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Chapter 1

Linear and Matrix Algebra

This chapter summarizes some important results of linear and matrix algebra that are

instrumental in analyzing the statistical methods in subsequent chapters. The coverage

of these mathematical topics is rather brief but self-contained. Readers may also con-

sult other linear and matrix algebra textbooks for more detailed discussions; see e.g.,

Anton (1981), Basilevsky (1983), Graybill (1969), and Noble and Daniel (1977).

In this chapter we first introduce basic matrix notations (Section 1.1) and matrix

operations (Section 1.2). We then study the determinant and trace functions (Sec-

tion 1.3), matrix inverse (Section 1.4), and matrix rank (Section 1.5). After introducing

eigenvalue and diagonalization (Section 1.6), we discuss the properties of symmetric

matrix (Section 1.7) and orthogonal projection in a vector space (Section 1.8).

1.1 Basic Notations

A matrix is an array of numbers. In what follows, a matrix is denoted by an upper-case

alphabet in boldface (e.g., A), and its (i, j) th element (the element at the i th row and

j th column) is denoted by the corresponding lower-case alphabet with subscripts ij

(e.g., aij). Specifically, a m × n matrix A contains m rows and n columns and can be

expressed as

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

 .
An n× 1 (1× n) matrix is an n-dimensional column (row) vector. Every vector will be

denoted by a lower-case alphabet in boldface (e.g., z), and its i th element is denoted

1



2 CHAPTER 1. LINEAR AND MATRIX ALGEBRA

by the corresponding lower-case alphabet with subscript i (e.g., zi). An 1× 1 matrix is
just a scalar. For a matrix A, its i th column is denoted as ai.

A matrix is square if its number of rows equals the number of columns. A matrix is

said to be diagonal if its off-diagonal elements (i.e., aij , i �= j) are all zeros and at least

one of its diagonal elements is non-zero, i.e., aii �= 0 for some i = 1, . . . , n. A diagonal
matrix whose diagonal elements are all ones is an identity matrix, denoted as I; we also

write the n×n identity matrix as In. A matrix A is said to be lower (upper) triangular

if aij = 0 for i < (>) j. We let 0 denote the matrix whose elements are all zeros.

For a vector-valued function f : R
m → R

n, ∇θ f(θ) is the m × n matrix of the

first-order derivatives of f with respect to the elements of θ:

∇θ f(θ) =



∂f1(θ)
∂θ1

∂f2(θ)
∂θ1

. . . ∂fn(θ)
∂θ1

∂f1(θ)
∂θ2

∂f2(θ)
∂θ2

. . . ∂fn(θ)
∂θ2

...
...

. . .
...

∂f1(θ)
∂θm

∂f2(θ)
∂θm

. . . ∂fn(θ)
∂θm

 .

When n = 1, ∇θ f(θ) is the (column) gradient vector of f(θ). The m × m Hessian

matrix of the second-order derivatives of the real-valued function f(θ) is

∇2
θ f(θ) = ∇θ(∇θf(θ)) =



∂2f(θ)
∂θ1∂θ1

∂2f(θ)
∂θ1∂θ2

. . . ∂2f(θ)
∂θ1∂θm

∂2f(θ)
∂θ2∂θ1

∂2f(θ)
∂θ2∂θ2

. . . ∂2f(θ)
∂θ2∂θm

...
...

. . .
...

∂2f(θ)
∂θm∂θ1

∂2f(θ)
∂θm∂θ2

. . . ∂2f(θ)
∂θm∂θm

 .

1.2 Matrix Operations

Two matrices are said to be of the same size if they have the same number of rows and

same number of columns. Matrix equality is defined for two matrices of the same size.

Given two m×n matrices A and B, A = B if aij = bij for every i, j. The transpose of

an m × n matrix A, denoted as A′, is the n × m matrix whose (i, j) th element is the

(j, i) th element of A. The transpose of a column vector is a row vector; the transpose

of a scalar is just the scalar itself. A matrix A is said to be symmetric if A = A′, i.e.,
aij = aji for all i, j. Clearly, a diagonal matrix is symmetric, but a triangular matrix is

not.

Matrix addition is also defined for two matrices of the same size. Given two m × n

matrices A and B, their sum, C = A+B, is the m×n matrix with the (i, j) th element

c© Chung-Ming Kuan, 2001



1.2. MATRIX OPERATIONS 3

cij = aij + bij . Note that matrix addition, if defined, is commutative:

A+B = B +A,

and associative:

A+ (B +C) = (A+B) +C.

Also, A+ 0 = A.

The scalar multiplication of the scalar c and matrixA is the matrix cA whose (i, j) th

element is caij . Clearly, cA = Ac, and −A = −1×A. Thus, A+ (−A) = A−A = 0.

Given two matrices A and B, the matrix multiplication AB is defined only when the

number of columns of A is the same as the number of rows of B. Specifically, when A

is m × n and B is n × p, their product, C = AB, is the m × p matrix whose (i, j) th

element is

cij =
n∑

k=1

aikbkj.

Matrix multiplication is not commutative, i.e., AB �= BA; in fact, whenAB is defined,
BA need not be defined. On the other hand, matrix multiplication is associative:

A(BC) = (AB)C,

and distributive with respect to matrix addition:

A(B +C) = AB +AC.

It is easy to verify that (AB)′ = B′A′. For an m × n matrix A, ImA = AIn = A.

The inner product of two d-dimensional vectors y and z is the scalar

y′z =
d∑

i=1

yizi.

If y is m-dimensional and z is n-dimensional, their outer product is the matrix yz′

whose (i, j) th element is yizj. In particular,

z′z =
d∑

i=1

z2
i ,

which is non-negative and induces the standard Euclidean norm of z as ‖z‖ = (z′z)1/2.

The vector with Euclidean norm zero must be a zero vector; the vector with Euclidean

norm one is referred to as a unit vector. For example,

(1 0 0),
(
0
1
2

√
3
2

)
,

( 1√
2
1√
3
1√
6

)
,

c© Chung-Ming Kuan, 2001



4 CHAPTER 1. LINEAR AND MATRIX ALGEBRA

are all unit vectors. A vector whose i th element is one and the remaining elements are

all zero is called the i th Cartesian unit vector.

Let θ denote the angle between y and z. By the law of cosine,

‖y − z‖2 = ‖y‖2 + ‖z‖2 − 2‖y‖ ‖z‖ cos θ,

where the left-hand side is ‖y‖2+ ‖z‖2 − 2y′z. Thus, the inner product of y and z can
be expressed as

y′z = ‖y‖‖z‖ cos θ.

When θ = π/2, cos θ = 0 so that y′z = 0. In this case, we say that y and z are orthogonal
to each other. A square matrix A is said to be orthogonal if A′A = AA′ = I. Hence,

each column (row) vector of an orthogonal matrix is a unit vector and orthogonal to all

remaining column (row) vectors. When y = cz for some c �= 0, θ = 0 or π, and y and
z are said to be linearly dependent.

As −1 ≤ cos θ ≤ 1, we immediately obtain the so-called Cauchy-Schwarz inequality.

Lemma 1.1 (Cauchy-Schwarz) For two d-dimensional vectors y and z,

|y′z| ≤ ‖y‖‖z‖,

where the equality holds when y and z are linearly dependent.

It follows from the Cauchy-Schwarz inequality that

‖y + z‖2 = ‖y‖2 + ‖z‖2 + 2y′z

≤ ‖y‖2 + ‖z‖2 + 2‖y‖‖z‖

= (‖y‖+ ‖z‖)2.

This leads to the following triangle inequality.

Lemma 1.2 For two d-dimensional vectors y and z,

‖y + z‖ ≤ ‖y‖+ ‖z‖,

where the equality holds when y = cz for some c > 0.

When y and z are orthogonal,

‖y + z‖2 = ‖y‖2 + ‖z‖2,

c© Chung-Ming Kuan, 2001



1.3. MATRIX DETERMINANT AND TRACE 5

which is the celebrated Pythagoras theorem.

A special type of matrix multiplication, known as the Kronecker product, is de-

fined for matrices without size restrictions. Specifically, the Kronecker product of two

matrices A (m × n) and B (p × q) is the mp× nq matrix:

A⊗B =


a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
. . .

...

am1B am2B · · · amnB

 .

The Kronecker product is not commutative:

A⊗B �= B ⊗A,

but it is associative:

(A⊗B)⊗C = A⊗ (B ⊗C).

It also obeys the distributive law:

A⊗ (B +C) = A⊗B +A⊗C.

It can be verified that

(A⊗B)′ = A′ ⊗B′.

Consider now differentiation involving vectors and matrices. Let a and θ be tow

d-dimensional vectors. We have

∇θ (a
′θ) = a.

For a symmetric matrix A,

∇θ (θ
′Aθ) = 2Aθ, ∇2

θ (θ
′Aθ) = 2A.

1.3 Matrix Determinant and Trace

Given a square matrix A, let Aij denote the sub-matrix obtained from A by deleting

its i th row and j th column. The determinant of A is

det(A) =
m∑
i=1

(−1)i+jaij det(Aij),

c© Chung-Ming Kuan, 2001



6 CHAPTER 1. LINEAR AND MATRIX ALGEBRA

for any j = 1, . . . , n, where (−1)i+j det(Aij) is called the cofactor of aij. This definition

is based on the cofactor expansion along the j th column. Equivalently, the determinant

can also be defined using the cofactor expansion along the i th row:

det(A) =
n∑

j=1

(−1)i+jaij det(Aij),

for any i = 1, . . . ,m. The determinant of a scalar is the scalar itself; the determinant of

a 2× 2 matrix A is simply a11a22 − a12a21. A square matrix with non-zero determinant

is said to be nonsingular; otherwise, it is singular.

Clearly, det(A) = det(A′). From the definition of determinant, it is straightforward
to see that for a scalar c and an n × n matrix A,

det(cA) = cn det(A),

and that for a square matrix with a column (or row) of zeros, its determinant must be

zero. Also, the determinant of a diagonal or triangular matrix is simply the product of

all the diagonal elements. It can also be shown that the determinant of the product of

two square matrices of the same size is the product of their determinants:

det(AB) = det(A) det(B) = det(BA).

Also, for an m × m matrix A and a p × p matrix B,

det(A⊗B) = det(A)m det(B)p.

If A is an orthogonal matrix, we know AA′ = I so that

det(I) = det(AA′) = [det(A)]2.

As the determinant of the identity matrix is one, the determinant of an orthogonal

matrix must be either 1 or −1.

The trace of a square matrix is the sum of its diagonal elements; i.e., trace(A) =∑
i aii. For example, trace(In) = n. Clearly, trace(A) = trace(A′). The trace function

has the linear property:

trace(cA+ dB) = c trace(A) + d trace(B),

where c and d are scalars. It can also be shown that

trace(AB) = trace(BA),

provided that both AB and BA are defined. For two square matrices A andB,

trace(A⊗B) = trace(A) trace(B).

c© Chung-Ming Kuan, 2001



1.4. MATRIX INVERSE 7

1.4 Matrix Inverse

A nonsingular matrix A possesses a unique inverse A−1 in the sense that AA−1 =

A−1A = I. A singular matrix cannot be inverted, however. Thus, saying that a matrix

is invertible is equivalent to saying that it is nonsingular.

Given an invertible matrix A, its inverse can be calculated as

A−1 =
1

det(A)
F ′,

where F is the matrix of cofactors, i.e., the (i, j) th element of F is the cofactor

(−1)i+j det(Aij). The matrix F
′ is known as the adjoint of A. For example, when

A is 2× 2,

A−1 =
1

a11a22 − a12a21

[
a22 −a12

−a21 a11

]
.

Matrix inversion and transposition can be interchanged, i.e., (A′)−1 = (A−1)′. For two
nonsingular matrices A and B of the same size, we have ABB−1A−1 = I, so that

(AB)−1 = B−1A−1.

Some special matrices can be easily inverted. For example, for a diagonal matrixA, A−1

is also diagonal with the diagonal elements a−1
ii ; for an orthogonal matrix A, A

−1 = A′.

A formula for computing the inverse of a partitioned matrix is[
A B

C D

]−1

=

[
A−1 +A−1BF−1CA−1 −A−1BF−1

−F−1CA−1 F−1

]
,

where F =D −CA−1B, or equivalently,[
A B

C D

]−1

=

[
G−1 −G−1BD−1

−D−1CG−1 D−1 +D−1CG−1BD−1

]
,

where G = A −BD−1C, provided that the matrix inverses in the expressions above

are well defined. In particular, if this matrix is block diagonal so that the off-diagonal

blocks are zero matrices, we have[
A 0

0 D

]−1

=

[
A−1 0

0 D−1

]
,

provided that A and D are invertible.
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1.5 Matrix Rank

The vectors z1, . . . ,zn are said to be linearly independent if the only solution to

c1z1 + c2z2 + · · ·+ cnzn = 0

is the trivial solution: c1 = · · · = cn = 0; otherwise, they are linearly dependent. When

two (three) vectors are linearly dependent, they are on the same line (plane).

The column (row) rank of a matrix A is the maximum number of linearly indepen-

dent column (row) vectors of A. When the column (row) rank equals the number of

column (row) vectors, this matrix is said to be of full column (row) rank. The space

spanned by the vectors z1, . . . ,zn is the collection of all linear combinations of these

vectors, denoted as span(z1, . . . ,zn). The space spanned by the column vectors of A

is therefore span(A), which is also known as the column space of A. A vector z is

in span(A) if it can be expressed as Ac for some vector c �= 0. Similarly, the space

spanned by the row vectors of A is span(A′) and known as the row space of A. The

column (row) rank of A is the dimension of the column (row) space of A.

Given an n × k matrix A with k ≤ n, suppose that A has row rank r ≤ n and

column rank c ≤ k. Without loss of generality, assume that the first r row vectors are

linear independent. Hence, each row vector ai can be expressed as

ai = qi1a1 + qi2a2 + · · ·+ qirar, i = 1, . . . , n,

with the j th element

aij = qi1a1j + qi2a2j + · · ·+ qirarj , i = 1, . . . , n, j = 1, . . . , k.

Fixing j, we immediately see that every column vector of A can be written as a linear

combination of the vectors q1, . . . ,qr. As such, the column rank of A must be less than

or equal to r. Similarly, the column rank of A′, which is also the row rank of A, must
be less than or equal to c. This proves the following result.

Lemma 1.3 The column rank and row rank of a matrix are equal.

By Lemma 1.3, we can then define the rank of A as the maximum number of linearly

independent column (or row) vectors of A, denoted as rank(A). Clearly, rank(A) =

rank(A′). An n× n matrix A is said to be of full rank if rank(A) = n.

For an n× k matrix A, its left inverse is a k×n matrix A−1
L such that A−1

L A = Ik.

Similarly, a right inverse of A is a k × n matrix A−1
R such that AA−1

R = In. The left
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1.6. EIGENVALUE AND EIGENVECTOR 9

and right inverses are not unique, however. It can be shown that a matrix possesses a

left (right) inverse if and only if it has full column (row) rank. Thus, for a square matrix

with full rank, it has both inverses, which are just the unique matrix inverse. Thus, a

nonsingular (invertible) matrix must be of full rank and vice versa.

It can be shown that for two n × k matrices A and B,

rank(A+B) ≤ rank(A) + rank(B).

If A is n × k and B is k × m,

rank(A) + rank(B)− k ≤ rank(AB) ≤ min[rank(A), rank(B)].

For the Kronecker product, we have

rank(A⊗B) = rank(A) rank(B).

If A is a nonsingular matrix, we have from the inequality above that

rank(AB) ≤ rank(B) = rank(A−1AB) ≤ rank(AB);

i.e., rank(AB) = rank(B). This also implies that for a nonsingular matrix C,

rank(BC) = rank(C′B′) = rank(B′) = rank(B).

Thus, the rank of a matrix is preserved under nonsingular transformations.

Lemma 1.4 Let A (n×n) and C (k×k) be nonsingular matrices. Then for any n×k

matrix B,

rank(B) = rank(AB) = rank(BC).

1.6 Eigenvalue and Eigenvector

Given a square matrix A, if Ac = λc for some scalar λ and non-zero vector c, then c

is an eigenvector of A corresponding to the eigenvalue λ. The system (A − λI)c = 0

has a non-trivial solution if and only if

det(A− λI) = 0.
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This is known as the characteristic equation of A, from which we can solve for the

eigenvalues of A. Hence, eigenvalues (eigenvectors) are also referred to as characteristic

roots (characteristic vectors). Note that the eigenvalues and eigenvectors of a real-valued

matrix need not be real-valued.

WhenA is n×n, the characteristic equation is an n th-order polynomial in λ and has

at most n distinct solutions. These solutions (eigenvalues) are usually complex-valued.

If some eigenvalues take the same value, there may exist several eigenvectors corre-

sponding to the same eigenvalue. Given an eigenvalue λ, let c1, . . . , ck be associated

eigenvectors. Then,

A(a1c1 + a2c2 + . . .+ akck) = λ(a1c1 + a2c2 + . . .+ akck),

so that any linear combination of these eigenvectors is again an eigenvector correspond-

ing to λ. That is, these eigenvectors are closed under scalar multiplication and vector

addition and form the eigenspace corresponding to λ. As such, for a common eigenvalue,

we are mainly concerned with those eigenvectors that are linearly independent.

If A (n × n) possesses n distinct eigenvalues, each eigenvalue must correspond to

one eigenvector, unique up to scalar multiplications. It is therefore typical to normalize

eigenvectors such that they have Euclidean norm one. It can also be shown that if the

eigenvalues of a matrix are all distinct, their associated eigenvectors must be linearly

independent. Let C denote the matrix of these eigenvectors and Λ denote the diagonal

matrix with diagonal elements being the eigenvalues of A. We can write AC = CΛ.

As C is nonsingular, we have

C−1AC = Λ, or A = CΛC−1.

In this case, A is said to be similar to Λ.

When A has n distinct eigenvalues λ1, . . . , λn, it is readily seen that

det(A) = det(CΛC−1) = det(Λ) det(C) det(C−1) = det(Λ),

and

trace(A) = trace(CΛC−1) = trace(C−1CΛ) = trace(Λ).

This yields the following result.

c© Chung-Ming Kuan, 2001



1.7. SYMMETRIC MATRIX 11

Lemma 1.5 Let A be an n × n matrix with distinct eigenvalues λ1, . . . , λn. Then

det(A) = det(Λ) =
n∏
i=1

λi,

trace(A) = trace(Λ) =
n∑
i=1

λi.

When A = CΛC−1, we have A−1 = CΛ−1C−1. This shows that the eigenvectors

of A−1 are the same as those of A, and the corresponding eigenvalues are simply the

reciprocals of the eigenvalues of A. Similarly,

A2 = (CΛC−1)(CΛC−1) = CΛ2C−1,

so that the eigenvectors of A2 are the same as those of A, and the corresponding

eigenvalues are the squares of the eigenvalues of A. This result generalizes immediately

to Ak.

1.7 Symmetric Matrix

More can be said about symmetric matrices. Let c1 and c2 be two eigenvectors of A

corresponding to the distinct eigenvalues λ1 and λ2, respectively. If A is symmetric,

then

c′2Ac1 = λ1c
′
2c1 = λ2c

′
2c1.

As λ1 �= λ2, it must be true that c′2c1 = 0, so that they are orthogonal. Given linearly

independent eigenvectors that correspond to a common eigenvalue, they can also be

orthogonalized. Thus, a symmetric matrix is orthogonally diagonalizable, in the sense

that

C′AC = Λ, or A = CΛC′,

where Λ is again the diagonal matrix of the eigenvalues of A, and C is the orthogonal

matrix of associated eigenvectors.

As nonsingular transformations preserve rank (Lemma 1.4), so do orthogonal trans-

formations. We thus have the result below.

Lemma 1.6 For a symmetric matrix A, rank(A) = rank(Λ), the number of non-zero

eigenvalues of A.
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Moreover, when A is diagonalizable, the assertions of Lemma 1.5 remain valid,

whether or not the eigenvalues of A are distinct.

Lemma 1.7 Let A be an n × n symmetric matrix. Then,

det(A) = det(Λ) =
n∏
i=1

λi,

trace(A) = trace(Λ) =
n∑
i=1

λi.

By Lemma 1.7, a symmetric matrix is nonsingular if its eigenvalues are all non-zero.

A symmetric matrixA is said to be positive definite if b′Ab > 0 for all vectors b �= 0;

A is said to be positive semi-definite if b′Ab ≥ 0 for all b �= 0. A positive definite matrix

thus must be nonsingular, but a positive semi-definite matrix may be singular. Suppose

that A is a symmetric matrix orthogonally diagonalized as C ′AC = Λ. If A is also

positive semi-definite, then for any b �= 0,

b′Λb = b′(C ′AC)b = b̃
′
Ab̃ ≥ 0,

where b̃ = Cb. This shows that Λ is also positive semi-definite, and all the diagonal

elements of Λ must be non-negative. It can be seen that the converse also holds.

Lemma 1.8 A symmetric matrix is positive definite (positive semi-definite) if, and only

if, its eigenvalues are all positive (non-negative).

For a symmetric and positive definite matrix A, A−1/2 is such that A−1/2′A−1/2 =

A−1. In particular, by orthogonal diagonalization,

A−1 = CΛ−1C ′ = (CΛ−1/2C′)(CΛ−1/2C ′),

so that we may choose A−1/2 = CΛ−1/2C ′. The inverse of A−1/2 is A1/2 = CΛ1/2C ′.
It follows that A1/2A1/2′ = A, and A−1/2AA−1/2′ = I. Note that Λ−1/2C ′ is also a
legitimate choice of A−1/2, yet it is not symmetric.

Finally, we know that for two positive real numbers a and b, a ≥ b implies b−1 ≥ a−1.

This result can be generalized to compare two positive definite matrices, as stated below

without proof.

Lemma 1.9 Given two symmetric and positive definite matrices A and B, if A −B

is positive semi-definite, then so is B−1 −A−1.
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1.8 Orthogonal Projection

A matrix A is said to be idempotent if A2 = A. Given a vector y in the Euclidean

space V , a projection of y onto a subspace S of V is a linear transformation of y to

S. The resulting projected vector can be written as Py, where P is the associated

transformation matrix. Given the projection Py in S, further projection to S should

have no effect on Py, i.e.,

P (Py) = P 2y = Py.

Thus, a matrix P is said to be a projection matrix if it is idempotent.

A projection of y onto S is orthogonal if the projection Py is orthogonal to the

difference between y and Py. That is,

(y − Py)′Py = y′(I − P )′Py = 0.

As y is arbitrary, the equality above holds if, and only if, (I−P )′P = 0. Consequently,

P = P ′P and P ′ = P ′P . This shows that P must be symmetric. Thus, a matrix is an
orthogonal projection matrix if, and only if, it is symmetric and idempotent. It can be

easily verified that the orthogonal projection Py must be unique.

When P is an orthogonal projection matrix, it is easily seen that I−P is idempotent
because

(I − P )2 = I − 2P +P 2 = I − P .

As I−P is also symmetric, it is an orthogonal projection matrix. Since (I −P )P = 0,

the projections Py and (I − P )y must be orthogonal. This shows that any vector y

can be uniquely decomposed into two orthogonal components:

y = Py + (I − P )y.

Define the orthogonal complement of a subspace S ⊆ V as

S⊥ = {v ∈ V : v′s = 0, for all s ∈ S}.

If P is the orthogonal projection matrix that projects vectors onto S ⊆ V , we have

Ps = s for any s ∈ S. It follows that (I − P )y is orthogonal to s and that (I − P )y

is the orthogonal projection of y onto S⊥.
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14 CHAPTER 1. LINEAR AND MATRIX ALGEBRA

Intuitively, the orthogonal projection Py can be interpreted as the “best approxi-

mation” of y in S, in the sense that Py is the closest to y in terms of the Euclidean

norm. To see this, we observe that for any s ∈ S,

‖y − s‖2 = ‖y −Py + Py − s‖2

= ‖y −Py‖2 + ‖Py − s‖2 + 2(y − Py)′(Py − s)

= ‖y −Py‖2 + ‖Py − s‖2.

This establishes the following result.

Lemma 1.10 Let y be a vector in V and Py its orthogonal projection onto S ⊆ V .

Then,

‖y − Py‖ ≤ ‖y − s‖,

for all s ∈ S.

Let A be a symmetric and idempotent matrix and C be the orthogonal matrix that

diagonalizes A to Λ. Then,

Λ = C ′AC = C ′A(CC′)AC = Λ2.

This is possible only when the eigenvalues of A are zero and one. The result below now

follows from Lemmas 1.8.

Lemma 1.11 A symmetric and idempotent matrix is positive semi-definite with the

eigenvalues 0 and 1.

Moreover, trace(Λ) is the number of non-zero eigenvalues of A and hence rank(Λ).

When A is symmetric, rank(A) = rank(Λ) by Lemma 1.6, and trace(A) = trace(Λ) by

Lemma 1.7. Combining these results we have:

Lemma 1.12 For a symmetric and idempotent matrix A, rank(A) = trace(A), the

number of non-zero eigenvalues of A.

Given an n × k matrix A, it is easy to see that A′A and AA′ are symmetric
and positive semi-definite. Let x denote a vector orthogonal to the rows of A′A; i.e.,
A′Ax = 0. Hence x′A′Ax = 0, so that Ax must be a zero vector. That is, x is
also orthogonal to the rows of A. Conversely, Ax = 0 implies A′Ax = 0. This shows
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1.8. ORTHOGONAL PROJECTION 15

that the orthogonal complement of the row space of A is the same as the orthogonal

complement of the row space of A′A. Hence, these two row spaces are also the same.
Similarly, the column space of A is the same as the column space of AA′. It follows
from Lemma 1.3 that

rank(A) = rank(A′A) = rank(AA′).

In particular, if A (n × k) is of full column rank k < n, then A′A is k × k and hence

of full rank k (nonsingular), but AA′ is n × n and hence singular. The result below is

now immediate.

Lemma 1.13 If A is an n × k matrix with full column rank k < n, then, A′A is

symmetric and positive definite.

Given an n× k matrix A with full column rank k < n, P = A(A′A)−1A′ is clearly
symmetric and idempotent and hence an orthogonal projection matrix. As

trace(P ) = trace(A′A(A′A)−1) = trace(Ik) = k,

we have from Lemmas 1.11 and 1.12 that P has exactly k eigenvalues equal to 1 and

that rank(P ) = k. Similarly, rank(I − P ) = n − k. Moreover, any vector y ∈ span(A)
can be written as Ab for some non-zero vector b, and

Py = A(A′A)−1A′(Ab) = Ab = y.

This suggests that P must project vectors onto span(A). On the other hand, when

y ∈ span(A)⊥, y is orthogonal to the column vectors of A so that A′y = 0. It follows

that Py = 0 and (I − P )y = y. Thus, I − P must project vectors onto span(A)⊥.
These results are summarized below.

Lemma 1.14 Let A be an n × k matrix with full column rank k. Then, A(A′A)−1A′

orthogonally projects vectors onto span(A) and has rank k; In −A(A′A)−1A′ orthog-
onally projects vectors onto span(A)⊥ and has rank n − k.
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Chapter 2

Statistical Concepts

In this chapter we summarize some basic probability and statistics results to be used in

subsequent chapters. We focus on finite-sample results of multivariate random vectors

and statistics; asymptotic properties require more profound mathematical tools and will

not be discussed until Chapter 5. The topics covered in this chapter can be found in

most of statistics textbooks; in particular, Amemiya (1994) is a useful reference.

2.1 Distribution Functions

Given a random experiment, let Ω denote the collection of all possible outcomes of this

experiment and IP denote the probability measure assigned to a certain collection of

events (subsets of Ω). If A is an event, IP(A) is such that 0 ≤ IP(A) ≤ 1 and measures
the likelihood of A. The larger is IP(A), the more likely is the event A to occur. A

d-dimensional random vector (Rd-valued random variable) is a function of the outcomes

ω ∈ Ω and takes values in R
d. Formal definitions of probability space and random

variables are given in Section 5.1.

The (joint) distribution function of the R
d-valued random variable z is the non-

decreasing, right-continuous function Fz such that for ζ = (ζ1 . . . ζd)′ ∈ R
d,

Fz(ζ) = IP{ω ∈ Ω: z1(ω) ≤ ζ1, . . . , zd(ω) ≤ ζd},

with

lim
ζ1→−∞, ... , ζd→−∞

Fz(ζ) = 0, lim
ζ1→∞, ... , ζd→∞

Fz(ζ) = 1.

Note that the distribution function of z is a standard point function defined on R
d and

provides a convenient way to characterize the randomness of z. The (joint) density

17



18 CHAPTER 2. STATISTICAL CONCEPTS

function of Fz, if exists, is the non-negative function fz such that

Fz(ζ) =
∫ ζd

−∞
· · ·
∫ ζ1

−∞
fz(s1, . . . , sd) ds1 · · · dsd,

where the right-hand side is a Riemann integral. Clearly, the density function fz must

be integrated to one on R
d.

The marginal distribution function of the i th component of z is

Fzi
(ζi) = IP{ω ∈ Ω: zi(ω) ≤ ζi} = Fz(∞, . . . ,∞, ζi,∞, . . . ,∞).

Thus, the marginal distribution function of zi is the joint distribution function without

restrictions on the other elements zj, j �= i. The marginal density function of zi is the

non-negative function fzi
such that

Fzi
(ζi) =

∫ ζi

−∞
fzi
(s) ds.

It is readily seen that the marginal density function fzi
can also be obtained from the

associated joint density function by integrating out the other elements:

fzi
(si) =

∫
R

· · ·
∫

R

fz(s1, . . . , sd) ds1 · · · dsi−1 dsi+1 · · · dsd.

If there are two random vectors z1 and z2, they are said to be independent if,

and only if, their joint distribution function is the product of all marginal distribution

functions:

Fz1,z2
(ζ1, ζ2) = Fz1

(ζ1)Fz2
(ζ2);

otherwise, they are dependent. If random vectors possess density functions, they are

independent if, and only if, their joint density function is also the product of marginal

density functions. It is intuitively clear that functions of independent random variables

remain independent, as stated in the result below.

Lemma 2.1 If z1 and z2 are independent random vectors, then their transformations,

h1(z1) and h2(z2), are also independent random variables.

2.2 Moments

Given the d-dimensional random vector z with the distribution function Fz, the expec-

tation of the i th element zi is defined as

IE(zi) =
∫

· · ·
∫

Rd

ζi dFz(ζ1, . . . , ζd),
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where the right-hand side is a Stieltjes integral; for more details about different integrals

we refer to Rudin (1976). As this integral equals∫
R

ζi dFz(∞, . . . ,∞, ζi,∞, . . . ,∞) =
∫

R

ζi dFzi
(ζi),

the expectation of zi can be taken with respect to either the joint distribution function

Fz or the marginal distribution function Fzi
.

We say that the random variable zi has a finite expected value (or the expectation

IE(zi) exists) if IE |zi| < ∞. A random variable need not have a finite expected value;
if it does, this random variable is said to be integrable. More generally, the expectation

of a random vector is defined elementwise. Thus, for a random vector z, IE(z) exists if

all IE(zi), i = 1, . . . , d, exist, and z is integrable if all zi, i = 1, . . . , d, are integrable.

It is easily seen that the expectation operator does not have any effect on a constant;

that is, IE(b) = b for any constant b. For integrable random variables zi and zj , the

expectation operator is monotonic in the sense that

IE(zi) ≤ IE(zj),

for any zi ≤ zj with probability one. Moreover, the expectation operator possesses the

linearity property:

IE(azi + bzj) = a IE(zi) + b IE(zj),

where a and b are two real numbers. This property immediately generalizes to integrable

random vectors.

Lemma 2.2 Let A (n × d) and B (n × c) be two non-stochastic matrices. Then for

any integrable random vectors z (d × 1) and y (c× 1),

IE(Az +By) = A IE(z) +B IE(y).

If b is an n-dimensional nonstochastic vector, then IE(Az + b) = A IE(z) + b.

More generally, let y = g(z) be a well-defined, vector-valued function of z. The

expectation of y is

IE(y) = IE[g(z)] =
∫

Rd

g(ζ) dFz(ζ).

When g(z) = zki , IE[g(z)] = IE(z
k
i ) is known as the k th moment of zi, where k need not

be an integer. In particular, IE(zi) is the first moment of zi. When a random variable
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has finite k th moment, its moments of order less than k are also finite. Thus, if the k th

moment does not exist, then the moments of order greater than k also fail to exist. See

Section 2.3 for some examples of random variables that possess only low order moments.

A random vector is said to have finite k th moment if its elements all have finite k th

moment. A random variable with finite second moment is said to be square integrable;

a random vector is square integrable if its elements are all square integrable.

The k th central moment of zi is IE[zi − IE(zi)]k. In particular, the second central
moment of the square integrable random variable zi is

IE[zi − IE(zi)]2 = IE(z2
i )− [IE(zi)]2,

which is a measure of dispersion of the values of zi. The second central moment is also

known as variance, denoted as var(·). The square root of variance is standard deviation.
It can be verified that, given the square integrable random variable zi and real numbers

a and b,

var(azi + b) = var(azi) = a2 var(zi).

This shows that variance is location invariant but not scale invariant.

When g(z) = zizj , IE[g(z)] = IE(zizj) is the cross moment of zi and zj. The cross

central moment of zi and zj is

IE[(zi − IE(zi))(zj − IE(zj))] = IE(zizj)− IE(zi) IE(zj),

which is a measure of the co-variation between these two random variables. The cross

central moment of two random variables is known as their covariance, denoted as

cov(·, ·). Clearly, cov(zi, zj) = cov(zj , zi) and cov(zi, zi) = var(zi). It can be seen
that for real numbers a, b, c, d,

cov(azi + b, czj + d) = cov(azi, czj) = ac cov(zi, zj).

Thus, covariance is also location invariant but depends on the scale (measurement units)

of random variables.

Observe that for any real numbers a and b,

var(azi + bzj) = a2 var(zi) + b2 var(zj) + 2ab cov(zi, zj),

so that

var(zi − azj) = var(zi) + a2 var(zj)− 2a cov(zi, zj),
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which must be non-negative. Setting a = cov(zi, zj)/ var(zj), we have

var(zi)− cov(zi, zj)2/ var(zj) ≥ 0.

In particular, when zi = azj + b for some real numbers a and b, we have var(zi) =

a2 var(zj) and cov(zi, zj) = a var(zj), so that

var(zi)− cov(zi, zj)2/ var(zj) = 0.

This yields the Cauchy-Schwarz inequality for square integrable random variables.

Lemma 2.3 (Cauchy-Schwarz) Let zi, zj be two square integrable random variables.

Then,

cov(zi, zj)
2 ≤ var(zi) var(zj),

where the equality holds when zi = azj + b for some real numbers a and b.

cf. the Cauchy-Schwarz inequality (Lemma 1.1) in Section 1.2. This also suggests that

when two random variables are square integrable, their covariance must be finite.

The correlation coefficient of zi and zj is defined as

corr(zi, zj) =
cov(zi, zj)√
var(zi) var(zj)

.

By Lemma 2.3 we have

−1 ≤ corr(zi, zj) ≤ 1.

If corr(zi, zj) = 0, zi and zj are said to be uncorrelated. If corr(zi, zj) > 0, zi and zj are

said to be positively correlated; if corr(zi, zj) < 0, zi and zj are negatively correlated.

When zi = azj + b, corr(zi, zj) = 1 if a > 0 and −1 if a < 0. In both cases, zi and zj

are perfectly correlated. For two random variables zi and zj and real numbers a, b, c, d,

corr(azi + b, czj + d) = corr(azi, czj) =
ac

|a| |c| corr(zi, zj).

Thus, the correlation coefficient is not only location invariant but also scale invariant,

apart from the sign change.
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For a d-dimensional, square integrable random vector z, its variance-covariance ma-

trix is

var(z) = IE[(z − IE(z))(z − IE(z))′]

=


var(z1) cov(z1, z2) · · · cov(z1, zd)

cov(z2, z1) var(z2) · · · cov(z2, zd)
...

...
. . .

...

cov(zd, z1) cov(zd, z2) · · · var(zd)

 .

As cov(zi, zj) = cov(zj , zi), var(z) must be symmetric. Moreover, var(z) is positive

semi-definite because it is the expectation of a matrix that is positive semi-definite with

probability one.

For two random vectors y (c × 1) and z (d × 1), the d × c covariance matrix of z

and y is

cov(z,y) = IE[(z − IE z)(y − IEy)′] = IE(zy′)− IE(z) IE(y′).

Two random vectors are uncorrelated if their covariance matrix is a zero matrix. If

y and z are independent, their joint distribution function is the product of individual

distribution functions. It follows that the cross moment of y and z is the product of

their individual first moment: that

IE(zy′) = IE(z) IE(y′).

This shows that independence implies cov(z,y) = 0. Uncorrelated random vectors are

not necessarily independent, however.

Based on the properties of variance and covariance for random variables, we have

the following result for random vectors.

Lemma 2.4 Let A (n×d), B (n× c), and C (m× c) be non-stochastic matrices and b

an n-dimensional non-stochastic vector. Then for any square integrable random vectors

z (d × 1) and y (c × 1),

var(Az +By) = A var(z)A′ +B var(y)B′ + 2A cov(z,y)B′,

var(Az + b) = var(Az) = A var(z)A′.
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Given two square integrable random vectors z and y, suppose that var(y) is positive

definite. As the variance-covariance matrix of (z′ y′)′ must be a positive semi-definite
matrix,

[I − cov(z,y) var(y)−1]

[
var(z) cov(z,y)

cov(y,z) var(y)

] [
I

− var(y)−1 cov(y,z)

]

= var(z)− cov(z,y) var(y)−1 cov(y,z)

is also a positive semi-definite matrix. This establishes the multivariate version of the

Cauchy-Schwarz inequality for square integrable random vectors.

Lemma 2.5 (Cauchy-Schwarz) Let y,z be two square integrable random vectors.

Then,

var(z)− cov(z,y) var(y)−1 cov(y,z)

is a positive semi-definite matrix.

A random vector is said to be degenerate (have a singular distribution) if its variance-

covariance matrix is singular. Let Σ be the variance-covariance matrix of the d-

dimensional random vector z. If Σ is singular, then there exists a non-zero vector

c such that Σc = 0. For this particular c, we have

c′Σc = IE[c′(z − IE(z))]2 = 0.

It follows that c′[z − IE(z)] = 0 with probability one; i.e, the elements of z are linearly
dependent with probability one. This implies that all the probability mass of z is

concentrated in a subspace of dimension less than d.

2.3 Special Distributions

In this section we discuss the multivariate normal (Gaussian) distribution and other

univariate distributions such as the chi-square, Student’s t, and Fisher’s F distributions.

A random vector z is said to have a multivariate normal distribution with mean

µ and variance-covariance matrix Σ, denoted as z ∼ N(µ,Σ), if it has the density

function

1
(2π)d/2 det(Σ)1/2

exp
(
−1
2
(z − µ)′Σ−1(z − µ)

)
.
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For d = 1, this is just the density of the univariate normal random variable. Note that

the multivariate normal density function is completely characterized by its mean vector

and variance-covariance matrix. A normal random variable has moments of all orders;

in particular, its even-order central moments are

IE(z − µ)k = (k − 1) · · · 3 · 1 var(z)k/2, k ≥ 2 and k is even,

and its odd-order central moments are all zeros. A normal random variable with mean

zero and variance one is usually called the standard normal random variable.

When Σ is a diagonal matrix with diagonal elements σii, i = 1, . . . , d, the elements

of z are uncorrelated. Note that for normal random variables, uncorrelatedness implies

independence. In this case, the density function is simply the product of marginal

density functions for z1, . . . , zd:

1

(2π)d/2(
∏d

i=1 σii)1/2
exp

(
−1
2

d∑
i=1

(zi − µi)2

σii

)
.

When σii = σ2
o , a constant, this joint density simplifies to

1
(2πσ2

o)d/2
exp

(
− 1
2σ2

o

d∑
i=1

(zi − µi)
2

)
.

Although uncorrelated normal random variables are also independent, we stress again

that this need not be true for other random variables.

The result below shows that proper linear transformations of normal random vectors

remain normally distributed.

Lemma 2.6 Let z be a d-dimensional random vector distributed as N(µ,Σ). Also let

A be an n× d non-stochastic matrix with full row rank n < d and b be a d-dimensional

non-stochastic vector. Then,

Az + b ∼ N(Aµ+ b,AΣA′).

Lemma 2.6 implies that, when z ∼ N(µ,Σ), any sub-vector (element) of z also has a

multivariate (univariate) normal distribution; the converse need not be true, however.

It is also easily seen that

Σ−1/2(z − µ) ∼ N(0, Id),
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whereΣ−1/2 is such that Σ−1/2ΣΣ−1/2 = I, as defined in Section 1.7. Proper standard-

ization of a normal random vector thus yields a normal random vector with independent

elements. If A is not of full row rank, var(Az) = AΣA′ does not have full rank, so
that Az is degenerate.

Let z ∼ N(µ, Id). The sum of squares of the elements of z is the non-central

chi-square random variable with d degrees of freedom and the non-centrality parameter

ν = µ′µ, denoted as

z′z ∼ χ2(d; ν).

The density function of χ2(d; ν) is

f(x) = exp
(

− ν + x

2

)
xd/2−1 1

2d/2

∞∑
i=0

xiνi

i! 22i Γ(i+ d/2)
, x > 0,

where Γ is the gamma function with

Γ(n) =
∫ ∞

0
e−xxn−1 dx.

It can be shown that a χ2(d; ν) random variable has mean (d+ν) and variance 2d+4ν.

When µ = 0, the non-centrality parameter ν = 0, and χ2(d; 0) is known as the central

chi-square random variable, denoted as χ2(d). The density of χ2(d) is

f(x) = exp
(

− x

2

)
xd/2−1 1

2d/2 Γ(d/2)
, x > 0,

with mean d and variance 2d. The result below follows directly from Lemma 2.6.

Lemma 2.7 Let z be a d-dimensional random vector distributed as N(µ,Σ). Then,

z′Σ−1z ∼ χ2(d; µ′Σ−1µ);

in particular, if µ = 0, z′Σ−1z ∼ χ2(d).

Let w and x be two independent random variables such that w ∼ N(µ, 1) and

x ∼ χ2(n). Then

w√
x/n

∼ t(n; µ),

the non-central t distribution with n degrees of freedom and the non-centrality param-

eter µ. The density function of t(n; µ) is

f(x) =
nn/2 exp(−µ2/2)

Γ(n/2)Γ(1/2)(n + x2)(n+1)/2

∞∑
i=0

Γ
(n+ i+ 1

2

)µi
i!

(
2x2

n+ x2

)i/2

(sign x)i.
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When µ = 0, t(n; µ) reduces to the central t distribution, denoted as t(n), which has

the density

f(x) =
Γ((n + 1)/2)

Γ(n/2)Γ(1/2)n1/2

(
1 +

x2

n

)−(n+1)/2

.

Note that a t(n) random variable is symmetric about zero, and its k th moment exists

only for k < n; when n > 2, its mean is zero and variance is n/(n − 2).

As n tends to infinity, it can be seen that(
1 +

x2

n

)−(n+1)/2

=
[(
1 +

x2

n

)n/x2
]−x2/2 (

1 +
x2

n

)−1/2
→ exp(−x2/2).

Also note that Γ(1/2) = π1/2 and that for large n,

Γ((n+ 1)/2)
Γ(n/2)

≈ (n/2)1/2.

Thus, when n tends to infinity, the density of t(n) converges to

1√
2π
exp(−x2/2),

the density of the standard normal random variable. When n = 1, the density for t(1)

becomes

f(x) =
1

π[1 + x2]
.

This is also the density of the Cauchy random variable with the location parameter 0.

Note that the Cauchy random variable does not even have the first moment.

Let z1 and z2 be two independent random variables such that z1 ∼ χ2(n1; ν1) and

z2 ∼ χ2(n2; ν2). Then,

z1/n1

z2/n2

∼ F (n1, n2; ν1, ν2),

the non-central F distribution with the degrees of freedom n1 and n2 and the non-

centrality parameters ν1 and ν2. The k th moment of F (n1, n2; ν1, ν2) exists when

k < n2/2. In many statistical applications we usually encounter F (n1, n2; ν1, 0). When

n2 > 2, the mean of F (n1, n2; ν1, 0)is

n2(n1 + ν1)
n1(n2 − 2) ;
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when n2 > 4, the variance is

2
(n2

n1

)2 (n1 + ν1)2 + (n1 + 2ν1)(n2 − 2)
(n2 − 2)2(n2 − 4) .

If both ν1 and ν2 are zero, we have the central F distribution F (n1, n2). When n2 > 2,

F (n1, n2) has mean n2/(n2 − 2); when n2 > 4, it has variance

2n2
2(n1 + n2 − 2)

n1(n2 − 2)2(n2 − 4) .

Note that if a random variable is distributed as t(n), its square has the F (1, n) distri-

bution.

2.4 Likelihood

Suppose that we postulate p as the joint probability function of the discrete random vari-

ables z1, . . . , zT with the parameter vector θ. Plugging the observed values ζ1, . . . , ζT

into p we then obtain a function of θ:

L(θ) := p(ζ1, . . . , ζT ;θ).

This function represents the probability (likelihood) that those observed values are

generated from the postulated probability function p; different parameter values of

course result in different probability values. Thus, L(θ) is also known as the likelihood

function of θ.

Similarly, let f denote the postulated joint density function of the random vectors

z1, . . . ,zT with the parameter vector θ. Then given the observed values ζ1, . . . , ζT ,

the likelihood function of θ is

L(θ) := f(ζ1, . . . , ζT ;θ).

In what follows, we will use L and f interchangeably. Note, however, that a postu-

lated density function need not be the true density function that generates the random

variables.

When f is differentiable and non-zero with probability one, the gradient vector of

logL(θ),

∇θ logL(θ) =
1

L(θ)
∇θL(θ),
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is known as the score vector, denoted as s(ζ1, . . . , ζT ;θ). We can then write

s(ζ1, . . . , ζT ;θ)f(ζ1, . . . , ζT ;θ) = ∇θf(ζ1, . . . , ζT ;θ).

For a given θ, the score vector may vary with the observed values ζ1, . . . , ζT . Thus, we

can also treat the score vector as a random vector and denote it as s(z1, . . . ,zT ;θ).

When differentiation and integration can be interchanged,∫
Rd

· · ·
∫

Rd

s(ζ1, . . . , ζT ;θ) f(ζ1, . . . , ζT ;θ) dζ1 . . . dζT

=
∫

Rd

· · ·
∫

Rd

∇θf(ζ1, . . . , ζT ;θ) dζ1 . . . dζT

= ∇θ

(∫
Rd

· · ·
∫

Rd

f(ζ1, . . . , ζT ;θ) dζ1 . . . dζT

)
= ∇θ 1

= 0.

The left-hand side is in effect the expectation of the score vector with respect to f . If

there exists θo such that f(ζ1, . . . , ζT ;θo) is the true density function, we immediately

obtain the following result.

Lemma 2.8 If there exists θo such that f(ζ1, . . . , ζT ;θo) is the joint density function

of the random vectors z1, . . . ,zT . Then under regularity conditions,

IE[s(z1, . . . ,zT ;θo)] = 0,

where s(z1, . . . ,zT ;θo) is the score evaluated at θo, and IE is taken with respect to the

true density function.

Remark: Lemma 2.8 requires the conditions that ensure differentiability of the likelihood

function and interchangeability of differentiation and integration. We do not give those

conditions explicitly; see e.g., Amemiya (1985) for some sufficient conditions. This

comment also applies to Lemma 2.9.

It is easy to see that the Hessian matrix of the log-likelihood function is

∇2
θ logL(θ) =

1
L(θ)

∇2
θL(θ)−

1
L(θ)2

[∇θL(θ)][∇θL(θ)]
′,
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where the second term is just the outer product of the score vector, and∫
Rd

· · ·
∫

Rd

1
L(θ)

∇2
θL(θ) f(ζ1, . . . , ζT ;θ) dζ1 · · · dζT

=
∫

Rd

· · ·
∫

Rd

∇2
θf(ζ1, . . . , ζT ;θ) dζ1 · · · dζT

= ∇2
θ

(∫
Rd

· · ·
∫

Rd

f(ζ1, . . . , ζT ;θ) dζ1 · · · dζT
)

= ∇2
θ 1

= 0.

It follows that∫
Rd

· · ·
∫

Rd

∇2
θ logL(θ) f(ζ1, . . . , ζT ;θ) dζ1 · · · dζT

= −
∫

Rd

· · ·
∫

Rd

s(ζ1, . . . , ζT ;θ)s(ζ1, . . . , ζT ;θ)
′f(ζ1, . . . , ζT ;θ) dζ1 · · · dζT ,

where the left-hand side is the expectation of the Hessian matrix and the right-hand

side is negative of the variance-covariance matrix of s(z1, . . . ,zT ;θ), both with respect

to the postulated density function f . If f(ζ1, . . . , ζT ;θo) is the true density function,

the variance-covariance matrix of s(z1, . . . ,zT ;θo) is known as the information matrix.

Together with Lemma 2.8, we have the so-called information matrix equality.

Lemma 2.9 If there exists θo such that f(ζ1, . . . , ζT ;θo) is the joint density function

of the random vectors z1, . . . ,zT . Then under regularity conditions,

IE[∇2
θ logL(θo)] + var(s(z1, . . . ,zT ;θo)) = 0,

where ∇2
θ logL(θo) is the Hessian matrix of logL evaluated at θo, and IE and var are

taken with respect to the true density function.

Remark: When f is not the true density function, Lemma 2.8 and 2.9 need not hold.

That is, neither IE[s(z1, . . . ,zT ;θ)] nor

IE[∇2
θ logL(θ)] + var(s(z1, . . . ,zT ;θ))

is necessarily zero.
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2.5 Estimation

2.5.1 Point Estimation

Let θo denote a parameter vector associated with the joint distribution of T random

vectors z1, . . . ,zT . A point estimator (or simply an estimator) for θo is a function of

these random vectors:

θ̂ = h(z1, . . . ,zT ),

where h is some function. An estimator is clearly a random vector. Once the observed

values of z1, . . . ,zT are plugged into this function, we obtain a point estimate. That is,

a point estimate is just a particular value that an estimator may assume.

A simple principle of constructing estimators for moments is known as analog estima-

tion. This principle suggests to estimate population moments using their finite-sample

counterparts. For example, given a sample of T random variables z1, . . . , zT with the

common k th moment IE(zk1 ), the analog estimator for IE(z
k
1 ) is simply the sample av-

erage of zki :

1
T

T∑
t=1

zki .

In particular, the sample mean z̄ is the analog estimator for the population mean.

To estimate the parameter vector θo, it is also natural to maximize the associated

likelihood function L(θ). The resulting solution is known as the maximum likelihood

estimator (MLE) for θo, denoted as θ̃ or θ̃T , where the subscript T indicates that this

is an estimator based on a sample of T observations. As the maximum of a function

is invariant with respect to monotonic transformations, it is quite common to compute

the MLE by maximizing the log-likelihood function logL(θ). It follows that the score

vector evaluated at θ̃ must be zero; i.e., s(ζ1, . . . , ζT ; θ̃) = 0.

2.5.2 Criteria for Point Estimators

Let θ̂ be an estimator for θo. The difference IE(θ̂) − θo is called the bias of θ̂. An

estimator is said to be unbiased if it has zero bias, i.e.,

IE(θ̂) = θo;

otherwise, it is biased. Unbiasedness does not ensure that an estimate is close to the true

parameter, however. In fact, it is even possible that all possible values of an unbiased

estimator deviate from the true parameter by a constant.
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Given two unbiased estimators, it is therefore natural to choose the one whose values

are more concentrated around the true parameter. For real-valued unbiased estimators,

this amounts to selecting an estimator with a smaller variance. If they are vector-

valued, we adopt the following efficiency criterion. An unbiased estimator θ̂1 is said to

be “better” (more efficient) than an unbiased estimator θ̂2 if

var(a′θ̂2) ≥ var(a′θ̂1),

for all non-zero vectors a. This is equivalent to the condition that

a′[var(θ̂2)− var(θ̂1)]a ≥ 0,

i.e., var(θ̂2) − var(θ̂1) is a positive semi-definite matrix. Given a class of unbiased

estimators, if one of them is better than all other estimators in that class, it is the

“best” (most efficient) within this class.

More generally, we can compare estimators based on mean squared error (MSE):

IE[(θ̂ − θo)(θ̂ − θo)
′]

= IE[(θ̂ − IE(θ̂) + IE(θ̂)− θo)(θ̂ − IE(θ̂) + IE(θ̂)− θo)
′]

= var(θ̂) + [IE(θ̂)− θo] [IE(θ̂)− θo]
′,

where the second term is the outer product of the bias vector. An estimator θ̂1 (not

necessarily unbiased) is said to be better (more efficient) than θ̂2 if MSE(θ̂2)−MSE(θ̂1)

is a positive semi-definite matrix. Clearly, the MSE criterion reduces to the previous

variance-based criterion when estimators are unbiased.

The following result shows that the inverse of the information matrix is a lower

bound, also known as the Cramér-Rao lower bound, for the variance-covariance matrix

of any unbiased estimator.

Lemma 2.10 (Cramér-Rao) If there exists θo such that f(ζ1, . . . , ζT ;θo) is the joint

density function of the random vectors z1, . . . ,zT . Let θ̂ denote an unbiased estimator

for θ based on these random vectors. If var(s(z1, . . . ,zT ;θo)) is positive definite,

var(θ̂)− var(s(z1, . . . ,zT ;θo))
−1

is a positive semi-definite matrix.
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Proof: We first note that for any unbiased estimator θ̂ for θ,∫
Rd

· · ·
∫

Rd

(θ̂ − θ) s(ζ1, . . . , ζT ;θ) f(ζ1, . . . , ζT ;θ) dζ1 · · · dζT

=
∫

Rd

· · ·
∫

Rd

θ̂ s(ζ1, . . . , ζT ;θ) f(ζ1, . . . , ζT ;θ) dζ1 · · · dζT

= ∇θ

(∫
Rd

· · ·
∫

Rd

θ̂ f(ζ1, . . . , ζT ;θ) dζ1 · · · dζT
)

= ∇θθ

= I,

where the third equality holds because θ̂ is unbiased for θ when f(ζ1, . . . , ζT ;θ) is the

associated density function. Thus,

cov(θ̂, s(z1, . . . ,zT ;θo)) = I.

The assertion now follows from Lemma 2.5, the multivariate version of the Cauchy-

Schwarz inequality. ✷

By Lemma 2.10, an unbiased estimator is the best if its variance-covariance matrix

achieves the Cramér-Rao lower bound; this is not a necessary condition, however.

2.5.3 Interval Estimation

While a point estimate is a particular value representing the unknown parameter, in-

terval estimation results in a range of values that may contain the unknown parameter

with certain probability.

Suppose that there is an estimate θ̂ for the true parameter θo and a function q(θ̂, θo)

whose distribution is known. Then, given a probability value γ, we can find suitable

values a and b such that

IP{a < q(θ̂, θo) < b} = γ.

Solving the inequality above for θo we may obtain an interval containing θo. This leads

to the probability statement:

IP{α < θo < β} = γ,

where α and β depend on a, b, and θ̂. We can then conclude that we are γ×100 percent
sure that the interval (α, β) contains θo. Here, γ is the confidence coefficient, and (α, β)
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is the associated confidence interval for θo. Given the estimate θ̂, it is easily seen that

the larger the value of γ, the wider is the associated confidence interval.

Let A1 denote the event that a confidence interval contains θ1 and A2 the event

that a confidence interval contains θ2. The intersection A = A1 ∩ A2 is thus the event

that a confidence “box” covers both parameters. When A1 and A2 are independent

such that IP(A1) = IP(A2) = γ, we have IP(A) = γ2. When these two events are not

independent (e.g., the parameter estimators of θ1 and θ2 are correlated), it becomes

difficult to determine IP(A). As such, finding a proper confidence “box” based on

individual confidence intervals is by no means an easy job. On the other hand, if a

function q(θ̂1, θ̂2, θ1, θ2) with a known distribution is available, we can, for a given γ,

find the values a and b such that

IP{a < q(θ̂1, θ̂2, θ1, θ2) < b} = γ.

By solving the inequality above for θ1 and θ2 we may obtain a confidence region in

which the point (θ1, θ2) lies with probability γ.

2.6 Hypothesis Testing

2.6.1 Basic Concepts

Given a sample of data, it is often desirable to check if certain characteristics of the

underlying random mechanism (population) are supported by these data. For this pur-

pose, a hypothesis of these characteristics must be specified, and a test is constructed so

as to generate a rule of rejecting or accepting (not rejecting) the postulated hypothesis.

The hypothesis being tested is called the null hypothesis, denoted as H0; the other

states or values of the characteristics of interest form an alternative hypothesis, denoted

as H1. Hypotheses are usually formulated in terms of the parameters of models. For

example, one may specify that H0 : θo = a for some a and H1 : θo �= a. Here, H0 is

a simple hypothesis in the sense that the parameter vector being tested takes a single

value, but H1 is a composite hypothesis in that the parameter vector may take more

than one values. Given a sample of random variables z1, . . . ,zT , a test statistic is a

function of these random variables, denoted as T (z1, . . . ,zT ). The critical region C

of T (z1, . . . ,zT ) is the range of its possible values that lead to rejection of the null

hypothesis. In what follows, the set

Γ = {ζ1, . . . , ζT : T (ζ1, . . . , ζT ) ∈ C}
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will also be referred to as the critical region of T . The complement of the critical region,
Cc, is the region containing the values of T (z1, . . . ,zT ) that lead to acceptance of the

null hypothesis. We can also define

Γc = {ζ1, . . . , ζT : T (ζ1, . . . , ζT ) ∈ Cc}

as the acceptance region of T .

A test may yield incorrect inferences. A test is said to commit the type I error if

it rejects the null hypothesis when the null hypothesis is in fact true; a test is said to

commit the type II error if it accepts the null hypothesis when the alternative hypothesis

is true. Suppose that we are interested in testingH0 : θo = a againstH1 : θo = b. Let IP0

be the probability when θo = a and IP1 the probability when θo = b. The probability

of the type I error is then

α = IP0((z1, . . . ,zT ) ∈ Γ) =
∫

Γ
f0(ζ1, . . . , ζT ;a) dζ1 · · · dζT ,

where f0(z1, . . . ,zT ;a) is the joint density with the parameter θo = a. The value α is

also known as the size or significance level of the test. The probability of the type II

error is

β = IP1((z1, . . . ,zT ) ∈ Γc) =
∫

Γc

f1(ζ1, . . . , ζT ; b) dζ1 · · · dζT ,

where f1(z1, . . . ,zT ; b) is the joint density with the parameter θo = b. Clearly, α

decreases when the critical region Γ is smaller; in the mean time, β increases due to a

larger Γc. Thus, there is usually a trade-off between these two error probabilities.

Note, however, that the probability of the type II error cannot be defined as above

when the alternative hypothesis is composite: θo ∈ Θ1, where Θ1 is a set of parameter

values in the parameter space. Consider now the probability 1−IP1(Γ
c) = IP1(Γ), which

is the probability of rejecting the null hypothesis when H1 is true. Thus, both IP0(Γ)

and IP1(Γ) are the probabilities of rejecting the null hypothesis under two different

parameter values. More generally, define the power function of the test as

π(θo) = IPθo
{(z1, . . . ,zT ) ∈ Γ},

where θo varies in the parameter space. In particular, π(a) = α. For θo ∈ Θ1, π(θo)

describes the ability of a test that can correctly detect the falsity of the null hypothesis;

these probabilities are also referred to as the powers of the test. The probability of the

type II error under the composite alternative hypothesis θo ∈ Θ1 can now be defined as

β = max
θo∈Θ1

[1− π(θo)].
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2.6.2 Construction of Tests

Given the null hypothesis θo = a, the test statistic T (z1, . . . ,zT ) is usually based on

the comparison of an estimator of θo and the hypothesized value a. This statistic must

have a known distribution under the null hypothesis, which will be referred to as the

null distribution.

Given the statistic T (z1, . . . ,zT ), the probability IP0(T (z1, . . . ,zT ) ∈ C) can be

determined by the null distribution of T . If this probability is small, the event that
T (z1, . . . ,zT ) ∈ C would be considered “unlikely” or “improbable” under the null

hypothesis, while the event that T (z1, . . . ,zT ) ∈ Cc would be considered “likely” or

“probable”. If the former event does occur (i.e., for data z1 = ζ1, . . . ,zT = ζT ,

T (ζ1, . . . , ζT ) falls in C), it constitutes an evidence against the null hypothesis, so that

the null hypothesis is rejected; otherwise, we accept (do not reject) the null hypothesis.

Therefore, one should specify a small significance level α and determine the associated

critical region C by

α = IP0{T (z1, . . . ,zT ) ∈ C}.

As such, we shall write the critical region for the significance level α as Cα. This

approach ensures that, even though the decision of rejection might be wrong, the prob-

ability of making the type I error is no greater than α. A test statistic is said to be

significant if it is in the critical region; otherwise, it is insignificant.

Another approach is to reject the null hypothesis if

IP0{v : v > T (ζ1, . . . , ζT )}

is small. This probability is the tail probability of the null distribution and also known

as the p-value of the statistic T . Although this approach does not require specifying
the critical region, it is virtually the same as the previous approach.

The rationale of our test decision is that the null hypothesis is rejected because the

test statistic takes an unlikely value. It is then natural to expect that the calculated

statistic is relatively more likely under the alternative hypothesis. Given the null hy-

pothesis θo = a and alternative hypothesis θo ∈ Θ1, we would like to have a test such

that

π(a) ≤ π(θo), θo ∈ Θ1.

A test is said to be unbiased if its size is no greater than the powers under the alternative

hypothesis. Moreover, we would like to have a test that can detect the falsity of the
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null hypothesis with probability approaching one when there is sufficient information.

That is, for every θo ∈ Θ1,

π(θo) = IPθo
{T (z1, . . . ,zT ) ∈ C} → 1,

as T → ∞. A test is said to be consistent if its power approaches one when the sample
size becomes infinitely large.

Example 2.11 Given the sample of i.i.d. normal random variables z1, . . . , zT with

mean µo and variance one. We would like to test the null hypothesis µo = 0. A natural

estimator for µo is the sample average z̄ = T−1
∑T

t=1 zt. It is well known that

√
T (z̄ − µo) ∼ N(0, 1).

Hence,
√
T z̄ ∼ N(0, 1) under the null hypothesis; that is, the null distribution of the

statistic
√
T z̄ is the standard normal distribution. Given the significance level α, we

can determine the critical region Cα using

α = IP0(
√
T z̄ ∈ Cα).

Let Φ denote the distribution function of the standard normal random variable. For

α = 0.05, we know

0.05 = IP0(
√
T z̄ > 1.645) = 1− Φ(1.645).

The critical region is then (1.645,∞); the null hypothesis is rejected if the calculated
statistic falls in this interval. When the null hypothesis is false, the distribution of

√
T z̄

is no longer N(0, 1) but is N(µo, 1). Suppose that µo > 0. Then,

IP1(
√
T z̄ > 1.645) = IP1(

√
T (z̄ − µo) > 1.645 −

√
Tµo).

Since
√
T (z̄ − µo) ∼ N(0, 1) under the alternative hypothesis, we have the power:

IP1(
√
T z̄ > 1.645) = 1− Φ(1.645 −

√
Tµo).

Given that µo > 0, this probability must be greater than the test size (0.05), so that

the test is unbiased. On the other hand, when T increases, 1.645−
√
Tµo becomes even

smaller, so that the power improves. When T tends to infinity, the power approaches

one, so that
√
T z̄ is a consistent test. ✷
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Chapter 3

Classical Least Squares Theory

3.1 Introduction

Economists have proposed numerous hypotheses and theories in order to describe the

behavior of economic agents and the relationships between economic variables. Al-

though these propositions may be theoretically appealing and logically correct, they

need not be practically relevant unless they are supported by real world data. A theory

with empirical evidence is of course more convincing. Therefore, empirical analysis has

become an indispensable ingredient of contemporary economic research. By economet-

rics we mean the statistical and mathematical methods that can be used to analyze

empirical relationships between economic variables.

A leading approach in econometrics is the regression analysis in which a regression

model of a collection of explanatory variables is specified to characterize the behavior

of the variable of interest. The simplest and most commonly used specification is the

linear model. Once a linear model is specified, it remains to estimate unknown model

parameters, test economic and econometric hypotheses, and draw inferences from these

results. This chapter is concerned with the most important estimation method in lin-

ear regression, the method of ordinary least squares. Readers can also find related

topics in many econometrics textbooks, e.g., Davidson and MacKinnon (1993), Gold-

berger (1991), Greene (2000), Harvey (1990), Intriligator et al. (1996), Johnston (1984),

Judge et al. (1988), Maddala (1992), Ruud (2000), and Theil (1971), among others.
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40 CHAPTER 3. CLASSICAL LEAST SQUARES THEORY

3.2 The Method of Ordinary Least Squares

Suppose that there is a variable, y, whose behavior over time (or across individual units)

is of interest to us. A theory may suggest that the behavior of y can be well characterized

by some function f of the variables x1, . . . , xk. Then, f(x1, . . . , xk) may be viewed as

a “systematic” component of y provided that no other variables can further account for

the residual behavior, y−f(x1, . . . , xk). In the context of linear regression, the function

f is specified as a linear function. The method of ordinary least squares (OLS) enables

us to determine the linear weights (parameters) of this specification.

3.2.1 Simple Linear Regression

In simple linear regression, only one variable x is designated to describe the behavior of

the variable y. The linear specification is

α+ βx,

where α and β are unknown parameters. We can then write

y = α+ βx+ e(α, β),

where e(α, β) = y − α − βx denotes the error resulted from this specification. In what

follows, y will be referred to as the dependent variable (regressand), and x will be

referred to as an explanatory variable (regressor). Note that the regressor x itself may

be a function of some other variables, e.g., x = z2 or x = log z.

Suppose that we have T observations of the variables y and x. Given the linear

specification above, our objective is to find suitable α and β such that the resulting

linear function “best” fits the data (yt, xt), t = 1, . . . , T . Here, the generic subscript t

is used for both cross-section and time-series data. The OLS method suggests to find a

straight line whose sum of squared errors is as small as possible. This amounts to find

α and β that minimize the following OLS criterion function:

Q(α, β) :=
1
T

T∑
t=1

et(α, β)
2 =

1
T

T∑
t=1

(yt − α − βxt)
2.

The solutions can be easily obtained by solving the first order conditions.
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The first order conditions of this minimization problem are:

∂Q(α, β)
∂α

= − 2
T

T∑
t=1

(yt − α − βxt) = 0,

∂Q(α, β)
∂β

= − 2
T

T∑
t=1

(yt − α − βxt)xt = 0.

Solving for α and β we have the following solutions:

β̂T =
∑T

t=1(yt − ȳ)(xt − x̄)∑T
t=1(xt − x̄)2

,

α̂T = ȳ − β̂T x̄,

where ȳ =
∑T

t=1 yt/T and x̄ =
∑T

t=1 xt/T . As α̂T and β̂T are obtained by minimizing the

OLS criterion function, they are known as the OLS estimators of α and β, respectively.

The subscript T of α̂T and β̂T signifies that these solutions are obtained from a sample

of T observations. Note that if xt is a constant c for every t, then x̄ = c, and hence β̂T
cannot be computed.

The function ŷ = α̂T + β̂Tx is the estimated regression line with the intercept α̂T

and slope β̂T . We also say that this line is obtained by regressing y on (the constant one

and) the regressor x. The regression line so computed gives the “best” fit of data, in

the sense that any other linear function of x would yield a larger sum of squared errors.

For a given xt, the OLS fitted value is a point on the regression line:

ŷt = α̂T + β̂Txt.

The difference between yt and ŷt is the t th OLS residual:

êt := yt − ŷt,

which corresponds to the error of the specification as

êt = et(α̂T , β̂T ).

Note that regressing y on x and regressing x on y lead to different regression lines in

general, except when all (yt, xt) lie on the same line; see Exercise 3.9.

Remark: Different criterion functions would result in other estimators. For exam-

ple, the so-called least absolute deviation estimator can be obtained by minimizing the

average of the sum of absolute errors:

1
T

T∑
t=1

|yt − α − βxt|,
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which in turn determines a different regression line. We refer to Manski (1991) for a

comprehensive discussion of this topic.

3.2.2 Multiple Linear Regression

More generally, we may specify a linear function with k explanatory variables to describe

the behavior of y:

β1x1 + β2x2 + · · · + βkxk,

so that

y = β1x1 + β2x2 + · · ·+ βkxk + e(β1, . . . , βk),

where e(β1, . . . , βk) again denotes the error of this specification. Given a sample of T

observations, this specification can also be expressed as

y =Xβ + e(β), (3.1)

where β = (β1 β2 · · · βk)
′ is the vector of unknown parameters, y and X contain all

the observations of the dependent and explanatory variables, i.e.,

y =


y1

y2
...

yT

 , X =


x11 x12 · · · x1k

x21 x22 · · · x2k
...

...
. . .

...

xT1 xT2 · · · xTk

 ,

where each column of X contains T observations of an explanatory variable, and e(β)

is the vector of errors. It is typical to set the first explanatory variable as the constant

one so that the first column of X is the T × 1 vector of ones, �. For convenience, we
also write e(β) as e and its element et(β) as et.

Our objective now is to find a k-dimensional regression hyperplane that “best” fits

the data (y,X). In the light of Section 3.2.1, we would like to minimize, with respect

to β, the average of the sum of squared errors:

Q(β) :=
1
T
e(β)′e(β) =

1
T
(y −Xβ)′(y −Xβ). (3.2)

This is a well-defined problem provided that the basic identification requirement below

holds for the specification (3.1).

[ID-1] The T × k data matrix X is of full column rank k.
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Under [ID-1], the number of regressors, k, must be strictly less than the number of

observations, T . This is so because if k > T , the rank ofX must be less than or equal to

T , and henceX cannot have full column rank. Moreover, [ID-1] requires that any linear

specification does not contain any “redundant” regressor; that is, any column vector of

X cannot be written as a linear combination of other column vectors. For example, X

contains a column of ones and a column of xt in simple linear regression. These two

columns would be linearly dependent if xt = c for every t. Thus, [ID-1] requires that xt
in simple linear regression is not a constant.

The first order condition of the OLS minimization problem is

∇β Q(β) = ∇β (y
′y − 2y′Xβ + β′X ′Xβ)/T = 0.

By the matrix differentiation results in Section 1.2, we have

∇β Q(β) = −2X ′(y −Xβ)/T = 0.

Equivalently, we can write

X ′Xβ =X ′y. (3.3)

These k equations, also known as the normal equations, contain exactly k unknowns.

Given [ID-1], X is of full column rank so that X ′X is positive definite and hence

invertible by Lemma 1.13. It follows that the unique solution to the first order condition

is

β̂T = (X
′X)−1X ′y. (3.4)

Moreover, the second order condition is also satisfied because

∇2
β Q(β) = 2(X ′X)/T

is a positive definite matrix under [ID-1]. Thus, β̂T is the unique minimizer of the OLS

criterion function and hence known as the OLS estimator of β. This result is formally

stated below.

Theorem 3.1 Given the specification (3.1), suppose that [ID-1] holds. Then, the OLS

estimator β̂T given by (3.4) uniquely minimizes the OLS criterion function (3.2).

If X is not of full column rank, its column vectors are linearly dependent and there-

fore satisfy an exact linear relationship. This is the problem of exact multicollinearity .
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In this case, X ′X is not invertible so that there exist infinitely many solutions to the

normal equations X ′Xβ = X ′y. As such, the OLS estimator β̂T cannot be uniquely

determined. See Exercise 3.4 for a geometric interpretation of this result. Exact mul-

ticollinearity usually arises from inappropriate model specifications. For example, in-

cluding both total income, total wage income, and total non-wage income as regressors

results in exact multicollinearity because total income is, by definition, the sum of wage

and non-wage income. See also Section 3.6.2 for another example. In what follows, the

identification requirement for the linear specification (3.1) is always assumed.

Remarks:

1. Theorem 3.1 does not depend on the “true” relationship between y and X. That

is, whether (3.1) is a correct specification is irrelevant to the existence and unique-

ness of the OLS estimator.

2. It is easy to verify that the magnitudes of the coefficient estimates β̂i, i = 1, . . . , k,

are affected by the measurement units of dependent and explanatory variables; see

Exercise 3.7. As such, a larger coefficient estimate does not necessarily imply that

the associated regressor is more important in explaining the behavior of y. In fact,

the coefficient estimates are not directly comparable in general; cf. Exercise 3.5.

Once the OLS estimator β̂T is obtained, we can plug it into the original linear

specification and obtain the vector of OLS fitted values:

ŷ =Xβ̂T .

The vector of OLS residuals is then

ê = y − ŷ = e(β̂T ).

From the normal equations (3.3) we can deduce the following algebraic results. First,

the OLS residual vector must satisfy the normal equations:

X ′(y −Xβ) =X ′e = 0,

so that X ′ê = 0. When X contains a column of constants (i.e., a column of X is c�,

where � is the vector of ones), X ′ê = 0 implies

�′ê =
T∑
t=1

êt = 0.
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That is, the sum of OLS residuals must be zero. Second,

ŷ′ê = β̂
′
TX

′ê = 0.

These results are summarized below.

Theorem 3.2 Given the specification (3.1), suppose that [ID-1] holds. Then, the vector

of OLS fitted values ŷ and the vector of OLS residuals ê have the following properties.

(a) X ′ê = 0; in particular, if X contains a column of constants,
∑T

t=1 êt = 0.

(b) ŷ′ê = 0.

Note that when �′ê = �′(y − ŷ) = 0, we have

1
T

T∑
t=1

yt =
1
T

T∑
t=1

ŷt.

That is, the sample average of the data yt is the same as the sample average of the fitted

values ŷt when X contains a column of constants.

3.2.3 Geometric Interpretations

The OLS estimation result has nice geometric interpretations. These interpretations

have nothing to do with the stochastic properties to be discussed in Section 3.3, and

they are valid as long as the OLS estimator exists.

In what follows, we write P = X(X ′X)−1X ′ which is an orthogonal projection
matrix that projects vectors onto span(X) by Lemma 1.14. The vector of OLS fitted

values can be written as

ŷ =X(X ′X)−1X ′y = Py.

Hence, ŷ is the orthogonal projection of y onto span(X). The OLS residual vector is

ê = y − ŷ = (IT − P )y,

which is the orthogonal projection of y onto span(X)⊥ and hence is orthogonal to ŷ
and X; cf. Theorem 3.2. Consequently, ŷ is the “best approximation” of y, given the

information contained in X, as shown in Lemma 1.10. Figure 3.1 illustrates a simple

case where there are only two explanatory variables in the specification.

The following results are useful in many applications.
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y

ê = (I − P )y

x1

x2

x1β̂1

x2β̂2
Py = x1β̂1 + x2β̂2

Figure 3.1: The orthogonal projection of y onto span(x1,x2)

Theorem 3.3 (Frisch-Waugh-Lovell) Given the specification

y =X1β1 +X2β2 + e,

where X1 is of full column rank k1 and X2 is of full column rank k2, let β̂T =

(β̂
′
1,T β̂

′
2,T )′ denote the corresponding OLS estimators. Then,

β̂1,T = [X
′
1(I − P 2)X1]

−1X ′
1(I − P 2)y,

β̂2,T = [X
′
2(I − P 1)X2]

−1X ′
2(I − P 1)y,

where P 1 =X1(X
′
1X1)

−1X ′
1 and P 2 =X2(X

′
2X2)

−1X ′
2.

Proof: These results can be directly verified from (3.4) using the matrix inversion

formula in Section 1.4. Alternatively, write

y =X1β̂1,T +X2β̂2,T + (I −P )y,

where P = X(X ′X)−1X ′ with X = [X1 X2]. Pre-multiplying both sides by X
′
1(I −

P 2), we have

X ′
1(I − P 2)y

=X ′
1(I − P 2)X1β̂1,T +X

′
1(I − P 2)X2β̂2,T +X

′
1(I − P 2)(I − P )y.

The second term on the right-hand side vanishes because (I − P 2)X2 = 0. For the

third term, we know span(X2) ⊆ span(X), so that span(X)⊥ ⊆ span(X2)
⊥. As each
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column vector of I − P is in span(X)⊥, I − P is not affected if it is pojected onto

span(X2)
⊥. That is,

(I − P 2)(I − P ) = I − P .

Similarly, X1 is in span(X), and hence (I − P )X1 = 0. It follows that

X ′
1(I − P 2)y =X

′
1(I − P 2)X1β̂1,T ,

from which we obtain the expression for β̂1,T . The proof for β̂2,T is similar. ✷

This result shows that β̂1,T can be computed from regressing (I − P 2)y on (I −
P 2)X1, where (I − P 2)y and (I − P 2)X1 are the residual vectors of the “purging”

regressions of y on X2 and X1 on X2, respectively. Similarly, β̂2,T can be obtained by

regressing (I−P 1)y on (I−P 1)X2, where (I−P 1)y and (I−P 1)X2 are the residual

vectors of the regressions of y on X1 and X2 on X1, respectively.

From Theorem 3.3 we can deduce the following results. Consider the regression of

(I −P 1)y on (I − P 1)X2. By Theorem 3.3 we have

(I − P 1)y = (I − P 1)X2β̂2,T + residual vector, (3.5)

where the residual vector is

(I − P 1)(I − P )y = (I − P )y.

Thus, the residual vector of (3.5) is identical to the residual vector of regressing y on

X = [X1 X2]. Note that (I − P 1)(I − P ) = I − P implies P 1 = P 1P . That is, the

orthogonal projection of y directly on span(X1) is equivalent to performing iterated

projections of y on span(X) and then on span(X1). The orthogonal projection part of

(3.5) now can be expressed as

(I − P 1)X2β̂2,T = (I − P 1)Py = (P − P 1)y.

These relationships are illustrated in Figure 3.2.

Similarly, we have

(I − P 2)y = (I − P 2)X1β̂1,T + residual vector,

where the residual vector is also (I − P )y, and the orthogonal projection part of this

regression is (P − P 2)y. See also Davidson and MacKinnon (1993) for more details.
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y

ê = (I − P )y

x1

x2

Py

P 1y

(P − P 1)y

(I − P 1)y

Figure 3.2: An illustration of the Frisch-Waugh-Lovell Theorem

Intuitively, Theorem 3.3 suggests that β̂1,T in effect describes how X1 characterizes

y, after the effect of X2 is excluded. Thus, β̂1,T is different from the OLS estimator of

regressing y on X1 because the effect of X2 is not controlled in the latter. These two

estimators would be the same if P 2X1 = 0, i.e., X1 is orthogonal to X2. Also, β̂2,T

describes how X2 characterizes y, after the effect of X1 is excluded, and it is different

from the OLS estimator from regressing y on X2, unless X1 and X2 are orthogonal to

each other.

As an application, consider the specification with X = [X1 X2], where X1 con-

tains the constant term and a time trend variable t, and X2 includes the other k − 2
explanatory variables. This specification is useful when the variables of interest exhibit

a trending behavior. Then, the OLS estimators of the coefficients of X2 are the same

as those obtained from regressing (detrended) y on detrended X2, where detrended y

and X2 are the residuals of regressing y and X2 on X1, respectively. See Exercise 3.11

for another application.

3.2.4 Measures of Goodness of Fit

We have learned that from previous sections that, when the explanatory variables in a

linear specification are given, the OLS method yields the best fit of data. In practice,

one may consdier a linear specfication with different sets of regressors and try to choose

a particular one from them. It is therefore of interest to compare the performance across
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different specifications. In this section we discuss how to measure the goodness of fit of

a specification. A natural goodness-of-fit measure is of course the sum of squared errors

ê′ê. Unfortunately, this measure is not invariant with respect to measurement units of
the dependent variable and hence is not appropriate for model comparison. Instead, we

consider the following “relative” measures of goodness of fit.

Recall from Theorem 3.2(b) that ŷ′ê = 0. Then,

y′y = ŷ′ŷ + ê′ê+ 2ŷ′ê = ŷ′ŷ + ê′ê.

This equation can be written in terms of sum of squares:

T∑
t=1

y2
t︸ ︷︷ ︸

TSS

=
T∑
t=1

ŷ2
t︸ ︷︷ ︸

RSS

+
T∑
t=1

ê2
t︸ ︷︷ ︸

ESS

,

where TSS stands for total sum of squares and is a measure of total squared variations of

yt, RSS stands for regression sum of squares and is a measures of squared variations of

fitted values, and ESS stands for error sum of squares and is a measure of squared vari-

ation of residuals. The non-centered coefficient of determination (or non-centered R2)

is defined as the proportion of TSS that can be explained by the regression hyperplane:

R2 =
RSS
TSS

= 1− ESS
TSS

. (3.6)

Clearly, 0 ≤ R2 ≤ 1, and the larger the R2, the better the model fits the data. In

particular, a model has a perfect fit if R2 = 1, and it does not account for any variation

of y if R2 = 0. It is also easy to verify that this measure does not depend on the

measurement units of the dependent and explanatory variables; see Exercise 3.7.

As ŷ′ŷ = ŷ′y, we can also write

R2 =
ŷ′ŷ
y′y

=
(ŷ′y)2

(y′y)(ŷ′ŷ)
.

It follows from the discussion of inner product and Euclidean norm in Section 1.2 that

the right-hand side is just cos2 θ, where θ is the angle between y and ŷ. Thus, R2 can be

interpreted as a measure of the linear association between these two vectors. A perfect

fit is equivalent to the fact that y and ŷ are collinear, so that y must be in span(X).

When R2 = 0, y is orthogonal to ŷ so that y is in span(X)⊥.

It can be verified that when a constant is added to all observations of the depen-

dent variable, the resulting coefficient of determination also changes. This is clearly a
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drawback because a sensible measure of fit should not be affected by the location of the

dependent variable. Another drawback of the coefficient of determination is that it is

non-decreasing in the number of variables in the specification. That is, adding more

variables to a linear specification will not reduce its R2. To see this, consider a specifi-

cation with k1 regressors and a more complex one containing the same k1 regressors and

additional k2 regressors. In this case, the former specification is “nested” in the latter,

in the sense that the former can be obtained from the latter by setting the coefficients

of those additional regressors to zero. Since the OLS method searches for the best fit of

data without any constraint, the more complex model cannot have a worse fit than the

specifications nested in it. See also Exercise 3.8.

A measure that is invariant with respect to constant addition is the centered co-

efficient of determination (or centered R2). When a specification contains a constant

term,

T∑
t=1

(yt − ȳ)2︸ ︷︷ ︸
Centered TSS

=
T∑
t=1

(ŷt − ¯̂y)2︸ ︷︷ ︸
Centered RSS

+
T∑
t=1

ê2
t︸ ︷︷ ︸

ESS

,

where ¯̂y = ȳ =
∑T

t=1 yt/T . Analogous to (3.6), the centered R2 is defined as

Centered R2 =
Centered RSS
Centered TSS

= 1− ESS
Centered TSS

. (3.7)

Centered R2 also takes on values between 0 and 1 and is non-decreasing in the number

of variables in the specification. In contrast with non-centered R2, this measure excludes

the effect of the constant term and hence is invariant with respect to constant addition.

When a specfication contains a constant term, we have

T∑
t=1

(yt − ȳ)(ŷt − ȳ) =
T∑
t=1

(ŷt − ȳ + êt)(ŷt − ȳ) =
T∑
t=1

(ŷt − ȳ)2,

because
∑T

t=1 ŷtêt =
∑t

t=1 êt = 0 by Theorem 3.2. It follows that

R2 =
∑T

t=1(ŷt − ȳ)2∑T
t=1(yt − ȳ)2

=
[
∑T

t=1(yt − ȳ)(ŷt − ȳ)]2

[
∑T

t=1(yt − ȳ)2][
∑T

t=1(ŷt − ȳ)2]
.

That is, the centered R2 is also the squared sample correlation coefficient of yt and ŷt,

also known as the squared multiple correlation coefficient. If a specification does not

contain a constant term, the centered R2 may be negative; see Exercise 3.10.

Both centered and non-centered R2 are still non-decreasing in the number of regres-

sors. As such, if one try to determine a specification based on their R2, the specification
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with more regressors would be chosen. A modified measure is the adjusted R2, R̄2,

which is the centered R2 adjusted for the degrees of freedom:

R̄2 = 1− ê′ê/(T − k)
(y′y − T ȳ2)/(T − 1) .

This measure can also be expressed in different forms:

R̄2 = 1− T − 1
T − k

(1− R2) = R2 − k − 1
T − k

(1−R2).

That is, R̄2 is the centered R2 with a penalty term depending on model complexity

and explanatory ability. Observe that when k increases, (k − 1)/(T − k) increases but

1− R2 decreases. Whether the penalty term is larger or smaller depends on the trade-

off between these two terms. Thus, R̄2 need not be increasing with the number of

explanatory variables. Clearly, R̄2 < R2 except for k = 1 or R2 = 1. It can also be

verified that R̄2 < 0 when R2 < (k − 1)/(T − 1).

Remark: As different dependent variables have different TSS, the associated speci-

fications are therefore not comparable in terms of their R2. For example, R2 of the

specifications with y and log y as dependent variables are not comparable.

3.3 Statistical Properties of the OLS Estimators

Readers should have noticed that the previous results, which are either algebraic or

geometric, hold regardless of the random nature of data. To derive the statistical

properties of the OLS estimator, some probabilistic conditions must be imposed.

3.3.1 Classical Conditions

The following conditions on data are usually known as the classical conditions.

[A1] X is non-stochastic.

[A2] y is a random vector such that

(i) IE(y) =Xβo for some βo;

(ii) var(y) = σ2
oIT for some σ2

o > 0.

[A3] y is a random vector such that y ∼ N(Xβo, σ
2
oIT ) for some βo and σ2

o > 0.
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Condition [A1] is not crucial, but it is quite convenient for subsequent analysis.

Note that IE(y) is the “averaging” behavior of y and may be interpreted as a system-

atic component of y. [A2](i) thus ensures that the postulated linear function Xβ is a

specification of this systematic component, correct up to unknown parameters. Con-

dition [A2](ii) regulates that the variance-covariance matrix of y depends only on one

parameter σ2
o ; such a matrix is also known as a scalar covariance matrix. Under [A2](ii),

yt, t = 1, . . . , T , have the constant variance σ2
o and are pairwise uncorrelated (but not

necessarily independent). Although conditions [A2] and [A3] impose the same struc-

tures for the mean and variance of y, the latter is much stronger because it also specifies

the distribution of y. We have seen in Section 2.3 that uncorrelated normal random

variables are also independent. Therefore, yt, t = 1, . . . , T , are i.i.d. (independently

and identically distributed) normal random variables under [A3]. The linear specifica-

tion (3.1) with [A1] and [A2] is known as the classical linear model, and (3.1) with [A1]

and [A3] is also known as the classical normal linear model. The limitations of these

conditions will be discussed in Section 3.7.

In addition to β̂T , the new unknown parameter var(yt) = σ2
o in [A2](ii) and [A3]

should be estimated as well. The OLS estimator for σ2
o is

σ̂2
T =

ê′ê
T − k

=
1

T − k

T∑
t=1

ê2
t , (3.8)

where k is the number of regressors. While β̂T is a linear estimator in the sense that

it is a linear transformation of y, σ̂2
T is not. In the sections below we will derive the

properties of the OLS estimators β̂T and σ̂2
T under these classical conditions.

3.3.2 Without the Normality Condition

Under the imposed classical conditions, the OLS estimators have the following statistical

properties.

Theorem 3.4 Consider the linear specification (3.1).

(a) Given [A1] and [A2](i), β̂T is unbiased for βo.

(b) Given [A1] and [A2], σ̂2
T is unbiased for σ2

o.

(c) Given [A1] and [A2], var(β̂T ) = σ2
o(X

′X)−1.
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Proof: Given [A1] and [A2](i), β̂T is unbiased because

IE(β̂T ) = (X
′X)−1X ′ IE(y) = (X ′X)−1X ′Xβo = βo.

To prove (b), recall that (IT −P )X = 0 so that the OLS residual vector can be written

as

ê = (IT − P )y = (IT − P )(y −Xβo).

Then, ê′ê = (y −Xβo)′(IT − P )(y −Xβo) which is a scalar, and

IE(ê′ê) = IE[trace{(y −Xβo)
′(IT − P )(y −Xβo)}]

= IE[trace{(y −Xβo)(y −Xβo)
′(IT − P )}].

By interchanging the trace and expectation operators, we have from [A2](ii) that

IE(ê′ê) = trace{IE[(y −Xβo)(y −Xβo)
′(IT − P )]}

= trace{IE[(y −Xβo)(y −Xβo)
′](IT − P )}

= trace{σ2
oIT (IT − P )}

= σ2
o trace(IT − P ).

By Lemmas 1.12 and 1.14, trace(IT − P ) = rank(IT − P ) = T − k. Consequently,

IE(ê′ê) = σ2
o(T − k),

so that

IE(σ̂2
T ) = IE(ê

′ê)/(T − k) = σ2
o .

This proves the unbiasedness of σ̂2
T . Given that β̂T is a linear transformation of y, we

have from Lemma 2.4 that

var(β̂T ) = var((X
′X)−1X ′y)

= (X ′X)−1X ′(σ2
oIT )X(X

′X)−1

= σ2
o(X

′X)−1.

This establishes (c). ✷

It can be seen that the unbiasedness of β̂T does not depend on [A2](ii), the variance

property of y. It is also clear that when σ̂2
T is unbiased, the estimator

v̂ar(β̂T ) = σ̂2
T (X

′X)−1

is also unbiased for var(β̂T ). The result below, known as the Gauss-Markov theorem,

indicates that when [A1] and [A2] hold, β̂T is not only unbiased but also the best (most

efficient) among all linear unbiased estimators for βo.
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Theorem 3.5 (Gauss-Markov) Given the linear specification (3.1), suppose that [A1]

and [A2] hold. Then the OLS estimator β̂T is the best linear unbiased estimator (BLUE)

for βo.

Proof: Consider an arbitrary linear estimator β̌T = Ay, where A is non-stochastic.

Writing A = (X ′X)−1X ′ +C, β̌T = β̂T +Cy. Then,

var(β̌T ) = var(β̂T ) + var(Cy) + 2 cov(β̂T ,Cy).

By [A1] and [A2](i),

IE(β̌T ) = βo +CXβo.

Since βo is arbitrary, this estimator would be unbiased if, and only if, CX = 0. This

property further implies that

cov(β̂T ,Cy) = IE[(X
′X)−1X ′(y −Xβo)y

′C ′]

= (X ′X)−1X ′ IE[(y −Xβo)y
′]C ′

= (X ′X)−1X ′(σ2
oIT )C

′

= 0.

Thus,

var(β̌T ) = var(β̂T ) + var(Cy) = var(β̂T ) + σ2
oCC

′,

where σ2
oCC

′ is clearly a positive semi-definite matrix. This shows that for any linear
unbiased estimator β̌T , var(β̌T )− var(β̂T ) is positive semi-definite, so that β̂T is more

efficient. ✷

Example 3.6 Given the data [y X ], where X is a nonstochastic matrix and can be

partitioned as [X1 X2]. Suppose that IE(y) = X1b1 for some b1 and var(y) = σ2
oIT

for some σ2
o > 0. Consider first the specification that contains only X1 but not X2:

y =X1β1 + e.

Let b̂1,T denote the resulting OLS estimator. It is clear that b̂1,T is still a linear estimator

and unbiased for b1 by Theorem 3.4(a). Moreover, it is the BLUE for b1 by Theorem 3.5

with the variance-covariance matrix

var(b̂1,T ) = σ2
o(X

′
1X1)

−1,
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by Theorem 3.4(c).

Consider now the linear specification that involves bothX1 and irrelevant regressors

X2:

y =Xβ + e =X1β1 +X2β2 + e.

Thus, this specification cannot be a correct specification unless some of the parameters

(β2) are restricted to zero. Let β̂T = (β̂
′
1,T β̂

′
2,T )

′ be the OLS estimator of β. Using
Theorem 3.3, we find

IE(β̂1,T ) = IE
(
[X ′

1(IT − P 2)X1]
−1X ′

1(IT − P 2)y
)
= b1,

IE(β̂2,T ) = IE
(
[X ′

2(IT − P 1)X2]
−1X ′

2(IT − P 1)y
)
= 0,

where P 1 = X1(X
′
1X1)

−1X ′
1 and P 2 = X2(X

′
2X2)

−1X ′
2. This shows that β̂T is

unbiased for (b′1 0′)′. Also,

var(β̂1,T ) = var([X
′
1(IT − P 2)X1]

−1X ′
1(IT − P 2)y)

= σ2
o [X

′
1(IT − P 2)X1]

−1.

Given that P 2 is a positive semi-definite matrix,

X ′
1X1 −X ′

1(IT − P 2)X1 =X
′
1P 2X1,

must also be positive semi-definite. It follows from Lemma 1.9 that

[X ′
1(IT − P 2)X1]

−1 − (X ′
1X1)

−1

is a positive semi-definite matrix. This shows that b̂1,T is more efficient than β̂1,T , as it

ought to be. When X ′
1X2 = 0, i.e., the columns of X1 are orthogonal to the columns

of X2, we immediately have (IT − P 2)X1 = X1, so that β̂1,T = b̂1,T . In this case,

estimating a more complex specification does not result in efficiency loss. ✷

Remark: The Gauss-Markov theorem does not apply to the estimators for the spec-

ification y = X1β1 + X2β2 + e because, unlike [A2](i), the true parameter vector

βo = (b
′
1 0

′)′ is not arbitrary but involves the restriction that some of its elements must
be zero. This example thus shows that when this restriction is not taken into account,

the resulting OLS estimator, while being unbiased, is no longer the most efficient.
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3.3.3 With the Normality Condition

We have learned that the normality condition [A3] is much stronger than [A2]. With

this stronger condition, more can be said about the OLS estimators.

Theorem 3.7 Given the linear specification (3.1), suppose that [A1] and [A3] hold.

(a) β̂T ∼ N(βo, σ
2
o(X

′X)−1).

(b) (T − k)σ̂2
T /σ

2
o ∼ χ2(T − k).

(c) σ̂2
T has mean σ2

o and variance 2σ4
o/(T − k).

Proof: As β̂T is a linear transformation of y, it is also normally distributed as

β̂T ∼ N(βo, σ
2
o(X

′X)−1),

by Lemma 2.6, where its mean and variance-covariance matrix are as in Theorem 3.4(a)

and (c). To prove the assertion (b), we again write ê = (IT −P )(y−Xβo) and deduce

(T − k)σ̂2
T /σ

2
o = ê

′ê/σ2
o = y

∗′(IT − P )y∗,

where y∗ = (y − Xβo)/σo. Let C be the orthogonal matrix that diagonalizes the

symmetric and idempotent matrix IT −P . Then, C′(IT −P )C = Λ. Since rank(IT −
P ) = T − k, Λ contains T − k eigenvalues equal to one and k eigenvalues equal to zero

by Lemma 1.11. Without loss of generality we can write

y∗′(IT − P )y∗ = y∗′C[C ′(IT − P )C]C ′y∗ = η′
[
IT−k 0

0 0

]
η,

where η = C ′y∗. Again by Lemma 2.6, y∗ ∼ N(0, IT ) under [A3]. Hence, η ∼
N(0, IT ), so that ηi are independent, standard normal random variables. Consequently,

y∗′(IT − P )y∗ =
T−k∑
i=1

η2
i ∼ χ2(T − k).

This proves (b). Noting that the mean of χ2(T − k) is T − k and variance is 2(T − k),

the assertion (c) is just a direct consequence of (b). ✷

Suppose that we believe that [A3] is true and specify the log-likelihood function of

y as:

logL(β, σ2) = −T

2
log(2π) − T

2
log σ2 − 1

2σ2
(y −Xβ)′(y −Xβ).
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The first order conditions of maximizing this log-likelihood are

∇β logL(β, σ
2) =

1
σ2
X ′(y −Xβ) = 0,

∇σ2 logL(β, σ2) = − T

2σ2
+
1
2σ4
(y −Xβ)′(y −Xβ) = 0,

and their solutions are the MLEs β̃T and σ̃2
T . The first k equations above are equivalent

to the OLS normal equations (3.3). It follows that the OLS estimator β̂T is also the

MLE β̃T . Plugging β̂T into the first order conditions we can solve for σ2 and obtain

σ̃2
T =

(y −Xβ̂T )′(y −Xβ̂T )
T

=
ê′ê
T

, (3.9)

which is different from the OLS variance estimator (3.8).

The conclusion below is stronger than the Gauss-Markov theorem (Theorem 3.5).

Theorem 3.8 Given the linear specification (3.1), suppose that [A1] and [A3] hold.

Then the OLS estimators β̂T and σ̂2
T are the best unbiased estimators for βo and σ2

o,

respectively.

Proof: The score vector is

s(β, σ2) =

 1
σ2X

′(y −Xβ)

− T
2σ2 + 1

2σ4 (y −Xβ)′(y −Xβ)

 ,
and the Hessian matrix of the log-likelihood function is − 1

σ2X
′X − 1

σ4X
′(y −Xβ)

− 1
σ4 (y −Xβ)′X T

2σ4 − 1
σ6 (y −Xβ)′(y −Xβ)

 .
It is easily verified that when [A3] is true, IE[s(βo, σ

2
o)] = 0, and the expected value of

the Hessian matrix evaluated at βo and σ2
o is − 1

σ2
o
X ′X 0

0 − T
2σ4

o

 .
The information matrix equality (Lemma 2.9) ensures that the negative of this matrix

equals the information matrix. The inverse of the information matrix is then σ2
o(X

′X)−1 0

0 2σ4
o

T

 ,
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which is the Cramér-Rao lower bound by Lemma 2.10. Clearly, var(β̂T ) achieves this

lower bound so that β̂T must be the best unbiased estimator for βo. Although the

variance of σ̂2
T is greater than the lower bound, it can be shown that σ̂

2
T is still the best

unbiased estimator for σ2
o ; see Rao (1973, ) for a proof. ✷

Remark: Comparing to the Gauss-Markov theorem, Theorem 3.8 gives a stronger

result at the expense of a stronger condition (the normality condition [A3]). The OLS

estimators now are the best (most efficient) in a much larger class of estimators, namely,

the class of unbiased estimators. Note also that Theorem 3.8 covers σ̂2
T , whereas the

Gauss-Markov theorem does not.

3.4 Hypotheses Testing

After a specification is estimated, it is often desirable to test various economic and

econometric hypotheses. Given the classical conditions [A1] and [A3], we consider the

linear hypothesis

Rβo = r, (3.10)

where R is a q × k non-stochastic matrix with rank q < k, and r is a vector of pre-

specified, hypothetical values.

3.4.1 Tests for Linear Hypotheses

If the null hypothesis (3.10) is true, it is reasonable to expect that Rβ̂T is “close” to

the hypothetical value r; otherwise, they should be quite different. Here, the closeness

between Rβ̂T and r must be justified by the null distribution of the test statistics.

If there is only a single hypothesis, the null hypothesis (3.10) is such that R is a row

vector (q = 1) and r is a scalar. Note that a single hypothesis may involve two or more

parameters. Consider the following statistic:

Rβ̂T − r

σo[R(X
′X)−1R′]1/2

.

By Theorem 3.7(a), β̂T ∼ N(βo, σ
2
o(X

′X)−1), and hence

Rβ̂T ∼ N(Rβo, σ
2
oR(X

′X)−1R′).

Under the null hypothesis, we have

Rβ̂T − r

σo[R(X
′X)−1R′]1/2

=
R(β̂T − βo)

σo[R(X
′X)−1R′]1/2

∼ N(0, 1). (3.11)
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Although the left-hand side has a known distribution, it cannot be used as a test statistic

because σo is unknown. Replacing σo by its OLS estimator σ̂T yields an operational

statistic:

τ =
Rβ̂T − r

σ̂T [R(X
′X)−1R′]1/2

. (3.12)

The null distribution of τ is given in the result below.

Theorem 3.9 Given the linear specification (3.1), suppose that [A1] and [A3] hold.

Then under the null hypothesis (3.10) with R a 1× k vector,

τ ∼ t(T − k),

where τ is given by (3.12).

Proof: We first write the statistic τ as

τ =
Rβ̂T − r

σo[R(X
′X)−1R′]1/2

/√
(T − k)σ̂2

T /σ
2
o

T − k
,

where the numerator is distributed as N(0, 1) by (3.11), and (T −k)σ̂2
T /σ

2
o is distributed

as χ2(T − k) by Theorem 3.7(b). Hence, the square of the denominator is a central χ2

random variable divided by its degrees of freedom T − k. The assertion follows if we

can show that the numerator and denominator are independent. Note that the random

components of the numerator and denominator are, respectively, β̂T and ê
′ê, where β̂T

and ê are two normally distributed random vectors with the covariance matrix

cov(ê, β̂T ) = IE[(IT − P )(y −Xβo)y
′X(X ′X)−1]

= (IT − P ) IE[(y −Xβo)y
′]X(X ′X)−1

= σ2
o(IT − P )X(X ′X)−1

= 0.

Since uncorrelated normal random vectors are also independent, β̂T is independent of

ê. By Lemma 2.1, we conclude that β̂T is also independent of ê
′ê. ✷

The statistic τ is known as the t statistic, and its null distribution is t(T − k) by

Theorem 3.9. When the alternative hypothesis is Rβo �= r, this is a two-sided test;

when the alternative hypothesis is Rβo > r (or Rβo < r), this is a one-sided test. For

each test, we first choose a small significance level α and then determine the critical
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region Cα. For the two-sided t test, we can find the values ±tα/2(T −k) from the t table

such that

α = IP{τ < −tα/2(T − k) or τ > tα/2(T − k)}

= 1− IP{−tα/2(T − k) ≤ τ ≤ tα/2(T − k)}.

The critical region is then

Cα = (−∞,−tα/2(T − k)) ∪ (tα/2(T − k),∞),

and ±tα/2(T − k) are the critical values at the significance level α. For the alternative

hypothesis Rβo > r, the critical region is (tα(T −k),∞), where tα(T −k) is the critical

value such that

α = IP{τ > tα(T − k)}.

Similarly, for the alternative Rβo < r, the critical region is (−∞,−tα(T − k)).

The null hypothesis is rejected at the significance level α when τ falls in the critical

region. As α is small, the event {τ ∈ Cα} is unlikely under the null hypothesis. When
τ does take an extreme value relative to the critical values, it is an evidence against the

null hypothesis. The decision of rejecting the null hypothesis could be wrong, but the

probability of the type I error will not exceed α. When τ takes a “reasonable” value

in the sense that it falls in the complement of the critical region, the null hypothesis is

not rejected.

Example 3.10 To test a single coefficient equal to zero: βi = 0, we choose R as the

transpose of the ith Cartesian unit vector:

R = [ 0 · · · 0 1 0 · · · 0 ].

Let mii be the i th diagonal element of M−1 = (X ′X)−1. Then, R(X ′X)−1R′ = mii.

The t statistic for this hypothesis, also known as the t ratio, is

τ =
β̂i,T

σ̂T
√
mii

∼ t(T − k).

When a t ratio rejects the null hypothesis, it is said that the corresponding estimated

coefficient is significantly different from zero; econometric packages usually report t

ratios along with the coefficient estimates. ✷
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Example 3.11 To test the single hypothesis βi + βj = 0, we set R as

R = [ 0 · · · 0 1 0 · · · 0 1 0 · · · 0 ].

Hence, R(X ′X)−1R′ = mii + 2mij +mjj, where mij is the (i, j) th element of M−1 =

(X ′X)−1. The t statistic is

τ =
β̂i,T + β̂j,T

σ̂T (mii + 2mij +mjj)1/2
∼ t(T − k). ✷

Several hypotheses can also be tested jointly. Consider the null hypothesis Rβo = r,

where R is now a q × k matrix (q ≥ 2) and r is a vector. This hypothesis involves q
single hypotheses. Similar to (3.11), we have under the null hypothesis that

[R(X ′X)−1R′]−1/2(Rβ̂T − r)/σo ∼ N(0, Iq).

Therefore,

(Rβ̂T − r)′[R(X ′X)−1R′]−1(Rβ̂T − r)/σ2
o ∼ χ2(q). (3.13)

Again, we can replace σ2
o by its OLS estimator σ̂

2
T to obtain an operational statistic:

ϕ =
(Rβ̂T − r)′[R(X ′X)−1R′]−1(Rβ̂T − r)

σ̂2
T q

. (3.14)

The next result gives the null distribution of ϕ.

Theorem 3.12 Given the linear specification (3.1), suppose that [A1] and [A3] hold.

Then under the null hypothesis (3.10) with R a q × k matrix with rank q < k, we have

ϕ ∼ F (q, T − k),

where ϕ is given by (3.14).

Proof: Note that

ϕ =
(Rβ̂T − r)′[R(X ′X)−1R′]−1(Rβ̂T − r)/(σ2

oq)

(T − k) σ̂
2
T
σ2

o

/
(T − k)

.

In view of (3.13) and the proof of Theorem 3.9, the numerator and denominator terms

are two independent χ2 random variables, each divided by its degrees of freedom. The

assertion follows from the definition of F random variable. ✷
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The statistic ϕ is known as the F statistic. We reject the null hypothesis at the

significance level α when ϕ is too large relative to the critical value Fα(q, T − k) of the

F table, where Fα(q, T − k) is such that

α = IP{ϕ > Fα(q, T − k)}.

If there is only a single hypothesis, the F statistic is just the square of the corresponding

t statistic. When ϕ rejects the null hypothesis, it simply suggests that there is evidence

against at least one single hypothesis. The inference of a joint test is, however, not

necessary the same as the inference of individual tests; see also Section 3.5.

Example 3.13 Joint null hypothesis: Ho : β1 = b1 and β2 = b2. The F statistic is

ϕ =
1
2σ̂2

T

(
β̂1,T − b1

β̂2,T − b2

)′ [
m11 m12

m21 m22

]−1(
β̂1,T − b1

β̂2,T − b2

)
∼ F (2, T − k),

where mij is as defined in Example 3.11. ✷

Remark: For the null hypothesis of s coefficients being zero, if the corresponding F

statistic ϕ > 1 (ϕ < 1), dropping these s regressors will reduce (increase) R̄2; see

Exercise 3.12.

3.4.2 Power of the Tests

Recall that the power of a test is the probability of rejecting the null hypothesis when the

null hypothesis is indeed false. In this section, we consider the hypothesis Rβo = r+δ,

where δ characterizes the deviation from the null hypothesis, and analyze the power

performance of the t and F tests.

Theorem 3.14 Given the linear specification (3.1), suppose that [A1] and [A3] hold.

Then under the hypothesis that Rβo = r+δ, where R is a q×k matrix with rank q < k,

we have

ϕ ∼ F (q, T − k; δ′D−1δ, 0),

where ϕ is given by (3.14), D = σ2
o [R(X

′X)−1R′], and δ′D−1δ is the non-centrality

parameter of the numerator term.

Proof: When Rβo = r + δ,

[R(X ′X)−1R′]−1/2(Rβ̂T − r)/σo

= [R(X ′X)−1R′]−1/2[R(β̂T − βo) + δ]/σo.
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Given [A3],

[R(X ′X)−1R′]−1/2R(β̂T − βo)/σo. ∼ N(0, Iq),

and hence

[R(X ′X)−1R′]−1/2(Rβ̂T − r)/σo ∼ N(D−1/2δ, Iq).

It follows from Lemma 2.7 that

(Rβ̂T − r)′[R(X ′X)−1R′]−1(Rβ̂T − r)/σ2
o ∼ χ2(q; δ′D−1δ),

which is the non-central χ2 distribution with q degrees of freedom and the non-centrality

parameter δ′D−1δ. This is in contrast with (3.13) which has a central χ2 distribution

under the null hypothesis. As (T − k)σ̂2
T /σ

2
o is still distributed as χ

2(T − k) by The-

orem 3.7(b), the assertion follows because the numerator and denominator of ϕ are

independent. ✷

Clearly, when the null hypothesis is correct, we have δ = 0, so that ϕ ∼ F (q, T −k).

Theorem 3.14 thus includes Theorem 3.12 as a special case. In particular, for testing a

single hypothesis, we have

τ ∼ t(T − k; D−1/2δ),

which reduces to t(T − k) when δ = 0, as in Theorem 3.9.

Theorem 3.14 implies that when Rβo deviates farther from the hypothetical value

r, the non-centrality parameter δ′D−1δ increases, and so does the power. We illustrate

this point using the following two examples, where the power are computed using the

GAUSS program. For the null distribution F (2, 20), the critical value at 5% level is 3.49.

Then for F (2, 20; ν1, 0) with the non-centrality parameter ν1 = 1, 3, 5, the probabilities

that ϕ exceeds 3.49 are approximately 12.1%, 28.2%, and 44.3%, respectively. For the

null distribution F (5, 60), the critical value at 5% level is 2.37. Then for F (5, 60; ν1, 0)

with ν1 = 1, 3, 5, the probabilities that ϕ exceeds 2.37 are approximately 9.4%, 20.5%,

and 33.2%, respectively. In both cases, the power increases with the non-centrality

parameter.

3.4.3 An Alternative Approach

Given the specification (3.1), we may take the constraint Rβo = r into account and

consider the constrained OLS estimation that finds the saddle point of the Lagrangian:

min
β,λ

1
T
(y −Xβ)′(y −Xβ) + (Rβ − r)′λ,
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where λ is the q× 1 vector of Lagrangian multipliers. It is straightforward to show that
the solutions are

λ̈T = 2[R(X
′X/T )−1R′]−1(Rβ̂T − r),

β̈T = β̂T − (X ′X/T )−1R′λ̈T /2,
(3.15)

which will be referred to as the constrained OLS estimators.

Given β̈T , the vector of constrained OLS residuals is

ë = y −Xβ̈T = y −Xβ̂T +X(β̂T − β̈T ) = ê+X(β̂T − β̈T ).

It follows from (3.15) that

β̂T − β̈T = (X
′X/T )−1R′λ̈T /2

= (X ′X)−1R′[R(X ′X)−1R′]−1(Rβ̂T − r).

The inner product of ë is then

ë′ë = ê′ê+ (β̂T − β̈T )
′X ′X(β̂T − β̈T )

= ê′ê+ (Rβ̂T − r)′[R(X ′X)−1R′]−1(Rβ̂T − r).

Note that the second term on the right-hand side is nothing but the numerator of the

F statistic (3.14). The F statistic now can be written as

ϕ =
ë′ë− ê′ê

qσ̂2
T

=
(ESSc − ESSu)/q
ESSu/(T − k)

, (3.16)

where ESSc = ë′ë and ESSu = ê′ê denote, respectively, the ESS resulted from con-
strained and unconstrained estimations. Dividing the numerator and denominator of

(3.16) by centered TSS (y′y − T ȳ2) yields another equivalent expression for ϕ:

ϕ =
(R2

u − R2
c)/q

(1− R2
u)/(T − k)

, (3.17)

where R2
c and R2

u are, respectively, the centered coefficient of determination of con-

strained and unconstrained estimations. As the numerator of (3.17), R2
u − R2

c , can be

interpreted as the loss of fit due to the imposed constraint, the F test is in effect a

loss-of-fit test. The null hypothesis is rejected when the constrained specification fits

data much worse.

Example 3.15 Consider the specification: yt = β1 + β2xt2 + β3xt3 + et. Given the

hypothesis (constraint) β2 = β3, the resulting constrained specification is

yt = β1 + β2(xt2 + xt3) + et.
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By estimating these two specifications separately, we obtain ESSu and ESSc, from which

the F statistic can be easily computed. ✷

Example 3.16 Test the null hypothesis that all the coefficients (except the constant

term) equal zero. The resulting constrained specification is yt = β1+et, so that R
2
c = 0.

Then, (3.17) becomes

ϕ =
R2

u/(k − 1)
(1− R2

u)/(T − k)
∼ F (k − 1, T − k),

which requires only estimation of the unconstrained specification. This test statistic is

also routinely reported by most of econometric packages and known as the “regression

F test.” ✷

3.5 Confidence Regions

In addition to point estimators for parameters, we may also be interested in finding

confidence intervals for parameters. A confidence interval for βi,o with the confidence

coefficient (1− α) is the interval (g
α
, gα) that satisfies

IP{ g
α

≤ βi,o ≤ gα} = 1− α.

That is, we are (1− α)× 100 percent sure that such an interval would include the true
parameter βi,o.

From Theorem 3.9, we know

IP

{
−tα/2(T − k) ≤

β̂i,T − βi,o

σ̂T
√
mii

≤ tα/2(T − k)

}
= 1− α,

where mii is the i th diagonal element of (X ′X)−1, and tα/2(T − k) is the critical value

of the (two-sided) t test at the significance level α. Equivalently, we have

IP
{
β̂i,T − tα/2(T − k)σ̂T

√
mii ≤ βi,o ≤ β̂i,T + tα/2(T − k)σ̂T

√
mii
}
= 1− α.

This shows that the confidence interval for βi,o can be constructed by setting

g
α
= β̂i,T − tα/2(T − k)σ̂T

√
mii,

gα = β̂i,T + tα/2(T − k)σ̂T
√
mii.

It should be clear that the greater the confidence coefficient (i.e., α smaller), the larger

is the magnitude of the critical values ±tα/2(T − k) and hence the resulting confidence

interval.
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The confidence region for Rβo with the confidence coefficient (1− α) satisfies

IP{(β̂T − βo)
′R′[R(X ′X)−1R′]−1R(β̂T − βo)/(qσ̂

2
T ) ≤ Fα(q, T − k)}

= 1− α,

where Fα(q, T − k) is the critical value of the F test at the significance level α.

Example 3.17 The confidence region for (β1,o = b1, β2,o = b2). Suppose T − k = 30

and α = 0.05, then F0.05(2, 30) = 3.32. In view of Example 3.13,

IP

 1
2σ̂2

T

(
β̂1,T − b1

β̂2,T − b2

)′ [
m11 m12

m21 m22

]−1(
β̂1,T − b1

β̂2,T − b2

)
≤ 3.32

 = 0.95,
which results in an ellipse with the center (β̂1,T , β̂2,T ). ✷

Remark: A point (β1,o, β2,o) may be outside the joint confidence ellipse but inside

the confidence box formed by individual confidence intervals. Hence, each t ratio may

show that the corresponding coefficient is insignificantly different from zero, while the F

test indicates that both coefficients are not jointly insignificant. It is also possible that

(β1, β2) is outside the confidence box but inside the joint confidence ellipse. That is,

each t ratio may show that the corresponding coefficient is significantly different from

zero, while the F test indicates that both coefficients are jointly insignificant. See also

an illustrative example in Goldberger (1991, Chap. 19).

3.6 Multicollinearity

In Section 3.2.2 we have seen that a linear specification suffers from the problem of

exact multicollinearity if the basic identifiability requirement (i.e., X is of full column

rank) is not satisfied. In this case, the OLS estimator cannot be computed as (3.4).

This problem may be avoided by modifying the postulated specifications.

3.6.1 Near Multicollinearity

In practice, it is more common that explanatory variables are related to some extent but

do not satisfy an exact linear relationship. This is usually referred to as the problem of

near multicollinearity. But as long as there is no exact multicollinearity, parameters can

still be estimated by the OLS method, and the resulting estimator remains the BLUE

under [A1] and [A2].
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Nevertheless, there are still complaints about near multicollinearity in empirical

studies. In some applications, parameter estimates are very sensitive to small changes

in data. It is also possible that individual t ratios are all insignificant, but the regres-

sion F statistic is highly significant. These symptoms are usually attributed to near

multicollinearity. This is not entirely correct, however. Write X = [xi Xi], where Xi

is the submatrix of X excluding the i th column xi. By the result of Theorem 3.3, the

variance of β̂i,T can be expressed as

var(β̂i,T ) = var([x
′
i(I −P i)xi]

−1x′i(I − P i)y) = σ2
o [x

′
i(I − P i)xi]

−1,

where P i =Xi(X
′
iXi)

−1X ′
i. It can also be verified that

var(β̂i,T ) =
σ2
o∑T

t=1(xti − x̄i)2(1− R2(i))
,

where R2(i) is the centered coefficient of determination from the auxiliary regression of

xi on X i. When xi is closely related to other explanatory variables, R2(i) is high so

that var(β̂i,T ) would be large. This explains why β̂i,T are sensitive to data changes and

why corresponding t ratios are likely to be insignificant. Near multicollinearity is not a

necessary condition for these problems, however. Large var(β̂i,T ) may also arise due to

small variations of xti and/or large σ
2
o .

Even when a large value of var(β̂i,T ) is indeed resulted from high R2(i), there is

nothing wrong statistically. It is often claimed that “severe multicollinearity can make

an important variable look insignificant.” As Goldberger (1991) correctly pointed out,

this statement simply confuses statistical significance with economic importance. These

large variances merely reflect the fact that parameters cannot be precisely estimated

from the given data set.

Near multicollinearity is in fact a problem related to data and model specification.

If it does cause problems in estimation and hypothesis testing, one may try to break the

approximate linear relationship by, e.g., adding more observations to the data set (if

plausible) or dropping some variables from the current specification. More sophisticated

statistical methods, such as the ridge estimator and principal component regressions,

may also be used; details of these methods can be found in other econometrics textbooks.

3.6.2 Digress: Dummy Variables

A linear specification may include some qualitative variables to indicate the presence or

absence of certain attributes of the dependent variable. These qualitative variables are

typically represented by dummy variables which classify data into different categories.
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For example, let yi denote the annual salary of college teacher i and xi the years of

teaching experience. Consider the dummy variable: Di = 1 if i is a male and Di = 0 if

i is a female. Then, the specification

yi = α0 + α1Di + βxi + ei

yields two regression lines with different intercepts. The “male” regression line has the

intercept α0 + α1, and the “female” regression line has the intercept α0. We may test

the hypothesis α1 = 0 to see if there is a difference between the starting salaries of male

and female teachers.

This specification can be expanded to incorporate an interaction term between D

and x:

yi = α0 + α1Di + β0xi + β1(Dixi) + ei,

which yields two regression lines with different intercepts and slopes. The slope of the

“male” regression line is mow β0+ β1, whereas the slope of the “female” regression line

is β0. By testing β1 = 0, we can check whether teaching experience is treated the same

in determining salaries for male and female teachers.

Suppose that we want to know if the education level of the head of household affects

family consumption pattern. We may classify data into three groups: below high school,

high school only, college or higher. Let D1i = 1 if i has a high school degree only and

D1i = 0 otherwise, and D2i = 1 if i has a college or higher degree and D2i = 0 otherwise.

Then, similar to the previous example, the following specification,

yi = α0 + α1D1i + α2D2i + βxi + ei,

yields three regression lines. The below-high-school regression line has the intercept α0,

the high-school regression line has the intercept α0 +α1, and the college regression line

has the intercept α0 + α2. Various interesting hypotheses can be tested based on this

specification.

Remark: The preceding examples show that, when a specification contains a con-

stant term, the number of dummy variables is always one less than the number of

categories that dummy variables try to classify. Otherwise, the specification has exact

multicollinearity; this is the so-called “dummy variable trap.”
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3.7 Limitations of the Classical Conditions

The previous estimation and testing results are based on the classical conditions. As

these conditions may be violated in practice, it is important to understand their limi-

tations.

Condition [A1] postulates that explanatory variables are non-stochastic. Although

this condition is quite convenient and facilitates our analysis, it is not practical. When

the dependent variable and regressors are economic variables, it does not make too

much sense to treat only the dependent variable as a random variable. This condition

may also be violated when a lagged dependent variable is included as a regressor, as in

many time-series analysis. Hence, it would be more reasonable to allow regressors to be

random as well.

In [A2](i), the linear specification Xβ is assumed to be correct up to some unknown

parameters. It is possible that the systematic component IE(y) is in fact a non-linear

function of X. If so, the estimated regression hyperplane could be very misleading. For

example, an economic relation may change from one regime to another at some time

point so that IE(y) is better characterized by a piecewise liner function. This is known

as the problem of structural change; see e.g., Exercise 3.14. Even when IE(y) is a linear

function, the specifiedX may include some irrelevant variables or omit some important

variables. Example 3.6 shows that in the former case, the OLS estimator β̂T remains

unbiased but is less efficient. In the latter case, it can be shown that β̂T is biased but

with a smaller variance-covariance matrix; see Exercise 3.6.

Condition [A2](ii) may also easily break down in many applications. For example,

when yt is the consumption of the t th household, it is likely that yt has smaller variation

for low-income families than for high-income families. When yt denotes the GDP growth

rate of the t th year, it is also likely that yt are correlated over time. In both cases, the

variance-covariance matrix of y cannot be expressed as σ2
oIT . A consequence of the

failure of [A2](ii) is that the OLS estimator for var(β̂T ), σ̂
2
T (X

′X)−1, is biased, which

in turn renders the tests discussed in Section 3.4 invalid.

Condition [A3] may fail when yt have non-normal distributions. Although the BLUE

property of the OLS estimator does not depend on normality, [A3] is crucial for deriving

the distribution results in Section 3.4. When [A3] is not satisfied, the usual t and F

tests do not have the desired t and F distributions, and their exact distributions are

typically unknown. This causes serious problems for hypothesis testing.

Our discussion thus far suggests that the classical conditions are quite restrictive.
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In subsequent chapters, we will try to relax these conditions and discuss more generally

applicable methods. These methods play an important role in contemporary empirical

studies.

Exercises

3.1 Construct a linear regression model for each equation below:

y = αxβ, y = α eβx, y =
x

αx − β
, y =

eα+βx

1 + eα+βx
.

3.2 Use the general formula (3.4) to find the OLS estimators from the specifications

below:

yt = α+ βxt + e, t = 1, . . . , T,

yt = α+ β(xt − x̄) + e, t = 1, . . . , T,

yt = βxt + e, t = 1, . . . , T.

Compare the resulting regression lines.

3.3 Given the specification yt = α + βxt + e, t = 1, . . . , T , assume that the classical

conditions hold. Let α̂T and β̂T be the OLS estimators for α and β, respectively.

(a) Apply the general formula of Theorem 3.4(c) to show that

var(α̂T ) = σ2
o

∑T
t=1 x

2
t

T
∑T

t=1(xt − x̄)2
,

var(β̂T ) = σ2
o

1∑T
t=1(xt − x̄)2

,

cov(α̂T , β̂T ) = −σ2
o

x̄∑T
t=1(xt − x̄)2

.

What kind of data can make the variances of the OLS estimators smaller?

(b) Suppose that a prediction ŷT+1 = α̂T + β̂TxT+1 is made based on the new

observation xT+1. Show that

IE(ŷT+1 − yT+1) = 0,

var(ŷT+1 − yT+1) = σ2
o

(
1 +

1
T
+
(xT+1 − x̄)2∑T
t=1(xt − x̄)2

)
.

What kind of xT+1 can make the variance of prediction error smaller?
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3.4 Given the specification (3.1), suppose that X is not of full column rank. Does

there exist a unique ŷ ∈ span(X) that minimizes (y − ŷ)′(y − ŷ)? If yes, is there

a unique β̂T such that ŷ =Xβ̂T ? Why or why not?

3.5 Given the estimated model

yt = β̂1,T + β̂2,Txt2 + · · ·+ β̂k,Txtk + êt,

consider the standardized regression:

y∗t = β̂∗
2,Tx

∗
t2 + · · ·+ β̂∗

k,Tx
∗
tk + ê∗t ,

where β̂∗
i,T are known as the beta coefficients, and

y∗t =
yt − ȳ

sy
, x∗ti =

xti − x̄i
sxi

, ε̂∗t =
êt
sy

,

with s2
y = (T − 1)−1

∑T
t=1(yt − ȳ)2 is the sample variance of yt and for each

i, s2
xi
= (T − 1)−1

∑T
t=1(xti − x̄i)2 is the sample variance of xti. What is the

relationship between β̂∗
i,T and β̂i,T ? Give an interpretation of the beta coefficients.

3.6 Given the following specification

y =X1β1 + e,

where X1 (T × k1) is a non-stochastic matrix, let b̂1,T denote the resulting OLS

estimator. Suppose that IE(y) = X1b1 +X2b2 for some b1 and b2, where X2

(T × k2) is also a non-stochastic matrix and b2 �= 0.

(a) Is b̂1,T unbiased?

(b) Is σ̂2
T unbiased?

(c) What is var(b̂1,T )?

(d) Let β̂T = (β̂
′
1,T β̂

′
2,T )′ denote the OLS estimator obtained from estimating

the specification: y =X1β1 +X2β2 + e. Compare var(β̂1,T ) and var(b̂T ).

(e) Does your result in (d) change when X ′
1X2 = 0?

3.7 Given the specification (3.1), will the changes below affect the resulting OLS

estimator β̂T , t ratios, and R2?

(a) y∗ = 1000 × y and X are used as the dependent and explanatory variables.

(b) y and X∗ = 1000×X are used as the dependent and explanatory variables.
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(c) y∗ and X∗ are used as the dependent and explanatory variables.

3.8 Let R2
k denote the centered R2 obtained from the model with k explanatory vari-

ables.

(a) Show that

R2
k =

k∑
i=1

β̂iT

∑T
t=1(xti − x̄i)yt∑T
t=1(yt − ȳ)2

,

where β̂iT is the ith element of β̂T , x̄i =
∑T

t=1 xti/T , and ȳ =
∑T

t=1 yt/T .

(b) Show that R2
k ≥ R2

k−1.

3.9 Consider the following two regression lines: ŷ = α̂ + β̂x and x̂ = γ̂ + δ̂y. At

which point do these two lines intersect? Using the result in Exercise 3.8 to show

that these two regression lines coincide if and only if the centered R2s for both

regressions are one.

3.10 Given the specification (3.1), suppose that X does not contain the constant term.

Show that the centered R2 need not be bounded between zero and one if it is

computed as (3.7).

3.11 Rearrange the matrix X as [xi Xi], where xi is the ith column of X. Let ui and

vi denote the residual vectors of regressing y on Xi and xi on Xi, respectively.

Define the partial correlation coefficient of y and xi as

ri =
u′
ivi

(u′
iui)1/2(v′ivi)1/2

.

Let R2
i and R2 be obtained from the regressions of y on X i and y on X, respec-

tively.

(a) Apply the Frisch-Waugh-Lovell Theorem to show

I − P = (I − P i)−
(I − P i)xix

′
i(I − P i)

x′
i(I − P i)xi

,

where P =X(X ′X)−1X ′ and P i =Xi(X
′
iXi)−1X ′

i. Note that this result

can also be derived using the matrix inversion formula (e.g. Greene (1993,

p. 27)).

(b) Show that (1− R2)/(1 −R2
i ) = 1− r2

i , and use this result to verify

R2 − R2
i = r2

i (1− R2
i ).

What does this result tell you?
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(c) Let τi denote the t ratio of β̂iT , the ith element of β̂T obtained from regressing

y onX . First show that τ2
i = (T −k)r2

i /(1−r2
i ), and use this result to verify

r2
i = τ2

i /(τ
2
i + T − k).

(d) Combine the results in (b) and (c) to show

R2 − R2
i = τ2

i (1− R2)/(T − k).

What does this result tell you?

3.12 Suppose that a linear model with k explanatory variables has been estimated.

(a) Show that σ̂2
T = Centered TSS(1 − R̄2)/(T − 1). What does this result tell

you?

(b) Suppose that we want to test the hypothesis that s coefficients are zero. Show

that the F statistic can be written as

ϕ =
(T − k + s)σ̂2

c − (T − k)σ̂2
u

sσ̂2
u

,

where σ̂2
c and σ̂2

u are the variance estimates of the constrained and uncon-

strained models, respectively. Let a = (T − k)/s. Show that

σ̂2
c

σ̂2
u

=
a+ ϕ

a+ 1
.

(c) Based on the results in (a) and (b), what can you say when ϕ > 1 and ϕ < 1?

3.13 For the linear specification y =Xβ+ e, an alternative expression of k−m linear

restrictions on β can be expressed as β = Sθ + d, where θ is a m-dimensional

vector of unknown parameters, S is a k×m matrix of pre-specified constants with

full column rank, and c is a vector of pre-specified constants.

(a) By incorporating this restriction into the specification, find the OLS estima-

tor θ̂ of θ.

(b) The constrained least squares estimator of β is β̂c = Sθ̂ + d. Show that

β̂c = QSβ̂ + (I −QS)d,

where QS = S(S
′X ′XS)−1S′X ′X. Is this decomposition orthogonal?
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(c) Show that

Xβ̂c = PXSy + (I − PXS)Xd,

where PXS =XS(S′X ′XS)−1S′X ′. Use a graph to illustrate this result.

3.14 (The Chow Test) Consider the model of a one-time structural change at a known

change point:[
y1

y2

]
=

[
X1 0

X2 X2

][
βo

δo

]
+

[
e1

e2

]
,

where y1 and y2 are T1 × 1 and T2 × 1, X1 and X2 are T1 × k and T2 × k,

respectively. The null hypothesis is δo = 0. How would you test this hypothesis

based on the constrained and unconstrained models?

References

Davidson, Russell and James G. MacKinnon (1993). Estimation and Inference in Econo-

metrics, New York, NY: Oxford University Press.

Goldberger, Arthur S. (1991). A Course in Econometrics, Cambridge, MA: Harvard

University Press.

Greene, William H. (2000). Econometric Analysis, 4th ed., Upper Saddle River, NJ:

Prentice Hall.

Harvey, Andrew C. (1990). The Econometric Analysis of Time Series, Second edition.,

Cambridge, MA: MIT Press.

Intriligator, Michael D., Ronald G. Bodkin, and Cheng Hsiao (1996). Econometric

Models, Techniques, and Applications, Second edition, Upper Saddle River, NJ:

Prentice Hall.

Johnston, J. (1984). Econometric Methods, Third edition, New York, NY: McGraw-Hill.

Judge, Georgge G., R. Carter Hill, William E. Griffiths, Helmut Lütkepohl, and Tsoung-

Chao Lee (1988). Introduction to the Theory and Practice of Econometrics, Sec-

ond edition, New York, NY: Wiley.

Maddala, G. S. (1992). Introduction to Econometrics, Second edition, New York, NY:

Macmillan.

c© Chung-Ming Kuan, 2001



3.7. LIMITATIONS OF THE CLASSICAL CONDITIONS 75

Manski, Charles F. (1991). Regression, Journal of Economic Literature, 29, 34–50.

Rao, C. Radhakrishna (1973). Linear Statistical Inference and Its Applications, Second

edition, New York, NY: Wiley.

Ruud, Paul A. (2000). An Introduction to Classical Econometric Theory, New York,

NY: Oxford University Press.

Theil, Henri (1971). Principles of Econometrics, New York, NY: Wiley.

c© Chung-Ming Kuan, 2001



76 CHAPTER 3. CLASSICAL LEAST SQUARES THEORY

c© Chung-Ming Kuan, 2001



Chapter 4

Generalized Least Squares

Theory

4.1 Introduction

In Chapter 3.7 we have seen that the classical conditions need not hold in practice.

Although these conditions have no effect on the OLS method per se, they do affect

the properties of the OLS estimators and resulting test statistics. In particular, when

the elements of y have unequal variances and/or are correlated, there is no guarantee

that the OLS estimator is the most efficient within the class of linear unbiased (or the

class of unbiased) estimators. Moreover, hypothesis testing based on the standard OLS

estimator of the variance-covariance matrix becomes invalid.

In this chapter, the method of generalized least squares (GLS) is introduced to im-

prove upon estimation efficiency. A drawback of the GLS method is that it is difficult

to implement. In practice, certain structures (assumptions) must be imposed on var(y)

so that a feasible GLS estimator can be computed. This approach results in two further

difficulties, however. First, the postulated structures on var(y) need not be correctly

specified. Consequently, the resulting feasible GLS estimator may not be as efficient

as one would like. Second, the finite-sample properties of feasible GLS estimators are

not easy to establish. Exact tests based on the feasible GLS results are thus not read-

ily available. More detailed discussions of the GLS theory can also be found in e.g.,

Amemiya (1985) and Greene (2000).
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4.2 The Method of Generalized Least Squares

4.2.1 When y Does Not Have a Scalar Covariance Matrix

Given the linear specification (3.1):

y =Xβ + e,

suppose that, in addition to the conditions [A1] and [A2](i),

var(y) = Σo,

where Σo is a positive definite matrix but cannot be written as σ2
oIT for any positive

number σ2
o . That is, the elements of y may not have a constant variance, nor are

they required to be uncorrelated. As [A1] and [A2](i) still hold, the OLS estimator β̂T

remains unbiased by Theorem 3.4(a), and

var(β̂T ) = (X
′X)−1X ′ΣoX(X

′X)−1, (4.1)

in contrast with Theorem 3.4(c). In view of Theorem 3.5, there is no guarantee that

the OLS estimator is the BLUE for βo. Similarly, when [A3] fails such that

y ∼ N(Xβo,Σo),

we have

β̂T ∼ N(βo, (X
′X)−1X ′ΣoX(X

′X)−1);

cf. Theorem 3.7(a). In this case, β̂T need not be the BUE for βo.

Apart from efficiency, a more serious consequence of the failure of [A3] is that the

statistical tests based on the standard OLS estimation results become invalid. Recall

that the OLS estimator for var(β̂T ) is

v̂ar(β̂T ) = σ̂2
T (X

′X)−1,

which is, in general, a biased estimator for (4.1). As the t and F statistics depend on

the elements of v̂ar(β̂T ), they no longer have the desired t and F distributions under

the null hypothesis. Consequently, the inferences based on these tests become invalid.
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4.2.2 The GLS Estimator

The GLS method focuses on the efficiency issue resulted from the failure of the classical

condition [A2](ii). Let G be a T ×T non-stochastic matrix. Consider the “transformed”

specification

Gy = GXβ +Ge,

where Gy denotes the transformed dependent variable and GX is the matrix of trans-

formed explanatory variables. It can be seen that GX also has full column rank k

provided that G is nonsingular. Thus, the identification requirement for the specifica-

tion (3.1) carries over under nonsingular transformations. It follows that β can still be

estimated by the following OLS estimator:

(X ′G′GX)−1X ′G′Gy. (4.2)

Given that the original variables y and X satisfy [A1] and [A2](i), it is easily seen

that the transformed variables Gy and GX also satisfy these two conditions because

GX is non-stochastic and IE(Gy) = GXβo. When var(y) = Σo,

var(Gy) = GΣoG
′.

If G is such that GΣoG
′ = σ2

oIT for some positive number σ
2
o , the condition [A2](ii)

would also hold. Since the classical conditions are all satisfied, the OLS estimator

(X ′G′GX)−1X ′G′Gy

is still the BLUE for βo by Theorem 3.5. This suggests that, as far as efficiency is

concerned, one should estimate β from the transformed specification such that the

transformation matrix G is nonsingular and GΣoG
′ = σ2

oIT .

To find a desirable transformation matrix G, note that Σo is symmetric and positive

definite and that Σo can be orthogonally diagonalized as C
′ΣoC = Λ, where C is the

matrix of eigenvectors corresponding to the matrix of eigenvalues Λ. For Σ−1/2
o =

CΛ−1/2C ′ (or Σ−1/2
o = Λ−1/2C′), we have

Σ−1/2
o ΣoΣ

−1/2′
o = IT .

This result immediately suggests that the desired matrix G should be proportional to

Σ−1/2
o , i.e., G = cΣ−1/2

o for some constant c. Given this choice of G, we have

var(Gy) = GΣoG
′ = c2IT ,
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a scalar covariance matrix, so that [A2](ii) also holds. It follows that the estimator (4.2)

with G = cΣ−1/2
o is the BLUE for βo. This estimator is known as the GLS estimator

and reads

β̂GLS = (c
2X ′Σ−1

o X)−1(c2X ′Σ−1
o y) = (X ′Σ−1

o X)−1X ′Σ−1
o y. (4.3)

It should be clear that the GLS estimator cannot be computed unless Σo is known. As

β̂GLS does not depend on c, it suffices to choose the transformation matrix G = Σ−1/2
o .

For G = Σ−1/2
o , let y∗ = Gy, X∗ = GX, and e∗ = Ge. The transformed specifica-

tion is

y∗ =X∗β + e∗, (4.4)

As the GLS estimator is the OLS estimator for the specification (4.4), it can also be

interpreted as a minimizer of the following GLS criterion function:

Q(β;Σo) =
1
T
(y∗ −X∗β)′(y∗ −X∗β) =

1
T
(y −Xβ)′Σ−1

o (y −Xβ). (4.5)

This is a generalized version of the standard OLS criterion function (3.2) because it is

the average of a weighted sum of squared errors. Thus, the GLS and OLS estimators

are not equivalent in general, except in some exceptional cases; see e.g. Exercise 4.1.

Similar to the OLS method, define the vector of GLS fitted values as

ŷGLS =X(X
′Σ−1

o X)−1X ′Σ−1
o y.

The vector of GLS residuals is

êGLS = y − ŷGLS.

As X(X ′Σ−1
o X)−1X ′Σ−1

o is idempotent but not symmetric, ŷGLS is an oblique (but

not orthogonal) projection of y onto span(X). It can also be verified that the vector of

GLS residuals is not orthogonal to X or any linear combination of the column vectors

of X, i.e.,

ê′GLSX = y
′[IT −Σ−1

o X(X ′Σ−1
o X)−1X ′]X �= 0.

In fact, êGLS is orthogonal to span(Σ
−1
o X). It follows that

ê′ê ≤ ê′GLSêGLS.

This shows that the OLS method still yields a better fit of original data.
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Remark: A natural measure of goodness of fit for the specification (3.1) estimated

using the GLS method is

Centered R2
GLS = 1−

ê′GLSêGLS

Centered TSS of y
,

where the denominator is the TSS of the original dependent variable y. A major problem

of this measure is that it need not be bounded between zero and one; see Exercise 4.2.

Thus, R2
GLS is not a proper criterion for model comparison. Using R2 from the trans-

formed specification (4.4) is also inadequate because it can only measure the variation

of the transformed dependent variable y∗, but not the variation of the original variable
y.

4.2.3 Properties of the GLS Estimator

We have seen that the GLS estimator is, by construction, the BLUE for βo under [A1]

and [A2](i). Its variance-covariance matrix is

var(β̂GLS) = var((X
′Σ−1

o X)−1X ′Σ−1
o y) = (X ′Σ−1

o X)−1. (4.6)

These results are summarized below.

Theorem 4.1 (Aitken) Given the specification (3.1), suppose that [A1] and [A2](i)

hold and that var(y) = Σo is a positive definite matrix. Then β̂GLS is the BLUE for βo

with the variance-covariance matrix (X ′Σ−1
o X)−1.

As the GLS estimator is the BLUE,

var(β̂T )− var(β̂GLS)

must be a positive semi-definite matrix. This can also be verified directly; see Exer-

cise 4.3.

For convenience, we introduce the following condition.

[A3′] y ∼ N(Xβo,Σo), where Σo is a positive definite matrix.

The following result is an immediate consequence of Theorem 3.7(a).

Theorem 4.2 Given the specification (3.1), suppose that [A1] and [A3′] hold. Then

β̂GLS ∼ N(βo, (X
′Σ−1

o X)−1).
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Moreover, if we believe that [A3′] is true, the log-likelihood function is

logL(β;Σo) = −T

2
log(2π) − 1

2
log(det(Σo))−

1
2
(y −Xβ)′Σ−1

o (y −Xβ). (4.7)

The first order conditions of maximizing this log-likelihood function with respect to β

are

X ′Σ−1
o (y −Xβ) = 0,

so that the MLE is

β̃T = (X
′Σ−1

o X)−1X ′Σ−1
o y.

Thus, when Σo is known, the GLS estimator is also the MLE under [A3
′]. The infor-

mation matrix is then

IE[X ′Σ−1
o (y −Xβ)(y −Xβ)′Σ−1

o X]
∣∣∣
β=βo

=X ′Σ−1
o X.

The variance-covariance matrix of the GLS estimator thus also achieves the Crámer-Rao

lower bound. We have shown:

Theorem 4.3 Given the specification (3.1), suppose that [A1] and [A3′] hold. Then

β̂GLS is the BUE for βo.

Under the null hypothesis Rβo = r, it is readily seen from Theorem 4.2 that

(Rβ̂GLS − r)′[R(X ′Σ−1
o X)−1R′]−1(Rβ̂GLS − r) ∼ χ2(q).

The left-hand side can serve as a test statistic provided that Σo is known.

4.2.4 FGLS Estimator

In practice, Σo is typically unknown and must be estimated. Substituting an estimator

Σ̂T for Σo in (4.3) yields the feasible generalized least squares (FGLS) estimator

β̂FGLS = (X
′Σ̂

−1
T X)−1X ′Σ̂

−1
T y.

which is readily computed from data. Note, however, that Σo contains too many

(T (T + 1)/2) parameters. Proper estimation of Σo would not be possible unless fur-

ther restrictions on Σo are imposed. Under different assumptions on var(y), Σo has

a simpler structure with much fewer (say, p � T ) unknown parameters and may be
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properly estimated; see Sections 4.3 and 4.4. FGLS estimation crucially depends on

these assumptions.

A clear disadvantage of FGLS estimators is that their finite sample properties are

usually unknown. Note that Σ̂T is, in general, a function of y, so that β̂FGLS is a

complex function of the elements of y. It is therefore difficult, if not impossible, to

derive the finite-sample properties, such as expectation, variance and distribution, of

β̂FGLS. Consequently, the efficiency gain of an FGLS estimator is not at all clear, and

exact tests are not available. One must rely on the asymptotic properties of β̂FGLS to

draw statistical inferences.

4.3 Heteroskedasticity

In this section, we consider a simpler structure of Σo such that Σo is diagonal with

possibly different diagonal elements:

Σo = diag[σ
2
1 , . . . , σ

2
T ] =


σ2

1 0 · · · 0

0 σ2
2 · · · 0

...
...
. . .

...

0 0 · · · σ2
T

 , (4.8)

where diag is the operator that puts its arguments on the main diagonal of a matrix.

That is, the elements of y are uncorrelated but may have different variances. When yt,

t = 1, . . . , T , have a constant variance, they are said to be homoskedastic; otherwise,

they are heteroskedastic.

To compute the GLS estimator, the desired transformation matrix is

Σ−1/2
o =


σ−1

1 0 · · · 0

0 σ−1
2 · · · 0

...
...

. . .
...

0 0 · · · σ−1
T

 .

As Σo still contains T unknown parameters, an even simpler structure of Σo is needed

to ensure proper FGLS estimation.

4.3.1 Tests for Heteroskedasticity

It is clear that the OLS method would prevail unless there is evidence that Σo �= σ2
oIT .

It is therefore natural to first study the tests of the null hypothesis of homoskedasticity
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against some form of heteroskedasticity . Such tests are usually based on some simplified

parametric specifications of var(yt).

The simplest possible form of heteroskedastic yt is groupwise heteroskedasticity. Sup-

pose that data can be classified into two groups: group one contains T1 observations

with the constant variance σ2
1 , and group two contains T2 observations with the constant

variance σ2
2 . This assumption simplifies Σo in (4.8) to a matrix of only two unknown

parameters:

Σo =

[
σ2

1IT1
0

0 σ2
2IT2

]
, (4.9)

The null hypothesis of homoskedasticity is σ2
1 = σ2

2 = σ2
o ; the alternative hypothesis is,

without loss of generality, σ2
1 > σ2

2 .

Consider now two regressions based on the observations of the group one and group

two, respectively. Let σ̂2
T1
and σ̂2

T2
denote the resulting OLS variance estimates. In-

tuitively, whether σ̂2
T1
is “close” to σ̂2

T2
constitutes an evidence for or against the null

hypothesis. Under [A1] and [A3′] with (4.9),

(T1 − k)σ̂2
T1
/σ2

1 ∼ χ2(T1 − k),

(T2 − k)σ̂2
T2
/σ2

2 ∼ χ2(T2 − k),

by Theorem 3.7(b). As yt are independent, these two χ
2 random variables are also mu-

tually independent. Note that σ̂2
T1
and σ̂2

T2
must be computed from separate regressions

so as to ensure independence. Then under the null hypothesis,

ϕ :=
σ̂2
T1

σ̂2
T2

=
(T1 − k)σ̂2

T1

σ2
o(T1 − k)

/
(T2 − k)σ̂2

T2

σ2
o(T2 − k)

∼ F (T1 − k, T2 − k);

this is the F test for groupwise heteroskedasticity.

More generally, the variances of yt may be changing with the values of a particular

explanatory variable, say xj . That is, for some constant c > 0,

σ2
t = c x2

tj .

Thus, the larger the magnitude of xtj , the greater is σ
2
t . An interesting feature of this

specification is that σ2
t may take distinct values for every t, yet Σo contains only one

unknown parameter c. The null hypothesis is then σ2
t = σ2

o for all t, and the alternative

hypothesis is, without loss of generality,

σ2
(1) ≥ σ2

(2) ≥ . . . σ2
(T ),
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where σ2
(i) denotes the i th largest variance. The so-called Goldfeld-Quandt test is of the

same form as the F test for groupwise heteroskedasticity but with the following data

grouping procedure.

(1) Rearrange observations according to the values of some explanatory variable xj

in a descending order.

(2) Divide the rearranged data set into three groups with T1, Tm, and T2 observations,

respectively.

(3) Drop the Tm observations in the middle group and perform separate OLS regres-

sions using the data in the first and third groups.

(4) The statistic is the ratio of the variance estimates:

σ̂2
T1
/σ̂2

T2
∼ F (T1 − k, T2 − k).

If the data are rearranged according to the values of xj in an ascending order, the

resulting statistic should be computed as

σ̂2
T2
/σ̂2

T1
∼ F (T2 − k, T1 − k).

In a time-series study, the variances may be decreasing (increasing) over time. In this

case, data rearrangement would not be needed. Note that dropping the observations in

the middle group enhances the test’s ability of discriminating variances in the first and

third groups. It is usually suggested that no more than one third of the observations

should be dropped; it is also typical to set T1 ≈ T2. Clearly, this test would be pow-

erful provided that one can correctly identify the source of heteroskedasticity (i.e., the

explanatory variable that determines variances). On the other hand, finding such an

explanatory variable may not be easy.

An even more general form of heteroskedastic covariance matrix is such that the

diagonal elements

σ2
t = h(α0 + z

′
tα1),

where h is some function and zt is a p × 1 vector of exogenous variables affecting the
variances of yt. This assumption simplifies Σo to a matrix of p+1 unknown parameters.

Tests against this class of alternatives can be derived under the likelihood framework,

and their distributions can only be analyzed asymptotically. This will not be discussed

until Chapter ??.
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4.3.2 GLS Estimation

If the test for groupwise heteroskedasticity rejects the null hypothesis, one might believe

that Σo is given by (4.9). Accordingly, the specified linear specification may be written

as: [
y1

y2

]
=

[
X1

X2

]
β +

[
e1

e2

]
,

where y1 is T1 × 1, y2 is T2 × 1, X1 is T1 × k, and X2 is T2 × k. A transformed

specification is[
y1/σ1

y2/σ2

]
=

[
X1/σ1

X2/σ2

]
β +

[
e1/σ1

e2/σ2

]
,

where the transformed yt, t = 1, . . . , T , have constant variance one. It follows that the

GLS and FGLS estimators are, respectively,

β̂GLS =
[
X ′

1X1

σ2
1

+
X ′

2X2

σ2
2

]−1 [
X ′

1y1

σ2
1

+
X ′

2y2

σ2
2

]
,

β̂FGLS =
[
X ′

1X1

σ̂2
1

+
X ′

2X2

σ̂2
2

]−1 [
X ′

1y1

σ̂2
1

+
X ′

2y2

σ̂2
2

]
,

where σ̂2
T1
and σ̂2

T2
are, again, the OLS variance estimates obtained from separate re-

gressions using T1 and T2 observations, respectively. Observe that β̂FGLS is not a linear

estimator in y so that its finite-sample properties are not clear.

If the Goldfeld-Quandt test rejects the null hypothesis, one might believe that σ2
t =

c x2
tj . A transformed specification is then

yt
xtj
= βj + β1

1
xtj
+ · · ·+ βj−1

xt,j−1

xtj
+ βj+1

xt,j+1

xtj
+ · · ·+ βk

xtk
xtj
+

et
xtj

,

where var(yt/xtj) = c := σ2
o . This is a very special case where the GLS estimator is

readily computed as the OLS estimator for the transformed specification. Clearly, the

validity of the GLS method crucially depends on whether the explanatory variable xj
can be correctly identified.

When σ2
t = h(α0 + z

′
tα1), it is typically difficult to implement an FGLS estimator,

especially when h is nonlinear. If h is the identity function, one may regress the squared

OLS residuals ê2
t on zt to obtain estimates for α0 and α1. Of course, certain con-

straint must be imposed to ensure the fitted values are non-negative. The finite-sample

properties of this estimator are difficult to analyze, however.

Remarks:
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1. When a test for heteroskedasticity rejects the null hypothesis, there is really no

guarantee that the alternative hypothesis (say, groupwise heteroskedasticity) must

provide a correct description of var(yt).

2. When a form of heteroskedasticity is incorrectly specified, it is likely that the

resulting FGLS estimator is less efficient than the OLS estimator.

3. As discussed in Section 4.2.3, the finite-sample properties of FGLS estimators and

hence the exact tests are usually not available. One may appeal to asymptotic

theory to construct proper tests.

4.4 Serial Correlation

Another leading example that var(y) �= σ2
oIT is when the elements of y are correlated

so that the off-diagonal elements of Σo are non-zero. This phenomenon is more com-

mon in time series data, though it is not necessary so. When time series data yt are

correlated over time, they are said to exhibit serial correlation. For cross-section data,

the correlations of yt are usually referred to as spatial correlation. We will concentrate

on serial correlation.

4.4.1 A Simple Model of Serial Correlation

Consider time series yt, t = 1, . . . , T , with the constant variance σ2
o . Then, the correla-

tion coefficient between yt and yt−i is

corr(yt, yt−i) =
cov(yt, yt−i)√
var(yt) var(yt−i)

=
cov(yt, yt−i)

σ2
o

, i = 0, 1, 2, . . . , t − 1;

in particular, corr(yt, yt) = 1. Such correlations are also known as the autocorrelations

of yt. Similarly, cov(yt, yt−i), i = 0, 1, 2, . . . , t − 1, are known as the autocovariances of
yt.

A very simple specification of autocovariances is

cov(yt, yt−i) = cov(yt, yt+i) = ciσ2
o ,

where c is a constant, so that corr(yt, yt−i) = ci. That is, the autocovariances and

autocorrelations depend only i, the time periods between two observations, but not on

t. Moreover, the correlations between two observations decay exponentially fast when i

increases. Equivalently, we may write

cov(yt, yt−i) = c cov(yt, yt−i+1).
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Letting corr(yt, yt−i) = ρi, we have

ρi = c ρi−1. (4.10)

From this recursion we immediately see that c = ρ1 which must be bounded between

−1 and 1. It follows that var(y) is

Σo = σ2
o



1 ρ1 ρ2
1 · · · ρT−1

1

ρ1 1 ρ1 · · · ρT−2
1

ρ2
1 ρ1 1 · · · ρT−3

1
...

...
...

. . .
...

ρT−1
1 ρT−2

1 ρT−3
1 · · · 1


. (4.11)

To avoid singularity, ρ1 cannot be ±1.

A novel feature of this specification is that it, while permitting non-zero off-diagonal

elements of Σo, involves only two unknown parameters: σ2
o and ρ1. The transformation

matrix is then

Σ−1/2
o =

1
σo



1 0 0 · · · 0 0

− ρ1√
1−ρ2

1

1√
1−ρ2

1

0 · · · 0 0

0 − ρ1√
1−ρ2

1

1√
1−ρ2

1

· · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1√
1−ρ2

1

0

0 0 0 · · · − ρ1√
1−ρ2

1

1√
1−ρ2

1


.

Note that this choice of Σ−1/2
o is not symmetric. As any matrix that is a constant

proportion to Σ−1/2
o can also serve as a transformation matrix for GLS estimation, the

so-called Cochrane-Orcutt Transformation is based on

V −1/2
o = σo

√
1− ρ2

1 Σ
−1/2
o =



√
1− ρ2

1 0 0 · · · 0 0

−ρ1 1 0 · · · 0 0

0 −ρ1 1 · · · 0 0
...

...
...
. . .

...
...

0 0 0 · · · 1 0

0 0 0 · · · −ρ1 1


,

which depends only on ρ1.
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The data from the Cochrane-Orcutt transformation are

y∗1 = (1− ρ2
1)

1/2y1, x∗
1 = (1− ρ2

1)
1/2x1,

y∗t = yt − ρ1yt−1, x∗
t = xt − ρ1xt−1, t = 2, · · · , T,

where xt is the t thcolumn of X
′. It is then clear that

var(y∗1) = (1− ρ2
1)σ

2
o ,

var(y∗t ) = σ2
o + ρ2

1σ
2
o − 2ρ2

1σ
2
o = (1− ρ2

1)σ
2
o , t = 2, . . . , T.

Moreover, for each i,

cov(y∗t , y
∗
t−i) = cov(yt, yt−i)− ρ1 cov(yt−1, yt−i)− ρ1 cov(yt, yt−i−1)

− ρ2
1 cov(yt−1, yt−i−1)

= 0.

Hence, the transformed variable y∗t satisfies the classical conditions, as it ought to be.
Then provided that ρ1 is known, regressing y∗t on x∗

t yields the GLS estimator for βo.

4.4.2 An Alternative View

There is an alternative approach to generate the variance-covariance matrix (4.11).

Under [A2](i), let

ε := y −Xβo.

The vector ε is usually referred to as the vector of disturbances. Note that ε is not

the same as the residual vector ê. While the former is not observable because βo is

unknown, the later is obtained from OLS estimation and hence observable. Under [A2],

IE(ε) = 0 and

var(y) = var(ε) = IE(εε′).

The variance and covariance structure of y is thus the same as that of ε.

A time series is said to be weakly stationary if its mean, variance, and autocovari-

ances are all independent of the time index t. Thus, a weakly stationary series cannot

exhibit trending behavior and has relatively stable fluctuations. In particular, a time se-

ries with zero mean, a constant variance, and zero autocovariances is weakly stationary

and also known as a white noise. Let {ut} be a white noise with IE(ut) = 0, IE(u2
t ) = σ2

u,
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and IE(utuτ ) = 0 for t �= τ . Now suppose that the elements of ε is generated as a weakly

stationary AR(1) process (autoregressive process of order 1):

εt = α1εt−1 + ut, (4.12)

with ε0 = 0. By recursive substitution, (4.12) can be expressed as

εt =
t−1∑
i=0

αi
1ut−i, (4.13)

a weighted sum of current and previous random innovations (shocks).

It follows from (4.13) that IE(εt) = 0 and IE(ut, εt−s) = 0 for all t and s ≥ 1. By
weak stationarity, var(εt) is a constant, so that for all t,

var(εt) = α2
1 var(εt−1) + σ2

u = σ2
u/(1− α2

1).

Clearly, the right-hand side would not be meaningful unless |α1| < 1. The autocovari-
ance of εt and εt−1 is, by weak stationarity,

IE(εtεt−1) = α1 IE(ε
2
t−1) = α1

σ2
u

1− α2
1

.

This shows that

α1 = corr(εt, εt−1) = corr(yt, yt−1) = ρ1.

Similarly,

IE(εtεt−2) = α1 IE(εt−1εt−2) = α2
1

σ2
u

1− α2
1

,

so that

corr(εt, εt−2) = α1 corr(εt, εt−1) = ρ2
1.

More generally, we can write for i = 1, 2, . . . ,

corr(εt, εt−i) = ρ1 corr(εt, εt−i+1) = ρi1,

which depend only on i, the time difference between two ε’s, but not on t. This is

precisely what we postulated in (4.10). The variance-covariance matrix Σo under this

structure is also (4.11) with σ2
o = σ2

u/(1− ρ2
1).
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The AR(1) structure of disturbances also permits a straightforward extension. Con-

sider the disturbances that are generated as an AR(p) process (autoregressive process

of order p):

εt = α1εt−1 + · · ·+ αpεt−p + ut, (4.14)

where the coefficients α1, . . . , αp should also be restricted to ensure weak stationarity;

we omit the details. Of course, εt may follow different structures and are still serially

correlated. For example, εt may be generated as an MA(1) process (moving average

process of order 1):

εt = ut + α1ut−1, |α1| < 1,

where {ut} is a white noise; see e.g., Exercise 4.5.

4.4.3 Tests for AR(1) Disturbances

As the AR(1) structure of disturbances is one of the most commonly used specification of

serial correlation, we now consider the tests of the null hypothesis of no serial correlation

(α1 = ρ1 = 0) against AR(1) disturbances. We discuss only the celebrated Durbin-

Watson test and Durbin’s h test; the discussion of other large-sample tests will be

deferred to Chapter 6.

In view of the AR(1) structure, a natural estimator of ρ1 is the OLS estimator of

regressing the OLS residual êt on its immediate lag êt−1:

ρ̂T =
∑T

t=2 êtêt−1∑T
t=2 ê

2
t−1

. (4.15)

The Durbin-Watson statistic is

d =
∑T

t=2(êt − êt−1)
2∑T

t=1 ê
2
t

.

When the sample size T is large, it can be seen that

d = 2− 2ρ̂T
∑T

t=2 ê
2
t−1∑T

t=1 ê
2
t

− ê2
1 + ê2

T∑T
t=1 ê

2
t

≈ 2(1 − ρ̂T ).

For 0 < ρ̂T ≤ 1 (−1 ≤ ρ̂T < 0), the Durbin-Watson statistic is such that 0 ≤ d < 2

(2 < d ≤ 4), which suggests that there is some positive (negative) serial correlation.
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Hence, this test essentially checks whether ρ̂T is sufficiently “close” to zero (i.e., d is

close to 2).

A major difficulty of the Durbin-Watson test is that the exact null distribution of d

depends on the matrix X and therefore varies with data. As such, the critical values

of d cannot be tabulated. Nevertheless, it has been shown that the null distribution of

d lies between the distributions of a lower bound (dL) and an upper bound (dU ) in the

following sense. Given the significance level α, let d∗α, d∗L,α and d
∗
U,α denote, respectively,

the critical values of d, dL and dU . For example, IP{d < d∗α} = α). Then for each α,

d∗L,α < d∗α < d∗U,α. While the distribution of d is data dependent, the distributions of dL
and dU are independent of X. Thus, the critical values d∗L,α and d∗U,α can be tabulated.
One may rely on these critical values to construct a “conservative” decision rule.

Specifically, when the alternative hypothesis is ρ1 > 0 (ρ1 < 0), the decision rule of

the Durbin-Watson test is:

(1) Reject the null if d < d∗L,α (d > 4− d∗L,α).

(2) Do not reject the null if d > d∗U,α (d < 4− d∗U,α).

(3) Test is inconclusive if d∗L,α < d < d∗U,α (4− d∗L,α > d > 4− d∗U,α).

This is not completely satisfactory because the test may yield no conclusion. Some

econometric packages such as SHAZAM now compute the exact Durbin-Watson dis-

tribution for each regression and report the exact p-values. When such as program is

available, this test does not have to rely on the critical values of dL and dU , and it is al-

ways conclusive. Note that the tabulated critical values of the Durbin-Watson statistic

are for the specifications with a constant term; the critical values for the specifications

without a constant term can be found in Farebrother (1980).

Another problem with the Durbin-Watson statistic is that its null distribution holds

only under the classical conditions [A1] and [A3]. In the time series context, it is quite

common to include a lagged dependent variable as a regressor so that [A1] is violated.

A leading example is the specification

yt = β1 + β2xt2 + · · ·+ βkxtk + γyt−1 + et.

This model can also be derived from certain behavioral assumptions; see Exercise 4.6.

It has been shown that the Durbin-Watson statistic under this specification is biased

toward 2. That is, this test would not reject the null hypothesis even when serial

correlation is present. On the other hand, Durbin’s h test is designed specifically for
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the specifications that contain a lagged dependent variable. Let γ̂T be the OLS estimate

of γ and v̂ar(γ̂T ) be the OLS estimate of var(γ̂T ). The h statistic is

h = ρ̂T

√
T

1− T v̂ar(γ̂T )
,

and its asymptotic null distribution is N(0, 1). A clear disadvantage of Durbin’s h test

is that it cannot be calculated when v̂ar(γ̂T ) ≥ 1/T . This test can also be derived as a
Lagrange Multiplier test; see Chapter ??

If we have quarterly data and want to test for the fourth-order serial correlation,

the statistic analogous to the Durbin-Watson statistic is

d4 =
∑T

t=5(êt − êt−4)2∑T
t=1 ê

2
t

;

see Wallis (1972) for corresponding critical values.

4.4.4 FGLS Estimation

Recall that Σo depends on two parameters σ
2
o and ρ1. We may use a generic notation

Σ(σ2, ρ) to denote this function of σ2 and ρ. In particular, Σo = Σ(σ2
o , ρ1). Similarly, we

may also write V (ρ) such that V o = V (ρ1). The transformed data based on V (ρ)−1/2

are

y1(ρ) = (1− ρ2)1/2y1, x1(ρ) = (1− ρ2)1/2x1,

yt(ρ) = yt − ρyt−1, xt(ρ) = xt − ρxt−1, t = 2, · · · , T.

Hence, y∗t = yt(ρ1) and x∗
t = xt(ρ1).

To obtain an FGLS estimator, we must first estimate ρ1 by some estimator ρ̂T and

then construct the transformation matrix as V̂
−1/2
T = V (ρ̂T )

−1/2. Here, ρ̂T may be com-

puted as in (4.15); other estimators for ρ1 may also be used, e.g., ρ̌T = ρ̂T (T−k)/(T−1).
The transformed data are then yt(ρ̂T ) and xt(ρ̂T ). An FGLS estimator is obtained by

regressing yt(ρ̂T ) on xt(ρ̂T ). Such an estimator is known as the Prais-Winsten estimator

or the Cochrane-Orcutt estimator when the first observation is dropped in computation.

The following iterative procedure is also commonly employed in practice.

(1) Perform OLS estimation and compute ρ̂T as in (4.15) using the OLS residuals êt.

(2) Perform the Cochrane-Orcutt transformation based on ρ̂T and compute the re-

sulting FGLS estimate β̂FGLS by regressing yt(ρ̂T ) on xt(ρ̂T ).
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(3) Compute a new ρ̂T as in (4.15) with êt replaced by the FGLS residuals

êt,FGLS = yt − x′
tβ̂FGLS.

(4) Repeat steps (2) and (3) until ρ̂T converges numerically, i.e., when ρ̂T from two

consecutive iterations differ by a value smaller than a pre-determined convergence

criterion.

Note that steps (1) and (2) above already generate an FGLS estimator. More iterations

do not improve the asymptotic properties of the resulting estimator but may have a

significant effect in finite samples. This procedure can be extended easily to estimate

the specification with higher-order AR disturbances.

Alternatively, the Hildreth-Lu procedure adopts grid search to find the ρ1 ∈ (−1, 1)
that minimizes the sum of squared errors of the model. This procedure is computation-

ally intensive, and it is difficult to implement when εt have an AR(p) structure with

p > 2.

In view of the log-likelihood function (4.7), we must compute det(Σo). Clearly,

det(Σo) =
1

det(Σ−1
o )
=

1

[det(Σ−1/2
o )]2

.

In terms of the notations in the AR(1) formulation, σ2
o = σ2

u/(1 − ρ2
1), and

Σ−1/2
o =

1
σo
√
1− ρ2

1

V −1/2
o =

1
σu
V −1/2

o .

As det(V −1/2
o ) = (1− ρ2

1)
1/2, we then have

det(Σo) = (σ
2
u)

T (1− ρ2
1)

−1.

The log-likelihood function for given σ2
u and ρ1 is

logL(β;σ2
u, ρ1)

= −T

2
log(2π)− T

2
log(σ2

u) +
1
2
log(1− ρ2

1)−
1
2σ2

u

(y∗ −X∗β)′(y∗ −X∗β).

Clearly, when σ2
u and ρ1 are known, the MLE of β is just the GLS estimator.

If σ2
u and ρ1 are unknown, the log-likelihood function reads:

logL(β, σ2, ρ)

= −T

2
log(2π)− T

2
log(σ2) +

1
2
log(1− ρ2)− 1

2σ2
(1− ρ2)(y1 − x′

1β)
2

− 1
2σ2

T∑
t=2

[(yt − x′
tβ)− ρ(yt−1 − x′

t−1β)]
2,
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which is a nonlinear function of the parameters. Nonlinear optimization methods are

therefore needed to compute the MLEs of β, σ2, and ρ. For a given β, estimating ρ

by regressing et(β) = yt − x′
tβ on et−1(β) is equivalent to maximizing the last term of

the log-likelihood function above. This does not yield an MLE because the other terms

involving ρ, namely,

1
2
log(1− ρ2)− 1

2σ2
(1− ρ2)(y1 − x′

1β)
2,

have been ignored. This shows that the aforementioned iterative procedure does not

result in the MLEs.

Remark: Exact tests based on FGLS estimation results are not available because the

finite-sample distribution of the FGLS estimator is, again, unknown. Asymptotic theory

is needed to construct proper tests.

4.5 Linear Probability Model

In some applications researchers are interested in analyzing why consumers own a house

or participate a particular event. The ownership or the choice of participation are

typically represented by a binary variable that takes the values one and zero. If the

dependent variable in a linear regression is binary, we will see below that both the OLS

and FGLS methods are not appropriate.

Let xt denote the t th column of X
′. The t th observation of the linear specification

y =Xβ + e can be expressed as

yt = x
′
tβ + et.

For the binary dependent variable y whose t th observation is yt = 1 or 0, we know

IE(yt) = IP(yt = 1).

Thus, x′
tβ is just a specification of the probability that yt = 1. As such, the linear

specification of binary dependent variables is usually referred to as the linear probability

model.

When [A1] and [A2](i) hold for a linear probability model,

IE(yt) = IP(yt = 1) = x
′
tβo,

and the OLS estimator is unbiased for βo. Note, however, that the variance of yt is

var(yt) = IP(yt = 1)[1 − IP(yt = 1)].
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Under [A1] and [A2](i),

var(yt) = x
′
tβo(1− x′

tβo),

which varies with xt. Thus, the linear probability model suffers from the problem of

heteroskedasticity, and the OLS estimator is not the BLUE for βo. Apart from the

efficiency issue, the OLS method is still not appropriate for the linear probability model

because the OLS fitted values need not be bounded between zero and one. When x′
tβ̂T

is negative or greater than one, it cannot be interpreted as a probability and hence

becomes meaningless.

Although the GLS estimator is the BLUE, it is not available because βo, and hence

var(yt), is unknown. Nevertheless, if yt are uncorrelated so that var(y) is diagonal, an

FGLS estimator may be obtained using the transformation matrix

Σ̂
−1/2
T = diag

[
x′

1β̂T (1− x′
1β̂T )]

−1/2,x′
2β̂T (1− x′

2β̂T )]
−1/2, . . . ,

x′
T β̂T (1− x′

T β̂T )]
−1/2
]
,

where β̂T is the OLS estimator of βo. Such an estimator breaks down when Σ̂
−1/2
T is

not available (i.e., when x′
tβ̂T is negative or greater than one). Even when Σ̂

−1/2
T can be

computed, there is still no guarantee that the FGLS fitted values are bounded between

zero and one. This shows that the FGLS method may not always be a solution when

the OLS method fails.

This example also illustrates the importance of data characteristics in estimation and

modeling. Without taking into account the binary nature of the dependent variable,

even the FGLS method may be invalid. More appropriate methods for specifications

with binary dependent variables will be discussed in Chapter ??.

4.6 Seemingly Unrelated Regressions

In many econometric practices, it is also important to jointly study the behavior of sev-

eral dependent variables. For example, the input demands of an firm may be described

using a system of linear regression functions in which each regression represents the

demand function of a particular input.

Consider the specification of a system of N equations, each with ki explanatory

variables and T observations. Specifically,

yi =Xiβi + ei, i = 1, 2, . . . , N, (4.16)
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where for each i, yi is T × 1, Xi is T × ki, and βi is ki × 1. The system (4.16) is
also known as a specification of seemingly unrelated regressions (SUR). Stacking the

equations of (4.16) yields
y1

y2
...

yN


︸ ︷︷ ︸

y

=


X1 0 · · · 0

0 X2 · · · 0
...

...
. . .

...

0 0 · · · XN


︸ ︷︷ ︸

X


β1

β2
...

βN


︸ ︷︷ ︸

β

+


e1

e2
...

eN


︸ ︷︷ ︸

e

. (4.17)

This is a linear specification (3.1) with k =
∑N

i=1 ki explanatory variables and TN obser-

vations. It is not too hard to see that the whole system (4.17) satisfies the identification

requirement whenever every specification of (4.16) does.

Suppose that the classical conditions [A1] and [A2] hold for each specified linear

regression in the system. Then under [A2](i), there exists βo = (β
′
o,1 . . . β′

o,N )
′ such

that IE(y) = Xβo. The OLS estimator obtained from (4.17) is therefore unbiased.

Note, however, that [A2](ii) for each linear regression ensures only that, for each i,

var(yi) = σ2
i IT ;

there is no restriction on the correlations between yi and yj. The variance-covariance

matrix of y is then

var(y) = Σo =


σ2

1IT cov(y1,y2) · · · cov(y1,yN )

cov(y2,y1) σ2
2IT · · · cov(y2,yN )

...
...

. . .
...

cov(yN ,y1) cov(yN ,y2) · · · σ2
NIT

 . (4.18)

That is, the vector of stacked dependent variables violates [A2](ii), even when each

individual dependent variable has a scalar variance-covariance matrix. Consequently,

the OLS estimator of the whole system, β̂TN = (X
′X)−1X ′y, is not the BLUE in

general. In fact, owing to the block-diagonal structure of X, β̂TN simply consists of

N equation-by-equation OLS estimators and hence ignores the correlations between

equations and heteroskedasticity across equations.

In practice, it is also typical to postulate that for i �= j,

cov(yi,yj) = σijIT ,
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98 CHAPTER 4. GENERALIZED LEAST SQUARES THEORY

that is, yit and yjt are contemporaneously correlated but yit and yjτ , t �= τ , are serially

uncorrelated. Under this condition, (4.18) simplifies to Σo = So ⊗ IT with

So =


σ2

1 σ12 · · · σ1N

σ21 σ2
2 · · · σ2N

...
...

. . .
...

σN1 σN2 · · · σ2
N

 .

As Σ−1
o = S−1

o ⊗ IT , the GLS estimator of (4.17) is

β̂GLS = [X
′(S−1

o ⊗ IT )X]
−1X ′(S−1

o ⊗ IT )y,

and its covariance matrix is [X ′(S−1
o ⊗ IT )X]−1.

It is readily verified that when σij = 0 for all i �= j, So becomes a diagonal matrix,

and so is Σo. The resulting GLS estimator thus reduces to the OLS estimator. This

should not be too surprising because estimating the SUR system would be unnecessary

if the dependent variables are in fact uncorrelated. (Note that the heteroskedasticity

across equations does not affect this result.) If all the equations in the system have

the same regressors, i.e., Xi = X0 (say), the GLS estimator is also the same as the

OLS estimator; see e.g., Exercise 4.7. More generally, it can be shown that there would

not be much efficiency gain for GLS estimation if yi and yj are less correlated and/or

X i and Xj are highly correlated; see e.g., Goldberger (1991, p. 328) for an illustrative

example.

The FGLS estimator can be obtained by replacing S−1
o with Ŝ

−1
TN , where ŜTN is an

N × N matrix computed as

ŜTN =
1
T


ê′1
ê′2
...

ê′N


[
ê1 ê2 . . . êN

]
,

where êi is the OLS residual vector of the i th equation. The elements of this matrix

are

σ̂2
i =

ê′iêi
T

, i = 1, . . . , N,

σ̂ij =
ê′iêj
T

, i �= j, i, j = 1, . . . , N.

Note that ŜTN is of an outer product form and hence a positive semi-definite matrix.

One may also replace the denominator of σ̂2
i with T − ki and the denominator of σ̂ij
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with T −max(ki, kj). The resulting estimator ŜTN need not be positive semi-definite,

however.

Remark: The estimator ŜTN mentioned above is valid provided that var(yi) = σ2
i IT

and cov(yi,yj) = σijIT . If these assumptions do not hold, FGLS estimation would be

much more complicated. This may happen when heteroskedasticity and serial correla-

tions are present in each equation, or when cov(yit, yjt) changes over time.

4.7 Models for Panel Data

A data set that contains N cross-section units (individuals, families, firms, or countries),

each with some time-series observations, is known as a panel data set. Well known panel

data sets in the U.S. include the National Longitudinal Survey (NLS) of Labor Market

Experience and the Michigan Panel Study of Income Dynamics (PSID). Building these

data sets is very costly because they are obtained by tracking thousands of individuals

through time. Some panel data may be easier to establish; for example, the GDP data

for all G7 countries over 30 years also form a panel data set. Panel data permit analysis

of topics that could not be studied using only cross-section or time-series data. In this

section, we are mainly concerned with the panel data set that involves a large number

of cross-section units, each with a short time series.

4.7.1 Fixed Effects Model

Given a panel data set, the basic linear specification allowing for individual effects (i.e.,

effects that are changing across individual units but remain constant over time) is

yit = x
′
itβi + eit, i = 1, . . . , N, t = 1, . . . , T,

where xit is k × 1 and βi depends only on i but not on t. Clearly, there is no time-

specific effect in this specification; this may be reasonable when only a short time series

is observed for each individual unit.

Analogous to the notations in the SUR system (4.16), we can also write the specifi-

cation above as

yi =Xiβi + ei, i = 1, 2, . . . , N, (4.19)

where yi is T ×1, Xi is T ×k, and ei is T ×1. This is again a complex system involving
k×N parameters. Here, the dependent variable y and explanatory variables X are the

same across individual units such that yi and Xi are simply their observations for each
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individual i. For example, y may be the family consumption expenditure, and each yi

contains family i’s annual consumption expenditures. By contrast, yi and Xi may be

different variables in a SUR system.

When T is small (i.e., observed time series are short), estimating (4.19) is not feasible.

A simpler form of (4.19) is such that only the intercept terms change with i and the

other parameters remain constant across i:

yi = �Tai +Zib+ ei, i = 1, 2, . . . , N, (4.20)

where �T is the T -dimensional vector of ones, [�T Zi] = Xi and [ai b
′]′ = βi. Thus,

individual effects are completely captured by the intercept terms in (4.20). This sim-

plifies (4.19) from kN to N + k− 1 parameters. Note that this specification treats ai as
non-random parameters and is known as the fixed effects model. Stacking N equations

in (4.20) together we obtain
y1

y2
...

yN


︸ ︷︷ ︸

y

=


�T 0 · · · 0

0 �T · · · 0
...

...
. . .

...

0 0 · · · �T


︸ ︷︷ ︸

D


a1

a2
...

aN


︸ ︷︷ ︸

a

+


Z1

Z2
...

ZN


︸ ︷︷ ︸

Z

b+


e1

e2
...

eN


︸ ︷︷ ︸

e

. (4.21)

This is just a linear specification (3.1) with N + k − 1 explanatory variables and TN

observations. Note that each column of D is in effect a dummy variable for the i th

individual unit. In what follows, an individual unit will be referred to as a “group.”

Let zit denote the t th column of Z
′
i, where Z

′
i is the i th block of Z

′. For zit, the
i th group average over time is

z̄i =
1
T

T∑
t=1

zit =
1
T
Z′

i�T ;

for yit, the group average over time is

ȳi =
1
T
y′
i�T .

The overall sample average of zit (average over time and groups) is

z̄ =
1

NT

N∑
i=1

T∑
t=1

zit =
1

NT
Z′�NT ,

and the overall sample average of yit is

ȳ =
1

NT
y′�NT .
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Note that

z̄ =
1
N

N∑
i=1

z̄i,

so that the overall sample average is simply the sample mean of all group averages.

Similarly, ȳ is also the sample average of ȳi.

It can be seen that the specification (4.21) satisfies the identification requirement

provided that no column of Zi is a constant (i.e., there is no time invariant regressor

for each group). Once the identification requirement is satisfied, the OLS estimator can

be computed. By Theorem 3.3, the OLS estimator for b is

b̂NT = [Z
′(INT − PD)Z]

−1Z ′(INT −PD)y, (4.22)

where PD = D(D′D)−1D′ is a projection matrix. Thus, b̂NT can be obtained by

regressing (INT − PD)y on (INT − PD)Z.

More specifically, write D = IN ⊗ �T , so that

PD = (IN ⊗ �T )(IN ⊗ �′T �T )
−1(IN ⊗ �′T ) = IN ⊗ �T �

′
T /T.

It follows that INT − PD = IN ⊗ (IT − �T �
′
T /T ) and that

(INT − PD)y =


y1

y2
...

yN

−


�T ȳ1

�T ȳ2
...

�T ȳN

 ,

where ȳi is the group average of the elements in yi. The t th observation in the i th block

of (INT −PD)y is then yit − ȳi, the deviation of yit from its group average. Similarly,

(INT − PD)Z =


Z1

Z2
...

ZN

−


�T z̄

′
1

�T z̄
′
2
...

�T z̄
′
N

 ,

with the t th observation in the i th block being (zit − z̄i)
′, the deviation of zit from its

group average. This shows that the OLS estimator (4.22) can be obtained by regressing
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yit − ȳi on zit − z̄i, i = 1, . . . , N , and t = 1, . . . , T . That is,

b̂NT =

(
N∑
i=1

(Z ′
i − z̄i�

′
T )(Zi − �T z̄

′
i)

)−1( N∑
i=1

(Z ′
i − z̄i�

′
T )(yi − �T ȳi)

)

=

(
N∑
i=1

T∑
t=1

(zit − z̄i)(zit − z̄i)
′
)−1( N∑

i=1

T∑
t=1

(zit − z̄i)(yit − ȳi)

)
.

(4.23)

This estimator is known as the within-groups estimator because it is based on the

observations that are deviations from their own group averages.

Let âNT denote the OLS estimator of the vector a of individual effects. By the facts

that

D′ŷ =D′DâNT +D
′Zb̂NT ,

and that the OLS residual vector is orthogonal to D, âNT can be computed as

âNT = (D
′D)−1D′(y −Zb̂NT ), (4.24)

with the i th element being

âNT,i =
1
T
(�′Tyi − �′TZib̂NT ) = ȳi − z̄′ib̂NT .

When the classical conditions [A1] and [A2](i) hold for every equation in (4.20), we

have

IE(yi) = �Tai,o +Zibo, i = 1, 2, . . . , N.

Then, the OLS estimators âNT and b̂NT are unbiased for ao and bo, where the i th

element of ao is ai,o. Similar to Section 4.6, to ensure the BLUE property of these

estimators, it is also required that var(y) is a scalar covariance matrix. This amounts

to requiring that var(yi) = σ2
oIT for all i and that cov(yi,yj) = 0 for every i �= j.

Under these conditions, the variance-covariance matrix of b̂NT is

var(b̂NT ) = σ2
o [Z

′(INT − PD)Z]
−1

= σ2
o

[
N∑
i=1

T∑
t=1

(zit − z̄i)(zit − z̄i)
′
]−1

.

It is also easy to verify that the covariance matrix of the i th element of âNT is

var(âNT,i) =
1
T
σ2
o + z̄

′
i[var(b̂NT )]z̄i; (4.25)
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see Exercise 4.8. The OLS estimator for the regression variance σ2
o is

σ̂2
NT =

1
NT − N − k + 1

N∑
i=1

T∑
t=1

(yit − âNT,i − z′itb̂NT )
2.

Substituting σ̂2
NT into the formulae of var(b̂NT ) and var(âNT,i) we immediately obtain

their OLS estimators. On the other hand, if var(yi) = σ2
i IT so that the variances of

yit are constant within each group but different across groups, we have the problem of

heteroskedasticity. If cov(yi,yj) = σijIT for some i �= j, we have spatial correlations

among groups, even though observations are serially uncorrelated. In both cases, the

OLS estimators are no longer the BLUEs, and FGLS estimation is needed.

Observe that when [A1] and [A2](i) hold for every equation in (4.20),

IE(ȳi) = ai,o + Z̄ibo, i = 1, 2, . . . , N.

One may then expect to estimate the parameters from a specification based on group-

averages. In particular, the estimator

b̌b =

(
N∑
i=1

(z̄i − z̄)(z̄i − z̄)′
)−1( N∑

i=1

(z̄i − z̄)(ȳi − ȳ)

)
(4.26)

is the OLS estimator computed from the following specification:

ȳi = a+ z̄′ib+ ei, i = 1, . . . , N. (4.27)

This is so because the sample means of ȳi and z̄i are just their respective overall

averages: ȳ and z̄. The estimator (4.26) is known as the between-groups estimator

because it is based on the deviations of group averages from their overall averages. As

shown in Exercise 4.9, the between-groups estimator is biased for bo when fixed effects

are present. This should not be surprising because, while there are N+k−1 parameters
in the fixed effects model, the specification (4.27) contains only N observations and only

permits estimation of k parameters.

Consider also a specification ignoring individual effects:

yi = �Ta+Zib+ ei, i = 1, . . . , N. (4.28)

The OLS estimator of b is

b̌p =

(
N∑
i=1

T∑
t=1

(zit − z̄)(zit − z̄)′
)−1( N∑

i=1

T∑
t=1

(zit − z̄)(yit − ȳ)

)
. (4.29)
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When [A1] and [A2](i) hold for every equation in (4.20), one can see that (4.28) is in

effect a specification that omits n − 1 relevant dummy variables. It follows that b̌p
is a biased estimator for bo. Alternatively, it can be shown that the estimator (4.29)

is a weighted sum of the between- and within-groups estimators and hence known as

the “pooled” estimator; see Exercise 4.10. The pooled estimator b̌p is therefore biased

because b̌b is. These examples show that neither the between-groups estimator nor the

pooled estimator is a proper choice for the fixed effects model.

4.7.2 Random Effects Model

Given the specification (4.20) that allows for individual effects:

yi = �Tai +Zib+ ei, i = 1, 2, . . . , N,

we now treat ai as random variables rather than parameters. Writing ai = a+ ui with

a = IE(ai), the specification above can be expressed as

yi = �Ta+Zib+ �Tui + ei, i = 1, 2, . . . , N. (4.30)

where �Tui and ei form the error term. This specification differs from the fixed effects

model in that the intercept terms do not vary across i. The presence of ui also makes

(4.30) different from the specification that does not allow for individual effects. Here,

group heterogeneity due to individual effects is characterized by the random variable ui
and absorbed into the error term. Thus, (4.30) is known as the random effects model.

As far as regression coefficients are concerned, (4.30) and (4.28) are virtually the

same. As such, the OLS estimator of b is just the pooled estimator b̌p. The OLS

estimator of a is

ǎp = ȳ − z̄′b̌p.

If the classical conditions [A1] and [A2](i) hold for each equation such that

IE(yi) = �Tao +Zibo, i = 1, . . . , N,

b̌p and ǎp are unbiased for bo and ao. Note, however, that the pooled estimator would

be biased if the individual effects were fixed, as shown in the preceding section.

When [A1] and [A2](i) hold, we can write

yi = �Tao +Zibo + ε̌i, (4.31)
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where ε̌i = �Tui + εi. That is, ε̌i contains two components: the random effects �Tui
and the disturbance εi which exists even when there is no random effect. Thus,

var(yi) = σ2
u�T �

′
T + var(εi) + 2 cov(�Tui, εi),

where σ2
u is var(ui). As the first term on the right-hand side above is a full matrix,

var(yi) is not a scalar covariance matrix in general. It follows that b̌p and ǎp are not

the BLUEs.

To perform FGLS estimation, more conditions on var(yi) are needed. If var(εi) =

σ2
oIT and IE(uiεi) = 0, we obtain a simpler form of var(yi):

So := var(yi) = σ2
u�T �

′
T + σ2

oIT .

Under additional conditions that IE(uiuj) = 0, E(uiεj) = 0 and IE(εiεj) = 0 for all

i �= j, we have cov(yi,yj) = 0. Hence, var(y) simplifies to a block diagonal matrix:

Σo := var(y) = IN ⊗ So.

It can be verified that the desired transformation matrix for GLS estimation is Σ−1/2
o =

IN ⊗ S
−1/2
o , where

S−1/2
o = IT − c

T
�T �

′
T ,

and c = 1−σ2
o/(Tσ2

u+σ2
o)1/2. Transformed data are S−1/2

o yi and S
−1/2
o Zi, i = 1, . . . , N ,

and their t th elements are, respectively, yit − cȳi and zit − cz̄i. If σ2
o = 0 so that the

disturbances εi are absent, we have c = 1, so that

Σ−1/2
o = IN ⊗ (IT − �T �

′
T /T ) = INT − PD,

as in the fixed effects model. Consequently, the GLS estimator of b is nothing but

the within-groups estimator (4.22). It can be shown that the GLS estimator is also a

weighted average of the within- and between-groups estimators.

To compute the FGLS estimator, we must estimate σ2
u and σ2

o . Pre-multiplying

(4.31) by �′T /T yields

ȳi = ao + z̄
′
ibo + ui + ε̄i.

Taking the difference of yi and ȳi we have

yi − �T ȳi = (Zi − �T z̄
′
i)bo + (εi − �T ε̄i),
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which does not involve ui. This suggests that, even when random effects are present,

we can also estimate bo from the specification

yi − �T ȳi = (Zi − �T z̄
′
i)b+ ei, i = 1, . . . , N.

It is readily seen that the OLS estimator based on this specification is the within-groups

estimator b̂NT . As ui have been eliminated, we can estimate σ2
o , the variance of εit, by

σ̂2
ε =

1
NT − N − k + 1

N∑
i=1

T∑
i=1

[(yit − ȳi)− (zit − z̄i)
′b̂NT ]

2,

which is also the variance estimator in the fixed effects model.

By (4.31),

ȳi = ao + z̄
′
ibo + ui + ε̄i.

This suggests that bo can be estimated from the specification based on group averages:

ȳi = a+ z̄′ib+ ei, i = 1, . . . , N.

This specification is the same as (4.27) so that the OLS estimator of b is the between-

groups estimator b̂b. The resulting OLS residuals are

ěi = (ȳi − ȳ)− (z̄i − z̄)′b̌b, i = 1, . . . , N.

We can estimate

var(ui + ε̄i) = σ2
u + σ2

o/T

by
∑N

i=1 ě
2
i /(N − k), from which the estimator for σ2

u can be calculated as

σ̂2
u =

1
N − k

N∑
i=1

ě2
i − σ̂2

ε

T
.

With these two estimators σ̂2
u and σ̂2

ε we can construct the transformation matrix for the

FGLS estimator, Ŝ−1/2. It is clear that the FGLS estimator is, again, a very complex

function of y.

4.8 Limitations of the FGLS Method

In this chapter we relax only the classical condition [A2](ii) while maintaining [A1]

and [A2](i). The limitations of [A1] and [A2](i) discussed in Chapter 3.7 therefore still

c© Chung-Ming Kuan, 2001



4.8. LIMITATIONS OF THE FGLS METHOD 107

exist. In particular, stochastic regressors and nonlinear specifications are excluded in

the present context.

Although the GLS and FGLS methods are designed to improve on estimation effi-

ciency when there is a non-scalar covariance matrix Σo, they also create further difficul-

ties. First, the GLS estimator is usually not available, except in some exceptional cases.

Second, a convenient FGLS estimator is available at the expense of more conditions on

Σo. If these simplifying conditions are incorrectly imposed, the resulting FGLS estima-

tor may perform poorly. Third, the finite-sample properties of the FGLS estimator are

typically unknown. In general, we do not know if an FGLS estimator is unbiased, nor

do we know its efficiency relative to the OLS estimator and its exact distribution. It is

therefore difficult to draw statistical inferences from FGLS estimation results.

Exercises

4.1 Given the linear specification y = Xβ + e, suppose that the conditions [A1] and

[A2](ii) hold and that var(y) = Σo. If the matrix X contains k eigenvectors of

Σo which are normalized to unit length. What are the resulting β̂T and β̂GLS?

Explain your result.

4.2 Show that R2
GLS need not be bounded between zero and one.

4.3 Given the linear specification y = Xβ + e, suppose that the conditions [A1] and

[A2](i) hold and that var(y) = Σo. Show directly that

var(β̂T )− var(β̂GLS)

is a positive semi-definite matrix.

4.4 Suppose that y = Xβo + ε and the elements of ε are εt = α1εt−1 + ut, where

α1 = 1 and {ut} is a white noise with mean zero and variance σ2
u. What are the

properties of εt? Is {εt} still weakly stationary?

4.5 Suppose that y = Xβo + ε and the elements of ε are εt = ut + α1ut−1, where

|α1| < 1 and {ut} is a white noise with mean zero and variance σ2
u. Calculate

the variance, autocovariances, and autocorrelations of εt and compare them with

those of AR(1) disturbances.

4.6 Let yt denote investment expenditure that is determined by expected earning x∗t :

yt = ao + box
∗
t + ut.
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When x∗t is adjusted adaptively:

x∗t = x∗t−1 + (1− λo)(xt − x∗t−1), 0 < λo < 1,

show that yt can be represented by a model with a lagged dependent variable and

moving average disturbances.

4.7 Given the SUR specification (4.17), show that the GLS estimator is the same as

the OLS estimator when Xi =X0 for all i. Give an intuitive explanation of this

result.

4.8 Given the specification (4.20), suppose that [A1] and [A2](i) hold for each group

equation, var(yi) = σ2
oIT and cov(yi,yj) = 0 for i �= j. Prove (4.25).

4.9 Given the specification (4.27), suppose that [A1] and [A2](i) hold for each group

equation. Find the expected value of the between-groups estimator (4.26).

4.10 Given the specification (4.28), show that the pooled estimator (4.29) is a weighted

sum of the within- and between-groups estimators. What is its expected value

when [A1] and [A2](i) hold for each group equation.
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Chapter 5

Probability Theory

The purpose of this chapter is to summarize some important concepts and results in

probability theory to be used subsequently. We formally define random variables and

moments (unconditional and conditional) under a measure-theoretic framework. Our

emphasis is on important limiting theorems, such as the law of large numbers and central

limit theorem, which play a crucial role in the asymptotic analysis of many econometric

estimators and tests. Davidson (1994) provides a complete and thorough treatment of

the topics in this chapter; see also Bierens (1994), Gallant (1997) and White (1984) for a

concise coverage. Many results here are taken freely from these references. The readers

may also consult other real analysis and probability textbooks for related topics.

5.1 Probability Space and Random Variables

5.1.1 Probability Space

The probability space associated with a random experiment is determined by three com-

ponents: the outcome space Ω, a collection of events (subsets of Ω) F , and a probability
measure assigned to the elements in F . Given the subset A of Ω, its complement is
Ac = {ω ∈ Ω: ω �∈ A}.

In the probability space (Ω,F , IP), F is a σ-algebra (σ-field) in the sense that it

satisfies the following requirements:

1. Ω ∈ F ;

2. if A ∈ F , then Ac ∈ F ;

3. if A1, A2, . . . are in F , then ∪∞
n=1An ∈ F .
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110 CHAPTER 5. PROBABILITY THEORY

The first and second properties imply that Ωc = ∅ is also in F . Combining the second
and third properties we have from de Morgan’s law that( ∞⋃

n=1

An

)c

=
∞⋂
n=1

Ac
n ∈ F .

A σ-algebra is thus closed under complementation, countable union and countable in-

tersection.

The probability measure IP : F �→ [0, 1] is a real-valued set function satisfying the

following axioms:

1. IP(Ω) = 1;

2. IP(A) ≥ 0 for all A ∈ F ;

3. if A1, A2, . . . ∈ F are disjoint, then IP(∪∞
n=1An) =

∑∞
n=1 IP(An).

From these axioms we easily deduce that IP(∅) = 0, IP(Ac) = 1− IP(A), IP(A) ≤ IP(B)
if A ⊆ B, and

IP(A ∪ B) = IP(A) + IP(B)− IP(A ∩ B).

Moreover, if {An} is an increasing (decreasing) sequence in F with the limiting set A,
then limn IP(An) = IP(A).

Let C be a collection of subsets of Ω. The intersection of all the σ-algebras that

contain C is the smallest σ-algebra containing C; see Exercise 5.1. This σ-algebra is

referred to as the σ-algebra generated by C, denoted as σ(C). When Ω = R, the Borel

field is the σ-algebra generated by all open intervals (a, b) in R. Note that open intervals,

closed intervals [a, b], half-open intervals (a, b] or half lines (−∞, b] can be obtained from

each other by taking complement, union and/or intersection. For example,

(a, b] =
∞⋂
n=1

(
a, b+

1
n

)
, (a, b) =

∞⋃
n=1

(
a, b − 1

n

]
.

Thus, the collection of all closed intervals (half-open intervals, half lines) generates the

same Borel field. As such, open intervals, closed intervals, half-open intervals and half

lines are also known as Borel sets. The Borel field on R
d, denoted as Bd, is generated

by all open hypercubes:

(a1, b1)× (a2, b2)× · · · × (ad, bd).

Equivalently, Bd can be generated by all closed (half-open) hypercubes, or by

(−∞, b1]× (−∞, b2]× · · · × (−∞, bd].
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5.1. PROBABILITY SPACE AND RANDOM VARIABLES 111

5.1.2 Random Variables

Let B denote the Borel field on R. A random variable z is a function z : Ω �→ R such

that for every B ∈ B, the inverse image of B under z is in F , i.e.,

z−1(B) = {ω : z(ω) ∈ B} ∈ F .

We also say that z is a F/B-measurable (or simply F-measurable) function. A R
d-

valued random variable z is a function z : Ω→ R
d that is F/Bd-measurable. Given the

random vector z, its inverse images z−1(B) form a σ-algebra, denoted as σ(z). It can

be shown that σ(z) is the smallest σ-algebra contained in F such that z is measurable.
We usually interpret σ(z) as the set containing all the information associated with z.

A function g : R �→ R is said to be B-measurable or Borel measurable if

{ζ ∈ R : g(ζ) ≤ b} ∈ B.

If z is a random variable defined on (Ω,F , IP), then g(z) is also a random variable defined

on the same probability space provided that g is Borel measurable. Note that the func-

tions we usually encounter are indeed Borel measurable; non-measurable functions are

very exceptional and hence are not of general interest. Similarly, for the d-dimensional

random vector z, g(z) is a random variable provided that g is Bd-measurable.

Recall from Section 2.1 that the joint distribution function of z is the non-decreasing,

right-continuous function Fz such that for ζ = (ζ1 . . . ζd)
′ ∈ R

d,

Fz(ζ) = IP{ω ∈ Ω: z1(ω) ≤ ζ1, . . . , zd(ω) ≤ ζd},

with

lim
ζ1→−∞, ... , ζd→−∞

Fz(ζ) = 0, lim
ζ1→∞, ... , ζd→∞

Fz(ζ) = 1.

The marginal distribution function of the i th component of z is such that

Fzi
(ζi) = IP{ω ∈ Ω: zi(ω) ≤ ζi} = Fz(∞, . . . ,∞, ζi,∞, . . . ,∞).

Note that while IP is a set function defined on F , the distribution function of z is a
point function defined on R

d.

Two random variables y and z are said to be (pairwise) independent if, and only if,

for any Borel sets B1 and B2,

IP(y ∈ B1 and z ∈ B2) = IP(y ∈ B1) IP(z ∈ B2).
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This immediately leads to the standard definition of independence: y and z are indepen-

dent if, and only if, their joint distribution is the product of their marginal distributions,

as in Section 2.1. A sequence of random variables {zi} is said to be totally independent
if

IP

(⋂
all i

{zi ∈ Bi}
)
=
∏
all i

IP(zi ∈ Bi),

for any Borel sets Bi. In what follows, a totally independent sequence will be referred

to an independent sequence or a sequence of independent variables for convenience. For

an independent sequence, we have the following generalization of Lemma 2.1.

Lemma 5.1 Let {zi} be a sequence of independent random variables and hi, i =

1, 2, . . . , be Borel-measurable functions. Then {hi(zi)} is also a sequence of independent
random variables.

5.1.3 Moments and Norms

The expectation of the i th element of z is

IE(zi) =
∫

Ω
zi(ω) d IP(ω),

where the right-hand side is a Lebesgue integral. In view of the distribution function

defined above, a change of ω causes the realization of z to change so that

IE(zi) =
∫

Rd

ζi dFz(ζ) =
∫

R

ζi dFzi
(ζi),

where Fzi
is the marginal distribution function of the i th component of z, as defined in

Section 2.2. For the Borel measurable function g of z,

IE[g(z)] =
∫

Ω
g(z(ω)) d IP(ω) =

∫
Rd

g(ζ) dFz(ζ).

Other moments, such as variance and covariance, can also be defined as Lebesgue inte-

grals with respect to the probability measure; see Section 2.2.

A function g is said to be convex on a set S if for any a ∈ [0, 1] and any x, y in S,

g
(
ax+ (1− a)y

)
≤ ag(x) + (1− a)g(y);

g is concave on S if the inequality above is reversed. For example, g(x) = x2 is convex,

and g(x) = log x for x > 0 is concave. The result below is concerned with convex

(concave) transformations.
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Lemma 5.2 (Jensen) For the Borel measurable function g that is convex on the sup-

port of the integrable random variable z, suppose that g(z) is also integrable. Then,

g(IE(z)) ≤ IE[g(z)];

the inequality reverses if g is concave.

For the random variable z with finite p th moment, let ‖z‖p = [IE(zp)]1/p denote its
Lp-norm. Also define the inner product of two square integrable random variables zi
and zj as their cross moment:

〈zi, zj〉 = IE(zizj).

Then, L2-norm can be obtained from the inner product as ‖zi‖2 = 〈zi, zi〉1/2. It is easily

seen that for any c > 0 and p > 0,

cp IP(|z| ≥ c) = cp
∫
1{ζ:|ζ|≥c} dFz(ζ) ≤

∫
{ζ:|ζ|≥c}

|ζ|p dFz(ζ) ≤ IE |z|p,

where 1{ζ:|ζ|≥c} is the indicator function which equals one if |ζ| ≥ c and equals zero

otherwise. This establishes the following result.

Lemma 5.3 (Markov) Let z be a random variable with finite p th moment. Then,

IP(|z| ≥ c) ≤ IE |z|p
cp

,

where c is a positive real number.

For p = 2, Lemma 5.3 is also known as the Chebyshev inequality. If c is small such that

IE |z|p/cp > 1, Markov’s inequality is trivial. When c tends to infinity, the probability

that z assumes very extreme values will be vanishing at the rate c−p.

Another useful result in probability theory is stated below without proof.

Lemma 5.4 (Hölder) Let y be a random variable with finite p th moment (p > 1) and

z a random variable with finite q th moment (q = p/(p − 1)). Then,

IE |yz| ≤ ‖y‖p ‖z‖q.

For p = 2, we have IE |yz| ≤ ‖y‖2 ‖z‖2. By noting that | IE(yz)| < IE |yz|, we immedi-
ately have the next result; cf. Lemma 2.3.
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Lemma 5.5 (Cauchy-Schwartz) Let y and z be two square integrable random vari-

ables. Then,

| IE(yz)| ≤ ‖y‖2 ‖z‖2.

Let y = 1 and x = zp. Then for q > p and r = q/p, Hölder’s inequality also ensures

that

IE |zp| ≤ ‖x‖r ‖y‖r/(r−1) = [IE(z
pr)]1/r = [IE(zq)]p/q.

This shows that when a random variable has finite q th moment, it must also have finite

p th moment for any p < q, as stated below.

Lemma 5.6 (Liapunov) Let z be a random variable with finite q th moment. Then

for p < q, ‖z‖p ≤ ‖z‖q.

The inequality below states that the Lp-norm of a finite sum is less than the sum of

individual Lp-norms.

Lemma 5.7 (Minkowski) Let zi, i = 1, . . . , n, be random variables with finite p th

moment (p ≥ 1). Then,∥∥∥∥∥
n∑
i=1

zi

∥∥∥∥∥
p

≤
n∑
i=1

‖zi‖p.

When there are only two random variables in the sum, this is just the triangle inequality

for Lp-norms; see also Exercise 5.4.

5.2 Conditional Distribution and Moments

Given two events A and B in F , if it is known that B has occurred, the outcome space
is restricted to B, so that the outcomes of A must be in A ∩ B. The likelihood of A is

thus characterized by the conditional probability

IP(A | B) = IP(A ∩ B)/ IP(B),

for IP(B) �= 0. It can be shown that IP(·|B) satisfies the axioms for probability mea-
sures; see Exerise 5.5. This concept is readily extended to construct conditional density

function and conditional distribution function.
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5.2.1 Conditional Distributions

Let y and z denote two integrable random vectors such that z has the density function

fz. For fz(ζ) �= 0, define the conditional density function of z given y = η as

fz|y(ζ | y = η) =
fz,y(ζ,η)
fy(η)

,

which is clearly non-negative whenever it is defined. This function also integrates to

one on R
d because∫

Rd

fz|y(ζ | y = η) dζ = 1
fy(η)

∫
Rd

fz,y(ζ,η) dζ =
1

fy(η)
fy(η) = 1.

Thus, fz|y is a legitimate density function. For example, the bivariate density function
of two random variables z and y forms a surface on the zy-plane. By fixing y = η,

we obtain a cross section (slice) under this surface. Dividing the joint density by the

marginal density fy(η) amounts to adjusting the height of this slice so that the resulting

area integrates to one.

Given the conditional density function fz|y, we have for A ∈ Bd,

IP(z ∈ A | y = η) =
∫
A
fz|y(ζ | y = η) dζ.

Note that this conditional probability is defined even when IP(y = η) may be zero. In

particular, when

A = (−∞, ζ1]× · · · × (−∞, ζd],

we obtain the conditional distribution function:

Fz|y(ζ | y = η) = IP(z1 ≤ ζ1, . . . , zd ≤ ζd | y = η).

When z and y are independent, the conditional density (distribution) simply reduces

to the unconditional density (distribution).

5.2.2 Conditional Moments

Analogous to unconditional expectation, the conditional expectation of the integrable

random variable zi given the information y = η is

IE(zi | y = η) =
∫

R

ζi dFz|y(ζi | y = η);
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IE(z | y = η) is defined elementwise. By allowing y to vary across all possible values η,
we obtain the conditional expectation function IE(z | y) whose realization depends on
η, the realization of y. Thus, IE(z | y) is a function of y and hence a random vector.

More generally, we can take a suitable σ-algebra as a conditioning set and define

IE(z | G), where G is a sub-σ-algebra of F . Similar to the discussion above, IE(z | G)
varies with the occurrence of each G ∈ G. Specifically, for the integrable random vector
z, IE(z | G) is the G-measurable random variable satisfying∫

G
IE(z | G) d IP =

∫
G
z d IP,

for all G ∈ G. By setting G = σ(y), the σ-algebra generated by y, we can write

IE(z | y) = IE[z | σ(y)],

which is interpreted as the expectation of z given all the information associated with

y. Note that the unconditional expectation IE(z) can be viewed as the expectation of

z conditional on the trivial σ-algebra {Ω, ∅}, i.e., the smallest σ-algebra that contains
no extra information from any random vectors.

Similar to unconditional expectations, conditional expectations are monotonic: if

z ≥ x with probability one, then IE(z | G) ≥ IE(x | G) with probability one; in particular,
if z ≥ 0 with probability one, then IE(z | G) ≥ 0 with probability one. Moreover, If z
is independent of y, then IE(z | y) = IE(z). For example, if z is a constant vector c
which is independent of any random variable, then IE(z | y) = c. The linearity result

below is analogous to Lemma 2.2 for unconditional expectations.

Lemma 5.8 Let z (d × 1) and y (c × 1) be integrable random vectors and A (n × d)

and B (n × c) be non-stochastic matrices. Then with probability one,

IE(Az +By | G) = A IE(z | G) +B IE(y | G).

If b (n× 1) is a non-stochastic vector, IE(Az+ b | G) = A IE(z | G)+ b with probability
one.

From the definition of conditional expectation, we immediately have∫
Ω
IE(z | G) d IP =

∫
Ω
z d IP;

that is, IE[IE(z | G)] = IE(z). This is known as the law of iterated expectations. As

IE(z) is also the conditional expectation with respect to the trivial (smallest) σ-algebra,
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the equality above suggests that if conditional expectations are taken sequentially with

respect to different σ-algebras, only the one with respect to a smaller σ-algebra matters.

For example, for k random vectors y1, . . . ,yk,

IE[IE(z | y1, . . . ,yk) | y1, . . . ,yk−1] = IE(z | y1, . . . ,yk−1).

A more general result is given below; see Exercise 5.6.

Lemma 5.9 (Law of Iterated Expectations) Let G and H be two sub-σ-algebras of

F such that G ⊆ H. Then for the integrable random vector z,

IE[IE(z | H) | G] = IE[IE(z | G) | H] = IE(z | G);

in particular, IE[IE(z | G)] = IE(z).

For a G-measurable random vector z, the information in G does not improve on our
understanding of z, so that IE(z | G) = z with probability one. That is, z can be

treated as known in IE(z | G) and taken out from the conditional expectation. Thus,

IE(zx′ | G) = z IE(x′ | G).

In particular, z can be taken out from the conditional expectation when z itself is a

conditioning variable. This result is generalized as follows.

Lemma 5.10 Let z be a G-measurable random vector. Then for any Borel-measurable

function g,

IE[g(z)x | G] = g(z) IE(x | G),

with probability one.

Two square integrable random variables z and y are said to be orthogonal if their

inner product IE(zy) = 0. This definition allows us to discuss orthogonal projection in

the space of square integrable random vectors. Let z be a square integrable random

variable and z̃ be a G-measurable random variable. Then, by Lemma 5.9 (law of iterated
expectations) and Lemma 5.10,

IE
[(
z − IE(z | G)

)
z̃
]
= IE
[
IE
[(
z − IE(z | G)

)
z̃ | G
]]

= IE
[
IE(z | G)z̃ − IE(z | G)z̃

]
= 0.
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That is, the difference between z and its conditional expectation IE(z | G) must be
orthogonal to any G-measurable random variable. It can then be seen that for any
square integrable, G-measurable random variable z̃,

IE(z − z̃)2 = IE[z − IE(z | G) + IE(z | G)− z̃]2

= IE[z − IE(z | G)]2 + IE[IE(z | G)− z̃]2

≥ IE[z − IE(z | G)]2.

where in the second equality the cross-product term vanishes because both IE(z | G)
and z̃ are G-measurable and hence orthogonal to z − IE(z | G). That is, among all
G-measurable random variables that are also square integrable, IE(z | G) is the closest
to z in terms of the L2-norm. This shows that IE(z | G) is the orthogonal projection of
z onto the space of all G-measurable, square integrable random variables.

Lemma 5.11 Let z be a square integrable random variable. Then

IE[z − IE(z | G)]2 ≤ IE(z − z̃)2,

for any G-measurable random variable z̃.

In particular, let G = σ(y), where y is a square integrable random vector. Lemma 5.11

implies that

IE
[
z − IE

(
z | σ(y)

)]2 ≤ IE
(
z − h(y)

)2
,

for any Borel-measurable function h such that h(y) is also square integrable. Thus,

IE[z | σ(y)] minimizes the L2-norm ‖z − h(y)‖2, and its difference from z is orthogonal

to any function of y that is also square integrable. We may then say that, given all the

information generated from y, IE(z | σ(y)) is the “best approximation” of z in terms of
the L2-norm (the best L2 predictor).

The conditional variance-covariance matrix of z given y is

var(z | y) = IE
(
[z − IE(z | y)][z − IE(z | y)]′ | y

)
= IE(zz′ | y)− IE(z | y) IE(z | y)′.

Similar to unconditional variance-covariance matrix, we have for non-stochastic matrices

A and b,

var(Az + b | y) = A var(z | y)A′,
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which is nonsingular provided thatA has full row rank and var(z | y) is positive definite.
It can also be shown that

var(z) = IE[var(z | y)] + var
(
IE(z | y)

)
;

see Exercise 5.7. That is, the variance of y can be expressed as the sum of two com-

ponents: the mean of its conditional variance and the variance of its conditional mean.

This is also known as the decomposition of analysis of variance.

Example 5.12 Suppose that (y′ x′)′ is distributed as a multivariate normal random
vector:[

y

x

]
∼ N

([
µy

µx

]
,

[
Σy Σ′

xy

Σxy Σx

])
.

It is well known that the conditional distribution of y given x is also normal. Moreover,

it can be shown that

IE(y | x) = µy −Σ′
xyΣ

−1
x (x− µx),

a linear function of x. By the analysis-of-variance decomposition, the conditional

variance-covariance matrix of y is

var(y | x) = var(y)− var
(
IE(y | x)

)
= Σy −Σ′

xyΣ
−1
x Σxy,

which does not depend on x.

5.3 Modes of Convergence

Consider now a sequence of random variables {zn(ω)}n=1,2,... defined on the probability

space (Ω,F , IP). For a given ω, {zn} is a realization (a sequence of sample values) of
the random element ω with the index n, and that for a given n, zn is a random variable

which assumes different values depending on ω. In this section we will discuss various

modes of convergence for sequences of random variables.

5.3.1 Almost Sure Convergence

We first introduce the concept of almost sure convergence (convergence with probability

one). Suppose that {zn} is a sequence of random variables and z is a random variable,

all defined on the probability space (Ω,F , IP). The sequence {zn} is said to converge to
z almost surely if, and only if,

IP(ω : zn(ω)→ z(ω) as n → ∞) = 1,
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denoted as zn
a.s.−→ z or zn → z a.s. Note that for a given ω, the realization zn(ω) may

or may not converge to z(ω). Almost sure convergence requires that zn(ω) → z(ω) for

almost all ω ∈ Ω, except for those ω in a set with probability zero. That is, almost

all the realizations zn(ω) will be eventually close to z(ω) for all n sufficiently large; the

event that zn will not approach z is improbable. When zn and z are both R
d-valued,

almost sure convergence is defined elementwise. That is, zn → z a.s. if every element

of zn converges almost surely to the corresponding element of z.

The following result shows that continuous transformation preserves almost sure

convergence.

Lemma 5.13 Let g : R �→ R be a function continuous on Sg ⊆ R.

[a] If zn
a.s.−→ z, where z is a random variable such that IP(z ∈ Sg) = 1, then g(zn)

a.s.−→
g(z).

[b] If zn
a.s.−→ c, where c is a real number at which g is continuous, then g(zn)

a.s.−→ g(c).

Proof: Let Ω0 = {ω : zn(ω)→ z(ω)} and Ω1 = {ω : z(ω) ∈ Sg}. Thus, for ω ∈ (Ω0∩Ω1),

continuity of g ensures that g(zn(ω))→ g(z(ω)). Note that

(Ω0 ∩ Ω1)
c = Ωc0 ∪ Ωc1,

which has probability zero because IP(Ωc0) = IP(Ω
c
1) = 0. It follows that Ω0 ∩ Ω1 has

probability one. This proves that g(zn) → g(z) with probability one. The second

assertion is just a special case of the first result. ✷

Lemma 5.13 is easily generalized to R
d-valued random variables. For example,

zn
a.s.−→ z implies

z1,n + z2,n
a.s.−→ z1 + z2,

z1,nz2,n
a.s.−→ z1z2,

z2
1,n + z2

2,n
a.s.−→ z2

1 + z2
2 ,

where z1,n, z2,n are two elements of zn and z1, z2 are the corresponding elements of z.

Also, provided that z2 �= 0 with probability one, z1,n/z2,n → z1/z2 a.s.
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5.3.2 Convergence in Probability

A weaker convergence concept is convergence in probability. A sequence of random

variables {zn} is said to converge to z in probability if for every ε > 0,

lim
n→∞ IP(ω : |zn(ω)− z(ω)| > ε) = 0,

or equivalently,

lim
n→∞ IP(ω : |zn(ω)− z(ω)| ≤ ε) = 1,

denoted as zn
IP−→ z. We also say that z is the probability limit of zn, denoted as

plim zn = z. In particular, if the probability limit of zn is a constant c, all the probability

mass of zn will concentrate around c when n becomes large. For R
d-valued random

variables zn and z, convergence in probability is also defined elementwise.

In the definition of convergence in probability, the events Ωn(ε) = {ω : |zn(ω) −
z(ω)| ≤ ε} vary with n, and convergence is referred to the probabilities of such events:

pn = IP(Ωn(ε)), rather than the random variables zn. By contrast, almost sure con-

vergence is related directly to the behaviors of random variables. For convergence in

probability, the event Ωn that zn will be close to z becomes highly likely when n tends

to infinity, or its complement (zn will deviate from z by a certain distance) becomes

highly unlikely when n tends to infinity. Whether zn will converge to z is not of any

concern in convergence in probability.

More specifically, let Ω0 denote the set of ω such that zn(ω) converges to z(ω). For

ω ∈ Ω0, there is some m such that ω is in Ωn(ε) for all n > m. That is,

Ω0 ⊆
∞⋃

m=1

∞⋂
n=m

Ωn(ε) ∈ F .

As ∩∞
n=mΩn(ε) is also in F and non-decreasing in m, it follows that

IP(Ω0) ≤ IP
( ∞⋃
m=1

∞⋂
n=m

Ωn(ε)

)
= lim

m→∞ IP

( ∞⋂
n=m

Ωn(ε)

)
≤ lim

m→∞ IP
(
Ωm(ε)

)
.

This inequality proves that almost sure convergence implies convergence in probability,

but the converse is not true in general. We state this result below.

Lemma 5.14 If zn
a.s.−→ z, then zn

IP−→ z.

The following well-known example shows that when there is convergence in proba-

bility, the random variables themselves may not even converge for any ω.
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Example 5.15 Let Ω = [0, 1] and IP be the Lebesgue measure (i.e., IP{(a, b]} = b − a

for (a, b] ⊆ [0, 1]). Consider the sequence {In} of intervals [0, 1], [0, 1/2), [1/2, 1], [0, 1/3),
[1/3, 2/3), [2/3, 1], . . . , and let zn = 1In

be the indicator function of In: zn(ω) = 1 if

ω ∈ In and zn = 0 otherwise. When n tends to infinity, In shrinks toward a singleton

which has the Lebesgue measure zero. For 0 < ε < 1, we then have

IP(|zn| > ε) = IP(In)→ 0,

which shows zn
IP−→ 0. On the other hand, it is easy to see that each ω ∈ [0, 1] must

be covered by infinitely many intervals. Thus, given any ω ∈ [0, 1], zn(ω) = 1 for
infinitely many n, and hence zn(ω) does not converge to zero. Note that convergence in

probability permits zn to deviate from the probability limit infinitely often, but almost

sure convergence does not, except for those ω in the set of probability zero. ✷

Intuitively, if var(zn) vanishes asymptotically, the distribution of zn would shrink

toward its mean IE(zn). If, in addition, IE(zn) tends to a constant c (or IE(zn) = c), then

zn ought to be degenerate at c in the limit. These observations suggest the following

sufficient conditions for convergence in probability; see Exercises 5.8 and 5.9. In many

cases, it is easier to establish convergence in probability by verifying these conditions.

Lemma 5.16 Let {zn} be a sequence of square integrable random variables. If IE(zn)→
c and var(zn)→ 0, then zn

IP−→ c.

Analogous to Lemma 5.13, continuous functions also preserve convergence in prob-

ability.

Lemma 5.17 Let g : Rt R be a function continuous on Sg ⊆ R.

[a] If zn
IP−→ z, where z is a random variable such that IP(z ∈ Sg) = 1, then g(zn)

IP−→
g(z).

[b] (Slutsky) If zn
IP−→ c, where c is a real number at which g is continuous, then

g(zn)
IP−→ g(c).

Proof: By the continuity of g, for each ε > 0, we can find a δ > 0 such that

{ω : |zn(ω)− z(ω)| ≤ δ} ∩ {ω : z(ω) ∈ Sg}

⊆ {ω : |g(zn(ω))− g(z(ω))| ≤ ε}.
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Taking complementation of both sides and noting that the complement of {ω : z(ω) ∈
Sg} has probability zero, we have

IP(|g(zn)− g(z)| > ε) ≤ IP(|zn − z| > δ).

As zn converges to z in probability, the right-hand side converges to zero and so does

the left-hand side. ✷

Lemma 5.17 is readily generalized to R
d-valued random variables. For instance,

zn
IP−→ z implies

z1,n + z2,n
IP−→ z1 + z2,

z1,nz2,n
IP−→ z1z2,

z2
1,n + z2

2,n
IP−→ z2

1 + z2
2 ,

where z1,n, z2,n are two elements of zn and z1, z2 are the corresponding elements of z.

Also, provided that z2 �= 0 with probability one, z1,n/z2,n
IP−→ z1/z2.

5.3.3 Convergence in Distribution

Another convergence mode, known as convergence in distribution or convergence in law,

concerns the behavior of the distribution functions of random variables. Let Fzn
and Fz

be the distribution functions of zn and z, respectively. A sequence of random variables

{zn} is said to converge to z in distribution, denoted as zn
D−→ z, if

lim
n→∞Fzn

(ζ) = Fz(ζ),

for every continuity point ζ of Fz . That is, regardless the distributions of zn, convergence

in distribution ensures that Fzn
will be arbitrarily close to Fz for all n sufficiently large.

The distribution Fz is thus known as the limiting distribution of zn. We also say that

zn is asymptotically distributed as Fz, denoted as zn
A∼ Fz .

For random vectors {zn} and z, zn
D−→ z if the joint distributions Fzn

converge

to Fz for every continuity point ζ of Fz. It is, however, more cumbersome to show

convergence in distribution for a sequence of random vectors. The so-called Cramér-

Wold device allows us to transform this multivariate convergence problem to a univariate

one. This result is stated below without proof.

Lemma 5.18 (Cramér-Wold Device) Let {zn} be a sequence of random vectors in

R
d. Then zn

D−→ z if and only if α′zn
D−→ α′z for every α ∈ R

d such that α′α = 1.
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There is also a uni-directional relationship between convergence in probability and

convergence in distribution. To see this, note that for some arbitrary ε > 0 and a

continuity point ζ of Fz , we have

IP(zn ≤ ζ) = IP({zn ≤ ζ} ∩ {|zn − z| ≤ ε}) + IP({zn ≤ ζ} ∩ {|zn − z| > ε})

≤ IP(z ≤ ζ + ε) + IP(|zn − z| > ε).

Similarly,

IP(z ≤ ζ − ε) ≤ IP(zn ≤ ζ) + IP(|zn − z| > ε).

If zn
IP−→ z, then by passing to the limit and noting that ε is arbitrary, the inequalities

above imply

lim
n→∞ IP(zn ≤ ζ) = IP(z ≤ ζ).

That is, Fzn
(ζ)→ Fz(ζ). The converse is not true in general, however.

When zn converges in distribution to a real number c, it is not difficult to show

that zn also converges to c in probability. In this case, these two convergence modes

are equivalent. To be sure, note that a real number c can be viewed as a degenerate

random variable with the distribution function:

F (ζ) =

{
0, ζ < c,

1, ζ ≥ c,

which is a step function with a jump point at c. When zn
D−→ c, all the probability mass

of zn will concentrate at c as n becomes large; this is precisely what zn
IP−→ c means.

More formally, for any ε > 0,

IP(|zn − c| > ε) = 1− [Fzn
(c+ ε)− Fzn

((c − ε)−)],

where (c− ε)− denotes the point adjacent to and less than c− ε. Now, zn
D−→ c implies

that Fzn
(c + ε) − Fzn

((c − ε)−) converges to one, so that IP(|zn − c| > ε) converges to

zero. We summarizes these results below.

Lemma 5.19 If zn
IP−→ z, thenzn

D−→ z. For a constant c, zn
IP−→ c is equivalent to

zn
D−→ c.

The continuous mapping theorem below asserts that continuous functions preserve

convergence in distribution; cf. Lemmas 5.13 and 5.17.
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Lemma 5.20 (Continuous Mapping Theorem) Let g : R → R be a function con-

tinuous almost everywhere on R, except for at most countably many points. If zn
D−→ z,

then g(zn)
D−→ g(z).

For example, if zn converges in distribution to the standard normal random variable, the

limiting distribution of z2
n is χ2(1). Generalizing this result to R

d-valued random vari-

ables, we can see that when zn converges in distribution to the d-dimensional standard

normal random variable, the limiting distribution of z′nzn is χ2(d).

Two sequences of random variables {yn} and {zn} are said to be asymptotically
equivalent if their differences yn − zn converge to zero in probability. Intuitively, the

limiting distributions of two asymptotically equivalent sequences, if exist, ought to be

the same. This is stated in the next result without proof.

Lemma 5.21 Let {yn} and {zn} be two sequences of random vectors such that yn −
zn

IP−→ 0. If zn
D−→ z, then yn

D−→ z.

The next result is concerned with two sequences of random variables such that one

converges in distribution and the other converges in probability.

Lemma 5.22 If yn converges in probability to a constant c and zn converges in dis-

tribution to z, then yn + zn
D−→ c + z, ynzn

D−→ cz, and zn/yn
D−→ z/c if c �= 0.

5.4 Order Notations

It is typical to use order notations to describe the behavior of a sequence of numbers,

whether it converges or not. Let {cn} denote a sequence of positive real numbers.

1. Given a sequence {bn}, we say that bn is (at most) of order cn, denoted as bn =
O(cn), if there exists a ∆ < ∞ such that |bn|/cn ≤ ∆ for all sufficiently large n.
When cn diverges, bn cannot diverge faster than cn; when cn converges to zero, the

rate of convergence of bn is no slower than that of cn. For example, the polynomial

a+ bn is O(n), and the partial sum of a bounded sequence
∑n

i=1 bi is O(n). Note

that an O(1) sequence is a bounded sequence.

2. Given a sequence {bn}, we say that bn is of smaller order than cn, denoted as

bn = o(cn), if bn/cn → 0. When cn diverges, bn must diverge slower than cn; when

cn converges to zero, the rate of convergence of bn should be faster than that of cn.
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For example, the polynomial a+ bn is o(n1+δ) for any δ > 0, and the partial sum∑n
i=1 α

i, |α| < 1, is o(n). Note that an o(1) sequence is a sequence that converges

to zero.

If bn is a vector (matrix), bn is said to be O(cn) (o(cn)) if every element of bn is O(cn)

(o(cn)). It is also easy to verify the following results; see Exercise 5.10.

Lemma 5.23 Let {an} and {bn} be two non-stochastic sequences.

(a) If an = O(nr) and bn = O(ns), then anbn = O(nr+s) and an + bn = O(nmax(r,s)).

(b) If an = o(nr) and bn = o(ns), then anbn = o(nr+s) and an + bn = o(nmax(r,s)).

(c) If an = O(nr) and bn = o(ns), then anbn = o(nr+s) and an + bn = O(nmax(r,s)).

The order notations can be easily extended to describe the behavior of sequences of

random variables. A sequence of random variables {zn} is said to be Oa.s.(cn) (or O(cn)

almost surely) if zn/cn is O(1) a.s., and it is said to be OIP(cn) (or O(cn) in probability)

if for every ε > 0, there is some ∆ such that

IP(|zn|/cn ≥ ∆) ≤ ε,

for all n sufficiently large. Similarly, {zn} is oa.s.(cn) (or o(cn) almost surely) if zn/cn
a.s.−→

0, and it is oIP(cn) (or o(cn) in probability) if zn/cn
IP−→ 0.

If {zn} is Oa.s.(1) (oa.s(1)), we say that zn is bounded (vanishing) almost surely; if

{zn} is OIP(1) (oIP(1)), zn is bounded (vanishing) in probability. Note that Lemma 5.23

also holds for stochastic order notations. In particular, if a sequence of random variables

is bounded almost surely (in probability) and another sequence of random variables is

vanishing almost surely (in probability), the products of their corresponding elements

are vanishing almost surely (in probability). That is, yn = Oa.s.(1) and zn = oa.s(1),

then ynzn is oa.s(1).

When zn
D−→ z, we have known that zn does not converge in probability to z in

general, but more can be said about the behavior of zn. Let ζ be a continuity point of

Fz . Then for any ε > 0, we can choose a sufficiently large ζ such that IP(|z| > ζ) < ε/2.

As zn
D−→ z, we can also choose n large enough such that

IP(|zn| > ζ)− IP(|z| > ζ) < ε/2,

which implies IP(|zn| > ζ) < ε. This shows that:

Lemma 5.24 Let {zn} be a sequence of random vectors such that zn
D−→ z. Then

zn = OIP(1).
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5.5 Law of Large Numbers

The law of large numbers is concerned with the averaging behavior of random variables

and is one of the most important results in probability theory. A sequence of integrable

random variables {zt} is said to obey a strong law of large numbers (SLLN) if

1
T

T∑
t=1

[zt − IE(zt)]
a.s.−→ 0, (5.1)

and it is said to obey a weak law of large numbers (WLLN) if

1
T

T∑
t=1

[zt − IE(zt)]
IP−→ 0. (5.2)

Thus, a law of large numbers ensures that the sample average essentially follows its

mean behavior; random irregularities (deviations from the mean) are eventually “wiped

out” by averaging. For a sequence of random vectors (matrices), a SLLN (WLLN) is

defined elementwise.

According to these definitions, zt may or may not be independent random variables,

and they are not required to have a constant mean and hence may have non-identical

distributions. When IE(zt) is a constant µo, the SLLN (5.1) and WLLN (5.2) read,

respectively,

1
T

T∑
t=1

zt
a.s.−→ µo,

1
T

T∑
t=1

zt
IP−→ µo.

Below are two well known strong laws.

Lemma 5.25 (Kolmogorov) Let {zt} be a sequence of i.i.d. random variables with

mean µo. Then

1
T

T∑
t=1

zt
a.s.−→ µo.

Note that i.i.d. random variables need not obey Kolmogorov’s SLLN if they do not

have a finite mean, e.g., the variables with the Cauchy distribution. Given that almost

sure convergence implies convergence in probability, the same condition in Lemma 5.25

ensures that {zt} obeys a WLLN.
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Lemma 5.26 (Markov) Let {zt} be a sequence of independent random variables. If

for some δ > 0, IE |zt|1+δ are bounded for all t, then

1
T

T∑
t=1

[zt − IE(zt)]
a.s.−→ 0,

From this result we can see that independent random variables may still obey a SLLN

even when they do not have a common distribution. Comparing to Kolmogorov’s SLLN,

Lemma 5.26 requires random variables to satisfy a stronger moment condition (their

(1 + δ) th moment must be bounded). A non-stochastic sequence, which can be viewed

as a sequence of independent random variables, obeys a SLLN if it is O(1).

The results above show that a SLLN (WLLN) holds provided that random vari-

ables satisfy certain conditions. The sufficient conditions ensuring a SLLN (WLLN)

are usually imposed on the moments and dependence structure of random variables.

Specifically, {zt} would obey a SLLN (WLLN) if zt have bounded moments up to some
order and are asymptotically independent in a proper sense. In some cases, it suffices

to require corr(zt, zt−j) converging to zero sufficiently fast as j → ∞, as shown in the
example below. Intuitively, random variables without some bounded moment may be-

have wildly such that their random irregularities cannot be completely averaged out.

For random variables with strong correlations, the variation of their partial sums may

grow too rapidly and cannot be eliminated by simple averaging. Thus, a sequence of

random variables must be “well behaved” to ensure a SLLN (WLLN).

Example 5.27 Suppose that yt is generated as a weakly stationary AR(1) process:

yt = αoyt−1 + εt, t = 1, 2, . . . ,

with y0 = 0 and |αo| < 1, where εt are i.i.d. random variables with mean zero and

variance σ2. In view of Section 4.4, we have IE(yt) = 0, var(yt) = σ2/(1 − α2
o), and

cov(yt, yt−j) = αj
o

σ2

1− α2
o

.

These results ensure that IE(T−1
∑T

t=1 yt) = 0 and

var

(
T∑
t=1

yt

)
=

T∑
t=1

var(yt) + 2
T−1∑
τ=1

(T − τ) cov(yt, yt−τ )

≤
T∑
t=1

var(yt) + 2T
T−1∑
τ=1

| cov(yt, yt−τ )|

= O(T ).

c© Chung-Ming Kuan, 2001



5.5. LAW OF LARGE NUMBERS 129

The latter result shows that var
(
T−1
∑T

t=1 yt

)
= O(T−1) which converges to zero as T

approaches infinity. It follows from Lemma 5.16 that

1
T

T∑
t=1

yt
IP−→ 0.

This shows that {yt} obeys a WLLN. Note that in this case, yt have a constant vari-
ance and cov(yt, yt−j) goes to zero exponentially fast as j tends to infinity. These two

properties in effect ensure a WLLN. Similarly, it can be shown that

1
T

T∑
t=1

y2
t

IP−→ IE(y2
t ) = var(yt).

That is, {y2
t } also obeys a WLLN. These results are readily generalized to weakly

stationary AR(p) processes. ✷

It is more cumbersome to establish a strong law for weakly stationary processes.

The lemma below is convenient in practice; see Davidson (1994, p. 326) for a proof.

Lemma 5.28 Let yt =
∑∞

j=−∞ πjut−j , where ut are i.i.d. random variables with mean

zero and variance σ2. If πj are absolutely summable, i.e.,
∑∞

j=−∞ |πj| < ∞, then∑T
t=1 yt/T

a.s.−→ 0.

In Example 5.27, yt =
∑∞

j=0 α
j
oεt−j with |αo| < 1. It is clear that

∑∞
j=0 |αj

o| < ∞.
Hence, Lemma 5.28 ensures that {yt} obeys a SLLN and the average of yt converges
to its mean (zero) almost surely. If yt = zt − µ, then the average of zt converges to

IE(zt) = µ almost surely.

More generally, it is also possible that a sequence of weakly dependent and hetero-

geneously distributed random variables obeys a SLLN (WLLN). This usually requires

stronger conditions on their moments and dependence structure.1 To avoid technicality,

we will not specify the regularity conditions that ensure a general SLLN (WLLN); see

White (1984) and Davidson (1994) for such conditions and the resulting strong and

weak laws. Instead, we use the following examples to illustrate why a WLLN and hence

a SLLN may fail to hold.
1The notions of mixing sequence and mixingale allow the random variables to be dependent and

heterogeneously distributed. In their definitions, probabilistic structures are imposed to regulate the

dependence among random variables. Such sequences of random variables may obey a SLLN (WLLN)

if they are weakly dependent in the sense that the dependence of random variables zt on their distant

past zt−j eventually vanishes at a suitable rate as j tends to infinity.
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Example 5.29 Consider the sequences {t} and {t2}, t = 1, 2, . . . . It is well known that

T∑
t=1

t = T (T + 1)/2,

T∑
t=1

t2 = T (T + 1)(2T + 1)/6.

Hence,
∑T

t=1 t/T and
∑T

t=1 t
2/T both diverge. In this example, the elements of these

two sequences diverge so that their partial sums grow too rapidly. Thus, these sequences

do not obey a SLLN. ✷

Example 5.30 Suppose that εt are i.i.d. random variables with mean zero and variance

σ2. Thus, T−1
∑T

t=1 εt
a.s.−→ 0 by Kolmogorv’s SLLN (Lemma 5.25). As IE |tεt|1+δ =

O(t1+δ) which grows with t, {tεt} does not have bounded (1+δ) th moment and therefore
does not obey Markov’s SLLN (Lemma 5.26). Moreover, note that

var

(
T∑
t=1

tεt

)
=

T∑
t=1

t2 var(εt) = σ2T (T + 1)(2T + 1)
6

.

By Exercise 5.11,
∑T

t=1 tεt = OIP(T
3/2). It follows that T−1

∑T
t=1 tεt = OIP(T

1/2) which

diverges in probability. Thus, {tεt} does not obey a WLLN either. ✷

Example 5.31 Suppose that yt is generated as a random walk:

yt = yt−1 + εt, t = 1, 2, . . . ,

with y0 = 0, where εt are i.i.d. random variables with mean zero and variance σ2.

Clearly,

yt =
t∑

i=1

εi,

which has mean zero and unbounded variance tσ2. For s < t, write

yt = ys +
t∑

i=s+1

εi = ys + vt−s,

where vt−s =
∑t

i=s+1 εi is independent of ys. We then have

cov(yt, ys) = IE(y
2
s) = sσ2,
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for t > s. Consequently,

var

(
T∑
t=1

yt

)
=

T∑
t=1

var(yt) + 2
T−1∑
τ=1

T∑
t=τ+1

cov(yt, yt−τ ).

It can be verified that the first term on the right-hand side is

T∑
t=1

var(yt) =
T∑
t=1

tσ2 = O(T 2),

and that the second term is

2
T−1∑
τ=1

T∑
t=τ+1

cov(yt, yt−τ ) = 2
T−1∑
τ=1

T∑
t=τ+1

(t − τ)σ2 = O(T 3).

Thus, var(
∑T

t=1 yt) = O(T 3), so that
∑T

t=1 yt = OIP(T
3/2) by Exercise 5.11. This shows

that

1
T

T∑
t=1

yt = OIP(T
1/2),

which diverges in probability. Note that in this case, yt have unbounded variances and

strong correlations over time. Due to these correlations, the variation of the partial

sum of yt grows much too fast. (Recall that the variance of
∑T

t=1 yt is only O(T ) in

Example 5.27.) Similarly, we can show that
∑T

t=1 y
2
t = OIP(T

2); see Exercise 5.12 for

a special case. Thus, {y2
t } does not obey a WLLN when yt follows a random walk. As

{yt} and {y2
t } do not obey a WLLN, they cannot obey a SLLN. The conclusions above

will not be altered when {εt} is a white noise or a weakly stationary process. ✷

The example below shows that a sequence of random variables need not obey a

WLLN even its partial sums are OIP(T ).

Example 5.32 Suppose that yt is generated as a random walk:

yt = yt−1 + εt, t = 1, 2, . . . ,

with y0 = 0, as in Example 5.31. Then, the sequence {yt−1εt} has mean zero and

var(yt−1εt) = IE(y
2
t−1) IE(ε

2
t ) = (t − 1)σ4.

More interestingly, it can be seen that for s < t,

cov(yt−1εt, ys−1εs) = IE(yt−1ys−1εs) IE(εt) = 0.
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We then have

var

(
T∑
t=1

yt−1εt

)
=

T∑
t=1

var(yt−1εt) =
T∑
t=1

(t − 1)σ4 = O(T 2),

and
∑T

t=1 yt−1εt = OIP(T ). Note, however, that var(T−1
∑T

t=1 yt−1εt) converges to σ4/2,

rather than 0. Thus, T−1
∑T

t=1 yt−1εt cannot behave like a non-stochastic number in

the limit. This shows that {yt−1εt} does not obey a WLLN, and hence also does not
obey a SLLN. ✷

5.6 Uniform Law of Large Numbers

In econometric analysis, it is also common to deal with functions of random variables and

model parameters. For example, q(zt(ω)); θ) is a random variable for a given parameter

θ, and it is function of θ for a given ω. When θ is fixed, it is not difficult to impose

suitable conditions on q and zt such that {q(zt(ω); θ)} obeys a SLLN (WLLN), as
discussed in Section 5.5. When θ assumes values in the parameter space Θ, a SLLN

(WLLN) that does not depend on θ is then needed.

More specifically, suppose that {q(zt; θ)} obeys a SLLN for each θ ∈ Θ:

QT (ω; θ) =
1
T

T∑
t=1

q(zt(ω); θ)
a.s.−→ Q(θ),

where Q(θ) is a non-stochastic function of θ. As this convergent behavior may depend on

θ, Ωc0(θ) = {ω : QT (ω; θ) �→ Q(θ)} varies with θ. When Θ is an interval of R, ∪θ∈ΘΩc0(θ)

is an uncountable union of non-convergence sets and hence may not have probability

zero, even though each Ωc0(θ) does. Thus, the event that QT (ω; θ)→ Q(θ) for all θ, i.e.,

∩θ∈ΘΩ0(θ), may occur with probability less than one. In fact, the union of all Ω
c
0(θ)

may not even be in F (only countable unions of the elements in F are guaranteed to
be in F). If so, we cannot conclude anything about stochastic convergence. Worse still
is when θ also depends on T , as in the case where θ is replaced by the estimator θ̃T .

There may not exist a finite T ∗ such that QT (ω; θ̃T ) are arbitrarily close to Q(ω; θ̃T ) for

all T > T ∗.

These observations suggest that we should study convergence that is uniform on the

parameter space Θ. In particular, QT (ω; θ) converges to Q(θ) uniformly in θ almost

surely (in probability) if the largest possible difference:

sup
θ∈Θ

|QT (θ)− Q(θ)| → 0, a.s. (in probability).
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In what follows we always assume that this supremum is a random variables for all

T . The example below, similar to Example 2.14 of Davidson (1994), illustrates the

difference between uniform and pointwise convergence.

Example 5.33 Let zt be i.i.d. random variables with zero mean and

qT (zt(ω); θ) = zt(ω) +


Tθ, 0 ≤ θ ≤ 1

2T ,

1− Tθ, 1
2T < θ ≤ 1

T ,

0, 1
T < θ < ∞.

Observe that for θ ≥ 1/T and θ = 0,

QT (ω; θ) =
1
T

T∑
t=1

qT (zt; θ) =
1
T

T∑
t=1

zt,

which converges to zero almost surely by Kolmogorov’s SLLN. Thus, for a given θ, we

can always choose T large enough such that QT (ω; θ)
a.s.−→ 0, where 0 is the pointwise

limit. On the other hand, it can be seen that Θ = [0,∞) and

sup
θ∈Θ

|QT (ω; θ)| = |z̄T + 1/2|
a.s.−→ 1/2,

so that the uniform limit is different from the pointwise limit. ✷

More generally, we consider a triangular array of functions qTt(zt;θ), t = 1, 2, . . . , T ,

where zt are integrable random vectors and θ is the parameter vector taking values in

the parameter space Θ ∈ R
m. For notation simplicity, we will not explicitly write ω in

the functions. We say that {qTt(zt;θ)} obeys a strong uniform law of large numbers

(SULLN) if

sup
θ∈Θ

1
T

T∑
t=1

[qTt(zt;θ)− IE(qTt(zt;θ))]
a.s.−→ 0, (5.3)

cf. (5.1). Similarly, {qTt(zt;θ)} is said to obey a weak uniform law of large numbers

(WULLN) if the convergence condition above holds in probability. If qTt is R
m-valued

functions, the SULLN (WULLN) is defined elementwise.

We have seen that pointwise convergence does not imply uniform convergence. A

natural question one would ask is: what additional conditions are needed to guarantee

uniform convergence? Now let

QT (θ) =
1
T

T∑
t=1

[qTt(zt;θ)− IE(qTt(zt;θ))].
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Suppose that QT satisfies the following Lipschitz-type continuity requirement: for θ,θ
†

in Θ,

|QT (θ)− QT (θ
†)| ≤ CT ‖θ − θ†‖ a.s.,

where ‖ · ‖ denotes the Euclidean norm, and CT is a random variable bounded almost

surely and does not depend on θ. Under this condition, QT (θ
†) can be made arbitrarily

close to QT (θ), provided that θ
† is sufficiently close to θ. Using the triangle inequality

and taking supremum over θ we have

sup
θ∈Θ

|QT (θ)| ≤ sup
θ∈Θ

|QT (θ)− QT (θ
†)|+ |QT (θ

†)|.

Let ∆ denote an almost sure bound of CT . Then given any ε > 0, choosing θ
† such that

‖θ − θ†‖ < ε/(2∆) implies

sup
θ∈Θ

|QT (θ)− QT (θ
†)| ≤ CT

ε

2∆
≤ ε

2
,

uniformly in T . Moreover, because QT (θ) converges to 0 almost surely for each θ in Θ,

|QT (θ
†)| is also less than ε/2 for sufficiently large T . Consequently,

sup
θ∈Θ

|QT (θ)| ≤ ε,

for all T sufficiently large. As these results hold almost surely, we have a SULLN for

QT (θ); the conditions ensuring a WULLN are analogous.

Lemma 5.34 Suppose that for each θ ∈ Θ, {qTt(zt;θ)} obeys a SLLN (WLLN) and

that for θ,θ† ∈ Θ,

|QT (θ)− QT (θ
†)| ≤ CT ‖θ − θ†‖ a.s.,

where CT is a random variable bounded almost surely (in probability) and does not

depend on θ. Then, {qTt(zt;θ)} obeys a SULLN (WULLN).

Lemma 5.34 is quite convenient for establishing a SULLN (WULLN) because it

requires only two conditions. First, the random functions must obey a standard SLLN

(WLLN) for each θ in the parameter space. Second, the random function must satisfy

a Lipschitz-type continuity condition. In particular, the continuity condition can be

verified by checking whether qTt is sufficiently “smooth” in the second argument. Note,

however, that CT being bounded almost surely may imply that the random variables

in qTt are also bounded almost surely. This requirement is much too restrictive in
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applications. Hence, a SULLN may not be readily obtained from Lemma 5.34. On

the other hand, a WULLN is practically more plausible because the requirement that

CT is OIP(1) is much weaker. For example, the boundedness of IE |CT | is sufficient for
CT being OIP(1) by Markov’s inequality. For more specific conditions ensuring these

requirements we refer to Gallant and White (1988) and Bierens (1994).

5.7 Central Limit Theorem

The central limit theorem ensures that the distributions of suitably normalized averages

will be essentially close to the standard normal distribution, regardless of the original

distributions of random variables. This result is very useful and convenient in applica-

tions because, as far as approximation is concerned, we only have to consider a single

distribution for normalized sample averages.

Given a sequence of square integrable random variables {zt}, let z̄T = T−1
∑T

t=1 zt,

µ̄T = T−1
∑T

t=1 IE(zt), and

σ2
T = var

(
T−1/2

T∑
t=1

zt

)
.

Then {zt} is said to obey a central limit theorem (CLT) if σ2
T → σ2

o > 0 such that

1
σo

√
T

T∑
t=1

[zt − IE(zt)] =
√
T (z̄T − µ̄T )

σo

D−→ N(0, 1). (5.4)

Note that this definition requires neither IE(zt) nor var(zt) to be a constant; also, {zt}
may or may not be a sequence of independent variables. The following are two well

known CLTs.

Lemma 5.35 (Lindeberg-Lévy) Let {zt} be a sequence of i.i.d. random variables

with mean µo and variance σ2
o > 0. Then,

√
T (z̄T − µo)

σo

D−→ N(0, 1).

A sequence of i.i.d. random variables need not obey this CLT if they do not have a finite

variance, e.g., random variables with t(2) distribution. Comparing to Lemma 5.25, one

can immediately see that the Lindeberg-Lévy CLT requires a stronger condition (i.e.,

finite variance) than does Kolmogorov’s SLLN.
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Remark: In this example, z̄T converges to µo in probability, and its variance σ2/T

vanishes when T tends to infinity. To prevent having a degenerate distribution in the

limit, it is then natural to consider the normalized average T 1/2(z̄T − µo), which has a

constant variance σ2 for all T . This explains why the normalizing factor T 1/2 is needed.

For a normalizing factor T a with a < 1/2, the normalized average still converges to zero

because its variance vanishes in the limit. For a normalizing factor T a with a > 1/2, the

normalized average diverges. In both cases, the resulting normalized averages cannot

have a well-behaved, non-degenerate distribution in the limit. Thus, it is usually said

that z̄T converges to µo at the rate T−1/2.

Lemma 5.36 Let {zTt} be a triangular array of independent random variables with

mean µTt and variance σ2
Tt > 0 such that

σ̄2
T =

1
T

T∑
t=1

σ2
Tt → σ2

o > 0.

If for some δ > 0, IE |zTt|2+δ are bounded for all t, then
√
T (z̄T − µ̄T )

σo

D−→ N(0, 1).

Lemma 5.36 is a version of Liapunov’s CLT. Note that this result requires a stronger con-

dition (the (2+δ) th moment must be bounded) than does Markov’s SLLN (Lemma 5.26).

The sufficient conditions that ensure a CLT are similar to but usually stronger

than those for a WLLN. That is, the sequence of random variables must have bounded

moment up to some higher order, and random variables must be asymptotically inde-

pendent of those in the distant past (such dependence must vanish sufficiently fast).

Moreover, it is also required that every random variable in the sequence is asymptoti-

cally negligible, in the sense that no random variable is influential in affecting the partial

sums. Although we will not specify these regularity conditions explicitly, we note that

weakly stationary AR and MA processes obey a CLT in general. A sequence of weakly

dependent and heterogeneously distributed random variables may also obey a CLT, de-

pending on its moment and dependence structure. The following are examples that a

CLT does not hold.

Example 5.37 Suppose that {εt} is a sequence of independent random variables with
mean zero, variance σ2, and bounded (2 + δ) th moment. From Example 5.29, we know
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var(
∑T

t=1 tεt) is O(T
3), which implies that T−1/2

∑T
t=1 tεt still has a diverging variance

(of order O(T 2)). On the other hand, observe that

var

(
1

T 1/2

T∑
t=1

t

T
εt

)
=

T (T + 1)(2T + 1)
6T 3

σ2 → σ2

3
.

It follows from Lemma 5.36 that

√
3

T 1/2σ

T∑
t=1

t

T
εt

D−→ N(0, 1).

These results show that {(t/T )εt} obeys a CLT, whereas {tεt} does not. ✷

Example 5.38 Suppose that yt is generated as a random walk:

yt = yt−1 + εt, t = 1, 2, . . . ,

with y0 = 0, where {εt} is a sequence of i.i.d. random variables with mean zero and
variance σ2. From Example 5.31 we have seen that {yt} and {y2

t } have unbounded vari-
ances and strong correlations over time. Hence, they do not obey a CLT. Example 5.32

also suggests that {yt−1εt} does not obey a CLT. ✷

Given a sequence of square integrable random vectors {zt} in R
d, let

z̄T =
1
T

T∑
t=1

zt,

µ̄T = T−1
∑T

t=1 IE(zt), and

ΣT = var

(
1√
T

T∑
t=1

zt

)
.

Then, {zt} is said to obey a CLT if ΣT → Σo, a positive definite matrix, such that

Σ−1/2
o

1√
T

T∑
t=1

[zt − IE(zt)] = Σ−1/2
o

√
T (z̄T − µ̄T )

D−→ N(0, Id).

By Lemma 5.18, this amounts to requiring that {α′zt} obeys a CLT, for any α ∈ R
d

such that α′α = 1.
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Exercises

5.1 Let C be a collection of subsets of Ω. Show that the intersection of all the σ-

algebras on Ω that contain C is the smallest σ-algebra containing C.

5.2 Show that any half lines (−∞, b] and [a,∞) can be generated by open intervals in
R. Also show that any open interval (a, b) can be generated by closed intervals in

R.

5.3 Let y and z be two independent, integrable random variables. Show that IE(yz) =

IE(y) IE(z).

5.4 Let x and y be two random variables with finite p th moment (p > 1). Prove the

following triangle inequality:

‖x+ y‖p ≤ ‖x‖p + ‖y‖p.

Hint: Write IE |x+ y|p = IE(|x+ y||x+ y|p−1) and apply Hölder’s inequality.

5.5 In the probability space (Ω,F , IP) suppose that we know the event B in F has
occurred. Show that the conditional probability IP(·|B) satisfies the axioms for
probability measures.

5.6 Prove the first assertion of Lemma 5.9.

5.7 Prove that for the square integrable random vectors z and y,

var(z) = IE[var(z | y)] + var(IE(z | y)).

5.8 A sequence of square integrable random variables {zn} is said to converge to a
random variable z in L2 (in quadratic mean) if

IE(zn − z)2 → 0.

Prove that L2 convergence implies convergence in probability.

Hint: Apply Chebychev’s inequality.

5.9 Show that a sequence of square integrable random variables {zn} converges to a
constant c in L2 if and only if IE(zn)→ c and var(zn)→ 0.

5.10 Prove Lemma 5.23.
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5.11 Suppose that IE(z2
n) = O(cn), where {cn} is a sequence of positive real numbers.

Show that zn = OIP(c
1/2
n ).

5.12 Suppose that yt is generated as a Gaussian random walk:

yt = yt−1 + εt, t = 1, 2, . . . ,

with y0 = 0, where {εt} is a sequence of i.i.d. normal random variables with mean
zero and variance σ2. Show that

∑T
t=1 y

2
t is OIP(T 2).
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Chapter 6

Asymptotic Least Squares Theory

We have shown that the OLS estimator and related tests have good finite-sample prop-

erties under the classical conditions. These conditions are, however, quite restrictive

in practice, as discussed in Section 3.7. It is therefore natural to ask the following

questions. First, to what extent may we relax the classical conditions so that the OLS

method has broader applicability? Second, what are the properties of the OLS method

under more general conditions? The purpose of this chapter is to provide some answers

to these questions. In particular, the analysis in this chapter allows the observations

of each explanatory variable to be random variables, possibly weakly dependent and

heterogeneously distributed. This relaxation permits applications of the OLS method

to various data and models, but it also renders the analysis of finite-sample properties

difficult. Nonetheless, it is relatively easy to analyze the asymptotic performance of the

OLS estimator and construct large-sample tests. As the asymptotic results are valid

under more general conditions, the OLS method remains a useful tool in a wide variety

of applications.

6.1 When Regressors are Stochastic

Given the linear specification y = Xβ + e, suppose now that X is stochastic. In this

case, [A2](i) must also be modified because IE(y) cannot be a random vector Xβo.

Even a condition on IE(y) is available, we are still unable to evaluate

IE(β̂T ) = IE[(X
′X)−1X ′y],

because β̂T now is a complex function of the elements of y andX . Similarly, a condition

on var(y) is of little use for calculating var(β̂T ).
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To ensure unbiasedness, it is typical to impose the condition: IE(y | X) = Xβo for

some βo, instead of [A2](i). Under this condition,

IE(β̂T ) = IE[(X
′X)−1X ′ IE(y | X)] = βo,

by Lemma 5.9 (law of iterated expectations). Note that the condition IE(y | X) =Xβo

implies

IE(y) = IE[IE(y | X)] = IE(X)βo,

again by the law of iterated expectations. Hence, IE(y) can be obtained from IE(y |
X) but not conversely. This shows that, when X is allowed to be stochastic, the

unbiasedness property of β̂T would hold under a stronger condition.

Unfortunately, the condition IE(y | X) = Xβo may not be realistic in some appli-

cations. To see this, let xt denote the t th column of X
′ and write the t th element of

IE(y | X) =Xβo as

IE(yt | x1, . . . ,xT ) = x
′
tβo, t = 1, 2, . . . , T.

Consider time series data and the simple specification that xt contains only one regressor

yt−1:

yt = βyt−1 + et, t = 1, 2, . . . , T.

In this case, the aforementioned condition reads:

IE(yt | y1, . . . , yT−1) = βoyt−1,

for some βo. Note that for t = 1, . . . , T − 1, IE(yt | y1, . . . , yT−1) = yt by Lemma 5.10.

The condition above then requires yt = βoyt−1 with probability one. If {yt} is indeed
an AR(1) process: yt = βoyt−1 + εt such that εt has a continuous distribution, the

event that yt = βoyt−1 (i.e., εt = 0) can occur only with probability zero, violating the

imposed condition.

Suppose that IE(y | X) =Xβo and var(y | X) = σ2
oIT . It is easy to see that

var(β̂T ) = IE[(X
′X)−1X ′(y −Xβo)(y −Xβo)

′X(X ′X)−1]

= IE[(X ′X)−1X ′ var(y | X)X(X ′X)−1]

= σ2
o IE(X

′X)−1,

which is different from the variance-covariance matrix when X is non-stochastic; cf.

Theorem 3.4(c). It is not always reasonable to impose such a condition on var(y | X)
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either. Consider the previous example that xt = yt−1. As IE(yt | y1, . . . , yT−1) = yt,

the conditional variance is

var(yt | y1, . . . , yT−1) = IE{[yt − IE(yt | y1, . . . , yT−1)]
2 | y1, . . . , yT−1} = 0,

rather than a positive constant σ2
o .

Without the conditions on IE(y | X) and var(y | X), the mean and variance of the
OLS estimator remain unknown. Moreover, when X is stochastic, (X ′X)−1X ′y need
not be normally distributed even when y is. Consequently, the results for hypothesis

testing discussed in Section 3.4 are invalid.

6.2 Asymptotic Properties of the OLS Estimators

Suppose that we observe the data (yt w
′
t)
′, where yt is the variable of interest (dependent

variable), and wt is an m × 1 vector of “exogenous” variables. Let Wt denote the

collection of random vectors w1, . . . ,wt and Yt the collection of y1, . . . , yt. The set

of Yt−1 and Wt generates a σ-algebra which represents the information set up to time

t. To account for the behavior of yt, we choose the vector of explanatory variables xt
from the information set so that xt includes k elements of Yt−1 and Wt. The linear

specification y =Xβ + e can be expressed as

yt = x
′
tβ + et, t = 1, 2, . . . , T, (6.1)

where xt is the t th column of X
′, i.e., the t th observation of all explanatory variables.

Under the present framework, regressors may be lagged dependent variables (taken from

Yt−1) and lagged exogenous variables (taken from Wt). Including such variables in the

specification is quite helpful in capturing the dynamic behavior of data.

6.2.1 Consistency

Gien the specification (6.1), the OLS estimator can be written as

β̂T = (X
′X)−1X ′y =

(
T∑
t=1

xtx
′
t

)−1( T∑
t=1

xtyt

)
. (6.2)

The estimator β̂T is said to be strongly consistent for the parameter vector β
∗ if β̂T

a.s.−→
β∗ as T tends to infinity; β̂T is said to be weakly consistent for β

∗ if β̂T
IP−→ β∗. Strong

consistency asserts that β̂T will be eventually close to β
∗ when “enough” information

(a sufficiently large sample) becomes available. Consistency is in sharp contrast with
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unbiasedness. While an unbiased estimator of β∗ is “correct” on average, there is no
guarantee that its values will be close to β∗, no matter how large the sample is.

To establish strong (weak) consistency, we impose the following conditions.

[B1] {(yt w′
t)
′} is a sequence of random vectors and xt is also a random vector con-

taining some elements of Yt−1 and Wt.

(i) {xtx′
t} obeys a SLLN (WLLN) such that limT→∞ T−1

∑T
t=1 IE(xtx

′
t) exists

and is nonsingular.

(ii) {xtyt} obeys a SLLN (WLLN).

[B2] For some βo, IE(yt | Yt−1,Wt) = x′
tβo for all t.

One approach in the time-series analysis is to analyze the behavior of yt based solely on

its past behavior (lagged values). In this case, xt contains only the elements of Yt−1,

and [B2] is modifed as IE(yt | Yt−1) = x′
tβo for all t.

The condition [B1] explicitly allows the explanatory variables xt to be a random

vector which may contain one or more lagged dependent variables yt−j and current and

past exogenous variables wt. [B1] also admits non-stochastic regressors which can be

viewed as independent, degenerate random vectors. Moreover, [B1](i) and (ii) regulate

the behaviors of yt and xt such that {xtx
′
t} and {xtyt} must obey a SLLN (WLLN). On

the other hand, the deterministic time trend t and random walk are excluded because

they do not obey a SLLN (WLLN); see Examples 5.29 and 5.31.

Analogous to [A2](i), [B2] requires the linear function x′
tβ to be a correct specifi-

cation of the conditional mean function, up to some unknown parameters. When xt is

non-stochastic, [B2] implies [A2](i) because by the law of iterated expectations,

IE(yt) = IE[IE(yt | Yt−1,Wt)] = x′
tβo.

Recall from Section 5.2 that the conditional mean IE(yt | Yt−1,Wt) is the orthogonal

projection of yt onto the space of all functions of the elements of Yt−1 and Wt, where

orthogonality is defined in terms of the cross moment, the inner product in L2 space.

Thus, the conditional mean function is the best approximation (in the mean squared

error sense) of yt based on the information generated by Yt−1 and Wt.

As x′
tβo is the orthogonal projection of yt under [B2], it must be true that, for any

function g and any vector zt containing the elements of Yt−1 and Wt,

IE[g(zt)(yt − x′
tβo)] = 0,
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by Lemma 5.11. That is, any function of zt must be orthogonal to the difference between

yt and its orthogonal projection x
′
tβo. If this condition does not hold for some g(zt), it

should be clear that x′
tβo cannot be IE(yt | Yt−1,Wt). In particular, if

IE[xt(yt − x′
tβo)] �= 0,

x′
tβo cannot be the conditional mean.

Unlike [A2](ii), the imposed conditions do not rule out serially correlated yt, nor do

they require the conditional variance var(yt | Yt−1,Wt) to be a constant. Moreover, {xt}
may also be a sequence of weakly dependent and heterogeneously distributed random

variables, as long as it obeys a SLLN (WLLN). To summarize, the conditions here allow

data to exhibit various forms of dependence and heterogeneity. By contrast, the classical

conditions admit only serially uncorrelated and homoskedastic data.

Given [B1], define the following limits:

Mxx := lim
T→∞

1
T

T∑
t=1

IE(xtx
′
t), Mxy := lim

T→∞
1
T

T∑
t=1

IE(xtyt),

which are, respectively, the almost surely (probability) limits of the average of xtx
′
t and

xtyt under a SLLN (WLLN). As matrix inversion is a continuous function andMxx is

invertible by [B1](i), Lemma 5.13 (Lemma 5.17) ensures that(
1
T

T∑
t=1

xtx
′
t

)−1

→ M−1
xx a.s. (in probability).

It follows from (6.2) that

β̂T =

(
1
T

T∑
t=1

xtx
′
t

)−1(
1
T

T∑
t=1

xtyt

)
→ M−1

xxMxy a.s. (in probability).

This shows that the OLS estimator of β has a well-defined limit under [B1].

Theorem 6.1 Given the linear specification (6.1), suppose that [B1] holds. Then, β̂T

is srongly (weakly) consistent for M−1
xxMxy.

Theorem 6.1 holds regardless of [B2]; that is, whether (6.1) is the correct specification

or not is irrelevant.

Example 6.2 Given the simple AR(1) specification

yt = αyt−1 + et,
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suppose that {y2
t } and {ytyt−1} obey a SLLN (WLLN). Then, Theorem 6.1 ensures that

the OLS estimator

α̂T →
limT→∞

1
T

∑T
t=2 IE(ytyt−1)

limT→∞
1
T

∑T
t=2 IE(y

2
t−1)

a.s. (in probability).

If IE(yt) = 0, var(yt) = γ0 and cov(yt, yt−1) = γ1 for all t. This limit simplifies to γ1/γ0.

By the law of iterated expectations, [B2] implies

IE(xtyt) = IE[xt IE(yt | Yt−1,Wt)] = IE(xtx
′
t)βo,

which in turn yieldsMxy =Mxxβo. Thus, [B1] and [B2] together determine the almost

sure (probability) limit in Theorem 6.1 as

M−1
xxMxy = βo.

We have established the following result.

Theorem 6.3 Given the linear specification (6.1), suppose that [B1] and [B2] hold.

Then, β̂T is strongly (weakly) consistent for the parameter vector βo in [B2].

We state consistency in two results so as to clarify the convergence behavior of the

OLS estimator. First, as long as the data obey a proper SLLN (WLLN), β̂T converges

to “something.” Second, the almost sure (probability) limit would be βo if x′
tβ is the

correct specification for the conditional mean. These results are convenient for asserting

consistency. Once we believe (or are able to verify) that the data obey a SLLN (WLLN),

the conclusion of Theorem 6.1 immediately applies. If, further, we believe (or are able to

verify) that the specification is correct for the conditional mean, we can conclude from

Theorem 6.3 that the OLS estimator is strongly (weakly) consistent for the parameter

of interest.

Example 6.4 Given the simple AR(1) specification

yt = αyt−1 + et,

suppose that

yt = αoyt−1 + ut,
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where |αo| < 1 and {ut} is a sequence of unobservable, independent random variables
with mean zero and variance σ2

u. A process so generated is an AR(1) process. As all the

elements of Yt−1 are determined by us for s ≤ t− 1, it is then clear that these elements
and their functions must be independent of ut, by Lemma 5.1. It follows that αoyt−1

is the conditional mean IE(yt | Yt−1). Theorem 6.3 now ensures that α̂T → αo a.s. (in

probability). Note, however, that αoyt−1 need not be the conditional mean if {ut} is a
white noise sequence.

Alternatively, we can establish consistency as follows. In view of Section 4.4, yt is

weakly stationary with mean zero, variance σ2
u/(1− α2

o) and

cov(yt, yt−j) = αj
o

σ2
u

1− α2
o

.

It follows from Example 6.2 that

α̂T → cov(yt, yt−1)
var(yt−1)

= αo a.s. (in probability).

Comparing to Example 6.2 we can see that the more we know about data, the more

precise we can say about the limit of the OLS estimator. ✷

The examples below illustrate that when x′
tβo is not the desired conditional mean,

the OLS estimator still converges but may be inconsistent for βo.

Example 6.5 Consider the specification

yt = x
′
tβ + et,

where x′
t is k1 × 1. Suppose that

IE(yt | Yt−1,Wt) = x′
tβo + z

′
tγo,

where zt (k2 × 1) also contains the elements of Yt−1 and Wt and is distinct from xt.

This is an example that a specification omits relevant variables (zt in the conditional

mean). When [B1] holds,

β̂T → M−1
xxMxy, a.s. (in probability),

by Theorem 6.1. In this case,

IE(xtyt) = IE(xtx
′
t)βo + IE(xtz

′
t)γo,

c© Chung-Ming Kuan, 2001



148 CHAPTER 6. ASYMPTOTIC LEAST SQUARES THEORY

so that

IE[xt(yt − xtβo)] = IE(xtz
′
t)γo,

which is non-zero in general. This shows that x′
tβo cannot be the desired conditional

mean, and hence convergence to βo is not guaranteed. In fact, the almost sure (proba-

bility) limit of β̂T is

β∗ =M−1
xxMxy = βo +M

−1
xxMxzγo,

where Mxz = limT→∞
∑T

t=1 IE(xtz
′
t)/T is assumed to exist. This limit is not βo in

general. If the elements of xt are orthogonal to those of zt, i.e., IE(xtz
′
t) = 0, we have

Mxz = 0 and β∗ = βo. Then β̂T converges to βo almost surely (in probability), despite

that the linear function is misspecified for the conditional mean function. ✷

Example 6.6 Given the simple AR(1) specification

yt = αyt−1 + et,

suppose that

yt = αoyt−1 + ut + πout−1,

where |αo| < 1, |πo| < 1, and {ut} is a sequence of unobservable, independent random
variables with mean zero and variance σ2

u. A process so generated is known as an

ARMA(1,1) process (autoregressive and moving average process of order (1,1)). It is

easily shown that αoyt−1 is not the conditional mean IE(yt | Yt−1) because

IE[yt−1(yt − αoyt−1)] = IE[yt−1(ut + πout−1)] = πoσ
2
u,

which is non-zero unless πo = 0. As {yt} is weakly stationary such that

IE(ytyt−1) = αo IE(y
2
t−1) + πoσ

2
u,

where IE(y2
t−1) is a constant, we have from Example 6.2 that

α̂T → IE(ytyt−1)
IE(y2

t−1)
= αo + πo

σ2
u

IE(y2
t−1)

a.s. (in probability).

This shows that α̂T converges but is inconsistent for αo. This is the case because

yt −αoyt−1 are serially correlated and hence correlated with yt−1. Clearly, α̂T would be

consistent for αo if πo = 0, i.e., yt−αoyt−1 are serially uncorrelated (in fact, independent)

and hence uncorrelated with yt−1, as shown in Example 6.4.
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This conclusion will not be altered if the lagged dependent variable is one of the

regressors:

yt = αyt−1 + x
′
tβ + et.

Suppose that

yt = αoyt−1 + x
′
tβo + εt,

where εt are serially correlated. Then the OLS estimators for α and β are inconsistent

for αo and βo. ✷

In the examples above, yt can be written as

yt = xtβ
∗ + εt,

where εt are disturbances. For Example 6.5, β
∗ = βo, εt = z′tγo + ut, and ut is such

that IE(ut | Yt−1,Wt) = 0; for Example 6.6, β∗ = αo, εt = ut + γout−1, and {ut} is a
white noise sequence. By noting

β̂T = β
∗ +

(
1
T

T∑
t=1

xtx
′
t

)−1(
1
T

T∑
t=1

xt(yt − x′
tβ

∗)

)
, (6.3)

we can see that β̂T would converge to β
∗ provided that the second term on the right-

hand side vanishes in the limit. When xt are uncorrelated with the disturbances:

IE[xt(yt − x′
tβ

∗)] = 0 for all t, SLLN (WLLN) implies

1
T

T∑
t=1

xt(yt − x′
tβ

∗)→ 0 a.s. (in probability),

1
T

T∑
t=1

xtx
′
t = O(1) a.s. (in probability).

It follows that the second term on the right-hand side of (6.3) does converge to zero

almost surely (in probability). Clearly, [B2] is a sufficient condition for IE[xt(yt −
x′
tβ

∗)] = 0 for β∗ = βo.

On the other hand, when IE[xt(yt − x′
tβ

∗)] = c �= 0,

1
T

T∑
t=1

xt(yt − x′
tβ

∗)→ c a.s. (in probability),
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so that β̂T converges in probability to β
∗ +M−1

xx c, which differs from β∗ by a fixed
amount. That is, inconsistency would result if the regressor xt are correlated with the

disturbances εt. Such correlations may be due to the correlation between the included

and excluded variables (Example 6.5) or the correlation between the lagged dependent

variables and serially correlated disturbances (Example 6.6).

While the effect of SLLN or WLLN (condition [B1]) is important in establishing

OLS consistency, it will be shown below that [B1] is not a necessary condition.

Example 6.7 Given the simple linear time trend specification:

yt = a+ b t+ et,

suppose that [B2] holds: IE(yt|Yt−1) = ao + bo t. We have learned from Example 5.29

that {t} and {t2} do not obey a SLLN or a WLLN so that [B1] is violated. Nevertheless,
the OLS estimators of a and b remain consistent. In view of (6.3), the OLS estimator

of b is

b̂T =
∑T

t=1

(
t − T+1

2

)
yt∑T

t=1

(
t − T+1

2

)2 = bo +
∑T

t=1

(
t − T+1

2

)
εt∑T

t=1

(
t − T+1

2

)2 ,

where εt = yt − ao − bot. We have seen in Example 5.30 that
∑T

t=1 εt is OIP(T 1/2) and∑T
t=1 tεt is OIP(T 3/2). While the numerator term is OIP(T 3/2), the denominator grows

even faster:

T∑
t=1

(
t − T + 1

2

)2

=
T∑
t=1

t2 − T (T + 1)2

4
=

T (T + 1)(T − 1)
12

= O(T 3).

The entire second term thus vanishes in the limit, and b̂T
IP−→ bo. Similarly, we can

show

âT = ȳ − b̂T
T + 1
2

= ao +
(4T + 2)

∑T
t=1 εt − 6

∑T
t=1 tεt

T (T − 1) .

As the second term above is OIP(T
−1/2), âT

IP−→ ao. ✷

Example 6.8 Given a simple AR(1) specification:

yt = αyt−1 + et,

suppose that yt is a random walk:

yt = yt−1 + εt,
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where εt are i.i.d. random variables. We have seen in Example 5.31 that {yt} and {y2
t }

do not obey a SLLN (WLLN). By (6.3), the OLS estimator of α can be written as

α̂T = 1 +
∑T

t=1 yt−1εt∑T
t=1 y

2
t−1

.

From Examples 5.31 and 5.32 we know that the numerator on the right-hand side above

is OIP(T ), while the denominator is OIP(T
2). Consequently, α̂T

IP−→ 1.

When {εt} is a weakly stationary ARMA process and exhibits serial correlations,
yt−1 is not the conditional mean of yt because IE(yt−1εt) is non-zero. Nevertheless,∑T

t=1 yt−1εt∑T
t=1 y

2
t−1

=
OIP(T )
OIP(T 2)

= OIP(T
−1), (6.4)

so that α̂T is still weakly consistent for 1. ✷

Remark: Example 6.8 demonstrates that the OLS estimator may still be consistent

even when a lagged dependent variable and serially correlated disturbances are both

present. This is because
∑T

t=1 y
2
t−1 in (6.4) grows much faster and hence is able to

eliminate all the correlations between yt−1 and εt asymptotically. If
∑T

t=1 y
2
t−1 and∑T

t=1 yt−1εt in (6.4) grow at the same rate, these correlations would not vanish in the

limit and therefore cause inconsistency, as shown in Example 6.6.

6.2.2 Asymptotic Normality

We say that β̂T is asymptotically normally distributed (about β
∗) if

√
T (β̂T − β∗) D−→ N(0,Do),

where Do is a positive-definite matrix. That is, the sequence of properly normalized

β̂T converges in distribution to a multivariate normal random vector. As Do is the

covariance matrix of the limiting normal distribution, it is also known as the asymptotic

covariance matrix of
√
T (β̂T − β∗). Equivalently, we may also express asymptotic

normality by

D−1/2
o

√
T (β̂T − β∗) D−→ N(0, Ik).

It should be emphasized that asymptotic normality here is referred to
√
T (β̂T − β∗)

rather than β̂T ; the latter has only a degenerate distribution in the limit by strong

(weak) consistency.
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When
√
T (β̂T −β∗) has a limiting distribution, it is OIP(1) by Lemma 5.24. There-

fore, β̂T −β∗ is necessarily OIP(T
−1/2), so that β̂T tend to β

∗ at the rate T−1/2. Thus,

we know not only consistency but also the rate of convergence to β∗. An estimator that
is consistent at the rate T−1/2 is usually referred to as a “

√
T -consistent” estimator.

Some consistent estimators may converge more quickly. In Example 6.7, the estimator

b̂T of the slope coefficient in the simple time trend specification converges to bo at the

rate T−3/2, whereas the estimator of the intercept is
√
T -consistent. Also, the OLS

estimator for the AR(1) specification is T -consistent when {yt} is a random walk but√
T -consistent when {yt} is a weakly stationary process; see Examples 6.8.

To ensure asymptotic normality, we impose an additional condition.

[B3] For some β∗, {xt(yt−x′
tβ

∗)} is a sequence of random vectors with mean zero and
obeys a CLT.

If we write

yt = x
′
tβ

∗ + εt,

[B3] requires that IE(xtεt) = 0, i.e., the regressors xt and disturbances εt are uncorre-

lated. Moreover,

V T := var

(
1√
T

T∑
t=1

xtεt

)
→ V o,

a positive-definite matrix, and

V −1/2
o

(
1√
T

T∑
t=1

xtεt

)
D−→ N(0, Ik).

In view of (6.3), the normalized OLS estimator is

√
T (β̂T − β∗) =

(
1
T

T∑
t=1

xtx
′
t

)−1(
1√
T

T∑
t=1

xtεt

)

=

(
1
T

T∑
t=1

xtx
′
t

)−1

V 1/2
o

[
V −1/2

o

(
1√
T

T∑
t=1

xtεt

)]
.

(6.5)

Given the SLLN (WLLN) condition [B1] and the CLT condition [B3], the first term on

the right-hand side of (6.5) converges in probability to M−1
xx , and the last term in the
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square bracket converges in distribution to N(0, Ik). It follows from Lemma 5.22 that

(6.5) converges in distribution to

M−1
xxV

1/2
o N(0, Ik)

d= N(0, M−1
xxV oM

−1
xx ),

where d= stands for equality in distribution. We have established the following asymp-

totic normality result.

Theorem 6.9 Given the linear specification (6.1), suppose that [B1] and [B3] hold.

Then,

√
T (β̂T − β∗) D−→ N(0,Do),

where Do =M
−1
xxV oM

−1
xx , or equivalently,

D−1/2
o

√
T (β̂T − β∗) D−→ N(0, Ik),

where D−1/2
o = V −1/2

o Mxx.

As long as we believe (or are able to verify) that the data have proper SLLN (WLLN)

and CLT effects, we can invoke Theorem 6.9 and assert asymptotic normality of the

(properly normalized) OLS estimator. In particular, this result may hold for weakly

dependent and heterogeneously distributed data; neither independence nor normality is

required. By contrast, the normality property in Theorem 3.7(a) is an exact distribution

result for the OLS estimator, but it is valid only when yt are are independent, normal

random variables.

When V o is unknown, let V̂ T denote a symmetric and positive definite matrix that

is consistent for V o. A weakly consistent estimator of Do is then

D̂T =

(
1
T

T∑
t=1

xtx
′
t

)−1

V̂ T

(
1
T

T∑
t=1

xtx
′
t

)−1

.

As D̂T
IP−→ Do, we must have D̂

−1/2
T

IP−→ D
−1/2
o . It follows from Theorem 6.9 and

Lemma 5.19 that

D̂
−1/2
T

√
T (β̂T − β∗) D−→ D−1/2

o N(0,Do)
d= N(0, Ik).

The shows that Theorem 6.9 remains valid when the asymptotic covariance matrix Do

is replaced by a weakly consistent estimator D̂T . Note that D̂T does not have to be a

strongly consistent estimator here.
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Theorem 6.10 Given the linear specification (6.1), suppose that [B1] and [B3] hold.

Then,

D̂
−1/2
T

√
T (β̂T − β∗) D−→ N(0, Ik),

where D̂T = (
∑T

t=1 xtx
′
t/T )−1V̂ T (

∑T
t=1 xtx

′
t/T )−1 and V̂ T

IP−→ V o.

Remark: Theorems 6.9 and 6.10 show that we may obtain asymptotic normality when

the condition [B2] for correct specification is absent. Without [B2], there is no guarantee

that β̂T would converge to βo, but it still converges to some limit β
∗ under [B1]. Then

the CLT effect of [B3] suffices for asymptotic normality. When the asymptotic covariance

matrix V o is unknown, it is of paramount importance to find a consistent estimator of

Do. Normalizing the OLS estimator with an inconsistent estimator of Do will, in

general, destroy asymptotic normality.

Example 6.11 Given the linear specification

yt = x
′
tβ + e, t = 1, . . . , T,

suppose that the classical conditions [A1] and [A2] hold. If
∑T

t=1 xtx
′
t/T converges to

some limitMxx, then

V o = lim
T→∞

1
T

T∑
t=1

IE(ε2
txtx

′
t) = σ2

oMxx.

By invoking a suitable CLT, it can be shown that the classical conditions are sufficient

for [B3]. It follows from Theorem 6.9 that
√
T (β̂T − β∗) D−→ N(0,Do),

with a much simpler asymptotic covariance matrix:

Do =M
−1
xxV oM

−1
xx = σ2

oM
−1
xx .

Comparing to Theorem 3.7(a), yt here need not be normally distributed, and the asymp-

totic covariance matrix is determined by the limit of
∑T

t=1(xtx
′
t)/T , which in matrix

notations can be written as X ′X/T . A natural estimator of Do is

D̂T = σ̂2
T (X

′X/T )−1,

where σ̂2
T is the OLS variance estimator. Theorem 6.10 then ensures

1
σ̂T
(X ′X/T )1/2

√
T (β̂T − β∗) =

1
σ̂T
(X ′X)1/2(β̂T − β∗) D−→ N(0, Ik),
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Taking the inner product of the left-hand side above we immediately conclude that

(β̂T − β∗)′(X ′X)(β̂T − βo)
σ̂2
T

D−→ χ2(k).

by Lemma 5.20. Note that the left-hand side is k times the F statistic (with R = Ik)

in Section 3.4.1. ✷

The example below shows that even without the effects of SLLN (WLLN) and CLT,

properly normalized OLS estimators may still have an asymptotic normal distribution.

Example 6.12 The simple linear time trend specification,

yt = a+ b t+ et,

is a special case of the regression with non-stochastic regressors xt = [1 t]′. Let âT and
b̂T denote the OLS estimators of a and b, respectively. We know that {xtx′

t} does not
obey a SLLN (WLLN) and that {tεt} does not obey a CLT. It is, however, easy to see
that for x̃t = [1 t/T ]′,

1
T

T∑
t=1

x̃tx̃
′
t →
[
1 1/2

1/2 1/3

]
=:M ,

so that {x̃tx̃′
t} obeys a SLLN. Example 5.37 also shows that {(t/T )εt} obeys a CLT.

These suggest that we may consider an alternative specification:

yt = a+ b
t

T
+ et.

The resulting OLS estimators are such that ãT = âT and b̃T = T b̂T .

Suppose that

yt = ao + bo t+ εt,

where εt are uncorrelated random variables with IE(εt) = 0 and var(εt) = σ2
o . In view

of the preceding example we can then conclude that T 1/2(âT − ao)

T 3/2(b̂T − bo)

 = √
T

 ãT − ao

b̃T − T bo

 D−→ N(0,Do),

with Do = σ2
oM

−1, where

M−1 =

[
4 −6
−6 12

]
.
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Moreover,

D−1/2
o

 T 1/2(âT − ao)

T 3/2(b̂T − bo)

 D−→ N(0, I2),

where D−1/2
o = σ−1

o M1/2 with

M1/2 =

[
1 1/2

0 1/(2
√
3)

]
.

Replacing σo by the OLS estimator σ̂T yields the same limiting result. ✷

6.3 Consistent Estimation of Covariance Matrix

We have seen in the preceding section that a consistent estimator ofDo =M
−1
xxV oM

−1
xx

is crucial for the asymptotic normality result. The matrix Mxx can be consistently

estimated by its sample counterpart
∑T

t=1 xtx
′
t/T ; it then remains to find a consistent

estimator of

V o = lim
T→∞

var

(
1√
T

T∑
t=1

xtεt

)
,

where εt = yt − x′
tβ

∗. This section is concerned with consistent estimation of V o and

Do.

In its most general form, V o can be expressed as the sum of variances and autoco-

variances:

V o = lim
T→∞

var

(
1√
T

T∑
t=1

xtεt

)

= lim
T→∞

1
T

T∑
t=1

IE(ε2
txtx

′
t) +

lim
T→∞

1
T

T−1∑
τ=1

T∑
t=τ+1

[
IE(xt−τ εt−τ εtx

′
t) + IE(xtεtεt−τx

′
t−τ )
]
.

(6.6)

Let xij denote the j th element of xi. It can be seen that for t �= s,

IE(xt1εtεsxs2) �= IE(xs1εsεtxt2),

in general. That is, the covariance matrix IE(xt−τ εt−τ εtx
′
t) need not be symmetric.

This matrix would be symmetric when, for example, {xtεt} is a multivariate, weakly
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stationary process such that the autocovariances of its elements, IE(xtiεtεsxsj), do not

depend on t but only on the time difference t − s. When {xtεt} is indeed weakly
stationary, V o simplifies to

V o = lim
T→∞

1
T

T∑
t=1

IE(ε2
txtx

′
t) + lim

T→∞
2
T

T−1∑
τ=1

(T − τ) IE(xt−τ εt−τ εtx
′
t). (6.7)

Clearly, if xtεt are serially uncorrelated, the second terms on the right-hand side of (6.6)

and (6.7) vanish; the remaining part of V ois relatively easy to estimate. When there

are serial correlations, estimating V o would be more cumbersome because it involves

an infinite sum of autocovariances.

6.3.1 When Serial Correlations Are Absent

First observe that [B2] is equivalent to the condition that

IE(εt|Yt−1,Wt) = 0,

where εt = yt − xtβo. The sequence {εt} with the property above is known as the
martingale difference sequence with respect to the sequence of σ-algebras generated by

(Yt−1,Wt).

It is easy to see that if {εt} is a martingale difference sequence with respect to
{Yt−1,Wt}, its unconditional mean and autocovariances are also zero, yet it may not
be a white noise; see Exercise 6.7. Note also that a white noise need not be a martingale

difference sequence. For the same reasons, we can verify that

IE(xtεt) = IE[xt IE(εt|Yt−1,Wt)] = 0.

and for any t �= τ ,

IE(xtεtετx
′
τ ) = IE[xt IE(εt|Yt−1,Wt)ετx

′
τ ] = 0.

That is, {xtεt} is a sequence of uncorrelated, zero-mean random vectors under [B2]. In
this case, the covariance matrices (6.6) and (6.7) are

V o = lim
T→∞

1
T

T∑
t=1

IE(ε2
txtx

′
t). (6.8)

Note that the simpler form of V o is a consequence of [B2], the correct specification of

the conditional mean function. [B2] is not a necessary condition for (6.8), however.
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If, in addition to [B2], εt are also conditionally homoskedastic:

IE(ε2
t |Yt−1,Wt) = σ2

o ,

then (6.8) can be further simplified to

V o = lim
T→∞

1
T

T∑
t=1

IE[IE(ε2
t |Yt−1,Wt)xtx

′
t]

= σ2
o

(
lim
T→∞

1
T

T∑
t=1

IE(xtx
′
t)

)

= σ2
oMxx.

(6.9)

AsMxx can be consistently estimated by its sample counterpart, it remains to estimate

σ2
o . It turns out that the standard OLS estimator σ̂

2
T =

∑T
t=1 ê

2
t/(T − k) is consistent

for σ2
o , where êt are the OLS residuals; see Exercise 6.8. It follows that a consistent

estimator of V o is

V̂ T = σ̂2
T

(
1
T

T∑
t=1

xtx
′
t

)
.

In this case, the asymptotic covariance matrix of
√
T (β̂T −βo) is also of a simpler form:

Do =M
−1
xxV oM

−1
xx = σ2

oM
−1
xx ,

which can be consistently estimated by

D̂T = σ̂2
T

(
1
T

T∑
t=1

xtx
′
t

)−1

. (6.10)

This is the same as the estimator obtained in Example 6.11. Note again that, apart

from the factor T , D̂T here is the estimated covariance matrix of β̂T in the classical

least squares theory.

More generally, when εt are conditionally heteroskedastic, i.e., IE(ε2
t |Yt−1,Wt) are

random variables depending on t, then (6.8) cannot be simplified as before. To estimate

(6.8), it can be seen that

1
T

T∑
t=1

[ê2
txtx

′
t − IE(ε2

txtx
′
t)]

=
1
T

T∑
t=1

(
ε2
txtx

′
t − IE(ε2

txtx
′
t)
)
− 2

T

T∑
t=1

(
εtx

′
t(β̂T − βo)xtx

′
t

)
+

1
T

T∑
t=1

(
(β̂T − βo)

′xtx
′
t(β̂T − βo)xtx

′
t

)
.
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The first term on the right-hand side would converge to zero in probability if {ε2
txtx

′
t}

obeys a WLLN. By noting that under [B2],

IE(εtx
′
txtx

′
t) = IE[IE(εt|Yt−1,Wt)x′

txtx
′
t] = 0,

a suitable WLLN will ensure

1
T

T∑
t=1

εtx
′
txtx

′
t

IP−→ 0.

This, together with the fact that β̂T − βo is OIP(T
−1/2), shows that the second term

also converges to zero in probability. Similarly, the third term also vanishes in the limit

by a suitable WLLN. These results together indicate that, as long as data have proper

WLLN effects,

1
T

T∑
t=1

[ê2
txtx

′
t − IE(ε2

txtx
′
t)]

IP−→ 0.

A consistent estimator of V o is therefore

V̂ T =
1
T

T∑
t=1

ê2
txtx

′
t. (6.11)

Thus, V o can be consistently estimated without modeling the conditional variance

IE(ε2
t |Yt−1,Wt). An estimator of this form is known as a heteroskedasticity-consistent

covariance matrix estimator which is consistent when conditional heteroskedasticity is

present and of unknown form. Consequently, a consistent estimator of Do is

D̂T =

(
1
T

T∑
t=1

xtx
′
t

)−1(
1
T

T∑
t=1

ê2
txtx

′
t

)(
1
T

T∑
t=1

xtx
′
t

)−1

. (6.12)

This estimator was proposed by Eicker (1967) and White (1980) and known as the

Eicker-White covariance matrix estimator. While the estimator (6.10) is inconsistent

under conditionally heteroskedasticity, the Eicker-White estimator is “robust” in the

sense that it remains consistent under conditional homoskedasticity and heteroskedas-

ticity. Yet the Eicker-White estimator is less efficient than (6.10) when εt are in fact

conditionally homoskedastic. That is, we obtain a more robust estimator at the expense

of (possible) efficiency loss.

6.3.2 When Serial Correlations Are Present

When {xtεt} exhibit serial correlations, it is still possible to estimate (6.6) and (6.7)
consistently. Let m(T ) denote a function of T which diverges to infinity with T but
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at a slower rate. Suppose that the autocorrelations between xtεt and xt−τ εt−τ decay

sufficiently fast such that

1
T

T−1∑
τ=m(T )+1

T∑
t=τ+1

IE(xtεtεt−τx
′
t−τ )→ 0.

That is, xtεt and xt−τ εt−τ are asymptotically uncorrelated in a proper way. Then for

large T , V o can be well approximated by

V ∗
T =

1
T

T∑
t=1

var(xtεt) +
1
T

m(T )∑
τ=1

T∑
t=τ+1

IE(xt−τ εt−τ εtx
′
t) + IE(xtεtεt−τx

′
t−τ ).

Estimating V o now amounts to estimating V
∗
T .

White (1984) notes that a consistent estimator of V ∗
T is its sample counterpart:

V̌ T =
1
T

T∑
t=1

ê2
txtx

′
t +
1
T

m(T )∑
τ=1

T∑
t=τ+1

(
xt−τ êt−τ êtx

′
t + xtêtêt−τx

′
t−τ

)
,

A major problem with this estimator is that V̌ T need not be positive semi-definite and

hence cannot be a well-defined variance-covariance matrix. Newey andWest (1987) show

that with a suitable weighting function wm(T )(τ), the estimator below is guaranteed to

be positive semi-definite while remaining consistent for V ∗
T :

V̂ T =
1
T

T∑
t=1

ê2
txtx

′
t +

1
T

T−1∑
τ=1

wm(T )(τ)
T∑

t=τ+1

(
xt−τ êt−τ êtx

′
t + xtêtêt−τx

′
t−τ

) (6.13)

The estimator (6.13) is known as a heteroskedasticity and autocorrelation-consistent

(HAC) covariance matrix estimator and is valid when both conditional heteroskedastic-

ity and serial correlations are present but of an unknown form. The resulting consistent

estimator of Do is

D̂T =

(
1
T

T∑
t=1

xtx
′
t

)−1

V̂ T

(
1
T

T∑
t=1

xtx
′
t

)−1

, (6.14)

where V̂ T is given by (6.13); cf. the Eicker-White estimator (6.12). An estimator of

this type is usually referred to as the Newey-West covariance matrix estimator.
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In particular, Newey and West (1987) suggested the so-called Bartlett kernel for the

weighting function of V̂ T :

wm(T )(τ) =

 1− τ
m(T ) , if 0 ≤ τ

m(T ) ≤ 1,

0, otherwise.

Gallant (1987) chose the Parzen kernel as the weighting function:

wm(T )(τ) =


1− 6

(
τ

m(T )

)2
+ 6
(

τ
m(T )

)3
, if 0 ≤ τ

m(T ) ≤ 1/2,

2
(
1− τ

m(T )

)3
, if 1/2 ≤ τ

m(T ) ≤ 1,

0, otherwise.

Consider the Bartlett kernel where wm(T )(τ) = 1 − τ/m(T ). For a fixed m(T ), it is

decreasing in τ ; hence a smaller weight is assigned when two random variables are

separated for a long time period (i.e., τ is large). On the other hand, for a fixed τ ,

wm(T )(τ) → 1 as m(T ) → ∞ and hence entails little loss asymptotically. In practice,

a finite number of m(T ) must be chosen to compute V̂ T . It is worth noting that a

small m(T ) may result in substantial finite-sample bias. For other choices of weight-

ing functions and a method of determining the approximation lags m(T ), we refer to

Andrews (1991).

Comparing to the Eicker-White estimator, the Newey-West estimator is robust to

both conditional heteroskedasticity of εt and and serial correlations of xtεt, yet the

latter is less efficient than the former when xtεt are not serially correlated. Finally, we

note that both the Eicker-White estimator (6.12) and the Newey-West estimator (6.14)

are non-parametric in nature because they do not rely on any parametric model of

conditional heteroskedasticity and serial correlations.

6.4 Large-Sample Tests

After learning the asymptotic properties of the OLS estimator under more general con-

ditions, it is now important to construct suitable tests and derive their limiting distri-

butions. In this section, we will study two large-sample tests for the linear hypothesis

H0 : Rβ
∗ = r,

where R is a q × k (q < k) nonstochastic matrix with rank q, and r is a pre-specified

real vector, as in Section 3.4.
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6.4.1 Wald Test

Given that the OLS estimator β̂T is consistent for some parameter vector β
∗, one

would expect that Rβ̂T is “close” to Rβ
∗ when T becomes large. As Rβ∗ = r under

the null hypothesis, whether Rβ̂T is sufficiently “close” to r constitutes an evidence for

or against the null hypothesis. The Wald test is based on the difference between Rβ̂T

and r.

When [B1] and [B3] hold, we have from Theorem 6.9 that
√
TR(β̂T − β∗) D−→ N(0,RDoR

′),

or equivalently,

Γ−1/2
o

√
TR(β̂T − β∗) D−→ N(0, Iq),

where Γo = RDoR
′ = RM−1

xxV oM
−1
xxR

′. By Theorem 6.10, asymptotic normality
would not be affected if Γo is replaced by its consistent estimator, e.g.,

Γ̂T = RD̂TR
′ = R

(
1
T

T∑
t=1

xtx
′
t

)−1

V̂ T

(
1
T

T∑
t=1

xtx
′
t

)−1

R′,

where V̂ T is a consistent estimator of V o. That is,

Γ̂
−1/2
T

√
TR(β̂T − β∗) D−→ N(0, Iq). (6.15)

Under the null hypothesis, Rβ∗ = r, the Wald test statistic is the inner product of

(6.15):

WT = T (Rβ̂T − r)′Γ̂
−1
T (Rβ̂T − r). (6.16)

The result below follows directly from the continuous mapping theorem (Lemma 5.20).

Theorem 6.13 Given the linear specification (6.1), suppose that [B1] and [B3] hold.

Then, under the null hypothesis,

WT
D−→ χ2(q).

where WT is given by (6.16) and q is the number of hypotheses.

The Wald test has much wider applicability because it is valid for a wide variety

of data which may be non-Gaussian, heteroskedastic, and serially correlated. What

matter here are the asymptotic normality result of the OLS estimator and a consistent

estimator of V o. If an inconsistent estimator of V o is used in the test statistic, both D̂T

and Γ̂T become inconsistent, and, consequently, the Wald statistic WT will not have a

limiting χ2 distribution.
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Example 6.14 Test of a subset of coefficients being zero: Given the linear specification

yt = x1,tb1 + x2,tb2 + et,

where x1,t is (k − s) × 1 and x2,t is s × 1, suppose that the specification is correct for
the conditional mean with βo = [b

′
1,o b

′
2,o]

′. If we want to verify whether

IE(yt|Yt−1,Wt) = x1,tb1,o,

then the hypothesis is Rβo = 0 with R = [0s×(k−s) Is]. The Wald test statistic is

WT = T β̂
′
TR

′
[
R(X ′X/T )−1V̂ T (X

′X/T )−1R′
]−1

Rβ̂T
D−→ χ2(s).

Note that this is a general expression of the Wald statistic; its exact form depends on

V̂ T .

When V o can be consistently estimated by V̂ T =
∑T

t=1 ê
2
txtx

′
t/T ,

WT = β̂
′
TR

′
[
R(X ′X)−1

(
T∑
t=1

ê2
txtx

′
t

)
(X ′X)−1R′

]−1

Rβ̂T .

If the null hypothesis is that the i th coefficient is zero, then R is the i th Cartesian unit

vector ci so that

β̂i,T /

√
d̂ii

D−→ N(0, 1), (6.17)

where d̂ii is the i th diagonal element of D̂T /T :

(X ′X)−1

(
T∑
t=1

ê2
txtx

′
t

)
(X ′X)−1.

Note that d̂ii is usually referred to as White’s estimate of the standard error of the i th

coefficient. In view of (6.17), we can test the significance of the i th coefficient using the

t statistic with the OLS standard error replaced by the Eicker-White estimate of the

standard error. We can also base other t tests on the Eicker-White standard errors.

When a consistent estimator of V o is V̂ T = σ̂2
T (X

′X/T ), the Wald statistic becomes

WT = β̂
′
TR

′
[
R(X ′X)−1R′

]−1
Rβ̂T /σ̂

2
T ,

which is nothing but s times the standard F -statistic. Therefore, for testing the i th

coefficient being zero, the standard t ratio will still do. The difference is that, instead of

having an exact null distribution, the t ratio now has the asymptotic null distribution

N(0, 1). ✷

c© Chung-Ming Kuan, 2001



164 CHAPTER 6. ASYMPTOTIC LEAST SQUARES THEORY

Remark: The F -test-based version of the Wald test is appropriate only when V̂ T =

σ̂2
T (X

′X/T ) is consistent for V o. We know that if εt are conditionally heteroskedastic

and/or xtεt are serially correlated, this estimator is not consistent for V o. Consequently,

the F -test-based version does not have a limiting χ2 distribution.

6.4.2 Lagrange Multiplier Test

From Section 3.4.3 we have seen that, given the constraint Rβ = r, the constrained

OLS estimator can be obtained by finding the saddle point of the Lagrangian:

1
T
(y −Xβ)′(y −Xβ) + (Rβ − r)′λ,

where λ is the q×1 vector of Lagrange multipliers. The underlying idea of the Lagrange
Multiplier (LM) test of this constraint is to check whether λ is sufficiently “close” to

zero. Intuitively, λ can be interpreted as the “shadow price” of this constraint and

hence should be “small” when the constraint is valid (i.e., the null hypothesis is true);

otherwise, λ ought to be “large.” Again, the closeness between λ and zero must be

determined by the distribution of the estimator of λ.

It is easy to find the solutions to the Lagrangian above:

λ̈T = 2[R(X
′X/T )−1R′]−1(Rβ̂T − r),

β̈T = β̂T − (X ′X/T )−1R′λ̈T /2.

Here, β̈T is the constrained OLS estimator of β, and λ̈T is the basic ingredient of the

LM test. Let εt = yt − x′
tβ

∗, where β∗ satisfies the constraint Rβ∗ = r under the null
hypothesis and

V o = lim
T→∞

var

(
1√
T

T∑
t=1

xtεt

)
.

Given [B1] and [B3],

√
T λ̈T = 2

[
R(X ′X/T )−1R′

]−1√
T (Rβ̂T − r)

D−→ 2(RM−1
xxR

′)−1 N(0,RDoR
′).

where Do = M−1
xxV oM

−1
xx and the limiting distribution of the right-hand side is

N(0,Λo) with

Λo = 4(RM
−1
xxR

′)−1(RDoR
′)(RM−1

xxR
′)−1.
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We immediately have

Λ−1/2
o

√
T λ̈T

D−→ N(0, Iq).

Similar as before, this result remains valid whenΛo is replaced by a consistent estimator;

for example,

Λ̈T = 4
[
R(X ′X/T )−1R′

]−1[
R(X ′X/T )−1V̈ T (X

′X/T )−1R′
]

[
R(X ′X/T )−1R′

]−1
,

where V̈ T is a consistent estimator of V o based on the constrained estimation result.

Typically, V̈ T involves xt and constrained OLS residuals ët = yt − x′
tβ̈T . Thus,

Λ̈
−1/2
T

√
T λ̈T

D−→ N(0, Iq). (6.18)

and the LM statistic is the inner product of (6.18):

LMT = T λ̈
′
T Λ̈

−1
T λ̈T , (6.19)

The result below is again a consequence of the continuous mapping theorem.

Theorem 6.15 Given the linear specification (6.1), suppose that [B1] and [B3] hold.

Then, under the null hypothesis,

LMT
D−→ χ2(q),

where LMT is given by (6.19).

Let ë = y −Xβ̈T denote the vector of constrained OLS residuals. By noting that

the constrained OLS estimator must satisfy the constraint (i.e., Rβ̈T = r), we can write

Rβ̂T − r = R(X ′X/T )−1X ′(y −Xβ̈T )/T

= R(X ′X/T )−1X ′ë/T.

An alternative expression of λ̈T is then

λ̈T = 2[R(X
′X/T )−1R′]−1R(X ′X/T )−1X ′ë/T.

It follows that the LM test statistic is algebraically equivalent to

LMT = T ë′X(X ′X)−1R′
[
R(X ′X/T )−1V̈ T (X

′X/T )−1R′
]−1

R(X ′X)−1X ′ë.
(6.20)
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This expression shows that only constrained estimation is needed to compute the LM

statistic.

A fundamental difference between the LM and Wald tests is that the former involves

only constrained estimation, whereas the latter requires unconstrained estimation. As

such, the Wald test would be more convenient if constrained specifications are difficult

to estimate, such as a linear specification with a nonlinear constraint. The LM test,

on the other hand, would be simpler if constrained estimation is easier to compute.

Similar to the Wald test, the LM test is also valid for a wide variety of data which

may be non-Gaussian, heteroskedastic, and serially correlated. Again, the asymptotic

normality result of the OLS estimator and consistent estimation of V o play a crucial

role in Theorem 6.15. If an inconsistent estimator of V o is used to construct Λ̈T , the

resulting LM test will not have a limiting χ2 distribution.

Example 6.16 Test of a subset of coefficients being zero: Given the following specifi-

cation:

yt = x1,tb1 + et,

suppose that we want to know whether

IE(yt|Yt−1,Wt) = x1,tb1,o + x2,tb2,o,

where x1,t is (k − s) × 1 and x2,t is s × 1. The specification would be correct for the
conditional mean if b2,o = 0. Letting βo = [b

′
1,o b

′
2,o]′, the null hypothesis is Rβo = 0

with R = [0s×(k−s) Is]. The specification above is then a constrained version of

yt = x1,tb1 + x2,tb2 + et.

For this specification, the constrained OLS estimator is β̈T = (b̈
′
1,T 0

′)′, where

b̈1,T =

(
T∑
t=1

x1,tx
′
1,t

)−1 T∑
t=1

x1,tyt = (X
′
1X

−1
) X ′

1y,

which is obtained from the constrained specification. The LM statistic now can be

computed as (6.20) with X = [X1 X2] and the vector of constrained OLS residuals

ë = y −X1b̈1,T .

When V̈ T = σ̈2
T (X

′X/T ) is consistent for V o under the null hypothesis, where

σ̈2
T =
∑T

t=1 ë
2
t/(T − k + s), we have

(RD̈TR
′)−1 =

1
σ̈2
T

[
R(X ′X/T )−1R′

]−1
.
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It can be verified that, by the Frisch-Waugh-Lovell Theorem,

R(X ′X)−1R′ = [X ′
2(I − P 1)X2]

−1,

R(X ′X)−1X ′ = [X ′
2(I − P 1)X2]

−1X ′
2(I − P 1),

where P 1 =X1(X
′
1X1)

−1X ′
1. The LM statistic now simplifies to

LMT = ë
′(I − P 1)X2[X

′
2(I − P 1)X2]

−1X ′
2(I − P 1)ë/σ̈

2
T

= ë′X2[X
′
2(I − P 1)X2]

−1X ′
2ë/σ̈

2
T ,

because X ′
1ë = 0 so that P 1ë = 0. As σ̈2

T = ë
′ë/(T − k + s),

LMT =
ë′X(X ′X)−1X ′ë
ë′ë/(T − k + s)

= (T − k + s)R2,

where R2 is the (non-centered) coefficient of determination of regressing ë on X. If

the estimator σ̈2
T =

∑T
t=1 ë

2
t/T is used, we simply have TR2 as the test statistic. It

must be emphasized that the simpler version of the LM statistic is valid only when

σ̈2
T (X

′X/T ) is a consistent estimator of V o; otherwise, TR2 does not have a limiting χ2

distribution. If the LM statistic is based on the heteroskedasticity-consistent covariance

matrix estimator:

V̈ T =
1
T

T∑
t=1

ë2
txtx

′
t,

it cannot be simplified to TR2.

As the LM test only requires constrained estimation, it is based on the simpler,

constrained specification and checks whether additional s regressors should be included

as well. Comparing to Example 6.14, the Wald test checks whether the unconstrained

specification should exclude s redundant regressors. Thus, the LM test permits testing

“up” (from a simplerr specification), while the Wald test can be employed to test “down”

(from a more complex specification). ✷

Remark: It can also be shown that the Wald and LM statistics are asymptotically

equivalent under the null hypothesis, i.e.,

WT − LMT
IP−→ 0;

see Exercise 6.9. If V o is known, these two statistics turn out to be algebraically

equivalent. Note, however, that these two tests may result in conflicting statistical

inferences in finite samples. For instance, it can be shown that when there are no

heteroskedasticity and serial correlations, WT ≥ LMT in numerical values; see e.g.,

Godfrey (1988) for more details.
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6.5 Application: Autoregressive Models

To analyze time series data, it is quite common to postulate an autoregressive (AR)

specification, in the sense that the regressors are nothing but the lagged dependent

variables. In particular, an AR(p) specification is such that

yt = β0 + β1yt−1 + · · · + βpyt−p + et, t = p+ 1, . . . , T.

The specification in Examples 6.6 and 6.8 is AR(1) without the constant term. The

OLS estimators of β0, . . . , βp are obtained by regressing yt on ηt−1 = [yt−1 . . . yt−p]′

for t = p+ 1, . . . , T . The OLS variance estimator is

σ̂2
T =

1
T − 2p − 1

T∑
t=p+1

ê2
t ,

where ê2
t are the OLS residuals. It is also common to compute the variance estimator

as the sum of squared residuals divided by T or T − p. The properties of the OLS

estimators depend crucially on whether yt are weakly stationary.

6.5.1 Properties of the OLS estimators

Recall that {yt} is weakly stationary if its mean, variance and autocovariances are all
independent of t. When {yt} is weakly stationary with finite fourth moment, both yt,

ytηt−1 and ηt−1η
′
t−1 obey a WLLN.

Let µo = IE(yt) and γj = cov(yt, yt−j) for j = 0,±1,±2, . . . . Clearly, γ0 is the

variance of yt and γj = γ−j . Then,

Γ = var(ηt−1) =



γ0 γ1 γ2 . . . γp−1

γ1 γ0 γ1 . . . γp−2

γ2 γ1 γ0 . . . γp−3
...

...
...

. . .
...

γp−1 γp−2 γp−3 . . . γ0


.

The WLLN effect ensures:

1
T

T∑
t=p+1

yt
IP−→ µo,

1
T

T∑
t=p+1

ytηt−1
IP−→ [γ1 + µ2

o . . . γp + µ2
o]
′,

1
T

T∑
t=p+1

ηt−1η
′
t−1

IP−→ Γ+ µ2
o��

′,
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where � is the p × 1 vector of ones. It follows that

β̂T
IP−→
[
1 µo�

′

µo� Γ+ µ2
o��

′

]−1


µo

γ1 + µ2
o

...

γp + µ2
o

 .
In particular, if the specification does not contain the constant term and ηt−1 contains

only yt−1, the OLS estimator converges in probability to

(γ1 + µ2
o)/(γ0 + µ2

o).

When µo = 0, this probability limit simplifies to γ1/γ0, which is precisely what we

obtained in Example 6.2.

If yt is generated as an AR(p) process:

yt = co + ψ1yt−1 + ψ2yt−2 + · · ·+ ψpyt−p + εt,

the true parameters c, ψ1, . . . , ψp must satisfy certain constraints so as to ensure weak

stationarity (see below). In addition, if

IE(yt|Yt−1) = co + ψ1yt−1 + ψ2yt−2 + · · · + ψpyt−p,

Theorem 6.3 ensures that the OLS estimators will converge in probability to the true pa-

rameters. Note, however, that {εt} may be a white noise but not a martingale difference
sequence.

Whether the AR(p) specification is a correct specification for the conditional mean

function, the resulting OLS estimators, with suitable normalization, are asymptotically

normally distributed.

6.5.2 Difference Equation

Suppose that yt are generated according to the following first-order difference equation:

yt = ψ1yt−1 + ut, t = 0, 1, 2, . . . .

It is easily verified that, by recursive substitution,

yt+j = ψj+1
1 yt−1 + ψj

1ut + ψj−1
1 ut+1 + · · ·+ ψ1ut+j−1 + ut+j .

Define the dynamic multiplier of ut on yt+j as

∂yt+j/∂ut = ψj
1,
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which is the effect of a given change of ut on yt+j . When |ψ1| < 1, the dynamic multiplier
approaches zero when j tends to infinity so that the effect of ut eventually dies out. As

yt does not depend much on what what happens in the distant past, the difference

equation is said to be stable. When |ψ1| > 1, the difference equation is explosive in the
sense that the effect of ut on future y’s grows exponentially fast. If ψ1 = 1, ut has a

constant effect on future y’s.

Consider now a p th-order difference equation:

yt = ψ1yt−1 + ψ2yt−2 + · · · + ψpyt−p + ut,

which can be expressed as a first-order vector difference equation:

ηt = Fηt−1 + νt,

with

ηt =



yt

yt−1

yt−2
...

yt−p+1


, F =



ψ1 ψ2 · · · ψp−1 ψp

1 0 · · · 0 0

0 1 · · · 0 0
...

... · · ·
...

...

0 0 · · · 1 0


, νt =



ut

0

0
...

0


.

Recursive substitution yields

ηt+j = F
j+1ηt−1 + F

jνt + F
j−1νt+1 + · · ·+ Fνt+j−1 + νt+j .

The dynamic multiplier of νt on ηt+j is

∇νt
ηt+j = F

j,

and its (m,n) th element is denoted as f j(m,n). It is straightforward to verify that

yt+j = f j+1(1, 1)yt−1 + · · ·+ f j+1(1, p)yt−p +
j∑

i=0

f i(1, 1)ut+j−i.

The dynamic multiplier of ut on yt+j is thus

∂yt+j/∂ut = f j(1, 1),

the (1, 1) th element of F j .

Recall that the eigenvalues of F solve the equation: det(F − λI) = 0, which is

known as the em characteristic equation of F . This equation is of the following form:

λp − ψ1λ
p−1 − · · · − ψp−1λ − ψp = 0.
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When all the eigenvalues of F are distinct, then F can be diagonalized by a nonsingular

matrix C such that C−1FC = Λ, where Λ is the diagonal matrix with all the eigenval-

ues of F on its main diagonal. Writing F = CΛC−1, we have F j = CΛjC−1. When

all the eigenvalues of F are less than one in modulus (i.e., for any complex eigenvalue

λ∗ = a + bi, i = (−1)1/2, |λ∗| = (a2 + b2)1/2 < 1), Λj tends to the zero matrix as j

goes to infinity, and so does F j. In this case, f j11 will be approaching zero, so that the

difference equation is stable. Thus, a p th-order difference equation is stable provided

that the eigenvalues of F (the roots of the characteristic equation) are all less than

one in modulus. This is equivalent to saying that these roots must lie inside the unit

circle on the complex plane. This condition requires that the coefficients ψi must satisfy

certain constraints.

If there is a root of the characteristic equation equals one in modulus (i.e., on the

unit circle), such a root is usually referred to as a unit root. When the characteristic

equation has a unit root with all remaining roots less than one in modulus,

lim
j→∞

F j = C


1 0 · · · 0

0 0 · · · 0
...
...
. . .

...

0 0 · · · 0

C−1,

so that its (1, 1) th element f j(1, 1) is a constant. If there is at least one eigenvalue

greater than one in modulus, this eigenvalue eventually dominates, and F j will explode.

The difference equation is then explosive.

Alternatively, setting λ = 1/z and multiplying the characteristic equation by zp we

obtain:

1− ψ1z − · · · − ψp−1z
p−1 − ψpz

p = 0.

The condition that all the roots of the characteristic equation are inside the unit circle

is thus equivalent to requiring all the roots of the polynomial above being outside the

unit circle.

6.5.3 Weak Stationarity

Let B denote the back-shift operator in the sense that Byt = yt−1. We will also write

B2yt = B(Byt) = yt−2, B
3yt = B(B2yt) = yt−3, and so on. This operator has no effect

on constants, i.e., for any constant c, Bc = c. Hence, the back-shift operator has the
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linear property:

B(cyt + dzt) = c(Byt) + d(Bzt) = cyt−1 + dzt−1,

for any constants c and d.

Consider now the AR(p) process

yt = c+ ψ1yt−1 + · · ·+ ψpyt−p + εt,

which can be written compactly as

Ψ(B)yt = c+ εt,

where Ψ(B) = 1 + ψ1B+ · · ·+ ψpB
p is a polynomial in B. When Ψ(B) = 1− ψ1B, it

is an AR(1) process. As discussed above, this system would be stable if all the roots of

Ψ(z) = 0 are outside the unit circle.

Consider again an AR(1) process:

(1− ψ1B)yt = c+ εt.

Note that for large t,

(1 + ψ1B+ ψ2
1B2 + · · ·+ ψt

1B
t)(1 − ψ1B)yt = (1− ψt+1

1 Bt+1)yt ≈ yt,

provided that Bt+1yt = y−1 is finite and |ψ1| < 1. This suggests that, when |ψ1| < 1,
the inverse of (1− ψ1B) can be defined as

(1− ψ1B)
−1 = lim

t→∞(1 + ψ1B+ ψ2
1B2 + · · ·+ ψt

1B
t),

so that (1− ψ1B)−1(1− ψ1B) = I, the identity operator. It follows that

yt = (1− ψ1B)
−1(c+ εt) =

c

1− ψ1

+ (1− ψ1B)
−1εt.

When {εt} is a white noise with mean zero and variance σ2
ε , we find IE(yt) = c/(1−

ψ1) and

γ0 = (1 + ψ2
1 + ψ4

1 + · · · )σ2
ε = σ2

ε /(1− ψ2
1),

γ1 = (ψ1 + ψ3
1 + ψ5

1 + · · · )σ2
ε = ψ1[σ

2
ε /(1− ψ2

1)],

γ2 = (ψ
2
1 + ψ4

1 + ψ6
1 + · · · )σ2

ε = ψ2
1 [σ

2
ε /(1 − ψ2

1)],

...

γj = ψj
1

σ2
ε

1− ψ2
1

.
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Thus, yt have a constant mean, constant variance, and autocovariances depending on j

but not on t. This shows that {yt} is a weakly stationary process. On the other hand,
yt cannot be weakly stationary when the difference equation is not stable. Note also

that the autocovariances can be expressed as

γj = ψj−1
1 γj−1 = ψj

1γ0, j = 0, 1, 2, . . . ,

and the autocorrelations are ρj = ψj
1 = ψ1ρj−1. That is, both the autocovariances and

autocorrelations have the same AR(1) structure. If we view the autocorrelations of a

process as its “memory,” a weakly stationary AR(1) process has exponentially decaying

memory and is also said to be of “short memory.”

The previous results are readily generalized. For the AR(p) processes Ψ(B)yt =

c + εt, where Ψ(B) is a p th-order polynomial in B. When all the roots of Ψ(z) are

outside the unit circle, yt are weakly stationary with IE(yt) = c/(1−ψ1 −ψ2 −· · ·−ψp),

autocovariances: acut

γ0 = ψ1γ1 + ψ2γ2 + · · ·+ ψpγp + σ2
ε ,

γj = ψ1γj−1 + ψ2γj−2 + · · ·+ ψpγj−p, j = 1, 2, . . . ,

and autocorrelations:

ρj = ψ1ρj−1 + ψ2ρj−2 + · · · + ψpρj−p, j = 1, 2, . . . .

The equation for autocorrelations is also known as the Yule-Walker equation which has

the same AR(p) structure. As the initial value ρ0 = 1, it is then clear that ρj → 0

exponentially fast as j tends to infinity. Hence, a weakly stationary AR(p) process is

also a “short memory” process.

6.6 Limitations of the Linear Specification

In this chapter the classical conditions are relaxed so as to allow for more general data

in linear regressions. Careful readers must have noticed that, aside from the conditions

on the stochastic properties of data, there is always a condition of correct specification

([A2](i) in Chapter 3 and [B2] in this chapter). Such a condition may be too strong in

practice, as discussed in Section 3.7. In the context of this chapter, we also notice that,

while IE(yt|Yt−1,Wt) must be a function of the elements of Yt−1 and Wt, [B2] requires

this function being linear. A sufficient condition for linear conditional mean function

is that all the elements of Yt−1 and Wt are jointly normally distributed; this condition
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is also much too strong in practic, however. If joint normality is unlikely, there would

be no guarantee that [B2] is true. Hence, the OLS estimator may converge to some

parameter vector that does not have any meaningful interpretations. This suggests

that we should not confine ourselves to linear specifications and may want to explore

nonlinear specifications instead. The least squares theory for nonlinear specifications is

the topic to which we now turn.
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Exercises

6.1 Suppose that yt = x′
tβo + εt such that IE(εt) = 0 for all t.

(a) If {xt} and {εt} are two mutually independent sequences, i.e., xt and ετ are

independent for any t and τ , is β̂T unbiased?

(b) If {xt} and {εt} are two mutually uncorrelated sequences, i.e., IE(xtετ ) = 0

for any t and τ , is β̂T unbiased?

6.2 Consider the specification yt = x
′
tβ + et, where xt is k × 1. Suppose that

IE(yt|Yt−1,Wt) = z′tγo,

where zt is m × 1. Assuming suitable weak laws for xt and zt, what is the
probability limit of the OLS estimator of β?

6.3 Consider the specification yt = x′
tβ+ z′tγ+ et, where xt is k1 × 1 and zt is k2 × 1.

Suppose that

IE(yt|Yt−1,Wt) = x′
tβo.

Assuming suitable weak laws for xt and zt, what are the probability limits of the

OLS estimators of β and γ?

6.4 Consider a linear specification with xt = (1 dt)′, where dt is a one-time dummy:
dt = 1 if t = t∗, a particular date, and dt = 0 otherwise. What is

lim
T→∞

1
T

T∑
t=1

IE(xtx
′
t)?

How can you prove (or disprove) OLS consistency?

6.5 State the conditions under which the OLS estimator of seemingly unrelated re-

gressions is consistent and asymptotically normally distributed.

6.6 For Example 6.12, suppose that εt are serially correlated with unequal variances.

Given the asymptotic normality result for the OLS estimators âT and b̂T .

6.7 Given yt = x′
tβo, if {εt} is a martingale difference sequence with respect to

{Yt−1,Wt}, prove that IE(εt) = 0 and IE(εtετ ) = 0 for all t �= τ . Is {εt} a
white noise? Why or why not?
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6.8 Given the conditions of Theorem 6.3, let εt = yt − x′
tβo such that IE(ε2

t |xt) = σ2
o .

Prove that the standard OLS variance estimator σ̂2
T is weakly consistent for σ

2
o .

6.9 Prove that under the null hypothesis, WT − LMT
IP−→ 0. Also show that when

V o is known, WT = LMT .
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Chapter 7

Nonlinear Least Squares Theory

For real world data, it is hard to believe that linear specifications are “universal” in

characterizing all economic relationships. A straightforward extension of linear specifi-

cations is to consider specifications that are nonlinear in parameters. For example, the

function α+βxγ offers more flexibility than the simple linear function α+βx. Although

such an extension is quite natural, it also creates various difficulties. First, deciding an

appropriate nonlinear function is typically difficult. Second, it is usually cumbersome to

estimate nonlinear specifications and analyze the properties of the resulting estimators.

Last, but not the least, estimation results of nonlinear specification may not be easily

interpreted.

Despite these difficulties, more and more empirical evidences show that many eco-

nomic relationships are in fact nonlinear. Examples include nonlinear production func-

tions, regime switching in output series, and time series models that can capture asym-

metric dynamic patterns. In this chapter, we concentrate on the estimation of and hy-

pothesis testing for nonlinear specifications. For more discussion of nonlinear regressions

we refer to Gallant (1987), Gallant and White (1988), Davidson and MacKinnon (1993)

and Bierens (1994).

7.1 Nonlinear Specifications

We consider the nonlinear specification

y = f(x;β) + e(β), (7.1)

where f is a given function with x an E × 1 vector of explanatory variables and β a
k×1 vector of parameters, and e(β) denotes the error of the specification. Note that for
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178 CHAPTER 7. NONLINEAR LEAST SQUARES THEORY

a nonlinear specification, the number of explanatory variables E need not be the same

as the number of parameters k. This formulation includes the linear specification as a

special case with f(x;β) = x′β and E = k. Clearly, nonlinear functions that can be

expressed in a linear form should be treated as linear specifications. For example, a

specification involving a structural change is nonlinear in parameters:

yt =

{
α+ βxt + et, t ≤ t∗,
(α+ δ) + βxt + et, t > t∗,

but it is equivalent to the linear specification:

yt = α+ δDt + βxt + et,

where Dt = 0 if t ≤ t∗ and Dt = 1 if t > t∗. Our discussion in this chapter focuses on
the specifications that cannot be expressed as linear functions.

There are numerous nonlinear specifications considered in empirical applications. A

flexible nonlinear specification is

yt = α+ β
xγt − 1

γ
+ et,

where (xγt − 1)/γ is the so-called Box-Cox transform of xt, which yields different func-
tions, depending on the value γ. For example, the Box-Cox transform yields xt − 1
when γ = 1, 1 − 1/xt when γ = −1, and a value close to lnxt when γ approaches

zero. This function is thus more flexible than, e.g., the linear specification α + βx and

nonlinear specification α+ βxγ . Note that the Box-Cox transformation is often applied

to positively valued variables.

In the study of firm behavior, the celebrated CES (constant elasticity of substitution)

production function suggests characterizing the output y by the following nonlinear

function:

y = α
[
δL−γ + (1− δ)K−γ

]−λ/γ
,

where L denotes labor, K denotes capital, α, γ, δ and λ are parameters such that α > 0,

0 < δ < 1 and γ ≥ −1. The elasticity of substitution for a CES production function is

s =
d ln(K/L)

d ln(MPL/MPK)
=

1
(1 + γ)

≥ 0,

where MP denotes marginal product. This function includes the linear, Cobb-Douglas,

Leontief production functions as special cases. To estimate the CES production function,

the following nonlinear specification is usually considered:

ln y = lnα − λ

γ
ln
[
δL−γ + (1− δ)K−γ

]
+ e;
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for a different estimation strategy, see Exercise 7.3. On the other hand, the translog

(transcendental logarithmic) production function is nonlinear in variables but linear in

parameters:

ln y = β1 + β2 lnL+ β3 lnK + β4(lnL)(lnK) + β5(lnL)
2 + β6(lnK)

2,

and hence can be estimated by the OLS method.

In the time series context, a nonlinear AR(p) specification is

yt = f(yt−1, . . . , yt−p) + et.

For example, the exponential autoregressive (EXPAR) specification takes the following

form:

yt =
p∑

j=1

[
αj + βj exp

(
−γy2

t−1

)]
yt−j + et,

where in some cases one may replace y2
t−1 in the exponential function with y2

t−j for

j = 1, . . . , p. This specification was designed to describe physical vibration whose

amplitude depends on the magnitude of yt−1.

As another example, consider the self-exciting threshold autoregressive (SETAR)

specification:

yt =

{
a0 + a1yt−1 + · · · + apyt−p + et, if yt−d ∈ (−∞, c],

b0 + b1yt−1 + · · · + bpyt−p + et, if yt−d ∈ (c,∞),

where d is known as the “delay parameter” which is an integer between 1 and p, and c is

the “threshold parameter.” Note that the SETAR model is different from the structural

change model in that the parameters switch from one regime to another depending on

whether a past realization yt−d exceeds the threshold value c. This specification can be

easily extended to allow for r threshold parameters, so that the specification switches

among r + 1 different dynamic structures.

The SETAR specification above can be written as

yt = a0 +
p∑

j=1

ajyt−j +
(
∆0 +

p∑
j=1

∆jyt−j

)
1{yt−d>c} + et,

where aj +∆j = bj, and 1 denotes the indicator function. To avoid abrupt changes of

parameters, one may replace the indicator function with a “smooth” function h so as
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to allow for smoother transitions of structures. It is typical to choose the function h as

a distribution function, e.g.,

h(yt−d; c, δ) =
1

1 + exp[−(yt−d − c)/δ]
,

where c is still the threshold value and δ is a scale parameter. This leads to the following

smooth threshold autoregressive (STAR) specification:

yt = a0 +
p∑

j=1

ajyt−j +
(
∆0 +

p∑
j=1

∆jyt−j

)
h(yt−d; c, δ) + et.

Clearly, this specification behaves similarly to a SETAR specification when |(yt−d−c)/δ|
is very large. For more nonlinear time series models and their motivations we refer to

Tong (1990).

Another well known nonlinear specification is the so-called artificial neural network

which has been widely used in cognitive science, engineering, biology and linguistics. A

3-layer neural network can be expressed as

f(x1. . . . , xp;β) = g

α0 +
q∑

i=1

αi h
(
γi0 +

p∑
j=1

γijxj

) ,

where β is the parameter vector containing all α and γ, g and h are some pre-specified

functions. In the jargon of the neural network literature, this specification contains

p “inputs units” in the input layer (each corresponding to an explanatory variable

xj), q “hidden units” in the hidden (middle) layer with the i th hidden-unit activation

hi = h(γi0+
∑p

j=1 γijxj), and one “output unit” in the output layer with the activation

o = g(β0 +
∑q

i=1 βihi). The functions h and g are known as “activation functions,” the

parameters in these functions are “connection weights.” That is, the input values simul-

taneously activate q hidden units, and these hidden-unit activations in turn determine

the output value. The output value is supposed to capture the behavior of the “target”

(dependent) variable y. In the context of nonlinear regression, we can write

y = g

α0 +
q∑

i=1

αi h
(
γi0 +

p∑
j=1

γijxj

)+ e,

For a multivariate target y, networks with multiple outputs can be constructed similarly

with g being a vector-valued function.

In practice, it is typical to choose h as a “sigmoid” (S-shaped) function bounded

within a certain range. For example, two leading choices of h are the logistic function

c© Chung-Ming Kuan, 2001



7.2. THE METHOD OF NONLINEAR LEAST SQUARES 181

h(x) = 1/(1 + e−x) which is bounded between 0 and 1 and the hyperbolic tangent

function

h(x) =
ex − e−x

ex + e−x
,

which is bounded between −1 and 1. The function g may be the identity function or the

same as h. Although the class of neural networks is highly nonlinear in parameters, it

possesses two appealing properties. First, a neural network is capable of approximating

any Borel-measurable function to any degree of accuracy, provided that the number of

hidden units q is sufficiently large. Second, to achieve a given degree of approximation

accuracy, neural networks are relatively more parsimonious than, e.g., the polynomial

and trignometric expansions. For more details of artificial neural networks and their

relationships to econometrics we refer to Kuan and White (1994).

7.2 The Method of Nonlinear Least Squares

Formally, we consider the nonlinear specification (7.1):

y = f(x;β) + e(β),

where f : R2 ×Θ1 �→ R, Θ1 denotes the parameter space, a subspace of R
k, and e(β) is

the specification error. Given T observations of y and x, let

y =


y1

y2
...

yT

 , f(x1, . . . ,xT ;β) =


f(x1;β)

f(x2;β)
...

f(xT ;β)

 .

The nonlinear specification (7.1) now can be expressed as

y = f(x1, . . . ,xT ;β) + e(β),

where e(β) is the vector of errors.

7.2.1 Nonlinear Least Squares Estimator

Our objective is to find a k-dimensional surface that “best” fits the data (yt,xt), t =

1, . . . , T . Analogous to the OLS method, the method of nonlinear least squares (NLS)
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suggests to minimize the following NLS criterion function with respect to β:

QT (β) =
1
T
[y − f(x1, . . . ,xT ;β)]

′[y − f(x1, . . . ,xT ;β)]

=
1
T

T∑
t=1

[yt − f(xt;β)]
2.

(7.2)

Note that QT is also a function of the data yt and xt; we omit the arguments yt and xt
just for convenience.

The first order condition of the NLS minimization problem is a system of k nonlinear

equations with k unknowns:

∇βQT (β) = − 2
T

∇βf(x1, . . . ,xT ;β) [y − f(x1, . . . ,xT ;β)]
set= 0,

where

∇βf(x1, . . . ,xT ;β) =
[

∇βf(x1;β) ∇βf(x2;β) . . . ∇βf(xT ;β)
]
,

is a k×T matrix. A solution to this minimization problem is some β̄ ∈ Θ1 that solves the

first order condition: ∇βQT (β̄) = 0, and satisfies the second order condition: ∇2
βQT (β̄)

is positive definite. We thus impose the following identification requirement; cf. [ID-1]

for linear specifications.

[ID-2] f(x; ·) is twice continuously differentiable in the second argument on Θ1, such

that for given data (yt,xt), t = 1, . . . , T , ∇2
βQT (β) is positive definite at some interior

point of Θ1.

While [ID-2] ensures that a minimum of QT (β) can be found, it does not guarantee

the uniqueness of this solution. For a a given data set, there may exist multiple solutions

to the NLS minimization problem such that each solution is a local minimum of QT (β).

This result is stated below; cf. Theorem 3.1.

Theorem 7.1 Given the specification (7.1), suppose that [ID-2] holds. Then, there

exists a solution that minimizes the NLS criterion function (7.2).

Writing f(x1, . . . ,xT ;β) as f(β), we have

∇2
βQT (β) = − 2

T
∇2

βf(β) [y − f(β)] +
2
T
[∇βf(β)][∇βf(β)]

′.

For linear regressions, f(β) = Xβ so that ∇βf(β) = X ′ and ∇2
βf(β) = 0. It follows

that ∇2
βQT (β) = 2(X

′X)/T , which is positive definite if, and only if, X has full
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column rank. This shows that [ID-2] is, in effect, analogous to [ID-1] for the OLS

method. Comparing to the OLS method, the NLS minimization problem may not have

a closed-form solution because the first order condition is a system of nonlinear functions

in general; see also Exercise 7.1.

The minimizer of QT (β) is known as the NLS estimator and will be denoted as β̂T . Let

ŷ denote the vector of NLS fitted values with the t th element ŷt = f(xt, β̂T ), and ê

denote the vector of NLS residuals y− ŷ with the t th element êt = yt − ŷt. Denote the

transpose of ∇βf(β) as Ξ(β). Then by the first order condition,

Ξ(β̂T )
′ê = [∇θf(β̂T )]ê = 0.

That is, the residual vector is orthogonal to every column vector of Ξ(β̂T ). Geometri-

cally, f(β) defines a surface on Θ1, and for any β in Θ1, Ξ(β) is a k-dimensional linear

subspace tangent at the point f(β). Thus, y is orthogonally projected onto this surface

at f(β̂T ) so that the residual vector is orthogonal to the tangent space at that point. In

contrast with linear regressions, there may be more than one orthogonal projections and

hence multiple solutions to the NLS minimization problem. There is also no guarantee

that the sum of NLS residuals is zero; see Exercise 7.2.

Remark: The marginal response to the change of the i th regressor is ∂f(xt;β)/∂xti.

Thus, one should be careful in interpreting the estimation results because a parameter

in a nonlinear specification is not necessarily the marginal response to the change of a

regressor.

7.2.2 Nonlinear Optimization Algorithms

When a solution to the first order condition of the NLS minimization problem cannot be

obtained analytically, the NLS estimates must be computed using numerical methods.

To optimizing a nonlinear function, an iterative algorithm starts from some initial value

of the argument in that function and then repeatedly calculates next available value

according to a particular rule until an optimum is reached approximately. It should be

noted that when there are multiple optima, an iterative algorithm may not be able to

locate the global optimum. In fact, it is more common that an algorithm gets stuck at

a local optimum, except in some special cases, e.g., when optimizing a globally concave

(convex) function. In the literature, several new methods, such as the simulated anneal-

ing algorithm, have been proposed to find the global solution. These methods have not

yet been standard because they are typically difficult to implement and computation-

ally very intensive. We will therefore confine ourselves to those commonly used “local”
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methods.

To minimize QT (β), a generic algorithm can be expressed as

β(i+1) = β(i) + s(i)d(i),

so that the (i+1) th iterated value β(i+1) is obtained from β(i), the value from the pre-

vious iteration, by adjusting the amount s(i)d(i), where d(i) characterizes the direction

of change in the parameter space and s(i) controls the amount of change. Different al-

gorithms are resulted from different choices of s and d. As maximizing QT is equivalent

to minimizing −QT , the methods discussed here are readily modified to the algorithms

for maximization problems.

Consider the first-order Taylor expansion of Q(β) about β†:

QT (β) ≈ QT (β
†) + [∇βQT (β

†)]′(β − β†).

Replacing β with β(i+1) and β† with β(i) we have

QT

(
β(i+1)

)
≈ QT

(
β(i)
)
+
[
∇βQT

(
β(i)
)]′

s(i)d(i).

Note that this approximation is valid when β(i+1) is in the neighborhood of β(i). Let

g(β) denote the gradient vector of QT : ∇βQT (β), and g
(i) denote g(β) evaluated at

β(i). If d(i) = −g(i),

QT

(
β(i+1)

)
≈ QT

(
β(i)
)
− s(i)

[
g(i)′g(i)

]
.

As g(i)′)g(i) is non-negative, we can find a positive and small enough s such that QT

is decreasing. Clearly, when β(i) is already a minimum of QT , g(i) is zero so that no

further adjustment is possible. This suggests the following algorithm:

β(i+1) = β(i) − s(i)g(i).

Choosing d(i) = g(i) leads to:

β(i+1) = β(i) + s(i)g(i),

which can be used to search for a maximum of QT .

Given the search direction, one may want to choose s(i) such that the next value

of the objective function QT

(
β(i+1)

)
is a minimum. This suggests that the first order

condition below should hold:

∂QT

(
β(i+1)

)
∂s(i)

= ∇βQT

(
β(i+1)

) ∂β(i+1)

∂s(i)
= −g(i+1)′g(i) = 0.
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Let H(i) denote the Hessian matrix of QT evaluated at β
(i):

H(i) = ∇2
βQT (β)|β=β(i) = ∇β g(β)|β=β(i) .

Then by Taylor’s expansion of g, we have

g(i+1) ≈ g(i) +H(i)
(
β(i+1) − β(i)

)
= g(i) −H(i)s(i)g(i).

It follows that

0 = g(i+1)′g(i) ≈ g(i)′g(i) − s(i)g(i)′H(i)g(i),

or equivalently,

s(i) =
g(i)′g(i)

g(i)′H(i)g(i)
.

The step length s(i) is non-negative whenever H(i) is positive definite. The algorithm

derived above now reads

β(i+1) = β(i) − g(i)′g(i)

g(i)′H(i)g(i)
g(i),

which is known as the steepest descent algorithm. If H(i) is not positive definite, s(i)

may be non-negative so that this algorithm may point to a wrong direction.

As the steepest descent algorithm adjusts parameters along the opposite of the

gradient direction, it may run into difficulty when, e.g., the nonlinear function being

optimized is flat around the optimum. The algorithm may iterate back and forth without

much progress in approaching an optimum. An alternative is to consider the second-

order Taylor expansion of Q(β) around some β†:

QT (β) ≈ QT (β
†) + g†′(β − β†) +

1
2
(β − β†)′H†(β − β†),

where g† and H† are g and H evaluated at β†, respectively. From this expansion, the
first order condition of QT (β) may be expressed as

g† +H†(β − β†) ≈ 0,

so that β ≈ β† − (H†)−1g†. This suggests the following algorithm:

β(i+1) = β(i) −
(
H(i)
)−1

g(i),
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where the step length is 1, and the direction vector is −
(
H(i)
)−1

g(i). This is also

known as the Newton-Raphson algorithm. This algorithm is more difficult to implement

because it involves matrix inversion at each iteration step.

From Taylor’s expansion we can also see that

QT

(
β(i+1)

)
− QT

(
β(i)
)
≈ −1

2
g(i)′(H(i)

)−1
g(i),

where the right-hand side is negative provided that H(i) is positive definite. When this

approximation is good, the Newton-Raphson algorithm usually (but not always) results

in a decrease in the value of QT . This algorithm may point to a wrong direction if

H(i) is not positive definite; this happens when, e.g., Q is concave at βi. When QT is

(locally) quadratic with the local minimum β∗, the second-order expansion about β∗ is
exact, and hence

β = β∗ −H(β∗)−1g(β∗).

In this case, the Newton-Raphson algorithm can reach the minimum in a single step.

Alternatively, we may also add a step length to the Newton-Raphson algorithm:

β(i+1) = β(i) − s(i)
(
H(i)
)−1

g(i),

where s(i) may be found by minimizing Q
(
β(i+1)

)
. In practice, it is more typical to

choose s(i) such that Q
(
β(i)
)
is decreasing at each iteration.

A algorithm that avoids computing the second-order derivatives is the so-called

Gauss-Newton algorithm. When QT (β) is the NLS criterion function,

H(β) = − 2
T

∇2
βf(β)[y − f(β)] +

2
T
Ξ(β)′Ξ(β),

where Ξ(β) = ∇βf(β). It is therefore convenient to ignore the first term on the right-

hand side and approximateH(β) by 2Ξ(β)′Ξ(β)/T . There are some advantages of this
approximation. First, only the first-order derivatives need to be computed. Second,

this approximation is guaranteed to be positive definite under [ID-2]. The resulting

algorithm is

β(i+1) = β(i) +
[
Ξ
(
β(i)
)′Ξ(β(i)

)]−1Ξ
(
β(i)
)[
y − f

(
β(i)
)]
.

Observe that the adjustment term can be obtained as the OLS estimator of regressing

y − f
(
β(i)
)
on Ξ

(
β(i)
)
; this regression is thus known as the Gauss-Newton regression.

The iterated β values can be easily computed by performing the Gauss-Newton regres-

sion repeatedly. The performance of this algorithm may be quite different from the
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Newton-Raphson algorithm because it utilizes only an approximation to the Hessian

matrix.

To maintain a correct search direction of the steepest descent and Newton-Raphson

algorithms, it is important to ensure that H(i) is positive definite at each iteration. A

simple approach is to correct H(i), if necessary, by adding an appropriate matrix to it.

A popular correction is

H(i)
c =H

(i) + c(i)I,

where c(i) is a positive number chosen to “force” H(i)
c to be a positive definite matrix.

Let H̃ =H−1. One may also compute

H̃
(i)
c = H̃

(i)
+ cI,

because it is the inverse ofH(i) that matters in the algorithm. Such a correction is used

in, for example, the so-called Marquardt-Levenberg algorithm.

The quasi-Newton method, on the other hand, corrects H̃
(i)
iteratively by adding a

symmetric, correction matrix C(i):

H̃
(i+1)

= H̃
(i)
+C(i),

with the initial value H̃
(0)
= I. This method includes the Davidon-Fletcher-Powell

(DFP) algorithm and the Broydon-Fletcher-Goldfarb-Shanno (BFGS) algorithm, where

the latter is the algorithm used in the GAUSS program. In the DFP algorithm,

C(i) =
δ(i)δ(i)′

δ(i)′γ(i)
+
H̃

(i)
γ(i)γ(i)′H̃(i)

γ(i)′H̃(i)
γ(i)

,

where δ(i) = β(i+1) − β(i) and γ(i) = g(i+1) − g(i). The BFGS algorithm contains an

additional term in the correction matrix.

To implement an iterative algorithm, one must choose a vector of initial values to

start the algorithm and a stopping rule to terminate the iteration procedure. Initial

values are usually specified by the researcher or by random number generation; prior in-

formation, if available, should also be taken into account. For example, if the parameter

is a probability, the algorithm may be initialized by, say, 0.5 or by a number randomly

generated from the uniform distribution on [0, 1]. Without prior information, it is also

typical to generate initial values from a normal distribution. In practice, one would

generate many sets of initial values and then choose the one that leads to a better result
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(for example, a better fit of data). Of course, this search process is computationally

demanding.

When an algorithm results in no further improvement, a stopping rule must be

invoked to terminate the iterations. Typically, an algorithm stops when one of the

following convergence criteria is met: for a pre-determined, small positive number c,

1.
∥∥β(i+1) − β(i)

∥∥ < c, where ‖ · ‖ denotes the Euclidean norm,

2.
∥∥g(β(i)

)∥∥ < c, or

3.
∣∣QT

(
β(i+1)

)
− QT

(
β(i)
)∣∣ < c.

For the Gauss-Newton algorithm, one may stop the algorithm when TR2 is “close” to

zero, whereR2 is the coefficient of determination of the Gauss-Newton regression. As the

residual vector must be orthogonal to the tangent space at the optimum, this stopping

rule amounts to checking whether the first order condition is satisfied approximately.

In some cases, an algorithm may never meet its pre-set convergence criterion and hence

keeps on iterating. To circumvent this difficulty, an optimization program usually sets

a maximum number for iterations so that the program terminates automatically once

the number of iterations reaches this upper bound.

7.3 Asymptotic Properties of the NLS Estimators

7.3.1 Consistency

As the NLS estimator does not have an analytic form in general, a different approach is

thus needed to establish NLS consistency. Intuitively, when the NLS objective function

QT (β) is close to IE[QT (β)] for all β, it is reasonable to expect that the minimizer of

QT (β), i.e., the NLS estimator β̂T , is also close to a minimum of IE[QT (β)]. Given that

QT is nonlinear in β, a ULLN must be invoked to justify the closeness between QT (β)

and IE[QT (β)], as discussed in Section 5.6.

To illustrate how consistency can be obtained, we consider a special case. Suppose

that IE[QT (β)] is a continuous function on the compact parameter space Θ1 such that

βo is its unique, global minimum. The NLS estimator β̂T is such that

QT (β̂T ) = inf
Θ1

QT (β).
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Suppose also thatQT has a SULLN effect, i.e., there is a set Ω0 ⊆ Ω such that IP(Ω0) = 1

and

sup
β∈Θ1

∣∣QT (β)− IE[QT (β)]
∣∣→ 0,

for all ω ∈ Ω0. Set

ε = inf
β∈Bc∩Θ1

(
IE[QT (β)]− IE[QT (βo)]

)
,

where B is an open neighborhood of βo. Then for ω ∈ Ω0, we can choose T sufficiently

large such that

IE[QT (β̂T )]− QT (β̂T ) <
ε

2
,

and that

QT (β̂T )− E[QT (βo)] ≤ QT (βo)− E[QT (βo)] <
ε

2
,

because the NLS estimator β̂T minimizes QT (β). It follows that for ω ∈ Ω0,

IE[QT (β̂T )]− IE[QT (βo)]

≤ IE[QT (β̂T )]− QT (β̂T ) +QT (β̂T )− E[QT (βo)]

< ε,

for all T sufficiently large. This shows that, comparing to all β outside the neighborhood

B of βo, β̂T will eventually render IE[QT (β)] closer to IE[QT (βo)] with probability one.

Thus, β̂T must be in B for large T . As B is arbitrary, β̂T must converge to βo almost

surely. Convergence in probability of β̂T to βo can be established using a similar

argument; see e.g., Amemiya (1985) and Exercise 7.4.

The preceding discussion shows what matters for consistency is the effect of a SULLN

(WULLN). Recall from Theorem 5.34 that, to ensure a SULLN (WULLN), QT should

obey a SLLN (WLLN) for each β ∈ Θ1 and also satisfy a Lipschitz-type continuity

condition:

|QT (β)− QT (β
†)| ≤ CT ‖β − β†‖ a.s.,

with CT bounded almost surely (in probability). If the parameter space Θ1 is compact

and convex, we have from the mean-value theorem and the Cauchy-Schwartz inequality

that

|QT (β)− QT (β
†)| ≤ ‖∇βQT (β

∗)‖ ‖β − β†‖ a.s.,
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where β and β† are in Θ1 and β
∗ is the mean value of β and β†, in the sense that

|β∗ − βo| < |β† − βo|. Hence, the Lipschitz-type condition would hold by setting

CT = sup
β∈Θ1

∇βQT (β).

Observe that in the NLS context,

QT (β) =
1
T

T∑
t=1

(
y2
t − 2ytf(xt;β) + f(xt;β)

2
)
,

and

∇βQT (β) = − 2
T

T∑
t=1

∇βf(xt;β)[yt − f(xt;β)].

Hence, ∇βQT (β) cannot be almost surely bounded in general. (It would be bounded

if, for example, yt are bounded random variables and both f and ∇βf are bounded

functions.) On the other hand, it is practically more plausible that∇βQT (β) is bounded

in probability. It is the case when, for example, IE |∇βQT (β)| is bounded uniformly in
β. As such, we shall restrict our discussion below to WULLN and weak consistency of

β̂T .

To proceed we assume that the identification requirement [ID-2] holds with proba-

bility one. The discussion above motivates the additional conditions given below.

[C1] {(yt w′
t)′} is a sequence of random vectors, and xt is vector containing some

elements of Yt−1 and Wt.

(i) The sequences {y2
t }, {ytf(xt;β)} and {f(xt;β)2} all obey a WLLN for each

β in Θ1, where Θ1 is compact and convex.

(ii) yt, f(xt;β) and ∇βf(xt;β) all have bounded second moment uniformly in

β.

[C2] There exists a unique parameter vector βo such that IE(yt | Yt−1,Wt) = f(xt;βo).

Condition [C1] is analogous to [B1] so that stochastic regressors are allowed. [C1](i)

regulates that each components of QT (β) obey a standard WLLN. [C1](ii) implies

IE |∇βQT (β)| ≤
2
T

T∑
t=1

(
‖∇βf(xt;β)‖2‖yt‖2 + ‖∇βf(xt;β)‖2‖f(xt;β)‖2

)
≤ ∆,
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for some ∆ which does not depend on β. This in turn implies ∇βQT (β) is bounded

in probability (uniformly in β) by Markov’s inequality. Condition [C2] is analogous to

[B2] and requires f(xt;β) been a correct specification of the conditional mean function.

Thus, βo globally minimizes IE[QT (β)] because the conditional mean must minimizes

mean-squared errors.

Theorem 7.2 Given the nonlinear specification (7.1), suppose that [C1] and [C2] hold.

Then, β̂T
IP−→ βo.

Theorem 7.2 is not completely satisfactory because it is concerned with the conver-

gence to the global minimum. As noted in Section 7.2.2, an iterative algorithm is not

guaranteed to find a global minimum of the NLS objective function. Hence, it is more

reasonable to expect that the NLS estimator only converges to some local minimum

of IE[QT (β)]. A simple proof of such local consistency result is not yet available. We

therefore omit the details and assert only that the NLS estimator converges in proba-

bility to a local minimum β∗. Note that f(x;β∗) is, at most, an approximation to the
conditional mean function.

7.3.2 Asymptotic Normality

Given that the NLS estimator β̂T is weakly consistent for some β
∗, we will sketch a

proof that, with more regularity conditions, the suitably normalized NLS estimator is

asymptotically distributed as a normal random vector.

First note that by the mean-value expansion of ∇βQT (β̂T ) about β
∗,

∇βQT (β̂T ) = ∇βQT (β
∗) +∇2

βQT (β
†
T )(β̂T − β∗),

where β†
T is a mean value between β̂T and β

∗. Clearly, the left-hand side is zero
because β̂T is the NLS estimator and hence solves the first order condition. By [ID-2],

the Hessian matrix ∇2
βQT (β

†
T ) is invertible, so that

√
T (β̂T − β∗) = −[∇2

βQT (β
†
T )]

−1
√
T∇βQT (β

∗).

The asymptotic distribution of
√
T (β̂T −β∗) is therefore the same as that of the right-

hand side.

Let HT (β) = IE[∇2
βQT (β)] and vec denote the operator such that vec(A) is the

vector resulted from stacking all the column vectors of A. By the triangle inequality,∥∥vec[∇2
βQT (β

†
T )
]
− vec

[
HT (β

∗)
]∥∥

≤
∥∥vec[∇2

βQT (β
†
T )
]
− vec

[
HT (β

†
T )
]∥∥+ ∥∥vec[HT (β

†
T )
]
− vec

[
HT (β

∗)
]∥∥.
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The first term on the right-hand side converges to zero in probability, provided that

∇2
βQT (β) also obeys a WULLN. As β

†
T is a mean value between β̂T and β

∗, weak
consistency of β̂T implies β

†
T also converges in probability to β

∗. Under [ID-2], QT is

twice continuously differentiable so that HT (β) is continuous in β. Thus, HT (β
†
T ) −

HT (β
∗) also converges to zero in probability. Consequently, ∇2

βQT (β
†
T ) is essentially

close to HT (β
∗), in the sense that they differ by an oIP(1) term.

The result above shows that the normalized NLS estimator,
√
T (β̂T − β∗), and

−HT (β
∗)−1

√
T∇βQT (β

∗)

are asymptotically equivalent and hence must have the same limiting distribution. Ob-

serve that
√
T∇βQT (β

∗) is a partial sum:

√
T∇βQT (β

∗) = − 2√
T

T∑
t=1

∇βf(xt;β
∗)[yt − f(xt;β

∗)],

and hence obeys a CLT under suitable regularity conditions. That is,

(V ∗
T )

−1/2
√
T∇βQT (β

∗) D−→ N(0, Ik),

where

V ∗
T = var

(
2√
T

T∑
t=1

∇βf(xt;β
∗)[yt − f(xt;β

∗)]

)
.

Then for D∗
T =HT (β

∗)−1V ∗
THT (β

∗)−1, we immediately obtain the following asymp-

totic normality result:

(D∗
T )

−1/2HT (β
∗)−1

√
T∇βQT (β

∗) D−→ N(0, Ik),

which in turn implies

(D∗
T )

−1/2
√
T (β̂T − β∗) D−→ N(0, Ik),

As in linear regression, asymptotic normality of the normalized NLS estimator remains

valid when D∗
T is replaced by its consistent estimator D̂T :

D̂
−1/2
T

√
T (β̂T − β∗) D−→ N(0, Ik),

Thus, finding a consistent estimator for D∗
T is important in practice.
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Consistent estimation of D∗
T is completely analogous to that for linear regression;

see the discussion of Section 6.3. First observe that HT (β
∗) is

HT (β
∗) =

2
T

T∑
t=1

IE
([

∇βf(xt;β
∗)
][

∇βf(xt;β
∗)
]′)

− 2
T

T∑
t=1

IE
(
∇2

βf(xt;β
∗)
[
yt − f(xt;β

∗)
])
,

which can be consistently estimated by its sample counterpart:

ĤT =
2
T

T∑
t=1

[
∇βf(xt; β̂T )

][
∇βf(xt; β̂T )

]′ − 2
T

T∑
t=1

∇2
βf(xt; β̂T )êt.

When εt = yt − f(xt;β
∗) are uncorrelated with ∇2

βf(xt;β
∗), HT (β

∗) depends only on
the expectation of the outer product of ∇βf(xt;β

∗) so that ĤT simplifies to

ĤT =
2
T

T∑
t=1

[
∇βf(xt; β̂T )

][
∇βf(xt; β̂T )

]′
.

This estimator is analogous to
∑T

t=1 xtx
′
t/T forMxx in linear regression.

If β∗ = βo so that f(xt;β
∗) is the conditional mean of yt, we write V

∗
T as

V o
T =

4
T

T∑
t=1

IE
(
ε2
t

[
∇βf(xt;β

o)
][

∇βf(xt;β
o)
]′)

.

When there is conditional homoskedasticity: IE(ε2
t |Yt−1,Wt) = σ2

o , V
o
T simplifies to

V o
T =

4σ2
o

T

T∑
t=1

IE
([

∇βf(xt;βo)
][

∇βf(xt;βo)
]′)

,

which can be consistently estimated by

V̂ T =
4σ̂2

T

T

T∑
t=1

[
∇βf(xt; β̂T )

][
∇βf(xt; β̂T )

]′
,

with σ̂2
T a consistent estimator for σ

2
o . Typically, σ̂

2
T =
∑T

t=1 ê
2
t /T . In the NLS context,∑T

t=1 êt is non-zero in general so that we may also compute σ̂
2
T as

σ̂2
T =

1
T

T∑
t=1

(êt − ¯̂e)2,
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where ¯̂e =
∑T

t=1 êt/T . Combining V̂ T and ĤT we have

D̂T = σ̂2
T

(
1
T

T∑
t=1

[
∇βf(xt; β̂T )

][
∇βf(xt; β̂T )

]′)−1

.

This estimator is analogous to the OLS covariance matrix estimator σ̂2
T (X

′X/T )−1 for

linear regressions.

When there is conditional heteroskedasticity such that IE(ε2
t |Yt−1,Wt) are functions

of the elements of Yt−1 and Wt, V o
T can be consistently estimated by

V̂ T =
4
T

T∑
t=1

ê2
t

[
∇βf(xt; β̂T )

][
∇βf(xt; β̂T )

]′
,

so that

D̂T =

(
1
T

T∑
t=1

[
∇βf(xt; β̂T )

][
∇βf(xt; β̂T )

]′)−1

V̂ T

(
1
T

T∑
t=1

[
∇βf(xt; β̂T )

][
∇βf(xt; β̂T )

]′)−1

.

This is White’s heteroskedasticity-consistent covariance matrix estimator for nonlinear

regressions.

As discussed earlier, the probability limit β∗ of the NLS estimator is typically a
local minimum of IE[QT (β)] and hence not βo in general. In this case, {εt} is not a
martingale difference sequence with respect to Yt−1 andWt, and V ∗

T must be estimated

using a Newey-West type estimator; see Exercise 7.7.

7.4 Hypothesis Testing

For testing linear restrictions of parameters, we again consider the null hypothesis

H0 : Rβ
∗ = r,

where R is a q × k matrix and r is a q × 1 vector of pre-specified constants.

TheWald test now evaluates the difference between the NLS estimates and the hypo-

thetical values. When the normalized NLS estimator, T 1/2(β̂T −βo), has an asymptotic

normal distribution with the asymptotic covariance matrix D∗
T , we have under the null

hypothesis that

(Γ∗T )
−1/2

√
T (Rβ̂T − r) = (Γ∗T )

−1/2
√
TR(β̂T − β∗) D−→ N(0, Iq).
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where Γ∗T = RD∗
TR

′. Let D̂T be a consistent estimator for DT . Then, Γ̂T = RD̂TR
′

is also consistent for Γ∗T . It follows that the Wald statistic is

WT = T (Rβ̂T − r)Γ̂−1
T (Rβ̂T − r)′ D−→ χ2(q),

which is of the same form as the Wald statistic in linear regressions.

More generally, one may test for the nonlinear restriction of the form

H0 : r(β
∗) = 0,

where r now is a R
q-valued nonlinear function that is continuously differentiable. It

is natural to consider basing the Wald test on r(β̂T ). First note that linearization of

r(β̂T ) about β
∗ yields

r(β̂T ) = r(β
∗) + [∇βr(β

∗)]′(β̂T − β∗) + oIP(1).

Letting R(β∗) = [∇βr(β
∗)]′, a q × k matrix, we have under the null hypothesis that

r(β̂T ) = R(β
∗)(β̂T − β∗) + oIP(1).

Similar as before,

(Γ∗T )
−1/2r(β̂T ) = (Γ

∗
T )

−1/2
√
TR(β∗)(β̂T − β∗) D−→ N(0, Iq).

where in this case Γ∗T = R(β∗)D∗
TR(β

∗)′. This immediately suggests the following
Wald statistic:

WT = Tr(β̂T )
′Γ̂−1

T r(β̂T )
D−→ χ2(q),

where Γ̂T = R(β̂T )D̂TR(β̂T )′ is consistent for Γ∗T .

A well known drawback of the Wald test is that it is not invariant with respect

to different forms of a nonlinear hypothesis. For example, consider two equivalent

hypotheses: β1β2 = 1 and β1 = 1/β2. The Wald test for the former is based on

β̂1β̂2 − 1, whereas the Wald test for the latter is based on β̂1 − β̂−1
2 . It turns out that

these two tests perform very differently; see e.g., Gregory and Veall (1985) and Phillips

and Park (1988). In particular, the Wald test for β1 = 1/β2 rejects far too often when

the null hypothesis is indeed correct (i.e., the empirical size is much larger than the

nominal size). Moreover, these two tests result in conflicting conclusions quite often.

Hence, the inferences from testing nonlinear hypotheses should be drawn with care.
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Exercises

7.1 Suppose that QT (β) is quadratic in β:

QT (β) = a+ b′β + β′Cβ,

where a is a scalar, b a vector and C a symmetric, positive definite matrix. Find

the first order condition of minimizing QT (β) and the resulting solution. Is the

OLS criterion function (3.2) quadratic in β?

7.2 Let ε̂t = yt − ŷt denote the t th NLS residuals. Is
∑T

t=1 ε̂t zero in general? Why or

why not?

7.3 Given the nonlinear specification of the CES production function

ln y = lnα − λ

γ
ln
[
δL−γ + (1− δ)K−γ

]
+ e,

find the second order Taylor expansion of ln y around γ = 0. How would you

estimate this linearized function and how can you calculate the original parameters

α, γ, δ and λ?

7.4 Suppose that IE[QT (β)] is a continuous function on the compact parameter space

Θ1 such that βo is its unique, global minimum. Also suppose that the NLS

estimator β̂T is such that

IE[QT (β̂T )] = inf
Θ1

IE[QT (β)].

Prove that when QT has a WULLN effect, then β̂T converges in probability to

βo.

7.5 Apply Theorem 7.2 to discuss the consistency property of the OLS estimator for

the linear specification yt = x′
tβ + et.

7.6 Let εt = yt − f(xt;βo). If {εt} is a martingale difference sequence with respect to
Yt−1 and Wt such that IE(ε2

t | Yt−1,Wt) = σ2
o , state the conditions under which

σ̂2
T =
∑T

t=1 ê
2
t /T is consistent for σ2

o .

7.7 Let εt = yt − f(xt;β
∗), where β∗ may not be the same as βo. If {εt} is not

a martingale difference sequence with respect to Yt−1 and Wt, give consistent

estimators for V ∗
T and D

∗
T .
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