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PREFACE

This text is concerned with Bayesian learning, inference and forecasting in
dynamic environments. We describe the structure and theory of classes of
dynamic models and their uses in forecasting and time series analysis.

The principles, models and methods of Bayesian forecasting and time se-
ries analysis have been developed extensively during the last thirty years.
This development has involved thorough investigation of mathematical and
statistical aspects of forecasting models and related techniques. With this
has come experience with applications in a variety of areas in commercial,
industrial, scientific, and socio-economic fields. Much of the technical de-
velopment has been driven by the needs of forecasting practitioners and
applied researchers. As a result, there now exists a relatively complete
statistical and mathematical framework, presented and illustrated here. In
writing and revising this book, our primary goals have been to present
a reasonably comprehensive view of Bayesian ideas and methods in mod-
elling and forecasting, particularly to provide a solid reference source for
advanced university students and research workers.

In line with these goals, we present thorough discussion of mathematical
and statistical features of Bayesian analyses of dynamic models, with many
illustrations, examples and exercises. Much of the text will be accessible
to advanced undergraduate and graduate/postgraduate students in statis-
tics, mathematics and related fields. The book is suitable as a text for
advanced courses in such disciplines. On the less mathematical side, we
have attempted to include sufficient material covering practical problems,
motivation, modelling and data analysis in order that the ideas and tech-
niques of Bayesian forecasting be accessible to students, research workers
and practitioners in business, economic and scientific disciplines.

Prerequisites for the technical material in the book include a knowledge
of undergraduate calculus and linear algebra, and a working knowledge of
probability and statistics such as provided in intermediate undergraduate
statistics courses. This second edition includes many more exercises. These
exercises are a mixture of drill, mathematical and statistical calculations,
generalisations of text material and more practically orientated problems
that will involve the use of computers and access to software. It is fair to
say that much insight into the practical issues of model construction and
usage can be gained by students involved in writing their own software,
at least for the simpler models. Computer demonstrations, particularly
using graphical displays, and use of suitable software by students, should
be an integral part of any course on advanced statistical modelling and
forecasting.

Since the first edition appeared in 1989, the field has experienced growth
in research, both theoretical and methodological, as well as in developments
in computation, especially via simulation methods, and in more diverse
applications. The revision for this second edition involved updates and re-
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finements of original material, together with additional material based on
research and development in the field during the early 1990s. In terms of
new or substantially revised material, we note novel theory and method-
ology of dynamic linear model (DLM) analyses, including developments
in retrospective time series analysis (Section 4.8), model estimation and
diagnostics (Section 4.9), and in the theory of limiting results in time se-
ries dynamic linear models (Section 5.5). New material has been added
on stationary time series models (Sections 5.6 and 9.4), on important new
methods of time series decompositions in the state-space framework (Sec-
tions 9.5, 9.6 and 15.3), on time-varying parameter autoregressive DLMs
(Section 9.6), and on inference and application of autoregressive component
DLMs (Section 15.3). New results and methods of model monitoring and
assessment, developed from a Bayesian decision analytic viewpoint (Section
11.6), complement original material on intervention and model assessment.
Substantial new material has been added on statistical computation and
simulation methods for Bayesian analysis of non-linear models, including,
in particular, a new chapter, Chapter 15, focussed mainly on Markov Chain
Monte Carlo approaches in dynamic models. This rapidly growing area rep-
resents one of the currently critical research frontiers in statistics, and in
time series modelling and analysis specifically. Throughout the book the
new and revised material includes additional illustration and references, as
well as theory and methods, and new exercises in several chapters.

Following the publication of the first edition, we developed a related
text that discusses and illustrates application of a standard class of dy-
namic linear models, essentially those of Chapters 10 and 11 here. That
1994 text, Applied Bayesian Forecasting and Time Series Analysis by Andy
Pole, Mike West and Jeff Harrison, includes an extensive guide to the use
of the BATS software package that implements the model class. BATS,
written in C by Andy Pole, and with support from Chris Pole, runs under
Windows95 and DOS. BATS was developed from original versions in APL;
many of the examples and graphs here were produced using the APL ver-
sion. More examples appear in the 1994 text, which readers may find to be
a useful adjunct to the current, more comprehensive reference text. S-Plus
software for dynamic modelling, forecasting and retrospective analysis is
available from the second author in collaboration with Robin Reed (Harri-
son and Reed 1996). Additional software for time-varying autoregressions
and time series decompositions (developed in Section 9.5, 9.6 and 15.3)
is available in Matlab and Fortran90/S-Plus code from the first author in
collaboration with Raquel Prado. This can be found at the Duke web site,
http://www.stat.duke.edu/.

The field continues to develop and flourish. Readers interested in keeping
up with at least some of the post-publication developments of the authors
and their coauthors can explore the resources and links at the Duke web
site, as indicated above.
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Thematically, material in the book can be loosely partitioned into four
sets, each of three consecutive chapters, a final set of four chapters on more
advanced topics, and an appendix.

A. Introduction

The first three chapters provide a broad introduction to the basic prin-
ciples, modelling ideas and practice of Bayesian forecasting and dynamic
models. In Chapter 1 we discuss general principles of modelling, learning
and forecasting, and aspects of the role of forecasters within decision sys-
tems. Here we introduce basic elements of dynamic modelling and Bayesian
forecasting. Chapter 2 is devoted to the simplest, and most widely used, dy-
namic model, known as the first-order polynomial model, or steady model.
In this setting, the simplest mathematical framework, we introduce the
approach to sequential learning and forecasting, describe important the-
oretical model features, consider practical issues of model choice and in-
tervention, and relate the approach to well-known alternatives. Chapter 3
continues the introduction to dynamic modelling through simple, dynamic
regression models. Readers will be familiar with standard regression con-
cepts, so that the rather simple extension of straight line regression models
to dynamic regression will be easily appreciated.

B. Dynamic linear model theory and structure

Chapters 4, 5 and 6 provide a comprehensive coverage of the theoreti-
cal structure of the class of dynamic linear models (DLMs) and Bayesian
analyses within the class. Chapter 4 is key. Here we introduce the funda-
mental concepts, principles, general framework, definitions and notation,
and fully develop the distribution theory associated with dynamic linear
models. This includes complete and detailed descriptions of entire joint
distributions relevant to sequential learning, forecasting and retrospective
analysis. Chapter 5 is concerned with a special subclass of DLMs, referred
to as time series models, that relate naturally to most existing methods
for time series forecasting. In this second edition, a new elegant proof of
variance convergence for constant DLMs is given, more convergence re-
sults are provided, and new material on stationary time series models is
included. Chapter 6 focuses on two important aspects of model design and
specification, namely component modelling and discounting.

C. Classes of dynamic models

Chapters 7, 8 and 9 describe in greater detail the structure of important
special classes of dynamic models and their analyses. Chapter 7 is devoted
to time series models for polynomial trends, particularly important cases
being first-order polynomials of Chapter 2 and second-order polynomials,
or linear trend models. Chapter 8 concerns dynamic linear models for
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seasonal time series, describing approaches through seasonal factor repre-
sentations and harmonic models based on Fourier representations. Chapter
9 concerns relationships between time series modelled through dynamic re-
gressions, extending Chapter 3, and extended models for transfer effects
of independent variables. This second edition substantially expands dis-
cussion and development of classical ARMA and related models, and con-
nections with dynamic linear modelling, in Chapter 9, including new and
practically useful developments in time-varying parameter autoregressive
models.

D. DLMs in practice, intervention and monitoring

Chapter 10 illustrates the application of standard classes of dynamic
models for analysis and forecasting of time series with polynomial trends,
seasonal and regression components. Also discussed are various practical
model modifications and data analytic considerations. Chapter 11 focuses
on intervention as a key feature of complete forecasting systems. We de-
scribe modes of subjective intervention in dynamic models, concepts and
techniques of forecast model monitoring and assessment, and methods of
feed-forward and feed-back control. The second edition expands this chap-
ter with new material on model assessment based on Bayesian decision
analysis, with consequent links to cusum methods of model monitoring.
Chapter 12 is concerned with multi-process models by which a forecaster
may combine several basic DLMs for a variety of purposes. These in-
clude model identification, approximation of more complex models, and
modelling of highly irregular behaviour in time series, such as outlying
observations and abrupt changes in pattern.

E. Advanced topics

Chapters 13, 14, 15 and 16 are concerned with more advanced and re-
cently developed models. In Chapters 13 and 14 we consider approaches
to learning and forecasting in dynamic, non-linear models, where the neat
theory of linear models does not directly apply. Chapter 13 describes some
standard methods of analytic and numerical approximations, and also some
more advanced approaches based on numerical integration; this leads into
new developments in Bayesian computation based on stochastic simulation.
Chapter 14 develops non-normal models and explores methods and appli-
cations in the class of dynamic generalised linear models. Chapter 15, a
completely new chapter for the second edition, is wholly concerned with
dynamic model analysis via methods of stochastic simulation, discussing,
in particular, recent advances in Gibbs sampling with application to au-
toregressive component DLMs. In Chapter 16 we return to primarily linear
models but consider aspects of modelling and forecasting in multivariate
settings.
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CHAPTER 1

INTRODUCTION

1.1 MODELLING, LEARNING AND FORECASTING
1.1.1 Perspective

This book concerns modelling, learning, and forecasting. A basic view of
scientific modelling is that a model is a “simplified description of a system
. that assists calculations and predictions” (Oxford English Dictionary).
Broadly, a model is any descriptive, explanatory scheme that organises
information and experiences, thus providing a medium for learning and
forecasting. The prime reason for modelling is to provide efficient learning
processes that will increase understanding and enable wise decisions.

In one way the whole operation of an organisation can be viewed as
comprising a sequence of decisions based upon a continual stream of infor-
mation. Consequently there is an accumulation of knowledge that, in prin-
ciple, should lead to improved understanding and better decisions. Suitably
formulated and utilised, descriptive models provide vehicles for such learn-
ing.

The foundation for learning is the Scientific Method. It is often assumed
that scientific investigation and learning are concerned with the pursuit
and identification of a single “true” model, but this is certainly not our
position. Models do not represent truth. Rather they are ways of viewing
a system, its problems and their contexts, that enable good decisions and
enhance performance both in the short and long term. Within a model
framework, the scientific learning process facilitates the routine, coherent
processing of information, that leads to revised views about the future and
hence to rational actions.

Since a model organises personal experiences and information, it is al-
ways a subjective picture anchored in the past. Consequently, a derived
forecast, being a hypothesis, conjecture, extrapolation, or speculative view
about something future, may well prove to be “far from the mark”, result-
ing in a sizeable forecast error. But, it is exactly the forecast errors that
stimulate learning and a good system will efficiently utilise them in order to
improve performance through model enhancement. Forecasting systems of-
ten ignore the wider aspects of learning and are founded on myopic models
incapable of development and only able to make overly restricted predic-
tions.

One desirable property of a forecasting and learning system is that the
way of viewing should not change radically too frequently; otherwise con-
fidence is impaired, communication breaks down, and performance dete-
riorates. Hence the fundamentals of an operational model should remain
constant for considerable periods of time, regular change only affecting
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small details. That is, there should be a routine way of learning during
phases when predictions and decisions appear adequate, and an “excep-
tional” way when they seem unsatisfactory. The routine adjustment will
generally be concerned with small improvements in the estimates of model
quantities whereas the exceptions may involve basic model revision.

The principle by which such systems operate is that of Management by
Ezception, an important part of the Scientific Method. Essentially, infor-
mation is routinely processed within an accepted conceptual and qualita-
tive framework within which the major features of an operational model
remain unchanged, minor quantitative modifications are accommodated,
and the relative merits of any rival models noted. Exceptions arise in two
main ways. The first occurs when non-routine expert information antici-
pates a future major change that will not properly be reflected by routine
learning. The second occurs when performance monitoring, using quality
control techniques applied to the forecast errors, identifies deficiencies, thus
questioning model adequacy and prompting expert intervention. In either
case, for effective communication, the model structure must be descriptive,
robust and meaningful.

1.1.2 Model structure

Model structure is critical to performance. A good structure will provide
model properties that include

° Description
° Control
° Robustness

Consequently we view the structuring of a model through a triple
M {C,F,Q}.

The component C' describes the conceptual basis, F' the model form, and
@ the quantified form.

C : The concepts C provide an abstract view of a model. They may
express decision centre objectives; scientific or socio-economic laws;
behavioural characteristics etc. As such they are expected to be
very durable and rarely changed. Further, at any moment in time,
rival models representing alternative views may be founded upon
the same conceptual base C' (although this is not always the case).

F : The qualitative form F represents the conceptual in descriptive
terms, selecting appropriate variables and defining relationships.
For example a government may be seen as a decision centre wishing
to retain power. This may be a part of a general conceptual view of
an economic sector, which helps to express the type of decisions to



1.1 Modelling, Learning and Forecasting 3

be taken as circumstances evolve. At any time there may be choices
about the way in which general objectives are accomplished. With
one policy, the relevant control variables will be from set A, say, and
at a time of policy revision, they may suddenly change to a set B.
Form defines the relevant sets of variables and their relationships,
perhaps in terms of algebraic, geometric, graphical, and flow sheet
representations.

Q@ : Often many, if not all, rival models will have a common qualitative
parametric form and differ only at the quantitative level @, in the
values given to the parameters. Then a single form is often durable
for reasonable periods of time. It is at the quantitative level that
frequent change occurs. Here the merits of rival parametric values
are continually changing as new information is received. Generally
these are small changes that are in accord with the uncertainty
conditional upon the adequacy of both concept and form.

Description aims at providing meaning and explanation in an acceptable
and communicative way. This is necessary for unifying all concerned with
a decision process and its effects. It brings confidence from the fact that all
are working and learning together with a well defined view. In particular, it
encourages growth in understanding, participation, and progressive change.
In most decision situations, anticipation of major change is the critical
factor upon which the life of an organisation may depend. Hence it is vital
to promote creative thinking about the basic concepts and form, and to
improve intervention at all levels. Two important aspects of an effective
description are parsimony and perspective. Parsimony means simplicity.
It excludes the irrelevant and uses familiar canonical concepts, forms, and
learning procedures, bringing all the power of past experience to bear.
Perspective is concerned with the relative importance of the various model
characteristics and what they do and do not affect.

Control is usually taken to mean actually influencing the behaviour of
the system being modelled. Given such control there is great opportunity
for effective learning by experimenting. In process control this may mean
carrying out dynamic experimentation, as embodied in the principles and
practice of evolutionary operation (Box and Draper 1969). All the princi-
ples and power of the statistical design of experiments can then be utilised.
Another aspect of control occurs when the system being modelled cannot
be controlled or can only be partially controlled. Then the decision makers
may still have control in the sense of having freedom to respond wisely
to predictions about systems that they cannot influence. For example a
farmer who assesses the weather in order to make farming decisions can-
not directly influence the weather but can utilise his forecast to control his
actions, perhaps waiting until “the time is ripe”. Currently there is much
power in the hands of remote, centralised organisations that can bring
disaster to those they control simply because of their selfish desires and
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ignorance of the systems they control. It is then vital that the true nature
of the “controlled” system be understood along with the motivations and
reactive responses of the power centre. One look at the past control of
European agriculture and industry illustrates this point only too well.
Robustness is a key property for a learning system. Essentially the aim
is to structure so that at “exceptional” times, intervention is efficiently and
economically accomplished. This means only changing that which needs
changing. Thus the objective is to extract the maximum from history
so that all relevant information is retained whilst accommodating the new.
The structure {C, F, Q} provides a major source of robustness. It offers the
opportunity of carrying out major changes at the quantitative level Q) whilst
retaining the model form F'. It provides a way of retaining the conceptual
C whilst drastically altering aspects of form F'. However, it is also crucial
to structure within each of these levels so that major changes affect only the
relevant aspects and do not damage others. At the quantitative level, when
operating within a parametrised form, modelling component features of a
system through distinct though related model components is recommended.
Each component describes a particular aspect such as price elasticity, the
transfer response of an input flow change, a seasonal effect, or a trend.
Then if intervention necessitates a major change concerning any particular
component this can be accomplished without affecting other components.

1.1.8 The role of mathematics

The role of mathematics and statistics is as a language. It is a very power-
ful language since far-reaching implications can often be deduced from very
simple statements. Nevertheless, the function of mathematics must be seen
in perspective. It expresses a view in a way analogous to that of paint on
canvas. In this sense it is only as good as the artist who uses the materials
and the audience who see the result. Like all sources of power, mathematics
can be well used or abused. Selective, marginal, and conditional interpreta-
tions are the key weapons of the deceiver. Any modeller, just like an artist,
must of necessity select a view of the context under study and is thus, ei-
ther innocently or deliberately, likely to mislead. Choosing an appropriate
view is often very hard work. It may have nothing to do with mathematics,
although of course it can involve some data analysis. Many modellers pay
scant regard to this vital preliminary effort in their eagerness to play with
computers and equations. Consequently, so many mathematical models
are inappropriate and misleading. With today’s computing power it is not
far from the truth to say that if a system can be coherently described then
it can be expressed mathematically and modelled. To summarise, our po-
sition is that modelling is an art; that the first task is to define objectives;
the second to select a consistent view of the system; and only later, and if
appropriate, to use a mathematical description.
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1.1.4 Dynamic models

Learning is dynamic. At any particular time a model describes a routine
way of viewing a context, with possible competing views described through
alternative models. However, because of uncertainty, the routine view itself
is likely to comprise a set of models. For example, consider the view that
an output variable Y is related to an input variable X according to a
parametrised form

Y = X0 +e

Here 0 is an uncertain parameter and € an uncertain, random error term.
Further suppose that the forecaster’s beliefs about the parameter 6 are
expressed through a probability distribution P(6). Then the view may
be described as comprising a set of models, one for each possible value of
0, each with measurable support P(-). This embodies one form of model
uncertainty. The dynamic nature of processes and systems demands also
that uncertainty due to the passage of time be recognised. Then, because
the model form is only locally appropriate in time, it is necessary to rou-
tinely characterise 6 as slowly evolving. Further, at some future time, the
model form may change, possibly involving quite different input variables.
Such typical applications require dynamic models, defined generally as
“sequences of sets of models”.

At any given time, a dynamic model M will comprise member models
M, with the forecaster’s uncertainty described through a prior distribution
P(M), (M € M). In producing a forecast from the dynamic model for
an output Y, each member model M will provide a conditional forecast
in terms of a probability distribution P(Y|M). In the above example M
relates directly to the parametrisation # and thus to the component ) of
the model. This is typical. More widely, however, M may involve uncertain
aspects of form F and even conceptual descriptions C. The forecast from
the dynamic model M is then simply defined by the marginal probability
distribution, namely

P(Y) = /MEM P(Y|M)dP(M).

Alternative dynamic models are rivals in the sense that they compete with
the routine model for its prime position, thus providing a means of per-
forming model monitoring and assessment. Although it is often the case,
a dynamic model is not restricted to members having the same form and
conceptual base; the framework is entirely general.

1.1.5 Routine learning

Bayesian methodology offers a comprehensive way of routine learning that
is not dependent upon any particular assumptions. For simplicity consider
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a dynamic model M with member models M. Before receiving an obser-
vation of uncertain quantities Y, for each M € M, the forecaster has a
prior probability P(M) describing the relative uncertainty concerning the
truth of M. Each member model M provides a means of forecasting Y
through a conditional probability distribution P(Y|M), which specifies the
view about future possible values of Y, conditional upon the truth of that
particular description M.

By the laws of probability, these two sets of probabilities combine to
provide a joint probability distribution, written in terms of densities as

p(Y, M) = p(Y|M)p(M).

When Y is observed to take a value Y*, say, the updated probability
distribution for M given Y = Y* is defined by the conditional density

p(M[Y™) o< p(Y™, M),
or equivalently
p(M[Y™) oc p(Y*|M)p(M).
This means of updating or learning is often expressed as
Posterior « Observed likelihood x Prior.

The proportionality constant is simply the normalising quantity p(Y™*),
the prior density for Y at the observed value Y*, which ensures that the
“posterior” density over M € M is normalised to unit probability. Hence,
for any observed value of Y, the Bayes’ theorem representation is

p(M[Y) = p(Y|M)p(M)/p(Y), (M € M).

Given the dynamic model M, all the routine information contained in the
observation Y is expressed through the likelihoods p(Y|M).

1.1.6 Model construction

Some forecasters approach model building in an unsatisfactory way, often
resorting to processing historical output data by computer and accepting
whatever mathematical expression emerges. Such people are always asking
“Where do you get your models from?” The answer is very simple. We
apply the natural scientific approach to model building.

As previously stated, the first step is to clarify objectives. If both macro
and micro decisions are to be made using the model, think about the value
of structuring the model hierarchically; initially modelling within hierar-
chical levels whilst not losing sight of the relationships between levels. The
next step is to decide upon the conceptual basis, and then to consider signif-
icant factors and relationships. In particular, the aim is to explain as much
of the significant variation as possible. This may involve identifying “sure
thing” relations that arise because of accepted physical laws, relationships,
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constraints etc. Often “lead” variables are involved. For example, if you
are predicting beef supply at the butchers, it is clear that there is a lag of
three years from impregnation of a cow to the resulting meat reaching the
shop. Within a “closed” community it is obvious that the decision point
for expansion at retail level is three years previously. It is also very clear,
from biological considerations, that “in order to expand you must first con-
tract”. That is, more heifers will have to be taken back into the breeding
herd at the expense of next year’s meat supply. Germinal decision points
and these delayed response dynamics appear in many systems only to be
completely ignored by many modellers and “fire brigade” decision makers.
Hence the reason for so many problems that arise, not only in agriculture
(Harrison and Quinn 1978), but in many other economic sectors.

Another key step is to assess the nature of the process being studied. Is it
purposeful? It is no use studying the detailed flow of a river in forecasting
its path; the main thing is to recognise that all rivers follow the principle of
steepest descent. Similarly, when studying a process dependent upon other
decision makers, it may be critical to assess their purposes, what effect
the environment will have on them, how their perceptions match reality,
and how their statements match their actions. In selecting model factors,
control factors are to be prized.

When, and only when, any significant structure has been modelled should
the modeller resort to time series. A time series model is essentially a con-
fession of ignorance, generally describing situations statistically without
relating them to explanatory variables. That is not to say that pure time
series models are useless. For example, time series models involving polyno-
mial trends and seasonal components may be very useful in, say, short-term
sales forecasting, where experience, perhaps across many similar products
has led to empirical growth laws and defensible arguments for seasonality.
The danger arises when mathematical expressions, such as general station-
ary noise models, are adopted without any substantial foundation. Then
historic peculiarities are likely to suggest totally inappropriate models.

The key message for the modeller is “THINK, and do not sacrifice your-
self to mathematical magic.” This is not to rule out exploratory data anal-
ysis. History and data may be used both to assess contending models and
to stimulate creative thought, but data analysis should not replace prelim-
inary contextual thinking, nor should it promote mathematical formulae
that have no defensible explanations. All analytic methods have some con-
tribution to offer, but they must be seen as servants of explanatory thought
and not its usurper.
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1.2 FORECAST AND DECISION SYSTEMS
1.2.1 Integration

As Dr Johnson said, “People need to be reminded more often than they
need to be instructed.” This is true in modelling, especially when dealing
with open decision systems. There is much that we know or are able to
recognise but that we are not anxious to see or practise. Good modelling
demands hard thinking, and good forecasting requires an integrated view
of the role of forecasting within decision systems.

The consequences of failing to harmonize forecasts and decisions is sharp-
ly, and rather humorously, exemplified in the following incident that oc-
curred over thirty years ago in the brewery trade. At the end of the sum-
mer of 1965, one of us received a call from “Peter.” Peter had just moved
to a famous brewer and had been given the responsibility for short-term
forecasting. Since he knew very little about this, he sought advice. Upon
visiting, he said that his task was to produce beer forecasts for two weeks
ahead. He did not appear to be enthralled about this, and when asked
what decisions rested on the forecasts his reply was “I am not interested in
the decisions. My job is simply to forecast.” Pressed further, he said that
the forecasts would be used in production planning. However, he would
not see the importance of integrating forecasting and control. Prior to his
visit, some of his data had been examined using the ICI MULDO package
(Harrison and Scott 1965; Harrison 1965); the data appears in Figure 1.1.

8 -
BARRELS
(1000s)

6 -

3_

WEEK 1 1 1 1 1 1
YEAR 1961 1962 1963 1964 1965 1966

Figure 1.1 Barrels of beer (in thousands) sold in a sector of the
UK market during 1961 to 1966
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As is evident from the figure, the data showed a marked seasonal ef-
fect with a summer peak, a pronounced festive component, particularly at
Christmas, and a declining trend. A few months later Peter telephoned
to announce that he was in trouble. He did not volunteer the extent of
his misfortunes. “No, I have not been following the methods you advised.
I simply estimated based upon the last few weeks. This seemed to give
as good forecasts as yours and to begin with I did fine.” Six weeks later
it become clear just how his misfortunes had grown. The story made the
front page of a number of national daily newspapers, with the colourful
Daily Mirror version reproduced below in Figure 1.2. The reader is left to
speculate how a computer came to be blamed when apparently Peter had
never had access to one.

Computer sends the beer for a Burton

It happened, of all places, in Burton-upon-Trent, the town made
famous by beer.

First, they found they had TOO MUCH beer.
Thousands of gallons too much — all because a computer went wrong.

The computer over-estimated how much thirsty revellers could swal-
low over the Christmas and New Year holidays — and now the beer
is too old for use.

Brewery officials in the Staffordshire beer “capital” ordered: “Down
the drain with it ...”

Secret

The throwaway beer — more than 9,000 casks of best bitter and
pale ale produced by the Bass-Worthington group — is worth about
£100,000.

Tankers are pouring it down the drain at a secret spot.
But now the brewery officials are feeling sour once again ...
Some pubs in the town yesterday reported a beer SHORTAGE.

Production of fresh supplies has been disrupted — again because of
the Christmas and New Year holidays.

A brewery spokesman said: “We were caught on the hop.”

Figure 1.2 Caught on the hop. (Daily Mirror, January 12" 1966)
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1.2.2 Choice of information

Often there is a choice concerning the observed information on which fore-
casts are based. Modellers are generally aware that they may need to
allow for differences in numbers of working days, seasonal holidays, de-
flated prices, etc. However, there are other considerations. It is clear that
in controlling a system, information that is relatively independent of the
performance of that system is preferable to that which is dependent upon
it. In many cases little thought is given to the matter or its consequences.
As an example, in short-term sales forecasting for stock control and pro-
duction planning, modellers may, without question, accept sales statistics
as their routine observations. The real objective is to forecast customer
requirements. Clearly, sales statistics represent what is sold. As such they
reflect the ability of the system to meet requirements, and not necessarily
the actual requirements themselves. The use of sales statistics may result in
excessive variation, particularly when products compete for manufacturing
capacity, as illustrated by the graph in Figure 1.3.

There can also be an insensitivity to increases in demand, particularly
when manufacture is continuous. Other problems include recording delays,
due to waiting for suitable transport, and the possibility of negative figures
when returns occur. In general it is preferable to collect order or demand

SALES
35
304 |:| Outstanding orders
*  Delivery to warehouse
25
20
15
10
5 -
0
| 1] |
MONTH 1 1 1
YEAR 1985 1986 1987

Figure 1.3 Sales variation induced by production system
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statistics, although even these can mislead on requirements in periods of
shortage when customers deliberately request more than they need, know-
ing that they will only receive a partial allocation. However, the short-term
problem is then one of allocation.

Another example of care is when one of us correctly forecast a bumper lin-
seed harvest, but then, without thinking, converted it into its oil equivalent.
Unfortunately this proved to be a significant over-estimate of the available
oil since crushing capacity was limited. So, although the abundant harvest
materialised, the oil price did not fall nearly as far as predicted.

These examples suffice to remind modellers to consider both the direct
relevance and the quality of their observations.

1.2.3 Prospective intervention

A major problem for many mathematically based learning systems has
been that of accommodating subjective information. This is particularly
important at times of major change. Consider the example of the history
of UK sulphuric acid production. Production statistics from 1870 to 1987
are shown in Figure 1.4 (Source: Monthly Digest of Statistics).

Clearly there were major changes that, if not anticipated, would have
been extremely costly to producers. The feature of these changes is the

0.5 1

YEAR 1 1 1 1 1 1 1
DECADE 1870 1890 1910 1930 1950 1970 1990

Figure 1.4 UK sulphuric acid production (tonsx10°)
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sharp decline and demise of previously significant end uses due to tech-
nological and social change. The first end use to suffer was the Leblanc
process for the production of soda. The ammonia-soda process uses no sul-
phuric acid and finally superseded Leblanc around the end of 1920. More
recently, hydrochloric acid has challenged in steel pickling since it offers a
faster process and is recoverable. The importance of an early awareness and
assessment of the effect of these developments and consequent prospective
intervention is self-evident (Harrison and Pearce 1972).

The vital role of a model structure facilitating expert intervention has
already been stressed. Usually, at times of intervention, there is additional
uncertainty with an accompanying sharp change in beliefs about the future.
Being phrased in terms of meaningful probabilities, the Bayes’ approach
offers a natural way of accommodating such uncertain information, thus
facilitating intervention. This is one of the prime reasons for its adoption
as the routine learning method within management by exception systems.

As an example, consider short-term forecasting of the UK retail price
index, (RPI) as in Figure 1.5, with a routine view based on local linear ex-
trapolation. In June 1979, the chancellor’s announcement that the value-
added tax (VAT) was to be raised from 10% to 15% makes intervention
essential to sustained short-term forecasting accuracy. Prior to this the
July price level might have been assessed by a forecaster as 221.5 with an
associated uncertainty represented by a standard deviation of 1. However,
upon hearing of the change in VAT, the forecaster is likely to assess the
effect as increasing the RPI by an extra 3.5%, leading to a revised esti-
mate of 229.5, with the increased uncertainty being reflected by a standard
deviation of 3. The actual mechanics of the change can, and should, be
designed with the intervener in mind. Direct communication in terms of
statistical terminology is not at all necessary, provided the chosen interven-
tion method can be statistically interpreted. Figure 1.5 further illustrates
the VAT incident, representing simple forecasts based on the foregoing in-
tervention. The forecasts are one-step ahead, that for each monthly value
of the RPI being made the previous month, and are plotted with associated
uncertainties represented simply by intervals of one standard deviation (sd)
either side of the point forecasts.

Some people object to intervention on the grounds of subjectivity. Let
us be quite clear: as soon as anyone starts to model they are being sub-
jective. Of course, any facility that enables subjective communication is
open to abuse, but the answer is to monitor and control subjectivity rather
than stupidly prohibiting it. This may be accomplished within the rou-
tine monitoring system or otherwise. It is important that such monitoring
be performed as part of the learning process, for upon first encountering
complete learning and forecasting systems, decision makers are tempted to
intervene on ill-founded hunches, on situations that are already accommo-
dated in the routine model, or simply due to wishful thinking.
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Figure 1.5 UK RPI forecasting with intervention

1.2.4 Monitoring

A continual assessment of the performance of any regularly used forecast-
ing and decision system is vital to its effective use. Model monitoring is
concerned with detecting inadequacies in the current routine model M,
and, in particular, in signalling significant forecast errors caused by ma-
jor unanticipated events. Practitioners will be familiar with such schemes
as applied in quality control and inventory management. Of course it is
hoped that expert intervention will anticipate relevant major events, but in
the absence of such feed-forward information, monitoring systems continu-
ally assess the routine model, signalling doubtful performance based on the
occurrence of unexpectedly large forecast errors. At such times, relevant
explanatory external information may be sought or automatic procedures
applied, that are designed to correct for specified types of change.

Within the Bayesian approach, the extent to which observations accord
with predictions is measured through predictive probabilities, possibly with
an associated specified loss function. Writing P(Y|M) as the predictive
probability distribution for a future quantity Y based on model M, model
adequacy may be questioned if the eventually observed value Y = y does
not accord with P(y|M). The initial task in designing any monitoring sys-
tem is to decide what constitutes bad forecasting, that is, how to measure
accord with forecast distributions in the context of decisions that are de-
pendent upon these forecasts.
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1.2.5 Retrospective assessment

In addition to learning and prediction, retrospection is often informative.
Typically this is called a “What happened?” analysis. In the light of all
the current information, the objective is to estimate what happened in the
past in order to improve understanding and subsequent performance.

A typical marketing example occurs when a novel promotional campaign
is undertaken. Initially, prospective intervention communicates the pre-
dicted effects, which are likely to involve increased sales estimates, and their
associated uncertainties over the campaign period. This is necessary in or-
der to ensure that appropriate product stocks are available. The progress
of the campaign’s effect will be suitably monitored. Then, some time af-
ter completion, the campaign will be retrospectively assessed in order to
increase the store of market knowledge. This involves properly attributing
effects to the many contributing sources of variation such as price, season-
ality, competitive action, etc. Retrospective analysis is particularly useful
for examining what happened at times of major change, especially where
there is debate or ignorance about possible explanations. As such it is an
integral part of a good learning system.

1.2.6 Utilities and decisions

A statistician, economist, or management scientist usually looks at a deci-
sion as comprising a forecast, or belief, and a utility, or reward, function.
In a simple horse-racing situation, you may have beliefs about the relative
merits of the runners that lead you to suppose that horse A is the most
likely to win and horse B the least likely to win. However, the bookmaker’s
odds may be such that you decide to bet on horse B.

Formally, in a simple situation, you may have a view about the outcome
of a future random quantity Y conditional on your decision a expressed
through a forecast or probability distribution function P(Y'|a), possibly
depending on a. A reward function U(Y,a) expresses your gain or loss if
outcome Y happens when you take decision a. Thus, for each decision a it
is possible to calculate the merit as reflected in the expected reward

r(a) :/U(Y, a)dP(Y|a).

The optimal Bayes’ decision is that a that maximises r(a), as in De Groot
(1971) and Berger (1985).

Accepting this formulation, it is clear that in general, for a given fore-
cast distribution, provided the utility favours a particular decision strongly
enough, that decision will be chosen. Also, for a given utility function,
if the probability distribution or forecast relating to decisions sufficiently
favours a particular decision, then that decision will be chosen.

A decision maker occupies a powerful situation and often has strong self
interests that lead to utilities quite different from those of others. On the
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other hand, often the decision maker cannot openly express his selfish util-
ities and is therefore forced to articulate in terms of a utility function that
is acceptable to others who may later authorise the decision or participate
in implementation. In such a situation, forecasting offers a major source of
power, which can be used to manipulate decisions. Furthermore, the ex-
tent of forecast manipulation in business, government, etc. should not be
underestimated. As Bertrand Russell (1921) remarks, “It becomes neces-
sary to entertain whole systems of false beliefs in order to hide the nature
of what is desired.” It is not uncommon for practitioners to be asked to
undertake forecasting exercises where the directive is that a given decision
should result. For example, “you must not show that this plant should not
be built,” and “we must show that television advertising does not influ-
ence the total alcoholic drinks market, but only the shares of competing
brands.” The former case involving extended capacity occurs regularly. On
one occasion one of us was strongly reprimanded for carrying out a check
that revealed that the current market of a recently formed organisation was
over 40% less than the figures being used to justify extended capacity. The
reasons for such exhortations are clear. Unless the plant is built, “I will be
out of a job”, “we banks cannot lend money”, “unemployment statistics
will increase”, etc., so that many powerful groups have very strong and
similar utility functions.

The key weapon of the manipulator is selection. This may be data se-
lection, the selection of a particular set of circumstances to illustrate an
argument, the reference to forecasts from other, similarly interested organ-
isations, the selection of consultants and forecasters who need business, the
selection of an inexperienced project team, etc.

There is, as readers will be well aware, a recent history in gross over-
forecasting across a host of sectors by business and government, the follow-
ing examples being typical.

EXAMPLE 1.1. Consider a forecast of UK consumption of low density
polyethylene, denoted LDP, made in 1971 (Harrison and Pearce 1972). The
history to that date is shown in Figure 1.6. Historically, trend curves backed
by end use analysis had performed exceedingly well in estimating UK con-
sumption and the predicted fast growth had supported past decisions to
extend production capacity. In 1971, the same approach estimated a 1980
market of about 470 thousand long tons, which did not suit the utility of
managers. The only new significant use was in plastic refuse sacks, and no
end use argument could be proposed for increasing this forecast other than
surprise or the imposition of unfounded growth constraints. The basic use
of trend curves is as a control mechanism. Historically, various empirical
rules have been derived such as “the percentage growth in demand decreases
with time”, “real production costs decrease with cumulative output’, etc.
These form a standard by which proposals can be judged.
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Figure 1.6 UK consumption of LDP (long tonsx10°)

Basically, if a case conforms to these rules, it may be safe to sanction
extension proposals. If however, the case rests on a vastly different forecast
then there must be a very sound and strong reason why the future will
evolve in such an unexpected way. In the LDP situation the growth rate
had already fallen to 10% and could be expected to fall further to about
6% by 1980. Thus, all empirical evidence pointed to a struggle for the
market to exceed 500 thousand long tons by 1980. However, the suppliers
of the raw material ethylene had produced an incredible 1980 forecast of
906 thousand long tons. Furthermore, the board of the plastics company
for whom the forecasts were produced decided to plump for an unjustified
figure of 860 thousand long tons. To come to fruition, both these forecasts
needed an average growth rate of about 13% over the next ten years. To say
the least, such a growth rate recovery would have been most remarkable,
and any proposal based upon this would certainly have had to have been
very well founded. The market researcher who did the end use analysis
was retired. Extensions were sanctioned, and throughout the next decade,
regretted. From the mid 1970s onwards capacity in Western Europe was
generally between 30 and 40% over capacity and in 1979 estimated forecasts
continually lowered, finally reaching the region of the 470 mark.

EXAMPLE 1.2. The above example is not mentioned as an isolated case
but as typical of decision makers. For example, Figure 1.7 shows how
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Figure 1.7 Official UK ethylene forecasts (tonnesx10°)

official forecasts for ethylene production were continually reduced over the
years throughout the 1970s (Source: Financial Times, August 9" 1978).

EXAMPLE 1.3. The profits figures and official forecasts shown in Figure
1.8, for a period ending around 1970, should cause no embarrassment now.
Up to this time, this particular company had never under-forecast profits.
Usually at a boom time, which then regularly occurred with the business
cycle at about five-year intervals, the forecast profits over the next three
“recession” years would be about fifty percent too high. It was said that
even if improved forecasts could be obtained, they could not be issued and
used because of the consequences in the “City”. Hence totally inappropri-
ate forecasts were adopted, resulting in great losses in efficiency as projects
were cancelled, workers laid off, etc.

It is evident that the profits figures show a cyclic behaviour typical of
the second-order dynamics generated by reactive control trying to force a
system to violate its natural characteristics. Essentially, over this period,
the UK government operated a deflation/reflation policy governed by the
state of UK unemployment and trade balance; unions took advantage of
boom periods to negotiate inappropriate wage rates and “golden” shifts;
and companies took actions to expand activities and profits.

Figure 1.9 (from Harrison and Smith 1980) gives an insight into what
was happening. In 1971, a dynamic systems model led to the forecast that
the mid 1970s would experience the deepest depression since the 1930s.
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Figure 1.9 UK unemployment rate and trade balance
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This soundly based forecast was received with both astonishment, abuse,
and absolutely no rational counter arguments. So in that year, one of us
wagered that UK unemployment would exceed 2 million before 1980. Al-
though this figure was not officially achieved until later, in 1980 it was
conceded that the bet had been successful, since in order to depress un-
employment statistics, the government had introduced new compilation
methods that omitted previously included groups. However, we refused
this concession on the grounds that a professional forecaster should have
anticipated manipulation of the figures.

1.2.7 Macro and micro forecasts

The production of the above profit figures is interesting and is illustrative of
a major point. The process was conducted from the bottom up over thou-
sands of products. Individual point forecasts would be produced, generally
judged on their merits as sales targets and summed through a hierarchy
into a single figure, that could be amended by the treasurer but was rarely
altered in any significant way. The merits of this system are that it virtually
guarantees that top management get a forecast that satisfies their desires
and for which they can shelve a good measure of responsibility. The prop-
erties of this forecast system are that it focuses on point forecasts which are
sales targets, nearly always exceeding the immediate previous achievement,
and that it completely ignores the major factors causing profit variation.

This last point is critical for a forecaster. For example, in 1970 within
this company there was much argument about the effect of the business
cycle. One camp would argue that because it did not affect product A, or
product B, or any other individual products, then it did not exist. Others
would say that it quite clearly existed if one looked at the total business.
The difference of opinion arises because of a lack of appreciation of the law
of large numbers which one of us demonstrated easily as follows.

Suppose that, at time ¢, there are a thousand products with sales Y;,
modelled simply as

Y = i + B + e, i=1,...,1000,

where the p;’s are known means, the ¢;’s are independent error terms with
zero means and variances 99, denoted by €; ~ [0,99], and B ~ [0;1] is a
common source of variation. Clearly, each Y; has variance V[Y;] = 100, with
the negligible common factor B accounting for only 1% of the individual
product variance, or 0.5% of the standard deviation.

Now consider the total sales S, given by

1000
S=p+1000B+ > ¢

=1
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The variance of S is

1000

V[S] = 10°V[B] + > Vle;] = 1099 x 10%.

i=1
Now the common factor B accounts for 91% of the total variance and over
95% of the total standard deviation. The example can be generalised but
the key point is vitally clear, namely that factors that dominate a system at
one level of aggregation may be insignificant at other levels and vice-versa
(Green and Harrison 1972; Harrison 1985 ).

One important message to be drawn from this is that a model should
focus on a limited range of questions and not try to answer both macro and
micro questions unless it is particularly well structured hierarchically with
models within models. On the other hand, forecasts from a range of models
for parts, subtotals, totals, etc., often need to be consistent. Appreciating
how to combine and constrain forecasts is a necessary skill for a forecaster.
In the above example, stock control forecasts for the thousand individual
products may be produced individually using a simple time series model.
However, for macro stock decisions, a model of the total business needs to
be made that can anticipate major swings in product demand which, in
turn, can affect the total stock policy by their translation into action at
the individual product level.

Unlike traditional forecasting methods, the Bayes’ approach offers easy,
natural ways of combining and deriving consistent forecasts.

1.3 BAYESIAN MODELLING AND FORECASTING
1.3.1 Preliminaries

This book is primarily concerned with modelling and forecasting single time
series with attention focusing on the mathematical and statistical structure
of classes of dynamic models and data analysis. Whilst of necessity the
emphasis is on detailed features of particular models, readers should not
lose sight of the wider considerations relevant to real-life modelling and
forecasting as discussed above. This noted, a full understanding of detailed
structure is necessary in order to appreciate the practical implications.
Bayesian statistics is founded on the fundamental premise that all uncer-
tainties should be represented and measured by probabilities. Its justifica-
tion lies in the formal, axiomatic development of the normative framework
for rational, coherent, individual behaviour in the face of uncertainty. In-
dividuals desiring to behave (at least in principle) in this way are led to
act as if their uncertainties are represented using subjective probability.
In addition to ensuring coherence, the Bayesian paradigm provides simple
rules for the management of uncertainties, based on the laws of proba-
bility. Analyses of complex problems, with possibly many different but
interacting sources of uncertainty, become problems of mathematical ma-
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nipulation, and so are well-defined. The laws of probability then apply to
produce probabilistic inferences about any quantity, or collection of quanti-
ties, of interest. In forecasting, such quantities may be future values of time
series and model parameters; related forecasts being the model’s predictive
probability distributions. Thus Bayesian forecasting involves the provision
of forecast information in terms of probability distributions that represent
and summarise current uncertain knowledge and beliefs. All probabilities
are subjective, the beliefs represented being those of an individual, the
forecaster or modeller responsible for the provision of forecast information.

Throughout the book, many underlying principles and features of the
Bayesian approach are identified and described in the contexts of vari-
ous forecasting models and problems. Routine manipulation of collections
of probability distributions to identify those relevant to forecasting and
related inferences are performed repeatedly. This provides a useful intro-
duction to general Bayesian ideas for the inexperienced reader, although
it is no substitute for more substantial introductions such as can be found
in the works of Lindley (1965), De Groot (1971), Berger (1985), O’Hagan
(1994) and Bernado and Smith (1994).

1.5.2 Basic notation

Notation is introduced in the context of modelling a series of real-valued
quantities observed over time, a generic value being denoted by Y. The
time index t is used as a suffix for the time series, so that Y; denotes the
t*" value of the series. Conventionally, observations begin at ¢t = 1, the
series developing as Y7,Ya,..., or Y, (t = 1,2,...,). There is no need
for the series to be equally spaced in time although for convenience Y;
will often be referred to as the observation at time ¢. Random quantities
and their outcomes or realised values are not distinguished. Thus, prior
to observing the value of the series at time ¢, Y; denotes the unknown, or,
more appropriately, uncertain random quantity, which becomes known, or
certain, when observed. The context and notations used in the specification
of models and probability distributions make the distinctions as necessary.

Throughout the book all probability distributions are assumed discrete or
continuous, having densities defined with respect to Lebesgue or counting
measures as appropriate. Generally, continuous distributions with continu-
ous densities are used, models being mainly based on standard and familiar
parametric forms such as normal, Student T, and so forth. Fuller notational
considerations are given in the first Section of Chapter 17, a general math-
ematical and statistical appendix to the book. Some basic notation is as
follows. Density functions are denoted by p(-), and labelled by their argu-
ments. Conditioning events, information sets and quantities are identified
as necessary in the argument, following a vertical line. For example, the
distribution of the random quantity Y conditional on an information set D
has density p(Y'|D), and that given D plus additional information denoted
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by H is simply p(Y|D, H) or p(Y|H, D). The joint density of two random
quantities Y and X given D is p(Y, X|D) or p(X,Y|D). Conditional upon
X taking any specified value, whether hypothetical or actually observed,
the conditional density of Y given both D and X is simply p(Y|X, D)
or p(Y|D, X). Note here that the distinction between X as an uncertain
random quantity and as a realised value is clear from the notation. In
referring to the distributions of random quantities, this notation is used
without the p. Thus we talk of the distributions of Y, (Y|D), (Y, X|D)
and (Y|X, D), for example. Expectations of functions of random quan-
tities are denoted by E[-]; thus E[Y|D] is the conditional expectation, or
mean, of (Y|D). Variances and covariances are represented using V[-] and
C[-, -] respectively; thus V[Y'|D] is the variance of (Y'|D) and C[Y, X|D] the
covariance of (Y, X|D).

Conventionally, both uppercase and lowercase roman characters are used
for quantities that are either known or uncertain but observable. Thus, at
any time point ¢, the observed values of the time series Y7, Yo, ... ,Y; will
usually be known, those of Y;11, Yit2,..., being uncertain but potentially
observable at some future time. Uncertain, unobservable random quanti-
ties are denoted by Greek characters, and referred to as unknown model
parameters. For example, the mean and variance of a random quantity will
be denoted by roman characters if they are known, but by Greek charac-
ters if they are unknown distributional parameters. In the latter case, the
uncertain nature of the parameters will usually be made explicit by their
inclusion in the conditioning of distributions. Thus p(Y |u, D) is the density
of Y given the information set D and in addition, the value of an uncer-
tain random quantity p. On the other hand, not all assumed quantities are
recognised in the conditioning.

Notation for specific distributions is introduced and referenced as neces-
sary. Distributions related to the multivariate normal play a central role
throughout the book, so the notation is mentioned here with further details
in Sections 17.2 and 17.3. In particular, (Y|D) ~ N[m, V] when (Y|D) is
normally distributed with known mean m and known variance V. Then
X = (Y —m)/VV has a standard normal distribution, (X|D) ~ NJ0,1].
Similarly, (Y'|D) ~ Tg[m, V] when (Y|D) has a Student T distribution on
k degrees of freedom, with mode m and scale V. If k > 1 then E[Y|D] = m;
if k > 2 then V[Y|D] = Vk/(k—2). X = (Y —m)/V/V has a standard T dis-
tribution, (X|D) ~ T[0,1]. Similar notation applies to other distributions
specified by a small number of parameters. In addition, (Y|D) ~ [m,V]
signifies E[Y|D] = m and V[Y|D] = V, whatever the distribution.

Vector and matrix quantities are denoted by bold typeface, whether Ro-
man or Greek. Matrices are always uppercase; vectors may or may not
be depending on context. The above notation for distributions has the
following multivariate counterparts as detailed in Section 17.2: let Y be a
vector of n random quantities having some joint distribution, m a known
n—dimensional vector, and V a known n X n non-negative definite ma-
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trix. Then (Y|D) ~ N[m, V] when (Y|D) has a multivariate normal dis-
tribution with known mean m and known variance matrix V. Similarly,
(Y|D) ~ Ti[m, V] when (Y|D) has a multivariate Student T distribution
on k degrees of freedom, with mode m and scale matrix V. If k > 1 then
E[Y|D] = m; if & > 2 then V[Y|D] = VEk/(k—2). Finally, (Y|D) ~ [m, V]
when E[Y|D] = m and V[Y|D] = V, with the distributional form other-
wise unspecified.

1.3.8 Dynamic models

Mathematical and statistical modelling of time series processes is based
on classes of dynamic models, the term dynamic relating to changes in
such processes due to the passage of time as a fundamental motive force.
The most widely known applied subclass is that of normal dynamic linear
models, referred to simply as dynamic linear models, or DLMs, when the
normality is understood. This class of models forms the basis for much of
the development in the book.

The fundamental principles used by a Bayesian forecaster in structuring
forecasting problems through dynamic models are discussed in detail in
Section 4.1 of Chapter 4 and comprise

parametric models with meaningful dynamic parameters;

a probabilistic representation of information;

a sequential model definition utilising conditional independence;
robust conditionally independent model components;

forecasts derived as probability distributions;

a facility for incorporating expert information;

model quality control.

A sequential model definition and structuring is natural in the time se-
ries context. As time evolves, information relevant to forecasting the future
is received and may be used to revise the forecaster’s views, whether this
revision be at the quantitative, the form, or the conceptual level in the gen-
eral model structure M of Section 1.1. The sequential approach focuses
attention on statements about the future development of a time series con-
ditional on existing information. Suppose, with no loss of generality, that
the time origin ¢ = 0 represents the current time, and that existing infor-
mation available to, and recognised by, a forecaster is denoted by the

initial information set: Dy.

This represents all the available relevant starting information that is used to
form initial views about the future, including history and all defining model
quantities. In forecasting ahead to any time ¢ > 0, the primary objective
is the calculation of the forecast distribution for (Y;|Dg). Similarly, at
any time ¢, statements made concerning the future are conditional on the
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existing
information set at time t: D;.

Thus, statements made at time ¢ about any interesting random quantities
are based on Dy; in particular, forecasting ahead to time s > t involves
consideration of the forecast distribution for (Yi|D;). As time evolves,
so does the forecaster’s information. Observing the value of Y; at time ¢
implies that D; includes both the previous information set D;_; and the
observation Y;. If this is all the relevant information, then D; = {Y;, D;_1},
although often, as discussed earlier, further relevant information will be
incorporated in revising or updating the forecaster’s view of the future.
Denoting all additional relevant information at time t by I; leads to the

information updating: Dy ={I;, Dy_1}, (t=1,2,...).

The sequential focus is emphasised by describing the future development
of the series via a probability distribution for Y%, Yi41,..., conditional on
past information D;_;. Usually such a distribution depends upon defin-
ing parameters determining distributional forms and moments, functional
relationships, and so forth. Focusing on one-step ahead, the beliefs of the
forecaster are structured in terms of a parametric model,

p(}/t | gta Dt—l)a

where 6, is a defining parameter vector at time ¢. This mathematical
and statistical representation is the language providing communication be-
tween the forecaster, model and decision makers. As such, the parameters
must represent meaningful constructs. Indexing 6; by t indicates that the
parametrisation may be dynamic. In addition, although often the number
and meaning of the elements of 8; will be stable, there are occasions on
which 6; will be expanded, contracted or changed in meaning according to
the forecaster’s existing view of the time series. In particular, this is true
of open systems, such as arise in typical social, economic, and biological
environments, where influential factors affecting the time series process are
themselves subject to variation based on the state of the system generating
the process. In such cases, changes in ; may be required to reflect sys-
tem learning and the exercise of purposeful control. Such events, although
recognisable when they happen, may be difficult to anticipate and so will
not generally be included in the model until occurrence.

The model parameters 8; provide the means by which information rele-
vant to forecasting the future is summarised and used in forming forecast
distributions. The learning process sequentially revises the state of knowl-
edge about such parameters. Probabilistic representation of all uncertain
knowledge is the essence of the Bayesian approach, whether such knowl-
edge relates to future, potentially observable quantities or unobservable
model parameters. At time ¢, historical information D;_; is summarised
through a prior distribution for future model parameters: prior, that is,
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to observing Y;, but of course posterior to the information set D;_;. The
prior density p(0; | D;—1) and the posterior p(8; | D;) provide a concise,
coherent and effective transfer of information on the time series process
through time. In addition to processing the information deriving from
observations and feeding it forward to forecast future development, this
probabilistic encoding allows new information from external sources to be
formally incorporated in the system. It also extends naturally to allow for
expansion or contraction of the parameter vector in open systems, with
varying degrees of uncertainty associated with the effects of such external
interventions and changes. Further, inferences about system development
and change are directly drawn from components of these distributions in a
standard statistical manner.

Two very simple models, the subjects of Chapters 2 and 3, exemplify
the class of dynamic models, giving concrete settings for the above general
ideas. The first is an example of a particular univariate normal dynamic
linear model which is briefly defined in order to introduce the quadruple
notation used in those chapters.

Definition 1.1. For each ¢, the univariate, uniparameter normal dynamic
linear model, represented by the quadruple {Fy, \, Vi, W;}, is defined by:

Observation equation: Yi= Fips + 1y, vy ~ N0, V4,
System equation: = Ahp—1 + Wi, w ~ N[0, W],
Initial information: (1o | Do) ~ N[mg, Col,

where the error sequences v; and w; are independent, and mutually inde-
pendent. In addition, they are independent of (1o | Do). The values of the
variance sequences V; and W; may be unknown, but the constant A and
relevant values of the sequence F; are known.

EXAMPLE 1.4. An archetype statistical model assumes that observations
are independent and identically normally distributed, denoted by (Y;|u) ~
Nlw, V], (t = 1,2,...), This is the trivial DLM {1,1,V,0}. Changes over
time in the mean, and sometimes the variance, of this model may be un-
avoidable features when observations are made on a process or system that
is itself continually evolving. Such changes are usually gradual, reflecting
continuous slow changes in environmental conditions. However, changes
are occasionally more abrupt, often responses to significant shifts in major
influential factors. For example, a normal model may be assumed as a
suitable representation of the random variation in “steady” consumer de-
mand for a product, but the level of demand will rarely remain absolutely
constant over time. A simple extension of the archetype incorporating
a time varying mean provides a considerable degree of flexibility. Then,
subscripting 1 by ¢, (Ylus) ~ N[, V], or

Y =t +v, and v, ~ N[0, V],
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where p; represents the level of the series at time ¢, and v; random, obser-
vational error or noise about the underlying level.

One of the simplest, non-degenerate ways in which the level can be dy-
namically modelled is as a random walk. In such a case, time evolution of
the level, defining the process model, is represented as

e = p—1 +wy,  and  wg ~ N[O, W],

where w; represents purely random, unpredictable changes in level between
time ¢ — 1 and ¢. This is the standard DLM {1,1,V, W}. Chapter 2 is de-
voted to the study of such models, which find wide application in short-term
forecasting. In product demand forecasting and inventory management, for
instance, underlying levels may be assumed to be locally constant, but will
be expected to change significantly over longer periods of time. The zero-
mean and independence assumptions for the w; series are consistent with
a view that this longer-term variation cannot be systematically predicted,
being described as purely stochastic.

With reference to the earlier general discussion, if the variances V and W
are known, then the model parameter 8; at time t represents the uncertain
level p; alone. Otherwise, 8; may include uncertain variances for either
or both of v, and w;. With known variances, their values are included
in the initial information set Dy, so with parameter 6; = p; for all ¢,
p(Yt|0r, Di—1) = p(Yi|pu, Do) is the density of (Y|pe, Do) ~ Npe, V]. The
historical information set D; 1, which includes all past values of the Y
series, leads to the prior distribution for 8; = u; given D;_71. In demand
forecasting, for example, historical values of the Y series may lead the
forecaster to believe that next month’s demand level, p;, is most likely to
be in the region of about 250, but is unlikely to be below 230 or to exceed
270. One possible representation of this prior view is that

(1e] Di—1) ~ N[250,100],

having an expected and most likely value of 250, and about 95% probability
of lying between 230 and 270. This sort of model structuring is developed
extensively in Chapter 2.

EXAMPLE 1.5. Regression modelling is central to much of statistical prac-
tice, being concerned with the construction of a quantitative description of
relationships between observables, such as between two time series. Con-
sider a second time series represented by observations Xy, (t =1,2,...), ob-
served contemporaneously with Y;. Regression modelling often focuses on
the extent to which changes in the mean u; of Y; can be explained through
X, and possibly past values X for s < t. Common terminology refers to
Y; as the response or dependent variable series and X; as the regressor or
independent variable series. Then p; is the mean response, related to the
regressor variable through a mean response function p; = r¢( X, Xi—1,...)
defining the regression. For example, a simple linear model for the effect
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of the current X; on the current mean is p; = o 4+ X4, where the defining
parameters « and [ take suitable values. Models of this sort find wide use
in prediction, interpolation, estimation, and control contexts. Construction
of models in practice is guided by certain objectives specific to the problem
area, such as short-term forecasting of the response series. For some such
purposes, simple static linear models may well be satisfactory locally, but
as in the previous example, are unlikely to adequately describe the global
relationship, i.e. as time evolves and as X; varies. Flexibility in modelling
such changes can be provided simply by allowing for the possibility of time
variation in the coefficients, so that

pe =y + B Xy

Thus, although the form of regression model is linear in X; for all t,
the quantified model may have different defining parameters at different
times. This distinction, between an appropriate local model form and an
appropriate quantified local model, is critical and fundamental in dynamic
modelling. Often the values of the independent variable X; change only
slowly in time and an appropriate local model description is that above,
e = oy + B Xy, where the parameters vary only slightly from one time
point to the next. As in the previous example, this may be modelled using
random walk type evolutions for the defining parameters, such as

ap = g1 + 604,5,

Br = Bi—1 + 004,

where da; and §0; are zero-mean error terms. These evolution equations
express the concept of local constancy of the parameters, subject to varia-
tion controlled and modelled through the distribution of the evolution error
terms day and §F;. Small degrees of variation here imply a stable linear
regression function over time, larger values modelling greater volatility and
suggesting caution in extrapolating or forecasting too far ahead in time
based on the current quantified linear model. The usual static regression
model, so commonly used, is obviously obtained as a special case of this
dynamic regression when both evolution errors are identically zero for all
time.

Finally, the primary goals of the forecaster are attained by directly ap-
plying probability laws. The above components provide one representation
of a joint distribution for the observations and parameters, namely

p(Y:,0: | Di—1) = p(Ye | 61, Di—1) p(6; | De—1),

from which the relevant one-step forecast may be deduced as the marginal

p(Yi | Dioy) = / (Y5, 0: | Di_1)db,.
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Inference for the future Y; is simply a standard statistical problem of sum-
marising the forecast distribution and a coherent optimal decision policy
may be derived with the introduction of a utility function.

1.4 HISTORICAL PERSPECTIVE AND BIBLIOGRAPHIC
COMMENTS

Our approach to modelling and forecasting synthesises concepts, models
and methods whose development has been influenced by work in many
fields. It would be impossible to fully document historical influences. As
already discussed, much is involved in modelling that cannot be routinely
described using formal, mathematical structures, particularly in the stages
of model formulation, choice and criticism. However, in line with the fun-
damental concepts of scientific method, we identify the Bayesian approach
as the framework for routine learning and organisation of uncertain knowl-
edge within complete forecasting systems. Over the last fifty years there
has been rapidly increasing support for the Bayesian approach as a means
of scientific learning and decision making, with notable recent acceptance
by practitioners driven by the need to adopt the common-sense principles
on which it is founded. Axiomatic foundations notwithstanding, decision
makers find it natural to phrase beliefs as normed or probability measures,
as do academics, though some prefer not to recognise the fact. This seems
to have been done ever since gambling started — and what else is decision
making except compulsory gambling? We all face “one-oftf” decisions that
have to be made with no chance of repeating the experience, so the value
of classical statistics is very limited for decision makers.

Important influences on current Bayesian thinking and practice may be
found, in particular, in the books of Box and Tiao (1973), De Finetti
(1974/75), De Groot (1971), Jeffreys (1961), Lindley (1965), and Savage
(1954). More recent recent contributions include Berger (1985), O’Hagan
(1994) and Bernardo and Smith (1994), which include useful bibliographies.

Concerning approaches to practical forecasting, little had been done in
industry and government in the way of mathematical or socio-economic
modelling before the arrival of computers in the 1950s. Exponentially
weighted moving averages, EWMAs, and Holt’s (1957) linear growth and
seasonal model began to find use in the mid to late 1950s in forecasting
for stock control and production planning, with one of us (PJH) involved
in pioneering their use at Imperial Chemical Industries Ltd., (ICI). In this
company, Holt’s method became established, and apart from taking over
the routine of forecasting, led to great improvements in the accuracy of
forecasts. In fact, the methods were used in conjunction with interventions
so that a complete forecasting system was in operation at that time. This
involved the product sales control department in adjusting the computer
forecasts whenever they felt it necessary, though initially these adjustments



1.4 Historical Perspective and Bibliographic Comments 29

did not always improve the forecasts, probably because hunches and wish-
ful thinking appeared to them as definite information. Methods developed
then are still in use now in sales forecasting and stock control.

The work of Brown (1959, 1962), promoting the use of discount tech-
niques in forecasting, was and still is a major influence for practitioners.
A parsimonious concept anchored to the fundamental familiar principle of
discounting is very attractive. Work at ICI at the start of the 1960s used
the principle of discounting in models for series with trend and seasonal-
ity, but applied two discount factors, one for trend and one for seasonality.
As far as we know, this was the first development of multiple discount-
ing, incorporated in two forecasting programmes, Seatrend and Doubts, in
1963, presented at the Royal Statistical Society’s annual conference held at
Cardiff in 1964 and later published in Harrison (1965). However, what will
not be known by a literature search is what really happened in develop-
ment. The society had asked for a paper to be circulated in advance, and
this presented the multiple discount methods but concluded that, because
of simplicity, it was preferable to use a single discount factor as in Brown’s
exponentially weighted regression (EWR) approach. However, because of
the difficulties in programming, numerical comparisons were unavailable at
the time of writing. Almost as soon as the paper was sent to the RSS the
results were obtained, and surprisingly indicated the enormous improve-
ments to be obtained using multiple discounting. This led to a reversal of
the issued conclusions through a quickly written seven page addendum that
was circulated at the conference. One reader wrote “the paper read like a
thriller: the rise and fall of Brown”. However, as is usual with research, the
published paper shows no trace of how the work actually progressed. Basi-
cally, the conclusion was that different model components need discounting
at different rates, a view that now dominates in structuring models using
discounting ideas in Bayesian forecasting.

Further developments at ICI were described in a paper presented to the
Operational Research Society Conference in 1965, the manuscript never
being published but available in its original form as a Warwick Research
Report (Harrison and Scott 1965). The contents will surprise many peo-
ple; they include discussion of complete forecasting systems emphasising
intervention and monitoring and present several specific dynamic models.
Some of the modelling work was based on developments by Muth (1960),
Nerlove and Wage (1964), Thiel and Wage (1964), and Whittle (1965),
though a major concern was with more general models, with an empha-
sis on sensitivity to departures from optimal adaptive parameters, partially
motivated by unfounded, inexperienced opposition to discounting from cer-
tain academics. The monitoring work in that paper was largely based on
the backward cusum controller developed initially in 1961 from cusums in
quality control and published in Harrison and Davies (1964). Much of this
followed developments by Page (1954), Barnard (1959), the work of ICI
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through Woodward and Goldsmith (1964), and of British Nylon Spinners,
later to become part of ICI, through Ewan and Kemp (1960).

So by 1964, simple, parametrised, structural models were in use, employ-
ing double discounting and emphasising the approach through complete
forecasting systems operating according to the principle of management by
exception, enabling prospective and retrospective interventions. By the end
of the 1960s, the basic models had been extended and generalised to a wide
class of dynamic linear models (though not then referred to as such), and
to multi-process models that were to model outliers and sudden changes
in structure. Some indication of the extent of the developments, both the-
oretical and practical, was then reported in Harrison and Stevens (1971).
Implemented forecasting systems based on this took full advantage of the
intervention facilities of the Bayesian approach and also performed auto-
matic model discrimination using multi-process models. Important also for
the use of subjective and quantitative information is the 1970 application in
the mail order business reported rather later in Green and Harrison (1973).

At about the same time, in 1969, it became clear that some of the math-
ematical models were similar to those used in engineering control. It is
now well known that in normal DLMs with known variances, the recur-
rence relationships for sequential updating of posterior distributions are
essentially equivalent to the Kalman filter equations, based on the early
work of Kalman (1960, 1963) in engineering control, using a minimum
variance approach. It was clearly not, as many people appear to believe,
that Bayesian forecasting is founded upon Kalman filtering (see Harrison
and Stevens 1976a, and discussion; and reply to the discussion by Davis
of West, Harrison and Migon 1985). To say that “Bayesian forecasting
is Kalman Filtering” is akin to saying that statistical inference is least
squares.

The late 1970s and 1980s have seen much further development and appli-
cation of Bayesian forecasting models and methods. Notable amongst these
are procedures for variance learning (West 1982; Smith and West 1983),
discounting (Ameen and Harrison 1984, 1985a and b), monitoring and in-
tervention (West 1986; West and Harrison 1986; West, Harrison and Pole
1987; Harrison and Veerapen 1994; Pole, West and Harrison 1994), non-
normal and non-linear model structures (Souza 1981; Smith 1979; Migon
1984; Migon and Harrison 1985; West, Harrison and Migon 1985), refer-
ence analyses (Pole and West 1987), and many others. Since the revolution
in computational statistics, beginning in 1990, major new directions in re-
search, model development and application have been opened up, involving
analysis using simulation methods. Much of the dynamic modelling activ-
ity is discussed in Chapter 15, a new chapter in the second edition, with
references to the key areas and recent developments.

Computing developments have led to wider usage, easing communica-
tion with less technically orientated practitioners. We do hold the view
that modelling is an art, and particularly so is Bayesian forecasting. Any
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software package is just that: a package of specific, selected facilities, and
the limitations of such software are too easily seen by some as the limita-
tions of the whole approach. Indeed, the early Bayesian forecasting package
SHAFT, produced in the 1970s by Colin Stevens, led to a widespread view
that Bayesian forecasting was the single model discussed in Harrison and
Stevens (1971). This is like defining an animal as a fox. However, it is
now abundantly clear that to treat the armoury of the Bayesian approach
as a paint box without even a numbered canvas is not going to get many
pictures painted. Some results of our approaches to the problem are the
software packages mentioned in the Preface.

The above discussion concentrates closely on what we identify as direct
influences on Bayesian forecasting and dynamic modelling as we present
the subject in this book. There has, of course, been considerable develop-
ment of dynamic modelling and related forecasting techniques outside the
Bayesian framework, particularly in control engineering. Good references
include Anderson and Moore (1979), Jazwinski (1970), Sage and Melsa
(1971), for example. Details of work by statisticians, econometricians and
others may be found, with useful references, in Duncan and Horne (1972),
Harvey (1981), Spall (1988), Thiel (1971), and Young (1984), for example.

The field continues to develop and flourish. As we approach the new
millenium, we see exciting developments in new fields of application, and
increasing sophistication in modelling developments and advanced compu-
tation. Interested readers might explore some recent studies in Aguilar and
West (1998a,b), Aguilar, Huerta, Prado and West (1999), Cooper and Har-
rison (1997), and Prado, Krystal and West (1999), for example. Readers
interested in contacting at least some of the more recently documented de-
velopments, publications and software, can explore the resources and links
on the author web site indicated in the Preface.



CHAPTER 2

INTRODUCTION TO THE DLM:
THE FIRST-ORDER POLYNOMIAL MODEL

2.1 INTRODUCTION

Many important concepts and features of dynamic linear models appear
in the simplest and most widely used first-order polynomial model.
Consequently it offers an excellent introduction to DLMs and is examined
in detail in this chapter. This DLM is the simple, yet non-trivial, time
series model in which the observation series Y; is represented as

Yy = py + 14, v ~ N[0, V4]

where p; is the level of the series at time ¢ and v, is the observational
error. The time evolution of the level is then modelled as a simple random
walk, or locally constant mean,

Mt = fhi—1 + Wi, wy ~ N[0, W],

with evolution error w;.

The observational and evolution error sequences comprise internally and
mutually independent normal random variables. So, for all ¢t and all s with
t # s, v and v are independent, w; and w; are independent, and v; and
ws are independent. To begin it is also assumed that the variances V; and
W; are known for each time ¢. The foregoing observational and evolution
equations may also be expressed for each t =1,2,..., as

(Ve | pe) ~ Nz, Vi,
(pe | pre—1) ~ N[pe—1, We].

Figures 2.1 (a) and (b) show time graphs {Y;, us,t} of such series. In
each the starting value is pg = 25, and the observation variance V; = 1
is constant. The evolution variances are also constant, with W = 0.05 in
(a) and W = 0.5 in (b). Thus in (a) the evolution variance, W = V/20,
is small compared to the observational variance leading to a typical locally
constant level, whereas in (b) the variance, W = V/2, is ten times larger,
resulting in much greater variation in the level p;.

This model is used effectively in numerous applications, particularly in
short-term forecasting for production planning and stock control. For ex-
ample, in modelling market demand for a product, p; represents true un-
derlying market demand at time ¢ with v; describing random fluctuation,
which arises in the actual placement of customer orders, about this level.
Locally in time, that is, a few periods forwards or backwards, the underlying
demand p; is characterised as roughly constant. Significant changes over
longer periods of time are expected, but the zero-mean and independent
nature of the w; series imply that the modeller does not wish to anticipate
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the form of this longer term variation, merely describing it as a purely sto-
chastic process. It is useful to think of y; as a smooth function of time p(t)
with an associated Taylor series representation

w(t + 6t) = p(t) + higher-order terms,

with the model simply describing the higher-order terms as zero-mean
noise. This is the genesis of the first-order polynomial DLM: the level
model is a locally constant (first-order polynomial) proxy for the under-
lying evolution. Sometimes, although a little misleadingly, the DLM has
been referred to as a steady model. A guide as to the model’s suitability for
particular applications is that, upon forecasting k—steps ahead from time
t, the expected value of the series conditional on the current level is just

ElYiirk | ] = Elpesn | pe] = pa-

At time ¢, given the existing information Dy, the forecaster’s posterior
distribution for p; will have a mean m; depending on past data, so that
the forecast function f;(-) is constant, being given by

fi(k) = ElYi1x | Di] = E[pe | Di] = my,

for all £ > 0. Consequently, this DLM is useful only for short-term ap-
plication, and particularly in cases in which the observation variation, as
measured by V;, is considerably greater than the systematic level varia-
tion, measured by W;. Such design considerations are discussed later in
Section 2.3.

2.2 THE DLM AND RECURRENCE RELATIONSHIPS
2.2.1 Definition

In accord with Definition 1.1, for each time ¢ this model is characterised
by the quadruple {1,1,V;, W;} and formally defined as follows:

Definition 2.1. For each ¢, the DLM {1, 1, V;, W;} is defined by

Observation equation: Yi= e + vy, vy ~ N[0, V4],
System equation: = fhi_1 + Wy, wt ~ N[0, W],
Initial information: (1o | Do) ~ N[mg, Co],

where the error sequences v; and w; are internally independent, mutually
independent, and independent of (19|Dp).

Initial information is the probabilistic representation of the forecaster’s
beliefs about the level ug at time t = 0. The mean my is a point estimate of
this level, and the variance Cy measures the associated uncertainty. Each
information set D,, comprises all the information available at time v, includ-
ing Dy, the values of the variances {V;, W; : ¢t > 0}, and the values of the
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observations Y,,,Y,_1,...,Y;. Thus, the only new information becoming
available at any time ¢ is the observed value Y;, so that Dy = {Y;, D;—1}.

2.2.2 Updating equations

The following theorem provides the key probability distributions necessary
for effective forecasting, control, and learning.

Theorem 2.1. In the DLM of Definition 2.1 the one-step forecast and level
posterior distributions for any time t > 0 can be obtained sequentially as
follows:

(a) Posterior for p;_1 : (tte—1 | Di—1) ~ Nlmy—1,Ci—1].
(b) Prior for i : (it | Dy—1) ~ N[my—1, Re],
where Ry = Cy_1 + W;.
(c) 1-step forecast: (Yy | Di—1) ~ N[ft, Q4]
where f; = my_q1 and Q; = R, + V.
(d) Posterior for i : (1t | Dt) ~ N[my, Cy],

with My = M1 + Atet and Ct = At‘/Yt7
where At = Rt /Qt , and €t = }/t — ft-

Proof. Two methods of deriving (d) will be used, each instructive and
illuminating in its own right. The first, most important, and generally
applicable method employs Bayes’ theorem and standard Bayesian calcu-
lations. The second method, appropriate for all DLMs, provides an elegant
derivation using the additivity, linearity, and distributional closure prop-
erties of normal linear models. Although this latter method extends to all
normal DLMs; the former is required as a general approach for non-normal
models. Both methods use standard results associated with normal distri-
butions and Bayesian normal procedures as detailed in some generality in
Section 17.2.

Proof is by induction. Assume the truth of the distribution in (a). Then
conditional on D;_1, p; is the sum of two independent normal random
quantities pu;—1 and wy, and so is itself normal. The mean and variance are
obtained by adding means and variances of the summands, leading to (b):

(e | De—1) ~ Nmy_1, Ry, where Ry = Cy_1 + Ws.

Similarly, conditional upon D;_1, Y; is the sum of the independent normal
quantities u¢ and v; and so is normal, leading to (c):

(Y | Di—1) ~ N[my—1,Q4], where Q; = Ry + V.
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As mentioned above, (d) is derived twice, using two different techniques:

(1)

Updating via Bayes’ Theorem

The Bayesian method is general, applying to all models, no mat-
ter what the distributional assumptions. The observation equation
provides the observational density function

p(Ye | e, D) = (27Ve) ™% exp[— (Vs — )/ (2V4))].
From (b), the prior for p; given D;_q has probability density func-
tion (pdf)

p(pe | Di—v) = (27 Ry) ™2 exp[—(pe — my—1)*/(2Ry)].

On observing Y, the likelihood for p; is proportional to the observed
density viewed as a function of p;. So with Dy = {D;_1,Y:}, from
Bayes’ theorem, the posterior for pu; is

p(pe | Di) = p(pe | De—1)p(Ye | p1t, Di—1)/p(Ye | Di—1).

Concentrating on this as a function of u; alone, ignoring multi-
plicative factors depending on the now known value Y; and other
constants, leads to the proportional form of Bayes’ theorem,

ppe | Dy) o< p(pee | De—1)p(Ye | pty Di—1)
o< exp[— (e — mi—1)? /2Ry — (Yy — i) /2V4].

In applications of Bayes’ theorem the natural logarithmic scale pro-
vides simpler additive expressions. So with differing constants k;,

2Inp(pe | Do)l = k1 — (e — me—1)* Ry — (Ve — 1)V,
= ko — (R '+ Vi Yud +2(Ry mua + Vi Y,
= k3 — (e —me)*Cy Y,
where, with A; = R;/Q: = R:/(R: + V;), and e; = Y; — my_1,
Co=1/[R;' + V' = RVi/Qr = AVi
and
my = Cy(my_1 /Ry + Yy /Vi) = my_1 + Agey.
Upon exponentiating, p(u; | Dy) oc exp[—(us — my)?/2C], so that
(e | Dy) ~ N[my, Cy] as stated in (d).

Proof based on standard normal theory.
Within this special normal, linear framework, a more specific proof
based on the bivariate normal distribution is derived by

(i) calculating the joint distribution of (Y%, ¢ | Di—1), and
(ii) deducing the conditional distribution (u; | Yz, Di—1).

Any linear function of Y; and y; is a linear combination of the in-
dependent normal quantities v4, wy, and p;—1, and so, conditional on
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D, _4, is normally distributed. Then by definition, (Y, pt | Di—1) is
bivariate normal. To identify the mean vector and variance matrix,
note that (u¢ | Di—1) ~ N[my_1, R¢] and (Y; | Di—1) ~ N[ft, Q¢] as
the marginal distributions in (b) and (c¢). Using additivity and the
independence of u; and v4, the remaining covariance is

C[Yi, pe | De—1] = Clpg + v, e | Die—1] = Vipe | Di—1] = Ry.

Hence the joint distribution is

Y; my— Qi R
a2 ) > [() (7 &)

General multivariate normal theory (Section 17.2) may be applied to
obtain the required distribution conditional on Y;, but the particular
characteristics of the bivariate normal are used here. The correlation
pt = Ri/(RQy)"Y/? is clearly positive, with p? = R,/Q; = A;. So
using the referenced material,

(Mt | th;thl) ~ N[mt,ct},

with
my = Mm—1 + p?(Y{s —my—1)
and

Cy = (1 - P?)Rt = RtV;f/Qt = AV,

In this case A; can be interpreted as both the squared correlation
and the regression coefficient of u; on Y;.

The result (d) has been established in two ways conditional upon (a).
The complete proof follows by induction since (a) is true for ¢t = 1 directly
from Definition 2.1.

&

Some discussion of the various elements of the distributions is in order.
First, e; is the one step ahead forecast error, the difference between the
observed value Y; and its expectation f;. Second, A; is the prior regression
coefficient of u; upon Y; and, in this particular case, is the square of their
correlation coefficient; clearly 0 < A; < 1. The results are computationally
simple and elegant due to the use of normal distributions for each model
component. Using these results, sequential updating and revision of fore-
casts is direct. It is worth noting that an alternative representation for my
is

my = Ath-g + (]- - At)mtfla
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Rt =0.25 and \4 =0.75
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Figure 2.2 Probability contours of a bivariate normal

showing that m; is a weighted average of the prior level estimate m;_1
and the observation Y;. The adaptive coefficient A;, or weight, defining
this combination lies between 0 and 1, being closer to 0 when R; < V;
so that the prior distribution is more concentrated than the likelihood,
and being closer to 1 when the prior is more diffuse, or less informative,
than the likelihood. In addition, the posterior is less diffuse than the prior
since Cy < Ry, representing an increase in information about p; due to the
additional observation Y;.

A simple case with m;_; = 0, Ry = 0.25 and V; = 0.75 is illustrated
in Figure 2.2 which provides a contour plot of the joint density. Here
A; = 0.25, and the plotted regression line, m; = Y;/4, simply expresses m;
as a function of Y;.

2.2.8 Forecast distributions

At time ¢, the two main forecast distributions are the marginals (Y;4x | D:)
and (Xt(k) | Dt)7 where Xt(k) = §/t+1 + Yrt_;,_z + -+ }/t_;'_k, for kK > 0. The
former is the k-step ahead forecast and the latter the k-step lead time
forecast.
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Theorem 2.2. For k > 0, the following distributions exist:
(a) k-step ahead: (Yitr | Dt) ~ N[my, Q:(K)],
(b) k-step lead-time: (Xt(k) | Dy) ~ N[kmy, Le (k)]

where
k

Qu(k) =Ce+ Y Wiy + Vigx

Jj=1

and

k k
Lo(k) = K2C+ ) Verj + 3 I Wesnrn—j.
j=1 j=1

Proof. From the evolution equation for u; and the observational equation
for Y;, for k> 1,

k
Witk = ot + Zwt+j7
j=1
k
Yiik = pe + Zwt-l-j + Vitk-
j=1

Since all terms are normal and mutually independent, (Yzx | D:) is normal
and the mean and variance follow directly. For the lead time, note that

2 K
Xo(k) = kps + ) jwrgnsr—j + 3 Vit

j=1 j=1
which is clearly normal with mean kpu;. Using the independence structure
of the error terms,

k k
V[Xi(k) | Dy] = K*Cy + Zj2Wt+k+1—j + Z Vitjs

j=1 j=1

and the stated form of L;(k) follows.

2.8 THE CONSTANT MODEL
2.8.1 Introduction

The special case in which the observational and evolution variances are
constant in time is referred to as a constant model. It is characterised by
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the quadruple {1,1,V, W} and defined as

Observation equation: Yi= e + vy, vy ~ N[0, V],
System equation: He= fhp—1 + Wy, wy ~ N[0, W],
Initial information: (o | Do) ~ Nlmyg, Co].

The important, positive constant » = W/V relates to the engineering con-
cept of a signal-to-noise ratio, measuring the sustained system variance
relative to the ephemeral observation variance. Since the information sets
D; = {Y:, D;_1} contain no information external to the time series, the
model is called closed (to external information). Although apparently
restricted, the closed, constant, first-order polynomial model is of practi-
cal and theoretical interest, allowing the derivation of important limiting
results, which illuminate the structure of more general DLMs and relate
directly to classical time series models and popular point forecasting meth-
ods.

EXAMPLE 2.1. A pharmaceutical company markets KURIT, an ethical
drug, which currently sells an average of 100 units per month. Medical
advice leads to a change in drug formulation that is expected to result in
wider market demand for the product. It is agreed that from January,
t = 1, the new formulation with new packaging will replace the current
product, but the price and brand name KURIT remains unchanged. In
order to plan production, stocks and raw material supplies, short-term
forecasts of future demand are required. The drug is used regularly by
individual patients, so that demand tends to be locally constant in time.
So a constant first-order polynomial DLM is adopted for the total monthly
sales. Sales fluctuations and observational variation about demand level are
expected to considerably exceed month-to-month variation in the demand
level, so that W is small compared to V. In accord with this, the constant
DLM {1,1,100,5}, which operated successfully on the old formulation, is
retained for the new formulation.

In December, t = 0, the expert market view for the new product is that
demand is most likely to have expanded by about 30%, to 130 units per
month. It is believed that demand is unlikely to have fallen by more than
10 units or to have increased by more than 70. This range of 80 units is
taken as representing 4 standard deviations for pg. Hence the initial view
of the company prior to launch is described by my = 130 and Cy = 400, so
that

(1o | Do) ~ N[130,400].
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Table 2.1. KURIT example

Month Forecast Adaptive | Datum | Error Posterior

Distribution Coeff. Information
t Qt It At Y: et m Cy
0 130.0 | 400
1 505 130.0 0.80 150 20.0 | 146.0 80
2 185 146.0 0.46 136 —10.0 | 1414 46
3 151 141.4 0.34 143 1.6 | 141.9 34
4 139 141.9 0.28 154 12.1 | 145.3 28
5 133 145.3 0.25 135 —10.3 | 142.6 25
6 130 142.6 0.23 148 5.3 | 143.9 23
7 128 143.9 0.22 128 —15.9 | 1404 22
8 127 140.4 0.21 149 8.6 | 142.2 21
9 126 142.2 0.21 146 3.8 143.0 20
10 125 143.0 0.20

Consequently, the operational routine model for sales Y; in month ¢ is
Y%: Mt + Vt, Vi~ N[O, 100],
M= Hi—1 + Wi, wi~ N[0, 5],
(110 | Do) ~ N[130,400].

Here r = 0.05, a low signal-to-noise ratio typical in this sort of application.

Observations over the next few months and the various components of
the one-step forecasting and updating recurrence relationships are given in
Table 2.1. Figure 2.3a provides a time plot of the observations and one-
step forecasts, and Figure 2.4a is a time plot of the adaptive coefficient A;,
both plots extending to September, t = 9, for Table 2.1. Initially, at t = 0,
the company’s prior view of market demand is vitally important in making
decisions about production and stocks. Subsequently, however, the value
of this particular subjective prior diminishes rapidly as data is received.
For example, the adaptive coefficient A; takes the value 0.8, so that

mi1 =mg + 0.8e; = (4}/1 + mo)/5

Thus, the January observation is given 4 times the weight of the prior mean
mg in calculating the posterior mean my. At t = 2, As = 0.46 and

mo = my + 0.4662 = 046}/2 + 043Y1 + O.llm(),

so that Y3 is also relatively highly weighted and mg contributes only 11% of
the weight of information incorporated in ms. As t increases, A; appears to
decay rapidly to a limiting value near 0.2. In fact, the next section shows
that A; does converge to exactly A = 0.2 in this example. Finally, the
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coefficient of mg in my is simply (1 — A;)(1 — Ai—1)...(1 — Ay), so that
mg contributes only 1% of the information used to calculate mqg, and as ¢
increases the relevance of this subjective prior decays to zero.

2.3.2 Intervention to incorporate external information

Model closure is unwise: it precludes the use of extra external information,
which is essential in coping with exceptional circumstances, and it is just
not acceptable in applied dynamic systems. One of the major advantages
of the Bayesian approach lies in the ease with which subjective information
and model/data information combine. In the example, at ¢t = 9, the level
posterior and one-step ahead forecast distributions are

(po | Do) ~ N[143,20],
(Yio | Do) ~ N[143,125).

Suppose that information is now received concerning the pending with-
drawal from the market of a major competitive drug BURNIT due to sus-
pected side effects. This will occur at ¢ = 10, when patients who were
prescribed BURNIT will switch to a competitor. This information is re-
ceived at t = 9 and is denoted by Sy. It is known that BURNIT currently
accounts for roughly 50% of the market, which leads the company to esti-
mate a 100% increase in KURIT demand, E[u1g | Do, Sg] = 286. However,
uncertainty about this figure is high, with estimated increased demand
ranging within the company’s marketing department from a pessimistic
value of 80 units to an optimistic 200. After discussion, it is agreed to
model the change in demand at time 10 as

(w10 | Dy, Sg) ~ N[143,900],
leading to the revised one-step ahead forecast distributions
(1110 | Do, Sg) ~ N[286,920]
and
(Yio | Dy, So) ~ N[286, 1020].

Consequently, Ajq increases from 0.2 to 0.9, providing much faster adap-
tation to the immediately forthcoming data than would happen without
intervention. Observing Y19 = 326 implies e;g = 40 and

(/-1/10 | DlO) ~ N[322,90]

Note that the conditioning information set here is D1y = {Y10, Dy, So}.
Figures 2.3b and 2.4b show the continued time graphs for the following six
months, from ¢ = 10 to ¢ = 15.

When unexpected and relevant external information of this sort becomes
available, intervention is of paramount importance for good decision mak-
ing. From this example, it is clearly unsatisfactory to confine intervention
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to an alteration of the mean estimate of demand, although this is unfor-
tunately an approach adopted by some forecasters. The associated large
variance reflects the true increase in uncertainty, leads to less weight being
associated with data prior to the change, adapts more quickly to the imme-
diately forthcoming forecast errors, and results in more reliable forecasts.

2.3.3 Limiting behaviour and convergence

In the closed model, the rate of adaptation to new data, as measured by
the adaptive coefficient A;, rapidly converges to a constant value as follows.

Theorem 2.3. Definer = W/V. Ast — oo, Ay = A and C; — C = AV,

where
oo 2\ 'V t '

Proof. Since 0 < A; < 1 and C; = AV, it follows that C; is bounded,
with

<

0<Cy <V, for all ¢.

So, using the recursions C{l = R;l +Vland Re =Ci 1 + W,
Crl = Oy = By = Ry = Ko(Cry = O,

where K; = C;_1Ct_2/(RtRt—1) > 0. So C} is a monotonic and bounded
sequence and its limit, say C, exists. Consequently, R; converges to R =
C +W. Also, using C; = R,V/(R; + V), it follows that C = RV/(R+ V),
implying

C?+CW — VW =0.

This quadratic has just one positive root,

C=rV(y/1+4/r —1)/2.

Since C; = A;V, then A; converges to A = C/V, which is the required
function of r. A useful inversion of this relationship leads to

r=A?/(1 - A).
3

A is a function of r = W/V alone, the relationship being illustrated in
the following table of values of 1/r and A:

1/r 9900 380 90 20 6 0.75 0.01
A 0.01 0.05 0.10 0.20 0.33 0.67 0.99
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Summarising the above results and some easily deduced consequences we
have:

(i) A — A=r(/T+4/r—1)/2 with r = A2/(1 — A),
(i) Q—Q=V/(1-A4),
(iii) C, — C = AV,

(iv) R, — R= AQ,

(v) W =A2Qand V = (1 - A)Q.

C is monotonic increasing/decreasing according to whether the initial vari-
ance C is less/greater than the limiting value C. Similar comments apply
to the form of convergence of the sequence A;.

An exact expression for A; is derived in Harrison (1985a), the details
of the proof given here in the Appendix to this chapter, Section 2.7. In
summary, the result is as follows: Define § = 1 — A. Clearly 0 < § < 1,
and for large t, m; ~ dmy_1 + (1 — §)Y;. Given Cy, the initial adaptive
coefficient is A; = (Co+W)/(Co + W + V) and

(1—02"2)A+ (6 + 6272 A
(1+0%1)A+ (5 — 32-1)A; )

from which the following are deduced:

A=A

(a) In the case of a very vague initial prior in which C 15 close to
zero, A1 ~ 1, and A; is monotonically decreasing with

Ay A1+ 8271 /(1 = 6%,
or, writing §; = 1 — A,
8~ 6(1—6%72)/(1 — 6%).

(b) At the other extreme, when the initial prior is very precise with Cy
close to zero, then A; =~ 0 and A; is monotonically increasing with

Ay~ AL =872 /(1 46771,
or

8y~ (1 + 6%73) /(1 + 621,

(¢) Convergence is exponentially fast, being monotonically increasing
for A; < A, and monotonically decreasing for A; > A.

2.8.4 General comments

The case A = 1 corresponds to V = 0, when A; = 1 for ¢t > 2. This
is implied in practical cases by r — oo and reduces the model to a pure
random walk, Y; = Y;_1 4+ w;. Then m; = Y; and the model is of little
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use for prediction. Often, when applied to series such as daily share, stock
and commodity prices, the appropriate values of V' in a first-order model
may appear to be close to zero or very small compared to the systematic
variance W. In other words the DLM appears to imply that all movement
between daily prices may be attributed to movement in the underlying price
level py. This feature has led many economic forecasters to conclude that
such series are purely random and that no forecast of future prices better
than (Yiyr | Di) ~ N[Y;, kW] is available. Such conclusions are quite
erroneous and reflect myopic modelling; clearly the model is restricted and
inappropriate as far as forecasting is concerned. It is rather like looking at
a cathedral through a microscope and concluding that it has no discernable
form. In other words, other models and ways of seeing are required.

The major applications of the constant model are in short-term forecast-
ing and control, when the main benefit is derived from data smoothing.
Denoting the forecasting horizon by L sampling periods, it is advisable to
choose a sampling interval such that 1 < L < 4 and 20 < 1/r < 1000.
In the limit as ¢ — oo, the point predictor is my = AY; + (1 — A)my—1.
Clearly, if A =1 then m; = Y; and any changes in Y; are fully reflected in
the predictor. On the other hand, if A is close to zero, then m; ~ m;_;
and none of the changes in the series will be captured by the predictor.
The larger the value of A, the more sensitive is the predictor to the lat-
est values of the observation series. So there is a dilemma arising from
the conflict between sensitivity and robustness requirements. Note that
Y; = pe—1 + wi + v¢. On the one hand, it is desirable to have a large value
of A so that any sustained changes that occur through the signal w; are
fully incorporated in the estimate m;; on the other hand, a small value is
desirable in order that the corrupting random noise, 14, be excluded from
the estimate. The selected value of A reflects the relative expected varia-
tion in w; and v; through the ratio r. Applications should always employ
the Principle of Management by Exception, embedding the routine model
within a complete forecasting system. So 7 is chosen to give good routine
forecasts and treats occasional sharp level changes and maverick observa-
tions as exceptions, which will either be anticipated by experts or signaled
by the forecast monitoring system and referred to experts. Relevant expert
subjective information is combined with data as illustrated in the previous
“Kurit” example. Further details of such important topics are left until
later chapters.

2.8.5 Limiting predictors and alternative methods

In the formal sense that lim;_, o (m;—m;_1—Ae;) = 0, the limiting one-step
ahead point forecast, f;11 = m; = E[Yi11 | D¢}, may be written

my = (]. — A)mt,1 + Ath =My_1 + Aet.
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Several commonly used point forecasting methods, and the Box—Jenkins
ARIMA(0,1,1) predictor, adopt this limiting forecast function of the con-
stant first-order polynomial DLM:

(a)

Holt’s point predictor
Holt (1957) introduced a widely used point forecasting method,

ft(k) = Mt, where Mt = Ol}/t + (1 — Oé)Mt_l,

which is equivalent to the asymptotic form of m; with o = A. For
finite ¢, and at times of intervention, Holt’s method is insufficiently
responsive, the most recent observation always receiving the same
weight, as is seen on writing § =1 — A, when

t—1

M, = AY, + Zaﬂ'yt_j + 8t M.

j=1
Exponentially weighted moving averages (EWMA)
For a parameter 0 < 6 < 1, the EWMA of a sequence Y;,..., Y7, is

-1
(1-0) N~y
My = —~ MY, ;.
LT (1—4h) Z =
j=0
Practitioners usually apply and refer to an EWMA in its limiting
form

Mt = (1 - 6)}/% + 6Mt71)

which, with § = 1 — A, is identical to Holt’s predictor. Formally,
given mg in the closed, constant DLM, an EWMA My, and any
€ > 0, we have

lim Pr(jm; — M| > €) = 0.

t—o00
Brown’s exponentially weighted regression (EWR)
Brown’s (1962) forecast function for a locally constant mean of an
infinite data set Y;,...,Yo,..., is fi(k) = [, where, for a given

discount factor 0 < § < 1, the EWR estimate fi; = ¢ minimizes the
discounted sum of squares

Su(p) =Y (Viej — ).
=0

It is easily shown that fi; is unique and equal to the EWMA M;.

In each of the three foregoing cases, the classical point predictors use a
forecast function equivalent to the limiting forecast function of the closed,
constant DLM. Unlike the DLM however, these forecasting methods are ad
hoc devices that, although simple to apply, have no coherent basis. With
little relevant data their limiting forms are inappropriate, they are difficult
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to interpret, they have none of the DLM flexibility, and with the exception
of EWR, they do not easily generalize.

(d) An alternative ARIMA (0,1,1) model representation
The predictors of Box and Jenkins (1976) founded on ARIMA mod-
els are very popular. Their widely applied ARIMA(0,1,1) predictor
produces identical point predictions to those of Holt and Brown, so
corresponding to the limiting predictor of a closed, constant, first-
order polynomial DLM. This is demonstrated as follows:
Given a series Y; generated by the DLM {1,1,V, W}, for ¢t > 1,

Vi-Yi1=vi—v 1+ wy.

So the first difference of the observation series may be represented
as an ARIMA(0,1,1) process

Y;‘/ - }/;,1 = a¢ — 5at717 ag ~ N[O7 Q]a

where § = 1 — A and the a; are independent random variables.
From the two relationships m;_1 = Y; —e; and my = my_1 + Aqey,

YVi—Yii=e—(1—A1)er—1,
so that
Jm [Yy =Yy — e+ desa] = 0.
The Box—Jenkins ARIMA(0,1,1) predictor is
Y, = Y1 =e —den,

thus assuming the limit form and replacing the unknown random
variable a; by the observed one step ahead forecast error e;. It can
be shown that as ¢ increases, (e; — a;) converges in probability to
zero. But clearly, as happens with little data or at times of interven-
tion, if @Q; differs from @, equating e; and a; is quite inappropriate.

2.8.6 Forecast distributions

At time t, the k-step ahead and k-lead time forecast distributions are special
cases of those in Theorem 2.2. Using that theorem,

(a) k-step ahead: (Yiqr | Dt) ~ N[my, Q:(K)],
(b) k-step lead time: (X:(k) | D) ~ N[kmy, Li(k)],
where
Qik)=Ci+ kW +V
and

Li(k) = K*Cy + KV + k(k + 1)(2k + 1)W/6.
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It is of interest to note that the lead time forecast coefficient of variation,
defined as L;(k)'/?/(km,), is monotonically decreasing for k less than or
equal to the integer part of kg = /(0.5 4+ 3/r), and monotonically increas-
ing for k > kg. Note that kg is independent of C}, being a function only
of r. For example, a value of = 0.05, corresponding to A = 0.2, implies
that ky = 8. Then, with the limiting value of variance C' = 0.2V substi-
tuted for C;, it follows that L;(8)/(64L:(1)) = (0.62)2, so that the limiting
coefficient of variation for the one-step ahead forecast is 61% greater than
that for the 8-step lead time forecast.

2.4 SPECIFICATION OF EVOLUTION VARIANCE W,

The forecasting performance of a first-order polynomial DLM {1, 1, V;, W, },
constant or otherwise, depends heavily on choosing appropriate values for
the variances, V; and W;. The problem of the former variance is considered
in Section 2.5 below; here the choice of the latter is examined.

2.4.1 Robustness to values of W in the constant model

Suppose that a forecaster applies the constant model with observational
variance V' and signal to noise ratio r when the data are truly generated by a
model with values Vj and rg. Of course this example is purely hypothetical
since no mathematical model can exactly represent a “true” process, but
it provides important insight into the questions of robustness and choice of
variances. Convergence is fast, so consider the limiting form of the model,

Yi—Yi1 =6 —depn,
where 6 = 1 — A and the forecaster assumes (e; | Di—1) ~ N[0, Q] with
@ = V/4. The true limiting model is such that
Y =Y, 1 =ay — doas—1,
where 6o = 1 — Ay, and, in fact, (a; | Di—1) ~ N[0, Qo] with Qo = Vi/do.
Equating the two expressions gives e; — de;_1 = a; — dpas—1, so that
t—2
ey = a¢ + (5 - (50) Z(Vat_j_l.
§=0
Given the independence of the true error sequence a4, it follows that the
true initial prior mean of the model errors is Ele; | Dg] = 0, and as t — oo,
the corresponding limiting variances are

Vlet | Do) = Qo[l + (6 — 60)*/(1 — 6%)].

It is immediately apparent that a gross penalty is incurred if the value of
r, and hence W, is too low. Asr — 0, then 6 — 1, and the true variance of
the above error sequence becomes infinite, whereas the forecaster uses the
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Figure 2.5 Limiting error variance with misspecified A

value V' from the model! At the other extreme, as r — oo, then § — 0, and
the true variance tends to Qo(1 + 63). Hence, in an unmonitored system,
choosing r too large is preferable to choosing it too small, over adaptation
limiting the margin for error. The case r = 0 implies a constant level
ue = p, a model that has been much used in practice but whose pitfalls
are now clear. Figure 2.5 illustrates this feature by plotting the function
vo(A) = [1+ (6 — 80)%/(1 — §2)] /50 as a function of the assumed value of
A =1 —§ for various true values Ag = 0.05, 0.2, 0.5, 0.8.

Additionally, misspecification leads to correlated errors. Clearly, the true
covariance between the model forecast errors e; and e;_y, is

Clet, e—k | Dol = Qo(8 — 80)8" ' (1 = 680) /(1 — 6°),
giving correlations
Co(k) = (8 — 6) (1 — 680)6% 1 /(1 — 2660 + 62),

instead of zero as assumed in the model. If § > &g, so that A < Ag, the e;
are positively correlated; otherwise they are negatively correlated. In the
limit, as o — 1, so that pu; is actually constant,

0> Co(k) = —0""1(1 - §)/2.
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At the other extreme, as dg — 0, so that Y; is a pure random walk,
0 < Co(k) = 6",

Thus an under-adaptive model (§ > dy) leads to positively correlated fore-
cast errors, and an over-adaptive model (6 < Jp) leads to negatively corre-
lated errors. Further details and discussion appear in Harrison (1967) and
Roberts and Harrison (1984).

2.4.2 Discount factors as an aid to choosing Wy

By definition, for the constant model, R; = Ci_1 + W, and in the limit,
R=C+W =C/(1—-A). Thus, W = AC/(1 — A), so that W is a
fixed proportion of C'. This is a natural way of thinking about the system
variance: between observations, the addition of the error w; leads to an
additive increase of W = 100A4/(1— A)% of the initial uncertainty C. Since
d =1— A, it follows that R = C/§. Choice of § by reference to the limiting
rate of adaptation to data then guides the choice of W. For A = 0.1,
0 = 0.9 and W = 0.11C} this increases to 0.25C for § = 0.8. Bearing
in mind that in this DLM the limiting behaviour is rapidly achieved, it is
convenient and natural to adopt a constant rate of increase of uncertainty,
or decay of information, for all £ rather than just in the limiting case. Thus,
for a given discount factor J, typically between 0.8 and 1, choosing

Wt = thl(l - 5)/5
for each ¢ implies
Ry =Ci_1/0.

This DLM is not a constant model but quickly converges to the constant
DLM {1,1,V,rV} with r = (1 — §)?/4, as is easily seen upon noting that

Col=V 3 4R '=V 140 L=V 1+6+--+6 1+ 6y,

so that the limiting value of Cy is C' = (1 — §)V = AV.

Further discussion of this and more general discount models appears
in later chapters. Here the concept is introduced as a simple and natural
way of structuring and assigning values to the W; sequence in the first-
order polynomial model. Note that it applies directly to the general model
with variances V; and W; since W;, as defined above, depends only on
the values of C;_; and &, which are known at time ¢ — 1. Furthermore,
with the assumption of the known values of the V; sequence in the initial
information set Dy, W, is also known at ¢ = 0 and is calculated from the
above recursion as a function of §, Cy, and V;_q,..., V.



52 2. Introduction to the DLM

2.5 UNKNOWN OBSERVATIONAL VARIANCES
2.5.1 Introduction

Typically, the observational variance sequence V; will not be precisely
known, although forecasters will usually have prior beliefs about partic-
ular features of the sequence. Examples include V; = V as in the constant
model but with V' unknown; weighted variances V; = Vk; where the weight
sequence k; is known but V' is unknown; V; = Vk;(u:) where k(+) is a pos-
sibly time dependent variance function of the mean, such as the common
power function k¢(u;) = pt for some power p, and V is unknown; etc. In
each case, the forecaster may also suspect that the nominally constant scale
factor V does, in fact, vary slowly in time, reflecting natural dynamics of
the time series observational process, as well as allowing for errors of ap-
proximation in the model. All these cases are of practical importance and
are developed further in later chapters. Here only the case of the first-order
polynomial model, in which V; = V is an unknown constant, is considered.
Often working with the reciprocal of V', or the precision ¢ = 1/V, clari-
fies and simplifies proceedings. Refer to Section 17.3 for a wider theoretical
discussion of normal linear models with unknown variance.

A simple, closed-form Bayesian analysis of the DLM with unknown, con-
stant variance V' is available if a particular structure is imposed on the W;
sequence and on the initial prior for pg. This structure enables a conjugate
sequential updating procedure for V', equivalently for ¢, in addition to that
for pu;. To motivate this structure, recall that in the constant model it is
natural to specify the evolution variance as a multiple of the observational
variance for all time. Applying this to the general model suggests that at
each time ¢, for known V',

(wt | ‘/,thl) ~ N[O,VW;]

Thus, W is the variance of w; if V. = 1, or equivalently ¢ = 1. With
this structure, suppose that Cj is very large compared to V. In particular,
as Cy increases, C7 =~ V, and for ¢t > 1, C} is given by V multiplied by
that value obtained from the standard model in which V' = 1. Indeed, this
always happens eventually, whatever the value of Cy, since the effect of
the initial prior rapidly decays. So the form of the C} sequence as deduced
from the data leads to scaling by V just as with W;* above. In particular,
if Cy is scaled by V directly, then so is Cy for all ¢t. This feature is the
final component of the required model structure for the following closed,
conjugate analysis.

2.5.2 The case of a constant unknown variance

The analysis for V follows standard Bayesian theory as detailed in Section
17.3. The conjugate analysis is based on gamma distributions for ¢, and
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thus inverse gamma distributions for V', for all time, and derives from the
following model definition.

Definition 2.2. For each ¢, the model is defined by

Observation equation: Yi= e + vy, v~ N[0, V],
System equation: = fhy—1 + Wy, we~ N[0, VIV,
Initial information: (o | Do, V')~ N[mg, VC{],

(¢ | Do)~ Glno/2,do/2],

for some known myg, Cg, W;*, ny and dy. In addition, the usual indepen-
dence assumptions of Definition 2.1 hold, now conditional on V.

The final component is a gamma prior with density
(do/2)™ "
I'(no/2)

Ignoring the normalisation constant,

p(¢ | Do) = pro/2Tlemddo/2 g 5,

p( | Do) x ¢n0/2—1e—¢>d0/2'
The mean of this prior is

no 1
El¢p | Dol = — = —
[d) | 0} dO SO )
where Sy is a prior point estimate of the observational variance V = ¢~ 1.
Alternative expressions of the prior are that when ng is integral, the mul-
tiple dy of ¢ has a chi-square distribution with ny degrees of freedom,

(doo | Do) ~ X2,

or that (V/dy | Do) has an inverse chi-squared distribution with the same
degrees of freedom. Notice that in specifying the prior, the forecaster must
choose the prior estimate Sy and the associated degrees of freedom ng, in
addition to mg and Cg. The starred variances Cj and the sequence Wy,
assumed known, are multiplied by V' to provide the actual variances when
V' is known. Thus they are referred to as observation-scale free variances,
explicitly recognising that they are independent of the scale of the obser-
vations determined by V.

The results obtained below are based on Student T distributions for the
level parameters and forecasts. Again details are given in Section 17.3 but
for convenience, a short summary is now given. A real random quantity
1 has a T distribution with n degrees of freedom, mode m and scale C,
denoted by

o~ Tn[mvc},
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if and only if the density of u is given by

(u—m)?

—(n+1)/2
ol

p(p) o {n +

The quantity (u —m)/+/C has a standard T distribution on n degrees of
freedom, so
w—m
As n increases, this distribution converges to the standard normal distri-
bution, and the notation is chosen by analogy with this case. The analogy
is important; the usual, known variance model is based on normal distribu-
tions that are replaced by T forms when V' is unknown. Note that E[u] = m
when n > 1 and V]u] = Cn/(n — 2) when n > 2, so V[u| =~ C for large n.
From the model definition, unconditionally (with respect to V),

(,LL() ‘ DO) ~ Tno [m()v CO]a
where Cy = S59Cj is the scale of the marginal prior T distribution. In
specifying the initial prior, the forecaster specifies
(i) the distribution of V' via ng and dy, and
(ii) the distribution of py via mg and Cjy.
These may be considered separately. Note that from the T prior, if
ng > 2, V[uo | Do] = Cong/(no — 2), and that for large ng, V = Sy so that

(110 Do) =~ N[myg, Co].

Theorem 2.4. With the above model, the following distributional results
obtain at each time t > 1:

(a) Conditional on V:

Define Ry = Cy_; + W[, fy=my—1, Q; = R +1, ¢, =Y, — f; and
A = R JQ7. Then

(te—1 | De—1,V) ~ Nmy—1, VC{_4],
(e | De—1, V) ~ N[m—1, VRY],
(Ye | De—1, V) ~ N[f;, VQi],

(e | Dy, V') ~ N[my, VO],

with
my =my_1 + Arey and Cf = Rf — A7Q} = A;.
(b) For the precision ¢ = V=':
(@ | Di—1) ~ Glng—1/2,d—1/2],
(¢ | Di) ~ Glne/2,de /2],
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where
ng=n;1+1 and dy=d; 1 +e?/QF.

(¢) Unconditional on V' :
Define S;_1 = dt—l/nt—l, Ci1 = St—lct*—la Ry = St—lRf, Qi =
Si—1Qr, Cp=S:Cf, and S;=d;/n;. Then

(e—1 | De—1) ~ Ty, [me—1,Ct_1],

(e | Dy—1) ~ Ty, [me—1, Ry,
()/;5 | thl) ~ Tntfl[tht]a
(,Ut | Dt) ~ Tnt [mtact}v

(d) Operational definition of the updating equations:
Defining Q¢ = Ry + S;—1 and Ay = Ry/Qy,
my =my—1 + Agey,
Cr = (S¢/Se—1) [Re — A7 Qi) = AiSy,
ng=mn¢—1 +1,
de = di—1+ Si—1€7/ Q1
Sy = di/ny.

Proof. The results in (a) are the known variance results of Theorem 2.1.
The remainder of the proof is by induction. From (a)

1 *
p(Ye | D1, ) o ¢% exp(—oe; /2Q7).
Now, by Bayes’ Theorem, the posterior for ¢ is

p(¢ | Di) < p(¢ | Di—1) p(Yi | Di1, ).
Using the prior from (b) and the above likelihood,

p(¢ | Dy) oc =17/ 2 exp[—(dy—1 + €} /Q7) 6 /2],

thereby establishing (¢ | Di) ~ G[n:/2,d:/2] as in (b) with updated pa-
rameters {n:, d;} as in (d).

Results (c) follow directly from the normal/gamma/T theory mentioned
earlier, and as reviewed in detail in Sections 17.3.1 and 17.3.2: simply
integrate the conditional normal distributions in (a) with respect to the
appropriate prior/posterior gamma distribution for ¢ in (b). Noting that
the results are true for ¢ = 1, the inductive proof is complete.

<

This theorem provides the key results. At time ¢, the prior mean of
¢ is E[¢p | Di—1] = ng—1/dy—1 = 1/S;—1, where S;—1 = dy—1/n4—1 is a
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prior point estimate of V' = 1/¢. The posterior estimate is Sy = di/n;.
The updating equations for the parameters defining the T prior/posterior
and forecast distributions are essentially the same as the standard, known
variance equations with the estimate S;_1 appearing as the variance. The
only differences are the scaling, S;/S;_1, in deriving C; and the scaling of
e?/Qq, by S;_1, in calculating dy, both to correct for the revised estimate of
V. Equations (d) may be used in practice, the starred, scale free versions
appearing only to communicate the theoretical structure.

The estimate S; of the variance V can be written in the recursive form

St = St—l + (etz/Qt — 1)St_1/nt.

For a fixed h, S; = S;_1 + h(e? — S;_1) was recursively used by some early
EWMA systems as an estimate of the one-step forecast variance rather than
of the observational variance V', an important distinction. Such an estimate
is obviously suspect, particularly when ¢ and/or n; are small. The predic-
tion variance is actually given, from the Student T forecast distribution, as
V[Yit1 | Di] = Qt41n:/(ne — 2), when ny > 2. For large n, this variance is
approximately @Q¢+1. If the model is constant, then Q.1 =~ S;/d as t and
n; increase, so that the one-step variance is approximately S;/d. In this
special case, as t — oo, the limiting prediction variance may be written in
the above mentioned ad hoc form, as

V[Yii1 | Di) ~ VIY; | Deos] + (6/ne)(€} = VIYVi | De_y)).

2.5.8 Summary

Key aspects of model structure, updating and forecasting are summarised
in the table below (continued on the following page).

First-Order Polynomial DLM, with Constant Variance V

Observation: Y = pe + vy, vy ~ N[0, V],
System: Mt = ph—1 + wi, wy ~ Ty, [0, W3],
Information: (tt—1 | Di—1) ~ Th,_,[mi—1,Ct—1],

(¢|Dt71)NG[%7 %}

Forecast: (1t | Di—1) ~ Tp,_,[mi—1, Re],

(Yrt | Dt—l) ~ TTLt—l[ft?Qt]’
with  f; = my_q, R, =Ci1 + W, Qt =R+ Si—1.
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Updating Recurrence Relationships

(pt | D) ~ Ty, [my, Cl,

with my = My—1 + Atet,
Ct == AtSt.

(&1 D) ~ G [, 2],
with ng=mng_1+1,
Sp=S_1+ 5= (4

t — Pt—1 nt Q. )

where e, =Y; — fi, and A; = R;/Qq.

k-Step Forecast Distributions

(Yisk | Di) ~ Ty, [me, Qe (k)]
(Xe(k) | Dy) ~ Ty, [kmy, Li(K)],

with Qi(k) = Cr + Z§:1 Wiv; + 5t

and Lt(k) = k2Ct + Z?:l j2Wt+k+17j + kSt,
where for j > 0 and scale free variances W, ;.
Wt+]‘ == StWt*—i-j .

2.6 ILLUSTRATION

The series of Table 2.2 represents the first differences of the logged monthly
USA /UK exchange rate $/.£ from January 1975 to July 1984. From the
time plot in Figure 2.6 it is evident that there was considerable short-term
variation about a changing level.

The data are examined using a first-order polynomial DLM simply to
demonstrate analyses using several closed DLMs that differ only in the
values of their evolution variances {W;}. As recommended in Section 2.4,
these variances are specified by a discount factor J, the four models exam-
ined having discount values of 0.7, 0.8, 0.9 and 1.0, the last corresponding
to the degenerate static model with W; = 0, characterising the observa-
tions as a simple normal random sample. In each case the initial prior
distribution is defined by mg = 0,Cy = 1,n9 = 1 and dy = 0.01. This
vague, uninformative, joint prior specification implies that given Dy, pg
lies between —0.1 and 0.1 with probability 0.5, and between —0.63 and
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Table 2.2. USA /UK exchange rate index (x100)

Year Month (Jan — Jun) & (Jul — Dec)

75 1.35 1.00 —1.96 —2.17 —1.78 —4.21

-330 -143 -135 —-034 —1.38 0.30

76 —0.10 —4.13 —5.12 —2.13 —1.17 —1.24

1.01 —3.02 —5.40 —0.12 247 2.06

77 —0.18 0.29 0.23 0.00 0.06 0.17

0.98 0.17 1.59 2.62 1.96 4.28

78 0.26 —1.66 —3.03 —1.80 1.04 3.06

2.50 0.87 2.42 —2.37 1.22 1.05

79 —0.05 1.68 1.70 —-0.73 2.59 6.77

—0.98 —1.71 —2.53 —0.61 3.14 2.96

80 1.01 —3.69 0.45 3.89 1.38 1.57

—0.08 1.30 0.62 —0.87 —2.11 2.48

81 —4.73 —2.70 —2.45 —4.17 —5.76 —5.09

—2.92 —0.22 1.42 3.26 0.05 —-0.95

82 —2.14 —-2.19 —1.96 2.18 —2.97 —1.89

0.12 —0.76 —-0.94 —-3.90 —0.86 —2.88

83 —2.58 —2.78 3.30 2.06 —1.54 —1.30

—1.78 —0.13 —-0.20 —1.35 —2.82 —1.97

84 2.25 1.17 —2.29 —2.49 —0.87 —4.15
—0.53

0.63 with probability 0.9. The data and sequences of one-step point fore-
casts from the two models with § = 0.8 and § = 1.0 appear in Figure 2.7.
As expected, the degree of adaptation to new data increases as § decreases,
leading to more erratic forecast sequences. To compare the models, and
hence the suitability of the different discount factors, Table 2.3 displays
various summary quantities.

The first two are commonly used measures of forecast accuracy, namely
the mean absolute deviation, MAD = ifi le¢|/115, and mean square
error, MSE = Ztlisl e?/115, for the entire series. The third summary is
based on the observed predictive density

t=115
(Y115, Y14, ..., Y1 | Do) = H p(Ye [ Di—1),
t=1

the product of the sequence of one-step forecast densities evaluated at the
actual observation, and provides a measure of predictive performance of
the model that is actually a likelihood for §, since the DLMs differ only
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Table 2.3. Exchange rate Index example

0 MAD MSE LLR 90% Interval SD
1.0 0.019 0.024 0.00 —0.009 —0.001 0.025
0.9 0.018 0.022 3.62 —0.024 0.000 0.023
0.8 0.018 0.022 2.89 —0.030 0.002 0.022
0.7 0.018 0.023 0.96 —0.035 0.003 0.021

with respect to their known discount factors. Viewing ¢ as an uncertain
quantity, we could now introduce a prior distribution and hence calculate a
posterior for §. However, for illustrative purposes, just the above likelihoods
are examined to obtain a rough data-based guide. For convenience a log
scale is used and the measures defined relative to the model with 6 = 1.
Thus, LLR is the log-likelihood ratio for the values 0.9, 0.8, 0.7 relative to
1.0, larger values indicating a higher degree of support from the data.

From Table 2.3, the MSE and MAD measures indicate better predictive
performance for  between 0.8 and 0.9 than otherwise, the latter more in
favour of the smaller value 0.8. The LLR measure, however, favours 0.9 due
to the fact that it takes into account the variances of forecast distributions
that are ignored by the MAD and MSE. In this measure, there is a balance
between forecast accuracy as measured by the e; sequence and forecast
precision as measured by the spread of the predictive distributions. The
value of 0.8 for ¢ leads to more diffuse distributions than that of 0.9, which
counts against the model in the LLR measure of predictive performance. In
particular, note that by comparison with the others on all three measures
of performance, the static model is clearly unsatisfactory.

Further information provided in the table indicates final values of some of
the interesting quantities. In particular 90% posterior probability intervals
for the final level p115 based on the posterior T distributions are given.
The estimated standard deviation SD = /.S715 is also quoted. Note that
as expected, smaller values of § lead to

(i) faster decay of information about the level between observations and
so wider posterior intervals;

(ii) smaller estimates of observational variance, as indicated by the stan-
dard deviations.

In this example the differences in the estimates of the observation vari-
ance V are not large. In some applications, as illustrated in the next chap-
ter, the observational variance can be markedly over-estimated by models
with discount factors too close to 1, leading to much more diffuse forecast
distributions than those from models with suitably lower discount values.
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2.7 APPENDIX

The exact expression for A; in the constant model is derived. In the closed,
constant model C; = A;V, R;=A; V+W ,and Q:=R;+ V. So,
with lim; 00 At =A, 6=1—A, and r=W/V,

Ct + w - At +7r
Ct+W+V - 14,5—|—’I“—i-17

At+1 =

with limiting value
A+
S A+r+1
Define u; = 1/(A; — A) for each ¢, and note that by subtraction,
Ut+1 = Ut(At +r+ ].)(A +r+ 1)
Now, r = A%2/§,s0 A+r+1=1/§ and Ay +r+1 = 1/u;+1/5, whereupon
(52Ut+1 = u; + 5, and so
§(1—020=1) 4y (1 — 62)
(1—52)520-1)
Note that 1 — 62 = A(1 + §) and substitute for u; = 1/(A; — A) to get
A(A; — A)(1 4 6)5%¢-D
(1+02"1)A+ (6 — 6% 1)A;
After rearrangement, the general solution is
4 = AL THAS (G407 A
P4 A 4 (6 - 821 Ay

Uy =

A — A=

2.8 EXERCISES

Unless stated otherwise, the exercises relate to the first-order polynomial
DLM {1,1,V;, W;} with known variances {V;, W;} and/or discount factor
6 and with Dt = {Y%,thl}Z

Y =ps + 14 vy ~N[0, V],

Mt =pt—1 + we wi ~N[0, W],

(pe—1 | Di—1) ~ N[my—_1,Cy_1].
(1) Write a computer program to graph 100 simulated observations from
the DLM {1,1,1, W} starting with po = 25. Simulate several series

for each value of W = 0.05 and 0.5. From these simulations, become
familiar with the forms of behaviour such series can display.

(2) For the DLM {1,1,V;, W;} show that
(a) the posterior precision of (u¢|D;) is the sum of the prior pre-
cision of (u¢D;—1) and the observation precision of (Yi|u:),
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(7)

(8)
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namely
Crl =R+ Vil

(b) the posterior mean of (1| D;) is a weighted average of the sum of
the prior mean E[u;|D;_1] and the observation Y; with weights
proportional to the precisions R, ! and Vt_l, namely

my = Cy(R; 'me_q + V7 'Yy).

Consider the DLM {1, 1, V;, W;} extended so that v, ~ N[v, V;] and

wy ~ N[wg, W] may have non-zero means. Obtain the recurrence

relations for {my, Ct¢}

(a) using Bayes’ theorem;

(b) deriving the joint distribution (g, Y: | Di—1) and using normal
theory to obtain the appropriate conditional distribution.

Show that the static DLM {1, 1, V, 0}, is equivalent to the model

(Yilu) ~ Np, V],
(11|Do) ~ N[mg, Co].

Now suppose that Cj is very large relative to V, so that VC’(;1 ~ 0.
Show that

(a) mi~Y; and CL=V;
t
1 14
(b) mt%{ZYj and C’t%?.
j=1

Comment on these results in relation to classical estimates.
For the constant DLM {1, 1,100,4}, if (u¢Dy) ~ N[200,20], what
are your forecasts of

(@) (Yega|De), () (Yigr + Yiq2|Dy),  (¢) (Yigs + Yiqa|De) 7
Suppose that Y; is a missing observation, so that D, = D;_;. Given
(t—1|Ds—1) ~ N[my—1,Cs—_1], obtain the distributions of

(1e|Dy)  and  (Yiqa|Dy).
Do this for the constant DLM {1, 1,100, 4} when
(te—1|D¢—1) ~ N[200,40].

Bearing in mind the previous question, suggest a method for cop-
ing with outliers and general maverick observations with respect to
subsequent forecasts.

For the DLM {1, 1, ‘/tu Wt}, with (Mt‘thl) ~ N[mt,h Rt],

(a) obtain the joint distribution of (v, Y| Di—1).

(b) Hence prove that the posterior distribution for vy is

(4| D) ~ N[(1 — Ap)es, AV
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(¢) Could you have deduced (b) immediately from (u¢|Ds)?

It is often of interest to perform a retrospective analysis that looks
back in time to make inferences about historical levels of a time
series based on all the current data. As a simple case, consider
inferences about p;—q based on Dy = {Y;, Dy_1}.

(a) Obtain the joint distribution (p—1, Y¢|Di—1);

(b) hence with B;_; = C;_1/R; deduce that

(te—1|D¢) ~ Nlas(=1), Re(—1)],
where
ar(—=1) = ms—q1 + Bi—1(ms — my_1)
and
Ri(—1) = Cy_1 — B} _1(R; — C).

(¢) Write these equations for the discount DLM of Section 2.4.2.
For the constant DLM {1,1,V, W}, (u—1|D¢—1) ~ N[ms—_1, Cr_1],
suppose that the data recording procedure at times t and t+1 is such
that Y; and Y;11 cannot be separately observed, but X =Y; 4+ Y41
is observed at t + 1. Hence Dy = D;_1 and Dy = {D;_1, X }.

(a) Obtain the distributions of (X|D;—1) and (g¢41|Dis1)-
(b) Generalise this result to the case

k
X =Y Y, and Dip = {X,D;1}.
v=0
(c) For integers j and k such that 0 < j < j + k, find the forecast
distribution of Zf}i’; Y1, given Dy_1.
There is a maxim, “When in doubt about a parameter value err on
the side of more uncertainty.” To investigate this, repeat the exercise
of Example 2.1 using in turn the following prior settings:

(2) (0| Do) ~ N[650, 100000];
(b) (10| Do) ~ N[130, 4];
(c) (0| Do) ~ N[11,1];

In particular, examine the time graphs of {A:}, {fi, fi = Qi/27 Y},

and of {m;,Y;}. What conclusions do you draw? We once designed
a more general forecasting system which the customer tried to break
by setting priors with silly prior means mg and large variances Cy.
He drew the conclusion that the system was so robust it could not
be broken. How would you show that it could be broken if it were
not protected by a monitoring system?

Another maxim is, “In a complete forecast system higher rather
than lower values of the discount factor are to be preferred.” In-
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vestigate this by redoing Example 2.1 using the prior (ug|Dg) ~
N[130,400] but employing the discount DLM so that R; = Cy_1/0.
Use in turn the discount factors 6 = 0.8,1.0 and 0.01. In particular,
examine time graphs of the {f;,Y;} in each case. What conclu-
sions do you draw? Do you see any mimicry? Too many systems
fall between two stools in trying to select adaptive/discount factors
that will not overly respond to random fluctuations yet will quickly
adapt to major changes; the result is an unsatisfactory compromise.
A complete forecasting system generally chooses high discount fac-
tors, usually 0.8 < ¢ < 0.99, to capture the routine system move-
ments but relies on a monitoring system to signal major changes
that need to be brought to the notice of decision makers and that
require expert intervention.

(13) In the constant DLM {1,1,V, W}, verify the limiting identities
R=AV/(1-A), Q=V/(1-A4), W=A%Q.
(14) Inthe closed, constant DLM with limiting values A, C, R, etc., prove
that the sequence C; decreases/increases as t increases according to

whether Cj is greater/less than the limiting value C'. Show that the
sequence A; behaves similarly.

(15) Discount weighted regression applied to a locally constant process
estimates the current level at time ¢ as that value M; of u that given
Y1,...,Y;, minimises the discounted sum of squares

t—1
Se(m) =Y 8 (YViy — )’
=0

(a) Prove that M; is a discount weighted average of the t observa-
tions

1-§ t—1
Mt = 1_7&1;)6 YE—U'

(b) Show that writing e; = Y; — M;_1, neat recurrence forms are

1-6 1—4§t1

My = 1_5th+ st OM;_1
and
1-6
Mt :Mtfl—"ﬁet'

(c) Show that as t — oo the limiting form of this recurrence rela-
tionship is that of Brown’s method of EWR, Section 2.3.5(c),

Mt = 5Mt71 + (]. — 5)}/75 = Mtfl + (]. — 5)6t.
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In the context of question (16) on DWR, note that as ¢ — oo,
Vie:|Di—1] - Q@ and (Y1 — Y: — erp1 + der) — 0.
This suggests that the process can be modelled as
Yit1 =Y = a1 — day,

where a; ~ N[0, Q)] are independent random variables. Then an
estimate of Q) given Y;11,...,Y7 is

t
1 v+1
t —
1 t; 1+52

(a) Do you consider this a reasonable point estimate of Q7
(b) Show that

A A L[ (yesr —w)®
1) = —agte I
Qe+ =+ { P - o
and that a reasonable point estimate of V[Y;|D;_4] is
A (1-8)(1— 0 A
Qt:{5+(15tl)2 Qt—1),
with ¢ — 1 degrees of freedom.

In the {1,1,V,W;} discount DLM with constant discount factor 4,
suppose that Cy is very large relative to V. Show that

(a) Cy~V(1-6)/(1-3d"), for all t > 1;
(1-0) =1
(b) my & (1 — 6t) Z(s]Yt—j,
7=0
1-9¢ 1— 4§t
(c) me & 1—6th+ 5 omy—_1,
1-96
(d) my & mg—1 + P

(e) Compare these results with those of the relevant DWR ap-
proach in question (16) above. What do you conclude? What
do you think about applying that variance estimate Qt of Q,
from question (16), to this DLM? If you do adopt the method,
what is the corresponding point estimate of V'7

In the constant DLM {1, 1, V, W}, show that R; = Cy_1/d;, where 6,
lies between 0 and 1. Thus, the constant DLM updating equations
are equivalent to those in a discount DLM with discount factors d;
changing over time. Find the limiting value of §; as t increases, and
verify that 0, increases/decreases with ¢ according to whether the
initial variance Cy lies below/above the limiting value C'.
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Consider the lead time forecast variance L;(k) in Section 2.3.6.

(a) Show that the value of & minimising the lead time coefficient of
variation is independent of C;. What is this value when V' = 97
and W = 67

(b) Supposing that C; = C, the limiting value, show that the cor-
responding value of L;(k)/V depends only on k and r = W/V.
For each value of » = 0.05 and r = 0.2, plot the ratio L.(k)/V
as a function of k over k =1,...,20. Comment on the form of
the plots and the differences between the two cases.

Become familiar with just how heavy-tailed Student T distributions
with small and moderate degrees of freedom are relative to normal
distributions. To do this graph the distribution using an appropriate
computer package and find the upper 90%, 95%, 97.5% and 99%
points of the T,[0, 1] distribution for n =2, 5, 10 and 20 degrees
of freedom, comparing these with those of the N[0, 1] distribution.
Statistical tables can also be used (Lindley and Scott, 1984, p45).

Perform analyses of the USA /UK exchange rate index series along
the lines of those in Section 2.6, one for each value of the discount
factor 6 = 0.6,0.65,...,0.95,1. Relative to the DLM with § = 1,
plot the MSE, MAD and LLR measures as functions of §. Comment
on these plots. Sensitivity analyses explore how inferences change
with respect to model assumptions. At ¢ = 115, explore how sen-
sitive this model is to values of § in terms of inferences about the
final level pq15, the variance V' and the next observation Yii4.

In the DLM {1,1,1, W}, define Z; = Y;1 —Y;. Show that for integer
k such that |k| > 1,

E[Z] =0, V[Z]=2+W, ClZ,Zi1]=-1

and C[Z;, Ziy1] = 0. Based upon n+ 1 observations (Y1,...,Yn41),
giving the n values (Z1,...,Z,), the usual sample estimate of the
autocorrelation coefficient of lag k, C[Zy, Z1]/V[Z4], is

n—k n
=Y Zmzi/ 322,
=1 =1

Using the computer program of question 1, generate 100 values of z;
and plot the sample autocorrelation graph {rg,k: k =0,...,12}
for W = 0.05 and also W = 0.5. Assuming the model true, the prior
marginal distribution of ry, for every |k| > 1, is roughly N[0, 1/+/n].
Do the data support or contradict the model? This is an approach
used in identifying the constant DLM and an ARIMA(0,1,1) model.

Supposing the more general DLM {1,1, V;, W;}, show that again
C|Zt, Ziyr] = 0 for all |k] > 1, so the graph {rg,k : k > 1}
is expected to look exactly the same. Note also that if V;/W; is
constant, the whole graph {r,k} is expected to look exactly the
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same. What is 7, now measuring and what are the implications for
identifying the constant DLM and the ARIMA(0,1,1)7

Suppose an observation series {Y;} is generated by the constant
DLM {1,1,V*, W*}. We can write Y; — Y;_1 = a; — 6*a;—1 where
a; ~ N[0, Q*] are independent random variables and Q* is the as-
sociated limiting one-step forecast variance. In order to investigate
robustness, suppose a non-optimal DLM {1,1,V, W} is employed,
so that in the limit, Y; — Y;_1 = e; — de;_1 where the errors will
have a larger variance () and no longer be independent. Show that
for integer k such that |k| > 1,

Q= Ve =[1+(6-06)?/(1-6°)]Q"
and
C(k) = Clesyr, e = 6M171Q*(6 — ") (1 — 66%) /(1 — 62).

Examine graphs of {§, Q/Q*} and of {4, C(1)/Q} for the typical
practical cases §* = 0.9, §* = 0.8 and for the atypical case 6* = 0.5.
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CHAPTER 3

INTRODUCTION TO THE DLM:
THE DYNAMIC REGRESSION MODEL

3.1 INTRODUCTION

In this chapter some basic concepts underlying the general DLM theory
are introduced and developed in the context of dynamic linear regression.
The general multiple regression model is discussed, but details of analysis
and examples are considered only for the very special case of straight line
regression through the origin. Although seemingly trivial, this particular
case effectively illustrates the important messages without the technical
complications of larger and more practically important models.
Regression modelling concerns the construction of a mathematical and
statistical description of the effect of independent or regressor variables on
the response time series Y;. Considering a single such variable, represented
by a time series of observations X, regression modelling often begins by
relating the mean response function p; of the original series to Xy, and
possibly X, for s < t, via a particular regression function. For example, a
simple linear model for the effect of the current X; on the current mean is

Mt = a+/8Xt7

where the defining parameters « and ( take suitable values. Models of this
sort may be used in a variety of prediction, interpolation, estimation and
control contexts, such as

(i) Prediction using a lead variable, or indicator: For example, for
month ¢, p; is the current underlying monthly demand for roofing
tiles, Y; the corresponding observed demand, and X; the number of
new housing starts made nine months previously, in month ¢ — 9;

(ii) Prediction using a proxy variable: For example, in predicting pop-
ulation growth, X; =t is time itself;

(iii) Control using a control variable: For example, the temperature level
i of water from a shower can be related to the setting X; of the
tap mixing incoming hot and cold water flows;

(iv) Interpolation: Suppose that the response Y; represents a measure-
ment of the latitude of a satellite at time t, when interest lies in
describing and estimating the trajectory up to that time from ¢ = 0,
described by p; = o + Gt.

In each of the above cases both Y; and X; are scale measurements. How-
ever, practically important and interesting models often include categorical
regressor variables that classify the response into groups according to type,
presence or absence of a control, etc. Classificatory regressor variables such
as these are treated just like measured values of scale variables. In some
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Figure 3.1 Local linearity of p; as a function of X,

applications the Y; series will also be a series of discrete, categorical vari-
ables, so that normal models are clearly inappropriate. Non-normal models
for this sort of problem are developed in a later chapter.

In practice, model construction is guided by specified objectives. Rarely
is a modeller seeking to establish an all embracing model purporting to rep-
resent a “true” relationship between the response and regressor. Rather,
the model is a way of looking at the problem that is required to capture
those features of importance in answering specific questions about the re-
lationship. A frequent objective, for example, is short-term forecasting of
the response series.

Suppose that there really is an underlying, unknown and complex rela-
tionship f(us, Xi,t) = ¢ between the level of the series py, the regressor
variable X;, and time itself. If the modeller believes that this relationship
is sufficiently smooth and well-behaved locally as a function of both X; and
t, then for short-term prediction, that is, local inference, a local approx-
imating model of the form u; = oy + 5. Xy may well satisfy the specific
objectives. Note the word form and the t index of the coefficients o and S.
The form of a linear model may adequately describe the qualitative local
characteristics of the relationship for all X; and ¢, but the quantification
of this form may well have to change according to the locality. For illus-
tration suppose that the true relationship between the mean response and
the regressor is as given in Figure 3.1 for all t.
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It can be seen that the general form p = « + BX is always locally
appropriate as represented by the tangent at X. However, in region 1, §
must be negative, whereas in region 2 it is clearly positive. Similarly, the
intercept coefficient « differs markedly between the two regions.

The distinction between an appropriate local model form and an appro-
priate quantified local model is a critical, fundamental concept in dynamic
modelling. Often in practice, the values of the independent variable X,
change rather slowly in time, so that an appropriate local model descrip-
tion is that above, namely

pe = oy + B Xy,

where the parameter values vary only slightly from one time point to the
next. In modelling this quantitative variation, the modeller develops a
dynamic model. For example, a simple important representation of slowly
evolving parameters is that of a random walk, with

Efloy | o1, Be-1] = a1

and

EB: | cu—1,Bi—1] = Bi—1,

together with a measure of the variance associated with these changes. This
random walk model is a characteristic of the regression DLM.

Modellers must continually be aware that model building is always a
selective process. Often there are several, if not many, independent vari-
ables that may be considered as useful and important predictors of Y;. The
modeller typically identifies just a few of these variables that are judged to
be of greatest importance. Those that are judged unimportant, or indeed,
of which the modeller is not conscious, are omitted from the model, with
the result that their effects are either carried via those regressors in the
model or, commonly, lumped together into error terms with some broad
statistical description. It is important that this selectivity be identified as
potentially contributing to inadequacies in the chosen model.

As a simple example suppose that Y; is the percentage yield of a chemical
process that operates under different temperature and pressure controls.
Over the operating region, the mean yield p, is related to temperature X;
and pressure Z; according to

e =80 — (X; — 100)% — 2(X; — 100)(Z; — 2) —10(Z; — 2)%.  (3.1)
This relationship, shown in Figure 3.2, is typical of the elliptical nature of
a yield response function of temperature and pressure in the region of the
optimum operating conditions. In this case, mean yield is maximised at
X; =100 and Z; = 2.

Consider now two chemical plants running the same process. The first
operates with constant pressure Z; = 1 for which, from above,

pe = 70 — (X — 100)% 4 2(X; — 100), (3.2)
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Figure 3.2 Contours of quadratic mean response function

so that the effect of raising temperature from 98° to 102° is to increase the
mean yield by about 13% from 62 to 70. The second plant operates with
constant pressure Z; = 3, so that

pe =70 — (X, — 100)% — 2(X; — 100), (3.3)

and here the effect of the above temperature increase is to decrease the
mean yield by about 11% from 70 to 62! Suppose that each plant currently
operates with X; = 100, so that they both have a mean yield of 70%.
Ignoring the difference in pressure settings will lead to a sharp difference
of opinion between plant managers on the effect of raising temperature;
one will claim it to be beneficial, the other detrimental. Consideration of
pressure as a contributory factor clearly identifies the source of confusion
and conflict.

The general point of this example is that all models are conditional,
although the conditions under which they are constructed are often not
explicit. Thus, quite frequently, various conflicting models may be pro-
posed for equivalent situations, each supported by empirical evidence and
associated statistical tests. The truth may be that although each model is
conditionally correct, the conditioning may be so restrictive as to render
the models practically useless.

Further study of the example provides valuable insight and a pointer
to possible useful modification of simple conditional models. Consider the
operating model for the first plant (3.2). If, due to uncontrollable cir-
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cumstances, pressure begins to increase, moving from Z; = 1 to Z; = 3,
then the model becomes invalid and practically misleading. In this and
more complex situations, and particularly in modelling open systems, the
lack of awareness of the variation in, and the interaction with, excluded or
unidentified variables causes confusion and misleading inferences. Simple
modifications of conditional models to provide a small degree of flexibility
of response to changing external conditions and variables are possible. In
the example, the operating model may be rewritten as

e = o(Zy) + B(Z) Xy +vXE,

where the coefficients «(+) and 3(-) (and in more complex situations v too)
are functions of pressure Z;. If it is assumed that pressure changes only
slowly in time, then the concept of local modelling described earlier suggests
that to account for some of the variability due to the unidentified pressure
variable (and possibly others too), a simple local model would be that
above with coefficients a(-) and 3(-) replaced by time-varying quantities,
to give

e = oy + B Xy +’YXt2-

A simple dynamic model for the coefficients, such as a random walk, will
now provide a means of responding and adapting to changes in underlying
conditions and related variables.

It is worth exploring the distinction between the qualitative, that is,
the local model form, and the quantitative by reference to Taylor series
expansions. Temporarily suppressing the dependence on time, suppose
there exists some unknown, complex, but smooth underlying relationship
between the mean response function p and an independent variable X, of
the form p = f(X, Z), where Z represents a set of possibly many related
but omitted variables. For any given Z, the functional dependence on X
can be represented locally in a neighbourhood of any point X, by the form

9f(Xo,2)

:u:f(XO7Z)+ (9X0

(X — Xo),
1= ao(Z) + Bo(Z2)X.

In considering the use of a linear regression on X for the response function
over time, it is clear that two factors are important in assessing the worth
of such a model:

(a) the adequacy of the linear approximation as a function of X for any
given Z; and
(b) the implicit assumption of constancy as a function of Z.

Situations in which X and Z vary slowly over time, or in which Z varies
slowly and the response is close to linear in X for given Z, provide the
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most satisfactory cases. Here the response function can be adequately
represented as

pe = o + B Xy,

with the coefficients changing slowly over time according to the simple

random walk
673 Q1
= —|— W s
(&) (/3“) !

where w; is a zero-mean random vector. This expresses the concept of
local constancy of the parameters, subject to variation controlled by the
variance matrix of wy, say V[w;] = W,. Clearly, small values of W; imply
a stable linear function over time, larger values leading to greater volatility
and suggesting caution in extrapolating or forecasting too far ahead in
time based on the current quantified linear model. The common static
regression model is obviously the special case of this dynamic regression in
which w; = 0 for all ¢.

The foregoing discussion has identified some of the potential dangers in
employing simple static models and also reveals reasons why they often
prove inadequate in practice. A final point concerns the suggestion that
the above type of dynamic model is likely to break down if there happens to
be a large, abrupt change in either X or Z, or both. In the chemical plant
example, a sudden change in pressure from 1 to 3 leads to an enormous shift
in the locally appropriate pair of coefficients o and (3, with the latter even
reversing its sign. However, in spite of this marked quantitative change,
it is still the case that the qualitative form is locally durable with respect
to large changes in either X or Z. Furthermore, the changes in parameter
values may be estimated and adapted to by introducing larger variances,
W, for abrupt change points. In later chapters models that can cope with
discontinuous changes in an otherwise smooth process are a prominent
feature of our practical approach.

3.2 THE MULTIPLE REGRESSION DLM

For reference, before considering the case of a single regressor variable in
detail, the structure of the general dynamic regression model is specified.
Suppose that n regressor variables are identified and labelled X1, ..., X,,.
The value of the i*" variable X; at time ¢ is denoted by Xy;, with the
convention that a constant term is represented by X;; = 1, for all t. The
regression DLM is now defined.

Definition 3.1. For each t, the model is defined by

Observation equation: Y, =F, 0, + vy, vy ~ N[0, V4],
0; 1+ wi, wy ~ N[0, Wy],

System equation: 0,
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where Fy = (X31,..., X))’ is the regression vector, 6; is the n x 1 re-
gression parameter vector, and W, is the evolution variance matrix
for 6;.

The standard static regression model has the above form with W; = 0
for all ¢, so that 6, = @ is constant in time. Following the introductory
discussion, the regression DLM assumes that the linear regression form
is only locally appropriate in time, with the regression parameter vector
varying according to a random walk. The evolution error term w; describes
the changes in the elements of the parameter vector between times ¢t —1 and
t. The zero mean vector reflects the belief that 8, is expected to be constant
over the interval, whilst the variance matrix W; governs the extent of the
movements in @; and hence the extent of the time period over which the
assumption of local constancy is reasonable. Finally, the error sequences
vy and wy are each assumed to be independent sequences. Additionally, vy
is independent of w, for all ¢ and s.

An important special case obtains when n = 1 and a constant term is
included in the model. The result is a straight line regression on X = X,
specified by F; = (1, X;)" and 6; = (o, 5;)’. Then

Y = oy + B Xy + vy, vy ~ N[0, V],
Qr = Q1 + Wy,
By = Br—1 + wia2,

where w; = (we1,wi2)’ ~ N[0, Wy].

3.3 DYNAMIC STRAIGHT LINE THROUGH THE ORIGIN
3.3.1 Introduction and definition

For illustrative purposes the simple dynamic straight line through the origin
is considered. Formally, this is a special case of the straight line model for
which a; = 0and 6, = 0; = 3, for each t. Thus it is assumed that a straight
line passing through the origin models the local relationship, but that in
different localities the appropriate slope values differ. For illustration, three
data sets are now given and examined later in Sections 3.3.4 and 3.4.2.

In Table 3.1, for t = 1970 to 1982, the response series Y; is the USA
total annual milk production, and F; the total number of milk cows, with
0; representing the average annual milk output per cow in year t. The
model is not of primary interest for forecasting the Y; series but rather for
assessing changing productivity over time.

Table 3.2 concerns a leading indicator that is used to forecast annual
product sales. Here Y; is the change in annual sales between years t — 1
and t, and Fy is the lead indicator measured as the change in an industrial
production index between the years t — 2 and ¢ — 1.
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Table 3.1. USA annual milk production and milk cows

Year ¢t | 1970 1971

1972 1973 1974 1975

1976

Y;: Milk (Ibs x107) | 117.0 1
F,: Cows x106 12.0 11.8

18.6

120.0 115.5 115.6 115.4 120.2

11.7 114 11.2 11.1

11.0

Year ¢t | 1977 1978

1979 1980 1981 1982

Y;: Milk (Ibs x109) | 122.7 121.5
F,: Cows x108 11.0 10.8

123.4 128.5 130.0 135.8
10.7 10.8 10.9 11.0

Table 3.2. Change in annual sales and industrial production

Yeart| 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Y, 2 119 5 3 0 -5 -7 -6 -3 7 10 13 12
F; 4 4 3 21 -1 -3 4 -3 -1 2 3 4 4
Table 3.3. Company sales/ Total market data
Company Sales Y Total Market F
Quarter Quarter
Year 1 2 3 4 1 2 3 4
1975 | 71.2  52.7 44.0 645 | 161.7 126.4 1055 150.7
1976 | 70.2 523 452 66.8 162.1 124.2 1072 156.0
1977 | 724 55.1 489 64.8 165.8 130.8 114.3 1524
1978 | 73.3 56.5 50.0 66.8 | 166.7 132.8 115.8 155.6
1979 | 80.2 588 51.1 679 | 183.0 138.3 119.1 157.3
1980 | 73.8 559 49.8 66.6 | 169.1 128.6 112.2 149.5
1981 | 70.0 54.8 487 67.7 | 1569 1234 108.8 153.3
1982 | 70.4 527 49.1 64.8 158.3 119.5 107.7 145.0
1983 | 70.0 553 50.1 65.6 | 155.3 123.1 109.2 144.8
1984 | 72.7 552 515 66.2 | 160.6 119.1 109.5 144.8
1985 | 75.5  58.5 165.8 1274

75

The final data set, in Table 3.3, displays a company’s quarterly sales, Y; in
standardised units, relative to the total market sales F}, over the years 1975
to mid-1985. Primary interest lies in assessing the way their relationship
has changed over time, and in forecasting one year ahead. A major feature
of this data set is the marked annual seasonal pattern exhibited by each
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Figure 3.3 Company sales and total market series

of the series over the year. The two series are plotted over time in Figure
3.3. A simple scatter plot of Y; versus Fj, given in Figure 3.4, removes
this seasonality and seems to support a simple, essentially static straight
line regression with, from the nature of the data, zero origin and with 6,
representing the market share as a proportion of the total market.

Definition 3.2. The model form is a special case of Definitions 1.1 and
3.1, being characterised by the quadruple {F}, 1,V;, W;} as

Observation equation: Y, = Fi0; + vy, vy ~ N[0, V¢],
System equation: 0; = 01 + wy, wt ~ N[0, W],
Initial information: (0o | Do) ~ Nlmyg, Co],

for some mean mg and variances Cy, V; and W.

The sequential model description for the series requires that the defining
quantities at time ¢ be known at that time. Similarly, when forecasting
more than one step ahead to time ¢ 4 k at time ¢, the corresponding quan-
tities Fiik, Virx, and Wiy must belong to the current information set
D;. In general for this chapter, and unless otherwise specified, it will be
assumed that the information set Dy contains all the future values of F},
Vi, and W, so that Dy = {Y;, D;_1} for each t. Finally there is the usual
assumption of mutual independence of the error sequences and Dy.
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Figure 3.4 Company sales versus total market sales

3.3.2 Updating and forecasting equations

Theorem 3.1. One-step forecast and posterior distributions are given, for
each t, as follows:

(a) Posterior for 0;_1 : (0:—1 | Di—1)~ N[my—_1, Ct_1],
for some mean my_1 and variance C;_1.
(b) Prior for 0; : (04 | Dy—1)~ N[my_1, Ry,
where Ry= Cy_1 + W;.
(c) 1-step forecast : (Y; | Di—1)~ N[ft, Q¢],
where f; = Fymy_q and Q; = F2Ry + V.

(d) Posterior for 6, : (0: | Dy)~ N[my, C],

with m; = my_1+Ase; and Cy = Ry Vi /Qy,

where At = RtFt/Qt and €t = )/t - ft~

Proof. The proof is by induction, following that of Theorem 2.1. At any
time ¢ > 1 assume that (a) is true, noting that this is the case at t = 1.
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Writing Y; and 6; in terms of linear functions of 8;_; , 14 and wy, it follows
that Y; and 6; have a bivariate normal distribution conditional on D;_,
with means and variances as stated above, establishing (b) and (c). For
the covariance,

Clos,Yi|Di—1] = Cl0y, F10; + vy | Dy 1] = Cl0;, Fy0| Dy 1] + C[0, v¢| Dy 1]
= VI[0:| Dy 1]F; +0 = R Fy,

Me_1 Ry Ry
Di 1) ~N , .
' 1) K fi ) (Fth Q H
The regression coefficient of 6; on Y; is then A; = R F;/Q:. Hence, using

normal theory from Section 17.2,

(04 | Yy, Dy—1) ~ N[my, Cy],

so that

where
my =my—1 + A (Y — ft)
and
Cy = Ry — (R F)?/ Qs
This latter equation reduces to C; = R;V;/Q: and (d) follows.

&

For forecasting at time t, the forecaster requires the k-step ahead mar-
ginal distributions, p(Y;4x | D), which are as follows.

Theorem 3.2. For k > 0, the k-step ahead forecast distributions are
(Yesr | Di) ~ N[fi(k), Qi(k)]

and
(Orvk | Di) ~ Nlmy, Ry (k)]
where
ft(k) = Fiipmy,
k
Ri(k) = Cy + Z Witr,
r=1
and

Qi(k) = F2  Re(k) + Vigr.
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Proof. From the evolution equation for 6, for k > 1,

which,

k
Otk = 0 + Zwt+r ;

r=1

together with the observational equation, gives

k
Yier = Fiyn0 + Fiqn Zthrr + Vit

r=1

Since all terms are normal and mutually independent, (Y;4x | D;) is normal
and the mean and variance follow directly as the sums of the means and
variances respectively.

3.3.3. General comments

The following points are noteworthy.

(i)

(i)

The posterior mean m; is obtained by correcting the prior mean
my_1 with a term proportional to the forecast error e;. The co-
efficient A; = R;F;/Q; scales the correction term according to the
relative precisions of the prior and likelihood, as measured by R;/Q;,
and by the regressor value F;. So the correction always takes the
sign of F} and may be unbounded.

The posterior precision C; Lis

Crl=Qu(RVy) ' =RV + FPV,

so that for F; # 0, it always exceeds the prior precision R; 1 Thus,
the posterior for 6; is never more diffuse than the prior. Further, the
precision increases with |Fy|. If, however, F; = 0, then Y; provides
no information on #;, and C; = R;. If F; = 0 for a sequence of
observations then the sequence C} continues to grow by the addi-
tion of further Wy terms, reflecting an increasingly diffuse posterior.
Thus, although there may exist an appropriate regression relation-
ship changing in time, information relevant to this relationship is
not forthcoming. Although seemingly trivial, this point is vital when
considering the case of multiple regression. The chemical plant op-
eration of Section 3.1 is a case in point. In view of concern about
falling short of set production targets, plant managers are usually
wary of varying operating conditions away from standard, well-used
control conditions. In such cases, the absence of planned variation
in operating conditions means that no new information is obtained
about the effect on chemical yield of changing these conditions. As
described in Section 3.1, the yield relationships with controlling fac-
tors change in time and thus actual optimum operating conditions
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(iii)
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can move away from those initially identified. The lack of incoming
information about the effects of changing variables, such as tem-
perature, together with a decreasing precision associated with the
model parameters, means that the actual operating conditions will
become far from optimal. The need for a continual flow of informa-
tion on the effects of changes in operating conditions was recognised
by G.E.P. Box when at Imperial Chemical Industries. This led to
the development of Evolutionary Operation, which advocates con-
tinued small variation in conditions near the currently identified
optimum so that movements away from this can be identified (Box
and Draper 1969).

Consider the special case of constant variances, V; =V and W, = W
for each t. In general, the sequence C} is neither monotonic nor
convergent. However, in the degenerate constant model given by
Fy = F # 0, the corresponding model for the scaled series Y;/F is a
constant, first-order polynomial model with observational variance
V/F?. Tt follows from Theorem 2.3 that

g, A= AG)
and

lim C, = C(F),

where, with r(F) = WE?/V,
AF) =r(F)[v/1+4/r(F)—1]/2
and
C(F) = A(F)V/F?.

Consequently, in the general case of bounded regressor values, where
say a < F; < b for all ¢, as t increases, A; will lie in the in-
terval [A(a), A(b)] and C; in the interval [C(c),C(d)], where
¢ =max (|al,]b]) and d = min{|u|: u € [a,b]}.

For the static model in which W; = 0 for all ¢, # is constant, so that

t
Cil=Cyt+ Y RV

r=1

and

t
my = CyCy 'mo + Cy Y F2V,Y,.
r=1
This is the standard posterior distribution derived from a non-
sequential analysis of the constant regression model. In the par-
ticular cases of either large ¢ or relatively little prior knowledge, as
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represented by small Cjy’ ! m, is approximately the usual maximum
likelihood point estimate of 6, and C; the associated variance.

3.3.4 Illustrations

The model is now illustrated by application to the first two data sets in-
troduced above. The objective is simply to demonstrate the analysis and
highlight practically interesting features. Reasonably uninformative priors
are chosen at t = 0 for the purpose of illustration.

EXAMPLE 3.1. For convenience the years of this data set, in Table 3.1,
are renumbered 1 to 13. The constant variance model with V' = 1 and
W = 0.05 is applied. 6; may be interpreted as the level, in thousands of
pounds, of milk per cow for year ¢. Initially we set mg = 10 and Cy = 100,
representing a high degree of uncertainty about 6y. Table 3.4a gives the
values of m;, C; and A; calculated sequentially according to Theorem 3.1
(d).

The m, series is seen to increase except at ¢ = 4. This reflects in-
creasing efficiency in general dairy production over time through better
management and improving breeds of cow. In practice, a modeller would
wish to incorporate this feature by modelling “growth” in 6;, the current,
constant model obviously being deficient. However, even though it is un-
satisfactory for long-term prediction, the dynamic nature of this simple
model does lead to reasonable short-term forecasts. For example, at ¢t = 11
and ¢t = 12, the one-step ahead forecasts are (Y12 | D11) ~ N[129.2,7.8]
and (Y13 | D12) ~ NJ[131.1,7.9]. The actual observations Y15 = 130.0 and
Y13 = 135.8 are well within acceptable forecast limits. By comparison,
Table 3.4b gives results from the standard static model with W, = 0. It
is clear that forecasts from this model are totally unsatisfactory, with, for
example, (Ylg | Dll) ~ N[1161,109] and (Y13 ‘ D12) ~ N[1182,108}
The beneficial effects of assuming a model form holding only locally rather
than globally are clearly highlighted. The dynamic assumption leads to
greater robustness and helps to compensate for model inadequacies that
at first may not be anticipated or noticed. Since the independent variable
F, varies between 10.7 and 12.0, it is not surprising that in the dynamic
model the values of C; and A; settle down to vary within narrow regions.
By contrast, in the static model they both decay to zero, so that the model
responds less and less to the most recent data points and movements in
milk productivity.

EXAMPLE 3.2. Leading indicator. The sales data in Table 3.2 are anal-
ysed with the constant model in which V =1 and W = 0.01. The initial,
relatively diffuse prior sets my = 2 and Cy = 0.81. Table 3.5 gives the val-
ues of my, Cy and A;. Neither the variance nor the adaptive coefficient are
monotonic, and there is no convergence. Here F; takes negative and posi-
tive values, and A; takes the sign of the current regressor value. When the



82 3 Introduction to the DLM

Table 3.4. Analyses for milk data

(a) Dynamic model (b) Static model
t Ft th mye 10000t IOOAt my 1000Ct 100At
1112.0 117.0 9.75 6.94 8.3 9.75 6.94 8.3
2 | 11.8 118.6 | 10.01 6.38 7.5 9.90 3.53 4.2
3| 11.7 120.0 | 10.23 6.47 7.6 10.01 2.38 2.8
41114 1156 | 10.14 6.77 7.7 10.04 1.82 2.1
5| 11.2 115.6 | 10.30 6.99 7.8 10.09 1.48 1.7
6 |11.1 1154 | 10.38 7.10 7.9 10.14 1.25 1.4
7111.0 120.2 | 10.86 7.22 7.9 10.24 1.09 1.2
8 | 11.0 122.7 | 11.12 7.22 8.1 10.35 0.96 1.1
9110.8 121.5| 11.23 7.46 8.1 10.44 0.86 0.9
10 | 10.7 1234 | 11.49 7.58 8.1 10.54 0.79 0.8
11 | 10.8 128.5 | 11.85 7.46 8.1 10.65 0.72 0.8
121 109 130.0 | 11.92 7.34 8.0 10.75 0.66 0.7
13 | 11.0 135.8 | 12.29 7.22 7.9 10.87 0.61 0.7

latter is near zero, C} tends to increase, since the information provided by
Y; is not compensating for the increased uncertainty about the regression
in the movement from 6; 1 to #;. On the other hand, when F} increases in
absolute value, the observations are very informative, leading to decreases
in C; and increases in the absolute value of A;.

Looking at my, it begins in the region of 3, then drops near to 2 before
rising again to 3, apparently completing a cycle. Since F} varies in a similar
manner, there is a suggestion that a large part of this variation in m; could
be accounted for by relating it to F}, and a more elaborate model is worth
considering. A simple, tentative example would be to extend the regression
to include a quadratic term in F}, thus implying a multiple regression rather
than the simple straight line here.

One further point that may be queried is that this simple model deals
with changes in both response and regressor variables, rather than their
original values. Typically this will lead to time series that are not condi-
tionally independent, as the model implies. If, for example, Y; = U; —U;_1,
then Y; and Y;_; have U;_; in common and so will be dependent. The rea-
son why many difference models are used in classical forecasting approaches
is that there is a desire to use static, stationary models that would be more
reasonable for the differenced series Y; than for Uy, on the basis that dy-
namic changes in the latter that cannot be handled by static models can
be partially eliminated by differencing. Although this reasoning may be
validated in some cases, it is much better and sounder to develop dynamic,
stochastic, explanatory models directly for the undifferenced data Us.
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Table 3.5. Analysis of annual sales data

t 1 2 3 4 5 6 7
F, 4 4 3 2 1 —1 -3
Y; 12 11 9 5 3 0 -5
my 203 284 288 283 284 269 233
100C; | 581 326  3.08 351 431 504  3.92
104, 232 130 092 070 043 —0.50 —1.17
t 8 9 10 11 12 13 14

F, —4 -3 1 2 3 4 4
Y, -7 —6 -3 7 10 13 12

my 2.08 206 209 231 263 285 293
100C, | 275  2.80  3.67 393 342 259  2.28
104, | —0.84 —0.84 -037 079 1.02 103 0091

3.4. MODEL VARIANCES AND SUMMARY
3.4.1 Summary of updating and forecasting equations

Estimation of the observational variance and assignment of values to the
evolution variance series are problems discussed in detail for the general
DLM in later chapters. With a constant observational variance, the analysis
is a minor generalisation of that for the first-order polynomial DLM as
developed in Section 2.5. The corresponding results are summarised in
the following table. The observational variance, if assumed unknown but
constant, is estimated using the fully conjugate Bayesian analysis based on
gamma prior/posterior distributions for the precision parameter.

From the DLM observation equation it is clear that W; is not invariant
to the scale of measurement of the independent variable F;. Because of
this, and the fact that the amount of information about ; conveyed by an
observation varies with |Fy|, there is difficulty in assigning suitable values to
the evolution variance sequence. If as in Section 2.4.2; a discount approach
is used with discount factor 0 < § < 1, then W; = C;_1 (6~ —1) is naturally
defined as a multiple of the variance Cy_1, so that R, = Cy/4.

Section 4.5 deals with the general DLM of which this is a particular case,
and the reader is referred to that section for further details, which are easily
translated for this simple DLM.

The summary table is completely analogous to that of Section 2.5.3 for
the first-order polynomial model; n; is the degree-of-freedom parameter
for the posterior distribution of the scale ¢, increasing by one for each
observation, and S; is the point estimate of V.
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Regression DLM with Zero Origin and Constant Variance

Observation: Y; = Fi0, + vy, vy ~ N[0, V],
System: 9,5 = 9t71 + Wt, Wt ~ Tntfl[O, Wt]
Information: (0i—1 | Di—1) ~ Tp,_,[mi—1,Ci_1],

(¢ | Di—1) ~ G [WT*I, %

Forecast: (0; | Dy—1) ~ Tp,_, [mi—1, Ry,
(Y; | Dt—l) ~ Tnt,l[ftaQt]:

Ri=Ci1+ Wy, fi=Fm_1, and Q= FRi+ Si_1.

Updating Recurrence Relationships

Writing e; = Y; — f;, and A; = FiR;/Qy,
(1) (¢|Dt)NG[%7 ntQSt]a

ng=mns_1+1,
Sy =Si—1+ (7/Q¢ — 1)Si—1/ns.
(ii) (0¢ | D) ~ T, [my, Cyl,

my = my—1 + Azey,

Ct = RtSt/Qt-

3.4.2 FExample

The company sales/total market data set of Table 3.3 and Figure 3.3 is
used to illustrate the sequential analysis and also to highlight some further
practical points. Sales are plotted against total market data in Figure 3.4,
demonstrating an apparently stable linear relationship. 6, is the expected
market share of the company in month ¢, the prior estimate of 6y at t =0
being my = 0.45, in line with pre-1975 information, and the associated
uncertainty being represented by Cy = 0.0025. A loose prior for the ob-
servational precision is assigned by setting ng = Sy = 1. This implies that
(0o | Do) ~ T1[0.45,0.0025], with, in particular, 90% prior probability that
0p lies between 0.13 and 0.77, symmetrically about the mode 0.45.

It is of interest to consider several analyses of the data using this model
and initial prior, differing only through the value of the discount factor 4.
Consider first an analysis with § = 0.6 corresponding to a view that 6;
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may vary markedly over time. Given the initial prior, sequential updating
and one-step ahead forecasting proceed directly. Figure 3.5 displays a plot
over time of the raw one-step ahead forecast errors e;. Note that there
is a preponderance of positive errors during the latter half of the time
period, years 1980 onwards, indicating that the model is generally under-
forecasting the data series Y; during that time.

Figure 3.6 provides a plot over time of the on-line estimated value m; of
the regression parameter 6;, referred to as the estimated trajectory of the
coefficient. This is the solid line in the figure. An indication of uncertainty
about the value at time ¢ is indicated by the dashed lines symmetrically
located either side of the estimate. These limits provide 90% posterior
probability intervals (in fact, HPD intervals) for the corresponding values
of 6, calculated from the Student T posterior distributions of (6;|D;). It is
clear that 0, drifts upwards over time, particularly over the last six or seven
years of data. The model, though not predicting such positive drift, adapts
as data are processed, sequentially adjusting the posterior to favour higher
values consistent with the data. The fact that the model is very adaptive
(with 0 scandalously low at 0.6), leads to the resulting marked degree of
inferred change in #;. However, since the model implies that #; undergoes
a random walk, the positive drift cannot be anticipated and so, generally,
under-forecasting results as evidenced in the forecast errors in Figure 3.5.

Consider now an analysis with § = 1, so the model is a static regression
with constant 6; = 6. The sequentially calculated one-step ahead errors
e; from this analysis appear in Figure 3.7. The preponderance of positive
errors is evident as with the previous analysis, but the effect is profound.
From 1980 onwards, all the errors are positive, and tending to increase,
indicating continual deterioration in model adequacy. Figure 3.8 displays
the on-line estimates m; with 90% HPD intervals. Again the model is
adapting to higher values of 6; as time progresses, but the rate of adaptation
is much lower than the previous, very adaptive model with § = 0.6. This
under-adaptation leads to increasingly poor forecasts as time progresses.

Obviously, the regression model as specified is deficient for this data
set; a revised model anticipating drift in 6, is desirable. Despite this, the
model with § = 0.6 adapts sufficiently to new data that the forecast errors,
though tending to be positive, are relatively small. By comparison, the
static regression model with § = 1 performs extremely poorly in one-step
ahead forecasting due to its poor adaptability. Thus, interpreting Figure
3.4 as suggesting a simple static regression is certain to mislead. This plot
masks the effects of time on the relationship between the two series. Many
readers will immediately note that a simple plot of the observed market
shares Y;/F; (empirical estimates of the 6; values) over time indicates the
increasing nature of #; and suggest a more appropriate model form; Figure
3.9 provides such a plot, the ratio values appearing as crosses. Also plotted
are the sequences of on-line estimates m; from each of the two analyses
described above; the solid line is that from the adaptive analysis with
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Figure 3.5 One-step ahead forecast errors : 6 = 0.6
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Figure 3.6 On-line estimated trajectory of 6;: § = 0.6
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QTR 1 1 1 1 1 1
YEAR 75 77 79 81 83 85
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Figure 3.8 On-line estimated trajectory of 6;: § = 1.0
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Figure 3.9 Ratio Y;/F; versus time ¢, with on-line estimates

6 = 0.6, the dashed line from the static model. It is evident that the
adaptive model tracks changes in ; rather well.

To further compare the two analyses, details are given below. Tables
3.6 and 3.7 display the data and some components of the prior/posterior
distributions from the two analyses for the final 12 quarters, ¢t = 31, ...,42.

As noted above, the increasing market share is identified most clearly
by the model with the lower discount of 0.6, where m; approaches 0.46
at the end of the data, though it is not continually increasing. The one-
step forecasts are good, although the increasing 6; leads to a dominance of
positive forecast errors e, albeit very small compared to their distributions.
Note that n; = t 4+ 1, so that the Student T forecast distributions are
close to normality and @ is then roughly the variance associated with
e:. In contrast, the static regression model with discount 1.0 is far less
adaptive, the m; sequence slowly increasing to 0.44 at the end of the data.
This is well below the more reasonable values near 0.46, as is evident from
the sustained, and significant, under-forecasting of the Y; series. The key
point here is that, although the model lacks a growth term and so is really
inappropriate, the lower discount analysis adapts well and the resulting
short-term forecasts are acceptable. The standard static model is extremely
poor by comparison, and the message extends to more general models, and
regressions in particular.
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Table 3.6. Sales data example: discount factor = 0.6

t Fy Y, ft i/Q Stl/Q my Ct1/2

31 107.7  49.1 4771 0.94 0.80  0.447  0.0040
32 145.0 64.8  64.79 1.10 0.79  0.447  0.0037
33 155.3  70.0  69.39 1.09 0.78  0.449  0.0035
34 123.1  55.3  55.23  0.96 0.77  0.449  0.0036
35 109.2  50.1  49.02 0.92 0.77  0.452  0.0039
36 144.8  65.6  65.43 1.06 0.76  0.452  0.0036
37 160.6  72.7  72.66 1.07 0.75  0.453  0.0033
38 119.1  55.2 53.90 0.91 0.76  0.456  0.0036
39 109.5  51.5  49.93  0.92 0.78  0.460  0.0039
40 144.8 66.2  66.65 1.07 0.77  0.459  0.0037
41 165.8  75.5  76.08 1.10 0.77  0.457  0.0033
42 1274 585 5823 094 0.76  0.458  0.0034

Table 3.7. Sales data example: discount factor = 1.0

t | R Y. f s ol

31 107.7  49.1  46.74 1.19 1.23 0434  0.0016
32 145.0 64.8  62.98 1.26 1.25 0435 0.0016
33 155.3 70.0 67.52 1.28 1.30 0.435  0.0016
34 123.1  55.3  53.59 1.32 1.32  0.436  0.0016
35 109.2  50.1  47.58 1.33 1.36  0.436  0.0016
36 144.8 65.6  63.14 1.38 1.40  0.437  0.0017
37 160.6  72.7  70.11 1.43 1.44 0437  0.0017
38 119.1  55.2  52.06 1.46 1.51 0438 0.0017
39 109.5  51.5  47.92 1.52 1.59  0.438 0.0018
40 144.8 66.2  63.44 1.62 1.63  0.439  0.0018
41 165.8  75.5  72.73 1.66 1.66  0.439  0.0019
42 1274 585  55.96 1.68 1.69  0.440 0.0019

89

Note further that the more adaptive model allows for a much greater
decay of information about 6; over time, and this results in a larger poste-
rior variance. At the end of the data, for example, the posterior standard
deviation of 645 in the adaptive model is almost 80% greater than that in
the static model. This is a large difference due to a very small discount at
0.6. Typically, if the form of the model is reliable over a reasonable period,
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Figure 3.10 MSE, MAD and LIK measures as functions of §

as is clearly not the case here, then discount factors for regression will ex-
ceed 0.9. Concerning the static model, note that in addition to very poor
forecasts, the posteriors for 6; are overly precise, being highly concentrated
about a mode that is far from suitable as an estimate of 6;!

The adaptive model correctly attributes a high degree of variation in
the Y; series to movement in #;, and so much less than the static model
to observational variation about level. The final estimate of observational
standard deviation in the adaptive model is 0.76 compared with 1.69 in
the static case. Further, note that the one-step forecast variances in the
adaptive model are much smaller than those in the static model. The final
one-step forecast standard deviation in the former is 0.94 compared to 1.68
in the latter. This is due to the point above; the observational variance is
heavily over-estimated in the static model. Thus, in addition to providing
much more accurate point forecasts than the static model, the adaptive
model produces much more concentrated forecast distributions. By any
measures of comparative performance, the adaptive model is much better
than the standard static model.

Similar analyses with different values of § can be assessed and compared
using the MSE, MAD and LLR (log likelihood ratio) criteria as demon-
strated in the example of Section 2.7. Each of these measures is calculated
from analyses with § = 0.05,0.1,...,0.95,1.0. MSE and MAD measures
are graphed as functions of § over this range in Figure 3.10.



3.5 Exercises 91

Also plotted is the actual model likelihood LIK=exp(LLR). This figure
clearly indicates that a static model, § = 1.0, is highly inappropriate. Both
MSE and MAD measures, as functions of 4, decay rapidly from their max-
ima at 6 = 1.0 to minima near § = 0.6, thereafter rising only slightly as ¢
approaches 0. The curves are flat between § = 0.4 and § = 0.8, indicating
the usual marked robustness to particular values within a suitable range.
The likelihood function LIK for § peaks between 0.6 and 0.7, being neg-
ligible above § = 0.85. Highly adaptive models with § less than 0.5 have
low likelihood, being penalised since the corresponding one-step forecast
distributions are very diffuse.

3.5 EXERCISES

Unless otherwise stated these exercises refer to a univariate time series {Y;}
modelled by the closed regression DLM {Fy, 1, Vi, W;} of Definition 3.2 with
known variances and/or known discount factor § as follows:

Observation equation: Y, = Fi6; + vy, vy ~ N[0, V4],
System equation: 0; = 0;_1 + wy, wt ~ N[0, W],
Initial prior: (0o | Do) ~ N[mqg, Cy].

(1) In the DLM {F},1,100,0} suppose that the sequence 6; = 0 is a
precisely known constant but that the regressor variable sequence
F; is not controllable. You model F; as a sequence of independent
normal random quantities, F; ~ NJ0,400]. Given D;_, answer the
following questions.
(a) Prove that Y; and F; have a bivariate normal distribution and

identify its mean vector and variance matrix.

(b) What is the correlation between Y; and F?
(¢c) What is the regression coefficient of F; on Y;?
(d) What is the posterior distribution of (F;|Y;, Dy—1)?

(2) In the previous question suppose that the sequence 6, is known but
not constant. You also adopt a random walk model for F}, so that
F; = F;_1+¢; with independent e; ~ N[0, U]. Show that your overall
model is equivalent to the simple regression DLM {6;, 1,100, U} with
regressor variable 6; and parameter F}.

(3) In the DLM {F;, 1, Vi, Wi}, suppose that F; £ 0 for all ¢.
(a) Show that the series X; = Y;/F; follows a first-order polynomial
DLM and identify it fully.
(b) Verify that the updating equations for the regression DLM can
be deduced from those of the first-order polynomial DLM.
(¢) What happens if F; =07
(4) One measure of the predictability of Y; at time ¢ — 1 is the modulus

of the reciprocal of the coefficient of variation, given by |f:/ Qi / 2\.
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Explore this measure as a function of F; € [-100, 100] for each of
the cases R, =0, 10, 20,50, when m; = 10, and V; = 100.

Suppose that V; is a known function of a control variable F;. In

particular, let V; = V(a + |F¢|P) for known quantities V', a and p.

(a) How should F; be chosen in order to maximise the posterior
precision C; ! subject to |F;| < k for some k > 0? What is the
optimal design value of F} in the case a = 8, p = 3 and k = 107

(b) How does this problem change when V is unknown and is
estimated from the data?

For the discount regression DLM in which V; is known for all ¢ and
Ry = Cy_1/0, show that the updating equations can be written as

t—1
my = Cy6'Cylmo + C Y IRV
j=0
and
t—1 )
Crl=6'Cot+ > FFE VL
j=0

Deduce that as t — co, C;' — 0 and

t—1 t—1
mi—= YV F VY, | YOS E VL
=0 =0

Consider discount weighted regression applied to the estimation of
a parameter ; by the value m;. In DWR, the estimate m; is chosen
to minimise the discounted sum of squares

t—1

S0) = & (Yiej — F_j0)°,

Jj=0

where all quantities other than 6 are known.
(a) Show that

t—1 t—1
ﬂQt::jz:5jf},j}Q,j//§E:5jﬁ?ij.
3=0 j=0

(b) Generalising (a), suppose that
Y = F0 + vy, v ~ N[0, V4],

and that m; is more appropriately chosen to minimise

t—1
S(0) =Y IV (Yiey — Fry0)”.

J=0
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Show that
t—1 . =1 .
my = Z (53Ft,thi§Y}7j/ Z 6]Ft2,thi§~
=0 =0

(c) Compare these results with those of the previous question to
see that the estimates correspond to those from the discount
DLM with the uninformative prior C’ L=o.

(8) Suppose that V; = Vk;, where V = 1/¢ is unknown and k; is a
known variance multiplier. Show how the analysis summarised in
the table in Section 3.4.1 is modified.

(9) Consider the simple regression DLM {(—1)%,1,V, W}, in which
k > 0 is a known constant.

(a) By reference to the first-order polynomial constant DLM con-
vergence results or otherwise, prove that lim; .., C; = C' exists.
Obtain C and the limiting values of Q; and |A|.

(b) Treating the limiting value C as a function of k, verify that it
is equal to W when k = /V/2IV.

(10) Consider the company sales/total market series in the example of
Section 3.4.2. Perform similar analyses of this data using the same
DLM but varying the discount factor over the range 0.6,0.65, ... , 1.
Explore the sensitivity to inferences about the time trajectory of 6
as the discount factor varies in the following ways:

(a) Plot m; versus ¢, with intervals based on Ct1 % to represent
uncertainty, for each value of ¢ and comment on differences
with respect to 4.

(b) Compare the final estimates of observational variance Sy as §
varies. Do the same for prediction variances (Q42. Discuss the
patterns of behaviour.

(¢c) Use MSE, MAD and LLR measures to assess the predictive
performance of the models relative to the static model defined
by 6 = 1.

(11) Consider a retrospective analysis in which inferences are made about
historical parametric values based on the current data. In partic-
ular, this question concerns inferences about 6;_; given D, for the
DLM {F3, 1, V;, W;} with known variances.

(a) Use the system equation directly to show that

Cl04,01-1|Dy—1] = Be—1 V0| Dy—1],

for some B;_; lying between 0 and 1, and identify B;_.
(b) Deduce that

Clli—1,Y:|Dy—1] = By_1C[0, V3| Dy 1]

(¢) Hence identify the moments of the joint normal distribution
of (04—1,0¢ Y:|Di—1), and from this, those of the conditional
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distribution of (0;_1|D;) (by conditioning on Y; in addition to
D,;_1). Verify that the regression coeflicient of 6,1 on Y; is
B;_1A;, where A; is the usual regression coefficient (adaptive
coefficient) of 8; on Y; given D;_;.

Deduce that (6;—1]|D;) is normal with moments that can be
written as

E[0;—1|D¢] = my—1 + Bi—1(E[0| Dy] — E[0¢|D;_1])
and

V[0i—1|Dy] = Co—1 — Bf 1 (V[0:|Di—1] — V[6:| Dy]).

(12) Generalise the results of the previous exercise to allow retrospection
back over time for more than one step, calculating the distribution
of (0;—x|D;) for any k, (0 < k <t). Do this as follows:

(a)

(b)

()

Using the observation and evolution equations directly, show
that for any r > 1,

ClOt—k, Yi—ktr|Di—k] = Bi—kClOt—rt1, Yikir| Di—i]s
where for any s, B; = Cs/Rs1 lies between 0 and 1.
Writing X;(k) = (Yi—k+1,.--,Yz)’, deduce from (a) that
Clli—k, Xy (k)| Di—i] = Be—1Cl0—p11, Xi (k)| D).
Hence identify the moments of the joint normal distribution of
(Ot—ks Or—k1, Xt (k)| De—k),

and from this those of the conditional distributions of (6;—x|D;)
and (0;—r41|D;) (by conditioning on X, (k) in addition to D;_
and noting that Dy = {X(k), D;_}). Using (b), verify that
the regression coefficient vector of 6;_j on X, (k) is B;_j times
that of et_k_;,_l on Xt(k)

Deduce that (0;—g|D;) is normal with moments that can be
written as

E[0:—i| D] =my—p+
B k(B[O —r41|Dt] — E[0s k11| Ds—x])
and
Vb;i—x| D] =Ci—1—
B (V[0 —k41|Di—k] = V[0 1 41|Dy)).

Let the above moments be denoted by a;(—k) and R;(—k),
so that (0;—x|D:) ~ Nlai(—k), Re(—k)]. Verify that the above,
retrospective updating equations provide these moments back-
wards over time for k=t —1,t—2,...,0 via

ai(—k) =mi—r + Bi—plas(—k + 1) — as—j41]



(13)

(14)

(15)
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and
Ri(—k) = Ci_p — B2 ,[Re(—k +1) — Ry_j11]

with as = ms_1 and Ry, = Cs_1+ W, for all s, and initial values
a(0) = my and R;(0) = C}.
In the last two questions, employing the discount regression model
{F;,1,V,W;}, where Wy = C;_1(6~! — 1), show that for & > 0,
By 1= 5,

at(—k) = at,l(—k + 1) + (5kAt€t
and
Ri(—k) = Ry_1(—k +1) — 6?* A2Q,.

This provides for neat and simple updating of the retrospective
means and variances.
Suppose the yield Y; of the t*® batch of a manufacturing plant is
truly represented by

5/;5:70_(Xt_3)2+nt’ ntNN[())V]v

Xy ~ {F,1,V, W, (66| Do) ~ N[1, V.

Initially, the setting F; = 3 is optimal in the sense of maximising

the expected yield.

(a) If F; is kept constant at 3, or if from any other specified time it
is kept constant at its then perceived optimal value, what are
the consequences?

(b) Plant managers have production targets to meet and dislike
changing operating conditions, fearing a drop in yield. If you
were the production director would you approve this attitude
or would you introduce a policy encouraging plant managers
to make regular small experimental variations about the then
perceived optimal value of Fy?

The following data set refers to an internationally famous canned

product. The objective is to establish a relationship between market

share and price in order to make short-term pricing decisions. The
observation series Y; is the percentage market share for quarter ¢
minus 42%, and F} is a linear function of the real price.

Qtr. ¢t 1 2 3 4 5 6
Y, 045 0.83 145 088 -143 -1.50
F, 050 -1.30 -1.50 -0.84 -0.65 -1.19

Qtr t 7 ) 9 10 11 12
Y, 233 078 058 110 7 ?
F, 212 046 -0.63 -1.22 -2.00 2.00
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Adopt the simple discount regression DLM {F;,1,V,W,;} with
0 = 0.975.

(a)

Carry out sequential forecasting with known variance V' = 0.2
and 0y ~ N[0, 1]. Either by hand or computer prepare a calcu-
lation table that produces Ry, Ay, ft, Q+, er, my and Cy for each
t. What are your final inferences about the price elasticity 6107
What is your forecast for the market share in the next two
quarters?

Repeat the analysis and inference when V' is an unknown con-
stant variance starting with ng = 1 and Sy = 0.2.



CHAPTER 4

THE DYNAMIC LINEAR MODEL
4.1 OVERVIEW

The first-order polynomial and simple regression models of the preceding
two chapters illustrate many basic concepts and important features of the
general class of normal dynamic linear models, referred to as dynamic linear
models (DLMs) when the normality is understood. This class is described
and analysed here, providing a basis for the special cases and generalisa-
tions that follow in later chapters. The principles employed in Bayesian
forecasting and dynamic modelling involve

(i) parametric models with meaningful dynamic parameters;

(ii) a probabilistic representation of information about parameters;
(iii) a sequential model definition utilising conditional independence;
(iv) robust conditionally independent model components;

(v) forecasts derived as probability distributions;

(vi) a facility for incorporating expert information;
(vii) model quality control.

Suppose interest lies in a scalar series Y; and that at time t—1 the current
information set is D;_1. The first step in the Bayesian approach is to ex-
amine the forecasting context and to select a meaningful parametrisation,
0;_1, such that all the historical information relevant to predicting future
observations is contained in the information about 6;_;. In particular the
modeller represents this relevant information in terms of the probability
distribution (6;—1 | D;—1). In statistical terms, given D;_1, (6;—1 | Di—1)
is sufficient for predicting the future. The parameter together with this
probability distribution defines how the modeller views the context at time
t — 1. Clearly, the parameters must be meaningful to decision makers who
use the forecasts and who also supply occasional expert information. In-
dexing @; by t indicates that the parametrisation is dynamic. In addition,
although often the number and meaning of the elements of 8; will be sta-
ble, there are occasions when 8; will be expanded, contracted or changed in
meaning according to the forecaster’s existing view of the time series. This
is particularly so with open systems, such as typically arise in social, eco-
nomic and biological environments, where influential factors affecting the
time series process are themselves subject to variation based on the state
of the system generating the process. In such cases, changes in 8; may be
required to reflect system learning and the exercise of purposeful control.
Such events, although recognizable when they happen, may be difficult to
identify initially and so will not typically be included in the model until
occurrence.
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The next modelling step is that of relating the current information to
the future so that predictive distributions such as (Yiyr | Di—1) can be
derived. This is accomplished by specifying a sequential parametric relation
(0 | 0:—1,D;_1) together with an observation relation (Y; | 6;, D;—1). In
combination with (6;—1 | D;_1) these distributions enable the derivation of
a full joint forecast distribution. The crucial structural property enabling
effective dynamic modelling is conditional independence, most strikingly
conveyed by the graph in Figure 4.1. The key feature is that given the
present, the future is independent of the past. In particular, at time ¢,
given 0, the past, present, and future are mutually independent. Also,
given just Dy, all the information concerning the future is contained in the
posterior parametric distribution (6; | D;). Further, if this distribution
is normal, N[my, C;], then given D, the pair {m;, C;} contains all the
relevant information about the future, so that in the usual statistical sense,
given Dy, {my, C;} is sufficient for {Yii1,0:41,. .., Yitk, Ok}

Yo Y 1 Y; Yip Yito

0;_» 0;_1 0, 041 040

Figure 4.1 The DLM conditional independence structure

Conditional independence also features strongly in initial model building
and in choosing an appropriate parametrisation. For example, the linear
superposition principle states that any linear combination of deterministic
linear models is a linear model. This extends to a normal linear superpo-
sition principle:

Any linear combination of independent
normal DLMSs is a normal DLM.

The case of a two-component DLM, with 8, = (6}, 80},), is graphed
in Figure 4.2. Here, conditional upon 6;, the two series of components
{0i1i1, i > 0} and {6,4;2, ¢ > 0} evolve independently. The important
consequence is that in most practical cases, a DLM can be decomposed
into a linear combination of simple canonical DLMs, the good news being
that a modeller only needs to master a very few simple DLMs in order to
become proficient at model building. Another advantage of the component
structure is robustness. If the DLM breaks down or expert intervention
takes place, only the affected component needs to be serviced. All the
information on other components is retained.



4.1 Overview 99

(641]Dy) (Or11,1

D) (0r42.11Dt)  (Ory3,1|Dy)

(62| Dy) (Or41,2

Dy) (Or42.2|Di)  (Bi43,2|Dy)

Figure 4.2 The parametric conditional independence structure

Forecasts are obtained by applying probability laws so that the joint
distribution for the observations and parameters at time ¢ may be derived
via

p(Y:,0: | Di—1) = p(Ye | 61, Di—1) p(6; | De—1).

The one-step forecast is simply the marginal distribution (Y; | Dy—1), and
the posterior, (0; | D), is the conditional distribution (6 | Yz, Di—1).
Inferences and decisions follow standard Bayesian procedures.

Operational Bayesian models specifically aim to incorporate informa-
tion from any relevant source, including subjective expert views, leading
to amended and updated model structures. The probabilistic formula-
tion easily assimilates such information, naturally accommodating specified
changes and associated uncertainties. Further, it offers simple procedures
for combining forecasts and producing forecasts subject to specified con-
straints. This is particularly important for an organisation that requires
consistency of forecasts at all levels and needs to exercise overall control
by constraining detailed operations in line with macro directives. For ex-
ample, the forecasts and stock control of many thousands of items must be
consistent with forecasts of total demand and a constraint on total stock
expenditure.

In practice, Bayesian dynamic models operate in accordance with the
principle of Management by Exception. This involves the “routine” use of
a proposed model unless exceptional circumstances arise. Such exceptions
occur in two main distinct ways. The first is when relevant expert infor-
mation from a source external to the system is received. Examples in con-
sumer demand forecasting include information on patent expiry, licensing
changes, new regulatory legislation, strikes, supply difficulties, forthcoming
spot orders, and so on. This type of information, usually feed-forward and
anticipatory, is naturally included in the existing system by formally com-
bining it with existing probabilistic information. By contrast, the second
type of exception is feedback, which occurs when a monitoring system used
to assess the qualitative performance of the routine model signals a signif-
icant inadequacy. These monitoring systems are similar to those used in
manufacturing quality control and are usually based on the recent forecast
errors. The reaction to such signals may be relevant expert explanatory
information, that is accommodated as above, or the introduction of auto-
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matic default procedures, that model specific types of inadequacy and are
designed to distinguish and correct for model deficiencies.

4.2 DEFINITIONS AND NOTATION

For reference, the general normal DLM is defined for a vector observation
Y, rather than the more usual scalar special case. However, much of
the discussion, in this chapter and elsewhere, is restricted to the scalar
case. Let Y, be an (r x 1) vector observation on the time series over times
t=1,2,..., following the model now defined.

Definition 4.1. The general normal dynamic linear model (DLM) is
characterised by a set of quadruples

{F7 G7 V7 W}t = {Fty Gta Vta Wt}
for each time ¢, where
(a) Fy is a known (n x r) matrix;
(b) Gy is a known (n x n) matrix;

(¢) Vi is a known (r x r) variance matrix;
(d) W is a known (n X n) variance matrix.

This quadruple defines the model relating Y; to the (n x 1) parameter
vector 8; at time ¢, and the 8; sequence through time, via the sequentially
specified distributions

(Y | 6;) ~ N[F;0;, V] (4.1a)
and

(Ht | Btfl) ~ N[Gtet,l,wt]. (41b)

Equations (4.1) are also implicitly conditional on D;_;, the information
set available prior to time ¢. In particular, this includes the values of the
defining variances V; and W; and the past observations Y;_1, Y¢_o,...,
as well as the initial information set Dy. For notational simplicity, D;_1
is not explicitly recognized in the conditioning in equations (4.1), but it
should be remembered that it is always conditioned upon.

An alternative representation of these defining equations is

Yt = FQ@t + Uy, Vg ~ 1\1[0,\747 (42&)
and

Bt = Gtotfl + Wi, Wy ~ N[O,Wt] (42b)

The error sequences v; and w; are internally and mutually independent.
Equation (4.2a) is the observation equation for the model, defining the
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sampling distribution for Y; conditional on the quantity ;. The condi-
tional independence structure of Figure 4.1 applies. So, given 6;, Y, is
independent of the all other observations and parameter values; and in
general, given the present, the future is independent of the past. This
equation relates the Y; to 8; via a dynamic linear regression with a multi-
variate normal error structure having known, though possibly time varying,
observational variance matrix V;. For time ¢

(
(

e) F; is the design matrix of known values of independent variables;
f
g
h

)

) 6, is the state, or system, vector:
(g) w¢ = F,0, is the mean response, or level;

(h) vy is the observational error.

Equation (4.2b) is the evolution, state or system equation, defining the
time evolution of the state vector. The conditional independence property
shows a one-step Markov evolution so that, given 6;_; and the known
values of G; and Wy, 6, is independent of D;_;. That is, given 6;_1, the
distribution of @ is fully determined independently of values of Y;_; and
all the state vectors and observations prior to time ¢ — 1. The deterministic
component of the evolution is the transition from state 8;_; to G;0;_1, a
simple linear transformation of 8;_1. The evolution is completed with the
addition of the random vector w;. At time ¢,

(i) Gy is the evolution, system, transfer or state matrix;
(j) wy is the system, or evolution, error with evolution variance W.

Finally, note that the defining quadruple, assumed known throughout, does
not appear in the conditioning of the distributions. For notational clarity,
the convention followed throughout the book is that in general, known
quantities will not be made explicit in conditioning distributions. Some
further related discussion appears below in Section 4.3.

Definition 4.2. Of special interest are the following two subsets of the
general class of DLMs.

(i) If the pair {F, G} is constant for all ¢ then the model is referred to
as a time series DLM, or TSDLM.

(ii) A TSDLM whose observation and evolution variances are constant
for all ¢ is referred to as a constant DLM.

Thus, a constant DLM is characterised by a single quadruple
{F,G,V,W}.

It will be seen that this important subset of DLMs includes essentially all
classical linear time series models.
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The general univariate DLM is defined by Definition 4.1 with » = 1 and
is therefore characterised by a quadruple

{Ft7 Gt7 V;h Wt}7
leading to
(Vi | 6;) ~ N[F;0;, V]

and

(0, ] 0,_1) ~ NGO, 1, W,].

These equations, together with the initial prior at time 0, provide the full
definition as follows.

Definition 4.3. For each ¢, the general univariate DLM is defined by:

Observation equation: Yi=F,0; + v, v~ N0, V],
System equation: 0= Gi0;_1 + wy, wi~ N[0, W],
Initial information: (6o | Do) ~ N[my, Cy],

for some prior moments mg and Cy. The observational and evolution error
sequences are assumed to be internally and mutually independent, and are
independent of (8g | Dy).

Some comments about slightly different model definitions are in order.
First note that with the initial prior specified for time 0, this definition
applies in particular when the data Y7, Y5,... represent the continuation
of a previously observed series, the time origin ¢ = 0 just being an arbitrary
label. In such cases, the initial prior is viewed as sufficiently summarising
the information from the past, @y having the concrete interpretation of
the final state vector for the historical data. Otherwise, 8y has no such
interpretation and the model may be equivalently initialised by specifying
a normal prior, (61]|Dy), for the first state vector.

Secondly, apparently more general models could be obtained by allowing
the error sequences {r;} and {w;} to be both autocorrelated and cross-
correlated, and some definitions of dynamic linear models would allow for
this structure. However, it is always possible to reformulate such a corre-
lated model in terms of one that satisfies the independence assumptions.
Thus, nothing is lost by imposing this restriction that leads to the simplest
and most easily analysed mathematical form. Further, the independence
model is more meaningful and natural. The v; error is simply a random
perturbation in the measurement process that affects the observation Y;
but has no further influence on the series. By contrast, w; influences the
development of the system into the future. The independence assumption
clearly separates these two sources of stochastic input and clarifies their
roles.
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The model may be simply generalised to allow for known, non-zero means
for either of the noise terms v; or w;. In addition, some or all of the noise
components can be assumed known by taking the appropriate variances
(and covariances) to be zero. These features are not central to the model
theory but do appear in particular models and are discussed in later chap-
ters as required.

4.3 UPDATING EQUATIONS: THE UNIVARIATE DLM

Consider univariate DLMs that are closed to external information at times
t > 1, so that given initial prior information Dy at ¢ = 0, at any future
time t the available information set is simply

Dt = {}/th—l}a

where Y; is the observed value of the series at time ¢. To formally incorpo-
rate the known values of the defining quadruples {F, G, V, W}, for each ¢,
it is assumed that Dy includes these values. This convention is purely for
notational convenience and economy in explanation since only those values
that are to be used in calculating required forecast distributions need to be
known at any particular time.

The central characteristic of the normal model is that at any time, ex-
isting information about the system is represented and sufficiently sum-
marised by the posterior distribution for the current state vector. The key
results, that have trivial extension to the more general multivariate DLM,
are as follows.

Theorem 4.1. In the univariate DLM of Definition 4.3, one-step forecast
and posterior distributions are given, for each t, as follows:

(a) Posterior at t — 1:
For some mean m;_, and variance matrix C;_1,

(61—1| Di—1) ~ N[my_1,C_1].
(b) Prior at t:
(6: | Di—1) ~ Nlag, Re],
where
a; = Gmy_; and R; = G,C;_1G, + W,.
(¢) One-step forecast:
(Ye | Di—1) ~ N[fi, Q4]
where

fe=Fia, and Qi =F,RF; 4+ V.
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(d) Posterior at t:
(6¢ | Dy) ~ N[my, Cy],
with
m; = a; + Asey and C; =R; — A Q: A},
where

A= RtFtQt_l and et =Y — fi.

Proof. The proof is by induction using the multivariate normal distribu-
tion theory of Section 17.2. Suppose (a) true. Two proofs of (d) are given.
The first important proof utilises the normality of all distributions. The
second general Bayes’ procedure is applicable to any distributions.

Note that sometimes the expressions used in the proof may look a little
odd. The reason for this is so that both the statement of the theorem and
the proof are exactly valid for the multivariate case, in which Y} is a vector.

First, with terms defined in the theorem statement, establish the joint

distribution:
0, N ay R; A:Q
(o) ~~ () (o &%)

The following results are derived from basic facts concerning means and

variance matrices of linear functions of normal random vectors.

(a) The system equation 0; = G;0;_1 + wy, w; ~ N[0, W], and the prior
(Gt,l | thl) ~ N[mt,l, thl] lead to (0t | thl) ~ N[at7Rt].

(b) The observation equation Y; = F}0; + v, vy ~ N[0, V4], and the prior
of (a) lead to (Yi|D:—1) ~ N[Fja;, F;R:F; + V4] and prove that the
joint distribution of Y; and 6; is normal.

(c) The joint distribution is established upon noting the covariance

Cl6:,Y: | Di—1] = C[ahFéet + vy | Dyq]
=V[6; | Di_1]F; +0 =R, Fy = A, Q.

(d) Proof of (d) using normal theory.
The regression vector of 8; on Y; is A;. The standard normal theory of

Section 17.2 immediately supplies the required conditional distribution
(0, | Yo, Di_1).

(d) Proof of (d) using Bayes’ theorem.
Bayes’ theorem implies that as a function of 6y,

p(6: | Dy) o< p(6; | Di—1) p(Ye | 6:).
The second term is derived from the observation equation as

p(Y: | 0;) o exp{~(Y: — F6,)'V, " (Vi — F6:)/2},
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and the first from (0; | Dy—1) ~ Nlay, R¢] as
p(6; | Dy_1) o< exp {—(Ot —a,)R; (0, — at)/Q} .
Taking natural logarithms and multiplying by —2,
—2In[p(6; | Dy)] =(0; — a;)R; " (0; — a;)
+ (Y; — F,0,)V; Y (Y; — F,0,) + constant,

the constant not involving 6;. This quadratic function of 8; can be
expanded and rearranged with a new constant as

0,(R;* +F, V. 'F})0, — 20,(R; 'a; + F,V,"'Y;) 4 constant.
With C; as in the theorem statement,
(R + F V7 'F)C, = 1,
the n x n identity matrix, so that
R, '+F,V,'F,=C; .
With m; as in the theorem statement
C;'m; =R;'a, + F,V,; 'V,
Consequently, with differing constants,
—21In[p(; | D;)] = 6,C; 0, — 20,C; 'm; + constant
= (6; — m;)'C;*(8; — m;) + constant.
Upon exponentiating, (6;|D;) ~ N[m, C;], since
p(0: | Dy) o exp{—(8; — m,)'C; (6, — m,)/2}, 6, € R".

Key Identities

The identities below have been produced in deriving the above results.
Note that they are valid for the multivariate case with I replacing 1 through-
out.

(a) Ay = RyF,Q; ' = CF VY
(b) C; = Ry — AQ: A}, = Ry(I - F,A));
() C;' =Ry + FV,'F;
(d) Q¢ = (1 - FiA) ™'V
() FiA; =1 - ViQ; ",
By way of terminology, e; is the one-step forecast error and A, the adaptive
vector at time ¢.

As noted earlier, the model definition may be marginally extended to
incorporate known, non-zero means E[v;] for the observational noise and
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E[w;] for the evolution noise. It is trivial, and left to the reader, to verify
the extensions, namely that the above results apply with the modification
a; = Gymy_; + Elwy] and f; = Fia; + E[v].

4.4. FORECAST DISTRIBUTIONS

Definition 4.4. The forecast function f;(k), at any time ¢, is defined
for all integers k > 0 as

ft(k) = Elpsyx|Di] = E[Fy 1 0i4k | Dt
where

My = Fi;av
is the mean response function for any time v > 0.

For k strictly greater than 0, the forecast function provides the expected
values of future observations given current information,

ft(k) = E[}/t+k: | Dt]7 for k Z 1.

However, for completeness, the definition is given in terms of the expected
values of the mean response p;y rather than Y1 = pyar + 41k, so in-
cluding a posterior point estimate of the current level of the series, namely
f+(0) = E[ut | Dt]. The forecast function is of major importance in design-
ing DLMs as will be evident in future chapters.

The following results provide the full forecast distributions. The forecast
functions are central components.

Theorem 4.2. For 0 < j < k, at each time t the future joint distribution
is normal and defined by the following covariances and k-step marginal
distributions:

(a) State distribution: (0441 |Dy) ~ Nlag(k), Re(k)],

(b) Forecast distribution : (Yigr | Dt) ~ N[fe(k), Q:(k)],

(c) State covariances: ClO441.,0:+; | Di] = Cy(k,j),

(d) Obsn. covariances: ClYiir,Yiqj | Di) = Fi  Ci(k, j)Feyj,

(e) Other covariances: ClOi41.Yi4j | Dy

]
]
] = Cu(k, j)Fiy;,

ClYi1k,0t+5 | Di] = Fi, Cu(k, j),
where

fe(k) =Fi pai(k) and Qu(k) = Fy  Ry(k)F ik + Vi,
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that may be recursively calculated using

a (k) = Gppau(k — 1),
Rt(k) == Gt+th(lﬂ - 1)G;+k + Wt+k,
Ct(kﬂj) = Gt+kct(k - 1aj)’ k :]+ ]-7 cee

together with starting values a;(0) = my, R (0) = C; and C(j,7) = R¢(j).-

Proof. Define the n x n matrices Hyy 1 (r) = Gi45Grip—1 ... Gipr—rt1
for all ¢ and integer r < k, with H;;,(0) = I. From repeated application
of the state evolution equation,

k
9t+k = Ht+k:<k7)0t + Z HtJrk(k — T)thrr-

r=1
Thus, by linearity and independence of the normal summands,
(Bcsr | Di) ~ Nlag(k), Ry (k)]
where at(k) = Ht+k(k’)mt = Gt+kat(k — 1) and

k
Ry (k) = Hyy(B)CiHy (k) + ) Hypr(k — r)Wop Hypp (b — 1)’

r=1
= G Ri(k — 1)Glp + Wi,
with starting values a;(0) = m¢, and R;(0) = C;. This establishes (a).

Using the observation equation at time ¢t + & the forecast distribution (b)
is deduced as (Yiix | Dy) ~ N[fi(k), Q:(k)], where

fe(k) = Fiai(k) and Qu(k) = Fiy  Ri(k)F g + Vigr.

The covariances are easily obtained using the conditional independence
structure. For example, given D; and j < k,

ClOi41,0i1j] = ClGiyibirp—1 + Wit Orrj] = Gk ClOr -1, 014 5]
=H 11 (k = J)ClO11;, 014 5] = Hepr(k — 5)Re(5),

as required.

Similar derivations of the other covariances are left to the reader. Since
any linear function of the future Y's and 6s is normal it follows that their
joint distribution is multivariate normal.

In the special cases when G; and/or F; are constant, the above results
simplify considerably and are so important that they are now detailed.
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Corollary 4.1. If the evolution matrix G; = G is constant for all t, then
for k>0,

a;(k) = G*m; and fi(k) =F,,,G'm,.

If additionally Fy = F for all t, so that the model is a TSDLM, then the
forecast function has the form fi(k) = F'G*m;.

In the latter case, the potential form of the forecast function, as a func-
tion of the step ahead k, is entirely determined by the powers of the system
matrix G. This is a fundamental guiding feature in time series model de-
sign, investigated extensively in Chapters 5 and 6.

Corollary 4.2. If the evolution matrix G; = G is constant for all t, then
for k,v > 0,

k—1
Ri(k) = G*C,G* + > G'W, ;. ;G"
=0

and Cy(k +v, k) = G*Ry (k). If in addition, F; = F for all t, then Qq(k) =
F/Rt(k)F + V;+k and C[Y;g+k+y, Y;Jrk] = F/Ct(k + v, ]C)F

4.5 OBSERVATIONAL VARIANCES

So far, the defining quadruples of the univariate DLM have been assumed
known for all time. Generally, the regression vectors F; and the evolution
matrices G; are defined by the modeller in accordance with model design
principles discussed in the next two chapters. The evolution variance ma-
trix is also chosen by the modeller, usually applying the discount principle
explored in Chapter 6. However the remaining element of each quadru-
ple, the observational variance V;, is often unknown, and large relative
to the system variance W;. Thus, being the major source of forecasting
uncertainty, appropriate Bayesian learning procedures for unknown obser-
vational variances are presented. In this chapter attention is restricted to
the special case of an unknown constant variance, V; = V for all t. As
in earlier chapters, its reciprocal, the observation precision, is represented
by ¢ = 1/V. Generalisations to the important cases of both stochastically
changing variances and variance laws are introduced later, where the basic
analysis of this section is appropriately modified.

Working in terms of the unknown precision parameter ¢ = V71!, a
fully conjugate Bayesian analysis, corresponding to that introduced in Sec-
tions 2.5 and 3.4, is now developed, the key feature being that in defining
the DLM, all variances and covariances are scaled by V.
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Definition 4.5. For each t, writing ¢ = V!, the DLM is defined by

Observation equation: Yi=F,0; + v, v~ N[0, V],
System equation: 0= G10;_1 + wy, wi~ N[0, VW],
Initial information: (60 | Do, )~ N[mg, VC{],

(¢ ] Do)~ G 4, mo20] .

The initial quantities mg, C§, no, and Sy are specified, as are the ma-
trices {F, G¢, W;}. Notice that all variances and covariances have V as
a multiplier, or scale factor, providing a scale-free model in terms of the
starred scale-free variances C§ and W7. No generality is lost by this. For
V fixed, the model coincides with the original Definition 4.3 with the scale
factor V' simply being absorbed into these matrices.

Conditionally on V', or equivalently ¢, being known, the usual conditional
independence assumptions hold. As in chapters 2 and 3, E[¢ | Do] = 1/,
where Sy is a prior point estimate of the observational variance V.

The results of Theorem 4.3 and the summary Section 4.6 are based on
multivariate T distributions for the state vector at all times. Details are
given in Section 17.3.3 but a short summary is in order here. By analogy
with that for normal distributions, the notation for Student T distributions
is extended to multivariate cases. In particular, if the n x 1 random vector
6 has a multivariate T distribution with i degrees of freedom, mode m and
positive definite scale matrix C, then the density is

p(8) x {h+ (0 —m)'C~1(6 — m)}~("+h)/2,

Following the univariate case, the notation is simply 8 ~ T, [m, C] with
E[) = mif h > 1 and V[@] = Ch/(h —2) if h > 2. As h — oo the
distribution converges to the normal 6 ~ N[m, C].

Theorem 4.3. With the above DLM, the following distributional results
obtain at each time t > 1.

(a) Conditional on V:

(0i—1 | D1, V) ~ Nimy_1, VCi_],
(6: | Di—1,V) ~ Nlay, VR{],
(Ye | De—1, V) ~ N[f;, VQi],
(6; | Dy, V) ~ Nlmy, VC;],
with a;= Gm;_q, R; = G;C;_,G} + W},
fi=Filay, Qi =1+F,RFy,
er="Y: — ft, A, =R;F/Q;,

and m;=a;+ Asey, C;=R; — AALQ;.
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(b) For the precision ¢ = V ~1:

Ng—1 Ng—151-1
(01 Dior) ~ G | M52, P
T ’I’LtSt
(¢|Dt)NG |:27 2:|,

where ny =mny;_1+1 and nS; = ny_15;_1 + 6?/@:

(¢) Unconditional on V :

(@i—1| Dy—1) ~ Ty, [my_1,Cy_4],
(6¢ | Di—1) ~ T, [a¢, Re],
(Ye | Di—1) ~ T, [f2, Q4l,
(01 | Dy) ~ T, [my, Cy],

where R, =5;_1R;, Q:=5,-1Q; and C,=S5,C;.

(d) Operational definition of updating equations:
With Qt = F;RtFt + St—l and At = RtFt/Qt7

Stfl 6%
ng =nNg—1 + 1 and St = St_l + - — ,
nt Q1

S,
m; = a; + Atet and Ct = Sitl (Rt - AtA;Qt)
t—

Proof. Given the model definition, the results in (a) follow directly from
Theorem 4.1. They are simply the known variance results. The rest of the
proof is by induction, using standard normal/gamma results as detailed in
Section 17.3. Assume that the prior for the precision ¢ in (b) is true. Then
writing d; = n;S; for all ¢, we have (¢ | Di—1) ~ G[ni—1/2,d;—1/2] with

density function

p(¢ | Di1) x ¢" =12 exp(—di—16/2)

for ¢ > 0. From (a), we have

p(Yi | Di-1,9) o 6% exp(—ef6/2Q;),
so that by Bayes’ theorem, the posterior for ¢ is simply

p(¢ | Dt) O(p((j) | thl)p(yvt | Dt*lvd))a

or just

p(¢| Dy) oc ¢"/*Fexp(—di$/2),
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where ny = ny_1+1 and dy = dy—1 +¢€7/Q;. As Sy = d;/ny, this establishes
(b). Using results in Section 17.3, if the n x 1 random vector 6 has distri-
bution (8 | ¢) ~ N[m, C*/¢] with ¢ ~ G[n/2,nS5/2], then, unconditionally,
0 ~ T,[m,C*S]. So the results in (c) follow by marginalisation of the
distributions in (a) with respect to the appropriate prior/posterior gamma
distribution for ¢. The summary updating equations in (d) simply follow
from those in (c), the difference being that the variances and covariances
in the T distributions (all now unstarred) include the relevant estimate of
V. Noting that the results are true for t = 1 completes the inductive proof.

&

This theorem provides key results. At time ¢, the prior mean of ¢ is
El¢ | Di—1] = ng_1/di—1 = 1/S¢_1, where S;_1 = dy_1/ns_1 is a prior
point estimate of V' = 1/¢. Similarly, the posterior estimate is Sy = d;/n;.
The updating equations for the parameters defining the T prior/posterior
and forecast distributions are essentially the same as the standard, known
variance equations with the estimate S;_; appearing as the variance. The
only difference lies in the scaling by S;/S;—1 in the update for C; to correct
for the updated estimate of V. Equations (d) are used in practice, the
starred, scale-free versions appearing only to communicate the theory.

4.6 SUMMARY

For the univariate DLM the above results are tabulated here (and continued
on the following page) for easy reference.

Univariate DLM: unknown, constant variance V = ¢!

Observation: Y: = F0;: + vy, vy ~ N[0, V],
System: 0t = Gtet,1 + Wi, Wi ~ Tnt71 [07Wt]
Information: (0i—1| Di—1) ~ Tp,_ [my—1, Ci_1],

(¢ | Di—1) ~ G| 252, "t%sf—l}

Forecast: (Y; | Di—q) ~ T, [ft, Q1,
(01 | Dy—1) ~ T, [, Ryl
where Rt = GtCt_ng + Wt, ar = Gtmt_l,

Qi =F,R/F, + 51, ft = Fia,.
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Updating Recurrence Relationships

(¢|Dt)NG[%7 ntTSt]v
(6: | Dy) ~ Ty, [my, Cyf,
with et =Y — frand Ay = Ry F/Qy,
ng=mn¢—1 +1,
Si=Si1+ 52 (g -1),
m; = a; + Asey,

Ci = - (Ry — AL ALQy).

Forecast Distributions k£ > 1

B4k | Di) ~ Ty, [ac(k), Re(k)],
(Yer | Di) ~ Ty, [fe(K), Qi(k)].

The moments are as defined in Theorem 4.2
but with V; replaced by the estimate S;.

4.7 FILTERING RECURRENCES

Our attention has so far focussed on the future, the sequential updating
being geared to producing and revising forecasts. However, there is often
great interest in looking back in time in order to get a clearer picture of
what happened. Interest now lies in inference about past state vectors
0:,0,_1,.... There is no difficulty in obtaining retrospective marginal dis-
tributions, such as (0;_x | D;), based upon data before, at, and after time
t — k. Nor is there any difficulty in obtaining a full joint retrospective
distribution for any set of past parameters. Both this and Section 4.8 con-
centrate on the derivation of such retrospective distributions and sequential
updating procedures.

Retrospective analysis sets out to answer, “What Happened?” Such ques-
tions provide information that is likely to improve understanding and future
decision making. For example, in manufacture it is of interest to examine
the underlying quality {us—x, k = 0,1,... ,t} in order to detect unexplained
changes or drifts, the object being to interpret these and thus improve fu-
ture control. In many economic series, such as employment figures, retail
prices etc., there is great interest both in seasonal patterns and in histori-
cal deseasonalised figures, the latter being used to show trends and the real
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state of affairs. Other examples occur when an organisation changes its
policy or a company carries out an unusual advertising campaign. Initially
there may be great uncertainty about the consequences. This uncertainty
can be formulated as a prior probability distribution. Then, as subse-
quent data are received, the distribution relating to the period of change
is updated giving a increasingly sharp picture of the effect and perhaps
its cause. In turn, this may lead to subsequent policy changes and model
revision. Consequently, retrospective analysis contributes vitally to growth
in understanding, model development, and performance.

The use of recent data to revise inferences about previous values of the
state vector is called filtering, this information being filtered back to pre-
vious time points. The distribution of (6;_j | D;), for k > 1, is called the
k-step filtered distribution for the state vector at time ¢, analogous to the
k-step ahead forecast distribution. A related concept is that of smoothing
a time series. The retrospective estimation of the historical development
of a time series mean response function u; using the filtered distributions
(ti—g | D¢) for k > 1 is called smoothing the series.

At any given time t, the filtered distributions may be derived recursively
backwards in time using relationships, proven below, that are similar in
structure to the standard sequential updating equations. For k& > 1 the
definition of the k-step ahead state forecast distributions with moments
a;(k) and Ry (k) is extended to negative arguments a;(—k) and R;(—k) and
the following results are proved using Bayes Theorem. Section 4.8 gives
an alternative proof of the full retrospective distribution using powerful
conditional independence results, that have wide application.

Theorem 4.4. In the univariate DLM {F;, G¢, Vi, W, }, for all t, define
B, = CtG;HR;rlr
Then for all k, (1 < k < t), the filtered marginal distributions are
(0r—k | D) ~ Nlay(—k), Ry (—F)]
where
ai(—k) =my_j + Bigla(—k+1) —a;_g41]

and

Ri(—k) = Cip + By p[Re(—k + 1) = Ry_p11]Bi_y,
with starting values
a,(0)=m; and Ry (0)=Cy,
and where as usual,

atfk(l) = ai—k+1 and Rtfk(l) =Ri_p41-



114 4  The Dynamic Linear Model

Proof. The filtered densities are defined recursively via

p(Oi—k | Dy) = /P(thk | 0t—k+1, D) p(Or ki1 | Dy) dOy—jy1,  (4.3)

suggesting proof by induction. Assume the theorem true for k — 1, so that
it applies to the second term in the integrand of (4.3), so

(et_k+1 | Dt) ~ N[at(—k + 1),Rt(—k =+ 1)]
Using Bayes’ theorem, the first integrand term is
p(etfk | 9t7k+1;Dt7k>p(Y | 0t7k70t7k+17Dt7k)
p(Y | 9t—k+1, Dt—k-) ’

where Y = {Yi—x+1,...,Y:}. Now, given 0;_j11, Y is independent of
the previous value 0;_j so that the two terms p(Y | -) cancel. By Bayes’
theorem, the remaining term is

p(ot—k | 0t—k+1>Dt—k) 0<p(9t—lc | Dt—k)p(gt—k-H | Ot—lcaDt—k)- (4-4)

Now,

p(etfk | 0t7k+1aDt) =

(Ot—tt1 | Or—k, Di—g) ~ N[Gtp110¢ 1, Wi_p11]
and

(et—k | Dt—k) ~ N[mt—ka Ct—k]

define the joint distribution p(0;—_k, 0:—k+1 | Di—k). From this we obtain
(4.4) as

(01 | Or—py1, D) ~ N[hy(k), He(k)], (4.5)
where
hy(k) =m i + Ci kGl R [0 k01 — @i p11]
and
H;(k) = Cii — Ct—kG;_k+1Rt_jk+1Gt—k+lct—k-
Since B; = CtG;HRt__&l, it follows that
hy(k) =my_; + By_[0i_p11 — ap—py1]
and
H;(k) = Ci—j, — Bi—pRi—k+1Bi_y.

Returning to (4.3), the required density p(0:— | D:) is the expectation of
(4.5) with respect to (@;—x+1 | D). This was earlier postulated to have the
form stated in the Theorem and so we directly deduce that

(B1—r | Dt) ~ Nlay(—k), Re(—k)]
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where
a;(—k) = E[h(k) | D]
and
Ri(—k) = E[H,(k) | D] + V[hy(k) | D].
The moments here are the values stated in the Theorem, namely
ar(—k) =my_p +By_plag(—k+1) —ap_pq1]
and
Ri(—k) = Ci_p — Bi_g[Ri—p+1 — Re(—k + 1)|B;_,.

The theorem is completed by induction, since it is true for the case k = 1
with

at(—k + 1) = at(O) = 1My
and

Rt(*k + 1) = Rt(O) = C;.

Corollary 4.3. The case of an unknown constant variance V; =V = ¢~ ! :
If the conjugate analysis of Section 4.5 is applied, then

(01— | Di) ~ Ty, [ai(=k), (St/St—i)Re(—k)].

Note that as with the sequential updating equations of Section 4.6, a change
of scale is implied when the unknown observational variance is estimated
by the conjugate normal/gamma procedure.

Corollary 4.4. The corresponding smoothed distributions for the mean
response of the series, when V is unknown, are

(e—k | De) ~ T, [fe(=F), (S¢/Si—r)Fi_pRe(—k)F ],

where extending the forecast function notation to negative arguments,

fr(=k) = Fi_jai(—k).
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4.8 RETROSPECTIVE ANALYSIS
4.8.1 Introduction

Some powerful and general conditional independence results (Harrison and
Veerapen 1993), are used here to develop further aspects of the theoretical
structure of DLM distribution theory useful in restrospection. Some of the
supporting theory from this reference appears in Theorems 4.16 and 4.17,
together with Corollary 4.10, in the Appendix, Section 4.11. Although
phrased in terms of normal distributions, these results hold under weaker
assumptions and are important when considering general problems regard-
ing the incorporation and deletion of information in the form of linear
functions of observations, expert opinion, or external forecasts. Theorem
4.17 immediately allows the derivation of the entire historical joint param-
eter distribution (61, ... ,0;|D;) together with two useful sets of recurrence
relations: the one already derived in Section 4.7 and the other being impor-
tant when continual retrospection is required for a specified period, perhaps
relating to a policy change or other significant event. Finally, recurrences
are given for the dual problem of deleting previously incorporated data.
This is required when assessing the influence of observations, for jackknife
analysis, and especially in model assessment when calculating distributions
such as (Y;—x | D+ —Y;_p), i.e., that for Y;_j based upon all the data D; ex-
cept Y;_j itself. This enables the associated retrospective jackknife forecast
residuals to be assessed as in Harrison and West (1991).

4.8.2 The DLM retrospective parametric distribution

The results of Appendix 4.11 are applied here to the multivariate DLM
{F¢, Gt, Vi, W;} with parameter 0;. The conditional independence
structure follows that of Figure 4.3. The notation of Section 4.7 for the
multivariate DLM is adopted, with B;_; = Ct—kG27k+1Rt_—lk+1 for all
t=1,2,... and k such that 1 <k <t.

Y 2 Y1 Y: Y1 Yii2

0;_» 0,1 0, 011 0,42

Figure 4.3 The DLM conditional independence structure

Definition 4.6. Given D,, for any integers k > 7 > 0, define the regression
matrix of @, on 0,_; as Ay_j ;.
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Then A;_j -, =1 and for any k > 0,

t—1
Atfk,tfkr+1:Bt7k and Atfk,t: H B.,.
v=t—k

These follow from Corollary 4.10 in conjunction with

ClOi—1, 0t —j1|Di—1) = ClOs—, Gty 10—k + Wi—ky1|Di—k)
= Ci—1G}_p11 = BirRi_iq1-

Further, 6; and Y;;; are conditionally independent given 6,,1, written
as 0; 1 Yiy1|60:41. Tt follows that conditional on D;_1, the regression
matrix of 6;—; on Y; is A;_j.:A;, where as usual, A; is the regression
matrix of 6; on Y, given D;_;. Retrospective recurrence relationships
follow immediately from Theorem 4.17, the proof being trivial and left to
the reader.

Theorem 4.5. Given D; the joint distribution of the historical parame-
ters, (01,...,6¢|D;) is defined by their marginal distributions and covari-
ances, that may be calculated recurrently in either of the following ways:

Retrospective Parametric Distribution

(0:—k|Dy) ~ Nla,(=k), Ry(—k)], k>0,
ClOi—k—j,01—1|Di] = Ay - R (—k), Jj=0.

Retrospective Recurrence Relations

With B, = C,G, R}, and A, =[[\_, , B

v=t—k U’
(i) ar(—k) =a;_1(—k+ 1) + Ay_j 1 Avey,
Ri(—k) =Ri1(=k+1) — A 1 Ay QiALAL 4,
A=Ay 1Bi1.

(ii) a;(—k) =my_p + By_pfay(—k + 1) —a;_p 1],
Ri(—k) =Ci_k + By i [Ri(—k +1) — Ry_141]B}_,,.

Equations (i) in the above table are particularly useful for continually
updating the whole history or just that part in which interest lies, such as
a time of special promotion, policy change, or major external event. Notice
that the recurrence relations of Theorem 4.1(d) are given by the special case
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k = 0. Equations (ii), essentially the same as derived in Theorem 4.4, are
useful when retrospection is only required at a particular time ¢, as is usual
when a batch of data is to be analysed. Then starting with a;(0) = my
and R;(0) = C;, we apply the equations sequentially backwards over time.

These results are conditional upon known variances. For the multivariate
model {F;, G¢, Vi/¢, W/¢}, where just the scale factor ¢ is unknown
with mean E[¢|D;] = 1/S;, Corollaries 4.3 and 4.10 are directly applicable.
Then for k£ > 0,

01—k | Dy) ~ Ty, [ar(—k), (St/Si—r)Re(—Fk)],
and for j,k > 0,

ClOi——j,0:—k|Ds) = Ap_j—jt— 1k V[Oi— | Dy).

4.8.3 Deleting observations

The following theorem provides a general result that leads to the theory
for revising distributions when information is deleted. The r x 1 vector Y
is any set of observations and subjective information, F is a known matrix,
Z any vector of observations and states, and ¢ = 1/V is a scalar precision.
Let the following be proper distributions:

(Y | Z,$) ~ N[F'Z, R,.V],
(Z ‘ Y,¢) ~ N[az\yv Rz\yv]a

Ny Ny,
01¥)~G |5, ).

Z a. R. R.F
() =~ ) (e v

where R, = F'R.F +R,..

Theorem 4.6. Given the above distributional structure and notation, de-
fine

d=Y -Fa,,, Ri=R,.-FR,,F, and A= Rz|yFR;1.
The following results hold:

FR !

zly ylz*

(1) The leverage A, of Y on Z, is calculable as A =R
(2) Deleting Y we have

(Z | ¢) ~Nl[a,,R,V] and ¢~ Gln/2,nS/2],
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where
Ay = Qzly — A,
R. = R.|, + A.sR4A.,,
n = ny -,
and

nS =n,S, — d'R;*d.
(3) The jackknife forecast for Y is
Y ~T,[Fa,, R,S],
where R, = F'R.F + R

ylz

Proof. The proof follows Harrison and Veerapen (1993). Notice first that
P(Z|Y,¢)=p(Z]|d,¢)and

Z a, Rz Az R(
(dle) > 1(5) (e, )]

From the usual Bayes’ updating for (Z | Y, ¢) we see that
-1 _ -1 —1 v
Rz‘y =R, + FRy‘ZF
and

R 'a

2y Lzl

=R 'a, +FR_'Y.

ylz

From the latter equation, the leverage is A = Rz|yFRy_‘i, proving (1). The
variance result for R, in (2) follows from the precision equation above, i.e.,
the identity

R;'=R;, -FR F
z zly ylz

implies that

R, = Rz\y + AzdeAlzd.
The result for the mean in (2) follows similarly, i.e., the identity

-1 —1 —1 —1
R;'a, =R, + FRylZF’)azw — FRy|zY
implies that
a.=a., — R.FR, (Y —F'a,,) =a,, — A.qd.
Write the jackknife residual as e =Y — F’a,. Then
e=Y —-F'a,, +F(a,, —a.) =d+F'Ae,

which leads to

d= (I, - F'Ae=R,.R, e
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Also,
d=Y -Fa, - FA_,d
implies
e=(I,+FR,,FR;")d=R,.R;'d.
Now, using the identities n, =n+7r, d = Ry‘zRgle and e = Ry‘zRgld,
we see that

n,S, =nS+eR,'e=nS+dR,_'R,.R;'d=nS+dR;'d.

ylz

Then nS = n,S, —d’'R;'d and n = n, — r, completing (2). The jackknife
forecast of (3) now follows immediately.

4.8.4 Deleting observations in the DLM
The following results apply to the multivariate DLM

{Ftv Gta Vt/¢7 Wt/d)}a

where the variance sequences {V;} and {W;} are known but the scale
parameter ¢ is unknown. Consequently, the univariate DLM with unknown
constant variance V = ¢~ ! is the special case V; = 1, as in Harrison and
West (1991).

Write Di(—k) = Dy — Y¢—; to be the current information except for
the observed value of Y;_j. Given Dy, define the following retrospective
quantities relating to time ¢ — k :

et(—k:) = Yt—k — F;_kat(—k),
Qi(—k) = Vi — F,_ Ri(—k)F;_y,
Ai(—k) = Ri(—=k)F 1 {Qu(—k)} .

Theorem 4.7. Deleting the observation Y;_j, the marginal distributions
are

(9t—k|Dt(—k)) ~ Tn[at,k7 Rt,k]

and

@Dk ~ G 5. 23],

where
ap = ai(—k) — Ay(—k)e(—k),
Riw =Ri(—k) + Ay(—k)Qu(—k)AL(—k),

n=ny —r,
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and

Suk = S+ o [r = el (=R{Q(-R)} ek

Proof. This is a just special case of Theorem 4.6, the correspondence
being Z = 0; 1, Y = Y; 4, Rqg = Qi(—k), Ry = Viy, d = ei(—k)
and A.; = A;(—k), with the joint distribution of (Z,Y) being (implicitly)
conditioned on D;(—k).

Definition 4.7. The leverage of the observation Y;_j; is the regression
matrix of 8;_; on Y,_j given D;(—k), namely

Ry pFi i (F_ RepFoep + Viog)

This leverage measures the influence that the individual observation Y;_y
has on the parametric mean 6;_y.

Definition 4.8. The jackknife forecast for Y;_j is the distribution
(Yi—k|De(—k)) ~ Tolfik, Qtxl;
where
fir=F, rarr and Qurp=F,  RirFir + Vi_Si.

This is the forecast for Y;_j; given all the information except for Y;_j
itself. A time graph of these forecasts and observations is informative.

Definition 4.9. The jackknife residual is
€1k = Y — ft,k~

The set of standardised jackknife residuals is useful in assessing model
adequacy, outlying observations and influential data points.

Theorem 4.8. Define Ay ;—j = Ri(—k)A;_;, {Ri(—j)}". Deleting
the observation Y;_j, the revised retrospective parametric marginal distri-
butions are

(01— De(—k)) ~ Typlagk(—5), Rer(=5)], k <y,
where
ay k(—j) = a(—j) + Ay e—jlare — ar(—k)]
and

Ri k(=) = Ri(—7) + At p—j[Rek — Re(—K)A] 1,
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which for k > j may be calculated recurrently using relationships
ayk(—j) = a(—j) + Be—jlag k(=7 +1) —ai(—j + 1)]
and

Rik(—j) = Re(—j) + Bi—j[Rep(—j +1) = Ry(—j + 1)]B;—j'

The proofs of these results with extensions to stochastic variances and
eliminating blocks of data are given in Harrison and Veerapen (1993).

4.9 LINEAR BAYES’ OPTIMALITY
4.9.1 Introduction

Theorem 4.1 provides the key updating equations for dynamic models as-
suming normality of the observational and evolution error sequences and
the prior at ¢t = 0. However, the recurrences for m; and C; may also
be derived using approaches that do not invoke the normal assumption,
since they possess strong optimality properties that are derived when the
distributions are only partially specified in terms of means and variances.

Sections 4.9.2 and 4.9.3 describe the decision theoretically based linear
Bayes’ estimation procedure and its application to DLMs. Section 4.9.4
gives an alternative precise probabilistic derivation for the recurrences us-
ing what we term the weak Bayes’ approach. The idea here is that ¢(6;,Y;),
a function of the parameter 6; and the observation Y;, is modelled as in-
dependent of Y;, so that upon observing the value Y; = y, the posterior
distribution ¢(0;,y) is identical to the prior distribution ¢(8;,Yy).

Non-Bayesian techniques of minimum variance/least squares estimation
will be familiar to some readers versed in Kalman filtering and are adopted
by many authors as a basis for the recurrence relations; see, for example,
Anderson and Moore (1979), Harvey (1981), Jazwinski (1970), Kalman
(1960, 1963), and Sage and Melsa (1971). Section 4.9.5 briefly discusses
the relationship between these and Bayes’ methods.

Both linear Bayes’ and weak Bayes’ approaches assume the standard
DLM but drop the normality assumptions. Thus, in the univariate case
the model equations become

Y, = Fi0; + v, v ~ [0, V4],

(4.6)
0, =G0, + wy, we ~ [0, W],

(60 | Do) ~ [mg, Co].

Provided they are consistent with their defined first and second-order mo-
ments all the distributions are now free to take any form whatsoever.
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4.9.2. Linear Bayes’ Estimation

Linear Bayes’ estimation is now detailed in a general setting in which in-
ferences are to be made about the n-vector 8 based upon a p-vector ob-
servation Y, given their joint distribution and employing the following
decision-theoretic framework. Further discussion of the principles, theory,
and applications can be found in Hartigan (1969), and Goldstein (1976).

Let d be any estimate of 8, and suppose that accuracy in estimation is
measured by a loss function L(6,d). Then the estimate d = m = m(Y) is
optimal with respect to the loss function if the posterior risk, or expected
loss, function r(d) = E[L(6,d) | Y] is minimised as a function of d when
d = m. In particular, if the loss function is quadratic,

L(6,d) = (0 —d)' (6 — d) = trace (6 —d)(60 —d)’,

then the posterior risk is minimised at m = E[@ | Y], the posterior
mean, and the minimum risk is the trace of the posterior variance matrix,
equivalently the sum of posterior variances of the elements of 8, namely,
r(m) = traceV[@ | Y]. This is a standard result in Bayesian decision
theory; see, for example, De Groot (1971), or Berger (1985).

However, suppose now that the decision maker has only partially spec-
ified the joint distribution of @ and Y, providing just the joint first- and
second-order moments, the mean and variance matrix

<g> ” K?> (Qi’ AQQH : (4.7)

With a quadratic loss function, or indeed any other, this specification does
not provide enough information to identify the optimal estimate, nor the
posterior mean, nor the posterior variance. They are, in fact, undefined.
The LBE method side-steps this problem, providing an alternative estimate
that may be viewed as an approximation to the optimal procedure. Since
the posterior risk function cannot be calculated, the overall risk

r(d) = trace E[(@ —d)(6 — d)'], (4.8)

unconditional on Y, is used instead. Furthermore, estimates d = d(Y) of
0 are restricted to linear functions of Y, of the form

d(Y)=h+HY, (4.9)

for some n x 1 vector h and n x p matrix H. Clearly, this may be viewed as a
standard application of linear regression; the unknown regression function
E[0 | Y] is approximated by the linear model above.

Definition 4.10. A linear Bayes’ estimate (LBE) of 0 is a linear form
(4.9) that is optimal in the sense of minimising the overall risk (4.8).

The main result is as follows.
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Theorem 4.9. In the above framework, the unique LBE of 0 is
m=a+A(Y —f).
The associated risk matrix (RM), given by
C=R-AQA’,
is the value of E[(@ — m)(@ — m)’], so that the minimum risk is simply
r(m) = trace(C).
Proof. For d =h+ HY, define R(d) = E[(6 —d)(6 — d)’]. Then
R(d)=R+HQH - AQH —HQA' + (a— h — Hf)(a — h — Hf)',

that may be written, using the identity

(H-A)QH-A) =AQA' + HQH' — AQH' — HQA',
as
R(d =R-AQA'+ (H-A)QH - A) + (a—h—Hf)(a—h — Hf)".
Hence the risk r(d) = traceR(d) is the sum of three terms:

(1) trace(R — AQA’), that is independent of d;
(2) trace(H—A)Q(H — A)’, that has a minimum value of 0 at H = A;

and
(3) (a — h — Hf)(a — h — Hf), that has a minimum value of 0 at
h + Hf = a.

Thus 7(d) is minimised at H = A and h = a — Af, so as required,
dY)=a+ A(Y —f) =m.
Also, at d = m, the risk matrix is, as required,

E[(6 — m)(@ —m)] =R - AQA’ = C.

Corollary 4.5. If 6, is any subvector of 8, then the LBE of 6; and the
associated RM from the marginal distribution of Y and 6; coincide with
the relevant marginal terms of m and C.

Corollary 4.6. m and C are equivalent to the posterior mean and vari-
ance matrix of (8 |Y) in the case of joint normality of Y and 8.

The use and interpretation of m and C is as approximations to posterior
moments. Given the restriction to linear estimates d in Y, m is sometimes
called the linear posterior mean and C the linear posterior variance
of (0 ]7Y). This terminology is due to Hartigan (1969).
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4.9.3. Linear Bayes’ estimation in the DLM

Consider the DLM specified by equations (4.6) without any further dis-
tributional assumptions. The observational and evolution error sequences,
assumed independent in the normal framework, may now be dependent,
so long as they remain uncorrelated. Although not generally true, under
normality assumptions this implies independence. Suppose, in addition,
the initial prior is partially specified in terms of moments as

(60 | Do) ~ [mg, Col,

being uncorrelated with the error sequences. Finally, D; = {D;_1,Y;},
with Dy containing the known values of the error variance sequences.

Theorem 4.10. The moments m; and C; as defined in the normal DLM of
Theorem 4.1 are the linear posterior mean and variance matrix of (0 | Dy).

Proof. For any ¢, let Y and € be defined respectively as the ¢t x 1 and
n(t 4+ 1) x 1 vectors

Y= (Y, Yq,..., 1)
and

0=(6,0,_,,...60).

The linear structure of the DLM implies that the first- and second-order
moments of the initial forecast distribution for Y and @ are then

(v[20) = 1) (ar @)

where the component means, variances and covariances are precisely those
in the special case of normality. The actual values of these moments are not
important here; the feature of interest is that they are the same, whatever
the full joint distribution may be.

From Corollary 4.5, the first n x 1 subvector ; of 8 has LBE given by
the corresponding subvector of the LBE m of 8. But from Corollary 4.6,
m is just the posterior mean for 0 in the normal case, so that the required
subvector is my. Similarly, the corresponding RM is the submatrix C;.

Corollary 4.7. For integers k > 1, the normal DLM moments
[fe(k),Qe(k)]  and  [ay(k), Re(k)]

of the k-step ahead forecast distributions and the corresponding moments

[fe(=k), Fi 4 Re(=k)Fi]  and [y (—k),Re(—F)]
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of the k-step smoothed and filtered distributions are also the linear poste-
rior means and variances of the corresponding random quantities.

These results provide one justification for the use of the sequential up-
dating, forecasting and filtering recurrences outside the strict assumptions
of normality. They have been presented in the case of a known variance
DLM, but it should be noted that as in the normal model, the recurrences
apply when the observational variances are known up to a constant scale
factor, when all variances are simply scaled by this factor as in Section 4.5.
Estimation of the unknown scale then proceeds using the updated estimates
S; of Section 4.5. This procedure may also be justified within a modified
linear Bayes’ framework although this is not detailed here.

4.9.4. Weak Bayes’ estimation in the DLM

Weak Bayes’ estimation makes probabilistic statements that facilitate re-
currences for various distributional characteristics without recourse to loss
functions. The framework was introduced in Harrison (1996), and is illus-
trated here in an application to DLMs.

Consider vectors Y and 6, jointly distributed with first- and second-order

ECECIEES)

Then, with a transformation matrix

I —-A
(o 1)
0 - AY 0
("¥Y)-r(+)
has moment structure

O~ (0t @)l

Now, practical modelling is usually probabilistically local: that is, a mod-
eller is usually only concerned that the model is, in some sense, “true in
probability”, especially if model monitoring and assessment procedures op-
erate. Hence it is often satisfactory to postulate that, and to act as if, the
posterior mean and variance of @ — AY are independent of the observed
value of Y. This statement is, of course, precisely and theoretically true if
the joint distribution is normal. Otherwise, it is often essentially assumed
as a practical proposition, and acted upon in updating the distribution of
6 on observing unexceptional values of Y. Hence, in many applications
it is safe for routine operation, exceptional observations being those that

the transformed vector
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will trigger the associated model monitoring procedure and prompt expert
intervention. The immediate consequence is that given an observed value
Y =y, say, the posterior mean and variance of (8 — Ay) equal the prior
mean and variance of (8 — AY); this is true for any observed value y. As
a result,

(0]Y) ~ [m, C]
where
m=a+ Ae
and
C=R - AQA’

with e = Y — f. These recurrence relationships are identical to those of
linear Bayes’ but are based upon a precise modelling assumption rather
than a loss function approach. This weak approach easily extends to the
case of the unknown variance, so that without specifying the usual gamma
distributions, the two recurrence relations for n; and S; are identical to
those in Section 4.6. Details of this and the general approach are given in
Harrison (1996).

4.9.5. Minimum linear least squares estimates
It is worth pointing out that essentially minimum linear least squares

methodology depends upon the following simple theorem.

Theorem 4.11. Let 0 and Y be random vectors, as above, with joint
first- and second-order moment structure

()~16)-(ax "3)]

Then for any conformable vector h and matrix H, and for all conformable
vectors 1,

E[l(6 — a — AY + Af)(8 — a — AY + Af)'T]
< E[l(6—h-HY)(0—h—HY)].

Proof. From Section 4.9.4,
E[@ —a— AY + Af] =0
and

Cl6—AY,Y]=0
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so that
E[l(6 —h—-HY)(®—-h-HY)'l|
> V[1(6 —HY)]

= V[I(6 — AY) + (A — H)Y]

= V[I(6 — AY)] + V]I(A — H)Y]

> V[I(6 - AY)]

—E[l(6 —a— AY + Af)(0 —a— AY + Af)T].

&

So, among all linear functions ¢(Y) = h + HY, the LBE a+ A(Y —f)
minimizes the expected value of the variance V[0 — ¢(Y)] and also the
corresponding squared deviation,

A priori, as in Section 4.9.4, it is certainly the case that in this least
squares/minimum variance framework, 6 —a— A(Y —f) ~ [0, R— AQA’].
However, this gives no route to deducing the posterior parameter distribu-
tion (0)Y), nor even just its future forecast means and variances. The same
criticism applies to pure likelihood methods. Logical progress requires fur-
ther modelling statements at least equivalent to the weak Bayes’ statement,
whereupon the posterior moments emerge as [m, CJ.

4.10 REFERENCE ANALYSIS OF THE DLM'
4.10.1 Introductory comments

The specification of proper, possibly highly informative, prior distributions
to initialise models is beneficial if relevant, easily articulated prior infor-
mation exists. Whilst informative priors and the incorporation of expert
information is central to Bayesian forecasting, there is an important role
for reference analyses, that use standard vague or uninformative priors
(Bernardo 1979) to initialise models without further inputs from the user.

Such analyses are developed in this section. The reference analysis of
a DLM (including learning about unknown observational variances) has a
structure differing from standard analysis that is of theoretical and prac-
tical interest. A reference prior based analysis provides a reference level,
or benchmark, against which alternative analyses may be compared. In
particular, a retrospective reference analysis applied to historic data famil-
iarises a modeller with the past data and context, quickly leading to the
development of a refined model. Further, the implications for inference of
various informative priors may be gauged and highlighted by comparison
with a reference analysis. We have also found that users unfamiliar with

tThis section may be omitted on a first reading
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the full complexities of a proper Bayesian analysis appreciate the reference
facility, which offers an easily applied default analysis, enabling them to
use the methods immediately, without any demanding prerequisites, and
to rapidly gain experience and understanding through practice.

In spite of the extensive research into the development of reference priors,
there is no unique representation of a state of complete “ignorance” within
the Bayesian framework. However, there has emerged a consensus on the
problem of normal, linear regression models, and in this area there is what
may be termed a standard analysis, the implications of the standard refer-
ence prior being well investigated and understood as, for example, in Box
and Tiao (1973), and De Groot (1970). Since the DLM has the same basic
linear regression structure, this standard reference prior is now adopted.

The relevant theoretical results for the DLM are stated here and some
are proven. All the results in this section, together with full proofs, further
discussion and related theory, are to be found in Pole and West (1989).

4.10.2 Sequential updating equations in reference analysis

The results in this section, summarised in Theorem 4.12 below, are general,
applying to all univariate DLMs in which the system evolution variance
matrices W, are non-singular for all £. The cases of observational variances
either known for all time or unknown but constant are considered together.
Section 4.10.3 develops similar ideas for the important special static case
of Wt =0.

DLM reference analysis is based on one of the following reference prior
specifications for time ¢ = 1 (e.g., Box and Tiao 1973):

(1) For the DLM of Definition 4.3, with known observational variances,
the reference initial prior specification is defined via

p(01|Dy) o constant.

(2) For the DLM of Definition 4.5, with V; = V unknown, the reference
initial prior specification is defined via

p(81,V|Do) x V71,

Definitions 4.11. In the DLMs of Definition 4.3 (V known) and of Defi-
nition 4.5 (V' unknown), sequentially define the following quantities:

H =W,'-W,'G,P;'G/W; !,
P, =G\W,;'G, +K; 1,
h; = W, 'GP, 'k,

Kt == Ht + FtFé,

and if V; =V is unknown, {
k; =h; +FY;,
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K, =H,+FF,/V,
ki =h,+F.Y;/V,
both having initial values H; =0 and h; = 0.

but if V; =V is known, {

For unknown V; = V in the above definitions, W, is replaced by the
scale-free matrix W7j. Also in this case, define

Y= Ye-1+ 1,
At =61 — k,_ Py 'k,
0 = A + Ytz,

with initial values Ay = 0 and 9 = 0.

Theorem 4.12.

(1) Case of variance known
In the model of Definition 4.3, with the reference prior

p(01|Dy) x constant,

and with defining parameters as given in Definition 4.12, the prior
and posterior distributions of the state vector at time t are given by
the (possibly improper) probability density functions

p(0¢|D—1) o exp{—%(@QHtOt —26;hy)}
and
p(0¢|Dy) x eXP{*%(eiKtet —20,k;)}.

(2) Case of variance unknown
In the DLM of Definition 4.5, with

p(ela V|Dt) X Vﬁla

the joint prior and posterior distributions of the state vector and
the observation variance at time t = 1,2, ... are given by

P(Ot,V|Dt—1) x

Y1
(755 exp(—Lv1 (01,6, — 201, + M)}

v

and

p(0t7 V|Dt) X
7(1+ l) 1y, —1/pg/ /
V 2 eXp{*EV (OthOt — 20tkt —+ 6t)}
Proof. The proof of the results in the variance unknown case are given,

(the variance known case being left to the reader). So, (w¢|V') ~ N[0, VW]
and W replaces W, in Definition 4.11.
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The proof is by induction. Assume the prior for (0, V|Ds_1) as in (2)
above,
p(0:, V|Di_1) x y-O+=Eh exp{—
The likelihood from the observation Y; is
p(Yi]8:,V, Dy—1) o V™2 exp{— VLY, — F;6,)%).

VYO H0; — 20)h; + )\,)}.

1
2

So the posterior for time ¢ is of the form stated in the theorem.
Consider now the implied prior for ¢ + 1, specifically

(011, V|Dy) = /p(9t+1,V|9t7Dt)p(9t|Dt)d9t

= /p(9t+1|9t7 V, Dy)p(6, V|Dy)d6;.
The first term in the integral is the normal N[G;16;, VW7 ] pdf, so that
P(0e41,V|Dy) x
/V_% exp{—2V (041 — G1410:) Wi, (0141 — Gis16y)}

x VO exp{—1V~1(0,K .0, — 20k, + §;)}d6;,

which reduces to

) /eXp{*%Vfl[(at —ai11) Pi1(0; — ayy1) + Ryqa]}doy,

yetn
2

V7(1+

where

Pipi=K;+ G;+1W?+1_1Gt+1,

a1 =Pl (ke + G Wiy T 00),

Rip1 =0, Wi 01 +06 — o) Prog.
It easily follows that

p(041,V|Dy) x V-0t exp{—%V_lRt_H}.
Expanding R;41 gives
Rijp1 =0, Hi 160,11 —260;, hy 1+ Ny,

where H;q, hyyq, and A\;y1 are defined as stated in the theorem. It
remains to validate the theorem for ¢t = 1. Setting H; =0, h; =0, \; =0
and vo = 0 provides a direct validation.

&

Recall that the model has n parameters in the state vector at each time
t and so, starting from the reference prior, the posteriors will be improper
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until at least time n in the observation known case, time n+ 1 in the obser-
vation unknown case. After sufficient observations have been processed the
improper posterior distributions characterising the model become proper.
Although the above recursions remain valid it is more usual to revert to
the standard forms involving directly updating the state vector posterior
mean and covariances since these do not require any matrix inversions. The
number of observations required to achieve proper distributions depends on
the form of the model and the data. As mentioned above, the least num-
ber that will suffice is the number of unknown parameters in the model,
including 1 for the observational variance if unknown. This requires that
there are no missing data in these first observations and also that there are
no problems of collinearity if the model includes regressors. In practice,
more than the minimum will rarely be required. For generality, however,
define

[n] = min{t : posterior distributions are proper}.

The necessary relationships between the quantities defining the posterior
distributions as represented in Theorem 4.12 and those in the original rep-
resentation are easily obtained as follows, the proof being left as an exercise
for the reader.

Corollary 4.8.

(1) Case of variance known
For t > [n], the posterior distribution of (8;|D;) is as in Section 4.3,
with

C,=K;' and m;=K;'%k,.

(2) Case of variance unknown
For t > [n], the posterior distribution of (6;,V|D;) is as in Section
4.6, with

C,=SK;' and m;=K;k,

where Sy = di/n; as usual, with ny = vy —n and d; = 6; — kjm,.
In the usual case that [n] = n + 1, then n,y1 = 1 and it is easily
shown that d, 11 = Sp1 =€21/Qf, 1.

4.10.3 Important special case of Wy =0

Consider now the case of models with deterministic evolution equations,
that is, those in which W; = W} = 0. Whilst of interest from the point of
view of theoretical completion and generality, this special case is discussed
primarily for practical reasons. The basic motivation derives from the need
to specify W, in the recursions detailed above. As has been mentioned
elsewhere this problem has led to much resistance to the use of these models
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by practitioners and the introduction of discount techniques in the usual
conjugate prior analysis. Unfortunately, these methods do not apply in the
reference analysis for ¢ < [n] because the posterior covariances do not then
exist. Hence, an alternative approach is required, and the practical use
of zero covariances initially, W; = 0 for ¢t = 1,2,... ,[n] is recommended.
The rationale behind this is as follows.

In the reference analysis with n + 1 model parameters (including V),
we need [n] (at least n + 1) observations to obtain a fully specified joint
posterior distribution: one observation for each parameter. More gener-
ally, at time ¢ = [n] we have essentially only one observation’s worth of
information for each parameter. Thus, it is impossible to detect or esti-
mate any changes in parameters during the first (n + 1) observation time
points over which the reference analysis is performed. Consequently, use
of non-zero W; matrices is irrelevant since they basically allow for changes
that cannot be estimated, and so we lose nothing by setting them to zero
for t = 1,2,...,[n]. At time ¢ = [n], the posteriors are fully specified,
and future parametric changes can be identified. Thus, at this time, we
revert to a full dynamic model with suitable, non-zero evolution covariance
matrices.

Theorem 4.13. In the framework of Theorem 4.12, suppose that G; is
non-singular and W; = W} = 0. Then the prior and posterior distribu-
tions of @; and V have the forms of Theorem 4.12 with recursions defined
as follows:

(1) Case of variance known
H, =G, 'K, G ",
h; = G; k.

(2) Case of variance unknown
H, =G, 'K, G,
h, = G; Yk 1,
At = 0p—1.

Proof.

(1) Case of variance known
Again the proof is inductive. Suppose first that p(0;_1|D;_1) has
the stated form. Then the system equation is 8; = G;0;_1, and this
may be inverted when G; is non-singular so that 6,1 = G, lg,.
Applying this linear transformation, that has a constant Jacobian,
to p(0:—1|D;—1), immediately results in the prior

p(0:|D_1) x exp{—3(0,G; "K_1G; "0, — 20,G; 'k;_1)}.
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Hence, multiplying by the likelihood, the posterior p(8:|D;) is
o exp{—3[0,H.0, — 20;h, + V;"' (Y, — F16,)' (Y, — F;6,)]}
o exp{—3(6/K,6, — 20}k;)}.
Initially, for t =1,
p(61]D1) oc exp{—5V (81 F1F16; — 01F Y1)},

and the result follows by induction.

(2) Case of variance unknown
The proof follows as a simple extension of that for part (1) and is
left as an exercise.

The updating equations derived in Theorem 4.13 are of key practical
importance. The assumption that the system matrices G; are non-singular
is obviously crucial to the results. In practical models this is typically
satisfied. This is true, in particular, of the important class of time series
models. The following section covers more cases when this is not so.

4.10.4 Filtering

Filtering in the case of reference initial priors uses exactly the same results
as in the conjugate (proper) priors case for times ¢ > [n] since all the
distributions in this range are proper. In particular, the usual recursions
of Section 4.7 are valid. However, for ¢t < [n] these recursions do not apply
since the on-line posterior means and covariances required do not exist.
The following theorem provides the solutions for this case.

Theorem 4.14. In the framework of Theorem 4.12, the filtered distri-
butions in the DLM for times t — r, r = 0,1,2,...,[n] — 1 are defined as
follows.

(1) Case of variance known
p(0:—1|Dy) o exp{—3 [0, Ki(—7)0:—r — 26, ki(-7)]}.
(2) Case of variance unknown
p(0i—r, V|Dy) ox
VO 9 exp{— LV 8, K (—)0s—r — 26, Ko(—1) + Si(—1r)]}
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where the defining quantities are calculated recursively backwards in time
according to

Ki(—r) =G, (W, G
~ Gl Wi P+ DWW G + Ko,
Pi(—r+1) =W, | +Ki(—r+1)—Hy_ 41,
ki(—r) =ke—r + G, Wi P (=7 + Dk (=7 + 1) = hypn],
O(=r) =0(—r+1) — M—rp1
= k(=7 +1) = hypa P (= + D[k (=7 + 1) = By

and Hy, hy, Ky, k¢, A\, 6; are as in Definition 4.11. Again note that, in
the case of V' unknown, W} replaces W, throughout, for all t. Starting
values for these recursions are K;(0) = K¢, k¢(0) = k; and 6,(0) = ;.

Proof. An exercise for the reader. Complete proofs of these results appear
in Pole and West (1989a).

For theoretical completion, note that the recursions in Theorem 4.14 also
apply for ¢ > [n]. Although the standard filtering equations should be used,
those of the theorem provide the relevant distributions, as follows.

Corollary 4.9. Fort > [n], the distributions defined in Theorem 4.14 are
proper, as given in Section 4.7, with
(1) Case of variance known
(6¢—r|Dy) ~ Nay(—r), Re(=7)],

where a;(—r) = Ki(—r) k(=) and Ry(—7) = Ky(—r) L.
(2) Case of variance unknown

(01—r|Dy) ~ Ty, _pnpfae(—7), Re(—1)],
where a;(—r) = K¢(—7) "'k (—r) and Ry(—r) = S; K¢ (—r) 1.

Theorem 4.15. In the case of zero evolution disturbance variances as
in Theorem 4.13, the results of Theorem 4.14 are still valid but with the
following changes to the recursions:

Ki(-r) = G;s—r+1Kt(_7" +1)Gi—rt1,
ki(—7) = Gi_, 1 k(=7 + 1),
6t(—7') = (5)5(—7' + 1)
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Proof. Again left as an exercise.

4.11 APPENDIX: CONDITIONAL INDEPENDENCE

Definition 4.12. Random vectors X and U are conditionally independent
given the random vector Z, written X Il U|Z, if

p(X|Z) = p(X|Z, U)
and

p(U|Z) = p(U|Z, X)

for all X,Z and U.
The pictorial representation of X 1l U|Z is

Under the full joint distribution p(X,Z,U), based upon whatever im-
plicit prior information is assumed, then (a) the relevant information con-
cerning X supplied by (Z, U) is provided by Z alone, and, similarly, (b) the
relevant information about U supplied by (Z, X) is provided by Z alone.

Theorem 4.16. If the random vectors X, Z and U have a joint normal
distribution such that X Il U|Z, then the regression matrix A.,, of X
on U, is the product of the regression matrix A,,, of X on Z, and the
regression matrix A, of Z on U. Thus

X Mo Rw szRz Aquu
Z ~ N M H RZA;.Z Rz AzuRu )
U Mo RuA;u RuAlzu R,
with
Axu = Aa:zAzu .

Proof. Conditional independence implies that
=C[X,U] - A..R.R_'A.,R, =C[X,U] - A,. AR, .



4.11 Appendix: Conditional Independence 137

Corollary 4.10. Suppose X;, (i = 1,...,n), are normal random vectors
such that for all ¢ and for all 1 < j < k <n, X; 1L X;,|X;4;. Pictorially,

X —Xg XXy Xagg - X — X,

Then, writing the regression matrix of X; on X;1 as A; ; 11, the regression
matrix of X1 on X,, is

n—1

A, = H At -

i=1
Theorem 4.17. Under the conditions of Theorem 4.16,
(Z ‘U> N [(Nu) ’ (szA&z Raju /]
and so
(i) the regression matrix of X on Z remains unchanged: A, = A,.,

(i) the distribution of (X|U) ~ N[y, Ry|,] may be calculated from the
distribution (Z|U) ~ N[y, R} via the equations

Moy = Kz + Aa:z(IJ'z\u - /sz)
and

Ra:|u = Rx + sz (Rz|u - Rz) A;z

Proof. Apply conditional normal theory results to the distribution of
(X,Z,U) to deduce the following identities, and so prove the results:

(iia) Hzjy = Hz + Azu(U - Hu) = Azu(U - /qu) = Hzju — K2
= Mgy = MKz + AmzAzu(U - Hu) = Mg + Amz(ﬂz\u - Hz)-
(iib) R..=R. - ALRA, —A RA , =R, - R,

= R, =R, — A, AL R,AL AL
=R, - A,.(R. —R,,)A,..
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/.12 EXERCISES

Unless otherwise stated, the questions below concern a standard, univariate
DLM with known variances, i.e., {F, G¢, V;, W;} defined by

Y; =F}0; + vy, vi~ N[0, V3],

0; =G0; 1 + w, wi~ N[0, W],

(9t71 | thl) ~ N[mtfla Ct71]~

(1) Consider the DLM {Fy, G, V;, W }.
(a) If G is of full rank, prove that the DLM can be reparametrised
to the DLM

)@ ) e (v )y

(b) Now show how to accommodate the observation variance in the
system equation when G is singular.

(2) Consider the constant DLM {F, G,V, W}, generalised so that
vy ~N[o,V] and w; ~ N[w, W].

Show that (6;|D;) ~ N[m, C;] and derive recurrence relationships

for m; and C;

(a) by using Bayes’ theorem for updating, and

(b) by deriving the joint distribution of (6:,Y; | Di—1) and using
normal theory to obtain the conditional probability distribu-
tion.

(¢c) What is the forecast function fi(k)?

(d) How do the results generalise to the DLM {F, G,V, W}, with

Vg ~ N[@t, ‘/t] and Wi ~ N[’E)t,Wt]?

(3) For the constant DLM {F, G,V, W}, given (6; | D;) ~ N[my, C;],
obtain
(a) the k-step ahead forecast distribution p(Yiix | Dy);
(b) the k-step lead-time forecast distribution p(X; x|D:) where

k
Xeg =Y Vi
r=1

(4) For the univariate DLM define b; = V;/Q;.
(a) Show that given Dy, the posterior distribution for the mean
response iy = F;0; is

(ue|Dy) ~ N[f:(0), Q:(0)],

where

E[u|Dy] = f1(0) = Fim,
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and
V[/,Lt|Dt] = Qt(O) = F;CtFt

Use the recurrence equations for m; and C; to show that for
some appropriate scalar A; that you should define,
(b) E[u¢|D¢] can be updated using either the equation

Elpt|Dy] = Elpe| Dy 1] + Ares
or
fi(0) = AYy + (1 — Ay) fy,

interpreting f;(0) as a weighted average of two estimates of p;
(¢) V[ue|Dy] can be updated using either the equation

Vipe|De] = (1 = A)V]pe| De—1]
V[Nt|Dt] = Qt(o) = AV

(5) Write Ht = Wt _WtFtFQWt/Qta Lt = (1 — At)WtFta and At =
1 — V;/Q;. Prove that the posterior distribution of the observation
and evolution errors is

V¢ ]. — At Atm —L/ >:|
D,) ~N : t)].
(wt t) KWtFt/Qt) “ ( —L;  H;
(6) Consider the DLM {F, G¢, V3, ViW; } with unknown variances V%,

but in which the observational errors are heteroscedastic, so that

Vg ~ N[O, ktV},

where V = ¢! and k; is a known, positive variance multiplier.
Also,

(¢ | Di—1) ~ G[ng—1/2, ny—15i-1/2].

(a) What is the posterior (¢ | D;)?
(b) How are the summary results of Section 4.6 affected?

(7) Consider the closed, constant DLM {1, A\, V, W} with A\, V and W
known, and |\| < 1.
(a) Obtain the k-step forecast distribution (Y;4x|D;) as a function
of m;, Cy and .
(b) Show that as k — 0o, (Yiyr|D:) converges in distribution to

N[0, V+W/(1-X)].

(¢) Obtain the joint forecast distribution for (Yi41, Yii2, Yiys).
(d) Obtain the k-step lead-time forecast distribution p(Xyx|Dy)
where X, = Zle Yiir
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Generalise Theorem 4.1 to a DLM whose observation and evolu-
tion noise are instantaneously correlated. Specifically, suppose that
Clws, 1] = ¢, a known n-vector of covariance terms, but that all
other assumptions remain valid. Show now that Theorem 4.1 ap-
plies with the modifications

Q¢ = (FiRF, +V;) + 2Fc,
and
A; = (RiFi +¢1)/Q4.
If G is of full rank, show how to reformulate the DLM in the stan-

dard form so the observation and evolution noise are uncorrelated.

Given Dy, your posterior distribution is such that
(0t|Dt) ~ N[mt, Ct] and (at_k‘Dt) ~ N[at(*k), Rt(*k)]

The regression matrix of 8;_, on 6; is A;_j+. You are now about to
receive additional information Z, that might be an external forecast,
expert opinion, or more observations. If

(01,...,60,_1) 1L Z|6,,
and given the information Z, your revised distribution is
(9t|Dt; Z) ~ N[mt + €, Ct — 2],

what is your revised distribution for (6_y|D;, Z)?

Prove the retrospective results, sets (i) and (ii) of Theorem 4.5,
using the conditional independence structure of the DLM and the
conditional independence results of the Appendix, Section 4.11.
With discount factor ¢, the discount regression DLM {F;,I, V, W,}
is such that I is the identity matrix and W; = C;_1(1—4)/d. Given
Dy, and with integer k > 0, show that

(a) Rt = thl/(s;

(b) the regression matrix of @;_j on 0;_j11 is By = dL;

(c) the regression matrix of 8;_j on 0; is A;_j; = §*I;

(d) the filtering recurrences of Theorem 4.5 simplify to

(i) a(—k)=a,_1(—k+1)+6"Ase,
Ri(—k) = Ry_1(—k + 1) — 6° A, QA
(ii) a(—k) =my_p + d[a(—k + 1) — ay_g41],
Ri(—k) = Ci_p + 8*[Re(—k + 1) — Re_jp1].
Generalise Theorem 4.1 to the multivariate DLM {F¢, G¢, Vi, W, }.

Verify the filtering and smoothing results in Corollaries 4.3 and 4.4
relating to the DLM with an unknown constant observational vari-
ance V.
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Prove the reference prior results stated in part (1) of Theorem 4.12,
that relate to the case of a known observational variance V.

Prove the reference prior results stated in part (2) of Theorem 4.13,
relating to the case of an unknown observational variance V.

Prove the results stated in Corollary 4.8, providing the conversion
from reference analysis updating to the usual recurrence equations
when posteriors become proper.

Consider the first-order, polynomial model {1,1,V, W}, with n =1

and 0; = py, in the reference analysis updating of Section 4.10.

(a) Assume that V' is known. Using the known variance results of
Theorem 4.12 and Corollary 4.8, show that (11|D1) ~ N[Y1, V].

(b) Assume that V' = 1/¢ is unknown, so that the results of Theo-
rem 4.13 and Corollary 4.8 apply. Show that the posterior for
e and V' becomes proper and of standard form at ¢t = 2, and
identify the defining quantities mqy, Cs, ne and Ss.

(¢) In (b), show directly how the results simplify in the case W = 0.

Consider the 2-dimensional model

{ORCEALY

assuming V' to be known. Apply Theorem 4.13 and Corollary 4.8
to deduce the posterior for (62]Ds).

Consider the discount DLM {F;,I,V, VW7} with unknown but
constant variance V. The discount factor is 0 < § < 1, so that
Wy =C; (1 —-26)/6, and R ™' = 6C;_, ', Initially, ignorance is
formulated so the prior precision of 8 is Cg 1 =0, the prior degrees
of freedom for ¢ = 1/V are ng = 0, my = 0 and Sy = 0. Use the
notation of Theorem 4.3 so that starred variances are conditioned
onV =1.

(a) Prove that C{~! = F,F}.

(b) Prove that

t—1
C; ' =D 0"FiF,_,.
v=0

(c) Suppose that rank C; ™ = rank C{~] = r,_;. Show that the
relationship between Y; and the information D;_; can be mod-
elled by a DLM {15,5, LV, VWt} with a parameter of dimension
r;_1 that, conditional upon V', has a proper distribution. Con-
sequently, show that a conditional forecast exists such that

(Ye|Di—1, V) ~ N[fe, VQi],
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and that given Y;, the variance can be updated according to

ng =mn4g_1+1,
St =81+ (]/Qf — Si—1)/n,

with n; = 1 and S; = e?. Show further that if n;_; > 0, the
unconditional forecast

(1/1‘,|th1) ~ Tnt71 [ft7 Qt]

exists. Suggest a method of obtaining m; for this reduced DLM.
Now suppose rank C; ' = 1+ rank C;~}. Show that no fore-
cast of (Y;|Dy—1,V) is possible. However, given Y;, show that
although {n¢, S;} = {n¢—1,S¢—1}, the dimension of the design
space for which forecasts can now be derived is increased by 1.
Collinearity can be a real problem. For example, in the sim-
plest regression discount DLM, a price variable used as a re-
gressor may be held constant for quite a long period before
being changed. Obviously, information is being gathered, so
that useful conditional forecasts can be made based upon this
price. However, forecasts conditional on other prices cannot
be made until after a price change has been experienced. In
general, at time ¢ — 1, the forecast design space is spanned by
Fy,... ,F;_1. Construct an algorithm to provide a reference
analysis accommodating collinearity that at time ¢ — 1, enables
forecasts and monitoring for time ¢, whenever F; is contained
in the current forecast design space and n;_1 > 1.

Generalise this approach beyond discount regression DLMs.
Some relevant work is presented in Vasconcellos (1992).



CHAPTER 5

UNIVARIATE TIME SERIES DLM THEORY
5.1 UNIVARIATE TIME SERIES DLMS

As introduced in Definition 4.2 of the previous chapter, the class of uni-
variate time series DLMs, or TSDLMs, is defined by quadruples

{F7 G7 ‘/ta Wt}7
for any V; and W;. We often use the shorthand notation
{F,G,-, }.

This chapter explores the theoretical structure of this important class of
models. Much of classical time series analysis concerns itself with models
of stationary processes (Box and Jenkins 1976), otherwise referred to as
processes exhibiting stationarity. It will be shown that such models can
be formulated as constant TSDLMs, namely as special DLMs for which
the whole quadruple {F,G,V, W} is constant for all ¢. In practice, this
constancy is usually a restrictive assumption, particularly since the vari-
ances V; and W; often vary both randomly and as a function of the level of
the series. Consequently, we do not restrict attention to DLMs with con-
stant quadruples, but consider processes that cannot typically be reduced
to stationarity.

The mean response function pirr = E[Yiik | Or1x] = F'0y and the
forecast function f;(k) = E[u¢vr | Di] = F'GFmy; are of particular interest.
The structure of the forecast function is central in describing the implica-
tions of a given DLM and in designing DLMs consistent with a forecaster’s
view of the future development of a series. A further ingredient in this
design activity is the concept of observability of DLMs, which is where this
chapter starts.

5.2 OBSERVABILITY
5.2.1 Introduction and definition

Observability is a fundamental concept in linear systems theory that has
ramifications for TSDLMs. Primarily, it relates to the DLM parametri-
sation @;. As an introduction, consider the evolution error-free case with
W, = 0 for all ¢, so that 8, = GO,_; and s, = F'GF0,. The state
vector, comprising n elements, is chosen to reflect identifiable features of
the time series. Accordingly, values of the mean response over time provide
information on the state vector. Clearly, at least n distinct values of the
mean response are required for complete identification, with parametric
parsimony suggesting that no more than n are necessary. The n distinct
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values starting at ¢, denoted by py = (p4, fe+1, - - -, ht+n—1)’, are related to
the state vector via

pe =Ty,
where T is the n X n observability matrix
F
F'G
T = : (5.1)
Pt

Thus, in order to precisely determine the state vector from the necessary
minimum of n consecutive values of the mean response function, T must

be of full rank. Then
0t = T_llJ,t.

These ideas of parametric economy and identifiability in the case of a de-
terministic evolution motivate the formal definition of observability in the
stochastic case.

Definition 5.1. Any TSDLM {F, G, -, -} is observable if and only if the
n X n observability matrix T in (5.1) has full rank n.

5.2.2 Examples

EXAMPLE 5.1. The model

o) 1)

is observable since T is of rank 2, with

- (19).

If the system variance W; = 0, then 8; = Ty, where p} = (g, ptes1)-
Thus, 0, = (put, pe+1— f4t) comprises 0y = i, the current level of the series,
and 62 = py41 — p¢ the growth in level between times ¢ and ¢ + 1.

EXAMPLE 5.2. The model

{OACRIES:

is unobservable since T only has rank 1, with

(1),
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To see what is happening, write 8, = (01, 0s2), w, = (w1, wr2), and the
observation and evolution equations as
Yi =01 + 2 + 11,
O = 0111 + wi,

Orp = 0i_1,2 + wyo.

Noting that pu; = 01 + 042 and defining 1)y = 041 — 042, the model becomes

Y = e + 11,
pt = pe—1 + 011,
Y = -1 + sz,
where ;7 = wy + w2 and do = wyp — wye - The first two equations

completely define the DLM as a first-order polynomial DLM. The random
quantity 1; has no influence on the mean response, and in this sense is
redundant. The model is overparametrised.

Example 5.2 illustrates the general result that if T has rank n—r for some
r, (1 <r < n), the DLM can be reparametrised, by a linear transformation
of the state vector, to an observable DLM of dimension n — r that has the
same mean response function.

EXAMPLE 5.3. Consider the reparametrised model in Example 5.2 and

suppose that
Ho my,0 Cuo 0
Do | ~N , I ,
(wo O) me) ( 0 Cyo ﬂ

W, 0
We= ( 0 Ww) '
In this case there is no correlation between Y; and 1), so the observations

provide no information about the latter. Applying the updating equations
leads to C; diagonal for all ¢ and the marginal posterior

(¥ | Dy) ~ Nlmy o, Cy o+ tWyl,

with increasingly large variance.

with, for all ¢,

EXAMPLE 5.4. Example 5.3 suggests that in the case of unobservability,
the observations provide no information about some of the state parame-
ters, or some linear functions of them. In that specific case, this is always
true unless W; has non-zero off-diagonal elements introducing correlations
between the state vector elements. For example, consider the unobservable

060 )
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Clearly 645 is redundant, an equivalent mean response function being pro-
vided by the reduced model {1,1,2,1}. This is a first-order polynomial
model with, from Chapter 2, limiting distribution (641 | D;) ~ N[my, 1] as
t — oo. In the 2-dimensional model, however, it may be verified that the
updating equations lead to the limiting form

(02 | Dy) ~ N[Ue;/4, W —U?/4],

ast — oo. Thus, unless U = 0, Y; is informative about the parameter that,
for forecasting purposes, is redundant.

EXAMPLE 5.5. In a deterministic model {F, G, 0, 0}, Y4, = p4 for all
k, so that defining

Yt = ()/;57}/;5-&-1’ cee 7}/15+n—1)/
we have Y; = p; = T6,. In the observable case it follows that
0, =T'Y,.

Hence the values of the state vector elements are precisely determined, or
observed, as linear functions of any n values of the series. If, however, T has
rank n —r, then every Y; is a linear combination of any n — r observations,
say Y1, Ys,...,Y, ., and 0, is not fully determinable from the observations.
This corresponds closely to the concept of observability as applied in linear
systems theory and related fields.

5.2.3 Observability and the forecast function
For a TSDLM with f;(k) = F'G*m,, for k > 0,

f:(0)
fi(1)
Tm; = .
fuln — 1)
and
fi(k)
S G
fn+k—1)

So observability implies that the first n consecutive terms of the forecast
function are linearly independent, and vice versa. Any further values of
the forecast function are then linear combinations of the first n values. If,
however, T has rank n—r, then all values of the forecast function are linear
functions of the first n — r.
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EXAMPLE 5.6. The model

1 1 1
0 b O 1 A
has forecast function

fe(k) = my + kmyz = f(0) + k[f:(1) — f:(0)],
a polynomial of order 2, a straight line.

EXAMPLE 5.7. The model

()G 1)

is unobservable, with T of rank 1, and the forecast function

fi(k) = mu = £,(0)

is reduced to that of a first-order polynomial model.

5.2.4 Constrained observability

147

Because of indeterminism, parametric redundancy and the reducibility of
unobservable to observable models, from now on it will be assumed that
working TSDLMs are observable unless otherwise stated. In some cases
models with a singular observability matrix are employed provided that
they are subject to additional structure leading to observability in a wider

sense.
For example, consider the deterministic model
1 1 00
11,10 0 1],0,0
0 010
having an observability matrix T of rank 2, where
110
T=11 0 1
110

This model is unobservable. However, if 0;5 and 63 represent the effects
of a factor variable, say a seasonal cycle of periodicity 2, then for all ¢, the

modeller will typically apply a constraint of the form

02 4+ 043 = 0.

Now, for all t > 2, 8, is determined from the mean response function and

constraint via
pe = 041 + O,

tit1 = 041 + 043,
0 =0p2 + O3,
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since then
01 = (e + pes1)/2

and

O = —0i3 = (e — pr11)/2.

Such models for effects are common in statistics, relating to classifying
factors such as seasonal period, blocking variables, treatment regimes and
so on. Rather different constraints arise in some applications, such as in
studies of compositional data, where perhaps some of the elements of the
state vector represent proportions that must sum to 1, again implying a
constraint on a linear function of 6;.

Clearly the above unobservable model can be reduced to the observable

B YR P

producing the same forecast function. However, for practical interpretation
and communication, it is may be desirable to retain the full unobservable
DLM. Hence a wider definition of observability is required to cover models
subject to linear constraints.

Definition 5.2. Suppose the unobservable model {F, G, V;, W} of dimen-
sion n is subject to constraints on the state vector of the form

COt = C,

for some known, constant matrix C and vector c. Then the DLM is said to
be constrained observable if and only if the extended observability

matrix
T
C

5.8 SIMILAR AND EQUIVALENT MODELS
5.8.1 Introduction

has full rank n.

The concept of observability allows a modeller to restrict attention to a
subclass of DLMs that are parsimoniously parametrised whilst providing
the full range of forecast functions. However, this subclass is still large, and
any given form of forecast function may typically be derived from many
observable models. In designing DLMs, further guidelines are needed in
order to identify small, practically meaningful collections of suitable models
and usually a preferred single DLM for any given forecast function. The
two key concepts are similarity and equivalence of TSDLMs. Similarity
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identifies and groups together all observable models consistent with any
given forecast function. Two such models are called similar models.
Equivalence strengthens this relationship by requiring that in addition to
having the same qualitative form of forecast function, the quantitative
specification of the full forecast distributions for future observations be
precisely the same. Any two models producing the same forecasts are called
equivalent models. Similarity and equivalence are essentially related to
the reparametrisation of a model via a linear map of the state vector.
This is particularly useful in model building when a simpler, identified,
canonical model may be reparametrised to provide an equivalent model
that is operationally more meaningful, efficient and easily understood.

5.3.2 Similar models

Consider two observable TSDLMs, M and Mj, characterised by quadruples
M: {F,G,V;, W},
M - {F1, Gy, Vi, Wi,

having forecast functions f;(k) and f1.(k) respectively. The formal defini-
tion of similarity is as follows.

Definition 5.3. M and M; are similar models, denoted by M ~ M, if
and only if the system matrices G and G; have identical eigenvalues.

The implications of similarity are best appreciated in the special case
when the system matrices both have n distinct eigenvalues Ay, ..., A,. Here
G is diagonalisable. If A = diag(\1,...,\,), then there exists a non-
singular n X n matrix E such that for all k£ > 0,

G =EAE! and GF = EA*E~L.

By definition, the forecast function of M is
filk) = F'GFm; = FEA*E™'m; = ) _ a;,\f,
r=1

for some coefficients a;1, ..., as, that do not depend on k. Since M ~ My,
the forecast function for M; takes the similar form

Fe(k) =Y birAY,
r=1

for some coefficients b1, ..., by, not involving A. So, as functions of the
step-ahead integer k, M and M; have forecast functions of precisely the
same algebraic form. This is the key to understanding similarity. If a
modeller has a specific forecast function form in mind, then for forecasting
purposes, any two similar models are qualitatively identical. Although the
above example concerns the special case of distinct eigenvalues, it is always
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the case that two observable models have the same form of forecast function
if and only if they are similar. Alternatively, M and M; are similar models
if and only if the system matrices G and G are similar matrices, so that
for some non-singular n X n similarity matrix H,

G =HG,H .

Hence, similarity of observable models is defined via similarity of system
matrices. Further discussion of these points follows in Section 5.4, where
the eigenstructure of system matrices is thoroughly explored.

5.3.8 Equivalent models and reparametrisation

Represent the form of the observable DLM M; = {F1, G, Vi, Wy} as
Yi=F|01; + v14, vie~ N[0, Vi¢],
01:= G101 + w1y, wit~ N[0, W]

Given any n X n nonsingular matrix H, M; may be reparametrised by
linearly transforming the state vector 61; so that for all ¢,

0, = HO,, (5.2)
and
0,; =H'6,.
Then
Y, =FH'0; + vy,
6, =HG H '6,_, + Hwy,.
Defining F and G via the equations
F =FH,
G =HGH !,
and m; = Hm;;, we can write
fie(k) = F{GYmy, = F/H 'HG*H 'Hm,, = F'G*m,.
It follows that any model M = {F,G,,-}, with F and G given by (5.3)

for some H, is similar to M;. Further, the matrix H is defined as follows.

Theorem 5.1. If for some nonsingular matrix H, M = {F,G,-,-} and
M; = {F1,Gy,,-} have respective observability matrices T and T; and
are such that F' = F{H™! and G = HG;H™!, then,

(i) M~M,  and (i) H=T"'T,.

Proof. (i) follows from the definition of similarity since the system matri-
ces are similar, having similarity matrix H.
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(ii) follows from the definition of T and Ty, since

T, =TH'H=TH, sothat H=T"'T,.
<

H is called the similarity matrix of the transformation from M; to M,
since it is the similarity matrix transforming G; to G.

EXAMPLE 5.8. Let

() (i)
(e () en(1)

M and M, are observable, with

10 —6 5
T<1 1)’ Tl(—74 —131>'

G and G each have a single eigenvalue 1 of multiplicity 2, so that M ~ M;.

Also,
im [ 6 5
H=T T1_<68 ~136 )’

and it is easily verified that F; = H'F and G; = H"'GH.
The forecast function has the form

fi(k) = £i(0) + k[f:(1) — f:(0)],

although the precise numerical values may differ between models.
Further features of the reparametrisation defined by (5.2) to (5.3) are as
follows.

(a) The defining state vector 6; of M may be obtained as a linear trans-
formation of 8:; in M7 via

at = H91t7

and vice versa. One model may thus be reparametrised to obtain
the other as far as the structural components F, G and 6, are
concerned.

(b) The full defining quadruple of M : {F,G,V;, W;} is obtained via
this reparametrisation from that of My : {F1,G1, Vi, Wy} if in
addition to (a), the variances are related via

‘/t = Vlt and Wt S letH/.

(¢) If in addition, (8; | D;) ~ N[my, C;] and (014 | Dy) ~ N[mjy, Cqy)
are related via

m; = Hmy,, C; = HCltHlv
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then the entire quantitative specification of M is obtained from that
of My by the reparametrisation. In particular, this is true if these
relationships hold between the initial priors at ¢t = 0.

These final comments motivate the concept of model equivalence.

Definition 5.4. Consider two similar TSDLMs M and M; with similarity
matrix H = T7'T;. Suppose M = {F,G,V;, W,;} with initial moments
(myg, Cy), and My = {F1, G1, Vi, W1, }, with initial moments (m; o, C1,0).
Then M and M; are said to be equivalent, denoted by M = My, if

‘/t = ‘/125 and Wt = HWltH/
for all ¢, with

mgy = Hml,o and CQ = HCLOH/.

EXAMPLE 5.9. Consider the models
N\ /()1 2 p—A
M : V.
{016 0) w02 o))
1 A0 1 0
w0606 1))

where A and p are real and distinct. Then

10 11
(1) me()

so that both models are observable. Thus, since both system matrices have
identical eigenvalues A\ and p, M ~ M;. Further,

1 1
H_(O PA)’

and it can be verified that F/ = F{H™! and W = HW H'. So, if the
initial priors conform, in the sense described in (c) above, then M = M.
Finally, notice that if p = A, the models cannot even be similar, let alone
equivalent, since although M is still observable, M is not.

5.3.4. General equivalence

The definition of equivalence is a key concept in DLM design. However,
as Harrison and Akram (1983) point out, it fails to apply in degenerate
cases where two similar models that produce precisely the same forecast
distributions cannot be linked by a linear transformation. The anomaly
arises for n > 2 when there is an uncountable set of models that produce
exactly the same forecast distributions but differ from M only through
the system variance matrix W;. This reveals a fundamental ambiguity
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concerning W; and the interpretation of 6y, indicating that the modeller
needs to impose some restraining structure, such as canonical component
modelling and discounting as in Chapter 6.
For the general case, with M defined by the quadruple {F, G, V;, W},
let €; be an independent sequence of random n—vectors with
(Gt | thl) ~ N[O,Ut]

If for each ¢, Uy is a non-negative definite matrix such that F'U;F = 0,
then F'e; = 0 with probability one for all ¢. Consider now the model
defined by adding the term Ge;_1 to the system evolution equation M so

Y, =F'0, + 1,
0, =GO;_1 + (w; + Ger—1).
Defining the new state vector ¥, via
Py =0 + €,
and remembering that F'e; = 0, we have
Vi = F'ip + v,
P = Gppog +wiy,

where wy; = w; + €; is an independent error sequence with variance

Wi =W, + U,
The stochastic shift from 6; to 1, transforms M to the model M; given by
{F, G, V;, Wy;}. Thus, for any specified Wy;, the model {F, G, V;, W1;}
can be written in an uncountable number of ways by choosing W; and Uy
to give Wy, as above. Clearly, although reparametrisations that change

the parametric interpretation are involved, they are stochastic and cannot
be expressed as a deterministic linear transformation of the state vector.

EXAMPLE 5.10. To show that this can in fact be done, consider the
model with F' = (1,1) and G = I, the 2 x 2 identity matrix. In order to
satisfy F'e; = 0 for all ¢, we require €; be of the form €; = (€41, —e€s1)’.
Then, with €; ~ N[0, U] for some U; > 0,

1 -1
Ut:Ut<_1 1)

Thus, given any variance matrix

(Wi Wi
W“(m Wm)’

to obtain W1, = W, + U; we simply choose W; = Wy, — U; and this is
a valid variance matrix whenever

0< U < (WyuWia — Wtzg)/(th + Wia + 2Wi3).



154 5 Univariate Time Series DLM Theory

This can always be satisfied since, as W, is positive definite, the numerator
of this upper bound is the determinant [W1¢| > 0 and the denominator is
the positive term F/'W1,F.

These stochastic shift models seem to suggest that any specified model
can be transformed to one with a simple diagonal evolution variance matrix.
This is a very appealing simplification and in a large number of practical
cases can be done. However, this is not always possible, as in Example
5.10, where W, will be diagonal only when W;3 = —U;, which is never
possible if W;3 > 0.

This discussion motivates the following definition.

Definition 5.5. The models M and M, that are either observable or
constrained observable, are said to be generally equivalent if and only if
they produce exactly the same forecast distributions.

5.4 CANONICAL MODELS
5.4.1 Introduction

Similarity groups together observable DLMs with similar forecast functions.
Within each such group, we identify particular models with specific, sim-
ple structures that provide canonical DLMs consistent with the required
forecast function form. Similarity is related to the eigenstructure of system
evolution matrices, and this section explores the various possible eigenvalue
configurations that arise. In relation to simple, canonical matrices that are
similar to any given G, the focus is naturally on diagonal, block diagonal
and Jordan forms. Supporting material on the linear algebra associated
with these matrices appears in Section 17.4.

To begin, consider the simple case in which the n X n system matrix
has a single real eigenvalue of multiplicity n, when a Jordan block system
matrix is fundamental.

Definition 5.6. The n x n Jordan block is defined, for real or complex
A, as the n x n upper diagonal matrix

A1 0 0 ... O
O A1 0 ... 0
0 0 X 1 0
Ln=. . 7 .
0 0 0 O 1
0 0 0 O A

Thus, the diagonal elements are all equal to A, those on the super-diagonal
are 1, and the remaining elements are 0.
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5.4.2 System matrix with one real eigenvalue

Suppose that G is one of the uncountable number of matrices having a
single real eigenvalue A of multiplicity n > 1. The simplest example is
G = A, a multiple of the n x n identity matrix. The first result, of great
importance, shows that the class of observable models is restricted to the
subset whose system matrices are similar to the Jordan block J,,(\).

Theorem 5.2. If G has one eigenvalue \ of multiplicity n but is not similar
to J,(N\), then any TSDLM {F,G, -, -} is unobservable.

Proof. The proof uses properties of similar matrices and Jordan forms for
which reference may be made to Section 17.4.3. Since G is not similar to
the Jordan block, it must be similar to a Jordan form

Js = block diag [T, (A), Ty (A)y .-, T (V)]

for some s > 2, ny+ns+---+ns=n,andn, > 1, (r=1,...,s). Foreachr,
let f,. be any n,-dimensional vector, and define Fy via ¥/, = (f],£5,... ).
Then the observability matrix T of any model with regression vector F
and system matrix Js has rows

t g = FLI5N) = [fIE (N, ... £.3E (V)] (k=0,...,n—1).

) tsY ng

Define m = max{ny,...ns}, so that m < n — s+ 1. Using the referenced
appendix, it follows that for k& > m,

k

> <7k:>(_/\)rtk—r+1 =0.

r=1

This implies that T is of less than full rank, having at most m < n linearly
independent rows, and that the DLM is not observable.

Corollary 5.1. If G and G each have a single eigenvalue A of multiplicity
n and for some F and F, the models {F,G,-,-} and {F1,Gq,-,-} are
observable, then G is similar to G and the models are similar.

These results identify the class of observable DLMs with a single multiple
eigenvalue A as those observable models whose system matrix is similar
to the canonical Jordan block J,()\). The class is uncountable even if
n = 1. The following result identifies further structure that leads to the
identification of a unique canonical model within the class.

Theorem 5.3. Any TSDLM {F,J,()\),-,-} is observable if and only if
the first element of F is non-zero.
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Proof. Let F' = (f1,..., f,) and the rows of T be
i =F I (), (r=0,...,n—1).

Let A be the n x n matrix whose rows are

k
k -
a;CH:Z( >(—)\)""' t. 1, (k=0,...,n—1).

r=0 r
Then

a;s‘-‘rl = F/[Jn()‘) - AITL]k = (07 .. 7O7f1a .. 'afn—k)7

having k leading zeros. Thus A is an upper triangular matrix with leading
diagonal (f1,..., f1)’ with determinant f}*, and is non-singular if and only
if f{ # 0. The rows of A are constructed as linearly independent linear
combinations of those of T. So A and T have the same rank and the result
follows.

<

Notice that even the DLM with A = 0 is observable since J,(0) has rank
n — 1. Thus, although the system matrix of an observable DLM must be
of at least rank n — 1, it is not necessary that it be of full rank n.

Within the above class of similar observable models the simplest DLM
is {E,,J,(A),-, -}, for which E/, = (1,0,...,0), the only non-zero element
of which is the leading 1. This specific form is adopted as the basic model
with a single real eigenvalue. The E,, notation is used throughout the book.

Definition 5.7. Let M = {F, G,V;, W;} be any observable TSDLM in
which the system matrix G has a single real eigenvalue A\ of multiplicity n.
Let T be the observability matrix of this model and define

E, = (1,0,...,0)".
Then
(i) any model M; = {E,,J,(}\),,-} with observability matrix T is
defined as a canonical similar model; and
(ii) the model My = {E,,J,(\),V;, HW,H'}, where H = T;'T, is
defined as the canonical equivalent model, so long as the initial
priors are related as in Definition 5.4.

5.4.83 Multiple real eigenvalues

Suppose G has s distinct eigenvalues Ay, ..., A\s with \; having multiplicity
r; > 1, so that n =ry +---+rs. Again using Section 17.4.3 it follows that
G is similar to the block diagonal Jordan form -matrix

J = block diag [J,, (A1),..., I, (As)],

s
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defined by the superposition of s Jordan blocks, one for each eigenvalue
and having dimension given by the multiplicity of that eigenvalue. In such
cases a generalisation of Theorem 5.3 shows that the DLM is observable if
and only if it is similar to models of the form

{E7 J7 ) '}a
where

E = (E.,....E.)

r1?
is constructed as the corresponding catenation of s vectors of the form
E. =(1,0,...,0)

of dimension r, for r = ry,...,7s. The forms of E and J provide the
algebraically simplest similar models and are adopted as canonical.

Definition 5.8. Let M = {F, G, V;, W;} be any observable TSDLM in
which the system matrix G has s distinct real eigenvalues A1, ..., As with
multiplicities r1,...,rs respectively. Let T be the observability matrix of
this model and define

E = (E!

1"

LELY
and

J = block diag[J,, (A1),...,Jr. (Xs)]-
Then

(i) any model M = {E,J, -, -} with observability matrix T is defined
as a canonical similar model; and

(ii) the model My = {E,J, V;, HW,H'}, where H = TalT, is defined
as the canonical equivalent model, so long as the initial priors
are related as in Definition 5.4.

5.4.4 Complex eigenvalues when n = 2

Suppose that n = 2 and the 2 X 2 system matrix G has complex eigenvalues.
G is real valued so the eigenvalues are a complex conjugate pair of the form

A = det® and Mg = Ae ™,

for some real A\ and w, ¢ being the imaginary square root of —1. Thus,
G is similar to diag (A1, A2). As in the case of distinct real eigenvalues of
Section 5.4.3, the model is similar to any DLM {(1,1)’,diag (A1, A2),.,.}.
However, this canonical similar model is not used since it results in a com-
plex parametrisation, horrifying to practitioners and clearly to be avoided.
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Instead, a real canonical form of G and the associated similar, real DLMs
are identified. To proceed, note that, again following Section 17.4.3, if

then

n(y o) (e )

H 1 _ 1
0 1)’
from which it follows that the model is similar to any model with regression

vector (1,0)" and system matrix with the above cos/sin form.

Definition 5.9. Let the observable TSDLM {F, G, V;, W;} with observ-
ability matrix T be any 2-dimensional model in which the system matrix
G has a pair of distinct, complex conjugate eigenvalues

A1 = et and Ao = dhe™ ™,

and

for real, non-zero A and w. Define
_ cos(w) sin(w)
Jo(Aw) = A (—sin(w) cos(w)) ’
Then
(i) any model M; = {Eq, J2(\,w), -, -} with observability matrix T is
defined as a real canonical similar model; and
(ii) the model My = {E,J2(\,w), Vi, HWH'}, where H = T;'T, is
defined as the real canonical equivalent model, so long as the
initial priors are related as in Definition 5.4.

It is easily checked that the observability matrix of My is simply
1 0
To = ()\cos(w) Asin(w) ) ’

5.4.5 Multiple complex eigenvalues’

Again following Section 17.4, we directly define the real canonical models
for cases in which the system matrix has multiple complex eigenvalues.
Although rare in practice, there are instances in which such models may
be used, and these canonical forms provide the simplest construction. Since

TSections 5.4.5 and 5.4.6 are of rather theoretical interest and may be omitted
without loss on a first reading.
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complex eigenvalues must occur in conjugate pairs and G is real valued,
the model dimension n must be even.

Definition 5.10. Let {F, G, V;, W,} be any observable TSDLM of dimen-
sion n = 2v, where v is some positive integer. Suppose the system matrix
G has v multiples of a pair of distinct complex conjugate eigenvalues

A =X and Ay = e W,

for real, non-zero A and w. Let T be the n x n observability matrix of this
model and define

LOw I 0 0
0 J(\w) I 0
J2,v(A7w): : : . :
0 0 0o ... 1
0 0 0 ... Jh(\w)

Thus, J2,,(A,w) is a 2v x 2v block matrix comprising 2 x 2 submatrices.
The v diagonal blocks are the basic cos/sin 2 x 2 blocks Jo(\, w), the super-
diagonal blocks are the 2 x 2 identity I, and the remainder are zero blocks.
Finally, define the 2v x 1 vector E, , via

E;, = (ES, ..., EY).
Then

(i) any model My = {Eg ,,J2 ,(\,w), -, -} with observability matrix T
is defined as a real canonical similar model; and

(ii) the model My = {Eq.,,J2.,(\,w), Vi, HW,H'}, where H = T, 'T,
is defined as the real canonical equivalent model, so long as the
initial priors are related as in Definition 5.4.

Note in particular the special case of Section 5.4.4 whenv = 1, Eg 1 = Eo,
and Jo 1 (A, w) = Ja2(\, w).

59.4.6 General case

In the most general case, G has s real and distinct eigenvalues Aq, ..., As
of multiplicities rq,...,7s respectively, and v pairs of complex conjugate
eigenvalues

PWILL and Noype Wk, (k=1,...,v),
for some real, distinct As41,..., A5y, and some real, distinct wq,...,w,,

with the k' pair having multiplicity 744 %, (k = 1,...,v), respectively.
Note that the dimension of the model is now

S v
n:E rk—i—ZE Tstk-
k=1 k=1
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The simplest real similar model is based on a system matrix formed by the
superposition of s + v diagonal blocks each corresponding to the canonical
form for an individual real and/or pair of complex conjugate eigenvalues.
Again the reader is referred to Section 17.4.

Definition 5.11. Let M = {F, G, V;, W;} be any n-dimensional observ-
able TSDLM with the eigenvalue structure as detailed above and observ-
ability matrix T. Define the n x n block diagonal matrix J as

J = block diag [T, (A1), Ty (A2), ..oy T (As);
J2,rs+1 (>\s+1a Wl)a J2,r5+2 (>\s+27 w2)7 ey J27TS+1, (>\s+va ("-)1))]7
and the n x 1 vector E as

E=(E.,E ... E.;E, _E, ... E,, Y.
s Ts+o

1)) P 2 re 1 T2 rs g2

Then

(i) any model M; = {E,J, -, -} with observability matrix T; is defined
as a real canonical similar model; and

(ii) the model My = {E,J, V;, HW,H'}, where H = TalT, is defined
as the real canonical equivalent model, so long as the initial
priors are related as in Definition 5.4.

This general canonical form is constructed from the simpler canonical
models for each of the real and complex pairs of eigenvalues. The individual
system matrices are simply superposed to form an overall block diagonal
J, and the corresponding individual regression vectors are catenated in the
same order to provide the general vector E. This construction of a very
general model from the component building blocks provided by simpler
models is a key concept in model design, the subject of the next chapter.

5.5 LIMITING RESULTS FOR CONSTANT MODELS
5.5.1 Introduction

A feature of constant DLMs is that variances converge to limiting values, of-
ten rapidly. In this section, we give general convergence results based on an
approach that depends only on the existence of the first two moments and
not on assumptions of normal distributions. This follows Harrison (1997).
Related though less general results can be found in Anderson and Moore
(1979). The convergence of variances, and consequently of the adaptive
vectors Ay, reveals the relationship between constant DLMs and classical
point forecasting methods that generally adopt the limiting recurrence re-
lationship for the parametric mean m; and the limiting one-step forecast
variance () as discussed in Section 5.5.6.

Consider the univariate constant observable DLM {F,G,V, W}, with
observability matrix T. Using the notation of Section 4.2, the initial infor-
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mation is (6g| Do) ~ N[myg, Co], and thereafter the information set at time
tis Dy ={Y;,Dy_1}. For p=0,1,... ,t —1,let Dpy ={6,,Yp11,... Y2}
Define

Yt = (Yt—n+17 ce 7)/15)/7

wt7n+1 = Vt—n+1,
i—1
) .
Vi—nti4i = Ve—nt14i + F E Glwi—pti1+i—j,
j=0

’l»[;t = (¢t—7l+17 e 7¢t)/7

and
n—2
€ = Z letfi — Gn_lT_l’Lﬂt.
=0

Thus, €; is a linear function of v; and {wW¢—p42,...,wt}, so that for all
t > n, V]e:] = S is a finite constant variance matrix.
From the observation and system equations Y; = TO;_,,+1 + ¥ and

n—2
0, =G" 10,11+ Z Glw;_,
i=0
so that
0, =G" 'TY, +¢. (5.4)

5.5.2 Key preliminaries

Definition 5.12. For two general n x n finite variance matrices M and S,
write M < S to signify that I'MI1 < I’Sl, for all n-vectors 1. In such cases,
we say that M is bounded above by S, and that S is bounded below by
M.

Convergence: All variance matrices are bounded below by 0. It follows
that if {M,} is a sequence of finite variance matrices that is bounded above
by S, and is such that for all ¢, either (i) M1 < My or (i) My > My,
then lim;_, oo M; = M exists.

Theorem 5.4. For allt > n, the variance sequence {C.} is bounded above
and below, with 0 < C; < S.

Proof. C; is independent of the values of {¥;}, and from (5.4),
C; <V[0,/G"'T'Y,] = V]e] = S.
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Key results. For p=0,1,... ,t — 1, we know that

VI0|D:] = E[V[0|Dy,¢, Di]| De] + VIE[B|Dy1, Di]| Dy]. (5.5)
From the recurrence relations, my is a linear function of (V3,... ,Y,41, my).
Given D, ¢, 6, is precisely known, so for appropriate known n x 1 vectors
bi—p0,--- ,bi—pi—ptr1 and n X n matrix By_p,
t—p+1
E[6:|Dps, D] =E[0,] Dyl = Y bipiYii+ By 0, (5.6)
=0

Also, it is clear that
V[eplDt] 2 V[0p|D0,t] 2 V[0p|0p+17Y2079p—1} > 07 (5-7)

based on the definitions of the respective conditioning information sets and
on the fact that additional information increases precision, or decreases
variance, in this context of multivariate normal distributions.

These key results underlie the proofs of the following general results.

5.5.3 The convergence theorem

Theorem 5.5. For any observable constant DLM, the limiting variance
t—o0
exists and is independent of the initial information Dy.

Proof. Throughout, p is a given integer in the range 0 < p < t. Write
V1[6,|Do ] = C;. Note that the sequence {Cj} is independent of the actual
values comprising Dy ¢, and so, using (5.6),

E[V[60:|Dyp¢]|De] = V6| Dy ¢] = V[0:—p|Do,t—p] = C7_,,

and
t—p+1

E[6,|D;, 6, = E[0:|D, ;] = Z bi_piYi i+ Bi_p0p.
=0

Now proceed as follows:

(i) First prove the theorem for any DLM when Dy = Dg o precisely
specifies 8y, so that Cy = C{ = 0. Using (5.5),

C; = E[VI[0:|Dy+]| Do ] + VIE[O:| Dy ]| Do t]
= Cf_p + V[B,_,6,|Do ] > Cf_p

Monotonicity and 0 < C; < S prove that lim; ,., C; = C* exists.
Further,

tli}go V[Bt_p0p|Do7t] =0. (58)
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(ii) We now give the proof for any prior Dy when VW > 0. Using (5.8)
and (5.7),
V{0p|Do ] = V[0p|0p41,Yp, 0p1] >0,
so that
lim B, = 0. (5.9)

t—o0
Consequently, lim;_, ., C; = C*; this follows by employing (5.5),
(5.6) and (5.9) to show that

V04| Di] = E[V[0:| Dy, +]| Di] + V[E[0:| Dy 1]| Dy]

C,=C;_, +V[B;,0,|Di] — C*.

(iii) The remaining DLMs are wholly or partially deterministic and/or
static with VW » 0. With identity matrix I, consider the subset
of DLMs defined by {F, G,V 4+ 2, W + zI); Dy :0 < z < 1}. For
any given x let the variance sequence be {Cy(x)}. Then
(a) lim;_, o C;(0) = C*(0) exists, from (i).

(b) limy_, oo Cy(z) = C*(z), for all 0 < z < 1, from (ii).
(¢) Ci(x) is bounded, continuous with x, monotonic in z.
Hence as t — 0o, Ci(z) tends (converges) uniformly to C(z), and

Mg, G0 = Jizg, i ©ul)

= lim lim Cy(z) = lim C*(z) = C*(0).

x—0t—00 z—0

Corollary 5.2.
lim Ry =R =GCG' + W,
t—o00
lim Q; =Q =FRF+7V,
t—o00

lim A, = A = RF/Q.

t—o0

5.5.4 Multivariate models

Consider the multivariate constant DLM of Definition 4.1. Assume the
error terms have known means E[v;] = 7 and Efw;] = &;, and known
variances, as usual.

Definition 5.13. The multivariate DLM {F, G, -, -} is observable if and
only if the nr x n observability matrix T is of full rank n. That is, there
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exists a vector 1 € IR" such that the univariate DLM {I'F, G, -, -} for the
univariate time series {l'Y;} is observable.

The extension to known means ; and @; does not affect covariance
measures. Considering the univariate series I'(Y; — &, — F'@;) shows C; to
be bounded. Then, with Y; — vy — F'@; for Y;, the theorem takes exactly
the same course, with the result that

lim C; = C = C*,
t—o0

lim R; = R=GCG'+ W,

t—o0

lim Q; = Q = FFRF +V,
t—o00

lim A, = A =RFQ L.
t—o00

5.5.5 Convergence for a non-observable DLM

Although a sufficient condition, observability is not a necessary condition
for convergence of the variance sequence {C;}. Convergence may occur
for non-observable constant DLMs, such as constrained observable models.
A simple example is a DLM comprising a level parameter in addition to
parameters representing each of the four quarterly seasonal factors. The
observability matrix T is singular, but with the additional constraint that
the sum of the seasonal effects is zero, C; converges.

A stationary constant DLM has all the eigenvalues of G inside the unit
circle (see Definition 5.16). So, no matter what the rank of T, C; is
bounded and convergence is assured even in the most trivial case in which
F=0.

Consider the general constant DLM that, without loss of generality, can
be expressed in partitioned form as

([ F _|G1 0
F—<F2> and G—[O G2],
where the eigenvalues of G lie on or outside the unit circle but those of
G, lie inside the unit circle. Convergence for the whole DLM occurs if the
DLM {F4, Gy, } is observable or constrained observable.
In all these cases it is easily shown that no matter what the initial prior,

{C4, t > n} is bounded above. Once this is demonstrated, the convergence
proof is exactly the same as for observable DLMs.

5.5.6 Further limit results

For the univariate, observable and constant DLM, the limiting form of the
updating equation for m; is given by

m; ~ Gmy_ + Ae; = Hm,_ + AY,
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with H = (I - AF’)G. For a proper DLM with W >0, H= CR!G and
a limiting representation of the observation series in terms of the one-step
forecast errors follows. Let B be the backshift operator, so for any time
series X;, BX; = X;_1 and BPX; = X;_,.

Theorem 5.6. In the univariate constant DLM {F, G,V, W} denote the
eigenvalues of G by \;, and those of H by p;, (i =1,... ,n). Then

lim {ﬁ(1 — \B)Y; — ﬁ(l - piB)et} =0. (5.10)

t—o0
i=1 i=1

Proof. Following Harrison and Akram (1983) and Ameen and Harrison
(1985), let P1(B) and Py(B) be row vectors and P3(B) and Py(B) be
scalars, all with elements that are polynomials in B of order not exceeding
n—1. Employ the Cayley-Hamilton theorem (Section 17.4.2). From Y;; =
F'Gm; + e;11 and my = Gmy_q + Aye, it follows that

n n

[T =XB)Yipr = [J(1 = AiB)err1 + P1(B)Aser. (5.11)

i=1 i=1
And, from the Bayes’ proof of the recurrences in Theorem 4.1,

lim (m; — Hm,_; — AY;) =0.
t—o00

Define My = mg, M; = HM,;_ 1 + AY;, and X; 1 = F'GM; + €411, so
that, again employing Cayley-Hamilton,

[[ = piB)ecis = [[(1 = piB) X141 + P2(B)AY;. (5.12)
i=1 i=1

Note that lim;—, oo M = m; and lim;—, oo X; = Y%, so from (5.11) and (5.12),

lim {ﬁu — \B)Y, —[1+ BP3(B)]et} =0

t—oo | -
=1

and
i {H(l —piB)es — [1+ BP4(B)]Yt} =0.
1=1

The order of the polynomials in B correspond, and since the equations are
true for all allowable values (Niypi), (i =1,...,n), the coefficients of each
B' can be equated to complete the proof.

o

It should be noted that Theorems 5.5 and 5.6 are based solely on the
forms of the updating equations in TSDLMs, with absolutely no assump-
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tions about a “true” data generating process or about normality. In ad-
dition, they apply even if the observational variance V is unknown and
subject to the usual variance learning. In such cases, the posterior dis-
tribution for V' will concentrate about its mode as ¢ increases, asymptoti-
cally degenerating, and the model therefore converges to a known variance
model.

From Theorem 5.6, the limiting representation of the observation series
in terms of forecast errors is given by

Y: :Zan},j—i-et—i—Zﬁjet,j, (513)
j=1 j=1

with coefficients given by

n

ar = i% az=-) Xn: Aidks @ = (=1)" A g A,
=1

i=1 k=i+1

& :72171', fa = Z Z PiPk, ﬂn:(*l)nJrlppo...pn.
=1

i=1 k=i+1

This representation provides a link with familiar ARIMA predictors of Box
and Jenkins (1976), and with alternative methods including exponentially
weighted regression, or exponential smoothing (McKenzie 1976). The fol-
lowing comments on the relationship with ARIMA modelling are pertinent.

(1) Suppose that p of the eigenvalues of G satisfy 0 < A < 1, d are equal
to 1, and n—p—d are zero. Suppose also that ¢ of the eigenvalues of
H satisfy 0 < p < 1 with the remainder being zero. Then equation
(5.13) is an ARIMA(p, d,q) predictor, whether or not the errors
{e:} are uncorrelated.

(2) The ARIMA predictor is a limiting result in the DLM and therefore
primarily of theoretical interest. In practice the use of non-constant
variances and interventions will mean that the limiting forms are
rarely utilised.

Theorem 5.7. In the univariate constant DLM {F, G,V, W} denote the
eigenvalues of G by \; and those of H by p;, (i = 1,...,n). Then if the
series {Y;} is truly generated by this DLM, it can be represented as

n n

[[a-xB)yY: =] - piB)as, (5.14)

i=1 i=1

where a; ~ N[0, Q] are uncorrelated random variables.
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Proof. Only a sketch of the proof is given. Apply the Cayley-Hamilton
theorem to show that

n

H(l = AiB)Y: = o({ve, wi )y - s AVi—ns Win}),

i=1
where ¢ is a linear function of the random vectors {ws,... ,wi_ny1} and
random variables {vt,... , 14—, }, and is independent of ¢. Following Harri-

son (1967), represent ¢ in MA(q) process form, as

q
AWy Went 1, Ve Viep) = ar+ Y i .

i=1

Finally, the previous limiting results and Theorem 5.6 identify the roots of
this MA process as the p;. Also, limy_,o(a: —e;) = 0.

From (5.14) it may be thought that Y; must follow an ARIMA(p,d, q)
process. The truth is, however, more general; the eigenvalues of G may take
any values, so the framework encompasses explosive processes as well as
processes with unit eigenvalues. In non-explosive cases, we will have some
p of the eigenvalues satisfying 0 < |A;| < 1, a further d such that A\; = 1,
with the remaining \; being zero, together with, typically, some number ¢
of the pi such that 0 < |pg| < 1 and the rest being zero. In these cases, Y;
can indeed be represented in the form of an ARIMA(p, d, q) process. Thus
all ARIMA((p, d, q) processes can be represented by a member of a subclass
of constant TSDLM’s {F,G,V, W} with n = max{p + d, ¢} parameters.
The corresponding ARIMA point predictors operate with limiting forms
and consequently impose unnecessary restrictions in their application.

5.5.7 Retrospective limit results

Referring back to the retrospective results of Sections 4.7 and 4.8, notice
that for any fixed integer k > 0,

lim B;_; =B =CG'R™},
t—o0
lim Ay, = CH" 'G'R™,
t—o0
so the limiting retrospective distribution can be obtained as follows.

Theorem 5.8. Given any fixed integer k, as t — oo, the variance of the
historical parameters (0;_g, ... ,0:|D;) converges to a limit with elements

Jim C[6;—i—;.0,i|Dy] = C[~(i + ), ~i] = B/R(~i)
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for all i,j such that i,57 > 0 and i +j < k, with B = CG’'R™! and where
the R(—k) may be recursively calculated according to

R(-k) = C +B[R(-k+1) - R|B/,

with initial value R(0) = R.

With a;(0) = my and a;_1(1) = a;, the limiting form of the recursive
equations for revising retrospective means may be written in two ways,
namely

at(—k) = at_l(—k‘ + 1) + BkAet
=my_r + B[at(—k + 1) — at,k+1].

The proof is straightforward, using the filtering and retrospective results
of Sections 4.7 and 4.8, and is left to the reader.

5.5.8 Discount TSDLM limit results

Discount models are fully discussed later in Section 6.3, but are previewed
here to tie in with the limiting theory above. In a single discount TSDLM
{F,G,V,W,}, W, is defined as W; = (1 — §)GC;_; G’/ for some dis-
count factor § such that 0 < § < min{1,A2,... 2}, where the \; are the
eigenvalues of G. In cases in which G is of full rank, the resulting form
of the updating equations relates closely to discount weighted regression
estimation and is of much interest.
Since Ry = GC;_1G’/J in this model, it follows that

C;' =G YC G+ VTIFF,
so that
: -1 _ —~—1 _ y/—1 v —v! Iy —v
lim Cit=C"t=V 2_%5 GV'FF'G™.

Clearly lim;_,,, Wy = W, and the DLM converges rapidly to a constant
DLM. Further, since H = §CG~1'C~!, the eigenvalues of H are simply
pi =9/A;. In (5.13) this leads to

) n n 5
Jlim {1:[1(1 —~ \B)Y, — ]:[1 (1 - /\iB> et} =0. (5.15)
Further,

B=CGR'=0G",

which simplifies computations in the limiting retrospective updating equa-
tions.
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56 STATIONARITY
5.6.1 Introduction

Historically, stationarity has been a dominant concept throughout time se-
ries analysis, and it is found useful in modelling closed systems. Purely
stationary models are, however, of limited value in modelling open systems
that necessarily involve interventions and model modifications to adapt to
changing circumstances in the forecasting environment. However, mod-
els that involve stationary component sub-models, and inherently non-
stationary, time-varying extensions of traditional stationary models, are
valuable in a variety of contexts. The definitions and elements of the the-
ory of stationary processes are introduced here.

Definition 5.14. A random time series, or RTS, Z; is

(1) an ordered finite or infinite set of random variables indexed by con-
secutive integers;

(2) (strictly) stationary if for any given integer n, the distribution
function of any random vector Z; ,,+1 = (Zy, ... , Zi+y,)" is indepen-
dent of the time ¢;

(3) weakly stationary if both E[Z; ] and V[Z;,11] are indepen-
dent of time t;

(4) Gaussian (normal) stationary if it is weakly stationary and the
distribution of every Z; . is normal.

Definition 5.15. Given a weakly stationary RTS Z;,

(1) C[Zt, Zyyr] = vk is the autocovariance at lag k;

(2) pr = vk/70 is the theoretical autocorrelation at lag k;

(3) The graph {k,~x} is the theoretical autocorrelation function (ACF);
(4) The autocovariance generating function (ACGF) is

o0

YB)= Y B,

vV=—00

for real arguments B such that |B| < 1; the definition is also useful,
in a formal sense, when B is taken as the backshift operator.

Stationarity imposes a strong structure, with weak stationarity implying
a common mean, E[Z;] = p for all ¢, and the lag-dependent covariance
structure C[ Xy, Xi4s] = 75 for all t and s. In a Gaussian process, these first
and second-order moments are those of the implied multivariate normal
distribution for any subset of the Z;, and so completely characterise the
RTS. Given the mean p and the autocovariances ~g,71,..., we use the
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notation

Z ~ S[p;v(B)],

and in the Gaussian case,

Z ~ GS|p; y(B)]-

EXAMPLE 5.11.  Consider a random time series generated according
to Z; = 2a; — a;—1, where a; ~ NJ0,1] independently. Based only on
this specification, the RTS is Gaussian stationary, with the entire joint
distribution defined by

u=0, v%=5 v=-2, and ~; =0, forall £k > 1.
Thus,
Z; ~ GS[0; —2B7 +5—-28].

Note, however, that conditioning on, say, Z; = 1, implies that the RTS is
no longer stationary, although the RTS {Z; : t > 3} is.

EXAMPLE 5.12. Consider an infinite random time series generated ac-
cording to Z; — AZ;_1 = a;, where a; ~ NJa, 02] independently. Based only
on this specification, the RTS is Gaussian stationary if and only if || < 1,
and in that case the entire joint distribution is defined by

p=a/(1-=X) and = Ae?/(1-)2), forall k>0,
so that
Zy ~ GS[a/(1 = N); o*(1 = AB)"'(1 = AB™H71].

Again, note that observing Z; implies that the RTS is no longer stationary,
nor, for any k > 0, is any subsequence {Z; : t > k} for k > 0.

5.6.2 Stationary DLMs

It is evident from the preceding examples that if interest lies in predicting a
series Y; generated by a DLM, then given D, the future series {Y;4; : ¢ > 0}
will not be stationary except in trivial cases. If W, > 0, this future series
will be stationary if and only if (@) the model is equivalent to an observable
constant DLM {F, G, V, W}; (b) all the eigenvalues of G satisfy |A;| < 1;
and (¢) (0¢4+1]|D:) ~ [0,R], where R = GRG’ + W. Though the third
condition here has zero probability of being true, it is useful to relax it and
define a DLM to be (qualitatively) stationary based only upon the first two
conditions.
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Definition 5.16. A DLM {F;, G, V;, W;} is a (zero mean) weakly
stationary DLM if and only if

(1) it is equivalent to an observable constant DLM {F, G,V, W};
(2) the eigenvalues of G lie inside the unit circle, i.e., |A;| < 1, for
i1=1,...,n.

Naturally, all such normal DLMs are termed Gaussian stationary DLMs.

5.6.3 Identification

For a specified RTS Y; generated by an observable TSDLM {F, G, V;, W;}
together with the initial prior based on Dy, the entire joint distribution of
all linear functions of the RTS is completely defined. Hence, in principle,
given a subsequent series of observations, it is a straight-forward matter to
compare the actual sampling and theoretical distributions. In particular,
writing the eigenvalues of G as A1,..., A, and defining

n

Zy = [[(1 = AiB)Yign,

i=1
we know that for all £ > 0 and j > n,
ElZ1x|Di] =0 and  ClZik, Ziyrrs] = 0,

providing one basis for assessing the adequacy of the model and facilitating
model identification.

Further, if the TSDLM is a constant DLM and the only eigenvalues of G
that lie on or outside the unit circle are Aq,... , A, then the implied DLM
generating

r

Uy =[]0 = NiB)Yiy,

i=1

is a stationary DLM that can be modelled as an ARMA process as discussed
in Chapter 9.

This provides the basis of classical identification methods that examine
linear functions of the observed series Y;, seeking a parsimonious function
U, that appears weakly stationary. The emphasis is on the associated sam-
ple means and covariance structure of the Uy series either directly through
the ACGF or its Fourier transform, the spectrum. The latter is partic-
ularly useful when the eigenvalues are complex, so that either the whole
series or major components may follow a mixture of damped cosine waves
of differing frequencies.
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5.7 EXERCISES

(1) Determine whether, and if so under what conditions, the following
TSDLMs {F, G, -, -} are observable.
(a) {F,G} = {1, A} for some given real \.
(b) With given real A; and Ag,

() el 1)

()
1 0 1
() (o)
()
1 4 -1 2
1 1 5 5

(e) For a given real w,

P (D), eaga- () ),

—sin(w) cos(w)

(f) {F,G} ={E,,J,(\)} for n > 2.

(2) Give an example of an observable, n-dimensional DLM whose sys-
tem matrix G is of rank n — 1. Show that a necessary but not
sufficient condition for a TSDLM to be observable is that the rank

of the n x n system matrix G is at least n — 1.
(3) Consider the constant DLM

)G ) (e}

with parameter vector 0; = (0};,6;,)".
(a) Is the DLM observable?
(b) Write down the observation and system equations.
(c) What is lim; o0 V[0s1 + 02| Dy]?
(d) What is llmt*)oo V[th - QtQ\Dt]?
e) Provide an observable DLM to represent the series Y;.

(
(4) Consider the constant DLM

1 1 0 5 1 1
0/°\0 0/77\1 4
with parameter vector 8; = (6},,0},)’.

(a) Is the DLM observable?
(b) Write down the observation and system equations.
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(¢) Show that although the DLM is unobservable, the series Y; can
be represented by a DLM with only one parameter and that
this is equivalent to a first-order polynomial DLM.

(d) Define this DLM {1,1,V,W}.

(5) Obtain the algebraic form of the forecast function for each of the
following TSDLMs {F, G, -, -}, with a real parametrisation, noting
whether or not the models are observable.

(a) {F,G}={1,A}.

Investigate all the possible cases, i.e., A < =1, A = -1, -1 <
A<0,A=0,0<A<1l,A=1and A > 1.

(b) F/ =(1,0,0) and G = J3(\) for 0 < A < 1.

Examine the form of f;(k) as a function of k, determining, in
particular, the turning points of the forecast function.

(¢) FF=(1,0,1,0,1) and

G =vockdine {(§ 1), 2 ( 5l i) o)

with A >0, 1 > ¢ > 0 and w not an integer multiple of .
(6) Consider a TSDLM with
1 01 0
F=10], G=|0 0 1
0 1 00

(a) Show that for all positive integers k and n, the forecast function

fi(k) = fi(k + 3n),

and so is cyclical of period 3.
(b) Show that the model is observable and transform it to canonical
form.

(7) Generalise the previous example to models that are cyclical of period
n > 1, having F = E, = (1,0,... ,0) and

0 I
o= (Vo)

where I is the (n — 1) x (n — 1) identity matrix. Distinguish the
cases of even and odd values of n.

(8) For some integer n > 1, suppose that F' = (1, E/) and

1 0 0
G=[0 0TI |,
0 1 0

where I is the (n — 1) x (n — 1) identity matrix.
(a) Show that the model is unobservable.
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(b) Let ¢¢ denote the final n elements of the state vector at time
t, so that 0, = (6, @}), say. If 1'¢p; = 1 show that the model is
constrained observable.
(9) Transform the following observable models to canonical forms, iden-
tifying the corresponding similarity matrices H (Theorem 5.1).
(a) For some given real and distinct A; and Ag,

() el 1)

1 11 1
(b) F=(1], &=[(01 1
1 0 0 05

(¢) Given w is not an integer multiple of 7,

1 0.5¢ 0
F_<1>’ G‘( 0 0.5e—iw)'

(10) Consider any two TSDLMs M and M; characterised by quadruples
Mo : {E3,J3(1), Vi, Wo,},

1 111
M; : ofl,{o 1 1],1000,W
0 00 1

(a) Calculate the observability matrices T and T; for M and M;
and deduce that both models are observable.

(b) Show that the DLMs are similar, and that the similarity matrix
H=T"'T, is given by

100
H=[|0 1 1
0 0 1

(¢) Identify the common form of the forecast function, and inter-
pret the meaning of the state parameters in each model.

(d) It
100 0 0
W = 0 9 -1
0 -1 1
and
100
(60| Do, M) ~ N 3 , AW |,
1

under what conditions are M and M; equivalent?
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(14)
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Consider the model {1, A\, V, W} where X is real. By applying The-

orems 5.5 and 5.6 or otherwise, obtain

(a) the limiting values of C, R, A and Q;

(b) the limiting representation of Y; as a linear function of Y;_1, e;
and e;_q.

(c¢) Distinguish between, and comment upon, the cases [A\| < 1,
A=1, and [A\ > 1.

In Theorem 5.6, the eigenvalues of H = (I — AF')G determine the

limiting representation of Y;. Verify the identity H = CR™'G.

Given |A| < 1 and VW > 0, obtain the limiting representations of

the observation series Y; in terms of past observations and one-step

forecast errors e; for the DLM

1 1 A V.V U+ NW  NW
0/°\0 X)) AW AW ’

Consider the constant model {1,1,V,W}. Given an integer k& > 0,
obtain the limiting retrospective variance

. !/
tli{gcv[('ut? s a,utfk) |Dt]

If Y; is a stationary random time series (RTS), show that for all
integers k and times ¢, C[Y;, Yiix] = C[Y:, Yi—i].
The backshift operator B operates on a time index ¢t such that
By, = y;_y and BFf(t) = f(t — k) for time series y; and func-
tions f(t), and for all integers k. Write the following expressions in
the form ¢(B)Y; = 0(B)e;, where ¢(B) and 6(B) are polynomials
in B :
(a) Yipr —Y: = ey
) Yip1 =Y =ei9;
(C) Y;; — 3/;72 — e+ 0.561571 = 0;

) Y=Y 1 =Y 1o+ Y13 =€ —0.2e;1 —0.5e;_12 + 0.1e;_13;
() X0y ()(~1)"¥iew = Sy (%) () et
Let...,y-1,%0,Y1,-.. and ... ;a_1,ag, a1, ... be infinite sequences,
the latter bounded. Suppose that |a| < 1 so that lim,,— .o o™y, =
0 for all integers k.
(a) If y — ayr—1 = (1 — aB)y; = at, prove that the inverted ex-

pression
oo oo
yr = (1— aB)_lat = Z(aB)lat = Zazat,i
i=0 i=0

is valid and meaningful.

(b) Prove by induction that the expression [[,(1 — a;B)y; =
a; is invertible to y = []_;(1 — a;B) 'a; under the same
conditions. This proves the important result that ¢(B)y; = a;
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is invertible to y; = ¢(B) 'a, if and only if the roots of the
equation ¢(B) = 0 all lie outside the unit circle (i.e., have
modulus greater than 1).

(18) Given e; ~ NJ[0, 0%] independently, state which of the following RTSs
are stationary and for these, derive the corresponding ACFs.
(a) }/f =e; + 2€t—1-

(b) Y, +2Y;_1 =e;.
(¢) Y; = g where py = gpi—1 +e; and |g| < 1.
(d) Y, = Sy ers/(m+ 1),

(19) In studying stock market prices, chartists often take moving aver-
ages of prices as indicators without being aware that such averaging
usually introduces correlation, and that this can mislead through the
resultant spurious patterns. To investigate this, let Y; ~ N|u, o?]
independently, and X; = 2?21 w;Yy—i+1, where the w;’s are known
constants such that > ", w; = 1. That is, X, is computed as a
moving average of the values of Y;. Find the induced correlation by
deriving the ACF of X in the two cases
(a) w; = 1/n, so that X, is an arithmetic average,

(b) w; = (1 —B)3~1/(1 — B"), so that X, is a truncated EWMA.

(20) Suppose X ~ S[ug; 7. (B)] and Y ~ S[uy;v,(B)] and that X, is
independent of Y for all £ and s. Prove the following important
theoretical results.

(a) If Zy = X; 4+ Y; then Z ~ S[uy + py; 72 (B) + 7y (B)].
(b) For any real numbers [y and g, if Z; = 1; X; + [oY; then
Z ~ S[hpz + lapiy; Ev2(B) + 137 (B)]-
(¢) f Z; = X; — aX;—1 = (1 — aB)X; then
7 ~S[(1 — a)pia; (1 - aB)(1 — aB~ )y (B)].
(d) If Z; = ¢(B)X¢, where ¢(B) is a finite polynomial in B, then
Z ~ S[p()pa; ¢(B)p(B~)7a(B)].

(21) {Y:} is a univariate random time series.
(a) You have n + 2 observations Y = (Y7,...,Y,12) available to
test your theory that Y; follows the NDLM

to) (o) (6 9)}

Obtain the theoretical distribution of an appropriate derived
series and describe how this enables you to examine the ade-
quacy of your proposed model.

(b) Suppose that the RTS {Y;} is such that the derived series
Zy = Yis1 — 0.9Y; ~ GS[0; —90B~ + 200 — 90B] .
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Construct an appropriate single-parameter constant DLM for
{Y:}, precisely quantifying the quadruple {F,G,V, W}.

(22) Let the RTS {Y;} be generated by the observable constant DLM
{F,G,V, W} where G has eignevalues A; such that |\;| < 1 for
i=1,. —r,and |[N\;| > 1fori=n—r+1,...,n. Show that
the derlved RTS

n

Zy = H (1= XiB)Yiyr
1=n—r+1

can be appropriately modelled by the stationary observable DLM

a6 o) o)

where G* has eigenvalues A1, ..., Ay_p.



CHAPTER 6

MODEL SPECIFICATION AND DESIGN

6.1 BASIC FORECAST FUNCTIONS

Central to DLM specification and design is the development of appropriate
form and structure of the forecast function, from Definition 4.4,

fi(k) = Elpeyx|Di] = E[F}, 0¢ 1| Dyl

for all ¢,k > 0. This defines both the qualitative form and the forecaster’s
numerical specification of the expected development of the time series.
Consequently, it is of fundamental importance to the design and construc-
tion of appropriate DLMs. This chapter begins with a discussion of forecast
functions derived from the various TSDLMs of the previous chapter. To-
gether with complementary forecast (transfer) functions for the effects of
independent variables, these provide the basis for designing all practically
important dynamic linear models.

6.1.1 Real Jordan block system matrices
The simplest observable class of DLMs comprises those for which the

system matrices each have a single real eigenvalue.

Theorem 6.1. For real \, the forecast function fi(k) (k > 0) of any
canonical model {E,,J,(\),-,-}, and hence of any similar model, takes
the following form:

(1) If, as with most practical models, A # 0, then

n—1
frlk) = X" an k",
r=0

where ay, . .., an—1 are linear functions of my = (my1,... ,Myy),

but are independent of k.
(2) In the irregular case A = 0, then

Je(k) = my y1, (0<k<n),

Proof. Given E[f; | D;] = m,, by definition,
fi(k) = B3, (\)Fmy,.
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Using Section 17.4.3, when A is non-zero,
n—1

felk) = X9 " an kT,
r=0

where the coefficients ayo, . .., as,—1 depend on m; and A but not on k. It
follows that any similar model has a forecast function of the same qual-
itative form in k£, and any equivalent model has the identical quantified
forecast function.

If A = 0 then the only non-zero elements of J,,(\)* are those of the k"
super-diagonal, which comprises unit elements. Hence f;(k) = my k1, the
(k +1)* element of m;, when 0 < k < n. For k > n, J,(\)* =0 and the
result follows.

&

For the important practical cases, A # 0, f:(k) has the form of the k**
power of the eigenvalue A multiplying a polynomial of order n in the step
ahead index k.

EXAMPLE 6.1. Consider the case n = 1, so that the canonical model is
{1, \, -, -}, with scalars 8; = u; and m; = m;. Then

ft(k) = mt/\k.

This special case is important since it illustrates the nature of the contribu-
tion of a single eigenvalue of multiplicity one to any observable DLM. The
value of A\ clearly determines the behaviour of the forecast function. The
various possible cases, illustrated in Figure 6.1 with m; = 1, are described.

(a) A=0.
Here f;(0) = my, and for & > 0, f;(k) = 0. The model is simply
}/t =w; + 1 with my = E[wt|Dt]

(b) A=1.
Here fi;(k) = my for all & > 0. This is the first-order polynomial
DLM of Chapter 2.

(¢c) 0< A<
Here f;(k) = APm; decays to zero exponentially in k.

(d) -1<x<0.
Here f;(k) = A\¥m; oscillates between positive and negative values,
exponentially decaying to zero in k.

(e) A=-1.
Here fi(k) = (—1)*m; oscillates, taking the values m; and —m;
alternately. This is the forecast function of a Nyquist harmonic,
and appears in models for cyclical or seasonal series in Chapter 8.

(f) x> 1.
Here f;(k) = A\*my, and this explodes exponentially, and monoton-
ically, to oo if m; > 0, and to —oo if my < 0.
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Figure 6.1 f;(k) = \* for various values of A = a

(g) A< -1
Here f;(k) = \*m; oscillates explosively when my # 0.

EXAMPLE 6.2. When n = 2 the canonical model has the form

o) (5 3)

With state vector 8; = (641,0:2) and evolution error w; = (w1, wia)’ we
have

Y; = 041 + 14,
O = N0p—11 + 012 + wi,
Orp = A0y_1,2 + wyo.
Writing m; = (my1, mg)’, for k > 0 and A # 0, we have
fo(k) = (myy + kmya/N) AR

The various possible cases, determined by the value of A, are described
below and illustrated in Figure 6.2 with my; = 1 and mys = 0.25.
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Figure 6.2 f,(k) = (1 + 0.25k/\)\* for various values of A = a

(a) A=0.
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Here f:(0) = my1, fi(1) = myo and fi(k) = 0 for k£ > 1. The model
is simply Y; = w1 +wi—1,2 + 4. For a constant DLM, the Y; series
can be expressed as a moving-average process of order 1, MA(1).

(b) A=1.

Here fi(k) = my1 + kmys for all K > 0. The forecast function is
a straight line, or polynomial of order 2. DLMs with this form of
forecast function are extremely important in short-term forecasting
where the model represents a “locally linear” development of the

mean response function over time.

(c) 0< A<

Here f;(k) = (mqs1 + kaw) A\, where a;p = mys /), eventually decays
exponentially to zero with k. The initial behaviour depends on the
actual values of my;; and mys. The forecast function converges to 0,

possibly via an extremum.
(d) —1<A<0.

Here fi(k) = (my1+kas) AP oscillates between positive and negative

values of the case (c).
(e) A=—1.

Here fi(k) = (—1)*(ms — kmys) oscillates between a monotonic
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series of points on each of two straight lines. This case is of restricted
practical interest.

) A>1.
Here f;(k) = (my4 + kmy2)\* explodes to 00 according to the sign
of myg or of myq if myo = 0.

(g) N < -1
Here f;(k) oscillates explosively between positive and negative val-
ues.

EXAMPLE 6.3. For any n, if A =1,
fe(k) = a0 + apk + apk® + -+ agn k"7,

which is a polynomial model of order n — 1. For all n, these models provide
the important class of polynomial DLMs: the expected behaviour of the
series over the future period of interest is a polynomial of order n — 1. Typ-
ically, this local description can be seen as a Taylor series approximation,
using polynomial forms of low order 1, 2 or 3, say, to an unknown but
essentially smooth mean response function. Chapter 2 was devoted to the
case n = 1. Chapter 7 describes the general case, with particular attention
devoted to linear growth models corresponding to the case n = 2.

EXAMPLE 6.4. In the special case of A = 0, the model {E,,,J,,(0), V;, W}
has the form

Yi=0n +w,

Orr = 011 41 + wip, (r=1,...,n—1),

Otn = Win,
so that

n
Yi=wn+ Zwt+1—r,7--
r=1
From Theorem 6.1 with m; = (my1, ..., M),
fo(k) = { E[0i+k.1 | Di] = megt1, for 0 <k < n;
0, for k > n.

For the first n steps, k = 0,1,...,n—1, the forecast function takes irregular

values and thereafter is zero.
Note that an equivalent model is {E,, J,(0),0, Wy; }, where
Vi 0’
0 Onfl ’
with 0, being the r x r zero matrix. Thus, whenever zero eigenvalues

occur, V; can be set to zero by suitably amending W;. This is true even
with the null parametric DLM {0, 0, V, 0}, which is equivalent to the single

Wlt:Wt+|:
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parameter DLM {1,0,0,V}. The incorporation of the observation noise
v into the system noise can be useful, particularly for handling “one-off”
events such as promotional campaigns (Harrison 1988), and is standard in
our research software.

If the model is constant with V; =V and W; = W for all ¢, then Y; has
a moving average MA(n — 1) representation

n—1
Y, = Z wretfrv

r=0

where €, ~ NJ[0,1], (¢ = 1,2,...) is a sequence of independent random
quantities. This representation may be useful to those readers familiar with
standard linear, stationary time series modelling (e.g., Box and Jenkins
1976). Note that it is derived as the very special case of zero eigenvalues.

6.1.2 Single complex block system matrices
System matrices with complex eigenvalues lead to sinusoidal components
in the forecast function. The simplest case, that of a single sine/cosine
wave, corresponds to a pair of complex conjugate eigenvalues with n = 2.
Theorem 6.2. In the 2-dimensional real canonical model

{E27 JQ()‘v w)v ‘/ta Wf}
with A # 0, 0 < w < 27, my; and myo all real, the forecast function is

fi(k) = [ms cos(kw) + myz sin(kw)] A*.

Proof. By induction, and using standard trigonometric identities, it is
easily shown that for all integers k,

N cos(kw) sin(kw)) _ .
(A w)* = AF <— sin(kw) cos(kw)) = (3, bu).

Thus, with m; = (my1, my2)’,

fr(k) = EbJo (N, w)*my; = [my; cos(kw) + my sin(kw)] AF.

An alternative expression for the forecast function is
fi(k) = Nery cos(kw + o),
where

(a) r? = m? + mZ, and r, > 0 is the amplitude of the periodic, or
harmonic, component m;; cos(kw) + mys sin(kw);
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Figure 6.3 f;(k) = \* cos(mk/4) for various values of A = a

(b) ¢ = arctan(—mya/my1) is the phase-angle, or just the phase, of
the periodic component; and

(¢) w is the frequency of the periodic component defining the period,
p = 27/w, over which the harmonic completes a full cycle; this
follows since for all integers h > 0,

ft(k) = ft(k + 27Th/a))

The forecast function has the form of a sine/cosine wave modified by
the multiplicative term A*. This latter term may dampen or explode the
periodic component. If |A| < 1, the sinusoidal form is dampened, decaying
asymptotically to zero; if [A| > 1 it is exploded, diverging as k increases.
Negative values of A lead to the forecast function oscillating between posi-
tive and negative values for consecutive values of £ whilst either decaying
to zero or diverging. Figure 6.3 illustrates the various possibilities for the
particular coefficients m;; = 1, my2 = 0, and frequency w = 7/4 or period
p = 8. Of greatest practical importance are the cases with 0 < A < 1.
In particular, A = 1 leads to a pure cosine wave of frequency w, a basic
building block of seasonal time series models.
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6.1.3 Models with multiple complex eigenvalues’

Essentially, models with the basic periodic forecast functions discussed in
the previous section provide all the cyclical /seasonal behaviour associated
with practical DLMs. Only rarely will a model with multiple complex
eigenvalues be required. For completeness, the forecast functions of such
models are now discussed, although most practitioners may safely ignore
this section.

Refer to Definition 5.10 for the specification of the real canonical model in
the case when a system matrix has a pair of complex conjugate eigenvalues
e and Ae™™ with multiplicity v.

Theorem 6.3. In the real canonical Jordan form model
{EQ,Uy JQ,U(Aa (.U), ‘/ta Wt} )

with A, Aw # 0 and coefficients a;; and by;, (j =0,...,v — 1) all real, the
forecast function is

v—1 v—1
felk) = X cos(kw) Y ark? + Nesin(kw) Y bek.
Jj=0 j=0
For amplitudes r;; and phase angles ¢, (j = 0,...,v — 1), a neater ex-
pression is
v—1
fe(k) = Ak Z k7 cos(kw + ¢y;).
§=0

Proof. The proof, an exercise in linear algebra, is left to the reader.

As mentioned above, this case is rarely used in practice. Of some interest
are the particular models in which A =1 and ¢;; =0, (j =0,...,v—1),
so that the forecast function represents a cosine wave whose amplitude is
a polynomial in k. For example, with A =1, v = 2, and ¢;; = 0 for each j,
the forecast function is

fi(k) = (ri0 + re1k) cos(kw).
Such forms might be useful in representing cyclic patterns for which the

amplitude is increasing linearly.

TThis section is of rather theoretical interest and may be omitted without loss
on a first reading.
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6.2 SPECIFICATION OF Fy AND Gy

In applications, models are usually constructed by combining two or more
component DLMs, each of which captures an individual feature of the real
series under study. The construction of complex DLMs from component
DLMs is referred to as superposition, and the reverse process, that of
identifying components of a given model, as decomposition. These two
important modelling concepts are now discussed in detail.

6.2.1 Superposition
Some examples introduce the basic ideas.

EXAMPLE 6.5. Consider the two special models, M7, of dimension n, and
M, of dimension 1, specified by quadruples

M,: {F,G,00W} and My: {0,0,V,0}.

Let M; have state vector 8; and generate a series Y1;. Then with complete
certainty, Y7; = us = F'6;. Model M has no state vector, and generates an
independent noise series, Ys; according to Yo = v ~ N[0, V] independently.
The composite series Y; = Y1 + Yo, then follows the DLM {F,G,V,W}.
In adding the two series, the new series created follows a more complex
DLM defined by combining the quadruples in a particular way. This is a
very simple example of superposition.

EXAMPLE 6.6. Consider two purely deterministic models M; and Mo,
with state vectors 0y; and 6; respectively, defined via

Ml . {Flle,Ov O}a
M2 : {FQ,GQ,O, 0}

Adding the observations generated by these two models produces a series
with state vector 6, and generated by the DLM {F, G, 0, 0} where

AT ([ F _|G:1 0
Bt—(02t>, F_<F2 and G = 0 Gl
Extending the notation in an obvious way, the sum of the observation series

from any h deterministic models My, ..., M}, follows the DLM {F, G, 0,0}
with

F' = (F|,... ,F))
and

G = block diag[Gy,...,Gp].
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These examples illustrate the construction of DLMs from a collection
of component DLMs by superposition of the corresponding state vectors,
regression vectors and system matrices. As an aside, note that if the two
component state vectors have common elements, the model formed by this
superposition may be reparametrised to one of lower dimension. In general,
we have the following result.

Theorem 6.4. Consider h time series Y;; generated by DLMs
M; . {Fi, G, Vie, Wi}

fori =1,...,h. In M;, the state vector 0;; is of dimension n;, and the
observation and evolution error series are respectively vy and w;;. The
state vectors are distinct, and for all distinct i # j, the series v;; and wj;
are mutually independent of the series vj; and wj;.

Then the series

h
V=) Vi
=1

follows the n-dimensional DLM {F;, G, V;, W;} where n = nj + -+ ny,
and the state vector 8; and quadruple are given by

01, Fy,
0t = ) Ft = )
O Fp

G = block diag[Gs, ..., Gpel,
W, = block diag[Wi¢, ..., W],

and
h
Vi=> Vi
=1

Proof. Summing the individual independent normal series,

h
Y, = F,0; + 14, Vt:ZVitNN[07W]~
i=1

With w; = (wi,,...,w},), noting that for all i # j, w; and wj, are
independent,

0t = Gtet,1 + Wi, Wy ~ N[O7W}
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The proof is completed on noting that the series {w;} is independent of
the series {14}.

&

This obvious, but highly important, result is termed the Principle of
Superposition. It simply states that the linear combination of series
generated by independent DLMs follows a DLM that is defined via the su-
perposition of the corresponding model components. The principle depends
upon the additivity properties associated with linear normal models. The
strict model independence of the theorem is not crucial. A more general
superposition requirement is that vy, ..., vy and wyy, ..., wns each have a
joint normal distribution and that the two series {14} and {w,} are inter-
nally and mutually independent. Marginal normality of the terms within
each model does not necessarily imply joint normality across models, al-
though the practical circumstances in which joint normality is violated are
rare and of little importance. So for practical purposes, a working super-
position principle is that

A linear combination of DLMs is a DLM.

Usually, practical utilisation of the superposition principle naturally and
appropriately adopts the independence assumptions of the theorem. Design
implications of superposition do not depend on the independence structure
since the additivity property is sufficient to determine the following forecast
function result. The trivial proof is left to the reader.

Theorem 6.5. Consider the models in Theorem 6.4 where the series
{vi} and {w.,} are internally and mutually independent series but where
(vity - - ,vpe) and (wie, . .. ,wpe) each have a general joint normal distribu-
tion. Denote the forecast function form of M; by f;+(k). Then the forecast
function form for the Y; series generated by the superposition of the h
component models is given by

h
fi(k) = Z fie(E).

Note that this is a qualitative statement regarding the forecast function
form. If the conditions of Theorem 6.4 hold, it is also quantitatively true.

6.2.2 Decomposition and model design

The practical value of the superposition principle lies in the construction of
models for complex problems by combining simpler components for easily
identified features of the process. The employed technique is the reverse of
superposition, namely the decomposition of models with complex fore-
cast functions into simple, canonical components. These canonical compo-
nents are few in number, familiar, easily understood, and allow a modeller
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to structure complex problems component by component. Superposition
then provides the overall model for the series simply by aggregating the
individual building blocks.

The starting point for model design is the form of the forecast function.
Given this, observable models are constructed by identifying the component
canonical forms. This effectively solves the design problem so far as choice
of regression vector F; and system matrix Gy is concerned. The practically
important canonical components are related to forecast functions as follows.

(1)

(3)

Suppose that for all ¢ > 0 the forecast function has the form

n—1
folk) = X" ap k"
r=0

for some given real A\ # 0, integer n > 1, and real coefficients

at, - - - a¢n—1 Not depending on k. From Theorem 6.1 the canonical
model is immediately identified as
{En; Jn<)\)7 T }

An observable TSDLM has the required forecast function form if
and only if it is similar to this canonical model.

The generalisation to several real eigenvalues is as follows. Suppose
that the desired forecast function must have the full form

s n;—1 s
fek) = [)‘f > atr(i)k”] = Zfit(k),

i=1 r=0

where s > 1 is integral, A1,...,As # 0 are real and distinct, and
the real coefficients a4.(i) do not depend on k. As in (1) above,
fit () is the forecast function of any observable model similar to the
canonical form

{Em ’ Jm ()‘2)7 ) '}a

for i =1,...,s. Applying Theorem 6.5, the required forecast func-
tion form is provided by any observable model that is similar to
{E,J,.,.}, where

E =(E,,. .  E )

ny? Ns

and

J = block diag[J,, (A1), ..., Jn, (As)]-

s

Suppose that for all t > 0, the forecast function has the form

v—1

fi(k) = A\F Z a- k" cos(kw + @),

r=0
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for some real A # 0, 0 < w < 27, integer v > 0, and real coefficients
agr and ¢y not depending on k. From Theorem 6.3, it follows that
this form of forecast function is provided by any model similar to
the real canonical form

{EQ,MJZ,U(/\aw)v ) }

General TSDLM

For some non-negative integers s and v such that s + v > 0, the
forecast function f;(k) of an observable time series model has the
following general form:

s+v

folk) = Z fir (k)

where:
e fori=1,... s,

ni—l

fir(k) = X~ an (i)R",
r=0

e fori=s+1,...,s+w,

nifl

fit(k) = AF Z agr (1) k" cos[kw; + b (7)].

r=0

For each ¢ and 7, the integer n; > 1 and the real, non-zero quantities
Aiy, 0 < w; < 2w, agr(i) and ¢y (i) do not depend on k.

Following Theorem 6.5 and using the results of Section 5.4.6, this
forecast function form is provided by any TSDLM similar to the real
canonical model of Definition 5.11. This includes all real, non-zero
eigenvalues of the system matrix for i = 1,... , s, and complex pairs
for i =s+1,...,s+v. The most general model would also allow
for zero eigenvalues, as in Example 6.4, adding a component

{E"s+u+1 ) Jns+'u+1 (0)7 R '}7

with forecast function

fs+v+1,t(k) = { btk7 for0 = b Moot
07 for k > Nstv+1,

where ngsy,41 is the multiplicity of the zero eigenvalue and the by
are known constants.

The above cases cover the forms of forecast function encountered
in TSDLMs. Regression components for independent variables are
rather simple in form. Suppose a related regressor variable gives
rise to a time series X;, with X;,, known at ¢ for & > 0. The
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X; may be raw or transformed values of a related series, or val-
ues filtered through a known, possibly non-linear, transfer func-
tion to provide a constructed effect variable that depends on past,
or lagged, values of the related series. For example, the superpo-
sition of the first-order polynomial DLM {1,1,-,-} and the sim-
ple regression DLM {X,1,-, -} gives a model {(1,X;)’,1,-, -} with
fi(k) = my + mpXiqg.

Generalising to multiple linear regression DLMs, consider a collec-
tion of A possible regressor variables Xy, ..., Xp:. By superposition
of the corresponding h simple models and a first-order polynomial,
a multiple regression DLM is obtained, namely

{(17 Xty 7Xht)lv L, }
with
h
fi(k) =my + Z Mt o1 X vt k-

v=1

EXAMPLE 6.7. For the pure polynomial forecast function

n—1
ft(k) = Z apk”,
r=0
a unit eigenvalue of multiplicity n is required and the canonical model is

{En7 Jn(1)7 Y }
Any similar model is called an n**-order polynomial DLM.

EXAMPLE 6.8. Suppose a modeller requires a forecast function that rep-
resents a single persistent harmonic oscillation of period p about a linear
trend. Such forms are fundamental in short-term forecasting of seasonal
series. From Example 6.7 with n = 2, the linear trend canonical component
is

{E27J2<]-)a K }

From Theorem 6.2, the canonical DLM for the persistent cyclical term with
frequency w = 27/p is

{EZ’ ‘]2(1a w)a Y }
The superposition of the two provides the required DLM

{(2)-(8" wdo) -

This is referred to as a second-order polynomial/seasonal model in
which the seasonal pattern has the form of a simple cosine wave.
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EXAMPLE 6.9. Suppose the required forecast function is that of Exam-
ple 6.8 but with the additional demand that
(i) the seasonal pattern is more complex, being modelled by adding an-
other harmonic of frequency w* = 27 /p*, and
(ii) at any time ¢ the forecast function converges geometrically to the
second-order seasonal forecast function at a rate A\¥, where 0 < A\ < 1.
Two extra components are required: another canonical cyclic component
and the canonical DLM {1, A, -, -}. Employing superposition, an appropri-
ate canonical DLM is

E, Jy(1) 0 0 0

1 0 A 0 0

E; |’ 0 0 J(1,w) 0
E, 0 0 0 Jo(1,w*)

In each of these examples the canonical models, corresponding to a stated
forecast function, have been derived. If required, the canonical model may
be transformed to a preferred similar model, by reparametrisation or by
time shifts. The next two examples illustrate the reverse problem of find-
ing the forecast function corresponding to a given TSDLM. Observability
may be checked directly by examining the observability matrix T. Then
the eigenvalues of the system matrix and their multiplicity are identified,
providing the forecast function, which is simply the sum of the forecast
functions associated with each distinct real eigenvalue and each pair of
distinct complex conjugate eigenvalues.

EXAMPLE 6.10. Consider the TSDLM

1 1 100
0 0010
o]’lo o o 1]
0 01 0 0

The DLM is observable since T is a lower triangular matrix of unit elements.
The eigenvalues of G are the solutions of

0=A—1N=1)=(A—1)2(A— 2™/3)(\ — ¢727/3),

giving a real eigenvalue of 1 with multiplicity 2 and a complex conjugate
pair e¥27/3 S0 the canonical form of the DLM is that of Example 6.8 with

w = 27/3, namely
(&) (" wilo)

for which the forecast function is

fi(k) = awo + apk + ago cos(2mk/3) + aso sin(27k/3).
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EXAMPLE 6.11. Now consider the TSDLM {E,,P,,, -, -}, where n = 2¢q+1
for some integer g > 0, I is the 2¢ x 2¢ identity matrix and

0 I
b (0 0)

The DLM is observable since T is the identity matrix. The eigenvalues,
being the solutions of

0=A" -1,

are the n'" roots of 1, namely e®* for v = 0,...,n — 1, with w = 27/n.
So G has an eigenvalue 1 and ¢ distinct pairs of complex conjugates e«
forv=1,...,q. The canonical DLM is

{(1,E), ..., E}) block diag[1,J2(1,w),J2(1,2w), ..., J2(1,qw)], -, -},

with forecast function

q
fi(k) = aw + Z Tty COS(VWk + Gty ),

v=1
comprising the sum of the forecast functions of a first-order polynomial and

the ¢ harmonics, or cosine waves, the latter being called the full seasonal
effects model of period n in this case of odd n.

6.3 DISCOUNT FACTORS AND
COMPONENT MODEL SPECIFICATION

6.3.1 Component models

The above design principles lead naturally to DLM structures in block or
component form. The system matrix is block diagonal with individual
sub-matrices providing contributions from simple component models. The
regression vector is partitioned into the catenation of corresponding sub-
vectors. To complete the model specification, three further components
are required namely the sequence of state evolution variance matrices Wy,
(t = 1,...); the observational variance sequence V;, (t = 1,...); and the
initial prior distribution for the state vector and the observational error
variance, given Dy. Estimation of the constant observational variance has
already been considered in Chapter 4, and in Chapter 10 it is generalised to
stochastic and time dependent cases. The initial prior settings, and related
questions concerning representation of subjective information of the fore-
caster in terms of probability distributions, are also covered extensively
in later chapters and application-specific contexts. A general point here
is that the component structure of DLMs typically leads to these initial
priors being specified in terms of a collection of priors, one for each of
the sub-vectors of 0y corresponding to the individual component models,
with independence between components. This section concentrates on the
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specification of the sequence of evolution variance matrices Wy, referring
throughout to the general model of Definition 4.3, with minor, purely tech-
nical changes to cover the case of an unknown observational variance as in
Definition 4.5.

The specification of the structure and magnitude of Wy is crucially im-
portant for successful modelling and forecasting. The values control the
extent of the stochastic variation in the evolution of the model and hence
determine the stability over time. In the system equation, W, leads to an
increase in uncertainty, or equivalently a loss of information, about the state
vector between times t—1 and t. More precisely, consider the sequential in-
formation updating equations summarised in Section 4.6. At time ¢t —1, the
posterior for the current state vector has variance V[0;_1 | Di—1] = C;_1,
which, via the evolution equation, leads to a prior variance for 8; given by
VI[0: | Di—1] = G:Ci_1G} + W;. Let P; denote the first term, that is,

Pt = GtctflG'; = V[Gtetfl ‘ Dt71]~

P; may be viewed as the appropriate prior variance in the standard DLM
{F¢, G4, V4, 0} with no evolution error at time ¢, and is the required prior
variance corresponding to an ideal, stable state vector with no stochastic
changes. In this DLM, with W; = 0, the system equation 8; = G6;_;
is postulated as globally true, whereas the dynamic modeller considers it
only a locally appropriate description. That is, as discussed in Section
3.1, the form of system equation is treated as globally applicable, but the
quantities defining this form are only locally apposite, being modelled, in
routine application, as changing slowly in random fashion. Consequently,
the system variance matrix W; communicates how durable the model is.
If W, =0, the system model is globally reliable, whereas as W; — oo, the
system model, and consequently the DLM itself, becomes totally unreliable
and useless. It may also be said that W; measures how quickly the value
of the current information D; decays with k, as k-step ahead predictions
are made. So adding the evolution error w; to G:0;_; truly captures the
modeller’s view of the relationship between the state vectors 8;_1 and 6.
Given D;_1, the effect is to increase the uncertainty from the ideal P; to
the realistic Ry = Py + W,.

There are, however, a number of practical drawbacks associated with a
system variance matrix Wy:

(a) it is not invariant to the measurement scale of regressor variables as
specified in Fy;

(b) it is ambiguous: as shown in Section 5.3.4, if n > 2 there exists
an uncountable number of equivalent time shifted DLM’s, differing
only in terms of their operational Wy’s;

(c) effect components (e.g., treatment, block or seasonal) must satisfy
constraints (e.g., sum to 0) and this demands that W, satisfies
corresponding requirements (e.g., every row and column sums to 0);
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(d) the local durability of the DLM may vary with time (think of the
local validity of a small Taylor series expansion) so generally there
will not be an optimal value of W, suitable for all times;

(e) most people have great difficulty in directly quantifying the variance
and covariance elements, with the result that these are often grossly
misspecified.

Consequently, practitioners require a better way of viewing the system
evolution. One answer lies in discounting, which, being easy to apply and
understand, overcomes the above difficulties. By definition, a discount
factor § satisfies the condition 0 < § < 1. Usually 9 is strictly less than
1, but the unit value is retained as a possibility since it relates to static
models.

Chapters 2 and 3 introduced the idea of discounting for a single pa-
rameter. Now consider it for a canonical component model such as the
second-order polynomial DLM {Eq, J2(1),V,W;}. At any time ¢, given
(0:—1|Dt—1) ~ N[m;_1,Ci_1], the precision associated with 6;_1 is Ct__l1
and that of GO,_1 is P, L. The latter represents precision associated with
6, were there to be no stochastic change at time ¢, so that the model is,
in this sense, more “globally” durable. As the model is only locally ap-
propriate, then the actual precision R; L is reduced relative to P, 1 The
discount concept defines this decreased precision directly, via éP; Lor sim-
ply a proportion ¢ of the globally durable precision. The implied variance
is

1
VI0.|Di-a] = Ri = SP,.

This immediately leads to an identification of Wy, since
R, =P, + Wy,

so that
Wt = 1T($Pt

Furthermore, given ¢ and Cyp, the whole series {W,} is identified. Note
that both R; and W, have precisely the same internal correlation struc-
ture as P;. So the above drawbacks (a) to (e) are overcome; § is invariant to
scale changes in F'; and to parametric transformations. If effect constraints
are initially satisfied by Cg, then using the discount approach, they are
satisfied by R; and W;. The local durability of the model is easily con-
trolled through the discount factor, which, if required, may be changed
through time. Finally, there are few problems in selecting a discount fac-
tor; for polynomial, seasonal and regression components, ¢ will lie in (0, 1]
and is typically in the range [0.9,0.99] for routine analysis. The discount
approach is parsimonious. Admittedly this means that discount models
comprise a subset of DLMs, but very little is lost in terms of a potentially
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improved description while much is gained from the parsimony and sim-
plicity of concept. For example, considering the second-order polynomial
DLM, Harrison (1967) showed that the maximum loss in one step ahead
prediction for typical general settings is an increase in standard deviation
of less than 1%. Obviously, § depends upon the sampling interval, but in
most applications this and the model are chosen with respect to specific
objectives; thus, if, for example, a low discount factor is applied, it gener-
ally signals an inadequate model and the need to obtain an improvement.
The higher the discount factor the more durable the model, so the aim is
to develop a model with a high discount factor provided it does not im-
pair performance. Routine forecasting will reflect desirable stability while
associated monitoring procedures will be responsible for signaling unusual
events, sudden instabilities, and deteriorations in forecast performance that
have not been anticipated by expert intervention.

The magnitude of variances and covariances is controlled by the discount
factor in just the same way as described for the scalar case in Chapter 2.
The implication is that information decays at the same rate for each of
the elements of the state vector. This is particularly appropriate when
the entire state vector is viewed as subject to change at a constant rate,
without reference to components. This is often a suitable assumption in
practice. Note, however, that the discount approach is not appropriate for
the unusual case of a precisely known parameter 8y for which Cy = 0 but

Ry #0.

6.3.2 Component discounting

In developing early discount methods for trend/seasonal models, Harrison
(1965) showed that single discount models are not always advisable. The
point is that the trend and seasonal components often require different dis-
count factors. This can arise when the seasonal characterisation is more
durable than that of the trend, or if many more parameters are needed to
specify seasonality. Recall the conditional independence structure of Fig-
ure 4.2, indicating model components evolving independently over time.
For a DLM comprising the superposition of several components, the idea
of one discount factor for each component is suggested. This raises the
question as to what defines a model component. A TSDLM might be re-
garded as comprising r different components, one for each of the distinct
real eigenvalues and one for each pair of complex conjugate eigenvalues of
G. Thus, in the model of Example 6.11, r = ¢+ 1 components are possible.
However, if this model is being used as a first-order polynomial/seasonal
model, most practitioners will prefer to model it as two operating com-
ponents: the trend component, corresponding to the real unit eigenvalue,
and the seasonal effect component, corresponding to all the complex eigen-
values. Then it is natural to associate one discount factor with trend and
another with seasonality. By contrast, the model of Example 6.11 applied
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to a series arising in a physical sciences context will usually be viewed as
comprising several components based on the collection of harmonics. The
lower frequency harmonics may be much more durable and represent phys-
ical structure in the underlying process, and so require a higher discount
factor than that appropriate for the high frequency harmonics, which usu-
ally reflect interference and extraneous noise. The low order harmonics
may then be modelled individually as sub-model components, or grouped
together as one component but separate from the higher frequency noise.
Similar comments apply to regression models, as discussed in Section 6.2.2
(5). Here the practitioner may group a number of independent regres-
sor variables together and treat them as a separate operating component.
These comments should be borne in mind throughout; when we refer to a
model component, we are usually talking about an operationally defined
component or a sub-model.

As in Theorem 6.4, consider a DLM comprising the superposition of
h > 1 sub-models M; with state vectors 6;;, evolution errors w;;, and of
dimensions n;, where Z?:1 n; =n. For each i = 1,... , h, write

M {Fi, G, Vie, Wi}
The DLM is thus specified by the state vector 8, and quadruples
{Ft7 Gta Vi,wt} )

where

Fy Gy O 0
Fy, 0 Gy O 0

Ft — . , Gt — 0 0 th 0 )
th 0 0 0 . Ght
0., Wi, 0 0 0
65, 0 W, 0 0

0, = . W, = 0 0 Wy 0

O 0 0 0 ... Wy

At time t, the variance matrix
Py = V[G0:_1 | Di—1] = G;C_1 G

represents uncertainty about G:0; before the addition of the evolution
noise. Denote the diagonal block corresponding to the i*" sub-model by
P;;, where

Pyt = V[Gitiy1 | Diy), (i=1,...,h).

Although P, will not generally be a block diagonal matrix, the block com-
ponents P;; individually measure information about the sub-model state
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vectors. Now, adding the evolution noise w; with block diagonal variance
matrix W, above, the prior variance matrix R; for 6; has off-diagonal
blocks identical to those of Py, but diagonal blocks

Ri = Py + Wy, (i=1,...,h).

The discount concept now applies naturally to component sub-models, as
follows.

Definition 6.1. In the above framework, let d1,...,d, be any h discount
factors, (0 < §; < 1; ¢ = 1,...,h), with §; being the discount factor
associated with the component model M;. Suppose that the component
evolution variance matrices W;; are defined as in Section 6.3.1 above, via
1-9;
Wit:TZPit, (Z:17,h)

i
Then the model is referred to as a component discount DLM.

The effect of component discounting is to model the decay in value of the
current information at a possibly different rate for each component model.
The modeller chooses the discount factors, some of which may, of course,
be equal, to reflect belief about the durability, or stability, over time of the
individual component models. Note that from an operational point of view
in updating, the evolution from P; to R; need not make reference to the
constructed W, sequence. It is simply achieved by taking the component
covariances as unchanged and dividing the block diagonal elements by the
appropriate discount factors, so that for each i,

Ryt = 5 P

Block discounting is our recommended approach to structuring the evolu-
tion variance sequence in almost all applications. The approach is parsi-
monious, naturally interpretable, and robust. Sometimes a single discount
factor applied to an entire model viewed as a single component will be
adequate, but the flexibility remains to model up to n separate compo-
nents, each with individual, though not necessarily distinct, discount fac-
tors. Importantly, the derived W; matrix is naturally scaled, the discount
factors being dimensionless quantities on a standardised scale. With or
without variance learning, the discount construction applies directly. The
following section describes some practical features of the use of component
discount models. The basic ideas underlying multiple discounting have
a long history, starting with Harrison (1965), but this specific approach
was introduced in Ameen and Harrison (1985), described and developed in
practical detail in Harrison and West (1986, 1987), Harrison (1988), and
implemented in the BATS package of West, Harrison and Pole (1987) and
Pole, West and Harrison (1994). Some theoretical variations are considered
in Section 6.4 below, although they are of restricted practical interest.
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6.3.3 Practical discount strategy

Discounting should be viewed as an elegant way of coping with the system
evolution variance series W;. Of course, as far as one-step ahead forecasts
are concerned, there is no need to refer to W, explicitly since R; = P;/0.
Looking further ahead than this single time point, it is not the case that
repeat application with the same discount factor will produce the rele-
vant sequence of variance matrices. For example, with a single component
model having discount factor ¢, repeated application would lead to the
use of 6% as a discount factor k-steps ahead with Ry(k) = GFC,G'* /5",
This implies an exponential decay in information, and this is not strictly
consistent with the DLM, in which the information decays arithmetically
through the addition of future evolution error variance matrices. Hence,
though perfectly coherent one-step ahead, the discount approach must be
applied with thought in extrapolating ahead (and also, therefore, when en-
countering missing values in the time series). Ameen and Harrison (1985)
discuss this point, and use one-step discounting from ¢t = 0 to determine the
implied sequence W, for all future times ¢. This is possible, since given the
other model components, these matrices are simply functions of quantities
assumed known initially. It can be seen that this is also possible in models
where the observational variance is being estimated.

Since |W,| is usually small relative to V;, an alternative, more flexi-
ble, less computationally demanding, practical approach is suggested in
Harrison and West (1986). This simply assumes that the one-step ahead
evolution variance matrix is appropriate for extrapolation into the future,
determining a constant step-ahead variance matrix. The resulting discount
procedure is then as follows.

(1) Given (6;|D,), calculate W, = Py11(1 —6)/0.
(2) In forecasting k-steps ahead, adopt the conditionally constant vari-
ance

V[wt+k;‘Dt] :Wt(k) :Wt+1, (k: 17)

Thus, step-ahead forecast distributions will be based on the addition
of evolution errors with the same variance matrix W, for all .

(3) The observation Y;11 allows the posterior (6;41|D¢y1) to be derived
from which Py 5 and thus Wy, are deduced. Thus forecasting
ahead from time ¢ 4+ 1, we have

V[wt+k‘Dt+1] = Wt+1(k) = Wt+2, (]f = 17 e )
(4) Proceed in this manner at time ¢ + 2, and so on.

The computational simplicity of this strategy is evident; at any time, a
single evolution variance matrix is calculated and used k-steps ahead for
any desired k. Note an important modification of the standard DLM anal-
ysis. Hitherto, the evolution errors were assumed to have variance ma-
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trices known for all time, and also independent of the history of the se-
ries. With the discount strategy this assumption has been weakened and
modified to allow the variance matrices in the future to depend on the
current state of information. Mathematically, the assumption that for any
kE=1,..., Viwiti|D:] = V[wirr| Do), has been revised; it is now the case
that V{wyix|Di] = W(k) depends on ¢ in addition to ¢ + k. For example,
at time ¢, the 2-step ahead variance matrix is

V[thrngt] = Wt(Q) = Wt+1.
Obtaining a further observation, this is revised to
Viwii2|Dig1] = Wip1 (1) = Weyo.

This modification is straightforward, and has no complicating consequences
in practice. In updating and retrospection, the coherent value W; as de-
rived based on D;_1 is used in the relevant updating and filtering equations.
As time progresses, the future evolution variances are revised, a process
that is interpretable as a sequence of successive interventions.

6.4 FURTHER COMMENTS ON DISCOUNT MODELS"

From an applied viewpoint, the above framework provides a complete
operational approach to structuring the evolution variance matrices of all
DLMs. The use of single discount ideas to structure forecasting models
based on TSDLMs is discussed in Brown (1962), Harrison (1965), Godol-
phin and Harrison (1975), and Harrison and Akram (1983). The first ex-
tension to multiple discount factors is to be found in Harrison (1965) and
is discussed in Whittle (1965). The general extension to multiple discount
factors for components described above is generally appropriate outside the
restricted class of TSDLMs. Applications can be found in Ameen and Har-
rison (1985), West and Harrison (1986), Harrison and West (1986, 1987),
with implementation in West, Harrison and Pole (1987) and in Pole, West,
and Harrison (1994). It can be seen that these discount factors play a
role analogous to those used in non-Bayesian point forecasting methods,
in particular to exponential smoothing techniques (Ledolter and Abraham
1983, Chapters 3 and 4, for example), providing interpretation and mean-
ing within the DLM framework. Some further theoretical discussion of
discount models in general is now given.

Questions arise concerning the limiting behaviour of discount TSDLMs
with constant triples {F, G, V}. Counsider the case of a single discount
model in which for the specified and constant discount factor 4, it follows
that

C,' =P, +FV'F.

TThis section is of theoretical interest only, and may be omitted without loss
on a first reading.
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In cases in which G is non-singular, we then have

oo
li -1 _ vy Y —1gv —v
Jlim C;' =% "G FV'F'G
v=0
Based on this representation, Ameen and Harrison (1983) prove various
limiting results. In particular, the following result, taken from that refer-
ence, is key.

Theorem 6.6. Consider the canonical TSDLM with F = (1,...,1)" and
G = diag (A1, ..., \n), where the \; are distinct, real or complex. Suppose
the single discount strategy is applied with a discount factor §, and define
u; = 6'/2/\; for each i. Then if § < min{|\?|, i = 1,... ,n}, the following
limits exist:

(1) limyeo Qr = VT, up 2.
(2) limyyoo Ay = (A1,...,Ay), where fori=1,... n,

Ay = (1= ) [T = i) /(1 = wi /).
J#i
(3) limy_,o C; ' = KV ! where K has elements K;; = 1/(1 —u;u;) for
,7=1,...,n.

Some features of this kind of result are discussed in specific models in
later Chapters, in particular Chapter 7, and have already been noted in
the first-order polynomial model in Chapter 2. In practice, for more com-
plex models using multiple discount factors applied to components as in
the preceding sections, the updating equations are observed to converge to
stable, limiting forms, although theoretical results for such models are (at
time of writing) unavailable. It is conjectured that in any closed model
{F,G,V,W,} with W; structured in block diagonal form as in Definition
6.1, the updating equations have stable limiting forms, with C;, R;, A; and
Q: converging (rapidly) to finite limits C, R, A and Q. If this is so, then
‘W, also has a stable limiting form being based on C and the fixed discount
factors. Thus, in the limiting forms, component discount TSDLMs are es-
sentially standard DLMs with constant, block diagonal evolution variance
matrices. The limiting representations of the observation series in gener-
alised ARIMA form are then deducible from Section 5.5.

Some support for this conjectured limiting behaviour is provided in the
work of Ameen and Harrison (1985) when considering alternatives to mul-
tiple discounting. These alternatives are very similar to component dis-
counting, defining matrices W, based on possibly several discount factors.
Consider the n-dimensional DLM {F;, G, V;, W;}. Their approach in-
volves the n x n diagonal discount matrix A, defined by

A = diag(s; "%, ... 6;1/?).
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Then, given the posterior variance matrix C;_; at time ¢t — 1, two possible
alternatives to component discounting define the prior variance matrix Ry
at time ¢ by either of the forms

(a) Rt = AGtCt_lG;A,
(b) Rt = GtAthlAG;.

The above reference discusses scheme (a) and derives theoretical results
about the stable limiting forms of updating equations when F, G and V
are constant over time. In particular, limiting results for C;, A, @ and
W, show that convergence is typically rapid, so that the limiting form of the
model is that of a standard, constant TSDLM {F, G, V, W}. Following this,
Theorem 5.6 applies to deliver the limiting representation of the observation
and error series as

n n
lim 1-\B)Y; — 1—piB)er p =0,
Hm{g i [ - o }
where p1,. .., p, are the eigenvalues of (I — AF)G.

These models provide Bayesian analogues of standard point forecasting
techniques based on the use of multiple discount factors, such as multiple
exponential smoothing (Abraham and Ledolter 1983, Chapter 7; McKenzie
1974, 1976). Using either (a) or (b), note the following.

(1) Each method implies W; = R; — G;C;_1 G}. While obviously sym-
metric, and usually positive definite, it is theoretically possible that
this matrix is not positive definite, and therefore not a valid evo-
lution variance matrix. Component discounting has no such draw-
back.

(2) Unlike component discounting, W, will not generally be block diag-
onal. Consequently, the desirable conditional independence struc-
ture of Figure 4.2 is lost.

(3) If the discount factors coincide, §; = ¢ for ¢ = 1,...,n, then in
both cases, Ry = G:C;_1G}/d and the model is in fact a single
component discount DLM.

6.5 EXERCISES

(1) Construct observable DLMs {F, G, -, -} with forecast functions of
the following forms:
(a) ft( ) = an \¥ + ap\l where Ay # 0 and Ay # \o.
(b) fi(k) = an + awk + arzk?® + awk?.
(c) fi(k) = ayj, where j =k|4, (j=1,...,4).
(d) fi(k) = ag for k=0,1,2 and 3, but fi(k) =0 for k > 3.
(e) fi(k) = ay + awpk + aA\¥ + ag ¥ cos(kw) + asAF sin(kw) for
some A\ and w, where w is not an integer multiple of 7.
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() fi(k) = as1 + agok + agA¥ + a5 cos(kw) + ags A5 sin(kw) for
some A1, Ao and w, where w is not an integer multiple of 7.
(2) Construct an observable DLM for which the forecast function com-
prises a quadratic polynomial about which there is additive quar-
terly seasonal variation.

(3) Design an observable DLM {F, G, -, -} such that the resultant fore-
cast function has the form

3
felk) =Y fur(k),
v=1

where, with a1, ... , a6 known at time t,
fie(k) = (an + atQk))\ka
far(k) = asz cos(km/2) + agq sin(km/2),
f3:(0) = as,
f3e(1) = ags,

and

fa (k) =0, k> 2.

(4) You construct a canonical DLM

{ORCRIES

with A = 0.9, state vector 8; = (614, 602:)’, and initial prior

i [(19). (2 2)]

(a) Obtain the forecast function, showing that it has the form of a
modified exponential.

(b) Interpret the parameters. For operation you wish to obtain an
equivalent DLM

o) (3]

with parameter ¢ = (d1¢, d2¢) = H6,.
(¢) Obtain the matrix H and the prior (¢ | Dy).
(d) Interpret the new parameters.

(5) Let Y; be a Gaussian time series such that Y; — 0.9Y;_1 = a; —
0.72a;_1, where a; ~ NJ0, 1] independently. Represent this process
as a TSDLM.

(6) Consider three independent random time series X, Z; and U; gen-
erated by the following processes, in which B is the backward shift
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operator:
(1-B)2X; = (1 — 0.95B)%ay, ai~ N[0, 02],
(1-V3B+B?Z, = (1-0.9V3B+0.81B%)b;, b~ N[0,07],

Ui =(1—-0.5B)c, ci~ N[0, 02].

Let Y; = Xy + Z;+U;. Construct a canonical observable pair {F, G}
of a constant TSDLM for Y;.

Many observable discount TSDLMs {F, G, V, W}, such as polyno-
mial/seasonal models, are such that the eigenvalues \; of G lie on
the unit circle, i.e., |\;] = 1. Consider a constant single discount
model with discount factor 0 < § < 1. As usual, the model has
dimension n and p; = F'6,.

(a) Using the result of Theorem 6.6 or otherwise, prove that

Jm Qr = v/or,
(b) The total adaptation at time t may be defined as A; where
Elpt|Dy] = Elpe| De—1] + Avey.
Prove that
lim A; =1-—06".

t—o0

(¢) Results (a) and (b) are important, giving insight into how a
single discount factor is intimately related to the dimension
of the DLM in terms of the number of elements, n, in the
parameter vector. Think about this and its implications.

In a general DLM, suppose that G; is non-singular for all ¢. Suppose

further that W, is defined using a single discount factor § so that

R, = G;C;1G,/d for all t, (0 < < 1).

(a) Show that B;_j = Ct,kG;_kHR:kH = 6G;_1k+1 for any
k> 0.

(b) Hence show that the filtering recurrence equations in Theorem
4.4 simplify to

a(—k)=(1—-90)my_p + 6G;_1k+1at(—k +1)
and
Ri(—k) =
(1-6)C—k + §2G;—1k+1Rt(_k +1)(G) )
(b) Comment on the forms of these equations, with particular ref-

erence to the implied computational demands relative to those
of the original, general recurrences.

In the framework of the previous example, suppose that G; = 1,
the n x n identity matrix, for all ¢, so that the model is a multiple
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regression DLM as in Definition 3.1 of, or the important first-order
polynomial DLM.

(a)
(b)

Show that B;_j; = ¢I and write down the simplified filtering
equations corresponding to Theorem 4.5 (i) and (ii).
Show also that

k—1

at(*k) = (1 — 5) Zﬁvmt_k_,_q, + 5kmt
v=0

and
k—1
Ri(—k) = (1-6) Y 6*'Ci_yo + 6°*Cy.
v=0

Now, for the following question parts, concentrate on the con-
stant first-order polynomial DLM {1,1,V,W}. For any fixed
k > 0 show that

lim Ry(—k) = C(1+6*T1) /(1 +6),

t—o0

where

C = (VI+aV/W 1) w/2.

In the framework of (¢) above, show that with D;(—k) = D; —
Yitk, the jackknife distribution of Theorem 4.9 is

(Hi—k | Di(=k)) ~ Nlaek, Re i),
where writing A:(—k) = R:(—k)/(V — R (—k)),
ark = ar(—k) = Ae(=k)(YVi—k — as(—k)),
Ry = A(—k)V.
Further, prove that
lim Ai(—k) = (1-19)/24.

t,k— o0

(10) Consider the discount DLM {1, A, 1, W;} with discount factor ¢ so

that Wt = )\2Ct_1(571 - 1)

(a)

(b)
()

Prove that if 0 < § < A2, then
lim C; =C =1-6§/\%
t—o0

and obtain the corresponding limiting values of R;, Q; and A;.
What is the limiting value of C; when & > A2?

Using m; = Amy_1 + Ae;, the limiting form of the updating
equation, show that

YPt - AY;,1 =€t — (]. —(S/A)@t,l.
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(12)

(13)
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Compare this result with the corresponding limiting result in
the model {1, A\, 1, W} obtained by applying Theorem 5.6.

(d) Consider the implications of these results for setting component
discount factors in relationship to component eigenvalues.

Consider the model

()G ) w

for any distinct, non-zero values A\; and A\s. Suppose a single dis-

count model so that Wy, = GC;_1G'(§~! — 1). Let K; = C;l for

all ¢.

(a) Show that the updating equation for C; can be written in terms
of precision matrices as

K; =06G 'K, ;G ! + FF'.

K K
K; = ,
! (KtB e
deduce the recurrence equations
Ky =14+0K,11/M,

Kipp =1+ 5Kt71,2/)\§7
Kiz =14 0K;_13/ .

(b) Writing

(c) Deduce that as ¢ increases, K; converges to a limit if § <
min{\}, \2}.

(d) Assuming this to hold, deduce expressions for the elements of
the limiting matrix, K, say, as functions of 4, A; and As. Deduce
the limiting variance matrix C = K1,

(e) Suppose that 6 = 0.7, Ay = 0.8 and Ay = 0.9. Calculate K and
deduce the limiting values of C;, Ry, Q; and A;.

Show that the results of the previous example apply in the case
of complex eigenvalues e*™ for some real w that is not an integer
multiple of 7.

Consider a single discount normal DLM {F, G, V, W,} in which by
definition, W, is implicitly defined by

R; =6 'GC; ;G = GC;_,G' + W,.

Show that the relationship between the distributions p(6; | Di—1)
and p(0;—1 | Di—1) is exactly as determined by application of the
following “power discount” procedure.

Write f;—1(-) for the density function of (0;_1|D;_1), and de-
fine the density function p(6;|D;_1) as ¢, f;_1(-)? for an appropriate
normalising constant c;. This “power discount” procedure may be
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extended to non-normal, first-order polynomial dynamic models as
in Smith (1979). See the final two exercises of Section 14.6 for key
examples of this.

Discount weighted regression (Ameen and Harrison 1984), adopts
a forecast function f;(k) = Fj, ,m;, where m; is that value of 0
minimising the discounted sum of squares

t—1
S5(0) = _8'(Yiei — F_;60)*
i=0
for some given discount factor 0. Define the n-vector,
=1
hy =) 0'Fi—Y,i = FeY, + 6hyoy,
i=0
and the n-square matrix
=1
H, =) §'F,_F,_ ,=FF,+H,_.
i=0
Write e; = Y; — Fym;_1, and assuming ¢ > n and that H; is of full
rank, C, = H; *.
(a) Show that

oS

% = —2(ht - Ht9)7
9%S
e0e ~ e

and so deduce
m; = H,; 'h; = C;h,.
(b) Writing Ry = C;_1/8 and A; = H; 'F;, show that
m; = my_q + Asey.
(¢) Show that
Ci=(R;'+FF) ' =Ry — A;QA]
and
Q: =1+ FR,Fy.

(d) Compare these results with the recurrence relations for the
single discount DLM {F;,I,V, W,} and draw your conclusion.
Note that ordinary linear regression is the case § = 1.



CHAPTER 7

POLYNOMIAL TREND MODELS
7.1 INTRODUCTION

Polynomial models find wide use in time series and forecasting as they do
in other branches of applied statistics, such as static regression and experi-
mental design. In time series these models prove useful in describing trends
that are generally viewed as smooth developments over time. Relative to
the sampling interval of the series and the required forecast horizons, such
trends are usually well approximated by low-order polynomial functions of
time. Indeed, a first- or second-order polynomial component DLM is often
quite adequate for short-term forecasting, either on its own or in combina-
tion with seasonal, regression and other components. Chapter 2 introduced
the first-order polynomial model, which although very simple, is applied
more than any other DLM. Next in practical importance is the second-order
DLM, sometimes referred to as the linear growth model, which is the sub-
ject matter of much of this chapter. Higher-order polynomial models are
also discussed, though it is rare to find applications employing polynomial
DLMs of order greater than three (corresponding to quadratic growth).
The structure of polynomial models is discussed in Harrison (1965, 1967),
and theoretical aspects explored in Godolphin and Harrison (1975). See
also Abraham and Ledolter (1983, chapter 3).

Polynomial DLMs are a subset of the class of time series DLMs, or TS-
DLMs, defined in Chapter 4 as those models whose n X 1 regression vector
F and n x n system matrix G are constant for all time.

Definition 7.1. Any observable TSDLM that for all ¢ > 0 has a forecast
function of the form

fr(k) = a0 +apk + - +ag1 k", k>0,

is defined as an n*?-order polynomial DLM.

From Section 5.3, it follows that the system matrix G of an n**-order
polynomial DLM has a single unit eigenvalue of multiplicity n. It is stressed
that with this definition, G has no other eigenvalues, in particular, no zero
eigenvalues. Consequently, following Section 5.4,

(1) A DLM is an n*"-order polynomial model if and only if it is similar
to the canonical model
{Ena Jn(1)7 T }
(2) Any DLM equivalent to the constant model {E,,J,(1),V,W} is a

constant nt*-order polynomial DLM.

This chapter concentrates on the highly important second-order model,
elaborating its structure and properties in isolation from other components.
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The primary objectives are to familiarise the reader with the nature of
the sequential updating equations, as was done in Chapter 2 for the first-
order model, and to relate this DLM to other popular applied forecasting
methods and concepts. Constant DLMs, and in particular constant linear
growth models, are central to this discussion and are considered in detail.
Throughout the chapter, the observational variance sequence V; is assumed
known. This is purely to simplify discussion: the general variance learning
procedure of Section 4.5 applies without affecting the primary features of
the updating equations for the parameters and forecasts conditional upon
known V;.

Consider the canonical model {E,,J,(1),-,-}. For reasons that will be
made clear below, denote the state vector of this model by A; rather than
the usual 6, and the evolution error by dA; rather than w;. Then, with

)‘2 = ()‘tla cee 7>\tn)
and
ON. = (ONirs- -+ ONen),s

the model equations can be written as

Observation: Y: = M1+,
System: /\tj = )\t—l,j + )\t—l,j+1 + 6)\tj, (_] =1,...,n— 1),
)\tn = )\tfl,n + a>\tn

Here py = A4y is the level at time ¢, that between times ¢ — 1 and ¢ changes
by the addition of A;_; 2 plus the noise O\:1. A\i_1 2 represents a systematic
change in level, that itself changes by the addition of A:_5 3 plus noise.
Proceeding through the state parameters for j = 1,...,n — 1, each Ay
changes systematically via the increment A¢_1 j+1, and also by the addition
of the noise term 0A;. The n'" component \;, changes only stochastically.
Although this is the canonical model form, interpretation of parameters
leads us to prefer working with the similar model

{En7 L’n7 Ty '}u
where L, is the n X n upper triangular matrix of unit elements,
11 1 ... 1
01 1 ... 1
L,=/0 01 ... 1
000 ... 1

The reader can easily verify that this model is similar to the canonical
ntP-order polynomial DLM. As usual, denote this model’s state parameter
and evolution error by

Ot - (97517 cee 70tn)/
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and

wp = (Wet, - awtn)/-

Then the model equations are

Observation:  Y; = 61 + vy,

n
System: 9,5]' = 9t717j + Z Qt,” + Wy, (] =1,...,n— 1),
r=j+1

etn = etfl,n + Win-

In this representation, ignoring the evolution noise terms, the state pa-
rameters can be thought of as “derivatives” of the mean response function
pt = O¢1. For each j = 1,...,n, 6;; represents the jt" derivative of the
mean response. At time ¢, the expected future trajectory of 6y; is a poly-
nomial of degree n — j.

The difference between this and the canonical model lies simply in a time
shift in the definition of the elements of the state vector. In this represen-
tation, the state parameters have the natural interpretation as derivatives
at time ¢. In the canonical model, the higher-order terms in the state vec-
tor play the same role but are shifted back to time ¢ — 1. This is most
easily seen by setting the evolution errors to zero in each model, when the
parameters are related according to

A1 =011,
)\tj :gtj+9t7j+17 (]:27 7”71)7
Atn :etn-

As previously pointed out in Section 5.3.4, for n > 2, unless carefully struc-
tured, the evolution error vector w; introduces ambiguity, confusing para-
metric interpretation. This arises since in general, the parametric elements
may be arbitrarily correlated through the variance matrix Wy, although
the basic notion of them as derivatives of the mean response remains sound.

A class of models with naturally interpretable and appropriate variance
structure is defined by

Observation: Y: = 041 + vy,

System: Oj =011, +0, ;401 +00,;, (j=1,...,n—1),
Otn = 01,0 + 00,
00; ~ N[0, diag(Wy1, ... , Win)].

In such a model the “derivatives” 6;; change stochastically between times
t—1 and t via the increments 0; ;1 and also by those affecting the higher-
order derivatives 00y, j < k < n. With

aet ~ N[Ov diag(tha B th)]
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and
w; = L,,00;
so that
wy ~N[0,W,;] with W, =L,diag(W1,..., Ws,)L.,
the DLM assumes its usual form, as follows.

Definition 7.2. An n*P-order polynomial growth DLM is any model
of the form

{Ena an Vvt 7Wt}a
where

Wt = Lndiag(th, . ,th)L;l

The distinguishing features of polynomial growth, rather than simply
polynomial, models are that

(a) the system matrix is not in canonical form as the alternative L,
matrix is used;

(b) the evolution variance matrix has the special form consistent with
the definition of w; = L,,06;, where the elements of 96; are uncor-
related.

The special cases n = 2 and n = 3 are now explored in detail.

7.2 SECOND-ORDER POLYNOMIAL MODELS
7.2.1 The general model form

At any time t, a second-order polynomial DLM has a straight line forecast
function of the form

ft(k) = a0 + a1 k. (71)
An alternative representation is

fr(k) = £i(0) + [fe(1) — f(0)]k,

thus identifying the coefficients {a:g, a:1 } in terms of the first two values of
the forecast function.
The canonical DLM takes the form

o) (6 1)1 o

Notice that in this special case of n = 2, Jo(1) = Lo, so that the similar
model with system matrix Ly coincides with the canonical model. With
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parametrisation

the usual DLM representation is

Observation: Y, = p + vy, (7.3a)
System: pt = pe—1 + Br—1 + wi1, (7.3b)
Bt = Br—1 + w2, (7.3c)

(641 | Di—1) ~ N[my_1,Cy_1],
where

Wy = (ththQ)l ~ N[vat]v vy~ N[O, Vt]a

My_1 Ci-1q1 Ci13
m,_; = and C,_; = ' A I
=1 (btl ) =t (Ctl,S Ct1,2>
Following (7.1), the forecast function is f;(k) = m;+kb,. As usual, y; is the
series level and now (;_1 represents incremental growth. As mentioned in

the introduction, the observational variance is assumed known. Otherwise,
the normal posterior distributions are simply replaced by Student T forms.

7.2.2 Updating equations

The general theory of Section 4.3 is used to provide the updating equations
for this model in explicit terms rather than in vector and matrix form.
Write the evolution variance matrix as

(W Wi
We = (WtS Wt2> '

The sequential analysis has the following components.
(1) Writing
Ry =Ci_11+2C_1 3+ Ci_12 + Wi,
Ry = Ci_12+ Wi,

and
Ris=Ci_12+Ci_13+ W3,
we have (0; | D¢—1) ~ N[a;, R;] where
o my—1 by ([ Ru R
ar = ( bi—1 ) and R, = (Rt3 Rt2>.

(2) The one-step forecast distribution is

(Yi | thl) ~ N[ftht]



(3)

(4)

(5)
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with
fo=Ffi1(1) = my—1 + b
and

Q¢ = Rp + Vi

The adaptive vector is given by

_ Atl _ Rtl/Qt
Ai= (Atz) = <Rt3/Qt)'

Writing e; = Y; — f¢, the posterior at time ¢ is
my Cn Ci3
0, | D) ~N
( t| t) |:(bt>’<ct3 Ct2>:|7

My = My—1 + b1 + Agrey,

by = bi_1 + Apey,

where

Ctl - Atl‘/;H
Cia = Ry — Apo Ry,
Ci3 = ApV;.

It is of some interest to note the relationships
Ay A
Qi=Vi/(1-Ay) and C;= <At1 t2>Vt,
2 Gt

where ¢; = (ry — A%) /(1 — Ap), with ry = (Ci—1,0 + Wia) /Qr.

The updating equations lead to an alternative representation of the
observation series in terms of past observations and forecast errors.
Use of this representation provides easy comparison of the Bayesian
model with alternative forecasting techniques. The three identities

Yi=my_1 + b1 + e,
My = My—1 + b1 + Aerey,

by = by_1 + Apaey
lead directly to the second-order difference equation
i —2Yi 1 +Yio = e — Yner—1 + thoer 2

where

Y =2—A 11— A1
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and

o =1—A4 9.

This representation is a consequence of adopting the model, however
inappropriate it may be for any particular series.

7.2.8 Constant models and limiting behaviour

Denote the standardised constant second-order polynomial DLM as

= {(0) (0 D)o (1 L

Note that the observational variance is V' = 1. This loses no generality
since for a general value V, W, and all variances of linear functions are
simply scaled by the constant factor V. Further, if V' is unknown, the
standard variance learning procedure is applied. From Section 5.5, the
updating equations have a stable limiting form, that is typically rapidly
approached, as follows.

Theorem 7.1. For the second-order polynomial constant DLM, M , writ-
jng A= (A17A2)/7

lim {At7 Ct7 Rta Qt} = {A7 C7 Ra Q}

t—o0

exists such that

(1) (1-A4)Q=1;

(2) A3Q = Wo;

(3) (A? + A1Ay — QAQ)Q =W, — Wjs;

(4) with r = AlAQQ - W3 + W2 and ¢ = (T‘ - A%)/(l — Al),

- A1 AQ _ Al A2 .
C_(A2 c) and R_(A2 r)Q’

(5) the feasible region for A is that satisfying
0<A; <1, 0<Ay<4—24,—-4(1-A)%* <2

Proof. Theorem 5.5 shows that the limit exists. Write

_ _ (11 _(R1 Rs
F =E,, G—<0 1> and R_<R3 R2>'

Then A = RE2Q ™!, sothat R = A;Q and R3 = A>Q as in part (4). Next,
Q =E,RE;+1 = R1+1 = A;Q+1 and (1) follows. Since R = GCG'+W
and C =R — AA’Q, eliminating C,

R-G 'R(G)'=AAQ -G 'W(G)!,
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leading to
2R3 — Ry Ro\ _
Ry 0 /)
A2 A A, 0- Wy =2W3 4+ Wy W3 — Wy
AjAy A2 W3 — Wa Wa ’

Equating components and rearranging leads to Ry = A1 A2Q — W3 + Wa,
A3Q = Wy, and (A2 + A1 Ay —2A45)Q = Wy — W3, so completing the proofs
of statements (1) to (4).

For the feasible region result (5): 0 < A; < 1 since 41 = R;/Q > 0 and
1—A; =Q7! > 0. Define a = Q(A?+ A1 A3 —2A45). Then [W| > 0 implies
W1Wyo — W2 > 0. Substituting Wo = A3Q from (2) and W3 = W; —a from
(3) leads to W —W1(A3Q+2a)+a? < 0. At the boundary, the roots of this
quadratic in W; must be real valued, so (A2Q+2a)?—4a? > 0. This reduces
to A2Q + 4a > 0 so that on substituting for a, we obtain the quadratic
A% — 4A5(2 — Ay) +4A2 > 0. For this to be true, A must lie below the
lower root of this quadratic, and it follows that Ay < 4—24; —4(1 —A1)1/2.

&

Following note (6) of the previous section, the limiting representation of
the observations in terms of forecast errors is given by

i =2V 1 +Yi2 = e — 1ei—1 + Yaei—a,
where ¥ = limy_, o ¥y =2 — Ay — As and Yo = limy_, oo Pyo = 1 — Aj.

7.2.4 Single discount models

Often in practice the discount concept will be applied to the trend DLM
either when it stands alone or when it is a component of a larger model. The
discount factor then defines the evolution variance matrices, as described
for general block models in Section 6.3. Of course this leads to a non-
constant model, although the practical differences are small. The following
definition is simply a special case of the class of single discount DLMs of
Section 6.3.

Definition 7.3. For any discount factor d, 0 < § < 1, a single discount,
second-order polynomial growth DLM is any second-order model in which
for all t,

1-6

Wi = ——LyC, L. (7.4)

From a practical viewpoint, this is the most important class of second-
order models. Note that a single discount factor is applied to the trend
model as a whole, consistent with the ideas underlying component models.
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However, this does not mean that different discount factors cannot be ap-
plied to the two model elements, p; and Gy, separately if desired, or indeed
that some other form of evolution variance sequence be used. There may
be isolated cases when such alternative approaches are suitable, but for the
vast majority of applications, a single trend discount factor will be satis-
factory. As shown in Harrison (1967), alternatives have very little to offer
in terms of increased forecast accuracy while losing the simple discount
interpretation. The single discount model generally converges rapidly to
the constant DLM {Es,J2(1),1, W}, with W = LoCL,(1 — §)/6. The
corresponding limiting value of C is easily derived according to

1

C™!' =46l C'L;! + EyE).

The limiting values of the elements in the updating equations are
1 1-62 (1-9)2
=5 C—(a—w (1-8)°/3)

1— 62 1-62 (1-946)?
A=(alhe) m r=(0T5 Gim)e
Generally, the limiting adaptation is much greater for the level u; than
for the growth ;. Typical values, corresponding to the case 6 = 0.9, are

A1 = 0.19 and A = 0.01. Note also that the value of either A; or A,
determines ¢ and all the limiting quantities.

7.2.5 Double discount models’

Usually, in practice, the whole polynomial trend is best viewed as a compo-
nent to be discounted as a block using a single discount factor. Approaches
using two discount factors, one for the trend and one for the growth, are, of
course, possible, and although of very restricted practical interest, provide
Bayesian analogues of standard double exponential smoothing techniques
(Abraham and Ledolter 1983, Chapters 3 and 7; McKenzie 1976). Here
comments are restricted to one of the approaches described in Section 6.4.
Approach (b) of that section concerns the use of two discount factors d;
and do, the former for the level and the latter for the growth.

Let A = diag(5f1/2, 52_1/2) and apply the multiple discount strategy of
Section 6.4. Then, with G = Lo,

C/'=R,'"+FF =G 'A'C;LA'G ' + FF'
and so the limiting value of C satisfies

cl=-qg'alclalc!+FF.

tThis Section can be omitted without loss on a first reading.
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_(C1 Cs
o= (G )
we then have

Cy —C3 _ 01Co + |C‘ 7(5102 -+ ng)
—C5 (& —(5102 + dC5) 02C1 +61Cy +2dC5 )’

where d = (6165)'/2. As a result,

_ (1-d?) (1—=d)(1=0,)
©= <(1 —d)(1-0d) (1-d)*(1- 52)/51>

A= ((1 —1d;(fl2— 52)) '

Finally, Q = 1 + F'RF, where the limiting value for R; can be calculated
from R = GACAG'.
The limiting updating equations for the mean vector m; = (my, b;)" are

Writing

and

my =my—1 + b1 + Asey,
by = b1 + Asey,
where with 0 < §y, d2 < 1, it follows that 0 < A; < 1 and
0< Ay <A[1—(1—A)Y2.

7.3 LINEAR GROWTH MODELS
7.83.1 Introduction

In practice, the discount models of Section 7.2.4 are recommended for their
simplicity, parsimony and performance. However, a class of second-order
polynomial growth models, or linear growth models, that has different evo-
lution variance structure is of great interest. Historically these models have
been widely used by practitioners for modelling linear trends with easily
interpretable parameters and stochastic components (Harrison 1965, 1967;
Godolphin and Harrison 1975). As is shown below, constant linear growth
models are such that the limiting adaptive coefficients in the vector A
provide all the useful values, and so, in a very real practical sense, other
second-order models are essentially redundant. A further reason for closely
examining these models is for communication with users of other linear
trend point forecasting methods and for comparison with such procedures.

Definition 7.4. A linear growth model is any second-order polynomial
DLM equivalent to a DLM of the form

1 1 1 Wi + Wi Wi
{<0>’<0 1)7 Vt’( Wia Wtz)}’ (75)
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where Wy and Wys are scalar variances.

This definition is the special case of Definition 7.2 in which n = 2.f
The standard equations for (7.5) are simply those in (7.3a, b and c). The
evolution errors can now be expressed as

Wi = L280t,

_ [ O 0 Wy 0
o= (55)~1(0)- ("5 )]
It follows that wy; = Jus + 90 and wye = 90;. So the system equation

0; = Ly0;_1 + w; can be written as

Bt = L2(0t_1 + 800

where

In this form, 3; has the interpretation of incremental growth in the level
of the series over the time interval from ¢ — 1 to t, evolving during that
interval according to the addition of the stochastic element 93;. The level
¢ at time t evolves systematically via the addition of the growth §; and
undergoes a further stochastic shift via the addition of du;. In terms of
model equations, this implies the more familiar versions (e.g., Harrison and
Stevens 1976)

Observation: Y, = u + vy,
System: Hy = fle—1 + B + Opie,
Bt = Bi—1 + 0B,

with the zero-mean evolution errors duy and d0; being uncorrelated.

7.3.2 Constant linear growth models

Suppose that the variances are constants with V; = V, Wy = W; and
Wio = Ws. Then using the results of Theorem 7.1, the limiting values for
the linear growth model simplify as follows.

Theorem 7.2. For the constant linear growth model, limiting variance
values are

A1 A2 Al AQ
C= V and R= .
(A2 Ax(Ay — As) /(1 — Al)) an (A2 A1A2> Q

The feasible region for the adaptive vector A is given by
0< A <1 and 0<A2<A%/(2—A1)<A1
"Note that W in (7.5) is the simplest and preferred form for linear growth

models although others are possible. For example, an equivalent model exists for
which W, = diag(W31, Wie) although this is not pursued.
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Proof. Limits R, C, and the bounds on A; follow directly from Theorem
7.1 by substituting the particular form of the W matrix. Specifically,
replace W1 with Wy + W5 and W3 with W5. To determine the bounds
on As, note that since Ry = A1A2Q > 0, then Ay > 0. Also, it follows
from Theorem 7.1 (3) that A2 — A5(2— A1) > 0, 0or Ay < A2/(2— A1) < Ay,
as required.

Figure 7.1a provides a graph of the boundary line Ay = A%/(2 — A;).
The region below this dashed line and such that 0 < A; < 1 is the feasible
region for the adaptive coefficients given above.

The solid line in the figure, defined by As = 4—2A4; —4(1 —141)1/27 is the
corresponding boundary for the general second-order polynomial model of
Theorem 7.1. Clearly, the regions differ appreciably only for larger values
of Aj. Such values are extremely unusual in practice; remember that these
are limiting rates of adaptation in a closed model. For example, in stock
control and monitoring applications, A; will rarely exceed 0.25, implying
As < 0.036. These values are widely applicable upper bounds on the
adaptive coefficients, and so for most practical purposes, the linear growth
model is an adequate subclass of all second-order models. Practitioners
gain little by entertaining models outside this class. Figure 7.1b is a close-
up of the graph over the range 0 < A; < 0.3 when essentially the feasible
regions coincide. Also graphed in Figures 7.1a and 7.1b are the possible
values of adaptive coefficients in the single discount model of Definition 7.3.
In this model, W; is defined via a single quantity, and the limiting adaptive
coefficients are related via Ay =2 — A; — 2(1 — Al)l/z. Finally, the double
discount approach of Section 7.2.5 leads to the ranges 0 < A3 < 1 and 0 <
Ay < Aj[1 — (1 — Ap)Y/?], with the boundary line Ay = A;[1 — (1 — A1)'/?]
also appearing in Figures 7.1a and 7.1b. The ranges of limiting adaptive
coefficients in this double discount model differ little from those in the
linear growth class.

7.8.8 Limiting predictors in the constant model

Following Section 7.2.2, the limiting updating form of the closed, constant
linear growth model is

my = My—1 + b1 + Aiey,

by = bi—1 + Azey,
with a limiting second difference representation

Y, =2 1 + Yo = e — Yre—1 + 6o, (7.6)
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1/)1:2—A1—A2 and ’(/JQZ].—Al.

This can be written in terms of the backshift operator B as

(1-B)*Y; = (1 — 1B+ ¢2B?)ey.

A number of popular point prediction methods employ equations of the
form (7.6), and the main ones are now discussed.

(1)

Holt’s linear growth method (Holt 1957).
For k > 1, the linear forecast function f;(k) = m; + kb; produces
point forecasts that are sequentially updated according to

my =AYy + (1 = A)(my—1 + by 1),
b: = D(my —my—1) + (1 — D)bs_q,
where 0 < A, D < 1. Writing e; = Y; — (my—1 + b;—1) and rearrang-
ing,
my = my_1 + b1 + Aey,
by = by_1 + ADe;.

So, if A1 = A, A2 = AD, and D < A/(2 — A), Holt’s forecast
function is just the limiting forecast function of the constant linear
growth DLM.

Box and Jenkins’ ARIMA(0,2,2) predictor.
This Box and Jenkins (1976) predictor is based upon the model
Vi =2V 1 +Yio=e —Yrer1 + Yoera,
with uncorrelated errors e; ~ N[0, Q].
The forecast function for this specific ARIMA model is defined
by
ft(1) = 2Ys = Vi1 — threr + Phoes 1,
fe(2) = 2f1(1) = Vi + ey,
ft(k)Zth(k—l)—ft(k—2), k>2,

SO

fi(k) = () + (k= D[fe(2) = fe(1)), k=1

If 0 < 99 < 1 and 91 < 219, the forecast function is again the
limiting forecast function of the constant linear growth DLM.

Exponentially weighted regression (EWR) (Brown 1962).
Brown’s EWR linear growth forecast function is f;(k) = m: + kb,
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for k > 1, where at time ¢ given a discount factor 0 < § < 1 and
an infinite history of observations Y;,Y;_1,..., the pair m; and b;
are the values of p and f, respectively, that minimise the discounted
sum of squares

Se(p, B) =D 8" (Yier — p+ 1),
r=0

The appropriate values may be related via the recurrence equations
me = my—1 + b1 + (1 — 6%)ey,
bt = bt—l + (1 — 5)2615,

where

e =Y, —my_1 —bi_1.

So the EWR forecast function is the limiting forecast function of
the single discount DLM of Section 7.2.4 and thus of any constant
linear growth DLM for which A; = 1 — 62 and Ay = (1 —§)2. In
particular, the constant linear growth DLM, in which
Wy =2V (1-6)%/6 and Wy =V (1—§)*/5?,
leads to such A values, with
Vv 1—62 (1—6)?
@=5 ad C= ((1—5)2 o(1—5y3/5) V"

Quantitative relationships are given in the following table.

5 A, A, V/IWy | Wy W | Q/V
0.95 | 010 | 0.003 200 800 | 1.11
0.90 | 019 | 0.010 45 180 | 1.23
085 | 028 | 0.023 19 76 | 1.38
0.80 | 0.36 | 0.040 10 40 | 1.56
0.70 | 051 | 0.090 4 16 | 2.04
0.50 | 0.75 | 0.250 1 4 | 4.00

7.3.4 Discussion

Some further discussion of the above limiting predictors follows, although it
is rather technical and may be omitted on first reading. However, for prac-
titioners familiar with non-Bayesian methods, this section provides further
insight into the nature of Bayesian models, sharply identifying points of
difference.

The limiting updating equations for the constant DLM provide each of
the limiting predictors, but with particular restrictions on the values of the
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limiting adaptive coefficients. Brown’s values A; = 1—§2 and Ay = (1—6)?
are constrained within the feasible region for the linear growth DLM (see
Figures 7.1). However, Holt’s region is defined by 0 < A;, A < 1, and
that of the ARIMA model by 0 < Ay < 2, 0 < Ay + Ay < 4. These
both allow values outside the feasible region determined in Theorem 7.1.
Now it might be suggested that these regions should be contained within
that for second-order polynomial models, since the latter class of models
contains all those having a linear forecast function. The fact that this is
not the case derives from a rather subtle and hidden point. The reason is
that the predictors using A outside the feasible region from the DLM are
unknowingly superimposing a moving average process, of order not more
than 2, on the linear model. This leads to polynomial/moving average
models that, in DLM terms, are obtained from the superposition of the
polynomial model, as one component, with another component having one
zero eigenvalue. The set of canonical models has the form

)7 0) v (G W)

that will produce feasible regions 0 < A; < 2, 0 < A; + A3 < 4 depending
on the structure assigned to W. In particular, if W3 # 0 then the value
of A can lie outside the pure polynomial regions of Theorems 7.1 and
7.2. Then the forecast function is the sum of the forecast function of a
second-order polynomial and the forecast function of the zero eigenvalue
component, i.e., f;(0) is an arbitrary value, and fi(k) = m; + kb for k > 1.
This ties in with the foregoing popular point forecasting methods, that only
define their linear forecast functions for £ > 1. Without loss in generality,
V may be set to zero, since it can be absorbed by W5. Then W3 #£ 0
indicates that the observation and system noises are not independent.
Extending the zero eigenvalue block to the DLM

{(2)-(8" o) v w)

produces a forecast function that has arbitrary values for f;(0) and f¢(1)
and then becomes the linear forecast function f;(k) = my + kb, for k > 2.

This subtlety applies to all DLMs. Referring, for example, to the first-
order polynomial model of Chapter 2, the constant DLM has a limiting
representation of the form

i —Yi1=e—(1—A)esq,

with 0 < A < 1, whereas the ARIMA (0,1,1) predictor, having essentially
the same form, allows 0 < A < 2. Of course a value greater than 1 seems
strange. For example, if A = 1.9, the representation is

}/7-5 — €t = }/tfl + 0.9615717
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and in informing about Y;, Y;_1 is not being smoothed, but just the reverse.
However, the region 0 < A < 2 is precisely that valid for the constant DLM

{0)-( o) e V)

in which A may exceed unity if and only if W3 + V < 0; this is evidently
irrelevant from an applied perspective.

Generally, consider any TSDLM {F,G,V, W}, with G of full rank n.
Theorems 5.5 and 5.6 show that the updating equations have stable, lim-
iting forms such that

Jim {ﬁ(l ~ \B)Y, - ﬁ(l - prB)et} =0,

r=1 r=1
where B is the backshift operator, A1,..., A, are the n eigenvalues of G,
and p1,...,p, are simply linear functions of the elements of the limiting

adaptive vector A. The feasible region for these p, coefficients is a subset
of the region

{pla'”vpn:|pr|<17(T:17"'7n)}'

However, this region can be enlarged by superimposing a zero eigenvalue
component of dimension 1 on the model, leading to the (n+ 1)-dimensional

MGy

The forecast function may then have an arbitrary value for k& = 0, but
thereafter it follows the forecast function form of the sub-model {F, G, -, -}.
The above limiting representation of the observation series holds for this
extended model, and the p, coefficients may take any values in the above
region, depending on the structure of the evolution variance matrix W*.

More generally, by superimposing a zero eigenvalue component of dimen-
sion h on the model, leading to the (n + h)-dimensional DLM

{(2) (5 al) v )

the forecast function may have arbitrary values for k& < h before following
the sub-model form. However, the above representation changes to include
h — 1 extra error terms, so that

n n+h—1

Jim {H(l -ABY, - ] - p,«B)et} =0.
r=1 r=1

Such model extensions are unnecessary in practice. However, here they

serve to identify peculiarities of the classical techniques, warning practi-
tioners to restrict the range of allowable values for adaptive coefficients
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well within the region previously suggested by advocates of such methods.
For polynomial prediction, the zero eigenvalue component is superfluous,
and its addition violates parsimony. Generally zero eigenvalue blocks are
to be avoided in all applications unless they can be readily interpreted. De-
spite many years of experience in the chemical industry and in consultancy,
neither of the authors has ever had cause to employ them.

7.4 THIRD-ORDER POLYNOMIAL MODELS
7.4.1 Introduction

By definition, a third-order polynomial DLM is any observable TSDLM
that at time ¢, has a forecast function of the quadratic form

fe(k) = aw + ank + apk?, k> 0.
An alternative representation is given by

fi(k) = fi(0) + [fe(1) = fe(O)]k + [£2(2) = 2e(1) + fe(0)]k(k — 1)/2,

where the coefficients of the quadratic forecast function are identified in
terms of their first three values. These models are only occasionally used
in practice, since for many short-term forecasting and micro-forecasting
applications, local trends are adequately described using first- or second-
order polynomials. However, when dealing with macro or aggregate data
and when forecasting for longer lead times, the random variation measured
by observational variances V; is often small relative to movement in trend.
In such circumstances, third-order polynomial descriptions may be needed.
An example of such a case is given in the application to longer-term growth
forecasting in Harrison, Gazard and Leonard (1977). That particular ap-
plication concerned the preparation of forecasts of world mill consumption
of fibres split into forty-eight categories according to fibre type and geo-
graphical region. These forecasts, that covered ten future years, were re-
quired and used for GATT negotiations by the well-known trouble-shooter
Sir Harvey Jones, then at ICI Ltd. The main problem lay not so much
in forecasting the total consumption as in predicting proportionate con-
sumptions. Consequently, non-linear Gompertz-type functions, defined by
three parameters, were locally approximated by a third-order Taylor ex-
pansion. A discount quadratic polynomial DLM was used for updating the
corresponding three parameters. This form was then converted back and
the full non-linear form used for the forecast function. The approach also
employed a “top-down” hierarchical structure and used constrained and
combined forecasting, as discussed later in Chapter 16. The success of this
application led to the development of a computer programme used by the
company for similar applications.

The canonical third-order polynomial DLM is {Es, J3(1),- ,- } but the
similar DLM {Es,Ls,- ,- } will be adopted in this chapter. Further, as
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with second-order models, a subclass of third-order models, namely those
termed quadratic growth models, are essentially sufficient in terms of
the possible values of limiting adaptive coefficients. Thus, attention is
restricted to a brief description of the theoretical structure of models in this
subclass. The evolution variance sequence in quadratic growth models has
a particular, structured form, derived as the case n = 3 in Definition 7.2.
In practice, the more parsimonious models based on single discount factors
will typically be used without real loss of flexibility. Although apparently
rather different in nature, these discount models are intimately related
to the canonical quadratic growth models, and in constant DLMs, the
rapidly approached limiting behaviour of the two are equivalent. This is
directly analogous to the situation with first- or second-order models, and
the analogy carries over to polynomials of higher order.

7.4.2 Quadratic growth models

Definition 7.5. A quadratic growth DLM is any model equivalent to
a DLM of the form

{Es, L3, Vi, W4},
where for all £, W, has the form
W, = Ladiag(W;1, Wia, Wi3) L.
The model class is obtained as the defining variances W, and V; vary.

Writing v; ~ N[0, V4],

fht O Wi 0 0
Ot = ﬂt and 80t = aﬂt ~ N 0, 0 WtQ 0 5
Vi 0 0 0 Wy

a quadratic growth DLM can be written as
}/;5 = Ut + Vi,
Me = pe—1 + By + O,
Bt = Br—1 + v + 9P,
Ve = Ye—1 + 0.

The system equations may be compactly written 8; = L3(0;—1 + 06;). The
quantities u;, B¢ and 7; respectively represent level, growth and change in
growth at time ¢. In a continuous-time analogue, (5; would represent the
first derivative with respect to time, or gradient, of the expected level of
the series at time ¢, and ; the second derivative of the expected level.
The components of the evolution error 06, represent the corresponding
stochastic changes in the state vector components. Given the posterior
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mean E[6;| D;] = m; = (my, by, g)’, the forecast function is
fe(k) = my + kb + k(k +1)g¢/2, (k>0).

Finally, the updating equations lead to a limiting representation of the
observation series, so that with adaptive vector Ay = (A1, Asa, Asz)’,

(1-B)Y; =Y, —3Y;1+3Yi 0 — Yy 3 = e; — Pr1es—1 + Yroer_2 — Pr3er_3,
where the 9; coefficients are given by

Y =3 — A1 — A2,

Yo =324 01— A_22+ Ai_23,

Y3 =1—A4_31.

7.4.3 Constant quadratic growth model

Theorem 7.3. In the constant quadratic growth model
{E37 L37 17 L3WL§,})
with W = diag(W;, Wo, W3), the components A;, C;, Ry and Q; have
limiting values A, C, R and @ defined by the equations
1= (1 - AI)Q7

W3 = AgQa

Wy = (A2 — 24, A3 — Ay A3)Q,

W1 = (A} + A1 Ay — 245 + A3)Q,

and
Ay Az As
R=| A4y A1A;—(1-2A;— A))As (A1 + A2)As | Q,
As (A1 + Ag)As A As
with
C=R-AA'Q.

In addition, the feasible region for A is defined by
{A: 0<A3,4<1,0<A;<2, 0< A3~ A3(24; + Ay),
0 < A7+ A1 Ay — 245 + Az}

Proof. The limits exist by Theorem 5.5. The proof of the limiting rela-
tionships follows that of Theorem 7.1. The technique is general and may be
used to derive analogous limiting relationships for higher-order polynomial
DLMs. The proof is only sketched, details being left to the reader.
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From the defining equations, R = L3(C + W)L; and C = R — AA/Q,
it follows that
L;y'R(L;) ' =R - AA'Q+W.

The required representation of the components as functions of A and @
can now be deduced by matching elements in the above matrix identity,
noting the special diagonal form of W and the identity

1 -1 1
L;' = 0 1 -1
0 0 1

Finally, the feasible region for limiting adaptive coefficients can be de-
duced using the facts that 0 < Wy, Ws, W3 < @, 1 < @ and the positive
definiteness of R.

Note the following:

(1) Defining 1 =3— A1 — Ay, Yo =3—-2A1— As+ Az and 3 =1— Ay,
the limiting representation of the observation series is

3
(1-B)*Y, = (1 =91 B +1aB? —3B%)e, = [[(1 — ¢ B)es-
v=1

The traditional ARIMA(0,3,3) predictor takes this form, subject to
|¢y| < 1 for v = 1,2,3. The DLM limiting predictors thus corre-
spond to a subset of the ARIMA predictors. As in Section 7.3.4,
the full set of ARIMA predictors is obtained by extending the DLM
to have a further zero eigenvalue component.

(2) Exponentially weighted regression (or discounted likelihood). Re-
currences for the values m;, b, and ¢; minimising the discounted
sum of squares

(oo}
Se(p, B,7) =Y 0" Yoy — p+ Br — yr(r +1)/2)°,
r=0
with respect to u, B and ~, correspond to the DLM updating equa-
tions with Ay = A} = 1 —63, Ay = Ay = 2 — 36 + 6% and
Az = Az = (1 — 6)3. Then the observation series has the form

(1—B)3Y; = (1 — 6B)3e,.

This is also the limiting form given in a discount DLM with the
evolution variance sequence structured using a single discount factor
¢ applied to the whole quadratic trend component.

(3) The above results generalise. In the constant n'"-order polynomial
DLM {E,,L,,V,W}, with W = L,diag(W,..., W, )L/, suppose

n’
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that W, = (7)c"V, (r = 1,...,n), where ¢ = (1 — §)?/§ for some
discount factor 0. Godolphin and Harrison (1975) show that the
limiting representation of the observation series (a special case of
equation 5.12) is

(1—B)"Y; = (1—0B)"e,.

This relationship obtains for EWR and in the limit, for the single
discount n*"-order polynomial DLM, for which

R; =L,C;L,,/é.
The limiting value of the adaptive vector A = (Ay,..., A,)’ is then

given by
A =1-46",
n
Ar+1—<)(1—5)r A, (r=2,...,n-1),
r
A, =(1-0)",
with
v
Q=5

7.5 EXERCISES

The following questions concern polynomial models with observational vari-
ances assumed known unless otherwise stated.

(1) Verify that the polynomial DLM {E,,L,,- ,- } is observable and
similar to the canonical model {E,,J,(1),-,- }.

(2) The forecast function of the DLM {E,,L,,- ,- } is
fi(k) =E/Lfm,, k>o.
Show directly that this is a polynomial of order n (degree n — 1).
(3) Consider DLMs M and M; characterised by quadruples
7 {En, Jn(1), Vi, Wi},
M : {En,Ln, Vi, Wi}

(a) Calculate the respective observability matrices T and T};.
(b) Show that the similarity matrix H = T~!T; is given by

1000 ... 00O
0110 ... 00
0011 ... 00
H=]|. . ) .
0 0 0 O 1 1

o
o
o
o
o
—_
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()

Interpret the meaning of the state parameters in each model.

(4) You apply the nt"-order polynomial DLM {E,,, L,,, V, VW} to fore-
cast a time series Y;, the true generating process being M.

(a)

Apply Theorem 5.6 to prove

n
tlig}o{(l_B) n_et_z:ﬂvet—v} :Oa

=

for some real quantities 3,, (v=1,... ,n).

Does the result of (a) mean that the observations are generated
by an ARIMA(0,n,n) process?

Does the distribution of (e;|D;_1, M) converge in probability
to some specific form?

Are the one-step errors e; truly uncorrelated in the limit?

If you answered “Yes” to (b), (c), or (d), you can take comfort
from knowing that others suffer the same delusion! Adopting
the DLM, the above relationship is true no matter what the real
data-generating process. The distribution of e; is dependent
on the true model M, and each can have a completely different
distribution from any other while their joint distributions are
free to display marked dependencies.

(5) Suppose that the observation series Y; really is generated by the
nt'-order polynomial normal DLM M = {E,,L,,V,W}.

()

(b)

()

Show directly that if V' > 0, then for any ¢ > n, the series can
be represented by

n

(1-B)"Y, = [[(1 - puBar,

v=1

where a; ~ N[0, @], independently, and for some real quantities
ool <1, (v=1,... ,n).

Writing Z; = (1 — B)"Y;4y, show that the joint distribution of
the {Z;} series is such that E[Z;] = 0 and C[Z;1, Z:] = 0 for
all £ > n.

Given data values Y7, ... Y;1,, how might you use them to sup-
port or refute the hypothesis that they are suitably modelled
by the above model M?

(6) Suppose that the observation series Y; really is generated by the
nt'-order polynomial normal DLM M* = {E,,, Ly, V;, W;}. Define
Zy =1 —B)"Yiin.

()
(b)

Prove that E[Z;] = 0 and C[Z;4, Z:] = 0 for all k > n.

Given data values Y7, ... Y1, how might you use them to sup-
port or refute the hypothesis that they are suitably modelled
by the above model M*?
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(¢) How do you sort out whether the variances are constant, as in
the previous question’s model M, or whether they are time-
dependent as in model M*?

Write a computer program to generate 102 observations according
to the constant second-order polynomial DLM

{(6) (o 1) o015 G230)}

with pg = 100 and By = 0. Classical model identification advocates
looking at the autocorrelation structure of the derived series X; =
Y41 —Y; and of that of Z; = X441 — Xy = Yipo—2Yi41+Y:. On the
basis of no significant effect the autocorrelations are approximately
NJ0, 1/n], where n is the length of the series. Roughly, if C[ X}, X; 2]
is not significantly different from zero, then the data do not refute
the first-order polynomial DLM. If it is significantly different and
C[Zt, Zt43) is not significantly different from zero, then the second-
order polynomial DLM is not refuted. Produce series using discount
factors § = 0.95, 0.9, and 0.8.
(a) Look at these series and draw an impression as to whether a
first- or second-order model is suggested.
(b) Now examine the autocorrelation graphs to see what you con-
clude.
(¢) Given the DLM, and for ease § = 1, what are the variances
of X; and Z;? Draw your conclusions about the differencing
approach to identification.

Suppose that a series is generated according to the mechanism

Yii1 — Y; = a; — 2a;_1 with a; ~ NJ0, 1] independently.

(a) If at t = 0, you precisely know a;, show that your one-step
prediction errors e; = Y; — f; satisfy Yi41 — Ve = e; — 2e41,
where e; ~ N[0, 1] independently.

(b) Suppose that you do not know a4 precisely, but at time ¢ = 0, it
has distribution (a1]|Dg) ~ N[0, Q1], where the only restriction
is Q1 > 0. Prove that now your limiting one step ahead errors
satisfy Yiy1 — Yy = e — 0.5e;_1, where e; ~ NJ0,4] indepen-
dently.

(¢) Meditate on (a) and (b) particularly with respect to moving
average processes and their supposedly unique representation.

Consider the single discount second-order polynomial DLM of Def-
inition 7.3, namely {Eq, Ly, V, W;}, where

1-6 1
W, = TLQCt_lL/, so that R; = 5L2Ct—1L/2~
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(a) Use the identity C;* = R; ' +EoE,V ! to directly verify that

. L (1-8 (1-96)?
A= O ((1 ~9? a —6)3/6) "

. v ) 1— 62
Jim Q=@ =5, ﬂ&&:A:(u—W)’
and

. o (A Ag
Am R =R = <A2 (1- 6)A2) @
(b) Deduce that in this (rapidly approached) limiting form, the
updating equations are just those of a constant DLM in which

(A A\ (1-90)V
w=(4 W) s

for any variance W (compare results in Section 5.3.4).
(10) In the constant linear growth DLM of Section 7.3.2

o) (o) ("™ i)}

with known variances, calculate, for any k > 1,
(a) the k-step forecast distribution p(Yiir|D:);
(b) the k-step lead-time forecast distribution p(X; ;|D;), where we
define X j, = Zle Yiir
(11) Using the limiting form of the updating equations in the constant
linear growth model of the previous question, verify that the limiting
forecast function can be written as

fe(k) = fi(0) + [fe(1) = fe(0)], for k> 2,
fi(0) =Y, — (2 — Ay — Ad)ey,
Ji(1) =2Y; =Y, 1 — (2— A1 — Ag)es + (1 — Ay)es .
erily the recurrence equations of part of Section 7.3.3,
12) Verify the EWR i f 3) of Section 7.3.3
namely that given an infinite history Y;,Y;_1,... and defining e; =

Y: —myi—1 — bs—1, the unique values {my, b;} of {y, 8} that minimise
the discounted sum of squares

Se(, 8) =Y 8" (Yo — p +03)°

v=0
satisfy the recurrence relationships
me = my—1 + b1 + (1 — 6%)es,
bt = btfl + (1 — 5)2€t.
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(13) Given the infinite history of the previous question, a modeller de-
cides to estimate the parameters of the forecast function f;(k) =
1+ kG using the method of discounted likelihood, that is equivalent
to the model in which the data are independently distributed as

(Yi—opt, B) ~ Nlpz — v, V/5"].
Show that the maximum likelihood estimates m; and b, are exactly
the same as those for EWR.

(14) Show that with common initial information Dy, the first-order poly-
nomial DLM {1,1,V, W} is equivalent to the DLM

) Goo)o (5 0)b

(15) Following on from the last question, consider the extended, constant
first-order polynomial DLM defined as

()G o) (&0}
(a) Show that
lim (Y, — Y1) = e, — (1 — A)ey_1.

t— o0
(b) Show that lim;, Q: =Q = (V+C)/(1 - A).
(c) Hence show that A may exceed 1 if and only if C'+V < 0 and
that if W = (4 4 €)V and C = —2V, then lim._,o A = 2.



CHAPTER 8

SEASONAL MODELS
8.1 INTRODUCTION

Cyclical or periodic behaviour is evident in many time series associated
with economic, commercial, physical and biological systems. For example,
annual seasonal cycles provide the basis of the agricultural calendar. Each
year the earth revolves about the sun, the relative positions of the two bod-
ies determining the earth’s climatic conditions at any time. This natural
cycle is uncontrollable and must be accepted.

It is important that the induced seasonality in product demand be recog-
nised and included as a factor in forecasting models. Seasonal patterns can
have enormous implications for stock control and production planning, es-
pecially in agribusiness, where, not uncommonly, demand patterns exhibit
seasonal peak-to-trough ratios in excess of 10-to-1. Various other annual
cycles, such as demand for fireworks, Valentines cards, Easter eggs and so
forth, are even more pronounced.

Although many annual patterns arise from the natural solar cycle, not all
do, nor is the effect always uncontrollable. One example we met concerned
the demand for the most widely used anaesthetic of its time. Analysis re-
vealed an annual cycle that initially surprised the marketing department,
whose personnel were adamant in claiming that usage was steady through-
out the year. Indeed they were right: usage is roughly constant. But
because the ordering habit of the National Health Service was dominated
by a three-monthly accounting period, delivery demands revealed a marked
quarterly cycle that needed to be recognised in efficiently controlling stock,
production and supplies. Similar seasonal variations in demand and sales
arise partially as responses to advertising, with the promotional plan fol-
lowing the same broad lines each year.

In addition to identifying and anticipating cycles of this sort, decision-
makers may wish to exert control in attempts to alter and reduce seasonal
fluctuations. In a commercial environment, the aim is often to increase
the utilisation of manufacturing plant and warehouse facilities. For exam-
ple, in some countries milk-processing plants are almost 50% under-utilised
due to the 20-to-1 peak-to-trough ratio in milk production, winter concen-
trate feeding being relatively costly compared to summer grazing. In order
to counteract this, milk processors adopt a pricing policy that encourages
dairy farmers to keep more cows over winter, thus dampening seasonal fluc-
tuations in milk supplies. Another example that we encounterred in the
pharmaceutical industry concerned a very well known skin cream. Initially
this was marketed for winter chap, and seasonal demand had a pronounced
peak at the end of autumn. However, it was noticed that people were
also using the cream for sun protection and soothing. In response, mar-
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keting switched their major promotional effort to spring, with the effect
that demand peaked massively in late spring. These examples illustrate
the dynamic nature of seasonality and the need to model it accordingly.

The annual cycle, though of primary importance, is one amongst many
of varying periods. The day/night, lunar and other planetary cycles are
well known. So too are natural biorhythms in animals and oscillatory
phenomena in the physical sciences.

Perhaps the least appreciated form of cyclic behaviour arises from sys-
tem response mechanisms involving feedback and delay. Engineers are well
aware of this in short-term process control systems, but politicians and
management have a costly blind spot for such dynamics as they appear in
social and economic systems, particularly when the response covers periods
in excess of one year. Examples include the cobweb, pig and beef cycles,
predator-prey interactions, boom and bust cycles such as the four-to-five
year economic cycle and those christened Kitchin, Jugler and Kondratieff
(van Duijn 1983). These are not inevitable cycles. They are simply system
responses to imbalances in things such as supply and demand, that are
often magnified by shortsighted reactive decision-makers. Such inadequate
understanding, so rife amongst decision- and policy-makers, causes many
economic, social and political crises. An illuminating example from agricul-
ture, taken from Harrison and Quinn (1978), concerns beef markets. A real
or supposed supply shortage, such as that predicted by the World Health
Organisation in the early 1970s, prompts governmental agencies throughout
the world to initiate incentive schemes. In response, beef breeders decide
to increase their herd size. But this means bringing back an increased
number of one-year-old heifers into the breeding herd. These heifers would
normally have proceeded to the fattener. Consequently, despite the in-
tention to increase the meat supply, the following year the supply drops
well below the level it would have been if no action had been taken. The
resulting price increase persuades breeders to expand their herds further.
So again in the next year, there is a fall in meat supply and meat prices
reach a record height. This is now drastically misinterpreted by breeders
and decision-makers as indicating that the shortage was originally under-
estimated, leading to an even further expansion of breeding stock. The
bubble bursts three years after the initial stimulus for expansion. Fol-
lowing the delay (due to impregnation, gestation, weaning and fattening),
the increased cattle output, sometimes over 40% above the previous year,
reaches the slaughterhouse. Disastrous consequences follow as prices col-
lapse. The increased number of cows being fattened results in soaring feed
and housing costs (up to 100% increase in concentrates and grass seed).
Combined with low cattle prices, this destroys the breeder’s profit mar-
gins (one cow in the west of Ireland went for 50 pence). The price of the
newly produced calf may not even cover the vet’s fees! The final response
is now a massive culling of cows and calves at birth, sowing the seeds of the
next shortage so that the cycle repeats. This example is not hypothetical.
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In Britain, in one year in the mid-1970s, 23% of all Friesian calves were
slaughtered at birth-not a widely published statistic. As a result, many
breeders lost their farms with government misdirecting financial aid to the
fatteners rather than to the breeding source. This was not just a European
phenomenon: farmers in Australia were paid to shoot their cows, and the
whole world was affected. Further, the effect mushroomed. Pig and poultry
profit margins were shattered by the increased feed costs. The refrigerated
lorry industry and the tanneries had a temporary bonanza, though they
too were headed for deep trouble, and so on.

The key point of this example is that it well illustrates the common, but
little understood, phenomenon of a delayed feedback response and cyclical
behaviour that is often inflated by decision-makers’ actions and that recurs
in all economic sectors. The key to control lies in understanding the nature
of the system, recognising the great time delays between action and effect,
and the fact that once an imbalance occurs, the appropriate corrective ac-
tion will typically cause an immediate worsening of the situation before
balance is restored. It is also important to be aware of the consequences
for related activities, such as milk, feed, pigs, leather goods, and so on, in
the above example. The modern tendency to divide control responsibilities
for separate areas as though they were independent only exaggerates crises
such as beef shortages, butter mountains, and wine lakes, with the contin-
ued reactions of decision-makers causing problems in other areas and thus
perpetuating imbalances and crises. The main message for the dynamic
modeller is that cyclical patterns should not be automatically modelled
as inevitable seasonality. If the modelling objectives are associated with
major policy decisions, it is critical that the relevant system dynamics be
studied, particularly with regard to the presence of feedback mechanisms,
magnification and naive decision-makers.

Having identified these issues, this chapter now concentrates on descrip-
tions of observed cyclical behaviour purely in terms of superficial seasonal
factors. In practice, such simple representational models, either alone or
combined with trend and/or regression components, often prove adequate
for assessing current and historical seasonal patterns, for analysing changes
over time, and for short-term forecasting. The term seasonality is used
as a label for any cyclical or periodic behaviour, whether or not this corre-
sponds to well-defined and accepted seasons. To begin, the basic structure
of linear models for deterministic functions exhibiting pure seasonality is
described, setting out the requisite notation and terminology. This leads
to suitable DLMs via the consideration of cyclical forecast functions. Two
important classes of models are detailed. The first uses seasonal factors
and is termed the form-free approach since the form of the seasonal pat-
terns is unrestricted. The second approach uses a functional representation
of the seasonal factors in terms of trigonometric terms and is termed the
form approach. Both approaches are useful in practice.
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8.2 SEASONAL FACTOR REPRESENTATION OF
CYCLICAL FUNCTIONS
Let g(t) be any real-valued function defined on the non-negative integers

t=0,1,..., where t is a time index. Note that the function is defined from

time zero in order to conform with the usage of cyclical forecast functions
in DLMs, as detailed below.

Definition 8.1.

(1)

(7)

g(t) is cyclical or periodic if for some integer p > 1 and for all
integers t,n > 0, g(t+ np) = g(t).

Unless otherwise stated, the smallest integer p such that this is true
is called the period of g(.).

g(+) exhibits a single full cycle in any time interval containing p
consecutive time points, such as [t, ¢ + p — 1], for any ¢ > 0.

The seasonal factors of g(-) are the p values taken in any full cycle

¥i =90, (J=0,...,p—1).

Notice that for t > 0, g(t) = g(j), where j is the remainder after
division of ¢ by p, denoted by j = plt.

The seasonal factor vector at time t is simply that permutation
of the vector of seasonal factors that has its first element relating to
time ¢, namely, when the current seasonal factor is v;,

1/Jt = (¢j)¢j+11"'7wp7151/}07'"awjfly-

In particular, for any integers n and k = np, ¥, = (Yo, ..., ¥Yp-1)".
In any cycle, the time point corresponding to the relevant seasonal
factor t; is given a label M(j). This label then defines the timing
within each cycle, as, for example, months within years, where M(0)
may be January, M(1) February, and so forth. The labels are cyclic
with period p: the label M(j) corresponding to time ¢ if and only if
J=nplt

When the p seasonal factors relating to a period p may take arbitrary
real values, the seasonal pattern is termed form-free.

Definition 8.2. E, and the p x p permutation matrix P are

1 010 ... 0

0 001 ... 0 01
B,= ||, P=|: o =(1 1;;1).

0 o0 0 ... 1

0 100 ... 0

Clearly P is p-cyclic, so that for any integer n > 0, P™ = I,, and
Prt? =Pk for k=1,...,p.
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At any time ¢, the current value of ¢(-) is ¢;, where j = p|t, given by
¥; = g(t) = Epthe. (8.1a)

Using the permutation matrix, it is clear that for all ¢ > 0, the seasonal
factors rotate according to

hy =Papyy. (8.1b)

This relationship provides the initial step in constructing a purely seasonal
DLM. Suppose the desired forecast function is cyclical in the sense that
fi(k) = g(t + k). Equations (8.1) imply that the forecast function has the
form of that in a time series DLM {E,, P, -,-}. P has p distinct eigenval-
ues given by the p roots of unity, exp(27wij/p) for j = 1,...,p, so from
Section 5.3, the model

{E,,P,.,.}

and any observable, similar model, produces the desired forecast function.

8.8 FORM-FREE SEASONAL FACTOR DLMS

8.3.1 General models

Definition 8.3. The canonical form-free seasonal factor DLM of period
p > 1 is defined, for any appropriate variances V; and Wy, as

{Epa Pa ‘/ﬁwt} .

With seasonal factor parameter vector 1, this DLM can be written

Observation equation: Y; = E;'z,bt + vy, (8.2)
System equation: P, = P 1 + wy.
(1) With E[vp, | Dy] = my = (myo, ..., myp—1)" the forecast function is
fi(k) = B/ P"m; = my;, j=nplk.

(2) The model is observable with observability matrix T = I,,.
(3) Any similar model will be called a form-free seasonal factor DLM.

8.8.2 Closed, constant models
The constant form-free DLM {E,, P, V,VW} may be written as
Yi = o + 14,
Vir = Pp_1 pp1 + Wi, (r:O,...,p—Z),

Ve p—1 = Yr—1,0 + W p—1,
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where v, ~ N[0, V] and w; = (w0, . .. ,wt p—1)" ~ N[0, VW] with the usual
independence assumptions. Consider the current seasonal level vy, sup-
posing that the current time point is M(0). Having observed Y;, no further
observations are made directly on the seasonal factor for times labelled
M(0) until time ¢t + p, p observations later. Over that full period, the fac-
tors change stochastically via the addition of the p evolution errors. Any
information gained about this particular seasonal factor is due entirely to
the correlation structure in W, and therefore the form of this matrix is
of crucial importance. Generally it is specified according to the discount
principle of Section 6.3, developed later. First, however, the theoretical
structure of the model is further explored with a particularly simple di-
agonal evolution variance matrix. Throughout note that V is supposed
known. If not, then the usual learning procedure applies without altering
the essentials of the following discussion.

EXAMPLE 8.1. Consider the special DLM {E,,P, V, WI} for which the
individual errors wy, are uncorrelated for each time ¢. Then the model
reduces to a collection of p first-order polynomial DLMs {1,1,V,pW}. For
clarity, suppose that p = 12 and the data is monthly over the year, M(0)
being January, and so on. Then, each year in January, one observation
is made on the current January level 1;o, the level then evolving over the
next full year by the addition of 12 uncorrelated evolution error terms, each
being distributed as N[0, W]. The net result is that

Yiyp,o = Yo + wi,

with wy ~ N[0,12W]. It is clear that the only link between the seasonal
factors is that deriving from the initial prior covariance terms at time 0.
The effect of this initial prior decays with time, and so for simplicity, assume
that (¢o | Do) ~ N[myg, Cp], where mg = mgl and Cy = CpI for some
scalars my and Cy. The following results may now be simply derived by
applying the updating recurrences and limiting results from the closed,
constant, first-order polynomial model of Section 2.3.

(1) For each t, (¢¢ | Dy) ~ Nmy, Cy], with my = (myo,..., My p—1)
and variance matrix C; = diag(Cyo,...,Crp-1).

(2) Suppose that t = np for some integer n > 1 so that n full periods
have passed. Then the current time label is M(0) and the updating
equations for the corresponding seasonal factor 1 are

Mo = My—p,0 + Asey,
CtO = AtV,

where ¢; = Y; — Mt—p,05 R; = Ct—p,O +pW, and A; = Rt/ (Rt + V)
Similar comments apply to the next time intervals M(1), M(2),...,
with the subscript 0 updated to 1,2,..., respectively.
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(3) Results of Section 2.3 apply to the p models {1,1,V,prV}, where
r = W/V, giving the following limiting results:

tlim Ay =A= (\/1 +4/pr— 1) pr/2,
thm Ct() :C = AV,
tlgglo Ri=R=A/(1-A),

p(wt]|Dt)—>N[mt,]7 AV+JW]3 .7:077p_1

(4) The limiting analysis is equivalent to that obtained by applying the
discount approach with a single discount factor § = 1 — A, leading
to a model {E,, P, V, W,} with

1-96

Wt = TPthlpl-

Following comment (4) above, it may also be shown that the limiting
forecast function is equivalent to that derived using exponentially weighted
regression techniques. This suggests a rephrasing of the form-free model
and the use of more than one discount factor to structure the evolution
variance matrix. Underlying this suggestion is the idea that a seasonal
pattern is generally more stable than the underlying, deseasonalised level.
Harrison (1965) discusses this idea. Thus the seasonal factors may be
decomposed into an underlying level, plus seasonal deviations from this
level. This provides the flexibility to model changes in two components
separately using the ideas of component, or block, models described in
Chapter 6. This decomposition is now described.

8.4 FORM-FREE SEASONAL EFFECTS DLMS
8.4.1 Introduction and definition

In decomposing a set of p seasonal factors into one deseasonalised level and
p seasonal deviations from that level, the seasonal deviations are called
seasonal effects. Although specifically concerned with seasonality, many of
the points carry over to more general effects models. Practitioners famil-
iar with standard statistical models will appreciate the idea of descriptions
in terms of an overall mean for observations plus treatment, block and
other effects. The effects for any treatment or block will be subject to an
identifiability constraint that is imposed in one of several forms, either by
aliasing one of the effects or by constraining an average of the effects. The
commonest such constraint is the zero-sum constraint. The analogy for
seasonality is that the seasonal deviations from the underlying level sum
to zero in a full period, so that any p — 1 of them define the complete
set. This zero sum constraint is used when discussing additive seasonality,
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although other constraints are possible and may typically be obtained by
linear transformation of the seasonal factors. In generalised linear mod-
elling using GLIM, for example, the effect at one chosen level, the first
level by default, is constrained to be zero (Baker and Nelder 1978).

Initially, the underlying level of the series is set to zero for all ¢, so that
the seasonal factors always sum to zero, producing a seasonal effects DLM.
The superposition of this seasonal effect DLM and a first-order polynomial
DLM then provides the constrained, seasonal effects component for a series
with non-zero level.

Definition 8.4. A form-free seasonal effects DLM is any model
{E,, P, V;, W} (8.3)

with state vector ¢, = (¢0, ..., Prp—1) satisfying 1'¢p, = 0 for all ¢.

The seasonal effects ¢;; represent seasonal deviations from their zero
mean and are simply constrained seasonal factors. In terms of equations,
such a model has the form given in (8.2), with the parameter notation
changed from 1) to ¢, and with the addition of the constraint 1'¢; = 0.

8.4.2 Imposing constraints

The constraint (8.3) leads to the following model restrictions.

(1) Initial prior. Applying the constraint to (¢o | Do) ~ N[myg, Col,
since (1'¢g | Dy) ~ N[1'myg, 1'Cy1], necessarily

llmo = O7

8.4
Col =0. ®4)

So the initial prior means and the elements of each row (and each
column) of the initial prior variance matrix must sum to zero.

(2) Evolution variances. Since ¢ = P¢:_1 + wy, clearly w; must
also satisfy the zero-sum constraint

W,1=0. (8.5)

Hence each row and column of W must sum to zero. Note that
w; already has zero mean, but if, more generally, it has a non-zero
mean, then the constraint must also be applied to this mean.

Theorem 8.1. In the form-free seasonal effects DLM, suppose the initial
constraints 1'my = 0 and Cgl = 0, and that W1 = 0 for all t. Then the
posterior distributions (¢ | Dy) ~ N[m;, C;] satisfy the constraints

1’'m; =0 and C. =0,
so that 1'¢py = 0 with probability one.
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Proof. The proof is by induction. If the constraints apply to the posterior
at time ¢ — 1 then 1’m;_; = 0 and C;_;1 = 0. Proceeding to the prior,
(¢t | Di—1) ~ N[ay, Ry], with a; = Pm;_; and R; = PC;_; P+ W,. Since
P1 =1, these prior moments also satisfy the constraints, with 1’a; = 0 and
R;:1 = 0. Updating to the posterior at t gives m; = a; + RtEth_let and
C; =R; — RtEpE;R;Qt_l, whence directly, 1’'m; = 0 and C;1 = 0. The
constraints therefore apply at ¢ = 1, and so by induction to all ¢.

&

Thus conditions (8.4) and (8.5) are consistent with condition (8.3). Two
problems remain: to ensure that the initial prior satisfies (8.4) and to design
a suitable sequence of evolution variance matrices satisfying (8.5).

8.4.83 Constrained initial priors

Practitioners are often only prepared to specify marginal priors, (¢o; | Do)
for j = 0,...,p — 1, providing just the mean and variance of each effect.
Rarely will they able or willing to produce covariance terms for the full,
joint prior distribution. In such cases the usual practical procedure is
to derive a coherent joint prior distribution satisfying (8.4) by applying
constraint (8.3) to the incoherent seasonal effects joint distribution that
corresponds to their specified moments together with zero covariances. This
may be done formally within the following general framework:
Suppose the initial prior

(¢0 | D) ~ Nmyg, Cg] (8.6)
may not satisfy constraint (8.4), as happens for a diagonal Cj. Apply the
following theorem.

Theorem 8.2. Imposing the constraint 1’¢pg = 0 on the prior in (8.6) and
writing U = 1'C{1 and A = C§1/U gives the revised joint prior

(¢ | Do) ~ N[my, Co],

my = mj, — Al'mj},

Co=C{ — AA'U.

Proof. The joint distribution of ¢y and their total 8 = 1'¢y is

Do 1y m; C; AU
(9 Do) ~N1\1mg ) \av v )|
Then the conditional distribution of ¢¢ is

(¢ | 0. Do) ~ Nmj + A(6 — 1'm;), C; — AA'U].
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Apply the zero-sum constraint by setting 6 = 0.

&

Whatever initial prior is elicited, this theorem should be applied to en-
sure compliance with the constraint. Notice that if the specified prior
satisfies the constraints, then no change occurs since A = 0. Otherwise, in
a general sense, the total variation in the constrained prior will always be
less than that originally specified in the unconstrained prior, the difference
being removed by imposing the deterministic constraint. Consequently, a
practitioner might like to scale the revised prior variance so that its trace
equals that of the elicited prior.

EXAMPLE 8.2. Suppose p = 4, with initial specification

10
* 5
(¢olD5)~N || o 1
-7
Imposing the constraints produces the revised prior
8 3 -1 -1 -1

3 1 -1 3 -1 —1
(¢0|Do) ~ N o gl o1 21 o3 1

-9 -1 -1 -1 3
To rescale so that trace Cy = trace C§, simply multiply Cy by 4/3.

8.4.4 Constrained evolution variances

Many evolution variance matrix structures satisfy constraint (8.5). Harri-
son and Stevens (1976b) set w; = wia, wherea’ = (p—1,—1,...,—1) and
wt ~ N[0, W;] for some W; > 0. This structure imparts information from
the observation to the current seasonal effect, and then only equally to the
others via the renormalisation in applying the zero-sum constraint. In this
case, Wi = W,aa’, and (8.5) is satisfied since 1’a = 0. An alternative
structure is derived by starting with W, = W,I and applying the zero sum
constraint as in Theorem 8.2 to obtain

Wt = Wt(pI — 11/)

Historically, these two forms, and others, have been widely used in prac-
tice. However, they are not recommended for general application, being
specifically designed to represent particular forms of change in the seasonal
effects over time. Instead we recommend discount methods. For a single
discount factor J, possibly depending on ¢, the discount idea of Section 6.3
applied to the entire seasonal effects vector leads to

1-9

W, = ——PC,,P', (8.7)
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that always satisfies (8.5) since P'1 =1 and C;_11 =0.

Definition 8.5. A single discount, form-free seasonal effects DLM is any
form-free seasonal effects DLM {E,, P, V;, W, } as defined by Definition 8.4
with evolution variance sequence W, defined via (8.7).

8.5 TREND/FORM-FREE SEASONAL EFFECTS DLMS

The main reason for considering the form-free seasonal effects DLM is that
it provides a widely applicable seasonal component that in a larger DLM,
describes seasonal deviations from a deseasonalised level, or trend. The
two most important such DLMs are those superimposing the seasonal effect
DLM with either the first- or second-order polynomial DLM.

8.5.1 First-order polynomial/seasonal effects model

Definition 8.6. A first-order polynomial trend/form-free seasonal
effects DLM is any DLM with parameter vector

o= (&)
{(5,) (0 &) v ("5 W)}

satisfying the constraint 1’¢p; = 0, for all ¢.

and quadruple

Such models comprise the superposition of a first-order polynomial DLM
(for the deseasonalised level) and a seasonal effects DLM. It is easily seen
that in the absence of the constraint, this DLM is unobservable. However,
the zero-sum constraint ensures that the DLM is constrained observable.
The forecast function takes the form fi(k) = my + hyy, with (§j = plk),
where my; is the expected value of the deseasonalised level at time ¢+ k and
h¢j is the expected seasonal deviation from this level. The model may be
written as

Yi = e + dro + 14,

Mt = He—1 + W,

Gtr = Gr—1,r4+1 + Wir, (r=0,...,p—2),
Dtp—1 = Pt—1,0 + W p_1.

When subject to the zero-sum constraint, this model is similar to the sea-
sonal factor model of Section 8.3. To see this, note that if H is the px (p+1)
matrix H = [1, 1], then ¥, = H6; is the vector of seasonal factors

wtj:Nt+¢tj7 (j:(),,p—l)
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Given the constraint, it follows that for all ¢,

P
Pty Wy = s
=

so u; represents the average of the seasonal factors (the deseasonalised
level). In the v; parametrisation this is the factor model (8.2). By con-
struction, this model represents the linear composition of the seasonal ef-
fects and first-order polynomial DLMs. Note that starting with the seasonal
factor DLM and a (p + 1) x p matrix U, the relevant transformation is

1 1 1
p p p
121 1 1
0 1’ Py i
A e s
1 1 g1
p p

8.5.2 Second-order polynomial/seasonal effects model

Definition 8.7. A second-order polynomial trend/form-free sea-
sonal effects DLM is any DLM with parameter vector

Ht
0, = | B
bt

and quadruple

) (7 2) (Y W)

satisfying the constraint 1’¢p; = 0, for all ¢.

Again such a DLM is constrained observable. It is obtained from the
superposition of a second-order polynomial and a seasonal effects DLM.
The forecast function takes the form

p—1
felk) =mq + Kby + ey, with » hyy =0
§=0

where j = p|k. Further discussion of this useful class of TSDLMs is deferred
until applications in later chapters.
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8.6 FOURIER FORM REPRESENTATION OF
SEASONALITY

8.6.1 Introduction

Alternative representations of cyclical patterns employ linear combinations
of periodic functions. The particular approach we favour and develop uses
the simplest and most natural class of periodic functions, namely trigono-
metric functions, leading to Fourier form representations of seasonality.

The main reasons for the use of form models, rather than the flexible
and unrestricted seasonal effects models, are economy and interpretation.
In some applications, observations result from sampling a simple wave-
form, so that sine/cosine waves provide a natural, economic characterisa-
tion. Simple phenomena exhibiting such behaviour abound in electrical
and electronic systems, astronomy, marine depth soundings, and geophys-
ical studies, including earthquake tremors. Many pure seasonal patterns
also arise in response to the revolution of the earth about the sun. For
example, in both the cases of British temperature and the Eire milk supply
index, over 97% of the variation in the average monthly figures about their
respective annual means may be characterised in terms of a single cosine
wave of period 12. If such a representation is deemed acceptable, then it
is defined in terms of only two quantities determining the phase and am-
plitude of the cosine waveform. By comparison, a monthly seasonal effects
component requires 11 parameters, with a weekly component needing 51.
The economy of form models is immediately apparent, and when appropri-
ate, results in enhanced forecasting performance. Generally, compared to
a full effects model, a Fourier form model can provide an acceptable repre-
sentation of an apparently erratic seasonal pattern whilst economising on
parameters.

8.6.2 Fourier form representation of cyclical functions

Consider the cyclical function g(¢) of Section 8.2 defined in terms of sea-
sonal factors vy, ..., 1¥p_1. The basic result is that any such p real numbers
can be written as a linear combination of trigonometric terms. This repre-
sentation depends on the parity of the period p. Throughout, let o = 27 /p
and h = p/2 if p is even, but h = (p — 1)/2 if p is odd.

Theorem 8.3. Any p real numbers o, ... ,¢p_1 can be represented as
h
Y =ag+ Z [ar cos(arj) + b, sin(arj)],
r=1

where h is the largest integer not exceeding p/2 and the real numbers
{a;,b;} are given by
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P 251
a, = — ij cos(ary), b,=-— Zzpj sin(arj), 1<r<?®
ot e
151 151
a0 ==Y Ui, app=—> (=1, by =0.
Pi=o Pi=o

Proof. The results are trivially deduced by multiplying the 1; by appro-
priate sin/cosine terms and solving the resulting linear equations. The
basic identities below are used in this solution. For example,

p—1 p—1
> _vjcos(arg) =) ar cos®(arj) = par/2, r#p/2
j=0 j=0

The full proof is left to the reader.

Basic trigonometric identities.
(1) For integer n and any z,
cos(z + 2mn) = cos(x) and  sin(z + 27n) = sin(x).

(2) Foreachr=1,...,h,

p—1 p—1
Zcos(arj) = Zsin(arj) =0.
5=0 j=0

(3) For integers h and k,

p—1

Zcos(ahj)sin(akj) =0,

=0

p—1 07 h 7é k,
Zcos(ahj) cos(akj) =< p, h=k=25,
=0 Poh=k#2,
p—1 O7 h 7& k,
Zsin(ahj) sin(ahj) =4 0, h=k=25,
=0 Poh=k#2
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Notation and terminology

(1) The quantities a, and b, are called the Fourier coefficients.
(2) For r =1,...,h, define the function S, () by

Sy(+) = Sr. = a, cos(ar:) + b, sin(ar-)
= A, cos(ar - +7,).
Then S,.(-) is called the r'" harmonic and takes values
Sy = ay cos(arj) + b, sin(ary)

for j=0,...,p—1.
(3) The amplitude A, and phase ~, of the 7" harmonic are

A, = (a2 +b2)Y?  and 4, = arctan(—b,/a,).

The amplitude is the maximum value taken by the S,., and the
phase determines the position of that maximum.

(4) If p = 2h, the h*" harmonic is called the Nyquist harmonic. Since
by/2 = 0, it follows that A, 5 = |a, | and 7,2 = 0.

(5) The frequency of the r* harmonic is defined as ar = 27r /p, with 7
being the Nyquist frequency. The cycle length of the 7" harmonic
is p/r. In particular, the first harmonic is called the fundamental
harmonic, having fundamental frequency « and fundamental cycle
length p. Notice that the 7" harmonic completes exactly r full
cycles for each single, complete cycle of the fundamental harmonic.

Theorem 8.4. Given any p seasonal factors vy, ... ,¥p—1, the total vari-
ation about their mean aq factorises into a linear sum of the squares of the
h amplitudes, so that

e for p odd and with h = (p — 1)/2,

e for p even and with h = p/2,

p—1 p h—1
2
(Y —ag)” = 5 ZAE +PA]2D/2~

r=1

<.
I
o

The proof just uses the above identities and is left to the reader. The
major consequence is that the importance of each harmonic, in terms of the
percentage seasonal variation for which it accounts, is simply calculated;
for the 7" harmonic and odd p it is simply 10042/ 32"_, A2,

EXAMPLE 8.3. As a simple illustration with p = 12, let the function g¢(.)
be defined by the following 12 seasonal factors, with mean ag = 0,

1.65,0.83,0.41, —0.70, —0.47, 0.40, —0.05, —1.51, —0.19, —1.02, —0.87, 1.52.
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Figure 8.1a Seasonal factors: sum of harmonics

The Fourier coefficients, amplitudes and phases are as tabulated.

Harmonic r 1 2 3 4 5 6

a 0.80 0.75 025 —-0.03 —-0.20 0.08

b, 030 —-0.15 0.15 —0.60 0.01  0.00

Amplitude A, | 0.85 0.76  0.29 0.60 0.20  0.08

Phase v, 0.36 —0.20 0.55 1.53  —0.04  0.00
The factors are plotted as vertical lines against j = 0,...,11 in Fig-

ure 8.1(a). Superimposed is the full Fourier composition of the seasonal
factors as a continuous function of ¢, clearly coinciding with the seasonal
factors at the integer values. Figures 8.1(b), (c¢) and (d) display the corre-
sponding 6 harmonic components S,; as functions of j for 0 < j <11.

In the Fourier form representation, g(t) is expressed as the sum of har-
monics, so that for all integers ¢ > 0, setting j = p|¢, and utilising the fact
that Sy, = Sy, forr=1,...,h,

h
g(t) = wj =ag + Z Srj. (88)

r=1
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Figure 8.1b Harmonics 1 and 2
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Figure 8.1c Harmonics 3 and 4
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Figure 8.1d Harmonics 5 and 6

sin(w)
cos(w)

_ cos(wj) sin(wj)

~ \ —sin(wy) cos(wj)
and J4(1,w) = J%(1,w). Hence S,; may be written in deterministic DLM
representation as

cos(w

Remember that J2(1,w) = < — sin(w

~— —

> , so that

~— —

, - cos(wt) sin(wt
J5(1,w) = (-sin(wt) cos(wt

Syt = ELJ5(1, rw) (ZT) . (8.9)

T

Consequently, for the stochastic case, the DLM representation is
{EQa JZ(]-a Tw)v K }

In the case of » = p/2 this is not observable, and it simplifies to the
observable DLM {1,-1,-,-}.

8.6.3 Harmonic component DLMs

Definition 8.8. An harmonic component DLM is defined
(a) for any frequency w € (0, 7), as any DLM similar to

a0 ={ (1), (Lol sy,
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(b) for the Nyquist frequency, w = 7, as any DLM similar to

1,-1,-,-).

Note the following features, identified with items (a) and (b) of Definition
8.8 as appropriate:

(1)

8.6.4

The component harmonic DLMs are observable, with respective ob-
servability matrices

(a) T = (cosl(w) sin?w)) ’ (b) T=-1.
With parameter ;, the respective forecast functions are
(a)  fi(k) = as cos(wk) + by sin(wk), if E[0, | D;] = (as, by)’;
(b)  fe(k) = (=1)*a, it E[6; | D;] = ay.

For any integer n, fi(k+np) = fi(k), that in case (a) is a cosine wave
of frequency w, amplitude (a? + b?)'/2, and phase arctan(—b;/a;).
As a theoretical aside, for (a) the forecast function can be written

ft(k') = — [( Zb ) ka (at + th) 6_“%')]
_ dteikw + C?tefikw’

and this is associated with canonical complex DLMs of the form

) (o )

So the component harmonic DLM comprises two sub-components.
For real-valued time series, however, the complex model is of lit-
tle interest since the associated parameter vector, «y, comprises
complex conjugate parameters. The two DLMs are similar models,
being related by the invertible mapping

1 1
Bt:(z _Z>at

A point of interest is that for a constant DLM {E», G, V,VW}, the
derived series

Zy =Y, —2Y;_1cos(w) + Yo

is a moving average process of order 2.

Full seasonal effects DLMS

As described in Section 8.6.2, any p seasonal factors/effects can be ex-
pressed in terms of harmonic components. This section specifies DLMs
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having such cyclical forecast functions in terms of the equivalent collection
of Fourier component DLMs, combined using the principle of superposition.

Definition 8.9. Define the (p—1) vectors F and (p—1) x (p—1) matrices
G, for odd and even p, respectively, as

E2 JQ(].,W) 0 0
E2 0 J2(1,2w) 0
{fmgo} = : Y : : : 7
E, 0 0 o Ja(1, hw)
E, Jo(1,w) 0 0 0
E2 0 J2(1,2w) 0 0
{fmge} = s
E2 0 0 JQ(l,hW*W) 0
1 0 0 0 -1

Definition 8.10. A full effects Fourier form DLM for a seasonal
pattern of period p is any DLM of the form

{f07g0;'7'}a lfpls Odd,
{Fe,Ge,-,:}, ifpiseven.

Such DLMs are usually formed from the superposition of the component
harmonic DLMs of Definition 8.8, so that the system variance W has a
block diagonal form corresponding to the relevant G. Note the following:

(1) The forecast function is just the sum of the component forecast
functions. With w = 27 /p and p — 1 parameter vector 0;, write
E[et | Dt} =my; = (mtla mi2;5...5 mt,pfl)ly
the odd elements corresponding to the cosine coeflicients a and the
even to the sine coefficients b. Upon conveniently writing my, = 0,
we then have
h h
fi(k) = Z Sri = Z [my,2r—1 cos(wrk) + my o, sin(wrk)] .
r=1

r=1

(2) No constraints are required on any of the component distributions
since by design, the Fourier DLM automatically ensures that the
seasonal effects sum to zero.

(3) The DLM is observable, since each component is observable and no
two components have a common eigenvalue.

(4) In most commercial applications a single discount factor is assigned
to characterise the evolution variances, so that

1 1-96
R = ggct—lg, and W = Tgct—lgl~
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However, in some scientific cases it may be desirable to characterise
the harmonics as evolving independently. Then the procedure of
Section 6.3 can be employed, possibly using different discount fac-
tors for different component harmonics, consistent with a view that
some are more durable than others.

8.6.5 Deriving the seasonal effects from Fourier DLMs

Given any DLM with a Fourier component DLM {F,G, -, -}, let the current
state of information about the Fourier coeflicients at time ¢ be described
by the marginal posterior

(025 | Dt) ~ N[mt,Ct].

Characterise the seasonal effect pattern at time t by ¢;, where the sum of
its elements is zero. The p-vector ¢; is defined by

fl
F'Gg
¢r = L6, = : 0., (8.10)
flg'p—l
and it follows that
(‘bt‘Dt) ~ N[Lmtv LCtL/]'

When estimating the observation variance V;, the analogous result holds
with a T distribution replacing the normal.
The reverse transformation is given by

6, = Ho, = (L'L)"'L'¢,

where H is a (p — 1) X p matrix. Upon using the trigonometric identities,
it is clear that L'L is always a diagonal matrix.

EXAMPLE 8.4. In the case p = 4,

1 0 1 0 1 0 1
F=|0|, G=((-1 0 0], T=| 01 -1},
1 0 0 -1 -1 0
and we have
1 0 1
0 1 -1
L= —1 0 1)’
0 -1 -1
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0.5 0 —0.5 0
H= 0 0.5 0 -0.5
0.25 —0.25 0.25 -0.25

8.6.6 Reduced Fourier form models

Sometimes a modeller requires a DLM that describes a seasonal pattern in
simpler terms than that given by a full p seasonal effects DLM. The case of
annual climatic cycles related to the earth’s revolution about the sun are
typical. In such cases, an economic representation in terms of only a few
harmonics, or even a single component, may suffice. The construction of
such reduced models is easy, just superimposing selected harmonic DLMs
and omitting other insignificant harmonics. For example, for monthly data
having an annual cycle, the DLM

{(E)’(Mé’w) J2(1(T4w)>v‘f}7 with  w = 2m/12,

confines the seasonal form to a composition of the first and fourth har-
monics. Within this restriction the DLM can accommodate any composi-
tion of amplitudes and phases. Usually a single discount factor is applied
to this DLM, but if required, different discount factors may be used for
the two components to reflect the view that they develop independently
and/or one is more durable than the other.

When appropriate, apart from being more economic and meaningful, a
reduced form model produces a better forecasting performance than a full
model. Clearly, included harmonic components that truly have very little
or no effect degrade forecast performance since their assessment introduces
extra variation and correlated forecast errors. For example, in a first-order
polynomial trend/seasonal effects model, the full Fourier form represen-
tation leads to a simple updating for the current seasonal factor and no
others. In contrast, a reduced form model updates the entire seasonal pat-
tern, revising forecasts for the whole period rather than just individual time
points. The message is that in addition to considering whether a reduced
form model should be used for reasons related to the application area,
the practical significance of components in the model should be assessed
over time and possibly removed if deemed negligible. However this does
not mean that such components will always be unnecessary, since future
changes in seasonal patterns may require that they be reinstated.

As with full harmonic models, the Fourier coefficients in a reduced model
are related to the constrained seasonal effects. In the (possibly reduced)
n-dimensional Fourier DLM {F, G, -, -}, define the p x n matrix L and the
n X p matrix H by
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F/
FG L
: and H=(L'L)"'L".
PGy
Then the orthogonality properties underlying the trigonometric identities
of Section 8.6.2 apply just as in a full Fourier model. If this DLM has state

vector @; then the relationships between Fourier parameters and seasonal
effects are simply ¢; = L6O; and 0, = H¢y, for all ¢.

EXAMPLE 8.5. For p = 4, using just the first harmonic, n = 2,
1 0

1 0 1 0 1
r=(y) e=( ) e[ o)
0

-1

05 0 -05 0
H‘( 005 0 —0.5)'

8.6.7 Assessing the importance of harmonic components

Many readers will be familiar with spectral analysis and in particular, peri-
odogram analysis, that provides a static assessment of the statistical signif-
icance of harmonics relative to a specified period p. The generalisation of
this to dynamic analysis examines the statistical significance of harmonics
based on the posterior distribution of the harmonic coefficients, thus al-
lowing for changes in time and the presence of related variables and other
dynamic components. Of course in practice, the modeller will finally judge
the importance of harmonics by their practical significance: it is possible
that a harmonic may be statistically significant without being practically
significant and vice versa.

At time ¢, let the posterior distribution for the coefficient vector 6; be
(6: | D) ~ Nm¢, C;]. As usual the observational variance sequence is
assumed known, otherwise the normal distribution is simply replaced by a
multivariate T, with modifications as noted below. Denote the marginal
posteriors of the coefficients of the r** harmonic by

(a) (Otr ‘ Dt) ~N [(atra btr)/a Ctr} ) if r 7é p/2a
(b) (gt,p/Q | Dt) ~ N[at,p/cht,p/Q}'

Notice that as. is the posterior estimate of the harmonic component of
the seasonal pattern at time t, namely S;.. A time plot of the estimates
ayr, (or the associated filtered values if filtering has been performed), with
an indication of the associated uncertainty as measured by the posterior
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variance, provides a clear and useful visual indication of the contribution
of the 7" harmonic. A formal statistical assessment may be based on the
calculation of HPD (highest posterior density) regions (Section 17.3.5) for
the individual harmonics, as follows.

Writing my,. = (ag-, by)’, we have the following distributions at time ¢
and, of course, conditional on Dy :

(1) If the variances V; are known, then with the usual y? as a random
quantity having a standard chi-square distribution with v degrees
of freedom,

(a) (8 — my,)'Cy (O — mayy) ~ X3, if 7 # p/2;
(b) (Orpj2 — (It,p/2)2/ct,p/2 ~ X7

(2) If the variance V is unknown but is estimated in the usual way, with
n; degrees of freedom at time ¢, then with F;,, ., representing the F
distribution with v; and vy degrees of freedom,

(a) (O — M) CL (B — myy) /2 ~ Fo,, if v # p/2;
(b) (0t,p/2 - CLi&,p/2)2/6‘t,p/2 ~ Fl,nt~

When considering the retention of a harmonic, the usual statistical tests
simply calculate the following probabilities, high probabilities indicating
that retention is statistically advisable.

(1) If the variances V; are known,
(a) Pr(x3 < mj, C;,'my,);
(b) Pr(xf < “tQ,p/z/Ct,pﬂ)'

(2) Or, when the variance is unknown,
(a) Pr(F,, <m}.C;'my,/2);

(b) Pr(F]~7nt < atz,p/Q/CtJ)/Q)'

EXAMPLE 8.6. Gas consumption data. The data series in Table 8.1 is
used to illustrate the above Fourier decomposition. The 65 observations are
monthly totals of inland U.K. natural gas consumption over the period May
1979 to September 1984 inclusive, as derived from the Central Statistical
Office Monthly Digest. Since gas usage follows the annual temperature
cycle, the first harmonic is expected to dominate the seasonal pattern.
However, as is evident from Figure 8.2, higher-frequency harmonics are
necessary to account for industrial demand patterns and holiday effects.

The simplest model, a first-order polynomial, seasonal effects DLM with
12 parameters, is used, 6 harmonics representing the 11 seasonal effects.
The final posterior distribution for the static model, {F, G,V,0} with a
reference prior, is akin to a periodogram analysis, the F-values for the 6
harmonics at ¢t = 65 being

Harmonic 1 2 3 4 5 6
F-value 837.8 1.18 6.86 68.14 12.13 0.32
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Figure 8.2 Gas consumption data

Table 8.1. UK gas consumption: amount in 10% tonnes coal equivalent

Month
Year | 1 2 3 4 5 6 7 8 9 10 11 12
1979 49 45 3.1 3.1 46 48 6.7 8.6

1980183 7.2 92 55 47 44 34 28 40 51 6.5 9.2
198177 77 89 57 50 45 33 28 40 56 6.6 10.3
1982185 79 89 54 44 40 3.0 31 44 55 6.5 101
1983 |77 9.0 90 65 51 43 27 28 46 55 69 9.5
1984 8.8 87 10.1 6.1 50 4.5 3.1 29 438

In this static reference analysis the final degrees of freedom for the Stu-
dent T posteriors is 53 (65 minus 12), thus the first five F-values may be
compared to the Fy 53 distribution, and the final value for the Nyquist term
to the Fy 53. On this basis, harmonics 1 and 4 are enormously significant,
clearly indicating the dominance of the annual and quarterly cycles. Less
significant, but still important, are harmonics 3 and 5. Harmonics 2 and 6
are insignificant. Whilst not definitive, this static “periodogram” reference
analysis serves to identify the key harmonics.

For a more appropriate exploration of a dynamic model, consider a sin-
gle discount model with discount factor of 0.95, so given the posterior
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Figure 8.3 Gas consumption and the one-step point forecasts

variance matrix C;_1, Ry = 1.05 GC;_1G’. Whilst not optimised in terms
of discount factors, this allows for changing parameter values. A reference
prior-based analysis with this model is partially illustrated in Figures 8.3
to 8.10.

Figure 8.3 plots the data together with one-step ahead point forecasts
and corresponding 90% Student T probability limits; the forecasts only ap-
pear in this reference analysis after 13 data points. The one-step forecasts
look good, and the model adapts to the slight changes in pattern from
year to year, such changes being particularly evident in the December lev-
els of consumption. Figure 8.4 is produced after retrospective smoothing
using the backwards filtering algorithms. This displays the retrospective
estimates of the seasonal effects in each month, the vertical bar represent-
ing a 90% posterior probability interval symmetrically located about the
posterior mode for the effect in that month. Figures 8.5 to 8.10 show the
individual harmonic components of the seasonal pattern as retrospective
posterior intervals for the harmonics Sy = EL60,,., (r = 1,...,6). The
dominance of harmonics 1 and 4 is clear from these plots, as is the nature
of their contribution to the overall pattern.
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Figure 8.4 Estimated seasonal pattern in consumption series

MONTH 1 1
YEAR 1979 1980

Figure 8.5 Harmonic 1

1981 1982 1983 1984 1985
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Figure 8.6 Harmonic 2
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Figure 8.7 Harmonic 3
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Figure 8.10 Harmonic 6

8.7 EXERCISES

These exercises concern seasonal DLMs with known variances. There is
no problem in applying the usual procedures to extend the results to the
unknown variance case. Some of the exercises are hard and the reader may
simply wish to read the questions as part of the text.

(1) Consider the p x p permutation matrix

_ (0 I
= (07
Verify that

(a) P is p-cyclic, so that P*"? = P* for all integers k and n;

(b) the eigenvalues of P are the p roots of unity exp(2mij/p) for

(c) the DLM {E,, P, -, -, } is observable, with identity observability
matrix.

(2) Using the basic trigonometric identities, or otherwise, verify that
for integer k > 1, p > 2, and @ = 2k7/p, the matrix

= (L0 o)

is p-cyclic.
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(3) A seasonal effects component DLM is used to model quarterly data,
so that p = 4. A forecaster, unused to thinking about covariances,
specifies initial prior moments for the seasonal factors as

—100 200 O 0 0

100 0 200 0 0
(B Do) ~N I a0 || 0 0 200 o
400 0 0 0 400

(a) Show that this is an invalid prior for seasonal effects.
(b) Derive a valid prior based on the provided information.

(4) In the first-order polynomial/seasonal effects Normal DLM,

1 10 woW . (e
{(E)(o P)’V’(W’z W§>}’ with "t‘(@)’

p
let X; = > Yii, be the annual demand. Suppose that
r=1

Ht my C Clz
D) ~N .
<¢t t) [( St>’<c2 Cfﬂ)}
(a) If W3 =0 and Wy =0, prove that

(X¢| Dy) ~N |:pmt7 pV + w

aresult that does not depend on the information on the seasonal
effects.
(b) If W3 # 0, in what way does the result in (a) change?

(5) The following table gives an Eire milk production figure for each
month of 1975 in terms of millions of gallons:

W—&-po] ,

Month Jan Feb Mar Apr May Jun
Milk 6 13 36 64 99 99
Month Jul  Aug Sep  Oct Nov  Dec
Milk 89 82 64 43 19 9

(a) Express these figures in the Fourier form

5
ag+ Y _(aycos(2mrt/12) + by sin(27rt/12)) + ag(—1)",
r=1
calculating the mean ag and the Fourier coefficients a, and b,..
(b) Derive the amplitudes Aj and phases v; associated with the
k" harmonic, k= 1,... ,6.
(¢) Calculate the percentage of variation accounted for by each har-
monic and draw a first impression as to how you might charac-
terise the seasonality in a DLM.
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(6) Consider the regression DLM {Fy,Is,-,-}. Is is the 3 x 3 identity
matrix and Fy,4 = Fy for all ¢, so that F; is 4-cyclic such that

1 0 0 1
Fi=[0]|, Fo=|1], Fs=[0], F,=] -1
0 0 1 1

(a) Show that the forecast function is that of a form-free seasonal
effects DLM of period p = 4, so that this DLM offers an alter-
native way of modelling such a seasonal effects component.

(b) Generalise this regression DLM representation of form-free sea-
sonal effects to all integers p > 1.

(7) With real g # 0, consider the DLM

t) (o 9ot f

where w = arccos(1/+/1 + ¢2).

(a) Derive the forecast function f;(k).
(b) What is the period of the forecast function?
(¢) Show that the DLM is similar to the DLM {Ey, J2(1,w), -, -}.

(8) Consider the full seasonal effects Fourier form DLM {F,G, -, -} with
parameter 8; and observability matrix T, as in Sections 8.6.4 and

8.6.5.
(a) Verify that the p seasonal effects ¢; are given by the equation

d)t =Lo, = <.r'§’3|271) 5

where L is a p x (p — 1) matrix.
(b) Verify that for integer p, L'L is a non-singular diagonal matrix.
(¢c) Verify that the inverse relationship is 8; = He;, where H =
(L'L)"'L’is a (p — 1) x p matrix.
(d) Obtain the matrices L and H when p = 5.
(e) Obtain the matrices L and H when p = 6.

(9) In an analysis of a company’s quarterly carpet sales, as calculated
in the fourth quarter of 1994, the final marginal posterior for the
first and second harmonic Fourier coefficients was

a —6.2 56 —0.2 —0.1
b D| ~N|| =590, -02 62 —03
as —0.3 —0.1 —-0.3 2.7

(a) Assess the importance of the harmonics according to distribu-
tion of their amplitudes; in this case no formal analysis is really
necessary.

(b) After discarding any negligible harmonics, derive the posterior
(¢|D) for the four seasonal quarters, making sure that these
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are not out of phase (Q3 should be the peak). You can use the
relation ¢ = L6 of Example 8.5.

(10) The monthly carpet sales of the company in the previous question

are modelled using a linear growth/Fourier seasonal effects DLM
that includes both the first and third harmonic. In December 1994
write O4ec = (a1,b1,as,bs)" for the current Fourier coefficients, and
suppose that the marginal posterior is summarised in terms of the
posterior mean and variance matrix of 84.., namely

—-12.3 0.82 0.02 —-0.02 0.02
-16.4 0.02 0.87 —0.02 0.01

34| —-0.02 —-0.02 0.74 —0.01
—2.5 0.02 0.01 -0.01 0.76

(a) Write down the canonical form of the complete DLM in terms
of {F,G}.

(b) Let the twelve seasonal effects be @jan = (Sjan, .- ;Sdec). Be-
ing careful about the phase, derive the posterior distribution
of @jan = M6y, identifying the appropriate matrix M. (The
peak-to-trough difference should be about 47).

Consider the single harmonic component normal DLM

{(1) ( cgs(w) sin(w)) v (th th)} .
0)’\ —sin(w) cos(w) )’ "\ Wi Wy
(a) Write down the observation and system equations of this DLM.
(b) If Z; =Y; — 2Y;_; cos(w) + Yi_2, show that
Zy = vy — 2vpq cos(w) + ve—a + pr,
where
Pt = Wy — wy—1,1 cos(w) + wy_1 2 sin(w).

(c) Hence show that initially and based upon the truth of the DLM,

E[Z)=0 and C[Z;, Z;_;] =0, for all k > 2.

(d) Additionally assuming a constant DLM, show that Z; can be
represented as a moving average process of order 2,

Y, — 2Y,_1 cos(w) + Yi—o = ay — Y1ai-1 + Poa,_o,

where a; ~ N[0, Q] independently.
(e) Using the limit theorems of Chapter 5 and remembering that
}/;+1 = Q¢ COS(w) + bt sin(w) + Ct41,
a; = ag—1 cos(w) + by_q sin(w) + Ajrey,

by = by—1 cos(w) — az—1 sin(w) + Agey,
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show that for this constant DLM,
lim ‘{Zt — e + Bet,]_ — (1 — A]_)etfg} = 07
t—oo

where lim A; = (41, A3) and B = (2— A1 — A tan(w)) cos(w).

As aresult, and using the earlier parts of this question, it should

be clear that {Q, A1, A2} may be derived in terms of V and W.

(12) In full, the single harmonic discount DLM {Es, Jo(1,w), 1, W, } with
discount factor 0 < 4 < 1 is

1 cos(w) sin(w) 1 Wi Wa
0/’ \ —sin(w) cos(w) ) 77\ Way Wg ) [’
with R; = C;_1/4 for all t.
(a) Verify that

Jo N1, w) = J5(1,w).
(b) By considering the usual DLM relationship
C;'=R;' +FV'F,

without necessarily determining it, prove that lim; ., C; =
C exists and consequently so do limiting values {R, A, Q} for
{Ry, Ay, Qi)
(c) Show that the eigenvalues of the matrix H = CR™1Jy(1,w)
are simply those of J;l(l, w) multiplied by 0.
(d) Hence, using the result of Theorem 5.7 or otherwise show that
lim [Yt —e; —2(Y;—1 — dep—1) cos(w) + Yio — 52et,2} =0.

t—o0

(e) By comparison with the previous question deduce that
Al =1-06% Ay;=(1-6)%cot(w), and Q=1/6%
(f) Show that

A A 1 /74 A
C= (A; 02> and R(52<A; :),
where ¢ = (1—=6)[3— 6+ (1—6)?/(0sin?(w))] and r = §%c+ A3.
(13) Write a computer program to implement a DLM with second-order
polynomial and Fourier form seasonal components.! The program
should provide the following facilities:
(a) Allow a user to select any number of harmonic components.
(b) Structure the evolution variance sequence in component dis-
count form as in Definition 6.1, with one discount factor ép
for the trend and one dg for the seasonal component. These
discount factors are to be specified by the user.

TThe BATS package (Pole, West, and Harrison 1994) implements this, as well
as a wider class of models
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(¢) Allow for the choice of initialisation via either the reference
analysis of Section 4.8, or through user input priors.

(d) Produce numerical and graphical summaries of analyses. Useful
outputs are time graphs of on-line and filtered estimates, with
uncertainties indicated by intervals about the estimates, of (i)
the non-seasonal trend, (ii) the seasonal component, (iii) the
individual harmonics, etc.

(14) Test the program by analysing the gas consumption data of Table
8.1. Gain experience in the use of the model by exploring different
analyses of this series. In particular, with the full 6 harmonics,
experiment with this data series with a range of different initial
priors (including the reference analysis), and different values of the
discount factors in the range 0.85 < d7, s < 1. Note that the
analysis in Section 8.6.5 uses a model in which the trend is first-
order, rather than second-order polynomial, and that this can be
reproduced in the more general model by specifying zero mean and
zero variance for the growth parameter.

(15) Reanalyse the gas consumption data using a reduced Fourier form

model having only two harmonic components, » = 1 and r = 4, for
the fundamental (annual) cycle and the fourth (quarterly) cycle.

(16) The data below are quarterly total sales (in thousands) of one-day-
old turkey chicks from hatcheries in Eire over a period of years
(taken from Ameen and Harrison 1985a).

Eire turkey chick data

Quarter
Year 1 2 3 4
1974 131.7 322.6 285.6 105.7
1975 80.4 285.1 347.8 68.9
1976 203.3 375.9 415.9 65.8

1977 177.0 438.3 463.2 136.0
1978 192.2 442.8 509.6 201.2
1979 196.0 478.6 688.6 259.8
1980 352.5 508.1 701.5 325.6
1981 305.9 422.2 771.0 329.3
1982 384.0 472.0 852.0

Analyse these data using a reduced Fourier form model having
only two harmonic components, 7 = 1 and r = 4, for the funda-
mental (annual) cycle and the fourth (quarterly) cycle. There is
obvious, sustained growth in the series over the years and a marked
annual seasonal pattern. Explore various models, discount factors,
etc., comparing them through subjective exploration of graphical
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summaries together with numerical summaries such as the MSE,
MAD and LLR measures. Verify that a static model (07 = dg = 1)
performs poorly relative to dynamic models, and that in particular,
there is a fair degree of change indicated in the seasonal pattern.

Re-analyse the turkey data after transformation of the original Y; to
an alternative scale. Compare graphs of transformed series af;ainst
time, considering transforms such as log(Y;), Ytl/ % and Yt‘}/ , and
try to identify a transformed scale on which the amplitude of the
seasonality is most constant (although, as with most real data, there
is a fair degree of change in seasonal pattern on all scales).

The Periodogram. Consider np data points Y7,...,Ys,, where
n > 1 is an integer and the seasonal period p is also an integer.
You model this series according to a static first-order polynomial

/full Fourier seasonal effects constant normal DLM with reference

prior. Let there be h harmonics in the seasonal description, the

period being p.

(a) Show that the final posterior estimate my,, = E[6,,|D,,] is the
least squares/normal maximum likelihood estimate that mini-
mizes

np—1
SO) = > (Ynp-o—FG0)%.
v=0

(b) Let A, be the estimate of the amplitude of the k' harmonic
as calculated from the posterior estimate my,,,. Show that the
total sum of squares S = Y'Y — (np)Y? about the mean Y can
be written as

h
S=Y'Y - (np)Y*=>_S2+R,
v=1

where S, = npA2/2 for v # p/2, Spj2 = npA§/2, and R is the
residual sum of squares.

(c) Plot the graph {A%,v : v = 1,...,h}. This is known as the
Periodogram and is widely used in time series analysis. Like
most simple techniques that exploit orthogonality, it was ex-
tremely useful before the advent of powerful computing facili-
ties. Clearly it is still of limited use in initial data analysis but
is superseded by facilities such as DLMs, that provide appropri-
ate dynamic analyses incorporating stochastic seasonals, other
components (such as stochastic trends, related variables), and
full posterior distributions over all times using retrospective
analysis, interventions, priors, etc.



CHAPTER 9

REGRESSION, AUTOREGRESSION, AND
RELATED MODELS

9.1 INTRODUCTION

We now turn to models incorporating regression components, including re-
gressions on independent variables and related classes of transfer function
DLMs. We then consider, in some detail, classes of traditional, stationary
time series components, namely the class of autoregressive, moving average
models, or ARMA models. We provide some basic discussion of ARMA
models in DLM contexts, and then more extensive development of AR com-
ponent models, especially in connection with time series decompositions.
Finally, an important class of time-varying autoregressive component mod-
els is discussed and illustrated.

9.2 THE MULTIPLE REGRESSION DLM
9.2.1 Definition

Consider modelling the series Y; by regressing on a collection of n independent,
or regressor, variables labelled X1, ... , X,,. The value of the i*" variable X;
at each time ¢ is assumed known, denoted by Xy;, (i=1,... ,n; t=1,...).
Usually a constant term is included in the model, in which case X, is taken
as unity, Xy; = 1 for all t&. For t = 1,..., let the regression vector F;
be given by F; = (X41,... , X¢n). Then the multiple regression DLM with
regressors X1, ..., X, is defined by the quadruple {F¢, I, V;, W}, for some
observational variances V; and evolution variance matrices W,. This is just
as specified in Definition 3.1.
For each ¢ then, the model equations are

Observation equation: Y, =F, 0; + vy, vy ~ N[0, V¢],
System equation: 0; = 0;_1 + w;, wt ~ N[0, Wy].
Write the elements of 0; as 6, = (041,...,6:,). Then the observation

equation can be written as
Y = pe + 1,

where the mean response u; is given by
n
pe=TFi0 = 61X,
i=1
From this representation it is clear that the model can be viewed as being

formed from the superposition of n straight-line regressions with zero origin,
the simple models of Chapter 3.
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In the regression DLM the state vector evolves only via the addition
of a noise term w;. This is a dynamic generalisation of standard static
regression models. Setting W; = 0 for all ¢ provides the specialisation
to static regression for then 8; = 6 is constant over time, and the model
equations reduce to

Y; =F,0+ v with v ~NJ[0,V,].

Bayesian analyses of such standard models are well documented; see, for
example, Broemling (1985), Box and Tiao, (1973), De Groot (1971), Press
(1985) and Zellner (1971). Here 6 plays the role of a fixed regression vector
and the time ordering of the observations is not so relevant. In the dynamic
regression, stochastic variation over time is permitted through the noise
terms wy, to model changes in regression relationships. The dynamic model,
whilst retaining the basic linear structure, offers flexibility in adapting to
observed data in which the relationships between the response series and
the regressors cannot be adequately represented by a static linear model.
See Chapter 3 for further discussion and illustrations, and examples in
Ameen and Harrison (1984), Harrison and Johnston (1984), and Johnston
et al (1986).

9.2.2 Common types of regressions

The DLM structure allows for a host of possible forms of relationships
through appropriate choice of regression variables and combinations of
them. The basic types are quantitative measurements; indicator variables
to group the response data according to an underlying classificatory vari-
able, or factor; and higher-order terms involving interactions between vari-
ables of these types. For examples of each of these, consider the sort of
data series analysed in Section 3.3.4. Suppose that Y; represents sales of
a product, the data being quarterly figures over several years. Particular
examples of the common model forms are now discussed.

(1) Straight-line regressions on quantitative variables

Suppose that X = X5 is a related predictor variable, some form of economic
indicator, for example. As with Y, X is a quantitative measurement, and
often such measurements are viewed as effectively continuous, although this
is by no means necessary. A basic straight-line regression model is formed
by taking X7 = 1 to define an intercept term, so that u; = a; + 5; X;. Here,
of course, F, = (1, X;) and 0}, = (a4, Gt).

(2) Multiple regressions on quantitative variables

Straight-line regressions may be extended to include other quantitative
variables by adding in further terms such as v;Z; by superposition to give a
canonical multiple regression on several variables, each contributing a linear
term. Here Z; is the value of a second independent variable, ¥}, = (1, X, Z;)
and 0, = (o, B, Ve)-
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(3) Lagged variables

Particular cases of multiple regression of importance in time series forecast-
ing involve the use of regressor variables calculated as lagged values of basic
independent variables. In the sales forecasting scenario above, it may be
thought that the economic indicator X has predictive power for the sales
series into the future as well as just for the current time. A similar exam-
ple concerns forecasting of sales or demand with the independent variable
X relating to advertising and other promotional activities. Here current
promotional expenditure can be expected to impact not only on immediate
sales, but also on sales further into the future. Hence, in modelling the
mean response p; at time ¢, past, or lagged, values of the regressor variable
X should be considered in addition to the current value X;. Generally,
suppose that it is felt that appreciable effects of the regressor variable may
be sustained up to a maximum lag of k time points for some k& > 1. The
linear regression on lagged values of X then has the general form of

k
pe=ar+ Y BuXi
i=0

=ay + S Xt + uXi—1 + -+ BuXi—k.

Here F; = (1,Xt,Xt_1, . aXt—k) and 0; = (Oét,ﬂto,ﬁtl, e ,ﬂtk). Much
use of these models has been made, of course, in economic forecasting
(e.g., Granger and Newbold 1977; Zellner 1971). We return to lagged
relationships in detail in Section 9.3 below. Also note that autoregressions
fall into this framework. Here the response series is directly regressed on
lagged values of itself, with X; = Y;_; for all £. Again, much further
discussion of these models appears below.

(4) Polynomial surfaces

Higher-order terms can be used to refine the basic description by defining
further variables. For example, the two-variable model p; = s+ 06 Xt +7: 24
may be refined by including further regressor variables that are quadratic,
and higher-order, functions of the two original variables X and Z. Ex-
amples include quadratic terms X2 or Z2, and cross-product terms such
as XZ. These, and higher-order powers and cross-products, can be used
to define polynomial regressions on possibly several variables, building up
response surface descriptions of the regression function (Box and Draper
1987).

(5) Classificatory variables

Classificatory variables, or factors, can be included using dummy X vari-
ables to indicate the classifications for each response observation. Season-
ality, for example, can be modelled this way as has already been seen in
Chapter 8. Specifically in this context, consider the quarterly classifica-
tion of the sales data, and suppose that a simple seasonal factor model is
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desired, with different levels of sales in each quarter, those levels changing
stochastically from year to year. This is just the model of Section 8.1, and
it can be represented in regression DLM form as follows. Let n = 4 and
define X; as the indicator variable for the i*" quarter of each year. Thus,
fori=1,...,4,

¥ { 1, when Y; is in quarter ¢ of any year;
ti =
' 0, otherwise.

The state vector is 0, = (Pi1,. .. , dra), where ¢; is the seasonal factor for
quarter ¢ of the year at time ¢. The mean response p; = Zle 01 Xy at
time t is then given simply by p; = ¢y, the relevant seasonal level, when
time ¢ corresponds to the i*" quarter of the year.

The seasonal effects model, with effects representing seasonal deviations
from an underlying, non-seasonal sales level, is also easily, and obviously,
representable in regression form. This is necessary with classificatory vari-
ables in general if other regressors are to be included by superposition.
Set

1 4
ay = Z;d)tia

and for i = 1,...,4, 0y = ¢4 — ay. Clearly the 0;; sum to zero at each
time ¢, representing the seasonal effects. Redefine the state vector as 6} =
(v, 041, ... ,0:4) and the regression vector as F; = (1, X41, ... , X¢q), where

the X variables are the above indicators of the quarters. Then

4
pe=TFi0 =+ Y 0 X,
i=1
subject to the zero-sum restriction on the final four elements of the state
vector.

Grouping data according to an underlying factor in this way has wide
uses in time series modelling, just as in other areas of statistics. Perhaps
the most common use is in designed experiments where the factors relate to
treatment groups, block effects, and so forth. One other important example
is the use of dummy variables as intervention indicators, the corresponding
parameter then representing a shift due to intervention.

(6) Several factors

As an example, suppose that the data are also classified according to sales
area, there being just two areas for simplicity. The additive model formed
by superposition has the form

4 2
pe=on+ > 05X+ > Wi 2,

i=1 j=1
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where, as with seasonality, ;1 and 7.2 are the effects added to sales level in
the two different sales regions (having zero-sum), with Z;; and Z;5 being
indicator variables for the two regions. Clearly this could be extended with
the addition of further regressors of any types.

(7) Factor by factor interactions

Higher-order terms involve interactions of two basic types. Firstly, two
classificatory variables may interact, producing what is often referred to
as a factor by factor interaction. In the above example, this amounts
to dealing with the two sales regions separately, having different seasonal
factors within each region. One way of modelling this is to add in an
interaction term of the form

4 2
E § BrijUtij-
i=1 j=1

Here the Uy;; are dummy, indicator variables with Uy; = 1 if and only if
observation Y; corresponds to quarter ¢ and sales area j. The (3;; are the
. . . . 4

interaction parameters, subject to zero-sum constraints Zizl Bei; = 0 for
j=1,2and Y7 B =0fori=1,... 4

(8) Other forms of interaction

The second, and highly important, form of interaction is typified as follows.
Consider a straight-line regression on the variable X combined by super-
position with the seasonal effects model to give a mean response function
of the form

4
e = + B Xy + Z O1i Xti-
i=1
The effects of the variable X and the seasonality are additive, not interact-
ing. Often it may be felt that the effect of X on the response is different in
different quarters; more generally, that the regression coefficient of a vari-
able takes different values according to the various levels of a classifying
factor. Here the necessary refinement of the model is

4

pe=ou+ Y (O + B Xy) Xui.
i=1
In this case, we have F, = (1; X1, ... , Xua; Xe X4, ..., XiXp) and with
state vector Oy = (a; 041, ... , 03 Beay... , Pra)

9.2.3 Summary of analysis

The analysis follows from the general theory of DLMs. The results are given
in the case of constant, unknown observational variance, V; =V = 1/¢
for all ¢, with ¢ unknown, consistent with the summary in Section 4.6.
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Thus, W, is scaled by the current estimate S;_; of V = ¢! at each time.
Then, as usual, the evolution/updating cycle is based on the following
distributions:

(01| Di—1) ~ Tp,_,[my_1,Ci ],
(0: | Di—1) ~ Tn,_,[a, R,
(| Di—1) ~ Glng—1/2,di—1/2] with S;_1 = dy—1/n4—1,
(Yo | Di—1) ~ T[fe, Qi
(0: | Dy) ~ Ty, [my, Cyl,

(¢ | Dt) ~ G[nt/2adt/2] with S; = dt/nta

where a; =my_1, Ry = C;_1 + Wy, fy =Fim;_1, Q; = F{R;_1F; 4+ S;_1,
and the remaining elements are defined by the usual updating equations
ng = m—1+ 1, dp = di—q + S4—1€7/Qp, my = my_1 + Aye, and C; =
[Rt — AtAth](St/St_l) where € = )/t — ft and At = RtFt/Qt-

The usual filtering and forecasting equations apply similarly. The former
are not reproduced here. For forecasting ahead to time ¢ + k from time ¢,
it follows easily that

(Or+k | D)~ Ty, [my, Ry(k)],
(Yigr | D)~ To,[fe(k), Qu(k)]

where Ry(k) = Cy + SF_ Wiy, fi(k) = F,,,m; and Q.(k) = S, +
F,  Ri(k)Fpis.

9.2.4 Comments

Various features of the regression model analysis require comment.

(1) Stability

Forecasting performance is achieved through the identification of stability
in regression relationships. Thus models with small evolution noise terms
are to be desired, static regressions in which 8; = 0 is constant being ideal
so long as they are appropriate. If the time-variation in 8; is significant,
evidenced by large values on the diagonals of the evolution variance ma-
trices Wy, forecasting suffers in two ways. Firstly, when forecasting ahead
the forecast distributions become very diffuse as the R;(k) terms increase
due to the addition of further evolution noise variance matrices. Secondly,
in updating, the weight placed on new data is high, so that the poste-
rior distributions adapt markedly from observation to observation. Thus,
although very short-term forecasts may be accurate in terms of location
and reasonably precise, medium- and longer-term forecasts may be poorly
located and very diffuse.
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As a consequence, effort is needed in practice to identify meaningful
and appropriate independent variables to be used as regressors, often af-
ter transformation and combination, with a view to identifying regressions
whose coefficients are as stable as possible over time. There will usually be
a need for some minor stochastic variation to account, at the very least, for
changing conditions in the environment of the series, and model misspeci-
fication. Thus, in practice, the W; matrices determined by the forecaster
will be relatively small.

(2) Structuring W;

Structuring the W, sequence using discount factors can be done in various
ways following the development of component models in Section 6.3. If
the regressors are similar, related variables viewed as modelling an overall
effect of an unobserved, underlying variable, then they should be consid-
ered together as one block or component for discounting. For example, the
effects of a classifying factor variable should be viewed as a single com-
ponent, as is the case in Chapter 8 and elsewhere, with seasonal models.
Otherwise, considering regressors as contributing separately to the model
implies a need for one discount factor for each regression parameter, the
W, matrix then being diagonal.

(3) Static regression

The static regression model obtains when W, = 0 for all ¢, implied by unit
discount factors for all components. In this case, R; = C;_; for all ¢, no
information decaying on the state vector between observation stages. The
update for the posterior variance matrix can be rewritten in terms of the
precision, or information matrices C; ' and C; ! as,

C/l = [Ch + S, 4 FiF(Si1/50).
It follows that in terms of the scale free matrices C;/S; for all ¢,
S,C;t=8,1C; Y, + F,F}.

Repeatedly applying this for times ¢t — 1,¢ —2,... ;1 leads to

t
SiC;t = S0Cyt + ) _F,F.

r=1

It also follows, in a similar fashion, that

t
m; = S; 'Cy[SCy'my + > F, Y.
r=1
These results coincide, naturally, with the standard Bayesian linear regres-

sion results in static models (See, for example, DeGroot 1971, Chapter 11;
Box and Tiao 1973, Chapter 2).
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(4) Reference analysis

The reference analysis of Section 4.10 may be applied in cases of little initial
prior information. This leads to the dynamic version of standard reference
analyses of linear models (see above references). When sufficient data has
been processed so that the posterior for 8, (and ¢) is proper, the standard
updating equations above apply. The main difference is that the degrees
of freedom are not initially updated until sufficient data are available to
make the posteriors proper. This results in reduced degrees of freedom n,
thereafter. Section 4.10 provides full details.

The meaning of “sufficient data” in this context brings in directly the no-
tion of collinearity amongst the regressor variables. In the initial reference
updating, the posterior distributions become proper at that time ¢ such that
the precision matrix Zf«:l F,.F/ first becomes non-singular. At this stage,
the standard updating may begin for 6;, although one further observation
is necessary to begin the updating for ¢. The soonest this may occur is at
t = n, the dimension of the parameter vector, when one observation has
been observed for each parameter. If missing observations are encountered,
then this increases by 1 for each. Otherwise, collinearity amongst the re-
gressor variables can lead to the precision matrix being singular at time n.
This is actually rather uncommon in practice, although much more often
it is the case that the matrix is close to singularity, having a very small,
positive determinant. This indicates strong relationships amongst the re-
gressor variables, the well-known feature of multi-collinearity in regression.
Numerical problems can be encountered in inverting the above precision
matrix in such cases, so that care is needed. To avoid inverting the ma-
trix, and also to allow for the case of precise singularity, a small number
of further observations can be processed retaining the reference analysis
updating equations. This means that further terms Fy 1 Fi ,, Fi oF} ,,
and so on are added to the existing precision matrix until it is better con-
ditioned and does not suffer from numerical instabilities when inverted.
Under certain circumstances, however, collinearity amongst regressors may
persist over time. In such cases there is a need for action, usually to reduce
the number of regressors and remove redundant variables, the model being
over-parametrised. The problem of multi-collinearity here is precisely as
encountered in standard static regression.

(5) Orthogonality

When dealing with regressors that are observed values of time series them-
selves, the static model concept of orthogonality of regressors also applies.
The simplest, but important, use of this involves considering independent
variables as deviations from some average value. In standard regression,
it is common practice to standardise regressors; given a fixed sample of
observations, the regressors are standardised primarily by subtracting the
arithmetic mean, and secondarily, dividing by the standard deviation. The
reason for subtracting the arithmetic mean is so that the regression effects
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are clearly separated from the intercept term in the model, being essentially
orthogonal to it. Thus, for example, a static straight-line model on regres-
sor X, Y; = a+ 3X; is rewritten as V; = o* + 38X/, where X; = X; — X,
with X the arithmetic mean of the X; values in the fixed sample consid-
ered, and o* = o + 3X the new fixed-intercept term. The new regression
vectors F}, = (1, X}) are such that ) F;F} (the sum being over the fixed
sample of observations) is now diagonal and so inverts easily. This orthogo-
nality, and its more general versions with several regressors, allows simpler
interpretation of the regression.

In dynamic regression the same principles apply, although now the time
dependence clouds the issue. If a relatively short series of known number
of observations is to be analysed, then the above form of standardisation to
zero arithmetic mean for regressors may apply. It is usually to be expected
that regression relationships do not change rapidly, and so the features of
the static model may be approximately reproduced. Some problems do
arise even under such circumstances, however. For a start, X may be un-
known initially since X values later in the series have yet to be observed;
this derives from the time series nature of the problem and applies even if
the model is static. Some insight into what form of standardisation may be
appropriate can be gained by considering the regression as possibly being
derived from a more structured model, one in which Y; and X; are initially
jointly normally distributed conditional on a collection of time-varying pa-
rameters that determine their mean vector and covariance matrix, forming
a bivariate time series. Suppose specifically that Y; has mean «; and X;
has mean ;. It follows that

Y = o + Bu(Xe — ™),

where 3; is the regression coefficient from the covariance matrix of ¥; and
X;. In the static model, 74 = v is constant over time. The static model
correction is now obvious; the population mean ~ is simply estimated by
the sample value X from the fixed sample of interest. More generally, if 7
is assumed constant so that the X values are distributed about a common
mean, then a sequentially updated estimate of + is more appropriate. If,
on the other hand, ~; is possibly time-varying, a local mean for the X; time
series is appropriate. Such an estimate may be obtained from a separate
time series model for the X; series. Further development of this is left as
an exercise to the reader.

(6) Step ahead forecasting

In forecasting ahead the future values of regressors are required. If some
or all of the regressors are observed values of related time series, as is
often the case in socio-economic modelling, for example, then the required
future values may not be available at the time of forecasting. Various
possible solutions exist for this problem. One general and theoretically
exact method is to construct a joint model for forecasting the X variables
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as time series along with Y. This introduces the need for multivariate time
series modelling and forecasting, a vast topic in its own right and beyond
the scope of the present discussion (see Chapter 16 for multivariate DLMs).

Simpler alternative approaches involve the use of estimated values of the
future regressors. These may be simply guessed at or provided by third
parties, separate models, etc. Consider forecasting Y;;j from time ¢, with
Fi i uncertain. Typically, information relevant to forecasting ¥y, sepa-
rately will result in specification of some features of a forecast distribution,
assumed to have a density p(Fi1 | D). Note that formally, the extra infor-
mation relevant to forecasting Fyj should be included in the conditioning
here; without loss of generality, assume that this is already incorporated in
D;. Then the step ahead forecast distribution for Y;,x can be deduced as

p(Yeyr | Di) = /P(Yt+k | Fiiks D)p(Fipg | Di)dFypp.

The first term in the integrand here is just the standard forecast T distri-
bution from the regression, as specified in Section 9.2.3 above, with Fy
assumed known and explicitly included in the conditioning. Features of
the predictive density will depend on the particular forms of predictions
for Fyyr. Some generally useful features are available, as follows. Sup-
pose that the forecast mean and variance matrix of Fy4 exist, denoted by
ht(k) = E[Ft+k | Dt] and Ht(k) = V[Ft_;,_k | Dt] respectively. Then the
forecast mean and variance of Y; 1 can be deduced. Simply note that when
the degrees of freedom of the conditional T distribution for Y;j exceeds
unity, ns > 1, then

ElYiir | Di] = E{E[Yt1 | Feyr, D] | D}
= E[F, ymy | D] = hy(k)'m,.
Similarly, when n; > 2,

V[Yiik | Dt] = E{V[Yisr | Fiyr, D:] | Dt}
+ V{E[Yitr | Fiyr, D] | Di}

= Bl Qu(k) | D] + VI[fi(k) | D]
1
= ntni 5 {St + E[Fi  Re(k)Fein | Del}
+ VIF,pme | D]
S 5[5+ iy (k) Re (k) (k)
ny —

+ trace{Ry(k)H;(k)}] + m;H, (k)m,.

In this way, uncertainty about the future regressor values are formally
incorporated in forecast distributions for the Y series.
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(7) Posterior inferences

Standard modes of inference about regression parameters in static models
apply directly in the dynamic case. Consider any ¢ < n elements of the
state vector 6y, reordering the elements as necessary, so that the ¢ of interest
occupy the first ¢ positions in the vector. Thus, 6, = (0},80,,), where
0., = (641,...,0.) is the subvector of interest. Then, with m; and C;
conformably partitioned, (641 | D¢) ~ T}, [m¢1, Cy1] in an obvious notation.
Inferences about 6;; are based on this marginal posterior distribution. In
particular, the contribution of the corresponding regressors to the model
may be assessed by considering the support in the posterior for the values
6:1 = 0, consistent with no effect of the regressors. The posterior density
p(0:1 | Dy) takes values greater than that at 8;; = 0 whenever

(0“ — mtl)'C;ll(Hﬂ — mﬂ) < mélC;llmﬂ.

The posterior probability that this occurs is given from the usual F distri-
bution,

Pr[(Btl — mﬂ)’Ct_ll (Otl — mﬂ) < mglct_llmﬂ | Dt]

1

=PrlFyn, <q m;1C;11mt1]7

where F ,,, denotes a random quantity having the standard F distribution
with g degrees of freedom in the numerator and n; in the denominator.
Thus the highest posterior density (HPD) based test of the hypothesis
that 8, = 0 is based on the probability level

-1 —1
a=Pr[Fgn, >q myCpmy];

a small value of « indicates rejection of the hypothesised value 8;; = 0 as
unlikely.

(8) Parameter constraints and relationships

As in the general DLM, the variance matrices Cy and the sequence W; may
be structured in order to incorporate modeller’s views about relationships
amongst the parameters. At an extreme, the parameters may be subject
to linear restrictions that relate components or condition some elements to
taking known values. This then implies that Cg is singular with a specific
structure determined by the linear constraints, the same form of constraints
applying to the evolution variance matrices if the restrictions are to hold to
0; over time. More usually, initial views about relationships amongst the
parameters will be modelled in terms of stochastic constraints of various
kinds, usually leaving the variance matrices non-singular. One important
example is the embodiment of beliefs about the likely decay of coefficients
of lagged values of variables, related to the use of smoothness prior distri-
butions in lagged regressions and autoregressions (Cleveland 1974; Leamer
1972; Young 1983; Zellner 1971). Similar structures may be applied to the
coefficients of higher-order terms in polynomial regressions (Young 1977).
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Other examples include the use of hierarchical models, often based on as-
sumptions of exchangeability amongst subsets of elements of 6; (Lindley
and Smith 1972). A typical example concerns symmetry assumptions about
the effects of different levels of an underlying factor that groups the data;
these may be initially viewed as exchangeable, with changes in the effects
over time subject to the same assumption. Though interesting and im-
portant in application when appropriate, these topics are not developed
further here in a general framework.

9.3 TRANSFER FUNCTIONS
9.3.1 Form-free transfer functions

Consider regression on current and past values of a single independent
variable X, assuming initially that the regression parameters are constant
over time. As in Section 9.2.2 above, regression on a fixed and finite num-
ber of lagged values falls within the standard regression DLM framework.
Generally, if appreciable effects of the regressor variable are expected to
be sustained up to a maximum lag of k time points, for some k£ > 1, the
linear regression on lagged values determines the contribution to the mean
response at time ¢ as

k
Ht = ZﬂrXt—r = BoXt + i Xe—1 + -+ Be X
r=0
Here F}, = (X¢, X¢—1,... ,X¢—) and 0, = 0" = (0o, b1, - - . , Br). Projecting
ahead from the current time ¢ to times ¢t + r, for r > 0, the effect of the
current level X, of the regressor variable is then simply the contribution to
the mean response, namely (§,.X; for r = 0,1,... ,k, being zero for r > k.
This defines the transfer response function of X,

{,BrX7 r=0,1,...,k;
0, r>k.

In words this is just the effect of the current regressor value X; = X on the
mean response at future times r, conditional on X;y; = ... = Xyy, = 0.
Obviously this model, for large enough k, provides a flexible method of
modelling essentially any expected form of transfer response function, the
coefficients 3, being arbitrary regression parameters to be specified or esti-
mated. In the more practically suitable dynamic regression, the flexibility
increases as stochastic variation in the parameters allows the model to
adapt to changing responses, and also to cater for misspecification in the
model. However, whilst the regression structure provides a very general
model for lagged responses, there are often good reasons to consider func-
tional relationships amongst the regression coefficients 3, that essentially
alter the structure of the model, providing functional forms over time for
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the lagged effects of X. This leads to the considerations in the following
sections.

9.3.2 Functional form transfer functions

One obvious feature of the regression model above is that the effect of
X; on Yy, is zero when r > k. The model is thus inappropriate for
cases in which it is felt that lagged effects persist into the future, perhaps
decaying smoothly towards zero as time progresses. One simple way of
adapting the regression structure to incorporate such features is to consider
regression, not on X directly, but on a constructed effect variable measuring
the combined effect of current and past X values. Some examples provide
insight.

EXAMPLE 9.1. Suppose that Y; represents a monthly consumer series,
such as sales or demand for a product, or consumer awareness of the prod-
uct in the market. Currently, and prior to time ¢t = 1, the Y series is
supposed to follow a time series model with level parameter p; = «y; this
may, for example, be a simple steady model, or include other terms such as
trend, seasonality and regressions. In month ¢t = 1, the marketing company
initiates a promotional campaign for the product involving expenditure on
advertising and so forth, the expenditure being measured by a single in-
dependent variable Xy, t = 1,2,.... This may be a compound of various
factors but is assumed, for simplicity, to measure investment in promoting
the product. This is a simple instance of a very common event, and it is
generally understood that with no other inputs, the effect of such promo-
tional expenditure can be expected to be as follows: (a) in month ¢, the
level of the Y series should increase, say in proportion to X;; (b) without
further expenditure at times t + 1, t+ 2, ..., the effect of past expenditure
will decay over time, often approximately exponentially; and (c) further ex-
penditure in following months will have the same form of effect. In model
terms, the anticipated mean response is given by the original level plus a
second term, &;,

He = o + &,

where &; is the effect on the current level of the series of current and past
expenditure. This effect is modelled as

& = A1 Y Xy,

with & = 0, there being no expenditure prior to ¢ = 1. The parameter
1) determines the immediate, penetration effect of the monthly advertising,
the level being raised initially on average by ¢ per unit of expenditure; it is a
positive quantity whose units depends on those of both the X and Y series.
The parameter A represents the memory of the market. Extrapolating
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ahead to time ¢ + k, the model implies that

k
ik = Mgy + 9 Z )\k_TXt—H“

r=1
ThUS, if Xt+1 = Xt+2 = ... = Xt+k = 07 then
vk = N

This embodies point (b); with A a dimensionless quantity in the unit inter-
val, the effect of expenditure up to time ¢ is reduced by a factor A for each
future time point, decaying asymptotically to zero at an exponential rate.

EXAMPLE 9.2. Example 9.1 concerns exponential decay of effects, where
promotional advertising is not anticipated to sustain the sales/demand se-
ries at higher levels. Minor modification provides a closely related model for
sustained growth or decay. An example concerns increases (or decreases)
of sales to a new, higher (or lower) and sustained level following price
reductions (or rises) for a product or products in a limited consumer mar-
ket. Let the initial level oy again represent previous information about the
sales/demand series subject to an original pricing policy. Let X; now rep-
resent the reduction in price in month ¢, either positive, implying a decrease
in price, or negative implying an increase. It is to be expected that in a
finite market, sales will tend to increase as the price is reduced, eventually
levelling off at some saturation level. Similarly, sales tend to decay towards
zero as prices increases. This can be modelled via

& =81+ 6,
where
0y = N0y + Xy,

with &, = 6y = 0. Suppose, for example, that a single price change is
made at time ¢, with X;11 = X0 = ... =0 and {1 = 0,1 = 0. It
follows that the immediate effect on the mean response is simply & = 6; =
1 X}, the positive quantity 1 again measuring the immediate unit response.
Projecting to time ¢t +r, (r = 1,... ,k), under these conditions, we have
Oiyr = A6, and thus

k
Sorn =D N0 =0,(1—NT1)/(1-N)
r=0

if 0 < A < 1. Thus, if X; is positive, so that the price decreases, then
&4k 1s an increasing function of k, tending to the limit ¢ X, (1 — ) as k
increases. Given the initial penetration factor i, A determines both the
rate of increase and the eventual saturation level. Similarly, of course, a
negative value of X; consistent with price increase implies a decay in level.

These two examples typify a class of structures for lagged effects of a sin-
gle independent variable. The general form of such models detailed here is
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apparently an extension of the usual DLM representation, but can easily be
rewritten as a standard DLM, as will be seen below. The initial definition
is given in terms of the extended representation for interpretability.

Definition 9.1. Let X; be the value of an independent, scalar variable
X at time t. A general transfer function model for the effect of X on
the response series Y is defined by

Y;g :F/Ht + Uy, (91&)
0, =GO;_1 + v, X; + 00;, (9.1b)
Py =11 + 0Py, (9.1c)

with terms defined as follows: 6; is an n-dimensional state vector, F a
constant and known n-vector, G a constant and known evolution matrix,
and v; and 90, are observation and evolution noise terms. (Note the use of
the O notation for the latter rather than the usual w; notation). All these
terms are precisely as in the standard DLM, with the usual independence
assumptions for the noise terms holding here. The term %), is an n-vector
of parameters, evolving via the addition of a noise term 0;, assumed to be
zero-mean normally distributed independently of v; (though not necessarily
of 80t)

The state vector 8; carries the effect of current and past values of the X
series through to Y; in equation (9.1a); this is formed in (9.1b) as the sum
of a linear function of past effects, 8;_1, and the current effect ¥; X;, plus
a noise term.

Suppose that conditional on past information D;, the posterior point
estimates of the two vectors 8, and 1; are denoted by

m; = E[9t|Dt] and h; = E[¢t|Dt]-

Extrapolating expectations into the future in (9.1b and c), it follows that
k
E[0t+k | Dt] = kat + Z Gk_rhtXt+r. (92)
r=1
Then, from (9.1a), the forecast function is

k
ft(k) = E[}/t—i-k | Dt] = F/kat + F’ Z GkirhtXH_.,-. (93)

r=1

Let a; denote the first term here, a; = F/'G*m,, summarising the effects of
past values of the X series; a; is known at time ¢. Also, consider the special
case in which after time ¢ + 1, there are no input values of the regressor
variable, so that

Xirr =0, (r=2,...,k). (9.4)
Then (9.3) implies that
fe(k) = a; + F'GF'h, X, ;. (9.5)
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This can be seen as determining the way in which any particular value of
the X series in the next time period is expected to influence the response
into the future, the dependence on the step ahead index k coming, as in
TSDLMS, through powers of the system matrix G.

In the special case that ¥; = 1 is constant over time and known, ¢ = hy,
the transfer response function of X is given by f:—1(k+ 1) subject to (9.4)
with past effects a;—1 = 0. Under these circumstances, (9.5) then leads to

F' GFypX
being the expected effect on the response due to X; = X.
EXAMPLE 9.1 (continued). In the exponential decay model as described
earlier, we have dimension n = 1, 8, = &, the effect variable, ¥, = ¢ for
all t, F =1 and G = ), all noise terms assumed zero. Note that G is just

the memory decay term A, assumed known. The transfer response function
of X is simply Ay X.

EXAMPLE 9.2 (continued). In the second example of growth or decay to
a new level, n = 2,

o~(5): woo-(2) () o 2)

with zero noise terms. The transfer response function is simply (1 —
ALY /(1 = \).

The general model (9.1) can be rewritten in the standard DLM form
as follows. Define the new, 2n-dimensional state parameters vector @; by
catenating 0; and 1, giving

~/
Similarly, extend the F vector by catenating an n-vector of zeros, giving a
new vector F such that

F' = (F/,0,...,0).
For the evolution matrix, define

a-(§ )
where I,, is the n x n identity matrix. Finally, let w; be the noise vector
defined by

Wi = (00 + X, 0v,, 0).

Then the model (9.1) can be written as

Y, = F'0; + vy,

R ! (9.6)
Gt = GtOt_l =+ wy.
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Thus the transfer function model (9.1) has standard DLM form (9.6) and
the usual analysis applies. Some particular features of the model in this
setting require comment.

(a)

The model as discussed provides just the transfer function for the
variable X. In practice, this will usually be combined by superpo-
sition with other components (as in Example 9.1), such as trend,
seasonality, regression and maybe even transfer functions of other
independent variables.

The unknown parameters in ¥; play a role similar to the regression
parameters in the dynamic regression model of Section 9.2 and are
likely to be subject to some variation over time in particular applica-
tions. Thus, in