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1 Introduction

1.1 Least Squares

Consider the simplest linear model

yt = xtβ0 + ut , (1.1)

where all variables are zero mean scalars and where β0 is the true value of the parameter
we want to estimate. The task is to use a sample {yt , xt}

T
t=1 to estimate β and to test

hypotheses about its value, for instance that β = 0.
If there were no movements in the unobserved errors, ut , in (1.1), then any sample

would provide us with a perfect estimate of β. With errors, any estimate of β will still
leave us with some uncertainty about what the true value is. The two perhaps most impor-
tant issues is econometrics are how to construct a good estimator of β and how to assess
the uncertainty about the true value.

For any possible estimate, β̂, we get a fitted residual

ût = yt − xt β̂. (1.2)

One appealing method of choosing β̂ is to minimize the part of the movements in yt that
we cannot explain by xt β̂, that is, to minimize the movements in ût . There are several
candidates for how to measure the “movements,” but the most common is by the mean of
squared errors, that is, 6T

t=1û2
t /T . We will later look at estimators where we instead use

6T
t=1

∣∣ût
∣∣ /T .

With the sum or mean of squared errors as the loss function, the optimization problem

min
β

1
T

T∑
t=1

(yt − xtβ)
2 (1.3)
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has the first order condition that the derivative should be zero as the optimal estimate β̂

1
T

T∑
t=1

xt

(
yt − xt β̂

)
= 0, (1.4)

which we can solve for β̂ as

β̂ =

(
1
T

T∑
t=1

x2
t

)−1
1
T

T∑
t=1

xt yt , or (1.5)

= V̂ar (xt)
−1 Ĉov (xt , yt) , (1.6)

where a hat indicates a sample estimate. This is the Least Squares (LS) estimator.

1.2 Maximum Likelihood

A different route to arrive at an estimator is to maximize the likelihood function. If ut in
(1.1) is iid N

(
0, σ 2), then the probability density function of ut is

pdf (ut) =

√
2πσ 2 exp

[
−u2

t /
(

2σ 2
)]
. (1.7)

Since the errors are independent, we get the joint pdf of the u1, u2, . . . , uT by multiplying
the marginal pdfs of each of the errors. Then substitute yt − xtβ for ut (the derivative of
the transformation is unity) and take logs to get the log likelihood function of the sample

ln L = −
T
2

ln (2π)−
T
2

ln
(
σ 2
)

−
1
2

T∑
t=1

(yt − xtβ)
2 /σ 2. (1.8)

This likelihood function is maximized by minimizing the last term, which is propor-
tional to the sum of squared errors - just like in (1.3): LS is ML when the errors are iid
normally distributed.

Maximum likelihood estimators have very nice properties, provided the basic dis-
tributional assumptions are correct. If they are, then MLE are typically the most effi-
cient/precise estimators, at least asymptotically. ML also provides a coherent framework
for testing hypotheses (including the Wald, LM, and LR tests).
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1.3 The Distribution of β̂

Equation (1.5) will give different values of β̂ when we use different samples, that is dif-
ferent draws of the random variables ut , xt , and yt . Since the true value, β0, is a fixed
constant, this distribution describes the uncertainty we should have about the true value
after having obtained a specific estimated value.

To understand the distribution of β̂, use (1.1) in (1.5) to substitute for yt

β̂ =

(
1
T

T∑
t=1

x2
t

)−1
1
T

T∑
t=1

xt (xtβ0 + ut)

= β0 +

(
1
T

T∑
t=1

x2
t

)−1
1
T

T∑
t=1

xtut , (1.9)

where β0 is the true value.
The first conclusion from (1.9) is that, with ut = 0 the estimate would always be

perfect — and with large movements in ut we will see large movements in β̂. The second
conclusion is that not even a strong opinion about the distribution of ut , for instance that
ut is iid N

(
0, σ 2), is enough to tell us the whole story about the distribution of β̂. The

reason is that deviations of β̂ from β0 are a function of xtut , not just of ut . Of course,
when xt are a set of deterministic variables which will always be the same irrespective
of which sample we use, then β̂ − β0 is a time invariant linear function of ut , so the
distribution of ut carries over to the distribution of β̂. This is probably an unrealistic case,
which forces us to look elsewhere to understand the properties of β̂.

There are two main routes to learn more about the distribution of β̂: (i) set up a small
“experiment” in the computer and simulate the distribution or (ii) use the asymptotic
distribution as an approximation. The asymptotic distribution can often be derived, in
contrast to the exact distribution in a sample of a given size. If the actual sample is large,
then the asymptotic distribution may be a good approximation.

A law of large numbers would (in most cases) say that both
∑T

t=1 x2
t /T and

∑T
t=1 xtut/T

in (1.9) converges to their expected values as T → ∞. The reason is that both are sam-
ple averages of random variables (clearly, both x2

t and xtut are random variables). These
expected values are Var(xt) and Cov(xt , ut), respectively (recall both xt and ut have zero
means). The key to show that β̂ is consistent, that is, has a probability limit equal to β0,

7



is that Cov(xt , ut) = 0. This highlights the importance of using good theory to derive not
only the systematic part of (1.1), but also in understanding the properties of the errors.
For instance, when theory tells us that yt and xt affect each other (as prices and quanti-
ties typically do), then the errors are likely to be correlated with the regressors - and LS
is inconsistent. One common way to get around that is to use an instrumental variables
technique. More about that later. Consistency is a feature we want from most estimators,
since it says that we would at least get it right if we had enough data.

Suppose that β̂ is consistent. Can we say anything more about the asymptotic distri-
bution. Well, the distribution of β̂ converges to a spike with all the mass at β0, but the
distribution of

√
T β̂, or

√
T
(
β̂ − β0

)
, will typically converge to a non-trivial normal

distribution. To see why, note from (1.9) that we can write

√
T
(
β̂ − β0

)
=

(
1
T

T∑
t=1

x2
t

)−1 √
T

T

T∑
t=1

xtut . (1.10)

The first term on the right hand side will typically converge to the inverse of Var(xt), as
discussed earlier. The second term is

√
T times a sample average (of the random variable

xtut ) with a zero expected value, since we assumed that β̂ is consistent. Under weak
conditions, a central limit theorem applies so

√
T times a sample average converges to

a normal distribution. This shows that
√

T β̂ has an asymptotic normal distribution. It
turns out that this is a property of many estimators, basically because most estimators are
some kind of sample average. For an example of a central limit theorem in action, see
Appendix B

1.4 Diagnostic Tests

Exactly what the variance of
√

T (β̂ − β0) is, and how it should be estimated, depends
mostly on the properties of the errors. This is one of the main reasons for diagnostic tests.
The most common tests are for homoskedastic errors (equal variances of ut and ut−s) and
no autocorrelation (no correlation of ut and ut−s).

When ML is used, it is common to investigate if the fitted errors satisfy the basic
assumptions, for instance, of normality.
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Figure 1.1: Probability density functions

1.5 Testing Hypotheses about β̂

Suppose we now that the asymptotic distribution of β̂ is such that

√
T
(
β̂ − β0

)
d

→ N
(

0, v2
)

or (1.11)

We could then test hypotheses about β̂ as for any other random variable. For instance,
consider the hypothesis that β0 = 0. If this is true, then

Pr
(√

T β̂/v < −2
)

= Pr
(√

T β̂/v > 2
)

≈ 0.025, (1.12)

which says that there is only a 2.5% chance that a random sample will deliver a value of
√

T β̂/v less than -2 and also a 2.5% chance that a sample delivers a value larger than 2,
assuming the true value is zero.

We then say that we reject the hypothesis that β0 = 0 at the 5% significance level
(95% confidence level) if the test statistics |

√
T β̂/v| is larger than 2. The idea is that,

if the hypothesis is true (β0 = 0), then this decision rule gives the wrong decision in
5% of the cases. That is, 5% of all possible random samples will make us reject a true
hypothesis. Note, however, that since this test can only be taken to be an approximation
since it relies on the asymptotic distribution, which is an approximation of the true (and
typically unknown) distribution.

The natural interpretation of a really large test statistics, |
√

T β̂/v| = 3 say, is that
it is very unlikely that this sample could have been drawn from a distribution where the
hypothesis β0 = 0 is true. We therefore choose to reject the hypothesis. We also hope that
the decision rule we use will indeed make us reject false hypothesis more often than we
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reject true hypothesis. For instance, we want the decision rule discussed above to reject
β0 = 0 more often when β0 = 1 than when β0 = 0.

There is clearly nothing sacred about the 5% significance level. It is just a matter of
convention that the 5% and 10% are the most widely used. However, it is not uncommon
to use the 1% or the 20%. Clearly, the lower the significance level, the harder it is to reject
a null hypothesis. At the 1% level it often turns out that almost no reasonable hypothesis
can be rejected.

The t-test described above works only the null hypothesis contains a single restriction.
We have to use another approach whenever we want to test several restrictions jointly. The
perhaps most common approach is a Wald test. To illustrate the idea, suppose β is an m×1
vector and that

√
T β̂

d
→ N (0, V ) under the null hypothesis , where V is a covariance

matrix. We then know that

√
T β̂ ′V −1

√
T β̂

d
→ χ2 (m) . (1.13)

The decision rule is then that if the left hand side of (1.13) is larger that the 5%, say,
critical value of the χ2 (m) distribution, then we reject the hypothesis that all elements in
β are zero.

A Practical Matters

A.0.1 Software

• Gauss, MatLab, RATS, Eviews, Stata, PC-Give, Micro-Fit, TSP, SAS

• Software reviews in The Economic Journal and Journal of Applied Econometrics

A.0.2 Useful Econometrics Literature

1. Greene (2000), Econometric Analysis (general)

2. Hayashi (2000), Econometrics (general)

3. Johnston and DiNardo (1997), Econometric Methods (general, fairly easy)

4. Pindyck and Rubinfeld (1997), Econometric Models and Economic Forecasts (gen-
eral, easy)
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5. Verbeek (2000), A Guide to Modern Econometrics (general, easy, good applica-
tions)

6. Davidson and MacKinnon (1993), Estimation and Inference in Econometrics (gen-
eral, a bit advanced)

7. Ruud (2000), Introduction to Classical Econometric Theory (general, consistent
projection approach, careful)

8. Davidson (2000), Econometric Theory (econometrics/time series, LSE approach)

9. Mittelhammer, Judge, and Miller (2000), Econometric Foundations (general, ad-
vanced)

10. Patterson (2000), An Introduction to Applied Econometrics (econometrics/time se-
ries, LSE approach with applications)

11. Judge et al (1985), Theory and Practice of Econometrics (general, a bit old)

12. Hamilton (1994), Time Series Analysis

13. Spanos (1986), Statistical Foundations of Econometric Modelling, Cambridge Uni-
versity Press (general econometrics, LSE approach)

14. Harvey (1981), Time Series Models, Philip Allan

15. Harvey (1989), Forecasting, Structural Time Series... (structural time series, Kalman
filter).

16. Lütkepohl (1993), Introduction to Multiple Time Series Analysis (time series, VAR
models)

17. Priestley (1981), Spectral Analysis and Time Series (advanced time series)

18. Amemiya (1985), Advanced Econometrics, (asymptotic theory, non-linear econo-
metrics)

19. Silverman (1986), Density Estimation for Statistics and Data Analysis (density es-
timation).

20. Härdle (1990), Applied Nonparametric Regression
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B A CLT in Action

This is an example of how we can calculate the limiting distribution of a sample average.

Remark 1 If
√

T (x̄ − µ)/σ ∼ N (0, 1) then x̄ ∼ N (µ, σ 2/T ).

Example 2 (Distribution of6T
t=1 (zt − 1) /T and

√
T6T

t=1 (zt − 1) /T when zt ∼ χ2(1).)
When zt is iid χ2(1), then 6T

t=1zt is distributed as a χ2(T ) variable with pdf fT (). We

now construct a new variable by transforming 6T
t=1zt as to a sample mean around one

(the mean of zt )

z̄1 = 6T
t=1zt/T − 1 = 6T

t=1 (zt − 1) /T .

Clearly, the inverse function is 6T
t=1zt = T z̄1 + T , so by the “change of variable” rule

we get the pdf of z̄1 as

g(z̄1) = fT (T z̄1 + T ) T .

Example 3 Continuing the previous example, we now consider the random variable

z̄2 =
√

T z̄1,

with inverse function z̄1 = z̄2/
√

T . By applying the “change of variable” rule again, we

get the pdf of z̄2 as

h (z̄2) = g(z̄2/
√

T )/
√

T = fT

(√
T z̄2 + T

)√
T .

Example 4 When zt is iid χ2(1), then 6T
t=1zt is χ2(T ), which we denote f (6T

t=1zt). We

now construct two new variables by transforming 6T
t=1zt

z̄1 = 6T
t=1zt/T − 1 = 6T

t=1 (zt − 1) /T , and

z̄2 =
√

T z̄1.

Example 5 We transform this distribution by first subtracting one from zt (to remove the

mean) and then by dividing by T or
√

T . This gives the distributions of the sample mean

and scaled sample mean, z̄2 =
√

T z̄1 as

f (z̄1) =
1

2T/20 (T/2)
yT/2−1 exp (−y/2) with y = T z̄1 + T , and

f (z̄2) =
1

2T/20 (T/2)
yT/2−1 exp (−y/2) with y =

√
T z̄1 + T .
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Figure B.1: Sampling distributions. This figure shows the distribution of the sample
mean and of

√
T times the sample mean of the random variable zt −1 where zt ∼ χ2 (1).

These distributions are shown in Figure B.1. It is clear that f (z̄1) converges to a spike

at zero as the sample size increases, while f (z̄2) converges to a (non-trivial) normal

distribution.

Example 6 (Distribution of6T
t=1 (zt − 1) /T and

√
T6T

t=1 (zt − 1) /T when zt ∼ χ2(1).)
When zt is iid χ2(1), then 6T

t=1zt is χ2(T ), that is, has the probability density function

f
(
6T

t=1zt
)

=
1

2T/20 (T/2)

(
6T

t=1zt
)T/2−1

exp
(
−6T

t=1zt/2
)
.

We transform this distribution by first subtracting one from zt (to remove the mean) and

then by dividing by T or
√

T . This gives the distributions of the sample mean, z̄1 =

6T
t=1 (zt − 1) /T , and scaled sample mean, z̄2 =

√
T z̄1 as

f (z̄1) =
1

2T/20 (T/2)
yT/2−1 exp (−y/2) with y = T z̄1 + T , and

f (z̄2) =
1

2T/20 (T/2)
yT/2−1 exp (−y/2) with y =

√
T z̄1 + T .

These distributions are shown in Figure B.1. It is clear that f (z̄1) converges to a spike

at zero as the sample size increases, while f (z̄2) converges to a (non-trivial) normal

distribution.
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2 Univariate Time Series Analysis

Reference: Greene (2000) 13.1-3 and 18.1-3
Additional references: Hayashi (2000) 6.2-4; Verbeek (2000) 8-9; Hamilton (1994); John-
ston and DiNardo (1997) 7; and Pindyck and Rubinfeld (1997) 16-18

2.1 Theoretical Background to Time Series Processes

Suppose we have a sample of T observations of a random variable{
yi

t
}T

t=1 =
{

yi
1, yi

2, ..., yi
T
}
,

where subscripts indicate time periods. The superscripts indicate that this sample is from
planet (realization) i . We could imagine a continuum of parallel planets where the same
time series process has generated different samples with T different numbers (different
realizations).

Consider period t . The distribution of yt across the (infinite number of) planets has
some density function, ft (yt). The mean of this distribution

Eyt =

∫
∞

−∞

yt ft (yt) dyt (2.1)

is the expected value of the value in period t , also called the unconditional mean of yt .
Note that Eyt could be different from Eyt+s . The unconditional variance is defined simi-
larly.

Now consider periods t and t − s jointly. On planet i we have the pair
{

yi
t−s, yi

t
}
.

The bivariate distribution of these pairs, across the planets, has some density function
gt−s,t (yt−s, yt).1 Calculate the covariance between yt−s and yt as usual

Cov (yt−s, yt) =

∫
∞

−∞

∫
∞

−∞

(yt−s − Eyt−s) (yt − Eyt) gt−s,t (yt−s, yt) dytdyt−s (2.2)

= E (yt−s − Eyt−s) (yt − Eyt) . (2.3)

1The relation between ft (yt ) and gt−s,t (yt−s, yt ) is, as usual, ft (yt ) =
∫

∞

−∞
gt−s,t (yt−s, yt ) dyt−s .
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This is the sth autocovariance of yt . (Of course, s = 0 or s < 0 are allowed.)
A stochastic process is covariance stationary if

Eyt = µ is independent of t, (2.4)

Cov (yt−s, yt) = γs depends only on s, and (2.5)

both µ and γs are finite. (2.6)

Most of these notes are about covariance stationary processes, but Section 2.7 is about
non-stationary processes.

Humanity has so far only discovered one planet with coin flipping; any attempt to
estimate the moments of a time series process must therefore be based on the realization
of the stochastic process from planet earth only. This is meaningful only if the process is
ergodic for the moment you want to estimate. A covariance stationary process is said to

be ergodic for the mean if

plim
1
T

T∑
t=1

yt = Eyt , (2.7)

so the sample mean converges in probability to the unconditional mean. A sufficient
condition for ergodicity for the mean is

∞∑
s=0

|Cov (yt−s, yt)| < ∞. (2.8)

This means that the link between the values in t and t − s goes to zero sufficiently fast
as s increases (you may think of this as getting independent observations before we reach
the limit). If yt is normally distributed, then (2.8) is also sufficient for the process to be
ergodic for all moments, not just the mean. Figure 2.1 illustrates how a longer and longer
sample (of one realization of the same time series process) gets closer and closer to the
unconditional distribution as the sample gets longer.

2.2 Estimation of Autocovariances

Let yt be a vector of a covariance stationary and ergodic. The sth covariance matrix is

R (s) = E (yt − Eyt) (yt−s − Eyt−s)
′ . (2.9)
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Figure 2.1: Sample of one realization of yt = 0.85yt−1 + εt with y0 = 4 and Std(εt) = 1.

Note that R (s) does not have to be symmetric unless s = 0. However, note that R (s) =

R (−s)′. This follows from noting that

R (−s) = E (yt − Eyt) (yt+s − Eyt+s)
′

= E (yt−s − Eyt−s) (yt − Eyt)
′ , (2.10a)

where we have simply changed time subscripts and exploited the fact that yt is covariance
stationary. Transpose to get

R (−s)′ = E (yt − Eyt) (yt−s − Eyt−s)
′ , (2.11)

which is the same as in (2.9). If yt is a scalar, then R (s) = R (−s), which shows that
autocovariances are symmetric around s = 0.
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Example 1 (Bivariate case.) Let yt = [xt , zt ]
′ with Ext =Ezt = 0. Then

R̂ (s) = E

[
xt

zt

] [
xt−s zt−s

]
=

[
Cov (xt , xt−s) Cov (xt , zt−s)

Cov (zt , xt−s) Cov (zt , xt−s)

]
.

Note that R (−s) is

R (−s) =

[
Cov (xt , xt+s) Cov (xt , zt+s)

Cov (zt , xt+s) Cov (zt , xt+s)

]

=

[
Cov (xt−s, xt) Cov (xt−s, zt)

Cov (zt−s, xt) Cov (zt−s, xt)

]
,

which is indeed the transpose of R (s).

The autocovariances of the (vector) yt process can be estimated as

R̂ (s) =
1
T

T∑
t=1+s

(yt − ȳ) (yt−s − ȳ)′ , (2.12)

with ȳ =
1
T

T∑
t=1

yt . (2.13)

(We typically divide by T in even if we have only T −s full observations to estimate R (s)

from.)
Autocorrelations are then estimated by dividing the diagonal elements in R̂ (s) by the

diagonal elements in R̂ (0)

ρ̂ (s) = diagR̂ (s) /diagR̂ (0) (element by element). (2.14)
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2.3 White Noise

A white noise time process has

Eεt = 0

Var (εt) = σ 2, and

Cov (εt−s, εt) = 0 if s 6= 0. (2.15)

If, in addition, εt is normally distributed, then it is said to be Gaussian white noise. The
conditions in (2.4)-(2.6) are satisfied so this process is covariance stationary. Moreover,
(2.8) is also satisfied, so the process is ergodic for the mean (and all moments if εt is
normally distributed).

2.4 Moving Average

A qth-order moving average process is

yt = εt + θ1εt−1 + ...+ θqεt−q, (2.16)

where the innovation εt is white noise (usually Gaussian). We could also allow both yt

and εt to be vectors; such a process it called a vector MA (VMA).
We have Eyt = 0 and

Var (yt) = E
(
εt + θ1εt−1 + ...+ θqεt−q

) (
εt + θ1εt−1 + ...+ θqεt−q

)
= σ 2

(
1 + θ2

1 + ...+ θ2
q

)
. (2.17)

Autocovariances are calculated similarly, and it should be noted that autocovariances of
order q + 1 and higher are always zero for an MA(q) process.

Example 2 The mean of an MA(1), yt = εt + θ1εt−1, is zero since the mean of εt (and

εt−1) is zero. The first three autocovariance are

Var (yt) = E (εt + θ1εt−1) (εt + θ1εt−1) = σ 2
(

1 + θ2
1

)
Cov (yt−1, yt) = E (εt−1 + θ1εt−2) (εt + θ1εt−1) = σ 2θ1

Cov (yt−2, yt) = E (εt−2 + θ1εt−3) (εt + θ1εt−1) = 0, (2.18)
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and Cov(yt−s, yt) = 0 for |s| ≥ 2. Since both the mean and the covariances are finite

and constant across t , the MA(1) is covariance stationary. Since the absolute value of

the covariances sum to a finite number, the MA(1) is also ergodic for the mean. The first

autocorrelation of an MA(1) is

Corr (yt−1, yt) =
θ1

1 + θ2
1
.

Since the white noise process is covariance stationary, and since an MA(q) with m <

∞ is a finite order linear function of εt , it must be the case that the MA(q) is covariance
stationary. It is ergodic for the mean since Cov(yt−s, yt) = 0 for s > q, so (2.8) is
satisfied. As usual, Gaussian innovations are then sufficient for the MA(q) to be ergodic
for all moments.

The effect of εt on yt , yt+1, ..., that is, the impulse response function, is the same as
the MA coefficients

∂yt

∂εt
= 1,

∂yt+1

∂εt
= θ1, ...,

∂yt+q

∂εt
= θq, and

∂yt+q+k

∂εt
= 0 for k > 0. (2.19)

This is easily seen from applying (2.16)

yt = εt + θ1εt−1 + ...+ θqεt−q

yt+1 = εt+1 + θ1εt + ...+ θqεt−q+1

...

yt+q = εt+q + θ1εt−1+q + ...+ θqεt

yt+q+1 = εt+q+1 + θ1εt+q + ...+ θqεt+1.

The expected value of yt , conditional on {εw}
t−s
w=−∞ is

Et−s yt = Et−s
(
εt + θ1εt−1 + ...+ θsεt−s + ...+ θqεt−q

)
= θsεt−s + ...+ θqεt−q, (2.20)

since Et−sεt−(s−1) = . . . = Et−sεt = 0.

Example 3 (Forecasting an MA(1).) Suppose the process is

yt = εt + θ1εt−1, with Var (εt) = σ 2.
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The forecasts made in t = 2 then have the follow expressions—with an example using

θ1 = 2, ε1 = 3/4 and ε2 = 1/2 in the second column

General Example

y2 = 1/2 + 2 × 3/4 = 2
E2y3 = E2 (ε3 + θ1ε2) = θ1ε2 = 2 × 1/2 = 1
E2y4 = E2 (ε4 + θ1ε3) = 0 = 0

Example 4 (MA(1) and conditional variances.) From Example 3, the forecasting vari-

ances are—with the numerical example continued assuming that σ 2
= 1

General Example

Var(y2 − E2y2) = 0 = 0
Var(y3 − E2y3) = Var(ε3 + θ1ε2 − θ1ε2) = σ 2

= 1
Var(y4 − E2y4) = Var (ε4 + θ1ε3) = σ 2

+ θ2
1σ

2
= 5

If the innovations are iid Gaussian, then the distribution of the s−period forecast error

yt − Et−s yt = εt + θ1εt−1 + ...+ θs−1εt−(s−1)

is
(yt − Et−s yt) ∼ N

[
0, σ 2

(
1 + θ2

1 + ...+ θ2
s−1

)]
, (2.21)

since εt , εt−1, ..., εt−(s−1) are independent Gaussian random variables. This implies that
the conditional distribution of yt , conditional on {εw}

s
w=−∞, is

yt | {εt−s, εt−s−1, . . .} ∼ N
[
Et−s yt ,Var(yt − Et−s yt)

]
(2.22)

∼ N
[
θsεt−s + ...+ θqεt−q, σ

2
(

1 + θ2
1 + ...+ θ2

s−1

)]
. (2.23)

The conditional mean is the point forecast and the variance is the variance of the forecast
error. Note that if s > q, then the conditional distribution coincides with the unconditional
distribution since εt−s for s > q is of no help in forecasting yt .

Example 5 (MA(1) and convergence from conditional to unconditional distribution.) From

examples 3 and 4 we see that the conditional distributions change according to (where

22

�2 indicates the information set in t = 2)

General Example

y2|�2 ∼ N (y2, 0) = N (2, 0)
y3|�2 ∼ N (E2y3,Var(y3 − E2y3)) = N (1, 1)
y4|�2 ∼ N (E2y4,Var(y4 − E2y4)) = N (0, 5)

Note that the distribution of y4|�2 coincides with the asymptotic distribution.

Estimation of MA processes is typically done by setting up the likelihood function
and then using some numerical method to maximize it.

2.5 Autoregression

A pth-order autoregressive process is

yt = a1yt−1 + a2yt−2 + ...+ ap yt−p + εt . (2.24)

A VAR(p) is just like the AR(p) in (2.24), but where yt is interpreted as a vector and ai

as a matrix.

Example 6 (VAR(1) model.) A VAR(1) model is of the following form[
y1t

y2t

]
=

[
a11 a12

a21 a22

][
y1t−1

y2t−1

]
+

[
ε1t

ε2t

]
.

All stationary AR(p) processes can be written on MA(∞) form by repeated substitu-
tion. To do so we rewrite the AR(p) as a first order vector autoregression, VAR(1). For
instance, an AR(2) xt = a1xt−1 + a2xt−2 + εt can be written as[

xt

xt−1

]
=

[
a1 a2

1 0

][
xt−1

xt−2

]
+

[
εt

0

]
, or (2.25)

yt = Ayt−1 + εt , (2.26)

where yt is an 2 × 1 vector and A a 4 × 4 matrix. This works also if xt and εt are vectors
and. In this case, we interpret ai as matrices and 1 as an identity matrix.
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Iterate backwards on (2.26)

yt = A (Ayt−2 + εt−1)+ εt

= A2yt−2 + Aεt−1 + εt

...

= AK+1yt−K−1 +

K∑
s=0

Asεt−s . (2.27)

Remark 7 (Spectral decomposition.) The n eigenvalues (λi ) and associated eigenvectors

(zi ) of the n × n matrix A satisfy

(A − λi In) zi = 0n×1.

If the eigenvectors are linearly independent, then

A = Z3Z−1, where 3 =


λ1 0 · · · 0
0 λ2 · · · 0
...

... · · ·
...

0 0 · · · λn

 and Z =

[
z1 z2 · · · zn

]
.

Note that we therefore get

A2
= AA = Z3Z−1 Z3Z−1

= Z33Z−1
= Z32 Z−1

⇒ Aq
= Z3q Z−1.

Remark 8 (Modulus of complex number.) If λ = a + bi , where i =
√

−1, then |λ| =

|a + bi | =
√

a2 + b2.

Take the limit of (2.27) as K → ∞. If limK→∞ AK+1yt−K−1 = 0, then we have
a moving average representation of yt where the influence of the starting values vanishes
asymptotically

yt =

∞∑
s=0

Asεt−s . (2.28)

We note from the spectral decompositions that AK+1
= Z3K+1 Z−1, where Z is the ma-

trix of eigenvectors and3 a diagonal matrix with eigenvalues. Clearly, limK→∞ AK+1yt−K−1 =

0 is satisfied if the eigenvalues of A are all less than one in modulus and yt−K−1 does not
grow without a bound.
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Figure 2.2: Conditional moments and distributions for different forecast horizons for the
AR(1) process yt = 0.85yt−1 + εt with y0 = 4 and Std(εt) = 1.

Example 9 (AR(1).) For the univariate AR(1) yt = ayt−1+εt , the characteristic equation

is (a − λ) z = 0, which is only satisfied if the eigenvalue is λ = a. The AR(1) is therefore

stable (and stationarity) if −1 < a < 1. This can also be seen directly by noting that

aK+1yt−K−1 declines to zero if 0 < a < 1 as K increases.

Similarly, most finite order MA processes can be written (“inverted”) as AR(∞). It is
therefore common to approximate MA processes with AR processes, especially since the
latter are much easier to estimate.

Example 10 (Variance of AR(1).) From the MA-representation yt =
∑

∞

s=0 asεt−s and

the fact that εt is white noise we get Var(yt) = σ 2∑∞

s=0 a2s
= σ 2/

(
1 − a2). Note that

this is minimized at a = 0. The autocorrelations are obviously a|s|. The covariance

matrix of {yt}
T
t=1 is therefore (standard deviation×standard deviation×autocorrelation)

σ 2

1 − a2



1 a a2
· · · aT −1

a 1 a · · · aT −2

a2 a 1 · · · aT −3

...
. . .

aT −1 aT −2 aT −3
· · · 1


.

Example 11 (Covariance stationarity of an AR(1) with |a| < 1.) From the MA-representation

yt =
∑

∞

s=0 asεt−s , the expected value of yt is zero, since Eεt−s = 0. We know that

Cov(yt , yt−s)= a|s|σ 2/
(
1 − a2) which is constant and finite.
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Example 12 (Ergodicity of a stationary AR(1).) We know that Cov(yt , yt−s)= a|s|σ 2/
(
1 − a2),

so the absolute value is

|Cov(yt , yt−s)| = |a|
|s| σ 2/

(
1 − a2

)
Using this in (2.8) gives

∞∑
s=0

|Cov (yt−s, yt)| =
σ 2

1 − a2

∞∑
s=0

|a|
s

=
σ 2

1 − a2
1

1 − |a|
(since |a| < 1)

which is finite. The AR(1) is ergodic if |a| < 1.

Example 13 (Conditional distribution of AR(1).) For the AR(1) yt = ayt−1 + εt with

εt ∼ N
(
0, σ 2), we get

Et yt+s = as yt ,

Var (yt+s − Et yt+s) =

(
1 + a2

+ a4
+ ...+ a2(s−1)

)
σ 2

=
a2s

− 1
a2 − 1

σ 2.

The distribution of yt+s conditional on yt is normal with these parameters. See Figure

2.2 for an example.

2.5.1 Estimation of an AR(1) Process

Suppose we have sample {yt}
T
t=0 of a process which we know is an AR(p), yt = ayt−1 +

εt , with normally distributed innovations with unknown variance σ 2.
The pdf of y1 conditional on y0 is

pdf (y1|y0) =
1

√
2πσ 2

exp

(
−
(y1 − ay0)

2

2σ 2

)
, (2.29)

and the pdf of y2 conditional on y1 and y0 is

pdf (y2| {y1, y0}) =
1

√
2πσ 2

exp

(
−
(y2 − ay1)

2

2σ 2

)
. (2.30)
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Recall that the joint and conditional pdfs of some variables z and x are related as

pdf (x, z) = pdf (x |z) ∗ pdf (z) . (2.31)

Applying this principle on (2.29) and (2.31) gives

pdf (y2, y1|y0) = pdf (y2| {y1, y0}) pdf (y1|y0)

=

(
1

√
2πσ 2

)2

exp

(
−
(y2 − ay1)

2
+ (y1 − ay0)

2

2σ 2

)
. (2.32)

Repeating this for the entire sample gives the likelihood function for the sample

pdf
(
{yt}

T
t=0

∣∣ y0
)

=

(
2πσ 2

)−T/2
exp

(
−

1
2σ 2

T∑
t=1

(yt − a1yt−1)
2

)
. (2.33)

Taking logs, and evaluating the first order conditions for σ 2 and a gives the usual OLS
estimator. Note that this is MLE conditional on y0. There is a corresponding exact MLE,
but the difference is usually small (the asymptotic distributions of the two estimators are
the same under stationarity; under non-stationarity OLS still gives consistent estimates).
The MLE of Var(εt ) is given by

∑T
t=1 v̂

2
t /T , where v̂t is the OLS residual.

These results carry over to any finite-order VAR. The MLE, conditional on the initial
observations, of the VAR is the same as OLS estimates of each equation. The MLE of
the i j th element in Cov(εt ) is given by

∑T
t=1 v̂i t v̂ j t/T , where v̂i t and v̂ j t are the OLS

residuals.
To get the exact MLE, we need to multiply (2.33) with the unconditional pdf of y0

(since we have no information to condition on)

pdf (y0) =
1√

2πσ 2/(1 − a2)
exp

(
−

y2
0

2σ 2/(1 − a2)

)
, (2.34)

since y0 ∼ N (0, σ 2/(1 − a2)). The optimization problem is then non-linear and must be
solved by a numerical optimization routine.
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2.5.2 Lag Operators∗

A common and convenient way of dealing with leads and lags is the lag operator, L. It is
such that

Ls yt = yt−s for all (integer) s.

For instance, the ARMA(2,1) model

yt − a1yt−1 − a2yt−2 = εt + θ1εt−1 (2.35)

can be written as (
1 − a1L − a2L2

)
yt = (1 + θ1L) εt , (2.36)

which is usually denoted
a (L) yt = θ (L) εt . (2.37)

2.5.3 Properties of LS Estimates of an AR(p) Process∗

Reference: Hamilton (1994) 8.2
The LS estimates are typically biased, but consistent and asymptotically normally

distributed, provided the AR is stationary.
As usual the LS estimate is

β̂L S − β =

[
1
T

T∑
t=1

xt x ′

t

]−1
1
T

T∑
t=1

xtεt , where (2.38)

xt =

[
yt−1 yt−2 · · · yt−p

]
.

The first term in (2.38) is the inverse of the sample estimate of covariance matrix of
xt (since Eyt = 0), which converges in probability to 6−1

xx (yt is stationary and ergodic
for all moments if εt is Gaussian). The last term, 1

T
∑T

t=1 xtεt , is serially uncorrelated,
so we can apply a CLT. Note that Extεtε

′
t x

′
t =Eεtε

′
tExt x ′

t = σ 26xx since ut and xt are
independent. We therefore have

1
√

T

T∑
t=1

xtεt →
d N

(
0, σ 26xx

)
. (2.39)
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Combining these facts, we get the asymptotic distribution

√
T
(
β̂L S − β

)
→

d N
(

0, 6−1
xx σ

2
)
. (2.40)

Consistency follows from taking plim of (2.38)

plim
(
β̂L S − β

)
= 6−1

xx plim
1
T

T∑
t=1

xtεt

= 0,

since xt and εt are uncorrelated.

2.6 ARMA Models

An ARMA model has both AR and MA components. For instance, an ARMA(p,q) is

yt = a1yt−1 + a2yt−2 + ...+ ap yt−p + εt + θ1εt−1 + ...+ θqεt−q . (2.41)

Estimation of ARMA processes is typically done by setting up the likelihood function and
then using some numerical method to maximize it.

Even low-order ARMA models can be fairry flexible. For instance, the ARMA(1,1)
model is

yt = ayt−1 + εt + θεt−1, where εt is white noise. (2.42)

The model can be written on MA(∞) form as

yt = εt +

∞∑
s=1

as−1(a + θ)εt−s . (2.43)

The autocorrelations can be shown to be

ρ1 =
(1 + aθ)(a + θ)

1 + θ2 + 2aθ
, and ρs = aρs−1 for s = 2, 3, . . . (2.44)

and the conditional expectations are

Et yt+s = as−1(ayt + θεt) s = 1, 2, . . . (2.45)

See Figure 2.3 for an example.
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Figure 2.3: Impulse response function of ARMA(1,1)

2.7 Non-stationary Processes

2.7.1 Introduction

A trend-stationary process can be made stationary by subtracting a linear trend. The
simplest example is

yt = µ+ βt + εt (2.46)

where εt is white noise.
A unit root process can be made stationary only by taking a difference. The simplest

example is the random walk with drift

yt = µ+ yt−1 + εt , (2.47)

where εt is white noise. The name “unit root process” comes from the fact that the largest
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eigenvalues of the canonical form (the VAR(1) form of the AR(p)) is one. Such a process
is said to be integrated of order one (often denoted I(1)) and can be made stationary by
taking first differences.

Example 14 (Non-stationary AR(2).) The process yt = 1.5yt−1 − 0.5yt−2 + εt can be

written [
yt

yt−1

]
=

[
1.5 −0.5
1 0

][
yt−1

yt−2

]
+

[
εt

0

]
,

where the matrix has the eigenvalues 1 and 0.5 and is therefore non-stationary. Note that

subtracting yt−1 from both sides gives yt − yt−1 = 0.5 (yt−1 − yt−2)+ εt , so the variable

xt = yt − yt−1 is stationary.

The distinguishing feature of unit root processes is that the effect of a shock never

vanishes. This is most easily seen for the random walk. Substitute repeatedly in (2.47) to
get

yt = µ+ (µ+ yt−2 + εt−1)+ εt

...

= tµ+ y0 +

t∑
s=1

εs . (2.48)

The effect of εt never dies out: a non-zero value of εt gives a permanent shift of the level
of yt . This process is clearly non-stationary. A consequence of the permanent effect of
a shock is that the variance of the conditional distribution grows without bound as the
forecasting horizon is extended. For instance, for the random walk with drift, (2.48), the
distribution conditional on the information in t = 0 is N

(
y0 + tµ, sσ 2) if the innovations

are Gaussian. This means that the expected change is tµ and that the conditional vari-
ance grows linearly with the forecasting horizon. The unconditional variance is therefore
infinite and the standard results on inference are not applicable.

In contrast, the conditional distributions from the trend stationary model, (2.46), is
N
(
st, σ 2).
A process could have two unit roots (integrated of order 2: I(2)). In this case, we need

to difference twice to make it stationary. Alternatively, a process can also be explosive,
that is, have eigenvalues outside the unit circle. In this case, the impulse response function
diverges.

31



Example 15 (Two unit roots.) Suppose yt in Example (14) is actually the first difference

of some other series, yt = zt − zt−1. We then have

zt − zt−1 = 1.5 (zt−1 − zt−2)− 0.5 (zt−2 − zt−3)+ εt

zt = 2.5zt−1 − 2zt−2 + 0.5zt−3 + εt ,

which is an AR(3) with the following canonical form zt

zt−1

zt−2

 =

 2.5 −2 0.5
1 0 0
0 1 0


 zt−1

zt−2

zt−3

+

 εt

0
0

 .
The eigenvalues are 1, 1, and 0.5, so zt has two unit roots (integrated of order 2: I(2) and

needs to be differenced twice to become stationary).

Example 16 (Explosive AR(1).) Consider the process yt = 1.5yt−1 + εt . The eigenvalue

is then outside the unit circle, so the process is explosive. This means that the impulse

response to a shock to εt diverges (it is 1.5s for s periods ahead).

2.7.2 Spurious Regressions

Strong trends often causes problems in econometric models where yt is regressed on xt .
In essence, if no trend is included in the regression, then xt will appear to be significant,
just because it is a proxy for a trend. The same holds for unit root processes, even if
they have no deterministic trends. However, the innovations accumulate and the series
therefore tend to be trending in small samples. A warning sign of a spurious regression is
when R2 > DW statistics.

For trend-stationary data, this problem is easily solved by detrending with a linear
trend (before estimating or just adding a trend to the regression).

However, this is usually a poor method for a unit root processes. What is needed is a
first difference. For instance, a first difference of the random walk is

1yt = yt − yt−1

= εt , (2.49)

which is white noise (any finite difference, like yt − yt−s , will give a stationary series), so
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we could proceed by applying standard econometric tools to 1yt .
One may then be tempted to try first-differencing all non-stationary series, since it

may be hard to tell if they are unit root process or just trend-stationary. For instance, a
first difference of the trend stationary process, (2.46), gives

yt − yt−1 = β + εt − εt−1. (2.50)

Its unclear if this is an improvement: the trend is gone, but the errors are now of MA(1)
type (in fact, non-invertible, and therefore tricky, in particular for estimation).

2.7.3 Testing for a Unit Root I∗

Suppose we run an OLS regression of

yt = ayt−1 + εt , (2.51)

where the true value of |a| < 1. The asymptotic distribution is of the LS estimator is

√
T
(
â − a

)
∼ N

(
0, 1 − a2

)
. (2.52)

(The variance follows from the standard OLS formula where the variance of the estimator
is σ 2 (X ′X/T

)−1. Here plim X ′X/T =Var(yt) which we know is σ 2/
(
1 − a2)).

It is well known (but not easy to show) that when a = 1, then â is biased towards
zero in small samples. In addition, the asymptotic distribution is no longer (2.52). In
fact, there is a discontinuity in the limiting distribution as we move from a stationary/to
a non-stationary variable. This, together with the small sample bias means that we have
to use simulated critical values for testing the null hypothesis of a = 1 based on the OLS
estimate from (2.51).

The approach is to calculate the test statistic

t =
â − 1
Std(â)

,

and reject the null of non-stationarity if t is less than the critical values published by
Dickey and Fuller (typically more negative than the standard values to compensate for the
small sample bias) or from your own simulations.

In principle, distinguishing between a stationary and a non-stationary series is very
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difficult (and impossible unless we restrict the class of processes, for instance, to an
AR(2)), since any sample of a non-stationary process can be arbitrary well approximated
by some stationary process et vice versa. The lesson to be learned, from a practical point
of view, is that strong persistence in the data generating process (stationary or not) invali-

dates the usual results on inference. We are usually on safer ground to apply the unit root
results in this case, even if the process is actually stationary.

2.7.4 Testing for a Unit Root II∗

Reference: Fuller (1976), Introduction to Statistical Time Series; Dickey and Fuller (1979),
“Distribution of the Estimators for Autoregressive Time Series with a Unit Root,” Journal

of the American Statistical Association, 74, 427-431.
Consider the AR(1) with intercept

yt = γ + αyt−1 + ut , or 1yt = γ + βyt−1 + ut , where β = (α − 1) . (2.53)

The DF test is to test the null hypothesis that β = 0, against β < 0 using the usual
t statistic. However, under the null hypothesis, the distribution of the t statistics is far
from a student-t or normal distribution. Critical values, found in Fuller and Dickey and
Fuller, are lower than the usual ones. Remember to add any nonstochastic regressors
that in required, for instance, seasonal dummies, trends, etc. If you forget a trend, then
the power of the test goes to zero as T → ∞. The critical values are lower the more
deterministic components that are added.

The asymptotic critical values are valid even under heteroskedasticity, and non-normal
distributions of ut . However, no autocorrelation in ut is allowed for. In contrast, the
simulated small sample critical values are usually only valid for iid normally distributed
disturbances.

The ADF test is a way to account for serial correlation in ut . The same critical values
apply. Consider an AR(1) ut = ρut−1 + et . A Cochrane-Orcutt transformation of (2.53)
gives

1yt = γ (1 − ρ)+ β̃ yt−1 + ρ (β + 1)1yt−1 + et , where β̃ = β (1 − ρ) . (2.54)

The test is here the t test for β̃. The fact that β̃ = β (1 − ρ) is of no importance, since β̃ is
zero only if β is (as long as ρ < 1, as it must be). (2.54) generalizes so one should include
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p lags of 1yt if ut is an AR(p). The test remains valid even under an MA structure if
the number of lags included increases at the rate T 1/3 as the sample lenngth increases.
In practice: add lags until the remaining residual is white noise. The size of the test
(probability of rejecting H0 when it is actually correct) can be awful in small samples for
a series that is a I(1) process that initially “overshoots” over time, as 1yt = et − 0.8et−1,
since this makes the series look mean reverting (stationary). Similarly, the power (prob of
rejecting H0 when it is false) can be awful when there is a lot of persistence, for instance,
if α = 0.95.

The power of the test depends on the span of the data, rather than the number of
observations. Seasonally adjusted data tend to look more integrated than they are. Should
apply different critical values, see Ghysel and Perron (1993), Journal of Econometrics,
55, 57-98. A break in mean or trend also makes the data look non-stationary. Should
perhaps apply tests that account for this, see Banerjee, Lumsdaine, Stock (1992), Journal

of Business and Economics Statistics, 10, 271-287.
Park (1990, “Testing for Unit Roots and Cointegration by Variable Addition,” Ad-

vances in Econometrics, 8, 107-133) sets up a framework where we can use both non-
stationarity as the null hypothesis and where we can have stationarity as the null. Consider
the regression

yt =

p∑
s=0

βs t s
+

q∑
s=p+1

βs t s
+ ut , (2.55)

where the we want to test if H0: βs = 0, s = p+1, ..., q. If F (p, q) is the Wald-statistics
for this, then J (p, q) = F (p, q) /T has some (complicated) asymptotic distribution
under the null. You reject non-stationarity if J (p, q) < critical value, since J (p, q) →

p

0 under (trend) stationarity.
Now, define

G (p, q) = F (p, q)
Var (ut)

Var
(√

T ūt

) ∼ χ2
p−q under H0 of stationarity, (2.56)

and G (p, q) →
p

∞ under non-stationarity, so we reject stationarity if G (p, q) > critical
value. Note that Var(ut) is a traditional variance, while Var

(√
T ūt

)
can be estimated with

a Newey-West estimator.

35



2.7.5 Cointegration∗

Suppose y1t and y2t are both (scalar) unit root processes, but that

zt = y1t − βy2t (2.57)

=

[
1 −β

] [ y1t

y2t

]

is stationary. The processes yt and xt must then share the same common stochastic trend,
and are therefore cointegrated with the cointegrating vector

[
1 −β

]
. Running the

regression (2.57) gives an estimator β̂L S which converges much faster than usual (it is
“superconsistent”) and is not affected by any simultaneous equations bias. The intuition
for the second result is that the simultaneous equations bias depends on the simultaneous
reactions to the shocks, which are stationary and therefore without any long-run impor-
tance.

This can be generalized by letting yt be a vector of n unit root processes which follows
a VAR. For simplicity assume it is a VAR(2)

yt = A1yt−1 + A2yt−2 + εt . (2.58)

Subtract yt from both sides, add and subtract A2yt−1 from the right hand side

yt − yt−1 = A1yt−1 + A2yt−2 + εt − yt−1 + A2yt−1 − A2yt−1

= (A1 + A2 − I ) yt−1 − A2 (yt−1 − yt−2)+ εt (2.59)

The left hand side is now stationary, and so is yt−1 − yt−2 and εt on the right hand side. It
must therefore be the case that (A1 + A2 − I ) yt−1 is also stationary; it must be n linear
combinations of the cointegrating vectors. Since the number of cointegrating vectors must
be less than n, the rank of A1 + A2 − I must be less than n. To impose this calls for special
estimation methods.

The simplest of these is Engle and Granger’s two-step procedure. In the first step, we
estimate the cointegrating vectors (as in 2.57) and calculate the different zt series (fewer
than n). In the second step, these are used in the error correction form of the VAR

yt − yt−1 = γ zt−1 − A2 (yt−1 − yt−2)+ εt (2.60)
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to estimate γ and A2. The relation to (2.59) is most easily seen in the bivariate case. Then,
by using (2.57) in (2.60) we get

yt − yt−1 =

[
γ −γβ

]
yt−1 − A2 (yt−1 − yt−2)+ εt , (2.61)

so knowledge (estimates) of β (scalar), γ (2 × 1), A2 (2 × 2) allows us to “back out” A1.
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3 The Distribution of a Sample Average

Reference: Hayashi (2000) 6.5
Additional references: Hamilton (1994) 14; Verbeek (2000) 4.10; Harris and Matyas
(1999); and Pindyck and Rubinfeld (1997) Appendix 10.1; Cochrane (2001) 11.7

3.1 Variance of a Sample Average

In order to understand the distribution of many estimators we need to get an important
building block: the variance of a sample average.

Consider a covariance stationary vector process mt with zero mean and Cov(mt ,mt−s) =

R (s) (which only depends on s). That is, we allow for serial correlation in mt , but no
heteroskedasticity. This is more restrictive than we want, but we will return to that further
on.

Let m̄ =
∑T

t=1 mt/T . The sampling variance of a mean estimator of the zero mean
random variable mt is defined as

Cov (m̄) = E

( 1
T

T∑
t=1

mt

)(
1
T

T∑
τ=1

mτ

)′
 . (3.1)

Let the covariance (matrix) at lag s be

R (s) = Cov (mt ,mt−s)

= E mtm′

t−s, (3.2)

since E mt = 0 for all t .
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Example 1 (mt is a scalar iid process.) When mt is a scalar iid process, then

Var

(
1
T

T∑
t=1

mt

)
=

1
T 2

T∑
t=1

Var (mt) /*independently distributed*/

=
1

T 2 T Var (mt) /*identically distributed*/

=
1
T

Var (mt) .

This is the classical iid case. Clearly, limT ⇒∞Var(m̄) = 0. By multiplying both sides by

T we instead get Var
(√

T m̄
)

= Var(mt), which is often more convenient for asymptotics.

Example 2 Let xt and zt be two scalars, with samples averages x̄ and z̄. Let mt =[
xt zt

]′
. Then Cov(m̄) is

Cov (m̄) = Cov

([
x̄

z̄

])

=

[
Var (x̄) Cov (x̄, z̄)

Cov (z̄, x̄) Var (z̄)

]
.

Example 3 (Cov(m̄) with T = 3.) With T = 3, we have

Cov (T m̄) =

E (m1 + m2 + m3)
(
m′

1 + m′

2 + m′

3
)

=

E
(
m1m′

1 + m2m′

2 + m3m′

3
)︸ ︷︷ ︸

3R(0)

+ E
(
m2m′

1 + m3m′

2
)︸ ︷︷ ︸

2R(1)

+ E
(
m1m′

2 + m2m′

3
)︸ ︷︷ ︸

2R(−1)

+ Em3m′

1︸ ︷︷ ︸
R(2)

+ Em1m′

3︸ ︷︷ ︸ .
R(−2)

The general pattern in the previous example is

Cov (T m̄) =

T −1∑
s=−(T −1)

(T − |s|) R(s). (3.3)

Divide both sides by T

Cov
(√

T m̄
)

=

T −1∑
s=−(T −1)

(
1 −

|s|
T

)
R(s). (3.4)

This is the exact expression for a given sample size.

39



In many cases, we use the asymptotic expression (limiting value as T → ∞) instead.
If R (s) = 0 for s > q so mt is an MA(q), then the limit as the sample size goes to infinity
is

ACov
(√

T m̄
)

= lim
T →∞

Cov
(√

T m̄
)

=

q∑
s=−q

R(s), (3.5)

where ACov stands for the asymptotic variance-covariance matrix. This continues to hold
even if q = ∞, provided R (s) goes to zero sufficiently quickly, as it does in stationary
VAR systems. In this case we have

ACov
(√

T m̄
)

=

∞∑
s=−∞

R(s). (3.6)

Estimation in finite samples will of course require some cut-off point, which is discussed
below.

The traditional estimator of ACov
(√

T m̄
)

is just R(0), which is correct when mt has
no autocorrelation, that is

ACov
(√

T m̄
)

= R(0) = Cov (mt ,mt) if Cov (mt ,mt−s) for s 6= 0. (3.7)

By comparing with (3.5) we see that this underestimates the true variance of autocovari-
ances are mostly positive, and overestimates if they are mostly negative. The errors can
be substantial.

Example 4 (Variance of sample mean of AR(1).) Let mt = ρmt−1 + ut , where Var(ut) =

σ 2. Note that R (s) = ρ|s|σ 2/
(
1 − ρ2), so

AVar
(√

T m̄
)

=

∞∑
s=−∞

R(s)

=
σ 2

1 − ρ2

∞∑
s=−∞

ρ|s|
=

σ 2

1 − ρ2

(
1 + 2

∞∑
s=1

ρs

)

=
σ 2

1 − ρ2
1 + ρ

1 − ρ
,

which is increasing in ρ (provided |ρ| < 1, as required for stationarity). The variance

of m̄ is much larger for ρ close to one than for ρ close to zero: the high autocorrelation

create long swings, so the mean cannot be estimated with any good precision in a small
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Figure 3.1: Variance of
√

T times sample mean of AR(1) process mt = ρmt−1 + ut .

sample. If we disregard all autocovariances, then we would conclude that the variance of
√

T m̄ is σ 2/
(
1 − ρ2), which is smaller (larger) than the true value when ρ > 0 (ρ < 0).

For instance, with ρ = 0.85, it is approximately 12 times too small. See Figure 3.1.a for

an illustration.

Example 5 (Variance of sample mean of AR(1), continued.) Part of the reason why

Var(m̄) increased with ρ in the previous examples is that Var(mt) increases with ρ. We

can eliminate this effect by considering how much larger AVar(
√

T m̄) is than in the iid

case, that is, AVar(
√

T m̄)/Var(mt) = (1 + ρ) / (1 − ρ). This ratio is one for ρ = 0 (iid

data), less than one for ρ < 0, and greater than one for π > 0. This says that if relatively

more of the variance in mt comes from long swings (high ρ), then the sample mean is

more uncertain. See Figure 3.1.b for an illustration.

Example 6 (Variance of sample mean of AR(1), illustration of why limT →∞ of (3.4).)

For an AR(1) (3.4) is

Var
(√

T m̄
)

=
σ 2

1 − ρ2

T −1∑
s=−(T −1)

(
1 −

|s|
T

)
ρ|s|

=
σ 2

1 − ρ2

[
1 + 2

T −1∑
s=1

(
1 −

s
T

)
ρs

]

=
σ 2

1 − ρ2

[
1 + 2

ρ

1 − ρ
+ 2

ρT +1
− ρ

T (1 − ρ)2

]
.
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The last term in brackets goes to zero as T goes to infinity. We then get the result in

Example 4.

3.2 The Newey-West Estimator

3.2.1 Definition of the Estimator

Newey and West (1987) suggested the following estimator of the covariance matrix in
(3.5) as (for some n < T )

ÂCov
(√

T m̄
)

=

n∑
s=−n

(
1 −

|s|
n + 1

)
R̂(s)

= R̂(0)+

n∑
s=1

(
1 −

s
n + 1

)(
R̂(s)+ R̂(−s)

)
, or since R̂(−s) = R̂′(s),

= R̂(0)+

n∑
s=1

(
1 −

s
n + 1

)(
R̂(s)+ R̂′(s)

)
, where (3.8)

R̂(s) =
1
T

T∑
t=s+1

mtm
′

t−s (if E mt = 0). (3.9)

The tent shaped (Bartlett) weights in (3.8) guarantee a positive definite covariance
estimate. In contrast, equal weights (as in (3.5)), may give an estimated covariance matrix
which is not positive definite, which is fairly awkward. Newey and West (1987) showed
that this estimator is consistent if we let n go to infinity as T does, but in such a way that
n/T 1/4 goes to zero.

There are several other possible estimators of the covariance matrix in (3.5), but sim-
ulation evidence suggest that they typically do not improve a lot on the Newey-West
estimator.

Example 7 (mt is MA(1).) Suppose we know that mt = εt + θεt−1. Then R(s) = 0 for

s ≥ 2, so it might be tempting to use n = 1 in (3.8). This gives ÂCov
(√

T m̄
)

= R̂(0)+

1
2 [R̂(1) + R̂′(1)], while the theoretical expression (3.5) is ACov= R(0) + R(1) + R′(1).
The Newey-West estimator puts too low weights on the first lead and lag, which suggests

that we should use n > 1 (or more generally, n > q for an MA(q) process).
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It can also be shown that, under quite general circumstances, Ŝ in (3.8)-(3.9) is a

consistent estimator of ACov
(√

T m̄
)

, even if mt is heteroskedastic (on top of being au-
tocorrelated). (See Hamilton (1994) 10.5 for a discussion.)

3.2.2 How to Implement the Newey-West Estimator

Economic theory and/or stylized facts can sometimes help us choose the lag length n.
For instance, we may have a model of stock returns which typically show little autocor-
relation, so it may make sense to set n = 0 or n = 1 in that case. A popular choice of
n is to round (T/100)1/4 down to the closest integer, although this does not satisfy the
consistency requirement.

It is important to note that definition of the covariance matrices in (3.2) and (3.9)
assume that mt has zero mean. If that is not the case, then the mean should be removed
in the calculation of the covariance matrix. In practice, you remove the same number,
estimated on the whole sample, from both mt and mt−s . It is often recommended to
remove the sample means even if theory tells you that the true mean is zero.

3.3 Summary

Let m̄ =
1
T

T∑
t=1

mt and R (s) = Cov (mt ,mt−s) . Then

ACov
(√

T m̄
)

=

∞∑
s=−∞

R(s)

ACov
(√

T m̄
)

= R(0) = Cov (mt ,mt) if R(s) = 0 for s 6= 0

Newey-West : ÂCov
(√

T m̄
)

= R̂(0)+

n∑
s=1

(
1 −

s
n + 1

)(
R̂(s)+ R̂′(s)

)
.
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4 Least Squares

Reference: Greene (2000) 6
Additional references: Hayashi (2000) 1-2; Verbeek (2000) 1-4; Hamilton (1994) 8

4.1 Definition of the LS Estimator

4.1.1 LS with Summation Operators

Consider the linear model
yt = x ′

tβ0 + ut , (4.1)

where yt and ut are scalars, xt a k×1 vector, and β0 is a k×1 vector of the true coefficients.
Least squares minimizes the sum of the squared fitted residuals

T∑
t=1

e2
t =

T∑
t=1

(
yt − x ′

tβ
)2
, (4.2)

by choosing the vector β. The first order conditions are

0kx1 =

T∑
t=1

xt

(
yt − x ′

t β̂L S

)
or (4.3)

T∑
t=1

xt yt =

T∑
t=1

xt x ′

t β̂L S, (4.4)

which are the so called normal equations. These can be solved as

β̂L S =

( T∑
t=1

xt x ′

t

)−1 T∑
t=1

xt yt (4.5)

=

(
1
T

T∑
t=1

xt x ′

t

)−1
1
T

T∑
t=1

xt yt (4.6)
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Remark 1 (Summation and vectors) Let zt and xt be the vectors

zt =

[
z1t

z2t

]
and xt =

 x1t

x2t

x3t

 ,
then

T∑
t=1

xt z′

t =

T∑
t=1

 x1t

x2t

x3t

[ z1t z2t

]
=

T∑
t=1

 x1t z1t x1t z2t

x2t z1t x2t z2t

x3t z1t x3t z2t

 =


∑T

t=1 x1t z1t
∑T

t=1 x1t z2t∑T
t=1 x2t z1t

∑T
t=1 x2t z2t∑T

t=1 x3t z1t
∑T

t=1 x3t z2t

 .
4.1.2 LS in Matrix Form

Define the matrices

Y =


y1

y2
...

yT


T ×1

, u =


u1

u2
...

uT


T ×1

, X =


x ′

1

x ′

2
...

x ′

T


T ×k

, and e =


e1

e2
...

eT


T ×1

. (4.7)

Write the model (4.1) as 
y1

y2
...

yT

 =


x ′

1

x ′

2
...

x ′

T

β0 +


u1

u2
...

uT

 or (4.8)

Y = Xβ0 + u. (4.9)

Remark 2 Let xt be a k × 1 and zt an m × 1 vector. Define the matrices

X =


x ′

1

x ′

2
...

x ′

T


T ×k

and Z =


z′

1

z′

2
...

z′

T


T ×m

.
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We then have
T∑

t=1

xt z′

t = X ′Z .

We can then rewrite the loss function (4.2) as e′e, the first order conditions (4.3) and
(4.4) as (recall that yt = y′

t since it is a scalar)

0kx1 = X ′

(
Y − X β̂L S

)
(4.10)

X ′Y = X ′X β̂L S, (4.11)

and the solution (4.5) as
β̂L S =

(
X ′X

)−1 X ′Y. (4.12)

4.2 LS and R2 ∗

The first order conditions in LS are

T∑
t=1

xt ût = 0, where ût = yt − ŷt , with ŷt = x ′

t β̂. (4.13)

This implies that the fitted residuals and fitted values are orthogonal,6T
t=1 ŷt ût = 6T

t=1β̂
′xt ût =

0. If we let xt include a constant, then (4.13) also implies that the fitted residuals have a
zero mean, 6T

t=1ût/T = 0. We can then decompose the sample variance (denoted V̂ar)
of yt = ŷt + ût as

V̂ar (yt) = V̂ar
(
ŷt
)
+ V̂ar

(
ût
)
, (4.14)

since ŷt and ût are uncorrelated in this case. (Note that Cov
(
ŷt , ût

)
= Eŷt ût−EŷtEût so

the orthogonality is not enough to allow the decomposition; we also need EŷtEût = 0—
this holds for sample moments as well.)

We define R2 as the fraction of V̂ar (yt) that is explained by the model

R2
=

V̂ar
(
ŷt
)

V̂ar (yt)
(4.15)

= 1 −
V̂ar

(
ût
)

V̂ar (yt)
. (4.16)
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LS minimizes the sum of squared fitted errors, which is proportional to V̂ar
(
ût
)
, so it

maximizes R2.
We can rewrite R2 by noting that

Ĉov
(
yt , ŷt

)
= Ĉov

(
ŷt + ût , ŷt

)
= V̂ar

(
ŷt
)
. (4.17)

Use this to substitute for V̂ar
(
ŷt
)

in (4.15) and then multiply both sides with Ĉov
(
yt , ŷt

)
/V̂ar

(
ŷt
)

=

1 to get

R2
=

Ĉov
(
yt , ŷt

)2
V̂ar (yt) V̂ar

(
ŷt
)

= Ĉorr
(
yt , ŷt

)2 (4.18)

which shows that R2 is the square of correlation coefficient of the actual and fitted value.
Note that this interpretation of R2 relies on the fact that Ĉov

(
ŷt , ût

)
= 0. From (4.14) this

implies that the sample variance of the fitted variables is smaller than the sample variance
of yt . From (4.15) we see that this implies that 0 ≤ R2

≤ 1.
To get a bit more intuition for what R2 represents, suppose the estimated coefficients

equal the true coefficients, so ŷt = x ′
tβ0. In this case, R2

= Corr
(
x ′

tβ0 + ut , x ′
tβ0
)2,

that is, the squared correlation of yt with the systematic part of yt . Clearly, if the model
is perfect so ut = 0, then R2

= 1. On contrast, when there is no movements in the
systematic part (β0 = 0), then R2

= 0.

Remark 3 In a simple regression where yt = a + bxt + ut , where xt is a scalar, R2
=

Ĉorr (yt , xt)
2. To see this, note that, in this case (4.18) can be written

R2
=

Ĉov
(

yt , b̂xt

)2

V̂ar (yt) V̂ar
(

b̂xt

) =
b̂2Ĉov (yt , xt)

2

b̂2V̂ar (yt) V̂ar (xt)
,

so the b̂2 terms cancel.

Remark 4 Now, consider the reverse regression xt = c + dyt + vt . The LS estimator

of the slope is d̂L S = Ĉov (yt , xt) /V̂ar (yt). Recall that b̂L S = Ĉov (yt , xt) /V̂ar (xt). We

therefore have

b̂L S d̂L S =
Ĉov (yt , xt)

2

V̂ar (yt) V̂ar (xt)
= R2.
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This shows that d̂L S = 1/b̂L S if (and only if) R2
= 1.

4.3 Finite Sample Properties of LS

Use the true model (4.1) to substitute for yt in the definition of the LS estimator (4.6)

β̂L S =

(
1
T

T∑
t=1

xt x ′

t

)−1
1
T

T∑
t=1

xt
(
x ′

tβ0 + ut
)

= β0 +

(
1
T

T∑
t=1

xt x ′

t

)−1
1
T

T∑
t=1

xtut . (4.19)

It is possible to show unbiasedness of the LS estimator, even if xt stochastic and ut is
autocorrelated and heteroskedastic—provided E(ut |xt−s) = 0 for all s. Let E

(
ut | {xt}

T
t=1
)

denote the expectation of ut conditional on all values of xt−s . Using iterated expectations
on (4.19) then gives

Eβ̂L S = β0 + Ex

( 1
T

T∑
t=1

xt x ′

t

)−1
1
T

T∑
t=1

xtE
(
ut | {xt}

T
t=1
) (4.20)

= β0, (4.21)

since E(ut |xt−s) = 0 for all s. This is, for instance, the case when the regressors are
deterministic. Notice that E(ut | xt) = 0 is not enough for unbiasedness since (4.19)
contains terms involving xt−s xtut from the product of ( 1

T
∑T

t=1 xt x ′
t)

−1 and xtut .

Example 5 (AR(1).) Consider estimating α in yt = αyt−1 + ut . The LS estimator is

α̂L S =

(
1
T

T∑
t=1

y2
t−1

)−1
1
T

T∑
t=1

yt−1yt

= α +

(
1
T

T∑
t=1

y2
t−1

)−1
1
T

T∑
t=1

yt−1ut .

In this case, the assumption E(ut |xt−s) = 0 for all s (that is, s = ...,−1, 0, 1, ...) is false,

since xt+1 = yt and ut and yt are correlated. We can therefore not use this way of proving

that α̂L S is unbiased. In fact, it is not, and it can be shown that α̂L S is downward-biased
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if α > 0, and that this bias gets quite severe as α gets close to unity.

The finite sample distribution of the LS estimator is typically unknown.
Even in the most restrictive case where ut is iid N

(
0, σ 2) and E(ut |xt−s) = 0 for all

s, we can only get that

β̂L S| {xt}
T
t=1 ∼ N

β0, σ
2

(
1
T

T∑
t=1

xt x ′

t

)−1 . (4.22)

This says that the estimator, conditional on the sample of regressors, is normally dis-
tributed. With deterministic xt , this clearly means that β̂L S is normally distributed in a
small sample. The intuition is that the LS estimator with deterministic regressors is just
a linear combination of the normally distributed yt , so it must be normally distributed.
However, if xt is stochastic, then we have to take into account the distribution of {xt}

T
t=1

to find the unconditional distribution of β̂L S . The principle is that

pdf
(
β̂
)

=

∫
∞

−∞

pdf
(
β̂, x

)
dx =

∫
∞

−∞

pdf
(
β̂ |x

)
pdf (x) dx,

so the distribution in (4.22) must be multiplied with the probability density function of
{xt}

T
t=1 and then integrated over {xt}

T
t=1 to give the unconditional distribution (marginal)

of β̂L S . This is typically not a normal distribution.
Another way to see the same problem is to note that β̂L S in (4.19) is a product of two

random variables, (6T
t=1xt x ′

t/T )−1 and 6T
t=1xtut/T . Even if ut happened to be normally

distributed, there is no particular reason why xtut should be, and certainly no strong
reason for why (6T

t=1xt x ′
t/T )−16T

t=1xtut/T should be.

4.4 Consistency of LS

Reference: Greene (2000) 9.3-5 and 11.2; Hamilton (1994) 8.2; Davidson (2000) 3
We now study if the LS estimator is consistent.

Remark 6 Suppose the true parameter value is β0. The estimator β̂T (which, of course,

depends on the sample size T ) is said to be consistent if for every ε > 0 and δ > 0 there

exists N such that for T ≥ N

Pr
(∥∥∥β̂T − β0

∥∥∥ > δ
)
< ε.
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(‖x‖ =
√

x ′x, the Euclidean distance of x from zero.) We write this plim β̂T = β0 or

just plim β̂ = β0, or perhaps β̂ →
p β0. (For an estimator of a covariance matrix, the

most convenient is to stack the unique elements in a vector and then apply the definition

above.)

Remark 7 (Slutsky’s theorem.) If g (.) is a continuous function, then plim g (zT ) =

g (plim zT ). In contrast, note that Eg (zT ) is generally not equal to g (EzT ), unless g (.)

is a linear function.

Remark 8 (Probability limit of product.) Let xT and yT be two functions of a sample of

length T . If plim xT = a and plim yT = b, then plim xT yT = ab.

Assume

plim
1
T

T∑
t=1

xt x ′

t = 6xx < ∞, and 6xx invertible. (4.23)

The plim carries over to the inverse by Slutsky’s theorem.1 Use the facts above to write
the probability limit of (4.19) as

plim β̂L S = β0 +6−1
xx plim

1
T

T∑
t=1

xtut . (4.24)

To prove consistency of β̂L S we therefore have to show that

plim
1
T

T∑
t=1

xtut = Extut = Cov(xt , ut) = 0. (4.25)

This is fairly easy to establish in special cases, for instance, when wt = xtut is iid or
when there is either heteroskedasticity or serial correlation. The case with both serial
correlation and heteroskedasticity is just a bit more complicated. In other cases, it is clear
that the covariance the residuals and the regressors are not all zero—for instance when
some of the regressors are measured with error or when some of them are endogenous
variables.

1 This puts non-trivial restrictions on the data generating processes. For instance, if xt include lagged
values of yt , then we typically require yt to be stationary and ergodic, and that ut is independent of xt−s for
s ≥ 0.
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An example of a case where LS is not consistent is when the errors are autocorrelated
and the regressors include lags of the dependent variable. For instance, suppose the error
is a MA(1) process

ut = εt + θ1εt−1, (4.26)

where εt is white noise and that the regression equation is an AR(1)

yt = ρyt−1 + ut . (4.27)

This is an ARMA(1,1) model and it is clear that the regressor and error in (4.27) are
correlated, so LS is not a consistent estimator of an ARMA(1,1) model.

4.5 Asymptotic Normality of LS

Reference: Greene (2000) 9.3-5 and 11.2; Hamilton (1994) 8.2; Davidson (2000) 3

Remark 9 (Continuous mapping theorem.) Let the sequences of random matrices {xT }

and {yT }, and the non-random matrix {aT } be such that xT
d

→ x, yT
p

→ y, and aT → a

(a traditional limit). Let g(xT , yT , aT ) be a continuous function. Then g(xT , yT , aT )
d

→

g(x, y, a). Either of yT and aT could be irrelevant in g.

Remark 10 From the previous remark: if xT
d

→ x (a random variable) and plim QT =

Q (a constant matrix), then QT xT
d

→ Qx.

Premultiply (4.19) by
√

T and rearrange as

√
T
(
β̂L S − β0

)
=

(
1
T

T∑
t=1

xt x ′

t

)−1 √
T

T

T∑
t=1

xtut . (4.28)

If the first term on the right hand side converges in probability to a finite matrix (as as-
sumed in (4.23)), and the vector of random variables xtut satisfies a central limit theorem,
then

√
T (β̂L S − β0)

d
→ N

(
0, 6−1

xx S06
−1
xx

)
, where (4.29)

6xx =
1
T

T∑
t=1

xt x ′

t and S0 = Cov

(√
T

T

T∑
t=1

xtut

)
.
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The last matrix in the covariance matrix does not need to be transposed since it is sym-
metric (since 6xx is). This general expression is valid for both autocorrelated and het-
eroskedastic residuals—all such features are loaded into the S0 matrix. Note that S0 is
the variance-covariance matrix of

√
T times a sample average (of the vector of random

variables xtut ), which can be complicated to specify and to estimate. In simple cases,
we can derive what it is. To do so, we typically need to understand the properties of the
residuals. Are they autocorrelated and/or heteroskedastic? In other cases we will have to
use some kind of “non-parametric” approach to estimate it.

A common approach is to estimate 6xx by 6T
t=1xt x ′

t/T and use the Newey-West
estimator of S0.

4.5.1 Special Case: Classical LS assumptions

Reference: Greene (2000) 9.4 or Hamilton (1994) 8.2.
We can recover the classical expression for the covariance, σ 26−1

xx , if we assume that
the regressors are stochastic, but require that xt is independent of all ut+s and that ut is
iid. It rules out, for instance, that ut and xt−2 are correlated and also that the variance of
ut depends on xt . Expand the expression for S0 as Expand the expression for S0 as

S0 = E

(√
T

T

T∑
t=1

xtut

)(√
T

T

T∑
t=1

ut x ′

t

)
(4.30)

=
1
T

E (...+ xs−1us−1 + xsus + ...)
(
...+ us−1x ′

s−1 + us x ′

s + ...
)
.

Note that

Ext−sut−sut x ′

t = Ext−s x ′

tEut−sut (since ut and xt−s independent)

=

{
0 if s 6= 0 (since Eut−sut = 0 by iid ut )
Ext x ′

tEutut else.
(4.31)

This means that all cross terms (involving different observations) drop out and that we
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can write

S0 =
1
T

T∑
t=1

Ext x ′

tEu2
t (4.32)

= σ 2 1
T

E
T∑

t=1

xt x ′

t (since ut is iid and σ 2
= Eu2

t ) (4.33)

= σ 26xx . (4.34)

Using this in (4.29) gives

Asymptotic Cov[
√

T (β̂L S − β0)] = 6−1
xx S06

−1
xx = 6−1

xx σ
26xx6

−1
xx = σ 26−1

xx .

4.5.2 Special Case: White’s Heteroskedasticity

Reference: Greene (2000) 12.2 and Davidson and MacKinnon (1993) 16.2.
This section shows that the classical LS formula for the covariance matrix is valid

even if the errors are heteroskedastic—provided the heteroskedasticity is independent of
the regressors.

The only difference compared with the classical LS assumptions is that ut is now
allowed to be heteroskedastic, but this heteroskedasticity is not allowed to depend on the
moments of xt . This means that (4.32) holds, but (4.33) does not since Eu2

t is not the
same for all t .

However, we can still simplify (4.32) a bit more. We assumed that Ext x ′
t and Eu2

t

(which can both be time varying) are not related to each other, so we could perhaps mul-
tiply Ext x ′

t by 6T
t=1Eu2

t /T instead of by Eu2
t . This is indeed true asymptotically—where

any possible “small sample” relation between Ext x ′
t and Eu2

t must wash out due to the
assumptions of independence (which are about population moments).

In large samples we therefore have

S0 =

(
1
T

T∑
t=1

Eu2
t

)(
1
T

T∑
t=1

Ext x ′

t

)

=

(
1
T

T∑
t=1

Eu2
t

)(
E

1
T

T∑
t=1

xt x ′

t

)
= ω26xx , (4.35)
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where ω2 is a scalar. This is very similar to the classical LS case, except that ω2 is
the average variance of the residual rather than the constant variance. In practice, the
estimator of ω2 is the same as the estimator of σ 2, so we can actually apply the standard
LS formulas in this case.

This is the motivation for why White’s test for heteroskedasticity makes sense: if the
heteroskedasticity is not correlated with the regressors, then the standard LS formula is
correct (provided there is no autocorrelation).

4.6 Inference

Consider some estimator, β̂k×1, with an asymptotic normal distribution

√
T (β̂ − β0)

d
→ N (0, V ) . (4.36)

Suppose we want to test the null hypothesis that the s linear restrictions Rβ0 = r hold,
where R is an s × k matrix and r is an s × 1 vector. If the null hypothesis is true, then

√
T (Rβ̂ − r)

d
→ N (0, RV R′), (4.37)

since the s linear combinations are linear combinations of random variables with an
asymptotic normal distribution as in (4.37).

Remark 11 If the n × 1 vector x ∼ N (0, 6), then x ′6−1x ∼ χ2
n .

Remark 12 From the previous remark and Remark (9), it follows that if the n × 1 vector

x
d

→ N (0, 6), then x ′6−1x
d

→ χ2
n .

From this remark, it follows that if the null hypothesis, Rβ0 = r , is true, then Wald
test statistics converges in distribution to a χ2

s variable

T (Rβ̂ − r)′
(
RV R′

)−1
(Rβ̂ − r)

d
→ χ2

s . (4.38)

Values of the test statistics above the x% critical value of the χ2
s distribution mean that

we reject the null hypothesis at the x% significance level.
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When there is only one restriction (s = 1), then
√

T (Rβ̂ − r) is a scalar, so the test
can equally well be based on the fact that

√
T (Rβ̂ − r)

RV R′

d
→ N (0, 1).

In this case, we should reject the null hypothesis if the test statistics is either very low
(negative) or very high (positive). In particular, let8() be the standard normal cumulative
distribution function. We then reject the null hypothesis at the x% significance level if the
test statistics is below xL such that 8(xL) = (x/2)% or above xH such that 8(xH ) =

1 − (x/2)% (that is with (x/2)% of the probability mass in each tail).

Example 13 (T R2/(1 − R2) as a test of the regression.) Recall from (4.15)-(4.16) that

R2
= V̂ar

(
ŷt
)
/V̂ar (yt) = 1 − V̂ar

(
ût
)
/V̂ar (yt), where ŷt and ût are the fitted value and

residual respectively. We therefore get

T R2/(1 − R2) = T V̂ar
(
ŷt
)
/V̂ar

(
ût
)
.

To simplify the algebra, assume that both yt and xt are demeaned and that no intercept is

used. (We get the same results, but after more work, if we relax this assumption.) In this

case, ŷt = x ′
t β̂, so we can rewrite the previous eqiuation as

T R2/(1 − R2) = T β̂ ′6xx β̂
′/V̂ar

(
ût
)
.

This is identical to (4.38) when R = Ik and r = 0k×1 and the classical LS assumptions

are fulfilled (so V = Var
(
ût
)
6−1

xx ). The T R2/(1 − R2) is therefore a χ2
k distributed

statistics for testing if all the slope coefficients are zero.

Example 14 (F version of the test.) There is also an Fk,T −k version of the test in the

previous example: [R2/k]/[(1 − R2)/(T − k)]. Note that k times an Fk,T −k variable

converges to a χ2
k variable as T − k → ∞. This means that the χ2

k form in the previous

example can be seen as an asymptotic version of the (more common) F form.

4.6.1 On F Tests∗

F tests are sometimes used instead of chi–square tests. However, F tests rely on very spe-
cial assumptions and typically converge to chi–square tests as the sample size increases.
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There are therefore few compelling theoretical reasons for why we should use F tests.2

This section demonstrates that point.

Remark 15 If Y1 ∼ χ2
n1

, Y2 ∼ χ2
n2
, and if Y1 and Y2 are independent, then Z =

(Y1/n1)/(Y1/n1) ∼ Fn1,n2 . As n2 → ∞, n1 Z
d

→ χ2
n1

(essentially because the denomina-

tor in Z is then equal to its expected value).

To use the F test to test s linear restrictions Rβ0 = r , we need to assume that the small
sample distribution of the estimator is normal,

√
T (β̂ − β0) ∼ N (0, σ 2W ), where σ 2 is

a scalar and W a known matrix. This would follow from an assumption that the residuals
are normally distributed and that we either consider the distribution conditional on the
regressors or that the regressors are deterministic. In this case W = 6−1

xx .
Consider the test statistics

F = T (Rβ̂ − r)′
(

Rσ̂ 2W R′

)−1
(Rβ̂ − r)/s.

This is similar to (4.38), expect that we use the estimated covariance matrix σ̂ 2W instead
of the true σ 2W (recall, W is assumed to be known) and that we have divided by the
number of restrictions, s. Multiply and divide this expressions by σ 2

F =
T (Rβ̂ − r)′

(
Rσ 2W R′

)−1
(Rβ̂ − r)/s

σ̂ 2/σ 2 .

The numerator is an χ2
s variable divided by its degrees of freedom, s. The denominator

can be written σ̂ 2/σ 2
= 6(ût/σ)

2/T , where ût are the fitted residuals. Since we just
assumed that utare iid N (0, σ 2), the denominator is an χ2

T variable divided by its degrees
of freedom, T . It can also be shown that the numerator and denominator are independent
(essentially because the fitted residuals are orthogonal to the regressors), so F is an Fs,T

variable.
We need indeed very strong assumptions to justify the F distributions. Moreover, as

T → ∞, s F
d

→ χ2
n which is the Wald test—which do not need all these assumptions.

2However, some simulation evidence suggests that F tests may have better small sample properties than
chi-square test.
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4.7 Diagnostic Tests of Autocorrelation, Heteroskedasticity, and Normality∗

Reference: Greene (2000) 12.3, 13.5 and 9.7; Johnston and DiNardo (1997) 6; and Pindyck
and Rubinfeld (1997) 6, Patterson (2000) 5

LS and IV are still consistent even if the residuals are autocorrelated, heteroskedastic,
and/or non-normal, but the traditional expression for the variance of the parameter esti-
mators is invalid. It is therefore important to investigate the properties of the residuals.

We would like to test the properties of the true residuals, ut , but these are unobserv-
able. We can instead use residuals from a consistent estimator as approximations, since
the approximation error then goes to zero as the sample size increases. The residuals from
an estimator are

ût = yt − x ′

t β̂

= x ′

t

(
β0 − β̂

)
+ ut . (4.39)

If plim β̂ = β0, then ût converges in probability to the true residual (“pointwise consis-
tency”). It therefore makes sense to use ût to study the (approximate) properties of ut . We
want to understand if ut are autocorrelated and/or heteroskedastic, since this affects the
covariance matrix of the least squares estimator and also to what extent least squares is
efficient. We might also be interested in studying if the residuals are normally distributed,
since this also affects the efficiency of least squares (remember that LS is MLE is the
residuals are normally distributed).

It is important that the fitted residuals used in the diagnostic tests are consistent. With
poorly estimated residuals, we can easily find autocorrelation, heteroskedasticity, or non-
normality even if the true residuals have none of these features.

4.7.1 Autocorrelation

Let ρ̂s be the estimate of the sth autocorrelation coefficient of some variable, for instance,
the fitted residuals. The sampling properties of ρ̂s are complicated, but there are several
useful large sample results for Gaussian processes (these results typically carry over to
processes which are similar to the Gaussian—a homoskedastic process with finite 6th
moment is typically enough). When the true autocorrelations are all zero (not ρ0, of
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course), then for any i and j different from zero

√
T

[
ρ̂i

ρ̂ j

]
→

d N

([
0
0

]
,

[
1 0
0 1

])
. (4.40)

This result can be used to construct tests for both single autocorrelations (t-test or χ2 test)
and several autocorrelations at once (χ2 test).

Example 16 (t-test) We want to test the hypothesis that ρ1 = 0. Since the N (0, 1) dis-

tribution has 5% of the probability mass below -1.65 and another 5% above 1.65, we

can reject the null hypothesis at the 10% level if
√

T |ρ̂1| > 1.65. With T = 100, we

therefore need |ρ̂1| > 1.65/
√

100 = 0.165 for rejection, and with T = 1000 we need

|ρ̂1| > 1.65/
√

1000 ≈ 0.0.53.

The Box-Pierce test follows directly from the result in (4.40), since it shows that
√

T ρ̂i

and
√

T ρ̂ j are iid N(0,1) variables. Therefore, the sum of the square of them is distributed
as an χ2 variable. The test statistics typically used is

QL = T
L∑

s=1

ρ̂2
s →

d χ2
L . (4.41)

Example 17 (Box-Pierce) Let ρ̂1 = 0.165, and T = 100, so Q1 = 100 × 0.1652
=

2.72. The 10% critical value of the χ2
1 distribution is 2.71, so the null hypothesis of no

autocorrelation is rejected.

The choice of lag order in (4.41), L , should be guided by theoretical considerations,
but it may also be wise to try different values. There is clearly a trade off: too few lags may
miss a significant high-order autocorrelation, but too many lags can destroy the power of
the test (as the test statistics is not affected much by increasing L , but the critical values
increase).

Example 18 (Residuals follow an AR(1)process) If ut = 0.9ut−1 + εt , then the true

autocorrelation coefficients are ρ j = 0.9 j .

A common test of the serial correlation of residuals from a regression is the Durbin-

Watson test

d = 2
(
1 − ρ̂1

)
, (4.42)
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where the null hypothesis of no autocorrelation is

not rejected if d > d∗
upper

rejected if d < d∗

lower (in favor of positive autocorrelation)
else inconclusive

where the upper and lower critical values can be found in tables. (Use 4 − d to let nega-
tive autocorrelation be the alternative hypothesis.) This test is typically not useful when
lagged dependent variables enter the right hand side (d is biased towards showing no
autocorrelation). Note that DW tests only for first-order autocorrelation.

Example 19 (Durbin-Watson.) With ρ̂1 = 0.2 we get d = 1.6. For large samples, the 5%

critical value is d∗

lower ≈ 1.6, so ρ̂1 > 0.2 is typically considered as evidence of positive

autocorrelation.

The fitted residuals used in the autocorrelation tests must be consistent in order to in-
terpret the result in terms of the properties of the true residuals. For instance, an excluded
autocorrelated variable will probably give autocorrelated fitted residuals—and also make
the coefficient estimator inconsistent (unless the excluded variable is uncorrelated with
the regressors). Only when we know that the model is correctly specified can we interpret
a finding of autocorrelated residuals as an indication of the properties of the true residuals.

4.7.2 Heteroskedasticity

Remark 20 (Kronecker product.) If A and B are matrices, then

A ⊗ B =


a11 B · · · a1n B
...

...

am1 B · · · amn B

 .
Example 21 Let x1 and x2 be scalars. Then

[
x1

x2

]
⊗

[
x1

x2

]
=


x1

[
x1

x2

]

x2

[
x1

x2

]
 =


x1x1

x1x2

x2x1

x2x2

 .
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White’s test for heteroskedasticity tests the null hypothesis of homoskedasticity against
the kind of heteroskedasticity which can be explained by the levels, squares, and cross
products of the regressors. Let wt be the unique elements in xt ⊗ xt , where we have added
a constant to xt if there was not one from the start. Run a regression of the squared fitted
LS residuals on wt

û2
t = w′

tγ + εt (4.43)

and test if all elements (except the constant) in γ are zero (with a χ2 or F test). The
reason for this specification is that if u2

t is uncorrelated with xt ⊗ xt , then the usual LS
covariance matrix applies.

Breusch-Pagan’s test is very similar, except that the vector wt in (4.43) can be any
vector which is thought of as useful for explaining the heteroskedasticity. The null hy-
pothesis is that the variance is constant, which is tested against the alternative that the
variance is some function of wt .

The fitted residuals used in the heteroskedasticity tests must be consistent in order to
interpret the result in terms of the properties of the true residuals. For instance, if some
of the of elements in wt belong to the regression equation, but are excluded, then fitted
residuals will probably fail these tests.

4.7.3 Normality

We often make the assumption of normally distributed errors, for instance, in maximum
likelihood estimation. This assumption can be tested by using the fitted errors. This works
since moments estimated from the fitted errors are consistent estimators of the moments
of the true errors. Define the degree of skewness and excess kurtosis for a variable zt

(could be the fitted residuals) as

θ̂3 =
1
T

T∑
t=1

(zt − z̄)3 /σ̂ 3, (4.44)

θ̂4 =
1
T

T∑
t=1

(zt − z̄)4 /σ̂ 4
− 3, (4.45)

where z̄ is the sample mean and σ̂ 2 is the estimated variance.

Remark 22 (χ2(n) distribution.) If xi are independent N(0, σ 2
i ) variables, then6n

i=1x2
i /σ

2
i ∼
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Figure 4.1: This figure shows a histogram from 100 draws of iid uniformly [0,1] dis-
tributed variables.

χ2(n).

In a normal distribution, the true values are zero and the test statistics θ̂3 and θ̂4 are
themselves normally distributed with zero covariance and variances 6/T and 24/T , re-
spectively (straightforward, but tedious, to show). Therefore, under the null hypothesis
of a normal distribution, T θ̂2

3 /6 and T θ̂2
4 /24 are independent and both asymptotically

distributed as χ2(1), so the sum is asymptotically a χ2(2) variable

W = T
(
θ̂2

3 /6 + θ̂2
4 /24

)
→

d χ2(2). (4.46)

This is the Jarque and Bera test of normality.
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5 Instrumental Variable Method

Reference: Greene (2000) 9.5 and 16.1-2
Additional references: Hayashi (2000) 3.1-4; Verbeek (2000) 5.1-4; Hamilton (1994) 8.2;
and Pindyck and Rubinfeld (1997) 7

5.1 Consistency of Least Squares or Not?

Consider the linear model
yt = x ′

tβ0 + ut , (5.1)

where yt and ut are scalars, xt a k×1 vector, and β0 is a k×1 vector of the true coefficients.
The least squares estimator is

β̂L S =

(
1
T

T∑
t=1

xt x ′

t

)−1
1
T

T∑
t=1

xt yt (5.2)

= β0 +

(
1
T

T∑
t=1

xt x ′

t

)−1
1
T

T∑
t=1

xtut , (5.3)

where we have used (5.1) to substitute for yt . The probability limit is

plim β̂L S − β0 =

(
plim

1
T

T∑
t=1

xt x ′

t

)−1

plim
1
T

T∑
t=1

xtut . (5.4)

In many cases the law of large numbers applies to both terms on the right hand side. The
first term is typically a matrix with finite elements and the second term is the covariance of
the regressors and the true residuals. This covariance must be zero for LS to be consistent.

5.2 Reason 1 for IV: Measurement Errors

Reference: Greene (2000) 9.5.
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Suppose the true model is
y∗

t = x∗′

t β0 + u∗

t . (5.5)

Data on y∗
t and x∗

t is not directly observable, so we instead run the regression

yt = x ′

tβ + ut , (5.6)

where yt and xt are proxies for the correct variables (the ones that the model is true for).
We can think of the difference as measurement errors

yt = y∗

t + v
y
t and (5.7)

xt = x∗

t + vx
t , (5.8)

where the errors are uncorrelated with the true values and the “true” residual u∗
t .

Use (5.7) and (5.8) in (5.5)

yt − v
y
t =

(
xt − vx

t
)′
β0 + u∗

t or

yt = x ′

tβ0 + εt where εt = −vx ′

t β0 + v
y
t + u∗

t . (5.9)

Suppose that x∗
t is a measured with error. From (5.8) we see that vx

t and xt are corre-
lated, so LS on (5.9) is inconsistent in this case. To make things even worse, measurement
errors in only one of the variables typically affect all the coefficient estimates.

To illustrate the effect of the error, consider the case when xt is a scalar. Then, the
probability limit of the LS estimator of β in (5.9) is

plim β̂L S = Cov (yt , xt) /Var (xt)

= Cov
(
x∗

t β0 + u∗

t , xt
)
/Var (xt)

= Cov
(
xtβ0 − vx

t β0 + u∗

t , xt
)
/Var (xt)

=
Cov (xtβ0, xt)+ Cov

(
−vx

t β0, xt
)
+ Cov

(
u∗

t , xt
)

Var (xt)

=
Var (xt)

Var (xt)
β0 +

Cov
(
−vx

t β0, x∗
t − vx

t
)

Var (xt)

= β0 − β0Var
(
vx

t
)
/Var (xt)

= β0

[
1 −

Var
(
vx

t
)

Var
(
x∗

t
)
+ Var

(
vx

t
)] . (5.10)
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since x∗
t and vx

t are uncorrelated with u∗
t and with each other. This shows that β̂L S goes

to zero as the measurement error becomes relatively more volatile compared with the true
value. This makes a lot of sense, since when the measurement error is very large then the
regressor xt is dominated by noise that has nothing to do with the dependent variable.

Suppose instead that only y∗
t is measured with error. This not a big problem since this

measurement error is uncorrelated with the regressor, so the consistency of least squares
is not affected. In fact, a measurement error in the dependent variable is like increasing
the variance in the residual.

5.3 Reason 2 for IV: Simultaneous Equations Bias (and Inconsis-
tency)

Suppose economic theory tells you that the structural form of the m endogenous variables,
yt , and the k predetermined (exogenous) variables, zt , is

Fyt + Gzt = ut , where ut is iid with Eut = 0 and Cov (ut) = 6, (5.11)

where F is m × m, and G is m × k. The disturbances are assumed to be uncorrelated with
the predetermined variables, E(ztu′

t) = 0.
Suppose F is invertible. Solve for yt to get the reduced form

yt = −F−1Gzt + F−1ut (5.12)

= 5zt + εt , with Cov (εt) = �. (5.13)

The reduced form coefficients, 5, can be consistently estimated by LS on each equation
since the exogenous variables zt are uncorrelated with the reduced form residuals (which
are linear combinations of the structural residuals). The fitted residuals can then be used
to get an estimate of the reduced form covariance matrix.

The j th line of the structural form (5.11) can be written

F j yt + G j zt = u j t , (5.14)

where F j and G j are the j th rows of F and G, respectively. Suppose the model is normal-
ized so that the coefficient on y j t is one (otherwise, divide (5.14) with this coefficient).
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Then, rewrite (5.14) as

y j t = −G j1 z̃t − F j1 ỹt + u j t

= x ′

tβ + u j t , where x ′

t =
[
z̃′

t , ỹ′

t
]
, (5.15)

where z̃t and ỹt are the exogenous and endogenous variables that enter the j th equation,
which we collect in the xt vector to highlight that (5.15) looks like any other linear re-
gression equation. The problem with (5.15), however, is that the residual is likely to be
correlated with the regressors, so the LS estimator is inconsistent. The reason is that a
shock to u j t influences y j t , which in turn will affect some other endogenous variables in
the system (5.11). If any of these endogenous variable are in xt in (5.15), then there is a
correlation between the residual and (some of) the regressors.

Note that the concept of endogeneity discussed here only refers to contemporaneous

endogeneity as captured by off-diagonal elements in F in (5.11). The vector of predeter-
mined variables, zt , could very well include lags of yt without affecting the econometric
endogeneity problem.

Example 1 (Supply and Demand. Reference: GR 16, Hamilton 9.1.) Consider the sim-

plest simultaneous equations model for supply and demand on a market. Supply is

qt = γ pt + us
t , γ > 0,

and demand is

qt = βpt + αAt + ud
t , β < 0,

where At is an observable demand shock (perhaps income). The structural form is there-

fore [
1 −γ

1 −β

][
qt

pt

]
+

[
0
−α

]
At =

[
us

t

ud
t

]
.

The reduced form is [
qt

pt

]
=

[
π11

π21

]
At +

[
ε1t

ε2t

]
.

If we knew the structural form, then we can solve for qt and pt to get the reduced form in
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terms of the structural parameters[
qt

pt

]
=

[
−

γ
β−γ

α

−
1

β−γ
α

]
At +

[
β

β−γ
−

γ
β−γ

1
β−γ

−
1

β−γ

][
us

t

ud
t

]
.

Example 2 (Supply equation with LS.) Suppose we try to estimate the supply equation in

Example 1 by LS, that is, we run the regression

qt = θpt + εt .

If data is generated by the model in Example 1, then the reduced form shows that pt is

correlated with us
t , so we cannot hope that LS will be consistent. In fact, when both qt

and pt have zero means, then the probability limit of the LS estimator is

plim θ̂ =
Cov (qt , pt)

Var (pt)

=

Cov
(
γα
γ−β

At +
γ

γ−β
ud

t −
β

γ−β
us

t ,
α

γ−β
At +

1
γ−β

ud
t −

1
γ−β

ud
t

)
Var

(
α

γ−β
At +

1
γ−β

ud
t −

1
γ−β

us
t

)
,

where the second line follows from the reduced form. Suppose the supply and demand

shocks are uncorrelated. In that case we get

plim θ̂ =

γα2

(γ−β)2
Var (At)+

γ

(γ−β)2
Var

(
ud

t
)
+

β

(γ−β)2
Var

(
us

t
)

α2

(γ−β)2
Var (At)+

1
(γ−β)2

Var
(
ud

t
)
+

1
(γ−β)2

Var
(
us

t
)

=
γα2Var (At)+ γVar

(
ud

t
)
+ βVar

(
us

t
)

α2Var (At)+ Var
(
ud

t
)
+ Var

(
us

t
) .

First, suppose the supply shocks are zero, Var
(
us

t
)

= 0, then plim θ̂ = γ , so we indeed

estimate the supply elasticity, as we wanted. Think of a fixed supply curve, and a demand

curve which moves around. These point of pt and qt should trace out the supply curve. It

is clearly us
t that causes a simultaneous equations problem in estimating the supply curve:

us
t affects both qt and pt and the latter is the regressor in the supply equation. With no

movements in us
t there is no correlation between the shock and the regressor. Second, now

suppose instead that the both demand shocks are zero (both At = 0 and Var
(
ud

t
)

= 0).

Then plim θ̂ = β, so the estimated value is not the supply, but the demand elasticity. Not

good. This time, think of a fixed demand curve, and a supply curve which moves around.
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Example 3 (A flat demand curve.) Suppose we change the demand curve in Example 1

to be infinitely elastic, but to still have demand shocks. For instance, the inverse demand

curve could be pt = ψ At + u D
t . In this case, the supply and demand is no longer

a simultaneous system of equations and both equations could be estimated consistently

with LS. In fact, the system is recursive, which is easily seen by writing the system on

vector form [
1 0
1 −γ

][
pt

qt

]
+

[
−ψ

0

]
At =

[
u D

t

us
t

]
.

A supply shock, us
t , affects the quantity, but this has no affect on the price (the regressor

in the supply equation), so there is no correlation between the residual and regressor in

the supply equation. A demand shock, u D
t , affects the price and the quantity, but since

quantity is not a regressor in the inverse demand function (only the exogenous At is) there

is no correlation between the residual and the regressor in the inverse demand equation

either.

5.4 Definition of the IV Estimator—Consistency of IV

Reference: Greene (2000) 9.5; Hamilton (1994) 8.2; and Pindyck and Rubinfeld (1997)
7.

Consider the linear model
yt = x ′

tβ0 + ut , (5.16)

where yt is a scalar, xt a k × 1 vector, and β0 is a vector of the true coefficients. If
we suspect that xt and ut in (5.16) are correlated, then we may use the instrumental
variables (IV) method. To do that, let zt be a k × 1 vector of instruments (as many
instruments as regressors; we will later deal with the case when we have more instruments
than regressors.) If xt and ut are not correlated, then setting xt = zt gives the least squares
(LS) method.

Recall that LS minimizes the variance of the fitted residuals, ût = yt − x ′
t β̂L S . The

first order conditions for that optimization problem are

0kx1 =
1
T

T∑
t=1

xt

(
yt − x ′

t β̂L S

)
. (5.17)
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If xt and ut are correlated, then plim β̂L S 6= β0. The reason is that the probability limit of
the right hand side of (5.17) is Cov(xt , yt − x ′

t β̂L S), which at β̂L S = β0 is non-zero, so the
first order conditions (in the limit) cannot be satisfied at the true parameter values. Note
that since the LS estimator by construction forces the fitted residuals to be uncorrelated
with the regressors, the properties of the LS residuals are of little help in deciding if to
use LS or IV.

The idea of the IV method is to replace the first xt in (5.17) with a vector (of similar
size) of some instruments, zt . The identifying assumption of the IV method is that the
instruments are uncorrelated with the residuals (and, as we will see, correlated with the
regressors)

0kx1 = Eztut (5.18)

= Ezt
(
yt − x ′

tβ0
)
. (5.19)

The intuition is that the linear model (5.16) is assumed to be correctly specified: the
residuals, ut , represent factors which we cannot explain, so zt should not contain any
information about ut .

The sample analogue to (5.19) defines the IV estimator of β as1

0kx1 =
1
T

T∑
t=1

zt

(
yt − x ′

t β̂I V

)
, or (5.20)

β̂I V =

(
1
T

T∑
t=1

zt x ′

t

)−1
1
T

T∑
t=1

zt yt . (5.21)

It is clearly necessay for 6zt x ′
t/T to have full rank to calculate the IV estimator.

Remark 4 (Probability limit of product) For any random variables yT and xT where

plim yT = a and plim xT = b (a and b are constants), we have plim yT xT = ab.

To see if the IV estimator is consistent, use (5.16) to substitute for yt in (5.20) and
take the probability limit

plim
1
T

T∑
t=1

zt x ′

tβ0 + plim
1
T

T∑
t=1

ztut = plim
1
T

T∑
t=1

zt x ′

t β̂I V . (5.22)

1In matrix notation where z′
t is the t th row of Z we have β̂I V =

(
Z ′ X/T

)−1 (Z ′Y/T
)
.
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Two things are required for consistency of the IV estimator, plim β̂I V = β0. First, that
plim6ztut/T = 0. Provided a law of large numbers apply, this is condition (5.18).
Second, that plim6zt x ′

t/T has full rank. To see this, suppose plim6ztut/T = 0 is
satisfied. Then, (5.22) can be written(

plim
1
T

T∑
t=1

zt x ′

t

)(
β0 − plim β̂I V

)
= 0. (5.23)

If plim6zt x ′
t/T has reduced rank, then plim β̂I V does not need to equal β0 for (5.23) to

be satisfied. In practical terms, the first order conditions (5.20) do then not define a unique
value of the vector of estimates. If a law of large numbers applies, then plim6zt x ′

t/T =

Ezt x ′
t . If both zt and xt contain constants (or at least one of them has zero means), then

a reduced rank of Ezt x ′
t would be a consequence of a reduced rank of the covariance

matrix of the stochastic elements in zt and xt , for instance, that some of the instruments
are uncorrelated with all the regressors. This shows that the instruments must indeed be
correlated with the regressors for IV to be consistent (and to make sense).

Remark 5 (Second moment matrix) Note that Ezx ′
= EzEx ′

+ Cov(z, x). If Ez = 0
and/or Ex = 0, then the second moment matrix is a covariance matrix. Alternatively,

suppose both z and x contain constants normalized to unity: z = [1, z̃′
]
′ and x = [1, x̃ ′

]
′

where z̃ and x̃ are random vectors. We can then write

Ezx ′
=

[
1

Ez̃

] [
1 Ex̃ ′

]
+

[
0 0
0 Cov(z̃, x̃)

]

=

[
1 Ex̃ ′

Ez̃ Ez̃Ex̃ ′
+ Cov(z̃, x̃)

]
.

For simplicity, suppose z̃ and x̃ are scalars. Then Ezx ′ has reduced rank if Cov(z̃, x̃) = 0,

since Cov(z̃, x̃) is then the determinant of Ezx ′. This is true also when z̃ and x̃ are vectors.

Example 6 (Supply equation with IV.) Suppose we try to estimate the supply equation in

Example 1 by IV. The only available instrument is At , so (5.21) becomes

γ̂I V =

(
1
T

T∑
t=1

At pt

)−1
1
T

T∑
t=1

Atqt ,
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so the probability limit is

plim γ̂I V = Cov (At , pt)
−1 Cov (At , qt) ,

since all variables have zero means. From the reduced form in Example 1 we see that

Cov (At , pt) = −
1

β − γ
αVar (At) and Cov (At , qt) = −

γ

β − γ
αVar (At) ,

so

plim γ̂I V =

[
−

1
β − γ

αVar (At)

]−1 [
−

γ

β − γ
αVar (At)

]
= γ.

This shows that γ̂I V is consistent.

5.4.1 Asymptotic Normality of IV

Little is known about the finite sample distribution of the IV estimator, so we focus on the
asymptotic distribution—assuming the IV estimator is consistent.

Remark 7 If xT
d

→ x (a random variable) and plim QT = Q (a constant matrix), then

QT xT
d

→ Qx.

Use (5.16) to substitute for yt in (5.20)

β̂I V = β0 +

(
1
T

T∑
t=1

zt x ′

t

)−1
1
T

T∑
t=1

ztut . (5.24)

Premultiply by
√

T and rearrange as

√
T (β̂I V − β0) =

(
1
T

T∑
t=1

zt x ′

t

)−1 √
T

T

T∑
t=1

ztut . (5.25)

If the first term on the right hand side converges in probability to a finite matrix (as as-
sumed in in proving consistency), and the vector of random variables ztut satisfies a
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central limit theorem, then

√
T (β̂I V − β0)

d
→ N

(
0, 6−1

zx S06
−1
xz

)
, where (5.26)

6zx =
1
T

T∑
t=1

zt x ′

t and S0 = Cov

(√
T

T

T∑
t=1

ztut

)
.

The last matrix in the covariance matrix follows from (6−1
zx )

′
= (6

′

zx)
−1

= 6−1
xz . This

general expression is valid for both autocorrelated and heteroskedastic residuals—all such
features are loaded into the S0 matrix. Note that S0 is the variance-covariance matrix of
√

T times a sample average (of the vector of random variables xtut ).

Example 8 (Choice of instrument in IV, simplest case) Consider the simple regression

yt = β1xt + ut .

The asymptotic variance of the IV estimator is

AVar(
√

T (β̂I V − β0)) = Var

(√
T

T

T∑
t=1

ztut

)
/Cov (zt , xt)

2

If zt and ut is serially uncorrelated and independent of each other, then Var(6T
t=1ztut/

√
T ) =

Var(zt)Var(ut). We can then write

AVar(
√

T (β̂I V − β0)) = Var(ut)
Var(zt)

Cov (zt , xt)
2 =

Var(ut)

Var(xt)Corr (zt , xt)
2 .

An instrument with a weak correlation with the regressor gives an imprecise estimator.

With a perfect correlation, then we get the precision of the LS estimator (which is precise,

but perhaps not consistent).

5.4.2 2SLS

Suppose now that we have more instruments, zt , than regressors, xt . The IV method does
not work since, there are then more equations than unknowns in (5.20). Instead, we can
use the 2SLS estimator. It has two steps. First, regress all elements in xt on all elements
in zt with LS. Second, use the fitted values of xt , denoted x̂t , as instruments in the IV
method (use x̂t in place of zt in the equations above). In can be shown that this is the most
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efficient use of the information in zt . The IV is clearly a special case of 2SLS (when zt

has the same number of elements as xt ).
It is immediate from (5.22) that 2SLS is consistent under the same condiditons as

IV since x̂t is a linear function of the instruments, so plim
∑T

t=1 x̂tut/T = 0, if all the
instruments are uncorrelated with ut .

The name, 2SLS, comes from the fact that we get exactly the same result if we replace
the second step with the following: regress yt on x̂t with LS.

Example 9 (Supply equation with 2SLS.). With only one instrument, At , this is the same

as Example 6, but presented in another way. First, regress pt on At

pt = δAt + ut ⇒ plim δ̂L S =
Cov (pt , At)

Var (At)
= −

1
β − γ

α.

Construct the predicted values as

p̂t = δ̂L S At .

Second, regress qt on p̂t

qt = γ p̂t + et , with plim γ̂2SL S = plim
Ĉov

(
qt , p̂t

)
V̂ar

(
p̂t
) .

Use p̂t = δ̂L S At and Slutsky’s theorem

plim γ̂2SL S =

plim Ĉov
(

qt , δ̂L S At

)
plim V̂ar

(
δ̂L S At

)
=

Cov (qt , At) plim δ̂L S

Var (At) plim δ̂2
L S

=

[
−

γ
β−γ

αVar (At)
] [

−
1

β−γ
α
]

Var (At)
[
−

1
β−γ

α
]2

= γ.

Note that the trick here is to suppress some the movements in pt . Only those movements

that depend on At (the observable shifts of the demand curve) are used. Movements in pt

which are due to the unobservable demand and supply shocks are disregarded in p̂t . We
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know from Example 2 that it is the supply shocks that make the LS estimate of the supply

curve inconsistent. The IV method suppresses both them and the unobservable demand

shock.

5.5 Hausman’s Specification Test∗

Reference: Greene (2000) 9.5
This test is constructed to test if an efficient estimator (like LS) gives (approximately)

the same estimate as a consistent estimator (like IV). If not, the efficient estimator is most
likely inconsistent. It is therefore a way to test for the presence of endogeneity and/or
measurement errors.

Let β̂e be an estimator that is consistent and asymptotically efficient when the null
hypothesis, H0, is true, but inconsistent when H0 is false. Let β̂c be an estimator that is
consistent under both H0 and the alternative hypothesis. When H0 is true, the asymptotic
distribution is such that

Cov
(
β̂e, β̂c

)
= Var

(
β̂e

)
. (5.27)

Proof. Consider the estimator λβ̂c + (1 − λ) β̂e, which is clearly consistent under H0

since both β̂c and β̂e are. The asymptotic variance of this estimator is

λ2Var
(
β̂c

)
+ (1 − λ)2 Var

(
β̂e

)
+ 2λ (1 − λ)Cov

(
β̂c, β̂e

)
,

which is minimized at λ = 0 (since β̂e is asymptotically efficient). The first order condi-
tion with respect to λ

2λVar
(
β̂c

)
− 2 (1 − λ)Var

(
β̂e

)
+ 2 (1 − 2λ)Cov

(
β̂c, β̂e

)
= 0

should therefore be zero at λ = 0 so

Var
(
β̂e

)
= Cov

(
β̂c, β̂e

)
.

(See Davidson (2000) 8.1)
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This means that we can write

Var
(
β̂e − β̂c

)
= Var

(
β̂e

)
+ Var

(
β̂c

)
− 2Cov

(
β̂e, β̂c

)
= Var

(
β̂c

)
− Var

(
β̂e

)
. (5.28)

We can use this to test, for instance, if the estimates from least squares (β̂e, since LS
is efficient if errors are iid normally distributed) and instrumental variable method (β̂c,
since consistent even if the true residuals are correlated with the regressors) are the same.
In this case, H0 is that the true residuals are uncorrelated with the regressors.

All we need for this test are the point estimates and consistent estimates of the vari-
ance matrices. Testing one of the coefficient can be done by a t test, and testing all the
parameters by a χ2 test(

β̂e − β̂c

)′

Var
(
β̂e − β̂c

)−1 (
β̂e − β̂c

)
∼ χ2 ( j) , (5.29)

where j equals the number of regressors that are potentially endogenous or measured with
error. Note that the covariance matrix in (5.28) and (5.29) is likely to have a reduced rank,
so the inverse needs to be calculated as a generalized inverse.

5.6 Tests of Overidentifying Restrictions in 2SLS∗

When we use 2SLS, then we can test if instruments affect the dependent variable only
via their correlation with the regressors. If not, something is wrong with the model since
some relevant variables are excluded from the regression.
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6 Simulating the Finite Sample Properties

Reference: Greene (2000) 5.3
Additional references: Cochrane (2001) 15.2; Davidson and MacKinnon (1993) 21; Davi-
son and Hinkley (1997); Efron and Tibshirani (1993) (bootstrapping, chap 9 in particular);
and Berkowitz and Kilian (2000) (bootstrapping in time series models)

We know the small sample properties of regression coefficients in linear models with
fixed regressors (X is non-stochastic) and iid normal error terms. Monte Carlo Simula-
tions and bootstrapping are two common techniques used to understand the small sample
properties when these conditions are not satisfied.

6.1 Monte Carlo Simulations in the Simplest Case

Monte Carlo simulations is essentially a way to generate many artificial (small) samples
from a parameterized model and then estimating the statistics on each of those samples.
The distribution of the statistics is then used as the small sample distribution of the esti-
mator.

The following is an example of how Monte Carlo simulations could be done in the
special case of a linear model for a scalar dependent variable

yt = x ′

tβ + ut , (6.1)

where ut is iid N (0, σ 2) and xt is stochastic but independent of ut±s for all s. This means
that xt cannot include lags of yt .

Suppose we want to find the small sample distribution of a function of the estimate,
g(β̂). To do a Monte Carlo experiment, we need information on (i) β; (ii) the variance of
ut , σ

2; (iii) and a process for xt .
The process for xt is typically estimated from the data on xt . For instance, we could

estimate the VAR system xt = A1xt−1 + A2xt−2 + et . An alternative is to take an actual
sample of xt and repeat it.

The values of β and σ 2 are often a mix of estimation results and theory. In some
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case, we simply take the point estimates. In other cases, we adjust the point estimates
so that g(β) = 0 holds, that is, so you simulate the model under the null hypothesis

in order to study the size of asymptotic tests and to find valid critical values for small
samples. Alternatively, you may simulate the model under an alternative hypothesis in
order to study the power of the test using either critical values from either the asymptotic
distribution or from a (perhaps simulated) small sample distribution.

To make it a bit concrete, suppose you want to use these simulations to get a 5%
critical value for testing the null hypothesis g (β) = 0. The Monte Carlo experiment
follows these steps.

1. (a) Construct an artificial sample of the regressors (see above), {x̃t}
T
t=1.

(b) Draw random numbers {ũt}
T
t=1 and use those together with the artificial sam-

ple of x̃t to calculate an artificial sample {ỹt}
T
t=1 by using (6.1). Calculate an

estimate β̂ and record it along with the value of g(β̂) and perhaps also the test
statistics of the hypothesis that g(β) = 0.

2. Repeat the previous steps N (3000, say) times. The more times you repeat, the
better is the approximation of the small sample distribution.

3. Sort your simulated β̂, g(β̂), and the test statistics in ascending order. For a one-
sided test (for instance, a chi-square test), take the (0.95N )th observations in these
sorted vector as your 5% critical values. For a two-sided test (for instance, a t-test),
take the (0.025N )th and (0.975N )th observations as the 5% critical values. You can
also record how many times the 5% critical values from the asymptotic distribution
would reject a true null hypothesis.

4. You may also want to plot a histogram of β̂, g(β̂), and the test statistics to see
if there is a small sample bias, and how the distribution looks like. Is it close to
normal? How wide is it?

5. See Figure 6.1 for an example.

Remark 1 (Generating N (µ,6) random numbers) Suppose you want to draw an n × 1
vector εt of N (µ,6) variables. Use the Cholesky decomposition to calculate the lower

triangular P such that 6 = P P ′ (note that Gauss and MatLab returns P ′ instead of

79



0 500 1000
0.8

0.9

1

Mean LS estimate of y
t
=0.9y

t−1
+ε

t

Sample size, T

Simulation

Asymptotic

0 500 1000

0.3

0.4

0.5

0.6

0.7

√T × Std of LS estimate

Sample size, T

Simulation

Asymptotic

mean σ2
(X’X/T)

−1

Figure 6.1: Results from a Monte Carlo experiment of LS estimation of the AR coeffi-
cient. Data generated by an AR(1) process, 5000 simulations.

P). Draw ut from an N (0, I ) distribution (randn in MatLab, rndn in Gauss), and define

εt = µ+ Put . Note that Cov(εt) = E Putu′
t P ′

= P I P ′
= 6.

6.2 Monte Carlo Simulations in More Complicated Cases∗

6.2.1 When xt Includes Lags of yt

If xt contains lags of yt , then we must set up the simulations so that feature is preserved in
every artificial sample that we create. For instance, suppose xt includes yt−1 and another
vector zt of variables which are independent of ut±s for all s. We can then generate an
artificial sample as follows. First, create a sample {z̃t}

T
t=1 by some time series model or

by taking the observed sample itself (as we did with xt in the simplest case). Second,
observation t of {x̃t , ỹt} is generated as

x̃t =

[
ỹt−1

z̃t

]
and ỹt = x̃ ′

tβ + ut , (6.2)

which is repeated for t = 1, ..., T . We clearly need the initial value y0 to start up the
artificial sample, so one observation from the original sample is lost.
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Figure 6.2: Results from a Monte Carlo experiment with thick-tailed errors. The regressor
is iid normally distributed. The errors have a t3-distribution, 5000 simulations.

6.2.2 More Complicated Errors

It is straightforward to sample the errors from other distributions than the normal, for in-
stance, a uniform distribution. Equipped with uniformly distributed random numbers, you
can always (numerically) invert the cumulative distribution function (cdf) of any distribu-
tion to generate random variables from any distribution by using the probability transfor-
mation method. See Figure 6.2 for an example.

Remark 2 Let X ∼ U (0, 1) and consider the transformation Y = F−1(X), where F−1()

is the inverse of a strictly increasing cdf F, then Y has the CDF F(). (Proof: follows from

the lemma on change of variable in a density function.)

Example 3 The exponential cdf is x = 1 − exp(−θy) with inverse y = − ln (1 − x) /θ .

Draw x from U (0.1) and transform to y to get an exponentially distributed variable.
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It is more difficult to handle non-iid errors, for instance, heteroskedasticity and auto-
correlation. We then need to model the error process and generate the errors from that
model. For instance, if the errors are assumed to follow an AR(2) process, then we could
estimate that process from the errors in (6.1) and then generate artificial samples of errors.

6.3 Bootstrapping in the Simplest Case

Bootstrapping is another way to do simulations, where we construct artificial samples by
sampling from the actual data. The advantage of the bootstrap is then that we do not have
to try to estimate the process of the errors and regressors as we must do in a Monte Carlo
experiment. The real benefit of this is that we do not have to make any strong assumption
about the distribution of the errors.

The bootstrap approach works particularly well when the errors are iid and indepen-
dent of xt−s for all s. This means that xt cannot include lags of yt . We here consider
bootstrapping the linear model (6.1), for which we have point estimates (perhaps from
LS) and fitted residuals. The procedure is similar to the Monte Carlo approach, except
that the artificial sample is generated differently. In particular, Step 1 in the Monte Carlo
simulation is replaced by the following:

1. Construct an artificial sample {ỹt}
T
t=1 by

ỹt = x ′

tβ + ũt , (6.3)

where ũt is drawn (with replacement) from the fitted residual and where β is the
point estimate. Calculate an estimate β̂ and record it along with the value of g(β̂)

and perhaps also the test statistics of the hypothesis that g(β) = 0.

6.4 Bootstrapping in More Complicated Cases∗

6.4.1 Case 2: Errors are iid but Correlated With xt+s

When xt contains lagged values of yt , then we have to modify the approach in (6.3) since
ũt can become correlated with xt . For instance, if xt includes yt−1 and we happen to
sample ũt = ût−1, then we get a non-zero correlation. The easiest way to handle this is as
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in the Monte Carlo simulations: replace any yt−1 in xt by ỹt−1, that is, the corresponding
observation in the artificial sample.

6.4.2 Case 3: Errors are Heteroskedastic but Uncorrelated with of xt±s

Case 1 and 2 both draw errors randomly—based on the assumption that the errors are
iid. Suppose instead that the errors are heteroskedastic, but still serially uncorrelated.
We know that if the heteroskedastcity is related to the regressors, then the traditional LS
covariance matrix is not correct (this is the case that White’s test for heteroskedasticity
tries to identify). It would then be wrong it pair xt with just any ûs since that destroys the
relation between xt and the variance of ut .

An alternative way of bootstrapping can then be used: generate the artificial sample
by drawing (with replacement) pairs (ys, xs), that is, we let the artificial pair in t be
(ỹt , x̃t) = (x ′

s β̂0+ûs, xs) for some random draw of s so we are always pairing the residual,
ûs , with the contemporaneous regressors, xs . Note that is we are always sampling with
replacement—otherwise the approach of drawing pairs would be just re-create the original
data set. For instance, if the data set contains 3 observations, then artificial sample could
be  (ỹ1, x̃1)

(ỹ2, x̃2)

(ỹ3, x̃3)

 =

 (x ′

2β̂0 + û2, x2)

(x ′

3β̂0 + û3, x3)

(x ′

3β̂0 + û3, x3)


In contrast, when we sample (with replacement) ûs , as we did above, then an artificial
sample could be  (ỹ1, x̃1)

(ỹ2, x̃2)

(ỹ3, x̃3)

 =

 (x ′

1β̂0 + û2, x1)

(x ′

2β̂0 + û1, x2)

(x ′

3β̂0 + û2, x3)

 .
Davidson and MacKinnon (1993) argue that bootstrapping the pairs (ys, xs) makes

little sense when xs contains lags of ys , since there is no way to construct lags of ys in the
bootstrap. However, what is important for the estimation is sample averages of various
functions of the dependent and independent variable within a period—not how the line up
over time (provided the assumption of no autocorrelation of the residuals is true).
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6.4.3 Other Approaches

There are many other ways to do bootstrapping. For instance, we could sample the re-
gressors and residuals independently of each other and construct an artificial sample of
the dependent variable ỹt = x̃ ′

t β̂ + ũt . This clearly makes sense if the residuals and re-
gressors are independent of each other and errors are iid. In that case, the advantage of
this approach is that we do not keep the regressors fixed.

6.4.4 Serially Dependent Errors

It is quite hard to handle the case when the errors are serially dependent, since we must
the sample in such a way that we do not destroy the autocorrelation structure of the data.
A common approach is to fit a model for the residuals, for instance, an AR(1), and then
bootstrap the (hopefully iid) innovations to that process.

Another approach amounts to resampling of blocks of data. For instance, suppose the
sample has 10 observations, and we decide to create blocks of 3 observations. The first
block is (û1, û2, û3), the second block is (û2, û3, û4), and so forth until the last block,
(û8, û9, û10). If we need a sample of length 3τ , say, then we simply draw τ of those
block randomly (with replacement) and stack them to form a longer series. To handle
end point effects (so that all data points have the same probability to be drawn), we also
create blocks by “wrapping” the data around a circle. In practice, this means that we add
a the following blocks: (û10, û1, û2) and (û9, û10, û1). An alternative approach is to have
non-overlapping blocks. See Berkowitz and Kilian (2000) for some other recent methods.
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7 GMM

References: Greene (2000) 4.7 and 11.5-6
Additional references: Hayashi (2000) 3-4; Verbeek (2000) 5; Hamilton (1994) 14; Ogaki
(1993), Johnston and DiNardo (1997) 10; Harris and Matyas (1999); Pindyck and Rubin-
feld (1997) Appendix 10.1; Cochrane (2001) 10-11

7.1 Method of Moments

Let m (xt) be a k ×1 vector valued continuous function of a stationary process, and let the
probability limit of the mean of m (.) be a function γ (.) of a k ×1 vector β of parameters.
We want to estimate β. The method of moments (MM, not yet generalized to GMM)
estimator is obtained by replacing the probability limit with the sample mean and solving
the system of k equations

1
T

T∑
t=1

m (xt)− γ (β) = 0k×1 (7.1)

for the parameters β.
It is clear that this is a consistent estimator of β if γ is continuous. (Proof: the sample

mean is a consistent estimator of γ (.), and by Slutsky’s theorem plim γ (β̂) = γ (plim β̂)

if γ is a continuous function.)

Example 1 (MM for the variance of a variable.) The MM condition 1
T
∑T

t=1 x2
t −σ 2

= 0
gives the usual MLE of the sample variance, assuming Ext = 0.

Example 2 (MM for an MA(1).) For an MA(1), yt = εt + θεt−1, we have

Ey2
t = E (εt + θεt−1)

2
= σ 2

ε

(
1 + θ2)

E (yt yt−1) = E
[
(εt + θεt−1) (εt−1 + θεt−2)

]
= σ 2

ε θ.
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The moment conditions could therefore be[
1
T
∑T

t=1 y2
t − σ 2

ε

(
1 + θ2)

1
T
∑T

t=1 yt yt−1 − σ 2
ε θ

]
=

[
0
0

]
,

which allows us to estimate θ and σ 2.

7.2 Generalized Method of Moments

GMM extends MM by allowing for more orthogonality conditions than parameters. This
could, for instance, increase efficiency and/or provide new aspects which can be tested.

Many (most) traditional estimation methods, like LS, IV, and MLE are special cases
of GMM. This means that the properties of GMM are very general, and therefore fairly
difficult to prove.

7.3 Moment Conditions in GMM

Suppose we have q (unconditional) moment conditions,

Em(wt , β0) =


Em1(wt , β0)

...

Emq(wt , β0)


= 0q×1, (7.2)

from which we want to estimate the k × 1 (k ≤ q) vector of parameters, β. The true
values are β0. We assume that wt is a stationary and ergodic (vector) process (otherwise
the sample means does not converge to anything meaningful as the sample size increases).
The sample averages, or “sample moment conditions,” evaluated at some value of β, are

m̄(β) =
1
T

T∑
t=1

m(wt , β). (7.3)

The sample average m̄ (β) is a vector of functions of random variables, so they are ran-
dom variables themselves and depend on the sample used. It will later be interesting to
calculate the variance of m̄ (β). Note that m̄(β1) and m̄(β2) are sample means obtained
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by using two different parameter vectors, but on the same sample of data.

Example 3 (Moments conditions for IV/2SLS.) Consider the linear model yt = x ′
tβ0+ut ,

where xt and β are k × 1 vectors. Let zt be a q × 1 vector, with q ≥ k. The moment

conditions and their sample analogues are

0q×1 = Eztut = E[zt(yt − x ′

tβ0)], and m̄ (β) =
1
T

T∑
t=1

zt(yt − x ′

tβ),

(or Z ′(Y − Xβ)/T in matrix form). Let q = k to get IV; let zt = xt to get LS.

Example 4 (Moments conditions for MLE.) The maximum likelihood estimator maxi-

mizes the log likelihood function, 1
T6

T
t=1 ln L (wt ;β), which requires 1

T6
T
t=1∂ ln L (wt ;β) /∂β =

0. A key regularity condition for the MLE is that E∂ ln L (wt ;β0) /∂β = 0, which is just

like a GMM moment condition.

7.3.1 Digression: From Conditional to Unconditional Moment Conditions

Suppose we are instead given conditional moment restrictions

E [u(xt , β0)|zt ] = 0m×1, (7.4)

where zt is a vector of conditioning (predetermined) variables. We want to transform this
to unconditional moment conditions.

Remark 5 (E(u|z) = 0 versus Euz = 0.) For any random variables u and z,

Cov (z, u) = Cov [z,E (u|z)] .

The condition E(u|z) = 0 then implies Cov(z, u) = 0. Recall that Cov(z, u) = Ezu−EzEu,

and that E(u|z) = 0 implies that Eu = 0 (by iterated expectations). We therefore get that

E (u|z) = 0 ⇒

[
Cov (z, u) = 0

Eu = 0

]
⇒ Euz = 0.

Example 6 (Euler equation for optimal consumption.) The standard Euler equation for

optimal consumption choice which with isoelastic utility U (Ct) = C1−γ
t / (1 − γ ) is

E

[
Rt+1β

(
Ct+1

Ct

)−γ

− 1

∣∣∣∣∣�t

]
= 0,
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where Rt+1 is a gross return on an investment and �t is the information set in t . Let

zt ∈ �t , for instance asset returns or consumption t or earlier. The Euler equation then

implies

E

[
Rt+1β

(
Ct+1

Ct

)−γ

zt − zt

]
= 0.

Let zt = (z1t , ..., znt)
′, and define the new (unconditional) moment conditions as

m(wt , β) = u(xt , β)⊗ zt =



u1(xt , β)z1t

u1(xt , β)z2t
...

u1(xt , β)znt

u2(xt , β)z1t
...

um(xt , β)znt


q×1

, (7.5)

which by (7.4) must have an expected value of zero, that is

Em(wt , β0) = 0q×1. (7.6)

This a set of unconditional moment conditions—just as in (7.2). The sample moment con-
ditions (7.3) are therefore valid also in the conditional case, although we have to specify
m(wt , β) as in (7.5).

Note that the choice of instruments is often arbitrary: it often amounts to using only
a subset of the information variables. GMM is often said to be close to economic theory,
but it should be admitted that economic theory sometimes tells us fairly little about which
instruments, zt , to use.

Example 7 (Euler equation for optimal consumption, continued) The orthogonality con-

ditions from the consumption Euler equations in Example 6 are highly non-linear, and

theory tells us very little about how the prediction errors are distributed. GMM has the

advantage of using the theoretical predictions (moment conditions) with a minimum of

distributional assumptions. The drawback is that it is sometimes hard to tell exactly which

features of the (underlying) distribution that are tested.
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7.4 The Optimization Problem in GMM

7.4.1 The Loss Function

The GMM estimator β̂ minimizes the weighted quadratic form

J =


m̄1(β)
...
...

m̄q(β)


′

W11 · · · · · · W1q
...

. . .
...

...
. . .

...

W1q · · · · · · Wqq




m̄1(β)
...
...

m̄q(β)

 (7.7)

= m̄(β)′W m̄(β), (7.8)

where m̄(β) is the sample average of m(wt , β) given by (7.3), and where W is some
q × q symmetric positive definite weighting matrix. (We will soon discuss a good choice
of weighting matrix.) There are k parameters in β to estimate, and we have q moment
conditions in m̄(β). We therefore have q − k overidentifying moment restrictions.

With q = k the model is exactly identified (as many equations as unknown), and it
should be possible to set all q sample moment conditions to zero by a choosing the k = q

parameters. It is clear that the choice of the weighting matrix has no effect in this case
since m̄(β̂) = 0 at the point estimates β̂.

Example 8 (Simple linear regression.) Consider the model

yt = xtβ0 + ut , (7.9)

where yt and xt are zero mean scalars. The moment condition and loss function are

m̄ (β) =
1
T

T∑
t=1

xt(yt − xtβ) and

J = W

[
1
T

T∑
t=1

xt(yt − xtβ)

]2

,

so the scalar W is clearly irrelevant in this case.

Example 9 (IV/2SLS method continued.) From Example 3, we note that the loss function
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for the IV/2SLS method is

m̄(β)′W m̄(β) =

[
1
T

T∑
t=1

zt(yt − x ′

tβ)

]′

W

[
1
T

T∑
t=1

zt(yt − x ′

tβ)

]
.

When q = k, then the model is exactly identified, so the estimator could actually be found

by setting all moment conditions to zero. We then get the IV estimator

0 =
1
T

T∑
t=1

zt(yt − x ′

t β̂I V ) or

β̂I V =

(
1
T

T∑
t=1

zt x ′

t

)−1
1
T

T∑
t=1

zt yt

= 6̂−1
zx 6̂zy,

where 6̂zx = 6T
t=1zt x ′

t/T and similarly for the other second moment matrices. Let zt =

xt to get LS

β̂L S = 6̂−1
xx 6̂xy.

7.4.2 First Order Conditions

Remark 10 (Matrix differentiation of non-linear functions.) Let the vector yn×1 be a

function of the vector xm×1 
y1
...

yn

 = f (x) =


f1 (x)
...

fn (x)

 .
Then, ∂y/∂x ′ is an n × m matrix

∂y
∂x ′

=


∂ f1(x)
∂x ′

...
∂ f1(x)
∂x ′

 =


∂ f1(x)
∂x1

· · ·
∂ f1(x)
∂xm

...
...

∂ fn(x)
∂x1

· · ·
∂ fn(x)
∂xm

 .
(Note that the notation implies that the derivatives of the first element in y, denoted y1,

with respect to each of the elements in x ′ are found in the first row of ∂y/∂x ′. A rule to

help memorizing the format of ∂y/∂x ′: y is a column vector and x ′ is a row vector.)
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Remark 11 When y = Ax where A is an n × m matrix, then fi (x) in Remark 10 is a

linear function. We then get ∂y/∂x ′
= ∂ (Ax) /∂x ′

= A.

Remark 12 As a special case of the previous remark y = z′x where both z and x are

vectors. Then ∂
(
z′x
)
/∂x ′

= z′ (since z′ plays the role of A).

Remark 13 (Matrix differentiation of quadratic forms.) Let xn×1, f (x)m×1, and Am×m

symmetric. Then
∂ f (x)′ A f (x)

∂x
= 2

(
∂ f (x)
∂x ′

)′

A f (x) .

Remark 14 If f (x) = x, then ∂ f (x) /∂x ′
= I , so ∂

(
x ′ Ax

)
/∂x = 2Ax.

The k first order conditions for minimizing the GMM loss function in (7.8) with re-
spect to the k parameters are that the partial derivatives with respect to β equal zero at the
estimate, β̂,

0k×1 =
∂m̄(β̂)′W m̄(β̂)

∂β

=


∂m̄1(β̂)
∂β1

· · ·
∂m̄1(β̂)
∂βk

...
...

...
...

∂m̄q (β̂)

∂β1
· · ·

∂m̄q (β̂)

∂βk



′
W11 · · · · · · W1q
...

. . .
...

...
. . .

...

W1q · · · · · · Wqq




m̄1(β̂)
...
...

m̄q(β̂)

 (with β̂k×1),

(7.10)

=

(
∂m̄(β̂)
∂β ′

)′

︸ ︷︷ ︸
k×q

W︸︷︷︸
q×q

m̄(β̂)︸ ︷︷ ︸
q×1

. (7.11)

We can solve for the GMM estimator, β̂, from (7.11). This set of equations must often be
solved by numerical methods, except in linear models (the moment conditions are linear
functions of the parameters) where we can find analytical solutions by matrix inversion.
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Example 15 (First order conditions of simple linear regression.) The first order condi-

tions of the loss function in Example 8 is

0 =
d

dβ
W

[
1
T

T∑
t=1

xt(yt − xt β̂)

]2

=

[
−

1
T

T∑
t=1

x2
t

]
W

[
1
T

T∑
t=1

xt(yt − xt β̂)

]
, or

β̂ =

(
1
T

T∑
t=1

x2
t

)−1
1
T

T∑
t=1

xt yt .

Example 16 (First order conditions of IV/2SLS.) The first order conditions correspond-

ing to (7.11) of the loss function in Example 9 (when q ≥ k) are

0k×1 =

[
∂m̄(β̂)
∂β ′

]′

W m̄(β̂)

=

[
∂

∂β ′

1
T

T∑
t=1

zt(yt − x ′

t β̂)

]′

W
1
T

T∑
t=1

zt(yt − x ′

t β̂)

=

[
−

1
T

T∑
t=1

zt x ′

t

]′

W
1
T

T∑
t=1

zt(yt − x ′

t β̂)

= −6̂xzW (6̂zy − 6̂zx β̂).

We can solve for β̂ from the first order conditions as

β̂2SL S =

(
6̂xzW 6̂zx

)−1
6̂xzW 6̂zy.

When q = k, then the first order conditions can be premultiplied with (6̂xzW )−1, since

6̂xzW is an invertible k × k matrix in this case, to give

0k×1 = 6̂zy − 6̂zx β̂, so β̂I V = 6̂−1
zx 6̂zy.

This shows that the first order conditions are just the same as the sample moment condi-

tions, which can be made to hold exactly since there are as many parameters as there are

equations.
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7.5 Asymptotic Properties of GMM

We know very little about the general small sample properties, including bias, of GMM.
We therefore have to rely either on simulations (Monte Carlo or bootstrap) or on the
asymptotic results. This section is about the latter.

GMM estimates are typically consistent and normally distributed, even if the series
m(wt , β) in the moment conditions (7.3) are serially correlated and heteroskedastic—
provided wt is a stationary and ergodic process. The reason is essentially that the esti-
mators are (at least as a first order approximation) linear combinations of sample means
which typically are consistent (LLN) and normally distributed (CLT). More about that
later. The proofs are hard, since the GMM is such a broad class of estimators. This
section discusses, in an informal way, how we can arrive at those results.

7.5.1 Consistency

Sample moments are typically consistent, so plim m (β) = E m(wt , β). This must hold at
any parameter vector in the relevant space (for instance, those inducing stationarity and
variances which are strictly positive). Then, if the moment conditions (7.2) are true only at
the true parameter vector, β0, (otherwise the parameters are “unidentified”) and that they
are continuous in β, then GMM is consistent. The idea is thus that GMM asymptotically
solves

0q×1 = plim m̄(β̂)

= E m(wt , β̂),

which only holds at β̂ = β0. Note that this is an application of Slutsky’s theorem.

Remark 17 (Slutsky’s theorem.) If {xT } is a sequence of random matrices such that

plim xT = x and g(xT ) a continuous function, then plim g(xT ) = g(x).

Example 18 (Consistency of 2SLS.) By using yt = x ′
tβ0 + ut , the first order conditions
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in Example 16 can be rewritten

0k×1 = 6̂xzW
1
T

T∑
t=1

zt(yt − x ′

t β̂)

= 6̂xzW
1
T

T∑
t=1

zt

[
ut + x ′

t

(
β0 − β̂

)]
= 6̂xzW 6̂zu + 6̂xzW 6̂zx

(
β0 − β̂

)
.

Take the probability limit

0k×1 = plim 6̂xzW plim 6̂zu + plim 6̂xzW plim 6̂zx

(
β0 − plim β̂

)
.

In most cases, plim 6̂xz is some matrix of constants, and plim 6̂zu = E ztut = 0q×1. It

then follows that plim β̂ = β0. Note that the whole argument relies on that the moment

condition, Eztut = 0q×1, is true. If it is not, then the estimator is inconsistent. For

instance, when the instruments are invalid (correlated with the residuals) or when we use

LS (zt = xt ) when there are measurement errors or in a system of simultaneous equations.

7.5.2 Asymptotic Normality

To give the asymptotic distribution of
√

T (β̂ − β0), we need to define three things. (As
usual, we also need to scale with

√
T to get a non-trivial asymptotic distribution; the

asymptotic distribution of β̂ − β0 is a spike at zero.) First, let S0 (a q × q matrix) denote
the asymptotic covariance matrix (as sample size goes to infinity) of

√
T times the sample

moment conditions evaluated at the true parameters

S0 = ACov
[√

T m̄ (β0)
]

(7.12)

= ACov

[
1

√
T

T∑
t=1

m(wt , β0)

]
, (7.13)

where we use the definition of m̄ (β0) in (7.3). (To estimate S0 it is important to recognize
that it is a scaled sample average.) Second, let D0 (a q × k matrix) denote the probability
limit of the gradient of the sample moment conditions with respect to the parameters,
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evaluated at the true parameters

D0 = plim
∂m̄(β0)

∂β ′
. (7.14)

Note that a similar gradient, but evaluated at β̂, also shows up in the first order conditions
(7.11). Third, let the weighting matrix be the inverse of the covariance matrix of the
moment conditions (once again evaluated at the true parameters)

W = S−1
0 . (7.15)

It can be shown that this choice of weighting matrix gives the asymptotically most ef-
ficient estimator for a given set of orthogonality conditions. For instance, in 2SLS, this
means a given set of instruments and (7.15) then shows only how to use these instruments
in the most efficient way. Of course, another set of instruments might be better (in the
sense of giving a smaller Cov(β̂)).

With the definitions in (7.12) and (7.14) and the choice of weighting matrix in (7.15)
and the added assumption that the rank of D0 equals k (number of parameters) then we
can show (under fairly general conditions) that

√
T (β̂ − β0)

d
→ N (0k×1, V ), where V =

(
D′

0S−1
0 D0

)−1
. (7.16)

This holds also when the model is exactly identified, so we really do not use any weighting
matrix.

To prove this note the following.

Remark 19 (Continuous mapping theorem.) Let the sequences of random matrices {xT }

and {yT }, and the non-random matrix {aT } be such that xT
d

→ x, yT
p

→ y, and aT → a

(a traditional limit). Let g(xT , yT , aT ) be a continuous function. Then g(xT , yT , aT )
d

→

g(x, y, a). Either of yT and aT could be irrelevant in g. (See Mittelhammer (1996) 5.3.)

Example 20 For instance, the sequences in Remark 19 could be xT =
√

T6T
t=wt/T ,

the scaled sample average of a random variable wt ; yT = 6T
t=w

2
t /T , the sample second

moment; and aT = 6T
t=10.7t .

Remark 21 From the previous remark: if xT
d

→ x (a random variable) and plim QT =

Q (a constant matrix), then QT xT
d

→ Qx.
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Proof. (The asymptotic distribution (7.16). Sketch of proof.) This proof is essentially
an application of the delta rule. By the mean-value theorem the sample moment condition
evaluated at the GMM estimate, β̂, is

m̄(β̂) = m̄(β0)+
∂m̄(β1)

∂β ′
(β̂ − β0) (7.17)

for some values β1 between β̂ and β0. (This point is different for different elements in
m̄.) Premultiply with [∂m̄(β̂)/∂β ′

]
′W . By the first order condition (7.11), the left hand

side is then zero, so we have

0k×1 =

(
∂m̄(β̂)
∂β ′

)′

W m̄(β0)+

(
∂m̄(β̂)
∂β ′

)′

W
∂m̄(β1)

∂β ′
(β̂ − β0). (7.18)

Multiply with
√

T and solve as

√
T
(
β̂ − β0

)
= −

[(
∂m̄(β̂)
∂β ′

)′

W
∂m̄(β1)

∂β ′

]−1 (
∂m̄(β̂)
∂β ′

)′

W︸ ︷︷ ︸
0

√
T m̄(β0). (7.19)

If

plim
∂m̄(β̂)
∂β ′

=
∂m̄(β0)

∂β ′
= D0, then plim

∂m̄(β1)

∂β ′
= D0,

since β1 is between β0 and β̂. Then

plim0 = −
(
D′

0W D0
)−1 D′

0W. (7.20)

The last term in (7.19),
√

T m̄(β0), is
√

T times a vector of sample averages, so by a CLT
it converges in distribution to N(0, S0), where S0 is defined as in (7.12). By the rules of
limiting distributions (see Remark 19) we then have that

√
T
(
β̂ − β0

)
d

→ plim0 × something that is N (0, S0) , that is,
√

T
(
β̂ − β0

)
d

→ N
[
0k×1, (plim0)S0(plim0′)

]
.
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The covariance matrix is then

ACov[
√

T (β̂ − β0)] = (plim0)S0(plim0′)

=
(
D′

0W D0
)−1 D′

0W S0[
(
D′

0W D0
)−1 D′

0W ]
′ (7.21)

=
(
D′

0W D0
)−1 D′

0W S0W ′D0
(
D′

0W D0
)−1

. (7.22)

If W = W ′
= S−1

0 , then this expression simplifies to (7.16). (See, for instance, Hamilton
(1994) 14 (appendix) for more details.)

It is straightforward to show that the difference between the covariance matrix in

(7.22) and
(

D′

0S−1
0 D0

)−1
(as in (7.16)) is a positive semi-definite matrix: any linear

combination of the parameters has a smaller variance if W = S−1
0 is used as the weight-

ing matrix.
All the expressions for the asymptotic distribution are supposed to be evaluated at the

true parameter vector β0, which is unknown. However, D0 in (7.14) can be estimated by
∂m̄(β̂)/∂β ′, where we use the point estimate instead of the true value of the parameter
vector. In practice, this means plugging in the point estimates into the sample moment
conditions and calculate the derivatives with respect to parameters (for instance, by a
numerical method).

Similarly, S0 in (7.13) can be estimated by, for instance, Newey-West’s estimator of
Cov[

√
T m̄(β̂)], once again using the point estimates in the moment conditions.
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7.6 Summary of GMM

Economic model : Em(wt , β0) = 0q×1, β is k × 1

Sample moment conditions : m̄(β) =
1
T

T∑
t=1

m(wt , β)

Loss function : J = m̄(β)′W m̄(β)

First order conditions : 0k×1 =
∂m̄(β̂)′W m̄(β̂)

∂β
=

(
∂m̄(β̂)
∂β ′

)′

W m̄(β̂)

Consistency : β̂ is typically consistent if Em(wt , β0) = 0

Define : S0 = Cov
[√

T m̄ (β0)
]

and D0 = plim
∂m̄(β0)

∂β ′

Choose: W = S−1
0

Asymptotic distribution :
√

T (β̂ − β0)
d

→ N (0k×1, V ), where V =

(
D′

0S−1
0 D0

)−1

7.7 Efficient GMM and Its Feasible Implementation

The efficient GMM (remember: for a given set of moment conditions) requires that we
use W = S−1

0 , which is tricky since S0 should be calculated by using the true (unknown)
parameter vector. However, the following two-stage procedure usually works fine:

• First, estimate model with some (symmetric and positive definite) weighting matrix.
The identity matrix is typically a good choice for models where the moment con-
ditions are of the same order of magnitude (if not, consider changing the moment
conditions). This gives consistent estimates of the parameters β. Then a consistent
estimate Ŝ can be calculated (for instance, with Newey-West).

• Use the consistent Ŝ from the first step to define a new weighting matrix as W =

Ŝ−1. The algorithm is run again to give asymptotically efficient estimates of β.

• Iterate at least once more. (You may want to consider iterating until the point esti-
mates converge.)

99



Example 22 (Implementation of 2SLS.) Under the classical 2SLS assumptions, there is

no need for iterating since the efficient weighting matrix is 6−1
zz /σ

2. Only σ 2 depends

on the estimated parameters, but this scaling factor of the loss function does not affect

β̂2SL S .

One word of warning: if the number of parameters in the covariance matrix Ŝ is
large compared to the number of data points, then Ŝ tends to be unstable (fluctuates a lot
between the steps in the iterations described above) and sometimes also close to singular.
The saturation ratio is sometimes used as an indicator of this problem. It is defined as the
number of data points of the moment conditions (qT ) divided by the number of estimated
parameters (the k parameters in β̂ and the unique q(q + 1)/2 parameters in Ŝ if it is
estimated with Newey-West). A value less than 10 is often taken to be an indicator of
problems. A possible solution is then to impose restrictions on S, for instance, that the
autocorrelation is a simple AR(1) and then estimate S using these restrictions (in which
case you cannot use Newey-West, or course).

7.8 Testing in GMM

The result in (7.16) can be used to do Wald tests of the parameter vector. For instance,
suppose we want to test the s linear restrictions that Rβ0 = r (R is s × k and r is s × 1)
then it must be the case that under null hypothesis

√
T (Rβ̂ − r)

d
→ N (0s×1, RV R′). (7.23)

Remark 23 (Distribution of quadratic forms.) If the n × 1 vector x ∼ N (0, 6), then

x ′6−1x ∼ χ2
n .

From this remark and the continuous mapping theorem in Remark (19) it follows that,
under the null hypothesis that Rβ0 = r , the Wald test statistics is distributed as a χ2

s

variable
T (Rβ̂ − r)′

(
RV R′

)−1
(Rβ̂ − r)

d
→ χ2

s . (7.24)

We might also want to test the overidentifying restrictions. The first order conditions
(7.11) imply that k linear combinations of the q moment conditions are set to zero by
solving for β̂. Therefore, we have q − k remaining overidentifying restrictions which
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should also be close to zero if the model is correct (fits data). Under the null hypothesis
that the moment conditions hold (so the overidentifying restrictions hold), we know that
√

T m̄ (β0) is a (scaled) sample average and therefore has (by a CLT) an asymptotic normal
distribution. It has a zero mean (the null hypothesis) and the covariance matrix in (7.12).
In short,

√
T m̄ (β0)

d
→ N

(
0q×1, S0

)
. (7.25)

If would then perhaps be natural to expect that the quadratic form T m̄(β̂)′S−1
0 m̄(β̂)

should be converge in distribution to a χ2
q variable. That is not correct, however, since β̂

chosen is such a way that k linear combinations of the first order conditions always (in
every sample) are zero. There are, in effect, only q −k nondegenerate random variables in
the quadratic form (see Davidson and MacKinnon (1993) 17.6 for a detailed discussion).
The correct result is therefore that if we have used optimal weight matrix is used, W =

S−1
0 , then

T m̄(β̂)′S−1
0 m̄(β̂)

d
→ χ2

q−k, if W = S−1
0 . (7.26)

The left hand side equals T times of value of the loss function (7.8) evaluated at the point
estimates, so we could equivalently write what is often called the J test

T J (β̂) ∼ χ2
q−k, if W = S−1

0 . (7.27)

This also illustrates that with no overidentifying restrictions (as many moment conditions
as parameters) there are, of course, no restrictions to test. Indeed, the loss function value
is then always zero at the point estimates.

Example 24 (Test of overidentifying assumptions in 2SLS.) In contrast to the IV method,

2SLS allows us to test overidentifying restrictions (we have more moment conditions than

parameters, that is, more instruments than regressors). This is a test of whether the residu-

als are indeed uncorrelated with all the instruments. If not, the model should be rejected.

It can be shown that test (7.27) is (asymptotically, at least) the same as the traditional

(Sargan (1964), see Davidson (2000) 8.4) test of the overidentifying restrictions in 2SLS.

In the latter, the fitted residuals are regressed on the instruments; T R2 from that regres-

sion is χ2 distributed with as many degrees of freedom as the number of overidentifying

restrictions.

Example 25 (Results from GMM on CCAPM; continuing Example 6.) The instruments
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could be anything known at t or earlier could be used as instruments. Actually, Hansen

and Singleton (1982) and Hansen and Singleton (1983) use lagged Ri,t+1ct+1/ct as in-

struments, and estimate γ to be 0.68 to 0.95, using monthly data. However, T JT (β̂) is

large and the model can usually be rejected at the 5% significance level. The rejection

is most clear when multiple asset returns are used. If T-bills and stocks are tested at the

same time, then the rejection would probably be overwhelming.

Another test is to compare a restricted and a less restricted model, where we have
used the optimal weighting matrix for the less restricted model in estimating both the less
restricted and more restricted model (the weighting matrix is treated as a fixed matrix in
the latter case). It can be shown that the test of the s restrictions (the “D test”, similar in
flavour to an LR test), is

T [J (β̂restricted)− J (β̂less restricted)] ∼ χ2
s , if W = S−1

0 . (7.28)

The weighting matrix is typically based on the unrestricted model. Note that (7.27) is a
special case, since the model with allows q non-zero parameters (as many as the moment
conditions) always attains J = 0, and that by imposing s = q − k restrictions we get a
restricted model.

7.9 GMM with Sub-Optimal Weighting Matrix∗

When the optimal weighting matrix is not used, that is, when (7.15) does not hold, then
the asymptotic covariance matrix of the parameters is given by (7.22) instead of the result
in (7.16). That is,

√
T (β̂ − β0)

d
→ N (0k×1, V2), where V2 =

(
D′

0W D0
)−1 D′

0W S0W ′D0
(
D′

0W D0
)−1

.

(7.29)
The consistency property is not affected.

The test of the overidentifying restrictions (7.26) and (7.27) are not longer valid. In-
stead, the result is that

√
T m̄(β̂) →

d N
(
0q×1, 9

)
, with (7.30)

9 = [I − D0
(
D′

0W D0
)−1 D′

0W ]S0[I − D0
(
D′

0W D0
)−1 D′

0W ]
′. (7.31)
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This covariance matrix has rank q − k (the number of overidentifying restriction). This
distribution can be used to test hypotheses about the moments, for instance, that a partic-
ular moment condition is zero.

Proof. (Sketch of proof of (7.30)-(7.31)) Use (7.19) in (7.17) to get

√
T m̄(β̂) =

√
T m̄(β0)+

√
T
∂m̄(β1)

∂β ′
0m̄(β0)

=

[
I +

∂m̄(β1)

∂β ′
0

]
√

T m̄(β0).

The term in brackets has a probability limit, which by (7.20) equals I−D0
(
D′

0W D0
)−1 D′

0W .
Since

√
T m̄(β0) →

d N
(
0q×1, S0

)
we get (7.30).

Remark 26 If the n × 1 vector X ∼ N (0, 6), where 6 has rank r ≤ n then Y =

X ′6+X ∼ χ2
r where 6+ is the pseudo inverse of 6.

Remark 27 The symmetric 6 can be decomposed as 6 = Z3Z ′ where Z are the or-

thogonal eigenvector (Z
′

Z = I ) and 3 is a diagonal matrix with the eigenvalues along

the main diagonal. The pseudo inverse can then be calculated as 6+
= Z3+Z ′, where

3+
=

[
3−1

11 0
0 0

]
,

with the reciprocals of the non-zero eigen values along the principal diagonal of 3−1
11 .

This remark and (7.31) implies that the test of overidentifying restrictions (Hansen’s
J statistics) analogous to (7.26) is

T m̄(β̂)′9+m̄(β̂)
d

→ χ2
q−k . (7.32)

It requires calculation of a generalized inverse (denoted by superscript +), but this is
fairly straightforward since 9 is a symmetric matrix. It can be shown (a bit tricky) that
this simplifies to (7.26) when the optimal weighting matrix is used.

7.10 GMM without a Loss Function∗

Suppose we sidestep the whole optimization issue and instead specify k linear combi-
nations (as many as there are parameters) of the q moment conditions directly. That is,
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instead of the first order conditions (7.11) we postulate that the estimator should solve

0k×1 = A︸︷︷︸
k×q

m̄(β̂)︸ ︷︷ ︸
q×1

(β̂ is k × 1). (7.33)

The matrix A is chosen by the researcher and it must have rank k (lower rank means that
we effectively have too few moment conditions to estimate the k parameters in β). If A

is random, then it should have a finite probability limit A0 (also with rank k). One simple
case when this approach makes sense is when we want to use a subset of the moment
conditions to estimate the parameters (some columns in A are then filled with zeros), but
we want to study the distribution of all the moment conditions.

By comparing (7.11) and (7.33) we see that A plays the same role as [∂m̄(β̂)/∂β ′
]
′W ,

but with the difference that A is chosen and not allowed to depend on the parameters.
In the asymptotic distribution, it is the probability limit of these matrices that matter, so
we can actually substitute A0 for D′

0W in the proof of the asymptotic distribution. The
covariance matrix in (7.29) then becomes

ACov[
√

T (β̂ − β0)] = (A0 D0)
−1 A0S0[(A0 D0)

−1 A0]
′

= (A0 D0)
−1 A0S0 A′

0[(A0 D0)
−1

]
′, (7.34)

which can be used to test hypotheses about the parameters.
Similarly, the covariance matrix in (7.30) becomes

ACov[
√

T m̄(β̂)] = [I − D0 (A0 D0)
−1 A0]S0[I − D0 (A0 D0)

−1 A0]
′, (7.35)

which still has reduced rank. As before, this covariance matrix can be used to construct
both t type and χ2 tests of the moment conditions.

7.11 Simulated Moments Estimator∗

Reference: Ingram and Lee (1991)
It sometimes happens that it is not possible to calculate the theoretical moments in

GMM explicitly. For instance, suppose we want to match the variance of the model with
the variance of data

E f (xt , zt , β0) = E (xt − µ)2 − Var of model (β0) = 0,
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but the model is so non-linear that we cannot find a closed form expression for Var of model(β0).
The SME involves (i) drawing a set of random numbers for the stochastic shocks in

the model; (ii) for a given set of parameter values generate a model simulation with Tsim

observations, calculating the moments and using those instead of Var of model(β0) (or
similarly for other moments), which is then used to evaluate the loss function JT . This is
repeated for various sets of parameter values until we find the one which minimizes JT .

Basically all GMM results go through, but the covariance matrix should be scaled up
with 1 + T/Tsim , where T is the sample length. Note that one must use exactly the same
random numbers for all simulations.
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8 Examples and Applications of GMM

8.1 GMM and Classical Econometrics: Examples

8.1.1 The LS Estimator (General)

The model is
yt = x ′

tβ0 + ut , (8.1)

where β is a k × 1 vector.
The k moment conditions are

m̄ (β) =
1
T

T∑
t=1

xt(yt − x ′

tβ) =
1
T

T∑
t=1

xt yt −
1
T

T∑
t=1

xt x ′

tβ. (8.2)

The point estimates are found by setting all moment conditions to zero (the model is
exactly identified), m̄ (β) = 0k×1, which gives

β̂ =

(
1
T

T∑
t=1

xt x ′

t

)−1
1
T

T∑
t=1

xt ytβ. (8.3)

If we define

S0 = ACov
[√

T m̄ (β0)
]

= ACov

(√
T

T

T∑
t=1

xtut

)
(8.4)

D0 = plim
∂m̄(β0)

∂β ′
= plim

(
−

1
T

T∑
t=1

xt x ′

)
= −6xx . (8.5)

then the asymptotic covariance matrix of
√

T (β̂ − β0)

VL S =

(
D′

0S−1
0 D0

)−1
=

(
6′

xx S−1
0 6xx

)−1
= 6−1

xx S06
−1
xx . (8.6)

We can then either try to estimate S0 by Newey-West, or make further assumptions to
simplify S0 (see below).
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8.1.2 The IV/2SLS Estimator (General)

The model is (8.1), but we use an IV/2SLS method. The q moment conditions (with
q ≥ k) are

m̄ (β) =
1
T

T∑
t=1

zt(yt − x ′

tβ) =
1
T

T∑
t=1

zt yt −
1
T

T∑
t=1

zt x ′

tβ. (8.7)

The loss function is (for some positive definite weighting matrix W , not necessarily
the optimal)

m̄(β)′W m̄(β) =

[
1
T

T∑
t=1

zt(yt − x ′

tβ)

]′

W

[
1
T

T∑
t=1

zt(yt − x ′

tβ)

]
, (8.8)

and the k first order conditions, (∂m̄(β̂)/∂β ′)′W m̄(β̂) = 0, are

0k×1 =

[
∂

∂β ′

1
T

T∑
t=1

zt(yt − x ′

t β̂)

]′

W
1
T

T∑
t=1

zt(yt − x ′

t β̂)

=

[
−

1
T

T∑
t=1

zt x ′

t

]′

W
1
T

T∑
t=1

zt(yt − x ′

t β̂)

= −6̂xzW (6̂zy − 6̂zx β̂). (8.9)

We solve for β̂ as

β̂ =

(
6̂xzW 6̂zx

)−1
6̂xzW 6̂zy. (8.10)

Define

S0 = ACov
[√

T m̄ (β0)
]

= ACov

(√
T

T

T∑
t=1

ztut

)
(8.11)

D0 = plim
∂m̄(β0)

∂β ′
= plim

(
−

1
T

T∑
t=1

zt x ′

t

)
= −6zx . (8.12)

This gives the asymptotic covariance matrix of
√

T (β̂ − β0)

V =

(
D′

0S−1
0 D0

)−1
=

(
6′

zx S−1
0 6zx

)−1
. (8.13)
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When the model is exactly identified (q = k), then we can make some simplifications
since 6̂xz is then invertible. This is the case of the classical IV estimator. We get

β̂ = 6̂−1
zx 6̂zy and V = 6−1

zx S0
(
6′

zx
)−1 if q = k. (8.14)

(Use the rule (ABC)−1
= C−1 B−1 A−1 to show this.)

8.1.3 Classical LS Assumptions

Reference: Greene (2000) 9.4 and Hamilton (1994) 8.2.
This section returns to the LS estimator in Section (8.1.1) in order to highlight the

classical LS assumptions that give the variance matrix σ 26−1
xx .

We allow the regressors to be stochastic, but require that xt is independent of all ut+s

and that ut is iid. It rules out, for instance, that ut and xt−2 are correlated and also that
the variance of ut depends on xt . Expand the expression for S0 as

S0 = E

(√
T

T

T∑
t=1

xtut

)(√
T

T

T∑
t=1

ut x ′

t

)
(8.15)

=
1
T

E (...+ xs−1us−1 + xsus + ...)
(
...+ us−1x ′

s−1 + us x ′

s + ...
)
.

Note that

Ext−sut−sut x ′

t = Ext−s x ′

tEut−sut (since ut and xt−s independent)

=

{
0 if s 6= 0 (since Eus−1us = 0 by iid ut )
Ext x ′

tEutut else.
(8.16)

This means that all cross terms (involving different observations) drop out and that we
can write

S0 =
1
T

T∑
t=1

Ext x ′

tEu2
t (8.17)

= σ 2 1
T

E
T∑

t=1

xt x ′

t (since ut is iid and σ 2
= Eu2

t ) (8.18)

= σ 26xx . (8.19)

109



Using this in (8.6) gives
V = σ 26−1

xx . (8.20)

8.1.4 Almost Classical LS Assumptions: White’s Heteroskedasticity.

Reference: Greene (2000) 12.2 and Davidson and MacKinnon (1993) 16.2.
The only difference compared with the classical LS assumptions is that ut is now

allowed to be heteroskedastic, but this heteroskedasticity is not allowed to depend on the
moments of xt . This means that (8.17) holds, but (8.18) does not since Eu2

t is not the
same for all t .

However, we can still simplify (8.17) a bit more. We assumed that Ext x ′
t and Eu2

t

(which can both be time varying) are not related to each other, so we could perhaps mul-
tiply Ext x ′

t by 6T
t=1Eu2

t /T instead of by Eu2
t . This is indeed true asymptotically—where

any possible “small sample” relation between Ext x ′
t and Eu2

t must wash out due to the
assumptions of independence (which are about population moments).

In large samples we therefore have

S0 =

(
1
T

T∑
t=1

Eu2
t

)(
1
T

T∑
t=1

Ext x ′

t

)

=

(
1
T

T∑
t=1

Eu2
t

)(
E

1
T

T∑
t=1

xt x ′

t

)
= ω26xx , (8.21)

where ω2 is a scalar. This is very similar to the classical LS case, except that ω2 is
the average variance of the residual rather than the constant variance. In practice, the
estimator of ω2 is the same as the estimator of σ 2, so we can actually apply the standard
LS formulas in this case.

This is the motivation for why White’s test for heteroskedasticity makes sense: if the
heteroskedasticity is not correlated with the regressors, then the standard LS formula is
correct (provided there is no autocorrelation).

110

8.1.5 Estimating the Mean of a Process

Suppose ut is heteroskedastic, but not autocorrelated. In the regression yt = α + ut ,
xt = zt = 1. This is a special case of the previous example, since Eu2

t is certainly
unrelated to Ext x ′

t = 1 (since it is a constant). Therefore, the LS covariance matrix
is the correct variance of the sample mean as an estimator of the mean, even if ut are
heteroskedastic (provided there is no autocorrelation).

8.1.6 The Classical 2SLS Assumptions∗

Reference: Hamilton (1994) 9.2.
The classical 2SLS case assumes that zt is independent of all ut+s and that ut is iid.

The covariance matrix of the moment conditions are

S0 = E

(
1

√
T

T∑
t=1

ztut

)(
1

√
T

T∑
t=1

ut z′

t

)
, (8.22)

so by following the same steps in (8.16)-(8.19) we get S0 = σ 26zz.The optimal weighting
matrix is therefore W = 6−1

zz /σ
2 (or (Z ′Z/T )−1/σ 2 in matrix form). We use this result

in (8.10) to get

β̂2SL S =

(
6̂xz6̂

−1
zz 6̂zx

)−1
6̂xz6̂

−1
zz 6̂zy, (8.23)

which is the classical 2SLS estimator.
Since this GMM is efficient (for a given set of moment conditions), we have estab-

lished that 2SLS uses its given set of instruments in the efficient way—provided the clas-
sical 2SLS assumptions are correct. Also, using the weighting matrix in (8.13) gives

V =

(
6xz

1
σ 26

−1
zz 6zx

)−1

. (8.24)

8.2 Identification of Systems of Simultaneous Equations

Reference: Greene (2000) 16.1-3
This section shows how the GMM moment conditions can be used to understand if

the parameters in a system of simultaneous equations are identified or not.
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The structural model (form) is

Fyt + Gzt = ut , (8.25)

where yt is a vector of endogenous variables, zt a vector of predetermined (exogenous)
variables, F is a square matrix, and G is another matrix.1 We can write the j th equation
of the structural form (8.25) as

y j t = x ′

tβ + u j t , (8.26)

where xt contains the endogenous and exogenous variables that enter the j th equation
with non-zero coefficients, that is, subsets of yt and zt .

We want to estimate β in (8.26). Least squares is inconsistent if some of the regressors
are endogenous variables (in terms of (8.25), this means that the j th row in F contains
at least one additional non-zero element apart from coefficient on y j t ). Instead, we use
IV/2SLS. By assumption, the structural model summarizes all relevant information for
the endogenous variables yt . This implies that the only useful instruments are the vari-
ables in zt . (A valid instrument is uncorrelated with the residuals, but correlated with the
regressors.) The moment conditions for the j th equation are then

Ezt
(
y j t − x ′

tβ
)

= 0 with sample moment conditions
1
T

T∑
t=1

zt
(
y j t − x ′

tβ
)

= 0. (8.27)

If there are as many moment conditions as there are elements in β, then this equation
is exactly identified, so the sample moment conditions can be inverted to give the Instru-
mental variables (IV) estimator of β. If there are more moment conditions than elements
in β, then this equation is overidentified and we must devise some method for weighting
the different moment conditions. This is the 2SLS method. Finally, when there are fewer
moment conditions than elements in β, then this equation is unidentified, and we cannot
hope to estimate the structural parameters of it.

We can partition the vector of regressors in (8.26) as x ′
t = [z̃′

t , ỹ′
t ], where y1t and z1t

are the subsets of zt and yt respectively, that enter the right hand side of (8.26). Partition zt

conformably z′
t = [z̃′

t , z∗′
t ], where z∗

t are the exogenous variables that do not enter (8.26).

1By premultiplying with F−1 and rearranging we get the reduced form yt = 5zt + εt , with5 = −F−1

and Cov(εt ) = F−1Cov(ut )(F−1)′.
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We can then rewrite the moment conditions in (8.27) as

E

[
z̃t

z∗
t

](
y j t −

[
z̃t

ỹt

]′

β

)
= 0. (8.28)

y j t = −G j z̃t − F j ỹt + u j t

= x ′

tβ + u j t , where x ′

t =
[
z̃′

t , ỹ′

t
]
, (8.29)

This shows that we need at least as many elements in z∗
t as in ỹt to have this equations

identified, which confirms the old-fashioned rule of thumb: there must be at least as

many excluded exogenous variables (z∗
t ) as included endogenous variables (ỹt ) to have

the equation identified.
This section has discussed identification of structural parameters when 2SLS/IV, one

equation at a time, is used. There are other ways to obtain identification, for instance, by
imposing restrictions on the covariance matrix. See, for instance, Greene (2000) 16.1-3
for details.

Example 1 (Supply and Demand. Reference: GR 16, Hamilton 9.1.) Consider the sim-

plest simultaneous equations model for supply and demand on a market. Supply is

qt = γ pt + us
t , γ > 0,

and demand is

qt = βpt + αAt + ud
t , β < 0,

where At is an observable exogenous demand shock (perhaps income). The only mean-

ingful instrument is At . From the supply equation we then get the moment condition

EAt (qt − γ pt) = 0,

which gives one equation in one unknown, γ . The supply equation is therefore exactly

identified. In contrast, the demand equation is unidentified, since there is only one (mean-

ingful) moment condition

EAt (qt − βpt − αAt) = 0,

but two unknowns (β and α).
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Example 2 (Supply and Demand: overidentification.) If we change the demand equation

in Example 1 to

qt = βpt + αAt + bBt + ud
t , β < 0.

There are now two moment conditions for the supply curve (since there are two useful

instruments)

E

[
At (qt − γ pt)

Bt (qt − γ pt)

]
=

[
0
0

]
,

but still only one parameter: the supply curve is now overidentified. The demand curve is

still underidentified (two instruments and three parameters).

8.3 Testing for Autocorrelation

This section discusses how GMM can be used to test if a series is autocorrelated. The
analysis focuses on first-order autocorrelation, but it is straightforward to extend it to
higher-order autocorrelation.

Consider a scalar random variable xt with a zero mean (it is easy to extend the analysis
to allow for a non-zero mean). Consider the moment conditions

mt(β) =

[
x2

t − σ 2

xt xt−1 − ρσ 2

]
, so m̄(β) =

1
T

T∑
t=1

[
x2

t − σ 2

xt xt−1 − ρσ 2

]
, with β =

[
σ 2

ρ

]
.

(8.30)
σ 2 is the variance and ρ the first-order autocorrelation so ρσ 2 is the first-order autoco-
variance. We want to test if ρ = 0. We could proceed along two different routes: estimate
ρ and test if it is different from zero or set ρ to zero and then test overidentifying restric-
tions. We analyze how these two approaches work when the null hypothesis of ρ = 0 is
true.

8.3.1 Estimating the Autocorrelation Coefficient

We estimate both σ 2 and ρ by using the moment conditions (8.30) and then test if ρ =

0. To do that we need to calculate the asymptotic variance of ρ̂ (there is little hope of
being able to calculate the small sample variance, so we have to settle for the asymptotic
variance as an approximation).
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We have an exactly identified system so the weight matrix does not matter—we can
then proceed as if we had used the optimal weighting matrix (all those results apply).

To find the asymptotic covariance matrix of the parameters estimators, we need the
probability limit of the Jacobian of the moments and the covariance matrix of the moments—
evaluated at the true parameter values. Let m̄i (β0) denote the i th element of the m̄(β)

vector—evaluated at the true parameter values. The probability of the Jacobian is

D0 = plim

[
∂m̄1(β0)/∂σ

2 ∂m̄1(β0)/∂ρ

∂m̄2(β0)/∂σ
2 ∂m̄2(β0)/∂ρ

]
=

[
−1 0
−ρ −σ 2

]
=

[
−1 0
0 −σ 2

]
,

(8.31)
since ρ = 0 (the true value). Note that we differentiate with respect to σ 2, not σ , since
we treat σ 2 as a parameter.

The covariance matrix is more complicated. The definition is

S0 = E

[√
T

T

T∑
t=1

mt(β0)

][√
T

T

T∑
t=1

mt(β0)

]′

.

Assume that there is no autocorrelation in mt(β0). We can then simplify as

S0 = E mt(β0)mt(β0)
′.

This assumption is stronger than assuming that ρ = 0, but we make it here in order to
illustrate the asymptotic distribution. To get anywhere, we assume that xt is iid N (0, σ 2).
In this case (and with ρ = 0 imposed) we get

S0 = E

[
x2

t − σ 2

xt xt−1

][
x2

t − σ 2

xt xt−1

]′

= E

[
(x2

t − σ 2)2 (x2
t − σ 2)xt xt−1

(x2
t − σ 2)xt xt−1 (xt xt−1)

2

]

=

[
E x4

t − 2σ 2 E x2
t + σ 4 0

0 E x2
t x2

t−1

]
=

[
2σ 4 0

0 σ 4

]
. (8.32)

To make the simplification in the second line we use the facts that E x4
t = 3σ 4 if xt ∼

N (0, σ 2), and that the normality and the iid properties of xt together imply E x2
t x2

t−1 =

E x2
t E x2

t−1 and E x3
t xt−1 = E σ 2xt xt−1 = 0.
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By combining (8.31) and (8.32) we get that

ACov

(
√

T

[
σ̂ 2

ρ̂

])
=

(
D

′

0S−1
0 D0

)−1

=

[ −1 0
0 −σ 2

]′ [
2σ 4 0

0 σ 4

]−1 [
−1 0
0 −σ 2

]−1

=

[
2σ 4 0

0 1

]
. (8.33)

This shows the standard expression for the uncertainty of the variance and that the
√

T ρ̂.
Since GMM estimators typically have an asymptotic distribution we have

√
T ρ̂ →

d

N (0, 1), so we can test the null hypothesis of no first-order autocorrelation by the test
statistics

T ρ̂2
∼ χ2

1 . (8.34)

This is the same as the Box-Ljung test for first-order autocorrelation.
This analysis shows that we are able to arrive at simple expressions for the sampling

uncertainty of the variance and the autocorrelation—provided we are willing to make
strong assumptions about the data generating process. In particular, ewe assumed that
data was iid N (0, σ 2). One of the strong points of GMM is that we could perform similar
tests without making strong assumptions—provided we use a correct estimator of the
asymptotic covariance matrix S0 (for instance, Newey-West).

8.3.2 Testing the Overidentifying Restriction of No Autocorrelation∗

We can estimate σ 2 alone and then test if both moment condition are satisfied at ρ = 0.
There are several ways of doing that, but the perhaps most straightforward is skip the loss
function approach to GMM and instead specify the “first order conditions” directly as

0 = Am̄

=

[
1 0

] 1
T

T∑
t=1

[
x2

t − σ 2

xt xt−1

]
, (8.35)

which sets σ̂ 2 equal to the sample variance.
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The only parameter in this estimation problem is σ 2, so the matrix of derivatives
becomes

D0 = plim

[
∂m̄1(β0)/∂σ

2

∂m̄2(β0)/∂σ
2

]
=

[
−1
0

]
. (8.36)

By using this result, the A matrix in (8.36) and the S0 matrix in (8.32,) it is straighforward
to calculate the asymptotic covariance matrix the moment conditions. In general, we have

ACov[
√

T m̄(β̂)] = [I − D0 (A0 D0)
−1 A0]S0[I − D0 (A0 D0)

−1 A0]
′. (8.37)

The term in brackets is here (since A0 = A since it is a matrix with constants)

[
1 0
0 1

]
︸ ︷︷ ︸

I2

−

[
−1
0

]
︸ ︷︷ ︸

D0


[

1 0
]

︸ ︷︷ ︸
A0

[
−1
0

]
︸ ︷︷ ︸

D0


−1 [

1 0
]

︸ ︷︷ ︸
A0

=

[
0 0
0 1

]
. (8.38)

We therefore get

ACov[
√

T m̄(β̂)] =

[
0 0
0 1

][
2σ 4 0

0 σ 4

][
0 0
0 1

]′

=

[
0 0
0 σ 4

]
. (8.39)

Note that the first moment condition has no sampling variance at the estimated parameters,
since the choice of σ̂ 2 always sets the first moment condition equal to zero.

The test of the overidentifying restriction that the second moment restriction is also
zero is

T m̄′

(
ACov[

√
T m̄(β̂)]

)+

m̄ ∼ χ2
1 , (8.40)

where we have to use a generalized inverse if the covariance matrix is singular (which it
is in (8.39)).

In this case, we get the test statistics (note the generalized inverse)

T

[
0
6T

t=1xt xt−1/T

]′ [
0 0
0 1/σ 4

][
0
6T

t=1xt xt−1/T

]
= T

[
6T

t=1xt xt−1/T
]2

σ 4 ,

(8.41)
which is the T times the square of the sample covariance divided by σ 4. A sample cor-
relation, ρ̂, would satisfy 6T

t=1xt xt−1/T = ρ̂σ̂ 2, which we can use to rewrite (8.41) as
T ρ̂2σ̂ 4/σ 4. By approximating σ 4 by σ̂ 4 we get the same test statistics as in (8.34).
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8.4 Estimating and Testing a Normal Distribution

8.4.1 Estimating the Mean and Variance

This section discusses how the GMM framework can be used to test if a variable is nor-
mally distributed. The analysis cold easily be changed in order to test other distributions
as well.

Suppose we have a sample of the scalar random variable xt and that we want to test if
the series is normally distributed. We analyze the asymptotic distribution under the null
hypothesis that xt is N (µ, σ 2).

We specify four moment conditions

mt =


xt − µ

(xt − µ)2 − σ 2

(xt − µ)3

(xt − µ)4 − 3σ 4

 so m̄ =
1
T

T∑
t=1


xt − µ

(xt − µ)2 − σ 2

(xt − µ)3

(xt − µ)4 − 3σ 4

 (8.42)

Note that E mt = 04×1 if xt is normally distributed.
Let m̄i (β0) denote the i th element of the m̄(β) vector—evaluated at the true parameter

values. The probability of the Jacobian is

D0 = plim


∂m̄1(β0)/∂µ ∂m̄1(β0)/∂σ

2

∂m̄2(β0)/∂µ ∂m̄2(β0)/∂σ
2

∂m̄3(β0)/∂µ ∂m̄3(β0)/∂σ
2

∂m̄4(β0)/∂µ ∂m̄4(β0)/∂σ
2



= plim
1
T

T∑
t=1


−1 0

−2(xt − µ) −1
−3(xt − µ)2 0
−4(xt − µ)3 −6σ 2

 =


−1 0
0 −1

−3σ 2 0
0 −6σ 2

 . (8.43)

(Recall that we treat σ 2, not σ , as a parameter.)
The covariance matrix of the scaled moment conditions (at the true parameter values)

is

S0 = E

[√
T

T

T∑
t=1

mt(β0)

][√
T

T

T∑
t=1

mt(β0)

]′

, (8.44)
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which can be a very messy expression. Assume that there is no autocorrelation in mt(β0),
which would certainly be true if xt is iid. We can then simplify as

S0 = E mt(β0)mt(β0)
′, (8.45)

which is the form we use here for illustration. We therefore have (provided mt(β0) is not
autocorrelated)

S0 = E




xt − µ

(xt − µ)2 − σ 2

(xt − µ)3

(xt − µ)4 − 3σ 4






xt − µ

(xt − µ)2 − σ 2

(xt − µ)3

(xt − µ)4 − 3σ 4




′

=


σ 2 0 3σ 4 0
0 2σ 4 0 12σ 6

3σ 4 0 15σ 6 0
0 12σ 6 0 96σ 8

 .
(8.46)

It is straightforward to derive this result once we have the information in the following
remark.

Remark 3 If X ∼ N (µ, σ 2), then the first few moments around the mean of a are E(X −

µ) = 0, E(X −µ)2 = σ 2, E(X −µ)3 = 0 (all odd moments are zero), E(X −µ)4 = 3σ 4,

E(X − µ)6 = 15σ 6, and E(X − µ)8 = 105σ 8.

Suppose we use the efficient weighting matrix. The asymptotic covariance matrix of
the estimated mean and variance is then ((D′

0S−1
0 D0)

−1)


−1 0
0 −1

−3σ 2 0
0 −6σ 2


′

σ 2 0 3σ 4 0
0 2σ 4 0 12σ 6

3σ 4 0 15σ 6 0
0 12σ 6 0 96σ 8


−1

−1 0
0 −1

−3σ 2 0
0 −6σ 2




−1

=

[
1
σ 2 0
0 1

2σ 4

]−1

=

[
σ 2 0
0 2σ 4

]
.

(8.47)

This is the same as the result from maximum likelihood estimation which use the sample
mean and sample variance as the estimators. The extra moment conditions (overidenti-
fying restrictions) does not produce any more efficient estimators—for the simple reason
that the first two moments completely characterizes the normal distribution.
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8.4.2 Testing Normality∗

The payoff from the overidentifying restrictions is that we can test if the series is actually
normally distributed. There are several ways of doing that, but the perhaps most straight-
forward is skip the loss function approach to GMM and instead specify the “first order
conditions” directly as

0 = Am̄

=

[
1 0 0 0
0 1 0 0

]
1
T

T∑
t=1


xt − µ

(xt − µ)2 − σ 2

(xt − µ)3

(xt − µ)4 − 3σ 4

 . (8.48)

The asymptotic covariance matrix the moment conditions is as in (8.37). In this case,
the matrix with brackets is


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

I4

−


−1 0
0 −1

−3σ 2 0
0 −6σ 2


︸ ︷︷ ︸

D0


[

1 0 0 0
0 1 0 0

]
︸ ︷︷ ︸

A0


−1 0
0 −1

−3σ 2 0
0 −6σ 2


︸ ︷︷ ︸

D0



−1

[
1 0 0 0
0 1 0 0

]
︸ ︷︷ ︸

A0

=


0 0 0 0
0 0 0 0

−3σ 2 0 1 0
0 −6σ 2 0 1

 (8.49)
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We therefore get

ACov[
√

T m̄(β̂)] =


0 0 0 0
0 0 0 0

−3σ 2 0 1 0
0 −6σ 2 0 1



σ 2 0 3σ 4 0
0 2σ 4 0 12σ 6

3σ 4 0 15σ 6 0
0 12σ 6 0 96σ 8




0 0 0 0
0 0 0 0

−3σ 2 0 1 0
0 −6σ 2 0 1


′

=


0 0 0 0
0 0 0 0
0 0 6σ 6 0
0 0 0 24σ 8

 (8.50)

We now form the test statistics for the overidentifying restrictions as in (8.40). In this
case, it is (note the generalized inverse)

T


0
0
6T

t=1(xt − µ)3/T

6T
t=1[(xt − µ)4 − 3σ 4

]/T


′

0 0 0 0
0 0 0 0
0 0 1/(6σ 6) 0
0 0 0 1/(24σ 8)




0
0
6T

t=1(xt − µ)3/T

6T
t=1[(xt − µ)4 − 3σ 4

]/T


=

T
6

[
6T

t=1(xt − µ)3/T
]2

σ 6 +
T
24

{
6T

t=1[(xt − µ)4 − 3σ 4
]/T

}2

σ 8 . (8.51)

When we approximate σ by σ̂ then this is the same as the Jarque and Bera test of nor-

mality.
The analysis shows (once again) that we can arrive at simple closed form results by

making strong assumptions about the data generating process. In particular, we assumed
that the moment conditions were serially uncorrelated. The GMM test, with a modified
estimator of the covariance matrix S0, can typically be much more general.

8.5 Testing the Implications of an RBC Model

Reference: Christiano and Eichenbaum (1992)
This section shows how the GMM framework can be used to test if an RBC model fits

data.
Christiano and Eichenbaum (1992) try to test if the RBC model predictions correspond

are significantly different from correlations and variances of data. The first step is to define
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a vector of parameters and some second moments

9 =

[
δ, ..., σλ,

σcp

σy
, ...,Corr

( y
n
, n
)]
, (8.52)

and estimate it with GMM using moment conditions. One of the moment condition is
that the sample average of the labor share in value added equals the coefficient on labor
in a Cobb-Douglas production function, another is that just the definitions of a standard
deviation, and so forth.

The distribution of the estimator for 9 is asymptotically normal. Note that the covari-
ance matrix of the moments is calculated similarly to the Newey-West estimator.

The second step is to note that the RBC model generates second moments as a function
h (.) of the model parameters {δ, ..., σλ}, which are in 9, that is, the model generated
second moments can be thought of as h (9).

The third step is to test if the non-linear restrictions of the model (the model mapping
from parameters to second moments) are satisfied. That is, the restriction that the model
second moments are as in data

H (9) = h (9)−

[
σcp

σy
, ...,Corr

( y
n
, n
)]

= 0, (8.53)

is tested with a Wald test. (Note that this is much like the Rβ = 0 constraints in the linear
case.) From the delta-method we get

√
T H(9̂)

d
→ N

(
0,
∂H
∂9 ′

Cov(9̂)
∂H ′

∂9

)
. (8.54)

Forming the quadratic form

T H(9̂)′
(
∂H
∂9 ′

Cov(9̂)
∂H ′

∂9

)−1

H(9̂), (8.55)

will as usual give a χ2 distributed test statistic with as many degrees of freedoms as
restrictions (the number of functions in (8.53)).
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8.6 IV on a System of Equations∗

Suppose we have two equations

y1t = x ′

1tβ1 + u1t

y2t = x ′

2tβ2 + u2t ,

and two sets of instruments, z1t and z2t with the same dimensions as x1t and x2t , respec-
tively. The sample moment conditions are

m̄(β1, β2) =
1
T

T∑
t=1

[
z1t
(
y1t − x ′

1tβ1
)

z2t
(
y2t − x ′

2tβ2
) ] ,

Let β = (β ′

1, β
′

2)
′. Then

∂m̄(β1, β2)

∂β ′
=

 ∂
∂β ′

1

1
T
∑T

t=1 z1t
(
y1t − x ′

1tβ1
)

∂
∂β ′

2

1
T
∑T

t=1 z1t
(
y1t − x ′

1tβ1
)

∂
∂β ′

1

1
T
∑T

t=1 z2t
(
y2t − x ′

2tβ2
)

∂
∂β ′

2

1
T
∑T

t=1 z2t
(
y2t − x ′

2tβ2
)


=

[
1
T
∑T

t=1 z1t x ′

1t 0
0 1

T
∑T

t=1 z2t x ′

2t

]
.

This is invertible so we can premultiply the first order condition with the inverse of[
∂m̄(β)/∂β ′

]′ A and get m̄(β) = 0k×1. We can solve this system for β1 and β2 as[
β1

β2

]
=

[
1
T
∑T

t=1 z1t x ′

1t 0
0 1

T
∑T

t=1 z2t x ′

2t

]−1 [ 1
T
∑T

t=1 z1t y1t
1
T
∑T

t=1 z2t y2t

]

=


(

1
T
∑T

t=1 z1t x ′

1t

)−1
0

0
(

1
T
∑T

t=1 z2t x ′

2t

)−1

[ 1
T
∑T

t=1 z1t y1t
1
T
∑T

t=1 z2t y2t

]
.

This is IV on each equation separately, which follows from having an exactly identified
system.
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11 Vector Autoregression (VAR)

Reference: Hamilton (1994) 10-11; Greene (2000) 17.5; Johnston and DiNardo (1997)
9.1-9.2 and Appendix 9.2; and Pindyck and Rubinfeld (1997) 9.2 and 13.5.

Let yt be an n × 1 vector of variables. The VAR(p) is

yt = µ+ A1yt−1 + ...+ Ap yt−p + εt , εt is white noise, Cov(εt ) = �. (11.1)

Example 1 (VAR(2) of 2 × 1 vector.) Let yt = [ xt zt ]
′. Then[

xt

zt

]
=

[
A1,11 A1,12

A1,21 A1,22

][
xt−1

zt−1

]
+

[
A2,11 A2,12

A2,21 A2,22

][
xt−2

zt−2

]
+

[
ε1,t

ε2,t

]
. (11.2)

Issues:

• Variable selection

• Lag length

• Estimation

• Purpose: data description (Granger-causality, impulse response, forecast error vari-
ance decomposition), forecasting, policy analysis (Lucas critique)?

11.1 Canonical Form

A VAR(p) can be rewritten as a VAR(1). For instance, a VAR(2) can be written as[
yt

yt−1

]
=

[
µ

0

]
+

[
A1 A2

I 0

][
yt−1

yt−2

]
+

[
εt

0

]
or (11.3)

y∗

t = µ∗
+ Ay∗

t−1 + ε∗t . (11.4)

Example 2 (Canonical form of a univariate AR(2).)[
yt

yt−1

]
=

[
µ

0

]
+

[
a1 a2

1 0

][
yt−1

yt−2

]
+

[
εt

0

]
.
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Example 3 (Canonical for of VAR(2) of 2×1 vector.) Continuing on the previous exam-

ple, we get
xt

zt

xt−1

zt−1

 =


A1,11 A1,11 A2,11 A2,12

A1,21 A1,22 A2,21 A2,22

1 0 0 0
0 1 0 0




xt−1

zt−1

xt−2

zt−2

+


ε1,t

ε2,t

0
0

 .

11.2 Moving Average Form and Stability

Consider a VAR(1), or a VAR(1) representation of a VAR(p) or an AR(p)

y∗

t = Ay∗

t−1 + ε∗t . (11.5)

Solve recursively backwards (substitute for y∗
t−s = Ay∗

t−s−1 + ε∗t−s , s = 1, 2,...) to get
the vector moving average representation (VMA), or impulse response function

y∗

t = A
(

Ay∗

t−2 + ε∗t−1
)
+ ε∗t

= A2y∗

t−2 + Aε∗t−1 + ε∗t

= A2 (Ay∗

t−3 + ε∗t−2
)
+ Aε∗t−1 + ε∗t

= A3y∗

t−3 + A2ε∗t−2 + Aε∗t−1 + ε∗t
...

= AK+1y∗

t−K−1 +

K∑
s=0

Asε∗t−s . (11.6)

Remark 4 (Spectral decomposition.) The n eigenvalues (λi ) and associated eigenvectors

(zi ) of the n × n matrix A satisfies

(A − λi In) zi = 0n×1.

If the eigenvectors are linearly independent, then

A = Z3Z−1, where 3 =


λ1 0 · · · 0
0 λ2 · · · 0
...

... · · ·
...

0 0 · · · λn

 and Z =

[
z1 z2 · · · zn

]
.
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Note that we therefore get

A2
= AA = Z3Z−1 Z3Z−1

= Z33Z−1
= Z32 Z−1

⇒ Aq
= Z3q Z−1.

Remark 5 (Modulus of complex number.) If λ = a + bi , where i =
√

−1, then |λ| =

|a + bi | =
√

a2 + b2.

We want limK→∞ AK+1y∗

t−K−1 = 0 (stable VAR) to get a moving average repre-
sentation of yt (where the influence of the starting values vanishes asymptotically). We
note from the spectral decompositions that AK+1

= Z3K+1 Z−1, where Z is the matrix of
eigenvectors and3 a diagonal matrix with eigenvalues. Clearly, limK→∞ AK+1y∗

t−K−1 =

0 is satisfied if the eigenvalues of A are all less than one in modulus.

Example 6 (AR(1).) For the univariate AR(1) yt = ayt−1+εt , the characteristic equation

is (a − λ) z = 0, which is only satisfied if the eigenvalue is λ = a. The AR(1) is therefore

stable (and stationarity) if −1 < a < 1.

If we have a stable VAR, then (11.6) can be written

y∗

t =

∞∑
s=0

Asε∗t−s (11.7)

= ε∗t + Aε∗t−1 + A2ε∗t−2 + ...

We may pick out the first n equations from (11.7) (to extract the “original” variables from
the canonical form) and write them as

yt = εt + C1εt−1 + C2εt−2 + ..., (11.8)

which is the vector moving average, VMA, form of the VAR.

Example 7 (AR(2), Example (2) continued.) Let µ = 0 in 2 and note that the VMA of the

canonical form is[
yt

yt−1

]
=

[
εt

0

]
+

[
a1 a2

1 0

][
εt−1

0

]
+

[
a2

1 + a2 a1a2

a1 a2

][
εt−2

0

]
+ ...

The MA of yt is therefore

yt = εt + a1εt−1 +

(
a2

1 + a2

)
εt−2 + ...
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Note that
∂yt

∂ε′t−s
= Cs or

∂Et yt+s

∂ε′t
= Cs, with C0 = I (11.9)

so the impulse response function is given by {I,C1,C2, ...}. Note that it is typically only
meaningful to discuss impulse responses to uncorrelated shocks with economic interpreta-
tions. The idea behind structural VARs (discussed below) is to impose enough restrictions
to achieve this.

Example 8 (Impulse response function for AR(1).) Let yt = ρyt−1 + εt . The MA rep-

resentation is yt =
∑t

s=0 ρ
sεt−s , so ∂yt/∂εt−s = ∂Et yt+s/∂εt = ρs . Stability requires

|ρ| < 1, so the effect of the initial value eventually dies off (lims→∞ ∂yt/∂εt−s = 0).

Example 9 (Numerical VAR(1) of 2×1 vector.) Consider the VAR(1)[
xt

zt

]
=

[
0.5 0.2
0.1 −0.3

][
xt−1

zt−1

]
+

[
ε1,t

ε2,t

]
.

The eigenvalues are approximately 0.52 and −0.32, so this is a stable VAR. The VMA is[
xt

zt

]
=

[
ε1,t

ε2,t

]
+

[
0.5 0.2
0.1 −0.3

][
ε1,t−1

ε2,t−1

]
+

[
0.27 0.04
0.02 0.11

][
ε1,t−2

ε2,t−2

]
+ ...

11.3 Estimation

The MLE, conditional on the initial observations, of the VAR is the same as OLS esti-
mates of each equation separately. The MLE of the i j th element in Cov(εt ) is given by∑T

t=1 v̂i t v̂ j t/T , where v̂i t and v̂ j t are the OLS residuals.
Note that the VAR system is a system of “seemingly unrelated regressions,” with the

same regressors in each equation. The OLS on each equation is therefore the GLS, which
coincides with MLE if the errors are normally distributed.

11.4 Granger Causality

Main message: Granger-causality might be useful, but it is not the same as causality.
Definition: if z cannot help forecast x , then z does not Granger-cause x ; the MSE of

the forecast E(xt | xt−s, zt−s, s > 0) equals the MSE of the forecast E(xt | xt−s, s > 0).
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Test: Redefine the dimensions of xt and zt in (11.2): let xt be n1 ×1 and zt is n2 ×1. If
the n1 ×n2 matrices A1,12 = 0 and A2,12 = 0, then z fail to Granger-cause x . (In general,
we would require As,12 = 0 for s = 1, ..., p.) This carries over to the MA representation
in (11.8), so Cs,12 = 0.

These restrictions can be tested with an F-test. The easiest case is when x is a scalar,
since we then simply have a set of linear restrictions on a single OLS regression.

Example 10 (RBC and nominal neutrality.) Suppose we have an RBC model which says

that money has no effect on the real variables (for instance, output, capital stock, and the

productivity level). Money stock should not Granger-cause real variables.

Example 11 (Granger causality and causality.) Do Christmas cards cause Christmas?

Example 12 (Granger causality and causality II, from Hamilton 11.) Consider the price

Pt of an asset paying dividends Dt . Suppose the expected return (Et (Pt+1 + Dt+1)/Pt )

is a constant, R. The price then satisfies Pt =Et
∑

∞

s=1 R−s Dt+s . Suppose Dt = ut +

δut−1 + vt , so Et Dt+1 = δut and Et Dt+s = 0 for s > 1. This gives Pt = δut/R, and

Dt = ut + vt + R Pt−1, so the VAR is[
Pt

Dt

]
=

[
0 0
R 0

][
Pt−1

Dt−1

]
+

[
δut/R

ut + vt

]
,

where P Granger-causes D. Of course, the true causality is from D to P. Problem:

forward looking behavior.

Example 13 (Money and output, Sims (1972).) Sims found that output, y does not Granger-

cause money, m, but that m Granger causes y. His interpretation was that money supply

is exogenous (set by the Fed) and that money has real effects. Notice how he used a

combination of two Granger causality test to make an economic interpretation.

Example 14 (Granger causality and omitted information.∗) Consider the VAR y1t

y2t

y3t

 =

 a11 a12 0
0 a22 0
0 a32 a33


 y1t−1

y2t−1

y3t−1

+

 ε1t

ε2t

ε3t


Notice that y2t and y3t do not depend on y1t−1, so the latter should not be able to Granger-

cause y3t . However, suppose we forget to use y2t in the regression and then ask if y1t
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Granger causes y3t . The answer might very well be yes since y1t−1 contains information

about y2t−1 which does affect y3t . (If you let y1t be money, y2t be the (autocorrelated)

Solow residual, and y3t be output, then this is a short version of the comment in King

(1986) comment on Bernanke (1986) (see below) on why money may appear to Granger-

cause output). Also note that adding a nominal interest rate to Sims (see above) money-

output VAR showed that money cannot be taken to be exogenous.

11.5 Forecasts Forecast Error Variance

The error forecast of the s period ahead forecast is

yt+s − Et yt+s = εt+s + C1εt+s−1 + ...+ Cs−1εt+1, (11.10)

so the covariance matrix of the (s periods ahead) forecasting errors is

E (yt+s − Et yt+s) (yt+s − Et yt+s)
′
= �+ C1�C ′

1 + ...+ Cs−1�C ′

s−1. (11.11)

For a VAR(1), Cs = As , so we have

yt+s − Et yt+s = εt+s + Aεt+s−1 + ...+ Asεt+1, and (11.12)

E (yt+s − Et yt+s) (yt+s − Et yt+s)
′
= �+ A�A′

+ ...+ As−1�(As−1)′. (11.13)

Note that lims→∞Et yt+s = 0, that is, the forecast goes to the unconditional mean
(which is zero here, since there are no constants - you could think of yt as a deviation
from the mean). Consequently, the forecast error becomes the VMA representation (11.8).
Similarly, the forecast error variance goes to the unconditional variance.

Example 15 (Unconditional variance of VAR(1).) Letting s → ∞ in (11.13) gives

Eyt y′

t =

∞∑
s=0

As�
(

As)′
= �+ [A�A′

+ A2�(A2)′ + ...]

= �+ A
(
�+ A�A′

+ ...
)

A′

= �+ A(Eyt y′

t)A
′,
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which suggests that we can calculate Eyt y′
t by an iteration (backwards in time) 8t =

�+ A8t+1 A′, starting from 8T = I , until convergence.

11.6 Forecast Error Variance Decompositions∗

If the shocks are uncorrelated, then it is often useful to calculate the fraction of Var(yi,t+s−Et yi,t+s)
due to the j th shock, the forecast error variance decomposition. Suppose the covariance
matrix of the shocks, here �, is a diagonal n × n matrix with the variances ωi i along the
diagonal. Let cqi be the ith column of Cq . We then have

Cq�C ′

q =

n∑
i=1

ωi i cqi
(
cqi
)′
. (11.14)

Example 16 (Illustration of (11.14) with n = 2.) Suppose

Cq =

[
c11 c12

c21 c22

]
and � =

[
ω11 0
0 ω22

]
,

then

Cq�C ′

q =

[
ω11c2

11 + ω22c2
12 ω11c11c21 + ω22c12c22

ω11c11c21 + ω22c12c22 ω11c2
21 + ω22c2

22

]
,

which should be compared with

ω11

[
c11

c21

][
c11

c21

]′

+ ω22

[
c12

c22

][
c12

c22

]′

= ω11

[
c2

11 c11c21

c11c21 c2
21

]
+ ω22

[
c2

12 c12c22

c12c22 c2
22

]
.

Applying this on (11.11) gives

E (yt+s − Et yt+s) (yt+s − Et yt+s)
′
=

n∑
i=1

ωi i I +

n∑
i=1

ωi i c1i (c1i )
′
+ ...+

n∑
i=1

ωi i cs−1i (cs−1i )
′

=

n∑
i=1

ωi i
[
I + c1i (c1i )

′
+ ...+ cs−1i (cs−1i )

′
]
,

(11.15)
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which shows how the covariance matrix for the s-period forecast errors can be decom-
posed into its n components.

11.7 Structural VARs

11.7.1 Structural and Reduced Forms

We are usually not interested in the impulse response function (11.8) or the variance
decomposition (11.11) with respect to εt , but with respect to some structural shocks, ut ,
which have clearer interpretations (technology, monetary policy shock, etc.).

Suppose the structural form of the model is

Fyt = α + B1yt−1 + ...+ Bp yt−p + ut , ut is white noise, Cov(ut ) = D. (11.16)

This could, for instance, be an economic model derived from theory.1

Provided F−1 exists, it is possible to write the time series process as

yt = F−1α + F−1 B1yt−1 + ...+ F−1 Bp yt−p + F−1ut (11.17)

= µ+ A1yt−1 + ...+ Ap yt−p + εt , Cov (εt) = �, (11.18)

where

µ = F−1α, As = F−1 Bs , and εt = F−1ut so � = F−1 D
(

F−1
)′

. (11.19)

Equation (11.18) is a VAR model, so a VAR can be thought of as a reduced form of the
structural model (11.16).

The key to understanding the relation between the structural model and the VAR is
the F matrix, which controls how the endogenous variables, yt , are linked to each other
contemporaneously. In fact, identification of a VAR amounts to choosing an F matrix.
Once that is done, impulse responses and forecast error variance decompositions can be
made with respect to the structural shocks. For instance, the impulse response function of

1This is a “structural model” in a traditional, Cowles commission, sense. This might be different from
what modern macroeconomists would call structural.
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the VAR, (11.8), can be rewritten in terms of ut = Fεt (from (11.19))

yt = εt + C1εt−1 + C2εt−2 + ...

= F−1 Fεt + C1 F−1 Fεt−1 + C2 F−1 Fεt−2 + ...

= F−1ut + C1 F−1ut−1 + C2 F−1ut−2 + ... (11.20)

Remark 17 The easiest way to calculate this representation is by first finding F−1 (see

below), then writing (11.18) as

yt = µ+ A1yt−1 + ...+ Ap yt−p + F−1ut . (11.21)

To calculate the impulse responses to the first element in ut , set yt−1, ..., yt−p equal to the

long-run average, (I − A1 − ...− Ap)−1µ, make the first element in ut unity and all other

elements zero. Calculate the response by iterating forward on (11.21), but putting all

elements in ut+1, ut+2, ... to zero. This procedure can be repeated for the other elements

of ut .

We would typically pick F such that the elements in ut are uncorrelated with each
other, so they have a clear interpretation.

The VAR form can be estimated directly from data. Is it then possible to recover the
structural parameters in (11.16) from the estimated VAR (11.18)? Not without restrictions
on the structural parameters in F, Bs , α, and D. To see why, note that in the structural
form (11.16) we have (p + 1) n2 parameters in {F, B1, . . . , Bp}, n parameters in α, and
n(n + 1)/2 unique parameters in D (it is symmetric). In the VAR (11.18) we have fewer
parameters: pn2 in {A1, . . . , Ap}, n parameters in in µ, and n(n+1)/2 unique parameters
in �. This means that we have to impose at least n2 restrictions on the structural param-
eters {F, B1, . . . , Bp, α, D} to identify all of them. This means, of course, that many
different structural models have can have exactly the same reduced form.

Example 18 (Structural form of the 2 × 1 case.) Suppose the structural form of the

previous example is[
F11 F12

F21 F22

][
xt

zt

]
=

[
B1,11 B1,12

B1,21 B1,22

][
xt−1

zt−1

]
+

[
B2,11 B2,12

B2,21 B2,22

][
xt−2

zt−2

]
+

[
u1,t

u2,t

]
.

This structural form has 3 × 4 + 3 unique parameters. The VAR in (11.2) has 2 × 4 + 3.

We need at least 4 restrictions on {F, B1, B2, D} to identify them from {A1, A2, �}.
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11.7.2 “Triangular” Identification 1: Triangular F with Fi i = 1 and Diagonal D

Reference: Sims (1980).
The perhaps most common way to achieve identification of the structural parameters

is to restrict the contemporaneous response of the different endogenous variables, yt , to
the different structural shocks, ut . Within in this class of restrictions, the triangular iden-
tification is the most popular: assume that F is lower triangular (n(n + 1)/2 restrictions)
with diagonal element equal to unity, and that D is diagonal (n(n − 1)/2 restrictions),
which gives n2 restrictions (exact identification).

A lower triangular F matrix is very restrictive. It means that the first variable can
react to lags and the first shock, the second variable to lags and the first two shocks, etc.
This is a recursive simultaneous equations model, and we obviously need to be careful
with how we order the variables. The assumptions that Fi i = 1 is just a normalization.

A diagonal D matrix seems to be something that we would often like to have in
a structural form in order to interpret the shocks as, for instance, demand and supply
shocks. The diagonal elements of D are the variances of the structural shocks.

Example 19 (Lower triangular F: going from structural form to VAR.) Suppose the

structural form is[
1 0

−α 1

][
xt

zt

]
=

[
B11 B12

B21 B22

][
xt−1

zt−1

]
+

[
u1,t

u2,t

]
.

This is a recursive system where xt does not not depend on the contemporaneous zt , and

therefore not on the contemporaneous u2t (see first equation). However, zt does depend

on xt (second equation). The VAR (reduced form) is obtained by premultiplying by F−1[
xt

zt

]
=

[
1 0
α 1

][
B11 B12

B21 B22

][
xt−1

zt−1

]
+

[
1 0
α 1

][
u1,t

u2,t

]

=

[
A11 A12

A21 A22

][
xt−1

zt−1

]
+

[
ε1,t

ε2,t

]
.

This means that ε1t = u1t , so the first VAR shock equals the first structural shock. In

contrast, ε2,t = αu1,t + u2,t , so the second VAR shock is a linear combination of the first
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two shocks. The covariance matrix of the VAR shocks is therefore

Cov

[
ε1,t

ε2,t

]
=

[
Var (u1t) αVar (u1t)

αVar (u1t) α2Var (u1t)+ Var (u2t)

]
.

This set of identifying restrictions can be implemented by estimating the structural
form with LS—equation by equation. The reason is that this is just the old fashioned fully
recursive system of simultaneous equations. See, for instance, Greene (2000) 16.3.

11.7.3 “Triangular” Identification 2: Triangular F and D = I

The identifying restrictions in Section 11.7.2 is actually the same as assuming that F is
triangular and that D = I . In this latter case, the restriction on the diagonal elements of F

has been moved to the diagonal elements of D. This is just a change of normalization (that
the structural shocks have unit variance). It happens that this alternative normalization is
fairly convenient when we want to estimate the VAR first and then recover the structural
parameters from the VAR estimates.

Example 20 (Change of normalization in Example 19) Suppose the structural shocks in

Example 19 have the covariance matrix

D = Cov

[
u1,t

u2,t

]
=

[
σ 2

1 0
0 σ 2

2

]
.

Premultiply the structural form in Example 19 by[
1/σ1 0
0 1/σ2

]
to get[

1/σ1 0
−α/σ2 1/σ2

][
xt

zt

]
=

[
B11/σ1 B12/σ1

B21/σ2 B22/σ2

][
xt−1

zt−1

]
+

[
u1,t/σ1

u2,t/σ2

]
.

This structural form has a triangular F matrix (with diagonal elements that can be dif-

ferent from unity), and a covariance matrix equal to an identity matrix.

The reason why this alternative normalization is convenient is that it allows us to use
the widely available Cholesky decomposition.
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Remark 21 (Cholesky decomposition) Let � be an n × n symmetric positive definite

matrix. The Cholesky decomposition gives the unique lower triangular P such that � =

P P ′ (some software returns an upper triangular matrix, that is, Q in � = Q′Q instead).

Remark 22 Note the following two important features of the Cholesky decomposition.

First, each column of P is only identified up to a sign transformation; they can be reversed

at will. Second, the diagonal elements in P are typically not unity.

Remark 23 (Changing sign of column and inverting.) Suppose the square matrix A2 is

the same as A1 except that the i th and j th columns have the reverse signs. Then A−1
2 is

the same as A−1
1 except that the i th and j th rows have the reverse sign.

This set of identifying restrictions can be implemented by estimating the VAR with
LS and then take the following steps.

• Step 1. From (11.19) � = F−1 I
(
F−1)′ (recall D = I is assumed), so a Cholesky

decomposition recovers F−1 (lower triangular F gives a similar structure of F−1,
and vice versa, so this works). The signs of each column of F−1 can be chosen
freely, for instance, so that a productivity shock gets a positive, rather than negative,
effect on output. Invert F−1 to get F .

• Step 2. Invert the expressions in (11.19) to calculate the structural parameters from
the VAR parameters as α = Fµ, and Bs = F As .

Example 24 (Identification of the 2×1 case.) Suppose the structural form of the previous

example is[
F11 0
F21 F22

][
xt

zt

]
=

[
B1,11 B1,12

B1,21 B1,22

][
xt−1

zt−1

]
+

[
B2,11 B2,12

B2,21 B2,22

][
xt−2

zt−2

]
+

[
u1,t

u2,t

]
,

with D =

[
1 0
0 1

]
.
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Step 1 above solves[
�11 �12

�12 �22

]
=

[
F11 0
F21 F22

]−1
[ F11 0

F21 F22

]−1
′

=

 1
F2

11
−

F21
F2

11 F22

−
F21

F2
11 F22

F2
21+F2

11
F2

11 F2
22


for the three unknowns F11, F21, and F22 in terms of the known �11, �12, and �22. Note

that the identifying restrictions are that D = I (three restrictions) and F12 = 0 (one

restriction). (This system is just four nonlinear equations in three unknown - one of the

equations for �12 is redundant. You do not need the Cholesky decomposition to solve it,

since it could be solved with any numerical solver of non-linear equations—but why make

life even more miserable?)

A practical consequence of this normalization is that the impulse response of shock i

equal to unity is exactly the same as the impulse response of shock i equal to Std(ui t ) in
the normalization in Section 11.7.2.

11.7.4 Other Identification Schemes∗

Reference: Bernanke (1986).
Not all economic models can be written in this recursive form. However, there are

often cross-restrictions between different elements in F or between elements in F and D,
or some other type of restrictions on Fwhich may allow us to identify the system.

Suppose we have (estimated) the parameters of the VAR (11.18), and that we want to
impose D =Cov(ut ) = I . From (11.19) we then have (D = I )

� = F−1
(

F−1
)′

. (11.22)

As before we need n(n − 1)/2 restrictions on F , but this time we don’t want to impose
the restriction that all elements in F above the principal diagonal are zero. Given these
restrictions (whatever they are), we can solve for the remaining elements in B, typically
with a numerical method for solving systems of non-linear equations.
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11.7.5 What if the VAR Shocks are Uncorrelated (� = I )?∗

Suppose we estimate a VAR and find that the covariance matrix of the estimated residuals
is (almost) an identity matrix (or diagonal). Does this mean that the identification is
superfluous? No, not in general. Yes, if we also want to impose the restrictions that F is
triangular.

There are many ways to reshuffle the shocks and still get orthogonal shocks. Recall
that the structural shocks are linear functions of the VAR shocks, ut = Fεt , and that we
assume that Cov(εt) = � = I and we want Cov(ut) = I , that, is from (11.19) we then
have (D = I )

F F ′
= I. (11.23)

There are many such F matrices: the class of those matrices even have a name: orthogonal
matrices (all columns in F are orthonormal). However, there is only one lower triangular
F which satisfies (11.23) (the one returned by a Cholesky decomposition, which is I ).

Suppose you know that F is lower triangular (and you intend to use this as the identi-
fying assumption), but that your estimated� is (almost, at least) diagonal. The logic then
requires that F is not only lower triangular, but also diagonal. This means that ut = εt

(up to a scaling factor). Therefore, a finding that the VAR shocks are uncorrelated com-
bined with the identifying restriction that F is triangular implies that the structural and
reduced form shocks are proportional. We can draw no such conclusion if the identifying
assumption is something else than lower triangularity.

Example 25 (Rotation of vectors (“Givens rotations”).) Consider the transformation of

the vector ε into the vector u, u = G ′ε, where G = In except that Gik = c, Gik = s,

Gki = −s, and Gkk = c. If we let c = cos θ and s = sin θ for some angle θ , then

G ′G = I . To see this, consider the simple example where i = 2 and k = 3 1 0 0
0 c s

0 −s c


′ 1 0 0

0 c s

0 −s c

 =

 1 0 0
0 c2

+ s2 0
0 0 c2

+ s2

 ,
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which is an identity matrix since cos2 θ + sin2 θ = 1. The transformation u = G ′ε gives

ut = εt for t 6= i, k

ui = εi c − εks

uk = εi s + εkc.

The effect of this transformation is to rotate the i th and kth vectors counterclockwise

through an angle of θ . (Try it in two dimensions.) There is an infinite number of such

transformations (apply a sequence of such transformations with different i and k, change

θ , etc.).

Example 26 (Givens rotations and the F matrix.) We could take F in (11.23) to be (the

transpose) of any such sequence of givens rotations. For instance, if G1 and G2 are givens

rotations, then F = G ′

1 or F = G
′

2 or F = G ′

1G ′

2 are all valid.

11.7.6 Identification via Long-Run Restrictions - No Cointegration∗

Suppose we have estimated a VAR system (11.1) for the first differences of some variables
yt = 1xt , and that we have calculated the impulse response function as in (11.8), which
we rewrite as

1xt = εt + C1εt−1 + C2εt−2 + ...

= C (L) εt , with Cov(εt ) = �. (11.24)

To find the MA of the level of xt , we solve recursively

xt = C (L) εt + xt−1

= C (L) εt + C (L) εt−1 + xt−2

...

= C (L) (εt + εt−1 + εt−2 + ...)

= εt + (C1 + I ) εt−1 + (C2 + C1 + I ) εt−2 + ...

= C+ (L) εt , where C+

s =

s∑
j=0

Cs with C0 = I. (11.25)
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As before the structural shocks, ut , are

ut = Fεt with Cov(ut) = D.

The VMA in term of the structural shocks is therefore

xt = C+ (L) F−1ut , where C+

s =

s∑
j=0

Cs with C0 = I. (11.26)

The C+ (L) polynomial is known from the estimation, so we need to identify F in order to
use this equation for impulse response function and variance decompositions with respect
to the structural shocks.

As before we assume that D = I , so

� = F−1 D
(

F−1
)′

(11.27)

in (11.19) gives n(n + 1)/2 restrictions.
We now add restrictions on the long run impulse responses. From (11.26) we have

lim
s→∞

∂xt+s

∂u′
t

= lim
s→∞

C+

s F−1

= C(1)F−1, (11.28)

where C(1) =
∑

∞

j=0 Cs . We impose n(n − 1)/2 restrictions on these long run responses.
Together we have n2 restrictions, which allows to identify all elements in F .

In general, (11.27) and (11.28) is a set of non-linear equations which have to solved
for the elements in F . However, it is common to assume that (11.28) is a lower triangular
matrix. We can then use the following “trick” to find F . Since εt = F−1ut

EC(1)εtε
′

tC(1)
′
= EC(1)F−1utu′

t

(
F−1

)′

C(1)′

C(1)�C(1)′ = C(1)F−1
(

F−1
)′

C(1)′. (11.29)

We can therefore solve for a lower triangular matrix

3 = C(1)F−1 (11.30)

by calculating the Cholesky decomposition of the left hand side of (11.29) (which is
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available from the VAR estimate). Finally, we solve for F−1 from (11.30).

Example 27 (The 2 × 1 case.) Suppose the structural form is[
F11 F12

F21 F22

][
1xt

1zt

]
=

[
B11 B12

B21 B22

][
1xt−1

1zt−1

]
+

[
u1,t

u2,t

]
.

and we have an estimate of the reduced form[
1xt

1zt

]
= A

[
1xt−1

1zt−1

]
+

[
ε1,t

ε2,t

]
, with Cov

([
ε1,t

ε2,t

])
= �.

The VMA form (as in (11.24))[
1xt

1zt

]
=

[
ε1,t

ε2,t

]
+ A

[
ε1,t−1

ε2,t−1

]
+ A2

[
ε1,t−2

ε2,t−2

]
+ ...

and for the level (as in (11.25))[
xt

zt

]
=

[
ε1,t

ε2,t

]
+ (A + I )

[
ε1,t−1

ε2,t−1

]
+

(
A2

+ A + I
)[ ε1,t−2

ε2,t−2

]
+ ...

or since εt = F−1ut[
xt

zt

]
= F−1

[
u1,t

u2,t

]
+(A + I ) F−1

[
u1,t−1

u2,t−1

]
+

(
A2

+ A + I
)

F−1

[
u1,t−2

u2,t−2

]
+...

There are 8+3 parameters in the structural form and 4+3 parameters in the VAR, so we

need four restrictions. Assume that Cov(ut) = I (three restrictions) and that the long run

response of u1,t−s on xt is zero, that is,[
unrestricted 0

unrestricted unrestricted

]
=

(
I + A + A2

+ ...
)[ F11 F12

F21 F22

]−1

= (I − A)−1

[
F11 F12

F21 F22

]−1

=

[
1 − A11 −A12

−A21 1 − A22

]−1 [
F11 F12

F21 F22

]−1

.
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The upper right element of the right hand side is

−F12 + F12 A22 + A12 F11

(1 − A22 − A11 + A11 A22 − A12 A21) (F11 F22 − F12 F21)

which is one restriction on the elements in F. The other three are given by F−1 (F−1)′
=

�, that is,  F2
22+F2

12
(F11 F22−F12 F21)

2 −
F22 F21+F12 F11
(F11 F22−F12 F21)

2

−
F22 F21+F12 F11
(F11 F22−F12 F21)

2
F2

21+F2
11

(F11 F22−F12 F21)
2

 =

[
�11 �12

�12 �22

]
.

11.8 Cointegration, Common Trends, and Identification via Long-
Run Restrictions∗

These notes are a reading guide to Mellander, Vredin, and Warne (1992), which is well be-
yond the first year course in econometrics. See also Englund, Vredin, and Warne (1994).
(I have not yet double checked this section.)

11.8.1 Common Trends Representation and Cointegration

The common trends representation of the n variables in yt is

yt = y0 + ϒτt +8(L)

[
ϕt

ψt

]
, with Cov

([
ϕt

ψt

])
= In (11.31)

τt = τt−1 + ϕt , (11.32)

where8(L) is a stable matrix polynomial in the lag operator. We see that the k ×1 vector
ϕt has permanent effects on (at least some elements in) yt , while the r × 1 (r = n − k) ψt

does not.
The last component in (11.31) is stationary, but τt is a k × 1 vector of random walks,

so the n ×k matrix ϒ makes yt share the non-stationary components: there are k common

trends. If k < n, then we could find (at least) r linear combinations of yt , α′yt where α′ is
an r × n matrix of cointegrating vectors, which are such that the trends cancel each other
(α′ϒ = 0).

Remark 28 (Lag operator.) We have the following rules: (i) Lk xt = xt−k; (ii) if8(L) =
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a +bL−m
+ cLn , then8(L) (xt + yt) = a (xt + yt)+b (xt+m + yt+m)+ c (xt−n + yt−n)

and 8(1) = a + b + c.

Example 29 (Söderlind and Vredin (1996)). Suppose we have

yt =


ln Yt (output)

ln Pt (price level)

ln Mt (money stock)

ln Rt (gross interest rate)

 , ϒ =


0 1
1 −1
1 0
0 0

 , and τt =

[
money supply trend

productivity trend

]
,

then we see that ln Rt and ln Yt + ln Pt − ln Mt (that is, log velocity) are stationary, so

α′
=

[
0 0 0 1
1 1 −1 0

]

are (or rather, span the space of) cointegrating vectors. We also see that α′ϒ = 02×2.

11.8.2 VAR Representation

The VAR representation is as in (11.1). In practice, we often estimate the parameters in
A∗

s , α, the n × r matrix γ , and � =Cov(εt) in the vector “error correction form”

1yt = A∗

11yt + ...+ A∗

p−11yt−p+1 + γα′yt−1 + εt , with Cov(εt ) = �. (11.33)

This can easily be rewritten on the VAR form (11.1) or on the vector MA representation
for 1yt

1yt = εt + C1εt−1 + C2εt−2 + ... (11.34)

= C (L) εt . (11.35)

To find the MA of the level of yt , we recurse on (11.35)

yt = C (L) εt + yt−1

= C (L) εt + C (L) εt−1 + yt−2

...

= C (L) (εt + εt−1 + εt−2 + ...+ ε0)+ y0. (11.36)
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We now try to write (11.36) in a form which resembles the common trends representation
(11.31)-(11.32) as much as possible.

11.8.3 Multivariate Beveridge-Nelson decomposition

We want to split a vector of non-stationary series into some random walks and the rest
(which is stationary). Rewrite (11.36) by adding and subtracting C(1)(εt + εt−1 + ...)

yt = C (1) (εt + εt−1 + εt−2 + ...+ ε0)+ [C(L)− C (1)] (εt + εt−1 + εt−2 + ...+ ε0) .

(11.37)
Suppose εs = 0 for s < 0 and consider the second term in (11.37). It can be written[

I + C1L + C2L2
+ ....− C (1)

]
(εt + εt−1 + εt−2 + ...+ ε0)

= /*since C (1) = I + C1 + C2 + ...*/

[−C1 − C2 − C3 − ...] εt + [−C2 − C3 − ...] εt−1 + [−C3 − ...] εt−2. (11.38)

Now define the random walks

ξt = ξt−1 + εt , (11.39)

= εt + εt−1 + εt−2 + ...+ ε0.

Use (11.38) and (11.39) to rewrite (11.37) as

yt = C (1) ξt + C∗ (L) εt ,where (11.40)

C∗

s = −

∞∑
j=s+1

C j . (11.41)
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11.8.4 Identification of the Common Trends Shocks

Rewrite (11.31)-(11.32) and (11.39)-(11.40) as

yt = C (1)
t∑

s=0

εt + C∗ (L) εt , with Cov(εt) = �, and (11.42)

=

[
ϒ 0n×r

] [ ∑t
s=0 ϕt

ψt

]
+8(L)

[
ϕt

ψt

]
, with Cov

([
ϕt

ψt

])
= In.

(11.43)

Since both εt and
[
ϕ

′

t ψ
′

t

]′
are white noise, we notice that the response of yt+s to either

must be the same, that is,

(
C (1)+ C∗

s
)
εt =

([
ϒ 0n×r

]
+8s

)[ ϕt

ψt

]
for all t and s ≥ 0. (11.44)

This means that the VAR shocks are linear combinations of the structural shocks (as
in the standard setup without cointegration)[

ϕt

ψt

]
= Fεt

=

[
Fk

Fr

]
εt . (11.45)

Combining (11.44) and (11.45) gives that

C (1)+ C∗

s = ϒFk +8s

[
Fk

Fr

]
(11.46)

must hold for all s ≥ 0. In particular, it must hold for s → ∞ where both C∗
s and 8s

vanishes
C (1) = ϒFk . (11.47)

The identification therefore amounts to finding the n2 coefficients in F , exactly as in
the usual case without cointegration. Once that is done, we can calculate the impulse
responses and variance decompositions with respect to the structural shocks by using

145



εt = F−1
[
ϕ

′

t ψ
′

t

]′
in (11.42).2 As before, assumptions about the covariance matrix

of the structural shocks are not enough to achieve identification. In this case, we typically
rely on the information about long-run behavior (as opposed to short-run correlations) to
supply the remaining restrictions.

• Step 1. From (11.31) we see that α′ϒ = 0r×k must hold for α′yt to be stationary.
Given an (estimate of) α, this gives rk equations from which we can identify rk

elements in ϒ . (It will soon be clear why it is useful to know ϒ).

• Step 2. From (11.44) we have ϒϕt = C (1) εt as s → ∞. The variances of both
sides must be equal

Eϒϕtϕ
′

tϒ
′
= EC (1) εtε

′

tC (1)
′ , or

ϒϒ ′
= C (1)�C (1)′ , (11.48)

which gives k (k + 1) /2 restrictions on ϒ (the number of unique elements in the
symmetric ϒϒ ′). (However, each column of ϒ is only identified up to a sign trans-
formation: neither step 1 or 2 is affected by multiplying each element in column j

of ϒ by -1.)

• Step 3. ϒ has nk elements, so we still need nk − rk − k (k + 1) /2 = k(k − 1)/2
further restrictions on ϒ to identify all elements. They could be, for instance, that
money supply shocks have no long run effect on output (some ϒi j = 0). We now
know ϒ .

• Step 4. Combining Cov

([
ϕt

ψt

])
= In with (11.45) gives

[
Ik 0
0 Ir

]
=

[
Fk

Fr

]
�

[
Fk

Fr

]′

, (11.49)

which gives n (n + 1) /2 restrictions.

– Step 4a. Premultiply (11.47) with ϒ ′ and solve for Fk

Fk =
(
ϒ ′ϒ

)−1
ϒ ′C(1). (11.50)

2Equivalently, we can use (11.47) and (11.46) to calculate ϒ and 8s (for all s) and then calculate the
impulse response function from (11.43).
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(This means that Eϕtϕ
′
t = Fk�F ′

k =
(
ϒ ′ϒ

)−1
ϒ ′C(1)�C (1)′ϒ

(
ϒ ′ϒ

)−1.
From (11.48) we see that this indeed is Ik as required by (11.49).) We still
need to identify Fr .

– Step 4b. From (11.49), Eϕtψ
′
t = 0k×r , we get Fk�F ′

r = 0k×r , which gives
kr restrictions on the rn elements in Fr . Similarly, from Eψtψ

′
t = Ir , we get

Fr�F ′
r = Ir , which gives r (r + 1) /2 additional restrictions on Fr . We still

need r (r − 1) /2 restrictions. Exactly how they look does not matter for the
impulse response function of ϕt (as long as Eϕtψ

′

t = 0). Note that restrictions
on Fr are restrictions on ∂yt/∂ψ

′
t , that is, on the contemporaneous response.

This is exactly as in the standard case without cointegration.

A summary of identifying assumptions used by different authors is found in Englund,
Vredin, and Warne (1994).
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Söderlind, P., and A. Vredin, 1996, “Applied Cointegration Analysis in the Mirror of
Macroeconomic Theory,” Journal of Applied Econometrics, 11, 363–382.

148

12 Kalman filter

12.1 Conditional Expectations in a Multivariate Normal Distribution

Reference: Harvey (1989), Lütkepohl (1993), and Hamilton (1994)
Suppose Zm×1 and Xn×1 are jointly normally distributed[

Z

X

]
= N

([
Z̄

X̄

]
,

[
6zz 6zx

6xz 6xx

])
. (12.1)

The distribution of the random variable Z conditional on that X = x is also normal with
mean (expectation of the random variable Z conditional on that the random variable X

has the value x)
E (Z |x)︸ ︷︷ ︸

m×1

= Z̄︸︷︷︸
m×1

+ 6zx︸︷︷︸
m×n

6−1
xx︸︷︷︸

n×n

(
x − X̄

)︸ ︷︷ ︸
n×1

, (12.2)

and variance (variance of Z conditional on that X = x)

Var (Z |x) = E
{

[Z − E (Z |x)]2
∣∣∣ x
}

= 6zz −6zx6
−1
xx 6xz. (12.3)

The conditional variance is the variance of the prediction error Z−E(Z |x).
Both E(Z |x) and Var(Z |x) are in general stochastic variables, but for the multivariate

normal distribution Var(Z |x) is constant. Note that Var(Z |x) is less than 6zz (in a matrix
sense) if x contains any relevant information (so 6zx is not zero, that is, E(z|x) is not a
constant).

It can also be useful to know that Var(Z) =E[Var (Z |X)] + Var[E (Z |X)] (the X is
now random), which here becomes 6zz −6zx6

−1
xx 6xz + 6zx6

−1
xx Var(X)6−1

xx 6x Z = 6zz .
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12.2 Kalman Recursions

12.2.1 State space form

The measurement equation is

yt = Zαt + εt , with Var (εt) = H , (12.4)

where yt and εt are n×1 vectors, and Z an n×m matrix. (12.4) expresses some observable
variables yt in terms of some (partly) unobservable state variables αt . The transition
equation for the states is

αt = Tαt−1 + ut , with Var (ut) = Q, (12.5)

where αt and ut are m × 1 vectors, and T an m × m matrix. This system is time invariant
since all coefficients are constant. It is assumed that all errors are normally distributed,
and that E(εtut−s) = 0 for all s.

Example 1 (AR(2).) The process xt = ρ1xt−1 + ρ2xt−2 + et can be rewritten as

xt︸︷︷︸
yt

=

[
1 0

]
︸ ︷︷ ︸

Z

[
xt

xt−1

]
︸ ︷︷ ︸+ 0︸︷︷︸

εt

αt

,

[
xt

xt−1

]
︸ ︷︷ ︸

αt

=

[
ρ1 ρ2

1 0

]
︸ ︷︷ ︸

T

[
xt−1

xt−2

]
︸ ︷︷ ︸

αt−1

+

[
et

0

]
︸ ︷︷ ︸

ut

,

with H = 0, and Q =

[
Var (et) 0

0 0

]
. In this case n = 1, m = 2.

12.2.2 Prediction equations: E(αt |It−1)

Suppose we have an estimate of the state in t − 1 based on the information set in t − 1,
denoted by α̂t−1, and that this estimate has the variance

Pt−1 = E
[(
α̂t−1 − αt−1

) (
α̂t−1 − αt−1

)′]
. (12.6)
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Now we want an estimate of αt based α̂t−1. From (12.5) the obvious estimate, denoted
by αt |t−1, is

α̂t |t−1 = T α̂t−1. (12.7)

The variance of the prediction error is

Pt |t−1 = E
[(
αt − α̂t |t−1

) (
αt − α̂t |t−1

)′]
= E

{[
Tαt−1 + ut − T α̂t−1

] [
Tαt−1 + ut − T α̂t−1

]′}
= E

{[
T
(
α̂t−1 − αt−1

)
− ut

] [
T
(
α̂t−1 − αt−1

)
− ut

]′}
= T E

[(
α̂t−1 − αt−1

) (
α̂t−1 − αt−1

)′] T ′
+ Eutu′

t

= T Pt−1T ′
+ Q, (12.8)

where we have used (12.5), (12.6), and the fact that ut is uncorrelated with α̂t−1 − αt−1.

Example 2 (AR(2) continued.) By substitution we get

α̂t |t−1 =

[
x̂t |t−1

x̂t−1|t−1

]
=

[
ρ1 ρ2

1 0

][
x̂t−1|t−1

x̂t−2|t−1

]
, and

Pt |t−1 =

[
ρ1 ρ2

1 0

]
Pt−1

[
ρ1 1
ρ2 0

]
+

[
Var (εt) 0

0 0

]

If we treat x−1 and x0 as given, then P0 = 02×2 which would give P1|0 =

[
Var (εt) 0

0 0

]
.

12.2.3 Updating equations: E(αt |It−1) →E(αt |It)

The best estimate of yt , given ât |t−1, follows directly from (12.4)

ŷt |t−1 = Z α̂t |t−1, (12.9)

with prediction error

vt = yt − ŷt |t−1 = Z
(
αt − α̂t |t−1

)
+ εt . (12.10)
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The variance of the prediction error is

Ft = E
(
vtv

′

t
)

= E
{[

Z
(
αt − α̂t |t−1

)
+ εt

] [
Z
(
αt − α̂t |t−1

)
+ εt

]′}
= ZE

[(
αt − α̂t |t−1

) (
αt − α̂t |t−1

)′] Z ′
+ Eεtε

′

t

= Z Pt |t−1 Z ′
+ H, (12.11)

where we have used the definition of Pt |t−1 in (12.8), and of H in 12.4. Similarly, the
covariance of the prediction errors for yt and for αt is

Cov
(
αt − α̂t |t−1, yt − ŷt |t−1

)
= E

(
αt − α̂t |t−1

) (
yt − ŷt |t−1

)
= E

{(
αt − α̂t |t−1

) [
Z
(
αt − α̂t |t−1

)
+ εt

]′}
= E

[(
αt − α̂t |t−1

) (
αt − α̂t |t−1

)′] Z ′

= Pt |t−1 Z ′. (12.12)

Suppose that yt is observed and that we want to update our estimate of αt from α̂t |t−1

to α̂t , where we want to incorporate the new information conveyed by yt .

Example 3 (AR(2) continued.) We get

ŷt |t−1 = Z α̂t |t−1 =

[
1 0

] [ x̂t |t−1

x̂t−1|t−1

]
= x̂t |t−1 = ρ1 x̂t−1|t−1 + ρ2 x̂t−2|t−1, and

Ft =

[
1 0

]{[ ρ1 ρ2

1 0

]
Pt−1

[
ρ1 1
ρ2 0

]
+

[
Var (εt) 0

0 0

]}[
1 0

]′
.

If P0 = 02×2 as before, then F1 = P1 =

[
Var (εt) 0

0 0

]
.

By applying the rules (12.2) and (12.3) we note that the expectation of αt (like z in
(12.2)) conditional on yt (like x in (12.2)) is (note that yt is observed so we can use it to
guess αt )

α̂t︸︷︷︸
E(z|x)

= α̂t |t−1︸ ︷︷ ︸
Ez

+ Pt |t−1 Z ′︸ ︷︷ ︸
6zx

Z Pt |t−1 Z ′
+ H︸ ︷︷ ︸

6xx=Ft


−1yt − Z α̂t |t−1︸ ︷︷ ︸

Ex

 (12.13)
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with variance

Pt︸︷︷︸
Var(z|x)

= Pt |t−1︸ ︷︷ ︸
6zz

− P ′

t |t−1 Z ′︸ ︷︷ ︸
6zx

(
Z Pt |t−1 Z ′

+ H
)−1︸ ︷︷ ︸

6−1
xx

Z Pt |t−1︸ ︷︷ ︸
6xz

, (12.14)

where α̂t |t−1 (“Ez”) is from (12.7), Pt |t−1 Z ′ (“6zx”) from (12.12), Z Pt |t−1 Z ′
+H (“6xx”)

from (12.11), and Z α̂t |t−1 (“Ex”) from (12.9).
(12.13) uses the new information in yt , that is, the observed prediction error, in order

to update the estimate of αt from α̂t |t−1 to α̂t .
Proof. The last term in (12.14) follows from the expected value of the square of the

last term in (12.13)

Pt |t−1 Z ′
(
Z Pt |t−1 Z ′

+ H
)−1 E

(
yt − Zαt |t−1

) (
yt − Zαt |t−1

)′ (Z Pt |t−1 Z ′
+ H

)−1 Z Pt |t−1,

(12.15)
where we have exploited the symmetry of covariance matrices. Note that yt − Zαt |t−1 =

yt − ŷt |t−1, so the middle term in the previous expression is

E
(
yt − Zαt |t−1

) (
yt − Zαt |t−1

)′
= Z Pt |t−1 Z ′

+ H. (12.16)

Using this gives the last term in (12.14).

12.2.4 The Kalman Algorithm

The Kalman algorithm calculates optimal predictions of αt in a recursive way. You can
also calculate the prediction errors vt in (12.10) as a by-prodct, which turns out to be
useful in estimation.

1. Pick starting values for P0 and α0. Let t = 1.

2. Calculate (12.7), (12.8), (12.13), and (12.14) in that order. This gives values for α̂t

and Pt . If you want vt for estimation purposes, calculate also (12.10) and (12.11).
Increase t with one step.

3. Iterate on 2 until t = T .

One choice of starting values that work in stationary models is to set P0 to the uncon-
ditional covariance matrix of αt , and α0 to the unconditional mean. This is the matrix P
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to which (12.8) converges: P = T PT ′
+ Q. (The easiest way to calculate this is simply

to start with P = I and iterate until convergence.)
In non-stationary model we could set

P0 = 1000 ∗ Im , and α0 = 0m×1, (12.17)

in which case the first m observations of α̂t and vt should be disregarded.

12.2.5 MLE based on the Kalman filter

For any (conditionally) Gaussian time series model for the observable yt the log likelihood
for an observation is

ln L t = −
n
2

ln (2π)−
1
2

ln |Ft | −
1
2
v′

t F−1
t vt . (12.18)

In case the starting conditions are as in (12.17), the overall log likelihood function is

ln L =

{ ∑T
t=1 ln L t in stationary models∑T
t=m+1 ln L t in non-stationary models.

(12.19)

12.2.6 Inference and Diagnostics

We can, of course, use all the asymptotic MLE theory, like likelihood ratio tests etc. For
diagnostoic tests, we will most often want to study the normalized residuals

ṽi t = vi t/
√

element i i in Ft , i = 1, ..., n,

since element i i in Ft is the standard deviation of the scalar residual vi t . Typical tests are
CUSUMQ tests for structural breaks, various tests for serial correlation, heteroskedastic-
ity, and normality.
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13 Outliers and Robust Estimators

13.1 Influential Observations and Standardized Residuals

Reference: Greene (2000) 6.9; Rousseeuw and Leroy (1987)
Consider the linear model

yt = x ′

tβ0 + ut , (13.1)

where xt is k × 1. The LS estimator

β̂ =

( T∑
t=1

xt x ′

t

)−1 T∑
t=1

xt yt , (13.2)

which is the solution to

min
β

T∑
t=1

(
yt − x ′

tβ
)2
. (13.3)

The fitted values and residuals are

ŷt = x ′

t β̂, and ût = yt − ŷt . (13.4)

Suppose we were to reestimate β on the whole sample, except observation s. This
would give us an estimate β̂(s). The fitted values and residual are then

ŷ(s)t = x ′

t β̂
(s), and û(s)t = yt − ŷ(s)t . (13.5)

A common way to study the sensitivity of the results with respect to excluding observa-
tions is to plot β̂(s) − β̂, and ŷ(s)s − ŷs . Note that we here plot the fitted value of ys using
the coefficients estimated by excluding observation s from the sample. Extreme values
prompt a closer look at data (errors in data?) and perhaps also a more robust estimation
method than LS, which is very sensitive to outliers.

Another useful way to spot outliers is to study the standardized residuals, ûs/σ̂ and
û(s)s /σ̂ (s), where σ̂ and σ̂ (s) are standard deviations estimated from the whole sample and
excluding observation s, respectively. Values below -2 or above 2 warrant attention (recall
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that Pr(x > 1.96) ≈ 0.025 in a N (0, 1) distribution).
Sometimes the residuals are instead standardized by taking into account the uncer-

tainty of the estimated coefficients. Note that

û(s)t = yt − x ′

t β̂
(s)

= ut + x ′

t

(
β − β̂(s)

)
, (13.6)

since yt = x ′
tβ + ut . The variance of ût is therefore the variance of the sum on the

right hand side of this expression. When we use the variance of ut as we did above to
standardize the residuals, then we disregard the variance of β̂(s). In general, we have

Var
(

û(s)t

)
= Var(ut)+ x ′

tVar
(
β − β̂(s)

)
xt + 2Cov

[
ut , x ′

t

(
β − β̂(s)

)]
. (13.7)

When t = s, which is the case we care about, the covariance term drops out since β̂(s)

cannot be correlated with us since period s is not used in the estimation (this statement
assumes that shocks are not autocorrelated). The first term is then estimated as the usual
variance of the residuals (recall that period s is not used) and the second term is the
estimated covariance matrix of the parameter vector (once again excluding period s) pre-
and postmultiplied by xs .

Example 1 (Errors are iid independent of the regressors.) In this case the variance of

the parameter vector is estimated as σ̂ 2(6xt x ′
t)

−1 (excluding period s), so we have

Var
(

û(s)t

)
= σ̂ 2

(
1 + x ′

s(6xt x ′

t)
−1xs

)
.

13.2 Recursive Residuals∗

Reference: Greene (2000) 7.8
Recursive residuals are a version of the technique discussed in Section 13.1. They

are used when data is a time series. Suppose we have a sample t = 1, ..., T ,.and that
t = 1, ..., s are used to estimate a first estimate, β̂[s] (not to be confused with β̂(s) used in
Section 13.1). We then make a one-period ahead forecast and record the fitted value and
the forecast error

ŷ[s]
s+1 = x ′

s+1β̂
[s], and û[s]

s+1 = ys+1 − ŷ[s]
s+1. (13.8)
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Figure 13.1: This figure shows recursive residuals and CUSUM statistics, when data are
simulated from yt = 0.85yt−1 + ut , with Var(ut) = 1.

This is repeated for the rest of the sample by extending the sample used in the estimation
by one period, making a one-period ahead forecast, and then repeating until we reach the
end of the sample.

A first diagnosis can be made by examining the standardized residuals, û[s]
s+1/σ̂

[s],
where σ̂ [s] can be estimated as in (13.7) with a zero covariance term, since us+1 is not
correlated with data for earlier periods (used in calculating β̂[s]), provided errors are not
autocorrelated. As before, standardized residuals outside ±2 indicates problems: outliers
or structural breaks (if the residuals are persistently outside ±2).

The CUSUM test uses these standardized residuals to form a sequence of test statistics.
A (persistent) jump in the statistics is a good indicator of a structural break. Suppose we
use r observations to form the first estimate of β, so we calculate β̂[s] and û[s]

s+1/σ̂
[s] for

s = r, ..., T . Define the cumulative sums of standardized residuals

Wt =

t∑
s=r

û[s]
s+1/σ̂

[s], t = r, ..., T . (13.9)

Under the null hypothesis that no structural breaks occurs, that is, that the true β is the
same for the whole sample, Wt has a zero mean and a variance equal to the number of
elements in the sum, t − r + 1. This follows from the fact that the standardized resid-
uals all have zero mean and unit variance and are uncorrelated with each other. Typ-
ically, Wt is plotted along with a 95% confidence interval, which can be shown to be
±
(
a
√

T − r + 2a (t − r) /
√

T − r
)

with a = 0.948. The hypothesis of no structural
break is rejected if the Wt is outside this band for at least one observation. (The derivation
of this confidence band is somewhat tricky, but it incorporates the fact that Wt and Wt+1
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Figure 13.2: This figure shows an example of how LS and LAD can differ. In this case
yt = 0.75xt + ut , but only one of the errors has a non-zero value.

are very correlated.)

13.3 Robust Estimation

Reference: Greene (2000) 9.8.1; Rousseeuw and Leroy (1987); Donald and Maddala
(1993); and Judge, Griffiths, Lütkepohl, and Lee (1985) 20.4.

The idea of robust estimation is to give less weight to extreme observations than in
Least Squares. When the errors are normally distributed, then there should be very few ex-
treme observations, so LS makes a lot of sense (and is indeed the MLE). When the errors
have distributions with fatter tails (like the Laplace or two-tailed exponential distribution,
f (u) = exp(− |u| /σ)/2σ ), then LS is no longer optimal and can be fairly sensitive to
outliers. The ideal way to proceed would be to apply MLE, but the true distribution is
often unknown. Instead, one of the “robust estimators” discussed below is often used.

Let ût = yt − x ′
t β̂. Then, the least absolute deviations (LAD), least median squares
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(LMS), and least trimmed squares (LTS) estimators solve

β̂L AD = arg min
β

T∑
t=1

∣∣ût
∣∣ (13.10)

β̂L M S = arg min
β

[
median

(
û2

t

)]
(13.11)

β̂LT S = arg min
β

h∑
i=1

û2
i , û2

1 ≤ û2
2 ≤ ... and h ≤ T . (13.12)

Note that the LTS estimator in (13.12) minimizes of the sum of the h smallest squared
residuals.

These estimators involve non-linearities, so they are more computationally intensive
than LS. In some cases, however, a simple iteration may work.

Example 2 (Algorithm for LAD.) The LAD estimator can be written

β̂L AD = arg min
β

T∑
t=1

wt û2
t , wt = 1/

∣∣ût
∣∣ ,

so it is a weighted least squares where both yt and xt are multiplied by 1/
∣∣ût
∣∣. It can be

shown that iterating on LS with the weights given by 1/
∣∣ût
∣∣, where the residuals are from

the previous iteration, converges very quickly to the LAD estimator.

It can be noted that LAD is actually the MLE for the Laplace distribution discussed
above.

13.4 Multicollinearity∗

Reference: Greene (2000) 6.7
When the variables in the xt vector are very highly correlated (they are “multicollinear”)

then data cannot tell, with the desired precision, if the movements in yt was due to move-
ments in xi t or x j t . This means that the point estimates might fluctuate wildly over sub-
samples and it is often the case that individual coefficients are insignificant even though
the R2 is high and the joint significance of the coefficients is also high. The estimators
are still consistent and asymptotically normally distributed, just very imprecise.

160

A common indicator for multicollinearity is to standardize each element in xt by sub-
tracting the sample mean and then dividing by its standard deviation

x̃i t = (xi t − x̄i t) /std (xi t) . (13.13)

(Another common procedure is to use x̃i t = xi t/(6
T
t=1x2

i t/T )1/2.)
Then calculate the eigenvalues, λ j , of the second moment matrix of x̃t

A =
1
T

T∑
t=1

x̃t x̃ ′

t . (13.14)

The condition number of a matrix is the ratio of the largest (in magnitude) of the
eigenvalues to the smallest

c = |λ|max / |λ|min . (13.15)

(Some authors take c1/2 to be the condition number; others still define it in terms of the
“singular values” of a matrix.) If the regressors are uncorrelated, then the condition value
of A is one. This follows from the fact that A is a (sample) covariance matrix. If it is
diagonal, then the eigenvalues are equal to diagonal elements, which are all unity since
the standardization in (13.13) makes all variables have unit variances. Values of c above
several hundreds typically indicate serious problems.
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14 Generalized Least Squares

Reference: Greene (2000) 11.3-4
Additional references: Hayashi (2000) 1.6; Johnston and DiNardo (1997) 5.4; Verbeek
(2000) 6

14.1 Introduction

Instead of using LS in the presence of autocorrelation/heteroskedasticity (and, of course,
adjusting the variance-covariance matrix), we may apply the generalized least squares
method. It can often improve efficiency.

The linear model yt = x ′
tβ0 + ut written on matrix form (GLS is one of the cases in

econometrics where matrix notation really pays off) is

y = Xβ0 + u, where (14.1)

y =


y1

y2
...

yT

 , X =


x ′

1

x ′

2
...

x ′

T

 , and u =


u1

u2
...

uT

 .

Suppose that the covariance matrix of the residuals (across time) is

Euu′
=


Eu1u1 Eu1u2 · · · Eu1uT

Eu2u1 Eu2u2 Eu2uT
...

. . .
...

EuT u1 EuT u2 EuT uT


= �T ×T . (14.2)

This allows for both heteroskedasticity (different elements along the main diagonal) and
autocorrelation (non-zero off-diagonal elements). LS is still consistent even if � is not
proportional to an identity matrix, but it is not efficient. Generalized least squares (GLS)
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is. The trick of GLS is to transform the variables and the do LS.

14.2 GLS as Maximum Likelihood

Remark 1 If the n×1 vector x has a multivariate normal distribution with mean vectorµ

and covariance matrix�, then the joint probability density function is (2π)−n/2
|�|

−1/2 exp[−(x−

µ)′�−1(x − µ)/2].

If the T ×1 vector u is N (0, �), then the joint pdf of u is (2π)−n/2
|�|

−1/2 exp[−u′�−1u/2].
Change variable from u to y − Xβ (the Jacobian of this transformation equals one), and
take logs to get the (scalar) log likelihood function

ln L = −
n
2

ln (2π)−
1
2

ln |�| −
1
2
(y − Xβ)′�−1 (y − Xβ) . (14.3)

To simplify things, suppose we know �. It is then clear that we maximize the likelihood
function by minimizing the last term, which is a weighted sum of squared errors.

In the classical LS case, � = σ 2 I , so the last term in (14.3) is proportional to the
unweighted sum of squared errors. The LS is therefore the MLE when the errors are iid
normally distributed.

When errors are heteroskedastic, but not autocorrelated, then � has the form

� =


σ 2

1 0 · · · 0

0 σ 2
2

...
...

. . . 0
0 · · · 0 σ 2

T

 . (14.4)

In this case, we can decompose �−1 as

�−1
= P ′ P , where P =


1/σ1 0 · · · 0

0 1/σ2
...

...
. . . 0

0 · · · 0 1/σT

 . (14.5)
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The last term in (14.3) can then be written

−
1
2
(y − Xβ)′�−1 (y − Xβ) = −

1
2
(y − Xβ)′ P ′ P (y − Xβ)

= −
1
2
(Py − P Xβ)′ (Py − P Xβ) . (14.6)

This very practical result says that if we define y∗
t = yt/σt and x∗

t = xt/σt , then we get
ML estimates of β running an LS regression of y∗

t on x∗
t . (One of the elements in xt could

be a constant—also this one should be transformed). This is the generalized least squares
(GLS).

Remark 2 Let A be an n × n symmetric positive definite matrix. It can be decomposed

as A = P P ′. There are many such P matrices, but only one which is lower triangular P

(see next remark).

Remark 3 Let A be an n × n symmetric positive definite matrix. The Cholesky decom-

position gives the unique lower triangular P1 such that A = P1 P ′

1 or an upper triangular

matrix P2 such that A = P ′

2 P2 (clearly P2 = P ′

1). Note that P1 and P2 must be invertible

(since A is).

When errors are autocorrelated (with or without heteroskedasticity), then it is typ-
ically harder to find a straightforward analytical decomposition of �−1. We therefore
move directly to the general case. Since the covariance matrix is symmetric and positive
definite, �−1 is too. We therefore decompose it as

�−1
= P ′ P. (14.7)

The Cholesky decomposition is often a convenient tool, but other decompositions can
also be used. We can then apply (14.6) also in this case—the only difference is that P

is typically more complicated than in the case without autocorrelation. In particular, the
transformed variables Py and P X cannot be done line by line (y∗

t is a function of yt , yt−1,
and perhaps more).

Example 4 (AR(1) errors, see Davidson and MacKinnon (1993) 10.6.) Let ut = aut−1 +

εt where εt is iid. We have Var(ut) = σ 2/
(
1 − a2), and Corr(ut , ut−s) = as . For T = 4,
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the covariance matrix of the errors is

� = Cov
([

u1 u2 u3 u4

]′)

=
σ 2

1 − a2


1 a a2 a3

a 1 a a2

a2 a 1 a

a3 a2 a 1

 .
The inverse is

�−1
=

1
σ 2


1 −a 0 0

−a 1 + a2
−a 0

0 −a 1 + a2
−a

0 0 −a 1

 ,
and note that we can decompose it as

�−1
=

1
σ


√

1 − a2 0 0 0
−a 1 0 0
0 −a 1 0
0 0 −a 1


′

︸ ︷︷ ︸
P ′

1
σ


√

1 − a2 0 0 0
−a 1 0 0
0 −a 1 0
0 0 −a 1


︸ ︷︷ ︸

P

.

This is not a Cholesky decomposition, but certainly a valid decomposition (in case of

doubt, do the multiplication). Premultiply the system
y1

y2

y3

y4

 =


x ′

1

x ′

2

x ′

3

x ′

4

β0 +


u1

u2

u3

u4


by P to get

1
σ


√(

1 − a2
)
y1

y2 − ay1

y3 − ay2

y4 − ay3

 =
1
σ


√(

1 − a2
)
x ′

1

x ′

2 − ax ′

1

x ′

3 − ax ′

2

x ′

4 − ax ′

3

β0 +
1
σ


√(

1 − a2
)
u1

ε2

ε3

ε4

 .
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Note that all the residuals are uncorrelated in this formulation. Apart from the first ob-

servation, they are also identically distributed. The importance of the first observation

becomes smaller as the sample size increases—in the limit, GLS is efficient.

14.3 GLS as a Transformed LS

When the errors are not normally distributed, then the MLE approach in the previous
section is not valid. But we can still note that GLS has the same properties as LS has with
iid non-normally distributed errors. In particular, the Gauss-Markov theorem applies,
so the GLS is most efficient within the class of linear (in yt ) and unbiased estimators
(assuming, of course, that GLS and LS really are unbiased, which typically requires that
ut is uncorrelated with xt−s for all s). This follows from that the transformed system

Py = P Xβ0 + Pu

y∗
= X∗β0 + u∗, (14.8)

have iid errors, u∗. So see this, note that

Eu∗u∗′
= EPuu′ P ′

= PEuu′ P ′. (14.9)

Recall that Euu′
= �, P ′ P = �−1 and that P ′ is invertible. Multiply both sides by P ′

P ′Eu∗u∗′
= P ′ PEuu′ P ′

= �−1�P ′

= P ′, so Eu∗u∗′
= I. (14.10)

14.4 Feasible GLS

In practice, we usually do not know�. Feasible GLS (FGSL) is typically implemented by
first estimating the model (14.1) with LS, then calculating a consistent estimate of �, and
finally using GLS as if � was known with certainty. Very little is known about the finite
sample properties of FGLS, but (the large sample properties) consistency, asymptotic
normality, and asymptotic efficiency (assuming normally distributed errors) can often be
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established. Evidence from simulations suggests that the FGLS estimator can be a lot
worse than LS if the estimate of � is bad.

To use maximum likelihood when � is unknown requires that we make assumptions
about the structure of � (in terms of a small number of parameters), and more gener-
ally about the distribution of the residuals. We must typically use numerical methods to
maximize the likelihood function.

Example 5 (MLE and AR(1) errors.) If ut in Example 4 are normally distributed, then

we can use the �−1 in (14.3) to express the likelihood function in terms of the unknown

parameters: β, σ , and a. Maximizing this likelihood function requires a numerical opti-

mization routine.
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0 Reading List

Main reference: Greene (2000) (GR).
(∗) denotes required reading.

0.1 Introduction

1. ∗Lecture notes

0.2 Time Series Analysis

1. ∗Lecture notes

2. ∗GR 13.1–13.3, 18.1–18.2, 17.5

3. Obstfeldt and Rogoff (1996) 2.3.5

4. Sims (1980)

Keywords: moments of a time series process, covariance stationarity, ergodicity, con-
ditional and unconditional distributions, white noise, MA, AR, MLE of AR process, VAR.
(Advanced: unit roots, cointegration)

0.3 Distribution of Sample Averages

1. ∗Lecture notes

2. GR 11.2

Keywords: Newey-West
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0.4 Asymptotic Properties of LS

1. ∗Lecture notes

2. ∗GR 9.1–9.4, 11.2

Keywords: consistency of LS, asymptotic normality of LS, influential observations,
robust estimators, LAD

0.5 Instrumental Variable Method

1. ∗Lecture notes

2. ∗GR 9.5 and 16.1-2

Keywords: measurement errors, simultaneous equations bias, instrumental variables,
2SLS

0.6 Simulating the Finite Sample Properties

1. ∗Lecture notes

2. ∗GR 5.3

Keywords: Monte Carlo simulations, Bootstrap simulations

0.7 GMM

1. ∗Lecture notes

2. ∗GR 4.7 and 11.5-6

3. Christiano and Eichenbaum (1992)

Keywords: method of moments, unconditional/conditional moment conditions, loss
function, asymptotic distribution of GMM estimator, efficient GMM, GMM and inference
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0.7.1 Application of GMM: LS/IV with Autocorrelation and Heteroskedasticity

1. ∗Lecture notes

2. ∗GR 12.2 and 13.4

3. Lafontaine and White (1986)

4. Mankiw, Romer, and Weil (1992)

Keywords: finite sample properties of LS and IV, consistency of LS and IV, asymptotic
distribution of LS and IV

0.7.2 Application of GMM: Systems of Simultaneous Equations

1. ∗Lecture notes

2. ∗GR 16.1-2, 16.3 (introduction only)

3. Obstfeldt and Rogoff (1996) 2.1

4. Deaton (1992) 3

Keywords: structural and reduced forms, identification, 2SLS
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