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Chapter 1

Linear Regression

1.1 The Model

� The Þrst part of the course will be concerned with estimating and
testing in the linear model. We will suggest procedures and derive
their properties under certain assumptions. The linear model is the
basis for most of econometrics and a Þrm grounding in this theory is
essential for future work.

� We observe the following data

y =

 y1
...
yn

 ;

X =

 x11 · · · xK1
...

...
x1n xKn

 =

 x01
...
x0n

 ,
where rank(X) = K. Note that this is an assumption, but it is imme-
diately veriÞable from the data in contrast to some other assumptions
we will make.

� It is desirable for statistical analysis to specify a model of how these
data were generated. We suppose that there is a random mechanism
which is behind everything - the data we have is one realisation of
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8 CHAPTER 1. LINEAR REGRESSION

an inÞnity of such potential outcomes. We shall make the following
assumptions regarding the way y,X were generated:

� Fixed Design Linear Model

� (A1) X is Þxed in repeated samples

� (A2) ∃β = (β1, . . . ,βK)0 such that E(y) = Xβ.
� (A3) Var(y) = σ2In×n.

� We stick with Þxed design for most of the linear regression section.
Fixed design is perhaps unconvincing for most economic data sets, be-
cause of the asymmetry between y and x. That is, in economic datasets
we have no reason to think that some data were randomly generated
while others were Þxed. This is especially so in time series when one
regressor might be a lagged value of the dependent variable.

� A slightly different speciÞcation is Random Design Linear Model

� (A1r) X is random with respect to repeated samples

� (A2r) ∃β s.t. E(y|X) = Xβ
� (A3r) Var(y|X) = σ2In×n,

where formally A2r and A3r hold with probability one.

� However, one can believe in a random design model, but want to con-
duct inference in the conditional distribution [givenX]. This is sensible
at least in the cross-section case where there are no lagged dependent
variables. In this case, we are effectively working in a Þxed design
model. So the real distinction in this case is whether one evaluates
quantities in the conditional or unconditional distribution.
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� Finally, we write the regression model in the more familiar form. DeÞne
ε = y −Xβ = (ε1, . . . , εn)0, then

y = Xβ + ε,

where [in the Þxed design]

E(ε) = 0

E(εε0) = σ2In.

The linear regression model is more commonly stated like this with
statistical assumptions made about the unobservable ε rather than di-
rectly on the observable y. The assumptions about the vector ε are
quite weak in some respects - the observations need not be indepen-
dent and identically distributed, since only the Þrst two mometns of
the vector are speciÞed - but strong in regard to the second moments
themselves.

� It is worth discussing here some alternative assumptions made about
the error terms. For this purpose we shall assume a random design,
and moreover suppose that (xi, εi) are i.i.d. In this case, we can further
assume that

� E(εixi) = 0
� E(εi|xi) = 0, denoted εi ⊥ xi
� εi are i.i.d. and independent of xi, denoted εi ⊥⊥ xi.
� εi ∼ N(0,σ2).

� The Þrst assumption, called an unconditional moment condition, is the
weakest assumption needed to �identify� the parameter β.

� The second assumption, called a conditional moment restriction, is
a little bit stronger. It is really just a rewriting of the deÞnition of
conditional expectation.

� The third assumption is much stronger and is not strictly necessary for
estimation purposes although it does have implications about efficiency
and choice of estimator.

� The fourth assumption we will sometimes make in connection with
hypothesis testing and for establishing optimality of least squares.
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1.2 The OLS Procedure

� In practice we don�t know the parameter β and seek to estimate it from
the data.

� For any b, deÞne Xb and
u(b) = y −Xb.

Then u(b) is the vector of discrepancies between the observed y from
the predicted by Xb.

� The Ordinary Least Squares (OLS) procedure chooses bβ to minimize
the quadratic form

S(b) = u(b)0u(b) =
nX
i=1

u2i (b) = (y −Xb)0(y −Xb)

with respect to b ∈ Rk. This is perhaps the main estimator of β, and
we shall study its properties at length.

� The Þrst question is whether a minimum exists. Since the criterion is
a continuous function of b, a minimum over any compact subset always
exists.

� A necessary condition for the uniqueness of a solution is that n ≥ K.
If n = K, the solution essentially involves interpolating the data, i.e.,
the Þtted value of y will be equal to the actual value.

� When the assumption that rank(X) = K is made, bβ is uniquely de-
Þned for any y and X independently of model; so there is no need for
assumptions A1-A3 when it comes to computing the estimator.

� We now give two derivations of the well-known result that

bβ = (X 0X)−1X 0y.

� We suppose the answer is given by this formula and demonstrate thatbβ minimizes S(b) with respect to b. Write
u(b) = y−Xbβ+Xbβ−Xb,
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so that

S(b) = (y−Xbβ+Xbβ−Xb)0(y−Xbβ+Xbβ−Xb)
= (y−Xbβ)0(y−Xbβ)
+(bβ−b)0X 0X(bβ−b)
+(y−Xbβ)0X(bβ−b) + (bβ−b)0X 0(y−Xbβ)

= (y−Xbβ)0(y−Xbβ) + (bβ−b)0X 0X(bβ−b),
because

X 0(y−Xbβ) = X 0y −X 0y = 0.

But
(bβ−b)0X 0X(bβ − b) ≥ 0,

and equality holds only when b = bβ.
� A minimizer of S(b) must satisfy the vector of Þrst order conditions:

∂S

∂b
= 2X 0(y−Xbβ) = 0.

Therefore,
X 0y = X 0Xbβ.

Now we use the assumption that X is of full rank. This ensures that
X 0X is invertible, and bβ = (X 0X)−1X 0y

as required. To verify that we have found a local minimum rather than
maximum it is necessary to calculate the second derivatives

∂2S

∂b∂b0
=2X 0X > 0.

� The vector derivatives follow by straightforward calculus
∂

∂bj

nX
i=1

ui(b)
2 = 2

nX
i=1

ui(b)
∂ui
∂bj

= −2
nX
i=1

ui(b)xij ,
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since
∂ui
∂bj

= −xij.

� Characterization of the Solution. DeÞne the Þtted value by =
Xbβ and the OLS residualsbu = y − by = y −Xbβ.

� The OLSE bβ solves the normal equations X 0bu = 0, i.e.,
nX
i=1

x1ibui = 0

nX
i=1

x2ibui = 0

...
nX
i=1

xKibui = 0.

� We say that X is orthogonal to bu, denoted X ⊥ bu. Note that if, as usual
X1i = 1, then, we have

Pn
i=1 bui =0.

1.2.1 Some Alternative Estimation Paradigms

� We brießy mention some alternative estimation methods which actually
lead to the same estimator as the OLS estimator in some special cases,
but which are more broadly applicable.

� Maximum Likelihood. Suppose we also assume that y ∼ N(Xβ, σ2I).
Then the density function of y [conditional on X] is

fy|X(y) =
1

(2πσ2)n/2
exp

µ
−1
2
(y−Xβ)0(y−Xβ)

¶
.

� The density function depends on the unknown parameters β,σ2, which
we want to estimate. We therefore switch the emphasis an call the
following quantity the log likelihood function for the observed data

`(b,ω2|y,X) = −n
2
log 2π − n

2
logω2 − 1

2ω2
(y−Xb)0(y−Xb),
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where b and ω are unknown parameters.

� The maximum likelihood estimator bβmle, bσ2mle maximizes `(b,ω2) with
respect to b and ω2. It is easy to see thatbβmle = bβ

bσ2mle =
1

n
(y−Xbβmle)0(y−Xbβmle).

Basically, the criterion function is the least squares criterion apart from
an affine transformation involving only ω.

� Note however, that if we had a different assumption about the errors
than A4, e.g., they were from a t-distribution, then we would have
a different likelihood and a different estimator than bβ. In particular,
the estimator may not be explicitly deÞned and may be a nonlinear
function of y.

� Method of Moments. Suppose that we deÞne parameters through
some population moment conditions; this can arise from an economic
optimization problem, see below.

� For example, suppose that we say that β is deÞned as the unique para-
meter that satisÞes theK moment conditions [we need as manymoment
conditions as parameters]

E[xi(yi −x0iβ)] = 0.
Note that this is the natural consequence of our assumption thatE(εixi) =
0.

� Replacing the population by the sample average we must Þnd b such
that

1

n

nX
i=1

xi(yi −x0ib) = 0.

The solution to this is of coursebβ = (X 0X)−1X 0y,

i.e., the MOM estimator is equal to OLS in this case. Thus, for the
moment conditions above we are lead to the least squares estimator.



14 CHAPTER 1. LINEAR REGRESSION

� However, if we chose some other conditions, then a different estimator
results. For example, suppose that we assume that

E[xi(yi −x0iβ)3] = 0,
we would be lead to a different estimator - any solution of

1

n

nX
i=1

xi(yi −x0ib)3 = 0.

In general, this would be more complicated to analyze.

� We emphasize here that the above estimation methods are all suggested
or motivated by our assumptions, but of course we can always carry
out the procedure without regard to underlying model - that is, the
procedures only require data, not assumptions.

1.3 Geometry of OLS and Partitioned Re-
gression

� We want to give a geometric interpretation to the OLS procedure.
� The data: y, x1, . . . , xK , can all be viewed as elements of the vector
space Rn. DeÞne the set

C(X) = {α1x1 + · · · + αKxK} = {Xα : α ∈ RK} ⊆ Rn,
otherwise known as the column span of X.

� Then, C(X) is a linear subspace of Rn of dimension K assuming that
the matrix X is of full rank. If it is only of rank K∗ with K∗ < K then
C(X) is still a linear subspace of Rn but of dimension K.

� The OLS procedure can equivalently be deÞned as Þnding the point in
C(X) closest to y, where closeness is measured in terms of Euclidean
distance, i.e.,

d(y,Xb) = ky−Xbk2 = (y−Xb)0(y−Xb)
is the Euclidean distance of y to the point Xb ∈ C(X).
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� This is an old problem in geometry, which is now given a key role in
abstract mathematics.

� The projection theorem [Hilbert] says that there is a unique solution to
the minimization problem, call it by, which is characterized by the fact
that bu = y − by
is orthogonal to C(X).

� Equivalently we can write uniquely

y = by + bu,
where by ∈ C(X) and bu ∈ C⊥(X) [the space C⊥(X) is called the ortho-
complement of C(X), and consists of all vectors orthogonal to C(X)].
Essentially, one is dropping a perpendicular, and the procedure should
be familiar from high school geometry.

� For example, let n = 3 and

X =

 1 0
0 1
0 0

 .
Then C(X) is the set of all vectors in R3 with third component zero.
What is the closest point for the example above with y = (1, 1, 1)0?
This is (1, 1, 0)0 = Xbβ, bu = (0, 0, 1)0 In fact bu is orthogonal to C(X),
i.e., bu ∈ C⊥(X) = (0, 0,α)0.

� In general how do we Þnd by? When X is of full rank we can give a
simple explicit solution by = PXy,
where the Projector matrix

PX = X(X
0X)−1X 0

projects onto C(X).
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� Let bu = y − by =MXy, where the Projector matrix

MX = I −X(X 0X)−1X 0

projects onto C⊥(X). Thus for any y, we can write
y = by + bu = PXy +MXy.

The matrices PX and MX are symmetric and idempotent, i.e.,

PX = P
0
X and P

2
X = PX .

After applying PX once you are ready in C(X). This implies that
PXX = X and MXX = 0,

so that
PXMXy = 0 for all y.

� Since by ∈ C(X), we can rewrite it as by = Xbβ, so that bβ = (X 0X)−1X 0y.

� The space C(X) is invariant to nonsingular linear transforms
X 7−→ XAK×K , where detA 6= 0.

Let z ∈ C(X). Then there exists an α ∈ RK such that z = Xα.
Therefore,

z = XAA−1α = XAγ,

where γ = A−1α ∈ RK , and vice-versa.
� Since C(X) is invariant to linear transformations, so are by and bu (but
not bβ). For example, rescaling of the components of X does not affect
the values of by and bu.

y on (x1, x2, x3)(1)

y on (x1 + x2, 2x2 − x3, 3x1 − 2x2 + 5x3)(2)
in which case the transformation is

A =

 1 0 3
1 2 −2
0 −1 5

 ,
which is of full rank. Therefore, (1) and (2) yield the same by, bu.
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� Emphasizing C(X) rather than X itself is called the coordinate free ap-
proach. Some aspects of model/estimate are properties of C(X) choice
of coordinates is irrelevant.

� When X is not of full rank

� the space C(X) is still well deÞned, as is the projection from y
onto C(X).

� The Þtted value by and residual bu are uniquely deÞned in this case,
� but there is no unique coefficient vector bβ.
� This is the case commonly called multicollinearity.

� We next consider an important application of the projection idea. Par-
tition

X = (X1n×K1 ,X2n×k2) , K1 +K2 = K,

and suppose we are interested in obtaining the coefficient bβ1 in the
projection of y onto C(X).

� A key property of projection is that if X1 and X2 are orthogonal, i.e.,
if X 0

1X2 = 0, then
PX = PX1 + PX2 .

This can be veriÞed algebraically, but also should be obvious geomet-
rically. In this case, write

by = Xbβ = PXy = PX1y + PX2y = X1bβ1 +X2bβ2.
This just says that if X1 and X2 were orthogonal, then we could get bβ1
by regressing y on X1 only, and bβ2 by regressing y on X2 only.

� Very rarely are X1 and X2 orthogonal, but we can construct equiva-
lent regressors that are orthogonal. Suppose we have general X1 and
X2, whose dimensions satisfy K1 + K2 = K. We make the following
observations:

� (X1, X2) and (M2X1, X2) span the same space. This follows be-
cause

X1 =M2X1 + P2X1,
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where C(P2X1) ⊂ C(X2). Therefore,

C(M2X1, X2) = C(X1, X2).

� M2X1 and X2 are orthogonal.

� This says that if we regress y on (X1, X2) or y on (M2X1, X2) we get
the same by and bu, and that if we wanted the coefficients onM2X1 from
the second regression we could in fact just regress y on M2X1 only.

� What are the coefficients on M2X1? Recall that

by = X1bβ1 +X2bβ2
= (M2 + P2)X1bβ1 +X2bβ2
= M2X1bβ1 +X2[bβ2 + (X 0

2X2)
−1X 0

2X1
bβ1]

= M2X1bβ1 +X2 bC,
where bC = bβ2 + (X 0

2X2)
−1X 0

2X1
bβ1.

� So the coefficient on M2X1 is the original bβ1, while that on X2 is some
combination of bβ1 and bβ2. Note that M2X1 are the residuals from a
regression of X1 on X2.

� Practical Implication. If K is large and primarily interested in
Þrst K1 variables, then we can get bβ1 by regressing y [or M2y equiva-
lently] on M2X1 only, i.e.,

bβ1 = (X 0
1M2X1)

−1X 0
1M2y = (X

0
1M2M2X1)

−1X 0
1M2M2y.

This involves inversion of only K1 ×K1 and K2 ×K2 matrices, which
involves less computing time than inverting K×K matrices, especially
when K is large [this computation can be as bad as O(K3)].

� Suppose that X2 = (1, 1, . . . , 1)0 = i, then

M2 = In − i(i0i)−1i0 = In − ii
0

n



1.4. GOODNESS OF FIT 19

and

M2x1n×1 = x1 −
1

n

nX
i=1

x1i

 1
...
1

 =

 x1i − x1
...

x1n − x1

 .
When regression includes an intercept, can Þrst demean theX variables
(and the y�s) then do regression on the demeaned variables.

1.4 Goodness of Fit

� How well does the model explain the data? One possibility is to mea-
sure the Þt by the residual sum of squares

RSS =
nX
i=1

(yi − byi)2.
In general, the smaller the RSS the better. However, the numerical
value of RSS depends on the units used to measure y in so that one
cannot compare across models.

� Generally used measure of goodness of Þt is the R2. In actuality, there
are three alternative deÞnitions in general.

� One minus the ratio of the residual sum of squares to total sum
of squares,

R21 = 1−
RSS

TSS
= 1−

Pn
i=1(yi − byi)2Pn
i=1(yi − y)2

.

� The sample correlation squared between y and by,
R22 =

[
Pn

i=1(yi − y)(byi − by)]2Pn
i=1(yi − y)2

Pn
i=1(byi − by)2 .

� The ratio of explained sum of squares to total sum of squares

R23 =
ESS

TSS
=

Pn
i=1(byi − y)2Pn
i=1(yi − y)2

.

Here, y =
Pn

i=1 yi/n and by =Pn
i=1 byi/n.
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� Theorem. When an intercept is included, all three measures are the
same.

� Proof of R21 = R22. Since an intercept is included, we have
nX
i=1

bui = 0,
which implies that by = y. Therefore,

nX
i=1

(yi − y)(byi − by) = nX
i=1

(yi − y)(byi − y) = nX
i=1

(byi − y)2,
because

nX
i=1

bui(byi − y) = 0.
� Proof of R21 = R23. Similarly,

nX
i=1

(yi − y)2 =
nX
i=1

(yi − byi)2 + nX
i=1

(byi − y)2.

� If an intercept is included, then 0 ≤ R2 ≤ 1. If not, then 0 ≤ R22 ≤ 1,
but R23 could be greater than one, and R

2
1 could be less than zero.

� If y = α + βx+ u, then R2 is the squared sample correlation between
y and x.

� The R2 is invariant to some changes of units.
� If y 7→ ay + b for any constants a, b, then

� byi 7→ abyi + b and
� y 7→ ay + b,

� so R2 is the same in this case.

� Clearly, if X 7→ XA for a nonsingular matrix A, then by is un-
changed, as is y and y.
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� R2 always increases with addition of variables. With K = n we can
make R2 = 1.

� Theil�s adjusted R2 is deÞned as follows

R
2
= 1− n− 1

n−K (1−R
2).

This amounts to dividing the sum of squares by the appropriate degrees
of freedom, so that

1−R2 =
1

n−K
Pn

i=1(yi − byi)2
1
n−1

Pn
i=1(yi − y)2

.

It follows that

∆R
2

∆K
=
n− 1
n−K| {z }

+

∆R2

∆K
− n− 1
(n−K)2| {z }

−

(1−R2).

This measure allows some trade-off between Þt and parsimony.

1.5 Functional Form

� Linearity can often be restrictive. We shall now consider how to gen-
eralize slightly the use of the linear model, so as to allow certain types
of nonlinearity, but without fundamentally altering the applicability of
the analytical results we have built up.

Wages = α+ βed+ γUNION + u

Wages = α+ βed+ γab+ δed · ab+ u
Wages = α+ βed+ γex+ δex2 + ρex3 + u

logWages = α+ βed+ γUNION + u

log
fs

1− fs = α+ βinc+ u
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� These are all linear in the parameters model, i.e., can write

y = Xβ + u

for some X, some β, some y.

� Another interesting example is Splines. This is a Piecewise Linear
function. For example, suppose we have a scalar regressor x, which is
time, i.e., xt = t, t = 1, 2, . . . , T. Further suppose that

y =

 α1 + β1x+ u if x ≤ t∗1
α2 + β2x+ u if t∗1 ≤ x ≤ t∗2
α3 + β3x+ u if x ≥ t∗2.

� This can be expressed as follows:

y = α1 + β1x+ γ1D1 + δ1D1 · x+ γ2D2 + δ2D2 · x+ u,

where

D1 =

½
1 if x ≥ t∗1,
0 else

D2 =

½
1 if x ≥ t∗2,
0 else.

� How do we impose that the function join up? We must have

α1 + β1t
∗
1 = α1 + γ1 + (β1 + δ1)t

∗
1

α1 + β1t
∗
2 + γ1 + δ1t

∗
2 = α1 + γ1 + (β1 + δ1)t

∗
1 + γ2 + δ2t

∗
2,

which implies that

γ1 = −δ1t∗1 and γ2 = −δ2t∗2,

which are two linear restrictions on the parameters, i.e.,

y = α1 + β1x+ (D1x−D1t∗1)δ1 + (D2x−D2t∗2)δ2 + u.

� Some Nonlinear in Parameters Functions
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� Box�Cox
y = α+ β

xλ − 1
λ

+ u,

where

as λ → 0,
xλ − 1
λ

→ ln(x);

as λ → 1,
xλ − 1
λ

→ x− 1

� Real money demand

y = β1X1 +
β2

x2 − γ + u.

If there exists γ > 0, then we have a Liquidity trap.

� CES production function

Q = β1
£
β2K

−β3 + (1− β2)L−β3
¤β4/β3 + u.

Methods for treating these models will be considered below.
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Chapter 2

Statistical Properties of the
OLS Estimator

� We now investigate the statistical properties of the OLS estimator in
both the Þxed and random designs. SpeciÞcally, we calculate its exact
mean and variance. We shall examine later what happens when the
sample size increases.

� The Þrst thing to note in connection with bβ is that it is linear in y, i.e.,
there exists a matrix C not depending on y such that

bβ = (X 0X)−1X 0y = Cy.

This property makes a lot of calculations simple.

� We want to evaluate how bβ varies across hypothetical repeated samples.
We shall examine both the Þxed design and the random design case.
The Þxed design is the main setting we use in this course; it is simpler to
work with and gives the main intuition. The random design approach
is given here for completeness; it will be come more relevant later in
the course.

� Fixed Design. First,
E(bβ) = (X 0X)−1X 0E(y) = (X 0X)−1X 0Xβ = β,

where this equality holds for all β. We say that bβ is unbiased.
25
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� Furthermore, we shall calculate the K ×K covariance matrix of bβ,
var(bβ) = E{(bβ − β)(bβ − β)0}.

This has diagonal elements var(bβj) and off-diagonals cov(bβj, bβk). We
have

var((X 0X)−1X 0y) = (X 0X)−1X 0var yX(X 0X)−1 = E{(X 0X)−1X 0εε0X(X 0X)−1}
= (X 0X)−1X 0σ2IX(X 0X)−1 = σ2(X 0X)−1.

� Random Design. For this result we need E[εi|xi] = 0.We Þrst condition
on the matrix X; this results in a Þxed design and the above results
hold. Thus, if we are after conditional results, we can stop here. If
we want to calculate unconditional mean and variance we must now
average over all possible X designs. Thus

E(bβ) = E{E(bβ|X)} = E(β) = β.
On average we get the true parameter β. Note that this calculation uses
the important property called �The Law of Iterated Expectation�. The
most general version of this says that

E(Y |I1) = E[E(Y |I2)|I1],

whenever I1 ⊆ I2 for two information sets I1, I2.
� Note that if only E[xiεi] = 0, then the above calculation may not be
valid. For example, suppose that Yi = X3

i , where Xi is i.i.d. standard
normal. Then β = 3 minimizes E[(Yi − bXi)2]. Now consider the least
squares estimator

bβ = Pn
i=1XiYiPn
i=1X

2
i

=

Pn
i=1X

4
iPn

i=1X
2
i

.

You can�t show that this is unbiased, and indeed it isn�t.

� As for the variance, we use another important property

var[y] =E[var(y|X)] + var[E(y|X)],
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which is established by repeated application of the law of iterated ex-
pectation. We now obtain

var(bβ) = Evar(bβ|X) = σ2E{(X 0X)−1}.
This is not quite the same answer as in the Þxed design case, and the
interpretation is of course different.

� The properties of an individual coefficient can be obtained from the
partitioned regression formulaeβ1 = (X 0

1M2X1)
−1X 0

1M2y.

� In the Fixed Design
var[bβ1] = (X 0

1M2X1)
−1X 0

1M2Eεε
0M2X1(X

0
1M2X1)

−1 = σ2(X 0
1M2X1)

−1.

� In the special case that X2 = (1, . . . , 1)0, we have

var(bβ1) = σ2Pn
i=1(xi − x)2

.

This is the well known variance of the least squares estimator in the
single regressor plus intercept regression.

� We now turn to the distribution of bβ. This will be important when we
want to conduct hypothesis tests and construct conÞdence intervals. In
order to get the exact distribution we will need to make an additional
assumption.

� (A4) y ∼ N(Xβ, σ2I) or
� (A4r) y|X ∼ N(Xβ, σ2I).

� Under A4, bβ ∼ N(β, σ2(X 0X)−1)

in the Þxed design case, because

bβ = (X 0X)−1X 0y =
nX
i=1

ciyi,

i.e., bβ is a linear combination of independent normals.
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� Under A4r, the conditional distribution of bβ given X is normal with
mean β and variance σ2(X 0X)−1. However, the unconditional distrib-
ution will not be normal - in fact, it will be a scale mixture of normals
meaning that, in the scalar case for simplicity, its density function is

fbβ(z) =
Z

1

σ · vφ
µ
z − β
σ · v

¶
g(v)dv,

where g is the density of (
Pn

i=1 x
2
i )
1/2 and φ is the standard normal

density function.

2.1 Optimality

� There are many estimators of β. Consider the scalar regression yi =
βxi+ εi. The OLS estimator is bβ =Pn

i=1 xiyi/
Pn

i=1 x
2
i . Also plausible

are eβ = y/x and β =Pn
i=1 yi/xi, as well as nonlinear estimators such

as the LAD procedure

argmin
β

nX
i=1

|yi − βxi|.

� In fact, bβ, eβ, and β are all linear unbiased. How do we choose between
estimators? Computational convenience is an important issue, but the
above estimators are all similar in their computational requirements.
We now investigate statistical optimality.

� DeÞnition: The mean squared error (hereafter MSE) matrix of a generic
estimator bθ of a parameter θ ∈ Rp is

E[(bθ−θ)(bθ−θ)0]
= E[(bθ−E(bθ)+E(bθ)− θ)(bθ−E(bθ)+E(bθ)−θ)0]
= E[(bθ−E(bθ))(bθ−E(bθ))0]| {z }

variance

+ [E(bθ)−θ][E(bθ)−θ]0| {z }
squared bias

.
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� The MSE matrix is generally a function of the true parameter θ. We
would like a method that does well for all θ, not just a subset of para-
meter values - the estimator bθ = 0 is an example of a procedure that
will have MSE equal to zero at θ = 0, and hence will do well at this
point, but as θ moves away, the MSE increases quadratically without
limit.

� MSE deÞnes a complete ordering when p = 1, i.e., one can always rank
any two estimators according to MSE. When p > 1, this is not so. In
the general case we say that bθ is better (according to MSE) than eθ if

B ≥ A

(i.e., B − A is a positive semideÞnite matrix), where B is the MSE
matrix of eθ and A is the MSE of bθ.

� For example, suppose that

A =

·
1

0

0

1

¸
, B =

·
2

0

0

1/4

¸
.

In this case, we can not rank the estimators. The problem is due to
the multivariate nature of the optimality criterion.

� One solution is to take a scalar function of MSE such as the trace or de-
terminant, which will result in a complete ordering. However, different
functions will rank estimators differently [see the example above].

� Also note that no estimator can dominate uniformly across θ according
to MSE because it would have to beat all constant estimatros which
have zero MSE at a single point. This is impossible unless there is no
randomness.

� One solution is to change the criterion function. For example, we might
take maxθ tr(MSE), which takes the most pessimistic view. In this
case, we might try and Þnd the estimator that minimizes this criterion
- this would be called a minimax estimator. The theory for this class of
estimators is very complicated, and in any case it is not such a desirable
criterion because it is so pessimistic about nature trying to do the worst
to us.
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� Instead, we reduce the class of allowable estimators. If we restrict
attention to unbiased estimators then this rules out estimators likebθ = 0 because they will be biased. In this case there is some hope of
an optimality theory for the class of unbiased estimators.

� We will now return to the linear regression model and make the further
restriction that the estimators we consider are linear in y. That is, we
suppose that we have the set of all estimators eβ that satisfy

eβ = Ay
for some Þxed matrix A such that

E(eβ) = β, ∀β.
This latter condition implies that (AX − I)β = 0 for all β, which is
equivalent to AX = I.

� Gauss Markov Theorem. Assume that A1�A3 hold. The OLS estimatorbβ is Best Linear Unbiased (BLUE), i.e.,
var(bβ) ≤ var(eβ)

for any other LUE.

� Proof. var(bβ) = σ2(X 0X)−1; var(eβ) = σ2AA0 and
var(eβ)− var(bβ) = σ2[AA0 − (X 0X)−1]

= σ2[AA0 −AX(X 0X)−1X 0A0]

= σ2A[I −X(X 0X)−1X 0]A0

= σ2AMA0

= σ2(AM) · (M 0A0)

≥ 0.

� � Makes no assumption about the distribution of the errors; it only
assumes 0 mean and σ2I variance.

� Result only compares linear estimators; it says nothing about for
example

Pn
i=1 |yi − βxi|.
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� Result only compares unbiased estimators [biased estimators can
have 0 variances]. In fact, although the OLS estimator is admis-
sible with respect to MSE, it is inadmissible with respect to trace
mean squared error when the number of regressors is at least three.
The Stein estimator is better according to trace mean squared er-
ror. Of course in large samples this is all irrelevant.

� There are extensions to consider affine estimators eβ = a + Ay
for vectors a. There are also equivalent results for the invariant
quantity by.

� If we dispense with the unbiasedness assumption and add the model
assumption of error normality we get the well-known result.

� Cramèr�Rao Theorem. Under A1-A4, bβ is Best Unbiased (statement
is for MLE�s).

� By making the stronger assumption A4, we get a much stronger con-
clusion. This allows us to compare say LAD estimation with OLS.

� Asymptotically, a very large class of estimators are both unbiased and
indeed linear so that the Gauss-Markov and Cramèr�Rao Theorems
apply to a very broad class of estimators when the words �for large n�
are inserted.
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Chapter 3

Hypothesis Testing

� In addition to point estimation we often want to know how good our
estimator is and whether it is compatible with certain preconceived
�hypotheses� about the data.

� Suppose that we observe certain data (y,X), and there is a true data
distribution denoted by f , which is known to lie in a family of models
F . We now suppose there is a further reduction called a Hypothesis
H0 ⊆ F . For example, H0 could be the:

� Prediction of a scientiÞc theory. For example, the interest elas-
ticity of demand for money is zero; the gravitational constant is
9.

� Absence of some structure, e.g., independence of error term over
time, homoskedasticity etc.

� Pretesting (used as part of model building process).

� We distinguish between a Simple hypothesis (under H0, the data distri-
bution is completely speciÞed) and a Composite hypothesis (in which
case, H0 does not completely determine the distribution, i.e., there are
�nuisance� parameters not speciÞed by H0).

� We also distinguish between Single and Multiple hypotheses (one or
more restriction on parameters of f).

� We shall also introduce the alternative hypothesis HA, which will be
the complement of H0 in F , i.e., F = H0 ∪HA. That is, the choice of

33
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F is itself of some signiÞcance since it can restrict the range of values
taken by the data distribution. We shall also distinguish between one-
sided and two-sided alternatives; when we have a single real-valued
parameter this is an easy notion to comprehend.

� Examples

� The theoretical model is the Cobb�Douglas production function

Q = AKαLβ.

Empirical version: take logs and add an error term to give a linear
regression

q = a+ αk + β`+ ε.

It is often of interest whether constant returns to scale operate,
i.e., would like to test whether

α+ β = 1

is true. We may specify the alternative as α+ β < 1, because we
can rule out increasing returns to scale.

� Market efficiency
rt = µ+ γ

0It−1 + εt,

where rt are returns on some asset held between period t− 1 and
t, while It is public information at time t. Theory predicts that
γ = 0; there is no particular reason to restrict the alternative
here.

� Structural change

y = α+ βxt + γDt + εt

Dt =

½
0 , t < 1974
1 , t ≥ 1974.

Would like to test γ = 0.
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3.1 General Notations

� A hypothesis test is a rule [function of the data] which yields either
reject or accept outcomes.

� There are two types of mistakes that any rule can make:
� Type I error is to reject when the null hypothesis is true

� Type II error is of accepting a false hypothesis.

� We would like to have as small a Type I and Type II error as possible.
Unfortunatley, these are usually in conßict. The traditional approach
is to Þx the Type I error and then try to do the best in terms of the
Type II error.

� We choose α ∈ [0, 1] called the size of the test [magnitude of Type I
error]. Let T (data) be a test statistic, typically scalar valued. Then,
Þnd acceptance region Cα of size α such that

Pr[T /∈ Cα|H0] = α.
The rule is to rejectH0 if T /∈ Cα and to accept otherwise. The practical
problem is how to choose T so that Cα [or equivalently the rejeciton
region Rα] is easy to Þnd.

� DeÞne also Power of test:
π = Pr[T /∈ Cα|HA] = 1−TypeII.

It is desirable, ceteris paribus, to have a test that maximizes power for
any given size.

� Optimal testing. Neyman-Pearson Lemma. Suppose you have a para-
metric model with parameter θ and consider the simple null hypothesis
against a one-sided alternative:

H0 : θ = θ0, HA : θ > θ0 or θ < θ0.

The likelihood ratio test is Uniformly Most Powerful UMP provided the
parametric model has the monotone likelihood ratio (MLR) property.
Examples: One parameter exponential families, e.g., Normal,Poisson,
and Binomial.
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� Testing against two-sided alternatives, UMP�s do not exist.
� Example. X ∼ N(µ, 1); H0 : µ = 0 vs. µ > 0. In this case, the best
rejection region is {X n : X̄ > zα/n

1/2}. For any µ > 0, this test is most
powerful µ = 0 vs. µ. Region and rule distribution is independent of
µ. In the two-sided test

{X n : |X̄| > zα/2
n1/2

}

is less powerful than

{X n : X̄ >
zα
n1/2

} when µ > 0,

and less powerful than

{X n : X̄ <
zα
n1/2

} when µ < 0.

� Unbiased and Invariant Tests. Just like in estimation it can help to
reduce the class of tests. An unbiased test satisÞes

π(θ) ≥ α for all θ ∈ Θ1.
Clearly the one-sided interval is biased because when µ < 0 power is
zero. The above two-sided normal test is UMP unbiased. Alterna-
tively can eliminate some tests by requiring invariance under a group
of transformations.

3.2 Examples

� Hypothesis Testing in Linear Regression: y ∼ N(Xβ, σ2I).
� Single (Linear) Hypothesis:

c0β = γ ∈ R,
e.g., β2 = 0 (t�test).

� Multiple (Linear) Hypothesis:

Rq×KβK×1 = rq×1, q ≤ K,
e.g., β2 = β3 = · · · = βK = 0.
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� Single Non-linear Hypothesis:

β21 + β
2
2 + · · · + β2K = 1.

Note that these are all composite hypotheses, i.e., there are nuisance para-
meters like σ2 that are not speciÞed by the null hypothesis.

3.3 Test of a Single Linear Hypothesis

� We wish to test the hypothesis
c0β = γ,

e.g., β2 = 0. Suppose that y ∼ N(Xβ, σ2I). Then,

c0bβ − γ
σ(c0(X 0X)−1c)1/2

∼ N(0, 1).

We don�t know σ and must replace it by an estimate. There are two
widely used estimates:

bσ2mle =
bε0bε
n

s2 =
bε0bε
n−K

The Þrst estimate is the maximum likelihood estimator of σ2, which
can be easily veriÞed. The second estimate is a modiÞcation of the
MLE, which happens to be unbiased. Now deÞne the test statistic

T =
c0bβ − γ

s(c0(X 0X)−1c)1/2
.

� Theorem Under H0,
T ∼ t(n−K).

� Proof. We show that:

� (1) n−K
σ2
s2 ∼ χ2n−K
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� (2) s2 and c0bβ − γ are independent.
This establishes the theorem by the deÞning property of a t-random variable.

� Recall that
ε0ε
σ2
=

nX
i=1

³εi
σ

´2
∼ χ2n.

But bε are residuals that use K parameter estimates. Furthermore,

bε0bε = ε0MXε

and

E[ε0MXε] = E[trMXεε
0]

= trMXE(εε
0)

= σ2trMX

= σ2(n− trPX)
= σ2(n−K)

because

tr(X(X 0X)−1X 0) = trX 0X(X 0X)−1

= tr IK = K.

These calculations show that

Ebε0bε = σ2(n−K),
which suggests that bε0bε/σ2 cannot be χ2n [and incidentally that Es2 =
σ2].

� Note that MX is a symmetric idempotent matrix, which means that it
can be written

MX = QΛQ
0,

where QQ0 = I and Λ is a diagonal matrix of eigenvalues, which in this
case are either zero (K times) or one (n−K times). Furthermore, by
a property of the normal distribution,

Qε = ε∗
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has exactly the same normal distribution as ε [it has the same mean
and variance, which is sufficient to determine the normal distribution].
Therefore, bε0bε

σ2
=

n−KX
i=1

z2i

for some i.i.d. standard normal random variables zi. Therefore, bε0bε/σ2
is χ2n−K by the deÞnition of a chi-squared random variable.

� Furthermore, under H0,

c0bβ − γ = c0(X 0X)−1X 0ε and bε =MXε

are mutually uncorrelated since

E[MXεε
0X(X 0X)−1c] = σ2MXX(X

0X)−1c = 0.

Under normality, uncorrelatedness is equivalent to independence.

� We can now base test of H0 on

T =
c0bβ − γ

s(c0(X 0X)−1c)1/2
,

using the tn−k distribution for an exact test under normality. Can test
either one-sided and two-sided alternatives, i.e., reject if

|T | ≥ tn−K(α/2)

[two-sided alternative] or if

T ≥ tn−K(α)

[one-sided alternative].

� Above is a general rule, and would require some additional compu-
tations in addition to bβ. Sometimes one can avoid this: if computer
automatically prints out results of hypothesis for βi = 0, and one can
redesign the null regression suitably. For example, suppose that

H0 : β2 + β3 = 1.
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Substitute the restriction in to the regression yi = β1+β2xi+β3zi+ui,
which gives the restricted regression

yi − zi = β1 + β2(xi − zi) + ui.
Now test whether β3 = 0 in the regression

yi − zi = β1 + β2(xi − zi) + β3zi + ui.

3.4 Test of a Multiple Linear Hypothesis

� We now consider a test of the multiple hypothesis Rβ = r. DeÞne the
quadratic form

F = (Rbβ − r)0 £s2R(X 0X)−1R0
¤−1

(Rbβ − r)/q
=

(Rbβ − r)0 [R(X 0X)−1R0]−1 (Rbβ − r)/q
(n−K)s2/(n−K) .

� If y ∼ N(Xβ, σ2I), then

F =
χ2q/q

χ2n−K/(n−K)
∼ F (q, n−K)

under H0. The rule is that if

F ≥ Fα(q, n−K),

then reject H0 at level α. Note that we can only test against a two-sided
alternative Rβ 6= r because we have squared value above.
� Examples

� Standard F�test, which is outputed from computer, is of the hy-
pothesis

β2 = 0, . . . ,βK = 0,

where the intercept β1 is included. In this case, q = K − 1, and
H0 : Rβ = 0,
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where

R =

 0... IK−1
0

 .
The test statistic is compared with critical value from the F (K −
1, n−K) distribution.

� Structural Change. Null hypothesis is

y = Xβ + u.

Alternative is

y1 = X1β1 + u1, i ≤ n1,
y2 = X2β2 + u2, i ≥ n2,

where n = n1 + n2. Let

y =

µ
y1
y2

¶
, X∗ =

·
X1
0

0

X2

¸
,

β∗ =

µ
β1
β2

¶
2K×1

, u =

µ
u1
u2

¶
n×1

.

Then, we can write the alternative regression as

y = X∗β∗ + u.

Consider the null hypothesis H0 : β1 = β2. Let

RK×2K = [IK
... − IK].

Compare with F (K, n− 2K).

� ConÞdence interval is just critical region centred not at H0, but at a
function of parameter estimates. For example,

c0bβ ± tα/2(n−K)s{c0(X 0X)−1c}1/2

is a two-sided conÞdence interval for the scalar quantity c0β. Can also
construct one-sided conÞdence intervals and multivariate conÞdence in-
tervals.
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3.5 Test of Multiple Linear Hypothesis Based
on Þt

� The idea behind the F test is that under H0,

Rbβ − r
should be stochastically small, but under the alternative hypothesis it
will not be so.

� An alternative approach is based on Þt. Suppose we estimate β subject
to the restriction Rβ = r, then the sum of squared residuals from that
regression should be close to that from the unconstrained regression
when the null hypothesis is true [but if it is false, the two regressions
will have different Þtting power].

� To understand this we must investigate the restricted least squares
estimation procedure.

� Unrestricted regression:

min
b
(y −Xb)0(y −Xb)

bβ , bu = y −Xbβ , Q = bu0bu.
� Restricted regression:

min
b
(y −Xb)0(y −Xb) s.t. Rb = r.

β∗ , u∗ = y −Xβ∗ , Q∗ = u∗0u∗

� The idea is that under H0, Q∗ ∼ Q, but under the alternative the two
quantities differ. The following theorem makes this more precise.

� Theorem. Under H0,
Q∗ −Q
Q

n−K
q

= F ∼ F (q, n−K).
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� Proof. We show that
Q∗ −Q = (Rbβ − r)0 £R(X 0X)−1R0

¤−1
(Rbβ − r)

Then, since
s2 = Q/(n−K)

the result is established.

� To solve the restricted least squares problem we use the Lagrangean
method. We know that β∗ and λ∗ solve the Þrst order condition of the
Lagrangean

L(b,λ) = 1

2
(y −Xb)0(y −Xb) + λ0(Rb− r).

The Þrst order conditions are

−X 0y +X 0Xβ∗ +R0λ∗ = 0(1)

Rβ∗ = r.(2)

Now, from (1)
R0λ∗ = X 0y −X 0Xβ∗ = X 0u∗,

which implies that

(X 0X)−1R0λ∗ = (X 0X)−1X 0y − (X 0X)−1X 0Xβ∗

= bβ − β∗
and

R(X 0X)−1R0λ∗ = Rbβ −Rβ∗ = Rbβ − r.
Therefore,

λ∗ =
£
R(X 0X)−1R0

¤−1
(Rbβ − r)

and
β∗ = bβ − (X 0X)−1R0

£
R(X 0X)−1R0

¤−1
(Rbβ − r).

This gives the restricted least squares estimator in terms of the restric-
tions and the unrestricted least squares estimator. From this relation
we can derive the statistical properties of the estimator β∗.
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� We now return to the testing question. First, write
β∗ = bβ + β∗ − bβ

and

(y −Xβ∗)0(y −Xβ∗)

= [y −Xbβ −X(β∗ − bβ)]0[y −Xbβ −X(β∗ − bβ]
= (y −Xbβ)0(y −Xbβ) + (bβ − β∗)0X 0X(bβ − β∗)

−(y −Xbβ)0X(β∗ − bβ)
= bu0bu+ (bβ − β∗)0X 0X(bβ − β∗)

using the orthogonality property of the unrestricted least squares esti-
mator. Therefore,

Q∗ −Q = (bβ − β∗)0X 0X(bβ − β∗).
Substituting our formulae for bβ − β∗ and λ∗ obtained above and can-
celling out, we get

Q∗ −Q = (Rbβ − r)0 £R(X 0X)−1R0
¤−1

(Rbβ − r)
as required.

� An intermediate representation is
Q∗ −Q = λ∗0R(X 0X)−1R0λ∗.

This brings out the use of the Lagrange Multipliers in deÞning the test
statistic, and lead to the use of this name.

� Importance of the result: the Þt version was easier to apply in the
old days, before fast computers, because one can just do two separate
regressions and use the sum of squared residuals. Special cases:
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� Zero restrictions
β2 = · · · = βK = 0

Then restricted regression is easy. In this case, q = K − 1. Note
that the R2 can be used to do an F�test of this hypothesis. We
have

R2 = 1− Q

Q∗
=
Q∗ −Q
Q

,

which implies that

F =
R2/(K − 1)

(1−R2)/(n− k) .

� Structural change. Allow coefficients to be different in two periods.
Partition

y =

µ
y1
y2

¶
n1
n2

y1 = X1β1 + u1
y2 = X2β2 + u2

¾
or y =

·
X1
0

0

X2

¸µ
β1
β2

¶
+ u.

Null is of no structural change, i.e.,

H0 : β1 = β2,

with
R = (I

... − I).
� Consider the more general linear restriction

β1 + β2 − 3β4 = 1

β6 + β1 = 2.

Harder to work with. Nevertheless, can always reparameterize to obtain
restricted model as a simple regression. Partition X,β, and R

X = ( X1
n×(k−q)

, X2
n×q
) ; R = ( R1

q×(k−q)
, R2
q×q
) ;

β =

µ
β1
β2

¶
,

where
X1β1 +X2β2 = Xβ ; R1β1 +R2β2 = r,

where R2 is of full rank and invertible.
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� Therefore,

β2 = R−12 (r −R1β1)

Xβ = X1β1 +X2[R
−1
2 (r −R1β1)]

= (X1 −X2R−12 R1)β1 +X2R−12 r,

so that
y −X2R−12 r = (X1 −X2R−12 R1)β1 + u.

� In other words, we can regress

y∗ = y −X2R−12 r

on
X∗
1 = (X1 −X2R−12 R1)

to get β∗1, and then deÞne

β∗2 = R
−1
2 (r −R1β∗1).

We then deÞne
u∗ = y −X1β∗1 −X2β∗2 and Q∗

accordingly.

3.6 Examples of F�Tests, t vs. F

� ChowTests: Structural change with intercepts. The unrestricted model
is µ

y1
y2

¶
=

·
i1 0 x1 0
0 i2 0 x2

¸
α1
α2
β1
β2

+µ u1
u2

¶
,

and let θ = (α1,α2,β1, β2). Different slopes and intercepts allowed.

� The Þrst null hypothesis is that the slopes are the same, i.e.,

H0 : β1 = β2 = β.



3.6. EXAMPLES OF F�TESTS, T VS. F 47

The restricted regression is

µ
y1
y2

¶
=

·
i1 0 x1
0 i2 x2

¸ α1
α2
β

+µ u1
u2

¶
.

The test statistic is

F =
(u∗

0
u∗ − bu0bu)/dim(β1)bu0bu/(n− dim(θ)) ,

which is compared with the quantiles from the

F (dim(β1), n− dim(θ))

distribution.

� The second null hypothesis is that the intercepts are the same, i.e.,

H0 : α1 = α2 = α.

Restricted regression (α, β1, β2)µ
y1
y2

¶
=

·
i1 x1 0
i2 0 x2

¸ α
β1
β2

+µ u1
u2

¶
.

Note that the unrestricted model can be rewritten using dummy vari-
ables:

yi = α+ βxi + γDi + δxiDi + ui,

where

Di =

½
1 in period 2
0 else.

Then, in period 1
yi = α+ βxi + ui,

while in period 2

yi = α+ γ + (β + δ)xi + ui.

The null hypothesis is that γ = 0.
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� But now suppose that n2 < K. The restricted regression is ok, but
the unrestricted regression runs into problems in the second period
because n2 is too small. In fact, bu2 ≡ 0. In this case we must simply
acknowledge the fact that the degrees of freedom lost are n2 not K.
Thus

F =
(Q∗ −Q)/n2
Q/(n1 −K) ∼ F (n2, n1 −K)

is a valid test in this case.

3.7 Likelihood Based Testing

� We have considered several different approaches which all led to the
F test in linear regression. We now consider a general class of test
statistics based on the Likelihood function. In principle these apply
to any parametric model, but we shall at this stage just consider its
application to linear regression.

� The Likelihood is denoted L(y,X; θ), where y,X are the observed data
and θ is a vector of unknown parameter. The maximum likelihood esti-
mator can be determined from L(y,X; θ), as we have already discussed.
This quantity is also useful for testing.

� Consider again the linear restrictions
H0 : Rθ = r.

� The unrestricted maximum likelihood estimator of θ is denoted bybθ
� the restricted MLE is denoted by θ∗, [this maximizes L subject to
the restrictions Rθ − r = 0].

� Now deÞne the following test statistics:

LR : 2

"
log

L(bθ)
L(θ∗)

#
= 2{logL(bθ)− logL(θ∗)}

Wald : (Rbθ − r)0 nRH(bθ)−1R0o−1 (Rbθ − r)
LM :

∂ logL

∂θ

¯̄̄0
θ∗
H(θ∗)−1

∂ logL

∂θ

¯̄̄
θ∗
,
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where

H(θ) = −∂
2 logL

∂θ∂θ0
¯̄̄
θ

� The Wald test only requires computation of the unrestricted esti-
mator

� the LagrangeMultiplier only requires computation of the restricted
estimator.

� The Likelihood ratio requires computation of both.

� There are circumstances where the restricted estimator is easier to
compute, and there are situations where the unrestricted estimator
is easier to compute. These computational differences are what
has motivated the use of either the Wald or the LM test.

� When it comes to nonlinear restrictions g(θ) = 0, the LR test has
the advantage that it is invariant to the parameterization, while
the Wald test is affected by the way in which the restrictions are
expressed.

� In the linear regression case, θ = (β, σ2), and the restrictions only
apply to β, so that Rβ = r. Therefore, we can replace the derivatives
with respect to θ by derivatives with respect to β only.

� The log-likelihood is

logL(θ) =
−n
2
log 2π − n

2
log σ2 − 1

2σ2
u(β)0u(β)

and its derivatives are

∂ logL

∂β
=

1

σ2
X 0u(β)

∂ logL

∂σ2
= − n

2σ2
+

1

2σ4
u(β)0u(β)

∂2 logL

∂β∂β0
=

−1
σ2
X 0X

∂2 logL

(∂σ2)2
=

n

2σ4
− 2

2σ6
u(β)0u(β)

∂2 logL

∂β∂σ2
= − 1

σ4
X 0u(β).
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� The Wald test is
W = (Rbβ − r)0 £R(X 0X)−1R0bσ2¤−1 (Rbβ − r)

=
Q∗ −Q
(Q/n)

,

where bσ2 = Q/n
is the MLE of σ2.

� The Wald test statistic is the same as the F�test apart from the
use of bσ2 instead of s2 and a multiplicative factor q. In fact,

W = qF
n

n− k .

This is approximately equal to qF when the sample size is large.

� The Lagrange Multiplier or Score or Rao test statistic is

LM =
u∗

0
X

σ∗2

½
X 0X
σ∗2

¾−1
X 0u∗

σ∗2
,

where
σ∗2 = Q∗/n.

� Recall that
X 0u∗ = R0λ∗.

Therefore,

LM =
λ∗

0
R(X 0X)−1R0λ∗

σ∗2
,

where λ∗ is the vector of Lagrange Multipliers evaluated at the
optimum.

� Furthermore, we can write the score test as

LM =
Q∗ −Q
(Q∗/n)

= n

µ
1− Q

Q∗

¶
.

When the restrictions are the standard zero ones, the test statistic
is n times the R2 from the unrestricted regression.
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� The Likelihood Ratio

logL(bβ, bσ2) = −n
2
log 2π−n

2
log bσ2− 1

2bσ2bu0bu = −n2 log 2π− 1

2bσ2 log bu0bun −n2
and

logL(β∗,σ∗2) = −n
2
log 2π−n

2
log σ∗2− 1

2σ∗2
u∗0u∗ = −n

2
log 2π−n

2
log

u∗
0
u∗

n
−n
2
.

These two lines follow because

bσ2 = bu0bu/n and σ∗2 = u∗0u∗/n.
Therefore,

LR = 2 log
L(bβ, bσ2)
L(β, σ2)

= n

·
log

Q∗

n
− log Q

n

¸
= n[logQ∗ − logQ].

� Note that W, LM, and LR are all monotonic functions of F, in fact

W = F
qn

n− k ,

LM =
W

1 +W/n
,

LR = n log

µ
1 +

W

n

¶
.

If we knew the exact distribution of any of them we can obtain the
exact distributions of the others and the test result will be the same.

� However, in practice one uses asymptotic critical values, which lead to
differences in outcomes.We have

LM ≤ LR ≤W,
so that the Wald test will reject more frequently than the LR test and
the LM tests, supposing that the same critical values are used.

� Also,
qF ≤W
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Chapter 4

Further Topics in Estimation:

4.1 Omission of Relevant Variables

� Suppose that
y = X1β1 +X2β2 + u,

where the error term obeys the usual conditions.

� Suppose however that we regress y on X1 only. Then,bβ1 = (X 0
1X1)

−1X 0
1y

= (X 0
1X1)

−1X 0
1(X1β1 +X2β2 + u)

= β1 + (X
0
1X1)

−1X 0
1X2β2 + (X

0
1X1)

−1X 0
1u,

so that

E(bβ1) = β1 + (X
0
1X1)

−1X 0
1X2β2

= β1 + β12,

where
β12 = (X

0
1X1)

−1X 0
1X2β2.

In general bβ1 is biased and inconsistent; the direction and magnitude
of the bias depends on β2 and on X

0
1X2.

� Example. Wages on education get positive effect but are omitting abil-
ity. If ability has a positive effect on wages and is positively correlated
with education this would explain some of the positive effect. Wages
on race/gender (discrimination). Omit experience/education.

53
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� What about variance? In Þxed design, variance is σ2(X 0
1X1)

−1, which
is smaller than when X2 is included. Therefore, if MSE is the criterion,
one may actually prefer this procedure - at least in Þnite samples.

� Estimated variance is
s2(X 0

1X1)
−1,

where

s2 =
y0M1y

n−K1

=
(X2β2 + u)

0M1(X2β2 + u)

n−K1
,

which has expectation

E(s2) = σ2 +
β02X

0
2M1X2β2
n−K1

≥ σ2,

since M1 is a positive semi-deÞnite matrix.

� Therefore, the estimated variance of bβ1 is upwardly biased.
� If X 0

1X2 = 0, then bβ is unbiased, but standard errors are still biased
with expectation

σ2 +
β02X

0
2X2β2

n−K1
.

In this special case, the t�ratio is downward biased.

� More generally, t�ratio could be upward or downward biased depending
of course on the direction of the bias of bβ1.

� Some common examples of omitted variables

� Seasonality

� Dynamics

� Nonlinearity.
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� In practice we might suspect that there are always going to be omitted
variables. The questions is: is the magnitude large and the direction un-
ambiguous? To address this question we Þrst look at the consequences
of including too many variables in the regression.

4.2 Inclusion of irrelevant variables

� Suppose now that
y = X1β1 + u,

where u obeys the usual conditions.

� However, we regress y on both X1 and X2. Thenbβ1 = (X 0
1M2X1)

−1X 0
1M2y

= β1 + (X
0
1M2X1)

−1X 0
1M2u

� Therefore
E(bβ1) = β1 all β1
var(bβ1) = σ2(X 0

1M2X1)
−1.

� Compare this with the variance of y on X1, which is only σ2(X 0
1X1)

−1.
Now

X 0
1X1 −X 0

1M2X1 = X
0
1P2X1 ≥ 0

which implies that

(X 0
1X1)

−1 − (X 0
1M2X1)

−1 ≤ 0.
Always better off, as far as variance is concerned, with the smaller
model.

� We can generalize the above discussion to the case where we have some
linear restrictions Rβ = r. In which case, the restricted estimator is

β∗ = bβ − (X 0X)−1R0[R(X 0X)−1R0]−1(Rbβ − r)
If we estimate by restricted least squares we get smaller variance but
if the restriction is not true, then there is a bias.
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� There is clearly a trade-off between bias and variance.
� The above arguments suggest that including irrelevant variables never
leads to bias, but this is not correct. We relied above on the assumption
that the included regressors are all Þxed and therefore the error term is
uncorrelated with them. Clearly, if one of the included right hand side
variables was say y, then you would deÞnitely get a biased estimate of
the coefficient on the remaining variables.

4.3 Model Selection

� Let M be a collection of linear regression models obtained from a
given set of K regressors X = (X1, . . . ,XK), e.g., X,X1, (X2, X27), etc.
Suppose that the true model lies inM. There are a total of (2K − 1)
different subsets of X, i.e., models.

� Let Kj be the number of explanatory variables in a given regression.
The following criteria can be used for selecting the �best� regression:

R
2

j = 1−
n− 1
n−Kj

(1−R2j ) = 1−
n− 1
n−Kj

bujbuj
u0u

,

PCj =
bu0jbuj
n−Kj

µ
1 +

Kj

n

¶
AICj = ln

bu0jbuj
n

+
2Kj

n

BICj = ln
bu0jbuj
n

+
Kj logn

n
.

The Þrst criterion should be maximized, while the others should be
minimized. Note that maximizing R

2

j is equivalent to minimizing the
unbiased variance estimate bujbuj/(n−Kj).

� It has been shown that all these methods have the property that the
selected model is larger than or equal to the true model with proba-
bility tending to one; only BICj correctly selects the true model with
probability tending to one.

� M may be large and computing 2K − 1 regressions infeasible.
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� True model may not be in M, but procedure is guaranteed to Þnd a
best model (data mining).

� Other criteria are important, especially for nonexperimental data.
� Consistency with economic theory elasticities the right sign? De-
mand slopes down?

� Consistency with data, e.g., suppose dependent variable is food
share /∈ [0, 1], then ideally don�t want a model that predicts out-
side this range.

� Residuals should be approximately random, i.e., pass diagnostic
checks for serial correlation, heteroskedasticity, nonlinearity, etc.

� Howwell model performs out-of-sample. (Often used in time series
analysis.)

� Correlation is not causation.

� An alternative strategy is to choose a large initial model and perform a
sequence of t�tests to eliminate redundant variables. Finally, we give a
well known result that links the properties of the regression t test and
the R squared.

� R2 falls (rises) when the deleted variable has t > (<)1

4.4 Multicollinearity

� Exact multicollinearity: X 0X is singular, i.e., there is an exact, linear,
relationship between variables in X. In this case, cannot deÞne least
squares estimates bβ = (X 0X)−1X 0y.

Solution: Find a minimal (not unique) basis X∗ for C(X) and do least
squares.

� Example: Seasonal dummies
D1 = 1ifQuarter 1, 0 else

D2 = 1ifQuarter 2, 0 else

D3 = 1ifQuarter 3, 0 else

D4 = 1ifQuarter 4, 0 else.
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DeÞne the regressor matrix

X =



1 1 0 0 0
... 0 1 0 0
... 0 0 1 0
... 0 0 0 1

1
...
... 0 0

...
...
...
...
...


.

In this case, for all observations:

Col2 + Col3 + Col4 + Col5 = Col1

� Solution

� Drop D4, and run

y = α+ β1D1 + β2D2 + β3D3 + u

� Drop intercept, and run

y = γ1D2 + γ2D2 + γ3D3 + γ4D4 + u.

Gives same by and bu, but different parameters. Intuitively, the
same vector space is generated by both sets of regressors.

� �Approximate Multicollinearity�, i.e., det(X 0X) ≈ 0. Informally, if the
columns of X are highly mutually correlated then it is hard to get their
separate effects. This is really a misnomer and shan�t really be treated
as a separate subject. Arthur Goldberger in his text on econometrics
illustrated this point by having a section on �micronumerosity�, a sup-
posed problem where one has too few observations. The consequence of
this is that the variance of the parameter estimates is large - precisely
the symptom of �Approximate Multicollinearity�.
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4.5 Inßuential Observations

� At times one can suspect that some observations are having a large
impact on the regression results. This could be a real inßuence, i.e.,
just part of the way the data were generated, or it could be because
some observations have been misrecorded, say with an extra zero added
on by a careless clerk.

� How do we detect inßuential observations? Delete one observation at
a time and see what changes. DeÞne the leave-one-out estimator and
residual

bβ(i) = [X(i)0X(i)]−1X(i)0y(i)buj(i) = yj −X 0
j
bβ(i),

where
y(i) = (y1, . . . , yi−1, yi+1, . . . , yn)0

and similarly for X(i). We shall say that observation (Xi, yi) is inßu-
ential if bui(i) is large.

� Note that bui(i) = ui −X 0
i(
bβ(i)− β),

so that

E[bui(i)] = 0

var[bui(i)] = σ2[1 + x0i(X
0(i)X(i))−1xi].

Then examine standardized residuals

Ti =
bui(i)

ús(1 + x0i(X 0(i)X(i))−1xi)1/2
.

� Large values of Ti, in comparison with standard normal, are evidence
of extreme observations or outliers. Unfortunately, we do not learn
whether this is because the error distribution has a different shape
from the normal, e.g., t-distribution, or whether the observation has
been misrecorded by some blundering clerk.



60 CHAPTER 4. FURTHER TOPICS IN ESTIMATION:

4.6 Missing Observations

� In surveys, responders are not representative sample of full popula-
tion. For example, we don�t have information on people with y >
$250, 000, y ≤ $5, 000. In this case, 1

n

Pn
i=1 yi is biased and inconsis-

tent as an estimate of the population mean.

� In regression, parameter estimates are biased if selection is:

� On dependent variable (or on error term);

� Non-random. For example, there is no bias [although precision is
affected] if in a regression of inc on education, we have missing
data when edu ≥ 5 years.

� We look at �ignorable� case where the process of missingness is unrelated
to the effect of interest.

� Missing y
yA XA nA
? XB nB.

� What do we do? One solution is to impute values of the missing vari-
able. In this case, we might let

byB = XBbβA, where bβA = (X 0
AXA)

−1X 0
AyA.

We can then recompute the least squares estimate of β using �all the
data�

bβ = (X 0X)−1X 0
·
yAbyB
¸
,

X =

µ
XA
XB

¶
.

However, some simple algebra reveals that there is no new information
in byB, and in fact bβ = bβA.
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� Start from

(X 0X)−1X 0
·
yA

XBbβA
¸
= (X 0

AXA)
−1X 0

AyA,

and pre-multiply both sides by

X 0X = (X 0
AXA +X

0
BXB).

� Ee have

X 0
·
yA

XBbβA
¸
= X 0

AyA +X
0
BXB

bβA
= X 0

AyA +X
0
BXB(X

0
AXA)

−1X 0
AyA

and

X 0X(X 0
AXA)

−1X 0
AyA = X

0
AyA + (X

0
BXB)(X

0
AXA)

−1X 0
AyA.

Therefore, this imputation method has not really added anything. It
is not possible to improve estimation in this case.

� Now suppose that we have some missing X. For example, X = (x, z),
and xB is missing, i.e., we observe (xA, zA, yA) and (zB, yB). The model
for the complete data set is

y = βx+ γz + u

with var(u) = σ2u, and suppose also that

x = δz + ²

with ² being an iid mean zero error term with var(²) = σ2u.

� There are a number of ways of trying to use the information in period
B. First, predict xB by regressing xA on zA

bxB = zB(z0AzA)−1z0AxA.
Then regress y on bX =

µ
xAbxB zAzB

¶
.
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� The second approach is to write now
yA = βxA + γzA + uA

xA = δzA + ²A

yB = (γ + βδ)zB + uB + β²B,

where we have substituted out the xB, which we don�t observe. Now
we can estimate β, γ, and δ from the A observations, denoting these
estimates by bβA,bγA, and bδA. Then we have a new regression with

yB − bβAbδAzB = γzB + eB
for some error term e that includes uB + β²B plus the estimation error
in bβAbδA. This regression can be jointly estimated with the

yA − bβAxA = γzA + eA.
� This sometimes improves matters, but sometimes does not! The answer
depends on relationship between x and z. In any case, the effect β of
x is not better estimated; the effect of z maybe improved. Griliches
(1986) shows that the (asymptotic) relative efficiency of this approach
to the just use A least squares estimator is

(1− λ)
µ
1 + λβ2

σ2²
σ2u

¶
,

where λ is the fraction of the sample that is missing. Efficiency will be
improved by this method when

β2
σ2²
σ2u
<

1

1− λ ,

i.e., the unpredictable part of x from z is not too large relative to the
overall noise in the y equation.

� Another approach. Let θ = γ + βδ. Then clearly, we can estimate θ
from the B data by OLS say, call this bθB. Then let bγB = bθB − bβAbδA.
Now consider the class of estimators

bγ(ω) = ωbγA + (1− ω)bγB,
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as ω varies. In the homework 2 we showed that the best choice of ω is

ωopt =
σ2A − σAB

σ2A + σ
2
B − 2σAB

,

where in our case σ2A,σ
2
B are the asymptotic variances of the two es-

itmators and σAB is their asymptotic vcovariance. Intuitively, unless
either σ2A = σAB or σ

2
B = σAB, we should be able to improve matters.

� What about the likelihood approach? Suppose for convenience that z
is a Þxed variable, then the log likelihood function of the observed data
is X

A

log f(yA, xA|zA) +
X
B

log f(yB|zB).

Suppose that u, ² are normally distributed and mutually independent,
then µ

yA
xA

¶
∼ N

·µ
(γ + βδ)zA

δzA

¶
,

µ
σ2u + β

2σ2² βσ2²
σ2²

¶¸
yB ∼ N

£
(γ + βδ)zB,σ

2
u + β

2σ2²
¤
,

which follows from the relations x = δz+ ² and y = (γ+βδ)z+u+β².
There are Þve unknown parameters θ = (γ, β, δ,σ2u,σ

2
²). The likelihood

follow from this.

� The MLE is going to be quite complicated here because the error vari-
ances depend on the mean parameter β, but it going to be more efficient
than the simple least squares that only uses the A data.
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Chapter 5

Asymptotics

5.1 Types of Asymptotic Convergence

� Exact distribution theory is limited to very special cases [normal i.i.d.
errors linear estimators], or involves very difficult calculations. This is
too restrictive for applications. By making approximations based on
large sample sizes, we can obtain distribution theory that is applicable
in a much wider range of circumstances.

� Asymptotic theory involves generalizing the usual notions of conver-
gence for real sequences to allow for random variables. We say that a
real sequence xn converges to a limit x∞, denoted limn→∞ xn = x∞, if
for all ² > 0 there exists an n0 such that

|xn − x∞| < ²
for all n ≥ n0.

� Definition: We say that a sequence of random variables {Xn}∞n=1
converges in probability to a random variable X, denoted,

Xn
P−→ X or p lim

n→∞
Xn = X.

if for all ε > 0,
lim
n→∞

Pr[|Xn −X| > ε] = 0.
X could be a constant or a random variable.
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� We say that a sequence of random variables {Xn}∞n=1 converges almost
surely or with probability one to a random variable X, denoted

Xn
a.s.−→ X,

if
Pr[ lim

n→∞
Xn = X] = 1.

� Definition: We say that a sequence of random variables {Xn}∞n=1
converges in distribution to a random variable X, denoted,

Xn
D−→ X,

if for all x,
lim
n→∞

Pr[Xn ≤ x] = Pr[X ≤ x].
SpeciÞcally, we often have

n1/2(bθ − θ) D−→ N(0, σ2) .

� Definition: We say that a sequence of random variables {Xn}∞n=1
converges in mean square to a random variable X, denoted

Xn
m.s.−→ X,

if
lim
n→∞

E[|Xn −X|2] = 0.

� This presumes of course that EX2
n <∞ and EX2 <∞.

� When X is a constant,

E[|Xn −X|2] = E[|Xn −EXn|2] + |EXn −X|2
= var(Xn) + |EXn −X|2,

and it is necessary and sufficient that

EXn → X and var(Xn)→ 0.
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� Mean square convergence implies convergence in probability. This fol-
lows from the Chebychev inequality

Pr[|Xn −X| > ε] ≤ E[|Xn −X|2]
ε2

.

� Note that convergence in probability is stronger than convergence in
distribution, but they are equivalent when X is a constant (i.e., not
random). Almost sure convergence implies convergence in probability,
but there is no necessary relationship between almost sure convergence
and convergence in mean square. Examples where convergence in dis-
tribution does not imply convergence in probability.

5.2 Laws of Large Numbers and Central Limit
Theorems

� (Kolmogorov Law of Large Numbers) Suppose that X1, . . . , Xn are
independent and identically distributed (i.i.d.). Then a necessary and
sufficient condition for

1

n

nX
i=1

Xi
a.s.−→ µ ≡ E(X1),

is that
E(|Xi|) <∞.

� (Lindeberg-Levy Central Limit Theorem) Suppose thatX1, . . . , Xn are
i.i.d. with E(Xi) = µ and var(Xi) = σ2. Then

1

n1/2

nX
i=1

Xi − µ
σ

D−→ N(0, 1).

� These results are important because many estimators and test statistics
can be reduced to sample averages or functions thereof. There are now
many generalizations of these results for data that are not i.i.d., e.g.,
heterogeneous, dependent weighted sums. We give one example
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� (Lindeberg-Feller) Let X1, . . . , Xn be independent random variables
with E(Xi) = 0 and var(Xi) = σ2i . Suppose also that Lindeberg�s
condition holds: for all ² > 0,

1Pn
i=1 σ

2
i

nX
i=1

E

"
X2
i 1

Ã
X2
i > ²

iX
j=1

σ2j

!#
→ 0.

Then
1

(
Pn

i=1 σ
2
i )
1/2

nX
i=1

Xi
D−→ N(0, 1).

� A sufficient condition for the Lindeberg condition is that

E[|Xi|3] <∞.
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5.3 Additional Results

� Mann�Wald Theorem.
� If Xn

D−→ X and if g is continuous, then

g(Xn)
D−→ g(X).

� If Xn
P−→ α, then

g(Xn)
P−→ g(α).

� Slutsky Theorem. If Xn D−→ X, yn
P−→ α, then:

� Xn + yn
D−→ X + α;

� Xnyn
D−→ αX; and

� Xn/yn
D−→ X/α, provided α 6= 0.

� Vector random variables. Consider the vector sequence

Xn = (Xn1, . . . ,Xnk)
0.

We have the result that

kXn −Xk P−→ 0,

where kxk = (x0x)1/2 is Euclidean norm, if and only if
|Xnj −Xj| P−→ 0 for all j = 1, . . . , k.

� The if part is no surprise and follows from the continuous mapping
theorem. The only if part follows because if

kXn −Xk < ε
then there exists a constant c such that

|Xnj −Xj| < ε/c
for each j.

� Cramers Theorem. A vector Xn converges in distribution to a normal
vector X if and only if a0Xn converges in distribution to a0X for every
vector a.
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5.4 Applications to OLS

� We are now able to establish some results about the large sample prop-
erties of the least squares estimator. We start with the i.i.d. random
design case because the result is very simple.

� If we assume that:

� xi, εi are i.i.d. with E(xiεi) = 0

� 0 < E [xix0i] <∞ and E [kxiεik] <∞.
� Then, bβ P−→ β.

� The proof comes from applying laws of large numbers to the numerator
and denominator of

bβ − β = "1
n

nX
i=1

xix
0
i

#−1
1

n

nX
i=1

xiεi.

These regularity conditions are often regarded as unnecessary and per-
haps strong and unsuited to the Þxed design.

� We next consider the �bare minimum� condition that works in the Þxed
design case and is perhaps more general since it allows for example
trending variables.

� Theorem. Suppose that A0-A2 hold and that

λmin(X
0X)→∞ as n→∞. (?)

Then, bβ P−→ β.

� Proof. First,
E(bβ) = β

for all β. Then,
var(bβ) = σ2(X 0X)−1,
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where °°(X 0X)−1
°° = λmax((X 0X)−1) =

1

λmin(X 0X)
,

and provided (?) is true,
var(bβ)→ 0.

� Suppose that xi = iα for some α, then

var(bβ) = σ2Pn
j=1 j

2α
=

½
O(n−(2α+1)) if α 6= −1/2
O(1/ log n) if α = −1/2 .

Therefore, consistency holds if and only if α ≥ −1/2.
� If we have a random design then the conditions and conclusion should
be interpreted as holding with probability one in the conditional dis-
tribution given X. Under the above random design assumptions, (?)
holds with probability one.

5.5 Asymptotic Distribution of OLS

� We Þrst state the result for the simplest random design case.

� Suppose that

� xi, εi are i.i.d. with εi independent of xi,

� E(ε2i ) = σ
2

� 0 < E [xix0i] <∞.
� Then,

n1/2(bβ − β) D−→ N(0, σ2 {E [xix0i]}−1).

� Proof uses Mann�Wald Theorem and Slutsky Theorems.

� We next consider the Þxed design case [where the errors are i.i.d. still].
In this case, it suffices to have a vector central limit theorem for the
weighted i.i.d. sequence

bβ − β = ( nX
i=1

xix
0
i)
−1

nX
i=1

xiεi =
nX
i=1

wiεi,
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for some weights wi depending only on the X data. That is, the source
of the heterogeneity is the Þxed regressors.

� A sufficient condition for the scalar standardized random variable

Tn =

Pn
i=1wiεi

(
Pn

i=1w
2
i σ

2)
1/2

to converge to a standard normal random variable is the following condi-
tion

max1≤i≤nw2iPn
i=1w

2
i

→ 0.

This is a so-called negligibility requirement, which means that no one of
the weights
dominates every other term.

� Therefore, Ã
nX
i=1

xix
0
i/σ

2

!1/2
(bβ − β) D−→ N(0, 1),

provided the following negligibility condition holds:

max
1≤i≤n

xi(X
0X)−1x0i → 0 as n→∞.

Actually it suffices for the diagonal elements of this matrix to converge
to zero. This condition is usually satisÞed.

� If also X 0X/n→M > 0, then

n1/2(bβ − β) D−→ N(0, σ2M−1),

� Suppose k = 1, then the negligibility condition is

max
1≤i≤n

x2iPn
j=1 x

2
j

→ 0.

For example, if xi = i,

max1≤i≤n i2Pn
j=1 j

2
=

n2

O(n3)
→ 0.

In this case, even though the largest element is increasing with sample
size many other elements are increasing just as fast.
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� An example, where the CLT would fail is

xi =

½
1 if i < n
n if i = n.

In this case, the negligibility condition fails and the distribution of
the least squares estimator would be largely determined by the last
observation.

5.6 Order Notation

� In the sequel we shall use the Order notation:

Xn = op(δn) if
Xn
δn

P−→ 0

and
Xn = Op(δn) if Xn/δn is stochastically bounded,

i.e., if for all K,

lim
n→∞

Pr

·¯̄̄̄
Xn
δn

¯̄̄̄
> K

¸
< 1.

The latter means that Xn is of no larger order than δn, while the Þrst
one is stronger and says that Xn is of smaller order than δn. These
concepts correspond to the o(·) and O(·) used in standard real analysis.

� The order symbols obey the following algebra, which is really just the
Slutsky theorem:

Op(1)op(1) = op(1)

Op(an)Op(bn) = Op(anbn)

Op(an) +Op(bn) = Op(max{an, bn}).

5.7 Standard Errors and Test Statistics in Lin-
ear Regression

� We Þrst consider the standard error. We have

s2 =
bu0bu
n− k
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=
1

n− k{u
0u− u0X(X 0X)−1X 0u}

=

µ
n

n− k
¶
u0u
n
− 1

n− k
u0X
n1/2

(X 0X/n)−1X 0u/n1/2.

� Theorem. Suppose that ui are i.i.d. with Þnite fourth moment, and that
the regressors are from a Þxed design and satisfy (X 0X/n)→M,where
M is a positive deÞnite matrix. Then

n1/2(s2 − σ2) D−→ N(0, var[u2 − σ2]).

� Proof. Note that
var(

u0X
n1/2

) = σ2
X 0X
n
,

which stays bounded by assumption, so that (u0X/n1/2) = Op(1).
Therefore the second term in s2 is Op(n−1). Furthermore, u0u/n con-
verges in probability to σ2 by the Law of Large Numbers. Therefore,

s2 = [1 + op(1)]σ
2 − 1

n− kOp(1)

= σ2 + op(1).

� What about the asymptotic distribution of s2?

n1/2(s2 − σ2)

= [1 + op(1)]
1

n1/2

nX
i=1

(u2i − σ2)−
n1/2

n− kOp(1)

=
1

n1/2

nX
i=1

(u2i − σ2) + op(1)
D−→ N(0, var[u2 − σ2]),

provided the second moment of (u2i − σ2) exists, which it does under
our assumption. When the errors are normally distributed,

var[u2 − σ2] = 2σ4.
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� Now what about the t statistic:

t =
n1/2c0bβ

s(c0 (X
0X)−1
n

c)1/2

=
n1/2c0bβ

σ(c0M−1c)1/2
+ op(1)

D−→ N(0,σ2c0M−1c)
σ(c0M−1c)1/2

≡ N(0, 1) under H0.

� As for the Wald statistic

W = n(Rbβ − r)0 "s2RµX 0X
n

¶−1
R0
#−1

(Rbβ − r).
Theorem. Suppose that R is of full rank, that ui are i.i.d. with Þnite

fourth moment, and that the regressors are from a Þxed design and satisfy

(X 0X/n)→M,

where M is a positive deÞnite matrix. Then,

W
D−→ N(0,σ2RM−1R0)× [σ2RM−1R0]−1 ×N(0,σ2RM−1R0) = χ2q.

5.8 The delta method

� Theorem. Suppose that
n1/2(bθ − θ) D−→ N(0, Σ)

and that f is a continuously differentiable function. Then

n1/2(f(bθ)− f(θ)) D−→ N

µ
0,
∂f

∂θ
Σ
∂f

∂θ0

¶
.

� Proof (Scalar case). By the mean value theorem
f(bθ) = f(θ) + (bθ − θ)f 0(θ∗),

i.e.,
n1/2(f(bθ)− f(θ)) = f 0(θ∗) · n1/2(bθ − θ).
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� Furthermore, bθ P−→ θ ⇒ θ∗ P−→ θ,

which implies that
f 0(θ∗) P−→ f 0(θ),

where
f 0(θ) 6= 0 <∞.

� Therefore,
n1/2(f(bθ)− f(θ)) = [f 0(θ) + op(1)]n1/2(bθ − θ),

and the result now follows.

� Example 1. f(β) = eβ, what is the distribution of ebβ (scalar)
n1/2(e

bβ − eβ) = eβn1/2(bβ − β)
D→ N(0, e2βσ2M−1).

� Example 2. Suppose that
y = β1 + β2x2 + β3x3 + u.

What about bβ2/bβ3? We have
n1/2

Ãbβ2bβ3 − β2β3
!

D−→ N

µ
0, σ2

∂f

∂β
M−1 ∂f

∂β0

¶
,

where

∂f

∂β
=

 0
1/β3
−β2/β23

 ,
so that the limiting variance is

σ2

(Ã
1
β3−β2
β23

!µ
M22 M23

M32 M33

¶Ã 1
β3−β2
β23

!)
.



Chapter 6

Errors in Variables

� Measurement error is a widespread problem in practice, since much
economics data is poorly measured. This is an important problem that
has been investigated a lot over the years.

� One interpretation of the linear model is that

- there is some unobservable y∗ satisfying

y∗ = Xβ

- we observe y∗ subject to error

y = y∗ + ε,

where ε is a mean zero stochastic error term satisfying

ε ⊥ y∗

[or more fundamentally, ε ⊥ X].

� Combining these two equations

y = Xβ + ε,

where ε has the properties of the usual linear regression error term. It
is clear that we treat X, y asymmetrically; X is assumed to have been
measured perfectly.

77
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� What about assuming instead that
y = X∗β + ε,

where
X = X∗ + U.

We might assume that X is stochastic but X∗ is Þxed or that both
are random. The usual strong assumption is that U, ε ⊥ X∗ in any
case, and that U, ε are mutually independent. Clearly a variety of
assumptions can be made here, and the results depend critically on
what is assumed.

� Together these equations imply that
y = Xβ + ε− Uβ = Xβ + ν,

where
ν = ε− Uβ

is correlated with X because X(U) and ν(U).

� In this case, the least squares estimator has an obvious bias. We havebβ = (X 0X)−1X 0y

= β + (X 0X)−1X 0ν

= β + (X 0X)−1X 0ε− (X 0X)−1X 0Uβ.

Take expectations [note that X is now a random variable, although X∗

may not be]

E(bβ) = β −E ©(X 0X)−1X 0E[U |X]ªβ
= β −E ©(X 0X)−1X 0[X −X∗]

ª
β

In general this is not equal to β, but it is difficult to calculate the bias
exactly. Instead it is better to work with asymptotic approximation
and to obtain an asymptotic bias.

� The denominator of bβ satisÞes
X 0X
n

=
X∗0X∗

n
+ 2

X∗0U
n

+
U 0U
n
.
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� We shall suppose that for
X∗0X∗

n
P−→ Q∗

X∗0U
n

P−→ 0

U 0ε
n

P−→ 0

X∗0ε
n

P−→ 0

U 0U
n

P−→ ΣUU

which would be justiÞed by the Law of Large Numbers under some
assumptions on U, ε, X∗. Therefore,

X 0X
n

P−→ Q∗ + ΣUU .

� The numerator of bβ satisÞes
X 0ε
n

P−→ 0

X 0U
n

=
X∗0U
n

P−→ 0 +
U 0U
n

P−→ ΣUU

by similar reasoning.

� Therefore,
bβ P−→ β − [Q∗ + ΣUU ]−1ΣUUβ =

©
[Q∗ + ΣUU ]

−1Q∗
ª · β ≡ Cβ.

� In the scalar case,
C =

q

q + σ2u
=

1

1 + σ2u/q
,

where σ2u/q is the noise to signal ratio;

- when
noise
signal

= 1,

bβ is unbiased.
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- When
noise
signal

↑,

|bias| increases and β shrinks towards zero.

� In the vector case
|| p lim
n→∞

bβ|| ≤ kβk ,
but it is not necessarily the case that each element is shrunk towards
zero.

� Suppose that K > 1, but only one regressor is measured with error,
i.e.,

ΣUU =

·
σ2u 0
0 0

¸
.

In this case, all bβ are biased; that particular coefficient estimate is
shrunk towards zero.

� The downward bias result is speciÞc to the strong assumptions case.
For example, suppose that (X∗

i , Ui, εi) are normally distributed but
that Ui, εi are mutually correlated with covariance σuε. Then

bβ P−→ βq

q + σ2u
+

σuε
q + σ2u

,

and if σuε is large enough the bias can even be upward.

� If X∗ is trending, then measurement error may produce no bias. For
example, suppose that

x∗t = t and xt = x
∗
t + Ut.

Now

X∗0X∗ =
TX
t=1

t2 = O(T 3),

U 0U =
TX
t=1

U2t = Op(T ).



6.1. SOLUTIONS TO EIV 81

Therefore,

X 0X
T 3

P−→ X∗0X∗

T 3

X 0U
T 3/2

=
X∗0U
T 3/2

+
U 0U
T 3/2

P−→ 0.

Therefore, bβ P−→ β.

This is because the signal here is very strong and swamps the noise.

6.1 Solutions to EIV

� Assume knowledge of signal to noise ratio q/σ2u and adjust bβ appropri-
ately. This is hard to justify nowadays because we rarely are willing to
specify this information.

� Orthogonal regression.

� Instrumental variables. Let Zn×k be instruments; that is, we have
Z 0X
n

P−→ QZX

Z 0ν
n

P−→ 0,

or equivalently Z 0ε/n P−→ 0, Z 0U/n P−→ 0.

� Then deÞne the instrumental variables estimator (IVE)
bβIV = (Z 0X)−1Z 0y.

� We have bβIV = β +µZ 0Xn
¶−1

Z 0ν
n

P−→ β,

using the above assumptions.
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� Suppose that νi are i.i.d. with mean zero and variance σ2ν and that in
fact

Z 0ν

n
1
2

D−→ N(0,σ2νQZZ).

Then, we can conclude that

n
1
2

³bβIV − β´ = µZ 0Xn
¶−1

Z 0ν

n
1
2

D−→ N
¡
0,σ2νQ

−1
ZXQZZQ

−1
ZX

¢
.

� Where do the instruments come from?
- Suppose that measurement errors affects cardinal outcome but not
ordinality, i.e.,

xi < xj ⇔ x∗i < x
∗
j .

Then take as zi the rank of xi.

- A slightly weaker restriction is to suppose that measurement error
does not affect whether a variable is below or above the median,
although it could affect other ranks. In this case,

zi =

½
1 if xi > median xi
0 if xi < median xi

would be the natural instrument.

- Method of grouping Wald (1940). The estimator is y1/x1.

- Time series examples, z are lagged variables.

- SpeciÞc examples. Month of birth.

6.2 Other Types of Measurement Error

� Discrete Covariates. Suppose that the covariate is discrete, then the
above model of measurement is logically impossible. Suppose instead
that

Xi =

½
X∗
i with prob π

1−X∗
i with prob 1− π.

We can write this as Xi = X∗
i + Ui, but Ui is not independent of X

∗
i .

� Magic Numbers. Suppose that there is rounding of numbers so that
X∗
i is continuous, while Xi is the closest integer to X

∗
i .
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6.3 Durbin-Wu-Hausman Test

� We now consider a well known test for the presence of measurement
error, called the Durbin-Wu-Hausman test. Actually, the test is ap-
plicable more generally.

� Suppose that our null hypothesis is
H0 : no measurement error.

This is equivalent to
σ2U = 0,

which may be a difficult test to contemplate by our existing methods.

� Instead consider the test statistic

H =
³bβOLS − bβIV ´0 bV −1 ³bβOLS − bβIV ´ ,

and reject the null hypothesis for large values of this statistic.

- The idea is that bβOLS and bβIV are both consistent under H0,
but under HA, bβOLS is inconsistent. Therefore, there should be a
discrepancy that can be picked up under the alternative.

� What is the null asymptotic variance? We havebβOLS − bβIV = ©(Z 0X)−1Z 0 − (X 0X)−1X 0ª ν = Aν
with variance V = σ2νAA

0.

� In fact, AA0 simpliÞes
AA0 = (Z 0X)−1Z 0Z(Z 0X)−1

−(Z 0X)−1Z 0X(X 0X)−1

−(X 0X)−1X 0Z(Z 0X)−1

+(X 0X)−1

= (Z 0X)−1Z 0Z(Z 0X)−1 − (X 0X)−1

≥ 0,

where the inequality follows by the Gauss Markov Theorem.
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� So we use
bV = s2ν ©(Z 0X)−1Z 0Z(Z 0X)−1 − (X 0X)−1

ª
= s2ν(Z

0X)−1Z 0MXZ(X
0Z)−1,

where

s2ν =
1

n− k
nX
i=1

bν2i ,
where bνi = yi −XbβIV .

� Thus bV −1 = s−2ν X 0Z (Z 0MXZ)
−1
Z 0X.

� Under H0,
H

D−→ χ2K ,

and the rule is to reject for large values of H.



Chapter 7

Heteroskedasticity

� We made the assumption that
V ar(y) = σ2I

in the context of the linear regression model. This contains two material
parts:

- off diagonals are zero (independence), and

- diagonals are the same.

� Here we extend to the case where

V ar(y) =

 σ21 0
. . .

0 σ2n

 = Σ,
i.e., the data are heterogeneous.

� We look at the effects of this on estimation and testing inside linear
(nonlinear) regression model, where E(y) = Xβ. In practice, many
data are heterogeneous.

7.1 Effects of Heteroskedasticity

� Consider the OLS estimatorbβ = (X 0X)−1X 0y.
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� In the new circumstances, this is unbiased, because
E(bβ) = β, ∀β.

� However,
V ar(bβ) = (X 0X)−1X 0ΣX(X 0X)−1

=

Ã
nX
i=1

xix
0
i

!−1 nX
i=1

xix
0
iσ
2
i

Ã
nX
i=1

xix
0
i

!−1
6= σ2(X 0X)−1.

� As sample size increases,
V ar(bβ)→ 0,

so that the OLSE is still consistent.

� The main problem then is with the variance.

- Least squares standard errors are estimating the wrong quantity.
We have

s2 =
1

n− kbu0bu = 1

n

nX
i=1

u2i + op(1)

P−→ σ2 ≡ lim
n→∞

1

n

nX
i=1

σ2i ,

but
1

n

nX
i=1

xix
0
iσ
2
i −

1

n

nX
i=1

σ2i ·
1

n

nX
i=1

xix
0
i 9 0

in general.

� OLS is inefficient. Why?
y∗ = Σ−1/2y = Σ−1/2Xβ + Σ−1/2u = X∗β + u∗,

where u∗ are homogeneous. Therefore,bβ∗ = (X∗0X∗)−1X∗0y∗ =
¡
X 0Σ−1X

¢−1
X 0Σ−1y
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is efficient by Gauss-Markov. SobβGLS = ¡X 0Σ−1X
¢−1

X 0Σ−1y

is the efficient estimator here; this is not equal tobβOLS = (X 0X)−1X 0y,

unless
Σ = σ2I

(or some more complicated conditions are satisÞed).

� Can show directly that¡
X 0Σ−1X

¢−1 ≤ (X 0X)−1X 0ΣX(X 0X)−1.

In some special cases OLS = GLS, but in general they are different.
What to do?

7.2 Plan A: Eicker-White

� Use OLS but correct standard errors. Accept inefficiency but have
correct tests, etc.

� How do we do this? Can�t estimate σ2i , i = 1, ..., n because there are n
of them. However, this is not necessary - instead we must estimate the
sample average 1

n

Pn
i=1 xix

0
iσ
2
i . We estimate V ar(bβ) =

V =
1

n

Ã
1

n

nX
i=1

xix
0
i

!−1Ã
1

n

nX
i=1

xix
0
iσ
2
i

!−1Ã
1

n

nX
i=1

xix
0
i

!−1
by

bV = 1

n

Ã
1

n

nX
i=1

xix
0
i

!−1Ã
1

n

nX
i=1

xix
0
ibu2i
!−1Ã

1

n

nX
i=1

xix
0
i

!−1
.

Then under regularity conditions

1

n

nX
i=1

xix
0
i(bu2i − σ2i ) P−→ 0,

which shows that bV − V P−→ 0.
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� Typically Þnd that White�s standard errors [obtained from the diagonal
elements of bV ] are larger than OLS standard errors.

� Finally, one can construct test statistics which are robust to heteroskedas-
ticity, thus

n(Rbβ − r)0[RbV R0]−1(Rbβ − r) D−→ χ2J .

7.3 Plan B: Model Heteroskedasticity

� Sometimes models are suggested by data. Suppose original observations
are by individual, but then aggregate up to a household level. Homo-
geneous at the individual level implies heterogeneous at the household
level, i.e.,

ui =
1

ni

niX
j=1

uij.

Then,

V ar(ui) =
1

ni
V ar(uij) =

σ2

ni
.

Here, the variance is inversely proportional to household size. This is
easy case since apart from single constant, σ2, σ2i is known.

� General strategy. Suppose that
Σ = Σ(θ).

Further example σ2i = e
γxi or σ2i = γx

2
i for some parameters.

� Suppose we have a normal error and that θ ∩ β = φ. Then,
L(β, θ) = −1

2
ln |Σ(θ)|− 1

2
(y −Xβ)0Σ(θ) (y −Xβ)

= −1
2

nX
i=1

lnσ2i (θ)−
1

2

nX
i=1

(yi − x0iβ)2 σ−2i (θ).

In this case,

∂L
∂β

=
nX
i=1

xi
(yi − x0iβ)
σ2i (θ)

∂L
∂θ

= −1
2

nX
i=1

∂ lnσ2i
∂θ

(θ)

"
(yi − x0iβ)2
σ2i (θ)

− 1
#
.
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� The estimators (bβMLE,bθMLE) solve this pair of equations, which are
nonlinear in general.

� Note that the equation for β is conditionally linear, that is suppose
that we have a solution bθMLE, then

bβMLE =
"

nX
i=1

xix
0
iσ
−2
i (
bθMLE)#−1 nX

i=1

xiyiσ
−2
i (
bθMLE).

Iterate. Start with bβOLS, which is consistent, this gives us bθ, which we
then use in the GLS deÞnition. See below for a proper treatment of
nonlinear estimators.

� Example. Suppose that
σ2i =

1

θ (x0ixi)

for some positive constant θ. In this case

∂`

∂θ
=
1

2

nX
i=1

1

θ
+
1

2

nX
i=1

u2i (β)x
0
ixi.

Therefore, we have a closed form solution

bθ = 1
1
n

Pn
i=1 bu2i (bβ)x0ixi ,

where bui = yi − x0ibβMLE.
7.4 Properties of the Procedure

� Firstly, under general conditions not requiring y to be normally dis-
tributed,  n 1

2

³bβMLE − β´
n
1
2

³bθMLE − θ´
 D−→ N(0,Ω)

for some Ω.
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� If y is normal, then Ω = I−1, the information matrix,

I =

·
limn→∞ n−1X 0Σ−1X o

0 ?

¸
.

In this case, bβ is asymptotically equivalent tobβGLS = ¡X 0Σ−1X
¢−1

X 0Σ−1y.

We say that bβML is asymptotically Gauss-Markov efficient, BLAUE.
� Often people use ad hoc estimates of θ and construct

bβFGLS = ³X 0Σ−1(bθAH)X´−1X 0Σ−1(bθAH)y.
Provided bθ P−→ θ and some additional conditions, this procedure is also
asymptotically equivalent to bβGLS.

7.5 Testing for Heteroskedasticity

� The likelihood framework has been widely employed to suggest tests of
heteroskedasticity. Suppose that

σ2i (θ) = αe
γxi

H0 : γ = 0 vs. γ 6= 0.
� The LM tests are simplest to implement here because we only have to
estimate under homogeneous null. We have

∂L
∂γ

= −1
2

nX
i=1

xi

µ
u2i
α
− 1
¶
.

Under normality,

V ar

µ
u2i
α

¶
= 2.

Therefore,

LM =
nX
i=1

µbu2ibα − 1
¶
xi

"
2

nX
i=1

xix
0
i

#−1 nX
i=1

µbu2ibα − 1
¶
xi,
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where bα = 1

n

nX
i=1

bu2i ,
where bu2i are the OLS residuals from the restricted regression.

� Under H0
LM

D−→ χ21.

Reject for large LM.
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Chapter 8

Nonlinear Regression Models

� Suppose that
yi = g(xi,β) + εi, i = 1, 2, ..., n,

where εi are i.i.d. mean zero with variance σ2.

� In this case, how do we estimate β? The main criterion we shall consider
is the Nonlinear least squares, which is of course the MLE when y ∼
N(g,σ2I). In this case one chooses β to minimize

Sn(β) =
1

n

nX
i=1

[yi − g(xi,β)]2

over some parameter set B. LetbβNLLS =argmin
β∈B

Sn(β).

� If B is compact and g is continuous, then the minimizer exists but
is not necessarily unique. More generally, one cannot even guarantee
existence of a solution.

� We usually try to solve a Þrst order condition, which would be appro-
priate for Þnding interior minima in differentiable cases. In general, the
Þrst order conditions do not have a closed form solution. If there are
multiple solutions to the Þrst order condition, then one can end up with
different answers depending on the way the algorithm is implemented.
Statistical properties also an issue, bβNLLS is a nonlinear function of y,
so we cannot easily calculate mean and variance.
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� If Sn is globally convex, then there exists a unique minimum for all
n regardless of the parameter space. Linear regression has a globally
convex criterion - it is a quadratic function. Some nonlinear models
are also known to have this property.

8.1 Computation

� In one-dimension with a bounded parameter space B, the method of
line search is effective. This involves dividing B into a grid of, perhaps
equally spaced, points, computing the criterion at each point and then
settling on the minimum. There can be further reÞnements - you fur-
ther subdivide the grid around the minimum etc. Unfortunately, this
method is not so useful in higher dimensions d because of the �curse of
dimensionality�. That is, the number of grid points required to achieve
a given accuracy increases exponentially in d.

� �Concentration� or �ProÞling� can sometimes help: some aspects of the
problem may be linear, e.g.,

g(x, θ) = β
xλ − 1
λ

.

If λ were known, would estimate β by

bβ = [X(λ)0X(λ)]−1X(λ)0y,
where

X(λ) =


xλ1−1
λ
...

xλn−1
λ

 .
Then write

Sn

³bβ(λ),λ´ = 1

n

nX
i=1

·
yi − bβ(λ)xλi − 1

λ

¸2
,

which is the concentrated criterion function. Now Þnd bλ to min this,
e.g., by line search on [0, 1].
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� Derivative based methods. We are trying to Þnd a root of
∂Sn
∂β

³bβNNLS´ = 0.
� Can evaluate Sn, ∂Sn/∂β, ∂2Sn/∂β∂β0, for any β. Suppose we take an
initial guess β1 and then modify it - which direction and how far?

- If ∂Sn(β1)/∂β > 0, then we are to the right of the minimum,
should move left.

- We Þt a line tangent to the curve ∂Sn/∂β at the point β1 and Þnd
where that line intersects the zero.

� The tangent at β1 is ∂2Sn(β1)/∂β2 and the constant term is ∂Sn(β1)/∂β−
∂2Sn(β1)/∂β

2β1.

� Therefore,

0 =
∂2Sn

∂β2
(β1)β2 +

∂Sn
∂β
(β1)−

∂2Sn
∂β

(β1)β1,

which implies that

β2 = β1 −
·
∂2Sn

∂β2
(β1)

¸−1
∂Sn
∂β
(β1).

Repeat until convergence. This is Newton�s method.

� In practice the following criteria are used¯̄
βr+1 − βr

¯̄
< τ or

¯̄
Sn(βr+1)− Sn(βr)

¯̄
< τ

to stop the algorithm.

� In k-dimensions

β2 = β1 −
·
∂2Sn
∂β∂β0

(β1)

¸−1
∂Sn
∂β
(β1).
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� There are some modiÞcations to this that sometimes work better. Outer
produce (OPE) of the scores

β2 = β1 −
"

nX
i=1

∂Si
∂β
(β1)

∂Si
∂β0

(β1)

#−1 nX
i=1

∂Si
∂β
(β1).

� Variable step length λ

β2(λ) = β1 − λ
·
∂2Sn
∂β∂β0

(β1)

¸−1
∂Sn
∂β

(β1),

and choose λ to max Sn (β2(λ)).

� There are some issues with all the derivative-based methods:

- If there are multiple local minima, need to try different starting
values and check that always converge to same value.

- When the criterion function is not globally convex one can have
overshooting, and the process may not converge. The variable
step length method can improve this.

- If their criterion is ßat near the minimum, then the algorithm may
take a very long time to converge. The precise outcome depends
on which convergence criterion is used. If you use the change in the
criterion function then the chosen parameter value may actually
be far from the true minimum.

- If the minimum is at a boundary point, then the derivative-based
methods will not converge.

- In some problems, the analytic derivatives are difficult or time
consuming to compute, and people substitute them by numeri-
cal derivatives, computed by an approximation. These can raise
further problems of stability and accuracy.

8.2 Consistency of NLLS

� Theorem. Suppose that

(1) The parameter space B is a compact subset of RK ;
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(2) Sn(β) is continuous in β for all possible data;

(3) Sn(β) converges in probability to a non-random function S(β)
uniformly in β ∈ B, i.e.,

sup
β∈B

|Sn(β)− S(β)| P→ 0.

(4) The function S(β) is uniquely minimized at β = β0.

- Then bβ P→ β0.

� Proof is in Amemiya (1986, Theorem 4.1.1). We just show why (3) and
(4) are plausible. Substituting for yi, we have

Sn(β) =
1

n

nX
i=1

[εi + g(xi,β0)− g(xi,β)]2

=
1

n

nX
i=1

ε2i +
1

n

nX
i=1

[g(xi, β)− g(xi,β0)]2 + 2
1

n

nX
i=1

εi [g(xi, β)− g(xi,β0)] .

� With i.i.d. data, by the Law of Large numbers

1

n

nX
i=1

ε2i
P→ σ2

1

n

nX
i=1

εi [g(xi,β)− g(xi, β0)] P→ 0 for all β

and for all β

1

n

nX
i=1

[g(xi,β)− g(xi, β0)]2 P→ E
¡
[g(xi,β)− g(xi,β0)]2

¢
.

Therefore,

Sn(β)
P→ σ2 +E

¡
[g(xi, β)− g(xi,β0)]2

¢ ≡ S(β).
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� Need convergence in probability to hold uniformly in a compact set
containing β0 (or over B), which requires a domination condition like

sup
β∈B

|Sn(β)| ≤ Y with E(Y ) <∞.

� Now
S(β0) = σ

2 and S(β) ≥ σ2 for all β.
So, in the limit, β0 minimizes S. Need S(β) to be uniquely minimized
at β0 (identiÞcation condition).

� Example where (4) is satisÞed is where g is linear, i.e., g(xi, β) = β0xi.
Then

S(β) = σ2 + (β − β0)0E[xix0i](β − β0),
which is a quadratic function of β. (3) also holds in this case under
mild conditions on xi.

8.3 Asymptotic Distribution of NLLS

� Theorem. Suppose that:

1. bβ is such that
∂Sn(bβ)
∂β

= 0

and satisÞes bβ P→ β0,

where β0 is an interior point of B;

2. ∂2Sn(β)/∂β∂β0 exists and is continuous in an open convex neighbour-
hood of β0;

3. ∂2Sn(β)/∂β∂β0 converges in probability to a Þnite nonsingular matrix
A(β) uniformly in β over any shrinking neighbourhood of β0;

4. For some Þnite matrix B,

n
1
2
∂Sn(β0)

∂β
D→ N (0, B) .
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- Then,
n
1
2 (bβ − β0) D→ N0, V ),

where V = A−1BA−1 and A = A(β0).

� Proof. We have

0 = n
1
2
∂Sn
∂β
(bβ) = n 1

2
∂Sn
∂β
(β0) +

∂2Sn
∂β∂β0

(β∗)n
1
2 (bβ − β0),

where β∗ lies between β0 and bβ by the multivariate mean value theorem.
Applying assumptions (1)-(3) we get

n
1
2 (bβ − β) = −A−1n 1

2
∂Sn
∂β
(β0) + op(1).

Finally, apply assumption (4) we get the desired result.

� We now investigate the sort of conditions needed to satisfy the assump-
tions of the theorem. In our case

∂Sn
∂β
(β0) = −21

n

nX
i=1

[yi − g(xi,β0)]
∂g

∂β
(xi, β0)

=
−2
n

nX
i=1

εi · ∂g
∂β
(xi,β0).

� Suppose that (xi, εi) are i.i.d. with

E(εi|xi) = 0

with probability one. In this case, provided

E

·°°°°ε2i ∂g∂β (xi, β0) ∂g∂β0 (xi,β0)
°°°°¸ <∞,

we can apply the standard central limit theorem to obtain

D

n
1
2
∂Sn
∂β
(β0)→ N

µ
0, 4E

·
ε2i
∂g

∂β
(xi, β0)

∂g

∂β0
(xi, β0)

¸¶
.
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� What about (3)?
∂2Sn
∂β∂β0

(β) = −21
n

nX
i=1

∂2g

∂β∂β0
(xi,β) [yi − g(xi, β)]+21

n

nX
i=1

∂g

∂β

∂g

∂β0
(xi, β),

which in the special case β = β0 is

∂2Sn
∂β∂β0

(β) =
−2
n

nX
i=1

εi
∂2g

∂β∂β0
(xi, β0) +

2

n

nX
i=1

∂g

∂β

∂g

∂β0
(xi,β0).

� Provided
E

·°°°°εi ∂2g∂β∂β0
(xi,β0)

°°°°¸ <∞
and

E

·°°°°∂g∂β ∂g∂β0 (xi,β0)
°°°°¸ <∞,

we can apply the law of large numbers to obtain

1

n

nX
i=1

εi
∂2g

∂β∂β0
(xi, β0)

P→ 0

1

n

nX
i=1

∂g

∂β

∂g

∂β0
(xi,β0)

P→ E

·
∂g

∂β

∂g

∂β0
(xi,β0)

¸
.

� These conditions need to be strengthened a little to obtain uniformity
over the neighbourhood of β0. For example, suppose that we have
additional smoothness and

∂2g

∂β2
(xi, β

∗) =
∂2g

∂β2
(xi,β0) + (β

∗ − β0)
∂3g

∂β3
(xi,β

∗∗)

for some intermediate point β∗∗. Then, provided

sup
β∈B

°°°°∂3g∂β3 (x, β∗∗)
°°°° ≤ D(x)

for some function D for which

ED(X) <∞,
condition (2) will be satisÞed.
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� Similar results can be shown in the Þxed design case, but we need to
use the CLT and LLN for weighted sums of i.i.d. random variables.

� Note that when εi are i.i.d. and independent of xi, we have

A = 4E

·
∂g

∂β

∂g

∂β0
(xi, β0)

¸
=
B

σ2

and the asymptotic distribution is

n
1
2 (bβ − β0) D→ N

¡
0,σ2A−1

¢
.

� Standard errors. Let

bA = 1

n

nX
i=1

∂g

∂β

∂g

∂β0
(xi, bβ)

bB = 1

n

nX
i=1

∂g

∂β

∂g

∂β0
(xi, bβ)bε2i ,

where bεi = yi − g(xi, bβ).Then
bV P→ V.

8.4 Likelihood and Efficiency

� These results generalize to the likelihood framework for i.i.d. data

`(data, θ) =
nX
i=1

`i(θ).

Let bθ maximize `(data, θ).
� Then under regularity conditions

bθ P→ θ0

and
n
1
2 (bθ − θ0) D→ N

¡
0, I−1(θ0)

¢
,
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where the information matrix

I(θ0) = E
·
∂`i
∂θ

∂`i
∂θ0
(θ0)

¸
= −E

·
∂2`i
∂θ∂θ0

∂`i(θ0)

¸
.

This last equation is called the information matrix equality.

� Asymptotic Cramér-Rao Theorem. The MLE is asymptotically �effi-
cient� amongst the class of all asymptotically normal estimates (stronger
than Gauss-Markov).



Chapter 9

Generalized Method of
Moments

� We suppose that there is i.i.d. data {Zi}ni=1 from some population.

� It is known that there exists a unique θ0 such that
E [g(θ0, Zi)] = 0

for some q × 1 vector of known functions g(θ0, ·).

� For example, g could be the Þrst order condition from OLS or
more generally maximum likelihood, e.g., g(β, Zi) = xi (yi − x0iβ).

� Conditional moment speciÞcation. Suppose in fact we know for
some given function ρ that

E[ρ(θ0, Zi)|Xi] = 0,
whereXi can be a subset of Zi.Then this implies the unconditional
moment given above when you take

g(θ0, Zi) = ρ(θ0, Zi)⊗ h(Xi)
for any function h of the �instruments�Xi. This sort of speciÞcation
arises a lot in economic models, which is what really motivates this
approach.

� The functions g can be nonlinear in θ and Z.
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� The distribution of Zi is unspeciÞed apart from the q moments.

� For any θ, let
Gn(θ) =

1

n

nX
i=1

g(θ, Zi).

� There are several cases:

- p > q unidentiÞed case

- p = q exactly identiÞed case

- p < q overidentiÞed case.

� In the exactly identiÞed case, we deÞne our estimator as any solution
to the equations

Gn(bθ) = 0.
Since we have p equations in p-unknowns, we can expect a solution
to exist under some regularity conditions. However, the equations are
nonlinear and have to be solved by numerical methods.

� When p < q, we cannot simultaneously solve all equations, and the
most we can hope to do is to make them close to zero.

� Let
Qn(θ) = Gn(θ)

0WnGn(θ),

where Wn is a q × q positive deÞnite weighting matrix. For example,
Wn = Qq×q. Then let bθGMM minimize Qn(θ)

over θ ∈ Θ ⊆ Rp.
� This deÞnes a large class of estimators, one for each weighting matrix
Wn.

� It is generally a nonlinear optimization problem like nonlinear least
squares; various techniques are available for Þnding the minimizer.

� GMM is a general estimation method that includes both OLS and more
general MLE as special cases!!
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� Thus consider the sample log likelihood
nX
i=1

`(Zi, θ),

where exp(`) is the density function of Zi. The MLE maximises the
log likelihood function or equivalently Þnds the parameter value that
solves the score equations:

nX
i=1

∂`

∂θ
(Zi, θ) = 0.

� This is exactly identiÞed GMM with

g(θ, Zi) =
∂`

∂θ
(Zi, θ).

� What is different is really the model speciÞcation part, that is the
speciÞcation of models through conditional moment restrictions.

9.1 Asymptotic Properties in the iid case

� We now turn to the asymptotic properties. Under some regularity
conditions we have bθGMM P→ θ0.

Namely, we need that the criterion function converges uniformly to a
function that is uniquely minimized by θ0.

� Under further regularity conditions, we can establish

n
1
2

³bθGMM − θ´ D→ N
¡
0, (Γ0WΓ)−1Γ0WΩWΓ(Γ0WΓ)−1

¢
,

where:

Ω(θ0) = Var n
1
2Gn(θ0),

Γ = p lim
n→∞

∂Gn(θ0)

∂θ
.

0 < W =p lim
n→∞

Wn.
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� Special case of exactly identiÞed case: weights are irrelevant and

n
1
2 (bθ − θ0) D→ N

¡
0,Γ−1ΩΓ−10

¢
.

� What is the optimal choice of W in the overidentiÞed case?

- In fact Wn should be an estimate of Ω−1.

- In the iid case we take

eΩ = Ω(eθ) = 1

n

nX
i=1

g(eθ, Zi)g(eθ, Zi)0,
where eθ is a preliminary estimate of θ0 obtained using some arbi-
trary weighting matrix, e.g., Iq.

� In sum, then, the full procedure is

- eθ = argminGn(θ)0Gn(θ)
- bθ = bθoptGMM = argminGn(θ)

0eΩ−1Gn(θ).
� The asymptotic distribution is now normal with mean zero and variance

n
1
2 (bθ − θ0) D→ N

¡
0, (Γ0Ω−1Γ)−1

¢
.

� This estimator is efficient in the sense that it has minimum asymptotic
variance among all GMM estimators.

� Can estimate the asymptotic variance of bθ by
bV = hbΓ0bΩ−1bΓi−1 ,

where bΩ = Ω(bθ) = 1

n

nX
i=1

g(bθ, Zi)g(bθ, Zi)0,
and bΓ = ∂Gn(bθ)

∂θ
,

are consistent estimates of Γ and Ω.
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9.2 Test Statistics

� t-test. Consider the null hypothesis
c0θ = γ

for some vector c and scalar γ. Then

n
1
2 [c0bθ − γ]
(c0bV c) 12 D→ N(0, 1)

under the null hypothesis. Can do one-sided and two-sided tests.

� Consider the null hypothesis
Rθ = r,

where r is of dimensions m. Then

n(Rbθ − r)0[RbV R0]−1(Rbθ − r) D→ χ2m.

� Reject for large values.
� Nonlinear restrictions. Suppose that

n
1
2 (bθ − θ) D→ N(0, V (θ))

for some variance V .

� By a Taylor series expansion
f(bθ) ' f(θ) + F (θ)(bθ − θ),

where

F (θ) =
∂f(θ)

∂θ0
.

� Therefore,

n
1
2

³
f(bθ)− f(θ)´ D→ N (0, F (θ)V (θ)F (θ)0) .

� This is called the delta method. If f is linear, then this is obvious.
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� Application to hypothesis testing. Consider the null hypothesis

f(θ) = 0

for some m vector nonlinear function f .

� Let bf = f(bθ) and bF = F (bθ).
Then

n bf 0 h bF bV bF 0i−1 bf D→ χ2m

under H0.

9.3 Examples

� Linear regression
y = Xβ + u,

with some error vector u.

� Suppose also that it is known that for some unique β0 we have

E [xiui(β0)] = 0.

There are K conditions and K parameters and this is an exactly iden-
tiÞed case.

- In this case, there exists a unique bβ, the OLS estimator in fact,
that satisÞes the empirical conditions

1

n
X 0(y −Xbβ) = 0.

� Suppose now
E [xiui(β0)] 6= 0,

i.e., the errors are correlated with the regressors. This could be because

- omitted variables. There are variables in u that should be in X.

- The included X variables have been measured with error
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(a) Simultaneous Equations. Demand and supply

QS = S(P ; w, r, t)

QD = D(P ; P ∗, y)

In equilibrium QS = QD determines Q, P given w, r, t, P ∗, and
y. The econometric model

lnQ = α+ β lnP + δw + ρr + τ t+ e , supply

lnQ = α0 + β0 lnP + ξP ∗ + ηy + u , demand

Parameters of interest β, β0 price elasticities, ξ cross-price, η in-
come. This is a simultaneous system. P , Q endogenous variables.
w, r, t, P ∗ and y exogenous variables. Because P and Q simulta-
neously determined, expect

Cov(P, e) 6= 0 6= Cov(Q,u)
Q(P ), P (u)⇒ Q(u)

P (Q), Q(e)⇒ P (e)

Simultaneity means we can�t usually use OLS to estimate para-
meters.

� Suppose however that there exists some instruments zi such that
E [ziui(β0)] = 0 (9.1)

for some instruments zi ∈ RJ .
� Suppose that there are many instruments, i.e., J > K. In this case,
we can�t solve uniquely for bβIV because there are too many equations
which can�t all be satisÞed simultaneously.

� Now take

Gn(β) =
1

n
Z 0(y −Xβ)

=
1

n

nX
i=1

zi(yi − x0iβ).
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A GMM estimator can be deÞned as any minimizer of

Qn(β) = (y −Xβ)0 ZWnZ
0(y −Xβ)

for some J × J weighting matrix Wn. What is the estimator?

� We shall suppose that Wn is a symmetric matrix and deÞne the real
symmetric matrix

A = ZWnZ
0

and its square root A
1
2 . Letting

y∗ = A
1
2y and X∗ = A

1
2X

we see that
Qn(β) = (y

∗ −X∗β)0(y∗ −X∗β)

with solution bβGMM = (X∗0X∗)−1X∗0y∗

= (X 0AX)−1X 0Ay
= (X 0ZWnZ

0X)−1X 0ZWnZ
0y.

� The question is, what is the best choice ofWn? Suppose also that u has
variance matrix σ2I independent of Z, and that Z is a Þxed variable.
Then

var
h
n
1
2Gn(β0)

i
= var

1

n
1
2

Z 0u = σ2
Z 0Z
n
.

Therefore, the optimal weighting is to take

Wn ∝ (Z 0Z)−1

in which case bβGMM = (X 0PZX)
−1
X 0PZy,

where
PZ = Z(Z

0Z)−1Z 0

i.e., it is the two-stage least squares estimator.

� Suppose instead that ui is heteroskedastic, then the optimal weighting
is by

Wn =
1

n

nX
i=1

ziz
0
ibu2i .
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9.4 Time Series Case

� We next suppose that the data is stationary and mixing.

� CONDITIONAL MOMENT RESTRICTIONS. We suppose that for
some m× 1 vector of known functions ρ, with probability one

E [ρ(θ0, Yt) |Ft ] = 0

where θ0 ∈ Rp is the true parameter value and Ft is some information
set containing perhaps contemporaneous regressors and lagged vari-
ables. Many economic models fall into this framework for example
Euler equations. In Þnance applications ρ could be some excess return,
and the efficient markets hypothesis guarantees that this is unfore-
castable given certain sorts of information.

� Examples.

� Static time series regression

yt = β
0xt + εt, where E(εt|xt) = 0.

In this case, the error term εt can be serially correlated.

� Time series regression

yt = γyt−1 + εt, where E(εt|yt−1, yt−2 . . .) = 0.

In this case, the error term is serially uncorrelated.

� Same model but instead suppose only that

E(εt|yt−1) = 0.

This is strictly weaker than the earlier assumption.

� Same model but instead suppose that

E(εt|xt, yt−1) = 0.

This is strictly weaker than the earlier assumption.
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� Estimation now proceeds by forming some UNCONDITIONAL MO-
MENT RESTRICTIONS using valid instruments, i.e., variables from
F∗t ⊂ Ft. Thus, let

g(θ, Zt) = ρ(θ0, Yt)⊗Xt,
where Xt ∈ Ft and Zt = (Yt, Xt). We suppose that g is of dimensions
q with q ≥ p. Then

E[g(θ, Zt)] = 0⇐⇒ θ = θ0.

We then form the sample moment condition

GT (θ) =
1

T

TX
i=1

g(θ, Zt).

� If q = p, the estimator solves GT (θ) = 0. If q > p, let
QT (θ) = GT (θ)

0WTGT (θ),

where WT is a q × q positive deÞnite weighting matrix. For example,
WT = Iq×q. Then letbθGMM minimize QT (θ)

over θ ∈ Θ ⊆ Rp.
� In the regression case E(εt|xt) = 0 means that

E(εt · h(xt)) = 0
for any measurable function h. Therefore, take

g(θ, Zt) = h(xt) · (yt − β0xt)
In the autoregression case E(εt|yt−1, . . .) = 0 means that

E(εt · h(yt−1, . . .)) = 0
for any measurable function h. Therefore, take

g(θ, Zt) = h(yt−1, . . .) · (yt − γyt−1) .
In this case there are many functions that work.
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9.5 Asymptotics

� As before we have

T
1
2

³bθGMM − θ´ D→ N
¡
0, (Γ0WΓ)−1Γ0WΩWΓ(Γ0WΓ)−1

¢
,

where:

Ω(θ0) = Var n
1
2Gn(θ0),

Γ = p lim
n→∞

∂Gn(θ0)

∂θ
.

0 < W =p lim
n→∞

Wn.

Now, however

Ω(θ0) = lim
T→∞

varT
1
2GT (θ0)

= lim
T→∞

var

"
1

T
1
2

TX
t=1

g(θ0, Zt)

#

= lim
T→∞

E

"
1

T

TX
t=1

TX
s=1

g(θ0, Zt)g(θ0, Zs)
0
#
.

� In the special case where g(θ, Zt) is a martingale with respect to past
information, i.e., E[g(θ, Zt)|Ft−1} = 0, where Zt ∈ Ft, then

Ω(θ0) = lim
T→∞

E

"
1

T

TX
t=1

g(θ0, Zt)g(θ0, Zt)
0
#
.

� In general though, you have to take account of the covariance terms.
If the vector time series Ut = g(θ0, Zt) is stationary, then

Ω(θ0) = γ0 +
∞X
k=1

(γk + γ
0
k) ,
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where

γk = E [g(θ0, Zt)g(θ0, Zt−k)0]

γ0k = E [g(θ0, Zt−k)g(θ0, Zt)0]

is the covariance function of Ut.

� For standard errors and optimal estimation we need an estimator of Ω.
The Newey-West estimator

bΩT = XX
t,s:|t−s|≤n(T )

w (|t− s|) g
³eθ, Zt´ g ³eθ, Zs´0 ,

where
w(j) = 1− j

n+ 1
,

and where eθ is a preliminary estimate of θ0 obtained using some arbi-
trary weighting matrix, e.g., Iq. This ensures a positive deÞnite covari-
ance matrix estimate. Provided n = n(T ) → ∞ but n(T )/T → 0 at
some rate bΩT P−→ Ω.

� This is used to construct standard errors.
� The optimal choice of W should be an estimate of Ω−1.We take WT =bΩ−1T .

9.6 Example

� Hansen and Singleton, Econometrica (1982). One of the most in-
ßuential econometric papers of the 1980s. Intertemporal consump-
tion/Investment decision:

- ct consumption

- u(·) utility uc > 0, ucc < 0.
- 1 + ri,t+1, i = 1, . . . ,m is gross return on asset i at time t+ 1.
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� The representative agent solves the following optimization problem

max
{ct,wt}∞t=0

∞X
τ=0

βτE [u(ct+τ) |It ] ,

where

- wt is a vector of portfolio weights.

- β is the discount rate with 0 < β < 1.

- It is the information available to the agent at time t.

� We assume that there is a unique interior solution; this is characterized
by the following condition

u0(ct) = βE [(1 + ri,t+1)u0(ct+1) |It ] ,

for i = 1, . . . ,m.

� Now suppose that

u(ct) =

(
c1−γt

1−γ if γ > 0, γ 6= 1,
log ct γ = 1.

Here, γ is the coefficient of relative risk aversion.

� In this case, the Þrst order condition is
c−γt = βE

£
(1 + ri,t+1)c

−γ
t+1 |It

¤
for i = 1, . . . ,m.

� This implies that

E

"
1− β

(
(1 + ri,t+1)

µ
ct+1
ct

¶−γ)
|I∗t
#
= 0

for i = 1, . . . ,m, where
I∗t ⊂ It

and I∗t is the econometrician�s information set.
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� We want to estimate the parameters θp×1 = (β, γ) and test whether
the theory is valid given a dataset consisting of

{ct, ri,t+1, I∗t }Tt=1 .

� DeÞne the q × 1 vector

g(θ, xt) =


...·

1− β
½
(1 + ri,t+1)

³
ct+1
ct

´−γ¾¸
zjt

...

 ,
where

zt ∈ I∗t ⊂ RJ
are �instruments�, q = mJ , and

xt = (zt, ct, ct+1, r1,t+1, . . . , rm,t+1)
0 .

� Typically, zt is chosen to be lagged variables and are numerous, so that
q ≥ p.

� The model assumption is that

E [g(θ0, xt)] = 0

for some unique θ0.

� This is a nonlinear function of γ.
� Exercise. Show how to consistently estimate Γ and Ω in this case.



Chapter 10

Time Series

10.1 Some Fundamental Properties

� We start with univariate time series {yt}Tt=1. There are two main fea-
tures:

- stationarity/nonstationarity

- dependence

� We Þrst deÞne stationarity.
� Strong Stationarity. The stochastic process y is said to be strongly
stationary if the vectors

(yt, . . . , yt+r)

and
(yt+s, . . . , yt+s+r)

have the same distribution for all t, s, r.

� Weak Stationarity. The stochastic process y is said to be weakly sta-
tionary if the vectors

(yt, . . . , yt+r)

and
(yt+s, . . . , yt+s+r)

have the same mean and variance for all t, s, r.

117
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� Most of what we know is restricted to stationary series, but in the last
20 years there have been major advances in the theory of nonstationary
time series, see below. In Gaussian [i.e., linear] time series processes,
strong and weak stationarity coincide.

� Dependence. One measure of dependence is given by the covariogram
[or correlogram]

cov(yt, yt−s) = γs; ρs =
γs
γ0
.

� Note that stationarity was used here in order to assert that these mo-
ments only depend on the gap s and not on calendar time t as well.

� For i.i.d. series,
γs = 0 for all s 6= 0,

while for positively (negative) dependent series γs > (<)0. Economics
series data often appear to come from positively dependent series.

� Mixing. (Covariance) If γs → 0 as s→∞.
� This just says that the dependence [as measured by the covariance] on
the past shrinks with horizon. This is an important property that is
possessed by many models.

� ARMA Models. The following is a very general class of models called
ARMA(p, q):

yt = µ+ φ1yt−1 + . . .+ φpyt−p
+εt − θ1εt−1 − . . .− θqεt−q,

where εt is i.i.d., mean zero and variance σ2.

- We shall for convenience usually assume that µ = 0.

- We also assume for convenience that this model holds for t =
0,±1, . . ..

� It is convenient to write this model using lag polynomial notation. We
deÞne the lag operator

Lyt = yt−1
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so that we can now deÞne

A(L)yt = B(L)εt,

where the lag polynomials

A(L) = 1− φ1L− . . .− φpLp
B(L) = 1− θ1L− . . .− θqLq.

The reason for this is to save space and to emphasize the mathematical
connection with the theory of polynomials.

� Special case AR(1). Suppose that
yt = φyt−1 + εt.

Here,
A(L) = 1− φL.

- We assume |φ| < 1, which is necessary and sufficient for yt to be
a stationary process.

- Now write
yt−1 = φyt−2 + εt−1.

Continuing we obtain

yt = εt + φεt−1 + φ2yt−2
= εt + φεt−1 + φ2εt−2 + . . .

=
∞X
j=0

φjεt−j,

which is called the MA(∞) representation of the time series;
- this shows that yt depends on all the past shocks.

� Now we calculate the moments of yt using the stationarity property.
We have

E(yt) = φE(yt−1),

which can be phrased as

µ = φµ⇔ µ = 0,

where
µ = E(yt) = E(yt−1).
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� Furthermore,
var(yt) = φ

2var(yt−1) + σ2,

which implies that

γ0 =
σ2

1− φ2 ,

where
γ0 = var(yt) = var(yt−1).

This last calculation of course requires that |φ| < 1, which we are
assuming for stationarity.

� Finally,
cov(yt, yt−1) = E(ytyt−1) = φE(y2t−1) + 0,

which implies that

γ1 = φ
σ2

1− φ2 ,

while

cov(yt, yt−2) = E(ytyt−2) = φE(yt−1yt−2) = φ2
σ2

1− φ2 .

� In general
γs = σ

2 φs

1− φ2 ; ρs = φ
s.

The correlation function decays geometrically towards zero.

� Exercise calculate correlogram for AR(2).

� Moving Average MA(1). Suppose that
yt = εt − θεt−1,

where as before εt are i.i.d. mean zero with variance σ2.

- In this case,
E(yt) = 0,

and
var(yt) = σ

2(1 + θ2).
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- Furthermore,

cov(yt, yt−1) = E {(εt − θεt−1) (εt−1 − θεt−2)}
= −θE(ε2t−1)
= −θσ2.

Therefore,

ρ1 =
−θ
1 + θ2

,

ρj = 0, j = 2, . . .

- This is a 1-dependent series. MA(q) is a q-dependent series.

- Note that the process is automatically stationary for any value of
θ.

- If |θ| < 1, we say that the process is invertible and we can write
∞X
j=0

θjyt−j = εt.

� In general ARMA(p, q), we can write

A(L)yt = B(L)εt.

- The stationarity condition for an ARMA(p, q) process is just that
the roots of the autoregressive polynomial

1− φ1z − . . .− φpzp

to be outside unit circle.

- Likewise the condition for invertibility is that the roots of the
moving average polynomial

1− θ1z − . . .− θqzq

lie outside the unit circle.



122 CHAPTER 10. TIME SERIES

- Assuming these conditions are satisÞed we can write this process
in two different ways:

A(L)

B(L)
yt =

∞X
j=0

γjyt−j = εt.

This is called the AR(∞) representation, and expresses y in terms
of its own past. Or

yt =
B(L)

A(L)
εt =

∞X
j=0

δjεt−j.

This is called theMA(∞) representation, and expresses y in terms
of the past history of the random shocks.

10.2 Estimation

In this section we discuss estimation of the autocovariance function of a
stationary time series as well as the parameters of an ARMA model.

� Autocovariance. Replace population quantities by sample

bγs =
1

T − s
TX

t=s+1

(yt − y)(yt−s − y)

bρs =
bγsbγ0 .

These sample quantities are often used to describe the actual series
properties. Consistent and asymptotically normal.

� Box-Jenkins analysis: �identiÞcation� of the process by looking at the
correlogram. In practice, it is hard to identify any but the simplest
processes, but the covariance function still has many uses.

� Estimation of ARMAparameters φ. Can �invert� the autocovariance/autocorrelation
function to compute an estimate of φ. For example in the AR(1) case,
the parameter ρ is precisely the Þrst order autocorrelation. In the



10.2. ESTIMATION 123

MA(1) case, can show that the parameter θ satisÞes a quadratic equa-
tion in which the coefficients are the autocorrelation function at the
Þrst two lags. A popular estimation method is the Likelihood under
normality. Suppose that ε1

...
εT

 ∼ N(0,σ2I),

then  y1
...
yT

 ∼ N(0,Σ)

for some matrix Σ.

- for an AR(1) process

Σ =
σ2

1− γ2

 1 γ γ2 · · · γT−1
. . .

...
. . . 1

 ,
- for an MA(1) process

Σ = σ2(1 + θ2)

 1
−θ
1+θ2

0
. . .

0 1

 .
� For general ARMA then, the log likelihood function is

` =
−T
2
log 2π − 1

2
log |Σ|− 1

2
y0Σ−1y.

Maximize with respect to all the parameters φ.

� Distribution theory. The MLE is consistent and asymptotically normal
provided the process is stationary and invertible.

T
1
2 (bφ− φ) D→ N

¡
0, I−1φφ

¢
,

where Iφφ is the information matrix.
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� In practice, |Σ| and Σ−1 can be tough to Þnd. We seek a helpful
approach to computing the likelihood and an approximation to it, which
is even easier to work with.

� The Prediction error decomposition is just a factorization of the joint
density into the product of a conditional density and a marginal density,

f(x, z) = f(x |z )f(z).
We use this repeatedly and take logs to give

` (y1, . . . , yT ; θ) =
TX

t=p+1

` (yt |yt−1 , . . . , y1) + ` (y1, . . . , yp) .

� This writes the log likelihood in terms of conditional distributions
and a single marginal distribution. In AR cases the distribution of
yt |yt−1 , . . . , y1 is easy to Þnd:

yt |yt−1 , . . . , y1 ∼ N
¡
φ1yt−1 + . . .+ φpyt−p,σ

2
¢
.

� In the AR(1) case

`t|t−1 ∼ −1
2
log σ2 − 1

2σ2
(yt − φ1yt−1)2 .

Also, y1 ∼ N
¡
0,σ2/(1− φ2)¢, i.e.,
`(y1) = −1

2
log

σ2

1− φ2 −
(1− φ2)
2σ2

y21.

Therefore, the full likelihood in the AR(1) case is

` = −T − 1
2

log σ2 − 1

2σ2

TX
t=2

(yt − φyt−1)2 − 1
2
log

σ2

1− φ2 −
1− φ2
2σ2

y21.

� Often it is argued that `(y1) is small relative to
PT

t=2 ` (yt |yt−1 , . . . , y1),
in which case we use

−T − 1
2

log σ2 − 1

2σ2

TX
t=2

(yt − φyt−1)2 .
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� This criterion is equivalent to the least squares criterion, and has unique
maximum bφ = PT

t=2 ytyt−1PT
t=2 y

2
t−1

.

This estimator is just the OLS on yt on yt−1 [but using the reduced
sample]. Can also interpret this as a GMM estimator with moment
condition

E [yt−1 (yt − φyt−1)] = 0.
� The full MLE will be slightly different from the approximate MLE. In
terms of asymptotic properties, the difference is negligible.

- However, in Þnite sample there can be signiÞcant differences.

- Also, the MLE imposes that bφ be less than one - as φ → ±1,
` → −∞. The OLS estimate however can be either side of the
unit circle.

10.3 Forecasting

� Let the sample be {y1, . . . , yT}. Suppose that
yt = γyt−1 + εt, |γ| < 1,

where we Þrst assume that γ is known.

� Want to forecast yT+1, yT+2, . . . , yT+r given the sample information. We
have

yT+1 = γyT + εT+1.

Therefore, forecast yT+1 bybyT+1|T = E [yT+1 |sample ] = γyT .
� The forecast error is εT+1, which is mean zero and has variance σ2.
� What about forecasting r periods ahead?

yT+r = γ
ryT + γ

r−1εT+1 + . . .+ εT+r.

Therefore, let byT+r|T = γryT
be our forecast.
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� The forecast error byT+r|T − yT+r has mean zero and variance
σ2
¡
1 + γ2 + . . .+ γ2r−2

¢
.

� Asymptotically the forecast reverts to the unconditional mean and the
forecast variance reverts to the unconditional variance.

� In practice, we must use an estimate of γ, so that

byT+r|T = bγryT ,
where bγ is estimated from sample data. If γ is estimated well, then this
will not make much difference.

� Forecast interval byT+r|t ± 1.96 ·DS,
SD = σ2

¡
1 + γ2 + . . .+ γ2r−2

¢
.

This is to be interpreted like a conÞdence interval. Again we must
replace the unknown parameters by consistent estimates.

� This theory generalizes naturally to AR(2) and higher order AR processes
in which case the forecast is a linear combination of the most recent
observations. The question is, how to forecast for an MA(1) process?

yt = εt − θεt−1 = (1− θL)εt.

We must use the AR(∞) representation
yt

1− θL = yt + θyt−1 + . . . = εt.

This means that the forecast for MA processes is very complicated and
depends on all the sample y1, . . . , yT .

10.4 Autocorrelation and Regression

� Regression models with correlated disturbances

yt = β
0xt + ut,
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where xt is exogenous, i.e., is determined outside the system; Þxed
regressors are an example. There are a number of different variations
on this theme - strongly exogenous and weakly exogenous. A weakly
exogenous process could include lagged dependent variables. We will
for now assume strong exogeneity.

� We also suppose that

E(utus) 6= 0 for some s 6= t.

� As an example, suppose that

lnGNP = β1 + β2time + ut.

We expect the deviation from trend, ut, to be positively autocorrelated
reßecting the business cycle, i.e., not i.i.d. Recession quarter tends to
be followed by recession quarter.

� We can write the model in matrix form

y = Xβ + u,

E(uu0) = Σ =

 γ0 γ1 γ2 · · · γT−1
. . . γ2
. . . γ0

 .
� The consequences for estimation and testing of β are the same as
with heteroskedasticity: OLS is consistent and unbiased, but inefficient,
while the SE�s are wrong.

� SpeciÞcally,
var(bβ) = (X 0X)−1X 0ΣX(X 0X)−1,

where

ψT = X
0ΣX =

TX
t=1

TX
s=1

xtx
0
tγ|t−s|.
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� A naive implementation of the White strategy is going to fail here, i.e.,

bψT = X 0


bu21 bu1bu2 · · · bu1buTbu21

. . . bu2T

X =
TX
t=1

TX
s=1

xtx
0
tbutbus

is inconsistent. This is basically because there are too many random
variables in the sample matrix, in fact order T 2, whereas in the inde-
pendent but heterogeneous case there were only order T terms.

� The correct approach is to use some downweighting that concentrates
weight on a smaller fraction of their terms. Bartlett/White/Newey/West
SE�s: Replace by sample equivalents and use weights

w(j) = 1− j

n+ 1
,

so that bψT = XX
t,s:|t−s|≤n(T )

XtX
0
sw (|t− s|) butbus.

This also ensures a positive deÞnite covariance matrix estimate. Pro-
vides consistent standard errors.

� An alternative strategy is to parameterize ut by, say, an ARMA process
and do maximum likelihood

` = −1
2
ln |Σ(θ)|− 1

2
(y −Xβ)0Σ(θ)−1 (y −Xβ) .

� Efficient estimate of β (under Gaussianity) is a sort of GLS

bβML = ³X 0Σ(bθ)−1X´−1X 0Σ(bθ)−1y,
where bθ is the MLE of θ. This will be asymptotically efficient when the
chosen parametric model is correct.
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10.5 Testing for Autocorrelation

� Suppose that we observe ut, which is generated from an AR(1) process
ut = ρut−1 + εt,

where εt are i.i.d.

� The null hypothesis is that ut is i.i.d., i.e.,
H0 : ρ = 0 vs. HA : ρ 6= 0.

This is used as (a) general diagnostic, and (b) efficient markets.

� General strategy: use LR, Wald or LM tests to detect departures.

� The LM test is easiest, this is based on

LM = T

µP
t butbut−1P
t bu2t−1

¶2
= Tr21

D→ χ21,

where but are the OLS residuals. Therefore, we reject the null hypothesis
when LM is large relative to the critical value from χ21.

� This approach is limited to two-sided alternatives. We can however
also use the signed version, T

1
2 r1, which satisÞes

T
1
2 r1

D→ N(0, 1)

under the null hypothesis.

� The Durbin-Watson d is

d =

PT
t=2(but − but−1)2PT

t=1 bu2t .

This is always printed out by many regression packages.

� Using the approximation
d ≈ 2(1− r1),

we have [under the null hypothesis]

T
1
2

µ
1− d

2

¶
→ N(0, 1).
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� Generalization (test against AR(p)). Suppose that
ut = ρ1ut−1 + . . .+ ρput−p + εt,

where εt are i.i.d. The null hypothesis is that ut is i.i.d., i.e.,

H0 : ρ1 = . . . = ρp = 0

vs. HAsome ρj 6= 0.
� Box-Pierce Q

Q = T
PX
j=1

r2j
D→ χ2P .

10.6 Dynamic Regression Models

� We have looked at pure time series models with dynamic response and
at static regression models. In practice, we may want to consider mod-
els that have both features.

� Distributed lag
yt = α+

qX
j=0

βjXt−j + ut,

[could have q =∞], where for now

ut
iid∼ 0, σ2.

Captures the idea of dynamic response: affect on y of change in x may
take several periods to work through.

� Temporary change. Suppose that
xt → xt +∆

but that future xs are unaffected, then

yt → yt + β0∆

yt+1 → yt + β1∆ etc.
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� Permanent change. Suppose that
xs → xs +∆, ∀s ≥ t.

Then

yt → yt + β0∆

yt+1 → yt + (β0 + β1)∆ etc.

- The impact effect is β0∆.

- Long run effect is ∆
P∞

s=0 βs.

� When q is large (inÞnite) there are too many free parameters βj, which
makes estimation difficult and imprecise. To reduce the dimensionality
it is appropriate to make restrictions on βj.

- The polynomial lag

βj =

½
a0 + a1j + . . .+ apj

p if j ≤ p
0 else.

- The Geometric lag

βj = βλ
j, j = 0, 1, . . .

for some 0 < λ < 1. This implies that

yt = α+ β
∞X
j=0

λjxt−j + ut

= α+ β

" ∞X
j=0

(λjLj)

#
xt + ut

= α+ β
1

1− λLxt + ut.
Therefore,

(1− λL)yt = α(1− λL) + βxt + (1− λL)ut,
which is the same as

yt = α(1− λ) + λyt−1 + βxt + ut − λut−1.
The last equation is called the lagged dependent variable repre-
sentation.
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� More generally [ADL model]
A(L)yt = B(L)xt + ut,

where A, B are polynomials of order p, q, while

C(L)ut = D(L)εt, εt i.i.d. 0,σ2.

This is a very general class of models; estimation, forecasting, and
testing have all been worked out at this generality, and one can Þnd
accounts of this in advanced time series texts.

10.7 Adaptive expectations

� Suppose that
yt|{z}

demand

= α+ β x∗t+1|{z}
expected price

+εt,

but that the expected price is made at time t and is unobserved by the
econometrician. Let

� We observe xt, where
x∗t+1 − x∗t| {z }

revised expectations

= (1− λ) (xt − x∗t )| {z }
forecast error

,

i.e.,
x∗t+1 = λx∗t|{z}

old forecast

+ (1− λ)xt| {z }
news

.

� Write
(1− λL)x∗t = (1− λ)xt,

which implies that

x∗t =
(1− λ)
1− λLxt = (1− λ)

£
xt + λxt−1 + λ2xt−2 + . . .

¤
.

� Therefore,
yt = α+

β(1− λ)
1− λL xt + εt,

which implies that

yt = λyt−1 + α(1− λ) + β(1− λ)xt + εt − λεt−1.
This is an ADL with an MA(1) error term.
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10.8 Partial adjustment

� Suppose that
y∗t = α+ βxt,

where y∗t is the desired level.

� However, because of costs of adjustment

yt − yt−1| {z }
actual change

= (1− λ)(y∗t − yt−1) + εt.

� Substituting we get

yt = (1− λ)y∗t + λyt−1 + εt
= α(1− λ) + λyt−1 + β(1− λ)xt + εt.

This is an ADL with an i.i.d. error term - assuming that the original
error term was i.i.d.

10.9 Error Correction

� Suppose long run equilibrium is

y = λx.

� Disequilibria are corrected according to

∆yt = β (yt−1 − λxt−1) + λ∆xt−1 + εt,

where β < 0.

� This implies that

yt = yt−1(1 + β) + λ(1− β)xt−1 − λxt−2 + εt.
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10.10 Estimation of ADL Models

� Suppose that
yt = θ1 + θ2yt−1 + θ3xt + εt,

where we have two general cases regarding the error term:

(1) εt is i.i.d. 0, σ2

(2) εt is autocorrelated.

� In case (1), we can use OLS regression to get consistent estimates of
θ1, θ2 and θ3. The original parameters are related to the θj in some
way, for example

θ1 = α(1− λ)
θ2 = λ
θ3 = β(1− λ)

 .
In this case, we would estimate the original parameters by indirect least
squares

bλ = bθ2
bα =

bθ1
1− bθ2bβ =
bθ3

1− bθ2 .
� In case (2), we must use instrumental variables or some other procedure
because OLS will be inconsistent.

- For example, if
εt = ηt − θηt−1,

then yt−1 is correlated with εt through ηt−1. In this case there are
many instruments: (1) All lagged xt, (2) yt−2, . . ..

- However, when
εt = ρεt−1 + ηt,

ηt i.i.d. lagged y are no longer valid instruments and we must rely
on lagged x.
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� There are many instruments; efficiency considerations require that one
has a good way of combining them such as in our GMM discussion.

� IV are not generally as efficient as ML when the error terms are nor-
mally distributed.

10.11 Nonstationary Time Series Models

� There are many different ways in which a time series yt can be nonsta-
tionary. For example, there may be Þxed seasonal effects such that

yt =
mX
j=1

Djtγj + ut,

where Djt are seasonal dummy variables, i.e., one if we are in season j
and zero otherwise. If ut is an iid mean zero error term,

Eyt =
mX
j=1

Djtγj

and so varies with time. In this case there is a sort of periodic movement
in the time series but no �trend�.

� We next discuss two alternative models of trending data: trend sta-
tionary and difference stationary.

� Trend stationary. Consider the following process
yt = µ+ βt+ ut,

where {ut} is a stationary mean zero process e.g.,
A(L)ut = B(L)εt

with the polynomials A, B satisfying the usual conditions required for
stationarity and invertibility. This is the trend+stationary decomposi-
tion.

� We have
Eyt = µ+ βt; var(yt) = σ2

for all t. The lack of stationarity comes only through the mean.
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� The shocks (ut) are transitory - they last for some period of time
and then are forgotten as yt returns to trend.

� Example. GNP grows at 3% per year (on average) for ever after.

� Difference stationary I(1)
yt = µ+ yt−1 + ut,

where {ut} is a stationary process. This is called the random walk plus
drift. When µ = 0, we have the plain vanilla random walk.

� We can�t now suppose that the process has been going on for
an inÞnite amount of time, and the starting condition is of some
signiÞcance.

� We can make two assumptions about the initial conditions:

y0 =

½
Þxed
random Variable N(0, v)

for some variance v.

� Any shocks have permanent affects

yt = y0 + tµ+
tP
s=1

us.

The differenced series is than

∆yt = yt − yt−1 = µ+ ut.

� Both the mean and the variance of this process are generally explosive.
Eyt = y0 + tµ; var yt = σ2t.

If µ = 0, the mean does not increase over time but the variance does.

� Note that differencing in the trend stationary case gives
∆yt = β + ut + ut−1,

which is a unit root MA. So although differencing apparently elimi-
nates stationarity it induces non-invertibility. Likewise detrending the
difference stationary case is not perfect.
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� A model that nests both trend stationary and difference stationary is
yt = µ+ βt+ ut, ut = ρut−1 + ηt,

where ηt is a stationary ARMA process. We have

yt = µ+ βt+ ρ(yt−1 − µ+ β(t− 1)) + ηt,
When ρ = 1 and β = 0 we get the random walk plus drift.

10.12 Estimation

� Effects of time trend on estimation:
- you get superconsistent T 3/2 estimates of β, but still Gaussian
t-tests still valid.

� Effects of unit root:
- superconsistent estimates, but with nonstandard distributions: t-
tests not valid!

� Suppose that
yt = ρyt−1 + ut, where ut ∼ 0, σ2.

Then,

bρOLS = PT
t=2 ytyt−1PT
t=2 y

2
t−1

P→ ρ, ∀ρ.

- If |ρ| < 1
T

1
2 (bρ− ρ)→ N(0, 1− ρ2).

- If ρ = 1, 1 − ρ2 = 0, so the implied variance above is zero. So
what happens in this case? If ρ = 1,

T (bρ− ρ) D→ X,

where X is not Gaussian; it is asymmetric and in fact E(bρ) < 1,
∀T . The rate of convergence is faster but the asymptotic distrib-
ution is non standard.

- Dickey-Fuller (1981) derived the distribution of bρ and the distri-
bution of the corresponding t-statistic, tρ, when ρ = 1, and they
tabulated it.
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10.13 Testing for Unit Roots

� Suppose that
yt = µ+ ρyt−1 + ut,

where the process ut is i.i.d. By taking differences we obtain

∆yt = µ+ γyt−1 + ut

with γ = ρ− 1.

� To test whether ρ = 1 is equivalent to testing γ = 0 in the model

∆yt = µ+ γyt−1 + ut.

We do a one-sided test

H0 : γ = 0 vs γ < 0

because the explosive alternatives are not interesting.

� Dickey and Fuller (1979) tabulated the distribution of the least squares
estimator bγ and its associated t-test in the case that ρ = 1 i.e., γ = 0.
This is exactly the null case. Their critical values can be used to do
the test. Large negative values of the test statistic are evidence against
the null hypothesis.

� The critical values are −3.96 and −3.41 at the 1% and 5% levels re-
spectively.

� If you do it without the intercept, i.e., run the regression

∆yt = γyt−1 + ut.

the critical values are −3.43 and −2.86 at the 1% and 5% levels respec-
tively. This assumes that the null hypothesis is the driftless random
walk.

� Can also do a test based on the raw estimates.
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� The DF test is only valid if the error term ut is i.i.d. Have to adjust
for the serial correlation in the error terms to get a valid test. The
Augmented D-F allows the error term to be correlated over time upto
a certain order. Their test is based on estimating the regression

∆yt = µ+ γyt−1 +
p−1P
j=1

φj∆yt−j + ηt

by least squares and using the ADF critical values for bγ or rather the
t-ratio.

� Can also add trend terms in the regression. Phillips-Perron test (PP)
is an alternative way of correcting for serial correlation in ut.

� Applications

10.14 Cointegration

� Suppose yt and xt are I(1) but there is a β such that

yt − βxt
is I(0), then we say that yt, xt are cointegrated.

- For example, aggregate consumption and income appear to be
nonstationary processes, but appear to deviate from each other in
only a stationary fashion, i.e., there exists a long-run equilibrium
relationship about which there are only stationary deviations.

- Note that β is not necessarily unique.

� Can estimate the cointegrating parameter β by an OLS regression of yt
on xt but although the estimator is consistent, the distribution theory
is again non-standard, but has been tabulated.

� More general system. Suppose that yt = (y1t, y2t)0 ∈ Rk1+k2 and that

y1t = β0y2t + ut
y2t = y2t−1 + ηt,
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If ut and ηt are mutually uncorrelated, then we call the system triangu-
lar. Special results apply in this case. This model assumes knowledge
about the number of cointegrating relations, i.e., k1, and it makes a
particular normalization. Can

� Johansen test for the presence of cointegration and the number of coin-
tegrating relations. If we have a k-vector unit root series yt there can
be no cointegrating relations, one,..., k− 1 cointegrating relations.. Jo-
hansen tests these restrictions sequentially to Þnd the right number of
cointegrating relations in the data.

10.15 Martingales

� We say that the process yt is a martingale if
E [yt |It−1 ] = yt−1 a.s.,

where It−1 is information available at time t, for example It−1 = {yt−1, . . .},
i.e.,

yt = yt−1 + ut,

where ut is a martingale difference sequence and satisÞes

E [ut |It−1 ] = 0 a.s.
The process ut may be heterogeneous but is uncorrelated.

� Hall (1978): Consumption is a martingale.
� Fama: Stock prices are martingales.

E (Pt+1 |Pt, . . .) = Pt.
This is a bit too strong and is unsupported by the data.

� The assumption of unforecastability rules out serial correlation in εt
and hence rt, but it does not by itself say anything more about the
distribution of εt. That is, εt could be heterogeneous and be non-
normal. It could itself be non-stationary - for example εt independent
over time with

εt ∼ N (0, f(t))
is consistent with the efficient markets hypothesis. However, it is fre-
quently assumed that the error term is itself stationary process.
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10.16 GARCH Models

� Engle (1982) introduced the following class of models
rt = εtσt,

where εt is i.i.d. (0, 1), while

σ2t = var (rt |Ft−1 )
is the (time-varying) conditional variance.

� For example,
σ2t = α+ γr

2
t−1,

which is the ARCH(1) model. Provided γ < 1, the process rt is weakly
stationary and has Þnite unconditional variance σ2 given by

σ2 = E(σ2t ) <∞,

where
σ2 = α+ γσ2 =

α

1− γ .

� This uses the law of iterated expectations E(Y ) = E (E(Y |I )) to argue

E
¡
r2t−1

¢
= E

¡
E
¡
ε2t−1 |It−1

¢
σ2t−1

¢
= E

¡
σ2t−1

¢
= σ2.

� The unconditional distribution of rt is thick-tailed; that is, even if εt is
normally distributed, rt is going to have an unconditional distribution
that is a mixture of normals and is more leptokurtic. Suppose εt is
standard normal, then E(ε4t ) = 3 and

µ4 = E(r4t ) = E
¡
ε4tσ

4
t

¢
= 3E(σ4t ),

where

E(σ4t ) = E
£¡
α2 + γ2r4t−1 + 2αγr

2
t−1
¢¤

= α2 + γ2µ4 + 2αγσ
2.
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Therefore,

µ4 = 3
¡
α3 + γ2µ4 + 2αγσ

2
¢

=
3 (α2 + 2αγσ2)

1− 3γ2

≥ 3σ4 =
3α2

(1− γ)2 .

� The process rt is uncorrelated, i.e.,
cov(rt, rt−s) = 0

for all s 6= 0. However, the process rt is dependent so that
E (g(rt)g(rt−s)) 6= E (g(rt))E(h(rt−s))

for arbitrary functions g, h, certainly for g(r) = h(r) = r2 this is not
true.

� Can write the process as an AR(1) process in u2t , i.e.,
r2t = α+ γr

2
t−1 + ηt,

where ηt = r
2
t − σ2t is a mean zero innovation that is uncorrelated with

its past.

� Therefore, since γ > 0, the volatility process is positively autocorre-
lated, i.e.,

cov
¡
σ2t ,σ

2
t−j
¢
> 0.

Hence we get volatility clustering.

� We can rewrite the process as
σ2t − σ2 = γ

¡
r2t−1 − σ2

¢
.

Suppose that σ2t−1 = σ2. When we get a large shock, i.e., ε2t−1 > 1,
we get σ2t > σ2 but the process decays rapidly to σ2 unless we get a
sequence of large shocks ε2t−1+s > 1, s = 0, 1, 2, . . .. In fact, for a normal
distribution the probability of having ε2 > 1 is only about 0.32 so we
generally see little persistence.
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� Although the ARCH model implies volatility clustering, it does not in
practice generate enough.

� Generalize to ARCH(p), write

σ2t = α+

pX
j=1

γjr
2
t−j,

where p is some positive integer and γj are positive coefficients.

� This model is Þne, but estimation is difficult. When p is large one Þnds
that the coefficients are imprecisely estimated and can be negative.
Have to impose some restrictions on the coefficients.

� Instead GARCH(1, 1)

σ2t = α+ βσ
2
t−1 + γr

2
t−1,

where α, β, γ are positive.

- We have

σ2t =
α

1− β + γ
∞X
j=1

βj−1r2t−j,

so that it is an inÞnite order ARCH model with geometric decline
in the coefficients.

- If γ + β < 1, then the process rt is weakly stationary, i.e., the
unconditional variance exists, and

σ2 = E(σ2t ) <∞,

where
σ2 = α+ βσ2 + γσ2 =

α

1− (β + γ) .

- Surprisingly, even for some values of β, γ with γ + β ≥ 1, the
process σ2t is strongly stationary although the unconditional vari-
ance does not exist in this case.
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� More general class of models GARCH(p, q)
B(L)σ2t = α+ C(L)r

2
t−1,

where A and B are lag polynomials. Usually assume that the parame-
ters in α, B, C > 0 to ensure that the variance is positive.

� Other models. For example, one can write the model for log of variance,
i.e.,

log σ2t + α+ β log σ
2
t−1 + γr

2
t−1.

This automatically imposes the restriction that σ2t ≥ 0 so there is no
need to impose restrictions on the parameters.

� Nelsons EGARCH
log σ2t = α+ β log σ

2
t−1 + γεt + δ (|εt|−E (|εt|)) .

� TARCH, SGARCH, CGARCH etc.

10.17 Estimation

� More general model
yt = b0xt + εtσt

B(L)σ2t = α+ C(L) (yt−1 − b0xt−1)2 .
� If ARCH effects are present, then we need to use robust estimates of
the standard errors for the parameters b of the mean model.

� Also, the variance process itself is of interest. Want to estimate the
parameters of σ2t too.

� Let θ = ¡b,α,β1, . . . ,βp, γ1, . . . , γq¢. Estimation by ML suggested by
εt being standard normal. In this case

`T (θ) = −1
2

TX
t=1

log σ2t (θ)−
1

2

TX
t=1

(yt − b0xt)2
σ2t (θ)

.

The ML estimator of b, θ can be obtained from this criterion. This
involves nonlinear optimization. Have to impose the inequality restric-
tions on the parameters which can be tricky.


