0
1983 70.0 55.3 50.1 65.6 155.3 123.1 109.2 144.8
1984 72.7 55.2 51.5 66.2 160.6 119.1 109.5 144.8
1985 75.5 58.5 165.8 127.4

The final data set, in Table 3.3, displays a company’s quarterly sales, Yt in
standardised units, relative to the total market sales Ft, over the years 1975
to mid-1985. Primary interest lies in assessing the way their relationship
has changed over time, and in forecasting one year ahead. A major feature
of this data set is the marked annual seasonal pattern exhibited by each
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Figure 3.3 Company sales and total market series

of the series over the year. The two series are plotted over time in Figure
3.3. A simple scatter plot of Yt versus Ft, given in Figure 3.4, removes
this seasonality and seems to support a simple, essentially static straight
line regression with, from the nature of the data, zero origin and with θt
representing the market share as a proportion of the total market.

Definition 3.2. The model form is a special case of Definitions 1.1 and
3.1, being characterised by the quadruple {Ft, 1, Vt,Wt} as

Observation equation: Yt = Ftθt + νt, νt ∼ N[0, Vt],

System equation: θt = θt−1 + ωt, ωt ∼ N[0,Wt],

Initial information: (θ0 |D0) ∼ N[m0, C0],

for some mean m0 and variances C0, Vt and Wt.
The sequential model description for the series requires that the defining

quantities at time t be known at that time. Similarly, when forecasting
more than one step ahead to time t+ k at time t, the corresponding quan-
tities Ft+k, Vt+k, and Wt+k must belong to the current information set
Dt. In general for this chapter, and unless otherwise specified, it will be
assumed that the information set D0 contains all the future values of Ft,
Vt, and Wt, so that Dt = {Yt, Dt−1} for each t. Finally there is the usual
assumption of mutual independence of the error sequences and D0.
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Figure 3.4 Company sales versus total market sales

3.3.2 Updating and forecasting equations

Theorem 3.1. One-step forecast and posterior distributions are given, for
each t, as follows:

(a) Posterior for θt−1 : (θt−1 | Dt−1)∼ N[mt−1, Ct−1],

for some mean mt−1 and variance Ct−1.

(b) Prior for θt : (θt | Dt−1)∼ N[mt−1, Rt],

where Rt= Ct−1 +Wt.

(c) 1-step forecast : (Yt | Dt−1)∼ N[ft, Qt],

where ft = Ftmt−1 and Qt = F 2
t Rt + Vt.

(d) Posterior for θt : (θt | Dt)∼ N[mt, Ct],

with mt = mt−1+Atet and Ct = RtVt/Qt,

where At = RtFt/Qt and et = Yt − ft.

Proof. The proof is by induction, following that of Theorem 2.1. At any
time t > 1 assume that (a) is true, noting that this is the case at t = 1.
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Writing Yt and θt in terms of linear functions of θt−1 , νt and ωt, it follows
that Yt and θt have a bivariate normal distribution conditional on Dt−1,
with means and variances as stated above, establishing (b) and (c). For
the covariance,

C[θt, Yt|Dt−1] = C[θt, Ftθt + νt|Dt−1] = C[θt, Ftθt|Dt−1] + C[θt, νt|Dt−1]

= V[θt|Dt−1]Ft + 0 = RtFt,

so that (
θt
Yt

∣∣∣∣Dt−1

)
∼ N

[(
mt−1
ft

)
,

(
Rt RtFt

FtRt Qt

)]
.

The regression coefficient of θt on Yt is then At = RtFt/Qt. Hence, using
normal theory from Section 17.2,

(θt | Yt, Dt−1) ∼ N[mt, Ct],

where

mt = mt−1 +At(Yt − ft)

and

Ct = Rt − (RtFt)2/Qt.

This latter equation reduces to Ct = RtVt/Qt and (d) follows.

�

For forecasting at time t, the forecaster requires the k-step ahead mar-
ginal distributions, p(Yt+k | Dt), which are as follows.

Theorem 3.2. For k > 0, the k-step ahead forecast distributions are

(Yt+k | Dt) ∼ N[ft(k), Qt(k)]

and

(θt+k | Dt) ∼ N[mt, Rt(k)],

where

ft(k) = Ft+kmt,

Rt(k) = Ct +
k∑

r=1

Wt+r,

and

Qt(k) = F 2
t+kRt(k) + Vt+k.



3.3 Dynamic Straight Line through the Origin 79

Proof. From the evolution equation for θt, for k ≥ 1,

θt+k = θt +
k∑

r=1

ωt+r ,

which, together with the observational equation, gives

Yt+k = Ft+kθt + Ft+k

k∑
r=1

ωt+r + νt+k.

Since all terms are normal and mutually independent, (Yt+k | Dt) is normal
and the mean and variance follow directly as the sums of the means and
variances respectively.

�

3.3.3. General comments
The following points are noteworthy.

(i) The posterior mean mt is obtained by correcting the prior mean
mt−1 with a term proportional to the forecast error et. The co-
efficient At = RtFt/Qt scales the correction term according to the
relative precisions of the prior and likelihood, as measured by Rt/Qt,
and by the regressor value Ft. So the correction always takes the
sign of Ft and may be unbounded.

(ii) The posterior precision C−1
t is

C−1
t = Qt(RtVt)−1 = R−1

t + F 2
t V

−1
t ,

so that for Ft �= 0, it always exceeds the prior precision R−1
t . Thus,

the posterior for θt is never more diffuse than the prior. Further, the
precision increases with |Ft|. If, however, Ft = 0, then Yt provides
no information on θt, and Ct = Rt. If Ft = 0 for a sequence of
observations then the sequence Ct continues to grow by the addi-
tion of furtherWt terms, reflecting an increasingly diffuse posterior.
Thus, although there may exist an appropriate regression relation-
ship changing in time, information relevant to this relationship is
not forthcoming. Although seemingly trivial, this point is vital when
considering the case of multiple regression. The chemical plant op-
eration of Section 3.1 is a case in point. In view of concern about
falling short of set production targets, plant managers are usually
wary of varying operating conditions away from standard, well-used
control conditions. In such cases, the absence of planned variation
in operating conditions means that no new information is obtained
about the effect on chemical yield of changing these conditions. As
described in Section 3.1, the yield relationships with controlling fac-
tors change in time and thus actual optimum operating conditions
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can move away from those initially identified. The lack of incoming
information about the effects of changing variables, such as tem-
perature, together with a decreasing precision associated with the
model parameters, means that the actual operating conditions will
become far from optimal. The need for a continual flow of informa-
tion on the effects of changes in operating conditions was recognised
by G.E.P. Box when at Imperial Chemical Industries. This led to
the development of Evolutionary Operation, which advocates con-
tinued small variation in conditions near the currently identified
optimum so that movements away from this can be identified (Box
and Draper 1969).

(iii) Consider the special case of constant variances, Vt = V andWt =W
for each t. In general, the sequence Ct is neither monotonic nor
convergent. However, in the degenerate constant model given by
Ft = F �= 0, the corresponding model for the scaled series Yt/F is a
constant, first-order polynomial model with observational variance
V/F 2. It follows from Theorem 2.3 that

lim
t→∞

At = A(F )

and

lim
t→∞

Ct = C(F ),

where, with r(F ) =WF 2/V,

A(F ) = r(F )[
√
1 + 4/r(F )− 1]/2

and

C(F ) = A(F )V/F 2.

Consequently, in the general case of bounded regressor values, where
say a < Ft < b for all t, as t increases, At will lie in the in-
terval [A(a), A(b)] and Ct in the interval [C(c), C(d)], where
c = max (|a|, |b|) and d = min{|u| : u ∈ [a, b]}.

(iv) For the static model in which Wt = 0 for all t, θ is constant, so that

C−1
t = C−1

0 +
t∑

r=1

F 2
r V

−1
r

and

mt = CtC
−1
0 m0 + Ct

t∑
r=1

F 2
r V

−1
r Yr.

This is the standard posterior distribution derived from a non-
sequential analysis of the constant regression model. In the par-
ticular cases of either large t or relatively little prior knowledge, as
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represented by small C−1
0 , mt is approximately the usual maximum

likelihood point estimate of θ, and Ct the associated variance.

3.3.4 Illustrations
The model is now illustrated by application to the first two data sets in-
troduced above. The objective is simply to demonstrate the analysis and
highlight practically interesting features. Reasonably uninformative priors
are chosen at t = 0 for the purpose of illustration.

EXAMPLE 3.1. For convenience the years of this data set, in Table 3.1,
are renumbered 1 to 13. The constant variance model with V = 1 and
W = 0.05 is applied. θt may be interpreted as the level, in thousands of
pounds, of milk per cow for year t. Initially we set m0 = 10 and C0 = 100,
representing a high degree of uncertainty about θ0. Table 3.4a gives the
values of mt, Ct and At calculated sequentially according to Theorem 3.1
(d).
The mt series is seen to increase except at t = 4. This reflects in-

creasing efficiency in general dairy production over time through better
management and improving breeds of cow. In practice, a modeller would
wish to incorporate this feature by modelling “growth” in θt, the current,
constant model obviously being deficient. However, even though it is un-
satisfactory for long-term prediction, the dynamic nature of this simple
model does lead to reasonable short-term forecasts. For example, at t = 11
and t = 12, the one-step ahead forecasts are (Y12 | D11) ∼ N[129.2, 7.8]
and (Y13 | D12) ∼ N[131.1, 7.9]. The actual observations Y12 = 130.0 and
Y13 = 135.8 are well within acceptable forecast limits. By comparison,
Table 3.4b gives results from the standard static model with Wt = 0. It
is clear that forecasts from this model are totally unsatisfactory, with, for
example, (Y12 | D11) ∼ N[116.1, 1.09] and (Y13 | D12) ∼ N[118.2, 1.08].
The beneficial effects of assuming a model form holding only locally rather
than globally are clearly highlighted. The dynamic assumption leads to
greater robustness and helps to compensate for model inadequacies that
at first may not be anticipated or noticed. Since the independent variable
Ft varies between 10.7 and 12.0, it is not surprising that in the dynamic
model the values of Ct and At settle down to vary within narrow regions.
By contrast, in the static model they both decay to zero, so that the model
responds less and less to the most recent data points and movements in
milk productivity.

EXAMPLE 3.2. Leading indicator. The sales data in Table 3.2 are anal-
ysed with the constant model in which V = 1 and W = 0.01. The initial,
relatively diffuse prior sets m0 = 2 and C0 = 0.81. Table 3.5 gives the val-
ues of mt, Ct and At. Neither the variance nor the adaptive coefficient are
monotonic, and there is no convergence. Here Ft takes negative and posi-
tive values, and At takes the sign of the current regressor value. When the
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Table 3.4. Analyses for milk data

(a) Dynamic model (b) Static model

t Ft Yt mt 1000Ct 100At mt 1000Ct 100At

1 12.0 117.0 9.75 6.94 8.3 9.75 6.94 8.3
2 11.8 118.6 10.01 6.38 7.5 9.90 3.53 4.2
3 11.7 120.0 10.23 6.47 7.6 10.01 2.38 2.8
4 11.4 115.6 10.14 6.77 7.7 10.04 1.82 2.1
5 11.2 115.6 10.30 6.99 7.8 10.09 1.48 1.7
6 11.1 115.4 10.38 7.10 7.9 10.14 1.25 1.4
7 11.0 120.2 10.86 7.22 7.9 10.24 1.09 1.2
8 11.0 122.7 11.12 7.22 8.1 10.35 0.96 1.1
9 10.8 121.5 11.23 7.46 8.1 10.44 0.86 0.9
10 10.7 123.4 11.49 7.58 8.1 10.54 0.79 0.8
11 10.8 128.5 11.85 7.46 8.1 10.65 0.72 0.8
12 10.9 130.0 11.92 7.34 8.0 10.75 0.66 0.7
13 11.0 135.8 12.29 7.22 7.9 10.87 0.61 0.7

latter is near zero, Ct tends to increase, since the information provided by
Yt is not compensating for the increased uncertainty about the regression
in the movement from θt−1 to θt. On the other hand, when Ft increases in
absolute value, the observations are very informative, leading to decreases
in Ct and increases in the absolute value of At.
Looking at mt, it begins in the region of 3, then drops near to 2 before

rising again to 3, apparently completing a cycle. Since Ft varies in a similar
manner, there is a suggestion that a large part of this variation in mt could
be accounted for by relating it to Ft, and a more elaborate model is worth
considering. A simple, tentative example would be to extend the regression
to include a quadratic term in Ft, thus implying a multiple regression rather
than the simple straight line here.
One further point that may be queried is that this simple model deals

with changes in both response and regressor variables, rather than their
original values. Typically this will lead to time series that are not condi-
tionally independent, as the model implies. If, for example, Yt = Ut−Ut−1,
then Yt and Yt−1 have Ut−1 in common and so will be dependent. The rea-
son why many difference models are used in classical forecasting approaches
is that there is a desire to use static, stationary models that would be more
reasonable for the differenced series Yt than for Ut, on the basis that dy-
namic changes in the latter that cannot be handled by static models can
be partially eliminated by differencing. Although this reasoning may be
validated in some cases, it is much better and sounder to develop dynamic,
stochastic, explanatory models directly for the undifferenced data Ut.
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Table 3.5. Analysis of annual sales data

t 1 2 3 4 5 6 7

Ft 4 4 3 2 1 −1 −3
Yt 12 11 9 5 3 0 −5
mt 2.93 2.84 2.88 2.83 2.84 2.69 2.33
100Ct 5.81 3.26 3.08 3.51 4.31 5.04 3.92
10At 2.32 1.30 0.92 0.70 0.43 −0.50 −1.17

t 8 9 10 11 12 13 14

Ft −4 −3 −1 2 3 4 4
Yt −7 −6 −3 7 10 13 12

mt 2.08 2.06 2.09 2.31 2.63 2.88 2.93
100Ct 2.75 2.80 3.67 3.93 3.42 2.59 2.28
10At −0.84 −0.84 −0.37 0.79 1.02 1.03 0.91

3.4. MODEL VARIANCES AND SUMMARY
3.4.1 Summary of updating and forecasting equations
Estimation of the observational variance and assignment of values to the
evolution variance series are problems discussed in detail for the general
DLM in later chapters. With a constant observational variance, the analysis
is a minor generalisation of that for the first-order polynomial DLM as
developed in Section 2.5. The corresponding results are summarised in
the following table. The observational variance, if assumed unknown but
constant, is estimated using the fully conjugate Bayesian analysis based on
gamma prior/posterior distributions for the precision parameter.
From the DLM observation equation it is clear that Wt is not invariant

to the scale of measurement of the independent variable Ft. Because of
this, and the fact that the amount of information about θt conveyed by an
observation varies with |Ft|, there is difficulty in assigning suitable values to
the evolution variance sequence. If as in Section 2.4.2, a discount approach
is used with discount factor 0 < δ < 1, thenWt = Ct−1(δ−1−1) is naturally
defined as a multiple of the variance Ct−1, so that Rt = Ct/δ.
Section 4.5 deals with the general DLM of which this is a particular case,

and the reader is referred to that section for further details, which are easily
translated for this simple DLM.
The summary table is completely analogous to that of Section 2.5.3 for

the first-order polynomial model; nt is the degree-of-freedom parameter
for the posterior distribution of the scale φ, increasing by one for each
observation, and St is the point estimate of V .
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Regression DLM with Zero Origin and Constant Variance

Observation: Yt = Ftθt + νt, νt ∼ N[0, V ],
System: θt = θt−1 + ωt, ωt ∼ Tnt−1 [0,Wt].

Information: (θt−1 | Dt−1) ∼ Tnt−1 [mt−1, Ct−1],

(φ | Dt−1) ∼ G
[
nt−1

2 , nt−1St−1
2

]
.

Forecast: (θt | Dt−1) ∼ Tnt−1 [mt−1, Rt],
(Yt | Dt−1) ∼ Tnt−1 [ft, Qt],

Rt = Ct−1 +Wt, ft = Ftmt−1, and Qt = F 2
t Rt + St−1.

Updating Recurrence Relationships

Writing et = Yt − ft, and At = FtRt/Qt,

(i) (φ | Dt) ∼ G
[
nt

2 ,
ntSt

2

]
,

nt = nt−1 + 1,
St = St−1 + (e2t/Qt − 1)St−1/nt.

(ii) (θt | Dt) ∼ Tnt
[mt, Ct],

mt = mt−1 +Atet,
Ct = RtSt/Qt.

3.4.2 Example
The company sales/total market data set of Table 3.3 and Figure 3.3 is
used to illustrate the sequential analysis and also to highlight some further
practical points. Sales are plotted against total market data in Figure 3.4,
demonstrating an apparently stable linear relationship. θt is the expected
market share of the company in month t, the prior estimate of θ0 at t = 0
being m0 = 0.45, in line with pre-1975 information, and the associated
uncertainty being represented by C0 = 0.0025. A loose prior for the ob-
servational precision is assigned by setting n0 = S0 = 1. This implies that
(θ0 | D0) ∼ T1[0.45, 0.0025], with, in particular, 90% prior probability that
θ0 lies between 0.13 and 0.77, symmetrically about the mode 0.45.
It is of interest to consider several analyses of the data using this model

and initial prior, differing only through the value of the discount factor δ.
Consider first an analysis with δ = 0.6 corresponding to a view that θt
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may vary markedly over time. Given the initial prior, sequential updating
and one-step ahead forecasting proceed directly. Figure 3.5 displays a plot
over time of the raw one-step ahead forecast errors et. Note that there
is a preponderance of positive errors during the latter half of the time
period, years 1980 onwards, indicating that the model is generally under-
forecasting the data series Yt during that time.
Figure 3.6 provides a plot over time of the on-line estimated value mt of

the regression parameter θt, referred to as the estimated trajectory of the
coefficient. This is the solid line in the figure. An indication of uncertainty
about the value at time t is indicated by the dashed lines symmetrically
located either side of the estimate. These limits provide 90% posterior
probability intervals (in fact, HPD intervals) for the corresponding values
of θt, calculated from the Student T posterior distributions of (θt|Dt). It is
clear that θt drifts upwards over time, particularly over the last six or seven
years of data. The model, though not predicting such positive drift, adapts
as data are processed, sequentially adjusting the posterior to favour higher
values consistent with the data. The fact that the model is very adaptive
(with δ scandalously low at 0.6), leads to the resulting marked degree of
inferred change in θt. However, since the model implies that θt undergoes
a random walk, the positive drift cannot be anticipated and so, generally,
under-forecasting results as evidenced in the forecast errors in Figure 3.5.
Consider now an analysis with δ = 1, so the model is a static regression

with constant θt = θ0. The sequentially calculated one-step ahead errors
et from this analysis appear in Figure 3.7. The preponderance of positive
errors is evident as with the previous analysis, but the effect is profound.
From 1980 onwards, all the errors are positive, and tending to increase,
indicating continual deterioration in model adequacy. Figure 3.8 displays
the on-line estimates mt with 90% HPD intervals. Again the model is
adapting to higher values of θt as time progresses, but the rate of adaptation
is much lower than the previous, very adaptive model with δ = 0.6. This
under-adaptation leads to increasingly poor forecasts as time progresses.
Obviously, the regression model as specified is deficient for this data

set; a revised model anticipating drift in θt is desirable. Despite this, the
model with δ = 0.6 adapts sufficiently to new data that the forecast errors,
though tending to be positive, are relatively small. By comparison, the
static regression model with δ = 1 performs extremely poorly in one-step
ahead forecasting due to its poor adaptability. Thus, interpreting Figure
3.4 as suggesting a simple static regression is certain to mislead. This plot
masks the effects of time on the relationship between the two series. Many
readers will immediately note that a simple plot of the observed market
shares Yt/Ft (empirical estimates of the θt values) over time indicates the
increasing nature of θt and suggest a more appropriate model form; Figure
3.9 provides such a plot, the ratio values appearing as crosses. Also plotted
are the sequences of on-line estimates mt from each of the two analyses
described above; the solid line is that from the adaptive analysis with
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Figure 3.5 One-step ahead forecast errors : δ = 0.6
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Figure 3.6 On-line estimated trajectory of θt: δ = 0.6
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Figure 3.7 One-step ahead forecast errors : δ = 1.0

0.415

0.42

0.425

0.43

0.435

0.44

0.445

QTR
YEAR

1
75

1
77

1
79

1
81

1
83

1
85

Figure 3.8 On-line estimated trajectory of θt: δ = 1.0
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Figure 3.9 Ratio Yt/Ft versus time t, with on-line estimates

δ = 0.6, the dashed line from the static model. It is evident that the
adaptive model tracks changes in θt rather well.
To further compare the two analyses, details are given below. Tables

3.6 and 3.7 display the data and some components of the prior/posterior
distributions from the two analyses for the final 12 quarters, t = 31, . . . , 42.
As noted above, the increasing market share is identified most clearly

by the model with the lower discount of 0.6, where mt approaches 0.46
at the end of the data, though it is not continually increasing. The one-
step forecasts are good, although the increasing θt leads to a dominance of
positive forecast errors et, albeit very small compared to their distributions.
Note that nt = t + 1, so that the Student T forecast distributions are
close to normality and Qt is then roughly the variance associated with
et. In contrast, the static regression model with discount 1.0 is far less
adaptive, the mt sequence slowly increasing to 0.44 at the end of the data.
This is well below the more reasonable values near 0.46, as is evident from
the sustained, and significant, under-forecasting of the Yt series. The key
point here is that, although the model lacks a growth term and so is really
inappropriate, the lower discount analysis adapts well and the resulting
short-term forecasts are acceptable. The standard static model is extremely
poor by comparison, and the message extends to more general models, and
regressions in particular.
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Table 3.6. Sales data example: discount factor = 0.6

t Ft Yt ft Q
1/2
t S

1/2
t mt C

1/2
t

31 107.7 49.1 47.71 0.94 0.80 0.447 0.0040
32 145.0 64.8 64.79 1.10 0.79 0.447 0.0037
33 155.3 70.0 69.39 1.09 0.78 0.449 0.0035
34 123.1 55.3 55.23 0.96 0.77 0.449 0.0036
35 109.2 50.1 49.02 0.92 0.77 0.452 0.0039
36 144.8 65.6 65.43 1.06 0.76 0.452 0.0036
37 160.6 72.7 72.66 1.07 0.75 0.453 0.0033
38 119.1 55.2 53.90 0.91 0.76 0.456 0.0036
39 109.5 51.5 49.93 0.92 0.78 0.460 0.0039
40 144.8 66.2 66.65 1.07 0.77 0.459 0.0037
41 165.8 75.5 76.08 1.10 0.77 0.457 0.0033
42 127.4 58.5 58.23 0.94 0.76 0.458 0.0034

Table 3.7. Sales data example: discount factor = 1.0

t Ft Yt ft Q
1/2
t S

1/2
t mt C

1/2
t

31 107.7 49.1 46.74 1.19 1.23 0.434 0.0016
32 145.0 64.8 62.98 1.26 1.25 0.435 0.0016
33 155.3 70.0 67.52 1.28 1.30 0.435 0.0016
34 123.1 55.3 53.59 1.32 1.32 0.436 0.0016
35 109.2 50.1 47.58 1.33 1.36 0.436 0.0016
36 144.8 65.6 63.14 1.38 1.40 0.437 0.0017
37 160.6 72.7 70.11 1.43 1.44 0.437 0.0017
38 119.1 55.2 52.06 1.46 1.51 0.438 0.0017
39 109.5 51.5 47.92 1.52 1.59 0.438 0.0018
40 144.8 66.2 63.44 1.62 1.63 0.439 0.0018
41 165.8 75.5 72.73 1.66 1.66 0.439 0.0019
42 127.4 58.5 55.96 1.68 1.69 0.440 0.0019

Note further that the more adaptive model allows for a much greater
decay of information about θt over time, and this results in a larger poste-
rior variance. At the end of the data, for example, the posterior standard
deviation of θ42 in the adaptive model is almost 80% greater than that in
the static model. This is a large difference due to a very small discount at
0.6. Typically, if the form of the model is reliable over a reasonable period,
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discount factor

10.80.60.40.20

3

2.5

2

1.5

1

0.5

0

LIK

MAD

MSE

Figure 3.10 MSE, MAD and LIK measures as functions of δ

as is clearly not the case here, then discount factors for regression will ex-
ceed 0.9. Concerning the static model, note that in addition to very poor
forecasts, the posteriors for θt are overly precise, being highly concentrated
about a mode that is far from suitable as an estimate of θt!
The adaptive model correctly attributes a high degree of variation in

the Yt series to movement in θt, and so much less than the static model
to observational variation about level. The final estimate of observational
standard deviation in the adaptive model is 0.76 compared with 1.69 in
the static case. Further, note that the one-step forecast variances in the
adaptive model are much smaller than those in the static model. The final
one-step forecast standard deviation in the former is 0.94 compared to 1.68
in the latter. This is due to the point above; the observational variance is
heavily over-estimated in the static model. Thus, in addition to providing
much more accurate point forecasts than the static model, the adaptive
model produces much more concentrated forecast distributions. By any
measures of comparative performance, the adaptive model is much better
than the standard static model.
Similar analyses with different values of δ can be assessed and compared

using the MSE, MAD and LLR (log likelihood ratio) criteria as demon-
strated in the example of Section 2.7. Each of these measures is calculated
from analyses with δ = 0.05, 0.1, . . . , 0.95, 1.0. MSE and MAD measures
are graphed as functions of δ over this range in Figure 3.10.
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Also plotted is the actual model likelihood LIK=exp(LLR). This figure
clearly indicates that a static model, δ = 1.0, is highly inappropriate. Both
MSE and MAD measures, as functions of δ, decay rapidly from their max-
ima at δ = 1.0 to minima near δ = 0.6, thereafter rising only slightly as δ
approaches 0. The curves are flat between δ = 0.4 and δ = 0.8, indicating
the usual marked robustness to particular values within a suitable range.
The likelihood function LIK for δ peaks between 0.6 and 0.7, being neg-
ligible above δ = 0.85. Highly adaptive models with δ less than 0.5 have
low likelihood, being penalised since the corresponding one-step forecast
distributions are very diffuse.

3.5 EXERCISES
Unless otherwise stated these exercises refer to a univariate time series {Yt}
modelled by the closed regression DLM {Ft, 1, Vt,Wt} of Definition 3.2 with
known variances and/or known discount factor δ as follows:

Observation equation: Yt = Ftθt + νt, νt ∼ N[0, Vt],

System equation: θt = θt−1 + ωt, ωt ∼ N[0,Wt],

Initial prior: (θ0 |D0) ∼ N[m0, C0].

(1) In the DLM {Ft, 1, 100, 0} suppose that the sequence θt = θ is a
precisely known constant but that the regressor variable sequence
Ft is not controllable. You model Ft as a sequence of independent
normal random quantities, Ft ∼ N[0, 400]. Given Dt−1, answer the
following questions.
(a) Prove that Yt and Ft have a bivariate normal distribution and

identify its mean vector and variance matrix.
(b) What is the correlation between Yt and Ft?
(c) What is the regression coefficient of Ft on Yt?
(d) What is the posterior distribution of (Ft|Yt, Dt−1)?

(2) In the previous question suppose that the sequence θt is known but
not constant. You also adopt a random walk model for Ft, so that
Ft = Ft−1+εt with independent εt ∼ N[0, U ]. Show that your overall
model is equivalent to the simple regression DLM {θt, 1, 100, U} with
regressor variable θt and parameter Ft.

(3) In the DLM {Ft, 1, Vt,Wt}, suppose that Ft �= 0 for all t.
(a) Show that the seriesXt = Yt/Ft follows a first-order polynomial

DLM and identify it fully.
(b) Verify that the updating equations for the regression DLM can

be deduced from those of the first-order polynomial DLM.
(c) What happens if Ft = 0?

(4) One measure of the predictability of Yt at time t− 1 is the modulus
of the reciprocal of the coefficient of variation, given by |ft/Q1/2

t |.
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Explore this measure as a function of Ft ∈ [−100, 100] for each of
the cases Rt = 0, 10, 20, 50, when mt = 10, and Vt = 100.

(5) Suppose that Vt is a known function of a control variable Ft. In
particular, let Vt = V (a+ |Ft|p) for known quantities V , a and p.
(a) How should Ft be chosen in order to maximise the posterior

precision C−1
t subject to |Ft| < k for some k > 0? What is the

optimal design value of Ft in the case a = 8, p = 3 and k = 10?
(b) How does this problem change when V is unknown and is

estimated from the data?

(6) For the discount regression DLM in which Vt is known for all t and
Rt = Ct−1/δ, show that the updating equations can be written as

mt = Ctδ
tC−1

0 m0 + Ct

t−1∑
j=0

δjFt−jV
−1
t−jYt−j

and

C−1
t = δtC−1

0 +
t−1∑
j=0

δjF 2
t−jV

−1
t−j .

Deduce that as t→∞, C−1
t → 0 and

mt →
t−1∑
j=0

δjFt−jV
−1
t−jYt−j

/ t−1∑
j=0

δjF 2
t−jV

−1
t−j .

(7) Consider discount weighted regression applied to the estimation of
a parameter θt by the value mt. In DWR, the estimate mt is chosen
to minimise the discounted sum of squares

S(θ) =
t−1∑
j=0

δj (Yt−j − Ft−jθ)
2
,

where all quantities other than θ are known.
(a) Show that

mt =
t−1∑
j=0

δjFt−jYt−j

/ t−1∑
j=0

δjF 2
t−j .

(b) Generalising (a), suppose that

Yt = Ftθ + νt, νt ∼ N[0, Vt],

and that mt is more appropriately chosen to minimise

S(θ) =
t−1∑
j=0

δjV −1
t−j (Yt−j − Ft−jθ)

2
.
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Show that

mt =
t−1∑
j=0

δjFt−jV
−1
t−jYt−j

/ t−1∑
j=0

δjF 2
t−jV

−1
t−j .

(c) Compare these results with those of the previous question to
see that the estimates correspond to those from the discount
DLM with the uninformative prior C−1

0 = 0.
(8) Suppose that Vt = V kt, where V = 1/φ is unknown and kt is a

known variance multiplier. Show how the analysis summarised in
the table in Section 3.4.1 is modified.

(9) Consider the simple regression DLM {(−1)tk, 1, V,W}, in which
k > 0 is a known constant.
(a) By reference to the first-order polynomial constant DLM con-

vergence results or otherwise, prove that limt→∞ Ct = C exists.
Obtain C and the limiting values of Qt and |At|.

(b) Treating the limiting value C as a function of k, verify that it
is equal to W when k =

√
V/2W.

(10) Consider the company sales/total market series in the example of
Section 3.4.2. Perform similar analyses of this data using the same
DLM but varying the discount factor over the range 0.6, 0.65, . . . , 1.
Explore the sensitivity to inferences about the time trajectory of θt
as the discount factor varies in the following ways:
(a) Plot mt versus t, with intervals based on C

1/2
t to represent

uncertainty, for each value of δ and comment on differences
with respect to δ.

(b) Compare the final estimates of observational variance S42 as δ
varies. Do the same for prediction variances Q42. Discuss the
patterns of behaviour.

(c) Use MSE, MAD and LLR measures to assess the predictive
performance of the models relative to the static model defined
by δ = 1.

(11) Consider a retrospective analysis in which inferences are made about
historical parametric values based on the current data. In partic-
ular, this question concerns inferences about θt−1 given Dt for the
DLM {Ft, 1, Vt,Wt} with known variances.
(a) Use the system equation directly to show that

C[θt, θt−1|Dt−1] = Bt−1V[θt|Dt−1],

for some Bt−1 lying between 0 and 1, and identify Bt−1.
(b) Deduce that

C[θt−1, Yt|Dt−1] = Bt−1C[θt, Yt|Dt−1].

(c) Hence identify the moments of the joint normal distribution
of (θt−1, θt, Yt|Dt−1), and from this, those of the conditional
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distribution of (θt−1|Dt) (by conditioning on Yt in addition to
Dt−1). Verify that the regression coefficient of θt−1 on Yt is
Bt−1At, where At is the usual regression coefficient (adaptive
coefficient) of θt on Yt given Dt−1.

(d) Deduce that (θt−1|Dt) is normal with moments that can be
written as

E[θt−1|Dt] = mt−1 +Bt−1(E[θt|Dt]− E[θt|Dt−1])

and

V[θt−1|Dt] = Ct−1 −B2
t−1(V[θt|Dt−1]−V[θt|Dt]).

(12) Generalise the results of the previous exercise to allow retrospection
back over time for more than one step, calculating the distribution
of (θt−k|Dt) for any k, (0 ≤ k ≤ t). Do this as follows:
(a) Using the observation and evolution equations directly, show

that for any r ≥ 1,

C[θt−k, Yt−k+r|Dt−k] = Bt−kC[θt−k+1, Yt−k+r|Dt−k],

where for any s, Bs = Cs/Rs+1 lies between 0 and 1.
(b) Writing Xt(k) = (Yt−k+1, . . . , Yt)′, deduce from (a) that

C[θt−k,Xt(k)|Dt−k] = Bt−kC[θt−k+1,Xt(k)|Dt−k].

(c) Hence identify the moments of the joint normal distribution of

(θt−k, θt−k+1,Xt(k)|Dt−k),

and from this those of the conditional distributions of (θt−k|Dt)
and (θt−k+1|Dt) (by conditioning on Xt(k) in addition to Dt−k

and noting that Dt = {Xt(k), Dt−k}). Using (b), verify that
the regression coefficient vector of θt−k on Xt(k) is Bt−k times
that of θt−k+1 on Xt(k).

(d) Deduce that (θt−k|Dt) is normal with moments that can be
written as

E[θt−k|Dt] =mt−k+

Bt−k(E[θt−k+1|Dt]− E[θt−k+1|Dt−k])

and

V[θt−k|Dt] =Ct−k−
B2

t−k(V[θt−k+1|Dt−k]−V[θt−k+1|Dt]).

(e) Let the above moments be denoted by at(−k) and Rt(−k),
so that (θt−k|Dt) ∼ N[at(−k), Rt(−k)]. Verify that the above,
retrospective updating equations provide these moments back-
wards over time for k = t− 1, t− 2, . . . , 0 via

at(−k) = mt−k +Bt−k[at(−k + 1)− at−k+1]
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and

Rt(−k) = Ct−k −B2
t−k[Rt(−k + 1)−Rt−k+1]

with as = ms−1 and Rs = Cs−1+Ws for all s, and initial values
at(0) = mt and Rt(0) = Ct.

(13) In the last two questions, employing the discount regression model
{Ft, 1, V,Wt}, where Wt = Ct−1(δ−1 − 1), show that for k ≥ 0,
Bt−1 = δ,

at(−k) = at−1(−k + 1) + δkAtet

and

Rt(−k) = Rt−1(−k + 1)− δ2kA2
tQt.

This provides for neat and simple updating of the retrospective
means and variances.

(14) Suppose the yield Yt of the tth batch of a manufacturing plant is
truly represented by

Yt = 70− (Xt − 3)2 + ηt, ηt ∼ N[0, V ],

Xt ∼ {Ft, 1, V,W}, (θ0|D0) ∼ N[1, V ].

Initially, the setting F1 = 3 is optimal in the sense of maximising
the expected yield.
(a) If Ft is kept constant at 3, or if from any other specified time it

is kept constant at its then perceived optimal value, what are
the consequences?

(b) Plant managers have production targets to meet and dislike
changing operating conditions, fearing a drop in yield. If you
were the production director would you approve this attitude
or would you introduce a policy encouraging plant managers
to make regular small experimental variations about the then
perceived optimal value of Ft?

(15) The following data set refers to an internationally famous canned
product. The objective is to establish a relationship between market
share and price in order to make short-term pricing decisions. The
observation series Yt is the percentage market share for quarter t
minus 42%, and Ft is a linear function of the real price.

Qtr. t 1 2 3 4 5 6

Yt 0.45 0.83 1.45 0.88 -1.43 -1.50
Ft -0.50 -1.30 -1.50 -0.84 -0.65 -1.19

Qtr t 7 8 9 10 11 12

Yt -2.33 -0.78 0.58 1.10 ? ?
Ft 2.12 0.46 -0.63 -1.22 -2.00 2.00
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Adopt the simple discount regression DLM {Ft, 1, V,Wt} with
δ = 0.975.
(a) Carry out sequential forecasting with known variance V = 0.2

and θ0 ∼ N[0, 1]. Either by hand or computer prepare a calcu-
lation table that produces Rt, At, ft, Qt, et,mt and Ct for each
t. What are your final inferences about the price elasticity θ10?
What is your forecast for the market share in the next two
quarters?

(b) Repeat the analysis and inference when V is an unknown con-
stant variance starting with n0 = 1 and S0 = 0.2.



CHAPTER 4

THE DYNAMIC LINEAR MODEL

4.1 OVERVIEW
The first-order polynomial and simple regression models of the preceding
two chapters illustrate many basic concepts and important features of the
general class of normal dynamic linear models, referred to as dynamic linear
models (DLMs) when the normality is understood. This class is described
and analysed here, providing a basis for the special cases and generalisa-
tions that follow in later chapters. The principles employed in Bayesian
forecasting and dynamic modelling involve

(i) parametric models with meaningful dynamic parameters;
(ii) a probabilistic representation of information about parameters;
(iii) a sequential model definition utilising conditional independence;
(iv) robust conditionally independent model components;
(v) forecasts derived as probability distributions;
(vi) a facility for incorporating expert information;
(vii) model quality control.

Suppose interest lies in a scalar series Yt and that at time t−1 the current
information set is Dt−1. The first step in the Bayesian approach is to ex-
amine the forecasting context and to select a meaningful parametrisation,
θt−1, such that all the historical information relevant to predicting future
observations is contained in the information about θt−1. In particular the
modeller represents this relevant information in terms of the probability
distribution (θt−1 | Dt−1). In statistical terms, given Dt−1, (θt−1 | Dt−1)
is sufficient for predicting the future. The parameter together with this
probability distribution defines how the modeller views the context at time
t− 1. Clearly, the parameters must be meaningful to decision makers who
use the forecasts and who also supply occasional expert information. In-
dexing θt by t indicates that the parametrisation is dynamic. In addition,
although often the number and meaning of the elements of θt will be sta-
ble, there are occasions when θt will be expanded, contracted or changed in
meaning according to the forecaster’s existing view of the time series. This
is particularly so with open systems, such as typically arise in social, eco-
nomic and biological environments, where influential factors affecting the
time series process are themselves subject to variation based on the state
of the system generating the process. In such cases, changes in θt may be
required to reflect system learning and the exercise of purposeful control.
Such events, although recognizable when they happen, may be difficult to
identify initially and so will not typically be included in the model until
occurrence.
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The next modelling step is that of relating the current information to
the future so that predictive distributions such as (Yt+k | Dt−1) can be
derived. This is accomplished by specifying a sequential parametric relation
(θt | θt−1, Dt−1) together with an observation relation (Yt | θt, Dt−1). In
combination with (θt−1 | Dt−1) these distributions enable the derivation of
a full joint forecast distribution. The crucial structural property enabling
effective dynamic modelling is conditional independence, most strikingly
conveyed by the graph in Figure 4.1. The key feature is that given the
present, the future is independent of the past. In particular, at time t,
given θt, the past, present, and future are mutually independent. Also,
given just Dt, all the information concerning the future is contained in the
posterior parametric distribution (θt | Dt). Further, if this distribution
is normal, N[mt,Ct], then given Dt, the pair {mt,Ct} contains all the
relevant information about the future, so that in the usual statistical sense,
given Dt, {mt,Ct} is sufficient for {Yt+1,θt+1, . . . , Yt+k,θt+k}.

Yt−2 Yt−1 Yt Yt+1 Yt+2

θt−2 θt−1 θt θt+1 θt+2

Figure 4.1 The DLM conditional independence structure

Conditional independence also features strongly in initial model building
and in choosing an appropriate parametrisation. For example, the linear
superposition principle states that any linear combination of deterministic
linear models is a linear model. This extends to a normal linear superpo-
sition principle:

Any linear combination of independent
normal DLMs is a normal DLM.

The case of a two-component DLM, with θ′
t = (θ′

t1,θ
′
t2), is graphed

in Figure 4.2. Here, conditional upon θt, the two series of components
{θt+i,1, i > 0} and {θt+i,2, i > 0} evolve independently. The important
consequence is that in most practical cases, a DLM can be decomposed
into a linear combination of simple canonical DLMs, the good news being
that a modeller only needs to master a very few simple DLMs in order to
become proficient at model building. Another advantage of the component
structure is robustness. If the DLM breaks down or expert intervention
takes place, only the affected component needs to be serviced. All the
information on other components is retained.
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(θt1|Dt) (θt+1,1|Dt) (θt+2,1|Dt) (θt+3,1|Dt)

(θt2|Dt) (θt+1,2|Dt) (θt+2,2|Dt) (θt+3,2|Dt)

Figure 4.2 The parametric conditional independence structure

Forecasts are obtained by applying probability laws so that the joint
distribution for the observations and parameters at time t may be derived
via

p(Yt,θt | Dt−1) = p(Yt | θt, Dt−1) p(θt | Dt−1).

The one-step forecast is simply the marginal distribution (Yt | Dt−1), and
the posterior, (θt | Dt), is the conditional distribution (θt | Yt, Dt−1).
Inferences and decisions follow standard Bayesian procedures.
Operational Bayesian models specifically aim to incorporate informa-

tion from any relevant source, including subjective expert views, leading
to amended and updated model structures. The probabilistic formula-
tion easily assimilates such information, naturally accommodating specified
changes and associated uncertainties. Further, it offers simple procedures
for combining forecasts and producing forecasts subject to specified con-
straints. This is particularly important for an organisation that requires
consistency of forecasts at all levels and needs to exercise overall control
by constraining detailed operations in line with macro directives. For ex-
ample, the forecasts and stock control of many thousands of items must be
consistent with forecasts of total demand and a constraint on total stock
expenditure.
In practice, Bayesian dynamic models operate in accordance with the

principle of Management by Exception. This involves the “routine” use of
a proposed model unless exceptional circumstances arise. Such exceptions
occur in two main distinct ways. The first is when relevant expert infor-
mation from a source external to the system is received. Examples in con-
sumer demand forecasting include information on patent expiry, licensing
changes, new regulatory legislation, strikes, supply difficulties, forthcoming
spot orders, and so on. This type of information, usually feed-forward and
anticipatory, is naturally included in the existing system by formally com-
bining it with existing probabilistic information. By contrast, the second
type of exception is feedback, which occurs when a monitoring system used
to assess the qualitative performance of the routine model signals a signif-
icant inadequacy. These monitoring systems are similar to those used in
manufacturing quality control and are usually based on the recent forecast
errors. The reaction to such signals may be relevant expert explanatory
information, that is accommodated as above, or the introduction of auto-
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matic default procedures, that model specific types of inadequacy and are
designed to distinguish and correct for model deficiencies.

4.2 DEFINITIONS AND NOTATION
For reference, the general normal DLM is defined for a vector observation
Yt, rather than the more usual scalar special case. However, much of
the discussion, in this chapter and elsewhere, is restricted to the scalar
case. Let Yt be an (r× 1) vector observation on the time series over times
t = 1, 2, . . . , following the model now defined.

Definition 4.1. The general normal dynamic linear model (DLM) is
characterised by a set of quadruples

{F,G,V,W}t = {Ft,Gt,Vt,Wt}

for each time t, where

(a) Ft is a known (n× r) matrix;
(b) Gt is a known (n× n) matrix;
(c) Vt is a known (r × r) variance matrix;
(d) Wt is a known (n× n) variance matrix.

This quadruple defines the model relating Yt to the (n × 1) parameter
vector θt at time t, and the θt sequence through time, via the sequentially
specified distributions

(Yt | θt) ∼ N[F′
tθt,Vt] (4.1a)

and

(θt | θt−1) ∼ N[Gtθt−1,Wt]. (4.1b)

Equations (4.1) are also implicitly conditional on Dt−1, the information
set available prior to time t. In particular, this includes the values of the
defining variances Vt and Wt and the past observations Yt−1,Yt−2, . . . ,
as well as the initial information set D0. For notational simplicity, Dt−1
is not explicitly recognized in the conditioning in equations (4.1), but it
should be remembered that it is always conditioned upon.
An alternative representation of these defining equations is

Yt = F′
tθt + νt, νt ∼ N[000,Vt], (4.2a)

and

θt = Gtθt−1 + ωt, ωt ∼ N[000,Wt]. (4.2b)

The error sequences νt and ωt are internally and mutually independent.
Equation (4.2a) is the observation equation for the model, defining the
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sampling distribution for Yt conditional on the quantity θt. The condi-
tional independence structure of Figure 4.1 applies. So, given θt, Yt is
independent of the all other observations and parameter values; and in
general, given the present, the future is independent of the past. This
equation relates the Yt to θt via a dynamic linear regression with a multi-
variate normal error structure having known, though possibly time varying,
observational variance matrix Vt. For time t

(e) Ft is the design matrix of known values of independent variables;
(f) θt is the state, or system, vector:
(g) µt = F′

tθt is the mean response, or level;
(h) νt is the observational error.

Equation (4.2b) is the evolution, state or system equation, defining the
time evolution of the state vector. The conditional independence property
shows a one-step Markov evolution so that, given θt−1 and the known
values of Gt andWt, θt is independent of Dt−1. That is, given θt−1, the
distribution of θt is fully determined independently of values of Yt−1 and
all the state vectors and observations prior to time t−1. The deterministic
component of the evolution is the transition from state θt−1 to Gtθt−1, a
simple linear transformation of θt−1. The evolution is completed with the
addition of the random vector ωt. At time t,

(i) Gt is the evolution, system, transfer or state matrix;
(j) ωt is the system, or evolution, error with evolution varianceWt.

Finally, note that the defining quadruple, assumed known throughout, does
not appear in the conditioning of the distributions. For notational clarity,
the convention followed throughout the book is that in general, known
quantities will not be made explicit in conditioning distributions. Some
further related discussion appears below in Section 4.3.

Definition 4.2. Of special interest are the following two subsets of the
general class of DLMs.

(i) If the pair {F,G}t is constant for all t then the model is referred to
as a time series DLM, or TSDLM.

(ii) A TSDLM whose observation and evolution variances are constant
for all t is referred to as a constant DLM.

Thus, a constant DLM is characterised by a single quadruple

{F,G,V,W}.

It will be seen that this important subset of DLMs includes essentially all
classical linear time series models.
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The general univariate DLM is defined by Definition 4.1 with r = 1 and
is therefore characterised by a quadruple

{Ft,Gt, Vt,Wt},

leading to

(Yt | θt) ∼ N[F′
tθt, Vt]

and

(θt | θt−1) ∼ N[Gtθt−1,Wt].

These equations, together with the initial prior at time 0, provide the full
definition as follows.

Definition 4.3. For each t, the general univariate DLM is defined by:

Observation equation: Yt= F′
tθt + νt, νt∼ N[0, Vt],

System equation: θt= Gtθt−1 + ωt, ωt∼ N[000,Wt],

Initial information: (θ0 |D0) ∼ N[m0,C0],

for some prior momentsm0 and C0. The observational and evolution error
sequences are assumed to be internally and mutually independent, and are
independent of (θ0 | D0).
Some comments about slightly different model definitions are in order.

First note that with the initial prior specified for time 0, this definition
applies in particular when the data Y1, Y2, . . . represent the continuation
of a previously observed series, the time origin t = 0 just being an arbitrary
label. In such cases, the initial prior is viewed as sufficiently summarising
the information from the past, θ0 having the concrete interpretation of
the final state vector for the historical data. Otherwise, θ0 has no such
interpretation and the model may be equivalently initialised by specifying
a normal prior, (θ1|D0), for the first state vector.
Secondly, apparently more general models could be obtained by allowing

the error sequences {νt} and {ωt} to be both autocorrelated and cross-
correlated, and some definitions of dynamic linear models would allow for
this structure. However, it is always possible to reformulate such a corre-
lated model in terms of one that satisfies the independence assumptions.
Thus, nothing is lost by imposing this restriction that leads to the simplest
and most easily analysed mathematical form. Further, the independence
model is more meaningful and natural. The νt error is simply a random
perturbation in the measurement process that affects the observation Yt
but has no further influence on the series. By contrast, ωt influences the
development of the system into the future. The independence assumption
clearly separates these two sources of stochastic input and clarifies their
roles.
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The model may be simply generalised to allow for known, non-zero means
for either of the noise terms νt or ωt. In addition, some or all of the noise
components can be assumed known by taking the appropriate variances
(and covariances) to be zero. These features are not central to the model
theory but do appear in particular models and are discussed in later chap-
ters as required.

4.3 UPDATING EQUATIONS: THE UNIVARIATE DLM
Consider univariate DLMs that are closed to external information at times
t ≥ 1, so that given initial prior information D0 at t = 0, at any future
time t the available information set is simply

Dt = {Yt, Dt−1},

where Yt is the observed value of the series at time t. To formally incorpo-
rate the known values of the defining quadruples {F,G, V,W}t for each t,
it is assumed that D0 includes these values. This convention is purely for
notational convenience and economy in explanation since only those values
that are to be used in calculating required forecast distributions need to be
known at any particular time.
The central characteristic of the normal model is that at any time, ex-

isting information about the system is represented and sufficiently sum-
marised by the posterior distribution for the current state vector. The key
results, that have trivial extension to the more general multivariate DLM,
are as follows.

Theorem 4.1. In the univariate DLM of Definition 4.3, one-step forecast
and posterior distributions are given, for each t, as follows:

(a) Posterior at t− 1:
For some mean mt−1 and variance matrix Ct−1,

(θt−1 | Dt−1) ∼ N[mt−1,Ct−1].

(b) Prior at t:

(θt | Dt−1) ∼ N[at,Rt],

where

at = Gtmt−1 and Rt = GtCt−1G′
t +Wt.

(c) One-step forecast:

(Yt | Dt−1) ∼ N[ft, Qt],

where

ft = F′
tat and Qt = F′

tRtFt + Vt.
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(d) Posterior at t:

(θt | Dt) ∼ N[mt,Ct],

with

mt = at +Atet and Ct = Rt −AtQtA′
t,

where

At = RtFtQ
−1
t and et = Yt − ft.

Proof. The proof is by induction using the multivariate normal distribu-
tion theory of Section 17.2. Suppose (a) true. Two proofs of (d) are given.
The first important proof utilises the normality of all distributions. The
second general Bayes’ procedure is applicable to any distributions.
Note that sometimes the expressions used in the proof may look a little

odd. The reason for this is so that both the statement of the theorem and
the proof are exactly valid for the multivariate case, in whichYt is a vector.
First, with terms defined in the theorem statement, establish the joint

distribution: (
θt

Yt

∣∣∣∣Dt−1

)
∼ N

[(
at
ft

)
,

(
Rt AtQt

QtA′
t Qt

)]
.

The following results are derived from basic facts concerning means and
variance matrices of linear functions of normal random vectors.
(a) The system equation θt = Gtθt−1 + ωt, ωt ∼ N[000,Wt], and the prior

(θt−1 | Dt−1) ∼ N[mt−1,Ct−1] lead to (θt | Dt−1) ∼ N[at,Rt].
(b) The observation equation Yt = F′

tθt + νt, νt ∼ N[0, Vt], and the prior
of (a) lead to (Yt|Dt−1) ∼ N[F′

tat,F
′
tRtFt + Vt] and prove that the

joint distribution of Yt and θt is normal.
(c) The joint distribution is established upon noting the covariance

C[θt, Yt | Dt−1] = C[θt,F′
tθt + νt | Dt−1]

= V[θt | Dt−1]Ft +000 = RtFt = AtQt.

(d) Proof of (d) using normal theory.
The regression vector of θt on Yt is At. The standard normal theory of
Section 17.2 immediately supplies the required conditional distribution
(θt | Yt, Dt−1).

(d) Proof of (d) using Bayes’ theorem.
Bayes’ theorem implies that as a function of θt,

p(θt | Dt) ∝ p(θt | Dt−1) p(Yt | θt).

The second term is derived from the observation equation as

p(Yt | θt) ∝ exp{−(Yt − F′
tθt)′V −1

t (Yt − F′
tθt)/2},
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and the first from (θt | Dt−1) ∼ N[at,Rt] as

p(θt | Dt−1) ∝ exp
{
−(θt − at)′R−1

t (θt − at)/2
}
.

Taking natural logarithms and multiplying by −2,
−2 ln[p(θt | Dt)] =(θt − at)′R−1

t (θt − at)
+ (Yt − F′

tθt)′V −1
t (Yt − F′

tθt) + constant,

the constant not involving θt. This quadratic function of θt can be
expanded and rearranged with a new constant as

θ′
t(R

−1
t + FtV

−1
t F′

t)θt − 2θ′
t(R

−1
t at + FtV

−1
t Yt) + constant.

With Ct as in the theorem statement,

(R−1
t + FtV

−1
t F′

t)Ct = I,

the n× n identity matrix, so that

R−1
t + FtV

−1
t F′

t = C
−1
t .

With mt as in the theorem statement

C−1
t mt = R−1

t at + FtV
−1
t Yt.

Consequently, with differing constants,

−2 ln[p(θt | Dt)] = θ′
tC

−1
t θt − 2θ′

tC
−1
t mt + constant

= (θt −mt)′C−1
t (θt −mt) + constant.

Upon exponentiating, (θt|Dt) ∼ N[mt,Ct], since

p(θt | Dt) ∝ exp{−(θt −mt)′C−1
t (θt −mt)/2}, θt ∈ IRn.

�

Key Identities
The identities below have been produced in deriving the above results.

Note that they are valid for the multivariate case with I replacing 1 through-
out.

(a) At = RtFtQ
−1
t = CtFtV

−1
t ;

(b) Ct = Rt −AtQtA′
t = Rt(I− FtA′

t);

(c) C−1
t = R−1

t + FtV
−1
t F′

t;

(d) Qt = (1− F′
tAt)−1Vt;

(e) F′
tAt = 1− VtQ−1

t .

By way of terminology, et is the one-step forecast error andAt the adaptive
vector at time t.
As noted earlier, the model definition may be marginally extended to

incorporate known, non-zero means E[νt] for the observational noise and
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E[ωt] for the evolution noise. It is trivial, and left to the reader, to verify
the extensions, namely that the above results apply with the modification
at = Gtmt−1 + E[ωt] and ft = F′

tat + E[νt].

4.4. FORECAST DISTRIBUTIONS

Definition 4.4. The forecast function ft(k), at any time t, is defined
for all integers k ≥ 0 as

ft(k) = E[µt+k|Dt] = E[F′
t+kθt+k | Dt],

where

µv = F′
vθv

is the mean response function for any time v ≥ 0.

For k strictly greater than 0, the forecast function provides the expected
values of future observations given current information,

ft(k) = E[Yt+k | Dt], for k ≥ 1.

However, for completeness, the definition is given in terms of the expected
values of the mean response µt+k rather than Yt+k = µt+k + νt+k, so in-
cluding a posterior point estimate of the current level of the series, namely
ft(0) = E[µt | Dt]. The forecast function is of major importance in design-
ing DLMs as will be evident in future chapters.
The following results provide the full forecast distributions. The forecast

functions are central components.

Theorem 4.2. For 0 ≤ j < k, at each time t the future joint distribution
is normal and defined by the following covariances and k-step marginal
distributions:

(a) State distribution: (θt+k |Dt) ∼ N[at(k),Rt(k)],

(b) Forecast distribution : (Yt+k |Dt) ∼ N[ft(k), Qt(k)],

(c) State covariances: C[θt+k,θt+j | Dt] = Ct(k, j),

(d) Obsn. covariances: C[Yt+k,Yt+j | Dt] = F′
t+kCt(k, j)Ft+j ,

(e) Other covariances: C[θt+k,Yt+j | Dt] = Ct(k, j)Ft+j ,

C[Yt+k,θt+j | Dt] = F′
t+kCt(k, j),

where

ft(k) = F′
t+kat(k) and Qt(k) = F′

t+kRt(k)Ft+k + Vt+k,
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that may be recursively calculated using

at(k) = Gt+kat(k − 1),

Rt(k) = Gt+kRt(k − 1)G′
t+k +Wt+k,

Ct(k, j) = Gt+kCt(k − 1, j), k = j + 1, . . . ,

together with starting values at(0) =mt, Rt(0) = Ct andCt(j, j) = Rt(j).

Proof. Define the n × n matrices Ht+k(r) = Gt+kGt+k−1 . . .Gt+k−r+1
for all t and integer r ≤ k, with Ht+k(0) = I. From repeated application
of the state evolution equation,

θt+k = Ht+k(k)θt +
k∑

r=1

Ht+k(k − r)ωt+r.

Thus, by linearity and independence of the normal summands,

(θt+k | Dt) ∼ N[at(k),Rt(k)],

where at(k) = Ht+k(k)mt = Gt+kat(k − 1) and

Rt(k) = Ht+k(k)CtHt+k(k)′ +
k∑

r=1

Ht+k(k − r)Wt+rHt+k(k − r)′

= Gt+kRt(k − 1)G′
t+k +Wt+k,

with starting values at(0) =mt, and Rt(0) = Ct. This establishes (a).
Using the observation equation at time t+k the forecast distribution (b)

is deduced as (Yt+k | Dt) ∼ N[ft(k), Qt(k)], where

ft(k) = F′
t+kat(k) and Qt(k) = F′

t+kRt(k)Ft+k + Vt+k.

The covariances are easily obtained using the conditional independence
structure. For example, given Dt and j < k,

C[θt+k,θt+j ] = C[Gt+kθt+k−1 + ωt+k,θt+j ] = Gt+kC[θt+k−1,θt+j ]

= Ht+k(k − j)C[θt+j ,θt+j ] = Ht+k(k − j)Rt(j),

as required.
Similar derivations of the other covariances are left to the reader. Since

any linear function of the future Y s and θs is normal it follows that their
joint distribution is multivariate normal.

�

In the special cases when Gt and/or Ft are constant, the above results
simplify considerably and are so important that they are now detailed.
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Corollary 4.1. If the evolution matrix Gt = G is constant for all t, then
for k ≥ 0,

at(k) = Gkmt and ft(k) = F′
t+kG

kmt.

If additionally Ft = F for all t, so that the model is a TSDLM, then the
forecast function has the form ft(k) = F′Gkmt.

In the latter case, the potential form of the forecast function, as a func-
tion of the step ahead k, is entirely determined by the powers of the system
matrix G. This is a fundamental guiding feature in time series model de-
sign, investigated extensively in Chapters 5 and 6.

Corollary 4.2. If the evolution matrix Gt = G is constant for all t, then
for k, v ≥ 0,

Rt(k) = GkCtGk +
k−1∑
i=0

GiWt+k−iG′i

and Ct(k+ v, k) = GvRt(k). If in addition, Ft = F for all t, then Qt(k) =
F′Rt(k)F+ Vt+k and C[Yt+k+v, Yt+k] = F′Ct(k + v, k)F.

4.5 OBSERVATIONAL VARIANCES
So far, the defining quadruples of the univariate DLM have been assumed
known for all time. Generally, the regression vectors Ft and the evolution
matrices Gt are defined by the modeller in accordance with model design
principles discussed in the next two chapters. The evolution variance ma-
trix is also chosen by the modeller, usually applying the discount principle
explored in Chapter 6. However the remaining element of each quadru-
ple, the observational variance Vt, is often unknown, and large relative
to the system variance Wt. Thus, being the major source of forecasting
uncertainty, appropriate Bayesian learning procedures for unknown obser-
vational variances are presented. In this chapter attention is restricted to
the special case of an unknown constant variance, Vt = V for all t. As
in earlier chapters, its reciprocal, the observation precision, is represented
by φ = 1/V . Generalisations to the important cases of both stochastically
changing variances and variance laws are introduced later, where the basic
analysis of this section is appropriately modified.
Working in terms of the unknown precision parameter φ = V −1, a

fully conjugate Bayesian analysis, corresponding to that introduced in Sec-
tions 2.5 and 3.4, is now developed, the key feature being that in defining
the DLM, all variances and covariances are scaled by V .
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Definition 4.5. For each t, writing φ = V −1, the DLM is defined by

Observation equation: Yt= F′
tθt + νt, νt∼ N[0, V ],

System equation: θt= Gtθt−1 + ωt, ωt∼ N[0, VW∗
t ],

Initial information: (θ0 | D0, φ)∼ N[m0, VC∗
0],

(φ | D0)∼ G
[
n0
2 ,

n0S0
2

]
.

The initial quantities m0, C∗
0, n0, and S0 are specified, as are the ma-

trices {Ft,Gt,W∗
t }. Notice that all variances and covariances have V as

a multiplier, or scale factor, providing a scale-free model in terms of the
starred scale-free variances C∗

0 andW∗
t . No generality is lost by this. For

V fixed, the model coincides with the original Definition 4.3 with the scale
factor V simply being absorbed into these matrices.
Conditionally on V , or equivalently φ, being known, the usual conditional

independence assumptions hold. As in chapters 2 and 3, E[φ | D0] = 1/S0,
where S0 is a prior point estimate of the observational variance V .
The results of Theorem 4.3 and the summary Section 4.6 are based on

multivariate T distributions for the state vector at all times. Details are
given in Section 17.3.3 but a short summary is in order here. By analogy
with that for normal distributions, the notation for Student T distributions
is extended to multivariate cases. In particular, if the n× 1 random vector
θ has a multivariate T distribution with h degrees of freedom, modem and
positive definite scale matrix C, then the density is

p(θ) ∝ {h+ (θ−m)′C−1(θ−m)}−(n+h)/2.

Following the univariate case, the notation is simply θ ∼ Th[m,C] with
E[θ] = m if h > 1 and V[θ] = Ch/(h − 2) if h > 2. As h → ∞ the
distribution converges to the normal θ ∼ N[m,C].

Theorem 4.3. With the above DLM, the following distributional results
obtain at each time t ≥ 1.

(a) Conditional on V :

(θt−1 | Dt−1, V ) ∼ N[mt−1, VC∗
t−1],

(θt | Dt−1, V ) ∼ N[at, VR∗
t ],

(Yt | Dt−1, V ) ∼ N[ft, V Q∗
t ],

(θt | Dt, V ) ∼ N[mt, VC∗
t ],

with at= Gtmt−1, R∗
t = GtC∗

t−1G
′
t +W

∗
t ,

ft= F′
tat, Q∗

t = 1 + F′
tR

∗
tFt,

et= Yt − ft, At= R∗
tFt/Q

∗
t ,

and mt= at +Atet, C∗
t = R

∗
t −AtA′

tQ
∗
t .
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(b) For the precision φ = V −1:

(φ | Dt−1) ∼ G
[
nt−1

2
,
nt−1St−1

2

]
,

(φ | Dt) ∼ G
[
nt

2
,
ntSt

2

]
,

where nt = nt−1 + 1 and ntSt = nt−1St−1 + e2t/Q
∗
t .

(c) Unconditional on V :

(θt−1 | Dt−1) ∼ Tnt−1 [mt−1,Ct−1],

(θt | Dt−1) ∼ Tnt−1 [at,Rt],

(Yt | Dt−1) ∼ Tnt−1 [ft, Qt],

(θt | Dt) ∼ Tnt
[mt,Ct],

where Rt = St−1R∗
t , Qt = St−1Q

∗
t and Ct = StC∗

t .

(d) Operational definition of updating equations:
With Qt = F′

tRtFt + St−1 and At = RtFt/Qt,

nt = nt−1 + 1 and St = St−1 +
St−1

nt

(
e2t
Qt
− 1

)
,

mt = at +Atet and Ct =
St

St−1
(Rt −AtA′

tQt).

Proof. Given the model definition, the results in (a) follow directly from
Theorem 4.1. They are simply the known variance results. The rest of the
proof is by induction, using standard normal/gamma results as detailed in
Section 17.3. Assume that the prior for the precision φ in (b) is true. Then
writing dt = ntSt for all t, we have (φ | Dt−1) ∼ G[nt−1/2, dt−1/2] with
density function

p(φ | Dt−1) ∝ φnt−1/2−1 exp(−dt−1φ/2)

for φ > 0. From (a), we have

p(Yt | Dt−1, φ) ∝ φ
1
2 exp(−e2tφ/2Q∗

t ),

so that by Bayes’ theorem, the posterior for φ is simply

p(φ | Dt) ∝ p(φ | Dt−1) p(Yt | Dt−1, φ),

or just

p(φ | Dt) ∝ φnt/2−1 exp(−dtφ/2),
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where nt = nt−1+1 and dt = dt−1+e2t/Q
∗
t . As St = dt/nt, this establishes

(b). Using results in Section 17.3, if the n× 1 random vector θ has distri-
bution (θ | φ) ∼ N[m,C∗/φ] with φ ∼ G[n/2, nS/2], then, unconditionally,
θ ∼ Tn[m,C∗S]. So the results in (c) follow by marginalisation of the
distributions in (a) with respect to the appropriate prior/posterior gamma
distribution for φ. The summary updating equations in (d) simply follow
from those in (c), the difference being that the variances and covariances
in the T distributions (all now unstarred) include the relevant estimate of
V . Noting that the results are true for t = 1 completes the inductive proof.

�

This theorem provides key results. At time t, the prior mean of φ is
E[φ | Dt−1] = nt−1/dt−1 = 1/St−1, where St−1 = dt−1/nt−1 is a prior
point estimate of V = 1/φ. Similarly, the posterior estimate is St = dt/nt.
The updating equations for the parameters defining the T prior/posterior
and forecast distributions are essentially the same as the standard, known
variance equations with the estimate St−1 appearing as the variance. The
only difference lies in the scaling by St/St−1 in the update for Ct to correct
for the updated estimate of V . Equations (d) are used in practice, the
starred, scale-free versions appearing only to communicate the theory.

4.6 SUMMARY
For the univariate DLM the above results are tabulated here (and continued
on the following page) for easy reference.

Univariate DLM: unknown, constant variance V = φ−1

Observation: Yt = F′
tθt + νt, νt ∼ N[0, V ],

System: θt = Gtθt−1 + ωt, ωt ∼ Tnt−1 [ 000,Wt].

Information: (θt−1 | Dt−1) ∼ Tnt−1 [mt−1, Ct−1],

(φ | Dt−1) ∼ G
[
nt−1

2 , nt−1St−1
2

]
.

Forecast: (Yt | Dt−1) ∼ Tnt−1 [ft, Qt],

(θt | Dt−1) ∼ Tnt−1 [at, Rt],

where Rt = GtCt−1G′
t +Wt, at = Gtmt−1,

Qt = F′
tRtFt + St−1, ft = F′

tat.
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Updating Recurrence Relationships

(φ | Dt) ∼ G
[
nt

2 ,
ntSt

2

]
,

(θt | Dt) ∼ Tnt [mt, Ct],

with et = Yt − ft and At = RtFt/Qt,

nt = nt−1 + 1,

St = St−1 +
St−1
nt

(
e2t
Qt
− 1

)
,

mt = at +Atet,

Ct = St

St−1
(Rt −AtA′

tQt).

Forecast Distributions k ≥ 1

(θt+k | Dt) ∼ Tnt
[at(k), Rt(k)],

(Yt+k | Dt) ∼ Tnt [ft(k), Qt(k)].

The moments are as defined in Theorem 4.2
but with Vt replaced by the estimate St.

4.7 FILTERING RECURRENCES
Our attention has so far focussed on the future, the sequential updating
being geared to producing and revising forecasts. However, there is often
great interest in looking back in time in order to get a clearer picture of
what happened. Interest now lies in inference about past state vectors
θt,θt−1, . . . . There is no difficulty in obtaining retrospective marginal dis-
tributions, such as (θt−k | Dt), based upon data before, at, and after time
t − k. Nor is there any difficulty in obtaining a full joint retrospective
distribution for any set of past parameters. Both this and Section 4.8 con-
centrate on the derivation of such retrospective distributions and sequential
updating procedures.
Retrospective analysis sets out to answer, “What Happened?” Such ques-

tions provide information that is likely to improve understanding and future
decision making. For example, in manufacture it is of interest to examine
the underlying quality {µt−k, k = 0, 1, . . . , t} in order to detect unexplained
changes or drifts, the object being to interpret these and thus improve fu-
ture control. In many economic series, such as employment figures, retail
prices etc., there is great interest both in seasonal patterns and in histori-
cal deseasonalised figures, the latter being used to show trends and the real
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state of affairs. Other examples occur when an organisation changes its
policy or a company carries out an unusual advertising campaign. Initially
there may be great uncertainty about the consequences. This uncertainty
can be formulated as a prior probability distribution. Then, as subse-
quent data are received, the distribution relating to the period of change
is updated giving a increasingly sharp picture of the effect and perhaps
its cause. In turn, this may lead to subsequent policy changes and model
revision. Consequently, retrospective analysis contributes vitally to growth
in understanding, model development, and performance.
The use of recent data to revise inferences about previous values of the

state vector is called filtering, this information being filtered back to pre-
vious time points. The distribution of (θt−k | Dt), for k ≥ 1, is called the
k-step filtered distribution for the state vector at time t, analogous to the
k-step ahead forecast distribution. A related concept is that of smoothing
a time series. The retrospective estimation of the historical development
of a time series mean response function µt using the filtered distributions
(µt−k | Dt) for k ≥ 1 is called smoothing the series.
At any given time t, the filtered distributions may be derived recursively

backwards in time using relationships, proven below, that are similar in
structure to the standard sequential updating equations. For k ≥ 1 the
definition of the k-step ahead state forecast distributions with moments
at(k) andRt(k) is extended to negative arguments at(−k) andRt(−k) and
the following results are proved using Bayes Theorem. Section 4.8 gives
an alternative proof of the full retrospective distribution using powerful
conditional independence results, that have wide application.

Theorem 4.4. In the univariate DLM {Ft,Gt, Vt,Wt}, for all t, define

Bt = CtG′
t+1R

−1
t+1.

Then for all k, (1 ≤ k < t), the filtered marginal distributions are

(θt−k | Dt) ∼ N[at(−k),Rt(−k)]

where

at(−k) =mt−k +Bt−k[at(−k + 1)− at−k+1]

and

Rt(−k) = Ct−k +Bt−k[Rt(−k + 1)−Rt−k+1]B′
t−k

with starting values

at(0) =mt and Rt(0) = Ct,

and where as usual,

at−k(1) = at−k+1 and Rt−k(1) = Rt−k+1.
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Proof. The filtered densities are defined recursively via

p(θt−k | Dt) =
∫
p(θt−k | θt−k+1, Dt) p(θt−k+1 | Dt) dθt−k+1, (4.3)

suggesting proof by induction. Assume the theorem true for k− 1, so that
it applies to the second term in the integrand of (4.3), so

(θt−k+1 | Dt) ∼ N[at(−k + 1),Rt(−k + 1)].

Using Bayes’ theorem, the first integrand term is

p(θt−k | θt−k+1, Dt) =
p(θt−k | θt−k+1, Dt−k) p(Y | θt−k,θt−k+1, Dt−k)

p(Y | θt−k+1, Dt−k)
,

where Y = {Yt−k+1, . . . , Yt}. Now, given θt−k+1, Y is independent of
the previous value θt−k so that the two terms p(Y | ·) cancel. By Bayes’
theorem, the remaining term is

p(θt−k | θt−k+1, Dt−k) ∝ p(θt−k | Dt−k) p(θt−k+1 | θt−k, Dt−k). (4.4)

Now,

(θt−k+1 | θt−k, Dt−k) ∼ N[Gt−k+1θt−k,Wt−k+1]

and

(θt−k | Dt−k) ∼ N[mt−k,Ct−k]

define the joint distribution p(θt−k,θt−k+1 | Dt−k). From this we obtain
(4.4) as

(θt−k | θt−k+1, Dt−k) ∼ N[ht(k),Ht(k)], (4.5)

where

ht(k) =mt−k +Ct−kG′
t−k+1R

−1
t−k+1[θt−k+1 − at−k+1]

and

Ht(k) = Ct−k −Ct−kG′
t−k+1R

−1
t−k+1Gt−k+1Ct−k.

Since Bt = CtG′
t+1R

−1
t+1, it follows that

ht(k) =mt−k +Bt−k[θt−k+1 − at−k+1]

and

Ht(k) = Ct−k −Bt−kRt−k+1B′
t−k.

Returning to (4.3), the required density p(θt−k | Dt) is the expectation of
(4.5) with respect to (θt−k+1 | Dt). This was earlier postulated to have the
form stated in the Theorem and so we directly deduce that

(θt−k | Dt) ∼ N[at(−k),Rt(−k)]



4.7 Filtering Recurrences 115

where

at(−k) = E[ht(k) | Dt]

and

Rt(−k) = E[Ht(k) | Dt] + V[ht(k) | Dt].

The moments here are the values stated in the Theorem, namely

at(−k) =mt−k +Bt−k[at(−k + 1)− at−k+1]

and

Rt(−k) = Ct−k −Bt−k[Rt−k+1 −Rt(−k + 1)]B′
t−k.

The theorem is completed by induction, since it is true for the case k = 1
with

at(−k + 1) = at(0) =mt

and

Rt(−k + 1) = Rt(0) = Ct.

�

Corollary 4.3. The case of an unknown constant variance Vt = V = φ−1 :
If the conjugate analysis of Section 4.5 is applied, then

(θt−k | Dt) ∼ Tnt
[at(−k), (St/St−k)Rt(−k)].

Note that as with the sequential updating equations of Section 4.6, a change
of scale is implied when the unknown observational variance is estimated
by the conjugate normal/gamma procedure.

Corollary 4.4. The corresponding smoothed distributions for the mean
response of the series, when V is unknown, are

(µt−k | Dt) ∼ Tnt [ft(−k), (St/St−k)F′
t−kRt(−k)Ft−k],

where extending the forecast function notation to negative arguments,

ft(−k) = F′
t−kat(−k).
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4.8 RETROSPECTIVE ANALYSIS
4.8.1 Introduction
Some powerful and general conditional independence results (Harrison and
Veerapen 1993), are used here to develop further aspects of the theoretical
structure of DLM distribution theory useful in restrospection. Some of the
supporting theory from this reference appears in Theorems 4.16 and 4.17,
together with Corollary 4.10, in the Appendix, Section 4.11. Although
phrased in terms of normal distributions, these results hold under weaker
assumptions and are important when considering general problems regard-
ing the incorporation and deletion of information in the form of linear
functions of observations, expert opinion, or external forecasts. Theorem
4.17 immediately allows the derivation of the entire historical joint param-
eter distribution (θ1, . . . ,θt|Dt) together with two useful sets of recurrence
relations: the one already derived in Section 4.7 and the other being impor-
tant when continual retrospection is required for a specified period, perhaps
relating to a policy change or other significant event. Finally, recurrences
are given for the dual problem of deleting previously incorporated data.
This is required when assessing the influence of observations, for jackknife
analysis, and especially in model assessment when calculating distributions
such as (Yt−k | Dt−Yt−k), i.e., that for Yt−k based upon all the data Dt ex-
cept Yt−k itself. This enables the associated retrospective jackknife forecast
residuals to be assessed as in Harrison and West (1991).

4.8.2 The DLM retrospective parametric distribution
The results of Appendix 4.11 are applied here to the multivariate DLM
{Ft, Gt, Vt, Wt} with parameter θt. The conditional independence
structure follows that of Figure 4.3. The notation of Section 4.7 for the
multivariate DLM is adopted, with Bt−k = Ct−kG′

t−k+1R
−1
t−k+1 for all

t = 1, 2, . . . and k such that 1 ≤ k ≤ t.

Yt−2 Yt−1 Yt Yt+1 Yt+2

θt−2 θt−1 θt θt+1 θt+2

Figure 4.3 The DLM conditional independence structure

Definition 4.6. Given Dt, for any integers k ≥ j ≥ 0, define the regression
matrix of θt−k on θt−j as At−k,t−j .
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Then At−k,t−k = I and for any k > 0,

At−k,t−k+1 = Bt−k and At−k,t =
t−1∏

v=t−k

Bv.

These follow from Corollary 4.10 in conjunction with

C[θt−k,θt−k+1|Dt−k] = C[θt−k,Gt−k+1θt−k + ωt−k+1|Dt−k]

= Ct−kG′
t−k+1 = Bt−kRt−k+1.

Further, θt and Yt+1 are conditionally independent given θt+1, written
as θt ⊥⊥ Yt+1|θt+1. It follows that conditional on Dt−1, the regression
matrix of θt−k on Yt is At−k,tAt, where as usual, At is the regression
matrix of θt on Yt given Dt−1. Retrospective recurrence relationships
follow immediately from Theorem 4.17, the proof being trivial and left to
the reader.

Theorem 4.5. Given Dt the joint distribution of the historical parame-
ters, (θ1, . . . ,θt|Dt) is defined by their marginal distributions and covari-
ances, that may be calculated recurrently in either of the following ways:

Retrospective Parametric Distribution

(θt−k|Dt) ∼ N[at(−k), Rt(−k)], k ≥ 0,

C[θt−k−j ,θt−k|Dt] = At−k−j,t−kRt(−k), j ≥ 0.

Retrospective Recurrence Relations

With Bv = CvG′
v+1R

−1
v+1 and At−k,t =

∏t−1
v=t−kBv,

(i) at(−k) = at−1(−k + 1) +At−k,tAtet,

Rt(−k) = Rt−1(−k + 1)−At−k,tAtQtA′
tA

′
t−k,t,

At−k,t = At−k,t−1Bt−1.

(ii) at(−k) =mt−k +Bt−k[at(−k + 1)− at−k+1],

Rt(−k) = Ct−k +Bt−k[Rt(−k + 1)−Rt−k+1]B′
t−k.

Equations (i) in the above table are particularly useful for continually
updating the whole history or just that part in which interest lies, such as
a time of special promotion, policy change, or major external event. Notice
that the recurrence relations of Theorem 4.1(d) are given by the special case
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k = 0. Equations (ii), essentially the same as derived in Theorem 4.4, are
useful when retrospection is only required at a particular time t, as is usual
when a batch of data is to be analysed. Then starting with at(0) = mt

and Rt(0) = Ct, we apply the equations sequentially backwards over time.
These results are conditional upon known variances. For the multivariate

model {Ft, Gt, Vt/φ, Wt/φ}, where just the scale factor φ is unknown
with mean E[φ|Dt] = 1/St, Corollaries 4.3 and 4.10 are directly applicable.
Then for k ≥ 0,

(θt−k | Dt) ∼ Tnt [at(−k), (St/St−k)Rt(−k)],

and for j, k ≥ 0,

C[θt−k−j ,θt−k|Dt] = At−k−j,t−kV[θt−k | Dt].

4.8.3 Deleting observations
The following theorem provides a general result that leads to the theory
for revising distributions when information is deleted. The r × 1 vector Y
is any set of observations and subjective information, F is a known matrix,
Z any vector of observations and states, and φ = 1/V is a scalar precision.
Let the following be proper distributions:

(Y | Z, φ) ∼ N[F′Z, Ry|zV ],

(Z | Y, φ) ∼ N[az|y, Rz|yV ],

(φ | Y) ∼ G
[
ny

2
,
nySy

2

]
,

(
Z
Y

∣∣∣φ) ∼ N
[(

az
F′az

)
,

(
Rz RzF
F′Rz Ry

)
V

]
,

where Ry = F′RzF+Ry|z.

Theorem 4.6. Given the above distributional structure and notation, de-
fine

d = Y − F′az|y, Rd = Ry|z − F′Rz|yF, and Azd = Rz|yFR
−1
d .

The following results hold:

(1) The leverage A, of Y on Z, is calculable as A = Rz|yFR
−1
y|z.

(2) Deleting Y we have

(Z | φ) ∼ N[az,RzV ] and φ ∼ G[n/2, nS/2],
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where

az = az|y −Azdd,

Rz = Rz|y +AzdRdA′
zd,

n = ny − r,

and

nS = nySy − d′R−1
d d.

(3) The jackknife forecast for Y is

Y ∼ Tn[F′az, RyS],

where Ry = F′RzF+Ry|z.

Proof. The proof follows Harrison and Veerapen (1993). Notice first that
p(Z | Y, φ) ≡ p(Z | d, φ) and(

Z
d

∣∣∣φ) ∼ N
[(
az
000

)
,

(
Rz AzdRd

RdA′
zd Rd

)
V

]
.

From the usual Bayes’ updating for (Z | Y, φ) we see that
R−1

z|y = R
−1
z + FR−1

y|zF
′

and

R−1
z|yaz|y = R−1

z az + FR
−1
y|zY.

From the latter equation, the leverage is A = Rz|yFR
−1
y|z, proving (1). The

variance result for Rz in (2) follows from the precision equation above, i.e.,
the identity

R−1
z = R−1

z|y − FR
−1
y|zF

′

implies that

Rz = Rz|y +AzdRdA′
zd.

The result for the mean in (2) follows similarly, i.e., the identity

R−1
z az = (R−1

z + FR−1
y|zF

′)az|y − FR−1
y|zY

implies that

az = az|y −RzFR−1
y|z(Y − F

′az|y) = az|y −Azdd.

Write the jackknife residual as e = Y − F′az. Then

e = Y − F′az|y + F′(az|y − az) = d+ F′Ae,

which leads to

d = (Ir − F′A)e = Ry|zR−1
y e.
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Also,

d = Y − F′az − F′Azdd

implies

e = (Ir + F′Rz|yFR
−1
d )d = Ry|zR

−1
d d.

Now, using the identities ny = n + r, d = Ry|zR−1
y e and e = Ry|zR

−1
d d,

we see that

nySy = nS + e′R−1
y e = nS + d′R−1

y|zRy|zR
−1
d d = nS + d′R−1

d d.

Then nS = nySy −d′R−1
d d and n = ny − r, completing (2). The jackknife

forecast of (3) now follows immediately.

�

4.8.4 Deleting observations in the DLM
The following results apply to the multivariate DLM

{Ft, Gt, Vt/φ, Wt/φ},
where the variance sequences {Vt} and {Wt} are known but the scale
parameter φ is unknown. Consequently, the univariate DLM with unknown
constant variance V = φ−1 is the special case Vt = 1, as in Harrison and
West (1991).
Write Dt(−k) = Dt − Yt−k to be the current information except for

the observed value of Yt−k. Given Dt, define the following retrospective
quantities relating to time t− k :

et(−k) = Yt−k − F′
t−kat(−k),

Qt(−k) = Vt−k − F′
t−kRt(−k)Ft−k,

At(−k) = Rt(−k)Ft−k{Qt(−k)}−1.

Theorem 4.7. Deleting the observation Yt−k, the marginal distributions
are

(θt−k|Dt(−k)) ∼ Tn[at,k, Rt,k]

and

(φ|Dt(−k)) ∼ G
[
n

2
,
nSt,k

2

]
,

where

at,k = at(−k)−At(−k)et(−k),
Rt,k = Rt(−k) +At(−k)Qt(−k)A′

t(−k),
n = nt − r,
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and

St,k = St +
1
n

[
r − e′

t(−k){Qt(−k)}−1et(−k)
]
.

Proof. This is a just special case of Theorem 4.6, the correspondence
being Z = θt−k, Y = Yt−k, Rd = Qt(−k), Ry|z = Vt−k, d = et(−k)
and Azd = At(−k), with the joint distribution of (Z,Y) being (implicitly)
conditioned on Dt(−k).

�

Definition 4.7. The leverage of the observation Yt−k is the regression
matrix of θt−k on Yt−k given Dt(−k), namely

Rt,kFt−k(F′
t−kRt,kFt−k +Vt−k)−1.

This leverage measures the influence that the individual observation Yt−k

has on the parametric mean θt−k.

Definition 4.8. The jackknife forecast for Yt−k is the distribution

(Yt−k|Dt(−k)) ∼ Tn[ft,k, Qt,k],

where

ft,k = F′
t−kat,k and Qt,k = F′

t−kRt,kFt−k +Vt−kStk.

This is the forecast for Yt−k given all the information except for Yt−k

itself. A time graph of these forecasts and observations is informative.

Definition 4.9. The jackknife residual is

et,k = Yt−k − ft,k.
The set of standardised jackknife residuals is useful in assessing model
adequacy, outlying observations and influential data points.

Theorem 4.8. Define At−k,t−j = Rt(−k)A′
t−j,t−k{Rt(−j)}−1. Deleting

the observation Yt−k, the revised retrospective parametric marginal distri-
butions are

(θt−j |Dt(−k)) ∼ Tn[at,k(−j), Rt,k(−j)], k < j,

where

at,k(−j) = at(−j) +At−k,t−j [at,k − at(−k)]

and

Rt,k(−j) = Rt(−j) +At−k,t−j [Rt,k −Rt(−k)]A′
t−k,t−j ,
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which for k > j may be calculated recurrently using relationships

at,k(−j) = at(−j) +Bt−j [at,k(−j + 1)− at(−j + 1)]

and

Rt,k(−j) = Rt(−j) +Bt−j [Rt,k(−j + 1)−Rt(−j + 1)]B′
t−j .

The proofs of these results with extensions to stochastic variances and
eliminating blocks of data are given in Harrison and Veerapen (1993).

4.9 LINEAR BAYES’ OPTIMALITY
4.9.1 Introduction
Theorem 4.1 provides the key updating equations for dynamic models as-
suming normality of the observational and evolution error sequences and
the prior at t = 0. However, the recurrences for mt and Ct may also
be derived using approaches that do not invoke the normal assumption,
since they possess strong optimality properties that are derived when the
distributions are only partially specified in terms of means and variances.
Sections 4.9.2 and 4.9.3 describe the decision theoretically based linear

Bayes’ estimation procedure and its application to DLMs. Section 4.9.4
gives an alternative precise probabilistic derivation for the recurrences us-
ing what we term the weak Bayes’ approach. The idea here is that φ(θt, Yt),
a function of the parameter θt and the observation Yt, is modelled as in-
dependent of Yt, so that upon observing the value Yt = y, the posterior
distribution φ(θt, y) is identical to the prior distribution φ(θt, Yt).
Non-Bayesian techniques of minimum variance/least squares estimation

will be familiar to some readers versed in Kalman filtering and are adopted
by many authors as a basis for the recurrence relations; see, for example,
Anderson and Moore (1979), Harvey (1981), Jazwinski (1970), Kalman
(1960, 1963), and Sage and Melsa (1971). Section 4.9.5 briefly discusses
the relationship between these and Bayes’ methods.
Both linear Bayes’ and weak Bayes’ approaches assume the standard

DLM but drop the normality assumptions. Thus, in the univariate case
the model equations become

Yt = F′
tθt + νt, νt ∼ [0, Vt],

θt = Gtθt−1 + ωt, ωt ∼ [ 000,Wt],
(4.6)

(θ0 | D0) ∼ [m0,C0].

Provided they are consistent with their defined first and second-order mo-
ments all the distributions are now free to take any form whatsoever.
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4.9.2. Linear Bayes’ Estimation
Linear Bayes’ estimation is now detailed in a general setting in which in-
ferences are to be made about the n-vector θ based upon a p-vector ob-
servation Y, given their joint distribution and employing the following
decision-theoretic framework. Further discussion of the principles, theory,
and applications can be found in Hartigan (1969), and Goldstein (1976).
Let d be any estimate of θ, and suppose that accuracy in estimation is

measured by a loss function L(θ,d). Then the estimate d =m =m(Y) is
optimal with respect to the loss function if the posterior risk, or expected
loss, function r(d) = E[L(θ,d) | Y] is minimised as a function of d when
d =m. In particular, if the loss function is quadratic,

L(θ,d) = (θ− d)′(θ− d) = trace (θ− d)(θ− d)′,

then the posterior risk is minimised at m = E[θ | Y], the posterior
mean, and the minimum risk is the trace of the posterior variance matrix,
equivalently the sum of posterior variances of the elements of θ, namely,
r(m) = traceV[θ | Y]. This is a standard result in Bayesian decision
theory; see, for example, De Groot (1971), or Berger (1985).
However, suppose now that the decision maker has only partially spec-

ified the joint distribution of θ and Y, providing just the joint first- and
second-order moments, the mean and variance matrix(

θ

Y

)
∼
[(
a
f

)
,

(
R AQ
QA′ Q

)]
. (4.7)

With a quadratic loss function, or indeed any other, this specification does
not provide enough information to identify the optimal estimate, nor the
posterior mean, nor the posterior variance. They are, in fact, undefined.
The LBE method side-steps this problem, providing an alternative estimate
that may be viewed as an approximation to the optimal procedure. Since
the posterior risk function cannot be calculated, the overall risk

r(d) = traceE[(θ− d)(θ− d)′], (4.8)

unconditional on Y, is used instead. Furthermore, estimates d = d(Y) of
θ are restricted to linear functions of Y, of the form

d(Y) = h+HY, (4.9)

for some n×1 vector h and n×pmatrixH. Clearly, this may be viewed as a
standard application of linear regression; the unknown regression function
E[θ | Y] is approximated by the linear model above.

Definition 4.10. A linear Bayes’ estimate (LBE) of θ is a linear form
(4.9) that is optimal in the sense of minimising the overall risk (4.8).

The main result is as follows.
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Theorem 4.9. In the above framework, the unique LBE of θ is

m = a+A(Y − f).

The associated risk matrix (RM), given by

C = R−AQA′,

is the value of E[(θ − m)(θ − m)′], so that the minimum risk is simply
r(m) = trace(C).

Proof. For d = h+HY, define R(d) = E[(θ− d)(θ− d)′]. Then

R(d) = R+HQH′ −AQH′ −HQA′ + (a− h−Hf)(a− h−Hf)′,

that may be written, using the identity

(H−A)Q(H−A)′ = AQA′ +HQH′ −AQH′ −HQA′,

as

R(d) = R−AQA′ + (H−A)Q(H−A)′ + (a− h−Hf)(a− h−Hf)′.

Hence the risk r(d) = traceR(d) is the sum of three terms:

(1) trace(R−AQA′), that is independent of d;
(2) trace(H−A)Q(H−A)′, that has a minimum value of 0 at H = A;

and
(3) (a − h − Hf)′(a − h − Hf), that has a minimum value of 0 at

h+Hf = a.

Thus r(d) is minimised at H = A and h = a−Af , so as required,

d(Y) = a+A(Y − f) =m.

Also, at d =m, the risk matrix is, as required,

E[(θ−m)(θ−m)′] = R−AQA′ = C.

�

Corollary 4.5. If θt is any subvector of θ, then the LBE of θt and the
associated RM from the marginal distribution of Y and θt coincide with
the relevant marginal terms of m and C.

Corollary 4.6. m and C are equivalent to the posterior mean and vari-
ance matrix of (θ | Y) in the case of joint normality of Y and θ.

The use and interpretation ofm and C is as approximations to posterior
moments. Given the restriction to linear estimates d in Y, m is sometimes
called the linear posterior mean and C the linear posterior variance
of (θ | Y). This terminology is due to Hartigan (1969).
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4.9.3. Linear Bayes’ estimation in the DLM
Consider the DLM specified by equations (4.6) without any further dis-
tributional assumptions. The observational and evolution error sequences,
assumed independent in the normal framework, may now be dependent,
so long as they remain uncorrelated. Although not generally true, under
normality assumptions this implies independence. Suppose, in addition,
the initial prior is partially specified in terms of moments as

(θ0 | D0) ∼ [m0,C0],

being uncorrelated with the error sequences. Finally, Dt = {Dt−1, Yt},
with D0 containing the known values of the error variance sequences.

Theorem 4.10. The momentsmt andCt as defined in the normal DLM of
Theorem 4.1 are the linear posterior mean and variance matrix of (θt | Dt).

Proof. For any t, let Y and θ be defined respectively as the t × 1 and
n(t+ 1)× 1 vectors

Y = (Yt, Yt−1, . . . , Y1)′

and

θ = (θ′
t,θ

′
t−1, . . . ,θ

′
0)

′.

The linear structure of the DLM implies that the first- and second-order
moments of the initial forecast distribution for Y and θ are then(

θ

Y

∣∣∣∣D0

)
∼
[(
a
f

)
,

(
R AQ
QA′ Q

)]
,

where the component means, variances and covariances are precisely those
in the special case of normality. The actual values of these moments are not
important here; the feature of interest is that they are the same, whatever
the full joint distribution may be.
From Corollary 4.5, the first n × 1 subvector θt of θ has LBE given by

the corresponding subvector of the LBE m of θ. But from Corollary 4.6,
m is just the posterior mean for θ in the normal case, so that the required
subvector is mt. Similarly, the corresponding RM is the submatrix Ct.

�

Corollary 4.7. For integers k ≥ 1, the normal DLM moments

[ft(k), Qt(k)] and [at(k),Rt(k)]

of the k-step ahead forecast distributions and the corresponding moments

[ft(−k),F′
t−kRt(−k)Ft−k] and [at(−k),Rt(−k)]
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of the k-step smoothed and filtered distributions are also the linear poste-
rior means and variances of the corresponding random quantities.

These results provide one justification for the use of the sequential up-
dating, forecasting and filtering recurrences outside the strict assumptions
of normality. They have been presented in the case of a known variance
DLM, but it should be noted that as in the normal model, the recurrences
apply when the observational variances are known up to a constant scale
factor, when all variances are simply scaled by this factor as in Section 4.5.
Estimation of the unknown scale then proceeds using the updated estimates
St of Section 4.5. This procedure may also be justified within a modified
linear Bayes’ framework although this is not detailed here.

4.9.4. Weak Bayes’ estimation in the DLM
Weak Bayes’ estimation makes probabilistic statements that facilitate re-
currences for various distributional characteristics without recourse to loss
functions. The framework was introduced in Harrison (1996), and is illus-
trated here in an application to DLMs.
Consider vectorsY and θ, jointly distributed with first- and second-order

moments (
θ

Y

)
∼
[(
a
f

)
,

(
R AQ
QA′ Q

)]
.

Then, with a transformation matrix

L =
(
I −A
000 I

)
,

the transformed vector (
θ−AY
Y

)
= L

(
θ
Y

)
has moment structure(

θ−AY
Y

)
∼
[(
a−Af
f

)
,

(
R−AQA′ 000

000′ Q

)]
.

Now, practical modelling is usually probabilistically local: that is, a mod-
eller is usually only concerned that the model is, in some sense, “true in
probability”, especially if model monitoring and assessment procedures op-
erate. Hence it is often satisfactory to postulate that, and to act as if, the
posterior mean and variance of θ − AY are independent of the observed
value of Y. This statement is, of course, precisely and theoretically true if
the joint distribution is normal. Otherwise, it is often essentially assumed
as a practical proposition, and acted upon in updating the distribution of
θ on observing unexceptional values of Y. Hence, in many applications
it is safe for routine operation, exceptional observations being those that
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will trigger the associated model monitoring procedure and prompt expert
intervention. The immediate consequence is that given an observed value
Y = y, say, the posterior mean and variance of (θ −Ay) equal the prior
mean and variance of (θ −AY); this is true for any observed value y. As
a result,

(θ | Y) ∼ [m, C]

where

m = a+Ae

and

C = R−AQA′

with e = Y − f . These recurrence relationships are identical to those of
linear Bayes’ but are based upon a precise modelling assumption rather
than a loss function approach. This weak approach easily extends to the
case of the unknown variance, so that without specifying the usual gamma
distributions, the two recurrence relations for nt and St are identical to
those in Section 4.6. Details of this and the general approach are given in
Harrison (1996).

4.9.5. Minimum linear least squares estimates
It is worth pointing out that essentially minimum linear least squares
methodology depends upon the following simple theorem.

Theorem 4.11. Let θ and Y be random vectors, as above, with joint
first- and second-order moment structure(

θ

Y

)
∼
[(
a
f

)
,

(
R AQ
QA′ Q

)]
.

Then for any conformable vector h and matrix H, and for all conformable
vectors l,

E[l(θ− a−AY +Af)(θ− a−AY +Af)′l′]

≤ E[l(θ− h−HY)(θ− h−HY)′l′].

Proof. From Section 4.9.4,

E[θ− a−AY +Af ] = 000

and

C[θ−AY,Y] = 000
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so that

E[l(θ− h−HY)(θ− h−HY)′l′]
≥ V[l(θ−HY)]
= V[l(θ−AY) + l(A−H)Y]
= V[l(θ−AY)] + V[l(A−H)Y]
≥ V[l(θ−AY)]
= E[l(θ− a−AY +Af)(θ− a−AY +Af)′l′].

�

So, among all linear functions φ(Y) = h+HY, the LBE a+A(Y − f)
minimizes the expected value of the variance V[θ − φ(Y)] and also the
corresponding squared deviation,
A priori, as in Section 4.9.4, it is certainly the case that in this least

squares/minimum variance framework, θ−a−A(Y− f) ∼ [000, R−AQA′].
However, this gives no route to deducing the posterior parameter distribu-
tion (θ|Y), nor even just its future forecast means and variances. The same
criticism applies to pure likelihood methods. Logical progress requires fur-
ther modelling statements at least equivalent to the weak Bayes’ statement,
whereupon the posterior moments emerge as [m,C].

4.10 REFERENCE ANALYSIS OF THE DLM †

4.10.1 Introductory comments
The specification of proper, possibly highly informative, prior distributions
to initialise models is beneficial if relevant, easily articulated prior infor-
mation exists. Whilst informative priors and the incorporation of expert
information is central to Bayesian forecasting, there is an important role
for reference analyses, that use standard vague or uninformative priors
(Bernardo 1979) to initialise models without further inputs from the user.
Such analyses are developed in this section. The reference analysis of

a DLM (including learning about unknown observational variances) has a
structure differing from standard analysis that is of theoretical and prac-
tical interest. A reference prior based analysis provides a reference level,
or benchmark, against which alternative analyses may be compared. In
particular, a retrospective reference analysis applied to historic data famil-
iarises a modeller with the past data and context, quickly leading to the
development of a refined model. Further, the implications for inference of
various informative priors may be gauged and highlighted by comparison
with a reference analysis. We have also found that users unfamiliar with

†This section may be omitted on a first reading
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the full complexities of a proper Bayesian analysis appreciate the reference
facility, which offers an easily applied default analysis, enabling them to
use the methods immediately, without any demanding prerequisites, and
to rapidly gain experience and understanding through practice.
In spite of the extensive research into the development of reference priors,

there is no unique representation of a state of complete “ignorance” within
the Bayesian framework. However, there has emerged a consensus on the
problem of normal, linear regression models, and in this area there is what
may be termed a standard analysis, the implications of the standard refer-
ence prior being well investigated and understood as, for example, in Box
and Tiao (1973), and De Groot (1970). Since the DLM has the same basic
linear regression structure, this standard reference prior is now adopted.
The relevant theoretical results for the DLM are stated here and some

are proven. All the results in this section, together with full proofs, further
discussion and related theory, are to be found in Pole and West (1989).

4.10.2 Sequential updating equations in reference analysis
The results in this section, summarised in Theorem 4.12 below, are general,
applying to all univariate DLMs in which the system evolution variance
matricesWt are non-singular for all t. The cases of observational variances
either known for all time or unknown but constant are considered together.
Section 4.10.3 develops similar ideas for the important special static case
ofWt = 000.
DLM reference analysis is based on one of the following reference prior

specifications for time t = 1 (e.g., Box and Tiao 1973):

(1) For the DLM of Definition 4.3, with known observational variances,
the reference initial prior specification is defined via

p(θ1|D0) ∝ constant.

(2) For the DLM of Definition 4.5, with Vt = V unknown, the reference
initial prior specification is defined via

p(θ1, V |D0) ∝ V −1.

Definitions 4.11. In the DLMs of Definition 4.3 (V known) and of Defi-
nition 4.5 (V unknown), sequentially define the following quantities:

Ht =W−1
t −W−1

t GtP−1
t G

′
tW

−1
t ,

Pt = G′
tW

−1
t Gt +Kt−1,

ht =W−1
t GtP−1

t kt−1,

and if Vt = V is unknown,
{
Kt = Ht + FtF′

t,

kt = ht + FtYt,
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but if Vt = V is known,
{
Kt = Ht + FtF′

t/Vt,

kt = ht + FtYt/Vt,

both having initial values H1 = 000 and h1 = 000.

For unknown Vt = V in the above definitions, Wt is replaced by the
scale-free matrixW∗

t . Also in this case, define

γt = γt−1 + 1,

λt = δt−1 − k′
t−1P

−1
t kt−1,

δt = λt + Y 2
t ,

with initial values λ1 = 0 and γ0 = 0.

Theorem 4.12.

(1) Case of variance known
In the model of Definition 4.3, with the reference prior

p(θ1|D0) ∝ constant,

and with defining parameters as given in Definition 4.12, the prior
and posterior distributions of the state vector at time t are given by
the (possibly improper) probability density functions

p(θt|Dt−1) ∝ exp{− 1
2 (θ

′
tHtθt − 2θ′

tht)}
and

p(θt|Dt) ∝ exp{− 1
2 (θ

′
tKtθt − 2θ′

tkt)}.
(2) Case of variance unknown

In the DLM of Definition 4.5, with

p(θ1, V |Dt) ∝ V −1,

the joint prior and posterior distributions of the state vector and
the observation variance at time t = 1, 2, ... are given by

p(θt, V |Dt−1) ∝

V
−

(
1+

γt−1
2

)
exp{− 1

2V
−1(θ′

tHtθt − 2θ′
tht + λt)}

and

p(θt, V |Dt) ∝

V
−

(
1+

γt

2

)
exp{− 1

2V
−1(θ′

tKtθt − 2θ′
tkt + δt)}.

Proof. The proof of the results in the variance unknown case are given,
(the variance known case being left to the reader). So, (ωt|V ) ∼ N[000, VW∗

t ]
andW∗

t replacesWt in Definition 4.11.
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The proof is by induction. Assume the prior for (θt, V |Dt−1) as in (2)
above,

p(θt, V |Dt−1) ∝ V −(1+
γt−1

2 ) exp{− 1
2V

−1(θ′
tHtθt − 2θ′

tht + λt)}.

The likelihood from the observation Yt is

p(Yt|θt, V,Dt−1) ∝ V − 1
2 exp{− 1

2V
−1(Yt − F′

tθt)2}.

So the posterior for time t is of the form stated in the theorem.
Consider now the implied prior for t+ 1, specifically

p(θt+1, V |Dt) =
∫
p(θt+1, V |θt, Dt)p(θt|Dt)dθt

=
∫
p(θt+1|θt, V,Dt)p(θt, V |Dt)dθt.

The first term in the integral is the normal N[Gt+1θt, VW∗
t+1] pdf, so that

p(θt+1,V |Dt) ∝∫
V − n

2 exp{− 1
2V

−1(θt+1 −Gt+1θt)′W∗
t+1

−1(θt+1 −Gt+1θt)}

× V −(1+ γt
2 ) exp{− 1

2V
−1(θ′

tKtθt − 2θ′
tkt + δt)}dθt,

which reduces to

V −(1+ γt+n
2 )

∫
exp{− 1

2V
−1[(θt −αt+1)′Pt+1(θt −αt+1) +Rt+1]}dθt,

where

Pt+1 = Kt +G′
t+1W

∗
t+1

−1Gt+1,

αt+1 = P−1
t+1(kt +G

′
t+1W

∗
t+1

−1θt+1),

Rt+1 = θ′
t+1W

∗
t+1

−1θt+1 + δt −α′
t+1Pt+1αt+1.

It easily follows that

p(θt+1, V |Dt) ∝ V −(1+ γt
2 ) exp{− 1

2V
−1Rt+1}.

Expanding Rt+1 gives

Rt+1 = θ′
t+1Ht+1θt+1 − 2θ′

t+1ht+1 + λt+1,

where Ht+1, ht+1, and λt+1 are defined as stated in the theorem. It
remains to validate the theorem for t = 1. Setting H1 = 0, h1 = 0, λ1 = 0
and γ0 = 0 provides a direct validation.

�

Recall that the model has n parameters in the state vector at each time
t and so, starting from the reference prior, the posteriors will be improper
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until at least time n in the observation known case, time n+1 in the obser-
vation unknown case. After sufficient observations have been processed the
improper posterior distributions characterising the model become proper.
Although the above recursions remain valid it is more usual to revert to
the standard forms involving directly updating the state vector posterior
mean and covariances since these do not require any matrix inversions. The
number of observations required to achieve proper distributions depends on
the form of the model and the data. As mentioned above, the least num-
ber that will suffice is the number of unknown parameters in the model,
including 1 for the observational variance if unknown. This requires that
there are no missing data in these first observations and also that there are
no problems of collinearity if the model includes regressors. In practice,
more than the minimum will rarely be required. For generality, however,
define

[n] = min{t : posterior distributions are proper}.

The necessary relationships between the quantities defining the posterior
distributions as represented in Theorem 4.12 and those in the original rep-
resentation are easily obtained as follows, the proof being left as an exercise
for the reader.

Corollary 4.8.

(1) Case of variance known
For t ≥ [n], the posterior distribution of (θt|Dt) is as in Section 4.3,
with

Ct = K−1
t and mt = K−1

t kt.

(2) Case of variance unknown
For t ≥ [n], the posterior distribution of (θt, V |Dt) is as in Section
4.6, with

Ct = StK−1
t and mt = K−1

t kt,

where St = dt/nt as usual, with nt = γt − n and dt = δt − k′
tmt.

In the usual case that [n] = n + 1, then nn+1 = 1 and it is easily
shown that dn+1 = Sn+1 = e2n+1/Q

∗
n+1.

4.10.3 Important special case of Wt = 000
Consider now the case of models with deterministic evolution equations,
that is, those in whichWt =W∗

t = 000. Whilst of interest from the point of
view of theoretical completion and generality, this special case is discussed
primarily for practical reasons. The basic motivation derives from the need
to specify Wt in the recursions detailed above. As has been mentioned
elsewhere this problem has led to much resistance to the use of these models



4.10 Reference Analysis of the DLM 133

by practitioners and the introduction of discount techniques in the usual
conjugate prior analysis. Unfortunately, these methods do not apply in the
reference analysis for t < [n] because the posterior covariances do not then
exist. Hence, an alternative approach is required, and the practical use
of zero covariances initially, Wt = 000 for t = 1, 2, . . . , [n] is recommended.
The rationale behind this is as follows.
In the reference analysis with n + 1 model parameters (including V ),

we need [n] (at least n + 1) observations to obtain a fully specified joint
posterior distribution: one observation for each parameter. More gener-
ally, at time t = [n] we have essentially only one observation’s worth of
information for each parameter. Thus, it is impossible to detect or esti-
mate any changes in parameters during the first (n + 1) observation time
points over which the reference analysis is performed. Consequently, use
of non-zeroWt matrices is irrelevant since they basically allow for changes
that cannot be estimated, and so we lose nothing by setting them to zero
for t = 1, 2, . . . , [n]. At time t = [n], the posteriors are fully specified,
and future parametric changes can be identified. Thus, at this time, we
revert to a full dynamic model with suitable, non-zero evolution covariance
matrices.

Theorem 4.13. In the framework of Theorem 4.12, suppose that Gt is
non-singular and Wt = W∗

t = 000. Then the prior and posterior distribu-
tions of θt and V have the forms of Theorem 4.12 with recursions defined
as follows:

(1) Case of variance known

Ht = G−1
t

′Kt−1G−1
t ,

ht = G−1
t

′kt−1.

(2) Case of variance unknown

Ht = G−1
t

′Kt−1G−1
t ,

ht = G−1
t

′kt−1,

λt = δt−1.

Proof.

(1) Case of variance known
Again the proof is inductive. Suppose first that p(θt−1|Dt−1) has
the stated form. Then the system equation is θt = Gtθt−1, and this
may be inverted when Gt is non-singular so that θt−1 = G−1

t θt.
Applying this linear transformation, that has a constant Jacobian,
to p(θt−1|Dt−1), immediately results in the prior

p(θt|Dt−1) ∝ exp{− 1
2 (θ

′
tG

−1
t

′Kt−1G−1
t θt − 2θ′

tG
−1
t

′kt−1)}.
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Hence, multiplying by the likelihood, the posterior p(θt|Dt) is

∝ exp{− 1
2 [θ

′
tHtθt − 2θ′

tht + V −1
t (Yt − F′

tθt)′(Yt − F′
tθt)]}

∝ exp{− 1
2 (θ

′
tKtθt − 2θ′

tkt)}.

Initially, for t = 1,

p(θ1|D1) ∝ exp{− 1
2V

−1(θ′
1F1F′

1θ1 − θ′
1F1Y1)},

and the result follows by induction.
(2) Case of variance unknown

The proof follows as a simple extension of that for part (1) and is
left as an exercise.

�

The updating equations derived in Theorem 4.13 are of key practical
importance. The assumption that the system matrices Gt are non-singular
is obviously crucial to the results. In practical models this is typically
satisfied. This is true, in particular, of the important class of time series
models. The following section covers more cases when this is not so.

4.10.4 Filtering
Filtering in the case of reference initial priors uses exactly the same results
as in the conjugate (proper) priors case for times t ≥ [n] since all the
distributions in this range are proper. In particular, the usual recursions
of Section 4.7 are valid. However, for t < [n] these recursions do not apply
since the on-line posterior means and covariances required do not exist.
The following theorem provides the solutions for this case.

Theorem 4.14. In the framework of Theorem 4.12, the filtered distri-
butions in the DLM for times t − r, r = 0, 1, 2, ..., [n] − 1 are defined as
follows.

(1) Case of variance known

p(θt−r|Dt) ∝ exp{− 1
2 [θ

′
t−rKt(−r)θt−r − 2θ′

t−rkt(−r)]}.

(2) Case of variance unknown

p(θt−r, V |Dt) ∝

V −(1+ t
2 ) exp{− 1

2V
−1[θ′

t−rKt(−r)θt−r − 2θ′
t−rkt(−r) + δt(−r)]}
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where the defining quantities are calculated recursively backwards in time
according to

Kt(−r) = G′
t−r+1W

−1
t−r+1Gt−r+1

−G′
t−r+1W

−1
t−r+1P

−1
t (−r + 1)W−1

t−r+1Gt−r+1 +Kt−r,

Pt(−r + 1) =W−1
t−r+1 +Kt(−r + 1)−Ht−r+1,

kt(−r) = kt−r +G′
t−r+1W

−1
t−r+1P

−1
t (−r + 1)[kt(−r + 1)− ht−r+1],

δt(−r) = δt(−r + 1)− λt−r+1

− [kt(−r + 1)− ht−r+1]′P−1
t (−r + 1)[kt(−r + 1)− ht−r+1]

and Ht, ht, Kt, kt, λt, δt are as in Definition 4.11. Again note that, in
the case of V unknown, W∗

t replaces Wt throughout, for all t. Starting
values for these recursions are Kt(0) = Kt, kt(0) = kt and δt(0) = δt.

Proof. An exercise for the reader. Complete proofs of these results appear
in Pole and West (1989a).

�

For theoretical completion, note that the recursions in Theorem 4.14 also
apply for t > [n]. Although the standard filtering equations should be used,
those of the theorem provide the relevant distributions, as follows.

Corollary 4.9. For t > [n], the distributions defined in Theorem 4.14 are
proper, as given in Section 4.7, with

(1) Case of variance known

(θt−r|Dt) ∼ N[at(−r),Rt(−r)],

where at(−r) = Kt(−r)−1kt(−r) and Rt(−r) = Kt(−r)−1.
(2) Case of variance unknown

(θt−r|Dt) ∼ Tγt−[n][at(−r),Rt(−r)],

where at(−r) = Kt(−r)−1kt(−r) and Rt(−r) = StKt(−r)−1.

Theorem 4.15. In the case of zero evolution disturbance variances as
in Theorem 4.13, the results of Theorem 4.14 are still valid but with the
following changes to the recursions:

Kt(−r) = G′
t−r+1Kt(−r + 1)Gt−r+1,

kt(−r) = G′
t−r+1kt(−r + 1),

δt(−r) = δt(−r + 1).
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Proof. Again left as an exercise.

�

4.11 APPENDIX: CONDITIONAL INDEPENDENCE

Definition 4.12. Random vectors X and U are conditionally independent
given the random vector Z, written X ⊥⊥ U|Z, if

p(X|Z) = p(X|Z,U)

and

p(U|Z) = p(U|Z,X)

for all X,Z and U.
The pictorial representation of X ⊥⊥ U|Z is

X ———– Z ———– U

Under the full joint distribution p(X,Z,U), based upon whatever im-
plicit prior information is assumed, then (a) the relevant information con-
cerning X supplied by (Z,U) is provided by Z alone, and, similarly, (b) the
relevant information about U supplied by (Z,X) is provided by Z alone.

Theorem 4.16. If the random vectors X, Z and U have a joint normal
distribution such that X ⊥⊥ U|Z, then the regression matrix Axu, of X
on U, is the product of the regression matrix Axz, of X on Z, and the
regression matrix Azu, of Z on U. Thus

XZ
U


 ∼ N




µx

µz

µu


 ;


 Rx AxzRz AxuRu

RzA′
xz Rz AzuRu

RuA′
xu RuA′

zu Ru




 ,

with

Axu = AxzAzu .

Proof. Conditional independence implies that

000 = C[X,U|Z] = C[X,U]− C[X,Z] {V[Z]}−1 C[Z,U]

= C[X,U]−AxzRzR−1
z AzuRu = C[X,U]−AxzAzuRu .

�
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Corollary 4.10. Suppose Xi, (i = 1, . . . , n), are normal random vectors
such that for all i and for all 1 < j < k < n, Xi ⊥⊥ Xi+k|Xi+j . Pictorially,

X1 —– X2 – · · · – Xi – · · · – Xi+j – · · · – Xi+k – · · · – Xn−1 —– Xn

Then, writing the regression matrix of Xi on Xi+1 as Ai,i+1, the regression
matrix of X1 on Xn is

A1,n =
n−1∏
i=1

Ai,i+1 .

Theorem 4.17. Under the conditions of Theorem 4.16,(
X
Z

∣∣∣U) ∼ N
[(

µx|u
µz|u

)
;
(

Rx|u AxzRz|u
Rz|uA′

xz Rz|u

)]
,

and so
(i) the regression matrix of X on Z remains unchanged: Axz|u = Axz,

(ii) the distribution of (X|U) ∼ N[µx|u,Rx|u] may be calculated from the
distribution (Z|U) ∼ N[µz|u,Rz|u] via the equations

µx|u = µx +Axz(µz|u − µz)

and

Rx|u = Rx +Axz

(
Rz|u −Rz

)
A′

xz.

Proof. Apply conditional normal theory results to the distribution of
(X,Z,U) to deduce the following identities, and so prove the results:

(i) C[X,Z|U] = AxzRz −AxuRuA′
zu

= AxzRz −AxzAzuRuA′
zu = AxzRz|u.

(iia) µz|u = µz +Azu(U− µu) =⇒ Azu(U− µu) = µz|u − µz

=⇒ µx|u = µx +AxzAzu(U− µu) = µx +Axz(µz|u − µz).

(iib) Rz|u = Rz −AzuRuA′
zu =⇒ AzuRuA′

zu = Rz −Rz|u

=⇒ Rx|u = Rx −AxzAzuRuA′
zuA

′
xz

= Rx −Axz(Rz −Rz|u)A′
xz.

�
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4.12 EXERCISES
Unless otherwise stated, the questions below concern a standard, univariate
DLM with known variances, i.e., {Ft,Gt, Vt,Wt} defined by

Yt =F′
tθt + νt, νt∼ N[0, Vt],

θt =Gtθt−1 + ωt, ωt∼ N[000,Wt],

(θt−1 | Dt−1) ∼ N[mt−1,Ct−1].

(1) Consider the DLM {Ft,G, Vt,Wt}.
(a) If G is of full rank, prove that the DLM can be reparametrised

to the DLM{(
Ft

1

)
,

(
G 000
000′ 0

)
, 0,

(
Wt 000
000′ Vt

)}
.

(b) Now show how to accommodate the observation variance in the
system equation when G is singular.

(2) Consider the constant DLM {F,G, V,W}, generalised so that

νt ∼ N[v̄, V ] and ωt ∼ N[w̄ww,W].

Show that (θt|Dt) ∼ N[mt,Ct] and derive recurrence relationships
for mt and Ct

(a) by using Bayes’ theorem for updating, and
(b) by deriving the joint distribution of (θt, Yt | Dt−1) and using

normal theory to obtain the conditional probability distribu-
tion.

(c) What is the forecast function ft(k)?
(d) How do the results generalise to the DLM {F,G, V,W}t with

νt ∼ N[v̄t, Vt] and ωt ∼ N[w̄wwt,Wt]?

(3) For the constant DLM {F,G, V,W}, given (θt | Dt) ∼ N[mt,Ct],
obtain
(a) the k-step ahead forecast distribution p(Yt+k | Dt);
(b) the k-step lead-time forecast distribution p(Xt,k|Dt) where

Xt,k =
k∑

r=1

Yt+r.

(4) For the univariate DLM define bt = Vt/Qt.
(a) Show that given Dt, the posterior distribution for the mean

response µt = F′
tθt is

(µt|Dt) ∼ N[ft(0), Qt(0)],

where

E[µt|Dt] = ft(0) = F′
tmt
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and

V[µt|Dt] = Qt(0) = F′
tCtFt.

Use the recurrence equations for mt and Ct to show that for
some appropriate scalar At that you should define,

(b) E[µt|Dt] can be updated using either the equation

E[µt|Dt] = E[µt|Dt−1] +Atet

or

ft(0) = AtYt + (1−At)ft,

interpreting ft(0) as a weighted average of two estimates of µt;
(c) V[µt|Dt] can be updated using either the equation

V[µt|Dt] = (1−At)V[µt|Dt−1]

or

V[µt|Dt] = Qt(0) = AtVt.

(5) Write Ht =Wt−WtFtF′
tWt/Qt, Lt = (1−At)WtFt, and At =

1 − Vt/Qt. Prove that the posterior distribution of the observation
and evolution errors is(

νt
ωt

∣∣∣∣Dt

)
∼ N

[(
1−At

WtFt/Qt

)
et,

(
AtVt −L′

t

−Lt Ht

)]
.

(6) Consider the DLM {Ft,Gt, Vt, VtW∗
t } with unknown variances Vt,

but in which the observational errors are heteroscedastic, so that

νt ∼ N[0, ktV ],

where V = φ−1 and kt is a known, positive variance multiplier.
Also,

(φ | Dt−1) ∼ G[nt−1/2, nt−1St−1/2].

(a) What is the posterior (φ | Dt)?
(b) How are the summary results of Section 4.6 affected?

(7) Consider the closed, constant DLM {1, λ, V,W} with λ, V and W
known, and |λ| < 1.
(a) Obtain the k-step forecast distribution (Yt+k|Dt) as a function

of mt, Ct and λ.
(b) Show that as k →∞, (Yt+k|Dt) converges in distribution to

N
[
0, V +W/(1− λ2)

]
.

(c) Obtain the joint forecast distribution for (Yt+1, Yt+2, Yt+3).
(d) Obtain the k-step lead-time forecast distribution p(Xt,k|Dt)

where Xt,k =
∑k

r=1 Yt+r.
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(8) Generalise Theorem 4.1 to a DLM whose observation and evolu-
tion noise are instantaneously correlated. Specifically, suppose that
C[ωt, νt] = ct, a known n-vector of covariance terms, but that all
other assumptions remain valid. Show now that Theorem 4.1 ap-
plies with the modifications

Qt = (F′
tRtFt + Vt) + 2F′

tct

and

At = (RtFt + ct)/Qt.

If G is of full rank, show how to reformulate the DLM in the stan-
dard form so the observation and evolution noise are uncorrelated.

(9) Given Dt, your posterior distribution is such that

(θt|Dt) ∼ N[mt,Ct] and (θt−k|Dt) ∼ N[at(−k),Rt(−k)].

The regression matrix of θt−k on θt is At−k,t. You are now about to
receive additional information Z, that might be an external forecast,
expert opinion, or more observations. If

(θ1, . . . ,θt−1) ⊥⊥ Z|θt,

and given the information Z, your revised distribution is

(θt|Dt,Z) ∼ N[mt + εεε,Ct −ΣΣΣ],

what is your revised distribution for (θt−k|Dt,Z)?
(10) Prove the retrospective results, sets (i) and (ii) of Theorem 4.5,

using the conditional independence structure of the DLM and the
conditional independence results of the Appendix, Section 4.11.

(11) With discount factor δ, the discount regression DLM {Ft, I,V,Wt}
is such that I is the identity matrix andWt = Ct−1(1−δ)/δ. Given
Dt, and with integer k > 0, show that
(a) Rt = Ct−1/δ;
(b) the regression matrix of θt−k on θt−k+1 is Bt−k = δI;
(c) the regression matrix of θt−k on θt is At−k,t = δkI;
(d) the filtering recurrences of Theorem 4.5 simplify to

(i) at(−k) = at−1(−k + 1) + δkAtet,

Rt(−k) = Rt−1(−k + 1)− δ2kAtQtA′
t,

(ii) at(−k) =mt−k + δ[at(−k + 1)− at−k+1],

Rt(−k) = Ct−k + δ2[Rt(−k + 1)−Rt−k+1].

(12) Generalise Theorem 4.1 to the multivariate DLM {Ft,Gt,Vt,Wt}.
(13) Verify the filtering and smoothing results in Corollaries 4.3 and 4.4

relating to the DLM with an unknown constant observational vari-
ance V .
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(14) Prove the reference prior results stated in part (1) of Theorem 4.12,
that relate to the case of a known observational variance V .

(15) Prove the reference prior results stated in part (2) of Theorem 4.13,
relating to the case of an unknown observational variance V .

(16) Prove the results stated in Corollary 4.8, providing the conversion
from reference analysis updating to the usual recurrence equations
when posteriors become proper.

(17) Consider the first-order, polynomial model {1, 1, V,W}, with n = 1
and θt = µt, in the reference analysis updating of Section 4.10.
(a) Assume that V is known. Using the known variance results of

Theorem 4.12 and Corollary 4.8, show that (µ1|D1) ∼ N[Y1, V ].
(b) Assume that V = 1/φ is unknown, so that the results of Theo-

rem 4.13 and Corollary 4.8 apply. Show that the posterior for
µt and V becomes proper and of standard form at t = 2, and
identify the defining quantities m2, C2, n2 and S2.

(c) In (b), show directly how the results simplify in the caseW = 0.

(18) Consider the 2-dimensional model{(
1
0

)
,

(
1 1
0 1

)
, V, 000

}

assuming V to be known. Apply Theorem 4.13 and Corollary 4.8
to deduce the posterior for (θ2|D2).

(19) Consider the discount DLM {Ft, I, V, VW∗
t } with unknown but

constant variance V . The discount factor is 0 < δ ≤ 1, so that
W ∗

t = C∗
t−1(1 − δ)/δ, and R∗

t
−1 = δC∗

t−1
−1. Initially, ignorance is

formulated so the prior precision of θ0 is C−1
0 = 000, the prior degrees

of freedom for φ = 1/V are n0 = 0, m0 = 000 and S0 = 0. Use the
notation of Theorem 4.3 so that starred variances are conditioned
on V = 1.
(a) Prove that C∗

1
−1 = F1F′

1.
(b) Prove that

C∗
t
−1 =

t−1∑
v=0

δvFt−vF′
t−v.

(c) Suppose that rank C∗
t
−1 = rank C∗−1

t−1 = rt−1. Show that the
relationship between Yt and the information Dt−1 can be mod-
elled by a DLM {F̃t, I, V, V W̃t} with a parameter of dimension
rt−1 that, conditional upon V , has a proper distribution. Con-
sequently, show that a conditional forecast exists such that

(Yt|Dt−1, V ) ∼ N[ft, V Q∗
t ],
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and that given Yt, the variance can be updated according to

nt = nt−1 + 1,

St = St−1 + (e2t/Q
∗
t − St−1)/nt,

with n1 = 1 and S1 = e21. Show further that if nt−1 > 0, the
unconditional forecast

(Yt|Dt−1) ∼ Tnt−1 [ft, Qt]

exists. Suggest a method of obtainingmt for this reduced DLM.
(d) Now suppose rank C∗

t
−1 = 1 + rank C∗−1

t−1 . Show that no fore-
cast of (Yt|Dt−1, V ) is possible. However, given Yt, show that
although {nt, St} = {nt−1, St−1}, the dimension of the design
space for which forecasts can now be derived is increased by 1.

(e) Collinearity can be a real problem. For example, in the sim-
plest regression discount DLM, a price variable used as a re-
gressor may be held constant for quite a long period before
being changed. Obviously, information is being gathered, so
that useful conditional forecasts can be made based upon this
price. However, forecasts conditional on other prices cannot
be made until after a price change has been experienced. In
general, at time t − 1, the forecast design space is spanned by
F1, . . . ,Ft−1. Construct an algorithm to provide a reference
analysis accommodating collinearity that at time t− 1, enables
forecasts and monitoring for time t, whenever Ft is contained
in the current forecast design space and nt−1 ≥ 1.

(f) Generalise this approach beyond discount regression DLMs.
Some relevant work is presented in Vasconcellos (1992).



CHAPTER 5

UNIVARIATE TIME SERIES DLM THEORY

5.1 UNIVARIATE TIME SERIES DLMS
As introduced in Definition 4.2 of the previous chapter, the class of uni-
variate time series DLMs, or TSDLMs, is defined by quadruples

{F,G, Vt,Wt},

for any Vt andWt. We often use the shorthand notation

{F,G, · , · }.

This chapter explores the theoretical structure of this important class of
models. Much of classical time series analysis concerns itself with models
of stationary processes (Box and Jenkins 1976), otherwise referred to as
processes exhibiting stationarity. It will be shown that such models can
be formulated as constant TSDLMs, namely as special DLMs for which
the whole quadruple {F,G, V,W} is constant for all t. In practice, this
constancy is usually a restrictive assumption, particularly since the vari-
ances Vt andWt often vary both randomly and as a function of the level of
the series. Consequently, we do not restrict attention to DLMs with con-
stant quadruples, but consider processes that cannot typically be reduced
to stationarity.
The mean response function µt+k = E[Yt+k | θt+k] = F′θt+k and the

forecast function ft(k) = E[µt+k | Dt] = F′Gkmt are of particular interest.
The structure of the forecast function is central in describing the implica-
tions of a given DLM and in designing DLMs consistent with a forecaster’s
view of the future development of a series. A further ingredient in this
design activity is the concept of observability of DLMs, which is where this
chapter starts.

5.2 OBSERVABILITY
5.2.1 Introduction and definition
Observability is a fundamental concept in linear systems theory that has
ramifications for TSDLMs. Primarily, it relates to the DLM parametri-
sation θt. As an introduction, consider the evolution error-free case with
Wt = 000 for all t, so that θt = Gθt−1 and µt+k = F′Gkθt. The state
vector, comprising n elements, is chosen to reflect identifiable features of
the time series. Accordingly, values of the mean response over time provide
information on the state vector. Clearly, at least n distinct values of the
mean response are required for complete identification, with parametric
parsimony suggesting that no more than n are necessary. The n distinct
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values starting at t, denoted by µt = (µt, µt+1, . . . , µt+n−1)′, are related to
the state vector via

µt = Tθt,

where T is the n× n observability matrix

T =




F′

F′G
...

F′Gn−1


 . (5.1)

Thus, in order to precisely determine the state vector from the necessary
minimum of n consecutive values of the mean response function, T must
be of full rank. Then

θt = T−1µt.

These ideas of parametric economy and identifiability in the case of a de-
terministic evolution motivate the formal definition of observability in the
stochastic case.

Definition 5.1. Any TSDLM {F,G, · , · } is observable if and only if the
n× n observability matrix T in (5.1) has full rank n.

5.2.2 Examples

EXAMPLE 5.1. The model{(
1
0

)
,

(
1 1
0 1

)
, . , .

}

is observable since T is of rank 2, with

T =
(
1 0
1 1

)
.

If the system variance Wt = 000, then θt = T−1µt where µ′
t = (µt, µt+1).

Thus, θ′
t = (µt, µt+1−µt) comprises θt1 = µt, the current level of the series,

and θt2 = µt+1 − µt the growth in level between times t and t+ 1.

EXAMPLE 5.2. The model{(
1
1

)
,

(
1 0
0 1

)
, . , .

}

is unobservable since T only has rank 1, with

T =
(
1 1
1 1

)
.
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To see what is happening, write θ′
t = (θt1, θt2), ω′

t = (ωt1, ωt2), and the
observation and evolution equations as

Yt = θt1 + θt2 + νt,

θt1 = θt−1,1 + ωt1,

θt2 = θt−1,2 + ωt2.

Noting that µt = θt1 + θt2 and defining ψt = θt1 − θt2, the model becomes

Yt = µt + νt,

µt = µt−1 + δt1,

ψt = ψt−1 + δt2,

where δt1 = ωt1 + ωt2 and δt2 = ωt1 − ωt2 . The first two equations
completely define the DLM as a first-order polynomial DLM. The random
quantity ψt has no influence on the mean response, and in this sense is
redundant. The model is overparametrised.
Example 5.2 illustrates the general result that ifT has rank n−r for some

r, (1 ≤ r < n), the DLM can be reparametrised, by a linear transformation
of the state vector, to an observable DLM of dimension n− r that has the
same mean response function.

EXAMPLE 5.3. Consider the reparametrised model in Example 5.2 and
suppose that (

µ0

ψ0

∣∣∣∣D0

)
∼ N

[(
mµ,0

mψ,0

)
,

(
Cµ,0 0
0 Cψ,0

)]
,

with, for all t,

Wt =
(
Wµ 0
0 Wψ

)
.

In this case there is no correlation between Yt and ψt, so the observations
provide no information about the latter. Applying the updating equations
leads to Ct diagonal for all t and the marginal posterior

(ψt | Dt) ∼ N[mψ,0, Cψ,0 + tWψ],

with increasingly large variance.

EXAMPLE 5.4. Example 5.3 suggests that in the case of unobservability,
the observations provide no information about some of the state parame-
ters, or some linear functions of them. In that specific case, this is always
true unlessWt has non-zero off-diagonal elements introducing correlations
between the state vector elements. For example, consider the unobservable
model {(

1
0

)
,

(
1 0
0 0

)
, 2,

(
1 U
U W

)}
.
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Clearly θt2 is redundant, an equivalent mean response function being pro-
vided by the reduced model {1, 1, 2, 1}. This is a first-order polynomial
model with, from Chapter 2, limiting distribution (θt1 | Dt) ∼ N[mt1, 1] as
t → ∞. In the 2-dimensional model, however, it may be verified that the
updating equations lead to the limiting form

(θt2 | Dt) ∼ N[Uet/4, W − U2/4],

as t→∞. Thus, unless U = 0, Yt is informative about the parameter that,
for forecasting purposes, is redundant.

EXAMPLE 5.5. In a deterministic model {F,G, 0, 000}, Yt+k = µt+k for all
k, so that defining

Yt = (Yt, Yt+1, . . . , Yt+n−1)′

we have Yt = µt = Tθt. In the observable case it follows that

θt = T−1Yt.

Hence the values of the state vector elements are precisely determined, or
observed, as linear functions of any n values of the series. If, however, T has
rank n− r, then every Yt is a linear combination of any n− r observations,
say Y1, Y2, . . . , Yn−r, and θt is not fully determinable from the observations.
This corresponds closely to the concept of observability as applied in linear
systems theory and related fields.

5.2.3 Observability and the forecast function
For a TSDLM with ft(k) = F′Gkmt, for k ≥ 0,

Tmt =




ft(0)
ft(1)
...

ft(n− 1)




and

TGkmt =




ft(k)
ft(k + 1)

...
ft(n+ k − 1)


 .

So observability implies that the first n consecutive terms of the forecast
function are linearly independent, and vice versa. Any further values of
the forecast function are then linear combinations of the first n values. If,
however, T has rank n−r, then all values of the forecast function are linear
functions of the first n− r.
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EXAMPLE 5.6. The model{(
1
0

)
,

(
1 1
0 1

)
, . , .

}
has forecast function

ft(k) = mt1 + kmt2 = ft(0) + k[ft(1)− ft(0)],
a polynomial of order 2, a straight line.

EXAMPLE 5.7. The model{(
0
1

)
,

(
1 1
0 1

)
, . , .

}
is unobservable, with T of rank 1, and the forecast function

ft(k) = mt2 = ft(0)

is reduced to that of a first-order polynomial model.

5.2.4 Constrained observability
Because of indeterminism, parametric redundancy and the reducibility of
unobservable to observable models, from now on it will be assumed that
working TSDLMs are observable unless otherwise stated. In some cases
models with a singular observability matrix are employed provided that
they are subject to additional structure leading to observability in a wider
sense.
For example, consider the deterministic model



 1
1
0


 ,


 1 0 0
0 0 1
0 1 0


 , 0 ,000




having an observability matrix T of rank 2, where

T =


 1 1 0
1 0 1
1 1 0


 .

This model is unobservable. However, if θt2 and θt3 represent the effects
of a factor variable, say a seasonal cycle of periodicity 2, then for all t, the
modeller will typically apply a constraint of the form

θt2 + θt3 = 0.

Now, for all t ≥ 2, θt is determined from the mean response function and
constraint via

µt = θt1 + θt2,

µt+1 = θt1 + θt3,

0 = θt2 + θt3,
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since then

θt1 = (µt + µt+1)/2

and

θt2 = −θt3 = (µt − µt+1)/2.

Such models for effects are common in statistics, relating to classifying
factors such as seasonal period, blocking variables, treatment regimes and
so on. Rather different constraints arise in some applications, such as in
studies of compositional data, where perhaps some of the elements of the
state vector represent proportions that must sum to 1, again implying a
constraint on a linear function of θt.
Clearly the above unobservable model can be reduced to the observable

model {(
1
1

)
,

(
1 0
0 −1

)
, 0 ,000

}
,

producing the same forecast function. However, for practical interpretation
and communication, it is may be desirable to retain the full unobservable
DLM. Hence a wider definition of observability is required to cover models
subject to linear constraints.

Definition 5.2. Suppose the unobservable model {F,G, Vt,Wt} of dimen-
sion n is subject to constraints on the state vector of the form

Cθt = c,

for some known, constant matrix C and vector c. Then the DLM is said to
be constrained observable if and only if the extended observability
matrix (

T
C

)
has full rank n.

5.3 SIMILAR AND EQUIVALENT MODELS
5.3.1 Introduction
The concept of observability allows a modeller to restrict attention to a
subclass of DLMs that are parsimoniously parametrised whilst providing
the full range of forecast functions. However, this subclass is still large, and
any given form of forecast function may typically be derived from many
observable models. In designing DLMs, further guidelines are needed in
order to identify small, practically meaningful collections of suitable models
and usually a preferred single DLM for any given forecast function. The
two key concepts are similarity and equivalence of TSDLMs. Similarity
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identifies and groups together all observable models consistent with any
given forecast function. Two such models are called similar models.
Equivalence strengthens this relationship by requiring that in addition to
having the same qualitative form of forecast function, the quantitative
specification of the full forecast distributions for future observations be
precisely the same. Any two models producing the same forecasts are called
equivalent models. Similarity and equivalence are essentially related to
the reparametrisation of a model via a linear map of the state vector.
This is particularly useful in model building when a simpler, identified,
canonical model may be reparametrised to provide an equivalent model
that is operationally more meaningful, efficient and easily understood.

5.3.2 Similar models
Consider two observable TSDLMs,M andM1, characterised by quadruples

M : {F,G, Vt,Wt},
M1 : {F1,G1, V1t,W1t},

having forecast functions ft(k) and f1t(k) respectively. The formal defini-
tion of similarity is as follows.

Definition 5.3. M and M1 are similar models, denoted by M ∼M1, if
and only if the system matrices G and G1 have identical eigenvalues.

The implications of similarity are best appreciated in the special case
when the system matrices both have n distinct eigenvalues λ1, . . . , λn. Here
G is diagonalisable. If Λ = diag (λ1, . . . , λn), then there exists a non-
singular n× n matrix E such that for all k ≥ 0,

G = EΛE−1 and Gk = EΛkE−1.

By definition, the forecast function of M is

ft(k) = F′Gkmt = F′EΛkE−1mt =
n∑

r=1

atrλ
k
r ,

for some coefficients at1, . . . , atn that do not depend on k. Since M ∼M1,
the forecast function for M1 takes the similar form

f1t(k) =
n∑

r=1

btrλ
k
r ,

for some coefficients bt1, . . . , btn not involving Λ. So, as functions of the
step-ahead integer k, M and M1 have forecast functions of precisely the
same algebraic form. This is the key to understanding similarity. If a
modeller has a specific forecast function form in mind, then for forecasting
purposes, any two similar models are qualitatively identical. Although the
above example concerns the special case of distinct eigenvalues, it is always
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the case that two observable models have the same form of forecast function
if and only if they are similar. Alternatively, M and M1 are similar models
if and only if the system matrices G and G1 are similar matrices, so that
for some non-singular n× n similarity matrix H,

G = HG1H−1.

Hence, similarity of observable models is defined via similarity of system
matrices. Further discussion of these points follows in Section 5.4, where
the eigenstructure of system matrices is thoroughly explored.

5.3.3 Equivalent models and reparametrisation
Represent the form of the observable DLM M1 = {F1,G1, V1t,W1t} as

Yt= F′
1θ1t + ν1t, ν1t∼ N[0, V1t],

θ1t= G1θ1t−1 + ω1t, ω1t∼ N[000,W1t].

Given any n × n nonsingular matrix H, M1 may be reparametrised by
linearly transforming the state vector θ1t so that for all t,

θt = Hθ1t (5.2)

and

θ1t = H−1θt.

Then

Yt = F′
1H

−1θt + ν1t,

θt = HG1H−1θt−1 +Hω1t.

Defining F and G via the equations

F′ = F′
1H

−1,

G = HG1H−1,
(5.3)

and mt = Hm1t, we can write

f1t(k) = F′
1G

k
1m1t = F′

1H
−1HGk

1H
−1Hm1t = F′Gkmt.

It follows that any model M = {F,G, ·, ·}, with F and G given by (5.3)
for some H, is similar to M1. Further, the matrix H is defined as follows.

Theorem 5.1. If for some nonsingular matrix H, M = {F,G, ·, ·} and
M1 = {F1,G1, ·, ·} have respective observability matrices T and T1 and
are such that F′ = F′

1H
−1 and G = HG1H−1, then,

(i) M ∼M1 and (ii) H = T−1T1.

Proof. (i) follows from the definition of similarity since the system matri-
ces are similar, having similarity matrix H.
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(ii) follows from the definition of T and T1, since

T1 = T1H−1H = TH, so that H = T−1T1.

�

H is called the similarity matrix of the transformation fromM1 toM ,
since it is the similarity matrix transforming G1 to G.

EXAMPLE 5.8. Let

F =
(
1
0

)
,

F1 =
(
−6
5

)
,

G =
(
1 1
0 1

)
,

G1 =
(

9 16
−4 −7

)
.

M and M1 are observable, with

T =
(
1 0
1 1

)
, T1 =

(
−6 5
−74 −131

)
.

G andG1 each have a single eigenvalue 1 of multiplicity 2, so thatM ∼M1.
Also,

H = T−1T1 =
(
−6 5
−68 −136

)
,

and it is easily verified that F1 = H′F and G1 = H−1GH.
The forecast function has the form

ft(k) = ft(0) + k[ft(1)− ft(0)],
although the precise numerical values may differ between models.
Further features of the reparametrisation defined by (5.2) to (5.3) are as

follows.

(a) The defining state vector θt ofM may be obtained as a linear trans-
formation of θ1t in M1 via

θt = Hθ1t,

and vice versa. One model may thus be reparametrised to obtain
the other as far as the structural components F, G and θt are
concerned.

(b) The full defining quadruple of M : {F,G, Vt,Wt} is obtained via
this reparametrisation from that of M1 : {F1,G1, V1t,W1t} if in
addition to (a), the variances are related via

Vt = V1t and Wt = HW1tH′.

(c) If in addition, (θt | Dt) ∼ N[mt,Ct] and (θ1t | Dt) ∼ N[m1t,C1t]
are related via

mt = Hm1t, Ct = HC1tH′,
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then the entire quantitative specification ofM is obtained from that
of M1 by the reparametrisation. In particular, this is true if these
relationships hold between the initial priors at t = 0.

These final comments motivate the concept of model equivalence.

Definition 5.4. Consider two similar TSDLMs M and M1 with similarity
matrix H = T−1T1. Suppose M = {F,G, Vt,Wt} with initial moments
(m0,C0), andM1 = {F1,G1, V1t,W1t}, with initial moments (m1,0,C1,0).
Then M and M1 are said to be equivalent, denoted by M ≡M1, if

Vt = V1t and Wt = HW1tH′

for all t, with

m0 = Hm1,0 and C0 = HC1,0H′.

EXAMPLE 5.9. Consider the models

M :
{(

1
0

)
,

(
λ 1
0 ρ

)
, V,

(
2 ρ− λ

ρ− λ (ρ− λ)2
)}

,

M1 :
{(

1
1

)
,

(
λ 0
0 ρ

)
, V,

(
1 0
0 1

)}
,

where λ and ρ are real and distinct. Then

T =
(
1 0
λ 1

)
, T1 =

(
1 1
λ ρ

)
,

so that both models are observable. Thus, since both system matrices have
identical eigenvalues λ and ρ, M ∼M1. Further,

H =
(
1 1
0 ρ− λ

)
,

and it can be verified that F′ = F′
1H

−1 and W = HW1H′. So, if the
initial priors conform, in the sense described in (c) above, then M ≡ M1.
Finally, notice that if ρ = λ, the models cannot even be similar, let alone
equivalent, since although M is still observable, M1 is not.

5.3.4. General equivalence
The definition of equivalence is a key concept in DLM design. However,
as Harrison and Akram (1983) point out, it fails to apply in degenerate
cases where two similar models that produce precisely the same forecast
distributions cannot be linked by a linear transformation. The anomaly
arises for n ≥ 2 when there is an uncountable set of models that produce
exactly the same forecast distributions but differ from M only through
the system variance matrix Wt. This reveals a fundamental ambiguity
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concerning Wt and the interpretation of θt, indicating that the modeller
needs to impose some restraining structure, such as canonical component
modelling and discounting as in Chapter 6.
For the general case, with M defined by the quadruple {F,G, Vt,Wt},

let εt be an independent sequence of random n−vectors with

(εt | Dt−1) ∼ N[000,Ut].

If for each t, Ut is a non-negative definite matrix such that F′UtF = 0,
then F′εt = 0 with probability one for all t. Consider now the model
defined by adding the term Gεt−1 to the system evolution equation M so

Yt = F′θt + νt,

θt = Gθt−1 + (ωt +Gεt−1).

Defining the new state vector ψt via

ψt = θt + εt,

and remembering that F′εt = 0, we have

Yt = F′ψt + νt,

ψt = Gψt−1 + ω1t,

where ω1t = ωt + εt is an independent error sequence with variance

W1t =Wt +Ut.

The stochastic shift from θt to ψt transforms M to the model M1 given by
{F,G, Vt,W1t}. Thus, for any specified W1t, the model {F,G, Vt,W1t}
can be written in an uncountable number of ways by choosingWt and Ut

to give W1t as above. Clearly, although reparametrisations that change
the parametric interpretation are involved, they are stochastic and cannot
be expressed as a deterministic linear transformation of the state vector.

EXAMPLE 5.10. To show that this can in fact be done, consider the
model with F′ = (1, 1) and G = I, the 2 × 2 identity matrix. In order to
satisfy F′εt = 0 for all t, we require εt be of the form εt = (εt1, −εt1)′.
Then, with εt1 ∼ N[0, Ut] for some Ut > 0,

Ut = Ut

(
1 −1
−1 1

)
.

Thus, given any variance matrix

W1t =
(
Wt1 Wt3
Wt3 Wt2

)
,

to obtainW1t =Wt +Ut we simply choose Wt =W1t −Ut and this is
a valid variance matrix whenever

0 < Ut < (Wt1Wt2 −W 2
t3)/(Wt1 +Wt2 + 2Wt3).
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This can always be satisfied since, asW1t is positive definite, the numerator
of this upper bound is the determinant |W1t| > 0 and the denominator is
the positive term F′W1tF.
These stochastic shift models seem to suggest that any specified model

can be transformed to one with a simple diagonal evolution variance matrix.
This is a very appealing simplification and in a large number of practical
cases can be done. However, this is not always possible, as in Example
5.10, where Wt will be diagonal only when Wt3 = −Ut, which is never
possible if Wt3 > 0.
This discussion motivates the following definition.

Definition 5.5. The models M and M1, that are either observable or
constrained observable, are said to be generally equivalent if and only if
they produce exactly the same forecast distributions.

5.4 CANONICAL MODELS
5.4.1 Introduction
Similarity groups together observable DLMs with similar forecast functions.
Within each such group, we identify particular models with specific, sim-
ple structures that provide canonical DLMs consistent with the required
forecast function form. Similarity is related to the eigenstructure of system
evolution matrices, and this section explores the various possible eigenvalue
configurations that arise. In relation to simple, canonical matrices that are
similar to any given G, the focus is naturally on diagonal, block diagonal
and Jordan forms. Supporting material on the linear algebra associated
with these matrices appears in Section 17.4.
To begin, consider the simple case in which the n × n system matrix

has a single real eigenvalue of multiplicity n, when a Jordan block system
matrix is fundamental.

Definition 5.6. The n× n Jordan block is defined, for real or complex
λ, as the n× n upper diagonal matrix

Jn(λ) =




λ 1 0 0 . . . 0
0 λ 1 0 . . . 0
0 0 λ 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1
0 0 0 0 . . . λ



.

Thus, the diagonal elements are all equal to λ, those on the super-diagonal
are 1, and the remaining elements are 0.
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5.4.2 System matrix with one real eigenvalue
Suppose that G is one of the uncountable number of matrices having a
single real eigenvalue λ of multiplicity n > 1. The simplest example is
G = λI, a multiple of the n× n identity matrix. The first result, of great
importance, shows that the class of observable models is restricted to the
subset whose system matrices are similar to the Jordan block Jn(λ).

Theorem 5.2. IfG has one eigenvalue λ of multiplicity n but is not similar
to Jn(λ), then any TSDLM {F,G, · , ·} is unobservable.

Proof. The proof uses properties of similar matrices and Jordan forms for
which reference may be made to Section 17.4.3. Since G is not similar to
the Jordan block, it must be similar to a Jordan form

Js = block diag [Jn1(λ),Jn2(λ), . . . ,Jns(λ)],

for some s ≥ 2, n1+n2+· · ·+ns = n, and nr ≥ 1, (r = 1, . . . , s). For each r,
let fr be any nr-dimensional vector, and define Fs via F′

s = (f ′1, f
′
2, . . . , f

′
s).

Then the observability matrix T of any model with regression vector Fs

and system matrix Js has rows

t′k+1 = F
′
sJ

k
s(λ) = [f ′1J

k
n1
(λ), . . . , f ′sJ

k
ns
(λ)], (k = 0, . . . , n− 1).

Define m = max{n1, . . . ns}, so that m ≤ n − s + 1. Using the referenced
appendix, it follows that for k > m,

k∑
r=1

(
k

r

)
(−λ)rtk−r+1 = 000.

This implies that T is of less than full rank, having at most m < n linearly
independent rows, and that the DLM is not observable.

�

Corollary 5.1. IfG andG1 each have a single eigenvalue λ of multiplicity
n and for some F and F1, the models {F,G, · , ·} and {F1,G1, · , ·} are
observable, then G is similar to G1 and the models are similar.

These results identify the class of observable DLMs with a single multiple
eigenvalue λ as those observable models whose system matrix is similar
to the canonical Jordan block Jn(λ). The class is uncountable even if
n = 1. The following result identifies further structure that leads to the
identification of a unique canonical model within the class.

Theorem 5.3. Any TSDLM {F,Jn(λ), · , ·} is observable if and only if
the first element of F is non-zero.
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Proof. Let F′ = (f1, . . . , fn) and the rows of T be

t′r+1 = F
′Jrn(λ), (r = 0, . . . , n− 1).

Let A be the n× n matrix whose rows are

a′
k+1 =

k∑
r=0

(
k

r

)
(−λ)k−rt′r+1, (k = 0, . . . , n− 1).

Then

a′
k+1 = F

′[Jn(λ)− λIn]k = (0, . . . , 0, f1, . . . , fn−k),

having k leading zeros. Thus A is an upper triangular matrix with leading
diagonal (f1, . . . , f1)′ with determinant fn

1 , and is non-singular if and only
if f1 �= 0. The rows of A are constructed as linearly independent linear
combinations of those of T. So A and T have the same rank and the result
follows.

�

Notice that even the DLM with λ = 0 is observable since Jn(0) has rank
n − 1. Thus, although the system matrix of an observable DLM must be
of at least rank n− 1, it is not necessary that it be of full rank n.
Within the above class of similar observable models the simplest DLM

is {En,Jn(λ), ·, ·}, for which E′
n = (1, 0, . . . , 0), the only non-zero element

of which is the leading 1. This specific form is adopted as the basic model
with a single real eigenvalue. The En notation is used throughout the book.

Definition 5.7. Let M = {F,G, Vt,Wt} be any observable TSDLM in
which the system matrix G has a single real eigenvalue λ of multiplicity n.
Let T be the observability matrix of this model and define

En = (1, 0, . . . , 0)′.

Then

(i) any model M1 = {En,Jn(λ), · , ·} with observability matrix T1 is
defined as a canonical similar model; and

(ii) the model M0 = {En,Jn(λ), Vt,HWtH′}, where H = T−1
0 T, is

defined as the canonical equivalent model, so long as the initial
priors are related as in Definition 5.4.

5.4.3 Multiple real eigenvalues
Suppose G has s distinct eigenvalues λ1, . . . , λs with λi having multiplicity
ri ≥ 1, so that n = r1 + · · ·+ rs. Again using Section 17.4.3 it follows that
G is similar to the block diagonal Jordan form -matrix

J = block diag [Jr1(λ1), . . . ,Jrs
(λs)],
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defined by the superposition of s Jordan blocks, one for each eigenvalue
and having dimension given by the multiplicity of that eigenvalue. In such
cases a generalisation of Theorem 5.3 shows that the DLM is observable if
and only if it is similar to models of the form

{E,J, · , ·},

where

E′ = (E′
r1 , . . . ,E

′
rs
)

is constructed as the corresponding catenation of s vectors of the form

E′
r = (1, 0, . . . , 0)

of dimension r, for r = r1, . . . , rs. The forms of E and J provide the
algebraically simplest similar models and are adopted as canonical.

Definition 5.8. Let M = {F,G, Vt,Wt} be any observable TSDLM in
which the system matrix G has s distinct real eigenvalues λ1, . . . , λs with
multiplicities r1, . . . , rs respectively. Let T be the observability matrix of
this model and define

E = (E′
r1 , . . . ,E

′
rs
)′

and

J = block diag[Jr1(λ1), . . . ,Jrs
(λs)].

Then

(i) any modelM1 = {E,J, · , ·} with observability matrix T1 is defined
as a canonical similar model; and

(ii) the model M0 = {E,J, Vt,HWtH′}, where H = T−1
0 T, is defined

as the canonical equivalent model, so long as the initial priors
are related as in Definition 5.4.

5.4.4 Complex eigenvalues when n = 2
Suppose that n = 2 and the 2×2 system matrixG has complex eigenvalues.
G is real valued so the eigenvalues are a complex conjugate pair of the form

λ1 = λeiω and λ2 = λe−iω,

for some real λ and ω, i being the imaginary square root of −1. Thus,
G is similar to diag (λ1, λ2). As in the case of distinct real eigenvalues of
Section 5.4.3, the model is similar to any DLM {(1, 1)′,diag (λ1, λ2), . , .}.
However, this canonical similar model is not used since it results in a com-
plex parametrisation, horrifying to practitioners and clearly to be avoided.
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Instead, a real canonical form of G and the associated similar, real DLMs
are identified. To proceed, note that, again following Section 17.4.3, if

H =
(
1 1
i −i

)
,

then

H
(
λ1 0
0 λ2

)
H−1 = λ

(
cos(ω) sin(ω)
− sin(ω) cos(ω)

)
and

H′
(
1
0

)
=
(
1
1

)
,

from which it follows that the model is similar to any model with regression
vector (1, 0)′ and system matrix with the above cos/sin form.

Definition 5.9. Let the observable TSDLM {F,G, Vt,Wt} with observ-
ability matrix T be any 2-dimensional model in which the system matrix
G has a pair of distinct, complex conjugate eigenvalues

λ1 = λeiω and λ2 = λe−iω,

for real, non-zero λ and ω. Define

J2(λ, ω) = λ

(
cos(ω) sin(ω)
− sin(ω) cos(ω)

)
.

Then

(i) any modelM1 = {E2,J2(λ, ω), · , ·} with observability matrix T1 is
defined as a real canonical similar model; and

(ii) the model M0 = {E2,J2(λ, ω), Vt,HWtH′}, where H = T−1
0 T, is

defined as the real canonical equivalent model, so long as the
initial priors are related as in Definition 5.4.

It is easily checked that the observability matrix of M0 is simply

T0 =
(

1 0
λ cos(ω) λ sin(ω)

)
.

5.4.5 Multiple complex eigenvalues†

Again following Section 17.4, we directly define the real canonical models
for cases in which the system matrix has multiple complex eigenvalues.
Although rare in practice, there are instances in which such models may
be used, and these canonical forms provide the simplest construction. Since

†Sections 5.4.5 and 5.4.6 are of rather theoretical interest and may be omitted
without loss on a first reading.
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complex eigenvalues must occur in conjugate pairs and G is real valued,
the model dimension n must be even.

Definition 5.10. Let {F,G, Vt,Wt} be any observable TSDLM of dimen-
sion n = 2v, where v is some positive integer. Suppose the system matrix
G has v multiples of a pair of distinct complex conjugate eigenvalues

λ1 = λeiω and λ2 = λe−iω,

for real, non-zero λ and ω. Let T be the n× n observability matrix of this
model and define

J2,v(λ, ω) =



J2(λ, ω) I 000 . . . 000

000 J2(λ, ω) I . . . 000
...

...
...

. . .
...

000 000 000 . . . I
000 000 000 . . . J2(λ, ω)


 .

Thus, J2,v(λ, ω) is a 2v × 2v block matrix comprising 2 × 2 submatrices.
The v diagonal blocks are the basic cos/sin 2×2 blocks J2(λ, ω), the super-
diagonal blocks are the 2× 2 identity I, and the remainder are zero blocks.
Finally, define the 2v × 1 vector E2,v via

E2,v = (E′
2, . . . ,E

′
2)

′.

Then

(i) any modelM1 = {E2,v,J2,v(λ, ω), · , ·} with observability matrix T1
is defined as a real canonical similar model; and

(ii) the model M0 = {E2,v,J2,v(λ, ω), Vt,HWtH′}, where H = T−1
0 T,

is defined as the real canonical equivalent model, so long as the
initial priors are related as in Definition 5.4.

Note in particular the special case of Section 5.4.4 when v = 1, E2,1 = E2,
and J2,1(λ, ω) = J2(λ, ω).

5.4.6 General case
In the most general case, G has s real and distinct eigenvalues λ1, . . . , λs
of multiplicities r1, . . . , rs respectively, and v pairs of complex conjugate
eigenvalues

λs+ke
iωk and λs+ke

−iωk , (k = 1, . . . , v),

for some real, distinct λs+1, . . . , λs+v, and some real, distinct ω1, . . . , ωv,
with the kth pair having multiplicity rs+k, (k = 1, . . . , v), respectively.
Note that the dimension of the model is now

n =
s∑

k=1

rk + 2
v∑

k=1

rs+k.
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The simplest real similar model is based on a system matrix formed by the
superposition of s+ v diagonal blocks each corresponding to the canonical
form for an individual real and/or pair of complex conjugate eigenvalues.
Again the reader is referred to Section 17.4.

Definition 5.11. Let M = {F,G, Vt,Wt} be any n-dimensional observ-
able TSDLM with the eigenvalue structure as detailed above and observ-
ability matrix T. Define the n× n block diagonal matrix J as

J = block diag [Jr1(λ1),Jr2(λ2), . . . ,Jrs
(λs);

J2,rs+1(λs+1, ω1),J2,rs+2(λs+2, ω2), . . . ,J2,rs+v
(λs+v, ωv)],

and the n× 1 vector E as

E = (E′
r1 ,E

′
r2 , . . . ,E

′
rs
; E′

2,rs+1
,E′

2,rs+2
, . . . ,E′

2,rs+v
)′.

Then

(i) any modelM1 = {E,J, · , ·} with observability matrix T1 is defined
as a real canonical similar model; and

(ii) the model M0 = {E,J, Vt,HWtH′}, where H = T−1
0 T, is defined

as the real canonical equivalent model, so long as the initial
priors are related as in Definition 5.4.

This general canonical form is constructed from the simpler canonical
models for each of the real and complex pairs of eigenvalues. The individual
system matrices are simply superposed to form an overall block diagonal
J, and the corresponding individual regression vectors are catenated in the
same order to provide the general vector E. This construction of a very
general model from the component building blocks provided by simpler
models is a key concept in model design, the subject of the next chapter.

5.5 LIMITING RESULTS FOR CONSTANT MODELS
5.5.1 Introduction
A feature of constant DLMs is that variances converge to limiting values, of-
ten rapidly. In this section, we give general convergence results based on an
approach that depends only on the existence of the first two moments and
not on assumptions of normal distributions. This follows Harrison (1997).
Related though less general results can be found in Anderson and Moore
(1979). The convergence of variances, and consequently of the adaptive
vectors At, reveals the relationship between constant DLMs and classical
point forecasting methods that generally adopt the limiting recurrence re-
lationship for the parametric mean mt and the limiting one-step forecast
variance Q as discussed in Section 5.5.6.
Consider the univariate constant observable DLM {F,G, V,W}, with

observability matrix T. Using the notation of Section 4.2, the initial infor-
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mation is (θ0|D0) ∼ N[m0,C0], and thereafter the information set at time
t is Dt = {Yt, Dt−1}. For p = 0, 1, . . . , t− 1, let Dp,t = {θp, Yp+1, . . . , Yt}.
Define

Yt = (Yt−n+1, . . . , Yt)′,

ψt−n+1 = νt−n+1,

ψt−n+1+i = νt−n+1+i + F′
i−1∑
j=0

Gjωt−n+1+i−j ,

ψt = (ψt−n+1, . . . , ψt)′,

and

εt =
n−2∑
i=0

Giωt−i −Gn−1T−1ψt.

Thus, εt is a linear function of ψt and {ωt−n+2, . . . ,ωt}, so that for all
t ≥ n, V[εt] = S is a finite constant variance matrix.
From the observation and system equations Yt = Tθt−n+1 +ψt and

θt = Gn−1θt−n+1 +
n−2∑
i=0

Giωt−i,

so that

θt = Gn−1T−1Yt + εt. (5.4)

5.5.2 Key preliminaries

Definition 5.12. For two general n×n finite variance matricesM and S,
write M ≤ S to signify that l′Ml ≤ l′Sl, for all n-vectors l. In such cases,
we say that M is bounded above by S, and that S is bounded below by
M.

Convergence: All variance matrices are bounded below by 000. It follows
that if {Mt} is a sequence of finite variance matrices that is bounded above
by S, and is such that for all t, either (i) Mt+1 ≤Mt or (ii) Mt+1 ≥Mt,
then limt→∞Mt =M exists.

Theorem 5.4. For all t ≥ n, the variance sequence {Ct} is bounded above
and below, with 000 ≤ Ct ≤ S.

Proof. Ct is independent of the values of {Yt}, and from (5.4),

Ct ≤ V[θn|Gn−1T−1Yn] = V[εt] = S.

�
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Key results. For p = 0, 1, . . . , t− 1, we know that

V[θ|Dt] = E[V[θ|Dp,t, Dt]|Dt] + V[E[θ|Dp,t, Dt]|Dt]. (5.5)

From the recurrence relations,mt is a linear function of (Yt, . . . , Yp+1,mp).
Given Dp,t, θp is precisely known, so for appropriate known n× 1 vectors
bt−p,0, . . . ,bt−p,t−p+1 and n× n matrix Bt−p,

E[θt|Dp,t, Dt] = E[θt|Dp,t] =
t−p+1∑
i=0

bt−p,iYt−i +Bt−pθp. (5.6)

Also, it is clear that

V[θp|Dt] ≥ V[θp|D0,t] ≥ V[θp|θp+1, Yp,θp−1] > 000, (5.7)

based on the definitions of the respective conditioning information sets and
on the fact that additional information increases precision, or decreases
variance, in this context of multivariate normal distributions.
These key results underlie the proofs of the following general results.

5.5.3 The convergence theorem

Theorem 5.5. For any observable constant DLM, the limiting variance

lim
t→∞

Ct = C

exists and is independent of the initial information D0.

Proof. Throughout, p is a given integer in the range 0 ≤ p < t. Write
V[θt|D0,t] = C∗

t . Note that the sequence {C∗
t } is independent of the actual

values comprising D0,t, and so, using (5.6),

E[V[θt|Dp,t]|Dt] = V[θt|Dp,t] = V[θt−p|D0,t−p] = C∗
t−p

and

E[θt|Dt,θp] = E[θt|Dp,t] =
t−p+1∑
i=0

bt−p,iYt−i +Bt−pθp.

Now proceed as follows:

(i) First prove the theorem for any DLM when D0 = D0,0 precisely
specifies θ0, so that C0 = C∗

0 = 000. Using (5.5),

C∗
t = E[V[θt|Dp,t]|D0,t] + V[E[θt|Dp,t]|D0,t]

= C∗
t−p +V[Bt−pθp|D0,t] ≥ C∗

t−p.

Monotonicity and 000 ≤ Ct ≤ S prove that limt→∞C∗
t = C∗ exists.

Further,

lim
t→∞

V[Bt−pθp|D0,t] = 000. (5.8)
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(ii) We now give the proof for any prior D0 when VW > 000. Using (5.8)
and (5.7),

V[θp|D0,t] ≥ V[θp|θp+1, Yp,θp−1] > 000,

so that

lim
t→∞

Bt = 000. (5.9)

Consequently, limt→∞Ct = C∗; this follows by employing (5.5),
(5.6) and (5.9) to show that

V[θt|Dt] = E[V[θt|Dp,t]|Dt] + V[E[θt|Dp,t]|Dt]

or

Ct = C∗
t−p +V[Bt−pθp|Dt] −→ C∗.

(iii) The remaining DLMs are wholly or partially deterministic and/or
static with VW �> 000. With identity matrix I, consider the subset
of DLMs defined by {F,G, V + x,W + xI); D0 : 0 ≤ x < 1}. For
any given x let the variance sequence be {Ct(x)}. Then
(a) limt→∞C∗

t (0) = C
∗(0) exists, from (i).

(b) limt→∞Ct(x) = C∗(x), for all 0 < x < 1, from (ii).
(c) Ct(x) is bounded, continuous with x, monotonic in x.
Hence as t→∞, Ct(x) tends (converges) uniformly to C(x), and

lim
t→∞

Ct(0) = lim
t→∞

lim
x→0

Ct(x)

= lim
x→0

lim
t→∞

Ct(x) = lim
x→0

C∗(x) = C∗(0).

�

Corollary 5.2.

lim
t→∞

Rt = R = GCG′ +W,

lim
t→∞

Qt = Q = F′RF+ V,

lim
t→∞

At = A = RF/Q.

5.5.4 Multivariate models
Consider the multivariate constant DLM of Definition 4.1. Assume the
error terms have known means E[νt] = ν̄t and E[ωt] = ω̄t, and known
variances, as usual.

Definition 5.13. The multivariate DLM {F,G, ·, ·} is observable if and
only if the nr × n observability matrix T is of full rank n. That is, there
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exists a vector l ∈ IRr such that the univariate DLM {l′F,G, ·, ·} for the
univariate time series {l′Yt} is observable.

The extension to known means ν̄t and ω̄t does not affect covariance
measures. Considering the univariate series l′(Yt− ν̄t−F′ω̄t) shows Ct to
be bounded. Then, with Yt − ν̄t − F′ω̄t for Yt, the theorem takes exactly
the same course, with the result that

lim
t→∞

Ct = C = C∗,

lim
t→∞

Rt = R = GCG′ +W,

lim
t→∞

Qt = Q = F′RF+V,

lim
t→∞

At = A = RFQ−1.

5.5.5 Convergence for a non-observable DLM
Although a sufficient condition, observability is not a necessary condition
for convergence of the variance sequence {Ct}. Convergence may occur
for non-observable constant DLMs, such as constrained observable models.
A simple example is a DLM comprising a level parameter in addition to
parameters representing each of the four quarterly seasonal factors. The
observability matrix T is singular, but with the additional constraint that
the sum of the seasonal effects is zero, Ct converges.
A stationary constant DLM has all the eigenvalues of G inside the unit

circle (see Definition 5.16). So, no matter what the rank of T, Ct is
bounded and convergence is assured even in the most trivial case in which
F = 000.
Consider the general constant DLM that, without loss of generality, can

be expressed in partitioned form as

F =
(
F1
F2

)
and G =

[
G1 000
000 G2

]
,

where the eigenvalues of G1 lie on or outside the unit circle but those of
G2 lie inside the unit circle. Convergence for the whole DLM occurs if the
DLM {F1,G1, ·, ·} is observable or constrained observable.
In all these cases it is easily shown that no matter what the initial prior,
{Ct, t ≥ n} is bounded above. Once this is demonstrated, the convergence
proof is exactly the same as for observable DLMs.

5.5.6 Further limit results
For the univariate, observable and constant DLM, the limiting form of the
updating equation for mt is given by

mt ≈ Gmt−1 +Aet = Hmt−1 +AYt,
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with H = (I−AF′)G. For a proper DLM withW > 000, H = CR−1G and
a limiting representation of the observation series in terms of the one-step
forecast errors follows. Let B be the backshift operator, so for any time
series Xt, BXt = Xt−1 and BpXt = Xt−p.

Theorem 5.6. In the univariate constant DLM {F,G, V,W} denote the
eigenvalues of G by λi, and those of H by ρi, (i = 1, . . . , n). Then

lim
t→∞

{
n∏

i=1

(1− λiB)Yt −
n∏

i=1

(1− ρiB)et

}
= 0. (5.10)

Proof. Following Harrison and Akram (1983) and Ameen and Harrison
(1985), let P1(B) and P2(B) be row vectors and P3(B) and P4(B) be
scalars, all with elements that are polynomials in B of order not exceeding
n−1. Employ the Cayley-Hamilton theorem (Section 17.4.2). From Yt+1 =
F′Gmt + et+1 and mt = Gmt−1 +Atet it follows that

n∏
i=1

(1− λiB)Yt+1 =
n∏

i=1

(1− λiB)et+1 +P1(B)Atet. (5.11)

And, from the Bayes’ proof of the recurrences in Theorem 4.1,

lim
t→∞

(mt −Hmt−1 −AYt) = 000.

Define M0 = m0, Mt = HMt−1 + AYt, and Xt+1 = F′GMt + et+1, so
that, again employing Cayley-Hamilton,

n∏
i=1

(1− ρiB)et+1 =
n∏

i=1

(1− ρiB)Xt+1 +P2(B)AtYt. (5.12)

Note that limt→∞Mt =mt and limt→∞ Xt = Yt, so from (5.11) and (5.12),

lim
t→∞

{
n∏

i=1

(1− λiB)Yt − [1 +BP3(B)]et

}
= 0

and

lim
t→∞

{
n∏

i=1

(1− ρiB)et − [1 +BP4(B)]Yt

}
= 0.

The order of the polynomials in B correspond, and since the equations are
true for all allowable values (λi, ρi), (i = 1, . . . , n), the coefficients of each
Bi can be equated to complete the proof.

�

It should be noted that Theorems 5.5 and 5.6 are based solely on the
forms of the updating equations in TSDLMs, with absolutely no assump-
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tions about a “true” data generating process or about normality. In ad-
dition, they apply even if the observational variance V is unknown and
subject to the usual variance learning. In such cases, the posterior dis-
tribution for V will concentrate about its mode as t increases, asymptoti-
cally degenerating, and the model therefore converges to a known variance
model.
From Theorem 5.6, the limiting representation of the observation series

in terms of forecast errors is given by

Yt =
n∑

j=1

αjYt−j + et +
n∑

j=1

βjet−j , (5.13)

with coefficients given by

α1 =
n∑

i=1

λi, α2 = −
n∑

i=1

n∑
k=i+1

λiλk, αn = (−1)nλ1λ2 . . . λn,

β1 = −
n∑

i=1

ρi, β2 =
n∑

i=1

n∑
k=i+1

ρiρk, βn = (−1)n+1ρ1ρ2 . . . ρn.

This representation provides a link with familiar ARIMA predictors of Box
and Jenkins (1976), and with alternative methods including exponentially
weighted regression, or exponential smoothing (McKenzie 1976). The fol-
lowing comments on the relationship with ARIMA modelling are pertinent.

(1) Suppose that p of the eigenvalues ofG satisfy 0 < λ < 1, d are equal
to 1, and n−p−d are zero. Suppose also that q of the eigenvalues of
H satisfy 0 < ρ < 1 with the remainder being zero. Then equation
(5.13) is an ARIMA(p, d, q) predictor, whether or not the errors
{et} are uncorrelated.

(2) The ARIMA predictor is a limiting result in the DLM and therefore
primarily of theoretical interest. In practice the use of non-constant
variances and interventions will mean that the limiting forms are
rarely utilised.

Theorem 5.7. In the univariate constant DLM {F,G, V,W} denote the
eigenvalues of G by λi and those of H by ρi, (i = 1, . . . , n). Then if the
series {Yt} is truly generated by this DLM, it can be represented as

n∏
i=1

(1− λiB)Yt =
n∏

i=1

(1− ρiB)at, (5.14)

where at ∼ N[0, Q] are uncorrelated random variables.
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Proof. Only a sketch of the proof is given. Apply the Cayley-Hamilton
theorem to show that

n∏
i=1

(1− λiB)Yt = φ({νt,ωt}, . . . , {νt−n,ωt−n}),

where φ is a linear function of the random vectors {ωt, . . . ,ωt−n+1} and
random variables {νt, . . . , νt−n}, and is independent of t. Following Harri-
son (1967), represent φ in MA(q) process form, as

φ(ωt, . . . ,ωt−n+1, νt . . . , νt−n) = at +
q∑

i=1

ψiat−i.

Finally, the previous limiting results and Theorem 5.6 identify the roots of
this MA process as the ρi. Also, limt→∞(at − et) = 0.

�

From (5.14) it may be thought that Yt must follow an ARIMA(p, d, q)
process. The truth is, however, more general; the eigenvalues ofGmay take
any values, so the framework encompasses explosive processes as well as
processes with unit eigenvalues. In non-explosive cases, we will have some
p of the eigenvalues satisfying 0 < |λi| < 1, a further d such that λi = 1,
with the remaining λi being zero, together with, typically, some number q
of the ρk such that 0 < |ρk| < 1 and the rest being zero. In these cases, Yt
can indeed be represented in the form of an ARIMA(p, d, q) process. Thus
all ARIMA(p, d, q) processes can be represented by a member of a subclass
of constant TSDLM’s {F,G, V,W} with n = max{p + d, q} parameters.
The corresponding ARIMA point predictors operate with limiting forms
and consequently impose unnecessary restrictions in their application.

5.5.7 Retrospective limit results
Referring back to the retrospective results of Sections 4.7 and 4.8, notice
that for any fixed integer k > 0,

lim
t→∞

Bt−k = B = CG′R−1,

lim
t→∞

At−k,t = CH′k−1G′R−1,

so the limiting retrospective distribution can be obtained as follows.

Theorem 5.8. Given any fixed integer k, as t → ∞, the variance of the
historical parameters (θt−k, . . . ,θt|Dt) converges to a limit with elements

lim
t→∞

C[θt−i−j ,θt−i|Dt] = C[−(i+ j),−i] = BjR(−i)
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for all i, j such that i, j ≥ 0 and i+ j ≤ k, with B = CG′R−1 and where
the R(−k) may be recursively calculated according to

R(−k) = C+B[R(−k + 1)−R]B′,

with initial value R(0) = R.
With at(0) = mt and at−1(1) = at, the limiting form of the recursive

equations for revising retrospective means may be written in two ways,
namely

at(−k) = at−1(−k + 1) +BkAet
=mt−k +B[at(−k + 1)− at−k+1].

The proof is straightforward, using the filtering and retrospective results
of Sections 4.7 and 4.8, and is left to the reader.

5.5.8 Discount TSDLM limit results
Discount models are fully discussed later in Section 6.3, but are previewed
here to tie in with the limiting theory above. In a single discount TSDLM
{F,G, V,Wt}, Wt is defined as Wt = (1 − δ)GCt−1G′/δ for some dis-
count factor δ such that 0 < δ < min{1, λ2

1, . . . λ
2
n}, where the λi are the

eigenvalues of G. In cases in which G is of full rank, the resulting form
of the updating equations relates closely to discount weighted regression
estimation and is of much interest.
Since Rt = GCt−1G′/δ in this model, it follows that

C−1
t = δG−1′

C−1
t−1G

−1 + V −1FF′,

so that

lim
t→∞

C−1
t = C−1 = V −1

∞∑
v=0

δvG−v ′
FF′G−v.

Clearly limt→∞Wt = W, and the DLM converges rapidly to a constant
DLM. Further, since H = δCG−1′C−1, the eigenvalues of H are simply
ρi = δ/λi. In (5.13) this leads to

lim
t→∞

{
n∏

i=1

(1− λiB)Yt −
n∏

i=1

(
1− δ

λi
B

)
et

}
= 0. (5.15)

Further,

B = CG′R−1 = δG−1,

which simplifies computations in the limiting retrospective updating equa-
tions.
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5.6 STATIONARITY
5.6.1 Introduction
Historically, stationarity has been a dominant concept throughout time se-
ries analysis, and it is found useful in modelling closed systems. Purely
stationary models are, however, of limited value in modelling open systems
that necessarily involve interventions and model modifications to adapt to
changing circumstances in the forecasting environment. However, mod-
els that involve stationary component sub-models, and inherently non-
stationary, time-varying extensions of traditional stationary models, are
valuable in a variety of contexts. The definitions and elements of the the-
ory of stationary processes are introduced here.

Definition 5.14. A random time series, or RTS, Zt is

(1) an ordered finite or infinite set of random variables indexed by con-
secutive integers;

(2) (strictly) stationary if for any given integer n, the distribution
function of any random vector Zt,n+1 = (Zt, . . . , Zt+n)′ is indepen-
dent of the time t;

(3) weakly stationary if both E[Zt,n+1] and V[Zt,n+1] are indepen-
dent of time t;

(4) Gaussian (normal) stationary if it is weakly stationary and the
distribution of every Zt,n+1 is normal.

Definition 5.15. Given a weakly stationary RTS Zt,

(1) C[Zt, Zt+k] = γk is the autocovariance at lag k;
(2) ρk = γk/γ0 is the theoretical autocorrelation at lag k;
(3) The graph {k, γk} is the theoretical autocorrelation function (ACF);
(4) The autocovariance generating function (ACGF) is

γ(B) =
∞∑

v=−∞
γ|v|B

v,

for real arguments B such that |B| < 1; the definition is also useful,
in a formal sense, when B is taken as the backshift operator.

Stationarity imposes a strong structure, with weak stationarity implying
a common mean, E[Zt] = µ for all t, and the lag-dependent covariance
structure C[Xt, Xt+s] = γs for all t and s. In a Gaussian process, these first
and second-order moments are those of the implied multivariate normal
distribution for any subset of the Zt, and so completely characterise the
RTS. Given the mean µ and the autocovariances γ0, γ1, . . . , we use the
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notation

Z ∼ S[µ; γ(B)],

and in the Gaussian case,

Z ∼ GS[µ; γ(B)].

EXAMPLE 5.11. Consider a random time series generated according
to Zt = 2at − at−1, where at ∼ N[0, 1] independently. Based only on
this specification, the RTS is Gaussian stationary, with the entire joint
distribution defined by

µ = 0, γ0 = 5, γ1 = −2, and γk = 0, for all k > 1.

Thus,

Zt ∼ GS[0; −2B−1 + 5− 2B].

Note, however, that conditioning on, say, Z1 = 1, implies that the RTS is
no longer stationary, although the RTS {Zt : t ≥ 3} is.

EXAMPLE 5.12. Consider an infinite random time series generated ac-
cording to Zt−λZt−1 = at, where at ∼ N[α, σ2] independently. Based only
on this specification, the RTS is Gaussian stationary if and only if |λ| < 1,
and in that case the entire joint distribution is defined by

µ = α/(1− λ) and γk = λkσ2/(1− λ2), for all k ≥ 0,

so that

Zt ∼ GS[α/(1− λ); σ2(1− λB)−1(1− λB−1)−1].

Again, note that observing Z1 implies that the RTS is no longer stationary,
nor, for any k > 0, is any subsequence {Zt : t ≥ k} for k > 0.

5.6.2 Stationary DLMs
It is evident from the preceding examples that if interest lies in predicting a
series Yt generated by a DLM, then givenDt the future series {Yt+i : i > 0}
will not be stationary except in trivial cases. IfWt > 000, this future series
will be stationary if and only if (a) the model is equivalent to an observable
constant DLM {F,G, V,W}; (b) all the eigenvalues of G satisfy |λi| < 1;
and (c) (θt+1|Dt) ∼ [000,R], where R = GRG′ +W. Though the third
condition here has zero probability of being true, it is useful to relax it and
define a DLM to be (qualitatively) stationary based only upon the first two
conditions.
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Definition 5.16. A DLM {Ft,Gt, Vt,Wt} is a (zero mean) weakly
stationary DLM if and only if

(1) it is equivalent to an observable constant DLM {F,G, V,W};
(2) the eigenvalues of G lie inside the unit circle, i.e., |λi| < 1, for

i = 1, . . . , n.

Naturally, all such normal DLMs are termed Gaussian stationary DLMs.

5.6.3 Identification
For a specified RTS Yt generated by an observable TSDLM {F,G, Vt,Wt}
together with the initial prior based on D0, the entire joint distribution of
all linear functions of the RTS is completely defined. Hence, in principle,
given a subsequent series of observations, it is a straight-forward matter to
compare the actual sampling and theoretical distributions. In particular,
writing the eigenvalues of G as λ1, . . . , λn and defining

Zt =
n∏

i=1

(1− λiB)Yt+n,

we know that for all k > 0 and j > n,

E[Zt+k|Dt] = 0 and C[Zt+k, Zt+k+j ] = 0,

providing one basis for assessing the adequacy of the model and facilitating
model identification.
Further, if the TSDLM is a constant DLM and the only eigenvalues of G

that lie on or outside the unit circle are λ1, . . . , λr, then the implied DLM
generating

Ut =
r∏

i=1

(1− λiB)Yt+r

is a stationary DLM that can be modelled as an ARMA process as discussed
in Chapter 9.
This provides the basis of classical identification methods that examine

linear functions of the observed series Yt, seeking a parsimonious function
Ut that appears weakly stationary. The emphasis is on the associated sam-
ple means and covariance structure of the Ut series either directly through
the ACGF or its Fourier transform, the spectrum. The latter is partic-
ularly useful when the eigenvalues are complex, so that either the whole
series or major components may follow a mixture of damped cosine waves
of differing frequencies.
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5.7 EXERCISES

(1) Determine whether, and if so under what conditions, the following
TSDLMs {F,G, ·, ·} are observable.
(a) {F,G} = {1, λ} for some given real λ.
(b) With given real λ1 and λ2,

F =
(
1
1

)
, G =

(
λ1 0
0 λ2

)
.

(c)

F =
(
1
0

)
, G =

(
0 1
0 0

)
.

(d)

F =


 1
1
1


 , G =


 4 −1 2
3 9 3
1 5 5


 .

(e) For a given real ω,

F =
(
0
1

)
, G = J2(1, ω) =

(
cos(ω) sin(ω)
− sin(ω) cos(ω)

)
.

(f) {F,G} = {En,Jn(λ)} for n ≥ 2.

(2) Give an example of an observable, n-dimensional DLM whose sys-
tem matrix G is of rank n − 1. Show that a necessary but not
sufficient condition for a TSDLM to be observable is that the rank
of the n× n system matrix G is at least n− 1.

(3) Consider the constant DLM{(
1
1

)
,

(
1 0
0 1

)
, 80,

(
2 1
1 2

)}

with parameter vector θt = (θ′
t1, θ

′
t2)

′.
(a) Is the DLM observable?
(b) Write down the observation and system equations.
(c) What is limt→∞ V[θt1 + θt2|Dt]?
(d) What is limt→∞ V[θt1 − θt2|Dt]?
(e) Provide an observable DLM to represent the series Yt.

(4) Consider the constant DLM{(
1
0

)
,

(
1 0
0 0

)
, 5,

(
1 1
1 4

)}

with parameter vector θt = (θ′
t1, θ

′
t2)

′.
(a) Is the DLM observable?
(b) Write down the observation and system equations.
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(c) Show that although the DLM is unobservable, the series Yt can
be represented by a DLM with only one parameter and that
this is equivalent to a first-order polynomial DLM.

(d) Define this DLM {1, 1, V,W}.
(5) Obtain the algebraic form of the forecast function for each of the

following TSDLMs {F,G, ·, ·}, with a real parametrisation, noting
whether or not the models are observable.
(a) {F,G} = {1, λ}.

Investigate all the possible cases, i.e., λ < −1, λ = −1, −1 <
λ < 0, λ = 0, 0 < λ < 1, λ = 1 and λ > 1.

(b) F′ = (1, 0, 0) and G = J3(λ) for 0 < λ < 1.
Examine the form of ft(k) as a function of k, determining, in
particular, the turning points of the forecast function.

(c) F′ = (1, 0, 1, 0, 1) and

G = block diag
{(

1 1
0 1

)
, λ

(
cos(ω) sin(ω)
− sin(ω) cos(ω)

)
, φ

}
,

with λ > 0, 1 > φ > 0 and ω not an integer multiple of π.

(6) Consider a TSDLM with

F =


 1
0
0


 , G =


 0 1 0
0 0 1
1 0 0


 .

(a) Show that for all positive integers k and n, the forecast function

ft(k) = ft(k + 3n),

and so is cyclical of period 3.
(b) Show that the model is observable and transform it to canonical

form.

(7) Generalise the previous example to models that are cyclical of period
n > 1, having F = En = (1, 0, . . . , 0)′ and

G =
(
000 I
1 000 ′

)
,

where I is the (n − 1) × (n − 1) identity matrix. Distinguish the
cases of even and odd values of n.

(8) For some integer n > 1, suppose that F′ = (1,E′
n) and

G =


 1 0 000 ′

000 000 I
0 1 000 ′


 ,

where I is the (n− 1)× (n− 1) identity matrix.
(a) Show that the model is unobservable.
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(b) Let φt denote the final n elements of the state vector at time
t, so that θ′

t = (θt,φ′
t), say. If 111

′φt = 1 show that the model is
constrained observable.

(9) Transform the following observable models to canonical forms, iden-
tifying the corresponding similarity matrices H (Theorem 5.1).
(a) For some given real and distinct λ1 and λ2,

F =
(
1
1

)
, G =

(
λ1 0
0 λ2

)
.

(b) F =


 1
1
1


 , G =


 1 1 1
0 1 1
0 0 0.5


 .

(c) Given ω is not an integer multiple of π,

F =
(
1
1

)
, G =

(
0.5eiω 0
0 0.5e−iω

)
.

(10) Consider any two TSDLMs M and M1 characterised by quadruples

M0 : {E3,J3(1), Vt,W0,t},

M1 :




 1
0
0


 ,


 1 1 1
0 1 1
0 0 1


 , 1000,W


 .

(a) Calculate the observability matrices T and T1 for M and M1
and deduce that both models are observable.

(b) Show that the DLMs are similar, and that the similarity matrix
H = T−1T1 is given by

H =


 1 0 0
0 1 1
0 0 1


 .

(c) Identify the common form of the forecast function, and inter-
pret the meaning of the state parameters in each model.

(d) If

W =


 100 0 0

0 9 −1
0 −1 1




and

(θ0|D0,M1) ∼ N




 100

3
1


 , 4W


 ,

under what conditions are M and M1 equivalent?
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(11) Consider the model {1, λ, V,W} where λ is real. By applying The-
orems 5.5 and 5.6 or otherwise, obtain
(a) the limiting values of C, R, A and Q;
(b) the limiting representation of Yt as a linear function of Yt−1, et

and et−1.
(c) Distinguish between, and comment upon, the cases |λ| < 1,

λ = 1, and |λ| > 1.

(12) In Theorem 5.6, the eigenvalues of H = (I−AF′)G determine the
limiting representation of Yt. Verify the identity H = CR−1G.

(13) Given |λ| ≤ 1 and VW > 0, obtain the limiting representations of
the observation series Yt in terms of past observations and one-step
forecast errors et for the DLM{(

1
0

)
,

(
1 λ
0 λ

)
, V, V

(
U + λ2W λ2W
λ2W λ2W

)}
.

(14) Consider the constant model {1, 1, V,W}. Given an integer k > 0,
obtain the limiting retrospective variance

lim
t→∞

V[(µt, . . . , µt−k)′|Dt].

(15) If Yt is a stationary random time series (RTS), show that for all
integers k and times t, C[Yt, Yt+k] = C[Yt, Yt−k].

(16) The backshift operator B operates on a time index t such that
Bkyt = yt−k and Bkf(t) = f(t − k) for time series yt and func-
tions f(t), and for all integers k. Write the following expressions in
the form φ(B)Yt = θ(B)et, where φ(B) and θ(B) are polynomials
in B :
(a) Yt+1 − Yt = et;
(b) Yt+1 − Yt = et−2;
(c) Yt − Yt−2 − et + 0.5et−1 = 0;
(d) Yt − Yt−1 − Yt−12 + Yt−13 = et − 0.2et−1 − 0.5et−12 + 0.1et−13;
(e)

∑n
v=0

(
n
v

)
(−1)vYt−v =

∑n
v=0

(
n
v

)
(−α)vet−v.

(17) Let . . . , y−1, y0, y1, . . . and . . . , a−1, a0, a1, . . . be infinite sequences,
the latter bounded. Suppose that |α| < 1 so that limm→∞ αmyk =
0 for all integers k.
(a) If yt − αyt−1 = (1 − αB)yt = at, prove that the inverted ex-

pression

yt = (1− αB)−1at =
∞∑
i=0

(αB)iat =
∞∑
i=0

αiat−i

is valid and meaningful.
(b) Prove by induction that the expression

∏n
i=1(1 − αiB)yt =

at is invertible to yt =
∏n

i=1(1 − αiB)−1at under the same
conditions. This proves the important result that φ(B)yt = at
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is invertible to yt = φ(B)−1at if and only if the roots of the
equation φ(B) = 0 all lie outside the unit circle (i.e., have
modulus greater than 1).

(18) Given et ∼ N[0, σ2] independently, state which of the following RTSs
are stationary and for these, derive the corresponding ACFs.
(a) Yt = et + 2et−1.
(b) Yt + 2Yt−1 = et.
(c) Yt = µt where µt = gµt−1 + et and |g| < 1.
(d) Yt =

∑m
i=0 et−i/(m+ 1).

(19) In studying stock market prices, chartists often take moving aver-
ages of prices as indicators without being aware that such averaging
usually introduces correlation, and that this can mislead through the
resultant spurious patterns. To investigate this, let Yi ∼ N[µ, σ2]
independently, and Xt =

∑n
i=1 wiYt−i+1, where the wi’s are known

constants such that
∑n

i=1 wi = 1. That is, Xt is computed as a
moving average of the values of Yt. Find the induced correlation by
deriving the ACF of Xt in the two cases
(a) wi = 1/n, so that Xt is an arithmetic average,
(b) wi = (1− β)βi−1/(1− βn), so that Xt is a truncated EWMA.

(20) Suppose X ∼ S[µx; γx(B)] and Y ∼ S[µy; γy(B)] and that Xt is
independent of Ys for all t and s. Prove the following important
theoretical results.

(a) If Zt = Xt + Yt then Z ∼ S[µx + µy; γx(B) + γy(B)].

(b) For any real numbers l1 and l2, if Zt = l1Xt + l2Yt then

Z ∼ S[l1µx + l2µy; l21γx(B) + l22γy(B)].

(c) If Zt = Xt − αXt−1 = (1− αB)Xt then

Z ∼ S[(1− α)µx; (1− αB)(1− αB−1)γx(B)].

(d) If Zt = φ(B)Xt, where φ(B) is a finite polynomial in B, then

Z ∼ S[φ(1)µx;φ(B)φ(B−1)γx(B)].

(21) {Yt} is a univariate random time series.
(a) You have n + 2 observations Y = (Y1, . . . , Yn+2) available to

test your theory that Yt follows the NDLM{(
1
0

)
,

(
1 1
0 1

)
, 100 ,

(
5 0
0 1

)}
.

Obtain the theoretical distribution of an appropriate derived
series and describe how this enables you to examine the ade-
quacy of your proposed model.

(b) Suppose that the RTS {Yt} is such that the derived series

Zt = Yt+1 − 0.9Yt ∼ GS[0;−90B−1 + 200− 90B] .
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Construct an appropriate single-parameter constant DLM for
{Yt}, precisely quantifying the quadruple {F,G, V,W}.

(22) Let the RTS {Yt} be generated by the observable constant DLM
{F,G, V,W}, where G has eignevalues λi such that |λi| < 1 for
i = 1, . . . , n − r, and |λi| ≥ 1 for i = n − r + 1, . . . , n. Show that
the derived RTS

Zt =
n∏

i=n−r+1

(1− λiB)Yt+r

can be appropriately modelled by the stationary observable DLM{(
En−r

Er

)
,

(
G∗ 000
000′ Jr(0)

)
, 0, W∗

}
,

where G∗ has eigenvalues λ1, . . . , λn−r.



CHAPTER 6

MODEL SPECIFICATION AND DESIGN

6.1 BASIC FORECAST FUNCTIONS
Central to DLM specification and design is the development of appropriate
form and structure of the forecast function, from Definition 4.4,

ft(k) = E[µt+k|Dt] = E[F′
t+kθt+k|Dt],

for all t, k > 0. This defines both the qualitative form and the forecaster’s
numerical specification of the expected development of the time series.
Consequently, it is of fundamental importance to the design and construc-
tion of appropriate DLMs. This chapter begins with a discussion of forecast
functions derived from the various TSDLMs of the previous chapter. To-
gether with complementary forecast (transfer) functions for the effects of
independent variables, these provide the basis for designing all practically
important dynamic linear models.

6.1.1 Real Jordan block system matrices
The simplest observable class of DLMs comprises those for which the
system matrices each have a single real eigenvalue.

Theorem 6.1. For real λ, the forecast function ft(k) (k ≥ 0) of any
canonical model {En,Jn(λ), · , ·}, and hence of any similar model, takes
the following form:

(1) If, as with most practical models, λ �= 0, then

ft(k) = λk
n−1∑
r=0

atrk
r,

where at0, . . . , at,n−1 are linear functions of mt = (mt1, . . . ,mtn)′,
but are independent of k.

(2) In the irregular case λ = 0, then

ft(k) = mt,k+1, (0 ≤ k < n),

ft(k) = 0, (k ≥ n).

Proof. Given E[θt | Dt] =mt, by definition,

ft(k) = E′
nJn(λ)

kmt.
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Using Section 17.4.3, when λ is non-zero,

ft(k) = λk
n−1∑
r=0

atrk
r,

where the coefficients at0, . . . , at,n−1 depend on mt and λ but not on k. It
follows that any similar model has a forecast function of the same qual-
itative form in k, and any equivalent model has the identical quantified
forecast function.
If λ = 0 then the only non-zero elements of Jn(λ)k are those of the kth

super-diagonal, which comprises unit elements. Hence ft(k) = mt,k+1, the
(k + 1)st element of mt, when 0 ≤ k < n. For k ≥ n, Jn(λ)k = 000 and the
result follows.

�

For the important practical cases, λ �= 0, ft(k) has the form of the kth

power of the eigenvalue λ multiplying a polynomial of order n in the step
ahead index k.

EXAMPLE 6.1. Consider the case n = 1, so that the canonical model is
{1, λ, ·, ·}, with scalars θt = µt and mt = mt. Then

ft(k) = mtλ
k.

This special case is important since it illustrates the nature of the contribu-
tion of a single eigenvalue of multiplicity one to any observable DLM. The
value of λ clearly determines the behaviour of the forecast function. The
various possible cases, illustrated in Figure 6.1 with mt = 1, are described.

(a) λ = 0.
Here ft(0) = mt, and for k > 0, ft(k) = 0. The model is simply
Yt = ωt + νt with mt = E[ωt|Dt].

(b) λ = 1.
Here ft(k) = mt for all k ≥ 0. This is the first-order polynomial
DLM of Chapter 2.

(c) 0 < λ < 1.
Here ft(k) = λkmt decays to zero exponentially in k.

(d) −1 < λ < 0.
Here ft(k) = λkmt oscillates between positive and negative values,
exponentially decaying to zero in k.

(e) λ = −1.
Here ft(k) = (−1)kmt oscillates, taking the values mt and −mt

alternately. This is the forecast function of a Nyquist harmonic,
and appears in models for cyclical or seasonal series in Chapter 8.

(f) λ > 1.
Here ft(k) = λkmt, and this explodes exponentially, and monoton-
ically, to ∞ if mt > 0, and to −∞ if mt < 0.
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Figure 6.1 ft(k) = λk for various values of λ = a

(g) λ < −1.
Here ft(k) = λkmt oscillates explosively when mt �= 0.

EXAMPLE 6.2. When n = 2 the canonical model has the form{(
1
0

)
,

(
λ 1
0 λ

)
, · , ·

}
.

With state vector θt = (θt1, θt2)′ and evolution error ωt = (ωt1, ωt2)′ we
have

Yt = θt1 + νt,

θt1 = λθt−1,1 + θt−1,2 + ωt1,

θt2 = λθt−1,2 + ωt2.

Writing mt = (mt1,mt2)′, for k ≥ 0 and λ �= 0, we have

ft(k) = (mt1 + kmt2/λ)λk.

The various possible cases, determined by the value of λ, are described
below and illustrated in Figure 6.2 with mt1 = 1 and mt2 = 0.25.
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Figure 6.2 ft(k) = (1 + 0.25k/λ)λk for various values of λ = a

(a) λ = 0.
Here ft(0) = mt1, ft(1) = mt2 and ft(k) = 0 for k > 1. The model
is simply Yt = ωt1 + ωt−1,2 + νt. For a constant DLM, the Yt series
can be expressed as a moving-average process of order 1, MA(1).

(b) λ = 1.
Here ft(k) = mt1 + kmt2 for all k ≥ 0. The forecast function is
a straight line, or polynomial of order 2. DLMs with this form of
forecast function are extremely important in short-term forecasting
where the model represents a “locally linear” development of the
mean response function over time.

(c) 0 < λ < 1.
Here ft(k) = (mt1 + kat2)λk, where at2 = mt2/λ, eventually decays
exponentially to zero with k. The initial behaviour depends on the
actual values of mt1 and mt2. The forecast function converges to 0,
possibly via an extremum.

(d) −1 < λ < 0.
Here ft(k) = (mt1+kat2)λk oscillates between positive and negative
values of the case (c).

(e) λ = −1.
Here ft(k) = (−1)k(mt1 − kmt2) oscillates between a monotonic
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series of points on each of two straight lines. This case is of restricted
practical interest.

(f) λ > 1.
Here ft(k) = (mt1 + kmt2)λk explodes to ±∞ according to the sign
of mt2 or of mt1 if mt2 = 0.

(g) λ < −1.
Here ft(k) oscillates explosively between positive and negative val-
ues.

EXAMPLE 6.3. For any n, if λ = 1,

ft(k) = at0 + at1k + at2k
2 + · · ·+ at,n−1k

n−1,

which is a polynomial model of order n−1. For all n, these models provide
the important class of polynomial DLMs: the expected behaviour of the
series over the future period of interest is a polynomial of order n−1. Typ-
ically, this local description can be seen as a Taylor series approximation,
using polynomial forms of low order 1, 2 or 3, say, to an unknown but
essentially smooth mean response function. Chapter 2 was devoted to the
case n = 1. Chapter 7 describes the general case, with particular attention
devoted to linear growth models corresponding to the case n = 2.

EXAMPLE 6.4. In the special case of λ = 0, the model {En,Jn(0), Vt,Wt}
has the form

Yt = θt1 + νt,

θtr = θt−1,r+1 + ωtr,

θtn = ωtn,

(r = 1, . . . , n− 1),

so that

Yt = νt +
n∑

r=1

ωt+1−r,r.

From Theorem 6.1 with mt = (mt1, . . . ,mtn)′,

ft(k) =
{
E[θt+k,1 | Dt] = mt,k+1, for 0 ≤ k < n;

0, for k ≥ n.

For the first n steps, k = 0, 1, . . . , n−1, the forecast function takes irregular
values and thereafter is zero.
Note that an equivalent model is {En,Jn(0), 0,W1t }, where

W1t =Wt +
[
Vt 000 ′

000 000n−1

]
,

with 000r being the r × r zero matrix. Thus, whenever zero eigenvalues
occur, Vt can be set to zero by suitably amending Wt. This is true even
with the null parametric DLM {0, 0, V, 0}, which is equivalent to the single
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parameter DLM {1, 0, 0, V }. The incorporation of the observation noise
νt into the system noise can be useful, particularly for handling “one-off”
events such as promotional campaigns (Harrison 1988), and is standard in
our research software.
If the model is constant with Vt = V andWt =W for all t, then Yt has

a moving average MA(n− 1) representation

Yt =
n−1∑
r=0

ψrεt−r,

where εt ∼ N[0, 1], (t = 1, 2, . . . ) is a sequence of independent random
quantities. This representation may be useful to those readers familiar with
standard linear, stationary time series modelling (e.g., Box and Jenkins
1976). Note that it is derived as the very special case of zero eigenvalues.

6.1.2 Single complex block system matrices
System matrices with complex eigenvalues lead to sinusoidal components
in the forecast function. The simplest case, that of a single sine/cosine
wave, corresponds to a pair of complex conjugate eigenvalues with n = 2.

Theorem 6.2. In the 2-dimensional real canonical model

{E2,J2(λ, ω), Vt,Wt}

with λ �= 0, 0 < ω < 2π, mt1 and mt2 all real, the forecast function is

ft(k) = [mt1 cos(kω) +mt2 sin(kω)]λk.

Proof. By induction, and using standard trigonometric identities, it is
easily shown that for all integers k,

J2(λ, ω)k = λk
(

cos(kω) sin(kω)
− sin(kω) cos(kω)

)
= J2(λk, kω).

Thus, with mt = (mt1,mt2)′,

ft(k) = E′
2J2(λ, ω)kmt = [mt1 cos(kω) +mt2 sin(kω)]λk.

�

An alternative expression for the forecast function is

ft(k) = λkrt cos(kω + φt),

where

(a) r2t = m2
t1 +m2

t2, and rt > 0 is the amplitude of the periodic, or
harmonic, component mt1 cos(kω) +mt2 sin(kω);
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Figure 6.3 ft(k) = λk cos(πk/4) for various values of λ = a

(b) φt = arctan(−mt2/mt1) is the phase-angle, or just the phase, of
the periodic component; and

(c) ω is the frequency of the periodic component defining the period,
p = 2π/ω, over which the harmonic completes a full cycle; this
follows since for all integers h ≥ 0,

ft(k) = ft(k + 2πh/ω).

The forecast function has the form of a sine/cosine wave modified by
the multiplicative term λk. This latter term may dampen or explode the
periodic component. If |λ| < 1, the sinusoidal form is dampened, decaying
asymptotically to zero; if |λ| > 1 it is exploded, diverging as k increases.
Negative values of λ lead to the forecast function oscillating between posi-
tive and negative values for consecutive values of k whilst either decaying
to zero or diverging. Figure 6.3 illustrates the various possibilities for the
particular coefficients mt1 = 1, mt2 = 0, and frequency ω = π/4 or period
p = 8. Of greatest practical importance are the cases with 0 < λ ≤ 1.
In particular, λ = 1 leads to a pure cosine wave of frequency ω, a basic
building block of seasonal time series models.
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6.1.3 Models with multiple complex eigenvalues†

Essentially, models with the basic periodic forecast functions discussed in
the previous section provide all the cyclical/seasonal behaviour associated
with practical DLMs. Only rarely will a model with multiple complex
eigenvalues be required. For completeness, the forecast functions of such
models are now discussed, although most practitioners may safely ignore
this section.
Refer to Definition 5.10 for the specification of the real canonical model in

the case when a system matrix has a pair of complex conjugate eigenvalues
λeiω and λe−iω with multiplicity v.

Theorem 6.3. In the real canonical Jordan form model

{E2,v,J2,v(λ, ω), Vt,Wt} ,

with λ, λω �= 0 and coefficients atj and btj , (j = 0, . . . , v − 1) all real, the
forecast function is

ft(k) = λk cos(kω)
v−1∑
j=0

atjk
j + λk sin(kω)

v−1∑
j=0

btjk
j .

For amplitudes rtj and phase angles φtj , (j = 0, . . . , v − 1), a neater ex-
pression is

ft(k) = λk
v−1∑
j=0

rtjk
j cos(kω + φtj).

Proof. The proof, an exercise in linear algebra, is left to the reader.

�

As mentioned above, this case is rarely used in practice. Of some interest
are the particular models in which λ = 1 and φtj = 0, (j = 0, . . . , v − 1),
so that the forecast function represents a cosine wave whose amplitude is
a polynomial in k. For example, with λ = 1, v = 2, and φtj = 0 for each j,
the forecast function is

ft(k) = (rt0 + rt1k) cos(kω).

Such forms might be useful in representing cyclic patterns for which the
amplitude is increasing linearly.

†This section is of rather theoretical interest and may be omitted without loss
on a first reading.
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6.2 SPECIFICATION OF Ft AND Gt

In applications, models are usually constructed by combining two or more
component DLMs, each of which captures an individual feature of the real
series under study. The construction of complex DLMs from component
DLMs is referred to as superposition, and the reverse process, that of
identifying components of a given model, as decomposition. These two
important modelling concepts are now discussed in detail.

6.2.1 Superposition
Some examples introduce the basic ideas.

EXAMPLE 6.5. Consider the two special models, M1, of dimension n, and
M2, of dimension 1, specified by quadruples

M1 : {F,G, 0,W} and M2 : {0, 0, V, 0} .

Let M1 have state vector θt and generate a series Y1t. Then with complete
certainty, Y1t = µt = F′θt. ModelM2 has no state vector, and generates an
independent noise series, Y2t according to Y2t = νt ∼ N[0, V ] independently.
The composite series Yt = Y1t + Y2t then follows the DLM {F,G, V,W}.
In adding the two series, the new series created follows a more complex
DLM defined by combining the quadruples in a particular way. This is a
very simple example of superposition.

EXAMPLE 6.6. Consider two purely deterministic models M1 and M2,
with state vectors θ1t and θ2t respectively, defined via

M1 : {F1,G1, 0, 000};
M2 : {F2,G2, 0, 000}.

Adding the observations generated by these two models produces a series
with state vector θt, and generated by the DLM {F,G, 0, 000} where

θt =
(

θ1t
θ2t

)
, F =

(
F1
F2

)
and G =

[
G1 000
000 G2

]
.

Extending the notation in an obvious way, the sum of the observation series
from any h deterministic models M1, . . . ,Mh follows the DLM {F,G, 0,000}
with

F′ = (F′
1, . . . ,F

′
h)

and

G = block diag[G1, . . . ,Gh].
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These examples illustrate the construction of DLMs from a collection
of component DLMs by superposition of the corresponding state vectors,
regression vectors and system matrices. As an aside, note that if the two
component state vectors have common elements, the model formed by this
superposition may be reparametrised to one of lower dimension. In general,
we have the following result.

Theorem 6.4. Consider h time series Yit generated by DLMs

Mi : {Fit,Git, Vit,Wit}

for i = 1, . . . , h. In Mi, the state vector θit is of dimension ni, and the
observation and evolution error series are respectively νit and ωit. The
state vectors are distinct, and for all distinct i �= j, the series νit and ωit

are mutually independent of the series νjt and ωjt.
Then the series

Yt =
h∑

i=1

Yit

follows the n-dimensional DLM {Ft,Gt, Vt,Wt} where n = n1 + · · · + nh

and the state vector θt and quadruple are given by

θt =




θ1t
·
·

θht


 , Ft =



F1t
·
·
Fht


 ,

Gt = block diag[G1t, . . . ,Ght],

Wt = block diag[W1t, . . . ,Wht],

and

Vt =
h∑

i=1

Vit.

Proof. Summing the individual independent normal series,

Yt = F′
tθt + νt, νt =

h∑
i=1

νit ∼ N[0, Vt].

With ω′
t = (ω′

1t, . . . ,ω
′
ht), noting that for all i �= j, ωit and ωjt are

independent,

θt = Gtθt−1 + ωt, ωt ∼ N[000,W].
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The proof is completed on noting that the series {ωt} is independent of
the series {νt}.

�

This obvious, but highly important, result is termed the Principle of
Superposition. It simply states that the linear combination of series
generated by independent DLMs follows a DLM that is defined via the su-
perposition of the corresponding model components. The principle depends
upon the additivity properties associated with linear normal models. The
strict model independence of the theorem is not crucial. A more general
superposition requirement is that ν1t, . . . , νht and ω1t, . . . ,ωht each have a
joint normal distribution and that the two series {νt} and {ωt} are inter-
nally and mutually independent. Marginal normality of the terms within
each model does not necessarily imply joint normality across models, al-
though the practical circumstances in which joint normality is violated are
rare and of little importance. So for practical purposes, a working super-
position principle is that

A linear combination of DLMs is a DLM.
Usually, practical utilisation of the superposition principle naturally and
appropriately adopts the independence assumptions of the theorem. Design
implications of superposition do not depend on the independence structure
since the additivity property is sufficient to determine the following forecast
function result. The trivial proof is left to the reader.

Theorem 6.5. Consider the models in Theorem 6.4 where the series
{νt} and {ωt} are internally and mutually independent series but where
(ν1t, . . . , νht) and (ω1t, . . . ,ωht) each have a general joint normal distribu-
tion. Denote the forecast function form of Mi by fit(k). Then the forecast
function form for the Yt series generated by the superposition of the h
component models is given by

ft(k) =
h∑

i=1

fit(k).

Note that this is a qualitative statement regarding the forecast function
form. If the conditions of Theorem 6.4 hold, it is also quantitatively true.

6.2.2 Decomposition and model design
The practical value of the superposition principle lies in the construction of
models for complex problems by combining simpler components for easily
identified features of the process. The employed technique is the reverse of
superposition, namely the decomposition of models with complex fore-
cast functions into simple, canonical components. These canonical compo-
nents are few in number, familiar, easily understood, and allow a modeller
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to structure complex problems component by component. Superposition
then provides the overall model for the series simply by aggregating the
individual building blocks.
The starting point for model design is the form of the forecast function.

Given this, observable models are constructed by identifying the component
canonical forms. This effectively solves the design problem so far as choice
of regression vector Ft and system matrix Gt is concerned. The practically
important canonical components are related to forecast functions as follows.

(1) Suppose that for all t ≥ 0 the forecast function has the form

ft(k) = λk
n−1∑
r=0

atrk
r

for some given real λ �= 0, integer n ≥ 1, and real coefficients
at0, . . . , atn−1 not depending on k. From Theorem 6.1 the canonical
model is immediately identified as

{En,Jn(λ), · , ·}.

An observable TSDLM has the required forecast function form if
and only if it is similar to this canonical model.

(2) The generalisation to several real eigenvalues is as follows. Suppose
that the desired forecast function must have the full form

ft(k) =
s∑

i=1

[
λki

ni−1∑
r=0

atr(i)kr
]
=

s∑
i=1

fit(k),

where s > 1 is integral, λ1, . . . , λs �= 0 are real and distinct, and
the real coefficients atr(i) do not depend on k. As in (1) above,
fit(k) is the forecast function of any observable model similar to the
canonical form

{Eni ,Jni(λi), · , ·},

for i = 1, . . . , s. Applying Theorem 6.5, the required forecast func-
tion form is provided by any observable model that is similar to
{E,J, . , .}, where

E′ = (E′
n1
, . . . ,E′

ns
)

and

J = block diag[Jn1(λ1), . . . ,Jns(λs)].

(3) Suppose that for all t ≥ 0, the forecast function has the form

ft(k) = λk
v−1∑
r=0

atrk
r cos(kω + φtr),
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for some real λ �= 0, 0 < ω < 2π, integer v > 0, and real coefficients
atr and φtr not depending on k. From Theorem 6.3, it follows that
this form of forecast function is provided by any model similar to
the real canonical form

{E2,v,J2,v(λ, ω), · , ·}.

(4) General TSDLM
For some non-negative integers s and v such that s + v > 0, the
forecast function ft(k) of an observable time series model has the
following general form:

ft(k) =
s+v∑
i=1

fit(k),

where:
• for i = 1, . . . , s,

fit(k) = λki

ni−1∑
r=0

atr(i)kr,

• for i = s+ 1, . . . , s+ v,

fit(k) = λki

ni−1∑
r=0

atr(i)kr cos[kωi + φtr(i)].

For each i and r, the integer ni ≥ 1 and the real, non-zero quantities
λi, 0 < ωi < 2π, atr(i) and φtr(i) do not depend on k.
Following Theorem 6.5 and using the results of Section 5.4.6, this

forecast function form is provided by any TSDLM similar to the real
canonical model of Definition 5.11. This includes all real, non-zero
eigenvalues of the system matrix for i = 1, . . . , s, and complex pairs
for i = s + 1, . . . , s + v. The most general model would also allow
for zero eigenvalues, as in Example 6.4, adding a component

{Ens+v+1 ,Jns+v+1(0), ·, ·},

with forecast function

fs+v+1,t(k) =
{
btk, for 0 ≤ k < ns+v+1;

0, for k ≥ ns+v+1,

where ns+v+1 is the multiplicity of the zero eigenvalue and the btk
are known constants.

(5) The above cases cover the forms of forecast function encountered
in TSDLMs. Regression components for independent variables are
rather simple in form. Suppose a related regressor variable gives
rise to a time series Xt, with Xt+k known at t for k ≥ 0. The
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Xt may be raw or transformed values of a related series, or val-
ues filtered through a known, possibly non-linear, transfer func-
tion to provide a constructed effect variable that depends on past,
or lagged, values of the related series. For example, the superpo-
sition of the first-order polynomial DLM {1, 1, · , ·} and the sim-
ple regression DLM {Xt, 1, · , ·} gives a model {(1, Xt)′, I, ·, ·} with
ft(k) = mt1 +mt2Xt+k.
Generalising to multiple linear regression DLMs, consider a collec-

tion of h possible regressor variables X1t, . . . , Xht. By superposition
of the corresponding h simple models and a first-order polynomial,
a multiple regression DLM is obtained, namely

{(1, X1t, . . . , Xht)′, I, ·, ·}

with

ft(k) = mt1 +
h∑

v=1

mt,v+1Xv,t+k.

EXAMPLE 6.7. For the pure polynomial forecast function

ft(k) =
n−1∑
r=0

atrk
r,

a unit eigenvalue of multiplicity n is required and the canonical model is

{En,Jn(1), · , ·}.

Any similar model is called an nth-order polynomial DLM.

EXAMPLE 6.8. Suppose a modeller requires a forecast function that rep-
resents a single persistent harmonic oscillation of period p about a linear
trend. Such forms are fundamental in short-term forecasting of seasonal
series. From Example 6.7 with n = 2, the linear trend canonical component
is

{E2,J2(1), ·, ·}.

From Theorem 6.2, the canonical DLM for the persistent cyclical term with
frequency ω = 2π/p is

{E2,J2(1, ω), ·, ·}.

The superposition of the two provides the required DLM{(
E2
E2

)
,

(
J2(1) 000
000 J2(1, ω)

)
, ·, ·

}
.

This is referred to as a second-order polynomial/seasonal model in
which the seasonal pattern has the form of a simple cosine wave.
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EXAMPLE 6.9. Suppose the required forecast function is that of Exam-
ple 6.8 but with the additional demand that
(i) the seasonal pattern is more complex, being modelled by adding an-

other harmonic of frequency ω∗ = 2π/p∗, and
(ii) at any time t the forecast function converges geometrically to the

second-order seasonal forecast function at a rate λk, where 0 < λ < 1.
Two extra components are required: another canonical cyclic component

and the canonical DLM {1, λ, ·, ·}. Employing superposition, an appropri-
ate canonical DLM is





E2
1
E2
E2


 ,



J2(1) 000 000 000
000 λ 000 000
000 000 J2(1, ω) 000
000 000 000 J2(1, ω∗)


 , ·, ·


 .

In each of these examples the canonical models, corresponding to a stated
forecast function, have been derived. If required, the canonical model may
be transformed to a preferred similar model, by reparametrisation or by
time shifts. The next two examples illustrate the reverse problem of find-
ing the forecast function corresponding to a given TSDLM. Observability
may be checked directly by examining the observability matrix T. Then
the eigenvalues of the system matrix and their multiplicity are identified,
providing the forecast function, which is simply the sum of the forecast
functions associated with each distinct real eigenvalue and each pair of
distinct complex conjugate eigenvalues.

EXAMPLE 6.10. Consider the TSDLM



1
0
0
0


 ,



1 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0


 , ·, ·


 .

The DLM is observable sinceT is a lower triangular matrix of unit elements.
The eigenvalues of G are the solutions of

0 = (λ− 1)(λ3 − 1) = (λ− 1)2(λ− e2πi/3)(λ− e−2πi/3),

giving a real eigenvalue of 1 with multiplicity 2 and a complex conjugate
pair e±2πi/3. So the canonical form of the DLM is that of Example 6.8 with
ω = 2π/3, namely {(

E2
E2

)
,

(
J2(1) 000
000 J2(1, ω)

)
, ·, ·

}
,

for which the forecast function is

ft(k) = at0 + at1k + at2 cos(2πk/3) + at2 sin(2πk/3).
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EXAMPLE 6.11. Now consider the TSDLM {En,Pn, ·, ·}, where n = 2q+1
for some integer q > 0, I is the 2q × 2q identity matrix and

Pn =
(
000 I
1 000 ′

)
.

The DLM is observable since T is the identity matrix. The eigenvalues,
being the solutions of

0 = λn − 1,

are the nth roots of 1, namely eivω for v = 0, . . . , n − 1, with ω = 2π/n.
So G has an eigenvalue 1 and q distinct pairs of complex conjugates e±ivω,
for v = 1, . . . , q. The canonical DLM is

{(1,E′
2, . . . ,E

′
2)

′,block diag [1,J2(1, ω),J2(1, 2ω), . . . ,J2(1, qω)] , ·, ·},

with forecast function

ft(k) = at0 +
q∑

v=1

rtv cos(vωk + φtv),

comprising the sum of the forecast functions of a first-order polynomial and
the q harmonics, or cosine waves, the latter being called the full seasonal
effects model of period n in this case of odd n.

6.3 DISCOUNT FACTORS AND
COMPONENT MODEL SPECIFICATION

6.3.1 Component models
The above design principles lead naturally to DLM structures in block or
component form. The system matrix is block diagonal with individual
sub-matrices providing contributions from simple component models. The
regression vector is partitioned into the catenation of corresponding sub-
vectors. To complete the model specification, three further components
are required namely the sequence of state evolution variance matricesWt,
(t = 1, . . . ); the observational variance sequence Vt, (t = 1, . . . ); and the
initial prior distribution for the state vector and the observational error
variance, given D0. Estimation of the constant observational variance has
already been considered in Chapter 4, and in Chapter 10 it is generalised to
stochastic and time dependent cases. The initial prior settings, and related
questions concerning representation of subjective information of the fore-
caster in terms of probability distributions, are also covered extensively
in later chapters and application-specific contexts. A general point here
is that the component structure of DLMs typically leads to these initial
priors being specified in terms of a collection of priors, one for each of
the sub-vectors of θ0 corresponding to the individual component models,
with independence between components. This section concentrates on the
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specification of the sequence of evolution variance matrices Wt, referring
throughout to the general model of Definition 4.3, with minor, purely tech-
nical changes to cover the case of an unknown observational variance as in
Definition 4.5.
The specification of the structure and magnitude ofWt is crucially im-

portant for successful modelling and forecasting. The values control the
extent of the stochastic variation in the evolution of the model and hence
determine the stability over time. In the system equation,Wt leads to an
increase in uncertainty, or equivalently a loss of information, about the state
vector between times t−1 and t. More precisely, consider the sequential in-
formation updating equations summarised in Section 4.6. At time t−1, the
posterior for the current state vector has variance V[θt−1 | Dt−1] = Ct−1,
which, via the evolution equation, leads to a prior variance for θt given by
V[θt | Dt−1] = GtCt−1G′

t +Wt. Let Pt denote the first term, that is,

Pt = GtCt−1G′
t = V[Gtθt−1 | Dt−1].

Pt may be viewed as the appropriate prior variance in the standard DLM
{Ft,Gt, Vt, 000} with no evolution error at time t, and is the required prior
variance corresponding to an ideal, stable state vector with no stochastic
changes. In this DLM, with Wt = 000, the system equation θt = Gθt−1
is postulated as globally true, whereas the dynamic modeller considers it
only a locally appropriate description. That is, as discussed in Section
3.1, the form of system equation is treated as globally applicable, but the
quantities defining this form are only locally apposite, being modelled, in
routine application, as changing slowly in random fashion. Consequently,
the system variance matrix Wt communicates how durable the model is.
IfWt = 000, the system model is globally reliable, whereas asWt →∞, the
system model, and consequently the DLM itself, becomes totally unreliable
and useless. It may also be said that Wt measures how quickly the value
of the current information Dt decays with k, as k-step ahead predictions
are made. So adding the evolution error ωt to Gtθt−1 truly captures the
modeller’s view of the relationship between the state vectors θt−1 and θt.
Given Dt−1, the effect is to increase the uncertainty from the ideal Pt to
the realistic Rt = Pt +Wt.
There are, however, a number of practical drawbacks associated with a

system variance matrixWt:

(a) it is not invariant to the measurement scale of regressor variables as
specified in Ft;

(b) it is ambiguous: as shown in Section 5.3.4, if n ≥ 2 there exists
an uncountable number of equivalent time shifted DLM’s, differing
only in terms of their operationalWt’s;

(c) effect components (e.g., treatment, block or seasonal) must satisfy
constraints (e.g., sum to 0) and this demands that Wt satisfies
corresponding requirements (e.g., every row and column sums to 0);
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(d) the local durability of the DLM may vary with time (think of the
local validity of a small Taylor series expansion) so generally there
will not be an optimal value ofWt suitable for all times;

(e) most people have great difficulty in directly quantifying the variance
and covariance elements, with the result that these are often grossly
misspecified.

Consequently, practitioners require a better way of viewing the system
evolution. One answer lies in discounting, which, being easy to apply and
understand, overcomes the above difficulties. By definition, a discount
factor δ satisfies the condition 0 < δ ≤ 1. Usually δ is strictly less than
1, but the unit value is retained as a possibility since it relates to static
models.
Chapters 2 and 3 introduced the idea of discounting for a single pa-

rameter. Now consider it for a canonical component model such as the
second-order polynomial DLM {E2,J2(1), V,Wt}. At any time t, given
(θt−1|Dt−1) ∼ N[mt−1,Ct−1], the precision associated with θt−1 is C−1

t−1
and that of Gθt−1 is P−1

t . The latter represents precision associated with
θt were there to be no stochastic change at time t, so that the model is,
in this sense, more “globally” durable. As the model is only locally ap-
propriate, then the actual precision R−1

t is reduced relative to P−1
t . The

discount concept defines this decreased precision directly, via δP−1
t or sim-

ply a proportion δ of the globally durable precision. The implied variance
is

V[θt|Dt−1] = Rt =
1
δ
Pt.

This immediately leads to an identification ofWt, since

Rt = Pt +Wt,

so that

Wt =
1− δ
δ
Pt.

Furthermore, given δ and C0, the whole series {Wt} is identified. Note
that both Rt and Wt have precisely the same internal correlation struc-
ture as Pt. So the above drawbacks (a) to (e) are overcome; δ is invariant to
scale changes in Ft and to parametric transformations. If effect constraints
are initially satisfied by C0, then using the discount approach, they are
satisfied by Rt and Wt. The local durability of the model is easily con-
trolled through the discount factor, which, if required, may be changed
through time. Finally, there are few problems in selecting a discount fac-
tor; for polynomial, seasonal and regression components, δ will lie in (0, 1]
and is typically in the range [0.9, 0.99] for routine analysis. The discount
approach is parsimonious. Admittedly this means that discount models
comprise a subset of DLMs, but very little is lost in terms of a potentially
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improved description while much is gained from the parsimony and sim-
plicity of concept. For example, considering the second-order polynomial
DLM, Harrison (1967) showed that the maximum loss in one step ahead
prediction for typical general settings is an increase in standard deviation
of less than 1%. Obviously, δ depends upon the sampling interval, but in
most applications this and the model are chosen with respect to specific
objectives; thus, if, for example, a low discount factor is applied, it gener-
ally signals an inadequate model and the need to obtain an improvement.
The higher the discount factor the more durable the model, so the aim is
to develop a model with a high discount factor provided it does not im-
pair performance. Routine forecasting will reflect desirable stability while
associated monitoring procedures will be responsible for signaling unusual
events, sudden instabilities, and deteriorations in forecast performance that
have not been anticipated by expert intervention.
The magnitude of variances and covariances is controlled by the discount

factor in just the same way as described for the scalar case in Chapter 2.
The implication is that information decays at the same rate for each of
the elements of the state vector. This is particularly appropriate when
the entire state vector is viewed as subject to change at a constant rate,
without reference to components. This is often a suitable assumption in
practice. Note, however, that the discount approach is not appropriate for
the unusual case of a precisely known parameter θ0 for which C0 = 0 but
R1 �= 0.

6.3.2 Component discounting
In developing early discount methods for trend/seasonal models, Harrison
(1965) showed that single discount models are not always advisable. The
point is that the trend and seasonal components often require different dis-
count factors. This can arise when the seasonal characterisation is more
durable than that of the trend, or if many more parameters are needed to
specify seasonality. Recall the conditional independence structure of Fig-
ure 4.2, indicating model components evolving independently over time.
For a DLM comprising the superposition of several components, the idea
of one discount factor for each component is suggested. This raises the
question as to what defines a model component. A TSDLM might be re-
garded as comprising r different components, one for each of the distinct
real eigenvalues and one for each pair of complex conjugate eigenvalues of
G. Thus, in the model of Example 6.11, r = q+1 components are possible.
However, if this model is being used as a first-order polynomial/seasonal
model, most practitioners will prefer to model it as two operating com-
ponents: the trend component, corresponding to the real unit eigenvalue,
and the seasonal effect component, corresponding to all the complex eigen-
values. Then it is natural to associate one discount factor with trend and
another with seasonality. By contrast, the model of Example 6.11 applied
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to a series arising in a physical sciences context will usually be viewed as
comprising several components based on the collection of harmonics. The
lower frequency harmonics may be much more durable and represent phys-
ical structure in the underlying process, and so require a higher discount
factor than that appropriate for the high frequency harmonics, which usu-
ally reflect interference and extraneous noise. The low order harmonics
may then be modelled individually as sub-model components, or grouped
together as one component but separate from the higher frequency noise.
Similar comments apply to regression models, as discussed in Section 6.2.2
(5). Here the practitioner may group a number of independent regres-
sor variables together and treat them as a separate operating component.
These comments should be borne in mind throughout; when we refer to a
model component, we are usually talking about an operationally defined
component or a sub-model.
As in Theorem 6.4, consider a DLM comprising the superposition of

h ≥ 1 sub-models Mi with state vectors θit, evolution errors ωit, and of
dimensions ni, where

∑h
i=1 ni = n. For each i = 1, . . . , h, write

Mi : {Fit,Git, Vit,Wit} .
The DLM is thus specified by the state vector θt and quadruples

{Ft,Gt, Vt,Wt} ,
where

Ft =



F1t
F2t
·
·
Fht


 , Gt =



G1t 000 000 . . . 000
000 G2t 000 . . . 000
000 000 G3t . . . 000
...

...
...

. . .
...

000 000 000 . . . Ght


 ,

θt =




θ1t
θ2t
·
·

θht


 , Wt =



W1t 000 000 . . . 000
000 W2t 000 . . . 000
000 000 W3t . . . 000
...

...
...

. . .
...

000 000 000 . . . Wht


 .

At time t, the variance matrix

Pt = V[Gtθt−1 | Dt−1] = GtCt−1G′
t

represents uncertainty about Gtθt before the addition of the evolution
noise. Denote the diagonal block corresponding to the ith sub-model by
Pit, where

Pit = V[Gitθi,t−1 | Dt−1], (i = 1, . . . , h).

Although Pt will not generally be a block diagonal matrix, the block com-
ponents Pit individually measure information about the sub-model state
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vectors. Now, adding the evolution noise ωt with block diagonal variance
matrix Wt above, the prior variance matrix Rt for θt has off-diagonal
blocks identical to those of Pt, but diagonal blocks

Rit = Pit +Wit, (i = 1, . . . , h).

The discount concept now applies naturally to component sub-models, as
follows.

Definition 6.1. In the above framework, let δ1, . . . , δh be any h discount
factors, (0 < δi ≤ 1; i = 1, . . . , h), with δi being the discount factor
associated with the component model Mi. Suppose that the component
evolution variance matricesWit are defined as in Section 6.3.1 above, via

Wit =
1− δi
δi
Pit, (i = 1, . . . , h).

Then the model is referred to as a component discount DLM.

The effect of component discounting is to model the decay in value of the
current information at a possibly different rate for each component model.
The modeller chooses the discount factors, some of which may, of course,
be equal, to reflect belief about the durability, or stability, over time of the
individual component models. Note that from an operational point of view
in updating, the evolution from Pt to Rt need not make reference to the
constructed Wt sequence. It is simply achieved by taking the component
covariances as unchanged and dividing the block diagonal elements by the
appropriate discount factors, so that for each i,

Rit =
1
δi
Pit.

Block discounting is our recommended approach to structuring the evolu-
tion variance sequence in almost all applications. The approach is parsi-
monious, naturally interpretable, and robust. Sometimes a single discount
factor applied to an entire model viewed as a single component will be
adequate, but the flexibility remains to model up to n separate compo-
nents, each with individual, though not necessarily distinct, discount fac-
tors. Importantly, the derivedWt matrix is naturally scaled, the discount
factors being dimensionless quantities on a standardised scale. With or
without variance learning, the discount construction applies directly. The
following section describes some practical features of the use of component
discount models. The basic ideas underlying multiple discounting have
a long history, starting with Harrison (1965), but this specific approach
was introduced in Ameen and Harrison (1985), described and developed in
practical detail in Harrison and West (1986, 1987), Harrison (1988), and
implemented in the BATS package of West, Harrison and Pole (1987) and
Pole, West and Harrison (1994). Some theoretical variations are considered
in Section 6.4 below, although they are of restricted practical interest.
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6.3.3 Practical discount strategy
Discounting should be viewed as an elegant way of coping with the system
evolution variance seriesWt. Of course, as far as one-step ahead forecasts
are concerned, there is no need to refer toWt explicitly since Rt = Pt/δ.
Looking further ahead than this single time point, it is not the case that
repeat application with the same discount factor will produce the rele-
vant sequence of variance matrices. For example, with a single component
model having discount factor δ, repeated application would lead to the
use of δk as a discount factor k-steps ahead with Rt(k) = GkCtG′k/δk.
This implies an exponential decay in information, and this is not strictly
consistent with the DLM, in which the information decays arithmetically
through the addition of future evolution error variance matrices. Hence,
though perfectly coherent one-step ahead, the discount approach must be
applied with thought in extrapolating ahead (and also, therefore, when en-
countering missing values in the time series). Ameen and Harrison (1985)
discuss this point, and use one-step discounting from t = 0 to determine the
implied sequenceWt for all future times t. This is possible, since given the
other model components, these matrices are simply functions of quantities
assumed known initially. It can be seen that this is also possible in models
where the observational variance is being estimated.
Since |Wt| is usually small relative to Vt, an alternative, more flexi-

ble, less computationally demanding, practical approach is suggested in
Harrison and West (1986). This simply assumes that the one-step ahead
evolution variance matrix is appropriate for extrapolation into the future,
determining a constant step-ahead variance matrix. The resulting discount
procedure is then as follows.

(1) Given (θt|Dt), calculateWt+1 = Pt+1(1− δ)/δ.
(2) In forecasting k-steps ahead, adopt the conditionally constant vari-

ance

V[ωt+k|Dt] =Wt(k) =Wt+1, (k = 1, . . . ).

Thus, step-ahead forecast distributions will be based on the addition
of evolution errors with the same variance matrixWt+1 for all k.

(3) The observation Yt+1 allows the posterior (θt+1|Dt+1) to be derived
from which Pt+2 and thus Wt+2 are deduced. Thus forecasting
ahead from time t+ 1, we have

V[ωt+k|Dt+1] =Wt+1(k) =Wt+2, (k = 1, . . . ).

(4) Proceed in this manner at time t+ 2, and so on.

The computational simplicity of this strategy is evident; at any time, a
single evolution variance matrix is calculated and used k-steps ahead for
any desired k. Note an important modification of the standard DLM anal-
ysis. Hitherto, the evolution errors were assumed to have variance ma-
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trices known for all time, and also independent of the history of the se-
ries. With the discount strategy this assumption has been weakened and
modified to allow the variance matrices in the future to depend on the
current state of information. Mathematically, the assumption that for any
k = 1, . . . , V[ωt+k|Dt] = V[ωt+k|D0], has been revised; it is now the case
that V[ωt+k|Dt] =Wt(k) depends on t in addition to t+ k. For example,
at time t, the 2-step ahead variance matrix is

V[ωt+2|Dt] =Wt(2) =Wt+1.

Obtaining a further observation, this is revised to

V[ωt+2|Dt+1] =Wt+1(1) =Wt+2.

This modification is straightforward, and has no complicating consequences
in practice. In updating and retrospection, the coherent value Wt as de-
rived based onDt−1 is used in the relevant updating and filtering equations.
As time progresses, the future evolution variances are revised, a process
that is interpretable as a sequence of successive interventions.

6.4 FURTHER COMMENTS ON DISCOUNT MODELS †

From an applied viewpoint, the above framework provides a complete
operational approach to structuring the evolution variance matrices of all
DLMs. The use of single discount ideas to structure forecasting models
based on TSDLMs is discussed in Brown (1962), Harrison (1965), Godol-
phin and Harrison (1975), and Harrison and Akram (1983). The first ex-
tension to multiple discount factors is to be found in Harrison (1965) and
is discussed in Whittle (1965). The general extension to multiple discount
factors for components described above is generally appropriate outside the
restricted class of TSDLMs. Applications can be found in Ameen and Har-
rison (1985), West and Harrison (1986), Harrison and West (1986, 1987),
with implementation in West, Harrison and Pole (1987) and in Pole, West,
and Harrison (1994). It can be seen that these discount factors play a
role analogous to those used in non-Bayesian point forecasting methods,
in particular to exponential smoothing techniques (Ledolter and Abraham
1983, Chapters 3 and 4, for example), providing interpretation and mean-
ing within the DLM framework. Some further theoretical discussion of
discount models in general is now given.
Questions arise concerning the limiting behaviour of discount TSDLMs

with constant triples {F,G,V}. Consider the case of a single discount
model in which for the specified and constant discount factor δ, it follows
that

C−1
t = δP−1

t + FV−1F′.

†This section is of theoretical interest only, and may be omitted without loss
on a first reading.
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In cases in which G is non-singular, we then have

lim
t→∞

C−1
t =

∞∑
v=0

δvG′−vFV−1F′G−v.

Based on this representation, Ameen and Harrison (1983) prove various
limiting results. In particular, the following result, taken from that refer-
ence, is key.

Theorem 6.6. Consider the canonical TSDLM with F = (1, . . . , 1)′ and
G = diag (λ1, . . . , λn), where the λi are distinct, real or complex. Suppose
the single discount strategy is applied with a discount factor δ, and define
ui = δ1/2/λi for each i. Then if δ < min{|λ2

i |, i = 1, . . . , n}, the following
limits exist:

(1) limt→∞ Qt = V
∏n

i=1 u
−2
i .

(2) limt→∞At = (A1, . . . , An)′, where for i = 1, . . . , n,

Ai = (1− u2
i )
∏
j �=i

(1− uiuj)/(1− ui/uj).

(3) limt→∞C−1
t = KV −1 where K has elements Kij = 1/(1−uiuj) for

i, j = 1, . . . , n.

Some features of this kind of result are discussed in specific models in
later Chapters, in particular Chapter 7, and have already been noted in
the first-order polynomial model in Chapter 2. In practice, for more com-
plex models using multiple discount factors applied to components as in
the preceding sections, the updating equations are observed to converge to
stable, limiting forms, although theoretical results for such models are (at
time of writing) unavailable. It is conjectured that in any closed model
{F,G, V,Wt} withWt structured in block diagonal form as in Definition
6.1, the updating equations have stable limiting forms, withCt, Rt, At and
Qt converging (rapidly) to finite limits C, R, A and Q. If this is so, then
Wt also has a stable limiting form being based on C and the fixed discount
factors. Thus, in the limiting forms, component discount TSDLMs are es-
sentially standard DLMs with constant, block diagonal evolution variance
matrices. The limiting representations of the observation series in gener-
alised ARIMA form are then deducible from Section 5.5.
Some support for this conjectured limiting behaviour is provided in the

work of Ameen and Harrison (1985) when considering alternatives to mul-
tiple discounting. These alternatives are very similar to component dis-
counting, defining matricesWt based on possibly several discount factors.
Consider the n-dimensional DLM {Ft,Gt, Vt,Wt}. Their approach in-
volves the n× n diagonal discount matrix ∆, defined by

∆ = diag(δ−1/2
1 , . . . , δ−1/2

n ).
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Then, given the posterior variance matrix Ct−1 at time t− 1, two possible
alternatives to component discounting define the prior variance matrix Rt

at time t by either of the forms

(a) Rt = ∆GtCt−1G′
t∆,

(b) Rt = Gt∆Ct−1∆G′
t.

The above reference discusses scheme (a) and derives theoretical results
about the stable limiting forms of updating equations when F, G and V
are constant over time. In particular, limiting results for Ct, At, Qt and
Wt show that convergence is typically rapid, so that the limiting form of the
model is that of a standard, constant TSDLM {F,G, V,W}. Following this,
Theorem 5.6 applies to deliver the limiting representation of the observation
and error series as

lim
t→∞

{
n∏

i=1

(1− λiB)Yt −
n∏

i=1

(1− ρiB)et

}
= 0,

where ρ1, . . . , ρn are the eigenvalues of (I−AF′)G.
These models provide Bayesian analogues of standard point forecasting

techniques based on the use of multiple discount factors, such as multiple
exponential smoothing (Abraham and Ledolter 1983, Chapter 7; McKenzie
1974, 1976). Using either (a) or (b), note the following.

(1) Each method impliesWt = Rt−GtCt−1G′
t. While obviously sym-

metric, and usually positive definite, it is theoretically possible that
this matrix is not positive definite, and therefore not a valid evo-
lution variance matrix. Component discounting has no such draw-
back.

(2) Unlike component discounting,Wt will not generally be block diag-
onal. Consequently, the desirable conditional independence struc-
ture of Figure 4.2 is lost.

(3) If the discount factors coincide, δi = δ for i = 1, . . . , n, then in
both cases, Rt = GtCt−1G′

t/δ and the model is in fact a single
component discount DLM.

6.5 EXERCISES
(1) Construct observable DLMs {F,G, ·, ·} with forecast functions of

the following forms:
(a) ft(k) = at1λ

k
1 + at2λ

k
2 where λ1λ2 �= 0 and λ1 �= λ2.

(b) ft(k) = at1 + at2k + at3k
2 + at4k

3.
(c) ft(k) = atj , where j = k|4, (j = 1, . . . , 4).
(d) ft(k) = atk for k = 0, 1, 2 and 3, but ft(k) = 0 for k > 3.
(e) ft(k) = at1 + at2k + at3λ

k + at4λ
k cos(kω) + at5λ

k sin(kω) for
some λ and ω, where ω is not an integer multiple of π.
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(f) ft(k) = at1 + at2k + at3λ
k
1 + at4λ

k
2 cos(kω) + at5λ

k
2 sin(kω) for

some λ1, λ2 and ω, where ω is not an integer multiple of π.
(2) Construct an observable DLM for which the forecast function com-

prises a quadratic polynomial about which there is additive quar-
terly seasonal variation.

(3) Design an observable DLM {F,G, ·, ·} such that the resultant fore-
cast function has the form

ft(k) =
3∑

v=1

fvt(k),

where, with at1, . . . , at6 known at time t,

f1t(k) = (at1 + at2k)λk,

f2t(k) = at3 cos(kπ/2) + at4 sin(kπ/2),

f3t(0) = at5,

f3t(1) = at6,

and

f3t(k) = 0, k ≥ 2.

(4) You construct a canonical DLM{(
1
1

)
,

(
1 0
0 λ

)
, ·, ·

}

with λ = 0.9, state vector θt = (θ1t, θ2t)′, and initial prior

(θ0 | D0) ∼ N
[(

100
−50

)
,

(
100 0
0 25

)]
.

(a) Obtain the forecast function, showing that it has the form of a
modified exponential.

(b) Interpret the parameters. For operation you wish to obtain an
equivalent DLM{(

1
0

)
,

(
1 1
0 λ

)
, ·, ·

}

with parameter φt = (φ1t, φ2t)′ = Hθt.
(c) Obtain the matrix H and the prior (φ0 | D0).
(d) Interpret the new parameters.

(5) Let Yt be a Gaussian time series such that Yt − 0.9Yt−1 = at −
0.72at−1, where at ∼ N[0, 1] independently. Represent this process
as a TSDLM.

(6) Consider three independent random time series Xt, Zt and Ut gen-
erated by the following processes, in which B is the backward shift
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operator:

(1−B)2Xt = (1− 0.95B)2at, at∼ N[0, σ2
a],

(1−
√
3B +B2)Zt = (1− 0.9

√
3B + 0.81B2)bt, bt∼ N[0, σ2

b ],

Ut = (1− 0.5B)ct, ct∼ N[0, σ2
c ].

Let Yt = Xt+Zt+Ut. Construct a canonical observable pair {F,G}
of a constant TSDLM for Yt.

(7) Many observable discount TSDLMs {F,G, V,Wt}, such as polyno-
mial/seasonal models, are such that the eigenvalues λi of G lie on
the unit circle, i.e., |λi| = 1. Consider a constant single discount
model with discount factor 0 < δ < 1. As usual, the model has
dimension n and µt = F′θt.
(a) Using the result of Theorem 6.6 or otherwise, prove that

lim
t→∞

Qt = V/δn.

(b) The total adaptation at time t may be defined as At where

E[µt|Dt] = E[µt|Dt−1] +Atet.

Prove that

lim
t→∞

At = 1− δn.

(c) Results (a) and (b) are important, giving insight into how a
single discount factor is intimately related to the dimension
of the DLM in terms of the number of elements, n, in the
parameter vector. Think about this and its implications.

(8) In a general DLM, suppose thatGt is non-singular for all t. Suppose
further that Wt is defined using a single discount factor δ so that
Rt = GtCt−1G′

t/δ for all t, (0 < δ < 1).
(a) Show that Bt−k = Ct−kG′

t−k+1R
−1
t−k+1 = δG−1

t−k+1 for any
k > 0.

(b) Hence show that the filtering recurrence equations in Theorem
4.4 simplify to

at(−k) = (1− δ)mt−k + δG−1
t−k+1at(−k + 1)

and

Rt(−k) =
(1− δ)Ct−k + δ2G−1

t−k+1Rt(−k + 1)(G′
t−k+1)

−1.

(b) Comment on the forms of these equations, with particular ref-
erence to the implied computational demands relative to those
of the original, general recurrences.

(9) In the framework of the previous example, suppose that Gt = I,
the n× n identity matrix, for all t, so that the model is a multiple
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regression DLM as in Definition 3.1 of, or the important first-order
polynomial DLM.
(a) Show that Bt−k = δI and write down the simplified filtering

equations corresponding to Theorem 4.5 (i) and (ii).
(b) Show also that

at(−k) = (1− δ)
k−1∑
v=0

δvmt−k+v + δkmt

and

Rt(−k) = (1− δ)
k−1∑
v=0

δ2vCt−k+v + δ2kCt.

(c) Now, for the following question parts, concentrate on the con-
stant first-order polynomial DLM {1, 1, V,W}. For any fixed
k > 0 show that

lim
t→∞

Rt(−k) = C(1 + δ2k+1)/(1 + δ),

where

C =
(√

1 + 4V/W − 1
)
W/2.

(d) In the framework of (c) above, show that with Dt(−k) = Dt −
Yt+k, the jackknife distribution of Theorem 4.9 is

(µt−k | Dt(−k)) ∼ N[at,k, Rt,k],

where writing At(−k) = Rt(−k)/(V −Rt(−k)),

at,k = at(−k)−At(−k)(Yt−k − at(−k)),
Rt,k = At(−k)V.

Further, prove that

lim
t,k→∞

At(−k) = (1− δ)/2δ.

(10) Consider the discount DLM {1, λ, 1,Wt} with discount factor δ so
that Wt = λ2Ct−1(δ−1 − 1).
(a) Prove that if 0 < δ < λ2, then

lim
t→∞

Ct = C = 1− δ/λ2,

and obtain the corresponding limiting values of Rt, Qt and At.
(b) What is the limiting value of Ct when δ ≥ λ2?
(c) Using mt = λmt−1 + Aet, the limiting form of the updating

equation, show that

Yt − λYt−1 = et − (1− δ/λ)et−1.
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Compare this result with the corresponding limiting result in
the model {1, λ, 1,W} obtained by applying Theorem 5.6.

(d) Consider the implications of these results for setting component
discount factors in relationship to component eigenvalues.

(11) Consider the model{(
1
1

)
,

(
λ1 0
0 λ2

)
, 1,Wt

}
for any distinct, non-zero values λ1 and λ2. Suppose a single dis-
count model so that Wt = GCt−1G′(δ−1 − 1). Let Kt = C−1

t for
all t.
(a) Show that the updating equation forCt can be written in terms

of precision matrices as

Kt = δG−1Kt−1G−1 + FF′.

(b) Writing

Kt =
(
Kt1 Kt3
Kt3 Kt2

)
,

deduce the recurrence equations

Kt1 = 1 + δKt−1,1/λ
2
1,

Kt2 = 1 + δKt−1,2/λ
2
2,

Kt3 = 1 + δKt−1,3/λ1λ2.

(c) Deduce that as t increases, Kt converges to a limit if δ <
min{λ2

1, λ
2
2}.

(d) Assuming this to hold, deduce expressions for the elements of
the limiting matrix,K, say, as functions of δ, λ1 and λ2. Deduce
the limiting variance matrix C = K−1.

(e) Suppose that δ = 0.7, λ1 = 0.8 and λ2 = 0.9. Calculate K and
deduce the limiting values of Ct, Rt, Qt and At.

(12) Show that the results of the previous example apply in the case
of complex eigenvalues e±iω for some real ω that is not an integer
multiple of π.

(13) Consider a single discount normal DLM {F,G, V,Wt} in which by
definition,Wt is implicitly defined by

Rt = δ−1GCt−1G′ = GCt−1G′ +Wt.

Show that the relationship between the distributions p(θt | Dt−1)
and p(θt−1 | Dt−1) is exactly as determined by application of the
following “power discount” procedure.
Write ft−1(·) for the density function of (θt−1|Dt−1), and de-

fine the density function p(θt|Dt−1) as ctft−1(·)δ for an appropriate
normalising constant ct. This “power discount” procedure may be
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extended to non-normal, first-order polynomial dynamic models as
in Smith (1979). See the final two exercises of Section 14.6 for key
examples of this.

(14) Discount weighted regression (Ameen and Harrison 1984), adopts
a forecast function ft(k) = F′

t+kmt, where mt is that value of θ
minimising the discounted sum of squares

Sδ(θ) =
t−1∑
i=0

δi(Yt−i − F′
t−iθ)

2

for some given discount factor δ. Define the n-vector,

ht =
t−1∑
i=0

δiFt−iYt−i = FtYt + δht−1,

and the n-square matrix

Ht =
t−1∑
i=0

δiFt−iF′
t−i = FtF′

t + δHt−1.

Write et = Yt − F′
tmt−1, and assuming t ≥ n and that Ht is of full

rank, Ct = H−1
t .

(a) Show that

∂S

∂θ
= −2(ht −Htθ),

∂2S

∂θ∂θ′ = 2Ht,

and so deduce

mt = H−1
t ht = Ctht.

(b) Writing Rt = Ct−1/δ and At = H−1
t Ft, show that

mt =mt−1 +Atet.

(c) Show that

Ct = (R−1
t + FtF′

t)
−1 = Rt −AtQtA′

t

and

Qt = 1 + F′
tRtFt.

(d) Compare these results with the recurrence relations for the
single discount DLM {Ft, I, V,Wt} and draw your conclusion.
Note that ordinary linear regression is the case δ = 1.



CHAPTER 7

POLYNOMIAL TREND MODELS

7.1 INTRODUCTION
Polynomial models find wide use in time series and forecasting as they do
in other branches of applied statistics, such as static regression and experi-
mental design. In time series these models prove useful in describing trends
that are generally viewed as smooth developments over time. Relative to
the sampling interval of the series and the required forecast horizons, such
trends are usually well approximated by low-order polynomial functions of
time. Indeed, a first- or second-order polynomial component DLM is often
quite adequate for short-term forecasting, either on its own or in combina-
tion with seasonal, regression and other components. Chapter 2 introduced
the first-order polynomial model, which although very simple, is applied
more than any other DLM. Next in practical importance is the second-order
DLM, sometimes referred to as the linear growth model, which is the sub-
ject matter of much of this chapter. Higher-order polynomial models are
also discussed, though it is rare to find applications employing polynomial
DLMs of order greater than three (corresponding to quadratic growth).
The structure of polynomial models is discussed in Harrison (1965, 1967),
and theoretical aspects explored in Godolphin and Harrison (1975). See
also Abraham and Ledolter (1983, chapter 3).
Polynomial DLMs are a subset of the class of time series DLMs, or TS-

DLMs, defined in Chapter 4 as those models whose n× 1 regression vector
F and n× n system matrix G are constant for all time.

Definition 7.1. Any observable TSDLM that for all t ≥ 0 has a forecast
function of the form

ft(k) = at0 + at1k + · · ·+ at,n−1k
n−1 , k ≥ 0,

is defined as an nth-order polynomial DLM.
From Section 5.3, it follows that the system matrix G of an nth-order

polynomial DLM has a single unit eigenvalue of multiplicity n. It is stressed
that with this definition, G has no other eigenvalues, in particular, no zero
eigenvalues. Consequently, following Section 5.4,

(1) A DLM is an nth-order polynomial model if and only if it is similar
to the canonical model

{En,Jn(1), · , ·}.
(2) Any DLM equivalent to the constant model {En,Jn(1), V,W} is a

constant nth-order polynomial DLM.

This chapter concentrates on the highly important second-order model,
elaborating its structure and properties in isolation from other components.
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The primary objectives are to familiarise the reader with the nature of
the sequential updating equations, as was done in Chapter 2 for the first-
order model, and to relate this DLM to other popular applied forecasting
methods and concepts. Constant DLMs, and in particular constant linear
growth models, are central to this discussion and are considered in detail.
Throughout the chapter, the observational variance sequence Vt is assumed
known. This is purely to simplify discussion: the general variance learning
procedure of Section 4.5 applies without affecting the primary features of
the updating equations for the parameters and forecasts conditional upon
known Vt.
Consider the canonical model {En,Jn(1), ·, ·}. For reasons that will be

made clear below, denote the state vector of this model by λt rather than
the usual θt, and the evolution error by ∂λt rather than ωt. Then, with

λ′
t = (λt1, . . . , λtn)

and

∂λ′
t = (∂λt1, . . . , ∂λtn),

the model equations can be written as

Observation: Yt = λt1 + νt,

System: λtj = λt−1,j + λt−1,j+1 + ∂λtj , (j = 1, . . . , n− 1),

λtn = λt−1,n + ∂λtn.

Here µt = λt1 is the level at time t, that between times t− 1 and t changes
by the addition of λt−1,2 plus the noise ∂λt1. λt−1,2 represents a systematic
change in level, that itself changes by the addition of λt−2,3 plus noise.
Proceeding through the state parameters for j = 1, . . . , n − 1, each λtj
changes systematically via the increment λt−1,j+1, and also by the addition
of the noise term ∂λtj . The nth component λtn changes only stochastically.
Although this is the canonical model form, interpretation of parameters
leads us to prefer working with the similar model

{En,Ln, · , ·},
where Ln is the n× n upper triangular matrix of unit elements,

Ln =



1 1 1 . . . 1
0 1 1 . . . 1
0 0 1 . . . 1
...

...
...

. . .
...

0 0 0 . . . 1


 .

The reader can easily verify that this model is similar to the canonical
nth-order polynomial DLM. As usual, denote this model’s state parameter
and evolution error by

θt = (θt1, . . . , θtn)′
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and

ωt = (ωt1, . . . , ωtn)′.

Then the model equations are

Observation: Yt = θt1 + νt,

System: θtj = θt−1,j +
n∑

r=j+1

θt−1,r + ωtj , (j = 1, . . . , n− 1),

θtn = θt−1,n + ωtn.

In this representation, ignoring the evolution noise terms, the state pa-
rameters can be thought of as “derivatives” of the mean response function
µt = θt1. For each j = 1, . . . , n, θtj represents the jth derivative of the
mean response. At time t, the expected future trajectory of θtj is a poly-
nomial of degree n− j.
The difference between this and the canonical model lies simply in a time

shift in the definition of the elements of the state vector. In this represen-
tation, the state parameters have the natural interpretation as derivatives
at time t. In the canonical model, the higher-order terms in the state vec-
tor play the same role but are shifted back to time t − 1. This is most
easily seen by setting the evolution errors to zero in each model, when the
parameters are related according to

λt1 =θt1,

λtj =θtj + θt,j+1, (j = 2, . . . , n− 1),

λtn =θtn.

As previously pointed out in Section 5.3.4, for n ≥ 2, unless carefully struc-
tured, the evolution error vector ωt introduces ambiguity, confusing para-
metric interpretation. This arises since in general, the parametric elements
may be arbitrarily correlated through the variance matrix Wt, although
the basic notion of them as derivatives of the mean response remains sound.
A class of models with naturally interpretable and appropriate variance

structure is defined by

Observation: Yt = θt1 + νt,

System: θtj = θt−1,j + θt,j+1 + ∂θtj , (j = 1, . . . , n− 1),

θtn = θt−1,n + ∂θtn,

∂θt ∼ N[000,diag(Wt1, . . . ,Wtn)].

In such a model the “derivatives” θtj change stochastically between times
t− 1 and t via the increments θt,j+1 and also by those affecting the higher-
order derivatives ∂θtk, j < k ≤ n. With

∂θt ∼ N[000,diag(Wt1, . . . ,Wtn)]
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and

ωt = Ln∂θt

so that

ωt ∼ N[000,Wt] with Wt = Lndiag(Wt1, . . . ,Wtn)L′
n,

the DLM assumes its usual form, as follows.

Definition 7.2. An nth-order polynomial growth DLM is any model
of the form

{En,Ln, Vt ,Wt},

where

Wt = Lndiag(Wt1, . . . ,Wtn)L′
n.

The distinguishing features of polynomial growth, rather than simply
polynomial, models are that

(a) the system matrix is not in canonical form as the alternative Ln

matrix is used;
(b) the evolution variance matrix has the special form consistent with

the definition of ωt = Ln∂θt, where the elements of ∂θt are uncor-
related.

The special cases n = 2 and n = 3 are now explored in detail.

7.2 SECOND-ORDER POLYNOMIAL MODELS
7.2.1 The general model form
At any time t, a second-order polynomial DLM has a straight line forecast
function of the form

ft(k) = at0 + at1k. (7.1)

An alternative representation is

ft(k) = ft(0) + [ft(1)− ft(0)]k,

thus identifying the coefficients {at0, at1} in terms of the first two values of
the forecast function.
The canonical DLM takes the form{(

1
0

)
,

(
1 1
0 1

)
, · , ·

}
. (7.2)

Notice that in this special case of n = 2, J2(1) = L2, so that the similar
model with system matrix L2 coincides with the canonical model. With
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parametrisation

θt =
(
θt1
θt2

)
=
(
µt

βt

)
,

the usual DLM representation is

Observation: Yt = µt + νt, (7.3a)

System: µt = µt−1 + βt−1 + ωt1, (7.3b)

βt = βt−1 + ωt2, (7.3c)

(θt−1 | Dt−1) ∼ N[mt−1,Ct−1],

where

ωt = (ωt1, ωt2)′ ∼ N[0,Wt], νt ∼ N[0, Vt],

mt−1 =
(
mt−1
bt−1

)
and Ct−1 =

(
Ct−1,1 Ct−1,3
Ct−1,3 Ct−1,2

)
.

Following (7.1), the forecast function is ft(k) = mt+kbt. As usual, µt is the
series level and now βt−1 represents incremental growth. As mentioned in
the introduction, the observational variance is assumed known. Otherwise,
the normal posterior distributions are simply replaced by Student T forms.

7.2.2 Updating equations
The general theory of Section 4.3 is used to provide the updating equations
for this model in explicit terms rather than in vector and matrix form.
Write the evolution variance matrix as

Wt =
(
Wt1 Wt3
Wt3 Wt2

)
.

The sequential analysis has the following components.

(1) Writing

Rt1 = Ct−1,1 + 2Ct−1,3 + Ct−1,2 +Wt1,

Rt2 = Ct−1,2 +Wt2,

and

Rt3 = Ct−1,2 + Ct−1,3 +Wt3,

we have (θt | Dt−1) ∼ N[at,Rt] where

at =
(
mt−1 + bt−1

bt−1

)
and Rt =

(
Rt1 Rt3
Rt3 Rt2

)
.

(2) The one-step forecast distribution is

(Yt | Dt−1) ∼ N[ft, Qt]
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with

ft = ft−1(1) = mt−1 + bt−1

and

Qt = Rt1 + Vt.

(3) The adaptive vector is given by

At =
(
At1
At2

)
=
(
Rt1/Qt

Rt3/Qt

)
.

(4) Writing et = Yt − ft, the posterior at time t is

(θt | Dt) ∼ N
[(

mt

bt

)
,

(
Ct1 Ct3
Ct3 Ct2

)]
,

where

mt = mt−1 + bt−1 +At1et,

bt = bt−1 +At2et,

Ct1 = At1Vt,

Ct2 = Rt2 −At2Rt3,

Ct3 = At2Vt.

(5) It is of some interest to note the relationships

Qt = Vt/(1−At1) and Ct =
(
At1 At2
At2 ct

)
Vt,

where ct = (rt −A2
t2)/(1−At1), with rt = (Ct−1,2 +Wt2)/Qt.

(6) The updating equations lead to an alternative representation of the
observation series in terms of past observations and forecast errors.
Use of this representation provides easy comparison of the Bayesian
model with alternative forecasting techniques. The three identities

Yt = mt−1 + bt−1 + et,

mt = mt−1 + bt−1 +At1et,

bt = bt−1 +At2et

lead directly to the second-order difference equation

Yt − 2Yt−1 + Yt−2 = et − ψt1et−1 + ψt2et−2

where

ψt1 = 2−At−1,1 −At−1,2
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and

ψt2 = 1−At−2,1.

This representation is a consequence of adopting the model, however
inappropriate it may be for any particular series.

7.2.3 Constant models and limiting behaviour
Denote the standardised constant second-order polynomial DLM as

M =
{(

1
0

)
,

(
1 1
0 1

)
, 1, W =

(
W1 W3
W3 W2

)}
.

Note that the observational variance is V = 1. This loses no generality
since for a general value V , W, and all variances of linear functions are
simply scaled by the constant factor V . Further, if V is unknown, the
standard variance learning procedure is applied. From Section 5.5, the
updating equations have a stable limiting form, that is typically rapidly
approached, as follows.

Theorem 7.1. For the second-order polynomial constant DLM, M , writ-
ing A = (A1, A2)′,

lim
t→∞
{At,Ct,Rt, Qt} = {A,C,R, Q}

exists such that

(1) (1−A1)Q = 1;
(2) A2

2Q =W2;
(3) (A2

1 +A1A2 − 2A2)Q =W1 −W3;
(4) with r = A1A2Q−W3 +W2 and c = (r −A2

2)/(1−A1),

C =
(
A1 A2
A2 c

)
and R =

(
A1 A2
A2 r

)
Q;

(5) the feasible region for A is that satisfying

0 < A1 < 1, 0 < A2 < 4− 2A1 − 4(1−A1)1/2 < 2.

Proof. Theorem 5.5 shows that the limit exists. Write

F = E2, G =
(
1 1
0 1

)
and R =

(
R1 R3
R3 R2

)
.

ThenA = RE2Q
−1, so that R1 = A1Q and R3 = A2Q as in part (4). Next,

Q = E′
2RE2+1 = R1+1 = A1Q+1 and (1) follows. SinceR = GCG′+W

and C = R−AA′Q, eliminating C,

R−G−1R(G′)−1 = AA′Q−G−1W(G′)−1,
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leading to(
2R3 −R2 R2

R2 0

)
=(

A2
1 A1A2

A1A2 A2
2

)
Q−

(
W1 − 2W3 +W2 W3 −W2

W3 −W2 W2

)
.

Equating components and rearranging leads to R2 = A1A2Q −W3 +W2,
A2

2Q =W2, and (A2
1+A1A2−2A2)Q =W1−W3, so completing the proofs

of statements (1) to (4).
For the feasible region result (5): 0 < A1 < 1 since A1 = R1/Q > 0 and

1−A1 = Q−1 > 0. Define a = Q(A2
1+A1A2−2A2). Then |W| ≥ 0 implies

W1W2−W 2
3 ≥ 0. Substituting W2 = A2

2Q from (2) and W3 =W1−a from
(3) leads toW 2

1 −W1(A2
2Q+2a)+a2 ≤ 0. At the boundary, the roots of this

quadratic inW1 must be real valued, so (A2
2Q+2a)

2−4a2 ≥ 0. This reduces
to A2

2Q + 4a ≥ 0 so that on substituting for a, we obtain the quadratic
A2

2 − 4A2(2 − A1) + 4A2
1 ≥ 0. For this to be true, A2 must lie below the

lower root of this quadratic, and it follows that A2 ≤ 4−2A1−4(1−A1)1/2.

�

Following note (6) of the previous section, the limiting representation of
the observations in terms of forecast errors is given by

Yt − 2Yt−1 + Yt−2 = et − ψ1et−1 + ψ2et−2,

where ψ1 = limt→∞ ψt1 = 2−A1 −A2 and ψ2 = limt→∞ ψt2 = 1−A1.

7.2.4 Single discount models
Often in practice the discount concept will be applied to the trend DLM
either when it stands alone or when it is a component of a larger model. The
discount factor then defines the evolution variance matrices, as described
for general block models in Section 6.3. Of course this leads to a non-
constant model, although the practical differences are small. The following
definition is simply a special case of the class of single discount DLMs of
Section 6.3.

Definition 7.3. For any discount factor δ, 0 < δ ≤ 1, a single discount,
second-order polynomial growth DLM is any second-order model in which
for all t,

Wt =
1− δ
δ
L2Ct−1L′

2. (7.4)

From a practical viewpoint, this is the most important class of second-
order models. Note that a single discount factor is applied to the trend
model as a whole, consistent with the ideas underlying component models.
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However, this does not mean that different discount factors cannot be ap-
plied to the two model elements, µt and βt, separately if desired, or indeed
that some other form of evolution variance sequence be used. There may
be isolated cases when such alternative approaches are suitable, but for the
vast majority of applications, a single trend discount factor will be satis-
factory. As shown in Harrison (1967), alternatives have very little to offer
in terms of increased forecast accuracy while losing the simple discount
interpretation. The single discount model generally converges rapidly to
the constant DLM {E2,J2(1), 1,W}, with W = L2CL′

2(1 − δ)/δ. The
corresponding limiting value of C is easily derived according to

C−1 = δL′
2
−1C−1L−1

2 +E2E′
2.

The limiting values of the elements in the updating equations are

Q =
1
δ2
, C =

(
1− δ2 (1− δ)2
(1− δ)2 (1− δ)3/δ

)
,

A =
(

1− δ2
(1− δ)2

)
and R =

(
1− δ2 (1− δ)2
(1− δ)2 (1− δ)3

)
Q.

Generally, the limiting adaptation is much greater for the level µt than
for the growth βt. Typical values, corresponding to the case δ = 0.9, are
A1 = 0.19 and A2 = 0.01. Note also that the value of either A1 or A2
determines δ and all the limiting quantities.

7.2.5 Double discount models†

Usually, in practice, the whole polynomial trend is best viewed as a compo-
nent to be discounted as a block using a single discount factor. Approaches
using two discount factors, one for the trend and one for the growth, are, of
course, possible, and although of very restricted practical interest, provide
Bayesian analogues of standard double exponential smoothing techniques
(Abraham and Ledolter 1983, Chapters 3 and 7; McKenzie 1976). Here
comments are restricted to one of the approaches described in Section 6.4.
Approach (b) of that section concerns the use of two discount factors δ1
and δ2, the former for the level and the latter for the growth.
Let ∆ = diag(δ−1/2

1 , δ
−1/2
2 ) and apply the multiple discount strategy of

Section 6.4. Then, with G = L2,

C−1
t = R−1

t + FF′ = G′−1
∆−1C−1

t−1∆
−1G−1 + FF′

and so the limiting value of C satisfies

C−1 = G′−1
∆−1C−1∆−1G−1 + FF′.

†This Section can be omitted without loss on a first reading.
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Writing

C =
(
C1 C3
C3 C2

)
,

we then have(
C2 −C3
−C3 C1

)
=
(

δ1C2 + |C| −(δ1C2 + dC3)
−(δ1C2 + dC3) δ2C1 + δ1C2 + 2dC3

)
,

where d = (δ1δ2)1/2. As a result,

C =
(

(1− d2) (1− d)(1− δ2)
(1− d)(1− δ2) (1− d)2(1− δ2)/δ1

)
and

A =
(

1− d2

(1− d)(1− δ2)

)
.

Finally, Q = 1 + F′RF, where the limiting value for Rt can be calculated
from R = G∆C∆G′.
The limiting updating equations for the mean vector mt = (mt, bt)′ are

mt = mt−1 + bt−1 +A1et,

bt = bt−1 +A2et,

where with 0 < δ1, δ2 < 1, it follows that 0 < A1 < 1 and

0 ≤ A2 ≤ A1[1− (1−A1)1/2].

7.3 LINEAR GROWTH MODELS
7.3.1 Introduction
In practice, the discount models of Section 7.2.4 are recommended for their
simplicity, parsimony and performance. However, a class of second-order
polynomial growth models, or linear growth models, that has different evo-
lution variance structure is of great interest. Historically these models have
been widely used by practitioners for modelling linear trends with easily
interpretable parameters and stochastic components (Harrison 1965, 1967;
Godolphin and Harrison 1975). As is shown below, constant linear growth
models are such that the limiting adaptive coefficients in the vector A
provide all the useful values, and so, in a very real practical sense, other
second-order models are essentially redundant. A further reason for closely
examining these models is for communication with users of other linear
trend point forecasting methods and for comparison with such procedures.

Definition 7.4. A linear growth model is any second-order polynomial
DLM equivalent to a DLM of the form{(

1
0

)
,

(
1 1
0 1

)
, Vt,

(
Wt1 +Wt2 Wt2

Wt2 Wt2

)}
, (7.5)
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where Wt1 and Wt2 are scalar variances.
This definition is the special case of Definition 7.2 in which n = 2.†

The standard equations for (7.5) are simply those in (7.3a, b and c). The
evolution errors can now be expressed as

ωt = L2∂θt,

where

∂θt =
(
∂µt

∂βt

)
∼ N

[(
0
0

)
,

(
Wt1 0
0 Wt2

)]
.

It follows that ωt1 = ∂µt + ∂βt and ωt2 = ∂βt. So the system equation
θt = L2θt−1 + ωt can be written as

θt = L2(θt−1 + ∂θt).

In this form, βt has the interpretation of incremental growth in the level
of the series over the time interval from t − 1 to t, evolving during that
interval according to the addition of the stochastic element ∂βt. The level
µt at time t evolves systematically via the addition of the growth βt and
undergoes a further stochastic shift via the addition of ∂µt. In terms of
model equations, this implies the more familiar versions (e.g., Harrison and
Stevens 1976)

Observation: Yt = µt + νt,

System: µt = µt−1 + βt + ∂µt,

βt = βt−1 + ∂βt,

with the zero-mean evolution errors ∂µt and ∂βt being uncorrelated.

7.3.2 Constant linear growth models
Suppose that the variances are constants with Vt = V , Wt1 = W1 and
Wt2 = W2. Then using the results of Theorem 7.1, the limiting values for
the linear growth model simplify as follows.

Theorem 7.2. For the constant linear growth model, limiting variance
values are

C =
(
A1 A2
A2 A2(A1 −A2)/(1−A1)

)
V and R =

(
A1 A2
A2 A1A2

)
Q.

The feasible region for the adaptive vector A is given by

0 < A1 < 1 and 0 < A2 < A2
1/(2−A1) < A1.

†Note that W in (7.5) is the simplest and preferred form for linear growth
models although others are possible. For example, an equivalent model exists for
which Wt = diag(Wt1, Wt2) although this is not pursued.



7.3 Linear Growth Models 219

Proof. Limits R, C, and the bounds on A1 follow directly from Theorem
7.1 by substituting the particular form of the W matrix. Specifically,
replace W1 with W1 + W2 and W3 with W2. To determine the bounds
on A2, note that since R2 = A1A2Q > 0, then A2 > 0. Also, it follows
from Theorem 7.1 (3) that A2

1−A2(2−A1) > 0, or A2 < A2
1/(2−A1) < A1,

as required.

�

Figure 7.1a provides a graph of the boundary line A2 = A2
1/(2 − A1).

The region below this dashed line and such that 0 < A1 < 1 is the feasible
region for the adaptive coefficients given above.
The solid line in the figure, defined by A2 = 4−2A1−4(1−A1)1/2, is the

corresponding boundary for the general second-order polynomial model of
Theorem 7.1. Clearly, the regions differ appreciably only for larger values
of A1. Such values are extremely unusual in practice; remember that these
are limiting rates of adaptation in a closed model. For example, in stock
control and monitoring applications, A1 will rarely exceed 0.25, implying
A2 < 0.036. These values are widely applicable upper bounds on the
adaptive coefficients, and so for most practical purposes, the linear growth
model is an adequate subclass of all second-order models. Practitioners
gain little by entertaining models outside this class. Figure 7.1b is a close-
up of the graph over the range 0 < A1 < 0.3 when essentially the feasible
regions coincide. Also graphed in Figures 7.1a and 7.1b are the possible
values of adaptive coefficients in the single discount model of Definition 7.3.
In this model,Wt is defined via a single quantity, and the limiting adaptive
coefficients are related via A2 = 2−A1 − 2(1−A1)1/2. Finally, the double
discount approach of Section 7.2.5 leads to the ranges 0 < A1 < 1 and 0 <
A2 < A1[1− (1−A1)1/2], with the boundary line A2 = A1[1− (1−A1)1/2]
also appearing in Figures 7.1a and 7.1b. The ranges of limiting adaptive
coefficients in this double discount model differ little from those in the
linear growth class.

7.3.3 Limiting predictors in the constant model
Following Section 7.2.2, the limiting updating form of the closed, constant
linear growth model is

mt = mt−1 + bt−1 +A1et,

bt = bt−1 +A2et,

with a limiting second difference representation

Yt − 2Yt−1 + Yt−2 = et − ψ1et−1 + ψ2et−2, (7.6)
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where

ψ1 = 2−A1 −A2 and ψ2 = 1−A1.

This can be written in terms of the backshift operator B as

(1−B)2Yt = (1− ψ1B + ψ2B
2)et.

A number of popular point prediction methods employ equations of the
form (7.6), and the main ones are now discussed.

(1) Holt’s linear growth method (Holt 1957).
For k ≥ 1, the linear forecast function ft(k) = mt + kbt produces
point forecasts that are sequentially updated according to

mt = AYt + (1−A)(mt−1 + bt−1),

bt = D(mt −mt−1) + (1−D)bt−1,

where 0 < A,D < 1. Writing et = Yt− (mt−1 + bt−1) and rearrang-
ing,

mt = mt−1 + bt−1 +Aet,

bt = bt−1 +ADet.

So, if A1 = A, A2 = AD, and D < A/(2 − A), Holt’s forecast
function is just the limiting forecast function of the constant linear
growth DLM.

(2) Box and Jenkins’ ARIMA(0,2,2) predictor.
This Box and Jenkins (1976) predictor is based upon the model

Yt − 2Yt−1 + Yt−2 = et − ψ1et−1 + ψ2et−2,

with uncorrelated errors et ∼ N[0, Q].
The forecast function for this specific ARIMA model is defined

by

ft(1) = 2Yt − Yt−1 − ψ1et + ψ2et−1,

ft(2) = 2ft(1)− Yt + ψ2et,

ft(k) = 2ft(k − 1)− ft(k − 2), k > 2,

so

ft(k) = ft(1) + (k − 1)[ft(2)− ft(1)], k ≥ 1.

If 0 < ψ2 < 1 and ψ1 < 2ψ2, the forecast function is again the
limiting forecast function of the constant linear growth DLM.

(3) Exponentially weighted regression (EWR) (Brown 1962).
Brown’s EWR linear growth forecast function is ft(k) = mt + kbt
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for k ≥ 1, where at time t given a discount factor 0 < δ < 1 and
an infinite history of observations Yt, Yt−1, . . . , the pair mt and bt
are the values of µ and β, respectively, that minimise the discounted
sum of squares

St(µ, β) =
∞∑
r=0

δr(Yt−r − µ+ rβ)2.

The appropriate values may be related via the recurrence equations

mt = mt−1 + bt−1 + (1− δ2)et,
bt = bt−1 + (1− δ)2et,

where

et = Yt −mt−1 − bt−1.

So the EWR forecast function is the limiting forecast function of
the single discount DLM of Section 7.2.4 and thus of any constant
linear growth DLM for which A1 = 1 − δ2 and A2 = (1 − δ)2. In
particular, the constant linear growth DLM, in which

W1 = 2V (1− δ)2/δ and W2 = V (1− δ)4/δ2,
leads to such A values, with

Q =
V

δ2
and C =

(
1− δ2 (1− δ)2
(1− δ)2 2(1− δ)3/δ

)
V.

Quantitative relationships are given in the following table.

δ A1 A2 V/W1 W1/W2 Q/V

0.95 0.10 0.003 200 800 1.11
0.90 0.19 0.010 45 180 1.23
0.85 0.28 0.023 19 76 1.38
0.80 0.36 0.040 10 40 1.56
0.70 0.51 0.090 4 16 2.04
0.50 0.75 0.250 1 4 4.00

7.3.4 Discussion
Some further discussion of the above limiting predictors follows, although it
is rather technical and may be omitted on first reading. However, for prac-
titioners familiar with non-Bayesian methods, this section provides further
insight into the nature of Bayesian models, sharply identifying points of
difference.
The limiting updating equations for the constant DLM provide each of

the limiting predictors, but with particular restrictions on the values of the
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limiting adaptive coefficients. Brown’s values A1 = 1−δ2 and A2 = (1−δ)2
are constrained within the feasible region for the linear growth DLM (see
Figures 7.1). However, Holt’s region is defined by 0 < A1, A2 < 1, and
that of the ARIMA model by 0 < A2 < 2, 0 < A1 + A2 < 4. These
both allow values outside the feasible region determined in Theorem 7.1.
Now it might be suggested that these regions should be contained within
that for second-order polynomial models, since the latter class of models
contains all those having a linear forecast function. The fact that this is
not the case derives from a rather subtle and hidden point. The reason is
that the predictors using A outside the feasible region from the DLM are
unknowingly superimposing a moving average process, of order not more
than 2, on the linear model. This leads to polynomial/moving average
models that, in DLM terms, are obtained from the superposition of the
polynomial model, as one component, with another component having one
zero eigenvalue. The set of canonical models has the form{(

E2
1

)
,

(
J2(1) 000
000 0

)
, V,

(
W1 W3
W′

3 W2

)
,

}
,

that will produce feasible regions 0 < A1 < 2, 0 < A1 +A2 < 4 depending
on the structure assigned to W. In particular, if W3 �= 000 then the value
of A can lie outside the pure polynomial regions of Theorems 7.1 and
7.2. Then the forecast function is the sum of the forecast function of a
second-order polynomial and the forecast function of the zero eigenvalue
component, i.e., ft(0) is an arbitrary value, and ft(k) = mt+kbt for k ≥ 1.
This ties in with the foregoing popular point forecasting methods, that only
define their linear forecast functions for k ≥ 1. Without loss in generality,
V may be set to zero, since it can be absorbed by W2. Then W3 �= 000
indicates that the observation and system noises are not independent.
Extending the zero eigenvalue block to the DLM{(

E2
E2

)
,

(
J2(1) 000
000 J2(0)

)
, V, W

}

produces a forecast function that has arbitrary values for ft(0) and ft(1)
and then becomes the linear forecast function ft(k) = mt + kbt for k ≥ 2.
This subtlety applies to all DLMs. Referring, for example, to the first-

order polynomial model of Chapter 2, the constant DLM has a limiting
representation of the form

Yt − Yt−1 = et − (1−A)et−1,

with 0 < A < 1, whereas the ARIMA (0,1,1) predictor, having essentially
the same form, allows 0 < A < 2. Of course a value greater than 1 seems
strange. For example, if A = 1.9, the representation is

Yt − et = Yt−1 + 0.9et−1,
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and in informing about Yt, Yt−1 is not being smoothed, but just the reverse.
However, the region 0 < A < 2 is precisely that valid for the constant DLM{(

1
1

)
,

(
1 0
0 0

)
, 0,

(
W1 W3
W3 V

)}
,

in which A may exceed unity if and only if W3 + V < 0; this is evidently
irrelevant from an applied perspective.
Generally, consider any TSDLM {F,G, V,W}, with G of full rank n.

Theorems 5.5 and 5.6 show that the updating equations have stable, lim-
iting forms such that

lim
t→∞

{
n∏

r=1

(1− λrB)Yt −
n∏

r=1

(1− ρrB)et

}
= 0,

where B is the backshift operator, λ1, . . . , λn are the n eigenvalues of G,
and ρ1, . . . , ρn are simply linear functions of the elements of the limiting
adaptive vector A. The feasible region for these ρr coefficients is a subset
of the region

{ρ1, . . . , ρn : |ρr| < 1, (r = 1, . . . , n)}.

However, this region can be enlarged by superimposing a zero eigenvalue
component of dimension 1 on the model, leading to the (n+1)-dimensional
DLM {(

F
1

)
,

(
G 000
000 0

)
, V, W∗

}
.

The forecast function may then have an arbitrary value for k = 0, but
thereafter it follows the forecast function form of the sub-model {F,G, ·, ·}.
The above limiting representation of the observation series holds for this
extended model, and the ρr coefficients may take any values in the above
region, depending on the structure of the evolution variance matrixW∗.
More generally, by superimposing a zero eigenvalue component of dimen-

sion h on the model, leading to the (n+ h)-dimensional DLM{(
F
Eh

)
,

(
G 000
000 Jh(0)

)
, V, W∗

}
,

the forecast function may have arbitrary values for k ≤ h before following
the sub-model form. However, the above representation changes to include
h− 1 extra error terms, so that

lim
t→∞

{
n∏

r=1

(1− λrB)Yt −
n+h−1∏
r=1

(1− ρrB)et

}
= 0.

Such model extensions are unnecessary in practice. However, here they
serve to identify peculiarities of the classical techniques, warning practi-
tioners to restrict the range of allowable values for adaptive coefficients
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well within the region previously suggested by advocates of such methods.
For polynomial prediction, the zero eigenvalue component is superfluous,
and its addition violates parsimony. Generally zero eigenvalue blocks are
to be avoided in all applications unless they can be readily interpreted. De-
spite many years of experience in the chemical industry and in consultancy,
neither of the authors has ever had cause to employ them.

7.4 THIRD-ORDER POLYNOMIAL MODELS
7.4.1 Introduction
By definition, a third-order polynomial DLM is any observable TSDLM
that at time t, has a forecast function of the quadratic form

ft(k) = at0 + at1k + at2k
2, k ≥ 0.

An alternative representation is given by

ft(k) = ft(0) + [ft(1)− ft(0)]k + [ft(2)− 2ft(1) + ft(0)]k(k − 1)/2,

where the coefficients of the quadratic forecast function are identified in
terms of their first three values. These models are only occasionally used
in practice, since for many short-term forecasting and micro-forecasting
applications, local trends are adequately described using first- or second-
order polynomials. However, when dealing with macro or aggregate data
and when forecasting for longer lead times, the random variation measured
by observational variances Vt is often small relative to movement in trend.
In such circumstances, third-order polynomial descriptions may be needed.
An example of such a case is given in the application to longer-term growth
forecasting in Harrison, Gazard and Leonard (1977). That particular ap-
plication concerned the preparation of forecasts of world mill consumption
of fibres split into forty-eight categories according to fibre type and geo-
graphical region. These forecasts, that covered ten future years, were re-
quired and used for GATT negotiations by the well-known trouble-shooter
Sir Harvey Jones, then at ICI Ltd. The main problem lay not so much
in forecasting the total consumption as in predicting proportionate con-
sumptions. Consequently, non-linear Gompertz-type functions, defined by
three parameters, were locally approximated by a third-order Taylor ex-
pansion. A discount quadratic polynomial DLM was used for updating the
corresponding three parameters. This form was then converted back and
the full non-linear form used for the forecast function. The approach also
employed a “top-down” hierarchical structure and used constrained and
combined forecasting, as discussed later in Chapter 16. The success of this
application led to the development of a computer programme used by the
company for similar applications.
The canonical third-order polynomial DLM is {E3,J3(1), · , · } but the

similar DLM {E3,L3, · , · } will be adopted in this chapter. Further, as
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with second-order models, a subclass of third-order models, namely those
termed quadratic growth models, are essentially sufficient in terms of
the possible values of limiting adaptive coefficients. Thus, attention is
restricted to a brief description of the theoretical structure of models in this
subclass. The evolution variance sequence in quadratic growth models has
a particular, structured form, derived as the case n = 3 in Definition 7.2.
In practice, the more parsimonious models based on single discount factors
will typically be used without real loss of flexibility. Although apparently
rather different in nature, these discount models are intimately related
to the canonical quadratic growth models, and in constant DLMs, the
rapidly approached limiting behaviour of the two are equivalent. This is
directly analogous to the situation with first- or second-order models, and
the analogy carries over to polynomials of higher order.

7.4.2 Quadratic growth models

Definition 7.5. A quadratic growth DLM is any model equivalent to
a DLM of the form

{E3,L3, Vt,Wt},

where for all t,Wt has the form

Wt = L3diag(Wt1,Wt2,Wt3)L′
3.

The model class is obtained as the defining variancesWt and Vt vary.

Writing νt ∼ N[0, Vt],

θt =


µt

βt
γt


 and ∂θt =


 ∂µt

∂βt
∂γt


 ∼ N


000,


Wt1 0 0

0 Wt2 0
0 0 Wt3




 ,

a quadratic growth DLM can be written as

Yt = µt + νt,

µt = µt−1 + βt + ∂µt,

βt = βt−1 + γt + ∂βt,

γt = γt−1 + ∂γt.

The system equations may be compactly written θt = L3(θt−1+∂θt). The
quantities µt, βt and γt respectively represent level, growth and change in
growth at time t. In a continuous-time analogue, βt would represent the
first derivative with respect to time, or gradient, of the expected level of
the series at time t, and γt the second derivative of the expected level.
The components of the evolution error ∂θt represent the corresponding
stochastic changes in the state vector components. Given the posterior



7.4 Third-Order Polynomial Models 227

mean E[θt|Dt] =mt = (mt, bt, gt)′, the forecast function is

ft(k) = mt + kbt + k(k + 1)gt/2, (k ≥ 0).

Finally, the updating equations lead to a limiting representation of the
observation series, so that with adaptive vector At = (At1, At2, At3)′,

(1−B3)Yt = Yt− 3Yt−1 +3Yt−2−Yt−3 = et−ψt1et−1 +ψt2et−2−ψt3et−3,

where the ψti coefficients are given by

ψt1 = 3−At−1,1 −At−1,2,

ψt2 = 3− 2At−2,1 −At−2,2 +At−2,3,

ψt3 = 1−At−3,1.

7.4.3 Constant quadratic growth model

Theorem 7.3. In the constant quadratic growth model

{E3,L3, 1,L3WL′
3},

with W = diag(W1,W2,W3), the components At, Ct, Rt and Qt have
limiting values A, C, R and Q defined by the equations

1 = (1−A1)Q,

W3 = A2
3Q,

W2 = (A2
1 − 2A1A3 −A2A3)Q,

W1 = (A2
1 +A1A2 − 2A2 +A3)Q,

and

R =


A1 A2 A3
A2 A1A2 − (1− 2A1 −A2)A3 (A1 +A2)A3
A3 (A1 +A2)A3 A2A3


Q,

with

C = R−AA′Q.

In addition, the feasible region for A is defined by

{A : 0 < A3, A1 < 1, 0 < A2 < 2, 0 < A2
2 −A3(2A1 +A2),

0 < A2
1 +A1A2 − 2A2 +A3}.

Proof. The limits exist by Theorem 5.5. The proof of the limiting rela-
tionships follows that of Theorem 7.1. The technique is general and may be
used to derive analogous limiting relationships for higher-order polynomial
DLMs. The proof is only sketched, details being left to the reader.
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From the defining equations, R = L3(C +W)L′
3 and C = R −AA′Q,

it follows that

L−1
3 R(L

′
3)

−1 = R−AA′Q+W.

The required representation of the components as functions of A and Q
can now be deduced by matching elements in the above matrix identity,
noting the special diagonal form ofW and the identity

L−1
3 =


 1 −1 1

0 1 −1
0 0 1


 .

Finally, the feasible region for limiting adaptive coefficients can be de-
duced using the facts that 0 < W1,W2,W3 < Q, 1 < Q and the positive
definiteness of R.

�

Note the following:

(1) Defining ψ1 = 3−A1−A2, ψ2 = 3−2A1−A2+A3 and ψ3 = 1−A1,
the limiting representation of the observation series is

(1−B)3Yt = (1− ψ1B + ψ2B
2 − ψ3B

3)et =
3∏

v=1

(1− φvB)et.

The traditional ARIMA(0,3,3) predictor takes this form, subject to
|φv| < 1 for v = 1, 2, 3. The DLM limiting predictors thus corre-
spond to a subset of the ARIMA predictors. As in Section 7.3.4,
the full set of ARIMA predictors is obtained by extending the DLM
to have a further zero eigenvalue component.

(2) Exponentially weighted regression (or discounted likelihood). Re-
currences for the values mt, bt and gt minimising the discounted
sum of squares

St(µ, β, γ) =
∞∑
r=0

δr[Yt−r − µ+ βr − γr(r + 1)/2]2,

with respect to µ, β and γ, correspond to the DLM updating equa-
tions with At1 = A1 = 1 − δ3, At2 = A2 = 2 − 3δ + δ3 and
At3 = A3 = (1− δ)3. Then the observation series has the form

(1−B)3Yt = (1− δB)3et.

This is also the limiting form given in a discount DLM with the
evolution variance sequence structured using a single discount factor
δ applied to the whole quadratic trend component.

(3) The above results generalise. In the constant nth-order polynomial
DLM {En,Ln, V,W}, with W = Lndiag(W1, . . . ,Wn)L′

n, suppose
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that Wr =
(
n
r

)
crV , (r = 1, . . . , n), where c = (1 − δ)2/δ for some

discount factor δ. Godolphin and Harrison (1975) show that the
limiting representation of the observation series (a special case of
equation 5.12) is

(1−B)nYt = (1− δB)net.
This relationship obtains for EWR and in the limit, for the single
discount nth-order polynomial DLM, for which

Rt = LnCtL′
n/δ.

The limiting value of the adaptive vector A = (A1, . . . , An)′ is then
given by

A1 = 1− δn,

Ar+1 =
(
n

r

)
(1− δ)r −Ar,

An = (1− δ)n,

(r = 2, . . . , n− 1),

with

Q =
V

δn
.

7.5 EXERCISES
The following questions concern polynomial models with observational vari-
ances assumed known unless otherwise stated.

(1) Verify that the polynomial DLM {En,Ln, · , · } is observable and
similar to the canonical model {En,Jn(1), · , · }.

(2) The forecast function of the DLM {En,Ln, · , · } is
ft(k) = E′

nL
k
nmt, k ≥ 0.

Show directly that this is a polynomial of order n (degree n− 1).
(3) Consider DLMs M and M1 characterised by quadruples

M : {En,Jn(1), Vt,Wt},
M1 : {En,Ln, Vt,W1t}.

(a) Calculate the respective observability matrices T and T1.
(b) Show that the similarity matrix H = T−1T1 is given by

H =




1 0 0 0 . . . 0 0
0 1 1 0 . . . 0 0
0 0 1 1 . . . 0 0
...

...
. . .

...
...

0 0 0 0 . . . 1 1
0 0 0 0 . . . 0 1



.
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(c) Interpret the meaning of the state parameters in each model.

(4) You apply the nth-order polynomial DLM {En,Ln, V, VW} to fore-
cast a time series Yt, the true generating process being M .
(a) Apply Theorem 5.6 to prove

lim
t→∞

{
(1−B)nYt − et −

n∑
i=v

βvet−v

}
= 0,

for some real quantities βv, (v = 1, . . . , n).
(b) Does the result of (a) mean that the observations are generated

by an ARIMA(0, n, n) process?
(c) Does the distribution of (et|Dt−1,M) converge in probability

to some specific form?
(d) Are the one-step errors et truly uncorrelated in the limit?
(e) If you answered “Yes” to (b), (c), or (d), you can take comfort

from knowing that others suffer the same delusion! Adopting
the DLM, the above relationship is true no matter what the real
data-generating process. The distribution of et is dependent
on the true model M, and each can have a completely different
distribution from any other while their joint distributions are
free to display marked dependencies.

(5) Suppose that the observation series Yt really is generated by the
nth-order polynomial normal DLM M = {En,Ln, V,W}.
(a) Show directly that if V > 0, then for any t > n, the series can

be represented by

(1−B)nYt =
n∏

v=1

(1− ρvB)at,

where at ∼ N[0, Q], independently, and for some real quantities
|ρv| < 1, (v = 1, . . . , n).

(b) Writing Zt = (1−B)nYt+n, show that the joint distribution of
the {Zt} series is such that E[Zt] = 0 and C[Zt+k, Zt] = 0 for
all k > n.

(c) Given data values Y1, . . . Yt+n, how might you use them to sup-
port or refute the hypothesis that they are suitably modelled
by the above model M?

(6) Suppose that the observation series Yt really is generated by the
nth-order polynomial normal DLM M∗ = {En,Ln, Vt,Wt}. Define
Zt = (1−B)nYt+n.
(a) Prove that E[Zt] = 0 and C[Zt+k, Zt] = 0 for all k > n.
(b) Given data values Y1, . . . Yt+n, how might you use them to sup-

port or refute the hypothesis that they are suitably modelled
by the above model M∗?
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(c) How do you sort out whether the variances are constant, as in
the previous question’s model M , or whether they are time-
dependent as in model M∗?

(7) Write a computer program to generate 102 observations according
to the constant second-order polynomial DLM

{(
1
0

)
,

(
1 1
0 1

)
, 100, 100

(
1− δ2 (1− δ)2
(1− δ)2 (1− δ)3

)}
,

with µ0 = 100 and β0 = 0. Classical model identification advocates
looking at the autocorrelation structure of the derived series Xt =
Yt+1−Yt and of that of Zt = Xt+1−Xt = Yt+2−2Yt+1+Yt. On the
basis of no significant effect the autocorrelations are approximately
N[0, 1/n], where n is the length of the series. Roughly, if C[Xt, Xt+2]
is not significantly different from zero, then the data do not refute
the first-order polynomial DLM. If it is significantly different and
C[Zt, Zt+3] is not significantly different from zero, then the second-
order polynomial DLM is not refuted. Produce series using discount
factors δ = 0.95, 0.9, and 0.8.
(a) Look at these series and draw an impression as to whether a

first- or second-order model is suggested.
(b) Now examine the autocorrelation graphs to see what you con-

clude.
(c) Given the DLM, and for ease δ = 1, what are the variances

of Xt and Zt? Draw your conclusions about the differencing
approach to identification.

(8) Suppose that a series is generated according to the mechanism
Yt+1 − Yt = at − 2at−1 with at ∼ N[0, 1] independently.
(a) If at t = 0, you precisely know a1, show that your one-step

prediction errors et = Yt − ft satisfy Yt+1 − Yt = et − 2et−1,
where et ∼ N[0, 1] independently.

(b) Suppose that you do not know a1 precisely, but at time t = 0, it
has distribution (a1|D0) ∼ N[0, Q1], where the only restriction
is Q1 > 0. Prove that now your limiting one step ahead errors
satisfy Yt+1 − Yt = et − 0.5et−1, where et ∼ N[0, 4] indepen-
dently.

(c) Meditate on (a) and (b) particularly with respect to moving
average processes and their supposedly unique representation.

(9) Consider the single discount second-order polynomial DLM of Def-
inition 7.3, namely {E2,L2, V,Wt}, where

Wt =
1− δ
δ
L2Ct−1L′, so that Rt =

1
δ
L2Ct−1L′

2.
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(a) Use the identity C−1
t = R−1

t +E2E′
2V

−1 to directly verify that

lim
t→∞

Ct = C =
(

1− δ2 (1− δ)2
(1− δ)2 (1− δ)3/δ

)
V,

lim
t→∞

Qt = Q =
V

δ2
, lim

t→∞
At = A =

(
1− δ2
(1− δ)2

)
,

and

lim
t→∞

Rt = R =
(
A1 A2
A2 (1− δ)A2

)
Q.

(b) Deduce that in this (rapidly approached) limiting form, the
updating equations are just those of a constant DLM in which

W =
(
A1 A2
A2 W

)
(1− δ)V

δ3

for any variance W (compare results in Section 5.3.4).

(10) In the constant linear growth DLM of Section 7.3.2{(
1
0

)
,

(
1 1
0 1

)
, V,

(
Wµ +Wβ Wβ

Wβ Wβ

)}
,

with known variances, calculate, for any k ≥ 1,
(a) the k-step forecast distribution p(Yt+k|Dt);
(b) the k-step lead-time forecast distribution p(Xt,k|Dt), where we

define Xt,k =
∑k

r=1 Yt+r.
(11) Using the limiting form of the updating equations in the constant

linear growth model of the previous question, verify that the limiting
forecast function can be written as

ft(k) = ft(0) + [ft(1)− ft(0)]k, for k ≥ 2,

ft(0) = Yt − (2−A1 −A2)et,

ft(1) = 2Yt − Yt−1 − (2−A1 −A2)et + (1−A1)et−1.

(12) Verify the EWR recurrence equations of part (3) of Section 7.3.3,
namely that given an infinite history Yt, Yt−1, . . . and defining et =
Yt−mt−1− bt−1, the unique values {mt, bt} of {µ, β} that minimise
the discounted sum of squares

St(µ, β) =
∞∑
v=0

δv(Yt−v − µ+ vβ)2

satisfy the recurrence relationships

mt = mt−1 + bt−1 + (1− δ2)et,
bt = bt−1 + (1− δ)2et.
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(13) Given the infinite history of the previous question, a modeller de-
cides to estimate the parameters of the forecast function ft(k) =
µ+kβ using the method of discounted likelihood, that is equivalent
to the model in which the data are independently distributed as

(Yt−v|µ, β) ∼ N[µt − vβ, V/δv].

Show that the maximum likelihood estimates mt and bt are exactly
the same as those for EWR.

(14) Show that with common initial information D0, the first-order poly-
nomial DLM {1, 1, V,W} is equivalent to the DLM{(

1
1

)
,

(
1 0
0 0

)
, 0,

(
W 0
0 V

)}
.

(15) Following on from the last question, consider the extended, constant
first-order polynomial DLM defined as{(

1
1

)
,

(
1 0
0 0

)
, 0,

(
W C
C V

)}
.

(a) Show that

lim
t→∞

(Yt − Yt−1) = et − (1−A)et−1.

(b) Show that limt→∞ Qt = Q = (V + C)/(1−A).
(c) Hence show that A may exceed 1 if and only if C + V < 0 and

that if W = (4 + ε)V and C = −2V, then limε→0A = 2.



CHAPTER 8

SEASONAL MODELS

8.1 INTRODUCTION
Cyclical or periodic behaviour is evident in many time series associated
with economic, commercial, physical and biological systems. For example,
annual seasonal cycles provide the basis of the agricultural calendar. Each
year the earth revolves about the sun, the relative positions of the two bod-
ies determining the earth’s climatic conditions at any time. This natural
cycle is uncontrollable and must be accepted.
It is important that the induced seasonality in product demand be recog-

nised and included as a factor in forecasting models. Seasonal patterns can
have enormous implications for stock control and production planning, es-
pecially in agribusiness, where, not uncommonly, demand patterns exhibit
seasonal peak-to-trough ratios in excess of 10-to-1. Various other annual
cycles, such as demand for fireworks, Valentines cards, Easter eggs and so
forth, are even more pronounced.
Although many annual patterns arise from the natural solar cycle, not all

do, nor is the effect always uncontrollable. One example we met concerned
the demand for the most widely used anaesthetic of its time. Analysis re-
vealed an annual cycle that initially surprised the marketing department,
whose personnel were adamant in claiming that usage was steady through-
out the year. Indeed they were right: usage is roughly constant. But
because the ordering habit of the National Health Service was dominated
by a three-monthly accounting period, delivery demands revealed a marked
quarterly cycle that needed to be recognised in efficiently controlling stock,
production and supplies. Similar seasonal variations in demand and sales
arise partially as responses to advertising, with the promotional plan fol-
lowing the same broad lines each year.
In addition to identifying and anticipating cycles of this sort, decision-

makers may wish to exert control in attempts to alter and reduce seasonal
fluctuations. In a commercial environment, the aim is often to increase
the utilisation of manufacturing plant and warehouse facilities. For exam-
ple, in some countries milk-processing plants are almost 50% under-utilised
due to the 20-to-1 peak-to-trough ratio in milk production, winter concen-
trate feeding being relatively costly compared to summer grazing. In order
to counteract this, milk processors adopt a pricing policy that encourages
dairy farmers to keep more cows over winter, thus dampening seasonal fluc-
tuations in milk supplies. Another example that we encounterred in the
pharmaceutical industry concerned a very well known skin cream. Initially
this was marketed for winter chap, and seasonal demand had a pronounced
peak at the end of autumn. However, it was noticed that people were
also using the cream for sun protection and soothing. In response, mar-
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keting switched their major promotional effort to spring, with the effect
that demand peaked massively in late spring. These examples illustrate
the dynamic nature of seasonality and the need to model it accordingly.
The annual cycle, though of primary importance, is one amongst many

of varying periods. The day/night, lunar and other planetary cycles are
well known. So too are natural biorhythms in animals and oscillatory
phenomena in the physical sciences.
Perhaps the least appreciated form of cyclic behaviour arises from sys-

tem response mechanisms involving feedback and delay. Engineers are well
aware of this in short-term process control systems, but politicians and
management have a costly blind spot for such dynamics as they appear in
social and economic systems, particularly when the response covers periods
in excess of one year. Examples include the cobweb, pig and beef cycles,
predator-prey interactions, boom and bust cycles such as the four-to-five
year economic cycle and those christened Kitchin, Jugler and Kondratieff
(van Duijn 1983). These are not inevitable cycles. They are simply system
responses to imbalances in things such as supply and demand, that are
often magnified by shortsighted reactive decision-makers. Such inadequate
understanding, so rife amongst decision- and policy-makers, causes many
economic, social and political crises. An illuminating example from agricul-
ture, taken from Harrison and Quinn (1978), concerns beef markets. A real
or supposed supply shortage, such as that predicted by the World Health
Organisation in the early 1970s, prompts governmental agencies throughout
the world to initiate incentive schemes. In response, beef breeders decide
to increase their herd size. But this means bringing back an increased
number of one-year-old heifers into the breeding herd. These heifers would
normally have proceeded to the fattener. Consequently, despite the in-
tention to increase the meat supply, the following year the supply drops
well below the level it would have been if no action had been taken. The
resulting price increase persuades breeders to expand their herds further.
So again in the next year, there is a fall in meat supply and meat prices
reach a record height. This is now drastically misinterpreted by breeders
and decision-makers as indicating that the shortage was originally under-
estimated, leading to an even further expansion of breeding stock. The
bubble bursts three years after the initial stimulus for expansion. Fol-
lowing the delay (due to impregnation, gestation, weaning and fattening),
the increased cattle output, sometimes over 40% above the previous year,
reaches the slaughterhouse. Disastrous consequences follow as prices col-
lapse. The increased number of cows being fattened results in soaring feed
and housing costs (up to 100% increase in concentrates and grass seed).
Combined with low cattle prices, this destroys the breeder’s profit mar-
gins (one cow in the west of Ireland went for 50 pence). The price of the
newly produced calf may not even cover the vet’s fees! The final response
is now a massive culling of cows and calves at birth, sowing the seeds of the
next shortage so that the cycle repeats. This example is not hypothetical.
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In Britain, in one year in the mid-1970s, 23% of all Friesian calves were
slaughtered at birth–not a widely published statistic. As a result, many
breeders lost their farms with government misdirecting financial aid to the
fatteners rather than to the breeding source. This was not just a European
phenomenon: farmers in Australia were paid to shoot their cows, and the
whole world was affected. Further, the effect mushroomed. Pig and poultry
profit margins were shattered by the increased feed costs. The refrigerated
lorry industry and the tanneries had a temporary bonanza, though they
too were headed for deep trouble, and so on.
The key point of this example is that it well illustrates the common, but

little understood, phenomenon of a delayed feedback response and cyclical
behaviour that is often inflated by decision-makers’ actions and that recurs
in all economic sectors. The key to control lies in understanding the nature
of the system, recognising the great time delays between action and effect,
and the fact that once an imbalance occurs, the appropriate corrective ac-
tion will typically cause an immediate worsening of the situation before
balance is restored. It is also important to be aware of the consequences
for related activities, such as milk, feed, pigs, leather goods, and so on, in
the above example. The modern tendency to divide control responsibilities
for separate areas as though they were independent only exaggerates crises
such as beef shortages, butter mountains, and wine lakes, with the contin-
ued reactions of decision-makers causing problems in other areas and thus
perpetuating imbalances and crises. The main message for the dynamic
modeller is that cyclical patterns should not be automatically modelled
as inevitable seasonality. If the modelling objectives are associated with
major policy decisions, it is critical that the relevant system dynamics be
studied, particularly with regard to the presence of feedback mechanisms,
magnification and naive decision-makers.
Having identified these issues, this chapter now concentrates on descrip-

tions of observed cyclical behaviour purely in terms of superficial seasonal
factors. In practice, such simple representational models, either alone or
combined with trend and/or regression components, often prove adequate
for assessing current and historical seasonal patterns, for analysing changes
over time, and for short-term forecasting. The term seasonality is used
as a label for any cyclical or periodic behaviour, whether or not this corre-
sponds to well-defined and accepted seasons. To begin, the basic structure
of linear models for deterministic functions exhibiting pure seasonality is
described, setting out the requisite notation and terminology. This leads
to suitable DLMs via the consideration of cyclical forecast functions. Two
important classes of models are detailed. The first uses seasonal factors
and is termed the form-free approach since the form of the seasonal pat-
terns is unrestricted. The second approach uses a functional representation
of the seasonal factors in terms of trigonometric terms and is termed the
form approach. Both approaches are useful in practice.
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8.2 SEASONAL FACTOR REPRESENTATION OF
CYCLICAL FUNCTIONS

Let g(t) be any real-valued function defined on the non-negative integers
t = 0, 1, . . . , where t is a time index. Note that the function is defined from
time zero in order to conform with the usage of cyclical forecast functions
in DLMs, as detailed below.

Definition 8.1.

(1) g(t) is cyclical or periodic if for some integer p > 1 and for all
integers t, n ≥ 0, g(t+ np) = g(t).

(2) Unless otherwise stated, the smallest integer p such that this is true
is called the period of g(.).

(3) g(·) exhibits a single full cycle in any time interval containing p
consecutive time points, such as [t, t+ p− 1], for any t > 0.

(4) The seasonal factors of g(·) are the p values taken in any full cycle

ψj = g(j), (j = 0, . . . , p− 1).

Notice that for t > 0, g(t) = g(j), where j is the remainder after
division of t by p, denoted by j = p|t.

(5) The seasonal factor vector at time t is simply that permutation
of the vector of seasonal factors that has its first element relating to
time t, namely, when the current seasonal factor is ψj ,

ψt = (ψj , ψj+1, . . . , ψp−1, ψ0, . . . , ψj−1)′.

In particular, for any integers n and k = np, ψk = (ψ0, . . . , ψp−1)′.
(6) In any cycle, the time point corresponding to the relevant seasonal

factor ψj is given a label M(j). This label then defines the timing
within each cycle, as, for example, months within years, where M(0)
may be January, M(1) February, and so forth. The labels are cyclic
with period p: the label M(j) corresponding to time t if and only if
j = p|t.

(7) When the p seasonal factors relating to a period pmay take arbitrary
real values, the seasonal pattern is termed form-free.

Definition 8.2. Ep and the p× p permutation matrix P are

Ep =



1
0
...
0
0


 , P =



0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0


 =

(
000 Ip−1
1 000′

)
.

Clearly P is p-cyclic, so that for any integer n ≥ 0, Pnp = Ip, and
Pk+np = Pk for k = 1, . . . , p.
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At any time t, the current value of g(·) is ψj , where j = p|t, given by

ψj = g(t) = E′
pψt. (8.1a)

Using the permutation matrix, it is clear that for all t ≥ 0, the seasonal
factors rotate according to

ψt = Pψt−1. (8.1b)

This relationship provides the initial step in constructing a purely seasonal
DLM. Suppose the desired forecast function is cyclical in the sense that
ft(k) = g(t+ k). Equations (8.1) imply that the forecast function has the
form of that in a time series DLM {Ep,P, ·, ·}. P has p distinct eigenval-
ues given by the p roots of unity, exp(2πij/p) for j = 1, . . . , p, so from
Section 5.3, the model

{Ep,P, . , .}

and any observable, similar model, produces the desired forecast function.

8.3 FORM-FREE SEASONAL FACTOR DLMS
8.3.1 General models

Definition 8.3. The canonical form-free seasonal factor DLM of period
p > 1 is defined, for any appropriate variances Vt andWt, as

{Ep,P, Vt,Wt} .

With seasonal factor parameter vector ψt this DLM can be written

Observation equation: Yt = E′
pψt + νt,

System equation: ψt = Pψt−1 + ωt.
(8.2)

(1) With E[ψt | Dt] =mt = (mt0, . . . ,mt,p−1)′ the forecast function is

ft(k) = E′
pP

kmt = mtj , j = p|k.

(2) The model is observable with observability matrix T = Ip.
(3) Any similar model will be called a form-free seasonal factor DLM.

8.3.2 Closed, constant models
The constant form-free DLM {Ep,P, V, VW} may be written as

Yt = ψt0 + νt,

ψtr = ψt−1,r+1 + ωtr,

ψt,p−1 = ψt−1,0 + ωt,p−1,

(r = 0, . . . , p− 2),



8.3 Form-Free Seasonal Factor DLMS 239

where νt ∼ N[0, V ] and ωt = (ωt0, . . . , ωt,p−1)′ ∼ N[0, VW] with the usual
independence assumptions. Consider the current seasonal level ψt0, sup-
posing that the current time point is M(0). Having observed Yt, no further
observations are made directly on the seasonal factor for times labelled
M(0) until time t+ p, p observations later. Over that full period, the fac-
tors change stochastically via the addition of the p evolution errors. Any
information gained about this particular seasonal factor is due entirely to
the correlation structure in W, and therefore the form of this matrix is
of crucial importance. Generally it is specified according to the discount
principle of Section 6.3, developed later. First, however, the theoretical
structure of the model is further explored with a particularly simple di-
agonal evolution variance matrix. Throughout note that V is supposed
known. If not, then the usual learning procedure applies without altering
the essentials of the following discussion.

EXAMPLE 8.1. Consider the special DLM {Ep,P, V, W I} for which the
individual errors ωtr are uncorrelated for each time t. Then the model
reduces to a collection of p first-order polynomial DLMs {1, 1, V, pW}. For
clarity, suppose that p = 12 and the data is monthly over the year, M(0)
being January, and so on. Then, each year in January, one observation
is made on the current January level ψt0, the level then evolving over the
next full year by the addition of 12 uncorrelated evolution error terms, each
being distributed as N[0,W ]. The net result is that

ψt+p,0 = ψt0 + ωt,

with ωt ∼ N[0, 12W ]. It is clear that the only link between the seasonal
factors is that deriving from the initial prior covariance terms at time 0.
The effect of this initial prior decays with time, and so for simplicity, assume
that (ψ0 | D0) ∼ N[m0,C0], where m0 = m0111 and C0 = C0I for some
scalars m0 and C0. The following results may now be simply derived by
applying the updating recurrences and limiting results from the closed,
constant, first-order polynomial model of Section 2.3.

(1) For each t, (ψt | Dt) ∼ N[mt,Ct], with mt = (mt0, . . . ,mt,p−1)′

and variance matrix Ct = diag(Ct0, . . . , Ct,p−1).
(2) Suppose that t = np for some integer n ≥ 1 so that n full periods

have passed. Then the current time label is M(0) and the updating
equations for the corresponding seasonal factor ψt0 are

mt0 = mt−p,0 +Atet,

Ct0 = AtV,

where et = Yt−mt−p,0, Rt = Ct−p,0 + pW , and At = Rt/ (Rt + V ).
Similar comments apply to the next time intervals M(1),M(2), . . . ,
with the subscript 0 updated to 1, 2, . . . , respectively.
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(3) Results of Section 2.3 apply to the p models {1, 1, V, prV }, where
r =W/V , giving the following limiting results:

lim
t→∞

At =A =
(√

1 + 4/pr − 1
)
pr/2,

lim
t→∞

Ct0 =C = AV,

lim
t→∞

Rt =R = A/(1−A),

p(ψtj | Dt)→ N[mt,j , AV + jW ], j = 0, . . . , p− 1.

(4) The limiting analysis is equivalent to that obtained by applying the
discount approach with a single discount factor δ = 1 − A, leading
to a model {Ep,P, V,Wt} with

Wt =
1− δ
δ
PCt−1P′.

Following comment (4) above, it may also be shown that the limiting
forecast function is equivalent to that derived using exponentially weighted
regression techniques. This suggests a rephrasing of the form-free model
and the use of more than one discount factor to structure the evolution
variance matrix. Underlying this suggestion is the idea that a seasonal
pattern is generally more stable than the underlying, deseasonalised level.
Harrison (1965) discusses this idea. Thus the seasonal factors may be
decomposed into an underlying level, plus seasonal deviations from this
level. This provides the flexibility to model changes in two components
separately using the ideas of component, or block, models described in
Chapter 6. This decomposition is now described.

8.4 FORM-FREE SEASONAL EFFECTS DLMS
8.4.1 Introduction and definition
In decomposing a set of p seasonal factors into one deseasonalised level and
p seasonal deviations from that level, the seasonal deviations are called
seasonal effects. Although specifically concerned with seasonality, many of
the points carry over to more general effects models. Practitioners famil-
iar with standard statistical models will appreciate the idea of descriptions
in terms of an overall mean for observations plus treatment, block and
other effects. The effects for any treatment or block will be subject to an
identifiability constraint that is imposed in one of several forms, either by
aliasing one of the effects or by constraining an average of the effects. The
commonest such constraint is the zero-sum constraint. The analogy for
seasonality is that the seasonal deviations from the underlying level sum
to zero in a full period, so that any p − 1 of them define the complete
set. This zero sum constraint is used when discussing additive seasonality,
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although other constraints are possible and may typically be obtained by
linear transformation of the seasonal factors. In generalised linear mod-
elling using GLIM, for example, the effect at one chosen level, the first
level by default, is constrained to be zero (Baker and Nelder 1978).
Initially, the underlying level of the series is set to zero for all t, so that

the seasonal factors always sum to zero, producing a seasonal effects DLM.
The superposition of this seasonal effect DLM and a first-order polynomial
DLM then provides the constrained, seasonal effects component for a series
with non-zero level.

Definition 8.4. A form-free seasonal effects DLM is any model

{Ep,P, Vt,Wt} (8.3)

with state vector φt = (φt0, . . . , φt,p−1)′ satisfying 111′φt = 0 for all t.
The seasonal effects φtj represent seasonal deviations from their zero

mean and are simply constrained seasonal factors. In terms of equations,
such a model has the form given in (8.2), with the parameter notation
changed from ψ to φ, and with the addition of the constraint 111′φt = 0.

8.4.2 Imposing constraints
The constraint (8.3) leads to the following model restrictions.

(1) Initial prior. Applying the constraint to (φ0 | D0) ∼ N[m0,C0],
since (111′φ0 | D0) ∼ N[111′m0,111′C0111], necessarily

111′m0 = 0,

C0111 = 000.
(8.4)

So the initial prior means and the elements of each row (and each
column) of the initial prior variance matrix must sum to zero.

(2) Evolution variances. Since φt = Pφt−1 + ωt, clearly ωt must
also satisfy the zero-sum constraint

Wt111 = 000. (8.5)

Hence each row and column of W must sum to zero. Note that
ωt already has zero mean, but if, more generally, it has a non-zero
mean, then the constraint must also be applied to this mean.

Theorem 8.1. In the form-free seasonal effects DLM, suppose the initial
constraints 111′m0 = 0 and C0111 = 000, and that Wt111 = 000 for all t. Then the
posterior distributions (φt | Dt) ∼ N[mt,Ct] satisfy the constraints

111′mt = 0 and Ct111 = 000,

so that 111′φt = 0 with probability one.
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Proof. The proof is by induction. If the constraints apply to the posterior
at time t − 1 then 111′mt−1 = 0 and Ct−1111 = 000. Proceeding to the prior,
(φt | Dt−1) ∼ N[at,Rt], with at = Pmt−1 and Rt = PCt−1P′+Wt. Since
P111 = 111, these prior moments also satisfy the constraints, with 111′at = 0 and
Rt111 = 000. Updating to the posterior at t gives mt = at +RtEpQ

−1
t et and

Ct = Rt −RtEpE′
pR

′
tQ

−1
t , whence directly, 111′mt = 0 and Ct111 = 000. The

constraints therefore apply at t = 1, and so by induction to all t.

�

Thus conditions (8.4) and (8.5) are consistent with condition (8.3). Two
problems remain: to ensure that the initial prior satisfies (8.4) and to design
a suitable sequence of evolution variance matrices satisfying (8.5).

8.4.3 Constrained initial priors
Practitioners are often only prepared to specify marginal priors, (φ0j | D0)
for j = 0, . . . , p − 1, providing just the mean and variance of each effect.
Rarely will they able or willing to produce covariance terms for the full,
joint prior distribution. In such cases the usual practical procedure is
to derive a coherent joint prior distribution satisfying (8.4) by applying
constraint (8.3) to the incoherent seasonal effects joint distribution that
corresponds to their specified moments together with zero covariances. This
may be done formally within the following general framework:
Suppose the initial prior

(φ0 | D∗
0) ∼ N[m∗

0,C
∗
0] (8.6)

may not satisfy constraint (8.4), as happens for a diagonal C∗
0. Apply the

following theorem.

Theorem 8.2. Imposing the constraint 111′φ0 = 0 on the prior in (8.6) and
writing U = 111′C∗

0111 and A = C∗
0111/U gives the revised joint prior

(φ0 | D0) ∼ N[m0,C0],

m0 =m∗
0 −A111′m∗

0,

C0 = C∗
0 −AA′U.

Proof. The joint distribution of φ0 and their total θ = 111′φ0 is(
φ0

θ

∣∣∣∣D∗
0

)
∼ N

[(
m∗

0
111′m∗

0

)
,

(
C∗

0 AU
A′U U

)]
.

Then the conditional distribution of φ0 is

(φ0 | θ, D0) ∼ N[m∗
0 +A(θ − 111′m∗

0), C
∗
0 −AA′U ].



8.4 Form-Free Seasonal Effects DLMS 243

Apply the zero-sum constraint by setting θ = 0.

�

Whatever initial prior is elicited, this theorem should be applied to en-
sure compliance with the constraint. Notice that if the specified prior
satisfies the constraints, then no change occurs since A = 000. Otherwise, in
a general sense, the total variation in the constrained prior will always be
less than that originally specified in the unconstrained prior, the difference
being removed by imposing the deterministic constraint. Consequently, a
practitioner might like to scale the revised prior variance so that its trace
equals that of the elicited prior.

EXAMPLE 8.2. Suppose p = 4, with initial specification

(φ0|D∗
0) ∼ N






10
5
0
−7


 , I


 .

Imposing the constraints produces the revised prior

(φ0|D0) ∼ N






8
3
−2
−9


 ,

1
4




3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3




 .

To rescale so that trace C0 = trace C∗
0, simply multiply C0 by 4/3.

8.4.4 Constrained evolution variances
Many evolution variance matrix structures satisfy constraint (8.5). Harri-
son and Stevens (1976b) set ωt = ωta, where a′ = (p− 1,−1, . . . ,−1) and
ωt ∼ N[0,Wt] for some Wt > 0. This structure imparts information from
the observation to the current seasonal effect, and then only equally to the
others via the renormalisation in applying the zero-sum constraint. In this
case, W∗

t = Wtaa′, and (8.5) is satisfied since 111′a = 0. An alternative
structure is derived by starting withWt =WtI and applying the zero sum
constraint as in Theorem 8.2 to obtain

Wt =Wt(pI− 111111′).

Historically, these two forms, and others, have been widely used in prac-
tice. However, they are not recommended for general application, being
specifically designed to represent particular forms of change in the seasonal
effects over time. Instead we recommend discount methods. For a single
discount factor δ, possibly depending on t, the discount idea of Section 6.3
applied to the entire seasonal effects vector leads to

Wt =
1− δ
δ
PCt−1P′, (8.7)
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that always satisfies (8.5) since P′111 = 111 and Ct−1111 = 000.

Definition 8.5. A single discount, form-free seasonal effects DLM is any
form-free seasonal effects DLM {Ep,P, Vt,Wt} as defined by Definition 8.4
with evolution variance sequenceWt defined via (8.7).

8.5 TREND/FORM-FREE SEASONAL EFFECTS DLMS
The main reason for considering the form-free seasonal effects DLM is that
it provides a widely applicable seasonal component that in a larger DLM,
describes seasonal deviations from a deseasonalised level, or trend. The
two most important such DLMs are those superimposing the seasonal effect
DLM with either the first- or second-order polynomial DLM.

8.5.1 First-order polynomial/seasonal effects model

Definition 8.6. A first-order polynomial trend/form-free seasonal
effects DLM is any DLM with parameter vector

θt =
(
µt

φt

)

and quadruple {(
1
Ep

)
,

(
1 000
000 P

)
, Vt,

(
Wt,µ 000
000 Wt,φ

)}

satisfying the constraint 111′φt = 0, for all t.

Such models comprise the superposition of a first-order polynomial DLM
(for the deseasonalised level) and a seasonal effects DLM. It is easily seen
that in the absence of the constraint, this DLM is unobservable. However,
the zero-sum constraint ensures that the DLM is constrained observable.
The forecast function takes the form ft(k) = mt + htj , with (j = p|k),
where mt is the expected value of the deseasonalised level at time t+k and
htj is the expected seasonal deviation from this level. The model may be
written as

Yt = µt + φt0 + νt,

µt = µt−1 + ωt,

φtr = φt−1,r+1 + ωtr, (r = 0, . . . , p− 2),

φt,p−1 = φt−1,0 + ωt,p−1.

When subject to the zero-sum constraint, this model is similar to the sea-
sonal factor model of Section 8.3. To see this, note that ifH is the p×(p+1)
matrix H = [111, I], then ψt = Hθt is the vector of seasonal factors

ψtj = µt + φtj , (j = 0, . . . , p− 1).
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Given the constraint, it follows that for all t,

p−1
p∑

j=1

ψtj = µt,

so µt represents the average of the seasonal factors (the deseasonalised
level). In the ψt parametrisation this is the factor model (8.2). By con-
struction, this model represents the linear composition of the seasonal ef-
fects and first-order polynomial DLMs. Note that starting with the seasonal
factor DLM and a (p+ 1)× p matrix U, the relevant transformation is

(
µt

φt

)
= Uψt =




1
p

1
p . . . 1

p

1− 1
p − 1

p . . . − 1
p

− 1
p 1− 1

p . . . − 1
p

...
...

. . .
...

− 1
p − 1

p . . . 1− 1
p




ψt.

8.5.2 Second-order polynomial/seasonal effects model

Definition 8.7. A second-order polynomial trend/form-free sea-
sonal effects DLM is any DLM with parameter vector

θt =


 µt

βt
φt




and quadruple
{(
E2
Ep

)
,

(
J2(1) 000
000 P

)
, Vt,

(
Wt,µ 000
000 Wt,φ

)}

satisfying the constraint 111′φt = 0, for all t.
Again such a DLM is constrained observable. It is obtained from the

superposition of a second-order polynomial and a seasonal effects DLM.
The forecast function takes the form

ft(k) = mt + kbt + htj , with
p−1∑
j=0

htj = 0

where j = p|k. Further discussion of this useful class of TSDLMs is deferred
until applications in later chapters.
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8.6 FOURIER FORM REPRESENTATION OF
SEASONALITY

8.6.1 Introduction
Alternative representations of cyclical patterns employ linear combinations
of periodic functions. The particular approach we favour and develop uses
the simplest and most natural class of periodic functions, namely trigono-
metric functions, leading to Fourier form representations of seasonality.
The main reasons for the use of form models, rather than the flexible

and unrestricted seasonal effects models, are economy and interpretation.
In some applications, observations result from sampling a simple wave-
form, so that sine/cosine waves provide a natural, economic characterisa-
tion. Simple phenomena exhibiting such behaviour abound in electrical
and electronic systems, astronomy, marine depth soundings, and geophys-
ical studies, including earthquake tremors. Many pure seasonal patterns
also arise in response to the revolution of the earth about the sun. For
example, in both the cases of British temperature and the Eire milk supply
index, over 97% of the variation in the average monthly figures about their
respective annual means may be characterised in terms of a single cosine
wave of period 12. If such a representation is deemed acceptable, then it
is defined in terms of only two quantities determining the phase and am-
plitude of the cosine waveform. By comparison, a monthly seasonal effects
component requires 11 parameters, with a weekly component needing 51.
The economy of form models is immediately apparent, and when appropri-
ate, results in enhanced forecasting performance. Generally, compared to
a full effects model, a Fourier form model can provide an acceptable repre-
sentation of an apparently erratic seasonal pattern whilst economising on
parameters.

8.6.2 Fourier form representation of cyclical functions
Consider the cyclical function g(t) of Section 8.2 defined in terms of sea-
sonal factors ψ0, . . . , ψp−1. The basic result is that any such p real numbers
can be written as a linear combination of trigonometric terms. This repre-
sentation depends on the parity of the period p. Throughout, let α = 2π/p
and h = p/2 if p is even, but h = (p− 1)/2 if p is odd.

Theorem 8.3. Any p real numbers ψ0, . . . , ψp−1 can be represented as

ψj = a0 +
h∑

r=1

[ar cos(αrj) + br sin(αrj)] ,

where h is the largest integer not exceeding p/2 and the real numbers
{ai, bi} are given by
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ar =
2
p

p−1∑
j=0

ψj cos(αrj), br =
2
p

p−1∑
j=0

ψj sin(αrj), 1 ≤ r < p
2

a0 =
1
p

p−1∑
j=0

ψj , ap/2 =
1
p

p−1∑
j=0

(−1)jψj , bp/2 = 0.

Proof. The results are trivially deduced by multiplying the ψj by appro-
priate sin/cosine terms and solving the resulting linear equations. The
basic identities below are used in this solution. For example,

p−1∑
j=0

ψj cos(αrj) =
p−1∑
j=0

ar cos2(αrj) = par/2, r �= p/2.

The full proof is left to the reader.

Basic trigonometric identities.

(1) For integer n and any x,

cos(x+ 2πn) = cos(x) and sin(x+ 2πn) = sin(x).

(2) For each r = 1, . . . , h,
p−1∑
j=0

cos(αrj) =
p−1∑
j=0

sin(αrj) = 0.

(3) For integers h and k,
p−1∑
j=0

cos(αhj) sin(αkj) = 0,

p−1∑
j=0

cos(αhj) cos(αkj) =




0, h �= k,

p, h = k = p
2 ,

p
2 , h = k �= p

2 ,

p−1∑
j=0

sin(αhj) sin(αhj) =




0, h �= k,

0, h = k = p
2 ,

p
2 , h = k �= p

2 .

�
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Notation and terminology

(1) The quantities ar and br are called the Fourier coefficients.
(2) For r = 1, . . . , h, define the function Sr(·) by

Sr(·) = Sr· = ar cos(αr·) + br sin(αr·)
= Ar cos(αr ·+γr).

Then Sr(·) is called the rth harmonic and takes values

Srj = ar cos(αrj) + br sin(αrj)

for j = 0, . . . , p− 1.
(3) The amplitude Ar and phase γr of the rth harmonic are

Ar = (a2
r + b2r)

1/2 and γr = arctan(−br/ar).
The amplitude is the maximum value taken by the Sr·, and the
phase determines the position of that maximum.

(4) If p = 2h, the hth harmonic is called the Nyquist harmonic. Since
bp/2 = 0, it follows that Ap/2 = |ap/2| and γp/2 = 0.

(5) The frequency of the rth harmonic is defined as αr = 2πr/p, with π
being the Nyquist frequency. The cycle length of the rth harmonic
is p/r. In particular, the first harmonic is called the fundamental
harmonic, having fundamental frequency α and fundamental cycle
length p. Notice that the rth harmonic completes exactly r full
cycles for each single, complete cycle of the fundamental harmonic.

Theorem 8.4. Given any p seasonal factors ψ0, . . . , ψp−1, the total vari-
ation about their mean a0 factorises into a linear sum of the squares of the
h amplitudes, so that
• for p odd and with h = (p− 1)/2,

p−1∑
j=0

(ψj − a0)
2 =

p

2

h∑
r=1

A2
r;

• for p even and with h = p/2,
p−1∑
j=0

(ψj − a0)
2 =

p

2

h−1∑
r=1

A2
r + pA2

p/2.

The proof just uses the above identities and is left to the reader. The
major consequence is that the importance of each harmonic, in terms of the
percentage seasonal variation for which it accounts, is simply calculated;
for the rth harmonic and odd p it is simply 100A2

r/
∑h

v=1A
2
v.

EXAMPLE 8.3. As a simple illustration with p = 12, let the function g(.)
be defined by the following 12 seasonal factors, with mean a0 = 0,

1.65, 0.83, 0.41,−0.70,−0.47, 0.40,−0.05,−1.51,−0.19,−1.02,−0.87, 1.52.
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       j

121086420

1.5

1

0.5

-0.5

-1

-1.5

Figure 8.1a Seasonal factors: sum of harmonics

The Fourier coefficients, amplitudes and phases are as tabulated.

Harmonic r 1 2 3 4 5 6

ar 0.80 0.75 0.25 −0.03 −0.20 0.08
br 0.30 −0.15 0.15 −0.60 0.01 0.00
Amplitude Ar 0.85 0.76 0.29 0.60 0.20 0.08
Phase γr 0.36 −0.20 0.55 1.53 −0.04 0.00

The factors are plotted as vertical lines against j = 0, . . . , 11 in Fig-
ure 8.1(a). Superimposed is the full Fourier composition of the seasonal
factors as a continuous function of t, clearly coinciding with the seasonal
factors at the integer values. Figures 8.1(b), (c) and (d) display the corre-
sponding 6 harmonic components Srj as functions of j for 0 ≤ j ≤ 11.
In the Fourier form representation, g(t) is expressed as the sum of har-

monics, so that for all integers t > 0, setting j = p|t, and utilising the fact
that Srt = Srj , for r = 1, . . . , h,

g(t) = ψj = a0 +
h∑

r=1

Srj . (8.8)
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Figure 8.1b Harmonics 1 and 2
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Figure 8.1c Harmonics 3 and 4
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       j
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Figure 8.1d Harmonics 5 and 6

Remember that J2(1, ω) =
(

cos(ω) sin(ω)
− sin(ω) cos(ω)

)
, so that

Jt2(1, ω) =
(

cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

)
=
(

cos(ωj) sin(ωj)
− sin(ωj) cos(ωj)

)

and Jt2(1, ω) = J
j
2(1, ω). Hence Srt may be written in deterministic DLM

representation as

Srt = E′
2J

t
2(1, rω)

(
ar
br

)
. (8.9)

Consequently, for the stochastic case, the DLM representation is

{E2,J2(1, rω), ·, ·}.

In the case of r = p/2 this is not observable, and it simplifies to the
observable DLM {1,−1, ·, ·}.

8.6.3 Harmonic component DLMs

Definition 8.8. An harmonic component DLM is defined
(a) for any frequency ω ∈ (0, π), as any DLM similar to

{E2,J2(1, ω), · , ·} =
{(

1
0

)
,

(
cos(ω) sin(ω)
− sin(ω) cos(ω)

)
, ·, ·

}
,
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(b) for the Nyquist frequency, ω = π, as any DLM similar to

{1,−1, · , ·}.

Note the following features, identified with items (a) and (b) of Definition
8.8 as appropriate:

(1) The component harmonic DLMs are observable, with respective ob-
servability matrices

(a) T =
(

1 0
cos(ω) sin(ω)

)
, (b) T = −1.

(2) With parameter θt, the respective forecast functions are

(a) ft(k) = at cos(ωk) + bt sin(ωk), if E[θt | Dt] = (at, bt)′;

(b) ft(k) = (−1)kat, if E[θt | Dt] = at.

For any integer n, ft(k+np) = ft(k), that in case (a) is a cosine wave
of frequency ω, amplitude (a2

t + b2t )
1/2, and phase arctan(−bt/at).

(3) As a theoretical aside, for (a) the forecast function can be written

ft(k) =
1
2
[
(at − ibt) eikω + (at + ibt) e−ikω

]
= dte

ikω + d̄te
−ikω,

and this is associated with canonical complex DLMs of the form{(
1
1

)
,

(
eikω 0
0 e−ikω

)
, · , ·

}
.

So the component harmonic DLM comprises two sub-components.
For real-valued time series, however, the complex model is of lit-
tle interest since the associated parameter vector, αt, comprises
complex conjugate parameters. The two DLMs are similar models,
being related by the invertible mapping

θt =
(
1 1
i −i

)
αt.

(4) A point of interest is that for a constant DLM {E2,G, V, VW} , the
derived series

Zt = Yt − 2Yt−1 cos(ω) + Yt−2

is a moving average process of order 2.

8.6.4 Full seasonal effects DLMS
As described in Section 8.6.2, any p seasonal factors/effects can be ex-
pressed in terms of harmonic components. This section specifies DLMs
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having such cyclical forecast functions in terms of the equivalent collection
of Fourier component DLMs, combined using the principle of superposition.

Definition 8.9. Define the (p−1) vectors FFF and (p−1)×(p−1) matrices
GGG, for odd and even p, respectively, as

{FoFoFo,GoGoGo} =






E2
E2
...
E2


 ,



J2(1, ω) 000 . . . 000

000 J2(1, 2ω) . . . 000
...

...
...

000 000 . . . J2(1, hω)




 ;

{FeFeFe,GeGeGe} =






E2
E2
...
E2
1


 ,



J2(1, ω) 000 . . . 000 000

000 J2(1, 2ω) . . . 000 000
...

...
...

...
000 000 . . . J2(1, hω − ω) 000
000 000 . . . 000 −1






.

Definition 8.10. A full effects Fourier form DLM for a seasonal
pattern of period p is any DLM of the form

{FoFoFo,GoGoGo, ·, ·}, if p is odd,

{FeFeFe,GeGeGe, ·, ·}, if p is even.

Such DLMs are usually formed from the superposition of the component
harmonic DLMs of Definition 8.8, so that the system variance W has a
block diagonal form corresponding to the relevant GGG. Note the following:

(1) The forecast function is just the sum of the component forecast
functions. With ω = 2π/p and p− 1 parameter vector θt, write

E[θt | Dt] =mt = (mt1,mt2; . . . ;mt,p−1)′,

the odd elements corresponding to the cosine coefficients a and the
even to the sine coefficients b. Upon conveniently writing mt,p = 0,
we then have

ft(k) =
h∑

r=1

Srk =
h∑

r=1

[mt,2r−1 cos(ωrk) +mt,2r sin(ωrk)] .

(2) No constraints are required on any of the component distributions
since by design, the Fourier DLM automatically ensures that the
seasonal effects sum to zero.

(3) The DLM is observable, since each component is observable and no
two components have a common eigenvalue.

(4) In most commercial applications a single discount factor is assigned
to characterise the evolution variances, so that

Rt =
1
δ
GGGCt−1G′G′G′ and W =

1− δ
δ
GGGCt−1G′G′G′.
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However, in some scientific cases it may be desirable to characterise
the harmonics as evolving independently. Then the procedure of
Section 6.3 can be employed, possibly using different discount fac-
tors for different component harmonics, consistent with a view that
some are more durable than others.

8.6.5 Deriving the seasonal effects from Fourier DLMs
Given any DLM with a Fourier component DLM {FFF ,GGG, ·, ·}, let the current
state of information about the Fourier coefficients at time t be described
by the marginal posterior

(θt | Dt) ∼ N[mt,Ct].

Characterise the seasonal effect pattern at time t by φt, where the sum of
its elements is zero. The p-vector φt is defined by

φt = Lθt =




F ′F ′F ′

F ′F ′F ′GGG
...

F ′F ′F ′Gp−1Gp−1Gp−1


θt, (8.10)

and it follows that

(φt|Dt) ∼ N[Lmt, LCtL′].

When estimating the observation variance Vt, the analogous result holds
with a T distribution replacing the normal.
The reverse transformation is given by

θt = Hφt = (L′L)−1L′φt,

where H is a (p− 1)× p matrix. Upon using the trigonometric identities,
it is clear that L′L is always a diagonal matrix.

EXAMPLE 8.4. In the case p = 4,

F =


 1
0
1


 , G =


 0 1 0
−1 0 0
0 0 −1


 , T =


 1 0 1

0 1 −1
−1 0 1


 ,

and we have

L =




1 0 1
0 1 −1
−1 0 1
0 −1 −1


 ,
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H =


 0.5 0 −0.5 0

0 0.5 0 −0.5
0.25 −0.25 0.25 −0.25


 .

8.6.6 Reduced Fourier form models
Sometimes a modeller requires a DLM that describes a seasonal pattern in
simpler terms than that given by a full p seasonal effects DLM. The case of
annual climatic cycles related to the earth’s revolution about the sun are
typical. In such cases, an economic representation in terms of only a few
harmonics, or even a single component, may suffice. The construction of
such reduced models is easy, just superimposing selected harmonic DLMs
and omitting other insignificant harmonics. For example, for monthly data
having an annual cycle, the DLM

{(
E2
E2

)
,

(
J2(1, ω) 000

000 J2(1, 4ω)

)
, · , ·

}
, with ω = 2π/12,

confines the seasonal form to a composition of the first and fourth har-
monics. Within this restriction the DLM can accommodate any composi-
tion of amplitudes and phases. Usually a single discount factor is applied
to this DLM, but if required, different discount factors may be used for
the two components to reflect the view that they develop independently
and/or one is more durable than the other.
When appropriate, apart from being more economic and meaningful, a

reduced form model produces a better forecasting performance than a full
model. Clearly, included harmonic components that truly have very little
or no effect degrade forecast performance since their assessment introduces
extra variation and correlated forecast errors. For example, in a first-order
polynomial trend/seasonal effects model, the full Fourier form represen-
tation leads to a simple updating for the current seasonal factor and no
others. In contrast, a reduced form model updates the entire seasonal pat-
tern, revising forecasts for the whole period rather than just individual time
points. The message is that in addition to considering whether a reduced
form model should be used for reasons related to the application area,
the practical significance of components in the model should be assessed
over time and possibly removed if deemed negligible. However this does
not mean that such components will always be unnecessary, since future
changes in seasonal patterns may require that they be reinstated.
As with full harmonic models, the Fourier coefficients in a reduced model

are related to the constrained seasonal effects. In the (possibly reduced)
n-dimensional Fourier DLM {F,G, ·, ·}, define the p× n matrix L and the
n× p matrix H by
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L =




F′

F′G
...

F′Gp−1


 and H = (L′L)−1L′.

Then the orthogonality properties underlying the trigonometric identities
of Section 8.6.2 apply just as in a full Fourier model. If this DLM has state
vector θt then the relationships between Fourier parameters and seasonal
effects are simply φt = Lθt and θt = Hφt, for all t.

EXAMPLE 8.5. For p = 4, using just the first harmonic, n = 2,

F =
(
1
0

)
, G =

(
0 1
−1 0

)
, L =




1 0
0 1
−1 0
0 −1


 ,

H =
(
0.5 0 −0.5 0
0 0.5 0 −0.5

)
.

8.6.7 Assessing the importance of harmonic components
Many readers will be familiar with spectral analysis and in particular, peri-
odogram analysis, that provides a static assessment of the statistical signif-
icance of harmonics relative to a specified period p. The generalisation of
this to dynamic analysis examines the statistical significance of harmonics
based on the posterior distribution of the harmonic coefficients, thus al-
lowing for changes in time and the presence of related variables and other
dynamic components. Of course in practice, the modeller will finally judge
the importance of harmonics by their practical significance: it is possible
that a harmonic may be statistically significant without being practically
significant and vice versa.
At time t, let the posterior distribution for the coefficient vector θt be

(θt | Dt) ∼ N[mt,Ct]. As usual the observational variance sequence is
assumed known, otherwise the normal distribution is simply replaced by a
multivariate T, with modifications as noted below. Denote the marginal
posteriors of the coefficients of the rth harmonic by

(a) (θtr | Dt) ∼ N [(atr, btr)′,Ctr] , if r �= p/2;
(b) (θt,p/2 | Dt) ∼ N[at,p/2, Ct,p/2].

Notice that atr is the posterior estimate of the harmonic component of
the seasonal pattern at time t, namely Str. A time plot of the estimates
atr, (or the associated filtered values if filtering has been performed), with
an indication of the associated uncertainty as measured by the posterior
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variance, provides a clear and useful visual indication of the contribution
of the rth harmonic. A formal statistical assessment may be based on the
calculation of HPD (highest posterior density) regions (Section 17.3.5) for
the individual harmonics, as follows.
Writing mtr = (atr, btr)′, we have the following distributions at time t

and, of course, conditional on Dt :

(1) If the variances Vt are known, then with the usual χ2
v as a random

quantity having a standard chi-square distribution with v degrees
of freedom,
(a) (θtr −mtr)′C−1

tr (θtr −mtr) ∼ χ2
2, if r �= p/2;

(b) (θt,p/2 − at,p/2)2/Ct,p/2 ∼ χ2
1.

(2) If the variance V is unknown but is estimated in the usual way, with
nt degrees of freedom at time t, then with Fv1,v2 representing the F
distribution with v1 and v2 degrees of freedom,
(a) (θtr −mtr)′C−1

tr (θtr −mtr)/2 ∼ F2,nt
, if r �= p/2;

(b) (θt,p/2 − at,p/2)2/Ct,p/2 ∼ F1,nt
.

When considering the retention of a harmonic, the usual statistical tests
simply calculate the following probabilities, high probabilities indicating
that retention is statistically advisable.

(1) If the variances Vt are known,
(a) Pr(χ2

2 ≤m′
trC

−1
tr mtr);

(b) Pr(χ2
1 ≤ a2

t,p/2/Ct,p/2).
(2) Or, when the variance is unknown,

(a) Pr(F2,nt
≤m′

trC
−1
tr mtr/2);

(b) Pr(F1,nt ≤ a2
t,p/2/Ct,p/2).

EXAMPLE 8.6. Gas consumption data. The data series in Table 8.1 is
used to illustrate the above Fourier decomposition. The 65 observations are
monthly totals of inland U.K. natural gas consumption over the period May
1979 to September 1984 inclusive, as derived from the Central Statistical
Office Monthly Digest. Since gas usage follows the annual temperature
cycle, the first harmonic is expected to dominate the seasonal pattern.
However, as is evident from Figure 8.2, higher-frequency harmonics are
necessary to account for industrial demand patterns and holiday effects.
The simplest model, a first-order polynomial, seasonal effects DLM with

12 parameters, is used, 6 harmonics representing the 11 seasonal effects.
The final posterior distribution for the static model, {F,G, V,000} with a
reference prior, is akin to a periodogram analysis, the F-values for the 6
harmonics at t = 65 being

Harmonic 1 2 3 4 5 6
F-value 837.8 1.18 6.86 68.14 12.13 0.32
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Figure 8.2 Gas consumption data

Table 8.1. UK gas consumption: amount in 106 tonnes coal equivalent

Month
Year 1 2 3 4 5 6 7 8 9 10 11 12

1979 4.9 4.5 3.1 3.1 4.6 4.8 6.7 8.6
1980 8.3 7.2 9.2 5.5 4.7 4.4 3.4 2.8 4.0 5.1 6.5 9.2
1981 7.7 7.7 8.9 5.7 5.0 4.5 3.3 2.8 4.0 5.6 6.6 10.3
1982 8.5 7.9 8.9 5.4 4.4 4.0 3.0 3.1 4.4 5.5 6.5 10.1
1983 7.7 9.0 9.0 6.5 5.1 4.3 2.7 2.8 4.6 5.5 6.9 9.5
1984 8.8 8.7 10.1 6.1 5.0 4.5 3.1 2.9 4.8

In this static reference analysis the final degrees of freedom for the Stu-
dent T posteriors is 53 (65 minus 12), thus the first five F-values may be
compared to the F2,53 distribution, and the final value for the Nyquist term
to the F1,53. On this basis, harmonics 1 and 4 are enormously significant,
clearly indicating the dominance of the annual and quarterly cycles. Less
significant, but still important, are harmonics 3 and 5. Harmonics 2 and 6
are insignificant. Whilst not definitive, this static “periodogram” reference
analysis serves to identify the key harmonics.
For a more appropriate exploration of a dynamic model, consider a sin-

gle discount model with discount factor of 0.95, so given the posterior
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Figure 8.3 Gas consumption and the one–step point forecasts

variance matrix Ct−1, Rt = 1.05 GCt−1G′. Whilst not optimised in terms
of discount factors, this allows for changing parameter values. A reference
prior-based analysis with this model is partially illustrated in Figures 8.3
to 8.10.
Figure 8.3 plots the data together with one-step ahead point forecasts

and corresponding 90% Student T probability limits; the forecasts only ap-
pear in this reference analysis after 13 data points. The one-step forecasts
look good, and the model adapts to the slight changes in pattern from
year to year, such changes being particularly evident in the December lev-
els of consumption. Figure 8.4 is produced after retrospective smoothing
using the backwards filtering algorithms. This displays the retrospective
estimates of the seasonal effects in each month, the vertical bar represent-
ing a 90% posterior probability interval symmetrically located about the
posterior mode for the effect in that month. Figures 8.5 to 8.10 show the
individual harmonic components of the seasonal pattern as retrospective
posterior intervals for the harmonics Str = E′

2θtr, (r = 1, . . . , 6). The
dominance of harmonics 1 and 4 is clear from these plots, as is the nature
of their contribution to the overall pattern.
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Figure 8.4 Estimated seasonal pattern in consumption series

-3

-2

-1

0

1

2

3

MONTH
YEAR

1
1979

1
1980

1
1981

1
1982

1
1983

1
1984

1
1985

Figure 8.5 Harmonic 1



8.6 Fourier Form Representation of Seasonality 261

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

MONTH
YEAR

1
1979

1
1980

1
1981

1
1982

1
1983

1
1984

1
1985

Figure 8.6 Harmonic 2

-0.4

-0.2

0

0.2

0.4

MONTH
YEAR

1
1979

1
1980

1
1981

1
1982

1
1983

1
1984

1
1985

Figure 8.7 Harmonic 3



262 8 Seasonal Models

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.25

MONTH
YEAR

1
1979

1
1980

1
1981

1
1982

1
1983

1
1984

1
1985

Figure 8.8 Harmonic 4

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

MONTH
YEAR

1
1979

1
1980

1
1981

1
1982

1
1983

1
1984

1
1985

Figure 8.9 Harmonic 5



8.7 Exercises 263

-0.2

-0.1

0

0.1

0.2

MONTH
YEAR

1
1979

1
1980

1
1981

1
1982

1
1983

1
1984

1
1985

Figure 8.10 Harmonic 6

8.7 EXERCISES
These exercises concern seasonal DLMs with known variances. There is
no problem in applying the usual procedures to extend the results to the
unknown variance case. Some of the exercises are hard and the reader may
simply wish to read the questions as part of the text.

(1) Consider the p× p permutation matrix

P =
(

000 Ip−1
1 000

)
.

Verify that
(a) P is p-cyclic, so that Pk+np = Pk for all integers k and n;

(b) the eigenvalues of P are the p roots of unity exp(2πij/p) for
j = 0, . . . , p− 1;

(c) the DLM {Ep,P, ·, ·, } is observable, with identity observability
matrix.

(2) Using the basic trigonometric identities, or otherwise, verify that
for integer k ≥ 1, p ≥ 2, and ψ = 2kπ/p, the matrix

J2(1, ψ) =
(

cos(ψ) sin(ψ)
− sin(ψ) cos(ψ)

)

is p-cyclic.
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(3) A seasonal effects component DLM is used to model quarterly data,
so that p = 4. A forecaster, unused to thinking about covariances,
specifies initial prior moments for the seasonal factors as

(θ0|D0) ∼ N





−100
100
−300
400


 ,



200 0 0 0
0 200 0 0
0 0 200 0
0 0 0 400




 .

(a) Show that this is an invalid prior for seasonal effects.
(b) Derive a valid prior based on the provided information.

(4) In the first-order polynomial/seasonal effects Normal DLM,{(
1
Ep

)
,

(
1 000
000 P

)
, V,

(
W W2
W′

2 W3

)}
, with θt =

(
µt

φt

)
,

let Xt =
p∑

r=1
Yt+r be the annual demand. Suppose that

(
µt

φt

∣∣∣Dt

)
∼ N

[(
mt

st

)
,

(
C C′

2
C2 C3

)]
.

(a) IfW3 = 000 andW2 = 000, prove that

(Xt | Dt) ∼ N
[
pmt, pV +

p(p+ 1)
2

W + p2C

]
,

a result that does not depend on the information on the seasonal
effects.

(b) IfW3 �= 000, in what way does the result in (a) change?
(5) The following table gives an Eire milk production figure for each

month of 1975 in terms of millions of gallons:

Month Jan Feb Mar Apr May Jun
Milk 6 13 36 64 99 99

Month Jul Aug Sep Oct Nov Dec
Milk 89 82 64 43 19 9

(a) Express these figures in the Fourier form

a0 +
5∑

r=1

(ar cos(2πrt/12) + br sin(2πrt/12)) + a6(−1)t,

calculating the mean a0 and the Fourier coefficients ar and br.
(b) Derive the amplitudes Ak and phases γk associated with the

kth harmonic, k = 1, . . . , 6.
(c) Calculate the percentage of variation accounted for by each har-

monic and draw a first impression as to how you might charac-
terise the seasonality in a DLM.
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(6) Consider the regression DLM {Ft, I3, ·, ·}. I3 is the 3 × 3 identity
matrix and Ft+4 = Ft for all t, so that Ft is 4-cyclic such that

F1 =


 1
0
0


 , F2 =


 0
1
0


 , F3 =


 0
0
1


 , F4 =


−1−1
−1


 .

(a) Show that the forecast function is that of a form-free seasonal
effects DLM of period p = 4, so that this DLM offers an alter-
native way of modelling such a seasonal effects component.

(b) Generalise this regression DLM representation of form-free sea-
sonal effects to all integers p > 1.

(7) With real g �= 0, consider the DLM{(
1
1

)
,

(
1 g
−g 1

)
cos(ω), · , ·

}
,

where ω = arccos(1/
√
1 + g2).

(a) Derive the forecast function ft(k).
(b) What is the period of the forecast function?
(c) Show that the DLM is similar to the DLM {E2,J2(1, ω), ·, ·}.

(8) Consider the full seasonal effects Fourier form DLM {FFF ,GGG, ·, ·} with
parameter θt and observability matrix T, as in Sections 8.6.4 and
8.6.5.
(a) Verify that the p seasonal effects φt are given by the equation

φt = Lθt =
(

T
F ′F ′F ′GGGp−1

)
,

where L is a p× (p− 1) matrix.
(b) Verify that for integer p, L′L is a non-singular diagonal matrix.
(c) Verify that the inverse relationship is θt = Hφt, where H =

(L′L)−1L′ is a (p− 1)× p matrix.
(d) Obtain the matrices L and H when p = 5.
(e) Obtain the matrices L and H when p = 6.

(9) In an analysis of a company’s quarterly carpet sales, as calculated
in the fourth quarter of 1994, the final marginal posterior for the
first and second harmonic Fourier coefficients was
 a1
b1
a2

∣∣∣∣∣D

 ∼ N




 −6.2
−59.0
−0.3


 ,


 5.6 −0.2 −0.1
−0.2 6.2 −0.3
−0.1 −0.3 2.7




 .

(a) Assess the importance of the harmonics according to distribu-
tion of their amplitudes; in this case no formal analysis is really
necessary.

(b) After discarding any negligible harmonics, derive the posterior
(φ|D) for the four seasonal quarters, making sure that these
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are not out of phase (Q3 should be the peak). You can use the
relation φ = Lθ of Example 8.5.

(10) The monthly carpet sales of the company in the previous question
are modelled using a linear growth/Fourier seasonal effects DLM
that includes both the first and third harmonic. In December 1994
write θdec = (a1, b1, a3, b3)′ for the current Fourier coefficients, and
suppose that the marginal posterior is summarised in terms of the
posterior mean and variance matrix of θdec, namely




−12.3
−16.4

3.4
−2.5


 ,




0.82 0.02 −0.02 0.02
0.02 0.87 −0.02 0.01
−0.02 −0.02 0.74 −0.01
0.02 0.01 −0.01 0.76




 .

(a) Write down the canonical form of the complete DLM in terms
of {F,G}.

(b) Let the twelve seasonal effects be φjan = (sjan, . . . , sdec). Be-
ing careful about the phase, derive the posterior distribution
of φjan =Mθdec, identifying the appropriate matrix M. (The
peak-to-trough difference should be about 47).

(11) Consider the single harmonic component normal DLM{(
1
0

)
,

(
cos(ω) sin(ω)
− sin(ω) cos(ω)

)
, Vt,

(
Wt1 Wt2
Wt2 Wt3

)}
.

(a) Write down the observation and system equations of this DLM.
(b) If Zt = Yt − 2Yt−1 cos(ω) + Yt−2, show that

Zt = νt − 2νt−1 cos(ω) + νt−2 + ρt,

where

ρt = wt1 − wt−1,1 cos(ω) + wt−1,2 sin(ω).

(c) Hence show that initially and based upon the truth of the DLM,

E[Zt] = 0 and C[Zt, Zt−k] = 0, for all k > 2.

(d) Additionally assuming a constant DLM, show that Zt can be
represented as a moving average process of order 2,

Yt − 2Yt−1 cos(ω) + Yt−2 = at − ψ1at−1 + ψ2at−2,

where at ∼ N[0, Q] independently.
(e) Using the limit theorems of Chapter 5 and remembering that

Yt+1 = at cos(ω) + bt sin(ω) + et+1,

at = at−1 cos(ω) + bt−1 sin(ω) +A1tet,

bt = bt−1 cos(ω)− at−1 sin(ω) +A2tet,
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show that for this constant DLM,

lim
t→∞
{Zt − et +Bet−1 − (1−A1)et−2} = 0,

where limAt = (A1, A2)′ and B = (2−A1−A2 tan(ω)) cos(ω).
As a result, and using the earlier parts of this question, it should
be clear that {Q,A1, A2} may be derived in terms of V andW.

(12) In full, the single harmonic discount DLM {E2,J2(1, ω), 1,Wt} with
discount factor 0 < δ < 1 is{(

1
0

)
,

(
cos(ω) sin(ω)
− sin(ω) cos(ω)

)
, 1,

(
W1t W2t
W2t W3t

)}
,

with Rt = Ct−1/δ for all t.
(a) Verify that

J−1
2 (1, ω) = J′

2(1, ω).

(b) By considering the usual DLM relationship

C−1
t = R−1

t + FV −1
t F′,

without necessarily determining it, prove that limt→∞Ct =
C exists and consequently so do limiting values {R,A, Q} for
{Rt,At, Qt}.

(c) Show that the eigenvalues of the matrix H = CR−1J2(1, ω)
are simply those of J−1

2 (1, ω) multiplied by δ.
(d) Hence, using the result of Theorem 5.7 or otherwise show that

lim
t→∞

[
Yt − et − 2(Yt−1 − δet−1) cos(ω) + Yt−2 − δ2et−2

]
= 0.

(e) By comparison with the previous question deduce that

A1 = 1− δ2, A2 = (1− δ)2 cot(ω), and Q = 1/δ2.

(f) Show that

C =
(
A1 A2
A2 c

)
and R =

1
δ2

(
A1 A2
A2 r

)
,

where c = (1− δ)[3− δ+(1− δ)2/(δ sin2(ω))] and r = δ2c+A2
2.

(13) Write a computer program to implement a DLM with second-order
polynomial and Fourier form seasonal components.† The program
should provide the following facilities:
(a) Allow a user to select any number of harmonic components.
(b) Structure the evolution variance sequence in component dis-

count form as in Definition 6.1, with one discount factor δT
for the trend and one δS for the seasonal component. These
discount factors are to be specified by the user.

†The BATS package (Pole, West, and Harrison 1994) implements this, as well
as a wider class of models
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(c) Allow for the choice of initialisation via either the reference
analysis of Section 4.8, or through user input priors.

(d) Produce numerical and graphical summaries of analyses. Useful
outputs are time graphs of on-line and filtered estimates, with
uncertainties indicated by intervals about the estimates, of (i)
the non-seasonal trend, (ii) the seasonal component, (iii) the
individual harmonics, etc.

(14) Test the program by analysing the gas consumption data of Table
8.1. Gain experience in the use of the model by exploring different
analyses of this series. In particular, with the full 6 harmonics,
experiment with this data series with a range of different initial
priors (including the reference analysis), and different values of the
discount factors in the range 0.85 < δT , δS ≤ 1. Note that the
analysis in Section 8.6.5 uses a model in which the trend is first-
order, rather than second-order polynomial, and that this can be
reproduced in the more general model by specifying zero mean and
zero variance for the growth parameter.

(15) Reanalyse the gas consumption data using a reduced Fourier form
model having only two harmonic components, r = 1 and r = 4, for
the fundamental (annual) cycle and the fourth (quarterly) cycle.

(16) The data below are quarterly total sales (in thousands) of one-day-
old turkey chicks from hatcheries in Eire over a period of years
(taken from Ameen and Harrison 1985a).

Eire turkey chick data

Quarter
Year 1 2 3 4

1974 131.7 322.6 285.6 105.7
1975 80.4 285.1 347.8 68.9
1976 203.3 375.9 415.9 65.8
1977 177.0 438.3 463.2 136.0
1978 192.2 442.8 509.6 201.2
1979 196.0 478.6 688.6 259.8
1980 352.5 508.1 701.5 325.6
1981 305.9 422.2 771.0 329.3
1982 384.0 472.0 852.0

Analyse these data using a reduced Fourier form model having
only two harmonic components, r = 1 and r = 4, for the funda-
mental (annual) cycle and the fourth (quarterly) cycle. There is
obvious, sustained growth in the series over the years and a marked
annual seasonal pattern. Explore various models, discount factors,
etc., comparing them through subjective exploration of graphical
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summaries together with numerical summaries such as the MSE,
MAD and LLR measures. Verify that a static model (δT = δS = 1)
performs poorly relative to dynamic models, and that in particular,
there is a fair degree of change indicated in the seasonal pattern.

(17) Re-analyse the turkey data after transformation of the original Yt to
an alternative scale. Compare graphs of transformed series against
time, considering transforms such as log(Yt), Y

1/2
t and Y

3/4
t , and

try to identify a transformed scale on which the amplitude of the
seasonality is most constant (although, as with most real data, there
is a fair degree of change in seasonal pattern on all scales).

(18) The Periodogram. Consider np data points Y1, . . . , Ynp, where
n > 1 is an integer and the seasonal period p is also an integer.
You model this series according to a static first-order polynomial
/full Fourier seasonal effects constant normal DLM with reference
prior. Let there be h harmonics in the seasonal description, the
period being p.
(a) Show that the final posterior estimatemnp = E[θnp|Dnp] is the

least squares/normal maximum likelihood estimate that mini-
mizes

S(θ) =
np−1∑
v=0

(Ynp−v − F′G−vθ)2.

(b) Let Ak be the estimate of the amplitude of the kth harmonic
as calculated from the posterior estimate mnp. Show that the
total sum of squares S = Y′Y− (np)Ȳ 2 about the mean Ȳ can
be written as

S = Y′Y − (np)Ȳ 2 =
h∑

v=1

S2
v +R,

where Sv = npA2
v/2 for v �= p/2, Sp/2 = npA2

p/2, and R is the
residual sum of squares.

(c) Plot the graph {A2
v, v : v = 1, . . . , h}. This is known as the

Periodogram and is widely used in time series analysis. Like
most simple techniques that exploit orthogonality, it was ex-
tremely useful before the advent of powerful computing facili-
ties. Clearly it is still of limited use in initial data analysis but
is superseded by facilities such as DLMs, that provide appropri-
ate dynamic analyses incorporating stochastic seasonals, other
components (such as stochastic trends, related variables), and
full posterior distributions over all times using retrospective
analysis, interventions, priors, etc.



CHAPTER 9

REGRESSION, AUTOREGRESSION, AND
RELATED MODELS

9.1 INTRODUCTION
We now turn to models incorporating regression components, including re-
gressions on independent variables and related classes of transfer function
DLMs. We then consider, in some detail, classes of traditional, stationary
time series components, namely the class of autoregressive, moving average
models, or ARMA models. We provide some basic discussion of ARMA
models in DLM contexts, and then more extensive development of AR com-
ponent models, especially in connection with time series decompositions.
Finally, an important class of time-varying autoregressive component mod-
els is discussed and illustrated.

9.2 THE MULTIPLE REGRESSION DLM
9.2.1 Definition
Consider modelling the series Yt by regressing on a collection of n independent,
or regressor, variables labelled X1, . . . , Xn. The value of the ith variable Xi

at each time t is assumed known, denoted by Xti, (i = 1, . . . , n; t = 1, . . . ).
Usually a constant term is included in the model, in which case X1 is taken
as unity, Xt1 = 1 for all t. For t = 1, . . . , let the regression vector Ft

be given by F′
t = (Xt1, . . . , Xtn). Then the multiple regression DLM with

regressors X1, . . . , Xn is defined by the quadruple {Ft, I, Vt,Wt}, for some
observational variances Vt and evolution variance matricesWt. This is just
as specified in Definition 3.1.
For each t then, the model equations are

Observation equation: Yt = F′
t θt + νt , νt ∼ N[0, Vt],

System equation: θt = θt−1 + ωt , ωt ∼ N[000,Wt].

Write the elements of θt as θ′
t = (θt1, . . . , θtn). Then the observation

equation can be written as

Yt = µt + νt,

where the mean response µt is given by

µt = F′
tθt =

n∑
i=1

θtiXti.

From this representation it is clear that the model can be viewed as being
formed from the superposition of n straight-line regressions with zero origin,
the simple models of Chapter 3.
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In the regression DLM the state vector evolves only via the addition
of a noise term ωt. This is a dynamic generalisation of standard static
regression models. Setting Wt = 000 for all t provides the specialisation
to static regression for then θt = θ is constant over time, and the model
equations reduce to

Yt = F′
tθ+ νt with νt ∼ N[0, Vt].

Bayesian analyses of such standard models are well documented; see, for
example, Broemling (1985), Box and Tiao, (1973), De Groot (1971), Press
(1985) and Zellner (1971). Here θ plays the role of a fixed regression vector
and the time ordering of the observations is not so relevant. In the dynamic
regression, stochastic variation over time is permitted through the noise
terms ωt, to model changes in regression relationships. The dynamic model,
whilst retaining the basic linear structure, offers flexibility in adapting to
observed data in which the relationships between the response series and
the regressors cannot be adequately represented by a static linear model.
See Chapter 3 for further discussion and illustrations, and examples in
Ameen and Harrison (1984), Harrison and Johnston (1984), and Johnston
et al (1986).

9.2.2 Common types of regressions
The DLM structure allows for a host of possible forms of relationships
through appropriate choice of regression variables and combinations of
them. The basic types are quantitative measurements; indicator variables
to group the response data according to an underlying classificatory vari-
able, or factor; and higher-order terms involving interactions between vari-
ables of these types. For examples of each of these, consider the sort of
data series analysed in Section 3.3.4. Suppose that Yt represents sales of
a product, the data being quarterly figures over several years. Particular
examples of the common model forms are now discussed.

(1) Straight-line regressions on quantitative variables
Suppose thatX = X2 is a related predictor variable, some form of economic
indicator, for example. As with Y , X is a quantitative measurement, and
often such measurements are viewed as effectively continuous, although this
is by no means necessary. A basic straight-line regression model is formed
by taking X1 = 1 to define an intercept term, so that µt = αt+βtXt. Here,
of course, F′

t = (1, Xt) and θ′
t = (αt, βt).

(2) Multiple regressions on quantitative variables
Straight-line regressions may be extended to include other quantitative
variables by adding in further terms such as γtZt by superposition to give a
canonical multiple regression on several variables, each contributing a linear
term. Here Zt is the value of a second independent variable, F′

t = (1, Xt, Zt)
and θ′

t = (αt, βt, γt).
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(3) Lagged variables
Particular cases of multiple regression of importance in time series forecast-
ing involve the use of regressor variables calculated as lagged values of basic
independent variables. In the sales forecasting scenario above, it may be
thought that the economic indicator X has predictive power for the sales
series into the future as well as just for the current time. A similar exam-
ple concerns forecasting of sales or demand with the independent variable
X relating to advertising and other promotional activities. Here current
promotional expenditure can be expected to impact not only on immediate
sales, but also on sales further into the future. Hence, in modelling the
mean response µt at time t, past, or lagged, values of the regressor variable
X should be considered in addition to the current value Xt. Generally,
suppose that it is felt that appreciable effects of the regressor variable may
be sustained up to a maximum lag of k time points for some k > 1. The
linear regression on lagged values of X then has the general form of

µt =αt +
k∑

i=0

βtiXt−i

=αt + βt0Xt + βt1Xt−1 + · · ·+ βtkXt−k.

Here F′
t = (1, Xt, Xt−1, . . . , Xt−k) and θ′

t = (αt, βt0, βt1, . . . , βtk). Much
use of these models has been made, of course, in economic forecasting
(e.g., Granger and Newbold 1977; Zellner 1971). We return to lagged
relationships in detail in Section 9.3 below. Also note that autoregressions
fall into this framework. Here the response series is directly regressed on
lagged values of itself, with Xt = Yt−1 for all t. Again, much further
discussion of these models appears below.

(4) Polynomial surfaces
Higher-order terms can be used to refine the basic description by defining
further variables. For example, the two-variable model µt = αt+βtXt+γtZt

may be refined by including further regressor variables that are quadratic,
and higher-order, functions of the two original variables X and Z. Ex-
amples include quadratic terms X2 or Z2, and cross-product terms such
as XZ. These, and higher-order powers and cross-products, can be used
to define polynomial regressions on possibly several variables, building up
response surface descriptions of the regression function (Box and Draper
1987).

(5) Classificatory variables
Classificatory variables, or factors, can be included using dummy X vari-
ables to indicate the classifications for each response observation. Season-
ality, for example, can be modelled this way as has already been seen in
Chapter 8. Specifically in this context, consider the quarterly classifica-
tion of the sales data, and suppose that a simple seasonal factor model is
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desired, with different levels of sales in each quarter, those levels changing
stochastically from year to year. This is just the model of Section 8.1, and
it can be represented in regression DLM form as follows. Let n = 4 and
define Xi as the indicator variable for the ith quarter of each year. Thus,
for i = 1, . . . , 4,

Xti =
{
1, when Yt is in quarter i of any year;

0, otherwise.

The state vector is θ′
t = (φt1, . . . , φt4), where φti is the seasonal factor for

quarter i of the year at time t. The mean response µt =
∑4

i=1 φtiXti at
time t is then given simply by µt = φti, the relevant seasonal level, when
time t corresponds to the ith quarter of the year.
The seasonal effects model, with effects representing seasonal deviations

from an underlying, non-seasonal sales level, is also easily, and obviously,
representable in regression form. This is necessary with classificatory vari-
ables in general if other regressors are to be included by superposition.
Set

αt =
1
4

4∑
i=1

φti,

and for i = 1, . . . , 4, θti = φti − αt. Clearly the θti sum to zero at each
time t, representing the seasonal effects. Redefine the state vector as θ′

t =
(αt, θt1, . . . , θt4) and the regression vector as F′

t = (1, Xt1, . . . , Xt4), where
the X variables are the above indicators of the quarters. Then

µt = F′
tθt = αt +

4∑
i=1

θtiXti,

subject to the zero-sum restriction on the final four elements of the state
vector.
Grouping data according to an underlying factor in this way has wide

uses in time series modelling, just as in other areas of statistics. Perhaps
the most common use is in designed experiments where the factors relate to
treatment groups, block effects, and so forth. One other important example
is the use of dummy variables as intervention indicators, the corresponding
parameter then representing a shift due to intervention.

(6) Several factors
As an example, suppose that the data are also classified according to sales
area, there being just two areas for simplicity. The additive model formed
by superposition has the form

µt = αt +
4∑

i=1

θtiXti +
2∑

j=1

γtjZtj ,
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where, as with seasonality, γt1 and γt2 are the effects added to sales level in
the two different sales regions (having zero-sum), with Zt1 and Zt2 being
indicator variables for the two regions. Clearly this could be extended with
the addition of further regressors of any types.

(7) Factor by factor interactions
Higher-order terms involve interactions of two basic types. Firstly, two
classificatory variables may interact, producing what is often referred to
as a factor by factor interaction. In the above example, this amounts
to dealing with the two sales regions separately, having different seasonal
factors within each region. One way of modelling this is to add in an
interaction term of the form

4∑
i=1

2∑
j=1

βtijUtij .

Here the Utij are dummy, indicator variables with Utij = 1 if and only if
observation Yt corresponds to quarter i and sales area j. The βtij are the
interaction parameters, subject to zero-sum constraints

∑4
i=1 βtij = 0 for

j = 1, 2, and
∑2

j=1 βtij = 0 for i = 1, . . . , 4.

(8) Other forms of interaction
The second, and highly important, form of interaction is typified as follows.
Consider a straight-line regression on the variable X combined by super-
position with the seasonal effects model to give a mean response function
of the form

µt = αt + βtXt +
4∑

i=1

θtiXti.

The effects of the variable X and the seasonality are additive, not interact-
ing. Often it may be felt that the effect of X on the response is different in
different quarters; more generally, that the regression coefficient of a vari-
able takes different values according to the various levels of a classifying
factor. Here the necessary refinement of the model is

µt = αt +
4∑

i=1

(θti + βtiXt)Xti.

In this case, we have Ft = (1;Xt1, . . . , Xt4; XtXt1, . . . , XtXt4)′ and with
state vector θt = (αt; θt1, . . . , θt4; βt1, . . . , βt4)′.

9.2.3 Summary of analysis
The analysis follows from the general theory of DLMs. The results are given
in the case of constant, unknown observational variance, Vt = V = 1/φ
for all t, with φ unknown, consistent with the summary in Section 4.6.
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Thus,Wt is scaled by the current estimate St−1 of V = φ−1 at each time.
Then, as usual, the evolution/updating cycle is based on the following
distributions:

(θt−1 | Dt−1) ∼ Tnt−1 [mt−1,Ct−1],

(θt | Dt−1) ∼ Tnt−1 [at,Rt],

(φ | Dt−1) ∼ G[nt−1/2, dt−1/2] with St−1 = dt−1/nt−1,

(Yt | Dt−1) ∼ T[ft, Qt],

(θt | Dt) ∼ Tnt [mt,Ct],

(φ | Dt) ∼ G[nt/2, dt/2] with St = dt/nt,

where at =mt−1, Rt = Ct−1 +Wt, ft = F′
tmt−1, Qt = F′

tRt−1Ft+St−1,
and the remaining elements are defined by the usual updating equations
nt = nt−1 + 1, dt = dt−1 + St−1e

2
t/Qt, mt = mt−1 + Atet and Ct =

[Rt −AtA′
tQt](St/St−1) where et = Yt − ft and At = RtFt/Qt.

The usual filtering and forecasting equations apply similarly. The former
are not reproduced here. For forecasting ahead to time t+ k from time t,
it follows easily that

(θt+k | Dt) ∼ Tnt
[mt,Rt(k)],

(Yt+k | Dt) ∼ Tnt
[ft(k), Qt(k)]

where Rt(k) = Ct +
∑k

r=1Wt+r, ft(k) = F′
t+kmt and Qt(k) = St +

F′
t+kRt(k)Ft+k.

9.2.4 Comments
Various features of the regression model analysis require comment.

(1) Stability
Forecasting performance is achieved through the identification of stability
in regression relationships. Thus models with small evolution noise terms
are to be desired, static regressions in which θt = θ is constant being ideal
so long as they are appropriate. If the time-variation in θt is significant,
evidenced by large values on the diagonals of the evolution variance ma-
tricesWt, forecasting suffers in two ways. Firstly, when forecasting ahead
the forecast distributions become very diffuse as the Rt(k) terms increase
due to the addition of further evolution noise variance matrices. Secondly,
in updating, the weight placed on new data is high, so that the poste-
rior distributions adapt markedly from observation to observation. Thus,
although very short-term forecasts may be accurate in terms of location
and reasonably precise, medium- and longer-term forecasts may be poorly
located and very diffuse.
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As a consequence, effort is needed in practice to identify meaningful
and appropriate independent variables to be used as regressors, often af-
ter transformation and combination, with a view to identifying regressions
whose coefficients are as stable as possible over time. There will usually be
a need for some minor stochastic variation to account, at the very least, for
changing conditions in the environment of the series, and model misspeci-
fication. Thus, in practice, theWt matrices determined by the forecaster
will be relatively small.

(2) Structuring Wt

Structuring theWt sequence using discount factors can be done in various
ways following the development of component models in Section 6.3. If
the regressors are similar, related variables viewed as modelling an overall
effect of an unobserved, underlying variable, then they should be consid-
ered together as one block or component for discounting. For example, the
effects of a classifying factor variable should be viewed as a single com-
ponent, as is the case in Chapter 8 and elsewhere, with seasonal models.
Otherwise, considering regressors as contributing separately to the model
implies a need for one discount factor for each regression parameter, the
Wt matrix then being diagonal.

(3) Static regression
The static regression model obtains whenWt = 000 for all t, implied by unit
discount factors for all components. In this case, Rt = Ct−1 for all t, no
information decaying on the state vector between observation stages. The
update for the posterior variance matrix can be rewritten in terms of the
precision, or information matrices C−1

t and C−1
t−1 as,

C−1
t = [C−1

t−1 + S−1
t−1FtF′

t](St−1/St).

It follows that in terms of the scale free matrices Ct/St for all t,

StC−1
t = St−1C−1

t−1 + FtF′
t.

Repeatedly applying this for times t− 1, t− 2, . . . , 1 leads to

StC−1
t = S0C−1

0 +
t∑

r=1

FrF′
r.

It also follows, in a similar fashion, that

mt = S−1
t Ct[S0C−1

0 m0 +
t∑

r=1

FrYr].

These results coincide, naturally, with the standard Bayesian linear regres-
sion results in static models (See, for example, DeGroot 1971, Chapter 11;
Box and Tiao 1973, Chapter 2).
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(4) Reference analysis
The reference analysis of Section 4.10 may be applied in cases of little initial
prior information. This leads to the dynamic version of standard reference
analyses of linear models (see above references). When sufficient data has
been processed so that the posterior for θt (and φ) is proper, the standard
updating equations above apply. The main difference is that the degrees
of freedom are not initially updated until sufficient data are available to
make the posteriors proper. This results in reduced degrees of freedom nt

thereafter. Section 4.10 provides full details.
The meaning of “sufficient data” in this context brings in directly the no-

tion of collinearity amongst the regressor variables. In the initial reference
updating, the posterior distributions become proper at that time t such that
the precision matrix

∑t
r=1FrF′

r first becomes non-singular. At this stage,
the standard updating may begin for θt, although one further observation
is necessary to begin the updating for φ. The soonest this may occur is at
t = n, the dimension of the parameter vector, when one observation has
been observed for each parameter. If missing observations are encountered,
then this increases by 1 for each. Otherwise, collinearity amongst the re-
gressor variables can lead to the precision matrix being singular at time n.
This is actually rather uncommon in practice, although much more often
it is the case that the matrix is close to singularity, having a very small,
positive determinant. This indicates strong relationships amongst the re-
gressor variables, the well-known feature of multi-collinearity in regression.
Numerical problems can be encountered in inverting the above precision
matrix in such cases, so that care is needed. To avoid inverting the ma-
trix, and also to allow for the case of precise singularity, a small number
of further observations can be processed retaining the reference analysis
updating equations. This means that further terms Ft+1F′

t+1, Ft+2F′
t+2,

and so on are added to the existing precision matrix until it is better con-
ditioned and does not suffer from numerical instabilities when inverted.
Under certain circumstances, however, collinearity amongst regressors may
persist over time. In such cases there is a need for action, usually to reduce
the number of regressors and remove redundant variables, the model being
over-parametrised. The problem of multi-collinearity here is precisely as
encountered in standard static regression.

(5) Orthogonality
When dealing with regressors that are observed values of time series them-
selves, the static model concept of orthogonality of regressors also applies.
The simplest, but important, use of this involves considering independent
variables as deviations from some average value. In standard regression,
it is common practice to standardise regressors; given a fixed sample of
observations, the regressors are standardised primarily by subtracting the
arithmetic mean, and secondarily, dividing by the standard deviation. The
reason for subtracting the arithmetic mean is so that the regression effects
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are clearly separated from the intercept term in the model, being essentially
orthogonal to it. Thus, for example, a static straight-line model on regres-
sor X, Yt = α+ βXt is rewritten as Yt = α∗ + βX∗

t , where X
∗
t = Xt − X̄,

with X̄ the arithmetic mean of the Xt values in the fixed sample consid-
ered, and α∗ = α + βX̄ the new fixed-intercept term. The new regression
vectors F′

t = (1, X∗
t ) are such that

∑
FtF′

t (the sum being over the fixed
sample of observations) is now diagonal and so inverts easily. This orthogo-
nality, and its more general versions with several regressors, allows simpler
interpretation of the regression.
In dynamic regression the same principles apply, although now the time

dependence clouds the issue. If a relatively short series of known number
of observations is to be analysed, then the above form of standardisation to
zero arithmetic mean for regressors may apply. It is usually to be expected
that regression relationships do not change rapidly, and so the features of
the static model may be approximately reproduced. Some problems do
arise even under such circumstances, however. For a start, X̄ may be un-
known initially since X values later in the series have yet to be observed;
this derives from the time series nature of the problem and applies even if
the model is static. Some insight into what form of standardisation may be
appropriate can be gained by considering the regression as possibly being
derived from a more structured model, one in which Yt and Xt are initially
jointly normally distributed conditional on a collection of time-varying pa-
rameters that determine their mean vector and covariance matrix, forming
a bivariate time series. Suppose specifically that Yt has mean αt and Xt

has mean γt. It follows that

Yt = αt + βt(Xt − γt),

where βt is the regression coefficient from the covariance matrix of Yt and
Xt. In the static model, γt = γ is constant over time. The static model
correction is now obvious; the population mean γ is simply estimated by
the sample value X̄ from the fixed sample of interest. More generally, if γ
is assumed constant so that the X values are distributed about a common
mean, then a sequentially updated estimate of γ is more appropriate. If,
on the other hand, γt is possibly time-varying, a local mean for the Xt time
series is appropriate. Such an estimate may be obtained from a separate
time series model for the Xt series. Further development of this is left as
an exercise to the reader.

(6) Step ahead forecasting
In forecasting ahead the future values of regressors are required. If some
or all of the regressors are observed values of related time series, as is
often the case in socio-economic modelling, for example, then the required
future values may not be available at the time of forecasting. Various
possible solutions exist for this problem. One general and theoretically
exact method is to construct a joint model for forecasting the X variables
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as time series along with Y . This introduces the need for multivariate time
series modelling and forecasting, a vast topic in its own right and beyond
the scope of the present discussion (see Chapter 16 for multivariate DLMs).
Simpler alternative approaches involve the use of estimated values of the

future regressors. These may be simply guessed at or provided by third
parties, separate models, etc. Consider forecasting Yt+k from time t, with
Ft+k uncertain. Typically, information relevant to forecasting Ft+k sepa-
rately will result in specification of some features of a forecast distribution,
assumed to have a density p(Ft+k | Dt). Note that formally, the extra infor-
mation relevant to forecasting Ft+k should be included in the conditioning
here; without loss of generality, assume that this is already incorporated in
Dt. Then the step ahead forecast distribution for Yt+k can be deduced as

p(Yt+k | Dt) =
∫
p(Yt+k | Ft+k, Dt)p(Ft+k | Dt)dFt+k.

The first term in the integrand here is just the standard forecast T distri-
bution from the regression, as specified in Section 9.2.3 above, with Ft+k

assumed known and explicitly included in the conditioning. Features of
the predictive density will depend on the particular forms of predictions
for Ft+k. Some generally useful features are available, as follows. Sup-
pose that the forecast mean and variance matrix of Ft+k exist, denoted by
ht(k) = E[Ft+k | Dt] and Ht(k) = V[Ft+k | Dt] respectively. Then the
forecast mean and variance of Yt+k can be deduced. Simply note that when
the degrees of freedom of the conditional T distribution for Yt+k exceeds
unity, nt > 1, then

E[Yt+k | Dt] = E{E[Yt+k | Ft+k, Dt] | Dt}
= E[F′

t+kmt | Dt] = ht(k)′mt.

Similarly, when nt > 2,

V[Yt+k | Dt] = E{V[Yt+k | Ft+k, Dt] | Dt}
+V{E[Yt+k | Ft+k, Dt] | Dt}

= E[
nt

nt − 2
Qt(k) | Dt] + V[ft(k) | Dt]

=
nt

nt − 2
{St + E[F′

t+kRt(k)Ft+k | Dt]}

+V[F′
t+kmt | Dt]

=
nt

nt − 2
[St + ht(k)′Rt(k)ht(k)

+ trace{Rt(k)Ht(k)}] +m′
tHt(k)mt.

In this way, uncertainty about the future regressor values are formally
incorporated in forecast distributions for the Y series.
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(7) Posterior inferences
Standard modes of inference about regression parameters in static models
apply directly in the dynamic case. Consider any q ≤ n elements of the
state vector θt, reordering the elements as necessary, so that the q of interest
occupy the first q positions in the vector. Thus, θ′

t = (θ′
t1,θ

′
t2), where

θ′
t1 = (θt1, . . . , θtq) is the subvector of interest. Then, with mt and Ct

conformably partitioned, (θt1 | Dt) ∼ Tnt [mt1,Ct1] in an obvious notation.
Inferences about θt1 are based on this marginal posterior distribution. In
particular, the contribution of the corresponding regressors to the model
may be assessed by considering the support in the posterior for the values
θt1 = 000, consistent with no effect of the regressors. The posterior density
p(θt1 | Dt) takes values greater than that at θt1 = 000 whenever

(θt1 −mt1)′C−1
t1 (θt1 −mt1) <m′

t1C
−1
t1 mt1.

The posterior probability that this occurs is given from the usual F distri-
bution,

Pr[(θt1 −mt1)′C−1
t1 (θt1 −mt1) <m′

t1C
−1
t1 mt1 | Dt]

= Pr[Fq,nt
< q−1m′

t1C
−1
t1 mt1],

where Fq,nt
denotes a random quantity having the standard F distribution

with q degrees of freedom in the numerator and nt in the denominator.
Thus the highest posterior density (HPD) based test of the hypothesis
that θt1 = 000 is based on the probability level

α = Pr[Fq,nt
≥ q−1m′

t1C
−1
t1 mt1];

a small value of α indicates rejection of the hypothesised value θt1 = 000 as
unlikely.

(8) Parameter constraints and relationships
As in the general DLM, the variance matricesC0 and the sequenceWt may
be structured in order to incorporate modeller’s views about relationships
amongst the parameters. At an extreme, the parameters may be subject
to linear restrictions that relate components or condition some elements to
taking known values. This then implies that C0 is singular with a specific
structure determined by the linear constraints, the same form of constraints
applying to the evolution variance matrices if the restrictions are to hold to
θt over time. More usually, initial views about relationships amongst the
parameters will be modelled in terms of stochastic constraints of various
kinds, usually leaving the variance matrices non-singular. One important
example is the embodiment of beliefs about the likely decay of coefficients
of lagged values of variables, related to the use of smoothness prior distri-
butions in lagged regressions and autoregressions (Cleveland 1974; Leamer
1972; Young 1983; Zellner 1971). Similar structures may be applied to the
coefficients of higher-order terms in polynomial regressions (Young 1977).
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Other examples include the use of hierarchical models, often based on as-
sumptions of exchangeability amongst subsets of elements of θt (Lindley
and Smith 1972). A typical example concerns symmetry assumptions about
the effects of different levels of an underlying factor that groups the data;
these may be initially viewed as exchangeable, with changes in the effects
over time subject to the same assumption. Though interesting and im-
portant in application when appropriate, these topics are not developed
further here in a general framework.

9.3 TRANSFER FUNCTIONS
9.3.1 Form-free transfer functions
Consider regression on current and past values of a single independent
variable X, assuming initially that the regression parameters are constant
over time. As in Section 9.2.2 above, regression on a fixed and finite num-
ber of lagged values falls within the standard regression DLM framework.
Generally, if appreciable effects of the regressor variable are expected to
be sustained up to a maximum lag of k time points, for some k > 1, the
linear regression on lagged values determines the contribution to the mean
response at time t as

µt =
k∑

r=0

βrXt−r = β0Xt + β1Xt−1 + · · ·+ βkXt−k.

Here F′
t = (Xt, Xt−1, . . . , Xt−k) and θ′

t = θ′ = (β0, β1, . . . , βk). Projecting
ahead from the current time t to times t + r, for r ≥ 0, the effect of the
current level Xt of the regressor variable is then simply the contribution to
the mean response, namely βrXt for r = 0, 1, . . . , k, being zero for r > k.
This defines the transfer response function of X,{

βrX, r = 0, 1, . . . , k;

0, r > k.

In words this is just the effect of the current regressor value Xt = X on the
mean response at future times r, conditional on Xt+1 = . . . = Xt+r = 0.
Obviously this model, for large enough k, provides a flexible method of
modelling essentially any expected form of transfer response function, the
coefficients βr being arbitrary regression parameters to be specified or esti-
mated. In the more practically suitable dynamic regression, the flexibility
increases as stochastic variation in the parameters allows the model to
adapt to changing responses, and also to cater for misspecification in the
model. However, whilst the regression structure provides a very general
model for lagged responses, there are often good reasons to consider func-
tional relationships amongst the regression coefficients βr that essentially
alter the structure of the model, providing functional forms over time for
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the lagged effects of X. This leads to the considerations in the following
sections.

9.3.2 Functional form transfer functions
One obvious feature of the regression model above is that the effect of
Xt on Yt+r is zero when r > k. The model is thus inappropriate for
cases in which it is felt that lagged effects persist into the future, perhaps
decaying smoothly towards zero as time progresses. One simple way of
adapting the regression structure to incorporate such features is to consider
regression, not onX directly, but on a constructed effect variable measuring
the combined effect of current and past X values. Some examples provide
insight.

EXAMPLE 9.1. Suppose that Yt represents a monthly consumer series,
such as sales or demand for a product, or consumer awareness of the prod-
uct in the market. Currently, and prior to time t = 1, the Y series is
supposed to follow a time series model with level parameter µt = αt; this
may, for example, be a simple steady model, or include other terms such as
trend, seasonality and regressions. In month t = 1, the marketing company
initiates a promotional campaign for the product involving expenditure on
advertising and so forth, the expenditure being measured by a single in-
dependent variable Xt, t = 1, 2, . . . . This may be a compound of various
factors but is assumed, for simplicity, to measure investment in promoting
the product. This is a simple instance of a very common event, and it is
generally understood that with no other inputs, the effect of such promo-
tional expenditure can be expected to be as follows: (a) in month t, the
level of the Y series should increase, say in proportion to Xt; (b) without
further expenditure at times t+1, t+2, . . . , the effect of past expenditure
will decay over time, often approximately exponentially; and (c) further ex-
penditure in following months will have the same form of effect. In model
terms, the anticipated mean response is given by the original level plus a
second term, ξt,

µt = αt + ξt,

where ξt is the effect on the current level of the series of current and past
expenditure. This effect is modelled as

ξt = λξt−1 + ψXt,

with ξ0 = 0, there being no expenditure prior to t = 1. The parameter
ψ determines the immediate, penetration effect of the monthly advertising,
the level being raised initially on average by ψ per unit of expenditure; it is a
positive quantity whose units depends on those of both the X and Y series.
The parameter λ represents the memory of the market. Extrapolating
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ahead to time t+ k, the model implies that

ξt+k = λkξt + ψ

k∑
r=1

λk−rXt+r.

Thus, if Xt+1 = Xt+2 = . . . = Xt+k = 0, then

ξt+k = λkξt.

This embodies point (b); with λ a dimensionless quantity in the unit inter-
val, the effect of expenditure up to time t is reduced by a factor λ for each
future time point, decaying asymptotically to zero at an exponential rate.

EXAMPLE 9.2. Example 9.1 concerns exponential decay of effects, where
promotional advertising is not anticipated to sustain the sales/demand se-
ries at higher levels. Minor modification provides a closely related model for
sustained growth or decay. An example concerns increases (or decreases)
of sales to a new, higher (or lower) and sustained level following price
reductions (or rises) for a product or products in a limited consumer mar-
ket. Let the initial level αt again represent previous information about the
sales/demand series subject to an original pricing policy. Let Xt now rep-
resent the reduction in price in month t, either positive, implying a decrease
in price, or negative implying an increase. It is to be expected that in a
finite market, sales will tend to increase as the price is reduced, eventually
levelling off at some saturation level. Similarly, sales tend to decay towards
zero as prices increases. This can be modelled via

ξt = ξt−1 + θt,

where

θt = λθt−1 + ψXt,

with ξ0 = θ0 = 0. Suppose, for example, that a single price change is
made at time t, with Xt+1 = Xt+2 = . . . = 0 and ξt−1 = θt−1 = 0. It
follows that the immediate effect on the mean response is simply ξt = θt =
ψXt, the positive quantity ψ again measuring the immediate unit response.
Projecting to time t + r, (r = 1, . . . , k), under these conditions, we have
θt+r = λrθt and thus

ξt+k =
k∑

r=0

λrθt = θt(1− λk+1)/(1− λ)

if 0 < λ < 1. Thus, if Xt is positive, so that the price decreases, then
ξt+k is an increasing function of k, tending to the limit ψXt(1 − λ) as k
increases. Given the initial penetration factor ψ, λ determines both the
rate of increase and the eventual saturation level. Similarly, of course, a
negative value of Xt consistent with price increase implies a decay in level.
These two examples typify a class of structures for lagged effects of a sin-

gle independent variable. The general form of such models detailed here is
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apparently an extension of the usual DLM representation, but can easily be
rewritten as a standard DLM, as will be seen below. The initial definition
is given in terms of the extended representation for interpretability.

Definition 9.1. Let Xt be the value of an independent, scalar variable
X at time t. A general transfer function model for the effect of X on
the response series Y is defined by

Yt =F′θt + νt, (9.1a)

θt =Gθt−1 +ψtXt + ∂θt, (9.1b)

ψt =ψt−1 + ∂ψt, (9.1c)

with terms defined as follows: θt is an n-dimensional state vector, F a
constant and known n-vector, G a constant and known evolution matrix,
and νt and ∂θt are observation and evolution noise terms. (Note the use of
the ∂ notation for the latter rather than the usual ωt notation). All these
terms are precisely as in the standard DLM, with the usual independence
assumptions for the noise terms holding here. The term ψt is an n-vector
of parameters, evolving via the addition of a noise term ∂ψt, assumed to be
zero-mean normally distributed independently of νt (though not necessarily
of ∂θt).
The state vector θt carries the effect of current and past values of the X

series through to Yt in equation (9.1a); this is formed in (9.1b) as the sum
of a linear function of past effects, θt−1, and the current effect ψtXt, plus
a noise term.
Suppose that conditional on past information Dt, the posterior point

estimates of the two vectors θt and ψt are denoted by

mt = E[θt|Dt] and ht = E[ψt|Dt].

Extrapolating expectations into the future in (9.1b and c), it follows that

E[θt+k | Dt] = Gkmt +
k∑

r=1

Gk−rhtXt+r. (9.2)

Then, from (9.1a), the forecast function is

ft(k) = E[Yt+k | Dt] = F′Gkmt + F′
k∑

r=1

Gk−rhtXt+r. (9.3)

Let at denote the first term here, at = F′Gkmt, summarising the effects of
past values of the X series; at is known at time t. Also, consider the special
case in which after time t + 1, there are no input values of the regressor
variable, so that

Xt+r = 0, (r = 2, . . . , k). (9.4)

Then (9.3) implies that

ft(k) = at + F′Gk−1htXt+1. (9.5)
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This can be seen as determining the way in which any particular value of
the X series in the next time period is expected to influence the response
into the future, the dependence on the step ahead index k coming, as in
TSDLMS, through powers of the system matrix G.
In the special case that ψt = ψ is constant over time and known, ψ = ht,

the transfer response function of X is given by ft−1(k+1) subject to (9.4)
with past effects at−1 = 0. Under these circumstances, (9.5) then leads to

F′GkψX

being the expected effect on the response due to Xt = X.

EXAMPLE 9.1 (continued). In the exponential decay model as described
earlier, we have dimension n = 1, θt = ξt, the effect variable, ψt = ψ for
all t, F = 1 and G = λ, all noise terms assumed zero. Note that G is just
the memory decay term λ, assumed known. The transfer response function
of X is simply λkψX.

EXAMPLE 9.2 (continued). In the second example of growth or decay to
a new level, n = 2,

θt =
(
ξt
θt

)
, ψt = ψ =

(
0
ψ

)
, F =

(
1
1

)
, G =

(
1 1
0 λ

)
,

with zero noise terms. The transfer response function is simply ψ(1 −
λk+1)/(1− λ).
The general model (9.1) can be rewritten in the standard DLM form

as follows. Define the new, 2n-dimensional state parameters vector θ̃t by
catenating θt and ψt, giving

θ̃
′
t = (θ′

t,ψ
′
t).

Similarly, extend the F vector by catenating an n-vector of zeros, giving a
new vector F̃ such that

F̃′ = (F′, 0, . . . , 0).

For the evolution matrix, define

G̃t =
(
G XtIn
000 In

)
,

where In is the n × n identity matrix. Finally, let ωt be the noise vector
defined by

ω′
t = (∂θ′

t +Xt∂ψ′
t, ∂ψ′

t).

Then the model (9.1) can be written as

Yt = F̃′θ̃t + νt,

θ̃t = G̃tθ̃t−1 + ωt.
(9.6)
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Thus the transfer function model (9.1) has standard DLM form (9.6) and
the usual analysis applies. Some particular features of the model in this
setting require comment.

(a) The model as discussed provides just the transfer function for the
variable X. In practice, this will usually be combined by superpo-
sition with other components (as in Example 9.1), such as trend,
seasonality, regression and maybe even transfer functions of other
independent variables.

(b) The unknown parameters in ψt play a role similar to the regression
parameters in the dynamic regression model of Section 9.2 and are
likely to be subject to some variation over time in particular applica-
tions. Thus, in some cases, more appropriate versions of the models
in the two preceding examples would have ψ time dependent.

(c) Some of the elements of ψt may be fixed and known. This can be
modelled by setting to zero the corresponding values of the initial
prior variance matrix C0 for θ̃0 and those of the evolution variance
matrices Wt = V[ωt]. However, it will often be the case that from
the structure of the model, there are zero elements in ψt, as is
the case with the integrated transfer response function in Example
9.2. Then for practical application, the general model (9.6) may be
reduced in dimension to include just the non-zero elements of ψt.
This is obviously desirable from a computational viewpoint if n is
at all large. In general, suppose that just p < n of the n elements
of ψt are non-zero. The reader may verify that the model (9.6)
may be reduced to one of dimension n+p, rather than 2n, in which
F̃′ = (F′, 0, . . . , 0), having p trailing zero elements, and

G̃t =
(
G XtH
000 Ip

)
,

whereH is an n×pmatrix with just one unit element in each column,
all other elements being zero. For instance, the model of Example
9.2 may be written as a 3-dimensional DLM with F′ = (1, 1, 0) and

G̃t =


 1 1 0
0 λ Xt

0 0 1


 .

Thus, although the general model (9.6) always applies, it is often
the case that a reduced form will be utilised.

(d) As specified, the model is developed from (9.1) and this results in
a particular, structured form for the evolution noise vector, ω′

t =
(∂θ′

t + Xt∂ψ′
t, ∂ψ′

t). There are various ways of specifying the evo-
lution variance matrices. The most direct and appropriate is to
assume the evolution noise terms ∂θt and ∂ψt uncorrelated with
variance matrices V[∂θt] = Ut and V[∂ψt] = Zt respectively. It
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then follows that

Wt =
(
Ut +X2

t Zt XtZt

XtZt Zt

)
.

Choice of Ut and Zt is most simply guided by discount factors.
The two subvectors θt and ψt are naturally separated as distinct
components of the model and so the component discounting concept
of Section 6.3 applies.

(e) The specific form of the stochastic structure in the evolution equa-
tion is not vital to the model, deriving as it does from the assump-
tions underlying (9.1). We can simply model the series directly using
(9.2) and then impose any form on Wt, simplifying the modelling
process by choosing simple, discount based forms, for example.

(f) The discussion in Section 9.2.2 about the problems arising in fore-
casting ahead when future X values are unknown at the time is
pertinent here. The only technical differences between the mod-
els arise through the appearance of the regressors in the evolution
rather than the observation equation.

(g) More general models involve the concept of stochastic transfer re-
sponses, as the following example illustrates. Suppose a company
uses various alternative styles of advertising films or campaigns in
promoting its products. Suppose that advertising effort is charac-
terised by a simple measureXt, such as advertising expenditure, and
a basic transfer response model relates Xt to an output variable Yt
such as consumer demand or estimated awareness of the products.
Then, although the model may adequately describe the relationship
between X and Y over time during any given advertising campaign,
it does not capture wider qualitative aspects of differences between
films and their effects may differ widely. An appropriate extension
of the model to allow for this sort of additional variation is to assume
that the transfer response parameters are sampled from a population
of such parameters. With reference to the simple decay of effects in
Example 9.1, the transfer response function of film i may be taken
as λkψ(i)X. The stochastic (at any given time) nature of the re-
sponse is modelled by assuming, for example, that ψ(i) ∼ N[ψ,U ],
independently over i. This can obviously be incorporated within
the DLM form, as can be verified by the reader, with extension to
time-variation in the overall expected response parameter ψ about
which the individual, film specific parameters ψ(i) are distributed.
The variance U describes a second level of variation over and above
any variation over time in ψ.

(h) G, hence G̃t, typically depends on parameters that must be speci-
fied for the usual analysis to apply. In the two above examples, the
decay parameter λ enters into G. In many applications, it will be
possible to specify values in advance; otherwise it may be desired to
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widen the analysis to allow for uncertainty in some of the elements
of G and to incorporate learning about them. Some preliminary
discussion of these sorts of problems appears in the next section,
further development being left to later chapters.

9.3.3 Learning about parameters in G: introductory comments
The final point in the above discussion raises, for the first time, issues
of estimation in non-linear models, models in which the mean response
function of the model has non-linear terms in some parameters. The es-
timation problems raised typify those of much more general, non-linear
models. General concepts and techniques of non-linear estimation appear
in later chapters. Here we restrict discussion to some basic, introductory
comments in the context of simple transfer function models.
Consider the dynamic version of the model in Example 9.2, a DLM in

which the evolution equation is

θt = λθt−1 + ωt.

For known λ, the usual analysis applies. Otherwise, if it is desired to learn
about λ from the data, a much more complicated analysis is implied. With
λ constant over time, though unknown, the formal analysis proceeds as
follows:

(a) For each value of λ, in this example 0 < λ < 1, specify an initial prior
for θ0 (and the observational variance V if unknown) of standard
form. This may depend on λ and so is denoted by p(θ0 | λ,D0).
Also, specify the initial prior distribution, of any desired form, for
λ, denoted by p(λ | D0).

(b) For each value of λ, process the data according to the usual DLM
with G = λ. The distributions p(Yt | λ,Dt−1), p(θt | λ,Dt) etc.,
become available at time t, defined by the usual normal or T forms,
but with moments depending on the particular value of λ.

(c) Learning about λ proceeds via the sequential updating of the pos-
terior distributions

p(λ | Dt) ∝ p(λ | Dt−1)p(Yt | λ,Dt−1),

starting from the initial distribution provided in (a); here the ob-
served one-step forecast density from (b) provides the likelihood
function for λ. At each t, this posterior for λ is easily calculated as
above up to a constant of normalisation, this constant being deter-
mined by integrating over the parameter space for λ, in this case
the unit interval.

(d) Posterior inferences at time t for θt, Yt+1, and other quantities of
inference are based on their posterior distributions marginal with
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respect to λ. For example, the posterior for θt is defined by

p(θt | Dt) =
∫ 1

0
p(θt | λ,Dt)p(λ | Dt)dλ.

The first term in the integrand is the conditional normal or T density
from (b), the second the posterior for λ from (c). Point estimates of
θt and probabilities etc. may be calculated from this posterior via
further integrations.

This formally defines the extended analysis. In practice, of course, it is im-
possible to perform this analysis exactly since it requires an infinite number
of DLM analyses to be performed corresponding to the infinite number of
values for λ. Thus approximations are used in which the parameter space
is discretised, a finite, and often fairly small number of values of λ be-
ing considered, resulting in a discrete posterior distribution for each t in
(c). Thus the integrals appearing in (d) become summations. This defines
what may be called multi-process models, comprising a collection of DLMs
analysed in parallel and mixed for inferences with respect to the posterior
probabilities over values of λ. Chapter 12 is devoted to multi-process mod-
elling. The particular analysis here can be viewed as the use of numerical
integration in approximating the various integrals appearing in the formal
theory. Uses of these and other, related and more sophisticated techniques
of numerical integration appear in Chapters 13 and 15.

9.3.4 Non-linear learning: further comments
Alternative approaches to the analysis of the DLM, extended to include
parameters such as λ above, are based on analytic approximation such as
a linearisation. Again in the above simple model, group λ with θt in the
vector θ′

t = (θt, λ)′ as a new model state vector, evolving according to the
non-linear evolution equation

θt = g(θt−1) + ωt, (9.7)

where g(θt−1) is the non-linear vector function λ(θt−1, 1)′ and ωt = (ωt, 0)′.
Major computational problems now arise in the model analysis due to the
non-linearity. The linearity basic to the DLM combines with the assumed
normality to provide neat, tractable and efficiently updated sufficient sum-
maries for all prior/posterior and predictive distributions of interest. Once
this is lost, such distributions, although theoretically easily defined, can
only be calculated through the use of numerical integration as described in
the previous section. Approaches using analytic approximations are typi-
cally quite easy to develop and apply, and are very commonly used since
often more refined approximations are unnecessary. One of the important
features of such approaches is that they naturally extend to cover models
in which parameters such as λ here are themselves dynamic, varying over
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time. Various approximations based on linearisation of non-linear func-
tions exist, the most obvious, and widely applied, being based on Taylor
series approximations. Assume that at time t − 1, the posterior distribu-
tion for (θt−1 | Dt−1) is adequately approximated by the usual distribution
(θt−1 | Dt−1) ∼ Tnt−1 [mt−1,Ct−1]. A linear approximation to the non-
linear function g(.) in (9.7) based on a Taylor series expansion about the
estimate θt−1 =mt−1 leads to the linearised evolution equation

θt ≈ g(mt−1) +Gt(θt−1 −mt−1) + ωt = ht +Gtθt−1 + ωt, (9.8)

where ht = g(mt−1) −Gtmt−1 and Gt is the 2 × 2 matrix derivative of
g(θt−1) evaluated at θt−1 =mt−1; in this particular model,

∂g(θt−1)
∂θ′

t−1
=
(
λ θt−1
0 1

)
.

When evaluated at θt−1 = mt−1, this provides a known matrix Gt and
results in a DLM, albeit with a constant term ht added to the evolution
equation (a simple extension is discussed at the end of Section 4.3). This
approximate model can be analysed as usual to give approximate prior, pos-
terior and forecast distributions in standard forms. In particular, it follows
from the linearised evolution equation that (θt | Dt−1) ∼ Tnt−1 [at,Rt],
where

at = ht +Gtmt−1 = g(mt−1)

and

Rt = GtCt−1G′
t +Wt.

Note that Rt has the usual form, and the mean at is precisely the non-
linear function g(.) evaluated at the estimated value of θt−1. Thus the
linearisation technique, whilst leading to a standard analysis, retains the
non-linearity in propagating the state vector through time. Note that as
mentioned earlier, this approach clearly extends easily to cover cases in
which λ is dynamic, incorporating the relevant terms in the evolution noise.
Note finally that the linearised model, though derived as an approximation,
may be interpreted as a perfectly valid DLM in its own right without refer-
ence to approximation. See Chapter 13 for further details of this, and other,
approaches to non-linear models, and Chapter 15 for Markov chain Monte
Carlo simulation methods of analysis for dealing with a much broader range
of non-linear learning problems.

9.3.5 Further comments on transfer functions
The regression structure for form-free transfer functions has several attrac-
tions that make it the most widely used approach to modelling lagged ef-
fects. One such is the simplicity and familiarity of the regression structure.
A second, and probably the most important, attraction is the flexibility
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of regression models. Whatever the nature of a transfer function, the re-
gression on lagged X values will allow the model to adapt adequately to
the observed relationship so long as there is sufficient data and informa-
tion available to appropriately estimate the parameters. In addition, and
in particular with dynamic regression, as time evolves, the estimates will
adapt to changes in the series allowing for changes in the response function.
A related point is that the coefficients can also rapidly adapt to changes
and inaccuracies in the timing of observations that can distort the observed
relationship. Johnston and Harrison (1980) provide an interesting applica-
tion in which form-free transfer functions are used as components of larger
forecasting models in consumer sales forecasting.
By contrast, the approach using functional representations of transfer

effects is rather less flexible since such models impose a particular form
on the transfer function. There is some flexibility to adapt in parameter
estimation, particularly with time-varying parameters, but the imposed
form still must be approximately appropriate for the model to be useful.
If the form is basically adequate, then the advantages of the functional
form model relative to the form-free regression model are apparent. Pri-
marily, there will usually be many more parameters in a regression model
in order to adequately represent a particular form of response. As men-
tioned earlier, it will usually be desirable to model anticipated relationships
amongst regression coefficients using structured initial priors and evolution
variance matrices, thus implicitly recognising the form nature of the re-
sponse. A form model, having fewer parameters, provides a more efficient
and parsimonious approach. Finally, as earlier mentioned, regression mod-
els directly truncate the effects of lagged X whereas form models allow for
smooth decay over time without truncation.

9.4 ARMA MODELS
9.4.1 Introduction
Consider writing the observation equation of the DLM as Yt = µt+Xt+νt,
where µt = F′

tθt is the usual mean response function; νt is the observational
error, with the usual independence structure; and Xt is a new, unobserv-
able term introduced to describe any additional time series variation not
explained through µt and the evolution model for θt. This variation, whilst
expected to be zero, may be partially predictable through a model for Xt

as a stochastic process over time, whose values are expected to display
some form of dependence. Here we discuss standard, stationary linear pro-
cess models, namely the autoregressive, moving-average models (or ARMA
models) that form the basis of much of classical time series analysis. In
earlier chapters, we have already linked simple DLMs to point prediction
methods based on autoregressive models; we now move to more explicit
representation of component time series structure using such models. In
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this section, we briefly review the basics of stationary linear processes,
and comment on issues of modelling and inference with ARMA component
DLMs. We discuss basic reference material in AR models, referring to well-
known and accessible sources, including Abraham and Ledolter (1983), Box
and Jenkins (1976), Broemling (1985), Harvey (1981), Young (1984), and
Zellner (1971), for further reading. The following section takes AR models
much further, introducing some new results on time series decomposition
that are illustrated there and form a prelude to further material on AR
models in Chapter 15.

9.4.2 Stationarity
Stationarity of the time series Xt involves assumptions of symmetry over
time, as discussed following the definition in Section 5.6. The definition is
conditional on any specified model structure for Xt, as given, for example,
by a specified observation and evolution equation of a DLM, and conditional
on all required model parameters. This state of information is denoted by
M (for model). Recall that a time series Xt, (t = 1, 2, . . . ), is stationary
if the joint distribution (conditional on M) of any collection of k values is
invariant with respect to arbitrary shifts of the time axis. In terms of joint
densities,

p(Xt1 , . . . , Xtk
|M) = p(Xs+t1 , . . . , Xs+tk

|M)

for any integers k ≥ 1 and s ≥ 0, and any k time points t1, . . . , tk. The
series is weakly stationary, or second-order stationary, if for all integers
t > 0 and s < t,

E[Xt |M ] = µ, constant over time,

V[Xt |M ]=W, constant over time,

and

C[Xt, Xt−s |M ] = γs = ρsW, independent of t,

whenever these moments are finite.
Stationarity clearly implies weak stationarity for series whose second-

order moments exist, stationarity being a much more far-reaching symme-
try assumption. A weakly stationary series has a fixed mean µ, varianceW
and autocovariances γs depending only on the lag between values, not on
the actual timings. The autocorrelations ρs, (s = 0, 1, . . . ), thus determine
the second-order structure of the series; note that ρ0 = 1 and γ0 = W .
Also, if any collection of any number of values are assumed jointly nor-
mally distributed givenM , then weak stationarity together with normality
implies stationarity. In the normal framework of DLMs, therefore, the two
definitions coincide.
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Suppose thatXt is a weakly stationary series. A basic result in the theory
of stationary processes is that Xt can be decomposed into the sum of the
mean µ and a linear combination of values in a (possibly infinite) sequence
of zero-mean, uncorrelated random quantities. In representing this result
mathematically, it is usual to extend the time index t backwards to zero and
negative values. This is purely for convenience in mathematical notation
and is adopted here for this reason and for consistency with general usage.
Introduce a sequence of random quantities εt, (t = . . . ,−1, 0, 1, . . . ), such
that E[εt | M ] = 0, V[εt | M ] = U and C[εt, εs | M ] = 0 for all t �= s and
some variance U . Then the representation of Xt is given by

Xt = µ+
∞∑
r=0

ψrεt−r, (9.9)

for some (possibly infinite) sequence of coefficients ψ0, ψ1, . . . , with ψ0 =
1. Note that this formally extends the time series Xt to t ≤ 0. The
representation (9.9) implies some obvious restrictions on the coefficients.
Firstly, V[Xt | M ] = W implies that W = U

∑∞
r=0 ψ

2
r , so that the sum of

squared coefficients must converge. Secondly, the autocovariances γs may
be written in terms of sums of products of the ψr, that must also converge.
There is a huge literature on mathematical and statistical theory of sta-

tionary stochastic processes and time series analysis for stationary series.
From the time series viewpoint, Box and Jenkins (1976) provide compre-
hensive coverage of the subject, with many references. Classical time series
analysis is dominated by the use of models that can be written in the form
(9.9), special cases of which are now introduced. The above reference pro-
vides much further and fuller development. Firstly, however, recall the
backshift operator B such that for any series Xt and any t, BrXt = Xt−r

for all r ≥ 0. Write (9.9) as

Xt = µ+
∞∑
r=0

ψrB
rεt = µ+ ψ(B)εt,

where ψ(.) is a polynomial function (of possibly infinite degree), given by
ψ(x) = 1 + ψ1x + ψ2x

2 + . . . , for any x with |x| < 1. This equation may
often be written as φ(B)(Xt−µ) = εt, where φ(.) is another polynomial of
the form φ(x) = 1− φ1x− φ2x

2 − . . . satisfying the identity ψ(x)φ(x) = 1
for all x with |x| < 1. If this representation exists, the function ψ(·) is
said to be invertible. In such cases, the coefficients φr are determined as
functions of the ψr, and (9.9) has the equivalent representation

Xt − µ = εt +
∞∑
r=1

φrB
r(Xt − µ) = εt + φ1(Xt−1 − µ) + φ2(Xt−2 − µ) + . . .

(9.10)
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9.4.3 Autoregressive models
Suppose (9.10) to hold with φr = 0 when r > p for some integer p ≥ 1.
Then Xt is said to be an autoregressive process of order p, denoted AR(p)
for short and written as Xt ∼ AR(p). Here

Xt = µ+
p∑

r=1

φr(Xt−r − µ) + εt,

the value at time t depending linearly on a finite number of past values.
It is an easy consequence (see, for example, Abraham and Ledolter 1983,
Chapter 5; Box and Jenkins 1976) that the autocorrelations ρs may be
non-zero for large values of s, though they decay exponentially eventually.
The AR(p) process is Markovian in nature, with

p(Xt | Xt−1, . . . , Xt−p, Xt−p−1, . . . ,M) = p(Xt | Xt−1, . . . , Xt−p,M).

If normality is assumed, for t > p and any specified initial information D0,

(Xt | Xt−1, . . . , Xt−p, D0) ∼ N[µ+
p∑

r=1

φr(Xt−r − µ), U ].

EXAMPLE 9.3: AR(1) model. If p = 1 then Xt = µ+ φ1(Xt−1 − µ) + εt.
Here it easily follows, on calculating variances, thatW = φ2

1W+U. Hence, if
|φ1| < 1,W = U/(1−φ2

1). The condition that the first-order autoregression
coefficient be less than unity in modulus is called the stationarity condition.
Further, autocorrelations are given by ρs = φs

1, so that stationarity is
necessary in order that the autocorrelations be valid. Note then that ρs
decays exponentially to zero in s, although it is non-zero for all s. The
polynomial φ(.) here is simply φ(x) = 1− φ1x, with

ψ(x) = 1/φ(x) = 1 + φ1x+ φ2
1x

2 + . . . (|x| < 1)

Thus, in terms of (9.9), ψr = φr
1 = ρr for r ≥ 0.

Higher order models, AR(p) for p > 1, can provide representations of
stationary series with essentially any form of correlation structure that is
sustained over time but decays eventually (and exponentially) towards zero.
In higher-order models too, the φ coefficients are subject to stationarity
restrictions that lead to valid autocorrelations.

9.4.4 Moving-average models
Suppose (9.9) to hold with ψr = 0 for r > q ≥ 1. Then Xt is said to be a
moving-average process of order q, denoted MA(q) for short and written as
Xt ∼ MA(q). Thus Xt depends on only a finite number q + 1 of the εt,

Xt = µ+ εt + ψ1εt−1 + . . .+ ψqεt−q.

It is an easy consequence that Xt and Xt−s are unrelated for s > q, de-
pending as they do entirely on distinct ε terms that are uncorrelated. Thus
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ρs = 0 for s > q. For q relatively small, therefore, the MA process is useful
for modelling local dependencies amongst the Xt.

EXAMPLE 9.4: MA(1) model. If q = 1 then Xt = µ + εt + ψ1εt−1, val-
ues more than one step apart being uncorrelated. It easily follows that
W = (1 + ψ2

1)U and ρ1 = ψ1/(1 + ψ2
1). Note that |ρ1| ≤ 0.5. There is

an identifiability problem inherent in this, and all other, MA represen-
tations of a stationary process; note that replacing ψ1 by ψ−1

1 leads to
the same value for ρ1, so that there are two essentially equivalent repre-
sentations for the MA(1) process with a given value of ρ1. However, here
ψ(x) = 1 + ψ1x, so that the representation in terms of (9.10) leads to
Xt = µ+ εt −ψ1(Xt−1 − µ) +ψ2

1(Xt−2 − µ)− . . . For |ψ1| < 1, the powers
ψr

1 decrease exponentially to zero, naturally reflecting a rapidly diminishing
effect of values in the past on the current value. If, however, |ψ1| > 1, then
this implies an increasing dependence of Xt on values into the distant past,
which is obviously embarrassing. For this (and other, similarly ad-hoc) rea-
sons, the MA model is typically subjected to invertibility conditions that
restrict the values of the ψ coefficients, just as the stationarity conditions
that apply in AR models. Invertibility gives an illusion of uniqueness and
serves to identify a single model whose limiting errors converge in proba-
bility to the εt. In this case the restriction is to |ψ1| < 1 (see the earlier
references for full discussion of such conditions).

9.4.5 ARMA models
Given the required stationarity conditions, any AR(p) model φ(B)(X−µ) =
εt implies the representation (9.9) with coefficients ψr that decay towards
zero as r increases. Thus, as an approximation, taking q sufficiently large
implies that any AR model can be well described by an MA(q) model,
possibly with q large. Similarly, an invertible MA(q) model can be written
in autoregressive form with coefficients φr decaying with r, and similar
thinking indicates that for large enough p, this can be well described by an
AR(p) model. Thus, with enough coefficients, any stationary process can
be well approximated by using either AR or MA models. Combining AR
and MA models can, however, lead to adequate representations with many
fewer parameters, and much classical time series modelling is based on
autoregressive moving-average models, ARMA for short. An ARMA(p, q)
model for Xt is given by

Xt = µ+
p∑

r=1

φr(Xt−r − µ) +
q∑

r=1

ψrεt−r + εt,

where as usual, the εt are zero-mean, uncorrelated random quantities with
constant variance U . The above references fully develop the mathematical
and statistical theory of ARMA models. They describe a wide range of pos-
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sible stationary autocorrelation structures, subject to various restrictions
on the φ and ψ coefficients.

9.4.6 ARMA models in DLM form
All ARMA noise models can be written in DLM form in a variety of ways
and for a variety of purposes. Suppose here that the series Xt is stationary
with zero-mean, µ = 0, and is actually observed. In the context of mod-
elling Yt in Section 9.4.1, this is equivalent to supposing that Yt = Xt for
all t.

EXAMPLE 9.5: Autoregressive DLMs: regression model form. In the
AR(p) case, the model may be written as a simple, static regression se-
quentially defined over time as mentioned in Section 9.1. Simply note that

Xt = F′
tθ+ νt,

where νt = εt, F′
t = (Xt−1, . . . , Xt−p) and θ′ = (φ1, . . . , φp). This is useful

in leading to sequential learning of the AR parameters by simply applying
standard DLM results. The standard updating equations lead to posterior
distributions that relate directly to those in traditional reference analyses
from a non-sequential viewpoint. Some of the basic structure is detailed
here as it is relevant to further methodological development in Chapter 15.
Note first that the standard normal theory analysis requires that at time

t, the regression vector F′
t be known. In particular, this implies the need

for known or assumed initial values F′
1 = (X0, . . . , X−p+1) at the (arbi-

trary) origin t = 1. Assuming such values, the standard theory applied to
sequentially update posteriors (θ|Dt) ∼ N[mt,Ct] via the static regression
updating equations summarised in item (3) of Section 9.2.4. Assuming
known observation variance U, and writing in terms of the precision, or
information matrices C−1

t , we thus have, at time t = n,

C−1
n = C−1

0 + U−1
n∑

t=1

FtF′
t,

mn = Ct[C−1
0 m0 + U−1

n∑
t=1

FtXt].

(9.11)

These results coincide with standard Bayesian linear regression results, as
in DeGroot (1971, Chapter 11) and Box and Tiao (1973, Chapter 2), and, in
the linear model formulation of AR processes, specifically Zellner (1971).
These results are most useful in a later development, in Chapter 15, of
computational algorithms for analysis of DLMs with AR components.
The case of a reference prior for θ, in which C−1

0 → 000, results in the
standard reference normal posterior distribution for (θ|Dn) (conditional
also on the assumed initial values for the Xt process), in which the above
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equations reduce to

Cn = U(
n∑

t=1

FtF′
t)

−1,

mn = (
n∑

t=1

FtF′
t)

−1
n∑

t=1

FtXt.

(9.12)

The value mn in (9.12) coincides with the usual maximum likelihood esti-
mate of θ, conditional on the assumed initial values for the series.
Forecasting ahead leads to computational problems in calculating fore-

cast distributions, however, since future values are needed as regressors.
Zellner (1971) discusses such problems. See also Broemling (1985) and
Schnatter (1988).

EXAMPLE 9.6: An alternative AR model in DLM form. There are various
alternative representations of AR models in DLM form that have uses in
contexts when the AR parameters φj are specified. One such form that we
use in Chapter 15 is as follows. Given the standard AR(p) model with zero
mean, as in Example 9.5 above, write E = Ep = (1, 0, . . . , 0)′ and

G =



φ1 φ2 φ3 · · · φp

1 0 0 · · · 0
0 1 0 · · · 0
...

. . . · · ·
...

0 0 · · · 1 0


 .

Also, let ωt = εtE = (εt, 0, . . . , 0)′, a p-variate normal evolution error term
with (singular) variance matrix

W =



U 0 · · · 0
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0


 .

It easily follows that

Xt = E′Ft and Ft = GFt−1 + ωt,

representing the AR model in DLM form with no independent observational
error terms.

EXAMPLE 9.7: ARMA models in DLM form. There are similarly various
equivalent ways of representing a specified ARMA(p, q) model in DLM
form. We detail one here, noting that the MA(q) is an obvious special case
when p = 0. This also provides an alternative to the above representation
for pure autoregressive models when q = 0.
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For the usual ARMA model with µ = 0,

Xt =
p∑

r=1

φrXt−r +
q∑

r=1

ψrεt−r + εt,

define n = max(p, q + 1), and extend the ARMA coefficients to φr = 0 for
r > p, and ψr = 0 for r > q. Introduce the n-vector θt whose first element
is the current observation Xt. Further, define E = En = (1, 0, . . . , 0)′ as
above, with

G =




φ1 1 0 . . . 0
φ2 0 1 . . . 0
...

...
...

. . .
...

φn−1 0 0 · · · 1
φn 0 0 . . . 0




and

ωt = (1, ψ1, . . . , ψn−1)′εt.

With these definitions, it can be verified that the ARMA model may be
rewritten as

Xt =E′θt,

θt =Gθt−1 + ωt.
(9.13)

Thus, conditional on the defining parameters and also on Dt−1, the ARMA
process has the form of an observational noise-free DLM of dimension n.
The evolution noise has a specific structure, giving evolution variance ma-
trix

U = U(1, ψ1, . . . , ψn−1)′(1, ψ1, . . . , ψn−1). (9.14)

Given an initial prior for θ0, the standard analysis applies, conditional on
values of the defining parameters φr and ψr being specified. Note that the
model is a TSDLM and so the forecast function is given simply by

ft(k) = E[Xt+k | Dt] = E′Gkmt, (k = 1, 2, . . . ),

where mt = E[θt | Dt] as usual. It follows, as with all TSDLMs, that
the eigenvalues of G determine the form of the forecast function and that
the model has a canonical Jordan block representation (see Exercise 12).
In addition, Theorem 5.1 implies that there is a stable limiting form for
the updating equations determined by a limiting value for the sequence of
posterior variance matrices Ct of θt.

EXAMPLE 9.3 (continued). In the AR(1) case p = 1 and q = 0, so that
n = 1, G = φ1, and directly, Xt = φ1Xt−1 + εt. Forecasting ahead gives
ft(k) = φk

1mt, where mt = Xt. The stationarity condition |φ1| < 1 implies
an exponential decay to zero, the marginal mean of Xt+k, as k increases.
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EXAMPLE 9.4 (continued). In the MA(1) case p = 0 and q = 1, so that
n = 2. Here

G =
(
0 1
0 0

)
= J2(0),

giving the component model {E2,J2(0), ., .}. Setting θ′
t = (Xt, θt), the

evolution equation gives Xt = θt−1 + εt and θt = ψ1εt. The standard
MA(1) representation follows by substitution, namely Xt = εt + ψ1εt−1.
Here Gk = 000 for k > 1, so that, with m′

t = (Xt,mt), the forecast function
is given by ft(1) = ft+1 = mt and ft(k) = 0 for k > 1.

EXAMPLE 9.8. In an MA(q) model for any q, it similarly follows that
the forecast function takes irregular values up to k = q, being zero, the
marginal mean of Xt+k, thereafter. The canonical component model is
{Eq+1,Jq+1(0), ., .}. (Incidentally, it is possible to incorporate the obser-
vational noise component νt directly into this noise model, if desired.)

Related discussion of similar representations of ARMA models (usually
referred to as state-space representations) can be found in Abraham and
Ledolter (1983), Harvey (1981), Priestley (1980), and Young (1984), for
example. Harvey in particular discusses initial conditions and limiting
forms of the updating equations.

9.4.7 ARMA components in DLMs
In classical ARMA modelling, practical application is approached by first
transforming the Yt series in an attempt to achieve a transformed series
Xt that is, at least approximately, zero mean and stationary. In addition
to the usual possibilities of instantaneous, non-linear data transformations
to correct for variance inhomogeneities, data series are usually subject to
differencing transforms. The first-order difference of Yt is simply defined
as (1−B)Yt = Yt−Yt−1, the second-order (1−B)2Yt = Yt− 2Yt−1 +Yt−2,
and higher-order differences similarly defined by (1−B)kYt. In attempting
to derive stationarity this way, it is important that the original Yt series
be non-seasonal. If seasonality of period p is evident, then Yt may be
first subjected to seasonal differencing, producing the transformed series
(1 − Bp)Yt. Thus, the classical strategy is to derive a series of the form
Xt = (1 − B)k(1 − Bp)Yt, for some k and p, that may be assumed to be
stationary. Once this is approximately obtained, residual autocorrelation
structure in the Xt series is modelled within the above ARMA framework.
Full discussion of differencing, and the relationship with the assumptions of
stationarity of differenced series, can be found in the references in Section
9.4.3.
By comparison, DLM approaches tend to model the original time series

Yt directly, representing the series through trend, regression, seasonal and
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residual components without such direct data transformations. In con-
texts of often highly non-stationary development over time, application of
differencing transformations can confuse the interpretation of the model,
confound the components, and highlight noise at the expense of meaning-
ful interpretations. In particular, with regression effects the differencing
carries over to transform independent variables in the model, obscuring
the nature of the regression relationships. This confusion is exacerbated
by the appearance of time-varying parameters that are so fundamental to
short-term forecasting performance. Furthermore, the occurrence of abrupt
changes in time series structure that may be directly modelled through a
DLM representation evidence highly non-stationary behaviour that cannot
usually be removed by differencing or other data transformations. Consis-
tent with this view is the use of stationary time series models as components
of an overall DLM, and there is much interest in such component models,
especially in time series analysis in physical science and biomedical ap-
plications. Autoregressive components, in particular, have real utility in
modelling actual physical structure in a time series not captured in trend,
seasonal or regression terms, and also as a catch-all noise model used as
a purely empirical representation of residual variation. To take a specific
example, consider a series Yt following an underlying polynomial trend µt

with a correlated process Xt superimposed, and in the context of additive
observational errors. Then we have

Yt = µt +Xt + νt,

where both µt and Xt have representations in terms of specific component
DLMs. For example, suppose µt is a first-order polynomial trend. At time
t, denote by ωt the evolution error in the trend, supposing ωt ∼ N[0,W ],
and assume the above AR(p) representation for the process Xt. Then we
have

Yt = F′θt + νt and θt = Gθt−1 + ωt,

where θt = (µt, Xt, Xt−1, . . . , Xt−p+1)′, a (p + 1) × 1 state vector at time
t, F = (1, 1, 0, . . . , 0)′,

G =




1 0 0 0 · · · 0
0 φ1 φ2 φ3 · · · φp

0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
. . . · · ·

...
0 0 0 · · · 1 0



,

and the evolution error ωt has two lead elements corresponding to the trend
increment and AR process innovation at time t, all other elements being
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zero, and thus has the singular variance matrix

W =



W 0 0 · · · 0
0 U 0 · · · 0
0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0


 .

Note now that the AR process Xt is unobserved, or latent. DLM analy-
sis leads to sequential learning on Xt in addition to the trend component,
and standard normal theory applies conditional on specified values of the
AR parameters φj . If these parameters are uncertain, the problems of pa-
rameter estimation and inference become essentially non-linear, so that
analytic approximations or numerical methods are needed. We defer fur-
ther discussion of this important class of problems until Chapter 15, where
advanced numerical methods based on Markov chain Monte Carlo simula-
tion techniques are developed, with this specific component model as a key
example.
Two final comments are relevant. First, in many applications purely

observational noise, including measurement errors, sampling errors, and
so forth, are significant and induce variation in the observed series that is
comparable with the levels of variation of model components. Thus, even if
underlying trends are negligible, it is important to be able to embed AR and
other ARMA models in the above DLM form in order to distinguish, and
ultimately infer, the process structure from contaminating noise. Again,
this is revisited in examples in Chapter 15. Second, we note extensions
to time-varying parameter AR models. In some applications, AR compo-
nent forms are very useful locally in time, but their global applicability
is questionable unless the defining AR parameters change through time.
This leads to extended dynamic models with the φj coefficients themselves
evolving; these are the focus of Section 9.6 below, following some important
developments in time series decomposition.

9.5 TIME SERIES DECOMPOSITIONS
The use of autoregressive component DLMs in modelling and identifying
latent, quasi-cyclical structure in time series is of wide interest in time series
analysis in various fields, as discussed and exemplified in West (1996a-c,
1997). In such applications, one is often interested in decomposition of
time series into hidden, or latent, components that have physical interpre-
tation. In this connection, some new results on time series decomposition
in the DLM framework are relevant. These results are quite general, and
so are given here in a general context. The special cases of autoregressive
structure are, perhaps, of most practical interest, and so are given special
attention here. The next section develops these results in time-varying
autoregressions, and the results are applied further in Section 15.3. The
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key result on decomposition is derived essentially directly from the theory
of superposition and model structuring of Chapters 5 and 6, though the
specific and constructive use of this theory given here is relatively new, first
discussed in West (1997).
The focus is on decomposition and structure of components DLMs, i.e.,

of a process Xt in a model Yt = µt+Xt+νt, where µt represents additional
components and νt observational noise. We consider explicitly components
Xt that arise from sub-models of the form

Xt = E′θt and θt = Gθt−1 + ωt, (9.15)

with the usual zero-mean and independence assumptions for the evolution
error sequence, and in which E = Ep = (1, 0, . . . , 0)′, so that Xt is the first
element of the state vector θt. Autoregressive components are a particular
example of interest. Note that for clarity the development is given in terms
of a constant state matrix G; we mention extensions to time-varying G
below.
Suppose that the state matrix G has distinct eigenvalues arranged in the

diagonal matrix A = diag(α1, . . . , αp); we note that similar development
is possible in cases of repeat eigenvalues, though that is not pursued here.
Then, following the development of similar models in Section 5.3, G is
diagonalisable as G = BAB−1, and with Gk = BAkB−1 for all k ≥ 0. It
follows that as with forecast function calculations in Section 5.3.2,

E[Xt+k|θt] = E′BAkB−1θt

as a function of the lead-time k ≥ 0. This reduces to

E[Xt+k|θt] =
p∑

j=1

xt,jα
k
j , (9.16)

where the xt,j are obtained as element-wise products of the two p-vectors
B′E and B−1θt, i.e., xt,j = (B′E)j(B−1θt)j , for j = 1, . . . , p. Now, at
k = 0 we obtain E[Xt|θt] = Xt, as Xt is the first element of θt. Hence,
from (9.16) at k = 0, it follows that

Xt =
p∑

j=1

xt,j . (9.17)

This is the basic decomposition of Xt into p component, latent sub-series,
one corresponding to each of the eigenvalues of G. Generally, the eigen-
structure will contain complex values and vectors, so that some or all of
the xt,j processes will be complex-valued. In such cases, they will be paired
with conjugate processes in order that the sum be real-valued, as required.
The specific form of decomposition of an AR(p) model provides an impor-
tant special case for illustration.
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EXAMPLE 9.6 (continued). In the AR(p) model of Example 9.6,

G =



φ1 φ2 φ3 · · · φp

1 0 0 · · · 0
0 1 0 · · · 0
...

. . . · · ·
...

0 0 · · · 1 0




has eigenvalues that are the p reciprocal roots of the AR characteristic
equation φ(u) = 0, where φ(u) = 1−φ1u− . . .−φpu

p; thus the eigenvalues
satisfy

∏p
j=1(1− αju) = 0. It is usual that the roots are distinct. Suppose

that the p eigenvalues occur as c pairs of complex conjugates and r = p−2c
distinct real values. Write the complex eigenvalues as aj exp (±2πi/λj) for
j = 1, . . . , c, noting that the real-valued, non-zero elements λj correspond
to the periods of quasi-cyclical component behaviour in the series. Cor-
respondingly, we write the real eigenvalues as aj , for j = 2c + 1, . . . , p.
In a stationary process, |aj | < 1 for each j for real and complex roots;
the development permits non-stationary processes, as one or more of the
eigenvalues, real or complex, may have modulus outside this range.
We can now rewrite (9.17) as

Xt =
c∑

j=1

zt,j +
r∑

j=1

yt,j , (9.18)

with summands zt,j corresponding to the complex roots, and yt,j corre-
sponding to the real roots. This easily is done by directly computing the
factors xt,j based on the specified values of the φj and observed values of
Xt. Using the theory of similar models from Section 5.3, it easily follows
that the real-valued processes yt,j follow individual AR(1) models, namely

yt,j = ajyt−1,j + δt,j ,

for some zero-mean evolution error δt,j , related across component indices
j. The complex components occur in conjugate pairs. Thus, any complex
component process, xt,d, say, is paired with a conjugate, xt,h, say, such that
zt,j = xt,d+xt,h is real for all t. In this case, the model similarity transform
implies the quasi-periodic structure of the canonical similar model (as in
Section 5.4.4 of chapter 5) of the form

zt,j = 2aj cos(2π/λj)zt−1,j − a2
jzt−2,j + εt,j

for additional zero-mean terms εt,j . For each j, the errors εt,j themselves
follow individual AR(1) models, so that each zt,j series is a quasi-cyclical
ARMA(2, 1) process. The εt,j are related across component series j and
are also correlated with the innovations δt,j of the AR(1) components.
Hence the entire time series is decomposed into the sum of time-varying

components corresponding to the autoregressive roots. This results in a
decomposition (9.18) of Xt as the sum of r real-valued latent component
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series, each representing short-term correlation consistent with AR(1) be-
haviour, and a collection of c components zt,j , each having the form of
a stochastically time-varying, damped harmonic component of period λj .
We stress that this decomposition result is constructive; with specified φj

values and observed data Xt over a time interval, we can easily compute
the implied latent processes that combine additively via (9.18). Some of
the practical relevance of these results is illustrated in Section 15.3.4, and,
following extension to time-varying system matrices, in the following sec-
tion.
These basic results can be extended to cover models with time-varying

evolution matrices. Assume a time-dependent evolution matrix Gt evolv-
ing according to a model in which E[Gt|Gt−1,θt−1, Dt−1] = Gt−1, i.e., the
scalar entries follow random walks. An example is time-varying autore-
gression, in the next section. Then the time-dependent, “instantaneous”
decomposition is as follows. Suppose that for each t, Gt has distinct eigen-
values arranged in the diagonal matrix At = diag(αt,1, . . . , αt,p), so that
Gt = BtAtB−1

t , where Bt is the eigenvector matrix at time t. Then equa-
tions (9.17) and (9.18) are essentially unchanged; now the latent processes
xt,j are obtained as element-wise products of the two time-varying vectors
B′

tE and B−1
t θt, i.e., xt,j = (BtE)j(B−1

t θt)j , for j = 1, . . . , p. Hence the
decomposition results hold even though we are now dealing with a system
matrix Gt whose eigenstructure may be varying through time. There are
some intricacies in dealing with questions of time-variation in the numbers
of real and complex eigenvalues, and hence in the relative numbers of com-
ponents zt,j and yt,j in (9.18), but the decomposition has real practical
utility in the time-varying context too, as is illustrated in the following
section.

9.6 TIME-VARYING AUTOREGRESSIVE DLMS
9.6.1 Model structure and analysis
An important extension of autoregressive component models is that of time-
varying autoregressions. Modelling time-variation in AR parameters adds
flexibility to adapt models to time-varying patterns of dependence and
non-stationarities; these models embody the notion of “local stationarity”
but “global” non-stationarity of time series structure. We develop and
illustrate these models here, in the context of a time-varying AR model
for an observed series, free from additional observational error and other
model components. Early work in this area appears in Kitegawa and Gersch
(1985). The development here follows recent work, including that of Prado
and West (1997) where further details and more extensions of analysis
appear.
Extend the basic ARmodel of Section 9.4.6 to incorporate AR coefficients

that follow a random walk through time. We thus have
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Xt = F′
tφt + εt and φt = φt−1 + ωt,

where F′
t = (Xt−1, . . . , Xt−p) and φt = θt = (φt,1, . . . , φt,p)′. With

ωt ∼ N[000,Wt] and Wt specified, we have a standard DLM framework,
assuming the initial values F1 are known elements of D0. Then standard
updating and filtering equations apply, resulting in the usual collections of
posterior distributions for the φt sequence through time.
We note that the model can be equivalently expressed in the alternative

AR DLM form of Example 9.6, but now with time-varying evolution matrix.
Thus, with E = (1, 0, . . . , 0)′ and

Gt =



φt,1 φt,2 φt,3 · · · φt,p

1 0 0 · · · 0
0 1 0 · · · 0
...

. . . · · ·
...

0 0 · · · 1 0


 ,

we have Xt = E′Ft and Ft = GtFt−1 + (εt, 0, . . . , 0)′. This form is just
that required for the “instantaneous” time series decomposition result of
the previous section to apply. At each time t, therefore, we can directly
compute the decompositions (9.18) based on any specified φt vector, such
as the posterior mean E[φt|Dn] as used in the example below. This relies
on computing the eigenvalues and eigenvectors of the above Gt matrix
at each time point at the specified estimate of φt. We note that though
not developed here, it is possible to evaluate more formal inferences about
the eigenstructure by simulating posterior distributions of φt and hence
deducing simulation-based posterior inferences about the eigenstructure
and resulting time series decomposition.
Note that as the AR vector is time-varying, then so too are the moduli

and frequencies/periods of the latent subseries. In particular, the real-
valued roots generate latent AR(1) components yt,j = at,jyt−1,j + δt,j with
time-varying moduli at,j , and the pairs of complex roots generate latent
ARMA(2, 1) components, zt,j = 2at,j cos(2π/λt,j)zt−1,j − a2

t,jzt−2,j + εt,j ,
with time-varying moduli and wavelengths/periods λt,j and with correlated
innovations εt,j . Patterns of change over time are usually best illustrated
by exploring estimates of the at,j and λt,j through time, as in the example
in the following section.

9.6.2 An illustration
The data in Figure 9.1 are electroencephalogram (EEG) voltage levels
recorded during a brain seizure of an individual undergoing electrocon-
vulsive therapy (ECT). ECT is a major tool in brain seizure treatment,
and EEG monitoring is the primary method of observation of brain ac-
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Figure 9.1 EEG series (units in millivolts)

tivity during ECT (as in other contexts). Activity is monitored by scalp
electrodes measuring resulting EEG waveforms at various scalp locations;
this collection of data is a series subsampled from one of several EEG
channels recorded in a specific seizure. The original sampling rate was
256 observations per second, and we have subsampled every sixth obser-
vation for this analysis, taken from Prado and West (1997). The experi-
ment was performed by Dr Andrew Krystal of Duke University, who kindly
provided the data, background information, and his expert opinion. The
data exhibit quasi-cyclical behaviour over time, with evident time-varying
frequency characteristics and high-frequency distortions; Figure 9.2 shows
shorter sections of the data at several separated intervals, clearly showing
up changes in the basic waveform at different stages of the seizure. Our
analysis is based on a time-varying AR(20) model capable of capturing the
basic waveform structure and its evolution over time. Models of various or-
ders were explored and compared to identify the chosen order p = 20. The
analysis structuresWt in terms of a single discount factor for the evolution
of φt, chosen similarly by exploring several values. The reported analysis is
based on a model discount factor of 0.994. More details on model selection
appear in Prado and West (1997).
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Figure 9.2 Four sections of 500 consecutive values of the EEG
series, taken from near the beginning, central portion and end of
the full data series. This clearly illustrates the changing nature of
the seizure waveform throughout the seizure episode
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Some summary inferences appear in Figures 9.3, 9.4 and 9.5, all based
on the posterior means E[φt|Dn] over t = 1, . . . , n = 3600. First, the time
series decomposition result is applied. At each t, the eigenvalues ofGt (i.e.,
the reciprocal characteristic roots of the AR polynomial at the current es-
timate E[φt|Dn]) are computed. It is found that each set of roots contains
a complex pair with modulus generally close to unity and a wavelength,
λt,1 in the 10−30 range, together with several more pairs of complex roots
of lower moduli. Applying the decomposition results in the identification
of a dominant component with this higher wavelength, λt,1; the estimated
amplitude of this component is much greater than those of the remaining
components, indicating this as the dominant feature of the EEG waveform.
Two further quasi-cyclical components of much smaller, but meaningful,
amplitudes, have longer wavelengths; the second is in the 5 − 10 range,
the others lower. The estimated latent components are graphed in Figure
9.3, ordered according to estimated amplitudes, as is evident in the figures.
A part of this decomposition graph is redrawn in Figure 9.4, restricting
attention for clarity to a section of just 500 consecutive observations in the
central part of the seizure episode. The figures indicate the dominance of
the first component, and suggest that the first two components together
carry the EEG signal, the additional components representing higher fre-
quency signal distortions due to physiological and experimental noise.
Figure 9.5 displays estimated time trajectories of the wavelengths λt,j of

the first three components. We note that the components have been ordered
in terms of estimated amplitudes; there is no inherent ordering of compo-
nents in the time series decomposition result, so one must be imposed for
identification. It happens that the component of longest wavelength dom-
inates in amplitude and is clearly distinguished from the higher frequency
components. The amplitudes of the remaining components are more simi-
lar, and problems arise in identifying components at the start of the series
as a result. Note the minor erratic appearance of the trajectories of λt,2
and λt,3 at the very start of the time interval. This does not imply such
behaviour in the wavelength processes; rather, it is simply a result of the
inherent identification problem. These components have similar estimated
amplitudes initially, so the ordering by amplitudes may alternate between
the two, and result in the “switching” effects appearing in the graph. With
this in mind, it is evident that the wavelength of the second component
varies smoothly around a level of 8− 10 time units, that of the third com-
ponent being smaller, around 4 units. The wavelength ranges of the two
main components correspond to approximate frequency ranges of 1.5− 4.5
cycles per second for the dominant component, and 4−9 cycles per second
for the second component. These correspond nicely with expected ranges
of frequencies for the dominant “slow wave” typical of seizure activity, and
the higher frequency waveforms of normal brain activity that are relatively
suppressed during seizures (Dyro 1989). The third and higher-frequency
components evidently represent corrupting noise in the data.
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Figure 9.3 Estimated trajectories of the dominant latent com-
ponents (j = 1, 2, 3, 4) of the EEG series based on time series
decomposition
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Figure 9.4 Estimated trajectories of the dominant latent com-
ponents (j = 1, 2, 3, 4) of the EEG series, as in Figure 9.3, now
restricted to a central section of 500 time points
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Figure 9.5 Estimated time trajectories of the wavelength param-
eters λt,j of the three dominant latent components (j = 1, 2, 3) in
the EEG analysis

There is evident time-variation in the wavelengths, captured by the time-
variation modelled in φt. The general increase in the wavelength of the dom-
inant component corresponds to a gradual lengthening of the waveform as
the seizure matures and gradually tails off. The wavelength of the second
component is relatively stable, indicative of its underlying constancy in na-
ture. The higher-frequency components appear essentially constant too, as
is to be expected under the interpretation that they represent background
experimental noise.

9.7 EXERCISES

(1) Consider the discount regression DLM in which Vt is known for all t
andRt = Ct−1/δ. Show that the updating equations can be written
as

mt = Ct(δtC−1
0 m0 +

t−1∑
r=0

δrFt−rV
−1
t−rYt−r)
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and

C−1
t = δtC−1

0 +
t−1∑
r=0

δrFt−rF′
t−rV

−1
t−r.

Deduce that if C−1
0 ≈ 000, mt is approximately given by the expo-

nentially weighted regression (EWR) form

mt ≈ (
t−1∑
r=0

δrFt−rF′
t−rV

−1
t−r)

−1(
t−1∑
r=0

δrFt−rV
−1
t−rYt−r).

(2) Consider the reference prior analysis of the static model {Ft, I, V,000},
referring to the general theory of reference analysis in Section 4.10.
As in that section, let

Kt =
t∑

r=1

FrF′
r, kt =

t∑
r=1

FrYr,

and t = [n] be the first time t ≥ n such that Kt is non-singular.
Using the results of Theorem 4.6 and Corollary 4.5, verify that the
reference analysis leads to

C[n] = K−1
[n]

and

m[n] = C[n]k[n].

(3) Table 9.1 provides data on weekly sales of a product over a number
of standardised, four-weekly months, together with the correspond-
ing values of a compound index of market buoyancy and product
competitiveness. Take Sales as response, Index as independent vari-
able, and consider fitting dynamic straight line regression models to
the series to explain and predict Sales based on Index. Note that
several observations are missing, being denoted by asterisks in the
table.
Consider single discount models with Wt = Ct−1(δ−1 − 1) for

all t for updating, and assume that the observational variance is
constant. Assume that the initial information is summarised by
a1 = (100, 0)′, R1 = diag(25, 10), n0 = 10 and S0 = 1.5.
(a) Explore sensitivity to the value of δ by fitting the model to the

data for values of δ representing the range 0.75 ≤ δ ≤ 1. Ex-
amine sensitivity by plotting the on-line and filtered estimates
of the time trajectories of the intercept parameter αt and the
regression parameter βt.

(b) Assess support from the data for the values of δ by calculating
the aggregate LLR measure for each value considered.

(4) Analyse the Sales/Index series above with δ = 0.95, recording the
values of the posterior summary quantities m80, C80, S80 and n80
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Table 9.1. Sales and advertising Index series
(Missing data indicated by ∗)

SALES Yt INDEX Xt

Week Week
Mth 1 2 3 4 1 2 3 4

1 102.29 101.18 100.49 100.31 0.00 0.00 0.17 0.26
2 99.39 101.69 99.96 105.25 0.21 0.22 0.23 0.29
3 103.71 99.21 99.82 100.95 0.28 0.05 0.00 0.00
4 101.91 100.46 102.81 101.59 0.13 0.18 0.24 0.05
5 104.93 101.95 101.01 99.03 0.21 0.05 0.00 0.14
6 100.80 101.90 98.35 99.21 0.15 0.03 0.00 0.00
7 99.87 101.30 98.42 98.66 0.15 0.23 0.05 0.14
8 103.16 102.52 103.08 101.37 0.16 0.27 0.24 0.18
9 101.75 100.76 97.21 100.47 0.25 0.21 0.25 0.05
10 99.10 *** *** *** 0.00 *** *** ***
11 *** *** *** *** *** *** *** ***
12 105.72 106.12 103.41 97.75 0.17 0.27 0.06 0.00
13 101.18 101.61 105.78 98.35 0.00 0.22 0.21 0.04
14 104.08 102.02 100.33 101.34 0.17 0.04 0.00 0.13
15 100.37 99.49 103.39 101.32 0.03 0.15 0.24 0.20
16 100.26 102.70 100.40 101.85 0.28 0.20 0.03 0.24
17 103.50 95.41 99.19 103.05 0.06 0.00 0.14 0.03
18 99.79 103.49 102.93 102.63 0.13 0.15 0.27 0.06
19 102.72 101.52 98.55 101.07 0.00 0.00 0.16 0.04
20 99.65 104.59 104.24 100.74 0.16 0.20 0.23 0.05

at the final observation stage t = 80, corresponding to week 4 of
month 20. Looking ahead, suppose that the step ahead values of
Index over the coming four weeks are calculated as

X81 = 0.15, X82 = 0.22, X83 = 0.14 and X84 = 0.03.

Taking W80+k = W81 = C80(δ−1 − 1) constant for forecasting
ahead from time 80 (as usual in discount models), calculate the
following forecast distributions:
(a) The marginal forecast distributions p(Y80+k|D80) for each of

k = 1, 2, 3 and 4.
(b) The full, joint forecast distribution for the 4 quantities

p(Y81, . . . , Y84|D80).

(c) p(Z|D80), where Z =
∑84

r=81 Yr, the cumulative total Sales over
the coming month.

(d) The conditional forecast distribution

p(Y81, . . . , Y84|Z,D80)
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for any given value of the total Z.
(5) A forecast system uses the first-order polynomial model {1, 1, 100, 5}

as a base model for forecasting sales of a group of products. Initially,
(µ0|D0) ∼ N[400, 20]. The effect of a price increase at t = 1 is
modelled via the addition of a transfer response effect Et, giving

Yt = µt + Et + νt, (t = 1, 2, . . . ),

where

Et = 0.9Et−1 + ∂Et, (t = 2, 3, . . . ),

and

(∂Et|D0) ∼ N[0, 25],

independently of (µ1|D0) and (ωt|D0) for all t. It is also assumed
that initially,

(E1|D0) ∼ N[−40, 200],
independently of (µ1|D0) and (ωt|D0).
(a) Calculate the forecast distributions p(Yt|D0) for each of t =

1, 2, 3 and 4.
(b) Given Y1 = 377, calculate p(µ1, E1|D1) and revise the forecast

distributions for the future, calculating p(Yt|D1) for each of
t = 2, 3 and 4.

(c) Perform similar calculations at t = 2 given Y2 = 404. Calculate
p(µ2, E2|D2) and p(Yt|D2) for t = 3 and 4.

(6) It is desired to produce a component DLM that models the form
response of stock-market indicators to stock market news. The gen-
eral form of response anticipated is that of an increase (or decrease)
to a new level after damped, cyclic variation due to under/over re-
action of market makers. Discuss the forms of the forecast functions
of the two models {(

1
0

)
,

(
1 1
0 φ

)
, ., .

}
and {(

1
0

)
, λ

(
cos(ω) sin(ω)
−sin(ω) cos(ω)

)
, ., .

}
,

where 0 < φ, λ < 1 and 0 < ω < 2π with ω �= π. Verify that a
model formed by the superposition of these or any similar models
has qualitatively the desired form of the forecast function.

(7) Identify the form of the forecast function of the model of Definition
9.1 when

F =


 1
1
1


 and G =


 1 0 0
0 λ 0
0 0 φ


 ,



9.7 Exercises 315

for some λ and φ such that 0 < λ, φ < 1. Describe the form
of the implied transfer response function, and explain under what
circumstances this form would be appropriate as a description of
the response of a sales series to a price increase Xt.

(8) Consider the form response model of Definition 9.1 in which F = 1,
G = λ, (0 < λ < 1), θt = θt is scalar, ψt = ψ, a scalar constant,
and δθt = δψt = 0 for all t. Suppose also that νt ∼ N[0, V ] with
V known, θ0 = 0 and (ψ|D0) ∼ N[h0, H0] with known moments.
Finally, suppose that X1 = 1 and Xt = 0 for t > 1. With (ψ|Dt) ∼
N[ht, Ht], verify that

H−1
t = H−1

0 + V −1(1− λ2t)/(1− λ2)

and

ht = Ht(H−1
0 h0 + V −1

t∑
r=1

λr−1Yr).

Find the limiting posterior distribution of (ψ|Dt) as t→∞.
(9) Consider the first-order polynomial plus AR(1) noise model defined

by equations

Yt =µt +Xt,

µt =µt−1 + ωt,

Xt =φXt−1 + εt,

where εt ∼ N[0, U ] independently of ωt ∼ N[0,W ]. Show how the
model may be written in DLM form and derive the updating equa-
tions for the elements ofmt andCt. Identify the form of the forecast
function ft(k).

(10) Consider the stationary AR(1) plus noise model defined by

Yt =Xt + νt,

Xt =φXt−1 + εt,

where εt ∼ N[0, U ] independently of νt ∼ N[0, V ].
(a) Show that the autocorrelations of Xt are given by ρj = φj .
(b) Show also that Yt is a stationary process and find the auto-

correlations of Yt; confirm that the autocorrelations of Yt are
damped towards zero relative to those of Xt, and that this
damping increases with increasing U. Interpret this result.

(c) Show that Yt has the autocorrelation structure of a stationary
ARMA(1, 1) process. Generalise this result in the case that Xt

is AR(p).
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(11) Consider the first-order polynomial plus MA(1) noise model defined
by equations

Yt =µt +Xt,

µt =µt−1 + ωt,

Xt =ψεt−1 + εt,

where εt ∼ N[0, U ] independently of ωt ∼ N[0,W ]. Show that the
model can be written in DLM form. Derive the updating equations
for the elements of mt and Ct, and identify the form of the forecast
function ft(k).

(12) Suppose that Yt follows an AR(1) model {Yt−1, 1, V, 0} with autore-
gressive coefficient φ.
(a) Suppose that (φ|D1) ∼ N[m1, C1] for some known m1 and C1.

Deduce that for all t > 1, (φ|Dt) ∼ N[mt, Ct] and identify the
moments as functions of the past data Yt, Yt−1, . . . , Y1.

(b) Letting C−1
1 → 0, verify that

C−1
t → V −1

t∑
r=2

Y 2
r−1.

(c) On the basis of the model assumptions, the series Yt is station-
ary with variance V[Yt|φ] = V (1− φ2)−1 for all t. Deduce that
as t → ∞, tCt → (1 − φ2). Comment on the implications for
the precision with which φ can be estimated in the cases (i)
φ = 0.9 and (ii) φ = 0.1.

(13) Consider the ARMA model of (9.11) with n > p and

φ(B) =
s∏

i=1

(1− λiB)ni ,

where
∑s

i=1 ni = p, and the λi are distinct and non-zero. Obtain F
and G of the similar canonical DLM, showing that one of the blocks
of the system matrix is Jn−p(0).



CHAPTER 10

ILLUSTRATIONS AND EXTENSIONS OF
STANDARD DLMS

10.1 INTRODUCTION
In the preceding chapters the focus has been on the theoretical structure
and analysis of DLMs, with little reference to practical aspects of mod-
elling. Here we switch the focus to the latter to consolidate what has been
developed in theory, illustrating many basic concepts via analyses of typ-
ical data sets. We consider both retrospective analysis of a time series as
well as forecasting with an existing model, and describe a variety of mod-
elling activities using the class of models built up from the trend, seasonal
and regression components of Chapters 7, 8 and 9. Together these three
components provide for the majority of forms of behaviour encountered in
commercial and economic areas, and thus this class, of what may be re-
ferred to as standard models, forms a central core of structures for the time
series analyst. In approaching the problem of modelling a new series, the
basic trend and seasonal components are a useful first attack. If retrospec-
tive analysis is the primary goal, then these simple and purely descriptive
models may be adequate in themselves, providing estimates of the trend
(or deseasonalised series), seasonal pattern (detrended series) and irregular
or random component over time. In addition to retrospective time series
decomposition, these models can prove adequate for forecasting in the short
term. The inclusion of regression terms is the next step, representing an at-
tempt to move away from simple descriptions via explanatory relationships
with other variables. Linking in such variables is also the route to firmer,
more credible and reliable short/medium-term forecasting, the key idea be-
ing that future changes in a series modelled using a simpler trend/seasonal
description may be adequately predicted (at least qualitatively) by one or
a small number of regression variables. Identifying the important variables
is, of course, and as usual in statistics generally, the major problem.
The next two sections consider several models corresponding to different

levels of complexity, inputs based on different states of prior information,
and different objectives in modelling. Initially we concentrate on a reference
analysis, as developed in Section 4.10, in order to present the main features
of model analyses free from the effects of chosen initial priors. In addition,
we assume closed models throughout. That is, once the model is specified,
fitting proceeds without further interventions. The final sections of this
chapter concern practical issues of error analysis and model assessment,
data irregularities, transformations and other modifications and extensions
of the basic normal DLM.
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10.2 BASIC ANALYSIS: A TREND/SEASONAL DLM
10.2.1 Data and basic model form
Consider the data set given in Table 10.1 and plotted over time in Figure
10.1. The single time series is of quarterly observations providing a mea-
sure, on a standard scale, of the total quarterly sales of a company in
agricultural markets over a period of 12 years. Quarters are labelled Qtr.,
running from 1 to 4 within each year, and years are labelled Year, running
from 73 (1973) to 84 (1984). The series, referred to simply as Sales, is
evidently highly seasonal, driven by the annual cycle of demand for agri-
cultural supplies following the natural annual pattern of farming activities.
This can be clearly seen from the graph or by examining the figures in the
table, making comparisons between rows.

Table 10.1. Agricultural sales data

Qtr. Year
73 74 75 76 77 78 79 80 81 82 83 84

1 8.48 8.94 9.20 9.13 9.23 9.49 9.37 9.56 9.71 9.72 9.82 10.11
2 8.70 8.86 9.11 9.23 9.21 9.54 9.66 9.98 9.60 9.88 9.90 9.90
3 8.09 8.45 8.69 8.65 8.68 9.06 9.03 9.19 9.18 9.11 8.87 9.47
4 8.58 9.00 8.87 8.84 9.20 9.35 9.44 9.50 9.53 9.49 9.38 9.47

While the form of seasonality is stable, the actual quantified pattern
does change somewhat from year to year. Underlying the seasonal series
is a changing trend that grows at differing rates during different periods of
the 12 years recorded.
The most basic, possibly appropriate descriptive model is that compris-

ing a polynomial trend plus seasonal effects as in Section 8.5. Given that
any trend term will be quantified only locally, a second-order trend term is
chosen. Quarterly changes in level and growth components of such a trend
are assumed to model the apparent changes in direction of the trend in the
series. This model is very widely used in practice in this sort of context as
a first step in retrospective time series analysis. Any movement in trend
is ascribed to changes in level and growth parameters of the model rather
than being explained by possible regression variables.
In usual DLM notation, the first component of the model is a linear trend

{E2, J2(1), . , .} .
Added to this is the seasonal component. Since a full seasonal pattern is
specified, this may be in terms of either 4 seasonal factors, constrained to
zero sum, or the corresponding 3 Fourier coefficients. We work, as usual,
in terms of the latter. The Fourier representation has just 2 harmonics:
the first providing the fundamental annual cycle, the second adding in
the Nyquist frequency. In DLM notation, the Fourier model is, following
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Figure 10.1 Agricultural sales series

Section 8.6, 


 1
0
1


,


 c s 0
−s c 0
0 0 −1


, . , .


 ,

where ω = π/2, c = cos(ω) = 0 and s = sin(ω) = 1. The full 5-dimensional
TSDLM thus has

F = (1, 0; 1, 0; 1)′

and

G =



1 1 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 −1


 .

The corresponding parameter vector has 5 elements, θt = (θt1, . . . , θt5)′,
with the following meaning:

• θt1 is the underlying, deseasonalised level of the series at time t;
• θt2 is the deseasonalised growth between quarters t− 1 and t;
• θt3 and θt4 are the Fourier coefficients of the first harmonic, the full
annual sine/cosine wave, with the contribution of this harmonic to
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the seasonal factor at time t being, in the notation of Section 8.6,
simply S1t = θt3;

• similarly, S2t = θt5 is the Nyquist contribution to the seasonal fac-
tor.

The seasonal factors are obtained from the Fourier coefficients as in Section
8.6. As before, the factors (or effects since they are constrained to have
zero sum) at time t are φt = (φt0, . . . , φt3)′. Thus φt0 is the seasonal factor
for quarter t. Then, following Example 8.4,

φt = L(θt3, θt4, θt5)′,

where

L =




1 0 1
0 1 −1
−1 0 1
0 −1 −1


 .

Finally, we assume that the observational variance V of the model is
constant in time and unknown, requiring, as is typical, the modified analy-
sis for on-line variance learning. The model, with 6 parameters (including
V ), is now essentially specified. In line with the development of reference
analyses in Section 4.10, we assume that there is no change in model pa-
rameters during the first 6 quarters, there being no information available
to inform on any such changes. The reference updating equations apply
up to t = 6 when the posterior distribution for θ6 and V given D6 is fully
specified in the usual conjugate normal/inverse gamma form. To proceed
from this time point on, the sequence of evolution variance matricesWt is
required to allow for time-varying parameters.

10.2.2 Discount factors for components
The evolution variance matrices are specified, as usual, following the con-
cept of block discounting consistent with the use of component models, as
described in Section 6.3. Two discount factors provide the flexibility to
allow for a full range of rates of change over time in the trend and seasonal
components of the model; these are denoted by δT (for the trend compo-
nent) and δS (for the seasonal component). The former determines the rate
at which the trend parameters θt1 and θt2 are expected to vary between
quarters, with 100(δ−1

T − 1)% of information (as measured by reciprocal
variance or precision) about these parameters decaying each quarter, be-
tween observations. The factor δS plays the same role for the seasonal
(Fourier) parameters, or equivalently, the seasonal effects.
Thus, at times t > 6, the model evolution equation is as follows. With

(θt−1|Dt−1) ∼ Tnt−1 [mt−1,Ct−1],
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then

(θt|Dt−1) ∼ Tnt−1 [at,Rt],

where

at = Gmt−1 and Rt = Pt +Wt,

with

Pt = GCt−1G′,

and the evolution variance matrix is defined as

Wt = block diag{ PtT (δ−1
T − 1), PtS(δ−1

S − 1) },

where PtT is the upper-left 2 × 2 block of Pt and PtS is the lower-right
3× 3 block.
For the trend discount factor, values in the range 0.8 to 1.0 are typically

appropriate, with smaller values anticipating greater change. δS is typically
larger than δT to reflect

(1) relatively less information being obtained about the seasonal pa-
rameters than the trend in each quarter, and

(2) the expectation that seasonal patterns will tend to have more sus-
tained, stable forms relative to the potentially more rapidly chang-
ing deseasonalised trend.

This second point is consistent with the view that in using this simple, de-
scriptive TSDLM, we are not attempting to anticipate sustained movement
and changes in trend and seasonality, but just to detect and estimate them.
Omitted related explanatory variables are more likely to have a marked im-
pact on changes in the underlying trend in the series than on the seasonal
pattern, the latter viewed as more durable over time.
Forecasting accuracy comes through the identification of stable structure

and relationships, and in the best of all worlds, discount factors of unity
would be used giving constant parameters over time. We may start at
this ideal, comparing the predictive performance of such a model with that
based on more realistic values, possibly comparing several such models.
This sort of activity is described further in Section 10.2.5 below. Here we
consider the particular case in which δT = 0.85 and δS = 0.97.

10.2.3 Model fitting and on-line inferences
From time t = 6 onwards then, the usual updating equations apply, one-
step ahead forecast and posterior distributions for model parameters being
sequentially calculated for times t = 7, . . . , 48. Recall that in the refer-
ence analysis, the (posterior) degrees of freedom at time t is t minus the
dimension of the model, so here it is t − 5. Thus, for t > 6, the one-step
ahead forecast distribution at t − 1 has nt−1 = t − 6 degrees of freedom,
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Figure 10.2 Agricultural sales with one-step ahead forecasts

(Yt|Dt−1) ∼ Tt−6[ft, Qt]. Figure 10.2 displays information about these se-
quentially calculated forecasts. Here, superimposed on a scatter plot of the
data over time, we have the point forecasts ft joined up as the solid line,
and 90% probability limits about the point forecasts as dotted lines. The
latter provide the 90% HPD region for Yt given Dt−1 from the relevant
T predictive distribution, an interval symmetrically located (hence with
equal 5% tails) about ft. Due to the reference prior used, no forecasts are
available initially. Clearly, most of the points lie within the 90% limits; five
or six exceptions are clear. Of course, roughly 5 out of 48 are expected to
lie outside the 90% limits. Further insight into the one-step ahead forecast-
ing performance is given by examining Figure 10.3. Here the standardised
forecast errors et/Q

1/2
t are plotted over time with 90% probability limits

from the one-step ahead forecast distributions. The several points noted
above show up clearly here as leading to large (in absolute value) residuals.
Having reached time t = 48 and the end of the data, we can proceed to
examine model inferences by considering the estimated model components
over time. Central to this is the following general result: Let xt be any
5-vector, and set xt = x′

tθt. Then from the posterior for θt at time t, it
follows that

(xt |Dt) ∼ Tt−5[x′
tmt,x′

tCtxt].
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Figure 10.3 Standardised one-step ahead forecast errors

The mode of this T distribution, x′
tmt, is referred to as the on-line esti-

mated value of the random quantity xt. Inferences about model compo-
nents are made by appropriately choosing xt as follows.

(1) DESEASONALISATION
If x′

t = (1, 0, 0, 0, 0), then xt is the underlying, deseasonalised level
of the series xt = θt1. From the sequence of posterior T distribu-
tions, 90% HPD intervals are calculated and plotted in Figure 10.4
in a similar fashion to the forecast intervals in Figure 10.2. The
local linearity of the trend is evident, as are changes, both small
and more abrupt, in the growth pattern over time. In particular,
there is a marked change in trend from positive growth during the
first two years or so, to little, even negative growth during the third
and fourth years. This abrupt change is consistent with the gen-
eral economic conditions at the time, and could, perhaps, have been
accounted for if not forecast. With respect to the simple, closed
model illustrated here, however, adaptation to the change is appar-
ent over the next couple of observations, although responding sat-
isfactorily in general to changes that are greater than anticipated
requires some form of intervention, as discussed in later chapters.
Taking x′

t = (0, 1, 0, 0, 0, ) similarly provides on-line inference about
the annual changes in trend.



324 10 Illustrations and Extensions of Standard DLMS

8

8.25

8.5

8.75

9

9.25

9.5

9.75

10

10.25

QTR
YEAR

1
73

1
74

1
75

1
76

1
77

1
78

1
79

1
80

1
81

1
82

1
83

1
84

1
85

Figure 10.4 On-line estimated trend in sales

(2) SEASONAL FACTORS/EFFECTS
The seasonal effect at time t is given by φt0 = xt = x′

tθt, with x′
t =

(0, 0, 1, 0, 1), to select the two harmonic contributions to the seasonal
pattern from the state vector. Thus, as a function over time, this xt
provides the detrended seasonal pattern of the Sales series. Figure
10.5 displays information from the posterior distributions for xt at
each time, analogous to that for the trend although displayed in a
different form. At each t on the graph the vertical bar represents
the 90% HPD interval for the seasonal effect, the mid-point of the
interval being the on-line estimated value. This is a plot similar
to those displayed in Figure 8.4. There is evidently some minor
variation in the seasonal pattern from year to year, although the
basic form of a peak in spring and summer and deep trough in
autumn is sustained, consistent with expected variation in demand
for agricultural supplies.
Further investigation of the seasonal pattern is possible using the

ideas of Section 8.6 to explore harmonics. Taking xt = (0, 0, 1, 0, 0)′

implies xt is the contribution of the first harmonic, and taking xt =
(0, 0, 0, 0, 1)′ leads to the Nyquist harmonic.
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Figure 10.5 On-line estimated seasonal pattern in sales

10.2.4 Step ahead forecasting
Consider finally step ahead forecasting of the Sales series from time 4/84,
the end of the data series. Without intervention, we simply forecast by
projecting based on the existing model and fit to the past 12 years of
data, as summarised by the posterior distributions at t = 48, using the
theory summarised in Section 4.6. The posteriors at time 48 have defining
quantities

m48 = (9.685, 0.015, −0.017, 0.304, 0.084)′

and

C48 = 0.0001



45.97 3.77 −2.30 1.86 −1.03

0.66 −0.20 0.15 −0.09
12.87 −0.10 −0.13

13.23 −0.24
6.38




(only the upper part of the symmetric matrix C48 being displayed);

n48 = 43 and S48 = 0.016.

Forecasting ahead requires that we specify, at time t = 48, the evolu-
tion variance matrices for the future, Wt+r for r = 1, . . . , k, where k is
the maximum step ahead of interest. We use the discount model strategy
described in Section 6.3. using the existing one-step ahead matrix Wt+1
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in forecasting ahead. Thus, at any time t, forecasting ahead is based on
Wt+r =Wt+1 for r = 2, . . . , k. Although in updating to future times we
use evolution variance matrices defined via discounts based on the informa-
tion available at those times, in forecasting ahead we use slightly different
values given by the currently implied Wt+1. As discussed in Section 6.3,
this approach is simple to implement and the sequenceWt+r =Wt+1 into
the future appropriate for forecasting ahead from our current position at
time t. Proceeding to time t + 1, and observing Yt+1, our view of the fu-
ture evolution variances for times t + 2 onwards is changed slightly, being
based on the new, current (at t+ 1) value. This may be interpreted most
satisfactorily as an intervention to change the evolution variance sequence.
Thus, in the example, the evolution variance matrix for forecasting from

time 48 is given byWt+1 = block diag[WT , WS ] where, by applying the
discount concept,

WT = 0.0001
(
9.56 0.78

0.12

)

and

WS = 0.0001


 0.41 0.003 0.008

0.40 −0.004
0.20


 ,

(again, of course, each of these is a symmetric matrix), the latter being
roughly equal to 0.0001 diag(0.4, 0.4, 0.2).
It is now routine to apply the results of Section 4.6 to project forecast

distributions into the future, and this is done up to k = 24, giving 6 full
years of forecast up to 4/90. The forecast distributions are all Student
T with 43 degrees of freedom, therefore roughly normal, with increasing
scale parameters as we project further ahead. Figure 10.6 displays the
point forecasts f48(k) = E[Y48+k|D48], (k = 1, . . . , 24), joined up as a solid
line, and 90% prediction intervals symmetrically located about the point
forecasts.

10.2.5 Numerical summaries of predictive performance
Finally, for easy and informal comparison of alternative models, we men-
tion three basic measures of model predictive performance that are easily
calculated from the one-step forecast errors, or residuals, et. Each of these
is useful only in a relative sense, providing comparison between different
models.

Total absolute deviation is defined as
∑
|et|. With proper initial priors,

the first few errors will reflect the appropriateness of the initial priors as well
as that of the model, and their contribution to the sum may be important.
In reference analyses, however, there are no defined errors until t = 6 (more
generally, n+1 in an n-dimensional model), and so the sum starts at t = 6.
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Figure 10.6 Step-ahead forecasts of agricultural sales

The mean absolute deviation, or MAD, measure is simply this total divided
by the number of errors in the sum. In this example, the MAD based on
the final 43 observations is calculated as 0.128.

Total square error is
∑

e2t , the mean square error, or MSE, being this
divided by the number of terms in the sum. In this example, the MSE
based on the final 43 observations is calculated as 0.028. Both MAD and
MSE are simple measures of actual forecasting accuracy.

Model likelihood, a rather more formal measure of goodness of predic-
tive performance, was introduced in examples in Chapters 2 and 3. West
(1986a) gives very general discussion and development of the ideas in this
section, and the notation used there is adopted here. For each observa-
tion Yt, the observed value of the one-step predictive density p(Yt|Dt−1) is
larger or smaller according to whether the observation accords or disagrees
with the forecast distribution. This accounts for raw accuracy of the point
forecast ft, and also for forecast precision, a function of the spread of the
distribution. The aggregate product of these densities for observations
Yt, Yt−1, . . . , Ys, (s = 1, . . . , t), provides the overall measure

p(Yt|Dt−1)p(Yt−1|Dt−2) . . . p(Ys|Ds−1) = p(Yt, Yt−1, . . . , Ys|Ds−1),

just the joint predictive density of those observations from time s − 1.
If proper priors are used, then this can extend back to time s = 1 if
required. In the reference analysis, the densities are, of course, only defined
for s > n+ 1 in a n-dimensional model.
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This measure, based on however many observations are used, provides
a likelihood (in the usual statistical sense of the term) for the parame-
ters, such as discount factors, determining the model. Just as with MAD
and MSE, these measures may be used as informal guides to model choice
when comparing two or more models differing only in values of defining
parameters. Suppose we consider two models with the same mathematical
structure, model 0 and model 1, differing only, for example, in the values
of discount factors. To make clear the dependence of the model on these
values, suffix the predictive densities by 0 and 1 respectively. Then the
relative likelihood of model 0 versus model 1 based on the observation Yt
at time t is just the ratio

Ht = p0(Yt|Dt−1)/p1(Yt|Dt−1).

More generally, the observations Yt, Yt−1, . . . , Ys, (s = 1, . . . , t), provide
the the overall likelihood ratio

Ht(t− s+ 1) =
t∏

r=s

Hr

= p0(Yt, Yt−1, . . . , Ys|Ds−1)/p1(Yt, Yt−1, . . . , Ys|Ds−1).

These likelihood ratios, alternatively called Bayes’ Factors, or weights of
evidence (Jeffreys 1961; Good 1985 and references therein; West 1986a),
provide a basic measure of predictive performance of model 0 relative to
model 1. Note that the evidence for or against the models accumulates
multiplicatively as observations are processed via

Ht(t− s+ 1) = Ht Ht−1(t− s),
for t > s, with boundary values Ht(1) = Ht when s = t. Many authors,
including those referenced above, consider the log-likelihood ratio, or log
Bayes’ factor/weight of evidence, as a natural and interpretable quantity.
On the log scale, evidence is additive, with

log[Ht(t− s+ 1)] = log(Ht) + log[Ht−1(t− s)].
Following Jeffreys (1961), a log Bayes’ factor of 1(−1) indicates evidence
in favour of model 0(1), a value of 2 or more (−2 or less) indicating the
evidence to be strong. Clearly the value 0 indicates no evidence either way.

EXAMPLE 10.1. Let model 0 be the model used throughout this section,
having discount factors δT = 0.85 and δS = 0.97. For comparison, let
model 1 be a static model, having constant parameters, defined by unit
discount factors δt = δS = 1. Figure 10.7 provides a plot versus time t of
the individual log weights log(Ht) and a similar plot of the cumulative log
Bayes’ factors log[Ht(t−6)]. The latter drops below 0 for only a few quarters
in year 75, being positive most of the time, essentially increasing up to a
final value between 7 and 8, indicating extremely strong evidence in favour
of the dynamic model relative to the static. For additional comparison, the
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Figure 10.7 Log weights and Bayes’ factors plotted over time

static model has MAD=0.158 and MSE=0.039, both well in excess of those
in the dynamic model. Similar comparisons with models having different
values of discounts indicate support for that used here as acceptable, having
MAD and MSE values near the minimum and largest likelihood.
Visual inspection of residual plots and retrospective residual analyses

are related and important assessment activities. However, whilst provid-
ing useful guides to performance, we do not suggest that the choice of a
model for forecasting be automated by choosing one (in the example, the
values of discount factors) that minimises MAD/MSE and/or maximises
the likelihood measure. All such activities pay essentially no regard to the
longer-term predictive ability of models, focusing as they do on how well a
model has performed in one-step ahead forecasting in the past. In consid-
ering forecasting ahead, a forecaster must be prepared to accept that often,
a model found to be adequate in the past may not perform as well in the
future, and that continual model monitoring and assessment of predictive
performance is a must. We consider such issues in Chapter 11.
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10.3 A TREND/ SEASONAL/ REGRESSION DLM
10.3.1 Data and basic model form
The second illustration concerns commercial sales data from the food in-
dustry. The response series, Sales, is the monetary value of monthly total
sales, on a standardised, deflated scale, of a widely consumed and estab-
lished food product, covering a variety of brands and manufacturers, in UK
markets. The data runs over the full 6 years 1976 to 1981 inclusive; thus
there are 72 observations, given in Table 10.2. The second series, Index, is
used to partially explain the movement in trend of sales. This is a com-
pound measure constructed by the company concerned, based on market
prices, production and distribution costs, and related variables, and is to be
used as an independent regressor variable in the model for Sales. The Index
variable is standardised by subtracting the arithmetic mean and dividing
by the standard deviation, both mean and deviation being calculated from
the 72 observations presented. The two data series are graphed over time
in Figure 10.8. The response series clearly has a varying trend over the
6 years, is apparently inversely related to Index, and is evidently seasonal
with a rather variable seasonal pattern from year to year.
The Sales figures refer, as mentioned above, to a mature, established con-

sumer product. In consequence for short-term forecasting, any sustained
growth (positive or negative!) in Sales over time should be attributable to
regressor variables relating to pricing policies, costs, advertising and com-
petitor activity, and general market/economic conditions; hence the intro-
duction of the Index series. The model for Sales does not, therefore, include
a descriptive growth term, the initial component being a simple steady
model, the first-order polynomial component of Chapter 2, {1, 1, . , . }.
The second component is the regression DLM for the effect of the Index
series. Note that we include only contemporaneous values of Index, lagged
effects being ignored for this illustration, it being assumed that the Index
has been constructed to account for these. Thus the explanatory compo-
nent is the regression with zero origin of Chapter 3, {Xt, 1, . , . }, where
Xt is the value of the Index series at t. The single parameter of the first-
order polynomial component now provides the (time-varying) intercept for
the dynamic regression of Sales on Index. In models such as these, the
possible effects of related, omitted variables are partially accounted for by
the purely random movement allowed in the intercept term and regression
parameter.
The third model component is a seasonal term describing monthly vari-

ation within a year free from the effects of regression variables. The most
general model is, of course, a full seasonal effects model with 12 monthly
seasonal effects (with zero sum). As usual, we adopt the Fourier repre-
sentation of seasonal effects. To proceed, we consider hypothetical prior
information and its implications for model specification, forecasting ahead
from time 0, and subsequent data analysis.
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Table 10.2. Sales and Index series

Year Month
1 2 3 4 5 6

SALES
1976 9.53 9.25 9.36 9.80 8.82 8.32
1977 9.93 9.75 10.57 10.84 10.77 9.61
1978 10.62 9.84 9.42 10.01 10.46 10.66
1979 10.33 10.62 10.27 10.96 10.93 10.66
1980 9.67 10.40 11.07 11.08 10.27 10.64
1981 10.58 10.52 11.76 11.58 11.31 10.16

INDEX
1976 0.54 0.54 1.12 1.32 1.12 1.12
1977 −0.03 0.15 −0.03 −0.22 −0.03 0.15
1978 −0.22 0.93 1.32 0.93 0.15 0.15
1979 0.54 0.54 0.34 −0.03 −0.03 0.15
1980 −1.14 −0.96 −0.96 −0.59 −0.41 −0.03
1981 −1.84 −1.84 −2.70 −2.19 −2.19 −1.84

Table 10.2 (continued)

Year Month
7 8 9 10 11 12

SALES
1976 7.12 7.10 6.59 6.31 6.56 7.73
1977 8.95 8.89 7.89 7.72 8.37 9.11
1978 11.03 10.54 10.02 9.85 9.24 10.76
1979 10.58 9.66 9.67 10.20 10.53 10.54
1980 11.03 9.63 9.08 8.87 8.65 9.27
1981 10.14 9.81 10.27 8.80 8.62 9.46

INDEX
1976 1.12 1.32 1.93 2.13 1.52 1.32
1977 0.15 0.15 0.73 0.54 0.34 −0.03
1978 0.34 0.34 −0.41 1.12 0.54 −0.22
1979 −0.03 −0.22 −0.03 −0.59 −0.59 −0.78
1980 0.15 0.34 0.54 0.54 0.73 0.54
1981 −0.96 −1.67 −1.67 −0.96 −1.14 −0.96
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Figure 10.8 Monthly Sales and Index series

10.3.2. Hypothetical initial prior information
Suppose that at December 1975, where t = 0, we are in the position of hav-
ing to provide step ahead forecasts of Sales based on existing information
D0. Such information includes past data (prior to 1976) on the Sales and
Index series, past experience with modelling their relationship and fore-
casting, and past experience with similar products. In practice, if such a
model had been used previously, then there would exist a full posterior
distribution for the model parameters at t = 0, providing the prior for the
new data beginning in January 1976, at t = 1. Suppose, however, that past
modelling activities have only been partially communicated, and that we
adopt initial priors based on the following initial information at t = 0. Note
that rather than communicating the posterior for (θ0 | D0) as usual, we are
specifying information directly for the first time point and will determine
the prior for (θ1 | D0) directly.

• The parameter θ1,1, the first element of the DLM state vector at
t = 1, represents the non-seasonal intercept term, the non-seasonal
level if the Index value is X1 = 0. Given D0, the value m1,1 = 9.5
is taken as the prior mean. Information on the intercept is viewed
as rather vague, particularly since the parameter can be expected
to change to account for effects of omitted variables, and values as
low as 9 or as high as 10 are plausible.
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• At t = 1, the prior view of the regression effect of Index is that the
regression coefficient is negative, and that to achieve an expected
change in Sales of 1 unit, the Index would have to change by about
1.5 units. This suggests a value near −2/3 for the prior estimate of
the regression parameter at t = 1, namely θ1,2, the second element
of the DLM parameter vector. The value adopted is m1,2 = −0.7.
Uncertainty is such that values as high as −0.5 or as low as −0.9
are plausible.
• Prior information on the seasonal effects φ1 = (φ1,0, . . . , φ1,11)′ is
provided initially in terms of the prior estimates

0.8, 1.3, 1, 1.1, 1.2, 0, −1.2, −1, −1, −1.5, −0.5, 0,

although the uncertainties are fairly large, with values possibly rang-
ing up to plus or minus 0.4 or so from each of these estimates. Note
that these estimates do not sum to zero, and will therefore have to
be constrained to do so later.
• The observational variance is viewed as constant over time, initially
estimated at S0 = 0.0225 = 0.152, having fairly low associated
degrees of freedom n0 = 6. The 90% equal-tails interval for the
standard deviation V 1/2 is easily calculated as (0.1, 0.29).

This information suffices to determine marginal priors for the intercept
parameter, the regression parameter and the seasonal effects separately.
There is no information provided to determine prior correlation between
the components, so they are taken as uncorrelated. In the usual notation
then, marginal priors are as follows:

INTERCEPT:
(θ1,1 | D0) ∼ T6[9.5, 0.09], with 90% HPD interval (8.92, 10.08);

REGRESSION:
(θ1,2 | D0) ∼ T6[−0.7, 0.01], with 90% interval (−0.89, −0.51);

SEASONAL:
(φ1 | D0) ∼ T6, with mean vector given by the estimates above, and scale

matrix 0.04 I, although since neither conform to the zero-sum constraint,
they must be adjusted according to the theory of Section 8.4. Applying
Theorem 8.2 leads easily to the constrained mean vector

mφ1 = (0.783, 1.283, 0.983, 1.083, 1.183, −0.017,
− 1.217, −1.017, −1.017, −1.517, −0.517, −0.017)′

(to 3 decimal places). The constrained scale matrix, denoted by Cφ1 , has
diagonal elements equal to 0.0367 and off-diagonal elements−0.0034 so that
the pairwise correlations between the effects are all −0.092. On this basis,
90% prior HPD intervals for the effects are given by the means ±0.356.
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10.3.3. Seasonal component prior
The prior for the seasonal effects suggests a seasonal pattern that grows
from 0 in December to a plateau in February to May, decays rapidly there-
after to a trough in October, and returns to 0 by the end of the year. If
used in the model, this is the pattern that will apply for step ahead fore-
casts. With such large uncertainty about the effects, as indicated by the
90% interval, it is sensible to proceed with a full seasonal model, having all
Fourier harmonics, in order that forthcoming data provide further infor-
mation about an unrestricted pattern. The main problem with restricting
the seasonal pattern lies in the possibility that the prior may be doubtful
and that any restrictions imposed on the basis of the prior may be found
to be unsatisfactory once further data are observed. For illustration here,
however, the seasonal pattern is restricted by a reduced Fourier form repre-
sentation that is consistent with this initial prior. This is obtained by first
considering a full harmonic representation and examining the implications
of the prior for the individual harmonic components.
Using the theory of Section 8.6, we can deduce by linear transforma-

tion the initial prior for the eleven Fourier coefficients in the full harmonic
model. If H is the transformation matrix of Section 8.6, then the coeffi-
cients are given by Hφ1, having a T6 prior distribution with mean vector
Hmφ1 and scale matrix HCφ1H

′. It is left as an exercise for the reader
to verify that this is essentially a diagonal matrix. This follows since har-
monics are always orthogonal, so we know in advance that the Fourier co-
efficients from one harmonic will be uncorrelated with those of any other.
Although the two coefficients of any harmonic may be correlated in gen-
eral, these correlations are negligible in this case. Thus the prior can be
summarised in terms of prior means and scale factors for the marginal T6
distributions of the individual Fourier coefficients. These are given in Table
10.3. Also provided are the F values associated with the hypotheses of zero
contribution from the harmonics, although since the coefficients are largely
uncorrelated, this is redundant information; the assessment may be made
from inferences on the T-distributed, uncorrelated coefficients directly.
Recall that the first 5 F values refer to the F2,6 distribution, the final

one for the Nyquist harmonic to the F1,6 distribution. Clearly, the first
harmonic dominates in the prior specification of the seasonal pattern, the
third and fourth harmonics being also of interest, but the rest are negligible.
Accordingly, our earlier comments about the possible benefits of proceeding
with the full, flexible seasonal model notwithstanding, the second, fifth and
sixth (Nyquist) harmonics are dropped from the model. We assume the
corresponding coefficients are zero at time t = 1, consistent with the initial
prior, and also for all times t = 1, . . . , 72 for the full span of the data to
be processed. This restriction can be imposed properly by taking the prior
T distribution for the 11 coefficients, and calculating the T conditional
distribution of the 6 coefficients for the 3 harmonics retained, given that
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Table 10.3. Initial prior summary for Fourier coefficients

Harmonic Coefficient Prior F value

Mean Scale

1 cos 0.691 0.0067 136.5
sin 1.159 0.0067

2 cos −0.033 0.0067 0.3
sin −0.058 0.0067

3 cos 0.283 0.0067 6.2
sin −0.050 0.0067

4 cos −0.217 0.0067 5.1
sin 0.144 0.0067

5 cos 0.026 0.0067 0.7
sin 0.091 0.0067

6 cos 0.033 0.0029 0.3

the other 5 coefficients are zero. However, in view of the fact that the
coefficients are essentially uncorrelated and the specified prior rather vague,
the marginal distributions already specified are used directly.

10.3.4. Model and initial prior summary
The model is 8 dimensional, given at time t by {Ft, G, . , , }, with

F′
t = (1; Xt; E′

2; E
′
2; E

′
2 )

and

G = block diag[1; 1; G1; G3; G4 ],

where the harmonic terms are defined, as usual, by

E2 =
(
1
0

)
and Gr =

(
cos(πr/6) sin(πr/6)
−sin(πr/6) cos(πr/6)

)
,

for r = 1, 3 and 4.
The initial prior is given by n1 = 6 and S1 = 0.152, determining the

gamma prior for (V −1 | D0) and, for (θ1 | D0) ∼ T6[a1, R1], we have

a′
1 = (9.5; −0.7; 0.691, 1.159; 0.283, −0.050; −0.217, 0.144 )

and

R1 = block diag [0.09; 0.01; 0.0067 I6].

Finally, note that having converted to a restricted seasonal pattern, the
implied seasonal effects are constrained at each time to accord with the
combination of just 3 harmonics, and so the initial prior for the effects
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will be rather different to that for the effects originally unrestricted (apart
from zero sum) in Section 10.3.2. The theory of Section 8.6 can be used to
transform the marginal prior above for the 6 Fourier coefficients to that for
the full 12 seasonal effects. It is routine to apply this theory, which leads
to the following estimates (the new prior mean for (φ1 | D0) ):

0.76, 1.36, 1.05, 0.99, 1.18,−0.09,−1.19,−0.89,−1.08,−1.43,−0.71, 0.05

(to 2 decimal places). These restricted values differ only slightly from the
unrestricted values, as is to be expected since the differences lie in the
omission of what are insignificant harmonics.
It remains to specify discount factors determining the extent of antic-

ipated time variation in the parameters. This illustration uses, as usual,
the block discounting technique of Section 6.3, requiring one discount factor
for each of the intercept, regression and seasonal components. The values
used are 0.9, 0.98 and 0.95 respectively. The 0.98 for regression reflects
the anticipation that the quantified regression relationship will tend to be
rather durable, and 0.9 for the intercept anticipates greater change in the
constant term to allow for effects of independent variables not explicitly
recognised and model misspecification generally. These three discount fac-
tors now complete the model definition, and we can proceed to forecast
and process the new data.

10.3.5. ‘No-data’ step ahead forecasting
Initially, step ahead forecast distributions are computed for the three

years 1976 to 1978 from time t = 0, December 1975. In discount models the
evolution variances for forecasting step ahead are taken to be constant, fixed
at the currently implied value for forecasting one-step ahead, as described
in Section 6.3. Thus, at t = 0, we require the current evolution variance
W1, using this as the value in forecasting ahead to times k > 0. We derive
this here after commenting on a feature of general interest and utility.
For general time t, recall the notation Pt = GCt−1G′ and that Rt =

Pt+Wt. Recall also that in a component model with r components having
discount factors δ1, . . . , δr, if the diagonal block variance matrices from Pt

are denoted by Pt1, . . . ,Ptr, then the evolution variance matrix is defined
asWt = block diag [Pt1(δ−1

1 − 1), . . . ,Ptr(δ−1
r − 1)]. This definesWt in

terms of Pt. In the special case that Pt (equivalently Rt) is block diagonal,
the r components being uncorrelated, then it follows immediately thatWt

can be written in terms of Rt also, viz.,

Wt = block diag [Rt1(1− δ1), . . . ,Rtr(1− δr)].

In our example, we have r = 3 components and have specified R1 above
in block diagonal (actually diagonal) form. Thus, given the discount factors
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Figure 10.9 Forecasts of Sales made in December 1975

for the 3 components at 0.9, 0.98 and 0.95, we have

W =W1 = block diag [0.09(1− 0.9); 0.01(1− 0.98); 0.0067(1− 0.95)I]

= block diag [ 0.009; 0.0002; 0.0003 I].

Thus, viewed step ahead from t = 0, the state parameter vector evolves
according to the system equation with evolution noise term having scale
matrixW.
Forecast distributions are now routinely calculated from the theory sum-

marised in Section 4.6, although, since a regression component is included
in the model, values are required for the regression variable, Index, in order
that Ft be available. In this illustration, we are interested in forecasting
over the first 36 months. As an hypothetical study, suppose that the first
36 values of the Index series (the values that actually arise in the future)
are provided as values to use in forecasting Sales. These Xt values can be
viewed either as point estimates or forecasts of the Index series made prior
to 1976, or as values provided for a What if? study to assess the conse-
quences for Sales of these particular future possible values of Index. For the
purposes of our example, of course, this is ideal since forecast errors will
be totally derived from the unpredictable, observational noise, and from
model misspecification, rather than errors in forecasting the Index series.
Finally, note that these three years of forecasts are no-data forecasts, based
purely on the model and the initial priors.
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Figure 10.9 provides graphical display of the forecast means and 90%
symmetric intervals for the outcomes based on the forecast T distributions.
Also plotted are the actual observations that later become available. If
these forecasts had actually been available at December 1975, then the
resulting accuracy would have been fairly impressive up to the early part
of the third year, 1978. However, although most of the first two and a
half years of data lie within the 90% intervals, there is clear evidence of
systematic variation in the data not captured by the model. Almost all
of the point forecast errors in the first year or so are negative, the model
overforecasting to a small degree. The second year is rather better, but
things appear to break down in late 1978 with radical under-forecasting in
the last 6 or 7 months. Proceeding to analyse the data in the next section,
we should therefore expect the model to adapt to the apparent change in
data structure seen here as the observations are processed.

10.3.6. Data analysis and one-step ahead forecasting of Sales
Figure 10.10 provides a graph of the data with one-step point forecasts
and associated 90% intervals as sequentially calculated during the data
analysis.
During 1976, the model clearly learns and adapts to the data, the fore-

casts being rather accurate and not suffering the systematic deficiencies of
those produced at December 1975. Figure 10.11 displays actual one-step
forecast errors, Figure 10.12 gives a similar plot but now of standardised
errors with 90% intervals, symmetrically located about 0, from the forecast
T distributions. Clearly the model adapts rapidly in the first year, the
forecast errors being acceptably small and appearing unrelated. Having
adapted to the lower level of the data in the first year (lower, that is, than
predicted at time 0), however, there are several consecutive, positive er-
rors in 1977, indicating a higher level than forecast, until the model adapts
again towards the end of that year.
Note that the model has 8 parameters, so that there is an inevitable delay

of several months before it can completely adapt to change. Subsequent
forecasts for late 1977 and early 1978 are acceptable.
In mid-1978, forecast performance breaks down dramatically, with one

very large error and several subsequent positive errors. The changing pat-
tern of Sales at this time is not predicted by the model, and again, several
observations are required for learning about the change. The nature of
the change is made apparent in Section 10.3.7 below. For the moment,
note that this sort of event, so commonly encountered with real series,
goes outside the model form and so will rarely be adequately handled by
a closed model. What is required is some form of intervention, either to
allow for more radical change in model parameters than currently modelled
through the existing discount factors, or to incorporate some explanation
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Figure 10.10 One-step ahead forecasts of Sales
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Figure 10.12 Standardised one-step ahead forecast errors

of the change via intervention effects or other independent variables. We
proceed, however, with the model as it stands, closed to intervention.
After 1978, the analysis continues with reasonable success during 1979

and 1980, a single, large negative error in January 1980 being essentially an
outlier. During late 1980 and 1981, negative errors (although acceptably
small in absolute value), predominate, and in particular, the model has
difficulty in forecasting the seasonal troughs, reflecting, perhaps, a change
in seasonal pattern greater than anticipated.
One important feature clearly apparent in Figure 10.10 is that the widths

of the one-step forecast 90% intervals increase markedly towards the end
of 1978, being much wider from then on than in early years. This effect is
explained by the presence of the large forecast errors in late 1978. In the
updating for the observational variance, recall that the estimate at time t
is updated via

St = St−1(nt−1 + e2t/Qt)/(nt−1 + 1).

Thus large standardised errors et/Q
1/2
t lead to an inflation of the estimate,

the posterior distribution for V then favouring larger values, and conse-
quently, the forecast distribution for the next observation will be more
diffuse. This is an interesting feature; the model/data mismatch that leads
to large errors shows up in the variance estimate, which can therefore be
used as a simple diagnostic, and the model responds in the way of increased
uncertainty about the future. Note, however, that this is due entirely to
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the fact that V is unknown, the effect being diminished for larger degrees
of freedom nt−1.

10.3.7. Retrospective time series analysis after filtering
Having processed all the data and examined the one-step forecasting ac-
tivity through Figures 10.10 to 10.12, we now move to retrospective time
series analysis more formally by performing the backwards filtering and
smoothing with the model, obtaining posterior distributions for the model
parameters at all times t = 1, . . . , 72, now conditional on all the data in-
formation D72. Of course these are T distributions with n72 = 78 degrees
of freedom (the initial prior 6 plus 1 for each observation), and model com-
ponents may be extracted as in Section 10.2.3 (although there we used the
on-line posteriors rather than the filtered posteriors). In the notation of
Section 4.7, we have posteriors

(θt | D72) ∼ T72[a72(t− 72), R72(t− 72)]

with moments determined by the filtering algorithms of Theorem 4.4 and
Corollary 4.3. Thus, for any vector xt if xt = x′

tθt then

(xt | Dt) ∼ T72[x′
ta72(t− 72), x′

tRt(t− 72)xt],

the mean here providing a retrospective estimate of the quantity xt. Vari-
ous choices of xt are considered.

(1) SEASONAL PATTERN
x′
t = (0; 0; 1, 0; 1, 0; 1, 0) implies that xt = θt3+θt5+θt7 = φt0, the seasonal

factor at time t. Figure 10.13 displays 90% intervals for the effects over
time, symmetrically located, as usual, about the filtered, posterior mean.
Changes in seasonal pattern are evident from this graph. The amplitude of
seasonality drops noticeably in early 1978, is stable over the next 3 years,
but increases again in 1981. The phase also shifts markedly in early 1978
(recall the deterioration in forecasting performance during this period), and
continues to shift slightly from year to year from then on. Note also the
increase in uncertainty about the effects in later years due to the inflation
in estimation of V earlier described.

(2) NON-SEASONAL TREND
x′
t = (1;Xt; 0, 0; 0, 0; 0, 0) implies that xt = θt1+θt2Xt is the deseasonalised

trend at time t, including the regression effect of Index. The corresponding
posterior mean plus 90% limits appear in Figure 10.14.

(3) REGRESSION EFFECT
A related case is given by x′

t = (0;Xt; 0, 0; 0, 0; 0, 0), so that xt = θt2Xt

is the regression effect of Index free from the time-varying intercept term
θt1. The corresponding plot is given in Figure 10.15. This figure is useful
in retrospectively assessing the effects of the historic changes in values of
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Figure 10.13 Estimated monthly pattern in Sales
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Figure 10.15 Estimated effect of Index on Sales

the independent variable series. If Index is subject to some form of control
by the company (such as via pricing policies), then this graph provides
information about the effects of past attempts at controlling the Sales series
via changes to Index.

(4) REGRESSION COEFFICIENT
Taking x′

t = (0; 1; 0, 0; 0, 0; 0, 0) leads to xt = θt2, the coefficient in the
regression on Index at time t. The corresponding plot is given in Figure
10.16. There is obvious movement in the coefficient, the Sales series being
apparently less strongly related to Index in the later years, the coefficient
drifting upwards to around 0.4, although the uncertainty about the values
is fairly large.

(5) INTERCEPT COEFFICIENT
Figure 10.17 is the display for the intercept term θt1 obtained from (2)
above with Xt = 0, so that x′

t = (1; 0; 0, 0; 0, 0; 0, 0). Again there is obvious
change here, consistent with the features noted in discussing the model
adaptation to data in Section 10.3.6. It is of interest to the company to
attempt, retrospectively, to explain this movement in the parameter; if in-
dependent variable information exists and can be related to this smooth
movement, then future changes may be anticipated and forecasting accu-
racy improved.

Note that the estimated time evolution of the parameters as described
above are a consequence of the model analysis. Here the data series are,
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at times, rather ill-behaved relative to the model form specified, and the
changes estimated may be partially explained as the model’s response to
the model/data mismatch. It is inevitable that in allowing for change
in model components, some change may be derived from the effects of
variables omitted that could otherwise have explained some of the observed
deviations away from model form. If such explanations could be found, then
the estimation of existing components would be protected from possible
biases induced by their omission. Hence care is needed in interpreting the
changes identified by any given model.

10.3.8. Step ahead forecasting: What if? analysis
Finally, at time t = 72, December 1982, consider forecasting step ahead
based solely on the model and current posteriors. To forecast Sales during
1982 to December 1984 requires values for the Index series as inputs. For
illustration of a What if? analysis, the values are taken as Xt = 2 (t =
73, . . . , 84), Xt = 0 (t = 85, . . . , 96) and Xt = −2 (t = 97, . . . , 108). The
values of Index over 1976 to the end of 1981 range from a low of −2.70
to a high of 2.13. Thus, the step ahead values used here allow exploration
of the implications of fairly extreme values of Index; during 1982, Index
is unfavourable at 2, and during 1984 favourable at −2. During 1983,
the value of 0 leads to forecasts based only on the seasonal pattern. Figure
10.18 displays the historical data and forecasts over these three years based
on these What if? inputs.

10.4 ERROR ANALYSIS
10.4.1 General comments
There is a large literature on statistical techniques for error, or residual,
analysis in linear models generally and classical time series models in partic-
ular. Almost all of the formal testing techniques are non-Bayesian, though
most of the useful approaches are informal and do not require adherence
to any particular inferential framework. Fair coverage and reference to er-
ror analysis in time series can be found in Box and Jenkins (1976) and
Abraham and Ledolter (1985).
General Bayesian theory for residual diagnostics appears in Box (1980),

and Smith and Pettit (1985). In our opinion, the most useful error analy-
ses consist of informal examination of forecast errors, looking at graphical
displays and simple numerical summaries to obtain insight into possible
model inadequacies with a view to refinement. The use of formal tests of
goodness of fit, though possibly of value in certain contexts, does not ad-
dress the key issues underlying error analyses. These can be summarised
as
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Figure 10.18 ‘What-if?’ step-ahead forecasts

(1) identifying periods of time in the history of the series analysed where
model performance deteriorated;

(2) suggesting explanations for this deterioration, or breakdown, in
model performance; and

(3) modifying the model for the future in the light of such explanations.

The focus in classical error analysis is usually on fitted errors, or residuals,
measuring the retrospective departure of the data from the model. How
closely the historical data fit the model in retrospect is not really the point
in time series forecasting; more incisive are investigations of the predic-
tive fit of the model, embodied in the sequence of one-step ahead forecast
distributions. The one-step forecast errors et are thus the raw material
for model assessment. Thus, we have presented plots of the et, and their
standardised analogues, in the illustrations of Sections 10.2 and 10.3. Un-
der the assumptions of the model, the forecast distributions are, as usual,
(Yt | Dt−1) ∼ Tnt−1 [ft, Qt], so that as a random quantity prior to observing
Yt, the error et has the predictive distribution

(et | Dt−1) ∼ Tnt−1 [0, Qt].

Of course, when nt−1 is large, or the observational variance sequence is
known, these distributions are essentially normal. Also,

p(et, . . . , e1 | D0) =
t∏

r=1

p(er | Dr−1),
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and so (et | Dt−1) is conditionally independent of (es | Ds−1) for s < t.
The observed errors are thus the realisation of what is, under the model
assumptions, a sequence of independent random quantities with the above
distributions. Observed deviations in the error sequence away from this
predicted behaviour are indicative of either irregularities in the data series,
or model inadequacies, or both. The raw errors et should be standardised
with respect to their scale parameters for examination. So consider the
sequence of standardised errors

ut = et/
√
Qt,

hypothetically (conditionally) independent and distributed as

(ut | Dt−1) ∼ Tnt−1 [0, 1], (t = 1, 2, . . . ).

The plot over time of the ut sequence is the most useful starting point in
error analysis. Deviations of the error sequence from model predictions
show up rather easily in such plots. Common deviations of interest and
importance from the model assumptions are as follows:

(a) Individual, extreme errors, possibly due to outlying observations;
(b) Groups, or patches, of a few errors of the same sign suggesting either

a local drift away from zero location or the development of positive
correlation between the errors;

(c) Patches of negatively related errors, the signs tending to alternate;
(d) Patches of errors large in absolute value, without any clear pattern

of relationship.

Though not exclusive, these features are common and account for many
types of deviation of the data from the model, and are now examined.

10.4.2 Outliers
A single large error ut indicates that Yt is a single observation that deviates
markedly from forecast under the model. The notion of extremity with re-
spect to the forecast distribution of ut involves considering values in the
tails of the distribution. The fact that the degrees of freedom may differ
for each error is important; Figures 10.3 and 10.12 provide, as a graphi-
cal guide, 90% forecast intervals symmetrically located about the mode of
zero. Note that these are both equal-tailed and HPD intervals since the T
densities are symmetric about zero. Values of ut outside these intervals oc-
cur only 10% of the time, on average. Supplementing these plots with the
corresponding 95% intervals would be a useful addition. Such observations
occur in every area of application and are commonly referred to as outliers.
With socio-economic data series, it is not uncommon to encounter such wild
values one observation in twenty, and often they are rather more frequent.
In the context under study, there may be many possible explanations for
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outliers. A true outlier provides no information about the observation pro-
cess, such as the case if the observation has been misrecorded in the data
collection process. The same may be true even though the observation is
correctly recorded, when there exists auxiliary information as to why the
value is wild. For example, in a consumer sales series the announcement of
a future price rise can lead to consumers stocking up in advance at the old
price, leading to a single, very large observation that is totally correct and
acceptable, but that is quite irrelevant to the underlying pattern of sales
generally. In ideal circumstances, all outliers should be explained in this
way, being of potentially major importance to decision makers. From the
point of view of retrospective error analysis, outliers can be identified by
their single, large standardised errors. From the point of view of modifying
the model for the future in view of these outliers, there is often little to
be done other than inform decision makers that outliers can be expected,
but not predicted unless suitable auxiliary information arises in advance.
Without such information, if outliers are to be anticipated, the main way of
reflecting their existence is to somehow increase forecast uncertainty; very
large values that are rare under the existing model will be less rare under
a model generating forecast distributions with heavier tails. Thus, a com-
mon model modification is to extend the basic, normal DLM to include an
observational error distribution that has heavy tails. Some possibilities are
developed in Harrison and Stevens (1976), West (1981), and West, Harrison
and Migon (1985). Usually the extensions are to heavier-tailed, symmetric
error distributions. If large errors of a particular sign predominate, then
the suggestion may be that the errors have a skew distribution, possibly
indicating the need for a data transformation (see Section 10.6).
A typical example outlier shows up in the January 1980 error in the

example of Section 10.3. Figure 10.12 shows the error in this month to be
way outside the 90% interval, and in fact it is outside the 99% limit. The
error corresponds to a much lower sales figure in that month than forecast.
Another apparent outlier occurs in February 1976, but this one is explained
as due to the inappropriateness of the initial prior estimate of the seasonal
factor for that month.

10.4.3 Correlation structure
Continuing with an examination of the errors in Figure 10.12, the very wild
observation in the sales series in mid-1978 may be initially thought to be
an outlier, but the sequence of positive errors immediately following this
one point indicate something more sustained has occurred over a period
of a few months. This is consistent with item (b) of Section 10.4.1, the
occurrence of a patch of consecutive, positive errors. In this example, there
was a marked change in the seasonal pattern of the sales series for the year
of 1978 that led to these errors. This is a very common occurrence. If
changes occur that are much more marked than allowed for through the
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existing dynamics of the model, then there will be a subsequent run of errors
that are positively correlated. Gradually, the model adapts to the change,
and after sufficient observations, the errors are back under control. Note
that this feature of autocorrelated errors involves the development, from
time to time, of local correlation structure in the errors that eventually
decays as the model adapts. In a model in which the basic dynamic is
too constrained, due to discount factors that are too large, the natural
movement in the series will tend to be under-predicted throughout and
therefore the positive correlation between consecutive errors will tend to
be sustained. This feature appears again during the last few months of the
data set, where there is a run of several, negative errors as the model fails
to adapt rapidly enough to the lower sales levels in the recession of late
1981.
There are various ways of modifying the model for the future to deal

with this. Notably

(1) Forecasting and updating in the future subject to some form of
monitoring of the model to detect the development of correlation
between forecast errors. This may simply involve the forecaster
in subjective monitoring, calling for intervention when correlation
develops. The most useful and usual form of intervention involves
corrective action to decrease discount factors, often just temporarily,
on some or all of the existing model components. This has the effect
of increasing adaptivity to change and the model then responds more
rapidly in the future.

(2) Explanation of consecutive, positively related deviations from fore-
cast via the inclusion in the model of additional terms. For example,
a temporary jump in level of the series can be modelled by includ-
ing an additional, possibly slowly varying level parameter for a few
time periods. Regression-type terms are also useful if independent
variables can be identified. Seasonal patterns not modelled will also
show up in correlated errors.

(3) The extension of the model to include a noise process term to model
the local correlation structure and use past errors to forecast those
to come in the short term; see the development of noise models
in Section 9.4. It should be stressed that such terms be included
only to describe local error structure that cannot be otherwise, more
constructively, explained via parameter changes or regression type
terms. It is sometimes tempting to explain more global movement
in the series by such noise models when in fact they should be at-
tributed to changes in trend or other components of the basic DLM.
These comments notwithstanding, short-term forecasting accuracy
can be improved by incorporating a simple noise model when local
correlations develop. Most useful is the basic AR(1) type model of
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Section 9.3, with, typically, a coefficient expected to be fairly low,
between 0 and 0.5, say.

Consecutive observations exhibiting negative correlation structure also
occur, though perhaps less commonly than positive correlation. One obvi-
ous explanation for this is the use of a dynamic model that is too adaptive,
having discount factors that are too small. The result is that the posterior
distributions for model parameters adapt markedly to each observation,
and thus short-term predictive accuracy is lost. Negatively correlated er-
rors result as the model swings from one observation to the next. Again,
corrections to the model properly require adjustments to discount factors,
although simple noise models will improve short-term forecasting accuracy.

10.4.4 Observational variance structure
Patches of errors that are large in absolute value but that do not show
any clear structure can arise, and often do, if the assumptions about the
observational variances in the normal DLM are inappropriate. Particular
reasons for such features are

(1) The possibility that each observation Yt is a function of several
or many basic quantities, such as a total or average, leading to
variances that may differ widely depending on the number of such
components of each of the Yt;

(2) Observational variances that depend on the underlying level of the
series, due to original non-normality of the Yt; and

(3) Possible random fluctuations in the observational variance about
the level, representing volatility explained only by the absence of
relevant independent variables from the model, i.e., model misspec-
ification that is evidenced, not by systematic, local correlations in
the errors, but rather by random changes in variation.

These and other features can be modelled adequately by extending and
modifying the basic, normal DLM as in the next section.

10.5 DATA MODIFICATIONS AND IRREGULARITIES
10.5.1 Outliers and missing values
Following the discussion of outliers in Section 10.4.2, consider the treatment
of wild observations. For routine updating in the model, the fact that ex-
plainable or otherwise, an observation is quite unrelated to the underlying
process means that for forecasting the future, it provides little or no in-
formation and should be discarded. Formal techniques for doing this by
extending the model to include outlier generating distributions can be used
(Harrison and Stevens 1976; West 1981; and West, Harrison and Migon
1985). Some such models are developed in later chapters. Often, however,
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simply discarding the observation from the model updating is the best
approach. That outlying observations can seriously adversely affect the
analysis of a model and degrade predictions is well known and not specific
to time series. There is a large literature on outlier handling and mod-
elling techniques. See, for example, Barnett and Lewis (1978), Box (1980),
Smith and Pettit (1985), West (1984a, 1985a), and references therein. Work
specifically concerning outlier problems in time series can be found in Box
and Tiao (1968), Fox (1972), Harrison and Stevens (1976), Kleiner, Martin
and Thompson (1981), Martin, R.D.Thompson, D.J. Masreliez and Martin
(1977), West (1981, 1986a), and West and Harrison (1986). In the stan-
dard updating equations for the DLM, recall that the error et enters in the
equations for the estimates of both θt and V , namely

mt = at +Atet

and

St = St−1(nt−1 + e2t/Qt)/(nt−1 + 1).

Thus a large, outlying value of |et| leads to a major correction to both at and
St−1 to obtain the posterior quantities mt and St. The variance estimate,
a quadratic function of the error, can be inflated enormously when nt−1
is small. To guard against this, the most appropriate action is to discard
the observation from the updating of the model if it has been identified as
an outlier. Thus, given this identification (which can sometimes be rather
difficult to achieve, but is assumed here), Yt provides no information about
the model; the information set at time t is justDt = Dt−1, and the posterior
distributions are equal to the priors, viz.,mt = at, Ct = Rt, St = St−1 and
nt = nt−1. We stress again that this is appropriate if Yt has been identified
as uninformative about the model. In Chapters 11 and 12 we return to
problems of outlier detection and modelling.
An observation that is truly missing, being unrecorded or lost, is treated

in just the same way, of course. Other approaches to time series, in par-
ticular using ARIMA type models, have enormous difficulties in handling
missing values. The sequential Bayesian approach, in marked contrast,
trivially accounts for them: no information leads to no changes in distribu-
tions for model parameters. In some applications observations associated
with discrete, external events may be viewed as missing in order simply to
separate the events from the routine model. This can be done, for exam-
ple, to model the effects of individual, irregular events such as strikes in
production plants, responses to budget and tax announcements, irregular
holidays, and so forth. This is a simple alternative to modelling the effects
of such events with extra parameters to be estimated, appropriate if all
that is required is protection of the standard model from the observation.
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10.5.2 Irregular timing intervals
Another problem of practical importance is the irregular timing of obser-
vations. So far we have assumed, as with all classical models, that the
observations are equally spaced in time, and that the timing is precise.
There will often be timing errors, some random, some systematic, that will
be impossible to identify and quantify. Such minor discrepancies are as-
sumed to be accounted for by the error sequences νt and ωt in the model.
Of greater significance is the problem of observations arriving at intervals
of irregular length. For example, monthly data may be recorded on a par-
ticular day towards the end of each month, but the precise day can vary
between months. Daily observations may be recorded only to the nearest
hour. In these cases, where the data are reported at an aggregate level
but may be based on different numbers of time intervals at a lower level of
aggregation, it is clear that the timing should, if possible, be accounted for
in the model. If the timing is unknown then little can be done. Otherwise,
the approach is simple. The answer lies in the fact that there is a basic,
original time unit that provides a precise time scale. In the first example
above the unit is the day, in the second it is the hour. If we define our
model so that the observations are indexed by this basic unit, then the ob-
servations are equally spaced, but some, often many of them, are missing.
Thus, with monthly data in the first example, if t indexes days and t = 1
represents January 1st, then we may receive data, Y29, Y57, Y86, . . . , one in
each month, the others, Y1, Y2, . . . , Y28, Y30, . . . , being viewed as missing.
Note that if the data are aggregates, the Yt above, for example, purport-

ing to be monthly totals or averages of daily data, then further, obvious
modifications are necessary to provide an appropriate model at the daily
level.

10.5.3 Discount models with missing data
Some comments are in order concerning the use of discount models with
missing data. The inherent, one-step ahead nature of the discount tech-
nique and the overly rapid decay of information if it is used to project
step ahead, have been discussed in Sections 6.3 and 10.2.4. This feature is
apparent when missing values occur. When θt evolves with no incoming
data, whether truly missing or due to irregular timing, the evolution error
variance matrix should be based on that most recently defined using the
standard discount factors. For example, suppose that we evolve at t = 4
as usual with W4 determined by discount factors. If Y4 and Y5, say, are
missing, then the evolution over the corresponding time intervals is based
onW5 =W6 =W4, that value most recently used in a time interval when
an observation was made. Only when the next observation Y7 arrives is the
discount technique applied again, determiningW8 for evolution to t = 8.



10.6 Data Transformations 353

10.6 DATA TRANSFORMATIONS
10.6.1 Non-normality of observations
It is rather commonly found that observed data do not adequately conform
to the assumptions of normality and constancy of variance of the observa-
tional errors. We noted in Section 10.4.4 that the forecast errors can signal
apparent changes in variance, consistent with original non-normality of the
sampling structure of the series. A typical feature of commercial and socio-
economic series of positive data (by far the majority of data in these areas
are positive) is an increasing variance with level. Possible, closely related
reasons are that the data are aggregated or that a non-normal model is
appropriate. As an example, consider sales or demand data for batches of
items, the batch sizes being uncorrelated with constant mean f and vari-
ance V . For a batch of size n, the number sold has mean nf and variance
nV . As a function of varying n (with f and V fixed), the variance of
the batch size is then proportional to the mean batch size. With Poisson
data, the variance equals the mean. Other non-normal observational dis-
tributions for positive data, such as lognormal, gamma or inverse gamma,
various compound Poisson forms, and others, have the feature that the vari-
ance increases as a function of the mean of the distribution. Empirical or
theoretical evidence that such distributions may underlie a series therefore
will suggest such a mean/variance relationship. Often a transformation,
such as logs, will approximately remove this dependence of variation on
level, leading to a transformed series with roughly constant variance and
a distribution closer to normality, or at least symmetry. Such data trans-
formations are widely used in statistics, and can provide a satisfactory
solution, the data being modelled on the transformed scale. Uncritical use
of transformations for these reasons of convenience should, however, be
guarded against. Often a suitable transformation will be difficult to iden-
tify and use of a simple substitute may complicate or obscure patterns and
relationships evident on the original data scale. The benefits of the origi-
nal scale are obvious when we consider the interpretation of a given model
and the communication of its implications to others. In particular, the
construction of linear models in terms of components for distinct features
neatly separates the random error term from the structural component of
a series, and operating on a transformed scale will usually mean that the
benefits arising from component modelling are diminished.
Generally then, it is preferable to model the series on the original data

scale. Various techniques are available when we want to retain the original
scale but the data are essentially non-normal. The obvious approach, in
principle, is to use a more appropriate sampling distribution for the raw
data, and we do this in Chapter 14. Here we stay with normal models,
considering modifications of the basic DLM framework to allow for certain,
commonly encountered features of non-normality.
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10.6.2 Transformations and variance laws
The above cautionary notes about transformations notwithstanding, con-
sider operating with a DLM for a transformed series. Let g(.) be a known
continuous and monotone function and define the transformed series Zt by

Yt = g(Zt), or Zt = g−1(Yt), t = 1, 2, . . . ,

the inverse of g existing by definition. Often, though not always, it is
the case that Zt is real-valued, the transformation g mapping the real line
to the (possibly bounded) original range for Yt. Most commonly the Yt
are positive, and this is assumed throughout this section. The associated
observational error distributions are typically skewed to the right, with
variances increasing as the location increases, indicating greater random,
unpredictable variation in the data at higher levels. Various underlying
error distributions can be supported on theoretical and empirical grounds.
Some examples and general theory are given in Stevens (1974) and Morris
(1983). The primary aims of transformation are to achieve a roughly nor-
mal, or more realistically, roughly symmetric distribution for the Zt with a
variance not depending on the location. We concentrate here on the latter
feature, the normality being very much of secondary importance. In fact,
the transformations usually used to achieve constancy of variance also tend
to lead to rough symmetry.
For convenience of notation throughout this section, we drop the depen-

dence of the distributions on the time index t, the discussion being, in any
case, rather general. Thus Y = Yt and Z = Zt are related via Y = g(Z).
Approximate, guiding relationships between the moments of Y and those
of Z can be used if we assume, as is usually appropriate, that the function g
is at least twice differentiable, having first and second derivatives g′ and g′′

respectively. If this is so, then simple approximations from Lindley (1965,
Part 1, Section 3.4) apply. Suppose that the transformed quantity Z has
mean µ and variance V , whether the distribution be approximately normal
or otherwise. Neither need, in fact, be known; we simply assume that these
are the moments of Z conditional on their values being assumed known,
writing µ = E[Z] and V = V[Z]. Then, following Lindley as referenced
above, we have

(a) E[Y ] ≈ g(µ) + 0.5g′′(µ)V ;
(b) V[Y ] ≈ {g′(µ)}2V.

Thus, approximately, the variance will be constant (as a function of µ) on
the transformed scale, if and only if the original Y has variance V[Y ] ∝
{g′(µ)}2. If we ignore the second term in (a), assuming that the first term
dominates, then µ ≈ g−1(E[Y ]), and the requirement becomes

V[Y ] ∝ {g′[g−1(E[Y ])]}2. (10.1)



10.6 Data Transformations 355

This is a particular case of a variance law for Y , the variance being func-
tionally related to the mean.
Particular cases of (10.1) are examined in connection with the most

widely used class of power transformations (Box and Cox 1964). Here

Z =
{
(Y λ − 1)/λ, λ �= 0;

log(Y ), λ = 0,

for some power index λ. Interesting values of this index, in our context
of positive data, lie in the range 0 ≤ λ < 1. These provide decreasing
transformations that shrink larger values of Y towards zero, reducing the
skewness of the sampling distribution. Note that the inverse transformation
is just

g(Z) =
{
(λZ + 1)1/λ, λ �= 0;

exp(Z), λ = 0.

Using this in (10.1) leads to

V[Y ] ∝ E[Y ]2(1−λ),

and the following special cases:

(a) λ = 0 leads to V[Y ] ∝ E[Y ]2, with the log transform appropriate.
If in fact Y is lognormally distributed, then the variance is exactly
a quadratic function of the mean and the log transform exactly
appropriate.

(b) λ = 0.5 gives V[Y ] ∝ E[Y ] and the square root transformation is
appropriate, consistent with a Poisson distribution, for example.

(c) λ = 0.25 gives V[Y ] ∝ E[Y ]1.5, consistent with compound Poisson-
like distributions often empirically supported in commercial and eco-
nomic applications (Stevens 1974).

10.6.3 Forecasting transformed series
Given a DLM for the transformed Z series, forecasting the original Y series
is, in principle, straightforward within the Bayesian framework. We sup-
pose that from a DLM for the Z series, a forecast distribution (one-step or
otherwise) is available in the usual T form, namely

Z ∼ Tn[f,Q].

Note again that we have simplified the notation and dependence on the time
series context for clarity and generality. Here n, f and Q are all known at
the time of forecasting. Let PZ denote the cumulative distribution function,
or cdf, of this T distribution, so that PZ(z) = Pr[Z ≤ z] for all real z. Since
g(.) is continuous and monotonic, then the corresponding forecast cdf for
Y is defined as

PY (y) = Pr[Y ≤ y] = Pr[Z ≤ g−1(y)] = PZ(g−1(y)).
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Point forecasts, uncertainty measures and probabilities can, in principle,
now be calculated for Y . In practice, these calculations may be difficult
to perform without numerical integrations. Practically useful transforma-
tions, such as the power transformations, lead to distributions that are not
of standard form, so that unlike the usual T distributions, a little more
effort is required to summarise them adequately. Some generally useful
features are as follows:

(1) The forecast distribution will usually (though beware, not always)
be unimodal, so that point estimates such as means, modes and
medians provide reliable guides as to the location of the distribution.

(2) The moments of Y are often obtainable only using numerical inte-
gration. Simple quadrature, for example, is relatively straightfor-
ward since Y is a scalar. The approximate results used in the last
section provide rough values.

(3) The median of Y can always be found easily, being the solution in
y to the equation

0.5 = PY (y) = PZ(g−1(y)).

Thus, since the mode f of PZ is also the median, then the median
of Y is simply g(f).

(4) The result (3) is a special case of the result that percentage points
of PY are obtained as the transformed values of those of PZ . Simply
replace 0.5 in the equation in (3) by any required probability to see
this. Thus, for example, intervals for Z with stated probabilities
under the T distribution for Z provide intervals for Y with the
same probabilities, simply by transforming the endpoints.

10.6.4 Log transforms and multiplicative models
The most important transformation is the natural log transform. Consider,
for illustration, a simple dynamic regression for the transformed series Zt

given by

Zt = αt + βtX
∗
t + νt, νt ∼ N[0, V ],

where X∗
t is the observed value of a regressor variable. The level at time

t is µt = αt + βtX
∗
t , and the transformed series follows a standard DLM

with constant, possibly unknown variance V . The original series is given
by Yt = exp(Zt), corresponding to the power transformation with index
λ = 0. Some points of relevance to the model for the original series are as
follows:

(1) Conditional on the model parameters θt = (αt, βt)′ and V ,

Yt = eµt+νt = eµteνt .
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Now, exp(νt) is a lognormal random quantity, so that Yt has a log-
normal distribution. Properties of lognormal distributions are fully
discussed in Aitchison and Brown (1957). In particular, E[Yt |
θt, V ] = exp(µt + V/2), the mode of Yt is exp(µt − V/2), and
the median is exp(µt). Also, the variance is proportional to the
square of the mean, the constant of proportionality being given by
1− exp(−V ).

(2) The model for Yt is multiplicative, given by

Yt = γtX
βt

t eνt ,

where γt = exp(αt) and Xt = exp(X∗
t ). Often Xt is an original

positive quantity transformed to the log scale along with Yt.
(3) This form of model, widely used to represent socio-economic rela-

tionships, is particularly of use in studying regressions in terms of
rates of change of the response with the independent variable. An
increase of 100ε% in Xt, (0 ≤ ε ≤ 1), leads to an expected increase
of 100(1+ ε)βt% in Yt. Thus, inferences about βt from the DLM for
Zt lead directly to inferences about expected percentage changes on
the original scale.

Similar features arise, of course, in more general DLMs for the log values.

10.7 MODELLING VARIANCE LAWS
10.7.1 Weighted observations
Before considering modelling of variance laws generally, the simple case
of weighted observations, involving observational variances known up to a
constant scale parameter, is discussed. As a motivating example, consider
monthly data Yt that are arithmetic means, or averages, over daily data
in each month t. If the raw daily data are assumed uncorrelated, with
common, constant variance V , then the variance of Yt is Vt = V/nt, where
nt is the known number of days in month t, obviously varying from month
to month. The observation is said to be weighted, having a known, positive
weight, or variance divisor, kt = nt. An observation with little or no weight
has a large or infinite variance; one with high weight has a small variance.
Unit weight nt = 1 corresponds to the original unweighted model. This
sort of weighting applies generally when the data are aggregates, of some
form, of more basic quantities. Note also that the treatment of outliers,
missing values and irregularly spaced data of Section 10.5 is a special case,
with missing values essentially receiving no weight.
The basic DLM requires only a minor modification to allow for weighted

observations. The usual theory applies directly to the general model

{Ft,Gt, ktV,WtV },
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where kt is, for each t, a known, positive constant, giving Yt a weight k−1
t .

The modification to the updating and forecasting equations is that the scale
parameter Qt now includes the weight. Thus,

(Yt | Dt−1) ∼ Tnt−1 [ft, Qt],

where ft = F′
tat as usual, but

Qt = ktSt−1 + F′
tRtFt.

Similarly, future values kt+r appear in the expressions Qt(r) for the scale
parameters of step ahead forecast distributions made at time t for times
t+ r.

10.7.2 Observational variance laws
Suppose we wish to use a DLM for the Yt series on the original, positive
scale, but recognise that the data are non-normal with a variance law iden-
tified, at least approximately. Forecasting and updating can usually sat-
isfactorily proceed with a weighted model, the weights provided as rough
estimates of the variance law, varying as the level of the data varies. Pre-
cise values for the variance multipliers are not essential. What is important
is that the variance multipliers change markedly as the level of the series
changes markedly, providing an approximate indication of the relative de-
grees of observational variation at different levels. Denote the variance law
by k(.), so that the variance at time t is expected to be approximately given
by

Vt = k(µt)V,

where µt = F′
tθt is the level of the series. Examples are

(a) k(µt) = 1 + bµp
t , for constants b > 0 and p > 0;

(b) k(µt) = µp
t for p > 0.

The latter has been much used in practice, as in Stevens (1974), Harri-
son and Stevens (1971, 1976b), Smith and West (1983), West, Harrison
and Pole (1987), for example. Recall from Section 10.6.2 that a power-
law variance function of the form in (b) corresponds roughly to a power
transformation of Yt to constant variance with power index λ = 1 − p/2.
Note that generally, k(.) may depend on t, although this is not explicitly
considered here. Obviously, the model analysis would be lost if variances
were allowed to depend on θt in this way, the prior, posterior and forecast
distributions no longer being analytically tractable. We stay within the
ambit of standard theory, however, if the value of the variance law k(.) is
replaced by a known quantity, a variance multiplier. The obvious multi-
plier is obtained by replacing the conditional mean µt in the law by its prior
mean, the forecast value ft, thus using the model {Ft, Gt, ktV, WtV },
where kt = k(ft) is known. This simply, and appropriately, accounts for
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changing variance with expected level of the series. Note that in forecasting
ahead from time t, the variance multipliers used for future observations
will now depend upon the time t, being functions of the current (at time
t) expected values of the future observations.

10.8 STOCHASTIC CHANGES IN VARIANCE
10.8.1 General considerations
The unknown variance scale parameter V appearing in the observational
variance, whether weighted or not, has been assumed throughout to be
constant over time. The updating for V based on gamma prior and poste-
rior distributions for the precision parameter φ = 1/V provides a coherent,
effective learning algorithm that eventually leads to convergence. To see
this, recall that the posterior at time t is given by (φ | Dt) ∼ G[nt/2, dt/2],
where the degrees of freedom parameter nt updates by 1 for each observa-
tion. Thus, as t→∞, nt →∞ and the posterior converges about the mode.
With the usual point estimate St = dt/nt of V , the posterior asymptoti-
cally degenerates with |V − St| → 0 with probability one. Now, although
this is an asymptotic result, the posterior can become quite precise rapidly
as nt increases, leading to under-adaptation to new data so far as learning
on the variance is concerned. The problem lies with the assumption of
constancy of V, conflicting somewhat with the underlying belief in change
over time applied to the parameters in θt. Having explored above the pos-
sibility of changes in observational variance due to non-normality, we now
consider the possibility that whether using a variance weight or not, the
scale parameter V may vary stochastically and unpredictably over time.
Some supporting arguments for such variation are as follows.

(1) There may actually be additional, stochastic elements affecting the
observational error sequence that have not been modelled. Some
possible sources of extra randomness are inaccuracies in the quoted
timing of observations, truncation of readings, changes in data rec-
ording and handling procedures, etc. Some of these are present in
the application discussed by Smith and West (1983), for example.
Some such unexplained errors may be systematic, but if not iden-
tified, a general method of allowing for possible extra observational
variation that may change in time is to simply suppose that V may
change, albeit slowly and steadily.

(2) The variance Vt may change deterministically in a way not modelled,
or modelled inappropriately. A variance function may be improp-
erly specified, or omitted, the changes in variance thus not being
adequately predicted. If such changes are not too dramatic, then
they may be adequately estimated by allowing for stochastic drift
in the scale parameter V .
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(3) More generally, all features of model misspecification that will be-
come apparent in the forecast error sequence can be attributed to
changes in V . If V is allowed to vary stochastically, then the es-
timated trajectory over time of V will provide indications of times
of improvement or deterioration in forecast performance; the esti-
mation of V will tend to favour larger values in the latter case, for
example. Thus a simple model for slow, purely random variance
changes can be a useful diagnostic tool.

10.8.2 A model for change in V : discounted variance learning
Consider the general DLM {Ft, Gt, ktV, WtV }, with known weights k−1

t .
Assuming the unknown scale V to have been constant up to time t, the
usual analysis leads to the posterior

(φ | Dt−1) ∼ G[nt−1/2, dt−1/2]

for precision φ = 1/V. Suppose, however, that we now believe V to be
subject to some random disturbance over the time interval t− 1 to t. The
simplest way of modelling steady, stochastic variation is via some form of
random walk for V or some function of V . Make the time dependence
explicit with time subscripts, so that the variance and precision at time t
are Vt and φt = 1/Vt, respectively. Then at t − 1, suppose the precision
φt−1 has the usual posterior

(φt−1 | Dt−1) ∼ G[nt−1/2, dt−1/2]. (10.2)

Proceeding to time t, it is desirable to retain the gamma form of distribution
for the resulting distribution p(φt|Dt−1), as it is conjugate to the likelihood
function for updating based on the next observation Yt. This desired con-
straint led to the development of a method of “variance discounting” to
model a decay of information about the precision, and hence the variance,
between time points, while retaining the gamma form of posterior and prior
distributions. Explicitly, introduce a variance discount factor δ at time t,
with 0 < δ < 1. Based on the time t − 1 posterior (10.2), suppose that φt

is derived from φt−1 by some “random walk” model resulting in the time t
prior distribution

(φt | Dt−1) ∼ G[δnt−1/2, δdt−1/2]. (10.3)

This has the same location as (10.2), i.e., E[φt|Dt−1] = E[φt−1|Dt−1] =
1/St−1, but increased dispersion through the discounting of the degrees of
freedom parameter, i.e., δnt−1 < nt−1. Hence the mapping from (10.2) to
(10.3) neatly represents stochastic evolution in terms of loss of information,
or increased dispersion, in a way completely analogous to the standard
use of discount factors in DLMs. This idea was originally developed in
Ameen and Harrison (1985) and applied in Harrison and West (1986, 1987).
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Discount techniques are implemented in the BATS software in Pole, West
and Harrison (1994).
A formal model underlies this use of variance discounting, deriving from

special cases of results in Uhlig (1994). In particular, consider the following
multiplicative model for generating φt from φt−1. Suppose γt to be a beta
distributed random variable, independent of φt−1, with density

p(γt|Dt−1) ∝ γ
δnt−1/2−1
t (1− γt)(1−δ)nt−1/2−1,

for 0 < γt < 1. This beta density, namely

(γt|Dt−1) ∼ Beta[δnt−1/2, (1− δ)nt−1/2],

is such that E[γt|Dt−1] = δ. Given φt−1, set

φt = γtφt−1/δ. (10.4)

It is easily deduced that under the time t − 1 prior (10.2), the resulting
distribution of φt from (10.4) is the gamma distribution (10.3). This is
true for any nt−1, dt−1 and δ. Hence, the evolution model (10.4) may be
introduced, applying over all time t, to formally model stochastic variation
in the observation precision sequence. This shows that the variance dis-
counting result arises from a stochastic evolution in which the φt sequence
changes as a result of independent random “shocks” γt/δ. The maintenance
of gamma prior and posterior distributions at each time enables continued,
closed-form sequential updating, with the minor modification that the de-
grees of freedom quantity nt−1 is discounted between successive updates.
Proceeding to observe Yt, the prior (10.3) updates to the posterior gamma

via the usual updating equations, now including the variance discount fac-
tor. Thus

nt = δnt−1 + 1 and dt = δdt−1 + St−1e
2
t/Qt, (10.5)

in the usual notation. This analysis is summarised in Table 10.4 in a form
analogous to the summary in Section 4.6, providing the simple generalisa-
tion of the updating and one-step ahead forecasting equations to include
discounting of the variance learning procedure. We note that practically
suitable variance discount factors δ take values near unity, typically be-
tween 0.95 and 0.99. Clearly, δ = 1 leads to the original, constant variance
model, Vt = V for all t. Extensions to time-varying discount factors, ap-
plying a factor δt at time t, are immediate.

10.8.3 Limiting behaviour of constant, discounted
variance model

The asymptotic behaviour of the discounted variance learning procedure
provides insight into the nature of the effect of the discounting. Note from
the summary that

nt = 1 + δnt−1 = . . . = 1 + δ + δ2 + . . .+ δt−1n1 + δtn0
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Table 10.4. Summary of updating with variance discounting

Univariate DLM with variance discounting

Observation: Yt = F′
tθt + νt, νt ∼ N[0, kt/φt]

System: θt = Gtθt−1 + ωt, ωt ∼ Tnt−1 [ 000,Wt]
Precision: φt = γtφt−1/δ

with γt ∼ Beta[δnt−1/2, (1− δ)nt−1/2]

Information: (θt−1 | Dt−1) ∼ Tnt−1 [mt−1,Ct−1]
(θt | Dt−1) ∼ Tnt−1 [at,Rt]

with at = Gtmt−1, Rt = GtCt−1G′
t +Wt,

(φt−1 | Dt−1) ∼ G[nt−1/2, dt−1/2]
(φt | Dt−1) ∼ G[δnt−1/2, δdt−1/2]

with St−1 = dt−1/nt−1

Forecast: (Yt | Dt−1) ∼ Tδnt−1 [ft, Qt]
with ft = F′

tat, Qt = F′
tRtFt + St−1

Updating Recurrence Relationships

(θt | Dt) ∼ Tnt
[mt,Ct]

(φt | Dt) ∼ G[nt/2, dt/2]
with

mt = at +Atet,
Ct = (St/St−1)[Rt −AtA′

tQt],
nt = δnt−1 + 1, dt = δdt−1 + St−1e

2
t/Qt

St = dt/nt,
where et = Yt − ft and At = RtFt/Qt.

and

dt =(St−1e
2
t/Qt) + δdt−1 = . . .

=(St−1e
2
t/Qt) + δ(St−2e

2
t−1/Qt−1) + . . .+ δt−1(S0e

2
1/Q1) + δtd0.

As t→∞, with 0 < δ < 1, then

nt → (1− δ)−1.

Also St = dt/nt, so that for large t,

St ≈ (1− δ)
t−1∑
r=0

δr(e2t−r/Q
∗
t−r),
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with Q∗
t = Qt/St−1 for all t, the scale-free one-step forecast variance at

time t. More formally,

lim
t→∞
{St − (1− δ)

t−1∑
r=0

δr(e2t−r/Q
∗
t−r)} = 0

with probability one. Thus nt converges to the constant, limiting degrees
of freedom (1 − δ)−1. The value δ = 0.95 implies a limit of 20, δ = 0.98
a limit of 50. The usual, static variance model has δ = 1, so that of
course, nt →∞. Otherwise, the fact that the changes in variance are to be
expected implies a limit to the accuracy with which the variance at any time
is estimated, this being defined by the limiting degrees of freedom, directly
via the discount factor. The point estimate St has the limiting form of an
exponentially weighted moving average of the standardised forecast errors;
e2t−r/Q

∗
t−r asymptotically receives weight (1 − δ)δr, the weights decaying

with r and summing to unity. Thus, the estimate continues to adapt to
new data, whilst further discounting old data, as time progresses.
Note finally that if it is desired to allow for greater variation in φt at

a given time in response to external information about possible marked
changes, a smaller intervention value of the discount factor can replace δ
for just that time point, so implying a resulting increase in uncertainty
about γt.

10.8.4 Filtering with discounted variance
We now turn to extension of the filtering analyses of Sections 4.7 and 4.8,
to include the modification to time-varying observational precision param-
eters. In the model with (10.4), the problem is that of updating the on-line
posteriors defined by (10.2) in the light of data received afterwards. This is
of considerable practical interest since it is the revised, filtered distributions
that provide the retrospective analysis, identifying periods of stability and
points of marked change in the observational variance sequence.
At time t with information set Dt, consider the precision φt−k, for in-

tegers (1 ≤ k ≤ t − 1). We are interested in evaluating features of the
distribution p(φt−k | Dt), and do so recursively as follows. Under the
Markov evolution (10.4), note that

p(φt−k | φt−k+1, Dt) ∝ p(φt−k | Dt−k)p(φt−k+1 | φt−k, Dt−k).

The first term on the left-hand side here is simply the gamma posterior
(10.2) with t − 1 replaced by t − k. The second term is derived from the
beta evolution (10.4). It follows, after some calculus left to the reader, that
this has the form

p(φt−k | φt−k+1, Dt) ∝ (φt−k − δφt−k+1)(1−δ)nt−k/2−1 exp(−dt−kφt−k/2),
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for φt−k > δφt−k+1. We can represent this density via

φt−k = ηt−k + δφt−k+1,

where ηt−k ∼ G[(1− δ)nt−k/2, dt−k/2]. One implication is that

E[φt−k|φt−k+1, Dt] = (1− δ)S−1
t−k + δφt−k+1.

This implies, in particular, that

E[φt−k|Dt] = (1− δ)S−1
t−k + δE[φt−k+1|Dt],

or

St(−k)−1 = (1− δ)S−1
t−k + δSt(−k + 1)−1,

where St(−k) is the filtered posterior estimate of Vt, just the harmonic
mean of (Vt−k|Dt) for each k < t, initialised at k = 0 with St(0) = St.
This very neat and elegant result shows that the filtered estimate of

precision at time t − k is obtained by averaging the posterior estimate
from that time, S−1

t−k, with the filtered estimate at time t − k + 1; the
relative weights, defined in terms of δ, are of a form familiar in exponential
smoothing. The standard results for constant precision are recovered by
setting δ = 1. The obvious extension to time-dependent discount factors is
left to the reader.
It should be clear, however, that the filtered distributions are no longer

gamma; the closed form sequential updating of gamma distributions does
not carry over to filtering, unfortunately. Arguing by analogy, however,
appropriate gamma approximations to the filtered distributions have the
form

p(φt−k|Dt) ≈ G[nt(−k)/2, dt(−k)/2],

where dt(−k) = nt(−k)St(−k), with filtered degrees of freedom defined by

nt(−k) = (1− δ)nt−k + δnt−k+1,

initialised at nt(0) = nt. With this approximation assumed, the filtering
algorithms for the φt sequence are completed. Note that the filtering algo-
rithms for the state vector θt, in Corollaries 4.3 and 4.4, must be modified
to incorporate this; specifically, the values nt and St appearing there for
the original case of static observational variance are replaced by nt(−k)
and St(−k) throughout. Note finally that extensions to time-dependent
variance discount factors are immediate; details are left to the reader.
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10.9 EXERCISES

(1) Reanalyse the agricultural sales series of Section 10.2 using the same
linear trend/seasonal model. Extend the discussion of Example 10.1
to a fuller exploration of sensitivity of the analysis to variation in
the dynamic controlled through the discount factors. Do this as
follows.
(a) For any values δ = (δT , δS)′ of the trend and seasonal discount

factors, explicitly recognise the dependence of the analysis on
δ by including it in the conditioning of all distributions. Then
the aggregate predictive density at time t is p(Yt, . . . , Y1|δ, D0),
calculated sequentially as in Section 10.2.5. As a function of δ,
this defines the likelihood function for δ from the data. Calcu-
late this quantity at t = 48 for each pair of values of discount
factors with δT = 0.8, 0.85, . . . , 1 and δS = 0.9, 0.925, . . . , 1.
What values of δ are supported by the data? In particular,
assess the support for the static model defined by δ = (1, 1)′

relative to other dynamic models fitted.
(b) Explore sensitivity of inferences to variation in δ amongst values

supported by the data from (a). In particular, do the estimated
time trajectories of trend and seasonal components change sig-
nificantly as δ varies? What about step ahead forecasts over
one or two years from the end of the data series?

(c) Can you suggest how you might combine forecasts (and other
inferences) made at time t from two (or more) models with
different values of δ?

(d) Compare models with different values of δ using MSE and MAD
measures of predictive performance as alternatives to the above
model likelihood measures. Do the measures agree as to the
relative support for different values of δ? If not, describe how
and why they differ.

(2) Consider the prior specification for the seasonal factors φ1 of the
model for the Sales/Index series in Section 10.3.2, given initially by

(φ1|D0) ∼ T6[m∗
φ1
,C∗

φ1
],

with m∗
φ1

given by

(0.8, 1.3, 1, 1.1, 1.2, 0, −1.2, −1, −1, −1.5, −0.5, 0)′

and C∗
φ1

= (0.2)2I.
(a) Verify that this initial prior does not satisfy the zero-sum con-

straint on seasonal factors. Verify also that Theorem 8.2 leads
to the constrained prior as given in Section 10.3.2, namely

(φ1|D0) ∼ T6[mφ1 ,Cφ1 ],
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with mφ1 given by

(0.783, 1.283, 0.983, 1.083, 1.183, −0.017,
− 1.217, −1.017, −1.017, −1.517, −0.517, −0.017)′

and

Cφ1 = (0.19)2




1 −0.09 −0.09 . . . −0.09
−0.09 1 −0.09 . . . −0.09
−0.09 −0.09 1 . . . −0.09

...
...

...
. . .

...
−0.09 −0.09 −0.09 . . . 1


 .

(b) Let H be the transformation matrix of Section 8.6.5 used to
transform from seasonal effects to Fourier coefficients. Calcu-
late H and verify the stated results of Section 10.3.3, Table
10.3, by calculating the moments Hmφ1 and HCφ1H

′.
(3) Reanalyse the Sales/Index data of Section 10.3 using the same

model. Instead of initialising the analysis with the prior used in
that section, perform a reference analysis as described in Section
4.8 (beginning with Wt = 000, corresponding to unit discount fac-
tors, over the reference period of the analysis). Describe the main
differences between this analysis and that discussed in Section 10.3.

(4) Consider the transformation Y = g(Z) of Section 10.6.2 with E[Z] =
µ and V[Z] = V. By expanding g(Z) in a Taylor series about Z =
µ and ignoring all terms after the quadratic in Z − µ, verify the
approximate values for the mean and variance of Y given by E[Y ] ≈
g(µ) + 0.5g′′(µ)V and V[Y ] ≈ {g′(µ)}2V.

(5) Suppose that Yt is the sum of an uncertain number kt of quantities
Ytj , (j = 1, . . . , kt), where the basic quantities are uncorrelated,
with common mean βt and common, known variance Vt. This arises
when items are produced and sold in batches of varying sizes.
(a) Show that E[Yt|kt, βt] = µt, where µt = ktβt and V[Yt|kt, βt] =

ktVt.
(b) Suppose that a forecaster has a prior distribution for the batch

size kt with finite mean and variance, and that kt is viewed as
independent of βt. Show that unconditional on kt, E[Yt|βt] =
βtE[kt] and V[Yt|βt] = VtE[kt] + β2

tV[kt].
(c) In the special case of Poisson batch or lot sizes, E[kt] = V[kt] =

a, for some a > 0. Letting µt = E[Yt|βt] as usual, show that
Yt has a quadratic variance function V[Yt|βt] = V ∗

t [1 + btµ
2
t ],

where V ∗
t = aVt and b−1

t = a2Vt.
(6) Reanalyse the agricultural sales data of Section 10.2. Use the same

model but now allow for changes in observational variation about
the level through a variance discount factor δ as in Section 10.8.
(Note that the reference analysis can be performed as usual assum-
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ing that all discount factors, including that for the variance, are
unity initially over the reference part of the analysis).
(a) Perform an analysis with δ = 0.95. Verify that relative to the

static variance model, variance discounting affects only the un-
certainties in forecasting and inferences about time trajectories
of model components.

(b) Analyse the data for several values of δ over the range δ =
0.90, 0.92, . . . , 1, and assess relative support from the data us-
ing the likelihood function over δ provided by the aggregate
predictive densities from each model.

(7) Consider the two series in the table below. The first series, Sales, is
a record of the quarterly retail sales of a confectionary product over
a period of eleven years. The product cost has a major influence
on Sales, and the second series, Cost, is a compound, quarterly
index of cost to the consumer constructed in an attempt to explain
nonseasonal changes in Sales.

SALES COST
Quarter Quarter

Year 1 2 3 4 1 2 3 4

1975 157 227 240 191 10.6 8.5 6.7 4.1
1976 157 232 254 198 1.9 0.4 1.1 1.9
1977 169 234 241 167 0.2 2.9 4.1 −1.4
1978 163 227 252 185 −4.0 −4.5 −5.3 −8.4
1979 179 261 264 196 −12.8 −13.2 −10.1 −4.6
1980 179 248 256 193 −1.1 −0.1 0.0 −2.5
1981 186 260 270 210 −5.1 −6.4 −8.0 −6.5
1982 171 227 241 170 −3.7 −1.3 6.1 16.5
1983 140 218 208 193 22.9 23.9 18.0 8.3
1984 184 235 245 209 2.9 0.7 −2.4 −7.0
1985 206 260 264 227 −9.8 −10.6 −12.3 −13.2

Consider fitting DLMs with first-order polynomial, regression on
Cost and full seasonal components. These data are analysed using
a similar model in West, Harrison and Pole (1987b), with extensive
summary information from the analysis provided there. Based on
previous years of data, the forecaster assesses initial prior informa-
tion as follows.
• The initial, underlying level of the series when Cost is zero is
expected to be about 220, with a nominal standard error of 15.
• The regression coefficient of Cost is estimated as −1.5 with a
standard error of about 0.7.
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• The seasonal factors for the four quarters of the first year are
expected to be −50(25), 25(15), 50(25) and −25(15), the nom-
inal standard errors being given in parentheses.
• The trend, regression and seasonal components are initially as-
sumed to be uncorrelated.
• The observational variance is estimated as 100, with initial de-
grees of freedom of 12.

Analyse the series along the following lines.
(a) Using the information provided for the seasonal factors above,

apply Theorem 8.2 to derive the appropriate intial prior that
satisfies the zero-sum constraint.

(b) Identify the full initial prior quantities for the 6-dimensional
state vector θ1 and the observational variance V . Write down
the defining quantities a1, R1, n0 and S0 based on the above
initial information.

(c) Use three discount factors to structure the evolution variance
matrices of the model: δT for the constant intercept term, δR
for the regression coefficient, and δS for the seasonal factors.
Following West, Harrison and Pole (1987b), consider initially
the values δT = δS = 0.9 and δR = 0.98. Fit the model and
perform the retrospective, filtering calculations to obtain fil-
tered estimates of the state vector and all model components
over time.

(d) Based on this analysis, verify the findings in the above refer-
ence to the effect that the regression parameter on Cost is, in
retrospect, rather stable over time.

(e) Produce step ahead forecasts from the end of the data in the
fourth quarter of 1985 for the next three years. The estimated
values of Cost to be used in forecasting ahead are given by

Year Quarter
1 2 3 4

1986 8.4 10.6 7.2 13.0
1987 −2.9 −0.7 −6.4 −7.0
1988 −14.9 −15.9 −18.0 −22.3

(8) Refer to the models and concepts underlying the variance discount-
ing method in Section 10.8.
(a) Derive the distribution (10.3) from the gamma posterior (10.2)

combined with the multiplicative evolution model (10.4).
(b) Verify the result stated for p(φt−k | φt−k+1, Dt) in deriving

filtering recurrences in Section 10.8.4, and deduce the formula
for E[φt−k | Dt].



CHAPTER 11

INTERVENTION AND MONITORING

11.1 INTRODUCTION
In Section 2.3.2 we introduced simple intervention ideas and considered in
detail intervention into a first-order polynomial model. That intervention
provided feed-forward information anticipating a major change in the level
of a time series, modelled by altering the prior distribution for the level pa-
rameter to accommodate the change. Had the model used in that example
been closed to intervention, then the subsequent huge change in the level
of the series would have been neither forecast nor adequately estimated
afterwards, the match between model and data breaking down entirely.
In practice, all models are only components of forecasting systems that
include the forecasters as integral components. Interactions between fore-
casters and models are necessary to adequately allow for events and changes
that go beyond the existing model form. This is evident also in the illus-
trations of standard, closed models in Chapter 10, where deterioration in
forecasting performance, though small, is apparent. In this chapter, we
move closer to illustrating forecasting systems rather than simply models,
considering ways in which routine interventions can be incorporated into
existing DLMs, and examples of why and when such interventions may
be necessary to sustain predictive performance. The mode of intervention
used in the example of Section 2.3.2 was simply to represent departures
from an existing model in terms of major changes in the parameters of the
model. This is the most widely used and appropriate method, although
others, such as extending the model to include new parameters, are also
important. An example data set highlights the need for intervention.

EXAMPLE 11.1. The data set in Table 11.1 perfectly illustrates many of
the points to be raised in connection with intervention. This real data
series, referred to as CP6, provides monthly total sales, in monetary terms
on a standard scale, of tobacco and related products marketed by a major
company in the UK. The time of the data runs from January 1955 to
December 1959 inclusive. The series is graphed over time in Figure 11.1.
Initially, during 1955, the market clearly grows at a fast but steady rate,
jumps markedly in December, then falls back to pre-December levels and
flattens off for 1956. There is a major jump in the sales level in early 1957,
and another in early 1958. Throughout the final two years, 1958 and 1959,
there is a steady decline back to late 1957 levels. An immediate reaction
to this series, that is not atypical of real series in consumer markets, is
that it is impossible to forecast with a simple time series model. This is
correct. However, the sketch in Figure 11.2 suggests that in fact a simple
model may be appropriate for short-term forecasting (up to twelve months
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Figure 11.1 CP6 sales series

Table 11.1. CP6 Sales data

Month
Year 1 2 3 4 5 6 7 8 9 10 11 12

1955 620 633 652 652 661 683 693 715 743 743 752 870
1956 784 765 756 775 743 734 765 734 752 793 756 784
1957 911 852 879 879 829 852 875 852 879 852 870 852
1958 961 966 929 980 943 980 998 939 957 929 902 920
1959 952 911 893 861 888 870 929 916 888 861 888 870

ahead, say), if that model is open to interventions to explain (and possibly
anticipate) some of the discontinuities the series exhibits. From this figure,
it is apparent that a simple possible description of the trend in the series is
as a sequence of roughly linear segments (i.e., piecewise linear), with major
changes in the quantified linear form at three places. Thus, a second-order
polynomial model, providing a linear predictor in the short term, may be
used so long as the abrupt changes in parameter values are allowed for.
Other features to note are the possible outliers at two points in the series.
These observations deviate markedly from the general pattern and should
be considered individually, perhaps being omitted from the analysis.
This is not to say that such extreme observations should be ignored, of

course, since they may be critical commercially. For updating the model
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Figure 11.2 Heuristic model for CP6 sales

however, they are ignored since they convey little or no information relevant
to forecasting the underlying trend within the model structure. Finally,
note that the random scatter in Sales about the sketched trend is apparently
higher at higher levels of the series, suggesting that intervention, or some
other appropriate device such as a variance law as in Section 10.7, be
required to adjust the observational variance to model greater randomness
at such levels.
The sources of information available to a forecaster are not always re-

stricted to historical data and other, related information, but also include
information about forthcoming events affecting the environment of the se-
ries. In cases when it is perceived that these events may materially affect
the development of the series, then action is taken to intervene into the ex-
isting model to feed-forward information, allowing the model to anticipate
and predict change. For example, a marketing department of a company
may know that an export licence for their products has just been granted,
that a new type of “special offer” campaign is to be launched, that a patent
expires or that unexpectedly a competitive product has been banned. In
each case, the likely effects on demand, sales and inventory must be assessed
in order to anticipate changes and plan accordingly. The decisions resting
on forecasts in such cases may be of major importance to the company.
Some of the events in the CP6 series may have been anticipated at the
time in this way. In forming views of the likely outcomes, the forecasters
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may have prior experience of related events to base their judgements upon,
but clearly, such views are usually largely subjective. This does, of course,
raise questions about possible personal biases and errors in intervention,
and thus such facilities require caution in use and should always be subject
to calibration and retrospective assessment.
Interventions can be roughly classified as either feed-forward or feed-back.

The former is anticipatory in nature, as in the above examples. The latter
is corrective, responding to events that had not been foreseen or adequately
allowed for. Corrective actions often arise when it is seen that forecasting
performance has deteriorated, thus prompting the forecaster to examine
the environment of the series for explanation. In such instances, any such
information, that should ideally have been available beforehand, must be
used retrospectively in an attempt to adjust the model appropriately to
the current, local conditions. It is evident that a complete forecasting
system should be open to both feed-forward and feed-back interventions.
In ideal circumstances, forecasting systems should operate according to a
principle of Management by Exception. That is, based upon experience
and analysis, a formal statistical model is adopted and is used routinely to
process data and information, providing forecasts and inferences that are
used unless exceptional circumstances arise. The exceptions occur in the
two ways introduced above; the first relating to the receipt of information
providing the basis for feed-forward interventions, the second provided by
the detection of deterioration in forecasting performance, usually detected
by some form of forecast monitoring activity. Such monitoring may be
largely subjective and informal, involving the forecaster in considering the
forecast performance from a subjective standpoint, or may take the form of
an automatic, statistical error analysis or control scheme that continually
monitors the match between model and data and issues signals of break-
down as necessary. Often it is the case that exceptions matter most in
forecasting. When circumstances change markedly there are major oppor-
tunities for both losses and gains. Thus, the more vigilant and successful
the forecaster is in anticipating major events, the more effective the deci-
sions. Also, concerning feed-back interventions, the more perceptive and
immediate the diagnosis is, the better. Hence it is to be recommended that
there should always be a user response to exceptions identified by a moni-
toring system. However, in some circumstances there may be no identifiable
reason for the exceptions, but the very fact that something has occurred
raises uncertainty about the future. Then the forecaster’s response will
not necessarily identify possible sources of model breakdown, but it must
communicate the problem to the model by increasing total uncertainty in
the model, making it more adaptive to new data, so that changes that may
have taken place are rapidly identified and estimated.
Many of these ideas are made more concrete in this chapter, where an

existing model is assumed to be operating subject to both forms of inter-
vention. Much of the development is based on West and Harrison (1989).
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We consider throughout a single intervention at time t into the existing
model; clearly the concepts and theory apply generally to analyses subject
to possibly many interventions. In addition, although we consider inter-
ventions at time t that represent changes to the model at time t, it should
be clear that feed-forward interventions can also be made for times after t,
although this is not specifically described.
For clarity, the development is in terms of a model with observational

variance sequence known, so that all prior, posterior and predictive dis-
tributions are normal. The results apply, of course and with no essential
difference, to the case of variance learning when all such distributions are T
rather than normal. We comment on minor differences between the cases
as necessary.
Thus, for reference, we have the model at the current time t given, as

usual, by

Yt = F′
tθt + νt, νt ∼ N[0, Vt], (11.1)

θt = Gtθt−1 + ωt, ωt ∼ N[ 000,Wt], (11.2)

with the usual assumptions of Sections 4.2 and 4.3. The historical in-
formation Dt−1 (including past data and any previous interventions) is
summarised in terms of the posterior for θt−1, namely

(θt−1 | Dt−1) ∼ N[mt−1, Ct−1], (11.3)

where the mean vector and variance matrix are known. Thus, the prior for
the state vector at the current time is, via the evolution equation (11.2) as
usual,

(θt | Dt−1) ∼ N[at, Rt], (11.4)

with

at = Gtmt−1 and Rt = GtCt−1G′
t +Wt.

Suppose now that feed-forward intervention is to be made at the current
time into the model (11.1-11.4). This may be a response to additional in-
formation that can be viewed as extra observational data; a response to
new information about related variables, such as competitor activity in a
consumer market, legislation changes, and so forth; forecasts from other
individuals or models; control actions, such as changes in advertising cam-
paigns, pricing policy, etc.; or it may simply reflect a dissatisfaction with
the current prior and the forecasts of the future that it implies, thus being
a purely subjective intervention by the forecaster. Whatever the case, we
represent the intervention at time t by It. This is an information set that
identifies time t as a point of intervention and includes all the information
used to effect the intervention, such information being made specific below
in the various modes of intervention we consider. Note now that follow-
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ing the intervention, the available information set prior to observing Yt is
{It, Dt−1}, rather than just Dt−1.
The following section details the basic modes of intervention into the ex-

isting model at time t and the theory necessary to combine interventions of
essentially any desired form into the existing model, allowing the interven-
tion effects to be used both in forecasting from the current time onwards
and in retrospective time series analysis.

11.2 MODES OF FEED-FORWARD INTERVENTION
11.2.1 Ignoring observation Yt

The first mode of intervention involves simply treating Yt as an outlier.
Examples include the effects of strikes on sales and inventory levels, pricing
changes that lead to forward purchasing of goods, and other interventions
in the environment of the time series that may lead to a single observation
being quite discrepant and essentially unrelated to the rest of the series. In
such cases, although the observation is of critical importance to the com-
pany, perhaps it should not be used in updating the model for forecasting
the future since it provides no relevant information.

EXAMPLE 11.1 (continued). In the CP6 series, such an event is (retrospec-
tively) apparent at December 1955, where Sales leaps upwards by about
15% for just that month. This is the market response, in terms of imme-
diate purchasing of stocks, to a company announcement of a forthcoming
price rise. A second possible outlier is the very high value in January 1957
that presages a change in the overall level of Sales, but to a lower level than
the single point in January.
When such information exists, so that a discrepant observation is antic-

ipated, one possible, fail-safe reaction is to just omit the observation from
the analysis, treating it as if it were a true missing or unrecorded value.
Yt is uninformative about the future and so should be given no weight in
updating the model distributions. Thus,

It = { Yt is missing },

so that Dt = {It, Dt−1} is effectively equal to Dt−1 alone. The posterior
for the state vector at time t is just the prior, with (θt | Dt) ∼ N[mt, Ct],
where

mt = at and Ct = Rt.

Formally, this can be modelled in the DLM format in a variety of ways, the
simplest, and most appropriate, is just to view the observation as having
a very large variance Vt; formally, let Vt tend to infinity, or V −1

t tend to
0, in the model equations, so that the observation provides no information
for θt (nor for the scale parameter in the case of variance learning). In
the updating equations, the one-step ahead forecast variance Qt tends to
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infinity with Vt, and it follows easily that the posterior for θt is just the
prior, as required. Formally, then,

It = { V −1
t = 0 }

in this case.
A modification of this mode of intervention is often desirable, stemming

from the uncertainties associated with the sorts of events that suggest Yt be
ignored. Immediately following such events, it may be that the series will
develop in a rather different way than currently forecast, exhibiting delayed
effects of the events. Thus, for example, a huge increase in sales at time
t that represents forward buying before a previously announced increase
in price at t + 1 can be expected to be followed by a drop-off in sales at
time t + 1, and possibly later times, after the price increase takes place.
In order to adapt to the changing pattern after the omitted observation,
an additional intervention may be desired to increase uncertainty about
components of θt. In CP6, for example, the possible outlier in January
1957 is followed by Sales at a higher level than during 1956. This calls for
intervention of the second type, considered in the following section.

11.2.2 Additional evolution noise
A common response to changes in conditions potentially affecting the de-
velopment of the series is increased uncertainty about the future, reflected
by increased uncertainties about some or all of the existing model parame-
ters. The withdrawal of a major competing product in a consumer market
may be anticipated by feeding forward an estimated increase in the level of
sales, but it is surely the case that the uncertainty about the new level will
be greater than about the current level, possibly much greater. In other
instances, the response to an exception identified by a forecast monitoring
system may be simply to increase prior variances of some or all components
of the model. This is an appropriate reflection of the view that although
something has changed, it is difficult to attribute the change to a particu-
lar component. As a catch-all measure, the entire variance matrix Rt may
be altered to reflect increased uncertainty about all parameters without a
change in the prior mean at that would anticipate the direction of change.
This does, of course, lead to a loss of information on the entire state vec-
tor and is therefore an omnibus technique to be used in cases of complete
neutrality as to sources of change. Otherwise it is well to be selective,
increasing uncertainties only on those components that are viewed as po-
tentially subject to major change. In the above example, the change in the
sales market as it expands to meet the increased demand will evidence itself
in a marked increase in sales level, and also possibly in the observational
variance about the level, but is unlikely, for example, to seriously impact
upon the phases of components of seasonal patterns in sales.
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Generally, the model is open to interventions on components of θt that
increase uncertainties in this way, simply by adding in further evolution
noise terms paralleling those in equation (11.2). As in the sales example, it
is common that such interventions include a shift in mean in addition to an
inflation in uncertainty. All such interventions can be formally represented
in DLM form by extending the model to include a second evolution of the
state vector in addition to that in the routine model in (11.2).
Generally, suppose the intervention information to be given by

It = {ht, Ht},

where ht is the mean vector and Ht the covariance matrix of a random
quantity ξt, with

ξt ∼ N[ht, Ht].

Suppose also that ξt is uncorrelated with (θt−1 | Dt−1) and with ωt, so
that it is also uncorrelated with (θt | Dt−1). The intervention is effected
by adding the additional noise term ξt to θt after (11.2); equivalently, the
post-intervention prior distribution is defined via the extended evolution
equation

θt = Gtθt−1 + ωt + ξt, (11.5)

replacing (11.2). Thus,

(θt | It, Dt−1) ∼ N[a∗
t , R

∗
t ],

where

a∗
t = at + ht and R∗

t = Rt +Ht.

This allows for arbitrary shifts in the prior mean vector to the revised value
a∗
t . Some elements of ht may be zero, not anticipating the direction of

changes in the corresponding parameters. In practice, these mean changes
may be assigned by directly choosing the ht vector, the expected increment
in θt due to intervention. Alternatively, the adjusted mean a∗

t can be
specified directly and then ht deduced as ht = a∗

t − at.
This mode of intervention allows for many possible and practically useful

increases in variance through Ht. Note that some of the variances on
the diagonal of Ht (and the corresponding covariance terms off-diagonal)
may be zero, with the result that the corresponding elements of θt are
not subject to change due to intervention. This allows the forecaster the
flexibility to protect some components of the model from intervention, when
they are viewed as durable and unlikely to be subject to change. There will,
of course, be some correlation due to the off-diagonal terms in Rt. Again,
it is sometimes the case that the intervention variance matrix Ht will be
specified directly as the variance of the change in θt due to intervention,
the elements representing the uncertainty as to the nature and extent of
the change forecast as ht. Although obviously very flexible, it is difficult
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in general to assign appropriate values here, although as a general rule it
is desirable to err on the side of caution, with any change forecast via ht
being hedged with sufficient uncertainty that the model will be adaptive to
future data, rapidly identifying and estimating changes. In line with the use
of discount factors in structuring evolution variance matrices in standard
models, it is appropriate to extend the discount concept to intervention.
Thus, ifWt is structured using a standard set of discount factors, a matrix
Ht, with the same structure, models an extra change in θt with the same
correlation pattern in the evolution noise. The appropriateness of this is
apparent when the intervention is incorporated into standard DLM form,
as follows.

THEOREM 11.1. Conditional on information {It, Dt−1}, the DLM
(11.1-11.4) holds with the evolution equation (11.2) amended according
to (11.5), written now as

θt = Gtθt−1 + ω∗
t ,

where ω∗
t = ωt + ξt is distributed as

ω∗
t ∼ N[ht, W∗

t ],

withW∗
t =Wt +Ht. In addition, ωt is independent of θt−1.

Proof. Obvious from (11.5) and left to the reader.

�

This theorem confirms that the intervention can be written in the usual
DLM form, with a generalisation to a possibly non-zero mean for the evo-
lution noise vector.
This simple sort of structuring is particularly appropriate when ht = 000,

when the addition of ξt simply increases uncertainty about θt. An auto-
matic intervention technique described and illustrated in Section 11.5 below
uses this approach, and more discussion appears there. Similar techniques
are used in West and Harrison (1986a, 1989).

EXAMPLE 11.1 (continued). Consider the marked jump in level of CP6
Sales in January 1958. Suppose that this change was anticipated prior to
occurrence, being the result of planned market expansion. In line with
the previous sections, this change could be modelled through intervention,
feeding forward prior information about the change and allowing the level
parameter of any model to change. For concreteness, suppose a second-
order polynomial model with level and growth parameters µt and βt at
time t corresponding to January 1958. Thus, n = 2 and θ′

t = (µt, βt),
F′

t = E
′
2 = (1, 0) and

Gt = G = J2(1) =
(
1 1
0 1

)
.
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Suppose also that Vt = 15, a′
t = (865, 0), and

Rt =
(
100 10
10 2

)
.

Available information is such that a jump of roughly 100 is anticipated
in the level of Sales. Possible interventions, in the mode of this section,
include

(1) a simple shift in level, setting h′
t = (100, 0) and Ht = 000;

(2) more realistically, a shift in level as above but hedged with uncer-
tainty about the size of the shift via Ht = diag(100, 0), for example;

(3) as in (2) but with increased uncertainty about the new growth as
well as the new level, via Ht = diag(100, 25), say;

(4) as in (3) but including correlation between the changes in level and
growth via, for example,

Ht =
(
100 25
25 25

)
,

thus suggesting that larger changes in growth will be associated with
larger changes in level.

11.2.3 Arbitrary subjective intervention
The most general mode of intervention into the existing model is simply to
change the prior moments of θt to new values anticipating changes in the
series. Thus, suppose that the intervention information is given by

It = {a∗
t , R

∗
t },

where the post-intervention values a∗
t and R∗

t are given by the forecaster.
Note that this covers the case of the previous section, where in addition
to a possible mean shift, the post-intervention uncertainty always exceeds
that pre-intervention. It goes well beyond that special case, however. As
an extreme example, taking R∗

t = 000 implies that θt = a∗
t with probability

one; thus intervention informs precisely on the values of the parameters
at time t. More practically, it allows for cases in which uncertainty about
some of the parameters may decrease.
For forecasting Yt and further into the future, the post-intervention mo-

ments replace those in (11.4), and they are then updated as usual when
data are observed. A problem arises, however, when considering filtering
and smoothing the series for retrospective analysis. The problem is that
the post-intervention prior

(θt | It, Dt−1) ∼ N[a∗
t , R

∗
t ] (11.6)

is no longer consistent with the model (11.1-11.4). Filtering requires a
joint distribution for θt and θt−1 conditional on Dt−1 and the intervention
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information It, and the arbitrary changes made on the moments of θt to
incorporate intervention do not provide a coherent joint distribution. To
do so, we need to be able to express the changes due to intervention in a
form consistent with the DLM, in a way similar to that used in the previous
section in Theorem 11.1. This can be done in Theorem 11.2 below, based
on the following, general result.

Lemma 11.1. Let Kt be an n-square, upper triangular, non-singular ma-
trix, and ht any n-vector, and define

θ∗
t = Ktθt + ht,

where E[θt] = at and V[θt] = Rt. Then θ∗
t has moments a∗

t and R∗
t if Kt

and ht are chosen as follows:

Kt = UtZ−1
t ,

ht = a∗
t −Ktat,

whereUt and Zt are the unique, upper-triangular, non-singular square root
matrices of R∗

t and Rt respectively; thus R∗
t = UtU′

t and Rt = ZtZ′
t.

Proof. The matrices Ut and Zt exist and are unique since R∗
t and Rt

are symmetric, positive definite matrices (see, for example, Graybill 1969).
They define the Cholesky decomposition of these variance matrices and are
easily computed. From the definition of θ∗

t it follows that

a∗
t = Ktat + ht,

and so the expression for ht is immediate for any given Kt. Secondly,

R∗
t = KtRtK′

t;

thus

UtU′
t = (KtZt)(KtZt)′.

Now KtZt is a square, non-singular, upper-triangular matrix, and since
the matrix Ut is unique, it follows that Ut = KtZt. The expression for Kt

follows since Zt is non-singular.

�

The Lemma shows how a second evolution of θt to θ∗
t can be defined

to achieve any desired moments in (11.6). It is useful to think of the
intervention in these terms, but for calculations it is often desirable to
incorporate this second intervention into the original DLM, as follows.

THEOREM 11.2. Suppose that the moments a∗
t and R∗

t in (11.6) are
specified to incorporate intervention, and define Kt and ht as in Lemma
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11.1. Then (11.6) is the prior obtained in the DLM (11.1-11.4) with evolu-
tion equation (11.2) amended to

θt = G∗
tθt−1 + ω∗

t , ω∗
t ∼ N[ht,W∗

t ], (11.7)

where, given Dt−1 and It, ω∗
t is uncorrelated with θt−1 and

G∗
t = KtGt,

ω∗
t = Ktωt + ht,

W∗
t = KtWtK′

t.

Proof. An easy deduction from the lemma, and left to the reader.

�

Thus, any interventions modelled by (11.6) can be formally, and rou-
tinely, incorporated into the model by appropriately amending the evolu-
tion equation at time t, reverting to the usual equations for future times
not subject to intervention. As with the intervention modes in Sections
11.2.1 and 11.2.3, this is important since it means that the usual updat-
ing, forecasting, filtering and smoothing algorithms apply directly with
the post-intervention model. Note that in forecasting more than one-step
ahead, interventions for future times can be simply incorporated in the
same fashion, by appropriately changing the model based on the forecast
moments for the θ vector at those times, pre- and post-intervention.

EXAMPLE 11.1 (continued). Consider again intervention into the CP6
model in January 1958. The four example interventions earlier considered
can all be phrased in terms of (11.7). The details are left as exercises
for the reader. Additionally, of course, other, arbitrary changes can be
accommodated via this mode of intervention. As an example, suppose
that a∗

t
′ = (970, 0) and R∗

t = diag(50, 5). This represents direct interven-
tion to anticipate a new level of 970, with variance 50 decreased from the
pre-intervention value of 100, new growth estimated at 0 with increased
variance of 5. Additionally, the post-intervention level and growth are un-
correlated.

11.2.4 Inclusion of intervention effects
There is one further mode of intervention to be explored. The preceding
modes allow for the information It by appropriately amending the model
at the time (or in advance if the information is available); in each case the
dimension n of the model remains fixed, the intervention providing changes
to the model parameters. Sometimes it is of interest to isolate the effects of
an intervention, providing extra parameters that define the model changes.
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EXAMPLE 11.1 (continued). Consider once more the CP6 intervention.
To isolate and estimate the jump in level let γt represent the change, so
that post-intervention, the new level is µ∗

t = µt + γt. The quantity γt is
an additional model parameter that can be included in the state vector
from now on. Thus, at the intervention time t, extend the model to three
parameters,

θ∗
t = (µ∗

t , βt, γt)
′.

The DLM at time t is now subject to an additional evolution after (11.2),
namely 

µ∗
t

βt
γt


 =


 1 0
0 1
0 0


(

µt

βt

)
+


 1
0
1


 γt,

with the distribution assigned to γt determining the expected change in
level. In vector form

θ∗
t = Ktθt + ξt,

where

Kt =


 1 0
0 1
0 0


 and ξt =


 1
0
1


 γt.

For example, an anticipated change of 100 with a variance of 50 implies
γt ∼ N[100, 50]. As a consequence,

(θ∗
t | It, Dt−1) ∼ N[a∗

t , R
∗
t ],

where

a∗
t =Ktat + ht,

R∗
t =KtRtK′

t +Ht,

with h′
t = E[ξ′

t | It, Dt−1] = 100(1, 0, 1) = (100, 0, 100) and

Ht = V [ξt | It, Dt−1] = 50


 1 0 1
0 0 0
1 0 1


 .

In addition, the observation equation is altered so that F′
t = (1, 0, 0) at

time t. From t onwards, the model remains 3-dimensional, the Ft vectors
all extended to have a third element of 0, the Gt matrices extended from
J2(1) to 

 1 1 0
0 1 0
0 0 0


 ,
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and similarly, the 3× 3 evolution variance matrices for times after t having
third rows and columns full of zeros. Thus, as new data are processed,
the posterior for γt is revised, learning about the change that took place
at time t. An important variation on this technique is to allow for such
changes in level to occur over two (or more) time periods, with incremental
changes γt, γt+1, for example, leading to a gradual step up to a new level
at time t + 1. This requires a model extension to add more parameters.
As an aside, note that it is possible and sometimes appropriate to relate
the parameters in order to restrict the increase in dimension to just one,
as is done in modelling advertising campaign effects in Harrison (1988), for
example. Adding parameters is particularly useful following intervention
action in the environment of the series to attempt control and produce
changes. Changes in pricing policy or advertising strategy, for example,
are effected in an attempt to change sales levels. Intervention effects such
as γt (and γt+1, etc.) then provide measures of just how much change
occurred.
This sort of model extension intervention mode can be phrased in DLM

terms as in Theorem 11.2, although in this case the matrixG∗
t = KtGt will

not be square. Extending the model to include an additional k parameters
at a particular time tmeans thatG∗

t will be (n+k)×n if the parameters are
unrelated. The details of such extensions, similar to those in the example,
are essentially as in Theorem 11.2 with the additional feature of an increase
in model dimension. See also Harrison (1988) for approaches in which the
increase in dimensionality is restricted.

11.2.5 Model analysis with intervention
The main reason for expressing all modes of intervention in DLM form
is that the existing theory can be applied to formally incorporate inter-
ventions of essentially arbitrary forms, with the model {Ft, Gt, Vt, Wt}
amended according to the mode of intervention. It then follows that the
theory applies, with, for example, the elements at andRt replaced through-
out by their post-intervention (starred) values. In particular, in filtering
and smoothing for retrospective time series analysis and estimation of the
time trajectories of model components and parameters over time, it is vital
that these subjective changes at intervention times be formally incorpo-
rated in model form so that their implications for times past, as well as for
forecasting the future, are properly understood.
There are certainly other modes of intervention and subjective interfer-

ence with a routine statistical model that may be used in practice. In
particular, it is worth pointing out that if, in retrospect, it is seen that an
intervention in the past was inappropriate, then in filtering back beyond
that point of intervention it may be well to ignore the intervention. Thus,
for example, the filtered distribution for time t−1 just prior to intervention
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at t can be taken as it was at the time, simply the posterior given Dt−1,
and filtering continuing on back in time from this new starting point.
Finally note that the concepts apply directly to models with unknown

observational variances, the actual techniques being directly appropriate
(although T distributions replace normal distributions, as usual). Also, it
should be apparent that the specific normal, linear structure used through-
out is quite secondary, the intervention models being obviously appropriate
and useful more generally. If we simply drop the normality assumptions
and use distributions only partially specified in terms of means and variance
matrices, for example, the techniques apply directly. However, no further
development is given here of this, or other, intervention ideas. We proceed
in the next section with illustrations of the main modes of intervention
detailed above.

11.3 ILLUSTRATIONS
11.3.1 CP6 Sales
An illustrative example is given using the CP6 Sales data. The objective
of this example is to demonstrate just how effective simple interventions
can be if relevant feed-forward information exists and is appropriate. This
example is purely hypothetical, the interventions being used are easily seen
to be adequate descriptions of the discontinuities in the series. In practice,
of course, the interventions are usually made speculatively, and though
often they may be dramatically effective, will usually not be ideal.
The second-order polynomial model introduced in Example 11.1 for the

CP6 Sales data are used here. The basic time variation in monthly level and
growth parameters is determined by a single discount factor of 0.9; thus,
each month, the uncertainty about level and growth increases by roughly
10%. The observational variance is constant, set initially at Vt = V = 64,
with standard deviation of 8 determining purely random variation about
the underlying level.
The features of interest are as follows.

(1) At time t = 1, January 1955, the analysis begins with an initial
prior for the level and growth θ1 = (µ1, β1)′ specified by prior
mean a1 = (600, 10)′, and variance matrix R1 = diag(10000, 25).
The prior standard deviation for the level, set at 100, is extremely
large, representing a very vague initial prior. The one-step forecast
distribution for Y1 thus has mean 600, and variance 10064; the 90%
forecast interval symmetrically located about the mean appearing
in Figure 11.3 reflects this uncertainty. As data are sequentially
processed as usual, the one month ahead forecasts are calculated,
and for each month, the forecast means with 90% forecast intervals
appear in the figure. During the first year of data, Sales closely
follows a steep, linear growth and one-step forecasts are accurate.
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Figure 11.3 CP6 forecasts with ideal interventions

(2) Intervention is made at December 1955 to allow for an anticipated
outlier; this is predicted as a response to forward-buying due to a
future price rise announcement. Thus, for t = 12, the observational
variance is infinite, or V −1

12 = 0 as in Section 11.2.1.
(3) In addition, following the price rise, a change in growth is antic-

ipated in the new year and so, rather than waiting until January
to anticipate the change, an additional intervention is made to the
model in December. The intervention is neutral, specifying an in-
crease in uncertainty about level and growth with no specific direc-
tion of change in mind. Specifically, as in Section 11.2.2, the prior
variance matrix

R12 =
(
41.87 6.11
6.11 1.23

)

is increased to R∗
12 by the addition of

H12 =
(
100 25
25 25

)
.

Thus, additional zero-mean normal changes to level and growth have
standard deviations of 10 and 5 respectively, and correlation of 0.5,
so that positive growth changes are associated with positive level
changes.
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(4) A third change is made at t = 12, this being to alter the observa-
tional variance for the future from V = 64 to V = 225, the standard
deviation increasing from 8 to 15. This reflects the views that firstly,
variation is likely to be more erratic after this first year of fast mar-
ket growth, and secondly, that higher variation in Sales is expected
at higher levels.
The effects of these interventions are clear in Figure 11.3, an arrow

on the time axis indicating the intervention. After ignoring the
December 1955 observation, the forecast interval width increases,
reflecting greater uncertainty about θ12 following intervention and
the increased value of V . Observing Sales sequentially throughout
1956, the model adapts and proceeds adequately to the end of the
year. Note also the wider forecast intervals due to the larger value
of V .

(5) The second set of interventions takes place for t = 25, January 1957,
where the current prior for level and growth is given by

a25 =
(
770.8
1.47

)
and R25 =

(
114.4 13.2
13.2 2.2

)
.

Anticipating a marked increase in Sales level following a takeover,
an estimated change in level of 80 units is adopted with a variance
of 100. No effects on growth are expected, or allowed, by using an
additional evolution term ξ25 as in Section 11.2.2, with mean and
variance matrix

h25 =
(
80
0

)
and H25 =

(
100 0
0 0

)
,

respectively.
(6) In addition to this estimated change in level, the January 1957 ob-

servation is discarded as an outlier, reflecting a view that the marked
change anticipated in the new year will begin with a maverick value,
as the products that are to be discontinued are sold cheaply.
The interventions have a clear effect on short-term forecast accu-

racy, seen in the figure. Again, for the remainder of 1957 things are
stable.

(7) The third intervention comes in January 1958. Another jump in
level is anticipated, this time of about 100 units. Unlike the previous
change, however, there is a feeling of increased certainty about the
new level. Also, it is anticipated that growth may change somewhat
more markedly than already modelled through the routine discount
factor, and so the prior variance of the growth is to be increased.
This intervention, then, is of the mode in Section 11.2.3. The prior
moments, namely

a37 =
(
864.5
0.86

)
and R37 =

(
91.7 9.2
9.2 1.56

)
,
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Figure 11.4 Filtered trend in CP6 with ideal interventions

are simply altered to

a∗
37 =

(
970
0

)
and R∗

37 =
(
50 0
0 5

)
.

The forecasts in Figure 11.3 adapt accordingly, and analysis pro-
ceeds as normal. As a whole, the one-step forecasting performance
has been good due to the appropriate, though entirely subjective,
interventions.

(8) At the end of the analysis, t = 60 in December 1959, backward
filtering provides a retrospective look at the development over time.
Figure 11.4 provides a plot of the retrospectively estimated level
of the series, with mean and 90% interval taken from the filtered
posterior distributions p(µt|D60) (t = 1, . . . , 60). Note, of course,
that D60 incorporates the interventions. The local linearity of the
trend is evident, and startlingly so, as is the fairly high precision
with which the trend is estimated. Clearly, the random noise in
the data about the trend is a dominant feature of the series, the
underlying trend being smooth and sustained apart from the abrupt
changes allowed for by intervention.
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11.3.2 UK marriages
The second illustration concerns the data in Table 11.2, providing quarterly
total numbers of marriages registered in the UK during the years 1965 to
1970 inclusive. The data, taken from the UK Monthly Digest of Statistics,
are given in thousands of registrations.

Table 11.2. Numbers of marriages in UK (in thousands)

Year Quarter
1 2 3 4

1965 111.2 83.5 129.5 97.8
1966 114.7 84.6 131.1 106.3
1967 117.5 80.6 143.3 97.6
1968 131.3 77.5 145.9 108.0
1969 88.1 112.6 152.0 98.5
1970 91.2 117.5 160.0 102.2

Before examining the data more closely, consider the pattern that the
marriage figures could be expected to take over a year on general grounds.
It might be strongly believed that the majority of marriages take place in
late spring and summer in the UK, many people preferring to get married
when there is a reasonable chance of good weather. Certainly there are
short exceptional times, such as Christmas and Easter, that are particularly
popular, but generally, a strong annual cycle is anticipated, with a high
peak in the third quarter, that contains the favoured holiday months of
July and August. In addition, the winter months of November, December,
January and February should see the trough in the seasonal pattern.
Consider now the data in the table, restricting attention to the first four

years, 1965 to 1968 inclusive. The data for these four years are plotted as
the first part of Figure 11.5. Over these years there is certainly a strong
seasonal pattern evident, though not of the form anticipated in the previous
paragraph. The summer boom in marriages is there in the third quarter,
but there is a secondary peak in the first quarter, the months January,
February and March. In addition, the major trough in numbers comes in
the second, spring and early summer, quarter rather than in the fourth,
early winter quarter. These features are rather surprising though clearly
apparent in each of these four years as they were prior to 1965. It can be
seen that the amplitude of the seasonality increases somewhat in mid-1967
and that this increase is sustained during 1968, but the form of the pattern
is still the same: secondary peak in quarter 1; deep trough in quarter 2;
high peak in the summer, quarter 3; and secondary trough in quarter 4.
Before proceeding to explain the rather surprising seasonality here, con-

sider a simple model for forecasting the series as it stands. Suppose that
we use a second-order polynomial for the trend in the non-seasonal level
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Figure 11.5 Marriage data and forecasts: no interventions

of marriage, with a full four seasonal effects provided, as usual, by the
Fourier representation with three Fourier coefficients. Thus, the model has
five parameters in θt : the level, growth and three Fourier coefficients. In
addition, assume now that the observational variance is to be estimated,
being assumed constant, Vt = V, for all time. The initial prior information
assumed at t = 1, the first quarter of 1965, is as follows.

• The observational variance has an initial inverse gamma distribu-
tion with 12 degrees of freedom and estimate of 9. Thus, the prior
estimate of standard deviation is 3. Equivalently, V has a scaled,
inverse χ2

12 distribution.
• The initial posterior for θ0, the parameters at the end of 1964 given
historical data and experience, is multivariate T12, the mean and
scale matrix taken as

m0 = (100, 1; −7.5, −7.5, 17.5)′

and

C0 = diag(16, 1; 4.5, 4.5, 2.5).

Thus, the level in late 1964 is estimated as 100, with scale 16,
thus having variance (from the T12 distribution) of 16 × 12/10 =
19.2. Similarly, the quarterly growth in level at the time is ini-
tially estimated as 1 with scale of 1. Transforming from Fourier
coefficients to seasonal factors (Section 8.6.4), the prior for the 3
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Fourier coefficients, with mean (−7.5, −7.5, 17.5)′ and scale ma-
trix diag(4.5, 4.5, 2.5), is seen to be consistent with initial estimates
of seasonal effects given by (10,−25, 25,−10)′, these being based on
pre-1965 data and experience and clearly anticipating the seasonal
pattern over 1965-1968.
• Two discount factors, one for the linear trend and one for the sea-
sonal pattern, are required to complete the model definition. Both
components are fairly stable over time, and so the discount factors
are chosen to be fairly high, both set at 0.95. Concerning the sea-
sonal component, this should allow for adequate adaptation to the
observed increases in amplitude of the seasonal pattern at higher
levels of the data.

With this model, the sequential, one-step ahead forecasting and updating
analysis proceeds and is illustrated in the first part of Figure 11.7. Up to the
end of 1968, the graph gives one-step ahead forecast means and symmetric
90% intervals about the means, with the data superimposed. The strong
seasonal pattern comes through in the forecasts, and it is clear that forecast
accuracy is reasonably good. There is a deterioration in accuracy during
late 1967 and early 1968, when the amplitude of the seasonal swings in
the data increases, but the model adapts to this in late 1968, the final 2
observations in that year being well inside the forecast intervals.
Up to this point, everything is essentially routine, the data being forecast

in the short-term with a simple, standard model closed to interventions.
At the end of 1968, time t = 16, the prior distribution for the next quarter,
t = 17, is summarised by

(θ17 | D16) ∼ T28[a17, R17],

where

a17 = (117.1, 0.84; −8.35, −9.81, 19.03)′ (11.8)

and

R17 ≈ block diag
{(

5.71 0.56
0.56 0.07

)
; 2.79, 2.66, 1.35

}
. (11.9)

The first 2 × 2 matrix here refers to the level and growth elements, the
final three to the (essentially uncorrelated) Fourier coefficients. For the
observational variance, V has a scaled, inverse χ2

28 distribution with point
estimate S16 = 16.16. The latter part of Figure 11.5 provides a graphical
display of the implications for the future. Forecasting from the final quarter
of 1968 with no changes to the model, the intervals displayed are, as usual,
90% forecast intervals symmetrically located about the step ahead forecast
means.
Consider an explanation for the seasonal pattern and why, in late 1968,

this would have changed our view of the future of the marriage series,
prompting an intervention at the time. The explanation lies in the UK
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income tax laws. Income is only taxed above certain threshold levels, the
non-taxable portion of income being referred to as a tax-free allowance,
and every employed person has a basic allowance. On getting married, one
of the marriage partners is eligible for a higher tax-free allowance, referred
to as the married person’s allowance (although during the time span of
this data it was called a married man’s allowance). Now, in the good old
days of the 1960s, the law was such that a couple could claim this extra
allowance for the entire tax year during which they were married, the tax
years running from April to March inclusive. Thus, for example, a wedding
in late March of 1967 led to an entitlement to reclaim some portion of tax
paid during the previous twelve months when both partners were single.
Delaying this wedding for a week or two to early April would mean that this
extra income would be lost since a new tax year has begun. The seasonal
pattern is now explained; many marriages were obviously held in the first
quarter of each year to maximise financial benefit, and the second quarter
saw a huge slump in numbers since the resulting tax benefits were minimal.
In forecasting ahead from late 1968 over the next two years, the latter

part of Figure 11.5 is perfectly acceptable on the basis of the historical in-
formation as it stands. However, in early 1968 there was an announcement
that the tax laws were being revised. The change was simply that beginning
in 1969, this entitlement to reclaim tax paid during the current tax year
was abolished; from then on, there would be no tax incentive for couples
to avoid marrying in the second quarter. Knowing this and understanding
the effect that the old law had on marriages, a change in the forecasting
model is called for. On the grounds of a simple cycle following the UK
seasons as earlier discussed, it is assumed in late 1968 that the secondary
peak in the first quarter will disappear, with marriages transferring to the
more attractive second and third quarters. The levels in the second quarter
will increase markedly from the totally artificial trough, those in the third
quarter rather less so.
As an illustration of intervention to incorporate this view, suppose that

in predicting from the final quarter of 1968, the expected seasonal effects
are taken as (−16, 0, 40, −24)′. Thus, the anticipation is that numbers of
marriages grow consistently throughout the calendar year to a high peak
during the summer, then crash down to a low trough during the final
quarter of the year. Transforming to Fourier coefficients (Section 8.6.4),
it is seen that these expected seasonal effects are consistent with expected
Fourier coefficients of about (−28, 12, 12)′, although there is clearly a fair
degree of uncertainty about just how the pattern will change. What is
fairly acceptable, however, is the view that the tax changes are unlikely to
affect the non-seasonal level of marriages, nor the rate of growth of this
level. In the mode and notation of Section 11.2.3, an arbitrary change is
made to the current prior moments a17 and R17 to accommodate this view.
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Figure 11.6 Marriage data and step ahead forecasts
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Figure 11.7 One-step ahead Marriage forecasts
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The revised values in (11.6) are taken as

a∗
17 = (117.1, 0.84; −28, 12, 12)′

and

R∗
17 = block diag

{(
5.71 0.56
0.56 0.07

)
; 8, 8, 4

}
.

These replace the values in (11.8) and (11.9). Note that the level and
growth components are unchanged, and they are taken as uncorrelated
with the seasonal parameters. Figure 11.6 displays the post-intervention
step ahead forecasts made in late 1968 for the next 2 years, the display
being analogous to that in Figure 11.5 made pre-intervention. The forecast
intervals are slightly wider, reflecting the increase in uncertainty about the
seasonal pattern. The crosses on the graph are the actual data for those
2 years. Note that the pattern did in fact change markedly in line with
the intervention-based forecasts, although several of the actual values are
rather low relative to forecast. This suggests, in retrospect, that the non-
seasonal level was very slightly over-estimated at the end of 1968. Moving
through years 1969 and 1970, the data are sequentially processed and the
model adapts as usual. The latter part of Figure 11.7 now completes the
display of the one-step forecasting activity, and the adequacy of the model
is apparent.
The main point here to be restressed is that an understanding of the

mechanisms influencing, and possibly driving, systems is the key to effective
interventions necessary to adapt to changing conditions.

11.4 MODEL MONITORING
11.4.1 Bayes’ factors for model assessment
The focus is now switched to problems of feed-back intervention, consid-
ering models operating subject to continual monitoring to detect deteri-
orations in predictive performance that are consistent with some form of
model breakdown (e.g., changes in parameters, etc.). This section discusses
automatic methods of sequentially monitoring the forecasting activity to
detect breakdowns, the assessment of model performance being based on
purely statistical measures of accuracy. At this most basic level, the prob-
lem of model assessment is simply one of examining the extent to which
the observed values of the time series are consistent with forecasts based
on the model. In the DLM framework, the focus is on consistency of each
observation with the corresponding one-step ahead forecast distribution.
Equivalently, the assessment can be made on the basis of standardised,
one-step ahead forecast errors, measuring the extent to which they deviate
from model hypothesis of standard normal, or T distributed, uncorrelated
quantities. There are many statistical techniques with which to examine
such questions, some specifically designed with time series data in mind,
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others of use more widely. Central to all such techniques is the notion of
assessing model performance relative to that obtained through using one
or more alternative models. With the objectives of detecting changes in
parameters, outlying observations, and so forth in mind, these alternatives
should be designed to allow for the forms of behaviour in the series that are
consistent with such changes, wild observation etc. There are clearly many
possible forms that these alternatives can take, the specific forms chosen to
be based on the specific forms of departure from the existing, routine model
that are anticipated. We consider some possible, generally useful forms be-
low and describe how they may be used in automatic model monitoring and
assessment. Initially, however, the basic concepts of model assessment and
sequential monitoring are detailed in a general setting. Much of the basic
material here is developed from West (1986a). The basic mathematical in-
gredients of sequential model monitoring have already been introduced in
informal settings in previous chapters, notably Section 10.2.5, the keystone
being provided by Bayes’ factors, defined formally below.
Consider any two models with the same mathematical structure, differing

only through the values of defining parameters, for example, in the values
of discount factors. Denote any model by the symbol M , and let these two
models be denoted byM0 andM1. M0 will have a special status, being the
routine or standard model that is used subject to continual assessment. M1,
(and possibly further models M2, etc., at a later stage), is an alternative
that is introduced to provide assessment of M0 by comparison. At time t,
each model provides a predictive distribution for Yt given Dt−1, as usual.
Formally including the specification of the models in the conditioning, we
write these densities as

p(Yt|Dt−1,Mi), (i = 0, 1)

with Dt−1 being the historical information that is common to the two mod-
els at time t. The inclusion of Mi differentiates between the two models.
For simplicity of notation in this section, however, we temporarily discard
this general notation, making clear the dependence of the distributions on
the model using the subscript 0 or 1. Thus, the predictive densities at time
t are here denoted by

pi(Yt|Dt−1) = p(Yt|Dt−1,Mi), (i = 0, 1)

respectively.

Definitions 11.1.

(i) The Bayes’ factor for M0 versus M1 based on the observed value
of Yt is defined as

Ht = p0(Yt|Dt−1)/p1(Yt|Dt−1).

(ii) For integers k = 1, . . . , t, the Bayes’ factor for M0 versus M1 based
on the sequence of k consecutive observations Yt, Yt−1, . . . , Yt−k+1
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is defined as

Ht(k) =
t∏

r=t−k+1

Hr =
p0(Yt, Yt−1, . . . , Yt−k+1|Dt−k)
p1(Yt, Yt−1, . . . , Yt−k+1|Dt−k)

.

These Bayes’ factors, or weights of evidence (Jeffreys 1961; Good 1985
and references therein; West 1986a), provide the basic measures of pre-
dictive performance of M0 relative to M1. For each k, Ht(k) measures
the evidence provided by the most recent (up to and including time t) k
consecutive observations. Some basic features of Bayes’ factors are noted:

(1) Setting k = 1 in (ii) leads to the special case (i): Ht(1) = Ht, for
all t.

(2) Taking k = t, the Bayes’ factor based on all the data are Ht(t).
(3) The Bayes’ factors for M1 versus M0 are the reciprocals of those for

M0 versus M1, Ht(k)−1.
(4) Evidence for or against the model M0 accumulates multiplicatively

as data are processed. Specifically, for each t > 1,

Ht(k) = Ht Ht−1(k − 1), (k = 2, . . . , t.)

(5) On the log scale, evidence is additive, with

log[Ht(k)] = log(Ht) + log[Ht−1(k − 1)], (k = 2, . . . , t.)

(6) Following Jeffreys (1961), a log Bayes’ factor of 1 (−1) indicates
evidence in favour of model 0 (1), a value of 2 or more (−2 or less)
indicating the evidence to be strong. Clearly, the value 0 indicates
no evidence either way.

The definition of Bayes’ factors is general, obviously applying outside the
confines of normal DLMs. In considering specifically the possibilities that
in model M0, Yt may be a wild, outlying observation or that the defining
parameters in M0 may have changed at (or before) time t, the alternative
M1 should provide for the associated forms of departure of the observa-
tions from prediction under M0. Some possible forms for p1(Yt | Dt−1) are
discussed in Section 11.4.3. Notice, however, that it is not actually neces-
sary to construct a fully specified alternative model for the data; all that is
needed is a suitable sequence of alternative, one-step forecast densities that
provide the denominators of the Bayes’ factors. Once appropriate densities
are defined, they may be used without further consideration of particular
forms of departure from M0 that may lead to such a density. This is im-
portant in practice since the derived Bayes’ factor is easily computed and
forms the basis for sequential monitoring even though a formal model M1
has not been constructed.
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11.4.2 Cumulative Bayes’ factors
In considering how the Bayes’ factors may be applied in monitoring M0,
assume for the moment that appropriate densities have been defined; thus
the sequence p1(Yt|Dt−1), t = 1, . . . , is available to base the Bayes’ factors
upon. Assume here that the alternatives are appropriate for the deviations
from M0 and forms of departure of the data from M0 that are of interest.
The overall Bayes’ factor Ht(t) is a basic tool in overall model assess-

ment. In the monitoring context, however, the focus is on local model
performance, and here the individual measuresHt and the cumulative mea-
sures Ht(k) for k < t are key. As an illustration of this, suppose that t = 6
and that Hr = 2 for r < 6. Thus, each of the first five observations are well
in accord with the standard model M0, their individual Bayes’ factors all
being equal to 2. Consequently, H5(5) = 32, representing the cumulative
evidence for M0 relative to M1 from the first five observations. Suppose
that Y6 is very unlikely under M0, out in the tails of the forecast distri-
bution. Then even though it may be extremely discrepant, the cumulative
Bayes’ factorH6(6) may still exceed 1, and even be much larger than 1, thus
indicating no evidence against M0. Clearly, we would require H6 ≤ 1/32,
an extremely small Bayes’ factor, to even begin to doubt M0. The problem
is that the evidence in favour of the standard model from earlier observa-
tions masks that against it at time 6 in the overall measure. Hence the need
to consider the Bayes’ factors from individual observations as they arise.
In addition, it is important to look back over groups of recent observations
when considering the possibility of small or gradual change in a time series,
consistent with a shift in the Bayes’ factors from favouringM0 to favouring
M1. In such cases, where observations gradually drift away from forecasts,
the individual Bayes’ factors, although small, may not be small enough that
they signal the changes individually, needing to be cumulated to build up
evidence against M0. For each k, Ht(k) assesses the fit of the most recent
k observations. A single small value of Ht(1) = Ht provides a warning of a
possible outlier or the onset of change in the series at time t. A small Ht(k)
for k > 1 is indicative of possible changes having taken place (at least) k
steps back in the past. To focus on the most likely point of change, we
can identify the most discrepant group or recent, consecutive observations
by minimising the Bayes’ factors Ht(k) with respect to k. This may be
done simply, sequentially as the standard model M0 is updated, using the
following result (West 1986a).

THEOREM 11.3. With Ht and Ht(k) as in Definition 11.1, let

Lt = min
1≤k≤t

Ht(k),
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with L1 = H1. Then the quantities Lt are updated sequentially over time
by

Lt = Htmin{1, Lt−1}

for t > 1. The minimum at time t is taken at k = lt, with Lt = Ht(lt),
where the integers lt are sequentially updated via

lt =
{
1 + lt−1, if Lt−1 < 1,

1, if Lt−1 ≥ 1.

Proof. Since Ht(1) = Ht and for 2 ≤ k ≤ t, Ht(k) = HtHt−1(k− 1), then

Lt = min{Ht, min
2≤k≤t

HtHt−1(k − 1)}

= Ht min{1, min
2≤k≤t

Ht−1(k − 1)}

= Ht min{1, min
1≤j≤t−1

Ht−1(j)}

= Ht min{1, Lt−1},

as stated. Note that Lt = Ht if and only if lt = 1, otherwise Lt = HtLt−1
and lt = 1 + lt−1, providing the stated results.

�

The focus on the local behaviour of the series is evident in Lt. If at
time t− 1, the evidence favours the standard model M0 so that Lt−1 ≥ 1,
then Lt = Ht, and decisions about possible inadequacies of the model are
based on Yt alone. If Ht is very small, then Yt is a possible outlier or
may indicate the onset of change. If the evidence is against M0 before
time t with Lt−1 < 1, then evidence is cumulated via Lt = HtLt−1, and lt
increases by 1. lt is termed the run-length at time t, counting the number
of recent, consecutive observations that contribute to the minimum Bayes’
factor. The local focus is geared to detecting slow, gradual change. To
see this, note that a relatively slow or gradual change beginning at time t
leads to a sequence of consecutive values Ht+1, Ht+2, . . . that are small,
though not exceedingly so. Hence, starting from Lt = 1, subsequent values
Lt+1, . . . will drop rapidly as the evidence against M0 is built up. The
fact that M0 was adequate prior to time t does not now mask this local
breakdown since that evidence, being of historical relevance only, has been
discarded in moving at time t to Lt = 1.
The sequence {Lt} provides a sequential monitor, or tracking, of the

predictive performance of M0 relative to M1. The simplest mode of op-
eration involves monitoring the sequence until evidence of inadequacy of
M0, as measured by a small value of Lt at the time, is sufficiently great
to warrant intervention. This simple detection of model breakdown is the
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primary goal here; once detected, the forecaster may intervene in feed-back
mode, attempting to correct the model retrospectively. This use of the
Bayes’ factors has much in common with standard tracking signals based
on sequential probability ratio tests (SPRTs), that has a long history, go-
ing back to the early work of Wald in the 1940s (Page 1954; Barnard 1959;
Berger 1985, Chapter 7). Specifically, let τ be a prespecified threshold for
Bayes’ factors, defining the lower limit on acceptability of Lt; τ lies be-
tween 0 and 1, values between 0.1 and 0.2 being most appropriate. If Lt

exceeds τ, then M0 operates as usual. Even though the evidence may be
against M0 in the sense that Lt < 1, it is not viewed as strong evidence
unless Lt < τ. From Theorem 11.3, if in fact τ < Lt < 1, then Lt+1 < Lt if
and only if Ht+1 < 1. If, however, Lt falls below the threshold, breakdown
in predictive performance of M0 is indicated, and we have the following
considerations:
If Lt < τ , then

• If lt = 1, then Lt = Ht and the single observation Yt has led to
the monitor signal. There are several possible reasons for such an
extreme or discrepant observation. Yt may be an outlier under M0,
in which case it may be rejected and M0 used as usual for the next
observation stage. Alternatively, Yt may represent a major depar-
ture from M0 at time t, such as a level change, for example, that
M1 is designed to allow for. This inability to distinguish between
an outlying observation and true model changes based on a single,
discrepant observation dogs any automatic monitoring scheme. The
need for some form of intervention is paramount.
• If lt > 1 then there are several observations contributing individual
Bayes’ factors to Lt, suggesting departure of the series from M0 at
some time past. The suggested time of onset of departure is lt steps
back at time t− lt + 1.

It is obviously possible to extend the approach to consider two or more
alternative forecast densities, leading to a collection of monitoring signals.
For example, with two alternativesM1 andM2, the application of Theorem
11.3 leads to sequentially updated quantities Li,t for i = 1 and 2 respec-
tively. Then the standard analysis will proceed as usual unless either of the
minimum Bayes’ factors L1,t and L2,t falls below prespecified thresholds τ1
and τ2.

11.4.3 Specific alternatives for the DLM
Within the DLM framework, the predictive distributions are, of course,
normal or T depending on whether the observational variances are known
or unknown. We consider the normal case for illustration, the following fun-
damental framework being used throughout this section. Suppose that the
basic, routine model M0 to be assessed is a standard normal DLM produc-
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ing one-step ahead forecast distributions (Yt | Dt−1) ∼ N[ft, Qt] as usual.
Assessing consistency of the observed values Yt with these distributions is
essentially equivalent to assessing consistency of the standardised forecast
errors et/Q

1/2
t = (Yt − ft)/Q1/2

t with their forecast distributions, standard
normal, and the hypothesis that they are uncorrelated. Thus, for discus-
sion in this section, Bayes’ factors are based on the predictive densities of
the forecast errors, simply linear functions of the original observations. In
the context of sequential monitoring, the focus lies not on the historical
performance of the model, but on the local performance; it is the extent to
which the current and most recent observations accord with the model that
determines whether or not some form of intervention is desirable. To start
then, consider only the single observation, equivalently the single forecast
error, and without loss of generality, take ft = 0 and Qt = 1, so that under
M0, the forecast distribution for et = Yt is simply

(et | Dt−1) ∼ N[0, 1],

and so

p0(et | Dt−1) = (2π)−1/2exp{−0.5e2t}.

Within the normal model, there are various possible alternatives M1 that
provide for the types of departure form M0 encountered in practice. Key
examples are as follows.

EXAMPLE 11.2. An obvious alternative is the level change model M1 in
which et has a non-zero mean h with

p1(et | Dt−1) = (2π)−1/2exp{−0.5(et − h)2}.

For any fixed shift h, the Bayes’ factor at time t is

Ht = p0(et | Dt−1)/p1(et | Dt−1) = exp{0.5(h2 − 2het)}.

Ranges of appropriate values of h may be considered by reference to values
of the Bayes’ factor at various, interesting values of the error et. As an
illustration, suppose that the error is positive and consider the point at
which Ht = 1, so that there is no evidence from et alone to discriminate
between M0 and M1. At this point, log(Ht) = 0 and so, since h is non-
zero, h = 2et. To be indifferent between the models on the basis of an error
et = 1.5, for example, (at roughly the upper 90% point of the forecast
distribution) suggests that h = 3. Similarly, suppose that a threshold
Ht = τ, (0 < τ << 1), is specified, below which the evidence is accepted
as a strong indication that et is inconsistent with M0. A threshold of −2
for the log-Bayes’ factor implies τ = e−2 ≈ 0.135, for example. Fixing et
at an acceptably extreme value when Ht = τ leads to a quadratic equation
for h, namely h2 − 2het − 2log(τ) = 0. Thus, et = 2.5 (roughly the upper
99% point of the forecast distribution) and log(τ) = −2 implies h = 1 or
h = 4. Thus, values of h between 3 and 4 lead to indifference between M0
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and M1 when et is near 1.5, and fairly strong evidence (τ = e−2) against
M0 for values as high as et = 2.5. Note that if et is negative, the sign of h
must be reversed.

EXAMPLE 11.3. Consider the previous example, and suppose that (as will
typically be the case in practice) it is desired to allow for the possibilities
of change in either direction. Then two alternatives are needed. Treating
the cases symmetrically, suppose that the first, denoted by M1, has the
form in Example 11.2 with mean shift h > 0, and the second, M2, has
the same form though with mean shift −h. The mode of operation of the
sequential monitor now involves applying Theorem 11.3 to each alternative
and leads to minimum Bayes’ factors Li,t, (i = 1, 2). The standard analysis
will now proceed as usual unless either of the minimum Bayes’ factors L1,t
and L2,t falls below prespecified thresholds. Consistent with the symmetric
treatment of the alternatives, suppose that these thresholds are both equal
to some value τ. It follows from Example 11.2 that with a common run-
length lt,

log(L1,t) = 0.5h2lt − hEt,

where

Et =
lt−1∑
r=0

et−r

is the sum of the most recent lt errors. Similarly,

log(L2,t) = 0.5h2lt + hEt.

Hence

L1,t ≥ 1 if and only if Et ≤ 0.5hlt,

L2,t ≥ 1 if and only if Et ≥ −0.5hlt.

In either case, |Et| ≤ 0.5hlt, consistent with the standard model and mon-
itoring is reinitialised with lt = 0 and L1,t = L2,t = 1 before proceeding to
time t + 1. The monitor will signal in favour of one of the alternatives if
either Bayes’ factor drops below the prespecified threshold τ ,

L1,t ≤ τ if and only if Et ≥ 0.5hlt −
log(τ)
h

,

L2,t ≤ τ if and only if Et ≤ −0.5hlt +
log(τ)
h

.

Thus, the double monitoring is based on Et alone, the operation here being
equivalent to standard backward cusum techniques (Harrison and Davies
1964, and later in Section 11.6.2). Et is a cusum (cumulative sum) of the
most recent lt errors. The standard model is accepted as satisfactory at
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time t so long as Et satisfies

0.5hlt −
log(τ)
h
≥ Et ≥ −0.5hlt +

log(τ)
h

.

If Et is so large or so small as to lie outside one or other of these bounds,
then the monitor signals in favour of the corresponding alternative model,
and intervention is needed. If, on the other hand, Et lies within the bounds
and, in fact, |Et| < 0.5hlt, then monitoring is reinitialised with lt = 0
and L1,t = L2,t = 1 before moving to time t + 1. Otherwise, monitoring
proceeds as usual. The monitoring bounds are sometimes referred to as
moving V-masks for the backward cusum (Harrison and Davies 1964).

EXAMPLE 11.4. A useful single alternative is the scale shift model M1
in which et has standard deviation k rather than unity, with

p1(et | Dt−1) = (2πk2)−1/2exp{−0.5(et/k)2}.
The Bayes’ factor at time t is then

Ht = k exp{−0.5e2t (1− k−2)}.
Modelling a scale inflation with k > 1 provides a widely useful alternative.
It is immediately clear that it is appropriate for changes in observational
variance, or volatility, in the series. It is also a rather robust alternative
for more general changes, being designed as it is to allow for observations
that are extreme relative to M0. The use of such models has a long history
in Bayesian statistics, particularly in modelling outliers (Box and Tiao
1968; and Smith and Pettit 1985). The effects of different values of k
can be assessed as in the previous example by considering indifference and
extreme points, this being left to exercises for the reader. With a view to
allowing for large errors, we draw on experience with outlier models, as just
referenced, anticipating that above a certain level, the particular value of k
chosen is largely irrelevant. The key point is that the alternative provides
a larger variance thanM0; thus large errors will tend to be more consistent
with M1 no matter how large the variance inflation is. Some indication of
the variation with respect to k appears in Figure 11.8. The curves plotted
here provide Bayes’ factor as a function of |et| over the range 2-4, for k =
2, 3, 4 and 5. This range of values of |et| focuses attention on the region
in which we would doubt the model M0. Obviously, evidence in favour of
M0 decreases as |et| increases. Of major interest is the fact that when the
error becomes extreme relative to M0, the choice of k matters little, the
Bayes’ factors all being close to 0.2 when the error is 2.5, and below 0.1
when the error is at 3. A scale inflation of k = 3 or k = 4 with a threshold
of τ ≈ 0.15 provides a useful, general alternative.
In considering specifically the possibilities that in model M0, et may be

a wild, outlying observation or that the defining parameters in M0 may
have changed at (or before) time t, then either of these alternatives may be
suitable. The level shift model allows for a jump in the series in a particular
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Figure 11.8 Bayes’ factors Ht in normal scale inflation model

direction determined by the sign of h. The scale shift model allows for
changes in either direction, and also for changes in variation. In this sense,
the latter alternative may be viewed as a general alternative, allowing for
a variety of types of changes in addition to outlying observations.

11.5 FEED-BACK INTERVENTION
11.5.1 Automatic exception detection and diagnosis
Identifying model breakdown using simple monitoring techniques is the
first step in automatic exception handling. Most appropriately, such sig-
nals should prompt a user response, suggesting subjective, feed-back inter-
ventions to correct M0 and adapt to new conditions. In automatic mode,
the monitoring of model performance to detect deterioration in predictions
needs to be supplemented with techniques for diagnosis of the problem,
and subsequently with adaptation to control and correct for the problem.
When changes in parameter values are the primary causes of breakdown of
M0, adaptation is required rapidly to improve future predictions. The pos-
sibility of outlying observations confuses the diagnosis issue; on the basis
of a single, discrepant observation and no further information, parametric
change is indistinguishable from a wild data point. Generally, if an outlier
can be identified as such, the policy of omitting the observation from the
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analysis, treating it as a missing value, is a simple and sound one. The
updating of distributions in M0 will then be unaffected by the wild value,
and possible causes and consequences can be explored separately. The fol-
lowing logical scheme provides a guide to the use of the Bayes’ factors in
detecting and diagnosing model breakdown in such circumstances.
At time t, whatever has occurred previously, proceed with the monitor

as follows:

(A) Calculate the single Bayes’ factor Ht. If Ht ≥ τ , then Yt is viewed
as consistent with M0; proceed to (B) to assess the possibilities
of model failure (i.e., marked changes in parameters) prior to time
t. If, on the other hand, Ht < τ , then Yt is a potential outlier and
should be omitted from the analysis, being treated as a missing value
(from the point of view of updating and revising M0). However,
the possibility that Yt presages change in model parameters must
be allowed for after rejecting the observation; thus the need for
intervention is identified and we proceed to (C).

(B) Calculate the cumulative Bayes’ factor Lt and the corresponding
run-length lt to assess the possibility of changes prior to time t. If
Lt ≥ τ , then M0 is satisfactory, and so proceed to (D) to perform
standard updates, etc. Otherwise, Lt < τ indicates change that
should be indicated, requiring intervention; proceed to (C). Note
that the sensitivity of this technique to slow changes can be in-
creased by inferring a possible breakdown of M0 if either Lt < τ or
lt > 3 or 4, say. The rationale here is that several (3 or 4) recent
observations may provide evidence very marginally favouring M1
over M0, but this may be so small that Lt, whilst being less than 1,
still exceeds τ.

(C) Issue signal of possible changes consistent with deterioration of pre-
dictions from M0 and call for feed-back interventions to adapt the
model for the future. Following such interventions, update the time
index to t + 1 for the next observation stage, and proceed to (A),
reinitialising monitoring by setting lt = 0 and Lt = 1.

(D) Perform usual analysis and updating withM0, proceeding to (A) at
time t+ 1.

With this scheme in mind, it remains to specify the forms of intervention
at points of possible changes that are detected. The full range of user in-
terventions of Section 11.2 are, of course, available. Automatic alternatives
for routine use are described in the next section.

11.5.2 Automatic adaptation in cases of parametric change
It is a general principle that the onset of change brings with it increased
uncertainties that if appropriately incorporated in the model, lead natu-
rally to more rapid adaptation in the future. Thus, models can be made
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self-correcting if uncertainties about parameters can be markedly increased
at points of suspected change. This is quite consistent with the use of in-
creased variances on model parameters in the various forms of subjective
intervention in Section 11.2, and the mode of intervention described there
suggests a general, automatic procedure for adapting to changes once de-
tected. The basic idea is simple: on detecting change, the prior variances
of model parameters can be increased by the addition of further evolution
noise terms to allow further data to influence more heavily the updating to
posterior distributions. It is possible to use this automatic mode of inter-
vention retrospectively, feeding in greater uncertainty about parameters at
the most likely point of change lt observations past, although for forecast-
ing, it currently matters little that the change was not allowed for at the
time. What is important is a response now to adapt for the future.
With this in mind, consider again the scheme (A) to (D) above, and

suppose that we are at (C), having identified that changes beyond those
allowed for in M0 may have occurred. An intervention of the form (11.5),
additional evolution noise at the current time, permits greater changes in
θt, and if the extra evolution variance Ht is appropriately large, leads to
automatic adaptation of M0 to the changes. Additionally, unless particu-
lar parameters are identified by the user as subject to changes in preferred
directions, then the additional evolution noise should not anticipate direc-
tions of change, therefore having zero mean. Thus, the feed-back interven-
tions called for at (C) may be effected simply, automatically and routinely
via the representation from Theorem 11.1: θt = Gtθt−1 + ωt + ξt, where
ωt ∼ N[000,Wt], as usual, being independent of the automatic interven-
tion noise term ξt ∼ N[000,Ht]. The scheme (A) to (D) with this form of
automatic intervention is represented in the flowchart of Figure 11.9.
The additional variance Ht must be specified. It is important that Ht

provide increased uncertainty for those parameters most subject to abrupt
change, and obviously the user has much scope here to model differing
degrees of durability of parameters, just as in designing the standard evo-
lution matrix Wt. It is possible, as an extreme example, to take some of
the elements of Ht to be zero, indicating that no additional changes are
allowed in the corresponding parameters of θt. As a generally useful ap-
proach, the magnitude and structure of Ht may be modelled on that of the
standard evolution variance matrixWt. In particular, if all parameters are
subject to possible changes, an appropriate setting, neutral as to source
and magnitude of changes, is simply to take

Ht = (c− 1)Wt,

where c > 1. This has the effect of an additional noise term with the same
covariance structure as the usual ωt, but with an inflation of the overall
variation in θt by a factor of c.
A generalisation of this simple technique has been used extensively in

connection with the use of discount factors to routinely structureWt (West
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Figure 11.9 Exception detection and handling routine

and Harrison 1986a; Harrison and West 1986, 1987; West, Harrison and
Pole 1987; Pole, West and Harrison 1994). Discount factors for compo-
nents of θt provide suitable structure and magnitudes for the standard
evolution noise variance matrix Wt, controlling the nature and extent of
the basic dynamic. At points of abrupt change that go beyond this basic
dynamic, a more heavily discounted version of the matrixWt is an obvious
way of simply and automatically extending the model. Thus, Ht may be
specified so that Wt + Ht is just of that form; this is based on the dis-
count concept that applies to Wt but with smaller discount factors than
standard. The following section illustrates the use of this in automatic
adaptation to abrupt changes.

11.5.3 Industrial sales illustration
Illustration is provided in an analysis combining the use of the above scheme
with simple feed-forward intervention based on externally available infor-
mation. The series of interest is displayed in Figure 11.10, the data given
in Table 11.3.
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Figure 11.10 Quarterly industrial sales series

The analysis reported was performed using the BATS package (West,
Harrison and Pole 1987), as were most others throughout the book. (Up-
dated software for just these analyses, with a variety of additional illus-
trations, is given by Pole, West and Harrison (1994), as mentioned in the
Preface.) The data are quarterly sales figures over a period of years, repre-
senting total sales of a chemical product in international industrial markets.
Seasonality is evident, though the extent and durability over time of the
seasonal component is unclear from the graph, the non-seasonal trend also
changing markedly from time to time.
Consider the position of a forecaster at t = 1, corresponding to the first

quarter of 1973, using a basic first-order polynomial component DLM for
the trend in sales, plus a full seasonal effects component. For all t, θt has
6 elements comprising the level growth, and 4 seasonal factors constrained
to have zero sum. Suppose the initial prior for θ1 is specified as

(θ1|D0) ∼ T20[a1,R1],

and for the observational precision,

(φ|D0) ∼ G[20, 4500],

where

a1 = (130, 0; 0, 0, 0, 0)′
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Table 11.3. Quarterly industrial sales data

Year Quarter
1 2 3 4

1973 112.08 162.08 125.42 105.83
1974 117.50 163.75 131.25 97.92
1975 130.00 182.08 131.67 139.58
1976 166.67 191.67 160.83 185.42
1977 139.58 212.88 219.21 193.33
1978 162.00 227.50 185.42 221.92
1979 213.79 339.08 157.58 317.79
1980 251.83 199.08 274.13 188.79
1981 221.17 205.92 238.17 143.79
1982 233.75 207.92 244.17 179.58
1983 164.04 109.58 153.67 106.25
1984 110.42 138.75 178.33 150.83
1985 81.67 144.17 163.33 118.33
1986 101.67 182.92 128.75 101.67
1987 134.17 172.50 182.08 90.42

and

R1 =




225 0 0 0 0 0
0 100 0 0 0 0
0 0 300 −100 −100 −100
0 0 −100 300 −100 −100
0 0 −100 −100 300 −100
0 0 −100 −100 −100 300


 .

Thus, the initial estimate of V = 1/φ is S0 = 4500/20 = 225, an estimated
observational standard deviation of 15, with 20 degrees of freedom. The
expected level of the series is 130; thus the prior on the variance represents
a reasonably strong belief that the random variation will have standard
deviation of about 10 or 11% of the expected level. R1 indicates a rather
uncertain view about the components initially, particularly in the seasonal
component where no pattern is anticipated, with large variances so that
the model will rapidly adapt to the data over the first couple of years. The
model specification is completed through the values of discount factors.
The component discount approach provides Wt in block diagonal form
(like R1) for all t through the use of two discount factors, one for trend
and one for seasonality. Trend and seasonality are viewed to be of similar
durability, and this is reflected in the choice of discount factors of 0.95
for each component. In addition, some minor variation over time in V is
modelled through the use of an observational variance discount factor of
0.99 (Section 10.8).
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The model is subject to monitoring and automatic adaptation at points
of change identified. At such points, the above standard values of the dis-
count factors are dropped to lower values consistent with more marked
change in the parameters. Note that this automatic shift to smaller, ex-
ceptional discount factors applies only at points identified as change points
through the routine monitoring scheme of the previous section. Otherwise
the standard values apply. Thus, at points of possible change, the use
of smaller discounts simulates a user intervention to increase uncertainty
about θt and V above and beyond that already modelled through the stan-
dard discounts. In the analysis reported here, these exceptional values are
0.1 for the trend and seasonal components and 0.9 for the observational
variance. Concerning the trend and seasonal components, the standard
discount of 0.95 implies an increase of roughly 2.5% in the standard devia-
tions of the parameters between observations in the standard analysis. At
exceptions, the drop to 0.1 implies roughly a three-fold increase, allowing
much more marked adaptation to forthcoming data. Monitoring is based
on the use of the single, robust scale-inflation alternative in Example 11.4.
Thus, predictive performance of the model under standard conditions is
compared through the Bayes’ factors with an alternative whose one-step
ahead forecast distributions have the same location but increased spread,
the forecast standard deviations under the alternative inflated by a factor
k > 1. The value used for k here is 2.5, the threshold level τ taken as
0.2. Now the one-step forecast distributions are Student T, but the dis-
cussion of the case of normal distributions in the examples of the previous
section provides a guide to the implications of these chosen values (and
the comments about insensitivity to them apply). With a normal forecast
distribution, the Bayes’ factor Ht, based on a single observation, will be
unity for a standardised forecast error of roughly ±1.5. For errors larger in
absolute value, the evidence weighs against the standard model, reaching
the threshold τ = 0.2 at standardised errors of roughly ±2.5. Following
the discussion about monitor sensitivity in cases of less marked change, the
decision is taken to signal for automatic intervention based on the size of
the minimum Bayes’ factor Lt and the run-length lt combined, whenever
Lt < τ or lt ≥ 3.
The data are sequentially observed and processed subject to the monitor-

ing and adaptation scheme thus defined. The background to the data series
puts the data in context and provides information relevant to modelling
the development over time. In the early years of the data, representing the
early life of the product in newly created markets, the product sales grow
noticeably, the company manufacturing the product essentially dominat-
ing the market. In early 1979, however, information becomes available to
the effect that a second major company is to launch a directly competitive
product later that year. In addition to the direct effect on sales that this
is expected to have over coming years, it is anticipated that it will also
encourage other competing companies into the market. Thus, change in
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trend, and possibly seasonality, is expected. For the analysis here, however,
such information is not fed-forward, all interventions to adapt to observed
changes being left to the automatic scheme. One feed-forward intervention
is made, however, on the basis of company actions taken immediately on
receiving the information about the competitor. In an attempt to promote
the existing product to consumers and to combat the initial marketing of
the competitor, the company launches a marketing drive in early 1979 that
includes price reductions throughout that year. The market response to
this is anticipated to lead to a major boost in sales, but there is great
uncertainty about the response, the effects of the promotional activities
possibly continuing to the end of the year. In order that the underlying
market trend, including competitor effects, be estimated as accurately as
possible free from the effects of this promotion, some form of intervention
is necessary. The simplest such intervention is to assume that the effects
of the promotions lead to observations that are essentially uninformative
about the underlying market trend and seasonal pattern, and the decision
is taken simply to omit the observations in the last three quarters of 1979
when the promotions are expected to significantly impact on sales. Thus,
these three observations are effectively ignored by the analysis, treated as
missing values.
As the analysis proceeds from t = 0, updating as usual, the values of

Lt and lt are calculated from the simple recursions in Theorem 11.3. The
logged values of the former are plotted against t in Figure 11.11. There are
six points at which the monitor signals:

(1) The first point at which evidence weighs against the standard model
is at t = 16, where L16 = H16 is less than unity for the first time.
The monitor does not signal, however, since it remains above the
threshold and l16 = 1. At t = 17, corresponding to the first quarter
of 1977, H17 < 1 too, and L17 = H16H17 < τ, indicating breakdown
based on two observations, l17 = 2.

(2) After automatic intervention using the exceptional discount factors
at t = 17, Lt > 1, so that lt = 1 until t = 23. At t = 25, the
first quarter of 1979, L25 exceeds τ, but l25 = 3 and the monitor
signals. Three consecutive observations provide evidence against the
model that though not so extreme as to cross the chosen threshold,
is viewed as requiring intervention. Note that this use of the run-
length in addition to the Bayes’ factor may be alternatively modelled
by directly linking the threshold to the run-length.

(3) A similar exception occurs at t = 37, the first quarter of 1982, again
based on the run-length.

(4) At t = 41, the single observation Y41 is discrepant enough so that
H41 < τ, and the monitor signals with l41 = 1.

(5) At times t = 46, 47 and 48 Lt is low, close to the threshold though
not dropping below it. There is clear evidence here accumulating
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Figure 11.11 Tracking signal for industrial sales data analysis

against the model, and the monitor signals when l48 = 3, in the
fourth quarter of 1984.

(6) Finally, the run-length reaches 3 again at t = 56, the fourth quarter
of 1986, and an exception is identified. In contrast to the previous
exception, note that the evidence here is only marginally against
the standard model, certainly compared to that at the preceding
exception.

These events are interpreted and discussed with reference to the graphs
in Figures 11.12 to 11.17. Figure 11.12 displays the usual on-line estimate,
with two standard deviation intervals, of the non-seasonal trend compo-
nent at each time t. The adequacy of the locally linear trend description is
apparent, with marked changes in the trend at three points of intervention.
The trend apparently grows roughly linearly up to the start of the 1980s,
plateaus off for a few years, and drops markedly and rapidly during 1983
from levels near 200 to between 100 and 150, remaining at these, lower
levels thereafter. Uncertainty about this on-line estimated trend is fairly
high, particularly after the crash to lower levels in 1983. At the inter-
vention times, the interval about the estimated trend increases in width
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Figure 11.12 On-line estimated trend in industrial sales

due to the intervention, allowing the model to adapt to any changes. In
1979, the intervention in the first quarter has this effect and is followed
by three quarters in which, due to the feed-forward intervention to iso-
late the effects of the company promotions, the observations are ignored.
As a consequence, the uncertainty about the trend, and the other model
components, increases throughout 1979, no information being obtained.
As always, the on-line estimates of model components can appear rather

erratic, responding as they do to data as they are processed. The interven-
tions increase this response, and so on-line trajectories provide only a first,
tentative indication of the pattern of behaviour over time. More appropri-
ate for retrospective analysis are the smoothed and filtered distributions
for model components calculated using the filtering algorithms backwards
over time from the end of the series. Figure 11.13 provides a plot of the
data (with the three observations omitted from analysis removed and in-
dicated on the time axis), together with a plot of the filtered estimates
of the mean response function. The latter, appearing as a line through
the data over time, provide smoothed, or retrospectively fitted, values of
the sales figures. The points of intervention are indicated by vertical lines.
Note that uncertainty about the smoothed values is not indicated on the
graph, so as not to obscure the main features noted here. Uncertainties are
indicated, in terms of 2 standard deviation intervals, in the corresponding
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Figure 11.13 Retrospective fitted values of industrial sales
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plots for the trend and seasonal components appearing in Figures 11.14
and 11.15. Additionally, the seasonal form is decomposed into the two
harmonic components; filtered estimates of each of these, with intervals,
appear in Figures 11.16 and 11.17.
Figure 11.14, the smoothed version of Figure 11.12, indicates that the

non-seasonal trend in sales grows steadily until 1979, then flattens off at
around 220, decaying very slightly until the end of 1982. At this point there
is a huge drop in level to around 130, growth thereafter being small though
increasing towards the end of the series in late 1986. Consider now the
effects of the automatic interventions that resulted from the monitor sig-
nals. At each of these six times, the exceptional discount factors used allow
for abrupt change in all model components. The trend, however, changes
markedly only at the beginning of 1983. Clearly, the monitor signal here
was vital in terms of rapidly adapting to this change. The earlier signals
do not appear to have led to the trend adapting, so that they are attribut-
able to some other feature of mismatch between the model and the data.
The intervention in early 1979, followed by further increased uncertainty
in the model due to the three omitted observations in that year, inflates
uncertainty sufficiently that the levelling off in trend is identified and ap-
propriately estimated without further interventions. This behaviour may,
in retrospect, be attributed to the competitor incursion into the market.
The huge drop in sales level in early 1983 bears study, possibly relating
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Figure 11.18 Forecast industrial sales for 1988/89

to several factors. Company decisions to withdraw from part of the mar-
ket is one possibility that if true, could and should have led to further
feed-forward intervention to anticipate the change. Major and sustained
incursion by competitors is another. The international industrial recession
is a third, important consideration, that could easily explain the crash in
sales level through the withdrawal of demand from one or a small num-
ber of consumer companies who had hitherto comprised a major part of
the market. Whatever reasons are considered retrospectively, the model,
operating without feed-forward information, identifies and appropriately
estimates the crash. The final two interventions, in 1984 and 1986, appear
to be attributable, at least in part, to minor, though important, increases
in non-seasonal trend.
The form of the seasonal pattern and its changes over time are evident

from the fitted sales values in Figure 11.13 and the seasonal component
in Figure 11.15, together with the harmonics in Figures 11.16 and 11.17.
From Figure 11.13, the seasonal form appears stable up to the first inter-
vention point in early 1977. Here, and again at the second intervention in
early 1979, the form of seasonality apparently changes. In particular, the
contribution of the second harmonic is more marked after each interven-
tion, very noticeably so after that in 1979. After the drop in level in 1983,
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seasonality again changes noticeably, the second harmonic becoming again
less important whilst the amplitude of the first is much increased.
In retrospect, the three observations omitted from the analysis can now

be clearly explained as the response to promotion. The first of these, in
the second quarter of 1979, is a huge peak in sales resulting from the
price-cutting promotional activity. In the third quarter, sales drop off,
partially due to seasonal demand but probably also due to stocks having
been depleted in the previous quarter. Sales bounce back to high levels in
the final quarter as supplies come through again.
Figure 11.18 displays step ahead forecast sales, with 2 standard deviation

intervals, made for each quarter in 1988 and 1989 from the end of the series
in the fourth quarter of 1987. Here the effects of the later interventions
show up in the forecasts, particularly through the final shift to a higher
non-seasonal level in sales.

11.6 A BAYES’ DECISION APPROACH TO MODEL MON-
ITORING

11.6.1 Introduction
The Bayes’ factors model monitoring approach of Section 11.4, like that us-
ing the associated sequences of sequential probability ratio tests (SPRTs),
is concerned with statistical rather than practical significance and ignores
explicit loss functions. Readers familiar with Bayes’ decision theory will
question the wisdom of this, not least because of the disturbing features as-
sociated with distributions with inverse polynomial tails, where huge jumps
and outliers will not be signalled. For example, in monitoring the mean
of a univariate Student T distribution, if Y ∼ Tv[µ,Q], then for any given
means µ1 and µ2, as y increases, the Bayes’ factor tends to 1 since

lim
Y →∞

p(Y |µ1)
p(Y |µ2)

= lim
Y →∞

[
vQ+ (Y − µ2)2

vQ+ (Y − µ1)2

] v+1
2

= 1.

In order to overcome the drawbacks associated with such statistical
tests, this section develops a simple, powerful decision theoretic monitoring
scheme. In the applications of interest this results in decisions based upon
cumulative sums (cusums) of a function of the observations, that in the
case of the exponential family of distributions, includes the Bayes’ factor
schemes as particular cases. So, whilst retaining good features of the Bayes’
factor schemes, this approach provides acceptable schemes for those cases
in which the Bayes’ factor schemes are unsatisfactory.
Cusum forecast monitoring schemes have been employed since 1959, fol-

lowing the procedures of Harrison and Davies (1964). The justification has
largely been empirical success together with an appeal to the fact that in
many cases, they are equivalent to sequences of Wald sequential probability
ratio tests and thus statistically efficient.
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After defining a single sided cusum decision scheme, the equivalence of
exponential family Bayes’ factor schemes and cusums is given. The Bayes’
decision approach based upon Harrison and Veerapen (1994), and as ex-
tended by Harrison and Lai (1999), is then detailed. The general idea is
that at each time t, the decision problem concerns a set of three point de-
cision problems {δs, δa, δc}. At any time the loss function of each decision,
relative to that of continuing the current run, δc, is assumed to be linear.
Accepting a proposed set of requirements, little more than two indifference
points need be specified in order to establish the decision procedure. In
particular, the exponential family Bayes’ factor schemes are shown to cor-
respond to a formal decision theoretic approach using a simple linear loss
function.

11.6.2 Cusums
After each observation a cusum monitoring scheme makes one of three
decisions:

δs : questionable model performance; issue monitor signal;
δa : acceptable model performance; reinitialize monitor;
δc : continue monitor with a further observation.

In quality control applications these decisions often relate to two simple
hypotheses about a parameter µ, namely the Acceptable Quality Level
µ0, and the Rejectable Quality Level µ1. In forecasting, µ0 relates to
the satisfactory performance of the routine DLM and µ1 to some specific
inadequacy. In operation, any number of such inadequacies may be spec-
ified and monitored using multiple cusums, that are simply compositions
of single-sided schemes.

Definition 11.2. LetX1, . . . , Xr, be observations since the last decision δa
or δs was made, where r is called the run length. An upper cusum decision
scheme CD(k, g, h), with g < h, operates so that the decision based upon

Cr =
r∑

i=1

(Xi − k) = Cr−1 +Xr − k

is

δs : if Cr ≥ h,

δa : if Cr ≤ g,

δc otherwise.

If either of the decisions {δs, δa} is made, the scheme is reinitialised, setting
r = C0 = 0.

In quality control an upper cusum relates to µ1 > µ0. A lower cusum
scheme is then appropriate when µ1 < µ0 and simply reverses the test
inequality signs. The symmetric graphical V-mask cusum scheme, as given
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in Woodward and Goldsmith (1964) and Harrison and Veerapen (1994),
is simply a composition of two independent schemes, an upper CD(k, 0, h)
and a lower CD(k∗, 0, h), where k + k∗ = µ0.

Definition 11.3. An upper cusum decision scheme CD(k,g,h), with g =
(g1, . . . ), h = (h1, . . . ) and gr < hr for all r, is such that the decision based
upon Cr is

δs : if Cr ≥ hr,

δa : if Cr ≤ gr,

δc otherwise.

If either of the decisions {δs, δa} is made, then after appropriate interven-
tion in the case of δs, the scheme is reinitialised, setting r = C0 = 0.

11.6.3 Exponential family/cusum equivalences
The exponential family of distributions includes many frequently used dis-
tributions (normal, gamma, binomial, beta, etc.). Consequently, results for
these various distributions can be expressed in a general form, as in Chapter
14 that deals with exponential family dynamic models. Consider indepen-
dent identically distributed exponential family random variables Yi with
continuous natural scalar parameter η, known scale factor φ, Xi = X(Yi)
as a single sufficient statistic for η given Yi, and generalised conditional pdf
for Yi given η

p(Yi|η) = b(Yi, φ) exp{φ(Xiη − a(η))}.

Here a(η) is convex and twice differentiable so that µ = E(Xi|η) = ȧ(η)
and µ increases with η.
Phrase the monitoring issue in terms of two possible values of the natural

parameter η1 > η0, and let the initial prior odds ratio on η1 versus η0 be
h(0). After r observations the posterior odds ratio h(r) in favour of η1
versus η0 is given by

log h(r) = log h(0) + logHr

where Hr is the Bayes’ factor for η1 versus η0 of Definition 11.1, i.e.,

logHr = φ(η1 − η0)
r∑

i=1

[
Xi −

a(η1)− a(η0)
η1 − η0

]
.

With h(0) = 1, the quantity h(r) reduces to the Bayes’ factor. Now, for
prespecified thresholds h > g > 0, the decision is

δs : if h(r) ≥ h,

δa : if h(r) ≤ g,

δc : otherwise.
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So this monitor is equivalent to the cusum scheme

CD
(
a(η1)− a(η0)

η1 − η0
,
log g − log h(0)
φ(η1 − η0)

,
log h− log h(0)
φ(η1 − η0)

)
.

If g = h(0) this reduces to the cusum scheme CD(k, 0, h); when g = h(0) =
1 it reduces to the Bayes’ factor test of Section 11.4.

EXAMPLE 11.5. Monitoring a normal mean µ.
Let (Xi|µ) ∼ N[µ, 1] be independent, identically distributed normal random
variables with mean µ, and without loss in generality, unit variance. Let
µ1 > µ0 and the prior odds on µ1 versus µ0 be h(0) = g. Then

log h(r) = log h(0) + (µ1 − µ0)
r∑

i=1

(
Xi −

µ0 + µ1

2

)
,

and the Bayes’ factor test is equivalent to the cusum decision scheme

CD
(
µ1 + µ0

2
, 0,

log h− log h(0)
µ1 − µ0

)
.

11.6.4 A Bayesian decision approach
Consider a single-sided monitoring scheme concerned with signalling when
the scalar parameter µ, relating to a general probability distribution, is
unusually large. Generally, for any given run length of r observations, the
loss functions l(δ, µ) associated with the three possible decisions are such
that

l(δs, µ) decreases monotonically with µ;
l(δa, µ) increases monotonically with µ;
l(δc, µ) is relatively flat, intersecting each of the other loss functions
at just one value of µ.

For each run length r, define ar < sr as the two unique values of µ for
which the relative loss functions corresponding to information relating to
that run length satisfy

l(δs, sr)− l(δc, sr) = 0

and

l(δa, ar)− l(δc, ar) = 0.

These relative loss functions are usually smooth and well-represented as
linear functions of µ over their respective critical ranges, i.e., locally in
the neighbourhoods of ar and sr, and if necessary, with appropriate choice
of parametrisation. Based upon information Dr relating to a run length
r, and with vr and wr as positive proportionality constants that usually
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depend upon r, consider the loss functions as

l(δs, µ)− l(δc, µ) = wr(sr − µ) (11.10a)

and

l(δa, µ)− l(δc, µ) = vr(µ− ar). (11.10b)

Each time a decision δa or δs is taken, then after appropriate interven-
tion, the sequential decision process is reinitialised with information (µ|D0),
mean E[µ|D0] = m0, and precision equivalent to n0 observations. After r
subsequent observations, given Dr = {D0, Y1, . . . , Yr}, the precision asso-
ciated with (µ|Dr) is then nr = n0 + r equivalent observations.
The following requirements will be demanded of the loss functions:

(i) As the run length r increases, so the utility of deciding δc decreases. Oth-
erwise, a long run may hide a recent process change and delay detection.
Consequently, a desirable property is that sr and ar be monotonic in r
and that sr − ar decreases to 0. Define k such that

lim
r→∞

ar = lim
r→∞

sr = k.

(ii) Within a run, the information provided by the rth observation Yr relative
to Dr is inversely proportional to nr. It is then arguable that the utility
of taking decision δc relative to taking one of the other two decisions
is adequately characterised as decreasing in inverse proportion to some
function of “the precision” nr. So, for some constants b, c ≥ 0 and some
positive monotonic increasing function of nr, ψ(·), define

sr = k +
c

ψ(nr)
= k +

ψ(n0)
ψ(nr)

(s0 − k), (11.11a)

ar = k − b

ψ(nr)
= k − ψ(n0)

ψ(nr)
(k − a0). (11.11b)

This decision scheme simply requires the specification of two unique
initial indifference values {a0, s0}, an ultimate indifference value k, and
the function ψ. There is no need to specify the proportionality constants
{vr, wr}, the only requirement being that they are positive.

Theorem 11.4. In monitoring a scalar parameter µ, let the prior mean be
E[µ|D0] = m0 with an associated precision n0, and given Dr = {yr, Dr−1},
the posterior mean, mr = E[µ|Dr], be such that if Xr is some known
function of Yr, then

nrmr = n0m0 +
r∑

i=1

Xi.

Then, given Dr, a0 < k < s0, ψ(·) and the loss functions defined by
equations 11.10 and 11.11, the Bayesian decision scheme is a cusum decision
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scheme CD(k,g,h), where for r = 1, . . . ,

gr = n0(k −m0) +
nrψ(n0)
ψ(nr)

(a0 − k)

and

hr = n0(k −m0) +
nrψ(n0)
ψ(nr)

(s0 − k).

So, writing Cr =
r∑

i=1
(Xi − k), the Bayes’ decision is

δs : if Cr ≥ hr,

δa : if Cr ≤ gr,

and

δc : otherwise.

Proof. Given Dr, and with nr = n0 + r, the expected losses l(δ) satisfy

lr(δa)− lr(δc) ∝
1
nr

(
n0m0 +

r∑
i=1

Xi

)
− k + ψ(n0)

ψ(nr)
(k − a0)

∝ Cr + n0(m0 − k) +
nrψ(n0)
ψ(nr)

(k − a0).

Similarly,

lr(δs)− lr(δc) ∝ −
[
Cr + n0(m0 − k) +

nrψ(n0)
ψ(nr)

(k − s0)
]
.

Notice that at most one of these two differences of expected losses can
be negative. The unique Bayes’ decision is δa if the first is negative, δs if
the second is negative, and δc otherwise.

�

11.6.5 A typical Bayes’ decision setting
The case of ψ(n) ∝ n is of particular interest, providing many equivalent
Bayes’, SPRT, and traditional linear cusum schemes, since then

sr = s0 +
r

n0 + r
(k − s0) and ar = a0 +

r

n0 + r
(k − a0),

producing the cusum scheme

CD(k, n0[a0 −m0], n0[s0 −m0]).
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This gives a decision theoretic basis for the Bayes’ factor schemes relat-
ing to the natural parameter of the exponential family, but also generates
acceptable schemes for parameters from other distributions. Further, in se-
quences of sequential tests, practitioners typically set the prior mean such
that a0 = m0, resulting in an equivalent traditional cusum decision scheme

CD(k, 0, n0[s0 −m0]).

We now look at some important examples, each of which satisfies the
theorem requirements that

nr = n0 + r and nrmr = n0m0 +
r∑

i=1

Xi.

EXAMPLE 11.6. The normal mean.
In DLM forecasting with known variances, Xi is often the standardised
one-step ahead error and m0 = 0. With the usual DLM notation, we have

Xi = (Yi − fi)/
√
Qi

and adopt

(Xi|µ,Di−1) ∼ N[µ, 1], and (µ|D0) ∼ N [m0, 1/n0] ,

so that for r ≥ 0,

(µ|Dr) ∼ N [mr, 1/nr] .

EXAMPLE 11.7. Conjugate analysis for the exponential family. .
In many applications concerning members of the exponential family, the
sampling and prior distributions of the natural parameter µ may be written
as

p(Yr|µ,Dr−1) ∝ exp{φ[Xrµ− a(µ)]}

and

p(µ|Dr−1) ∝ exp{nr−1φ[mr−1µ− a(µ)]},

when the posterior, given Dr = {yr, Dr−1}, is easily verified as

p(µ|Dr) ∝ exp{nrφ[mrµ− a(µ)]},

where

nr = nr−1 + 1

and

nrmr = nr−1mr−1 +Xr.
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When E[µ|Dr] = mr it is evident that the Bayes’ decision procedure results
in a cusum decision scheme that is also a Bayes’ factor (SPRT) scheme
when ψ(nr) ∝ nr. Since this applies to many frequently met cases, such as
normal means, binomial means, Poisson means, etc., the reader may feel
that this gives strong support to the proposition that in many applications,
it is sufficient to characterise ψ(nr) as proportional to nr.

EXAMPLE 11.8. Variance monitoring.
In monitoring the DLM observation variance V, the key quantity is

Xi =
(Yi − fi)2

Qi
=

e2i
Qi

,

where, writing µ = V in the foregoing,

(Xi|V,Di−1) ∼ G [1/2, 1/2V ] .

With the prior

(V −1|D0) ∼ G [1 + n0/2, n0m0/2] ,

such that E[V |D0] = m0, we see that

(V −1|Dr) ∼ G [1 + nr/2 nrmr/2] ,

with E[V |Dr] = mr, where nr = n0 + r and nrmr = n0m0 +
r∑

i=1
Xi.

EXAMPLE 11.9. Control of a normal mean with unknown variance.
Without loss in generality, consider the DLM case in which, within the run
commenced at time t = 1,

Xi =
ei√
S0Qi

,

(Xi|µ,D0) ∼ Tv0 [µ, 1] ,

and

(µ|D0) ∼ Tv0 [m0, 1/n0] .

For monitoring the mean, it is a good idea to keep the run prior (V |D0)
as the constant working distribution of V within each run, updating it at
the start of each new run (although the schemes can easily be modified to
incorporate variance learning within runs). Then the marginal posterior
distribution for µ is

(µ|Dr) ∼ Tv0 [mr, 1/nr] .

Control of the mean now follows an acceptable cusum scheme that has
no trouble in signalling very large changes in µ and outliers. Since the T
distribution is not a member of the exponential family, this scheme differs
markedly from the Bayes’ factor scheme that fails to deal adequately with
very large mean shifts and outliers.
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11.7 EXERCISES
(1) Verify the general results in Theorem 11.1 and Theorem 11.2.
(2) In the first-order polynomial model {1, 1, Vt,Wt} with state param-

eter µt = θt, suppose that (µt−1|Dt−1) ∼ N[mt−1, Ct−1] as usual.
Intervention is to be performed to achieve the prior (µt|Dt−1) ∼
N[mt−1, R

∗
t ], where R∗

t = Ct−1 + Wt + Ht = Rt + Ht for some
Ht > 0. This can obviously be done directly through Theorem 11.1
by adding a further evolution noise term ξt ∼ N[0, Ht] to the ex-
isting evolution equation. Alternatively, the more general approach
through Theorem 11.2 can be used. Show that this approach leads
to the revised evolution equation at time t given by

µt = G∗
tµt−1 + ω∗

t , ω∗
t ∼ N[ht,W ∗

t ],

where

G∗
t = (1 +Ht/Rt)1/2,

ht = (1−G∗
t )mt−1,

and

W ∗
t = (1 +Ht/Rt)Wt.

(3) Suppose that R is a 2× 2 variance matrix,

R =
(
R1 R3
R3 R2

)
.

Let Z be the unique, upper-triangular matrix

Z =
(
Z1 Z3
0 Z2

)

satisfying R = ZZ′. Prove that Z is given by

Z1 = (R1 −R2
3/R2)1/2,

Z2 = R
1/2
2

and

Z3 = R3/R
1/2
2 .

(4) Consider Example 11.1 supposing that at t = 37 (January 1958),
we have

a37 =
(
865
0

)
and R37 =

(
100 10
10 2

)
.

A forecaster considers five possible interventions, leading to the five
possible post-intervention moment pairs a∗

37 and R∗
37 in (a)-(e) be-

low. In each case, use the result of the previous exercise to calculate
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the quantities G∗
t , ht and W

∗
t in the amended evolution equation

as in Theorem 11.2.
(a) (

970
0

)
and

(
100 10
10 2

)
.

(b) (
970
0

)
and

(
100 0
0 0

)
.

(c) (
970
0

)
and

(
100 0
0 25

)
.

(d) (
970
0

)
and

(
100 25
25 25

)
.

(e) (
970
0

)
and

(
50 5
5 2

)
.

(5) A quarterly seasonal effects component of a DLM at time t has the
usual normal prior distribution (θt|Dt−1) ∼ N[at,Rt] with

at =




25
131
−90
−66


 and Rt =




12 −4 −4 −4
−4 12 −4 −4
−4 −4 12 −4
−4 −4 −4 12


 .

(a) Verify that this prior is consistent with the zero-sum constraint
111′θt = 0.

(b) A forecaster considers it likely that the peak level in the sec-
ond quarter can be expected to increase from 131 to about 165
before the next observation, but that there is additional uncer-
tainty about this change. This is modelled by an additional
evolution noise term, and the moments are directly revised to

a∗
t =




25
165
−90
−66


 and Rt =




28 −4 −4 −4
−4 12 −4 −4
−4 −4 12 −4
−4 −4 −4 12


 .

Show that this revised prior does not now satisfy the zero-sum
constraint, and apply Theorem 8.2 to appropriately correct it.

(6) In monitoring based on the scale inflation alternative of Example
11.4, define Et to be the sum of squares of the most recent lt forecast
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errors at time t,

Et =
lt−1∑
r=0

e2t−r.

(a) Let x be any real quantity such that 0 < x ≤ 1. Prove that
log(Lt/x) ≤ 0 if and only if

Et ≥ alt + b(x),

where

a = 2k2log(k)/(k2 − 1)

and

b(x) = −2k2log(x)/(k2 − 1).

Verify that a > 0 and b(x) ≥ 0 for all x such that 0 < x ≤ 1.
(b) Using (a), prove that Lt ≤ 1, so that evidence weighs against

the standard model when l−1
t Et ≥ a. Comment on this result.

(c) Show also that the monitor signals model failure when Et ≥
alt + b(τ).

(7) In Exercise 6, suppose that the data actually follow the standard
model being monitored, so that the errors et are independent, stan-
dard normally distributed random quantities.
(a) Deduce that Et ∼ χ2

lt
, a chi-square random quantity with lt

degrees of freedom.
(b) With k = 2.5 and τ = 0.2, calculate the probability that Lt ≤ τ

for each of lt = 1, 2, 3 and 4. Comment on the meaning of these
probabilities.

(c) Recalculate the above probabilities for each combination of
pairs of values of k and τ given by k = 2 or 3 and τ = 0.1, 0.2
and 0.3. Comment on the sensitivity of the derived probabili-
ties as functions of k and τ and the implications for the monitor
in practice.

(8) In Exercises 6 and 7, suppose now that et ∼ N[0, k2] for all t.
(a) Deduce the distribution of Et.
(b) Perform the probability calculations in (b) above and comment

on the meaning of these probabilities.
(9) Following Example 11.3, describe how the scale inflation alternative

can be extended to two alternatives, with scale factors k > 1 and
k−1 respectively, to monitor for the possibilities of either increased
or decreased variation.

(10) Write a computer program to implement the monitoring and au-
tomatic adaptation routine described in Section 11.5, based on the
scale inflation alternative model of Example 11.4 for the monitor.
This should apply to any component DLM using component dis-
counting, the automatic adaptation being modelled through the use
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of exceptional discount factors as in Sections 11.5.2 and 11.5.3. Test
the program by performing the analysis of the industrial sales data
in 11.5.3, reproducing the results there.

(11) Analyse the CP6 sales data in Table 11.1 and Figure 11.1 using a
first-order polynomial model with a single discount factor δ = 0.9 for
the trend component and a variance discount factor β = 0.95. Apply
the automatic monitoring as programmed in the previous example
with exceptional trend and variance discount factors of 0.05 and 0.5
respectively.

(12) Reanalyse the CP6 sales data as in the previous example. Instead
of discounting the observational variance to account for changes,
explore models that rather more appropriately, use variance laws as
in Section 10.7.2. In particular, consider models in which the ob-
servational variance at time t is estimated by the weighted variance
Vt = k(ft)V , where V is unknown as usual and k(f) = fp, for some
p > 1. Explore the relative predictive fit of models with values of p
in the range 1 ≤ p ≤ 2.

(13) Reanalyse the confectionary sales and cost series from Exercise 10.7
subject to monitoring and adaptation using the program from Ex-
ercise 7 above. Note that these data are analysed using a related
model in West, Harrison and Pole (1987), with extensive summary
information from the analysis provided there.



CHAPTER 12

MULTI-PROCESS MODELS

12.1 INTRODUCTION
Discussion of interventionist ideas and monitoring techniques is an implicit
acknowledgement of the principle that although an assumed DLM form
may be accepted as appropriate for a series, the global behaviour of the
series may be adequately mirrored only by allowing for changes from time
to time in model parameters and defining structural features. Intervention
allows for parametric changes, and goes further by permitting structural
changes to be made to the defining quadruple {F, G, V, W}t. In using
automatic monitoring techniques as in Section 11.4, the construction of spe-
cific alternative models rather explicitly recognises the global inadequacy
of any single DLM, introducing possible explanations of the inadequacies.
The simple use of such alternatives to provide comparison with a stan-
dard, chosen model is taken much further in this chapter. We formalise
the notion of explicit alternatives by considering classes of DLMs, the com-
bination of models across a class providing an overall super-model for the
series. This idea was originally developed in Harrison and Stevens (1971),
and taken further in Harrison and Stevens (1976a). We refer to such com-
binations of basic DLMs as multi-process models; any single DLM defines
a process model; the combination of several defines a multi-process model.
Loosely speaking, the combining is effected using discrete probability mix-
tures of DLMs, and so multi-process models may be alternatively referred
to simply as mixture models. Following Harrison and Stevens (1976a), we
distinguish two classes of multi-process models, Class I and Class II, that
are fundamentally different in structure and serve rather different purposes
in practice. The two classes are formally defined and developed throughout
the chapter after first providing a general introduction.
Generically, we have a DLM defined by the usual quadruple at each time

t, here denoted by

Mt : {F, G, V, W}t,

conditional on initial information D0. Suppose that any defining parame-
ters of the model that are possibly subject to uncertainty are denoted by
α. Examples include discount factors, transformation parameters for in-
dependent variables, eigenvalues of G in the case when Gt = G constant
for all time, and so forth. Previously, all such quantities, assumed known,
had been incorporated in the initial information set D0 and therefore not
made explicit. Now we are considering the possibility that some of these
quantities are uncertain, and so we explicitly include them in the condi-
tioning of all distributions in the model analysis, reserving the symbol D0
for all other known and certain quantities. Represent the dependence of
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the model on these uncertain quantities by writing

Mt = Mt(α), (t = 1, 2, . . . ).

The initial prior in the model may also depend on α although this possibil-
ity is not specifically considered here. For any given value of α, Mt(α) is a
standard DLM for each time t. It is the possibility that we do not precisely
know, or are not prepared to assume that we know, the value of α that
leads us to consider multi-process models. Let A denote the set of possible
values for α, whether it be uncountably infinite, with α taking continuous
values; discrete and finite; or even degenerate at a single value. The class
of DLMs at time t is given by

{ Mt(α) : α ∈ A }. (12.1)

The two distinct possibilities for consideration are as follows:

(I) For some α0 ∈ A, Mt(α0) holds for all t. (12.2a)

(II) For some sequence of values αt ∈ A, (t = 1, 2, . . . ),

Mt(αt) holds at time t. (12.2b)

In (I), a single DLM is viewed as appropriate for all time, but there is
uncertainty as to the “true” value of the defining parameter vector α = α0.
In (II), by contrast, and usually more realistically, there is no single DLM
accepted as adequate for all time. The possibility that different models are
appropriate at different times is explicitly recognised and modelled through
different defining parameters αt.

EXAMPLE 12.1. Suppose that α is a set of discount factors used to deter-
mine the evolution variance matricesWt. Under (I), a fixed set of discount
factors is assumed appropriate, although just which set of values is uncer-
tain. Sometimes this assumption, leading to a stable and sustained degree
of variation in model parameters θt over time, is tenable. This might be
the case, for example, with time series observed in physical or electronic
systems with stable driving mechanisms. More often in socio-economic ar-
eas, this assumption will be plausible only over rather short ranges of time,
these ranges being interspersed by marked discontinuities in the series. To
cater adequately for such discontinuities within an existing DLM, the pa-
rameters θt must change appropriately, and this may often be effected by
altering discount factors temporarily. The interventionist ideas of Chapter
11 are geared to this sort of change, and (II) above formalises the notion
in terms of alternative models.
Other examples include unknown power transformation parameters, and

analogously, variance power law indices (see Section 10.6). Whichever form
of model uncertainty, (12.2a) or (12.2b), is assumed to be appropriate, the
basic analysis of multi-process models rests upon manipulation of collec-
tions of models within a discrete mixture framework. The basics are de-
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veloped in the next section in connection with the first approach, (I) of
(12.2a).

12.2 MULTI-PROCESS MODELS: CLASS I
12.2.1 General framework
The basic theory underlying mixture models is developed in the context
of the introduction under assumption (I) of (12.2a). Much of this follows
Harrison and Stevens (1976a), and general background material can be
found in Titterington, Smith and Makov (1985).
Thus, Yt follows a DLM Mt(α), the precise value α = α0 being uncer-

tain. The following components of analysis are basic:

(1) Given any particular value α ∈ A, the DLM Mt(α) may be anal-
ysed as usual, producing sequences of prior, posterior and forecast
distributions that are sequentially updated over time as data are
processed. The means, variances and other features of these dis-
tributions all depend, usually in complicated ways, on the specific
value α under consideration. We make this dependence explicit in
the conditioning of distributions and densities. At time t, let Xt be
any vector of random quantities of interest; for example, the full θt

state vector, a future observation Yt+k (k > 0), etc. Inference about
Xt in Mt(α) is based on the density

p(Xt | α, Dt). (12.3)

Many such densities may exist, one for each α ∈ A.
(2) Starting with an initial prior density p(α | D0) for α, information

is sequentially processed to provide inferences about α via the pos-
terior p(α | Dt) at time t. This is sequentially updated, as usual,
using Bayes’ theorem,

p(α | Dt) ∝ p(α | Dt−1)p(Yt | α, Dt−1). (12.4)

Here p(Yt | α, Dt−1) is the usual, one-step ahead predictive den-
sity from Mt(α), simply (12.3) at time t − 1 and with Xt−1 = Yt.
The posterior p(α | Dt) informs about α, identifying interesting
values and indicating the relative support, from the data and initial
information, for the individual DLMs Mt(α) (α ∈ A).

(3) To make inferences about Xt without reference to any particular
value of α, the required unconditional density is

p(Xt | Dt) =
∫

A
p(Xt | α, Dt)p(α | Dt)dα, (12.5)

or, simply, the expectation of (12.3) with respect to α having density
(12.4). If, for example, Xt = Yt+1, then (12.5) is the one-step
forecast density for Yt+1 at time t.
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This is, in principle, how we handle uncertain parameters α. In practice,
all is not so straightforward; it is rare that (12.4) is a tractable, easily
calculated and manageable density. The calculations implicitly required
are as follows:

(i) For each Xt of interest, calculate (12.3) for all possible values of α.
(ii) For each α, calculate (12.4), and then integrate over A to normalise

the posterior density p(α | Dt).
(iii) For each Xt of interest, perform the integration in (12.5) and the

subsequent integrations for posterior moments, probabilities, etc.,
for α.

Unfortunately, we will typically not now have a neat set of sequential up-
dating equations for these calculations. The parameters in α will enter
into the likelihood p(Yt | α, Dt−1) in (12.4) in such a complicated way that
there will be no conjugate form for the prior for α, no simple summary
of Dt−1 for α in terms of a fixed and small number of sufficient statistics.
Thus, all the required operations in (i) to (iii) must be done numerically.
Generally this will be a daunting task if the parameter space A is at all
large, and impossible to carry out if, in particular and as is often the case,
α is continuous. The computations are really only feasible when the pa-
rameter space is discrete and relatively small. Two cases arise, namely
when either (a) α truly takes only a small number of discrete values, and
(b) when a discrete set of values is chosen as representative of a large and
possibly continuous “true” space A. Under (b) large spaces A can often be
adequately approximated for some purposes by a fairly small discrete set
that somehow spans the larger space, leading to the consideration of a small
number of distinct DLMs. We now consider the use of such collections of
models, whether they be derived under (a) or (b).

12.2.2 Definitions and basic probability results

Definition 12.1. Suppose that for all t,Mt(α) holds for some α ∈ A, the
parameter space being the finite, discrete set A = {α1, . . . ,αk} for some
integer k ≥ 1. Then the series Yt is said to follow a multi-process, class
I model.
The general theory outlined in the previous section applies here with

appropriate specialisation the discretisation of A. Thus, the densities for α
in (12.4) and (12.5) are mass functions. For convenience, the notation is
simplified in the discrete case as follows:

Definition 12.2.

(i) pt(j) is the posterior probability at α = αj in (12.4), namely

pt(j) = p(αj | Dt) = Pr[α = αj | Dt], (j = 1, . . . , k)

for all t, with specified initial prior probabilities p0(j).
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(ii) lt(j) is the value of the density p(Yt | αj , Dt−1), providing the like-
lihood function for α in (12.4) as j varies,

lt(j) = p(Yt | αj , Dt−1), (j = 1, . . . , k)

for each t.

The discrete versions of (12.4) and (12.5) are as follows:

• The posterior masses are updated via pt(j) ∝ pt−1(j)lt(j), or

pt(j) = ctpt−1(j)lt(j), (12.6)

where c−1
t =

∑k
j=1 pt−1(j)lt(j). Note that c−1

t is just the observed
value of the unconditional predictive density for Yt, namely

c−1
t =

k∑
j=1

p(Yt | αj , Dt−1)pt−1(j).

• Marginal posterior densities are now simply

p(Xt | Dt) =
k∑

j=1

p(Xt | αj , Dt)pt(j). (12.7)

From (12.7) it follows that all posterior distributions for linear functions
of θt, and predictive distributions for future observations, are discrete prob-
ability mixtures of the standard T or normal distributions. Some basic
features of such mixtures, fundamental to their use in inference, are as
follows:

(a) Probabilities are calculated as discrete mixtures. Generally, for any
set of values of interest Xt ∈ X ,

Pr[Xt ∈ X | Dt] =
k∑

j=1

Pr[Xt ∈ X | αj , Dt]pt(j),

the conditional probabilities Pr[Xt ∈ X | αj , Dt] being calculated
from the relevant T or normal distribution as usual.

(b) Moments are similar mixtures, thus,

E[Xt | Dt] =
k∑

j=1

E[Xt | αj , Dt]pt(j),

with the conditional moments calculated from the relevant T or
normal distribution.

(c) Particular results of use derived from (b) are as follows: Let ht =
E[Xt | Dt] and Ht = V[Xt | Dt]. Similarly, for j = 1, . . . , k, let
ht(j) = E[Xt | αj , Dt], and Ht(j) = V[Xt | αj , Dt]. Then we have
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• Posterior means:

ht =
k∑

j=1

ht(j)pt(j),

• Posterior variances:

Ht =
k∑

j=1

{Ht(j) + [ht(j)− ht][ht(j)− ht]′}pt(j).

In previous chapters we have used Bayes’ factors in model comparison.
The formalism of alternatives within the multi-process framework here
brings Bayes’ factors into the picture. Consider any two elements of A,
namely αi and αj for some i and j. From (12.6) it follows that

pt(i)
pt(j)

=
pt−1(i)
pt−1(j)

lt(i)
lt(j)

=
pt−1(i)
pt−1(j)

Ht(αi,αj),

where, in an extension of the earlier notation for Bayes’ factors,

Ht(αi,αj) =
lt(i)
lt(j)

=
p(Yt | αi, Dt−1)
p(Yt | αj , Dt−1)

,

just the Bayes’ factor for α = αi relative to α = αj based on the sin-
gle observation Yt. Thus, at each observation stage, the ratio of posterior
probabilities for any two values of α, hence any two of the DLMs in the
multi-process mixture, is modified through multiplication by the corre-
sponding Bayes’ factor. As information builds up in favour of one value,
the Bayes’ factors for that value relative to each of the others will increase,
resulting in an increased posterior probability on the corresponding DLM.

12.2.3 Discussion and illustration
In application, forecasts and decisions will usually be based on information
relating to the entire multi-process model, inferences from individual DLMs
Mt(αj) in the mixture being combined, as detailed above, in proportion
to their current posterior model probabilities pt(j). It is worth reiterat-
ing that a single DLM representation of a series is often a rather hopeful
and idealistic assumption, although it can be useful if subject to careful
user management and monitoring. These comments notwithstanding, the
mixture modelling procedure provided by a multi-process, class I model
may be used in a manner similar to classical model identification and pa-
rameter estimation techniques to identify a single DLM, or a restricted
class of them, for future use. The posterior probabilities across A identify
supported values of α, those with low weight that contribute little to the
multi-process. It is well to be aware that these probabilities can change
markedly over time, different DLMs best describing the data series at dif-
ferent times reflecting the global inadequacy of any single DLM. Under
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Model 1

Model 2

Model 3

Mixture Model

Figure 12.1 Mixtures of three distinct models

very general conditions, however, the posterior probabilities will converge
to zero on all but one value in A, the probability on that value tending
to unity. This convergence may take a very large number of observations,
but if suitable in the context of the application, can serve to identify a
single value for α and hence a single DLM. The use of a representative set
of values A hopefully suitably spanning a larger, continuous space is the
usual setup, and here convergence to a particular value identifies that model
closest to the data, even though no single model actually generates the se-
ries. This basic principle of mixture modelling is schematically illustrated
in Figure 12.1, where four DLMs are symbolically displayed. The generic
model Mt(α) is seen to lie in the convex hull of the mixture components
Mt(αj) (j = 1, 2, 3) and is identified as one possible DLM represented as
a mixture of the three components with respect to particular values of the
posterior model probabilities.
If, as is usually the case in practice, no single DLM actually generates

the series, the mixture approach allows the probabilities to vary as the data
suggest thus adapting to process change.
A rather different context concerns cases when α is simply an index for

a class of distinct, and possibly structurally different, DLMs. An example
concerns the launch of a new product in a consumer market subject to
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seasonal fluctuations in demand, the product being one of several or many
such similar products. Initially, there are no sales data on which to base
forecasts and decisions; the only relevant information is subjective and
derived from market experience with similar products. In the market of
interest, suppose that there are a small number of rather distinct patterns
of demand across items, reflected in differences in seasonal patterns. Here
α simply indicates which of these structurally different patterns of demand
the sales of the new product will follow, it being believed that one and only
one such pattern will hold for each product line. The particular DLMs may
thus differ generally in structure and dimensions of Ft,Gt. After processing
a relatively small amount of data, say several months, major decisions are
to be made concerning purchasing of raw materials and stock levels for the
new product. At this stage, it is desirable to choose a particular, single
DLM to base such decisions upon, the mixture only being used initially
due to the uncertainty about the likely seasonal form.

EXAMPLE 12.2. Reconsider the exchange rate ($ USA/£ UK) index
data analysed in Section 2.6. The analyses there concerned a first-order
polynomial model for the series, various models differing in the value of the
defining discount factor being explored. Here that study is extended, the
model and initial priors are as used in Section 2.6, to which the reader may
refer. The single discount factor defining the evolution variance sequence is
δ, viewed here as uncertain so that α = δ. Now, δ is a continuous quantity,
taking values in the range 0-1, typically between 0.7 and 1. With k = 4, the
four distinct values A = {1.0, 0.9, 0.8, 0.7} are taken as representing the
a priori plausible range of values, hopefully spanning the range of values
appropriate for the series. For example, a mixture of models 1 and 2, with
discount factors of 1.0 and 0.9 respectively, can be viewed as providing the
flexibility to approximate the forms of behaviour of models with discount
factors between 0.9 and 1. Initial probabilities are assigned as p0(j) = 0.25
(j = 1, . . . , 4) not favouring any particular value in A. The level parameter
of the series is µt = θt. Conditional on any particular value α = αj ∈ A,
we have

(Yt | αj , Dt−1) ∼ Tnt−1 [ft(j), Qt(j)] (12.8)

and

(µt | αj , Dt) ∼ Tnt
[mt(j), Ct(j)], (12.9)

for each t = 1, 2, . . . , where the quantities ft(j), Qt(j), etc., are sequentially
calculated as usual. Now the dependence on δ is made explicit through the
arguments j. Recall that Figure 2.7 displays a plot of the data with point
forecasts from the models with discount factors of 1.0 and 0.8, models
corresponding to j = 1 and j = 3. In this example, the initial degrees
of freedom parameter is n0 = 1 as in Section 2.6, so that nt = t + 1 for
each value of j, not differing between the DLMs. Thus, in (12.6) we have
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Figure 12.2 USA/UK index: Posterior model probabilities

pt(j) ∝ pt−1(j)lt(j), with

lt(j) =
Γ[(nt−1 + 1)/2]

Γ[nt−1/2]
√
nt−1πQt(j)

{
1 +

(Yt − ft(j))2
nt−1Qt(j)

}−(nt−1+1)/2

.

Figure 12.2 displays a plot over time of the four model probabilities pt(j),
(j = 1, . . . , 4; t = 1, 2, . . . ), from this multi-process model. In examining
the time variation in these probabilities the reader should refer also to the
plot of the data in Figure 2.7. Overall, pt(2) increases up to high values
around 0.6, pt(3) increases and levels off near 0.4, the other two proba-
bilities becoming essentially negligible. This indicates the suitability of
discount values between 0.8 and 0.9, the larger probabilities pt(2) indicat-
ing more support for values nearer 0.9. Certainly model 1, with discount
factor of 1, has essentially no support from the data. The extremely adap-
tive model 4, with discount factor 0.7, has slightly higher probabilities, but
they are still essentially negligible. In addition to these general conclusions,
note the occurrence of one or two rather marked, though transient, changes
in the general trend in the probabilities. In early 1981, in particular, the
posterior probabilities on the more adaptive models 3 and to a lesser ex-
tent 4, increase at the expense of those on the generally favoured, though
less adaptive, model 2. This continues for a few months until late 1981
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Table 12.1. Summary of multi-process model at t = 34.

µ34 Y35

j αj = δ p34(j) m34(j)
√
C34(j) f35(j)

√
Q35(j)

1 1.0 0.18 −0.008 0.005 −0.008 0.027
2 0.9 0.36 0.002 0.008 0.002 0.026
3 0.8 0.32 0.009 0.011 0.009 0.027
4 0.7 0.14 0.013 0.013 0.013 0.028

when pt(2) begins to grow again. The reason for this can be clearly seen in
Figure 2.7. During early 1981, the level of the series drops markedly over a
period of months, clearly deviating from the steady behaviour anticipated
under a first-order polynomial model with a relatively high discount factor.
Models 3 and 4, having lower discount factors than model 2, respond more
rapidly to this drift in level with a consequent improvement in forecasting
performance, as judged by Bayes’ factors, relative to models 1 and 2. Later
in the year, model 2 has had time to adapt to the data and the subsequent,
steady behaviour of the series is again more consistent with this model.
This example also serves to illustrate some features of inference with dis-

crete mixtures of distributions that users of multi-process models need to
be aware of. In each of the DLMsMt(αj), the prior, posterior and forecast
distributions are all standard, unimodal distributions, of well-known and
well-understood forms, whether they be normal or T (or inverse χ2 for the
observational variance). Inferences use point estimates and forecasts that
are posteriors means or modes, uncertainty measures such as standard de-
viations, and probabilities that are easily calculated from the standardised
forms of the normal or T distributions. If one of these models has a very
high posterior probability at the time of interest, then it may be used alone
for inference. Otherwise, the formal procedure is to use the full, uncondi-
tional mixture provided by (12.7), and the features of such mixtures can
be far from standard (Titterington, Smith and Makov 1985). In particular,
simple point forecasts such as means or modes of mixtures can mislead if
they are used without further investigation of the shape of the distribu-
tion and, possibly, calculation of supporting probabilities, hpd regions, etc.
Consider, for example, inferences made at t = 34, corresponding to Octo-
ber 1977, about the level of the series (µ34 | D34) and the next observation
(Y35 | D34). The relevant conditional posterior and forecast distributions,
equations (12.8) and (12.9) with t = 34 and nt = 35, are summarised in
Table 12.1.
Consider first inference about µ34. The individual posterior densities

(12.9) summarised in the table are graphed in Figure 12.3. They are
clearly rather different, model 1, in particular, favouring negative values
of µ34 whilst the others favour positive values. More adaptive models
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Figure 12.3 Posteriors for µ34 at t = 34

with smaller discount factors have more diffuse posteriors. The two central
densities, with discounts of 0.9 and 0.8, have probabilities 0.36 and 0.32
respectively, dominating the mixture, as is clear from the overall mixture
density graphed in the figure. The mixture is skewed to the right and very
flat in the central region between roughly −0.007 and 0.006. The mean,
calculated from the formula in Section 12.2.2, is 0.004. In fact, the den-
sity is unimodal with the mode near 0.005. If the probability on model 1,
actually 0.18, had been slightly higher, then the mixture would have more
density on negative values and could have become bimodal. Generally, with
a mixture of k symmetric and unimodal distributions (as is the case here
with four T distributions), there is the possibility of multimodality with
up to k modes. Note finally that the mixture is rather spread, reflecting
appreciable posterior probability on each of the rather distinct components.
Consider the problem of forecasting (Y35 | D34) based on the mixture of

components (12.8) at t = 35. The component one-step ahead T densities
are graphed in Figure 12.4, together with the mixture. By contrast with
Figure 12.3, the components here are very similar. Although they have
the same means as the posteriors for µ34, the scale parameters are very
much larger; note the differences between the figures in the scales on the
axes. The reason for this is that in each of the DLMs, the uncertainty
in the Yt series is dominated by observational variation about the level,
the differences between models evident in the posteriors in Figure 12.3
being totally masked, and quite unimportant, for forecasting Y35. As a
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consequence, the overall mixture density is very similar to each of the
components.
Further illustration of inference using mixtures, and much more discus-

sion, appears in the sections below concerning Multi-process, Class II mod-
els.

12.2.4 Model identification via mixtures
In the previous section we referred to the possible use of multi-process class
I models as an automatic model identification technique. Some further com-
ments about this aspect of mixture modelling are given here, specifically
concerning the feature of convergence of the posterior model probabilities
as t increases. The basic asymptotic theory for posterior distributions is
rather general, and so we revert to the framework of Section 12.2, em-
bedding the discrete set of values of α in a general, continuous parameter
space A for the purposes of this section. We do not provide formal, mathe-
matical theory relating to convergence, preferring only to discuss concepts
and motivate the key results. Theoretical details of convergence posterior
distributions, albeit in a much less general framework, can be found in
Berk (1970). Related material on asymptotic normality of posterior distri-
butions, in a rather general framework, appears in Heyde and Johnstone
(1979), and Sweeting and Adekola (1987). Related results specific to multi-
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process, normal DLMs, though less general, appear in Anderson and Moore
(1979, Section 10.1).
In the general setting with α continuous, suppose that p(α | D0) > 0

for all α ∈ A. For any two, distinct values α1 and α2, the Bayes’ factor
measuring the evidence from Yt in favour of α = α1 relative to α = α2 is

Ht(α1,α2) = p(Yt | α1, Dt−1)/p(Yt | α2, Dt−1).

The focus below is on the log-Bayes’ factors log[Ht(α1,α2)], assumed to
be finite for all t and all α1, α2 ∈ A. The corresponding overall log-Bayes’
factor, or log-likelihood ratio, from the first t observations Yt, . . . , Y1, is
simply

log[
t∏

r=1

Hr(α1,α2)] =
t∑

r=1

log[Hr(α1,α2)].

Denote the average value of the individual log-factors by

Lt(α1,α2) = t−1
t∑

r=1

log[Hr(α1,α2)].

Now, for j = 1, 2, we have

p(αj |Dt) = pt(j) ∝ p0(j)
t∏

r=1

p(Yr|αj , Dr−1),

and so

p(α1|Dt)/p(α2|Dt) = [p0(1)/p0(2)]
t∏

r=1

Hr(α1,α2)

for all t. It follows that

log[p(α1|Dt)/p(α2|Dt)] = log[p0(1)/p0(2)] + t Lt(α1,α2).

As t increases, the effect of the initial prior on the posterior for α becomes
negligible in the sense that as t→∞,

t−1log[p(α1 | Dt)/p(α2 | Dt)]− Lt(α1,α2)→ 0.

Thus, the limiting behaviour of the posterior is defined by that of the func-
tions Lt. Two assumptions provide the required structure for convergence.

(A) As t increases, Lt(α1,α2) converges, in an appropriate probabilistic
sense, to a finite limiting value for all α1 and α2. Denote this value
by L(α1,α2), so that

L(α1,α2) = lim
t→∞

Lt(α1,α2).

(B) There exists a unique value α0 ∈ A such that for all α �= α0,

L(α0,α) > 0.
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These assumptions require some comment. Concerning (A), the mode of
convergence, whether it be with probability one, or in probability, etc., is
of little importance. When the underlying mechanism generating the data
can be assumed to give rise to a joint distribution for the data Yt, . . . , Y1,
for all t, then (A) can be made more concrete. Note that this does not as-
sume that this true underlying distribution is known, nor that it bears any
relation to the class of models used. An interesting example is, however,
the hypothetical case when the data truly follow a DLM within the class,
identified by a particular, unknown value of α, although this is not neces-
sary. Whatever this true distribution may be, (B) applies (with probability
one) if for all t, E{log[Ht(α1,α2)] | D0} is finite, where the expectation
is with respect to the full t random quantities Yt, . . . , Y1 having this true,
joint distribution. If this is the case, then

L(α1,α2) = lim
t→∞

t−1
t∑

r=1

E{log[Hr(α1,α2)] | D0}.

Assumptions (A) and (B) are both valid in cases when the posterior for α
is asymptotically normal. This will usually be the case. Formal regularity
conditions required, and proofs of the asymptotic normality, can be found
in Heyde and Johnstone (1979), and Sweeting and Adekole (1987). In such
cases, for large values of t the posterior density p(α | Dt) concentrates
increasingly about a unique posterior mode α̂t. Assuming the posterior to
be twice differentiable, then for α near α̂t,

log[p(α | Dt)] ≈− 0.5t(α− α̂t)′It(α̂t)(α− α̂t)

+ constants not involving α, and other, negligible terms,

where

It(α) = −t−1 ∂2

∂α ∂α′ log[p(α | Dt)],

so that It(α̂t) is a symmetric, positive definite matrix. Thus, for large t,

Lt(α1,α2) ≈ t−1log[p(α1 | Dt)/p(α2 | Dt)] ≈ (α2 −α1)′It(α̂t)(ᾱ− α̂t),

where ᾱ = (α1 + α2)/2. Under general conditions (as given in the above
references), the posterior eventually becomes degenerate at a particular
value α = α0, with limt→∞ α̂t = α0 and a positive definite limit I0 =
limt→∞ It(α̂t). Thus,

L(α1,α2) = lim
t→∞

Lt(α1,α2) = (α2 −α1)′I0(ᾱ−α0).

In this case, assumptions (A) and (B) clearly hold, the limiting posterior
distribution identifying the value α0 in the formal sense that

lim
t→∞

Pr[||α−α0|| > ε | Dt] = 0
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for all ε > 0.
Under assumptions (A) and (B) it now follows that for all α1,α2 ∈ A,

lim
t→∞

t−1log[p(α1 | Dt)/p(α2 | Dt)] = L(α1,α2).

Thus,

lim
t→∞

[p(α1 | Dt)/p(α2 | Dt)] =
{ ∞, if L(α1,α2) > 0;

0, if L(α1,α2) < 0.

This applies in the general case of continuous A, and also as a corollary
when working with finite, discrete set {α1, . . . ,αk} in a multi-process
model. Note that we can always introduce a larger, continuous space in
which to embed a discrete set A, and so the following results apply to
multi-process class I models.

THEOREM 12.1. In the multi-process class I model of Definitions 12.1
and 12.2, suppose that A = {α1, . . . ,αk} is embedded in a continuous
space such that assumptions (A) and (B) above hold, with α0 defined as
in (B) (although unknown and not necessarily in A). Suppose also that for
a single element αi ∈ A,

L(α0,αi) = min
αj∈A

L(α0,αj).

Then the posterior model probabilities converge with limits

lim
t→∞

pt(i) = 1,

and

lim
t→∞

pt(j) = 0, (j �= i).

The numbers L(α0,αi) are all non-negative, being positive if, as is usual,
α0 /∈ A. These numbers are the limiting versions of the average Bayes’ fac-
tors, or log-likelihood ratios, comparing the values αj with the “optimal”
value α0. As a corollary to the theorem, suppose that there exists an un-
known, underlying joint distribution for the data Yt, . . . , Y1, for all t, as
previously discussed. Now, for all j,

L(α0,αj) = lim
t→∞

t−1
t∑

r=1

E{log[Hr(α0,αj)] | D0}

= lim
t→∞

t−1
t∑

r=1

E{log[p(Yr | α0, Dr−1)] | D0}

− lim
t→∞

t−1
t∑

r=1

E{log[p(Yr | αj , Dr−1)] | D0}.
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The first term here does not involve j and so can be ignored if the second
term is finite. We thus have the following result.

Corollary 12.1. In the framework of Theorem 12.1, suppose that for all
αj ∈ A, the quantity

L∗(αj) = lim
t→∞

t−1
t∑

r=1

E{log[p(Yr | αj , Dr−1)] | D0}

exists, the expectation being with respect to the true distribution of the
random quantities (Yt, . . . , Y1 | D0). Then the posterior probability on
model i converges to unity, where

L∗(αi) = max
αj∈A

L∗(αj).

The quantity L∗(α), for any α of interest, is the limiting average log-
likelihood of the model Mt(j) with respect to the true distribution of the
series. This is related to the limiting average Kullback-Leibler diver-
gence, otherwise directed divergence, measuring the discrepancy between
the model and the data. A basic reference is Kullback and Leibler (1951),
although such entropy-based measures have been used extremely widely in
statistics and other areas for many years and under many names. Kullback
(1983) gives further details. The measure L∗(α) is the limiting average of
the individual quantities E{log[p(Yt | α, Dt−1)] | D0}.
Some further comments are in order.

(1) These results apply when there is a single value i, (1 ≤ i ≤ k)
such that αi uniquely maximises L∗(α) over α ∈ A, i.e., minimises
L(α0,α) as in the statement of Theorem 12.1. In some (rare) cases
A may contain two or more values of α for which L∗(α) attains the
maximum over A. The above discussion then applies with minor
modification to show that the posterior model probabilities converge
to zero on all but these maximising values of α, being asymptotically
uniform across these values.

(2) Assume that a model of the form Mt(α0) actually generates the
series. If α0 ∈ {α1, . . . ,αk} then the limiting, preferred value is
αi = α0, the true value. If, on the other hand, α0 /∈ {α1, . . . ,αk},
then αi is closest to α0 in the sense of divergence, that usually
corresponds to closeness in terms of Euclidean distance.

(3) IfMj(t) is a time series DLM (TSDLM) for each j, Theorem 5.1 im-
plies that p(Yt | α, Dt−1) has a stable, limiting form. In particular,
as t→∞,

(Yt | αj , Dt−1) ∼ N[ft(j), Q(j)],
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for some constant variances Q(j). Thus, for large t,

E{log[p(Yt | αj , Dt−1] | D0}
=− 0.5log(2πQ(j))− 0.5E[(Yt − ft(j))2 | D0]/Q(j)

=− 0.5log(2πQ(j))− 0.5V0(j)/Q(j),

say, where V0(j) = E[(Yt − ft(j))2 | D0] is assumed to exist. Then
for all j,

L∗(αj) = −0.5log(2πQ(j))− 0.5V0(j)/Q(j).

EXAMPLE 12.3. In the first-order polynomial model of Example 12.2
where α = δ, the discount factor, suppose the observational variance to
be known and equal to V . Suppose that the data are generated by such a
model with true discount factor of δ0. For any δj ∈ {δ1, . . . , δk}, recall from
Section 2.4 that asymptotically, (Yt | δj , Dt−1) ∼ N[ft(j), V/δj ], and the
errors Yt − ft(j) are zero mean even though the model is incorrect, having
true variances

V0(j) = V[Yt − ft(j) | D0] = [1 + (δj − δ0)2/(1− δj)2]V/δ0.

Thus, from note (2) above, the limiting, preferred discount factor δi is that
value maximising

log(δj/δ0)− (δj/δ0)[1 + (δj − δ0)2/(1− δj)2].

It is left as an exercise for the reader to explore this as a function of δj .

12.3 MULTI-PROCESS MODELS: CLASS II
12.3.1 Introduction and definition
The reader will by now be conversant with the basic underlying principle
of Bayesian forecasting, that at any time, historical information relevant
to forecasting the future is sufficiently summarised in terms of posterior
distributions for model parameters. Given such summaries, a model used
in the past may be altered or discarded at will in modelling for the future,
whether such modifications be based on formal interventions or otherwise.
Thus, the notion that there may be uncertainty as to which of a possible
class of DLMs is most appropriate at any time, irrespective of what has
happened in the past, is natural and acceptable as a norm. This notion
is formalised via the multi-process, class II models (Harrison and Stevens
1976a) that embody the assumption (12.2b).

Definition 12.3. Suppose that at each time t, α takes a value in the
discrete set A = {α1, . . . ,αk}, the values possibly differing over time.
Then irrespective of the mechanism by which the values of α are chosen,
the Yt series is said to follow a multi-process, class II model.
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This situation, in which no single DLM is assumed to adequately describe
the series but any one of a discrete collection may obtain at each observation
stage, rather often describes the real situation in practice. The variety of
possible multi-process, class II models is clearly enormous. We motivate
the development of an important special class, which has been used rather
widely with success, in the following example.

EXAMPLE 12.3. As in the multi-process, class I case in Example 12.2,
let α = δ, the discount factor of a first-order polynomial model. Take
the parameter space to contain just two values, A = {0.9, 0.1}. Under
multi-process class II assumptions, δ takes either the value 0.9 or the value
0.1 at each time t. If δ = 0.9 the dynamic movement in the level of the
series is steady, information decaying at a typical rate of about 10% between
observations. It is to be expected that this will be the case most of the time.
If δ = 0.1 the movement allowed in the level is much greater, the change
in level having a standard deviation that is 9 times that obtained with the
discount of 0.9. This value is appropriate, usually rather infrequently, as an
alternative to permit more marked, abrupt changes in level. Compare the
use of similar, alternative discounts in automatic interventions in Section
11.5.
In order to utilise the multi-process idea, it remains to specify the mech-

anisms by which a particular value of α is chosen at each time. There
are many possibilities, including, for example, subjective intervention by
the forecaster to determine the values. We restrict attention, however, to
probabilistic mechanisms that provide multi-processes based on discrete
probability mixtures of DLMs.

Definition 12.4. Suppose that in the multi-process, class II framework
of Definition 12.3, the value α = αj at time t, defining the model Mt(j),
is selected with known probability

πt(j) = Pr[Mt(j) | Dt−1].

Then the series Yt follows a multi-process, class II mixture model.
Here πt(j) = Pr[α = αj at time t | Dt−1] may, in general, depend upon

the history of the process. Some practically important possibilities follow,
in order of increasing complexity of the resulting analyses.

(1) Fixed model selection probabilities

πt(j) = π(j) = Pr[Mt(j) | D0]

for all t. Thus, prior to observing Yt, Mt(j) has prior probability
π(j) of obtaining independently of what has previously occurred.

(2) First-order Markov probabilities in which the model obtaining at
time t depends on which of the models obtained at time t− 1, but
not on what happened prior to t−1. Here we have fixed, and known,
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transition probabilities

π(j | i) = Pr[Mt(j) |Mt−1(i), D0],

for all i and j, (i = 1, . . . , k; j = 1, . . . , k), and all t. Given these
probabilities, this model supposes that

Pr[Mt(j) |Mt−1(i), Dt−1] = π(j | i).

Thus, the chance of any model obtaining at any time depends on
which model obtained at the immediately preceding time, but not
on any other features of the history of the series. The marginal
probabilities of models at time t are calculated via

πt(j) = Pr[Mt(j) | Dt−1]

=
k∑

i=1

Pr[Mt(j) |Mt−1(i), Dt−1]Pr[Mt−1(i) | Dt−1]

=
k∑

i=1

π(j | i)pt−1(i),

where pt−1(i) is the posterior probability, at time t − 1, of model
Mt−1(i).

(3) Higher-order Markov probabilities that extend the dependence to
models at times t− 2, t− 3, . . . , etc.

EXAMPLE 12.3 (continued). In the discount factor example, fixed selection
probabilities imply the same chance of the lower discount factor δ = 0.1
applying at each time. Viewing δ = 0.1 as consistent with the possibility
of marked changes, or jumps, in the level of the series, this models a series
subject to the possibility of jumps at random times. If π(2) = Pr[δ =
0.1] = 0.05, for example, then jumps may occur roughly 5% of the time.
A first-order Markov model as in (2) refines this random jump mechanism
according to expected behaviour of the series. For example, if δ = 0.1
at time t − 1, it may be felt that δ = 0.1 at time t is rather less likely
than otherwise, consistent with the view that jumps are unlikely to occur
in runs. This can be modelled by taking π(1 | 2) > π(2 | 2). The reverse
would be the case if jumps were expected to occur in groups or runs.
Theoretical developments of the basic probability results for Markov

models are, in principle, straightforward, though obviously rather more
complicated than those with fixed selection probabilities. We concentrate
exclusively on the latter for the remainder of the chapter. Details of analy-
ses for Markov models are therefore left to the interested reader. Although
working with mixture models as in Definition 12.4, the mixture terminology
is dropped for simplicity; we refer to the models simply as multi-process,
class II models, the mixture feature being apparent and understood.
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12.3.2 Fixed selection probability models:
Structure of analysis

The analysis of multi-process, class I models in Section 12.2 introduced
the use of discrete mixtures of standard DLMs. These are also central to
the analysis of class II models. We simplify the model notation here and
throughout the rest of the chapter. The possible DLMs, hitherto indexed by
parameters α, are now distinguished only by integer indices, setting αj = j,
(j = 1, . . . , k). Thus, the model index set is now simply A = {1, . . . , k},
and we refer to Mt(j) as model j at time t. Some further notation serves
to simplify the presentation.

Definition 12.5. For each t and integer h, (0 ≤ h < t), define the
probabilities

pt(jt, jt−1, . . . , jt−h) = Pr[Mt(jt),Mt−1(jt−1), . . . ,Mt−h(jt−h) | Dt].

Thus,

pt(jt) = Pr[Mt(jt) | Dt],

consistent with previous usage,

pt(jt, jt−1) = Pr[Mt(jt),Mt−1(jt−1) | Dt],

and so on.
The analysis of class II models is far more complicated than that of

class I. The nature of the complications can be appreciated by considering
the position at time t = 1, assuming that (θ0 | D0) has a normal or T
distribution.
At t = 1, there are k possible DLMsM1(j1) with prior probabilities π(j1),

(j1 = 1, . . . , k). Within each DLM, analysis proceeds in the usual way,
providing posterior distributions for the state vector θ1 that generally differ
across models. In DLM j1 the state vector has posterior p(θ1 |M1(j1), D1)
and the DLM has posterior probability

p1(j1) = Pr[M1(j1) | D1] ∝ p(Y1 |M1(j1), D0)π(j1).

Unconditionally, inferences about the state vector are based on the discrete
mixture

p(θ1 | D1) =
k∑

j1=1

p(θ1 |M1(j1), D1)p1(j1).

Proceeding to time t = 2, any of the k possible DLMs M2(j2), (j2 =
1, . . . , k), may be selected, again with probabilities π(j2). Now it is only
possible to retain the components of standard DLM analyses if in addition,
the particular models possible at t = 1 are considered. Thus, conditional
on both M2(j2) and M1(j1) applying, for some j2 and j1, the posterior for
θ2 given D2 follows from the usual DLM analysis, depending, of course,
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on j2 and j1, denoted by p(θ2 | M2(j2),M1(j1), D2). Unconditionally, the
posterior for inference is

p(θ2 | D2) =
k∑

j2=1

k∑
j1=1

p(θ2 |M2(j2),M1(j1), D2)p2(j2, j1).

Again this is a discrete mixture of standard posteriors. However, whereas
at t = 1 the mixture contained k components, one for each possible model
at time t = 1, this contains k2 components, one for each combination of
models possible at time t = 1 and t = 2. Another way of looking at the
mixture is to write

p(θ2 |M2(j2), D2) =
k∑

j1=1

p(θ2 |M2(j2),M1(j1), D2)Pr[M1(j1) | D2].

Thus, conditional on model j2 at time t = 2, the posterior is a mixture of k
standard forms, depending on which of the model obtained at time t = 1.
Then unconditionally,

p(θ2 | D2) =
k∑

j2=1

p(θ2 |M2(j2), D2)p2(j2).

This development continues as time progresses. Then at time t, the
posterior density can be written hierarchically as

p(θt | Dt) =
k∑

jt=1

p(θt |Mt(jt), Dt)pt(jt), (12.10a)

or equivalently, as
k∑

jt=1

k∑
jt−1=1

p(θt |Mt(jt),Mt−1(jt−1), Dt)pt(jt, jt−1), (12.10b)

and so on down to the final stage
k∑

jt=1

k∑
jt−1=1

. . .
k∑

j1=1

p(θt |Mt(jt),Mt−1(jt−1), . . . ,M1(j1), Dt)

× pt(jt, jt−1, . . . , j1). (12.10c)

Only at the final stage of elaboration in (12.10c), where the sequence of
models obtaining at each of the times 1, . . . , t are assumed, are the poste-
riors

p(θt |Mt(jt),Mt−1(jt−1), . . . ,M1(j1), Dt)

of standard DLM form. Thus, to obtain the marginal posterior as a mix-
ture, it is necessary to consider all kt possible combinations that may ap-
ply. Within any particular combination Mt(jt),Mt−1(jt−1), . . . ,M1(j1),
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the usual DLM analysis applies. The posterior probabilities on each com-
bination, namely pt(jt, jt−1, . . . , j1), weight the components in the overall
mixture.
At each level of elaboration of the mixtures in equations (12.10), the

number of components of the mixture corresponds to the number of steps
back in time that are being explicitly considered. In (12.10a) there are
k components, corresponding to k possible models at time t. In (12.10b)
there are k2 possible combinations of models at times t and t − 1, and so
on down to the full kt possibilities in (12.10c). At the intermediate levels
(12.10a,b), etc., the conditional posteriors in the mixture are themselves
discrete mixtures of more basic components.
Obvious problems arise with such an analysis, largely relating to the

computational demands made by this explosion of the number of mixture
components as time progresses. In each possible combination of models, the
posterior for the state vector, predictive distributions for future observa-
tions, etc., are summarised in terms of a fixed number of means, variances
and so forth. After t observations there are then kt collections of such
quantities requiring calculation and storage. If k is relatively small and the
analysis is to be performed only on a very short series, then the compu-
tations may be feasible with sufficient computing capacity. See Schervish
and Tsay (1988) for illustrations of analysis of series of up to t around
200 or so observations in models with k = 4. In practice, however, the
possibly immense computational demands of the analysis will often be pro-
hibitive. Fortunately, it is usually possible to avoid the explosion of the
size of mixture models by exploiting further features of the particular class
II structure used, and a full analysis with all the computational problems
will often not be necessary. On general grounds, mixtures of posterior
distributions with many components tend to suffer major redundancies in
the sense that components can be grouped together with others that are
similar in location and spread. Thus, for all practical purposes, it may be
possible to reduce the number of components by approximations, leading
to a smaller, manageable mixture. This reduction can be quite dramatic
in terms of numbers of discarded components. Some general discussion of
this follows.

12.3.3 Approximation of mixtures: General discussion
It is basic to dynamic modelling that as time progresses, what occurred

in the past becomes less and less relevant to inference made for the fu-
ture. This applies to mixtures, the possible models obtaining in the past
losing relevance to inferences made at the current time t as t increases.
It is therefore to be expected that the full, conditional posterior p(θt |
Mt(jt),Mt−1(jt−1), . . . ,M1(j1), Dt) will depend negligibly on early mod-
els M1(j1), M2(j2), etc., when t is large. Depending on the dimension n of
the state vector and the complexity of the multi-process model, it is thus



12.3 Multi-Process Models: Class II 449

to be expected that for some fixed integer h ≥ 1, the full posterior will
depend essentially upon those models applying only up to h-steps back in
time, viz.,

p(θt |Mt(jt),Mt−1(jt−1), . . . ,M1(j1), Dt)

≈ p(θt |Mt(jt),Mt−1(jt−1), . . . ,Mt−h(jt−h), Dt).
(12.11)

If this is assumed, the number of components of the mixture posterior at
any time will not exceed kh+1. As a consequence, it is only necessary to
consider models up to h-steps back in time when performing the analysis.
Thus, the full mixture (12.10c) will be approximately

k∑
jt=1

k∑
jt−1=1

. . .

k∑
jt−h=1

p(θt |Mt(jt),Mt−1(jt−1), . . . ,Mt−h(jt−h), Dt)

× pt(jt, jt−1, . . . , jt−h). (12.12)

This is a mixture whose components are all still of standard DLM form,
but now containing a fixed number kh+1 components rather than the origi-
nal, increasing number kt. The posterior model probabilities weighting the
posteriors in this mixture are now calculated. Firstly, and as usual, by
Bayes’ Theorem,

pt(jt, jt−1, . . . , jt−h) ∝Pr[Mt(jt), . . . ,Mt−h(jt−h) | Dt−1]

× p(Yt |Mt(jt), . . . ,Mt−h(jt−h), Dt−1).
(12.13)

The second term in (12.13) is given by

p(Yt|Mt(jt), . . . ,Mt−h(jt−h), Dt−1) =
k∑

jt−h−1=1

p(Yt|Mt(jt), . . . ,Mt−h(jt−h),Mt−h−1(jt−h−1), Dt−1)

× Pr[Mt−h−1(jt−h−1)|Dt−1],

an average of the normal or T one-step predictive densities for Yt under
each of the models in the conditionings. The averaging is with respect
to models (h + 1)-steps back, those at time t − h − 1. The probabilities
weighting these terms are available from the identity

Pr[Mt−h−1(jt−h−1)|Dt−1] =
k∑

jt−1=1

. . .

k∑
jt−h=1

pt−1(jt−1, . . . , jt−h, jt−h−1).
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The first term in (12.13) is similarly calculated via

Pr[Mt(jt), . . . ,Mt−h(jt−h) | Dt−1]

=Pr[Mt(jt) |Mt−1(jt−1), . . . ,Mt−h(jt−h), Dt−1]pt−1(jt−1, . . . , jt−h)

=π(jt)pt−1(jt−1, . . . , jt−h)

=π(jt)
k∑

jt−h−1=1

pt−1(jt−1, . . . , jt−h−1). (12.14)

This is directly available since the summands here are just the kh+1 pos-
terior model probabilities at time t− 1.
Further approximations to the mixture (12.12) can often be made to

reduce the number of components. Three key considerations are as follows:

(A) Ignore components that have very small posterior probabilities.
(B) Combine components that are roughly equal into a single compo-

nent, also combining the probabilities.
(C) Replace the contribution of a collection of components by a compo-

nent that somehow represents their contribution.

These points apply generally to the use of mixtures, not only to the time
series context. To provide insight, consider the following example where
we drop the notation specific to the time series context for simplification.

EXAMPLE 12.4. Suppose θt = θ has density

p(θ) =
4∑

j=1

pj(θ)p(j),

where for j = 1, . . . , 4, pj(.) is a T density with mode, scale and degrees of
freedom possibly depending on the index j. Thus, in model j,

θ ∼ Tn(j)[m(j), C(j)].

Note that this can be viewed as a very special case of (12.12). The approach
(A) to approximating the mixture would apply if, for example, p(4) =
0.005, the fourth component receiving only 0.5% of the probability. In
such a case,

p(θ) ≈
3∑

j=1

pj(θ)p∗(j),

where p∗(j) = p(j)/(1 − p(4)), (j = 1, 2, 3), in order that
∑3

j=1 p
∗(j) = 1.

Case (B) would apply in the ideal, and extreme, case p3(θ) = p4(θ) for all
θ. Then

p(θ) = p1(θ)p(1) + p2(θ)p(2) + p3(θ)[p(3) + p(4)],

the final two, equal, components being combined to leave a mixture of only
three components. More realistically, if the two densities are very similar
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rather than exactly equal, then the same form of approximation is appropri-
ate. Suppose, for example, n(3) = n(4), C(3) = C(4) and m(3) = m(4)+ε,
where ε is small relative to the scale of the distributions, so that the densi-
ties look similar (as do some of the T densities in Figure 12.4, for example).
Then the contribution p3(θ)p(3) + p4(θ)p(4) to the overall density may be
approximated by a single component p∗(θ)[p(3) + p(4)] where p∗(.) is a T
density with the same degrees of freedom and scale as the two component
densities, and mode am(3) + (1 − a)m(4) where a = p(3)/[p(3) + p(4)].
This is in the spirit of approximations developed in Harrison and Stevens
(1971 and 1976a), and those termed quasi-Bayes in Titterington, Smith
and Makov (1985). See West (1992c) for more recent related developments.
One interpretation is that p∗(.) is a form of average of the two densities it
replaces. Using the third approach (C), we can often reduce the size of a
mixture by approximation even though the components removed are not,
apparently, very similar. The basic technique is to replace a mixture of
components of a given functional form with a single density of the same
form. With T distributions here, and generally in DLM models, the com-
bination in a mixture may be unimodal and roughly symmetric. Suppose
p(θ) is the density in Figure 12.4, with components also graphed there.
The mixture is unimodal and apparently very close to symmetry, suggest-
ing that it can be well approximated by a single T density. This is the case
here, and quite often in practice. More generally, some subset of the com-
ponents of a mixture may be approximated in this way, and substituted
with some combined probability. It remains, of course, to specify how the
approximating density is chosen, this being the subject of the next section.
Sometimes, however, it will not be appropriate. Suppose, for example,
that the mixture is as displayed in Figure 12.3. The mixture is far from
symmetric and cannot be well approximated by a single T density. Recall
that mixtures can become multi-modal, clearly pin-pointing the dangers of
uncritical use of unimodal approximations.

12.3.4 Approximation of mixtures: Specific results
The mixture approximating, or collapsing, techniques derived in this sec-
tion are fundamental to the application of multi-process, class II models
(Harrison and Stevens 1971, 1976a and b; Smith and West 1983). What
is needed is a method by which an approximating density can be chosen
to represent a mixture in cases when such an approximation is desirable
and sensible. We begin rather generally, again ignoring the time series con-
text and notation since the results here are not specific to that context,
assuming that the density of the random vector θ is the mixture

p(θ) =
k∑

j=1

pj(θ)p(j). (12.15)
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Here the component densities may generally take any forms, although often
they will have the same functional form, such as normal or T, differing only
through defining parameters such as means, variances, etc. The probabili-
ties p(j) are known. This density is to be approximated by a density p∗(θ)
of specified functional form, the parameters defining the approximation to
be chosen. Thus, a mixture of normal densities may be approximated by
a normal with mean and variance matrix to be chosen in some optimal
way. The notion that p∗(.) should be close to p(.) brings in the concept
of a measure of how close, and the need for a distance measure between
densities, or distributions. There are many such measures, some leading to
similar or equivalent results, and we focus on just one.
Viewing p(.) as the true density of θ to be approximated by p∗(.), consider

the quantity

−E{log[p∗(θ)]} = −
∫

log[p∗(θ)]p(θ)dθ. (12.16)

For any approximating distribution with density p∗(.), this entropy related
quantity is a natural measure of the closeness of approximation to the
true distribution. Similar measures abound in Bayesian, and non-Bayesian,
statistics. Recall, for example, the appearance of this sort of measure in
the convergence results in multi-process, class I models of Section 12.2.4.
Choosing the approximating density to achieve a small value of (12.16) is
clearly equivalent to attempting to minimise the quantity K(p∗) defined
by

K(p∗) = E{log
[
p(θ)
p∗(θ)

]
} =

∫
log

[
p(θ)
p∗(θ)

]
p(θ)dθ. (12.17)

This is the Kullback-Leibler directed divergence between the approximating
distribution whose density is p∗(.) and the true distribution with density
p(.). The divergence is defined for continuous and discrete distributions
alike, although we restrict attention here to continuous distributions and
assume that p(.) and p∗(.) have the same support. Thus, p(θ) > 0 if and
only if p∗(θ) > 0. Although not a true distance measure, the properties of
the divergence are appropriate to the problem of density approximation.
Two key properties are that

• K(p∗) ≥ 0 for all densities p∗(.), and
• K(p∗) = 0 if and only if p∗ = p, the true density, almost everywhere.

From now on, the divergence is used to measure closeness of approxi-
mations to mixtures, its use being illustrated in examples pertinent to the
multi-process context. Related discussion can be found in Titterington,
Makov and Smith (1985). Some of the results quoted, and used in exer-
cises, are to be found in Quintana (1987), and related material appears in
Amaral and Dunsmore (1980).
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EXAMPLE 12.5. Suppose θ = θ is scalar whose true distribution has finite
mean and variance. Suppose also that the approximation p∗(.) is a normal
density with mean m and variance C to be determined. It can be easily
shown that

2K(p∗) = c+ log(C) + V[θ]/C + (m− E[θ])2/C

for some constant c. It follows directly that the optimal normal approxi-
mation to any distribution with finite mean and variance just matches the
moments, setting m = E[θ] and C = V[θ].

EXAMPLE 12.6. The multivariate generalisation of Example 12.5 assumes
that the vector θ has true distribution with finite mean vector and variance
matrix, and that the approximating distribution is multivariate normal,
N[m,C]. Then as a function of m and C,

2K(p∗) = c+ log(|C|) + E{(θ−m)′C−1(θ−m)}
= c+ log(|C|) + trace(C−1V[θ]) + (E[θ]−m)′C−1(E[θ]−m),

for some constant c. It is left as an exercise to the reader to verify that this
is minimised by taking m = E[θ] and C = V[θ]. In the case when p(.) is
a mixture as in (12.15), suppose that the mixture components pj(.) have
means m(j) and variance matrices C(j). Then the optimal values for the
approximating moments are the true moments, namely

m =
k∑

j=1

m(j)p(j)

and

C =
k∑

j=1

{C(j) + (m−m(j))(m−m(j))′}p(j).

In the multi-process context, various mixture collapsing procedures may
be considered. The basic approach for the posteriors for the state vector
θt uses the normal mixture technique of Example 12.6. However, this
needs a little refinement to cover the cases when the observational variance
sequence is unknown and estimated, leading to mixtures of T posteriors
for the state vector and gamma mixtures for the reciprocal variance, or
precision, parameters. The following examples provide the relevant theory
for these cases.

EXAMPLE 12.7. Suppose θ = φ, a scalar, having a true distribution with
finite mean. Suppose also that the approximating density p∗(φ) is gamma,
G[n/2, d/2] for some degrees of freedom parameter n > 0 and d > 0 to be
identified.
We consider first a special case of relevance to multi-process, in which

the degrees of freedom parameter n is fixed in advance, the optimisation
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problem therefore being restricted to the choice of d. It is easily shown
that as a function of d alone, 2K(p∗) = dE[φ] − n log(d), which is min-
imised by setting n/d = E[φ]. This simply equates the mean of the gamma
distribution to the true mean and provides d = n/E[φ].
If n is to be considered too, the problem is rather more complex. Here,

as a function of n and d,

2K(p∗) = constant+ dE[φ]− n log(d/2)− nE[log(φ)] + 2 log[Γ(n/2)].

It follows by differentiation that the minimising values of n and d satisfy

(a) E[φ] = n/d,

(b) E[log(φ)] = γ(n/2) + log(2E[φ]/n).

Here γ(.) is the digamma function defined, for all x > 0, by γ(x) =
Γ′(x)/Γ(x). Let S = d/n. Then from (a), S−1 = E[φ], the approxi-
mating Gamma distribution having the true mean. The value of n can
be found from (b), although the unique solution can be found generally
only via numerical methods. Given S from (a), (b) leads to E[log(φ)] =
γ(n/2) − log(nS/2), an implicit equation in n that may be solved numer-
ically. If it is clear that n is relatively large, then the approximation
γ(x) ≈ log(x) − 1/(2x), for x large, may be applied, leading from (b)
to n−1 = log(E[φ]) − E[log(φ)]. This approximation is certainly adequate
for n > 20.
Consider the special case that p(.) is a discrete mixture of gamma distri-

butions, the component pj(.) being G[n(j)/2, d(j)/2] with means S(j)−1 =
n(j)/d(j). Now the required quantities E[φ] and E[log(φ)] in (a) and (b)
are given by

E[φ] =
k∑

j=1

S(j)−1p(j),

E[log(φ)] =
k∑

j=1

{γ(n(j)/2)− log(d(j)/2)}p(j).

EXAMPLE 12.8. Specifically in connection with the multi-process DLM,
suppose that the q-vector θ and the scalar φ have a joint distribution that
is a mixture of normal/gamma forms. The mixture has k components, the
jth component being defined as follows:

(1) Given φ, (θ | φ) ∼ N[m(j),C(j)/{S(j)φ}] for some mean vector
m(j), variance matrix C(j), and estimate S(j) > 0 of φ−1.

(2) Marginally, φ ∼ G[n(j)/2, d(j)/2] for positive n(j) and d(j), having
mean E[φ] = S(j)−1 = n(j)/d(j).

(3) Putting (1) and (2) together and integrating out φ gives the mar-
ginal, multivariate T distribution in model j, θ ∼ Tn(j)[m(j),C(j)].
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Now, suppose that the mixture is to be approximated by p∗(θ, φ), a
single, normal/gamma distribution defined by parameters m, C, n and
d, giving (θ | φ) ∼ N[m,C/{Sφ}], where S = d/n, φ ∼ G[n/2, d/2] and
θ ∼ Tn[m,C]. Calculation of the Kullback-Leibler divergence requires in-
tegration of log[p∗(θ, φ)] with respect to the joint mixture distribution of
θ and φ. We can write

K(p∗) = constant− E{log[p∗(θ, φ)]}
= constant− E{log[p∗(θ | φ)] + log[p∗(φ)]},

specifying the joint density in terms of the conditional/marginal pair in (1)
and (2). It is left as an exercise to the reader to verify that on substituting
the densities from (1) and (2), this results in

2K(p∗) = constant

− nlog(n/2) + 2log[Γ(n/2)]− (n+ q − 2)E[log(φ)]

− nlog(S) + nSE[φ] + log(|S−1C|)

+ S

k∑
j=1

S(j)−1{trace(C−1C(j))

+ (m−m(j))′C−1(m−m(j))}p(j).

It follows that minimisation with respect to m, C, S and n is achieved as
follows:

(a) Minimisation with respect to m leads, as in Example 12.6, to

m =




k∑
j=1

S(j)−1p(j)




−1
k∑

j=1

S(j)−1m(j)p(j).

(b) Minimisation with respect to C leads, again as in Example 12.6, to

C = S
k∑

j=1

S(j)−1{C(j) + (m−m(j))(m−m(j))′}p(j).

(c) Minimisation with respect to S leads, as in Example 12.7(a), to

S−1 = E[φ] =
k∑

j=1

S(j)−1p(j).

This also implies that in (a) and (b),

m =
k∑

j=1

m(j)p∗(j)
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and

C =
k∑

j=1

{C(j) + (m−m(j))(m−m(j))′}p∗(j),

where the revised weights p∗(j) = p(j)S/S(j) sum to unity.
(d) Minimisation with respect to n leads, as in Example 12.7(b), to

E[log(φ)] = γ(n/2)− log(nS/2).

With S obtained from (c), this again must generally be solved nu-
merically for n. Since p(φ) is a mixture of gamma densities, then
E[log(φ)] may be calculated as in Example 12.7.

Two special cases for consideration are as follows:

(i) Results (a) and (b) clearly specialise to the corresponding versions
in Example 12.6 if it is assumed that φ = S−1 is known. Formally,
let each n(j) tend to infinity and S(j) = S.

(ii) As in Example 12.7, consider the case that the n(j) are equal. The
above results apply, of course, to define the optimal, approximating
gamma distribution, the resulting value of n being typically different
to that common to the mixture components. It may be viewed as
appropriate to fix the degrees of freedom n at the common value,
in which case the optimisation problem is restricted to the choice of
S, defined in (c), part (d) being irrelevant.

12.4 CLASS II MIXTURE MODELS ILLUSTRATED
12.4.1 Second-order polynomial models with exceptions
As an illustration, we consider a widely used class II model that was
introduced in Harrison and Stevens (1971, 1976a and b). See also Green
and Harrison (1973), Smith and West (1983), and Ameen and Harrison
(1985b) for extensions and applications. The model is designed for series
that behave generally according to a second-order polynomial, or locally
linear model, but that are subject to exceptional events including outliers
and changes in level or growth. These are just the sorts of commonly
occurring exceptions discussed in Chapter 11 and that were handled us-
ing subjective intervention and simple, automatic exception detection and
adaptation methods. The multi-process models developed here can be seen
as a formal, model based technique for monitoring and adaptation. Clearly,
the multi-process technique may also be applied to other, more complex
models.
To begin, consider the usual, second-order polynomial model for the Yt

series, assuming the observational variance sequence known. We use the
linear growth form of Section 7.3 with level and growth parameters µt and
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βt comprising the state vector θt = (µt, βt)′ at time t. Stochastic changes
are given in ‘delta’ notation so that the model is

Yt = µt + νt, νt ∼ N[0, Vt],

µt = µt−1 + βt + δµt,

βt = βt−1 + δβt,

where δµt and δβt are the changes in level and growth, having a joint normal
distribution with zero-mean vector and variance matrix to be specified. In
matrix notation, the evolution equation is

θt = Gθt−1 + ωt,

where

G =
(
1 1
0 1

)

and

ωt =
(
δµt + δβt

δβt

)
= G

(
δµt

δβt

)
.

Thus, the evolution variance matrixWt is given by

Wt = GV[(δµt, δβt)′]G′. (12.18)

In addition, the usual independence assumptions hold. As a specific ex-
ample, suppose that Vt = V = 1, V[δµt] = 0.1, V[δβt] = 0.01 and
C[δµt, δβt] = 0 for all t. Then

Wt =W =
(
0.11 0.01
0.01 0.01

)
.

The model is constant, having an evolution variance matrixW of a linear
growth form, and the constant defining quadruple is{(

1
0

)
,

(
1 1
0 1

)
, 1,

(
0.11 0.01
0.01 0.01

)}
. (12.19)

Note that the model is standardised to have unit observational variance for
convenience here, so thatWt is scale-free.
Consider modelling outliers and changes in trend in a series thought to

behave generally according to this model. An outlying observation Yt may
be modelled via a large (positive or negative) observational error νt. Under
existing model assumptions, Pr[|vt| > 3] < 0.01, so that values larger than
3 in absolute value are exceptional. Larger values can be generated by
replacing V = 1 in the model with a larger variance. A single, extreme
value νt = 5, for example, is an exception in the model as it stands but
perfectly consistent with a model having a larger observational variance,
say Vt = 100, for example, at time t alone. If outliers of this sort of
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magnitude are expected to occur some (small) percentage of the time, then
the alternative DLM{(

1
0

)
,

(
1 1
0 1

)
, 100,

(
0.11 0.01
0.01 0.01

)}
(12.20)

will adequately model them, whilst (12.19) remains appropriate for uncon-
taminated observations. This sort of outlier model, commonly referred to
as a scale shift or scale inflation model, has been widely used in modelling
outliers in Bayesian analyses, and its use is not restricted to time series (Box
and Tiao 1968; Smith and Pettit 1985). The larger observational variance
leads to larger observational errors than in the standard model (12.19) but
remains neutral as to the sign, the errors still having zero mean.
Similarly, changes in level µt much greater than predicted by (12.19)

can be accommodated by replacing W with an alternative in which the
variance of δµt is inflated. An inflation factor of 100, as used in (12.20) for
the outlier model, for example, leads to

W =
(
10.01 0.01
0.01 0.01

)
(12.21)

for just the times of change. With this particular matrix, the increment
δµt to the level parameter at time t can be far greater in absolute value
than under (12.19), leading to the possibility of marked, abrupt changes or
jumps in level. Note again that the direction of change is not anticipated
in this model.
Finally, the same idea applies to modelling jumps in growth of the series.

Taking V[δβt] = 1, for example, to replace the original variance of 0.01,
leads to

W =
(
1.1 1
1 1

)
(12.22)

for the times of possible abrupt changes in growth.
In line with the discussion of Sections 12.3.1 and 12.3.2 consider collec-

tions of DLMs each of which may apply at any given time, the selection
being according to fixed model probabilities. Suppose, for example, that

• the standard DLM (12.19) applies with probability 0.85;
• the outlier generating DLM (12.20) applies with probability 0.07;
• the level change DLM (12.21) applies with probability 0.05;
• the growth change DLM (12.22) applies with probability 0.03.

With these probabilities, the series is expected to accord to the standard
DLM (12.19) about 85% of the time. The chance of an outlier at any
time is 7%; thus one outlying observation in 14 is to be expected. Abrupt
changes in the trend of the series are viewed as likely to occur about 8%
of the time, with level changes more likely at 5% then growth changes
at 3%. This sort of setup is appropriate for many real series; the precise
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values of the probabilities chosen here are also representative of the forms
of behaviour evident in many macro commercial and economic series.
This is an example of a mixture of DLMs with k = 4 possible models

applying at any time. Some important variations in this particular context
are as follows:

(i) Reduction to 3 DLMs by combining level and growth changes into
a single model. For example, taking (12.19) withW replaced by

W =
(
11 1
1 1

)

would give an appropriate trend change model, allowing for changes
in either or both components µt and βt of the trend. This reduces
the number of models and is sensible if it is not of interest to distin-
guish between changes in trend and changes in growth. Also, it can
often be difficult to distinguish between the two, particularly when
growth changes are small, in which case the combination of the two
into a single, overall model loses little in practice.

(ii) It may be desired to use discount factors to assign evolution vari-
ances Wt rather than using a constant matrix. If this is so, then
exceptionally small discount factors apply to model abrupt changes
as in Section 11.5. However, the specific structure of the linear
growth model here cannot be obtained by using the standard dis-
counting technique. Approaches using discount factors can take the
following forms:
Firstly, and generally often appropriately, the quantities δµt and

δβt may be taken as uncorrelated, with variances determined as
fractions of the posterior variances of µt−1 and βt−1. Thus, given
the usual posterior

(θt−1 | Dt−1) ∼ N[mt−1,Ct−1]

at t− 1, write

Ct−1 =
(

Ct−1,µ Ct−1,µβ
Ct−1,µβ Ct−1,β

)
.

Separate discount factors for level and growth, denoted by δµ and
δβ respectively, now define Wt,µ = Ct−1,µ(δ−1

µ − 1) and Wt,β =
Ct−1,β(δ−1

β − 1). The linear growth structure is retained with evo-
lution variance matrix

Wt =
(
Wt,µ +Wt,β Wt,β

Wt,β Wt,β

)
. (12.23)

The possibilities of abrupt changes are modelled using smaller, ex-
ceptional discount factors δ∗

µ and δ∗
β , simply inflating the elements

ofWt appropriately.
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(iii) All alternative discounting methods lead to evolution variance ma-
trices that do not have the linear growth structure (Section 7.3).
However, they are still perfectly valid second-order polynomial mod-
els and the differences in practical application are typically small.
In line with the usual component modelling ideas applied to dis-
counting, the key alternative approach is appropriate if the level
and growth are viewed as a single trend component, the two pa-
rameters changing together at the same rate. Here a single discount
factor δ controls the time variation. With

V[θt | Dt−1] = Pt = GCt−1G′,

we obtain

Wt = Pt(δ−1 − 1).

Again, abrupt changes in trend are modelled by altering δ to a
smaller, exceptional value δ∗ to define a trend change DLM.

We proceed to analyse and apply the multi-process with 4 possible DLMs.
By way of general notation,

F = E2 =
(
1
0

)
and G = J2(1) =

(
1 1
0 1

)
.

Suppose initially, for notational simplicity, that the observational variance
sequence Vt is known (the extension to the case of an unknown, constant
variance will be summarised below). The basic DLM quadruple is then

{F, G, Vt, Wt}.

The special cases for the 4 possible models in the multi-process are as
follows:

(1) Standard DLM: {F, G, VtV (1), Wt(1)}, where V (1) = 1 and
Wt(1) =Wt, a standard evolution variance matrix.

(2) Outlier DLM: {F, G, VtV (2), Wt(2)}, where V (2) > 1 is an in-
flated variance consistent with the occurrence of observations that
would be extreme in the standard DLM, andWt(2) =Wt(1) =Wt.

(3) Level change DLM: {F, G, VtV (3), Wt(3)}, where V (3) = 1 and
Wt(3) is an evolution variance matrix consistent with level changes.

(4) Growth change DLM: {F, G, VtV (4), Wt(4)}, where V (4) = 1
and Wt(4) is an evolution variance matrix consistent with growth
changes.

Formally, we have models Mt(j) indexed by αj = j, (j = 1, . . . , 4), the
generic parameter α taking values in the index set A.
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12.4.2 Model analysis (Vt known)
In providing for the possibility of various exceptions, it is clear that af-
ter the occurrence of any such event, further observations will be required
before the nature of the event can be identified. Thus, an outlier is indis-
tinguishable from the onset of change in either level or growth, or both,
until the next observation is available. Hence, in approximating mixtures
by collapsing over possible models in the past (Section 12.3.3), it will be
usual that h = 1 at least in (12.11). The original material in Harrison and
Stevens (1971, 1976a) and Smith and West (1983) use h = 1, and indeed
this will often be adequate. In some applications h = 2 may be necessary,
retaining information relevant to all possible models up to two steps back in
time. This may be desirable, for example, if exceptions are rather frequent,
possibly occurring consecutively over time. It will be very rare, however,
that h > 2 is necessary. For illustration here we follow the above-referenced
authors in using h = 1.
We have models

Mt(jt) : {F, G, VtV (jt), Wt(jt)}, (jt = 1, . . . , 4).

For each jt, it is assumed that Mt(jt) applies at time t with fixed and pre-
specified probability π(jt) = Pr[Mt(jt) | Dt−1] = Pr[Mt(jt) | D0]. Thus, at
time t, the model is defined by observation and evolution equations

(Yt | θt,Mt(jt)) ∼ N[F′θt, VtV (jt)] (12.24)

and

(θt | θt−1,Mt(jt)) ∼ N[Gθt−1,Wt(jt)], (12.25)

with probability π(jt), conditionally independently of the history of the
series Dt−1.
Assume also that at t = 0, the initial prior for the state vector is the

usual normal form

(θ0 | D0) ∼ N[m0,C0],

irrespective of possible models obtaining at any time, where m0 and C0
are known and fixed at t = 0. Given this setup, the development of Section
12.3.3 applies in this special case of h = 1; the position at any time t− 1 is
now summarised.
Historical information Dt−1 is summarised in terms of a 4-component

mixture posterior distribution for θt−1, the mixture being with respect to
the four possible models obtaining at time t− 1. Within each component,
the posterior distributions have the usual conjugate normal forms. Thus,

(a) For jt−1 = 1, . . . , 4, model Mt−1(jt−1) applied at time t − 1 with
posterior probability pt−1(jt−1). These probabilities are now known
and fixed.
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(b) Given Mt−1(jt−1) and Dt−1, θt−1 is

N[mt−1(jt−1),Ct−1(jt−1)]. (12.26)

Note that generally, the quantities defining these distributions de-
pend on the model applying at t− 1, hence the index jt−1.

Evolving to time t, statements about θt and Yt depend on the combinations
of possible models applying at both t− 1 and t.

(c) Thus, from (12.25) and (12.26), for each jt−1 and jt we have

(θt |Mt(jt),Mt−1(jt−1), Dt−1) ∼
N[at(jt−1),Rt(jt, jt−1)],

where at(jt−1) = Gmt−1(jt−1) and

Rt(jt, jt−1) = GCt−1(jt−1)G′ +Wt(jt).

Note that at(jt−1) does not differ across theMt(jt), depending only
upon possible models applying at t− 1 since G is common to these
models.

(d) Similarly, the one-step ahead forecast distribution is given, for each
possible combination of models, by the usual form

(Yt |Mt(jt),Mt−1(jt−1), Dt−1) ∼
N[ft(jt−1), Qt(jt, jt−1)],

(12.27)

where

ft(jt−1) = F′at(jt−1),

also common across the models at time t, and

Qt(jt, jt−1) = F′Rt(jt, jt−1)F+ VtV (jt).

Note again that due to the particular structure of the multi-process, the
means of these sixteen possible forecast distributions take only four distinct
values,

E[Yt |Mt(jt),Mt−1(jt−1), Dt−1] = ft(jt−1)

for each of the four values jt. This follows since the Mt(jt) differ only
through scale parameters and not in location. Note, however, that this
feature is specific to the particular model here and may be present or absent
in other models. Calculation of the forecast distribution unconditional on
possible models then simply involves the mixing of these standard normal
components with respect to the relevant probabilities, calculated as follows:

(e) For each jt and jt−1,

Pr[Mt(jt),Mt−1(jt−1) | Dt−1]

= Pr[Mt(jt) |Mt−1(jt−1), Dt−1] Pr[Mt−1(jt−1) | Dt−1].
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Now, by assumption, models apply at t with constant probabilities
π(jt) irrespective of what happened previously, so that

Pr[Mt(jt) |Mt−1(jt−1), Dt−1] = π(jt);

additionally,

Pr[Mt−1(jt−1) | Dt−1] = pt(jt−1),

and then

Pr[Mt(jt),Mt−1(jt−1) | Dt−1] = π(jt)pt−1(jt−1).

This is just a special case of the general formula (12.14) with h = 1.
(f) The marginal predictive density for Yt is a mixture of the 42 = 16

components (12.27) with respect to these probabilities,

p(Yt | Dt−1) =
4∑

jt=1

4∑
jt−1=1

{π(jt)pt−1(jt−1)

× p(Yt |Mt(jt),Mt−1(jt−1), Dt−1)}.
(12.28)

Now consider updating the prior distributions in (c) to posteriors when
Yt is observed. Given jt−1 and jt, the standard updating equations apply
within each of the sixteen combinations, the posterior means, variances,
etc. obviously varying across combinations.

(g) Thus,

(θt |Mt(jt),Mt−1(jt−1), Dt) ∼
N[mt(jt, jt−1),Ct(jt, jt−1)], (12.29)

where

mt(jt, jt−1) = at(jt−1) +At(jt, jt−1)et(jt−1),

Ct(jt, jt−1) = Rt(jt, jt−1)

−At(jt, jt−1)At(jt, jt−1)′Qt(jt, jt−1),

et(jt−1) = Yt − ft(jt−1)

and

At(jt, jt−1) = Rt(jt, jt−1)F/Qt(jt, jt−1).

Posterior probabilities across the sixteen possible models derive directly
from the general formula (12.13) in the case h = 1.

(h) Thus,

pt(jt, jt−1) = Pr[Mt(jt),Mt−1(jt−1) | Dt]

∝ π(jt)pt−1(jt−1)p(Yt |Mt(jt),Mt−1(jt−1), Dt−1).
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The second term here is the observed value of the predictive density
(12.27), providing the model likelihood, and so these probabilities
are easily calculated. These are simply given by

pt(jt, jt−1) =

ctπ(jt)pt−1(jt−1)
Qt(jt, jt−1)1/2

exp{−0.5et(jt, jt−1)2/Qt(jt, jt−1)},
(12.30)

where ct is the constant of normalisation such that
4∑

jt=1

4∑
jt−1=1

pt(jt, jt−1) = 1.

Inferences about θt are based on the unconditional, sixteen component mix-
tures that average (12.29) with respect to the posterior model probabilities
(12.30).

(i) Thus,

p(θt | Dt) =
4∑

jt=1

4∑
jt−1

p(θt |Mt(jt),Mt−1(jt−1), Dt)pt(jt, jt−1).
(12.31)

with components given by the normal distributions in (12.29).

These calculations essentially complete the evolution and updating steps
at time t. To proceed to time t+1, however, we need to remove the depen-
dence of the joint posterior (12.31) on possible models obtaining at time
t − 1. If we evolve (12.31) to time t + 1 directly, the mixture will expand
to 43 = 64 components for θt+1, depending on all possible combinations
of Mt+1(jt+1), Mt(jt) and Mt−1(jt−1). However, the principle of approx-
imating such mixtures by assuming that the effects of different models at
t − 1 are negligible for time t + 1 applies. Thus, in moving to t + 1, the
sixteen-component mixture (12.31) will be reduced, or collapsed, over pos-
sible models at t−1. The method of approximation of Example 12.6 applies
here. For each jt = 1, . . . , 4, it follows that

• pt(jt) = Pr[Mt(jt) | Dt] =
4∑

jt−1=1

pt(jt, jt−1),

• Pr[Mt−1(jt−1) | Dt] =
4∑

jt=1

pt(jt, jt−1),

• Pr[Mt−1(jt−1) |Mt(jt), Dt] = pt(jt, jt−1)/pt(jt).

(12.32)

The first equation here gives current model probabilities at time t. The
second gives posterior probabilities over the possible models one-step back
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in time, at t − 1. These one-step back, or smoothed, model probabilities
are of great use in retrospective assessment of which models were likely at
the previous time point. The third equation is of direct interest here in
collapsing the mixture (12.31) with respect to time t−1; it gives the poste-
rior (given Dt) probabilities of the various models at time t− 1 conditional
on possible models at time t. To see how these probabilities feature in the
posterior (12.31), note that this distribution can be rewritten as

p(θt | Dt) =
4∑

jt=1

p(θt |Mt(jt), Dt)pt(jt), (12.33)

the first terms of the summands being given by

p(θt |Mt(jt), Dt) =
4∑

jt−1=1

p(θt |Mt(jt),Mt−1(jt−1), Dt)pt(jt, jt−1)/pt(jt).
(12.34)

In (12.33), the posterior is represented as a four-component mixture, the
components being conditional only on models at time t and being calcu-
lated as four-component mixtures themselves in (12.34). Only in the latter
mixture are the component densities of standard normal form. Now (12.33)
is the exact posterior, the dependence on possible models at time t being
explicit, whilst that on models at t − 1 is implicit through (12.34). Thus,
in moving to time t + 1, the posterior will have the required form (12.26)
if each of the components (12.34) is replaced by a normal distribution. For
each jt, the mixture in (12.34) has precisely the form of that in Example
12.6 and may be collapsed to a single approximating normal (optimal in
the sense of minimising the Kullback-Leibler divergence) using the results
of that example. For each jt, define the appropriate mean vectors mt(jt)
by

mt(jt) =
4∑

jt−1=1

mt(jt, jt−1)pt(jt, jt−1)/pt(jt);

the corresponding variance matrices Ct(jt) are given by
4∑

jt−1=1

{Ct(jt, jt−1) + (mt(jt)−mt(jt, jt−1))(mt(jt)−mt(jt, jt−1))′}

× pt(jt, jt−1)/pt(jt).

Then (12.34) is approximated by the single normal posterior having the
same mean and variance matrix, namely

(θt |Mt(jt), Dt) ∼ N[mt(jt),Ct(jt)]. (12.35)

The distributions (12.35) replace the components (12.34) of the mixture
(12.33), collapsing from sixteen to four standard normal components. In
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doing so, we complete the cycle of evolution, updating and collapsing;
the resulting four-component mixture is analogous to the starting four-
component mixture defined by components (12.26) with the time index
updated from t− 1 to t.

12.4.3 Summary of full model analysis
The above analysis extends to include learning about a known and constant
observational variance scale parameter Vt = V for all t. The conditionally
conjugate normal/gamma analysis applies as usual within any collection of
DLMs applying at all times. Differences arise only through the requirement
that mixtures be approximated by collapsing with respect to models h-
steps back before evolving to the next time point. Since we now have an
extended, conditional normal/gamma posterior at each time, this collapsing
is based on that in Example 12.8. Full details of the sequential analysis are
summarised here.
At t = 0, the initial prior for the state vector and observational scale has

the usual conjugate form irrespective of possible models obtaining at any
time. With precision parameter φ = V −1, we have

(θ0 | V,D0) ∼ N[m0,C0V/S0],

(φ | D0) ∼ G[n0/2, d0/2],

where m0, C0, n0 and d0 are known and fixed at t = 0. The initial point
estimate S0 of V is given by S0 = d0/n0, and the prior for θ0 marginally
with respect to V is just (θ0 | D0) ∼ Tn0 [m0,C0].
At times t− 1 and t, the components of analysis are now described. His-

torical information Dt−1 is summarised in terms of a four-component mix-
ture posterior distribution for the state vector θt−1 and the variance scale
parameter V , the mixture being with respect to the four possible models
obtaining at time t − 1. Within each component, the posterior distribu-
tions have the usual conjugate normal/gamma forms and the correspond-
ing model probabilities pt−1(jt−1) are currently known. GivenMt−1(jt−1),
θt−1 and φ have a joint normal/gamma posterior with marginals

(θt−1 |Mt−1(jt−1), Dt−1) ∼ Tnt−1 [mt−1(jt−1),Ct−1(jt−1)],

(φ |Mt−1(jt−1), Dt−1) ∼ G[nt−1/2, dt−1(jt−1)/2],
(12.36)

where St−1(jt−1) = dt−1(jt−1)/nt−1 is the estimate of V = φ−1 in model
Mt−1(jt−1). The quantities defining these distributions generally depend
on the model applying at t − 1, hence on the index jt−1. The exception
here is the degrees of freedom parameter nt−1 common to each of the four
possible models.
Evolving to time t, statements about θt and Yt depend on the combina-

tions of possible models applying at both t− 1 and t. The prior for θt and
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φ is normal/gamma with marginals, for each jt−1 and jt, given by

(θt |Mt(jt),Mt−1(jt−1), Dt−1) ∼ Tnt−1 [at(jt−1),Rt(jt, jt−1)],

(φ |Mt(jt),Mt−1(jt−1), Dt−1) ∼ G[nt−1/2, dt−1(jt−1)/2],

where at(jt−1) = Gmt−1(jt−1), and Rt(jt, jt−1) = GCt−1(jt−1)G′ +
Wt(jt). Note that E[θt | Mt(jt),Mt−1(jt−1), Dt−1] = at(jt−1) does not
differ across the Mt(jt), depending only upon possible models applying at
t− 1 since G is common to these models. Also,

p(φ |Mt(jt),Mt−1(jt−1), Dt−1) = p(φ |Mt−1(jt−1), Dt−1).

Forecasting one-step ahead,

(Yt |Mt(jt),Mt−1(jt−1), Dt−1) ∼ Tnt−1 [ft(jt−1), Qt(jt, jt−1)], (12.37)

where

ft(jt−1) = F′at(jt−1),

also common across the models at time t, and

Qt(jt, jt−1) = F′Rt(jt, jt−1)F+ St−1(jt−1)V (jt).

As in the previous section with V known, the particular structure of the
multi-process leads to the modes (and means when nt−1 > 1) of these
sixteen possible forecast distributions taking only four distinct values,

E[Yt |Mt(jt),Mt−1(jt−1), Dt−1] = ft(jt−1)

for each of the four values jt. Calculation of the forecast distribution un-
conditional on possible models then simply involves the mixing of these
standard T components with respect to the relevant probabilities calcu-
lated as in part (e) of the previous section. Forecasting Yt is based on the
related mixture

p(Yt | Dt−1) =
4∑

jt=1

4∑
jt−1=1

p(Yt |Mt(jt),Mt−1(jt−1), Dt−1)π(jt)pt−1(jt−1).

(12.38)
Updating proceeds as usual given jt−1 and jt. The implied normal/

gamma posterior has margins

(θt |Mt(jt),Mt−1(jt−1), Dt) ∼ Tnt
[mt(jt, jt−1),Ct(jt, jt−1)],

(φ |Mt(jt),Mt−1(jt−1), Dt) ∼ G[nt/2, dt(jt, jt−1)/2],
(12.39)
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where

mt(jt, jt−1) = at(jt−1) +At(jt, jt−1)et(jt−1),

Ct(jt, jt−1) = [St(jt, jt−1)/St−1(jt−1)]

× [Rt(jt, jt−1)−At(jt, jt−1)At(jt, jt−1)′Qt(jt, jt−1)],

et(jt−1) = Yt − ft(jt−1),

At(jt, jt−1) = Rt(jt, jt−1)F/Qt(jt, jt−1),

with nt = nt−1 + 1 and

dt = dt−1(jt−1) + St−1(jt−1)et(jt, jt−1)2/Qt(jt, jt−1),

and resulting variance estimate St(jt, jt−1) = dt(jt, jt−1)/nt. Note that nt

is common across models. Posterior model probabilities are given, following
part (h) of the previous section, from equation (12.30) with the normal one-
step forecast density replaced by the corresponding T form here. Note that
since the degrees of freedom of the T distributions (12.39) are all nt−1, then
the probabilities are simply given by

pt(jt, jt−1) =

ctπ(jt)pt−1(jt−1)
Qt(jt, jt−1)1/2{nt−1 + et(jt, jt−1)2/Qt(jt, jt−1)}nt/2

,
(12.40)

where ct is a constant of normalisation.
Inferences about θt and V are based on the sixteen-component mix-

tures that average (12.39) with respect to the posterior model probabilities
(12.40). The marginal for θt is

p(θt | Dt) =
4∑

jt=1

4∑
jt−1

p(θt |Mt(jt),Mt−1(jt−1), Dt)pt(jt, jt−1), (12.41)

with components given by the T distributions in (12.39). Similarly, the
posterior for φ = 1/V is a mixture of sixteen gamma distributions.
In evolving to t+ 1, the sixteen-component mixture (12.41) is collapsed

over possible models at t − 1. The method of approximation of Example
12.8 applies here. For each jt = 1, . . . , 4, it follows, as in the previous
section, that the collapsed posterior for θt and V is defined by

p(θt, φ | Dt) =
4∑

jt=1

p(θt, φ |Mt(jt),Mt−1(jt−1), Dt)pt(jt), (12.42)

the component densities in this sum being approximated as follows (cf.
Example 12.8).
For each jt, define the variance estimates St(jt) by

St(jt)−1 =
4∑

jt−1=1

St(jt, jt−1)−1pt(jt, jt−1)/pt(jt),
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with

dt(jt) = ntSt(jt).

Define the weights

p∗
t (jt) = St(jt)St(jt, jt−1)−1pt(jt, jt−1)/pt(jt),

noting that they sum to unity, viz.,
∑4

jt=1 p
∗
t (jt) = 1. Further, define the

mean vectors mt(jt) by

mt(jt) =
4∑

jt−1=1

mt(jt, jt−1)p∗
t (jt−1),

and the variance matrices Ct(jt) by the formulae
4∑

jt−1=1

{Ct(jt, jt−1)+(mt(jt)−mt(jt, jt−1))(mt(jt)−mt(jt, jt−1))′}p∗
t (jt−1).

For each jt, the mixture posterior p(θt, φ|Mt(jt),Mt−1(jt−1), Dt) is then
approximated by single normal/gamma posteriors having marginals

(θt |Mt(jt), Dt) ∼ Tnt
[mt(jt),Ct(jt)],

(φ |Mt(jt), Dt) ∼ G[nt/2, dt(jt)/2].

These approximate the components in the mixture (12.42), thus collapsing
from sixteen to four standard normal/gamma components. In doing so, we
complete the cycle of evolution, updating and collapsing; the resulting four-
component mixture is analogous to the starting four-component mixture
defined by components (12.36) with t− 1 updated to t.

12.4.4 Illustration: CP6 series revisited
The model analysis is illustrated using the CP6 series. The basic linear

growth form described in Section 12.4.1 is used, the linear growth evolu-
tion variance sequence being defined by separate level and growth discount
factors δµ and δβ as in (12.23). The four component models at time t have
defining quantities as follows:

(1) Standard model: V (1) = 1 andWt(1) =Wt given by (12.23) with
δµ = δβ = 0.9, having model probability π(1) = 0.85;

(2) Outlier model: V (2) = 100 andWt(2) =Wt, having model proba-
bility π(2) = 0.07;

(3) Level change model: V (3) = 1 and Wt(3) given by (12.23) with
δµ = 0.01 and δβ = 0.9, having model probability π(3) = 0.05; and

(4) Growth change model: V (4) = 1 andWt(4) given by (12.23) with
δµ = 0.9 and δβ = 0.01, having model probability π(4) = 0.03.

Initial priors are defined by m0 = (600, 10)′, C0 = diag(10000, 25), d0 =
1440 and n0 = 10. It should be remarked that these values are chosen to
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Figure 12.5 Point forecasts for CP6 sales series

be in line with previous analyses of the series (Section 11.3.1). The values
of discount factors are not optimised in any sense. Also, it is clear that
the variance scale factor V apparently changes at later stages of the data,
inflating with the level of the series. Although this was catered for and
modelled in earlier analyses, V is assumed constant, though uncertain, here
for clarity. Figures 12.5-12.9 illustrate selected features of the multi-process
analysis, these features being common to the use of the models generally
and chosen in an attempt to identify key points. Before discussing the
analysis, recall that from earlier analyses, the notable features of the CP6
series are (i) an outlier at t = 12, followed by a switch from positive to
negative growth; (ii) a jump to higher levels between t = 24 and t = 26,
with a possible outlier at t = 25; (iii) a further jump at t = 37; and (iv)
higher random variation at higher levels of the data in later stages, with one
or two events possibly classifiable as level/growth changes, though obscured
by the greater random variation.
An overall impression of the analysis can be obtained from Figure 12.5.

Here the data are plotted and joined over time by the solid line (unlike
most previous plots where the forecasts etc. are joined, the data plotted
as separate symbols; this is a temporary change of convention for clarity
in this example). Superimposed on the data are one-step ahead point fore-
casts from the distributions (12.38) for all t. Each forecast distribution has
sixteen component T distributions whose modes are taken as individual
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point forecasts, although, as noted following equation (12.37), the partic-
ular structure of the model means that there are only four distinct such
point forecasts at each time. This follows from (12.37), where it is clear
that the mode in the component conditional on (Mt(jt),Mt−1(jt−1), Dt−1)
is simply ft(jt−1), for all 4 values of jt. Thus, ft(1) is the point forecast
for Yt in each of the four models that include Mt−1(1), and so applies with
probability pt−1(1).Generally, the forecast ft(jt−1) applies with probability
pt−1(jt−1). Now, rather than plotting all four modes at each t, only those
modes that apply with reasonably large probabilities are drawn. Specifi-
cally, ft(jt−1) is plotted only if pt−1(jt−1) > 0.05. In addition, all forecasts
plotted appear as circles whose radii are proportional to the corresponding
probabilities; thus more likely point forecasts are graphed as larger circles.
This serves to give a relatively simple visual summary of overall forecasting
performance (although without indications of uncertainty). In stable peri-
ods where the basic, linear growth form is adequate, the standard model
(whose prior probability at any time is 0.85) clearly dominates. This re-
sults in a preponderance of large circles denoting the point forecasts ft(1)
at each time, the mode of Yt conditional on the standard model applying
at the previous time point. At times of instability, the radii of these larger
circles decrease, reflecting lower probability, and up to three further circles
appear denoting those remaining forecasts with probabilities in excess of
0.05. These tend to be graphed as circles with very small radii, reflecting
low probability, sometimes just appearing as points. This occurs at those
times t when the previous observation Yt−1 (and sometimes the previous
one or two observations) are poorly forecast under the standard model.
In such cases, the probabilities pt−1(jt−1) spread out over the four mod-
els, reflecting uncertainty as to the behaviour of the series at time t − 1.
This uncertainty feeds directly through to the forecast distribution for Yt
as illustrated on the graph. Some of the occurrences are now described.
Consider the position at November 1955, time 11. Up until this time,

the series is stable and is well modelled by the standard DLM; hence the
single point forecasts in Figure 12.5. This is clearly evident in Figure
12.9a. Here the four posterior model probabilities pt(jt) at each time t are
plotted as vertical bars. Up to t = 11, the standard model has posterior
probability near 1 at each time. Figures 12.6a and 12.7a reflect existing
information given D11. Figure 12.7a displays the posterior density of the
current level parameter, p(µ11 | D11), the mixture of components (12.36)
with t − 1 = 11. The four components (12.36) are also plotted on the
graph. The components are all located between roughly 750 and 760, and
are similarly spread over 730 to 780. That based on M11(1) is the most
peaked and has corresponding posterior probability p11(1) very close to
1. This reflects the previous stability of the series and consistency with
the standard DLM. As a result, the mixture of these four components is
essentially equal to the first, standard component. This is a typical picture
in stable periods. Similar comments apply to the one-step ahead forecast
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Figure 12.6a Forecasts for Y12 at t = 11

distribution p(Y12 | D11) (from (12.28) with t=12), graphed in Figure 12.6a.
This is a sixteen-component mixture, the components also appearing on the
graph. It is difficult to distinguish the overall mixture since it corresponds
closely to the highly peaked components in the centre. The only additional
feature of note is that several of the components are much more diffuse
than the majority here, being those that condition on the outlier model at
time 12. The observational variance inflation factor of 100 in the definition
of Mt(2) produces this spread. In combining the components, however,
these outlier components (along with those for level and growth changes)
have small probability and so contribute little to the mixture. Again, this
is a typical picture in stable periods.
Proceed now to December 1955, time 12. Y12 = 870 is a very wild obser-

vation relative to the standard forecast distribution, and most of the prob-
ability under the mixture density in Figure 12.6a is concentrated between
700 and 820. The outlier components, however, give appreciable proba-
bility to values larger than 870. Hence, in updating to posterior model
probabilities given D12, those four components that include M12(2) will
receive much increased weights. This is clear from Figure 12.9a; the outlier
and level change models share most of the posterior probability at t = 12,
the former being the more heavily weighted due to the initial balance of
prior probabilities that slightly favour the outlier model. Figure 12.7b plots
the posterior density p(µ12 | D12) together with the four components; this
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is the analogue at time 12 of Figure 12.7a at time 11. Here, in contrast to
Figure 12.7a, the components are rather disparate. The peaked component
located near 770 corresponds to the outlier model for Y12, being the den-
sity p(µ12 |M12(2), D12). In this case, the observation has effectively been
ignored as an outlier, the inference being that the level remains between
about 740 and 800.
The two peaked components located in the region of Y12 = 870 come

from the level and growth change models, the former providing the more
peaked posterior. If the observation is due to marked change in level and/or
growth parameters, then the inference is that the current level actually lies
in the region of 840 to 900. The fourth, more diffuse component located
near 840 is p(µ12 | M12(1), D12), the posterior from the standard model
at time 12. If Y12 is a reliable observation and no level or growth change
has occurred, then clearly the posterior for the level is a compromise be-
tween the prior, located near 770, and the likelihood from Y12, located
at 870. The extra spread in this posterior is now explained. Conditional
on M12(1), the extreme observation leads to very large forecast errors re-
sulting in inflated estimates of V in the corresponding components; thus,
for each j11 = 1, . . . , 4 the variance estimates S12(1, j11) are all inflated,
and consequently, S12(1) is much larger than S12(j12) for j12 > 1. As a
result, the four posterior T distributions p(µ12 |M12(1),M11(j11), D12) are
all rather diffuse and hence so is p(µ12 | M12(1), D12), the plotted den-
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sity. As it happens, this obviously inappropriate (in retrospect) density
receives essentially no posterior probability, as can be seen from Figure
12.9a, contributing negligibly to the overall mixture posterior plotted in
Figure 12.7b. The posterior is clearly bimodal. This represents the ambi-
guity as to whether Y12 is an outlier or whether it indicates the onset of
a change in level or growth. If the former is true, then the more peaked
mode near 770 is the correct location, otherwise the second mode near 870
is correct. Until further information is processed, there is a complete split
between the two inferences. Forecasting ahead to t = 13, January 1956,
the bimodality carries over to p(Y13 | D12), graphed, along with the six-
teen components, in Figure 12.6b. The appearance of two distinct point
forecasts with appreciable probability in Figure 12.5 also evidences the
bimodality. An additional feature to note here concerns the components
located around 960 to 980. These correspond to the four model combina-
tions that include M12(4), the growth change model at time 12, although
they receive little weight in the overall mixture.
Moving on now to observe Y13 = 784 it becomes clear that Y12 was in

fact an outlier. Figure 12.9b presents posterior model probabilities anal-
ogous to those in Figure 12.9a, although these are the one-step back, or
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smoothed, probabilities referring to models at the previous time point, cal-
culated as in (12.32). For each t, the vertical bars in the figure are the
retrospective probabilities Pr[Mt−1(jt−1) | Dt] for each jt−1 = 1, . . . , 4.
These probabilities, calculated in (12.34), are very useful for retrospective
assessment and diagnosis of model occurrence at any time given one fur-
ther, confirmatory observation. Thus, for example, observing Y13 clarifies
the position at time 12, with Pr[M12(2) | D13] ≈ 1. The outlier is clearly
identified and in the updating has therefore been essentially ignored. After
updating, p(µ13 | D13) appears in Figure 12.7c, along with its four com-
ponents. The corresponding one-step ahead forecast densities appear in
Figure 12.6c. From these graphs it is clear that things have reverted to
stability with unimodal distributions once the outlier has been identified
and accommodated.
In summary, the posteriors for model parameters tend to comprise com-

ponents with similar locations in stable periods. These components sep-
arate out at the onset of an event, with posterior probabilities reflecting
ambiguity as to whether the event relates to an outlier or a change-point.
Further observations usually identify the event and posteriors reflect this
as the series reverts to stability and consistency with the standard DLM.
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To further illustrate the analysis, consider the level change at t = 37,
January 1958. Figures 12.8a and 12.8b present p(µt | Dt) for t = 37 and 38,
along with the four components of each p(µt |Mt(jt), Dt). Here the extreme
observation Y37 initially leads to bimodality in the posterior for µ37 at the
time; see Figure 12.8a. The observation is either an outlier or indicates
a change-point, but the model cannot as yet distinguish the possibilities.
Observing Y38 apparently confirms a level change, from around 860 to near
950, and the posterior for the level at time 38 reflects this. Finally, current
and one-step back probabilities indicate the switching between models over
time and the diagnosis of events.

12.4.5 Other applications
Several notable applications of this and related multi-process models exist
in commercial and economic fields, where models have been developed and
implemented primarily for short term forecasting (Harrison and Stevens
1971, 1976a, b), Johnston and Harrison (1980). The adaptability of the
multi-process approach to abrupt changes in trend can be of crucial benefit
to decision-makers in such areas.
An interesting application in medicine is documented in West (1982),

Smith and West (1983), Smith et al (1983), and Trimble et al (1983). That
application concerns a problem in clinical monitoring typical of many situ-
ations (not restricted to medicine) in which time series observations relate
to the state of a monitored subject, and the detection and interpretation
of abrupt changes in the pattern of the data are of paramount importance.
Often series are noisy and difficult to interpret using simple methods, and
the changes of interest are obscured by noise inherent in the measurement
process and outliers in the data. In addition, series may be subject to
abrupt changes of several types, with only a subset corresponding to the
changes of interest. It is therefore important to be able to distinguish, or
diagnose, types of change as well as simply detect change of any kind.
The medical application concerns the monitoring of the progress of kid-

ney function in individual patients who had recently received a transplant.
The level of renal functioning is indicated by the rate at which chemical
substances are cleared from the blood, and this can be inferred indirectly
from measurements of blood and/or urine levels of such substances. This
process involves the use of well-determined physiological relationships, but
is subject to various sources of error, thus producing noise-corrupted mea-
surements of filtration rates. Following transformations and corrections
made for both physiological and statistical reasons, this process results in
a response series that is inversely related to kidney well-being, and that
can be expected to behave essentially according to a linear growth model
in periods of consistent kidney function. In particular, (a) if the kidney
functions at a stable, roughly constant rate, the response series should ex-
hibit no growth; (b) if kidney function is improving with roughly constant
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growth between equally spaced observations, the response series should
decay roughly linearly; and (c) the reverse is the case if kidney function
deteriorates at a roughly constant rate. Each of these cases is encoun-
tered in practice. Stable function (a) may occur at different times during
post-operative patient care, with a successful transplant eventually leading
to stable function at a high level, corresponding to a low level in the re-
sponse series. Case (b) is anticipated immediately post-transplant as the
transplanted organ is accepted by the patient’s body and begins to func-
tion, eventually reaching normal levels of chemical clearance. Case (c) is
expected if at any time after the transplant, kidney function deteriorates.
This may be attributable to rejection of the transplant and is obviously of
paramount importance. One of the main objectives in monitoring the data
series is thus to detect an abrupt change from either (a) or (b) to (c), con-
sistent, in model terms, with an abrupt change in growth in the series from
non-positive to positive. The appropriateness of the multi-process model
is apparent, as is the emphasis on the use of the posterior model proba-
bilities to detect and diagnose change when it occurs. A high posterior
probability for the growth change model is used to signal the possibility
of such a change. However, since only changes from non-positive to posi-
tive growth are consistent with rejection, then only a subset of all possible
growth changes give cause for concern. For example, an abrupt change
from positive to negative growth is consistent with a marked and sustained
improvement in renal function. These particular features of this application
raise questions that are easily answered using the posterior distributions for
growth parameters; a change at time t of the sort consistent with rejection
is indicated if βt−1 ≤ 0 and βt > 0, that can be readily assessed using
the relevant posterior p(βt | Dt) and p(βt−1 | Dt) (Note that the latter is
a filtered distribution whose calculation has not hitherto been discussed in
the multi-process context; see Section 12.4.6 below).
The renal monitoring application has various other interesting features

from a modelling viewpoint. Concerning the use of the four-component
multi-process mixture, the response series are certainly subject to outly-
ing observations a small fraction (about 5%) of the time due to mistakes
in data transcription, equipment/operator malfunction and blood/urine
sample contamination. The level change model is also very necessary, be-
ing consistent with marked increases in level of kidney function when the
patient is subject to dialysis treatment to assist renal function. This is
common and frequent in early stages of post-operative care. Further, mi-
nor features of the application include timing errors and irregularly spaced
observations and the use of quadratic power law functions for the observa-
tional variance. Fuller details of these, and other, features of the application
are found in the above references.
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12.4.6 Step ahead forecasting and filtering
Further important components of the analysis of multi-process mixture
models are step ahead forecast distributions and retrospective filtered dis-
tributions for model parameters in the past. Some features of these dis-
tributions are detailed here, fuller development being left to the interested
reader. The development here is in terms of the four-component linear
growth model analysed above, providing a concrete setting for the discus-
sion of features that apply more generally.
All step ahead forecast distributions are, of course, mixtures. Con-

sider the position at time t with the posterior distributions summarised
in (12.42). The one-step ahead forecast distribution for Yt+1 is then simply
the analogue of that in (12.38) with time index increased from t to t + 1,
namely the 42-component mixture

p(Yt+1 | Dt) =
4∑

jt+1=1

4∑
jt=1

p(Yt+1 |Mt+1(jt+1),Mt(jt))π(jt+1)pt(jt).

The component densities of the mixture are the standard normal or T fore-
cast densities derived under the standard DLM determined by Mt+1(jt+1)
and Mt(jt) jointly holding. Consider now forecasting two steps ahead for
Yt+2. Given any combination of models at times t, t + 1 and t + 2, it fol-
lows that the two step ahead forecast distribution is a standard form with
density

p(Yt+2 |Mt+2(jt+2),Mt+1(jt+1),Mt(jt), Dt)

for each jt, jt+1 and jt+2, each running from 1 to 4. The overall distribution
is a mixture of these 43 components with mixing probabilities

Pr[Mt+2(jt+2),Mt+1(jt+1),Mt(jt) | Dt]

= Pr[Mt+2(jt+2) |Mt+1(jt+1),Mt(jt), Dt]

× Pr[Mt+1(jt+1) |Mt(jt), Dt]Pr[Mt(jt) | Dt]

= π(jt+2)π(jt+1)pt(jt).

Specifically,

p(Yt+2 | Dt)

=
4∑

jt+2=1

4∑
jt+1=1

4∑
jt=1

p(Yt+2 |Mt+2(jt+2),Mt+1(jt+1),Mt(jt)Dt)

× π(jt+2)π(jt+1)pt(jt).

Forecasting further ahead obviously increases the number of components
in the mixture to account for all possible models obtaining between time t
and the forecast time point. The general details are left to the reader.
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In specific applications there may be features of the model that can be ex-
ploited to simplify the problem of summarising these forecast distributions.
In the model here, for example, the structure of the multi-process at each
time is such that theMt(j) differ only through evolution and observational
variances, for all t and all j. This implies that whilst the components of
all mixture forecast distributions may have widely differing variances, the
differences in point forecasts, the modes or means of the components, de-
rive only from the differences in the means of θt across the models Mt(jt).
Specifically, E[Yt+1 |Mt+1(jt+1),Mt(jt), Dt] does not depend on jt+1, nor
does E[Yt+2 |Mt+2, (jt+2),Mt+1(jt+1),Mt(jt), Dt] depend on either of jt+2
or jt+1, and so forth. Hence there are only distinct point forecasts for each
step ahead, clearly reducing the numbers of calculations required. Further
simplifications usually derive from consideration of the comments on ap-
proximation of mixtures in Section 12.3.3. For example, if one of the pt(jt)
is close to 1, then the corresponding components of forecast distributions
dominate the mixtures and the others may be ignored.
Consider now the calculation of filtered distributions for retrospective

analysis. As with forecast distributions, it should be immediately clear
that filtered distributions are mixtures of standard components. The cal-
culations for one-step back from time t can now be performed. Conditional
on Mt(jt) and Mt−1(jt−1), the one-step back filtered distribution for the
state vector θt−1 has the standard form derived in Section 4.7, with density

p(θt−1 |Mt(jt),Mt−1(jt−1), Dt).

There are 42 such component densities in the distribution

p(θt−1 | Dt) =
4∑

jt=1

4∑
jt−1=1

p(θt−1 |Mt(jt),Mt−1(jt−1), Dt)pt(jt, jt−1),

where the mixing probabilities

pt(jt, jt−1) = Pr[Mt(jt),Mt−1(jt−1) | Dt]

are as previously calculated in (12.40). Often, filtering one-step back suf-
fices, recent data providing little additional information about state vectors
further back in time. Two, and more, step back distributions are calculated
as multi-component mixtures in a similar fashion, the details again being
left to the interested reader.

12.4.7 Further comments and extensions
There are other features of the analysis of even this relatively simple multi-
process mixture model that may assume importance in application. Some
particular features and extensions of the basic model are noted here. Again,
these points apply to general models, although they are highlighted with
reference to the particular model used here for the purposes of exposition.
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Consider first the structuring of the multi-process. Here the four com-
ponents of the model at each time differ only through the evolution and
observational variances. These are designed to model the possibilities of
evolution and observational errors that are significantly larger in absolute
value than usual, whilst the retention of zero-means implies that the signs
of the errors remain unanticipated. The sizes of the variances in the outlier
and parametric-change states are determined in advance. The particular
values are not critical, all that is necessary is that they provide significantly
larger values than the standard model. Robustness to these values is sim-
ilar to that in more usual mixture models for outliers, and the experience
of others working with such models may be drawn upon in assigning val-
ues (Box and Tiao 1968; Box 1980; Smith and Pettit 1985). See also the
related discussion in Section 11.4.3. The use of discount factors to specify
the evolution variances in the level and growth change states is a point of
difference, although the basic ideas are similar. It is, of course, possible to
use alternative methods, such as choosing the evolution variance matrices
in the change models as multiples of those in the standard, that would
be more in line with earlier uses of multi-processes (Harrison and Stevens
1971, 1976a, b; Smith and West 1983). However, the self-consistency and
simplicity of the discount approach makes it the more attractive, and the
end results would be similar. Note finally that the design of the multi-
process structure is similar in principle whatever approach to discounting
is taken; recall the various alternatives described in Section 12.4.1.
Other multi-processes might have component DLMs differing in one or

more of the other components Ft and Gt. This also allows for components
having different numbers of parameters in the state vector, a possibility not
hitherto considered, although related ideas were discussed in connection
with subjective intervention in Section 11.2.4.
The remaining inputs to the model required from the user are the prior

model probabilities π(j). These must be assessed and specified in advance,
reflecting the forecaster’s opinion as to the likely rate of occurrence of
outliers, level changes and growth changes. Again, experiences with outlier
modelling more widely, as referenced above, for example, guide the choice
of values of the outlier model probability. This will typically be near 0.05,
rarely very much smaller but usually less than 0.1. Very precise values
for this, and the change model probabilities, are unnecessary since the
occurrence of a forecast error deemed extreme under the standard model
will lead to posterior model probabilities that heavily favour the outlier
and change models so long as their prior probabilities are not negligible.
The discussion in Section 11.4.3 of crossover points between the predictive
density under the standard model and those in the outlier/change models
is again relevant here. It is also usual, though not a panacea, that outliers
occur more frequently than changes, so that the prior probabilities will
often marginally favour the former. This is certainly true of data arising in
the majority of commercial applications, though it may not be the case in
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other areas of application. Thus, when something happens at a given time
t, the posterior probabilities pt(jt) will tend to favour the outlier model.
A further observation will identify what has happened, as illustrated in
Figures 12.9a and b in the CP6 example.
Often, previous data on the series, or on similar, related series, will be

available to guide the choice of prior probabilities. Also, although here
assumed constant over time, there are obvious ways in which the proba-
bilities may be updated as data are processed to reflect a changing view
as to the frequency of occurrence of events. This may be based solely on
the data, may use externally available information, or be based purely on
subjective opinion. Going further with this notion, the model probabili-
ties may even be linked to independent variables to allow for change with
external circumstances, time, and so forth. The extension to incorporate
Markov transitions between models discussed in Section 12.3.1 is a sim-
ple case of this; others might incorporate independent variable information
that attempts to predict change through a separate model for the transi-
tion probabilities. In this way it is possible, for example, to produce models
related to catastrophe theoretic ideas (Harrison and Smith 1979), and the
threshold switching models of classical time series (Tong and Lim 1980;
Tong 1983).
The modelling of change points in dynamic models using multi-processes

complements more conventional Bayesian approaches to change-point anal-
ysis in regression and related models. Key works in change-point modelling
have been done by Smith (1975, 1980), Smith and Cook (1980). See also
Pole and Smith (1985). Various related approaches and many references
are found in Broemling and Tsurumi (1988).
One important extensions of the basic multi-process model used here is

to include a component model that is designed to allow for marked change
in the observational variance V , hitherto assumed constant. In many areas
of application, time series are subject to changes in volatility that can be
represented by abrupt increases or decreases in V . Share indices, exchange
rates and other financial time series are prime examples. In addition, inap-
propriate data transformation or variance functions lead to observational
variances that change with level so that if the level shifts abruptly, then so
will the variance. In Section 10.8 variance discounting was introduced to
cater for minor, sustained, stochastic changes in V . The effect produced
was simply to discount the degrees of freedom parameter nt between ob-
servations, reducing it by multiplying by a discount factor less than, but
close to, unity. This extends directly to model abrupt changes by including
a component in the multi-process that is the same as the standard model
except for the inclusion of a small variance discount factor. Details are
straightforward and left to the reader; the main, technical point of differ-
ence is that in this variance change state, the degrees of freedom parameter
will be less than that in other states so that in collapsing mixture posterior
distributions as in Section 12.4.2, the general results of Example 12.8 apply.
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Concerning the collapsing of mixtures of posteriors more widely, the
approximation here based on ignoring dependence on models more than
one step back in time is adequate in the context of this particular model
but may need relaxing in others. In particular, when working with higher-
dimensional models with possibly more components, it may take up to
three or more observations after an exceptional event to determine the
nature of the event and appropriately estimate the state parameters. In
such cases, h > 1 is needed, and the number of components in all mixture
distributions may increase dramatically. Schervish and Tsay (1988) provide
illustrations and discussions of several analyses in which h is effectively
allowed to increase with the number of observations analysed. Quite often,
of course, there will be little to gain in doing this, as is the case when the
series is essentially well-behaved, not deviating markedly from the standard
DLM description. In such circumstances, the technical and computational
complexity of the multi-process model is highly redundant.
This potential redundancy of the multi-process approach can be ad-

dressed by combining simpler monitoring methods with multi-processes,
as in Ameen and Harrison (1985b) , for example. Typically, a series will
be stable over periods of observations, conforming to the standard DLM a
good deal of the time. Thus, over long stretches of the series, the multi-
process is redundant, posterior model probabilities being close to unity on
the standard model. Only at times of exceptional events, and over one
or a few time intervals following exceptions, is the full complexity of the
multi-process really necessary. This is clearly illustrated with the CP6 anal-
ysis where the posterior model probabilities in Figures 12.9a and b clearly
indicate that the mixture is only really necessary a small proportion of
the time. The approach developed in this reference recognises this, and
develops along the following lines:

(a) Model the series with the standard DLM subject to a simple mon-
itoring scheme such as the sequential Bayesian tests or cusums de-
scribed in Section 11.4. So long as the monitoring indicates the
data to be consistent with the standard model, proceed with the
usual DLM analysis. In parallel, use alternative DLMs that provide
for the anticipated forms of departure from the standard. Although
this is similar to a multi-process, class I approach, the parallel DLMs
only come into play at stage (b) and are simply updated to provide
initialisation at that stage.

(b) When the monitor signals deterioration in forecast performance of
the standard DLM, begin a period of operation with a multi-process
model, class II model, introducing the parallel DLMs from (a).

(c) Continue this until the the exceptional event that triggered the mon-
itor signal has been identified, and the multi-process analysis settles
down to conformity with the standard DLM. This occurs when the
posterior model probability on the standard model is close to unity.
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(d) At this stage, revert to operation with only the standard DLM taken
from the relevant component of the multi-process. Return to (a) and
continue.

Under such a scheme, the use of mixtures is restricted to periods of un-
certainty about the series where they are needed to identify exceptional
events. In stable periods, the standard DLM analysis is used, the compu-
tational economy being evident. Additionally, the problems of inference
and prediction are simplified since for much of the time, a single DLM is
used rather than a mixture of possibly many.

12.5 EXERCISES

(1) Refine the multi-process analysis of Example 12.2 by considering a
finer grid of values for the discount factor δ. Specifically, take

A = {1.0, 0.975, 0.95, . . . , 0.725, 0.7},

with initial probabilities p0(j) = 1/13, (j = 1, . . . , 13). For t = 34
and t = 116, plot the posterior probabilities pt(j) versus j. Comment
on the support provided by the data for discount factors over the
chosen range of possible values.

(2) In the framework of Example 12.3, verify that the posterior dis-
tribution for δ concentrates at that value δi such that |δi − δ0| =
minj |δj − δ0|.

(3) Consider the multi-process, class I model defined for t = 1 by

M(j) : {1, 1, 100,W (j)}, (j = 1, 2),

where W (1) = 0 and W (2) = 50. Initially, p0(j) = Pr[M(j)|D0] =
0.5 and

(µ0|D0,M(j)) ∼ N[100, 100]

for each model, j = 1, 2.
(a) With p1(j) = Pr[M(j)|D1], show that p1(1) < p1(2) if and only

if |e1| > 14.94, where e1 = Y1− 100, the forecast error common
to the two models.

(b) Deduce that

Pr[p1(1) ≥ p1(2)|M(1), D0] = 0.74

and

Pr[p1(1) < p1(2)|M(2), D0] = 0.34.

(c) Comment on the results in (b).
(4) Consider a multi-process model for Y1 given by

M(j) : {1, 1, V (j),W}, (j = 1, 2),
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where V (1) = 1 and V (2) = 33, and p0(1) = Pr[M(1)|D0] = 0.9.
Suppose also that (µ1|D0) ∼ N[0, 3].
(a) Show that p(Y1|D0) is a mixture of two normals,

(Y1|D0) ∼
{
N[0, 4], with probability 0.9;

N[0, 36], with probability 0.1.

(b) Show that p(µ1|D1) is also a mixture of two normals,

(µ1|D1) ∼
{
N[3Y1/4, 3/4], with probability p1(1) = q(Y1);

N[Y1/12, 11/4], with probability 1− q(Y1),

where

q(Y1)−1 = 1 + 0.037eY
2
1 /9.

(c) Deduce that

E[µ1|D1] = [1 + 8q(Y1)]Y1/12.

(d) Write a computer program to plot q(Y1), E[µ1|D1] and V[µ1|D1]
as functions of Y1 over the interval −5 ≤ Y1 ≤ 5. Comment on
the form of this functions as Y1 varies.

(e) Write a computer program to graph p(µ1|D1) as a function of
µ1 for any given value of Y1. Comment on the form of the
posterior for the three possible values Y1 = 0, Y1 = 4 and
Y1 = 8.

(5) A forecast system uses the model {1, 1, Vt,Wt} as a base model for
forecasting sales of a group of products. Intervention information is
available to incorporate into the model analysis. Initially, (µ0|D0) ∼
N[400, 20]. Produce forecast distributions p(Yt|D0, I) for each of t =
1, 2, 3 and 4 given the following intervention information I available
at t = 0 :
(a) V1 = 100 and ω1 ∼ N[100,W1] with W1 = 400. This non-zero

mean evolution error describes the likely impact on sales level
of the receipt of a new export licence in the first time period.
Verify that (Y1|D0, I) ∼ N[500, 520].

(b) ν2 ∼ N[500, V2] with V2 = 200 describing the anticipated effect
of an additional spot order at t = 2, and W2 = 5. Verify that
(Y2|D0, I) ∼ N[1000, 625].

(c) The expected effect of a price increase at t = 3 is modelled via
a transfer response function, with

Yt = µt + Et + νt, (t = 3, 4, . . . ),

where Vt = 100, Wt = 5 and

Et = 0.8Et−1, (t = 4, 5, . . . ),

with

(E3|D0, I) ∼ N[−40, 200],
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independently of (µ0|D0).
Verify that (Y3|D0, I) ∼ N[460, 730].

(d) At t = 4, there is a prior probability of 0.4 that a further export
licence will be granted. If so, then ω4 ∼ N[200, 600], otherwise
ω4 ∼ N[0, 5] as usual. Show that p(Y4|D0, I) is a mixture of
two normals,

(Y4|D0, I) ∼
{
N[668, 1258], with probability 0.4;

N[468, 663], with probability 0.6.

Plot the corresponding forecast density over the range 400 <
Y4 < 750. Calculate the forecast mean E[Y4|D0, I] and vari-
ance V[Y4|D0, I]. From (c), calculate the joint distribution of
(Y3, E3|D0, I) and deduce the posterior (E3|Y3, D0, I). Verify
that (E3|Y3 = 387, D0, I) ∼ N[−60, 145].

(e) Calculate the joint posterior p(µ4, E4|Y4, D0, I) as a function of
Y4, and deduce the marginal posterior for µ4.

(6) Write a computer program to implement the multi-process, class II
model used in Section 12.4. Verify the program by reproducing the
analysis of the CP6 Sales series in 12.4.3.



CHAPTER 13

NON-LINEAR DYNAMIC MODELS:
ANALYTIC AND NUMERICAL APPROXIMATIONS

13.1 INTRODUCTION
In previous chapters we have encountered several models that depend on
parameters that introduce parameter non-linearities into otherwise stan-
dard DLMs. Although the full class of DLMs provides an enormous variety
of useful models, it is the case that sometimes, elaborations to include mod-
els with unknown parameters result in such non-linearities, thus requiring
extensions of the usual linear model analysis. Some typical, and important,
examples are as follows.

EXAMPLE 13.1. In many commercial series in which seasonality is a major
factor, an apparent feature of the form of seasonal patterns is that ampli-
tudes of seasonal components appear to increase markedly at higher levels
of the series. This occurs rather commonly in practice with positive data
series. With a dynamic linear model for seasonality, it is certainly possible
to adapt to changes in seasonal parameters by allowing for major variation
through the evolution errors. However, when the changes are very marked
and have a systematic form related to the level of the series, they are more
appropriately modelled in an alternative way. Let αt represent the under-
lying, non-seasonal level of the series at time t, that may include trend and
regression terms. The usual, linear model for seasonality of period p is de-
fined via the mean response µt = αt+φt, where φt is the seasonal effect at
time t. Now the observed inflation in seasonal deviations from level as αt

increases can be directly modelled via a mean response that is non-linear
in αt and φt, the simplest such model being multiplicative of the form

µt = αt(1 + φt).

More elaborate non-linearities are also possible, but this simple multiplica-
tive model alone is of major use in practice, and is referred to as a multi-
plicative seasonal effects model. Two possible models for Yt use this multi-
plicative form.

(a) A DLM obtained via log-transformation. With Yt > 0 (as is essen-
tially always the case when multiplicative seasonality is apparent),
assume that

Yt = αt(1 + φt)eνt ,

where νt is normally distributed observational noise. Then Yt follows
a lognormal model (Section 10.6), and

log(Yt) = α∗
t + φ∗

t + νt,
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where α∗
t = log(αt) and φ∗

t = log(1 + φt). Thus, the series may be
modelled using a standard seasonal DLM after log transformation,
α∗
t and φ∗

t both being linear functions of the state vector. Note
also that this is consistent with an observational variance increasing
with level on the original scale.

(b) For reasons of interpretation of model parameters (and others, see
Section 10.6) it is often desirable to avoid transformation, suggesting
a model of the form

Yt = αt(1 + φt) + νt.

Note that this representation may also require the use of a variance
power law to model increased observational variation with level.

Model (b) is considered here. The state vector θ′
t = (θ′

t1,θ
′
t2) comprises

trend and/or regression parameters θt1 such that αt = F′
t1θt1, and seasonal

parameters θt2 such that φt = F′
t2θt2, for some known vectors Ft1 and Ft2.

Thus,

Yt = F′
t1θt1[1 + F′

t2θt2] + νt,

a bilinear function of the state vector. In summary, the model here involves
parameter non-linearities in the observational equation simply through the
mean response function, and the parameters involved are standard time-
varying elements of the state vector.
See also Abraham and Ledolter (1983, Chapter 4), Harrison (1965), Har-

rison and Stevens (1971) and Gilchrist (1976, Chapter 8) for further dis-
cussion of multiplicative seasonality. In West, Harrison and Pole (1987),
multiplicative seasonal models are implemented as components of trend,
seasonal and regression DLMs, the analysis being based on the use of lin-
earisation as described in Section 13.2.

EXAMPLE 13.2. Recall the simple transfer response model in Example
9.1 in which a DLM is defined by the equations Yt = µt + νt and µt =
λµt−1 + ψtXt, Xt being the observed value of a regressor variable at t.
With λ assumed known, this is a DLM. Otherwise, as introduced in Section
9.3.3, the evolution of the state parameter µt involves a non-linear term,
multiplicative in λ and µt−1, and the DLM analysis is lost. The same
applies to the general transfer function models of Definition 9.1, or the
alternative representation in equation (9.6). In these models, the evolution
equation for the state vector at time t involves bilinear terms in state vector
parameters from time t− 1 and other, constant but unknown, parameters
from G.

EXAMPLE 13.3. Long-term growth towards an asymptote may be mod-
elled with a variety of parametric forms, often called growth or trend curves
(Harrison and Pearce 1972; Gilchrist 1976, Chapter 9). Most such curves
are basically non-linear in their defining parameters. A model similar to
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those in Example 13.2 is obtained when modelling long term growth using
Gompertz growth curves, as follows. Suppose that µt = α−βexp(−γt) for
some parameters α, β and γ, with γ > 0. Then µ0 = α−β, limt→∞ µt = α
and µt grows exponentially over time from α− β to β. The form

eµt = exp[α− βe−γt], (t > 0),

is known as a Gompertz curve, and often provides an appropriate qualita-
tive description of growth to an asymptote. If such growth is assumed for
the series Yt, then transforming to logs suggests the model log(Yt) = µt+νt.
Now, let αt = α and βt = −βexp(−γt), so that βt = λβt−1, where
λ = exp(−γ) and 0 < λ < 1. Then log(Yt) follows a DLM {F,G, Vt, 000},
where

F = E2 =
(
1
0

)
and G =

(
1 λ
0 λ

)
.

For fixed λ, this is an evolution noise-free DLM (with a second-order poly-
nomial as the special case when λ = 1). Such a model with a non-zero
evolution variance matrixWt provides the basic Gompertz form with pa-
rameters that vary stochastically in time, allowing for random deviation in
the growth away from an exact Gompertz curve. In practice, it is usually
desirable to learn about λ, so that the evolution equation becomes bilinear
in unknown parameters.

EXAMPLE 13.4. The DLM representations of ARMA processes, and their
extensions to non-stationary noise models based on ARMA models with
time-varying coefficients, have a structure similar to the models above when
these parameters are uncertain; see Section 9.4. Again the non-linearities
involve bilinear terms in evolution and/or observation equations of what
would be DLMs if the parameters were known.

EXAMPLE 13.5. A wide range of problems with rather different structure
is typified by Example 12.1. There a discount factor was viewed as uncer-
tain; more generally, the evolution variance matrices Wt may depend on
constant but uncertain parameters to be estimated.
Whatever the particular structure of parameter non-linearities is in any

application, the basic DLM analysis must be extended to allow for it. We
have come a long way with linear models, the associated normal theory
being analytically tractable and satisfyingly complete. When extending
the framework to allow non-linearities, formal theory defines the analy-
sis as usual, but essentially without exception, the calculation of the re-
quired components of analysis becomes burdensome. Implementation of
the formally well-defined analysis requires the use of numerical integra-
tion to approximate mathematically defined integrals arbitrarily well, and
so is in fact impossible. However, a variety of approximation techniques
exist, and in practice, much can be done using such techniques. We be-
gin in this chapter by discussing simple mathematical approximations that
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have been very widely used in the last three decades, followed by some
specific developments of direct numerical approximation using quadrature
methods. Later, Chapter 15 introduces modern simulation methods that
represent the current frontiers of numerical approximation and integration
in Bayesian statistics generally.

13.2 LINEARISATION AND RELATED TECHNIQUES
Many models with parameter non-linearities may be written in the following
form:

Yt =Ft(θt) + νt,

θt =gt(θt−1) + ωt,
(13.1)

where Ft(.) is a known, non-linear regression function mapping the n-vector
θt to the real line, gt(.) is a known, non-linear vector evolution function,
and νt and ωt are error terms subject to the usual assumptions. Various
linearisation techniques have been developed for such models, all being
based in essence on the use of linear approximations to non-linearities.
The most straightforward, and easily interpreted, approach is that based
on the use of first order Taylor series approximations to the non-linear
regression and evolution functions in (13.1). This requires the assumptions
that both Ft(.) and gt(.) be (at least once-) differentiable functions of their
vector arguments.
Suppose, as usual, that νt ∼ N[0, V ] for some constant but unknown

variance V . Assume also that at time t − 1, historical information about
the state vector θt−1 and V is (approximately) summarised in terms of
standard posterior distributions:

(θt−1 | V,Dt−1) ∼ N[mt−1,Ct−1V/St−1],

and, with φ = 1/V ,

(φ | Dt−1) ∼ G[nt−1/2, dt−1/2],

with estimate of V given by St−1 = dt−1/nt−1. Also,

(ωt | V,Dt−1) ∼ N[ 000,WtV/St−1],

withWt known. Then

(θt−1 | Dt−1) ∼ Tnt−1 [mt−1,Ct−1],

being uncorrelated with

(ωt | Dt−1) ∼ Tnt−1 [ 000,Wt].

The mean mt−1 is an estimate of θt−1, about which a Taylor series expan-
sion of the evolution function gives

gt(θt) = gt(mt−1) +Gt(θt−1 −mt−1)

+ quadratic and higher-order terms in (θt−1 −mt−1),
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where Gt is the n×n matrix derivative of the evolution function evaluated
at the estimate mt−1, namely

Gt =
[
∂gt(θt−1)
∂θ′

t−1

]
θt−1=mt−1

;

obviously Gt is known. Assuming that terms other than the linear term
are negligible, the evolution equation becomes

θt ≈ gt(mt−1) +Gt(θt−1 −mt−1) + ωt = ht +Gtθt−1 + ωt, (13.2)

where ht = gt(mt−1) −Gtmt−1 is known. Equation (13.2) is a linearised
version of the evolution equation, linearised about the expected value of
θt−1.
Assuming (13.2) to be an adequate approximation to the model, it fol-

lows immediately that the usual DLM evolution applies, with the minor
extension to include an additional, known term ht in the evolution equa-
tion. Thus, the prior for θt is determined by

(θt | V,Dt−1) ∼ N[at,RtV/St−1],

so that

(θt | Dt−1) ∼ Tnt−1 [at,Rt], (13.3)

with defining quantities

at =ht +Gtmt−1 = gt(mt−1),

Rt =GtCt−1G′
t +Wt.

(13.4)

Proceeding to the observation equation, similar ideas apply. Now the
non-linear regression function is linearised about the expected value at for
θt, leading to

Ft(θt) = Ft(at) + F′
t(θt − at)

+ quadratic and higher order terms in (θt − at),

where Ft is the n-vector derivative of Ft(.) evaluated at the prior mean at,
namely

Ft =
[
∂Ft(θt)
∂θt

]
θt=at

,

that is known. Assuming that the linear term dominates the expansion,
we deduce the linearised observation equation

Yt ≈ ft + F′
t(θt − at) + νt = (ft − F′

tat) + F
′
tθt + νt, (13.5)

where ft = Ft(at). Combining this with (13.3) and (13.4) leads to a DLM
with, in addition to the extra term in the evolution equation, a similar term
ft−F′

tat in the observation equation. From these equations it follows that
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for forecasting one-step ahead,

(Yt | Dt−1) ∼ Tnt−1 [ft, Qt],

where Qt = F′
tRtFt +St−1. Also, once Yt is observed giving forecast error

et = Yt − ft, the standard updating equations for θt and V apply directly.
Thus, the linearised model is a DLM. Some comments on this analysis are
in order.

(1) Firstly, the one-step ahead point forecast ft = Ft[gt(mt−1)] retains
precisely the form of the non-linear mean response from the model
(13.1) with θt−1 assumed known and equal to its estimate mt−1.
Hence predictions accord with the model; if, for example, either re-
gression or evolution functions impose bounds on the mean response,
the predictor accords with these bounds.

(2) Consider forecasting ahead to time t + k from time t. Applying
linearisation to the evolution equations successively over time, it
follows that

(θt+k|Dt) ∼ Tnt [at(k),Rt(k)],

with moments successively defined as follows. Setting at(0) = mt

and Rt(0) = Ct, we have, for k = 1, 2, . . . ,

at(k) = gt+k(at(k − 1)),

Rt(k) = Gt(k)Rt(k − 1)Gt(k)′ +Wt+k,

where

Gt(k) =
[
∂gt+k(θt+k−1)

∂θ′
t+k−1

]
θt+k−1=at(k−1)

.

Then,

(Yt+k | Dt) ∼ Tnt
[ft(k), Qt(k)],

where

ft(k) = Ft+k(at(k)),

Qt(k) = Ft(k)′Rt(k)Ft(k) + St,

with

Ft(k) =
[
∂Ft+k(θt+k)

∂θt+k

]
θt+k=at(k)

.

The forecast function ft(k) can be written as

ft(k) = Ft+k[gt+k{gt+k−1(. . .gt+1(mt) . . . )}],
retaining the required non-linear form into the future.

(3) In truncating Taylor series expansions, the implicit assumption is
that the higher-order terms are negligible relative to the first. To be
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specific, consider the linear approximation to the regression function
about θt = at. When linearising smooth functions, local linearity
is evident, so that in a region near the centre at of linearisation,
the approximation will tend to be adequate. Far away from this
region, it may be that the approximation error increases, often dra-
matically. However, if most of the probability under p(θt | Dt−1)
is concentrated tightly about the estimate at, then there is high
probability that the approximation is adequate.

(4) The above comments notwithstanding, it should be noted that the
linearised model as defined in equations (13.2) and (13.5) defines
a valid DLM without reference to its use as an approximation to
(13.1). Guided by (13.1), the linearised model and DLM analysis
may be accepted for forecasting, producing forecast functions with
the desired non-linear features, its appropriateness being judged on
the usual basis of forecast accuracy. With this view, the extent to
which the DLM approximates (13.1) is irrelevant; note, however,
that the resulting posterior distributions cannot be considered as
valid for inference about the state vector in (13.1) without such
considerations.

(5) As in non-linear modelling generally, non-linear transformations of
original parameters in θt may lead to evolution or regression func-
tions that are much closer to linearity in regions of interest than
with the original metric.

(6) On approximation error, note that the evolution (and observation)
errors can be viewed as implicity accounting for the neglected terms
in the Taylor series expansions.

(7) Some or all of the elements of θt may be constant over time. Thus,
models such as in Examples 13.2 and 13.3 above lie within this class;
the constant parameters are simply incorporated into an extended
state vector.

(8) If either Ft(.) or gt(.) are linear functions, then the corresponding
linearised equations are exact.

(9) Note that the model (13.2) is easily modified to incorporate a sto-
chastic drift in θt−1 before applying the non-linear evolution func-
tion, rather than by adding ωt after transformation. The alternative
is simply

θt = gt(θt−1 + δt),

for some zero-mean error δt with a known variance matrixUt. Then
at and Rt are as defined in (13.4) with

Wt = GtUtG′
t.

EXAMPLE 13.1 (continued). Models in which the non-linearities are bil-
inear abound. Examples 13.1 to 13.4 inclusive are of this form. In Example
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13.1, the multiplicative seasonal model, we have state vector θ′
t = (θ′

t1,θ
′
t2),

a linear evolution equation with gt(θt−1) = Gtθt−1 for some known evolu-
tion matrix Gt, and a bilinear regression function

Ft(θt) = (F′
t1θt1)[1 + (F′

t2θt2)].

Thus, the model simplifies, linearisation is only used in the observation
equation. With a′

t = (a′
t1,a

′
t2), it follows that the prior estimate for the

non-seasonal trend component αt is ft1 = F′
t1at1, whilst that for the sea-

sonal effect φt is ft2 = F′
t2at2. Hence the one-step ahead point forecast is

ft = ft1(1 + ft2), the product of the estimated components. This model,
and form of approximation, is the basis for many practical schemes of
analysis of time series exhibiting the forms of behaviour consistent with
multiplicative seasonality (Harrison 1965; West, Harrison and Pole 1987).
This approach, along with many variants, has been widely used in var-

ious fields of application, particularly in non-linear state space models
used in communications and control engineering. Here and elsewhere,
non-Bayesian techniques using linearisation combined with classical least
squares theory led, in the 1960s and 1970s, to a plethora of related tech-
niques under such names as extended Kalman filtering, generalised Kalman
filtering, non-linear filtering, and so forth. The books of Anderson and
Moore (1979), Jazwinski (1970) and Sage and Melsa (1971) provide good
discussion and references.
One obvious variant on the approach is to extend the Taylor series ex-

pansion to include higher-order terms in the relevant state vectors. Con-
sidering the regression function, for example, the linear approximation can
be refined by including the second-order term to give

Ft(θt) = Ft(at) + F′
t(θt − at) +

1
2
(θt − at)′Ht(θt − at)

+ cubic and higher order terms in (θt − at),

where

Ft =
[
∂Ft(θt)
∂θt

]
θt=at

and Ht =
[
∂Ft(θt)
∂θ′

t

]
θt=at

.

With this quadratic approximation to Ft(θt), the distribution implied for
Yt is no longer T or normal. However, based on the assumed T or normal
prior for θt, moments can be calculated. Assuming nt−1 > 2, of course, it
follows directly that

ft = E[Yt | Dt−1] = Ft(at) +
1
2
trace (HtRt).

Note the additional term here that accounts for some of the uncertainty
in θt, introducing the curvature matrix Ht at the point θt = at. Similarly,
if nt−1 > 4, the variance of Yt may be calculated. Notice that this in-
volves calculation of mixed, fourth-order moments of the multivariate T
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distribution. For updating once Yt is observed, however, this higher-order
approximation leads to a difficult analysis.
One other variant of the basic linearisation technique specific to the case

of models with bilinearities is suggested, and implemented in a case study,
in Migon (1984) and Migon and Harrison (1985). Suppose that gt(θt−1)
in (13.1) is a bilinear function of θt−1. Then given the conditional nor-
mal distribution for θt−1, the exact mean and variance of gt(θt−1) can be
calculated using standard normal theory. Thus, the exact prior mean and
variance matrix of θt can be calculated. Assuming approximate normality
for θt, then a linear or bilinear regression function Ft(θt) implies, by a simi-
lar argument, the joint first- and second-order moments of Yt and θt. Thus,
again assuming approximate normality of all components, the forecast and
posterior distributions are deduced. Given the bilinearity, the approxima-
tions here involve the assumptions of approximate normality of products of
normal components. In practice, this approach is typically rather similar
to direct linearisation up to second-order although it remains to be further
investigated from a theoretical standpoint.

13.3 CONSTANT PARAMETER NON-LINEARITIES:
MULTI-PROCESS MODELS

A second class of models may be analysed rather more formally within the
framework of multi-process, class I models of Chapter 12. These are models
whose non-linearities are due to the appearance of constant, but unknown,
parameters α in one or more of the components. Examples 13.2 to 13.4 are
special cases. Thus, α could comprise elements of a constant G matrix,
transformation parameters, ARMA parameters, discount factors, and so
forth. The parameter space for α, denoted by A, is usually continuous
(at least in part), and often bounded. It is assumed that α is constant
over time but uncertain. In such cases, the series follows a standard DLM
conditional on any chosen value of α ∈ A. Generally, therefore, write the
defining quadruple as

{Ft(α), Gt(α), Vt(α), Wt(α)}. (13.6)

The formal theory for analysing such models is developed in Section 12.2
to which the reader is referred. It is made clear there that the theoreti-
cally well-specified analysis is practically infeasible due to the abundance
of integrals that cannot be analytically calculated. Multi-process, class I
models provide a method of numerical integration that allows the approxi-
mation of the formal analysis, discussion of a particular example appearing
in Section 12.2.3. A summary of the relevant multi-process theory is given
here.
LetXt be any vector of random quantities of interest at time t. Thus, Xt

may be a function of θt or past values of the state vector, Yt or future ob-
servations, the unknown observational variance, and so forth. Conditional
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on any value of α, the required posterior distribution for inference about
Xt is derived from the conditional DLM (13.6) in standard, analytically
manageable form. Denote the corresponding density by p(Xt | α, Dt) as
usual. Also, Dt informs on the parameters α in terms of a posterior density
p(α | Dt). Formally, the marginal posterior for Xt is the object of interest,
given by

p(Xt | Dt) =
∫

A
p(Xt | α, Dt)p(α | Dt)dα. (13.7)

It is at this point that the analysis becomes difficult, many such integrals
of this form are required for posterior inference and prediction, but most
will be impossible to evaluate analytically. Numerical integration is called
for. The multi-process, class I framework provides approximations to these
integrals based on the use of a fixed and finite grid of points for the pa-
rameters, {α1, . . . ,αk}, as a discrete approximation, in some sense, to the
full parameter space A. The analysis is thus based on the use of a finite
collection of DLMs, each corresponding to a different choice of the, possibly
vector-valued, parameter α, these DLMs being analysed in parallel. It is
supposed that the collection of k values chosen for α in some sense ade-
quately represents the possibly much larger or continuous true parameter
space A. Large spaces A can often be adequately approximated for some
purposes by a fairly small discrete set that somehow spans the larger space,
leading to the consideration of a small number of distinct DLMs. When
the dimension of α is small, then k can often be chosen large enough so
that the points fairly well cover the parameter space. Otherwise, the notion
that they be chosen to appropriately span A, representing different regions
that may lead to rather different conditional DLM analyses, underlies the
use of multi-processes. Obviously, if A is discrete to begin with, then this
approach can be exact if the finite collection of k points coincides with A.
With this in mind, α is a discretised random quantity whose posterior

at time t is a mass function rather than a density, with weights

pt(j) = p(αj | Dt) = Pr[α = αj | Dt], (j = 1, . . . , k)

for all t. The integral in (13.7) is replaced by the discretised form

p(Xt | Dt) =
k∑

j=1

p(Xt | α, Dt)pt(j). (13.8)

As time progresses and data are obtained, the conditional DLM analyses
proceed in parallel. The additional learning about α proceeds via the
updating of the posterior masses defined by

pt(j) ∝ pt−1(j)p(Yt | αj , Dt−1),

where p(Yt | αj , Dt−1) is the normal or T one-step forecast density at time
t. Thus, with normalising constant ct defined by c−1

t =
∑k

j=1 pt−1(j)p(Yt |
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αj , Dt−1), pt(j) = ctpt−1(j)p(Yt | αj , Dt−1). It follows from (13.8) that
all posterior distributions for linear functions of θt, and predictive dis-
tributions for future observations, are discrete probability mixtures of the
standard T or normal distributions. Refer to Sections 12.2 and 12.3 for
further discussion.
The general approach using mixtures of standard models is rather well

known and quite widely used. Apart from the usages discussed in Chapter
12, the main applications of mixtures have been to just this problem of pa-
rameter non-linearities. In the control literature, such models are referred
to under various names. Analogues of mixtures of normal DLMs (each with
known variances) were used by Sorenson and Alspach (1971) and Alspach
and Sorenson (1972) under the name of Gaussian sums. Anderson and
Moore (1979, Chapter 9) discuss this and provide various related refer-
ences. See also Chapter 10 of Anderson and Moore for further reference to
the use of mixtures under the heading of parallel processing.

13.4 CONSTANT PARAMETER NON-LINEARITIES:
EFFICIENT NUMERICAL INTEGRATION

13.4.1 The need for efficient techniques of integration
The multi-process approach to numerical integration described above and
in Chapter 12 attempts to approximate integrals by discretising them into
summations, the chosen grid of values for α being fixed for all time. Gen-
erally, the quality of approximation increases with k, the size of the grid; a
finer grid improves the representation of the space A and so the posterior
probabilities pt(j) can more accurately follow the variation in the implicitly
defined “true” posterior for α. However, with more than very few param-
eters α, a reasonably fine grid typically involves the use of many points,
and the resulting computational demands can be enormous. Thus, the
use of more refined techniques of numerical approximation are called for.
In the 1980s, numerical methods suitable for models with low-dimensional,
non-linear parameters were developed, based on basic methods of Gaussian
quadrature, initiated by Naylor and Smith (1982), and described by Smith
et al (1985, 1987). Additional background on quadrature methods appears
in Shaw (1988). In the dynamic modelling context, these methods were
extended and explored in Pole (1988a) and Pole and West (1988, 1990).
These references give full details of the novel numerical problems arising
in the sequential context usually adopted for the analysis of dynamic mod-
els, and explore various examples. Here we restrict discussion to the basic
concepts and issues.
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13.4.2 Gaussian quadrature in Bayesian analyses
In a general setting, consider a parameter vector α ∈ A, assuming that the
object of interest is the posterior density p(α) from an analysis. Gaussian
quadrature is designed to approximate integrals of the form

I(q) =
∫

A
q(α)p(α)dα (13.9)

for functions of interest q(.). The approximations are via sums of the form

I(q) ≈
n∑

i=1

q(αi)wip(αi), (13.10)

where the number n controls the accuracy of the approximation. The
integral is effectively “discretised” at grid points α1, . . . ,αn, the density
p(αi) at these points being multiplied in the summation by positive weights
w1, . . . , wn. Basic application of multivariate Gauss-Hermite quadrature
(Smith et al 1985, 1987, and supporting material in Davis and Rabinowitz
1984, and Salzer, Zucker and Capuano 1952) provides direct construction
of the n quadrature grid points and associated grid weights based on spec-
ification of the mean and variance matrix of α. The closeness of approxi-
mations to integrals improves with n, and depends on the regularity of h(.)
and q(.). In particular, if the product q(α)h(α) is well approximated by a
polynomial form of degree not exceeding 2n − 1, then the approximation
will tend to be good. If this product is exactly such a polynomial, then
the approximating sum is exactly equal to the required integral. The strat-
egy for numerical posterior integration in Smith et al (1985, 1987), applies
Gaussian quadrature methods adaptively, re-estimating the mean and vari-
ance of p(α) through several iterations and redefining the grid points and
weights at each step. A final iteration delivers a grid that is used as the
basis of approximating posterior expectations.
Note that this essentially defines a discrete approximation to the poste-

rior; the grid point αi have probability masses wip(αi) and the expectation
of any function q(α) is the usual sum. If, as is often the case, the posterior
is known only up to an unknown, positive constant of normalisation c, so
that for any α ∈ A, it is possible to evaluate only l(α) = c p(α), then the
normalisation constant is defined by c =

∫
A l(α)dα and can be approx-

imately evaluated using (13.10) with p(.) replaced by l(.) and q(α) = 1.
Then p(α) = l(α)/c can be approximately calculated. The earlier ref-
erences apply this sort of procedure in a variety of applications, and for
n relatively small, even in single figures, the approximations for common
functions q(.) of interest can be excellent. Variations allow n to change at
each iteration. An important issue is the use of reparametrisations of α
(Smith et al 1985, 1987). With a final grid approximation, estimates of the
posterior density over the range of α generally may be derived via some
form of interpolation of the density at values of α between and outside the
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grid points. The most commonly used such technique is cubic spline in-
terpolation on the log-density scale for univariate posterior margins (Shaw
1987; Smith et al 1985, 1987).

13.4.3 Efficient integration for non-linear parameters
Consider now dynamic models with parametric non-linearities. To be spe-
cific, we take the model as specified in (13.6) and suppose that α = α is
a scalar, and that the observational variance sequence is known. In Sec-
tion 13.3, the multi-process model assumes a fixed grid of k values for α
that are chosen to represent the full parameter space A. As data are pro-
cessed, the posterior weights over the grid are updated, providing learning
about α. Obvious questions now arise about the accuracy and efficiency
of this approach to learning about α. Firstly, concerning accuracy, there
is an implicit assumption that the grid will adequately represent regions of
the parameter space deemed plausible a prioŕi and supported by the data.
However, as time progresses, it may be the case that regions not adequately
covered by grid points are supported by the data, in which case the extent
to which the discrete, approximate posterior for α appropriately reflects
the information available will be questionable. What is needed in such
cases is a change in grid values and sometimes an increase in the number
of grid values. The second, related point concerns efficiency and is perti-
nent in the opposite case when the posterior masses concentrate more and
more around one or a small number of grid points. Here grid values with
little or no posterior probability may be dropped from the grid and more
added in the high-probability region. Thus, there is a general need for the
grid to evolve over time, i.e., for a dynamic grid underlying a multi-process
model; the approach using quadrature techniques, referenced above, has
such features, as follows.
At time t − 1, the posterior for the current state vector summarises

the history of the analysis. In the current DLM framework, the posterior
conditional on any value of α is normal,

(θt−1|α,Dt−1) ∼ N[mt−1(α),Ct−1(α)], (13.11)

with moments that are theoretically available. Suppose also that the fol-
lowing quantities are available:

• (an approximation to) the full posterior density

p(α|Dt−1), (α ∈ A); (13.12)

• the associated (approximations to the) posterior mean and variance
of (α|Dt−1), denoted by at−1 and At−1.
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Inferences about θt−1 (and other quantities of interest) are based on the
unconditional posterior

p(θt−1|Dt−1) =
∫

A
p(θt−1|α,Dt−1)p(α|Dt−1)dα. (13.13)

Of course, this and related integrals for moments of θt−1 and so forth
require that (a) the conditional moments of (θt−1|α,Dt−1) be available for
all values of α ∈ A, and (b) that the integration be performed, typically
requiring numerical approximation. While (b) can now be entertained, (a)
is impossible generally. The conditional density (13.11), summarised by its
moments, can only be evaluated for a finite number of values of α. This is
where quadrature ideas enter in (Pole and West 1988), as follows.
Suppose that the quadrature-based analysis at time t − 1 has provided

the “current” grid points

At−1 = {αt−1,1, . . . , αt−1,kt−1}, (13.14)

of current size kt−1, with associated quadrature weights

wt−1,1, . . . , wt−1,kt−1 .

Then the implied posterior approximation at t− 1 is simply

p(θt−1|Dt−1) ≈
kt−1∑
j=1

p(θt−1|αt−1,j , Dt−1)wt−1,jp(αt−1,j |Dt−1). (13.15)

Similarly, the posterior mean of θt−1 is estimated by

E[θt−1|Dt−1] ≈
kt−1∑
j=1

mt−1(αt−1,j)wt−1,jp(αt−1,j |Dt−1).

Then the moments in (13.11) are required only for those values of α in
the grid At−1. The particular points in this grid at time t− 1 will depend
generally on Dt−1 and the accuracy of approximation upon the size of the
grid. Notice that in terms of inference for θt−1 and related quantities, equa-
tions such as (13.15) resemble the marginal posterior distributions derived
in standard multi-process modelling as described in Section 13.3. It is as
if the posterior for α at time t − 1 were approximated by a discrete mass
function placing masses pt−1(j) = wt−1,jp(αt−1,j |Dt−1) at the grid values
αt−1,j . This is essentially the case so far as the calculation of expectations
of functions of α is concerned, although inference about α itself is based
on the full density (13.12).
In summary, the assumed components summarising the history of the

analysis and providing the basis of posterior inferences at time t− 1 are as
follows: For α we have

(i) the density function (13.12), and
(ii) the associated mean and variance at−1 and At−1.
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For given kt−1 these moments define the grid (13.14) together with the
associated weights. Then for θt−1 we have

(iii) the defining momentsmt−1(α) and Ct−1(α) for values of α ∈ At−1.

For forecasting ahead from time t − 1, the defining quadruple (13.6) is
also obviously required only for those values of α ∈ At−1. The one-step
ahead forecast density p(Yt|Dt−1) =

∫
p(Yt|α,Dt−1)p(α|Dt−1)dα is, for

each Yt, an integral with respect to α of standard normal forms. For
each α, (Yt|α,Dt−1) ∼ N[ft(α), Qt(α)], with moments defined by the usual
equations for the particular value of α. The quadrature approximation is
then the mixture of normal components

p(Yt|Dt−1) =
kt−1∑
j=1

p(Yt|αt−1,j , Dt−1)wt−1,jp(αt−1,j |Dt−1).

Consider now updating when Yt is observed. The steps in the analysis are
as follows.

(A) As in multi-process models, the kt−1 DLMs corresponding to val-
ues of α ∈ At−1 are updated in parallel. This leads to standard
posteriors

(θt|αt−1,j , Dt) ∼ N[mt(αt−1,j),Ct(αt−1,j)]

for j = 1, . . . , kt−1. Obviously, if the observational variance is un-
known, the usual extension to normal/gamma distributions for the
state vector and the unknown variance parameter is made condi-
tional on each value of α. The above normal posterior is then re-
placed by the relevant T distribution.

(B) Bayes’ Theorem for α leads to p(α|Dt) ∝ p(Yt|α,Dt−1)p(α|Dt−1)
for all α. Now, whilst the prior density is assumed known from
(13.12) for all α, the likelihood component (just the observed value
of the one-step ahead forecast density) is only known for α ∈ At−1.
Fuller information about the posterior is reconstructed in the next
two steps.

(C) Bayes’ Theorem above provides the values p(αt−1,j |Dt) for j =
1, . . . , kt−1, the ordinates of the posterior density over the exist-
ing grid. Using the existing weights wt−1,j on this grid, the poste-
rior is approximately normalised and a first approximation to the
posterior mean and variance of α calculated by quadrature. For
normalisation, p(α|Dt) ≈ c p(Yt|α,Dt−1)p(α|Dt−1), where

c−1 =
kt−1∑
j=1

p(Yt|αt−1,j)wt−1,jp(αt−1,j |Dt−1),

the mean and variance being estimated by similar summations. Hav-
ing calculated these initial estimates, the iterative quadrature strat-
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egy referred to in Section 13.4.2 is used to iteratively refine estimates
of posterior mean and variance for α and the set of grid points with
associated weights. Note that the number of grid points is to be
chosen; it may differ from kt−1 if required and also change between
iterations. Using the revised grid at each stage, revised estimates of
the normalising constant c, posterior mean and variance are com-
puted and the cycle continues. Iterations halt when these estimates
do not change markedly. At this point, the posterior density is eval-
uated (including normalising constant) at points on a new grid of
chosen size kt points,

At = {αt,1, . . . , αt,kt
}.

The associated quadrature weights wt,1, . . . , wt,kt
are available, as

are estimates of the posterior mean at and variance At of α.
(D) To reconstruct the full posterior density function p(α|Dt), some

form of interpolation is needed based on the kt evaluations over
At. Cubic spline interpolation (Shaw 1987) is used in Pole (1988a),
and Pole and West (1988, 1990), splines being fitted to the den-
sity on the log scale. This ensures positive density everywhere after
interpolation, and linear extrapolation outside the grid leads to ex-
ponential decay to zero in the tails of the posterior. Fuller details
can be found in these references. This follows the use of splines men-
tioned earlier in Smith et al (1987). In more general models with α
vector valued, the basic development is similar but the problems of
density reconstruction much more difficult. Following Shaw (1987),
Pole and West (1988, 1990) use tensor product splines. Returning
to the model here in which α is scalar, the net result is that the
posterior density p(α|Dt) may be (approximately) evaluated at any
value of α, forming the basis of posterior inference for α. Thus far,
then, the updating analysis is completed as far as α is concerned.

(E) In addition, the analysis has identified a new grid At of kt values of
α, that with the associated weights, provides the basis for approxi-
mating expectations of functions of α needed for inference about θt,
etc. At this point, it becomes clear that further work is required to
obtain such inferences. The problem lies in the fact that the con-
ditional posteriors for θt in (A) are based on values of α over the
original grid At−1; what is required are posteriors based on the new
grid At. Formally, the unconditional posterior for θt is defined by
the quadrature formula

p(θt|Dt) =
kt∑
j=1

p(θt|αt,j , Dt)wt,jp(αt,j |Dt),

so that the standard form, conditional posteriors p(θt|αt,j , Dt) are
required. Again the answer to the problem of their calculation lies
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in the use of some form of interpolation. The approach in Pole and
West (1988, 1990) uses direct linear interpolation. For each value
αt,j ∈ At, the required mean vector mt(αt,j) is calculated by linear
interpolation between appropriate values in the setmt(αt−1,j) from
(A). The posterior variance matrix is similarly linearly interpolated.
See the above references for further details. Of course, linear inter-
polation is not possible outside the range of the old grid. To avoid
this problem, the referenced works ensure that the two grids always
have extreme or boundary points in common so that no interpola-
tion is necessary at the extremes. This is always possible since the
choice of the number of grid points is under control and extra points
at the extremes can be added as desired. Once this interpolation
is complete, the updating is complete with interpolated posteriors
over the new grid

(θt|αt,j , Dt) ∼ N[mt(αt,j),Ct(αt,j)], (j = 1, . . . , kt).

At this point, the components assumed available at time t− 1 have
all been updated to time t, and so the full updating analysis ends.

13.5 EFFICIENT INTEGRATION FOR GENERAL
DYNAMIC MODELS

The ideas underlying the use of quadrature techniques for efficient integration
have been extended in Pole and West (1988, 1990) to apply to much more
general models than those above, restricted as they are to constant pa-
rameter non-linearities. In fact, the strategy presented in this reference is
essentially as general as possible within the context of dynamic models hav-
ing Markovian evolution of state vectors. Some such wider developments
are briefly outlined here; the discussion involves widely useful concepts, and
leads naturally into more recent and incisive methodological developments
using simulation-based methods in the following section.
The primary need is for analyses of models in which parameters that

introduce non-linearities are time dependent. If this is the case, then there
is no way in which the above ideas of standard analyses conditional on
non-linear parameters apply. To be specific, consider the model in (13.1),
namely,

Observation equation: Yt =Ft(θt) + νt, (13.16)

Evolution equation: θt =gt(θt−1) + ωt, (13.17)

where Ft(.) is a known, non-linear regression function mapping the n-vector
θt to the real line, gt(.) a known, non-linear vector evolution function, and
νt and ωt are error terms subject to the usual zero-mean and normality
assumptions with known variances Vt and Wt. Suppose also that an ini-
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tial prior density p(θ0|D0) is specified as usual, though not necessarily in
standard, normal form. Note that:

(a) The assumption of known variances is purely for convenience in
notation and exposition here. If the observational variance is un-
known, for example, then the vector θt can be extended to include
it as a component to be estimated along with the original elements
of the state vector. In addition, the errors νt and ωt may, of course,
have known, non-zero means.

(b) These equations define a rather general normal model. However,
the normality of the errors is not a crucial assumption. Since the
analysis is to be via numerical integration, there is no need to restrict
to normality any longer. For example, the errors may have heavy-
tailed distributions, such as T distributions, in order to permit larger
changes in the state vector and outlying observations from time to
time (West 1981; Pole and West 1988)

(c) In fact, the model need not be defined directly in terms of these
two equations. A rather more general framework will specify the
model via observational and evolution densities p(Yt|θt, Dt−1) and
p(θt|θt−1, Dt−1) respectively. This is very general. The observa-
tional distribution may be derived from an equation such as (13.16),
but it allows for essentially any continuous or discrete distribution
that may depend on the state vector in complicated, non-linear
ways. Similarly, the evolution density is general. This too may take
the usual DLM form, but the framework allows for any state evolu-
tion density, normal or otherwise, with any desired dependence on
the state vector at t− 1. The standard DLM is obviously a special
case, as is the DLM with unknown observational variance, since the
variance parameter can be incorporated into the state vector as a
constant component. In fact, all models considered in this book can
be written in the form of these two densities, hence, in principle,
all models can be analysed within the framework here. In practice,
this is currently not the case; the technical and computational dif-
ficulties of analysis have yet to be thoroughly investigated even in
the simplest special cases.

Conceptually, the analysis of this model involves the following three steps
at each time t, familiar from the usual normal DLM.

(1) Assuming knowledge of the posterior distribution for the state vec-
tor at time t− 1, defined via a density function

p(θt−1|Dt−1), (13.18)

compute the implied prior density for θt, namely

p(θt|Dt−1) =
∫
p(θt|θt−1, Dt−1)p(θt−1|Dt−1)dθt−1, (13.19)
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for all values of θt. Typically this implies the need for many numer-
ical integrations over the n-dimensional state parameter space, one
for each value of θt required.

(2) Use this to produce forecast distributions one and more steps ahead.
The one-step ahead density requires the further integrations implicit
in the definition

p(Yt|Dt−1) =
∫
p(Yt|θt, Dt−1)p(θt|Dt−1)dθt. (13.20)

Again the implication is that numerical integrations are needed here.
(3) Update the prior (13.19) to the posterior for θt when Yt is observed

to complete the cycle at time t. As usual,

p(θt|Dt) ∝ p(θt|Dt−1)p(Yt|θt, Dt−1), (13.21)

for all θt, the constant of proportionality being the observed value of
(13.20). Summarisation of (13.21) involves the calculation, in par-
ticular, of moments and posterior probabilities that require further
integrations with respect to elements of θt. Subsidiary activities
include filtering and smoothing, which are not discussed here (see
Pole and West 1988).

Kitegawa (1987) describes implementation of the cycle defined in these
three steps using the direct approach through numerical integration based
on a fixed grid of values of θt. This approach requires that the grid of
values, fixed for all time, remain appropriate for all time. We have com-
mented earlier on the need for such grids to evolve as θt evolves. Also,
the very heavy computational demands of fixed grid methods with very
large numbers of grid points in models of even very moderate size can be
prohibitive. These points mitigate against any fixed grid-based method
being of general applicability, and thus we explore the extension of efficient
integration techniques to this context. The ideas underlying the numerical
integration in Section 13.4 can be considered to apply to each of the steps
summarised in equations (13.18)-(13.21), as follows.

Step 1:
Assume that p(θt−1|Dt−1) has been the subject of Gaussian quadrature,
being evaluated on a grid of kt−1 valuesAt−1 = {θt−1,1, . . . ,θt−1,kt−1} with
associated quadrature weights wt−1,1, . . . , wt−1,kt−1 . From the evolution
equation, this provides an estimate of the prior mean at = E[θt|Dt−1] via
the usual quadrature formula

at ≈
kt−1∑
j=1

gt(θt−1,j)wt−1,jp(θt−1,j |Dt−1).
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Given this estimate of at, the prior variance matrix Rt = V[θt|Dt−1] is
estimated similarly by

Rt ≈
kt−1∑
j=1

[gt(θt−1,j)− at][gt(θt−1,j)− at]′wt−1,jp(θt−1,j |Dt−1).

These initial estimates form the starting point for quadrature applied to the
prior (13.19), using the general theory outlined and referenced in Section
13.3. The iterative strategy is applied to θt, the prior density at any point
being evaluated via

p(θt|Dt−1) ≈
kt−1∑
j=1

p(θt|θt−1,j , Dt−1)wt−1,jp(θt−1,j |Dt−1). (13.22)

Once the iterative strategy converges, the result is final estimates of at and
Rt, and a prior quadrature grid of some kt points At = {θt,1, . . . ,θt,kt

}
with associated quadrature weights wt,1, . . . , wt,kt . Note that there is no
need for interpolation in this approach, the density actually being evaluated
(approximately) at all points of interest.

Step 2:
Forecasting ahead simply repeats this basic procedure to produce approx-
imations to distributions for future state vectors and hence for future ob-
servations. Restricting attention to one-step ahead, for any value Yt the
one-step density (13.20) is estimated via

p(Yt|Dt−1) =
kt∑
j=1

p(Yt|θt,j , Dt−1)wt,jp(θt,j |Dt−1).

Moments and predictive probabilities may be similarly evaluated.

Step 3:
Updating is directly achieved again using quadrature. The posterior den-
sity is evaluated at all points in At via (13.21), which then leads to initial
estimates of posterior moments via the usual quadrature formula. These
form the basis of a new set of grid points and weights, the density is eval-
uated at these points, and the process iterated to convergence. The result
is a revision of the prior grid At to a final, posterior grid with associated
final weights. Thus, the analysis at time t is complete, the position now
being just at at the start of Step 1 with t− 1 increased to t.
The key problem underlying this sort of analysis, and the basic way in

which this application of efficient integration differs from more usual anal-
yses, is that the posterior density for θt at any time is used as an input
into the model for future times. Pole and West (1988) discuss some of the
problems that arise with its application, and illustrate them in DLMs in
which the evolution and observation error terms have non-normal distri-
butions. Some examples include the use of heavy-tailed T distributions



13.6 A First Simulation Method: Adaptive Importance Sampling 509

for these errors rather than normal distributions, as in Masreliez (1975),
Masreliez and Martin (1977), Kitagawa (1988), and West (1981).

13.6 A FIRST SIMULATION METHOD:
ADAPTIVE IMPORTANCE SAMPLING

13.6.1 Introduction
The late 1980s and early 1990s saw tremendous growth in the development
and use of methods of stochastic simulation for approximating posterior dis-
tributions in Bayesian inference quite generally. One class of tools, based
on importance sampling ideas, was very much in evidence. This section
discusses some application of adaptive importance sampling methods in
dynamic models. The outlook is precisely that of Section 13.5, but now
the tools are simulation-based rather than those of deterministic (Gaussian)
quadrature. As we move towards the end of the twentieth century, simu-
lation methods are becoming dominant tools in statistics, and it is likely
that they will provide the way ahead in time series and dynamic modelling,
as in other areas. Chapter 15 to follow picks up simulation methods with
a focus on more recent developments using Markov chain implementations
for analysis of a fixed stretch of data, in contrast to the sequential updating
approach here based on importance sampling.

13.6.2 Posterior approximation by importance sampling
West (1992a) introduced an adaptive importance sampling scheme to de-
velop discrete posterior approximations, and methods to provide smooth
posterior reconstructions, in general statistical models. Suppose p(θ) is the
continuous posterior density function for a continuous parameter vector θ.
An approximating density g(θ) is used as an importance sampling function
(Geweke 1989) as is now described. Let T = {θj , j = 1, . . . , n} be a
random sample from g(θ), and define weights W = {wj , j = 1, . . . , n}
by wj = p(θj)/(kg(θj)), for each j, where k =

∑n
j=1 p(θj)/g(θj). The

weights are evaluated via wj ∝ p(θj)/g(θj) and then normalised to unit
sum. Inference under p(θ) is then approximated using the discrete distribu-
tion having masses wj at θj , for each j = 1, . . . , n. To achieve reasonable
approximations, we require that g have the same support as p and that
the tails of g be heavier than those of p. Multivariate T distributions, and
so-called split-T distributions, have become popular (Geweke 1989). In
West (1992a) mixtures of T distributions are proposed, one additional rea-
son being that mixtures have the flexibility to represent the possibly quite
complex and varied forms of (posterior) densities. This is done using ker-
nel density estimation techniques. With an importance sampling function
g(θ) close to the true density p(θ), kernel density estimation (or other
smoothing techniques) provides continuous estimates of joint and marginal



510 13 Non-Linear Dynamic Models

densities. West (1992a) uses weighted variations on multivariate kernel
estimates as importance sampling functions, and with some modification,
to more directly estimate marginal densities of p(θ). The basic idea is as
follows.
Given a chosen importance sampling density g0(θ), the sample of size n,

T and associated weights W, the exact density p(θ) may be approximated
by a weighted kernel estimate of the form

g1(θ) =
n∑

j=1

wjd(θ|θj ,Vh2), (13.23)

where d(θ|m,M) denotes a p-variate, elliptically symmetric density func-
tion (determining the “kernel”), with mode m and scale matrix M, V an
estimate of the variance matrix of p(θ) (usually the Monte Carlo estimate
based on T and W), and h a “window-width” smoothing parameter, de-
pending on the Monte Carlo sample size n. A key example has d(θ|m,M)
as the density of a multivariate T distribution with some a > 0 degrees of
freedom, whence the density g1(θ) is a discrete mixture of n component T
distributions. Conventional density estimation techniques (Silverman 1986)
choose the window width h as a slowly decreasing function of n, so that the
kernel components are naturally more concentrated about the locations θj

for larger sample sizes. Then g1(θ) approaches p(θ) as n increases. For
moderate sample sizes, g1(θ) will tend to be overdispersed relative to p(θ)
if V is the usual Monte Carlo estimate of V [θ] under p(θ). This feature
proves useful in developing kernel forms as importance density functions,
though the over-dispersion can be counter-balanced using “shrinkage” of
kernel locations to provide more direct approximation of the true density
and its margins (West 1992a).
Adaptive importance sampling describes any process by which the im-

portance sampling distribution is sequently revised based on information
derived from successive Monte Carlo samples. Let g0(θ) be an initially
chosen importance sampling function. For a sample size n, this leads to
points T0 = {θ0,j , j = 1, . . . , n0}, weights W0 = {w0,j , j = 1, . . . , n0}
and the summary

G0 = {g0, n0, T0,W0}.

Adaptive importance sampling suggests taking n0 rather small, say several
hundreds, and, based on the Monte Carlo outcome G0, revising g0(θ) to
a “better guess”. It is natural to use a mixture such as (13.23) as a sec-
ond step importance sampling function, and the following adaptive routine
arises:

(1) Choose an initial importance sampling distribution with density
g0(θ), draw a fairly small sample n0 and compute weights, deduc-
ing the summary G0 = {g0, n0, T0,W0}. Compute the Monte Carlo
estimates θ̄0 and V0 of the mean and variance of p(θ).
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(2) Construct a revised importance function g1(θ) using (13.23) with
sample size n0, points θ0,j , weights w0,j , and variance matrix V0.

(3) Draw a larger sample of size n1 from g1(θ), and replace G0 with
G1 = {g1, n1, T1,W1}.

(4) Either stop, and base inferences on G1, or proceed, if desired, to
a further revised version g2(θ), constructed similarly. Continue as
desired.

Even though the initial g0(θ) may poorly represent p(θ), successive re-
finement through smaller samples can, and usually does, mean that after
one or two revisions, the resulting kernel estimate is a much better ap-
proximation to p(θ). Hence, once the process of refinement is terminated,
a much smaller sample size is necessary for the desired accuracy of ap-
proximation. Often just one refinement is sufficient to adjust a very crude
approximation, g0(θ), say a single multivariate T density, to a mixture
g1(θ) of, say, 500 T densities, that much more closely represents the true
p(θ). In approximating moments and probabilities, a Monte Carlo sample
of two or three thousand draws from g1(θ) may do as well as, or better
than, a sample of two or three times that from the original g0(θ). Useful
diagnostic information is generated in this process at each stage, such as
the configuration of points in each dimension of the parameter space and
the distributions of weights. This can be used to guide successive choice of
sample sizes and possible interventions to adjust successive kernel smooth-
ing parameter values, and also to assess whether further refinement is likely
to be additionally effective. Several illuminating examples appear in West
(1992a).

13.6.3 Approximating mixtures by mixtures
Suppose the above adaptive strategy has n0 = 500, so that g1(θ) is a mix-
ture of 500 p-dimensional T distributions, and that the revision process
stops here, g1(θ) being adopted as the “final” importance sampling den-
sity to be used for Monte Carlo inference. It is straightforward to sample
T1 = {θ1,i, i = 1, . . . , n1} from g1(θ); the computational benefit of the
components sharing a common scale matrix V0 is apparent here. It is also
straightforward to then evaluate the weights W1 = {w1,i, i = 1, . . . , n1},
though the denominator of w1,i requires evaluation of the mixture g1(θ1,i).
The computational burden here clearly increases if further refinement of im-
portance functions with rather larger sample sizes is desired. One way of
reducing such computations is to note that quite typically, approximating
p(θ) using mixtures of several thousand T distributions is really overkill;
even very irregular densities can be adequately matched using mixtures
having far fewer components. The Monte Carlo kernel density construc-
tion in particular typically leads to a huge redundancy, with many points
θ0,j closely grouped and contributing essentially similar components to
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the overall mixture density. The discussion of approximating mixtures in
Chapter 12 is relevant.
A very basic method of “clustering” mixture components, combining

ideas from each of these two references, is used in West (1992a). At the
simplest, it involves reducing the number of components by replacing “near-
est neighbouring” components with some form of average. The examples
below, and those in West (1992a), involve reducing mixtures of n in several
hundreds or thousands to around 10% (though sometimes rather less) of
the initial value, and performing this reduction using the following simple
clustering routine.

(1) Set r = n, and starting with the r = n component mixture (13.23),
choose k < n as the number of components for the final mixture.

(2) Sort the r values of θj in T in order of increasing values of weights wj

in W; thus θ1 corresponds to the component with smallest weight.
(3) Find the index i, (i = 1, . . . , r), such that θi is the nearest neighbour

of θ1, and reduce the sets T andW to sets of size r−1 by removing
components 1 and i, and inserting “average” values θ∗ = (w1θ1 +
wiθi)/(w1 + wi) and w∗ = w1 + wi. Set r = r − 1.

(4) Proceed to (2) and repeat the procedure, stopping when r = k.
(5) The resulting mixture has the form (13.23) with n reduced to k,

the locations based on the final k averaged values, with associated
combined weights, the same scale matrix V, but new and larger
window-width h based on the current, reduced “sample size” r.

The reduction process can be monitored by evaluating and plotting mar-
gins of the mixture over fairly crude grids at stages in the reduction process.
If in reducing from, say, n to 80%n components these densities do not ap-
pear to change much, then further reduction may proceed, and so forth
in later stages of reduction. This is one possible route to approximating
mixtures of large numbers of components with mixtures of far fewer.

13.6.4 Sequential updating and dynamic models
Consider now the use of adaptive importance sampling techniques in the
dynamic modelling context, where, as we have discussed in earlier sections,
we need to allow “grids” of evaluation points in parameter spaces to be
changed as time progresses and as data indicate support for different re-
gions in parameter space. Other issues to be addressed include the severe
computational demands in problems with more than very few parameters,
and the difficulties in reconstructing smooth posterior distributions based
on approximate evaluation at only very few points in what may be several
dimensions.
We develop the ideas in a rather general context of possibly non-normal

and non-linear dynamic models. The time series of (possibly multivariate)
observations Yt has, at each time t, a known sampling distribution with
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density (or mass function) p(Yt|θt); here θt is the p-state vector, and con-
ditional on θt, Yt is assumed independent of Ys and θs for all past and
future values of s, as usual in the DLM. The state vector evolves in time
according to a known, Markovian process described by an evolution den-
sity p(θt|θt−1); given θt−1, θt is conditionally independent of past values
θs for s < t− 1. Note that the evolution equation, now defined implicitly,
may be quite non-linear and non-normal. Summarising the model, for each
t = 1, 2, . . . , the defining equations are

Observation model: (Yt|θt) ∼ p(Yt|θt),

Evolution model: (θt|θt−1) ∼ p(θt|θt−1).

Note that these densities may depend also on t and on elements of Dt−1,
though the notation ignores this for clarity. At time t−1 prior to evolution,
historical information is summarised through (an approximation to) the
posterior p(θt−1|Dt−1). The primary computational problems addressed
are

(a) Evolution step: compute the current prior for θt, defined via

p(θt|Dt−1) =
∫
p(θt|θt−1)p(θt−1|Dt−1)dθt−1; (13.24)

(b) Updating step: on observing Yt, compute the current posterior

p(θt|Dt) ∝ p(θt|Dt−1)p(Yt|θt). (13.25)

Subsidiary calculations include forecasting ahead (discussed below) and
filtering problems for retrospection.
Suppose that p(θt−1|Dt−1) has been previously approximated via Gt−1 =

{gt−1, nt−1, Tt−1,Wt−1}, where gt−1(θt−1) is a (final) importance density
used for inference about (θt−1|Dt−1); nt−1 is the (final) Monte Carlo sample
size in that inference; Tt−1 = {θt−1,i, i = 1, . . . , nt−1} is the sample
from gt−1(θt−1); and Wt−1 = {wt−1,i, i = 1, . . . , nt−1} is the set of
associated weights. The objective is to perform the evolution, updating
and forecasting computations and finally to summarise p(θt|Dt) in terms
of Gt = {gt, nt, Tt,Wt}, and this may be done as follows.

Computations: evolution step
The following facts are of use in computations for the evolution step.

(a) Various features of the prior p(θt|Dt−1) of interest can be computed
directly using the Monte Carlo structure Gt−1. The prior mean, for
example, is computable as

E[θt|Dt−1] ≈
nt−1∑
i=1

wt−1,iEe[θt|θt−1,i],

where Ee stand for expectation under the evolution distribution, if
this expectation is available in closed form.
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(b) Similarly, the prior density function can be evaluated by Monte
Carlo integration at any required point, viz.,

p(θt|Dt−1) ≈
nt−1∑
i=1

wt−1,ip(θt|θt−1,i). (13.26)

(c) An initial Monte Carlo sample of size nt−1 may be drawn from the
prior by generating one value of θt from p(θt|θt−1,i), for each i =
1, . . . , nt−1. The resulting sample points, denoted by T ∗

t , provide
starting values for the evaluation of the prior (13.26).

(d) This prior sample T ∗
t may be used with weights Wt−1 to construct

a generalised kernel density estimate of the prior. In many models,
this is of little interest since the prior may be evaluated as in (b)
above, unless the evolution density is extremely complex and diffi-
cult to work with. Consider, however, a model in which the evolu-
tion equation is degenerate, θt = Gt(θt−1) with probability one, for
some known, possibly non-linear and time-dependent function Gt.
This covers many interesting examples. Then prior evaluation as in
(b) is vacuous, and so, since values of the prior are required as input
to Bayes’ theorem in the updating step, some form of interpolation
is needed.

(e) Note at this point, that subsidiary computations for forecasting
ahead can be performed along these lines. Forecasting (Yt|Dt−1),
for example, requires computing

∫
p(Yt|θt)p(θt|Dt−1)dθt. The ob-

servation density typically has a standard form, so that Monte Carlo
computations can be performed to approximate forecast moments
and probabilities. For example, the forecast mean is evaluated as

E[Yt|Dt−1] ≈
∑

θt∈T ∗
t

wt−1,iEo[Yt|θt],

where Eo stands for expectation under the observation distribution,
assuming this expectation is available in closed form. Forecast prob-
abilities are similarly derived. By simulating from the observation
density for each value of θt ∈ T ∗

t , and using the associated weights
Wt−1, regions of interest in the sample space can be identified and
the predictive density/mass function evaluated there. Similar com-
ments apply to forecasting more than one step ahead; the process
of simulating from the evolution density is repeated into the future,
generating samples of future parameter vectors, and proceeding to
inference about the future values of the series.

It is important to note the generality of the above strategy for computa-
tions. At no stage is it necessary, or interesting, to worry about functional
forms of evolution equations, or to cater for many special cases. This sim-
plifies programming the analysis; all that is needed is a collection of general
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routines for evaluating and sampling from the evolution and observation
densities, and if required, generating kernel estimates.

Computations: updating step
Following evolution, the prior p(θt|Dt−1) to input to Bayes’ theorem (13.25)
for updating is available in approximate form either via evaluation at step
(b) above, or in terms of a generalised kernel form as described in step (d).
Updating may then proceed using adaptive Monte Carlo density estimation
of the previous section. This begins with an initial “guess” at the posterior
p(θt|Dt), denoted gt,0(θt), to be used as an initial importance sampling
function. Choice of this density depends on context, though it may be
guided by general ideas described in the examples below. This provides
the starting point for application of the adaptive strategy. On completion,
this results in a final summary of the posterior given by the quadruple
Gt = {gt, nt, Tt,Wt}, where gt(θt) is the final importance sampling density
for the posterior p(θt|Dt), nt is the final Monte Carlo sample size, and Tt is
the set of nt points in parameter space at which the Monte Carlo weights
in Wt are evaluated.
A variety of examples are discussed in West (1992a, b and c), to which

the reader is referred for further details and illustrations. This specific sim-
ulation method is based on key general principles for sequential analysis,
and it provides a useful strategy for models with fairly low-dimensional
state vectors. Beyond a few dimensions, the computational overheads in-
crease substantially, and there are currently no generally useful extensions
or alternatives for sequential, dynamic model analysis. However, alter-
native simulation methods using iterative Markov chain approaches are of
immense utility in higher dimensions, so long as the focus on sequential up-
dating is relinquished in favour of retrospective analysis of a fixed stretch of
data. This is the topic of Chapter 15, to follow, after a diversion into some
specific non-linear models analysed with direct analytic approximations in
sequential contexts.



CHAPTER 14

EXPONENTIAL FAMILY DYNAMIC MODELS

14.1 INTRODUCTION
We now turn to a specific class of dynamic models with non-normal sam-
pling distributions and other non-linear components. DLMs have been
extended and generalised to various non-normal problems, the largest class
being that based on the use of exponential family models for observational
distributions. This chapter is devoted to these models, the primary refer-
ences being Migon (1984), Migon and Harrison (1985), and West, Harrison
and Migon (1985). Our development follows these references and explores
technical issues in analyses that utilise direct analytic approximations. As
discussed in the previous chapter, research in more recent years has de-
veloped more refined numerical and simulation-based approaches to the
analysis of non-linear models, and these kinds of developments are begin-
ning to have practical impact in the class of models discussed here, and in
generalisations of them. Though not developed in this chapter, this is a
currently active area of dynamic modelling and one that can be expected
to grow in coming years. Further discussion of simulation methods appears
in Chapter 15, with some recent references to developments with models
related to those of this chapter.
A primary need for extension of the class of normal DLMs is to allow

for data distributions that are not likely to be adequately modelled us-
ing normality, even after transformation. With continuous data plausibly
having skewed distributions such as exponential, Weibull, or gamma, it is
often the case that a data transformation can be used to achieve approxi-
mate symmetry on the transformed scale, and normal models can then be
quite useful. However, the meaning and interpretation of model param-
eters is usually obscured through transformation, the original data scale
being natural and interpretable, and it may often be viewed as desirable
to develop a model directly for the data on the original scale. See also
the related comments in Section 10.6. With discrete data in the form of
counts, transformations are often not sensible, and approximation using
continuous normal distributions may be radically inappropriate. Discrete
data often arise in the form of counts from finite or conceptually infinite
distributions and event indicators. Sample surveys, for example, typically
result in data that are essentially binomial-like in character. Poisson and
compound Poisson data arise in demand and inventory processes through
“random” arrival of orders and supplies. At the extreme, binary series arise
as indicators of the occurrence, or non-occurrence, of sequences of events,
such as rise/fall in a financial index, daily rainfall indicators, and so forth.
Thus, we need to consider non-normal observational distributions.
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Major progress in non-normal modelling, and hence in practical sta-
tistical methodology, has flowed from the development of the theoretical
framework of generalised linear models (GLMs), beginning with Nelder and
Wedderburn (1972). The ensuing development of the interactive GLIM
computer package (Baker and Nelder 1985) presaged an explosion in the
application and development of formal, parametric statistical models. The
GLM framework provides regression techniques in the context of non-
normal models with regression effects on a non-linear scale, one of the
most important modelling tools for applied statisticians and researchers.
See McCullagh and Nelder (1989) for coverage of theoretical and applied
aspects of these and related models, and West (1985a) for Bayesian mod-
elling within this class. The theoretical framework of GLMs provides a
starting point for non-normal, dynamic models. Here we describe such
models, beginning with an exposition of the basic structure of exponential
family analyses.

14.2 EXPONENTIAL FAMILY MODELS
14.2.1 Observational distributions in the EF
Consider the time series of scalar observations Yt, (t = 1, 2, . . . ), continuous
or discrete random quantities taking values in the sample space Y. If Yt is
assumed to have a sampling distribution in the exponential family, then the
density (if discrete, the probability mass function) of Yt may be described as
follows. For some defining quantities ηt and Vt, and three known functions
yt(Yt), a(ηt) and b(Yt, Vt), the density is

p(Yt|ηt, Vt) = exp{V −1
t [yt(Yt)ηt − a(ηt)]}b(Yt, Vt), (Yt ∈ Y). (14.1)

The primary properties of the distribution may be found in the references
above. These properties, some terminology and further points of note are
summarised as follows.

(1) ηt is the natural parameter of the distribution, a continuous quantity.
(2) Vt > 0 is a scale parameter; the precision parameter of the distribu-

tion is defined as φt = V −1
t .

(3) As a function of the natural parameter for fixed Yt, equation (14.1),
viewed as a likelihood for ηt, depends on Yt through the transformed
value yt(Yt).

(4) The function a(ηt) is assumed twice differentiable in ηt. It follows
that

µt = E[yt(Yt)|ηt, Vt] =
da(ηt)
dηt

= ȧ(ηt).

(5) It follows that

V[yt(Yt)|ηt, Vt] = Vtä(ηt).
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(6) Rather often (in the key practical cases in particular) yt(·) is the
identity function. In such cases,

p(Yt|ηt, Vt) = exp{V −1
t [Ytηt − a(ηt)]}b(Yt, Vt) (14.2)

for Yt ∈ Y. Also

E[Yt|ηt, Vt] = µt = ȧ(ηt), (14.3)

V[Yt|ηt, Vt] = Vtä(ηt). (14.4)

Here, in an obvious terminology, ȧ(·) is the mean function and ä(·)
the variance function of the distribution. Thus, the precision pa-
rameter φt = V −1

t appears as a divisor of the variance function to
provide the variance in (14.4). The function a(·) is assumed convex,
so that ȧ(·) is a monotonically increasing function and ηt and µt

are related via the one-to-one transformation (14.3); the inverse is
simply ηt = ȧ−1(µt).

EXAMPLE 14.1. The usual normal model (Yt|µt, Vt) ∼ N[µt, Vt] is a key
special case. Here yt(Yt) = Yt, a(ηt) = η2

t /2 so that µt = ηt, and b(Yt, Vt) =
(2πVt)−1/2exp(−Y 2

t /2).

EXAMPLE 14.2. Consider the binomial model where Yt is the number of
successes in nt > 0 Bernoulli trials with success probability πt. Here Y is
the positive integers, and the mass function is

p(Yt|µt, nt) =



(
nt

Yt

)
µYt
t (1− µt)nt−Yt , (Yt = 0, 1, . . . , nt),

0, otherwise.

This is a special case of (14.2) in which yt(Yt) = Yt/nt, ηt = log[µt/(1−µt)]
(the log-odds, or logistic transform of the probability µt), V −1

t = φt = nt,
a(ηt) = log[1 + exp(ηt)], and b(Yt, Vt) =

(
nt

Yt

)
.

Several other important distributions, including Poisson and gamma, are
also special cases. It is left to the exercises for the reader to verify that in
each such case, the density or mass function can be written in exponential
family form. Thus, the development for the general model (14.1) or (14.2)
applies to a wide and useful variety of distributions.

14.2.2 Conjugate analyses
The development will, with no loss of generality, be in terms of (14.2).
In addition, the scale parameter Vt is assumed known for all t. So in
modelling the observation, the only unknown quantity in the sampling
density (14.2) is the natural parameter ηt, or, equivalently, the conditional
mean µt of Yt. At time t− 1, historical information relevant to forecasting
Yt is denoted, as usual, by Dt−1. Note that the density for Yt may depend
in some way on Dt−1 (in particular, through the assumed value of Vt),
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so that (14.2) provides p(Yt|ηt, Vt, Dt−1). For notational convenience Vt is
dropped from the list of conditioning arguments as it is assumed known.
Thus, the sampling density (14.1) or (14.2) is denoted simply by p(Yt|ηt),
(Yt ∈ Y), the dependence on Dt−1 being understood.
Now the only uncertainty about the distribution for Yt given the past

history Dt−1 is due to the uncertainty about ηt. This will be summarised
in terms of a prior (to time t) for ηt, the density denoted by p(ηt|Dt−1) as
usual. It then follows, as usual, that the one-step ahead forecast distribu-
tion is defined via

p(Yt|Dt−1) =
∫
p(Yt|ηt)p(ηt|Dt−1)dηt, (14.5)

the integration being over the full parameter space for ηt, a subset of the
real line. Similarly, once Yt is observed, the prior is updated to a posterior
for ηt by Bayes’ Theorem,

p(ηt|Dt) ∝ p(ηt|Dt−1)p(Yt|ηt). (14.6)

The calculations in (14.5) and (14.6), so familiar and easily performed in
the cases of normal models, are analytically tractable in this exponential
family framework when the prior belongs to the conjugate family. The
use of exponential models with conjugate priors is well known in Bayesian
statistics generally; see Aitchison and Dunsmore (1976, Chapter 2) for a
thorough discussion and technical details.
With reference to (14.2), a prior density from the conjugate family has

the form

p(ηt|Dt−1) = c(rt, st)exp[rtηt − sta(ηt)], (14.7)

for some defining quantities rt and st (known functions of Dt−1), and a
known function c(. , .) that provides the normalising constant c(rt, st).
Some comments and properties are as follows.

(1) Given the quantities rt and st, the conjugate prior is completely
specified. Here st > 0 and defining xt = rt/st, equation (14.7) can
be written as

p(ηt|Dt−1) ∝ exp{st[xtηt − a(ηt)]}.
As a function of ηt, the prior thus has the same form as the likelihood
function (14.2) when Yt is fixed; st is analogous to φt and xt to Yt.

(2) All such conjugate priors are unimodal (in fact, strongly unimodal)
by virtue of the fact that a(·) is a convex function. The prior mode
for ηt is defined via xt = ȧ(ηt), and is therefore just ȧ−1(xt). Thus,
xt defines the location of the prior.

(3) st is the precision parameter of the prior; larger values of st > 0
imply a prior increasingly concentrated about the mode.

(4) The roles of xt and st as defining location and precision are further
evident in cases when (as is often true) the prior density and its
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first derivative decay to zero in the tails. Under such conditions, it
is easily verified that E[µt|Dt−1] = xt. It follows that the one-step
ahead forecast mean of Yt is given by E[Yt|Dt−1] = xt. In addition,
V[µt|Dt−1] = E[ä(ηt)|Dt−1]/st. See West (1985a, 1986a) for further
details.

Assuming that the values rt and st are specified, it easily follows (and
the verification is left to the reader) that the predictive density (14.5) and
the posterior (14.6) are determined by

p(Yt|Dt−1) =
c(rt, st)b(Yt, Vt)

c(rt + φtYt, st + φt)
(14.8)

and

p(ηt|Dt) = c(rt + φtYt, st + φt)exp[(rt + φtYt)ηt − (st + φt)a(ηt)]. (14.9)

The predictive distribution may now be easily calculated through (14.8).
The posterior (14.9) has the same form as the conjugate prior, with defining
quantities rt and st updated to rt + φtYt and st + φt respectively. The
posterior precision parameter is thus the sum of the prior precision st and
the precision parameter φt = V −1

t of the sampling model for Yt. Hence
precision increases with data since φt > 0. The prior location parameter
xt = rt/st is updated to

rt + φtYt
st + φt

=
stxt + φtYt
st + φt

= (1− αt)xt + αtYt,

where αt = φt/(st + φt), so that 0 < αt < 1. Thus, the posterior location
parameter is a convex linear combination of the prior location parame-
ter xt and the observation Yt. The weight αt on the observation in the
combination is an increasing function of the relative precision φt/st.
Full discussion of conjugate analyses can be found in Aitchison and Dun-

smore (1976, Chapter 2), De Groot (1970, Chapter 9). Further details of
the properties of conjugate priors appear in West (1985a, 1986a). The
normal and binomial cases of Examples 14.1 and 14.2 are illustrated here,
being special cases of great practical interest. Further special cases are left
to the exercises for the reader. See Aitchison and Dunsmore for a full list
and a complete summary of prior, posterior and forecast distributions.

EXAMPLE 14.1 (continued). In the normal model the conjugate prior is
also normal, (ηt|Dt−1) ∼ N[xt, s−1

t ]. The forecast density in (14.8) is nor-
mal, (Yt|Dt−1) ∼ N[ft, Qt] with ft = xt and Qt = Vt + s−1

t . So, of course,
is the posterior (14.9). The posterior mean of ηt = µt may be written in
the familiar form xt + αt(Yt − xt), the prior mean plus a weighted correc-
tion proportional to the forecast error Yt − xt. The posterior variance is
(st + φt)−1 = s−1

t − α2
tQt.

EXAMPLE 14.2 (continued). In the binomial model, the conjugate prior
µt = [1 + exp(−ηt)]−1 is beta, namely (µt|Dt−1) ∼ Beta[rt, st]. This has
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density

p(µt|Dt−1) ∝ µrt−1
t (1− µt)st−1, (0 ≤ µt ≤ 1),

with normalising constant

c(rt, st) =
Γ(rt + st)
Γ(rt)Γ(st)

.

Here both rt and st must be positive. Transforming to the natural pa-
rameter ηt = log[µt/(1 − µt)] provides (14.7), although it is not nec-
essary to work on the ηt scale, and much more convenient to work di-
rectly with the conjugate beta on the µt scale. The forecast distribution
(14.8) is the beta-binomial, and the posterior (14.9) beta, (µt|Dt−1) ∼
Beta[rt + Yt, st + nt − Yt].

14.3 DYNAMIC GENERALISED LINEAR MODELS
14.3.1 Dynamic regression framework
The class of generalised linear models (Nelder and Wedderburn 1972; Baker
and Nelder 1983; West 1985a) assumes data conditionally independently
drawn from distributions with common exponential family form, but with
parameters ηt and Vt possibly differing. Regression effects of independent
variables are modelled by relating the natural parameters for each observa-
tion to a linear function of regression variables. In the time series context,
the use of time-varying regression type models is appropriate, applying to
define the following dynamic generalised linear model.

Definition 14.1. Define the following quantities at time t.

• θt, an n-dimensional state vector at time t;
• Ft, a known n-dimensional regression vector;
• Gt, a known n× n evolution matrix;
• ωt, an n-vector of evolution errors having zero mean and known
variance matrixWt, denoted by ωt ∼ [ 000,Wt];
• λ = F′

tθt, a linear function of the state vector parameters;
• g(ηt), a known, continuous and monotonic function mapping ηt to
the real line.

Then the dynamic generalised linear model (DGLM) for the series Yt, (t =
1, 2, . . . ) is defined by the following components:

Observation model:

p(Yt|ηt) and g(ηt) = λt = F′
tθt, (14.10)

Evolution equation:

θt = Gtθt−1 + ωt with ωt ∼ [ 000,Wt]. (14.11)
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This definition is an obvious extension of the standard DLM in the ob-
servation model. The sampling distribution is now possibly non-normal,
and the linear regression λt affects the observational distribution through a
possibly non-linear function of the mean response function µt = E[Yt|ηt] =
ȧ(ηt). The additional component g(·) provides a transformation from the
natural parameter space to that of the linear regression. In practice, it is
very common that this will be the identity map. This provides, for ex-
ample, logistic regression in binomial models and log-linear models when
the sampling distribution is Poisson. See McCullagh and Nelder (1989)
for much further discussion. The evolution equation for the state vector is
precisely as in the normal DLM, although normality is not assumed, only
the first and second order moments of the evolution errors being so far
assumed. As in the DLM, the zero mean assumption for ωt may be relaxed
to include a known, non-zero mean without any essential change to the
structure of the model. These evolution errors are assumed uncorrelated
over time, as usual, and conditional on ηt, Yt is independent of ωt. The
standard, static GLM is a special case in which θt = θ for all time, given
by taking Gt as the identity andWt as the zero matrix.
This class of models provides a generalisation of the DLM to non-normal

error models for the time series, and of the GLM to time varying parame-
ters. However, having left the standard, normal/linear framework, analysis
becomes difficult, the nice theory of normal models being lost. Thus, there
is a need for some form of approximation in analysis. The possibilities,
as in the non-linear models of Chapter 13, include (a) analytic approxi-
mations, such as the use of transformations of the data to approximate
normality if sensible, and normal approximations for prior/posterior distri-
butions; and (b) numerical approximations, using some form of numerical
integration technique. An approach of type (a) is described here, that
attempts to retain the essential non-normal features of the observational
model and forecast distributions by exploiting the conjugate analysis of
Section 14.2.2. This analysis follows West, Harrison and Migon (1985).
Other possible approaches, such as the use of normal approximations of
various forms, are certainly possible, though at the time of writing, these
remain largely unexplored and so are not discussed here.

14.3.2 The DLM revisited
The components of the analysis are motivated by first considering a refor-
mulation of the standard, exact analysis in the special case of the normal
DLM.
In the special case that p(Yt|ηt) is the normal density, (Yt|ηt) ∼ N[µt, Vt]

with µt = ηt, the DLM is obtained by taking g(ηt) = ηt, so that µt = ηt =
λt = F′

tθt. We work in terms of the µt notation. In the usual sequential
analysis, the model at time t is completed by the posterior for the state
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vector at t− 1, namely

(θt−1|Dt−1) ∼ N[mt−1,Ct−1], (14.12)

where the moments are known functions of the past information Dt−1.
Also, the evolution errors are normal, and so given the assumption of no
correlation between ωt and θt−1 in (14.12), the prior for θt is deduced as

(θt|Dt−1) ∼ N[at,Rt], (14.13)

where at = Gtmt−1 and Rt = GtCt−1G′
t +Wt. So much is standard

theory. From (14.13) and the normal sampling model, the one-step ahead
forecast distribution for Yt and the posterior for θt are obtained via the
usual equations.
Consider, however, the following alternative derivations of these key com-

ponents of the analysis.

Step 1: Prior for µt.

µt = λt = F′
tθt is a linear function of the state vector. Hence, under the

prior (14.13), µt and θt have a joint (singular) normal prior distribution(
µt

θt

∣∣∣∣ Dt−1

)
∼ N

[(
ft
at

)
,

(
qt F′

tRt

RtFt Rt

)]
, (14.14)

where

ft = F′
tat and qt = F′

tRtFt. (14.15)

Step 2: One-step ahead forecasting.

The sampling distribution of Yt depends on θt only via the single quantity
µt, and thus the historical information relevant to forecasting Yt is com-
pletely summarised in the marginal prior (µt|Dt−1) ∼ N[ft, qt]. The one-
step ahead forecast distribution is given in Example 14.1 as (Yt|Dt−1) ∼
N[ft, Qt], where Qt = qt + Vt. The reader will verify that this is the usual
result.

Step 3: Updating for µt.

Observing Yt, Example 14.1 provides the posterior for µt as normal,

(µt|Dt) ∼ N[f∗
t , q

∗
t ],

where

f∗
t = ft + (qt/Qt)et and q∗

t = qt − q2t /Qt, (14.16)

with forecast error et = Yt − ft.
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Step 4: Conditional structure for (θt|µt, Dt−1).

The objective of the updating is to calculate the posterior for θt. This can
be derived from the joint posterior for µt and θt, namely

p(µt,θt|Dt) ∝ p(µt,θt|Dt−1) p(Yt|µt)

∝ [p(θt|µt, Dt−1)p(µt|Dt−1)] p(Yt|µt)

∝ p(θt|µt, Dt−1) [p(µt|Dt−1)p(Yt|µt)]

∝ p(θt|µt, Dt−1) p(µt|Dt).

Hence, given µt, θt is conditionally independent of Yt, and it follows that

p(θt|Dt) =
∫
p(θt|µt, Dt−1)p(µt|Dt)dµt. (14.17)

The key point is that information about the state vector from Yt is chan-
nelled through the posterior for µt. The first component in the integrand
is, using standard normal theory in (14.14), just the conditional normal
distribution

(θt|µt, Dt−1) ∼ N[at +RtFt(µt − ft)/qt,Rt −RtFtF′
tRt/qt], (14.18)

for all µt. The second is that derived in Step 3 above.

Step 5: Updating for θt.

Now, since all components are normal, the required posterior (14.17) is
normal and is thus defined by the mean and variance matrix. By analogy
with (14.17), we can express these as follows. Firstly, the mean is given by

mt = E[θt|Dt]

= E[E{θt|µt, Dt−1}|Dt]

= E[at +RtFt(µt − ft)/qt|Dt]

= at +RtFt(E[µt|Dt]− ft)/qt
= at +RtFt(f∗

t − ft)/qt. (14.19)

Similarly,

Ct = V[θt|Dt]

= V[E{θt|µt, Dt−1}|Dt] + E[V{θt|µt, Dt−1}|Dt]

= V[at +RtFt(µt − ft)/qt|Dt] + E[Rt −RtFtF′
tRt/qt|Dt]

= RtFtF′
tRtV[µt|Dt]/q2t + Rt −RtFtF′

tRt/qt

= Rt −RtFtF′
tRt(1− q∗

t /qt)/qt. (14.20)

Substituting the values of f∗
t and q∗

t from (14.15) leads to the usual expres-
sions mt = at +Atet and Ct = Rt−AtA′

tQt, where At = RtFt/Qt is the
usual adaptive vector.
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Steps 1 to 5 provide an alternative proof of the usual forecasting and up-
dating equations at time t, this route being rather circuitous relative to the
usual, direct calculations. However, in non-normal models, an approximate
analysis along these lines leads to a parallel analysis for DGLMs.

14.3.3 DGLM updating
Return now to the DGLM of Definition 14.1. Given the non-normality of
the observational model and in general the non-linearity of the observation
mean µt as a function of θt, there is no general, exact analysis. The ap-
proach in West, Harrison and Migon (1985) develops as follows, paralleling
the steps above in the DLM.
Definition 14.1 provides the basic observation and evolution model at

time t. To complete the model specification for time t, we need to fully
define two more component distributions: (a) that of the evolution error
ωt, as yet only specified in terms of mean and variance matrix; and (b)
p(θt−1|Dt−1) that sufficiently summarises the historical information and
analysis prior to time t. In the DLM, of course, these are both normal.
Whatever forms they may take in the DGLM, prior and posterior distri-
butions for the state vector at any time will not now be normal. Without
considerable development of numerical integration-based methodology for
the DGLM, there is no way in which, in any generality, such distributions
can be adequately calculated and summarised. West, Harrison and Migon
(1985) proceed to develop an approximate analysis based on assuming that
these required distributions are only partially specified in terms of their
first- and second- order moments.

Assumption: In the DGLM of Definition 14.1, suppose that the distribu-
tion of ωt is unspecified apart from the moments in (14.11). In addition,
suppose that the posterior mean and variance of (θt−1|Dt−1) are as in the
DLM case (14.12) but without the normality of the distribution.

Thus, the model definition is completed at time t via

(θt−1|Dt−1) ∼ [mt−1,Ct−1], (14.21)

the full distributional form being unspecified. It follows that from (14.11),
the prior moments of θt are

(θt|Dt−1) ∼ [at,Rt], (14.22)

where at = Gtmt−1 and Rt = GtCt−1G′
t+Wt. This parallels the normal

theory; the price paid for the greater generality in not assuming normality
is that full distributional information is lost, the prior being only partially
specified. The parallel with normal theory is now developed in each of the
five steps of the previous section. Now the notation is a little more complex,
and worth reiterating. As usual, µt is the observation mean, related to the
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natural parameter ηt via µt = ȧ(ηt). Similarly, ηt relates to the linear
function λt = F′

tθt of state parameters via λt = g(ηt). Since ȧ(·) and g(·)
are bijective, we can (and do) work in terms of µt, ηt, or λt interchangeably.

Step 1: Prior for λt.

λt = F′
tθt is a linear function of the state vector. Hence, under (14.22),

λt and θt have a joint prior distribution that is only partially specified in
terms of moments(

λt
θt

∣∣∣∣ Dt−1

)
∼
[(

ft
at

)
,

(
qt F′

tRt

RtFt Rt

)]
, (14.23)

where

ft = F′
tat and qt = F′

tRtFt. (14.24)

These moments coincide precisely, of course, with those of the special case
of normality in (14.14) and (14.15).

Step 2: One-step ahead forecasting.

As in the DLM, the sampling distribution of Yt depends on θt only via
ηt = g−1(λt), and thus the historical information relevant to forecasting Yt
is completely summarised in the marginal prior for (ηt|Dt−1). However, this
is now only partially specified through the mean and variance of λt = g(η)
from (14.23),

(λt|Dt−1) ∼ [ft, qt]. (14.25)

In order to calculate the forecast distribution (and to update to the pos-
terior for ηt), further assumptions about the form of the prior for ηt are
necessary. At this point it should be stressed that the form of the prior is
arbitrary; apart from (14.25), no further restrictions have been made on
the prior. Thus, there is no prior form to be calculated or approximated in
any sense, the forecaster may choose any desired form consistent with the
mean and variance. The prior may be assumed approximately normal, for
example, or to take any other convenient form. In view of the conjugate
analysis described in Section 14.2.2, it is clear that the most convenient
form is that of the conjugate family, and thus a conjugate prior is sup-
posed. This requires, of course, that such a prior can be found consistent
with the mean and variance of λt; happily, priors in the conjugate family
typically permit a full range of unrelated values for the mean and variance,
so that this poses no problem.
Thus, given (14.25), assume that the prior for ηt has the conjugate form

in (14.7), namely

p(ηt|Dt−1) = c(rt, st)exp[rtηt − sta(ηt)]. (14.26)
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The defining parameters rt and st are chosen to be consistent with the
moments for λt in (14.25), thus implicitly satisfying the equations

E[g(ηt)|Dt−1] = ft and V[g(ηt)|Dt−1] = qt. (14.27)

The one-step ahead forecast distribution now follows from the density in
(14.8). For all Yt ∈ Y,

p(Yt|Dt−1) =
c(rt, st)b(Yt, Vt)

c(rt + φtYt, st + φt)
. (14.28)

Step 3: Updating for ηt.

Observing Yt, (14.9) provides the posterior for ηt in the conjugate form

p(ηt|Dt) = c(rt + φtYt, st + φt)exp[(rt + φtYt)ηt − (st + φt)a(ηt)].

By analogy with the prior, denote the posterior mean and variance of λt =
g(ηt) by

f∗
t = E[g(ηt)|Dt] and q∗

t = V[g(ηt)|Dt]. (14.29)

Step 4a: Conditional structure for (θt|λt, Dt−1).

As in the normal model, the objective of the updating is to calculate the
posterior for θt. Again following the normal theory, these can be derived
from the joint posterior for λt and θt. The joint density is, by Bayes’
Theorem,

p(λt,θt|Dt) ∝ p(λt,θt|Dt−1) p(Yt|λt)
∝ [p(θt|λt, Dt−1)p(λt|Dt−1)] p(Yt|λt)
∝ p(θt|λt, Dt−1) [p(λt|Dt−1)p(Yt|λt)]
∝ p(θt|λt, Dt−1) p(λt|Dt).

Hence, given λt and Dt−1, θt is conditionally independent of Yt and it
follows that

p(θt|Dt) =
∫
p(θt|λt, Dt−1)p(λt|Dt)dλt. (14.30)

As in the DLM, information about the state vector from Yt is channelled
through the posterior for λt. The second component in the integrand
p(λt|Dt) may be obtained directly from the conjugate form posterior for
ηt in (14.26). The first component, defining the conditional prior for θt

given λt, is, of course, not fully specified. Note, however, that to com-
plete the updating cycle, we need to calculate only the posterior mean and
variance matrix of θt, the full posterior remaining unspecified and indeter-
minate. From (14.30) and in parallel with (14.18) in the normal model,
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the key ingredients in these calculations are the prior mean and variance
matrix of (θt|λt, Dt−1). Unfortunately, due to the incomplete specification
of the joint prior, these conditional moments are unknown, non-linear and
indeterminate functions of λt. They cannot be calculated without impos-
ing further structure. However, given the partial moments specification
in (14.23), they can be estimated using standard Bayesian techniques as
follows.

Step 4b: Linear Bayes’ estimation of moments of (θt|λt, Dt−1).

From (14.23) we have the joint prior mean and variance matrix of θt

and λt, and are interested in the conditional moments E[θt|, λt, Dt−1] and
V[θt|λt, Dt−1]. Under our assumptions, these functions of λt cannot be
calculated, but they can be estimated using methods of linear Bayesian
estimation (LBE), as in Section 4.9. Recall that LBE provides a Bayesian
decision-theoretic approach to estimation of unknown, non-linear functions
by linear “regressions”. Section 4.9.2 describes the general theory of LBE,
that is applied here. Theorem 4.9 of that section applies here directly as
follows. Within the class of linear functions of λt, and subject only to the
prior information in (14.23), the LBE optimal estimate of E[θt|, λt, Dt−1]
is given by

Ê[θt|, λt, Dt−1] = at +RtFt(λt − ft)/qt, (14.31)

for all λt. The associated estimate of V[θt|λt, Dt−1] is

V̂[θt|, λt, Dt−1] = Rt −RtFtF′
tRt/qt, (14.32)

for all λt. These estimates of conditional moments are adopted. They
obviously coincide with the exact values in the normal case.

Step 5: Updating for θt.

From (14.30), it follows that (again as in the normal case)

E[θt|Dt] = E[E{θt|λt, Dt−1}|Dt]

and

V[θt|Dt] = V[E{θt|λt, Dt−1}|Dt] + E[V{θt|λt, Dt−1}|Dt].

These may be estimated by substituting the LBE estimates for the argu-
ments of the expectations. This leads to the posterior moment

(θt|Dt) ∼ [mt,Ct],
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the posterior moments defined as follows. Firstly,

mt = E[Ê{θt|λt, Dt−1}|Dt]

= E[at +RtFt(λt − ft)/qt|Dt]

= at +RtFt(E[λt|Dt]− ft)/qt
= at +RtFt(f∗

t − ft)/qt. (14.33)

Similarly,

Ct = V[Ê{θt|λt, Dt−1}|Dt] + E[V̂{θt|λt, Dt−1}|Dt]

= V[at +RtFt(λt − ft)/qt|Dt] + E[Rt −RtFtF′
tRt/qt|Dt]

= RtFtF′
tRtV[λt|Dt]/q2t + Rt −RtFtF′

tRt/qt

= Rt −RtFtF′
tRt(1− q∗

t /qt)/qt. (14.34)

Substituting the values of f∗
t and q∗

t from (14.29) completes the updating.
Note that these equations are just as in the normal case, equations (14.19)
and (14.20), the differences lying in the ways that f∗

t and q∗
t are calculated

in the conjugate updating component in Step 3. In particular, in non-
normal models the posterior variance matrix Ct will depend on the data Yt
through q∗

t . This is not the case in the DLM, where Ct is data independent.

EXAMPLE 14.3. Consider the binomial framework of Example 14.2, Yt
being the number of “successes” in a total of nt trials. Note that this in-
cludes the important special case of binary time series, when nt = 1 for all
t. Recall that µt = E[Yt/nt|ηt] is the binomial probability, (0 ≤ µt ≤ 1),
and ηt = log[µt/(1 − µt)] is the log-odds or logistic transform of µt. Per-
haps the most common regression structure with binomial data is logistic
regression (McCullagh and Nelder 1989, Chapter 4). This corresponds to
g(·) being the identity function, so that ηt = λt = F′

tθt is given by

ηt = λt = log
[

µt

1− µt

]
, (0 ≤ µt ≤ 1).

Here the conjugate prior (14.26) is beta on the µt scale, (µt|Dt−1) ∼
Beta[rt, st] having density

p(µt|Dt−1) = c(rt, st)µrt−1
t (1− µt)st−1, (0 ≤ µt ≤ 1).

The normalising constant is c(rt, st) = Γ(rt + st)/[Γ(rt)Γ(st)]. Given the
prior moments ft and qt for ηt, this prior is specified by calculating the
corresponding values of rt and st. For any positive quantity x, let γ(x) =
Γ̇(x)/Γ(x) denote the digamma function at x. It can be verified that under
this prior,

ft = E[ηt|Dt−1] = γ(rt)− γ(st)

and

qt = V[ηt|Dt−1] = γ̇(rt) + γ̇(st).
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Given ft and qt, these equations implicitly define the beta parameters rt
and st, and can be solved numerically by an iterative method.† For mod-
erate and large values of rt and st (e.g., both exceeding 3) the prior for
µt is reasonably concentrated away from the extremes of 0 and 1, and the
digamma function may be adequately approximated using

γ(x) ≈ log(x) +
1
2x
.

The corresponding approximation for the derivative function is

γ̇(x) ≈ 1
x

(
1− 1

2x

)
.

For even larger values of x, γ(x) ≈ log(x) and γ̇(x) ≈ x−1. Thus, for large
rt and st, the mean and variance of ηt are approximately given by

ft ≈ log(rt/st) and qt ≈
1
rt

+
1
st
.

These may be inverted directly to give

rt = q−1
t [1 + exp(ft)] and st = q−1

t [1 + exp(−ft)].

In fact these approximations may be used with satisfactory results even
when ft and qt are consistent with rather small values of rt and st. West,
Harrison and Migon (1985) provide discussion and examples of this.
Given rt and st, the one-step ahead beta-binomial distribution for Yt is

calculable. Updating to the posterior, (µt|Dt) ∼ Beta[rt+Yt, st+nt−Yt],
so that

f∗
t = E[ηt|Dt] = γ(rt + Yt)− γ(st + nt − Yt)

and

q∗
t = V[ηt|Dt] = γ̇(rt + Yt) + γ̇(st + nt − Yt).

These are easily calculated from the digamma function, and updating pro-
ceeds via (14.33) and (14.34).

EXAMPLE 14.4. A binomial linear regression structure is given by tak-
ing µt = λt for all t, so that g−1(·) is the logistic or log-odds transform.
Thus, the expected level of Yt is just as in the DLM, µt = F′

tθt, but vari-
ation about this level is binomial rather than normal. With (µt|Dt−1) ∼
Beta[rt, st], µt = λt implies directly that

ft = E[µt|Dt−1] =
rt

(rt + st)
and qt = V[µt|Dt−1] =

ft(1− ft)
(rt + st + 1)

.

†See Abramowitz and Stegun 1965, for full discussion of the digamma function.
The recursions γ(x) = γ(x + 1) − x−1 and γ̇(x) = γ̇(x + 1) + x−2 are useful for
evaluations. They also provide useful tables of numerical values and various
analytic approximations.
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These equations invert to define the beta prior via

rt = ft[q−1
t ft(1− ft)− 1] and st = (1− ft)[q−1

t ft(1− ft)− 1].

After updating,

f∗
t = E[µt|Dt] =

rt + Yt
(rt + st + nt)

and

q∗
t = V[µt|Dt−1] =

f∗
t (1− f∗

t )
(rt + st + nt + 1)

.

14.3.4 Step ahead forecasting and filtering
Forecasting ahead to time t + k from time t, Steps 1 and 2 of the one-
step analysis extend directly. At time t, the posterior moments of θt are
available,

(θt|Dt) ∼ [mt,Ct].

From the evolution equation (14.11) applied at times t + 1, . . . , t + k, it
follows that

(θt+k|Dt) ∼ [at(k),Rt(k)],

with moments defined sequentially into the future via, for k = 1, 2, . . . ,

at(k) = Gt+kat(k − 1)

and

Rt(k) = Gt+kRt(k − 1)G′
t+k +Wt+k,

with at(0) = mt and Rt(0) = Ct. These equations are, of course, just as
in the DLM (see Theorem 4.2). Now, λt+k = F′

t+kθt+k has moments

(λt+k|Dt) ∼ [ft(k), qt(k)],

where

ft(k) = F′
t+kat(k) and qt(k) = F′

t+kRt(k)Ft+k.

The conjugate prior for ηt+k = g−1(λt+k) consistent with these moments
is now determined; denote the corresponding defining parameters by rt(k)
and st(k), so that, by analogy with (14.28), the required forecast density
is just

p(Yt+k|Dt) =
c(rt(k), st(k))b(Yt+k, Vt+k)

c(rt(k) + φt+kYt+k, st(k) + φt+k)
.

Note that if using discount factors to constructWt at each time t, then
as usual,Wt+k in the above equations should be replaced byWt(k) =Wt

for extrapolating.
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Filtering backwards over time from time t, the ideas underlying the use
of linear Bayes’ methods in updating may be applied to derive optimal
(in the LBE sense) estimates of the posterior moments of θt−k given Dt,
for all t and k > 0. It is clear from the results in Section 4.9 that the
linear Bayes’ estimates of filtered moments are derived just as in the case
of normality. Thus, the estimated moments of the filtered distributions are
given by Theorem 4.4.

14.3.5 Linearisation in the DGLM
Some practical models will introduce parameter nonlinearities into either

of the model equations (14.10) or (14.11). Within the approximate analysis
here, such nonlinearities can be treated as in Section 13.2, i.e., using some
form of linearisation technique. Such an approach underlies the applica-
tions in Migon and Harrison (1985). To parallel the use of linearisation
applied to the normal non-linear model (13.1) consider the following non-
normal, non-linear version of the DGLM of Definition 14.1. Suppose that
the sampling model is just as described in (14.10), but now that

• for some known, non-linear regression function Ft(·),

λ = Ft(θt); (14.35)

• for some known, non-linear evolution function gt(·),

θt = gt(θt−1) + ωt. (14.36)

Based on the use of linearisation in Section 13.2 the above DGLM analysis
can be applied to this non-linear model at time t as follows.

(1) Linearise the evolution equation to give

θt ≈ ht +Gtθt−1 + ωt,

where Gt is the known evolution matrix

Gt =
[
∂gt(θt−1)
∂θ′

t−1

]
θt−1=mt−1

,

and

ht = gt(mt−1)−Gtmt−1

is also known. Then the usual DLM evolution applies, with the
minor extension to include ht in the evolution equation. The prior
moments for θt are

at =ht +Gtmt−1 = gt(mt−1),

Rt =GtCt−1G′
t +Wt.
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(2) Proceeding to the observation equation, the non-linear regression
function is linearised to give

λt = ft + F′
t(θt − at),

where

ft = Ft(at),

and Ft is the known regression vector

Ft =
[
∂Ft(θt)
∂θt

]
θt=at

.

Assuming an adequate approximation, the prior moments of λt and
θt in (14.23) are thus given by a modification of the usual equations.

Rt and qt are as usual, with regression vector Ft and evolution matrix Gt

derived here via linearisation of possibly non-linear functions. The means
at and ft retain the fundamental non-linear characteristics of (14.35) and
(14.36), given by

at = gt(mt−1)

and

ft = Ft(at).

As noted in comment (9) in Section 13.2 the model is easily modified to
incorporate a stochastic drift in θt−1 before applying the non-linear evo-
lution function in (14.36), rather than by adding ωt after transformation.
The alternative to (14.36) is simply

θt = gt(θt−1 + δt), (14.37)

for some zero-mean error δt, with a known variance matrix Ut. Then at
and Rt are as defined above, with

Wt = GtUtG′
t. (14.38)

This method is applied in the case study reported in the following sec-
tion. Note that the comments in Section 13.2 concerning the use of this
and alternative techniques of linearisation in normal models apply equally
here in the DGLM. Also, step ahead forecast and filtered moments and dis-
tributions may be derived in an obvious manner, as the interested reader
may easily verify.
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14.4 CASE STUDY IN ADVERTISING AWARENESS
14.4.1 Background
An illustration of the above type of analysis is described here. Extensive
application of a particular class of non-normal, non-linear dynamic models
has been made in the assessment of the impact on consumer awareness
of the advertising of various products. Some of this work is reported in
Migon and Harrison (1985), Migon (1984), and for less technical discussion,
Colman and Brown (1983). Related models are discussed in West, Harrison
and Migon (1985), and implemented in West and Harrison (1986b).
Analysts of consumer markets define and attempt to measure many vari-

ables in studies of the effectiveness of advertising. The awareness in a con-
sumer population of a particular advertisement is one such quantity, the
subject of the above-referenced studies. Attempts to measure consumer
awareness may take one of several forms, though a common approach in
the UK is to simply question sampled members of the TV-viewing popula-
tion as to whether or not they have seen TV commercials for any of a list
of branded items during a recent, fixed time interval such as a week. The
proportion of positive respondents for any particular brand then provides
a measure of population awareness for the advertisement of that brand. In
assessing advertising effectiveness, such awareness measures can be taken
as defining the response variable to be related to independent variables
that describe the nature of the advertising campaign being assessed. The
extent of television advertising of a product, or a group of products, of
a company is often measured in standardised units known as TVRs, for
television ratings. TVRs are based on several factors, including the length
of the TV commercial in the TV areas in which the sampled awareness is
measured. Broadbent (1979) discusses the construction of TVR measure-
ment. Here the key point is that TVRs provide standardised measurements
of the expenditure of the company on TV commercials. The main issues
in the area now concern the assessment of the relationship between TVRs
and awareness, and the comparison of this relationship at different times
and across different advertising campaigns.
The basic information available in this study is as follows. Suppose that

weekly surveys sample a given number of individuals from the population
of TV viewers, counting the number “aware” of the current or recent TV
commercial for a particular branded item marketed by a company. Suppose
that the number of sampled individuals in week t is nt, and that Yt of them
respond positively. Finally, let Xt denote the weekly TVR measurement
for week t.† The problem now concerns the modelling of the effect of Xs,
(s = t, t− 1, . . . ) on Yt.

†In fact, due to uncertainties about the precise timing of surveys, the TVR
measurements used in the referenced studies are usually formed from a weighted
average of that in week t and week t − 1.
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Migon and Harrison (1985) discuss elements of the modelling problem
and previous modelling efforts, notably that of Broadbent (1979), and de-
velop some initial models based essentially on extensions of normal DLMs.
Practically more appropriate and useful models are then developed by mov-
ing to non-normal and non-linear structures that are consistent with the
nature of the problem, and more directly geared to answering the major
questions of interest and importance to the company. Several key features
to be modelled are as follows.

(1) The data collection mechanism leads to a binomial-like sampling
structure for the observations; the data count the number of positive
responses out of a total number sampled. Thus normal models are
generally inappropriate (except as approximations).

(2) The level of awareness in the population is expected to be bounded
below by a minimum, usually non-zero lower threshold value. This
base level of awareness represents a (small) proportion of the pop-
ulation who would tend to respond positively in the sample survey
even in the absence of any historical advertising of the product (due
to the effects of advertisements for other, related products, misun-
derstanding and misrepresentation).

(3) Awareness is similarly expected to be bounded above, the maximum
population proportion aware being less than some upper threshold
level that will typically be less than unity.

(4) Given no advertising into the future, the effect of past advertising
on awareness is expected to decay towards the lower threshold.

(5) The effect of TVR on awareness is expected to be non-linear, ex-
hibiting a diminishing returns form. That is, at higher values of Xt,
the marginal effect of additional TVR is likely to be smaller than
at lower values of Xt.

(6) The thresholds and rates of change with current and past TVR
will tend to be relatively stable over time for a given advertising
campaign, but can be expected to change to some small degree
due to factors not included in the model (as is usual in regression
models in time series; see Chapters 3 and 9). In addition, such
characteristics can be expected to change markedly in response to
a major change in the advertising campaign.

Points (1) to (6) are incorporated in a model described in the next section,
along with several other features of the practical data collection and mea-
surement scheme that bear comment. The primary objectives in modelling
are as follows.

(a) To incorporate these features and provide monitoring of the aware-
ness/TVR relationship through sequential estimation of model pa-
rameters relating to these features.
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(b) To allow the incorporation of subjective information. Initially this is
desired to produce forecasts before data are collected. Initial priors
for model parameters may be based, for example, on experience with
other, similar branded items in the past. Such inputs are also desired
when external information is available. In particular, information
about changing campaigns should be fed-forward in the form of
increased uncertainty about (some) model parameters to allow for
immediate adaptation to observed change.

(c) To cater for weeks with no sample, i.e., missing data.
(d) To produce forecasts of future awareness levels based on projected

TVR values, i.e., so-called What-if? analyses.
(e) To produce filtered estimates of past TVR effects, i.e., so-called

What-Happened? analyses.

Clearly, the sequential analysis within a dynamic model provides for each
of these goals once an appropriate model is constructed.

14.4.2 The non-linear binomial model
The non-linear binomial model is defined as follows, following points (1) to
(6) itemised in the previous section.

(1) Sampling model
At time t, the number Yt of positive respondents out of the known total
sample size nt is assumed binomially distributed. Thus, if µt represents the
population proportion aware in week t, (0 ≤ µt ≤ 1), the sampling model
is defined by

p(Yt|µt) =
(
nt

Yt

)
µYt
t (1− µt)nt−Yt , (Yt = 0, 1, . . . , nt).

Let Et denote the effect of current and past weekly TVR on the current
expected awareness µt. Then, following points (2) to (6), introduce the
following components.

(2) Lower threshold for awareness
The minimum level of awareness expected at time t is denoted by the lower
threshold parameter αt. Thus, µt ≥ αt ≥ 0 for all time.

(3) Upper threshold for awareness
The maximum level of awareness expected at time t is denoted by the upper
threshold parameter βt. Thus, µt ≤ βt ≤ 1 for all time.

(4) TVR effect: decay of awareness
Suppose that Xt = 0. Then the effect on awareness level is expected to
decay between times t− 1 and t by a factor of 100(1− ρt)%, moving from
Et−1 to Et = ρtEt−1, for some ρt between 0 and 1, typically closer to 1.
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ρt measures the persistence, or memory effect, of the advertising campaign
between weeks t − 1 and t, and is typically expected to be rather stable,
even constant, over time. Larger values are obviously associated with more
effective (in terms of retention of the effect) advertising. If ρt = ρ for all
time, then a period of s weeks with no TVR implies an exponential decay
from Et−1 to ρsEt−1. The half-life σ associated with any particular value
of ρ is the number of weeks taken for the effect to decay to exactly half any
initial value with no further input TVR. Thus, ρσ = 0.5, so that

σ = − log(2)
log(ρ)

,

and obviously, σ > 0. With time-varying ρt, the associated half-life param-
eter is denoted by σt. Clearly, ρt = 2−1/σt .

(5) TVR effect: diminishing returns
At time t with current TVR input Xt, the input of Xt is expected to
instantaneously increase the advertising effect by a fraction of the remain-
ing available awareness. To model diminishing returns at higher values of
TVR, this fraction should decay with increasing Xt. Specifically, suppose
that for some κt > 0, this fraction is determined by the penetration func-
tion exp(−κtXt), decaying exponentially as TVR increases. Then before
including the instantaneous effect of Xt, the expected level of awareness
is the base level αt from (2) plus the effect Et−1 from the previous week
discounted by the memory decay parameter ρt from (3), giving αt+ρtEt−1.
With upper threshold level βt from (3), the remaining possible awareness
is βt − (αt + ρtEt−1) so that the new expected effect at time t is given by

Et =ρtEt−1 + [1− exp(−κtXt)][βt − (αt + ρtEt−1)]

=(βt − αt)− (βt − αt − ρtEt−1)exp(−κtXt). (14.39)

The expected level is then

µt = αt + Et. (14.40)

As with ρt, the penetration parameter κt measures advertising effectiveness,
here in terms of the immediate impact of expected consumer awareness
of weekly TVR. Also, by analogy with σt, the half-penetration parameter
ξt > 0 is defined as the TVR needed to raise the effect (from any initial
level) by exactly half the remaining possible. Thus, 1− exp(−κtξt) = 0.5,
so that ξt = log(2)/κt and κt = log(2)/ξt.

(6) Time-varying parameters
Define the 5-dimensional state vector θt by

θ′
t = (αt, βt, ρt, κt, Et) (14.40)

for all t. All five parameters are viewed as possibly subject to minor sto-
chastic variation over time, due to factors not included in the model. Some
pertinent comments are as follows.
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(i) Changes in the composition of the sampled population can be ex-
pected to lead to changes in the awareness/TVR relationship.

(ii) In a stable population, the maturity of the product is a guide to
stability of the model. Early in the life of a product, base level
awareness tends to rise to a stable level, with an associated rise in the
upper threshold for awareness. With a mature product, threshold
levels will tend to be stable.

(iii) The memory decay rate ρt will tend to be stable, even constant,
over time and across similar products and styles of advertisement.

(iv) The penetration parameter κt will also tend to be stable over time,
though differing more widely across advertising campaigns.

(v) A point related to (i) concerns the possibility of additional, week-
to-week variation in the data due to surveys being made in different
regions of the country. Such regional variation is best modelled,
not by changes in model parameters, but as unpredictable, “extra-
binomial” variation.

(vi) A degree of stochastic change in all parameters can be viewed as
a means of accounting for model misspecification generally (as in
all dynamic models), in particular in the definition of Xt and the
chosen functional forms of the model above.

14.4.3 Formulation as a dynamic model
The model formulation is as follows. The observation model is binomial
with probability parameter µt = λt. With θt given by (14.40) we have

µt = αt + Et = F′θt,

where F′ = (1, 0, 0, 0, 1) for all t. For the evolution, suppose that θt−1
changes by the addition of a zero-mean evolution error δt between t − 1
and t. The only element of the state vector that is expected to change
systematically is the cumulative effect of TVR i.e., the variable Et evolving
according to (14.39). Thus, the evolution is a special case of the general,
non-linear model (14.37),

θt = gt(θt−1 + δt),

where

• δt is an evolution error, with

δt ∼ [ 000,Ut]

for some known variance matrix Ut;
• For any 5-vector z = (z1, z2, z3, z4, z5)′,

gt(z)′ = [z1, z2, z3, z4, (z2 − z1)− (z2 − z1 − z3z5)exp(−z4Xt)].
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The linearisation of this evolution equation follows Section 14.3.5. The
derivative matrix

Gt(z) =
∂gt(z)
∂z′

is given in transposed form as

Gt(z)′ =



1 0 0 0 e−z4Xt − 1
0 1 0 0 1− e−z4Xt

0 0 1 0 z5e−z4Xt

0 0 0 1 (z2 − z1 − z3z5)Xte−z4Xt

0 0 0 0 z3e−z4Xt


 .

Then the linearised evolution equation at time t is specified as in the pre-
vious section. With

(θt−1|Dt−1) ∼ [mt−1,Ct−1],

we have

(θt|Dt−1) ∼ [at,Rt],

with

at = gt(mt−1), Rt = GtCt−1G′
t +Wt and Wt = GtUtG′

t,

where

Gt = Gt(mt−1).

For calculation, note that Rt = Gt(Ct−1 +Ut)G′
t.

Some points of detail are as follows.

(i) The error term δt controls the extent and nature of stochastic change
in the state vector through the variance matrix Ut. Following the
earlier comments, it is clear that with a stable product, such changes
are likely to be relatively small. Supposing this to be defined via
discount factors, all such factors should be close to unity. In Migon
and Harrison (1985), various possible cases are considered. In some
of these, subsets of θt are assumed constant over time, so that the
corresponding rows and columns of Ut are zero, and the comments
in Section 14.4.2 about the relative stability of the elements indicate
that generally, there is a need to construct Ut from components
with different discount factors. For the illustration here, however,
a single discount factor is applied to the five-element vector as a
single block, permitting a very small amount of variation over time
in all parameters (so long as the initial prior does not constrain any
to be fixed for all time; a point reconsidered below).

(ii) As always with discount models, in forecasting ahead, a fixed evolu-
tion variance matrix is used. Thus, withWt as defined at time t−1
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via discount factors based on the current Ct−1, forecasting ahead
from time t to time t+ k we useWt+k =Wt for extrapolation.

(iii) There may be a need to consider complications arising due to the
bounded ranges of the state parameters; all are positive and some
lie in the unit interval. The model assumes, at any time, only prior
means, variances and covariances for these quantities. If the model is
generally appropriate, then it will be found that the data processing
naturally restricts the means, as point estimates, to the relevant pa-
rameter ranges. Also, if initial priors are reasonably precise within
the ranges, then the restrictions should not cause problems. How-
ever, with less precise priors, posterior estimates may stray outside
the bounds if correction is not made. One possibility, used in West
and Harrison (1986b), is simply to constrain the individual prior and
posterior means to lie within the bounds, adjusting them to a point
near but inside the boundary if they stray outside. An alternative
approach, not explored further here, is to reparametrise the model
in terms of unbounded parameters. If this is done, the evolution
equation can be re-expressed in terms of the new parameters and
linearised in that parametrisation.

(iv) Migon and Harrison (1985) note the possibility of extra-binomial
variation due to surveys taken in different regions from week-to-
week (point 6(vi) of Section 14.4.2). This can easily be incorporated
within the dynamic model by taking µt = F′θt + ∂µt, where ∂µt is
an additional zero-mean error. With ∂µt = 0, the original model
is obtained. Otherwise, the variance of this error term introduces
extra variation in the binomial level that caters for such region-to-
region changes (and also for other sources of extra-binomial vari-
ation). This sort of consideration is often important in practice;
the inclusion of such a term protects the estimation of the state
parameters from possible corruption due to purely random, extra-
neous variation in the data not adequately modelled through the
basic binomial distribution. See Migon and Harrison (1985) for fur-
ther comments, and Migon (1985) for discussion of similar points in
different models.

14.4.4 Initial priors and predictions
Consider application to the monitoring of advertising effectiveness of a
forthcoming TV commercial campaign for a single product, to begin at
t = 1. Suppose that the product has been previously advertised and that
the forecaster concerned has some information from the previous campaigns
(as well as from experience with other products). In fact, the product here
is confectionary, the data to be analysed below taken from the studies
of Migon and Harrison (1985). The levels of TVR in the forthcoming
campaign are expected to be consistent with past advertising, lying between
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zero and ten units on a standardised scale. In the past, similar campaigns
have been associated with awareness levels that rarely exceeded 0.5. In
forming an initial view about the effectiveness of a forthcoming advertising
campaign, this background information D0 is summarised as follows to
provide the initial prior for forecasting future awareness.

(1) The base level for awareness is currently thought to be almost cer-
tainly less that 20%, and probably close to 0.1. The initial prior for
α0 has mean 0.1 and standard deviation 0.025.

(2) In the past, observed awareness levels have never exceeded 0.5, so
that there has been little opportunity to obtain precise information
about the upper threshold. It is the case, of course, that if levels
remain low in the future, then the model analysis should not be un-
duly affected by uncertainty about the upper threshold. Based on
general experience with consumer awareness, the upper threshold is
expected to lie between 0.75 and 0.95, the uncertainty being rela-
tively high. The initial prior is specified in terms of the mean and
variance for the available awareness γ0 = β0−α0 rather then for β0
directly; the mean is 0.75 and standard deviation 0.2. Assuming, in
addition, that γ0 and α0 are uncorrelated, this implies that β0 has
mean 0.85 and standard deviation approximately 0.202, and that
the correlation between α0 and β0 is 0.124.

(3) The memory decay rate parameter ρt is viewed as stable over time
and across products, with value near 0.9 for weekly awareness decay
(anticipating approximately 10% decay of the advertising effect each
week). The initial prior for ρ0 has mean 0.9 and standard deviation
0.01. In terms of the memory half-life σ0, a value of 0.9 for ρ0
corresponds to a half-life of 6.6 weeks, 0.87 to a half-life of 5 weeks,
and 0.93 to a half-life of 9.6 weeks.

(4) The penetrative effect of the advertising on awareness is expected to
be fairly low, consistent with previous advertising. The previously
low TVRs have never achieved marked penetration, so the previous
maximum value with TVR near 10 units per week is considered to
be well below the half-penetration level. Thus, ξ0 is expected to
be much greater than 10, the forecaster assessing the most likely
value as about 35 units. Converting to κ0, this provides the initial
mean as log(2)/35 ≈ 0.02. The prior standard deviation of κ0 is
chosen as 0.015. Note that κ0 values of 0.01 and 0.04 correspond
approximately to ξ0 at 69 and 17 respectively.

(5) The previous campaign has only very recently terminated, and had
been running at reasonably high TVR levels. Thus, the retained
effect E0 of past advertising is considered to be fairly high, although
there is a reasonable degree of uncertainty. The prior mean is taken
as 0.3, the standard deviation is 0.1.
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(6) For convenience and in the absence of further information, the co-
variances that remain to be specified are set to zero. Thus,

m0 = (0.10, 0.85, 0.90, 0.02, 0.30)′

and

C0 = 0.0001



6.25 6.25 0 0 0
6.25 406.25 0 0 0
0 0 1 0 0
0 0 0 2.25 0
0 0 0 0 100


 . (14.41)

(7) Week-to-week variation in model parameters is expected to be fairly
low and modelled using a single discount factor of 0.97. Thus, the
variance matrix of δt in (14.37) is defined as

Ut = (0.97−1 − 1)Ct−1 ≈ 0.03Ct−1.

The initial prior, based on previous experience with this, and similar,
campaigns, represents a reasonable degree of precision about the model
parameters. It is therefore directly useful in forecasting the forthcoming
campaign without further data, such forecasting providing an assessment
of model implications, and the effects of the specified priors. Note that the
models allow the forecaster the facility to impose constraints on parame-
ters by assuming the relevant prior variances and covariances to be zero.
The applied models in Migon and Harrison (1985), and West and Harri-
son (1986b), make some use of such constraints. In initial forecasting, this
allows an assessment of the implications of prior plus model assumptions
for each of the component parameters, free from the effects of the uncer-
tainties about the constrained components. This is done here, temporarily
constraining E0.
First, consider the implied decay of awareness into the future in the

absence of any advertising, Xk = 0 for k = 1, . . . , 25. Take the prior in
(14.41) but modified, so that E0 has prior mean 0.75 and zero variance.
Thus, initially, the effect of past advertising is assumed to be saturated
at the maximum level. Looking ahead, awareness is expected to decay to-
wards the base level, initially expected to be 0.1 but with some uncertainty.
For forecasting ahead, the theory in Sections 14.3.4 and 14.3.5 applies with
t = 0; for k = 1, . . . , 25, µk = λk ∼ [f0(k), q0(k)]. The conjugate distri-
bution consistent with these moments is (µk|D0) ∼ Beta[r0(k), s0(k)] with
parameters defined as in Example 14.4. Figures 14.1 and 14.2 provide some
features of forecasts based on this initial distribution. Figure 14.1 provides
a plot of f0(k) against k, clearly illustrating the expected exponential de-
cay in the effect of awareness in the absence of further advertising. To give
an indication of uncertainty, the dotted lines provide standard deviation
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limits above and below the forecast mean, f0(k)±
√
q0(k). From the graph,

awareness is forecast as decaying to roughly half the initial value (whatever
this initial value may be) after roughly 7 weeks. To examine the uncer-
tainty in forecasting more closely, Figure 14.2 plots the beta distributions
of (µk|D0) at values k = 5, 10, 15, 20 and 25. Note the highly skewed forms
as the expected level moves towards the extreme at 0 and the variance
increases.
We can similarly explore the implications for expected penetration due

to various initial levels of TVR. Take the prior (14.41) modified to have
zero mean and variance for E0. Thus, there is no retained effect of past
advertising. For any given TVR X1 in the first week of the campaign,
awareness is expected to increase towards the threshold level with expected
value 0.85. The one-step ahead forecast distribution for µ1 has moments
f0(1) and q0(1) that depend on X1. Figure 14.3 plots f0(1) with one
standard deviation limits for X1 = 1, . . . , 25. The increase in uncertainty
about the level as X1 increases is marked, as is the fact that penetration is
assumed to be rather low even for TVR values as high as 25; recall that the
prior estimate of the penetration parameter is consistent with an estimated
half-penetration of X1 ≈ 35.. Since the forthcoming campaign will have
TVR values of less than 10 units per week, it is apparent that penetration
is expected to be rather low. Figure 14.4 provides the beta densities of
(µ1|D0) for X1 = 5, 10, 25.

14.4.5 Data analysis
The campaign date now becomes available, week by week. As the data
are observed, any available external information will also be incorporated
in the model via subjective intervention as in Chapter 11, and typically
applied models will also be subject to continuous monitoring. Suppose here
that intervention and monitoring are not considered, and that the weekly
observations are simply processed as normal via the analysis of Sections
14.3.3 and 14.3.4.
The sample surveys in this dataset count the number of positive respon-

dents out of a nominal total of nt = 66 for all t. The full set of observations
becoming available during the first 75 weeks of the campaign are given in
Table 14.1. The awareness measurements are given in terms of proportions
out of a nominal 66 (rounded to 2 decimal places). These are also plotted
in the upper frame of Figure 14.5, the TVR measurements appearing in the
lower frame of that figure. Note that three observations during the cam-
paign are missing, corresponding to weeks in which no sample was taken.
Of course these are routinely handled by the sequential analysis, the pos-
terior moments for state vectors following a missing observation being just
the prior moments. Note also that advertising over the 75 weeks comes in
essentially two bursts. The first, very short spell during weeks 3 to 7 is
followed by no TVR for a period of weeks, the second, long spell beginning
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Table 14.1. Awareness response proportions and TVR

Weekly TVR measurements (to be read across rows)

0.05 0.00 0.20 7.80 6.10 5.15 1.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.50 4.60 3.70 1.45 1.20 2.00 3.40 4.40 3.80 3.90 5.00 0.10 0.60 3.85 3.50
3.15 3.30 0.35 0.00 2.80 2.90 3.40 2.20 0.50 0.00 0.00 0.10 0.85 4.65 5.10
5.50 2.30 4.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Awareness proportions (read across rows, * denotes missing values)

0.40 0.41 0.31 0.40 0.45 0.44 0.39 0.50 0.32 0.42 0.33 0.24 0.25 0.32 0.28
0.25 0.36 0.38 0.36 0.29 0.43 0.34 0.42 0.50 0.43 0.43 0.52 0.45 0.30 0.55
0.33 0.32 0.39 0.32 0.30 0.44 0.27 0.44 0.30 0.32 0.30 * * * 0.33
0.48 0.40 0.44 0.40 0.34 0.37 0.37 0.23 0.30 0.21 0.23 0.22 0.25 0.23 0.14
0.21 0.16 0.19 0.07 0.26 0.16 0.21 0.07 0.22 0.10 0.15 0.15 0.22 0.11 0.14
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Figure 14.6 Awareness data and one-step ahead point forecasts

in week 16 and ending in week 48. The decay of awareness in the final
period of no advertising is clear from the graph.
Based on the prior moments in (14.41), the sequential one-step ahead

forecasting and updating equations apply directly. Figure 14.6 provides
the data with a line plot of the one-step point forecasts ft, (t = 1, . . . , 75),
as they are calculated over time. These are simply the one-step forecast
means, since under the binomial model for Yt, we have E[Yt/nt|µt] = µt,
and so E[Yt/nt|Dt−1] = E[µt|Dt−1] = ft. Note the response to renewed
advertising after the periods of no TVR and the smooth decay of forecast
awareness during these periods. For clarity, forecast uncertainties are not
indicated on the graph (see below). However, under the binomial model,
V[Yt/nt|µt] = µt(1− µt)/nt, so that

V[Yt/nt|Dt−1] = E[V{Yt/nt|µt}|Dt−1] + V[E{Yt/nt|µt}|Dt−1]

= E[µt(1− µt)/nt|Dt−1] + V[µt|Dt−1]

= ft(1− ft)/nt + qt(1− 1/nt).

Thus, the variation in the one-step forecast (beta/binomial) distribution
naturally exceeds that of a standard binomial distribution with µt esti-
mated by the value ft. This variance decreases as µt moves towards 0
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or 1. At the lowest values of ft in the graph, ft ≈ 0.1 corresponds to
ft(1 − ft)/66 ≈ 0.0352, so that the forecast standard deviation for all t
exceeds 0.035. With this in mind, the variation in the observed propor-
tions about their forecast means appears to be reasonably attributable to
unpredictable sampling variation.†

Figures 14.7a to 14.10b provide graphs of the on-line and retrospectively
filtered trajectories of the four state parameters αt, βt, ρt, κt. The on-
line trajectories are, as usual, just the posterior means from mt over time,
together with one standard deviation limits using the relevant posterior
variances from Ct. The smoothed trajectories are similar, but now the
estimates are based on all the data, derived through the standard filter-
ing algorithms (Section 4.9; see comments in Section 14.3.4 above). The
following features are apparent.

(a) The on-line trajectory of αt in Figure 14.7a is stable, the estimate
remaining near the prior mean of 0.1 until the last 10 or 15 ob-
servations. Until this time, little information is obtained from the
data about the lower threshold, since awareness does not decay suf-
ficiently. At the end, the TVR is zero for a long period and aware-
ness decays, the data thus informing about the lower threshold. The
graph then indicates a slight increase to values nearer 0.12 at the
end. The smoothed trajectory in Figure 14.7b, re-estimating the
threshold at each time based on all the data, confirms this.

(b) The initial variance for β0 is rather large, resulting in the possibil-
ity of marked adaptation to the data in learning about the upper
threshold. This is apparent in Figure 14.8a. The smoothed version
in Figure 14.8b confirms that the upper threshold is fairly stable
over time, though estimated as rather lower than the initial prior,
around 0.8 at the end of the series. Note, however, the wide inter-
vals about the estimates; there is really very little information in
the data about the upper threshold levels.

(c) Figures 14.9a and 14.9b illustrate the stability of the decay param-
eter ρt at around 0.9.

(d) There is a fair degree of movement in the on-line trajectory for the
penetration parameter κt in Figure 14.10a. In part this is due to
conflict between the information in the data and that in the initial
prior. This is confirmed in the smoothed version, Figure 14.10b,
that indicates that κt is really fairly stable, taking values nearer
0.03 than the initial mean 0.02. In terms of the half-penetration
effect, 0.02 corresponds to TVR levels of 35, whereas the more ap-
propriate value of 0.03 corresponds to TVR at around 24. These

†One point of detail concerns the last few observations, that at low awareness
levels, are somewhat more erratic than perhaps expected. Here there is a degree
of evidence for extra-binomial variation at low levels that could be incorporated
in the model for forecasting ahead, as previously mentioned.
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points are further illustrated in Figures 14.11 and 14.12. These are
the posterior versions of Figures 14.1 and 14.3, constructed in pre-
cisely the same way but now at t = 75 rather than at t = 0. Hence
they represent forecasts based on the final posterior moments m75
and C75 at t = 75, modified as follows.

(e) E75 is constrained to the expected maximum value E[β75−α75|D75].
Figure 14.11 provides point forecasts f75(k), with limits f75(k) ±√
q75(k), for the next 25 weeks, assuming no further TVR, X75+k =

0 for k = 1, . . . , 75. The decay of awareness forecast is similar in
expectation to that initially (Figure 14.1), although the forecast
distributions are more precise due to the processing of the 75 obser-
vations.

(f) Constraining E75 to be zero, Figure 14.12 provides one-step point
forecasts f75(1) with standard deviation limits. The expected pene-
tration is rather larger than that initially in Figure 14.2, consistent
with the posterior view expressed in (d) above that κ75 is very likely
to be larger than the initial estimate of κ0.

Finally, model validation What-if? forecasts are represented in Figure
14.13. At t = 75, consider forecasting ahead to times 75+k, (k = 1, . . . , 75),
based on hypothesised values of TVR over the next 75 weeks. In partic-
ular, suppose that the company considers repeating the advertising cam-
paign, reproducing the original TVR series precisely. Starting with the full
posterior moments m75 and C75, the expected value of E75 is altered to
0.3, consistent with initial expectations. Figure 14.13 then provides step
ahead forecasts of awareness proportions over the coming weeks. The fore-
casts are given in terms of means and standard deviation limits from the
beta/binomial predictive distribution. These moments are defined, for all
k and with t = 75, by

E[Yt+k/nt+k|Dt] = ft(k)

and

V[Yt+k/nt+k|Dt] = ft(k)(1− ft(k))/nt+k + qt(k)(1− 1/nt+k).

Given the past stability of the model parameters, these predictions of course
resemble those in the past. The historical data are also plotted in this figure
for comparison. This sort of exercise can be viewed as a form of model
validation, examining the question of just how well the model performs in
forecasting a further data series that happens to coincide precisely with the
past data. Any systematic discrepancies will show up most sharply here,
although in this case the forecasts are adequate.
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14.5 FURTHER COMMENTS AND EXTENSIONS
14.5.1 Monitoring, change-points and outliers
The panoply of techniques for subjective intervention of Chapter 11 apply
to non-normal models directly. Interventions may be made on the prior
and posterior moments of the state vector to incorporate external informa-
tion routinely. Thus, for example, abrupt changes in parameters can be
modelled through additional evolution error terms, as in the normal DLM.
Concerning automatic detection of outliers and monitoring for change-

points, West (1986a) develops a framework that provides non-normal ana-
logues of the feedback intervention schemes in Sections 11.4 and 11.5. Re-
call from that chapter that the central component of any model testing
scheme is the use of one or more alternative models to provide relative as-
sessment of the predictive ability of the original model. Here consider the
use of a single alternative model in the framework of Section 11.5 to provide
an automatic monitor on the predictive performance of the basic model.
As in Section 11.4, comparison between the original model, denoted by
M0, and any single alternative M1 involves the data at time t through the
Bayes’ factor Ht = p0(Yt|Dt−1)/p1(Yt|Dt−1), where the subscripts denote
the relevant model. Sequential model monitoring is based on the sequence
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of Bayes’ factors and the cumulative versions in Section 11.4.2, and all that
is required to extend to the non-normal case is a suitable class of alternative
predictive densities p1(Yt|Dt−1). The ideas in Section 11.4.3, in particular
Example 11.3, suggest the following alternatives, based on West (1986a).
At time t in M0, the predictive distribution is defined by (14.28), with
defining quantities rt and st given in (14.26) as functions of ft and qt in
(14.23). In particular, the precision of the forecast distribution is a decreas-
ing function of qt, equivalently an increasing function of the prior precision
parameter st. In assessing the predictive density p0(Yt|Dt−1) with a view
to identifying observations that are poorly predicted, a suitable alternative
will give greater probability to regions not heavily favoured, whilst being
more diffuse in regions of high density. The idea, as in Example 11.3, is
that a flatter version of the standard forecast density is appropriate. A
class of such alternatives is easily constructed by adapting the standard
model to have smaller prior precision parameters. In modelling terms, the
standard equation λt = F′

tθt is revised to

λt = F′
tθt + ∂λt,

where ∂λt is an additional zero-mean error term with known variance ∆qt,
say. With this defining the alternative model at time t, the analogues
of equations (14.23) to (14.28) define the components of the alternative
model analysis, the only difference being that qt is replaced by qt + ∆qt
throughout. Thus, the resulting conjugate prior distribution under M1 is
more diffuse than under M0, and this carries over to the predictive density
p1(Yt|Dt−1). Full details about this construction, in particular concerning
structuring and quantifying ∆qt, are given in West (1986a).
West (1986b) shows how the use of the above ideas provides non-normal

extension of the multi-process models for change-point estimation and out-
lier accommodation. It is clear that so far as modelling change-points is
concerned, the multi-process framework extends directly, abrupt changes
in θt being ascribed to evolution errors with appropriately large variances.
One difference in the non-normal case is, of course, that the predictive
densities forming the components of mixtures in a multi-process model are
not normal or T, but this is a technicality; the calculations proceed just
as in Chapter 12. The main point of difference requiring thought concerns
multi-process models with an outlier modelling component. West (1986b)
uses the ideas above here, modelling outliers with a component having a
diffuse predictive distribution.
Alternative approaches to monitoring and model assessment are found in

West, Harrison and Migon (1985), based on developments in West (1985a,
1986a). These have more in common with standard statistical approaches
to outlier detection and accommodation, and related methods of influence
assessment, but are not discussed further here.
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14.5.2 Applications, extensions and related approaches
Several further illustrations and applications of the DGLM in forecasting
and smoothing time series appear in West, Harrison and Migon (1985).
Various Poisson and binomial models are covered. An application in reli-
ability growth analysis and forecasting is reported in Mazzuchi and Soyer
(1992). Also, related models are considered from different viewpoints by
Smith (1979), Souza (1981), and Smith and Miller (1986). Multivariate
versions and extensions appear in Fahrmeir (1992); see also Grunwald,
Raftery and Guttorp (1993), and Cargnoni, Müller and West (1996) for
related models for discrete multinomial time series.
The special case of binary time series is discussed in West and Mortera

(1987). The observational model here is a special case of the binomial
model in Example 14.2, binary time series in which nt = 1 for all t, the ob-
servations being simple event indicators, 0 or 1. A variety of applications
are discussed in this paper, and related topics in the area of subjective
probability assessment, calibration and combination are discussed in West
(1985b and 1985c). For example, simple Markov models can be written as
special static cases of the DGLM for binary data. In the framework of Ex-
ample 14.2 with nt = 1, suppose the simplest case of a time-homogeneous,
one-step Markov process. Thus, the “success” probability µt at time t ac-
tually depends on Dt−1, but only through the previous observation Yt−1.
This may be written in many forms, the most obvious being

µt = αYt−1 + β(1− Yt−1),

where α and β are the probabilities conditional on Yt−1 = 1 and Yt−1 = 0
respectively. If θ = (α, β)′ and Ft = (Yt−1, 1 − Yt−1)′, then the model
is a special, static case of the DGLM. Various similar models appear in
the above references. Easy extensions cover Markov depedencies to order
higher than the first, dynamic versions in which α and β vary stochastically
over time to provide non-homogenous processes and similar models, but
with µt undergoing a non-linear transformation, such as logistic, before
being related to the state vector.
A major extension and application of the DGLM approach has been made

in Gamerman (1985, 1987a) to models for the analysis of survival data. Dis-
cussion of this important area is far beyond the scope of this book, although
the underlying modelling ideas are essentially those of dynamic modelling
of time series. Interested readers should consult the above references for
full theoretical details and illustrations. Applications in medicine and eco-
nomics, along with further theoretical and practical details, can be found
in Gamerman (1987b), Gamerman and West (1987a and b), Gamerman,
West and Pole (1987) and West (1992d).
Finally, we note that new approaches to analysis of non-linear and non-

normal models based on simulation methods are beginning to impact on
practical applications, as was mooted in the previous chapter. The fol-
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lowing chapter takes up simulation methods in various models, and the
potential for such tools to apply in various non-linear contexts, such as the
models in this chapter, will be apparent from that development. Indeed,
recent work by several authors has begun the development of simulation-
based analyses in various dynamic generalised linear models as well as in
other, “custom” non-linear and non-normal frameworks. This is a new and
growing field, and one sure to develop rapidly in coming years. Some key
early works of interest include Cargnoni, Müller and West (1996), Carlin,
Polson and Stoffer (1992), Gamerman (1996), Jaquier, Polson and Rossi
(1994), Scipione and Berliner (1993), Shephard (1994), and Shephard and
Pitt (1995).

14.6 EXERCISES
(1) Suppose a Poisson sampling model, (Yt|µt) ∼ P[µt], where µt > 0

is the Poisson mean, the density being given by

p(Yt|µt) = µYt
t e−µt/Yt!, (Yt = 0, 1, . . . ).

(a) Verify that this is the density of an exponential family distri-
bution, identifying the natural parameter ηt and the defining
functions yt(·), a(·) and b(· , ·) in (14.1).

(b) Verify that µt is both the mean and the variance of the distri-
bution.

(c) Identify the conjugate prior family defined through (14.7). Ver-
ify that the conjugate distributions are such that µt is gamma
distributed.

(d) For given prior quantities rt and st in (14.7), calculate the one-
step forecast density p(Yt|Dt−1).

(2) Suppose Yt is gamma distributed, (Yt|µt, nt) ∼ G[nt, µt] for some
nt and µt, both positive quantities, with nt known. The density is

p(Yt|µt, nt) = µnt
t Y nt−1

t e−µtYt/Γ(nt), (Yt > 0).

(a) Verify that this is the density of an exponential family distri-
bution, identifying the natural parameter ηt and the defining
functions yt(·), a(·) and b(· , ·) in (14.1).

(b) Calculate the mean and the variance of the distribution as func-
tions of nt and µt, and verify that the distribution has a qua-
dratic variance function, V[Yt|µt, nt] ∝ E[Yt|µt, nt]2.

(c) Identify the conjugate prior family defined through (14.7). Ver-
ify that the conjugate distributions are such that µt is also
gamma distributed, and identify the prior mean and variance
as functions of rt and st.

(d) Calculate the one-step forecast density p(Yt|Dt−1).
(3) Verify the form of the predictive and posterior densities given in

(14.8) and (14.9).
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(4) Verify the results used in Example 14.3 that in a model in which
(µt|Dt−1) ∼ Beta[rt, st] and ηt = log[µt/(1− µt)], then

E[ηt|Dt−1] = γ(rt)− γ(st)

and

V[ηt|Dt−1] = γ̇(rt)− γ̇(st).

(5) Consider Poisson or gamma models above in which the conjugate
priors are gamma, (µt|Dt−1) ∼ G[rt, st]. Suppose as usual that
(λt|Dt−1) ∼ [ft, qt].
(a) In a linear regression model, E[Yt|µt] = λt, show that the con-

jugate gamma prior is defined via rt = f2
t /qt and st = ft/qt.

(b) In a log-linear regression model, E[Yt|µt] = log(λt), show that
the conjugate gamma prior has rt and st implicitly defined by
ft = γ(rt)− log(st) and qt = γ̇(st).

(6) Verify that given the moments (14.16), the equations (14.19) and
(14.20) reduce to the usual DLM updating recurrences.

(7) Verify that equations (14.19) and (14.20) reduce to the standard
DLM updating equations.

(8) This exercise and that following concern the use of the “power dis-
count” procedure for non-normal, first-order polynomial dynamic
models, as developed in Smith (1979). See also Exercise 13 of Sec-
tion 6.5 for a related example in the normal DLM.
A non-normal discount model appropriate for time-varying rates

of Poisson distributed time series is defined, at each time t, as fol-
lows:

observation: (Yt|µt, Dt−1)∼ Poisson[µt],

system: p(µt = µ|Dt−1)∝ {p(µt−1 = µ|Dt−1)}δ,

for some discount factor δ in (0, 1]. The system equation is in-
terpreted as follows: writing ft−1(·) for the density p(µt−1|Dt−1),
the implied prior density function p(µt|Dt−1) is explicitly given by
ctft−1(·)δ for an appropriate normalising constant ct.
(i) Show that (µt|Dt−1) ∼ G[n∗

t , α
∗
t ], where

α∗
t = αt−1δ and n∗

t = nt−1δ + 1− δ.

(ii) With Dt = {Yt, Dt−1}, prove that (µt|Dt) ∼ G[nt, αt], express-
ing αt and nt in terms of α∗

t and n∗
t .

(iii) Show that the forecast distribution (Yt|Dt−1) is negative bino-
mial; explicitly,

p(Yt|Dt−1) =
(
n∗
t + Yt − 1

Yt

)(
α∗
t

1 + α∗
t

)n∗
t
(

1
1 + α∗

t

)Yt

for Yt ≥ 0.
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(9) In analysing brand switching in market share analysis, a non-
normal discount model describes market share proportions πt =
(π1t, . . . , πnt)′ of a set of n competing products as slowly vary-
ing in time. Data arise from weekly sample survey results Yt =
(Y1t, . . . , Ynt)′, where Yit is the number of purchases of product i
and st =

∑n
i=1 Yit the total purchases in the sample in week t. The

standard multinomial sampling model has

p(Yt|πt) = st!
n∏

i=1

πYit
it /Yit!.

At t− 1, suppose the posterior for πt−1 is a Dirichlet distribution,
namely

(πt−1|Dt−1) ∼ Dirichlet(rt),

where rt = (r1t, . . . , rnt)′ is known from past data analyses. This
has density function

p(πt−1|Dt−1) = K(rt)
n∏

i=1

πrit
i,t−1

over the n-simplex such that 0 ≤ πi,t−1 ≤ 1 for i = 1, . . . , n and∑n
i=1 πi,t−1 = 1. The factor K(rt) is a known normalising constant.

The system equation provides the prior

p(πt = π|Dt−1) ∝ {p(πt−1 = π|Dt−1)}δ ,

for some discount factor δ, via the same kind of power discount
construction as in the previous question.
(a) Obtain the forecast distribution p(Yt|st, Dt−1), represented in

terms of K(·).
(b) Obtain the posterior distribution p(πt|Yt, Dt−1).



CHAPTER 15

SIMULATION-BASED METHODS IN DYNAMIC MODELS

15.1 INTRODUCTION
Chapters 13 and 14 describe computational problems arising in models
with non-linear components and non-normal structure. Many such prob-
lems are now amenable to analysis, at least in part, based on computational
approaches using stochastic simulation methods. The material in Section
13.6 demonstrates this and is prelude, both historically and thematically,
to approaches now to be presented. In the early 1990s, developments in
simulation methods of computation have had dramatic impact on the en-
tire field of Bayesian statistics, and dynamic models are no exception. This
chapter describes some such methods, including examples of direct poste-
rior simulation in interesting, non-stationary DLMs and iterative methods
based on Markov chain Monte Carlo approaches, referred to by the acronym
MCMC. As we approach the end of the twentieth century, it seems quite
clear that routine statistical analysis in more complex and realistic models
will continue to become more and more accessible as such tools are refined
and extended.
In Section 15.1 we briefly review elements of simulation in Bayesian

analyses. Section 15.2 discusses iterative, Markov chain Monte Carlo ap-
proaches in dynamic models, with various examples and illustrations. A
final section concerns a specific class of time-varying autoregressive com-
ponent DLMs in which we use MCMC methods for analysis.

15.1.1 Elements of posterior simulation
Some concepts and elements of Bayesian inference based on stochastic sim-
ulation are reviewed first. Useful background on posterior simulation ap-
pears in Bernardo and Smith (1994, Section 5.5), and Gelman, Carlin, Stern
and Rubin (1995), Chapters 10 and 11. For general issues and methods of
simulation, see Ripley (1987).
In a specified statistical model, suppose that X represents a collection

of quantities of interest, and suppose that an analysis leads to a posterior
distribution with density p(X), based on available prior information and
observed data. Direct posterior sampling refers to any process by which
random samples may be drawn from p(X). If X is multivariate normal,
for example, then the posterior is trivially sampled directly. Suppose a
simulation study draws a direct sample of Monte Carlo size m, namely
X1, . . . ,Xm. Then approximate posterior inference is often based on simple
sample summaries, such as sample histograms to approximate marginal
densities for elements of X, sample means to approximate posterior means,
and so forth. This is based simply on the law of large numbers; under very
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generally applicable conditions, sample averages converge to corresponding
“exact” posterior expectations, i.e.,

m−1
m∑
i=1

g(Xi)→
∫
g(X)p(X)dX = E[g(X)]

in probability as m→∞. Sample histograms represent approximations to
posterior densities, with the underlying assurance that the empirical cu-
mulative distribution converges to the true posterior marginal distribution
in this sense. Often, direct posterior simulation samples with m in the
several or tens of thousands are easily generated, and resulting posterior
approximations are highly accurate.
Refined approximations to some characteristics of posterior distribu-

tions are often available via the device of so-called “Rao-Blackwellisation”
(Gelfand and Smith 1990). For example, supposeX is partitioned intoX =
(X1,X2) where X1 is scalar, and that the conditional density p(X1|X2) is
a “standard” distribution of known form, such as a conditional normal.
Partition the sampled values similarly, so that Xi = (X1,i,X2,i) for each i.
Then

p(X1) ≈ m−1
m∑
i=1

p(X1|X2,i)

is an approximation to the univariate margin p(X1) that utilises some of the
known structure in p(X) as well as the Monte Carlo sample. This “mixture”
approximation is always a more accurate estimate of p(X1) than the raw
histogram of X1,i values, in the sense of being subject to a lesser degree
of sampling variability in repeated Monte Carlo samples. In some spe-
cific applications, it is very easy to compute such refined approximations,
and then they can be compared with raw histograms. Similarly, posterior
characteristics, such as probabilities and means, may be more accurately
approximated by sample averages of conditionally exact values, based on

E[g(X1)] ≈ m−1
m∑
i=1

E[g(X1)|X2,i],

for specified functions g(·) when the exact conditional mean E[g(X1)|X2]
is analytically available for all X2.
Monte Carlo integration and posterior approximation via importance

sampling involves direct simulation from an importance sampling distribu-
tion, usually viewed as an approximation to the true density p(X); we refer
to the brief development in Section 13.6.1, and reference therein, and do
not discuss this topic further here. There are, however, direct connections
between importance sampling and various MCMC methods, noted below.
Useful discussions in the context of Bayesian computation more generally
appear in Gelman et al (1995, Chapters 10 and 11); see also West (1992a,c).
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15.1.2 Markov chain Monte Carlo methods
Direct simulation is often impossible due to the complicated mathematical
form of posterior distributions in many applied modelling contexts. In the
1990s, the Bayesian statistics field has developed a range of simulation
schemes based on iterative, Markov chain Monte Carlo methods, referred
to by the acronym MCMC, to address problems of posterior simulation
when direct methods are infeasible. Some brief review of specific methods
is given here, following some notation and basic concepts.
MCMC methods are designed to successively simulate values of the X

vector based on a strategy designed to eventually draw these values from the
desired, or so-called target, posterior distribution p(X). They are Markov
chain methods, so an ordered sequence of simulated values, X1,X2, . . . , is
generated by

(1) specifying a starting value X1, then
(2) sampling successive values from a specified transition distribution

with density f(Xi|Xi−1), for i = 2, 3, . . . ; Xi is generated condi-
tionally independently of Xi−2,Xi−3,, . . . .

Methods differ in the choice of transition densities f(·|·). Variants of this ba-
sic idea have transition distributions that may depend on i, being modified
or updated based on both the number of sampled values and the actual past
Xi values generated, but these are not considered here. MCMC sequences
of X values are thus first-order dependent, not random samples. Typically,
dependencies betweenXi andXj are positive and decay exponentially with
|i−j|. Under quite weak conditions (Tierney 1994), the Markov chain “con-
verges” in the sense that ultimately, the sequence of sampled values appears
stationary and the individual Xi are marginally distributed according to
a unique stationary distribution. MCMC designs choose transition densi-
ties f(·|·) in order to ensure that this stationary distribution is the true
target posterior p(X). Then simulations are run for some number of iter-
ations until the effect of the chosen starting value is assumedly negligible
and the process is approximately stationary. Thereafter, successively sam-
pled values may be assumed to be approximately drawn from the posterior
and though dependent appropriately summarised to produce approximate
posterior inferences.
The literature on MCMC methods, covering issues of design and choice of

methods, convergence theory and practical methods of diagnosing conver-
gence, numerous applications and other importance topics, is simply huge
and growing dramatically. Some recent useful references include Gelman
et al (1994), and Gilks, Richardson and Spiegelhalter (1996); in addition
to containing excellent discussions of many aspects of MCMC methods, in
theory and in practice, these books provide access to the literature through
their many up-to-date references.
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Gibbs sampling
For the p-vector X, define the notation Xj |X(−j) where

X(−j) = {X1, . . . , Xj−1, Xj+1, . . . , Xp}

for each j. The posterior p(X) is then (usually) uniquely characterised
by the full set of p “complete conditional” densities p(Xj |X(−j)), for j =
1, . . . , p. Gibbs sampling MCMC methods are built around sequences of
simulations from such conditionals, based on this characterisation. In
moving one step in the chain, the current sampled value Xi−1 is updated
to Xi by sequentially updating the elements one by one: at each stage
j = 1, 2, . . . , p, a new value of Xj is simulated from the true conditional
p(Xj |X(−j)), where the p− 1 elements of X(−j) are each set at their most
recently sampled values. In this way, the full p-vector is updated element
by element, and a transition distribution is implicitly defined that deliv-
ers the full posterior as the stationary distribution of the resulting Markov
Chain (Gelfand and Smith 1990).
Generalisations update sub-vectors rather than just individual scalar el-

ements of X. Thus, the above story applies, but now with each of the
elements Xj replaced by a sub-vector of X. In applications, this is more
common than the scalar element-wise approach, as is illustrated in dynamic
modelling contexts below.

Other MCMC algorithms and practical issues
Gibbs sampling is attractive in its simplicity and because the use of

exact conditional distributions for simulation requires no other choices to
be made in connection with defining a transition density. Other MCMC
methods require choices. Variants of the wide and very general class of
Metropolis-Hastings methods (Tierney 1994) have been developed and are
growing in application in dynamic models. Though further development is
beyond our scope in this book, this is a very interesting and likely critical
area for the future.
Any application of the MCMC method requires care and expertise in

setting up algorithms, in specifying and assessing sensitivity to starting
values for the Markov chain, and in related studies of convergence of the
chain; convergence means that the successively generated parameter values
are approximately marginally distributed according to the required sta-
tionary distribution, i.e., the posterior distribution of interest. Theoretical
and practical issues relevant to determining convergence criteria and as-
sessing convergence of specific analyses has been a very significant research
field in recent years, and continues to be. Useful discussions appear in the
references in the previous section.
Finally, we note that there have recently been quite varied developments

in simulation methods in ranges of time series models outside the DLM
framework. Some interesting and relevant references include Albert and
Chib (1993), McCulloch and Tsay (1994), and Müller, West and MacEach-
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ern (1997). Additional references more directly related to dynamic mod-
elling are mentioned in context in the following sections.

15.2 BASIC MCMC IN DYNAMIC MODELS
15.2.1 Posterior sampling state-by-state in general models
In a rather general framework, a non-linear and non-normal dynamic model
is defined by the sequence of observation and evolution distributions

p(Yt|θt, Dt−1) and p(θt|θt−1, Dt−1), (15.1)

where each density may depend on both t and independent variables, but is
assumed known apart from the values of the state vectors. Model specifica-
tion is completed through the addition of an initial prior density p(θ0|D0),
as usual. Note that this is essentially the framework of Section 13.6.
Based on a series of observations Y1, . . . , Yn, we are interested in sam-

pling the full posterior p(θ1, . . . ,θn|Dn). Applying the Gibbs sampling
concept directly, the apparently natural approach is sampling state-by-
state, as follows. A version of Gibbs sampling proposes that we iteratively
resample conditional posteriors

p(θt|θ(−t), Dn), (15.2)

sequencing through t = 1, 2, . . . , n and updating the conditioning values to
the most recently sampled value at each step. Directly via Bayes’ theorem,
we see that

p(θt|θ(−t), Dn) ∝ p(θt|θt−1, Dt−1)p(θt+1|θt, Dt−1)p(Yt|θt, Dt−1), (15.3)

as a function of θt.
Rarely will the model be tractable enough so that (15.3) may be directly

simulated, so that this is a context in which Metropolis-Hastings methods
will come into play, nested within the Gibbs iterations. Carlin et al (1992)
discuss this in detail in various models; see also Jaquier et al (1994) for
interesting special cases in modelling stochastic volatility in financial time
series. Related ideas and approaches are discussed in Scipione and Berliner
(1993) in rather different but related modelling contexts. The generality
of this approach is evident from the broad class of structures encompassed
by (15.1), and at time of writing, this approach is being explored and ex-
tended by researchers in various fields. A technical issue arising is that as in
other applications of Gibbs sampling with many parameters and uncertain
variables, convergence to sampling stationary distributions may be very
slow, partly due to the “state-by-state” approach in which each θt is sam-
pled conditional on its “neighbours”. Other examples of this arise, and with
more severe computational consequences, in spatial modelling with Markov
random field prior distributions; it should be remarked that all prior struc-
tures in DLMs, and non-linear dynamic models, discussed throughout this
book are specific cases of the general class of Markov random field models.
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We move away from this general framework here to discuss conditionally
linear/normal models and rather more specific MCMCmethods in some im-
portant model classes. In this development, rather more efficient MCMC
approaches arise and partly overcome some of the computational issues of
slow convergence associated with the state-by-state simulation approach.
This is possible due to the conditionally linear/normal structure of the
models considered, and does not, unfortunately, generalise to other classes
of inherently non-linear/non-normal models; the development of more ef-
ficient and effective MCMC methods in other models raises open research
question.

15.2.2 Inference on parameters in DLMs
A variety of “non-linear” learning problems may be characterised as prob-
lems of inference for defining parameters in otherwise standard normal
DLMs. We have seen several examples throughout this book, including
DLMs with autoregressive noise components (Section 9.4), DLMs with un-
certain observational and evolution variances, or discount factors (Section
13.3), and multi-process mixtures with normal-mixture error distributions
in various components (throughout Chapter 12 and Section 13.3). In such
models, Gibbs sampling often provides a very natural and easily imple-
mented method for sampling posterior distributions of these model param-
eters and the DLM state vectors over a fixed time interval. In fact, specific
multi-process mixture DLMs provided the initiating context for some of
the very first developments of MCMC methods in dynamic models (Carter
and Kohn 1994, Frühwirth-Schnatter 1994). The basic idea is discussed
here, with an example or two, prior to more extensive discussion of ef-
ficient simulation in conditionally normal linear models in the following
sections.
Suppose that across the time interval t = 1, . . . , n, the Yt series is mod-

elled via a DLM with defining parameters collected in a vector αn. This
structure is essentially as in Section 12.1, e.g., equation (12.1) and the
following discussion, with the explicit recognition that the required defin-
ing parameter vector may depend on n. Typically αn will include several
constant parameters, such as defining entries in G = G(αn) and variance
components, but may also include latent variables whose number increases
with sample size. Some examples remind us of important special cases.

EXAMPLE 15.1. In a standard univariate DLM, write αn = α = {V,W}
for the assumedly constant observation and evolution variances. Obvi-
ously, the analysis is standard conditional on these variance components.
Thus, for any specified α, posterior distributions p(θ1, . . . ,θn|α, Dn) may
be computed; they may also be simulated.
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EXAMPLE 15.2. Consider the normal mixture observational error distri-
bution

νt ∼ 0.95N[0, V ] + 0.05N[0, k2V ],

where k > 1 is a specified scale inflation factor. As in Sections 12.3 and 12.4,
this models occasional “outliers” in the observations, with extreme obser-
vational errors coming from the inflated variance component of the mixture
around 5% of the time. We can write this as a conditionally normal error
model, (νt|λt) ∼ N[0, V λt], where for t = 1, 2, . . . , λt is a latent variable
taking values 1 or k2 with corresponding probabilities 0.95 and 0.05. For the
fixed series of observation times t = 1, . . . , n, include the latent variables
{λ1, . . . , λn} in the “parameter” vector αn, together with variance com-
ponents V and possibly evolution variances. Conditional on αn, the data
model is a standard normal DLM; for any set of λt values (together with any
other elements of αn), posterior distributions p(θ1, . . . ,θn|αn, Dn) may be
computed and simulated.

EXAMPLE 15.3. The framework of Example 15.2 extends to allow essen-
tially any “mixing” distribution for the normal scale factors λt. In par-
ticular, assuming that the λt follow inverse gamma distributions of the
form (λ−1

t |D0) ∼ G[r/2, r/2] implies that the νt are marginally Student-
T distributed with r degrees of freedom. This is a particular case of a
“heavy-tailed” observational error distribution constructed as a continuous
scale mixture of normals, in contrast to the above discrete mixture. This
has uses in modelling outlying observations, and falls into the conditionally
normal context of this section, i.e., analysis may proceed using the MCMC
simulation approach.

The importance and utility of this structure is evident in considering
MCMC based on Gibbs sampling. Write Θn = {θ0,θ1, . . . ,θn} for the
n state vectors in the DLM for observations, Y1, . . . , Yn, together with
the initial vector θ0 (by convention). Suppose the model is a standard
DLM conditional on parameters and latent variables in αn. Gibbs sampling
suggests that the full posterior distribution

p(Θn,αn|Dn)

may be simulated by iterating between the two conditional posteriors

p(Θn|αn, Dn) ←→ p(αn|Θn, Dn). (15.4)

Note that this involves sampling Θn, and separately αn, from their full,
multivariate conditional posteriors, rather than sequencing through indi-
vidual scalar elements as in the original definition of Gibbs sampling. Based
on the observation that the analysis is standard conditional on αn, simu-
lation of the first component of (15.4) will be accessible as a (complicated)
multivariate normal distribution; efficient approachs to sampling this are
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discussed in the following section. The second component will depend very
much on model form, as an example indicates.

EXAMPLE 15.1 (continued). In the model {Ft,Gt, V,W} with αn = α =
{V,W}, assume independent priors on the variances, i.e., p(V,W|D0) =
p(V |D0)p(W|D0). Then the conditional posterior for α is

p(α|Θn, Dn) = p(V |Θn, Dn)p(W|Θn, Dn), (15.5)

with

p(V |Θn, Dn) ∝ p(V |D0)V −n/2 exp (−nV̂n/2V )

and

p(W|Θn, Dn) ∝ p(W|D0)|W|−n/2 exp (−ntrace(ŴnW−1)/2),

where based on conditionally known values of νt = Yt − F′
tθt and ωt =

θt − Gtθt−1 for each t, V̂n = n−1∑n
t=1 ν

2
t and Ŵn = n−1∑n

t=1 ωtω
′
t.

Note, for example, that conditionally conjugate priors are inverse gamma
for V, and inverse Wishart (see Section 16.4) for W. Under such priors,
the conditional posterior for variance components may be easily simulated.
Often, as in further and more elaborate examples below, the evolution vari-
ance matrixW is structured in terms of just a few uncertain parameters,
and the computations simplify further.

In some cases, direct sampling of p(αn|Θn, Dn) is infeasible, but writing
in terms of further sub-vectors of αn leads to an alternative form of Gibbs
sampling that is easily implemented. Generally, partition αn into k sub-
vectors, so that αn = {αn,1, . . . ,αn,k}. Suppose that each of the (possibly
multivariate) conditionals for the αn,j may be routinely simulated. In an
extension of our earlier notation, let αn,−j be all elements of αn but αn,j .
Then the revised form of iterative simulation involves sequencing through
draws of Θn given αn, followed by samples of each of the sub-vectors in
turn, viz,

p(Θn|αn, Dn)

↔ p(αn,1|αn,−1,Θn, Dn)

. . .

↔ p(αn,k|αn,−k,Θn, Dn). (15.6)

EXAMPLE 15.2 (continued). With the discrete normal mixture structure
for observational errors, identify αn,1 = {V,W} and αn,2 = {λ1, . . . , λn}.
Suppose prior independence between V andW and the λt, so that

p(αn|D0) = p(V |D0)p(W|D0)
n∏

t=1

p(λt|D0).
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Here p(λt|D0) is discrete with masses 0.95 and 0.05 on the values 1 and
k2, respectively. It follows easily that p(αn,1|αn,−1,Θn, Dn) has the form
of (15.5) with the simple modification that the observational errors νt
are weighted by the appropriate values of the scale factors, i.e., V̂n =
n−1∑n

t=1 ν
2
t /λt for each t. For the scale factors in αn,2, it is clear that

p(αn,2|αn,−2,Θn, Dn) =
n∏

t=1

p(λt|V,W,Θn, Dn),

with component posteriors defined in terms of odds ratios as

Pr(λt = 1|V,W,Θn, Dn)
Pr(λt = k2|V,W,Θn, Dn)

=
0.95
0.05

k exp(−ν2
t (1− k−2)/2V )

with νt = Yt − F′
tθt as before. Thus, λt is simulated by choosing 1 or k2

with the resulting probability.

EXAMPLE 15.3 (continued). In the case of the continuous normal mixture,
the discussion of the above example may be followed with the modification
that the conditional posteriors for scale factors λt are continuous, i.e.,

p(λt|V,W,Θn, Dn) ∝ p(λt|D0)λ
−1/2
t exp(−ν2

t /2V λt).

In the case of the inverse gamma model, the prior G[r/2, r/2] distribution
for λ−1

t is updated to the conditional gamma G[(r + 1)/2, (r + ν2
t /V )/2],

for each t. Simulation is then direct.

In other cases when direct sampling of p(αn|Θn, Dn) is not possible,
alternatives to the above “nested” Gibbs approach may be based on em-
bedding some form of Metropolis “step” to sample αn at each stage of
the iterations in (15.4). This can involve use of a direct approximation to
p(αn|Θn, Dn) to be used as a proposal distribution or a random walk Me-
tropolis step simulating candidate values of αn from a symmetric proposal
centred at the “current” value, or others.
These examples give some idea of the scope of MCMCmethods in extend-

ing DLM analyses to include uncertain parameters and latent variables. For
much more extensive development in mixture modelling and related con-
texts, see Carter and Kohn (1994), Frühwirth-Schnatter (1994), and West
(1996c), for example.
We now turn to more specific developments in DLM contexts, based es-

sentially on the variants of Gibbs sampling mentioned above. As this field
develops in research and in practice, we will surely see refined and gener-
alised approaches utilising other forms of Metropolis-Hastings algorithms,
though we do not develop these further here.

15.2.3 Efficient MCMC in normal DLMs
Before proceeding to illustrate in DLMs with autoregressive components,
we need to attend to the technical issues arising in sampling the key con-
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ditional distribution p(Θn|α, Dn) of (15.6). Carter and Kohn (1994) and
Frühwirth-Schnatter (1994) provide the basic and original development.
The latter article introduced the prototype simulation method under the
very descriptive name of the forward filtering, backward sampling algo-
rithm. In a general context, this is structured as follows.
We have the model {Ft,Gt, Vt,Wt}, in general, suppressing the nota-

tional dependence on the conditioning value of α for clarity. We wish
to sample a full set of state vectors Θn = {θ0,θ1, . . . ,θn} from the full,
multivariate normal posterior p(Θn|Dn). Note that exploiting the Markov
structure of the evolution equation of the DLM, we may write

p(Θn|Dn) = p(θn|Dn)p(θn−1|θn, Dn−1) . . . p(θ1|θ2, D1)p(θ0|θ1, D0).
(15.7)

As a result, we may sample the entire Θn by sequentially simulating the
individual state vectors θn,θn−1, . . . ,θ0, as follows:

(1) Sample θn from (θn|Dn) ∼ N[mn,Cn], then
(2) for each t = n − 1, n − 2, . . . , 1, 0, sample θt from p(θt|θt+1, Dt),

where the conditioning value of θt+1 is the value just sampled.

The required conditional distributions in the second item here are ob-
tained as described in developing filtering recurrences in Section 4.7. Ex-
plicitly from equation (4.5) of that chapter,

(θt|θt+1, Dt) ∼ N[ht,Ht], (15.8)

where

ht =mt +Bt(θt+1 − at+1)

and

Ht = Ct −BtRt+1B′
t,

with

Bt = CtG′
t+1R

−1
t+1,

for each t.
Hence, the process of sampling Θn starts by running the standard anal-

ysis forward from t = 0 up to t = n, computing and saving the summaries
mt,Ct, and the concomitant quantities at,Rt and Bt at each stage. At
t = n, a vector θn is sampled, then we sequence backwards through time,
computing the elements ht andHt at each step and generating a value of θt.
Hence the the forward filtering (or forward updating), backward sampling
terminology arises.
On computing, note that sampling multivariate normal distributions in-

volves decomposing the relevant variance matrices, and this is often done
via Cholesky decomposition. In many cases, correlations in these condi-
tional posteriors may be high, so that singular-value decomposition meth-
ods are preferable for numerical stability.
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The algorithm outlined here is very general. Though it therefore applies
to many different DLM contexts, it may tend to be computationally in-
efficient relative to more specialised, or “customised,” variants in specific
model frameworks. We elaborate on this in developing a modified algorithm
for a specific model class in the following section. Note further that at the
frontiers of current research in the area at the time of writing, investigators
are active in developing and extending these kinds of MCMC algorithms,
with a view to furthering applicability as well as computational efficiency
and effectiveness (e.g., Shephard 1994; Cargnoni et al 1996, among many
others). Future developments are likely to have major impact on applied
work in time series and forecasting using dynamic models.

15.3 STATE-SPACE AUTOREGRESSION
15.3.1 A specific AR component DLM
More detailed development and illustration of MCMC simulation-based
analysis is given in the context of the specific autoregressive component
DLM discussed in Section 9.4.7. Much of the material here follows West
(1996a,c, 1997), where further details and examples may be found. See also
West (1995 and 1996b) for similar developments in a closely related class
of dynamic models.
Consider the model

Yt = µt +Xt + νt,

where µt represents an underlying, first-order polynomial trend, Xt is an
autoregressive noise component, and νt is the usual observational noise
term. Specifically, for all t,

(1) µt = µt−1 + ωt, with stochastic level changes ωt ∼ N[0,W ],
(2) Xt =

∑p
j=1 φjXt−j + εt, with stochastic innovations εt ∼ N[0, U ],

for each t, and
(3) νt ∼ N[0, V λt], with fixed and known variance weights λt.

Dealing generally with weighted observational errors leads into extended
analyses to allow for errors following normal mixture distributions, as in Ex-
ample 15.2, to be discussed further below. We note that similar weightings
could be used for the variances of the innovations of the AR component,
though this is not discussed further here.
We make the additional assumptions that the three sequences of error

components are independent and mutually independent. We are interested
in inference about the underlying, latent trend and noise processes, together
with the uncertain variance components, W and U, and the autoregressive
parameters φ = (φ1, . . . , φp)′. We have discussed such models in Section
9.4 and now turn to their analyses using MCMC methods. Note that the
trend component µt is of the simplest DLM form here; the development
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can be pursued with alternative trend terms, combined trend and regression
terms, and so forth, with direct modification to the details below.
As in Section 9.4.7, we can represent this model in DLM form as

Yt = F′θt + νt and θt = Gθt−1 + ωt,

where

(1) θt = (µt, Xt, Xt−1, . . . , Xt−p+1)′, the state vector at time t,
(2) F = (1, 1, 0, . . . , 0)′,
(3) G is the (p+ 1)× (p+ 1) matrix

G =




1 0 0 0 · · · 0
0 φ1 φ2 φ3 · · · φp

0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
. . . · · ·

...
0 0 0 · · · 1 0



,

and
(4) ωt = (ωt, εt, 0, . . . , 0)′ with (singular) variance matrix

W =



W 0 0 · · · 0
0 U 0 · · · 0
0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0


 .

In the context of (15.6), we identify model parameters α1 = αn,1 =
φ = (φ1, . . . , φp)′ and α2 = αn,2 = {V,W,U}. Section 15.3.3 develops the
conditional posterior p(α2|φ,Θn, Dn) under specific prior assumptions.
For each t, write Zt = (Xt, Xt−1, . . . , Xt−p+1)′, the final p elements

of θt corresponding to the previous p values of the AR process. In the
posterior computations below, we will encounter the term p(Z0|α, D0)
at various places. This is the prior distribution for the p initial values
X0, X−1, . . . , X−p+1 of the AR process, and the algorithm simulates from
the corresponding posterior. We need to specify this prior. Were we to
assume the Xt process to be stationary, this prior would be theoretically
determined and depend, in complicated ways, on parameters U and φ of
α. In such a case, the analysis reported below should be modified to ac-
count for the dependence of this function on these parameters (among other
things, this would involve the use of Metropolis-Hastings simulation steps
rather than the direct Gibbs sampling developed here). We do not do this
here, assuming directly that p(Z0|α, D0) is a specified normal prior distri-
bution whose moments are independent of α. This simplifies the analysis
somewhat. Moreover, if stationarity is in fact a valid assumption, then it
will be supported under the conditional posterior distribution in any case.
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Indeed, modelling without the restriction permits posterior assessment of
the stationarity assumption.

15.3.2 Sampling the state vectors
Conditional on the model parameters α = {φ, V,W,U}, we require the
simulation of p(Θn|α, Dn), where Θn = {θ0,θ1, . . . ,θn}. Though theoret-
ically correct, the general algorithm of Section 15.2.3 degenerates in models
with AR components, as it does in other models in which consecutive state
vectors contain common components. In such cases, the central conditional
distributions (15.8) are singular, and so need examining in detail to sam-
ple. The general recipe for simulation given there may be redeveloped to
provide a more direct and efficient form in such specific models. In the
current model, this is done as follows.
To sample (15.7), proceed as described in the general algorithm:

(1) Sample a value of θn from (θn|Dn) ∼ N[mn,Cn], then
(2) for each t = n− 1, n− 2, . . . , 1, 0, compute new values of θt condi-

tional on the values of the previous θt+1 just sampled.

The computations at the second step are now simplified and specific to
the model structure, based on the fact that elements 2, . . . , p − 1 of the
state vector θt are known if θt+1 is known; they are simply the elements
3, . . . , p of the latter, i.e.,

θ′
t+1 = (µt+1, Xt+1, Xt, Xt−1, · · · , Xt−p+2)

� � · · · �
θ′
t = (µt, Xt, Xt−1, · · · , Xt−p+2, Xt−p+1).

Hence, given θt+1, replace entries 2, . . . , p− 1 of θt accordingly. Sample
the remaining two elements (µt, Xt−p+1)′ as follows.
First, compute the moments of p(µt, Xt−p+1|Xt, Xt−1, . . . , Xt−p+2, Dt);

this is just the bivariate conditional for the first and final elements of θt

from the full joint distribution (θt|Dt) ∼ N[mt,Ct]. This is most efficiently
done by sequentially conditioning on the elements Xt−i for i = 0, . . . , p−2
in turn, reducing the dimension of the normal distribution by 1 at each
stage, eventually reducing from the full p+ 1 dimensions to 2.
Next, compute the partial residual et+1 = Xt+1−

∑p−1
j=1 φjXt+1−j based

on the previously sampled values of the elements of θt+1. We then have a
pair of independent “observations”

µt+1 ∼ N[µt,W ] and et+1 ∼ N[φpXt−p+1, U ]

on the two parameters (µt, Xt−p+1)′. Use the corresponding likelihood to
update the bivariate normal “prior” already computed, i.e., compute the
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bivariate normal posterior proportional to

p(µt, Xt−p+1|Xt, Xt−1, . . . ,Xt−p+2, Dt)

× exp(−(µt+1 − µt)2/2W ) exp(−(et+1 − φpXt−p+1)2/2U);

this is the appropriate bivariate margin of the first and last elements of θt

under the distribution p(θt|θt+1, Dn). Sample this bivariate normal distri-
bution, and so fill in these two elements of θt to complete this step.
Sequencing through this process results in a complete set of sampled

state vectors Θn that represents a sample from p(Θn|α, Dn), as required.

15.3.3 Sampling the DLM parameters
We now explore the required conditional distributions for model parameters
α1 = φ and α2 = {V,W,U}, as required in (15.6). We assume a joint prior
with independent components,

p(α|D0) = p(φ|D0)p(V |D0)p(W |D0)p(U |D0),

implicitly assuming prior independence of α and Θn. Among other things,
this implies, as we shall see, that the conditional posterior for the variance
components factors into three independent components. Hence sampling
p(α2|φ,Θn, Dn) reduces to three independent draws from p(V |φ,Θn, Dn),
p(W |φ,Θn, Dn) and p(U |φ,Θn, Dn). These conditional posteriors are de-
scribed, following that for φ.

Sampling p(φ|V,W,U,Θn, Dn)
Conditioning on Θn provides values for the entire AR process Xt for

t = −(p− 1), . . . ,−1, 0, 1, . . . , n (the initial values entering as elements of
θ0.) With Zt = (Xt, Xt−1, . . . , Xt−p+1)′ as above, the required conditional
posterior for φ is proportional to

p(φ|D0)p(Z0|α, D0)
n∏

t=1

exp (−(Xt − Z′
tφ)

2/2U).

The third component here, the conditional likelihood, has the normal
form in φ arising in the now standard AR model for the n values of the
process Xt and with known initial values in Z0. We have already assumed
that p(Z0|α, D0) does not depend on α. Hence a normal prior p(φ|D0)
leads to a posterior as in the standard AR regression analysis of Section
9.4.6, resulting in a normal conditional posterior. We make this assumption
here; hence the required conditional posterior is determined by application
of the standard formulae in equation (9.11) or, in the case of a reference
initial prior, (9.12).
As an aside, we note that an explicit assumption of stationarity of the

AR process would involve modification of the normal prior (in addition
to making explicit the dependence of p(Z0|α, D0) on φ). In such cases,
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the analysis from here on would be modified, using Metropolis sampling
methods for p(φ|α2,Θn, Dn).

Sampling p(V |φ,Θn, Dn)
Based on the conditioning values of θt, compute the imputed residu-

als νt = Yt − F′θt for each t = 1, . . . , n, and then sample the posterior
proportional to

p(V |D0)V −n/2 exp (−
n∑

t=1

ν2
t /2λtV ).

An inverse gamma prior for V is conjugate; under such a prior, the con-
ditional posterior is also inverse gamma, and easily sampled. Alternative
priors, such as proper uniform priors for functions of V, lead to modified
and truncated inverse gamma posteriors for V, that may also be easily
sampled, sometimes using rejection methods.

Sampling p(W |φ,Θn, Dn)
Similar to the above, compute the imputed level changes ωt = µt−µt−1

for each t, and sample the posterior proportional to

p(W |D0)W−n/2 exp (−
n∑

t=1

ω2
t /2W ).

Similar comments about prior and posterior inverse gamma forms are rel-
evant.

Sampling p(U |φ,Θn, Dn)
Again as above, compute the imputed values of the AR innovations εt =

Xt −
∑p

j=1 φjXt−j , and sample the posterior proportional to

p(U |D0)U−n/2 exp (−
n∑

t=1

ε2t/2U).

Inverse gamma posteriors, or truncated or otherwise modified versions, are
again deduced with typical prior forms.
Before proceeding to some illustrations, we mention an extension of the

above analysis to include inference on uncertain observational variance scale
factors. As introduced in Examples 15.2 and 15.3, treating the λt as random
weights with assigned prior distributions is a way of inducing non-normal
distributions for the νt in order to accommodate outlying errors, among
other things. In a general context, suppose the λt are initially indepen-
dent and identically distributed according to some common, specified prior
p(λt|D0). The above development of the MCMC algorithm still holds condi-
tional on any set of values Λn = {λ1, . . . , λn}; formally, the notation should
now include Λn as a third component of the model parameter α, and all
the conditional distributions above should include λn in the conditioning.
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Then these scale factors may be included in the analysis by linking with a
further simulation step to sample their values from appropriate conditional
posteriors, as discussed in the examples, as follows.

Sampling p(Λn|φ, V,W,U,Θn, Dn)
Following Examples 15.2 and 15.3, the λt are conditionally independent,

with for each t,

p(λt|φ, V,W,U,Θn, Dn) = p(λt|V,θt, Yt)

∝ p(λt|D0)λ
−1/2
t exp(−ν2

t /2V λt).

With a discrete or continuous mixing prior distribution p(λt|D0), these
conditionals are often easily sampled to produce a set Λn, as required, so
extending the overall iterations to provide learning on scale factors along
with the other model parameters. We note that with discrete prior distribu-
tions, this leads to models with multi-process, class I structure. Extensions
to include normal mixture distributions for evolution error terms are direct,
though are not pursued further here (see, for example, Carter and Kohn
1994, Frühwirth-Schnatter 1994).

15.3.4 Illustration
Geological time variations in oxygen, and other, isotope measurements from
deep ocean cores relate to patterns of variation in global ice volume and
ocean temperature (Shackleton and Hall 1989; Park and Maasch 1993).
The single series graphed in Figure 15.1 is representative of several oxy-
gen isotope series from cores from various geographical locations, derived
from original δ18O Site 677 measurements presented in Shackleton and Hall
(1989); the data are courtesy of J. Park of Yale University. The values es-
timate relative abundance of δ18O and are timed at equal spacings of 3,000
years (or 3 kyears). The time scale calibration is based on that of Rud-
diman, McIntyre and Raymo (1989), and discussed in Park (1992) and
Park and Maasch (1993). This latter reference also discusses the process
of interpolation of original, unequally spaced measurements to this equally
spaced scale. This section of 400 observations stretches back roughly 1.2
million years, and is plotted with a reverse of sign, by convention, so that
the apparent increase in levels in modern times reflects generally warmer
average global temperatures and smaller average ice masses. Time-varying
periodicities are evident; the nature and structure of these periodicities is
of some geological importance, and a focus for analysis here.
Useful discussion of the relationships between climatic indicators, such

as the δ18O measures here, and cyclical patterns of changes in the earth’s
orbital dynamics appears in Park (1992). The precession and obliquity of
the earth’s orbit impact on insolation received by the earth and so induce
substantial variations in climate characteristics. Periodicities in eccentric-
ity are generally believed to be associated with periods of around 95-100
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Figure 15.1 Oxygen isotope series

kyears and 120-130 kyears; each of these figures is subject to uncertainty.
Shorter-term cycles include those associated with precession, with period
around 19-23 kyears, and obliquity of the earth’s orbit, with period around
40-42 kyears. The “100,000-year ice-age cycle”, so-called, is of major in-
terest and has been the subject of intensive investigation in recent years.
Identifying the nature and structure of quasi-periodic components of pe-
riod around 100 kyears is of importance in contributing to debates over the
genesis of the ice-age cycles, roughly a million years ago, and particularly
to questions of whether or not the onset was gradual and inherent or the
result of a significant structural climatic change. (e.g., Ruddiman et al
1989; Park 1992, and references therein).
We report an analysis allowing for routine measurement, sampling and

laboratory errors contaminating the oxygen recordings, in addition to pos-
sible occasional gross errors, or outliers. Note that there are surely errors in
the timing of the observations, due to the inherent difficulty in estimating
true calendar times of geochemical data, and also due to the process of cal-
ibrating times to the nearest unit (3,000 years here). We make no further
attempt to explore this; our analysis is therefore consistent with previous
analysis by Park and Maasch (1993). Approaches to dealing with timing
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errors generally are a current topic of active research; see West (1996b) for
developments in a very similar context. Here we are accepting the imputed,
equally spaced times as accurate, though the use of a measurement error
model may, incidentally, play a role in accounting for timing errors too.
The model assumed is as described in Section 15.3.1 above, with a first-

order polynomial trend superimposed on a latent AR(20) process Xt. The
model permits heavy-tailed observational errors through a normal mixture
of precisely the form described in Example 15.2, with a scale inflation fac-
tor of k = 10. This admits a background level of routine measurement
error, with variance V, together with occasional extremes generated by the
inflated variance component with probability 0.05. The implied prior for
each of the variance weights λt is thus discrete, and the conditional poste-
riors required in posterior sampling, detailed at the end of Section 15.3.2,
are simply computed as in the continuation of Example 15.2. Initial prior
specification is as follows: a reference uniform prior for the AR param-
eter φ; a vague prior for the initial state vector θ0 with zero mean and
a diagonal variance matrix with elements 103; and independent uniform
priors for the square roots of all three variance components V,W and U.
A Gibbs sampling analysis was run exactly as described in the previous
section; an initial 500 iterations were judged sufficient for the simulations
to “burn-in,” after which samples of all state vectors and parameters were
saved and summarised to give approximate posterior inferences. Conver-
gence checks include repeat analysis, with short runs of 500 iterations, at a
small number of different starting values to ensure that the burn-in was ad-
equate and that successive samples thereafter are essentially independent of
the starting values. Also, plots of sampled parameters, including variance
components and elements of φ, against MCMC iteration number were ex-
plored to provide additional support for the view that the sampling process
was running “cleanly”. Following the burn-in period, a posterior sample
of 5,000 draws was saved and used to compute the approximate poste-
rior inferences now summarised. First, the reciprocals of the characteristic
roots of the AR process were computed by solving the AR polynomial at
each of the 5,000 sampled values of φ. In all 5,000 cases, the moduli of
the reciprocal roots are all less than unity, indicating stationarity of the
latent Xt process. Further, in each sampled set of roots, the three pairs
of complex roots of largest period have periods (after multiplication by
3,000 years) around 26, 42 and 100 kyears, respectively, and tend to be the
most “persistent” roots in terms of having moduli closer to unity than the
rest. Recalling the decomposition of AR models into latent components
detailed in Section 9.4.8, it is seen that these three (pairs of) roots corre-
spond to quasi-periodic components of Xt, i.e., underlying damped cycles
with stochastically time-varying amplitudes and phases but fixed periods.
As mentioned above, the earth’s orbital dynamics are expected to show up
in these data, and the periods of these three leading components of the
estimated Xt process correspond closely to the ranges mentioned above.
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More formal summaries of the Monte Carlo samples of the roots confirm
this, as follows. Approximate posterior 25% quartile, median (mean) and
75% quartiles for each of the three longest periods are, respectively, 95, 102
(104), 112 kyears for the longest period, 39.4, 41.7 (45.3), 45 kyears for the
second, and 22.9, 24.1 (25.3), 25.9 kyears for the third. Evidently, these
posteriors support the view that the ∼100 kyears ice-age cycle is dominant,
followed by cycles related to the obliquity (∼ 41+ kyears) and precession
(∼23-24 kyears).
Further exploration of these components can be derived by evaluating

the actual decomposition of the estimated Xt process at an estimate of φ,
following the development in Section 9.4.8 leading to the decomposition in
equations (9.17) and (9.18). We do this using the Monte Carlo estimate of
the posterior mean of φ. This leads to estimates over time t of the three
dominant quasi-cyclical components zt,j , j = 1, 2, 3, and the remaining
components that sum to give Xt in (9.18). Also, we have posterior means of
the smooth trend µt over all t, and as a result, posterior means of the obser-
vational errors νt by subtraction, i.e., E[νt|Dn] = Yt−E[µt|Dn]−E[Xt|Dn].
We graph some of the estimated components of Yt in Figure 15.2; the upper
time series plot is the data series, followed by the posterior mean trajectory
of the trend, followed by quasi-cyclical components zt,j for j = 1, 2 and 3,
followed by the sum of the remaining components of Xt, and finally, the
estimated observation error sequence, or residuals. The several series here
are plotted on the same vertical scales to enable direct assessment of their
relative contributions to explaining the observed data. The data series is
the direct sum of all components graphed. We note that the estimated
trend is smooth and indicates increasing levels in more recent times (recall
the reversed time scale). The three components driven by the earth’s or-
bital dynamics are apparently ordered in terms of decreasing amplitudes
as well as periods; each clearly shows periodicity in the relevant frequency
range, as well as time-variation in amplitude and phase characteristics. The
sum of remaining components, while necessary to give an adequate model
fit, has amplitude comparable with the third component.
Observational errors are represented by the estimated residuals in the

figure. Posterior inferences about the controlling variance components are
summarised in terms of approximate posterior median and quartiles from
the Monte Carlo samples. Those for

√
V (the observational error s.d.) are

approximately (0.127, 0.145, 0.165), those for
√
W (controlling variation in

the trend µt) are (0.014, 0.018, 0.023), and those for
√
U (variation in Xt)

are (0.247, 0.323, 0.362). A small fraction of the measurement errors are
apparently relatively large, but their impact on inferences is apparently
slight.
Related studies and further details of this and associated models can be

found in West (1995, 1996a,b,c and 1997) and in references cited. These
simulation-based methods are nowadays accessible computationally and
will become routine research tools in coming years.
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Figure 15.2 Decomposition of oxygen isotope series into esti-
mated trend, latent quasi-cyclical components and residual ob-
servational error



CHAPTER 16

MULTIVARIATE MODELLING AND FORECASTING

16.1 INTRODUCTION
In this final chapter we return to the linear/normal framework to explore
models for multivariate time series. Univariate DLMs can be extended in an
obvious way to multivariate problems simply by taking the observations at
each time as vectors rather than scalars. In fact, such models have already
been defined in Definition 4.1 and developed somewhat in later sections
of that chapter. The basic theory of the univariate DLM as developed in
Chapter 4 extends directly to such models. The observational errors are
now vectors, so that model specification requires observational variance ma-
trices defining the joint stochastic structure of the observations conditional
on state parameters. In DLMs having vector observations with observa-
tional errors following a multivariate normal distribution, the univariate
theory extends easily only when it is assumed that the observational error
variance matrices are known for all time. However, as soon as uncertain-
ties about observational variance matrices are admitted, the tractability
of analysis is lost. In general, there is no neat, conjugate analysis of mul-
tivariate DLMs whose observational errors are multivariate normal with
unknown (constant or otherwise) variance matrices. The theory for models
with known variance matrices is developed in Section 16.2.
Concerning unknown covariance structures, there are many models that

are amenable to fully conjugate analyses, and these are described in Section
16.4. These models are extensions of the basic multivariate DLM in which
the state parameters are naturally involved through a state matrix, rather
than the usual vector, and the analysis most easily developed in terms
of matrix normal, rather than multivariate normal, distribution theory.
The relevant theory is developed below, as is the associated theory for
learning about variance matrices within a matrix-normal framework. Some
applications illustrate the scope for these models in assessing cross-sectional
structure of several, possibly many, similar time series.
Section 16.3 is concerned with practical issues arising in multivariate

forecasting of hierarchically related time series. Here we identify and dis-
cuss problems that arise when forecasting at different levels of aggregation
within such hierarchies. Related issues also arise concerning the combina-
tion of forecasts made at different levels of aggregation and also possibly
by different forecasters or models.
The chapter ends with mention of additional multivariate modelling de-

velopments and provides one or two additional references to work in both
modelling and applications.
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16.2 THE GENERAL MULTIVARIATE DLM
16.2.1 General framework
The general, multivariate normal DLM for a vector time series of obser-

vations Yt is given in Definition 4.1. Suppose, for t = 1, . . . , that Yt is
a (column) vector of r observations on the series following a multivariate
DLM as in Definition 4.1. The model is defined via a quadruple

{F,G,V,W}t = {Ft,Gt,Vt,Wt}
for each time t, where

(a) Ft is a known (n× r) dynamic regression matrix;
(b) Gt is a known (n× n) state evolution matrix;
(c) Vt is a known (r × r) observational variance matrix;
(d) Wt is a known (n× n) evolution variance matrix.

The corresponding model equations are

Yt = F′
tθt + νt, νt ∼ N[000,Vt],

θt = Gtθt−1 + ωt, ωt ∼ N[000,Wt],
(16.1)

where the error sequences νt and ωt are independent and mutually in-
dependent. As usual in univariate DLMs, θt is the n-dimensional state
vector. With all components of the defining quadruple known, the follow-
ing results are immediate extensions of the standard updating, forecasting
and filtering results in the univariate DLM.

16.2.2 Updating, forecasting and filtering
Suppose the model to be closed to inputs of external information, so that
given initial prior information D0 at t = 0, the information set available at
any time t is simply Dt = {Yt, Dt−1}. Suppose also that the initial prior
at t = 0 is the usual multivariate normal,

(θ0|D0) ∼ N[m0,C0], (16.2)

for some known moments m0 and C0. The following results parallel those
in the univariate DLM.

Theorem 16.1. One-step forecast and posterior distributions in the model
just defined are given, for each t, as follows.

(a) Posterior at t− 1:
For some mean mt−1 and variance matrix Ct−1,

(θt−1 | Dt−1) ∼ N[mt−1,Ct−1].

(b) Prior at t:

(θt | Dt−1) ∼ N[at,Rt],
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where

at = Gtmt−1 and Rt = GtCt−1G′
t +Wt.

(c) One-step forecast:

(Yt | Dt−1) ∼ N[ft,Qt],

where

ft = F′
tat and Qt = F′

tRtFt +Vt.

(d) Posterior at t:

(θt | Dt) ∼ N[mt,Ct],

with

mt = at +Atet and Ct = Rt −AtQtA′
t,

where

At = RtFtQ−1
t and et = Yt − ft.

Proof. Proof is by induction, completely paralleling that for the univariate
DLM in Theorem 4.1. Suppose (a) to hold. Then (b) follows directly as in
the univariate case, the evolution equation being no different here. Using
(b) together with the evolution equation implies that Yt and θt are jointly
normally distributed conditional on Dt−1, with covariance matrix

C[Yt,θt|Dt−1] = C[F′
tθt+νt,θt | Dt−1] = F′

tV[θt | Dt−1] = F′
tRt = QtA′

t,

where At = RtFtQ−1
t . The mean ft and variance Qt of Yt follow easily

from the observation equation and (b), establishing (c). It is also clear that(
Yt
θt

∣∣∣∣Dt−1

)
∼ N

[(
ft
at

)
,

(
Qt QtA′

t

AtQt Rt

)]
.

Hence, using normal theory from Section 17.2, the conditional distribution
of θt given Dt = {Yt, Dt−1} is directly obtained. The n × r matrix of
regression coefficients in the regression of θt on Yt is just At, and (d)
follows.

�

et is the r-vector of one-step forecast errors and At the n × r matrix
of adaptive coefficients. Clearly, the standard results for the univariate
case are given when r = 1. Note also that the model definition may
be marginally extended to incorporate known, non-zero means for the
observational or evolution noise terms. Thus, if E[νt] and/or E[ωt] are
known and non-zero, the above results apply with the modifications that
at = Gtmt−1 + E[ωt] and ft = F′

tat + E[νt].



584 16 Multivariate Modelling and Forecasting

Theorem 16.2. For each time t and k ≥ 0, the k-step ahead distributions
for θt+k and Yt+k given Dt are given by

(a) State distribution: (θt+k | Dt)∼ N[at(k),Rt(k)],

(b) Forecast distribution : (Yt+k | Dt)∼ N[ft(k),Qt(k)],

with moments defined recursively by

ft(k) = F′
tat(k) and Qt(k) = F′

tRt(k)Ft +Vt+k,

where

at(k) = Gt+kat(k − 1) and Rt(k) = Gt+kRt(k − 1)G′
t+k +Wt+k,

with starting values at(0) =mt and Rt(0) = Ct .

Proof. The state forecast distributions in (a) are directly deduced from
Theorem 4.2 since the evolution into the future is exactly as in the uni-
variate DLM. The forecast distribution is deduced using the observation
equation at time t+ k; the details are left as an exercise for the reader.

�

Theorem 16.3. The filtered distributions p(θt−k | Dt), (k > 1), are de-
fined as in the univariate DLM in Theorem 4.4.

Proof. Also left to the reader.

�

16.2.3 Comments
The above results may be applied in any context where the defining com-
ponents are known. In particular, they are based on the availability of
known or estimated values of the observational variance matrices Vt for all
t. This is clearly a limiting assumptions in practice, such variance matri-
ces will often be uncertain, at least in part. In general, there is no neat,
conjugate analysis available to enable sequential learning about unknown
variance matrices in the model of (16.1).
In principle, the Bayesian analysis with unknown variance matrix is for-

mally well-defined in cases when Vt = Σ, constant for all time t. The
unknown parameters in Σ introduce complications that can, in principle,
be handled using some form of approximate analysis. Analytic approxima-
tions are developed in West (1982, Chapter 4) and Barbosa and Harrison
(1992). Numerical approximation techniques include multi-process, class I
models, and more efficient numerical approaches as described in Chapter
13. In these a prior for Σ is specified over a discrete set of values at t = 0,



16.2 The General Multivariate DLM 585

this prior (and possibly the set of values) being sequentially updated over
time to give an approximate posterior at each time t. Though well-defined
in principle, this approach has been little developed to date. As simulation
methods of analysis, especially those based on MCMC approaches as dis-
cussed in Chapter 15, become more and more prevalent, this is very likely
to be a growth area. Some features to be aware of in developing an analysis
along these lines are as follows.
First, note that the variance matrix has r(r + 1)/2 free parameters, so

that the dimension of the problem grows rapidly with the dimension r of
the time series observation vector. Numerical approximations involving
grids of points in the parameter space are therefore likely to be highly
computationally demanding unless r is fairly small.
Second, there are restrictions on the parameter space in order that the

variance matrix be non-negative definite. Unless structure is imposed on
Σ, it can be rather difficult to identify the relevant subspace in r(r + 1)/2
dimensions over which to determine a prior distribution for Σ. Even then,
the problems of assessing prior distributions for variance matrices are hard
(Dickey, Dawid and Kadane 1986).
Third, we note that some applications will require that structure be

imposed on the elements of Σ, relating them to a small number of un-
known quantities. This structures the covariances across the elements of
Yt and also reduces computational burdens. For example, an assumption
of equi-correlated observational errors implies that for some variance σ2

and correlation ρ,

Σ = σ2



1 ρ ρ . . . ρ
ρ 1 ρ . . . ρ
...

...
...

. . .
...

ρ ρ ρ . . . 1


 .

Here the dimension of the parameter space for Σ is effectively reduced to
2, that of σ and ρ.
Finally, we note that much can be done in practice using off-line es-

timated values for Σ, and more generally, a possibly time-varying vari-
ance matrix Vt, possibly updated sequentially over time externally and
rather less than formally. Substituting estimated values will always lead
to the uncertainties in forecasting and posterior inferences being under-
stated, however, and this must be taken into account in decisions based on
such inferences. Harrison, Leonard and Gazard (1977) describe an appli-
cation to hierarchical forecasting. The particular context is in forecasting
industrial demand/sales series that are hierarchically disaggregated into
sub-series classified by geographic region, although the approach is very
widely applicable. The models developed in this reference involve vector
time series of compositional data. Thus, a multinomial type of covariance
structure is postulated, the DLM observation equation forming a normal
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approximation to the multinomial. In more detail, write the elements of
Yt as Yt = (Yt1, . . . , Ytr)′ supposing that Ytj > 0 for all t and j, being
compositions of the total

Nt = 111′Yt =
r∑

j=1

Ytj ,

where 111 = (1, . . . , 1)′. The mean response is given by

µt = F′
tθt = (µt1, . . . , µtr)′,

and with an underlying multinomial model,

µtj = Ntptj , (j = 1, . . . , r),

where the proportions ptj sum to unity for all t. Also, the multinomial
structure implies that given Nt,

V[Ytj |θt] = Ntptj(1− ptj), (j = 1, . . . , r),

and

C[Ytj , Yti|θt] = −Ntptjpti, (i, j = 1, . . . , r; i �= j).

Thus, the observational variance matrix Vt is time-varying and depends
on θt (similar in general terms to univariate models with variance laws; see
Section 10.7), given by

Vt = Nt[diag(pt)− ptp′
t],

where pt = (pt1, . . . , ptr)′. The form of approximation in Harrison, Leonard
and Gazard (1977) is to approximate this matrix by substituting current
estimates of the elements of pt. For example, given Dt−1 the estimate of θt

is the prior mean at, so that pt is estimated by at/Nt for known Nt. The
latter may be estimated externally from a different model for the total or
by combining such an estimate with the forecast total 111′ft, where ft is the
one-step forecast mean for Yt; see the relevant comments on top-up and
bottom-down forecasting and forecast combination in the next section. For
further discussion and details, see Harrison, Leonard and Gazard (1977).

16.3 AGGREGATE FORECASTING
16.3.1 Bottom-up and top-down forecasting

“Just as processes cannot be predicted upward from a lower level,
they can never be completely analysed downward into their compo-
nents. To analyse means to isolate parts from the whole, and the
functioning of a part in isolation is not the same as its functioning
in the whole.”

Arthur Koestler, The Yogi and the Commissar
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Koestler’s words accord entirely with the fundamental tenet of forecasting
several or many series in a system or hierarchy, namely that in contributing
to the movement and variation in series, different factors dominate at dif-
ferent levels of aggregation. Unfortunately, this is an often neglected fact.
It is still very common practice, particularly in commercial forecasting, for
forecasts at an aggregate level to be made by aggregating the forecasts
of the constituents. In manufacturing industries, for example, stock con-
trol systems often produce forecasts and control on individual, component
items of a product or process with little or no control at the product level.
As a result it is commonly found that stocks build up in slump periods and
that shortages are encountered in boom periods. Planning at the macro
level based on economic and market factors is rarely adequately used to
feed-down information relevant to control at the micro level of the individ-
ual products. These factors, that dominate variations at the macro level,
often have relatively little apparent effect at the disaggregate level and so
are ignored.
Now, whilst this neglect of factors that are apparently insignificant at

the component level is perfectly sensible when forecasting individual com-
ponents, the mistake is often made of combining such individual forecasts
to produce overall forecasts of the aggregate. Following this “bottom-up”
strategy can lead to disastrous results, since moving to the aggregate level
means that the previously unimportant factors are now critical. Poor fore-
casts often result, and the resulting inefficiency and consequent losses can
be great.
A simple example illustrates this. Here, in this and the next section,

we drop the time subscript t for simplicity in notation and since it is not
central to the discussion.

EXAMPLE 16.1. The following simple illustration appears in Green and
Harrison (1972). Consider a company selling 1,000 individual products. In
one month, let Yi be the sales of the ith product. Suppose that Yi may be
expressed as

Yi = fi +X + εi, (i = 1, . . . , 1, 000),

where fi is the expected value of Yi, assumed known, X and εi are zero-
mean, uncorrelated random quantities with variances

V[X] = 1 and V[εi] = 99.

Assume that εi represents variation affecting only the ith product, so that
εi and εj are uncorrelated for i �= j. X is a factor common to all products,
related, for example, to changes in consumer disposable income through
taxation changes, interest rates, a seasonal effect of a business cycle, etc.
It is clear that for each individual product, V[Yi] = 100 and that only 1%

of this variance is contributed by the common factor X. Variation in indi-
vidual sales is dominated, to the tune of 99%, by individual, uncorrelated
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factors. Even if X were precisely known, little improvement in forecasting
accuracy would result, the forecast variance reducing by only 1%. Hence
it is justifiable, from the point of view of forecasting the individual Yi, to
omit consideration of X and simply adopt the model Yi = fi + ε∗i , where
the ε∗i are zero-mean, uncorrelated with common variance 100.
Consider now total sales

T =
1000∑
i=1

Yi.

It is commonly assumed that X, having essentially no effect on any of
the individual products, is of little or no importance when forecasting the
total T . This is generally not the case; surprising things happen when
aggregating or disaggregating processes. To see this, write

f =
1000∑
i=1

fi and ε =
1000∑
i=1

εi.

Then

T =
1000∑
i=1

(fi +X + εi) = f + 1000X + ε.

Now, E[T ] = f, so that the point forecasts of individual sales are simply
summed to give the point forecast of the total, but

V[T ] = V [1000X] + V[ε] = 106 + 1000× 99 = 1, 099, 000,

and X, unimportant at the disaggregated level, is now of paramount im-
portance. The term 1, 000X accounts for over 91% of the variance of the
total T , the aggregate of the individual εi terms contributing the remain-
ing 9%. At this level, precise knowledge of X reduces the forecast variance
dramatically, leading to

E[T |X] = f + 1000X and V[T |X] = 99, 000.

The key points arising are summarised as follows.

(a) Suppose that X remains unknown but the fact that X is common
to the 1,000 individual series is recognised. Then the total as fore-
cast from the model for the individuals has mean f and variance
1,099,000. Although relative to knowing X, the point forecast has a
bias of 1, 000X units, the high degree of uncertainty in the forecast
distribution is appropriately recognised. This is so since the proper
joint distribution for the Yi has been used, with the relevant pos-
itive correlation amongst the Yi induced by X becoming critically
evident following aggregation. Formally, writing

Y = (Y1, . . . , Y1000),′
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f = (f1, . . . , f1000)′,

and

Q =



100 1 1 . . . 1
1 100 1 . . . 1
1 1 100 . . . 1
...

...
...

. . .
...

1 1 1 . . . 100


 ,

we have E[Y] = f and V[Y] = Q, with C[Yi, Yj ] = 1. In aggregat-
ing, V[T ] = 111′Q111 is appropriately large due to the large number of
positive covariance terms.

(b) A forecaster who unwittingly follows the argument that X is irrel-
evant will end up with the representation

T = f +
1000∑
i=1

ε∗i ,

so that

E[T ] = f and V[T ] = 100, 000,

dramatically under-estimating the uncertainty about T .
(c) It is very worthwhile devoting effort to learning further about X,

possibly using a macro model, since this corrects the bias and dra-
matically reduces the uncertainty about T .

The related procedure of decomposing a point forecast into parts, often
referred to as “top-down” forecasting, must also be carefully considered,
since it can lead to poor individual predictions. Typically, such procedures
convert a total forecast to a set of individuals using a set of forecast propor-
tions. Thus, in the previous example, a forecast mean f and variance V for
T will provide a forecast mean pif and variance p2

iV for Yi, where pi is the
assumed or estimated proportion that Yi contributes to total sales. This
will sometimes be refined to include uncertainties about the proportions.
If the proportions are indeed well determined and stable, then such a strat-
egy can perform well even though the proportions are themselves forecasts.
However, it is clear that if major events occur on individual products, the
directly disaggregated forecasts, not accounting for such events, may be
dismal. Related discussion of these ideas is found in Green and Harrison
(1972), and Harrison (1985c).

16.3.2 Combination of forecasts
If consistent and efficient forecasts are to be obtained in a hierarchy at all
levels, the previous section underpins the need for a framework in which
forecasting at any level is primarily based on consideration of issues relevant
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at that level. It is also clear, however, that information relevant at any level
will tend to be of relevance, though typically of much reduced importance,
at other levels. Hence there is a need to consider how forecasts made at
different levels, by different forecasters based on different, though possibly
related information sets, may be appropriately combined.
Combination of forecast information more generally is a many-faceted

subject about which much has been written. Many authors have consid-
ered the problems of combining point forecasts of a single random quantity,
or random vector, such forecasts being obtained from several forecasters or
models. Common approaches have been to form some kind of weighted
average of point forecasts, attempting to correct for biases and information
overlap amongst the forecasters. Key references include Bates and Granger
(1969), Bordley (1982), Bunn (1975), Dickinson (1975), and Granger and
Ramanathan (1984). Such simple rules of forecast combination can some-
times be justified within conceptually sound frameworks that have been de-
veloped for more general consideration of forecasts made in terms of full or
partially specified probability forecast distributions. Such approaches are
developed in Lindley, Tversky and Brown (1979), Lindley (1983, 1985, and
with review and references, 1988), Harrison (1985c), Morris (1983), West
(1984b, 1985b,c, 1988, 1992e), West and Crosse (1992), Winkler (1981),
and by other authors. Importantly, such approaches allow consideration of
problems of interdependencies amongst forecasters and models, coherence,
calibration and time variation in such characteristics.
Forecast combination, and more generally, the synthesis of inferences

from different, possibly subjective sources, is a wide-ranging subject, a full
discussion being beyond the scope of this book. Attention is restricted
to combination of forecasts within the above aggregation framework, with
forecasts of linear combinations of a random vector being made in terms of
forecast means and variances. Normality is assumed throughout although
this is not central to the development.
Consider forecasting a vector Y = (Y1, . . . , Yn)′. It is instructive to bear

in mind the archetypical example in which all observations are on sales
of items produced by a company. The vector Y may then represent sales
across a collection of possibly a large number n of individual products or
product lines, sales disaggregated according to market sector or geograph-
ical region, and so forth. Interest lies in forecasting the individual sales
Yi, (i = 1, . . . , n), total sales T =

∑n
i=1 Yi, and also in subtotals of sub-

sets of the elements of Y. Assume that the forecaster has a current, joint
forecast distribution, assumed normal though this is a side detail, given by
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Y ∼ N[f ,Q], with moments

f =



f1
...
fn


 and Q =



q1,1 q1,2 q1,3 . . . q1,n
q1,2 q2,2 q2,3 . . . q2,n
q1,3 q2,3 q3,3 . . . q3,n
...

...
...

. . .
...

q1,n q2,n q3,n . . . qn,n


 .

Several considerations arise in aggregate forecasting, typified by the follow-
ing questions that the forecaster may wish to answer.

(A) Based only on the forecast information embodied in p(Y), what is
the forecast of the total T? More generally, what is the forecast of
any linear function X = LY where L is a matrix of dimension k×n
with k an integer, 1 ≤ k < n. X, for example, may represent sales
in k product groups or market sectors.

(B) Suppose that in a What-if? analysis, the total T is assumed fixed.
What is the revised distribution for Y? More generally, what is
the forecast distribution p(Y|X) where X = LY with L as in (A)?
This sort of analysis is often required in considering forecasts of Y
subject to various aggregates being constrained to nominal, “target”
values.

(C) An additional forecast, in terms of a mean and variance for T , is
provided from some other source, such as a macro model for the total
sales involving factors not considered in forecasting the individual
Yi. What is the revised forecast for T?

(D) Under the circumstances in (C), what is the implied, revised forecast
for the vector of individuals Y?

(E) More generally, an additional forecast of a vector of subaggregates
X = LY is obtained, with L as in (A). What is the revised forecast
for Y?

These points are considered in turn under the assumption that all forecast
distributions are assumed normal.

(A) Forecasting linear functions of Y
This is straightforward; T ∼ N[f,Q], with

f = 111′f =
n∑

i=1

fi

and

Q = 111′Q111 =
n∑

i=1

n∑
j=1

qij .

Note that the comments in Example 16.1 apply here; sensible results are
obtained if it can be assumed that the appropriate correlation structure
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amongst the individual Yi is embodied in Q. More generally, it is clear
that X = LY may be forecast using

X ∼ N[Lf ,LQL′],

for any k × n matrix L.

(B) Conditioning on subaggregates
For any k × n matrix L with X = LY, we have the joint (singular)

distribution (
Y
X

)
∼ N

[(
f
Lf

)
,

(
Q QL′

LQ LQL′

)]
.

Then, using standard multivariate normal theory from Section 17.2, the
conditional distribution for Y when X is known is

(Y|X) ∼ N[f +A(X− Lf),Q−ALQL′A′],

where

A = QL′(LQL′)−1.

Consider the special case k = 1 and L = 111′, so that X = T , the total.
Write

q = Q111 = (q1, . . . , qn)′,

where

qi =
n∑

j=1

qij , (i = 1, . . . , n).

We then have

(Y|T ) ∼ N[f +A(T − f),Q−AA′Q],

with A = q/Q. For the individual Yi, the marginal forecasts conditional
on the total are

(Yi|T ) ∼ N[fi + (qi/Q)(T − f), qii − q2i /Q].

It may be remarked that this is just the approach used to constrain seasonal
factors to zero-sum, as in Theorem 8.2, and is obviously applicable generally
when precise, linear constraints are to be imposed.

(C) Revising p(T ) based on an additional forecast
Suppose that an additional forecast of T is made in terms of a forecast

mean m and variance M . Consider how this should be used to revise the
prior forecast distribution for the total, namely T ∼ N[f,Q], from (A). Let
H = {m,M} denote the information provided. Prior to learning the values
of m and M , the information H is a random vector, and the objective is
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to calculate the posterior distribution for T when H is known, identifying
the density p(T |H). Formally, via Bayes’ Theorem,

p(T |H) ∝ p(T )p(H|T ) ∝ p(T )p(m,M |T ).

The problem is thus to identify an appropriate model for the distribution
of m and M conditional on T . This special case is an example of a wider
class of problems in which T is a very general random quantity and H may
represent a variety of information sets. The general approach here is based
on the foundational works of Lindley (1983, 1985 and 1988). There are
many possible models for p(m,M |T ), the choice of an appropriate form
depending on the features and circumstances of the application. Some
important possibilities are as follows.

(1) Various models are developed in Lindley (1983, 1988). Harrison
(1985c) develops similar ideas, both authors discussing the following
important special case. Write

p(m,M |T ) = p(m|M,T )p(M |T ),

and suppose that these two densities are given as follows.
Firstly, the conditional density of the forecast mean m when both

M and T are known is normal,

(m|M,T ) ∼ N[T,M ].

Thus, the point forecast m is assumed to be unbiased and dis-
tributed about the correct value T with variance equal to that
stated. Secondly, the component, p(M |T ), is assumed not to de-
pend on T , so it contributes nothing to the likelihood for T . Full
discussion of such assumptions is given by Lindley (1988, Section
17).
This results in

p(H|T ) = p(m,M |T ) ∝ p(m|M,T ),

as a function of T , and the revised, posterior forecast density for
the total is given through Bayes’ Theorem by

p(T |H) ∝ p(T )p(H|T ) ∝ p(T )p(m|M,T ).

From the normal prior p(T ) and likelihood p(m|M,T ) here, stan-
dard normal theory leads to a normal posterior

(T |H) ∼ N[f + ρ(m− f), (1− ρ2)Q− ρ2M ],

where ρ = Q/(Q+M). The posterior variance here may be alterna-
tively written as ρM ; in terms of precision, V[T |H]−1 = Q−1+M−1.

(2) The above approach is a special case of more general models in Lind-
ley (1983, 1988), an important class of such allowing for anticipated
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biases in the forecast data m and M . Such biases can be modelled
by writing, for some known quantities a, b and c > 0,

(m|M,T ) ∼ N[a+ bT, cM ].

This generalises (1) to allow for systematic biases a and/or b in
the point forecast m, and also, importantly, to allow for over- or
under- optimism in the forecast varianceM through the scale factor
c. With this replacing the original assumption in (1) above, (but
retaining the assumption that p(M |T ) does not involve T ), Bayes’
Theorem easily leads to the revised forecast distribution

(T |H) ∼ N[f + ρ(m− a− bf), (1− ρ2b2)Q− ρ2cM ],

where ρ = bQ/(b2Q + cM). The posterior variance here may be
alternatively written as ρ(cM/b); in terms of precision, V[T |H]−1 =
Q−1 + b2(cM)−1. The result in (1) is obtained when the forecast
information is assumed unbiased, so that a = 0 and b = c = 1.
Further extensions of this model are also considered by Lindley.

One such allows for the possibilities of uncertainties about some
or all of the quantities a, b and c, for example. In a time series
context where Y = Yt, (t = 1, 2, . . . , ), and independent forecast
information Ht = {mt,Mt} for the total Tt is sequentially obtained,
these biases can be estimated, and also allowed to vary, over time.

(3) In the above, additional forecast information is viewed essentially
as data informing about T , whether corrected for anticipated bi-
ases as in (2) or not, such data to be combined with the informa-
tion summarised in the original forecast distribution in more or less
standard ways. In some circumstances, this direct combination may
be viewed as inappropriate. One of its consequences, for example,
concerns the resulting forecast precision. In (1), ρ decreases towards
unity as the stated variance M of the additional forecast decreases,
with p(T |H) concentrating about m. Often this will lead to spuri-
ously precise inferences that may also be seriously biased. Approach
(2) can adequately allow for spurious precision and biases through
the use of, possibly uncertain, bias parameters a, b and c. Obviously,
some form of correction is desirable if the forecast information H is
derived from external sources that may suffer from biases and over-
or under-optimism.
This problem is clearly evident when dealing with additional fore-

casts provided from other forecasters, models, or agencies. In such
cases, the concepts of forecasting expertise and calibration must be
considered. West and Crosse (1992), and West (1992e), directly
address these issues in a very general framework, and they develop
models for the synthesis of various types of forecast information de-
riving from several different, possibly subjective, sources. Within
the specific, normal and linear framework here, and with a single
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additional forecast, this approach leads to results similar to those of
(1) and (2), though with important differences. Refer to the source
of the forecast information as an agent, whether this be an indi-
vidual, a group of individuals, or an alternative, possibly related,
forecasting model. The essence of the approach is to put a numerical
limit on the extent to which the agent’s forecast information affects
the revised distribution for T . Consider the extreme case in which
the forecast provided is perfectly precise, given by takingM = 0, so
that the information is H0 = {X, 0}, the agent’s model indicating
that T takes the forecast value X. Starting with T ∼ N[f,Q], the
question now concerns just how reliable this “perfect” forecast is.
One special case of these models leads to p(T |H0) = p(T |X) with

(T |X) ∼ N[f + ρ(X − f), (1− ρ2)Q]

for some quantity ρ, (0 ≤ ρ ≤ 1). The quantity ρ represents a
measure of assessed expertise of the agent in forecasting. A value
near unity is consistent with the view that the agent is rather good
in forecasting, ρ = 1 leading to direct acceptance of the stated
value X. For ρ < 1, there is an implied limit on the posterior
precision, unlike the approaches in (1) and (2). Hence this case
of hypothetical, perfect forecast information H0 serves to provide
the expertise measure ρ. The effect of the received information
H = {m,M} is modelled by substituting the moments m and M
as those of X, taking (X|H) ∼ N[m,M ]. It should be noted that
bias corrections, as in (2), may be used to correct for mis-calibration
in forecasts made by other individuals or models, writing (X|H) ∼
N[a + bm, cM ], for example. For clarity suppose here that such
biases are not deemed necessary, the agent forecast being assumed
calibrated. Then, putting together the components

(T |X) ∼ N[f + ρ(X − f), (1− ρ2)Q]

and

(X|H) ∼ N[m,M ],

it follows that the revised forecast for T is given by the posterior

(T |H) ∼ N[f + ρ(m− f), (1− ρ2)Q+ ρ2M ].

The posterior mean here is similar in form to that of the earlier
approaches, although now the extent ρ of the correction made to
the point forecast m directly relates to the assessed expertise of the
agent. The posterior variance, unlike the earlier approaches, will
exceed the prior variance Q if M > Q, never being less than the
value (1 − ρ2)Q obtained when M = 0, providing a rather more
conservative synthesis of the two information sources.
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Variations of this model, and other, more general models, appear
in West and Crosse (1992) and West (1992e). Forms of distribu-
tion other than normal lead to results with practically important
differences, as do variations in which ρ is uncertain. Details are be-
yond the scope of the current discussion, however, and the interested
reader is referred to the above sources.

(D) Revising p(Y) using an additional forecast of T
Whatever approach is used in (C) above, the result is a revised forecast

distribution (T |H) ∼ N[f∗, Q∗] for some moments f∗ and Q∗. Given that
the additional information H is relevant only to forecasting the total T , it
follows that

p(Y|T,H) = p(Y|T ),
i.e., given T , Y is conditionally independent of H. This distribution is
given in (B) by

(Y|T ) ∼ N[f + q(T − f)/Q,Q− qq′/Q],

with q = Q111.
Hence the implications of H for forecasting Y are derived through the

posterior

p(Y|H) =
∫
p(Y|T,H)p(T |H)dT =

∫
p(Y|T )p(T |H)dT.

It easily follows (the proof left as an exercise for the reader) that

(Y|H) ∼ N[f + q(f∗ − f)/Q,Q− qq′(Q−Q∗)/Q2].

(E) Additional forecasts of aggregates
Models in (D) generalise directly to the case of independent forecasts of

subaggregates, and linear combinations generally. Let X = LY as above,
so that from (A),

X ∼ N[s,S],

with moments s = Lf and S = LQL′. Independent forecast information
is obtained, providing a forecast mean m and variance matrix M. The
models of (D), in the special case that L = 111′, extend directly. Under
model (1) of part (C), the additional forecast information is taken at face
value. The direct generalisation of the results there has p(H|T ) defined via
the two components p(m|M,X) and p(M|X) given as follows. First,

(m|M,X) ∼ N[X,M];

second, p(M|X) does not depend on X. Under these assumptions, Bayes’
Theorem leads to the posterior

(X|H) ∼ N[s∗,S∗],
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where the revised moments are given by

s∗ = s+B(m− s)
and

S∗ = S−B(S+M)B′,

where

B = S(S+M)−1.

Biases can be modelled, generalising (2) of part (C), the details being left
as an exercise for the reader. Similarly, using approaches in West (1992),
additional information from an agent may be combined through models
generalising that described in part (3) of (C) above.
Given any revised moments s∗ and S∗, and again assuming that the

additional information H is relevant only to forecasting X, it follows that

p(Y|X, H) = p(Y|X),
i.e., given X, Y is conditionally independent of H. Also, from (B),

(Y|X) ∼ N[f +A(X− s),Q−ASA′],

where A = QL′S−1.
Hence p(Y) is revised in the light of H to

p(Y|H) =
∫
p(Y|X, H)p(X|H)dX =

∫
p(Y|X)p(X|H)dX,

that (as can be verified by the reader) is given by

(Y|H) ∼ N[f∗,Q∗],

with moments given by

f∗ = f +A(s∗ − s)
and

Q−A(S− S∗)A′.

Finally, the revised forecasts for any other aggregates KY, say, can be
deduced from part (A).

16.4 MATRIX NORMAL DLMS
16.4.1 Introduction and general framework
A general framework for multivariate time series analysis when the covariance
structure across series is unknown is presented in Quintana (1985, 1987),
and developed and applied in Quintana and West (1987, 1988). The re-
sulting models are extensions of the basic DLM that allow fully conjugate,
closed-form analyses of covariance structure when it may be assumed that
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the scalar component time series follow univariate DLMs with common
Ft and Gt. Thus, the models are appropriate in applications when sev-
eral similar series are to be analysed. Such a setup is common in many
application areas. In economic and financial modelling, such series arise
as measurements of similar financial indicators, share prices or exchange
rates, and compositional series such as energy consumption classified by
energy sources. In medical monitoring, collections of similar time series
are often recorded, such as with measurements on each of several, related
biochemical indicators in post-operative patient care.
The framework developed in the above references is as follows. Suppose

that we have q univariate series Ytj with, for each j = 1, . . . , q, Ytj following
a standard, univariate DLM with defining quadruple

{Ft,Gt, Vtσ
2
j ,Wtσ

2
j }.

The model is n-dimensional, and the defining quantities of the quadruple
are assumed known apart from the scale factors σ2

j , (j = 1, . . . , q). In
terms of observation and evolution equations, the univariate series Ytj is
given by

Observation: Ytj = F′
tθtj + νtj , νtj ∼ N[0, Vtσ2

j ], (16.3a)

Evolution: θtj = Gtθt−1,j + ωtj , ωtj ∼ N[000,Wtσ
2
j ]. (16.3b)

Note the key feature of the model here: the defining components Ft, Gt

andWt are the same for each of the q series. In addition, the model permits
a common, known, observational scale factor Vt across all q series, to allow,
for example, for common measurement scales, common sampling variation,
common occurrence of missing values, outliers, and so forth. Otherwise, the
series have individual state vectors θtj that are typically different. They
also possibly vary through the scales of measurement, defined via individ-
ual variances σ2

j , that are assumed uncertain. Note also that as usual σ2
j

appears as a multiplier of the known evolution variance matrix Wt. Of
course the model equations above are defined conditional upon these vari-
ances. Finally, the usual conditional independence assumptions are made:
given all defining parameters, we assume, for all j, that the errors νtj are
independent over time, the evolution errors ωtj are independent over time,
and that the two sequences are mutually independent.
The joint, cross-sectional structure across series at time t comes in via

the covariances between the observational errors of each of the q series, and
also between evolution errors. Introduce a q× q covariance matrix Σ given
by

Σ =




σ2
1 σ1,2 . . . σ1,q

σ1,2 σ2
2 . . . σ2,q

...
...

. . .
...

σ1,q σ2,q . . . σ2
q


 ,
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where for all i and j, (i = 1, . . . , q; j = 1, . . . , q; i �= j) σij determines the
covariance between series Yti and Ytj . Then the model equations (16.3a and
b) are supplemented by the cross-sectional assumptions that conditional on
Σ,

C[νti, νtj ] = Vtσij , (16.4a)

C[ωti,ωtj ] =Wtσij , (16.4b)

for i �= j.
The individual series Ytj , (j = 1, . . . , q), follow the same form of DLM,

the model parameters θtj being different across series. Correlation struc-
ture induced by Σ affects both the observational errors through (16.4a) and
the evolution errors ωtj through (16.4b). Thus, if, for example, σij is large
and positive, series i and j will tend to follow similar patterns of behaviour
in both the underlying movements in their defining state parameters and
in the purely random, observational variation about their levels. Of course
the scales σi and σj may differ.
The model equations may be written in matrix notation. For notation,

define the following quantities for each t:

• Yt = (Yt1, . . . , Ytq)′, the q-vector of observations at time t;
• νt = (νt1, . . . , νtq)′, the q-vector of observational errors at time t;
• Θt = [θt1, . . . ,θtq], the n × q matrix whose columns are the state
vectors of the individual DLMs (16.3a);
• Ωt = [ωt1, . . . ,ωtq], the n× q matrix whose columns are the evolu-
tion errors of the individual DLMs in (16.3b).

With these definitions, (16.3a and b) are re-expressible as

Y′
t = F

′
tΘt + ν′

t,

Θt = GtΘt−1 +Ωt.
(16.5)

Note here that the observation is a row vector and the state parameters are
in the form of a matrix. The fact that Ft andGt are common to each of the
q univariate DLMs is fundamental to this new representation. To proceed
we need to identify the distributions of the observational error vector νt

and the evolution error matrix Ωt, all, of course, conditional on Σ (as well
as Vt andWt for all t). The former is obviously multivariate normal,

νt ∼ N[000, VtΣ],

independently over time, where Σ defines the cross-sectional covariance
structure for the multivariate model. The latter is a matrix-variate normal
distribution (Dawid 1981; see also Press 1985), described as follows.

16.4.2 The matrix normal distribution for Ωt

Clearly, any collection of the qn elements of Ωt are multivariate normally
distributed, as is the distribution of any linear function of the elements.
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Dawid (1981) describes the class of matrix-variate (or just matrix) nor-
mal distributions that provides a concise mathematical representation and
notation for such matrices of jointly normal quantities. Full theoretical
details of the structure and properties of such distributions, and their uses
in Bayesian analyses, are given in Dawid’s paper, to which the interested
reader may refer. See also Quintana (1987, Chapter 3). Some of these
features are described here.
The random matrix Ωt has a matrix normal distribution with mean

matrix 000, left variance matrix Wt and right variance matrix Σ.
The density function is given by

p(Ωt) = k(Wt,Σ)exp{−1
2
trace[Ω′

tW
−1
t ΩtΣ

−1]},

where

k(Wt,Σ) = (2π)−qn/2|Wt|−q/2|Σ|−n/2.

Some important properties are that (i) all marginal and conditional distri-
butions of elements of Ωt, and linear functions of them, are uni-, multi-,
or matrix- variate normal; (ii) the definition of the distribution remains
valid when either or both of the variance matrices is non-negative definite;
(iii) the distribution is non-singular if and only if each variance matrix is
positive definite; and (iv) if either ofWt and Σ is the zero matrix then Ωt

is zero with probability one.
Concerning the model (16.5), note that q = 1 leads to a standard, uni-

variate DLM with unknown observational scale factor Σ = σ2
1 . Also, for

any q, if Σ is diagonal then the q series Ytj are unrelated. The distribution
for Ωt is denoted, in line with the notation in the above references, by

Ωt ∼ N[000,Wt,Σ]. (16.6)

A simple extension of (16.5) to include a known mean vector for each of
the evolution error vectors poses no problem. Suppose that E[ωtj ] = htj
is known at time t for each j, and let Ht be the n× q mean matrix Ht =
[ht1, . . . ,htq]. Then Ωt −Ht has the distribution (16.6); equivalently, Ωt

has a matrix normal distribution with the same variance matrices, but now
with mean matrix Ht, the notation being Ωt ∼ N[Ht,Wt,Σ].

16.4.3 The matrix normal/inverse Wishart distribution
Having introduced the matrix normal distribution for the matrix of evolu-
tion errors, it is no surprise that the same form of distribution provides the
basis of prior and posterior distributions for the state matrices Θt for all
t. This is directly parallel to the use of multivariate normals in standard
DLMs when the state parameters form a vector. Analysis conditional on Σ
is completely within the class of matrix normal distributions, but, in line
with the focus of this chapter, the results are developed below in the more
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general framework in which Σ is unknown. Thus, we consider the class
of matrix normal/inverse Wishart distributions suitable for learning
jointly about Θt and Σ. Before proceeding to the model analysis in the
next section, the structure of this class of distributions is summarised here
(free from notational complications due to the t subscripts).

(A) The inverse Wishart distribution
Consider a q × q positive definite random matrix Σ. Following Dawid
(1981), Σ has an inverse (or inverted) Wishart distribution if and
only if the density of the distribution of Σ is given (up to a constant of
normalisation) by

p(Σ) ∝ |Σ|−(q+n/2)exp[−1
2
trace(nSΣ−1)],

where n > 0 is a known scalar degrees of freedom parameter, and S a known
q× q positive definite matrix. Full discussion and properties appear in Box
and Tiao (1973, Section 8.5), and Press (1985, Chapter 5), some features
of interest being as follows.

• Φ = Σ−1 has a Wishart distribution with n degrees of freedom and
mean E[Φ] = S−1. Thus, S is an estimate of Σ, the harmonic mean
under the inverse Wishart distribution. If S has elements

S =




S1 S1,2 S1,3 . . . S1,q
S1,2 S2 S2,3 . . . S2,q
...

...
...

. . .
...

S1,q S2,q S3,q . . . Sq


 ,

then Sj is an estimate of the variance σ2
j , and Sjk an estimate of

the covariance σjk, for all j and k, (j �= k).
• If q = 1, so that Σ is scalar, then so are Φ = φ and S = S. Now
φ has the usual gamma distribution, φ ∼ G[n/2, nS/2] with mean
E[φ] = 1/S.

• For n > 2, E[Σ] = Sn/(n− 2).
• The marginal distributions of the variances σ2

j on the diagonal of Σ
are inverse gamma; with precisions φj = σ−2

j , φj ∼ G[n/2, nSj/2].
• As n → ∞, the distribution concentrates around S, ultimately de-
generating there.

By way of notation here, the distribution is denoted by

Σ ∼W−1
n [S]. (16.7)

(B) The matrix normal/inverse Wishart distribution
Suppose that (16.7) holds, and introduce a further random matrix Θ of
dimension p×q. Suppose that conditional on Σ, Θ follows a matrix-normal
distribution with p× q mean matrix m, p× p left variance matrix C, and
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right variance matrix Σ. The defining quantities m and C are assumed
known. Thus, following (16.6),

(Θ|Σ) ∼ N[m,C,Σ]. (16.8)

Equations (16.7) and (16.8) define a joint distribution for Θ and Σ that is
referred to as a matrix normal/inverse Wishart distribution. The spe-
cial case of scalar Σ, when q = 1, corresponds to the usual normal/inverse
gamma distribution (Section 16.3) in variance learning in DLMs in earlier
chapters. Dawid (1981) details this class of distributions, deriving many
important results. By way of notation, if (16.7) and (16.8) hold, then the
joint distribution is denoted by

(Θ,Σ) ∼ NW−1
n [m,C,S]. (16.9)

Equation (16.9) is now understood to imply both (16.7) and (16.8). In
addition, the marginal distribution of Θ takes the following form.

(C) The matrix T distribution
Under (16.9) the marginal distribution of the matrix Θ is a matrix-variate
analogue of the multivariate T distribution (Dawid 1981). This is com-
pletely analogous to the matrix normal, the differences lying in the tail
weight of the marginal distributions of elements of Θ. As with the ma-
trix normal, the component columns of Θ themselves follow p-dimensional
multivariate T distributions with n degrees of freedom. Write

Θ = [θ1, . . . ,θq]

and

m = [m1, . . . ,mq].

It follows (Dawid 1981) that

θj ∼ Tn[mj ,CSj ], (j = 1, . . . , q).

If n > 1, E[θj ] = mj . If n > 2, V[θj ] = CSjn/(n − 2) and the covariance
structure between the columns is given by

C[θj ,θk] = CSjkn/(n− 2), (j, k = 1, . . . , p; j �= k).

As with the matrix normal notation in (16.8), the matrix T distribution of
Θ is denoted by

Θ ∼ Tn[m,C,S]. (16.10)

16.4.4 Updating and forecasting equations
The model (16.5) is amenable to a conjugate, sequential analysis that gen-
eralises the standard analysis for univariate series with variance learning.
The analysis is based on the use of matrix normal/inverse Wishart prior
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and posterior distributions for the n × q state matrix Θt and the q × q
variance matrix Σ at all times t. The theory is essentially based on the
Bayesian theory in Dawid (1981). Full details are given in Quintana (1985,
1987), the results being stated here without proof and illustrated in follow-
ing sections.
Suppose Yt follows the model defined in equations (16.3-16.6), sum-

marised as

Y′
t =F

′
tΘt + ν′

t, νt ∼ N[000, VtΣ],

Θt = GtΘt−1 +Ωt, Ωt ∼ N[000,Wt,Σ].
(16.11)

Here νt are independent over time, Ωt are independent over time, and the
two series are mutually independent. Suppose also that the initial prior for
Θ0 and Σ is matrix normal/inverse Wishart, as in (16.9), namely

(Θ0,Σ|D0) ∼ NW−1
n0
[m0,C0,S0], (16.12)

for some known defining parameters m0, C0, S0 and n0. Then, for all
times t > 1, the following results apply.

Theorem 16.4. One-step forecast and posterior distributions in the model
(16.11) and (16.12) are given, for each t, as follows.

(a) Posteriors at t− 1:
For some mt−1, Ct−1, St−1 and nt−1,

(Θt−1,Σ|Dt−1) ∼ NW−1
nt−1

[mt−1,Ct−1,St−1].

(b) Priors at t:

(Θt,Σ|Dt−1) ∼ NW−1
nt−1

[at,Rt,St−1],

where

at = Gtmt−1 and Rt = GtCt−1G′
t +Wt.

(c) One-step forecast:

(Yt|Σ, Dt−1) ∼ N[ft, QtΣ]

with marginal

(Yt|Dt−1) ∼ Tnt−1 [ft, QtSt−1],

where

f ′t = F
′
tat and Qt = Vt + F′

tRtFt.
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(d) Posteriors at t:

(Θt,Σ|Dt) ∼ NW−1
nt
[mt,Ct,St],

with

mt = at +Ate′
t and Ct = Rt −AtA′

tQt,

nt = nt−1 + 1 and St = n−1
t [nt−1St−1 + ete′

t/Qt],

where

At = RtFt/Qt and et = Yt − ft.

Proof. Omitted, an exercise for the reader. Full details appear in Quin-
tana (1985, 1987).

�

As mentioned, this is a direct extension of the univariate theory. The-
orem 4.3 is the special case q = 1 (and with no real loss of generality,
Vt = 1).† Here, generally, Θt is a matrix, the prior and posterior dis-
tributions in (a), (b) and (d) being matrix normal. Thus, the prior and
posterior means at and mt are both n× q matrices, their columns provid-
ing the means of the q state vectors of the individual DLMs (16.3a and b).
Notice the key features that since Ft, Gt andWt are common to these q
DLMs, the elements Rt, Ct, At and Qt are common too. Thus, although
there are q series analysed, the calculation of these elements need only be
done once. Their dimensions are as in the univariate case, Rt and Ct are
both n × n, the common adaptive vector At is n × 1, and the common
variance Qt is a scalar.
The analysis essentially duplicates that for the individual univariate

DLMs, this being seen in detail by decomposing the vector/matrix results
as follows.

(a) For each of the q models, the posterior in (a) of the Theorem has
the following marginals:

(θt−1,j |σ2
j , Dt−1) ∼ N[mt−1,j ,Ct−1σ

2
j ]

and

(σ−2
j |Dt−1) ∼ G[nt−1/2, dt−1,j/2],

†Note that results are given here in the original form with the variance matrices
Ct, Wt, etc. all being subject to multiplication by scale factors from Σ, as in the
univariate case in Theorem 4.4. The alternative, and preferred, representation
summarised in the table in Section 4.6 and used throughout the book, has no
direct analogue here in the multivariate framework.
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where dt−1,j = nt−1St−1,j . Unconditional on the variance σ2
j ,

(θt−1,j |Dt−1) ∼ Tnt−1 [mt−1,j ,Ct−1St−1,j ].

Thus, for each j, the prior is the standard normal/gamma. Note
again that the scale-free variance matrix Ct−1 is common across the
q series.

(b) Evolving to time t, similar comments apply to the prior distribution
in (b). Writing at in terms of its columns

at = [at1, . . . ,atq],

it is clear that

atj = Gtmt−1,j , (j = 1, . . . , q).

Thus, for each of the q univariate DLMs, the evolution is standard,
(θtj |Dt−1) ∼ Tnt−1 [atj ,RtSt−1,j ], where atj and Rt are calculated
as usual. Again note that Rt is common to the q series and so need
only be calculated once.

(c) In the one-step ahead forecasting result (c), the q-vector of forecast
means ft = (ft1, . . . , ftq)′ has elements ftj = F′

tatj , (j = 1, . . . , q),
that are as usual for the univariate series. So is the one-step ahead,
scale-free variance Qt. For the jth series, the forecast distribution
is Student T,

(Ytj |Dt−1) ∼ Tnt−1 [ftj , QtSt−1,j ],

as usual.
(d) In updating in part (d) of the theorem, the equation for the common

variance matrix Ct is as usual, applying to each of the q series. The
mean matrix update can be written column by column, as

mtj = atj +Atetj , (j = 1, . . . , q),

where for each j, etj = Ytj − ftj is the usual forecast error and At

the usual, and common, adaptive vector. For Σ, nt increases by
one degree of freedom, being common to each series. The update
for the estimate St can be decomposed into elements as follows. For
the variances on the diagonal,

Stj = n−1
t (nt−1St−1,j + e2tj/Qt).

With dtj = ntStj , then dtj = dt−1,j + e2tj/Qt and (σ−2
j |Dt) ∼

G[nt/2, dtj/2]. This is again exactly the standard updating, with a
common value of nt across the q series.

Thus, although we are analysing several related series together, there
is no effect on the posterior and forecast distributions generated. The
univariate theory applies separately to each of the q series, although the
calculations are reduced since some of the components are common. The



606 16 Multivariate Modelling and Forecasting

difference lies in the fact that the covariance structure across series is also
identified through part (d) of the theorem. Here the full posterior of Σ is
given by

(Σ|Dt) ∼W−1
nt
[St],

having mean Stnt/(nt−2) if nt > 2, and harmonic mean St. The covariance
terms are updated via

Stjk = n−1
t (nt−1St−1,jk + etjetk/Qt), (j, k = 1, . . . , q; j �= k).

It follows that

Stjk =(n0 + t)−1(n0S0jk +
t∑

r=1

erjerk/Qr)

=(1− αt)S0,jk + αtcjk(t),

where αt = t/(n0 + t) is a weight lying between 0 and 1, and

cjk(t) =
1
t

t∑
r=1

erjerk/Qr.

This is just the sample correlation of the standardised, one-step ahead
forecast errors observed up to time t. Thus, Stjk is a weighted average of
the prior estimate S0,jk and the sample estimate cjk(t).

16.4.5 Further comments and extensions
Further theoretical and practical features of the analysis, and some exten-
sions, deserve mention.

(a) Step ahead forecasting and filtering
Forecasting ahead to time t + k, the standard results apply to each of

the q univariate series without alteration, giving Student T distributions

(Yt+k,j |Dt) ∼ Tnt [ftj(k), Qt(k)Stj ].

The joint forecast distribution is multivariate T,

(Yt+k|Dt) ∼ Tnt [ft(k), Qt(k)St],

where ft(k) = [ft1(k), . . . , ftq(k)]′.
Similarly, retrospective time series analysis is based on filtered distribu-

tions for the state vectors, the usual results applying for each series. Thus,
for 1 < k ≤ t,

(θt−k,j |Dt) ∼ Tnt
[atj(−k),Rt(−k)Stj ],

with the filtered mean vector atj(−k) and the common filtered variance
matrix Rt(−k) calculated as in Theorem 4.4. The filtered distribution of
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the state matrix Θt−k is matrix-variate T, being defined from the filtered
joint distribution

(Θt−k,Σ|Dt) ∼ NW−1
nt
[at(−k),Rt(−k),St],

where at(−k) = [at1(−k), . . . ,atq(−k)]. In full matrix notation, the filter-
ing equation for the matrix mean is analogous to that in Theorem 4.4 for
each of its columns, given by

at(−k) =mt−k +Ct−kG′
t−k+1R

−1
t−k+1[at(−k + 1)− at−k+1].

(b) Correlation structure and principal components analysis
The covariance structure across the series can be explored by considering

the inverse Wishart posterior for Σ at any time t. The matrices St provide
estimates of the variances and covariances of the series. These provide obvi-
ous estimates of the correlations between series, that of the correlation σjk,
(j, k = 1, . . . , q; j �= k), being given by Stjk/(StjStk)1/2. These estimates
can be derived as optimal Bayesian estimates of the actual correlations in
a variety of ways, one such being developed in Quintana (1987), and noted
in Quintana and West (1987).
One common way of exploring joint structure is to subject an estimate

of the covariance matrix to a principal components decomposition (Mar-
dia, Kent and Bibby 1979, Chapter 8; and Press 1985, Chapter 9). Σ is
non-negative definite, and usually positive definite, so it has q real-valued,
distinct and non-negative eigenvalues with corresponding real-valued and
orthogonal eigenvectors. The orthonormalised eigenvectors define the prin-
cipal components of the matrix. Denote the eigenvalues of Σ by λj , (j =
1, . . . , q), the corresponding orthonormal eigenvectors by ηj , (j = 1, . . . , q),
satisfying η′

jηj = 1 and η′
iηj = 0 for i �= j. Suppose, without loss of gen-

erality, that they are given in order of decreasing eigenvalues, so that η1
is the eigenvector corresponding to the largest eigenvalue λ1, and so forth.
Then the covariation of the elements of any random vector Y having vari-
ance matrix Σ is explained through the random quantities Xj = η′

jY,
(j = 1, . . . , q), the principal components of Y. These X variates are un-
correlated and have variances V[Xj ] = λj , decreasing as j increases. Total
variation inY is measured by λ = trace(Σ) =

∑q
j=1 λj , and so the j

th prin-
cipal component explains a proportion λj/λ of this total. Interpretation of
such a principal components decomposition rests upon (i) identifying those
components that contribute markedly to the variation, often just the first
one or two; and (ii) interpreting the vectors ηj defining these important
components.
As in estimating correlations, Quintana (1987) shows that the eigenval-

ues and eigenvectors of the estimate St are, at time t, optimal Bayesian
estimates of those of Σ, and so may be considered as summarising the co-
variance structure based on the posterior at t. The use of such estimated
principal components is described in the next section in the context of an
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application. For further applications and much further discussion, see Press
(1985) and Mardia, Kent and Bibby (1979) as referenced above.

(c) Discount models
The use of discount factors to structure evolution variance matrices ap-

plies here directly as in the univariate DLM.Wt is common to each of the
q univariate series, as are Ct−1, Rt, etc. Thus,Wt may be based on Ct−1
using discount factors that are common to each of the q univariate models.

(d) Time-varying Σ
In Section 10.8 consideration was given to the possibility that observa-

tional variances may vary stochastically over time, and to several arguments
in favour of models at least allowing for such variation. Those arguments
are applied and extended here. One way of modelling such variation is
via an important extension of the stochastic model for time-varying vari-
ances, and the resulting use of variance discounting in Section 10.8.2. The
results of such model extensions are summarised here and applied in the
following sections. The basic issue is that of appropriately modelling a
time-varying sequence of variance matrices Σt, and attempting to retain
the nice conjugate structure of prior and posterior Wishart distributions.
The basic technique was developed originally via direct extension of vari-
ance discounting ideas to variance matrix discounting, in Quintana (1985,
1987), and developed and applied in Quintana and West (1987, 1988). A
formal theoretical foundation is provided by a multivariate extension of the
scalar model in equation (10.4) of Section 10.8.2, based on results about
combining Wishart and specific versions of matrix-variate beta distribu-
tions in Uhlig (1994, 1997). Further details appear in Quintana, Chopra
and Putnam (1995), and in as yet unpublished results in joint work of J.M.
Quintana and F. Li; the essentials are as follows.
Write Σt−1 for the observational variance matrix at time t−1 and assume

that as in the constant variance case, the time t−1 posterior distribution is
inverse Wishart with nt−1 degrees of freedom and variance estimate St−1,
i.e., (Σt−1|Dt−1) ∼W−1

nt−1
[St−1]. Let Ut−1 be the upper triangular matrix

in the Cholesky decomposition of Σt−1, so that Σt−1 = U′
t−1Ut−1. For

any specified n× n matrix Bt, consider the resulting matrix U′
t−1BtUt−1.

As outlined in Quintana et al (1995), we can find an appropriate matrix-
variate distribution such that for appropriate choices of defining parame-
ters, a matrix Bt generated from such a distribution leads to the product
U′

t−1BtUt−1 having an inverse Wishart distribution too. In particular, for
any specified discount factor β, (0 < β ≤ 1), such a matrix Bt can be found
such that

Σt = U′
t−1BtUt−1

has the implied prior distribution

(Σt|Dt−1) ∼W−1
βnt−1

[St−1].
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The relevant distribution for Bt is a scaled version of a matrix-variate
“inverse beta” distribution. As a result, the evolution from Σt−1 to Σt

implied by this multiplicative model results in a loss of precision about the
variance matrix, evident simply in the reduction of the degrees of freedom
from nt−1 to βnt−1. The analogy with the development in the case of a
scalar variance in Section 10.8 is immediate; here we have a direct multi-
variate extension, and models that formally justify the use of discounting
in learning a time-varying variance matrix as originally developed in Quin-
tana and West (1987). Using this model, updating at time t now takes the
form

(Σt|Dt) ∼W−1
nt
[St],

where

nt = βnt−1 + 1 and St = n−1
t (βnt−1St−1 + ete′

t/Qt).

It follows that for 0 < β < 1, the posterior will not degenerate as t increases.
Following Section 10.8.3, nt converges to the finite limit (1 − β)−1. Also,
for large t, the posterior estimate St is given by

St ≈ (1− β)
t−1∑
r=0

βret−re′
t−r/Qt−r.

Hence the estimates of variances and covariances across series are expo-
nentially weighted moving averages of past sample variances and sample
covariances.
In filtering backwards in time, the univariate theory of filtered posteriors

of Section 10.8.4 can be redeveloped for Σt−k. Thus, for k > 1, the filtered
estimate of Σt−k at time t is given by St(−k), recursively calculated using

St(−k)−1 = (1− β)S−1
t−k + βSt(−k + 1)−1,

and with associated degrees of freedom parameters nt(−k) evaluated as

nt(−k) = (1− β)nt−k + βnt(−k + 1).

Of course the static Σ model obtains when β = 1. Otherwise, a value of
β slightly less than unity at least allows the flexibility to explore a minor
deviation away from constancy of Σt that may be evidence of true changes
in covariance structure, model misspecification, and so forth. See Section
10.8 for further discussion.

(e) Matrix observations
The matrix model framework extends directly to matrix-valued time se-

ries, applying when Yt is an r × q matrix of observations, comprising q
separate time series of r-vector valued observations, in which the q series
follow multivariate DLMs as in Section 16.2 but having the same Ft and
Gt elements. Readers interested in further theoretical details of this, the
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other topics in this section, and further related material, should refer to the
earlier-referenced works by Dawid, Quintana and West, and also the book
by Press for general background reading. Related models are discussed,
from different perspectives, in Harvey (1986), and Highfield (1984).

16.4.6 Application to exchange rate modelling
The model developed above is illustrated here, following Quintana and

West (1987). The interest is in analysing the joint variation over a period
of years in monthly series of observations on international exchange rates.
The data series considered are the exchange rates for pounds sterling of
the U.S. dollar, the Canadian dollar, the Japanese yen, the Deutschmark,
the French franc and the Italian lira. The original analysis in Quintana
and West (1987) concerned data from January 1975 up to and including
August 1984. Figure 16.1 displays plots of these six exchange rates from
the same starting point but including data up to the end of 1986. This full
data set is given in Table 16.1.†

From the graphs of the series, it can be seen that the trends may be
approximately modelled as linear over rather short periods of time, the
magnitudes and directions of the trends subject to frequent and often very
marked change. After logarithmic transformation, the local linearity is still
strongly evident, the marked changes no less important but the general
appearance less volatile.
The model is based on the use of logarithmic transformations of each of

the series, and variation in each of these transformed series is described as
locally linear, using a second-order polynomial DLM, {E2,J2(1), ., .}. Note
that this is not assumed to be a useful forecasting model for any other than
the very short term (one-step ahead), but is used as a flexible, local trend
description that has the ability to adapt to the series as time progresses,
so long as the evolution variances are appropriately large. The focus is on
identifying the covariance structure across the series, and the basic DLM
form serves mainly to adapt appropriately to changes in trends over time.
Various analyses are reported by Quintana andWest. Here slightly different
models are considered, the evolution variance sequence being based on the
use of discount factors unlike those originally considered in by Quintana
and West. The general results are rather similar, however.
The model requires the specification of the observational variance fac-

tors Vt, the evolution variances Wt, the variance matrix discount factor
β and the initial prior (16.12). We report results from a model in which
Vt = 1 for all t, as is usually the case in the absence of information about
additional sampling variation or recording errors, etc. The marked and
frequent abrupt changes in trend would most adequately be handled using

†Data source: U.K. Central Statistical Office data bank, by permission of the
Controller of H.M. Stationery Office
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Figure 16.1 International exchange rate time series
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Table 16.1. International exchange rate time series
(Source: C.S.O. Data Bank)

Year Month $ U.S.A. $ Canada Yen Franc Lira Mark

1975 1 2.36 2.35 707.8 10.31 1522 5.58
2 2.39 2.40 698.3 10.24 1527 5.57
3 2.42 2.42 695.1 10.15 1526 5.60
4 2.37 2.40 692.4 9.95 1502 5.63
5 2.32 2.39 676.3 9.41 1456 5.45
6 2.28 2.28 668.9 9.13 1426 5.34
7 2.19 2.19 647.5 9.23 1419 5.39
8 2.12 2.12 630.1 9.25 1413 5.44
9 2.08 2.09 624.8 9.13 1413 5.45
10 2.06 2.06 621.9 9.06 1395 5.31
11 2.05 2.05 620.2 9.03 1391 5.30
12 2.02 2.02 618.0 9.01 1381 5.30

1976 1 2.03 2.04 617.8 9.08 1424 5.28
2 2.03 2.01 611.0 9.06 1554 5.19
3 1.94 1.92 584.2 8.99 1605 4.98
4 1.85 1.82 552.3 8.62 1622 4.69
5 1.81 1.77 540.5 8.50 1549 4.63
6 1.76 1.72 527.9 8.36 1498 4.55
7 1.79 1.74 526.4 8.64 1495 4.60
8 1.78 1.76 518.6 8.86 1493 4.51
9 1.73 1.69 497.1 8.51 1460 4.31
10 1.64 1.60 477.1 8.16 1401 3.98
11 1.64 1.61 483.0 8.16 1416 3.95
12 1.68 1.71 494.3 8.37 1455 4.00

1977 1 1.71 1.73 498.3 8.52 1506 4.10
2 1.71 1.76 487.2 8.52 1509 4.11
3 1.72 1.81 481.7 8.55 1523 4.11
4 1.72 1.81 473.5 8.54 1525 4.08
5 1.72 1.80 476.7 8.51 1523 4.05
6 1.72 1.82 468.6 8.49 1522 4.05
7 1.72 1.83 456.1 8.36 1520 3.93
8 1.74 1.87 463.8 8.52 1535 4.03
9 1.74 1.87 465.2 8.58 1540 4.05
10 1.77 1.95 450.9 8.60 1559 4.03
11 1.82 2.02 444.8 8.81 1596 4.07
12 1.85 2.04 446.6 8.88 1623 3.99
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Table 16.1. (continued)

Year Month $ U.S.A. $ Canada Yen Franc Lira Mark

1978 1 1.93 2.13 466.1 9.13 1686 4.10
2 1.94 2.16 466.0 9.39 1668 4.03
3 1.91 2.15 442.3 8.99 1633 3.88
4 1.85 2.11 410.4 8.49 1589 3.78
5 1.82 2.03 411.0 8.45 1582 3.83
6 1.84 2.06 393.2 8.41 1580 3.83
7 1.89 2.13 378.2 8.41 1604 3.89
8 1.94 2.21 365.7 8.43 1623 3.87
9 1.96 2.28 372.1 8.54 1625 3.86
10 2.01 2.37 368.6 8.45 1628 3.69
11 1.96 2.30 375.8 8.54 1651 3.73
12 1.98 2.34 388.8 8.57 1671 3.73

1979 1 2.01 2.39 396.4 8.50 1677 3.71
2 2.00 2.40 401.6 8.56 1683 3.72
3 2.04 2.39 420.5 8.73 1714 3.79
4 2.07 2.38 447.9 9.02 1748 3.93
5 2.06 2.38 449.6 9.08 1752 3.93
6 2.11 2.48 461.3 9.21 1785 3.98
7 2.26 2.63 489.2 9.60 1854 4.12
8 2.24 2.62 487.4 9.52 1833 4.10
9 2.20 2.56 489.2 9.24 1785 3.95
10 2.14 2.52 493.3 9.00 1770 3.84
11 2.13 2.52 522.5 8.87 1760 3.78
12 2.20 2.57 528.0 8.94 1785 3.81

1980 1 2.27 2.64 538.8 9.15 1823 3.91
2 2.29 2.65 558.9 9.37 1854 4.00
3 2.21 2.59 548.2 9.51 1896 4.08
4 2.22 2.63 552.2 9.60 1934 4.14
5 2.30 2.70 525.4 9.63 1942 4.13
6 2.34 2.69 509.2 9.60 1951 4.13
7 2.37 2.73 524.3 9.62 1973 4.14
8 2.37 2.75 530.8 9.83 2008 4.24
9 2.40 2.80 515.3 9.99 2045 4.30
10 2.42 2.83 505.6 10.28 2111 4.45
11 2.40 2.84 510.1 10.63 2177 4.59
12 2.35 2.81 491.1 10.70 2194 4.62
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Table 16.1. (continued)

Year Month $ U.S.A. $ Canada Yen Franc Lira Mark

1981 1 2.40 2.86 485.9 11.16 2289 4.83
2 2.29 2.75 471.8 11.41 2343 4.92
3 2.23 2.66 466.6 11.09 2303 4.70
4 2.18 2.59 467.9 11.13 2345 4.71
5 2.09 2.51 461.0 11.47 2384 4.79
6 1.97 2.38 442.3 11.16 2339 4.69
7 1.88 2.27 435.1 10.87 2278 4.58
8 1.82 2.23 425.2 10.89 2267 4.56
9 1.82 2.18 416.8 10.25 2159 4.28
10 1.84 2.22 426.4 10.36 2196 4.14
11 1.90 2.26 424.8 10.69 2267 4.24
12 1.91 2.26 416.5 10.89 2300 4.30

1982 1 1.89 2.25 423.8 10.99 2317 4.33
2 1.85 2.24 435.1 11.12 2338 4.37
3 1.81 2.21 435.6 11.10 2337 4.30
4 1.77 2.17 431.9 11.05 2339 4.24
5 1.81 2.23 428.8 10.89 2321 4.18
6 1.76 2.24 441.2 11.54 2385 4.26
7 1.73 2.20 442.1 11.89 2397 4.28
8 1.73 2.15 446.6 11.94 2400 4.28
9 1.71 2.12 450.4 12.11 2415 4.29
10 1.70 2.09 460.1 12.13 2442 4.29
11 1.63 2.00 431.9 11.79 2400 4.17
12 1.62 2.00 392.4 11.11 2265 3.92

1983 1 1.57 1.93 366.0 10.66 2162 3.76
2 1.53 1.88 361.5 10.54 2142 3.72
3 1.49 1.83 354.9 10.44 2129 3.59
4 1.54 1.90 366.2 11.28 2239 3.76
5 1.57 1.93 369.2 11.67 2308 3.88
6 1.55 1.91 371.8 11.87 2340 3.95
7 1.53 1.88 367.3 11.89 2340 3.95
8 1.50 1.85 367.0 12.08 2386 4.01
9 1.50 1.85 363.3 12.08 2400 4.00
10 1.50 1.85 348.6 11.90 2368 3.90
11 1.48 1.83 347.3 12.06 2401 3.97
12 1.44 1.79 336.4 12.02 2391 3.94
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Table 16.1. (continued)

Year Month $ U.S.A. $ Canada Yen Franc Lira Mark

1984 1 1.41 1.76 329.1 12.10 2403 3.96
2 1.44 1.80 336.4 11.97 2402 3.89
3 1.46 1.85 327.9 11.65 2350 3.78
4 1.42 1.82 320.3 11.56 2327 3.76
5 1.39 1.80 320.3 11.71 2357 3.82
6 1.38 1.80 321.4 11.59 2333 3.77
7 1.32 1.75 320.8 11.55 2311 3.76
8 1.31 1.71 318.3 11.64 2338 3.79
9 1.26 1.65 308.8 11.69 2352 3.81
10 1.22 1.61 301.1 11.48 2317 3.74
11 1.24 1.63 302.2 11.40 2309 3.71
12 1.19 1.57 294.3 11.29 2270 3.69

1985 1 1.13 1.49 286.8 10.95 2199 3.58
2 1.09 1.48 284.7 11.02 2229 3.61
3 1.12 1.55 289.8 11.31 2336 3.70
4 1.24 1.70 312.3 11.69 2446 3.83
5 1.25 1.72 314.6 11.84 2476 3.88
6 1.28 1.75 318.7 11.96 2502 3.92
7 1.38 1.86 332.6 12.21 2620 4.01
8 1.38 1.88 328.4 11.81 2591 3.87
9 1.37 1.87 322.8 11.81 2597 3.87
10 1.42 1.94 305.2 11.46 2537 3.76
11 1.44 1.98 293.6 11.38 2523 3.73
12 1.45 2.02 293.2 11.11 2478 3.63

1986 1 1.42 2.00 284.7 10.66 2368 3.47
2 1.43 2.01 263.8 10.23 2269 3.34
3 1.47 2.06 262.1 10.23 2263 3.32
4 1.50 2.08 262.2 10.79 2332 3.40
5 1.52 2.09 253.8 10.79 2322 3.39
6 1.51 2.10 252.8 10.74 2312 3.37
7 1.51 2.08 239.4 10.45 2229 3.25
8 1.49 2.06 229.2 9.99 2111 3.07
9 1.47 2.04 227.6 9.83 2075 3.00
10 1.43 1.98 223.1 9.36 1980 2.86
11 1.43 1.98 232.0 9.43 1996 2.88
12 1.44 1.98 233.2 9.39 1984 2.86
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some form of monitoring and intervention technique. Alternatively, a sim-
pler approach to tracking the changes in the series is to use a model allowing
a reasonably large degree of variation in the trend component over all time.
The model reported here is structured using a single discount factor δ = 0.7
for the trend component, so thatWt = J2(1)Ct−1J2(1)′(0.7−1− 1), for all
t. This very low discount factor is consistent with the view that there is to
be a fair degree of change over time, particularly in the growth components
of the series. The initial prior for the trend and growth parameters at t = 0
(January 1975) is very vague, being specified via m0 = 000, the 2 × 6 zero
matrix, and

C0 =
(
100 0
0 4

)
.

Recall that we are working on the logarithmic scale for each of the series.
For Σ, the initial prior is also rather vague, based on n0 = 1 and S0 = I,

the 6 × 6 identity matrix. Consistent with the volatility of the individ-
ual trends, it is apparent that the relationships amongst the series can be
expected to vary noticeably over time. This is reinforced through consid-
eration of changes in economic trading relationships between the various
countries, and between the EEC, Japanese and North American sectors,
over the long period of 12 years. Such changes are also evident from the
figures, particularly, for example, in the changes from concordance to dis-
cordance, and vice versa, between the trends of the yen and each of the
North American currencies. Thus, variance discounting is used to allow
for adaptation to changes in Σ over time, and again consistent with the
marked nature of changes anticipated, a fairly low variance discount factor
β = 0.9 is used. Note from the previous section that the limiting value of
the degrees of freedom parameter nt in this case is (1 − β)−1 = 10, and
that this limit is very rapidly approached (in this case, from below since
n0 = 1). At any time t, the estimate St is less heavily dependent on data
in the past than in the static model, and therefore it more closely estimates
local, or current, cross-sectional structure.
The estimate St may be analysed using a principal components decompo-

sition as described in the previous section. This provides inferences about
Σ based on the data up to that time. On the basis of the model, the one-
step ahead forecast variance matrix at t is simply proportional to St, so
that this is an analysis of the covariance structure of the forecast distribu-
tion. Having proceeded to the end of the analysis at t = 144, the revised,
filtered estimates S144(−k) provide the raw material for such analyses.
Table 16.2 provides information from the principal components analy-

sis of the estimated covariance matrix S144(−36), the filtered estimate of
Σ at t = 108, corresponding to December 1983; this provides comparison
with Quintana and West (1987) who consider time t = 116, albeit using
a different model. Of the six eigenvalues of the estimate S144(−36), the
first three account for over 97% of the total estimated variation in Σ. The
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Table 16.2. Weights of currencies in first three components
(December 1983)

λ1 λ2 λ3

$ U.S.A. 0.27 −0.64 −0.13
$ Canada 0.27 −0.65 −0.09
Yen 0.50 0.06 0.86
Franc 0.49 0.25 −0.28
Lira 0.43 0.15 −0.23
Mark 0.44 0.29 −0.31

% Variation 73 18 6

proportions of total variation contributed by the first three components are
approximately 73%, 18% and 6% respectively. The first principal compo-
nent clearly dominates, explaining almost three quarters of total variation,
although the second is also important, the third rather less so. Table 16.2
gives the corresponding three eigenvectors, defining the weightings of the el-
ements of principal components Xj = λ′

jY108 (for notational convenience,
the earlier notation λj is used for the eigenvalues, although recall that they
are estimates based on S144(−36)).
The interpretation of the eigenvectors, and of the first three principal

components, is relatively straightforward and in line with the economic
background. Bearing in mind that the vectors in the tables are uncertain
estimates, the first vector implies that the first principal component is a
weighted average of the six currencies, providing an average measure of the
international value of the pound (as estimated for December 1983). In fact
the compound measure defined by this component is very similar to U.K.
official measures relative to “baskets” of currencies. Similar conclusions
are found using a range of similar models. See Quintana (1987), Chapter
6, especially Figure 6.3, for further details. This average measure, and its
development over time, provides an assessment of the buoyancy of sterling
on the international exchanges, and is obviously (and unsurprisingly) the
major factor underlying the joint variation of the six exchange rates. The
second principal component explains about 18% of the variation through a
contrast of an average of the North American rates with an average of those
of the EEC countries. The yen receives little weight here. The contrast
arises through the opposite signs of the weights between the two sectors,
and reflects the major effects on the value of sterling of trading relationships
between the two sectors. Note also the magnitudes of the weights. The
U.S. and Canadian dollars are roughly equally weighted, being extremely
highly correlated and so essentially indistinguishable. In the contrasting
sector, the deutschmark and franc are also roughly equally weighted, the
lira somewhat less so, reflecting the dominance in the EEC of the effect of
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Table 16.3. Weights of currencies in first three components
(December 1986)

λ1 λ2 λ3

$ U.S.A. 0.37 −0.51 0.29
$ Canada 0.33 −0.52 0.34
Yen 0.42 0.67 0.59
Franc 0.42 0.04 −0.53
Lira 0.47 0.06 −0.20
Mark 0.42 0.10 −0.35

% Variation 71 20 9

the German and French currencies on sterling. Finally, the third component
contrasts the yen with the remaining currencies, though giving relatively
little weight to the North American currencies. This therefore essentially
reflects the strength of the yen relative to an aggregate measure of EEC
countries.
Proceeding to the end of the series, t = 144 at December 1986, the

estimate S144 = S144(0) may be similarly analysed. The conclusions are
broadly similar to those above, although the differences are of interest.
Table 16.3 provides details of the principal components analysis of S144
similar to those in Table 16.2.
The amount of variation explained by each of the components is similar

to that at t = 108. The first component dominates at over 70%, the
second is significant at 20%, the third less so at 9% and the other three
negligible. The differences between this and the previous analysis lie in a
more appropriate reflection of the covariance structure in late 1986, the
estimate of Σ more appropriately reflecting local conditions due to the
discounting through β = 0.9 of past data. The first component is a similar
basket of currencies, though slightly more weight is given to the North
American currencies, and very slightly less to the yen, in determining this
weighted average. The second component is now seen to contribute rather
more to total variation, accounting for over 20% in late 1986. This contrasts
the North American currencies with the yen and the EEC, although the
EEC currencies are only very marginally weighted. The third component
then explains a further 9% of total variation through a contrast between
the EEC and non-EEC currencies. The dominance of the effect of the yen
is evident in a higher weighting relative to the North American currencies.

16.4.7 Application to compositional data analysis
A natural setting for the application of this class of models is in the analysis
of time series of compositions, similar to the application in hierarchical
forecasting mentioned in Section 16.2.3. One such application appears in
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Quintana (1987), and Quintana and West (1987), the series of interest
there being U.K. monthly energy consumption figures according to energy
generating source (gas, electricity, petroleum and nuclear). Although the
models applied there do not directly address the compositional nature of the
data, the application typifies the type of problem for which these models
are suited. A common, univariate DLM form is appropriate for each of
the series, and the focus is on analysis of covariance structure rather than
forecasting.
With compositional (and other) series, the analysis of relative behaviour

of series may often be simplified by converting from the original data scale
to the corresponding time series of proportions. The idea is that if general
environmental conditions (such as national economic policies, recessions,
and so forth) can be assumed to affect each of the series through a com-
mon multiplicative factor at each time, then converting to proportions re-
moves such effects and leads to a simpler analysis on the transformed scale.
Quintana and West (1988) describe the analysis of such series, the models
introduced there being developed as follows.
Suppose that zt, (t = 1, . . . ), is a q-vector valued time series of positive

quantities of similar nature, naturally defining q compositions of a total
111′zt at time t. The time series of proportions is defined simply via

pt = (111′zt)−1zt = zt/
q∑

i=1

zti.

Having used the transformation to proportions in an attempt to remove the
common effects of unidentified factors influencing the time series, we now
face the technical problems of analysing the proportions themselves. A first
problem is the restriction on the ranges of the elements of pt; our normal
models of course assume each of the components to be essentially unre-
stricted, and so further transformation may be needed. Aitchison (1986)
describes the use of the logistic/log ratio transformation in the analysis
of proportions, in a variety of application areas. Here this transforma-
tion may be applied to map the vector of proportions pt into a vector of
real-valued quantities Yt. A particular, symmetric version of the log ratio
transformation is given by taking

Ytj = log(ptj/p̂t) = log(ptj)− log(p̂t), (j = 1, . . . , q),

where

p̂t =
q∏

j=1

p
1/q
tj
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is the geometric mean of the ptj . The inverse of this log ratio transformation
is the logistic transformation

pti =
exp(Yti)
q∑

j=1
exp(Ytj)

, (i = 1, . . . , q).

Modelling Yt with the matrix model of (16.11) implies a conditional mul-
tivariate normal structure. Thus, the observational distribution of the pro-
portions pt is the multivariate logistic-normal distribution as defined in
Aitchison and Shen (1980); see also Aitchison (1986). A sufficient condi-
tion for pt to have a logistic-normal distribution is that the series zt be
distributed as a multivariate log-normal, although the converse does not
hold.
Suppose then that Yt follows the model (16.11). Having proceeded from

the proportions to the real-valued elements on the Yt scale, we now face
a second problem. It follows from the definition of Ytj that the elements
sum to zero, 111′Yt = 0 for all t. This implies that Σ is singular, having
rank q−1. This and other singularities can be handled as follows. Suppose
that we model Yt ignoring the constraint, assuming as above that Σ is
non-singular, its elements being unrestricted. Then the constraint can be
imposed directly by transforming the series to KYt, where

K = K′ = I− q−1111111′, 111 = (1, . . . , 1)′.

Then from equations (16.11), it follows that

Y′
tK = F′

tΨt + (Kνt)′, Kνt ∼ N[000, VtΞ−1],

Ψt = GtΨt−1 +ΩtK, ΩtK ∼ N[000,Wt,Ξ
−1],

where Ψt = ΘtK and Ξ = KΣK. Similarly, from (16.12) it follows that

(Ψ0,Ξ|D0) ∼ NW−1
n0
[m0K,C0,KS0K].

Thus, the constrained series follows a matrix model, and the results in The-
orem 16.4 apply. For a derivation of this and related results see Quintana
(1987). Note that the quantities Ft, Vt, Gt,Wt and Ct are unaffected by
such linear transforms, as is the use of discount factors to defineWt.
With this in mind, initial priors for Θ0 and Σ at time t = 0 can be

specified in non-singular forms and then transformed as above to conform
to the constraint.† Moreover, the unconstrained model is defined for the
logarithms of zt rather than the log-ratios, so that the unconstrained priors
are those of meaningful quantities. The transformation changes the corre-
lation structure in obvious ways since it imposes a constraint. Whatever
the correlation structure may be in the unconstrained Σ, transformation

†This procedure is similar to that for setting a prior for a form-free seasonal
DLM component subject to zero-sum constraints (Section 8.4)
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will lead to negative correlations afterwards. This is most easily seen in
the case q = 2, when the constraint leads to perfect negative correlation in
Ξ. Hence the joint structure may be interpreted through relative values of
the resulting constrained correlations.
Illustration of this model appears in Quintana and West (1988). The

data series are several years of monthly estimates of values of imports into
the Mexican economy. There are three series, determining the composition
of total imports according to end use, classified as Consumer, Intermediate
and Capital. The data, running from January 1980 to December 1983
inclusive, appear in Table 16.4. The series are labelled as A=Consumer,
B=Intermediate and C=Capital imports.
The time span of these series includes periods of marked change in world

oil prices that seriously affected the Mexican economy, notably during 1981
and 1982. Rather marked changes are apparent in each of the three series.
The log-ratio transformed series are plotted in Figure 16.2, where the com-
positional features are clearly apparent.
Note the relative increase in imports of intermediate-use goods at the

expense of consumer goods during the latter two years. An important fea-
ture of the transformation is that it removes some of the common variation
over time evident on the original scale, such as inflation effects and national
economic cycles.
The model used for the transformed series is a second-order polynomial

form as in the example of the previous section. Again, as in that applica-
tion, this is not a model to be seriously entertained for forecasting the series
other than in the very short term. However, as in many other applications,
it serves here as an extremely flexible local smoothing model that can track
the changes in trend in the data and provide robust retrospective estimates
of the time-varying trend and cross-sectional correlation structure. Thus,
for our purposes here, this simple, local trend description is adequate, the
basic, locally linear form of the model being supported by the graphs in
Figure 16.2.
Quintana and West (1988) use a relatively uninformative initial prior

that is used here for illustration (the problems involved in specifying an
informative prior for Σ are well discussed by Dickey, Dawid and Kadane
1986). For the unconstrained series,

m0 =
(
−1 1 0
0 0 0

)
, C0 =

(
1 0
0 1

)
.

The prior for Σ has S0 = 10−5I and n0 = 10−3, a very vague specification.
These values are used to initialise the analysis, the corresponding posterior
and filtered values for each time t then being transformed as noted above
to impose the linear constraint. The evolution variance sequence is based
on a single discount factor δ, so that Wt = GCt−1G′(δ−1 − 1), with the
standard value of δ = 0.9. In addition, the possibility of time variation in
Σ is allowed for through the use of a variance discount factor β = 0.98,
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Table 16.4. Monthly Mexican import data ($106)
(Source: Bank of Mexico)

J F M A M J

1980 A: 98.1 112.1 123.1 150.2 148.0 180.2
B: 736.3 684.1 793.9 856.2 1020.9 986.9
C: 301.2 360.7 4290.9 358.7 354.6 419.8

1981 A: 246.5 135.4 183.4 178.2 194.4 189.2
B: 1046.9 1051.6 1342.2 1208.0 1213.6 1291.1
C: 575.3 565.4 699.2 598.3 622.6 709.7

1982 A: 157.2 175.4 191.5 167.9 123.5 143.9
B: 933.4 808.9 1029.2 894.3 811.8 866.1
C: 514.5 684.7 568.4 436.0 312.6 388.7

1983 A: 52.3 44.5 42.9 39.2 55.7 56.6
B: 257.0 318.6 457.2 440.3 506.4 529.6
C: 85.2 83.2 126.7 131.3 144.4 165.5

Table 16.4. (continued)

J A S O N D

1980 A: 244.9 225.0 253.1 321.5 262.4 331.1
B: 1111.8 962.9 994.0 1049.2 954.0 1058.6
C: 438.4 445.2 470.3 514.8 483.4 606.1

1981 A: 226.6 254.8 298.9 362.2 270.2 273.0
B: 1229.6 994.4 999.3 1120.4 977.1 1067.2
C: 689.6 588.8 510.9 773.9 588.3 653.3

1982 A: 156.8 115.0 70.0 90.6 42.6 82.3
B: 762.0 631.0 476.6 470.0 314.9 419.5
C: 367.1 330.1 232.9 270.1 220.8 176.5

1983 A: 41.9 60.5 40.2 33.1 39.5 47.4
B: 488.1 548.3 502.2 474.9 392.4 431.7
C: 159.5 137.4 128.2 190.7 268.8 198.1
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Figure 16.2 Log-ratio compositions of Mexican imports by use

small, though sufficient to permit some degree of change.† In addition to
this, one further modification is made to the model (and to each of those
explored) to allow by intervention for the marked changes in trend of the
series that are essentially responses to major events in the international
markets, particularly the plunge into recession in early 1981, for example.
Interventions are made to allow for changes in model parameters that are
greater than those anticipated through the standard discount factors δ
and β. The points of intervention are January 1981, September 1981 and
January 1983. At these points only, the standard discount factors are
replaced by lower values δ = 0.1 and β = 0.9 to model the possibility of
greater random variation in both Θt and Σ, though not anticipating the
direction of such changes.
Figures 16.3, 16.4 and 16.5 display the filtered estimates of the trends

(the fitted trends) in the three imports series, with approximate 90% pos-
terior intervals; these should not be confused with the associated predictive
intervals that though not displayed here, are roughly twice as wide. The
times of intervention are indicated by arrows on the time axes, and the
response of the model is apparent at points of abrupt change. Though

†Of several models with values in the a priori plausible ranges 0.8 ≤ δ ≤ 1 and
0.95 ≤ β ≤ 1, that illustrated has essentially the highest likelihood. In particular,
the static Σ models with β = 1 are very poor by comparison, indicating support
for time variation in Σ. The inferences illustrated are, of course, representative
of inferences from models with discount factors near the chosen values.
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the model could be refined, improvements are likely to be very minor, the
fitted trends smooth the series rather well. The main interest is in cor-
relation structure across series, and Figure 16.6 clearly identifies the time
variation in Ξ. The graph is of the correlations taken from the smoothed
estimates as defined in Section 16.4.5. Note again that though the series
may move together at times suggesting positive values of the correlations
in Σ, corresponding elements in Ξ will be negative due to the constraint.
The estimates in the figure bear this out. Slow, random changes are appar-
ent here, accounting for changing economic conditions that affect the three
import areas in different ways. A more marked change occurs at interven-
tion prior to the onset of recession in early 1981. Cross-sectional inferences
made in early 1981 based on this model would reflect these changes, that
are quite marked, whereas those based on a static Σ model would be much
more heavily based on the pre-1981 estimates of Σ. Thus, for example,
this model would suggest a correlation near −0.25 between the Intermedi-
ate and Capital series, whereas the pre-1981 based value is near −0.75.
Note that we can also analyse the principal components of Ξ over time.

The fact that Ξ has rank q − 1 rather than full rank q simply implies
that one of the eigenvalues is zero, the corresponding eigenvector being
undefined and of no interest. Variation is explained by the remaining q− 1
principal components.

16.5 OTHER MODELS AND RELATED WORK
There has been much work on Bayesian models and methods in problems
of multivariate time series and forecasting not discussed above, but of rel-
evance and interest to readers in various fields. Recent extensions and
applications of the models of Section 16.4, especially in connection with
financial time series and portfolio management, are reported in Quintana
(1992) and Quintana et al (1995), and this is a growing area. Additional
developments on variance matrix estimation appear in Barbosa and Har-
rison (1992). Modifications of our multivariate models, as well as quite
distinct, non-normal dynamic models, have been developed for problems in
which data series represent proportions, or compositions. These include a
variety of multinomial models, including those in Grunwald, Raftery and
Guttorp (1993), and Cargnoni, Müller and West (1996). One area that has
seen some exploration to date, and is likely to be a growth area in future, is
the development of multivariate dynamic models using traditional Bayesian
hierarchical modelling concepts and methods; some relevant works include
Zellner and Hong (1989), Zellner, Hong and Min (1991), Quintana et al
(1995), Gamerman and Migon (1993) and Prado and West (1996). Fi-
nally, though not explicitly based in dynamic linear models, the Bayesian
forecasting approaches using vector autoregression and structured prior dis-
tributions (Litterman 1986a,b) represent a significant area of development
and an important branch of the wider Bayesian forecasting arena.
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16.6 EXERCISES
(1) Consider the general multivariate DLM of Section 16.2. In Theorem

16.1, assume the prior distribution for (θt|Dt−1) of part (b). Using
Bayes’ Theorem, show directly that (θt|Dt) is normally distributed
with moments given by the alternative expressions

mt = Ct[R−1
t at + FtV−1

t Yt],

with

C−1
t = R−1

t + FtV−1
t F

′
t.

(2) Use the standard updating equations of Theorem 16.1 and the re-
sults of Exercise 1 above to deduce the following identities:

(a) At = RtFtQ−1
t = CtFtV−1

t ;

(b) Ct = Rt −AtQtA′
t = Rt(I− FtA′

t);

(c) Qt = (I− F′
tAt)−1Vt;

(d) F′
tAt = I−VtQ−1

t .

(3) In the multivariate DLM of Section 16.2, consider the vector mean
response function µt = F′

tθt at time t. The defining moments of
the posterior for the mean response at time t,

(µt|Dt) ∼ N[ft(0),Qt(0)],

are easily seen to be given by

E[µt|Dt] = ft(0) = F′
tmt

and

V[µt|Dt] = Qt(0) = F′
tCtFt.

Use the updating equations for mt and Ct to derive the following
results.
(a) Show that the mean can be updated via

E[µt|Dt] = E[µt|Dt−1] + (I−Bt)et,

or via the similar expression

ft(0) = (I−Bt)Yt +Btft,

where Bt = VtQ−1
t . Interpret the second expression here as a

weighted average of two estimates of µt.
(b) Show that the variance can be similarly updated using

V[µt|Dt] = BtV[µt|Dt−1],

or equivalently, using

Qt(0) = (I−Bt)Vt.
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(4) Prove the general step ahead forecasting results of Theorem 16.2 for
the multivariate DLM.

(5) Prove the general filtering results of Theorem 16.3 for the multivari-
ate DLM.

(6) Y is an n-vector of sales of a large number n of competitive products.
The forecast distribution is given by Y ∼ N[f ,Q], where

Q = Q




1 −ε −ε . . . −ε
−ε 1 −ε . . . −ε
−ε −ε 1 . . . −ε
...

...
...

. . .
...

−ε −ε −ε . . . 1


 ,

for some variance Q > 0 and scalar ε > 0.
(a) Calculate the implied forecast distribution for total sales T =

111′Y, where 111 = (1, . . . , 1)′.
(b) Verify that V[T ] ≥ 0 if and only if ε ≤ (n−1)−1, with V[T ] = 0

when ε = (n− 1)−1.
(c) With n large, comment on the implications for aggregate fore-

casting.
(7) A series of n product sales Yt is forecast using the constant model
{I, I,V,W}, where all four known matrices are n × n. At time t,
the prior for the state vector θt is (θt|Dt−1) ∼ N[at,Rt] as usual.
Let Ts be the total sales at any time s, Ts = 111′Ys.
(a) Show, directly from normal theory or otherwise that

V[Tt+1|Yt, Dt−1] = V[Tt+1|Yt, Tt, Dt−1] ≤ V[Tt+1|Tt, Dt−1],

with equality if and only if

C[Yt, Tt+1|Tt, Dt−1] = 000.

(b) Calculate the joint normal distribution of Tt+1, Tt andYt given
Dt−1.

(c) Using (b), prove that the required covariance in (a) is given by

rt − (rt + v)Rt/(Rt +W + V ),

where rt = Rt111, Rt = 111′rt, W = 111′W111, v = V111 and V = 111′v.
Deduce that the equality in (a) holds if and only if

rt = Rtv/V.

(d) Comment on the relevance of the above results to two fore-
casters interested in Tt+1 when Yt becomes known. The first
proposes to forecast Tt+1 using p(Tt+1|Yt, Dt−1); the second
proposes to use p(Tt+1|Tt, Dt−1),

(8) Verify the general results in parts (D) and (E) of Section 16.3.2. In
particular, suppose that Y ∼ N[f ,Q] and T = 111′Y. If the marginal
distribution is revised to (T |H) ∼ N[f∗, Q∗] and Y is conditionally
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independent of H when T is known, show that p(Y |H) is as stated
in (D), namely

(Y|H) ∼ N[f + q(f∗ − f)/Q,Q− qq′(Q−Q∗)/Q2].

Extend this proof to verify the more general result in (E) when
independent information H is used to revise the marginal forecast
distribution of a vector of subaggregates, or more general linear
combinations of the elements of Y.

(9) In the framework of Section 16.3.2 (C), part (2), suppose that a = 0,
b = 1 and c = 1/φ is uncertain, so that

(m|M,T, φ) ∼ N[T,M/φ].

Suppose that uncertainty about the scale bias φ is represented by a
gamma distribution with mean E[φ] = 1 and n degrees of freedom,

φ ∼ G[n/2, n/2],

and that φ is considered to be independent of M and T .
(a) Show that unconditional on φ,

(m|M,T ) ∼ Tn[T,M ].

(b) Given the prior forecast distribution T ∼ N[f,Q], show that
the posterior density p(T |H) is proportional to

exp{−0.5(T − f)2/Q}{n+ (T −m)2/M}−(n+1)/2.

(c) Suppose that f = 0, M = Q = 1 and n = 5. For each value
m = 0, 2, 4 and 6 plot the (unnormalised) posterior density in
(b) as a function of T over the interval −2 ≤ T ≤ m + 2.
Discuss the behaviour of the posterior in each cases, making
comparison with the normal results in the case of known scale
bias c = 1 (cf. Lindley 1988).

(10) Consider the 3-dimensional DLM

{I, I,diag(150, 300, 600),diag(25, 75, 150)}

applied to forecasting demand for three products. At time t, infor-
mation Dt is summarised by

m′
t = (100, 400, 600)

and

Ct = diag(75, 125, 250).

(a) Calculate the one-step ahead forecast distribution p(Yt+1|Dt).
(b) The total sales at time t + 1, Tt+1 = 111′Yt+1, is targeted at

Tt+1 = 960. Calculate p(Yt+1|Tt+1, Dt) for any Tt+1 and de-
duce the joint forecast distribution for the three products con-
ditional on the target being met.
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(c) An independent forecasting method produces a point forecast
m of the total. This is modelled as a random quantity such
that

(m|Tt+1, Dt) ∼ N[Tt+1, 750].

Calculate the revised forecast distribution p(Yt+1|m,Dt) for
any value of m, and evaluate the moments at m = 960. Verify
also that the revised forecast of the total is

(Tt+1|m,Dt) ∼ N[1002, 525].



CHAPTER 17

DISTRIBUTION THEORY AND LINEAR ALGEBRA

17.1 DISTRIBUTION THEORY
17.1.1 Introduction
This chapter contains a review and discussion of some of the basic results
in distribution theory used throughout the book. Many of these results
are stated without proof and the reader is referred to a standard text on
multivariate analysis, such as Mardia, Kent and Bibby (1979), for further
details. The exceptions to this general rule are some of the results re-
lating to Bayesian prior to posterior calculations in multivariate normal
and joint normal/gamma models. Press (1985) is an excellent reference
for such results in addition to standard, non-Bayesian multivariate theory.
These results are discussed in detail as they are of some importance and
should be clearly understood. For a comprehensive reference to all the
distribution theory, see Johnson and Kotz (1972). For distribution the-
ory specifically within the contexts of Bayesian analyses, see Aitchison and
Dunsmore (1976), Box and Tiao (1973), and De Groot (1971).
It is assumed that the reader is familiar with standard univariate distri-

bution theory. Throughout this chapter we shall be concerned with sets of
scalar random variables such as X1, X2, . . . (−∞ < Xi < ∞, for each i),
that may be either discrete or continuous. For each i, the density of the
distribution of Xi exists and is defined with respect to the natural counting
or Lebesgue measure in the discrete and continuous cases respectively. In
either case, the distribution function of Xi is denoted by Pi(x), and the
density by pi(x), (−∞ < x < ∞). The density is only non-zero when x
belongs to the range of Xi. In the discrete case,

pi(x) = Pr(Xi = x) and Pi(x) =
∑
y≤x

pi(y), (−∞ < x <∞),

so that pi(x) is obtained from the differences of the distribution at consec-
utive values of x. In the continuous case,

pi(x) =
dPi(x)
dx

and Pi(x) =

x∫
−∞

pi(y) dy.

From here on, the derivative and integral expressions for the continuous
case will be applied throughout, with the understanding that differences
and summations are implied if Xi is discrete. This simplifies the exposition
and unifies notation of the multivariate theory to follow.
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17.1.2 Random vectors and distributions
X = (X1, X2, . . . , Xn)′ is a random n-vector for any positive integer n. For
each x = (x1, x2, . . . , xn)′, the distribution function of x is given by

P (x) = Pr(X1 ≤ x1 ∩ . . . ∩Xn ≤ xn).

P ( .) is also referred to as the joint distribution function of the random
variables X1, . . . , Xn and is defined for all combinations of discrete and
continuous variables. As in the univariate case we have

(1) P (x) ≥ 0 and is non-decreasing in each xi;
(2) as xi → −∞ for all i, P (x)→ 0;
(3) as xi →∞ for all i, P (x)→ 1.

MARGINAL DISTRIBUTIONS.
If X′ is partitioned into

X′
1 = (X1, . . . , Xm) and X′

2 = (Xm+1, . . . , Xn),

the marginal distribution of X1 is simply the joint distribution of its ele-
ments X1, . . . , Xm. Similarly, the marginal distribution of any subset of
m of the Xi in X is defined by permuting these elements into the first
m-subvector X1. Denote this marginal distribution by P1(x1) for any x1.
Then

(1) P1(x1) = limP (x), where the limit is that obtained as xi →∞ for
each i = m+ 1, . . . , n;

(2) form = 1, P1(x1) is the univariate distribution of the scalar random
variable X1.

INDEPENDENCE.
Given P (x) and the marginal distributions P1(x1) and P2(x2), the vectors
X1 and X2 are independent if and only if

P (x) = P1(x1)P2(x2)

for all x. More generally, for a partition of X′ into X′
1, . . . ,X

′
k, mutual

independence of the subvectors is defined by the factorisation

P (x) =
k∏

i=1

Pi(xi),

where Pi(xi) is the distribution function of Xi.

DENSITY FUNCTIONS.
Joint density functions are now defined, and all further theory is based
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on density rather than distribution functions. X is a continuous random
vector if and only if the joint distribution function has the form

P (x) =

x1∫
−∞

. . .

xn∫
−∞

p(y) dy

for some real- and positive-valued function p(y). The function p(·) is the
joint density of theXi, i = 1, . . . , n. The notation will be taken as including
the cases that some, or all, of the Xi are discrete when the integrals are
replaced by summations accordingly. In general, the density is given by

p(x) =
∂nP (x)

∂x1 . . . ∂xn
,

with derivatives being replaced by differences for discrete Xi. Note also
that p(x) is normalised, i.e.,

∞∫
−∞

. . .

∞∫
−∞

p(x) dx = 1.

MARGINAL DENSITIES.
Given the above partition of X′ into X′

1 and X′
2, the marginal density of

the marginal distribution of X1 is given by

p1(x1) =

∞∫
−∞

. . .

∞∫
−∞

p(x) dx2,

the integration being taken over all (n−m) elements of X2 = x2.

INDEPENDENCE AGAIN.
If X1, . . .Xk are (mutually) independent, then

p(x) =
k∏

i=1

pi(xi).

CONDITIONAL DENSITIES.
Conditional distributions are defined via conditional densities. The density
of the m-vector X1 conditional on a fixed value of the (n −m)-vector X2
is defined, for all x1 and x2, by

p1(x1 | x2) ∝ p(x).

Since densities are normalised, p1(x1 | x2) = k(x2)p(x), where the normali-
sation constant is simply k(x2) = p2(x2)−1, assumed to exist. If p2(x2) = 0
then p1(x1 | x2) is undefined. Thus, the conditional density of X1 given



634 17 Distribution Theory and Linear Algebra

X2 is the ratio of the joint density of X1 and X2 to the marginal density
of X2. Clearly then

(1) p(x) = p1(x1 | x2)p2(x2) = p1(x1)p2(x2 | x1);
(2) p1(x1 | x2) = p1(x1)p2(x2 | x1)/p(x2). This is the multivariate form

of Bayes’ Theorem;
(3) p1(x1 | x2) ≡ p1(x1) and p2(x2 | x1) ≡ p2(x2) if and only if X1 and

X2 are independent.

17.1.3 Expectations
The expectation, or mean value, of a scalar function g(X) is defined as

E[g(X)] =

∞∫
−∞

. . .

∞∫
−∞

g(x)p(x) dx,

when the integral exists. A vector function g(X) with ith element gi(X) has
expectation, or mean vector, E[g(X)] whose ith element is E[gi(X)]. Simi-
larly, the random matrix G(X) with ijth element Gij(X) has expectation
given by the matrix with ijth element E[Gij(X)].

MEAN VECTORS.
The mean vector (or simply mean) of X is E[X] = (E[X1], . . . ,E[Xn])′.

VARIANCE MATRICES.
The variance (or variance-covariance) matrix ofX is the (n×n) symmetric,
positive semi-definite matrix

V[X] = E[(X− E[X])(X− E[X])′],

whose ijth element is E[(Xi −E[Xi])(Xj −E[Xj ])]. Thus, the ith diagonal
element is the variance of Xi, and the ijth off-diagonal element is the co-
variance between Xi and Xj .
Given the above partition of X′ into the m-vector X′

1 and the (m− n)-
vector X′

2, the corresponding partitions of the mean and variance matrix
are

E[X] =
(
E[X1]
E[X2]

)
and V[X] =

(
V[X1] C[X1,X2]

C[X2,X1] V[X2]

)

where C[X1,X2] = E[(X1 − E[X1])(X2 − E[X2])′] = C[X2,X1]′ is the
m×(n−m) covariance matrix between X1 andX2. More generally, ifX′ =
(X′

1, . . . ,X
′
k), then E[X]

′ = (E[X1]′, . . . ,E[Xk]′), V[X] has diagonal blocks
V[Xi] and off-diagonal blocks C[Xi,Xj ] = C[Xj ,Xi]′, (i = 1, . . . , k; j =
1, . . . , k). If C[Xi,Xj ] = 000, then Xi and Xj are uncorrelated.
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CONDITIONAL MEAN AND VARIANCE MATRIX.
In general, the expectation of any function g(X) may be calculated itera-
tively via

E[g(X)] = E[E[g(X) | X2]].

The inner expectation is with respect to the conditional distribution of
(X1 | X2); the outer with respect to the marginal for X2. In particular,
this implies that

(1) E[X1] = E[m1(X2)], where m1(X2) = E[X1 | X2];
(2) V[X1] = V[m1(X2)] + E[V1[X2]], where V1[X2] = V[X1 | X2].

INDEPENDENCE.
If X1 and X2 are independent, then they are uncorrelated, so that

V[X] =
(
V[X1] 000
000 V[X2]

)
,

a block diagonal variance matrix.

17.1.4 Linear functions of random vectors

LINEAR TRANSFORMATIONS.
For constant matrices A and vectors b of suitable dimensions, if Y =
AX+ b, then

E[Y] = AE[X] + b and V[Y] = AV[X]A′.

LINEAR FORMS.
More generally, for suitable constant matrices A1, . . . ,Ak and vectors b, if
Y =

∑k
i=1AiXi + b, then

E[Y] =
k∑

i=1

AiE[Xi] + b

and

V[Y] =
k∑

i=1

AiV[Xi]A′
i +

k∑
i=1

k∑
j �=i

AiC[Xi,Xj ]A′
j .

In particular, if Y =
∑k

i=1Xi, then

E[Y] =
k∑

i=1

E[Xi]
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and

V[Y] =
k∑

i=1

V[Xi] + 2
k∑

i=1

i−1∑
j=1

C[Xi,Xj ].

Finally, if Y =
∑k

i=1AiXi + b and Z =
∑h

j=1BjXj + c, then

C[Y,Z] =
k∑

i=1

h∑
j=1

AiC[Xi,Xj ]B′
j .

17.2 THE MULTIVARIATE NORMAL DISTRIBUTION
17.2.1 The univariate normal
A real random variable X has a normal (or Gaussian) distribution with
mean (mode and median) m, and variance V if and only if

p(X) = (2πV )−1/2 exp
[
−(X −m)2/2V

]
, (−∞ < X <∞).

In this case we write X ∼ N[m,V ].

SUMS OF NORMAL RANDOM VARIABLES.
If Xi ∼ N[mi, Vi], (i = 1, . . . , n), have covariances C[Xi, Xj ] = cij = cji,
then Y =

∑n
i=1 aiXi + b has a normal distribution with

E[Y ] =
n∑

i=1

aimi + b and V[Y ] =
n∑

i=1

a2
iVi + 2

n∑
i=1

i−1∑
j=1

aiajcij ,

where ai and b are constants. In particular, cij = 0 for all i �= j if and only
if the Xi are independent normal, in which case V[Y ] =

∑n
i=1 a

2
iVi.

17.2.2 The multivariate normal
A random n-vector X has a multivariate normal distribution in n dimen-
sions if and only if Y =

∑n
i=1 aiXi is normal for all constant, non-zero

vectors a = (a1, . . . , an)′.
If X is multivariate normal, then E[X] =m and V[X] = V exist, and we

use the notation X ∼ N[m,V]. The moments m and V completely define
the distribution whose density is

p(X) = {(2π)n|V|}−1/2 exp
[
−(X−m)′V−1(X−m)/2

]
.

The subvectors of X are independent if and only if they are uncorrelated.
In particular, if V is block diagonal, then the corresponding subvectors of
X are mutually independent.
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LINEAR TRANSFORMATIONS.
For any constant A and b of suitable dimensions, if Y = AX + b, then
Y ∼ N[Am + b,AVA′]. If AVA′ is diagonal, then the elements of Y are
independent normal.

LINEAR FORMS.
Suppose Xi ∼ N[mi,Vi] independently, i = 1, . . . , k, and consider con-
stant matrices and vectors A1, . . . ,Ak and b of suitable dimensions; Y =∑k

i=1AiXi + b is multivariate normal with mean
∑k

i=1Aimi + b and
variance matrix

∑k
i=1AiViA′

i.

MARGINAL DISTRIBUTIONS.
Suppose that we have conformable partitions

X =
(
X1
X2

)
, m =

(
m1
m2

)
, and V =

(
V11 V12
V21 V22

)
.

Then Xi ∼ N[mi,Vii], i = 1, 2. In particular, if Xi is univariate normal,
Xi ∼ N[mi, Vii] for i = 1, . . . , n.

BIVARIATE NORMAL.
Any two elements Xi and Xj of X are bivariate normal with joint density

pij(xi, xj) =
[
(2π)

√
ViiVjj(1− ρ2

ij)
]−1

exp[−Q(xi, xj)/2],

where Q(xi, xj) = A(xi, xj)/
√
(1− ρ2

ij) and

A(xi, xj) =
(xi −mi)2

Vii
+

(xj −mj)2

Vjj
− 2ρij

(xi −mi)√
Vii

(xj −mj)√
Vjj

,

with ρij = corr(Xi, Xj) = Vij/
√
ViiVjj .

CONDITIONAL DISTRIBUTIONS.
For the partition of X′ into X′

1 and X′
2, we have

(1) (X1 | X2) ∼ N[m1(X2),V11(X2)], where

m1(X2) =m1 +V12V−1
22 (X2 −m2)

and

V11(X2) = V11 −V12V−1
22 V21.

The matrix A1 = V12V−1
22 is called the regression matrix of X1 on

X2. The conditional moments are given in terms of the regression
matrix by

m1(X2) =m1 +A1(X2 −m2)
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and

V11(X2) = V11 −A1V22A′
1.

(2) (X2 | X1) ∼ N[m2(X1),V22(X1)], where

m2(X1) =m2 +V21V−1
11 (X1 −m1)

and

V22(X1) = V22 −V21V−1
11 V12.

The matrix A2 = V21V−1
11 is called the regression matrix of X2 on

X1. The conditional moments are given in terms of the regression
matrix by

m2(X1) =m2 +A2(X1 −m1)

and

V22(X1) = V22 −A2V11A′
2.

(3) In the special case of the bivariate normal in (1) above, the mo-
ments are all scalars, and the correlation between X1 and X2 is
ρ = ρ12 = V12/

√
V11V22. The regressions are determined by regres-

sion coefficients A1 and A2 given by

A1 = ρ
√
V11/V22 and A2 = ρ

√
V22/V11.

Also

V[X1 | X2] = (1− ρ2)V11 and V[X2 | X1] = (1− ρ2)V22.

17.2.3 Conditional normals and linear regression
Many of the important results in this book may be derived directly from
the multivariate normal theory reviewed above. A particular regression
model is reviewed here to provide the setting for those results.
Suppose that the p-vector Y and the n-vector θ are related via the

conditional distribution

(Y | θ) ∼ N[F′θ,V],

where the (n × p) matrix F and the (p × p) positive definite symmetric
matrix V are constant. An equivalent statement is

Y = F′θ+ ν,

where ν ∼ N[000,V]. Suppose further that the marginal distribution of θ is
given by

θ ∼ N[a,R],
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where both a and R are constant, and that θ is independent of ν. Equiva-
lently,

θ = a+ ω,

where ω ∼ N[000,R] independently of ν.
From these distributions it is possible to construct the joint distribution

for Y and θ and hence both the marginal for Y and the conditional for
(θ | Y).

MULTIVARIATE JOINT NORMAL DISTRIBUTION.
Since θ = a + ω and Y = F′θ + ν = F′a + F′ω + ν, then the vector
(Y′,θ′)′ is a linear transformation of (ν′,ω′)′. By construction the latter
has a multivariate normal distribution, so that Y and θ are jointly normal.
Further

(1) E[θ] = a and V[θ] = R;
(2) E[Y] = E[F′θ+ ν] = F′E[θ] + E[ν] = F′a and

V[Y] = V[F′θ+ ν] = F′V[θ]F+V[ν] = F′RF+V;

(3) C[Y,θ] = C[F′θ+ ν,θ] = F′C[θ,θ] + C[ν,θ] = F′R.

It follows that (
Y
θ

)
∼ N

[(
F′a
a

)
,

(
F′RF+V F′R
RF R

)]
.

Therefore, identifying Y with X1 and θ with X2 in the partition of X in
17.2.2, we have

(4) Y ∼ N[F′a,F′RF+V];
(5) (θ | Y) ∼ N[m,C], where

m = a+RF[F′RF+V]−1[Y − F′a]

and

C = R−RF[F′RF+V]−1F′R.

By defining e = Y−F′a, Q = F′RF+V andA = RFQ−1, these equations
become

m = a+Ae and C = R−AQA′.

MULTIVARIATE BAYES’ THEOREM.
An alternative derivation of the conditional distribution for (θ | Y) via
Bayes’ Theorem provides alternative expressions for m and C. Note that

p(θ | Y) ∝ p(Y | θ)p(θ)
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as a function of θ, so that

ln[p(θ | Y)] = k + ln[p(Y | θ)] + ln[p(θ)],

where k depends on Y but not on θ. Therefore

ln[p(θ | Y)] = k − 1
2
[
(Y − F′θ)′V−1(Y − F′θ) + (θ− a)′R−1(θ− a)

]
.

The bracketed term here is simply

Y′V−1Y − 2Y′V−1F′θ+ θ′FV−1F′θ+ θ′R−1θ− 2a′R−1θ+ a′R−1a

= θ′ {FV−1F′ +R−1}θ− 2
{
Y′V−1F′ + a′R−1}θ+ h

where h depends on Y but not on θ. Completing the quadratic form gives

(θ−m)′C−1(θ−m) + h∗,

where again h∗ does not involve θ,

C−1 = R−1 + FV−1F′,

and

m = C
{
FV−1Y +R−1a

}
.

Hence

p(θ | Y) ∝ exp
[
−1
2
(θ−m)′C−1 (θ−m)

]

as a function of θ, so that (θ | Y) ∼ N[m,C], just as derived earlier.
Note that the two derivations give different expressions form and C that

provide, in particular, the matrix identity for C given by

C =
[
R−1 + FV−1F′]−1

= R−RF [F′RF+V]−1F′R,

that is easily verified once stated.

17.3 JOINT NORMAL/GAMMA DISTRIBUTIONS
17.3.1 The gamma distribution
A random variable φ > 0 has a gamma distribution with parameters n > 0
and d > 0, denoted by φ ∼ G[n, d], if and only if

p(φ) ∝ φn−1 exp(−φd), (φ > 0).

Normalisation leads to p(φ) = dnΓ(n)−1φn−1 exp(−φd), where Γ(n) is the
gamma function. Note that E[φ] = n/d and V[φ] = E[φ]2/n.
Two special cases of interest are

(1) n = 1, when φ has a (negative) exponential distribution with mean
1/d;
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(2) φ ∼ G[n/2, d/2] when n is a positive integer. In this case dφ ∼ χ2
n,

a chi-squared distribution with n degrees of freedom.

17.3.2 Univariate normal/gamma distribution
Let φ ∼ G[n/2, d/2] for any n > 0 and d > 0, and suppose that the
conditional distribution of a further random variable X given φ is normal
(X | φ) ∼ N[m,Cφ−1], for some m and C. Note that E[X] ≡ E[X | φ] = m
does not depend on φ. However V[X | φ] = Cφ−1. The joint distribution
of X and φ is called (univariate) normal/gamma. Note that

(1)

p(X,φ) =
(

φ

2πC

)1/2

exp
[
−φ(X −m)2

2C

]

× dn/2

2n/2Γ(n2 )
φ

n
2 −1 exp

[
−φd

2

]

∝ φ( n+1
2 )−1 exp

[
−φ
2

{
(X −m)2

C
+ d

}]
,

as a function of φ and X.
(2)

p(φ | X) ∝ φ(
n+1

2 )−1 exp
[
−φ
2

{
(X −m)2

C
+ d

}]
,

so that

(φ | X) ∼ G
[
n∗

2
,
d∗

2

]
,

where n∗ = n+ 1 and d∗ = d+ (X −m)2/C.
(3)

p(X) = p(X,φ)/p(φ | X)
(−∞ < X <∞)

∝ [n+ (X −m)2/R]−(n+1)/2,

where R = C(d/n) = C/E[φ]. This is proportional to the density
of the Student T distribution with n degrees of freedom, mode m
and scale R. Hence X ∼ Tn[m,R], or (X −m)/R1/2 ∼ Tn[0, 1], a
standard Student T distribution with n degrees of freedom.

17.3.3 Multivariate normal/gamma distribution
As an important generalisation, suppose that φ ∼ G[n/2, d/2] and that the
p-vector X is normally distributed conditional on φ, as X ∼ N[m,Cφ−1].
Here the p-vector m and the (p× p) symmetric positive definite matrix C
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are known. Thus, each element of V[X] is scaled by the common factor φ.
The basic results are similar to 17.3.2 in that

(1) (φ | X) ∼ G[n∗/2, d∗/2], where n∗ = n + p and d∗ = d + (X −
m)′C−1(X−m)/2 (notice the degrees of freedom increases by p).

(2) X has a (marginal) multivariate T distribution in p dimensions with
n degrees of freedom, mode m and scale matrix R = C(d/n) =
C/E[φ], denoted by X ∼ Tn[m,R], with density

p(X) ∝ [n+ (X−m)′R−1(X−m)]−(n+p)/2.

In particular, if Xi is the ith element of X, mi and Cii the corre-
sponding mean and diagonal element of C, then

Xi ∼ Tn[mi, Rii],

where Rii = Cii(d/n).

17.3.4 Simple regression model
The normal/gamma distribution plays a key role in providing closed form
Bayesian analyses of linear models with unknown scale parameters. Details
may be found in De Groot (1971) and Press (1985), for example. A par-
ticular regression setting is reviewed here for reference. The details follow
from the above joint normal/gamma theory. Suppose that a scalar variable
Y is related to the p-vector θ and the scalar φ via

(Y | θ, φ) ∼ N[F′θ, kφ−1],

where the p-vector F and the variance multiple k are fixed constants. Sup-
pose also that (θ, φ) have a joint normal/gamma distribution, namely

(θ | φ) ∼ N[a,Rφ−1]

and

φ ∼ G[n/2, d/2]

for fixed scalars n > 0, d > 0, p-vector a and (p × p) variance matrix R,
and let S = d/n = 1/E[φ]. Then

(1) (Y | φ) ∼ N[f,Qφ−1], where f = F′a and Q = F′RF+ k;
(2) Y ∼ Tn[f,QS], unconditional on θ or φ;
(3) (θ, φ | Y ) have a joint normal/gamma distribution. Specifically,

(θ | φ, Y ) ∼ N[m,Cφ−1],

where from 17.2.3, m = a + RF(Y − f)/Q, C = R − RFF′R/Q
and

(φ | Y ) ∼ G[(n+ 1)/2,
{
d+ (Y − f)2/Q

}
/2];
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(4) (θ | Y ) has a multivariate T distribution in p dimensions with n+1
degrees of freedom, mode m and scale matrix CS, denoted by (θ |
Y ) ∼ Tn+1[m,CS]. In particular, for the ith element θi of θ,

θi ∼ Tn+1[mi, CiiS], or
(θi −mi)√

CiiS
∼ Tn+1[0, 1].

17.3.5 HPD regions
Consider any random vector X with (posterior) density p(X). Density
measures relative support for values of X in the sense that X = x0 is better
supported than X = x1 if p(x0) > p(x1). Highest posterior density
regions (HPD regions) form the bases for inferences about X based on
sets of values with high density. The basic notion is that the posterior
probability of the set or region of values of X that have higher density
than any chosen value x0 measures the support for or against X = x0.
Formally, the HPD region generated by the value X = x0 is

{X : p(X) ≥ p(x0)}.

The probability that X lies in this region is simply

Pr[p(X) ≥ p(x0)].

If this probability is high, then x0 is poorly supported. In normal linear
models, HPD regions are always connected regions, or intervals, and these
provide interval-based inferences and tests of hypotheses through the use of
posterior normal, T and F distributions, described below. Fuller theoretical
details are provided by Box and Tiao (1973) and De Groot (1971).

MULTIVARIATE NORMAL POSTERIOR.

(1) Suppose that X = X, a scalar, with posterior X ∼ N[m,C]. Then,
as is always the case with symmetric distributions, HPD regions
are intervals symmetrically located about the median (here also the
mode and mean) m. For any k > 0, the equal-tails interval

m− kC1/2 ≤ X ≤ m+ kC1/2

is the HPD region with posterior probability

Pr[|X −m|/C1/2 ≤ k] = 2Φ(k)− 1,

where Φ(.) is the standard normal cumulative distribution function.
With k = 1.645, so that Φ(k) = 0.95, this gives the 90% region
m± 1.645C1/2. With k = 1.96, Φ(k) = 0.975 and the 95% region is
m± 1.96C1/2. For any k > 0, the 100[2Φ(k)− 1]% HPD region for
X is simply m± kC1/2.



644 17 Distribution Theory and Linear Algebra

(2) Suppose that X is n-dimensional for some n > 1,

X ∼ N[m,C]

for some mean vector m and covariance matrix C. Then HPD
regions are defined by elliptical shells centred at the modem, defined
by the points X that lead to common values of the quadratic form
in the density, namely

Q(X) = (X−m)′C−1(X−m).

For any k > 0, the region

{X : Q(X) ≤ k}
is the HPD region with posterior probability

Pr[Q(X) ≤ k] = Pr[κ ≤ k],

where κ is a gamma distributed random quantity,

κ ∼ G[n/2, 1/2].

When n is an integer, this gamma distribution is chi-squared with
n degrees of freedom, and so

Pr[Q(X) ≤ k] = Pr[χ2
n ≤ k].

MULTIVARIATE T POSTERIORS.
The results for T distribution parallel those for the normal, T distributions
replace normal distributions and F distributions replace gamma.

(1) Suppose that X = X, a scalar, with posterior X ∼ Tr[m,C] for
some degrees of freedom r > 0. Again, HPD regions are intervals
symmetrically located about the mode m. For any k > 0, the equal-
tails interval

m− kC1/2 ≤ X ≤ m+ kC1/2

is the HPD region with posterior probability

Pr[|X −m|/C1/2 ≤ k] = 2Ψr(k)− 1,

where Ψr(.) is the cumulative distribution function of the standard
Student T distribution on r degrees of freedom. For any k > 0, the
100[2Ψr(k)− 1]% HPD region for X is simply m± kC1/2.

(2) Suppose that X is n-dimensional for some n > 1, X ∼ Tr[m,C] for
some mean vector m, covariance matrix C, and degrees of freedom
r > 0. HPD regions are again defined by elliptical shells centred at
the mode m, identified by values of X having a common value of
the quadratic form

Q(X) = (X−m)′C−1(X−m).
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For any k > 0, the region

{X : Q(X) ≤ k}

is the HPD region with posterior probability

Pr[Q(X) ≤ k] = Pr[ξ ≤ k/n],

where ξ is an F distributed random quantity with n and r degrees
of freedom,

ξ ∼ Fn,r

(tabulated in Lindley and Scott 1984, pages 50-55). Note that when
r is large, this is approximately a χ2

n distribution.

17.4 ELEMENTS OF MATRIX ALGEBRA
The reader is assumed to be familiar with basic concepts and results of
matrix algebra including, for example, numerical operations on matri-
ces; trace; determinant; transposition; linear and quadratic forms; sin-
gularity and inversion; symmetry; positive definiteness and positive semi-
definiteness (or non-negative definiteness); orthogonality; vector and ma-
trix derivatives. Here we review some simple results concerning functions
of square matrices and then explore in depth the eigenstructure and diag-
onalisability of such matrices. Foundational material and more advanced
theory may be found in Bellman (1970) and Graybill (1969).
Throughout the Appendix we consider square (n× n) matrices, such as

G, whose elements Gij , (i = 1, . . . n; j = 1, . . . , n), are real-valued.

17.4.1 Powers and polynomials

POWERS.
For any k = 1, 2, . . . , Gk = GG . . .G = GGk−1 = Gk−1G. If G is non-
singular, then G−k =

(
G−1

)k. Also, for all integers h and k, GkGh =

Gk+h and
(
Gk

)h = Gkh.

POLYNOMIALS.
If p(α) is a polynomial of degree m in α, p(α) =

∑m
r=0 prα

r, the matrix
polynomial inG, p(G) is the (n×n) matrix defined by p(G) =

∑m
r=0 prG

r.

INFINITE SERIES.
Suppose that for all α with |α| ≤ max{|Gij |}, p(α) is a convergent power
series p(α) =

∑∞
r=0 prα

r. Then the matrix p(G) defined as
∑∞

r=0 prG
r

exists with finite elements.
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17.4.2 Eigenstructure of square matrices
The (n × n) matrix G has n eigenvalues λ1, . . . , λn that are the roots of
the polynomial of degree n in λ given by the determinant

p(λ) = |G− λI|,

where I is the (n×n) identity matrix. p(λ) is the characteristic polynomial
of G and the roots may be real or complex, occurring in pairs of complex
conjugates in the latter case. Eigenvalues are sometimes referred to as the
characteristic values, or roots, of the matrix.
The eigenvectors of G are n-vectors η satisfying

Gη = λiη, (i = 1, . . . , n).

Eigenvectors are sometimes referred to as the characteristic vectors of the
matrix.
This equation has at least one solution for each i. Various important

properties are as follows:

(1) |G| =
∏n

i=1 λi and trace (G) =
∑n

i=1 λi.
(2) The elements of η corresponding to λi are real valued if and only if

λi is real valued.
(3) If the λi are distinct, thenGη = λiη has a unique solution ηi (up to

a constant scale factor of course) and the ηi are themselves distinct.
(4) If G is diagonal, then λ1, . . . , λn are the diagonal elements.
(5) If G is symmetric then the λi are real. If, in addition, G is positive

definite (or non-negative definite) then the λi are positive (or non-
negative).

(6) If G has rank p ≤ n, then n− p of the λi are zero.
(7) The eigenvalues of a polynomial or power series function p(G) are

given by p(λi), i = 1, . . . , n.
(8) If p(λ) = |G− λI| is the characteristic polynomial of G, then

p(G) = 000.

Since p(λ) =
∏n

i=1 (λ− λi) , then
∏n

i=1 (G− λiI) = 000. This result
is known as the Cayley-Hamilton Theorem. It follows that if p(λ) =∑n

i=0 piλ
i, then

∑n
i=0 piG

i = 0, so that

Gn = −p−1
n

n−1∑
i=0

piGi = qoI+ q1G+ . . .+ qn−1Gn−1, say.

EIGENSTRUCTURE OF SPD MATRICES.
The eigenstructure of a symmetric positive definite (or SPD) matrix has
particularly special features. Suppose that the n×n matrixV is symmetric
and positive definite, i.e., a variance matrix. Then the n eigenvalues of V
are real and positive. Without loss of generality, order the eigenvalues so
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that λ1 ≥ λ2 ≥ . . . ≥ λn. The corresponding eigenvectors are real-valued
and orthogonal so that η′

iηj = 0, (i, j = 1, . . . , n; i �= j) (Graybill 1969,
Chapter 3). The orthonormalised eigenvectors are defined by normalising
the eigenvectors to have unit norm, so that in addition to orthogonality,
ηj

′ηj = 1, (j = 1, . . . , n). These define the principal components of the
matrix V. Suppose that Y is an n×1 random vector with variance matrix
V, so that V[Y] = V. Covariation of the elements of any random vector Y
is explained through the random quantities Xj = η′

jY, (j = 1, . . . , n), the
principal components of Y. These X variates are uncorrelated and have
variances V[Xj ] = λj , decreasing as j increases. Total variation in Y is
measured by λ = trace(V) =

∑n
j=1 λj , and so the jth principal component

explains a proportion λj/λ of this total.

17.4.3 Similarity of square matrices
Let G and L be (n × n) matrices and the eigenvalues of G be λ1, . . . , λn.
Then G and L are similar (or G is similar to L, L is similar to G) if there
exists a non-singular (n× n) matrix H such that

HGH−1 = L.

H is called the similarity matrix (or similarity transformation) and may be
complex valued. Note that

(1) G = H−1LH.
(2) |G− λI| = |H−1(L− λI)H| = |H|−1|L− λI||H| = |L− λI|, so that

the eigenvalues of L are also λ1, . . . , λn. Hence the traces of G and
L coincide, as do their determinants.

(3) If G is similar to L and L is similar to K, then G is similar to K.
(4) Suppose that G1, . . . ,Gk are any k square matrices with the (ni ×

ni) matrix Gi similar to Li, (i = 1, . . . , k). Let n =
∑k

i=1 ni. Then
if G and L are the block diagonal matrices

G = block diag [G1, . . . ,Gk]

and

L = block diag [L1, . . . ,Lk] ,

it follows that G and L are similar. In particular, if the similarity
matrix for Gi and Li is Hi, so that HiGiH−1

i = Li, then the
similarity matrix for G and L is H = block diag [H1, . . . ,Hk].
By way of terminology, G, L and H are said to be formed from

the superposition of the matrices Gi, Li and Hi, (i = 1, . . . , k),
respectively.

DIAGONALIZATION.
If G is similar to a diagonal matrix L, then G is diagonalisable. In partic-
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ular, if L = Λ = diag(λ1, . . . , λn), then, since

GH−1 = H−1Λ,

the columns of H−1 are the eigenvectors of G. It follows that

(1) G is similar to Λ if the eigenvectors of G are linearly independent.
(2) If λ1, . . . , λn are distinct, then G is diagonalisable.
(3) If λ1, . . . , λn are not distinct, then G may not be diagonalisable. If

G is symmetric or skew-symmetric, or orthogonal, then G is diag-
onalisable. In general, a different similar form for G is appropriate,
as discussed in the next section.

DISTINCT EIGENVALUES.
If λ1, . . . , λn are distinct, then the eigenvectors are unique (up to a scalar
constant) and linearly independent; they form the columns of H−1 in
HGH−1 = Λ = diag (λ1, . . . , λn). In such a case it follows that

(1) Gk =
(
H−1ΛH

)k = H−1ΛkH for any integer k. Thus, Gk is
similar to Λk, for each k, and the similarity matrix is H. Note that
Λk = diag

(
λk1 , . . . , λ

k
n

)
, so that the eigenvalues of Gk are λki .

(2) For any n-vectors a and b not depending on k,

p(k) = a′Gkb =
(
a′H−1)Λk (Hb) =

n∑
i=1

ciλ
k
i

for some constants c1, . . . , cn not depending on k.

In general, the eigenvalues of G may be real or complex, with the latter
occurring in conjugate pairs. Suppose that G has p, 1 ≤ p ≤ n/2, pairs
of distinct complex conjugate eigenvalues ordered in pairs on the lower
diagonal of Λ. Thus, λ1, . . . , λn−2p are real and distinct, and

λj = rj exp (iωj)

λj+1 = rj exp (−iωj)

}
,

j = n− 2(p− h)− 1

for h = 1, . . . , p,

for some real, non-zero rj and ωj , (ωj not an integer multiple of π), for
each j.
Define the (n× n) matrix F as the block diagonal form

F = block diag
[
I,
(
1 1
i −i

)
, . . . ,

(
1 1
i −i

)]
,

where I is the (n− 2p) square identity matrix. By noting that(
1 1
i −i

)(
eiωj 0
0 e−iωj

)(
1 1
i −i

)−1

=
(

cos(ωj) sin(ωj)
− sin(ωj) cos(ωj)

)
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for each ωj it is clear, by superposition, that FΛF−1 = Φ where Φ is the
block diagonal matrix with lead diagonal elements λ1, . . . , λn−2p, followed
by p separate 2× 2 diagonal block components(

rj cos(ωj) rj sin(ωj)
−rj sin(ωj) rj cos(ωj)

)

for j = 1, . . . , p. Thus, Λ, and so G, is similar to Φ. By contrast to Λ, the
block diagonal matrix Φ is real-valued; Φ is called the real canonical form
of G. Reducing G via the similarity transformation H to Λ simplifies the
structure of the matrix but introduces complex entries. By contrast, the
reduction to the “almost” diagonal Φ remains real valued.

COMMON EIGENVALUES AND JORDAN FORMS.
We now consider the case of replicated eigenvalues of G in an observable
DLM. In such cases, G must must be similar to the precise Jordan form
J given below; (see also Theorem 5.2, p155). For any positive integer r
and any complex number λ, the Jordan block Jr(λ) is the (r × r) upper-
triangular matrix

Jr(λ) =



λ 1 0 . . . 0
0 λ 1 . . . 0
0 0 λ . . . 0
...

...
...

. . .
...

0 0 0 . . . λ


 .

Thus, the diagonal elements are all equal to λ, the super-diagonal elements
are unity, and all other entries are zero.
Suppose that in general, the (n×n) matrix G has s distinct eigenvalues

λ1, . . . , λs such that λi has multiplicity ri ≥ 1,
∑s

i=1 ri = n. Thus, the
characteristic polynomial of G is simply p(λ) =

∏s
i=1 (λ− λi)

ri . It can be
shown that G is similar to the block diagonal Jordan form matrix J given
by the superposition of the Jordan blocks

J = block diag [Jr1(λ1), . . . ,Jrs(λs)] .

J is sometimes called the Jordan canonical form ofG. In this case it follows
that since G = H−1JH for some H, then

Gk =
(
H−1JH

)k
=
(
H−1JH

) (
H−1JH

)
. . .
(
H−1JH

)
= H−1JkH,

so that for any integer k, Gk is similar to Jk and the similarity matrix is
H, for each k. The structure of Jk may be explored as follows:

(1) From the block diagonal form of J,

Jk = block diag
[
Jr1(λ1)k, . . . ,Jrs(λs)

k
]
,

for each integer k.
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(2) For a general Jordan block Jr(λ), let Jr(λ)k have elements mi,j(k),
(i = 1, . . . , r; j = 1, . . . , r), for each integer k. Then for k ≥ 1,

mi,i+j(k) =



(
k

j

)
λk−j for 0 ≤ j ≤ min(k, r − i),

0 otherwise.

This may be proved by induction as follows. For k = 1, mi,i(1) = λ
andmi,i+1(1) = 1 are the only non-zero elements of Jr(λ)1 = Jr(λ),
so the result holds. Assuming the result to hold for a general k, we
have Jr(λ)k+1 = Jr(λ)kJr(λ), so that

mi,i+j(k + 1) =
r∑

h=1

mi,h(k)mh,i+j(1)

=

{
λmi,i+j(k) +mi,i+j−1(k), j �= 0;

λmi,i (k) , j = 0.

Hence mi,i (k + 1) = λmi,i(k) = λλk = λk+1 as required. Other-
wise, it follows for 0 ≤ j ≤ k + 1 that

mi,i+j(k + 1) = λ

(
k

j

)
λk−j +

(
k

j − 1

)
λk−j+1

=
(
k + 1
j

)
λk+1−j ,

as required. Hence assuming the result true for any k implies it is
true for k + 1. Since the result holds for k = 1, then it is true in
general by induction.

(3) From (2) it follows that for any fixed r-vectors ar and br,

arJr(λ)kbr = λkpr(k),

where pr(k) = p0r+p1rk+ . . .+pr−1 rk
r−1 is a polynomial of degree

r− 1 in k; the coefficients pir depend on ar, br and λ but not on k.
(4) From (1) and (2) it follows that for any fixed n-vectors a and b and

integer k ≥ 1,

f(k) = a′Gkb = a′H−1JkHb

=
s∑

i=1

pi(k)λki ,

where pi(k) is a polynomial function of k of degree ri − 1, for each
i = 1, . . . , s.
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