


CONTENTS OF THE HANDBOOK

VOLUME 1

Part 1: MATHEMATICAL AND STATISTICAL METHODS IN ECONOMETRICS

Chapter 1
Linear Algebra and Matrix Methods in Econometrics
HENRI THEIL

Chapter 2
Statistical Theory and Econometrics
ARNOLD ZELLNER

Part 2: ECONOMETRIC MODELS

Chapter 3
Economic and Econometric Models
MICHAEL D. INTRILIGATOR

Chapter 4
Identification
CHENG HSIAO

Chapter 5
Model Choice and Specification Analysis
EDWARD E. LEAMER

Part 3: ESTIMATION AND COMPUTATION

Chapter 6
Nonlinear Regression Models
TAKESHI AMEMIYA

Chapter 7
Specification and Estimation of Simultaneous Equation Models
JERRY A. HAUSMAN

Chapter 8
Exact Small Sample Theory in the Simultaneous Equations Model
PETER C.B. PHILLIPS

Chapter 9
Bayesian Analysis of Simultaneous Equation Systems
JACQUES H. DRÈZE and JEAN-FRANÇOIS RICHARD

vii



viii Contents of the Handbook

Chapter 10
Biased Estimation
G.G. JUDGE and M.E. BOCK

Chapter 11
Estimation for Dirty Data and Flawed Models
WILLIAM S. KRASKER, EDWIN KUH, and ROY E. WELSCH

Chapter 12
Computational Problems and Methods
RICHARD E. QUANDT

VOLUME 2

Part 4: TESTING

Chapter 13
Wald, Likelihood Ratio, and Lagrange Multiplier Tests in Econometrics
ROBERT F. ENGLE

Chapter 14
Multiple Hypothesis Testing
N.E. SAVIN

Chapter 15
Approximating the Distributions of Econometric Estimators and Test Statistics
THOMAS J. ROTHENBERG

Chapter 16
Monte Carlo Experimentation in Econometrics
DAVID F. HENDRY

Part 5: TIME SERIES TOPICS

Chapter 17
Time Series and Spectral Methods in Econometrics
C.W.J. GRANGER and MARK W. WATSON

Chapter 18
Dynamic Specification
DAVID F. HENDRY, ADRIAN R. PAGAN, and J. DENIS SARGAN

Chapter 19
Inference and Causality in Economic Time Series Models
JOHN GEWEKE

Chapter 20
Continuous Time Stochastic Models and Issues of Aggregation over Time
A.R. BERGSTROM



Contents of the Handbook ix

Chapter 21
Random and Changing Coefficient Models
GREGORY C. CHOW

Chapter 22
Panel Data
GARY CHAMBERLAIN

Part 6: SPECIAL TOPICS IN ECONOMETRICS: 1

Chapter 23
Latent Variable Models in Econometrics
DENNIS J. AIGNER, CHENG HSIAO, ARIE KAPTEYN, and TOM WANSBEEK

Chapter 24
Econometric Analysis of Qualitative Response Models
DANIEL L. McFADDEN

VOLUME 3

Part 7: SPECIAL TOPICS IN ECONOMETRICS: 2

Chapter 25
Economic Data Issues
ZVI GRILICHES

Chapter 26
Functional Forms in Econometric Model Building
LAWRENCE J. LAU

Chapter 27
Limited Dependent Variables
PHOEBUS J. DHRYMES

Chapter 28
Disequilibrium, Self-selection, and Switching Models
G.S. MADDALA

Chapter 29
Econometric Analysis of Longitudinal Data
JAMES J. HECKMAN and BURTON SINGER

Part 8: SELECTED APPLICATIONS AND USES OF ECONOMETRICS

Chapter 30
Demand Analysis
ANGUS DEATON



x Contents of the Handbook

Chapter 31

Econometric Methods for Modeling Producer Behavior
DALE W. JORGENSON

Chapter 32

Labor Econometrics
JAMES J. HECKMAN and THOMAS E. MACURDY

Chapter 33

Evaluating the Predictive Accuracy of Models
RAY C. FAIR

Chapter 34

Econometric Approaches to Stabilization Policy in Stochastic Models of Macroeconomic Fluctuations
JOHN B. TAYLOR

Chapter 35

Economic Policy Formation: Theory and Implementation (Applied Econometrics in the Public Sector)
LAWRENCE R. KLEIN

VOLUME 4

Part 9: ECONOMETRIC THEORY

Chapter 36

Large Sample Estimation and Hypothesis Testing
WHITNEY K. NEWEY and DANIEL McFADDEN

Chapter 37

Empirical Process Methods in Econometrics
DONALD W.K. ANDREWS

Chapter 38

Applied Nonparametric Methods
WOLFGANG HÄRDLE and OLIVER LINTON

Chapter 39

Methodology and Theory for the Bootstrap
PETER HALL

Chapter 40

Classical Estimation Methods for LDV Models Using Simulation
VASSILIS A. HAJIVASSILOU and PAUL A. RUUD

Chapter 41

Estimation of Semiparametric Models
JAMES L. POWELL



Contents of the Handbook xi

Chapter 42
Restrictions of Economic Theory in Nonparametric Methods
ROSA L. MATZKIN

Chapter 43
Analog Estimation of Econometric Models
CHARLES F. MANSKI

Chapter 44
Testing Non-Nested Hypotheses
C. GOURIEROUX and A. MONFORT

Part 10: THEORY AND METHODS FOR DEPENDENT PROCESSES

Chapter 45
Estimation and Inference for Dependent Processes
JEFFREY M. WOOLDRIDGE

Chapter 46
Unit Roots, Structural Breaks and Trends
JAMES H. STOCK

Chapter 47
Vector Autoregression and Cointegration
MARK W. WATSON

Chapter 48
Aspects of Modelling Nonlinear Time Series
TIMO TERÄSVIRTA, DAG TJØSTHEIM, and CLIVE W.J. GRANGER

Chapter 49
Arch Models
TIM BOLLERSLEV, ROBERT F. ENGLE, and DANIEL B. NELSON

Chapter 50
State-Space Models
JAMES D. HAMILTON

Chapter 51
Structural Estimation of Markov Decision Processes
JOHN RUST

VOLUME 5

Part 11: NEW DEVELOPMENTS IN THEORETICAL ECONOMETRICS

Chapter 52
The Bootstrap
JOEL L. HOROWITZ



xii Contents of the Handbook

Chapter 53
Panel Data Models: Some Recent Developments
MANUEL ARELLANO and BO HONORÉ

Chapter 54
Interactions-based Models
WILLIAM A. BROCK and STEVEN N. DURLAUF

Chapter 55
Duration Models: Specification, Identification and Multiple Durations
GERARD J. VAN DEN BERG

Part 12: COMPUTATIONAL METHODS IN ECONOMETRICS

Chapter 56
Computationally Intensive Methods for Integration in Econometrics
JOHN GEWEKE and MICHAEL KEANE

Chapter 57
Markov Chain Monte Carlo Methods: Computation and Inference
SIDDHARTHA CHIB

Part 13: APPLIED ECONOMETRICS

Chapter 58
Calibration
CHRISTINA DAWKINS, T.N. SRINIVASAN, and JOHN WHALLEY

Chapter 59
Measurement Error in Survey Data
JOHN BOUND, CHARLES BROWN, and NANCY MATHIOWETZ

VOLUME 6A

Part 14: ECONOMETRIC MODELS FOR PREFERENCES AND PRICING

Chapter 60
Nonparametric Approaches to Auctions
SUSAN ATHEY and PHILIP A. HAILE

Chapter 61
Intertemporal Substitution and Risk Aversion
LARS PETER HANSEN, JOHN HEATON, JUNGHOON LEE and NIKOLAI ROUSSANOV

Chapter 62
A Practitioner’s Approach to Estimating Intertemporal Relationships Using Longitudinal Data: Lessons
from Applications in Wage Dynamics
THOMAS MACURDY



Contents of the Handbook xiii

Part 15: THE ECONOMETRICS OF INDUSTRIAL ORGANIZATION

Chapter 63
Econometric Tools for Analyzing Market Outcomes
DANIEL ACKERBERG, C. LANIER BENKARD, STEVEN BERRY and ARIEL PAKES

Chapter 64
Structural Econometric Modeling: Rationales and Examples from Industrial Organization
PETER C. REISS and FRANK A. WOLAK

Chapter 65
Microeconometric Models of Investment and Employment
STEPHEN BOND and JOHN VAN REENEN

Part 16: INDEX NUMBERS AND THE ECONOMETRICS OF TRADE

Chapter 66
The Measurement of Productivity for Nations
W. ERWIN DIEWERT and ALICE O. NAKAMURA

Chapter 67
Linking the Theory with the Data: That is the Core Problem of International Economics
EDWARD E. LEAMER

Part 17: MODELS OF CONSUMER AND WORKER CHOICE

Chapter 68
Models of Aggregate Economic Relationships that Account for Heterogeneity
RICHARD BLUNDELL and THOMAS M. STOKER

Chapter 69
Labor Supply Models: Unobserved Heterogeneity, Nonparticipation and Dynamics
RICHARD BLUNDELL, THOMAS MACURDY and COSTAS MEGHIR

VOLUME 6B

Part 18: ECONOMETRIC EVALUATION OF SOCIAL PROGRAMS

Chapter 70
Econometric Evaluation of Social Programs, Part I: Causal Models, Structural Models and Econometric
Policy Evaluation
JAMES J. HECKMAN and EDWARD J. VYTLACIL

Chapter 71
Econometric Evaluation of Social Programs, Part II: Using the Marginal Treatment Effect to Organize
Alternative Econometric Estimators to Evaluate Social Programs, and to Forecast Their Effects in New
Environments
JAMES J. HECKMAN and EDWARD J. VYTLACIL



xiv Contents of the Handbook

Chapter 72
Econometric Evaluation of Social Programs, Part III: Distributional Treatment Effects, Dynamic Treatment
Effects, Dynamic Discrete Choice, and General Equilibrium Policy Evaluation
JAAP H. ABBRING and JAMES J. HECKMAN

Part 19: RECENT ADVANCES IN ECONOMETRIC METHODS

Chapter 73
Nonparametric Identification
ROSA L. MATZKIN

Chapter 74
Implementing Nonparametric and Semiparametric Estimators
HIDEHIKO ICHIMURA and PETRA E. TODD

Chapter 75
The Econometrics of Data Combination
GEERT RIDDER and ROBERT MOFFITT

Chapter 76
Large Sample Sieve Estimation of Semi-Nonparametric Models
XIAOHONG CHEN

Chapter 77
Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and
Regularization
MARINE CARRASCO, JEAN-PIERRE FLORENS, and ERIC RENAULT



PREFACE TO THE HANDBOOK

As conceived by the founders of the Econometric Society, econometrics is a field that
uses economic theory and statistical methods to address empirical problems in eco-
nomics. It is a tool for empirical discovery and policy analysis. The chapters in this
volume embody this vision and either implement it directly or provide the tools for do-
ing so. This vision is not shared by those who view econometrics as a branch of statistics
rather than as a distinct field of knowledge that designs methods of inference from data
based on models of human choice behavior and social interactions. All of the essays in
this volume offer guidance to the practitioner on how to apply the methods they discuss
to interpret economic data. The authors of the chapters are all leading scholars in the
fields they survey and extend.

Auction theory and empirical finance are two of the most exciting areas of empirical
economics where theory and data combine to produce important practical knowledge.
These fields are well represented in this Handbook by Susan Athey and Philip Haile
(auctions) and Lars Hansen, John Heaton, Nikolai Roussanov and Junghoon Lee (fi-
nance). Both papers present state of the art knowledge of their respective fields and
discuss economic models for the pricing of goods and risk. These papers feature agent
response to uncertainty as an integral part of the analysis. Work on the pricing of labor
services lies at the core of empirical labor economics. Thomas MaCurdy surveys empir-
ical methods for estimating wage equations from panel data in a way that is accessible
to practitioners.

The econometrics of industrial organization (IO) is another vibrant area of applied
econometrics. Scholars in the field of IO have embraced econometrics. The resulting
symbiosis between theory and practice is a paragon for econometric research. Modern
developments in game theory have been incorporated in econometric models that enrich
both theory and empirical analysis. These developments are well-represented in this vol-
ume by the essays of Daniel Ackerberg, Lanier Benkard, Steven Berry, and Ariel Pakes
and of Peter Reiss and Frank Wolak. Stephen Bond and John van Reenen summarize
the related literature on modeling the dynamics of investment and employment, which
is an integral part of macroeconomics and modern IO.

The essay by Erwin Diewert and Alice Nakamura surveys methods for measuring
national productivity. They exposit a literature that provides the tools for comparing the
economic performance of policies and of nations. The authors survey the methods that
underlie this important field of economics. Edward Leamer’s essay stresses the interplay
between data and theory in the analysis of international trade patterns. In an increasingly
global market, the measurement of trade flows and the study of the impact of trade on
economic welfare is important for understanding recent economic trends.

xv
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Modern economics has come to recognize heterogeneity and diversity among eco-
nomic agents. It is now widely acknowledged that the representative agent paradigm is
an inaccurate and misleading description of modern economies. The essay by Richard
Blundell and Thomas Stoker summarizes and synthesizes a large body of work on the
aggregation of measurements across agents to produce reliable aggregate statistics and
the pitfalls in the use of aggregates.

Consumer theory, including the theory of labor supply, is at the heart of empirical
economics. The essay by Richard Blundell, Thomas MaCurdy, and Costas Meghir sur-
veys a vast literature with an ancient lineage that has been at the core of empirical
economics for over 100 years. They develop empirical models of consumer demand
and labor supply in an integrated framework.

The evaluation of economic and social programs is a central activity in economics. It
is the topic of three essays in this Handbook. James Heckman and Edward Vytlacil
contribute two chapters. The first chapter moves the literature on program evalua-
tion outside of the framework of conventional statistics to consider economic policy
questions of interest, to incorporate agent choice behavior and the consequences of un-
certainty, and to relate the recent work on policy evaluation in statistics to older and
deeper frameworks developed in econometrics. Issues of causality and the construction
of counterfactuals are addressed within the choice-theoretic framework of economics.

Their second chapter uses the marginal treatment effect to unify a diverse and dis-
jointed literature on treatment effects and estimators of treatment effects. The marginal
treatment effect can be interpreted as a willingness to pay parameter. This chapter
focuses on mean treatment effects in static environments without explicit analysis of
uncertainty.

The essay by Jaap Abbring and James Heckman surveys new methods for identifying
distributions of treatment effects under uncertainty. It surveys and develops methods for
the analysis of dynamic treatment effects, linking the statistical literature on dynamic
sequential randomization to the econometric literature on dynamic discrete choices.
It also surveys recent approaches to the general equilibrium evaluation of social pro-
grams.

One of the most important contributions of econometric theory to empirical knowl-
edge is the analysis of the identifiability of econometric models – determining under
what conditions a unique model describes the data being used in an empirical analy-
sis. Cowles Commission analysts formalized these ideas, focusing largely on linear
systems [Tjalling Koopmans, Herman Rubin, and Roy Leipnik (1950)]. Later work
by Franklin Fisher (1966) extended the Cowles analysis to nonlinear, but parametric
systems. Rosa Matzkin’s contribution to this Handbook synthesizes and substantially
extends these analyses to consider a large body of work on the identification of non-
parametric models. The methods she surveys and extends underlie a large literature in
applied economics.

Hidehiko Ichimura and Petra Todd present a guide to the recent literature on non-
parametric and semiparametric estimators in econometrics that has been developed in
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the past 20 years. They conduct the reader through the labyrinth of modern nonpara-
metric econometrics to offer both practical and theoretical guides to this literature.

Robert Moffitt and Geert Ridder address the important problem of how to combine di-
verse data sets to identify models and improve the precision of estimation of any model.
This topic is of great importance because many data sets in many areas of economics
contain valuable information on subsets of variables which, if they were combined in
a single data set, would identify important empirical relationships. Moffitt and Ridder
present the state of the art in combining data to address interesting economic questions.

Xiaohong Chen presents a detailed, informative survey of sieve estimation of semi-
parametric models. The sieve principle organizes many different approaches to non-
parametric and semiparametric estimation within a common analytical framework. Her
analysis clarifies an extensive and widely used literature. Marine Carrasco, Jean-Pierre
Florens, and Eric Renault survey the literature on nonparametric and semiparametric
econometrics that is based on inverse operators. Their analysis subsumes recent research
on nonparametric instrumental variable methods as well as research on deconvolution
of distributions. They present both theoretical and practical guides to this frontier area
of econometrics.
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Abstract

This chapter discusses structural econometric approaches to auctions. Remarkably,
much of what can be learned from auction data can be learned without restrictions
beyond those derived from the relevant economic model. This enables us to take a
nonparametric perspective in discussing how the structure of auction models can be
combined with observables to uncover (or test hypotheses about) primitives of interest
in auction markets. We focus on first-price sealed-bid and ascending auctions, including
extensions to Dutch auctions, Internet auctions, multi-unit auctions, and multi-object
auctions. We consider a wide range of underlying structures of bidder demand and in-
formation, as well as a variety of types of data one may encounter in applications. We
discuss identification and testable restrictions of these models and present a variety of
estimation approaches.

Keywords

auctions, identification, estimation, testing

JEL classification: C5, C14, D44
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1. Introduction

Auctions provide opportunities for economists to examine field data from markets that
can involve rich strategic interaction and asymmetric information while nonetheless
being simple enough that the salient forces can be convincingly captured by a tractable
economic model. The primitives of any strategic model include the set of players, the
information structure, the rules of play, and players’ objectives. In auction markets, one
can often describe these key elements with an unusually high degree of confidence.
Consequently, auctions have been at the center of efforts to combine economic theory
with econometric analysis to understand behavior and inform policy.

Early work by Hendricks and Porter (1988) and others played an important role in
demonstrating the empirical relevance of private information and the ability of strategic
models to predict behavior. More recently, there has been a great deal of attention to
econometric approaches to auctions that incorporate restrictions from economic theory
as assumptions of an econometric model.1 The goal of this structural approach is to ad-
dress questions that can only be answered with knowledge concerning the distribution
functions that characterize the underlying demand and information structure. Structural
empirical work on auctions has examined, for example, the division of rents in auctions
of public resources, whether reserve prices in government auctions are adequate, the ef-
fects of mergers on procurement costs, whether changes in auction rules would produce
greater revenues, whether bundling of procurement contracts is efficient, the value of
seller reputations, the effect of information acquisition costs on bidder participation and
profits, whether bidders’ private information introduces adverse selection, and whether
firms act as if they are risk averse.

Many of these questions have important implications well beyond the scope of auc-
tions themselves. In all of economics there is a tradeoff between the assumptions one
relies on and the questions one can address. Because an auction is a market institu-
tion that is particularly easy to capture with a theoretical model, one may have more
confidence than usual that imposing significant structure from economic theory in inter-
preting data can be useful. Combined with the fact that private information and strategic
behavior are paramount in auctions, this suggests that auctions may enable economists
to get at questions of importance to many other types of markets.

Remarkably, much of what can be learned from auction data can be learned with-
out restrictions beyond those derived from economic theory. In particular, identification
often does not depend on unverifiable parametric distributional assumptions. This is im-
portant: although economics can determine or at least shape the specification of many
components of an empirical model, it rarely provides guidance on distribution functions
governing unobservables.

1 A seminal paper in this literature is Paarsch (1992a), which builds on insights in Smiley (1979) and Thiel
(1988).
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Our focus in this chapter is on structural econometric approaches to auctions, with an
emphasis on nonparametric identification. This focus should not be confused with a pre-
sumption that nonparametric estimation methods are always preferred. Approximation
methods are virtually always needed for estimation in finite samples, and parametric es-
timators will be most appropriate in some applications. However, as emphasized at least
since Koopmans (1945), the question of what the observables and the assumed underly-
ing structure are capable of revealing (i.e., the identification question) is fundamentally
distinct from the choice of statistical methods used in practice for estimation. When
identification holds nonparametrically, one can be confident that estimates have valid
interpretations as finite sample approximations and are not merely artifacts of unverifi-
able maintained assumptions. Equally important for our purpose, because a discussion
of nonparametric identification makes clear how the structure of a model and the ob-
servables enable (or, in some important cases, fail to enable) estimation, it also provides
an ideal perspective for discussing recent developments in empirical approaches to auc-
tions. Our goals are to describe key insights from a wide range of recent work in this
area in a unified framework, to present several new results, and to point out areas ripe
for exploration.

We focus on two auction formats that are dominant in practice: first-price sealed-
bid auctions and ascending (or “English”) auctions. First-price auctions are particularly
prevalent in government procurement – a common source of data in applied work. Our
discussion of first-price auctions will include the closely related Dutch auction. As-
cending auctions, in several variations, are the most frequently observed in practice.
They are widely used in sales of antiques, art, timber, and in Internet auctions.2 As we
will see below, each type of auction presents different econometric challenges. We will
also examine extensions to other environments, including multi-unit and multi-object
auctions. We consider a wide range of underlying structures of bidder demand and in-
formation, as well as a range of types of data one may encounter in applications. We
discuss identification, testable restrictions, and a variety of parametric, semi-parametric,
and nonparametric estimation approaches. Much of the recent innovation in the litera-
ture has been on the identification question. In many cases this is because standard
statistical methods can be applied for estimation and testing once identification results
are obtained. This is not always the case, however, and in some cases the development
of methods for estimation has lagged development of identification results. Here and
elsewhere, our discussion will point to a number of opportunities for additional work.

2 Among the auction forms commonly discussed in the theoretical literature, we exclude the second-price
sealed-bid (“Vickrey”) auction, which is closely related to the ascending auction but uncommon in practice.
Some Internet auctions, like those on the eBay site, use a system of proxy bidding that has the flavor of a
second-price sealed bid auction, although in practice bidders usually have the ability to observe and respond
to the bids of at least some of their opponents, as in an ascending auction (see Lucking-Reiley (2000) for
more stylized facts about Internet auctions). Alternative models of Internet auctions are offered by Bajari and
Hortaçsu (2003a), Ockenfels and Roth (2006) and Song (2003). We will discuss a structural empirical model
based on the last of these in Section 6.3.4.
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Before proceeding, we first make precise what is meant by identification in this con-
text. Let G denote the set of all joint distributions over a specified set of observable
random variables. Define a model as a pair (F, Γ ), where F is a set of joint distribu-
tions over a specified set of latent random variables and Γ is a collection of mappings
γ : F → G. In this chapter, F will typically be the set of joint distributions of bidder
valuations and information (“types”) satisfying certain statistical properties (e.g., in-
dependence, symmetry, etc.), while Γ will consist of a single mapping from the true
distribution of types to a distribution of bids implied by the assumption of Bayesian
Nash equilibrium. Implicit in the specification of a model is the assumption that it
contains the true structure (F , γ ) generating the observables. A model is said to be
identified (or identifiable) if the observables uniquely determine the true structure within
(F, Γ ).

DEFINITION 1.1. A model (F, Γ ) is identified if for every (F , F̃ ) ∈ F
2 and (γ, γ̃ ) ∈

Γ 2, γ (F ) = γ̃ (F̃ ) implies (F , γ ) = (F̃ , γ̃ ).

In some cases, useful inferences can be made even when a model is not identified. In
partially identified models one may be able to identify some components of interest, or
place bounds on components of interest [see, e.g., Manski (1995)]. A separate question
is whether a model places refutable restrictions on observables; i.e., whether the model
is testable. A model is testable if some joint distributions in G cannot be generated by
the model.

DEFINITION 1.2. A model (F, Γ ) is testable if
⋃

γ∈Γ,F∈F
γ (F ) is a strict subset of G.

With these definitions in hand, we can preview some of the themes that emerge in
what follows. First, a remarkable number of positive nonparametric identification results
can be obtained by exploiting the relationships between observables and the primitives
of interest that are implied by economic theory. Richer statistical structures (e.g., arbi-
trary correlation) for bidders’ information and/or more limited sets of observables (e.g.,
only the winning bid) create greater challenges, but even here a number of positive re-
sults can be obtained. There are limits to the positive results, however. For example,
identification of models with common values, risk aversion, or unobserved heterogene-
ity can be obtained only with strong a priori restrictions. This is particularly the case in
ascending auctions, where theory provides less guidance on the appropriate interpreta-
tion of the observed bids.

A second major theme is the need to make modeling choices and the importance
of testing these choices when possible. Often a particular set of assumptions (e.g., in-
dependent private values, risk neutral bidders) is postulated for particular application
based on characteristics of the relevant market. Modeling choices can have important
implications for the conclusions one reaches. Ideally, researchers would like to com-
bine economic justifications for modeling choices with statistical evidence supporting
these choices and/or an analysis of the range of outcomes possible under alternative
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assumptions. We discuss a number of results that clarify when this will be possible.
In many cases some assumptions can be tested while maintaining others. In general
this possibility depends on the auction format (e.g., ascending versus first-price) and
the data configuration (e.g., whether all bids are observed or just the winning bid, or
whether particular types of exogenous variation are present and observable). For exam-
ple, an assumption of private values is testable under some data configurations but not
others (Section 8). Another example arises when the econometrician must make mod-
eling choice regarding the source of observed correlation among bids: this may result
from correlation of bidders’ private information or from common knowledge among
bidders of auction-specific factors affecting all bidders’ valuations. These alternative
models often have different implications for counterfactuals, but it is difficult to distin-
guish between them empirically (Section 6.1.2). Other examples include choices of how
participation is modeled (Section 6.3), and of bidders’ risk preferences (Section 6.4).
Typically, some modeling choices will be testable (particularly in data configurations
that include some type of exogenous variation in the environment – e.g., in the number
of bidders or bidder covariates), while others will not.

Our focus in this chapter unavoidably leads us to ignore many interesting and im-
portant issues given attention in the empirical auctions literature. Fortunately, there are
now several excellent surveys, each with a somewhat different focus, that provide useful
complements to our chapter. Laffont (1997) and Hendricks and Paarsch (1995) provide
early surveys reviewing empirical studies of the implications of equilibrium bidding
in auctions as well as approaches to estimation of the primitives of auction models.
Perrigne and Vuong (1999) survey methods for structural analysis of first-price auc-
tions, including a synthesis of their own extensive contributions (with several coauthors)
to nonparametric identification and estimation of these models. Hong and Shum (2000)
provide an introduction to parametric structural approaches. Kagel (1995) surveys the
extensive work on auctions in the experimental economics literature. Finally, Hendricks
and Porter (in press) provide a recent and extensive review of the large empirical lit-
erature on auctions, covering a wide range of economic questions and econometric
approaches.3

The structure of the chapter can be described as follows. Section 2 describes the
underlying theoretical framework for our initial focus and provides the characterizations
of equilibrium bidding behavior that underlie the econometric approaches that follow.4

In Sections 3 and 4 we then discuss first-price and ascending auctions in the simplest
and most widely considered case of private values, assuming that there is no binding

3 Reiss and Wolak (Chapter 64 in this volume) include a discussion of auctions among several examples
of the structural empirical approach in industrial organization. See also the recent monograph by Hong and
Paarsch (2006).
4 For additional detail, Krishna (2002) provides an excellent synthesis of a large theoretical literature on

auctions. McAfee and McMillan (1987) provide a shorter introduction to much of the relevant theory. Milgrom
and Weber (1982) is a central paper in the early theoretical literature that covers many of the models we
consider. Milgrom (2004) treats some of the newer literature on combinatorial auctions.

http://dx.doi.org/10.1016/S1573-4412(07)06064-3
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reserve price and that the data available consist of bids from independent auctions of
identical goods. These results provide many of the key building blocks for considering
richer private values specifications, specification testing, endogenous participation, risk
aversion, as well as other types of data in Sections 5 and 6. In Section 7 we take up the
case of common values models, where identification is more difficult and often fails.
This provides one motivation for a discussion of testing for common values in Section 8.
We conclude with two sections on important topics that have been the subject of very
recent work. Section 9 addresses dynamics. Section 10 discusses work in progress on
multi-unit and multi-object auctions.

2. Theoretical framework

2.1. Demand and information structures

Throughout we denote random variables in upper case and their realizations in lower
case. We use boldface to indicate vectors. To emphasize the distinction between latent
variables and observables, we adopt the convention of denoting the cumulative dis-
tribution function (CDF) of a latent random variable Y by FY(·) and the CDF of an
observable random variable Y by GY(·). Much of the discussion will involve order sta-
tistics. We let Y (k:n) denote the kth order statistic from the sample (Y1, . . . Yn), with
F

(k:n)
Y (·) denoting the corresponding marginal CDF. We follow the standard convention

of indexing order statistics lowest to highest so that, e.g., Y (n:n) is the maximum.
For most of the chapter, the underlying theoretical framework involves the sale of a

single indivisible good to one of n ∈ {n, . . . , n} risk neutral bidders, with n � n � 2.5

Later, when we consider auctions with reserve prices or participation costs, these n

bidders will be referred to as “potential bidders.” We consider risk aversion, sequen-
tial auctions, multi-unit auctions, and multi-object auctions separately below. We let N
denote the set of bidders, although when bidders are symmetric, n = |N | will be a suf-
ficient statistic. We let N−i denote the set of competitors faced by bidder i. The utility
bidder i ∈ {1, . . . , n} would receive from the good is Ui , which we assume to have
common support (denoted supp FUi

(·) or supp Ui) for all i. Often Ui is referred to as i’s
“valuation.” We let U = (U1, . . . , Un).

Bidder i’s private information (his “type”) consists of a scalar signal Xi . We let X =
(X1, . . . , Xn), xi = inf supp Xi , and xi = sup supp Xi . Signals are informative in the
sense that the expectation

E[Ui | Xi = xi, X−i = x−i]
strictly increases in xi for all realizations x−i of i’s opponents’ signals. Note that be-
cause signals play a purely informational role and any monotonic transformation θ(Xi)

5 Translation to procurement settings, where bidders compete to sell, is straightforward.
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contains the same information as Xi itself, the marginal distribution of Xi is irrelevant;
i.e., without a normalization on Xi , the theoretical model is over-parameterized. It is
therefore desirable (and without loss of generality) to impose a normalization such as6

Xi = E[Ui | Xi].
We will see below that different normalizations will sometimes turn out be more con-
venient.

Except where otherwise stated, we assume that the set of bidders and the joint dis-
tribution FX,U(·;N ) of bidders’ signals and valuations are common knowledge. While
these are standard assumptions in the theoretical literature on auctions, in a few cases
(e.g., an ascending auction with private values) these assumptions are inconsequential.
In a first-price auction, these assumptions can be relaxed somewhat; for example, we
consider the possibility that N is unknown in Section 6.3.3.

This framework is a generalization of that studied in Milgrom and Weber’s (1982) in-
fluential theoretical exploration of auctions and nests a wide range of special cases, each
involving different assumptions about bidders’ private information. One key distinction
is that between private values (PV) and common values (CV) models.

DEFINITION 2.1. Bidders have private values if E[Ui | X1 = x1, . . . , Xn = xn] =
E[Ui | X1 = x1] for all x1, . . . , xn and all i; bidders have common values if E[Ui |
X1 = x1, . . . , Xn = xn] strictly increases in xj for all i, j , and xj .7

In private values models, bidders do not have private information about the valuations
of their opponents. For the settings we will consider, this is equivalent to assuming bid-
ders know their own valuations (Xi = Ui). In a common values model, by contrast,
each bidder i would update her beliefs about her valuation Ui if she learned an op-
ponent’s signal Xj in addition to her own signal Xi . Even in a private values auction
a bidder would like to know her competitors’ private information for strategic reasons.
However, in a common values auction, knowledge of opponents’ signals would alter her
expectation of her own valuation. This is the characteristic of common values auctions
that leads to the “winner’s curse.” Roughly speaking, winning a common values auction
reveals (in equilibrium) to the winner that her signal was more optimistic than those of
her opponents. Rational bidders anticipate this information when forming expectations

6 It is important to avoid confusing this extra degree of freedom in the usual specification of the theoretical
model with issues concerning econometric identification. Since the marginal distribution of Xi is irrelevant
in the theoretical model, it is not a primitive whose identification should even be considered.
7 Alternatively, one might define private and common values in terms of the conditional distributions

FUi
(Ui | X1, . . . , Xn) and FUi

(Ui | Xi). For our purposes a definition in terms of conditional expectations
is adequate. Note that for simplicity of exposition our definition of common values rules out cases where the
winner’s curse arises for some realizations of types but not others.
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of the utility they would receive by winning.8 Note that common values models incor-
porate a wide range of structures in which information about the value of the good is
dispersed among bidders, not just the special case in which the value of the object is
identical for all bidders (defined as pure common values below).9

A second way in which this general framework can be specialized is through re-
strictions on the joint distribution of signals. Common assumptions are independence
or affiliation.10 Note that dependence (or affiliation) of signals is neither necessary nor
sufficient for common values. Finally, a common restriction in the literature is symme-
try, i.e., that the joint distribution FX,U(X1, . . . , Xn,U1, . . . , Un;N ) is exchangeable
in the bidder indices. For clarity, we will often explicitly refer to models as “symmet-
ric” or “asymmetric.” Combining these types of restrictions leads to a number of special
cases that have been considered in the literature, including:

• Independent Private Values (IPV): private values with Ui independent;
• Symmetric Independent Private Values: private values with Ui i.i.d.;
• Affiliated Private Values (APV): private values with (U1, . . . , Un) affiliated;
• Pure Common Values: common values with Ui = U0 ∀i;
• Mineral Rights: pure common values with signals i.i.d. conditional on U0.

Finally, for a few results we will make an additional assumption of exogenous vari-
ation in the number of bidders, which holds when variation in the set of bidders is
independent of the joint distribution of bidders’ valuations and signals.

DEFINITION 2.2. A bidding environment has exogenous variation in the number of
bidders if n > n and, for all N , N ′ such that N ⊂ N ′ ⊆ {1, . . . , n}, FX,U(·;N ) is
identical to the marginal distribution of {(Ui,Xi)}i∈N obtained from FX,U(·;N ′).

2.2. Equilibrium bidding

We restrict attention to econometric approaches that exploit the structure of equilibrium
bidding to obtain identification or testable restrictions. Hence we must first provide the

8 Note that the presence of the winner’s curse does not imply that winners regret winning; rather, the winner’s
curse refers to the “bad news” [Milgrom (1981)] about the object’s value contained the information that one
has won the auction. Rational bidders anticipate this.
9 While our terminology follows, e.g., Klemperer (1999), Athey and Haile (2002), and Haile, Hong and

Shum (2003), there is some variation in the terminology used in the auction literature. Early on, the term
“common values” was sometimes used in the way we use it but sometimes used to refer to the special case
we call “pure common values.” Similarly, “affiliated values” was sometimes used for the class of models we
call “common values,” despite the fact that purely private values can be affiliated (see below). Recently some
authors [e.g., Krishna (2002)] have adopted the term “interdependent values” to refer to the broad class of
models we refer to as common values models.
10 The random variables Y = (Y1, . . . , Yn) with joint density fY(·) are affiliated if for all y and y′,
fY(y∨y′)fY(y∧y′) � fY(y)fY(y′), where ∨ denotes the component-wise maximum, and ∧ the component-
wise minimum. See Milgrom and Weber (1982) for additional discussion. Note that affiliation allows inde-
pendence as a special case.
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necessary characterizations of equilibrium. Following the literature, we generally re-
strict attention to (perfect) Bayesian Nash equilibria in weakly undominated strategies.
We focus on equilibrium in pure bidding strategies βi(·;N ), i = 1, . . . , n, mapping
each bidder’s signal (and, implicitly, any public information) into a bid. When bid-
ders are ex ante symmetric we further restrict attention to symmetric equilibria, so
that βi(·) = β(·) ∀i. Below we discuss conditions under which there are other equi-
libria in first-price auctions. We will denote a bidder i’s equilibrium bid by Bi , with
B = {B1, . . . , Bn}. We let bi = inf[supp[Bi]] and bi = sup[supp[Bi]].
2.2.1. First-price auctions

In a first-price sealed-bid auction bidders submit bids simultaneously, and the good is
awarded to the high bidder at a price equal to his bid. If there is a reserve price, r , the
seller has committed to consider only bids of at least r . For first-price auctions we make
the following additional assumptions:

ASSUMPTION 2.1 (First-price auction assumptions).
(i) For all i, Ui has compact, convex support denoted supp FUi

(·) = [u, u].
(ii) The signals X are affiliated, with supp FX(·) = ×n

i=1 supp FXi
(·).

(iii) FX(·) has an associated joint density fX(·) that is strictly positive on the interior
of supp FX(·).

The following result summarizes existence and uniqueness results for this model.
This will enable us to then proceed to the key characterization results used for empirical
work.

THEOREM 2.1. Consider the first-price auction.
(i) (Existence in strictly increasing strategies) An equilibrium exists in pure, non-

decreasing strategies, where for each i, supp[Bi] ⊆ supp[maxj∈N \i Bj ]. In
addition, a pure strategy equilibrium in strictly increasing strategies exists in all
models except in the CV model with asymmetric bidders and signals that are not
independent; in the latter case, strategies are strictly increasing except that at
most one bidder may bid inf[supp[B(n:n)]] with positive probability.11

(ii) (Uniqueness) In a PV model with either (a) independence (IPV), or (b) sym-
metry, if fX(·) is continuously differentiable there is a unique equilibrium. This
equilibrium is in pure, strictly increasing, and differentiable strategies.12

11 See Athey (2001) and Reny and Zamir (2004) for existence of equilibrium in nondecreasing strategies,
and Milgrom and Weber (1982), McAdams (2007) and Lizzeri and Persico (2000) for the characterization.
McAdams (2007) argues that in any monotone equilibrium, strategies are strictly increasing except that at
most one bidder may, with positive probability, choose the lowest bid that wins with strictly positive proba-
bility, if such a bid exists. In PV auctions it is possible to rule out mass points at the reserve price, if it binds,
or at the bottom of the value distribution if the reserve price does not bind.
12 In the IPV case, all equilibria are in monotone strategies; see Lebrun (1999), Bajari (2001), and Maskin
and Riley (2003) for uniqueness results. Milgrom and Weber (1982) show existence of the equilibrium for
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(iii) (Uniqueness in monotone class for symmetric models) If we restrict attention
to pure strategy equilibria in nondecreasing strategies, then when bidders are
symmetric and fX(·) is continuously differentiable there is a unique equilibrium,
which is in symmetric, strictly increasing, and differentiable strategies.13

All of our positive identification results for common values models rely on symmetry,
so in our discussions of CV auctions we will proceed under the assumption that strate-
gies are strictly increasing. For the first-price auction models for which uniqueness has
not been established, we will also assume that all observations in a given data set are
derived from the same equilibrium.

As shown by Milgrom and Weber (1982), a bidder i participates if and only if his
signal exceeds a threshold value

(2.1)x∗
i (N ) = inf

{
xi : E

[
Ui

∣∣∣ Xi = xi, max
j∈N−i

Bj � r
]

� r
}
.

When there is no reserve price, let x∗
i (N ) = xi . Here, expectations over others’ bids

represent equilibrium expectations. A bidder i who has observed signal Xi = xi >

x∗
i (N ) solves

(2.2)max
b̃

(
E
[
Ui

∣∣∣ Xi = xi, max
j∈N−i

Bj � b̃
]

− b̃
)

Pr
(

max
j∈N−i

Bj � b̃

∣∣∣ Xi = xi

)
,

where we adopt the convention that Bj < r for any bidder j who does not participate.
Define

ṽi (xi, mi;N ) = E
[
Ui

∣∣∣ Xi = xi, max
j∈N−i

Bj = mi

]
.

This is bidder i’s expectation of his valuation conditional on his own signal and the high-
est competing bid. This highest competing bid is informative because, in equilibrium,
bids are strictly increasing in signals. In particular, if we let

(2.3)vi(xi, yi;N ) = E
[
Ui

∣∣∣ Xi = xi, max
j∈N−i

Bj = βi(yi;N )
]

APV auctions. McAdams (2007) shows that for a nonmonotone equilibrium to exist, both independence of
signals and private values must be relaxed. He shows that with private values or independent signals, all
equilibria are outcome-equivalent to a monotone equilibrium; i.e., bidding strategies are identical to those in a
monotone equilibrium except possibly for subsets of types whose equilibrium bids win with probability zero.
McAdams (2004b) shows that if bidders are symmetric, there is a unique equilibrium within the monotone
class. So together, these results imply that for the symmetric PV model, there is a unique equilibrium.
13 See footnote 12 for a discussion of when nonmonotone equilibria can exist. McAdams (2004b) proves
uniqueness within the monotone class. For characterizations, see Milgrom and Weber (1982). See also Lizzeri
and Persico (2000), who show that when the density of the value distribution is C1, in two-bidder first-
price auctions with a binding reserve price, among monotone pure strategy equilibria there exists a unique
equilibrium in strictly increasing, differentiable strategies, except that one bidder may choose the reserve price
with positive probability.
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then

vi(xi, yi;N ) = ṽi

(
xi, βi(yi;N );N ).

The expectation vi(xi, xi;N ) will play an important role below. This expectation is
taken conditioning both on i’s own private information and on the event that i’s equilib-
rium bid is “pivotal,” i.e., that infinitesimal deviations from his equilibrium bid would
change the outcome of the auction.

Let

GMi |Bi
(mi |bi;N ) = Pr

(
max
j �=i

Bj � mi

∣∣∣ Bi = bi,N
)

denote the distribution of the maximum equilibrium bid among i’s opponents condi-
tional on i’s own equilibrium bid and the set of bidders N . Let gMi |Bi

(mi |bi;N ) denote
the corresponding conditional density, which exists and is positive for all bi and almost
every mi in the support of Bi under the assumptions outlined above. Note that with
strictly increasing equilibrium bidding, conditioning on {Bi = b} is equivalent to con-
ditioning on {Xi = β−1

i (b;N )}. Bidder i’s bidding Problem (2.2) can then be rewritten

max
b̃

∫ b̃

−∞
[
ṽi (xi, mi;N ) − b̃

]
gMi |Bi

(
mi |βi(xi;N );N ) dmi.

This objective function is differentiable almost everywhere. Differentiating with respect
to b̃, we see that for almost every signal xi of bidder i, a necessary condition for bi to
be an optimal bid (i.e., for βi(xi;N ) = bi) is

(2.4)vi(xi, xi;N ) = bi + GMi |Bi
(bi |bi;N )

gMi |Bi
(bi |bi;N )

≡ ξi(bi;N ).

Equation (2.4) characterizes an equilibrium bid as equal to the bidder’s expec-
tation of his valuation (conditional on being pivotal) less a strategic “markdown”
GMi |Bi

(bi |bi ;N )

gMi |Bi
(bi |bi ;N )

.14 This first-order condition does not always lead to an analytic solu-

tion for equilibrium bidding strategies. With ex ante symmetric bidders, however, we
can write

vi(x, x;N ) = v(x, x; n) = E
[
Ui

∣∣∣ Xi = max
j �=i

Xj = x
]

and x∗
i (N ) = x∗(n) ∀i. In that case, Milgrom and Weber (1982) have shown that the

equilibrium bid function has the form

(2.5)β(x; n) = rL
(
x∗(n)|x; n

)+
∫ x

x∗(n)

v(t, t; n) dL(t |x; n)

14 This is analogous to the markdown of an oligopsonist, which bases its price on the equilibrium elasticity of
its residual supply curve; in the auction model, GMi |Bi

(bi |bi ;N ) plays the role of the residual supply curve.



3860 S. Athey and P.A. Haile

for x � x∗, where

L(t |x; n) ≡ exp

(
−
∫ x

t

f1(z|z; n)

F1(z|z; n)
dz

)
and F1(·|x; n) is the distribution of the maximum signal among a bidder’s opponents
conditional on the number of bidders and on his own signal being x.

Before proceeding, we pause to make two observations about the support of the equi-
librium bid distribution.15

THEOREM 2.2. In the IPV model of the first-price auction, supp[Bi] is the same for
all i.

PROOF. With independence, the inverse bid function for bidder i can be written

ξi(bi;N ) = bi + 1∑
k∈N \i

gBk
(bi )

GBk
(bi )

.

If there are two bidders, the result is immediate given that the value distributions have
the same support. Now suppose n > 2 and bi < bj . We know that ξj (bj ;N ) must
be continuous at bi : otherwise (given strictly monotone strategies) we would contradict
our assumption that valuations are drawn from a convex set. Then, note that

u = ξi(bi;N ) = bi + 1∑
k∈N \i

gBk
(bi )

GBk
(bi )

< bi + 1∑
k∈N \{i,j}

gBk
(bi )

GBk
(bi )

= ξj (bi;N ).

But ξj (bi;N ) > u contradicts the assumption that Ui has the same support for all i.
Given the properties established in Theorem 2.1, standard arguments then show that
supp[Bi] = [max{r, u}, b] ∀i. �

Outside of the IPV model, it is not known in general whether bid distributions have
the same support for all bidders when bidders are asymmetric. We do know that if we
relax the assumption that valuations have common support, the bids may or may not
have the same support.16

Note that the theory also implies that the upper bound of the bid distribution is closely
related to features of the distribution of valuations. In the symmetric IPV model,

Ui = Bi + GB(Bi; n)

(n − 1)gB(Bi; n)

15 See Lebrun (1999) for an alternative proof.
16 In Section 5.1 we give an example where valuations have different supports but bids have identical
supports. To see an example where bid distributions have different supports, suppose that there are three
bidders. FU1 (u1) = 8

5 u1 − 16
25 u2

1 for u1 ∈ [0, 5/4], while for i ∈ {2, 3}, FUi
(ui ) = 1

100 (4 + 2ui −
√

2
√

8 − 7ui + 2u2
i
)2 for ui ∈ [0, 3/2] and FUi

(ui ) = 1
9 u2

i
for ui ∈ [3/2, 3]. For this example,

GB1 (b1) = 2b1 − b2
1 for b1 ∈ [0, 1], while for i ∈ {2, 3}, GBi

(bi ) = b2
i
/4 for bi ∈ [0, 2].
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so

E[Ui] = E[Bi] + 1

n − 1

∫ b

b

GB(b; n) db = n − 2

n − 1
E[Bi] + 1

n − 1
b.

Thus, the mean valuation is a linear function of the mean bid and b. When n = 2, this
yields E[Ui] = b. The average “markdown” for a bidder in the symmetric IPV model
is given by

E[Ui − Bi] = 1

n − 1

(
b − E[Bi]

)
.

Although it seems that these kinds of relationships might be useful, they have not to our
knowledge been explored in the econometric analysis of auctions.

2.2.2. Ascending auctions

The standard model of an ascending auction is the so-called “clock auction” or “but-
ton auction” model of Milgrom and Weber (1982), where the price rises continuously
and exogenously. Bidders indicate their willingness to continue bidding continuously
as well, for example by raising their hands or depressing a button as the price rises. As
the auction proceeds, bidders exit observably and irreversibly (by lowering their hands,
releasing their buttons, etc.) until only one bidder remains. This final bidder obtains the
good at the price at which his last opponent exited; i.e., the auction ends at a price equal
to the second highest exit price (“bid”) b(n−1:n).

The participation rule for an ascending auction is identical to that for a first-price
auction. An equilibrium bidding strategy specifies a price at which to exit, conditional
on one’s own signal and on any information revealed by previous exits by opponents.
With strictly increasing bidding strategies, the price at which a bidder exits reveals his
signal to others. So in a common values auction, an exit causes the remaining bidders to
update their beliefs about their valuations; hence, the prices at which bidders plan to exit
change as the auction proceeds. In a private values auction there is no such updating,
and each bidder has a weakly dominant strategy to bid up to his valuation, i.e.,

(2.6)βi(xi;N ) = E[Ui | Xi = xi] = xi ≡ ui.

In common values auctions there are multiple equilibria, even with ex ante symmetric
bidders and restriction to symmetric strictly increasing weakly undominated strategies
[Bikhchandani, Haile and Riley (2002)]. In any such equilibrium, however, if i is one
of the last two bidders to exit, his exit price bi is

(2.7)E
[
Ui

∣∣ Xi = xi, Xj = xi ∀j /∈ {i ∪ Ei}, Xk = xk ∀k ∈ Ei

]
,

where Ei denotes the set of bidders who exit before i. Milgrom and Weber (1982) orig-
inally identified the equilibrium in which all bidders follow (2.7), which reduces to the
weakly dominant strategy (2.6) in the case of private values.
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While the Milgrom–Weber model yields a trivial relation between a bidder’s val-
uation and his bid in a private values auction, we will see that even in this case
identification can present challenges, due to the fact that the auction ends before the
winner bids (exits). Furthermore, in many applications the Milgrom–Weber model may
represent too great an abstraction from actual practice, for example if prices are called
out by bidders rather than by the auctioneer, or if bidders are free to make a bid at any
point in the auction, regardless of their activity (or lack thereof) earlier in the auction.
In Section 4.3 we will discuss an econometric approach that relaxes the structure of the
button auction model.

3. First-price auctions with private values: Basic results

3.1. Identification

We begin by considering the case of private values auctions, assuming that bidders’ val-
uations at each auction are draws from the same joint distribution FU(·). The primitive
of interest in a PV auction is this joint distribution: it completely characterizes bid-
der demand and information. With knowledge of FU(·) one can, for example, simulate
outcomes under alternative market mechanisms, assess efficiency and the division of
surplus, and determine an optimal reserve price. The simple idea underlying the struc-
tural approach to PV auctions is to use the distribution of bids observed in a sample of
auctions along with the equilibrium mapping between valuations and bids (the observ-
ables) to learn about FU(·).

Even when a closed form solution like (2.5) is available, however, it is not imme-
diately clear how one would proceed to use this equilibrium characterization for a
first-price auction to obtain identification. Even in the simplest symmetric IPV model,
the equilibrium bid function takes the form (recall that xi = ui)

β(u; n) =
∫ u

−∞ tf
(n−1:n−1)
U (t) dt

F
(n−1:n−1)
U (u)

,

which depends on the unknown distribution FU(·) of valuations, i.e., on the object one
would like to estimate.

Several approaches were initially taken to address this problem within the symmetric
IPV model. Following Smiley (1979) and Paarsch (1992a), early work focused on para-
metric specifications of FU(·) admitting simple closed form equilibrium bid functions
that made it feasible to derive likelihoods or moment conditions.17 Laffont, Ossard and
Vuong (1995) proposed an approach combining parametric assumptions with a sim-
ulation based estimator that is made feasible in the symmetric IPV framework by the
revenue equivalence theorem [e.g., Myerson (1981)]. Bajari (1997) proposed a Bayesian

17 Smiley (1979) considered only common values models.
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approach applicable in the more difficult case of asymmetric independent private val-
ues. The role of the parametric distributional assumptions in these empirical approaches
was not initially clear.

An important breakthrough due to Guerre, Perrigne and Vuong (2000) came from the
simple but powerful observation that equilibrium is attained when each player is acting
optimally against the distribution of behavior by opponents.18 When bids are observ-
able, both the distribution of opponent behavior and the optimal (equilibrium) action of
each bidder are observable, enabling identification of the latent joint distribution of bid-
der valuations under fairly weak restrictions. In particular, the first-order condition (2.4)
can be written

(3.1)ui = bi + GMi |Bi
(bi |bi;N )

gMi |Bi
(bi |bi;N )

.

Thus, each bidder’s latent private value can be expressed as a functional of his equilib-
rium bid and the joint distribution of the competing equilibrium bids he faces.19 In fact,

the function ξi(bi,N ) ≡ bi + GMi |Bi
(bi |bi ;N )

gMi |Bi
(bi |bi ;N )

is the inverse of bidder i’s equilibrium bid

function, the mapping needed to infer valuations from bids. Since the joint distribution
of bids is observable, identification of each private value ui (and, therefore, of the joint
distribution FU(·)) follows directly from (3.1). Formally,

(3.2)FU(u) = GB
(
ξ−1

1 (u1,N ), . . . , ξ−1
n (un,N )

)
.

This proves the following identification result, combining results from Guerre, Perrigne
and Vuong (2000), Li, Perrigne and Vuong (2002), and Campo, Perrigne and Vuong
(2003).

THEOREM 3.1.
(i) Suppose all bids are observed in first-price sealed-bid auctions. Then the sym-

metric affiliated private values model is identified.
(ii) Suppose all bids and bidder identities are observed in first-price sealed-bid auc-

tions. Then the asymmetric affiliated private values model is identified.

3.2. Estimation

For purposes of estimation, suppose one observes bids from independent auctions
t = 1, . . . , T . We will add an auction index t to the notation above as necessary. For

18 This approach was first described in print by Laffont and Vuong (1993), who attribute the idea to an early
draft of Guerre, Perrigne and Vuong (2000).
19 Note that in general this kind of approach relies on there being a unique equilibrium or on an assumption
that the equilibrium selected is the same across observations. Otherwise the observed distribution of opponent
bids would be a mixture of those in each equilibrium, and would not match the distribution characterizing a
bidder’s beliefs in a given auction.
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example, bit will denote the realized bid of bidder i at auction t . Let TN denote the
number of auctions in which N is the set of bidders. We let Tn = ∑

N : |N |=n TN . We
assume that for all n = n . . . n, Tn → ∞ and T → ∞. When we consider asymmetric
settings, we consider only sets N for which TN → ∞.

A two-step estimation procedure can be employed, closely following the identifi-

cation result in Theorem 3.1. In the first step, estimates of each
GMi |Bi

(bit |bit ;N )

gMi |Bi
(bit |bit ;N )

are

obtained from the observed bids. These estimates are then used with Equation (3.1) to
construct estimates of each latent valuation ui . This pseudo-sample of valuations (often
referred to as a sample of “pseudo-values”) is then treated as a sample from the true
distribution FU(·), subject to first-stage estimation error.

In principle each step could be parametric or nonparametric. As noted by Perrigne
and Vuong (1999), a challenge in a fully parametric method is the need for internal
consistency between the parametric families chosen for the distributions of bids and of
valuations, since these are related by the equilibrium bid function. This issue would be
avoided if only one of the two steps were treated parametrically. Jofre-Bonet and Pe-
sendorfer (2003) and Athey, Levin and Seira (2004) follow this approach, motivated by
a desire to include covariates in a parsimonious way.20 Fully parametric methods based
on maximum likelihood or moment conditions (rather than the two-step “indirect” ap-
proach discussed here) have been explored by, e.g., Paarsch (1992a, 1992b), Donald
and Paarsch (1993, 1996), and Laffont, Ossard and Vuong (1995). In practice the ap-
plicability of these methods has been limited to distributional families leading to simple
closed forms for equilibrium bid functions and/or to the symmetric independent private
values setting. As first explored by Donald and Paarsch (1993), a violation of a standard
regularity condition for maximum likelihood estimation arises in a first-price auction,
leading to nonstandard asymptotic distributions [see also Donald and Paarsch (1996),
Chernozhukov and Hong (2003), and Hirano and Porter (2003)].

Below we describe the fully nonparametric estimators that have thus far been pro-
posed in the literature.21

3.2.1. Symmetric bidders

Consider first the case of symmetric bidders, where GMi |Bi
(b|b;N ) can be written

GM|B(b|b; n) ∀i. Following Li, Perrigne and Vuong (2002), let

GM,B(m, b; n) ≡ GM|B(m|b; n)gB(b; n)

20 Note, however, that theory predicts that bid distributions should have compact support. To be consistent
with theory, an upper bound on the support of the bid distributions should be incorporated in estimation.
21 Thus far, the literature has focused on kernel estimators. One possible alternative is sieve estimation [e.g.,
Chen (2007)]. As we discuss below, such an approach might have a practical advantage in environments with
observed auction heterogeneity.
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and

gM,B(m; b; n) ≡ gM|B(m|b; n)gB(b; n)

where gB(·) is the marginal density of a bidder’s equilibrium bid, given the number of
bidders n. Note that here we depart from our usual notational convention, since GM,B(·)
is not the joint distribution of (M,B) but its derivative with respect to its second argu-
ment. Let

(3.3)ĜM,B(b, b; n) = 1

nTnhG

T∑
t=1

n∑
i=1

K

(
b − bit

hG

)
1{mit < b, nt = n},

(3.4)ĝM,B(b, b; n) = 1

nTnh2
g

T∑
t=1

n∑
i=1

1{nt = n}K
(

b − bit

hg

,
b − mit

hg

)
,

where Mit denotes the maximum of i’s opponents’ bids at auction t , K(·) is a kernel,
and hG and hg are appropriately chosen bandwidth sequences. Under standard condi-
tions, ĜM,B(b, b; n) and ĝM,B(b, b; n) are consistent estimators of GM,B(b, b; n) and
gM,B(b; b; n). Noting that

GM,B(b, b; n)

gM,B(b, b; n)
= GM|B(b|b; n)

gM|B(b|b; n)

we see that ĜM,B(b,b;n)

ĝM,B(b,b;n)
is a consistent estimator of GM|B(b|b;n)

gM|B(b|b;n)
. Equation (3.1) then im-

plies that

ûit ≡ bit + ĜM,B(bit , bit ; n)

ĝM,B(bit , bit ; n)

is a consistent estimate of the latent valuation uit that generated the observed bid bit .
Naively treating each ûit as a draw from FU(·) might suggest a kernel density esti-

mator of the form

f̂U(u1, . . . , un) = 1

Tnh
n
f

T∑
t=1

Kf

(
u1−û1t

hf

, . . . ,
un−ûnt

hf

)
1{nt = n},

where Kf (·) is a multivariate kernel and hf is a bandwidth. Li, Perrigne and Vuong
(2002, Proposition 2) show that with bandwidths hG, hg , and hf that vanish at appro-
priate rates, under standard smoothness conditions f̂U(·) is in fact a uniformly consistent
estimator of fU(·) on any inner compact subset of its support. The restriction to the re-
gion of support away from the boundaries follows from the usual problem of asymptotic
bias at the boundaries with kernel estimates.

Li, Perrigne and Vuong (2002, pp. 180–181) suggest triweight kernels (using prod-
ucts of univariate kernels for the multivariate kernels) and a standard rule of trimming
the pseudo-values associated with bids within one bandwidth of either boundary of the
bid data. The most important practical question is the choice of bandwidth. Guerre,
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Perrigne and Vuong (2000) and Li, Perrigne and Vuong (2002) suggest following Sil-
verman’s (1986) “rule of thumb.” To our knowledge, data driven bandwidth selection
procedures have not been explored. Guerre, Perrigne and Vuong (2000) also point out
that the assumption of exchangeability can be imposed by averaging f̂U(u1, . . . , un)

over all permutations of the bidder indices. When there is exogenous variation in the
number of bidders, it may be useful to further exploit this restriction by optimally com-
bining information from auctions with different numbers of bidders. As we discuss in
more detail below, the overidentifying exchangeability restriction or exogenous varia-
tion in participation can also serve as a basis for specification testing.

An important but largely unresolved question is the asymptotic distribution of the
estimator f̂U(·). The challenge is to appropriately account for the estimation error aris-
ing from the first-stage estimation of the markdown component of the equilibrium bid
functions [Guerre, Perrigne and Vuong (2000)]. Of course, one is often interested in
confidence intervals on an estimate of some functional of fU(·), rather than on f̂U(·)
itself. For example, the goal of the empirical exercise may be to determine optimal
selling procedures, to assess efficiency, or to describe how valuations are affected by
various factors. For the symmetric case, Haile, Hong and Shum (2003) have shown
that the estimates ûit themselves have asymptotic normal distributions, as do all fixed
quantiles (and many other functionals) of their empirical distribution. In practice, a
bootstrap procedure has sometimes been applied for inference on these functionals of
FU(·) or others expected to have a normal limiting distribution [e.g., Hendricks, Pinkse
and Porter (2003), Haile, Hong and Shum (2003), Krasnokutskaya (2004)]. Outside the
IPV model, a block bootstrap is used, reflecting the assumption that auctions are inde-
pendent, whereas bids may be correlated within an auction. In particular, to construct
one bootstrap sample of bids for a given value of n, auction indices s are sampled with
replacement from the set {t : nt = n}. All bids from each selected auction s are then
included in the bootstrap sample. Haile, Hong and Shum (2003) have also explored the
use of subsampling.

In the special case of (symmetric) independent private values, the joint distribution
FU(·) is a product of identical marginal distributions, FU(·), and the first order condi-
tion (3.1) simplifies to

(3.5)u = b + GB(b; n)

(n − 1)gB(b; n)
,

where GB(·; n) is the marginal distribution of equilibrium bids in auctions with n bid-
ders, and gB(·; n) is the associated density. Because GB(·; n) and gB(·; n) are univariate
functions, this simplifies estimation. Let

ĜB(b; n) = 1

nTn

T∑
t=1

n∑
i=1

1{bit � b, nt = n},

ĝB(b; n) = 1

nTnhg

T∑
t=1

n∑
i=1

K

(
b − bit

hg

)
1{nt = n},
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ûit = bit + ĜB(bit ; nt )

(nt − 1)ĝB(bit ; nt )
,

where K(·) is a kernel (satisfying standard conditions) and hg is an appropriately chosen
bandwidth sequence.22 Guerre, Perrigne and Vuong (2000) show that with appropriately
chosen bandwidth sequence hf , one then obtains a uniformly consistent estimator of
fU(·) from the kernel density estimator

f̂U (u) = 1

T

T∑
t=1

1

nt

nt∑
i=1

1

hf

K

(
u − ûit

hf

)
.

3.2.2. Asymmetric bidders

Extending the approach above to the case of asymmetric bidders is straightforward,
but more data intensive. With symmetric bidders, estimation of the distribution of op-
posing bids (and the markdown term GM,B(b|b;n)

gM,B(b|b;n)
this distribution implies) is performed

separately for each value of n. This reflects the fact that variation in n changes the dis-
tribution of the maximum opposing bid and, therefore, the equilibrium bidding strategy
that is inverted to recover private values from the observed bids. With asymmetric bid-
ders, variation in the identities of opposing bidders can have a similar effect, even when
the number of opponents is held constant. Depending on the nature of bidder asym-
metries, different approaches will be taken, although the general principle is clear: to

estimate the markdown
GMi |Bi

(bi |bi ;Nt )

gMi |Bi
(bi |bi ;Nt )

for a bidder i in auction t , the relevant sample is

the set of auctions s in which GMi |Bi
(·|·;Ns) = GMi |Bi

(·|·;Nt ).
In the most general case, each bidder is allowed to draw her valuation from a different

distribution and each set of bidders N is treated separately. Again let Mit denote the
maximum bid among i’s opponents at auction t . Letting TNt

denote the number of
auctions in which the set of bidders is Nt � i, one could let

ĜM,B(bit , bit ;Nt ) = 1

TNt
hG

T∑
s=1

K

(
bit − bis

hG

)
1{mis < bit , Ns = Nt },

ĝM,B(bit , bit ;Nt ) = 1

TNt
h2

g

T∑
s=1

1{Ns = Nt }K
(

bit − bis

hg

)
K

(
bit − mis

hg

)

22 See Guerre, Perrigne and Vuong (2000) for details. They also propose kernel smoothing over the different
values of n in estimating each GB(·; n) and g(·; n) rather than the pure “binning” approach described here.
Asymptotically there is no difference and, since N is discrete, kernel smoothing is a generalization. In finite
sample, kernel smoothing that is not equivalent to binning will utilize bids from auctions with n′ �= n bidders

to estimate the markdown GB(b;n)
(n−1)gB (b;n)

in (3.5). Whether this is desirable will depend on the data available,

although we are not aware of a careful analysis of this question.
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and

ûit = bit + ĜM,B(bit , bit ;Nt )

ĝM,B(bit , bit ;Nt )

to obtain consistent estimators under standard conditions. In practice, however, this ap-
proach may require a great deal of data, since many observations will be needed for
each set N considered.

In some cases, one may be able to categorize bidders into a smaller set of heteroge-
neous classes, assuming exchangeability within each class. This structure can lead to
significant practical advantages, as it allows use of substantially more data for each es-
timated pseudo-value. For example, Campo, Perrigne and Vuong (2003) studied “wild-
cat” auctions for mineral extraction rights on the US outer-continental shelf, where bids
may come from “solo” bidders (a single firm) or “joint” bidders (more than one firm,
legally bidding as one).23 This leads them to consider the case of two classes of bidders,
I and II. The first-order condition for a class-I bidder in an auction in which the set of
bidders is N can be written

(3.6)uI = bI + GI
M,B(bI, bI;N )

gI
M,B(bI, bI;N )

.

Define the relation =I,II such that Nt =I,II N holds iff Nt and N have the same
number of bidders, nI and nII, from each class. Let T

I,II
N = ∑T

t=1 1{Nt =I,II N }. Now
GI

M,B(bI, bI;N ) can be estimated by

ĜI
M,B(b, b;N )

= 1

T
I,II
N × hG × nI

T∑
s=1

|N |∑
i=1

K

(
b − bis

hG

)
1{mis < b, Ns =I,II N , i ∈ class I}.

Analogous adjustments are made to an estimator for gI
M,B(b, b;N ) and to the first-order

condition for a class-II bidder [see Campo, Perrigne and Vuong (2003, pp. 186–187)

for details]. Note in particular that in estimating
GI

M,B(bI,bI;N )

gI
M,B(bI,bI;N )

one can use data from

all auctions t with Nt =I,II N . Furthermore, the sample of bids is cut less finely across
bidders than in the completely general case.

Note that we have treated asymmetries as resulting from differences in the distribu-
tions from which bidders draw unobservables. In some cases, it may be more natural
that asymmetries arise instead from observable covariates Zi that are idiosyncratic to
each bidder – e.g., distance to a construction site [e.g., Bajari (1997), Flambard and

23 Athey, Levin and Seira (2004) provide another example, treating loggers and sawmills as two different
classes of bidders at timber auctions.
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Perrigne (2006)]. Conditional on having the same value of the covariates, bidder valua-
tions may still be exchangeable. Without further restriction, this is similar to the case in
which bidders fall into discrete categories; indeed, it is exactly the same if the covariates
are discrete. In the case of continuous covariates, standard smoothing techniques would
lead to similar approaches for estimating the joint distribution FX,U(·|Z1, . . . , Zn). In
Section 6.2.1 we will see how the presence of bidder-specific covariates can actually aid
identification in some cases.

3.3. Incomplete bid data and Dutch auctions

3.3.1. Independent private values

The results above exploited the assumed observability of all bids from each auction. In
some applications, however, not all bids are available. For example, for some auctions
only the transaction price B(n:n) is recorded. One example is a Dutch auction, where
the auctioneer starts with a very high price and lowers it continuously until one bidder
is willing to take the good at the current price. Although a Dutch auction is seemingly
different from a first-price sealed-bid auction, the two formats are strategically equiv-
alent (assuming the same information is observable prior to bidding).24 Since a Dutch
auction ends as soon as the winner makes his bid, only the winning bid can be observed.
We will see that in some cases the winning bid is sufficient for identification. In other
environments, only a partial set of bids may be available. For example, in a procure-
ment setting, the buyer might retain information regarding the best losing bid in case
the auction winner defaults. Viewed somewhat differently, identification results for the
case of incomplete bid data can clarify how much information one would need to collect
to create a useful data set.

In an asymmetric IPV first-price (or Dutch) auction, identification of each marginal
distribution GBi

(·) from observation of the winning bid and winner’s identity is formally
equivalent to identification of the well known competing risks model with indepen-
dent nonidentically distributed risks.25 For that model, nonparametric identification was
shown by Berman (1963). Since knowledge of each GBi

(·) completely determines the
distribution of

Bi + GMi |Bi
(Bi |Bi;N )

gMi |Bi
(Bi |Bi;N )

24 Brendstrup and Paarsch (2003) point out that in a Dutch auction the set of actual opponents may be observ-
able before the bidding decision is made. With a binding reserve price that creates a distinction between the
potential bidders and actual bidders (see Section 6.3 for definitions), this destroys strategic equivalence. The
basic approach for first-price auctions can still be applied, however, if the distribution of the actual bidders’
valuations (which reflects truncation at the reserve price) is the object of interest. See the related discussion
in Section 6.3.1.
25 The data generating process mapping bids to observables is formally identical to that in a complementary
risks model, where failure of all components triggers the observable system failure, and one observes the
identity of the last component to fail. This is isomorphic to the competing risks model.
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identification of the marginal distributions FUi
(·) then follows. This gives the following

result from Athey and Haile (2002).

THEOREM 3.2. Suppose that the transaction price and the number of bidders (and, if
bidders are asymmetric, the set N and identity of the winner) are observed in first-price
auctions with independent private values. Then FU(·) is identified.

To gain some intuition, consider the symmetric case, where the observable transaction
price B(n:n) has distribution G

(n:n)
B (b), GBi

(·) can be written as GB(·), and

(3.7)
G

(n:n)
B (b)

g
(n:n)
B (b)

= GB(b)n

ngB(b)GB(b)n−1
= n − 1

n

(
GB(b)

(n − 1)gB(b)

)
.

As first observed by Guerre, Perrigne and Vuong (1995), identification then follows
from (3.5).

In the asymmetric case, the derivation of Berman’s (1963) equation (2) [see also
Prakasa-Rao (1992, Theorem 7.3.1 and Remarks 7.3.1)] yields the relation (fixing N )

(3.8)GBi
(bi) = exp

{∫ bi

−∞

(
n∑

j=1

Gw
i (s)

)−1

dGw
j (s)

}
,

where Gw
i (bi) = Pr(Bi � bi, Bi � Bj ∀j). Since each Gw

i (bi) is observable, each
GBi

(bi) is identified. The marginal distributions GBi
(·) uniquely determine the under-

lying distributions FUi
(·) through the first-order condition (3.1) as in the case in which

all bids are observed.
An immediate implication of Theorem 3.2 is identification from the transaction price

in a Dutch auction.

COROLLARY 3.1. Suppose that the transaction price and the number of bidders (and,
if bidders are asymmetric, the set N and the identity of the winner) are observed in
Dutch auctions with independent private values. Then FU(·) is identified.

As suggested by Laffont, Ossard and Vuong (1995), the requirement that n be observ-
able by the econometrician may fail in some Dutch auctions, where one might expect
only the transaction price (i.e., the only bid made in the auction) to be recorded. It
should be clear that without knowledge of n, knowledge of G

(n:n)
B (·) is insufficient to

determine even GB(·).26

Extending the estimation approaches described in the preceding sections to cases in
which only the transaction price (winning bid) is observed is straightforward in the sym-
metric case, where (3.7) can be used. In the asymmetric case, Brendstrup and Paarsch

26 Laffont, Ossard and Vuong (1995) suggest an approach for estimating n when it is unknown but fixed.
They assume that identification follows from a parametric distributional assumption.
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(2003) have recently proposed substituting the empirical distribution function and a

kernel density estimator for, respectively, Gw
i (s) and

dGw
i (s)

ds
in Equation (3.8). The

close relation of the model to the competing risks model suggests that other nonpara-
metric estimators such as the Nelson–Aalan or Kaplan–Meier estimators [e.g., David
and Moeschberger (1978), Andersen et al. (1991)] might also be used to estimate
each GBi

(·). Once these distributions are estimated, one might then simulate bids from
these estimated distributions in order to estimate pseudo-values using the first-order
condition (3.1).

3.3.2. Affiliated private values

Next we consider what can be learned from the top two bids in first-price auctions in
a richer private values environment. Intuitively, the top two bids contain much of the
critical information for a first-price auction. First, these are the only two bids necessary
to determine the distribution of the maximum opposing bid for each bidder, suggesting
that at least some information about the markdown components of the equilibrium bid
functions could be learned. Second, in equilibrium, the top two bids are monotonic
transformations of the top two signals. As the following result, adapted from Athey
and Haile (2002) shows, this is sufficient to enable partial identification in a symmetric
first-price sealed-bid auction.

THEOREM 3.3. Assume that the two highest bids are observed in first-price auctions.
If bidders are asymmetric, assume that the set N and the identity of the winner are also
observed. Then

(i) the equilibrium bid functions βi(·;N ) are identified for all i = 1, . . . , n;
(ii) with symmetric private values, the joint distribution of U(n−1:n) and U(n:n) is

identified.

PROOF. Part (ii) follows immediately from part (i), since in the symmetric private val-
ues case the two highest bids are made by the bidders with the two highest valuations.
To prove part (i) for the more general asymmetric case, consider bidder 1 without loss
of generality. Let I (n:n) denote the identity of the winning bidder. For almost all such
b1 ∈ supp[GB1(·)] (using Bayes’ rule, and canceling common terms)

Pr(maxj �=1 Bj � b1 | B1 = b1;N )

∂
∂m

Pr(maxj �=1 Bj � m | B1 = b1;N )|m=b1

=
∂
∂y

Pr(maxj �=1 Bj � b1, B1 � y;N )|y=b1

∂2

∂m∂y
Pr(maxj �=1 Bj � m, B1 � y;N )|m=y=b1

=
∂
∂y

GB(y, b1, . . . , b1;N )|y=b1∑
j �=1

∂2

∂y∂sj
GB(y, s2, . . . , sn;N )|y=s2=···=sn=b1
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=
∂
∂y

Pr(B(n:n) � y, I (n:n) = 1,N )|y=b1

∂2

∂m∂y
Pr(B(n−1:n) � m, B(n:n) � y, I (n:n) = 1,N )|m=y=b1

.

Since the last expression is the ratio of two observable functions, the right-hand side
of (2.4) is identified almost everywhere, which determines bidder 1’s (inverse) equilib-
rium bid function. �

Estimation approaches based on this partial identification result have not yet been
explored. Note that estimates of each βi(·;N ) are themselves of interest, since these
characterize the wedge between bids and valuations that determine the division of sur-
plus and can lead to inefficiencies. In the symmetric case, knowledge of β(·; n) and the
joint distribution of (U(n−1:n), U(n:n)) would enable evaluation of rent extraction by the
seller, the effects of introducing a reserve price, and the outcomes under a number of
alternative selling mechanisms. As discussed in Section 8, this partial identification re-
sult can also be sufficient to enable discrimination between private and common values
environments.

Observing the top two bids, however, is insufficient to identify the full joint distrib-
ution FU(·). In fact, Athey and Haile (2002) have shown that observation of all bids is
needed, even in a symmetric setting.

THEOREM 3.4. In the symmetric private values model, suppose that (B(n:n), B(n−1:n))

are observed in first-price auctions but some B(j :n), j < n − 1 is unobserved. Then
FU(·) is not identified.

PROOF. Let the point (u1, u2, . . . , un) be on the interior of the support of FU(·), with
u1 < · · · < un. Starting with the true joint density fU(·), define a new joint den-
sity f̃U(·) by shifting mass δ from a neighborhood of (u1, . . . , uj , . . . , un) (and each
permutation) to a neighborhood of the point (u1, . . . , uj + ε, . . . , un) (and each permu-
tation).27 For small ε and δ, this change preserves exchangeability. Since the distribution
of maxk �=i Bk is unaffected for any i by this change, equilibrium bidding strategies
(given by (3.1)) remain the same for all bidders. Furthermore, the only order statis-
tic affected in moving from f̃U(·) to fU(·) is U(j :n). Since B(j :n) = β(U(j :n); n) is
unobserved, the distribution of observables is unchanged. �

Intuitively, even under exchangeability, FU(·) is an n-dimensional joint distribution.
Identifying this distribution with data of dimension n − 1 or lower would require addi-
tional restrictions.

27 Athey and Haile (2002, Theorem 4) describe this in more detail.
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4. Ascending auctions with private values: Basic results

4.1. Identification

With private values, equilibrium bidding strategies in Milgrom and Weber’s (1982)
model of the ascending auction are particularly simple: it is a weakly dominant strategy
for each bidder to exit the auction at his valuation. Hence, unlike the first-price auction,
here there is no need to estimate inverse bid functions in order to relate the observed
bids to the underlying valuations. This does not make identification trivial, however.
The reason is the fact that the auction ends as soon as only one bidder remains. Because
the auction stops at the second highest bid, the only information revealed about the win-
ner’s valuation is the censoring point B(n−1:n). This partial observability of bids is the
main challenge to identification.

When valuations are independent, Athey and Haile (2002) have shown that identi-
fication does hold, even if one observes only the transaction price (and the identity of
the winner, if bidders are asymmetric). This is easier to see when bidders are symmet-
ric. In that case valuations are i.i.d. draws from the marginal distribution FU(·). The
transaction price is the order statistic U(n−1:n), which has distribution F

(n−1:n)
U (·). The

distribution of an order statistic from an i.i.d. sample of size n from an arbitrary distri-
bution F(·) has the distribution [see, e.g., Arnold, Balakrishnan and Nagaraja (1992)]

(4.1)F (i:n)(s) = n!
(n − i)!(i − 1)!

∫ F(s)

0
t i−1(1 − t)n−i dt ∀s.

Since the right-hand side of (4.1) is strictly increasing in F(s) ∈ [0, 1], F (i:n)(s)

uniquely determines F(s) for every s.
When bidders have asymmetric independent private values, the identification argu-

ment is more subtle. Athey and Haile (2002) point out that the asymmetric ascending
auction model is isomorphic to a model considered in the statistics literature on relia-
bility, where Meilijson (1981) has provided a proof. To get some intuition, fix N with
|N | = 3 and define

G̃3(t) ≡ Pr(price � t, 3 is the winner)

= Pr(B1 � t; B2 � t; B3 � t) + Pr(B1 � B3; B2 � B3; B3 � t)

= FU1(t)FU2(t)
(
1 − FU3(t)

)+
∫ t

u

FU1(x)FU2(x) dFU3(x)

=
∫ t

u

(
FU1(x)FU2(x)

)′(
1 − FU3(x)

)
dx,

where (FU1FU2)
′ is the first derivative of FU1FU2 and the last equality follows from

integration by parts. Differentiating both sides, we obtain

g̃3(t) = (
FU1(t)FU2(t)

)′(1 − FU3(t)
)
,
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which implies that(
FU1(t)FU2(t)

)′ = g̃3(t)

1 − FU3(t)
,

FU1(t)FU2(t) =
∫ t

u

g̃3(x)

1 − FU3(x)
dx,

log FU1(t) + log FU2(t) = log
∫ t

u

g̃3(x)

1 − FU3(x)
dx.

Rewrite this as

(4.2)

[ 1 1 0
1 0 1
0 1 1

][ log FU1(x)

log FU2(x)

log FU3(x)

]
= log

⎡⎢⎢⎣
∫ t

u
g̃3(x)

1−FU3 (x)
dx∫ t

u
g̃2(x)

1−FU2 (x)
dx∫ t

u
g̃1(x)

1−FU1 (x)
dx

⎤⎥⎥⎦ .

This is a 3 × 3 system of operator equations defining how the three observable marginal
distributions are related to the three marginal distributions FUi

(·) of interest. Meilijson
(1981) showed that this system has a unique solution.

We summarize these results in the following theorem.

THEOREM 4.1. In an ascending auction with symmetric independent private values,
FU(·) is identified when the transaction price and the number of bidders are observ-
able. In an ascending auction with asymmetric independent private values, FU(·) is
identified when the transaction price, the identity of the winning bidder, and the set N
are observable.

One attractive feature of this result is that it implies that one need not use bids other
than the transaction price to estimate FU(·). This is valuable because in many appli-
cations one may have little confidence in the interpretation of losing bids implied by
Milgrom and Weber’s (1982) button auction model. With independence, one is free to
ignore losing bids altogether, relying only on the assumption that the transaction price
equals the second highest valuation.

Athey and Haile (2002) give a much more negative result when the independence
assumption is dropped, even with symmetric bidders. The proof mirrors that of Theo-
rem 3.4.

THEOREM 4.2. In a symmetric private values model, the joint distribution FU(·) is not
identified from the observable bids in an ascending auction.

4.2. Estimation

Here we make the same sampling assumptions made in the discussion of estimation
for first-price sealed bid auctions (see Section 3.2). In an ascending auction, typically
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one treats the highest price offered by each bidder as his “bid,” i.e., his exit price in
the button auction model.28 Using these data, several parametric estimation approaches
for the symmetric IPV model have been explored in the literature. Maximum likeli-
hood, nonlinear least squares, and GMM are among the methods considered. Due to the
simplicity of the equilibrium bid function, likelihood functions or moment conditions
are easily derived from the probability density function of the winning bid alone [e.g.,
Paarsch (1992b), Donald and Paarsch (1996), Baldwin, Marshall and Richard (1997),
Haile (2001)], or of the n − 1 losing bids [e.g., Donald and Paarsch (1996), Paarsch
(1997)]. In the former case, the likelihood of a winning bid b is f

(n−1:n)
U (b). For the

latter case, the likelihood for the losing bids in a given auction is

n![1 − FU

(
b(n−1:n−1)

)]∏
j<n

fU

(
b(j :n)

)
.

To our knowledge, nonparametric estimation of the symmetric IPV model has been
performed only in simulations [Haile and Tamer (2003)], although this is actually sim-
pler than nonparametric estimation in the case of a first-price auction. Following Haile
and Tamer (2003), for H ∈ [0, 1] define the strictly increasing differentiable function
φ(H ; i, n) implicitly as the solution to

(4.3)H = n!
(n − i)!(i − 1)!

∫ φ

0
si−1(1 − s)n−i ds

so that by (4.1)

(4.4)FU(u) = φ
(
F

(i:n)
U (u); i, n

) ∀u, i � n.

In particular,

(4.5)FU(u) = φ
(
F

(n−1:n)
U (u); n − 1, n

) ∀u.

Since the winning bid is B(n−1:n) = U(n−1:n), one can construct an estimator of FU(u)

by substituting the empirical distribution

Ĝ
(n−1:n)
B (u) = 1

Tn

T∑
t=1

1
{
nt = n, B(nt−1:nt ) � u

}
for F

(n−1:n)
U (u) inside the function φ(·) on the right-hand side of (4.5). Since

G
(n−1:n)
B (·) = F

(n−1:n)
U (·), by standard arguments Ĝ

(n−1:n)
B (u) converges uniformly to

F
(n−1:n)
U (u) almost surely and has a normal asymptotic approximation. Convergence of

28 See, e.g., the surveys of Paarsch (1994) and Hendricks and Paarsch (1995). A source of ambiguity arises

when one observes n such bids, with B(n:n) significantly higher than B(n−1:n). In such cases, one may
question the applicability of the button auction model. For now we assume the button auction structure and

treat the distributions G
(n:n)
B

(·) and G
(n−1:n)
B

(·) as identical.
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φ(F̂
(n−1:n)
U (u); n− 1, n) to FU(u) then follows, with an asymptotic normal distribution

obtainable by the delta method.29 In practice, one can use the relation

(4.6)F
(n−1:n)
U (u) =

n∑
j=n−1

(
n

j

)
FU(u)j

(
1 − FU(u)

)n−j

instead of the equivalent but more computationally demanding (4.5) when solving for
each F̂U (u). Monotonicity of the relation between F

(n−1:n)
U (u) and FU(u) makes nu-

merical solution particularly simple.
Note that when there is exogenous variation in the number of bidders, there will be

as many different estimators φ(F̂
(n−1:n)
U (u); n − 1, n) of FU(u) available as there are

different values of n in the data. If one observes losing bids beyond the transaction price
and assumes these are generated by the button auction model, additional estimators will
be available, based on Equation (4.4) with i < n − 1. An efficient estimator would take
an optimally weighted average of these different estimators, imposing the constraint that
the estimated CDF be monotone.

In the case of asymmetric bidders, no simple relation like (4.6) is available. However,
a likelihood approach provides several possible estimation strategies. The likelihood for
the observable event {i wins at price p} is(

1 − FUi
(p)
)∑

j �=i

fUj
(p)

∏
k �=i,j

FUk
(p).

Hence, if we let It denote the winner of auction t , the likelihood function has the form

(4.7)L =
∏
t

(
1 − FUIt

(p)
)∑

j �=It

fUj
(p)

∏
k �=It ,j

FUk
(p).

Parametric or nonparametric MLE might then be applied. Brendstrup and Paarsch
(2004) have recently proposed a “semi-nonparametric” [Gallant and Nychka (1987)]
estimation approach based on this likelihood.30

4.3. An alternative, incomplete model of ascending auctions

In some cases an auction institution closely matching the structure of the button auction
model is observed in practice. Bidders may, for example, raise their hands or other
objects to indicate their participation continuously as the auctioneer raises the price [see,
e.g., Zulehner’s (2003) description of cattle auctions]. When the auction is conducted in
a less structured oral format, however, one may question the applicability of the button

29 In fact, the convergence is uniform. These results follow from those given in Haile and Tamer (2002,
Appendix A; 2003, Theorem 3).
30 They also consider auctions in which multiple units are sold sequentially, focusing on bids in the (single-
unit, asymmetric) auction of the final unit.
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auction model as an empirical structure. Of particular concern is the fact that there is
no need for a bidder to continuously indicate whether she is “in” or “out” as the auction
proceeds. Nontrivial minimum bid increments are often used, and a bidder is free to
“jump bid” or to remain silent for most of the auction and bid only when it looks like
the auction is about to end (if others do not bid the price past her valuation first). Such
behaviors are common in practice and raise the possibility that bidders will fail to reveal
their full willingness to pay, or even fail to bid altogether. Several theoretical extensions
of the standard model have been proposed, mainly focusing on the case of common
values [Avery (1998), Harstad and Rothkopf (2000), Izmalkov (2003)]. Until recently,
however, all empirical models of the ascending auction relied on significant abstractions
for tractability of the underlying theoretical model.

As an alternative to relying on the structure of the button auction or another styl-
ized model, Haile and Tamer (2003) have proposed an empirical approach to ascending
auctions with symmetric independent private values using two simple assumptions to
govern the interpretation of the observed bids:

ASSUMPTION 4.1. Bidders do not bid more than they are willing to pay.

ASSUMPTION 4.2. Bidders do not allow an opponent to win at a price they are willing
to beat.

These assumptions allow bidding as in the dominant strategy equilibrium of the but-
ton auction model but do not require it. In particular, bids need not be equal to valuations
or even monotonic in valuations, and the price need not equal the second highest valu-
ation. These assumptions define an “incomplete” model of an ascending auction: they
place some restrictions on the relation between valuations and bids, but do not fully
characterize behavior. While this incomplete model is insufficient to identify the distri-
bution of valuations from the distribution of bids, it does provide partial identification;
in particular, one may still obtain informative bounds on the distribution of valuations.

4.3.1. Bounding the distribution of bidder valuations

To obtain an upper bound on the distribution function FU(·), observe that Assump-
tion 4.1 is equivalent to assuming bi � ui for all i. In an n-bidder auction, it is easy to
confirm that this implies b(i:n) � u(i:n) ∀i, which then gives

(4.8)G
(i:n)
B (u) � F

(i:n)
U (u) ∀i, n, u.

Recalling the definition (4.3) and Equation (4.4), we know that

(4.9)FU(u) = φ
(
F

(i:n)
U (u); i, n

) ∀i, n, u.

Since the function φ(·; i, n) : [0, 1] → [0, 1] is strictly increasing, (4.8) and (4.9) to-
gether give

φ
(
G

(i:n)
B (u); i, n

)
� FU(u) ∀i, n, u.
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For each u, this yields
∑n

n=n n upper bounds on FU(u). The most informative bound
(i.e., the smallest upper bound) is obtained by taking the minimum at each value of u:

(4.10)F+
U (u) = min

i,n
φ
(
G

(i:n)
B (u); i, n

)
.

A similar approach can be taken to obtain a lower bound on FU(·). Letting Δ � 0
denote the minimum bid increment in the auction, Assumption 4.2 implies that all losing
bidders have valuations less than b(n:n) +Δ, implying u(n−1:n) � b(n:n) +Δ. If G

(n:n)
Δ (·)

denotes the distribution of B(n:n) + Δ, this gives

G
(n:n)
Δ (u) � F

(n−1:n)
U (u) ∀n, u.

Applying the monotonic transformation φ(·; n − 1, n) to both sides gives

φ
(
G

(n:n)
Δ (u); n − 1, n

)
� FU(u) ∀n, u.

This yields multiple lower bounds on FU(u) (one for each value of n). The most infor-
mative bound can be constructed by taking the pointwise maximum:

(4.11)F−
U (u) = max

n
φ
(
G

(n:n)
Δ (u); n − 1, n

)
.

We summarize these results in the following theorem.

THEOREM 4.3. F−
U (u) � FU(u) � F+

U (u) for all u.

Note that in principle this approach can be followed even when the transaction price
is the only bid available from each auction – the only modification required is that
the minimum in (4.10) would be taken over n only, fixing i = n. However, an essen-
tial requirement of the approach is that the number of bidders, n, be observable to the
econometrician. This is also essential for the methods discussed above for both sealed-
bid and button auction models, but the assumption may be more suspect in an ascending
auction in which the button auction structure is inappropriate. The number n will be ob-
served if all bidders make some bid during the auction, or if bidders must pre-qualify,
register, or otherwise identify themselves in order to be eligible to bid. This is the case
in the timber auctions studied by Haile and Tamer (2003) and many other public sector
auctions.31

In general, the informativeness of the bounds F+
U (u) and F−

U (u) depends on the devi-
ation of the true data generating process from that implied by the button auction model.
In fact, if the restriction B(n:n) = B(n−1:n) implied by the button auction model is
consistent with the data, the bounds F−

U (·) and F+
U (·) collapse to the true distribution

FU(·), providing point identification. By contrast, imposing the full structure of the but-
ton auction model when this is not the true data generating process need not result in

31 Song (2004) has recently considered identification and estimation for ascending auctions (and others) when
n is not observed. We will discuss one such case in Section 6.3.4 below.
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an estimate of FU(·) that lies within the bounds, regardless of sample size.32 While
this should not be surprising – imposing false restrictions should be expected to yield
misleading estimates – it is a useful reminder that imposing structure in order to ob-
tain point identification is not equivalent to selecting a point estimate within bounds
obtained from a less restrictive but incomplete model.

Estimation of the bounds is achieved by substituting the empirical distributions

Ĝ
(i:n)
B (b) = 1

Tn

T∑
t=1

1
{
nt = n, b(i:nt ) � b

}
and

Ĝ
(n:n)
Δ (b) = 1

Tn

T∑
t=1

1
{
nt = n, b(nt :nt ) + Δt � b

}
for the corresponding CDFs in (4.10) and (4.11). Since the empirical distribu-
tion functions are uniformly consistent and asymptotically normally distributed es-
timators of their population analogs, differentiability of φ(·; i, n) ensures that each
φ(G

(i:n)
B (u); i, n) and φ(G

(n:n)
Δ (u); n−1, n) are consistent and asymptotically normally

distributed as well. Continuity of the min and max functions then ensures consistency
of the estimates of the estimators

F̂+
U (u) = min

i,n
φ
(
Ĝ

(i:n)
B (u); i, n

)
,

F̂−
U (u) = max

n
φ
(
Ĝ

(n:n)
Δ (u); n − 1, n

)
.

These estimators have nonnormal asymptotic distributions, due to the max and min.
However, Haile and Tamer (2002) show that the bootstrap (see Section 3.2.1) may be
used for inference. A more difficult problem is that, while these estimators are consis-
tent, in practice the max and min can lead to severe finite sample bias, potentially even
leading to estimated upper and lower bounds that cross. Intuitively, taking the minimum
(maximum) of several consistent estimators makes it likely that an estimator with down-
ward (upward) sampling error is selected. One solution, discussed in greater detail by
Haile and Tamer (2003), is to define bounds in finite samples based on smooth approx-
imations to the max and min functions in the definitions of F̂+

U (u) and F̂−
U (u) above.

This amounts to using weighted averages instead of the max or min.

4.3.2. Bounding the optimal reserve price

Unlike point estimates of FU(·), it is not immediately clear whether bounds on FU(·)
would be useful.33 For example the key policy choice for the seller in the symmetric

32 See Haile and Tamer (2003) for additional discussion and simulation results.
33 Haile and Tamer (2003) demonstrate an additional use of the bounds by showing how to incorporate auc-
tion covariates nonparametrically. Building on Manski and Tamer (2002), the resulting bounds on conditional



3880 S. Athey and P.A. Haile

IPV environment is the reserve price [Myerson (1981)]. When FU(·) is continuously
differentiable, the optimal reserve price r∗ is defined by the equation34

(4.12)r∗ = c0 + 1 − FU(r∗)
fU (r∗)

,

where c0 is the seller’s valuation (or marginal cost) of the good. However, nondegenerate
bounds on FU(·) place no restriction on its derivative fU(·) at any given point. Hence,
just as a monopolist’s price need not shift in the same direction as demand, r∗ need
not lie between the reserve prices that would be optimal if F+

U (·) or F−
U (·) were the

true distribution of valuations. Note that the same problem arises any time one wishes
to construct confidence bands on the optimal reserve price from confidence bands on
nonparametric point estimates of FU(u), e.g., using the method described in Section 4.2.

Observe, however, that when the seller’s own valuation for the good is c0, r∗ solves
maxr π(r), where35

π(r) = (r − c0)
(
1 − FU(r)

)
.

Since FU(r) must lie between F−(r) and F+(r), π(r) must lie between

π1(r) = (r − c0)
(
1 − F+

U (r)
)

and

π2(r) = (r − c0)
(
1 − F−

U (r)
)
.

Figure 1 illustrates. Under the additional assumption that π(r) is strictly quasi-concave
in r (which ensures a unique solution to (4.12)) we can use the bounding “profit” func-
tions π1(·) and π2(·) to place bounds on r∗. Let r∗

1 ∈ arg sup π1(r), r
∗
2 ∈ arg sup π2(r),

and π∗
1 = π1(r

∗
1 ). We obtain the trivial result r∗ = r∗

1 when π2(r
∗
1 ) = π2(r

∗
2 ) = π∗

1 , or
when π2(r

∗
1 ) = π∗

1 and either π1(·) or π2(·) has slope zero at r∗
1 . For these trivial cases

let r− = r+ = r∗
1 . For all other cases define

r− = sup
{
r < r∗

1 : π2(r) � π∗
1

}
,

r+ = inf
{
r > r∗

1 : π2(r) � π∗
1

}
.

Haile and Tamer (2003) prove the following result.36

distributions can then be used to estimate bounds on parameters of a semiparametric model describing how
valuations shift with auction characteristics.
34 This is easily derived for a second-price sealed-bid or button auction, where a reserve price of r implies

expected revenue rnFU (r)n−1(1 − FU (r)) + ∫∞
t un(n − 1)fU (u)FU (u)(1 − FU (u)) du. Myerson (1981)

shows that, under a regularity condition, a standard auction with an optimal reserve price is optimal among
all possible selling mechanisms. Haile and Tamer (2003) show that r∗ is also optimal in their incomplete
model ascending auction as long as Assumptions 4.1 and 4.2 are interpreted as a partial characterization of
equilibrium behavior in some true but unspecified auction mechanism.
35 Note that π(r) is not the expected profit of the seller when n > 1. The usefulness of this function is the
fact that its maximum is attained at the same value of r that maximizes the seller’s expected profit.
36 Bounds are said to be sharp if they exhaust all information available from the data and a priori assump-
tions.
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Figure 1.

THEOREM 4.4. Suppose π(r) is continuously differentiable and strictly quasi-concave
in r . Then r∗ ∈ [r−, r+]. Given the bounds F+(·) and F−(·) on FU(·), the bounds r−
and r+ on r are sharp.

Intuition for the result can be seen in Figure 1. We know that the true function π(·)
lies between π1(·) and π2(·) and must, therefore, reach a peak of at least π∗

1 . Such a
peak cannot be reached outside the interval [r−, r+]. However, prices arbitrarily close
to either of these endpoints could be the true optimum r∗.

For estimation, assume for simplicity that π2(r) has nonzero slope at r = r− and
r = r+.37 Let

π̂1(r) = (r − c0)
(
1 − F̂+

U (r)
)
,

π̂2(r) = (r − c0)
(
1 − F̂−

U (r)
)
,

π̂∗
1 = sup

r
π̂1(r),

r̂∗
1 = arg sup

r
π̂1(r)

and define the correspondence πc
2(·) by{

π ∈ πc
2(r)

} ⇐⇒
{

lim
r ′↓r

π̂2(r
′) � π � lim

r ′↑r
π̂2(r

′)
}
.

37 Haile and Tamer (2003) provide estimators that do not require this assumption.
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This defines a smooth sample analog of π2(·) that can be used to define consistent
estimators of r− and r+:

r̂− = sup
{
r < r̂∗

1 : π = π̂∗
1 for some π ∈ πc

2(r)
}
,

r̂+ = inf
{
r > r̂∗

1 : π = π̂∗
1 for some π ∈ πc

2(r)
}
.

4.3.3. Asymmetric and affiliated private values

In principle, the applicability of Assumptions 4.1 and 4.2 is not limited to environments
with symmetric independent private values. Haile and Tamer (2001) have explored
extensions to models of asymmetric and/or affiliated private values. While it is encour-
aging that any restrictions at all on the joint distribution FU(·) can be obtained without
the assumption of independence that was required for identification in the button auc-
tion model, in practice the bounds one can obtain without the independence assumption
are likely to be quite wide. Intuitively, when one observes only bounds on realizations
of random variables, it is difficult to learn much about their correlation structure. Of
course, without knowledge of the correlation structure, a number of important positive
and normative questions cannot be answered.38 Thus, while the bounds approach pro-
vides a way of addressing concerns about the appropriateness of the standard button
auction model, it may provide little help in environments in which the button auction
model itself is unidentified.

5. Specification testing

Identification of the models discussed above relies on behavioral assumptions and on
assumptions about the underlying demand and information structure. Obviously, then,
the choice of model is important. In some environments there are overidentifying re-
strictions that can be used to test some assumptions while maintaining others. Several
testing approaches have been described in the literature to date, although so far there
has been little attention to development of formal statistical tests.

38 Optimal auction design with correlated valuations is much more complex than in the IPV case, requiring
precise information about the underlying correlation structure [cf., Crémer and McLean (1988) and McAfee
and Reny (1992)]. Quint (2004) has shown that even the simpler question of the optimal reserve price cannot
be addressed with a bounds approach in such an environment. In particular, for any reserve price r � u0 and
any distribution of bids, there exists an underlying joint distribution of valuations consistent with these bids
and Assumptions 1 and 2 such that r is the optimal reserve price. Hence, no restriction on the optimal reserve
price can be obtained from nondegenerate bounds on the joint distribution of valuations.
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5.1. Theoretical restrictions in first-price auction models

We first consider restrictions imposed by equilibrium bidding in first-price auctions.39

Recall that a model is testable if there exists some joint distribution of observables
that cannot be rationalized by the model. It is then natural to ask what set of distribu-
tions can be rationalized. Here we provide two results for the affiliated private values
(APV) framework.40 The first gives necessary conditions for a distribution of bids to
be rationalized by equilibrium behavior, while the second gives necessary and sufficient
conditions in two special cases: symmetric affiliated private values, or independent pri-
vate values (IPV).

THEOREM 5.1. Consider the APV first-price auction with fixed N . Necessary condi-
tions for GB(·;N ) to be rationalized by equilibrium bidding are

(a) (B1, . . . , Bn) are affiliated;
(b) for each i, ξi(·,N ) is continuous and strictly increasing on supp[Bi];
(c) supp[ξ1(B1,N )] × · · · × supp[ξn(Bn,N )] is a convex, compact set, and on this

set the joint distribution GB(ξ−1
1 (u1,N ), . . . , ξ−1

n (un,N )) is absolutely contin-
uous (with respect to the Lebesgue measure) as a function of u, with a strictly
positive density;

(d) bi = b for all i, and ξi(b,N ) = b for all i ∈ N ;
(e) ξi(bi,N ) = ξj (bj ,N ) for all i, j ∈ N ; and
(f) for each i, supp[Bi] ⊆ supp[maxj∈N \i Bj ], and supp[maxj∈N \i Bj ] is convex.

PROOF. Given strictly increasing bidding strategies and affiliated private values with
an atomless type distribution, affiliation of bids and strict monotonicity of ξi(·,N ) on
supp[Bi] follow directly. Continuity of ξi(·,N ) follows from strict monotonicity of
the bidding strategies together with the assumption that supp FUi

(·) is convex. Since
Assumption 2.1 requires that FU(·) have a strictly positive joint density on a compact
convex set, the relationship between FU(·) and GB(·) given by (3.2) implies that (c)
must hold. The assumption that supp FUi

(·) does not vary with i, together with the
equilibrium conditions max(r, u) = bi and βi(max(r, u)) = max(r, u) for each i, im-
ply (d) and (e). The necessity of supp[Bi] ⊆ supp[maxj∈N \i Bj ] follows from (d) and
the fact that when bidding against opponents who use strictly increasing strategies it
is never optimal for bidder i to bid more than the minimum necessary to win with a
particular probability. The same logic implies that supp[maxj∈N \i Bj ] is convex, since

39 Recall that we maintain Assumption 2.1, restricting the primitives of the model, and that we focus on
equilibria in strictly increasing strategies. Theorem 2.1 guarantees that such an equilibrium exists for the
APV model. If bidders are symmetric, Theorem 2.1 implies that there is a unique equilibrium in the class of
equilibria in nondecreasing strategies. When bidders are asymmetric, we do not have a uniqueness result.
40 Guerre, Perrigne and Vuong (2000) gave a similar result for the symmetric independent private values
model. See also Li, Perrigne and Vuong (2002).
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no bidder j ∈ N \i would find it optimal to place a bid at the upper boundary of a gap
in this support. �

Note that we do not provide sufficient conditions for GB(·) to be rationalized in the
APV model with asymmetric bidders, since a full equilibrium characterization is not
available for that case. However, in the special cases of IPV or symmetric bidders when
valuations have a continuously differentiable density, Theorem 2.1 implies that there
is a unique equilibrium, which has strictly increasing and differentiable strategies and
the same support for the equilibrium bids of all bidders. When bidders are symmetric,
the unique equilibrium is symmetric. In these settings we have necessary and sufficient
conditions for a bidding distribution to be rationalized. The statement of the conditions
of Theorem 5.1 can then also be simplified somewhat, exploiting differentiability of
strategies.

THEOREM 5.2. Consider the APV first-price auction with fixed N . Assume that fU(·)
is continuously differentiable and suppose, further, that either

(i) (U1, . . . , Un) are mutually independent or
(ii) bidders are symmetric.

Necessary and sufficient conditions for GB(·;N ) to be rationalized by equilibrium bid-
ding are:

(a) (B1, . . . , Bn) are affiliated, and in case (i) they are independent, while in case (ii)
they are exchangeable;

(b) for each i, ξi(·,N ) is differentiable and strictly increasing on supp[Bi];
(c) GB(ξ−1

1 (u1,N ), . . . , ξ−1
n (un,N )) is absolutely continuous (with respect to the

Lebesgue measure) as a function of u, with a positive continuously differentiable
density on supp[ξ1(B1,N )]×· · ·×supp[ξn(Bn,N )] and zero density elsewhere;

(d) ξi(b,N ) = b for all i ∈ N ;
(e) ξi(bi,N ) = ξj (bj ,N ) for all i, j ∈ N ; and
(f) supp[Bi] is convex, compact, and the same for all i.

PROOF. Given strictly increasing, differentiable bidding strategies and the conditions
on the FU(·), affiliation of bids and the relevant independence and symmetry condi-
tions follow directly. For condition (f), equal supports is necessary by Theorem 2.2 in
case (i) and by symmetry in case (ii). Convex, compact support follows because bidding
strategies are strictly increasing, continuous functions of random variables with con-
vex, compact support. Condition (b) is necessary because differentiability of ξi(·,N ) is
equivalent to differentiability of ξ−1

i (·,N ) (since ξi(·,N ) is strictly increasing), with
the latter equal to the equilibrium bidding strategy under the assumptions of the model.
Conditions (d) and (e) are necessary following the arguments in Theorem 5.1. Recall
that Assumption 2.1 requires that FU(·) have a strictly positive joint density on a com-
pact, convex set, and that we have assumed that it has a differentiable density. The set
supp[ξ1(B1,N )] × · · · × supp[ξn(Bn,N )] is the support of valuations implied by the
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model, and it is convex and compact by (f) and differentiability of ξi(·). The relationship
between FU(·) and GB(·) specified by (3.2) then implies (c).

To see that the stated conditions are sufficient for GB(·;N ) to be rationalized, ob-
serve that they ensure that ξ−1

i (·) is well defined, differentiable, and strictly increasing
on supp[ξi(Bi)] for each i, and that in symmetric models it is the same for each i, so
that the expression for FU(·) in (3.2) is well defined and satisfies the relevant affiliation,
independence, symmetry, and differentiability conditions. The conditions guarantee that
the implied FU(·) has a support that is convex and compact; that it has a strictly positive,
continuously differentiable density on this support; and that the support is the same for
all bidders. The definition of ξi(·) implies that if each bidder i uses the bidding strat-
egy ξ−1

i (·), his first-order condition for optimality is satisfied. Under independence or
symmetry, bidder payoffs satisfy a single crossing property: for any fixed monotone
strategies by opposing bidders, a higher realized valuation ui leads to a higher marginal
return to increasing one’s bid. Standard results from the literature on auctions and mech-
anism design [see, e.g., Fudenberg and Tirole (1991)] imply when the single crossing
property holds, local optimality of a bid (i.e., first-order conditions hold) together with
monotonicity of the bidding strategy are necessary and sufficient for global optimality
of the strategy. Thus the strategies {ξ−1

i (·)}i∈N form an equilibrium. �

The importance of a result providing sufficient conditions for a bid distribution to
be rationalized by equilibrium behavior should not be underappreciated. Without such
a result, one would have no way of ensuring that the interpretation of bids based on
the first-order conditions is valid. In particular, for an observed bid bi and an implied
valuation ui = ξi(bi), there would be no guarantee that bi was actually an equilib-
rium bid for a bidder with valuation ui . Verifying that the observed bids actually can
be rationalized by equilibrium behavior is analogous to verifying second-order condi-
tions for optimality: only when such sufficient conditions are verified can we be sure
that the mappings (forward or inverse) provided by the first-order conditions relate val-
uations to optimal (best-response) bids. Theorem 5.2 can then be used in two ways.
First, in an application one can attempt to verify that sufficient conditions for bid data
to be consistent with the assumptions of the model are satisfied. Second, the neces-
sary conditions suggest specification tests, which we discuss further in the following
section.

We note that it is possible to generalize the overall empirical approach to the case
where condition (e) above fails by relaxing the assumption that supp[Ui] is the same
for all bidders i. The latter assumption is typically maintained in the literature [see, e.g.
Campo, Perrigne and Vuong (2003)]. In independent private values models, it ensures
that supp[Bi] is the same for all bidders i [Lebrun (1999)] and that the equilibrium is
unique [Lebrun (1999), Bajari (2001)]. However, plausible specifications of primitives
would lead to distributions of bids that violate condition (e), so it may be useful to relax
that assumption in practice.

Let us briefly consider some examples. Consider maintaining the assumption that
inf[supp[Ui]] is the same for all i, but allow ui = sup[supp[Ui]] to vary with i. For affili-
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ated private values models, there exists an equilibrium in nondecreasing strategies where
supp[Bi] ⊆ supp[maxj �=i Bj ], and these supports are convex and compact; in addition,
in any equilibrium (mixed or pure) strategies must be strictly increasing (i.e., separat-
ing) [Maskin and Riley (2003), McAdams (2007)]. Thus, the distributions of valuations
can be identified using (3.1). For example, suppose n = 2, U1 is uniformly distributed
on [0, 3/2], and U2 is independent of U1, with distribution FU2(u2) = (1/4)u2

2 on the
support [0, 2]. Then, it can be shown that supp[Bi] = [0, 1] for i ∈ {1, 2}, and that for
b ∈ [0, 1], GB1(b) = b and GB2(b) = b2. With these bid distributions, gM1(1;N ) = 1
while gM2(1;N ) = 2, violating the boundary condition (e). However, in this example,
the FUi

(·) each can be identified if we expand the set of permissible distributions of
valuations to allow supports that vary across bidders.

If both inf[supp[Ui]] and sup[supp[Ui]] vary with i, then it is possible that some bid-
ders never win in equilibrium. For example, if there are two bidders in an IPV auction,
and supp[U1] = [0, 1] while supp[U2] = [100, 101], in equilibrium B2 = 1 with prob-
ability 1, while B1 � 1 Maskin and Riley (2000a). Clearly, very little can be said about
the distribution of U2 in this case. Despite the possibility of degenerate equilibria like
this, Maskin and Riley (2000b) show that the distribution of winning bids, G

(n:n)
B (·), is

continuous on its support. This implies that a mass point in G
(n:n)
B (·) such as the one in

the latter example can only occur either (i) at the bottom of the support if the support of
winning bids is nondegenerate, or (ii) if the support of winning bids is degenerate. Thus,
outside of cases (i) and (ii), the equilibrium must be in strictly increasing strategies on
supp[B(n:n)], so that it will be possible to recover the distribution of bidders’ valuations
on the pre-image of the interior of supp[B(n:n)] using (3.1). This would lead to a partial
identification result.

For the remainder of the chapter, we follow the existing literature and maintain the
assumption that valuation distributions have the same support, while noting that many
of the results generalize.

5.2. Testing monotonicity of bid functions and boundary conditions

Here we consider two possible types of tests based on Theorem 5.1. Guerre, Perrigne
and Vuong (2000) have suggested a specification test based on the observation that the
right-hand side of bidder i’s first-order condition (2.4), i.e.,

ξi(bi,N ) ≡ bi + GMi |Bi
(bi |bi;N )

gMi |Bi
(bi |bi;N )

is the inverse of his equilibrium bidding strategy. This is true for private and common
value auctions.41 Since bidding strategies must be strictly increasing, so must ξi(·,N ).

41 One way to see this in the common values case is to note that one possible normalization of signals sets
Xi = vi(Xi , Xi ;N ), so that the first order condition may still be directly interpreted as giving bidder i’s
inverse bidding strategy.
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Although testing monotonicity of ξi(·,N ) is conceptually straightforward, no formal
statistical test has been developed for this problem. Existing tests of monotonicity in the
statistics literature42 are not directly applicable due to the fact that realizations of the
random variables ξi(Bi,N ) are estimated rather than observed directly. In applications,
researchers often find few (if any) violations of strict monotonicity [e.g., Hendricks,
Pinkse and Porter (2003), Haile, Hong and Shum (2003)], in which case no formal test
would reject. Nonetheless, formal tests could be valuable.

Two things about such a test should be noted, however. First, the alternative hy-
pothesis is simply that some component of the specification is incorrect. A failure of
monotonicity may indicate the presence of unobserved heterogeneity, risk aversion,
nonequilibrium bidding behavior, or violation of some other maintained assumption.
In general, testing one assumption will require maintaining others, so many of the other
specification tests discussed below will share this limitation. Second, no test of this
hypothesis will be consistent against all violations of the maintained assumptions. In
particular, one can easily construct examples in which one or more maintained assump-
tions are violated, but monotonicity of ξi(·,N ) still holds.

Another potential specification test is based on the boundary condition (e) from Theo-
rem 5.1. This restriction can be simplified in the case of the IPV model. Let the common
support of the bid distribution be denoted supp[Bi] = [b, b]. Then, the boundary con-
dition requires

(5.1)gMi
(b;N ) = gMj

(b;N ) [∀i, j ∈ N ]
which is a testable restriction.

5.3. Multi-sample tests with exogenous variation in participation

Athey and Haile (2002) discuss a different principle for specification testing that can be
used in both first-price and ascending auctions whenever (a) there is exogenous varia-
tion in the number of bidders, and (b) the underlying model is identified with a fixed
number of bidders. For simplicity, consider the case of symmetric bidders, although the
same principle applies to asymmetric settings. Let F̂U(u; n) denote a consistent esti-
mator of FU(u) obtained using data from n-bidder auctions. With exogenous variation
in the number of bidders, for n′ �= n, F̂U(u; n) should equal F̂U(u; n′) up to sampling
error. Hence a test of the null hypothesis of equal distributions provides a specification
test.

While testing equality of distributions is a standard problem [e.g., McFadden (1989)],
complications arise both in ascending and first-price auctions. In an ascending auction,
the complication is the fact that identification relies on mappings between distributions
of order statistics and the underlying marginal distributions (Theorem 4.1). Hence, as-
ymptotic distributions of test statistics must account for this transformation of the data.

42 See, e.g., Bowman, Jones and Gijbels (1998), Gijbels et al. (2000), or Hall and Heckman (2000).
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In a first-price auction, the complications are more challenging, arising from the fact that
valuations are estimated rather than observed directly. This first-stage nonparametric es-
timation of FU(·) introduces nontrivial complications to the asymptotic theory needed
for inference. Haile, Hong and Shum (2003) develop several formal tests applicable
when all bids are observed, based on comparisons of different estimates of the marginal
distribution FU(·) obtained from auctions with different number of bidders.43 In models
identified with partially observed bids, similar tests may be applicable, although this has
not yet been explored.

5.4. Multi-sample tests with multiple order statistics

In IPV settings, a variation on the type of testing approach above may be available with-
out exogenous variation in participation. In an IPV auction each marginal distribution
FUi

(·) is identified from observation of the transaction price (and bidder identities if the
environment is asymmetric) in both ascending and first-price auctions. Athey and Haile
(2002) have shown that observation of any other order statistic B(j :n) can be substituted
for observability of the transaction price – in a symmetric environment, for example,
this follows from (4.1). When two or more order statistics (e.g., the top two bids) are
observed, the estimates of FUi

(·) implied by each of these should be identical up to
sampling error.

5.5. Direct tests of exchangeability or independence

There are other potential approaches to specification testing when bidders are assumed
to be symmetric or types are assumed independent. With symmetric bidders, the joint
distribution of bidder valuations is exchangeable and each bid Bi = β(Ui; n). Hence,
the joint distribution of bids must also be exchangeable. When bidder identities are
observed, there are several ways to approach testing such a hypothesis. One is to test
exchangeability of the bids (or subsets of bids) directly. Nonparametric tests from the
statistics literature may be directly applicable. For example, Romano (1988, 1989) sug-
gests tests based on the supremum distance between the values of a multivariate CDF
evaluated at permutations of its arguments.

One implication of exchangeability is equality of marginal distributions. For example,
in a symmetric model, any subset of bidders should have bids governed by the same
marginal distribution as those of another subset of bidders. A standard Kolmogorov–
Smirnov test of equal distributions could then be applied.

Alternative tests may be useful when covariates are available and additional structure
is assumed. Suppose, for example, that valuations are assumed to have the structure

Uit = h(Z1t , Z2i , Z2(−i), Ait )

43 They focus on tests of the private values hypothesis. However, their tests, which are based on compar-
isons of the empirical distributions of pseudo-values for auctions with different numbers of bidders, could be
directly applied.
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where Z1t is an auction-specific covariate, Z2i is a bidder-specific covariate, Z2(−i) de-
notes the bidder-specific covariates of i’s opponents, and Ait is a private idiosyncratic
factor. The restriction to scalar covariates is only for expositional simplicity. Assume
further that the conditional distribution function FA(A1, . . . , An|Z1, Z21, . . . , Z2n) is
exchangeable in the indices (1, . . . , n). Loosely speaking, with this structure, all bidder
valuations are affected in the same way by covariates. In particular, the distribution
of bidder i’s valuation conditional on (Z1, Z2i , Z2(−i)) is the same for all i. Since
bids are equal to valuations in an ascending auction, this can be tested, for example,
by examining coefficient estimates in a regression of bids on covariates (auction- and
bidder-specific) interacted with bidder dummies (or indicators for different “classes” of
bidders).

In a first-price auction, the structure above implies that the distribution of maxj �=i Bj

is the same for all i conditional on (Z1, Z2i , Z2(−i)). Hence, the distribution of i’s bids
should depend only on (Z1, Z2i , Z2(−i)), not on the index i itself. This may again be
evaluated in a regression. Bajari and Ye (2003) apply these regression-based approaches
in their analysis of highway construction contracts [see also Porter and Zona (1993,
1999)].

Note that similar restrictions will hold in a common values model, where it is the
joint distribution of the random variables

vi(Xi,Xi,N )

that must be exchangeable. As we will see below, this distribution will often be identi-
fied in a common values model, even though FU,X(·) is not identified. Hence, specifica-
tion testing may be possible even for under-identified models.

Another direct approach to specification testing is applicable in first-price auctions
in the widely used independent private values model (symmetric or asymmetric). Since
each Bi is a measurable function of Ui , bids must also be independent. In a first-price
sealed-bid auction in which all bids are observed, one can directly test this restriction
using standard nonparametric tests [Guerre, Perrigne and Vuong (2000)]. For exam-
ple, Romano (1988, 1989) suggests tests based on the supremum distance between an
estimated joint distribution and the joint distribution obtained as the product of the
estimated underlying marginal distributions.44 In practice, it is typical to assume that
valuations, and thus bids, are independent conditional on a set of auction-specific and
perhaps bidder-specific covariates. Su and White (2003) propose a testing approach that
may then be applicable. An alternative is to test for correlation of residuals from a re-
gression of bids on bidder-specific or auction-specific covariates. Bajari and Ye (2003)
do this in their analysis of highway construction procurement auctions. In an ascending
auction, the problem of partially observed bids appears to make direct testing impossible
(recall, however, the indirect tests discussed in Section 5.4).

44 Other tests of the hypothesis that bids are uncorrelated (an implication of independence) could also be
applied. See, e.g., Chapter 8 of Hollander and Wolfe (1999).
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6. Extensions of the basic results

6.1. Auction heterogeneity

6.1.1. Observed auction heterogeneity

In practice, one rarely has access to data from auctions of identical objects. For example,
the goods for sale at each auction often differ in observable characteristics, and we may
expect distributions of valuations to shift with these observables. All of the identifica-
tion results above hold in the presence of auction-specific covariates. In particular, the
previous discussion can be reinterpreted as being conditioned on a given realization of
the covariate values. To make this concrete, let Z be a vector of auction covariates. We
extend the notation defined above to condition on Z by defining βi(·;N , Z), FU(·|Z),
GMi |Bi

(b|b;N , Z) and gMi |Bi
(b|b;N , Z), etc. Assuming all auction-specific hetero-

geneity is captured by Z, in a first-price auction the first-order condition for bidder i at
auction t becomes

(6.1)uit = bit + GMi |Bi
(bit |bit ;N , zt )

gMi |Bi
(bit |bit ;N , zt )

which uniquely determines FU(·|zt ) in the affiliated private values model when all bids
and bidder identities are observable. In an ascending auction with private values that are
independent conditional on Zt , one can use the conditional distribution of transaction
prices F

(n−1:n)
U (·|zt ) for any given value of zt to uniquely determine FU(·|zt ) through

Equation (4.4).
The nonparametric estimation methods discussed above can also be extended, for ex-

ample by using standard kernel smoothing over covariates. Guerre, Perrigne and Vuong
(2000) discuss details of such an approach for the case of a first-price auction with
symmetric independent private values, and this approach is easily extended to the other
models. This type of approach has been applied to ascending auctions by Haile and
Tamer (2003).

Unless the dimensionality of the covariates is fairly small relative to the sample size,
however, a fully general nonparametric estimation approach may not be practical. One
alternative suggested by Haile, Hong and Shum (2003) exploits the observation that
additive (or multiplicative) separability is preserved by equilibrium bidding.45 In par-
ticular, suppose that in an auction with characteristics zt valuations are given by

(6.2)uit = Γ (zt ) + ait

for some (possibly unknown) function Γ (·), with the bidder-specific private information
Ait independent of Zt . Then, if we let z0 be such that46

45 This approach has been applied by Krasnokutskaya (2004), Bajari, Houghton and Tadelis (2004), and
Shneyerov (2005).
46 We assume for simplicity that such a z0 exists. If it does not, the argument extends but with more cumber-
some notation.
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(6.3)Γ (z0) = 0

equilibrium bidding also follows the additively separable structure (an analogous result
applies in the case of multiplicative separability)

(6.4)βi(ui;N , z) = Γ (z) + βi(ui;N , z0).

Proving this is trivial in an ascending auction, where the bid function is the identity
function. For a first-price sealed-bid auction, let

β̆i (ai, z;N ) ≡ βi

(
ai + Γ (z);N , z

)
so that under (6.2) a bidder’s first-order condition can be written

(6.5)

ait + Γ (zt ) = β̆i (ait , zt ;N ) + GMi |Bi
(β̆i(ait , zt ;N )|β̆i (ait , zt ;N );N , zt )

gMi |Bi
(β̆i(ait , zt ;N )|β̆i (ait , zt ;N );N , zt )

.

Note that the events {β̆i (Ai, z;N ) = β̆i (ai, z;N )} and {β̆i (Ai, z0;N ) =
β̆i (ai, z0;N )} are equivalent for any z. Under (6.4), the events {β̆j (Aj , z;N ) =
β̆i (ai, z;N )} and {β̆j (Aj , z0;N ) = β̆i (ai, z0;N )} are also equivalent for j �= i,
so the expression

GMi |Bi
(β̆i(ait , zt ;N )|β̆i (ait , zt ;N );N , zt )

gMi |Bi
(β̆i (ait , zt ;N )|β̆i (ait , zt ;N );N , zt )

on the right-hand side of (6.5) is invariant to zt . Hence, (6.4) guarantees that (6.5) is
satisfied for all zt whenever it is for zt = z0.

This preservation of additive separability is useful because it implies that the effects
of covariates on valuations can be controlled for using a regression of bids on covariates.
In particular, we can write

(6.6)bit = α(Nt ) + Γ (zt ) + εit ,

where α(Nt ) is an intercept specific to auctions in which the set of bidders is Nt (in a
symmetric environment, this can be α(nt )) and εit ≡ βi(uit ;Nt , z0) − α(Nt ) has mean
zero conditional on zt . Both α(Nt ) and Γ (zt ) are then identified from observation of
bids, Nt , and zt ; indeed, they can be estimated consistently using standard regression
techniques.

Let Γ̂ (zt ) denote a consistent estimate of Γ (zt ). Then bit − Γ̂ (zt ) provides a con-
sistent estimate of βi(uit ;Nt , z0), i.e., the bid i would have submitted in auction t if Zt

were equal to z0. Of course, a sample of bids from auctions with the same value of Z
of is exactly what we would like to have. Estimation of (6.6) provides an approach for
“homogenization” of the bid data by replacing each bit with

bh
it = bit − Γ̂ (zt ).

These homogenized bids can then be used to consistently estimate the underlying dis-
tribution of valuations FU(·; z0) using the methods described in the previous sections;
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i.e., with Γ (·) known, FU(·; z0) is identified through (6.1). Finally, since (6.3) and (6.2)
imply

Pr(U1t � u1, . . . , Unt � un) = FU
(
u1 − Γ (zit ), . . . , un − Γ (zit ); z0

)
,

FU(·; z) is then identified for all z in the support of the auction covariates. As usual, in a
first-price auction, equilibrium bidding implies that the distribution of the mean-zero εit

will vary with Nt . So the “second stage” of estimating the joint distribution FU(·; z0)

must be done separately for each Nt .
The number of observations available for the first-stage regression of bids on covari-

ates is
∑

n nTn, which is often quite large. Hence, a nonparametric or flexible parametric
specification of Γ (·) will be feasible in data sets of reasonable size. Assuming that Γ (·)
is known up to a finite parameter vector has an advantage for some purposes in that es-
timates from the first stage will converge at the parametric rate, leaving the asymptotic
distribution of nonparametric estimators applied to the homogenized sample unaffected.
Note that the function Γ (·), which characterizes the effects of covariates on valuations,
is sometimes of direct interest itself. Equation (6.4) implies that one can estimate this
primitive directly with a regression of bids on covariates. Bajari, Houghton and Tadelis
(2004), for example, have recently exploited this observation to investigate the impor-
tance of renegotiation costs in procurement auctions.

This approach preserves the fully nonparametric specification of the idiosyncratic
component of bidders’ private values and allows direct inference (through the first-
stage estimates) on the way observables affect valuations. However, it places a strong
restriction on the way observables enter. An alternative nonparametric approach is to
use series or sieves [e.g., Chen (2007)], approximating the bid distribution with a se-
quence of parametric models. In a given data set this will amount to assuming a flexible
parametric model, and one might also take such an approach directly. For example,
in an ascending auction with symmetric independent private values, one might specify
the conditional distribution F

(n−1:n)
U (u|z) as a finite mixture of parametric distributions.

Letting H(·; γ ) be a parameterized distribution function, the distribution of the transac-
tion price could be specified as

(6.7)F
(n−1:n)
U (u|z, θ , J ) = 1∑J

j=1 ω(z; θ j )

J∑
j=1

ω(z; θ j )H
(
u; γ (z; θ j )

)
given parametric specifications of the functions γ (·) and ω(·). Given an estimate θ̂ of
the parameter vector θ = (θ1, . . . , θJ ), Equation (4.9) implies that

(6.8)F̂U (u|z) ≡ φ
(
F

(n−1:n)
U (u|z; θ̂ , J ); n − 1, n

)
would provide a consistent estimator of FU(u|z) under (6.7).

In a first-price sealed-bid auction, a similar approach might be applied. For a given
set of bidders N , the conditional distribution GMi |Bi

(mi |bi;N , z) could be assumed to
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have the parametric form

(6.9)GMi |Bi
(mi |bi;N , z, θ , J ) =

J∑
j=1

ω(bi, z; θj )∑J
j ′=1 ω(bi, z; θ j ′)

H
(
m; γ (bi, z; θ j )

)
providing a flexible parametric first step of the two-step estimation procedure discussed
in Section 3.2. This kind of specification allows the distribution of bids to vary with
auction covariates in richer ways than is allowed by the “homogenization” approach
described above. This flexibility comes at the price of placing a priori structure on the
distributions of bids and valuations. Of course, some approximation must always be
used in a finite sample, and a finite mixture may perform well in practice. Note that here
the effects of covariates on valuations, which are often of primary interest, would be
obtained indirectly, through (6.8) or through (6.1) and (6.9).

6.1.2. Unobserved auction heterogeneity

In many applications one may suspect that there are factors affecting bidder valuations
that are common knowledge among bidders but unobserved by the econometrician. For
example, suppose valuations are given by the equation

(6.10)Ui = V0 + Ai.

Even if the idiosyncratic components A1, . . . , An are i.i.d., the valuations U1, . . . , Un

will be correlated unconditional on V0 (they will be affiliated if the densities fAi
(·) are

log-concave). When bidders’ information consists only of their valuations ui , not the
individual components v0 and ai , this merely provides one motivation for an affiliated
private values model. When bidders observe both v0 and ai , however, the situation can
be more complicated.

As noted above, information regarding an auction that is common knowledge among
the bidders creates no problem for the characterization of equilibrium bidding strategies
– the theory can be thought of as holding for each value of the public information.
However, for empirical work, difficulties can arise when the econometrician is unable
to condition on all the information that is public to bidders.

There are at least three issues that arise in the presence of unobserved heterogeneity.
The first is whether unobserved heterogeneity is empirically distinguishable from other
structures that introduce correlation among bids. In an ascending auction, equilibrium
bids satisfy Bi = Ui regardless of whether bidders observe only their own valuations or
also factors shifting all bidders’ valuations. Hence it will be impossible to distinguish
an environment with unobserved heterogeneity from an environment with correlated
private values but no unobserved heterogeneity. In a first-price auction, the situation is
similar. As long as the conditions of Theorem 5.2 hold, the data can be rationalized by
equilibrium bidding. However, unobserved heterogeneity can account for some or all of
the observed correlation (if any) among bids.
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This observational equivalence can be important. If (6.10) holds, for example, an
assumption about whether each bidder i observes only Ui or also V0 can have sig-
nificant implications for bidding strategies (and, therefore, the appropriate interpreta-
tion of bids) in a first-price auction. Thus, one must rely on an assumption regarding
which model is appropriate.47 In her application to highway procurement auctions,
Krasnokutskaya (2004) compares the estimated bid function under an assumption of
affiliated private values (with no unobserved heterogeneity) to the average (over the
unobserved heterogeneity) bid function under the assumption of independent private
values with unobserved heterogeneity. She finds that the estimated average bid function
under unobserved heterogeneity is steeper than the estimated bid function under affili-
ated private values, and that estimated average markups are substantially higher when
one ignores unobserved heterogeneity. Hence, the modeling choice can have important
implications.

The second issue is whether the joint distribution FU(·), is identified under the
assumption of unobserved heterogeneity. We will see that in a first-price sealed-bid
auction, identification can be obtained through additional structure, e.g., on the sta-
tistical and functional relationships between the unobserved heterogeneity and bidder
valuations or on the effects of unobserved heterogeneity on observed outcomes other
than bids. In an ascending auction, the available identification results require additional
sources of variation in the data, such as bidder-specific covariates.

The third issue is whether identification of FU(·) is adequate for the economic ques-
tions one wishes to answer. In the presence of unobserved heterogeneity, knowledge of
this distribution is sufficient to answer some important questions but not others – in par-
ticular, not those concerning outcomes that depend on bidders’ beliefs about opponents’
valuations, since these beliefs vary with the realization of the factor that is unobserv-
able to the econometrician. In ascending or second-price auctions (or any mechanism
with a dominant strategy equilibrium), FU(·) is the only primitive relevant for predicting
equilibrium outcomes, designing the auction rules, or performing counterfactual simu-
lations. However, if we wish to consider policy questions concerning first-price auctions
or other mechanisms in which beliefs play a more significant role, it will be necessary
to know the joint distribution of bidders’ private information and the unobserved het-
erogeneity (e.g., the distribution FA,V0(·) if one assumes (6.10)), not just FU(·). Below
we will discuss conditions under which this joint distribution is identified.

47 Although the literature has not yet considered approaches for distinguishing between the two models, it
may be possible to develop a test based on exogenous variation in participation. In particular, it is possible
to estimate the primitives of each model for a fixed set of potential bidders N . Then, these primitives can
be used to make “out of sample” predictions about bid distributions for other sets of potential bidders (e.g.,
a subset of the original set N ′ ⊂ N ). We conjecture that in general the specific bid distributions predicted
by the two models for the set of bidders N ′ will differ across the two models. However, to our knowledge
this has not been formally analyzed. Note that a test of this restriction would rely on the assumption that
participation does not vary with the unobserved heterogeneity. This assumption may be strong in practice; it
may be satisfied, however, if bidders pay a cost to acquire a signal and the unobserved heterogeneity is not
observed by bidders until they bear the cost of investigating the auction. Instrumental variables approaches
like that explored in Haile, Hong and Shum (2003) may also be useful.
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6.1.2.1. First-price sealed-bid auctions To demonstrate the problem of unobserved
heterogeneity in first-price auctions, we begin with a very general case. In a private
values first-price sealed-bid auction, suppose that information wt is common knowledge
among the bidders at auction t . Following the discussion in Section 6.1.1, the first-order
condition relating bids to the underlying valuations is

(6.11)uit = bit + GMi |Bi
(bit |bit ;N , wt )

gMi |Bi
(bit |bit ;N , wt )

.

If the econometrician does not observe wt , the conditional distribution GMi |Bi
(bit |bit ;

N , wt ) is not identified. This creates a serious challenge to any attempt to uncover the

markdown
GMi |Bi

(bit |bit ;N ,wt )

gMi |Bi
(bit |bit ;N ,wt )

. Indeed, because this markdown is a nonlinear function

of wt , even the average markdown is not identified in general [Hendricks, Pinkse and
Porter (2003)].

Identification requires additional structure, and several possibilities have been ex-
plored in the literature. All begin by assuming that the unobservable is a scalar, which
we will denote by W . Some early work took parametric approaches to disentangling the
common shock W from idiosyncratic factors, but more recently nonparametric identi-
fication results have been derived, exploiting additional data and/or assumptions about
the way common shocks affect outcomes.

One approach, first proposed by Campo, Perrigne and Vuong (2003), is to exploit ob-
servables that are sufficient for the unobserved factor. This can be natural when there is
an observable endogenous variable besides bids that responds to the unobservable W .48

Both Campo, Perrigne and Vuong (2003) and Haile, Hong and Shum (2003) have used
this approach by positing a model in which the number of bidders in auction t can be
represented as a function of observables Zt and the unobservable Wt :

(6.12)Nt = α(Zt ,Wt ).

If α(z, ·) is a strictly increasing function for all z, then the joint distribution of
(X1, . . . , Xn,U1, . . . , Un) conditional on (Nt , Zt ) is identical to that conditional on
(Nt , Zt ,Wt ). Then

v(x, x; n,w, z) ≡ E[Ui | Xi = x, Nt = n, Wt = w, Zt = z]
= E[Ui | Xi = x, Nt = n, Zt = z]
≡ v(x, x; n, z)

and identification follows from the first-order condition

48 A similar idea was used to address the problem of identification with unobserved heterogeneity in a very
different environment by Olley and Pakes (1996).
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v(xit , xit ; nt , zt )

= bit + Pr(maxj �=i Bjt � bit | Bit = bit , Zt = zt , Nt = nt )

∂
∂m

Pr(maxj �=i Bjt � m | Bit = bit , Zt = zt , Nt = nt )|m=bit

,

where the right-hand side is a known function of observables.
The assumption of strict monotonicity of N in W is strong although it is clear that

there must be an invertible relation between W and the observables for this kind of
approach. With weak monotonicity, conditioning on (Nt , Zt ) would limit the realization
of Wt to some set W(Nt , Zt ), and in some applications this might be sufficient to use
the first-order condition above as a useful approximation.

The economic interpretation of (6.12) can be important when taking this kind of ap-
proach. For example, to predict outcomes under alternative selling mechanisms, one
must consider whether changing mechanisms would alter the relation between bidder
participation and Z [see, e.g., Athey, Levin and Seira (2004)]. If so, one would need a
fully specified economic model of participation and bidding. However, a reduced form
may be adequate for some questions and applications – for example, when (6.12) de-
scribes the determination of matches between auctions and potential bidders based on
unobserved characteristics of the object offered for sale, or when the economic ques-
tions of interest do not depend on counterfactual predictions regarding participation.

Other approaches to handling unobserved heterogeneity in a first-price auction are
closely related to ideas from the econometrics literatures on measurement error with
repeated measures [Li and Vuong (1998), Li (2002), Schennach (2004)] and dura-
tion models with unobserved heterogeneity and multiple spells [see, e.g., Lancaster
(1990)]. These literatures consider multiple observations for each of many units, with
observations within each unit reflecting both a common (unobserved) shock as well as
idiosyncratic shocks. In the auction setting, the auction plays the role of the unit, with
the individual bids being the observations within unit.

Consider a simplified model of unobserved heterogeneity in which bidder valuations
take the additively separable form in (6.10), and (A1, . . . , An, V0) are mutually inde-
pendent with compact support. This is a special case of a conditionally independent
private values model (itself a special case of affiliated private values, so long as each
fAi

(·) is log-concave).49 Li, Perrigne and Vuong (2000) considered this structure under
the assumption that bidders observe only their valuations Ui . They showed that, in that
case, the joint distribution FA,V0(·) is nonparametrically identified up to a location nor-
malization. While there is no unobserved heterogeneity in their model, their approach

49 In a general specification of conditionally independent private values, one would assume only
FA,V0 (a1, . . . , an, v0) = FV0 (v0)

∏n
i=1 FAi

(ai |v0). With this more general specification, the linearity as-
sumed in (6.10) would be without loss of generality, since whatever the distributions of Ui |V0, one can let
Ai = Ui − V0. The de Finetti Theorem [e.g., Chow and Teicher (1997)] tells us that any infinite sequence of
exchangeable random variables can be represented by this more general conditionally independent structure.
However, finite exchangeable sequences, like those arising in symmetric auctions with a finite number of po-
tential bidders, need not have such a representation. Athey and Haile (2000, Proposition 4) explore limitations
of the flexibility of the more restrictive conditionally independent structure considered here.
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turns out to be a useful starting point. To see the idea behind their result, recall that
observation of all bids and bidder identities is sufficient to identify the joint distribution
FU(·) in a first-price auction with affiliated private values. Once FU(·) is known, a result
from the literature on measurement error can be applied to separately identify the com-
ponent distributions FA(·) and FV0(·) up to a location normalization. Li, Perrigne and
Vuong (2000) develop consistent nonparametric estimators for this environment using
empirical characteristic functions.50

Krasnokutskaya (2004) shows that a very similar approach can be applied in the case
of unobserved heterogeneity – i.e., when valuations take the additively separable form
in (6.10) and v0 is observed by bidders but not the econometrician.51 In essence, she
reverses the two steps of Li, Perrigne, and Vuong’s (2000) approach: she first uses a
deconvolution technique to remove the effects of unobserved heterogeneity from bids,
then recovers the idiosyncratic factors ai through the first-order condition for a hypo-
thetical auction with no unobserved heterogeneity. In this sense, the approach is similar
to the “homogenization” approach for incorporating observable auction heterogeneity,
discussed in Section 6.1.1.

For the first step, recall from Section 6.1.1 that the additive separability in (6.10) is
preserved by equilibrium bidding.52 So if βi(uit ;Nt , v0t ) denotes bidder i’s equilibrium
bid given uit ,Nt , and v0t , then

(6.13)βi(uit ;Nt , v0t ) = βi(uit − v0t ;Nt , 0) + v0t .

If one observes all bids from each auction, the following result from Kotlarski (1966)
implies identification of the joint distribution of (β1(A1;N , 0), . . . , βn(An;N , 0), V0)

up to a location normalization.53

LEMMA 6.1. Let Y1, Y2, and Y3 be mutually independent random variables with nonva-
nishing characteristic functions φ1(·), φ2(·), and φ3(·), respectively. Let Q1 = Y1 + Y3,
Q2 = Y2 + Y3. Then

(i) the joint distribution of (Q1,Q2) completely determines the distributions of
Y1, Y2, and Y3 up to location;

(ii) if ψ(·,·) denotes the characteristic function of (Q1,Q2), and ψi(·,·) is its deriv-
ative with respect to its ith argument, then under the normalization E[Y1] = 0,
φ3(t) = exp{∫ t

0
ψ1(0,s)
ψ(0,s)

ds}, φ1(t) = ψ(t,0)
φ3(t)

, and φ2(t) = ψ(0,t)
φ3(t)

.

50 See also the discussion of a closely related special case of the mineral rights model in Section 7.2.1 below.
51 An alternative is discussed in Section 8.2 below.
52 Krasnokutskaya (2004) focuses on the case of multiplicative rather than additive separability. The analysis
is equivalent with a logarithmic transformation. As she points out, a more general model allowing unobserved
heterogeneity affecting both the location and scale of private values is also identifiable, since one can apply
the deconvolution step (Lemma 6.1) to the bids twice – once in logs and once in levels.
53 To see the connection to the original measurement error framework, observe that with an appropriate
location normalization, under (6.10) each Ai can be interpreted as an independent mean-zero measurement
error on v0.
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A proof can be found in Prakasa-Rao (1992, Theorem 2.1.1 and Remark 2.1.11).54

A key to the result is the fact that the characteristic function of the sum of indepen-
dent random variables is the product of the characteristic functions of the component
variables. With multiple observations involving one component in common, this sepa-
rability can be exploited to isolate the characteristic functions (and, thereby, the distri-
butions) of the individual components. Identification is up to a location normalization,
since adding a constant to Y3 and subtracting the same constant from Y1 and Y2 has no
effect on observables.

Lemma 6.1 can be used to relate characteristic functions of the observed bids to
those of the “homogenized” bids β1(A1;N , 0), . . . , βn(An;N , 0) and the unobserved
factor V0. Identification of the distribution of each Ai then follows from the first-order
condition for a hypothetical auction in which v0t = 0. In particular, if we let B0

i =
βi(Ai;N , 0) = Bi − V0,

(6.14)Ai = B0
i + Pr(maxj �=i βj (Aj ;N , 0) � B0

i )

∂
∂m

Pr(maxj �=i βj (Aj ;N , 0) � m)|m=B0
i

≡ ξ̃i

(
B0

i ;N ).
Note that unlike the case without unobserved heterogeneity, it is not possible to iden-

tify the valuations of bidders in a particular auction, because the realization of V0 is
unobserved. Despite this, because Lemma 6.1 implies that GB0

i
(·) is identified, it fol-

lows that ξ̃i (·;N ) is also identified, so that the distribution of private information is
given by

FAi
(ai) = GB0

i

(
ξ̃−1
i (ai;N )

)
.

Nonparametric estimators can be developed by first substituting empirical character-
istic functions for the population characteristic functions in part (ii) of Lemma 6.1, and
then using simulation to construct pseudo-draws of the random variable on the right-
hand-side of (6.14). We sketch the approach here. For simplicity, consider the special
case in which there are two classes of bidders, with bidders in the same class draw-
ing their valuations from the same marginal distribution (extension to more than two
types is straightforward). Suppose one has a sample of T auctions in which there are n1
class-1 and n2 class-2 bidders in each auction, and that all bids and bidder identities are
observable. As above, estimation must be undertaken fixing the number of bidders of
each type, which is equivalent here to fixing the set N .

Let c(j, t) denote the class of bidder j in auction t . Impose the normalization
E[Ai] = 0 for any class-1 bidder i. Let GBj (·) denote the marginal distribution of
the equilibrium bid Bj of a class-j bidder, and let GB1,B2(b1, b2) denote the joint dis-
tribution of (B1, B2). Similarly, let B0,j ≡ Bj − V0 denote the homogenized bid of
a class-j bidder. Note that the homogenized bids are independent. Let ψ(·,·), φ0(·),

54 See also Li and Vuong (1998, Lemma 2.1).
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φB0,1(·) and φB0,2(·) denote the characteristic functions of (B1, B2), V0, B0,1, and B0,2,
respectively.

Following Li and Vuong (1998) and Krasnokutskaya (2004) [see also Li, Perrigne
and Vuong (2000)], define estimators

ψ̂(τ1, τ2) = 1

T n1n2

T∑
t=1

∑
j : c(j,t)=1

∑
k: c(k,t)=2

exp(iτ1bjt + iτ2bkt ),

ψ̂1(τ1, τ2) = 1

T n1n2

T∑
t=1

∑
j : c(j,t)=1

∑
k: c(k,t)=2

ibjt exp(iτ1bjt + iτ2bkt ),

where, for each estimator, an average is taken over all possible pairs (b1, b2). Let

φ̂0(τ ) = exp

{∫ τ

0

ψ̂1(0, v)

ψ̂(0, v)
dv

}
,

φ̂B0,1(τ ) = ψ̂(τ, 0)

φ̂0(τ )
,

φ̂B0,2(τ ) = ψ̂(0, τ )

φ̂0(τ )
.

Given these estimated characteristic functions, one can obtain estimates of the marginal
densities of B0,1, B0,2 and V0 using the inverse Fourier transform. In particular, let

(6.15)ĝB0,i (b) = 1

2π

∫ μ

−μ

exp(−iτb)φ̂B0,i (τ ) dτ,

(6.16)f̂V0(v) = 1

2π

∫ μ

−μ

exp(−iτv)φ̂Vo(τ ) dτ,

where μ is a trimming parameter.
As shown by Li and Vuong (1998), under certain smoothness conditions (6.15) and

(6.16) provide uniformly consistent estimators of the density fV0(·) of V0 and the den-
sities of the homogenized bids B0

i for each bidder i. These densities can then be used to
construct estimates of the right-hand-side of the first-order condition (rewriting (6.14))

(6.17)Ait = B0
it +

∏
j �=i GB0,c(j,t) (B0

it )∑
j �=i gB0,c(j,t) (B0

it )
∏

k �=i,j GB0,c(k,t) (B0
it )

,

where

(6.18)GB0,j (b) =
∫ b

−∞
gB0,j (s) ds.

In contrast to other applications of the indirect approach to first-price auctions [e.g.,
Guerre, Perrigne and Vuong (2000)], however, here draws of the bids B0

it on the right-
hand-side of (6.17) cannot be taken directly from the data. Instead, they must be
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simulated from the estimated densities ĝB0
i
(b). Using simulated bids, (6.17) makes it

possible to construct a pseudo-sample of draws of the idiosyncratic components Ai ,
which can be used to obtain estimates of their underlying densities fAj (·) using stan-
dard methods. Krasnokutskaya (2004) provides additional details and conditions under
which this leads to uniformly consistent estimates of the marginal densities fV0(·)
and fAj (·) for each bidder class j . She suggests the use of the bootstrap for infer-
ence.

Note that while the approach here is similar to that in Li, Perrigne and Vuong (2000),
there are important distinctions. When V0 is not observed by bidders, the joint distri-
bution FU(·) is identified directly from the first-order condition and completely char-
acterizes bidder demand and information. Since knowledge of FU(·) is sufficient for
counterfactual simulations in a private values model with no unobserved heterogeneity,
it is not clear under what circumstances one would need to separately identify FA(·) and
FV0(·).55 When V0 is observed by the bidders, however, identification of the joint dis-
tribution FU(·) no longer follows directly from the first-order condition. Furthermore,
even if FU(·) were identified, in this environment separate identification of FA(·) and
FV0(·) is required for many counterfactuals.

The approach proposed by Krasnokutskaya (2004) is attractive in that it places no
restriction on the distribution of the idiosyncratic factor Ai or the distribution of V0. It
does restrict the way unobservables affect valuations. It may also require large samples
– the slow convergence rates of deconvolution estimators is well known. Athey, Levin
and Seira (2004) propose an alternative, trading flexibility in the specifications of FV0(·)
and the FAi

(·) for flexibility in how unobservable and observable auction characteristics
affect valuations. They propose parametric estimation of the bid distributions and the
distribution of auction heterogeneity. This is followed by estimation of the distribution
of valuations based on (6.14) in a manner similar to Krasnokutskaya (2004). Mixtures
of parametric models might be introduced to allow for more flexibility, as described at
the end of Section 6.1.1. Although using a parametric first step is restrictive, it allows
a parsimonious specification whereby the unobserved heterogeneity may affect some
types of bidders differently than others, and where the distribution of the unobserved
heterogeneity depends on auction characteristics. In principle, these features could be
incorporated into Krasnokutskaya’s (2004) approach by allowing auction characteristics
to interact with V0 and Ai in (6.10), but in practice this may be not be feasible in data
sets of moderate size.

6.1.2.2. Ascending auctions The challenges created by unobserved auction hetero-
geneity in an ascending auction are quite different. Because equilibrium is in weakly
dominant strategies in the standard model of the ascending auction, unobserved het-
erogeneity does not affect the equilibrium mapping (the identity function) between

55 A separate (and open) question, however, is whether imposing the structure of this model in estimation
leads to more precise estimates in counterfactual simulations.
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valuations and bids. For example, bidding in an environment with valuations charac-
terized by (6.10) is the same regardless of whether bidders observe both v0 and ai or
only their sum. The main problem posed by such an environment is the fact that positive
identification results for ascending auctions have been obtained primarily for environ-
ments with independent valuations, yet the presence of an unobserved factor like v0

generally leads to a violation of independence.
In Section 6.2.1 we will show how additional data on bidder characteristics can be

used to obtain identification of the joint distribution of valuations in an ascending auc-
tion without independence. This would not be sufficient for all economic questions of
interest, however. As the preceding section makes clear, for example, separate identi-
fication of FV0(·) and each FAi

(·) is needed even to simulate outcomes in a first-price
sealed-bid auction. However, with an estimate of the joint distribution FU(·), it should
be possible to use deconvolution techniques similar to those discussed above to sepa-
rately estimate FV0(·) and each FAi

(·) when Ui = Ai + V0, under assumptions similar
to those discussed above. This has not yet been investigated.

6.2. Bidder heterogeneity

6.2.1. Observed bidder heterogeneity

As discussed in prior sections, observable differences across bidders introduce asym-
metry that can complicate the analysis of bidding data. However, when bidder-specific
covariates are observable and vary across auctions, they can actually aid identifica-
tion by enabling the distribution function for a single order statistic to reveal more
information. This is particularly valuable in an ascending auction given the negative
identification results above for environments without independence. In fact, with suf-
ficiently rich variation in covariates, identification can be obtained with asymmetric
dependent valuations, even when the transaction price is the only bid available (or the
only bid assumed to have the unambiguous interpretation implied by the button auction
model).

The idea behind this approach is familiar from other types of models, including the
Roy model of labor supply [e.g., Heckman and Honoré (1990)] and competing risks
models [e.g., Heckman and Honoré (1989)]. To see how this can work in the auction
environment, suppose

Ui = gi(Wi) + Ai,

where each gi(·) is an unknown function, Wi is a covariate reflecting characteristics
of bidder i, and the private stochastic components (A1, . . . , An) are drawn from an
arbitrary joint distribution FA(·) and are independent of the matrix W = (W1, . . . , Wn).
Suppose for the moment that each gi(·) is known and that we could somehow observe
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u(n:n).56 Conditional on the vector w, U(n:n) has cumulative distribution

F
(n:n)
U (u|w) = Pr

(
U(n:n) � u | w

)
= FU(u, . . . , u|w)

= Pr
(
gi(wi) + Ai � u ∀i

)
= FA

(
u − g1(w1), . . . , u − gn(wn)

)
.

While the joint distribution FU(·|w) is observed only along the diagonal (U1 = · · · =
Un), sufficient variation in (g1(w1), . . . , gn(wn)) would “trace out” the entire joint
distribution FA(·). Furthermore, prior knowledge of the functions gi(·) is not nec-
essary with sufficient variation in covariates: at sufficiently large negative values of
gj (wj ) ∀j �= i, bidder i will have the largest valuation with probability arbitrarily
close to one, so that variation in wi and the point of evaluation u would trace out the
function gi(·).

In practice we cannot observe u(n:n) in an ascending auction, and the distribution
of an interior order statistic has a more complicated relation to the underlying joint
distribution than does the maximum (or minimum, as in the case of competing risks).
However, the following result shows that the fundamental idea behind this approach can
be used to obtain identification in an ascending auction when only the transaction price
is observable.57

THEOREM 6.1. Assume
(i) Ui = gi(Wi ) + Ai , i = 1, . . . , n.

(ii) FA(·) has support R
n and a continuously differentiable density.

(iii) Ai and Wj are independent for all i, j .
(iv) supp(g1(W1), . . . , gn(Wn)) = R

n.
(v) For all i, gi(·) is continuously differentiable, with limwi→(∞,...,∞) gi(wi ) = ∞

and limwi→(−∞,...,−∞) gi(wi ) = −∞.
Then FA(·) and each gi(·), i = 1, . . . , n, are identified up to a location normalization
from observation of U(j :n) and W, for any single value of j ∈ {1, . . . , n}.

PROOF. For simplicity let each Wi = Wi be a scalar. For T ⊂ {1, . . . , n} define

F T
A (a1, . . . , an) ≡ Pr(Ai > ai ∀i ∈ T , Aj � aj ∀j /∈ T )

56 This is the observable order statistic in the Roy model, where the wage in the chosen sector (the one
offering the highest wage) is the only one observed, yet one is interested in the joint distribution of wage
offers from all sectors.
57 The result is a slight modification of Theorem 5 of Athey and Haile (2002), correcting a minor error in
their proof.
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and let FT
A,Ai

(a1, . . . , an) = ∂
∂ai

F T
A (a1, . . . , an). For arbitrary u ∈ R, define z =

(u − g1(w1), . . . , u − gn(wn)). Then

Pr
(
U(j :n) � u | w

) =
∑

T ⊂{1,...,n}
|T |=n−j

∑
i /∈T

∫ u

−∞
F T

A,Ai

(
ũ − g1(w1), . . . , ũ − gn(wn)

)
dũ,

where the summations are over the possible identities of the bidders with the n − j

highest bids, and the identity of the bidder i with bid B(j :n). Differentiation yields

∂

∂u

∂n

∂w1 · · · ∂wn

Pr
(
U(j :n) � u | w

)
=

∑
T ⊂{1,...,n}
|T |=n−j

∑
i /∈T

(−1)n−j
n∏

k=1

(−g′
k(wk)

) ∂

∂ai

fA(a)

∣∣∣∣
a=z

=
(

n − 1

n − j

)
(−1)n−j

n∏
k=1

(−g′
k(wk)

) n∑
i=1

∂

∂ai

fA(a)

∣∣∣∣
a=z

since there are
(
n−1
n−j

)
subsets T of size n − j that exclude i. Now observe that

∂

∂u

∂n

∂w1 · · · ∂wn

FA
(
u − g1(w1), . . . , u − gn(wn)

)
=

n∏
k=1

(−g′
k(wk)

) n∑
i=1

∂

∂ai

fA(a)

∣∣∣∣
a=z

= 1(
n−1
n−j

)
(−1)n−j

∂

∂u

∂n

∂w1 · · · ∂wn

Pr
(
U(j :n) � u | w

)
.

Hence, using the fundamental theorem of calculus,

∂n

∂w1 · · · ∂wn

FA
(
u − g1(w1), . . . , u − gn(wn)

)
= 1(

n−1
n−j

)
(−1)n−j

∂n

∂w1 · · · ∂wn

Pr
(
U(j :n) � u | w

)
.

Repeated application of the fundamental theorem of calculus shows that∫ ∞

w1

. . .

∫ ∞

wn

∂n

∂w̃1 · · · ∂w̃n

FA
(
u − g1(w̃1), . . . , u − gn(w̃n)

)
dw̃n . . . dw̃1

= (−1)nFA
(
u − g1(w1), . . . , u − gn(wn)

)
so that
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FA
(
u − g1(w1), . . . , u − gn(wn)

)
(6.19)= (−1)j(

n−1
n−j

) ∫ ∞

w1

. . .

∫ ∞

wn

∂n

∂w̃1 · · · ∂w̃n

Pr
(
U(j :n) � u | w̃

)
dw̃n . . . dw̃1.

Now note that limw−i→(−∞,...,−∞) FA(u−g1(w1), . . . , u−gn(wn)) = FAi
(u−gi(wi)),

where FAi
(·) is the marginal distribution of Ai . For each i, then, variation in u and

wi identifies gi(·) through Equation (6.19) by standard arguments. With knowledge of
each gi(·) we can then use (6.19) to uniquely determine FA(·) at any point (a1, . . . , an)

through appropriate choices of u and w. �

Estimation based on this result has not yet been explored. For the competing risks
model, however, Fermanian (2003) has recently proposed kernel methods that build
directly on the closely related identification proof of Heckman and Honoré (1989).

6.2.2. Unobserved bidder heterogeneity

We have already discussed several models with bidder heterogeneity that is either fixed
across all auctions or captured by observable bidder-specific covariates. However, one
can imagine situations in which asymmetries between bidders vary across auctions due
to factors that are common knowledge to bidders but unobserved to the econometrician.
For example, the match between the specifications of a procurement contract and each
contractor’s particular expertise might be common knowledge within the industry but
unobservable to outsiders.

In the most general case, this type of environment requires a different marginal dis-
tribution FUit

(·) for each bidder i’s valuation in each auction t . It should be clear that
identification of such a model from bid data alone is impossible: the number of mar-
ginal distributions in the model is equal to the number of observations, even assuming
one observes all bids from each auction.

Consider instead a more restrictive model

Uit = Ait + Eit ,

where all (i) Ait are i.i.d. draws from a cumulative distribution FA(·) with density fA(·);
(ii) Eit and Ait are mutually independent; (iii) Eit is common knowledge among the
bidders but unobserved to the econometrician; and (iv) each Eit is an independent draw
from a cumulative distribution FEi

(·) with density fEi
(·). From the econometrician’s

perspective, each bidder’s valuation is then an independent draw from a density

fUi
(·) = fA(·) ∗ fEi

(·),
where ∗ denotes convolution.

In an ascending auction, Theorem 4.1 implies that each FUi
(·) is identified if one ob-

serves the transaction price, the set of bidders N , and the winner’s identity. This would
be sufficient for some important questions and policy simulations, although not all. For
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example, it would not be sufficient to simulate outcomes under a first-price sealed-bid
auction, since to do this one would need to know how much of the variation in valu-
ations was common knowledge (through Ei) and how much was private information
(through Ai). Separate identification of FA(·) and FEi

(·) for all i is not possible from
bid data, however. There are n + 1 marginal distribution functions of interest. Yet even
if one observed bids from all bidders (instead of the n − 1 losing bids, as usually as-
sumed), there are only n marginal distributions of observable bids. Without additional
restrictions, identification will not be possible.

In a first-price auction, the situation is further complicated by the nontrivial strategic
behavior. In particular, even identification of each FUi

(·) in the special case above is
doubtful, since the markdown in each bidder’s first-order condition

ui = bi + Pr(maxj �=i Bj � bi | Bi = bi, E1, . . . , Ej )

∂
∂m

Pr(maxj �=i Bj � bi | Bi = bi, E1, . . . , Ej )|m=bi

involves expectations that are conditioned on the information E1, . . . , Ej that is unob-
servable to the econometrician.58 The problem here is closely related to that discussed
in Section 6.1.2, although the dimensionality of the unobserved heterogeneity is higher,
and the approaches thus far proposed to address unobserved heterogeneity do not appear
to be applicable.

6.3. Endogenous participation

So far, we have focused on models in which any variation in the set of bidders is ex-
ogenous (the exception is the discussion of endogenous participation with unobserved
heterogeneity in Section 6.1.2). In this section we consider several different models of
how the set of bidders is determined, and we explore the consequences of these models
for identification. Here it will be useful to draw a distinction between potential bidders
and actual bidders. As before, we let N (with |N | = n) denote the set of potential
bidders – those who draw signals and decide whether to bid.59 We let A ⊆ N (with
|A| = a) denote the set of actual bidders, i.e., those who actually place a bid. Variation
in both N and A is possible. Let Ñ be the random set whose realization is denoted
by N , and let Ã be the random set whose realization is denoted by A.

58 Models similar to this have been explored in the related context of differentiated products oligopoly price
competition [e.g., Berry, Levinsohn and Pakes (1995); see also Chapter 63 by Ackerberg et al. in this volume].
There, common knowledge differences in unobservable (to the econometrician) quality of products that differ
across markets lead to asymmetries in the effective common knowledge marginal costs of supplying utility to a
buyer choosing between firms. Identification in those models is obtained through a combination of parametric
assumptions and restrictions from the demand side of the market. In the auction setting, the latter would
be analogous to restrictions from the seller’s (or auctioneer’s) side of the market, for example using the
assumption that the reserve price is set optimally. We are not aware of empirical approaches exploiting such
information, although this is a direction worth exploring. See Einav (2004) for a related discussion.
59 In the literature, sometimes agents with the option of acquiring a signal are referred to as potential bidders
[e.g., Hendricks, Pinkse and Porter (2003)].

http://dx.doi.org/10.1016/S1573-4412(07)06063-1
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An example of why the set of potential bidders may vary is an environment in which
obtaining a signal is costly. Firms may then decide whether to investigate a particular
opportunity at random or based on some summary statistics about the auction (for ex-
ample, the appraised value of the object). Fixing the set of potential bidders, the set of
actual bidders may vary, for example, if there is a binding reserve price or if submitting
a bid is costly. In such cases, typically only bidders with sufficiently favorable signals
will bid. In addition, in an ascending auction that lacks a strict “activity rule” like that
in the standard Milgrom–Weber model, the set of actual bidders can exclude even po-
tential bidders with relatively high valuations, since others may push the price beyond
these bidders’ willingness to pay before they ever make a bid.60

In this section we will see that the consequences of endogenous variation in A and
N for equilibrium and identification will depend on whether bidders’ participation de-
cisions are common knowledge among the bidders and whether these are observable by
the econometrician. Often the number of actual bidders in an auction is observed by the
econometrician; the set of potential bidders may or may not be observed. 61

6.3.1. Binding reserve prices

We first consider the case in which a reserve price may be binding. Recalling (2.1),
in an n-bidder auction with reserve price r , only bidders with signals xi � x∗

i (r,N )

participate (with x∗
i (r,N ) = r in a private values auction). Ignoring this endogenous

participation can result in misleading estimates due to the selection introduced by the
participation decisions.62 Throughout this section, we will assume N is observable,
hold N fixed, and consider only bidders i ∈ N .

6.3.1.1. Ascending auctions For ascending auctions we obtained positive identifica-
tion results above primarily for models with independent private values (the exception
is Theorem 6.1), so we will focus on such models here. Donald and Paarsch (1996)

60 Auction-specific unobservables may affect either the number of potential bidders (e.g., if unobservables de-
termine whether there is a suitable match between a specialized contractor and a contract offered by auction),
or the number of actual bidders (e.g., if unobservables affect the profitability of an auction in an environment
with costly signal acquisition). See Section 6.1.2 as well as Athey, Levin and Seira (2004), and Li and Zheng
(2005).
61 In the case that N is not observed but fixed in a sample, in most models of endogenous participation
the common support assumption ensures that the union of identities of all actual bidders ever observed will
converge to N as the sample of auctions grows [cf. Guerre, Perrigne and Vuong (2000)].
62 A closely related model is that in which bidders must pay a fee to enter the auction [Samuelson (1985)] or,
equivalently from the perspective of identification, preparing a bid is costly. This can lead to a participation
rule very similar to that with a binding reserve price [Milgrom and Weber (1982)]. For first-price sealed-bid
auctions, Haile, Hong and Shum (2003) discuss this case and provide results similar to those given in this sec-
tion. Note that bid preparation costs are different from costs of acquiring a signal (discussed in Section 6.3.2),
because in the former case a bidder places a bid if his signal is high enough, while in the latter case the partic-
ipation decision must be made before bidders have obtained signals, and all bidders who acquire signals will
bid (unless there is a binding reserve price).
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and Paarsch (1997) were the first to incorporate reserve prices in structural models of
ascending auctions in the IPV setting.63 They observed that in a parametric framework
one may account for the endogeneity of participation in one of two ways. First, if the
number of potential bidders is observable, one may explicitly account (e.g., in a likeli-
hood function) for the fact that the valuations (bids) of (n − a) potential bidders were
censored because these were below r . Alternatively, one can examine the bidding be-
havior of the actual bidders conditional on their decision to participate. This second
approach is based on the fact that under independence each participating bidder i has a
valuation that is an independent draw from the distribution

(6.20)FUi
(u|r) = FUi

(u) − FUi
(r)

1 − FUi
(r)

.

This observation is useful for considering nonparametric identification as well. With
this observation, Theorem 4.1 implies that each truncated distribution FUi

(·|r) is non-
parametrically identified.

COROLLARY 6.1. In an ascending auction with symmetric independent private values,
FU(·|r) is identified when the transaction price and the number of actual bidders is ob-
servable. In the asymmetric independent private values model, for each i ∈ N , FUi

(·|r)
is identified when the transaction price, the identity of the winning bidder, and the set
A are observable.

In many cases, this result alone will be sufficient to enable one to address interesting
questions. In the symmetric case, for example, Haile and Tamer (2003) have shown
that the truncated distribution FU(·|r) can be sufficient to determine the optimal reserve
price (recall Equation (4.12)). To state the result, let FU |r (·) denote FU(·|r), and let c0
be the value the seller places on the good (or her marginal cost of providing it).

THEOREM 6.2. Given any univariate CDF �(·), let π(r; �) = (r −c0)(1−�(r)) and
p∗(�) ∈ arg maxp∈supp �(·) π(p; �). Suppose π(·; FU) is continuously differentiable
and strictly quasi-concave. Then (i) if r < p∗(FU ), r∗(FU |r ) = p∗(FU); (ii) if r �
p∗(FU ), p∗(FU |r ) = r .

This result implies that in a symmetric IPV environment, the optimal reserve one
would calculate by ignoring the endogenous participation is actually optimal, except
when the actual reserve price results in truncation of the relevant region of support. This
follows from the fact that the objective functions π(·; FU) and π(·; FU |r ) differ only by
a multiplicative constant. The qualification concerning truncation is important but not
surprising: if there are no data below the true optimal reserve price, this optimum cannot

63 More recently, Donald, Paarsch and Robert (2006), and Bajari and Hortaçsu (2003a) have considered
parametric models incorporating endogenous participation with reserve prices.
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be detected. However, part (ii) of Theorem 6.2 ensures that when such truncation has
occurred, the data will at least reveal this fact.

For some policy questions, including predicting revenues under a different mecha-
nism or reserve price, the full (untruncated) distributions FUi

(·) will be needed, even
under the independent private values assumption. It should be clear that the value of
FUi

(u) for u lower than all observed reserve prices could not be determined except
through a parametric assumption. However, if both N and A are observable, each
FUi

(u) can be recovered for all u � r . In particular, since FUi
(r) = Pr(i /∈ Ã), identi-

fication of FUi
(u) for all u � r follows immediately from (6.20) and Corollary 6.1.

THEOREM 6.3. In the symmetric independent private values model, FU(u) is identified
for all u � r when the transaction price and |Ã| are observable. In the asymmetric
independent private values model, each FUi

(·) is identified when the transaction price,
the identity of the winning bidder, and Ã is observable.

An estimate of FUi
(u) for u � r will be sufficient for some policy questions, e.g., cal-

culations of revenues with higher reserve prices or under some alternative mechanisms.
Estimation of each FUi

(r) = Pr(i /∈ Ã) based on a sample analog is straightforward. In
the case of symmetry, a different approach to estimation of FU(·) is available: observe
that exchangeability implies [Haile, Hong and Shum (2003)]

FU(r) = Pr(U1 � r)

= FU(r, ∞, . . . ,∞; n)

(6.21)=
n∑

k=1

k

n
Pr
(|Ã| = n − k

)
.

A sample analog of (6.21) places much weaker demands on the data than a sample
analog of Pr(i /∈ Ã). Estimates of FU(·|r) can be obtained from the winning bids as in
Section 4.2, simply replacing N with A. Combining such estimators to form

F̂Ui
(u) = [

1 − F̂Ui
(r)
]
F̂Ui

(u|r) + F̂Ui
(r)

leads to a consistent estimator of FUi
(u).

Haile and Tamer (2003) point out that similar extensions apply to the bounds ap-
proach to ascending auctions discussed in Section 4.3. Their assumptions (see Sec-
tion 4.3) imply that all bidders with valuations above the reserve price must participate,
as in the standard model. Ignoring the endogenous participation and treating A as the
set of potential bidders then leads to bounds on the CDF FU(u|r) for u � r . Combin-
ing these with an estimate of FU(r) obtained from the observable participation decision
leads to bounds on FU(u) for u � r .

While we have treated the reserve price above as fixed, it should be clear that this
is not necessary. As with other auction-specific covariates, the results above can be in-
terpreted as holding for a given value of the reserve price. However, because economic
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theory places considerable structure on the effect of the reserve price on the distrib-
ution of participating bidders’ valuations, in practice this structure should be utilized
in estimation. For example, one would want to use data from all auctions with reserve
prices below s to estimate FUi

(u) for u � s. This requires a modified estimation ap-
proach that combines data drawn from different truncated distributions. Indeed, if the
reserve price varies exogenously (e.g., as it would if it were set optimally by sellers with
stochastic private values for the good that are independent of bidders’ valuations), this
variation can trace out much (or even all) of the distributions FUi

(·). For example, if
the support of the reserve price includes values below the lower boundary of the sup-
port of bidder valuations, then identification of the full distribution FU(·) is immediate
from the arguments above. The estimation problem in such cases is similar to that for
other models with random truncation [e.g., Woodroofe (1985), Wang, Jewell and Tsai
(1986)]. While this idea has been mentioned by Guerre, Perrigne and Vuong (2000),
nonparametric estimators exploiting the presence of variation in reserve prices have not
yet been investigated, either for ascending or first-price auctions.

6.3.1.2. First-price auctions Similar arguments apply to first-price auctions, although
here we can consider a richer set of private values models. We will focus on the case in
which the econometrician observes all of the bids as well as the realizations of the sets
Ã and Ñ . In first-price auctions, it is necessary to make an assumption about whether
the bidders observe the set Ã before placing their bids. Since participation is determined
by the realization of bidders’ private information, it will often be most natural to assume
that bidders do not know Ã when choosing their bids. We will focus on this case.64

Since for any bidder i making a bid in equilibrium

GMi |Bi
(mi |bi;N ) = Pr

(
Ã = {i} | i ∈ Ã, Bi = bi,N

)
+

∑
A′⊂N ,i∈A′

Pr
(
Ã = A′, max

k∈A′, k �=i
Bk � mi

∣∣∣ i ∈ Ã, Bi = bi,N
)

the observables and the first-order condition (2.4) uniquely determine the valuation uit

associated with the bid bit of each actual bidder. Letting FU(·|A, r) denote the joint
distribution of

{
Ui : Ui � r, i ∈ A

}
, this gives the following result.

THEOREM 6.4. For each A ⊆ N , the joint distribution FU(·|A, r) is identified in a
first-price auction from observation of the reserve price r , all bids, and the associated
bidder identities. In a symmetric environment, it is sufficient to observe r and all bids.

Combined with the probabilities Pr(Ã = A | N , r) (for which identification is im-
mediate when A, N , and r are all observed), the joint distributions FU(·;A, r) will be
sufficient for a number of questions of interest, including predicting the effects of an

64 In some auctions, bidders may be required to register or make a deposit in order to participate. If these
actions are observable to bidders, A will be known at the time they choose their bids.
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increase in the reserve price. As discussed above, however, in some cases one will need
an estimate of the untruncated distribution of valuations. This does not appear to be pos-
sible in the case of correlated private values: there is simply no information available
regarding the correlation of valuations below the reserve price. However, maintaining
the assumption that N is observable, one can identify the marginal distributions of bid-
der valuations evaluated at values above r .65

THEOREM 6.5. In a first-price auction with private values, FUi
(ui) is identified for all

ui � r from observation of all bids and the associated bidder identities. In a symmetric
environment, it is sufficient to observe all bids.

PROOF. For each A and each i ∈ A, the joint distribution FU(·|A, r) completely deter-
mines the conditional distribution FUi

(ui |r) = Pr(Ui � ui | Ui � r). Further,

(6.22)FUi
(ui |r) = FUi

(ui) − FUi
(r)

1 − FUi
(r)

for all ui � r . FUi
(r) is identified from the observed participation decisions, as in the

case of an ascending auction. The result then follows from (6.22). �

Note that in an independent private values auction, this provides identification of
FU(u) for u such that ui � r for all i. As with similar results in preceding sections,
estimation is possible building directly on the identification result, substituting sample
analogs for the probabilities FUi

(ui |r) and FUi
(r) in (6.22).

6.3.2. Costly signal acquisition and the identification of acquisition costs

Levin and Smith (1994) have considered a model in which players (“firms”) first choose
whether to become potential bidders (“enter”) by investing in signals of their valuations.
Firms that invest observe private signals. The assumption of costly signals is natural in
many environments, particularly in the procurement contexts that account for a large
share of the data studied in the auctions literature. For example, acquiring a signal might
require conducting/analyzing a seismic survey or reviewing detailed contract specifica-
tions. In this subsection, we discuss identification of both value distributions and the
costs of signal acquisition.

Levin and Smith (1994) assume that the bidders observe the set of potential bidders
before placing their bids; in Section 6.3.3 we discuss the alternative assumption that
investments in signal acquisition are private information so that bidders place their bids
without knowing which firms are potential bidders. Levin and Smith focus on symmetric

65 Analogs of Theorems 6.4 and 6.5 were demonstrated for the case of symmetric independent private values
by Guerre, Perrigne and Vuong (2000). Haile, Hong and Shum (2003) extended these results to symmetric
affiliated private values and common values models.
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equilibria of models with symmetric bidders. In equilibrium, firms acquiring a signal
must expect to recover the cost of doing so on average. So when there are sufficiently
many firms in the market, some must choose not to enter. In the unique symmetric
equilibrium, entry is determined by mixed strategies, leading to exogenous variation in
the set of potential bidders.66 One caveat is that, as in virtually all entry games, when
asymmetric equilibria are allowed, there will be multiple equilibria [see, e.g., Berry and
Tamer (2005)].

To extend the econometric model to this setting, observe that the distribution of the
set of potential bidders is determined by the mixing probabilities. Since firms make
independent decisions about signal acquisition, the event |Ñ | = 1 occurs with positive
probability. This case was ruled out above because typically this is not an interesting
case: if a bidder knows that |N | = 1, she will simply bid the reserve price. However,
for the purposes of this section and the next, we will allow |N | = 1. If we assume
that the reserve price r is less than ui for all firms i, the reserve price plays a role
only when |N | = 1, in which case the lone potential bidder bids the reserve. Hence
when r < ui for all i, the number of potential bidders is equal to the number of actual
bidders, the model generates exogenous variation in the number of bidders, and the
methods described above can be used to estimate primitive value distributions. When
r > ui there will also be also variation in the number of actual bidders for a given
set of potential bidders, as in Section 6.3.1. There we assumed that the set of potential
bidders was observable to the econometrician for some results. That may be unlikely in
the presence of both a reserve price and costly signals, since the set of potential bidders
varies across auctions. Li (2003) considers parametric estimation of a model based on
Levin and Smith’s model with r > ui .

In their study of US Forest Service timber auctions, Athey, Levin and Seira (2004)
consider a variation of this model, allowing asymmetric bidders. They assume firms
fall into two classes, “weak” and “strong” (generalizations to more than two types are
also possible). Strong firms that choose to invest draw valuations from a distribution
that stochastically dominates that of the “weak” firms. They restrict attention to type-
symmetric equilibria, in which all members of a given class use the same strategies.
Because firms are asymmetric, however, there may be multiple type-symmetric equilib-
ria. Athey, Levin and Seira (2004) derive a restriction on primitives that guarantees a
unique type-symmetric equilibrium, and this restriction can be verified empirically.

In any signal acquisition model that generates exogenous variation in Ñ , if Ñ and all
bids are observed (or in an IPV model if Ñ and the winning bid are observed), our prior
results imply that (assuming r < ui) a bidder’s ex ante gross expected profit Πi(N )

from entering the auction is identified. In particular,

Πi(N ) = EUi

[(
Ui − βi(Ui;N )

)
GMi |Bi

(
βi(Ui;N ) | βi(Ui;N );N )]

66 Hendricks, Pinkse and Porter (2003) have considered a variation on this model in a common values set-
ting in which bidders choose whether to invest in a signal based on noisier (in a precise sense) preliminary
estimates of their valuations. As they point out, their model can be interpreted as providing a purification of
Levin and Smith’s (1994) mixed strategy equilibrium.
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with the right-hand side determined by the observed bid distribution and the first-order
conditions for equilibrium bidding. Identification of Πi(N ) requires no assumptions
about the nature of the signal acquisition equilibrium (or equilibrium selection) beyond
what is required to guarantee that variation in Ñ is exogenous. Estimates of Πi(N ) can
then be used to calculate all equilibria of an entry game for given entry costs. Thus, in
an application, the existence of multiple equilibria in the entry game can be assessed
empirically.

Athey, Levin and Seira (2004) show that in the unique type-symmetric equilibrium in
their application, strong firms enter with probability one and weak firms are indifferent
about entry. They further observe that for any firms that are indifferent about acquiring a
signal (the weak firms in their application), the expected profit from entry must be zero.
Thus entry costs are identified using Πi(N ) and the distribution of Ñ , which is directly
observable. In particular, for any firm i that is indifferent about acquiring a signal, signal
acquisition costs must be equal to

Πi =
∑

N : i∈N
Pr(Ñ = N | i ∈ Ñ )Πi(N ).

Thus, in contrast to much of the empirical industrial organization literature on entry
(where entry corresponds to signal acquisition in this model), which draws inferences
solely from entry decisions,67 the level of entry costs can be inferred. Hence it is
possible to conduct counterfactual simulations about changes in these costs on the com-
petitiveness of markets and bidder rents.

6.3.3. Bidder uncertainty about the competition

Throughout the preceding sections we maintained the assumption that bidders make
their bids knowing the set of competitors they face. In the standard model of the as-
cending auction with private values, this is without loss of generality since the dominant
strategy is not affected by the set of opponents. Furthermore, the assumption may be
uncontroversial in an ascending auction; certainly if one believes bidders observe their
opponents’ exit prices (as in the standard model) it is natural to presume that bidders
are aware of all competitors. In a sealed-bid auction, however, bidders need not gather
to participate, making it less certain that bidders will know what competition they face.
And in a first-price auction, a bidder’s information about the competition is critical to
the characterization of equilibrium bidding. In some procurement settings, firms may in
fact know which of their competitors have the capability to compete for a given contract
or even which firms have been invited to bid, but in other contexts this may not be public
information.

Even if the set of firms who could in principle compete in an auction is common
knowledge, in models where firms incur a cost to acquire a signal (see, e.g., Sec-
tion 6.3.2) bidders may not know which other firms have actually invested in a signal

67 See, e.g., Berry and Reiss (in press).
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for a particular auction. There the investment choice is determined by randomization (in
the case of a mixed strategy equilibrium) or as a function of private information (in a
pure strategy equilibrium).

It is straightforward to modify theoretical models of costly signal acquisition to ac-
commodate the case where bidders do not observe who has acquired a signal before
bidding. McAfee, Quan and Vincent (2002) and Hendricks, Pinkse and Porter (2003)
consider models with this feature for the case of first-price auctions. McAfee, Quan and
Vincent (2002) show that a slightly stronger condition than affiliation of signals is re-
quired to ensure existence of a pure strategy Nash equilibrium in increasing strategies.68

Li and Zheng (2005) also study such a model, highlighting an interesting testable theo-
retical possibility: bids may decrease when the number of firms increases, because each
firm will enter with lower probability, and the resulting change in the distribution of
potential bidders has ambiguous consequences for bidding strategies.

6.3.3.1. Unknown potential competition Now consider a first-price sealed-bid auction
where Ñ is unobserved to both bidders and the econometrician. Pr(Ñ = N ) is iden-
tified as long as the set of bidders is observable at each auction. The distribution of
the highest bid among i’s opponents is calculated taking the expectation over the set of
potential bidders:

GMi |Bi
(mi |bi)

= Pr
(
Ñ = {i} | i ∈ Ñ

)

(6.23)

+
∑

N : i∈N , |N |>1

Pr
(

max
j∈N , j �=i

Bj � mi

∣∣∣ i ∈ Ñ , Bi = bi

)
Pr(Ñ = N | i ∈ Ñ ).

Bidder i’s first-order condition is then given by

(6.24)ui = bi + GMi |Bi
(bi |bi)

gMi |Bi
(bi |bi)

.

This takes the usual form; however, here GMi |Bi
(·) does not depend on N . Equa-

tion (6.24) and observation of all bids then identifies the distribution of Ui , and straight-
forward extensions of the estimation techniques described above can be applied.

So far we have considered two assumptions that might be made when interpreting
data from first-price auctions: (i) Ñ is observed by all bidders prior to bidding, or (ii) Ñ

68 In particular, they assume that there exists a nondecreasing function h(·) such that for each i, Ui =
h(Xi, V0), where (X1, . . . , Xn) are i.i.d. conditional on V0. Private values, where Ui = Xi , is a special
case. Each bidder bears a cost (constant across bidders) to learn the value of Xi . Bidders first invest in their
signals and then place bids, but investment decisions are not publicly observable. They derive an equilibrium
in which firms randomize in the signal acquisition decision. Then, for bidders who acquire a signal, bidding
is in strictly monotone pure strategies. They show that a sufficient (but not necessary) condition for existence
of a such an equilibrium is that 1−ρ(1−FXi |V0 (xi |v0)) is log-supermodular in (xi , v0), where ρ is the entry
probability in the mixed strategy equilibrium of the entry game.
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is unobserved prior to bidding. In many settings, institutional detail may be available
to guide the choice between these assumptions. When there is variation in N , the data
can also help guide this choice. If Ñ is observed by all bidders prior to bidding, then
when |N | = 1 the bidder must bid the reserve price. Thus, the hypothesis that Ñ is
observable to bidders could be rejected if Pr(B(1:1) = r | |Ñ | = 1) < 1. In addition,
building on the discussion in Section 5, we note that both assumptions can have addi-
tional testable implications. If variation in Ñ is exogenous (as in the models of costly
signal acquisition described above), it will be possible to estimate FU(·) separately for
each N and compare the resulting estimates. If Ñ is observed by bidders before bid-
ding, these estimates should be equal to each other (up to sampling error). On the other
hand, if bidders have no information regarding the realization of Ñ when choosing their
bids, then the distribution of Bi itself should not vary with N (recall (6.24)).

6.3.3.2. Noisy knowledge of the competition Once we allow the possibility that bid-
ders do not observe Ñ prior to bidding, it is natural to consider more carefully what
bidders do know. In particular, it may be more reasonable to imagine that bidders have
noisy signals of Ñ when choosing their bids. When the econometrician can condition
on the same information available to bidders (excluding their signals of course), ex-
tending the methods is straightforward. Suppose, for example, that bidders form their
beliefs about the set of competitors based on a public signal η that is also observable to
the econometrician. The signal, η, might contain information about how costly it will
be to evaluate the object and acquire a signal, or information about the expected value
of the object. In a model of costly signal acquisition, such factors will affect the entry
probability of each bidder.

We can extend the methods above by treating η as an auction-specific covariate to
be conditioned on in bidders’ first-order conditions. Note that the signal η need not be
a scalar and can include any information that may affect the set of potential bidders,
including, e.g., characteristics of the good for sale or market conditions. Hendricks,
Pinkse and Porter (2003) consider a simple example of this approach. They construct a
binary signal ηt = 1{Υt � Υ ∗} of the number of potential bidders for tract t , where Υt

is the number of firms ever to bid on an oil tract in a geographic neighborhood of the
tract offered in auction t , and Υ ∗ is a specified threshold value.

In contrast, if bidders have signals (public or private) about factors that affect the
number of competitors, but these signals are not observable to the econometrician, the
problem of unobserved heterogeneity discussed in Section 6.1.2 arises. For example,
in a model where acquiring a signal is costly, firms might observe an auction char-
acteristic v0 before making entry decisions. Another possibility is that firms observe
auction characteristics that affect the cost of acquiring information about a particular
object. Li and Zheng (2005) develop a model of a first-price auction with these features.
They specify a semi-parametric model, leaving the distribution of unobserved hetero-
geneity unrestricted while assuming a functional form for the marginal distributions of
valuations conditional on the heterogeneity. They estimate the model using Bayesian
methods.
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6.3.4. Internet auctions and unobserved participation

Internet auctions have recently attracted considerable attention from economists. In ad-
dition to providing a great deal of new data, Internet auctions introduce a number of new
and interesting questions, including the role of seller reputations [see, e.g., the papers
surveyed by Bajari and Hortaçsu (2003b, 2004)] and competition between sellers [e.g.,
Peters and Severinov (2006)].

Internet auctions are most often conducted in one of several variations on the standard
ascending auction mechanism [Lucking-Reiley (2000)]. However, a challenge to struc-
tural analysis of bid data from Internet auctions is the fact that the number of bidders
cannot be observed. Recall from Section 4 that a key assumption for the identification
arguments in even the simplest ascending auction environments was observation of the
number of bidders – either the number of potential bidders or the number who have
valuations above the reserve price. An Internet auction typically takes place over sev-
eral days (usually a week or more on eBay, for example), with bidders becoming aware
of the auction at different times as they log onto the auction site while the auction is
underway. A bidder who logs on to discover that the price has already risen past his
valuation will not bid. Hence the number of submitted bids will not generally equal the
number of bidders willing to pay the reserve price (if any).69 The usual assumption that
the transaction price is equal to the second-highest valuation is of little use if it is not
known whether it is the second highest of two valuations or of ten, for example.

This problem has accounted for a substantial impediment to progress in addressing
questions about the underlying demand structures at Internet auctions.70 This includes
even seemingly simple questions like how seller reputations affect bidders’ willingness
to pay, since this requires inference on the underlying distribution of bidder valuations.

Song (2003) has proposed a model capturing key departures of Internet auctions from
the standard ascending auction model. Using this model, she derives conditions under
which the identification of the distribution FU(·) can be obtained in the symmetric in-
dependent private values paradigm without observing the number of bidders, or even
assuming that this number is constant.

In her model, an auction takes place over an interval of time [0, τ ]. The distribution
of N can vary across auctions, and need not be known to bidders. In a given auction,
each potential bidder i draws a vector of “bidding opportunities” (t1

i , . . . , t
τi

i ), with each
tki ∈ [0, τ ]. Taking t1

i < · · · < t
τi

i without loss of generality, t1
i represents the time of i’s

“arrival” at the auction, and t
τi

i represents i’s final bidding opportunity. No restriction is

69 This problem can also arise in other applications, particularly in other ascending auctions with similar
deviations from the button auction model, or in Dutch auctions, where only the winner makes a bid. Song
(2004) explores identification and estimation in these and other auction models when the number of bidders
is not observable to the econometrician.
70 Bajari and Hortaçsu (2003a) avoid this problem with a common values model that admits an equilibrium
in which all bidders willing to pay the reserve price will bid simultaneously at the end of the auction, as if in a
second-price sealed bid auction. See Ockenfels and Roth (2006) for an alternative model of Internet auctions.
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placed on the joint distribution of (N, {τi}, {tki }) except that (a) these are independent of
bidders’ valuations, and (b) each t

τi

i is continuously distributed on some interval (t0
i , τ ].

In this model, bidders may “arrive” early or late, bid frequently or infrequently, and
have different notions of what bidding at the “last minute” means.

At each bidding opportunity, a bidder may specify a “cutoff price” of any value above
the current standing bid. Whenever a new cutoff price is submitted, the auctioneer raises
the standing bid (denoted st ) to the second-highest cutoff price, and the bidder with the
highest cutoff price is named the standing high bidder. This matches the actual pro-
cedure on eBay, the most popular Internet auction site, for example. At time τ , the
standing high bidder wins the object at the standing bid (for simplicity we assume no
reserve price and no minimum bid increment). Typically, the econometrician can ob-
serve the history of submitted cutoff prices (except the winner’s), as well as the identity
of the bidder who placed each bid. This information is publicly available for eBay auc-
tions, for example.

There are many equilibria of this game. For example, all bidders can submit cutoff
prices equal to their valuations at their first bidding opportunities; bidders may start with
low cutoff prices and gradually raise them as the auction proceeds; or some/all bidders
may wait until their final bidding opportunities to submit a cutoff price. In some of these
equilibria (like the last example), some potential bidders will not bid, since at their
planned bidding time the standing bid will already exceed their valuations. However,
Song (2003) shows that in all equilibria the highest cutoff price submitted by bidder i

will be no larger than his valuation ui , and it will equal his valuation if the standing bid
at time t

τi

i was below ui .71

Since the price can never rise above u(n−1:n), this ensures that the allocation is effi-
cient and that the transaction price is u(n−1:n). Further, in some cases, the third-highest
cutoff price submitted will be equal to u(n−2:n). To see this, let bi denote the highest cut-
off price submitted by bidder i (i.e., his “bid”) and let b(m−2:m) denote the third-highest
such bid (or −∞ if there is no such bid). Here m represents the number of observed
bidders – those submitting cutoff prices at some point in the auction. Now suppose that
at time t̃ the standing bid st̃ is no higher than b(m−2:m). In practice, whether this is true
can be directly determined from the available bidding histories. In particular, recalling
that two bids above b are required for the standing bid to exceed b, this occurs when-
ever at least one of the two bidders making the highest bids (as of the end of the auction)
makes no bid above b(m−2:m) prior to time t̃ . In that case we have

st̃ � b(m−2:m) � u(m−2:m) � u(n−2:n)

implying that if the bidder with valuation u(n−2:n) has his final bidding opportunity
at time t̃ or earlier, he will submit a cutoff price equal to his valuation. In that case,

71 The first property is easily understood. The second follows from arguments similar to those used in ana-
lyzing a second-price auction.
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b(m−2:m) = u(n−2:n). While the final bidding time of this bidder is not known, by look-
ing at auctions in which st̃ � b(m−2:m) for t̃ sufficiently close to τ , the probability that
b(m−2:m) = u(n−2:n) can be made arbitrarily close to one.72

This is useful because we typically cannot observe the cutoff price submitted by the
auction winner.73 However, by examining only the set of auctions in which

(6.25)st̃ � b(m−2:m), t̃ ∈ (τ − δ, τ ),

for small δ > 0, we can treat the order statistics (U(n−1:n), U(n−2:n)) as “observed.” The
following result, proved in Song (2003), implies that observation of (U(n−1:n), U(n−2:n))

is sufficient to identify FU(·), even though the realization of N at each auction is un-
known.

LEMMA 6.2. Let (Y (N :N), Y (N−1:N), Y (N−2:N)) denote random variables equal to the
three highest of N � 3 independent draws from a univariate distribution FY (·), where
N is stochastic and unobserved. FY (·) is uniquely determined by the joint distribution
of (Y (N−1:N), Y (N−2:N)).

PROOF. Given Y (N−2:N) = y′, the pair (Y (N−1:N), Y (N :N)) can be reinterpreted as the
two order statistics for an i.i.d. sample of size two from the distribution

FY (·|y′) = FY (·) − FY (y′)
1 − FY (y′)

.

Although Y (N :N) is unobserved, Equation (4.1) implies that the observation of Y (N−1:N)

alone is sufficient to identify the parent distribution FY (·|y′) for this sample. Identifica-
tion of FY (·) then follows from the fact that

lim
y′↓inf supp F

(N−2:N)
Y (·)

FY (·|y′) = FY (·).

�

Key to the applicability of this result is an assumption that auctions in which at least
one of the two high bidders make late bids (i.e., where (6.25) holds) are representative
of all auctions. If τi = 1 ∀i, this follows from the assumption that {τi} and {Ui} are
independent. In general, when τi > 1, this requires the additional assumption that the
equilibrium selection does not depend on (u1, . . . , un).74

72 In finite sample, of course, there will be a tradeoff between the bias of including auctions with t̃ far from τ

and the reduction in the variance from doing so. Song (2003) suggests a data-driven approach for choosing
the sample.
73 If we could – for example, if such data were provided directly by eBay – a variation on the result below
would still be applicable to address the problem that the number of potential bidders is unobserved.
74 More precisely, the distribution of U(n−1:n)|U(n−2:n) conditional on at least three bidders’ being observed

and (6.25) holding must be the same as the unconditional distribution of U(n−1:n)|U(n−2:n).
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Song (2003) proposes a semi-nonparametric estimator [Gallant and Nychka (1987)]
applicable to the subset of auctions in which bids are observed from at least three distinct
bidders. The likelihood function is constructed from the conditional density of U(n−1:n)

given U(n−2:n), i.e.,

∂

∂y
Pr
(
U(n−1:n) � y

∣∣ U(n−2:n) = x
) = 2(1 − FU(y))fU (y)

(1 − FU(x))2

in which n does not appear. Monte Carlo experiments suggest that the approach can
perform well in sample sizes easily attainable from Internet auctions.

6.4. Risk aversion

Most of the empirical literature on auctions assumes risk neutrality of bidders. Risk neu-
trality is a natural assumption when the value of the object being sold is small relative
to each bidder’s wealth. Furthermore, in many applications bidders are firms, which
economists usually assume to be profit maximizers. However, many auctions involve
highly valuable goods (or contracts). And even when bidders represent firms, they may
themselves be risk averse.75 Risk aversion can have important implications for a wide
range of policy questions, including the optimal reserve price and a seller’s preference
between the standard auction formats.76

Risk aversion also creates significant challenges for identification. In an ascending
auction with private values, for example, risk aversion has no effect on equilibrium
bidding in the standard model: bidding one’s valuation is still a dominant strategy. While
this implies that identification of FU(·) holds with risk aversion whenever it holds with
risk neutrality, it also implies that there is no way to distinguish risk neutrality from risk
aversion, i.e., no way to identify bidders’ preferences. While the distribution FU(·) will
be sufficient for some questions (for example, the effect of changing the reserve price)
it will be inadequate for many others.

In a first-price auction, the implications of risk aversion for equilibrium bidding are
nontrivial, since bidding involves a gamble. Bidding less aggressively leads to a lower
chance of winning but higher profits conditional on winning. A more risk averse bidder
will be less willing to accept a reduced probability of winning in order to obtain a
higher profit when she wins. This suggests that there is at least hope for identification of
preferences using data from first-price auctions. However, identifying risk preferences
generally requires observation of choices from different menus of lotteries. Variations

75 The incentives provided by the firms they work for may or may not “undo” such risk aversion. Athey and
Levin (2001), Campo et al. (2002), and Perrigne (2003), for example, find evidence consistent with risk averse
bidding behavior by firms at timber auctions.
76 See, e.g., McAfee and McMillan (1987) and references therein. The theory of first-price auctions with risk
averse bidders was initially developed by Maskin and Riley (1984). Campo et al. (2002) extend the analysis
to the case in which there is no binding reserve price and establish additional smoothness properties used for
identification and estimation.
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in bidders’ valuations do change the sets of lotteries available to them, but not in ways
that are observable to the econometrician, since valuations are private information. This
suggests that some observable exogenous variation will be needed to separately identify
preferences and the distribution of valuations.77 Below we will first explore possible
approaches to identification in symmetric models, proceeding to consider models with
asymmetric preferences in Section 6.4.2.

6.4.1. Symmetric preferences

We begin with a more formal illustration of the fundamental challenge for identification
in models of first-price auctions with risk aversion. For simplicity, consider the case of
symmetric independent private values, and assume that all bids are observable. Assume
further that all bidders share the same continuously differentiable utility function ω(·).
Taking equilibrium behavior of her opponents as given, bidder i solves the problem

max
b̃i

ω(ui − b̃i ) Pr
(

max
j∈N−i

Bj � b̃i

)
.

If we define

(6.26)λ(s) ≡ ω(s)/ω′(s),

then first-order condition

ω′(ui − bi)GB(bi) = (n − 1)ω(ui − bi)gB(bi)

can be rewritten usefully as

(6.27)ui = bi + λ−1
(

1

n − 1

GB(bi)

gB(bi)

)
.

Now define the function

ξ(bi, n, λ) = bi + λ−1
(

1

n − 1

GB(bi)

gB(bi)

)
and let λI(·) denote the identity function – i.e., the function λ(·) implied in the case of
risk neutrality. Campo et al. (2002) show that as long as bids are independent (and addi-
tional regularity conditions are satisfied), an observed marginal bid distribution GB(·)
can be rationalized by equilibrium behavior if and only if there exists a utility function
ω(·) such that, for the associated λ(·), ξ(·; n, λ) is increasing (see Section 5.1). Hence,
if bids are independent and ξ(·, n, λI) is increasing, it will be possible to find a distri-
bution FU(·) that rationalizes the observed bids within the symmetric risk neutral IPV

77 However, if the distribution FU(·) is known or identified from other data – for example, in a laboratory
setting or when one observes the same bidders participating in both first-price and ascending auctions – bid
data from first-price auctions might then be used to estimate the utility function.
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model. If ξ(·, n, λI) is decreasing at some point, the observed bids could not have been
generated by equilibrium bidding by risk-neutral bidders, although there may exist an-
other utility function ω(·) with associated λ(·) such that ξ(·; n, λ) is increasing. Thus,
allowing for risk aversion expands the set of observable bid distributions that can be
rationalized by equilibrium bidding [Campo et al. (2002)].

Unfortunately, ξ(·, n, λ) need not violate the monotonicity restriction when the model
is misspecified – in particular when the given function λ(·) does not correspond to that
for the true preferences. When ξ(·, n, λI) is increasing, for example, the observed bids
can be rationalized with risk neutrality, but they can also be rationalized with many
different specifications of risk aversion. To suggest why, observe that if as long as a
bidder is sufficiently risk averse, λ−1( 1

n−1
GB(b)
gB(b)

) does not vary much with b, ensuring
that ξ(b; n, λ) strictly increases in b. Consider the following example of a CRRA utility
function (with zero initial wealth): ω(u) = u1−c, with 0 � c < 1. Then λ(s) =
s/(1 − c), and λ−1(z) = z(1 − c). As c approaches 1, ξ(·; n, λ) approaches the identity
function. Intuitively, sufficiently risk averse bidders are not willing to risk losing the
object by shading their bids, so they do not respond to the shape of the opposing bid
distribution. Thus, even if GB(b)

gB(b)
is sharply decreasing in some places, there will be a

critical level of risk aversion above which ξ(·; n, λ) is everywhere increasing.
Similarly, it is generally impossible to identify the degree of risk aversion from bid

data in a fixed environment. Perhaps surprisingly,78 however, this is true even with a
strong functional form assumption on bidders’ preferences. Again consider the CRRA
example, and suppose that the data can be rationalized by a distribution FU(·) and co-
efficient of relative risk aversion c. Then, for any c̃ ∈ (c, 1), if we let ω̃(s) = s1−c̃, we
can find another distribution FŨ (·) that implies the same distribution of bids, but where
FŨ (·) stochastically dominates FU(·). In particular, to satisfy (6.27), we define Ũi to be
equal in distribution to

ξ(Bi; n, λ̃) = Bi + 1 − c̃

n − 1

GB(Bi)

gB(Bi)

= c̃ − c

1 − c
Bi + 1 − c̃

1 − c

(
Bi + 1 − c

n − 1

GB(Bi)

gB(Bi)

)
= c̃ − c

1 − c
Bi + 1 − c̃

1 − c
ξ(Bi; n, λ)

= c̃ − c

1 − c
Bi + 1 − c̃

1 − c
Ui.

It follows that whenever ξ(bi; n, λ) is increasing in bi , so is ξ(bi; n, λ̃). Hence, the data
can be rationalized with risk aversion c̃. Campo et al. (2002) show that this argument
holds for other parameterized families, as well as general utility functions.

78 Recall that with risk neutrality the symmetric IPV model is overidentified when one observes all bids from
each auction.
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These results are quite negative. Only for bid distributions such that GB(b)
gB(b)

decreases
sufficiently sharply in b in places can risk aversion be distinguished from risk neutral-
ity; it is impossible to distinguish among different parameterized functional forms for
risk aversion; and there exists a large range of risk aversion parameters that can ratio-
nalize the observed bid data, even when attention is restricted to a particular functional
form.

Following the intuition at the beginning of this section, however, this nonidentifi-
cation might be overcome with observable exogenous variation in the sets of gambles
available to bidders. One possibility is a covariate that shifts bidders’ initial wealth or,
equivalently, bidders’ valuations for the good. Suppose, for example, that each bidder
i’s utility from winning the auction is

(6.28)ω
(
h(wi) + ui − bi

)
for some increasing function h(·), where the covariate wi is independent of ui and
is observable to all bidders prior to the auction as well as to the econometrician. Let
w = (w1, . . . , wn). The model then becomes asymmetric, even though bidders’ pref-
erences are given by the same function. Let GMi

(bi |w,N ) be the distribution of the
maximum bid of bidder i’s opponents, conditional on w and N . Let bα,w,N denote the
αth quantile of the distribution GMi

(bi |w,N ), while uα is the αth quantile of FU(·).
Then equilibrium requires that

uα = bα,w,N − h(wi) + λ−1
(

GMi
(bα,w,N |x,N )

gMi
(bα,w,N |x,N )

)
(6.29)∀w ∈ supp W, ∀α ∈ [0, 1].

The data can be rationalized by the model only if we can find a λ(·) such that (6.29)
holds and such that

ξi(bi;N , λ, w) ≡ bi − h(wi) + λ−1
(

GMi
(bi |w,N )

gMi
(bi |w,N )

)
is increasing in bi .

This may not be possible, especially within a restricted class of utility functions. To
see this, again consider the one-parameter CRRA example and suppose that the vector
W takes on only two values, w′ and w′′. Then equilibrium requires that for all α ∈ [0, 1],

uα = bα,w′′,N − h
(
w′′

i

)+ (1 − c)
GMi

(bα,w′′,N |w′′,N )

gMi
(bα,w′′,N |w′′,N )

= bα,w′,N − h
(
w′

i

)+ (1 − c)
GMi

(bα,w′,N |w′,N )

gMi
(bα,w′,N |w′,N )

.

Thus

(6.30)c = 1 − bα,w′′,N − bα,w′,N − (h(w′′
i ) − h(w′

i ))

GMi
(bα,w′,N |w′,N )

gMi
(bα,w′,N |w′,N )

− GMi
(bα,w′′,N |w′′,N )

gMi
(bα,w′′,N |w′′,N )

.
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For a given quantile α, rationalizing the data with the CRRA model requires that there
exist a function h(·) such that this c lies in the interval [0, 1). If no such h(·) exists,
then we can immediately reject the CRRA model. Of course, (6.30) must hold for all
quantiles α. Unless the ratio on the right side of (6.30) is invariant to the quantile α,
the model will be rejected. Thus, a more flexible specification of risk preferences will
typically be required to rationalize the observed bidding data when there are bidder-
specific covariates shifting wealth or valuations.

Of course, there is more than one way to relax the structure imposed by (6.28) and
CRRA. Campo et al. (2002) maintain the CRRA specification above but assume a func-
tional form for the effect of covariates on valuations only at a single quantile of the
distribution of valuations. By leaving the effects at other quantiles unspecified, the prob-
lem that the data may reject the model is avoided. We refer readers to their paper for
details, as well as an estimation approach.79

Another possible approach to identification is to exploit exogenous variation in the
number of bidders [e.g., Bajari and Hortaçsu (2005)]. Such exogenous variation changes
the equilibrium probability that each given bid wins and, therefore, changes the lotteries
available to bidders. Note that unlike the effect of a covariate on the utility gain from
winning, this variation in the probability of winning can be determined directly from the
equilibrium bid distribution for each N . Using the CRRA model as an example, suppose
that there are two groups of bidders, N and N ′, with |N | = n and |N ′| = n+1. Letting
bα,N be the αth quantile of GBi

(bi |N ), equilibrium requires

uα = bα,N + 1 − c

n − 1

GBi
(bα,N |N )

gBi
(bα,N |N )

= bα,N ′ + 1 − c

n

GBi
(bα,N ′ |N ′)

gBi
(bα,N ′ |N ′)

so that

c = 1 − bα,N ′ − bα,N
1

n−1
GBi

(bα,N |N )

gBi
(bα,N |N )

− 1
n

GBi
(bα,N ′ |N ′)

gBi
(bα,N ′ |N ′)

.

Again, for a given α, this c may not lie in [0, 1) and, further, the right-hand side may
not be constant in α as required. Thus, exogenous variation in participation may allow
us to reject the CRRA model (or other parameterized utility functions). This suggests
some hope of identifying preferences. In the completely general case, one would need
to find a utility function such that

bα,N + λ−1
(

1

n − 1

GBi
(bα,N |N )

gBi
(bα,N |N )

)
is invariant to N for each α. Depending on how much variation in bα,N and

GBi
(bα,N |N )

gBi
(bα,N |N )

is induced by variation in N and α, it may be possible to identify the entire utility
function.

79 Bajari and Hortaçsu (2005) propose an alternative estimation approach.
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6.4.2. Asymmetric preferences

As we discussed at the start of Section 6, in many cases the econometrician is faced
with several modeling alternatives when attempting to rationalize a given distribution
of observables. So far, we have assumed that all bidders had the same preferences (either
risk averse or risk neutral), but we have allowed distributions of valuations to vary across
bidders. This allows us to reconcile bid distributions that vary across bidders. However,
a natural alternative is that the distribution of valuations is the same for all bidders, but
preferences differ. As mentioned above, in an ascending auction, behavior depends only
on a bidder’s valuation for the object, so it is impossible to distinguish these two cases.
In a first-price auction with a fixed number of bidders, it is also difficult to distinguish

these cases: in particular, as long as
GMi |Bi

(bi |bi )

gMi |Bi
(bi |bi )

is increasing for each i, it is possible to

rationalize bidding data using a model with homogeneous preferences. More generally,
following the logic outlined above, there will generally exist homogeneous preferences
with sufficient risk aversion such that

bi + λ−1
(

1

n − 1

GMi |Bi
(bi |bi)

gMi |Bi
(bi |bi)

)
is increasing for all i.

However, there may be settings in which institutional information leads the econo-
metrician to believe that a model with heterogeneous preferences is more natural than
a model with heterogeneous value distributions. Campo (2002) has recently explored a
model in which different bidders are permitted to have different preferences even though
they draw their valuations from the same distribution. For α ∈ [0, 1] let ui,α and bi,α

denote the αth quantile of bidder i’s valuation and bid distributions, respectively. Gen-
eralizing our notation from above to allow bidders to have heterogeneous preferences
represented by ωi(·), let λi(s) ≡ ωi(s)/ω

′
i (s). Then, for all i, j , α, we have

ui,α = bi,α + λ−1
i

(
GMi

(bi,α)

gMi
(bi,α)

)
,

uj,α = bj,α + λ−1
j

(
GMj

(bj,α)

gMj
(bj,α)

)
.

Since the distributions of valuations are assumed to be the same across bidders, it fol-
lows that

(6.31)bi,α + λ−1
i

(
GMi

(bi,α)

gMi
(bi,α)

)
= bj,α + λ−1

j

(
GMj

(bj,α)

gMj
(bj,α)

)
.

Campo (2002) shows that a set of observed bid distributions that are independent and
satisfy standard regularity conditions can be rationalized using this model if and only
if (i) there exist functions λ1(·), . . . , λn(·) such that (6.31) holds for every quantile α ∈
[0, 1] where, for each i, λi(0) = 0, λ′

i (·) � 1, and (ii) ξi(b) = b+λ−1
i (

GMi
(b)

gMi
(b)

) is strictly

increasing. There is no guarantee that these conditions can be satisfied, because (6.31)



3924 S. Athey and P.A. Haile

must hold for all α ∈ [0, 1].80 Indeed, Campo (2002) provides an example where the
conditions cannot be satisfied, and establishes that the set of bid distributions that can be
rationalized using her model is a strict subset of those that can be rationalized using the
model with homogeneous preferences and heterogeneous distributions of valuations.

Rather than analyze conditions under which risk preferences are nonparametrically
identified, Campo (2002) takes a semi-parametric approach, with preferences given by
ω(·; θi) (implying an associated λ(·; θi)), where θi is a finite dimensional parameter. To
analyze identification, observe that for all i, j , α, α′, we have

ui,α = bi,α + λ−1
(

GMi
(bi,α)

gMi
(bi,α)

; θi

)
,

uj,α = bj,α + λ−1
(

GMj
(bj,α)

gMj
(bj,α)

; θj

)
,

ui,α′ = bi,α′ + λ−1
(

GMi
(bi,α′)

gMi
(bi,α′)

; θi

)
,

uj,α′ = bj,α′ + λ−1
(

GMj
(bj,α′)

gMj
(bj,α′)

; θj

)
.

Suppose, for example, that each θi is a scalar. Since by assumption ui,α = uj,α and
ui,α′ = uj,α′ , for a given pair of quantiles α and α′, this is a system of four equations in
four unknowns (ui,α, ui,α′ , θi, θj ), so that θi and θj are identified using data from just
two quantiles. Once θi and θj are known, FU(·) is uniquely determined by the first-order
conditions and the observed distribution GMi

(·). Similarly, once FU(·) is identified, the
first-order conditions and GMk

(·) determine θk for k �= i, j . Campo (2002) considers
the case of CRRA preferences discussed above and gives the nonsingularity conditions
for the system of equations above (restrictions on the pair (GMi

(·),GMj
(·))) that ensure

identification in that case. It is crucial that there are some asymmetries in the bid distri-
butions. She proposes a parametric estimation approach. We refer readers to her paper
for details.

Since it is possible to identify θi and θj using data from just two quantiles of the
bidding distribution when θi is a scalar, there is no guarantee that, given observed bid
distributions, a particular functional form can rationalize the data at every quantile. In-
deed, the example considered by Campo (2002) of CRRA preferences ωi(u) = u1−ci

requires the existence of constants ci , cj on [0, 1) such that

(6.32)bi,α + (1 − ci)

(
GMi

(bi,α)

gMi
(bi,α)

)
= bj,α + (1 − cj )

(
GMj

(bj,α)

gMj
(bj,α)

)
.

80 Campo (2002) requires the condition λ′
i
(·) � 1 in order to guarantee that the induced preferences sat-

isfy risk aversion; in fact, existence of an equilibrium in increasing strategies requires a slightly weaker
condition, namely that ln(ωi (·)) is concave in the relevant region, which is guaranteed if λ′

i
(·) � 0. To

see why log-concavity of ωi(·) is important, note that in an IPV auction, a bidder’s objective function is
ωi(bi − ui)GMi

(bi ). Maximizing this is equivalent to maximizing its logarithm; but, if ln(ωi(·)) is strictly

convex, then ∂2

∂bi ∂ui
ωi (bi − ui) < 0, so that bidders with higher valuations choose lower bids.
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Suppose, for example, that there are just two bidders and that B1 is uniformly distributed
on [0, 1]. Then, (6.32) becomes, for all α ∈ [0, 1],

(6.33)α + (1 − c1)

(
GB2(α)

gB2(α)

)
= (2 − c2)G

−1
B2

(α).

Clearly, this places strong restrictions on GB2(·). For example, this would rule out a
distribution of the form GB2(b2) = b

γ

2 with supp[B2] = [0, 1] (unless γ = 1, which
would violate the assumption of asymmetric bid distributions).

Finally, we note that even when the data can be rationalized by both the homogeneous
preference-heterogeneous valuations and the heterogeneous preference-homogeneous
valuations models, it may be possible to extend the testing approaches described above
that exploit exogenous variation in participation or other exclusion restrictions. When
each model is identified for fixed N , exogenous variation in N leads to over-identifying
restrictions. In general, even if two different models rationalize the same data for
fixed N , the out-of-sample predictions of the models for N ′ �= N will differ between
the two models. When data from auctions with both N and N ′ are observed, the out-
of-sample predictions might be tested.

7. Common values auctions

While we have discussed a wide range of private values models in the preceding sec-
tions, in many applications a common values model may seem more natural. Recall that
we use the term “common values” to refer to a broad class of models in which infor-
mation about each bidder’s valuation is dispersed among bidders (see Section 2).We
emphasize, however, that the presence of factors affecting all bidders’ valuations need
not imply common values. For example, if

Xi = Ui = V0 + εi

this is a private values specification despite the “common” factor V0. Indeed, in this
example each bidder knows his own valuation with certainty.81 The presence of V0
does introduce correlation of bidders’ valuations and of bidders’ information, and even
causes one bidder’s signal to be correlated with another’s valuation; however, it does
not introduce common values because no opponent has information that is relevant to
a bidder’s assessment of his own valuation, given that he has observed his own sig-
nal. The critical distinction concerns the nature of bidders’ private information. When
each bidder’s private information concerns only idiosyncratic determinants of his own
valuation, this is a private values setting.

81 This is not essential for a private values environment. For example, if Ui = Xi + εi with εi independent
of Xj for all j �= i, this remains a private values setting.
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Nonetheless, many auction environments seem likely to fall in the common values
category. Often the good for sale will not be consumed immediately (or the procure-
ment contract being bid for will not be fulfilled immediately), and bidders may have
different information about future states of the world – e.g., market conditions or the
supply and demand of substitute objects. In some applications bidders will naturally
have access to different information. A bidder might conduct her own seismic survey of
an oil tract or might learn about market conditions from her own customers and suppli-
ers. Furthermore, even if bidders have access to the same market data, they may have
different algorithms or rules-of-thumb for using this information to form beliefs about
the object’s value. The output of one bidder’s algorithm (i.e., its signal) might then be
useful to another bidder in assessing her own valuation even after seeing the output
of her own algorithm. In such cases it may be appropriate to model bidders as having
different private information of a common values nature.

Aside from the potential prevalence of common values in practice, common values
models are also of particular interest because they provide an example of a market en-
vironment in which adverse selection may play an important role. In a private values
auction, bidders need only to follow a simple dominant (“bid your value”) strategy in
an ascending auction or to respond optimally to a distribution of opposing bids in a
first-price auction. In a common values auction, bidders must understand the strategies
that underlie the competing bids in order to make correct inferences about their infor-
mational content; in particular, bidders must account for the information that would be
implied by their winning the auction in order to avoid the winner’s curse. An important
contribution of the empirical industrial organization literature has been to confirm some
of the fairly subtle equilibrium predictions of common values auction models.82 How-
ever, a number of positive and normative questions depend not just on whether bidder
behavior is broadly consistent with theory, but on the exact structure of demand and
information.

For example, typically the seller or auctioneer has some discretion over the auction
rules. As first demonstrated by Milgrom and Weber (1982) for symmetric common
values environments, the information revealed publicly by losing bidders’ exits in an
ascending auction reduces both the severity of the winner’s curse and the informational
rents obtained by the winner, leading to higher expected revenues than with a first-price
sealed-bid auction. With asymmetries, first-price auctions may allocate the good ineffi-
ciently; however, they tend to raise more revenue in private values settings, may be less
susceptible to collusion (detection and response to defections are more difficult than in
an ascending auction), and may be less costly to administer. The choice of auction for-
mat also affects bidder entry when bidders are asymmetric [Klemperer (2002), Athey,
Levin and Seira (2004)]. In trading off these factors, a seller must understand the un-
derlying structure of bidder demand and information that determines the significance

82 Examples include Hendricks, Porter and Boudreau (1987), Hendricks and Porter (1988), Hendricks, Porter
and Wilson (1994), Athey and Levin (2001), and Haile (2001).
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of each factor. Even within an auction format, the joint distribution of signals and val-
uations is important for positive questions (e.g., the division of surplus) and for design
issues (e.g., the optimal reserve price, the optimal entry fee, and whether restrictions on
participation would be profitable).83

7.1. Limits of identification with a fixed number of bidders

In a common values environment, identifying the joint distribution FX,U(·) requires
substantial restrictions on the underlying structure, and/or data beyond bids from a fixed
environment. To suggest why, observe that in common values auctions the primitives of
the model involve two different random variables for each bidder i: Xi and Ui . Hence,
the joint distribution FX,U(·) governs 2n random variables, yet an auction will reveal at
most n bids.84 Even in the special case of pure common values, where Ui = U0 for all i,
the primitive of interest, FX,U0(·) has dimension n+1. So some additional structure will
be necessary to obtain identification.

We begin by considering first-price auctions. One convenient normalization of signals
(recall that this is without loss of generality) is85

(7.1)E
[
Ui

∣∣∣ Xi = max
j �=i

Xj = x,N
]

= x.

With this normalization, (2.3) and the first-order condition (2.4) imply

(7.2)vi(xi, xi;N ) = xi = bi + GMi |Bi
(bi |bi;N )

gMi |Bi
(bi |bi;N )

.

In Section 3.2 we discussed the identification and estimation of the distribution of the
random variable

Bi + GMi |Bi
(Bi |Bi;N )

gMi |Bi
(Bi |Bi;N )

.

All that changes when we consider common values settings is the interpretation of this
distribution: using (7.2) we now interpret it as the distribution of the random variable
vi(Xi,Xi;N ).

This distribution alone will be sufficient for some questions of interest (see, e.g., Sec-
tion 8), but certainly not all. In particular, it does not provide identification of the joint
distribution FU,X(·). Consider the case in which one observes all bids from auctions with
n symmetric bidders. Under the private values assumption, v(Xi,Xi; n) = Xi = Ui ,

83 In a common values auction, restricting participation reduces the severity of the winner’s curse, leading to
more aggressive bidding. This can result in higher expected revenues despite the presence of fewer bidders,
depending on the underlying distributions [e.g., Smiley (1979), Matthews (1984), Hong and Shum (2002)].
84 Note that a normalization of signals does not change this argument, since the normalization cannot address
the correlation between signals and valuations.
85 Note, however, that this normalization cannot be maintained if N varies.
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and the joint distribution FU(·) is just identified (see Section 3). Under the common
values assumption the joint distribution of (v(X1, X1; n), . . . , v(Xn,Xn; n)) is FX(·)
under the normalization (7.1). Since this distribution is just identified when n is fixed,
it follows that it is impossible to distinguish common values from private values based
on bidding data from first-price auctions with no reserve price and a fixed number of
bidders [Laffont and Vuong (1996), Guerre, Perrigne and Vuong (2000)]. Thus, it is
important to emphasize that any conclusions from data from a fixed set of bidders (and
with no reserve price) rely on a maintained assumption of common values or private
values. For example, it might be possible to justify a wide range of reserve prices as
optimal for the seller under different assumptions about FU,X(·) that are consistent with
the identified marginal distribution FX(·).

Ascending auctions are even more difficult in the common values setting. First, just
as in a first-price auction, it would be impossible to distinguish common values from
private values using a data set with a fixed number of bidders, even if all bids (including
the planned exit price of the winner) were observed. Any observed distribution of bids
could simply be equal to the distribution of private values for the bidders [Laffont and
Vuong (1996)]. Second, exactly as in the case of a private values ascending auction,
the unobservability of the winner’s planned exit price can challenge even the identi-
fication of FX(·). Further, while a normalization like (7.1) can be applied to signals
in the initial phase of an ascending auction (the period before any bidders drop out),
no single normalization can induce the simple strategy βi(xi, n) = xi throughout the
auction, since bidders modify their strategies each time an opponent exits. The exact
forms of these modifications depend on the joint distribution of signals and valuations.
While we might hope that this dependence would enable observed bids to provide in-
formation about this joint distribution, it also creates serious challenges. Finally, further
complications arise from the fact that, when n > 2, there is a multiplicity of symmetric
equilibria in weakly undominated strategies in common values auctions [Bikhchandani,
Haile and Riley (2002)], implying that there is no unique interpretation of bids below
the transaction price.

The following result from Athey and Haile (2002) establishes that the common values
model is generally not identified in ascending auctions. Here we ignore the multiplicity
of equilibria and assume a special case of a pure common values model in which signals
are i.i.d. Even this very restrictive common values model is not identified.

THEOREM 7.1. In an ascending auction, assume the pure common values model, i.i.d.
signals Xi , and select the equilibrium characterized by Milgrom and Weber (1982).
With n fixed, the model is not identified (even up to a normalization of signals) from the
observable bids.

PROOF. Take n = 3 and consider two models. In both, signals are uniform on [0, 1]. In
the first, the value of the good is

u0 = u(x1, x2, x3) =
∑

i xi

3
,
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while in the second model

u0 = û(x1, x2, x3) = x(1:3)

3
+ x(2:3)

6
+ x(3:3)

2
.

Because in both models E[U0 | X1 = X2 = X3 = x] = x, equilibrium bidding in
the initial phase of the auction is identical in the two models in the Milgrom–Weber
equilibrium (see Section 2.2.2); i.e., G(1:3)

B (b) = F
(1:3)
X (b) = 1− (1−b)3 in both cases.

Similarly, since b(2:3) = E[U0 | X(1:3) = b(1:3), X(3:3) = X(2:3) = x(2:3)], the fact
that û(x, y, y) = u(x, y, y) for all x and y implies that G

(2:3)
B (·|B(1:3)) is identical un-

der the two models. Since G
(1:3)
B (·) and G

(2:3)
B (·|B(1:3)) completely determine the joint

distribution of the observable bids, the two models are observationally equivalent. �

This is a strong negative result for common values ascending auctions. Even ignoring
the equilibrium selection problem and possible doubts about the interpretation of losing
bids in an ascending auction, this most restrictive of common values models is not
identified. This nonidentification is important for policy. Continuing the example from
the proof of Theorem 7.1, consider the simple problem of setting an optimal reserve
price for a second-price sealed-bid auction. Recalling the participation threshold (2.1),
the optimal reserve price solves

max
r

3(1 − FX)
(
x∗(r, 3)

)
FX

(
x∗(r, 3)

)2
r

+
∫ 1

x∗(r,3)

v(y, y; 3)6fX(y)
(
1 − FX(y)

)
FX(y) dy.

By construction, v(x, x; 3) is the same for all x in the two models. However, for any r ,
the participation threshold x∗(r, 3) is lower in the second model, due to the reduced
dependence of each Ui on X−i when Xi is maximal. Hence, the objective function
above differs for the two models and (as can be confirmed directly) implies different
optimal reserve prices.

We will see in Section 8 that variation in the number of bidders can be useful for
overcoming at least some of these limitations. In particular, this variation can be suf-
ficient to enable discrimination between private and common values models. Whether
this kind of variation can go farther to enable nonparametric identification of a com-
mon values model is a question not yet explored. Below we will consider identification
through additional structure and through additional data.86

7.2. Pure common values

Given the negative identification results obtained thus far, it is natural to consider
whether additional assumptions can alleviate the problem. One possible approach is
to restrict attention to the pure common values model, where Ui = U0 ∀i.

86 Parametric models of common values auctions have been estimated by, e.g., Smiley (1979), Paarsch
(1992a), Hong and Shum (2002, 2003), and Bajari and Hortaçsu (2003a).
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In the pure common values model, the joint distribution FX,U(·) governs n+1 random
variables (U0, X1, . . . , Xn); however, at most n bids are revealed in a first-price auction,
and only n − 1 “bids” are revealed in the standard model of an ascending auction. This
suggests that the pure common values assumption alone will not be sufficient to obtain
identification, and that either additional structure or additional data will be needed. Be-
low, we explore examples of both: we first consider additional restrictions on FX,U0(·),
and then consider cases in which the realization of U0 is observable ex post.

7.2.1. Identification with additional structure: The mineral rights model

A special case of the pure common values model given considerable attention in the
literature is the symmetric “mineral rights model” defined in Section 2.1. Here, bidders’
signals are i.i.d. conditional on the realization of the common value U0. As the name
suggests, this model is motivated by auctions in which firms bid for the right to extract
oil from an offshore tract. All firms may place the same value on the oil, since it is sold
in a common market, but none knows how much oil (if any) there is. Each receives a
seismologist’s report, providing a (conditionally independent) noisy signal of U0. This
structure may be natural in other applications as well.

Even with this structure, identification from bid data is not straightforward since this
requires somehow separating the variation in bids due to the randomness of U0 from
that due to the randomness of Xi conditional on u0. One possible approach is to as-
sume a separable functional form like Xi = U0 + Ai , where the “errors” Ai mutually
independent conditional on U0. This can be useful, although the additive structure need
not survive the normalization (7.1) in general. Put differently, while it will be useful for
the left-hand side of the first-order condition (7.2) to have a separable form, one must
be careful about what underlying structures on (Xi, U0) can deliver this separability.
This is a question that has been explored by Li, Perrigne and Vuong (2000). To discuss
their approach, we first define two (nested) special cases of the symmetric mineral rights
model.

Linear Mineral Rights (LMR): Ui = U0. In addition, for each n there exist two
known constants (C,D) ∈ R × R+ and random variables (A1, . . . , An) with joint
distribution FA(·) such that, with the normalization E[U0 | Xi = maxj �=i Xj =
x, n] = x, either (i) Xi = exp(C) · (U0 · Ai)

D ∀i, with (Ai, U0, Xi) nonnegative; or
(ii) Xi = C + D(U0 + Ai) ∀i. Further, conditional on U0, the components of A are
mutually independent and identically distributed.

LMR with Independent Components (LMR-I): In the LMR model, (U0, A) are mu-
tually independent, with all Ai identically distributed.

Li, Perrigne and Vuong (2000) focus on the LMR-I model and provide examples
satisfying its assumptions. Under the LMR-I model, taking case (ii), (7.2) simplifies to

(7.3)C + D(u0 + ai) = bi + GMi |Bi
(bi |bi; n)

gMi |Bi
(bi |bi; n)

.
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Since C and D are known and the right-hand side of (7.3) is observable, it follows
that the joint distribution of (U0 + A1, . . . , U0 + An) is identified from a data set
containing all bids in first-price auctions. Li, Perrigne and Vuong (2000) note that
standard deconvolution results, such as those used in the literature on measurement
error (see Section 6.1.2), can then be used to separately identify the distributions FU0(·)
and FA(·).87

THEOREM 7.2. Assume that for all i, the characteristic functions ψU0(·) and ψAi
(·) of

the random variables U0 and Ai are nonvanishing. If all bids are observed in a first-
price auction, then the LMR-I model is identified.

Even with these kinds of strong assumptions, identification is problematic when some
bids are unobserved. Bids reveal realizations of order statistics of the form U0 + A(i:n).
Since order statistics are correlated even when the underlying random variables are
independent, the identification approach based on the measurement error literature fol-
lowed by Li, Perrigne and Vuong (2000) fails, unless all order statistics are observed
(impossible in an ascending auction).

7.2.2. Identification and testing when ex post values are observable

In some applications, an ex post measure of the realized common value u0 will be
observable to the econometrician. One notable example is an US outer-continental-shelf
auction of drilling rights, where the quantities of oil and other minerals extracted from
a tract are metered [e.g., Hendricks and Porter (1988), Hendricks, Pinkse and Porter
(2003)]. Another example is a “scaled sale” timber auction, common in the US and
Canada, where the quantity of each species of timber extracted from a tract is recorded
by an independent agent at the time of harvest [e.g., Athey and Levin (2001)]. In other
cases, resale prices can provide measures of realized values [e.g., McAfee, Takacs and
Vincent (1999)]. Such additional data can be helpful in the mineral rights model.88 In
practice, the measures of u0 available may be only imperfectly correlated with the true
value to the bidders; we discuss this possibility below.

7.2.2.1. First-price auctions When we impose the structure of the symmetric pure
common values model, the first-order condition (7.2) and the normalization (7.1) give

(7.4)E
[
U0

∣∣∣ Xi = max
j �=i

Xj = xi, n
]

= xi = bi + GMi |Bi
(bi |bi; n)

gMi |Bi
(bi |bi; n)

.

87 Février (2004) has recently proposed an interesting alternative restriction of the mineral rights model
that enables identification. He considers the case in which, conditional on u0, each Xi has support [u, u0]
and density fx|u0 (·) = h(·)

H(u0)
for some function H(·) with derivative h(·) satisfying H(u) = 0. With this

structure, conditional on having the highest signal, there is no information in the signals of one’s opponents.
He shows that this structure enables identification up to scale.
88 Smiley (1979) was the first to suggest the value of such information. In his application he did not have
access to an ex post measure and instead explored use of a noisy ex ante measure.
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When all bids and the realization of U0 are observed, (7.4) enables identification of the
joint distribution FX,U0(·).

With knowledge of FX,U0(·), it is possible to perform counterfactual experiments,
quantify the extent to which information is dispersed among the bidders, and character-
ize the magnitude of the “winner’s curse.” For example, it is interesting to examine the
differences

(7.5)E[U0 | Xi = xi, n] − E
[
U0

∣∣∣ Xi = max
j �=i

Xj = xi, n
]

and

(7.6)E[U0 | Xi = xi, n] − E
[
U0

∣∣∣ Xi = xi, max
j �=i

Xj � xi, n
]

since these provide a measure bidders’ equilibrium responses to the winner’s curse un-
der the pure common values assumption.89

Hendricks, Pinkse and Porter (2003) were the first to suggest this and also proposed
a test of equilibrium bidding in this model. Let

(7.7)ζ(bi, bj , n) = E
[
U0

∣∣∣ Bi = bi, max
j �=i

Bj = bj , n
]
.

When the equilibrium bid function β(·; n) is strictly increasing, β(xi; n) = bi implies

E
[
U0

∣∣∣ Xi = max
j �=i

Xj = xi, n
]

= E
[
U0

∣∣∣ β(Xi; n) = max
j �=i

β(Xj ; n) = β(xi; n), n
]

= E
[
U0

∣∣∣ Bi = max
j �=i

Bj = bi, n
]

= ζ(bi, bi, n).

Thus, the first-order condition (7.4) can be written

(7.8)ζ(bi, bi, n) = bi + GM|B(bi |bi; n)

gM|B(bi |bi; n)
≡ ξ(bi, n).

89 Hendricks, Pinkse and Porter (2003) point out that a positive value for the difference in (7.6) cannot be
used as evidence against a private values assumption. The problem is that the interpretation of the empirical
measure of u0 as the realized value of the good relies on the pure common values assumption. For example,
consider a symmetric independent private values environment and suppose the measured “ex post value” u0
is actually just maxj uj , i.e., the value to the winner. Then the difference (7.6) is

E
[

max
j

Uj

∣∣∣ Ui = ui , n
]

− E
[

max
j

Uj

∣∣∣ Ui = ui , max
k �=i

Uk � ui , n
]

which is positive. We will discuss approaches that can be used to discriminate private from common values
models in Section 8.



Ch. 60: Nonparametric Approaches to Auctions 3933

Note that because the joint distribution of (U0, B,N) is observable, ζ(bi, bi, n) is iden-
tified directly through Equation (7.7). No behavioral assumption is required for this
identification: ζ(bi, bi, n) is simply a conditional expectation of the observable U0 given
that the observable bids satisfy Bi = maxj �=i Bj = bi . Since ξ(bi, n) is also identified
from the bidding data under the assumption of equilibrium bidding, the overidentifying
restriction ζ(bi, bi, n) = ξ(bi, n) can be tested.

To examine the differences (7.5) and (7.6) empirically, Hendricks, Pinkse and Porter
(2003) first observe that since bi = βi(xi; n) and bidding is strictly monotonic, these
differences are equal to the differences

E[U0 | Bi = bi, n] − E
[
U0

∣∣∣ Bi = max
j �=i

Bj = bi, n
]

and

E[U0 | Bi = bi, n] − E
[
U0

∣∣∣ Bi = bi, max
j �=i

Bj � bi, n
]
.

They suggest a univariate local linear estimator ŵ(b; n) of E[U0 | Bi = b, n], where
ŵ(b; n) is the solution for w in the problem

min
w,γ

Tn∑
t=1

1

n

n∑
i=1

(
u0 − w − γ (b − bit )

)2 1{nt = n}K
(

b − bit

h

)
with K(·) denoting a kernel and h a bandwidth [see, e.g., Loader (1999)]. A similar
estimator for E[U0 | Bi = maxj �=i Bj � bi, n] is obtained by using only the winning
bid bi from each auction t , rather than all bids.

To examine the overidentifying restriction (7.8), the right-hand side can be estimated
using the kernel methods described in Section 3.2.1. A bivariate local linear estimator
v̂(b) of the conditional expectation ζ(bi, bi, n) = E[U0 | Bi = maxj �=i Bj = bi, n] is
obtained from the solution to

min
v,γ1,γ2

Tn∑
t=1

1

n

n∑
i=1

(
u0 − v − γ1(b − bit ) − γ2(b − mit )

)2 1{nt = n}

× K

(
b − bit

h1

)
K

(
b − mit

h2

)
.

Here mit is the maximum realized bid among i’s opponents at auction t . Hendricks,
Pinkse and Porter (2003) suggest the use of the bootstrap to construct confidence inter-
vals for testing.

Because of their focus on testing, Hendricks, Pinkse and Porter (2003) did not explore
estimation of the joint distribution FX,U0(·). However, with the normalization (7.1), an
estimate of

E
[
U0

∣∣∣ Bi = bi, max
j �=i

Bj = bi, n
]
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(such as that obtained using the first-order condition and kernel methods described in
Section 3.2.1) provides an estimate of each realized xi . Combining this with the ob-
servable realizations of U0 presumably would enable consistent estimation of the joint
distribution FX,U0(·) and/or the associated density fX,U0(·).

7.2.2.2. Ascending auctions Since the common values model is over-identified in a
first-price auction when ex post values are observed, one might hope for identification
in an ascending auction with similar data. However, the partial observability of bids in
ascending auctions again presents serious challenges. Consider the case of two sym-
metric bidders. Recall that in an ascending auction, βi(Xi; n) is bidder i’s planned exit
price when his opponent has not yet exited the auction. With n = 2 there is no problem
of multiple equilibria [Bikhchandani, Haile and Riley (2002)], and

bi = βi(xi; 2) = E[U0 | X1 = X2 = xi, n = 2]
= E

[
U0
∣∣ β1(X1; 2) = β2(X2; 2) = βi(xi; 2), n = 2

]
≡ ζ(bi, bi, 2).

However, it is not possible to estimate

ζ(b1, b2, 2) = E[U0 | B1 = b1, B2 = b2]
directly from the data (as is possible in a first-price auction) since in any given auction
we observe the exit price of only one bidder. We never observe B1 and B2 in the same
auction. We can observe the joint distribution of (U0, B

(1:2)). Under (7.1), this is also
the distribution of (U0, X

(1:2)), but without additional structure this information is not
sufficient to recover FU0,X(·).

If we impose the additional structure of the mineral rights model, however, then con-
ditional on U0, X(1:2) is an order statistic from a sample of independent draws from
FX|U0(·). Exploiting Equation (4.1), identification is then obtained in the symmetric
two bidder case when the transaction price and ex post value are observed. Extending
this approach to the case with n > 2 symmetric bidders is possible as well, using the or-
der statistic B(1:n), although the suitability of this extension may be doubted in practice.
To see one possible approach, note that with the normalization

xi = E
[
U0 | Xj = xi ∀j ∈ {1, . . . , n}]

we have B(1:n) = X(1:n). Exploiting (4.1) again, we could recover the distribution
of Xi |U0, which then delivers identification of FU0,X(·). This relies on the interpre-
tation of bids implied by the button auction model, which may be especially dubious
when applied to the interpretation of the lowest bid. To apply a similar approach using
the transaction price B(n−1:n), it is still necessary to make use of the losing bids be-
cause the bidders themselves condition on this information. However, it may be easier
to defend an approach which incorporates the information from all bids than one based
entirely on the lowest bid. Here, we sketch one possibility.
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Fix a set of realized values for the n − 2 lowest bids at (b(1:n), . . . , b(n−2:n)). Then,
the (observable) distribution of

B(n−1:n)
∣∣ {U0 = u0, B

(1:n) = b(1:n), . . . , B(n−2:n) = b(n−2:n)
}

is equal to the distribution of

(7.9)B(n−1:n)
∣∣ {U0 = u0, B(n−1:n) � b(n−2:n)

}
since bids (which are strictly increasing functions of the signals) are independent con-
ditional on U0 in the mineral rights model. Consider the following normalization of
signals:

x = E
[
U0
∣∣ Xn−1 = Xn = x, B(1:n) = · · · = B(n−2:n) = inf

[
supp[Bi]

]]
.

Imposing this normalization, when b(n−2:n) = inf[supp[Bi]], the random variable
in (7.9) is equal in distribution to

X(n−1:n)|U0 = u0.

Equation (4.1) then uniquely determines the distribution of Xi |U0 and thus FU0,X(·),
since U0 is directly observable.

This result is not as strong as one might hope for. It relies on an interpretation of
the losing bids in an ascending auction (although it is not essential that the bidders use
Milgrom and Weber’s (1982) equilibrium) and on an assumption that the econometri-
cian’s inferences about exit prices match those that the bidders make during the auction.
Furthermore, the identification argument relies on the tails of the distribution of bids.
In particular, building a nonparametric estimator based on this argument would seem
to require an estimate of the distribution of B(n−1:n) conditional on both the ex post
value u0 and the event that n − 2 losing bids are increasingly close to the bottom of the
support of the bid distribution. Whether this kind of approach can work well in sample
sizes typically available has not been investigated.

7.2.2.3. Biased or noisy observations of ex post values So far in this section we have
assumed that the econometrician observes the true realization of U0. In the case of an oil
auction, for example, this requires that the oil extracted is measured without error and
that the econometrician has accurate measures of all costs (including opportunity costs)
incurred in extracting the oil. These may be strong assumptions in some applications, so
it is useful to consider the degree to which they can be relaxed. With the exception of Yin
(2004), which does not fully address identification, the literature has not analyzed the
issue of imperfect measures of ex post values.90 Here, we present some initial results.

90 Yin (2004) obtained descriptions of items auctioned on eBay and recruited volunteers to make subjective
assessments of the value of the objects. The mean assessment was then treated as a potentially biased proxy
for U0. Smiley (1979, Appendix), explored the use of a noisy ex ante measure of U0 within a parametric
model.
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Consider a first-price auction in which all bids are observable and suppose the avail-
able measure of U0 is

(7.10)Ũ0 = γ0 + γ1U0 + ε,

where γ0 and γ1 are fixed parameters, unknown to the econometrician, and ε is an
unobserved random variable satisfying E[ε | X = x] = 0 for all x. Recall that, given
the normalization (7.1), FX(·) is identified from the bidding data alone in this setting.
Since we observe Ũ0 in every auction, the distribution FX,Ũ0

(·) is identified as well.
With this, we can compute

η(x) ≡ E
[
Ũ0

∣∣∣ Xi = max
j �=i

Xj = x
]
.

Given (7.10), the normalization (7.1), and E[ε | X = x] = 0, we also have

(7.11)η(x) = γ0 + γ1E
[
U0

∣∣∣ Xi = max
j �=i

Xj = x
]

= γ0 + γ1x.

Since η(·) is identified, the joint distribution of (η(X),X) is identified, as is the bias in
the measure of the common value, determined by the parameters γ0 and γ1.

Identification of γ0, γ1, and FX,Ũ0
(·) implies identification of quantities such as

E[U0 | Xi = x] = E[Ũ0 − γ0 | Xi = x]/γ1,

and

E
[
U0

∣∣∣ Xi = x, max
j �=i

Xj � x
]

= E
[
Ũ0 − γ0

∣∣∣ Xi = x, max
j �=i

Xj � x
]
/γ1,

so that the differences (7.5) and (7.6) discussed above are identified, for example.
Unfortunately, unless ε is degenerate, the variance of U0 is not identified, nor is the
joint distribution FX,U0(·). In the setting studied by Yin (2004), where Ũ0 is the mean
estimate from a survey, the assumption that ε is degenerate may be a reasonable approx-
imation when the number of survey respondents per auction is large.

In ascending auctions, the analysis is more complex. Let us focus on the case of a pure
CV model with two bidders. Let us maintain the assumption E[ε | X = x] = 0 for all x,
and in addition, assume that (X1, . . . , Xn) are independent conditional on Ũ0. The joint
distribution of (B(1:2), Ũ0) is then identified and, under (7.1), this is equal to the joint
distribution of (X(1:2), Ũ0). Given that X1 is independent of X2 conditional on Ũ0, the
parent distribution FX(·) is identified using (4.1), so that the joint distribution of (X, Ũ0)

is identified. This completely determines η(·), which in turn yields identification of γ0

and γ1 through (7.11).
Of course, the assumption that X is independent conditional on Ũ0 may be strong,

especially if Ũ0 is a noisy measure of U0. In practice this may be most defensible when
ε is degenerate, so that Ũ0 is a deterministic function of U0.
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8. Private versus common values: Testing

Negative identification results for common values models provide one important mo-
tivation for formal tests that could distinguish between common and private values
models. Distinguishing private values from common values was, in fact, the goal be-
hind Paarsch’s (1992a) pioneering work on structural empirical approaches to auctions.
The distinction between the two paradigms is central to our understanding of behavior
in auction markets and has important implications for market design. For example, rev-
enue superiority of an ascending auction relative to a second-price sealed-bid auction
in symmetric settings [Milgrom and Weber (1982)] holds only in a common values en-
vironment. Furthermore, a common values environment is one with adverse selection.
There is relatively little evidence on the empirical significance adverse selection, and an
examination of the prevalence of common values in auctions might be suggestive of the
nature of private information in other market environments as well.

It might be surprising that questions about the qualitative nature of private informa-
tion could be answered at all empirically. In fact, early approaches to testing based on
reduced-form relationships between bids and the number of bidders were eventually
discovered to be invalid. With the structural approach proposed by Paarsch (1992a), it
was possible to test particular common values or private values models, but only with
maintained parametric distributional assumptions. More recently, Laffont and Vuong
(1996) have pointed out that private values and common values models are empirically
indistinguishable, suggesting that testing was impossible (see Section 7.1).91 However,
they did not consider the possibilities created by variation in the number of bidders or a
binding reserve price. Below we will show how either of these can offer approaches for
discriminating between private and common values.

In the case of variation in the number of bidders, the idea is simple. The winner’s
curse is present only in common values models and becomes more severe as more com-
petitors are added. Having a signal of the object’s value that is the highest among twenty
implies a more severely biased signal than does having the highest signal among two,
for example. This greater severity manifests itself as a reduction in a bidder’s expec-
tation of his valuation conditional on winning a large auction. In particular, while the
unconditional expectation E[Ui | Xi = xi] is invariant to the set of opponents i faces,
his equilibrium bid reflects a downward adjustment

E[Ui | Xi = xi] − vi(xi, xi;N )

that accounts for the information implied by his bid being pivotal. In a symmetric envi-
ronment, this downward adjustment is always larger when i faces more competition.

To make this precise, suppose that the number of bidder is exogenous and let N+j

denote the set of bidders comprised of all members of N plus bidder j .92

91 This can be thought of as a nonidentification result for the affiliated values model, which nests the private
and common values models.
92 Note that because the normalization (7.1) depends on the set of bidders, we could not maintain this partic-
ular normalization for all N . Other normalizations, e.g., xi = FXi

(xi ), are of course possible.
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LEMMA 8.1. Suppose the number of bidders varies exogenously. With private values,
vi(x, x;N ) = vi(x, x;N+j ) for all x, N , i, j . With common values and symmetric
bidders, vi(x, x;N ) > vi(x, x;N+j ) for all x, N , i, j .

PROOF. The first claim is immediate from the fact that vi(x, x;N ) = x with private
values. With common values and symmetric bidders,

vi(x, x;N ) = E
[
Ui

∣∣∣ Xi = x, max
k∈N−i

Bk = β(x;N )
]
.

Let m = arg maxk∈N−i
Bk and suppose j /∈ N . Then

vi(x, x;N )

= E
[
Ui

∣∣ Xi = x, Bm = βi(x;N ), Bk � βi(x;N ) ∀k ∈ N s.t. k �= i, m
]

= EXj

[
E
[
Ui

∣∣ Xi = x, Xm = x, Xk � x ∀k ∈ N s.t. k �= i, m
]]

> E
[
Ui

∣∣ Xi = x, max{Xm,Xj } = x, Xk � x ∀k ∈ N s.t. k �= i, j,m
]

= vi(x, x;N+j )

where the last two lines follow from Definition 2.1 and the strict monotonicity of equi-
librium bidding strategies.93 �

This result provides the basis for testing using variation in the number of bidders.
Although to our knowledge the proof was first given by Athey and Haile (2002) and
Haile, Hong and Shum (2003), the idea behind this result and its potential value for
detecting the winner’s curse goes back at least to Gilley and Karels (1981), who sug-
gested regressing bids from first-price auctions on the number of bidders as a test of a
common values model. This reflected a belief that bids must increase with n in a private
values auction (since adding bidders makes the auction more competitive) but might
decline in n in a common values auction if the winner’s curse were sufficiently severe
to overcome the competitive effect of adding additional bidders [see, e.g., Brannman,
Klein and Weiss (1987), Paarsch (1992a, 1992b), Laffont (1997)]. However, Pinkse and
Tan (2005) have recently shown that this is incorrect: bids may increase or decrease in
n in both private values and common values models. The regression approach might
seem more promising in an ascending auction, due to the simplicity of equilibrium bid
functions in the button auction model. The multiplicity of equilibria in common values
auctions creates one problem. But even ignoring this [e.g., selecting the equilibrium
of the button auction given by Milgrom and Weber (1982)] this approach fails due to
the fact that the winner’s bid is never revealed. For example, in a private values auc-
tion the observable bids reveal (u(1:n), . . . , u(n−1:n)), but u(n:n) is censored. Because the

93 Note that the second equality need not hold without symmetry. Conditions under which more competition
(appropriately defined) implies a more severe winner’s curse have not been fully explored.
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distribution of the censored valuation U(n:n) varies with n, so does the resulting censor-
ing bias. This makes it impossible to discriminate between private values and common
values models based on a regression of bids on n.94

In spite of this, and in spite of the lack of identification of many common values
models, testing is often possible. Lemma 8.1 makes use of the assumption of exoge-
nous (to the distribution of signals and valuations) variation in the number of bidders.
As discussed by Athey and Haile (2002) and Haile, Hong and Shum (2003), this can be
reasonable in some applications. Furthermore, it is implied by some models of partic-
ipation (see Section 6.3.2). However, the assumption of exogenous participation is not
always necessary. Initially we will maintain this assumption to simplify the exposition
of the basic testing approaches. In Section 8.2 we discuss an approach to testing with
endogenous participation.

8.1. Testing in first-price auctions when all bids are observed

In the common values first-price auction, the first-order condition (7.2) requires that
v(xi, xi;N ) = ξ(bi,N ). Note that both sides of this equation vary with N . However,
because ξ(bi,N ) is identified, it is possible to isolate the effect of N on v(xi, xi;N )

when N varies exogenously. Since v(xi, xi;N ) does not vary with N in a private values
model, it is possible to distinguish the two models, even though FX,U(·) is not identi-
fied. To see how, let Fvi,N (·) denote the marginal distribution of the random variable
vi(Xi,Xi;N ). Lemma 8.1 implies the following result.

COROLLARY 8.1. Assume exogenous variation in the number of bidders. Then
Fvi,N (v) is invariant to N in a private values model for all v. In a common values
model with symmetric bidders

(8.1)Fvi,N (v) < Fvi,N+j
(v)

for all i, j and all v on the interior of the support of Fvi,N (·) or Fvi,N+j
(·).

Haile, Hong and Shum (2003) use this result to develop tests of the null hypothesis
of private values against the common values alternative.95 They focus on the case of
symmetric bidders, where Fvi,N (·) can be more simply represented by Fv,n(·), and (8.1)
can be written

(8.2)Fv,n(v) < Fv,n+1(v) ∀n, v.

94 However, as Bajari and Hortaçsu (2003a) have pointed out, the recurrence relation (8.6) below implies that
with this censoring, the average observed bid must increase in n in the dominant strategy equilibrium of a
private values button auction. While this is also possible in a common values auction, it provides a testable
restriction of the private values hypothesis.
95 They apply their tests to two types of auctions held by the US Forest Service. Shneyerov (2005) has
recently applied one of their tests to data from municipal bond auctions.
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Their approach involves two steps. The first is to form estimates v̂it of each v(xit , xit ; nt )

using the methods described in Section 3.2. The second step is to compare the empirical
distributions

F̂v̂,n(v) = 1

nTn

T∑
t=1

nt∑
i=1

1{nt = n, v̂it � v}

for different values of n.
While tests of equality of distributions (or of the alternative of first-order stochas-

tic dominance) are common in statistics and econometrics, a complication here is the
fact that only empirical distributions of the “pseudo-values” v̂it can be compared, not
those of the “values” v(xit , xit ; n). Hence, the first-stage estimation error (which will
be correlated in finite sample for nearby v̂it and v̂j t ′) must be accounted for. A second
complication is the fact that trimming, which must be done separately for each value
of n, must be done carefully to avoid creating the appearance of a winner’s curse when
there is none, or hiding the winner’s curse in a common values model.

Haile, Hong and Shum (2003) explore two types of tests.96 The first is a comparison
of trimmed means of each empirical distribution F̂v̂,n(·).97 For τ ∈ (0, 1

2 ) let xτ denote
the τ th quantile of the marginal distribution FX(·) and define the quantile-trimmed mean

μn,τ = E
[
v(Xi,Xi; n)

∣∣ Xi ∈ [xτ , x1−τ ]
]
.

Trimming at the same quantiles for all n fixes the set of signals xi implicitly included in
each mean. This is important since the first-order stochastic dominance relation in (8.2)
extends to the distributions of v(Xi,Xi; n) over any fixed interval in [x, x] but need not
hold for intervals that vary with n. One can then test the hypotheses

H0: μn,τ = · · · = μn,

(8.3)H1: μn,τ > · · · > μn,

which are implied by Lemma 8.1.
Let bτ denote the τ th quantile of the observed bids. Since bids are strictly increasing

in signals, μn,τ has sample analog

μ̂n,τ = 1

nTn

T∑
t=1

n∑
i=1

1
{
nt = n, bit ∈ [bτ , b1−τ ]

}
v̂it .

Haile, Hong and Shum (2003) show that the vector (μ̂n,τ , . . . , μ̂n,τ ) is consistent
and has a multivariate normal asymptotic distribution with diagonal covariance ma-
trix Σ , enabling adaptation of a standard multivariate one-sided likelihood-ratio test

96 Section 5 discusses several other hypotheses to which their tests may be adaptable.
97 The test generalizes to other finite vectors of functionals – e.g., a vector of quantiles. See Haile, Hong and
Shum (2003) for details.
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[Bartholomew (1959)]. Monte Carlo evidence suggests that size distortions may be re-
duced by using the bootstrap to estimate the elements of the covariance matrix Σ .98

The second testing approach uses a generalized version of a multi-sample one-sided
Kolmogorov–Smirnov test of equal distributions. Given a differentiable strictly decreas-
ing function Λ(·), let

Λn(v) = 1

nTn

T∑
t=1

n∑
i=1

1{nt = n}Λ(v̂it − v)

and

δT =
n−1∑
n=n

sup
v∈[v,v]

[
Λn+1(v) − Λn(v)

]
,

where the compact interval [v, v] is bounded away from the endpoints of the support
Fv,n(·) under the null. If Λ(·) is the smoothed step function

Λ(y) = exp(−y/h)

1 + exp(−y/h)

with h denoting a bandwidth, δT is easily interpreted as an approximation of a more
familiar looking one-sided test statistic

δT =
n−1∑
n=n

sup
v∈[v,v]

{
F̂v̂,n+1(v) − F̂v̂,n(v)

}
,

where F̂v̂,n+1(·) and F̂v̂,n(·) denote empirical distribution functions.
Strict monotonicity of Λ(·) and the fact that

Λn(v) → E
[
Λ(v̂it − v)

∣∣ nit = n
]

uniformly in v ∈ [v, v] imply that δT → 0 under the private values null. Under the
common values alternative δT → δ > 0. This is the basis for using δT as a test statistic.
Haile, Hong and Shum (2003) show that for an appropriate normalizing sequence ηT ,
the generalized Kolmogorov–Smirnov statistic ST ≡ ηT δT has a nondegenerate limit-
ing distribution under H0, enabling use of subsampling for estimation of critical values
[e.g., Politis, Romano and Wolf (1999)].

Both types of test are easily adapted to the case in which bidders observe only a
signal η of the number of opponents they face before submitting their bids, as long
as the econometrician also observes (or can condition on) η. In that case estimation
of pseudo-values follows the discussion in Section 6.3.3. One could then compare the
distribution of pseudo-values in auctions with higher signals to those with lower signals.

98 The block bootstrap procedure is identical to that discussed in Section 3.2.1. Haile, Hong and Shum (2003)
point out that using the bootstrap to estimate the distribution of the test statistic itself would be difficult, due
to the need to resample bids under the null hypothesis on the functions v(·,·; n).
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8.2. Testing with endogenous participation

Haile, Hong and Shum (2003) discuss extensions of their testing approaches to cases in
which bidder participation is endogenous. If there is a binding reserve price or a cost
of preparing a bid, for example, bidders’ participation decisions introduce truncation in
the set of types submitting bids. They show how their basic approach can still be ap-
plied in such cases by comparing estimated distributions of v(Xi,Xi; n), appropriately
adjusted for truncation, on regions of common support. We refer readers to their paper
for details.

A more difficult case is that in which participation is affected by unobserved fac-
tors that also affect valuations. This leads to two quite different threats to the basic
testing approach. First, variation in Fv,n(·) with n will arise from variation in the un-
observed factors, confounding attempts to detect responses to the winner’s curse. For
example, if auctions of goods that are more valuable in unobserved dimensions also at-
tract greater participation, this could mask the effects of the winner’s curse in a common
values auction. The second problem is even more fundamental: unobserved heterogene-
ity threatens the identification of the distributions Fv,n(·) that underlies the approach
(recall Section 6.1.2).

Haile, Hong and Shum (2003) have proposed an instrumental variables approach for
such situations. Consider a simplified version of their approach in which the number of
actual bidders in auction t is a function of two scalar factors Zt and Wt :

At = α(Zt ,Wt ).

Here Zt is an index capturing the effects of factors observable to the econometrician
as well as the bidders, while Wt is an index capturing the effects of unobservables.99

Assume that (i) Z is independent of (X1, . . . , Xn,U1, . . . , Un) and (ii) α(·,·) is weakly
increasing in its first argument and strictly increasing in its second.

Assumption (i) is a standard exclusion restriction: Zt is an instrument affecting par-
ticipation but not the distribution of valuations and signals. This instrument might be
the number of potential bidders or a proxy for it, like the number of firms in the local
market. Of course, in principle there need not be any difference between the potential
and actual bidders here, based on our definitions. For example, if there is a cost of ac-
quiring a signal but bidders have access to some information about the distribution of
valuations before bearing this cost, the number of potential bidders will be correlated
with unobservable factors shifting all bidder valuations. Valid instruments in that case
might be the number of firms in the market (those who choose whether to invest in a
signal), or factors affecting the cost of acquiring a signal.

Assumption (ii) is a monotonicity restriction. Monotonicity in the instrument Zt im-
plies that changes in Zt will provide the exogenous variation in the level of competition

99 For simplicity we assume there are no auction-specific observables other than Zt , although this is easily
relaxed.
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that will make it possible to isolate the effects (if any) of the winner’s curse. Strict
monotonicity in Wt is a key restriction that requires that Wt be discrete (since At is). As
discussed in Section 6.1.2, this restriction enables identification of the expectations

v(x, x; a, z) = E[Ui | Xi = x, At = a, Zt = z]
through the first-order condition

v(xit , xit ; at , zt )

(8.4)= bit + Pr(maxj �=i Bjt � bit | Bit = bit , Zt = zt , At = at )

∂
∂m

Pr(maxj �=i Bjt � m | Bit = bit , Zt = zt , At = at )|m=bit

.

Estimation of the pseudo-values on the left-hand side of (8.4) proceeds by holding
fixed both the value of A and the value of the instrument Z to construct estimators of the
right-hand side of (8.4). To test for common values, the pseudo-values v(xit , xit ; at , zt )

are then pooled across realizations of At to compare the cumulative distributions

Fv,z(v) = Pr
(
E
[
v(Xit , Xit ; At, Zt )

]
� v

∣∣ Zt = z
)

across values of z. While these distributions must be the same for all z under private
values, the assumptions above imply that Fv,z(v) is increasing in z under the common
values alternative. Haile, Hong and Shum (2003) provide additional details and an al-
ternative control function estimation approach allowing for multiple instruments. Their
application to US Forest Service timber auctions uses the numbers of sawmills and log-
ging firms in a geographic neighborhood of a sale as instruments for the number of
bidders.

8.3. Testing with incomplete bid data

Athey and Haile (2002) show that testing is also possible in ascending auctions (as-
suming the button auction model) and in first-price auctions in which not all bids are
observable.100 For the symmetric common values model, recall that the challenge arises
because the distribution of v(X(n−1:n), X(n−1:n), n) varies with n both due to the win-
ner’s curse and because the distribution of the order statistic varies with n even without
any winner’s curse. However, since X(n:n) is unobserved, the distribution of v(Xi,Xi, n)

is not identified.

100 Haile (2001) develops a different testing approach based on detecting bidders’ updating of their willing-
ness to pay as an ascending auction proceeds. The insight is that there is no such updating in a private values
auction or in a 2-bidder common values auction. Hence one can compare distributions of bidders’ willingness

to pay (i.e., φ(G
(n−1:n)
B

(·); n − 1, n)) in 2-bidder auctions to that in auctions with larger numbers of bidders,
with a difference suggesting common values. A major limitation of this approach is a requirement of indepen-
dent signals under both the null and alternative hypotheses. While independence is implied by Haile’s model
of auctions with resale, this will typically be a strong restriction for a common values auction.
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Athey and Haile’s (2002) approach exploits the fact that for exchangeable random
variables Y1, . . . , Yn, the marginal distributions F

(i:n)
Y (·) of the order statistics must sat-

isfy the recurrence relation [see, e.g., David (1981)]

(8.5)
n − i

n
F

(i:n)
Y (y) + i

n
F

(i+1:n)
Y (y) = F

(i:n−1)
Y (y) ∀y, n, i � n − 1.

Intuitively, in an ex ante sense, moving from a sample of n draws to a sample of n − 1
draws is equivalent under exchangeability to taking the n draws and then dropping one
at random. When one draw, Yj , is dropped at random from the larger sample, the ith
order statistic in the smaller sample will be either the ith order statistic from the larger
sample (when Yj was one of the n−i highest draws), or the (i+1)st order statistic (if Yj

was among the i lowest draws). Note that one direct implication of (8.5) is a recurrence
relation between means:

(8.6)
n − i

n
E
[
Y (i:n)

]+ i

n
E
[
Y (i+1:n)

] = E
[
Y (i:n−1)

] ∀n, i � n − 1.

Using (8.5) and (8.6), the private values null can be tested against the common values
alternative in both first-price and ascending auctions. This is possible even when not all
bids are observable (as is always the case in an ascending auction) and despite the fact
that the ascending auction has multiple equilibria in the case of common values. The
following theorem combines results originally given in Athey and Haile (2002).

THEOREM 8.1. Assume exogenous variation in the number of bidders. In an ascending
auction or first-price sealed-bid auction, the symmetric private values model is testable
against the symmetric common values alternative if one observes the bids B(n−2:n) and
B(n−1:n) in the ascending auction, or B(n−1:n) and B(n:n) in a first-price auction.

PROOF. For the first-price auction, we have seen in Theorem 3.3 that the marginal dis-
tributions F

(n−1:n)
v (·) and F

(n:n)
v (·) of v(X(n−1:n), X(n−1:n); n) and v(X(n:n), X(n:n); n)

are identified for all n. In a private values auction, these distributions are F
(n−1:n)
U (·) and

F
(n:n)
U (·) so that (8.5) implies the restriction

1

n
F (n−1:n)

v (v) + n − 1

n
F (n:n)

v (v) = F (n−1:n−1)
v (v) ∀v.

Under the common values alternative, v(x, x; n) is still a strictly increasing func-
tion of x, so that the random variables v(Xi,Xi; n) are still exchangeable. But since
v(Xi,Xi; n) strictly decreases in n (Lemma 8.1),

1

n
F (n−1:n)

v (v) + n − 1

n
F (n:n)

v (v) > F (n−1:n−1)
v (v)

for all v on the interior of the support of Fvi,N (·) or Fvi,N+j
(·).

For the ascending auction, under the private values null, Equation (8.6) implies

2

n
E
[
B(n−2:n)

]+ n − 2

n
E
[
B(n−1:n)

] = E
[
B(n−2:n−1)

] ∀n > n.
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Under the common values alternative, Athey and Haile (2002, Theorem 9) show that,
regardless of the equilibria selected in the n-bidder and (n − 1)-bidder auctions, one
obtains the relation

2

n
E
[
B(n−2:n)

]+ n − 2

n
E
[
B(n−1:n)

]
< E

[
B(n−2:n−1)

] ∀n > n.

�

While Theorem 8.1 relies on exchangeability, Athey and Haile (2002) show how this
kind of approach can be adapted to asymmetric ascending auctions as well.101 To see the
key idea, observe that if (Y1, . . . , Yn) have an arbitrary joint distribution, one can obtain
a sample of exchangeable random variables (YR1 , YR2 , . . . , YRs ) by taking a random
subsample of size Rs < n from the original sample (Y1, . . . , Yn). Hence, even without
exchangeability of (Y1, . . . , Yn), a recurrence relation must hold for random subsamples
[Balasubramanian and Balakrishnan (1994)]. In a private values auction this implies a
recurrence relation between distributions F

(i:n)
U (·) in auctions with bidders N and those

from smaller auctions in which the set of bidders is a subset of N .
Formal testing approaches based on these results have not yet been explored. Since

the null (alternative) hypothesis can be represented as the hypothesis of equal (stochasti-
cally ordered) distributions, it may be possible to adapt the testing approaches of Haile,
Hong and Shum (2003), which account for the estimation error arising from the non-
parametric estimation of pseudo-values.

8.4. Testing with a binding reserve price

While Haile, Hong and Shum (2003) show that their testing approach can be extended
to cases in which there is a binding reserve price, Hendricks, Pinkse and Porter (2003)
and Haile, Hong and Shum (2003) have each shown that the presence of a binding
reserve price can make possible a different sort of test for the winner’s curse in first-
price auctions. Both approaches rely on observing the number of potential bidders.

Focusing on the symmetric case, recall that participation is determined by the thresh-
old signal x∗(n) defined by (recall Equation (2.1))

(8.7)x∗(n) = inf
{
x: E

[
Ui

∣∣∣ Xi = x, max
j �=i

Xj � x
]

� r
}
.

The equilibrium bid of a bidder with signal x∗(n) is

β
(
x∗(n); n

) = v
(
x∗(n), x∗(n); n

) = E
[
Ui

∣∣∣ Xi = x∗(n), max
j �=i

Xj = x∗(n)
]
.

In a private values model, E[Ui | Xi = x, maxj �=i Xj � x] = E[Ui | Xi = x,

maxj �=i Xj = x], so that

(8.8)β
(
x∗(n); n

) = r.

101 They also discuss extension to cases in which only nonadjacent values of n are observed in the data.
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As originally noted by Milgrom and Weber (1982), in a common values model the fact
that E[Ui | Xi = x, maxj �=i Xj � x] < E[Ui | Xi = x, maxj �=i Xj = x] implies

(8.9)β
(
x∗(n); n

)
> r.

Hence, a test for common values can be based on the distinction between (8.8) and (8.9).
In particular, if we let b = inf supp Bi ,

lim
b→b

b + GM|B(b|b; n)

gM|B(b|b; n)

should equal r under the private values hypothesis but should be strictly greater than r

with common values. While this idea was first mentioned by Hendricks, Pinkse and
Porter (2003), a formal test based on this idea has not yet been developed.

A second possibility, suggested by Haile, Hong and Shum (2003), is to examine vari-
ation in the probability FX(x∗(n)) that the reserve price excludes a potential bidder. It is
easy to verify (following the proof of Lemma 8.1) that x∗(n) is invariant to n in a private
values model but strictly increasing in n in a common values model. By exchangeability,

FX

(
x∗(n)

) = FX
(
x∗(n),∞, . . . ,∞) =

n∑
k=1

k

n
Pr(A = n − k | N = n).

So if both the number of potential bidders, N , and the number of actual bidders, A, are
observed, FX(x∗(n)) is identified for all n, and one can test whether this is constant or
decreasing in n.

9. Dynamics

Until very recently, virtually all structural empirical work on auctions has considered
static models, treating each auction in the data as an independent game. There are sev-
eral reasons this may not be the case. First, even in a stationary environment, dynamic
considerations arise if firms engage in collusion.102 We do not consider collusion in this
chapter.103 Second, bidders’ valuation distributions may change over time in a way that

102 Many models of collusion at auctions are static [e.g. McAfee and McMillan (1992)]. Recently, the theory
of tacit collusion in repeated auctions has grown rapidly [Aoyagi (2003), Athey and Bagwell (2001, 2004a),
Athey, Bagwell and Sanchirico (2004) and Skryzpacz and Hopenhayn (2004)]. Athey, Bagwell and Sanchirico
(2004) show that when only the winning bid, but not the bidder’s identity, is revealed by the auctioneer,
optimal collusion entails bidding at the reserve price with each bidder having an equal chance of winning,
while Athey and Bagwell (2001, 2004a) show that when the bidder’s identity is revealed as well, bidders
engage in sophisticated rotation schemes so that a bidder’s probability of winning is less correlated over time
than the bidder’s valuation.
103 For empirical studies of collusion (which typically do not explicitly consider dynamics), see Porter and
Zona (1993, 1999), Bajari and Ye (2003), Pesendorfer (2000), Baldwin, Marshall and Richard (1997), and
Athey, Levin and Seira (2004). See Bajari and Summers (2002) for a survey.
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is exogenous, but is private information to each bidder.104 This can create dynamic links
in bidder strategies. In particular, a bidder’s behavior in an auction will affect opponents’
beliefs about his valuation distribution in future auctions, changing the equilibrium of
the auction game in each period.105 To our knowledge, there has been no empirical
investigation focusing on the dynamics of such models.

Finally, the underlying distribution of valuations might change as a function of auc-
tion outcomes, potentially in ways that are observable (or can be directly inferred) by
the other bidders. For example, there may be learning-by-doing, so that a firm that wins
an auction today might have stochastically lower costs (higher valuations) in the future.
Alternatively, firms may have capacity constraints (or more general forms of disec-
onomies of scale). In that case, a firm that wins an auction today might draw a valuation
from a less favorable distribution in the future. In either case, the resulting dynamic
considerations for bidders will change the equilibrium at each point in time.

To explore this type of environment, consider a model based on that of Jofre-Bonet
and Pesendorfer (2000, 2003).106 Time is discrete, and firms compete over an infinite
horizon. In each period t , an item is sold by first-price auction to one of n bidders.
For simplicity, assume that there is no reserve price and that all objects to be auctioned
have the same observable characteristics [see Jofre-Bonet and Pesendorfer (2003) for
extensions]. The distribution of bidder valuations depends on the bidders’ capacities
(more generally, it could depend on other covariates as well). Conditional on capacities,
bidder valuations are independent across bidders and over time. Letting ci,t be bidder
i’s publicly observable capacity in period t , the conditional distribution of bidder i’s
valuation in period t is denoted FU(·|ci,t ), where for simplicity we let this function be
the same for all bidders.

The econometrician and the bidders both know the (deterministic) transition function
for bidder capacities. In particular, if k is the identity of the winning bidder in period t

and ct is the vector of bidder capacities in period t , then107

ci,t+1 = ωi(ct , k).

The solution concept is Markov-perfect equilibrium. Thus, collusion is ruled out, and
dynamic considerations in bidder strategies arise only because bidders anticipate that
the identity of today’s winner will affect future capacities, which in turn will affect

104 If the distribution of valuations changes over time in a way that is observed by all bidders, then either the
econometrician can observe (and condition on) the factors affecting distribution, or the problem of unobserved
heterogeneity discussed in Section 6.1.2 arises. The literature has not explored intertemporal correlation in
unobserved auction heterogeneity.
105 See e.g., Bikhchandani (1988), Bikhchandani and Huang (1989), Haile (1999, 2003), Katzman and
Rhodes-Kropf (2002), Das Varma (2003), Goeree (2003), and Athey and Bagwell (2004b).
106 They analyze a procurement auction. We recast the problem as one in which the bidders are buyers. They
also consider two types of bidders, “regular bidders” who bid often, and “fringe bidders” who bid rarely and
do not consider the future. We focus on regular bidders to simplify the analysis.
107 Jofre-Bonet and Pesendorfer (2003) allow a slightly richer specification in which transitions reflect infor-
mation about the size and duration of projects that have been won in the past.
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outcomes in future auctions. Since all asymmetries are captured through capacities,
Jofre-Bonet and Pesendorfer (2003) focus on exchangeable strategies. In particular,
each bidder’s bid in a given period depends on the bidder’s own valuation and the vector
of capacities, so that strategies can be written βi(ui,t , ct ).108

In this environment, Jofre-Bonet and Pesendorfer (2003) combine the insights of Hotz
and Miller (1993) (who studied dynamic discrete choice problems for individuals) with
the approach of Guerre, Perrigne and Vuong (2000) in an insightful way, providing very
general conditions for identification when the discount factor is known.

The first step in the analysis is to use dynamic programming to represent bidder
payoffs.109 Suppressing N in the notation, let GMi

(·|c) be the equilibrium distribution
of the maximum opponent bid for bidder i when the vector of bidder capacities is c.
Let δ denote the discount factor and let ω(c, k) = (ω1(c, k), . . . , ωn(c, k)). Holding
opponents’ strategies fixed, the interim expected discounted sum of future profits for
bidder i is given by

Wi(ui, c) = max
bi

{
(ui − bi)GMi

(bi |c)

+ δ

n∑
j=1

Pr(j wins |bi, c)
∫

u′
i

Wi

(
u′

i , ω(c, j)
)
fUi

(
u′

i | ωi(c, j)
)

du′
i

}
,

where the second term sums over the possible identities of the winner to form an ex-
pectation of the continuation value to player i, given current capacities. One can then
define the ex ante value function

Vi(c) =
∫

Wi(ui, c)fUi
(ui |c) dui,

which can be rewritten as

Vi(c) =
∫ {

max
bi

{
(ui − bi)GMi

(bi |c) + δVi

(
ω(c, i)

)
+ δ

∑
j �=i

Pr(j wins |bi, c)
[
Vi

(
ω(c, j)

)− Vi

(
ω(c, i)

)]}}
fUi

(ui |c) dui.

Note that in equilibrium, the probability that bidder i wins with bid bi is given by

(9.1)Pr
(
bi � max

j �=i
βj (Uj , c)

∣∣∣ c
)

= GMi
(bi |c) =

∏
j �=i

GBj
(bi |c),

108 Jofre-Bonet and Pesendorfer (2000, 2003) establish existence of an equilibrium within the parametric
framework they use for estimation, and also sketch an approach for showing existence in general.
109 Ackerberg et al. (Chapter 63 in this volume) discuss estimation of dynamic strategic models more gener-
ally, which relies on very similar ideas.

http://dx.doi.org/10.1016/S1573-4412(07)06063-1
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where GBj
(·|c) is the cumulative distribution of Bj conditional on capacity vector c.

The probability that bidder j �= i wins when bidder i bids bi is∫ bj (c)

bi

( ∏
k �=i,j

GBk
(bj |c)

)
gBj

(bj |c) dbj ,

where bj (c) = sup supp GBj
(·|c). Finally, using (9.1) note that

GMi
(bi |c)

gMi
(bi |c) = 1∑

j �=i

gBj
(bi |c)

GBj
(bi |c)

.

The next step is to solve for the ex ante value functions in terms of observables.
This requires a significant generalization of the two-step indirect approach proposed
by Guerre, Perrigne and Vuong (2000). Consider bidder i’s optimization problem in a
given auction:

max
bi

{
(ui − bi)GMi

(bi |c) + δVi

(
ω(c, i)

)
+ δ

∑
j �=i

(∫ bj (c)

bi

∏
k �=i,j

GBk
(bj |c)gBj

(bj |c) dbj

)[
Vi

(
ω(c, j)

)− Vi

(
ω(c, i)

)]}
.

The first-order condition is

(9.2)

ui = bi + GMi
(bi |c)

gMi
(bi |c) + δ

∑
j �=i

GMi
(bi |c)

gMi
(bi |c)

gBj
(bi |c)

GBj
(bi |c)

(
Vi

(
ω(c, j)

)− Vi

(
ω(c, i)

))
.

After substituting this into the ex ante value function, a change of variables yields

Vi(c) =
∫ bi(c)

bi (c)

GMi
(bi |c)

gMi
(bi |c) GMi

(bi |c) dGBi
(bi |c)

+ δ
∑
j �=i

Vi

(
ω(c, j)

){ ∫ bi (c)

bi

∏
k �=i,j

GBk
(bj |c)gBj

(bj |c) dbj

+
∫ bi (c)

bi (c)

GMi
(bi |c)

gMi
(bi |c)

gBj
(bi |c)

GBj
(bi |c)GMi

(bi |c) dGBi
(bi |c)

}
.

For any capacity vector c, this expresses each Vi(c) as a linear function of Vi(·) evalu-
ated at other capacity vectors. The coefficients of this linear relation depend only on the
observable bid distributions. Thus, it is possible to solve for the ex ante value functions
in terms of the observable bid distributions.

Once the ex ante value functions have been computed, identification of the distrib-
utions FU(·|c) (assuming the discount factor δ is known) follows from the first-order
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condition (9.2). In particular, we can use the observed bid distributions and the ex ante
value functions to compute the right-hand side of (9.2). Then, if the discount factor δ is
known (for example, from other empirical studies), (9.2) implies that FUi

(·|c) is identi-
fied from the observed bids and capacities.

In addition to demonstrating the nonparametric identification of their model, Jofre-
Bonet and Pesendorfer (2003) propose a parametric estimation approach, motivated in
part by a desire to include covariates in a parsimonious manner. To solve for the value
functions, they follow Judd (1998) and discretize the set of possible capacities. Then,
calculating the value functions entails solving a system of linear equations. They fur-
ther simplify the estimation by using a quadratic approximation of the value function.
They apply their approach to California highway construction contracts. Using their
estimates, they are able to assess the importance of private information, capacity con-
straints, and the inefficiencies that arise due to the asymmetries induced by capacity
differences among bidders under the assumption of forward-looking equilibrium be-
havior. Note that it is impossible to test whether bidders are forward looking in this
environment, since the discount factor δ is not identified.

10. Multi-unit and multi-object auctions

10.1. Auctions of perfect substitutes

While most of the empirical literature on auctions focuses on the case of single-unit auc-
tions, auctions of multiple units of identical goods (“multi-unit auctions”) have recently
begun to gain significant attention. One motivation is their importance in the public sec-
tor. For example, multi-unit auctions have recently been implemented in restructured
electricity markets to assign electric power generation to different plants [see, e.g.,
Wolfram (1998), Borenstein, Bushnell and Wolak (2002), or Wolak (2003)]. Optimal
design of such markets is complex: the usual goals of efficiency and surplus extrac-
tion in single-unit auctions are complicated by (among other issues) nonlinearities in
cost functions, incentives to exercise market power by withholding marginal produc-
tion capacity, and the need for firms to recover substantial fixed costs [Wolak (2003)].
Empirical analysis of these markets can provide valuable information about the under-
lying cost structure, market power opportunities, and profitability. Another important
policy question that has been the subject of discussion among economists at least since
Friedman (1960) is how governments should auction treasury securities to maximize
revenues. This question is potentially relevant to the design of markets for other types
of securities as well.

In treasury auctions, a large number of identical securities is sold in a mechanism
in which each bidder submits an entire “demand function,” i.e., each bidder i offers a
(downward sloping) schedule of price-quantity combinations (bij , qj ) specifying the
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price he is willing to pay for his qj th unit.110 Two auction mechanisms are commonly
used: discriminatory and uniform-price. A discriminatory auction is the most common
in practice (although recently the US adopted uniform-price auctions after conducting
an experiment to evaluate alternative formats). In this mechanism, each bidder who
offers more than the market clearing bid for a unit receives that unit at the price he
offered. As the name suggests, this results in different prices for different units of the
same security – even a given bidder will pay different prices for each unit he wins. In
contrast, in a uniform-price auction, the market clearing price (lowest accepted bid) is
paid on all units sold. In addition to US treasury bill auctions, electricity auctions are
often uniform price, and some firms have used uniform price auctions in initial public
offerings.111

Of course, bidders will bid differently depending on whether a discriminatory or
uniform-price auction is used. The revenue ranking of the two mechanisms is theo-
retically ambiguous [Ausubel and Cramton (2002)] and can only be determined with
knowledge of the true distribution of bidder valuations. To our knowledge, the litera-
ture has not yet presented a comprehensive analysis of identification and estimation in
uniform-price auctions, although Wolak (2003) provides some initial results.

Before proceeding, we pause to highlight the fact that the theory of multi-unit auc-
tions is much less well developed than the theory of first-price auctions and ascending
auctions. Although existence of equilibrium in mixed strategies can be guaranteed quite
generally [Jackson et al. (2002), Jackson and Swinkels (2005)], existence of pure strat-
egy Nash equilibria in monotone strategies has been established for only a limited class
of models, such as private or common value models where bidder signals are indepen-
dent [McAdams (2004a)]. In addition, examples have shown that there can be multiple
equilibria [e.g. Back and Zender (1993)]. Thus, most existing econometric approaches
to these auctions require assumptions on endogenous variables to guarantee that the
requisite regularity properties are satisfied, although in practice some of the conditions
can be verified empirically.

Hortaçsu (2002) has empirically analyzed the question of which auction mechanism
raises higher revenue, and has shown that the relevant primitives can be identified non-
parametrically in a private values model of the discriminatory auction.112 His empirical
model is based on the theoretical framework of Wilson (1979).113 Building on the in-
sight of Guerre, Perrigne and Vuong (2000), he points out that equilibrium bidding

110 Note that this is a bidder’s strategic expression of quantities he demands at each price. This need not
correspond to the usual notion of a price-taking buyer’s demand function.
111 In the finance literature, these are often referred to as “Dutch auctions,” conflicting with economists’ use
of this term for descending price single-unit auctions.
112 Parametric structural models have been studied recently by Février, Préget and Visser (2002) and by
Armantier and Sbaï (2003), both of which consider common values models. Common values models may be
appropriate for many securities auctions, although this is ultimately an empirical question – one for which
testing approaches have not been developed. Hortaçsu (2002) discusses institutional details that motivate the
assumption of private values in the case of the Turkish treasury bill auctions he studies.
113 The analysis in Wilson’s model relies on an assumption that bidders can bid continuous demand functions.
In most applications, bids are restricted (by rule or in practice) to step functions – i.e., finite sets of discrete
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strategies can be characterized as best responses by each bidder to the distribution of
opposing bids he faces. In this multi-unit setting, the distribution of opposing bids can-
not be described by the distribution of the maximum opposing bid (as in a single-unit
auction); rather, it is the stochastic residual supply curve that characterizes the equi-
librium probabilities with which various quantities could be obtained at each possible
price.

For a discriminatory auction, suppose that the total quantity of securities to be offered
is Q. Let qi(·) denote the demand function offered by bidder i; i.e., qi(p) is the largest
quantity for which bidder i is offering a price of p or more for his final unit. For a
given set of demand functions q1(·), . . . , qn(·), the market clearing price pc then equates
supply and demand:

Q =
∑

i

qi

(
pc).

This market clearing price can be reinterpreted as the price at which i’s demand function
and his residual supply curve intersect:

QRi
(b) = Q −

∑
j �=i

qj (b).

Let vi(y; xi) denote bidder i’s marginal valuation for a yth unit of the good, given
the realization of his signal xi . Each bidder i’s equilibrium strategy specifies, for each
possible realization of xi , a demand function qi(b) = ϕi(b; xi )̇ expressing the quantity
demanded at each price b. Let

(10.1)Gi(b, y) = Pr

(
y � Q −

∑
j �=i

ϕj (b; Xj)

)
so that Gi(b, y) is the probability that, given equilibrium bidding by i’s opponents, the
market clearing price falls below b if i himself demands quantity y at price b.

For each Xi = xi , bidder i’s optimal strategy ϕi(·; xi) then solves the problem

max
qi (·)

∫ ∞

0

(∫ qi (p
c)

0

(
vi(y, xi) − q−1

i (y)
)

dy

)
∂Gi(p

c, qi(p
c))

∂pc dpc.

One can show that the optimal bidding strategy can be characterized by the necessary
condition

vi

(
ϕ(b; xi), xi

) = b + Gi(b, ϕ(b; xi))

∂
∂b

Gi(b, ϕ(b; xi))
.

While this is an Euler–Lagrange condition for a functional optimization problem, this
equation closely resembles the first-order condition (2.4) used by Guerre, Perrigne and

price-quantity pairs. Recently, Wolak (2004), McAdams (2005), and Kastl (2005) have explored empirical
models explicitly accounting for this discreteness.
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Vuong (2000) to show identification of the single-unit discriminatory (i.e., first-price
sealed-bid) auction with private values. Its role in the identification argument is simi-
lar. Because the demand functions qj (b) = ϕi(b; xj ) are directly observed, Gi(b, y)

is identified from Equation (10.1). Then, for any quantity y demanded at price b by
bidder i, we have

vi(y, xi) = b + Gi(b, y)

∂
∂b

Gi(b, y)
,

which uniquely determines the realizations of bidder i’s marginal valuations at each
quantity y. This implies identification of the distributions of each vi(y,Xi), which are
the primitives needed for policy simulations.114 In particular, if for each quantity y we
let B

y
i be a random variable equal in distribution to ϕ−1

i (y; Xi), vi(y,Xi) must be equal
in distribution to

B
y
i + Gi(B

y
i , y)

∂
∂b

Gi(b, y)|b=B
y
i

.

Hortaçsu (2002) explores several estimation approaches, both parametric and non-
parametric. He also finds a clever way to place an upper bound on the revenue that
would be obtained under the uniform price auction, while avoiding the difficult prob-
lem of solving for the equilibrium given the estimated distribution of valuations: since
a bidder will never bid more than her marginal valuation for each unit, the revenue that
would be obtained if bidders simply bid their marginal valuations for each unit in a
uniform auction provides an upper bound on the equilibrium revenue.

10.2. Auctions of imperfect substitutes and complements

One prominent area in which economists’ understanding of auctions has been used to
guide policy over the last decade is in the design of institutions to allocate spectrum
rights [see, e.g., McAfee and McMillan (1996)]. Questions regarding the optimal design
of spectrum auctions led to much new theoretical work considering the complications to
equilibrium strategies arising in multi-object auctions, where the heterogeneous goods
auctioned at the same time may be imperfect substitutes, complements, or combina-
tions of these. Similar issues arise in a number of procurement applications, where
complementarities may exist between contracts, and some bundles of contracts may
be substitutes for others. Cantillon and Pesendorfer (2003) study one such application:
auctions for bus services in London, where it may be cheaper to operate one route if a
nearby route is also served. Here, we describe their model and identification results. For

114 Note that signals play a purely informational role here. Hence, their distribution can be normalized (and
assumed symmetric) without loss of generality. Put differently, only the distribution of marginal valuations,
not that of the underlying signals, is of economic relevance.
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consistency with the rest of the chapter, we treat the auction as one in which the bidders
are buyers rather than sellers of services.

Let S be the set of goods offered for sale, with |S| = m. Let Ui,s be bidder i’s valua-
tion for the bundle s ⊆ S, with Ui ∈ R

2m−1 denoting the vector of his valuations for all
possible bundles s ⊆ S. Bidders’ preferences over combinations of goods may exhibit
sub- and/or super-additivity. Let FUi

(·) be the joint distribution of Ui , while FUi,s
(·)

denotes the marginal distribution of Ui,s . Let Bi,s denote bidder i’s bid on bundle s, and
let Bi be the vector of bids placed by bidder i. We let Bi,−s denote the vector of bids
placed by bidder i on all bundles other than s.

For simplicity, we focus on a fixed set of n symmetric bidders. Bidders participate in
a sealed-bid discriminatory auction with combination bidding: each bidder submits bids
on all bundles, and the auctioneer chooses the allocation of all objects that maximizes
total revenue, charging each bidder the price he offered for each bundle he is allocated.

Combination bidding enables bids to express complementarities and substitutabilities
between objects and/or bundles. Further, we might expect combination bidding to aid
efficiency and to encourage less cautious bidding by bidders who desire certain com-
binations of goods. However, combination bidding also introduces a strategic incentive
absent in auctions of homogeneous goods. This arises from the fact that a bidder’s bid
on one bundle competes with his own bids on other bundles. If a bidder raises his bid
for bundle s, for example, that will make him more likely to win s, but it may reduce his
chances of winning a different bundle t . This is because an increase in bi,s may make it
profitable for the seller to allocate bundle s to i instead of bundle t , allocating t to some
other bidder instead.

A bidder’s problem here turns out to be very closely related to the problem of mul-
tiproduct pricing, where it is known that a firm may find it profitable to bundle goods
for which demands are independent. Analogously, here a bidder may find it profitable
to place bids on bundles (i.e., to make “combination bids” or “bundle bids”) even if
the goods in the bundle are independent in the sense that Ui,s∪t = Ui,s + Ui,t when
s ∩ t = ∅. This is because the combination bid on the bundle s ∪ t can enable bid-
der i to win bundle s even when bidder i’s opponents place a high bid for bundle s,
unless they also place a high bid for bundle t . Thus, the combination bid allows bid-
der i to “leverage” a high valuation for bundle s into a lower price paid for bundle t , or
vice versa [cf. Whinston (1989)]. Note that this leads bidder i to bid less aggressively
on the individual bundles s and t , in order to avoid competing with her combination
bid.

Following intuition from the literature on bundling [see McAfee, McMillan and
Whinston (1989) or Armstrong and Rochet (1999)], as long as the correlation among
opponent bids for s and t is not too high, making a combination bid is profitable for
the bidder. Cantillon and Pesendorfer (2003) describe a plausible environment in which
allowing combination bids will reduce both expected revenue and efficiency if goods
are independent. This provides one motivation for determining whether bidders view
the goods as independent, substitutes, or complements.
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For the purposes of this section, we will make the following nonprimitive assump-
tions (Cantillon and Pesendorfer use slightly weaker assumptions)115: a pure strategy
Nash equilibrium exists, the joint distribution of equilibrium bid vectors (B1, . . . , Bn)

is differentiable almost everywhere in the support of equilibrium bids, and there is zero
probability that bidder i uses a bid in equilibrium at which the joint distribution of op-
ponent bids fails to be differentiable.

Given the equilibrium distribution of bid vectors for bidder i’s opponents j �= i, let
Gs(bi ) denote the probability that bidder i wins the objects in bundle s when bidder
i chooses the bid vector bi . Note that Gs(·) generally is not a cumulative distribution
function and need not even be increasing, since increasing bi,t for a bundle t such that
s ∩ t �= ∅ might lead to a lower probability that i wins all objects in bundle s. When
there are no reserve prices, bidder i solves the problem

max
bi

∑
s⊆S

(ui,s − bi,s)G
s(bi ).

If bi is the equilibrium bid for bidder i when his type is ui , then as long as the objective
function is differentiable at bi , the following system of first-order conditions must be
satisfied:

(10.2)−Gs(bi ) +
∑
t⊆S

(ui,t − bi,t )
∂

∂bi,s

Gt (bi ) = 0 for all s ⊆ S.

Let G(bi ) denote the (2m − 1) × 1 vector with components Gs(bi), and let ∇G(bi ) be
the (2m − 1)× (2m − 1) matrix with (s, t) element ∂

∂bi,s
Gt (bi ). Then we can rewrite the

system of first-order conditions in matrix notation as

∇G(bi )[ui − bi] = G(bi ).

This is a system of linear equations in the vector of valuations ui . If ∇G(bi ) is invertible,
we can rewrite the first-order conditions in a form analogous to the single-unit auction
case (2.4):

(10.3)ui = bi + [∇G(bi )
]−1G(bi ).

Invertibility of ∇G(bi ) would then imply that the distribution of (multidimensional)
valuations were nonparametrically identified, following the logic developed above for
the single-object first-price auction.

115 They argue that a mixed strategy equilibrium exists, but to our knowledge it is not known what additional
assumptions would be required to guarantee that a pure strategy equilibrium exists. Although it might seem
that a mixed strategy equilibrium should be inconsistent with identification, that is not necessarily true. In a
mixed strategy equilibrium, for at least some valuations, a bidder uses more than one bid vector: the mapping
from valuations to bids is one-to-many. Identification of the primitive valuation functions will require that
for each bid vector, there is a unique valuation that uses that bid vector; i.e, that the mapping from bids to
valuations is many-to-one.
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One unresolved question is whether there are useful sufficient conditions on the
distribution of bids (or on G(·)) that ensure that observed bidding is consistent with
equilibrium behavior (see Section 5.1). First-order conditions are, of course, neces-
sary but not sufficient for equilibrium. In the case of a single-unit first-price auction,
Theorem 5.2 ensures that the first-order conditions together with monotonicity of the
(inverse) bid function are necessary and sufficient for optimality of each bidder’s best
response. Thus far there is no analogous result for the multi-object auction considered
here. Hence, for an observed bid vector bi it is possible that there is a unique ui satisfy-
ing (10.3), yet for that ui , bi is not a best response to the distribution of i’s opponents’
bids. However, it should be possible to rule this out in a given application: since the
bidder’s objective function can be calculated from observables for each vector of val-
uations, for each observed bi and corresponding ui satisfying (10.3) it is possible to
compute the globally optimal bid vector for ui and confirm that it is equal to bi , thereby
verifying that the inverse bid functions implied by (10.3) are mutual best responses.

A second difficulty with using (10.3) arises from the fact ∇G(·) will not in general
be invertible, since bidders need not make bids on all bundles – not even on all those for
which they have positive valuations. Making no bid on a given bundle (or, equivalently,
making a bid for this bundle that is sure to lose) can be optimal for a bidder since this
ensures that she does not compete with her own bids on other bundles. Given a bid
vector bi,−s , Cantillon and Pesendorfer (2003) call a bid bi,s irrelevant if

bi,s < inf
{
b̃i,s : Gs(b̃i,s , bi,−s) > 0

}
.

Irrelevant bids are bids that could never win. The problem for identification is that if a
bidder places an irrelevant bid on bundle s, ∂

∂bi,t
Gs(bi) = 0 and ∂

∂bi,s
Gt (bi) = 0 for

all t ⊆ S, implying that ∇G(bi ) is not invertible. Indeed, Cantillon and Pesendorfer
(2003) establish that ∇G(bi ) is invertible if and only if there are no irrelevant bids. In
their application, bidders appear to make many irrelevant bids.116

Although irrelevant bids preclude point identification, there is still information in
such bids. First observe that if bi includes an irrelevant bid for bundle t , it is still possible
to identify the valuations associated with the bids for other bundles. To see this, note that
if for valuation vector ui it is optimal to place relevant bids for all bundles in K ⊂ 2S

and irrelevant bids on other bundles, one obtains the same solution if one treats the
bidder’s optimization problem as a constrained problem, with the bidder required to
place irrelevant bids on all bundles 2S\K . Formally, let bK

i be the subvector of bids on
the elements of K , and let Gs

K(bK
i ) denote the probability that bidder i wins bundle

s when he places irrelevant bids on bundles t ∈ 2S\K and bids bK
i on bundles in K .

Finally, let GK(·) denote a vector with elements given by Gs
K(·) for s ∈ K . Then the

optimal bid for type ui of bidder i in the original game is also the solution to

max
bK

i

∑
s⊆K

(ui,s − bi,s)G
s
K

(
bK

i

)
.

116 Irrelevant bids are identified by replacing G(·) with the empirical analog and directly checking whether
each bid has a positive probability of winning.
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The solution to this problem will involve no irrelevant bids, so ∇GK(bK
i ) will be in-

vertible. Hence, the valuations uK
i that in equilibrium correspond to bids bK

i will be
identified.

There is also information in bids about valuations for bundles for which irrelevant
bids have been placed. Given a bid vector bi,−s , define the “effective bid”

beff
i,s = inf

{
bs : Gs(bs, bi,−s) > 0

}
.

Given continuity of payoffs and the opponent bid distribution, bidder i will always be
indifferent between bidding (bi,s , bi,−s), where bi,s is irrelevant, and (beff

i,s , bi,−s). This

implies that increasing bi,s is unprofitable at bi,s = beff
i,s when bi,s is irrelevant, i.e.,

∂

∂bi,s

Gs(bi,s , bi,−s)

∣∣∣∣
bi,s=beff

i,s

(
ui,s − beff

i,s

)
(10.4)+

∑
t⊆S,t �=s

(ui,t − bi,t )
∂

∂bi,s

Gt (bi,s , bi,−s)

∣∣∣∣
bi,s=beff

i,s

� 0 for all s ⊆ S,

where all derivatives are taken from the right. Since ∂
∂bi,s

Gt (beff
i,s , bi,−s) = 0 (again

taking the derivative from the right) for all t �= s such that bi,t is irrelevant, and since
we have just argued that ui,t is identified for all t such that bi,t is relevant, the only
remaining unknown in (10.4) is ui,s . Thus, (10.4) places an upper bound on the bidder’s
valuation for bundle s. In particular, the true ui,s must be less than the value of ui,s

that makes (10.4) hold with equality. This can be used to provide a lower bound on the
cumulative distribution of Ui,s . More generally, a lower bound on the distribution of Ui

is identified using (10.4).
In Cantillon and Pesendorfer’s application, two additional constraints are imposed on

bids. First, there are reserve prices, denoted rs ; bids below the reserve price win with
probability zero. Second, the auction rules specify that

(10.5)bi,s∪t � bi,s + bi,t for all s, t ⊆ S such that s ∩ t = ∅.

This rule is motivated by the idea that if this constraint were violated, the auctioneer
could choose to ignore the bid bi,s∪t , and instead accept the bids bi,s and bi,t . Thus,
bidders can express preferences for complements, but their bids cannot be less for a
combination than for the component parts. Cantillon and Pesendorfer (2003) extend
the analysis to incorporate these constraints, showing that even in their presence, it is
possible to place an upper bound on the extent of the synergies that exist between items.

11. Concluding remarks

The prominent role of auctions in allocating a wide range of public and private resources
provides one strong motivation for empirical work on auctions. Recent methodologi-
cal advances have made it possible to address old market design questions (e.g., how
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to auction Treasury bills), while new policy questions (e.g., how to auction multiple
complementary goods) have motivated development of new methodological tools. In
addition, auctions hold the promise of shedding light on fundamental questions about
the nature of information, preferences, and behavior that are of importance to a much
broader scope of economic environments. Like earlier descriptive empirical work on
auctions that provided influential evidence on the importance of asymmetric informa-
tion and strategic behavior, recent empirical work using structural econometric models
has also begun to deliver on this promise, addressing such questions as the empirical
importance of reputations, entry costs, or adverse selection. Because of the close match
between the theory and actual institutions, auctions have the potential to provide insights
into fundamental questions that are difficult or impossible to address without the benefit
of structure from economic theory. We expect much of the most interesting future work
in the empirical auction literature to push farther in this direction.

It is worth noting that the analysis of identification in auction models is useful outside
of the realm of econometrics. For example, in some models of learning in games, a
central component of the analysis concerns whether it is possible to infer primitives of
the game from the distribution of equilibrium outcomes that can be observed by players.
The equilibrium concept of self-confirming equilibrium [Fudenberg and Levine (1993),
Dekel, Fudenberg and Levine (2003)], motivated by learning models, hinges on just
this issue.117 Recently, Esponda (2004) analyzed self-confirming equilibria in auction
games, focusing on the extent to which information revealed by an auctioneer allows
bidders to infer the distribution over opponent types. This problem is closely related to
the identification problem.118

Auctions have long been recognized as providing ideal market institutions for ex-
ploring the relationships between economic theory and the actual behavior of economic
agents. Since the seminal work of Vickrey (1961) and Wilson (1967), rich theoreti-
cal and empirical literatures on auctions have developed. In our view, one of the most
exciting advances in this literature is the development of methods for combining theo-
retical and statistical analysis in order to learn about the primitive features of an auction
environment from observed bidding behavior. We have focused our discussion on non-
parametric identification, in part because this makes transparent how the relationships
derived from theory can be used to make valid inferences from data. We hope that this
chapter will be a valuable reference and starting point for researchers who will apply
and expand upon these methods to explore the wide range of open questions in the
future.

117 This concept relaxes the common knowledge assumption of Nash equilibrium, but requires that bidders
best-respond to beliefs that are consistent with the equilibrium distribution of outcomes that is observable to
the bidders. For example, the bidders might observe the distribution of transactions prices, or the distribution
of all bids.
118 Furthermore, this alternative to the standard common knowledge assumption may be an interesting pos-
sibility to explore in an empirical model.
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Abstract

We study structural models of stochastic discount factors and explore alternative meth-
ods of estimating such models using data on macroeconomic risk and asset returns.

Particular attention is devoted to recursive utility models in which risk aversion can
be modified without altering intertemporal substitution. We characterize the impact of
changing the intertemporal substitution and risk aversion parameters on equilibrium
short-run and long-run risk prices and on equilibrium wealth.
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1. Introduction

Households save and invest both for intertemporal reasons and to control exposure to
risk. The resulting patterns of consumption, savings and investment, at both the house-
hold and the aggregate level, reveal information about the parameters of preferences that
govern intertemporal substitution and risk aversion. Prices that clear financial markets
must also reflect the demands of investors and hence are affected by their preferences. In
this way security market data convey information from asset prices that complements
that from microeconomic data sets, from experimental evidence, or from survey evi-
dence. An important aim of this chapter is to understand better how changes in investor
preferences alter asset prices. This guides our understanding of the consequences of in-
puts from external data sources and the value of asset market data for revealing investor
preferences.

Risk premia in security returns provide compensation for risk averse investors. These
risk premia often have simple characterizations. For instance, in the capital asset pricing
model (CAPM), risk premia are proportional to the covariances between the return to
the aggregate wealth portfolio and asset returns. More generally, in the consumption-
based capital asset pricing model (CCAPM) the covariance between consumption and
asset returns determines the riskiness of returns. Since the dynamics of consumption are
linked to the dynamics of wealth, this model implies that understanding the riskiness of
the wealth of investors is ultimately important in understanding security returns. This
linkage is heavily influenced by the assumed form of investor preferences.

While asset market data offer fertile proving ground for theories of investor behavior
and market structure, this data source also poses special challenges or puzzles. In the
case of the CAPM, differences across securities in the measured covariance of returns
with aggregate stock market indices have been shown to have little relationship with av-
erage returns [see for example Fama and French (1992)]. Similarly there appears to be
very little covariance between measures of the aggregate consumption of investors, and
asset returns. The empirical results in Grossman and Shiller (1981), Hansen and Sin-
gleton (1983), Mehra and Prescott (1985), Shiller (1982) and Hansen and Jagannathan
(1991) give alternative characterizations of puzzles that emerge in the study of security
market returns and aggregate consumption. Thus, when we look to security market data
for information about preference parameters, we are exposed to the empirical challenges
posed by this source of data.

Our chapter features alternative and complementary methods of analysis for the study
of the macroeconomic underpinning of asset valuation. We describe some alternative
ways to characterize model implications, and we show how statistical methods can be
put to good use. While we apply some of these methods to illustrate substantive results,
our chapter is not intended as comprehensive of empirical evidence. Excellent surveys
with more extensive empirical discussions are given in Campbell (2003) and Lettau and
Ludvigson (2003).

Alternative specifications of investor preferences and their links to prices are given in
Sections 2 and 3. Specifically in Section 3 we show how to construct stochastic discount
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factors used in representing prices for the alternative models of investor preferences de-
scribed in Section 2. While we describe the investor preferences for an array of models,
we focus our equilibrium price calculations and quantification on a particular subset
of these preferences, the CES Kreps and Porteus (1978) model. This model is rich
enough to draw an interesting distinction between risk aversion and intertemporal sub-
stitution and to pose important measurement and econometric challenges. Some basic
statistical methods for characterizing present-value implications as they relate to asset
pricing are developed in Section 4. Section 5 develops some analytical results and local
approximations designed to reveal how intertemporal substitution and risk aversion al-
ter equilibrium prices. Section 6 uses vector-autoregressive (VAR) statistical models to
measure risk aversion from a heterogenous set of asset returns and quantifies the result-
ing statistical uncertainty. Section 7 develops generalized method of moments (GMM)
and related estimation methods and illustrates their use in extracting measures of in-
tertemporal substitution and risk aversion. These latter sections add some important
qualifications to the existing empirical literature.

2. Investor preferences

In this section we survey a variety of models of investor preferences that are used in the
literature. These specifications of investor preferences imply, through their intertempo-
ral marginal rates of substitution, stochastic discount factors that represent risk prices
and interest rates. This discussion is complementary to the Backus, Routledge and Zin
(2004) survey of exotic preferences pertinent to macroeconomics. As in what follows,
they provide alternative specifications of intertemporal and risk preferences.1

Recursive utility gives a useful framework for parameterizing risk aversion and in-
tertemporal substitution. As advocated by Epstein and Zin (1989a) and Constantinides
(1990), it gives a convenient way to introduce parameters that serve distinct roles in
decision making. Let {Ft : t � 0} denote the sequence of conditioning information
sets (sigma algebras) available to an investor at dates t = 0, 1, . . . . Adapted to this
sequence are consumption processes {Ct : t � 0} and a corresponding sequence of
continuation values {Vt : t � 0} associated with this consumption process. The date t

components Ct and Vt are restricted to be in the date t conditioning information set.2

The continuation values are determined recursively and used to rank alternative con-
sumption processes.

Consider three approaches. The first approach takes a risk adjustment of the contin-
uation value; the second approach introduces intertemporal complementarities; and the
third approach social externalities.

1 While Backus, Routledge and Zin (2004) do an admirable job of describing a broad class of preference
specifications and their use in macroeconomics, the empirical challenge is how to distinguish among these
alternatives. As Hansen (2004) emphasizes, some specifications are inherently very difficult to distinguish
from one another.
2 More formally, Ct and Vt are restricted to be Ft measurable.
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2.1. Risk adjustment

Consider investor preferences that can be represented recursively as

Vt = ψ(Ct , Vt+1|Ft )

where Ct is current consumption. Given a consumption process, this recursion takes
future values and maps them into current values. It requires a terminal condition for the
continuation value to initiate a backward induction. A familiar example is:

Vt = (1 − β)U(Ct ) + βE(Vt+1|Ft )

where U is a concave utility function. This recursion is additive in expected utility. More
general depictions of recursive utility provide a way to allow for alternative adjustments
to risk and uncertainty.

2.1.1. A smooth adjustment

Following Kreps and Porteus (1978) and Epstein and Zin (1989a), introduce a strictly
increasing, smooth concave function h. In applications this function is typically

h(V ) =
{

V 1−γ −1
1−γ

, γ > 0, γ �= 1,

logV, γ = 1.

Then a risk adjusted version of the continuation value is

R(V |F)
.= h−1(E[

h(V )|F])
.

The presumption is that Vt depends on the continuation value through the risk adjust-
ment R(Vt+1|Ft ), which is a restriction on function ψ :

Vt = ψ(Ct , Vt+1|Ft ) = ψ∗[Ct ,R(Vt+1|Ft )
]
.

The function h is strictly increasing and adjusts for the riskiness of the continua-
tion value for the consumption profile {Ct+τ : τ = 1, 2, . . .}. It imposes a nontrivial
preference over lotteries indexed by calendar time. The parametric form of h gives a
convenient way to parameterize risk preferences.

Consider the special case in which the continuation value is perfectly predictable,
implying that E(Vt+1|Ft ) = Vt+1. Then R(Vt+1|Ft ) = Vt+1 so that the function h has
no bearing on the specification of preferences over perfectly forecastable consumption
plans. The incremental risk adjustment does alter the implications for intertemporal
substitution for predictable consumption plans.

Examples of ψ∗ function are as follows:

EXAMPLE 2.1.

ψ∗(C,R) = (1 − β)U(C) + βR

for some increasing concave function U .
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The concavity of U already induces some degree of risk aversion, but it also has an
impact on intertemporal substitution.

It is often convenient to work with an aggregator that is homogeneous of degree one.
Curvature in U can be offset by transforming the continuation value. In the case of a
constant elasticity of substitution (CES) specification this gives:

EXAMPLE 2.2.

ψ∗(C,R) = [
(1 − β)(C)1−ρ + β(R)1−ρ

] 1
1−ρ

for ρ > 0. The case in which ρ = 1 requires taking limits, and results in the Cobb–
Douglas specification:

ψ∗(C,R) = C1−βRβ.

The parameter ρ is the reciprocal of the elasticity of intertemporal substitution.

EXAMPLE 2.3. There is an extensive literature in control theory starting with the work
of Jacobson (1973) and Whittle (1990) on introducing risk sensitivity into control prob-
lems. Hansen and Sargent (1995) suggest a recursive version of this specification in
which

ψ∗(C,R) = U(C) + βR

as in Example 2.1 with the incremental risk adjustment given by

R(Vt+1|Ft ) = −1

θ
logE

[
exp(−θVt+1)|Ft

]
.

The parameter θ is the risk sensitivity parameter. As emphasized by Tallarini (1998),
this specification overlaps with the CES specification when ρ = 1, U(C) = logC

and θ = γ − 1. To verify this link, take logarithms of the continuation values in the
CES recursions. The logarithmic function is increasing and hence ranks of hypothetical
consumption processes are preserved.

Although it is convenient to make a risk adjustment of the continuation value, there
is an alternative transformation of the continuation value that depicts preferences as a
nonlinear version of expected utility. Let

Ṽt = h(Vt ).

Then

Ṽt = h
[
ψ∗(Ct , h

−1[E(Ṽt+1|Ft )
])] = ψ̃

[
Ct ,E(Ṽt+1|Ft )

]
.

The introduction of h can induce nonlinearity in the aggregator ψ̃ . Kreps and Porteus
(1978) use such a nonlinear aggregator to express a preference for early and late reso-
lution of uncertainty. When ψ̃ is convex in this argument there is a preference for early
resolution of uncertainty and conversely when ψ̃ is concave. We will show that the
intertemporal composition of risk also matters for asset pricing.
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2.1.2. A version without smoothness

The Epstein and Zin (1989a) recursive formulation was designed to accommodate
more fundamental departures from the standard expected utility model. This includes
departures in which there are kinks in preferences inducing first-order risk aversion.
First-order risk aversion is used in asset pricing as a device to enhance risk aversion.

Examples of applications in the asset pricing include Bekaert, Hodrick and Marshall
(1997) and Epstein and Zin (1990), but we shall feature a more recent specification
due to Routledge and Zin (2003). Routledge and Zin (2003) propose and motivate an
extension of Gul (1991)’s preferences for disappointment aversion. These preferences
are based on a different way to compute the risk adjustment to a continuation value and
induce first-order risk aversion. Continuation values are risk adjusted in accordance to

h(Ṽ ) = E[h(V )|F ] + αE
(
1{V−δṼ�0}

[
h(V ) − h(δṼ )

]|F)
which is an implicit equation in Ṽ . In this equation, 1 is used as the indicator function of
the subscripted event. The random variable h(Ṽ ) is by construction less than or equal to
the conditional expectation of h(V ) with an extra negative contribution coming because
of the averaging over the bad events defined by the threshold h(V ) � h(δṼ ). The risk
adjusted value is defined to be

R(V |F) = Ṽ .

The h function is used as a risk adjustment as in our previous construction, but the
parameters 0 < δ < 1 and α > 0 capture a notion of disappointment aversion. While
the Gul (1991) specification assumes that δ = 1, this limits the preference kink to be
on the certainty line. By allowing δ to be less than one, the disappointment cutoff is
allowed to be lower.

2.2. Robustness and uncertainty aversion

Investors may be unsure about the probability used to evaluate risks. Instead of using one
model, they may choose a family of such models. In some circumstances this also leads
to what looks like a risk adjustment in the continuation value to a consumption plan.
We illustrate this using the well-known close relationship between risk sensitivity and
robustness featured in the control theory literature starting with the work of Jacobson
(1973). As in Hansen and Sargent (1995) we may formulate this recursively as

vt = (1 − β)U(Ct )

+ min
qt+1�0, E(qt+1|Ft )=1

[
βE(qt+1vt+1|Ft ) + βθE(qt+1 log qt+1|Ft )

]
where θ is a penalization parameter and qt+1 is a random variable used to distort the
conditional probability distribution. The minimization is an adjustment for uncertainty
in the probability model, and E[qt+1(log qt+1)|Ft ] is a discrepancy measure for the
probability distortion called conditional relative entropy.
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The solution to the minimization problem is to set

qt+1 ∝ exp

(
−vt+1

θ

)
where the proportional constant is conditional on Ft and chosen so that E(qt+1|Ft ) = 1.
This solution gives an exponential tilt to the original conditional probability distribution
based on the continuation value and penalty parameter θ . Substituting this minimized
choice of qt+1 gives the recursion:

(1)vt = (1 − β)U(Ct ) + βh−1E
[
h(vt+1)|Ft

]
where

h(v) = exp(−v/θ).

Hence this setting is equivalent to assuming an exponential risk adjustment in the con-
tinuation value function.

As emphasized by Tallarini (1998), when U is the logarithmic function, we may
transform the continuation value of (1) to obtain the Cobb–Douglas recursion in Exam-
ple 2.2 with θ = 1

γ−1 and Vt = exp(vt ). Maenhout (2004) and Skiadas (2003) give a
characterization of this link in more general circumstances that include the CES spec-
ification in a continuous time version of these preferences by making the penalization
depend on the endogenous continuation value [see also Hansen (2004)].

Strictly speaking, to establish a formal link between inducing a concern about model
misspecification and a concern about risk required a special set of assumptions. These
results illustrate, however, that it may be difficult in practice to disentangle the two
effects. What may appear to be risk aversion emanating from asset markets may instead
be a concern that a conjectured or benchmark probability model is inaccurate. Risk
aversion from asset market data may be different from risk aversion in an environment
with well-defined probabilities.

There are other ways to model uncertainty aversion. Following Epstein and Schneider
(2003) we may constrain the family of probabilities period by period instead penaliz-
ing deviations. If we continue to use relative entropy, the constrained worst case still
entails exponential tilting, but θ becomes a Lagrange multiplier that depends on date
t information. The recursion must subtract off βθt times the entropy constraint. As
demonstrated by Petersen, James and Dupuis (2000) and Hansen et al. (2006), a time
invariant parameter θ may be interpreted as a Lagrange multiplier of an intertempo-
ral constraint, in contrast to the specifications advocated by Epstein and Schneider
(2003).

The challenge for empirical work becomes one estimating penalization parameters
or alternatively the size of constraints on the families of probabilities. These objects
replace the incremental risk adjustments.
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2.3. Intertemporal complementarity and social externalities

Consider next a specification with intertemporal complementarities. Introduce a habit
stock, which we model as evolving according to

Ht = (1 − λ)Ct + λHt−1

where λ is a depreciation factor and Ht is a geometric average of current and past
consumptions. In building preferences, form an intermediate object that depends on
both current consumption and the history of consumption:

St = [
δ(Ct )

1−α + (1 − δ)(Ht )
1−α

] 1
1−α

where α > 0 and 0 < δ < 1. Construct the continuation value recursively via

Vt = [
(1 − β)(St )

1−ρ + β
[
R(Vt+1|Ft )

]1−ρ] 1
1−ρ .

Alternatively, Ht may be used as a subsistence point in the construction of St as in

St = Ct − δHt .

Typically R(Vt+1|Ft ) = [E(V
1−ρ
t+1 |Ft )]

1
1−ρ , and this specification is used as a distinct

way to separate risk aversion and intertemporal substitution. Intertemporal substitution
is now determined by more than just ρ: in particular the preference parameters (δ, α)

along with ρ and the depreciation factor λ. The parameter ρ is typically featured as the
risk aversion parameter.

Preferences of this general type in asset pricing have been used by Novales (1990),
Constantinides (1990), Heaton (1995) and others. Novales used it to build an equilib-
rium model of real interest rates, but used a specification with quadratic adjustment
costs in consumption. Instead of using CES specification, Constantinides and Heaton
use Ht to shift the subsistence point in the preferences to study the return differences
between equity and bonds. It remains an open issue as to how important these various
distinctions are in practice.

When the consumer accounts for the effect of the current consumption choice on
future values of the habit stock, the habit effects are internal to the consumer. Some-
times the habit stock Ht is taken to be external and outside the control of the consumer.
The habit stock serves as a social reference point. Examples include Abel (1990) and
Campbell and Cochrane (1999).

3. Stochastic discount factors

In this section we describe how investor preferences become encoded in asset prices
via stochastic discount factors. Our use of stochastic discount factor representations
follows Harrison and Kreps (1979) and Hansen and Richard (1987) and many others.
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For the time being we focus on one-period pricing and hence one-period stochastic dis-
count factors; but subsequently we will explore multi-period counterparts. Multi-period
stochastic discount factors are built by forming products of single period stochastic dis-
count factors.

3.1. One-period pricing

Consider the one-period pricing of elements Xt+1 in a space of asset payoffs. An asset
payoff is a bundled (across states) claim to a consumption numeraire over alternative
states of the world that are realized at a future date. Thus payoffs xt+1 ∈ Xt+1 depend
on information available at t+1. Mathematically they are depicted as a random variable
in the date t + 1 conditioning information set of investors. The time t price of xt+1 is
denoted by πt (xt+1) and is in the date t information set Ft of investors.

Hansen and Richard (1987) give restrictions on the set of payoffs and prices for there
to exist a representation of the pricing function of the form

(2)E(St,t+1xt+1|Ft ) = πt (xt+1)

where Ft is the current conditioning information set which is common across investors.
These restrictions allow investors to use information available at date t to trade in fric-
tionless markets.3 The positive random variable St,t+1 is a stochastic discount factor
used to price assets. It discounts asset payoffs differently depending on the realized
state in a future time period. Consequently, this discounting encompasses both the dis-
counting of known payoffs using a risk-free interest rate and the adjustments for risk.
As argued by Harrison and Kreps (1979) and others, the existence of a positive stochas-
tic discount factor follows from the absence of arbitrage opportunities in frictionless
markets.

A common and convenient empirical strategy is to link stochastic discount factors to
intertemporal marginal rates of substitution. We illustrate this for a two-period economy,
but we will deduce formulas for dynamic economies in subsequent presentation.

EXAMPLE 3.1. Suppose that investor j maximizes the utility function

E
[
uj

(
c
j
t , c

j

t+1

)|Ft

]
by trading financial claims. Let (c̄

j
t , c̄

j

t+1) be the optimal consumption choices for
this consumer. Consider a perturbation of this consumption bundle in the direction
(c̄

j
t − rπt (xt+1), c̄

j

t+1 + rxt+1) which is parameterized by the real number r. Notice that
this change in consumption is budget neutral for all choices of r. Differentiating with

3 Hansen and Richard (1987) impose conditional second moment restrictions on payoffs and a specific form
of conditional continuity. Other conditional moment and conditional continuity restrictions can also be used
to justify this representation.
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respect to r, at the optimal choices we have

E
[
u
j

1

(
c̄
j
t , c̄

j

t+1

)|Ft

]
πt (xt+1) = E

[
u
j

2

(
c̄
j
t , c̄

j

t+1

)
xt+1|Ft

]
.

As a result

(3)E
(
M

j

t,t+1xt+1|Ft

) = πt (xt+1)

where the intertemporal marginal rate of substitution:

M
j

t,t+1
.= u

j

2(c̄
j
t , c̄

j

t+1)

E[uj

1(c̄
j
t , c̄

j

t+1)|Ft ]
.

This same argument applies to any feasible perturbation and hence (3) is applicable
to any payoff as long as the perturbation away from the optimal that we explored is
permitted. This gives a link between important economic quantities and asset prices.

Note that

E
[(
M

j

t,t+1 − Mi
t,t+1

)
xt+1|Ft

] = 0

for all investors j and i. Therefore any difference in the marginal rates of substitution
across agents are orthogonal to the payoff space Xt+1.

Suppose now that Xt+1 includes any bounded function that is measurable with respect
to a sigma algebra Gt+1 that is contained in Ft+1. Then this orthogonality implies:

E
(
M

j

t,t+1|Gt+1
) = St,t+1

for all j . The stochastic discount factor is unique if it is restricted to be measurable
with respect to Gt+1. More generally, any of the intertemporal marginal rates of substi-
tution of the investors can be used as a stochastic discount factor to depict prices. One
economically important example of the difference between Gt+1 and Ft+1 is the case
where there are traded claims to aggregate uncertainty but claims to individual risk are
not. Therefore there is limited risk-sharing in financial markets in this economy.4

Suppose that investors can trade contracts contingent on any information that is avail-
able as of date t+1. Further suppose that these investors do not face any trading frictions
such as transactions costs or short-sale constraints. Under this complete market specifi-
cation Gt+1 = Ft+1 and Ft+1 includes all individuals’ information. In this case

M
j

t,t+1 = St,t+1

and St,t+1 is unique. The marginal rates of substitution are equated across investors.
For pedagogical simplicity we compute shadow prices. That is we presume that

consumption is fixed at some determined process. Subsequently, we will have to add
specificity to this process, but for the time being we remain a bit agnostic. It can be
the outcome of a decentralized production economy, but we place production consider-
ations on the back burner.

4 See, for example, Constantinides and Duffie (1996).
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3.2. CES benchmark

Consider an economy with complete markets and investors with identical preferences
of this CES type. In what follows we will use the common preference specification
to deduce a formula for the stochastic discount factor. For the recursive utility model
with a CES specification, it is convenient to represent pricing in two steps. First we
value a contingent claim to next period’s continuation value. We then change units from
continuation values to consumption by using the next-period marginal utility for con-
sumption. In all cases, marginal utilities are evaluated at aggregate consumption. The
CES specification makes these calculations easy and direct.

Because the CES recursion is homogeneous of degree one in its arguments, we can
use Euler’s Theorem to write

(4)Vt = (MCt )Ct + E
[
(MV t+1)Vt+1|Ft

]
.

Claims to future continuation values Vt+1 can be taken as substitutes for claims to fu-
ture consumption processes. When current consumption be the numeraire, equilibrium
wealth is given by Wt ≡ Vt/MCt . Divide (4) by MCt to obtain a recursive expression
for wealth:

Wt = Ct + E[St,t+1Wt+1|Ft ].
The marginal utility of consumption is

MCt = (1 − β)(Ct )
−ρ(Vt )

ρ,

and the marginal utility of next-period continuation value is

(5)MV t+1 = β(Vt+1)
−γ

[
R(Vt+1|Ft )

]γ−ρ
(Vt )

ρ.

Forming the intertemporal marginal rate of substitution gives

St,t+1 = β

(
Ct+1

Ct

)−ρ[
Vt+1

R(Vt+1|Ft )

]ρ−γ

.

When we incorporate kinks in preferences as in setting suggested by Routledge and
Zin (2003), the marginal utility of next-period continuation value is

MV t+1 = β(Vt+1)
−γ

[
R(Vt+1|Ft )

]γ−ρ
(Vt )

ρ

×
[

1 + α1{Vt+1�δR(Vt+1|Ft )}
1 + δ1−γ αE(1{Vt+1�δR(Vt+1|Ft )}|Ft )

]
.

Combining these terms, the one-period intertemporal marginal rate of substitution is

St,t+1 = β

(
Ct+1

Ct

)−ρ[
Vt+1

R(Vt+1|Ft )

]ρ−γ

×
[

1 + α1{Vt+1�δR(Vt+1|Ft )}
1 + δ1−γ αE(1{Vt+1�δR(Vt+1|Ft )}|Ft )

]
.



3980 L.P. Hansen et al.

The stochastic discount factor depends directly on current consumption, and indirectly
on future consumption through the continuation value.

We now consider some special cases of the CES version of the Kreps–Porteus model:

EXAMPLE 3.2. Let ρ = γ and α = 0. Then the contribution to the continuation value
drops out from the stochastic discount factor. This is the model of Lucas (1978) and
Breeden (1979).

EXAMPLE 3.3. Consider the special case with ρ = 1 and α = 0, but allow γ to
be distinct from one. Then the counterpart to the term

( Vt+1
Rt (Vt+1|Ft )

)ρ−γ entering the
stochastic discount factor is

(Vt+1)
1−γ

E[(Vt+1)1−γ |Ft ] .

Notice that this term has conditional expectation equal to unity.

EXAMPLE 3.4. Consider the special case in which γ = 1 and α = 0, but allow ρ to be
distinct from one. In this case the counterpart to the term

( Vt+1
Rt (Vt+1|Ft )

)ρ−γ entering the
stochastic discount factor is[

Vt+1

expE(logVt+1|Ft )

]ρ−1

.

The logarithm of this term has expectation zero.

4. Empirical observations from asset returns

Time series observations of asset returns and consumption are needed to identify the
parameters governing the preferences of consumers. The stochastic discount factor
developed in Section 3 and its implications for security prices impose a set of joint
restrictions on asset prices and consumption. Before analyzing these restrictions, we
first display some important empirical regularities from asset markets alone. Besides
standard sample statistics for asset returns we also examine some standard decompo-
sitions of prices. These are based on a log-linear approximation and the present-value
relationship.

This decomposition was proposed by Campbell and Shiller (1988a, 1988b) and
Cochrane (1992). The methods have been used extensively in the finance literature
to summarize statistical evidence about dividend–price ratios, dividend growth and
returns. We develop these methods and show their link to related work in the macro-
economics literature by Hansen, Roberds and Sargent (1991). We then apply these
decompositions to an important set of test assets.
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4.1. Log linear approximation and present values

The price of a security at time t is given by Pt . The return to this security from time t

to time t + 1 is determined by the cash flow received at time t + 1, denoted Dt+1 and
the price of the security at time t + 1, denoted Pt+1. The return is given by

(6)Rt+1 = Dt+1 + Pt+1

Pt

=
(
Dt+1

Dt

)(
1 + Pt+1/Dt+1

Pt/Dt

)
.

The cash flow, Dt+1 is the dividend in the case of stocks or a coupon in the case of
bonds. Although many individual companies do not pay dividends, our empirical analy-
sis is based on the analysis of portfolios of stocks and these dividends will be positive.

This allows us to take logarithms of (6). Using lower case letters to denote logarithms
of each variable we have

(7)rt+1 = (dt+1 − dt ) − (pt − dt ) + log
[
1 + exp(pt+1 − dt+1)

]
.

We view this as a difference equation for the logarithm of the price–dividend ratio with
forcing processes given by the returns and dividend growth rate. The use of returns as
a forcing process allow us to deduce some statistical restrictions. The valuation models
of Section 3 determine both the prices and the returns endogenously.

To make (7) a linear difference equation, consider the approximation

(8)

log
[
1 + exp(pt+1 − dt+1)

] ≈ log
[
1 + exp(μp−d)

] + κ(pt+1 − dt+1 − μp−d)

where

κ = exp(μp−d)

1 + exp(μp−d)
< 1

and μp−d is a constant centering point for the linearization. This point is usually taken
to be the mean of the logarithm of the price–dividend ratio which will be different for
alternative cash flows because of differences in cash flows and discount rates.

Substitute approximation (8) into the difference equation (7) and rearrange terms:

(9)pt − dt = (dt+1 − dt ) − rt+1 + κ(pt+1 − dt+1) + c

where

c = log
[
1 + exp(μp−d)

] − κμp−d .

For the remainder of this section, we will ignore the approximation error and treat (9)
as the difference equation of interest.

Solving (9) forward gives

pt − dt =
∞∑
j=0

(κ)j [dt+j+1 − dt+j − rt+j+1] + c

1 − κ
.
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Notice that the constant term in this solution satisfies the approximation

c

1 − κ
≈ μp−d .

4.1.1. Moving-average models

The implications of the linear difference equation for returns will be examined using
simple linear time series models. We therefore assume that there is a first-order Markov
process for a state vector xt where the dynamics are given by

(10)xt+1 = Axt + Bwt+1

where {wt+1: t = . . . , 0, 1, . . .} is a sequence of iid normally distributed random vec-
tors with E[wt+1] = 0 and E(wt+1w

′
t+1) = I . The matrix A is assumed to have

eigenvalues with absolute values less than 1. This assumption implies a stochastic steady
state for xt where xt is a moving-average of current and past shocks:

xt =
∞∑
j=0

AjBwt−j =
∞∑
j=0

AjBLjwt ≡ A(L)wt

where L denotes the “lag” operator.
Dividends, returns and prices are linked to the state vector xt via

dt+1 − dt = μd + Gdxt + Hdwt+1,

rt+1 = μr + Grxt + Hrwt+1,

pt − dt = μp−d + Gp−dxt .

The present-value model implies restrictions on this representation, which we now ex-
plore. We will derive these restrictions in two ways. Substitute these depictions into (9)
and obtain:

Gp−dxt = (Gd − Gr + κGp−dA)xt ,

0 = (Hd − Hr + κGp−dB)wt+1.

Since these restrictions must hold for all realized values of xt and wt+1, these two equa-
tions restrict directly the representation for dividends, returns and the price–dividend
ratio.

To obtain an alternative perspective on these restrictions, we use the implied moving-
average representations. In stochastic steady state, dividends and returns satisfy

dt+1 − dt = δ(L)wt+1 + μd,

rt+1 = ρ(L)wt+1 + μr,

pt − dt = π(L)wt + μp−d,
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where

δ(z) =
∞∑
j=0

δj z
j ,

∞∑
j=0

|δj |2 < ∞,

ρ(z) =
∞∑
j=0

ρj z
j ,

∞∑
j=0

|ρj |2 < ∞,

π(z) =
∞∑
j=0

πjz
j ,

∞∑
j=0

|πj |2 < ∞.

The variable z is introduced so that we may view δ(z), ρ(z), π(z) as power series. They
are sometimes referred to as the z-transforms of the moving-average coefficients. The
coefficients of the power series are the moving-average coefficients. The power series
converge at least on the domain |z| < 1.

In this case, the coefficients of the power series δ(z) and ρ(z) are given by

δ0 = Hd, ρ0 = Hr,

δj = GdA
j−1B, ρj = GrA

j−1B.

Hence

δ(z) = Hd + zGd(I − zA)−1B,

ρ(z) = Hr + zGr(I − zA)−1B.

Difference equation (9) implies that

(11)zπ(z) = δ(z) − ρ(z) + κπ(z).

This is an equation that restricts the moving average coefficients. We may evaluate these
functions at z = κ:

κπ(κ) = δ(κ) − ρ(κ) + κπ(κ).

This implies that

(12)δ(κ) = ρ(κ).

Using the power series representation of ρ and δ, this implies that the discounted (by κ)
impulse responses for returns and cash flow growth rates must be equal. This is the
present-value–budget-balance restriction of Hansen, Roberds and Sargent (1991). This
restriction is necessary in order that the future shocks to cash flow growth rates and to
returns net out so that the price–dividend ratio only depends on current and past shocks.

Under the Markov representation of the state variable xt , the restriction

ρ(κ) = δ(κ)
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becomes

Hr + κGr(I − κA)−1B = Hd + κGd(I − κA)−1B.

The moving average representation for the price–dividend ratio is obtained by solving
Equation (11) for π :

(13)π(z) = δ(z) − ρ(z)

z − κ
.

Because of the denominator term, the right-hand side looks like it explodes at z = κ .
This is not the case, however. The numerator is also zero at z = κ . After dividing
out the common zero at κ , π will have a well-defined power series for |z| < 1, and
formula (13) for π(z) is a valid formula for the z-transform of the moving-average
coefficients. Performing this division is consistent with the formula

Gp−d = (Gd − Gr)(I − κA)−1

used in representing the price–dividend ratio.
This “solution” is a bit unusual. It takes returns and dividend growth as given and

solves for the price–dividend ratio. A structural asset pricing model does in fact have
different primitives. Even when cash flows are given exogenously, returns and price–
dividend ratios are both determined endogenously. The rationale for “solving” the model
in this manner is instead a way to allow for prices or returns to reveal additional in-
formation used by investors to forecast future cash flows. It is a restriction imposed
on a moving-average representation of the shocks that are pertinent to the investors’
decision-making.

4.1.2. Decompositions

This solution for π is often used to motivate empirical decompositions of prices and
measurement of return risk.

1. Return decomposition. The risk in returns from time t to time t + 1 is captured by
the term ρ0wt+1. Since ρ(κ) = δ(κ),

ρ0 = δ(κ) −
∞∑
j=1

κjρj .

Hence one period exposure to risk has both a discounted cash flow component and
a component due to return predictability. When return predictability is not very
strong, the discounted impact of shocks on future dividends is the most important
source of risk. In addition if κ is close to one, δ(κ) measures the accumulated
impact of current shocks on dividends far into the future. This measure of long-run
risk is featured in the work of Bansal, Dittmar and Lundblad (2005) and Hansen,
Heaton and Li (2005).
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2. Price–dividend decomposition. Using ρ(κ) = δ(κ), express π as

π(z) =
[
δ(z) − δ(κ)

z − κ

]
−

[
ρ(z) − ρ(κ)

z − κ

]
.

The first term is the discounted expected future cash flow growth and the second is
the discounted expected future returns both net of constants. This decomposition
is used to measure the importance of discounted cash flows in accounting for
variation in the price–dividend ratio. This decomposition was originally proposed
by Campbell and Shiller (1988a, 1988b).

4.1.3. Identifying shocks

For the restriction on the joint dynamics of returns, dividends and prices to be testable,
we must be able to identify shocks. Vector autoregressive (VAR) methods are commonly
used in conjunction with other restrictions to identify shocks. Hansen, Roberds and
Sargent (1991) show that there is a tension, however, between the use of VAR methods
to identify shocks and the present-value-budget-balance implications that are imposed
in the log-linear model.

Let yt be a vector of observables with moving average representation:

yt+1 = B(L)wt+1 + μy.

To construct wt+1 from yt+1, yt , . . . requires that B(z) be of full rank for |z| < 1. In
vector autoregressive applications, it is typically assumed that y and w have the same
number of entries. In this case B(z) must be nonsingular for z < 1, and, in particular,
B(κ) must be nonsingular. If yt+1 contains dt+1 − dt and rt+1 as the first two entries,
then δ(κ) = ρ(κ) implies that

[ 1 −1 0 ]B(κ) = 0

which violates the restriction that B(z) be nonsingular. Returns do not contain enough
information to reveal shocks along with dividend growth. This is the dividend-return
counterpart to a claim established in Hansen, Roberds and Sargent (1991), and it gives
a warning against using VAR methods in conjunction with dividends and returns alone.

Let yt+1 include cash flow growth rates dt+1 − dt and the price–dividend ratio
pt+1 − dt+1. Given the implied moving-average representations from a state-space
model or a VAR form:

pt − dt = π(L)wt + μp−d,

dt+1 − dt = δ(L)wt+1 + μd.

In this case construct the moving-average representation for the approximate return via

rt+1 = ρ(L)wt+1 + μr

where ρ(z) = δ(z) + (κ − z)π(z). This necessarily satisfies the present-value restric-
tion (12). Thus we sidestep the informational inconsistency mentioned previously by
using prices to reveal shock components instead of returns.
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4.2. Test assets

To illustrate the construction of these returns we use the prices, returns and dividends
constructed from six portfolios. The portfolios returns and dividends are constructed as
in Hansen, Heaton and Li (2005).

The first portfolio is a market portfolio of stocks traded on the NYSE and NASDAQ.
The other portfolios are constructed by sorting stocks on the basis of book value relative
to market value of equity as in Fama and French (1992). Five portfolios with equal
numbers of stocks in each portfolio are constructed from the entire universe of stocks.
Dividends are then constructed from the return series for each portfolio with and without
dividends. This construction is done on a quarterly basis from 1947 to 2005. Because of
the pronounced seasonality in dividends, dividends are smoothed over a year. Details of
the data construction can be found in Hansen, Heaton and Li (2005).

Table 1 reports summary statistics for the five book-to-market portfolios (portfo-
lios “1” through “5”). Notice that portfolio 1 has the lowest average book-to-market
value (B/M) and the highest average price–dividend ratio (P/D) and the lowest average
return. Moving from portfolio 1 to portfolio 5, the average book-to-market value in-
creases, the average price–dividend ratio declines and the average return increases. As
we will see in Section 6, differences in the average returns are not explained by exposure
to contemporaneous covariance with consumption.

Table 1
Properties of portfolios sorted by book-to-market

Portfolio

1 2 3 4 5 Market

One-period exp. return (%) 6.79 7.08 9.54 9.94 11.92 7.55
Long-run return (%) 8.56 8.16 10.72 10.84 13.01 8.77
Avg. B/M 0.32 0.61 0.83 1.10 1.80 0.65
Avg. P/D 51.38 34.13 29.02 26.44 27.68 32.39

Notes. Data are quarterly from 1947 Q1 to 2005 Q4 for returns and annual from 1947 to 2005 for B/M ratios.
Returns are converted to real units using the implicit price deflator for nondurable and services consumption.
Average returns are converted to annual units using the natural logarithm of quarterly gross returns multiplied
by 4. “One-period exp. return,” we report the predicted quarterly gross returns to holding each portfolio
in annual units. The expected returns are constructed using a separate VAR for each portfolio with inputs
(ct −ct−1, et −ct , rt ) where rt is the logarithm of the gross return of the portfolio. We imposed the restriction
that consumption and earnings are not Granger caused by the returns. One-period expected gross returns are
calculated conditional on being at the mean of the state variable implied by the VAR. “Long-run return”
reports the limiting value of the logarithm of the expected long-horizon return from the VAR divided by the
horizon. “Avg. B/M” for each portfolio is the average portfolio book-to-market over the period computed
from COMPUSTAT. “Avg. P/D” gives the average price–dividend for each portfolio where dividends are in
annual units.
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4.2.1. Vector autoregression

We first consider a statistical decomposition of the price–dividend ratio for each portfo-
lio using vector autoregressions. To do this let

yt ≡
[
dt − dt−1

pt − dt

]
.

We fit a VAR of the form

yt = A0 + A1yt−1 + · · · + Alyt−l + Bwt

where the two-dimensional shock vector wt has mean zero and covariance matrix I .
Further A0 is two-dimensional, the matrices Aj , j = 1, 2, . . . , l, and B are two by two.
We further impose the normalization that B is lower triangular so that the second shock
(the second element of wt ) does not impact dividend growth contemporaneously.

This VAR implies linear dynamics for the Markov process xt . To see this, let

μ ≡ E(yt ) = (I − A1 − · · ·Al)
−1A0

and

y∗
t ≡ yt − μ.

Then xt is given by

xt ≡

⎡⎢⎢⎢⎣
y∗
t

y∗
t−1
...

y∗
t−l

⎤⎥⎥⎥⎦ , G ≡

⎡⎢⎢⎢⎣
A1A2· · ·Al

I 0 · · · 0
...
. . .

...
...

0 · · · I 0

⎤⎥⎥⎥⎦ and H ≡

⎡⎢⎢⎢⎣
B

0
...

0

⎤⎥⎥⎥⎦ .

For each portfolio we estimate a VAR with l = 5 and consider the properties of
portfolio cash flows and prices using estimated impulse response functions.

Figure 1 reports the impulse response functions for the market. The top panel of
the figure reports the response of the level of log dividends to the two shocks. The
first shock has an immediate effect on dividends and then the response builds going
forward. The second shock has a very small effect on dividends. The second panel of
the figure reports the response of the log price–dividend ratio to the shocks. Notice that
the first shock has a very little effect on the price–dividend ratio, while the second shock
increases the price–dividend ratio and the impact persists for many periods. The pattern
of responses indicates that the two shocks can be labeled as a dividend shocks and a
separate price–dividend shock. Shocks to the price–dividend ratio are long-lasting and
have little ability to forecast future dividends. This reflects the well-known inability of
the price–dividend ratio at the aggregate level to forecast future dividends.

The bottom panel of Figure 1 reports the implied response of returns to the two
shocks. To better understand the effects of the shocks, the results are reported for the
cumulative impact of the shocks on returns. Notice that the dividend shock (shock 1)
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Figure 1. Impulse response functions for the market portfolio. Top panel: response of log dividends to shocks.
Middle panel: response of the log price–dividend ratio to shocks. Bottom panel: response of returns to shocks.

— depicts impulse responses to the first shock. – · – depicts impulse responses to the second shock.

has little effect on returns while the price–dividend shock has an initial positive impact
on returns followed by a slowly building negative impact on returns in the future. For
the market portfolio, variation in the price–dividend ratio has some predictive ability
for future returns, while variation in dividends that have no effect on prices, has little
ability to forecast future returns.

These results are interpreted by Campbell and Shiller (1988a, 1988b) and others as
implying that variation in future returns is the most important factor explaining variation
in the price–dividend ratio. Further this variation is empirically independent of varia-
tion in future dividends. This implies that for this aggregate portfolio variation in the
price–dividend ratio must be driven by required returns. This has potentially important
implications for the stochastic discount factor of Section 3.

The corresponding impulse response functions for portfolios 1 and 5 are reported in
Figures 2 and 3, respectively. Notice that for these portfolios the labeling of the two
shocks as dividend and return shocks is not clear. For example, shocks to dividends
now have an ability to forecast future returns. As portfolio returns and dividends are
disaggregated, the predictability of dividends rises. This fact is emphasized in the work
of Vuolteenaho (2002).
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Figure 2. Impulse response functions for the portfolio 1. Top panel: response of log dividends to shocks.
Middle panel: response of the log price–dividend ratio to shocks. Bottom panel: response of returns to shocks.

— depicts impulse responses to the first shock. – · – depicts impulse responses to the second shock.

5. Intertemporal substitution and pricing

To understand how investor preference parameters and the stochastic environment in-
fluence asset prices, we explore further the solution of the CES version of the Kreps–
Porteus model for fixed, prespecified consumption process as in a Lucas-style endow-
ment economy. We derive some approximation results where we approximate around
a unitary intertemporal substitution parameter ρ = 1 for an arbitrary value of γ > 0.
Thus we feature the role of this parameter in our characterizations. As in Restoy and
Weil (1998) consumption dynamics plays a central role in these characterizations. For
some specifications of consumption dynamics we obtain a structural model of the type
analyzed in Section 4.

Our expansion in ρ follows in part the work of Kogan and Uppal (2001).5 The
economy we study is different from that of Kogan and Uppal (2001), but they sug-
gest that extensions such as those developed here would be fruitful. By approximating
around ρ, we are approximating around a stochastic economy with a constant consump-
tion wealth ratio. As we will see, the ρ = 1 limit economy leads to other less dramatic

5 Our ρ derivatives will be heuristic in the sense that we will not provide a rigorous development of their
approximation properties.
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Figure 3. Impulse response functions for the portfolio 5. Top panel: response of log dividends to shocks.
Middle panel: response of the log price–dividend ratio to shocks. Bottom panel: response of returns to shocks.

— depicts impulse responses to the first shock. – · – depicts impulse responses to the second shock.

simplifications that we exploit in characterizing asset prices and risk premia. The sim-
plifications carry over the ρ derivatives that we calculate for asset prices and returns.
While Campbell and Viceira (2002, Chapter 5) show the close connection between ap-
proximation around the utility parameter ρ = 1 and approximation around a constant
consumption-wealth ratio for portfolio problems, there are some interesting differences
in our application. Moreover, ρ = 1 is inconveniently ruled out in the parameterization
of recursive utility considered by Restoy and Weil (1998) and others because of their
use of the return-based Euler equation.

We consider first a family of discrete-time economies with log-linear consumption
dynamics indexed by ρ. When we introduce stochastic volatility in consumption, we
find it more convenient to explore a family of economies specified in continuous time.
We illustrate these economies using some parameter values extracted from existing re-
search.

5.1. Discrete time

The initial step in our calculation is the first-order expansion of the continuation values
in the parameter ρ. Let vρ

t denote the logarithm of the continuation value for intertempo-
ral substitution parameter ρ, and let ct denote the logarithm of consumption. We rewrite
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the CES recursion as

(14)v
ρ
t = 1

1 − ρ
log

[
(1 − β) exp

[
(1 − ρ)ct

] + β exp
[
(1 − ρ)Qt

(
v
ρ
t+1

)]]
,

where Qt is

Qt (vt+1) = 1

1 − γ
logE

(
exp

[
(1 − γ )vt+1

]|Ft

)
.

When ρ = 1 this recursion simplifies to

(15)v1
t = (1 − β)ct + βQt

(
v1
t+1

)
.

5.1.1. Continuation values

We compute the first-order expansion

v
ρ
t ≈ v1

t + (ρ − 1)Dv1
t

where v1
t is the continuation value for the case in which ρ = 1 and the notation D

denotes the differentiation with respect to ρ. We construct an approximate recursion
for Dv1

t by expanding the logarithm and exponential functions in (14) and including up
to second-order terms in ct and Qt . The approximate recursion is:

(16)v
ρ
t ≈ (1 − β)ct + βQt

(
v
ρ
t+1

) + β(1 − ρ)(1 − β)
[Qt (v

ρ
t+1) − ct ]2

2
.

As is evident from (15), this approximation is exact when ρ = 1.
Our aim is to construct an exact recursion for the derivative of vt with respect to ρ.

One way to do this is to differentiate directly (14). It is simpler to differentiate the
approximate recursion (16) for the logarithm of the continuation value vt with respect
to ρ. This is valid because the approximation error in the recursion does not alter the
derivative with respect to ρ. Performing either calculation gives

Dv1
t = −β(1 − β)

[Qt (v
1
t+1) − ct ]2

2
+ βE∗(Dv1

t+1|Ft

)
(17)= − (1 − β)(v1

t − ct )
2

2β
+ βE∗(Dv1

t+1|Ft

)
where E∗ is the distorted expectation operator associated with a Radon–Nikodym deriv-
ative

(18)Mt,t+1 = exp[(1 − γ )v1
t+1]

E(exp[(1 − γ )v1
t+1]|Ft )

.

The Radon–Nikodym derivative is a measure-theoretic notion of a derivative. Since
Mt,t+1 is a positive random variable with conditional expectation one, it induces a dis-
torted probability by scaling random variables. For instance, the distorted expectation



3992 L.P. Hansen et al.

of a random variable is

E∗(zt+1|Ft ) = E(Mt,t+1zt+1|Ft ).

Solving recursion (17) forward gives the derivative Dv1
t . This derivative is necessarily

negative. By using the distorted expectation operator E∗ to depict the recursion for Dv1
t ,

the recursion has a familiar form that is convenient for computing solutions.
To implement this approach we must compute v1

t and the distorted conditional expec-
tation E∗, which will allow us to the solve (17) for Dv1

t . Later we give some examples
when this is straightforward.

5.1.2. Wealth expansion

When ρ is different from one, the wealth–consumption ratio is not constant. Write

Wt = V
ρ
t

(1 − β)(Ct )−ρ(V
ρ
t )ρ

= (Ct )
ρ(V

ρ
t )1−ρ

1 − β
.

A first-order expansion of the continuation value implies a second-order expansion of
the wealth–consumption ratio. This can be seen by taking logarithms and substituting
in the first-order approximation for the continuation value:

logWt − logCt = − log(1 − β) + (1 − ρ)
[
v1
t − ct + (ρ − 1)Dv1

t

]
(19)= − log(1 − β) − (ρ − 1)

(
v1
t − ct

) − (ρ − 1)2Dv1
t .

The first-order term of (19) compares the logarithm of the continuation value for
ρ = 1 with the logarithm of consumption. The continuation value is forward looking
and time varying. Thus when future looks good relative to the present, the term v1

t − ct
can be expected to be positive. When the intertemporal elasticity parameter ρ exceeds
one, the first-order term implies that a promising future relative to the present has an
adverse impact on equilibrium wealth and conversely when ρ is less than one. As we
will see, the term v1

t is very similar to (but not identical to) the term typically used when
taking log-linear approximations.6

By construction, the second-order term adjusts the wealth–consumption ratio in a
manner that is symmetric about ρ = 1, and it is always positive.

5.1.3. Stochastic discount factor expansion

Consider next the first-order expansion of the logarithm of the stochastic discount factor:

s
ρ
t+1,t ≈ s1

t+1,t + (ρ − 1)Ds1
t+1,t .

6 In log-linear approximation the discount rate in this approximation is linked to the mean of the wealth
consumption ratio. In the ρ expansion, the subjective rate of discount is used instead.
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Recall that the log discount factor is given by

s
ρ
t+1,t = logβ − ρ(ct+1 − ct ) + (ρ − γ )

[
v
ρ
t+1 − Qt

(
v
ρ
t+1

)]
.

Differentiating with respect to ρ gives

Ds1
t+1,t = −(ct+1 − ct ) + [

v1
t+1 − Qt

(
v1
t+1

)]
(20)+ (1 − γ )

[
Dv1

t+1 − E∗(Dv1
t+1|Ft

)]
.

Thus we obtain the approximation:

s
ρ
t,t+1 ≈ s1

t,t+1 + (ρ − 1)Dst+1,t

= logβ − ρ(ct+1 − ct ) + (ρ − γ )
[
v1
t+1 − Qt (v

1
t+1)

]
+ (1 − γ )(ρ − 1)

[
Dv1

t+1 − E∗(Dv1
t+1|Ft )

]
.

This shows how changes in ρ alter one period risk prices. For instance consider approx-
imating one period prices of contingent claim zt+1 to consumption:

E
[
exp

(
s
ρ
t,t+1

)
zt+1|Ft

] = E
[
exp

(
s1
t,t+1

)
zt+1|Ft

]
+ (ρ − 1)E

[
exp

(
s1
t,t+1

)
Dst,t+1zt+1|Ft

]
.

We will explore the ramifications for local risk prices subsequently when we consider a
continuous time counterpart to these expansions. This will provide us with formulas for
how ρ alters risk premia.

5.1.4. Log-linear dynamics

To show how the previous formulas can be applied, consider the following evolution for
consumption in the log linear Markov economy:

xt+1 = Axt + Bwt+1,

ct+1 − ct = μc + G′xt + H ′wt+1,

where {wt+1: t = 0, 1, . . .} is an iid sequence of standard normally distributed random
vectors. Recall that for ρ = 1, the continuation value must solve

v1
t = (1 − β)ct + βQt

(
v1
t+1

)
.

Conjecture a continuation value of the form

v1
t = Uv · xt + μv + ct .

Given this guess and the assumed normality,

Qt (v
1
t+1) = U ′

vAxt + μc + μv + G′xt + ct + 1 − γ

2

∣∣U ′
vB + H ′∣∣2

.
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Thus

Uv = βA′Uv + βG

and

μv = β

[
μc + μv + 1 − γ

2

∣∣U ′
vB + H ′∣∣2

]
.

Solving for Uv and μv ,

Uv
.= β(I − βA′)−1G,

(21)μv
.= β

1 − β

[
μc + (1 − γ )

2

∣∣H ′ + βG′(I − Aβ)−1B
∣∣2

]
.

For ρ = 1 the formulas for the continuation value have simple interpretations. The
formula for Uv is also the solution to the problem of forecasting the discounted value of
future consumption growth:

Uv · xt =
∞∑
j=1

βjE(ct+j − ct+j−1 − μc|xt )

= (1 − β)

∞∑
j=1

βjE(ct+j |Ft ) − βct −
(

β

1 − β

)
μc.

Therefore,

v1
t = (1 − β)

∞∑
j=0

βjE(ct+j |Ft ) + β(1 − γ )

2(1 − β)

∣∣H ′ + βG′(I − Aβ)−1B
∣∣2
.

The log of the continuation value is a geometric weighted average of logarithms of cur-
rent and future consumption using the subjective discount factor in the weighting. In
addition there is a constant risk adjustment. When consumption growth rates are pre-
dictable, they will induce movement in the wealth–consumption ratio as reflected in
formula (19). The coefficient on the first-order term in ρ−1 compares the expected dis-
counted average of future log consumption to current log consumption. If this geometric
average future consumption is higher than current consumption and ρ exceeds one,
the optimistic future induces a negative movement in the wealth–consumption ratio.
Conversely a relatively optimistic future induces a positive movement in the wealth–
consumption ratio when ρ is less than one.

The constant risk correction term

β(1 − γ )

2(1 − β)

∣∣H ′ + βG′(I − Aβ)−1B
∣∣2

entering the continuation value is negative for large values of γ . Consequently, this
adjustment enhances the wealth consumption ratio when ρ exceeds one. In the log-
linear consumption dynamics, this adjustment for risk induced by γ is constant. An
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important input into this adjustment is the vector

(22)H + βB ′(I − βA′)−1G.

To interpret this object, notice that the impulse response sequence for consumption
growth to a shock wt+1 is: H ′wt+1,G

′Bwt+1,G
′ABwt+1, . . . . Then (22) gives the dis-

counted impulse response vector for consumption. It is the variance of this discounted
response vector (discounted by β) that enters the constant term of the continuation value
as a measure of the risk.

The formulas that follow provide the ingredients for the second-order adjustment in
the wealth–consumption ratio and the first-order adjustment in risk adjusted prices.

We use the formula for the continuation value to infer the distorted expectation op-
erator. The contribution of the shock wt+1 to (1 − γ )v1

t+1 is given by (1 − γ )(H +
B ′Uv)

′wt+1. Recall that wt+1 is a multivariate standard normal. By a familiar complete-
the-square argument:

exp

[
(1 − γ )(H + B ′Uv)

′w − 1

2
w′w

]
∝ exp

(
−1

2

[
w − (1 − γ )(H + B ′Uv)

]′[
w − (1 − γ )(H + B ′Uv)

])
.

The left-hand side multiplies the standard normal by the distortion implied by (18)
up to scale. The right-hand side is the density of the normal up to scale with mean
(1 − γ )(H + B ′Uv) and covariance matrix I . This latter probability distribution is the
one used for the distorted expectation operator E∗ when computing the derivative of the
continuation value. Under this alternative distribution, we may write

wt+1 = (1 − γ )(H + B ′Uv) + w∗
t+1

where w∗
t+1 is a standard normal distribution. As a consequence, consumption and the

Markov state evolve as:

xt+1 = Axt + (1 − γ )B(H + B ′Uv) + Bw∗
t+1,

ct+1 − ct = G′xt + μc + (1 − γ )H ′(H + B ′Uv) + H ′w∗
t+1.

5.1.5. Example economies

To illustrate the calculations we consider two different specifications of consumption
dynamics that include predictable components to consumption growth rates. One of
these is extracted from Bansal and Yaron (2004) but specialized to omit time variation
in volatility. Later we will explore specifications with time varying volatility after devel-
oping a continuous time counterpart to these calculations. This specification is designed
to capture properties of consumption variation of the period 1929 to 1998 and is speci-
fied at a monthly frequency. The second specification is obtained from an estimation in
Hansen, Heaton and Li (2005). In this specification quarterly post World War II data is
used. This data is described in Appendix D.
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The first specification is:

ct+1 − ct = 0.0015 + xt + [ 0.0078 0 ]wt+1,

xt+1 = 0.98xt + [ 0 0.00034 ]wt+1.

There are two shocks, one directly impacts on consumption and the second one on the
conditional mean of consumption. In the Breeden (1979)–Lucas (1978) specification
of preferences with power utility, only the first shock will have a local price that is
different from zero. In the recursive utility the second shock will also have a nonzero
price because of the role of the continuation value.

Figure 4 reports the impulse response functions for consumption in reaction to the
two shocks. The first shock by construction has a significant immediate impact that
is permanent. The second shock has a relatively small initial impact on consumption
but the effect builds to a significant level. With recursive utility this long-run impact
can produce a potentially large effect on risk prices especially since the effect can be
magnified by choice of the risk aversion parameter γ .

The second specification is inferred by fitting a vector autoregression of ct+1 − ct
and ct+1 − et+1 the logarithm of the ratio of consumption to corporate earnings. It is

Figure 4. Consumption impulse responses implied by Bansal–Yaron model. — depicts response of consump-
tion to a consumption shock. – · – depicts response of consumption to a predicted consumption shock.
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Figure 5. Approximate posterior distribution for cointegration parameter. Construction uses Box–Tiao priors
for each equation of the VAR for consumption and corporate earnings. The posterior distribution is for the

parameter λ where ct+1 − λet+1 is assumed to be stationary. The histogram is scaled to integrate to one.

important in this specification that corporate earnings and consumption are cointegrated
with a coefficient of one. Most models of aggregate growth yield this restriction. There
is also empirical support for our assumption. For example, consider Figure 5 which
reports an approximate Bayesian posterior distribution for the parameter λ where ct+1−
λet+1 is assumed to be stationary. This distribution was calculated using the technique
described in Appendix B. Notice that the distribution of λ is centered very close to one.
There is some variation around this point but it is very minor so that restricting λ = 1
is empirically grounded.

In this model there are also two shocks. We identify one as being proportional to the
one-step ahead forecast error to consumption scaled to have a unit standard deviation.
The second shock is uncorrelated with this first shock and has no immediate impact
on consumption. Figure 6 reports the estimated response of consumption to the two
shocks. Notice that both shocks induce important long-run responses to consumption
that are different from the short-run impulse. For example, the long-run response of
consumption to its own shock is almost twice the immediate response. As in the Bansal–
Yaron model, consumption has an important low-frequency component. With recursive
preferences this low-frequency component can have an important impact on risk premia.

We can identify shocks using an alternative normalization that emphasizes long-run
effects. In particular we identify one shock from the VAR that has a transient effect
with no impact on consumption in the long run. The other shock is uncorrelated with
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Figure 6. Impulse responses implied by the VAR of Hansen–Heaton–Li model. — depicts response to a
consumption shock. – · – depicts response to an earnings shock.

Figure 7. Impulse responses of consumption to permanent and temporary shocks. — depicts impulse response
to a permanent shock. – · – depicts impulse response to a temporary shock.
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Figure 8. Approximate posterior distributions for responses. The top panel gives the approximate posterior
for the immediate response to consumption and the bottom panel the approximate posterior for the long-run
response of consumption to the permanent shock. Construction uses Box–Tiao priors for each equation. The

histograms are scaled to integrate to one.
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this transient shock and has permanent consequences for consumption.7 The impulse
response function of consumption to these two shocks is displayed in Figure 7. Notice
that the long-run response to a permanent shock is almost twice the immediate response
to this shock.

Although the VAR does identify an important long-run shock to consumption, there
is substantial statistical uncertainty surrounding this estimate. To assess this uncertainty
we use the technique discussed in Appendix B. Figure 8 reports the approximate pos-
terior distributions for the immediate response of consumption to the temporary shock
along with the long-run response of consumption to a permanent shock. Notice that the
long-run response is centered at a larger value but that there is uncertainty about this
value. The short-run response is measured with much more accuracy.

5.2. Wealth and asset price variation

Pricing models need to imply significant variation in the stochastic discount factor in
order to be consistent with some important empirical regularities from financial markets.
We also see this when examining aggregate wealth and consumption.

Figure 9. Wealth–consumption ratio from 1952 to 2006.

7 This approach is an adaptation of the identification scheme advocated by Blanchard and Quah (1989).
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When ρ = 1 the ratio of consumption to wealth is constant. As we change ρ, this
ratio varies. For the alternative models of the dynamics of consumption, we examine
whether the pricing model can result in significant variation in the wealth–consumption
ratio. This is an important issue because aggregate wealth varies significantly over time
due to variation in the market value of wealth. For example in Figure 9 we plot the ratio
of wealth to consumption quarterly from 1952 to 2005. Aggregate wealth is measured as
the difference between financial wealth and financial liabilities for the household sector
of the US economy. This measure of wealth does not include other types of wealth such
as human capital.

Notice that there is significant variation in the wealth to consumption ratio. Much of
this variation is due to the variability of the market value of traded equity. For example
during the late 1990 there was a significant increase in the value of the US stock market
which resulted in a substantial increase in the wealth to consumption ratio during this
period. With the decline in equity values the wealth to consumption ratio has come back
down.

5.2.1. Wealth variation

We now examine the model’s implication for wealth when ρ differs from one. We are
interested in the effects of alternative parameter values on the predicted level of wealth,
the variation in wealth over time and the response of wealth to shocks.

Consider the implications for the wealth–consumption ratio using the dynamics
from the VAR with consumption and corporate earnings. Properties of the log wealth–
consumption ratio implied by the VAR and the CES model are given in Table 2 for γ

and β fixed at 5 and 0.991/4 respectively. Several different values of ρ are considered.
Notice that variation in ρ has a significant impact on the forecasted level of the

wealth–consumption ratio. Given a value for β this variation could be used to iden-
tify ρ based on the observed mean of the ratio. Variation in the mean of the wealth–

Table 2
Properties of the log wealth–consumption ratio

ρ

0.5 0.67 0.9 1.1 1.33 1.5

Mean 9.16 7.78 6.39 5.70 5.50 5.74
STD 0.0092 0.0060 0.0017 0.0017 0.0054 0.0079
STD w/o 2nd order term 0.0086 0.0057 0.0017 0.0017 0.0057 0.0086
Corr. with consumption 0.22 0.22 0.23 −0.23 −0.23 −0.24

Notes. The parameters γ and β are fixed at 5 and 0.991/4, respectively. Statistics are calculated via simulation
based on a times-series simulation with 60,000 draws of the random vector wt . The first 10,000 draws were
discarded.
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consumption ratio induced by ρ can be unwound by choice of β, however. Of interest
then is the effect of ρ on the dynamics of the wealth–consumption ratio.

The row “STD” reports the standard deviation of the wealth–consumption ratio which
is increasing in the difference between ρ and 1. The row below that ignores term
with (ρ − 1)2 in the expansion (19). Notice that this “second-order” term provides lit-
tle extra variation in the wealth–consumption ratio. Although variation in ρ away from
unity does produce variation in the wealth–consumption ratio, this variation is nowhere
near the size observed in the data.

The first-order term in the wealth–consumption ratio (19) indicates that shocks to
the continuation value affect the wealth–consumption ratio and the sign of the effect
depends on the value of ρ relative to 1. In the consumption dynamics estimated by HHL,
positive shocks to consumption also have positive impact on the continuation value
relative to consumption. When ρ is less than 1 this model predicts a positive covariance
between shocks to consumption and wealth. This is reflected in the last line of Table 2
which reports the correlation between the log wealth–consumption ratio and the log
consumption growth. Notice that when ρ is less than 1, this correlation is positive.
When ρ is greater than 1, this correlation is negative.

To further examine this effect we report the impulse response of the log wealth–
consumption ratio with reaction to the two shocks in the VAR in Figure 10. In con-
structing these impulse response functions we ignored the second-order terms in (19).

Consistent with the correlations between consumption growth and the wealth–
consumption ratio reported in Table 2 we see that when ρ is less than 1 a positive shock
to consumption has a positive effect on the wealth–consumption ratio. These shocks
have positive risk prices in the model and hence a claim on aggregate wealth has a
potentially significant risk premium.

The specification considered by Bansal and Yaron (2004) predicts a similar pattern
of responses to shocks. Figure 11 reports the response of wealth–consumption ratio to
a one standard deviation shock to predicted consumption. Since the first shock has no
impact on the state variable the response of wealth–consumption ratio to it is zero in this
model. Notice that as in the dynamics estimated by HHL the direction of the response of
wealth to a predicted consumption shock depends critically upon the size of ρ relative
to unity. When ρ is less than one, the wealth–consumption ratio increases with the
shock to predicted consumption. As a result this endogenous price moves positively with
consumption and the return on the wealth portfolio is riskier than under the assumption
that ρ = 1.5.

Since wealth is linked to the continuation value, observed wealth can also be used
to identify long-run shocks to consumption. We estimate a bivariate VAR for loga-
rithm consumption growth and the logarithm of the observed wealth–consumption ratio
reported in Figure 9. Figure 12 reports the estimated impulse response functions for
consumption and wealth implied by this alternative bivariate VAR. As with corporate
earnings, the wealth–consumption ratio identifies a potentially important long-run shock
to consumption. Notice, however, that the shock to wealth has a very substantial tem-
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Figure 10. Implied impulse responses of wealth–consumption ratio, Hansen–Heaton–Li model. — depicts
impulse response to a consumption shock. – · – depicts impulse response to an earnings shock. The parame-

ters γ and β are set at 5 and 0.991/4, respectively.

porary effect on wealth. There is substantial transitory variation in wealth that does not
affect consumption as noted by Lettau and Ludvigson (2004).

The relationship between wealth and consumption predicted by the first-order terms
of (19) and ρ imposes a joint restriction on the impulse response functions of wealth
and consumption. Because of the substantial response of wealth to its own shock, this
restriction cannot be satisfied for reasonable values of ρ. As we will see below the nec-
essary variation in ρ results in implausible levels of returns and the wealth–consumption
ratio. Ignoring this shock we can examine the restriction of (19) based on the consump-
tion shock alone.

To do this we construct the spectral density of wt − ct − (1 − ρ)(v1
t − ct ) implied

by the VAR but setting the variance of the wealth shock to zero. The model implies
that at the true value of ρ this density function should be flat. The predicted density is
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Figure 11. Impulse responses of wealth–consumption ratio to predicted consumption shock, Bansal–Yaron
model. The parameters γ and β are set at 5 and 0.998, respectively.

displayed in Figure 13 for ρ = 0.5 and ρ = 1.5. Smaller values of ρ come closer to
satisfying the restriction than the large values of ρ as we will see in Section 7.

5.2.2. Measurement of wealth

Inferences drawn from the recursive utility model based on direct measures of aggre-
gate wealth are sensitive to the wealth proxy used. With a fully specified model of the
dynamics of consumption, we circumvent this issue since we can construct implied con-
tinuation values and the stochastic discount factors needed to price any series of cash
flows. We are therefore able to examine the model’s implications for any part of ag-
gregate wealth once we specify the dynamics of the cash flows accruing to the wealth
component.

A particularly important part of aggregate wealth is human capital which by its nature
is not included in direct measures of wealth. Unobserved human capital may move in



Ch. 61: Intertemporal Substitution and Risk Aversion 4005

Figure 12. Impulse responses of consumption and wealth. Results from bivariate VAR with consumption
growth and the wealth–consumption ratio. — depicts the response to a consumption shock. – · – depicts the

response to a wealth shock.

a way that offsets variation in measured wealth so that the true wealth to consumption
ratio is relatively constant as predicted by the recursive utility model with ρ close to one.
Lustig and Van Nieuwerburgh (2006) use this idea to infer the dynamics of unobserved
human capital. As an alternative we specify a dynamic model of the cash flows produced
by human capital.

In our analysis we assume that these cash flows are given by labor income. We mea-
sure labor income as “Wages and salary disbursements” as reported by the National
Income and Product Accounts. As with corporate earnings, we impose the restriction
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Figure 13. Spectral density of wt −ct −(1−ρ)(v1
t −ct ). Results are from a bivariate VAR with consumption

growth and the wealth–consumption ratio. The variance of wealth shocks is set to zero. — depicts the density
for ρ = 0.5. – · – depicts the density when ρ = 1.5.

Table 3
Summary statistics for corporate and human capital

Capital measure Standard deviation Correlation with corporate capital

Human capital 0.056 0.56
Corporate capital 0.033 1
Total 0.034 0.70

Note. Statistics are reported for the natural logarithm of each measure of capital relative to consumption.

that labor income and aggregate consumption are cointegrated with a unit coefficient.
We further assume that β = 0.991/4, γ = 5 and ρ = 1.

The model’s implication for the standard deviation of the (log) ratio of human cap-
ital to consumption is reported in Table 3. For comparison the corresponding standard
deviation for the ratio of “corporate capital” to consumption is also calculated by valu-
ing the stream of corporate earnings. This measure of wealth does not correspond to
any direct measure of the value of capital held by the corporate sector since corporate
earnings do not account for investment. Further earnings are reported after payments to
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bond holders. Finally in the table “Total” refers to the ratio of the sum of human plus
corporate capital to consumption.

Although there are issues of interpretation with these measures of capital, notice that
the implied standard deviations are different from zero and that the ratio of human
capital to consumption has the greatest variance. In contrast to the analysis of Lustig
and Van Nieuwerburgh (2006), human and corporate capital are predicted to be posi-
tively correlated. Further, although the model does predict variation in these measures
of wealth relative to consumption, the variation is no where near the level depicted in
Figure 9. For example, the standard deviation of the logarithm of measured wealth to
consumption is 0.24.

This tension is a standard feature of this type of model. Some additional source of
variation due to discount factors appears to be necessary to better fit the observed volatil-
ity of aggregate wealth and security prices. In the next subsection we add time varying
volatility to consumption which provides one potential source of the required variation.

5.3. Continuous time

So far we have seen how predictability in consumption is related to movements in the
wealth consumption ratio. The intertemporal substitution parameter is an important in-
gredient in this relation. In order to permit the risk aversion parameter γ to play a more
central role in this time series variation, we consider an extension in which consump-
tion displays stochastic volatility. This volatility gives a source of time-variation in risk
premia. To capture this we introduce square root process as a model of volatility and
shift our analysis to continuous time. The continuous time formulation we now explore
simplifies the analysis of volatility.

Suppose that:

dxt = Axt dt + √
ztB dWt,

dzt = �A(zt − μz) dt + √
zt �B d �Wt,

(23)d logCt = G′xt dt + μc dt + √
ztH

′ dWt + √
zt �H d �Wt,

where the matrix A has eigenvalues with real parts that are strictly negative. The
process z is scalar and the coefficient �A is negative. The processes W and �W are mu-
tually independent standard Brownian motions. The process W can be multivariate and
the process �W is scalar. The volatility process {zt } follows a Feller square root process
and �Aμz + 1

2
�B 2 < 0. In this specification the process {zt } is used to model macroeco-

nomic volatility in an ad hoc but convenient manner.

5.3.1. Continuous time Bellman equation

Consider a stochastic evolution for the continuation value of the form:

d logV
ρ
t = ξ

ρ
v,t dt + √

ztσ
ρ
v,t dWt + √

zt σ̄
ρ
v,t d �Wt.
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For this continuous time diffusion structure, we derive an equation linking the drift ξρ
v,t

with current consumption and continuation values as well as diffusion coefficients.
For this Brownian motion information structure, the continuous time evolution for

the continuation value, indexed by ρ, must satisfy:

0 = δ

1 − ρ

[(
Ct

V
ρ
t

)1−ρ

− 1

]
+ ξ

ρ
v,t + zt

(
1 − γ

2

)[
σ

ρ
v,t · σρ

v,t + (
σ̄

ρ
v,t

)2]
.

Heuristically this can be obtained by taking limits of the discrete time recursion (14) as
the sample horizon shrinks to zero. The rigorous formulation of recursive preferences
in continuous time is given by Duffie and Epstein (1992b).

Thus

ξ
ρ
v,t = −δ

1 − ρ

[(
Ct

V
ρ
t

)1−ρ

− 1

]
+ zt

(
γ − 1

2

)[
σ

ρ
v,t · σρ

v,t + (
σ̄

ρ
v,t

)2]
.

In the special case in which ρ = 1, the drift is given by

(24)ξ1
v,t = δ

(
v1
t − logCt

) + zt

(
γ − 1

2

)[
σ 1
v,t · σ 1

v,t + (
σ̄ 1
v,t

)2]
.

When γ = 1, the volatility adjustment for the continuation value vanishes and this
recursion coincides with the continuation value for preferences with a logarithmic in-
stantaneous utility function. When γ is different from one, there is an adjustment for
the volatility of the continuation value. In particular, when γ exceeds one, there is a
penalization for big volatility. Typically we are interested in large values of γ to explain
the cross section of asset returns.

In what follows we derive the corresponding asset pricing results for a particular
endowment economy specified above.8

5.3.2. Value function when ρ = 1

Guess a continuation value of the form

v1
t = Uv · xt + �Uvzt + ct + μv

where v1
t = logV 1

t as in the discrete-time solution. Thus

U ′
vAx + G′x + �Uv

�Az − �Uv
�Aμz + μc

= δU ′
vx + δ�Uvz + δμv + zt

(
γ − 1

2

)[∣∣U ′
vB + H ′∣∣2 + (�Uv

�B + �H)2].
8 Asset pricing applications of these preferences are developed by Duffie and Epstein (1992a). They in-

corporate these preferences into a standard representative agent economy with exogenous asset returns and
endogenous consumption in the style of Merton (1973) and Breeden (1979).
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Equating coefficients on x gives

U ′
vA + G′ = δU ′

v

or

Uv = (δI − A′)−1G.

This formula for Uv is the continuous time analog of our previously derived discrete
time formula given in (21).

Equating coefficients in zt gives the following equation

�Uv
�A = δ�Uv + γ − 1

2

[
(�Uv

�B + �H)2 + ∣∣U ′
vB + H ′∣∣2]

in the unknown coefficient �Uv . This equation can be solved using the quadratic formula,
provided that a solution exits. Typically two solutions to this equation exist, and we
select the one that is closest to zero. When γ = 1, �Uv = 0. Large �B and large values
of γ can result in the absence of a solution. On the other hand, shrinking �B to zero will
cause zt to be very smooth and ensure a solution. The limit can be thought of as giving
us the continuous time counterpart to the discrete-time model specified previously in
Section 5.1.4.

Consider the special case in which �H is zero, and suppose that γ exceeds one. Thus
there is no immediate impact of the shock d �Wt on the growth rate of consumption.
When solutions exist, they will necessarily be negative because the quadratic function
of �Uv is always positive for all positive values of �Uv . Thus when volatility increases the
continuation value declines. The discrete time wealth–consumption expansion (19) in ρ

continues to apply in this continuous time environment. Thus when volatility increases
the wealth–consumption ratio will increase as well provided that ρ exceeds one, at least
for values of ρ local to unity. Conversely, the ratio declines when ρ is less than one.

Finally, the constant term satisfies

μc − �Uz
�Aμz = δμv

which determines μv .
For future reference, the local shock exposure of dv1

t is
√
zt (B

′Uv + H)′ dWt + √
zt (�B�Uv + �H) d �Wt.

Thus σ 1
v,t = (B ′Uv + H)′ and σ̄ 1

v,t = (�Uv
�B + �H).

5.3.3. Derivative with respect to ρ

Next we derive the formula for the derivative of the continuation value with respect to ρ

evaluated at one. Our aim is to produce a formula of the form:

v
ρ
t ≈ v1

t + (ρ − 1)Dvt .
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The derivative {Dvt } evolves as an Ito process:

dDvt = Dξv,t dt + √
ztDσt dWt + √

ztDσ̄t d �Wt,

where Dξv,t is drift coefficient and Dσt and Dσ̄t are the coefficients that govern the
shock exposures. We obtain these coefficients by differentiating the corresponding co-
efficients for the continuation value process with respect to ρ. For instance,

Dξv,t = dξρ
v,t

dρ

∣∣∣∣
ρ=1

.

Recall the formula for the drift:

ξ
ρ
v,t = −δ

1 − ρ

[(
Ct

V
ρ
t

)1−ρ

− 1

]
+ zt

(
γ − 1

2

)(
σ

ρ
v,t · σρ

v,t + σ̄
ρ
v,t · σ̄ ρ

v,t

)
.

Differentiating with respect to ρ gives

(25)Dξv,t = δ
(ct − v1

t )
2

2
+ δDvt + zt (γ − 1)

(
Dσv,t · σ 1

v,t + Dσ̄v,t · σ̄ 1
v,t

)
.

To compute this derivative, as in discrete time it is convenient to use a distorted prob-
ability measure. Thus we use

dWt = √
zt (1 − γ )σ ′

v,t dt + dW ∗
t ,

d �Wt = √
zt (1 − γ )σ̄v,t dt + d �W ∗

t ,

where {(W ∗
t ,

�W ∗
t ): t � 0} is a multivariate Brownian motion. As a consequence, the

distorted evolution is

dxt = Axt dt + (1 − γ )B(B ′Uv + H)zt dt + √
ztB dW ∗

t ,

dzt = �A(zt − μz) dt + (1 − γ )�B(�B�Uv + �H)zt dt + √
zt �B d �W ∗

t ,

d logCt = G′xt dt + μc dt + (1 − γ )H ′(B ′Uv + H)zt dt

(26)+ (1 − γ ) �H(�B�Uv + �H)zt dt + √
ztH

′ dW ∗
t + √

zt �H d �W ∗
t .

Let D̃ξv,t denote the resulting distorted drift for the derivative. Then rewrite Equa-
tion (25) as

(27)D̃ξv,t = δ
(ct − v1

t )
2

2
+ δDv1

t

which can be solved forward as

Dv1
t = − δ

2

∫ ∞

0
exp(−δu)E∗[(ct+u − v1

t+u

)2|xt , zt
]

du.

Dv1
t is a linear/quadratic function of the composite Markov state (x, z). See Appen-

dix A.2.
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5.3.4. Stochastic discount factor

Let sρt be the logarithm of the continuous time stochastic discount factor for parame-
ter ρ. This stochastic discount factor process encodes discounting for all horizons from
the vantage point of time zero. Specifically exp(sρt ) is discount factor over horizon t and
exp(sρt+τ −s

ρ
τ ) is the discount factor for horizon t from the vantage point of date τ . Then

dsρt = −δ dt − ρ dct + (ρ − γ )

[
dvρ

t − ξ
ρ
t dt

− zt

(
1 − γ

2

)(
σ

ρ
v,t · σρ

v,t + σ̄
ρ
v,t · σ̄ ρ

v,t

)
dt

]
= −δ dt − ρ dct

+ (ρ − γ )

[√
ztσ

ρ
v,t dWt + √

zt σ̄
ρ
v,t d �Wt

− zt

(
ρ − γ

2

)(
σ

ρ
v,t · σρ

v,t + σ̄
ρ
v,t · σ̄ ρ

v,t

)
dt

]
.

Differentiating, we find that the ρ derivative process {Dst : t � 0} evolves as

dDst = −dct + [√
ztσ

1
v,t dWt + √

zt σ̄
1
v,t d �Wt

− zt

(
1 − γ

2

)(
σ 1
v,t · σρ

1 + σ̄ 1
v,t · σ̄ 1

v,t

)
dt

]
+ (1 − γ )

[√
ztDσv,t dWt + √

ztDσ̄v,t d �Wt

− zt (1 − γ )
(
Dσv,t · σ 1

v,t + Dσ̄v,t · σ̄ 1
v,t

)
dt

]
.

Thus the ρ approximation is

s
ρ
t ≈ s1

t + (ρ − 1)Dst

with the following contributions to the stochastic evolution of the approximation:
(a) −ρ

√
ztH

′ – Breeden term for exposure to dWt risk;
(b) −ρ

√
ztH – Breeden term for exposure to dWt risk;

(c)
√
zt (ρ − γ )σ 1

v,t + √
zt (ρ − 1)(1 − γ )Dσv,t – recursive utility adjustment for

exposure to dWt risk;
(d)

√
zt (ρ − γ )σ̄ 1

v,t + √
zt (ρ − 1)(1 − γ )Dσ̄v,t – recursive utility adjustment for

exposure to d �Wt risk.

5.3.5. Risk prices

Of particular interest is the recursive utility adjustment to the Brownian motion risk
prices. The ρ approximations are given by the negatives of the values reported in (b)
and (c):

(i)
√
ztρH

′ +√
zt (γ −ρ)σ 1

v,t +√
zt (ρ − 1)(γ − 1)Dσv,t – risk prices for exposure

to dWt ;
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(ii)
√
ztρ �H + √

zt (γ − ρ)σ̄ 1
v,t + √

zt (ρ − 1)(γ − 1)Dσ̄v,t – risk prices for exposure
to d �Wt .

These prices are quoted in terms of required mean compensation for the correspond-
ing risk exposure. The first vector is the mean compensation for exposure to dWt and
the second vector is the mean compensation for exposure to d �Wt .

The risk premia earned by an asset thus consist of a covariance with consumption
innovations (multiplied by the intertemporal substitution parameter) and components
representing covariance with innovations in the continuation value (weighted by a com-
bination of intertemporal substitution and risk aversion parameters). This characteriza-
tion is closely related to the two-factor model derived by Duffie and Epstein (1992a),
where the second risk term is the covariance with the total market portfolio.

Consider the special case in which �H is zero. Then under the Breeden model, the
volatility shock d �Wt has zero price. Under the forward-looking recursive utility model,
this shock is priced. For instance, for large γ and ρ close to one, the contribution
is approximately

√
zt (γ − 1)�B�Uv . The recursive utility also amplifies the risk prices

for dWt risk exposure. For large γ and ρ close to one the prices are approximately√
zt (γ − 1)(H ′ + U ′

vB), which is the continuous time counterpart to the discounted
impulse response function for consumption growth rates. When the importance of
volatility becomes arbitrarily small (�B declines to zero), the volatility state ceases to
vary and collapses to μz. The predictability in consumption continues to amplify risk
prices but the prices cease to vary over time.

Again we consider two specifications. The first is a continuous time version of Bansal
and Yaron (2004). In contrast with our discrete time example, but consistent with Bansal
and Yaron (2004), we introduce stochastic volatility:

dct = 0.0015 dt + xt dt + √
zt0.0078 dW1,t ,

dxt = −0.021xt dt + √
zt0.00034 dW2,t ,

(28)dzt = −0.013(zt − 1) dt + √
zt0.038 d �Wt.

By construction the volatility process {zt } has a unit mean.
In the Bansal and Yaron (2004) model, risk premia fluctuate. We use a Feller square

root process for conditional variances while Bansal and Yaron (2004) used first-order
autoregression with normal errors. In our specification, the stationary distribution for
conditional variances is in the gamma family and in their specification the distribution is
in the normal family. We report the two densities in Figure 14. Our square root specifica-
tion is by design analytically tractable and it formally restricts variances to be positive.9

Thus it is more convenient for our purposes to work with a square root process. The
two densities are quite similar, and both presume that there are considerable long run
fluctuations in volatility.

9 Negative variances are very unlikely for the parameter values used by Bansal and Yaron (2004). Moreover,
in the unlikely event that zero is reached in a continuous time version of their model, one could impose a
reflecting barrier.



Ch. 61: Intertemporal Substitution and Risk Aversion 4013

Figure 14. Stationary density of z. — depicts the stationary density of z: gamma(18.0, 0.056). – · – depicts
the normal density with the same mean 1 and the same standard deviation 0.236 for comparison.

While we expect γ to have direct impact on risk prices, it is useful to quantify the
role of ρ because changing intertemporal substitution parameter will alter risk prices.
To quantify this effect, consider the first-order combined expansion in ρ and γ around
the values ρ = 1 and γ = 110:

√
zt

[
H − (ρ − 1)B ′Uv + (γ − 1)(B ′Uv + H)

]
= √

zt

([
2.70

0

]
− (ρ − 1)

[
0

5.12

]
+ (γ − 1)

[
2.70
5.12

])
.

While Bansal and Yaron (2004) use monthly time units, we have rescaled the time
units to annual and we have further multiplied prices by one hundred so that the value
units are in expected rates of return expressed as percentages.

In contrasting the contributions of ρ and γ , note that while increases in γ amplify
both risk prices, increases in ρ reduce the risk price for the shock to the growth rate in
consumption. It is the recursive utility adjustment induced by persistence in the growth
rate to consumption that makes the risk price of exposure to dW 2

t different from zero.

10 This expansion illustrates a point made by Garcia, Renault and Semenov (2006) that when ρ is small,
γ underestimates the contribution of risk aversion and conversely when ρ is large.



4014 L.P. Hansen et al.

In this Bansal and Yaron (2004) specification, the risk price of dW 2
t exposure is double

that of dW 1
t . As we will see, the recursive utility contribution is much more challenging

to measure reliably.
For pedagogical convenience, we have featured the first-order term in γ , in fact this

is not critical. The higher-order term allows us to explore nonlocal changes in the para-
meter γ . For instance, as we change γ to be five and then ten, the first-order expansions
in ρ evaluated at xt = 0 and zt = 1 are:

γ = 5: √
zt

([
13.5
20.5

]
− (ρ − 1)

[
0

5.9

])
,

γ = 10: √
zt

([
27.0
46.1

]
− (ρ − 1)

[
0

5.3

])
.

The ρ derivatives change as we alter γ , but not dramatically so.
Consider next the price of exposure to volatility risk. For model (28), �H = 0 and the

magnitude of �Uv depends explicitly on the choice of γ . In the local to unity expansion
of γ and ρ, level term and the coefficients on both ρ−1 and γ−1 are zero suggesting that
volatility risk premia are relatively small. When we increase γ we obtain the following
first-order expansions in ρ evaluated at zt = 1 and xt = 0:

γ = 5: √
zt

[−2.0 + (ρ − 1)0.7
]
,

γ = 10: √
zt

[−10.3 + (ρ − 1)1.1
]
.

The level terms in the risk prices are negative for the volatility shock. While increases in
consumption are valued, increases in consumption volatility are not. There is apparently
substantial nonlinearity in how these level terms increase in γ . Doubling γ from five to
ten leads to a five fold increase in the magnitude of the volatility risk price.

Consider next the continuous time counterpart to our second specification. In this
specification there is no stochastic volatility. The first-order expansion in ρ and γ around
the values ρ = 1 and γ = 1 is:[

H − (ρ − 1)B ′Uv + (γ − 1)(B ′Uv + H)
]

=
([

0.96
0

]
− (ρ − 1)

[
0.79
1.01

]
+ (γ − 1)

[
1.75
1.01

])
.

Again the coefficient on ρ − 1 is negative while the coefficient on γ − 1 is positive
so that increasing ρ diminishes the risk prices. The magnitude of the ρ derivative for
pricing the shock to corporate earnings is larger than for the shock to consumption, but
the reverse is true for the γ derivative. As we change γ to five and then 10, we find that

γ = 5:
[

7.95
4.04

]
− (ρ − 1)

[
1.08
1.63

]
,

γ = 10:
[

16.69
9.09

]
− (ρ − 1)

[
1.43
2.36

]
so the ρ derivatives get larger in magnitude for larger values of γ .
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Overall the risk prices are smaller for the second specification than for the first one.
Bansal and Yaron (2004) intended to match data going back to 1929 including the pre-
war period whereas Hansen, Heaton and Li (2005) used estimates obtained with post-
war data. There is much less consumption volatility in this latter sample.

5.3.6. Risk-free rate

Consider next the instantaneous risk-free rate. For an arbitrary ρ, this is given by limit:

r
ρ
f,t = lim

ε↓0
− logE

[
exp(st+ε − st )|Ft

]
= δ + ρG′xt + ρμc − ρ2zt

2

(
H ′H + �H 2)

+ ztρ(ρ − γ )
(
H ′ · σρ

t + H ∗σ̄ ρ
t

)
(29)− zt (ρ − γ )(ρ − 1)

2

(
σ

ρ
v,t · σρ

v,t + (
σ̄

ρ
v,t

)2)
.

The last two terms on the right-hand side give the contribution for recursive utility and
depends in part on the discrepancy between ρ and γ .

In particular, when ρ = 1

r1
f,t = δ + G′xt + μc − zt

2

(
H ′H + �H 2) + zt (1 − γ )

(
H ′ · σ 1

v,t + �Hσ̄ 1
v,t

)
.

The ρ derivative of the risk free rate is

Drf,t = G′xt + μc + zt
[−H ′ + (2 − γ )σ 1

v,t + (1 − γ )Dσv,t

] · H ′

+ zt
[− �H + (2 − γ )σ̄ 1

v,t + (1 − γ )Dσ̄v,t

] �H
− zt (1 − γ )

(
σ 1
v,t · σ 1

v,t + (
σ̄ 1
v,t

)2)
.

The approximation is

r
ρ
f,t = r1

f,t + (ρ − 1)Drf,t .

While this expression is a bit tedious, it is informative to contrast the local to unity
contributions of ρ to those of γ . At γ = 1, σ̄v,t = 0 and thus the local approximation is

δ + G′xt + μc − zt

2

(
H ′H + �H 2)

+ (ρ − 1)
[
G′xt + μc − zt (H

′H + �H �H) + ztH
′ · σ 1

v,t + zt �Hσ̄ 1
v,t

]
+ (γ − 1)zt

(−H ′ · σ 1
v,t − �Hσ̄ 1

v,t

)
.

Importantly, the term multiplying (γ −1) does not include G′xt +μc−zt (H
′H + �H �H).

In particular, the conditional mean in the growth rate of consumption, as reflected in
μc + G′xt contributes only to the ρ derivative. Increases in ρ will unambiguously
increase ρμc, making the interest rate larger. This can be offset to some extent by
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shrinking δ but only up to the point where δ = 0. This tension is a version of Weil
(1989)’s risk free rate puzzle. The term

(ρ − γ )zt
(
H ′ · σ 1

v,t + �Hσ̄ 1
v,t

)
has the interpretation of changing probability measures by adding drift (ρ − γ )ztσ

1
v,t

and (ρ − γ )zt σ̄
1
v,t to the respective Brownian motions dWt and d �Wt . Changing ρ or γ

will, of course, alter this term, but

zt
(
H ′ · σ 1

v,t + �Hσ̄ 1
v,t

)
is typically smaller than the mean growth rate of consumption.11 More generally, these
risk-free rate approximations give a formal sense in which changes in γ have a much
more modest impact on the instantaneous interest rate than changes in ρ and allows us
to consider a wide range of values of γ .

5.3.7. Cash flow returns

As we have seen, the local evolution of the stochastic discount factor implies a vector
of local risk prices. Next we explore cash-flow counterparts, including a limiting notion
of an expected rate of return that compensates for exposure to cash flow risk.

Consider a cash flow that can be represented as

Dt = Gtf (Xt )D0

where Gt is a stochastic growth process initialized to be one at date zero, D0 is an initial
condition and f (Xt ) is a transient component and the process X evolves as a Markov
process. For instance, the Markov process X could consist of (x, z) with evolution equa-
tion (23). Multiperiod discounting from time i to time j is denoted Si,j .

Define the expected rate of return to a cash flow as

1

t
logE

[
Gtf (Xt )|F0

] − 1

t
logE

[
S0,tGtf (Xt )|F0

]
.

Let the gross return to holding a cash flow over a unit horizon be

logE
(
S1,tGtf (Xt )|F1

) − logE
(
S0,tGtf (Xt )|F0

)
.

An equity is a portfolio of claims to such returns. Both of these returns typically have
well-defined limits as t → ∞ and these limits will remain invariant over a class of func-
tions f used to define transient components to cash flows. As emphasized by Hansen,

11 This term is 0.07 (in annualized percent) in the Bansal and Yaron (2004) model, which is small relative to
the 1.8 percent growth rate in consumption when evaluated at z = 1. In the Hansen, Heaton and Li (2005)
model this term is 0.02 percent which is small relative to a per capita consumption growth rate of 2.9 percent.
The remaining term from consumption volatility zt (H

′H + �H 2) at z = 1 is also small, 0.07 in the Bansal
and Yaron (2004) model and 0.01 in the Hansen, Heaton and Li (2005) model.
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Heaton and Li (2005) and Lettau and Wachter (2007), the intertemporal composition of
these returns is of interest.

As featured by Hansen, Heaton and Li (2005) and Hansen (2006), we can construct
long run counterpart to risk prices by considering the long run excess returns for alter-
native G specified by martingales that feature the components of cash flow risk. To be
concrete, suppose that:

(30)d logGt = −1

2
(K ′K + �K ′ �K)zt + √

ztK
′ dWt + √

zt �K d �Wt.

This specification allows us to focus on the growth rate risk exposure as parameterized
by K and �K . For instance, K and �K can be vectors of zeros except on one entry in
which there is a nonzero entry used to feature this specific risk exposure.

Then the logarithm of the limiting cash flow return is

lim
t→∞

(
1

t
logE

[
Gtf (Xt )|F0

] − 1

t
logE

[
S0,tGtf (Xt )|F0

]) = η − ν.

The derivative of η−ν with respect to K and �K gives the long run cash flow counterpart
to a local risk price. Using the method of Hansen and Scheinkman (2006), the family of
functions f for which these limits remain invariant can be formally characterized. For
such functions f , the cash flow contribution f (Xt ) can be viewed as transient from the
vantage point of long run risk prices.

Following Hansen, Heaton and Li (2005), Hansen and Scheinkman (2006) and
Hansen (2006), we characterize these limits by solving so-called principal eigenfunc-
tion problems:

lim
t↓0

E
[
Gt ẽ(Xt )|X0 = X

] = ηẽ(X),

lim
t↓0

E
[
S0,tGt ê(Xt )|X0 = X

] = νê(X).

Finally the logarithm of the limiting holding period return is

lim
t→∞

[
logE

(
S1,tGtf (Xt )|F1

) − logE
(
S0,tGtf (Xt )|F0

)]
= −ν + log ê(X1) − log ê(X0) + logG1.

This latter return has three components: (a) an eigenvalue component, (b) a pure cash
flow component and (c) an eigenfunction component. The choice of the transient com-
ponent f (Xt ) typically does not contribute to the value. The valuation implicit in the
stochastic discount factor is reflected in both −ν and log ê(X1) − log ê(X0), but of
course not in the cash flow component logG1. In contrast to the log-linear statistical
decompositions of Campbell and Shiller (1988a), the decompositions we just described
require an explicit valuation model reflected in a specification of the stochastic discount
factor.

Consider first the Bansal and Yaron (2004) model. The risk prices computed as deriv-
ative of long-run return with respect to K depends on the values of K . As the baseline
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values of K , we use the risk exposure of the consumption and the state variable. At
these baseline values, we obtain the following long run risk prices for ρ = 1 as we
increase γ 12:[

2.70
5.62

] [
13.87
26.85

] [
30.30
58.33

]
γ = 1 γ = 5 γ = 10

where β = 0.998 is assumed as in Bansal and Yaron (2004). The prices are close to lin-
ear in γ but there is nonlinear contribution caused by stochastic volatility, which makes
the risk prices more than proportional to γ . Although the second shock has no immedi-
ate impact on consumption and hence a zero local risk price, it has long lasting impact
on the stochastic discount factor by altering the predicted growth rate in consumption.
As expected in Figure 4, it turns out that the long run risk price for this shock is bigger
than that for consumption shock.

Consider next the Hansen, Heaton and Li (2005) model. For this model, the risk
prices computed as derivatives of long run return with respect to K are insensitive to
the baseline choice of K . In other words the component prices are constant as shown by
Hansen, Heaton and Li (2005). For this model we report the long run prices for ρ = 1
for three different values of γ :[

1.77
1.06

] [
8.76
5.10

] [
17.50
10.15

]
γ = 1 γ = 5 γ = 10

.

The prices are linear and are approximately proportional to γ and are computed assum-
ing that β = 0.991/4 as in Hansen, Heaton and Li (2005). Even when γ and ρ are one,
the long run cash flow risk price is positive for the shock to corporate earnings. While
the corporate earnings shock is normalized to have no immediate impact on consump-
tion, it will have a long run impact and hence this will show up in the equilibrium risk
prices.

We report the derivatives of long-run risk price with respect to ρ for both specifica-
tions in Figure 15. Recall that these derivatives were negative for the local prices. As is
evident from this figure, for the Bansal and Yaron (2004) model the derivative is positive
for low and high values of γ for the shock to growth rate in consumption. The derivative
is negative for a range of intermediate values.

These differences between the derivatives for long run and local prices are due to the
predictability of consumption. With the predictability of consumption, the permanent

12 The prices are slightly decreasing in K . At 10 times baseline values of K , they are[
2.69
5.61

] [
13.54
26.80

] [
28.66
58.04

]
γ = 1 γ = 5 γ = 10

.
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Figure 15. The top panel is Bansal–Yaron model: — depicts ρ derivative of long run risk price of exposure
to consumption shock. It is calculated by dividing the difference between ρ derivatives of long-run return at
K = [0 0]′ and K = [0.0078 0]′ (risk exposure of ct ) by 0.0078. It is the approximation to the cross derivative
of long run return with respect to K and ρ, that is, ρ derivative of long run risk price. The – · – curve depicts ρ

derivative of long run risk price of exposure to predicted consumption shock. It is calculated by dividing the
difference between ρ derivatives of long-run return at K = [0 0]′ and K = [0 0.00034]′ (risk exposure of xt )
by 0.000034. The bottom panel is Hansen–Heaton–Li model: — depicts ρ derivative of long run risk price
of exposure to consumption shock and – · – depicts ρ derivative of the long run risk price of the exposure to
corporate earnings. For this model the risk prices, the derivatives with respect to the individual entries of K ,

are constant.

response of consumption and hence, the permanent response of stochastic discount fac-
tor to a shock are more than their contemporary responses. This additional contribution
makes the long run risk price and its derivative with respect to ρ larger than their local
counterparts. Figure 16 shows this point: long run considerations shift up risk prices and
the corresponding ρ derivative.13

13 Because of stochastic volatility, long run considerations tilt the risk price and its derivative along with
shifting them.
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Figure 16. Long run versus local derivatives. Risk price (top panel) and its derivative (bottom panel) with
respect to ρ for the shock to growth rate in consumption in Bansal–Yaron model: — depicts long run risk

price and ρ derivative; – · – depicts local counterparts. Both levels and derivatives are evaluated at ρ = 1.

6. Information about risk aversion from multiple returns

In the previous section we examined how risk aversion and intertemporal substitution
affect predicted risk premia. We now examine predictions for risk aversion using in-
formation from the returns to the test assets described in Section 4.2. Because of the
substantial differences in average returns we will be driven to large levels of risk aver-
sion. For these parameter values, variation in ρ around one has little effect. For this
reason and for tractability we assume that ρ = 1. For similar reasons Campbell (1996)
also considers the case where ρ is close to one and shows that a cross-section of returns
can be used to identify γ .

Returns to our test portfolios are known to have differential predictive power for con-
sumption as shown in the work of Parker and Julliard (2005). To the cointegrated model
of consumption and corporate earnings of Hansen, Heaton and Li (2005) we add the log
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price–dividend ratio and the log dividend growth for each of the five portfolios. To avoid
substantial parameter proliferation we estimate each system portfolio by portfolio.

Returning to the discrete time, log-linear setting of Section 5.1, the excess return to an
asset is determined by the covariance between shocks to the return and shocks to current
and future consumption. As in Section 4 the return to security j has a moving-average
representation given by

r
j

t+1 = ρj (L)wt+1 + μ
j
r .

Hence the on impact effect of the shock vector wt+1 on return j is given by the vec-
tor ρj (0).

Under recursive utility risk premia are determined by the exposure of both con-
sumption and the continuation value to shocks. When the intertemporal elasticity of
substitution is assumed to be one, shocks to the log continuation value are given by
the discounted impulse responses of log consumption to the shocks. These discounted
responses are given by the vector:

Θ(β) ≡ H + βB ′(I − βA′)−1G.

Hence we can write the risk premium for security j as

(31)E
(
r
j

t+1|Ft

) − r
f

t+1 = −|ρj (0)|2
2

+ [
H + (γ − 1)Θ(β)

] · ρj (0).

Risk aversion can have a large impact on risk premia if consumption is predictable so
that Θ(β) is significant and if innovations to discounted future consumption covary with
shocks to returns. This covariance is captured by the term Θ(β) · ρj (0).

As an initial proxy for this covariance we calculate the covariance between returns at
time t + 1 and c(t + τ)− c(t) conditional on being at the mean of the state variable and
for different values of τ . This calculation ignores discounting through β and truncates
the effects at a finite horizon. The results of this calculation are reported in Figure 17
for each of the five book-to-market portfolios. The calculation is done using the point
estimates from the VAR for each portfolio.

For small values of τ there is relatively little heterogeneity in the conditional covari-
ance between consumption and portfolio returns. The risk exposure in consumption over
the short-term is not a plausible explanation for differences in observed average returns
as reported in Table 1. Notice, however, that as τ increases there are pronounced dif-
ferences in the covariances. For example the covariance between long-run consumption
and returns is much higher for portfolio 5 than it is for portfolio 1. Further when τ = 40
the estimated covariances follow the order of the observed average returns. Portfolio 1
has the lowest average return and lowest covariance with consumption. Portfolio 5 has
the highest average return and highest covariance.

Figure 18 displays the estimated value of Θ(β) · ρj (0) for each security and alterna-
tive values of β. As in Figure 17 there are substantial differences in the estimated level
of risk exposure across the portfolios as β approaches 1.
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Figure 17. Conditional covariance between returns and future consumption. Conditional covariance between
portfolio returns and consumption growth between time t and time t + τ .

Figure 18. Conditional covariance between returns and Θ(β)wt+1.
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An implied level of the risk aversion parameter γ can be constructed using the esti-
mates reported in Figure 18. To do this consider the difference between (31) for j = 5
and j = 1 yields:

E
(
r5
t+1|Ft

) − E
(
r1
t+1|Ft

) = −|ρ5(0)|2
2

+ |ρ1(0)|2
2

+ [
H + (γ − 1)Θ(β)

] · (
ρ5(0) − ρ1(0)

)
.

Hence

(32)

γ = E(r5
t+1|Ft ) − E(r1

t+1|Ft ) + |ρ5(0)|2
2 − |ρ1(0)|2

2 − (H − Θ(β)) · (ρ5(0) − ρ1(0))

Θ(β) · (ρ5(0) − ρ1(0))
.

Using the estimated mean returns reported in Table 1 and the estimates of ρj (0) from
each VAR system we construct estimates of γ for different values of β. These are given
in Table 4. When β is small the estimated value of γ is quite large. Notice, however that
as β approaches 1, the two returns have substantially different risk exposures which is
reflected in a much smaller estimate of γ .

The estimates reported in Table 4 both ignore sampling uncertainty and are based
on estimation that treats each portfolio independently. We repeat the estimation of the
VAR except now we consider a six variable system where the dividend growth and
price–dividend ratios of portfolio 1 and 5 are included along with ct − ct−1 and et − ct .
Further we use the Bayesian simulation technique outlined in Appendix B to determine
the posterior distribution of the parameters of the VAR systems. For each simulation we
infer a value of γ using (32).

In our first set of simulations we ignore the estimation in the mean returns. The quan-
tiles from the posterior distribution of γ are reported in Table 5 where inference about γ

Table 4
Estimates of γ for different values

of β, based on (32)

β γ

0.90 318.1
0.91 252.0
0.92 199.4
0.93 157.0
0.94 122.7
0.95 94.9
0.96 72.2
0.97 53.6
0.98 38.5
0.99 26.1
1.00 16.1
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Table 5
Quantiles for γ , mean returns fixed, 5 lags

Quantile: 0.10 0.25 0.50 0.75 0.90

β = 0.98 −134.66 44.47 76.59 135.94 279.83
β = 0.99 −58.71 34.53 57.76 99.48 194.87
β = 1 −14.41 20.72 37.37 63.84 119.84

Figure 19. Conditional covariance between returns and Θ(β)wt+1. Covariance between shocks to portfolio
returns and accumulated shocks to future consumption growth, Θ(β)wt+1 for different values of β.

is done conditional on a fixed value of β. Notice that even when β is equal to 1 and sam-
pling error in the means is ignored, there is substantial uncertainty in the estimates of γ .

When ρ = 1 the wealth–consumption ratio is constant and innovations in consump-
tion could be measured by innovations to wealth. Since the return on the aggregate
wealth portfolio is not observable, a proxy is necessary. A common procedure is to use
the return to an aggregate stock index. One justification for this procedure is to assume
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that the missing components have returns that are proportional to the stock return as in
Campbell (1996).14

We repeat the empirical strategy above but assume that the growth rate in consump-
tion is proportional to return on the market portfolio discussed in Appendix D. Figure 19
displays the conditional covariance between the test asset returns and the implied values
of Θ(β)wt+1 for different values of β. In this case we fit a VAR with 5 lags to the log
market return, the log price–dividend ratio for the market along with the log dividend
growth and price–dividend ratio for each portfolio.

In this case the implied ordering of risk across the portfolios is consistent with the
observed average returns only when β is large enough. When β is small the implied
values of γ are negative. For values of β large enough the differences in the covariances
between portfolios 1 and 5 imply that portfolio 5 should have a larger return than portfo-
lio 1. Essentially the differential in the return to portfolios 5 and 1, the “return to value”
is able to forecast the market return. As in the work of Campbell and Vuolteenaho (2004)
the CES model with the market return as a proxy for consumption growth implies that
there should be a premium for value over growth: the “value premium”.

7. GMM estimation of stochastic discount factor models

For a given financial data set, multiple stochastic discount factors typically exist. Only
when the econometrician uses a complete set of security market payoffs will there be
a unique discount factor. Either an ad hoc identification method is used to construct
a discount factor, or an explicit economic model is posed that produces this random
variable. Alternative economic models imply alternative measurements of a stochastic
discount factor including measurements that depend on unknown parameters. Rational
expectations come into play through the use of historical time series data to test re-
lation (2). See Hansen and Singleton (1982) and Hansen, Heaton and Luttmer (1995).
Macroeconomics and finance are integrated through the use of dynamic macroeconomic
equilibrium models to produce candidate discount factors.

7.1. Identification

As we have seen, pricing restrictions are typically formulated as conditional moment
restrictions. For the purposes of this discussion, we rewrite Equation (2):

(33)E(St,t+1at+1|Ft ) = πt (at+1)

where at+1 is the one period gross payoff to holding an asset. It is a state-contingent
claim to the numeraire consumption good at date t + 1. Suppose an econometrician

14 Lustig and Van Nieuwerburgh (2006) infer the return to nontraded human capital by using the link between
consumption and unobserved wealth implied by several different assumptions about preferences.
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observes a vector of asset payoffs: xt+1, a corresponding price vector qt and a vector
of conditioning variables zt that are measurable with respect to Ft . Moreover, the price
vector must be a Borel measurable function of zt . The vector qt might well be degen-
erate and consist of zeros and ones when the payoffs are returns and/or excess returns.
An implication of (33) is that

(34)E(St,t+1xt+1|zt ) = qt .

Suppose for the moment that St,t+1 is represented as a nonparametric function of a
k-dimensional vector of variables yt+1. That is

St,t+1 = f (yt+1)

for some Borel measurable function f mapping R
k → R. Can f be identified? Suppose

that we can construct a function h such that h satisfies

(35)E
[
h(yt+1)xt+1|zt

] = 0.

Then clearly f cannot be distinguished from f + rh for any real number r. Thus non-
parametric identification depends on whether or not there is a nontrivial solution to (35).

Consider the following problematic examples. If yt+1 includes xt+1 and zt , then many
solutions exist to (35). For any Borel measurable function g, run a population regression
of g(yt+1) onto xt+1 conditioned on zt and let h(yt+1) be the regression residual:

h(yt+1) = g(yt+1) − E
[
g(yt+1)x

′
t+1|zt

](
E[xt+1x

′
t+1|zt ]

)−1
xt+1.

By construction, this h satisfies (35).
Suppose that we do not impose exclusion restrictions. Instead suppose the vector yt+1

includes xt+1 and zt . Stochastic discount factors from explicit economic models are
often restricted to be positive. A positive stochastic discount factor can be used to extend
the pricing to include derivative claims on the primitive securities without introducing
arbitrage.15 Our construction so far ignores this positivity restriction. As an alternative,
we may impose it. Identification remains problematic in this case, there are various ways
to construct discount factors.

As shown by Hansen and Jagannathan (1991) and Hansen, Heaton and Luttmer
(1995), the solution to the optimization problem

(36)max
α

−E
[(

max
{−xt+1 · α(zt ), 0

})2|zt
] − 2α(zt ) · qt

gives a nonnegative function of xt+1 and zt that solves the pricing equation where α

is a function of zt . From the solution α∗ to this concave problem, we may construct a
solution to (34) by

St,t+1 = max
{−xt+1 · α∗(zt ), 0

}
.

15 On the other hand, stochastic discount factors that are negative with positive probability can price incom-
plete collections of payoffs without inducing arbitrage opportunities.
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This is the nonnegative solution that minimizes the second moment. Formally opti-
mization problem (36) is the conjugate to an optimization problem that seeks to find a
nonnegative stochastic discount factor that prices the securities correctly whose second
moment is as small as possible. Hansen and Jagannathan (1991) were interested in such
problems as a device to restrict the set of admissible stochastic discount factors.16 As
demonstrated by Luttmer (1996), convex constraints on portfolios can be incorporated
by restricting the choice of α. In contrast to Hansen and Jagannathan (1991), Luttmer
(1996) and Hansen, Heaton and Luttmer (1995), we have posed this problem condition-
ally. We say more about this distinction in the next subsection.

Another extraction choice follows Bansal and Lehmann (1997) and Cochrane (1992)
by solving

min
α

−E
(
log

[−α(zt ) · xt+1
]|zt) − α(zt ) · qt .

Provided this problem has a solution α∗, then

St,t+1 = − 1

α∗(zt ) · xt+1

is a strictly positive solution to (34). This particular solution gives an upper bound on
E[log St,t+1|zt ]. In this case the optimization problem is conjugate to one that seeks to
maximize the expected logarithm among the family of stochastic discount factors that
price correctly the vector xt+1 of asset payoffs.

A variety of other constructions are also possible each of which is an extremal point
among the family of stochastic discount factors. Conjugate problems can be constructed
for obtaining bounds on convex functions of stochastic discount factors (as in the case
of second moments) or concave functions (as in the case of logarithms). As an alterna-
tive, Snow (1991) considers bounding other than second moments and Stutzer (1996)
constructs discount factors that limit the relative entropy of the implied risk neutral
probabilities vis a vis the objective probability distribution.

Thus one empirical strategy is to give up on identification and characterize the family
of solutions to Equation (34). While this can be a useful way to generate model diag-
nostics, its outcome for actual pricing can be very limited because the economic inputs
are so weak. Alternatively, additional restrictions can be imposed, for example, para-
metric restrictions or shape restrictions. Motivated by asset pricing models that exhibit
habit formation Chen and Ludvigson (2004) specify a stochastic discount factor as a
semiparametric function of current and lagged consumption. They use sieve minimum
distance estimation in order to identify the shape of this function. In what follows we
will focus on parametric restrictions. We consider estimation with parametric restric-
tions, say St,t+1 = f (yt+1, β) for β contained in a parameter space P, a subset of R

k ,
by fitting the conditional distribution of xt+1 and yt+1 conditioned on zt . (As a warning

16 While this solution need not be strictly positive with probability one, it is nevertheless useful in restricting
the family of strictly positive stochastic discount factors.
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to the reader, we have recycled the β notation. While β is now a vector of unknown
parameters, exp(−δ) is reserved for the subjective rate of discount. Also we will use the
notation α for a different purpose than in Section 2.)

7.2. Conditioning information

Gallant, Hansen and Tauchen (1990) fit conditional distributions parameterized in a
flexible way to deduce conditional bounds on stochastic discount factors.17 Relatedly,
Wang (2003) and Roussanov (2005) propose ways of imposing conditional moment
restrictions nonparametrically using kernel methods. An alternative is to convert the
conditional moment restriction into an unconditional moment restriction by applying
the Law of Iterated Expectations:

E
[
f (yt+1, β)xt+1 − qt

] = 0.

A concern might be the loss of information induced by the conditioning down.
As shown by Hansen and Singleton (1982) and Hansen and Richard (1987), this loss

can be reduced by expanding the array of assets. For instance consider any vector of
conditioning variables h(zt ) with the same dimension as xt+1. Then xt+1 · h(zt ) should
have a price h(zt ) · qt . Thus it is straightforward to increase the number of asset payoffs
and prices by forming synthetic securities with payoffs h(zt ) · xt+1 and prices qt · h(zt )
through scaling by variables in the conditioning information set of investors.

If we perform such a construction for all possible functions of zt , that is if we verify
that

E
[
f (yt+1, β)h(zt )

′xt+1 − h(zt )
′qt

] = 0

for any bounded Borel measurable vector of functions h, then it is necessarily true that

E
[
f (yt+1, β)xt+1 − qt |zt

] = 0.

This, however, replaces a finite number of conditional moment restrictions with an
infinite number of unconditional moment restrictions. It suggests, however, a way to
approximate the information available in the conditional moment restrictions through
the use of unconditional moment restrictions.

For future reference, let Xt+1 be the entire vector payoffs including the ones con-
structed by the econometrician and let Qt be the corresponding price vector. The corre-
sponding unconditional moment restriction is

(37)E
[
f (yt+1, β)Xt+1 − Qt

] = 0.

17 Cochrane and Hansen (1992) show how to use such estimates to decompose the unconditional volatility of
stochastic discount factors into on average conditional variability and unconditional variability in conditional
means.
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7.3. GMM estimation

In this discussion we work with the �-period extension of (37):

(38)E
[
f�(yt+�, β)Xt+� − Qt

] = 0.

The most direct motivation for this is that the data used in the investigation are asset
payoffs with a �-period horizon: f�(yt+�, β). If purchased at date t , their payoff is at
date t + �.18 Then f�(yt+�, β) is the �-period stochastic discount factor. For instance,
consider Example 3.2. Then

f�(yt+�, β) = exp(−δ)

(
Ct+�

Ct

)−γ

where β = (δ, γ ).
Construct the function

φt (β) = f�(yt+�, β)Xt+� − Qt,

of the unknown parameter vector β. The pricing model implies unconditional moment
restriction:

(39)E
[
f�(yt+�, β)Xt+� − Qt

] = 0.

Using this as motivation, construct

ψT (b) =
[

1√
T

T∑
t=1

φt (b)

]′
WT (b)

[
1√
T

T∑
t=1

φt (b)

]
where the weighting matrix Wt is adjusted to allow for the moving-average structure in
error terms:

(40)WT (b) =
[

Cov0
T (b) +

�−1∑
j=1

(
Covj

T (b) + Covj
T (b)

′)]−1

where

Covj
T (b)

.= 1

T

T∑
t=j+1

φt (b)φt−j (b)
′.

Then the so-called continuous updating GMM estimator (CU) suggested by Hansen,
Heaton and Yaron (1996) is given by

bT = arg min
b∈P

ψT (b),

18 Considerations of aggregation over time leads some researchers to very similar econometric considera-
tions, but only as an approximation. See Hall (1988) and Hansen and Singleton (1996). For a more ambitious
attempt to address this issue via numerical simulation see Heaton (1995).
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although there are well-known two-step and iterated alternatives. Hansen, Heaton and
Yaron (1996) give some comparisons of the approaches.

By construction, the GMM criterion function has close ties to the chi-square distrib-
ution. In particular when b = β, then

(41)ψT (β) ⇒ χ2(n)

where n is the number of moment conditions. As emphasized by Hansen, Heaton and
Yaron (1996), this by itself gives a way to conduct inferences about the unknown para-
meter vector. Construct the set of b’s for which ψT (b) is less than a threshold value
where the threshold value is obtained from the chi-square distribution.19 Stock and
Wright (2000) show formally that such a method accommodates a form of weak identi-
fication and leads to robust inference. Alternatively,

(42)ψT (β) − min
b∈P

ψT (b) ⇒ χ2(n − k)

where k is number of free parameters. The minimized objective function is itself dis-
tributed as a chi-square as shown in Sargan (1958) for the linear simultaneous equations
model and by Hansen (1982) for the more general GMM estimation environment. More-
over,

(43)ψT (β) =
[
ψT (β) − min

b∈P

ψT (b)
]

+
[

min
b∈P

ψT (b)
]

gives a decomposition of ψT (β) into two components that are asymptotically indepen-
dent and each have limiting chi-square distributions.

The limiting chi-square distribution for (42) presumes the local identification condi-
tion that matrix

E

[
∂φt

∂b

∣∣∣∣
b=β

]
has full rank k. When the partial derivative matrix has reduced rank or when one con-
siders a sequence of experiments with limiting singularity, as in the work of Stock and
Wright (2000), the limiting chi-square distribution given in (42) is no longer valid. Limit
approximation (41) remains valid, however. Kleibergen (2005) suggests an alternative
approach to using the latter approximation to conduct inferences. To test a candidate
value of β, he constructs a test based directly on the first derivative of the CU-GMM
objective function. The limiting distribution has a convenient characterization and leads
to an alternative chi-square distribution with degrees of freedom equal to the number of
free parameters instead of the number of moment conditions. Interestingly, the test does

19 Stock and Wright (2000) relate this method to an inversion of the Anderson and Rubin (1949) statistic
when specialized to the linear simultaneous equations model.
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not require the local identification condition.20 As discussed in Kleibergen (2005) this
approach can be applied to testing restrictions and constructing confidence intervals.
Also it can be used to produce an alternative decomposition of (43) that can help to dis-
tinguish parameter values for which first-order conditions are approximately satisfied
but the underlying moment conditions are not satisfied.

7.4. GMM system estimation

As we have seen, the stochastic discount factor formulation often leads directly to a
set of estimation equations, but these are estimation equations for a partially identified
model. As an alternative, we add in the remaining components of the model and proceed
with a system estimation. One stab at this is given in Hansen and Singleton (1996). The
log linear, conditional counterpart to (39) in the case of the power utility model is

(44)E
[−γ (logCt+� − logCt)1m + log xt+�|zt

] + ω − log qt = 0

where 1m is an m-dimensional vector of ones and ω is an m-dimensional vector of
constants introduced to compensate for taking logarithms and to capture the subjective
rate of discount δ. Here we are abstracting from conditional heteroskedasticity. For
simplicity, suppose that qt is a vector of ones and hence its logarithm is a vector of
zeros.

System (44) gives m �-period forecasting equations in m + 1 variables, the m com-
ponents of log xt+� and logCt+� − logCt . Following Hansen and Singleton (1996) we
could append an additional forecasting equation and estimate the full system as an m+1
dimensional system of �-period forecasting equations. The reduced form is a system of
forecasting equations for log xt+1 and logCt+� − logCt conditioned on zt :[

logCt+� − logCt

log xt+�

]
= Πzt + � + wt+�

where

E(wt+� ⊗ zt ) = 0.

Then under restriction (44), the matrix Π satisfies

(45)[−γ 1m Im ]Π = 0m

where 1m is an m-dimensional vector of ones, Im is an m-dimensional identity matrix
and 0m is an m-dimensional vector of zeros.

20 It requires use of an alternative weighting matrix, one which estimates the spectral density at frequency
zero without exploiting the martingale structure implicit in multi-period conditional moment restrictions. For
instance, WT (b) given in formula (40) can be replaced by the weighting matrix estimator of Newey and
West (1987). While such an estimator tolerates much more general forms of temporal dependence, its rate of
convergence is slower than that of (40). On the other hand, the spectral density estimators are, by construction,
positive semidefinite in finite samples.
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Notice that (44) also implies the conditional moment restriction:

E
([−γ 1m Im ]wt+�|zt

) = 0.

Hansen and Singleton (1996) show that even if you impose the stronger condition that

E(wt+�|zt ) = 0.

in estimation, this does not distort the asymptotic inferences for the curvature parame-
ter γ . This means that the reduced-form equation can be estimated as a system GMM
estimation, with a weighting matrix constructed so that it does not require a prior or
simultaneous estimation of γ . Estimates of γ can be constructed as a restricted reduced-
form system. Hansen and Singleton (1996) produce inferences in the analogous ways
as for the CU-GMM estimator by constructing confidence sets from a GMM objective
function by concentrating all but the parameters of interest.

Notice that if E[φt (β)] = 0 then it is also true that E[Φ(β)φt (β)] = 0 where Φ is
a function that maps elements of parameter space P into nonsingular matrices. Thus we
may use φt (b) in constructing GMM estimators or Φ(b)φt (b). For instance in the log-
linear power utility model just considered we might divide the moment conditions by 1

γ

and instead estimate 1
γ

. Both this restricted reduced form method and the CUE method
yield an estimator that is invariant to transformations of this type. The same estimator of
the original parameter will be obtained, as is the case in maximum likelihood estimation.
This invariance property is not shared by other methods such as two-step methods where
a weighting matrix is constructed from an initial consistent estimator. Specifically, it is
not satisfied by two-stage least squares when the structural equation to be estimated is
over-identified.

7.5. Inference by simulation

The shape of GMM objective, beyond just derivative calculations with respect to pa-
rameters, is informative. For low dimensional problems or problems with sufficient
linearity, we can depict this function, its level sets, its behavior as we vary one para-
meter while minimizing out others. For nonlinear problems, an alternative convenient
method is to follow Chernozhukov and Hong (2003) by constructing

ϕT (b) ∝ exp

[
−1

2
ψT (b)

]
over the set P provided that this set is a compact subset of R

k with positive Lebesgue
measure.21 The right-hand side function is scaled so that∫

P

ϕT (b) db = 1

21 If P is not compact, then the objective could be scaled by a weighting function that has finite measure
over P.
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although there will be no need to compute this scaling factor analytically. The choice of
the compact parameter space will be potentially important in applications.

Armed with this construction, we may now use MCMC (Markov chain Monte Carlo)
methods to summarize properties of the function ϕT and hence of ψT . Appendix D
illustrates how to implement MCMC approach. MCMC methods are widely used in
making Bayesian inferences, but also can be applied to this problem even though we
will use a transformed CU-GMM criterion function instead of a likelihood function.22

We use the MCMC approach as a way to systematically represent the shape of the
GMM objective function via random parameter searches, but we will not attempt to
give a Bayesian interpretation of this exercise.

Since ϕT (b) may be treated mathematically as a density, we may infer “marginals”
for individual components of the parameter vector averaging out the remaining com-
ponents. This integration step is in contrast to practice of concentration producing an
objective over a single component of the parameter vector by minimizing the GMM
objective over the remaining component for each hypothetical value of the single com-
ponent. Using the random search embedded in MCMC, approximate level sets can also
be inferred.23 Thus this approach can be used fruitfully in characterizing the behavior
of the GMM objective function and offers an attractive alternative to minimization and
computing derivatives at minimized values.

7.6. Estimation under misspecification

A feature of the weighting matrix WT in GMM is that it rewards parameter configura-
tions that imply a large asymptotic covariance matrix. A parameter configuration might
look good simply because it is hard to estimate, it is hard to reject statistically. A model
specified at the level of a set of moment conditions is in reality only partially specified.
Even if we knew the true parameters, we would not know the full time series evolution.
If we did, we could form a likelihood function. When combined with a prior distrib-
ution over the parameters, we could compute the corresponding posterior distribution;
and when combined with a loss function we could produce a parameter estimator that
solves a Bayesian decision problem. The GMM estimation is meant to side step the
specification of the full model, but at a cost of distancing the inferences from Bayesian
methods.

Another way to address this issue is to repose the estimation problem by intro-
ducing model misspecification. Instead of aiming to satisfy the moment conditions,
suppose we wish to get close to such a specification. This requires a formal state-
ment of what is meant by close, and this choice will alter the population value of
the objective. For instance, consider the mean square error objective of minimizing

22 To make this link, view the function −ψT as the log-likelihood and ϕT as the posterior density associated
with a uniform prior over the parameter space.
23 Chernozhukov and Hong (2003) justify estimators of the parameter based on averaging or computing
medians instead of minimizing the GMM objective.
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E([f�(yt+�, b) − St,t+�]2) by choice of St,t+� subject to

E[St,t+�Xt+� − Qt ] = 0.

Since the space of stochastic discount factors St,t+� that satisfies this moment restriction
can be infinite dimensional, it is most convenient to work with the conjugate problem,
which will need to be solved for each value of b. For fixed b the conjugate problem is a
finite-dimensional concave optimization problem. In this case of mean square approx-
imation of the parameterized model to an admissible stochastic discount factor St,t+�,
we follow Hansen, Heaton and Luttmer (1995) and Hansen and Jagannathan (1997) by
using the conjugates problems

(46)min
b∈P

max
α

E
[
f�(yt+�, b)

2 − [
f�(yt+�, b) − α · Xt+�

]2 − 2α′Qt

]
or

(47)min
b∈P

max
α

E
[
f�(yt+�, b)

2 − [
max

{
f�(yt+�, b) − α · Xt+�, 0

}]2 − 2α′Qt

]
where in both cases the inner problem is concave in α. The second conjugate problem
is derived by restricting St,t+� to be nonnegative while the first problem ignores this
restriction.

In the case of problem (46), the inner maximization problem is solved by

α∗(b) = [
E(Xt+�X

′
t+�)

]−1
E

[
f�(yt+�, b)Xt+� − Qt

]
provided that E(Xt+�Xt+�

′) is nonsingular. The concentrated objective function for
problem (46) expressed as a function of b is

E
[
f�(yt+�, b)Xt+� − Qt

]′[
E(Xt+�X

′
t+�)

]−1
E

[
f�(yt+�, b)Xt+� − Qt

]
,

which is the population GMM objective function evaluated using[
E(Xt+�X

′
t+�)

]−1

as a weighting matrix. Importantly, this matrix does not depend on b. There is no reward
for imprecision in estimation.

Alternatively, inner part of problem (47) (optimization over α) does not have such a
convenient analytical solution nor does it provide a simple link to GMM estimation, but
it is constructed by restricting the admissible stochastic discount factors to be nonneg-
ative. Specifically, the inner problem provides a solution to stochastic discount factor
that satisfies the pricing restrictions of the form

max
{
f�(yt+�, b) − α∗ · Xt+�, 0

}
.

The term α∗ · Xt+� is a correction term for misspecification, but is limited so that the
resulting stochastic discount factor remains nonnegative.

The sample counterparts to problems (46) and (47) are saddle-point versions of M-
estimation problems from the statistics literature instead of GMM estimation problems.
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In the sample counterpart problems, the sample average objective function is minimized
instead of the population objective function.

Hansen and Jagannathan (1997) show that these two problems can be re-interpreted
as ones in which the parameters are chosen to minimize pricing errors over alternative
families of payoffs, where pricing errors are measured relative to the square root of
the second moment of the payoffs. As a consequence, it is informative to characterize
either:

max
α

E
(
f�(yt+�, b)

2 − [
f�(yt+�, b) − α · Xt+�

]2 − 2α′Qt

)
,

max
α

E
(
f�(yt+�, b)

2 − [
max

{
f�(yt+�, b) − α · Xt+�, 0

}]2 − 2α′Qt

)
as a function of b to assess model performance for alternative parameter values. Of
course other measures of discrepancy between the modeled stochastic discount factor
f�(yt+�, b) and the stochastic discount factors St,t+� that satisfy pricing restrictions can
be employed. Provided the objective is convex in the stochastic discount factor St,t+�,
we will be led to a conjugate problem that is concave in α, the Lagrange multiplier on
the pricing equation.

While we have formulated these as unconditional problems, there are obvious condi-
tional counterparts that use xt+� in place Xt+�, qt in place of Qt and condition on zt .
Then while α is a function of zt , the problem can be solved separately for each zt .

7.7. Intertemporal elasticity estimation

Consider first estimation that features a specific set of assets and other payoffs con-
structed via scaling. We use the power utility specification and make no attempt to
separate risk aversion and intertemporal substitution. Arguably, this is designed to fea-
ture estimation of the intertemporal substitution elasticity because by focusing on time
series data about a single return, the estimation is not confronting evidence about risk
prices. In our first-order expansion of the risk free rate, we saw the impact of both ρ and
γ on returns. Arguably the impact of changes in ρ might be more potent than changes
in γ , and subsequently we will consider multiple returns and the resulting information
about γ . Specifically, we will freely estimate ρ with a single return in this subsection
and then estimate γ for fixed alternative values of ρ when we study multiple returns in
the Section 7.9.

7.7.1. Treasury bills

Let xt+1 be the quarterly return to holding Treasury bills, which has price one by
construction. In addition to this return we construct two additional payoffs scaling by
consumption ratio between dates t and t −1, Ct/Ct−1 and the date t Treasury bill. Thus
there were a total of three moment conditions. Nominal Treasury bill returns were con-
verted to real returns using the consumption deflator. We used per-capita consumption.
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Figure 20. Continuously-updated GMM criterion function for the Treasury bill Euler equation: for � = 1. The
top panel depicts the objective function with and without the constraint that δ = 0. The bottom panel gives
the associated values of δ obtained by minimizing the GMM objective for each value of ρ. The parameter δ

is expressed as percent per annum.

To facilitate the discussion of inference based on the CU-GMM criterion functions,
in Figure 20 we report plots of the concentrated criterion function constructed by min-
imizing with respect to δ holding ρ fixed over a range of values. We also report the
values of the discount rate δ that minimize the criterion concentrated over ρ. The crite-
rion function is minimized at large values of ρ if we do not restrict δ. When we restrict
δ > 0, this restriction binds for modest values of ρ and there is notable curvature in the
objective function to the right of ρ = 0.5. On the other hand, the criterion is very large
even at the minimized parameter values. Apparently, it is not possible to satisfy all three
moment conditions, even if we allow for sampling uncertainty.

In Figure 21 we construct the payoffs differently. We lag the consumption growth
factor and return to Treasury bills one period to remove the effect of overlapping infor-
mation induced by time aggregation. We also set � = 2 when constructing the weighting
matrix. The shape of the objective (with δ concentrated out), is very similar to that of
Figure 20 except that it is shifted down. While reduction in the objective function is to
be expected because the conditioning information is less potent, the objective function is
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Figure 21. Continuously-updated GMM criterion function for the Treasury bill Euler equation: for � = 2. The
top panel depicts the objective function with and without the constraint that δ = 0. The bottom panel gives
the associated values of δ obtained by minimizing the GMM objective for each value of ρ. The parameter δ

is expressed as percent per annum.

still quite large. The nonnegativity restriction remains important for inducing curvature
to the right of ρ = 0.5.

Other researchers have argued that the study of the interest rate Euler equation is
fertile territory for weak instrument asymptotics, or more generally for weak formula-
tions of identification.24 While the evidence for predictability in consumption growth
is weak, risk free rates are highly predictable. This is potentially powerful identifying
information, suggesting perhaps that the intertemporal elasticity of consumption is very
small, ρ is large. Given the observed consumption growth, a large value of ρ requires

24 Stock and Wright (2000) consider setups in which the expected derivative matrix of the moment conditions
drifts to a singular matrix. For the log linear version of the Euler equation, we might ask that the projection
of consumption growth onto zt drifts to zero. If the projection of the Treasury bill onto zt does not also drift
to zero then the coefficient of interest, ρ must drift, changing the nature of the large sample embedding. See
Hansen and Singleton (1983) for a related discussion.
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a negative subjective rate of discount. Unfortunately, as we have seen this simple argu-
ment for large values of ρ ignores restrictions on δ and the overall statistical evidence
against the model. Considerations of weak identification are more germane for the study
of value-weighted returns.

7.7.2. Market return

Next we let xt+1 be the value-weighted return. We form two additional payoffs by using
consumption growth between date t − 1 and t along with the date t dividend price ratio.
The results are depicted in Figure 22. The objective function is lower than for Treasury
bills. Again the imposition of a nonnegativity constraint is inducing curvature in the
objective function, in this case to the right of ρ = 3.5. For market returns there is

Figure 22. Continuously-updated GMM criterion function for the market return Euler equation: � = 1. The
top panel depicts the objective function with and without the constraint that δ = 0. The bottom panel gives
the associated values of δ obtained by minimizing the GMM objective for each value of ρ. The parameter δ

is expressed as percent per annum.
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Figure 23. Continuously-updated GMM criterion function for the market return Euler equation: � = 2. The
top panel depicts the objective function with and without the constraint that δ = 0. The bottom panel gives
the associated values of δ obtained by minimizing the GMM objective for each value of ρ. The parameter δ

is expressed as percent per annum.

considerably less evidence against the model, but also very limited statistical evidence
about ρ.25

The results when the scaling variable is shifted back one time period are given in
Figure 23. Again the shape is similar, and the objective functions is a bit lower.

7.8. CES Preferences and the wealth return

While the CES parameterized version of the recursive utility model gives a leading ex-
ample of a stochastic discount factor model, as we have seen the stochastic discount
factors depend on continuation values. We have already explored constructions of these

25 The chi-square critical values for two degrees of freedom are 6.0 for probability value of 0.05 and 9.2 for
a probability value of 0.01. Since the nonnegativity constraint on δ sometimes binds the chi-square critical
values for three degrees of freedom also give a useful reference point. They are 7.8 for probability 0.05
and 11.3 for probability 0.01.
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values and their use in empirical investigation. Typically, the computation of contin-
uation values requires a complete specification of the consumption dynamics. In this
section we have abstracted from that complication. As emphasized by Epstein and Zin
(1989b), an appropriately constructed measure of the wealth return can be used in place
of continuation values as we now verify.

Pricing the next period wealth is equivalent to imputing the shadow price to the next
period continuation value. Thus we are led to compute

E[Vt+1MV t+1|Ft ]
MCt

=
[

exp(−δ)

1 − exp(−δ)

]
E

[
(Vt+1)

1−γ |Ft

][
R(Vt+1|Ft )

]γ−ρ
(Ct )

ρ

=
[

exp(−δ)

1 − exp(−δ)

][
R
(
Vt+1|Ft

)]1−ρ
(Ct )

ρ

where

R(Vt+1|Ft ) = (
E

[
(Vt+1)

1−γ |Ft

]) 1
1−γ .

Thus the return on wealth is given by

Rw
t+1 = exp(δ)

(
Ct+1

Ct

)ρ[
Vt+1

R(Vt+1|Ft )

]1−ρ

.

Recall that our previous empirical calculations presumed that γ = ρ. If we mistakenly
impose this restriction, then the Euler equation error is

exp(−δ)

(
Ct+1

Ct

)−ρ

Rw
t+1 =

[
Vt+1

R(Vt+1|Ft )

]1−ρ

.

Suppose that the continuation value is conditionally normally distributed with variance
|σv,t |2. While this will typically not be case, it can be justified by taking continuous time
limits along the lines we have discussed previously. Then the conditional expectation for
this misspecified model is

exp

[
(1 − ρ)(γ − ρ)

2
|σv,t |2

]
.

This distortion can be bigger or less than unity depending on whether or not γ is less
than or greater than ρ. To the extent that correction is almost constant, it can be absorbed
into the subjective rate of discount. Thus GMM estimation with this form of misspec-
ification at the very least alters the restriction imposed on the (potentially distorted)
subjective discount rate. Recall that the subjective rate of discount can be an important
source of identifying information.

The case of γ = 1 gives an interesting benchmark. In this special case the log-linear
version of the Euler equation holds with:

−δ − ρ
[
logCt+1 − logCt

] + logRw
t+1 = (1 − ρ)

(
logVt+1 − E[logVt+1|Ft ]

)
.
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(See Epstein and Zin (1989b) for an original reference.) In this special case it is not
necessary to use the constant term to even approximately correct for volatility in either
consumption or the return to wealth. The constant term captures the true subjective rate
of discount for investors. Large values of ρ ( small values of 1

ρ
) are ruled out by the

positive growth rate in per-capita consumption. More generally, studies like those of
Hansen and Singleton (1996), and Yogo (2004) report inferences that apparently toler-
ate large values of ρ, but they ignore restrictions on the constant term. This additional
information can be very informative as we have illustrated.26

7.9. Multiple assets and Markov chain Monte Carlo

When ρ �= 1, we may invert the relation between continuation values and the return on
the wealth portfolio as suggested by Epstein and Zin (1989b):

Vt+1

R(Vt+1|Ft )
= [

exp(−δ)Rw
t+1

] 1
1−ρ

(
Ct+1

Ct

) −ρ
1−ρ

.

Thus an alternative stochastic discount factor is

St,t+1 = exp(−δ)

(
Ct+1

Ct

)−ρ[
Vt+1

R(Vt+1|Ft )

]ρ−γ

(48)= [
exp(−δ)

] 1−γ
1−ρ

(
Ct+1

Ct

) ρ(γ−1)
1−ρ (

Rw
t+1

) ρ−γ
1−ρ .

The Euler equation for a vector Xt+1 of asset payoffs with corresponding price vec-
tor Qt is

E

([
exp(−δ)

] 1−γ
1−ρ

(
Ct+1

Ct

) ρ(γ−1)
1−ρ (

Rw
t+1

) ρ−γ
1−ρ Xt+1 − Qt |zt

)
= 1

where Rw
t+1 is the return on the total wealth portfolio.

In the empirical analysis that follows, we follow Epstein and Zin (1989b) by using
the market return as a proxy for the return on the wealth portfolio. Since the market
return omits important components to investor wealth, there are well-known defects in
this approach that we will not explore here. Also, we impose some severe restrictions
on ρ as a device to illustrate the information available for identifying γ and δ. Freely
estimating ρ is problematic because of the poor behavior of the CU-GMM objective in
the vicinity of ρ = 1. This poor behavior is a consequence of our using an empirical
proxy for the return on the wealth portfolio in constructing the stochastic discount factor.

26 On the other hand, the notion of using single returns to identify ρ independently of γ is typically compro-
mised. The value of γ determines in part what the distortion is in the subjective rate of discount induced by
omitting continuation values from the analysis.
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Figure 24. MCMC with the continuously-updated GMM criterion function: ρ = .5. The histograms are
scaled to integrate to one. The parameter δ is restricted to be in the interval [0, 5] expressed as an annualized
percent, and the parameter γ is restricted to be in the interval [0, 10]. The smallest CU-GMM objective

encountered in the random search was 9.8.

We apply the MCMC simulation method described previously to estimate γ and δ

for alternative choices of ρ. This gives us a convenient way to summarize the shape of
the CU-GMM criterion function through the use of simulation instead of local approxi-
mation. A consequence of our stochastic discount factor construction is that the market
portfolio cannot be used as one of the test assets and ρ = 1 cannot be entertained. In-
stead we use the “value minus growth” excess return constructed using the portfolios
sorted on book-to-market equity, together with Treasury bill return, in order to identify
the preference parameters. The scaling factor for the Treasury bill return are the same
ones we used previously, the consumption growth factor between t − 1 and t and the
time t Treasury bill return. The value-growth excess return is scaled by the consump-
tion growth factor and the date t value-growth excess return. Thus we use six moments
conditions in estimation.

In our estimation we use two different values of ρ, ρ = 0.5 and ρ = 1.5 and estimate
γ and δ subject to the constraints that 0 � δ � 5 and 0 � γ � 10 where δ scaled
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Figure 25. MCMC with continuously-updated GMM criterion function: ρ = 1.5. The histograms are scaled
to integrate to one. The parameter δ is restricted to be in the interval [0, 5] expressed as an annualized percent,
and the parameter γ is restricted to be in the interval [0, 10]. The smallest CU-GMM criterion function value

that was encountered in the random search is 21.7.

by 400 so that it is expressed as a percent per annum. The resulting histograms are
reported in Figures 24 and 25. When ρ = 0.5, the histogram for δ is very much tilted
toward zero, and the histogram for γ is very much tilted towards ten. The parameter
space bounds play an important role in these calculations, but it is straightforward to
impose other bounds. When ρ = 1.5, the histogram for γ is centered around 3.5, but
the histogram for δ is very much tilted towards the upper bound of five. Increasing the
upper bound on δ causes the γ distribution to shift to the right. Thus our chosen upper
bound on δ induces a modest estimate of γ . The lowest CU-GMM objective encountered
in the random search is 9.8 for ρ = 0.5 and 21.7 for ρ = 1.5 suggesting that there is
considerably less evidence against the specification with a lower value of ρ.27

27 As a point of reference, the critical values for the chi-square distribution with 4 degrees of freedom are
9.5 for a probability value of 0.05 and 13.3 for a probability value of 0.01. Given the important role of
the constraints on parameters, the chi-square distribution with five degrees of freedom gives an alternative
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Figure 26. Specification errors: ρ = 0.5. The top panel gives the specification error as a function of γ

when the value of δ is chosen to minimize the pricing error objective. This pricing error is expressed as the
mean-square distance from the misspecified stochastic discount factor to the closest random variable that
prices on average the vector of assets. Alternatively, it is the maximal average pricing error per mean-square

unit of payoff norm. The bottom panel gives the minimizing choices of δ for each value of γ .

The CU-GMM criterion function has the property that the parameter configurations
that induce considerable sampling uncertainty in the moment conditions are toler-
ated because the weighting matrix is the inverse of the sample covariance matrix. For
instance, large values of γ may induce large pricing errors but nevertheless be toler-
ated. To explore this possibility, we compute the implied specification errors using the
weighting matrix described previously. This weighting matrix is invariant to the para-
meters and instead comes from a best least squares fit of a misspecified model. The
outcome of this calculation is depicted in Figure 26 for ρ = 0.5 and in Figure 27 for
ρ = 1.5. When ρ = 0.5, the lower bound of zero on δ binds, and the specification
errors become large for large values of γ . When ρ = 1.5, the upper bound of five binds

interesting benchmark. The critical values are 11.1 for a probability value of 0.05 and 15.1 for a probability
value of 0.01.
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Figure 27. Specification errors: ρ = 0.5. The top panel gives the specification error as a function of γ

when the value of δ is chosen to minimize the pricing error objective. This pricing error is expressed as the
mean-square distance from the misspecified stochastic discount factor to the closest random variable that
prices on average the vector of assets. Alternatively, it is the maximal average pricing error per mean-square

unit of payoff norm. The bottom panel gives the minimizing choices of δ for each value of γ .

for large values of γ which in turn leads to large specification errors. For both figures
the implied value of δ when γ is near one becomes enormous to offset the fact that the
subjective discount factor is being raised to a very small number.

8. Conclusions

Our chapter explores the role of intertemporal substitution and risk aversion in asset
pricing. We feature the CES recursive utility model, but of course other asset pricing
models warrant comparable consideration. Parameters extracted from other sources,
including micro or experimental evidence can be inputs into an analysis of the asset
pricing implications of models. For example, Malloy, Moskowitz and Vissing-Jorgensen
(2005) use evidence from household level data to explore macroeconomic risk. Even
with known preference parameters, measurements of macroeconomic risk exposures
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are required for quantitative prediction. Since the intertemporal composition of risk can
play a central role in asset valuation, this puts an extra premium on the measurement of
long-run components to risk. We have not embarked on a comprehensive survey of the
empirical literature, but we now explore some of the challenges.

The parameter governing the intertemporal elasticity of substitution is key for linking
consumption and wealth. For this link we find it useful to feature the role of continuation
values. Since the CES aggregator is homogeneous of degree one, these continuation val-
ues encode the shadow values of wealth. In effect the continuation values appropriately
scaled give us one side of the intertemporal budget constraint and direct measures of
wealth the other side. There is a return counterpart to this link that has been featured in
some portions of the asset pricing literature, but the return based formulations typically
omit information, in particular information linking current responses of consumption
and wealth.

As we have illustrated following the work Lettau and Ludvigson (2001), use of con-
sumption and financial wealth leads to a macroeconomic version of Shiller (1981)’s
excess sensitivity puzzle. There is substantial variability in financial wealth that is not
reflected in aggregate consumption. This opens up a variety of measurement challenges
that have been explored in the asset pricing literature. For example, financial wealth
omits any contribution of labor income [see Campbell (1996) and Jagannathan and
Wang (1996) for studies of implications for pricing returns], but the remaining challenge
is how to measure and credibly price the corresponding labor income risk exposure.
Related to this, Lustig and Van Nieuwerburgh (2006) explore the required stochastic
properties of the omitted components of wealth that are required to repair the model
implications.

The use of aggregate nondurable consumption might also be too narrow. For this
reason, many studies expand the definition of consumption and refine the preference
assumptions when examining both the cross section and time series of asset returns.
For example, Piazzesi, Schneider and Tuzel (2007) consider a separate role for hous-
ing, Yogo (2006) and Pakos (2006) examine the importance of consumer durables, and
Uhlig (2006) considers leisure. Including these other components of consumption may
also prove fruitful for our understanding of the wealth–consumption link. Further as
emphasized by Uhlig (2006) these components are also germane to the evaluation of
risk embedded in continuation values.

In this chapter we have been guilty of pushing the representative consumer model
too hard. As an alternative to broadening the measure of wealth, we might focus on
narrowing the definition of the marginal investor. Heaton and Lucas (2000) and others
explore important aspects of investor heterogeneity, participation, market segmenta-
tion and limited risk sharing. Others, including Alvarez and Jermann (2000) and Lustig
(2004) consider models in which there are important changes over time in the mar-
ginal investor participating in market. These changes induce an extra component to risk
prices. All of these models provide alternative valuable frameworks for measurement.
They do not, however, remove from consideration the modeling and measurement ques-
tions explored in this chapter.
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Claims made in the empirical literature that intertemporal substitution can be inferred
from the study of single asset returns such as Treasury bills or the risk free rate require
qualification.28 They ignore potentially important information that is often buried in the
constant terms of log-linear estimation. We have seen how this additional information
can rule out small values of the intertemporal substitution parameter (large values of ρ).
The crude counterpart to this that abstracts from uncertainty can be seen by setting the
subjective rate of discount to zero and comparing the growth rate of consumption to
that of the average logarithm of returns. Excessively large values of our parameter ρ are
inconsistent with the observed relation between means. While suggestive, this simple
imitation of macro calibration is not formally correct in this context. As we have seen,
the risk aversion parameter also comes into play. Separation can only be achieved as an
approximation that abstracts from potentially important sample information.29

GMM inferences that explore shapes of the objective function through concentra-
tion or simulation are often the most revealing, even if they fail to achieve the simplified
aims of Murray (2005). While the continuously-updated-GMM estimation has some ad-
vantages in terms of reliable inference, it can also reward parameter configurations that
make the implied moment conditions hard to estimate. Thus naive use of such methods
can lead to what turn out to be uninteresting successes. It is valuable to accompany such
estimation with explorations of implied pricing errors or other assessments of potential
misspecification.

Consumption-based models with long-run risk components pose interesting statisti-
cal challenges because they feature macroeconomic risk exposure over long horizons.
Macroeconomic growth rate risk is reflected in continuation values, and continuation
values contribute to risk prices defined both locally and in the long run. These prices
along with cash-flow and return risk exposure determine the heterogeneity in asset
prices. Investor risk preference is thus encoded in the predicted asset prices and ex-
pected returns. We have illustrated why this source of identifying information about
investor risk preferences presents challenges for reliable measurement. Here we have
illustrated this using VAR methods to assess such estimates. For more general specifi-
cations nonlinear solution methods and estimation methods will come into play.

The incorporation of more formal macroeconomics promises to aid our understand-
ing of sources of long run risk. Work by Fisher (2007), Mulligan (2001) and others is
suggestive of such links. Both use production-based macroeconomic models. Fisher fo-
cuses on long run potency of alternative sources of technology shocks. Mulligan (2001)
considers consumption – physical return linkages as an alternative to the study of finan-
cial returns. Although stochastic volatility in consumption can potentially have long-run
effects as well, this additional source of risk should ultimately have its source in shocks
to technology and other economic fundamentals. Exploring these features in more fully
specified models and focusing on long-run components hold promise for aiding our
understanding of asset price heterogeneity.

28 See Hansen and Singleton (1996), Campbell (2003) and Yogo (2004).
29 Even in the power utility model with stochastic consumption, risk free rates are sometimes plausible with
very large value of ρ as revealed by the volatility correction in a log-normal approximation.
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Appendix A: Additional formulas for the Kreps–Porteus model

A.1. Discrete time

Recall that vt − ct = Uv · xt + μv where the formulas for Uv and μv are given in (21).
Write(

v1
t − ct

)2 = x′
tΛxt + 2λ′xt + �.

We look for a solution for the derivative of the form

Dv1
t = −

(
1

2
X′

tΩXt + Xt · ω + w

2

)
where

Ω = (1 − β)

β
Λ + βA′ΩA,

ω = (1 − β)

β
λ + β(1 − γ )A′ΩB(H + B ′Uv) + βA′ω,

w = (1 − β)

β
� + β(1 − γ )2(H + B ′Uv)

′B ′ΩB(H + B ′Uv)

(49)+ 2β(1 − γ )ω′B(H + B ′Uv) + β Tr(B ′ΩB) + βw.

The first equation in (49) is a Sylvester equation and is easily solved. Given Ω , the
solution for ω is

ω = (I − βA′)−1
(

1 − β

β
λ + β(1 − γ )A′ΩB(H + B ′Uv)

)
,

and given ω, the solution for w is obtained similarly by solving the third equation of (49).
Next we produce a formula for Dst+1,t based on Equation (20). From our previous

calculations

−(ct+1 − ct ) + [
v1
t+1 − Qt (v

1
t+1)

]
= U ′

vBwt+1 − G′xt − μc − 1 − γ

2

∣∣U ′
vB + H ′∣∣2

.

Using our formulas for Dvt+1 for the distorted conditional expectation:

Dv1
t+1 − E∗(Dv1

t+1|Ft

)
= −1

2

(
Bw∗

t+1

)′
ΩBw∗

t+1 + 1

2
Tr(B ′ΩB)

− (
Bw∗

t+1

)′
Ω

[
Axt + (1 − γ )B(H + B ′Uv)

] − ω′Bw∗
t+1.

Substituting for w∗
t+1 from the relation wt+1 = w∗

t+1 +(1−γ )[H +βB ′(I −A′β)−1G]
we may implement formula (20) via,

Ds1
t+1,t = 1

2
w′

t+1Θ0wt+1 + w′
t+1Θ1xt + ϑ0 + ϑ1xt + ϑ2wt+1



Ch. 61: Intertemporal Substitution and Risk Aversion 4049

by constructing the coefficients Θ0,Θ1, ϑ0, ϑ1, ϑ2.

A.2. Continuous time

In what follows, we derive the equations implied by (27) that can be used to compute
the derivative of the value function in practice. Many readers may choose to skip this
part.

To construct the solution, form the state vector

Xt =
[
xt
zt

]
and write composite state evolution (26) as

dXt = ÃXt dt + F̃ dt + √
zt B̃1 dW ∗

t + √
zt B̃2 d �W ∗

t ,

and write

(Uv · x + �Uvz + μv)
2 = X′ΛX + 2λ′X + �.

Look for a derivative expressed as

Dv1
t = −

(
1

2
X′

tΩXt + Xt · ω + w

2

)
.

Substituting into Equation (27), Ω solves

−δΛ + δΩ = Ã′Ω + ΩÃ;
ω solves:

−δλ + δω = ΩF̃ + Ã′ω +
[

0
1
2 Tr(ΩB̃1B̃

′
1) + 1

2 Tr(ΩB̃2B̃
′
2)

]
;

and w solves:

−δ� + δw = 2ω · F̃ .

These three equations should be solved in sequence.
Given this solution we may compute the shock exposure vector for the derivative as

follows:[
Dσ ′

v,t

Dσ̄v,t

]′
= −[ΩXt + ω]′[ B̃1 B̃2 ] = −[ΩXt + ω]′

[
B 0
0 �B

]
.

Using these formulas, the risk prices are:
(i) dWt :

√
ztρH

′ + √
zt (γ − ρ)(B ′Uv + H)′ − √

zt (ρ − 1)(γ − 1)[ΩXt + ω]′B̃1;

(ii) d �Wt :
√
ztρ �H + √

zt (γ − ρ)(�B�Uv + �H) − √
zt (ρ − 1)(γ − 1)[ΩXt + ω]′B̃2.
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Appendix B: Bayesian confidence intervals

Consider the VAR:

A(L)yt + C0 + C1t = wt

where yt+1 is d-dimensional. The matrix A(0) = A0 is lower triangular. We base infer-
ences on systems that can be estimated equation-by-equation. The wt is assumed to be
normal with mean zero and covariance matrix I . We follow Sims and Zha (1999) and
Zha (1999) by considering a uniform prior on the coefficients and we follow Zha (1999)
by exploiting the recursive structure of our models.

Write a typical equation as

αzt + γ · xt = vt

where vt is distributed as a standard normal, xt is a vector of variables that are uncorre-
lated with vt , but zt is correlated with vt . This equation can be transformed to a simple
regression equation of zt onto xt with regression coefficients β = − 1

α
γ and regression

error variance σ 2 = 1
α2 . Imposing a uniform prior over (α, γ ) does not imply a uniform

prior over the regression coefficients, however.
The piece of the likelihood for sample of T observations pertinent for this equation

has the familiar form

�T ∝ |α|T exp

[
−

T∑
t=1

(αzt + xt · γ )2

2

]
.

Consider first the posterior distribution of γ given α. Using familiar calculations e.g.
see Box and Tiao (1973), it follows that

γ ∼ Normal(−αbT , VT )

where bT is the least squares estimate obtained by regressing zt onto xt , and

VT =
(

T∑
t=1

xtx
′
t

)−1

.

The marginal posterior for α has a density that is proportional to

|α|T exp

(
−α2T sT

2

)
where sT is the least squares residual variance

sT = 1

T

T∑
t=1

(zt − xt · bT )2.

This is just a special case of a formula of Theorem 2 of Zha (1999).
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It is convenient to use the distribution for υ = α2T sT . By the change-of-variables
formula the density for υ is proportional to

υ
T −1

2 exp

(
−υ

2

)
,

which is the chi-square density with T + 1 degrees of freedom.
We simulate the joint posterior by first simulating υ using the chi-square distribution,

then constructing α up to sign, and finally simulating γ conditioned on α according to
a normal distribution.

Given the recursive nature of our model, we may follow Zha (1999) by building the
joint posterior for all parameters across all equations as a corresponding product. This
requires that we include the appropriate contemporary variables on the right-hand side
of the equation to ensure that wt+1 has the identity as the covariance matrix. In effect we
have divided the coefficients of the VAR into blocks that have independent posteriors
given the data. We construct posterior confidence intervals for the objects that interest
us a nonlinear functions of the VAR coefficients.

Appendix C: MCMC

The MCMC simulations follow a version of the standard Metropolis–Hastings algo-
rithm [see Chernozhukov and Hong (2003)]. Let the parameter combination correspond-
ing to the ith draw be b(i) = [δ(i), γ (i)] (since we hold ρ constant in these simulations,
we omit reference to it here). Then

1. draw b(0) from the prior distribution (uniform on A);
2. draw ζ from the conditional distribution q(ζ |b(i));

3. with probability inf
( exp(−ψT (b(i+1)))q(b(i)|ζ )

exp(−ψT (b(i)))q(ζ |b(i)) , 1
)

update b(i+1) = ζ ; otherwise keep

b(i+1) = b(i).
A typical choice of transition density is Gaussian, which results in a Markov chain

that is a random walk. We are interested in constraining the parameter space to a com-
pact set. Therefore an adjustment needs to be made for truncating the distribution.
Specifically, let φ be the bivariate normal density centered around zero with cdf Φ.
Then

q(x|y) = φ(x − y)

Pr(x ∈ A)
, where x = y + z, z ∼ Φ,

which can be computed straightforwardly. In simulations, the truncation is accom-
plished by discarding the values of ζ that fall outside of A. A choice needs to be made
regarding the dispersion of φ. Too large a variance would generate too many trunca-
tions and thus result in slow convergence while too low a value would produce a very
slowly-moving random walk that might fail to visit substantial regions of the parameter
space and also lead to slow convergence. We set the standard deviations of φ for both
parameters equal to their respective ranges divided by 50. The reported results are based
on simulations with 1,000,000 draws.
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Appendix D: Data description

Data: population is from NIPA Table 2.1. Risk-free rate is the 3-month Treasury Bill
rate obtained from CRSP Fama Risk Free Rates files.

Book-to-market portfolios: Returns to value weighted portfolios of stocks listed on
NASDAQ, AMEX and NYSE. Stocks sorted by book-to-market value of equity. Con-
struction of these portfolio returns is detailed in Hansen, Heaton and Li (2005).

Consumption: Aggregate US consumption of nondurables and services as reported in
the National Income and Product Accounts of the United States. Seasonally adjusted
and converted to real units using the implicit price deflators for nondurables and
services. Quarterly from 1947 to 2006.

Corporate earnings: “Corporate profits with IVA and CCAdj” from the National In-
come and Product Accounts of the United States. Quarterly, seasonally adjusted from
1947 to 2005.

Dividends: Constructed from the portfolio returns “with” and “without” dividends.
Seasonality removed by taking a moving average. Construction of this series is de-
tailed in Hansen, Heaton and Li (2005).

Market return: Value weighted return to holding stocks listed on NASDAQ, AMEX
and NYSE. Constructed from CRSP data base. Quarterly from 1947 to 2006.

Population: US civilian noninstitutionalized population 1947 to 2005.
Price deflator: Implicit price deflator for nondurables and services. Quarterly from

1947 to 2005.
Risk free rate: Three-month Treasury Bill return from CRSP. Quarterly from 1947 to

2006.
Wages and salaries: Wages and salary disbursement from the National Income and

Product Accounts of the United States. Seasonally adjusted and converted to real
units using the implicity price deflators for nondurables and services. Quarterly from
1947 to 2005.

Wealth: Total financial assets of the United States personal sector less Total liabili-
ties as reported in table L.10 of the Flow of Funds Accounts of the United States.
Quarterly from 1952 to 2005.
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Abstract

This chapter presents a unified set of estimation methods for fitting a rich array of
models describing dynamic relationships within a longitudinal data setting. The dis-
cussion surveys approaches for characterizing the micro dynamics of continuous de-
pendent variables both over time and across individuals, focusing on two flexible sets of
empirical specifications: dynamic simultaneous equations models incorporating error-
components structures, and autoregressive quantile models. The chapter is motivated
by the principle that, whenever possible, estimation methods should rely on routines
available in familiar software packages to make them accessible to a wide range of prac-
titioners. Conventional method-of-moments procedures offer a general apparatus for
estimating parameters of panel-data specifications, though one must introduce a series
of modifications to overcome challenges arising from: (1) use of unbalanced data struc-
tures, (2) weighting to account for stratified sampling inherent in survey longitudinal
data, (3) incorporation of predetermined variables in estimation, and (4) computational
complexities confronted when estimating large systems of equations with intricate in-
tertemporal restrictions. To allow researchers to separate the estimation of longitudinal
time-series specifications into manageable pieces, the discussion describes multi-step
approaches that estimate subsets of parameters appearing in a single model component
(such as the autoregressive or moving-average structure of the error process) without
having to estimate all parameters of the entire model jointly. Such procedures offer a
powerful set of diagnostic tools for narrowing model choices and for selecting among
specifications that fit the underlying data. To illustrate all of the econometric methods
outlined in this chapter, the analysis presents a set of empirical applications summariz-
ing the dynamic properties of hourly wages for adult men using data from the Panel
Study of Income Dynamics.

Keywords
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1. Introduction

Few topics in empirical economics have received as much attention as the dynamic
properties of wages and earnings. The questions asked in this work include: To what
extent does the dispersion of an individual’s earnings grow over time? Is this disper-
sion shared by other individuals and groups? Does this dispersion give rise to a shift
in rankings of individuals within groups? Comprehensive answers to such questions
require knowledge of two factors that jointly determine the dynamic properties of an
individual’s earnings: market-wide trends governing the evolution of cross-sectional
distributions over time, and forces underlying an individual’s mobility within distri-
butions. Empirical analyses exploiting micro-longitudinal data constitute a prominent
approach for acquiring this knowledge, an approach that relies on a rich array of econo-
metric specifications to uncover the intertemporal relationships linking an economic
agent’s variables over both short and long time horizons. This chapter overviews the
panel data models and estimation methods found in the literature on earnings and in-
come dynamics. While it motivates the discussion by drawing upon the questions and
analyses found in this extensive literature, one can readily apply the empirical methods
covered here to characterize the intertemporal properties of a wide range of variables
available in longitudinal settings.

The discussion surveys methods for estimating specifications designed to character-
ize the dynamic properties of continuous dependent variables in panel data settings,
variables whose stochastic fluctuations follow patterns consistent with sophisticated
forms of time-series and error-component models. In addition to considering flexible
intertemporal specifications for error structures, the analysis admits nonlinear structural
equations as a vehicle for relating measured variables both contemporaneously and over
time. This chapter not only covers such specifications that provide a summary of the au-
tocorrelation patterns of variables, which link the first and second moments of variables
over time, but it also explores procedures for fitting quantiles to describe dynamic re-
lationships. Panel data offer multiple observations on individuals over several periods,
often supplying only short and noncontiguous time series for members of a large cross
section of individuals. This feature of longitudinal data means that not all of the specifi-
cations and estimation procedures applicable in conventional time series analysis carry
over to panel data, and, alternatively, many of the problems and options relevant in
analyzing longitudinal data are not found in standard time series studies.

Familiar “method of moments” (MM) procedures provide a general apparatus for
estimating parameters of panel data specifications, but one encounters a variety of chal-
lenges in implementing such procedures in longitudinal data settings. One issue, easily
overcome by drawing upon findings in the literature, concerns how to exploit prede-
termined variables – quantities which are endogenous in some equations but not in
others – as instrumental variables in estimation. More demanding challenges involve
computational complexities confronted when estimating large systems of equations with
intricate nonlinearities, circumstances that often come about in panel data applications,
especially when one incorporates empirical specifications to estimate dynamic struc-
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tures describing error processes. Still more formidable challenges concern how to use
weights to account for the stratified samples that are a part of all longitudinal sur-
veys, and how to carry out estimation with unbalanced samples – samples that have
an uneven number of, and possibly different, time series observations across individ-
uals. Longitudinal surveys supply a variety of weights for use in the calculation of
statistics to compensate for nonrandom sampling, and the question arises as to which
weights one should use in MM procedures when estimating dynamic relationships. Use
of unbalanced datasets in MM procedures to avoid discarding data typically leads to
the reporting of invalid standard errors and test statistics by conventional MM formu-
las.

To surmount the computational challenges one can encounter with implementation
of MM procedures, this chapter lays out several options enabling practitioners to esti-
mate sophisticated longitudinal data specifications using standard routines available in
familiar software packages. Linear/nonlinear 3SLS procedures rely on convenient com-
putational formulas for large systems of equations. While 3SLS routines do not allow
for the inclusion of predetermined variables as instrumental variables, the subsequent
discussion demonstrates how to modify a conventional 3SLS system to exploit predeter-
mined variables fully in estimation with a minimal amount of extra programming and
computational burden. In addition, to allow researchers to separate the estimation of
longitudinal time-series specifications into manageable pieces, the discussion describes
multi-step approaches. When carrying out a step, a researcher can focus on estimat-
ing only the subset of parameters appearing in a single model component (such as the
AR or MA structure of the error process) without having to estimate all parameters of
the entire model jointly. Such procedures offer a powerful set of diagnostic tools for
narrowing model choices and for selecting among specifications that fit the underlying
data.

Regarding other challenges, this chapter demonstrates how to incorporate weights in
MM procedures to compensate for the nonrandom sampling frames inherent in longi-
tudinal surveys – thus avoiding naive MM implementations that produce inconsistent
estimates and/or test statistics. It also describes how to construct weights to enable use
of unbalanced data structures. In addition to describing estimation of dynamic simulta-
neous equations that relate the moments and autocorrelation patterns of earnings over
time, the analysis also outlines how this apparatus can be applied to estimate specifica-
tions characterizing the autoregressive properties of the quantiles of earnings.

To illustrate implementation of the econometric methods outlined in this chapter, the
exposition relies on a unified set of empirical applications rather than attempting to
cite examples from the existing literature; the current body of studies does not offer
sufficient overlap or cover all issues necessary to exemplify approaches. All empiri-
cal illustrations presented here utilize a common dataset on men’s wages drawn from
the Panel Study of Income Dynamics (PSID). The discussion presents ideas in a way
useful to practitioners who wish to specify and estimate models capable of addressing
their empirical questions, not to readers desiring a knowledge of the rigorous theoretical
underpinnings of econometric results or a comprehensive documentation of studies in
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the field. While the chapter draws heavily on existing results in the literature and does
not claim originality of the concepts outlined here, it does not attempt to attribute each
development to specific authors and omits many references. Instead, as concepts are
introduced, it directs readers to a variety of other surveys, especially to other chapters
in this and other Handbooks, that offer a wealth of citations and references along with
alternative presentations of the material.

This chapter does not address a variety of interesting topics important in analyses
of longitudinal data and aggregate trends. First, this chapter focuses on estimation
approaches applicable for continuous dependent variables, and not for dependent vari-
ables that are discrete, censored, or truncated. For discrete variables in a longitudinal
setting, popular estimation approaches include duration and competing risk models,
topics comprehensively covered in Handbook of Econometrics chapters by Heckman
and Singer (1986) and van den Berg (2001). Handbook chapters by McFadden (1984),
Hajivassiliou and Ruud (1994), and Arellano and Honoré (2001) describe other valuable
approaches for estimating dynamic relationships involving discrete, as well as censored
and truncated, variables. Second, this chapter interprets specifications of market-wide
trends as time effects that are common across population segments, and estimates these
effects as parameters. Therefore, the analysis does not consider the more elaborate spec-
ifications for aggregate trends that incorporate sophisticated forms of stochastic com-
ponents of the sort entertained in Handbook chapters surveying time-series techniques
by Granger and Watson (1984), Hendry, Pagan and Sargan (1984), Geweke (1984),
Wooldridge (1994), Stock (1994), Watson (1994), Teräsvirta, Tjøstheim and Granger
(1994) and Hamilton (1994); nor does this chapter survey the empirical methods found
in the extensive literature documenting the market-wide trends in wage growth and earn-
ings inequality that have occurred during the past three decades, a topic covered in the
Handbook of Labor Economics chapter by Katz and Autor (1999). Third, this chapter
restricts attention to classical estimation methods applicable for parametric specifica-
tions; consequently, it does not cover the burgeoning literature on nonparametric and
semi-parametric estimation methods, nor does it address the use of Bayesian proce-
dures. Handbook chapters by Härdle and Linton (1994), Powell (1994), Geweke and
Keane (2001) and Abbring, Heckman and Vytlacil (2007) provide insightful overviews
of these alternative estimation methods.

Six sections make up the core of this chapter. Section 2 surveys the wide variety of
empirical specifications applied in the longitudinal data literature to characterize the
dynamic properties of wages and earnings, considering specifications for both error
structures and distributed lag relationships linking measured variables. Section 3 briefly
covers the key asymptotic results underlying MM estimation and testing procedures,
along with the challenges encountered in implementing these methods in panel data
settings. Section 4 presents several approaches for simplifying the estimation problem
confronted when fitting sophisticated longitudinal specifications, with the focus on sub-
dividing the overall estimation problem into a series of manageable steps. Section 5
outlines how to adapt the empirical apparatus covered in the earlier sections to provide
for estimation of autoregressive specifications for the quantiles of variables. Section 6
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describes how to integrate the weights provided by longitudinal surveys into the es-
timation of panel data models, and it goes on to develop a modified weighting-type
procedure enabling one to use unbalanced data structures to estimate dynamic speci-
fications. To illustrate application of the modeling and theoretical concepts covered in
this chapter, Section 7 presents a series of empirical examples designed to explore the
dynamic properties of the hourly wages of men using data from the PSID for the years
1980–1991. The purpose of this empirical analysis is not only to enhance accessibility
to practitioners, but also to offer some insights into the sensitivities of findings induced
by relying on alternative methods. As a conclusion to the overall chapter, Section 8
offers an abbreviated summary and concluding remarks.

2. Empirical specifications describing panel data dynamics

The empirical literature characterizing wage and earnings dynamics in panel data set-
tings exploits a wide variety of specifications. Modeling the intertemporal properties
of continuously-distributed variables using longitudinal surveys involves distinguishing
two sources of variation in data: aggregate dynamics determining how cross-sectional
distributions evolve over time, and micro dynamics describing the evolution of individ-
ual agents’ relative positions within cross-sectional distributions from period to period.
This chapter reviews empirical approaches focused on characterizing the micro aspects
of dynamics.

Two components make up panel data specifications designed to capture the underly-
ing sources of micro dynamics experienced by individuals. The first relates to measured
variables, be they endogenous, predetermined or exogenous quantities. These speci-
fications may be nonlinear in both parameters and variables; they often incorporate
distributed lag relationships. The second model component describes the stochastic
properties of error terms appearing in structural equations. These properties reflect
features of the time series processes generating individual-specific errors. One finds
elaborate representations for these time-series models in longitudinal data analyses,
including sophisticated integration of nonstationary ARMA specifications and error-
component models comprised of time-varying combinations of individual-specific fac-
tors.

This section begins with a broad characterization of the empirical specifications
whose estimation occupies the remainder of this chapter. After identifying how such
specifications account for the underlying aggregate and micro aspects of dynamics, the
discussion reviews the empirical parameterizations applied to model complex autocor-
relation structures linking both measured variables and unobserved errors over time.
In addition to exploring parameterizations that describe the intertemporal pattern of the
moments of variables, this section ends with a discussion of empirical parameterizations
aimed at modeling the dynamic properties of dependent variables through the evolution
of quantiles over time.
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2.1. General characterization of empirical specifications

The panel data models discussed in this survey belong to parameterizations of the fol-
lowing nonlinear simultaneous equation:

(2.1)fti = fti(Yti , Zti , Xti , γ ) = Uti .

The function fti possesses a known form, but the parameter vector γ is unknown and
must be estimated. The data vectors Yti , Zti and Xti have the structure

(2.2)Yti =
⎛⎝ yti

...

y(t−ky)i

⎞⎠ , Zti =
⎛⎝ zti

...

z(t−kz)i

⎞⎠ , Xti =
⎛⎝ xti

...

x(t−kx)i

⎞⎠ ,
with observations available for “agent” or “individual” i in time period t . The models
considered here assume that a panel dataset supplies T time series observations for each
of N cross sectional observations on individuals. The yti’s in (2.2) represent current
and lagged endogenous variables; the zti’s comprise additional sets of endogenous and
predetermined quantities; and the xti’s constitute exogenous variables. The quantities
fti , yti , zti and xti may all be interpreted as column vectors, but much of the discussion
treats them as scalars to simplify the exposition.

The error term Uti in (2.1) follows a generalized ARMA(p, q) process given by

Uti = −
p∑
j=1

ajtU(t−j)i +
q∑
j=0

mjtε(t−j)i ,

where the εti’s constitute mean-zero disturbances that are independently distributed over
both time and individuals, and the ajt ’s and mjt ’s are parameters with a0t = m0t = 1.
A compact representation of this equation is

(2.3)at (L)Uti = mt(L)εti ,

where at (L) ≡ ∑p

j=0 ajtL
j and mt(L) ≡ ∑q

j=0mjtL
j are lag polynomials of orders

p and q respectively.1 In many longitudinal data specifications, the coefficients of at (L)
andmt(L) are time invariant. The error terms εti are independently distributed over time
and individuals, with a variance–covariance structure given by

(2.4)E(εtiεks) =
{
Σti if i = s and t = k,

0 otherwise.

When Σti = Σki ≡ Σi for all t and k, the literature designates the εti’s as white
noise, for they satisfy a weak stationarity property (i.e., have constant variances over
time). When Σti = Σtj ≡ Σt for all i and j , the disturbances εti are homoscedastic

1 The roots of the polynomial mt (L) are assumed to lie on or outside the unit circle. This restriction is the
usual one imposed in the time series literature to guarantee identification of the coefficients of mt (L).
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across individuals. The subsequent discussion covers estimation procedures allowing
for the parameters Σti to be constant over time and/or across agents. Regardless of the
specification of Σti , the following exposition refers to the εti’s as white noise.

2.2. Sources of dynamics

Modeling the dynamic properties of variables for individuals requires distinguishing
two sources of variation: components reflecting shared time effects that jointly displace
measures for entire groups, and individual-specific sources of variation. In practice,
there can be considerable discretion in attributing fluctuations to these different sources,
making this conceptually-simple task quite difficult. Often this task is accomplished
without researchers explicitly realizing that they have done so.

To fix ideas, consider the simple linear regression specification

(2.5)

yti = πy(t−1)i + β1xti + β2x(t−1)i + τt + νti , t = 1, . . . , T , i = 1, . . . , N,

where τt constitutes a time effect common to all individuals i in period t , and the error
terms νti are distributed independently of all time components making up the vector of
τ ′ ≡ (τ1 . . . τT ). According to this relation, time effects influence the dynamics of yti’s
only by shifting the means of the cross-sectional distributions from one period to the
next. If, in addition, the variance of the νti systematically grows or declines over time,
then one might replace (2.5) by

(2.6)yti = πy(t−1)i + β1xti + β2x(t−1)i + τ1t + τ2t ν
∗
t i ,

where τ1t and τ2t are distinct time components realized in period t , and now ν∗
t i is

distributed independently of all the τ1t ’s and τ2t ’s. When there are multiple time effects
operative in period t , the subsequent analysis interprets τt as a vector incorporating
these effects, and the vector τ as including all time components τt .2

Inspection of (2.5) reveals that the overall dynamic properties of yti depend on four
sources: (1) the stochastic behavior of the time components τt ; (2) the parameters
determining the distributed lag relationships involving past yti’s and xti’s; (3) the in-
tertemporal properties of the xti’s; and (4) the stochastic process of the errors νti .

2.2.1. Aggregate dynamics

Many studies focus on understanding the forces underlying trends in the economy or
in a market, rather than how individuals sort themselves around these trends from one
period to the next. These forces determine the evolution of cross-sectional distributions

2 Analyses may further specify that time effects differ across groups of individuals, in which one might
further substitute τg1t and τg2t for τ1t and τ2t in (2.6) where the subscript “g” distinguishes particular groups.
In this case, the notation τt would be a vector incorporating the elements τg1t and τg2t for all groups.
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over time. This exercise requires knowledge of the time patterns followed by the τt ’s,
for movements in the τt ’s determine how cross-sectional distributions shift over time.

In a micro empirical analysis, one can treat the τt ’s as fixed or random effects. The
majority of micro studies estimate the elements of τ as parameters, thus implicitly in-
terpreting the τt ’s as fixed effects. Another popular approach treats the time effects τt as
deterministic functions of exogenous variables, with year and age variables introduced
to capture underlying trends. Such analyses often abandon attempts to learn much about
the intertemporal process determining time effects and merely plot the estimated values
of τ1, . . . , τT against time.

When studies interpret the τt ’s as random time effects, their purpose is to estimate re-
lationships characterizing the stochastic properties of these time components. Typically,
micro analyses interpret the time effects as being independently distributed over time.
In contrast, macroeconomic analyses introduce sophisticated relationships to model the
dynamic properties of these economy-wide effects, exploiting rich specifications based
on ARMA, ARCH, or GARCH models. These models are not pursued in most longitu-
dinal studies due to small samples in T , which render consistent estimation infeasible.

2.2.2. Micro dynamics

Treating the time components (τt ) as parameters in estimation renders a micro analysis
that depicts the stochastic properties of the yti’s conditional on the τt ’s. This variation
characterizes how individuals sort themselves within cross-sectional distributions over
time after removing aggregate or economy-wide effects. Such information reveals how
individuals systematically deviate from the aggregate trends measured by the quanti-
ties τ from one period to the next.

There are two routes through which specification (2.1) captures the micro sources of
dynamics: the measured function fti that relates current and past yti’s and xti’s, and the
stochastic process generating the unobserved quantitiesUti . Expressed in terms of these
micro dynamic components, prototype specification (2.5) becomes:

(2.7)
fti(Yti , Zti , Xti , γ ) = yti − πy(t−1)i − β1xti − β2x(t−1)i − τt ,
Uti = νti .

Thus, fti incorporates features of the distributed lag relationships involving measured
variables, along with the time effects estimated as parameters. The error Uti captures
the time series properties of disturbances. If one were instead to consider specifica-
tion (2.6), then the error becomes Uti = τ2t ν

∗
t i which depends directly on time effects

and may, as a consequence, exhibit heteroscedasticity properties over time in addition
to its autocorrelation attributes.

The remainder of this section discusses a rich array of empirical specifications for
modeling both fti and the intertemporal properties of Uti . The particular variety of
model introduced in a longitudinal analysis to characterize individual variation fun-
damentally depends on the character of the dependent variables. When variables are
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discrete, duration or competing risk models are popular candidates. When variables are
censored or truncated, researchers commonly specify complete distributional assump-
tions combining continuous and discrete variables and carry out maximum likelihood
procedures. This chapter primarily focuses on estimation methods applicable when
the yti’s are continuously distributed with τ treated as fixed. The analysis covers two
distinct types of empirical specifications devised to summarize the micro dynamic prop-
erties of y: (i) relationships that link the moments of y determining its autocorrelation
structure, and (ii) empirical formulations that describe the evolution of the quantiles of y
over time.

2.3. Dynamic simultaneous equation models

Starting with flexible specifications for the function fti in (2.1) designed to model the
intertemporal moments of y, a popular formulation consists of a structural equation
from a DSEM (dynamic simultaneous equation model), such as

(2.8)Π(L)yti = Ψ (L)zti + B(L)xti + Uti,
whereΠ(L) ≡ ∑n

j=0ΠjL
j is a finite-order lag polynomial withΠ0 = 1, and Ψ (L) ≡∑r

j=0 ΨjL
j and B(L) ≡ ∑s

j=0 BjL
j are row vectors of finite-order lag polynomials.

Written in terms of (2.1), this DSEM implies the specification

fti(Yti , Zti , Xti , γ ) = Π(L)yti − Ψ (L)zti − B(L)xti .
An alternative representation of (2.8) is

yti = −
n∑
j=1

Πjy(t−j)i +
r∑
j=0

Ψjz(t−j)i +
s∑
j=0

Bjx(t−j)i + Uti,

which may be expressed compactly as

(2.9)yti = Y ′
(t−1)iπ + Z′

t iψ +X′
t iβ + Uti,

where the vectors Y(t−1)i , Zti , and Xti are defined by (2.2), and the parameter vec-
tors π , ψ and β incorporate coefficients included in Π , Ψ , and B, respectively.
With T ∗ denoting the total number of time periods supplied by the panel data source,
T ≡ T ∗ − max(n, r, s) is the number of periods for which there are data on all the vari-
ables appearing in Equation (2.9). Period 1 in this discussion refers to the first period in
which data are available, so t = 1, . . . , T .

Combining observations on Equation (2.9) for a given individual into a single system
creates a model that is particularly useful for the analysis of panel data. Stacking these
observations in descending order starting with the last period yields⎛⎝ yT i...

y1i

⎞⎠ =
⎛⎜⎝Y

′
(T−1)i
...

Y ′
0i

⎞⎟⎠π +
⎛⎜⎝Z

′
T i
...

Z′
1i

⎞⎟⎠ψ +
⎛⎜⎝X

′
T i
...

X′
1i

⎞⎟⎠β +
⎛⎝UT i...
U1i

⎞⎠ ,
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which, in matrix notation, is

(2.10)yi = Yiπ + Ziψ +Xiβ + Ui,
i = 1, . . . , N . The disturbances Uti of Equation (2.9) may be autocorrelated over time,
but they are assumed to be independently distributed over individuals after the removal
of common period effects achieved by including time dummies or polynomials in time
among the exogenous variables. Denote the variance–covariance matrix of Ui by Θ =
E{UiU ′

i }. With distributed lag structures common across individuals, the panel data
source offers N independent sets of T time series observations with which to estimate
the parameters of Equation (2.9).

Equation (2.8) provides a framework for considering a wide variety of distributed lag
relationships among the elements of Y , Z, and X using panel data, including infinite
order schemes. The assumption that the lag polynomials Π(L), Ψ (L), and B(L) are
of finite order is not as restrictive as it may at first appear. One can derive a specifi-
cation in the form of (2.8) for any infinite-order distributed lag relationship that can
be written as a ratio of finite order lag polynomials. Such lag schemes, known as ra-
tional distributed lags, admit flexible weighting patterns on past variables and contain
many well-known schemes as special cases. Analyzing rational distributed lag schemes
using specifications (2.8) or (2.9) can imply nonlinear restrictions relating the coeffi-
cients of the polynomialsΠ(L), Ψ (L), and B(L). The estimation procedures developed
below permit such restrictions. While imposing these constraints may yield increased
efficiency in estimation, one can construct less efficient estimates of infinite-order lag
structures using unconstrained estimates and the formulas implied by Ψ (L)/Π(L) and
B(L)/Π(L).3

The desirability of imposing “smoothness” restrictions of the sort implied by a ratio-
nal distributed lag structure has been questioned in the time series literature,4 and it is
natural to question the value of such restrictions in a longitudinal analysis as well. In
contrast to a time series analysis, one can completely relax these smoothness restrictions
in a panel data setting and test the constraints implied by a particular rational distrib-
uted lag scheme before accepting it as a specification. The main implication of assuming
that a DSEM characterizes distributed lag relationships among measured variables is the
imposition of constraints across equations associated with different time periods for a
given individual. Inspection of model (2.10) reveals that these constraints translate into
an equality restriction that requires π , ψ and β to be constant across equations. It is

3 Consider, for example, the construction of estimates for the coefficients of an infinite order rational dis-
tributed lag that relates Yti to a single exogenous variable Kti . According to Equation (2.8), this distributed
lag δ(L) = ∑∞

j=0 δjL
j is given by δ(L) = B(L)/Π(L). The resultΠ(L)δ(L) = B(L) implies formulas for

the δj ’s. In particular, equating the coefficients associated with each Lj term in the polynomial Π(L)δ(L) to
the corresponding coefficient in the polynomial B(L) yields a set of difference equations that can be solved
for δj , j = 0, . . . , given estimates of the Πj ’s and the Bj ’s.
4 See, for example, Sims (1974) for a discussion of this issue.
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straightforward to relax this equality restriction when estimating the system of equa-
tions given by (2.10) and to test whether it can be accepted for the longitudinal dataset
under consideration.

While specification (2.9) presumes that a researcher wishes to analyze only a single
structural equation per period, it is straightforward to modify this specification to permit
analysis of a multicolumn vector and of the coefficients Πj , Ψj and Bj as matrices of
parameters.

2.4. Modeling dynamics through error structures

In many applications, modeling the autocorrelation properties of disturbances is an im-
portant component of a panel data analysis. Indeed, it is the focus of most longitudinal
studies in the empirical literature concerned with characterizing the dynamic aspects
of an individual’s wages or earnings.5 Besides providing a framework for summarizing
the intertemporal properties of variables, the introduction of a stochastic process for
disturbances can create a statistical model that may be used for prediction outside the
sample period. In the case of simultaneous equations, its inclusion can aid in securing
the identification of structural parameters.

2.4.1. Addition of other error components

Many longitudinal analyses combine pure autoregressive or pure moving-average error
terms with permanent components and random trend components to model the intertem-
poral correlation pattern of disturbances. Thus, Uti in Equation (2.8) becomes

(2.11)Uti = φ1i + φ2i t + νti ,
where νti is now generated by the ARMA process (2.3) with either a(L) = 1 or
m(L) = 1, and φ1i and φ2i are time-invariant random components distributed indepen-
dently across individuals.6

For those procedures in the subsequent discussion that provide for the direct esti-
mation of either autoregressive or moving-average coefficients contained in the lag
polynomials a(L) and m(L), the difference disturbances (1 − L)νti or (1 − L)2νti
should be used in place of the Uti’s when either φ1i or φ2i are present. In particular,
if only the permanent component φ1i is admitted (i.e., φ2i = 0), then first-differencing

5 See, for example, Hause (1977), Lillard and Willis (1978), Baker and Solon (2003), Altonji and Dunn
(2000).
6 The most popular specification is one that combines a permanent component with a pure autoregressive

scheme. David (1971), Hause (1977, 1980), Lillard and Willis (1978), and Lillard and Weiss (1979) are
examples of studies that estimate first-order schemes (i.e., p = 1 and q = 0 in (2.3)); Ashenfelter (1978)
considers higher-order autoregressive processes. Friedman and Kuznets (1945, p. 353) estimate a first-order
moving-average scheme (i.e., p = 0 and q = 1 in (2.3)) with a permanent component; Hause (1977) considers
higher-order moving-average processes. MaCurdy (1982a) considers a mixture of an autoregressive and a
moving-average process.
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Equation (2.8) creates a new error (1 − L)Uti that follows an ARMA structure of the
sort given by (2.3). If φ2i is also admitted, then second-differencing changes the spec-
ification of the ARMA process for the disturbances in a known way and introduces no
new parameters. The same is true if a DSEM specification happens to describe the rela-
tionships involving the measured variables. Thus, it is possible to construct a full set of
estimates for the coefficients of the polynomials Π(L), Ψ (L), B(L), a(L), and m(L)
using only the parameter estimates of the differenced equations.

Alternatively, if the error components φ1i and φ2i are assumed to be independent of
the νti’s, as is often maintained in longitudinal studies, it is straightforward to modify
the specification of Θ = E{UiU ′

i } developed below to reflect the influence of φ1i , φ2i ,
or both. This adjusted specification of Θ can then be used in the estimation procedures
proposed in later sections.

Yet another set of error structures implemented in a longitudinal setting describes
disturbances as taking the form

(2.12)Uti = λ′
tφi + νti , t = 1, . . . , T , i = 1, . . . , N,

where λ′
t = (λt1, . . . , λtk) is a vector of factor-loading coefficients (which may or may

not be known); and φ′
i = (φ1i , . . . , φki) is a vector of individual-specific time-invariant

disturbances with

E
(
φiφ

′
j

) =
{
Ω if i = j,

0 otherwise.
According to (2.12), Uti equals a weighted sum of two error structures: a k-dimensional
“factor” model consisting of a sum of correlated individual-specific errors φj ; and an
individual-time-specific error νti which is distributed independently of φi and may be
serially independent over time or follow an ARMA(p, q) process. This error structure
admits a wide variety of autocorrelation patterns with a minimal number of parame-
ters.

As in the case of (2.11), it is elementary to modify the specification ofΘ = E{UiU ′
i }

developed below to account for the influence of the factor components φi appearing
in (2.12). This adjusted specification ofΘ can then be used in the estimation procedures
proposed in later sections. Alternatively, one can often transform (2.12) into a form that
eliminates the φ components, and one can estimate the transformed error structure uti-
lizing approaches similar to the differenced specifications outlined above. For example,
in the most common formulations, the factor loading λt and error component φi are each
scalars. In such cases, one can divide (2.12) by λt and apply first-differencing to elimi-
nate φi . The resulting specification introduces an individual-time-specific error, νti/λt ,
which may be heteroscedastic over time. In terms of specification (2.4), this implies the
white noise errors εti will be nonstationary.

2.4.2. Admitting nonstationarity in longitudinal analysis

Permitting the errors εti to be heteroscedastic over time gives rise to no conceptual
difficulties in analyses of panel data. The variance–covariance parameters Σti in (2.4)
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differ across t but remain constant over individuals i. In standard time series analysis,
this sort of nonstationarity does not necessarily create estimation problems, but it does
require an explicit parameterization of the suspected form of the heteroscedasticity that
avoids an incidental parameters problem. In the case of panel data, however, estimation
procedures allow for arbitrary forms of serial heteroscedasticity.

A second form of nonstationarity permitted in panel data analysis provides for the co-
efficients of the lag polynomials a(L) andm(L) to vary arbitrarily across periods so that
there are new sets of autoregressive and moving-average parameters for each t . Specifi-
cation (2.3) incorporated such options by including t subscripts on the lag polynomials
at (L) and mt(L); testing of common coefficients in a longitudinal analysis setting is
discussed below.

A third source of nonstationarity readily admitted in panel data analysis involves
relaxing the requirement for the roots of the autoregressive lag operator a(L) to lie out-
side the unit circle. Thus, it is possible to consider such error processes as random walks
when using longitudinal data. In a time series analysis the existence of such nonstation-
arity has significant consequences on the asymptotic properties of estimators, but in the
case of panel data, where asymptotic results rely on a large number of individuals rather
than a large number of time periods, its inclusion has no such effects.

A fourth form of nonstationarity found in panel data studies comes about due to the
influence of initial conditions associated with the starting values of an ARMA model,
a set of conditions that differ across individuals. Section 4 considers this topic in detail.

To highlight key ideas, Sections 4 and 7 focus on the modeling and estimation
problems encountered when assuming that a common ARMA process generates the
disturbances Uti over time and across individuals, with the white noise errors εti as-
sumed to be stationary and the same for all individuals. Such error structures admit a
wide variety of time series aspects of panel data with a minimal number of parame-
ters. Moreover, in longitudinal analyses this class of error specifications has performed
well in describing the intertemporal features of the data. The subsequent discussion also
covers modifications needed to accommodate each of the sources of nonstationarity out-
lined above.7

2.5. Dynamic quantile regressions

Rather than introducing specifications describing the evolution of the mean and the au-
tocorrelation structure of the yti’s, suppose one instead wishes to characterize the micro
dynamic properties of these dependent variables by modeling the intertemporal features
of the conditional quantiles of y. To interpret prototype equation (2.5) in this context,
assume the error νti in this specification is distributed independently both over time and
across individuals; so, νti = εti , the white noise error term specified in (2.4). The au-
toregressive coefficient π characterizes the dynamic properties of wages after removing

7 Baltagi (2002) surveys recent developments of panel data methods for estimating parameters in the pres-
ence of several varieties of nonstationarity popular in the times series literature.
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trends, and one can readily generalize this prototype specification to incorporate an au-
toregressive structure with multiple lags, as analogous to the DSEM specified by (2.8).

A conventional autoregressive formulation of (2.5) invokes the moment restriction

(2.13)E(νti |Y(t−1)i , Xti) = 0,

where Y(t−1)i signifies the past wages y(t−1)i , . . . , y(t−k)i . This condition implies that
(2.5) characterizes how the first moment of the Markov distribution of yti conditional
on Y(t−1)i and Xti evolves over time. One applies least squares or generalized least
squares methods to estimate the parameters of such formulations, suitably adjusting for
heteroscedasticity or correlation in an individual’s errors when appropriate.

Alternatively, one can associate relation (2.5) with an autoregressive formulation of
the κth percent quantile (or percentile) of the Markov distribution of yti by imposing
the restriction

(2.14)qκ(νti |Y(t−1)i , Xti) = 0,

where qκ( ) designates the κth percent quantile of the distribution of νti conditional on
Y(t−1)i and Xti , where κ ∈ (0, 100). When κ = 50, Equation (2.5) determines how the
conditional median of yti evolves over time. Conceptually, the application of LAD pro-
cedures would produce consistent estimates of the autoregressive coefficients appearing
in (2.5). Such relations have only rarely been estimated in a panel data context, but
specifying variants of (2.14) for several values of κ offers a parsimonious and flexible
framework for describing micro dynamic relationships.

Section 5 summarizes a class of quantile estimators for systems of simultaneous
equation models comprised of time series observations on fti(Yti , Zti , Xti, γ ) that pro-
vides a flexible and noncumbersome procedure for estimating parameters of dynamic
relationships of the sort specified by (2.5). In essence, assuming specifications for the
quantiles of structural error distributions conditional on exogenous or predetermined
instruments, the estimators formulate these conditional quantiles into moment condi-
tions capable of being estimated within a conventional nonlinear instrumental variable
or MM (method of moments) framework. This apparatus matches the sample analog
of the conditional quantiles against their population value, employing a smoothing pro-
cedure familiar in various problems found in nonparametric inference and simulation
estimation. The analysis applies standard arguments to demonstrate consistency and
asymptotic normality of the resulting Smoothed MM Quantile estimator.

3. Basic estimation concepts and challenges

Much is known about the estimation of nonlinear simultaneous equations of the sort
encountered in longitudinal data analyses, and this section outlines the key results. The
discussion opens with a brief summary of the “method of moments” (MM) estimation
framework, which also goes by the names of “generalized method of moments” (GMM),
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“nonlinear instrumental variables” (NIV), and “minimum chi-squared” estimation.8 In
addition to reviewing the central asymptotic results exploited in the MM estimation ap-
proach, the discussion also highlights the procedures for selecting optimal instrumental
variables and for testing joint hypotheses.

While this apparatus offers a comprehensive framework for estimating a wide variety
of models, one encounters several challenges in applying these methods in a panel data
context. One challenge, which has been addressed fully in the literature, concerns how
to exploit predetermined variables – variables that are endogenous in some equations but
not in others – as instrumental variables in estimation. More demanding undertakings
involve computational complexities that arise when one incorporates large numbers of
equations in estimation with intricate nonlinearities, as well as development of empirical
specifications enabling estimation of the dynamic structure describing error processes.
Still more formidable challenges concern how to use weights to account for stratified
samples that are a part of all longitudinal surveys, and how to carry out estimation with
unbalanced datasets – samples with an uneven number of time periods and possibly
nonoverlapping time periods of data available for individual sample members. The sec-
ond part of this section provides an overview of these challenges, whereas Sections 4
through 6 lay out specific approaches for dealing with each challenge in a longitudinal
data setting.

3.1. Overview of method of moments estimation procedures

Suppose one is interested in calculating a consistent estimate of the “true” value of a
p× 1 parameter vector γ that is an unknown determinant of the distribution generating
a random vector Y . Denote this true value as γ0, and let Yi and Xi , i = 1, . . . , N ,
denote N observations on Y and on a vector of measured characteristicsX. The Yi’s are
assumed to be independently distributed across observations after conditioning on the
Xi’s, or when these characteristics are treated as known constants.

3.1.1. Method-of-moments estimators

The MM approach offers a general procedure for estimating the parameters γ0 in large
samples. To characterize this class of estimators, let �i(γ ) ≡ �(γ,Mi), i = 1, . . . , N ,
represent a b × 1 vector of known functions with b � p where the vector Mi includes
elements of Yi and Xi . Consider the system of equations

(3.1)LN(γ ) ≡ 1

N

N∑
i=1

�i(γ ) = 0.

8 Many have contributed to the development of this estimation methodology. Most notably, Sargan
(1958, 1961) initiated the study of this class of estimators, and Amemiya (1974, 1975, 1977) and Hansen
(1982) substantially generalized and expanded these methods to create the broad framework summarized
in this section. Handbook chapters by Amemiya (1983) and Manski (1994) present valuable overviews and
alternative presentations of these approaches.
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Assuming each �i possesses a sufficiently well-behaved distribution and the �i’s are
chosen so that limN→∞ E(LN(γ0)) = 0, one can show that setting γ = γ0 solves (3.1)
in the sense that LN(γ0) converges in probability to zero as the sample size goes to
infinity. Identification of γ requires the existence of a unique solution to (3.1), which
requires the Jacobian of LN to have the appropriate rank, as dictated by the implicit
function theorem.9 The MM estimation approach maintains that the matrices of first
partials ∂�i

∂γ ′ , i = 1, . . . , N , exist with each element uniformly continuous in γ . De-

note the average of these partials by SN(γ ) ≡ 1
N

∑N
i=1

∂�i
∂γ ′ , assumed to possess full

column rank, and define the matrix VN(γ ) ≡ 1
N

∑N
i=1 �i(γ )�i(γ )

′ as an average of
outer products. By maintaining further assumptions guaranteeing satisfaction of a set
of regularity conditions, one can demonstrate that computing a solution to (3.1) yields
a strongly consistent estimate for γ0 that is asymptotically normally distributed.10 To
derive the asymptotic results cited below, the distributions associated with the �i’s and
the matrices of first partials cannot have too much weight in the tails.11

When the number of equations in (3.1) used to compute estimates surpasses the num-
ber of parameters, there seldom exists a value for γ that solves all equations making up
(3.1) exactly in finite samples. Thus, one requires a weighting scheme for comparing
the errors obtained in solving the various equations. A standard approach is to compute
a value γ̃ to minimize the quadratic form

(3.2)LN(γ )
′HNLN(γ ),

where HN is a positive definite symmetric matrix for all N (including its probability
limit as N → ∞). When the number of equations exceeds the number of parameters,
the form of HN determines the relative tradeoffs in solving (3.1), which in turn defines
the estimator γ̃ .12 Essentially any γ̃ that minimizes (3.2) yields a strongly consistent
estimator for γ0 that is asymptotically normally distributed as follows:

√
N(γ̃ − γ0)

d−→ N
(

0, plim
N→∞

[[
S̃′
NHNS̃N

]−1[
S̃′
NHNṼNHNS̃N

][
S̃′
NHNS̃N

]−1
])
,

9 In many applications, one cannot rule out the possibility that values of γ other than γ0 may also satisfy
(3.1) in the limit. One can, however, easily resolve this issue for the estimation problems considered below,
and for simplicity this analysis assumes the solution to (3.1) is unique.
10 To prove consistency and asymptotic normality of the solution to LN(γ ) = 0, the convergence of LN ,
SN , and VN to their respective limits must be uniform in γ , and this assumption is maintained through-
out the discussion. Chapter 4 in Amemiya (1985) provides detailed definitions of several forms of uniform
convergence.
11 Letting �ji and sjki denote the j and (j, k) elements of �i and ∂�i

∂γ ′ , respectively, sufficient conditions

restricting the tails of distributions are: E|�ji |2+δ2 � C1 < ∞ and E|sjki |1+δ1 � C2 < ∞ for some
δ1, δ2 > 0 and all γ ∈ Γ .
12 Ordinary least squares derives an estimate for γ by minimizing the sum of squared errors associated with
the b equations appearing in (3.1), which implies setting HN = I (≡ identity matrix), corresponding to
minimizing the quantity LN(γ )

′LN(γ ).
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where S̃N ≡ SN(γ̃ ) and ṼN ≡ VN(γ̃ ). Thus, the approximate distribution for γ̃ in large
samples is

(3.3)γ̃ ∼.. N
(
γ0,

1

N

[[
S̃′
NHNS̃N

]−1[
S̃′
NHNṼNHNS̃N

][
S̃′
NHNS̃N

]−1])
.

The efficiency of the estimator γ̃ depends on the choice of HN .

3.1.2. Generalized least squares

According to generalized least squares theory, selecting HN in (3.2) to be a matrix
that is proportional to the inverse of the variance–covariance matrix of LN(γ0) leads
to the most efficient parameter estimate obtained by minimizing (3.2). Such a choice is
HN = [E(VN(γ0))]−1, where this expression relies on the relation

E
[
LN(γ0)LN(γ0)

′] p−→ 1

N
E
[
VN(γ0)

]
,

following from the independence of observations �i with the notation
p−→ designating

convergence in probability. The matrix E(VN(γ0)) is unknown, but as with many gener-
alized least squares analyses, a consistent estimate for this matrix is easily constructed
and the asymptotic properties of estimators are unaffected if one substitutes this consis-
tent estimate for the true value of the matrix. Accordingly, when computing an estimate
for γ0, one sacrifices no estimation efficiency by instead minimizing the quadratic-form
distance function

(3.4)C(γ ) ≡ LN(γ )
′Ṽ −1
N LN(γ ),

where ṼN ≡ VN(γ̃ ) with γ̃ representing any consistent estimate for γ0, implying
ṼN

p−→ limN→∞ E(VN(γ0)). Let γ̂ denote that value of γ minimizing (3.4).
The asymptotic properties of the estimator γ̂ follow from (3.3). WithHN = Ṽ −1

N , we
have γ̂ s−→ γ0 and

√
N(γ̂ − γ0)

d−→ N
(
0,
[
S(γ0)

′V −1(γ0)S(γ0)
]−1)

,

where the matrices S(γ0) and V (γ0) respectively denote the probability limits of SN(γ0)

and VN(γ0). Thus, the approximate distribution for γ̂ in large samples is

(3.5)γ̂ ∼.. N
(
γ0,

1

N

[
Ŝ′
NṼ

−1
N ŜN

]−1
)
,

where ŜN ≡ SN(γ̂ ).
Distribution formula (3.5) also applies when equation system (3.1) yields a just-

identified solution for the parameters γ . In such instances, the number of equations
in (3.1) equals the number of elements in γ . Since the system of equations LN = 0
alone fully defines γ , the choice of HN in (3.2) is irrelevant in the calculation of γ̃ . In
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such circumstances, the asymptotic distribution simplifies to

(3.6)γ̃ ∼.. N
(
γ0,

1

N
S̃−1
N ṼN S̃

′ −1
N

)
.

One finds this specification of the large-sample distribution reported for many estima-
tors.13

3.1.3. Instrumental variable estimators

Longitudinal empirical models of the sort outlined in Section 2 comprise special cases
of the following system of nonlinear simultaneous equations:

(3.7)

fi(γ0) = ξi, where fi ≡ fi(γ ) ≡
⎛⎝ fT i...
f1i

⎞⎠ ≡
⎛⎝ fT (Mi, γ )...

f1(Mi, γ )

⎞⎠ and ξi ≡
⎛⎝ ξT i...
ξ1i

⎞⎠
where the fti , i = 1, . . . , N , t = 1, . . . , T , are vectors of known functions, the column
vector Mi represents the ith observation on measured variables, γ0 denotes the true
value of the parameter vector γ that generates the sample under consideration, and ξi
represents an error vector which is distributed independently across observations with
E{ξi} = 0. DesignateQi as a vector whose elements are functions of instrumental vari-
ables, and which is presumed in the subsequent discussion to always include a constant.
In conventional simultaneous nonlinear equations, one maintains the assumption that
E{ξi |Qi} = 0, so we have conditional-first-moment independence of ξi andQi .

A formulation for �i’s in the MM framework satisfying the properties needed for
consistent estimation of γ0 takes the form

(3.8)�i =
⎛⎝ (fT i ⊗QT i)...

(f1i ⊗Q1i )

⎞⎠ ≡ Δifi,

where the operator ⊗ designates a matrix Kronecker product,14 and the matrix Δi is
given by

(3.9)

Δi =

⎛⎜⎜⎜⎜⎝
(InT ⊗QT i) 0 · · · 0 0

0 (InT−1 ⊗Q(T−1)i ) · · · · ·
· 0 · · · 0 0

· · · · · (In2 ⊗Q2i ) 0

0 0 · · · 0 (In1 ⊗Q1i )

⎞⎟⎟⎟⎟⎠ ,

13 Prominent examples include least squares procedures, wherein (3.1) corresponds to the “moment condi-
tions”.

14 The Kronecker is defined as (fji ⊗Qki) =
⎛⎜⎝
f1jiQki

.

.

.

fmjiQki

⎞⎟⎠, where fji =
⎛⎜⎝
f1ji
.
.
.

fmji

⎞⎟⎠.
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with Inj denoting an identity matrix of dimension nj . If there exist the same number of
structural equations in each period, then nT = · · · = n1. This formulation of �i allows
different functions of the instrumental variables to be applied to each set of equations
fti in estimating the parameter vector γ . The distance function (3.4) multiplied by N2

takes the form

N2C(γ ) ≡ [
Σi�i(γ )

′][ 1

N
Σi
(
�̃i �̃

′
i

)]−1[
Σi�i(γ )

]
,

where �̃i is a consistent estimate of �i . This may also be written as:

(3.10)
[
Σif

′
i Δ

′
i

][ 1

N
Σi
(
Δiξ̃i ξ̃

′
iΔ

′
i

)]−1

[ΣiΔifi],

where ξ̃i is a consistent estimate of ξi . According to (3.5), this instrumental variable
estimator possesses the large sample multivariate normal distribution:

(3.11)γ̂ ∼.. N
(
γ0,

[[
Σi
∂f ′
i

∂γ

∣∣∣∣
γ̂

Δ′
i

][
Σi
(
Δiξ̃i ξ̃

′
iΔ

′
i

)]−1
[
ΣiΔi

∂fi

∂γ ′

∣∣∣∣
γ̂

]]−1)
,

where ∂fi
∂γ ′ |γ̂ is a matrix of gradients evaluated at γ̂ .

3.1.4. Optimal choice of instrumental variables

The efficiency of the MM estimator depends on the selection of the instrumental vari-
ables Qti implemented to estimate the various equations. Assuming the errors ξi in
system (3.7) have a common variance–covariance structure across individuals, the op-
timal choice of the functional forms of the instrumental variables – the form producing
the most efficient estimates – is given by

(3.12)Qti = E

(
∂fti

∂γt

∣∣∣∣
γ0

|Xi
)
, t = 1, . . . , T ,

where the parameter vector γt includes the components of γ appearing in fti . The
expectations in (3.12) condition on all the exogenous variables available in the simul-
taneous equations system (3.7), designated here as Xi .15 With this formulation for the
Qti’s, minimizing the function (3.4) computes the MM estimate, and its asymptotic
distribution is given by (3.11). Considering the class of all MM estimators with Qti
being any function of the instrumental variables, the estimator computed with the Qti
selected according to (3.12) yields the most efficient estimator in this class when errors
are homoscedastic.

15 See Amemiya (1975) for the original demonstration of this result. Formula (3.12) assumes that fti is
a single structural equation. If fti is a vector, then one forms Qti by stacking the columns of the matrix

E(
∂f ′
t i

∂γt
|γ0 |Xi).
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In general, this choice of Qti is not directly observed because γ0 is unknown. How-
ever, there is no loss of efficiency by replacing (3.12) with

(3.13)Qti = E

(
∂fti

∂γt

∣∣∣∣
γ̃

|Xi
)
, t = 1, . . . , T ,

where γ̃ is a consistent estimate for γ0, treated as fixed in the calculations of the expec-
tation. A popular procedure for approximating the formulation ofQti given by (3.13) is
to

(3.14)project
∂fti

∂γt

∣∣∣∣
γ̃

on functions of elements of Xi.

This is usually accomplished by regressing components of ∂fti
∂γt

|γ̃ on functions of Xi .
One then uses the fitted values from this regression to serve asQti .

3.1.5. Testing procedures

Two approaches are popular for testing hypotheses involving general forms of nonlinear
restrictions relating the elements of γ . Consider the null and alternative hypotheses

(3.15)H0: r(γ ) = 0 versus Ha : r(γ ) �= 0,

where r(γ ) is a q × 1 vector of known functions specifying the q restrictions linking
the components of γ . One form of test relies on a Wald statistic, and a second exploits
a likelihood-ratio type statistic.

To construct a Wald statistic, define the partial derivative matrix and its corresponding
estimate as

R(γ ) ≡ ∂r

∂γ ′ and R̂ = R(γ̂ ).

Assuming thatH0 contains no redundant restrictions, one can formulate a matrix R that
possesses full row rank. If H0 is true, then

(3.16)Nr(γ̂ )′
[
R̂
[
Ŝ′
NṼ

−1
N ŜN

]−1
R̂′]−1

r(γ̂ ) ∼.. χ2
q ;

that is, under the null hypothesis, the Wald statistic is approximately distributed, for
sufficiently large N , according to a chi-squared distribution with q degrees of freedom.

A comparison of the optimized values of the distance functions (3.4) when assuming
the null and alternative hypotheses provides another basis for testing H0. If H0 is true,
then it can be shown that

(3.17)
[
N min
γ : r(γ )=0

C(γ )
]

−
[
N min{γ } C(γ )

]
∼.. χ2

q ,

where ṼN in (3.4) is kept constant when minimizing C(γ ) under H0 and Ha . The first
term in (3.17) computes C(γ ) imposing the constraints r(γ ) = 0, whereas the sec-
ond term minimizes C(γ ) invoking no restrictions. Thus, under the null hypothesis, the
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difference in optimized distance functions used to calculate estimates is approximately
distributed, for sufficiently large N , according to a chi-squared distribution with q de-
grees of freedom.

3.2. Challenges

One encounters a variety of problems in implementing the above MM framework when
estimating panel data specifications. Some are easily overcome, such as incorporating
predetermined variables as instruments in estimation. Others can become particularly
troublesome, such as avoiding computational difficulties with large systems, formulat-
ing empirical specifications to estimate the correlation pattern of sophisticated error
structures, and using weights and unbalanced samples in estimation. The following dis-
cussion briefly reviews these challenges, while the next sections present options for
overcoming the various problems.

3.2.1. Simultaneous equations with predetermined variables

When estimating time series models within a simultaneous equation system, it is often
necessary or desirable to exploit the fact that certain variables can be considered prede-
termined for a subset of the equations. This involves using these variables as instruments
in estimating some equations, while treating these same variables as endogenous in
others. Previous literature has fully addressed methods for exploiting predetermined
variables in the estimation of longitudinal models.16

To convey the essential ideas underlying these methods, consider a system of struc-
tural equations

(3.18)gi ≡
⎛⎝ gT i...
g1i

⎞⎠ ≡
⎛⎝ gT i(MT i, γ0)

...

g1i (M1i , γ0)

⎞⎠ =
⎛⎝ νT i...
ν1i

⎞⎠ ≡ νi,

where gti(·) and νti are directly analogous to fti(·) and ξti appearing in model (3.7).
Interpret gti as a structural equation associated with time period t . Suppose that the
variables included in the column vector Pti (a subset ofMti) are predetermined for this
equation. While a “predetermined property” often refers only to covariance restrictions
(e.g., E{Ptiνti} = 0), much of the discussion below interprets predetermined as imply-
ing that all the elements of the vector Pti are distributed independently of the error νti ,
but not necessarily of the errors νki , k < t . The exogenous variables of model (3.18) –

16 The Handbook chapter by Arellano and Honoré (2001) presents an extensive review of these methods.
Studies exploiting predetermined variables as instrumental variables in the estimation of longitudinal models
include Anderson and Hsiao (1982), Bhargava and Sargan (1983), Amemiya and MaCurdy (1986), Holtz-
Eakin, Newey and Rosen (1988), Arellano and Bond (1991), Keane and Runkle (1992), and Arellano and
Bover (1995).
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grouped into the vector Xi – are assumed to be distributed independently of the errors
νti , t = 1, . . . , T .

Efficient estimation of this system of equations requires the use of the Pti’s as in-
strumental variables for the appropriate equations. More importantly, for some models,
predetermined variables are the only source of instruments, which makes it necessary
to devise an estimation procedure that exploits these variables.

An obvious method for using the MM procedure described above to calculate an esti-
mate for γ0 utilizing all the available instrumental variables is to create a new structural
model in the form of (3.8) by setting

(3.19)�i =
⎛⎜⎝ gT i ⊗

(
QT i
PT i

)
...

g1i ⊗
(
Q1i
P1i

)
⎞⎟⎠ ≡

⎛⎜⎝ gT i ⊗Q
∗
T i

...

g1i ⊗Q∗
1i

⎞⎟⎠ ≡ Δ∗
i gi,

with Δ∗
i defined analogously to (3.9). This formulation for �i satisfies the properties

required in the above discussion for minimization of (3.4) to result in a consistent esti-
mate for γ0 that is asymptotically normally distributed according to distribution (3.5).
Accordingly, the distance function (3.10) and the asymptotic distribution (3.11) apply
when estimating (3.18) with gti , ν̃i ,Q∗

t i , and Δ∗
i replacing fti , ξ̃i ,Qti , and Δi in (3.10)

and (3.11), respectively.

3.2.2. Optimal instrumental variables with predetermined variables in the MM
framework

As in the case with only exogenous variables, with predetermined variables present the
efficiency of the MM estimator depends on the selection of the instrumental variables.
Assuming homoscedasticity of errors νi , a linear transformation of equation system
(3.18) puts it into a simpler form for characterizing this efficient estimator. Premulti-
plying Equation (3.18) by the matrix B that is constructed to be lower triangular with
BE(νν′)B ′ = I transforms the model into the form

(3.20)g#
i ≡ Bgi = Bνi ≡ ν#

i .

This linear transformation creates a model with errors possessing the covariance struc-
ture E(ν#ν# ′) = I , while maintaining the particular “predetermined properties” as-
sumed for the Pti’s, with the ν#

t i’s serving in place of the νti’s; namely, the vari-
ables Pti are distributed independently of the errors ν#

t i , . . . , ν
#
T i , but not of the errors

ν#
1i , . . . , ν

#
(t−1)i .

Implementing MM to estimate the coefficients γ computes an estimator to minimize
(3.10) with

fi = g#
i ;

Δi = Δ#
i withQti = Q#

t i for t = 1, . . . , T ; and

IT = E
{
ν#ν# ′} replaces ξ̃i ξ̃

′
i .
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With these substitutions, distribution (3.11) specifies the asymptotic distribution of this
NIV estimator.

In place of expression (3.12), the optimal choice for Q#
t i accounting for predeter-

mined variables takes the form17

(3.21)Q#
t i = E

(
∂g#
t i

∂γt

∣∣∣∣
γ0

|Xi, Pti
)
, t = 1, . . . , T .

Considering the class of all NIV estimators with Q#
t i being any functions of the exoge-

nous and predetermined variables available for errors νti , . . . , νT i , the NIV estimator
computed with Q#

t i selected according to (3.21) yields the most efficient estimator in
this class when errors νi are homoscedastic across individuals. Because Q#

t i is not di-
rectly observed, a procedure for constructing (3.21) is to

(3.22)project
∂g#
t i

∂γt

∣∣∣∣
γ̃

on functions of elements of Xi and Pti,

where γ̃ is any consistent estimate of γ0. Then use the fitted values of this projection as
the optimalQ#

t i .

3.2.3. Specifications providing for estimation of ARMA coefficients and dynamic
quantiles

Often the aim of a longitudinal analysis involves discovering the characteristics of the
error structure of a model, and the challenge becomes developing empirical specifica-
tions that allow for the estimation of parameters governing either the autocorrelation
pattern or the dynamic evolution of the quantiles associated with errors appearing in
structural equations. Obviously, if the fti’s in the above framework only refer to the
original structural equations linking measured variables, then the information signaling
the dynamic properties of error terms merely shows up as a determinant of the stan-
dard errors of coefficients that the above analysis computes in an unrestricted fashion.
For the MM framework to be of use in informing researchers about the intertemporal
properties of error processes, additional specifications must be formulated for some of
the fti’s that capture the restrictions implied by the proposed error structure. Moreover,
these additional fti’s must be combined with the original structural equations so as to
identify all parameters and meet the conditions maintained by the MM framework.

When the disturbances Uti in (2.7) follow a pure AR process, simple and well-
known linear transformations of the original equations create the specifications needed

17 See the appendix of Amemiya and MaCurdy (1986) for the derivation of this optimal choice. The Hand-
book chapter by Arellano and Honoré (2001) surveys recent developments and generalizations of this spec-
ification of optimal instrumental variables, and also covers a variety of interesting refinements in estimation
methods.
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to estimate the AR coefficients. It is also straightforward to derive the additional spec-
ifications needed to estimate parameters associated with a pure MA error process. The
task becomes substantially more difficult when a mixed ARMA model describes the
intertemporal properties of the Uti’s. In such instances, one must accommodate the
consequences of “initial conditions” in specifications, which can be a formidable task,
as demonstrated in the next section.

An attractive alternative to estimating moment relationships characterizing the mi-
cro intertemporal properties of variables involves using conditional quantile regressions
to describe these dynamics. To date, the MM framework outlined above has not been
directly applied to estimate parameters of such specifications in a panel data setting.
As demonstrated in Section 5, this framework offers a flexible empirical approach for
estimating autoregressive specifications of quantile equations.

3.2.4. Potential computational issues

A variety of software routines exist for implementing the above formulation of the MM
estimation framework, albeit in some conventional statistical packages one must under-
take programming beyond the built-in procedures. In the use of any of these routines,
one can encounter considerable computational problems in applying this approach in a
panel data setting. Two factors contribute to these difficulties.

First, estimation of longitudinal specifications often results in structures of the �i’s
that have large dimensions, leading to potential problems in inverting the matrix ṼN as
required to calculate estimates using (3.4) and to compute asymptotic distributions us-
ing (3.5). Consider, for example, estimation of the simple linear prototype equation (2.5)
using a longitudinal dataset. In conducting this estimation, suppose: (i) the errors νti in
(2.5) follow a MA(2) process; (ii) the vectors xti each include 5 exogenous variables
that are linearly independent of the other xki’s, k �= t ; (iii) the coefficients π , β1, and β2
differ over time; and (iv) a researcher has 10 periods of data along with information on
the initial conditions y0i and y−1i . To estimate coefficients of the period-t variant (2.5),
available instrumental variables include the exogenous variables xti , x(t−1)i , the prede-
termined variables y(t−2)i , . . . , y−1i , and time dummies. (The inclusion of the 10 time
dummies, of course, identifies the time effects τ .) Thus, joint estimation of all 10 period
equations implies a construction of �i in (3.19) that incorporates at least 165 elements.
Moreover, for each period-t equation, all xki for k �= t , t−1 also constitute valid instru-
mental variables providing for increased prediction of variation in y(t−1)i beyond that
captured in the above list, instruments which if exploited would enhance the efficiency
of estimation. This implies existence of an additional 45 (= 5 ·9) instrumental variables
per equation. Incorporating all these over-identifying variables in estimation would ex-
pand �i by 450 elements. If, instead, a researcher merely employs 4 over-identifying
restrictions per equation, then �i contains more than 200 elements. Consequently, the
dimension of the ṼN matrix is over 200 × 200 in this simple case. While inverting
such a matrix is conceptually manageable using familiar statistical software, problems
can arise if the panel data source supplies less than 500 observations on individuals,
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which is not an uncommon occurrence. One may have to resort to quadruple precision
or generalized inverse routines to conduct such inversions. Regardless of whether one
can invert ṼN , reliable estimates of its individual elements are unlikely since this ma-
trix contains over 20,000 unique quantities. Problems do not necessarily go away if the
sample size were to double to 1000 or quadruple to 2000 observations. Of course, even
with these larger samples one would still have little hope of jointly estimating the 10
period model using all over-identifying instrumental variables, since the dimension of
ṼN would balloon to 615 × 615.18 As we will see in the next section, estimation of
sophisticated variants of an ARMA process for errors can readily enlarge the number of
equations in �i even further.

Second, longitudinal surveys sometimes supply very large amounts of data that lead
to exceeding memory barriers imposed in software applications, making the implemen-
tation of the above MM methods problematic, if not impossible. This issue is especially
prevalent in Windows statistical software where the memory barrier currently falls be-
tween 1.5 and 2 GB. One must conscientiously accommodate this barrier when using
monthly data from a longitudinal survey such as SIPP96 or NLSY79.

There are additional reasons for simplifying estimation within the MM framework,
beyond providing options for avoiding the potential computational difficulties described
above. Most importantly, less-burdensome methods would offer valuable procedures
for carrying out diagnostic tests without the need to estimate the entire model, as the
previous discussion assumes. The next section reviews a variety of simplifications in
estimation methods.

3.2.5. Estimation with stratified and unbalanced data

Practically all micro data are collected using a stratified sampling frame, meaning that
observations with particular characteristics are drawn in proportions differing from
those of the true population. Failure to account for this sampling frame in an empiri-
cal analysis results in the computation of inconsistent estimates, even when calculating
simple statistics such as means. Consequently, naive application of the MM approach
produces inconsistent estimates as well.

The question is how to modify MM estimation methods to recognize the implications
of the stratified sampling present in longitudinal surveys. These surveys provide weights
for use in the calculation of statistics to compensate for nonrandom sampling, but they
invariably supply many weights. Besides offering at least one set for each time period for
the purpose of computing the appropriate cross section statistics, surveys regularly pro-
vide different weights to compensate for over-samples of particular race/ethnic groups

18 In this simple linear model, approaches exist for reducing the number of instrumental variables in the
construction of the �i ’s while resulting in little or no loss in estimation efficiency. For example, according to
(3.22), near-optimal instrumental variables for the coefficients π , β1, and β2 consist of the quantities ŷ(t−1)i ,
xti , and x(t−1)i , where ŷ(t−1)i represents the fitted value of y(t−1)i regressed on y(t−2)i , . . . , y−1i and all
xki – with time effects removed from all variables. This yields an �i with 120 elements.
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or low-income families. Which weights should one use in MM procedures when esti-
mating dynamic relationships, and how should these weights be incorporated in forming
the �i’s appearing in equation systems (3.8) and (3.19)?

Another important question concerns how to carry out estimation when one has an
unbalanced data structure. Whereas balanced samples restrict data to be available for a
common set of time periods for each individual included in the analysis, unbalanced
samples retain individuals without requiring data for every period. Typically, when
faced with unbalanced data, researchers discard observations until they have constructed
a balanced sample. The resulting loss of data not only lowers efficiency, but, more fun-
damentally, it often leads to the selection of nonrepresentative segments of the original
sample, and also eliminates a rich source of information for identifying dynamic rela-
tionships for sample members seen sporadically or for short horizons.

One might initially surmise that the MM framework can be easily modified to account
for unbalanced samples. After all, one can readily portray the �i’s as having a different
number of elements – consistent with a different number of time periods – for each
individual. However, as demonstrated in Section 6, the formulas reported above do not
give the correct representations for the asymptotic distributions of the MM estimators
in this case. More sophisticated adjustments are required.

4. Simplified estimation approaches

The following discussion, in conjunction with the next two sections, lays out specific
approaches for dealing with the challenges outlined above in a longitudinal data setting.
The current section focuses on a variety of simplifications in estimation methods.

The discussion opens with an overview of 3SLS procedures, a well-known special
case of the MM framework that yields convenient computational formulas for large
systems of equations. It is not straightforward to incorporate predetermined variables
in such a procedure, for most 3SLS routines presume common instrumental variables
across all equations. The subsequent analysis shows how to surmount this problem with
a minimal amount of extra programming and computational burden.

There are considerable advantages to breaking up a longitudinal data estimation prob-
lem into parts, allowing researchers to focus on one part of the model at a time. The
panel data models introduced in Section 2 provide a rich set of specifications, making
the task of choosing among these specifications a formidable endeavor. Not only do
they permit flexible parameterizations relating measured variables, but numerous for-
mulations are available for error processes; indeed, far more than can be entertained
in standard time series analyses. A researcher rarely knows precisely which parame-
terizations are consistent with data, and typically must invest considerable effort in
performing diagnostic procedures designed to narrow model choices.

This section presents an array of procedures that subdivide the problem of estimating
the many parameters introduced in a longitudinal time-series specification into manage-
able pieces. This multi-step approach permits a researcher to focus on fitting particular
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components of the model (such as the AR or MA structure of the error process) without
having either to estimate all parameters jointly or to adjust output reported by statistical
packages when conducting tests among alternative structures. These procedures offer a
powerful set of diagnostic tools useful not only for evaluating the basic features of spec-
ifications – such as identifying the orders of ARMA models consistent with the data –
but also for discovering reliable values for parameters that can serve as starting values
for the larger estimation exercises.

4.1. Several important computational simplifications

Three approaches assist in dealing with the computational challenges of MM meth-
ods outlined in Section 3.2. The first relates to the design of the estimation problem so
as to permit application of multi-step procedures requiring computation of only sub-
sets of the parameters at a time. The second involves specialization of MM methods
to 3SLS procedures, irrespective of whether estimation is linear or nonlinear. Finally,
the third proposes adaptations of 3SLS procedures to incorporate predetermined vari-
ables as instrumental variables in estimation. This subsection elaborates on each of these
computational simplifications.

4.1.1. A condition simplifying multi-step estimation

In the application of estimation procedures considered in Section 4.2, it is very conve-
nient to limit the number of parameters estimated at any stage of the analysis by fixing
a subset of the parameters at a consistent estimate obtained from a previous stage. With
fi(γ0, μ0) replacing fi(γ0) in model (3.7), these estimation procedures can be described
as computing an estimate γ̃ for γ0 by minimizing (3.10) with fi(γ, μ̂) substituted for
fi(γ ), where μ̂ is a consistent estimate of μ0. The application of NIV produces standard
errors and test statistics for γ̃ according to (3.11), with gradient matrix ∂fi

∂γ ′ |γ̃ ,μ̂ replacing

the gradient matrix ∂fi
∂γ ′ |γ̂ in the expression for the asymptotic variance–covariance ma-

trix. In general, these standard errors and test statistics are invalid because they ignore
any correction for estimation error induced by imperfect knowledge of μ0. However,
given a special set of conditions stated in the following proposition, no correction for
estimation error is needed when computing standard errors.

PROPOSITION 4.1. Suppose fi(γ0, μ0) replaces fi(γ0) in model (3.7) and this vector
of structural equations satisfies the property

(4.1)E

(
∂fi

∂μ′

∣∣∣∣
γ0,μ0

)
= 0.

Then, NIV applied to the system of equations fi(γ, μ̂), where μ̂ is a consistent estimate
of μ0, yields an estimator γ̃ whose asymptotic distribution is given by (3.11) with the
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gradient matrix ∂fi(γ,μ̂)
∂γ ′ |γ̃ replacing the matrix ∂fi

∂γ ′ |γ̂ in the formula for the variance–

covariance matrix.19

This proposition has two important implications for the following analysis: (i) the
application of a standard NIV procedure for these cases not only produces a consistent
estimate of γ0 when μ̂ is treated as fixed, but also reports asymptotically valid stan-
dard errors and test statistics; and (ii) joint estimation of γ0 and μ0 by NIV using the
equations in fi will not lead to an improvement in asymptotic efficiency. Many of the
econometric specifications considered in the subsequent discussion satisfy this condi-
tion, so attention can be focused on estimating and testing hypotheses involving subsets
of the parameters.

4.1.2. Three-stage least squares

Conventional 3SLS analysis – a special case of NIV – maintains the assumption that the
error vector ξi is homoscedastic or distributed independently of Qi , where the vector
Qi contains all the linearly independent elements of the Qti’s. Such an assumption is
often satisfied in longitudinal analyses. Thus, the variance–covariance matrix E{ξξ ′} =
E{ξiξ ′

i |Qi} is constant across observations.
Accordingly, in the formula for the NIV distance function given by (3.10), one can

replace the estimated matrices ξ̃i ξ̃ ′
i by a consistent estimate of the variance–covariance

19 To demonstrate this proposition, define F(γ, μ̂) as the function given by (3.10), with fi(γ, μ̂) substituted
for fi(γ ). Minimizing F defines the estimator γ̃ by the first-order condition

◦
F(γ̃ , μ̂) ≡ ∂F

∂γ

∣∣∣∣
γ̃ ,μ̂

= 0.

Taking an exact first-order Taylor expansion of this system of equations in γ and μ around the true values of
these parameters yields

◦
F(γ0, μ0)+

◦◦
F γ (γ

∗, μ∗)(γ̃ − γ0)+
◦◦
Fμ(γ

∗, μ∗)(μ̂− μ0) = 0,

where

◦◦
F γ = ∂

◦
F

∂γ ′ ,
◦◦
Fμ = ∂

◦
F

∂μ′

and the values (γ ∗, μ∗) lie between (γ̃ , μ̂) and (γ0, μ0). Solving these equations for γ̃ − γ0, it can be shown
using the standard regularity assumptions that

plim
{√
N(γ̃ − γ0)

} = plim
{
G
[ ◦
F(γ0, μ0)/

√
N +H√

N(μ̂− μ0)
]}
,

where

G−1 = plim
{−◦◦
F γ (γ0, μ0)/N

}
and H = plim

{◦◦
Fμ(γ0, μ0)/N

}
.

Condition (4.1) implies that H = 0. Consequently,
√
N(γ̃ − γ0) has the same asymptotic distribution as

G
◦
F(γ0, μ0)/

√
N ; and (3.11) gives a large-sample approximation to the distribution of γ0 +G ◦

F(γ0, μ0)/N .
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matrix of the error vector ξ . Designating this estimate as Ẽ(ξξ ′), a standard calculation
for this quantity is

(4.2)Ẽ(ξξ ′) = 1

N

N∑
i=1

ξ̃i ξ̃
′
i .

One computes the 3SLS estimator, then, by minimizing the distance function

(4.3)
[
Σif

′
i Δ

′
i

][ 1

N
Σi
(
ΔiẼ(ξξ

′)Δ′
i

)]−1

[ΣiΔifi].
The asymptotic normal distribution for the 3SLS estimator is

(4.4)γ̂ ∼.. N
(
γ0,

[[
Σi
∂f ′
i

∂γ

∣∣∣∣
γ̂

Δ′
i

][
Σi
(
ΔiẼ(ξξ

′)Δ′
i

)]−1
[
ΣiΔi

∂fi

∂γ ′

∣∣∣∣
γ̂

]]−1)
.

In those software packages specifying a common set of instrumental variables for
each equation, the nonlinear 3SLS estimator γ̂ is defined by that value of γ minimizing
the function

(4.5)
[
Σifi(γ )

′ ⊗Q′
i

][
Ẽ(ξξ ′)⊗ 1

N
ΣiQiQ

′
i

]−1[
Σifi(γ )⊗Qi

]
.

The matrix [Ẽ(ξξ ′) ⊗ 1
N
ΣiQiQ

′
i] in these expressions corresponds to the matrix ṼN

appearing in the MM distance function (3.4). Even for large equation systems including
many measured variables and time periods, this construction of ṼN is easily computed,
as is its inverse. The dimension of the matrix Ẽ(ξξ ′) is merely the number of structural
equations (or the number of time periods if there exists a single equation per period),
whereas the dimension of 1

N
ΣiQiQ

′
i corresponds to the total number of instrumental

variables used in the analysis.20 This estimator is consistent for γ0, and in large sam-
ples γ̂ approximately follows a multivariate normal distribution given by

(4.6)

γ̂ ∼.. N
(
γ0,

[[
Σi
∂f ′
i

∂γ

∣∣∣∣
γ̂

⊗Q′
i

][
Ẽ(ξξ ′)⊗ΣiQiQ′

i

]−1
[
Σi
∂fi

∂γ ′

∣∣∣∣
γ̂

⊗Qi
]]−1)

.

4.1.3. Adding equations to account for predetermined variables

Conventional linear/nonlinear 3SLS computer programs (including seemingly unrelated
regression routines) do not permit inclusion of predetermined variables as instrumen-
tal variables. In conventional 3SLS programs, one must classify a variable either as

20 If a linear/nonlinear 3SLS procedure encounters difficulties in inverting the matrix 1
N
ΣiQiQ

′
i
, it elimi-

nates elements of Qi until this matrix becomes invertible. This results in no effective loss of efficiency since
this smaller variant of Qi spans the same space as the original instrumental variable vector; consequently, it
does as well in predicting all endogenous components of the structural equation.
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endogenous or as an instrumental variable for the entire system of equations. Includ-
ing predetermined variables in the list of instruments or in any prediction equation for
endogenous variables in the application of these programs will result in inconsistent
parameter estimates.

Fortunately, one can devise a relatively simple and computationally feasible method
for using predetermined variables as instruments in the estimation of model (3.18)
within a standard 3SLS program. This approach adds several new structural equations
to the model. Suppose that the predetermined variables can be related to the exogenous
variables by the regression equations

(4.7)Pti = δtQi + ηti , t = 1, . . . , T ,

where δt is a matrix of coefficients, and the errors ηti are distributed independently
across observations and are independent of the exogenous variables Xi (and, therefore,
of the elements of the instrumental variablesQi).

For the moment assume that the ηti are observed (i.e., that data are provided for
these errors) and that gti in (3.18) embodies a single structural equation in period t . To
model (3.18), add the structural equations ηtigti = ξti for t = 1, . . . , T . This creates an
expanded system of equations that can be compactly expressed in terms of model (3.7)
with

(4.8)fti =
(
gti

ηtigti

)
.

The error vector ξi implied by this specification has a zero mean and is homoscedastic
across individuals given the assumption of the independence of ηti with gti andQi .

Thus, this particular specification of model (3.7) can be estimated by a standard
3SLS procedure with a common set of instrumental variables Qi used for all equa-
tions. The estimator calculated from this procedure is consistent and the output reported
by this computation is asymptotically valid. Moreover, its asymptotic efficiency at least
matches that of the NIV estimator computed with �i specified by (3.19), which uses all
the predetermined variables as instrumental variables in the estimation of γ .21

This 3SLS estimator can be easily modified to account for the fact that the distur-
bances ηti are not directly observed. In particular, in the specification of the fti’s given
by (4.8), one merely needs to replace the ηti’s by their corresponding LS or GLS resid-
uals – defined by η̂ti = Pti − δ̂tQi . Application of the standard 3SLS program to this
modified specification of (4.8) continues to produce asymptotically valid standard er-
rors and test statistics, and an estimator with the same large sample properties as one
computed using the true ηti’s. This conclusion follows directly from Proposition 4.1 by
interpreting μ as (δ′1, . . . , δ′T )′.

21 This claim follows from the observation that the quantity [gti ⊗ (Q′
t i
, P ′
t i
)′] – used in (3.19) to compute

the instrumental variable estimator – is a strict linear combination of the quantity [(gti ⊗ (1, η′
t i
)′) ⊗Qi ] –

used in the computation of 3SLS with Qi used as instrumental variables for all equations. This observation
presumes thatQi contains a constant.
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The following proposition summarizes the key results that allow one to compute an
estimate of the coefficients γ0 appearing in model (3.7) using both the available exoge-
nous and predetermined variables as instrumental variables.

PROPOSITION 4.2. WithQi as the instrumental variables, 3SLS applied to model (3.7)
with the specification

(4.9)fti(γ, μ̂) =
(

gti

gti ⊗ η̂ti
)
, for t = 1, . . . , T

yields an estimator for γ0 whose large-sample distribution is given by (4.6) and whose
asymptotic efficiency attains that associated with the instrumental variable estimator
obtained by minimizing (4.3) with �i specified by (3.19).

This proposition implies two important results: (i) standard 3SLS estimation of this
model produces standard errors and test statistics that are asymptotically valid; and
(ii) the estimate of γ0 computed by this procedure is as efficient as one calculated using
the exogenous variables as instruments for all equations and the predetermined variables
as instruments for the subset of equations for which they are appropriate.

4.1.4. Incorporating optimal instruments with predetermined variables in 3SLS

If one desires to exploit a near-optimal set of instrumental variables in the application
of 3SLS estimation, analogous to the set characterized in Section 3.2.2 for the general
MM case, a straightforward modification of Equations (4.9) achieves this formulation.
One must first transform equation system (3.18) into the form given by model (3.20).
Then, g#

t i replaces gti in (4.9).
The formulation of the η̂ti’s appearing in (4.9) changes as well. According to (3.22),

the near-optimal instrumental variables for the system are the Q̂#
t i’s representing the

fitted values obtained by regressing the quantities
∂g#
t i

∂γt
|γ̃ on functions of the elements

ofQi and Pti . Replacing Pti by Q̂#
t i in regression equation (4.7) produces the residuals

η̂ti = Q̂#
t i − δ̂tQi . It is the linearly independent components of these residuals that go

into constructing the expanded system of structural equations given by (4.9).
Simpler procedures exist for attaining most of the gains achievable through explicit

use of optimal instrumental variables in 3SLS. If one specifies a Qi and Pti’s in the
original formulation of 3SLS that virtually span the space of Q̂#

t i , then few efficiency
improvements are possible with the actual use of Q̂#

t i .

4.2. Estimating subsets of parameters

Proposition 4.1 serves as the cornerstone for many estimation methods that rely on
multi-stage procedures wherein a later stage conditions on parameter values estimated in
earlier stages without recognizing any estimation error associated with the fixed parame-
ters. Generalized least squares represents the classic example of such a procedure. A first
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stage estimates parameters describing the error structure, and a second stage uses this
estimated structure to compute a weighting matrix in the application of least squares.
The second stage ignores that the weighting matrix depends on estimated parameters.
The form of this estimation method satisfies the conditions listed in Proposition 4.1.

The following discussion exploits this proposition to provide a variety of procedures
allowing researchers to subdivide the problem of estimating parameters of sophisticated
longitudinal specifications into a multi-stage approach. In each step, the application
of familiar estimation routines yield valid test statistics that are useful for discovering
which parts of a model fit the data without having to specify all parts together. The
analysis assumes that a panel data source offers a fixed number of time periods T and
asymptotic results depend on a large number of individuals N . Later sections develop
results when T differs across individuals.

4.2.1. Distinguishing the different parameter subsets

The parameters of the longitudinal specifications introduced in Section 2 may be
grouped into two sets: the first – hereafter called the structural coefficients – consists
of those coefficients included in the matrices Π , Ψ , and B which relate measured vari-
ables and determine distributed lag relationships; and the second set – hereafter called
the covariance parameters and denoted by the vector α – consists of those parameters
involved in the specification of the covariance matrix Θ ≡ E{UiU ′

i }. If a researcher
considers a specification other than a DSEM of the sort described in Section 2.3, then
“structural parameters” refer to those coefficients appearing in the specification of fti
characterizing the dynamic relationships linking Yti , Zti , and Xti . The covariance pa-
rameters α include coefficients of the lag polynomials a(L) and m(L), variances of
white noise and any permanent components if they are present, and the elements of the
covariance matrix summarizing information on initial conditions.22

4.2.2. Estimation of structural coefficients

If the sole aim of a longitudinal analysis is to estimate the coefficients of distributed
lag structures relating measured variables, it is well known that one can carry out this

22 The following analysis does not present any formal identification conditions. For the standard multivariate
ARMA model, Kashyap and Nasburg (1974) develop necessary and sufficient conditions for identification
and Hannan (1969) presents sufficient conditions. These conditions are not easily applied in practice and
panel data introduce additional complications. The length of the time series, for example, becomes a crucial
factor. Also, the treatment of initial conditions reduces the effective length of the panel and at the same time
introduces new parameters. Considering an error specification that combines a permanent component with
a time series process does not complicate the identification problem. First differencing equations eliminates
permanent components, and it does not introduce any new parameters. Thus, introducing a permanent com-
ponent only has the effect of reducing the length of the time series by one period, and identification will be
lost only in those cases in which the orders of the autoregressive and the moving average components are
sufficiently high to make the length of the time series a crucial factor.
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estimation without assuming anything about the stochastic process generating the dis-
turbances Uti . Given a large sample of individuals, the variance–covariance matrix Θ
can be left unconstrained and estimated by standard methods using residuals computed
for Uti .

When one disregards predetermined variables as instruments, standard procedures
can be directly applied to estimate the coefficients of model (2.10) and to test hypotheses
regarding these coefficients. Joint generalized least squares can be employed to estimate
this equation system and the parameter vector β when no predetermined or endogenous
variables appear in this system (i.e., when π = 0 and ψ = 0). Otherwise, 3SLS can
be applied to estimate π , ψ and β in (2.10), with Xi used as instrumental variables and
with Zi treated as endogenous. To account for the restrictions implied by distributed lag
structures, one must impose equality constraints across equations when applying these
estimation methods.

Expressed in terms of the simultaneous equation framework outlined in Section 3,
define the vector fi as the system of equations in model (2.10), which is given by

(4.10)f
(1)
i (π, ψ, β) = yi − Yiπ − Ziψ −Xiβ = Ui.

Applying 3SLS (or joint generalized least squares) to model (2.10) amounts to specify-
ing fi = f

(1)
i in (3.7) and computing an estimate of γ = (π ′, ψ ′, β ′) by minimizing

(3.10) or (4.5), including in the instrumental variablesQi all the unique elements of Xi
and a constant.

When one wants to use predetermined variables as instruments in the estimation of
the structural coefficients, then f (1)i is modified according to Proposition 4.2, with gi =
yi −Yiπ −Ziψ −Xiβ and γ = (π ′, ψ ′, β ′).23 Instrumental variable estimation is then
carried out as outlined in this proposition, withQi consisting of all the unique elements
of Xi along with a constant. In the subsequent discussion all references to (4.10) as
the specification of f (1)i are meant to imply this modified formulation of f (1)i in which
predetermined variables are also exploited as instruments in the estimation of model
(2.10).

These estimation methods offer a simple framework for performing preliminary data
analysis to determine the order of the polynomials associated with distributed lags (i.e.,
Π(L),Ψ (L) andB(L) in (2.8)) and to test whether the coefficients of these polynomials
are constant across periods. This form of data analysis involves standard tests of linear
hypotheses.

While specification (2.9) presumes that a researcher wishes to analyze only a single
structural equation per period, it is straightforward to modify this specification to permit
analysis of a multicolumn vector, and of the coefficients Πj , Ψj and Bj as matrices of
parameters.

23 The past values of Yt will not be predetermined, except for special cases of the stochastic process gen-
erating Uti . Thus, in applications where a researcher wants to estimate structural coefficients in complete
ignorance of the variance–covariance matrix Θ , lagged values of Yt cannot be considered as predetermined
variables.
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4.3. Estimation of covariance parameters

As briefly noted in Section 2.4, estimating parameters determining the autocorrelation
structure of the disturbances Uti is far more difficult than estimating structural coef-
ficients linking measured variables. Part of the reason for difficulties arises from the
fact that the Uti’s are unobserved and must themselves be estimated. Further complica-
tions come about with the presence of moving-average error structures that (i) introduce
problems due to initial conditions and (ii) require sophisticated transformations to iso-
late ARMA coefficients.

Two basic approaches provide for the estimation of coefficients determining the spec-
ification of the variance–covariance matrixΘ for the error vectorUi appearing in (4.10).
One expresses the elements ofΘ in terms of the underlying ARMA coefficients and es-
timates these coefficients using fitted values of Ui and nonlinear regression methods,
with adjustments introduced to compute standard errors and test statistics that account
for use of estimated values in place of the true values of Ui . The second set of ap-
proaches further subdivides the estimation problem by allowing researchers to estimate
autoregressive and moving-average coefficients separately. These latter procedures are
especially applicable when the particular orders of the AR and MA lags in the ARMA
model are unknown and one needs procedures for testing and identifying the basic form
of the lag structure. Whereas this subsection summarizes features of the first approach,
Sections 4.4–4.7 outline estimation procedures relevant for the second approach.

4.3.1. Framework for estimating variance and covariance parameters

Suppose for the moment that one directly observes Ui . Consider the problem of esti-
mating a single element of the covariance matrix Θ , say the one corresponding to the
covariance E{UtiU(t−k)i}, denoted by the parameter θkt . A simple way to proceed for
obtaining an estimate of θkt is to consider the regression equation

(4.11)UtiU(t−k)i = θkt + Vkti
for i = 1, . . . , N , where UtiU(t−k)i is the dependent variable and Vkti is an error term
defined to have a zero mean. Since the dependent variables and, thus, the Vkti are in-
dependently distributed across individuals, it is evident that least squares estimation of
Equation (4.11) using cross-sectional data on individuals will yield a consistent estimate
for θkt and valid test statistics.

Combining these regression equations for estimating the different elements of the
covariance matrix Θ into a single seemingly unrelated regression model provides a
convenient framework for estimating the set of covariance parameters. In particu-
lar, stacking Equations (4.11) for various values of t and k (i.e., t = 1, . . . , T , and
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k = 0, . . . , t − 1) for a given individual i yields the system of equations

(4.12)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

UT iUT i
UT iU(T−1)i

...

UT iU1i
U(T−1)iU(T−1)i

...

U(T−1)iU1i
U(T−2)iU(T−2)i

...

U1iU1i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡ St
{
UiU

′
i

} = θ + Vi,

where St{·} denotes an operator that stacks the transposes of the rows of a matrix after
deleting all elements that lie below the diagonal, θ ≡ St{Θ} is a vector of intercepts,
and Vi is an error vector composed of the disturbances Vkti of Equation (4.11) for the
implied values of t and k. Writing the intercepts of model (4.12) as functions of the
form θ = St{Θ(α)} ≡ θ(α) and given data for Ui , one can – using data on individ-
uals – compute an estimate for α and test hypotheses concerning its structure using a
conventional nonlinear joint generalized least squares procedure.

One encounters three formidable challenges in utilizing equation system (4.12) to
estimate parameters of the ARMA process (i.e., the coefficients a, m and Σ in (2.3)
and (2.4)) determining the elements of θ . First, one requires a complete specification
forΘ relating how each element of θ depends on coefficients a,m andΣ . As illustrated
below, such an exercise is not as easy as one may initially surmise. Second, an obvious
challenge involves unavailability of data on Ui . Using residuals Ûi in place of the actual
Ui typically implies that standard errors and test statistics must be adjusted to account
for estimation error present in dependent variables. Finally, for even short panels, the
number of equations in system (4.12) is quite large, making estimation burdensome as
outlined in Section 3.2. The subsequent discussion deals with each of these problems.

4.3.2. Specification of variance–covariance matrix accounting for initial conditions

Regarding the first challenge, any development of a specification for Θ requires a com-
plete understanding of the initial conditions problem associated with ARMA processes.
The consequence of assuming that the disturbances appearing in (2.8) follow the error
specification given by (2.3) is the imposition of restrictions on the variance–covariance
matrix Θ ≡ E{UiU ′

i } associated with the stacked representation of the DSEM given
by (2.10). The following analysis describes the exact restrictions on autocovariances
implied by this error specification, and formulates an explicit parameterization for Θ .
Appendix A expands upon this discussion and presents a more elaborate derivation of
this parameterization. While solutions to this problem can be found in the panel data
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literature for pure autoregressive or pure moving-average schemes, none are available
for mixed ARMA processes.

According to (2.3) with AR and MA coefficients constant over time,Ui is determined
by the system of equations

(4.13)Ui =
⎛⎝UT i...
U1i

⎞⎠ = −
⎛⎜⎝
∑p

j=1 ajU(T−j)i
...∑p

j=1 ajU(1−j)i

⎞⎟⎠+
⎛⎜⎝
∑q

j=0mjε(T−j)i
...∑q

j=0mjε(1−j)i

⎞⎟⎠ .
This system does not represent a one-to-one transformation from the εti’s, t = 1, . . . , T ,
to Ui . One cannot derive the covariance matrix for Ui from (4.13) given only the
distributional assumptions for εT i, . . . , ε1i . Also appearing in (4.13) are the variables
U0i , . . . , U(1−p)i , and ε0i , . . . , ε(1−q)i which are known in the time series literature as
initial conditions or starting values for the error process. To derive a parameterization
for Θ , one requires a specification of initial conditions.

Conventional time series techniques that consider starting values as known constants
(usually chosen to be zero) result in inconsistent estimates for the parameters of the
error process if the technique is applied in a panel data analysis where T is fixed.
Similarly, time series procedures that “backforecast”, or treat initial conditions as pa-
rameters, introduce an incidental parameters problem in a panel data analysis which,
under most circumstances, also leads to inconsistent estimates for all parameters of the
error process.24 A third way to deal with these initial conditions for the disturbances is
to treat them as random variables. This is the procedure followed below. Treating ini-
tial conditions as random variables avoids problems with inconsistency by introducing
only a finite number of new parameters: those determining the distribution of the start-
ing values and those relating the distribution of the starting values to the distribution of
disturbances realized in periods 1 through T .

There are several complications associated with choosing a distribution for the initial
conditions specified above. If we assume that the stochastic process generating distur-
bances during the sample period is also operative prior to this period, then one would
expect the Uki’s, k = (1 − p), . . . , 0, to be not only correlated with one another and
with the εti’s, t = (1 − q), . . . , 0, but also with all the Uti’s realized after period 0.
Furthermore, the correlations relating these variables will, in general, depend directly
on parameters of the ARMA process given by (2.3), and one must account for these
restrictions to achieve efficient estimation.

A natural approach for dealing with this specification of the correlation properties
of initial conditions is to assume that the time series process generating disturbances
over the sample period started some time prior to this period at an unknown date and
under an unknown set of circumstances. In particular, assume the ARMA process given
by (2.3) started in the finite past between periods �2 and �1 with �2 < �1 and with �1
occurring at least p− q + 1 periods prior to the first sample observation. One can write

24 See Hsiao (1986) for further discussion of this problem.
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each of the Uti’s realized after period �1 as a moving-average scheme of the form

(4.14)Uti =
t−�1∑
j=0

ζj ε(t−j)i +
t−�2∑

j=t−�1+1

ζjφ(t−j)i ,

where the ζj coefficients are defined as ζ0 ≡ 1 and ζj ≡ mj − ∑j

h=1 ahζj−h for
j > 0; the εki’s for k � �1 are white noise; and the φki’s are error terms distributed
independently of ετi for τ � �1. Formally, one can derive a relation like (4.14) by
starting with the ARMA representation Uti = −∑p

j=1 ajU(t−j)i + ∑q

j=0mjε(t−j)i
and successively substituting out for past U(t−j)i’s using their ARMA representations
until t − j = �1 − 1. The φki’s in (4.14) may be interpreted as the true starting values
of the ARMA process. Specifying the distribution of these variables determines exactly
how and when the ARMA process generating the Uti’s began.

Given this moving-average representation of the ARMA process generating transi-
tory components, one can derive a complete specification for the covariance matrix
of Ui . A change of variables simplifies the derivation. Define the random variable
eti by eti = ∑p

j=0 ajU(t−j)i and consider a linear transformation from the vector
U ′
i = (UT i, . . . , U1i ) to a new vector (e′i , U ′

(1)i ), where e′i = (eT i, . . . , e(p+1)i) and
U ′
(1)i = (Upi, . . . , U1i ). With F denoting this linear transformation,

(4.15)

(
ei
U(1)i

)
= FUi,

where F is a T × T matrix that can be partitioned as

F =
(
A(T−p)×(T )
Op×(T−p) Ip×p

)
,

with A representing a diagonal band matrix with the elements (a0, . . . , ap) running
down the diagonal.25 The following analysis first develops the covariance matrix for
the vector (e′i , U ′

(1)i )
′, and then uses this result to obtain Θ . The covariance matrix

of (e′i , U ′
(1)i )

′ is conveniently partitioned into three blocks: the (1, 1) block, E{eie′i};
the (2, 2) block, E{U(1)iU ′

(1)i}; and the (2, 1) block E{U(1)ie′i}. Below we derive the
implied parameterization for each of these blocks in turn.

25 A matrixQ is a diagonal band with the elements (a, b, c, d) running down the diagonal if it has the form

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a b c d

a b c d

· · ·
0 · · · 0

· · ·
a b c d

a b c d

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.
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Since eti = a(L)Uti = m(L)εti , we see that the eti’s, for t = (p+1), . . . , T , are gen-
erated by a pure moving-average process. Their covariance matrix, then, is determined
uniquely by the relationships

(4.16)E{etie(t−h)i} =

⎧⎪⎨⎪⎩
∑q−h
j=0 mj+hE[ε2

(t−h−j)i]mj = ∑q−h
j=0 mj+hσ 2mj

for 0 � h � q,

0 for h > q,

for t = p + 1, . . . , T and p + 1 � t − h � t .
The moving-average expression for the Uti’s, t = 1, . . . , p, given by (4.14) provides

the only information available for determining a parameterization for E{U(1)iU ′
(1)i}.

Inspection of this expression reveals that the elements of U(1)i depend directly on the
random variables φki and on the number of periods since these variables were realized.
Unless one is willing to be very specific about how and when the ARMA process gen-
erating transitory components started for each individual in the sample, nothing can be
said about the number or the correlation properties of the φki’s, or about how far in the
past they were realized. To avoid specifying this information, one can simply assume
that starting times and the φki’s are randomly distributed over the population, in which
case no restrictions are implied for the covariance structure associated with U(1)i . Thus,
assume

(4.17)E
(
U(1)iU

′
(1)i

) = Υ,

where Υ is an unconstrained, positive definite, symmetric matrix. As a consequence of
this assumption, the time series process generating disturbances need not be stationary.

Finally, one requires a specification for E{U(1)ie′i}. Using the moving-average repre-
sentation for eti , t = (p + 1), . . . , T , and those for Uki , k = 1, . . . , p, given by (4.14),
the implied covariance between eti and U(t−h)i is

(4.18)E{etiU(t−h)i} =

⎧⎪⎨⎪⎩
∑q−h
j=0 mj+hE[ε2

(t−h−j)i]ζj = ∑q−h
j=0 mj+hσ 2ζj

for 0 < h � q,

0 for h > q.

Implicit in this formula is the nonrestrictive assumption that the ARMA process for dis-
turbances starts prior to period p − q + 1,26 and, as a consequence, covariance terms
like E{ekiφsi} do not appear. An attractive feature of this formulation for the covari-
ance is that no new parameters appear in the expression. If one is willing to introduce
new parameters into the analysis, it is possible to avoid constructing the ζj ’s and im-
posing the restrictions implied by (4.18). In particular, one can simply treat the nonzero
values of E{etiU(t−h)i} as arbitrary parameters and estimate them directly along with

26 This assumption concerning the starting time of the ARMA process generating the Uti ’s follows immedi-
ately from the assumption that U(p+1)i can be represented by the specification given by (2.3). This restriction
ensures that no φki ’s appear in the moving average component of (2.3) for t = p + 1.
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the other parameters of the error process. While this alternative parameterization avoids
the need for imposing some nonlinear restrictions, it has the disadvantage of reducing
the efficiency of estimation; and in some instances, it can destroy the identification of
some parameters of the error process if the time series supplied by the panel dataset is
short.

The relations given by (4.16)–(4.18) imply an explicit parameterization for the co-
variance matrix associated with the vector (e′i , U ′

(1)i )
′. Denote this matrix by Ω . Since

this vector and Ui are linearly related according to Equation (4.15), it follows that

(4.19)E
{
UiU

′
i

} = F−1ΩF−1 ′.

This parameterization imposes all of the covariance restrictions implied by the ARMA
process, unless one is willing to introduce precise information about how and when this
process began. Appendix A presents explicit expressions for θ that impose all nonlinear
constraints. These formulas have relatively simple representations, thus making them
particularly useful when applying estimation procedures.

The above treatment of initial conditions induces a source of nonstationarity in the
Uti’s, even when all the coefficients of the ARMA model and the variances of white
noise are constant over time. Permitting the AR coefficients to be different over time
changes the form of the matrix A in a straightforward way, and allowing the MA coeffi-
cients to differ alters the form of the matrix Ω .27 In conventional time-series analyses,
these generalizations are either not possible or introduce substantial complications in
estimation.

4.3.3. Joint estimation of structural coefficients and covariance parameters

With a specification of θ in hand, we now turn to the second challenge, which involves
estimation of the covariance parameters without direct data on the Ui’s in (4.12). With
observations on Ui unavailable, combining equation systems (4.10) and (4.12) to es-
timate structural coefficients and covariance parameters jointly offers a conceptually
simple framework for estimating the elements of θ or α.

To describe this estimation approach in terms of the nonlinear system of simultaneous
equations given by (3.7), split the vector of structural equations fi in (3.7) into two
subvectors fi = (f

(1) ′
i , f

(2) ′
i )′. The system of equations f (1)i given by (4.10) is used

in 3SLS estimation of the structural coefficients. In the specification of model (4.12),
substitute yi − Yiπ − Ziψ −Xiβ for Ui to obtain the vector of equations

f
(2)
i

(
π,ψ, β, θ(α)

) = St
{
(yi − Yiπ − Ziψ −Xiβ)

(4.20)× (yi − Yiπ − Ziψ −Xiβ)′
}− θ(α) = Vi.

27 Baltagi (2002) surveys recent developments of panel data methods for estimating parameters in the pres-
ence of several varieties of nonstationarity popular in the times series literature.
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Combining (4.10) and (4.20) to form fi(π,ψ, β, θ(α)) = (f
(1) ′
i , f

(2) ′
i )′ satisfies the

assumptions of model (3.7).28 Since Ui is assumed to be independent of Xi , these ex-
ogenous variables constitute valid instruments for all the equations incorporated in fi .
Thus, 3SLS applied to model (3.7) with this specification of fi produces consistent
estimates of π,ψ, β, and θ (or α) and asymptotically valid standard errors and test
statistics.29

Simultaneously estimating structural coefficients and covariance parameters yields
estimates that are, in general, more efficient than those obtained from the other meth-
ods outlined in this paper. There are two sources for this increase in efficiency. First,
in those instances in which the third moments of Ui are nonzero (which implies that
E{UiV ′

i } �= 0), the estimates based on joint estimation of f (1)i and f (2)i will be more
efficient for the same reason that generalized least squares estimates are more efficient
than ordinary least squares estimates. The second source of efficiency gain arises if there
are any constraints involving both structural coefficients and covariance parameters, and
if it is possible to impose these restrictions when estimating (4.10) and (4.20) jointly.

4.3.4. Further subdivision of estimation of covariance parameters

Two unattractive features of this joint estimation approach are the large number of equa-
tions involved in the implementation of GMM or 3SLS and the nonlinear parametric
restrictions that must be imposed across equations when computing estimates. Fortu-
nately, simpler estimation methods are available if a researcher is willing to estimate
parameters in subsets.

Appendix B offers one approach for estimating all parameters appearing in specifica-
tion (2.3) of the ARMA process underlying the Uti’s, without the need to introduce any
parameters associated with initial conditions. This approach replaces equation system
(4.20) with an alternative set of equations exploiting relationships implied by system
(4.13). In addition to reducing the number of parameters, this replacement simplifies
imposition of the nonlinear restrictions inherent in relating autocorrelations. A short-
coming of this approach concerns its provision of insufficient information to develop a
full specification ofΘ without relying on ancillary assumptions; as demonstrated above,
such a specification requires knowledge of the process generating ARMA-model initial
conditions. If a researcher desires, however, to estimate only parameters of the ARMA
process, then Appendix B offers a more manageable approach for conducting this esti-
mation than use of Equations (4.12).

28 This statement assumes that at least fourth moments of Ui exist. Homoscedasticity follows from the as-
sumption that the Ui ’s are distributed independently of Xi and across individuals. Clearly E{fi } = 0 at the
true parameter values.
29 This procedure corresponds to an estimation approach suggested by Chamberlain (1982). In Chamberlain’s
approach, nonlinear generalized least squares is applied to a larger model that includes the equations fi =
St{GiG′

i
− E(GiG′

i
)}, where the vector Gi contains all the unique elements of Yi , Zi and Xi .
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One can achieve further simplifications in estimating parameters of error processes
by developing procedures that use fitted values of Ui as dependent variables and that
enable one to estimate finer subsets of parameters, such as just the AR or just the MA
coefficients, using linear methods. The following subsections describe such procedures.
These approaches provide especially useful diagnostic tools for inferring the basic char-
acteristics of the underlying autocorrelation structure.

4.4. Direct estimation of autocovariances using residuals

Under conventional assumptions, econometric theory implies that one can replace the
Ui’s in an MM framework by their estimated residual counterparts and still obtain con-
sistent estimates of other parameters. The residuals Ûi must be consistent estimates of
the Ui for this property to hold. The problem is how to adjust the standard errors and
test statistics to make this procedure of use in learning about that aspect of the error
structure analyzed by the estimation approach.

A natural place to consider using residuals to form dependent variables is in system
(4.13). This would eliminate the need to combine models (4.10) and (4.20) as suggested
above, which involves jointly estimating numerous equations. From a methodological
perspective, replacing the Ui by their fitted values amounts to fixing a subset of para-
meters at consistently estimated values and proceeding with estimation of another set
appearing in structural equations. Proposition 4.1 identifies the conditions needed for
this procedure to report asymptotically valid results for the nonfixed coefficients.

Inspection of specification (4.20) of f (2)i reveals that it satisfies the property

(4.21)E

(
∂f
(2)
i

∂βk

)
= −E(St

{(
U ′
i ⊗X(k)i

)+ (
X′
(k)i ⊗ Ui

)}) = 0,

where βk designates any element of the parameter vector β, and X(k)i constitutes the
kth column vector of the matrix Xi . Define the new system of equations

(4.22)f
(3)
i

(
π,ψ, θ(α)

) = f
(2)
i

(
π,ψ, β̂, θ(α)

)
,

where β̂ is a consistent estimator of β, and now specify fi in model (3.7) as

fi
(
π,ψ, β, θ(α)

) = (
f
(1) ′
i , f

(3) ′
i

)′
.

Given (4.21), it is evident that this specification of fi satisfies the conditions of Propo-
sition 4.1, with the parameter vector γ in this proposition interpreted as including π
and ψ in both f (1)i and f (3)i , β only in f (1)i , and θ(α) in f (3)i , and with the parameter

vector μ interpreted as including only β in f (2)i . Thus, as indicated by Proposition 4.1,
NIV or 3SLS applied to the system of structural equations

(4.23)

(
yi − Yiπ − Ziψ −Xiβ

St{(yi − Yiπ − Ziψ −Xiβ̂)(yi − Yiπ − Ziψ −Xiβ̂)′} − θ(α)
)

=
(
Ui
V ∗
i

)
,
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with Xi used as instrumental variables, yields consistent estimates of π,ψ, β, and θ(α)
and asymptotically valid standard errors and test statistics. These estimates have the
same asymptotic efficiency as the ones produced by the above joint estimation pro-
cedure, but they are easier to compute since β is not estimated in the second set of
equations and parametric restrictions relating β in the two sets of equations are ig-
nored.

When π = 0 and ψ = 0 – that is, when no lags in Yti and no predetermined or
endogenous variables appear in Equation (2.9) – then residuals alone can be used to
estimate covariance parameters. With Ûi = yi −Xiβ̂, f (3)i in (4.22) becomes

f
(3)
i = St

{
ÛiÛ

′
i

}− θ.
A corresponding formulation for this system of equations takes the form:

(4.24)St
{
ÛiÛ

′
i

} = θ + V ∗
i ,

which constitutes a seemingly unrelated regression model with Ûti Û(t−k)i as depen-
dent variables and with only intercepts as explanatory variables. Condition (4.21) and
Proposition 4.1 imply that standard generalized least squares applied to model (4.24)
produces consistent estimates of the elements of θ and asymptotically valid standard
errors and test statistics. To estimate the covariance parameters α, nonlinear generalized
least squares can be applied to model (4.24), with the functions θ(α) substituted for θ .

Estimating subsets of the equations in (4.24) offers a simple framework for con-
structing estimates of the covariogram and the correlogram, which are valuable data
analysis tools that can aid in choosing among competing specifications for the stochas-
tic process generating the disturbances. Since estimation of the model discussed above
requires only residuals, the model permits a researcher to ignore the specification of
the relationships among measured variables once such a specification has been chosen,
and to concentrate only on fitting the error process. Many simple tests are available
for distinguishing among competing specifications. For example, with the imposition
of linear constraints in subsets of equations in model (4.24), one can test whether au-
tocovariances of a given order are constant over periods, and one can obtain a unique
estimate of each autocovariance if the constancy hypothesis is accepted. Using these
results, one can also perform tests for nonstationarity and other forms of heteroscedas-
ticity. These preliminary data analyses are particularly useful for identifying the orders
of the autoregressive and moving average lag polynomials and for determining whether
it is reasonable to assume that the coefficients of these polynomials are constant over
time.

4.5. Direct estimation of autoregressive parameters

This discussion describes a simple procedure for estimating coefficients of the autore-
gressive lag polynomial a(L)without requiring the joint estimation of all the covariance
parameters, as required in the previous approaches. This procedure offers a useful
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framework for testing hypotheses that involve just the coefficients of a(L). To simplify
the exposition, suppose for the moment that the disturbances Uti are directly observed
and follow a mixed ARMA(1, 1) scheme; in particular, Uti = −atU(t−1)i + εti +
m1ε(t−1)i .

This stochastic process implies that Uti satisfies the linear structural equation

(4.25)Uti = −atU(t−1)i + eti , t = 3, . . . , T ,

where the error eti = εti + m1ε(t−1)i follows a first-order moving-average process.
The disturbance U1i is predetermined for equation t = 3 in (4.25); the disturbances
U1i and U2i are predetermined for equation t = 4, and so on, with U1i , . . . , U(T−2)i
predetermined for equation t = T . To use all the available predetermined variables
as instruments in the estimation of the at ’s, application of Proposition 4.2 considers
expanding the system beyond (4.25) to include the structural equations:

U(t−k)iUti = −atU(t−k)iU(t−1)i + e∗t i ,
(4.26)t = 3, . . . , T , k = 2, . . . , (t − 1),

where e∗t i = U(t−k)ieti with E{e∗t i} = 0. Formulating fi in (3.7) according to (4.9)
implies combining structural equations (4.25) and (4.26) to form fti . Applying 3SLS
to this model with a constant as the only instrument in this procedure (i.e., with
Qi = 1 in (4.5)) produces consistent estimates of a′ = (−a3, . . . ,−aT ) exploiting
U1i , . . . , U(t−2)i as instrumental variables in the estimation of the t th equation.

Without data onUi , combined estimation of equation systems (4.10) and (4.26) offers
a framework for jointly estimating the structural coefficients and a. To translate this es-
timation approach into the notation of Section 3, split the vector of structural equations
fi in (3.7) into two subvectors so that fi = (f

(1) ′
i , f

(4) ′
i )′. As specified by (4.10), let

f
(1)
i denote the set of equations used in 3SLS estimation of the structural coefficients.

Further, let j = (t−3)(t−2)
2 + (k− 1), where k = 2, . . . , (t − 1) and t = 3, . . . , T . Then,

with yti − Y ′
(t−1)iπ − Z′

t iψ − X′
t iβ substituted for Uti in Equations (4.26), form the

vector f (4)i whose j th element is given by

f
(4)
j i (π, ψ, β, a) = [

y(t−k)i − Y ′
(t−k−1)iπ − Z′

(t−k)iψ −X′
(t−k)iβ

]
× [(

yti − Y ′
(t−1)iπ − Z′

t iψ −X′
t iβ
)

(4.27)+ at
(
y(t−1)i − Y ′

(t−2)iπ − Z′
(t−1)iψ −X′

(t−1)iβ
)]
.

Stacking (4.10) and (4.27) to obtain fi(π,ψ, β, a) = (f
(1) ′
i , f

(4) ′
i )′ creates a model

in the form of (3.7). All the variables in Xi can serve as instruments for the equations
incorporated in fi since Ui is assumed to be independent of these exogenous variables.
Consequently, 3SLS applied to model (3.7) with this specification of fi yields consistent
estimates of π,ψ, β and a, along with the appropriate asymptotic standard errors and
test statistics.

As in the above case, joint estimation of these parameters can be simplified by eval-
uating β in f (4)i at a consistent estimate β̂, which avoids the need of imposing some
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(or all) of the nonlinear parametric restrictions in estimation. Define this new system of
structural equations as

(4.28)f
(5)
i (π, ψ, a) = f

(4)
i (π, ψ, β̂, a).

Differentiating the elements of f (4)i in (4.27) with respect to β and computing expecta-
tions at the true parameter values yields the result

(4.29)E

(
∂f
(4)
i

∂β ′

)
= 0.

This finding implies that the stacked system of equations fi(π,ψ, β, a) = (f
(1) ′
i , f

(5) ′
i )′

satisfies the conditions of Proposition 4.1, with the parameter vector γ in this proposi-
tion incorporating the coefficients π and ψ in both f (1)i and f (5)i , β only in f (1)i , and a

in f (5)i , and with the parameter vector μ interpreted as including only β in f (4)i . Thus,
according to Proposition 4.1, NIV or 3SLS applied to this specification of fi , with all
the elements of Xi used as instrumental variables, yields consistent estimates of π , ψ ,
β, and a and asymptotically valid standard errors and test statistics.

For those models in which π = 0 and ψ = 0, residuals alone can be used to estimate
the autoregressive parameters a. With these parametric restrictions, one can estimate
the coefficients a using only the equations in f (5)i . Defining Uti = yti − X′

t i β̂, these
equations are

(4.30)Û(t−k)iÛti = −at Û(t−k)i Û(t−1)i + e∗t i , t = 3, . . . , T , k = 2, . . . , t − 1.

Condition (4.29) and Proposition 4.1 imply that 3SLS applied to this system of equa-
tions with a constant as the only instrument produces consistent estimates of the a
coefficients and asymptotically appropriate standard errors and test statistics.

Model (4.30) offers a valuable data analysis tool that can aid in determining the form
of the ARMA process generating disturbances. Testing the linear constraint that at = a0
for all t provides a simple test for the constancy of autoregressive coefficients over time.
Of course, many such tests can be carried out using only subsets of the equations in-
cluded in model (4.30). It is straightforward to modify this model to admit a second or
higher-order autoregressive process, which provides the basis for testing for the pres-
ence of higher-order schemes. Changing the order of the moving average component of
the error process alters which of the past U(t−k)i’s are predetermined, and hence which
can serve as instrumental variables for each equation. Thus, increasing the order of the
moving-average process implies a reduction in the number of equations that can be in-
cluded in model (4.30). Furthermore, increasing this order precludes the possibility of
using this data analysis framework to estimate some period-specific values of a for the
early periods of the sample.

4.6. Estimation of the partial correlation coefficients

Another useful data analysis tool found in the time series literature is the partial correla-
tion function. The kth order partial correlation coefficient associated with the stochastic
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process generating Uti corresponds to the coefficient akkt in the regression equation

(4.31)Uti = −ak1tU(t−1)i − · · · − akktU(t−k)i + ηti ,
where the error ηti is uncorrelated with the regressors U(t−1)i , . . . , U(t−k)i .

The procedures outlined in Section 4.5 provide a method for estimating the coeffi-
cients akkt for different orders and time periods. In the application of these procedures,
the disturbances U(t−1)i , . . . , U(t−k)i are considered to be predetermined for the equa-
tion corresponding to period t , but are not necessarily predetermined for any other
equation. Thus, to estimate the first-order partial correlation coefficients for periods
t = 2, . . . , T using the above procedures, one would set k = 1 in Equation (4.26) with
a11t substituted for at .

When the Uti’s represent disturbances from a regression equation (i.e., when π = 0
and ψ = 0 in Equation (2.9)), a more elementary approach exists for estimating the
coefficient akjt . With Ûti = yti − X′

t i β̂ denoting the least squares residuals, consider
the seemingly unrelated regression model

(4.32)Ûti = −ak1t Û(t−1)i − · · · − akkt Û(t−k)i + η∗
t i , t = k + 1, . . . , T .

Generalized least squares applied to this model can be shown to produce consistent es-
timates of the coefficients akjt and appropriate large sample standard errors and test
statistics.30 Estimating these coefficients imposing equality constraints across the equa-
tions of this model (i.e., akjt = akj for t = k + 1, . . . , T ) generates a unique estimate
of the kth order partial correlation coefficient and an asymptotic standard error for this
coefficient. Graphing these constrained estimates of the akk’s for each value of k cre-
ates the sample partial correlation function, which is useful in the identification of time
series processes.31

4.7. Direct estimation of moving-average parameters

This last procedure provides a method for estimating parameters associated with the
moving average component of the ARMA process. These parameters include the coef-
ficients of the lag polynomial m(L) and the variance of the white noise errors, which
are grouped into the parameter vector λ. There are no new concepts encountered in this
estimation method.

Continuing to assume, for expositional simplicity, that an ARMA(1, 1) process gen-
erates Uti , the errors eti = εti + m1ε(t−1)i appearing in Equation (4.25) capture the

30 To verify this claim, write the seemingly unrelated regression model obtained by combining Equa-
tions (4.32) as ωi = Hiρ + ηi , where ωi = (ÛT i , . . . , Û(k+1)i )

′. With Ω = E{ηiη′i ), generalized least

squares applied to this model yields the estimate ρ̂ = [∑N
i=1H

′
i
Ω̂−1Hi ]−1[∑N

i=1H
′
i
Ω̂−1ωi ]. In terms of

the framework of Section 3, this GLS estimate is obtained when fi = HiΩ̂
−1(ωi − Hiρ) and Qi = 1 in

(4.5). For this specification of fi , the conditions of Proposition 4.1 hold with γ = ρ and with μ̂ interpreted
to include β̂ and the elements of Ω̂ .
31 Section 7 presents an application illustrating this claim.
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information about the moving average portion of this process. Define the vector of errors
associated with Equations (4.25) as ei = (eT i, . . . , e3i )

′. The moving-average parame-
ters λ determine the parameterization of the variance–covariance matrix R = E{eie′i}.
Given data on ei , one could estimate the elements of r ≡ St{R} by applying generalized
least squares to the model St{eie′i} = r + vi – analogous to the regression model for
St{UiU ′

i } given by (4.12). With the functions r(λ) substituted for r in this model, one
could estimate the parameters λ by nonlinear generalized least squares.

As in the previous analysis, jointly estimating parameters provides a method for esti-
mating r or λ without data on ei . Observe that

eti = (
yti − Y ′

(t−1)iπ − Z′
t iψ −X′

t iβ
)

+ at
(
y(t−1)i − Y ′

(t−2)iπ − Z′
(t−1)iψ −X′

(t−1)iβ
)
.

Corresponding to the system of equations included in St{UiU ′
i }, form the vector of

equations f (6)i whose j th element is:

f
(6)
j i

(
π,ψ, β, a, r(λ)

)
= [(

yti − Y ′
(t−1)iπ − Z′

t iψ −X′
t iβ
)

+ at
(
y(t−1)i − Y ′

(t−2)iπ − Z′
(t−1)iψ −X′

(t−1)iβ
)]

× [(
y(t−k)i − Y ′

(t−k−1)iπ − Z′
(t−k)iψ −X′

(t−k)iβ
)

(4.33)+ at−k
(
y(t−k−1)i − Y ′

(t−k−2)iπ − Z′
(t−k−1)iψ −X′

(t−k−1)iβ
)]
,

with j = (T−t)(T+t−3)
2 +(t−k−2) for t = T , . . . , 3, and k = (t−3), . . . , 0. Combining

these equations along with those in f (1)i and f (4)i creates a model in the form of (3.7)
with

fi
(
π,ψ, β, a, r(λ)

) = (
f
(1) ′
i , f

(4) ′
i , f

(6) ′
i

)′
.

Applying 3SLS to this model, with the exogenous variablesXi used as instruments, pro-
duces consistent estimates for π,ψ, β, a and r (or λ) and asymptotically valid standard
errors and test statistics.

To reduce computational burden, this estimation procedure can be carried out with β
in f (4)i and f (6)i replaced by a consistent estimate β̂. With

(4.34)f
(7)
i

(
π,ψ, a, r(λ)

) = f
(6)
i

(
π,ψ, β̂, a, r(λ)

)
,

this approach involves 3SLS applied to model (3.7) with fi(π,ψ, β, a, r(λ)) =
(f
(1) ′
i , f

(5) ′
i , f

(7) ′
i )′ and with the elements of Xi used as instrumental variables. Con-

dition (4.29), along with the finding

(4.35)E

(
∂f
(6)
i

∂β ′

)
= 0,
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implies that this specification of fi satisfies the requirements of Proposition 4.1. Con-
sequently, application of 3SLS to this model not only yields consistent parameter esti-
mates, but also the appropriate large sample standard errors and test statistics.

Once again, as in the previous approaches, if π = 0 and ψ = 0, then the sys-
tem of equations in f (1)i can be eliminated from the model and only data on residuals
are needed to carry out estimation. With Ûti = yti − X′

t i β̂, the vector fi(a, r(λ)) =
(f
(5) ′
i , f

(7) ′
i )′ includes equations of the form

Û(t−k)i Ûti = −at Û(t−k)iÛ(t−1)i + e∗t i , k = 2, . . . , t − 1, t = 3, . . . , T ,

[Ûti + at Û(t−1)i][Û(t−j)i + at−j Û(t−j−1)i] = rjt + v∗
j ti ,

(4.36)j = (t − 3), . . . , 0, t = T , . . . , 3.

Applying 3SLS to this system of equations using a constant as the only instrumental
variable produces consistent estimates of a and r (or λ) and asymptotically valid stan-
dard errors and test statistics.

Similar to model (4.24), model (4.36) offers a relatively simple framework for con-
structing estimates of the covariogram and the correlogram associated with the moving
average component of the error process, both of which are useful for preliminary data
analysis. After one has settled on the specification of the autoregressive component,
model (4.36) can potentially be useful for testing for various features of the moving-
average process, such as whether it is stationary or the length of its order.

5. Estimating dynamic quantile specifications

An attractive alternative to estimating moment relationships characterizing the micro
intertemporal properties of variables involves using conditional quantile regressions
to describe these dynamics. This section presents a flexible empirical approach based
on nonlinear instrumental variable specifications for estimating autoregressive quantile
equations, exploiting the procedures outlined in the previous discussion.

5.1. Using nonlinear instrumental variable procedures to estimate quantile regressions

A familiar empirical formulation for modeling the growth of wages experienced by
individuals in longitudinal data takes the form:

yti = ρ1y(t−1)i + · · · + ρry(t−r)i +X′
t iβt + νti

(5.1)≡ Y ′
(t−1)iρ +X′

t iβt + νti , t = 1, . . . , T , i = 1, . . . , N,

where yti is the dependent variable for the ith individual in the t th year, Xti is a vector
of exogenous measured variables, and the coefficients ρj and βt are parameters. (The
t = 1 period in (5.1) corresponds to the first period in which a researcher has data on
all yti , . . . , y(t−r)i .) The elements of Xti include exogenous variables such as year and
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age effects, measures of educational attainment, and gender and race indicators. The
following analysis assumes the error νti is distributed independently both over time and
across individuals. Thus, the autoregressive coefficients ρj characterize the dynamic
properties of the dependent variable after removing trends. For notational simplicity,
the subsequent discussion typically ignores the i subscript on variables.

One can associate relation (5.1) with an autoregressive formulation of the κth percent
quantile of the Markov distribution of yt by imposing the restriction:

(5.2)qκ(νti |Y(t−1)i , Xti) = 0,

where qκ( ) designates the κth percent quantile of the distribution of νti conditional on
Y(t−1)i – a shorthand notation signifying all the past wages y(t−1)i . . . y(t−r)i appearing
in (5.1) – and Xti , where κ ∈ (0, 100). When κ = 50, Equation (5.2) determines
how the conditional median of yt evolves over time. Although LAD procedures provide
consistent estimates of the autoregressive coefficients appearing in (5.2), they have not
been extensively employed.

5.1.1. Representing dynamic quantile regressions as nonlinear simultaneous equations

A class of estimators based on simultaneous equation models provides a flexible and
noncumbersome procedure for estimating parameters of the dynamic quantile wage
growth equation introduced above.32 Conditioning on exogenous and predetermined
instruments, this method specifies conditional quantiles of the structural error distribu-
tion as moment conditions capable of being estimated within a conventional nonlinear
instrumental variables framework of the sort described in Section 3. This apparatus
matches the sample analog of the conditional quantiles against their population values,
employing a smoothing procedure familiar in various problems in nonparametric infer-
ence and simulation estimation. The analysis applies standard arguments to demonstrate
consistency and asymptotic normality of the resulting Smoothed MM Quantile estima-
tor.

To apply this MM quantile procedure, let yt denote the dependent variable in year t ,
and let Xt denote the exogenous variables such as demographic characteristics. We are
interested in obtaining information about the distribution of yt conditional on Xt and
Yt−1 (past values of the dependent variable). Let qκ(Yt−1, Xt ) represent the κth percent
quantile of this conditional distribution, where κ ∈ (0, 100). This defines the equation

(5.3)Pr
(
yt < qκ(Yt−1, Xt )|Yt−1, Xt

) = κ,

which underlies the construction of most quantile estimation procedures. The Smoothed
MM Quantile estimator uses relation (5.3) to form moment conditions. This relation
implies the condition

(5.4)E
[
1
(
yt < qκ(Yt−1, Xt )

)− κ|Yt−1, Xt
] = 0,

32 The material presented in Sections 5.1.1 and 5.1.2 draws heavily on MaCurdy and Hong (1998).
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where 1( ) represents the indicator function which takes value 1 when the condition
expressed in the parentheses is true, and 0 otherwise. The indicator function inside the
moment condition is neither continuous nor differentiable.

To develop a variant of this relationship capable of being specified as a moment con-
dition in the standard framework of nonlinear method of moments estimation, observe
that a smooth representation of this condition takes the form:

(5.5)E

[
lim
N→∞Φ

(
yt − qκ(Yt−1, Xt )

sN

)
− (1 − κ)

]
= 0,

whereN represents the sample size,Φ is a continuously differentiable cumulative distri-
bution function with bounded symmetric density function φ, and sN is the “bandwidth”
function of N that converges to 0 as N goes to ∞ at a rate slower than N−1/2. The
following analysis selectsΦ to be the standard normal cumulative distribution function;
a natural alternative choice would be the logit or any other cdf.

The specification of the conditional quantile function adopted in our characterization
of wage dynamics is the linear distributed lag relation:

(5.6)qκj (Yt−1, Xt ) = ρ1yt−1 + · · · + ρryt−r +X′
t βt .

Given longitudinal data for a sample of individuals i to estimate this conditional quan-
tile, the variant of the nonlinear simultaneous equation implied by (3.7) takes the form:

fti = fti(ρ, β) = Φ

(
yti − ρ1y(t−1)i − · · · − ρry(t−r)i −X′

t iβt

sN

)
− (1 − κj )

(5.7)= Uti,

where Uti is treated as a structural error with E(Uti |y(t−1)i , . . . , y(t−r)i , Xti) = 0.

5.1.2. Nonlinear instrumental estimation of quantile specifications

Viewing (5.7) as a system of nonlinear simultaneous equations, application of con-
ventional nonlinear IV or 2SLS/3SLS procedures to (5.7) yields consistent ρ and β
estimates possessing large sample normal distributions. The formal proof of this propo-
sition assumes the bandwidth parameter sN = N−d for 0 < d < 1/2.33 One can
readily verify that when sN → 0,Φ(·) converges almost surely to the indicator function
1(yt > qκ(Yt−1, Xt )). Since Φ is a bounded function, one can exchange the expecta-
tion and limit operators to obtain the above smoothed moment condition. A generalized
nonlinear two stage least squares estimation routine can be directly applied to this as-
ymptotic moment condition. The estimation approach selects instrumental variables that
are conditionally independent of the error terms defined by

1
(
yt > qκ(Yt−1, Xt )

)− (1 − κ).

33 The condition imposed on the convergence rate 0 < d < 1/2 is needed for the proof of asymptotic
normality.
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The resulting Smoothed MM Quantile (SMMQ) estimators are consistent and asymp-
totically normally distributed with standard errors computed using robust methods.
Simulation exercises reveal that this procedure accurately reproduces estimators and
test statistics generated by conventional quantile estimation approaches.34

The selection of the value of κj in (5.7) determines the quantile estimated in the non-
linear IV estimation analysis. Setting κj = κ50 = 0.5 estimates the median, whereas
setting κj = κ25 = 0.25 estimates the lower quartile and κj = κ75 = 0.75 the up-
per quartile. Conceptually, one can generalize specifications (5.6) and (5.7) to allow
parameters to be year (or age) dependent. Estimation in this instance would require an
equation for each quantile for each year (or age) that a person has current and past
wage observations. Within- and cross-equation restrictions on the quantile regression
coefficients could be imposed in the standard way using the multi-equation MM frame-
work discussed below. If weighting is required to adjust for the stratified character of a
dataset, then one applies the procedures summarized in Section 6.

5.2. Jointly estimating combinations of quantile regressions

This estimation framework extends readily to consideration of a set of quantile relations.
This set may describe how a particular percentile of a distribution evolves over time, or
it may summarize the relationship among several different percentiles of a conditional
distribution, either in a single period or over time.

5.2.1. Nonlinear instrumental variable estimation of quantiles in panel data

Understanding how the j th quantile of wage rates shifts over time in a longitudinal
setting involves estimating variants of (5.7) for each period available in the dataset. Al-
lowing for the coefficients of this conditional quantile to vary over periods, the nonlinear
structural equation representation of the κj th percentile for individual i in period t takes
the form

(5.8)gti = Φ

(
yti − ρt1y(t−1)i − · · · − ρtry(t−r)i −X′

t iβt

sN

)
− (1 − κj ) = Uti

for t = 1, . . . , T . Conditional on past wages, y(t−1)i , . . . , y(t−r)i , and Xti , the error Uti
has mean 0. Constraining the coefficients ρtm = ρm for all t yields a parameterization
analogous to a conventional ARMA(r, 0) process.

With the structural errors Uti distributed independently over time as well as across
individuals, nonlinear 2SLS offers a simple procedure for estimating the coefficients ρj
and β – assumed here to be constant over time. This approach treats each gti in (5.8)
as a separate observation, with the sample made up of all the combinations of (t, i)

34 MaCurdy and Hong (1998) explore the performance of various choices for the bandwidth parameter in a
simulation study; the estimation analysis below relies on the results of this exercise.
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where t = 1, . . . , T and i = 1, . . . , N . The instrumental variables used in estimation
consist of functions of y(t−1)i , . . . , y(t−r)i and Xti . Expressed in terms of the notation
of Section 3, this estimation procedure amounts to setting

fi = gtj and Qi = {functions of y(t−1)j , . . . , y(t−r)j and Xtj }
(5.9)where t = 1, . . . , T and j = 1, . . . , N.

This formulation for fi substitutes for (3.7), with the index i merely counting all ob-
servations obtained by stacking the time series observations for all individuals. If one
suspects the errors Uti are heteroscedastic, then nonlinear 2SLS estimation should be
implemented calculating robust standard errors corresponding to the asymptotic distri-
bution (3.11).

Alternatively, if one wishes to allow for an individual’s Uti errors to be dependent in
some way over time, with Uti’s still being independent across individuals, then multi-
equation methods incorporating predetermined variables described in Sections 3.2.1
and 4.1.3 offer an approach for estimating the parameters of (5.8). The predetermined
variables include the past values of wages, so the analog of regression equation (4.7)
becomes

(5.10)yti = δtQi + ηti , t = 1, . . . , T .

The regressorsQi incorporate all of the exogenous variables of the model, including the
relevant functions of the components making up Xi . The implied formulation for fti in
this case is

(5.11)fti(γ ) =

⎛⎜⎜⎝
gti

η̂(t−1)igti
...

η̂(t−r)igti

⎞⎟⎟⎠ , t = 1, . . . , T .

The parameters γ include all the coefficients ρt1, . . . , ρtr , βt for t = (r + 1), . . . , T .
(These coefficients may be constrained.) Relation (4.9) gives the specification for fti .
In constructing fti , one can replace the η̂ti with functions of the η̂ti . Moreover, one can
expand fti to include additional elements involving extra functions of the η̂ti . Formulas
(3.21) and (3.22) give the optimal specification for the instrumental variables.

5.2.2. Estimating dynamic specifications describing several quantiles

Suppose a researcher wishes to estimate more than one quantile to describe the evolution
of the wage distribution more fully. In particular, suppose interest focuses on estimating
the J quantiles 0 < κ1 < κ2 < · · · < κJ < 1. The system of J nonlinear simultaneous
equations providing for the estimation of these percentiles takes the form

(5.12)gjti = Φ

(
yt − qκj t (Yt−1, Xt )

sN

)
− (1 − κj ) = 0, j = 1, . . . , J.
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These equations apply to period t . Introducing a variant of system (5.12) for each avail-
able period in panel data permits an analysis of how these J quantiles shift over time.

Each of these equations can be separately estimated using single equation two-stage
least square methods. To improve efficiency given the available instruments, one can
apply a three-stage nonlinear least squares or joint-equation MM estimation procedure
by weighting the J equations optimally. Under the conditions noted briefly in Sec-
tion 5.1.2,35 the nonlinear instrumental variable procedures presented in Sections 3 and
4 applied to (5.12) produce consistent estimates and valid asymptotic distributions for
the coefficients of the quantile functions. The optimal weighting matrix is determined
by the variance–covariance matrix of J sign-variables defined by

(5.13)1
[
yt > qκj t (Yt−1, Xt )

]
, j = 1, . . . , J.

This matrix depends only on the κ’s associated with the specific distribution of the error
term. In particular, Var[1(yt > qκ(Yt−1, Xt )] = κ(1 − κ), and for κp > κj ,

Cov
[
1
(
yt > qκp (Yt−1, Xt )

)
, 1
(
yt > qκj (Yt−1, Xt )

)]
(5.14)= 1 − κp − (1 − κp)(1 − κj ).

One can permit flexible and unknown forms of heteroscedasticity in calculating the
optimal weighting matrix used in MM estimation. Incorporating these generalizations
involves implementing the conventional approach utilized in multiple-equation MM
procedures.

6. Use of sample weights and unbalanced data

When and how to weight data are two of the most important and least understood
concepts in estimation. The subsequent discussion begins with the basic principles un-
derlying weighting, and then summarizes how these basics apply to MM estimation with
longitudinal data with nonlinear specifications. The discussion documents how one must
modify MM formula to account for stratified sampling. The section ends by describing
a modified weighting-type procedure enabling researchers to use conventional methods
to estimate intertemporal specifications using unbalanced datasets – datasets not supply-
ing a perfect overlap in the time periods for individuals included in the cross-sectional
samples.

6.1. Basics of weighting to account for stratified sampling

Practically all micro data are collected using a stratified sampling frame, meaning that
observations with particular characteristics are drawn in proportions differing from

35 See MaCurdy and Hong (1998) for more details.
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those of the true population. Throughout this section, the discussion considers house-
holds as observations, but the weighting procedures outlined here obviously apply for
whatever observation unit happens to be relevant for an analysis, such as individuals or
firms. The true population refers to the group whose distribution a researcher wishes to
discern.

Suppose one would like to infer the mean of a variable y, say income, in a population
with households of two types: Type 1 and Type 2. Type 1 may refer to a poor house-
hold, and Type 2 to a nonpoor household; alternatively, Type 1 may designate a black
family, whereas Type 2 indicates a white one. In the true population, assume Type 1
households make up proportion P1 of the population, and Type 2 households constitute
the remaining P2 = (1 − P1) proportion. Thus, P1 represents the probability that a
randomly drawn household from the true population is Type 1. With yi denoting the
value of y for household i, suppose the expected value of y differs for the two types of
household with

E(yi |Type 1) = μ1, E(yi |Type 2) = μ2.

Thus, the mean of y in the population is

(6.1)E(yi) ≡ μ = μ1P1 + μ2P2.

A stratified sample includes observations on household types in proportions that dif-
fer from P1 and P2. Data collectors may want an oversample of poor or black families
to enable them to learn about the circumstances of these groups with added precision.
Suppose this oversample occurs for Type 1 households; out of a sample of size N , N1
are of Type 1 with the sample share S1 ≡ N1/N > P1. The sample average of y equals

ȳ = 1

N

N∑
1

yi = S1
1

N1

∑
{i∈Type 1}

yi + S2
1

N2

∑
{i∈Type 2}

yi

(6.2)= S1μ̂1 + S2μ̂2,

where S2 ≡ (N −N1)/N ≡ N2/N , and

μ̂j = 1

Nj

∑
{i∈Type j}

yi, j = 1, 2.

The sample mean μ̂j calculated over Type j households in the sample consistently
estimates the expected value μj . Since the sample shares S1 and S2 do not converge
asymptotically to the true population shares P1 and P2, ȳ clearly does not consistently
estimate μ.

Weighting the data solves this problem. Define the weight for observation i as

(6.3)wi = Pj

Sj
,
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where j signifies household i’s type. Weighting observations and recalculating the sam-
ple mean yields

ȳw = 1

N

N∑
1

wiyi = S1w1
1

N1

∑
{i∈Type 1}

yi + S2w2
1

N2

∑
{i∈Type 2}

yi

(6.4)= P1μ̂1 + P2μ̂2 = μ̂.

The use of a weight inflates observations that are under-represented and deflates values
associated with over-represented households.

6.2. Weighting to account for more sophisticated sample stratification

One can readily generalize the above scheme to admit many types of households. Sup-
pose the vector of characteristics Xi designates a household i’s type, and the share of
this type in the overall population equals Pi = P(Xi). The expected value of y in this
population is

μ =
N∑
i=1

E(yi |Xi)P (Xi) =
N∑
i=1

μiPi.

With Si representing the share of Type Xi in the sample, the weight for observation i
with these characteristics is

(6.5)wi = Pi

Si
.

Computing the average of the sample using weights (6.5) yields

ȳw = 1

N

N∑
i=1

wiyi =
∑
j

Sjwj

[
1

Nj

∑
{i∈Type j}

yi

]
=
∑
j

Pj μ̂j

(6.6)=
N∑
i=1

Piyi = μ̂.

This relation generalizes (6.4). In the first and second lines of (6.6), the index j desig-
nates types. The last line presumes each observation is its own type, producing the most
general form of weighting.

6.2.1. Typical form of weights provided in survey data

Datasets often report weights in a way such that adding weights for observations of
a particular type Xi yields the total number of households of that type in the overall
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population. Thus, in place of (6.5), datasets may provide the weight:

w∗
i = 1

Ni
Pi · (Total number of households in true population)

(6.7)= 1

N
wi · (Total number of households in true population).

The i subscript in these expressions designates observation i’s type. Summing these
weights over all members of types in the set K yields∑

{i∈K}
w∗
i =

∑
{j∈K}

1

N
wj

[ ∑
{i∈Type j}

1

]
· (Total number in true population)

=
∑

{j∈K}

1

N
wjNj · (Total number in true population)

=
∑

{j∈K}
Pj · (Total number of households in true population)

= Total number of households in true population of types included

(6.8)in the set K.

Thus, when the set K includes all types j , this quantity measures the total number of
households in the true population; equivalently,∑

{i∈K}
w∗
i =

N∑
i=1

w∗
i = Total number of households in true population.

Computing weighted averages of the observations yi to estimate expected values of y
in the true population takes the form

(6.9)
1

N

∑
{i∈K}

wiyi =
∑

{i∈K}w∗
i yi∑

{i∈K}w∗
i

=
∑

{i∈K}
Piyi = μ̂.

The last step in (6.9) treats every individual as his/her own type, with K covering all
possible types. The standard error of this estimated mean is the square root of the quan-
tity

1

N2

∑
{i∈K}

[wiyi − μ̂]2 = 1

N2

∑
{i∈K}

w2
i y

2
i − 1

N
μ̂2

(6.10)=
∑

{i∈K}[w∗
i yi]2

[∑{i∈K}w∗
i ]2

− 1

N

[∑
{i∈K}w∗

i yi∑
{i∈K}w∗

i

]2

.

Most software packages use these formulas to compute weighted means and their asso-
ciated standard errors.36

36 Software packages often present several options for using different forms of weights.
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6.2.2. Calculating statistics for subpopulations

Instead of representing the entire population, suppose the set K includes only a subset
of household types. Let μK designate the mean of the subpopulation comprised of all
household types making up the setK . A consistent estimate of this mean takes the form∑

{i∈K}w∗
i yi∑

{i∈K}w∗
i

=
∑N
i=1w

∗
i∑

{i∈K}w∗
i

∑
{i∈K}

1

N
wiyi

=
∑N
i=1w

∗
i∑

{i∈K}w∗
i

∑
{j∈K}

Sjwj

[
1

Nj

∑
{i∈Type j}

yi

]

=
∑N
i=1w

∗
i∑

{i∈K}w∗
i

∑
{j∈K}

Pj μ̂j

(6.11)= μ̂K.

In this weighted average, note that the expression∑N
i=1w

∗
i∑

{i∈K}w∗
i

Pj

corresponds to the proportion of Type j households that make up the true subpopulation
defined by set K .

The variable yi in the above discussion can represent any general quantity of the
data, including higher-order terms, allowing the estimation of higher order moments
of y. This analysis merely shows how to estimate moments associated with the true
population using observations from a stratified sample. As one example, a consistent
estimate of the variance of yi in subpopulation K is:

Ê
(
y2|{i ∈ K})− [

Ê
(
y|{i ∈ K})]2 =

∑
{i∈K}w∗

i [yi]2∑
{i∈K}w∗

i

−
[∑

{i∈K}w∗
i yi∑

{i∈K}w∗
i

]2

.

Note, in contrast to the classic unweighted case – which corresponds to the situation
w∗
i = 1 for all i – the square of the standard error of the weighted estimated mean is

not proportional to the estimated variance of yi . Weighting alters the variability of the
sample average.

6.3. Weighting in method-of-moments procedures to compute estimators

Nonlinear functions of variable and parameter vectors can also be represented by the yi
variable in the above discussion. The analysis merely shows how to estimate moments
associated with the true population using observations from a stratified sample. An
important question concerns how these lessons can be implemented using the general
estimation procedures described in Section 3.
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As noted in Section 3, MM procedures minimize a distance function of the form
(3.2) to compute estimates (γ̃ ) for the parameters γ . The quantities LN(γ ), VN(γ ), and
SN(γ ) appearing in (3.2) and (3.3), which specify the asymptotic distribution of γ̃ , take
the form

LN(γ ) ≡ 1

N

N∑
i=1

�i(γ ), SN ≡ 1

N

N∑
i=1

∂�i

∂γ ′ and

VN(γ ) ≡ 1

N

N∑
i=1

�i(γ )�i(γ )
′.

As in the previous analysis, the matrix HN appearing in distance function (3.2) and the
asymptotic distribution (3.3), is any positive definite matrix.

The asymptotic properties of the estimator γ̃ critically rely on LN(γ0)
s−→ 0, and

this convergence property in turn relies on the sample average of the �i(γ )’s converging
to an expectation of zero based on the true distribution. Thus, to have average (3.1)
converge to the appropriate expectation in the case of a stratified sample, one replaces
LN(γ ) by its weighted counterpart

(6.12)LN(γ ) ≡
∑

{i∈K}w∗
i �i(γ )∑

{i∈K}w∗
i

= 1

N

∑
{i∈K}

wi�i(γ ),

where the set K includes all types included in the overall dataset. The corresponding
formulations for SN(γ ) and VN(γ ) take the form

(6.13)SN(γ ) ≡
∑

{i∈K}w∗
i
∂�i
∂γ ′∑

{i∈K}w∗
i

, VN(γ ) ≡ 1

N

∑
{i∈K}w∗ 2

i �i(γ )�i(γ )
′

[∑{i∈K}w∗
i ]2

.

With (6.12) used to construct the distance function (3.2) with any positive-definite
matrix HN , the extremum estimator γ̃ consistently estimates the value of γ0 associ-
ated with the true population. Moreover, γ̃ possesses asymptotic distribution (3.3) with
ṼN ≡ VN(γ̃ ) and S̃N ≡ SN(γ̃ ), where (6.13) gives the formula for VN(γ ) and SN(γ ).

The generalized least-squares variant of the distance function providing for the com-
putation of the most efficient method-of-moments estimator γ̂ is still the function C(γ )
specified by (3.4). The quadratic form matrix in C(γ ) is the inverse of ṼN ≡ VN(γ̃ ),
with (6.13) again giving the formula for VN(γ ), and γ̃ being any consistent weighted
estimator. The extremum estimator γ̂ , the value of γ minimizing C(γ ), consistently
estimates the value γ0 associated with the true population. Moreover, γ̂ follows an as-
ymptotic distribution given by (3.5) with (6.13) giving the formulas for VN(γ ) and
SN(γ ).

6.4. Weighting in LS and instrumental variable procedures to compute estimators

What are the implications of applying the above weighting procedures for implementing
least squares? For nonlinear least squares? For nonlinear 3SLS?
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6.4.1. Familiar form of weighting in LS procedures

For least squares, consider the simple linear model

yi = X′
iγ + ξi, i = 1, . . . , N.

Expressed in terms of equation system (3.7), this relation translates as

(6.14)fi = yi −X′
iγ = ξi .

Least squares amounts to selecting the instrumental variablesQi = Xi , and minimizing
distance function (3.2) with

LN(γ ) ≡ 1

N

N∑
i=1

�i(γ ), where �i(γ ) = Xi
(
yi −X′

iγ
)
,

(6.15)

HN ≡
[

1

N

N∑
i=1

XiX
′
i

]−1

.

The implied formulations for the matrices S̃N and ṼN are:

(6.16)S̃N = −
[

1

N
Σi
(
XiX

′
i

)]
, ṼN =

[
1

N
Σi
(
XiX

′
i ξ̃

2
i

)]
.

Since the system of equations LN = 0 fully defines the least squares estimator γ̂ (i.e.,
the number of equations equals the number of elements estimated in γ ), asymptotic
distribution (3.6) approximates the large-sample distribution of γ̂ . The formula for the
variance–covariance matrix in (3.6) provides for the computation of robust standard
errors. Obviously, under the assumption of homoscedasticity, this formula simplifies to
the familiar least squares specification.

Weighting to account for stratified sampling amounts to computing a least squares
estimator (or generalized least squares estimator) for the equation

√
wiyi = √

wiX
′
iγ + √

wiξi .

Considered in the context of the general estimation approach described in Section 3.1,
this estimation procedure sets

(6.17)fi = √
wi
[
yi −X′

iγ
] = √

wiξi,

and selects the instrumental variables Qi = √
wiXi . The weighted least squares esti-

mator γ̂w, minimizes the distance function (3.2) with

LN(γ ) ≡ 1

N

N∑
i=1

�i(γ ), where �i(γ ) = wiXi
(
yi −X′

iγ
)
,

(6.18)

HN ≡
[

1

N

N∑
i=1

w2
i XiX

′
i

]−1

.
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The implied formulations for the matrices S̃N and ṼN are:

(6.19)S̃N = −
[

1

N
Σi
(
wiXiX

′
i

)]
, ṼN =

[
1

N
Σi
(
w2
i XiX

′
i ξ̃

2
i

)]
.

The specification forLN in (6.18) clearly possesses the form required by (6.12) to adjust
for the use of a stratified sample, so γ̂w consistently estimates the value of γ associated
with the true population. Asymptotic distribution (3.6) approximates the large-sample
distribution of γ̂w, with (6.19) serving as the components appearing in the formula for
the variance–covariance matrix of this distribution.

Although the variance–covariance formula agrees with what one would obtain
through computing robust standard errors by applying least squares to estimate the
weighted regression equation (6.17), be aware that this formula is not the one typi-
cally reported by weighted regression software packages. These packages presume that
weighting is done to induce homoscedasticity, which renders the matrix ṼN propor-
tional to S̃N with the factor of proportionality consistently estimated by

σ̃ 2
N =

[
1

N
Σi
(
wiξ̃

2
i

)]
.

This simplification relies on the assumption that Var(ξi) is proportional to wi . There
is little reason to believe this relationship holds in a stratified sample, for the sampling
weights are not designed with this consideration in mind. For example, it is possible
for a stratified sample to have different means but the same variances across groups. In
this case, weighting is needed to compute means for the overall population, but a sim-
ple average estimates variances. Weighting in this instance induces heteroscedasticity.
The variance–covariance formula appearing in (3.5), with (6.19) inserted as the compo-
nents of this expression, consistently estimates the appropriate standard errors and test
statistics regardless of how weighting alters the variances of disturbances.

6.4.2. Weighting with LS interpreted as an IV procedure

Alternatively, representing the weighted least squares estimators within a 2SLS frame-
work offers an approach for computing the appropriate standard errors when one is
willing to assume the regression errors ξ are homoscedastic across observations. Desig-
nate the specification for fi by (6.14), and implement 2SLS selecting the instrumental
variablesQi = wiXi . The application of 2SLS minimizes distance function (3.2) with

LN(γ ) ≡ 1

N

N∑
i=1

�i(γ ), where �i(γ ) = wiXi
(
yi −X′

iγ
)
,

(6.20)

HN ≡
[

1

N

N∑
i=1

w2
i XiX

′
i

]−1

.

Relations (6.19) give the implied formulations for the matrices S̃N and ṼN . As men-
tioned before, the specification of HN is irrelevant in the calculation of estimates with
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the form of LN given by (6.18) – in the terminology of 2SLS, this equation is exactly
identified. So, the weighted least squares estimator γ̂w is the 2SLS estimator. Asymp-
totic distribution (3.6) once again approximates the large-sample distribution of γ̂w, with
(6.19) serving as the components appearing in the formula for the variance–covariance
matrix of this distribution. Carrying out 2SLS estimation with the robust standard error
option selected to calculate standard errors uses this formula for the variance–covariance
matrix. If one assumes the errors ξ are homoscedastic, then the conventional standard
error formula for 2SLS consistently estimates the variance–covariance matrix of (3.6).

This 2SLS representation of weighted least squares readily accommodates the non-
linear regression case. One computes the weighted nonlinear least squares estimator
using nonlinear 2SLS procedures by specifying fi = yi−g(Xi, γ ), where g is a known
nonlinear function, and selecting the instrumental variables as 37:

Qi = wi
∂gi

∂γ

∣∣∣∣
γ̃

.

With these specifications of fi andQi , all of the above findings apply in computing the
weighted nonlinear least squares estimator and its asymptotic distribution.

6.4.3. Weighting in nonlinear IV procedures

Now consider NIV and nonlinear 3SLS estimation with weighting, which encompass all
other linear and nonlinear MM procedures. Application of weighted NIV to the model
specified in system (3.7) selects the instrumental variables

(6.21)Qji = wiGji,

where Gji represents the instrumental variables a researcher would use in the absence
of weighting. The implied formulation for the �i’s in the NIV framework takes the form

LN(γ ) ≡ 1

N

N∑
i=1

⎛⎝ �T i(γ )...
�1i (γ )

⎞⎠ = 1

N

N∑
i=1

⎛⎝wiGT ifT i...

wiG1if1i

⎞⎠ ≡ 1

N

N∑
i=1

⎛⎝QT ifT i...

Q1if1i

⎞⎠
(6.22)≡ 1

N

N∑
i=1

Δifi,

where the matrixΔi is given by (3.9). (Relation (6.22) presumes consideration of only a
single structural equation per period for expositional simplicity; inclusion of Kronecker
products in forming the �i’s as in (3.8) will generalize this expression to permit consid-
eration of multiple structural equations per period.) The specification of LN implied by
(6.22) clearly possesses the form required by (6.12) to adjust for the use of a stratified

37 Note, this specification of Qi corresponds to the weighted value of the optimal choice of instrumental
variables presented in (3.13).
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sample, so the value of γ̂w minimizing distance function (3.10) consistently estimates
the value of γ0 associated with the true population. Moreover, the weighted estimator
γ̂w possesses asymptotic distribution (3.11). If the homoscedasticity assumption applies
for the structural errors ξi , then γ̂w can be interpreted as the nonlinear 3SLS estimator
obtained by minimizing distance function (4.3), and (4.4) gives the asymptotic distrib-
ution of γ̂w. An equivalent representation has the 3SLS estimator γ̂w minimize distance
function (4.5) with its asymptotic distribution given by (4.6), where the quantities wiQi
replaceQi in these expressions.

6.5. Which weights should be used in longitudinal analyses?

The selection of weights appropriate for a panel data exercise requires the following
steps: first, a decision of exactly which population a researcher wants to emulate; and,
second, a clear understanding of what the weights are intended to represent. Documen-
tation accompanying survey data on weights seldom discuss their use other than vaguely
noting the broad category of the population the weights are meant to replicate. For ex-
ample, there are usually weights for estimating relationships involving observations on
individuals, and weights for families. The choice among these options is usually ob-
vious since one emulates the population of individuals for some region or age range,
and the other models a population of families or households. However, there are often
different sets of weights for each year as well, leaving the question of which to use.

To discuss the principles underlying the answer to this question, return to the problem
of estimating the expected value of a variable yti , where i refers to a household and t
designates the year. The variable y may represent a simple variable such as income, or
it may equal the product of income in the current period and some previous period. To
estimate the mean of y in the target population using the framework outlined above, the
specification fti in equation system (3.7) takes the form

(6.23)fti = yti − γ = ξti , t = 1, . . . , T , i = 1, . . . , N.

WithGti again representing the instrumental variables used ignoring weighting, replace
the weighted variant of instrumental variables appearing in (6.22) by the quantity

(6.24)Qti = wtiGti,

with the specification of wti designated below. In the estimation of Equation (6.23), the
constant Gti = 1 constitutes the only instrumental variable. The implied formulation
for the �i’s in the MM framework becomes

LN(γ ) ≡ 1

N

N∑
i=1

⎛⎝ �T i(γ )...
�1i (γ )

⎞⎠ = 1

N

N∑
i=1

⎛⎝wT iGT ifT i...

w1iG1if1i

⎞⎠ ≡ 1

N

N∑
i=1

⎛⎝QT ifT i...

Q1if1i

⎞⎠
(6.25)≡ 1

N

N∑
i=1

Δifi,
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where relation (3.9) gives the formula for the matrix Δi . Implementing the weighted
NIV procedure described above produces consistent estimates for the value of γ0 asso-
ciated with the true population assuming the weights correspond to this population.

So how does one select the wti? Rarely would one select the wti to be the annual
weights provided in survey longitudinal data. The annual weights are meant to adjust
for the fact that households attrit from the sample over time, and this attrition does not
occur randomly across household types. Moreover, these weights may also adjust to
recognize that, for example, the national population changes due to immigration. These
adjustments recognize that what was representative in one year is not representative a
decade later.

Most empirical analyses investigating intertemporal relationships work with balanced
data, meaning that all observations i are deleted from the dataset if any of their obser-
vations (t, i) are missing. Suppose a researcher wishes to estimate relationships over
the period 1 to T , and uses all data on households i who are in the data in period 1 and
still part of the dataset through period T . Conceptually, the weight wT i would be the
proper one to use in such analyses; so, in (6.24) and (6.25) one would set wti = wT i for
all t . This selection would also be appropriate if the researcher conducted the analysis
starting after period 1.

The validity of this choice, of course, critically depends on the weights properly ad-
justing for attrition. The circumstances under which weights accomplish this task rely
on accounting for the potential presence of endogenous sample selection, an exceed-
ingly complicated problem that requires implementation of a structural analysis to infer
corrected probabilities of sample inclusion. This significant topic is beyond the scope of
the chapter.38 Additional problems can arise if the annual weights in longitudinal data
attempt to adjust for recent-arrival immigrant households who were underrepresented
in the original sample. For the weights to adjust properly for stratification, a researcher
must presume that households designated to be equivalent by sample weights do not
differ depending on whether they are original-sample or recent-arrival immigrant house-
holds.

6.6. Estimation with unbalanced data

What about using all observations available in panel data to estimate relationships, irre-
spective of whether these observations come from households who were not represented
in some years? Using an unbalanced dataset requires adjustments to the output of test
statistics reported by conventional estimation procedures.

6.6.1. Characterizing estimators computed using unbalanced data

Suppose a data source offers observations on N households i for some years t during
the period 1, . . . , T . In year t , observations exist on all households who are members of

38 The creation of weights in such instances is closely linked to the theory underlying choice based sampling,
a topic touched upon in the Handbook chapter by McFadden (1984).
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the set {i ∈ {t}}; there are Nt such households in year t . A particular household j may
be represented in a combination of years, implying it may be in any combination of the
sets {i ∈ {1}}, . . . , {i ∈ {T }}. A stratified sample assigns a household missing in year t
a weight equal to 0; that is, wti = 0 when an observation on i is unavailable for year t .
A convenient reformulation of the weights useful in the subsequent analysis takes the
form

(6.26)Wti = N

Nt
wti .

Often the weights provided in data sources are in fact Wti and not wti , for they adjust
for the smaller sizes of the cross-sectional samples. Generally, the weight wti appearing
in (6.26) refers to the cross-sectional weight applicable for year t ; this selection of wti
presumes that the most recent endogenous variable included in the equation weighted by
wti is from period t . A household i with a missing observation in period t hasWti = 0.
One need not distinguish between Wti and wti in the formulation of the w∗ weights
(representing population sizes) discussed in Section 6.2.

An MM estimator using unbalanced data minimizes a distance function of the form
(3.2) where

LN(γ ) =
⎛⎜⎝

1
NT

∑
i∈{T } �∗T i(γ )
...

1
N1

∑
i∈{1} �∗1i (γ )

⎞⎟⎠ = 1

N

N∑
i=1

⎛⎜⎝
N
NT
�∗T i(γ )
...

N
N1
�∗1i (γ )

⎞⎟⎠

(6.27)≡ 1

N

N∑
i=1

⎛⎝ �T i(γ )...
�1i (γ )

⎞⎠ .
This relation defines the vectors �∗t i and �ti so they differ only by the factorN/Nt , which
enlarges values of �∗t i to account for summing over a greater number of households than
there are observations in year t . When an observation on household i is missing in year
t , �ti = 0 as is the case for the weightWti . In the case of NIV estimation with stratified
samples, (6.27) becomes

LN(γ ) =
⎛⎜⎝

1
NT

∑
i∈{T } �∗T i(γ )
...

1
N1

∑
i∈{1} �∗1i (γ )

⎞⎟⎠ =
⎛⎜⎝

1
NT

∑
i∈{T }wT iGT ifT i

...
1
N1

∑
i∈{1}w1iG1if1i

⎞⎟⎠

(6.28)= 1

N

N∑
i=1

⎛⎜⎝
N
NT
wT iGT ifT i

...
N
N1
w1iG1if1i

⎞⎟⎠ ≡ 1

N

N∑
i=1

⎛⎝WT iGT ifT i...

W1iG1if1i

⎞⎠ ,
where Gji again constitutes the instrumental variables a researcher would use in the
absence of weighting. Expressed in terms of the notation of Section 3, (6.28) trans-
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lates to

LN(γ ) = 1

N

N∑
i=1

⎛⎝WT iGT ifT i...

W1iG1if1i

⎞⎠ ≡ 1

N

N∑
i=1

⎛⎝QT ifT i...

Q1if1i

⎞⎠

(6.29)≡ 1

N

N∑
i=1

⎛⎝ �T i(γ )...
�1i (γ )

⎞⎠ .
Thus, �i , formed by stacking the elements of the �ti’s, possesses the same structure as
(3.8); and LN(γ ) = 1

N

∑N
i=1Δifi where (3.9) gives the matrix Δi .

6.6.2. What is the asymptotic distribution of estimators computed using unbalanced
data?

The large-sample distribution of the unbalanced MM estimator γ̃w depends on the as-
ymptotic properties of the vector

(6.30)

⎛⎜⎝
√
NT

1
NT

∑
i∈{T } �∗T i(γ )
...√

N1
1
N1

∑
i∈{1} �∗1i (γ )

⎞⎟⎠ = √
NLN(γ ).

In sharp contrast to all previous interpretations of the expression
√
NLN(γ0), this

expression in (6.30) and throughout this subsection merely serves as a notation rep-
resenting the unequally-normalized vectors specified on the left-hand side of definition
(6.30). (So, this expression does not equal the square root ofN times LN listed in (6.28)
or (6.29).) The term

√
NLN(γ0) defined in (6.30) corresponds to its analogous expres-

sion appearing in Section 3 in that it possesses an asymptotic normal distribution with
a form comparable to the representations considered above.

In particular, assuming the �∗t i vectors satisfy the same distributional properties main-
tained for the �ti’s in Section 3, (6.30) converges to a normal distribution possessing the
form√

NLN(γ0)
d−→ N

(
0, plim
N→∞

{
Ṽ ∗
N

})
.

The variance–covariance matrix Ṽ ∗
N ≡ V ∗

N(γ̃w) has as its (r, s) block the matrix

(6.31)
{
(r, s) element of V ∗

N(γ )
} =

{
1

Nrs

∑
i∈{r,s}

�∗ri(γ )�∗si (γ )′
}
,

where the notation {i ∈ {r, s}} signifies the set of all households with observations in
both years r and s, and Nrs denotes the total number of households in this set. The
approximate large-sample distribution of LN becomes

LN(γ0) ∼.. N

(
0,

1

N
Ṽ ∗
N

)
,
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where the (r, s) element of the variance–covariance matrix 1
N
V ∗
N(γ ) takes the form

(6.32)

{
(r, s) element of

1

N
V ∗
N(γ )

}
=
{

1√
NrNs

1

Nrs

∑
i∈{r,s}

�∗ri(γ )�∗si (γ )′
}
.

Similar to the reinterpretation of notation exploited at the beginning of this subsection,
the expression 1

N
V ∗
N in (6.32) does not designate the matrix V ∗

N divided by N , as has
been true in the previous discussion. It merely represents the sample size-normalized
variant of the variance–covariance matrix.

Paralleling the steps outlined in Section 3.1, the approximate large-sample distrib-
ution of the weighted estimator γ̃w, calculated by minimizing distance function (3.2)
using weighted data, is

(6.33)γ̃w ∼.. N

(
γ0,

[[
S̃′
NHNS̃N

]−1
[
S̃′
NHN

(
1

N
Ṽ ∗
N

)
HNS̃N

][
S̃′
NHNS̃N

]−1
])
,

where S̃N ≡ SN(γ̃w) with

(6.34)SN(γ ) =

⎛⎜⎜⎝
1
NT

∑
i∈{T }

∂�∗T i
∂γ ′

...
1
N1

∑
i∈{1}

∂�∗1i
∂γ ′

⎞⎟⎟⎠ = 1

N

N∑
i=1

⎛⎜⎜⎝
N
NT

∂�∗T i
∂γ ′
...

N
N1

∂�∗1i
∂γ ′

⎞⎟⎟⎠ = 1

N

N∑
i=1

⎛⎜⎝
∂�T i
∂γ ′
...
∂�1i
∂γ ′

⎞⎟⎠ .
When implementing estimation procedures with parameters exactly identified – in
which case the choice of HN is irrelevant in the calculation of the estimator – the esti-
mator γ̃w possesses the simpler asymptotic distribution

(6.35)γ̃w ∼.. N

(
γ0, S̃

−1
N

(
1

N
Ṽ ∗
N

)
S̃′ −1
N

)
.

(This distribution is the analog to (3.6).) Finally, the estimator γ̂w, computed by mini-
mizing the counterpart to the optimal quadratic-form distance function C(γ ) given by
(3.4), approximately follows the large-sample distribution

(6.36)γ̂w ∼.. N

(
γ0,

[
Ŝ′
N

(
1

N
Ṽ ∗
N

)−1

ŜN

]−1)
.

6.6.3. Wrong variance–covariance matrix reported by conventional estimation
procedures

Unfortunately, the familiar estimation procedures compute incorrect values for the
variance–covariance matrix, even after implementing robust standard errors options.
This produces invalid test statistics for some hypotheses. The conventional approaches
report variance–covariances based on the following formula to compute Ṽ ∗

N

VN(γ ) ≡ 1

N

N∑
i=1

�i(γ )�i(γ )
′.
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The (r, s) element of this matrix is{
(r, s) element of

1

N
VN(γ )

}
=
{

1

N

1

N

N∑
i=1

�ri(γ )�si(γ )
′
}

=
{
Nrs

N2

1

Nrs

∑
i∈{r,s}

�ri(γ )�si(γ )
′
}

(6.37)=
{
Nrs

NrNs

1

Nrs

∑
i∈{r,s}

�∗ri(γ )�∗si (γ )′
}
.

Comparing (6.32) to (6.37) reveals discrepancies in the off-diagonal elements of the
valid specification of 1

N
V ∗
N and the reported value 1

N
VN . The relationship between the

(r, s) elements of these matrices is

(6.38)

{
(r, s) element of

1

N
V ∗
N(γ )

}
=

√
NrNs

Nrs

{
(r, s) element of

1

N
VN(γ )

}
.

This formula shows how to adjust each element of the reported matrix – the right-hand
side elements in (6.38) – to the appropriate values.

Inspection of (6.38) reveals that the diagonal blocks of these matrices are the same
since, with r = s, Nrs = Nr = Ns . This implies that standard errors, t-statistics,
and test statistics reported by the regular estimation procedures are valid as long as
no constraints are imposed across equations. When restrictions are considered across
equations, the off diagonal blocks come into play and the elements in these blocks differ
depending on the relative sample sizes in distinct periods. In many longitudinal datasets,
observations are dropped after the period they first attrit from the panel. Consequently,
assuming period r comes before period s and some attrition occurs, then Nr > Ns . If
all households present in period s were also observed in period r , then Nrs = Ns . In
this case the conversion factor becomes

(6.39)

√
NrNs

Nrs
=

√
Nr

Ns
.

Thus, the (r, s) element reported by conventional estimation is too low, and it must
be enlarged by the ratio of the square roots of the early sample size to the later one
to calculate the correct covariance. So, if the period r sample is twice as large as the
period s sample, the covariances associated with coefficients across the year r and s

equations must be multiplied by
√

2√
1

≈ 1.4. Of course, if all households are observed in
all years, then Nrs = Nr = Ns = N , and no adjustments are required.

6.7. Weighting and unbalanced data in the estimation of quantile specifications

The above procedures readily apply in estimating the parameters of conditional quantile
relationships using a stratified and/or an unbalanced sample. When faced with a strati-
fied sample in a longitudinal data context, selecting instrumental variables according to
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(6.24) in the implementation of Section 5.1 quantile estimation approach yields consis-
tent estimates of the coefficients ρt1, . . . , ρtr , βt . As noted in Section 6.5, the selection
of weights wti in (6.24) depends on precisely which population a dataset’s weights em-
ulate, and which population a researcher wishes to replicate. Often an analyst estimates
intertemporal relationships using balanced data, restricting the sample to include ob-
servations for periods 1 through T for all individuals i who remain sample members
during this time horizon. In such a situation, one would select wti = wT i for all t when
forming the weighted instrumental variables in (6.24).

When estimating dynamic quantile specifications using unbalanced data, the dis-
cussion of Section 6.6 applies fully. One carries out nonlinear instrumental variable
estimation using weights specified by (6.26) and the formulation of LN given by (6.28)
and (6.29). This formulation applies directly when implementing the multi-equation
method described above with fti specified by (5.11). This framework also permits im-
plementation of the nonlinear 2SLS procedure discussed above, which assumes the
structural errors Uti are distributed independently over time as well as across individu-
als. In this 2SLS case, fti in (6.28) is a scalar and the specification of the HN matrix in
the formulation of the distance function (3.2) takes the form:

HN =
[
ιι′ ⊗

[
1

TN

T∑
t=1

N∑
i=1

QtiQ
′
t i

]−1]
,

where ι in this Kronecker product refers to a column vector of 1’s of dimension T , and
Equations (6.29) define the instrumental variablesQti .

7. An empirical application to wage dynamics

This section introduces a set of empirical examples to illustrate the econometric meth-
ods presented in the previous four sections. These examples characterize the dynamic
properties of hourly wages of men during the period 1980–1991 using the Panel Study of
Income Dynamics (PSID). This empirical analysis is not intended to provide a compre-
hensive investigation of wage dynamics; instead, its aim is to enhance the accessibility
of the procedures discussed in this chapter to practitioners. The section reports empirical
findings applying many of these procedures, explaining implementation in a concrete
context and comparing standard-error estimates obtained through the use of both classi-
cal and bootstrap approaches. It also highlights the differences in estimation from using
balanced data, where individuals are restricted to have data for every period t , versus
unbalanced data, where individuals who are only available for part of the sample period
are retained. After illustrating the proper use of stratified sample weights, the section
ends by using quantile regression procedures to characterize the dynamic properties of
median hourly wages for men.

Section 7.1 summarizes the data used, while Section 7.2 estimates covariograms us-
ing the method described in Section 4.4. Section 7.3 uses the methods of Sections 4.5
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and 4.7 to illustrate how the autoregressive parameters can be estimated alone, or jointly
along with the moving-average parameters. Section 7.4 reports the results of the esti-
mation proposed in Section 7.3. Section 7.5 provides bootstrapped standard errors for
comparison to the asymptotic standard errors reported in Section 7.4. Section 7.6 ap-
plies results in Section 6.6 to illustrate the utilization of information from unbalanced
data, and Section 7.7 applies the results in Section 6.4 to show the correct use of strati-
fied sampling weights. Section 7.8 is an application of quantile regressions to estimate
ARMA processes, as discussed in Section 5. Finally, Section 7.9 summarizes the find-
ings.

7.1. Data description and prototype model

Data are drawn from the randomly-designed sample of the Michigan Panel Study of
Income Dynamics.39 The dataset consists of 959 observations on prime-age males for
the years 1980–1990, a total of 11 years of data for each individual. Only males 25–46
years old in 1980 are included in the sample. The wage rate is defined to be annual real
earnings deflated by the Consumer Price Index and divided by hours of work reported
during the year.

Because the PSID is a stratified sample, one must apply weights to adjust for dif-
ferences between the sample and national populations in order to obtain consistent
estimates of population parameters. Regrettably, most standard software routines do not
use weights properly in calculating standard errors when weights adjust for stratified
sampling; these routines instead assume weights merely adjust for heteroscedasticity.
Routines that do make proper adjustments are often termed “survey sampling” proce-
dures. Given the illustrative nature of the empirical examples presented below, and the
fact that most economists ignore weighting, the following empirical examples do not
use weighting in calculating estimates. To assess the impact of weighting, Section 7.7
presents the findings of several exercises.

The following exercises assume that wages obey the regression/median equation:

(7.1)ωti = Xtiβ + Uti,
where ωti measures the growth in an individual’s hourly wages from period (t − 1) to t .
This equation is a special case of relation (2.10), with π and ψ set equal to zero and β
constrained across time.40 The majority of the analysis presumes that the disturbances
in (7.1) follow the ARMA process specified in Equation (2.3)

a(L)Uti = m(L)εti ,

39 The panel study’s procedures and methods are detailed in Hill (1992).
40 Regression coefficients are constrained to be equal across years. Formal hypothesis tests easily accept this
restriction at conventional levels of significance.
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which the following empirical applications respecify as

(7.2)Uti =
p∑
j=1

ajtU(t−j)i +
q∑
j=0

mjtε(t−j)i .

(Note, the coefficients ajt in (7.2) have been redefined to have the opposite sign as
the corresponding coefficients appearing in relation (2.3) and the previous discussion;
expression (7.2) takes the form typically found in empirical earnings literature.) Both
mean and quantile regression techniques can be used to consistently estimate the para-
meters of interest. For simplicity, the subscript i will be omitted from equations when
this causes no confusion.

Least squares estimation of the reduced-form model (7.1) produces the residuals
Ût used in much of the subsequent empirical exercises. The variables incorporated as
regressors in Xt are designed to capture the measured component of wage growth, in-
cluding four education dummy variables, a quadratic in age, full interactions between
the age polynomial and the education dummy variables and a dummy variable for each
year of the sample after the first. With time effects included inXt , the errorsUt represent
the vector of deviations in individuals’ wage growth from averages in the population in
period t , after accounting for age and education. Thus this exercise seeks to characterize
the correlation across years in unmeasured (residual) wage growth.

7.2. Estimation of autocorrelations

Prior to estimating specifications of model (7.1), it is necessary to investigate two ques-
tions: (1) Do the vectors U1, . . . , UT satisfy the weak stationarity property implicitly
assumed in the multiple time series specifications presented in Equation (7.2)? (2) What
are the orders of the autoregressive and the moving average lag polynomials in the mul-
tivariate ARMA process that best describe the intertemporal variation in the Ut ’s?

7.2.1. Estimating covariograms

Estimating autocovariances provides the essential information needed to answer these
questions. Section 4.4 describes the approach utilized to calculate these quantities im-
plementing the joint generalized least squares or seemingly unrelated regression frame-
work specified by Equation (4.24) using the fitted values of Ut , Ût . This procedure
estimates the second moments E(UtU ′

t−k) for each value of t and k, setting each
moment equal to its sample analog Ût Ût−k , which consistently estimates population
autocovariances when averaged. Weak stationarity follows if one can accept the hy-
pothesis that these second moments are independent of t for any k (i.e., independent
of year for any lag). One can test weak stationarity with a standard F -test on the joint
hypothesis that for a given k, E(UtUt−k) is the same for all t . Further, the properties
of these estimated second moments provide information allowing one to choose which
ARMA process best fits the data.
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The estimation of the sample moments is done within a seemingly unrelated regres-
sion context in order to account for unspecified heteroscedasticity and autocorrelation
across time for a given individual. Thus the values Ût Ût−k for all available combinations
of t and k are constructed for each individual to form the system of Equations (4.24).

7.2.2. Implications of covariograms for stationarity and ARMA specifications

Table 1 presents estimates of the covariogram associated with specification (7.1). The
first row presents estimates for autocovariances of order k = 0, 1, . . . , 6 when the au-
tocovariances of the specified order are constrained to be equal across time. These are
the constrained estimates of θ from the version of Equation (4.24) described above. The
second row lists the autocorrelation coefficients implied by these estimates. The third
row reports the minimum and maximum estimates of the autocovariances when the θ ’s
are not restricted to be equal over time. The fourth row reports the test results for the
hypothesis that the kth order autocovariance is equal across periods, e.g., the hypothesis
is that the covariance between U1981 and U1982 is the same as the covariance between
U1982 and U1983.

Table 1 provides answers to the two questions posed above. The F -test in row 4 is
easily accepted for all k. Therefore, the data do accept a weak stationarity restriction.

The second question, how to model the error structure process in a tractable way,
amounts to picking an ARMA process that best fits the data. Autoregressive processes
lead to autocovariances that, at orders higher than the order of the process, gradually
fall to zero. Moving-average processes exhibit autocovariances that sharply drop to
zero once one moves to an order higher than the order of the moving average. These
two theoretical predictions are the guidelines from which to specify the error structure.
Note that these predictions involve evaluating magnitudes (i.e., absolute values) of the
coefficients.

Using the above theoretical predictions as guidelines, it is easy to see the existence of
a first-order moving average in the data. The first-order autocovariance term, estimated
to be −0.048, is by far the largest in magnitude. The second-order term, while still
statistically different from zero, takes a sharp drop to −0.006, an eighth the size of
the first. The higher order autocovariance terms get progressively smaller and are all
statistically indistinguishable from zero.

The sharp drop after the first-order autocovariance term suggests a first-order moving-
average process, but it also suggests a short autoregressive process. A lengthy autore-
gressive process would not have autocovariance terms that drop off so fast. The gradual
fall in the terms of order two and higher invites one to consider a low-order autore-
gressive process. Based on the autocovariance coefficients and prior work, this section
will investigate models with a first-order moving average component and either a first-
or second-order autoregressive process (ARMA(1, 1) or ARMA(2, 1)). One could in-
vestigate a wider class of specifications, but these two specifications should serve to
sufficiently illustrate the methods without getting bogged down in repetitive tables. For
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Table 1
Covariogram for wage growth residuals

Statistics Lag (order)

0 1 2 3 4 5 6

Constrained autocovariances 0.131 −0.048 −0.006 −0.004 −0.003 −0.001 0.002
(standard errors in parentheses) (0.007) (0.004) (0.002) (0.0025) (0.003) (0.003) (0.003)

Autocorrelation 1 −0.37 −0.05 −0.03 −0.02 −0.01 0.01

Range of autocovariances (0.120, 0.171) (−0.035, 0.067) (−0.011, 0.005) (−0.021, 0.002) (−0.013, 0.005) (−0.004, 0.007) (−0.006, 0.005)

Test for constant autocovariance yes yes yes yes yes yes yes
(probability of event in parentheses) (0.46) (0.60) (0.63) (0.32) (0.71) (0.85) (0.80)

Note. Based on seemingly unrelated regression model.
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notational simplicity, equations will be in terms of the ARMA(2, 1) specification, and
the changes that are required to estimate the ARMA(1, 1) process will be noted.

7.3. Empirical specifications for ARMA error process

This section describes specifications and methods used to estimate the autoregressive
and moving-average coefficients in Equation (7.2). The estimation done here uses the
framework outlined in Section 4 with π = 0 and ψ = 0, meaning that there are no right
hand endogenous variables. Combining Equations (7.1) and (7.2), the researcher wishes
to estimate the parameters of the following equation:

(7.3)ωt −Xtβ + a1(ωt−1 −Xt−1β)+ a2(ωt−2 −Xt−2β) = εt +m1εt−1,

an ARMA(2, 1) specification. When a2 = 0, Equation (7.3) specifies an ARMA(1, 1)
process.

7.3.1. Specifications for estimating only autoregressive coefficients

Section 4.5 outlines methods for directly estimating the autoregressive parameters of
ARMA processes. Starting with Equation (7.1) one can follow Section 4.5 to estimate
both the structural parameters β and the autoregressive parameters of the error process.
Assuming that the moving-average process is first-order implies that error terms from
two or more periods back are predetermined and can be used as instruments. In this case,
define a system of equations of the following form (modeled after Equations (4.10) and
(4.27)):

f
(8)
t = ωt −Xtβ,
f
(9)
tk = [ωt−k −Xt−kβ]

× [
(ωt −Xtβ)− a1(ωt−1 −Xt−1β)− a2(ωt−2 −Xt−2β)

]
(7.4)k = 2, . . . , (t − 1983), t = 1983, . . . , 1990.

Stacking these equations to obtain fi(β, a) = (f
(8) ′
t , f

(9) ′
tk )′ for all t creates a model

in the form of Equation (3.7). This can be estimated using nonlinear three-stage least
squares. Following the discussion in the second half of Section 4.5, if one wishes to
estimate only the autoregressive parameters then one could use a consistent estimate of
β to form

f
(10)
tk = Ût−k × (Ût − a1Ût−1 − a2Ût−2),

(7.5)k = 2, . . . , (t − 1983), t = 1983, . . . , 1990,

where Ût = ωt−Xt β̂ and β̂ is the ordinary least squares estimate from OLS in Equation
(7.1). This equation is an ARMA(2, 1) version of Equation (4.30). The second half
of the product in f (10)

tk is the gt of Equation (3.18); it is multiplied by an orthogonal
regressor in order to provide the identifying restrictions.
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Equation (7.5) is the specification estimated, with one modification. Instead of es-
timating the model with all available predetermined variables as instruments, i.e., all
residuals from two or more periods back, this section uses a linear combination of those
predetermined variables – specifically the linear combination that brings them closest to
being the optimal instruments discussed in Sections 3.2.2 and 4.1.4: namely,E(∂fti

∂a1
|Xti)

and E(∂fti
∂a2

|Xti). This is done by regressing Ût−1 and Ût−2 on all available predeter-
mined and exogenous variables. This yields predicted values for these two quantities
for every year t , which can then be used as instruments. Formally, let Ûpt be the pre-
dicted value of Ût based on a regression on all its previous (predetermined) lags. For
example, regress Û1984 on Û1981, Û1982, and Û1983. Then use the predicted value, Ûp1984,
as an instrument in Equation (7.5) where t = 1985. In the 1986 equation, it will also
serve as an instrument, but since it is two periods back it is predetermined in the 1986
equation and therefore can be perfectly predicted by itself. This allows one to get instru-
ments that are close to the optimal instruments but are uncorrelated with the first-order
moving-average error term.

Implementing the above specification yields

f
(11)
t = Û

p

t−1 × (Ût − a1Ût−1 − a2Ût−2) = Û
p

t−1 × gt ,
f
(12)
t = Û

p

t−2 × (Ût − a1Ût−1 − a2Ût−2) = Û
p

t−2 × gt ,
(7.6)t = 1983, . . . , 1990.

Stacking these equations to obtain fi(a1, a2) = (f
(11) ′
t , f

(12) ′
t )′ for t = 1983, . . . , 1990

creates a model of the form of (3.7). Using these two projected instruments is conve-
nient because they are sufficient to identify both a1 and a2, while reducing the number
of equations in the system makes it easier to estimate computationally and decreases
programming time. In the case of the ARMA(1, 1), f (12)

t is dropped from estimation as
f
(11)
t is sufficient to identify the system.

7.3.2. Specifications for estimating autoregressive and moving-average coefficients
jointly

Since the covariograms gave strong evidence of a moving-average process, one might
wish to estimate jointly the autoregressive and moving-average parameters as described
in Section 4.7. This can be done by adding the relevant moment restrictions to the esti-
mation. Using the notation from above, one would estimate:

f
(13)
tk = Ût−k × (Ût − a1Ût−1 − a2Ût−2) = Ût−k × gt ,
f
(14)
t = (Ût − a1Ût−1 − a2Ût−2)

2 − σ11 = g2
t − σ11,

f
(15)
t = (Ût − a1Ût−1 − a2Ût−2)(Ût−1 − a1Ût−2 − a2Ût−3)− σ12

= gt × gt−1 − σ12,

(7.7)k = 2, . . . , (t − 1983), t = 1983, . . . , 1990.
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The value σ11 in f (14)
t estimates the variance of the residual term (εt + m1εt−1) while

σ12 in f (15)
t estimates the residual first-order autocovariance. To estimate the moving

average component, use the estimates of the variance and the first-order autocovari-
ance to derive the parameter m1. This requires extracting it from the equations σ11 =
(1 +m2

1)σ
2
ε and σ12 = m1σ

2
ε , which follow from standard time-series results.41

The estimation of Equation (7.7) can be simplified through the use of near-optimal
instruments as discussed above. Using similar notation, the optimal instruments are
predicted using all predetermined variables, and then these estimated instruments are
introduced into the estimation, yielding:

f
(11)
t = Û

p

t−1 × (Ût − a1Ût−1 − a2Ût−2) = Û
p

t−1 × gt ,
f
(12)
t = Û

p

t−2 × (Ût − a1Ût−1 − a2Ût−2) = Û
p

t−2 × gt ,
f
(14)
t = (Ût − a1Ût−1 − a2Ût−2)

2 − σ11 = g2
t − σ11,

f
(15)
t = (Ût − a1Ût−1 − a2Ût−2)(Ût−1 − a1Ût−2 − a2Ût−3)− σ12

= gt × gt−1 − σ12,

(7.8)t = 1983, . . . , 1990.

Stacking these equations to obtain fi(a1, a2, σ11, σ12) = (f
(11) ′
t , f

(12) ′
t , f

(14) ′
t , f

(15) ′
t )′

for t = 1983, . . . , 1990 creates a model of the form of (3.7). When the model tested is
ARMA(1, 1), the a2 parameter is set to zero and the second moment restriction, f (12)

t ,
is unnecessary for identification and is dropped.

7.3.3. Estimators for ARMA coefficients

This estimation can be done in several different ways, two of which are mentioned here.
The first is to use a method of moments procedure to relate the ARMA parameters to the
sample mean and autocovariances through the system of moment restrictions as given
in Equations (7.6) and (7.8). The equations are estimated with a constant as the only
instrument specified for the software. This gives consistent results with asymptotically
valid standard errors and covariances.

The second method is similar; the researcher uses nonlinear three-stage least squares
with a constant as the only designated instrument. This also produces asymptotically
valid results. Note that the “real” instruments are embedded in the equations to be esti-
mated and differ from equation to equation. Thus the researcher instruments manually
instead of using software commands to designate an instrument set. Reported below are
estimates from the method-of-moments approach.

41 The quadratic in the equations yields two answers. The convention is to use the root that is less than one
in absolute value, making the series invertible.
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7.4. Empirical findings for ARMA estimation

Turning to the results, Tables 2 and 3 present estimates for the two candidate ARMA
specifications generating the individual error terms in wage growth. Results are un-
weighted and standard errors are given in parentheses. This subsection will discuss each
table in turn. The goals are to compare the specifications to see which better fits the data
and to determine how robust the results are across models.

7.4.1. Estimates of only autoregressive coefficients

Table 2 presents the coefficient estimates for the autoregressive component of the
ARMA(1, 1) and ARMA(2, 1) models specified by Equation (7.6). Recall that Equa-
tion (7.6) estimates only the autoregressive parameters of each ARMA model. Looking
at the ARMA(1, 1) specification, estimating just a1 gives a smaller coefficient in mag-
nitude than when a2 is not constrained to be zero, −0.134 vs. −0.189. So from year to
year approximately 13 to 19 percent of the residual variation in wage growth is undone
the following year through the autoregressive parameter. In terms of their sampling dis-

Table 2
Estimates of only autoregressive coefficients for wage growth

error structure

ARMA(p, q) a1 a2

(1, 1) −0.134
(0.0354)

(2, 1) −0.189 −0.024
(0.0491) (0.0254)

Note. Specification based on Equation (7.6) (standard errors in
parentheses).

Table 3
Joint estimates of autoregressive and covariance parameters for wage growth error structure

ARMA(p, q) Direct estimates Implied values from delta method

a1 a2 σ11 σ12 σ m1

(1, 1) −0.151 0.131 −0.060 0.305 −0.645
(0.0339) (0.0074) (0.0040) (0.0076) (0.0279)

(2, 1) −0.186 −0.020 0.132 −0.062 0.300 −0.686
(0.0405) (0.0225) (0.0089) (0.0052) (0.0075) (0.0441)

Note. Specification based on Equation (7.8) (standard errors in parentheses).
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tributions, the two estimates are several standard deviations from 0 and so the effect is
significantly different from zero.

The ARMA(2, 1) specification reports an estimate for the a2 parameter. The estimate
is negative and small. The a2 estimate, −0.024, cannot be statistically distinguished
from zero, despite the fact that the standard errors are tighter than those reported on the
a1 coefficient. Regardless, the value indicates that if there is a second-order term it is
probably negative and small.

7.4.2. Estimates of autoregressive and moving-average coefficients jointly

Table 3 reports the results from the joint estimation of the autoregressive and moving-
average coefficients as specified by Equation (7.8) in Section 7.3.2. The first four
columns are self-explanatory in that the parameters listed appear directly in Equa-
tion (7.8); the last two columns are delta method extrapolations of moving-average
parameters. These columns give both the implied standard deviation of the white noise
process, σ , and the coefficient on the first-order moving average, m1.

The results are similar, in some respects, to what was observed in Table 2. The first-
order autoregressive parameter a1 is reported as −0.151 in the ARMA(1, 1) and −0.186
in the ARMA(2, 1). These estimates are close to one another and close to the estimates
found when just the autoregressive parameters were estimated. The a2 parameter in the
ARMA(2, 1) model looks almost exactly as it did when only the autoregressive para-
meters were estimated. It remains small and statistically indistinguishable from zero.

Turning to the covariance terms, the table shows that both specifications return stable
and precisely estimated results. The σ11 coefficient is about 0.13 and the σ12 coefficient
is almost half as large at about −0.06. The standard errors on these estimates are small,
providing confidence of a reasonably good estimate. Notably, the σ12 estimate is clearly
not zero, reinforcing the hypothesis that there is a first-order moving-average process.
From these two parameter estimates one can get the implied estimates for the standard
deviation on the white noise process, σ , and the coefficient on the moving average
component, m1. Using linear extrapolation (the delta method) one can also compute an
asymptotic approximation for standard errors. The reported coefficient on σ is about
0.3 in both specifications. For m1, the two specifications return values of −0.645 and
−0.686, respectively. The standard error is less than 0.03 in the ARMA(1, 1) but 0.044
in the second. Regardless, both procedures find evidence of what previous analysis of
the covariogram indicated – a large negative first-order moving average.

In summary, the data strongly support the hypothesis of serial correlation in the er-
ror terms. The first-order autoregressive component is somewhere between −0.13 and
−0.19. The moving-average parameter is between −0.6 and −0.7. The second-order
autoregressive lag is probably slightly negative but cannot be distinguished from zero.
Looking back to the covariogram in Table 1, these parameter estimates easily account
for the large negative correlation between wage residuals in adjacent years. They also
fit with the observed lack of correlation beyond the first lag.
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7.5. Bootstrapping ARMA models using panel data

This discussion very briefly presents findings illustrating the consequences of utilizing
bootstrap procedures to fit the two models considered above. The goal is to compare the
standard errors calculated by classical first-order normal asymptotic theory and those
computed by the residual resampling method. This section illustrates the bootstrapped
version of the method-of-moments estimator considered above.

7.5.1. Estimates with bootstrapped standard errors

There may be some doubt as to the effectiveness of using first-order asymptotic theory
as a guide to constructing standard errors. As always, the asymptotic theory offers only
a guideline. At times there is reason to question the validity of this guideline. This may
be because the model was misspecified or because the sample is too small to be well-
approximated by its large-sample distribution. One can cross-check the validity of the
asymptotic approximation by comparing it to a bootstrapped estimate. Instead of relying
on a linear extrapolation at infinite sample size to guide standard error calculation, one
assumes that the sampled data is representative of the population density, and thus can
be used to evaluate the sampling distribution of the estimators.

No special techniques are required to produce these results. Bootstrapping begins
with the residuals first described in Section 7.2.1 and used in Section 7.4 to estimate
the ARMA processes. Each individual’s set of residuals is given an equal probability of
being drawn with replacement. To preserve the serial correlation, the resampling is done
over the individuals, not over each year of each individual. The sample consists of 959
individuals, so 959 draws are made in each resample. 1000 resamples are performed and
Equations (7.6) and (7.8) are estimated, for both the ARMA(1, 1) and the ARMA(2, 1)
specifications. These 1000 estimated coefficients are used to create a sampling distribu-
tion for each estimator. The standard deviation of these 1000 coefficients is the standard
error for the estimator. The following subsection compares the asymptotic standard er-
rors reported in Tables 2 and 3 to those implied by the bootstrap procedure. Once again,
the estimation is performed on the unweighted sample.

7.5.2. Implications of bootstrap estimates

Table 4 reports comparisons for specifications of Equations (7.6) and (7.8) estimated
in Section 7.4. It first estimates the subset of autoregressive parameters as in Equa-
tion (7.6), and then adds the covariance parameters as in Equation (7.8). Each specifi-
cation lists the previously developed asymptotic estimation results and is immediately
followed by the bootstrap results.

All of the standard errors are wider for the bootstrapped sample, typically – although
not always – on the order of 25 percent. Thus the asymptotic standard errors are biased
downwards for this sample size. Turning to parameter estimates, when the autocovari-
ance terms are estimated alone, the bootstrap gives results that are very close to the
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Table 4
Bootstrapped estimates of ARMA processes for wage growth error structure

ARMA(p, q) Estimation method a1 a2 σ11 σ12

(1, 1) Autoregressive subset estimation −0.134
Asymptotic theory (0.0354)

Autoregressive subset estimation −0.136
Bootstrap with 1000 replications (0.0406)

Full estimation −0.151 0.131 −0.060
Asymptotic theory (0.0339) (0.0074) (0.0040)

Full estimation −0.115 0.120 −0.054
Bootstrap with 1000 replications (0.0448) (0.0088) (0.0048)

(2, 1) Autoregressive subset estimation −0.189 −0.024
Asymptotic theory (0.0491) (0.0254)

Autoregressive subset estimation −0.173 −0.017
Bootstrap with 1000 replications (0.0540) (0.0274)

Full estimation −0.186 −0.020 0.132 −0.062
Asymptotic theory (0.0405) (0.0225) (0.0089) (0.0052)

Full estimation −0.117 0.003 0.116 −0.052
Bootstrap with 1000 replications (0.0807) (0.0331) (0.0123) (0.0076)

Note. Specifications based on Equations (7.6) and (7.8) (standard errors in parentheses).

original estimates. When the joint system is estimated, the bootstrapped a1 and a2 pa-
rameter estimates move noticeably. The largest effect is for the a1 parameter estimate
in the ARMA(2, 1) model. It goes from −0.186 in the method-of-moments routine to
a bootstrapped estimate of −0.117.42 Unsurprisingly, the standard error doubles. Note
that the bootstrapped estimate of a1 is still close to the original range of −0.13 to −0.19
observed in the original data, but it has jumped from the high end to the low end. The
estimates for σ11 and σ12, on the other hand, are fairly stable.43

7.6. Results based on balanced versus unbalanced data

Practitioners of econometrics often are confronted with thorny problems stemming from
data collection. Although these problems do not draw as much attention in the literature

42 These large changes are possible when one is dealing with a nonlinear estimation method such as the
one used here. But the magnitude of the change is cause for wonder. Preliminary data research uncovered
several large outliers, which are not unusual in sample data, especially when they have been first-differenced.
This leads to an extremely fat-tailed distribution for the residuals. This could make the 4-equation system
(7.8) vulnerable to outliers due to its squared term. These vulnerabilities were apparently uncovered in the
bootstrap estimation.
43 For a comprehensive and enlightening discussion of the issues involved in bootstrap estimation, see the
Handbook chapter by Horowitz (2001).
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as other, more provocative subjects, they can have a large effect on the estimates’ va-
lidity. This subsection and the next deal with a brief application of the two data issues
discussed in Section 6: unbalanced data and stratified sampling.

The first concern, unbalanced data, stems from the fact that many sampled units (in
this case, people) do not have data in one or more years of a panel dataset. One could
assume random attrition (which probably is not true but is very convenient) and form
estimates using just those people having all observations.44 This ignores potentially
valuable information. In the PSID sample utilized thus far, roughly a third of the obser-
vations were dropped due to incomplete data over the sample period. Section 7.6 looks
at how one might conveniently estimate the covariogram for the PSID data using an
unbalanced sample.

Section 7.7 looks at stratified sampling weights. Datasets frequently oversample cer-
tain groups in order to provide researchers with a more detailed picture of a small
segment of the population. This oversampling destroys the randomness of the sample
and, as noted in Section 6, requires some care in correcting. Section 7.7 will give an
example correctly using the stratified sampling weights by designating them as instru-
ments.

7.6.1. Estimates with unbalanced data

Researchers prefer to use all the data available to conduct an empirical analysis to en-
hance the efficiency of estimation. For this reason, many would like to recapture the
information contained in observations that do not have data for one or more years of the
sample.

The seemingly unrelated regression method used in Section 7.2 requires complete
data, i.e., the dataset must be balanced. This has the unfortunate result that one must
throw out observations that contain all the necessary information but are missing even
just one year. Section 6.6 details a method to recover this lost information while stay-
ing within the simple seemingly unrelated regression framework. Applying this method
assigns a zero person-year weight to those person-year observations that are missing
and proceeds with estimation as if the data were balanced. This amounts to replacing
the entire equation for the person-year by zero. In conducting this estimation, the pro-
cedure formulates weights – or adjusts stratified sample weights if they are used in the
analysis – for the remaining observed data to reflect the number of missing observations
associated with each equation.

As discussed in Section 6.6.3, an additional correction is necessary to perform mul-
tivariate, multi-equation tests when using unbalanced data. The off-diagonal elements
of the sample covariance matrix require the correct denominator. Working from the

44 Fitzgerald, Gottschalk and Moffitt (1998), in an analysis of PSID attrition, conclude that use of the avail-
able weights maintains the representativeness of the survey.
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formulas already used to correct the variance terms,45 multiply the i, j element of the
cross-equation covariance matrix by the square roots of the number of available ob-
servations in equation i and the number of available observations in equation j , then
divide by the number of common observations between i and j . This corrected covari-
ance matrix can then be used to test the weak stationarity hypothesis first discussed in
Section 7.2.

7.6.2. Implications of estimating with unbalanced data

Table 5 presents estimates of the covariogram when using the unbalanced data. Its for-
mat is the same as Table 1. The zero-order variance term is larger at 0.162. The higher
order terms also tend to be larger so that the autocorrelation terms are very close to
what they were in Table 1. Instead of the first-order autocorrelation of −0.37, the un-
balanced sample reports the slightly weaker −0.35. The second order term was −0.05
in the balanced data but now is −0.04. Regardless, the inferences made in Section 7.2
are unchanged. The tests of weak stationarity all fail to reject at a 5 percent significance
level, if only barely. Thus, there is room to doubt the assumption, but not nearly enough
evidence to overturn it.

7.7. Results based on weighted versus unweighted data

Up to now this section has ignored the implications of weighting stratified samples
like the PSID. Section 6 explained some of the difficulties that can arise in properly
weighting stratified samples. In this subsection there is a short discussion of how the
principles outlined in Section 6 apply to the estimation done here.

7.7.1. Estimates with stratified sample weights

Several statistical packages offer a weighting option in their estimation routine. Usu-
ally this is the standard weighted least squares procedure designed to account for het-
eroscedasticity. If a researcher uses weighted least squares to calculate standard errors,
the package premultiplies the regressor and the regressand by the square root of the
weight and then proceeds with the rest of the estimation as usual. In the linear case it
reports estimator variances of the form σ̂ 2(X′ΩX)−1 where σ̂ 2 = 1

N

∑N
1 ε̂

2 andΩ is a
diagonal matrix with the weight wi for each observation on the diagonal. This is correct

if the weighting is designed to correct for heteroscedasticity of the form σ 2

wi
. It is not cor-

rect for the case of a stratified sample. The general framework is outlined in Section 6.
The proposed solution when using instrumental variables techniques is to premultiply
the instruments by the weight wi (making sure that the weight is properly normalized).

45 Recall that since each equation estimates a single parameter, the mean, the cross-equation covariance
system is exactly the same size as the unrestricted coefficient covariance matrix.
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Table 5
Covariogram based on unbalanced wage growth residuals

Statistics Lag (order)

0 1 2 3 4 5 6

Constrained autocovariances 0.162 −0.056 −0.007 −0.004 −0.004 −0.001 0.003
(standard errors in parentheses) (0.008) (0.004) (0.002) (0.003) (0.003) (0.003) (0.004)

Autocorrelation 1 −0.35 −0.04 −0.02 −0.02 −0.01 0.02

Range of autocovariances (0.148, 0.206) (−0.080,−0.043) (−0.020, 0.004) (−0.026, 0.005) (−0.012, 0.008) (−0.011, 0.003) (0.002, 0.003)

Test for constant autocovariance yes yes yes yes yes yes yes
(probability of event in parentheses) (0.40) (0.47) (0.46) (0.06) (0.10) (0.73) (0.58)

Note. Based on seemingly unrelated regression model.
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When one is estimating with the method outlined in Sections 7.3 and 7.4 (where the only
instrument is a constant) one could simply designate the stratified sampling weights as
the instruments. These new instruments will impose the correct weighting for consistent
estimates and will yield asymptotically correct standard errors. Before giving results
there are two things which should be noted. First, as noted in Equation (6.7), stratified
weights in survey data are often designed to sum to the size of the total population.
These w∗

i weights can be converted to wi weights by dividing them by their average
value. This is the strategy followed in Section 6.3. Thus all weights discussed in this
subsection are normalized weights. Second, as explained in Section 6.5, the correct
weight to use for all years of the PSID is the weight given in the last year of the sample,
as this weight reflects the longitudinal changes in the data.

7.7.2. Implications of stratified sampling weights

Tables 6 and 7 redo the estimation of Sections 7.2 and 7.4 using the balanced data and
sample weights from 1990. Table 6 is the covariogram and is designed the same as
Table 1. The methodological difference is that in the seemingly unrelated regression
framework used to construct the covariogram, the dependent variable was premultiplied
by the weight for 1990.46 One could obtain the same result by switching to a three-stage
least squares framework and designating the weight as the only instrument.

The results are quantitatively different but the implications are identical. The variance
(zero-order autocovariance) falls from an unweighted value of 0.13 to a weighted value
of 0.11. All the other terms tend to be proportionately lower and so the autocorrelations
are almost identical to the unweighted sample. Thus, the ARMA(2, 1) and ARMA(1, 1)
models are still the best candidate specifications.

Table 7 gives the weighted estimates for ARMA(1, 1) and ARMA(2, 1) specifica-
tions. The estimation is done using the same method-of-moments routine previously
described. The only methodological difference between the two estimates (besides dif-
ferent sample sizes) is that the previous estimation programmed the statistical package
to use a constant as the only instrument. The weighted estimation is done by designating
in the statistical package the 1990 weights as instruments (which is the same as using a
constant as an instrument but multiplying it by the weight).

The same balanced data are used here as were used in Sections 7.2 and 7.4, but this
is somewhat misleading. The PSID assigns zero weights to many people in the sample
for certain years, so the effective sample size for weighted regression falls from 959
to 720. Thus, there should be a slight widening of standard errors attributable to this
sample size effect. Indeed, the weighted sample does have larger standard errors than
the unweighted sample.

46 Normally, one weights the entire moment condition. But when the only regressor is a constant the desired
result can also be achieved by simply weighting the dependent variable. This convenient result turns on the
fact that the weights are normalized to have an average value of one, thus they drop out of terms where they
are multiplied by a constant.
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Table 6
Covariogram based on weighted wage growth residuals

Statistics Lag (order)

0 1 2 3 4 5 6

Constrained autocovariances 0.112 −0.042 −0.004 −0.005 −0.002 −0.001 0.002
(standard errors in parentheses) (0.007) (0.004) (0.002) (0.003) (0.003) (0.003) (0.003)

Autocorrelation 1 −0.37 −0.04 −0.04 −0.02 −0.01 0.02

Range of autocovariances (0.101, 0.159) (−0.061,−0.028) (−0.011, 0.003) (−0.006, 0.001) (−0.014, 0.005) (−0.007, 0.010) (−0.007, 0.005)

Test for constant autocovariance yes yes yes yes yes yes yes
(probability of event in parentheses) (0.15) (0.22) (0.90) (0.52) (0.10) (0.70) (0.73)

Note. Based on seemingly unrelated regression model.
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Table 7
Weighted estimates of ARMA processes for wage growth error structure

ARMA
(p, q)

Estimation method Direct estimates Implied values from
delta method

a1 a2 σ11 σ12 σ m1

(1, 1) Estimating only autoregressive
coefficients

−0.110
(0.0401)

Estimating autoregressive and
covariance parameters jointly

−0.102 0.119 −0.052 0.295 −0.598
(0.0395) (0.0079) (0.0042) (0.0090) (0.0312)

(2, 1) Estimating only autoregressive
coefficients

−0.181 −0.027
(0.0558) (0.0302)

Estimating autoregressive and
covariance parameters jointly

−0.062 0.025 0.110 −0.048 0.286 −0.587
(0.0507) (0.0260) (0.0090) (0.0056) (0.0090) (0.0569)

Note. Specifications based on Equations (7.6) and (7.8) (standard errors in parentheses).

Looking first at the results for the ARMA(1, 1) model, the a1 parameter estimate is
reasonably close to its unweighted value. Estimated alone or with the moving-average
parameters it is about −0.11. In the joint estimation based on system (7.8), the covari-
ance parameters are slightly lower in magnitude than in the unweighted sample and this
shows up in a moving-average parameter of −0.598. This is only slightly smaller in
magnitude than the estimates in the unweighted sample.

The most noteworthy difference from weighting is the effect that it has on the
ARMA(2, 1) model autoregressive coefficient estimates. While estimation of just the
autoregressive parameters (system (7.6)) gives similar results to those in Table 2, the co-
efficients change significantly when estimation includes the covariance parameters. The
largest change shows up in the a1 coefficient that moves from −0.186 to −0.062. This
is beyond what one would expect and resembles the jump encountered in the bootstrap
estimation, where the a1 parameter in the full estimation also proves to be sensitive.
Other parameter values do not change as much; the a2 coefficient is of opposite sign but
remains insignificant. The variance and autocovariance terms are both slightly lower
in magnitude than earlier estimates. This leads to lower values of σ and m1, 0.29 and
−0.59. The unweighted estimates are not consistent for the same values as the weighted
population and so there is no reason to expect them to be the same, but the joint estima-
tion does appear to be sensitive to minor changes.

7.8. Results based on median regressions

The above empirical exercises investigate trends in mean wages, which involve the use
of regression analysis. Such estimation techniques, of course, suffer from the fact that
individual observations have unbounded influences upon the regression. Coding errors,
reporting errors, and other anomalous events can have large effects on the estimated
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coefficients. Such outliers might induce the sensitivity of the autoregressive parameters
uncovered in the bootstrap and weighted estimators. Consequently, one might wish to
consider bounded influence methods, such as median regression.47

Section 5 offers a convenient approach for estimating a smoothed version of median
regression using standard nonlinear equation methods discussed in Sections 3 and 4.
This subsection illustrates the use of these quantile regression procedures to estimate
the parameters of the ARMA process governing the error structure of equations like
(5.1). The models estimated below modify the specifications considered in Section 7.3
to estimate the error structure of (7.1). As such, although the computational problems of
quantile regressions may involve a somewhat heavier burden due to their nonlinearities,
the specifications are still relatively simple to implement.

An important difference between the estimation procedures outlined in Section 7.3
and those outlined below is that the researcher cannot use residuals Ût instead of ωt
to simplify the estimation. Equation (5.1) specifies an equation where ωt (= yt ) de-
pends on its own past values and a set of exogenous Xt ’s. Using mean regressions, as
in Section 7.3, allows the researcher to estimate the error structure using the estimated
residuals from regressing ωt on theXt ’s, due to the applicability of Proposition 4.1. This
simplification cannot be used here – the smoothed median regression wraps the parame-
ters into a cdf function Φ, and this nonlinearity leads to a violation of Proposition 4.1.
Thus, median regressions require joint estimation of β and the a’s.

The theory in Section 5 does not consider moving-average processes. Although it is
possible to estimate a median version of Equation (7.8) when such a process is present –
see Section 7.8.3 below – it is not entirely clear how the additional moving-average para-
meters are to be interpreted. Estimates are no longer consistent for autocovariances, but
are instead consistent for some ‘median’ version of the autocovariances. Additionally,
the easiest median specification requires assuming that, after accounting for the autore-
gressive component, the errors are uncorrelated across time. To illustrate this simple
technique, this subsection starts with a purely autoregressive process even though the
evidence presented above supports a moving average component. Given this focus, the
estimation allows for the existence of a third autoregressive lag (ARMA(3, 0)), instead
of just the first- or second-order models already considered.

7.8.1. Single equation estimation of a strictly autoregressive model

Section 5.2.1 outlines two approaches for estimating quantiles with panel data. The first
and simplest assumes that error terms are independently distributed after one accounts
for the autoregressive process. The second, using a system of equations, does not require
this assumption for efficiency or correct inference.

For the sake of illustrating the first approach, assume the data satisfy an ARMA(3, 0)
type process. Thus, one can consistently estimate coefficients using a structural equation

47 As discussed in Section 5.2.2, one might also wish to use this type of estimator at several percentile points
to better characterize the entire wage distribution [see Buchinsky (1994) for an example].



Ch. 62: A Practitioner’s Approach to Estimating Intertemporal Relationships 4145

analogous to (5.8), which implies the following form for gt :

(7.9)f
(16)
t = gt = Φ

(
ωt − a1ωt−1 − a2ωt−2 − a3ωt−3 −Xtβ

SN

)
− (1 − αk),

where the ωt ’s and the Xt ’s are defined in Section 7.1. To estimate the median, set αk
equal to 0.5, and the smoothing parameter SN equal to 0.03.48 Φ is the standard normal
cdf. The sample used to estimate Equation (7.9) consists of multiple years stacked as
multiple observations. Thus, the sample size equals the number of people multiplied by
the number of years in the panel. Setting fti = gti in Equation (3.7) and using functions
of the Xti’s and all past values of ωti as the instrumental variables in formulating the
Qti’s in (3.8), one can apply nonlinear two-stage least squares (N2SLS) to estimate the
structural and autoregressive parameters of Equation (7.9).49 If one suspects the struc-
tural errors gti are heteroscedastic, then one can select a robust option when computing
standard errors.

As an alternative for increasing estimation efficiency, Sections 3.1.4, 3.2.2 and 4.1.4
outline the development of optimal instrumental variables. In the case considered here,
due to the use of the normal cdf, the optimal instrument for a1 takes the form

E

(
∂gt

∂at

∣∣∣∣
ã1

|Xi, ωt−1, . . . , ωt−k
)

(7.10)= E

(
−ωt−1

SN
∗ φ
(
ωt − ã1ωt−1 − ã2ωt−2 − ã3ωt−3 −Xt β̃

SN

))
,

where φ is the standard normal density. Designating γ = (a1, a2, a3, β), optimal in-
struments for each element of γ look similar; they are the standard normal density
multiplied by the appropriate regressor. For (7.10) to constitute optimal instrumental
variables in estimation requires structural errors, defined by gti in (7.9), to exhibit ho-
moscedasticity across observations t and i. Given the nonlinear form of gti and its direct
functional dependence on Xti , satisfaction of this homoscedasticity assumption may be
dubious.

Unfortunately, the expectations in (7.10) are unobserved and must be estimated.
Given a consistent set of parameter estimates γ̃ = (ã1, ã2, ã3, β̃), form the estimated
analog of (7.10), ( ∂gt

∂γ
|γ̃ ), the gradient vector of gt , for each observation. To estimate

an approximation for (7.10), regress ( ∂gt
∂γ

|γ̃ ) on flexible functions of the Xt ’s and all

48 Setting SN to other small values does not change the findings in any substantive way.
49 Note that all lagged values of ωt are predetermined since the model assumes there is no serial correlation
beyond the autoregressive process already accounted for. Although one can use all past values of ωt , a subset
of early lags would also provide consistent estimates and may be more manageable to program and estimate.
The important thing is to use instruments that provide the best predictive power while being uncorrelated
with gt .
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past values of ωt .50 Call the fitted value of this regression ( ∂gt
∂γ

|γ̃ )P ; this quantity cor-

responds to the predicted value or projection of ( ∂gt
∂γ

|γ̃ ) conditioning on all exogenous
and predetermined variables.

Using the ( ∂gt
∂γ

|γ̃ )P in place of the Xti’s and past values of ωti as the instrumental
variables in the application of N2SLS offers an alternative approach for estimating co-
efficients of Equation (7.9). This method improves efficiency in estimation assuming
the gti’s are homoscedastic across observations. As recognized in 2SLS theory, if one
were to use a series of flexible functional forms in the Xti’s and past values of ωti , then
one would expect little gain in efficiency in using the quantities ( ∂gt

∂γ
|γ̃ )P even with ho-

moscedasticity since these functions would effectively span the space of these projected
gradients.

The first row of Table 8 reports the results of estimating equation (7.9) using the op-
timal instrument set. The three autoregressive parameters are all large and significantly
different from zero with point estimates of −0.397, −0.225, and −0.112. Note that
these estimates are not necessarily consistent for the same coefficients estimated using
mean regression, as these parameters are consistent for medians, not means. Regressed
around the median, the autoregressive lag is much longer than its mean counterpart. The
standard errors are all quite small, less than 0.02. So the smoothed median regression in
this case appears to give precise results. Of course, these standard errors are constructed
under the classical hypothesis of serially uncorrelated, homoscedastic error terms.

To check the validity of the asymptotic standard errors, Table 8 reports bootstrapped
standard errors as well. The bootstrap, done in a manner similar to that in Section 7.5,
yields identical standard errors to the asymptotically approximated errors. Note that this

Table 8
Quantile regression estimates of AR processes for wage growth error structure

ARMA (p, q) Estimation method a1 a2 a3

(3, 0) Individual regression −0.397 −0.225 −0.112
(asymptotic standard errors) (0.019) (0.017) (0.014)
(1000 reps bootstrap standard errors) (0.019) (0.017) (0.016)
System of equations −0.463 −0.250 −0.065
(asymptotic standard errors) (0.010) (0.007) (0.006)
(1000 reps bootstrap standard errors) (0.027) (0.022) (0.024)

(3, 1) System of equations −0.637 −0.308 −0.131
(asymptotic standard errors) (0.014) (0.010) (0.009)
(1000 reps bootstrap standard errors) (0.069) (0.028) (0.025)

Note. Standard errors in parentheses.

50 Due to the nonlinearity in gt , the researcher might get better results by adding interactions and higher
powers of the Xt ’s and lagged ωt ’s.
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bootstrap maintained the assumption of independence over time and so sampling was
done on person-years, not on individuals; these bootstrapped standard errors and the
estimates are inconsistent if there is serial correlation after accounting for the autore-
gressive process.

7.8.2. System of equations estimation of a strictly autoregressive process

While maintaining the assumption of an ARMA(3, 0), one can conceptually improve
the efficiency of estimation by allowing for heteroscedasticity in structural disturbances
across years for individuals. Moreover, one can allow for the possibility that coefficients
are nonconstant over time. Instead of treating each person-year as an observation in
Equation (7.9), one stacks these equations into a multiple equation system and treats
each person as an observation of this system. This approach amounts to formulating a
variant of fti given by (5.11), relying on Proposition 4.2 to compute estimates of the
structural and autoregressive parameters of Equation (7.9).

When using functions of the Xti’s and all past values of ωti as the instrumental vari-
ables, the procedure specifies the components of the fti’s as

f
(17)
t = gt ,

(7.11)f
(18)
t = η̂t−k × gt , k = 1, . . . , (t − 1984), t = 1984, . . . , 1990,

where gt is defined in Equation (7.9) with η̂t−k calculated using Equation (5.10). Stack-
ing these equations across years to obtain fti(a1, a2, a3, β) = (f

(17) ′
t i , f

(18) ′
t i )′ produces

a model in the form of Equations (4.9) and (3.7). Estimation specifies all the elements
of the Xti’s as instrumental variables comprisingQi appearing in (3.8).

One can again in principle achieve improved efficiency by exploiting an optimal set
of instrumental variables given by (7.10). Approximating these quantities by the pro-
jections ( ∂gt

∂γ
|γ̃ )P discussed above, this use of instruments implies that one calculates

η̂t−k appearing in (7.11) using Equation (5.10) with ( ∂gt
∂γ

|γ̃ )P replacing the dependent
variables yti and with Qi , including a flexible set of quantities involving the Xti’s pro-
viding for accurate approximations of the expected values of the gradients. Note that
the vector ( ∂gt

∂γ
|γ̃ )P varies for each year, and is predicted with an ever-expanding set

of predetermined values of ωt ; therefore the researcher cannot simply designate all the
instruments as applying to all of the years. For example, ( ∂g1987

∂γ
|γ̃ )P is predicted using

ω1985, which is correlated with g1985. So ( ∂g1987
∂γ

|γ̃ )P cannot serve as an instrument for
the g1985 equation. If one were to introduce a full set of optimal instruments, then there
will be as many η̂t−k terms/equations in (7.11) for any given t as there exist parameters
in the dynamic median equation (7.9). Attaining improved efficiency requires applica-
tion of transformation (3.20) and the assumption of homoscedasticity across persons.
Admittedly, the validity of this assumption may be suspect in light of the nonlinear
character of the structural equation (7.9).

If one is not intending to attain full efficiency, then one can include only a subset
of the η̂t−k terms/equations in (7.11) associated with selected elements of ( ∂gt

∂γ
|γ̃ )P . To
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avoid having to include predetermined variables among the instrumental variable list
used in estimation, a natural selection would be to include the terms corresponding to
the elements linked to the autoregressive coefficients a1, a2 and a3. The remaining para-
meters are identified through the incorporation of all the Xti’s among the instrumental
variableQi .

Depending on the assumptions maintained concerning the homoscedasticity of struc-
tural errors across individuals, nonlinear three-stage least squares (N3SLS) or method
of moments (MM) offer procedures for estimating the structural and autoregressive co-
efficients of the dynamic median given by Equation (7.9). If one believes that errors
are heteroscedastic, then use of the optimal weighting matrix in MM will increase ef-
ficiency over the single equation system estimated in Section 7.8.1. In the empirical
illustration considered here, estimation relies on N3SLS and the variance–covariance
matrix of the system of equations is assumed to satisfy homoscedasticity across indi-
viduals.

Row 2 of Table 8 reports the results from the application of N3SLS estimation of
equation system (7.11) with η̂t−k terms/equations incorporated corresponding to the a1,
a2 and a3 components of ( ∂gt

∂γ
|γ̃ )P . Instrumental variables include all the exogenous

variables Xi . Whereas the estimated value of a2 in this row is similar to the findings
obtained in the N2SLS estimation based on the single equation case discussed above,
the estimate for a1, at −0.463, is much higher in magnitude, especially given the tight
standard error reported of 0.005. The a3 coefficient drops to −0.065.

To examine the robustness of the standard errors, Table 8 also reports bootstrap stan-
dard errors. This bootstrap is done by sampling over the 959 individuals in the sample
to preserve serial correlation. All three bootstrap standard errors are three times larger
than their asymptotic counterparts, moving from around 0.007 to 0.024, implying that
the asymptotic standard errors are misleading. Theoretically, (7.11) should be consis-
tent for the same values as the estimation in Section 7.8.1, and may be more efficient.
This requires the researcher to consider two questions. Why do these estimates from the
system of equations not appear to be converging to the same value as those estimated
in Section 7.8.1? And why are the standard errors reported on the supposedly more
efficient procedure far larger?

The marked change in the parameter estimates may indicate misspecification. Specif-
ically, if there is correlation across time in the gt terms, then the first lagged residual,
ωt−1, is likely to be correlated with gt , leading to inconsistent estimates. In this case the
researcher should consider another specification – such as an ARMA(3, 1).

Although the bootstrap standard error estimates are larger for the system of equa-
tions than for the single-equation estimation, this is expected because the standard error
estimates in Section 7.8.1 assume classical errors and are wrong in the presence of
heteroscedastic errors or serial correlation. But the bootstrap standard errors reported
in Section 7.8.1 are consistent under heteroscedasticity and they are identical to their
asymptotic counterparts; thus the differences between the standard error estimates in
Sections 7.8.1 and 7.8.2 are probably due to serial correlation. Section 7.8.2 imposes
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neither homoscedasticity nor independence in computing standard errors.51 Thus it is
not surprising that the more efficient estimation reports larger standard errors, because
the asymptotic standard errors calculated in Section 7.8.1 make much stronger assump-
tions. Given these findings, the researcher should consider another specification, such
as an ARMA(3, 1), that is still consistent under the assumption of first-order serial cor-
relation.

7.8.3. Estimation of autoregressive coefficients allowing for a moving average
component

If the researcher wishes to allow for a first-order moving-average type process to be
present in a quantile regression specification, then the system of equations introduced
in Section 7.8.2 can be used to estimate autoregressive parameters with a slight mod-
ification. Under the assumption of an ARMA(3, 1), the approaches in Sections 7.8.1
and 7.8.2 are inconsistent because they treat the first lag in wage growth, ωt−1, as a
predetermined variable when in reality it is correlated with gt .

Conceptually, a researcher could increase efficiency by using optimal instruments
as in Section 7.8.2. In this case one would compute ( ∂gt

∂γ
|γ̃ )P from a least squares

prediction of ( ∂gt
∂γ

|γ̃ ) using a flexible set of regressors depending on Xi and all the
predetermined values of ωt (i.e., ωt−2 and those farther back). These predictions would
then be used as described in Section 7.8.2.

Row 3 of Table 8 reports the results of N3SLS estimation of Equation (7.11) with
instrumental variables incorporating the exogenous variables Xi’s. The change in iden-
tifying assumptions does affect the estimates. The a1 and a2 parameter estimates are
larger in magnitude than in the single equation procedure of Section 7.8.1: −0.637 vs.
−0.397 and −0.308 vs. −0.225. The a3 parameter, −0.131, is also larger in magnitude
than it was in Section 7.8.1 or Section 7.8.2. These final estimates are consistent under
heteroscedasticity and even under one-period serial correlation in the error terms.

Although the asymptotic standard errors imply minuscule confidence intervals,
a bootstrap performed in the same manner as in the last subsection reveals standard er-
rors that are, as before, three to five times larger than the asymptotically approximated
standard errors. For example, the a1 standard error estimate is 0.014 under the asymp-
totic approximation, while the bootstrap approximation is 0.069. Thus the asymptotic
standard errors are not correctly approximating the small sample distribution. Note that
these bootstrap standard errors are larger than those that resulted under the ARMA(3, 0)
assumption. This is expected as ωt−1 is an important part of the identification strategy
followed in Sections 7.8.1 and 7.8.2.

Although the median regression estimates do shift somewhat in response to assump-
tions about the specification, the qualitative implications are robust. The coefficients on

51 Serial correlation would make the parameter estimates inconsistent due to the presence of correlated in-
struments, but the standard errors for these estimates would be correctly estimated.
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the autoregressive parameters are about −0.40, −0.22, and −0.11. All three coefficients
are statistically nonzero under either standard error estimate for all specifications. After
adjusting for schooling and age, the average worker’s wage growth is typically low in
the years following a high growth year, and high in years following a low growth year.
This is the same implication found using mean regression, but the autoregressive effect
is stronger in medians than in means.

7.9. Summary of findings

The above empirical example characterizes the dynamic properties of hourly wages of
men using the estimation procedures for time series models applied to panel data as de-
scribed in Sections 3 and 4. Estimates of the covariogram associated with specification
(7.1), and the autocorrelation coefficients implied by those estimates, accept the hypoth-
esis of weak stationarity of the data. In addition, the sharp drop in the absolute value
of the autocovariances after the first-order implies the existence of a first-order moving-
average process. The gradual decline of the autocovariances of the second order and
above also suggests a short autoregressive process. As a result, the mean regressions fo-
cused on estimating the autoregressive and moving average components of ARMA(1, 1)
and ARMA(2, 1) time series processes in the errors.

Section 7.3 described procedures for estimating the autoregressive parameters alone
and in conjunction with the moving-average parameters for the ARMA models implied
by the results of Section 7.2. The pattern that emerges from Tables 2 and 3 is that the
ARMA(1, 1) specification fits the data better than the ARMA(2, 1) specification does.
Estimates of the first-order autoregressive parameter were similar across all versions
of estimation, implying that 13 to 19 percent of residual wage growth dissipates the
next year through the autoregressive parameter. The estimates for the second-order au-
toregressive parameter were small with standard errors of the same magnitude, leading
to the conclusion that the ARMA(1, 1) model fits the data better than the ARMA(2, 1)
does. Estimating the autoregressive parameters jointly with the moving-average parame-
ters did not have any significant effect on the estimates of the autoregressive parameters
and the moving-average parameters were tightly estimated. The first order moving-
average parameter had a coefficient of about −0.65, implying that residual wage growth
in one year typically reverts about halfway back in the next year.

Reliance on classical asymptotic standard errors for sample sizes as small as 1000 can
potentially lead to overconfidence in one’s inferences. The bootstrap standard errors cal-
culated in Section 7.5 show that this is the case for the ARMA models estimated in Sec-
tion 7.4. Specifically, bootstrap standard errors were larger than the classical asymptotic
standard errors in all cases, and typically were about 25 percent larger. The second-order
autoregressive parameter remained statistically indistinguishable from zero, and despite
these changes the first-order autoregressive parameter remained statistically different
from zero in all but one case. The bootstrap estimate of the first-order autoregressive pa-
rameter from the joint estimation of the ARMA(2, 1) procedure is significantly smaller
than that given in Table 3. Viewed in light of the results of Section 7.7, it appears as
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though joint estimation of the ARMA(2, 1) process is sensitive to changes in the proce-
dure used.

The use of a balanced set of data in a panel context often requires that the researcher
throw out individuals who do not have observations for every year of the sample. Sec-
tion 7.6 re-estimates the covariogram and the autocorrelation coefficients associated
with it using an unbalanced version of the data. Although comparisons of Table 5 with
Table 1 show some difference in the estimates of the autocovariance parameters, the
estimates presented in Table 5 still lead to the same conclusions: acceptance of the hy-
pothesis of weak stationarity and the existence of a first-order moving-average process
accompanied by a short autoregressive process in the errors.

Section 7.7 repeats the estimation reported in Sections 7.2 and 7.4 while accounting
for the stratified sampling of the data through weighting. The relatively few quantitative
or qualitative differences in these estimates should not be taken as an indication that
weighting for a stratified sample is unimportant. For the particular PSID sample used
here, Table 6 shows that weighting for the stratified nature of the data changes the covar-
iogram quantitatively, but none of the qualitative conclusions change; the hypothesis of
weak stationarity is maintained, as well as the existence of a first-order moving-average
process and a short first- or second-order autoregressive process. Using the stratified
sample weights to estimate the autoregressive parameters alone led to little change
quantitatively or qualitatively versus the unweighted estimates. The weighted first-order
autoregressive parameter estimates from the ARMA(1, 1) and ARMA(2, 1)models im-
ply that 11 to 18 percent of residual variation in wage growth is undone the next year
through the autoregressive parameter, as opposed to 13 to 19 percent for the unweighted
counterpart. The weighted second-order parameter estimate for the ARMA(2, 1)model
remains small and insignificant.

Joint estimation of the autoregressive and moving-average parameters using stratified
sampling weights does lead to some important changes. Although the joint estimates of
the ARMA(1, 1) coefficients using weights are similar to those from the unweighted
procedure, the joint estimates for the ARMA(2, 1) model are different. Specifically,
the estimate of the first-order autoregressive parameter is 1/3 the size of any of the
other ARMA(2, 1) specifications, with a standard error that implies that the estimate is
statistically indistinguishable from zero. In conjunction with the results of the bootstrap
estimates of Section 7.5, it appears that joint estimation of the ARMA(2, 1) process is
sensitive to changes in the procedure used.

Turning to the median regressions, one can limit the sensitivity of the estimation
to outliers in a tractable way by using the techniques developed in Section 5. This
smoothed median regression estimator can be done with one equation or several, and
can be thought of as a fairly standard nonlinear optimization problem. The estimation
revealed a three period lag in the autoregressive parameters with coefficients of −0.397,
−0.225, and −0.112, respectively. Single and multiple equation techniques are illus-
trated, both of which can be estimated using standard techniques of two and three stage
least squares or method of moments. The single equation estimator reports identical
standard errors under asymptotic and bootstrap approximations. The same cannot be
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said for the system of equations methods that use an optimal weighting matrix. Judg-
ing from the bootstrapped standard errors, the asymptotic standard errors reported here
under report the true variance in the sampling distribution by a factor of three.

The techniques executed above show how to apply fairly sophisticated methods of
estimation within a very simple estimation framework. Any software package capable
of estimating a nonlinear system of equations (preferably with instrumental variables,
although this is not required) should be able to perform all the techniques introduced
here. The standard errors reported by these routines are asymptotically valid.

Bootstrapped standard errors indicate that the asymptotic estimates may be a useful
guide, but could deviate substantially from the true values. This is especially true in a
median regression of systems of equations where one uses an optimal weighting matrix.
Thus, there is a potential gain from bootstrapping estimates in systems of equations.

8. Summary and concluding remarks

The goal of this chapter has been to present a unified set of estimation methods for fit-
ting a rich array of models describing dynamic relationships within a longitudinal data
setting. The chapter is motivated by the principle that, whenever possible, these methods
should rely on routines available in familiar software packages to make them accessible
to a broad range of practitioners. The discussion covers both the empirical specifica-
tions and estimation methods applicable in a wide variety of longitudinal analyses.
The exposition motivates approaches by considering applications aimed at character-
izing the intertemporal properties of wages and earnings, a research area in which one
finds virtually all assortments of longitudinal applications. In addition to presenting the
econometric principles underlying approaches, this chapter illustrates methods through
a series of empirical examples using hourly wages data on men from the PSID.

As outlined in Section 2, panel data specifications designed to capture the underly-
ing sources of micro dynamics experienced by individuals consist of two components:
(i) parametric relationships depicting the links among current, past and future values
of measured variables, be they endogenous, predetermined or exogenous quantities;
and (ii) error structures describing the stochastic properties of disturbances introduced
in relationships to account for unmeasured factors. Nonlinear simultaneous equation
specifications provide a general class of models for the relationships linking measured
variables. Especially useful simplifications include dynamic simultaneous equations
models (DSEM) incorporating rational distributed lags that allow researchers to en-
tertain flexible lag structures having finite or infinite order using short time series of the
sort available in longitudinal data.

Popular formulations for error structures include variants of autoregressive-moving
average (ARMA) processes. In a panel data setting, a researcher enjoys a wider choice
of specifications because distributed lag and ARMA parameters can be permitted to vary
freely over time. Furthermore, error specifications provided by ARMA schemes can be
readily extended to incorporate permanent and random trend error components. Special
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problems arise in deriving parameterizations of the variance–covariance matrix associ-
ated with ARMA processes in a longitudinal data setting. These problems pertain to the
treatment of initial conditions, which are particularly troublesome for mixed ARMA
specifications. Section 4.3 proposes a general solution to this problem. The DSEM and
these extensions encompass most of the specifications found in the longitudinal litera-
ture.

The “method of moments” (MM) framework conceptually provides a general ap-
proach for estimating parameters of panel data specifications, and Section 3 outlines
the particular formulations and key asymptotic results relied upon in this framework for
computing estimates and testing hypotheses. The discussion summarizes approaches in
the literature for exploiting predetermined variables as instrumental variables in the MM
framework, as well as selecting instrumental variables that yield the greatest efficiency.

Section 4 covers several specializations of the MM approach that can substantially
simplify the problem of estimating sophisticated specifications or many equations in a
longitudinal data context. One application includes linear/nonlinear 3SLS procedures,
a well-known special case of the MM framework that yields convenient computa-
tional formulas for large systems of equations. While conventional implementation of
3SLS routines do not permit use of predetermined variables as instruments, Section 4.1
demonstrates how one can readily overcome this shortcoming by adding new structural
equations to the model while staying within a standard 3SLS program.

There are also considerable advantages to breaking up a longitudinal data estimation
problem into parts, allowing researchers to focus on one part of the model at a time.
The panel data models introduced in Section 2 provide a rich set of specifications, mak-
ing the task of choosing among these specifications a formidable endeavor. Not only do
they permit flexible parameterizations relating measured variables, but numerous for-
mulations are available for error processes; indeed, far more than can be entertained
in standard time series analyses. A researcher rarely knows precisely which parame-
terizations are consistent with the data, and typically must invest considerable effort in
performing diagnostic procedures designed to narrow model choices.

In view of this complexity, Section 4 presents a variety of procedures allowing re-
searchers to subdivide the problem of estimating parameters of sophisticated longitudi-
nal specifications into a multi-stage approach. One can estimate parameters determining
the autocovariance patterns of errors separately from the structural coefficients directly
associated with measured variables, as well as further separating estimation of parame-
ters of the AR and the MA components of the error process. In each step, the application
of familiar estimation routines reports valid test statistics that are useful for discovering
which parts of a model fit the data without having to specify all parts together. Moreover,
these procedures offer a powerful set of diagnostic tools useful not only for evaluating
the basic features of specifications – such as identifying the orders of ARMA models
consistent with the data – but also for discovering reliable values for parameters that
can serve as starting values for the larger estimation exercises.

Section 5 considers using conditional quantile regressions to describe the dynam-
ics of earnings, a set of empirical specifications representing an attractive alternative
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to DSEMs. The analysis considers the formulation of quantiles analogous to autore-
gressive models, including systems of equations permitting one to evaluate how several
different percentiles jointly evolve over time. The section further describes a flexible
approach for estimating the coefficients of autoregressive quantile equations by imple-
menting conventional nonlinear instrumental variable procedures. Thus, the estimation
approaches and issues considered throughout this chapter apply to computing estimates
and test statistics for these dynamic quantile specifications as well.

Section 6 describes how to incorporate weighting and unbalanced data in the esti-
mation of longitudinal data models, which is applicable for both linear and nonlinear
specifications. The type of weighting considered in this discussion corresponded to the
sort typically provided in survey data to account for stratified sampling designs imple-
mented during data collection, designs which produce nonrandom samples. Not only
must the construction of weights account for the stratification of the original sample,
this construction must also adjust for the sample attrition which contributes to a varying
sample composition over time. Virtually all survey data sources contain such weights,
and not using them in estimation produces inconsistent estimates of even basic statistics.
Naive use of weighting options available in standard software packages also generates
incorrect calculations for standard errors and test statistics. The discussion documents
how one must modify the MM formula to account for stratified sampling. The section
ends by describing a modified weighting-type procedure enabling one to use conven-
tional methods to estimate intertemporal specifications with unbalanced data, which are
samples supplying an imperfect overlap in the time periods available for individuals in-
cluded in the longitudinal survey. The procedures covered in this discussion also apply
to estimating the parameters of conditional quantile relationships using stratified and/or
unbalanced samples.

To illustrate the estimation approaches covered in this chapter, Section 7 applies many
of the methods in an empirical analysis of the dynamic properties of the hourly wages
of men during the period 1980–1991 using data from the PSID. While this analysis
merely provides examples of methods to highlight critical concepts, comparisons of
findings across procedures offers insights into how various procedures influence re-
sults. Estimates of the covariogram using data on residuals support the hypothesis of
weak stationarity for wage growth, with the pattern of estimated autocovariances and
test statistics suggesting that an ARMA(1, 1) model adequately describes the data. Ap-
plying procedures that estimate parameters of the AR and MA portions of this model
in separate steps yields values for the coefficients similar to those obtained by joint
estimation of the parameters of the ARMA(1, 1) specification.

The empirical analysis goes on to examine the sensitivity of results to using: (1) boot-
straps to calculate estimates and standard errors, (2) unbalanced data, and (3) weighting
to account for stratified sampling inherent in survey data. According to the findings,
bootstrap standard errors tend to exceed those based on classical asymptotic theory,
typically being about 25 percent larger. The calculation of estimates using unbalanced
data allows a researcher to exploit all data available for a person, without requiring dele-
tion of individuals who do not have observations for every year of the sample. Although
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results for the balanced and unbalanced data show differences, both sets of findings still
allow acceptance of the hypothesis of weak stationarity and the underlying presence
of an ARMA(2, 1) process. Finally, joint estimation of the autoregressive and moving-
average parameters using stratified sampling weights does lead to substantial changes
for some estimates of the ARMA(2, 1) model.

Section 7 also illustrates the estimation of dynamic quantiles, focusing on the in-
tertemporal variation in medians. The empirical analysis reveals the presence of at least
a three-period lag in the autoregressive structure in the median of wages. The application
of bootstrap procedures yields substantially larger standard errors for the multi-equation
estimation methods, but not for the single equation approach.

Other chapters in the Handbook of Econometrics and the Handbook of Labor Eco-
nomics offer valuable alternative or complementary discussions of the topics covered
here. In the area of estimation approaches applicable for panel data, Chamberlain (1984)
has become a standard reference, and Arellano and Honoré (2001) provides a thoughtful
update of recent developments. Horowitz (2001) discusses the theoretical underpinnings
for the bootstrap procedures pertinent to the estimation methods described in this study.
Variants of the empirical models discussed in this chapter also appear in the body of
work surveyed by Solon (1999), which summarizes what has been learned from recent
research on intergenerational earnings mobility. Beyond the Handbooks, the textbooks
by Hsiao (1986, 2003) and Baltagi (1995) provide comprehensive reviews of the panel
data literature, offering a wealth of references and detailed presentations of many con-
cepts only touched on in this chapter.

Econometric developments introduced to analyze longitudinal data comprise one of
the most active research areas in the past three decades. No doubt these developments
will continue since these data constitute the richest sources of information available to
economists hoping to understand a wide range of phenomena. Just as in the past, the
study of wage, earnings and income dynamics will motivate many of these econometric
innovations.

Appendix A: Specifying the covariance matrix for an ARMA process

The purpose of this appendix is to provide explicit parameterizations for the covariance
matrix E{UiU ′

i } associated with the vector of transitory components. The assump-
tions and notation introduced to derive the specification for E(UiU ′

i } given by relations
(4.16)–(4.19) are also used here. The following discussion begins with the development
of a simple parameterization corresponding to relations (4.16)–(4.19).

Using (4.14), it is possible to reformulate the system of equations given by (4.13). To
avoid the need for dealing with several possible cases, it is convenient to introduce the
notation ζj = 0 for j < 0 (for j = 0, ζ0 ≡ 1 and for j > 0, ζj ≡ mj −∑j

h=1 ahζj−h)
and the definition that a summation of the form

∑c
h=0 is equal to zero whenever c < 0.
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Using this notation, Equations (4.13) and (4.14) imply

(A.1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑p

j=0 ajU(T−j)i
...∑p

j=0 ajU(p+1−j)i
Upi

U(p−1)i
...

U1i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑q

j=0mjε(T−j)i
...∑q

j=0mjε(p+1−j)i∑q−1
j=0 ζj ε(p−j)i∑q−1
j=0 ζj−1ε(p−j)i

...∑q−1
j=0 ζj−p+1ε(p−j)i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
μpi

μ(p−1)i
...

μ1i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where

μti =
t−�1∑

j=t−p+q
ζj ε(t−j)i +

t−�2∑
j=t−�1+1

ζjφ(t−j)i , t = 1, . . . , p.

The first set of T − p equations in (A.1) is simply the standard representation of the
ARMA process generating U(p+1)i , . . . , UT i , and the second set of p equations is the
moving average representation of the ARMA process for U1i , . . . , Upi with the μti’s,
t = 1, . . . , p, defined to include all disturbances realized prior to period p− q+ 1. The
formulation of (A.1) assumes that �1 < p − q + 1.52 In matrix notation, (A.1) may be
written as

(A.2)FUi = G

(
εi
μi

)
,

where

Ui =
⎛⎝UT i...
U1i

⎞⎠ , εi =
⎛⎝ εT i

...

ε(p−q+1)i

⎞⎠ , μi =
⎛⎝μpi...
μ1i

⎞⎠ .
F is the T × T matrix defined below (4.15), and G is a T × (T + q) matrix defined as

G =
[
M(T−p)×(T−p+q) O(T−p)×p
Op×(T−p) KP×q Ip

]
.

M is a diagonal band matrix with the elements (m0, . . . , mq) running down the diago-
nal,53 and the matrixK has (ζ0, . . . , ζq−1) as its first row, (0, ζ0, . . . , ζq−2) as its second
row, and so on until the pth row is reached, or if q < p, until the qth row is reached,
after which the rows of K contain zeros. When forming the partitioned matrices as-
sociated with F and G, the above analysis assumes that any matrix with an implied

52 The justification for the restriction can be found in the footnote following Equation (4.18).
53 A diagonal band matrix is specified in the first footnote following Equation (4.15).



Ch. 62: A Practitioner’s Approach to Estimating Intertemporal Relationships 4157

dimension equal to zero is deleted from the specification. Thus, when p = 0, F = [A]
and G = [M]; and when q = 0, K is eliminated and

G =
[
M O

O I

]
.

Given the expression for Ui implied by (A.2), the problem of parameterizing
E{UiU ′

i } becomes one of specifying a correlation structure for disturbance vectors εi
and μi . Since each of the components of εi follows a white noise error process, we have

(A.3)E
{
εiε

′
i

} = (
IT−p+q ⊗ σ 2) ≡ Σ,

where σ 2 = E{ε2
t i} for t = p − q + 1, . . . , T . Inspection of the formulas for the μki’s

reveals three facts: (i) the μki’s depend on a common set of disturbances; (ii) all of
these disturbances are realized prior to period p− q+ 1; and (iii) included among these
disturbances are the initial conditions for the ARMA process (i.e., the φki’s). Since each
of the components of εi are realized during and after period p − q + 1, fact (ii) implies
E(μiε

′
i ) = 0. Fact (i) implies that the components of μi are mutually correlated, so

E{μiμ′
i} contains no zero elements in general. In addition, without imposing rigorous

conditions, fact (iii) indicates that no restrictions will exist on the form of E{μiμ′
i}. In

general, then, μi will possess an arbitrary covariance structure which we may formally
express as

(A.4)E
{
μiμ

′
i

} = Λ,

where Λ is any positive definite, symmetric matrix.
Combining the above results, we obtain the following specification for E{UiU ′

i }:

(A.5)Θ = F−1G

[
Σ O

O Λ

]
G′F−1 ′.

This parameterization imposes all of the restrictions implied by the ARMA process
unless one is willing to introduce precise information about how and when this process
started.

There are two modifications of the above parameterization that may be useful in ap-
plied work. First, to simplify the construction of the matrix K , one may replace each
of the nonzero elements of this matrix (i.e., all the ζj ’s, j � 0) by arbitrary parame-
ters, rather than using the coefficients of the ARMA process and the formulas specified
above to form these elements. This modification avoids the need for imposing nonlinear
restrictions, but it introduces new parameters and reduces the efficiency of estimation.

The second modification concerns the parameterization of Λ defined by (A.4). This
matrix is purely a theoretical construct and represents nuisance parameters. An unattrac-
tive feature of this parameterization is that one cannot easily infer an approximate value
for Λ using preliminary data analysis techniques or estimation methods that do not re-
quire the full estimation of Θ . An alternative specification is obtained if one replaces
the matrixΛ by the matrix Υ = E{μiμ′

i}+K(Iq ×σ 2)K ′ which is also only restricted
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to be positive definite and symmetric. Substituting this new parameterization into (A.5)
implies

(A.6)Θ = F−1

⎡⎣ MΣM ′ MΣ

[
O ′
K ′
]

[OK]ΣM ′ Υ

⎤⎦F−1 ′.

According to this new specification, Υ = E{U(1)iU ′
(1)i}, where the vector U ′

(1)i ≡
(Upi, . . . , U1i ) includes the last p components of Ui . In contrast to the previous para-
meterization, Υ can be estimated prior to the full estimation of Θ . The specification
given by (A.6) is equivalent to the one implied by relations (4.16)–(4.19) presented in
Section 4.

It is straightforward to generalize the above specifications to deal with the case where
more than one structural equation is included in model (4.10) (i.e., there are several
equations for each period) and where the disturbance vector Uti follows a multivariate
ARMA process. One merely needs to replace the coefficients aj , mj , and ζj in the
above specifications by matrices with dimensions equal to the number of equations and
redefine the dimensions of other matrices so that they are conformable.

Appendix B: A general approach for estimating ARMA processes

This appendix presents a general framework for estimating parameters of a stationary
multivariate autoregressive moving-average (ARMA) process applying the procedures
summarized in Sections 4, 6 and 7.

Consider the following stationary multivariate ARMA process

(B.1)F(L)Vt =
J∑
j=1

Mj(L)εtj ,

where Vt , is a vector of observed variables with zero mean, F(L) = F0 + F1L + · · ·
+ FpLp and Mj(L) = Mj0 +Mj1L + · · · +MjqLq are matrix lag polynomials, and
the εtj are mutually independent, white-noise error vectors with

E
(
εtj ε

′
tj

) = Σj, j = 1, . . . , J.

The inclusion of more than one moving average component in relation (B.1) allows the
model to incorporate error-component specifications. Obviously, if error components
are present, then the forms of the F(L) and Mj(L) lag matrices must be restricted
according to some structural constraints to achieve identification of coefficients.

Represent the kth order autocovariances of Vt , by

Θ−κ = E
(
VtV

′
t−k
)
.

The stationarity of the process implies that Θκ = Θ−κ .
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Using multivariate extensions of equations (9), (10), and (11) in Section 5.8 of
Anderson (1971), one can derive from (B.1) the following system of equations:

p∑
i=0

(
p∑
h=0

FhΘh−i

)
F ′
i =

J∑
j=0

q∑
k=0

MjkΣjM
′
jk,

p∑
i=0

(
p∑
h=0

FhΘh−i−1

)
F ′
i =

J∑
j=0

q−1∑
k=0

Mj,k+1ΣjM
′
jk,

...
p∑
i=0

(
p∑
h=0

FhΘh−i−q

)
F ′
i =

J∑
j=0

MjqΣjM
′
j0,

p∑
h=0

FhΘh−q−1 = 0,

...

(B.2)
p∑
h=0

FhΘh−T+1 = 0,

where T is the farthest time period available in the longitudinal data set for computing
autocovariances (assumed to satisfy T − 1 > q). Let θ be a vector which stacks the
own and cross-autocovariances in (B.2), and let α be a parameter vector in which the
unknown elements of the matrices Fj , Mjk and Σj are stacked. With some algebraic
manipulations, the system of equations in (B.2) can be stacked to yield a vector equality
of the form

(B.3)f (α, θ) = 0,

with evaluation of this relationship at the true values of the parameters.
To understand how f (α, θ) is formed, first consider the case of a univariate ARMA

process. Then

f1(α, θ) =
p∑
i=0

p∑
h=0

FhFiΘh−i −
J∑
j=0

q∑
k=0

M2
jkσ

2
j ,

f2(α, θ) =
p∑
i=0

p∑
h=0

FhFiΘh−i−1 −
J∑
j=0

q−1∑
k=0

Mj,k+1Mjkσ
2
j ,

and so on. In the case of an n-variate ARMA process, recognize that the matrix

p∑
i=0

(
p∑
h=0

FhΘh−i

)
F ′
i −

J∑
j=0

q∑
k=0

MjkΣjM
′
jk
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is symmetric. Hence, to form f (α, θ) one stacks only the upper triangular part of this
matrix. Thus, the first (n(n+1)/2) elements of f (α, θ) are generated by the first matrix
equation in (B.2), the next n2 are generated by the second matrix equation in (B.2), and
so on.

Let α∗ and θ∗ denote the true values of α and θ . Further, suppose that θ̂ is a consistent
estimate of θ∗ with

√
N(θ̂ − θ∗) converging in distribution to N(0,H), where N is the

sample size. Then, as long as f (α, θ) satisfies the general conditions given in Section 3,
it is the case that

(B.4)
√
Nf (α∗, θ̂ ) d−→ N

(
0,

(
δf

δθ ′

∣∣∣∣
α∗,θ∗

H
δf ′

δθ

∣∣∣∣
α∗,θ∗

))
.

When (δf/δα′) has full column rank, it will be possible in (B.3) to solve for the
elements of α in terms of the elements of θ . Since θ will typically be overidentified, the
result in (B.4) justifies the applicability of MM procedures to compute a unique estimate
of α. This procedure calculates an estimate α to minimize the function

(B.5)Q = f (α, θ̂)′Wf (α, θ̂),

whereW is any positive definite matrix. The resulting estimate is consistent and asymp-
totically normal given (B.4). Further, if Ĥ is a consistent estimate of H and α̂ is a con-
sistent estimate of α, the result in (B.4) enables one to conclude that [ δf

δθ ′ |α̃,θ̂ Ĥ δf ′
δθ

|
α̃,θ̂

]−1

is an optimal choice forW . Standard MM procedures then imply that

(B.6)α̂ ∼ N

(
α∗, 1

N

(
δf ′

δα

∣∣∣∣
α̂,θ̂

(
δf

δθ ′

∣∣∣∣
α̂,θ̂

Ĥ
δf ′

δθ

∣∣∣∣
α̂,θ̂

)−1
δf

δα′

∣∣∣∣
α̂,θ̂

)−1)
,

where α̂ is the estimate of α whenW is chosen optimally.
The value of the function Q given in (B.5), with W chosen optimally, forms the ba-

sis for a statistic to test whether the autocovariances of Vt , have a parameterization
implied by (B.1). Let Q̂ be the value of the function Q, let kθ denote the number
of elements in θ , and let kα denote the number of parameters contained in α. Ac-
cording to the findings in (3.17), it follows that if the null hypothesis given by (B.3)
is true, then NQ̂ is approximately distributed as a chi-squared random variable with
(kθ − kα) degrees of freedom. This statistic provides a measure of fit of the parameter-
ized multiple time series model to the sample own- and cross-covariograms, with the
alternative hypothesis interpreting all variances and autocovariances as being entirely
unconstrained.
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Abstract

This paper outlines recently developed techniques for estimating the primitives needed
to empirically analyze equilibrium interactions and their implications in oligopolistic
markets. It is divided into an introduction and three sections; a section on estimating
demand functions, a section on estimating production functions, and a section on esti-
mating “dynamic” parameters (parameters estimated through their implications on the
choice of controls which determine the distribution of future profits).
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The introduction provides an overview of how these primitives are used in typical
I.O. applications, and explains how the individual sections are structured. The topics of
the three sections have all been addressed in prior literature. Consequently each section
begins with a review of the problems I.O. researchers encountered in using the prior
approaches. The sections then continue with a fairly detailed explanation of the recent
techniques and their relationship to the problems with the prior approaches. Hopefully
the detail is rich enough to enable the reader to actually program up a version of the
techniques and use them to analyze data. We conclude each section with a brief dis-
cussion of some of the problems with the more recent techniques. Here the emphasis is
on when those problems are likely to be particularly important, and on recent research
designed to overcome them when they are.

Keywords

demand estimation, production function estimation, dynamic estimation, strategic
interactions, equilibrium outcomes

JEL classification: C1, C3, C5, C7, L1, L4, L5
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Recent complementary developments in computing power, data availability, and econo-
metric technique have led to rather dramatic changes in the way we do empirical analy-
sis of market interactions. This paper reviews a subset of the econometric techniques
that have been developed. The first section considers developments in the estimation
of demand systems, the second considers developments in the estimation of production
functions, and the third is on dynamic estimation, in particular on estimating the costs of
investment decisions (where investments are broadly interpreted as any decision which
affects future, as well as perhaps current, profits).

These are three of the primitives that are typically needed to analyze market interac-
tions in imperfectly competitive industries. To actually do the analysis, that is to actually
unravel the causes of historical events or predict the impact of possible policy changes,
we need more information than is contained in these three primitives. We would also
need to know the appropriate notion of equilibrium for the market being analyzed, and
provide a method of selecting among equilibria if more than one of them were consis-
tent with our primitives and the equilibrium assumptions. Though we will sometimes
use familiar notions of equilibrium to develop our estimators, this paper does not ex-
plicitly consider either the testing of alternative equilibrium assumptions or the issue
of how one selects among multiple equilibria. These are challenging tasks which the
profession is just now turning to.

For each of the three primitives we do analyze, we begin with a brief review of the
dominant analytic frameworks circa 1990 and an explanation of why those frameworks
did not suffice for the needs of modern Industrial Organization. We then move on to
recent developments. Our goal here is to explain how to use the recently developed
techniques and to help the reader identify problems that might arise when they are used.
Each of the three sections have a different concluding subsection.

There have been a number of recent papers which push the demand estimation lit-
erature in different directions, so we conclude that section with a brief review of those
articles and why one might be interested in them. The section on production function
concludes with a discussion of the problems with the approach we outline, and some
suggestions for overcoming them (much of this material is new). The section on the
costs of investments, which is our section on “dynamics”, is largely a summary and in-
tegration of articles that are still in various stages of peer review; so we conclude here
with some caveats to the new approaches.

We end this introduction with an indication of the ways Industrial Organization makes
use of the developments outlined in each of the three sections of the paper. This should
direct the researcher who is motivated by particular substantive issues to the appropriate
section of the paper. Each section is self-contained, so the reader ought to be able to read
any one of them in isolation.

Demand systems are used in several contexts. First demand systems are the major
tool for comparative static analysis of any change in a market that does not have an
immediate impact on costs (examples include the likely effects of mergers, tax changes,
etc.). The static analysis of the change usually assumes a mode of competition (almost
always either Nash in prices or in quantities) and either has cost data, or more frequently
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estimates costs from the first order conditions for a Nash equilibrium. For example, in a
Nash pricing (or Bertrand) equilibrium with single product firm, price equals marginal
cost plus a markup. The markup can be computed as a function of the estimated de-
mand parameters, so marginal costs can be estimated as price minus this markup. Given
marginal costs, demand, and the Nash pricing assumption the analyst can compute an
equilibrium under post change conditions (after the tax or the merger). Assuming the
computed equilibrium is the equilibrium that would be selected, this generates the pre-
dictions for market outcomes after the change. If the analyst uses the pre-change data
on prices to estimate costs, the only primitive required for this analysis is the demand
function and the ownership pattern of the competing products (which is usually ob-
served).

A second use of demand systems is to analyze the effect of either price changes
or new goods on consumer welfare. This is particularly important for the analysis of
markets that are either wholly or partially regulated (water, telecommunications, elec-
tricity, postage, medicare and medicaid, . . . ). In this context we should keep in mind
that many regulatory decisions are either motivated by nonmarket factors (such as eq-
uity considerations), or are politically sensitive (i.e. usually either the regulators or those
who appointed them are elected). As a result the analyst often is requested to provide a
distribution of predicted demand and welfare impacts across demographic, income and
location groups. For this reason a “representative agent” demand system simply will not
do.

The use of demand systems to analyze welfare changes is also important in several
other contexts. The “exact” consumer price index is a transform of the demand sys-
tem. Thus ideally we would be using demand systems to construct price indices also
(and there is some attempt by the BLS research staff to construct experimental indexes
in this way). Similarly the social returns to (either publicly or privately funded) re-
search or infrastructure investments are often also measured with the help of demand
systems.

Yet a third way in which demand systems are important to the analysis of I.O. prob-
lems is that some of them can be used to approximate the likely returns to potential
new products. Demand systems are therefore an integral part of the analysis of product
placement decisions, and more generally, for the analysis of the dynamic responses to
any policy or environmental change. Finally the way in which tastes are formed, and the
impacts of advertising on that process, are problems of fundamental interest to I.O. Un-
fortunately these are topics we will not address in the demand section of this paper. Our
only consolation is the hope that the techniques summarized here will open windows
that lead to a deeper understanding of these phenomena.

Production or cost functions are a second primitive needed for comparative static
analysis. However partly because product specific cost data are not available for many
markets, the direct estimation of cost functions has not been an active area of research
lately. There are exceptions, notably some illuminating studies of learning by doing [see
Benkard (2000) and the literature cited there], but not many of them.
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What has changed in the past decade and a half is that researchers have gained access
to a large number of plant (sometimes firm) level data sets on production inputs and
outputs (usually the market value of outputs rather than some measure of the physical
quantity of the output). This data, often from various census offices, has stimulated
renewed interest in production function estimation and the analysis of productivity. The
data sets are typically (though not always) panels, and the availability of the data has
focused attention on a particular set of substantive and technical issues.

Substantively, there has been a renewal of interest in measuring productivity and
gauging how some of the major changes in the economic environment that we have
witnessed over the past few decades affect it. This includes studies of the productiv-
ity impacts of deregulation, changes in tariff barriers, privatization, and broad changes
in the institutional environment (e.g. changes in the legal system, in health care deliv-
ery, etc.). The micro data has enabled this literature to distinguish between the impacts
of these changes on two sources of growth in aggregate productivity: (i) growth in the
productivity of individual establishments, and (ii) growth in industry productivity result-
ing from reallocating more of the output to the more productive establishments (both
among continuing incumbents, and between exitors and new entrants). Interestingly,
the prior literature on productivity was also divided in this way. One part focused on
the impacts of investments, in particular of research and infrastructure investments, on
the productive efficiency of plants. The other focused on the allocative efficiency of
different market structures and the impacts of alternative policies on that allocation (in
particular of merger and monopoly policy).

From an estimation point of view, the availability of large firm or plant level panels
and the desire to use them to analyze the impacts of major changes in the environment
has renewed interest in the analysis of the effects of simultaneity (endogeneity of inputs)
and selection (endogeneity of attrition) on parameter estimates. The data made clear that
there are both: (i) large differences in measured “productivity” across plants (no matter
how one measures productivity) and that these differences are serially correlated (and
hence likely to effect input choices), and (ii) large sample attrition and addition rates
in these panels [see Dunne, Roberts and Samuelson (1988) and Davis and Haltiwanger
(1992) for some of the original work on US manufacturing data]. Moreover, the changes
in the economic environment that we typically analyze had different impacts on different
firms. Not surprisingly, the firms that were positively impacted by the changes tended
to have disproportionate growth in their inputs, while those that it affected negatively
tended to exhibit falling input demand, and not infrequently, to exit.

The traditional corrections for both simultaneity and selection, corrections based
largely on simple statistical models (e.g. use of fixed effect and related estimators for
simultaneity, and the use of the propensity score for selection) were simply not rich
enough to account for the impacts of such major environmental changes. So the litera-
ture turned to simultaneity and selection corrections based on economic models of input
and exit choices. The section of this chapter on production functions deals largely with
these latter models. We first review the new procedures emphasizing the assumptions
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they use, and then provide suggestions for amending the estimators for cases where
those assumptions are suspect.

The last section of the paper deals explicitly with dynamic models. Despite a blos-
soming empirical literature on the empirical analysis of static equilibrium models, there
has been very little empirical work based on dynamic equilibrium models to date. The
I.O. literature’s focus on static settings came about not because dynamics were thought
to be unimportant to the outcomes of interest. Indeed it is easy to take any one of the
changes typically analyzed in static models and make the argument that the dynamic
implications of the change might well overturn their static effects. Moreover, there was
a reasonable amount of agreement among applied researchers that the notion of Markov
perfect equilibrium provided a rich enough framework for the analysis of dynamics in
oligopolistic settings.

The problem was that even given this framework the empirical analysis of the dy-
namic consequences of the changes being examined was seen as too difficult a task to
undertake. In particular, while some of the parameters needed to use the Markov per-
fect framework to analyze dynamic games could be estimated without imposing the
dynamic equilibrium conditions, some could not. Moreover, until very recently the only
available methods for estimating these remaining parameters were extremely burden-
some, in terms of both computation and researcher time.

The computational complexity resulted from the need to compute the continuation
values to the dynamic game in order to estimate the model. The direct way of obtaining
continuation values was to compute them as the fixed point to a functional equation,
a high order computational problem. Parameter values were inferred from observed be-
havior by computing the fixed point that determines continuation values at different trial
parameter values, and then searching for the parameter value that makes the behavior
implied by the continuation values “as close as possible” to the observed data. This
“nested fixed point” algorithm is extremely computationally burdensome; the continua-
tion values need to be computed many times and each time they are computed we need
to solve the fixed point.

A recent literature in industrial organization has developed techniques that substan-
tially reduce the computational and programming burdens of using the implications of
dynamic games to estimate the parameters needed for subsequent applied analysis. That
literature requires some strong assumptions, but delivers estimating equations which
have simple intuitive explanations and are easy to implement.

Essentially the alternative techniques deliver different semiparametric estimates of
continuation values. Conditional on a value of the parameter vector, these estimated
continuation values are treated as the true continuation values and used to determine
optimal policies (these can be entry and exit policies, investments of various forms, or
bidding strategies in dynamic auctions). The parameters are estimated by matching the
policies that are predicted in this way to the policies that are observed in the data. Note
that this process makes heavy use of nonparametric techniques; nonparametric estimates
of either policies or values must be estimated at every state observed in the data. Not
surprisingly then Monte Carlo evidence indicates that the small sample properties of the
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estimators can be quite important in data sets of the size we currently use. This, in turn,
both generates preferences for some semiparametric estimators over others, and makes
obvious a need for small sample bias correction procedures which, for the most part,
have yet to be developed. We now move on to the body of the paper.

1. Demand systems

Demand systems are probably the most basic tool of empirical Industrial Organization.
They summarize the demand preferences that determine the incentives facing produc-
ers. As a result some form of demand system has to be estimated before one can proceed
with a detailed empirical analysis of pricing (and/or production) decisions, and, conse-
quently of the profits and consumer welfare likely to be generated by the introduction
of new goods.

Not long ago graduate lectures on demand systems were largely based on “repre-
sentative agent” models in “product” space (i.e. the agent’s utility was defined on the
product per se rather than on the characteristics of the product). There were a number
of problems with this form of analysis that made if difficult to apply in the context of
I.O. problems. We begin with an overview of those problems, and the “solutions” that
have been proposed to deal with them.

Heterogeneous agents and simulation

First, almost all estimated demand systems were based on market level data: they would
regress quantity purchased on (average) income and prices. There were theoretical pa-
pers which investigated the properties of market level demand systems obtained by
explicitly aggregating up from micro models of consumer choices [including a semi-
nal paper by Houthakker (1955)]. However we could not use their results to structure
estimation on market level data without imposing unrealistic a priori assumptions on
the distribution of income and “preferences” (or its determinants like size, age, location,
etc.) across consuming units.

Simulation estimators, which Pakes (1986) introduced for precisely this problem, i.e.
to enable one to use a micro behavioral model with heterogeneity among agents to
structure the empirical analysis of aggregate data, have changed what is feasible in this
respect. We can now aggregate up from the observed distribution of consumer charac-
teristics and any functional form that we might think relevant. That is we allow different
consumers to have different income, age, family size, and/or location of residence. We
then formulate a demand system which is conditional on the consumer’s characteristics
and a vector of parameters which determines the relationship between those character-
istics and preferences over products (or over product characteristics). To estimate those
parameters from market level data we simply

• draw vectors of consumer characteristics from the distribution of those character-
istics in the market of interest (in the US, say from the March CPS),
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• determine the choice that each of the households drawn would make for a given
value of the parameter vector,

• aggregate those choices into a prediction for aggregate demand conditional on the
parameter vector, and

• employ a search routine that finds the value of that parameter vector which makes
these aggregate quantities as close as possible to the observed market level de-
mands.

The ability to obtain aggregate demand from a distribution of household preferences
has had at least two important impacts on demand analysis. First it has allowed us to
use the same framework to study demand in different markets, or in the same market at
different points in time. A representative agent framework might generate a reasonable
approximation to a demand surface in a particular market. However there are often large
differences in the distribution of income and other demographic characteristics across
markets, and these in turn make an approximation which fits well in one market do
poorly in others.

For example, we all believe (and virtually all empirical work indicates) that the im-
pact of price depends on income. Our micro model will therefore imply that the price
elasticity of a given good depends on the density of the income distribution among the
income/demographic groups attracted to that good. So if the income distribution differed
across regional markets, and we used an aggregate framework to analyze demand, we
would require different price coefficients for each market. Table 1 provides some data
on the distribution of the income distribution across US counties (there are about three
thousand counties in the US). It is clear that the income distribution differs markedly
across these “markets”; the variance being especially large in the high income groups
(the groups which purchase a disproportionate share of goods sold).

Table 1
Cross county differences in household income

Income
group
(thousands)

Fraction of US
population in
income group

Distribution of fraction
over counties

Mean Std. dev.

0–20 0.226 0.289 0.104
20–35 0.194 0.225 0.035
35–50 0.164 0.174 0.028
50–75 0.193 0.175 0.045
75–100 0.101 0.072 0.033
100–125 0.052 0.030 0.020
125–150 0.025 0.013 0.011
150–200 0.022 0.010 0.010
200+ 0.024 0.012 0.010

Source: From Pakes (2004).
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A heterogenous agent demand model with an interaction between price and income
uses the available information on differences in the distribution of income to combine
the information from different markets. This both enables us to obtain more precise
parameter estimates, and provides a tool for making predictions of likely outcomes in
new markets.

The second aspect of the heterogenous agent based systems that is intensively used
is its ability to analyze the distributional impacts of policies or environmental changes
that affect prices and/or the goods marketed. These distributional effects are often of
primary concern to both policy makers and to the study of related fields (e.g. the study
of voting patterns in political economy, or the study of tax incidence in public finance).

The too many parameters and new goods problems

There were at least two other problems that appeared repeatedly when we used the ear-
lier models of demand to analyze Industrial Organization problems. They are both a
direct result of positing preferences directly on products, rather than on the characteris-
tics of products.

1. Many of the markets we wanted to analyze contained a large number of goods
that are substitutes for one another. As a result when we tried to estimate demand
systems in product space we quickly ran into the “too many parameters problem”.
Even a (log) linear demand system in product space for J products requires esti-
mates of on the order of J 2 parameters (J price and one income coefficient in the
demand for every one of the J products). This was often just too many parameters
to estimate with the available data.

2. Demand systems in product space do not enable the researcher to analyze demand
for new goods prior to their introduction.

Gorman’s polar forms [Gorman (1959)] for multi-level budgeting were an ingenious
attempt to mitigate the too many parameter problem. However they required assump-
tions which were often unrealistic for the problem at hand. Indeed typically the grouping
procedures used empirically paid little attention to accommodating Gorman’s condi-
tions. Rather they were determined by the policy issue of interest. As a result one would
see demand systems for the same good estimated in very different ways with results
that bore no relationship to each other.1 Moreover, the reduction in parameters obtained
from multilevel budgeting was not sharp enough to enable the kind of flexibility needed
for many I.O. applications [though it was for some, see for e.g. Hausman (1996) and the
literature cited there].

1 For example, it was not uncommon to see automobile demand systems that grouped goods into imports and
domestically produced in studies where the issue of interest involved tariffs of some form, and alternatively by
gas mileage in studies where the issue of interest was environmental or otherwise related to fuel consumption.
Also Gorman’s results were of the “if and only if” variety; one of his two sets of conditions were necessary
if one is to use multi-level budgeting. For more detail on multi-level budgeting see Deaton and Muellbauer
(1980).
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The new goods problem was central to the dynamics of analyzing market outcomes.
That is in order to get any sort of idea of the incentives for entry in differentiated product
markets, we need to be able to know something about the demand for a good which
had not yet been introduced. This is simply beyond the realm of what product based
demand systems can do. On the other hand entry is one of the basic dynamic adjustment
mechanisms in Industrial Organization, and it is hard to think of say, the likely price
effects of a merger,2 or the longer run effects of an increase in gas prices, without some
way of evaluating the impacts of those events on the likelihood of entry.

The rest of this section of the paper will be based on models of demand that posit
preferences on the characteristics of products rather than on products themselves. We
do not, however, want to leave the reader with the impression that demand systems in
product based, in particular product space models that allow for consumer heterogene-
ity, should not be used. If one is analyzing a market with a small number of products,
and if the issue of interest does not require an analysis of the potential for entry, then it
may well be preferable to use a product space system. Indeed all we do when we move
to characteristic space is to place restrictions on the demand systems which could, at
least in principle, be obtained from product space models. On the other hand these re-
strictions provide a way of circumventing the “too many parameter” and “new goods”
problems which has turned out to be quite useful.

1.1. Characteristic space: The issues

In characteristics space models
• Products are bundles of characteristics.
• Preferences are defined on those characteristics.
• Each consumer chooses a bundle that maximizes its utility. Consumers have dif-

ferent relative preferences (usually just marginal preferences) for different charac-
teristics, and hence make different choices.

• Simulation is used to obtain aggregate demand.
Note first that in these models the number of parameters required to determine ag-

gregate demand is independent of the number of products per se; all we require is the
joint distribution of preferences over the characteristics. For example, if there were five
important characteristics, and preferences over them distributed joint normally, twenty
parameters would determine the own and cross price elasticities for all products (no
matter the number of those products). Second, once we estimate those parameters, if we
specify a new good as a different bundle of characteristics then the bundles currently in
existence, we can predict the outcomes that would result from the entry of the new good

2 Not surprisingly, then, directly after explaining how they will analyze the price effects of mergers among
incumbent firms, the US merger guidelines [DoJ (1992)] remind the reader that the outcome of the analysis
might be modified by an analysis of the likelihood of entry. Though they distinguish between different types
of potential entrants, their guidelines for evaluating the possibility of entry remain distinctly more ad hoc then
the procedures for analyzing the initial price changes.
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by simply giving each consumer an expanded choice set, one that includes the old and
the new good, and recomputing demand in exactly the same way as it was originally
computed.3

Having stated that, at least in principle, the characteristic space based systems solve
both the too many parameter and the new goods problems, we should now provide
some caveats. First what the system does is restrict preferences: it only allows two
products to be similar to one another through similarities in their characteristics. Below
we will introduce unmeasured characteristics into the analysis, but the extent to which
unmeasured characteristics have been used to pick up similarities in tastes for different
products is very limited. As a result if the researcher does not have measures of the
characteristics that consumers care about when making their purchase decisions, the
characteristic based models are unlikely to provide a very useful guide to which prod-
ucts are good substitutes for one another. Moreover, it is these substitution patterns that
determine pricing incentives in most I.O. models (and as a result profit margins and the
incentives to produce new goods).

As for new goods, there is a very real sense in which characteristic based systems
can only provide adequate predictions for goods that are not too “new”. That is, if we
formed the set of all tuples of characteristics which were convex combinations of the
characteristics of existing products, and considered a new product whose characteris-
tics are outside of this set, then we would not expect the estimated system to be able
to provide much information regarding preferences for the new good, as we would be
“trying to predict behavior outside of the sample”. Moreover, many of the most suc-
cessful product introductions are successful precisely because they consist of a tuple of
characteristics that is very different than any of the characteristic bundles that had been
available before it was marketed (think, for example, of the lap top computer, or the
Mazda Miata4).

Some background

The theoretical and econometric groundwork for characteristic based demand systems
dates back at least to the seminal work of Lancaster (1971) and McFadden (1974,
1981).5 Applications of the Lancaster/McFadden framework however, increased sig-
nificantly after Berry, Levinsohn and Pakes (1995) showed how to circumvent two

3 This assumes that there are no product specific unobservables. As noted below, it is typically important to
allow for such unobservables when analyzing demand for consumer products, and once one allows for them
we need to account for them in our predictions of demand for new goods. For example, see Berry, Levinsohn
and Pakes (2004).
4 For more detail on just how our predictions would fail in this case see Pakes (1995).
5 Actually characteristics based models have a much longer history in I.O. dating back at least to Hotelling’s

(1929) classic article, but the I.O. work on characteristic based models focused more on their implications for
product placement rather than on estimating demand systems per se. Characteristic based models also had a
history in the price index literature as a loose rational for the use of hedonic price indices; see Court (1939),
Griliches (1961), and the discussion of the relationship between hedonics and I.O. equilibrium models in
Pakes (2004).



Ch. 63: Econometric Tools for Analyzing Market Outcomes 4183

problems that had made it difficult to apply the early generation of characteristic based
models in I.O. contexts.

The problems were that
1. The early generation of models used functional forms which restricted cross and

own price elasticities in ways which brought into question the usefulness of the
whole exercise.

2. The early generation of models did not allow for unobserved product characteris-
tics.

The second problem was first formulated in a clear way by Berry (1994), and is par-
ticularly important when studying demand for consumer goods. Typically these goods
are differentiated in many ways. As a result even if we measured all the relevant charac-
teristics we could not expect to obtain precise estimates of their impacts. One solution
is to put in the “important” differentiating characteristics and an unobservable, say ξ ,
which picks up the aggregate effect of the multitude of characteristics that are being
omitted. Of course, to the extent that producers know ξ when they set prices (and recall
ξ represents the effect of characteristics that are known to consumers), goods that have
high values for ξ will be priced higher in any reasonable notion of equilibrium.

This produces an analogue to the standard simultaneous equation problem in esti-
mating demand systems in the older demand literature; i.e. prices are correlated with
the disturbance term. However in the literature on characteristics based demand sys-
tems the unobservable is buried deep inside a highly nonlinear set of equations, and
hence it was not obvious how to proceed. Berry (1994) shows that there is a unique
value for the vector of unobservables that makes the predicted shares exactly equal to
the observed shares. Berry, Levinsohn and Pakes (1995) (henceforth BLP) provide a
contraction mapping which transforms the demand system into a system of equations
that is linear in these unobservables. The contraction mapping is easy to compute, and
once we have a system which is linear in the disturbances we can again use instru-
ments, or any of the other techniques used in more traditional endogeneity problems, to
overcome this “simultaneity problem”.

The first problem, that is the use of functional forms which restricted elasticities in
unacceptable ways, manifested itself differently in different models and data sets. The
theoretical I.O. literature focussed on the nature competition when there was one di-
mension of product competition. This could either be a “vertical” or quality dimension
as in Shaked and Sutton (1982) or a horizontal dimension, as in Salop (1979) [and in
Hotelling’s (1929) classic work]. Bresnahan (1981), in his study of the automobile de-
mand and prices, was the first to bring this class of models to data. One (of several)
conclusions of the paper was that a one-dimensional source of differentiation among
products simply was not rich enough to provide a realistic picture of demand: in partic-
ular it implied that a particular good only had a nonzero cross price elasticity with its
two immediate neighbors (for products at a corner of the quality space, there was only
one neighbor).

McFadden himself was quick to point out the “IIA” (or independence of irrelevant
alternatives) problem of the logit model he used. The simplest logit model, and the one
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that had been primarily used when only aggregate data was available (data on quanti-
ties, prices, and product characteristics), has the utility of the ith consumer for the j th
product defined as

Ui,j = xjβ + εi,j ,

where the xj are the characteristics of product j (including the unobserved characteristic
and price) and the {εi,j } are independent (across both j for a given i and across i for
a given j ) identically distributed random variables.6 Thus xjβ is the mean utility of
product j and εi,j is the individual specific deviation from that mean.

There is a rather extreme form of the IIA problem in the demand generated by this
model. The model implies that the distribution of a consumer’s preferences over prod-
ucts other than the product it bought, does not depend on the product it bought. One can
show that this implies the following:

• Two agents who buy different products are equally likely to switch to a particular
third product should the price of their product rise. As a result two goods with the
same shares have the same cross price elasticities with any other good (cross price
elasticities are a multiple of sj sk , where sj is the share of good j ). Since both very
high quality goods with high prices and very low quality goods with low prices
have low shares, this implication is inconsistent with basic intuition.

• Since there is no systematic difference in the price sensitivities of consumers
attracted to the different goods, own price derivatives only depends on shares
(∂s/∂p) = −s(1 − s). This implies that two goods with same share must have
the same markup in a single product firm “Nash in prices” equilibrium, and once
again luxury and low quality goods can easily have the same shares.

No data will ever change these implications of the two models. If your estimates do not
satisfy them, there is a programming error, and if your estimates do satisfy them, we are
unlikely to believe the results.

A way of ameliorating this problem is to allow the coefficients on x to be individual-
specific. Then, when we increase the price of one good the consumers who leave that
good have very particular preferences, they were consumers who preferred the x’s of
that good. Consequently they will tend to switch to another good with similar x’s gen-
erating exactly the kind of substitution patterns that we expect to see. Similarly, now
consumers who chose high priced cars will tend to be consumers who care less about
price. Consequently less of them will substitute from the good they purchase for any
given price increase, a fact which will generate lower price elasticities and a tendency
for higher markups on those goods.

6 In the pure logit, they have a double exponential distribution. Though this assumption was initially quite
important, it is neither essential for the argument that follows, nor of as much importance for current applied
work. Its original importance was due to the fact that it implied that the integral that determined aggregate
demand had a closed form, a feature which receded in importance as computers and simulation techniques
improved.
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This intuition also makes it clear how the IIA problem was ameliorated in the few
studies which had micro data (data which matched individual characteristics to the
products those individuals chose), and used it to estimate a micro choice model which
was then explicitly aggregated into an aggregate demand system. The micro choice
model interacted observed individual and product characteristics, essentially producing
individual specific β’s in the logit model above. The IIA problem would then be ame-
liorated to the extent that the individual characteristic data captured the differences in
preferences for different x-characteristics across households. Unfortunately many of the
factors that determine different households preferences for different characteristics are
typically not observed in our data sets, so without allowing for unobserved as well as
observed sources of differences in the β, estimates of demand systems typically retain
many reflections of the IIA problem as noted above; see, in particular Berry, Levinsohn
and Pakes (2004) (henceforth MicroBLP) and the literature cited there.

The difficulty with allowing for individual specific coefficients on product charac-
teristics in the aggregate studies was that once we allowed for them the integral deter-
mining aggregate shares was not analytic. This lead to a computational problem; it was
difficult to find the shares predicted by the model conditional on the model’s parameter
vector. This, in turn, made it difficult, if not impossible, to compute an estimator with
desirable properties. Similarly in micro studies the difficulty with allowing for unob-
served individual specific characteristics that determined the sensitivity of individuals
to different product characteristics was that once we allowed for them the integral de-
termining individual probabilities was not analytic. The literature circumvented these
problems as did Pakes (1986), i.e. by substituting simulation for integration, and then
worried explicitly about the impact of the simulation error on the properties of the esti-
mators [see Berry, Linton and Pakes (2004) and the discussion below].

1.2. Characteristic space: Details of a simple model

The simplest characteristic based models assumes that each consumer buys at most one
unit of one of the differentiated goods. The utility from consuming good j depends
on the characteristics of good j , as well as on the tastes (interpreted broadly enough
to include income and demographic characteristics) of the household. Heterogenous
households have different tastes and so may choose different products.

The utility of consumer (or household) i for good j in market (or time period) t if it
purchases the j th good is

(1)uijt = U(x̃jt , ξjt , zit , νit , yit − pjt , θ),

where x̃j t is a K-dimensional vector of observed product characteristics other than
price, pjt is the price of the product, ξjt represents product characteristics unobserved
to the econometrician, zit and νit are vectors of observed and unobserved (to the econo-
metrician) sources of differences in consumer tastes, yit is the consumer’s income, and
θ is a vector of parameters to be estimated. When we discuss decisions within a single
market, we will often drop the t subscript.
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Note that the “partial equilibrium” nature of the problem is incorporated into the
model by letting utility depend on the money available to spend outside of this market
(yi − pj ). In many applications, the expenditure in other markets is not explicitly mod-
elled. Instead, yi is subsumed into either νi or zi and utility is modelled as depending
explicitly on price, so that utility is

(2)uij = U(x̃j , ξj , zi , νi, pj , θ).

The consumer chooses one of j products and also has the j = 0 choice of not buying
any of the goods (i.e. choosing the “outside option”). Denote the utility of outside good
as

(3)ui0 = U(x̃0, ξ0, zi , νi, θ),

where x̃0 could either be a vector of “characteristics” of the outside good, or else could
be an indicator for the outside good that shifts the functional form of U (because the
outside good may be difficult to place in the same space of product characteristics as
the “inside” goods). The existence of the outside option allows us to model aggregate
demand for the market’s products; in particular it allows market demand to decline if all
within-market prices rise.

The consumer makes the choice that gives the highest utility. The probability of that
product j is chosen is then the probability that the unobservables ν are such that

(4)uij > uir , ∀r �= j.

The demand system for the industry’s products is obtained by using the distribution of
the (zi , νi) to sum up over the values for these variables that satisfy the above condition
in the market of interest.

Note that, at least with sufficient information on the distribution of the (zi, νi), the
same model can be applied when: only market level data are available, when we have
micro data which matches individuals to the choices they make, when we have stratafied
samples or information on the total purchases of particular strata, or with any combina-
tion of the above types of data. In principal at least, this should make it easy to compare
different studies on the same market, or to use information from one study in another.

Henceforth we work with the linear case of the model in Equations (2) and (3). Let-
ting xj = (x̃j , pj ), that model can be written as

(5)Uij = �kxjkθik + ξj + εij ,

with

θik = θk + θo ′
k zi + θu ′

k νi,

where the “o” and “u” superscripts designate the interactions of the product character-
istic coefficients with the observed and the unobserved individual attributes, and it is
understood that xi0 ≡ 1.

We have not written down the equation for Ui,0, i.e. for the outside alternative, be-
cause we can add an individual specific constant term to each choice without changing
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the order of preferences over goods. This implies we need a normalization and we chose
Ui,0 = 0 (that is we subtract Ui,0 from each choice). Though this is notationally conve-
nient we should keep in mind that the utilities from the various choices are now actually
the differences in utility between the choice of the particular good and the outside alter-
native.7

Note also that we assume a single unobservable product characteristic, i.e. ξj ∈ R,
and its coefficient does not vary across consumers. That is, if there are multiple unob-
servable characteristics then we are assuming they can be collapsed into a single index
whose form does not vary over consumers. This constraint is likely to be more bind-
ing were we to have data that contained multiple choices per person [see, for example
Heckman and Snyder (1997)].8 Keep in mind, however, that any reasonable notion of
equilibrium would make pj depend on ξj (as well as on the other product characteris-
tics).

The only part of the specification in (5) we have not explained are the {εij }. They
represent unobserved sources of variation that are independent across individuals for a
given product, and across products for a given individual. In many situations it is hard
to think of such sources of variation, and as a result one might want to do away with the
{εij }. We show below that it is possible to do so, and that the model without the {εij } has
a number of desirable properties. On the other hand it is computationally convenient to
keep the {εij }, and the model without them is a limiting case of the model with them
(see below), so we start with the model in (5). As is customary in the literature, we will
assume that the {εij } are i.i.d. with the double exponential distribution.

Substituting the equation which determines θik into the utility function in (5) we have

(6)Uij = δj + �krxjkzirθ
o
rk + �klxjkνilθ

u
kl + εij ,

where

δj = �kxjkθk + ξj .

Note that the model has two types of interaction terms between product and consumer
characteristics: (i) interactions between observed consumer characteristics (the zi) and
product characteristics (i.e. �krxjkzirθ

o
rk), and (ii) interactions between unobserved

consumer characteristics (the νi) and product characteristics (i.e. �klxjkνilθ
u
kl). It is

these interactions which generate reasonable own and cross price elasticities (i.e. they
are designed to do away with the IIA problem).

7 We could also multiply each utility by positive constant without changing the order, but we use this nor-
malization up by assuming that the εi,j are i.i.d. extreme value deviates, see below.
8 Attempts we have seen to model a random coefficient on the ξ have lead to results which indicate that

there was no need for one, see Das, Olley and Pakes (1996).
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1.3. Steps in estimation: Product level data

There are many instances in which use of the model in (6) might be problematic, and we
come back to a discussion of them below. Before doing so, however, we want to consider
how to estimate that model. The appropriate estimation technique depends on the data
available and the market being modelled. We begin with the familiar case where only
product level demand data is available, and where we can assume that we have available
a set of variables w that satisfies E[ξ |w] = 0. This enables us to construct instruments
to separate out the effect of ξ from that of x in determining shares. The next section
considers additional sources of information, and shows how the additional sources of
information can be used to help estimate the parameters of the problem. In the section
that follows we come back to the “identifying” assumption, E[ξ |w] = 0, consider the
instruments it suggests, and discuss alternatives.

When we only have product level data all individual characteristics are unobserved,
i.e. zi ≡ 0. Typically some of the unobserved individual characteristics, the νi will
have a known distribution (e.g. income), while some will not. For those that do not we
assume that distribution up to a parameter to be estimated, and subsume those parame-
ters into the utility function specification (for example, assume a normal distribution
and subsume the mean in θk and the standard deviation in θu

k ). The resultant known
joint distribution of unobserved characteristics is denoted by fν(·). We now describe
the estimation procedure.

The first two steps of this procedure are designed to obtain an estimate of ξ(·) as a
function of θ . We then require an identifying assumption that states that at θ = θ0, the
true value of θ , the distribution of ξ(·; θ) obeys some restriction. The third step is a
standard method of moments step that finds the value of θ that makes the distribution of
the estimated ξ(·, θ) obey that restriction to the extent possible.

STEP I. We first find an approximation to the aggregate shares conditional on a partic-
ular value of (δ, θ). As noted by McFadden (1974) the logit assumption implies that,
when we condition on the νi , we can find the choice probabilities implied by the model
in (6) analytically. Consequently the aggregate shares are given by

(7)σj (θ, δ) =
∫

exp[δj + �klxjkνilθ
u
kl]

1 +∑q exp[δq + �klxqkνilθ
u
kl]

f (ν) d(ν).

Typically this integral is intractable. Consequently we follow Pakes (1986) and use
simulation to obtain an approximation of it. I.e. we take ns pseudo-random draws
from fν(·) and compute

(8)σj

(
θ, δ, P ns) =

ns∑
r=1

exp[δj + �klxjkνilr θ
u
kl]

1 +∑q exp[δq + �klxqkνilr θ
u
kl]

,

where P ns denotes the empirical distribution of the simulation draws. Note that the use
of simulation introduces simulation error. The variance of this error decreases with ns
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but for given ns can be made smaller by using importance sampling or other variance re-
duction techniques [for a good introduction to these techniques see Rubinstein (1981)].
Below we come back to the question of how the simulation error affects the precision
of the parameter estimates.

STEP II. Let the vector of observed shares be sn = [sn
1 , . . . , sn

J ], where n denotes the
size of the sample from which these shares are calculated (which is often very large).
Step II finds the unique values of δ that makes the predicted shares for a given θ and set
of simulation draws equal to sn. BLP show that iterating on the system of equations

(9)δk
j (θ) = δk−1

j (θ) + ln
[
sn
j

]− ln
[
σj

(
θ, δk−1, P ns)]

leads to the unique δ that makes σj (θ, δ, P ns) = sn
j for all j .9

Call the fixed point obtained from the iterations δ(θ, sn, P ns). The model in (6) then
implies that

(10)ξj

(
θ, sn, P ns) = δ

(
θ, sn, P ns)− �kxjkθk.

I.e. we have solved for the {ξj } as a function of the parameters, the data, and our simu-
lation draws.

“IDENTIFICATION”. An identifying restriction for our model will be a restriction on
the distribution of the true ξ , the ξ obtained when we evaluate the above equation at
n = ns = ∞, that will only be satisfied by ξj (θ, s∞, P ∞) when θ = θ0 (but not at other
values of θ ). Different restrictions may well be appropriate in different applied cases,
and we come back to a discussion of possible restrictions below. For now, however, we
illustrate by assuming we have a set of instruments, say w that satisfy E[ξ(θ0)|w] = 0.
In that case the third and final step of the algorithm is as follows.

STEP III. Interact ξj (θ, sn, P ns) with function of w and find that value of θ that makes
the sample moments as close as possible to zero. I.e. minimize ‖GJ,n,ns(θ)‖ where

(11)GJ,n,ns(θ) =
∑
j

ξj

(
θ, sn, P ns)fj (w).

Formal conditions for the consistency and asymptotic normality of this estimator are
given in Berry, Linton and Pakes (2004), and provided one accounts for simulation and
sampling error in the estimate of the objective function, standard approximations to the
limit distribution work [see, for e.g. Pakes and Pollard (1989)]. A few of the properties
of this limit distribution are discussed below. For now we want only to note that there
is an analytic form for the θ parameters conditional on the θu; i.e. for the given θu the
solution for θ is given by the standard instrumental variable formula. So the nonlinear
search is only over θu.

9 Note that one has to recompute the shares at the “new” δ at each iteration. The system of equations is
a mapping from possible values of δ into itself. BLP prove that the mapping is a contraction mapping with
modulus less that one. The iterations therefore converge geometrically to the unique fixed point of the system.
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1.4. Additional sources of information on demand parameters

Often we find that there is not enough information in product level demand data to
estimate the entire distribution of preferences with sufficient precision. This should not
be surprising given that we are trying to estimate a whole distribution of preferences
from just aggregate choice probabilities. Other than functional form, the information
that is available for this purpose comes from differences in choice sets across markets
or time periods (this allows you to sweep out preferences for given characteristics),
and differences in preferences across markets or over time for a fixed choice set (the
preferences differences are usually associated with known differences in demographic
characteristics). The literature has added information in two ways. One is to add an
equilibrium assumption and work out its implications for the estimation of demand
parameters, the other is to add data. We now consider each of these in turn.

1.4.1. Adding the pricing equation

There is a long tradition in economics of estimating “hedonic” or reduced form equa-
tions for price against product characteristics in differentiated product markets [see, in
particular Court (1939) and Griliches (1961)]. Part of the reason those equations were
considered so useful, useful enough to be incorporated as correction procedures in the
construction of most countries’ Consumer Price Indices, was that they typically had
quite high R2’s.10 Indeed, at least in the cross section, the standard pricing equations
estimated by I.O. economists have produced quite good fits (i.e. just as the model pre-
dicts, goods with similar characteristics tend to sell for similar prices, and goods in parts
of the characteristic space with lots of competitors tend to sell for lower prices). Perhaps
it is not surprising then that when the pricing system is added to the demand system the
precision of the demand parameters estimates tends to improve noticeably (see, for e.g.
BLP).

Adding the pricing system from an oligopoly model to the demand system and es-
timating the parameters of two systems jointly is the analogue of adding the supply
equation to the demand equation in a perfectly competitive model and estimating the
parameters of those systems jointly. So it should not be surprising that the empirical
oligopoly literature itself started by estimating the pricing and demand systems jointly
[see Bresnahan (1981)]. On the other hand there is a cost of using the pricing equation.
It requires two additional assumptions: (i) an assumption on the nature of equilibrium,
and (ii) an assumption on the cost function.

The controversial assumption is the equilibrium assumption. Though there has been
some empirical work that tries a subset of the alternative equilibrium assumptions and
sees how they fit the data [see, for e.g. Berry, Levinsohn and Pakes (1999) or Nevo

10 For a recent discussion of the relationship between hedonic regressions and pricing equations with special
emphasis on implications for the use of hedonics in the CPI, see Pakes (2004).
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(2001)], almost all of it has assumed static profit maximization, no uncertainty, and that
one side of the transaction has the power to set prices while the other can only decide
whether and what to buy conditional on those prices. There are many situations in which
we should expect current prices to depend on likely future profits (e.g.’s include any sit-
uation in which demand or cost tomorrow depends on current sales, and/or where there
are collusive possibilities; for more discussion see the last section of this chapter). Ad-
ditionally there are many situations, particularly in markets where vertical relationships
are important, where there are a small number of sellers facing a small number of buy-
ers; situations where we do not expect one side to be able to dictate prices to another
[for an attempt to handle these situations see Pakes et al. (2006)].

On the other hand many (though not all) of the implications of the results that are of
interest will require the pricing assumption anyway, so there might be an argument for
using it directly in estimation. Moreover, as we have noted, the cross-sectional distrib-
ution of prices is often quite well approximated by our simple assumptions, and, partly
as a result, use of those assumptions is often quite helpful in sorting out the relevance
of alternative values of θ .

We work with a Nash in prices, or Bertrand, assumption. Assume that marginal cost,
to be denoted by mc, is log linear in a set of observables rkj and a disturbance which
determines productivity or ωj , i.e.

(12)ln[mcj ] =
∑

rk,j θ
c
k + ωj .

r will typically include product characteristics, input prices and, possibly the quantity
produced (if there are nonconstant returns to scale). As a result our demand and cost
disturbances (i.e. ξ and ω) will typically be mean independent of some of the compo-
nents of r but not of others. Also we might expect a positive correlation between ξ and
ω since goods with a higher unobserved quality might well cost more to produce.

Since we characteristically deal with multiproduct firms, and our equilibrium as-
sumption is that each firm sets each of its prices to maximize the profits from all of
its products conditional on the prices set by its competitors, we need notation for the
set of products owned by firm f , say Jf . Then the Nash condition is that firms set each
of their prices to maximize

∑
j∈Jf

(pj − Cj (·))Msj (·), where Cj is total costs. This
implies that for j = 1, . . . , J

(13)σj (·) +
∑
l∈Jf

(pl − mcl )M
∂σl(·)
∂pj

= 0.

Note that we have added a system of J equations (one for each price) and R = dim(r)

parameters to the demand system. So provided J > R we have added degrees of free-
dom.

To incorporate the information in (13) and (12) into the estimation algorithm rewrite
the first order condition as s + (p − mc)� = 0, where �i,j is nonzero for elements of
a row that are owned by the same firm as the row good. Then

p − mc = �−1σ(·).
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Now substitute from (12) to obtain the cost disturbance as

(14)ln
(
p − �−1σ

)− r ′θc = ω(θ),

and impose the restrictions that

Efj (w)ωj (θ) = 0 at θ = θ0.

We add the empirical analogues of these moments to the demand side moments
in (11) and proceed as in any method of moments estimation algorithm. This entails
one additional computational step. Before we added the pricing system every time we
evaluated a θ we had to simulate demand and do the contraction mapping for that θ .
Now we also have to calculate the markups for that θ .

1.4.2. Adding micro data

There are a number of types of micro data that might be available. Sometimes we have
surveys that match individual characteristics to a product chosen by the individual. Less
frequently the survey also provides information on the consumer’s second choice (see,
for e.g. MicroBLP), or is a panel which follows multiple choices of the same consuming
unit over time. Alternatively we might not have the original survey’s individual choice
data, but only summary statistics that provide information on the joint distribution of
consumer and product characteristics [for a good example of this see Petrin’s (2002)
use of Consumer Expenditure Survey moments in his study of the benefits to the in-
troduction of the minivan]. We should note that many of the micro data sets are choice
based samples, and the empirical model should be built with this in mind [see, for e.g.
MicroBLP (2004); for more on the literature on choice based sampling see Manski and
Lerman (1977) and Imbens and Lancaster (1994)].

Since the model in (6) is a model of individual choice, it contains all the detail needed
to incorporate the micro data into the estimation algorithm. Thus the probability of an
individual with observed characteristics zi choosing good j given (θ, δ) is given by

(15)

Pr(j |zi, θ, δ) =
∫

ν

exp[δj + �klxjkzilθ
o
kl + �klxjkνilθ

u
kl]

1 +∑q exp[δq + �klxqkzilθ
o
kl + �klxjkνilθ

u
kl]

f (ν) d(ν).

1.4.2.1. What can be learned from micro data Assume temporarily that we can actu-
ally compute the probabilities in (15) analytically. Then we can use maximum likelihood
to estimate (θo, θu). These estimates do not depend on any restrictions on the distribu-
tion of ξ . I.e. by estimating free δj coefficients, we are allowing for a free set of ξj .

On the other hand recall that

δj = �kxjkθk + ξj .

So we cannot analyze many of the implications of the model (including own and cross
price elasticities) without a further assumption which enables us to separate out the
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effect of ξ from the effect of the x on δ (i.e. without the identifying assumption referred
to above). The availability of micro data, then, does not solve the simultaneity problem.
In particular, it does not enable us to separate out the effect of price from unobservable
characteristics in determining aggregate demand. On the other hand there are a few
implications of the model that can be analyzed from just the estimates of (δ, θo, θu).
In particular, estimates of consumer surplus from the products currently marketed (and
hence “ideal” consumer price indices) depend only on these parameters, and hence do
not require the additional identifying assumption.

Now say we wanted to use the data to estimate θ . In order to do so we need a further
restriction so assume, as before, that we have instruments w, and can provide instru-
mental variable estimates of the θ . The number of observations for the instrumental
variable regressions is the number of products. That is, at least if we chose to estimate
(θo, θu) without imposing any constraints on the distribution of ξ , the precision of the
estimates of θ will depend only on the richness of the product level data. Moreover,
IV regressions from a single cross-section of products in a given market are not likely
to produce very precise results; in particular there is likely to be very little independent
variance in prices. Since additional market level data is often widely available, this ar-
gues for integrating it with the micro data, and doing an integrated analysis of the two
data sources.

One more conceptual point on survey data. What the survey data adds is information
on the joint distribution of observed product and consumer attributes. We would expect
this to be very helpful in estimating θo, the parameters that determine the interactions
between z and x. There is a sense in which it also provides information on θu, but that
information is likely to be much less precise. That is we can analyze the variance in
purchases among individuals with the same choice set and the same value of z and use
that, together with the i.i.d. structure of the ε, to try and sort out the variance-covariance
of the ν. However this requires estimates of variances conditional on z, and in practice
such estimates are often quite imprecise. This is another reason for augmenting cross-
sectional survey data with aggregate data on multiple markets (or time periods) in an
integrated estimation routine; then the observed variance in z could determine the θo

and differences in choice sets could help sweep out the impact of the θu parameter.
When the data does have second choice information, or when we observe the same

consuming unit purchasing more than one product, there is likely to be much more
direct information on θu. This because the correlation between the x-intensity of the
first choice and the second choice of a given individual is a function of both θo and the
θu terms, and the θo terms should be able to be estimated from only the first choice
data. A similar comment can be made for repeated choices, at least provided the utility
function of the consuming unit does not change from choice to choice.

Table 2 illustrates some of these points. It is taken from MicroBLP where the data
consisted of a single cross-sectional survey of households, and the market level data
from the same year. The survey contained information on household income, the number
of adults, the number of children, the age (of the head) of household, and whether their
residence was rural, urban, or suburban (and all of these were used in the estimation).
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Table 2
Price substitutes for selected vehicles, a comparison among models

Vehicle Full model Logit 1st Logit 1st and 2nd Sigma only

Metro Tercel Caravan Ford FS PU Civic
Cavalier Escort Caravan Ford FS PU Escort
Escort Tempo Caravan Ford FS PU Ranger
Corolla Escort Caravan Ford FS PU Civic
Sentra Civic Caravan Ford FS PU Civic
Accord Camry Caravan Ford FS PU Camry
Taurus Accord Caravan Ford FS PU Accord
Legend Town Car Caravan Ford FS PU LinTnc
Seville Deville Caravan Ford FS PU Deville
Lex LS400 MB 300 Econovan Ford FS PU Seville
Caravan Voyager Voyager Voyager Voyager
Quest Aerostar Caravan Caravan Aerostar
G Cherokee Explorer Caravan Chv FS PU Explorer
Trooper Explorer Caravan Chv FS PU Rodeo
GMC FS PU Chv FS PU Caravan Chv FS PU Chv FS PU
Toyota PU Ranger Caravan Chv FS PU Ranger
Econovan Dodge Van Caravan Ford FS PU Dodge Van

Source: From Berry, Levinsohn and Pakes (2004).

That study had particularly rich information on vehicle preferences, as each household
reported its second as well as its first best choice.

Table 2 provides the best price substitutes for selected models from demand systems
for automobiles that were estimated in four different ways: (i) the full model allows
for both the zi and the νi (i.e. for interactions between both observed and unobserved
individual characteristics and product characteristics), (ii) the logit models that allow for
only the zi , and (iii) the σ ’s only model allows for only the νi . The most important point
to note is that without allowing for the νi there is a clear IIA problem. The prevalence of
the Caravan and the Full Size (FS) pickups when we use the logit estimates (the models
without the νi) is a result of them being the vehicles with the largest market shares
and the apparent absence of the observed factors which cause different households to
prefer different product characteristics differentially. Comparing to column (iv) it is
clear that the extent of preference heterogeneity caused by household attributes not in
our data is large. MicroBLP also notes that when they tried to estimate the full model
without the second choice information their estimates of the θu parameters were very
imprecise; too imprecise to present. However when they added the second choice data
they obtained both rather precise estimates of the contributions of the unobserved factors
and substitution patterns that made quite a bit of sense. Finally we note that the fact that
there was only a single year’s worth of data made the estimates of θ quite imprecise,
and the paper uses other sources of information to estimate those parameters.
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1.4.2.2. Computational and estimation issues: Micro data There are a number of
choices to make here. At least in principal we could (i) estimate (θo, θu, δ) pointwise,
or (ii) make an assumption on the distribution of ξ (e.g. E[ξ |w] = 0), and estimate
(θo, θu, θ) instead of (θo, θu, δ). However the fact that ξ is a determinant of price, and
price is in the x vector, makes it difficult to operationalize (ii). To do so it seems that
one would have to make an assumption on the primitive distribution of ξ , solve out
for equilibrium prices conditional on (θ, ξ, x), substitute that solution into the choice
probabilities in (15), and then use simulation to integrate out the ξ and ν in the formula
for those probabilities. This both involves additional assumptions and is extremely de-
manding computationally. The first procedure also has the advantage that its estimates
of (θo, θu) are independent of the identifying restriction used to separate out the effect
of ξ from the effect of x on θ .

Assume that we do estimate (θo, θu, δ). If there are a large number of products or J ,
this will be a large dimensional search (recall that there are J components of δ), and
large dimensional searches are difficult computationally. One way to overcome this
problem is to use the aggregate data to estimate δ conditional on θ from the contraction
mapping in (9), and restrict the nonlinear search to searching for (θo, θu).

Finally since the probabilities in (15) are not analytic, either they, or some transform
of them (like the score), will have to be simulated. There is now quite a bit of work on
simulating the probabilities of a random coefficient logit model [see Train (2003) and
the literature cited there]. Here we only want to remind the reader that in the applications
we have in mind it is likely to be difficult to use the log (or a related) function of the
simulated probabilities in the objective function. Recall that if pns(θ) is the simulated
probability, and pns(θ) = p(θ) + ens, where ens is a zero mean simulation error, then

log
[
pns(θ)

] ≈ log
[
p(θ)

]+ ens

p(θ)
− (ens)2

2 × p(θ)2
.

So if the simulated probabilities are based on ns independent simulation draws each
of which has variance V (p(θ)) the bias in the estimate of the log probability will be
approximately

E log
[
pns(θ)

]− log
[
p(θ)

] ≈ − 1

2 × ns × p(θ)
,

and ns must be large relative to p(θ) for this bias to go away (this uses the fact that
Var(pns(θ)) ≈ p(θ)/ns).

In many Industrial Organization problems the majority of the population do not pur-
chase the good in a given period, and the probabilities of the inside goods are formed
by distributing the remainder of the population among a very large number of goods.
For example, in MicroBLP’s auto example, only ten per cent of households purchase a
car in the survey year, and that ten percent is distributed among more than two hundred
models of cars. So it was common to have probabilities on the order of 10−4. It should
not be a surprise then that they chose to fit moments which were linear functions of
the error in estimating the probabilities (they fit the covariances of car characteristics
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and household characteristics predicted by the model to those in the data) rather than
maximizing a simulated likelihood.

1.4.3. Identifying restrictions

Recall that the source of the endogeneity problem in the demand estimates is the
correlation of the product specific unobservable, our ξ , with some of the observable
characteristics of the product; in particular we are worried about a correlation of ξ with
price. The contraction mapping in (9) is helpful in this respect as it delivers ξ as a linear
function of observables. As a result, any of the standard ways of solving endogeneity
problems in linear models can be employed here.

The most familiar way of dealing with endogeneity problems in linear models is to
use instruments. The question then becomes what is an appropriate instrument for x’s
in the demand system, a question which has been discussed extensively in the context
of perfectly competitive models of supply and demand. As in those models cost shifters
that are excluded from demand and uncorrelated with the demand error are available as
instruments. The familiar problem here is that input prices typically do not vary much;
at least not within a single market. There are a couple of important exceptions. One
is when production takes place in different locations even though the products are all
sold in one market [as is common when investigating trade related issues, see Berry,
Levinsohn and Pakes (1999)]. Another is when a subset of the x’s are exogenous, the
cost factors are differentially related to different x’s, and the x-intensity of different
product varies. In this case interactions between the cost factors and those x’s should be
useful instruments.

In addition to cost instruments, Nevo (2001) uses an idea from Hausman (1996)
market-equilibrium version of the AIDS model, applied to a time-series/cross-section
panel of geographically dispersed set of markets. The underlying assumption is that de-
mand shocks are not correlated across markets while cost shocks are correlated across
markets. The prices of goods in other markets then become instruments for the price of
goods in a given market. Nevo (2001) studies breakfast cereals and so sources of com-
mon cost shocks include changes in input prices; sources of common demand shocks
(which are ruled out) include national advertising campaigns.

In oligopoly markets prices typically sell at a markup over marginal cost. So if the
product’s own (x̃j , rj )’s are used as instruments, then so might the (x̃−j , r−j ) of other
products, giving us a lot of potential instruments. Moreover, if price setting models like
the one in Equation (13) are appropriate (and recall that they often have a lot of explana-
tory power), the impact of the (x−j , r−j ) on pj will depend on whether the product’s
are owned by the same or by different firms. This type of reasoning dates back at least
to Bresnahan (1987), who notes the empirical importance of the idea that markups will
be lower in “crowded” parts of the product space and that they will be higher when
“nearby” products are owned by the same firm. BLP and Berry, Levinsohn and Pakes
(1999) rely on this sort of argument to propose the use of functions of rivals’ observed
product characteristics, and of the ownership structure of products, as instruments. Re-
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latedly exogenous changes in competitive conditions across markets are also candidate
instruments (say due to the size of the market, or heterogeneity in entry costs).

It is difficult to specify a priori how to make optimal use of the product characteristics
to predict markups. Both BLP and Berry, Levinsohn and Pakes (1999) try approxi-
mations to the “optimal instrument” formula suggested by Chamberlain (1984). This
assumes

E[ξj |x̃j , x̃−j , rj , r−j ] = E[ωj |x̃j , x̃−j , rj , r−j ] = 0,

homoscedasticity, and ignores the within market dependence induced by the market in-
teractions. Chamberlain’s results then imply that the optimal instrument for our problem
is the derivative of these expectations with respect to the parameter vector.

In our context this will be a difficult to compute function of all the product char-
acteristics. BLP tries to approximate this function “nonparametrically” using the ex-
changeable basis provided in Pakes (1994). Berry, Levinsohn and Pakes (1999), try
an alternative approximation which is more direct, but also more computationally bur-
densome. They use a first-stage estimate of the parameter vector, θ , to recalculate
equilibrium prices with all values of ξ = ω = 0. They then compute the derivative
of ξ and ω with respect to θ at the first stage estimate of θ and the new equilibrium
prices, and use it as an instrument. I.e. instead of evaluating the mean of the deriva-
tive they evaluate the derivative at the mean of the disturbance vector. Note that the
instrument is then a function only of exogenous variables, and so results in consistent
estimators (even though they are not quite efficient).

So far we have assumed mean independence of the unobservable characteristics, and,
as noted, there are plausible reasons to believe that product characteristics themselves
are correlated with ξ . After all the product design team has at least some control over the
level of ξ , and the costs and benefits of producing different levels of the unobservable
characteristics might well vary with the observed characteristics of the product. One
possible solution would be to completely model the choice of product characteristics,
as in the dynamic models considered later in this chapter.

That said since p is typically not as hard to adjust as the other product characteristics,
the relationship between ξ and x̃ does not seem to be nearly as direct as that between ξ

and p (which is the reason it is often ignored; just as it was in traditional models of
demand and supply). So one might be willing to make some reduced form assumption
which allows us to proceed without all the detail of a dynamic game. In particular, one
might try to use changes in demand over time, or across markets, for the same good to
control for the influence of unobserved product characteristics.

For example, suppose that we observe demand for the same product over time. It
might be reasonable to suppose that the product characteristics are correlated with the
unobservable in the year of product introduction. However one might also argue that any
changes in the level of unobserved characteristics over time are due to changes in either
perception of the product or in customer service that have little to do with the initial x

choices. So if t0 were the date of introduction of the good we might assume that

(16)ξj,t = ξj,t0 + ηj,t+1,
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where ηj,t+1 is mean independent of the observed characteristics of all products. Alter-
natively we could assume that ξj,t followed a first order Markov process with only ξj,t0 ,
and not the increments in the process, correlated with observed characteristics.

Relatedly if the data contains sales of the same product in many markets one could
think of restrictions on how the unobservable for a single product changes across mar-
kets. The most straightforward example of this is to require ξ to be the same across
markets. This is quite a powerful restriction, and one might question it on the basis of
differences in the distribution of consumer preferences across markets that impact on
their estimated ξ ’s. A weaker assumption would be that the difference between ξ ’s for
the same product across markets is uncorrelated with the observed x. Similarly, some
products within a market may differ only by the addition of some optional features and
we could restrict the way that ξ changes across products that vary only in their options.

1.5. Problems with the framework

We have motivated our discussion on demand estimation by noting how the recent liter-
ature dealt with the problems that arose in using representative agent models in product
space. There are many senses, however, in which the framework outlined above can be
too restrictive for particular problems. This section reviews some of the more obvious
of them. The impact of these problems depend upon the market one is analyzing and the
issues one is focusing on. Also, at least partial solutions to some of these problems are
available, and we will direct the reader to them where we can. In large part, however,
this section is an outline of agendas for future research on demand estimation for I.O.
problems.

We begin with multiple choice and/or dynamics, and then come back to the prob-
lem in the static discrete choice model considered above. Most empirical studies simply
ignore issues related to multiple choices and/or dynamics. The hope is that the esti-
mated demand system is still the best currently available approximation for analyzing
the question of interest. To us the surprising part of the results of those studies is that the
framework seems to provide a “reasonable” approximation to substitution patterns, and
even more surprisingly, a reasonable approximation to pricing patterns. This despite the
fact that we know that consumers’ demands and the market equilibrium outcomes are
products of much more complicated processes than those we model. Even so, as will
become clear presently, there are a number of issues of importance to I.O. which cannot
be studied empirically without a more detailed understanding of multiple choice and/or
the dynamic aspects of demand.

Multiple units of demand

There are many situations for which a model based on the choice of either one or zero
units of a good does not match reality.11 Models for choosing a finite number of units

11 Dubin and McFadden (1984) provide an earlier example with one discrete choice and one continuous
choice.
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from a set of substitute goods require a specification for the utility from multiple units.
Then, at least in principle, we are back to a discrete choice for “tuples” of goods. How-
ever to maintain tractability when the number of units can grow large the specification
is likely to require constraints which cut down the choice set by implying that some
choices are dominated by others (otherwise the size of the choice set grows as JC ,
where J is the number of products and C is the maximum number of purchases).

One example of the use of such constraints is Hendel’s (1999) two-stage multiple-
unit/multiple good framework for the demand of a firm for computers. He simplifies the
problem by imagining that the firm faces a random, discrete number of tasks. For each
task, it chooses only one type (brand) of computer and, according to the random size of
the tasks, a number of computers to purchase. This explicitly accounts for decisions to
purchase multiple units of multiple kinds of goods.

Gentzkow (2004) considers a problem with a small number of goods, but where there
are a small number of choices. In that study of online and print newspapers, some of the
goods are potentially complements, and this requires a different set of modifications.
Moreover, as Gentzkow shows the determination of whether goods are in fact comple-
ments or substitutes interacts with the issue of the form of consumer heterogeneity in
subtle ways reminiscent of the initial condition problems in panel data estimation [see
Heckman (1981)].

A related problem involves continuous choice over multiple goods. If all goods are
purchased in some positive amount by every consumer, then a traditional continuous
demand approach, equating marginal rates of substitution across all goods, is appropri-
ate. But many real-world consumer data problems involve a large number of goods with
many zero purchase decisions and many positive purchase decisions. Chan (2002) con-
siders the Kuhn–Tucker version of the traditional continuous choice problem to study
soft drink purchases.

Dynamic demand

Yet another set of problems arises when the demand for the good is inherently dynamic,
as occurs with either durable, storable, or experience goods. Models which are appro-
priate for dynamic demand estimation can become quite complex; they require forward
looking consumers whose behavior depends on the likely distribution of future (as well
as current) offerings. Moreover, in a complete model these future offerings would, in
turn, depend on producer’s perceptions of consumer demand. A number of new studies
make simplifying assumptions which allow them to make some headway.

Both Hendel and Nevo (2002) and Erdem, Imai and Keane (2003) consider a problem
of durable good demand in an explicitly dynamic framework. They consider shopping
decisions when consumers are allowed to store purchases, and use a reduced form as-
sumption on the process generating prices. It has been clear to I.O. economists for some
time that we are going to have to model intertemporal substitution of this form in order
to understand “sales” in retail markets [see Sobel (1984)].
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Two problems in this kind of study are that the rate of consumption (inventory re-
duction) at home is typically not observed and the dimension of the state space (which
involves both the current price vector, which predicts future prices, and also the vector
of household inventories of different brands). In these models new purchases are added
to a single-index of home inventories, with different brands of product receiving differ-
ent utility weights in the inventory stock. This single index of inventories reduces the
dimensionality of the state space. Another simplifying assumption is that unobserved
household consumption follows a simple rule.

Esteban and Shum (2002) consider a model of durable automobile purchases. They
assume a used-car market with zero transaction costs. The zero transaction costs imply
that the joint distribution of past choices and consumer characteristics are not a state
variable of the problem. Under these assumptions they are able to derive empirical im-
plications about the dynamic pricing problem of the durable goods manufacturer (in
determining current price the manufacturer has to worry about future aggregate supply
of the used goods). Many, if not most, manufacturing goods are durable.

Studies of demand for advertised experience goods include Erdem and Keane (1996),
Ackerberg (2003), and Crawford and Shum (2007). All of these papers feature Bayesian
consumers who learn both from experience and from adverting. This leads to a fairly
complex dynamic programming problems for the consumer. The studies largely ignore
the firm’s endogenous pricing and advertising decisions.

Problems with the static discrete choice specification

There are also aspects of the static discrete choice specification of the model outlined
above whose flexibility, and/or implications, are not yet well understood. One such
issue is whether the second derivatives of the demand function are very flexibly es-
timated. This will determine whether two goods are strategic substitutes or strategic
complements, and hence has implications for the analysis of the structure of strategic
interaction, and appears to be largely unexplored in the current literature. More gen-
erally there are a host of questions on what we can learn nonparametrically about the
structure of demand from different kinds of data that we have not touched on here (for
a discussion of some of them, see Matzkin’s contribution to this volume).

A second such issue concerns the role of the i.i.d. “idiosyncratic match values”, the
εij ’s, in the models above. These are added to the model largely for computational con-
venience; they do not seem to match any omitted causal demand determinant. Moreover,
the presence of the εij has implications. They imply that each product is “born” with a
distribution of consumer tastes whose conditional distribution, conditional on the tastes
for other products, has support that ranges from minus to plus infinity. This implies that
every conceivable product, no matter its characteristics and price, will have a strictly
positive (though perhaps quite tiny) expected market share.

Given the standard εij ’s, each product will also have a positive cross-price effect with
every other product: competition is never completely local. Perhaps most problematic,
it also implies that if we define a consumer by a (z, ν) combination, every consumer’s
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utility will grow without bound as we increase the number of products – regardless of
the characteristics or prices of the new products that are introduced. As a result there is
a worry about the ability of the model in (6) to provide an adequate approximation to
the benefits from introducing new goods.12

To investigate these issues more fully, Berry and Pakes (2005) consider a “pure char-
acteristic” model of demand. That model is exactly the model in Equation (6) once we
omit the εij terms. They consider the analytic properties of the model, then provide an
estimation algorithm for it and explore its computational properties, and finally provide
Monte Carlo evidence on its performance. Song (2004) has used this model to evaluate
the gains from new semiconductor chips. The pure characteristics model is somewhat
more computationally burdensome then the model in Equation (6), largely because the
equation for solving for δ for that model (the analogue to Equation (9)) is not necessar-
ily a contraction with modulus less than one. On the other hand its shares are easier to
simulate to sufficient accuracy. However the jury is still out on the major question; the
question of whether the pure characteristic model tends to provide a better approxima-
tion to the consumer surplus gains from new goods then the model with the εij .

Berry and Pakes (2005) and Bajari and Benkard (2005) discuss two different versions
of the “pure characteristics” model with “no ε”s. Berry and Pakes (2005) consider a
discrete choice version of the model, with a utility function of

(17)uij = xjβi − αipj + ξj ,

where βi and αi are random coefficients associated with consumer i’s tastes for char-
acteristics and price of product j . Berry and Pakes suggest a BLP-style estimation
algorithm.

In contrast, Bajari and Benkard (2005) obtain an estimate of the unobservable de-
mand component, ξj , from the pricing side of the model rather than the demand side.
The argument is that in a “pure characteristics” model, prices must be strictly increasing
in ξ conditional on other x’s. Following on recent econometric literature, they show that
a monotonic transformation of the ξ can be obtained from data on prices and x’s. This
transformed ξ is then used in the demand-side analysis to control for unobserved char-
acteristics. Note, however, that consistency of this approach relies on asymptotics in the
number of products, and further requires the assumption that products enter the market
in such a way that eventually they “fill up” the product space (i.e., for every product, it is
assumed that eventually there will be other products whose observed characteristics are
arbitrarily close to those of the given product). In practice it is clear that the approach

12 We hasten to note that estimating the consumer surplus generated by new products is an extremely difficult
task in any framework. This is because we typically do not have data on the demand for new products at
prices that are high enough to enable us to estimate the reservation prices of a large fraction of consumers.
The characteristic based demand model does use slightly more information in its estimation of consumer
surplus gains than do demand models in product space, since it uses the price variance for products with
similar characteristics. However the results are still not terribly robust. Petrin (2002), for example, reports
large differences in consumer surplus gains from differences in specifications and data sources.
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requires data with many products per market, but there has not been enough experience
to date to know what “many” means in this context.

1.6. Econometric details

This subsection summarizes results from Berry, Linton and Pakes (2004) who provide
limit theorems for the parameter estimates from differentiated product models. The ac-
tual form of the limit distributions depends on the type of data and type of model. We
will focus on the case where only one cross section of market level data is available.
Our purpose is to give the reader some indication of how the various estimation errors
that have been introduced are likely to effect the parameter estimates, and this is the
simplest environment in which to show that.13

Recall that the objective function minimized in the estimation algorithm or Equa-
tion (11) is a norm of

GJ

(
θ, sn, P ns) = 1

J

J∑
j=1

ξj

(
θ, sn, P ns)fj (w).

The ξj are defined implicitly as the solution to the system

sn
j = σj

(
ξ, x; θ, P ns),

where σ(·) is defined in (8), the w satisfy E[ξ |w, θ0] = 0, sn is the observed vector of
market shares, and P ns is notation for the vector of simulation draws used to compute
the market shares predicted by the model.

The objective function, ‖GJ (θ, sn, P ns)‖, has a distribution determined by three
independent sources of randomness: randomness generated from the draws on the prod-
uct characteristics (both observed and unobserved, in the full model these are vectors
{ξ, x̃, r, ω}), randomness generated from the sampling distribution of sn, and that gen-
erated from the simulated distribution P ns. Analogously there are three dimensions in
which our sample can grow: as n, as ns, and as J grow large.

The limit theorems allow different rates of growth for each dimension. Throughout
we take pathwise limits, i.e. we write n(J ) and ns(J ), let J → ∞, and note that our
assumptions imply n(J ), ns(J ) → ∞ at some specified rate. Note also that both sn

and σ(ξ, θ, P ) take values in RJ , where J is one of the dimensions that we let grow in
our limiting arguments. This is an unusual feature of the econometric model and causes
complications in the limiting arguments. As will become obvious sampling error (error

13 Cases in which there is data from many regional markets but the same goods are sold in each of them will
still have to deal with limits as the number of products grows large; it is just that then we might also want
to let the number of markets increase as we increase the number of products. Also in cases with regional
markets the computational problems we highlight will be even more severe, as then we will have to compute
ξ separately in each different market.
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in sn) plays an analogous role to simulation error (error in P ns), so for notational sim-
plicity assume that n is sufficiently large that we do not need to worry about sampling
error. When there is no sampling (simulation) error we set n (ns) equal to zero.

We need to find an approximation for the objective function which allows us to sep-
arate out the roles of the three sources of error. To this end write

(18)ξ
(
θ, s0, P ns) = ξ

(
θ, s0, P 0)+ {ξ(θ, s0, P ns)− ξ

(
θ, s0, P 0)}.

The function σ(ξ, θ, P ) is differentiable in ξ , and its derivative has an inverse, say

H−1(ξ, θ, P ) =
{

∂σ (ξ, θ, P )

∂ξ ′

}−1

.

Abbreviate σo(θ, s, P ) = σ(ξ(s, θ, P ), θ, P ) and Ho(θ, s, P ) = H(ξ(s, θ, P ), θ, P ),
and let

σ
(
ξ, P ns, θ

) = σ
(
ξ, P 0, θ

)+ εns(θ).

Then from the fact that we obtain ξ from σ(·) = σ(ξ, P 0, θ) + εns(θ) it follows that

ξ
(
θ, s0, P ns) = ξ

(
θ, s0, P 0)+ H−1

o

(
θ, s0, P 0){εns(θ)

}+ r
(
θ, sn, P ns),

where r(θ, sn, P ns) is a remainder term. Substituting into (18)

GJ

(
θ, sn, P ns) = GJ

(
θ, s0, P 0)+ 1

J
z′H−1

o

(
θ, s0, P 0){−εns(θ)

}
+ 1

J
z′r
(
θ, sn, P ns).

The limit theorems in Berry, Linton and Pakes (2004) work from this representa-
tion of GJ (θ, sn, P ns). To prove consistency they provide conditions which insure that:
(i) the second and third terms in this equation converge to zero in probability uniformly
in θ , and (ii) an estimator which minimized ‖GJ (θ, s0, P 0)‖ over θ ∈ Θ would lead to
a consistent estimator of θ0.

Asymptotic normality requires, in addition, local regularity conditions of standard
form, and a limiting distribution for H−1

o (θ, s0, P 0){−εns(θ)}. The rate needed for this
limit distribution depends on how the elements of the J × J matrix H−1

o (θ, s0, P 0)

grow, as J gets large. It is easiest to illustrate the issues that can arise here by going
back to the simple logit model.

In that model: ui,j = δj + εi,j , with the {εi,j } distributed i.i.d. type II extreme value,
and δj = xj θ + ξj . Familiar arguments show that σj = exp[δj ]/(1 + ∑q exp[δq ]),
while σ0 = 1/(1 +∑q exp[δq ]). In this case the solution to the contraction mapping
in (9) is analytic and

ξj

(
θ, so, P o

) = (ln[so
j

]− ln
[
so

0

])− xjβ.

Thus in this simple case

∂ξ

∂sj

∣∣∣∣
so

= 1

so
j

.
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Now consider how randomness affects the estimate of ξj (θ). In the simple logit model
the only source of randomness is in the sampling distribution of sn. That is we observe
the purchases of only a finite random sample of consumers. Letting their shares be sn

we have, sn − so = εn. The first order impact of this randomness on the value of our
objective function at any θ will be given by

H−1
o

(
θ, s0)× εn = ∂ξ

∂s

∣∣∣∣
s=s0

× εn.

This contains expressions like εn
j

1
so
j

. In the logit model as J → ∞, so
j → 0. So as J

grows large the impact of any given sampling error grows without bound.
A similar argument holds for the estimator of BLP’s model, only in this more com-

plicated model there are two sources or randomness whose impacts increase as J grows
large, sampling error and simulation error. Consequently Berry, Linton and Pakes show
that to obtain an asymptotically normal estimator of the parameter vector from this
model both n and ns must grow at rate J 2. Note the similarity here to the reason that
simulation error is likely to make use of maximum likelihood techniques with survey
data computationally demanding; i.e. the impact of the simulation error on the objective
function increases as the actual shares get smaller. The computational implication here
is that for data sets with large J one will have to use many simulation draws, and large
samples of purchasers, before one can expect to obtain an accurate estimator whose
distribution is approximated well by a normal with finite variance.

Interestingly, this is not the case for the pure characteristic model discussed in the last
subsection. We will not provide the argument here but Berry, Linton and Pakes (2004)
show that in that model both n and ns need only grow at rate J (and depending on the
pricing equilibrium, sometimes slower rates will do), for the normal limit distribution
to be appropriate. This gives the pure characteristic model a computational advantage
in calculating shares, though, as noted above, it is harder to compute the analogue of
the contraction mapping in (9) for the pure characteristics model, so it can still be com-
putationally demanding.

1.7. Concluding remark

The last decade has seen a rather dramatic change in the way I.O. researchers analyze
demand systems. There now is a reasonably substantial body of academic research us-
ing the new techniques, and it seems to indicate that, at least for many situations, they
allow us to get better approximations to substitution patterns and the likely demand for
new goods than had been possible previously. Perhaps not surprisingly then, the tech-
niques have been picked up, to varying extents, by: the consulting community, various
government offices, and even by a part of the business community. On the other hand,
as we have tried to emphasize, there are empirically important issues and data sets that
the new techniques are not able to analyze – at least not without substantial further de-
velopments. We welcome those developments. Moreover, we hope that they will not
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be judged by any absolute criteria but rather by the simple test of whether they allow
for improvements in our ability to empirically analyze one or more issue of substantive
interest.

2. Production functions

As noted in the introduction, the advent of new micro data sets on the inputs and out-
puts from the production process has generated a renewed interest in the estimation of
production functions and their use in the analysis of productivity. We begin this sec-
tion by reviewing the basic simultaneity and selection issues that the recent literature on
production function estimation has faced. We then consider the traditional solutions to
these issues, pointing out why those solutions are not likely to be terribly helpful in our
context.

Next we introduce an approach based on explicit models of input choices and exit
decisions that was first introduced in a paper by Olley and Pakes (1996). Our presenta-
tion of the Olley–Pakes model will stress the assumptions they used which either we,
or others before us, see as questionable (at least in certain environments). These in-
clude assumptions on: the timing of input choices, the cost of changing the levels of
different inputs over time, the process by which productivity evolves over time, and the
relationship of investment to that process. The rest of the section focuses on ways of
testing these assumptions, and details recently proposed modifications to the estimation
procedure which might be used when they seem appropriate.

2.1. Basic econometric endogeneity issues

We can illustrate all issues that will concern us with simple Cobb–Douglas production
technology

Yj = AjK
βk

j L
βl

j

with one output (Yj ) and two inputs; capital (Kj ) and labor (Lj ). Aj represents the
Hicksian neutral efficiency level of firm j , which is unobserved by the econometri-
cian.14

Taking natural logs results in a linear equation

(19)yj = β0 + βkkj + βllj + εj ,

where lowercase symbols represent natural logs of variables and ln(Aj ) = β0 + εj .
The constant term β0 can be interpreted as the mean efficiency level across firms, while

14 The methods discussed in this chapter are equally applicable to many other production functions. As we
shall see the major requirements will be that variable inputs have positive cross-partials with productivity, and
that the value of the firm is increasing in fixed inputs.
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εj is the deviation from that mean for firm j . εj might represent innate technology or
management differences between firms, measurement errors in output, or unobserved
sources of variance in output caused by weather, machine breakdowns, labor problems,
etc.

We have known since Marschak and Andrews (1944) that direct OLS estimation
of (19) is problematic. The problem is that the right-hand side variables, capital and
labor, are generally chosen by the firm. If the firm has knowledge of its εj (or some part
of εj ) when making these input choices, the choices will likely be correlated with εj .
For example, suppose that firms operate in perfectly competitive input and output mar-
kets (wj , rj , and pj being the prices of labor, capital, and output, respectively), that
capital is a fixed input, that firms perfectly observe εj before choosing labor, and that
firms’ current choices of labor only impact current profits and have no effect on future
profits. Then the firm’s optimal short-run choice of labor input is given by

(20)Lj =
[

pj

wj

βle
β0+εj K

βk

j

] 1
1−βl

.

Since choice of Lj (and thus lj ) depends directly on εj , OLS will generate biased
coefficient estimates. In more general models, firms’ choices of Kj will also typically
be correlated with εj .15

There is a second, less well documented, endogeneity problem often inherent in OLS
estimation of (19). Firm level datasets usually have a considerable level of attrition. For
example, over a wide range of manufacturing industries, Dunne, Roberts and Samuelson
(1988) find exit rates higher than 30% between 5 year census pairs. In applied work,
one only has data on firms prior to exiting. If firms have some knowledge of εj prior to
exiting, the firms that continue to produce will have εj draws from a selected sample,
and the selection criteria will be partially determined by the other fixed inputs. Again
as a simple example, suppose that firms are monopolies that are exogenously endowed
with different fixed levels of capital. Firms then observe εj , decide whether to exit or
not, and choose labor and produce if they have not exited. Also for simplicity suppose
that after production firms disappear, so that the firms have no dynamic considerations.
Firms in this situation will have an exit rule of the following form:

χ(εj ,Kj ; pj ,wj , β) = 0 (or exit) iff Π(εj ,Kj ; pj ,wj , β) < Ψ,

where β is the set of parameters (β0, βl, βk) and Ψ is the nonnegative selloff value of the
firm. Π is the argmax (over the variable input labor) of variable profits. This condition
states that firms exit if variable profits are not at least as high as the selloff value of the
firm.16

15 Empirical results have lead practitioners to conclude that most often the bias imparted on the labor coeffi-
cient βl is larger than the bias imparted on the capital coefficient βk . This is consistent with models of input
choice where labor is more easily adjustable than capital (i.e. labor is a “more variable” input than capital).
The intuition here is that because it is more quickly adjustable, labor is more highly correlated with εj .
16 This is a very simple example of an exit rule. More realistic models of exit would be dynamic in nature
and distinguish between fixed and sunk costs; see the discussion below.
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The key point is that this exit condition will generate correlation between εj and
Kj conditional on being in the dataset (i.e. on not exiting). In the Cobb–Douglas case,
both εj and Kj positively impact variable profits. As a result, selection will generate
negative correlation between εj and Kj , since firms with higher Kj will be able to
withstand lower εj without exiting. Thus, even if Kj is exogenous in the sense that it
is uncorrelated with εj in the entire population of potentially active firms, selection can
generate negative correlation in one’s sample.

2.2. Traditional solutions

As is often the case, the two traditional solutions to these endogeneity problems are
instrumental variables and fixed effects. Before discussing these approaches, we make
two slight changes to our basic model. First, to explicitly consider the use of longitudinal
panel data, we index our variables by time t . Second, to be precise about where exactly
the endogeneity problems are coming from, we divide the unobservable εjt into two
components, ωjt and ηjt , i.e.

(21)yjt = β0 + βkkjt + βllj t + ωjt + ηjt .

The ηjt here are intended to represent unobservables that are not observed (or pre-
dictable) by the firm before input and exit decisions at time t . As such, they will not be
correlated with these choices of inputs or exit behavior. On the other hand we do allow
the possibility that ωjt is observed (or predictable) by firms when they choose inputs
and make exit decisions. Intuitively, ωjt might represent factors like managerial ability
at a firm, expected down-time due to machine breakdowns or strikes, or the expected
rainfall at a farm’s location. ηjt might represent deviations from expected breakdown
rates in a particular year or deviations from expected rainfall at a farm. Another valid
interpretation of ηjt is that it is classical measurement error in yjt that is uncorrelated
with inputs and exit decisions. The basic point here is that we have consolidated our
endogeneity problems into ωjt . ηjt is not a concern in that regard. We will often refer
to ωjt as the firms “unobserved productivity”.

2.2.1. Instrumental variables

Instrumental variables approaches rely on finding appropriate instruments – variables
that are correlated with the endogenous explanatory variables but do not enter the
production function and are uncorrelated with the production function residuals. For-
tunately, the economics of production suggests some natural instruments. Examining
input demand functions (such as (20)) suggests that input prices (rjt and wjt ) directly
influence choices of inputs. In addition, these prices do not directly enter the production
function. The last necessary condition is that the input prices need to be uncorrelated
with ωjt . Whether this is the case depends on the competitive nature of the input mar-
kets that the firm is operating in. If input markets are perfectly competitive, then input
prices should be uncorrelated with ωjt since the firm has no impact on market prices.
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This is the primary assumption necessary to validate input price instruments. Note why
things break down when firms have market power in input markets. If this is the case,
input prices will be a function of the quantity of purchased inputs, which will generally
depend on ωjt .17

While using input prices as instruments may make sense theoretically, the IV ap-
proach has not been uniformly successful in practice. We believe there are at least four
reasons for this. First input prices are often not reported by firms, and when firms do
report the labor cost variable, i.e. wjt , is often reported in a way that makes it difficult
to use. Labor costs are typically reported as average wage per worker (or average wage
per hour of labor). Optimally, we would want this variable to measure differences in
exogenous labor market conditions faced by firms. Unfortunately, it may also pick up
some component of unmeasured worker quality. Suppose we as econometricians do not
observe worker quality, and that some firms employ higher quality workers than oth-
ers. Presumably, the firms with higher quality workers must pay higher average wages.
The problem here is that unobserved worker quality will enter the production function
through the unobservable ωjt . As a result, ωjt will likely be positively correlated with
observed wages wjt , invalidating use of wjt as an instrument.

Second, to use prices such as rjt and wjt as instruments requires econometrically
helpful variation in these variables. While input prices clearly change over time, such
time variation is not helpful when one wants to allow flexible effects of time in the pro-
duction function (e.g. allowing β0 to be a flexible function of t). One generally needs
significant variation in rjt and wjt across firms to identify production function coeffi-
cients. This can be a problem as we often tend to think of input markets as being fairly
national in scope. One might not expect, for example, the price of capital or labor mar-
ket conditions to vary that much between states. Summarizing, to use the IV approach
one: (1) has to observe significant variation in input prices across firms in the data, and
(2) believe that this variation is due primarily to differences in exogenous input market
conditions, not due to differences in unobserved input quality.

A third problem with IV is that it relies fairly strongly on an assumption that ωjt

evolves exogenously over time, i.e. firms do not choose an input that affects the evo-
lution of ωjt . Allowing ωjt to be affected by chosen inputs that we do not control for
is very problematic econometrically for the IV approach, for then it would be hard to
imagine finding valid instruments for observed input choices. One would need to find
variables that affect one input choice but that do not affect other input choices. In gen-
eral this will be hard to do, since individual input choices typically depend on all input
prices.

17 Another possible instrument is output prices, as long as the firm operates in competitive output markets.
These instruments have been used less frequently, presumably because input markets are thought to be more
likely to be competitive. Other related instruments are variables that shift either the demand for output or the
supply of inputs. While these types of instruments are typically harder to come by, one can argue that they are
valid regardless of the competitive nature of input or output markets.
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Finally, the IV approach only addresses endogeneity of input choice, not endogenous
exit. Endogenous exit will tend to invalidate the direct use of input prices as instruments.
The reason for this is that it is probable that the exit decision will be based in part on
input prices. For example, we might expect that firms who face higher input prices to
be more likely to exit (i.e. would exit at a higher ωjt ). This is likely to generate pos-
itive correlation between the instruments and the residuals in the production function.
While direct application of IV in this situation is problematic, it is possible that one
could combine the population orthogonality assumptions with a selection model [e.g.
Gronau (1974), Heckman (1974, 1976, 1979)] to generate a consistent estimator of the
production function parameters.

2.2.2. Fixed effects

A second traditional approach to dealing with production function endogeneity issues is
fixed effects estimation. In fact, fixed effects estimators were introduced to economics
in the production function context [Hoch (1962), Mundlak (1961)]. Fixed effects ap-
proaches make explicit use of firm panel data. The basic assumption behind fixed effects
estimation is that unobserved productivity ωjt is constant over time, i.e.

(22)yjt = β0 + βkkjt + βllj t + ωj + ηjt .

This allows one to consistently estimate production function parameters using either
mean differencing, first differencing, or least squares dummy variables estimation tech-
niques. First differencing, for example, leads to

(23)yjt − yjt−1 = βk(kjt − kjt−1) + βl(lj t − lj t−1) + (ηjt − ηjt−1).

Given the assumption that the ηjt ’s are uncorrelated with input choices ∀t ,18 this
equation can be consistently estimated by OLS.19 Note that this approach simultane-
ously solves the selection problem of endogenous exit, at least if exit decisions are
determined by the time invariant ωj (and not by the ηjt ’s). While fixed effects ap-
proaches are fairly straightforward and have certainly been used in practice, they have
not been judged to be all that successful at solving endogeneity problems in production
functions either. Again, there are a number of reasons why this may be the case.

First, it is clearly a strong assumption that ωj is constant over time. This is especially
true given the longer time frames for which panel data is now becoming available.
In addition, researchers are often interested in studying periods of data containing
major economic environmental changes (e.g. deregulation, privatization, trade policy

18 The assumption that ηjt ’s are uncorrelated with input choices (and possibly entry/exit decisions) at all time
periods t is often described as a “strict” exogeneity assumption. One can often estimate these fixed effects
models under weaker, “sequential” exogeneity assumptions, i.e. that ηjt ’s are uncorrelated with input choices
at all time periods � t . See Wooldridge (2002) for a discussion of these issues.
19 Note that generic OLS standard errors are wrong because the residuals will be correlated across observa-
tions.
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changes, . . . ). Typically these changes affect different firms’ productivities differently,
and those firms that the change impacts positively will be more likely to increase their
inputs and less likely to exit.20

A second potential problem with fixed effects estimators is that when there is mea-
surement error in inputs, fixed effects can actually generate worse estimates than stan-
dard level (OLS) estimators. Griliches and Hausman (1986) note that when inputs are
more serially correlated over time than is input measurement error, differencing can
lower the signal to noise ratio in the explanatory variables.21 This can generate higher
biases in fixed effects estimators than in OLS estimators, even if ωj is constant over
time and correlated with the explanatory variables.22

Lastly, fixed effects estimators simply have not performed well in practice. One often
gets unreasonably low estimates of capital coefficients.23 Even one of the seminal pa-
pers, Hoch (1962), for example, finds estimates of returns to scale around 0.6 – almost
certainly an unrealistically low number. Another empirical finding that appears to con-
tradict the fixed effect assumption concerns the comparison of fixed effects estimates on
balanced panels (containing only observations for firms appearing throughout the sam-
ple) to those on the full panel. As mentioned above, if ωj is constant over time, fixed
effects estimation completely addresses selection and input endogeneity problems. As
a result, one should obtain similar fixed effects estimates whether one uses the balanced
sample or the full sample. Olley and Pakes (1996), for example, find very large differ-
ences in these two estimates, suggesting that the fixed effects assumption is invalid. That
said, whether or not one takes fixed effects estimates as serious estimates of structural
production function parameters, the fixed effect decomposition of variation into within
and between components often provides a useful reduced form look at a dataset.

2.3. The Olley and Pakes (1996) approach

A recent paper by Olley and Pakes (1996) (henceforth OP) takes a different approach
to solving both the simultaneity and selection problems inherent in production function
estimation. Their empirical context is that of telecommunications equipment producers

20 The restriction that ωj is constant over time is one that has been relaxed (in parametric ways) in the dy-
namic panel data literature, e.g. Chamberlain (1984), Arellano and Bond (1991), Arellano and Bover (1995),
and Blundell and Bond (1999). For example, these methods can allow ωjt to be composed of a fixed effect
plus an AR(1) process.
21 By signal to noise ratio, Griliches and Hausman mean the variance in an observed explanatory variable due
to true variance in the variable, vs. variance in the observed explanatory variable due to measurement error.
This signal to noise ratio is inversely related to the bias induced by measurement error.
22 Note that in this case (i.e. when there is measurement error in inputs), both fixed effects and OLS estimators
are biased. Also, note that the more structural approaches discussed later in this chapter are likely also prone
to this critique.
23 “Unreasonable” is clearly not a completely precise statement here. We are referring to cases where the
estimated capital coefficient is considerably below capital’s cost share or where returns to scale are extremely
low.
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(using data from the US Census Bureau’s longitudinal research database). The basic
empirical goal is to measure the impact of deregulation and the breakup of AT&T on
measures of plant level productivity. Our focus is on the OP methodology for addressing
the endogeneity problems rather than the actual empirical results.

As we work through the OP approach, it is useful to keep in mind three types of as-
sumptions that will be important in the approach. First there are assumptions on timing
and the dynamic nature of inputs. Timing refers to the point in time when inputs are
chosen by the firm relative to when they are utilized in production. “Dynamic nature”
refers to whether the input choices of the current period affect the cost of input use in
future periods; if it does not the input is labelled nondynamic and if it does the input is
labelled as dynamic (and its current value becomes a “state variable” in the problem).
Second, there will be a scalar unobservable assumption. This assumption limits the di-
mensionality of the econometric unobservables that impact firm behavior. Third, there
will be a strict monotonicity assumption on the investment demand function – basically
that investment level is strictly monotonic in the scalar unobservable (at least for firms
whose investment level is strictly positive). We will see that this last assumption can
be generated by more basic assumptions on economic primitives. While some of these
assumptions can be relaxed in various ways, we delay that discussion until the next
subsection.

Lastly, note that we focus on how to use the OP methodology in practice. We do
not address the higher level technical aspects of the methodology, e.g. semiparametric
consistency proofs and alternative standard error derivations for their two-step estima-
tors. For discussion of these issues, e.g. see Pakes and Olley (1995) and the literature
they cite. One might also look at Wooldridge (2004), who presents a concise, one-step,
formulation of the OP approach for which standard error derivations are more straight-
forward.24 This one-step approach may also be more efficient than the standard OP
methodology.

The rest of this section discusses in detail the workings of the OP methodology. We
start by describing a simple, bare bones, version of the model and methodology that
ignores potential selection problems. We then move on to the full OP model, which
does address selection. Lastly, we discuss caveats and extensions of the OP procedure.

2.3.1. The model

The OP approach considers firms operating through discrete time, making production
choices to maximize the present discounted value (PDV) of current and future profits.
The environment is as follows. First, the assumed production function is similar to (21),
with an additional input ajt

(24)yjt = β0 + βkkjt + βaajt + βllj t + ωjt + ηjt

24 Though Woolridge deals with input endogeneity, he does not explicitly consider the selection issue. How-
ever similar ideas can be used when one needs to incorporate selection corrections.
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the natural log of the age (in years) of a plant. The interest in the age coefficient stems
from a desire to separate out cohort from selection effects in determining the impact of
age of plant on productivity.

Second, unobserved productivity ωjt is assumed to follow an exogenous first order
Markov process. Formally,

(25)p
(
ωjt+1

∣∣{ωjτ }tτ=0, Ijt

) = p(ωjt+1|ωjt ),

where Ijt is the firm’s entire information set at time t . This is simultaneously an econo-
metric assumption on unobservables and an economic assumption on how firms form
their perceptions on (i.e. learn about) the evolution of their productivity over time.
Specifically, a firm in period t , having just observed ωjt , infers that the distribution
of ωjt+1 is given by p(ωjt+1|ωjt ). Firms thus operate through time, realizing the value
of ωjt at period t and forming expectations of future ωj ’s using p(ωjt+1|ωjt ). Note that
this first-order Markov assumption encompasses the fixed effects assumption where ωjt

is fixed over time (i.e. ωjt = ωj ). OP also assume that p(ωjt+1|ωjt ) is stochastically
increasing in ωjt . Intuitively, this means that a firm with a higher ωjt today has a “bet-
ter” distribution of ωjt+1 tomorrow (and in the more distant future). Lastly, note that the
ωjt process is assumed to be a time-homogeneous Markov process, i.e. p is not indexed
by t .25

Third, capital is assumed to be accumulated by firms through a deterministic dynamic
investment process, specifically

kjt = (1 − δ)kjt−1 + ij t−1.

Here we will assume that ij t−1 is chosen by the firm at period t − 1. That is, we are
assuming that the capital that the firm uses in period t was actually decided upon at
period t − 1; so it takes a full production period for new capital to be ordered, received,
and installed by firms.26 This assumes that capital is a fixed (rather than variable) input.

Lastly, OP specify single period profits as

π(kjt , ajt , ωjt ,�t ) − c(ij t ,�t ).

Note that labor lj t is not explicitly in this profit function – the reason is that labor is as-
sumed to be a variable and nondynamic input. It is variable in that (unlike capital), lj t is
chosen at period t , the period it actually gets used (and thus it can be a function of ωjt ).
It is nondynamic in the sense that (again, unlike capital) current choice of labor has no

25 This assumption is not as strong as it might seem, as, e.g. one can easily allow average productivity to
vary across time by indexing β0 by t , i.e. β0t . The assumption can also be relaxed in some cases, i.e. allowing
pt (ωjt+1|ωjt ) to be indexed by t .
26 We note that there is a long literature on trying to determine the distributed lag which translates investment
expenditures into a productive capital stock [see, for e.g. Pakes and Griliches (1984) and the literature cited
there], and one could incorporate different assumptions on this distributed lag into the OP framework. OP
themselves also tried allowing current investment to determine current capital, but settled on the specification
used here.
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impact on the future (i.e. it is not a state variable). This nondynamic assumption rules
out, for example, fixed hiring or firing costs of labor. We discuss relaxing this assump-
tion in Section 2.4. For now π(kjt , ajt , ωjt ,�t ) can be interpreted as a “conditional”
profit function – conditional on the optimal static choice of labor input.

Note also that both π(·) and c(·) depend on �t , which represents the economic en-
vironment that firms face at a particular point in time. �t could capture input prices,
characteristics of the output market, or industry characteristics like the current distri-
bution of the states of firms operating in the industry. The OP formulation allows all
these factors to change over time, although they are assumed constant across firms in
a given time period. Including market structure in the state space allows some of the
competitive richness of the Markov-perfect dynamic oligopoly models of Ericson and
Pakes (1995).27

Given this economic environment, a firm’s maximization problem can be described
by the following Bellman equation:

V (kjt , ajt , ωjt ,�t )

= max
{
Φ(kjt , ajt , ωjt ,�t ), max

ij t�0

{
π(kjt , ajt , ωjt ,�t ) − c(ij t ,�t )

+ βE
[
V (kjt+1, ajt+1, ωjt+1,�t+1)

∣∣kjt , ajt , ωjt ,�t , ij t

]}}
.

kjt , ajt and ωjt are sufficient to describe the firm specific component of the state space
because labor is not a dynamic variable and because (kjt , ajt , ωjt ) (and the control iit )
are sufficient to describe firms perceived distributions over future (kjt+1, ajt+1, ωjt+1).

The Bellman equation explicitly considers two decisions of firms. First is the exit
decision – note that Φ(kjt , ajt , ωjt ,�t ) represents the sell off value of the firm. Second
is the investment decision ij t , which solves the inner maximization problem. Under
appropriate assumptions,28 we can write the optimal exit decision rule as

(26)χjt =
{

1 (continue) if ωjt � ω(kjt , ajt ,�t ) = ωt(kjt , ajt ),

0 (exit) otherwise,

and the investment demand function as

(27)ij t = i(kjt , ajt , ωjt ,�t ) = it (kjt , ajt , ωjt ).

27 See Gowrisankaran (1995), Doraszelski and Satterthwaite (2007), and the third section of this chapter for
more discussion of such equilibria.
28 Other than assuming that an equilibria exists, the main assumption here is that the difference in profits
between continuing and exiting is increasing in ωjt . Given that ωjt positively affects current profits and that
the distribution p(ωjt+1|ωjt ) is stochastically increasing in ωjt , the value of continuing is clearly increasing
in ωjt . Thus as long as Φ(kjt , ωjt ,�t ) either does not depend on ωjt , decreases in ωjt , or does not increase
too fast in ωjt , this will be satisfied. Note that to get the specific selection bias discussed in Section 2.1 above
(i.e. kjt negatively correlated with ωjt ), we also need the difference in returns between continuing and exiting
to be increasing in kjt .



4214 D. Ackerberg et al.

Note the slight change in notation – we are now representing the dependence on �t

through the subscript t . See Pakes (1994) for a discussion of conditions under which this
investment demand function is strictly increasing in ωjt in the region where ij t > 0.
That is, conditional on kjt and ajt , firms with higher ωjt optimally invest more. This is
an intuitive result – because p(ωjt+1|ωjt ) is assumed stochastically increasing in ωjt ,
ωjt positively impacts the distribution of all future ωjτ ’s. Since ωjτ ’s positively impact
the marginal product of capital in future periods τ , current investment demand should
increase. The importance of this strict monotonicity condition will be apparent momen-
tarily.

2.3.2. Controlling for endogeneity of input choice

Given the setup of the model, we can now proceed with the OP estimation strategy. We
first focus on dealing only with the endogeneity of input choice, i.e. we assume there are
no selection problems due to exit. We will also assume for now that investment levels
are always positive, i.e. ij t > 0, ∀(j, t). Later we will relax both these assumptions.

Given that (27) is strictly monotonic in ωjt , it can be inverted to generate

(28)ωjt = ht (kjt , ajt , ij t ).

Intuitively, this says that conditional on a firm’s levels of kjt and ajt , its choice of
investment ij t “tells” us what its ωjt must be. Note that the ability to “invert” out ωjt

depends not only on the strict monotonicity in ωjt , but also the fact that ωjt is the only
unobservable in the investment equation.

This is the scalar unobservable assumption mentioned earlier. This, for example,
means that there can be no unobserved differences in investment prices across firms,29

no other state variables that the econometrician does not observe, and no unobserved
separate factors that affect investment but not production. It also prohibits ωjt from
following higher than a first order Markov process.30 We discuss both tests for this
assumption and the possibilities for relaxing it in Section 2.4.

Substituting (28) into the production function (24) gives

(29)yjt = β0 + βkkjt + βaajt + βllj t + ht (kjt , ajt , ij t ) + ηjt .

The first stage of OP involves estimating (29) using semiparametric methods that treat
the inverse investment function ht (kjt , ajt , ij t ) nonparametrically. Note the advantages
of treating ht (kjt , ajt , ij t ) nonparametrically. it (·) (and thus its inverse ht (·)) are com-
plicated functions that depend on all the primitives of the model (e.g. demand functions,

29 Recall that changes in the price of investment over time are permitted as they are picked up by the function
h through its dependence on t .
30 If, for example, ωjt followed a second order process, both ωjt and ωjt−1 would enter the state space and
the investment decision. With two unobservables in the investment function, it would not be possible to invert
out ωjt in the current model.
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the specification of sunk costs, the form of conduct in the industry, etc.). These functions
are also solutions to a potentially very complicated dynamic game. The OP nonparamet-
ric approach therefore avoids both the necessity of specifying these primitives, and the
computational burden that would be necessary to formally compute ht (·).

Given the nonparametric treatment of ht (kjt , ajt , ij t ), it is clear that β0, βk and βa

cannot be identified using (29). If, for example, ht (kjt , ajt , ij t ) is treated as a polyno-
mial in kjt , ajt and ij t , the polynomial will be colinear with the constant, kjt , and ajt

terms. Thus, we combine these terms into φt (kjt , ajt , ij t ), i.e.

(30)yjt = βllj t + φt (kjt , ajt , ij t ) + ηjt .

Representing φt with a high order polynomial in kjt , ajt and ij t [an alternative would
be to use kernel methods, e.g. Robinson (1988)] and allowing a different φt for each time
period, OP estimate this equation to recover an estimate of the labor coefficient β̂l . To
summarize this first stage, the scalar unobservable and monotonicity assumptions essen-
tially allow us to “observe” the unobserved ωjt – this eliminates the input endogeneity
problem in estimating the labor coefficient. Note that it is important here that labor is
assumed to be a nondynamic input – if labor had dynamic implications, it would enter
the state space, and thus the investment function and φt . As a result, βl would not be
identified in this first stage. Again, this is an assumption that can potentially be relaxed –
see Section 2.4.

The second stage of OP identifies the capital and age coefficients βk and βa . First,
note that the first stage provides an estimate, φ̂j t , of the term

φt (kjt , ajt , ij t ) = β0 + βkkjt + βaajt + ωjt .

If one uses a polynomial approximation to φt (kjt , ajt , ij t ), φ̂j t is just the estimated
sum of the polynomial terms for a particular (kjt , ajt , ij t ) pair. This means that given a
particular set of parameters (β0, βk, βa), we have an estimate of ωjt for all j and t

(31)ω̂j t (β0, βk, βa) = φ̂j t − β0 − βkkjt − βaajt .

Next decompose ωjt into its conditional expectation given the information known by
the firm at t − 1 (denote this by Ijt−1) and a residual, i.e.

ωjt = E[ωjt |Ijt−1] + ξjt

= E[ωjt |ωjt−1] + ξjt

(32)= g(ωjt−1) + ξjt

for some function g. The second line follows from the assumption that ωjt follows an
exogenous first order Markov process. By construction, ξjt is uncorrelated with Ijt−1.
One can think of ξjt as the innovation in the ω process between t − 1 and t that is
unexpected to firms. The important thing is that given the information structure of the
model, this innovation ξjt is by definition uncorrelated with kjt and ajt . The reason is
that kjt and ajt are functions of only the information set at time t − 1. Intuitively, since
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kjt was actually decided on at time t − 1 (from the investment decision ij t−1), it cannot
be correlated with unexpected innovations in the ω process that occurred after t − 1.
Lastly, note that since the stochastic process generating ωjt has been assumed constant
over time, the g function need not be indexed by t .31

Next, consider rewriting the production function as

(33)yjt − βllj t = β0 + βkkjt + βaajt + ωjt + ηjt .

Substituting in both (32) and (31) results in

yjt − βllj t

(34a)= β0 + βkkjt + βaajt + g(ωjt−1) + ξjt + ηjt

= β0 + βkkjt + βaajt + g(φjt−1 − β0 − βkkjt−1 − βaajt−1) + ξjt + ηjt

(34b)= βkkjt + βaajt + g̃(φjt−1 − βkkjt−1 − βaajt−1) + ξjt + ηjt ,

where g̃ encompasses both occurrences of β0 in the previous line. The key point in (34a)
is that, as argued above, the residual ξjt +ηjt is uncorrelated with all the right-hand side
variables.

We do not observe βl or φjt−1, but we do have estimates of them from the first stage.
Substituting β̂l and φ̂j t−1 for their values in the equation above, and treating g̃ nonpara-
metrically we obtain

√
n consistent estimates of βk and βa . If one uses polynomials to

approximate g̃, NLLS can be used for estimation.32

Alternatively one can adapt the suggestion in Wooldridge (2004) to combine both
stages into a single set of moments and estimate in one step. This should be more
efficient than the OP approach (as it uses the information in the covariances of the
disturbances, and any cross equation restrictions). The moment condition in this case is

E

[
ηjt ⊗ f1(kjt , ajt , ij t , lj t )

(ξjt + ηjt ) ⊗ f2(kjt , ajt , kjt−1, ajt−1, ij t−1)

]
= 0,

where f1 and f2 are vector valued instrument functions, and ⊗ is the Kronecker product
operator. Appropriate choices for f1 and f2 lead to moments similar to those used by
OP. Note that there is a different set of conditioning variables for the moment in ηjt

than that in the moment for ξjt + ηjt (since lj t can be correlated with ξjt ).33

31 Were we to allow p(ωjt+1|ωjt ) to vary across time, we would simply index g by t .
32 An alternative way to construct a moment condition to estimate (34b) is as follows [see Ackerberg, Caves

and Fraser (2004)]. Given βk and βa , construct ω̂j t = φ̂j t − βkkjt − βaajt , ∀t . Non-parametrically regress

ω̂j t on ω̂j t−1 to construct estimated residuals ξ̂j t (note that if using polynomial approximation, this can be

done using linear methods (since βk and βa are given)). Construct a moment condition interacting ξ̂j t with kjt

and ajt . Estimation then involves searching over (βk, βa) space to make this moment close to zero.
33 As Wooldridge notes, one can add further lags of variables to these instrument functions, increasing the
number of moments; though more lags will not be able to be used on the observations for the initial years.
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2.3.3. Controlling for endogenous selection

Next we relax the assumption that there is no endogenous exit. Firms now exit according
to the exit rule given in (26). A first important observation is that the first stage of the
OP procedure is not affected by selection. The reason is that by construction, ηjt , the
residual in the first stage equation (30), represents unobservables that are not observed
(or predictable) by the firm before input and exit decisions. Thus there is no selection
problem in estimating (30). Intuitively, the fact that in the first stage we are able to
completely proxy ωjt means that we can control for both endogenous input choice and
endogenous exit.

In contrast, the second stage estimation procedure is affected by endogenous exit.
Examining (34b), note that the residual contains not only ηjt , but ξjt . Since the firm’s
exit decision in period t depends directly on ωjt (see (26)), the exit decision will be
correlated with ξjt , a component of ωjt .34

We now correct for the selection. Starting from (33), take the expectation of both
sides conditional on both the information at t − 1 and on χjt = 1 (i.e. being in the
dataset at t). This results in

E[yjt − βllj t |Ijt−1, χjt = 1]
= E[β0 + βkkjt + βaajt + ωjt + ηjt |Ijt−1, χjt = 1]

(35)= β0 + βkkjt + βaajt + E[ωjt |Ijt−1, χjt = 1].
The last line follows because: (1) kjt and ajt are known at t − 1, and (2) ηjt is by
definition uncorrelated with either Ijt−1 or exit at t . Focusing on the last term, we
have

E[ωjt |Ijt−1, χit = 1] = E
[
ωjt

∣∣Ijt−1, ωjt � ωt(kjt , ajt )
]

=
∫ ∞

ωt (kjt ,ajt )

ωjt

p(ωjt |ωjt−1)∫∞
ωt (kjt ,ajt )

p(ωjt |ωjt−1) dωjt

dωjt

(36)= g
(
ωjt−1, ωt (kjt , ajt )

)
.

The first equality follows from the exit rule. The second and third equalities follows
from the exogenous first order Markov process assumption on the ωjt process.

While we do know ωjt−1 conditional on the parameters (from (31)), we do not di-
rectly observe ωt(kjt , ajt ). Modelling ωt(kjt , ajt ) as a nonparametric function of kjt

34 This correlation relies on OP allowing firms to know the realization of ξjt before making the exit decision.
Otherwise exit would not cause a selection problem. The longer the time period between observations the
more serious the selection problem is likely to be. This point comes out clearly in OP’s comparison of results
based on their “balanced” panel (a data set constructed only from the observations of plants that were active
throughout the sample period), to results from their full panel (a panel which keeps the observations on exiting
firms until the year they exit and uses observations on new startups from the year they enter). Selection seemed
a far larger problem in the balanced than in the full panel.
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and ajt might be a possibility, but this would hinder identification of βk and βa due to
collinearity problems. What we can do is try to control for ωt(kjt , ajt ) using data on
observed exit. Recall that our exit rule is given by

(37)χjt =
{

1 (continue)

0 (exit)
according as ωjt � ωt(kjt , ajt ).

This means that the probability of being in the data (at period t) conditional on the
information known at t − 1 is

Pr(χjt = 1|Ijt−1) = Pr
(
ωjt � ωt(kjt , ajt )

∣∣Ijt−1
)

= Pr
(
χjt = 1

∣∣ωjt−1, ωt (kjt , ajt )
) = ˜̃ϕt

(
ωjt−1, ωt (kjt , ajt )

)
(38)= ϕ̃t (ωjt−1, kjt , ajt ) = ϕt (ij t−1, kjt−1, ajt−1) = Pjt .

The second to last equality holds because of (28), and the fact that kjt and ajt are
deterministic functions of ij t−1, kjt−1, and ajt−1.

Equation (38) can be estimated nonparametrically, i.e. modelling the probability
of surviving to t as a nonparametric function of ij t−1, kjt−1, and ajt−1. OP do this
in two alternative ways – first using a probit model with a 4th order polynomial in
(ij t−1, kjt−1, ajt−1) as the latent index, second using kernel methods. For a plant char-
acterized by (ij t−1, kjt−1, ajt−1), these estimates allow us to generate a consistent
estimate of the probability of the plant surviving to period t (P̂j t ).

Next, note that as long as the density of ωjt given ωjt−1 is positive in an area around
ωt(kjt , ajt ), (38) can be inverted to write ωt(kjt , ajt ) as a function of ωjt−1 and Pjt ,35

i.e.

(39)ωt(kjt , ajt ) = f (ωjt−1, Pjt ).

Substituting (39) into (36) and (35), and using (31) gives us

E[yjt − βllj t |Ijt−1, χjt = 1] = β0 + βkkjt + βaajt + g
(
ωjt−1, f (ωjt−1, Pjt )

)
= β0 + βkkjt + βaajt + g′(ωjt−1, Pjt )

= β0 + βkkjt + βaajt + g′(φjt−1 − β0

(40)− βkkjt−1 − βaajt−1, Pjt ).

This is similar to (35), only differing in the additional Pjt term in the nonparametric
g′ function. Pjt controls for the impact of selection on the expectation of ωjt – i.e. firms
with lower survival probabilities who do in fact survive to t likely have higher ωjt ’s than
those with higher survival probabilities.

35 Formally, (38) implies that Pjt = ˜̃ϕt (ωjt−1, ωjt ). With positive density of ωjt around ωjt , ˜̃ϕt is strictly
monotonic in ωjt , so this can be inverted to generate (39).
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Equation (40) implies that we can write

yjt − βllj t

= β0 + βkkjt + βaajt + g′(φjt−1 − β0 − βkkjt−1 − βaajt−1, Pjt ) + ζjt

(41)= βkkjt + βaajt + g̃(φjt−1 − βkkjt−1 − βaajt−1, Pjt ) + ζjt + ηjt ,

where, as in (34b), the two β0 terms have been encompassed into the nonparametric
function g̃. By construction the residual in this equation satisfies E[ζjt + ηjt |Ijt−1,

χjt = 1] = 0. Substituting P̂j t , φ̂j t and β̂l for Pjt , φjt and βl , (41) can also be estimated
with NLLS, approximating g̃ with either a polynomial or a kernel.36

In this estimation procedure information on βk and βa is obtained by comparing labor
productivities of firms with the same ωjt−1 and Pjt but different kjt and ajt . In addition,
since the functions ϕt (·) and Pt(·) vary across t with changes in industry conditions
(while g(·) is assumed constant over time), it also uses information from variation in
inputs across firms in different time periods that have the same ωjt−1 and Pjt .

In the selection literature, P̂j t is referred to as the propensity score – for discussion of
these techniques, see, e.g. Heckman (1974, 1978, 1979), Rosenbaum and Rubin (1983),
Heckman and Robb (1985), and Ahn and Powell (1993). An important difference be-
tween OP and this selection literature is that controlling for the propensity score is not
sufficient for OP’s model; they require a control for both ωjt−1 and for ωjt−1.

A number of recent papers have applied the OP procedure successfully. As an ex-
ample consider Table 3, which displays the results from the food processing industry
in Pavcnik (2002) – this is the first out of the eight industries in her Table 2. Compar-
ing the OLS to the OP estimates, we see the changes that we should expect. Returns
to scale decrease (consistent with positive correlation between unobserved productiv-
ity and input use), with the coefficients on the more variable inputs accounting for all
of the fall (consistent with this correlation being more pronounced for the variable in-
puts). Consistent with selection, the capital coefficient rises moving from OLS to OP.
The fixed effects estimates are the most difficult to understand, as they generate a co-
efficient for capital near zero, and an estimate of economies of scale below 0.9. These
results are indicative of those for the other industries in Pavcnik’s Table 2. The aver-
age of the returns to scale estimate across industries when estimated by OLS is 1.13,
when estimated by OP it is 1.09, and when estimated by fixed effects it is 0.87. The
average of the capital coefficients across industries from OLS is 0.066, from OP 0.085,
and from fixed effects only 0.021 (with two industries generating negative capital coef-
ficients).

OP themselves compare their estimates to estimates obtained using OLS and fixed
effect on both a balanced panel (a panel constructed only from firms that were operating
during the entire fifteen year sample period) and from the full sample (constructed by
keeping firms that eventually exit until the year prior to their exit and introducing new

36 OP try both the kernel and a polynomial with only minor differences in results.
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Table 3
Production function estimates from Pavcnik (2002)

OLS Fixed effects Olley–Pakes

Unskilled labor 0.178 0.210 0.153
(0.006) (0.010) (0.007)

Skilled labor 0.131 0.029 0.098
(0.006) (0.007) (0.009)

Materials 0.763 0.646 0.735
(0.004) (0.007) (0.008)

Capital 0.052 0.014 0.079
(0.003) (0.006) (0.034)

Source: From Pavcnik (2002).

entrants as they appear). The difference between the balanced sample estimators and OP
estimators on the full sample are truly dramatic, and those between the OLS and fixed
effect estimators on the full sample and the OP estimators are similar to those reported
above (though somewhat larger in absolute value). In both papers, the OP estimator
generates standard errors for the labor coefficient that are not too different then those
generated by OLS, but, as might be expected, standard errors for the capital coefficient
do increase (though much less so in the OP results than in Pavcnik’s).

2.3.4. Zero investment levels

For simplicity, we assumed above that investment levels for all observations were
nonzero. This allowed us to assume that the investment equation was strictly monotonic
in ωjt everywhere (and hence could be inverted to recover ωit for every observation).
Observations with zero investment call into question the strict monotonicity assumption.
However, the OP procedure actually only requires investment to be strictly monotonic
in ωjt for a known subset of the data. OP themselves take that subset to be all ob-
servations with it > 0, i.e. they simply do not use the observations where investment
equals 0.

Even with this selected sample, first stage estimation of (29) is consistent. Since ωjt

is being completely proxied for, the only unobservable is ηjt , which is by assumption
uncorrelated with labor input and with the selection condition iit > 0. Second stage
estimation of (41) is also consistent when OP discard the data where ij t−1 = 0 (φ̂j t−1 −
β0 − βkkjt−1 − βaajt−1 is not computable when ij t−1 = 0). The reason is that the
error term in (41) is by construction uncorrelated with the information set Ijt−1, which
contains the investment level ij t−1. In other words, conditioning on ij t−1 = 0 does not
say anything about the unobservable ζjt .

While the OP procedure can accommodate zero investment levels, this accommo-
dation is not without costs. In particular, there is likely to be an efficiency loss from
discarding the subset of data where ij t > 0. Levinsohn and Petrin (2003) (henceforth
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LP) suggest an alternative estimation routine whose primary motivation is to eliminate
this efficiency loss. They start by noting that in many datasets, particularly those from
developing countries, the set of observations with zero investment can be quite large.
For example, in LP’s dataset on Chilean plants more than 50% of the observations have
zero investment (note that in OP’s US plant data, this proportion is much less, ≈8%).
To avoid a potentially large efficiency loss, LP suggest using variables other than in-
vestment to proxy for the unobserved ωjt . In particular, LP focus on firms’ choices of
intermediate inputs (e.g. electricity, fuels, and/or materials) – these are rarely zero.37

Consider the production function

(42)yjt = β0 + βkkjt + βllj t + βmmjt + ωjt + ηjt

with additional input mjt (e.g. materials). LP assume that like labor, mjt is a variable
(i.e. chosen at t), nondynamic input, and consider the following material demand equa-
tion

(43)mjt = mt(kjt , ωjt ).

As with the OP investment equation, the demand equation is indexed by t to al-
low, e.g. input prices, market structure, and demand conditions to vary across time.38

LP state conditions under which this demand equation is monotonic in ωjt . Given this
monotonicity, estimation proceeds analogously to OP. First, (43) is inverted to give

(44)ωjt = ht (kjt , mjt ).

Next, (44) is substituted into (42) to give

(45)yjt = β0 + βkkjt + βllj t + βmmjt + ht (kjt , mjt ) + ηjt .

Treating the ht function nonparametrically results in the following estimating equa-
tion

(46)yjt = βllj t + φt (kjt , mjt ) + ηjt ,

where βk and βm are not separately identified from the nonparametric term. As in OP,
the first stage of LP involves estimating (46) to obtain β̂l and φ̂j t . The second stage
of LP again proceeds following OP, the main difference being that the parameter on
the intermediate input, βm, still needs to be estimated. Moving the labor term to the

37 An alternative to LP might be to augment the original OP procedure with a more complete model of
investment and/or distributional assumptions on ω, allowing one to utilize the zero investment observations.
38 Given that materials are a static choice (in contrast to dynamic investment), one might be more willing
to make parametric assumptions on this input demand function (since it depends on fewer primitives, e.g.
it does not depend on expectations about the future). However, there are caveats of such an approach, see
Section 2.4.1.
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left-hand side and using (32) gives39

(47)ỹj t = βkkjt + βmmjt + g̃(φjt−1 − βkkjt−1 − βmmjt−1) + ξjt + ζjt ,

and nonparametric estimates of φjt and of g̃(·) are used in estimation.
Note that since kjt is assumed decided at t − 1, it is orthogonal to the residual,

ξjt + ηjt . However, since mjt is a variable input, it is clearly not orthogonal to ζjt ,
the innovation component of ωjt . LP address this by using mjt−1 as an instrument for
mjt in estimation of (47). In their application LP find biases that are generally consistent
with those predicted by OP, but some differences in actual magnitudes of coefficients.

2.4. Extensions and discussion of OP

The OP model was designed to produce estimates of production function coefficients
which are not subject to biases due to simultaneity and selection problems generated
by the endogeneity of input demands and exit decisions. We begin this section with a
test of whether the coefficient estimates obtained using OP’s assumptions are robust to
different sources of misspecification.

There are a variety of reasons why this test could fail and the rest of this subsection
considers some of the more likely candidates. Each time a source of possible misspeci-
fication in OP’s assumption is introduced, we consider modifications to their estimation
techniques which produce consistent estimates of production function coefficients un-
der that misspecification. This is in keeping with our belief that different modifications
are likely to be appropriate for different industries and data sets. Though the extended
models may well be of more general interest, as they typically will produce richer dy-
namics with more detailed policy implications, we limit ourselves to considering their
implications for estimating production function coefficients.

In this context we first investigate relaxing assumptions on the dynamic implications
of inputs (e.g. that labor choices today have no dynamic implications) and on the timing
of input choices. We then investigate the potential for relaxing the scalar unobservable
assumptions of OP. Most of the discussion regarding the timing and dynamic implica-
tions of inputs is based on Ackerberg, Caves and Fraser (2004) (ACF) [also see Buettner
(2004a) for some related ideas], while much of the discussion on nonscalar unobserv-
ables is taken from Ackerberg and Pakes (2005). We also briefly discuss two recent
contributions by Buettner (2004b) and Greenstreet (2005).

2.4.1. A test of Olley and Pakes’ assumptions

This subsection combines results from Section 4.1 in OP with results from ACF. Broadly
speaking, there are two questionable implications of the assumptions used in OP that

39 While the LP procedure does not formally address selection, they note that their procedure could be ex-
tended to control for it in the same way as OP.
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are central to their estimation strategy. First there is the implication that, conditional on
capital and age, there is a one to one mapping between investment and productivity (we
give reasons for doubting this implication below). Second there is the direct assumption
that the choice of labor has no dynamic implications; i.e. that labor is not a state variable
in the dynamic problem.

Focusing on the second assumption first, assume instead that there are significant
hiring or firing costs for labor, or that labor contracts are long term (as in, for exam-
ple, unionized industries). In these cases, current labor input choices have dynamic
implications, labor becomes a state variable in the dynamic problem, and Equation (28)
becomes

(48)ωjt = ht (kjt , lj t , ajt , ij t ).

Now the labor coefficient will not be identified in the first stage; i.e. from Equa-
tion (34b) – the first stage cannot separate out the impact of labor on production, or βl ,
from its impact on the h(·) function.

ACF point out that under these assumptions βl can still be identified from the second
stage. To see this note that the second stage is now

yjt = βllj t + βkkjt + βaajt + g̃(φjt−1 − βllj t−1 − βkkjt−1 − βaajt−1)

(49)+ ξjt + ηjt .

After substituting φ̂j t−1 for φjt−1, we can estimate the production function parameters
using a semiparametric GMM procedure related to the above. Note, however, that if
we maintain the rest of OP’s assumptions, then lj t differs from kjt in that labor can
adjust to within period variation in productivity. This implies that unlike kjt , lj t can be
correlated with ξjt . As a result we need to use an “instrument” for lj t when estimat-
ing Equation (49). A fairly obvious instrument is lj t−1. Since lj t−1 was decided on at
t − 1, it is uncorrelated with ξjt , and lj t and lj t−1 are typically highly correlated. With
this modification, estimation can proceed as before using, say, a polynomial or kernel
approximation to g̃.

Note that even though the first stage does not directly identify any of the parame-
ters of the model in this procedure, we still need the first stage to generate estimates
of φ̂j t−1. Indeed we still need (an extended version) of the assumptions that generates
the first stage equation. Before we needed the assumption that conditional on values
for (kjt , ajt ) there was a one to one map between productivity and investment. Now
we need the assumption that conditional on values of (kjt , ajt , lj t ) there is a one to one
map between productivity and investment.

In fact Equation (49) is closely related to the test for the inversion proposed in OP.
Recall that they assume that labor is not a dynamic input. In that case when they subtract
their first stage estimate β̂l times l from both sides of their second stage equation they
obtain
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yjt − β̂l lj t = (βl − β̂l)lj t + βkkjt + βaajt + g̃(φ̂j t−1 − βkkjt−1 − βaajt−1)

(50)+ ξjt + ηjt ,

which is an equation with over identifying restrictions.40

In particular, the term (βl − β̂l)lj t in Equation (50) should be zero if the inversion
which leads to the estimate of the labor coefficient is a good approximation to reality.
Further the inversion implies that what we must subtract from our estimate of φjt−1 to
obtain lagged productivity is determined by the contribution of (kjt−1, ajt−1) to pro-
duction of yjt−1, i.e. by (βk, βa). These coefficients also determine the contribution of
(kjt , ajt ) to yjt given ωjt−1. If our inversion were seriously in error we would expect
that φjt−1 − βkkjt−1 − βaajt−1 would not be perfectly correlated with ωjt−1 and as a
result there would be a residual component of productivity we are not controlling for.
Provided there was an endogeneity problem in the first place, this residual should be
correlated with (kjt , ajt ). Thus OP allow the coefficients on (kjt , ajt ) to differ from
those on (kjt−1, ajt−1) in Equation (50), use (lj,t−1, kjt , ajt ) and powers and lags of
these variables as instruments, and then test whether β̂l − βl = 0, and whether the
coefficients on the current and lagged values of k and a are equal.41

As noted previously, when the current labor choice has dynamic implications the first
stage estimate of βl obtained by OP is inconsistent (regardless of whether the inversion
is correct). However even if labor is dynamic, Equation (49) still generates over iden-
tifying restrictions; the existence of the inversion implies that the current and lagged
values of (l, k, a) should enter in this equation with the same factors of proportion-
ality. In other words, if the inversion is correct then what we must subtract from our
estimate of φjt−1 to obtain lagged productivity is determined by the contribution of
(lj t−1, kjt−1, ajt−1) to production of yjt−1, i.e. by (βl, βk, βa). These coefficients also
determine the contribution of (lj t , kjt , ajt ) to yjt given ωjt−1. That is if we were to
estimate

yjt = β∗
l lj t + β∗

k kjt + β∗
a ajt + g̃(φjt−1 − βllj t−1 − βkkjt−1 − βaajt−1)

(51)+ ξjt + ηjt ,

and then test whether (β∗
l , β∗

k , β∗
a ) = (βk, βl, βa), with a large enough data set we

should reject the null of equality if assumptions which underlie the inversion are wrong.
Given the additional parameters one will need additional instruments to estimate this
specification. Natural instruments would be those used in OP, i.e. (lj,t−1, kjt , ajt ) and
powers and lags of these variables.

Two other points about the test. First, the OP test conditions on the fact that labor
is variable (i.e. it is not a state variable) and endogenous (current labor is correlated

40 We have omitted a term that results from substituting φ̂j t−1 for the true φjt−1 in this equation. The addi-

tional term’s impact on the parameter estimates is op(1/
√

J ), and so does not effect their limit distributions.
41 Note that we cannot use both current and lagged values of ajt as instruments for the two are collinear. We
could, however, use different functions of ajt as additional instruments.
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with ξjt ), and then tests whether the inversion is a good approximation. We could have
alternatively proceeded by conditioning on the inversion and then tested one or both
of the assumptions that; labor is dynamic and/or labor choices are fixed prior to the
realization of ξt . We would do this by estimating both stages of ACF simultaneously
and then testing constraints. The constraint to be tested in asking whether labor can be
treated as a nondynamic (or variable) input is whether φ(ljt , ij t , kjt , ajt ) = βllj t +
φ(ijt , kjt , ajt ). To test whether labor is endogenous (in the sense that it can react to ξjt )
we estimate the system once using lj t−1 as an instrument for lj t in Equation (49) and
once using lj t as an instrument for itself. Exactly what it makes sense to condition on
(and what to test for) is likely to depend on the characteristics of the industry being
studied. Alternatively we could improve the power of the omnibus test in Equation (49)
by estimating the first stage in ACF simultaneously with this equation and then asking
whether (β∗

l , β∗
k , β∗

a ) = (βl, βk, βa). If that is accepted we could then test the additional
(nested) constraints implied by an assumption that labor is not endogeous.42

Finally a word of caution on the usefulness of these tests. First we have made no
attempt to look at the power of these tests. Though OP find very precise estimates of
differences in coefficients from (51), their data seems to deliver more precise estimates
than many other data sets (see, for e.g. ACF). Second it is important to realize that the
test that (β∗

l , β∗
k , β∗

a ) = (βl, βk, βa) is designed to ask the limited question of whether
making our approximations greatly hinders our ability to obtain reasonable produc-
tion function coefficients. As a result we are using the difference in these coefficients,
normalized by the variance-covariance of those differences, as our metric for “reason-
ableness”. There are other metrics possible, one of which would be to have some prior
knowledge of the characteristics of the industry the researcher is working on (and we
expect these results to vary by industry). Further there may well be independent rea-
sons for interest in the timing of input decisions or in our invertibility assumption (see
the discussion below), and a test result that our approximations do not do terrible harm
to production function estimates does not imply that they would do little harm in the
analysis of other issues (for example in the analysis of the response of labor hiring to a
change in demand, or in the response of investment to an infrastructure change which
increases productivity).

42 Note that both these ideas: that one can allow labor to have dynamic effects and that some of the as-
sumptions behind these procedures are testable – are related to the dynamic panel literature cited above [e.g.
Arellano and Bond (1991), Arellano and Bover (1995), and Blundell and Bond (1999)] in that further lags
of inputs are typically used as instruments. If one were willing to assume that the ηj,t are independently
distributed across time then the residuals should be uncorrelated with past values of output also. However if
ηjt represented serially correlated measurement error in the observations on yt then the ηjt may be serially
correlated, and we could not expect a zero correlation between past output and the disturbance from (51).
ACF flesh out the distinction between their methods and the dynamic panel literature further.
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2.4.2. Relaxing assumptions on inputs

This subsection assumes that there is an inversion from productivity to investment con-
ditional on the state variables of the problem, and investigates questions regarding the
nature of the input demands given this inversion. ACF note that there are two dimen-
sions along which we can classify inputs in this context, and the two dimensions have
different implications for the properties of alternative estimators. First inputs can either
be variable (correlated with ξjt ) or fixed (uncorrelated with ξjt ). Second the inputs can
either be dynamic, i.e. be state variables in the dynamic problem and hence conditioned
on in the relationship between productivity and investment, or static. So if we general-
ize, and allow for inputs of each of the four implicit types we have

(52)yjt = βvsXvs
j t + βvdXvd

j t + βfsXfs
j t + βfdXfd

j t + ωjt + ηjt ,

where the input acronyms correspond to these dimensions, e.g. Xvs
j t represent variable,

nondynamic inputs, while Xfd
j t represent fixed, dynamic inputs, and so on.

The various coefficients can be identified in different ways. βvs, like labor in the
original OP framework, can be identified either in the first stage, or in the second stage
using Xvs

j t−1 as an instrument (because Xvs
j t is variable and thus potentially correlated

with ξjt , it cannot be used as an instrument in the second stage). βfd, like capital in the
original OP framework, cannot be identified in the first stage, but it can be identified in
the second stage using either Xfd

j t or Xfd
j t−1 (or both) as instruments. βvd, the coefficients

on the inputs that are variable and dynamic, also cannot be identified in the first stage,
but can be identified in the second stage using Xvd

j t−1 as an instrument. Lastly, βfs can

be identified either in the first stage or in the second stage using either Xfs
j t or Xfs

j t−1 (or
both) as instruments.

Note also that if we have any static or fixed inputs we have over identifying restric-
tions.43 This over identification can potentially be useful in testing some of the timing
assumptions. For example, suppose one starts by treating capital as a fixed, dynamic
input. One could then estimate the second stage using both kit−1 and kit as instruments,
an over identified model. In the GMM context, one could test this over identification
with a J-test [Hansen (1982)]. Since kit is a valid instrument only when capital is truly
fixed (yet kit−1 is a valid instrument regardless) rejection of the specification might be
interpreted as evidence that capital is not a completely fixed input. Consistent estima-
tion could then proceed using only kit−1 as an instrument. Again, the Wooldridge (2004)
framework makes combining these multiple sources of identification and/or testing very
convenient.

ACF also look deeper into the various assumptions on inputs. They note that, under
the assumption that lj t is a variable input, for it to have the independent variance needed

43 In all these cases, further lags (prior to t − 1) of the inputs can be used as instruments and thus as over
identifying restrictions, although it is not clear how much extra information is in these additional moment
conditions, and one will not be able to use these additional lags in the initial time periods.
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to estimate our first stage equation (30), there must be a variable, say zjt , that impacts
firms’ choices of lj t but that does not impact choices of investment at t . This variable
zjt must also have some variance that is independent of ωjt and kjt . If this were not
the case, e.g. if lj t = ft (ωjt , kjt ), then one can show that lj t is perfectly collinear
with the nonparametric function in Equation (30), implying that one cannot estimate
βl from that equation. Note that the variable zjt does not need to be observed by the
econometrician.

Thus, to proceed as OP do we need the demand function for labor to be

lj t = ft (ωjt , kjt , zjt ),

where zjt are additional factors that affect demand for labor (or more generally, demand
for the variable inputs) with nonzero conditional variance (conditional on ωjt , kjt ). Note
that the zjt cannot be serially correlated. If this were the case, then zjt would become
part of the state space, influence ij t , and one would not be able to do the inversion.44

Even with this restriction, there are at least two possible zjt ’s here: i.i.d. firm specific
input price shocks and i.i.d. random draws to the environment that cause differences
in the variance of ηjt over time (since the profit function is a convex function of η

the variance in this variable will affect labor demand). The latter could be associated
with upcoming union negotiations, the likelihood of machine break downs due to age of
equipment, or the approach of maintenance periods. One problem with the i.i.d. input
price shock story is that it is somewhat at odds with the assumptions that all other
components of prices are constant across firms and that the other unobservables (ωjt )
in the model are serially correlated over time.

ACF provide two additional ways of overcoming this problem. First they note that if
one weakens OP’s timing assumptions slightly, one can still identify lj t in the first stage.
Their observation also reopens an avenue of research on the timing of input decisions
which dates back at least to Nadiri and Rosen (1974). Suppose that lj t is actually not a
perfectly variable input, and is chosen at some point in time between period t − 1 and
period t . Denote this point in time as t − b, where 0 < b < 1. Suppose that ω evolves
between the subperiods t − 1, t − b, and t according to a first order Markov process, i.e.

p(ωjt |Ijt−b) = p(ωjt |ωjt−b) and p(ωjt−b|Ijt−1) = p(ωjt−b|ωjt−1).

In this case, labor input is not a function of ωjt , but of ωjt−b, i.e.

lj t = ft (ωjt−b, kjt ).

Since ωjt−b cannot generally be written as a function of kjt , ajt , and ij t , lj t will not
generally be collinear with the nonparametric term in (30), allowing the equation to
be identified. The movement of ω between t − b and t is what breaks the collinearity
problem between lj t and the nonparametric function. The second alternative suggested

44 Note also that observing zjt would not help in this serially correlated case. While one would now be able
to do the inversion, zjt would enter the nonparametric function, again generating perfect collinearity.
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by ACF avoids this collinearity problem by abandoning the first stage identification of
the labor coefficient. Instead, they suggest identifying the labor coefficient in the second
stage using lj t−1 as an instrument.

Importantly, ACF argue that this collinearity problem is more severe when using the
LP procedure. They contend that it is considerably harder to tell a believable story in
which the assumptions of LP hold and where lj t varies independently of the nonpara-
metric function in (46). The reason for this is that it is hard to think of a variable zjt

that would affect a firms’ labor choices but not their material input choices (either di-
rectly or indirectly through the labor choice).45 ACF suggest a couple of procedures
as alternatives to LP.46 The first, based on the discussion above, again involves simply
identifying the labor coefficient in the second stage. This can be done using either lj t

or lj t−1 to form an orthogonality condition, depending on what one wants to assume
about the timing of the labor choice. Moreover, it can also be done in a manner that is
also consistent with labor having dynamic effects. The second procedure is more com-
plicated and involves sequentially inverting the value of ωjt at each point in time at
which inputs are chosen. While this procedure depends on independence (rather than
mean independence) assumptions on innovations in ωjt , it has the added advantage of
allowing one to infer something about the point in time that labor is chosen. Bond and
Söderbom (2005) make a somewhat related point regarding collinearity. They argue that
in a Cobb–Douglas context where input prices are constant across firms, it is hard if not
impossible to identify coefficients on inputs that are perfectly variable and have no dy-
namic effects. This is important for thinking about identification of coefficients on Xvs

j t

in the above formulation.

2.4.3. Relaxing the scalar unobservable assumption

The assumption of a scalar unobserved state variable is another aspect of the OP ap-
proach that might be a source of concern. We begin with three reasons for worrying
about this assumption and then provide a way of modifying the model to account for
each of them. In each case we bring information on additional observables to bear on
the problem. As a result, one way of looking at this section is as a set of robustness tests
conducted by asking whether the additional observables affect the results.

Our three concerns in order of increasing difficulty are as follows. First productivity
itself is a complex functions of many factors, and it may not be appropriate to assume

45 ACF note that one probably will not observe this perfect collinearity problem in practice (in the sense
that the first stage procedure will actually produce an “estimate”). However, they point out that unless one
is willing to make what they argue are extremely strong and unintuitive assumptions, the lack of perfect
collinearity in practice must come from misspecification in the LP model.
46 An alternative approach to dealing with these collinearity problems might be to model the input demand
functions (investment or materials) parametrically. If g( ) is parametric, one does not necessarily have this
collinearity problem. However, at least in the LP situation this does not guarantee identification. ACF show
that in the Cobb–Douglas case, substituting in the implied parametric version of the material input function
leads to an equation that cannot identify the labor coefficient.
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that one can represent it as a first order Markov process. Second investment might well
respond to demand factors that are independent of the firm’s productivity. Then there is
no longer a one to one mapping between investment and productivity given capital and
age. Consequently we cannot do the inversion in Equation (28) underlying the first stage
of the OP procedure. Finally, at least in some industries we often think of two sources
of increments in productivity, one that results from the firm’s own research investments,
and one whose increments do not depend on the firm’s behavior. A process formed
from the sum of two different first order Markov processes is not generally a first order
Markov process, and if one of those processes is “controlled” it may well be difficult to
account for it in the same way as we can control for exogenous Markov processes.

First assume that productivity follows a second order (rather than first order) Markov
process. This changes the investment demand equation to

(53)ij t = it (kjt , ajt , ωjt , ωjt−1).

Since there are the two unobservables (ωjt , ωjt−1) the investment equation cannot be
inverted to obtain ωjt as a function of observables, and the argument underlying the first
stage of the OP process is no longer valid.

One possible solution to the estimation problem is through a second observed control
of the firm. Suppose, for example, one observes firms’ expenditures on another invest-
ment (advertising, expenditure on a distributor or repair network), say sit .47 Then we
have the bivariate policy function(

ij t

sj t

)
= Υt(kjt , ajt , ωjt , ωjt−1).

If the bivariate function Υt ≡ (Υ1,t , Υ2,t ) is a bijection in (ωjt , ωjt−1) (i.e. it is onto),
then it can be inverted in ωjt to obtain

ωjt = Υ −1
t (kjt , ajt , ij t , sj t ).

Given this assumption the first stage proceeds as in OP, except with a higher dimensional
nonparametric function to account for current productivity (it is a function of sjt as well
as (kjt , ajt , ij t )).

OP’s second stage is modified to be

ỹj t = βkkjt + βaajt

+ g̃(φ̂j t−1 − βkkjt−1 − βaajt−1, φ̂j t−2 − βkkjt−2 − βaajt−2)

+ ξjt + ηjt ,

where ỹj t = yjt − β̂lj t and the φ̂j t variables are obtained from the first stage estimates
at t − 1 and t − 2. Note that since the conditional expectation of ωjt given Ijt−1 now

47 One can modify this argument to allow also for a second state variable, the stock of advertising or the size
of the repair network, provided that stock is known up to a parameter to be estimated.



4230 D. Ackerberg et al.

depends on ωjt−2 as well as ωjt−1, we need to use estimates of φ from two prior periods.
The extension to control for selection as well is straightforward. Moreover, provided the
number of observed control variables is at least equal to the order of the Markov process,
higher order Markov processes can be handled in the same way.

We now move on to allow investment to depend on an unobservable demand shock
that varies across firms, in addition to the (now first order) ωjt process. Suppose that
the demand shock, μjt , also follows a first order Markov process that is independent of
the ωjt process. Then the investment function will be a function of both unobservables,
or ij t = it (kjt , ajt , ωjt , μjt ). Again we will assume the existence of a second control
and use it to allow us to substitute for ωjt in the first stage of OP’s procedure.

More precisely, assume we also observe the firms’ pricing decisions pjt . At the risk of
some notational confusion, again let the bivariate policy function determining (ij t , pjt )

be labelled Υ (·), and assume it is a bijection in (ωjt , μjt ) conditional on (kjt , ajt ).
Then it can be inverted to form

(54)ωjt = Υ −1
t (kjt , ajt , ij t , pjt )

and one can proceed with the first stage of estimation as above.
For the second stage observe that since the μjt process is independent of the ωjt

process the firm’s conditional expectation of ωjt given Ijt−1 only depends on ωjt−1.
Thus, the second stage is

(55)ỹj t = βkkjt + βaajt + g̃(φ̂j t−1 − βkkjt−1 − βaajt−1) + ξjt + ηjt .

Note that the demand shock, if an important determinant of ij t , may help with the
precision of our estimates, as it generates independent variance in φ̂.

The estimation problem becomes more complicated if, for some reason, the two
Markov processes are dependent. The problem is that in this case, the firm’s conditional
expectation of ωjt given Ijt−1 depends on both ωjt−1 and μjt−1. Then Equation (55)
will have to be amended to allow g̃(·) to also depend on μjt−1. If we let

(56)μjt−1 = Υ −1
2,t−1(kjt−1, ajt−1, ij t−1, pjt−1),

our second stage can then be written as

ỹj t = βkkjt + βaajt + g̃(ωjt−1, μjt−1) + ξjt + ηjt

= βkkjt + βaajt

+ g̃
(
φjt−1 − βkkjt−1 − βaajt−1, Υ

−1
2,t−1(kjt−1, ajt−1, ij t−1, pjt−1)

)
(57)+ ξjt + ηjt .

Unfortunately, this equation cannot identify βk and βa since it requires us to condi-
tion on a nonparametric function of (kjt−1, ij t−1, ajt−1). More formally, since kjt =
(1 − δ)kjt−1 + ij t−1 (and ajt = ajt−1 + 1), there is no remaining independent variance
in (kjt , ajt ) to be used to identify βk and βa .
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To avoid this problem, we need an explicit ability to solve for or estimate μjt−1.
This would generally require demand side data. For example, the Berry, Levinsohn and
Pakes (1995) demand estimation procedure produces estimates of a set of “unobserved
product characteristics” which might be used as the μjt ’s. Of course, once one brings
in the demand side, there is other information that can often be brought to bear on
the problem. For example, the production function estimates should imply estimates of
marginal cost which, together with the demand system, would actually determine prices
in a “static” Nash pricing equilibrium (see the first section of this chapter). We do not
pursue this further here.

Finally we move to the case where there are two sources of productivity growth, one
evolving as a controlled Markov process, and one as an exogenous Markov process. In
this case the production function is written as

yjt = β0 + βkkjt + βaajt + βllj t + ω1
j t + ω2

j t + ηjt ,

where ω1
j t is the controlled, and ω2

j t is the exogenous, first order Markov process.
Assume now that we have data on both R&D expenditures, say rt , which is the input

of the controlled process, and a “technology indicator” or Tt (like patents, or licensing
fees) which is an output of the controlled process. As above, assume the policy functions
for physical and R&D investment are a bijection, so we can write

ω1
j t = Υ −1

1t (kjt , ajt , ij t , rj t ),

(58)ω2
j t = Υ −1

2t (kjt , ajt , ij t , rj t ).

Now the first stage consists of using the technology indicator to isolate ω1
j t . In other

words, we assume

(59)Tjt = ω1
j t θ + η2j t ,

where η2,t is mean independent of all the controls. We then substitute a nonparametric
function of (kjt , ajt , ij t , rj t ) for ω1

j t in Equation (59). This provides us with an estimate

of ω1
j t θ , say Υ̂ −1

1tj .

Our second stage mimics the first stage of OP except we treat Υ̂ −1
1tj as an input. That

is, we estimate

(60)yjt = βllj t + φ(kjt , ajt , ij t , rj t ) + ηjt ,

where

φ(kjt , ajt , ij t , rj t ) = βkkjt + βaajt + θ−1Υ̂ −1
1j t + ω2

j t .

Then, without a selection correction, the third stage becomes

ỹj t = βkkjt + βaajt + g̃
(
φjt−1 − βkkjt−1 − βaajt−1, Υ̂

−1
1j t−1

)+ ξjt + ηjt .

Once again, we can modify this to allow for selection by using the propensity score as
an additional determinant of g̃(·).
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Buettner (2004b) explores a related extension to OP. While he only allows one un-
observed state variable, he does allow the distribution of ωjt to evolve endogenously
over time, i.e. firms invest in R&D and these investments affect the distribution of ωjt

(conditional on ωjt−1).48 Unlike the above, Buettner does not assume that a “technol-
ogy indicator” is observed. He develops a dynamic model with investments in R&D and
physical capital that generates invertible policy functions such that the first stage of OP
can be directly applied (and the labor coefficient can be estimated). However, second
stage estimation is problematic, since the conditional expectation of ωjt now depends
on the full state vector through the choice of R&D. Furthermore, with the endogenous
productivity process, he cannot rely on exogenous variation (such as changes in the
economic environment over time) for identification. It remains to be seen whether this
problem can be solved.

Greenstreet (2005) proposes and utilizes an alternative model/methodology that,
while related to the above procedures, does not require the first stage inversion. This is
a very nice attribute since as a result, the procedure does not rely at all on the key scalar
unobservable and monotonicity assumptions of the OP/LP/ACF procedures. Greenstreet
achieves this by making a different assumption on firms’ information sets. Specifically,
instead of observing ωjt and ηjt individually (after production at t), firms only ever
observe the sum ωjt + ηjt . Because of this alternative informational assumption, the
econometrician does not need the first-stage inversion to recreate the information set of
the firms. While this does avoid the scalar unobservable and monotonicity assumptions,
Greenstreet’s approach still relies on similar timing assumptions, involves a slightly
more complicated learning process than the above procedures (requiring Kalman filter-
ing), and also generates some new initial conditions problems that require additional
assumptions to solve.

2.5. Concluding remark

The increase in the availability of plant and/or firm level panels together with a desire
to understand the efficiency implications of major environmental and policy changes
has led to a renewed interest in productivity analysis. Most of this analysis is based
on production function estimates, and the literature has found at least two empirical
regularities. First, there are indeed large efficiency differences among firms and those
differences are highly serially correlated. Second, at least in many environments, to
obtain realistic production function estimates the researcher must account for the possi-
bility of simultaneity and selection biases.

Put differently, to study either the changes in the allocative efficiency of production
among firms of differing productivities, or the correlates of productivity growth within
individual establishments, we first have to isolate the productivity variable itself. Since
firms’ responses to the changes in the environment being studied typically depend on

48 Recall that “endogenous” evolution of ωjt is problematic for IV approaches.
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how those changes impacted their productivity, movements in productivity cannot be
isolated from changes in input and exit choices without an explicit model of how those
choices are made.

The appropriateness of different models of how these decisions are made will un-
doubtedly depend on the environment being studied. We have presented a number of
alternatives, and discussed their properties. However this is an empirically driven sub-
field of estimation, and there are undoubtedly institutional settings where alternative
frameworks might be better to use. It is not the precise framework that is important,
but rather the fact that productivity studies must take explicit account of the fact that
changes in productivity (or, if one prefers, sales for a given amount of inputs) in large
part determine how firms respond to the changes being studied, and these must be taken
into account in the estimation procedure.

3. Dynamic estimation

This chapter considers structural estimation of dynamic games. Despite a blossoming
empirical literature on structural estimation of static equilibrium models, there has been
relatively little empirical work to date on estimation of dynamic oligopoly problems.
Four exceptions are Gowrisankaran and Town (1997), Benkard (2004), Jofre-Bonet and
Pesendorfer (2003), and Ryan (2006). The literature’s focus on static settings came
about not because dynamics were thought to be unimportant to market outcomes, but
rather because empirical analysis of dynamic games was seen as too difficult. In particu-
lar, while some of the parameters needed to analyze dynamic games could be estimated
without imposing the dynamic equilibrium conditions, some could not and, until very
recently, the only available methods for estimating these remaining parameters were
extremely burdensome, in terms of both computation time and researcher time.

This computational complexity resulted from the need to compute the continuation
values to the dynamic game in order to estimate the model. The direct way of obtaining
continuation values was to compute them as the fixed point to a functional equation,
a high order computational problem. Parameter values were inferred from observed be-
havior by computing the fixed point that determines continuation values at different trial
parameter values, and then searching for the parameter value that makes the behavior
implied by the continuation values “as close as possible” to the observed behavior. This
“nested fixed point” algorithm is extremely computationally burdensome because the
continuation values need to be computed many times.

However, a recent literature in industrial organization [Aguirregabiria and Mira
(2007), Bajari, Benkard and Levin (2007), Jofre-Bonet and Pesendorfer (2003), Pakes,
Ostrovsky and Berry (2007), and Pesendorfer and Schmidt-Dengler (2003)] has devel-
oped techniques that substantially reduce the computational and programming burdens
of estimating dynamic games. This literature extends a basic idea that first appeared in
the context of single agent problems in Hotz and Miller (1993). Hotz and Miller (1993)
provided a set of assumptions under which one could obtain a nonparametric estimate
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of continuation values without ever computing the fixed point.49 Rust (1994) suggests
the extension of these ideas to the context of dynamic games. The recent literature in
industrial organization has shown that, at least under a certain set of assumptions, these
approaches can be extended to estimate continuation values in a wide variety of dynamic
games, even in the presence of multiple equilibria.

This chapter summarizes the currently available techniques for estimating dynamic
games, concentrating on this recent literature. The chapter proceeds as follows. We first
outline the goals of the estimation procedure and consider what might be gained by
modelling dynamics in an oligopoly situation. Then we present a general framework
for dynamic oligopoly problems, with three simple examples from the recent literature.
Next we overview existing estimation methods, providing details for the three examples.
We conclude with a brief discussion of techniques available to ameliorate one (of many)
outstanding problems; that of serially correlated unobserved state variables.

We note that there are at least two issues that appear in the literature and are not
considered here. First we do not consider identification issues (at least not directly).
Our feeling is that many of the parameters determining behavior in dynamic games can
be estimated without ever computing an equilibrium, and those parameters that remain
depend on the nature of the problem and data availability. Second, we do not consider
“timing” games, such as those in Einav (2003) and in Schmidt-Dengler (2003). Our
only excuse here is our focus on the evolution of market structure in oligopolies.

3.1. Why are we interested?

One contribution of the recent literature is that it provides a means of obtaining informa-
tion about certain parameters that could not be obtained via other methods. For example,
the sunk costs of entry and the sell-off values (or costs) associated with exit are key de-
terminants in the dynamics of market adjustments to policy and environmental changes.
Knowledge of the level of sunk costs is critical, for example, in a regulatory author-
ity’s decision of whether to approve a merger, or in the analysis of the likely impacts
of changes in pension policy on shut down decisions. However, actual data on sunk
costs are extremely rare. Besides being proprietary, and thus hard to access, sunk costs
can also be very difficult to measure. Thus, in many cases the only option for learning
the extent of sunk costs may be to infer them from equilibrium behavior using other
variables that we can observe. Since sunk costs are only paid once upon entry, while
firms may continue to operate for many periods, inferring the level of sunk costs from
equilibrium behavior requires a dynamic framework. Similar arguments can be made
regarding the parameters determining, among other diverse phenomena, the transaction

49 In related work Olley and Pakes (1996) use nonparametrics to get around the problem of computing the
fixed point needed to obtain an agent’s decision rule in a multiple agent framework; but they use the non-
parametric estimates to control for unobservables and do not recover the implied estimates of continuation
values.
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costs of investments (including installment, delivery, and ordering costs), the costs of
adjusting output rates or production mix, and the extent of learning-by-doing.

There are a number of other uses for techniques that enable us to empirically analyze
dynamic games. For example, there are many industries in which an understanding of
the nature of competition in prices (or quantities) requires a dynamic framework. In such
cases, the empirical literature in industrial organization has often used static models to
approximate behavior that the authors are well aware is inherently dynamic. For exam-
ple, there has been much work on identifying and estimating the form of competition in
markets [e.g. Bresnahan (1982, 1987), Lau (1982)]. This literature typically compares a
static Nash equilibrium with particular static “collusive” pricing schemes. In reality, the
set of collusive pricing schemes that could be supported in equilibrium depends on the
nature of the dynamic interactions [e.g. Abreu, Pearce and Stacchetti (1986), Green and
Porter (1984), Rotemberg and Saloner (1985), Fershtman and Pakes (2000)]. A related
point is that static price or quantity setting models are known to be inappropriate when
future costs depend directly on the quantity sold today, as in models with learning by
doing or adjustment costs, and/or when future demand conditions depend on current
quantities sold, as in models with durable goods, experience goods, the ability to hold
inventory, and network externalities.

Similarly, most of the existing empirical literature on entry relies on two-period sta-
tic models. While these models have proven very useful in organizing empirical facts,
the two period game framework used makes little sense unless sunk costs are absent.
Therefore, the results are not likely to be useful for the analysis of policy or envi-
ronmental changes in a given market over time. This leaves us with an inability to
analyze the dynamic implications of a host of policy issues, and there are many sit-
uations where dynamics may substantially alter the desirability of different policies.
For example, Fershtman and Pakes (2000) show that because collusive behavior can
help promote entry and investment, it can enhance consumer welfare. Similarly, a sta-
tic analysis would typically suggest that mergers lower consumer welfare by increasing
concentration, whereas a dynamic analysis might show that allowing mergers promotes
entry, counterbalancing the static effects.

3.2. Framework

This section outlines a framework for dynamic competition between oligopolistic com-
petitors that encompasses many (but not all) applications in industrial organization.
Examples that fit into the general framework include entry and exit decisions, dynamic
pricing (network effects, learning-by-doing, or durable goods), dynamic auction games,
collusion, and investments in capital stock, advertising, or research and development.
The defining feature of the framework is that actions taken in a given period affect future
payoffs, and future strategic interaction, by influencing only a set of commonly observed
state variables. In particular, we will assume that all agents have the same information
to use in making their decisions, up to a set of disturbances that have only transitory
effects on payoffs.
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We use a discrete time infinite horizon model, so time is indexed by t = 1, 2, . . . ,∞.
At time t , prevailing conditions are summarized by a state, st ∈ S ⊂ R

G, that reflects
aspects of the world relevant to the payoffs of the agents. Relevant state variables might
include firms’ production capacities, the characteristics of the products they produce,
their technological progress up to time t , the current market shares, stocks of consumer
loyalty, or simply the set of firms that are incumbent in the market. We assume that these
state variables are commonly observed by the firms. Note that we have not yet specified
which state variables are observed by the econometrician. This distinction will be made
in the applications below.

Given the state st at date t , the firms simultaneously choose actions. Depending on
the application, the firms’ actions could include decisions about whether to enter or exit
the market, investment or advertising levels, or choices about prices and quantities. Let
ait ∈ Ai denote firm i’s action at date t , and at = (a1t , . . . , aNt ) the vector of time t

actions, where Nt is the number of incumbents in period t (entry and exit, and hence Nt ,
are endogenous in these models).

We also assume that before choosing its action each firm, i, observes a private shock
νit ∈ R, drawn independently (both over time and across agents) from a distribution
G(·|st ).50 Private information might derive from variability in marginal costs of produc-
tion that result, say, from machine breakdowns, or from the need for plant maintenance,
or from variability in sunk costs of entry or exit. We let the vector of private shocks be
νt = (ν1t , . . . , νNt ).

In each period, each firm earns profits equal to πi(at , st , νit ). Profits might include
variable profits as well as any fixed or sunk costs, including the sunk cost of entry
and the selloff value of the firm. Conditional on the current state, s0, and the current
value of the firm’s private shock, νi0, each firm is interested in maximizing its expected
discounted sum of profits

(61)E

[ ∞∑
t=0

βtπi(at , st , νit )

∣∣∣∣s0, νi0

]
,

where the expectation is taken over rival firms’ actions in the current period as well as
the future values of all state variables, the future values of the private shock, and all
rivals’ future actions. We assume firms have a common discount factor β.

The final aspect of the model is to specify the transitions between states. We as-
sume that the state at date t + 1, denoted st+1, is drawn from a probability distribution
P(st+1|st , at ). The dependence of P(·|st , at ) on the current period actions at reflects
the fact that some time t decisions may affect future payoffs, as is clearly the case if the
relevant decision being modelled is an entry/exit decision or a long-term investment.
Of course, not all the state variables necessarily depend on past actions; for example,

50 Here we assume that firm i’s private shock is a single scalar variable. However, as will be seen in the
examples below, there is no conceptual difficulty in allowing the shock to be multi-dimensional.
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one component of the state could be a transitory i.i.d. shock that affects only the current
payoffs, such as an i.i.d. shock to market demand.

Note that we have assumed that firms’ private information does not influence state
transitions directly (i.e. it only influences transitions through its impact on ait ). For ex-
ample, incumbent firms care only about whether or not a potential entrant enters the
market, and not what the entrant’s sunk cost of entry was. On the other hand this as-
sumption does rule out applications where firms’ investment outcomes are their private
information [e.g. Fershtman and Pakes (2005)].

We are interested in equilibrium behavior. Because the firms interact repeatedly and
the horizon is infinite, there are likely to be many Nash, and even subgame perfect
equilibria, possibly involving complex behavioral rules. For this reason, we focus on
pure strategy Markov perfect equilibria (MPE).

In our context a Markov strategy for firm i describes the firm’s behavior at time t as
a function of the commonly observed state variables and firm i’s private information
at time t . Formally, it is a map, σi : S × R → Ai . A profile of Markov strategies is a
vector, σ = (σ1, . . . , σn), where σ : S × R

n → A. A Markov strategy profile, σ , is a
MPE if there is no firm, i, and alternative Markov strategy, σ ′

i , such that firm i prefers
the strategy σ ′

i to the strategy σi given its opponents use the strategy profile σ−i . That
is, σ is a MPE if for all firms, i, all states, s, and all Markov strategies, σ ′

i ,

(62)Vi(s, νi |σi, σ−i ) � Vi

(
s, νi

∣∣σ ′
i , σ−i

)
.

If behavior is given by a Markov profile σ , firm i’s present discounted profits can be
written in recursive form

Vi(s, νi |σ ) = Eν−i

[
πi

(
σ (s, ν), s, νi

)
(63)+ β

∫
Vi

(
s′, ν′

i

∣∣σ ) dG
(
ν′
i

∣∣ s′) dP
(
s′∣∣σ (s, ν), s

)]
.

3.2.1. Some preliminaries

The framework above is a generalization of the Ericson and Pakes (1995) model. The ex-
istence proofs for that model that are available have incorporated additional assumptions
to those listed above [see Gowrisankaran (1995), and Doraszelski and Satterthwaite
(2007)]. Typically, however, the algorithms available for computing an equilibrium do
find an equilibrium even when the available sets of sufficient conditions for existence
are not satisfied (i.e. the algorithm outputs policies and values that satisfy the fixed point
conditions that define the equilibrium up to a precision determined by the researcher).
There may, however, be more than one set of equilibrium policies [for an explicit exam-
ple see Doraszelski and Satterthwaite (2007)].

If the regularity conditions given in Ericson and Pakes (1995) are satisfied, each equi-
librium generates a finite state Markov chain for the st process. That is, the vector of
state variables can only take on a finite set of values, a set we will designate by S, and
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the distribution of the future {sτ }∞τ=t conditional on all past history depends only on the
current value of st . Every sequence from this finite state Markov chain will, in finite
time, wander into a subset of the states called a recurrent class or an R ⊂ S, and once
in R will stay there forever. Every s ∈ R will be visited infinitely often.51

Throughout we assume that agents’ perceptions of the likely future states of their
competitors depend only on st (i.e. we assume that st is a complete description of
the state variables observed by the firms). As detailed by Pakes, Ostrovsky and Berry
(2007), this implies that there is only one equilibrium policy for each agent that is con-
sistent with the data generating process; at least for all st ∈ R. To see this it suffices to
note that since we visit each point in R infinitely often, we will be able to consistently
estimate the distribution of future states of each firm’s competitors given any st ∈ R.
Given that distribution, each agent’s best response problem is a single agent problem.
Put differently, since reaction functions are generically unique, once the agent knows the
distribution of its competitors’ actions, its optimal policy is well defined. Thus, given
the data generating process, policies are well defined functions of the parameters and
the state variables. Consequently, standard estimation algorithms can be used to recover
them.52

Finally, in all of the examples below we will assume that the discount factor, β, is one
of the parameters that is known to the econometrician. It is a straightforward extension
to estimate the discount parameter. However, our focus here is on obtaining estimates
of parameters that we have little other information on.

3.2.2. Examples

The framework above is general enough to cover a wide variety of economic models. We
provide three examples below. In general the objects that need to be recovered in the es-
timation are the period profit function, π(·), the transition probabilities, P(st+1|st , at ),
and the distribution of the private shocks, G(·|s).

EXAMPLE 1 (A simple model of entry/exit). This example is based on Pakes, Ostrovsky
and Berry (2007). Let the state variables of the model be given by a pair, st = (nt , zt ),
where nt denotes the number of firms active at the beginning of each period, and zt is a
vector of profit shifters that evolve exogenously as a finite state. In the model, operating
profits are determined solely by these variables. In any period, t , in which a firm is
active it earns profits equal to

π̃ (nt , zt ; θ).

51 Formally, the dynamics of the model are described by a Markov matrix. Each row of the matrix provides
the probability of transiting from a given s to each possible value of s ∈ S. Ericson and Pakes (1995) also
provide conditions that imply that the Markov matrix is ergodic, that is there is only one possible R.
52 Note that if our data consists of a panel of markets, this implicitly assumes that, conditional on st , the
policy rule (our σ ) in one market is the same as in the other.
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The model focuses on entry and exit. In each period, each incumbent firm receives a
random draw, denoted φit , determining the selloff value of the firm. The selloff values
are assumed to be private information. However, their distribution is commonly known
to the agents. The firm chooses to exit if the selloff value of the firm is greater than the
expected discounted value of continuing in the market. Otherwise, the firm continues in
the market.

Entry is described similarly. For ease of exposition, we assume that there are E poten-
tial entrants each period, where E is known to the agents.53 Each period, each potential
entrant firm receives a random draw, denoted κit , determining its sunk cost of entry.
As above, the entry cost is private information, but its distribution is commonly known.
The firm enters the market if the expected discounted value of entering is greater than
the entry cost. Otherwise, the entrant stays out of the market and earns nothing.

To see how this model fits into the general framework, let χit = 1 for any firm i that
is active in the market in period t , and χit = 0 otherwise. Note that we assume that
when an incumbent firm exits, χit = 0 thereafter. In that case the period profit function
is

πi(at , st , νit ) = {χit = 1}π̃(nt , zt ; θ) + (χit − χi,t−1)
−φit − (χit − χi,t−1)

+κit ,

where the notation {χit = 1} denotes an indicator function that is one if the firm is
active and zero otherwise, the notation f + ≡ {f > 0}f , for any function f , and
similarly f − ≡ {f < 0}|f |. On the right-hand side, χ represents firms’ actions, a;
n and z represent the states, s; and φ and κ represent the private shocks, ν.

Note that while this model does not allow for observed heterogeneity among incum-
bent firms, this can be achieved by allowing for multiple entry locations. We consider
this extension below. Note further that this model is a special case of the Ericson and
Pakes (1995) model in which investment is not modelled. We add investment back to
the model in the next example.

EXAMPLE 2 (An investment game with entry and exit). This example is a straightfor-
ward extension of the Ericson and Pakes (1995) model due to Bajari, Benkard and Levin
(2007). Similarly to the above example, there are a set of incumbent firms competing
in a market. Firms are heterogeneous, with differences across firms described by their
state variables, sit , which are commonly known. For ease of exposition, we will omit
any other exogenous profit shifters from the set of state variables.

Each period, firms choose investment levels, Iit � 0, so as to improve their state
the next period. Investment outcomes are random, and each firm’s investment affects
only its own state so that there are no investment spillovers. Therefore, each firm’s state
variable, sit , evolves according to a process Pr(si,t+1|sit , Iit ).

Here are some examples of models that are consistent with this framework.

53 The extension to a random number of entrants is straightforward. See Pakes, Ostrovsky and Berry (2007)
for details.
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(i) Firms’ state variables could represent (one or more dimensions of) product qual-
ity, where investment stochastically improves product quality.

(ii) Firms’ state variables could represent the fraction of consumers who are aware
of the firm’s product, where investment is a form of advertising that increases
awareness [e.g. Doraszelski and Markovich (2007)].

(iii) Firms’ state variables could represent capital stock, where investment increases
a firm’s capital stock.

Firms earn profits by competing in a spot market. Because quantity and price are
assumed not to influence the evolution of the state variables, they are determined in
static equilibrium conditional on the current state. In any period, t , in which a firm is
active in the market it earns profits equal to

(64)qit (st , pt ; θ1)
(
pit − mc(sit , qit ; θ2)

)− C(Iit , νit ; θ3),

where qit is quantity produced by firm i in period t , pt is the vector of prices, mc is
the marginal cost of production, νit represents a private shock to the cost of investment,
θ = (θ1, θ2, θ3) is a parameter vector to be estimated, and we have assumed that the
spot market equilibrium is Nash in prices.

The model also allows for entry and exit. Each period, each incumbent firm has the
option of exiting the market and receiving a scrap value, Φ, which is the same for
all firms (this differs from the prior example in which there is a distribution of exit
costs). There is also one potential entrant each period with a random entry cost, κit .54

The entrant enters if the expected discounted value of entering exceeds the entry cost.
As above, the entry cost is assumed to be private information, but its distribution is
commonly known.

Relative to the general framework above, current period returns are given by

πi(at , st , νit ) = {χit = 1}[qit (st , pt ; θ1)
(
pit − mc(sit , qit ; θ2)

)− C(Iit , νit ; θ3)
]

+ (χit − χi,t−1)
−Φ − (χit − χi,t−1)

+κit .

On the right-hand side, prices (p), investment (I ), and entry/exit (χ) are the actions (a),
while the private shocks are the shock to investment (νit ) and the entry cost (κit ).

EXAMPLE 3 (A repeated auction game with capacity constraints). This example is
based on Jofre-Bonet and Pesendorfer (2003). In this example, a set of incumbent
contracting firms compete in monthly procurement auctions. The auctions are hetero-
geneous because the contracts that become available each month are of differing size
and scope. The firms bidding on the contracts are also heterogeneous as each has a dif-
ferent cost of completing each contract. In a given month, each firm also has a different
backlog of contracts, which might affect its ability to take on new contracts.

Let zt be the characteristics of the contract to be auctioned in month t , including
both the contract size (in dollars), and the number of months required to complete the

54 It is straightforward to generalize the model to have a random number of potential entrants each period.
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contract. We assume that zt evolves exogenously as a finite state. Let ωi,t be the backlog
of work for firm i in period t and ωt = (ω1,t , . . . , ωN,t ) be the vector of backlogs.
A firm’s backlog of work represents the remaining size in dollars, and the remaining
number of days left until completion of each contract previously won by the firm. It
therefore evolves deterministically depending on the current auction outcome according
to the map

ωt+1 = Γ (ωt , zt , j ),

where j is the winner of the time t auction and the map Γ is known. The state variables
of the model are st = (ωt , zt ). All states are assumed to be common knowledge.

Each firm also has a different cost, cit , for each contract that is private information to
the firm. Bidders’ costs are drawn independently from a distribution G(cit |ωit , ω−it , zt )

that is commonly known.
In each period, each firm views its cost for the contract being offered and then chooses

a bid, bit . Each firm earns current profits equal to

(65)πi(at , st , νit ) = (bit − cit )
{
bit � min

j
(bjt )

}
,

where the indicator function takes the value one if firm i submits the lowest bid and
hence wins the auction (assume there are no ties). On the right-hand side the bids (bjt )

are the action variables (at ) and the costs cit are the private shocks (νit ).
Note that the state variables do not directly enter current profits in this model. How-

ever, the state variables influence all firms’ costs and hence a firm’s optimal bid depends
on the current state both through its own costs directly and through the firm’s beliefs
about the distribution of rivals’ bids. For the same reason, expected profits are also a
function of the current state.

Note also that an important distinction between the investment model above and this
example is that, in this example, each firm’s choice variable (in this case, its bid) affects
the evolution of all firms’ states. In the investment model above, a firm’s investment
affects only the evolution of its own state. This distinction is important because many
I.O. models share this feature. For example, models of dynamic pricing (learning by
doing, network effects, or durable goods) would have this feature when firms compete
in prices (though not if firms compete in quantities). Such models can be placed in the
general EP framework we have been using, but to do so we need to adjust that frame-
work to allow the control that affects the distribution of current profits (bids, quantities,
or prices) to also have an impact on distribution of future states; see the discussion in
Pakes (1998). We note that to our knowledge Jofre-Bonet and Pesendorfer (2003) were
the first to show that a two-step estimation approach was feasible in a dynamic game.

3.3. Alternative estimation approaches

In order to conduct policy analysis in any of the economic models above, it is typically
necessary to know all of the parameters of the model, including the profit function, the
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transition probabilities, and the distribution of the exogenous shocks. Often many of the
parameters can be estimated “off line”, that is, without needing to compute equilibria of
the dynamic game. At one extreme here is Benkard’s (2004) analysis of the commercial
aircraft industry. He was able to obtain a large amount of cost data on sunk as well as
marginal costs which, together with generally available information on demand, enabled
him to estimate all the parameters he needed off line. Given these parameters he could
focus on computing the dynamic implications of alternative policies.

However, such an approach is rarely possible. More typically, at least cost data are
unavailable, either because they are proprietary and hence difficult for researchers to
access, or because they are hard to measure. In static settings we often solve the prob-
lem of a lack of cost data by inferring marginal costs from their implications in an
equilibrium pricing equation. A similar approach can be taken in this dynamic setting.
However, characterizing the relationship between the data generating process and equi-
librium play in the models above is complicated by the fact that the model involves
repeated interactions.

Observed behavior in the model represents the solution to a maximization problem
that involves both the profit function, which typically has a known parametric form,
and the value function, which results from equilibrium play and therefore has unknown
form. For example, the value of entering a market depends both on current profits, and
expected future profits, which in turn depend on future entry and exit behavior. In or-
der to describe the data generating process, then, we need the ability to compute the
equilibrium continuation values.

Thus, conceptually, estimation of dynamic models can be separated into two main
parts. The first part involves obtaining the continuation values for a given parameter
value, θ . The second part is to use the continuation values obtained in the first part to
maximize an objective function in the parameters, θ . Note that the continuation values
must be obtained for many different values of θ in order to perform this maximization,
and thus the first part is the source of most of the computational burden of the estimation.
The key differences in estimation approaches lie in the details of how each of these two
parts is performed.

3.3.1. The nested fixed point approach

The nested fixed point approach is a logical extension of the method of Rust (1987) to
games. The general idea is as follows:

1. Given a parameter vector, θ , compute an equilibrium to the game, V (s; θ), numer-
ically, using the computer.

2. Use the computed values, V (s; θ), to evaluate an objective function based on the
sample data.

3. Nest steps one and two in a search routine that finds the value of θ that maximizes
the objective function.

A framework capable of computing equilibria to models like those above has existed
for some time [Pakes and McGuire (1994)], and recent papers by Pakes and McGuire
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(2001), Doraszelski and Judd (2004), and Weintraub, Benkard and Van Roy (2007) en-
able significant improvements in computational times, at least in some problems [for
a discussion of these, and other alternatives, see Doraszelski and Pakes (2007)]. All of
these algorithms rely on similarities between the dynamic framework above and dy-
namic programming problems. The general idea of these algorithms is to start with an
initial guess at the value function, V 0(s; θ), and substitute that into the right-hand side
of the Bellman equation (Equation (63)). Then, at each state point and for each firm,
solve the maximization equation on the right-hand side of (63) yielding a new estimate
of the value function, V 1(s; θ). This procedure is iterated until convergence is achieved,
so that the new and old value functions are the same. Unlike single agent problems,
in the context of a game, convergence of the algorithm is not guaranteed (the mapping
is not a contraction) and, indeed, initial iterations will often seem to move away from
equilibrium. However, in practice the algorithms typically converge and, once they do,
the value functions obtained must represent an equilibrium.

An important feature of the nested fixed point algorithm is that the first step is per-
formed without using any data. As a result, the value functions are obtained precisely;
that is, they contain no sampling error. This lack of sampling error makes the second
part of the algorithm, in which the parameters are estimated, straightforward.

On the other hand the algorithm is computationally burdensome. For models rich
enough to use in empirical work, it is often difficult to compute an equilibrium even
once, and in the nested fixed point algorithm it is necessary to compute an equilibrium
once for each iteration of the maximization routine; implying that up to hundreds, if
not thousands, of fixed points must be calculated. Moreover, setting up an efficient al-
gorithm often requires a large amount of complex computer programming, creating a
relatively large burden on researcher time. As a result there are very few examples in
the literature where the nested fixed point algorithm has been applied to estimate para-
meters.

One exception is Gowrisankaran and Town (1997), who use a nested fixed point ap-
proach to apply a model similar to the investment model above to data for the hospital
industry. In each iteration of the estimation they compute an equilibrium using the al-
gorithm of Pakes and McGuire (1994). They then estimate the model using a GMM
objective function that matches cross-sectional moments such as average revenue per
hospital, average expenditures per hospital, average investment per hospital, and aver-
age number of hospitals of each type (nonprofit and for-profit) per market. The nested
fixed point approach was feasible in their application because their model was parsimo-
nious and there were never more than three hospitals in any market in the data.

Another difficulty with the nested fixed point algorithm arises from the fact that dy-
namic oligopoly models can admit more than one equilibria. While the assumptions
given above in principle allow the researcher to use the data to pick out the correct equi-
librium, actually achieving this selection using the nested fixed point algorithm is likely
to be difficult. Moreover, equilibrium selection has to take place for every candidate
value of the parameters to be estimated. Alternative sets of assumptions could be used
to select different equilibria, but unless we were willing to assume “a priori” that equi-
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librium was unique, somehow we must investigate the issue of the relationship between
the equilibrium computed in the algorithm, and that observed in the data.

3.3.2. Two-step approaches

The biggest obstacle to implementing the nested fixed point algorithm in practice is
the heavy computational burden that results from the need to compute equilibria for
each trial parameter value. Fortunately, the recent literature [Aguirregabiria and Mira
(2007), Bajari, Benkard and Levin (2007), Jofre-Bonet and Pesendorfer (2003), Pakes,
Ostrovsky and Berry (2007), and Pesendorfer and Schmidt-Dengler (2003)] has de-
rived methods for estimating dynamic oligopoly models that impose the conditions of
a dynamic equilibrium without requiring the ability to compute an equilibrium. The
new literature sidesteps the equilibrium computation step by substituting nonparamet-
ric functions of the data for the continuation values in the game. These nonparametric
estimates are in general much easier to compute than the fixed point calculations in
the nested fixed point algorithm. As a result, these methods have substantially lower
computational burden.

Below we outline five different two-step methods of estimating dynamic games. The
overall approach is similar throughout, but each method does both the first and sec-
ond steps of the estimation differently. To our knowledge, Hotz and Miller (1993)
were the first to show that it was possible to estimate the continuation values in a dy-
namic programming problem nonparametrically instead of computing them. In a single
agent dynamic discrete choice problem, Hotz and Miller showed that the agent’s dy-
namic choice problem mimics a static discrete choice problem with the value functions
replacing the mean utilities. Thus, the agent’s continuation values can be obtained non-
parametrically by first estimating the agent’s choice probabilities at each state, and then
inverting the choice problem to obtain the corresponding continuation values. This in-
version is identical to the one commonly used in discrete choice demand estimation to
obtain the mean utilities.

We begin our discussion of estimation by showing that if the game has only dis-
crete actions, and there is one unobserved shock per action for each agent in the
game, then under the information structure given in the general framework above, es-
timators very similar to those of Hotz and Miller (1993) can still be used [see also
Aguirregabiria and Mira (2007)]. Sticking with the single agent framework, Hotz et al.
(1994) use estimated probabilities to simulate sample paths. They then calculate the
discounted value of utility along these paths, average those values for the paths emanat-
ing from a given state, and use these averages as the continuation values at that state.
The Bajari, Benkard and Levin (2007) paper discussed below shows that related ideas
can be used to incorporate continuous controls into estimation strategies for dynamic
games.

Pakes, Ostrovsky and Berry (2007) also consider dynamic discrete games but, instead
of inverting the choice problem, they estimate the continuation values directly by com-
puting (approximately) the average of the discounted values of future net cash flows
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that agents starting at a particular state actually earned in the data (at least up to the
parameter vector of interest). Econometrically, they use a nonparametric estimate of the
Markov transition probabilities that determine the evolution of the state of the system to
form an analytic estimate of the probability weighted average of the discounted returns
earned from different states. Given equilibrium play, these averages will converge to the
true expected discounted value of future net cash flow, that is of the continuation values
we are after.

Bajari, Benkard and Levin (2007) instead begin by projecting the observed actions on
the state variables to compute nonparametric estimates of the policy functions of each
agent at each state. Then they use the estimated policies to simulate out the discounted
values of future net cash flows. This procedure is computationally light even in models
with large state spaces and is easily applied to models with continuous controls, such as
investment, quantity, or price (including models with both discrete and continuous con-
trols like the investment game above). Given equilibrium play, the continuation values
obtained in this fashion will be consistent estimates of the continuation values actually
perceived by the agents.

Berry and Pakes (2002) provide an alternative approach for estimating models with
continuous controls that is likely to be useful when the dynamic environment is com-
plex, but sales and investment data are available. They assume that current period net
returns are observable up to a parameter vector to be estimated, but do not require that
the state variables of the model be observed, or even specified (so it would not be possi-
ble to estimate policy functions conditional on those state variables as in Bajari, Benkard
and Levin). They derive an estimating equation from the first order condition for the
continuous control (investment in our example) by substituting observed profit streams
for the expected profit streams, and noting that the difference must be orthogonal to
information known at the time investment decisions are made.

Jofre-Bonet and Pesendorfer (2003) provide an estimator for the dynamic auction
model. They show that it is possible to derive an expression for the equilibrium contin-
uation values in the auction game that involves only the bid distributions. Since bids are
observed, the bid distributions can be recovered nonparametrically from the data and
then substituted into these expressions. Provided that agents are bidding close to opti-
mally, the continuation values obtained from this procedure will be consistent estimates
of the continuation values perceived by the agents.

In many of the cases we consider several of the methods could be used in estimation.
In these cases it is not currently known how the methods compare to one another on
such dimensions as computational burden and econometric efficiency. Hybrid methods
are also possible in which features of two or more of the approaches could be combined.
We expect these issues to be sorted out in the future.

Finally, there are also some costs associated with the two-step approaches. First, be-
cause the continuation values are estimated rather than computed, they contain sampling
error. This sampling error may be significant because these models often have state
spaces that are large relative to the available data. As we will see below, this influ-
ences the properties of the second step estimators in important ways. To summarize, the
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choice of second stage estimation method will be influenced as much or more by a need
to minimize small sample bias caused by error in the continuation value estimates as it
is by the desire to obtain asymptotic efficiency.

Second, for the two step approaches to produce estimators with desirable properties
the data must visit a subset of the points repeatedly. Formally the requirement for the
limit properties of the estimators is that all states in some recurrent class R ⊆ S be
visited infinitely often. Moreover, equilibrium strategies must be the same every time
each point in R is visited. Whether or not this assumption is reasonable for the problem
at hand depends on the nature of the available data and the institutional setting which
generated it. If the data consists of a time series on one market then we would require
stationarity of the process over time. There are different ways to fulfill this requirement
in panels (i.e. when we follow a cross section of markets over time); one possibility is
that the initial state in each market is a random draw from a long run ergodic distribution.
Note that the nested fixed point approach has a weaker data requirement.

These costs must be weighed against the benefit that the two-step estimators eliminate
most of the computational burden of the nested fixed point approach. Indeed, the entire
two-step algorithm might well have less computational burden than one iteration of the
nested fixed point algorithm.

3.4. A starting point: Hotz and Miller

Because of the similarity of this section to the previous literature on single agent prob-
lems, we will keep this section short, concentrating mainly on extending Hotz and Miller
to games. For more detail on the approach in single agent problems see Hotz and Miller
(1993), Hotz et al. (1994), Magnac and Thesmar (2002), and Rust (1994). See also
Aguirregabiria and Mira (2007) and Pesendorfer and Schmidt-Dengler (2003) for a dis-
cussion in the context of entry games.

The idea behind Hotz and Miller’s estimation method for single agent problems is to
set up a dynamic discrete choice problem such that it resembles a standard static discrete
choice problem, with value functions taking the place of standard utility functions. This
allows a two step approach in which a discrete choice model is used as a first step for
recovering the value functions, and the parameters of the profit function are recovered
in a second step once the value functions are known.

We make two simplifying assumptions that will assist in the exposition. First, we
suppose that agents’ current profits do not depend on rivals’ actions (though they do
depend on rival’s states whose evolution depends on those actions). Second, we assume
that the unobserved shocks are additive to profits. In that case, current profits are given
by

πi(at , st , νit ) = π̃ (ait , st ) + νit (ait ),

where νit is agent i’s vector of profitability shocks and νit (ait ) is the shock associated
with agent i’s action ait .
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The first assumption simplifies the agents’ choice problem because, if agents’ current
profits depend on rivals’ actions then, since rivals’ actions depend on their own current
shocks, in its own maximization problem each agent would have to integrate current
profits over all rivals’ current actions. This would not change the overall approach but
would complicate the computations below [we would need to integrate over distribu-
tions of competitors outcomes to compute the expected profits; see Aguirregabiria and
Mira (2007) for a model in which profits do depend on rivals’ actions]. The second
simplification, additive separability in the private shocks, is also not strictly required.
If the error terms entered profits nonlinearly then we could rewrite the problem in
terms of expected profits and an additively separable projection error and work with
that framework instead. However, such an approach does have the unattractive prop-
erty that it changes the interpretation of the profit function. Thus, it is typically the
case that in practice people assume that the profit function has additive structural error
terms.

With these assumptions the Bellman equation can be simplified to (suppressing the
subscripts)

(66)V (s, ν) = max
a

{
π̃(a, s) + ν(a) + β

∫
V (s′, ν′) dG(ν ′|s′) dP(s′|s, a)

}
.

Equation (66) represents a discrete choice problem in which the mean utilities are given
by

(67)va(s) = π̃ (a, s) + β

∫
V (s′, ν′) dG(ν ′|s′) dP(s′|s, a).

Thus, since the private shocks are independent across time and across agents, the choice
probabilities for a given agent can be generated in the usual manner of a static discrete
choice problem

(68)Pr(a|s) = Pr
(
va(s) + ν(a) � va′(s) + ν(a′),∀a′).

Assuming that the data consists of a large sample of observations on states and ac-
tions, the probability of each action at each state, Pr(a|s), can be recovered from the
data. In that case, the left-hand side of (68) is known, at least asymptotically. Let P(s)
be the vector of choice probabilities for all feasible actions. Hotz and Miller show that
for any distribution of the private shocks there is always a transformation of the choice
probabilities such that

(69)va(s) − v1(s) = Qa

(
s, P (s)

)
.

That is, the differences in the choice specific value functions can be written as a func-
tion of the current state and the vector of choice probabilities. The transformation on
the right-hand side is the same as the inversion used in the discrete choice demand es-
timation literature. Berry (1994) proves that the solution is unique. Berry, Levinsohn
and Pakes (1995) provide a transformation from the data to the mean utilities which is
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a contraction, and hence enables the researcher to actually compute the mean utilities
(for more discussion see the first part of this chapter).

In general, this transformation can be used to recover the normalized choice specific
value functions, va−v1, at each state, using the estimated choice probabilities. If the dis-
tribution of the private shocks is known, the mapping does not depend on any unknown
parameters. For example, in the case of the logit

(70)Qa

(
s, P (s)

) = ln
(
Pr(a|s))− ln

(
Pr(a1|s)

)
.

However, in general the mapping may be a function of unknown parameters of the
distribution of the private shocks.

Note that, as in static discrete choice models, only the value differences can be recov-
ered nonparametrically. Thus, some further information is required to obtain the values
themselves. This difficulty is not just a feature of this particular estimation approach,
but comes from the underlying structure of the discrete choice framework, in which
only utility differences are identified from the observed choices. One consequence of
this is that, even if the discount factor and the distribution of private shocks are com-
pletely known, the profit function cannot be recovered nonparametrically [see Magnac
and Thesmar (2002) for a detailed proof and analysis for single agent dynamic discrete
choice problems, and Pesendorfer and Schmidt-Dengler (2003) for results extended to
dynamic discrete games]. This feature is inherent to the dynamic discrete choice setup
and carries through to the context of a dynamic discrete game. As noted earlier our feel-
ing is that the appropriate resolution of identification issues, such as this one, is context
specific and will not be discussed here.

To obtain the continuation values from the choice specific values we can use the fact
that

(71)V (s, ν) = max
a

{
va(s) + ν(a)

}
.

Because the continuation values are obtained by inverting from the observed choice
probabilities, the structure of the profit function has not yet been imposed on them, and
they are not yet functions of the profit function parameters. In order to estimate the
profit function parameters, Hotz and Miller iterate the Bellman equation once, inserting
the estimated continuation values on the right-hand side,

V̂ (s; θ) =
∫

max
a

{
π̃ (a, s; θ) + ν(a)

(72)+ β

∫
V̂ (s′, ν′) dG(ν ′|s′) dP(s′|s, a)

}
dG(ν|s).

Note that for some distributions such as those of type GEV the integral on the right-hand
side has an analytic form. In other cases it can be simulated.

These new estimates of the continuation values contain the profit function parameters
(θ ) and can be used in an estimation algorithm to estimate θ . The way this is typically
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done is to compute new predicted choice probabilities, (68), based on the new continu-
ation value estimates, V̂ (s; θ). Then, these choice probabilities can be used to construct
either a pseudo-likelihood or some other GMM objective function that matches the
model’s predictions to the observed choices.

As noted above, the nonparametric estimates of the continuation values and transition
probabilities on the right-hand side of (72) introduce estimation error into the second
stage objective function nonlinearly. Hotz and Miller show that if this estimation error
disappears quickly enough then the estimator obtained is consistent and asymptotically
normal. However, there are other methods that may be preferable in this context to a
pseudo-likelihood. Because of the nonlinearity of the pseudo-likelihood in the continu-
ation values, estimation error in the continuation values causes increased small sample
bias in the parameter estimates obtained using this method. We discuss methods that at
least partially address this problem in the next section.

3.5. Dynamic discrete games: Entry and exit

In this section we consider estimation of the entry/exit game in example one using
the methods of Pakes, Ostrovsky and Berry (2007) (henceforth POB). We maintain the
assumption that all of the state variables, (nt , zt ), are observed and that the number
of entrants (et ) and exitors (xt ) are also observed. Entry and exit costs are assumed
not to be observed and are the objects of interest in the estimation. We discuss the
possibilities for estimation when there are one or more unobserved state variables in
Section 3.8.1.

Consider first exit behavior. Redefining the value function from the start of a period,
prior to the point at which the private scrap value is observed, the Bellman equation for
incumbent firms is given by (t subscript suppressed)

(73)V (n, z; θ) = π̃(n, z; θ) + βEφ

[
max

{
φi, VC(n, z; θ)

}]
,

where VC denotes the continuation value of the firm, which equals

(74)VC(n, z; θ) ≡
∑
z′,e,x

V (n + e − x, z′; θ)P (e, x|n, z, χ = 1)P (z′|z).

In the above equation, e and x denote the number of entering and exiting firms, and
P(e, x|n, z, χ = 1) denotes the incumbent’s beliefs about the likely number of entrants
and exitors starting from state (n, z) conditional on the incumbent itself continuing
(χ = 1).

If the equilibrium continuation values, VC(n, z; θ), were known, then it would be
straightforward to construct a likelihood function since the probability of exit is given
by

(75)Pr(i exits|n, z; θ) = Pr
(
φi > VC(n, z; θ)

)
,

and is independent across firms. Thus, we need to find a simple way to construct the
equilibrium continuation values using observed play.
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The continuation values represent the expected discounted value of future profits
conditional on the incumbent continuing. They are a function of the profit function,
π̃(n, z; θ), which determines future profits at each state (n, z), and the processes deter-
mining the evolution of the state variables, n and z. The profit function is known up to
the parameters, θ . Therefore, in order to construct the continuation values as a function
of the parameters, we need only estimate the evolution of the number of firms, which
is determined by entry and exit, and the evolution of the profit shifters, P(z′|z). The
easiest way to do this is to use their empirical counterparts. Starting from a certain state,
to estimate the evolution of the number of firms we can use the actual evolution of the
number of firms each time that state was observed in the data. Similarly, we can use
the observed evolution of the profit shifters to estimate the process P(z′|z). That way
the estimated continuation values reflect, approximately, the actual profits of firms that
were observed in the data. The next subsection outlines this process in detail.

3.5.1. Step 1: Estimating continuation values

To facilitate estimation of the continuation values, it helps to rewrite the Bellman equa-
tion in terms of the continuation values, VC,

VC(n, z; θ) =
∑
n′,z′

[
π̃(n′, z′; θ)

(76)+ βEφ

[
max

{
φi, VC(n′, z′; θ)

}]]
P(n′|n, z, χ = 1)P (z′|z),

where to shorten the notation we let n′ ≡ n + e − x.
Next, rewrite (76) in vector form. Let VC(θ) be the #S × 1 vector representing

VC(n, z; θ) for every (n, z) pair, and define π̃(θ) similarly. Also let Mi be the #S × #S
matrix whose (i, j) element is given by P(nj |ni, zi, χ = 1)P (zj |zi). This is the matrix
whose rows give us the equilibrium transition probabilities from a particular (n, z) to
each other possible (n, z). Note that if we were not conditioning on χ = 1 an unbiased
estimate of the rows of this matrix could be obtained by simply counting up the fraction
of transits from (n, z) that were to each other state. Since the continuation value the
agent cares about is the continuation value should the agent continue, these estimates
have to be modified for conditioning on χ = 1, see the discussion below.

With this notation, (76) becomes

(77)VC(θ) = Miπ̃(θ) + βMi
Eφ

[
max

{
φi, VC(θ)

}]
.

In this last equation, π̃(θ) is a known vector (up to θ ). In a structural model the dis-
tribution of φ would also typically be known up to a parameter vector. Therefore, the
only unknowns in the equation are Mi and VC(θ). If Mi were known, VC(θ) could be
calculated as the solution to the set of equations (77). We discuss the estimation of Mi

below and turn first to the solution for VC(θ).
One of the insights of POB is that the expectations term on the right-hand side of (77)

can sometimes be simplified, making computation of VC(θ) simple. Expanding the
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expectations term at a single state (n, z) gives

Eφ

[
max

{
φi, VC(n, z; θ)

}]
= Pr

(
φi < VC(n, z; θ)

) ∗ VC(n, z; θ)

+ Pr
(
φi > VC(n, z; θ)

) ∗ Eφ

[
φi

∣∣φi > VC(n, z; θ)
]

= (1 − px(n, z)
) ∗ VC(n, z; θ) + px(n, z) ∗ Eφ

[
φi

∣∣φi > VC(n, z; θ)
]
,

where px(n, z) is the probability of exit at state (n, z). Provided that the distribution of
scrap values is log-concave, the above equation is a contraction mapping [see Heckman
and Honoré (1990)]. In that case, given estimates of Mi and px , the equation can be
solved for VC(·) in a straightforward manner. Moreover, when the distribution of scrap
values is exponential, a distribution often thought to be reasonable on a priori grounds,

Eφ

[
φi

∣∣φi > VC(n, z; θ)
] = σ + VC(n, z; θ),

where σ is the parameter of the exponential, and

Eφ

[
max

{
φi, VC(n, z; θ)

}]
= (1 − px(n, z)

) ∗ VC(n, z; θ) + px(n, z) ∗ [VC(n, z; θ) + σ
]

= VC(n, z; θ) + σpx(n, z).

Substituting this expression into (77) and iterating gives

VC(θ) = Mi
[
π̃(θ) + βσpx

]+ (Mi
)2[

π̃(θ) + βσpx

]+ (Mi
)3

VC(θ) + · · ·

=
∞∑

τ=1

(
Mi
)τ [

π̃(θ) + βσpx

]
(78)= (I − βMi

)−1
Mi
[
π̃(θ) + βσpx

]
.

The only thing that remains is to estimate Mi and px using the data. Both can be esti-
mated in a variety of different ways, but the simplest approach, and the one supported
by POB’s Monte Carlo results, is to use their empirical counterparts. Let

T (n, z) = {t : (nt , zt ) = (n, z)
}

be the set of periods in the data with the same state (n, z). Then, the empirical counter-
part to px is

p̂x(n, z) = 1

#T (n, z)

∑
t∈T (n,z)

xt

n
.

Due to the Markov property, p̂x(n, z) is a sum of independent draws on the exit proba-
bility, and therefore it converges to px(n, z) provided #T (n, z) → ∞.

Similarly, the matrix Mi can be estimated element-by-element using

M̂i
i,j =

∑
t∈T (ni ,zi )

(ni − xt )1{(nt+1, zt+1) = (nj , zj )}∑
t∈T (ni ,zi )

(ni − xt )
.



4252 D. Ackerberg et al.

This expression weights the actual observed transitions from (ni, zi) in different periods
by the number of incumbents who actually continue in those periods. This weighting
corrects the estimated transition probabilities for the fact that incumbents compute con-
tinuation values under the assumption that they will continue in the market.

Note that because this procedure uses empirical transition probabilities it never re-
quires continuation values or transition probabilities from points not observed in the
data. As a result there is no need to impute transition probabilities or continuation val-
ues for states not visited.55 Since typical data sets will only contain a small fraction of
the points in S, this reduces computational burden significantly.

Substituting the estimated transition and exit probabilities into (78) provides an ex-
pression for the estimated continuation values

(79)V̂C(θ, σ ) = (I − βM̂i
)−1

M̂i
[
π̃(θ) + βσ p̂x

]
.

Note first that the estimates of continuation values using the expression in (79) are,
approximately, the averages of the discounted values of the incumbents who did con-
tinue.56 This makes the relationship between the data and the model transparent. Pro-
vided only that the specification of the profit function is correct, the actual average of
realized continuation values should be close to the expected continuation values used
by the agents in making their decisions.

Second, note how easy it is to compute the estimated continuation values. If the dis-
count factor is known, then,

(80)V̂C(θ, σ ) = Ãπ̃(θ) + ãσ,

where Ã = (I − βM̂i)−1M̂i and ã = β(I − βM̂i)−1p̂x . Both Ã and ã are independent
of the parameter vector and can therefore be computed once and then held fixed in the
second step of the estimation.

Finally, note that the parameters of the entry distribution do not enter into the calcu-
lation of the continuation values. The reason for this is that sunk costs of entry are paid
only once at the time of entry. After that, the sunk costs distribution only affects profits
indirectly through rival firms’ entry decisions. Thus, all that matters for computing con-
tinuation values is the probability of entry, not the associated level of sunk costs. As a
result the computational burden of the model does not depend in any major way on the
form of the entry cost distribution, a fact which is particularly useful when we consider
models with multiple entry locations below.

Entry behavior can be described similarly. A potential entrant enters the market if
the expected discounted value of entering is greater than the entry cost, i.e. if χe is the

55 Strictly speaking this is only true if the last period’s state in the data was visited before. If it were not we
would have to impute transition probabilities for it.
56 This is only approximately true because the transitions for all firms that reached a state (n, z) are used to
compute transitions for each firm, so information is pooled across firms in computing the continuation values.
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indicator function which is one if the potential entrant enters and zero elsewhere

β VE(n, z; θ) � κ,

where

VE(n, z; θ) ≡
∑
z′,e,x

V (n + e − x, z′; θ)P
(
e, x
∣∣n, z, χe = 1

)
P(z′|z),

similarly to VC before. The main difference here is that the entrant is not active in the
current period and therefore forms beliefs slightly differently from the incumbent.

The incumbent forms beliefs conditional on it remaining active. The entrant forms
beliefs based on it becoming active. In vector form, the expression for the entrants’
continuation values is

VE(θ, σ ) = Me
(
π̃ + β VC(θ) + βpxσ

)
,

where the elements of Me represent a potential entrant’s beliefs about the distribution
over tomorrow’s states conditional on that entrant becoming active. An estimator for
Me that is analogous to the one above is given by

M̂e
i,j =

∑
t∈T (ni ,zi )

et1{(nt+1, zt+1) = (nj , zj )}∑
t∈T (ni ,zi )

et

.

Accordingly, a consistent estimator of V̂E(θ, σ ) is given by

(81)V̂E(θ, σ ) = B̃π̃(θ) + b̃σ,

where B̃ = M̂e(I + βÃ), and b̃ = βM̂e(ã + p̂x).

3.5.2. Step 2: Estimating the structural parameters

If the continuation values (VE and VC) were known, any of a number of method of
moments algorithms would provide consistent estimators of (θ, σ ) and maximum like-
lihood would provide the efficient estimator. Since V̂E and V̂C are consistent estimators
of the unknown continuation values, an obvious way to obtain a consistent estima-
tor is to substitute them for VC and VE in any of these algorithms and proceed from
there. For example, the implied “pseudo” maximum likelihood estimator would maxi-
mize

l(xt , et |θ, σ ) = (nt − xt ) log Fφ
[
V̂C(nt , zt ; θ, σ )

]
+ xt log

[
1 − Fφ

(
V̂C(nt , zt ; θ, σ )

)]
+ et log Fκ

[
V̂E(nt , zt ; θ, σ )

]
+ (E − et ) log

[
1 − Fκ

(
V̂E(nt , zt ; θ, σ )

)]
,

where Fφ is the distribution of scrap values and Fκ is the distribution of entry costs.



4254 D. Ackerberg et al.

POB stress the importance of remembering that V̂E and V̂C contain sampling error.
Though this sampling error does converge to zero with sample size, the fact that we
have to estimate separate continuation values for each sample point means that, for
standard sample sizes, the sampling error should not be ignored. This has implications
both for the choice of estimators, and for how we compute standard errors for any given
choice.

In this context there are two problems with the pseudo maximum likelihood estimator.
First since it does not “recognize” that there is sampling error in the probabilities it uses,
events can occur that the likelihood assigns zero probability to, no matter the value of
(θ, σ ) (even though the true probabilities of these events are nonzero; POB shows that
this tends to occur in their two location model). If this happens even once in the data,
the pseudo maximum likelihood estimator is not defined. Second, even if the pseudo-
likelihood is well defined, its first order condition involves a function that is both highly
nonlinear in, and highly sensitive to, the sampling error. The nonlinearity implies that
the impact of the sampling error on the first order conditions will not average out over
sample points. The sensitivity is seen by noting that the first order effect of the sampling
error on the log likelihood will be determined by one over the probabilities of entry and
exit, and these probabilities are typically quite small.

POB consider two alternatives to the likelihood approach. The first is a pseudo min-
imum χ2 estimation algorithm that minimizes the sum of squares in the difference
between the observed and predicted state specific entry and exit rates (i.e. the entry
and exit rates for each observed (n, z) pair), where the predicted state specific entry and
exit rates are given by

E[xt |nt , zt ] = nt ∗ Pr
(
φi > VC(nt , zt ; θ, σ )

)
, and

E[et |nt , zt ] = E ∗ Pr
(
κ < VE(nt , zt ; θ, σ )

)
.

Their second estimator matches the overall entry and exit rates (across all observed
state pairs) to those predicted by the model, or more generally takes a sum of squares in
the differences between the predicted and actual entry and exit rates at different states
multiplied by a known function of the state variables at those states.

They show that in finite samples the pseudo minimum χ2 estimator has an extra bias
term that reflects the sampling covariance between the estimated probability and its
derivative with respect to the parameter vector, and their Monte Carlo evidence indicates
that the extra bias term can have large effects. Thus they prefer the simplest method of
moments algorithm and show that with moderately sized samples this estimator is both
easy to calculate and performs quite well.

The second general point is that the variance of the second stage estimates, (θ̂ , σ̂ ),
depends on the variance of the first stage estimates.57 It is possible to use standard
semiparametric formulae to obtain the asymptotic variance of the parameter estimates

57 This follows from the fact that the derivative of the objective function with respect to the estimates of VC
and VE are not conditional mean zero.
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analytically. However these formula are somewhat complex and can be difficult to eval-
uate. Moreover, there is little reason to do the calculation. Since we have a complete
model and the computational burden of obtaining estimates is minimal it is relatively
easy to obtain estimates of standard errors from a parametric bootstrap.

For an empirical example which uses these techniques see Dunne et al. (2006). They
estimate the parameters of a dynamic entry game from data on entry and exit of dentists
and chiropractors in small towns. They first estimate the variable profit function (which
depends on the number of active competitors) from observed data on revenues and costs.
They then employ POB’s method to provide estimates of the sunk costs of entry and
of exit values. Their parameters could be used, for example, to predict the effect of a
government subsidy intended to increase the number of medical service professionals
in small towns.

3.5.3. Multiple entry locations

We now show how to generalize the model to allow for observed heterogeneity among
incumbents. We do this by allowing entrants to choose from multiple entry locations.
For ease of exposition, we will consider only two locations. However, expanding this to
a larger number is straightforward.

Entrants have entry costs (κ1, κ2) in the first and second locations respectively, where
entry costs are drawn from a distribution, Fκ(κ1, κ2|θ), that is independent over time
and across agents. Note that we place no restrictions on Fκ so that entry costs of the
same potential entrant at the different locations may be freely correlated. Once in a
particular location, the entrant cannot switch locations, but can exit to receive an exit
fee. Exit fees are an i.i.d. draw from the distribution F

φ
1 (·|θ) if the incumbent is in

location one, and an i.i.d. draw from F
φ
2 (·|θ) if the incumbent is in location two.

The Bellman equation for an incumbent in the two location model is

V1(n1, n2, z; θ) = π̃1(n1, n2, z; θ) + βEφ

[
max

{
φi, VC1(n1, n2, z; θ)

}]
,

where the subscript “1” indicates the value function for a firm in location one and the
continuation values are

VC1(n1, n2, z; θ) ≡
∑

z′,e1,e2,x1,x2

V1(n1 + e1 − x1, n2 + e2 − x2, z′; θ)

× P(e1, e2, x1, x2|n1, n2, z, χ = 1)P (z′|z).
Behavior of incumbent firms is identical to before, with the probability of exit given
by (75) except using the new continuation values. However, because they have poten-
tially different continuation values and different scrap values, firms in location one will
in general behave differently than firms in location two.

Behavior of potential entrant firms is different from before because potential entrant
firms now have three options. They can enter location one, enter location two, or not
enter at all. A potential entrant will enter into location 1 if and only if it is a better
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alternative than both not entering anywhere, and entering into location 2, i.e. if

β VE1(n1, n2, z; θ) � κ1 and

β VE1(n1, n2, z; θ) − κ1 � β VE2(n1, n2, z; θ) − κ2.

The entry process therefore generates a multinomial distribution with probabilities de-
rived from the inequalities above.

Firms’ beliefs are now comprised of the probability of exit for an incumbent in lo-
cation one, the probability of exit for an incumbent in location two, the three entry
probabilities (location one, location two, or not at all), and the distribution determining
the evolution of the profit shifters. In computing the continuation values we now have
to consider all of these together.

Consistent estimates of a location-one incumbent’s perceived transition probabilities
from state (ni1, ni2, zi) to (nj1, nj2, zj ) are obtained analogously to before using

M̂
i,1
i,j =

∑
t∈T (ni1,ni2,zi )

(ni1 − xt1)1{(nt+1,1, nt+1,2, zt+1) = (nj1, nj2, zj )}∑
t∈T (ni1,ni2,zi )

(ni1 − xt1)
.

Similarly, estimates of a potential location-one entrant’s perceived transition probabili-
ties can be obtained using

M̂
e,1
i,j = 1

#T (ni1, ni2, zi)

×
∑

t∈T (ni1,ni2,zi )
et11{(nt+1,1, nt+1,2, zt+1) = (nj1, nj2, zj )}∑

t∈T (ni1,ni2,zi )
et1

.

As before these estimates are not exactly equal to the empirical frequency of state tran-
sitions but are a weighted average based on the fact that, when computing continuation
values, an incumbent assumes it will continue, and a potential entrant assumes that it
will enter.

As in the single location model, given the matrix inversion formula for continuation
values, the computational burden of obtaining estimates for the parameters of the model
is minimal. Indeed in their Monte Carlo results POB show that in two location models
with relatively large data sets (on the order of 7500 observations) one finds estimates
in under fifteen minutes on a five year old desktop computer. Most of that computation
time is devoted to computing the Markov transition matrix and its inverse. The time
required to compute the inverse can grow polynomially in the number of distinct states
and, at least given market size, this typically increases with the number of locations.
Whether it does or not depends on the structure of the matrix being inverted, and the
way one computes the inverse. Models which only allow transitions to “near by” states,
which are likely to dominate in I.O. applications, should not be as problematic in this
respect.

Second, though the estimators remain consistent when the number of entry states is
increased, their small sample properties may change. In particular, the estimates of the
continuation values will become noisier in small samples and this is likely to cause
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increased small sample bias and variance in the second stage estimates. POB show that
the use of smoothing techniques, such as those discussed in the next section, can be
helpful in this context.

3.6. Models with discrete and continuous controls: Investment games

In this section we consider Bajari, Benkard and Levin’s (2007) (henceforth BBL) es-
timation approach in the context of the investment model in example two. The main
conceptual difference in BBL’s general approach that separates it from the above meth-
ods is that, instead of estimating continuation values directly, BBL first estimate policy
functions. Then, the estimated policy functions are used to simulate the continuation
values. As noted earlier this is similar to the single agent approach of Hotz et al. (1994),
but BBL show that there are assumptions and techniques that allow the researcher to
use this approach in a wide class of models, including models with both discrete and
continuous controls such as investment models, some models of dynamic pricing, and
dynamic auction problems. The assumptions used do carry with them some restrictions,
and we will try to be clear on those restrictions below.

The presence of both discrete and continuous controls in the investment model af-
fects both the first and second stage of the estimation. In particular, the second stage
is augmented in order to incorporate information from firms’ investment, as well as its
entry/exit, choices. Additionally, when the stress is on investment we generally consider
models with larger state spaces, and, as noted above, both computation of the estimates
of continuation values, and the precision of those estimates, can become problematic.
BBL introduce simulation techniques that, depending on the structure of the model,
can cause a significant reduction in the computational burden of obtaining estimates of
the continuation values. They also use techniques that smooth estimated continuation
values across states to lower the mean square error of those estimates.

In the investment model from example two there are three policies (entry, exit, and
investment) that are set in dynamic equilibrium, and one policy (price) that is set in
static equilibrium. Since the pricing equilibrium is consistent with a large past literature
on demand estimation, we will not consider estimation of the demand and marginal cost
functions (θ1 and θ2) here as they would typically be estimated using existing methods.
Instead, we will treat those parameters as if they were known and focus on estimation
of the investment cost function (θ3) and the entry and exit costs parameters.

We assume that all of the state variables, s, are observed, as well as entry, exit, quan-
tity, price, and investment levels. Entry and exit costs, the cost of investment function,
and marginal costs are not observed. Note that it would be possible for some of the
state variables to be unobserved as long as they could be recovered beforehand during
estimation of the demand and cost systems. We discuss the issue of unobserved states
further in Section 3.8.1.

Let π̃i(s) represent the profits earned by firm i in the spot market equilibrium at
state s. Since the demand and marginal cost functions are assumed to be known, the
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function π̃i (·) is also known, as the spot market equilibrium can be computed from
these primitives.

Firms maximize the expected discounted value of profits. From the beginning of a
period (prior to realization of the private shock), and for incumbent firms, this is

(82)E

∞∑
t=0

βt
[{χit = 1}(π̃i(st ) − C(Iit , νit ; θ3)

)+ (χit − χi,t−1)
−Φ
∣∣s0
]
,

where χit = 1 indicates that the incumbent continues in the market at period t and
χit = 0 indicates that the incumbent exits, and it is understood that each exiting firm
receives the same exit value and never operates thereafter. Note that unlike in the en-
try/exit example above, in this model we assume that the incumbent’s choice of its
discrete control (whether or not to exit) is not subject to a random cost shock.

For expositional (and computational) simplicity we will assume the following
quadratic cost of investment function

(83)C(I, ν; θ3) = {I � 0}(θ3,0 + θ3,1I + θ3,2I
2 + θ3,3νI

)
.

The indicator function for I � 0 above allows for an adjustment cost that is incurred
only if investment is nonzero. Zero investment is a phenomenon that is often observed
and can easily result from either flatness of the value function reflecting low returns
to investment [see Ericson and Pakes (1995)], or nonconvex investment costs [e.g.
Caballero and Engel (1999)].

Potential entrant firms’ expected discounted values are similar to (82), except that in
the initial period they must pay a random entry cost, κit , in order to enter. We assume
that entrants take one period to setup the firm and therefore do not earn profits in the
spot market and do not invest until the subsequent period. For ease of exposition, we
also assume that entrants always enter at the same initial state.58

3.6.1. Step 1: Estimating continuation values

The goal of the first step of the estimation procedure is to compute the continuation
values given by the expected discounted values in (82), under equilibrium strategies.
These expected discounted values are functions of the profits earned at each state and
the probability distributions determining future states and actions conditional on the
starting state, s0.

BBL compute estimates of the continuation values by first estimating policies for
each state, then using the estimated policies to simulate sample paths of industry states
and actions, and then evaluating discounted profits on each sample path. In order to do
this we need both the ability to simulate sample paths of states and actions, and the
ability to evaluate profits along those paths given the states and actions in each period.

58 It is straightforward to allow entrants’ initial state to be randomly determined.
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Evaluating profits requires a (possibly flexible) description of the profit function and
knowledge of the distribution of the private shocks, at least up to a parameter vector to
be estimated. We treat these two as “primitives” of the dynamic model.

The evolution of the states depends on firms’ entry, exit, and investment policies. BBL
recover these policy functions using the observed data. In our investment model, private
information is known to the firms before any actions are taken, so in MPE, strategies for
investment, exit and entry are functions of both the states and this private information

I (st , νit ), χ(st , νit ), and χe(st , κit ),

where χ is the exit policy function for incumbent firms, χe is the entry policy function
and χe = 1 indicates that the entrant enters the market. Since potential entrants cannot
invest in the first period, entry strategies depend only on the random entry cost. Both
the investment and exit strategies depend only on the shock to the marginal cost of
investment.

Consider first exit and entry. The optimal exit policy has the form of a stopping rule

χi,t = 1 iff νit � ν̄(st ).

All we require is a nonparametric estimate of the probability that χ = 1 conditional
on st . Similarly, there a critical entry level of κ conditional on st that determines entry,
and the entry policy is obtained as a nonparametric estimate of the probability of entry
conditional on st . In both cases we also have the restriction that the policies are ex-
changeable in rivals’ states. In models with large state spaces, such that there are some
states in the data with few or zero observations, it would typically be optimal to employ
some smoothing in these estimates. In their Monte Carlo studies, BBL found that local
linear methods worked well for this.

As far as investment is concerned, one can show that, conditional on a firm continuing
in the market, investment is a (weakly) monotone function of νit , I (st , νit ). Thus, if we
knew the distribution of investment at each state, F(Iit |st ), we could map the quantiles
of ν into investment levels at each state. More precisely, the investment policy function
is given by

F−1
I |s
(
G(ν|s)).

The function G is a primitive of the model known up to a parameter vector, and the
function F can be recovered nonparametrically.

There is an additional complication and that is that investment is not observed for
firms that exit the market, which happens if νit > ν̄(st ). However, since both the exit
and investment rules are monotonic in the shock, this is handled easily. Conditional on
a firm continuing in the market, we observe the distribution of investment conditional
on s that corresponds to νit � ν̄(st ). Therefore, if we first estimate the probability of exit
at each state, and then recover the distribution of investment at each state conditional
on staying in the market, then we have a complete description of the optimal exit and
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investment policy functions.59 Note also that in the simulations below it is important
that we maintain this link between exit and investment since one draw on the private
shock to investment, νit , determines both policies.

If there was a second unobservable, say a random exit fee φit , then the exit decision
would depend on both (νit , φit ). The probability of exit could still be obtained as above,
but the distribution of investment conditional on not exiting would depend on both νit

and φit . Then, without further restrictions it would not be possible to invert the observed
distribution of investment to obtain the policy decision as a function of ν conditional
on s and not exiting.60

There also remains the question of how best to estimate the investment function, and
this depends to some extent on its likely properties. Here it is important to keep in mind
that investment is a complicated function of the primitives. Indeed the only restriction
we have on its form is that it is exchangeable in the states of the competitors (which is
already embodied in the definition of s). Standard nonparametric approaches assume a
certain amount of smoothness that is not necessarily guaranteed by the primitives of the
model. The theoretical properties of the investment function in the EP model depend
on the underlying properties of the family {P(sit+1|Iit , sit )}. If conditional on sit the
points of support of this family do not depend on Iit ,61 then by appropriate choice of
primitives one can ensure that the investment function is smooth; see EP, the Monte
Carlo evidence in BBL, and the generalizations of this in Doraszelski and Satterthwaite
(2007). In their Monte Carlo studies BBL also found that local linear regression worked
well for estimating the investment function.

Assume now that, for each state, we have consistent estimators of the entry probabil-
ity, the exit probability, the investment distribution, and the distribution of future states.
This is all one needs to compute consistent estimates of the continuation values in (82)
as a function of the parameters. To do so analytically, however, would involve high di-
mensional integration, so what BBL do is show how to extend the “forward simulation”
idea in Hotz et al. (1994) to simplify the analysis of the more complex problems they
deal with.

Starting from a given state, s0, one draw is taken on the shock to the marginal cost
of investment for the firm of interest, νi . This draw determines the firm’s investment
and exit policies through the estimated policy functions above (i.e. the same draw de-
termines the correct quantile for both investment and exit, as discussed above). These
policies, along with the state and the value of the private shock, determine current profits

59 We cannot use the data to learn what an exiting firm would have invested had it stayed in the market, but
it is not necessary to know this.
60 Note that the problem here is that there is more than one error influencing the choice of investment.
Therefore, a feasible alternative would be to allow a random exit cost but no shock to the marginal cost of
investment.
61 This assumption allows for stochastic outcomes to investment processes which is an assumption often
made in Industrial Organization. However it does rule out the deterministic accumulation models traditionally
used in growth theory.
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as a function of the parameters. Draws are then taken for the investment shocks for the
remaining incumbent firms, and one draw on the entry distribution is taken for the po-
tential entrant. These draws, along with draws determining the outcomes of each firm’s
investment process, determine s1. The process is repeated to obtain one simulated path
of states and the associated discounted stream of profits. Many such paths can be sim-
ulated to obtain an estimate of Vi(s0). Consistency of the estimation algorithm requires
that the number of simulated paths goes to infinity.

This forward simulation procedure is not too computationally burdensome, though
one does have to hold one set of simulation draws in memory and use these same draws
to evaluate the continuation values at the different values of θ tried in the estimation
algorithm. Moreover, much of what computational burden remains disappears when we
deal with models that are linear in the parameters. For example, suppose we consider
the investment model above where the private shock to investment has a normal distrib-
ution, ν ∼ N(0, 1). (The investment shock is normalized to be standard normal without
loss of generality because its mean and variance parameters are absorbed into the para-
meters θ3,0 and θ3,3.) Since all of the parameters enter the continuation values linearly,
they can be factored out as follows

Vi(s0; σi, σ−i ) = E

∞∑
t=0

βt {χit = 1}π̃i(st ) − θ3,0E

∞∑
t=0

βt {χit = 1}{Iit � 0}

− θ3,1E

∞∑
t=0

βt {χit = 1}{Iit � 0}Iit

− θ3,2E

∞∑
t=0

βt {χit = 1}{Iit � 0}I 2
it

− θ3,3E

∞∑
t=0

βt {χit = 1}{Iit � 0}Iit νit

+ Ψ E

∞∑
t=0

βt (χit − χi,t−1)
−

(84)≡ Wi

(
s0; σi, σ

′
i

)′ ( 1
θ3
Ψ

)
,

where Wi(s0, σi, σ−i ) represents the expected discounted value terms above when i

follows policy σi and rival firms follow policy σ−i . The estimated continuation values
are then computed by plugging in the estimated policies and simulating the expectations
terms

V̂i

(
s0; σ̂i , σ̂

′
i

) = Ŵi

(
s0; σ̂i , σ̂

′
i

)′ ( 1
θ3
Ψ

)
.
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The key observation here is that if the model is linear in the parameters, then the para-
meters factor out of the continuation value calculations. In that case the W terms need
only be computed once, and the continuation values at different values of the parameter
vector can be obtained by multiplying two small dimensional vectors.

This simplification is an extension of the one used in the entry/exit example above,
except here we exploit linearity in the investment cost parameters as well as the linearity
in the period profits. Since the continuation values need to be calculated many times
in the second step of the estimation, and since computing continuation values is the
primary source of computational burden, such simplifications can lead to a substantial
reduction in the overall computational burden of the estimator.

3.6.2. Step 2: Estimating the structural parameters

As with the entry model above, once the continuation values have been estimated there
are potentially many ways of estimating the structural parameters. The main difference
is that now there is one continuous control variable (investment) in addition to the two
discrete controls (entry/exit), and we want to use the information in the continuous
control to help estimate the parameters. Accordingly all the issues that arose in the
discussion of estimation of the entry/exit model are also relevant here. In particular,
there is error in the estimated continuation values that can contaminate the second stage
estimates, so it is desirable to find a second step estimator that is close to linear in the
estimated continuation values.

There are at least three possible estimators: (i) an inequality estimator that finds a
value of the parameter vector that insures that the observed policies generate higher
simulated continuation values than alternative policies (see below), (ii) a method of mo-
ments estimator that fits the mean of the policies implied by the simulated continuation
values (i.e. at each state in the data you substitute the simulated continuation values
into the right-hand side of the Bellman equation (63) and solve for the optimal policy)
to nonparametric estimates of the policies at each state, and (iii) a method of moments
estimator that fits the nonparametric estimates of the distribution of the polices to the
distribution of policies predicted by the simulated continuation values at each state. BBL
provide Monte Carlo evidence on the first two of these. Here we review the inequality
estimator, that is the estimator found by satisfying the optimality inequalities (62) that
define the MPE for the simulated values.

At the true values of the parameters, for all states, s0, all firms, i, and all alternatives,
σ ′

i , it must be that

Wi (s0; σi, σ−i )
′
( 1

θ3
Ψ

)
� Wi

(
s0; σ ′

i , σ−i

)′ ( 1
θ3
Ψ

)
.
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Let x refer to a particular (i, s0, σ
′) combination, such that x indexes inequalities, and

let

g(x; θ3, Ψ ) = (Wi (s0; σi, σ−i ) − Wi

(
s0; σ ′

i , σ−i

))′ ( 1
θ3
Ψ

)
.

Then it must be the case that g(x; θ3, Ψ ) � 0 at the true values of the parameters for
every x.

A natural thing to do in estimation would be to compute g at the estimated policies
from the first stage and then find the values of the parameters that best satisfy the entire
set of inequalities. However, when there are continuous controls this is difficult because
there are too many possible alternative policies. Instead, BBL use simulation to choose a
small subset of the inequalities to impose in estimation. The inequalities can be chosen
according to any random rule that selects all of them asymptotically. However, it is
important to remember that the exact rule used will influence efficiency. In their Monte
Carlo studies, for investment alternatives BBL use policies of the form

I ′(st , νit ) = Î (st , νit ) + ε′,
where ε′ is drawn from a normal distribution with mean zero and standard deviation
chosen by the researcher. Alternative entry and exit policies were chosen similarly by
shifting the cutoff rule by an amount ε′ drawn from a normal distribution.

Suppose ni inequalities are sampled, and let ĝns (x; θ3, Ψ ) be a simulator for
g(x; θ3, Ψ ) evaluated at the estimated policy functions, where ns is the number of sim-
ulation draws used to simulate each Wi term. Then the inequality estimator minimizes
the objective function

1

nI

nI∑
k=1

1
{
ĝns (xk; θ3, Ψ ) < 0

}
ĝns (xk; θ3, Ψ )2.

Because the estimator is computationally light, it is easy to choose (nI , ns) to be large
enough that the simulation contributes nothing to the variance of the estimator. All of
the variance comes from error in the estimation of the continuation values. BBL work
out the asymptotic distribution of the estimator. However, the expression is difficult to
evaluate and in practice the simplest way to compute standard errors is to use subsam-
pling or a bootstrap.

The inequality estimator has several advantages. One is that it is very easy to im-
plement even in complex models. It is conceptually simple and requires a minimum
of computer programming, the main programming burden being the forward simulation
routine. Additionally, the method can be used with very little alteration even if the model
is only set-identified. In that case, all that is required is to use an alternative method for
computing standard errors [see BBL, as well as Chernozhukov, Hong and Tamer (2007)
for details].

However, one potential disadvantage of the approach is that, similarly to the pseudo-
likelihood methods shown in the examples above, the estimator is nonlinear in the first
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stage estimates, and therefore the estimates obtained are likely to contain small sample
bias. For that reason, BBL also tested a natural alternative estimator based on a set
of moment conditions that match the observed choice data. The general idea of this
estimator is to substitute the estimated continuation values into the right-hand side of
the Bellman equation and then solve for an optimal policy rule conditional on those
continuation values. This estimator is linear in the estimated continuation values, though
those values are still nonlinear functions of the estimated policies. The expected value
of the optimal policy is then matched against the average policy observed at each state
in the data. In their Monte Carlo studies BBL found that this second estimator did help
reduce small sample bias in the second stage estimates.

For an empirical example that uses these techniques see Ryan (2006). He estimates
the parameters of a dynamic oligopoly model of US cement producers. In the first stage
he estimates the static profits demand and cost parameters using demand data and a
static equilibrium assumption. He also estimates the entry, exit, and investment policy
functions using data on the set of firms operating in a panel of markets and their ca-
pacities. In the second stage he uses BBL’s inequality estimator to estimate the sunk
costs of entry and exit, as well as the adjustment costs of investment. He finds that the
1990 amendments to the Clean Air Act significantly raised the sunk costs of entry in
the cement industry, and that a static analysis would have missed an associated welfare
penalty to consumers.

3.6.3. An alternative approach

Berry and Pakes (2002) provide an alternative approach for estimating models with
continuous choice variables that uses quite different assumptions from POB or BBL.
They assume that profits are observable up to a parameter vector to be estimated, but do
not require that the state variables that determine current and expected future profits are
observed, and do not even require the researcher to specify what those state variables
are. In applications where the environment is complex, but sales and investment data
are quite good, this alternative set of assumptions can be quite attractive.

Let the random variable τi refer to the period in which firm i exits the market. Then,
firm i’s continuation value in the investment game starting at state s0 is

(85)Vi(st ) = E

[
τi∑

r=t

βr−t
(
π̃i (sr ) − C

(
σ(sr ); θ3

))+ βτi−tΦ

∣∣∣∣st

]
,

where σ is the equilibrium policy function. Note that we have assumed there is no
private shock to investment; an assumption that is needed for the consistency of this
estimator.

Berry and Pakes note that, if firms have rational expectations, then the actual dis-
counted stream of profits earned by a given firm is an unbiased estimate of its expected
discounted profits. Suppose that profits (π̃it ), investment (Iit ), and exit (χit ) are ob-
served. Then the actual discounted sum of profits earned by the firm (corresponding
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to (85)) is

(86)V̂i(st ; θ3, Φ) ≡
τi∑

r=t

βr−t
(
π̃ir − C(Iir ; θ3)

)+ βτi−tΦ,

where, in a slight abuse of notation, τi now refers to the actual period in which the firm
exited. By rational expectations we have that, at the true values of the parameters,

V̂i(st ; θ3, Φ) = Vi(st ) + εit ,

where E[εit |st ] = 0.
A unique feature of the Berry and Pakes approach is that the estimated continua-

tion values here are unbiased. However, in contrast to POB and BBL, Berry and Pakes
(2002) do not have a first stage that provides consistent estimates of continuation val-
ues. Since the state variables are assumed not to be observed, there is no longer any way
of identifying a set of data points that correspond to the same state vector. Thus, there
is no way to average out across observations so as to obtain consistent estimates of the
continuation values, as in POB and BBL.

Berry and Pakes get around the problem of having only unbiased, and not consistent
estimates of continuation values, by using an estimating equation that has the error in the
estimated continuation value entering linearly. More precisely, their estimating equation
is derived from the first order condition for the firm’s continuous control. Conditional
on investment being strictly positive (a condition that is determined by the information
available when the investment decision is made, and hence that is independent of the
realization of εit ), that first order condition is obtained by setting the derivative of (85)
equal to zero. Using the cost of investment function after eliminating the i.i.d. shock to
investment this gives us

0 = −θ3,1 − 2 ∗ θ3,2 ∗ Iit + β
∑
st+1

Vi(st+1)
∂

∂I
P (st+1|Iit , st , χit = 1)

= −θ3,1 − 2 ∗ θ3,2 ∗ Iit

+ β
∑
st+1

Vi(st+1)

∂
∂I

P (st+1|Iit , st , χit = 1)

P (st+1|Iit , st , χit = 1)
P (st+1|Iit , st , χit = 1)

= −θ3,1 − 2 ∗ θ3,2 ∗ Iit

(87)+ βE

[
Vi(st+1)

∂ ln P(st+1|Iit , st , χit = 1)

∂I

∣∣∣∣st , Iit , χit = 1

]
.

Adding and subtracting a term in V̂ (st+1; θ3, Ψ ) gives

0 = −θ3,1 − 2 ∗ θ3,2 ∗ Iit + V̂i (st+1; θ3, Φ)
∂ ln P(st+1|Iit , st , χit = 1)

∂I

(88)+ ηit (θ3, Φ),
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where we have defined

ηit (θ3, Φ) ≡ βE

[
Vi(st+1)

∂ ln P(st+1|Iit , st , χit = 1)

∂I

∣∣∣∣st , Iit , χit = 1

]
(89)− V̂i (st+1; θ3, Φ)

∂ ln P(st+1|Iit , st , χit = 1)

∂I
,

and consequently

(90)E
[
ηit (θ3, Φ)

∣∣st

] = 0,

at the true values of the parameters vector. Condition (90) follows from the twin facts
that Vi(st+1) = V̂i (st+1; θ3, Φ) − εi,t+1 and

E

[
∂ ln P(st+1|Iit , st , χit = 1)

∂I

]
εi,t+1 = 0,

as the derivative is a function of information known at t . It follows that (88) provides a
set of conditional moment restrictions that can be used as the basis for estimation.

There are a number of disadvantages of this approach. One that can potentially be
corrected is that as presented in Berry and Pakes (2002) the algorithm does not incor-
porate the additional information in the data that comes from the choice of discrete
controls (e.g. entry and exit), or from controls chosen to be at a corner of the choice set
(e.g. Ii,t = 0). One could add a set of inequality constraints to the Berry–Pakes model to
account for entry and exit and the Ii,t = 0 case. Also, as mentioned above, it is difficult
to incorporate a shock to the cost of investment into this model.

However the major difference between this model and the other models discussed
above is that Berry and Pakes do not need to specify and control for all the state variables
in the dynamic system. This is an obvious advantage for complex problems. Of course,
if we cannot identify and control for all the state variables of the system, we cannot
make use of averaging techniques that enable us to use information on similar states
to construct estimates of the policies and returns at a given state. In problems where
the state variables are easy to identify and control for, averaging techniques can be very
helpful in reducing variance. It remains to be seen if hybrids can be developed that make
effective use of all of these techniques.

3.7. A dynamic auction game

In this section we consider estimation of the auction model in example three. This sec-
tion closely follows Jofre-Bonet and Pesendorfer (2003) (henceforth JP). We assume
that all bids, contract characteristics, and bidders’ state variables are observed. A unique
feature of the auction model is that the period payoff function is not a function of any
unknown parameters. The goal of estimation, then, is to recover the distribution of bid-
ders’ privately known costs at each state.

Since the outcome of the auction affects not only current profits but also the firm’s
backlog, firms choose their bids so as to maximize the expected discounted value of
future profits. Recall that zt provides the characteristics of the contracts to be auctioned
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in month t and evolves as a Markov process, ωi,t provides the backlog of work of firm i

in period t , and if ωt = (ω1,t , . . . , ωN,t ), then ωt+1 = Γ (ωt , zt , j ) where j is the
winning bidder.

It is convenient to write the maximization problem from the beginning of a period,
prior to realization of the private shock and prior to realization of the contract char-
acteristics. Then firms choose their bidding strategy so as to maximize the expected
discounted sum

(91)E

[ ∞∑
t=0

βt (bit − cit )
{
bit � min

j
(bjt )

}∣∣∣∣ω0, z−1

]
,

where z−1 refers to last period’s contract and where the expectation is defined over
rival’s bids in all periods as well as over the firm’s own costs in all periods. Due to the
Markov structure, this maximization problem can be written recursively

Vi(ωt , zt−1) =
∫∫

max
bit

[
(bit − cit ) Pr(i wins|bit ,ωt , zt )

+ β

N∑
j=1

Pr(j wins|bit ,ωt , zt )

(92)× Vi

(
Γ (ωt , zt , j ), zt

)]
dF(cit |ωt , zt ) dG(zt |zt−1).

As is now common practice in the empirical auctions literature [Guerre, Perrigne and
Vuong (2000)], JP show that bidders’ costs can be recovered by inverting the first order
condition associated with the optimal bid. Let Gi(·|ωt , zt ) be the distribution of bids
submitted by bidder i conditional on the state variables and gi(·|ωt , zt ) be the density
function. Let

hi(·|ωt , zt ) = gi(·|ωt , zt )

1 − Gi(·|ωt , zt )

denote the associated hazard function, and note that

∂ Pr(i wins|bit ,ωt , zt )

∂bi,t

= −
∑
j �=i

hj (bit |ωt , zt ) Pr(i wins|bit ,ωt , zt )

while

∂ Pr(j wins|bit ,ωt , zt )

∂bi,t

= hj (bit |ωt , zt ) Pr(i wins|bit ,ωt , zt ).

Using these expressions, the first order condition for optimal bids yields the equation

bit = cit + 1∑
j �=i hj (bit |ωt , zt )

− β
∑
j �=i

hj (bit |ωt , zt )∑
l �=i hl(bit |ωt , zt )

(93)× [Vi

(
Γ (ωt , zt , i), zt

)− Vi

(
Γ (ωt , zt , j ), zt

)]
.
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The optimal bid equals the cost plus a markup that has two terms. The first term reflects
competition in the current auction. The second term accounts for the incremental effect
on future profits of firm i winning today’s auction.

Since the first order condition is strictly increasing in c it can be inverted to obtain

(94)c = φ(b|ωt , zt ),

where φ is a function of the observed bids, the hazard function of bids, h, the transition
function, Γ , and the continuation values, V . The transition function is a known func-
tion. Since the bids, contract characteristics, and state variables are observed, the hazard
function of bids can be obtained from the data. Thus, if the continuation values were
known, then the relationship in (94) could be used to infer bidders’ costs. Hence, as in
the examples above, in order to estimate the parameters of the cost distribution we need
first to obtain estimates of the continuation values.

3.7.1. Estimating continuation values

In order to estimate the continuation values, JP note that the continuation values can
be written as a function only of the distribution of bids. The easiest way to see this
is to inspect (91). The expected discounted value involves terms in the probability of
winning, which can be derived from the distribution of bids, and terms in the expected
markup. Equation (93) shows that the optimal markup is a function of the distribution
of bids and the continuation values. JP show that by combining these two equations
it is possible to write the continuation values as a function only of the distribution of
bids.

The derivation is long so we omit it here and instead refer readers to the appendix of
JP. Proposition 1 in JP shows that Equations (92) and (93) can be manipulated to obtain

Vi(ωt , zt−1) =
∫ {∫

1∑
j �=i hj (·|ωt , zt )

dG(i)(·|ωt , zt )

+ β
∑
j �=i

[
Pr(j wins|ωt , zt )

+
∫

hi(·|ωt , zt )∑
l �=i hl(·|ωt , zt )

dG(j)(·|ωt , zt )

]
(95)× Vi

(
Γ (ωt , zt , j ), zt

)}
dG(zt |zt−1),

where the notation

G(i)(·) =
∏
k �=i

[
1 − Gk(b|ωt , zt )

]
gi(b|ωt , zt ).

The terms in square brackets in the second line of (95) sum to one and therefore
can be interpreted as transition probabilities. This interpretation leads to the following
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construction. Assume that the state space is discrete and let Ai be a vector with one
element for each state representing the first term above

Ai(s) =
∫∫

1∑
j �=i hj (·|ωt , zt )

dG(i)(·|ωt , zt ) dG(zt |zt−1).

Next, construct the matrix Mi such that each element (k, l) reflects the transition prob-
abilities above

Mi
k,l =

⎧⎪⎨⎪⎩
[Pr(j wins|ωk, zl) + ∫ hi(·|ωk,zl )∑

l �=i hl (·|ωk,zl)
dG(j)(·|ωk, zl)] Pr(zl |zk),

if ωl = Γ (ωk, zl, j),

0, otherwise.

Then the value function can be expressed as

(96)Vi = [I − βMi
]−1

Ai.

The matrices Mi and Ai can be estimated using estimates of the bid distribution.

3.7.2. Estimating the cost distribution

Once the continuation values are known, estimating the cost distribution is straightfor-
ward. There is a relationship between the cost distribution and the bid distribution that
is given by

F(c|ωt , zt ) = G
(
b(c,ωt , zt )

∣∣ωt , zt

) = G
(
φ−1(c|ωt , zt )

∣∣ωt , zt

)
(provided that φ is invertible). The function φ can be estimated using the first order
condition (93) and the estimated continuation values. The estimated φ can then be sub-
stituted into the estimated bid distribution in order to obtain an estimate of the cost
distribution.

3.8. Outstanding issues

The literature on structural estimation of dynamic games is relatively recent. As a result
our focus has been on reviewing assumptions and techniques that make it feasible to
use the implications of dynamic games to make inferences on parameters of interest to
I.O. We have paid little attention to a host of related issues including; the asymptotic
efficiency of alternative estimators, the small sample properties of those estimators,
identification in the absence of auxiliary information, and the likely validity of various
assumptions.

It is not our intention to minimize any of these issues. Indeed we think it important to
explore all of them, particularly the assumptions underlying the analysis. This includes
the behavioral assumptions and the assumptions regarding the selection of equilibria,
as well as more traditional assumptions on the properties of the unobservables in the
model. The simple fact is that we have little to report on most of these issues. There
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is however one exception; problems that arise due to the presence of serially correlated
unobserved state variables. Since this is an issue that has appeared in several related
literatures, we do have some idea of how to deal with it in the context of estimating
dynamic games.

3.8.1. Serially correlated unobserved state variables

In all of the examples above it is assumed that all of the states that are commonly known
to the agents are also observed by the econometrician. In many empirical applications
this assumption is questionable. For example, in many cases we might expect there to
be an aggregate shock to profits that is known to all of the firms, but not controlled
for by the econometrician. The models presented above can be modified to accommo-
date these shocks if they are i.i.d. over time. However we would often expect aggregate
shocks to be serially correlated, just as most aggregate variables are. In that case, be-
havior in previous periods would depend on previous realizations of the unobserved
states, leading to a correlation between today’s values of the observed and unobserved
states.

The statement of the problems caused by unobserved serially correlated state vari-
ables in dynamic models with discrete outcomes dates back at least to Heckman (1981).
Pakes (1994) reviews three possible solutions to the problem: (i) solving for the un-
observed states as a function of observables, (ii) simulating the model from a truly
exogenous distribution of initial conditions, and (iii) using the ergodic distribution to
model the long run relationship between the unobserved and observed states. With the
advent of longer panels there is also the possibility of using techniques that allow one
or more parameters to differ across markets in a panel of markets (say a market specific
time invariant profit parameter, or a separate initial condition for each market), and then
estimate those parameters pointwise.

The first case is quite promising in contexts where there is an observable continuous
response to the unobservable state. Then conditional on the parameter vector, there is
often a one to one relationship between the unobserved states and the observed states
and controls. Several papers in the literature on static demand system estimation [Berry
(1994), Berry, Levinsohn and Pakes (1995), and Bajari and Benkard (2005)] have used
such a condition to recover serially correlated unobserved product characteristics using
data on quantities, prices, and observed product characteristics. Timmins (2002) uses a
similar procedure to control for the initial conditions in a single agent dynamic control
problem with unobserved state variables. Olley and Pakes (1996) use the implications
of a dynamic Markov perfect equilibrium model to recover a serially correlated produc-
tivity term. These methods could be used to recover the unobserved state variables prior
to the dynamic estimation, and then the unobserved state variables could be treated as
if they were observed in the dynamic estimation algorithm (at least up to estimation
error).

Things become more difficult when the unobserved states are not recoverable in this
way. In single-agent dynamic models, several papers [e.g. Pakes (1986) and Keane and
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Wolpin (1997)] have used exogenous initial conditions to solve the problem of serially
correlated unobserved states. Starting with an exogenous initial distribution of states,
the model can be used to simulate the relationship between the observed and unob-
served states in future periods. However, while there may be many reasonable ways of
modelling initial conditions for a single agent (be it a firm or an individual), such con-
ditions tend to be less realistic for an industry, whose history is typically much longer
than the available data.

The third case is perhaps more appropriate for industry studies. Instead of using an
exogenous initial condition for the unobserved states at the time the market starts up, we
assume that the draws on the joint distribution of the unobserved states and the initial
condition are draws from an invariant distribution. That distribution is then estimated
along with the other parameters of the problem. The rational here is that if the mar-
kets in question have been in existence long enough, the joint distribution of the initial
condition and the unobserved state will not depend on the early years of the industry’s
evolution. Rather it will depend only on the limiting structure of the Markov process
generated by the nature of the dynamic game, a structure we can analyze.

Aguirregabiria and Mira (2007) implement one version of this solution. They allow
for an unobserved fixed effect which varies across markets and assume both that the
fixed effect can only take on a finite number of values and that the transition probabilities
for the observed exogenous variables are independent of the values of the fixed effect.
They then solve for an invariant distribution of the state of the system and the fixed
effect, form the conditional distribution of the initial condition given the fixed effect,
and integrate out over possible values of the fixed effect. They report that allowing for
the fixed effect has a noticeable impact on their empirical results.

Of course, if one has a reasonably long panel of markets one should be able to esti-
mate the fixed effect (or some other unobserved initial condition) pointwise; our fourth
solution possibility. In that case continuation values could be estimated as described
above but separately for each market in the data. The observations across markets could
then be pooled together in the second stage in order to estimate the structural parame-
ters that are the same across markets. This would lead to substantially higher estimation
error in the continuation values, and one might want to think hard about estimators that
would be designed to minimize the impact of these errors.62 Some Monte Carlo work
on just how long a panel is likely to be required for this procedure to be fruitful would
be extremely helpful.
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Abstract

This chapter explains the logic of structural econometric models and compares them
to other types of econometric models. We provide a framework researchers can use
to develop and evaluate structural econometric models. This framework pays particu-
lar attention to describing different sources of unobservables in structural models. We
use our framework to evaluate several literatures in industrial organization economics,
including the literatures dealing with market power, product differentiation, auctions,
regulation and entry.
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1. Introduction

The founding members of the Cowles Commission defined econometrics as: “a branch
of economics in which economic theory and statistical method are fused in the analysis
of numerical and institutional data” [Hood and Koopmans (1953, p. xv)]. Today econo-
mists refer to models that combine explicit economic theories with statistical models as
structural econometric models.

This chapter has three main goals. The first is to explain the logic of structural econo-
metric modeling. While structural econometric models have the logical advantage of
detailing the economic and statistical assumptions required to estimate economic quan-
tities, the fact that they impose structure does not automatically make them sensible. To
be convincing, structural models minimally must be: (1) flexible statistical descriptions
of data; (2) respectful of the economic institutions under consideration; and, (3) sen-
sitive to the nonexperimental nature of economic data. When, for example, there is
little economic theory on which to build, the empiricist may instead prefer to use non-
structural or descriptive econometric models. Alternatively, if there is a large body of
relevant economic theory, then there may significant benefits to estimating a structural
econometric model – provided the model can satisfy the above demands.

A second goal of this chapter is to describe the ingredients of structural models and
how structural modelers go about evaluating them. Our discussion emphasizes that the
process of building a structural model involves a series of related steps. These steps are
by no means formulaic and often involve economic, statistical and practical compro-
mises. Understanding when and why structural modelers must make compromises, and
that structural modelers can disagree on compromises, is important for understanding
that structural modeling is in part “art”. For example, structural modelers often intro-
duce “conditioning variables” that are not explicitly part of the economic theory as a
way of controlling for plausible differences across observations.

Our third goal is to illustrate how structural modeling tradeoffs are made in practice.
Specifically, we examine different types of structural econometric models developed by
industrial organization (“IO”) economists. These models examine such issues as: the
extent of market power possessed by firms; the efficiency of alternative market alloca-
tion mechanisms (e.g., different rules for running single and multi-unit auctions); and
the empirical implications of information and game-theoretic models. We should em-
phasize that this chapter is NOT a comprehensive survey of the IO literature or even
a complete discussion of any single topic. Readers interested in a comprehensive re-
view of a particular literature should instead begin with the surveys we cite. Our goal is
instead to illustrate selectively how IO researchers have used economic and statistical
assumptions to identify and estimate economic magnitudes. Our hope is that in doing so,
we can provide a better sense of the benefits and limitations of structural econometric
models.

We begin by defining structural econometric models and discussing when one would
want to use a structural model. As part of this discussion, we provide a framework
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for evaluating the benefits and limitations of structural models. The remainder of the
chapter illustrates some of the practical tradeoffs IO researchers have made.

2. Structural models defined

In structural econometric models, economic theory is used to develop mathematical
statements about how a set of observable “endogenous” variables, y, are related to an-
other set of observable “explanatory” variables, x. Economic theory also may relate the
y variables to a set of unobservable variables, ξ . These theoretical relations usually are
in the form of equalities: y = g(x, ξ,Θ), where g(·) is a known function and Θ a set
of unknown parameters or functions. Occasionally, economic theory may only deliver
inequality relations, such as y � g(x, ξ,Θ).

Economic theory alone usually does not provide enough information for the
econometrician to estimate Θ . For this reason, and because the economic model
y = g(x, ξ,Θ) may not be able to rationalize the observed data perfectly, the econo-
metrician adds statistical assumptions about the joint distribution of x, ξ and other
unobservables appended to the model. Taken together, these economic and statisti-
cal assumptions define an empirical model that is capable of rationalizing all possible
observable outcomes. In order to estimate the underlying primitives of this model, re-
searchers use statistical objects based on the model, such as a log-likelihood function
for the data, �(y, x | Θ), or conditional moments, such as E(y | x,Θ).

Nonstructural empirical work in economics may or may not be based on formal
statistical models. At one end of the spectrum are measurement studies that focus on
constructing and summarizing data, such as labor force participation and unemployment
rates. At the other end are those that use formal statistical models, such as autoregres-
sive conditional volatility models. Both types of nonstructural empirical work have a
long and respected tradition in economics. An excellent early example is Engel’s (1857)
work relating commodity budget shares to total income. Engel’s finding that expenditure
shares for food were negatively related to the logarithm of total household expendi-
tures has shaped subsequent theoretical and empirical work on household consumption
behavior [see Deaton and Muellbauer (1980) and Pollak and Wales (1992)]. A some-
what more recent example of descriptive work is the Phillips curve. Phillips (1958)
documented an inverse relationship between United Kingdom unemployment rates and
changes in wage rates. This work inspired others to document relationships between
unemployment rates and changes in prices. In the ensuing years, many economic theo-
ries have been advanced to explain why Phillips curves are or are not stable economic
relations.

Nonstructural empirical models usually are grounded in economics to the extent that
economics helps identify which variables belong in y and which in x. This approach,
however, ultimately estimates characteristics of the joint population density of x and y,
f (x, y), or objects that can be derived from it, such as:
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f (y | x), the conditional density of y given x;
E(y | x), the conditional expectation of y given x;
Cov(y | x), the conditional covariances (or correlations) of y given x; or,
Qα(y | x) the α conditional quantile of y given x.

The most commonly estimated characteristic of the joint density is the best linear pre-
dictor (BLP(y | x)) of y given x.

More recently researchers have taken advantage of developments in nonparamet-
ric and semiparametric statistical methods to derive consistent estimates of the joint
density of y and x. For example, statisticians have proposed kernel density techniques
and other data smoothing methods for estimating f (x, y). These same smoothing tech-
niques have been used to develop nonparametric conditional mean models. Silverman
(1986), Härdle (1990), Härdle and Linton (1994) and others provide useful introduc-
tions to these procedures. A major advantage of nonparametric models is that they can
provide flexible descriptions of the above statistical quantities.

Given their flexibility, it would seem that nonstructural empirical researchers should
always prefer nonparametric methods. There are, however, limitations to nonparametric
methods. One is that they may require large amounts of data to yield much precision.1

Second, and more important, once estimated, it is unclear how a flexible estimate of a
joint density can be used to recover economic constructs such as economies of scale in
production and consumer welfare. Moreover, it is also unclear how to perform out-of-
sample counterfactual calculations, such as the impact of an additional bidder on the
winning bid in an auction.

It is tempting to look at our descriptions of structural versus nonstructural models,
and parametric versus nonparametric models, and see them as absolutes – empirical
models are either structural or nonstructural, parametric or nonparametric. We see little
value in such absolute classification exercises. In practice, it is not uncommon to find
structural econometric models that include nonstructural components or nonparamet-
ric components. Our goal in providing these definitions is to have an initial basis for
classifying and evaluating the success of an econometric model.

An initial example from IO may help understand our focus and intent. Consider a
researcher who observes the winning bids, y = {y1, . . . , yT }′, in each of a large num-
ber of T similar auctions. Suppose the researcher also observes the number of bidders,
x = {x1, . . . , xT }′, in each auction. To understand the equilibrium relationship between
winning bids and the number of bidders the researcher could use a structural or a non-
structural approach.

1 Silverman (1986) argues that researchers using these techniques face a “curse of dimensionality”, wherein
the amount of data required to obtain precise estimates grows rapidly with the dimensions of x and y. His
calculations (1986, Table 4.2) suggest that researchers may need thousands, if not hundreds of thousands of
observations before they can place great faith in these flexible techniques. For instance, more than ten times
as much data is required to attain the same level of precision for a four-dimensional as a two-dimensional
joint density. More than 200 times as much data is required for an eight-dimensional as a four-dimensional
density.
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A standard nonstructural approach would be to regress winning bids on the number
of bidders. Under standard statistical assumptions, this regression would deliver the best
linear predictor of winning bids given the number of bidders. These coefficient estimates
could be used to predict future winning bids as a function of the number of bidders. Al-
ternatively, a researcher worried about a nonlinear relationship between winning bids
and the number of bidders might instead opt to use nonparametric smoothing tech-
niques to estimate the conditional density of winning bids given each distinct observed
number of bidders x, f (y | x). The researcher could then use this estimated conditional
density, ̂f (y | x), to calculate whether, for example, expected winning bids in the sam-
ple auctions increased or decreased with the number of bidders. The researcher could
also check to see if the conditional expected bid increased or decreased linearly with
the number of bidders.

The process of formulating and implementing either of these nonstructural models
so far has made little use of economics, except perhaps to identify what is y and what
is x. For instance, our discussion of these descriptive models has made no reference
to institutional features of the auctions (e.g., sealed-bid versus open-outcry and first-
price versus second-price). It also has not required economic assumptions about bidder
behavior or characteristics (e.g., risk-neutrality, expected profit maximization and bid-
der competition). In some cases (e.g., sealed-bid versus open-outcry), we may be able
to incorporate these considerations into a nonstructural model by introducing them as
conditioning variables. In other cases (e.g., the degree of risk aversion), this may not be
possible.

A key reason then to use economic theory, beyond specifying x and y, is to clarify
how institutional and economic conditions affect relationships between y and x. This
specificity is essential once the researcher wishes to make causal statements about esti-
mated relationships or use them to perform counterfactuals. Suppose for example, the
researcher has regressed winning bids on the number of bidders and estimates the coef-
ficient on the number of bidders is $100. Can this estimate be interpreted as the causal
effect of adding another bidder to a future auction? We would argue that without further
knowledge about the institutional and economic features of the auctions under study the
answer is no. What separates structural models from nonstructural models, and some
structural models from others, is how clearly the connections are made between institu-
tional, economic, and statistical assumptions and the estimated relationships. While it is
possible to assert that assumptions exist that make the estimated relationship causal, the
plausibility of such claims ultimately rests on whether these assumptions are reasonable
for the researcher’s application.

As we discuss later in Section 8, IO economists have developed a variety of structural
models of auction bid data. These models have been used to derive causal models of the
equilibrium relations between winning bids and the number of bidders. Paarsch (1992),
for example, was the first to compare empirical models of winning bids in private value
and common value sealed-bid auctions. For instance, he showed that for sealed-bid
auctions with risk-neutral, expected profit-maximizing, Pareto-distributed-private-value
bidders would have the following density of winning bids y given a known number of



Ch. 64: Structural Econometric Modeling 4285

bidders, x:

f (y | x, θ) = θ2x

yθ2x+1

[
θ1θ2(x − 1)

θ2(x − 1) − 1

]θ2x

.

Using this density, Paarsch derives the expected value of the winning bid conditional on
the number of bidders:

E(y | x) =
[

θ1θ2(x − 1)

θ2(x − 1) − 1

]
θ2x

θ2x − 1
.

Paarsch’s paper motivated IO economists to think about what types of institutional,
economic and statistical assumptions were necessary to recover causal relationships
from auction data. For example, researchers have asked how risk aversion, collusion
and asymmetric information change the equilibrium distribution of bids. Researchers
also have compared the observable implications of using sealed-bid versus open-outcry
auctions.

In closing this section, we should re-emphasize the general goal of structural econo-
metric modeling. Structural econometric models use economic and statistical assump-
tions to identify economic quantities from the joint density of economic data, f (x, y).
The main strength of this approach is that, done right, it can make clear what economic
assumptions are required to draw causal economic inferences from the distribution of
economic data.

3. Constructing structural models

Having introduced the concept of a structural model, we now explore how structural
modelers go about constructing econometric models.

3.1. Sources of structure

There are two general sources of “structure” in structural models – economics and sta-
tistics. Economics allows the researcher to infer how economic behavior and institutions
affect relationships between a set of economic conditions x and outcomes y. Often these
economic models are deterministic, and as such do not speak directly to the distribution
of noisy economic data. Structural econometric modelers thus must add statistical struc-
ture in order to rationalize why economic theory does not perfectly explain data. As we
show later, this second source of structure may affect which economic quantities a re-
searcher can recover and which estimation methods are preferable.

In any structural modeling effort a critical issue will be: How did the structural
modeler know what choices to make when introducing economic and statistical as-
sumptions? Most answers to this question fall into one of three categories: those made
to reflect economic realities; those made to rationalize what is observed in the data or de-
scribe how the data were generated; and, those made to simplify estimation. We should
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note at the outset that there is no necessary agreement among structural modelers as to
how to make these choices. Some purists, for example, believe that structural models
must come from fully-specified stochastic economic models. Others find it acceptable
to add structure if that structure facilitates estimation or allows the researcher to re-
cover economically meaningful parameters. For instance, economic theory may make
predictions about the conditional density of y given x, f (y | x), but may be silent about
the marginal density of x, f (x). In this case, a researcher might assume that the mar-
ginal density of x does not contain parameters that appear in the conditional density. Of
course, there is nothing to guarantee that assumptions made to facilitate estimation are
reasonable.

The “structure” in a structural model is there because the researcher explicitly or
implicitly chose to put it there. Although we have argued that one of the advantages
of a structural econometric model is that researchers can examine the sensitivity of the
structural model estimates to alternative assumptions, this is sometimes easier said than
done.

The following example illustrates how some of these issues can arise even in a famil-
iar linear regression setting. Specifically, we ask what types of assumptions are required
to interpret a regression of outputs on inputs as a production function.

EXAMPLE 1. Imagine an economist with cross-section, firm-level data on output, Qt ,
labor inputs, Lt , and capital inputs, Kt . To describe the relationship between firm i’s
output and inputs, the economist might estimate the regression:

(1)ln Qt = θ0 + θ1 ln Lt + θ2 ln Kt + εt ,

by ordinary least squares (OLS). In this regression, the θ ’s are unknown coefficients and
the εt is an error term that accounts for the fact that the right-hand side input variables
do not perfectly predict log output.

What do we learn by estimating this regression? Absent more information we have
estimated a descriptive regression. More precisely, we have estimated the parameters of
the best linear predictor of yt = ln(Qt ) given xt = (1, ln(Lt ), ln(Kt ))

′ for our sample
of data. Goldberger (1991, Chapter 5) provides an excellent discussion of best linear
predictors. The best linear predictor of y given a univariate x is BLP(y | x) = a + bx,
where a = E(y) − bE(x) and b = Cov(y, x)/ Var(x). Absent more structure, the
coefficients a and b are simply functions of population moments of f (x, y).

If we add to our descriptive model the assumption that the sample second moments
converge to their population counterparts

lim
T →∞

1

T

T∑
t=1

xtx
′
t = Mxx and lim

T →∞
1

T

T∑
t=1

xtyt = Mxy,

and that Mxx is a matrix of full rank, then OLS will deliver consistent estimates of the
parameters of the best linear predictor function. Thus, if we are interested in predicting
the logarithm of output, we do not need to impose any economic structure and very little
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statistical structure to estimate consistently the linear function of the logarithm of labor
and logarithm of capital that best predicts (in a minimum-mean-squared-error sense) the
logarithm of output.

Many economists, however, see regression (1) as more than a descriptive regression.
They base their reasoning on the observation that (1) essentially looks like a logarithmic
restatement of a Cobb–Douglas production function: Qt = ALα

t K
β
t exp(εt ). Because

of the close resemblance, they might interpret (1) as a production function.
A critical missing step in this logic is that a Cobb–Douglas production function typ-

ically is a deterministic relationship for the producer, whereas the regression model (1)
includes an error term. Where did the error term in the empirical model come from? The
answer to this question is critical because it affects whether OLS will deliver consistent
estimates of the parameters of the Cobb–Douglas production function, as opposed to
consistent estimates of the parameters of the best linear predictor of the logarithm of
output given the logarithms of the two inputs. In other words, it is the combination of
an economic assumption (production is truly Cobb–Douglas) and statistical assump-
tions (εt satisfies certain moment conditions) that distinguishes a structural model from
a descriptive one.

Deterministic production function models provide no guidance about the properties
of the disturbance in (1). The researcher thus is left to sort out what properties are appro-
priate from the details of the application. One could imagine, for instance, the modeler
declaring that the error is an independently-distributed, mean-zero measurement error
in output, and that these errors are distributed independently of the firms’ input choices.
In this case, OLS has the potential to deliver consistent estimates of the production
function parameters.

But how did the modeler know that εt was all measurement error? As we discuss
later this is likely too strong an assumption. A more plausible assumption is that the
error also includes an unobservable (to the econometrician) difference in each firm’s
productivity (e.g., an unobservable component of At in the Cobb–Douglas function).
The existence of such components raises the possibility that the input choices are corre-
lated with εt . Such correlations invalidate the use of OLS to recover consistent estimates
of the parameters of the Cobb–Douglas production function.

Even if one were willing to assume that εt is measurement error distributed indepen-
dently of xt , additional economic structure is necessary to interpret the OLS parameter
estimates as coefficients of a Cobb–Douglas production function. By definition, a pro-
duction function gives the maximum technologically feasible amount of output that can
be produced from a vector of inputs. Consequently, under this stochastic structure, un-
less the researcher is also willing to assert that the firms in the sample are producing
along their Cobb–Douglas production function, OLS applied to (1) does not yield con-
sistent estimates of the parameters of this production function. In a theoretical realm, the
assumption of technologically efficient production is relatively innocuous. However, it
may not fit the institutional realities of many markets. For example, a state-owned firm
may use labor in a technologically inefficient manner to maximize its political capital
with unions. Regulators also may force firms to operate off their production functions.
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Both of these examples underscore the point that care must exercised to ensure that the
economic model fits the institutional reality of what is being studied.

This example demonstrates what assumptions are necessary for a linear regression
model to have a causal economic interpretation as a production function. First, the
researcher must specify an economic model of the phenomenon under consideration,
including in this case the functional form for the production function. Second, she must
incorporate unobservables into the economic model. This second step should receive
significantly more attention than it typically does. This is because the assumptions made
about the unobservables will impact the consistency of OLS parameter estimates. Sec-
tions 4 and 5 further illustrate the importance of stochastic specifications and potential
pitfalls.

3.2. Why add structure?

We see three general reasons for specifying and estimating a structural econometric
model.

First, a structural model can be used to estimate unobserved economic or behavioral
parameters that could not otherwise be inferred from nonexperimental data. Examples
of structural parameters include: marginal cost; returns to scale; the price elasticity of
demand; and the impact of a change in an exogenous variable on the amount demanded
or on the amount supplied.

Second, structural models can be used to perform counterfactuals or policy simula-
tions. In counterfactuals, the researcher uses the estimated structural model to predict
what would happen if elements of the economic environment change. For example,
suppose that we have estimated the demand for a product and the monopolist’s cost
function. We could then, with added assumptions, use these estimates to calculate
how market prices and quantities would change if an identical second firm entered the
monopoly market.

For these calculations to be convincing, the structural modeler must be able to ar-
gue that the structural model will be invariant to the contemplated change in economic
environment. Thus, if we were to evaluate instead the effect of a regulator capping a mo-
nopolist’s price, we would have to maintain that the monopolist’s cost function would
not change as a result of the regulation. That these assumptions need to be made and
checked is again another illustration of the value of a structural model – it can help re-
searchers identify what assumptions are required in order to draw inferences and make
predictions about economic behavior and phenomena.

Finally, structural models can be used to compare the predictive performance of two
competing theories. For example, we could compare the performance of quantity-setting
versus price-setting models of competition. It is important to emphasize that these com-
parisons do not provide unambiguous tests of the underlying economic theories. Indeed,
these comparisons are always predicated on untestable assumptions that are not part
of the theory. For instance, any “test” of quantity-setting behavior versus price-setting
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behavior is predicated on the maintained functional forms for demand, costs, and the
unobservables. Thus, the only sense in which one can “test” the two theories is to ask
whether one of these ways of combining the same economic and stochastic primitives
provides a markedly better description of observed or out-of-sample data.

Because we cannot test economic models independent of functional form assump-
tions for a finite number of observations, it is important to recognize that structural
parameter estimates may well be sensitive to these assumptions. For example, if we
were trying to estimate consumer surplus, we should be aware that it might make a
tremendous difference that we assumed demand was linear, as opposed to constant
elasticity. While this sensitivity to functional form can be viewed as a weakness, it
also can be viewed as a strength. This is again because the “structure” in structural
models forces researchers to grapple directly with the economic consequences of as-
sumptions.

The “structure” in structural models also can affect statistical inferences about eco-
nomic primitives. Here we have in mind the impact that a researcher’s functional form
choices can have on the size and power of hypothesis tests. When, as is usually the
case, economic theory does not suggest functional forms or what other variables might
be relevant in an application, researchers will be forced to make what may seem to be
arbitrary choices. These choices can have a critical impact on inferences about parame-
ters. For example, if a researcher wants to fail to reject a null hypothesis, then she should
specify an extremely rich functional form with plenty of variables that are not part of
the economic theory. Such a strategy will likely decrease the power of the statistical test.
For instance, if a researcher would like to fail to reject the integrability conditions for
her demand functions, she should include as many demographic variables as possible
in order to soak up across-household variation in consumption. This will tend to reduce
the apparent precision of the estimated price coefficients and make it difficult to reject
the null hypothesis of integrability. Conversely, if she would like to reject integrability,
then she should include few, if any, demographic controls. This would increase the ap-
parent precision in the price coefficients and increase the likelihood of rejection for two
reasons: (1) she has reduced the number of irrelevant variables; and, (2) the effect of
price may be exaggerated by the omission of relevant variables that are correlated with
prices.

This discussion underscores the delicate position empiricists are in when they attempt
to “test” a particular parameter or theory. For this reason, structural modelers should
experiment with and report how sensitive their inferences are to plausible changes in
functional forms, or the inclusion and exclusion of variables not closely tied to economic
theory.

Finally, we should emphasize that these putative advantages do not always mean
structural models should be favored over nonstructural models. Indeed, there are many
interesting applications where there is little or no useful economic theory to guide em-
pirical work. We certainly do not believe this should stop the collection or description
of data. When on the other hand there is a substantial body of economic theory to guide
empirical work, researchers should take advantage of it. In some cases, there may be a
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large body of economic theory on a particular topic, but that theory may have few im-
plications for data. In this case, structural modelers can make important contributions
by making it clear what is needed to link theory to data. By being clear about what in
the theory the empirical researcher can estimate, it becomes easier for economists to
improve existing theory.

The advantages of structural models of course do not all come for free. All economic
theories contain assumptions that are not easily relaxed. While theorists sometimes
have the luxury of being able to explore stylized models with simplifying assumptions,
structural econometric modelers have to worry that when they use stylized or simpli-
fying assumptions they will be dismissed as arbitrary, or worse: insensitive to the way
the world “really works”. This problem is compounded by the fact that economic data
rarely come from controlled experimental settings. This means that structural economet-
ric modelers often must recognize nonstandard ways in which nonexperimental data are
generated and collected (e.g., aggregation and censoring). Such complications likely
will force the structural modeler to simplify. The danger in all of these cases is that
the structural model can then be seen as “too naive” to inform a sophisticated body of
theory. We expect that readers can see this already in Example 1.

3.3. Evaluating structure – single equation models

The standard multiple linear regression model is a useful place to begin understand-
ing issues that arise in evaluating and interpreting structural and nonstructural models.
Consider the linear regression model, y = α + xβ + ε. The mathematical structure of
this model lends an aura of “structure” as to how y is related to x. What motivates this
structure? A satisfactory answer to this question minimally must address why we are re-
gressing y on x. From a statistical perspective, we can always regress y on x or x on y.
The coefficients in these regressions can then be given statistical interpretations as the
coefficients of best linear predictor functions. Issues of economic causality, however,
are not resolved simply because a researcher puts y on the left-hand side and x on the
right-hand side of a linear equation.

Economists estimating linear regression models usually invoke economic arguments
to make a case that x causes y. Assuming that the researcher has made a convincing
case, what should be made of the regression of y on x? Absent an economic model
showing that y and x are linearly related, all one can say is that under certain conditions
ordinary least squares regression will provide consistent estimates of a best linear pre-
dictor function. The regression does not necessarily deliver an estimate of how much
the conditional mean of y changes with a one unit change in x, and certainly not the
causal impact of a one-unit change in x on y.

Despite this, some researchers use regression coefficient signs to corroborate an eco-
nomic model in the belief that multiple regressions “hold constant” other variables.
For example, a researcher might develop a deterministic economic model that shows:
“when x increases, y increases”. This result then becomes the economic justification
for using a regression of y on x and other variables to “test” the theory. One problem
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with this approach is that unless the economic model delivers a linear conditional mean
specification for y given x, the regression evidence about the sign of x need not match
deterministic comparative statics predictions. In general, the empirical researcher must
first use economics and statistics to demonstrate that the relevant economic quantity
or comparative static effect can be identified using the available data and estimation
technique. To see this point more clearly, consider the following example.

EXAMPLE 2. A microeconomist has cross-section data on a large number of compa-
rable firms. The data consist of outputs, Q, in physical units, total costs, TC, and the
firms’ two input prices, pK and pL. The researcher’s goal is to learn about the firms’
(by assumption) common technology of production. The researcher decides to do this
by estimating one of the following regression models:

Model 1: ln TCi = θ0 + θ1 ln Qi + θ2 ln pKi + θ3 ln pLi + ηi,

(2)Model 2: ln Qi = β0 + β1 ln TCi +β2 ln pKi + β3 ln pLi + εi .

These specifications differ according to whether the natural logarithm of output or the
natural logarithm of total costs is a dependent or independent variable.

Which specification makes better economic sense? In an informal poll of colleagues,
we found most thought Model 1 was more sensible than Model 2. The logic most often
given for preferring Model 1 is that it looks like a cost function regression. When asked
how to interpret the parameters of this regression specification, most say that θ1 is an
estimate of the elasticity of total cost with respect to output. As such, it provides a
measure of scale economies. Those who prefer the second equation seem to base their
preference on an argument that total cost is more likely to be “exogenous”. To them
this means that OLS is more likely to deliver consistent estimates of production or cost
parameters.

How might we go about deciding which specification is correct? A structural modeler
answers this question by answering two prior questions: What economic and statistical
assumptions justify each model? And, do these assumptions make sense for the appli-
cation at hand? In Example 5 of Section 4, we show that Models 1 and 2 can be derived
from competing plausible economic and stochastic assumptions. That is, under one set
of economic and stochastic modeling assumptions, we can derive Model 1. Under an-
other set of assumptions, we can do the same for Model 2. Without knowing the details
of the firms and markets being studied, it is impossible to decide which set of assump-
tions is more appropriate.

How do researchers only interested in data description decide which specification
is correct? They too must answer prior questions. But these questions only pertain to
the goals of their statistical analysis. If, for example, their goal is prediction, then they
would choose between Models 1 and 2 based on the variable they are trying to pre-
dict. They then would have to decide which right-hand side variables to use and how
these variables would enter the prediction equation. Here, researchers have to worry
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that if their goal is post-sample prediction, they may over-fit within sample by includ-
ing too many variables. While statistical model selection criteria can help systematize
the process of selecting variables, it is not always clear what one should make of the
resulting model.

In some cases, researchers do not have a clear economic model or descriptive cri-
terion in mind when they estimate a regression model such as Model 1 by ordinary
least squares. In this case, what can be made of the coefficient estimates obtained
from regressing y on the vector x? As discussed above, ordinary least squares deliv-
ers consistent estimates of the coefficients in the best linear predictor of y given x.
But what information does the BLP(y | x) provide about the joint distribution of y

and x? In general, the BLP will differ from the more informative conditional expecta-
tion of y given x, E(y | x), which is obtained from f (x, y) as

∫
yf (y | x) dy. Thus,

θ1 = ∂ BLP(y | x)/∂x1 in Model 1 will not in general equal how much expected log
total costs will increase if we increase log output by one unit (i.e., ∂E(y | x)/∂x1).
Only under certain conditions on the joint density of y and x are the BLP function and
the conditional expectation function the same. Despite this well-known general lack of
equivalence between the BLP(y | x) and E(y | x), many descriptive studies treat lin-
ear regression slope coefficient estimates as if they were estimates of the derivative of
E(y | x) with respect to x. Occasionally, some studies adopt the position that while
the best linear predictor differs from the conditional expectation, the signs of the coeffi-
cients of the BLP(y | x) will be the same as those of ∂E(y | x)/∂x provided the signs
of ∂E(y | x)/∂x do not change with x. Unfortunately, as White (1980) demonstrates,
there is no reason to expect that this will be true in general.

When the conditional expectation of y is nonlinear in x, statistical theory tells us (un-
der certain sampling assumptions) that a regression provides a best (minimum expected
squared prediction error) linear approximation to the nonlinear conditional expectation
function. It is perhaps this result that some place faith in when they attempt to use re-
gressions to validate an economic comparative static result. However, absent knowledge
from economics or statistics about the joint distribution of y and x, this approximation
result may be of limited value. We do not, for example, know how good the linear ap-
proximation is. We do not know if x causes y or y causes x. In sum, BLP(y | x) and
E(y | x) are simply descriptive statistical quantities.

By making economic and statistical assumptions, however, we can potentially learn
something from the linear approximation. For example, if we had an economic theory
that suggested that there was a negative causal relationship between y and z, then the
bivariate regression slope coefficient’s sign might tell us whether the evidence is consis-
tent with the theory. But this may be a weak confirmation of the theory and it certainly
does not provide us with a sense of the strength of the relationship if the conditional
mean function, E(y | z), is nonlinear in z.

Descriptive researchers (and structural modelers) also have to worry about whether
they have collected all of the data needed to examine a particular prediction about a
conditional mean. Consider, for example, the case where an economic theory delivers
a prediction about the conditional mean of y given x1 and x2, E(y | x1, x2), where
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y, x1 and x2 are scalars. Suppose that y is a customer’s demand for electricity during
the day, x1 is the price of electricity during the day, and x2 is average temperature
during the day. Economic theory predicts that electricity demand is decreasing in the
daily price after controlling for the average daily temperature. However, if we do not
include x2 on the right-hand side when we regress y on x1, then we obtain the best linear
approximation to E(y | x1), not E(y | x1, x2). The difference may be very important.
For instance, the function g(x1) = E(y | x1) may not depend on x1, whereas the
function h(x1, x2) = E(y | x1, x2) may depend on both x1 and x2.

In the usual textbook analysis of omitted variables in a linear model, it is straight-
forward to establish when an omitted variable will cause bias and produce incon-
sistent estimates. When the conditional mean is nonlinear, and we proceed as if it
is linear, the familiar reasoning is not as straightforward. In addition to the omitted
variable, we have to worry that even if we had included the omitted variable, that
∂E(y | x1, x2)/∂x1 �= ∂ BLP(y | x1, x2)/∂x1. Absent a theory that says that y is
linearly related to x1 and x2, the effect of omitting a relevant regressor is much harder
to evaluate. Specifically, suppose

yt = g(x1t , x2t ) + εt = g(xt ) + εt

and E(εt | xt ) = 0 so that E(y | x) = g(xt ) is a nonlinear function. Running an
ordinary least squares regression of yt on zt , where zt is a vector of known functions of
x1t and x2t , yields a consistent estimate of β where β is defined as follows:

yt = ztβ + [g(xt ) − ztβ
]+ εt = ztβ + ηt .

The parameter β is the linear combination of the zt ’s that best predicts the yt ’s for the
population. By construction E(ztηt ) = 0, but the partial derivative of ztβ with respect to
x1 could differ in both sign and magnitude from the partial derivative of the conditional
mean, ∂g(xt )/∂x1t depending on how well ztβ approximates g(xt ).

3.4. Evaluating structure – simultaneous equation models

The original Cowles Commission econometricians paid particular attention to develop-
ing econometric models that could represent the concept of an “economic equilibrium”.
Indeed, the term “structural model” often is associated with econometric models that
have multiple simultaneous equations, each of which describes economic behavior or is
an identity. The term simultaneous emphasizes that the left-hand side variables also can
appear as right-hand side variables in other equations. The term “reduced form” was
introduced to describe an alternative representation of a simultaneous system – one in
which the dependent variables were explicitly represented only as functions of the x’s
and unobservables.

To understand what is “structural” in simultaneous equations models, it is useful to
begin with a standard linear supply and demand model.
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EXAMPLE 3. In a standard linear demand and supply model, the demand curve gives
the quantity that consumers would like to purchase at a given price, conditional on other
variables that affect demand, and the supply curve gives how much firms are willing to
sell at a given price, conditional on other supply shifters. Mathematically,

qs
t = β10 + γ12pt + β11x1t + ε1t ,

pt = β20 + γ22q
d
t + β22x2t + ε2t ,

(3)qs
t = qd

t ,

or in matrix notation:

(4)[ qt pt ]

[
1 −γ22

−γ12 1

]
− [ 1 x1t x2t ]

[
β10 β20
β11 0
0 β22

]
= [ ε1t ε2t ] ,

(5)y′
tΓ − x′

tB = ε′
t ,

where Γ and B are matrices containing the unknown parameters that characterize the
behavior of consumers and producers, qt is equilibrium quantity at time t , pt is equilib-
rium price, yt is a two-dimensional vector, εt is a two-dimensional vector of unobserved
random variables, and the exogenous variables, xt , consist of a constant term, a supply
shifter x1t (e.g., an input price) and a demand shifter x2t (e.g., household income).

To find out what restrictions the system (3) imposes on the conditional distribution
of y given x, we can first solve for the endogenous variables as a function of exogenous
variables and error terms. Post-multiplying both sides of (5) by Γ −1, and rearranging,
gives the reduced form

(6)y′
t = x′

tΠ + v′
t .

The reduced form (6) shows that equilibrium prices and quantities are linear functions
of both demand and cost shifters and both demand and cost errors.

From this perspective, the individual reduced forms for equilibrium price and quantity
parallel the nonstructural descriptive linear regressions discussed in the previous sub-
section. Some researchers, however, over-extend this logic to claim that any regression
of an endogenous variable on exogenous variables is a “reduced form” regression. Thus,
they would for example label a regression of price on the supply shifters x2t a “reduced
form”.

The critical issue again in any regression of a y on x is what do we make of the
estimated coefficients? Returning to the reduced form system (6), to arrive at this rep-
resentation we had to first assume that the structural equations characterizing aggregate
demand and supply were linear. If we did not know they were linear, then we would not
know that the reduced form (6) was linear. In short, the functional form of the struc-
tural model determines the functional form of the reduced form relationship between yt

and xt .
The economic assumption that supply equals demand also is critical to the interpre-

tation of Π . If, for example, price floors or ceilings prevented demand from equaling
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supply, then we would not obtain a standard linear model even though the underlying
demand and supply schedules were linear [see Quandt (1988)].

Even when we are assured that the reduced form has the linear form (6), we cannot
interpret the Π and proceed to estimation without completing the specification of the
demand and supply equations. To complete the structural model, for example, the re-
searcher could specify the joint distribution of x and y, or alternatively, as is common
in the literature, the conditional distribution of y given x. Still another approach is to
sacrifice estimation efficiency by imposing less structure on the joint distribution. For
example, estimation could proceed assuming the conditional moment restrictions

(7)E(εt | xt ) = 0 and E
(
εt ε

′
t | xt

) = Σ.

From these conditional moment restrictions on εt , we can deduce

(8)E(vt | xt ) = 0, and E
(
vtv

′
t | xt

) = Ω,

where

(9)Π = BΓ −1, v′
t = ε′

tΓ
−1, and Ω = (Γ −1)′ΣΓ −1.

From (9), we see that Π and the variance–covariance matrix of the reduced form errors,
Ω , provide information about the structural parameters in Γ . Without restrictions on the
elements of Γ , B, and Σ , however, the only restriction on the conditional distribution
of yt given xt implied by the linear simultaneous equation model is that the conditional
mean of yt is linear in xt and the conditional covariance matrix of yt is constant across
observations.

To summarize, a reduced form model exists only to the extent that the researcher has
derived it from a structural economic model. If the researcher is unwilling to assume
functional forms for the supply and demand equations, then the conditional means of
qt and pt will likely be nonlinear functions of xt , the vector of the demand and supply
shifters. In this case, although we can still perform linear regressions of qt and pt on xt ,
these linear regressions are not reduced forms. Instead, these regressions will deliver
consistent estimates of the parameters of the best linear predictors of the dependent
variables given xt . How these parameter estimates are related to the price elasticity
of demand or supply or other causal effects is unknown. Additionally, as discussed
earlier, unless the researcher is willing to place restrictions on the functional forms of
the conditional means of qt and pt given xt , it will be difficult to make even qualitative
statements about the properties of E(pt | xt ) or E(qt | xt ).

Notice, it is economic theory that allows us to go beyond descriptive or statistical
interpretations of linear regressions. If we assume stochastic linear supply and demand
equations generate yt , and impose the market-clearing conditions qs

t = qd
t , then the

equations in (9) allow us in principle to recover estimates of economic parameters from
Π and Ω . We emphasize in principle because unless the values of B,Γ , and Σ can be
uniquely recovered from Π and Ω , the structural model (3) has limited empirical con-
tent. Although the structural parameters are not identified, the linearity of the structural
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model implies that the conditional mean of yt is linear in xt and the conditional variance
is constant.

One might wonder how we know that the structural model given in Equation (3) is
generating the observed yt . The answer is by now familiar: Only because economic the-
ory tells us so! Economic theory tells us what elements of xt belong in just the supply
and just the demand equations. The same theory also resolves the problem of how to
identify Γ,B, and Σ from the reduced form parameters Π and Ω . Absent restrictions
from economic theory, there are many different simultaneous equations models that can
give rise to the same reduced form parameters Π and Ω . These models may contain
radically different restrictions on the structural coefficients and impose radically differ-
ent restrictions on the behavior of economic agents, yet no amount of data will allow
us to distinguish among them. For economic theory to be useful, it minimally must de-
liver enough restrictions on Γ,B, and Σ so that the empiricist can uniquely recover
the remaining unrestricted elements of Γ,B, and Σ from estimates of Π and Ω . Thus,
any defense of the researcher’s identification restrictions can be seen as a defense of
the researcher’s economic theory. Without a clearly argued and convincing economic
theory to justify the restrictions imposed, there is little reason to attempt a structural
econometric model.

It is well known to economic theorists that without assumptions it is impossible to
derive predictions about economic behavior. For example, consumers may have pref-
erence functions and producers access to technologies. However, unless we are willing
to assume, for example, that consumers maximize utility subject to budget constraints
and producers maximize profits subject to technological constraints, it is impossible
to derive any results about how firms and consumers might respond to changes in the
underlying economic environment. An empirical researcher faces this same limitation:
without assumptions, it is impossible to derive empirical results. From a purely descrip-
tive perspective, unless a researcher is willing to assume that the joint density of x and y

satisfies certain conditions, he cannot consistently estimate underlying descriptive mag-
nitudes, such as the BLP(y | x) or the conditional density of y given x. Further, unless
an empirical researcher is willing to make assumptions about the underlying economic
environment and the form and distribution of unobservables, he cannot estimate eco-
nomically meaningful magnitudes from the resulting econometric model. So it is only
the combination of economic and statistical assumptions that allow conclusions about
economic magnitudes to be drawn from the results of an econometric modeling exer-
cise.

Econometrics texts are fond of emphasizing the importance of exclusion restrictions
for identification – an exogenous variable excluded from the equation of interest. We
would like to emphasize that identification also requires inclusion restrictions – this
exogenous variable must also be included in at least one equation of the structural
model.

This distinction is particularly important because applied researchers are typically
unwilling or unable to specify all the equations in their simultaneous equations system.
This incompleteness in the econometric model reflects an incompleteness in the eco-
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nomic model. This incompleteness can and should raise doubts about the validity of
instruments. To see why, suppose economic theory delivers the following linear simul-
taneous equations model

y1 = βy2 + x1γ + ε1,

(10)y2 = x1π21 + ε2,

where the ε’s are independently and identically distributed (i.i.d.) contemporaneously
correlated errors and x1 is a variable that is uncorrelated with ε1 and ε2. Suppose that
a researcher is interested in estimating the structural parameters β and γ in the first
equation. As it stands, these parameters are not identified. The problem is that we are
missing an instrument for y2.

What to do? One approach is to revisit the economic theory in an effort to under-
stand where additional instruments might come from. An alternative approach that is all
too common is the recommendation: “Look for an exogenous variable that is uncorre-
lated with the ε’s but at the same time correlated with the right-hand side endogenous
variable y2”. While these two approaches are not necessarily incompatible, the second
approach does not seem to involve any economics. (This should sound a warning bell!)
All one needs to find is a variable that meets a statistical criterion. In some instances,
researchers can do this by searching their data sets for variables that might reasonably
be viewed as satisfying this criterion.

The following suggests how a researcher might run into problems using the statistical
approach: “Look for an exogenous variable that is uncorrelated with the ε’s but at the
same time correlated with the right-hand side endogenous variable y2”. Consider first
the extreme case where we decide to create a computer-generated instrument for y2
that satisfies this criterion. That is, imagine we construct an instrumental variable, x2,
as the sum of x1 plus a computer-generated independent identically distributed random
error. This new variable satisfies the statistical criteria to be a valid instrument: it is
uncorrelated with the structural errors and yet correlated with y2. Thus, it would appear
that we can always identify the coefficients in the first equation as long as we have at
least one exogenous variable and a good random number generator.

What is amiss here is that identification also hinges on showing that x2 belongs in
the second equation. A statistical test cannot unambiguously resolve this question (es-
pecially when x1 and x2 are highly correlated). However, both economics and common
sense tell us that x2 does not belong in the reduced form. Put another way, they tell us
that x2 does not belong in the structural or reduced form model – the population value
of π22, the coefficient associated with x2 in the reduced form, is zero! Nevertheless, in
finite samples we could conclude π22 is nonzero (and perhaps statistically so).

To understand formally why this estimation strategy fails to produce consistent esti-
mates of β and γ , consider the instrumental variables estimator for these two parame-
ters. This estimator uses the instruments (x1, x2)

′:[
β̂

γ̂

]
=
[∑T

t=1 y2t x1t

∑T
t=1 x2

1t∑T
t=1 y2t x2t

∑T
t=1 x1t x2t

]−1 [∑T
t=1 x1t y1t∑T
t=1 x2t y1t

]
.
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A necessary condition for the consistency of this instrumental variables estimator is that
the matrix

1

T

[∑T
t=1 y2t x1t

∑T
t=1 x2

1t∑T
t=1 y2t x1t

∑T
t=1 x1t x2t

]
converges in probability to a finite nonsingular matrix. Assume that

lim
T →∞

1

T

T∑
t=1

x2
1t = M2.

Because x2t = x1t + ηt and ηt is distributed independently of ε1t , ε2t , and x1t , the
probability limit of this matrix is equal to

(11)

[
M2π21 M2

M2π21 M2

]
,

which is a singular matrix. This result follows from substituting x1t + ηt for x2t and
x1tπ21 + ε2t for y2t and then applying the appropriate laws of large numbers to each
element of the matrix. The singularity of (11) is just another way of saying that the rank
condition for identification of the first equation of the structural model fails.

At first, this example may seem extreme. No economist would use a random number
generator to create instruments – but this is our point! The researcher is informed not
to do this by economics. In practice, a researcher will never know whether a specific
instrument is valid. For example, our students sometimes insist that more clever choices
for instruments would work. After some thought, many suggest that setting x2 = x2

1
would work. Their logic is that if x1 is independent of the errors, so must x2

1 . Following

the derivations above, and assuming that limT →∞ 1
T

∑T
t=1 x3

1t = M3, a finite, positive
constant, we again obtain a singular matrix similar to (11), implying that this x2 is also
an invalid instrument for the same reason – it does not enter into the reduced form.

The value of economic theory is that it provides a defense for why the reduced form
coefficient on a prospective instrument is not zero, i.e., the instrument is included in at
least one equation of the structural model. The statistical advice that led to computer-
generated instruments and x2

1 does not do this.2

Some might argue that our example above ignores the fact that in most economic
applications, one can find exogenous economic variables that satisfy our statistical crite-
rion. The argument then goes on to claim that because these variables are economically
related, we do not need a complete simultaneous equations model. The following ex-
ample discusses this possibility.

2 An element of xt is a valid instrument in linear simultaneous equations model if it satisfies the condi-

tional moment restrictions (7), limT →∞ 1
T

∑T
t=1 xt x

′
t = Q, where Q is a positive definite matrix, and it

enters at least one of the equations of the structural model. Our computer generated instrument fails this last
requirement.
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EXAMPLE 4. Consider a researcher who has data on the prices firms charge in different
geographic markets, pi , the number of potential demanders (population) in market i,
POPi , and whether or not the firm faces competition, COMPi . The researcher seeks to
measure the “effect” of competition on prices by regressing price on market size, as
measured by the number of potential demanders and the competition dummy. That is,
he estimates the regression

(12)pi = POPi θ1 + COMPi θ2 + εi .

Without an underlying economic model, the OLS estimate of θ2 on COMPi provides
an estimate of the coefficient in the best linear predictor of how prices change with the
presence of competition.

The researcher might, however, claim that Equation (12) has a structural economic
interpretation – namely that θ2 measures by how much prices would change if we could
introduce competition. One problem with this interpretation is that it is unlikely that the
presence of competition is determined independently of price. (See Section 10.) In most
entry models, competitors’ decisions to enter a market are simultaneously determined
with prices and quantities. In such cases, if the researcher does not observe critical
demand or supply variables, then OLS will deliver inconsistent estimates of θ2.

One possible solution to this problem is to find an instrumental variable for the pres-
ence of competitors. Suppose that the researcher claims that the average income of
residents in the market, Yi , is such an instrument. This claim might be justified by
statements to the effect that the instrument is clearly correlated with the presence of
competitors, as an increase in average income, holding population fixed, will increase
demand. The researcher also might assert that average income is determined inde-
pendently of demand for the good and thus will be uncorrelated with the error εi in
Equation (12).

Does this make average income a valid instrument? Our answer is that the researcher
has yet to make a case. All the researcher has done is provide a statistical rationale
for the use of Yi as an instrument exactly analogous to the argument used to justify
the computer-generated instrument in Example 3. To be completely convincing, the
researcher must do two more things. First, the researcher has to explain why it makes
sense to exclude average income from Equation (12). To do this, the researcher will have
to provide a more complete economic justification for Equation (12). What type of equi-
librium relationship does Equation (12) represent? Why is the demand variable POPi in
this equation, but not average income, which also might be considered a demand vari-
able? Second, the researcher also will have to make a case that Yi enters the reduced
form for COMPi with a nonzero coefficient, or else the rank condition for identification
will fail by the logic presented in Example 3. This means to be a valid instrument it
must enter some other equation of the structural model. The researcher will have to be
clearer about the form of the complete system of equations determining prices and the
presence of competitors. This will also require the researcher to spell out the economic
model underlying the simultaneous system of equations.
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This next example reiterates our point that the results of a structural modeling exer-
cise are only as credible as the economic theory underlying it. One can always impose
inclusion and exclusion restrictions, but the resulting simultaneous equations model
need not have a clear interpretation.

EXAMPLE 5. The 1960s’ and 1970s’ IO literature contains many studies that regressed
firm or industry profit rates (“performance”) on market concentration measures (“mar-
ket structure”). In the late 1960s and early 1970s, many IO economists observed that
while concentration could increase profits, there could be the reverse causation: high
(low) profits would induce entry (exit). This led some to estimate linear simultaneous
equations models of the form:

PROFIT = β0 + β1CONC + x1β2 + ε1,

(13)CONC = α0 + α1PROFIT + x2α2 + ε2,

where PROFIT measures industry profitability, CONC measures industry concentration,
the ε’s are errors and the α’s and β’s are parameters to be estimated. Particular attention
was paid to estimating the effect of simultaneity bias on the signs and magnitudes of α1
and β1.

Debates about the merits of these models often centered on what variables should be
included or excluded from each equation. What proved unsatisfactory about these de-
bates was that there were no clear answers. Put another way, although these were called
“structural” models of performance and market concentration, there was no one theo-
retical model that provided a specific economic interpretation of α1 and β1. Thus, even
though instrumental variable methods might deliver consistent estimates of α1 and β1,
it was never very clear what these estimates told us about the underlying theories.

To understand why we would not call this a structural model (even though it looks like
a “structural” model in the sense of having multiple endogenous variables in a single
equation), consider these questions: How do we know the first equation is a behavioral
relation describing how industry profitability responds to industry concentration? And:
How do we know the second equation describes the way firm profitability responds to
industry concentration? The population values of β1 and α1, the parameters that charac-
terize how PROFIT responds to CONC and how CONC responds to PROFIT , depend
crucially on which elements of xt are included and excluded from each equation of
the structural model. Unless we have an economic theory telling us which elements of
xt do and do not belong in each behavioral relation, which equation we designate as
the “profit equation” and which equation we designate as a “concentration equation”
is completely arbitrary. For example, we can re-write the “profit equation” in (13) as a
“concentration equation”,

CONC = −β0

β1
+ 1

β1
PROFIT − x1

β2

β1
− 1

β1
ε1

= θ0 + θ1PROFIT + x1θ3 + η.



Ch. 64: Structural Econometric Modeling 4301

What is the difference between this “concentration equation” and the one in (13)? Be-
cause they obviously have the same left-hand side variable, the answer is that they differ
in what is included on the right-hand side. One has x1 and the other has x2. Only
economic theory can tell us which “concentration equation” is correct. That is, only
economic theory can tell us what agent’s behavior, or group of agents’ behaviors, is
characterized by a structural equation. For example, we might try to justify the profit
equation in (13) as representing the profit-maximizing behavior of all firms in the indus-
try for each level of industry concentration and conditioning variables. It is this same
theory that tells us the conditioning variables in the profit equation are the x1’s and not
the x2’s. Thus, economic theory also delivers the inclusion and exclusion restrictions
that allow us to interpret the equations of structural econometric models.

In his criticism of large-scale macroeconometric models, Sims (1980) referred to
many of the restrictions used to identify macro models as “incredible”. He observed:
“the extent to which the distinctions among equations in large macromodels are nor-
malizations, rather than truly structural distinctions, has not received much emphasis”
[Sims (1980, p. 3)]. By truly structural distinctions, Sims meant exclusion and other
functional form restrictions derived from economic theory. This same criticism clearly
applies to structural modeling of the relationship between profits and concentration. As
we describe in later sections, the lack of satisfactory answers to such questions is what
led some empirical IO economists to look more closely at what economic theory had to
say about firm profitability and market concentration.

3.5. The role of nonexperimental data in structural modeling

Virtually all data used in empirical economic research comes from nonexperimental set-
tings. The use of nonexperimental data can raise significant additional modeling issues
for descriptive and structural modelers. Consider a researcher who wants to describe the
relationship between firms’ prices and the number of competitors. Suppose that the data
under consideration come from markets where firms face a price cap. The most general
approach to describing this relationship would be to estimate flexibly the joint distrib-
ution of prices and competitors. Provided the price cap is binding in some markets, the
researcher would obtain a density that has a spike at the price cap.

Instead of flexibly estimating the joint distribution of prices and competitors, the re-
searcher could instead use a regression to describe the relationship. As we argued earlier,
OLS will deliver consistent estimates of the best linear predictor function. Suppose that
absent the cap economic theory implied that the conditional mean of prices given the
number of competitors (x) was linear in x. How does the presence of the cap affect the
estimation of the coefficients of the conditional mean function? The answer is that the
cap truncates the joint distribution and thereby alters the conditional mean of y given x.
Thus, the researcher will need to model this truncation if he is to recover a consistent
estimate of the coefficients in the conditional mean function.
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Although similar statistical sampling issues can arise in structural models, a structural
econometric modeler would view the presence of a price cap as more than a statistical
nuisance. Rather, the cap is something that needs to be accounted for in the modeling
of firm behavior and the unobservables.

To illustrate how structural models can account for nonexperimental data, let us re-
turn to the demand and supply model for prices and quantities. Suppose the researcher
observes price, the total quantity that consumers demand at that price, and consumer
income (x1). Suppose also that the researcher has estimated the regression

qs
t = β0 + β1pt + β2x1t + ε1t

by OLS. For the researcher to be able to assert that they have estimated a demand curve,
as opposed to a descriptive best linear predictor, they must be able to argue that price
and income are uncorrelated with the error. When is this likely the case? In principle,
it would be the case if the researcher could perform experiments where they faced all
consumers with a random series of prices. The same experiment also could be used to
estimate a supply equation using OLS, provided the researcher observed the quantity
supplied at the randomly chosen price.

The key feature of the experiment that makes it possible to estimate both the de-
mand and supply equations by OLS is that the researcher observes both the quantity
demanded and the quantity supplied at each randomly chosen price. In general, the
quantity demanded will not equal the quantity supplied at a randomly chosen price. In
other words, the third equation in the demand and supply system (3) does not hold.

How do equilibrium models of price determination compare then to experimental
models? One way to view nonexperimental data is that it came from a grand experi-
ment. Imagine that in this grander experiment, the experimentalist had collected data
for a vast range of randomly selected prices, incomes and input prices. Imagine now
someone else extracts from the experimentalist’s data only those observations in which
the experimenter’s randomly chosen prices, incomes and input prices resulted in the
quantity supplied equaling the quantity demanded. This nonrandom sample selection
would yield a data set with significantly less information and, more importantly, non-
random prices. Thus, even though the original data came from a random experiment,
the data selection process will cause OLS to no longer deliver consistent estimates of
the supply and demand parameters. On the other hand, if the researcher were to ap-
ply instrumental variable techniques appropriate for a structural simultaneous equations
model that (correctly) imposed the market-clearing equation (3), they would obtain con-
sistent estimates.

Our general point here is that structural models are valuable in nonexperimental con-
texts because they force the researcher to grapple directly with nonexperimental aspects
of data. Consider again the demand and supply model above. How did we know it was
appropriate to impose qs = qd? The answer came not from a statistical model of the
nonrandomness, but from our economic perspective on the nonexperimental data – we
assumed that the data came from markets where there are no price floors or ceilings. Had
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there been price floors or ceilings, this would change the third equation in our economet-
ric model. For example, with binding price ceilings, we might assume that the quantity
we observe is the quantity supplied. (With a binding ceiling, quantity demanded exceeds
supply, but we typically would not know by how much.) Our econometric model now
would have to account for this selection of quantities. A variety of such “disequilibrium”
demand and supply models exist and are reviewed in Maddala (1983).

4. A framework for structural econometric models in IO

Having described differences between descriptive and structural models, we now pro-
vide a framework for building and evaluating structural econometric models. While in
principle it would seem easy for empiricists to recast an economic model as an econo-
metric model, this has not proven true in practice. The process of combining economic
and statistical models is by no means formulaic. As we have indicated earlier, the
process of building a tractable econometric model that respects the institutions being
modeled often involves difficult trade-offs. In the remaining sections we will use the
framework to illustrate the progress of structural modeling in IO.

Structural modeling, and the elements of our framework, are not new to IO or most
applied fields in economics. More than fifty years ago, Trygve Haavelmo and econo-
mists at the Cowles Foundation began combining models of individual agent behavior
with stochastic specifications describing what the econometrician does not know:

The method of econometric research aims, essentially, at a conjunction of eco-
nomic theory and actual measurements, using the theory and technique of statis-
tical inference as a bridge pier. . . . So far, the common procedure has been to first
construct an economic theory involving exact functional relationships, then to com-
pare this theory with some actual measurements, and finally “to judge” whether the
correspondence is “good” or “bad”. Tools of statistical inference have been intro-
duced, in some degree, to support such judgment . . . [Haavelmo (1944, p. iii)]

While the general principle of combining economic models with stochastic specifica-
tions has been around for some time, each field of economics has had to confront its own
problems of how best to combine models with data. Often the desire to have a simple,
well-defined probability model of the endogenous variables forces compromises. Early
on, Hood and Koopmans described the challenge facing empirical economists as:

In reality, unobserved random variables need to be introduced to represent
“shocks” in behavior relations (i.e., the aggregate effects on economic decisions
of numerous variables that are not separately observed) and “errors” of measure-
ment. The choice of assumptions as to the distribution of these random variables
is further complicated by the fact that the behavior equations in question are often
aggregated over firms or individuals. The implications of this fact are insufficiently
explored so far. [Hood and Koopmans (1953, p. xv)]
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Following in this tradition, we describe a procedure for structural economic model-
ing that contains three basic steps. The first step is to formulate a well-defined economic
model of the environment under consideration. The second step involves adding a suf-
ficient number of stochastic unobservables to the economic model, so that its solution
produces a joint density for all observables that has positive support on all possible
realizations of these variables. The final step involves verifying the adequacy of the
resulting structural econometric model as a description of the observed data.

4.1. The economic model

The first main component of a structural model is a complete specification of the equa-
tions describing economic behavior, what we call the economic model. Almost all
economic models in IO have the following five components:

1. A description of the economic environment, including:
(a) the extent of the market and its institutions;
(b) the economic actors; and
(c) the information available to each actor.

2. A list of primitives, including:
(a) technologies (e.g., production sets);
(b) preferences (e.g., utility functions); and
(c) endowments (e.g., assets).

3. Variables exogenous to agents and the economic environment, including:
(a) constraints on agents’ behavior; and
(b) variables outside the model that alter the behavior of economic agents.

4. The decision variables, time horizons and objective functions of agents, such as:
(a) utility maximization by consumers and quantity demanded; and
(b) profit maximization by firms and quantity supplied.

5. An equilibrium solution concept, such as:
(a) Walrasian equilibrium with price-taking behavior by consumers; and
(b) Nash equilibrium with strategic quantity or price selection by firms.

While the rigor of mathematics forces theorists to be clear about these components when
they build an economic model, structural econometric models differ considerably in the
extent to which they spell out these components. Our later discussions will illustrate the
value of trying to make these components clear. In particular, we will focus attention
on component 5, the equilibrium solution concept, because this is the most critical and
specific to IO models.

4.2. The stochastic model

The next step in structural modeling is unique to empirical research. It receives much
less attention than it deserves. This step is the process by which one transforms a de-
terministic (or stochastic) economic model into an econometric model. An econometric
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model is distinct from an economic model in that it includes unobservables that ac-
count for the fact that the economic model does not perfectly fit observed data. Our
main point is that the process of introducing errors should not be arbitrary. Both the
source and properties of these errors can have a critical impact on the distribution of the
observed endogenous variables and estimation.

The four principal ways in which a researcher can introduce stochastic components
into a deterministic economic model are:

1. researcher uncertainty about the economic environment;
2. agent uncertainty about the economic environment;
3. optimization errors on the part of economic agents; and
4. measurement errors in observed variables.

This subsection emphasizes how these stochastic specifications differ, and in particular
how they can affect the manner by which the researcher goes about estimating structural
parameters.

4.2.1. Unobserved heterogeneity and agent uncertainty

A researcher’s uncertainty about the economic environment can take a variety of forms.
These different forms can have dramatically different implications for identification and
estimation. For this reason it is critical for structural modelers to explain where error
terms come from and whose uncertainty they represent. A critical distinction that needs
to be drawn in almost every instance is: Is the uncertainty being introduced shared by
the economic actors and econometrician?

A common assumption is that the researcher knows much less about the economic
environment than the economic agents. In this case, the economic agents base their
decisions on information that the researcher can only include in an error term. For
example, if the researcher did not observe auction bidders’ private information about
an object, then the researcher would be forced to model how this unobservable in-
formation impacted bids. In general, we refer to a situation where agents’ decisions
depend on something the economist does not observe as a case of unobserved hetero-
geneity.

Of course researchers and economic agents can share uncertainty about the economic
environment under study. For instance, the bidder may know their value for an object,
but not the private values of the other bidders. In each of these cases, the firm or agent is
presumed to know the distribution of uncertainty and make decisions that optimize the
expected value of an objective function.

It might seem that because the econometrician is ignorant in both cases that unob-
served heterogeneity and agent uncertainty are two sides of the same coin – they both
rationalize introducing error terms in a structural model. The distinction, however, often
is important for determining which estimation procedure is appropriate. To underscore
this point, we now return to the two models described in (2). We shall show that, de-
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pending on our assumptions about the source of the errors, it may be appropriate to
regress ln TC on ln Q and other controls, or ln Q on ln TC and these same controls.

EXAMPLE 6. Imagine that we have cross-section data on comparable firms consisting
of output, Q, total costs, TC, and input prices, pK and pL. Our goal is to estimate α and
β in the Cobb–Douglas production function

Qi = AiL
α
i K

β
i

consistently, where the subscript i denotes the ith firm. Because we do not have labor
and capital information, we need to derive a relationship between total costs and output.
There are many possible ways of doing this, each depending on what additional assump-
tions we make about the economic environment in which firms make their decisions.

Suppose, for example, that the firms are in a regulated industry, and have different Ai .
For the purposes of exposition, assume that demand is completely inelastic. Consider
now the case of pure unobserved heterogeneity (Type 1 shocks), where Ai is observed
by the firm and the regulator, but not the econometrician. For simplicity, assume the Ai

are i.i.d. positive random variables. Firm profits equal:

π(pi,Ki, Li) = piAiL
α
i K

β
i − pKiKi − pLiLi.

Suppose that the regulator chooses pi , the price of firm i’s output first, and the firm then
chooses Ki and Li . Because demand is inelastic, a regulator interested in maximizing
consumer welfare will set the firm’s output price equal to the minimum average cost of
producing Qi . At this price, pr

i , the firm chooses its inputs to minimize costs given the
regulator’s price and Qi . That is, the firm maximizes

π(Ki, Li) = pr
i AiL

α
i K

β
i − pKiKi − pLiLi.

Solving the firm’s profit-maximizing problem, yields the total cost function:

(14)TCi = C0p
γ

Kip
1−γ

Li Qδ
i A

−δ
i ,

relating firm i’s observed total cost data to its output. In this equation, δ = 1/(α + β)

and γ = β/(α +β). We can transform this total cost function into a regression equation
using natural logarithms:

(15)ln TCi = ln C0 + γ ln pKi + (1 − γ ) ln pLi + δ ln Qi − δ ln Ai.

While this equation holds exactly for the firm, the researcher does not observe the Ai .
The researcher thus must treat the efficiency differences as unobservable in this loga-
rithm of total cost regression:

(16)ln TCi = C1 + γ ln pKi + (1 − γ ) ln pLi + δ ln Qi − δ ln ui.

This regression equation contains the mean zero error term

ln ui = ln Ai − E[ln Ai | ln pKi, ln pLi, ln Qi].
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The new constant term C1 = ln C0 + E[ln Ai | ln pKi, ln pLi, ln Qi] absorbs the
nonzero conditional mean of the efficiency differences. Because the Ai are i.i.d., the
conditional expectation reduces to the unconditional expectation, E[ln Ai | ln pKi,

ln pLi, ln Qi] = E[ln Ai].
To summarize, we have derived a regression equation that is linear in functions of the

(regulated) firm’s production parameters. The relationship includes an error term that
represents the firms’ unobserved productive efficiencies. This error term explains why,
at the same output level and input prices, firms could have different total costs. What is
left to explain, is how a researcher would estimate the production parameters. This is a
nontrivial issue in general. Here it is possible to argue that under fairly weak assump-
tions on the distribution of the ui we can use ordinary least squares (OLS) to recover the
production parameters. Note that OLS is appropriate because we have assumed that the
regulator (and not the firm) picks price to recover the firm’s minimum production cost
to serve output Qi . Put another way, OLS works because the unobserved heterogeneity
in firms’ production efficiencies is unrelated to the left-hand side regressors: firm output
(which is inelastically demanded) and input prices (inputs are elastically supplied).

Now suppose that we observe the same data, but that the firm, like the econometri-
cian, does not know its productive efficiency, Ai . This assumption leads to a different
estimation strategy. In this case, the firm now must make its input decisions before it
knows Ai . As long as the firm cannot undo this choice once Ai is realized, the firm max-
imizes expected profits taking into account the distribution of Ai . Now firm i’s expected
profit function is:

(17)E
[
π(pi, Li,Ki)

] = E
[
piAiL

α
i K

β
i

]− pKiKi − pLiLi.

We should note here that the expectation operator represents the firm’s expectation.
Assume that the regulator again chooses pi ; the firm then chooses Ki and Li . For

simplicity, suppose that the regulator and the firm have the same uncertainty about the
firm’s productive efficiency. Suppose additionally that the regulator sets price, per

i , such
that the firm earns zero profits in expectation. The firm then maximizes:

(18)E
[
π
(
per

i Ki, Li

)] = per
i E
[
AiL

α
i K

β
i

]− pKiKi − pLiLi.

The first-order conditions for expected profit maximization imply

(19)Li =
[
αpKi

βpLi

]
Ki.

Observed total costs therefore equal

(20)TCi = α + β

β
pKiKi

and do not depend on the firm’s (random) efficiency parameter Ai . Substituting these
two expressions into the production function, we obtain an equation relating the ob-
served (random) output Qa

i to the firm’s input prices and total costs

(21)Qa
i = D0 TCα+β

i p
−β
Ki p−α

Li Ai.
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From both the firms’ and the econometrician’s perspective, the sole source of random-
ness here is the efficiency parameter Ai . Taking natural logarithms of both sides we
obtain a regression equation that is linear in the production parameters

(22)ln Qa
i = ln D0 + (α + β) ln TCi −β ln pKi − α ln pLi + ln Ai.

This equation exactly explains firm i’s realized production Qa
i (which differs from the

inelastically demanded quantity Qi). Neither the firms nor the econometrician knows
the Ai ex ante. Because the researcher also does not observe the efficiencies ex post, she
must treat the efficiencies as random errors. She thus estimates the regression

(23)ln Qi = D1 + (α + β) ln TCi −β ln pKi − α ln pLi + ηi,

where ηi = ln Ai − E[ln Ai | ln pKi, ln pLi, ln TCi]. The constant term D1 =
ln D0 + E[ln Ai | ln pKi, ln pLi, ln TCi] absorbs the nonzero conditional mean of the
efficiency differences. Once again, using the i.i.d. assumption on the Ai , the conditional
expectation on ln Ai simplifies to the unconditional expectation. We can now use OLS
to estimate the production parameters because by assumption the uncertainty in pro-
duction is realized after the firm makes its production decision and is unrelated to total
costs and input prices.

This example illustrates how the structural model’s economic and stochastic assump-
tions can have a critical bearing on the consistency of a particular estimation strategy.
Under one set of economic and stochastic assumptions, OLS applied to Equation (16)
yields consistent estimates of the parameters of the firm’s production function; under
another set, we swap the dependent variable for one independent variable. Both models
assumed (expected) profit-maximizing firms and (expected) welfare-maximizing regu-
lators. In the first case, the stochastic shock represented only the researcher’s ignorance
about the productivity of firms. In the second, case, it represented uncertainty on the
part of the firm, the regulator and the researcher about the productivity of the firm.

This example illustrates our initial point that a researcher should decide between
models based upon how well their economic and stochastic assumptions match the en-
vironment in which the researcher’s data were generated. Because no economic model is
perfect in practice, the researcher often will be left choosing among imperfect assump-
tions and models. No statistical test can tell which model is correct. In later sections, we
will discuss in more detail how a researcher might go about choosing among competing
models.

4.2.2. Optimization errors

The third type of error listed above, optimization error, has received the least attention
from structural modelers. In part, optimization errors have received less attention be-
cause there are few formal decision-theoretic models of optimization errors. The errors
we have in mind are best illustrated by the behavior of economic agents in experiments.
Experimental subjects often make errors, even when faced with relatively simple tasks.
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Experimentalists’ interpretations of these errors has been the source of considerable
debate (e.g., see Camerer’s (1995) survey). Here, we adopt a narrow view of what op-
timization error means so that we can illustrate the potential significance of such errors
for structural models.

EXAMPLE 7. This example narrowly interprets optimization errors as the failure of
agents’ decisions to satisfy exactly first-order necessary conditions for optimal deci-
sions. We are silent here on what causes this failure, and focus instead on its conse-
quences. As an example, consider the standard consumer demand problem with unob-
served heterogeneity in the utility function:

(24)min
λ�0

[
max
x�0

U(x, η) + λ(M − p′x)
]
,

where x is an n-dimensional vector of consumption goods, p is the vector of prices, and
M is the consumer’s total budget. The vector η represents elements of individual tastes
that the researcher does not observe. The normal first-order condition for xi , assuming
η is known is

(25)
∂U

∂xi

(xi, ηi) − λipi = 0.

These equations yield the i = 1, . . . , n Marshallian demands, xi(p,M, η). In this case,
the agent’s first-order conditions are assumed to hold with probability one, so that for
all realizations of η, all of the integrability conditions hold for the xi(p,M, η).

Now suppose that we introduce an additional source of error into the agent’s demands.
Although there are several ways to introduce error, imagine the errors do not impact the
consumer’s budget constraint (i.e., we still have M = ∑n

i=1 pixi), but do impact the
first-order conditions (25). Specifically, suppose

(26)
∂U

∂xi

(x, η) − λpiνi = 0.

The researcher does not observe the νi , and thus treats them as random variables. Sup-
pose for convenience that the researcher believes these errors have positive support and
a mean of one in the population, so that on average the first-order conditions are cor-
rect.

How do the νi impact agents’ decisions? If we solve the first-order conditions, and
use the budget constraint, we obtain the Marshallian demand functions xi(p,M, η, ν).
Although the “demand curves” that result from this process satisfy homogeneity of
degree zero in prices and total expenditure, they do not necessarily have a negative
semi-definite Slutsky matrix for all realizations of the vector ν.

The next example shows how optimization errors can be used to rationalize why
two seemingly identical consumers who face the same prices may purchase different
amounts of x and y.
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EXAMPLE 8. Imagine that we have demand data from a cross-section of similar con-
sumers, all of whom have the same budget M , which they spend on two goods x and y.
How should we model the differences in their consumption? One possible modeling
strategy would be to say consumers have different preferences. Another would be to
assume consumers have the same preference function, but that they make optimization
errors when they make decisions.

Suppose each consumer has the utility function U(x, y) = xayb and that the first-
order conditions have the form given in (26). Solving the first-order conditions, yields

(27)
a

x
= λpxνxi,

b

y
= λpyνyi, pxx + pyy = M,

where λ is the Lagrange multiplier associated with the budget constraint and νxi and νyi

are positive random variables representing optimization errors for consumer i. Further
algebra yields

(28)λ = αi + βi

M
with αi = a

νxi

and βi = b

νyi

,

(29)x = αi

αi + βi

M

px

and y = βi

αi + βi

M

py

.

These demand functions look exactly like what we would get if there were no op-
timization error, and we had instead started with the Cobb–Douglas utility function
U(x, y) = xαi yβi . In other words, if we had started the modeling exercise by assuming
that consumers did not make optimization errors, but instead had Cobb–Douglas prefer-
ences with heterogeneous utility parameters, we would have obtained an observationally
equivalent demand model. The only way we might be able to distinguish between the
two views would be to have data on consumers’ choices across different purchase occa-
sions. In this case, if consumers’ tastes were time invariant, but their optimization errors
varied intertemporally, we could in principle distinguish between optimization error and
unobserved heterogeneity in tastes.

Optimization errors also can reduce the perceived rationality of agents’ behavior. The
following example shows that the way in which optimization errors are introduced can
affect the extent to which firms are observed to be optimizing.

EXAMPLE 9. Consider a set of firms that have the common production function
Q = LαKβ . Suppose each firm makes optimization errors when it attempts to minimize
production costs. Specifically, assume that the factor demand functions are generated by
solving the following three equations:

(30)pLνL = λαKβLα−1, pKνK = λβKβ−1Lα, and Q = KβLα,

where λ is the Lagrange multiplier associated with the constraint that the firm produces
using the production function, and νLi and νKi are unit mean, positive random vari-
ables representing optimization errors for firm i. Solving these three equations yields
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following two factor demands:

(31)L = Q
1

α+β

[
pK

pL

] β
α+β
[
βνK

ανL

] β
α+β

,

(32)K = Q
1

α+β

[
pK

pL

] −α
α+β
[

βνK

ανL

] −α
α+β

.

An implication of the optimization errors, νLi and νKi , is that the symmetry restriction
implied by cost-minimization behavior fails. Specifically, the restriction

(33)
∂L

∂pK

= ∂K

∂pL

does not hold. Consequently, despite the fact that factor demands honor the feasibility
constraint implied by the production function, they do not satisfy all of the restrictions
implied by optimizing behavior.

Depending on how optimization errors are introduced, varying degrees of rational-
ity can be imposed on factor demand and consumer demand systems. For example,
optimization errors can be introduced in such a way as to yield consumer demands
that satisfy the budget constraint and nothing else. This is another way of making Gary
Becker’s (1962) point that much of the apparent rationality in economic behavior comes
from imposing a budget constraint or a technological constraint on what otherwise
amounts to irrational behavior.

This discussion of optimization errors has hopefully demonstrated the extremely
important and often overlooked point: the addition of disturbances to deterministic be-
havioral relationships is not innocuous. Depending on how this is done, a well-defined
deterministic economic model can be transformed into an incoherent statistical model.
For example, if the random disturbances in Equation (26) are allowed to take on values
less than zero, for certain realizations of ν this system of first-order conditions may not
have a solution in x and λ, or may have multiple solutions. Because of these concerns,
we recommend that the underlying economic model be formulated with the stochastic
structure included, rather than including random shocks into a deterministic model as
an afterthought.

4.2.3. Measurement error

Besides these sources of error, structural models also may include measurement errors.
Measurement errors occur when the variables the researcher observes are different from
those the agents observe. In most cases, it is impossible for researchers to distinguish
measurement error from the three other sources of error. As we shall see below, this
distinction is nevertheless important, having significant implications not only for esti-
mation and testing, but also for policy evaluations.
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Measurement errors also occur in exogenous variables. Unfortunately, these measure-
ment errors often are ignored even though they can be a much greater source of concern.
For example, measurement errors in the regressors of a linear regression model will
destroy the consistency of OLS. Attempts to handle measurement error in exogenous
variables often are frustrated by the fact that there typically is little prior information
about the properties of the measurement error. This means that the researcher must pred-
icate any solution on untestable assumptions about the measurement error. As a result,
most researchers only acknowledge measurement error in an exogenous variable when
they think that the measurement error constitutes a large component of the variation in
the exogenous variable.

Measurement error can serve useful purposes in structural econometric modeling. For
example, measurement error can make what would otherwise be an incoherent structural
model coherent. Consider the case where consumers face nonlinear budget sets. Sup-
pose a consumer must pay $1 per unit for the first 10 units consumed and then $10 per
unit for all units beyond the tenth unit consumed. Given the large difference in price
between the tenth and eleventh units, we would expect that many consumers would pur-
chase exactly 10 units. In real data, we often do not see dramatic spikes in consumption
when marginal prices increase. One way to account for this is to assume that actual
consumption is measured with error. This is consistent with the theoretical model’s pre-
diction of a probability mass at exactly 10 units, but our not observing a large number
of consumers consuming exactly ten units.

Measurement error also is a straightforward way of converting a deterministic eco-
nomic model into a statistical model. In Example 1, for instance, we introduced mea-
surement errors to justify applying OLS to what otherwise should have been a determin-
istic relation. However, as we also noted in Example 1, it is usually unrealistic to assume
that measurement error is the only source of error. In general, measurement error should
be introduced as one of several possible sources of error.

4.3. Steps to estimation

Given a well-defined stochastic model, the next part of our framework is to add any para-
metric and distributional assumptions necessary to finalize the model. The researcher
then is in a position to select an estimation technique and to formulate, where possible,
tests of maintained assumptions. We think of this process as having four interrelated
selections:

1. selection of functional forms;
2. selection of distributional assumptions;
3. selection of an estimation technique; and
4. selection of specification tests.

There are several criteria a researcher should keep in mind when choosing a functional
form. One of the most important is that there is a trade-off between data availability
and parametric flexibility. Larger datasets usually allow greater parametric flexibility.
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A second criterion is that the functional form should be economically realistic. To take
an extreme example, if we are interested in estimating an input elasticity of substitu-
tion, then a Cobb–Douglas production function will not work. While this is an extreme
case, the structural modeling literature contains nontrivial examples where the func-
tional form almost entirely delivers the desired empirical result.

A third criterion is ease of estimation. If a specific functional form results in a model
that is easier to estimate, that should certainly be a factor in its favor. Similarly, if one
functional form makes it easier to impose economic restrictions than another, then that
too should favor its selection. As an example, it is very easy to impose homogeneity of
degree one in input prices on a translog production function. This is not the case for a
quadratic cost function. A final criterion is estimation transparency. In some cases, it
pays to select a functional form that leads to simpler estimation techniques. This has
the advantage of making it easier for other researchers to understand how the researcher
arrived at their estimates.

Turning now to the choice of distributional assumptions, a researcher’s stochastic
specification may or may not involve a complete set of distributional assumptions. To
the extent that the researcher is willing to completely specify the distribution of the
model errors, the structural model implies a conditional distribution of the observed
endogenous variables given the exogenous variables. At this point the researcher can
consider using maximum likelihood, or a similar technique (e.g., simulated maximum
likelihood or the EM algorithm) to estimate the parameters of interest.

As a specific example, consider an optimizing model of producer behavior. Suppose
the economic model specifies a functional form for π(y, x, ε, β) – a firm’s profit func-
tion as a function of outputs produced and inputs consumed, y; a vector of input and
output prices, x; the vector of firm characteristics observable to the firm but not the re-
searcher, ε; and a vector of parameters to be estimated, β. If the firm maximizes profits
by choosing y, we have the first-order conditions

(34)
∂π(y, x, ε, β)

∂y
= 0.

Assuming that the inverse function y = h(x, ε, β) exists and assuming the only source
of error, ε, has the density, f (ε, θ), we can apply the change-of-variables formula to
compute the density of y from the density of the unobservable ε

(35)p(y | x, θ, β) = f
(
h−1(y, x, β), θ

)∣∣∣∣∂h−1(y, x, β)

∂y

∣∣∣∣.
This density can be used to construct the likelihood function for each observation of y.

The final two items on our list include familiar issues in estimation and testing. An
advantage of using maximum likelihood in the previous example is that it would be
clear to other researchers how the elements of the economic and stochastic models led
to the estimation method. There are of course costs to being this complete. One is that
maximum likelihood estimators may be difficult to compute. A second is that there
is a trade-off between efficiency and robustness. Maximum likelihood techniques may
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be inconsistent if not all of the distributional assumptions hold. Generalized method of
moments and other estimation techniques may impose fewer restrictions on the distribu-
tion of ε, but also may yield less efficient estimates. It also is the case that alternatives to
maximum likelihood may not allow the estimation of some parameters. This is a corol-
lary to our earlier point about structure. In some instances, the researcher’s economic
structure exists only because of distributional assumptions. In subsequent sections, we
will illustrate how distributional assumptions can identify economic primitives.

Once the researcher obtains estimates of the structural model, it is important to
examine, where possible, any restrictions implied by a structural model’s economic
and stochastic assumptions. In addition, it is useful to examine, where possible, how
sensitive estimates are to particular assumptions. Thus, if the researcher has used instru-
mental variable methods to estimate a model, and there are over-identifying restrictions,
then these restrictions should be tested. If a researcher assumes an error term is white
noise, then tests for heteroscedastic and/or autocorrelated errors are appropriate. As for
the sensitivity of estimates, the researcher can check whether additional variables should
be included, or whether other functional form assumptions are too restrictive. Although
it is extremely difficult to determine the appropriate nominal size for these specification
tests, it is still worthwhile to compute the magnitude of these test statistics to assess the
extent to which the structural model estimated is inconsistent with the observed data.
Once the structural model is shown not to be “wildly” inconsistent with the observed
data, the researcher is ready to use this structural model to answer the sorts of questions
discussed in Section 2 and this section.

4.4. Structural model epilogue

An important premise in what follows is that no structural analysis should go forward
without a convincing argument that the potential insights of the structural model exceed
the costs of restrictive or untestable assumptions. Knowing how to trade off these costs
and benefits is critical to knowing whether it makes sense to develop and estimate a
structural econometric model. We hope that our framework and our discussion of the
IO literature will provide some sense of the “art” involved in building and evaluating
structural models.

In what follows, we propose to show how researchers in IO have used structural
econometric models. Our purpose is not to provide a complete survey of IO. There
already are several excellent literature surveys of areas such as auctions and firm com-
petition. We propose instead to provide a sense of how IO empiricists have gone about
combining game-theoretic economic models and statistical models to produce struc-
tural econometric models. We also aim to provide a sense of how far IO researchers
are in solving important econometric issues posed by game-theoretic models. In our
discussions, we hope to convey that structural modeling should be more than high-tech
statistics applied to economic data. Indeed, we aim to show through examples how the
economic question being answered should motivate the choice of technique (rather than
the other way around).
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5. Demand and cost function estimation under imperfect competition

In this section, we discuss Porter’s (1983) empirical model of competition in an
oligopoly market. We begin with Porter’s model for several reasons. First, it was one
of the first to estimate a game-theoretic model of competition. Second, the model
bears a strong resemblance to the classical demand and supply model we discussed
in Section 3. Third, we think it is an excellent example of how structural econometric
modeling should be undertaken. In the process of reviewing his model, we hope to il-
lustrate how our framework can help identify the essential ingredients of a structural
model.

5.1. Using price and quantity data to diagnose collusion

One of the most important research topics in IO is how to measure the extent of compe-
tition in an industry. This question is of more than academic interest, as policy makers
and the courts often are called upon to assess the extent of intra-industry competition.
Additionally, when policymakers or the courts find there is insufficient competition,
they must go a step further and propose remedies that will prevent firms from colluding
or exercising excessive unilateral market power.

Economists seek to infer the presence or absence of competition from other data, most
frequently data on prices and quantities. Sometimes these studies are conducted using
firm-level or product-level price and quantity information, and sometimes economists
only have industry price and quantity data. The central message of the next several
sections is:

The inferences that IO researchers’ draw about competition from price and quantity
data rest on what the researchers assume about demand, costs, and the nature of
firms’ unobservable strategic interactions.

It is therefore essential to evaluate how each of these components affects a researcher’s
ability to use nonexperimental price and quantity data to identify the extent of competi-
tion in an industry.

The demand specification plays a critical role in competition models because its po-
sition, shape and sensitivity to competitors’ actions affects a firm’s ability to mark up
price above cost. The IO literature typically draws a distinction between demand mod-
els for homogeneous products and differentiated products. In this section we consider
homogeneous product models in which firms’ products are perfect substitutes and there
is a single industry price. In this case, industry demand has the general form

(36)Q = h(P,Z, β, ν),

where Q is total industry quantity, P is industry price, Z are market demand variables,
β are parameters that affect the shape and position of market demand, and ν is a mar-
ket demand error. This demand function is an economic primitive. By itself it tells us
nothing about firm behavior or the extent of competition. Inferences about the extent
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of competition, however, are inextricably linked to what the researcher assumes about
demand. This is because the demand curve enters into firms’ profit-maximizing quantity
or price decisions.

To model firms’ price or quantity decisions, the researcher must first take a stand
on the form of firms’ profit functions, specifically the functional forms of market
demand and firm-level costs. Once these are specified, the researcher must then intro-
duce assumptions about how firms interact (e.g., Cournot versus Bertrand). Combining
these assumptions with the assumption of expected profit-maximizing behavior yields
first-order conditions that characterize firms’ optimal price or quantity decisions. This
“structure” in turn affects the industry “supply” equation that the researcher would use
to draw inferences about competition.

In some, but not all, cases it is possible to parameterize the impact of competition on
firms’ first-order conditions in such a way that they aggregate to an industry price or
“supply” equation:

(37)P = g(Q,W, θ, η),

where W are variables that enter the firms’ cost functions, θ are parameters that affect
the shape and position of the firms’ cost curves and possibly describe their competitive
interactions, and η is an error term.

Equations (36) and (37) look like nonlinear versions of the simultaneous linear equa-
tions in (3) of Example 3. Both sets of equations describe equilibrium industry prices
and quantities. The chief difference is that in an oligopolistic setting, the “supply”
equation is not an aggregate marginal cost curve but an aggregation of firm first-order
conditions for profit-maximization in which firms mark price up above marginal cost.
The extent to which price is above marginal cost depends on firms’ competitive inter-
actions. The critical issue is: What about the demand and “supply” equations identifies
the extent of competition from observations on prices and quantities?

Porter’s study provides a useful vehicle for understanding the assumptions necessary
to identify the extent of competition from industry price and quantity data. In particular,
his study makes it clear that without imposing specific functional form restrictions on
market demand and industry supply, we have no hope of estimating the market demand
curve or firm cost curves. This is because the researcher only observes pairs of prices
and quantities that solve (36) and (37). Even when the researcher is willing to make
distributional assumptions about the joint density of ν and η, without assumptions on
the functional form of (36) and (37), the assumption that P and Q are equilibrium
magnitudes only implies that there is conditional density of P and Q given Z and W .
Consequently, if the researcher is unwilling to make any parametric assumptions for
the demand and supply equations, he would, at best, be able to only recover the joint
density of P and Q given Z and W using the flexible smoothing techniques described
earlier. Only by making parametric assumptions for the supply and demand equations
can these two equations be separately identified and estimated from market-clearing
prices and quantities. This is precisely the strategy that Porter (1983) and all subsequent
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researchers take in estimating the competitiveness of a market from equilibrium price
and quantity data.

Rosse (1970) first estimated the extent of unilateral market power possessed by a firm
from market-clearing price and quantity, using a sample of monopoly markets. Porter’s
1983 study of nineteenth century US railroad cartels is one of the first papers in IO to
devise a structural econometric model of a cartelized industry.3 The economic logic for
Porter’s empirical model comes from Green and Porter (1984). Green and Porter explore
the idea that cartels might use price wars to discipline members who deviate from cartel
prices or output quotas. Specifically, Green and Porter develop a dynamic model of a
homogeneous product market in which potential cartel members face random shocks to
industry demand. By assumption, firms never perfectly observe demand or other firms’
output decisions. In this noisy environment, cartel participants have trouble identifying
whether lower prices are the result of a breakdown in the cartel or low demand. Green
and Porter’s work shows that firms can support a cartel by agreeing to a period of com-
petitive pricing of a pre-determined length whenever market prices fall below a trigger
price.

In what follows, we use our framework to discuss the components of Porter’s model.
In particular, we focus on the assumptions that allow Porter to identify competitive
pricing regimes. In the process, we hope to illustrate many of our earlier points about
structural models. The main lessons we take away from Porter’s analysis is that it is
impossible to identify the extent of market power exercised by a firm or in an industry
from a descriptive data analysis. It is also impossible to determine definitively whether
firms are colluding from this sort of data analysis. Inferences about the extent of mar-
ket power exercised, or the presence and pervasiveness of collusion, rest heavily on
untestable economic, functional form and stochastic assumptions. In general, it is not
possible to test all these assumptions. The strength of Porter’s equilibrium model in
which the cartel switches between monopoly and competitive prices is that it is possible
to see what is needed to identify monopoly versus competitive regimes.

5.2. The economic model

5.2.1. Environment and primitives

Porter begins, as does most of the structural IO literature, by outlining a static, homoge-
neous product oligopoly model where the number of firms (entrants) N is exogenously
given. All firms know the functional form of market demand and each others’ costs.
In Porter’s homogeneous product model, there is a single, constant elasticity industry
demand curve at each period t :

(38)ln Qt = α + ε ln Pt + Z′
t γ + νt ,

3 See Bresnahan (1989) for a detailed survey of early work on estimating market power.
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where Q is industry output, P is industry price, Z is a vector of exogenous demand
shifters, γ is a conformable vector of unknown coefficients, ε is a time-invariant price
elasticity of demand, and νt is an error term. It appears that Porter uses a constant
elasticity demand function because it considerably simplifies subsequent calculations
and estimation. Data limitations also limit Zt to one exogenous variable, a dummy for
whether competing shipping routes on the Great Lakes were free of ice. Although he
does not discuss the source of the demand error term, it plausible to imagine that it is
included to account for demand factors observable to firms but not to Porter.

Each firm has fixed costs of Fi and a constant elasticity variable cost function of the
form

(39)Ci(qit ) = aiq
δ
it ,

where i indexes firms, t indexes time and q is firm-level output. The motivation for
this firm-level cost function appears to be that it delivers an industry “supply” or output
curve for a range models of competition.

Porter leaves portions of the economic environment unspecified. Although competing
shippers are mentioned, their impact on the railroads is not explicitly modeled. Simi-
larly, although entry by railroads occurs during the sample, the entry decisions are not
modeled. (Entry is accounted for by an exogenous shift in the industry supply curve.)
Finally, although Porter does not include unobservables in the individual cost functions,
as we show below it is possible to rationalize part of the error term that he includes in
the industry supply curve as a variable cost component common to all firms that he does
not observe.

5.2.2. Behavior and optimization

Porter assumes that each period (one week), firms maximize their per-period profits
choosing shipping quantities, qit . Additionally, he assumes each firm forms a conjecture
about how other firms will respond to changes in its quantity during that week, θit .
From these behavioral assumptions, Porter derives the standard marginal revenue equals
marginal cost quantity-setting first-order conditions for profit maximization by each
firm:

(40)pt

(
1 + θit

ε

)
= aiδq

δ−1
it .

Here

θit = ∂Qt

∂qit

qit

Qt

=
(

1 + ∂Q−it

∂qit

)
qit

Qt

and Q−it = ∑M
k �=i qkt is the total amount supplied by all firms besides firm i, and the

term ∂Q−it

∂qit
is referred to as firm i’s conjectural variation about its competitors’ responses

to a one unit change in firm i’s output level.
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Although we discuss conjectural parameters in more detail in the next section, one
way to think about the conjectural variation parameter is that it indexes how far price is
from marginal cost. If the firm chooses its output assuming it has no influence on market
price, then it perceives that any increase in output will be met with an equal and opposite
change in the aggregate output of its competitors so that market prices are unchanged.
This means ∂Q−it

∂qit
= −1, so that θit equals zero and price equals marginal cost, which

implies that the firm assumes it is unable to affect the market price through its quantity-
setting actions. For static Cournot–Nash competitors, ∂Q−it

∂qit
= 0, which implies that θit

equals firm i’s quantity share of the market. For a quantity or price-setting monopoly
or cartel, the firm knows that all firms will respond one-for-one with its output change
from their current level of output, so that ∂Q−it

∂qit
= Q−it

qit
, and θit equals one. This value of

θit implies monopoly pricing on the part of the cartel. Although in principle conjectural
variation parameters can continuously range between zero and one, it is unclear what
behavioral meaning one would attach to all other values of θit in this interval besides
the three values described above.

While Porter’s economic model applies to individual firm decisions, he chooses not
to estimate firm-level models. This decision appears to be made because estimating
firm-level specifications would add significantly to his computations, particularly if he
estimated conjectural variation and cost parameters for each firm. Given the state of
computing power at the time he estimated his model, we doubt this would have been
computationally feasible. Additionally, such an approach would require him to model
new entry during the sample period.

As is common when only industry-level price and quantity data are available, Porter
instead aggregates the firm-level first-order conditions to obtain an industry supply
equation of the form (37). This approach, while reducing the number of estimating
equations, is not without limitations. In aggregating the first-order conditions, it quickly
becomes clear that one cannot estimate separate conjectural and cost parameters for
each firm and time period. To reduce the dimensionality of the parameters in the indus-
try supply function, Porter assumes that the firm-level values of θit times the associated
market shares are the same (unknown) constant. This assumption has the important
computational advantage of reducing the number of conjectural and cost parameters to
two. Moreover, it makes it easy to calculate equilibrium prices and quantities in per-
fectly competitive and monopoly (collusive) markets. It should not be surprising that
this simplifying assumption has disadvantages. The two main ones are that the model
is now inconsistent with a Cournot market outcome and it is unclear why conjectural
parameters should vary inversely with market shares.

Porter obtains his supply equation by weighting each firm’s first-order condition in
(40) by its quantity,

(41)pt

(
1 + θt

ε

)
= DQδ−1

t ,
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where

(42)D = δ

(
N∑

i=1

a
1

1−δ

i

)1−δ

,

(43)θt =
N∑

i=1

sit θit ,

and sit = qit /Qt is the quantity share of firm i in time t . Taking the natural log of
this equation yields the aggregate supply function that Porter estimates, apart from the
addition of an error term.

At this point, it is useful to summarize Porter’s structural model. The main attraction
of Porter’s assumptions are that they result in a two-equation linear (in the parameters)
system that explains equilibrium industry price and quantity data:

(44)

ln Qt − ε ln pt = α + Ztγ + νt Demand Equation,

−(δ − 1) ln(Qt ) + ln pt = λ + βIt + Wtφ + ηt Supply Equation,

where λ = ln D, β = − ln(1 + θ/ε), It is an indicator random variable which takes
on the value 1 when the industry is in a cooperative regime and 0 when the industry
is in a competitive regime, Wt is a set of explanatory variables that capture aggre-
gate supply shifts due to such events as the entry of new firms, and β is an unknown
parameter that measures the extent to which price and quantities sold during the col-
lusive regime approach the joint profit-maximizing monopoly solution. For example,
if β = − ln(1 + 1/ε), the collusive regime involves joint profit maximization. Lower
values of β, however, imply higher output in the collusive regime. Porter argues based
on his work with Green, that the true β should be less than the joint profit-maximizing
value.

5.2.3. The stochastic model

Porter completes the economic model above with two sets of stochastic assumptions.
The first set is fairly standard: he assumes the errors in the demand and industry supply
equations are additive, mean zero, homoscedastic normal errors. The source of these
errors is left unspecified. One presumes that each error represents demand and cost
factors unobservable to modern researchers, but observable to the firms at the time.
Porter also assumes the demand and supply errors are independent of the right-hand side
exogenous variables. By inspection of the aggregated first-order conditions for profit-
maximization in Equation (41), we can see that the supply shock can be rationalized as a
common multiplicative supply shock to all firms’ variable cost functions. For example,
if we redefine ai in the variable cost function for firm i as αit = ai exp(ηt ), then solving
the first-order conditions for each firm and solving for the aggregate supply function,
would yield supply functions with the stochastic shock, ηt , given above.



Ch. 64: Structural Econometric Modeling 4321

The second stochastic specification Porter adds is less conventional and is motivated
by an identification problem. In principle, Porter would like to use data on It , which
indicates when the cartel was effective, to estimate β (and thereby recover the price–
cost markup parameter θ ). Unfortunately, he has incomplete historical information on
when the cartel was effective. Although he uses some of this information to compare
prices and evaluate his model ex post, in his main estimations he treats It as a random
variable that is observable to the firms but not to him. Thus, in effect the error term in
the supply equation becomes βIt + ηt . Absent further information on It , it is clear that
we have an identification problem – we cannot separately recover the key parameters
θ and λ. This problem is akin to having two constant terms in the same regression. To
see the problem, notice that the expected value of the error (assuming ηt has mean zero)
is βE(It ). This expectation is by assumption nonzero because E(It ) is the expected
value of It , which equals the probability that the firms are colluding. Assuming this
probability does not change over the sample, which is assumed by Porter’s formulation,
the nonzero average error is absorbed into the supply equation’s constant term, giving
λ + E(It ) = λ + βτ , where τ equals the probability that It equals one. The supply
disturbance becomes β(It − τ) + ηt . As we can see from the constant term, even if we
know the constant β, we cannot separately estimate λ and τ .

To gain another perspective on identification issues in Porter’s model, it is useful to
compare Porter’s model to the linear demand and supply model (3), discussed in the
previous section. Porter’s demand and supply system has the form

(45)y′
tΓ + x′

tB = E′
t ,

[ ln Qt ln pt ]
[

1 −(1 − δ)

−ε 1

]
+ [ 1 Z′

t W ′
t

] [−α −(λ + βτ)

−γ 0
0 −φ

]
= [νt , β(It − τ) + ηt ].

Given the parallel, we might be tempted to use the assumptions we applied there, namely
that Zt and Wt are uncorrelated with β(It − τ) + ηt and νt and that the disturbances
have a constant covariance matrix. Under these assumptions, we could obtain consistent
estimates of the structural parameters, Γ , B and

E
(
EtE

′
t

) = Σ∗ =
[

E(ν2
t ) E(νtηt )

E(νtηt ) E[(β(It − τ) + ηt )
2]
]

in Equation (45) by three-stage least squares.
Notice, however, that in the above formulation, the regime-shift variable It only

appears in the error term. This suggests that in order to distinguish between Porter’s
regime-switching model and the classical model, we need to rely on the distributional
assumptions Porter imposes on It , ηt and νt . Absent specific distributional assumptions
for It and ηt , we have no hope of estimating the probability of regime shifts, τ , or the
magnitude of the conduct parameter during these collusive regimes, θ , which is a nonlin-
ear function of β, from the joint distribution of price and quantity data. To identify these
parameters, Porter needs to add assumptions. This should not be too surprising given
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that he does not observe It . His strategy for achieving identification is to parameterize
the distribution of the unobservable regimes. Specifically, he assumes that It follows an
independent and identically distributed (i.i.d.) Bernoulli process and that the νt and ηt

are i.i.d. jointly normally distributed errors. Further, Porter assumes the demand and
supply errors are independent of It . These assumptions allow him to identify λ and β

separately.
The advantage of Porter’s structural framework is that we can explore how these as-

sumptions facilitate identification and estimation. By modeling It as an unobservable
Bernoulli, Porter has introduced a nonnormality into the distribution of the structural
model’s errors. To see this, notice that conditional on the regime, the second element
of Et possesses a symmetric normal distribution. Unconditionally, however, the distri-
bution of Et now is composed of a (centered) Bernoulli and a normal random variable.
Consequently, unlike the traditional demand and supply model (3) where we could use
standard instrumental variables to recover the relevant structural parameters from con-
ditional mean functions, here we must use more information about the joint distribution
of prices and quantities to estimate the model parameters. Put another way, it is the
nonnormality of the reduced form errors that determines the extent to which one can
identify β empirically. This then raises the delicate question: How comfortable are we
with the assumption that ηt and νt are normally distributed? Unless there is a com-
pelling economic reason for assuming normality, we have to regard (as Porter does)
any inference about regime shifts as potentially hinging critically on this maintained
assumption. Fortunately, in Porter’s case he does have some regime classification data
from Ulen (1978) that agrees with his model’s classification of regimes.

At this point it is useful to recall our notion of structure in a simultaneous equa-
tions model. As discussed in Section 3, the most that can be identified from descriptive
analysis is the conditional density of the endogenous variables, yt = (ln pt , ln Q′

t ),
given the vector of exogenous variables, xt = (1,W ′

t , Z
′
t )

′; that is, f (yt | xt ). Accord-
ing to Porter’s theoretical model, this observed conditional density is the result of the
interaction of industry demand and an industry ‘supply’ that switches between collusive
and noncooperative regimes. However, no amount of data will allow the researcher to
distinguish between this regime-switching structural model and a conventional linear
simultaneous equations model with no regime switching.

To derive the likelihood function for the case of a single regime linear simultaneous
equation model, consider the error vector in Equation (45). The first error is by as-
sumption a mean-zero normal random variable and the second is the sum of a centered
Bernoulli random variable, It − τ and a mean zero normal random variable. Applying
the law of total probability formula yields the following density for Et

g(Et ) = τ
1

2π
|Σ |−1/2 exp

(
−F ′

1tΣ
−1F1t

2

)
+ (1 − τ)

1

2π
|Σ |−1/2 exp

(
−F ′

2tΣ
−1F2t

2

)
,



Ch. 64: Structural Econometric Modeling 4323

where

F1t =
[

E1t

E2t − β(1 − τ)

]
and F2t =

[
E1t

E2t + βτ

]
.

Both models give rise to the same conditional density f (yt | xt ), but have very different
economic implications. The first model implies random switches from competitive to
collusive pricing regimes; the other implies a single-pricing regime but a nonnormal
distribution for Et . Consequently, any test for regime shifts must be conditional on the
assumed supply and demand functions, and more importantly, the assumed distributions
for It and ηt . Because these distributional assumptions are untestable, as this example
illustrates, we believe that any test for stochastic regime shifts, should be interpreted
with caution.

One might view this result as a criticism of structural modeling. To do so would miss
our earlier points about the strengths of a structural model. In particular, a key strength
of a structural model is that it permits other researchers to ask how the modeler’s as-
sumptions may affect results. This example also illustrates our earlier meta-theorem
that: absent assumptions about the economic model generating the observed data, the
researcher can only describe the properties of the joint distribution of xt and yt .

To understand all of the implications of this point, we re-write Porter’s regime switch-
ing model as

(46)y′
tΓ = x′

tD + ItΔ + U ′
t ,

where

Γ =
[

1 −(1 − δ)

−ε 1

]
, Δ = [ 0 β ], D =

[
α λ

γ 0
0 φ

]
, Ut =

[
νt

ηt

]
,

(47)and Ut ∼ N(0,Σ).

In terms of this notation, the conditional density of yt given xt and It is:

h(yt | It , xt ) = 1

2π
|Σ |−1/2

× exp

(
− (y′

tΓ − x′
tD − ItΔ)Σ−1(y′

tΓ − x′
tD − ItΔ)′

2

)
.

Using the assumption that It is an i.i.d. Bernoulli random variable distributed indepen-
dent of Ut and xt yields the following conditional density of yt given xt :

f (yt | xt ) = τh(yt | It = 1, xt ) + (1 − τ)h(yt | It = 0, xt ).

As has been emphasized above and in Section 3, all that can be estimated from a statis-
tical analysis of observations on xt and yt is the true joint density of f true(yt , xt ), from
which one can derive the conditional density of yt given xt . The fact that f true(yt | xt ),
the true conditional density, can be factored into the product of two conditional nor-
mal densities times the probability of the associated value of It is due solely to the
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functional form and distributional assumptions underlying Porter’s stochastic economic
model.

Without imposing this economic structure on f (yt | xt ), the researcher would be un-
able to estimate underlying economic primitives such as the price elasticity of demand,
the price elasticity of supply, the probability of a collusive versus a competitive regime,
and the magnitude of the difference in prices between the collusive and competitive
regimes. Even the best descriptive analysis would yield little useful economic infor-
mation if the true data-generation process was Porter’s structural model. Suppose that
one had sufficient data to obtain a precise estimate of f true(yt , xt ) using the techniques
in Silverman (1986). From this estimate, the researcher could compute an estimate of
E(yt | xt ) or the conditional density of yt given xt . However, suppose the researcher
computed ∂E(yt |xt )

∂xit
for the ith element of xt . If Porter’s model were correct, this expec-

tation would equal

τ
∂E(yt | It = 1, xt )

∂xit

+ (1 − τ)
∂E(yt | It = 0, xt )

∂xit

,

so that any partial derivative of the conditional mean is an unknown weighted sum of
partial derivatives of the conditional means under the competitive and collusive regimes.
The researcher would therefore have a difficult time examining the validity of compar-
ative statics predictions concerning signs of these partial derivatives under competition
versus collusion, unless the sign predictions were the same under both regimes. Infer-
ring magnitudes of the competitive or collusive comparative static effects, would be
impossible without additional information.

This last observation raises an important point about the success we would have in
trying to enrich the economic model of regime shifts. Imagine, as some have, that there
are more than two regimes. We might attempt to model this possibility by assuming
that It has multiple points of support. This seemingly more reasonable model imposes
greater demands on the data, as now the extent to which these additional supply regimes
are “identified” is determined by a more complicated nonnormal structure of the reduced
form errors.

One final point about the estimation of β is that care must be exercised in drawing
inferences about the presence of multiple regimes. Under the null hypothesis that there
are no regime shifts, standard likelihood ratio tests are invalid. The problem that arises
is that under the null of no regime shifts, τ , the probability of the collusive regime, is
equal to zero and β is no longer identified. Technically this causes problems because
the information matrix is singular when τ = 0. It is unclear then what meaning we can
attach to standard tests of the hypothesis that there are distinct regimes.

5.3. Summary

Our analysis of Porter’s model leads us to conclude that demand and supply models for
oligopolistic industries pose special identification and applied econometric problems.
More importantly, the parameters describing competitive conjectures or the degree of
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competition are not necessarily identified with commonly available data. In general, the
researcher will have to have within-sample variation in demand or cost parameters, or
make specific distributional assumptions and apply specific estimation techniques, to
identify how competitive conduct affects industry supply behavior. As we shall see, this
identification problem is all too common in industrial organization models of firm and
industry behavior.

The strength of Porter’s model is that it both illustrates potential identification and es-
timation problems posed by the standard theory and commonly available industry data.
It also provides a strategy for recovering information about competitive regimes from
limited information about the prevailing competitive regime. Although one could con-
sider alternative strategies for identifying the competitive regimes, Porter compares his
estimates of the probability of collusion to information from Ulen (1978) on when the
cartel was actually effective. This is an example of how other evidence can be brought
to bear to check whether the results of the structural model make sense. Porter finds a
remarkable amount of agreement between the two measures. His model also provides
an economically plausible explanation for the enormous variation in grain prices over
his sample period.

6. Market power models more generally

Porter’s model is an example of an IO model that uses data on market-clearing prices
and outputs to draw inferences about the extent of market competition. Because these
are among the most widely used empirical models in industrial organization, it is worth
going beyond Porter’s model to consider what other studies have done to identify market
power. There are an enormous number of market power studies, many more than we can
do justice to here. Bresnahan (1989) surveys the early papers in this area. Our focus is
on illustrating the critical modeling issues that arise in the identification and estimation
of these models.

Most empirical researchers in IO define a competitive market outcome as one where
price equals the marginal cost of the highest cost unit supplied to the market. If the
market price is above this marginal cost, then firms are said to exercise “market power”.
While some studies are content simply to estimate price–cost margins, many go fur-
ther and attempt to infer what types of firm behavior (“conduct”) are associated with
prices that exceed marginal costs. A first observation we make below is: absent a struc-
tural model, one cannot infer the extent of competition from the joint distribution of
market-clearing prices and quantities. Put another way, one needs an economic model
to estimate marginal costs (and hence price–cost margins) from the joint distribution of
market-clearing prices and quantities. This structural model will involve functional form
assumptions and often distributional assumptions that cannot be tested independently of
hypotheses about competition.

While this observation may seem obvious from our discussion of Porter’s model,
there are plenty of examples in the literature where researchers draw unconditional in-
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ferences about the extent of competition. That is, they draw inferences about price–cost
margins without acknowledging that their inferences may depend critically on their eco-
nomic and functional form assumptions.

A second observation below is: while one can estimate price–cost margins using a
structural model, it is problematic to link these margins to more than a few specific
models of firm behavior. In particular, many studies estimate a continuous-valued para-
meter that they claim represents firm “conjectures” about how competitors will react in
equilibrium. Currently there is no satisfactory economic interpretation of this parame-
ter as a measure of firm behavior – save for firms in perfectly competitive, monopoly,
Cournot–Nash and a few other special markets. We therefore see little or no value to
drawing economic inferences about firm conduct from conjectural variation parameter
estimates.

In what follows we discuss these two observations in more detail. We first discuss
how the literature identifies and interprets market power within the confines of static,
homogenous goods models where firms choose quantities. We then discuss at a broader
level what market power models can tell us in differentiated product markets.

6.1. Estimating price–cost margins

Since the late 1970s, many papers in IO have used firm and industry price and quan-
tity data to describe competition in homogeneous product markets. The typical paper
begins, as Porter did, by specifying a demand function and writing down the first-order
condition:

(48)P + θiqi

∂P

∂Q
= MCi (qi).

The goal of these papers is to estimate the ‘conduct’ parameter θi . Most authors assert
that this parameter measures firm “conjectures” about competitor behavior. As such, it
would seem to be a structural parameter that comes from an economic theory. Is this the
case?

Isolating θi in Equation (48), and letting αi denote firm i’s output share and ε the
elasticity of demand, we obtain

(49)θi = P − MCi (qi)

−qi
∂P
∂Q

= P − MCi (qi)

P

1

αiε
.

From this equation, we see that θi provides essentially the same descriptive information
as Lerner’s (1934) index. That is, it provides an idea of how far a firm’s price is from its
marginal cost. To the extent that price is above marginal cost (i.e., the Lerner index is
positive), IO economists claim that the firm has ‘market power’.

Equation (49) is useful because it identifies two critical structural quantities that a
researcher must have to estimate θi . These are the price elasticity of demand and mar-
ginal cost. Following Porter, a researcher could in principle separately estimate the price
elasticity of demand from price and quantity data. In developing such an estimate, the



Ch. 64: Structural Econometric Modeling 4327

researcher would of course have to worry that the demand function’s form may criti-
cally impact the estimated elasticity. The marginal cost term in Equation (49) poses a
more difficult estimation problem. Equation (49) tells us that with just price and quan-
tity data, we cannot separate the estimation of marginal cost from the estimation of θi .
Even if we have observations on total or even variable cost associated with this level of
output, we are unable to separate them without making specific functional form assump-
tions for demand and marginal cost. Put another way, the identification of θi hinges on
how we choose to estimate marginal cost and the aggregate demand curve. Changing
the marginal cost and demand specification will change our estimate of θi . Unless one
knows the functional form of demand and costs, it is impossible to determine the value
of θi .

Despite the many untestable functional form assumptions necessary to infer marginal
costs from price and quantity data, many studies go further and use Equation (48) to
estimate θi and interpret it as a measure of firm behavior. To understand where this
behavioral interpretation comes from, we return to the economic rationale underlying
Equation (48). In Equation (48), θi is a placeholder for the derivative:

(50)θi = dQ

dqi

.

According to this definition, θi is not a statement about how far prices are from mar-
ginal costs, but rather a “variational” concept associated with firm behavior. Specifically,
Equation (48) sometimes is interpreted as saying: the firm “conjectures” industry out-
put will increase by θi should it increase its output by one unit. The problem with this
interpretation is that there are only a few values of θi where economists have a good
explanation for how firms arrived at such a conjecture. This leads to our second obser-
vation above. We know of no satisfactory static model that allows for arbitrary values
of θi . Empirical models that treat θi as a continuous value to be estimated thus are on
shaky economic ground, particularly because these estimates of θi are predicated on a
specific functional form for marginal costs and demand.

To emphasize the danger inherent in associating residually determined θi with behav-
ior, imagine observing two firms producing different quantities who otherwise appear
identical. The conjectural variation approach would explain the difference by saying
firms simply “expect” or “conjecture” that their competitors will react differently to a
change in output. Yet there is no supporting story for how otherwise firms arrived at
these different conjectures. On the other hand, even though the firms appear identical,
one might wonder whether their marginal costs are identical. It seems plausible to us
that unobservable differences in marginal costs, rather than behavior, could explain the
difference in output. Absent a richer model of behavior that explains where conjectures
come from, it is anyone’s guess.

To summarize our discussion so far, we have provided two possible interpretations
of θi . There are, however, a few instances in which θi sensibly corresponds to a spe-
cific market equilibrium. A leading case is price-taking competition, where θi = 0 and
price equals marginal cost. Cournot (θi = 1), Stackleberg and monopoly are three other
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well-known cases. While there has been some debate in the theoretical literature about
whether these models are internally “consistent” static behavioral models [e.g., Lindh
(1992)], each of these models lends itself to a natural interpretation of what θi means
as a conjecture about competitor behavior. Thus, it seems to us sensible to imagine im-
posing these conjectures in the first-order condition (48) and using them to estimate the
parameters of demand and cost functions. One can use nonnested tests, as in Bresnahan
(1987), to determine which of these different models of behavior are most consistent
with the joint density of the data.

Having said this, we realize that some might argue that one loses little by treating
θi as a continuous parameter to be estimated. After estimating it, the argument goes,
one can still compare it to the benchmark values. For example, suppose one precisely
estimated θi = 1.7, and could reject perfect competition and Cournot. One might think
it reasonable to conclude the market is “less competitive than Cournot”. But does this
make much sense? According to the conjectural variations story, and Equation (48), an
estimate of 1.7 implies that firm i believes that if it increases output by one unit, industry
output will increase by 1.7 units. What type of behavior or expectations leads to firm
i maximizing its profits by maintaining θi = 1.7? Why does this value not simply
reflect the extent of misspecification of the demand and cost functions in a Cournot
model? The problem here is that the theory underlying firm i’s behavior (and those of
its competitors’ behavior) is static. There is no obvious explanation for why firm i has
this behavior. Moreover, as we show in the next section, in order to identify an estimate
of θi , a researcher must select a parametric aggregate demand curve and rule out several
types of functional forms for aggregate demand. Otherwise it is impossible to identify
θi from market-clearing price and quantity data.

If there is an answer to the question of where a firm’s conjectures comes from, it must
come from a dynamic model of “conjectures” formation. Riordan (1985) provides one
such model. Given the subtleties involved with reasoning through how today’s com-
petitive interactions might affect future beliefs, it seems unlikely dynamic models will
produce simple parameterizations of conjectures or easily estimated first-order condi-
tions. Moreover, the literature on repeated games has shown that when modeling current
behavior, one has to recognize that threats or promises about future behavior can influ-
ence current behavior. This observation points to a distinction between what firms do in
equilibrium (how they appear to “behave”) and what they conjecture their competitors’
would do in response to a change in each firm’s output.4 This also is a distinction that
Stigler (1964) used to criticize static conjectural variation models.

To understand how this distinction affects empirical modelers, consider a cartel com-
posed of N symmetric firms, each of whom charges the monopoly price. In this case,
one would estimate θi equal to the number of firms. If we gave this estimate a behav-
ioral interpretation, we would report that in this industry, firms conjecture or expect
other firms to change their outputs one-for-one. Yet this may not be the case at all, as

4 Corts (1999) makes a similar argument.
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some recent theories have emphasized. The firms may be charging the monopoly price
because they expect that if they defect from the monopoly price by producing a little
more, each of their competitors may punish them by producing much more.

This distinction between the “beliefs” that economic agents hold and what they ul-
timately may do in equilibrium is critical for exactly the reasons we outlined in our
introductory framework. If one wants to describe where price is in relation to a firm’s
marginal cost, then θi provides a descriptive measure of that, but not a statement about
behavior. If, however, one wants to use the estimated parameters to predict what would
happen if the firms’ economic environment changes, then one either must have a theory
in which beliefs and equilibrium behavior coincide, or one must ask which of a small
set of values of θi , corresponding to perfect competition, monopoly, Cournot and the
like, best explains the data.

6.2. Identifying and interpreting price–cost margins

In the previous subsection we emphasized that while one could relate θ to price–cost
margins, one could not separately estimate θ and marginal costs from price and quantity
data alone. Despite occasional claims to the contrary, assumptions about the functional
form of marginal costs are likely to affect estimates of θ and vice versa. This section
illustrates how assumptions about the structure of demand and marginal costs impact
the estimation of the descriptive parameter θ . (Throughout this subsection, we think of
θ as providing descriptive information about price–cost margins.)

The IO literature has adopted different approaches to estimating price–cost margins
depending upon whether or not they have individual firm or industry price and quantity
data. When only industry-level data are available, researchers typically use the equation

(51)P + θQ
∂P

∂Q
= MC(Q)

to estimate a single industry θ . James Rosse’s (1970) paper is the first to estimate the
degree of market power (the price–cost markup), or equivalently a firm’s marginal cost
curve. He used observations on market-clearing prices and quantities from a cross-
section of US monopoly newspaper markets. Rosse’s procedure uses this first-order
condition with θ set equal to 1, along with an assumed parametric aggregate demand
curve to estimate the marginal cost curve. This procedure works for the following rea-
son. Once a parametric functional form for demand is selected, this can be used to
compute ∂P

∂Q
for each observation in the sample. Setting the value of θ for each obser-

vation to 1 guarantees that we have the information necessary to compute the left-hand
side of Equation (51) for each observation. This provides an implied value of mar-
ginal cost for every output level in the sample. Combining this data with a parametric
specification for the firm’s marginal cost function, we can estimate marginal cost para-
meters.

To extend Equation (51) to an oligopoly market requires further assumptions. This
equation would appear to mimic a single firm’s first-order condition, and thus we might
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think of it as linked to the price–cost margins of a “representative” firm. But this is
not generally true. Starting as Porter did from the individual firm profit maximization
conditions, we can sum Equation (48) across firms to obtain the relation

(52)P + ∂P

∂Q

N∑
i=1

θiqi

N
=

N∑
i=1

MC(qi)

N
,

which we can rewrite as

(53)P + θ
∂P

∂Q
Q = MC(qi).

Here, θ = 1
N

∑N
i=1

θiqi

Q
is an average of firm market shares times the individual firm

θi parameters, and MC(qi) is the average of the N firms’ marginal costs. While this
equation “looks” like the industry aggregate equation (51) used in many studies, it is not
the same without further assumptions. Note, for example, that if θi varies across firms,
then changes in firms’ market shares will generally change θ . Thus, if one is analyzing
time series data on prices and output, it may make little sense to treat θ in Equation (51)
as a constant. An exception is when one assumes all firms have the same θi . But in this
case, one must have the same number of firms in the industry for θ to remain constant
through time.

The assumption that all firms have the same θi amounts to assuming that at the same
production level, all firms in the industry would have similarly sloped firm-level demand
curves and the same marginal revenues. This is a nontrivial restriction which would re-
quire justification on a case-by-case basis. A number of studies, beginning with Gollop
and Roberts (1979), Applebaum (1982) and Spiller and Favaro (1984), have argued that
one should relax this restriction by making θ a function of different variables, including
output. To date, however, there is very little economic theory to guide structural models
of how θi varies across firms. The most widely adopted specifications are ad hoc, with
θ depending on firm output, market share or a firm’s size rank.

Another consequence of assuming all firms have the same θ is that differences in
firms’ outputs now are a function solely of differences in marginal costs. In some in-
stances, this leads to a monotonic relationship between the efficiency of a firm and its
observed production. For example, if we assume marginal costs are increasing in output,
then there is an inverse relationship between output and marginal costs. Thus, the firm
with the largest output has the lowest marginal cost, the firm with the second largest out-
put the second lowest marginal cost, and so on. While this relationship may be entirely
reasonable for many industries, it may not be for all.

Turning now to the right-hand side of Equation (51), we see that the notation MC(Q)

gives the impression that only industry output enters the industry supply relation. Put
another way, a reallocation of output from one firm in the industry to another will not
change the right-hand side of the industry supply relation (51). This obviously cannot
generally be true. Equation (53) shows why this is so. To explore this point further, it is
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useful to assume that firms have linear marginal costs of the form

(54)MC(qi) = c0i + c1iqi .

In this case, we can rewrite Equation (53) as

(55)P + θ̃Q
∂P

∂Q
= c̄o + c̃1Q + ψ,

where

(56)θ̃ =
∑N

i=1
θi

N

N
,

(57)c̄0 = 1

N

N∑
i=1

c0i , c̃1 = 1

N2

N∑
i=1

c1i ,

(58)ψ = Cov(c1i , qi) − Cov(θi, qi)
∂P

∂Q

and Cov(x, y) equals the covariance (calculated over firms in the industry) between x

and y. If the ψ term is zero, then Equations (53) and (51) are indistinguishable. This
happens for example when firms have similarly sloped marginal cost functions and the
same θ . In general, however, we can think of Equation (51) as having an error term that
includes ψ . To the extent that ψ is nonzero and varies systematically in the researcher’s
sample, the researcher will obtain biased estimates of the demand, cost and θ parameters
by ignoring ψ .

We now turn to considering whether and how functional form assumptions might af-
fect inferences about θ from industry price and quantity data. Both Bresnahan (1982)
and Lau (1982) consider the issue of identification in detail using the aggregate equa-
tion (51). Because their results apply to a special aggregation of individual firm first-
order conditions, it is useful to revisit their discussion in the context of the individual
firm marginal revenue equal to marginal cost conditions. To facilitate this discussion,
let each firm face the demand function Q = D(P, Y, α), where α is a vector of demand
parameters and Y is a set of exogenous variables that shift demand but not cost. Sup-
pose also that each firm has the marginal cost function MCi = c0 + c1qi + c2wi , where
wi is an exogenous cost shifter. If a researcher had time series data on market prices,
firm i’s output, Y and wi over time, the researcher could estimate firm i’s market power
parameter θi using the two equation system

Q = D(P, Y, α),

(59)P = c0 +
(

c1 + ∂D−1

∂Q
θi

)
qi + c2wi

once some assumption had been made about unobservables. The second equation shows
that by assuming marginal costs are linear in output, we have potentially destroyed the
identification of θi . Consider, for example, what happens when demand has the form
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Q = α0 + α1P + α2Y . In this case, firm i’s supply relation is

(60)P = c0 +
(

c1 + θi

α1

)
qi + c2wi.

Hence, even though we can obtain a consistent estimate of the demand parameter α1
from the demand equation, we cannot separate c1 from a constant θi . Of course, if we
are willing to restrict θ , we can identify the marginal cost parameters and price–cost
margins.

It is tempting to identify θi in this case by assuming that marginal costs are constant,
i.e., c1 = 0. Unfortunately, researchers rarely have independent information that would
support this assumption. Alternatively, following Bresnahan (1982), one could identify
θi by allowing the slope of market demand to vary over time in an observable way. For
instance, one might interact price with income (Y ) in the demand equation

Q = α0 + α1P + α2YP

to obtain the supply equation

(61)P = c0 +
(

c1 + θi

α1 + α2Y

)
qi + c2wi.

Although θi is formally identified in this specification, its identification in practice de-
pends heavily on having variables, such as income, that interact or otherwise cannot be
separated from price [e.g., Lau (1982)]. In other words, the value of θ is identified off
of a functional form assumption for aggregate demand.

Yet another approach to identifying θi that has not been fully explored is to add
information from other firms’ supply relations. In the language of econometrics, it may
be possible to obtain identification by imposing cross-equation restrictions between the
pricing equations. Returning to the specification in Equation (53), if we added a supply
curve for a second firm j , we still would not be able to identify θi or θj . We would,
however, be able to identify the difference if we assumed that both firms’ marginal
cost functions had the same slope. Alternatively, we could identify the difference in the
slopes of the firms’ marginal cost functions if in a panel data setting (where T goes to
infinity) we assume that all firms have the same constant θ .

Our discussion so far has suggested that θ is identified by the functional form assump-
tions one makes about market demand and firms’ costs. This dependence seems to not
always be appreciated in the literature, where cost and demand functions are sometimes
written down without much discussion of how their structure might affect estimates
of θ . A useful example of how the functional form of demand affects the identification
of θ is provided by the inverse demand function:

(62)P = α − βQ1/γ .

This inverse demand function leads to the direct estimator (by applying Equation (49)
above)

(63)θ1 = −γ
P − c

α − P
,
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which illustrates how the demand parameters affect the direct estimate. This inverse
demand function also yields a transformed Equation (51)

(64)Pt = γ ct

γ + θ
+ αθ

γ + θ
,

where the subscript t denotes variables that are naturally thought of as time varying.
Critical to most applications is what one assumes about marginal costs. In the simplest
case, one can think of firms as having constant, but time-varying marginal costs ct which
depend linearly on some time-varying exogenous covariates, i.e.,

ct = c0 + Wtω,

where ω is a vector of parameters. Substitution of this relationship into (64) gives the
equation

Pt = αθ

γ + θ
+ γ c0

γ + θ
+ γ

γ + θ
Wtω = β0 + β1Wt.

This equation makes it clear that absent further assumptions, we cannot identify θ from
estimates of β0 and β1 alone. One way around this problem is to recognize from Equa-
tion (53) that θ depends on market shares and the number of firms, both of which are
potentially time varying. This, however, is not the usual approach. Instead, most studies
follow the advice of Bresnahan and Lau and identify θ by assuming that the demand
parameters α and/or γ contain a demand covariate. For example, if we assume that the
inverse demand intercept equals

αt = α0 + Dtα1,

then Equation (64) becomes

Pt = α0θ

γ + θ
+ γ c0

γ + θ
+ α1θ

γ + θ
Dt + γ

γ + θ
Wtω.

This equation and the demand equation now exactly identify θ . But note that the es-
timate of θ depends critically on the effect of D on demand and on the curvature of
demand. If we had started out, as many studies do, by assuming linear demand then we
could not estimate θ . This is yet another example of how economic structure is solely
identified by a functional form or distributional assumption.

6.3. Summary

In this section we have discussed how IO researchers use price and quantity data to
estimate price–cost margins. We also have questioned the value of static conjectural
variation parameters. Apart from these observations, we have tried to underscore one
of the key observations of our framework, which is that functional form assumptions
play a critical role in inferences about marginal economic “effects” and the appropriate
model of competition.
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7. Models of differentiated product competition

The previous two sections discussed how IO economists have used price and quantity
data to draw inferences about the behavior of oligopolists selling homogeneous prod-
ucts. These empirical models parallel textbook demand and supply models. The chief
difference is in an oligopoly model, the supply equation is replaced by a price equa-
tion derived from first-order conditions that describe how oligopolists maximize profits.
Because IO economists do not observe the marginal costs that enter these first-order
conditions, they are forced to estimate them along with other structural parameters. It
should not be too surprising that a researcher’s stochastic and functional form assump-
tions have a critical impact on the resulting estimates, as the researcher is simultaneously
trying to draw inferences about the nature of demand, costs and competition from just
data on prices and quantities.

This section examines how IO economists have used price and quantity information
on differentiated products to draw inferences about demand, costs and competition. We
first discuss complexities that arise in neoclassical extensions of homogeneous product
models. We then turn to more recent differentiated product discrete choice models.

7.1. Neoclassical demand models

In the late 1980s and 1990s, empirical IO economists began to focus on modeling com-
petition in differentiated product markets such as cars, computers and breakfast cereals.
Bresnahan (1981, 1987) are two early examples of this work. These models also use
price and quantity data to draw inferences about oligopolists’ strategic interactions and
price–cost markups. The main difference between these models and homogeneous prod-
uct models is that the researcher specifies separate “demand” and “supply” equations for
each product. Thus, instead of working with two-equation, market-level systems such
as (36) and (37), the researcher specifies a J -product demand system:

Qd
1 = h1(P1, P2, . . . , PJ , Z1, β1, ν1),

...

(65)Qd
J = hJ (P1, P2, . . . , PJ , ZJ , βJ , νJ )

and a J -equation system of first-order profit maximization conditions:

P1 = g1
(
Qs

1,Q
s
2, . . . , Q

s
J ,W1; θ1, η1

)
,

...

(66)PJ = gJ

(
Qs

1,Q
s
2, . . . ,Q

s
J ,WJ ; θJ , ηJ

)
.

Although these systems look much more complicated than the simultaneous equations
in the homogenous product case, they pose the same basic modeling issue: unless the
researcher is willing to make specific functional form assumptions for firms’ demands
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and costs, the researcher will be unable to draw inferences about equilibrium firm-level
markups. This issue arises again because, absent economic assumptions about the struc-
ture of demand and costs, the most the researcher can do is use flexible data-smoothing
techniques to recover the conditional joint density of the J prices and J quantities given
the demand and cost variables W and Z. Only by making functional form assumptions
for demand and costs, and assumptions about the forms of strategic interactions, can the
researcher recover information about demand and cost primitives. This means that we
still need specific functional form assumptions to use price and quantity data to draw
inferences about equilibrium markups.

The main new issue posed by differentiated products is one of scale. Now, the re-
searcher has to specify a set of demand functions – potentially involving dozens or
hundreds of products. Left unrestricted, the number of parameters in these demand sys-
tems can easily exceed the number of observations in conventional market-level price
and quantity datasets. This problem has led IO researchers to focus on how best to
formulate parsimonious, yet flexible, demand systems.

To appreciate the practical issues involved, consider the challenge IO economists or
antitrust authorities face in trying to assess the competitiveness of the US ready-to-eat
breakfast cereal industry. Absent cost data, inferences about manufacturer and retailer
price–cost margins have to be drawn from retail prices and sales. As there are over
50 major brands of cereals, a simple model would have at least 100 equations – 50
demand and 50 “supply” equations. Each equation conceivably could contain dozens of
parameters. For instance, paralleling Porter’s homogeneous product specification, we
could assume a log-linear demand system:

ln Q1 = β10 + β11 ln y + β12 ln P1 + β13 ln P2 + · · · + β1,51 ln P50 + Z1γ1 + ν1,

ln Q2 = β20 + β21 ln y + β22 ln P1 + β23 ln P2 + · · · + β2,51 ln P50 + Z2γ2 + ν2,

...

ln Q50 = β50,0 + β50,1 ln y + β50,2 ln P1 + β50,3 ln P2 + · · ·
(67)+ β50,50 ln P50 + Z50γ50 + ν50.

This system has over 2600 parameters!5 Such unrestricted parameterizations easily ex-
ceed the number of observations obtainable from public sources.

Even when the researcher has large amounts of data, Equations (65) and (66) pose
significant computational challenges. For instance, to use maximum likelihood, the re-
searcher would have to work with the Jacobian of 100 demand and markup equations.
Nonlinearities in the system also raise the concern that the system may not have a
unique solution or a real-valued solution for all error and parameter values. Although
these complications can sometimes be dealt with in estimation, they may still reappear
when the researcher performs counterfactual calculations. For instance, there may be

5 Recall that aggregate demand need not be symmetric.
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no nonnegative prices or single set of prices that solve (65) and (66) for a particular
counterfactual.

These econometric issues have prompted IO researchers to look for ways to simplify
traditional neoclassical demand models. Many early simplifications relied on ad hoc
parameter restrictions or the aggregation of products.6 For example, to estimate (67) a
researcher might constrain a product’s cross-price elasticities to all be the same for all
products.7 Simplifications such as this, while computationally convenient, can unduly
constrain estimates of price–cost markups.

Multi-level demand specifications provide a somewhat more flexible demand func-
tion parameterization.8 In a multi-level demand specification, the researcher separates
the demand estimation problem into several stages or levels. At the highest level, con-
sumers are viewed as choosing how much of their budget they wish to allocate to a type
of product (e.g., cereal). At the next stage, the consumer decides how much of their bud-
get they will divide among different categories of the product (e.g., categories of cereal
such as kids’, adult and natural cereals). At the final stage, the consumer allocates the
budget for a category among the products in that category (e.g., within kids’ cereals,
spending on Trix, Count Chocula, etc.).

Although multi-stage models also restrict some cross-price elasticities, they permit
flexible cross-price elasticities for products within a particular product category. For
example, a researcher can estimate a flexible neoclassical demand system describing the
demands for kids’ cereal products. Changes in the prices of products in other categories
(e.g., adult cereals) will still affect the demands for kids’ cereals, but only indirectly
through their effect on overall kids’ cereal spending. Exactly how these restrictions
affect estimates of markups is as yet unclear.9

Other recent work in the neoclassical demand system tradition has explored reduc-
ing the number of demand parameters by constraining cross-price effects or making
them depend on estimable functions of covariates.10 Pinkse, Slade and Brett (2002), for
example, constrain the coefficients entering firms’ price elasticities to be functions of
a small set of product attributes. While this strategy facilitates estimation and allows
flexibility in own and cross-price effects, it has the disadvantage of being ad hoc. For
instance, it is not clear where the list of attributes comes from or how the functional

6 Bresnahan’s (1989) Section 4 reviews early efforts. Deaton and Muellbauer (1980) provide a survey of
neoclassical demand models.
7 One utility-theoretic framework that produces this restriction is to assume that there is a representative

agent with the constant elasticity of substitution utility function used in Dixit and Stiglitz (1977).
8 See, for example, Hausman, Leonard and Zona (1994).
9 Theoretical work, beginning with Gorman (1959), has explored the restrictions that multi-stage budgeting

models place on consumer preferences, and how these restrictions affect compensated and uncompensated
price effects. See for example Gorman (1970), Blackorby, Primont and Russell (1978) and Hausman, Leonard
and Zona (1994). Nevo (2000) evaluates empirically the flexibility of a multi-stage model.
10 An early example is Baker and Bresnahan (1988). They propose a “residual” demand approach which
forsakes identification of the original structural parameters in favor of amalgams of structural parameters.
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form of demand reflects the way consumers evaluate product attributes. [Davis (2000)
discusses these and other tradeoffs.]

Besides having to grapple with how best to restrict parameters, each of the above
approaches also has to address the joint determination of prices and quantities. As in
homogeneous product models, the presence of right-hand side endogenous variables
raises delicate identification and estimation issues. Applied researchers can most easily
address identification and estimation issues in demand and mark-up systems that are
linear in the parameters. In nonlinear systems, identification and estimation questions
become much more complicated. For example, the implicit “reduced form” for the non-
linear (65) and (66) system:

Q1 = k1(Z,W, β; θ, ν, η),

...

QJ = kJ (Z,W, β; θ, ν, η),

P1 = l1(Z,W, β; θ, ν, η),

...

(68)PJ = lJ (Z,W, β; θ, ν, η)

may not be available in closed form. As argued earlier, these equations also need not
have a solution or a unique solution for all values of the right-hand side variables and
errors.

The value of the reduced forms in (68) is that they suggest that there are many poten-
tial instruments for prices and quantities. For example, they suggest that one may be able
to use other products’ attributes and cost variables as instruments. Unfortunately, most
IO data sets do not have product-specific or firm-specific cost information. Even when
researchers do have cost information, this information is likely to be extremely highly
correlated across products. The lack of good cost covariates has forced researchers to
use the attributes of other products as instruments. These studies have used both the
prices of other products as instruments and the nonprice attributes of other products as
instruments.

Hausman (1997) is a good example of a study that uses the prices of other products
as instruments. Hausman develops and estimates a multi-stage budgeting model for
varieties of breakfast cereals. Because he does not have cost data for the different cereal
products, and he lacks time-varying attribute data, he resorts to using cereal prices in
other markets as instruments. He justifies using these prices as follows. He first supposes
that the price for brand j in market m and time period t has the form

(69)ln pjmt = δj ln cjt + αjm + νjmt ,

where cjt are product-specific costs that do not vary across geographic areas, the αjm

are time-invariant, product-city (m) specific markups, and νjmt are idiosyncratic un-
observed markups. He also assumes that the νjmt are independent across markets. This
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latter assumption allows him to assert that prices in other cities are correlated with a spe-
cific market’s prices and uncorrelated with the unobservable markup or cost component
in prices.

From the perspective of our framework, the essential questions are: What economic
assumptions motivate the pricing equation (69)? Following our homogeneous-product
discussion, the pricing equation (69) could represent either a markup relation obtained
from a first-order profit-maximization condition or a reduced form equation arising from
the solution of a model along the lines of (68). To see the problem with the former
interpretation, imagine that each manufacturer j maximizes profits of one product in
each market. Suppose the firm also has constant marginal costs. If it maximizes profits
by choosing quantity, then the markup equations will have the additive form

Pj = cj + τ(Q1, . . . , QJ ),

where as in (48) the τ(·) function contains an own-demand derivative. We can re-express
this equation as (69)

ln Pj = ln cj − ln
(
1 − τ(Q1, . . . ,QJ )/Pj

)
.

The question then is whether the multi-level demand function specification Hausman
uses leads to the second term above having the form αj + νjt , where the ν’s are in-
dependent across markets. In general, his flexible demand system would not appear to
lead to such a specification.

One could imagine alternatively that (69) is the reduced form obtained by simultane-
ously solving the first-order conditions. The problem with this view is that Hausman’s
flexible demand specification implies the costs of all other products should enter the
reduced form. This would mean that either αjm would have to be time-varying to ac-
count for the time variation in other product’s costs or that cjt would have to be market
varying.

In principle, one might imagine adjusting the multi-level demand system or the pric-
ing equation (69) to justify using variables from other markets as instruments. Such
an exercise will require additional economic and statistical assumptions. Consider, for
example, the αjm’s in Equation (69). These terms appear to represent unobserved prod-
uct and market-specific factors that affect markups. They might, for example, capture
San Franciscans’ unobserved health-conscious attitudes. These attitudes might lead San
Franciscans’ to have a higher demand and greater willingness to pay for organic cere-
als. If natural cereal makers are aware of this propensity, they might advertise more in
the San Francisco market. If this advertising is not captured in the demand specification,
then the demand error will be correlated with the α. Hausman recognizes this possibility
by removing the brand-market α’s using product-market fixed effects. Letting ˜ denote
the residual prices from these regressions, his results rely on the adjusted prices:

(70)l̃n pjnt = ˜δj ln cjt + ν̃jnt

as instruments. According to Equation (69), these adjusted prices would only con-
tain adjusted national marginal costs, and residual cost and demand factors affecting
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markups. At this point, Hausman still must assume that: (1) the adjusted time-varying
national marginal costs ln cjt are uncorrelated with the demand and cost errors in other
cities; and (2) the residual demand and cost factors affecting markups are independent
of the errors in other cities.

These two assumptions have been vigorously debated by Hausman (1997) and
Bresnahan (1997). Bresnahan (1997) argued that there might be common unobserved
seasonal factors that affect both demand and marginal costs. To illustrate this point,
Bresnahan provides an example in which a periodic national advertising campaigns
translate into increased demands and markups in all markets. This results in correlation
between the idiosyncratic markup terms in other markets and demand errors.11 Whether
these advertising campaigns are of great consequence for demand and price–cost esti-
mates in a particular application is not something that can be decided in the abstract.
Rather it will depend on the marketing setting and the economic behavior of the firms
under study.

Our discussion so far has emphasized the strong assumptions needed to use prices
in other markets as instruments. Do the same arguments apply to nonprice attributes?
At first, it might seem that they might not. Similar concerns, however, can be raised
about nonprice instruments. Consider, for example, the problem of trying to model air-
line travel demand along specific city-pairs. In such a model, the researcher might use
a flight’s departure time as a nonprice attribute that explains demand. The reduced form
expressions in (68) suggest that besides the carrier’s own departure time, measures of
competing carriers’ departure times could serve as instruments. But what makes’ the
characteristics of carriers’ schedules’ valid instruments? They may well not be if the
carriers strategically choose departure times. For example, carriers may space their de-
parture times to soften competition and raise fares.

If firms set nonprice attributes using information unavailable to the researcher, then
we can no longer be certain that product attributes are valid instruments. In some ap-
plications, researchers have defended the use of nonprice attributes with the argument
that they are “predetermined”. Implicit in this defense is the claim that firms find it pro-
hibitively expensive to change nonprice attributes in the short run during which prices
are set. As a result, nonprice product characteristics can reasonably be thought of as
uncorrelated with short-run unobserved demand variables. For example, a researcher
modeling the annual demand for new cars might argue that the size of a car is unlikely
correlated with short-run changes in demand that would affect new car prices. While
this logic has some appeal, it relies on the assumption that unobserved factors affect-
ing manufacturers’ initial choices of characteristics do not persist through time. This is
a question that is not easily resolved in the abstract. For this reason, models that en-
dogenize both price and nonprice attributes continue to be an active area of research
in IO.

11 The criticism that advertising influences demand amounts to an attack on demand specifications that ignore
advertising. As Hausman’s empirical model does include a variable measuring whether the product is on
display, the question then becomes whether the display variable captures all common promotional activity.
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7.2. Micro-data models

Our discussion of the product-level demand specifications in (65) has said little about
what it is that leads firms to differentiate products. One ready explanation is that firms
differentiate their products in order to take advantage of heterogeneities in consumer
tastes. For example, car makers regularly alter a car’s styling, size, drive trains and stan-
dard features to attract particular groups of buyers. If IO economists are to understand
how these models are priced and compete, it seems imperative that their demand sys-
tems explicitly recognize how consumer tastes for product attributes will affect demand
at the firm level. In the language of Section 4, it seems critical that firm-level demand
models recognize both observable and unobservable heterogeneities in individual-level
tastes. Most neoclassical demand models, however, are ill-suited to modeling consumer
heterogeneities. This is because it is unwieldy to aggregate most individual-level neo-
classical demand models across consumers to obtain market or firm-level demands.

In the differentiated product literature, researchers have adopted two approaches to
demand aggregation and estimation. One is to estimate individual-level demand func-
tions for a representative sample of consumers. These demand functions are then ex-
plicitly aggregated across the representative sample to obtain market or firm demand.
The second is to instead assume that consumer tastes have a particular distribution in
the population. This distribution, along with individual demands, are estimated together
to obtain estimates of market and firm demand.

In what follows, we explore some of the advantages and disadvantages of these two
approaches. To focus our discussion, we follow recent work in IO that relies on dis-
crete choice demand specifications. These models presume that consumers buy at most
one unit of one product from among J products offered.12 While these unitary demand
models are literally applicable to only a few products, such as new car purchases, they
have been used by IO economists to estimate consumer demands for a range of prod-
ucts.

A key distinguishing feature of these discrete choice demand models is that firms
are uncertain about consumers’ preferences. Firms therefore set prices on the basis of
expected demand. So far, firm expectations have not figured prominently in our discus-
sion of oligopoly models. Thus, we shall begin by showing how this type of uncertainty
enters a structural oligopoly model.

Imagine there are a maximum of Mt customers at time t who might buy a car. Sup-
pose customer i has the conditional indirect utility function for car model j of

Uijt = U(xjt , pjt , ωij t ),

where xjt is a K×1 vector of nonprice attributes of car j (such as size and horsepower),
pjt is the car’s price, and ωijt represents consumer-level variables. Consumer i will

12 There are continuous choice multi-product demand models. These models are better termed mixed discrete
continuous models because they have to recognize that consumers rarely purchase more than a few of the
many products offered. See, for example, Hanemann (1984).
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buy new car j provided U(xjt , pjt , ωij t ) � maxk �=j U(xkt , pkt , ωij t ; θ). If firms knew
everything about consumers’ tastes, they would calculate product demand as

(71)Demand for product j =
Mt∑
i=1

I (i buys new car j),

where Mt is the number of potential new car buyers at time t and I (Arg) is a zero-one
indicator function that is one when Arg is true. Firms would use this demand function
when it came time to set prices, and the IO researcher therefore would have to do their
best at approximating this sum given the information the researcher has about the Mt

consumers.
Now consider what happens when the car manufacturers do not observe some portion

of ωijt . In this case, if there are no other uncertainties, the researcher would model a
firm’s pricing decision as based on what the firm expects demand to be:

(72)

Expected demand = qe
jt =

Mt∑
i=1

E
(
U(xjt , pjt , ωij t ) � max

k �=j
U(xkt , pkt , ωikt ; θ)

)
.

In this expression, E is the firm’s expectation over the unobservables in ωijt . (Here,
the firm is assumed to know the size of the market Mt .) The firm’s expected aggregate
demand for model j can equivalently be expressed as the sum of firms’ probability
assessments that consumers will buy model j :

(73)qe
jt =

Mt∑
i=1

Pr(i buys new car j).

This expression shows us how firms’ uncertainties about their environment (i.e., their
uncertainties about consumers tastes) will enter a structural model of competition. In
essence, the IO researcher must now take a stand on firms’ beliefs about consumers –
what they know and do not know – and how this information enters consumers’ tastes.

Once the researcher adopts a specific probability model for consumers’ product
choices, product-level demands simply are sums of consumers’ purchase probabilities.
These purchase probabilities and sums have the potential drawback that they may be
nonlinear functions of consumer taste parameters. Despite this complication, the above
formulation has one important advantage. A discrete choice model allows the researcher
to model consumers’ preferences over a large number of products as a function of a
short list of product attributes (the xjt ). Thus, in contrast to the high-dimensionality of
the neoclassical model, here a researcher may be able to reduce the consumers’ choice
problem to a choice over a few attributes.

Two crucial questions that must be answered when developing a discrete choice
model are: What is it about consumer tastes that firms do not observe? And: What
is a sensible model of firms’ expectations? These are important questions because a re-
searcher’s inferences about price–cost margins may well be sensitive to the specification
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of firms’ uncertainties. In what follows, we use our framework for building structural
models to evaluate two early differentiated product models. Both models estimate price–
cost margins for new cars sold in the United States. The first, by Goldberg (1995), uses
household-level new-car purchase data to estimate household-level purchase probabili-
ties for different new car models. She assumes that these household-level probabilities
are what firms use to determine aggregate demand. The second approach we consider
is by Berry, Levinsohn and Pakes (1995). They do not have household-level data. In-
stead, they construct their demand system from product-level price and quantity data.
Like Goldberg, they too base their demand estimates on sums of individual purchase
probabilities. Unlike Goldberg, they match the parameters of this sum to realized new
car market shares.

7.2.1. A household-level demand model

Goldberg’s model of prices and quantities in the US new car market follows the logic
of a homogeneous product competition model. Her estimation strategy is divided into
three steps. In the first step, Goldberg estimates household-level demand functions. In
the second, the household-level demand functions are aggregated to form estimates of
firms’ expected demand curves. In the third step, Goldberg uses the estimated expected
demand curves to calculate firms’ first-order conditions under the assumption that new
car manufacturers are Bertrand–Nash competitors. From these first-order conditions,
she can then estimate product-level marginal cost functions and price–cost markups for
each new car model. The main novelty of Goldberg’s paper is that she uses consumer-
level data to estimate firms’ expected new car demands. The supply side of her model,
which develops price–cost markup equations, follows conventional oligopoly models,
but it is computationally more difficult because the demands and derivatives for all the
cars sold by a manufacturer enter the price–cost margin equation for any one new car it
sells.

7.2.2. Goldberg’s economic model

Goldberg’s economic model treats consumers as static utility maximizers. She computes
firms’ expected demand as above:

(74)qe
jt =

Mt∑
i=1

Pr(i buys new car j).

Goldberg of course does not observe firms’ expectations. The initial step of her es-
timation procedure therefore seeks to replace Pr(·) with probability estimates from a
discrete choice model. The validity of this approach hinges both on how close her dis-
crete choice probability model is to firms’ assessments and how accurately she is able
to approximate the sum of probability estimates.

To estimate household probabilities, Goldberg uses data from the US Bureau of La-
bor Statistics Consumer Expenditure Survey (CES). This survey is a stratified random
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sample of approximately 4500 to 5000 US households per quarter. By pooling data for
1983 to 1987 Goldberg is able to assemble data on roughly 32,000 households purchase
decisions. In her data she observes the vehicles a household purchases and the transac-
tion price. She augments this consumer-level data with trade information about new and
used car attributes.

A critical component of her expected demand model is the list of attributes that
enter consumers’ utility functions. While the transactions price is clearly a relevant
attribute, economics provides little guidance about what other attributes might enter
consumers’ utilities. Goldberg’s approach is to rely on numerical measures found in
car buyer guides. These measures include: horsepower, fuel economy, size, and dummy
variables describing options.

In estimating the expected demands faced by new car manufacturers, Goldberg re-
lies on the representativeness and accuracy of the Consumer Expenditure Survey. The
assumption that her probability model replicates the firms’ assessments of consumer be-
havior allows her to replace Pr(k buys new car j) in (74) with an econometric estimate,
P̂r(k buys new car j), which is sample household k’s purchase probability. The assump-
tion that the CES sample is representative of the Mt consumers allows her to replace the
sum over consumers in (75) with a weighted sum of the estimated household purchase
probabilities:

(75)Estimated expected demand for product j =
St∑

k=1

wkt P̂r(k buys new car j),

where the wkt are CES sampling weights for sample household k and St is the number
of sample households in year t .

On the production side, Goldberg assumes that new car manufacturers maximize sta-
tic expected profits by choosing a wholesale price. Unfortunately Goldberg does not
observe manufacturers’ wholesale prices. Instead, she observes the transactions prices
consumers paid dealers. In the US, new car dealers are independent of the manufacturer.
The difference between the retail transaction price and the wholesale price thus reflects
the independent dealer’s markup on the car. The dealer’s incentives are not modeled in
the paper for lack of data. Because Goldberg is modeling manufacturer’s pricing de-
cisions (and not transactions prices), Goldberg assumes that there is an exact relation
between the unobserved wholesale prices and average transactions prices she computes
from the CES. For example, she assumes that the wholesale price of an intermediate-
size car is 75% of an average transaction price she can compute from the CES. While
this assumption facilitates estimation, it is unclear exactly why it is profit-maximizing
for dealers and manufacturers to behave in this way.13

Goldberg models manufacturers’ decisions about wholesale prices as outcomes of
a static Bertrand–Nash pricing game in which manufacturers maximize expected US

13 For more discussion of automobile dealer behavior see Bresnahan and Reiss (1985).
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profits. The expectation in profits is taken over the demand uncertainty in each ωijt .14

Thus, firm f maximizes

(76)max
p

wf
t

nf∑
j=1

(
pw

jt − cjt

)
E
[
qjt

(
pw
)]

,

where p
wf
t = (p

wf

1t , . . . , p
wf
nf ,t ) is a vector of wholesale prices, nf is the number of

new car models offered by firm f and cjt is the constant marginal production cost for
new car model j . The first-order conditions that characterize manufacturers’ wholesale
pricing decisions have the form

(77)p
wf
jt qe

jt +
nf∑
k=1

p
wf
kt − ckt

p
wf
kt

qe
kt εkjt = 0,

where qe
kt = E(qkt ), and εkjt = p

wf
jt

qe
kt

∂qe
kt

∂p
wf
jt

is the cross-price elasticity of expected

demand. This equation shows that in order to obtain accurate estimates of the firm’s
price–cost margins, we need to have accurate estimates of the firms’ perceived cross-
price elasticities. Changes in the demand model, say by changing the model of firm
uncertainty about consumer tastes, will likely change the estimated cross-price elastici-
ties, and thus in turn estimates of price–cost markups.

Once Goldberg has estimated her demand model and obtained expressions for the
cross-price elasticities, the only remaining unknowns in the firms’ first-order conditions
are their marginal costs, the cjt . Because Goldberg has one first-order condition for each
product, she can in principle solve the system of equations exactly to obtain estimates
of the cjt and price–cost margins.

7.2.3. The stochastic model

To estimate household purchase probabilities, Goldberg employs a nested logit discrete
choice model. She assumes consumers’ conditional indirect utilities have the additive
form

Uijt = U(xjt , pjt , ω̄ij t ) + νij t ,

where ω̄ij t are observable household and product characteristics and νij t is a generalized
extreme value error. Goldberg goes on to assume that the indirect utility function is
linear in unknown taste parameters, and that these taste parameters weight household
characteristics, vehicle attributes and interactions of the two. The generalized extreme

14 In principle, the firm also might be uncertain about its marginal cost of production. Goldberg can allow
for this possibility only if the cost uncertainty is independent of the demand uncertainty. Otherwise, Goldberg
would have to account for the covariance of demand and costs in (76).
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value error assumption appears to be made because it results in simple expressions for
the firms’ expectations about consumer purchase behavior found in Equation (74).

The generalized extreme value error results in a nested logit model. Goldberg’s choice
of logit nests is consistent with but does not imply a particular sequential model of
household decision making. Specifically, she expresses the probability that household k

buys model j as a product of conditional logit probabilities:

Pr(k buys new car j)

= Pr(k buys a car) × Pr(k buys a new car | k buys a car)

× Pr(k buys new in segment containing j | k buys a new car)

× Pr(k buys new from j ’s origin and segment | k buys new

in segment containing j)

(78)× Pr(k buys j | k buys new from j ’s origin and segment).

This particular structure parallels a decision tree in which household k first decides
whether to buy a car, then to buy new versus used, then to buy a car in j ’s segment (e.g.,
compact versus intermediate size), then whether to buy from j ’s manufacturer – foreign
or domestic, and then to buy model j .

Goldberg appears to favor the nested logit model because she is uncomfortable with
the logit model’s independence of irrelevant alternatives (IIA) property. The IIA prop-
erty of the conventional logit model implies that if she added a car to a consumer’s
choice set, it would not impact the relative odds of them buying any two cars already in
the choice set. Thus, the odds of a household buying a Honda Civic relative to a Toyota
Tercel are unaffected by the presence or absence of the Honda Accord. The nested logit
corrects this problem by limiting the IIA property to products within a nest.

In principle, Goldberg could have chosen a different stochastic distribution for con-
sumers’ unobserved tastes, such as the multivariate normal. Goldberg makes it clear that
she prefers generalized extreme value errors because they allow her to use maximum
likelihood methods that directly deliver purchase probability estimates. Specifically,
the nested logit model permits her to compute the right-hand side probabilities in (78)
sequentially using conventional multinomial logit software. Her choice of nesting struc-
ture is important here because the IIA property holds at the household level for each new
car within a nest. Changes in the nests could affect her estimates of cross-price elastic-
ities. Unfortunately, economic theory cannot guide Goldberg’s nesting structure. This
ambiguity motivates Goldberg to explore at length whether her results are sensitive to
alternative nesting structures.

While the independence of irrelevant alternatives applies to some household choices,
it does not apply at the market demand level. This is because Goldberg interacts income
and price with household characteristics. By using interactions and aggregating using
household sampling weights, Goldberg insures that her product-level demand functions
do not have the economically unattractive IIA structure.15

15 This can be seen by examining the population odds of buying two different vehicles.
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Goldberg makes two other key stochastic assumptions when she estimates her nested
logit model. The first is that new car prices and nonprice attributes are independent of
consumers’ unobserved tastes, the νij t . This is a critical modeling assumption, as it is
possible to imagine cases where it would not hold. Suppose, for instance, that the νij t

includes consumer perceptions about a car’s quality, and that firms know consumers
perceptions. In this case, firms’ pricing decisions will depend on the car’s quality. Be-
cause Goldberg does not observe quality, her econometric specification will attribute the
effects of quality to price and nonprice attributes. This results in the same endogeneity
problem found in neoclassical demand models. To see the parallel, imagine that νij t

consists of a product-time fixed effect (“quality”) and noise. That is, νij t = ξjt + ηijt .
Because ξjt is common to all households and known to the firm, it will appear in the
aggregate demand curve

qe
jt (ξjt ) =

Mt∑
i=1

Pr(i buys new car j | ξjt )

that the manufacturer uses when choosing wholesale prices to maximize profits. Thus,
wholesale prices will depend on unobserved quality. Because Goldberg does not observe
product quality, she needs to devise a strategy for removing any potential correlation
between price and consumers’ unobserved tastes.

The best way to account for this unobserved heterogeneity within a nested logit model
would be to add behavioral equations to the model that would explain how manufac-
turers jointly choose price and quality. Such a formulation unfortunately complicates
estimation considerably. As an alternative, Goldberg could simply assume a distribution
for quality and then integrate quality out of aggregate demand using this assumed dis-
tribution. This strategy is economically unattractive, however, because one would have
to recognize the unknown correlation of prices and qualities when specifying the joint
distribution. What Goldberg does instead is assume that unobserved quality is perfectly
explained by a short list of time-invariant product characteristics, such as the manufac-
turer’s identity (e.g., Toyota), the country of origin (e.g., Japan) and the car’s segment
(e.g., compact). The assumption of time invariance allows her to use fixed effects to
capture these components. The ultimate question with this strategy that cannot be easily
answered is: Do these fixed effects capture all the product-specific unobservables that
might introduce correlation between prices and consumers’ unobserved preferences?
Goldberg provides arguments to suggests that these fixed effects are adequate. In prin-
ciple, if she had a dataset that contained many purchases of each model, she could
include a complete set of model-specific dummy variables, and thereby control for all
unobserved (to the researcher) quality differences across models.

A final stochastic component of the model pertains to manufacturers’ marginal costs.
The system of first-order conditions (77) exactly identifies each product’s marginal
costs. Following Hausman, Leonard and Zona (1994), Goldberg uses these marginal
cost estimates to calculate product price–cost markups, which she finds to be somewhat
on the high end of those reported in other studies.



Ch. 64: Structural Econometric Modeling 4347

Goldberg also is interested in assessing how marginal costs are related to vehicle
characteristics and market conditions. To do this, she assumes that the implied marginal
costs which she recovers depend on observable product characteristics and an unobserv-
able according to

cjt = c0 + Zjtα + ujt ,

where the Zjt are observable product characteristics and ujt are unobservable factors
affecting costs. The error in this relation accounts for the fact that the estimated marginal
costs are not perfectly explained by observables.

7.2.4. Results

If we compare Goldberg’s model to homogeneous product competition and neoclassical
differentiated product models, we see that Goldberg’s competition model is consider-
ably richer. Her demand system (75) admits complicated substitution patterns among
products. These substitution patterns depend on the proximity of products’ attributes.
There are two main costs to this richness. First, she must introduce many functional
form and stochastic assumptions to limit the scale and computational complexity of the
model. As we argued earlier, structural modelers often must introduce assumptions to
obtain results. Without these assumptions and restrictions, it would be impossible for
Goldberg to estimate demand and costs, or evaluate the impact of the voluntary export
restraints. She also might not be able to argue convincingly that her estimates make
sense (e.g., that they imply a pure-strategy equilibrium exists or is unique).

A second cost of the richness of her model is that it becomes difficult for her to sum-
marize exactly how each economic and stochastic assumption impacts her conclusions.
For example, at the household level she maintains IIA within nests. Her utility specifica-
tions and method of aggregation, however, imply that IIA will not hold at the aggregate
level. But just how much flexibility is there to the aggregate demand system and the
cross-price elasticities? Questions about the role of structural assumptions such as this
are very difficult to answer in complex models such as this. For this reason, Goldberg
and other structural modelers must rely on sensitivity analyses to understand how their
conclusions depend on their assumptions. For instance, Goldberg spends considerable
time exploring whether her parameter estimates and implied markups agree with other
industry sources and whether the estimates are sensitive to alternative plausible struc-
tural assumptions.

While structural researchers can in many cases evaluate the sensitivity of their es-
timates to specific modeling assumptions, some aspects of structure are not so easily
evaluated. For example, Goldberg’s model relies on the maintained assumption that
the weighted sum of estimated CES sample purchase probabilities accurately measures
firms’ expectations about product demand. If there is something systematic about firms’
expectations that her household model does not capture, then this will mean she is not
solving the same first-order profit maximization problems that the firms were when
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they set prices. Her reliance on this assumption is nothing new. The correct specifica-
tion of demand is implicit in other papers in this area (e.g., Porter and Hausman). As
we argued earlier in laying out our framework, all structural models base their infer-
ences on functional form and stochastic assumptions that are in principle untestable.
In this case, Goldberg’s problem is that she does not observe firms’ expectations. Con-
sequently, when she finds that her model under-predicts total new car sales, she cannot
know for sure whether this is because firms underpredicted demand or there is a problem
with her econometric specification or data.16

7.3. A product-level demand model

Bresnahan (1981, 1987) was the first IO economist to use the discrete-choice demand
model in an oligopoly equilibrium model to estimate the extent of firm market power.
Bresnahan’s preferences assume that consumers trade off the price of the product against
a single unobserved quality index. Berry (1994) and Berry, Levinsohn and Pakes (1995)
(BLP) extended Bresnahan’s single-index model to allow products to be horizontally
differentiated. In what follows, we describe BLP’s (1995) original model and compare
it to Goldberg’s model and the neoclassical demand systems discussed earlier. Unlike
Goldberg, Bresnahan and BLP only have access to product-level data. Specifically, they
know a new car model’s: unit sales, list price, and attributes. BLP, for example, have
twenty years of data covering 2217 new car models. Their definition of a new car model
(e.g., Ford Taurus) is rich enough to describe important dimensions along which new
cars differ. Their data, however, do not capture all dimensions, such as difference in
some two-door versus four-door models, and standard versus “loaded” models.

BLP use these product-level price and quantity data to draw inferences about con-
sumer behavior and automobile manufacturers’ margins. Like Goldberg, they base their
demand system on a discrete choice model of consumer choices. At first this may seem
odd – how can they estimate a consumer choice model with aggregate data? The an-
swer lies in the structural assumptions that permit them to relate household decisions to
product-level price and quantity data.

We can informally contrast Goldberg and BLP’s approaches by comparing how they
model the product demands on which firms base their pricing decisions. Recall Gold-
berg computes firms’ expected product demands as follows:

(79)qe
jt =

Mt∑
i=1

Pr(i buys new car j) =
Mt∑
i=1

Ψ (p0t , . . . , pJ t , x0t , . . . , xJ t , ω̄ij t ; θ),

where the Ψ (P, x, ω̄ij ; θ) are the nested logit purchase probabilities that depend on
the price, p, and nonprice attributes, x, of all models. Because Goldberg only uses

16 Goldberg’s chief hypothesis is that the household CES data under-represent total sales because they do not
include government, business or other institutional sales.
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household-level data, there is no guarantee that when she aggregates her probability
estimates to form qe

jt that they will match actual aggregate US sales figures, qjt .
BLP (1995) on the other hand do not have the household-level data required to esti-

mate how household choice probabilities vary with ω̄ij t . Instead, they treat actual sales,
qjt , as though it is a realization from the demand curve that the firm uses to set price.
In essence, they assume qjt = qe

jt . BLP then replace the household-specific probabil-
ities Pr(P, x, ω̄ij ; θ) on the right-hand side with unconditional purchase probabilities
Sj (P, x, θ). They do this by assuming a distribution, P(ω̄ij t , γ ), for the household
variables that they do not observe. Here γ denotes a set of parameters that indexes the
density. Formally, they compute the unconditional demand functions

(80)qe
jt =

Mt∑
i=1

∫
ω

Φ(pt , xt , ω; θ) dP(ω; γ ) = MtSj (pt , xt ; θ, γ ),

where Φ(·) are choice probabilities. The second equality follows because by assumption
the distribution of consumer variables is the same for each of the Mt households in
the market for a new car. To estimate the demand parameter vector θ and distribution
parameter vector γ , BLP match the model’s predicted expected sales qe

jt = MtSj to
observed sales qit . (This is the same as matching expected product shares Sj to realized
product market shares, qit /Mt .) As in Goldberg’s econometric model, the economic
and stochastic assumptions that go into the construction of Pr(·) and Sj have a critical
bearing on the resulting demand and markup estimates.

It is useful to reiterate the differences in data requirements and modeling assumptions
between Goldberg and BLP. BLP fit their model to match aggregate market shares,
where market shares are national sales divided by a hypothesized number of potential
buyers at time t , Mt . Consequently, the reliability of demand estimates obtained will
depend on the quality of the estimates of Mt . This in turn will impact the reliability
of their cost estimates. In contrast, Goldberg fits a household-level model and does not
require market-level data. But as noted earlier, this data set excludes some purchases by
businesses and government agencies that are relevant to firms’ pricing decisions. This
could impact her cost estimates.

7.3.1. The economic model in BLP

BLP’s economic model of automobile sales maintains that manufacturers sell new cars
directly to consumers. Manufacturers do not price discriminate and consumers are as-
sumed to know the prices and attributes of all new cars. There are no intertemporal
considerations for either firms or consumers. In particular, there is no model of how
firms choose product attributes, and consumers do not trade off prices and product at-
tributes today with those in the future.

As before, consumer i’s conditional indirect utility function for new cars has the form

Uijt = U(xjt , pjt , ωij t ).
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Consumers decide to buy at most one new car per household. There are no corporate,
government or institutional sales. In contrast to Goldberg, BLP do not model the choice
to buy a new versus a used car. Instead, purchases of used vehicles are grouped with
the decision to purchase a hypothetical composite outside good labeled product 0. Con-
sumers demand the outside good if they do not buy a new car. Thus, if

∑J
j=1 qjt is the

observed number of new cars bought in year t , q0t = Mt −∑J
j=1 qjt is the number

choosing to purchase the outside good.
The firm side of the market in BLP is similarly straightforward. Sellers know the

demand functions calculated above and each others’ constant marginal costs of produc-
tion. Sellers maximize static profit functions by choosing the price of each model they
produce. When choosing price, sellers act as Bertrand–Nash competitors, as in Gold-
berg.

7.3.2. The stochastic model

There are three key sets of unknowns in BLP’s model: the number of consumers in each
year, Mt ; the distribution of consumer characteristics Pr(ω; γ ); and sellers’ manufac-
turing costs. We consider each in turn.

Not knowing Mt , the overall size of the market, is a potential problem because it
relates the choice probabilities described in Equation (80) to unit sales. BLP could either
estimate Mt as part of their econometric model or base estimation on some observable
proxy for Mt . Although the first of these approaches has reportedly been tried, few if
any studies have had much success in estimating the overall size of the market. This
difficulty should not be too surprising because the absence of data on the outside good
means that additional assumptions will have to be introduced to identify the overall size
of the market.

One way to develop intuition for the assumptions needed to estimate Mt in a gen-
eral model is to consider the role Mt plays in a cross-section logit model. Specifically,
suppose that utility consists of an unobserved product attribute ξj and an extreme value
error ηij :

(81)Uij = ξj + ηij .

To obtain the unconditional purchase probabilities Sj (p, x; θ, δ) we integrate out the
consumer-level unobservables

(82)Sj =
∫ ∞

−∞

∏
k �=j

F (ξj − ξk + τ)f (τ) dτ,

where F(ξj − ξk + τ) = Pr(ξj − ξk + τ > ηik) and f (·) is the density of η. The integral
in (82) yields the logit probabilities

(83)Sj = exp(ξj )∑J
k=0 exp(ξk)

.
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The demand functions are then

(84)qj = MSj (ξ0, . . . , ξJ )

or using (83)

(85)ln qj = ln M + ξj − ln

(
J∑

k=0

exp(ξk)

)
.

The demand parameters here are θ = (ξ0, ξ1, . . . , ξJ ,M). As a simple counting exer-
cise, we have J equations in J observed new vehicle quantities, and J + 2 unknowns,
θ = (ξ0, ξ1, . . . , ξJ ,M). Adding a quantity equation for the unobserved quantity of the
outside good, q0, does not change the difference between unknowns and knowns, but
does allow us to collapse the log-quantity equations to

(86)ln qj − ln q0 = ξj − ξ0.

Since by definition q0 = M −∑J
j=1 qj , we can rewrite the J equations as

(87)ln qj − ln

(
M −

J∑
j=1

qj

)
= ξj − ξ0.

In general, we require at least two restrictions on the J +2 unknown demand parameters
(ξ0, ξ1, . . . , ξJ ,M) to be able to solve these J equations. Since the outside good is not
observed, we can without loss of generality normalize ξ0 to zero. This still leaves us one
normalization short if M is unknown.

In their empirical work, BLP choose to fix M rather than restrict the ξ ’s or other
parameters. Specifically, BLP assume that Mt is the total number of US households
in year t . This choice has some potential shortcomings. Not all households can afford
a new car. As in Goldberg, entities other than households purchase new vehicles. In
principle, one could model these discrepancies by assuming that the total number of US
households is a noisy measure of Mt , i.e., M̃t = Mt + Δt . Substituting M̃t into (87)
with ξ0 = 0 gives

(88)ln qj − ln

(
M̃t −

J∑
j=1

qj

)
= ξ̃j .

If we overestimate the size of the market (i.e., M̃t > Mt ) then the left-hand side is
smaller than it would otherwise be by the same amount for each product. This will
make the average (unobserved) ξj seem lower, or in other words that all new cars that
year are worse than average. In essence, the unobserved product qualities would act as
a residual and capture both true quality differences and measurement error in the size of
the market.

In actual applications, we will never know whether we have over-estimated or under-
estimated Mt . This means that we will not know the direction of any bias in estimated
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product qualities, the ξj ’s. While the availability of panel data might allow us to attempt
a random measurement error model for Mt , in practice the nonlinearity of the demand
functions in the measurement error will make it difficult to draw precise conclusions
about how this measurement error impacts demand estimates. Thus, one is left with
either using a proxy for Mt as though it had no error or imposing enough additional
restrictions on the demand model so that Mt can be estimated.

The second set of unobservables that enter BLP’s demand functions are the household
variables, ωijt . Formally, BLP assume household i’s indirect utility for new car j has
the additive two-part structure:

(89)

Uijt = δjt + ωijt

=
︷ ︸︸ ︷
xjtβ + ξjt +

︷ ︸︸ ︷
xjt νi + α ln(νiy − pjt ) + ηijt .

The δjt includes only product attributes. For BLP it consists of a linear function of
observed (x) and unobserved (ξ ) product attributes. The elements of the K × 1 para-
meter vector β are interpreted as population average marginal utilities for the observed
attributes.

The ωijt contain three separate household-level terms. The familiar extreme value
error term ηijt allows for unobserved household-specific tastes for each model in each
year. The K × 1 vector of unobservables νi allows for the possibility that household i’s
marginal utilities for observed attributes differ from the population average marginal
utilities (the β’s). While in principle one might expect that households’ marginal utili-
ties would depend on household income and other demographic characteristics, the lack
of household data forces BLP to assume that the νi’s are independent random variables
that are identically distributed in the population.17 BLP assume these random variables
are normally distributed. In addition, they assume that a household’s unobserved mar-
ginal utility for attribute k is independent of their marginal utility for attribute h. The
unboundedness of the support of the normal distribution implies that some households
will prefer attribute k and some will have an aversion to it. Specifically, the fraction that
dislike attribute k is given by Φ(−βk/σik), where Φ(·) is the standard normal cumula-
tive distribution function and σik is the standard deviation of νik .

The final stochastic component of ω is α ln(νyi −pjt ), where α is an unknown coeffi-
cient. We use the notation νyi for income to indicate that, like the unobserved marginal
utilities for the observed attributes, income also is an unobservable. The expression in
the natural logarithm is the (unobserved) income the household has left if it purchases
model j . BLP include ln(νyi − pjt ) so that they can interpret Uijt (·) as a conditional
indirect utility function. Once again they need to make some distributional assump-
tion on the unobserved νyi in order to compute expected demand. In their empirical
work BLP assume that the natural logarithm has a lognormal distribution. However, the
lognormal distribution must be truncated to make the expenditure on the outside good

17 BLP and others have explored alternatives to this structure. For example, BLP (2004) allow consumers’
marginal utilities to depend on observable and unobservable household attributes.
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positive. That is, they need to guarantee that νyi > pjt for all observed and plausible
counterfactual prices pjt .

A final element of the preference specification is BLP’s treatment of the outside good.
BLP assume that the utility for the outside good has the form:

Ui0t = α ln νiy + σ0νi0 + ηi0t .

Unobserved income enters this utility because it is the amount available to be spent on
the outside good when no new car is purchased. No price enters the conditional indirect
utility for the outside good because p0 has been assumed to equal zero. The parameter
σ0 is new; it represents the standard deviation of the household’s unobserved preference
for the outside good, νi0. In essence, νi0 increases or decreases the unobserved product
qualities, the ξj , for household i by the same amount. By adding the same household-
specific constant to the ξ ’s, BLP preserve households’ rankings of all new cars based
on their unobserved qualities, but allow households to disagree on the overall quality of
new cars. To see this, suppose for simplicity that α = 0 and β = νi = 0. Utilities then
are as in Equation (89) except Ui0 = σ0νi0 + ηi0. The logit probabilities of purchase in
(83) now have the household-specific form

(90)Sij = exp(ξj − σ0νi0)

1 +∑J
k=1 exp(ξk − σ0νi0)

.

Thus, households with large values of ν0i do not think that the quality of new cars is very
high and consequently are more likely to opt for the outside good. Similarly, holding
the unobserved qualities of new cars fixed (the ξ ), increases in σ0 reduce the importance
of the unobserved car model qualities for purchase decisions.

7.4. More on the econometric assumptions

Now that we have provided an overview of BLP’s economic and stochastic assump-
tions, it is useful to revisit some of them to understand further why BLP adopt these
assumptions.

7.4.1. Functional form assumptions for price

A critical component of any choice model is the way in which product prices enter
utility. Consider what would happen, for example, if BLP had entered (as some studies
do) price as an additive function in δjt rather than in ωijt . In a standard logit choice
model, with δjt = g(pjt ) + δ̃j t , the demand equations have the form

(91)ln qjt = ln Mt + g(pjt ) + δ̃j t − ln

(
1 +

J∑
k=1

exp
(
g(pkt ) + δ̃kt

))
.
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The implied own-price and cross-price elasticities for these demands are:

(92)
∂ ln qjt

∂ ln pkt

=
⎧⎨⎩

∂g(pjt )

∂pjt
pjt (1 − Sj t ), k = j,

− ∂g(pjt )

∂pkt
pktSkt , k �= j.

These expressions show how the extreme value error assumption and the choice of g(·)
affect the structure of the own-price and cross-price elasticities that enter the price-
markup equations. If price enters logarithmically (e.g., g(pjt ) = θ ln pjt ), then the
own-price and cross-price elasticities only depend on product market shares. In this
case, an increase in the price of a Jaguar would cause the demand for BMWs and Kias,
which have roughly similar shares, to increase roughly the same amount, even though
BMWs and Kias are hardly substitutes. To some extent, one could consider fixing this
problem by changing the way price enters δjt or by interacting functions of price with
other vehicle attributes. Such an approach, however, ultimately may not capture what
one might expect, which is that products with similar attributes will have higher cross-
price elasticities.

The use of the extreme value error can also have some other unattractive economic
consequences. One consequence of the error’s unbounded support is that with finite
attributes, there always will be someone who will buy a product – no matter how
inferior the car is to other cars. Suppose, for example, that instead of having price
enter logarithmically, the function g(p) is bounded above. In this case, product de-
mands will asymptote to zero instead of intersecting the price axis. This asymptotic
behavior can have an unfortunate impact on global welfare and counterfactual cal-
culations. Petrin (2002), for example, finds that when price is entered linearly that
one can obtain implausibly large estimates of the value of Minivans. Figure 1 illus-
trates this problem for two alternative specifications of g(·) using a standard logit
model for shares. The demand curve labeled A assumes price enters δ as −λp. The
concave demand curve B adopts a logarithmic specification paralleling BLP, g(p) =
λ ln(100 − p). The constant λ is selected so that each curve predicts roughly the
same demand for a range of prices between 60 and 90. (One might think of this as
approximating a range of data that the researcher would use to estimate λ.) Com-
paring the two demand curves, we can see that there would not be too much of a
difference in the two models’ predicted demands or local consumer surplus calcula-
tions for prices between 60 and 90. But often researchers perform calculations that
rely on the shape of the demand function for all positive prices. A common exam-
ple is determining the welfare gain to consumers from the introduction of a new good
[e.g., Petrin (2002) and Hausman (1997)]. In this case, the properties of the demand
function for the new good from the price where the demand curve intersects the ver-
tical axis to the actual market price determine the benefits consumers derive from the
existence of this good. The difference in this calculation for the two demand curves
would be dramatic. For example, Demand Curve A estimates that there are many
consumers with reservation prices above 100, while Demand Curve B says there are
none.
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Figure 1.

7.4.2. Distribution of consumer heterogeneity

In their empirical work, BLP emphasize that they are uncomfortable with the IIA prop-
erty of the standard logit choice model, and for this reason they add unobservable
household-car attribute interactions. To gain some understanding of what these unob-
servables add, consider the following three good market:

• there are two types of cars available: large (LARGE = 2) and small (LARGE = 1);
• utilities for the large and small cars equal

Uij = β0 + βLLARGEj + ηij = δj + ηij ;
and

• the large car has 15 percent of the market, the small car 5 percent and the outside
good the remaining 80 percent.
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This utility specification perfectly explains the market shares. That is, we can match the
observed market shares to the logit shares exactly:

0.15 = exp(β0 + 2βL)/
(
1 + exp(β0 + βL) + exp(β0 + 2βL)

)
,

(93)0.05 = exp(β0 + βL)/
(
1 + exp(β0 + βL) + exp(β0 + 2βL)

)
.

A solution is: βL = 1.098, and setting β0 = −3.871. Although the deterministic utility
specification predicts consumers prefer larger to smaller cars, the infinite support of the
extreme value error νij t results in some consumers having an idiosyncratic preference
for small cars.

Now consider what happens with these data when we add heterogeneity in con-
sumers’ marginal utilities for size. In lieu of assuming a continuous distribution of
marginal utilities, suppose for simplicity that there are just two types of consumers:
those with a taste βL1 for size and those with a taste βL2 for size. Because we can po-
tentially explain the three market shares with just two parameters, assume β0 = 0. In
addition, to avoid the complication of having to estimate the entire distribution of con-
sumer preferences, suppose we know that 15 percent of consumers are of type 1 and the
remaining 85 percent are type 2.

How does this two-type model explain the market share of the small car? It seems in
principle that the two-type model could fit the market share data in the same way that
the single type model did. Both types of consumers would have positive but different
marginal utilities for vehicle size, and the unbounded support of the extreme value error
would account for why some fraction of each type would buy an otherwise inferior car.
To see whether this is the case, we again match the observed market shares to the logit
shares:

0.15 = 0.15
exp(2βL1)

1 + exp(βL1) + exp(2βL1)
+ 0.85

exp(2βL2)

1 + exp(βL2) + exp(2βL2)
,

(94)0.05 = 0.15
exp(βL1)

1 + exp(βL1) + exp(2βL1)
+ 0.85

exp(βL2)

1 + exp(βL2) + exp(2βL2)
.

A solution is the type 1 consumers have a negative marginal utility for size
(β2 = −2.829) and the type 2 consumers have a positive marginal utility for size
(β1 = 3.9836). Thus, when consumers’ marginal utilities are unconstrained, the choice
model may explain the purchase of an inferior product by indicating that some con-
sumers have negative marginal utilities for otherwise attractive attributes.

This example gets at the heart of IO economists’ distinction between vertical and
horizontal product differentiation models. In vertical models, consumers share similar
opinions about an attribute, and thus will rank products the same. They may, however,
differ in the strength of their preferences. In multi-attribute models, the relation be-
tween vertical and horizontal product differences and product rankings becomes more
complex. For instance, even though consumers may all have positive marginal utilities
for all attributes, they may rank products differently.

In most applications researchers will have only a few attributes that they can use to
explain why consumers prefer one product over others. When there are many products



Ch. 64: Structural Econometric Modeling 4357

compared to attributes, a large number of products may appear “dominated” according
to a pure vertical model. For example, the Volkswagen Beetle is a small car, has a small
engine, slightly higher than average fuel economy, etc., and yet at times sold relatively
well in the US. One way BLP’s model could explain the apparent relative success of
the Beetle would be to assign it a high unobserved quality, ξ . Alternatively, as we have
seen above, the introduction of heterogeneous tastes can account for why consumers
might prefer an otherwise “average” or “dominated” product. While the introduction
of consumer heterogeneity can increase the flexibility of a discrete choice model, this
increased flexibility may or may not lead to results that are economically plausible. For
instance, in BLP’s Table IV (p. 876), they report an estimated distribution of marginal
utility for miles per dollar (MP$) across consumers that is normal with mean −0.122
and a standard deviation 1.05. This estimate implies that roughly 54 percent of con-
sumers “dislike” fuel economy, in the sense of having a negative marginal utility of
miles per dollar. For the marginal utility of horsepower divided by weight of the car
(HP/Weight), the estimated distribution of marginal utility is normal with mean 2.883
and standard deviation 4.628. This implies that 27 percent of consumers dislike cars
with higher values of HP/Weight. Using BLP’s assumption that these marginal utilities
are independent implies that 14 percent of consumers prefer cars with lower values of
HP/Weight and higher values of MP$. The plausibility of these estimates of the dis-
tribution customer-level heterogeneity is an open question. However, it is important to
bear in mind that the assumptions BLP make about the functional form of customer’s
demands, the joint distribution of customer marginal utilities and income identify the
joint distribution of marginal utilities that BLP recover. In contrast, one advantage of
Goldberg’s approach which uses household-level data, is that the marginal utilities can
be identified from the household-level purchases probabilities that she estimates.

Because inferences about consumer heterogeneity are conditional on maintained
functional form assumptions, it seems imperative that some effort should go into ex-
ploring the robustness of findings to distributional assumptions. To date, there has been
only a modest amount of effort along these lines [see Ackerberg and Rysman (2005),
Berry (2001), Bajari and Benkard (2001, 2005) and the references therein], and much
more work remains to be done. In their empirical work, BLP appear to prefer the use
of normal distributions because it simplifies computations. However, their computations
appear to be simplified more by their assumption that marginal utilities are independent,
than their assumption of normality.

7.4.3. Unobserved “product quality”

The unobserved car attributes, the ξjt , are critical stochastic components of BLP’s ran-
dom utility model. Although the literature sometimes refers to the ξjt as unobserved
quality, they can be any combination of product-specific unobservables that enter con-
sumers’ utility in the same way. The relevance of the ξjt is perhaps best understood
by returning to the cross-section logit model where δj = ξj and ξ0 = 0. In this case,
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demands have the form

(95)ln qj − ln

(
M −

J∑
j=1

qj

)
= ξj .

From this equation we see that the ξj act as demand “errors” that insure that the
econometric choice model’s predicted market shares match the observed market shares.
Goldberg accounts for the presence of these ξj through her market segment, country-
of-origin, and brand fixed effects. In BLP’s model it is essential that the predicted and
observed market shares match. This is because BLP’s theoretical model presumes that
(unconditionally) each consumer’s decision can be represented by the same multino-
mial choice probabilities: (S0, S1, . . . , SJ ). Thus, with a sample size of approximately
100 million, there should be no appreciable difference between their model’s predictions
and observed market shares. The only way to guarantee that there will be no difference
is to have a sufficiently rich parameterization of demand. The ξ ’s achieve just this.

As errors, the ξ are subject to arbitrary normalizations. To understand better why
normalizations are necessary, let us return to the cross section logit model. Assume that
δj = xjβ + ξj , where xj is a K × 1 vector of product attributes. Now, the J equations
in (87) become

(96)ln qj − ln

(
M −

J∑
j=1

qj

)
= xjβ + ξj .

Assuming M is known, we have J linear equations in J +K unknowns: (ξ1, . . . , ξJ , β).
We therefore require K linearly independent restrictions in order to estimate the mar-
ginal utility parameters uniquely. One choice would be to set K of the ξ ’s to zero. BLP
instead opt to place moment restrictions on the distribution of the ξ .18 Although they do
not motivate their restrictions in any detail, the computational rationale for the restric-
tions is readily apparent. Specifically, BLP assume that the ξ are mean independent of
the observed characteristics of new cars: E(ξj | x1, . . . , xJ ) = 0. This moment condi-
tion is useful because it mimics the usual least squares moment conditions, and thus, if
valid, could be used to estimate the marginal utilities (the β’s) in (96). In least squares,
the population moment conditions are replaced by K sample moment conditions.

While imposing the population moment condition E(ξj | x1, . . . , xJ ) = 0 has a use-
ful computational rationale, it also has nontrivial economic implications. In particular,
if we view ξ as an unobserved product attribute such as product quality, then we have to
wonder why it would not be correlated with observable attributes. While we can think
of some attributes that might be uncorrelated, such as the number of doors on a car,

18 In principle, BLP also could have considered other restrictions on the distribution of the ξ . For example,
BLP could integrate out the population market share conditions over a distribution for the ξj . Such an ap-
proach is problematic when the ξj are correlated with observables such as price because the supply side of
their model suggests a complex equilibrium relationship between price and the ξj .
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if xj were to include the new car’s price, then there would be a clear cause for concern.
The concern is one of unobserved heterogeneity – the firms observe the quality that
consumers assign to cars and use this information to set price. (Intuitively, firms will set
higher prices for cars with higher quality.)

BLP explicitly recognize this problem and do not include price in the list of con-
ditioning variables x1, . . . , xJ . This means that they must introduce at least one other
moment condition to estimate the price coefficient. As in the Marshallian demand case,
BLP in principle have many candidate variables they can use to form moment condi-
tions, including the attributes of other vehicles. These other attributes effectively act as
“instruments” for price and any other endogenous attributes.19

Another question that arises in this type of study is: What guarantees that nonprice
attributes are valid as instruments? This is the same issue that arose in our discussion of
neoclassical demand systems. One might well imagine that car manufacturers choose
attributes, such as air conditioning and size, in concert with a new car’s quality (or
other unobservable characteristics). If this is the case, then these attributes are no longer
valid instruments. To obtain valid instruments, we would presumably need to model the
determinants of product attributes.

In their empirical work, BLP base estimation on sample moment conditions involving
the demand and marginal cost errors (discussed below). As can be seen from the market
share expressions in Equation (80), in general it is not possible to compute closed form
expressions for the δjt and ξjt that enter the population moment conditions. This means
in practice that the researcher must numerically invert Equation (80) or use a fixed point
algorithm to solve for the ξjt . While the integral in (80) is straightforward conceptually,
it is difficult to compute in practice. As an alternative, BLP use Monte Carlo simulation
methods to approximate the right-hand side integral. Specifically, they use importance
sampling methods to estimate the integral in (80). They then recover the δjt using a
fixed-point algorithm. From estimates of the δjt , the ξjt can be recovered from the
residuals of an instrumental variable regression of δjt on product attributes.

7.4.4. Cost function specifications

To this point, we have said little about the cost side. In principle, one could estimate
the demand parameters without using information from the supply side. BLP appear to
add the supply side for at least two reasons. First, it contributes variables that can be
used in the orthogonality conditions that identify the demand parameters. Specifically,
their cost-side model contributes two additional instruments (a time trend and miles
per gallon). Following the approach discussed above for constructing demand error in-
struments, BLP now have 21 (seven instruments times 3) sample moment conditions

19 For example in the cross section logit model we can replace the moment condition E(ξj | pj ) = 0 with
E(ξj | xk1) = 0, where xk1 is an exogenous characteristic of car k. This again gives us K moment equations.
The resulting estimator is indirect least squares, in which xk1 serves as an instrument for price.
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for the cost-side error.20 Second, by having a supply side model, they can study how
manufacturers’ marginal costs seem to vary with a model’s attributes.

The stochastic specification of the cost-side is fairly straightforward. Sellers equate
the marginal revenues for each model with the constant marginal costs of producing that
model. The researcher estimates sellers’ marginal revenues by differentiating the market
share functions. As in other oligopoly models, BLP decompose product marginal cost
into an observable and an unobservable component. Specifically, they assume that the
natural logarithm of marginal costs depends linearly on a set of cost variables and an
additive error. This error is also used to form moment conditions under the assumption
that its mean does not depend on new car attributes or cost variables.

7.5. Summary

BLP report estimates for several demand models. They provide elasticity and markup
estimates for different new car models. They argue that these estimates roughly accord
with intuition. They also make a case for their unobserved heterogeneity specification.
Because of the complexity of their model, it is harder for the authors to provide a sense
for how their various maintained assumptions impact their results. For instance, the
markups are predicated on the Bertrand–Nash assumption, the choice of instruments,
the attribute exogeneity restrictions, the stationarity and commonality of unobserved
product attributes. Subsequent work, including work by BLP individually and jointly
has sought to relax some of these restrictions.21 Ongoing work by others is exploring
the consequences of other assumptions in these models, and we leave it to others to
survey this work.22

In concluding this section on differentiated product demand estimation, we want to
come back to some of the themes of our structural estimation framework. Previously we
emphasized that researchers should evaluate structural models in part by how well the
economic and statistical assumptions match the economic environment being studied.
Differentiated product models pose an interesting challenge in this regard, both because
they are difficult to formulate and because data limitations often limit the flexibility that
one can allow in any particular modeling format. At present, there are few standards,
other than crude sanity checks, that researchers can use to compare the wide array of as-
sumptions and estimation procedures in use. For example, to date researchers have used
both neoclassical demand and discrete choice models to estimate price elasticities and
markups for ready-to-eat cereal products. Ready-to-eat cereal products would hardly
seem to fit the single purchase assumption of current discrete choice models. Neoclas-
sical models suffer from their reliance in representative-agent formulations. There also

20 Because of near collinearity concerns, they drop two of these moment conditions in estimation. That is,
they base estimation on the 5 times 3 (= 15) demand instruments plus 2 times 3 (= 6) cost instruments less
two demand-side instruments.
21 For example, Berry (2001) and Berry, Levinsohn and Pakes (2004).
22 For example, Ackerberg and Rysman (2005), Bajari and Benkard (2001), and Bajari and Benkard (2005).
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have been few attempts to date made to investigate the finite sample or asymptotic per-
formance of different estimation procedures.23

8. Games with incomplete information: Auctions

Over the last thirty years, economic theorists have explored a variety of game-theoretic
models in which private or asymmetric information impacts economic behavior. Ex-
amples include adverse selection, contracting and auction models. In these models,
agents have private information about their “type” (e.g., productivity, health status, or
valuation) and general information about the joint distribution of other agents’ types.
Agents may also face general uncertainty about their market environment (e.g., uncer-
tainty over prices or aggregate productivity). Within this environment, agents use their
private information strategically. The econometrician typically does not know agents’
private information, market uncertainties, or the distribution of agents’ private infor-
mation. Thus, structural models of privately-informed decisions must take into account
not only unobserved private information, but also how agents’ actions are influenced by
private information.

Our goal here is to illustrate how the framework in Section 4 can be used to compare
different econometric models of privately informed agents. Much of this discussion
focuses on auction models. Auctions have recently received enormous attention in IO,
and continue to serve as a proving ground for empirical models of privately informed
agents. We next discuss empirical models of regulated firms’ decisions and regulator
behavior. These models share similarities with auction models, but also pose special
modeling issues.

8.1. Auctions overview

Our discussion of inter-firm competition models emphasized that it is economic the-
ory that allows one to move from estimates of the conditional joint density of prices
and quantities, f (P,Q | X,Z), to statements about firms’ demands, firms’ costs and
competition. This same principle applies to models with privately informed agents – ab-
sent economic assumptions, nothing can be said about agents’ behavior or their private
information.

In auction studies, economists usually know:

1. each auction’s format;
2. the winning bid, and possibly all bids: B = (b1, b2, . . . , bN);

23 Indeed, with panel data on products, where new products are being introduced and old ones abandoned, it
is unclear what would constitute a large sample argument for consistency or efficiency. See, however, Berry,
Linton and Pakes (2004).



4362 P.C. Reiss and F.A. Wolak

3. item-specific or auction-specific information X (e.g., number of potential bidders,
reservation price, size, quality, date of auction); and

4. bidder-specific information, Z = (z1, z2, . . . , zN) (e.g., bidders’ identities and
size).

In ideal applications, the economist has complete information on (Bi,Xi, Zi) for a large
number (i = 1, . . . , I ) of related auctions. Thus, the number of bidders and potential
bidders is known; there are no missing bids; and there are no Xi or Zi that the bidders
observe that the econometrician does not. Absent an economic model of the auction,
the best an empiricist can do with these ideal data is recover a consistent estimate of
g(Bi | Zi,Xi) – the conditional density of bids given bidder and auction characteristics.

The conditional density g(Bi | Zi,Xi) is a statistical object. Its dimensionality de-
pends on the number and identity of bidders, and on the variables in Xi and Zi . The
dimension of g(·) is critical because in order to estimate g(·) nonparametrically and
precisely, a researcher will need a large sample of similar auctions. The auctions must
be similar in the sense that they have the same number of bidders and the same X and
Z variables. If this is not the case, then the researcher must divide the sample so as to
estimate a separate nonparametric function for each combination of bidders, and each
set of X and Z variables. For this reason, and because auction data are rarely ideal, em-
piricists typically do not estimate g(Bi | Zi,Xi) nonparametrically. Instead, they use
economic theory to place considerable structure on g(Bi | Zi,Xi).

In what follows we first describe how, with the aid of economic theory, one can re-
cover economic objects from nonparametric estimates of g(Bi | Zi,Xi) (or objects that
can be derived from the density). This discussion illustrates how differing combinations
of economic and statistical assumptions can be used to identify economic constructs.
Because in practice it may be difficult or impossible to estimate g(Bi | Zi,Xi) precisely,
we next discuss why one may want to assume a parametric form for g(Bi | Zi,Xi).

We begin our discussion of auction models by observing that there is a strong sim-
ilarity between the first-order conditions estimated in homogeneous-product oligopoly
models (discussed in Sections 5 and 6) and the first-order conditions of auction models.
The two types of models employ substantially different stochastic assumptions how-
ever. In structural oligopoly models, the stochastic structure typically comes from the
first, second and fourth sources of error described in Section 4 – namely, researcher
uncertainty about the economic environment, firm uncertainty about consumers, and
measurement error. By contrast, in most auction models, the stochastic structure rests
exclusively on the second source of model error – “agent uncertainty about the eco-
nomic environment” – and that uncertainty affects strategic interactions. Understanding
the ramifications of these different stochastic specifications is key to understanding how
structural modelers go about recovering agents’ unobserved private information from
data.

In auctions, we shall see it is also important to distinguish between two types of
“agent uncertainty”. One is private information. In this case, bidders know something
that directly affects their probability of winning. The bidders are uncertain, however,
about the other bidders’ private information. The other type of uncertainty is common
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to all bidders. In this case, bidders do not know the “common” value of the auctioned
item. (They also may have different, privately held opinions about the value of the
item.)

Auction models differ not only in what agents know before they bid, but also accord-
ing to what they assume about whether one bidder’s information is useful to another
bidder. In the simplest models, agents’ private information is independently distributed
and useless to other agents. In more general settings, nonnegative correlations or “af-
filiation” among private valuations may allow bidders to use other bidders’ behavior
to infer something about the unknown value of the item being auctioned. As we shall
see, relationships among bidders’ information can have an important bearing on what a
researcher can recover from auction bids.

8.1.1. Descriptive models

IO economists have devoted substantial attention recently to analyzing auction bid data.
Hendricks and Paarsch (1995), Laffont (1997), and Hendricks and Porter (in press) pro-
vide excellent introductions and surveys of empirical research on auctions. Prior to the
early 1990s, empirical research on auctions largely used regressions and other statistical
techniques to describe how bids, or bid summary statistics, varied with auction-specific
and bidder-specific variables. Of particular interest was the effect that the number of
bidders had on the level and dispersion of bids, as the number of bidders was seen to be
related to the extent of competition.

The results of many of these descriptive studies were difficult to interpret. This was
because it was often unclear how the data or methods in these studies disentangled dif-
ferences in bids due to: observable or unobservable characteristics of bidders; strategic
considerations; or simply differences in bidders’ beliefs about other bidders’ valua-
tions. These problems were perhaps due to the generality in which some auction models
were originally cast. Additionally, these theories were not originally developed to place
testable restrictions on bid distributions. As auction theories were refined and extended
in the late 1970s and 1980s, empiricists began to find the theory more useful for com-
paring bids from different auctions and evaluating bid summary statistics.

Hendricks and Porter (1988) provide a compelling example of how empirical re-
searchers adapted these new auction models to data. Hendricks and Porter used bids
from US government offshore oil and gas lease auctions to study the effect that the
presence of more-informed bidders had on the distribution of bids. In their data, they
identified more-informed bidders as those bidders who owned tracts adjacent to the
auctioned tract. Their logic is that, because geologic formations with oil and gas often
extend over large areas, exploration activities on adjacent tracts are likely to confer an
informational advantage. To develop hypotheses, Hendricks and Porter devised a the-
oretical model of how less-informed bidders will behave in the presence of a single
more-informed bidder. In their model, there is common uncertainty about the future
value of the auctioned tract (say because the future price of oil and the amount of re-
sources in the ground are unknown). Their theoretical model yields an equilibrium in
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which the less-informed bidders use mixed strategies and the more-informed firm uses
a pure strategy. From this model, they are able to derive properties of the distribution of
the maximum bid by a less-informed bidder. They compare this distribution to an ex ante
distribution of informed bids. The two differ in several ways, including the probability
that there will be no bid or a bid at the reservation price. They also derive results for
the probability that the more-informed bidder will win and the profits of more-informed
and less-informed bidders.

In their empirical work, Hendricks and Porter account for several ways in which lease
auctions differ from the auctions in their theoretical model. First, their model assumes
the presence of one informed bidder, but in their data there can be multiple informed
bidders. Second, their results are cast in terms of the distribution of the maximum bid
by a less-informed bidder. Unfortunately, they do not know the exact structure of this
distribution. These realities lead Hendricks and Porter to estimate a flexible parametric
joint density of the maximum bid submitted by the more-informed (BM ) and maximum
bid submitted by the less-informed (BL) bidders. They use these estimated densities to
examine certain predictions of their theoretical model. Mapping what they did to our
notation, Hendricks and Porter cannot estimate and test restrictions on g(Bi | Zi,Xi),
but they can estimate a joint density for two elements of Bi , the maximum bids of the
more-informed, BM , and less-informed, BL, bidders.

Another practical reality is that the government sets reserve prices (or minimum bids)
in these auctions. While Hendricks and Porter argue that the presence of reserve prices
does not affect the equilibrium bid functions, as a practical matter Hendricks and Porter
never observe more-informed and/or less-informed bids below the reserve price. That
is, the reserve prices truncate the conditional density of g(Bi | Zi,Xi). This leads Hen-
dricks and Porter to model the truncated distribution of maximum bids. Specifically,
they assume that absent truncation, the joint distribution of BM and BL follows a bi-
variate lognormal distribution. To handle reserve prices, they work with scaled bids:
(yMk, yLk)

′, where they assume

yik = ln(Bik/Rk) = (X′
kZ

′
ik

)
θi + εik,

i = (M,L), Rk is the reserve price for auction k, and (εMk, εLk)
′ are independent and

identically distributed normal random errors. The variables in Xk and Zik contain tract
and sometimes bidder-specific information for each auction.

The presence of the reserve price means that Hendricks and Porter only observe the
yik when they are greater than or equal to zero. This type of truncation can readily be
accounted for in a maximum likelihood setting using tobit-like models. In their empir-
ical work, they develop a likelihood-based model for the scaled bids (yMt , yLt ) that
takes into account truncation and correlation in the bid unobservables (εMt , εLt )

′. With
this amended model, they test which elements of X and Z enter the joint density of
(yMt , yLt ). They find a variety of results supporting their theoretical model. For in-
stance, conditional on a set of auction-specific observables (X), the participation and
bidding decisions of informed firms are more highly correlated with measures of ex post
tract value.
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8.1.2. Structural models

Hendricks and Porter’s paper illustrates many of the important challenges that structural
modelers face in trying to match theoretical auction models to data. Their paper also
illustrates how features of the auction, such as reserve prices, may require the econo-
metrician to make compromises. Before we can begin to evaluate different structural
econometric models of auctions, we first describe the economic objects structural mod-
elers seek to recover from auction data. After describing these economic primitives, we
turn to describing various economic and statistical assumptions that have been used to
recover them.

The primary goal of most structural econometric models of auctions is to recover
estimates of:

1. bidders’ utilities U = (u1, . . . , uN) (or the joint density fU(U) of these utilities);
and

2. information about the uncertainties bidders face.

In single-unit auctions, bidders are modeled as receiving a nonzero utility from winning
that depends on the price bidder j paid, Pj . Depending on the type of auction being
modeled, bidders’ utilities from winning may also depend on unobservables, such as
the ex post value of the auctioned item. In order to proceed, the researcher thus must
make some assumption about individual risk preferences. Most models assume bid-
ders are risk neutral. In the risk neutral case, bidder j ’s utility can then be modeled as
the difference between the ex post value for the object and the price the winner pays:
uj = vj − Pj .

There are several critical things to note about bidders’ utilities. First, it is the price
paid that enters the utility function. Depending on the auction rules, there can be a differ-
ence between the amount bidder j bids, Bj , and the amount they pay, Pj . For example,
in a second-price (Vickery) purchase auction, the winner pays the second-highest price,
which is less than or equal to what they bid.24 Second, as we mentioned earlier, there
can be a difference in bidder j ’s ex ante and ex post private assessment of the value of
the item. When there is no difference between bidder j ’s ex ante and ex post private
assessment of the value of the item, we have a private values (PV) model. In this case,
the vj and their joint density, f (v1, . . . , vN) = f (V ), are direct objects of interest.
When there is a difference between bidder j ’s ex ante and ex post private assessment
of the value of the item, this is modeled as being due to “common values”, v. These
common values are unobserved by the bidders ex ante, but known ex post. To account
for differences in bids with common values, the bidders are assumed to possess private
information or signals, sj . These signals are assumed generated from a distribution that
is conditioned on the ex post common values v. Thus, in a common values setting, the

24 We use the term purchase auction to refer to auctions where higher bids increase the likelihood of winning.
Conversely, procurement auctions are auctions in which lower bids increase the chances of winning.
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economic objects of interest are the signals S = (s1, . . . , sN ), their joint conditional
density f (S | v), the common values v, and the marginal density of the common val-
ues fv(v).

To summarize our discussion of auction models: there are three main dimensions
along which existing auction models differ:

1. Bidders are uncertain about the ex post value of the item.
2. Bidders’ private information signals are correlated.
3. Bidders are symmetric in their uncertainties about other bidders’ private informa-

tion.

In an auction where bidders are symmetric, we can summarize the major types of auc-
tion models and their primitives in a two-by-two table. Table 1 summarizes the two
major differences in the way theorists and empiricists have approached modeling auc-
tion bids. The first row of each cell gives the acronym describing the auction; the second
and third rows give the information and valuation objects, and the related density func-
tions, that a structural modeler seeks to recover.

Our characterization of the affiliated values (AV) model follows Milgrom and Weber
(1982) and McAfee and McMillan (1987). In an AV model, bidders receive private
signals S = (s1, . . . , sN ) about an item’s value and there are also common unknown
components v. Ex ante, each bidder j is uncertain about the value of the item. Bidders’
utilities are (symmetric) functions of the common components v and all bidders’ private
information signals, S. That is, vj = V (sj , Sj , v), where Sj contains all signals but
bidder j ’s. In these models, bidders’ private valuations and the common components are
assumed affiliated – which loosely means that if a subset of them are large, it is likely
the remainder are large.25 Because the equilibria of affiliated values (AV) models are
usually very difficult to characterize, there have been few attempts to estimate general
affiliated value models.

Table 1
Private information (conditionally) independent

YES NO

YES
PCV

fv(v) fs | v(sj | v)

s1, . . . , sN , v

AV
f (S, v)

s1, . . . , sN , v

Uncertainty
in final value

NO
IPV

fs(sj )

s1, . . . , sN

APV
fS(S)

s1, . . . , sN

25 See Milgrom and Weber (1982) for a more complete discussion and references.
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IO economists have instead focused on estimating the special cases of the AV model
described in the remaining three cells. The bottom row of the table describes two private
values (PV) models. In a PV model there is no uncertainty to the bidder’s valuation
because bidder j observes sj prior to the auction and thus knows vj . Bidder j still faces
uncertainty in a PV auction, however, because other bidders’ valuations are unknown.
In an asymmetric independent private values (IPV) model, bidders’ presume that the
other bidders’ values are independently drawn from the marginal densities fj (sj ). In
an affiliated private values (APV) model, nonnegative correlation is allowed. When the
bidders share the same beliefs about each others’ private valuations, we can represent
the density of valuations in a symmetric APV model by f (s1, . . . , sN ).

Another special case of interest is a pure common values (PCV) model. In contrast
to the private values model, in a PCV model, bidders do not know the value of the item
before they bid. All bidders, however, will ex post value the item the same. Thus, it is
as though there is a single common component v and Vj (S, v) = Vk(S, v) = v for
all signals. Such a situation might characterize a situation where bidders are purchasing
an item for later resale. To calculate the expected value of winning in a PCV auction,
the researcher requires assumptions about the joint distribution of the known signals
and the ex post value. To facilitate calculations, the usual assumptions are that there
is a commonly known prior distribution for v, fv(v) and that bidders’ private infor-
mation conditional on the signal are (symmetrically) conditionally independent – i.e.,
fS|v(S | v) =∏N

j=1 fs|v(sj | v).
We now discuss situations where one can recover the objects listed in this table. The

standard approach to developing a structural auction model is to derive equilibrium
bid functions for each bidder given each bidder’s utility function, the bidder’s private
signal, other bidders’ strategies and the bidder’s beliefs about the other bidders’ signals.
Provided these Bayesian–Nash bid functions are increasing in the unobservable private
information and any common values, the empiricist can potentially recover estimates of
the unobservables. That is (in a slight abuse of notation), the structural modeler hopes
to relate observed data on bids in auction i, Bi , to equilibrium bid function equations:
B1(s1i ), . . . , BN(sNi). While our notation suggests that the equilibrium bid function for
bidder j , Bj (sj ) only depends on the bidder’s private information sj , the equilibrium
function also depends on the distribution of private information and common values,
F(S, v). This dependence means that in practice we cannot determine the specific form
of Bj (sj ) without either (a) making a parametric assumption about F(S, v), or (b) using
an estimate g(Bi | Zi,Xi) to recover information on the form of F(S, v).

In nearly all empirical auction models, the process of drawing inferences about the
objects in the above table is facilitated by the stark assumption that the only source of
error in auction bids are S and v. That is, most empirical models of auctions do not allow
for measurement errors in bids or unobserved heterogeneity in the valuation distribution
across auctions.26

26 There are exceptions. Paarsch (1992) attempts to model unobserved heterogeneity in timber auctions.
Krasnokutskaya (2002) models unobserved heterogeneity in highway procurement auctions.
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8.1.3. Nonparametric identification and estimation

Recently, structural modelers have devoted substantial energy to the problem of flexibly
estimating the joint density of private information and a single common value com-
ponent – f (S, v). These efforts reflect the practical reality that the researcher rarely
knows ex ante what specific f (S, v) bidders used. While this ignorance might seem to
favor the researcher estimating general nonparametric density functions for affiliated
random variables, such models have proven computationally impractical. This has led
researchers to focus on establishing nonparametric identification and estimation results
for the special cases described in the previous table.

8.1.3.1. Private values auctions Symmetric independent private values auctions
present the simplest identification issues. In a symmetric IPV model, the researcher
seeks to recover an estimate of the marginal density of private information f (sj ) (or
equivalently, f (vj )) from bid data. The main result in this literature is that data on win-
ning bids are sufficient to nonparametrically identify f (vj ) and estimate vj . To gain
an intuitive understanding of what is involved in deriving nonparametric identification
results for private information models, it is useful to begin by considering what happens
when there is no private information. By ignoring agent uncertainty and agent beliefs,
we can isolate the effect that the econometrician’s uncertainty has on inferences. To do
this, we compare two procurement auctions.

The following example auction draws an analogy between the problem of how to
estimate firm costs in a Bertrand oligopoly setting and the problem of how to estimate
the distribution of private values in an IPV setting.

EXAMPLE 10. In a symmetric IPV procurement auction, the bidders’ valuations (or
in this case costs) are drawn independently from the same marginal distribution f (cj ).
Each bidder j only gets to observe their cost cj . Suppose that each bidder can observe
all bidders’ costs, C = (c1, . . . , cN) so that each bidder knows the identity of the lowest
cost bidder. Because no bidder will find it profitable to bid less than his cost, it is easy
to see that in a Nash equilibrium the lowest-cost bidder will win the auction by bidding
(slightly less than) the second-lowest cost.

This equilibrium is analogous to what would happen in a homogeneous-product
Bertrand oligopoly. In a homogeneous-product Bertrand market where firms have dif-
ferent constant marginal costs, the firm with the lowest marginal cost will end up
supplying the entire market at a price equal to the marginal cost of the second-lowest
cost firm.

Now consider what an economist could learn by observing equilibrium prices
in a set of Bertrand markets. Because the economist knows the equilibrium price
equals the marginal cost of the second-lowest cost competitor, they can use a
random sample of market prices to estimate the density, f (c[2:N ] | X,Z), of the
second-lowest marginal cost. Moreover, as we shall see shortly, it will be possi-
ble under certain assumptions for the economist to recover the density of mar-
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ginal costs, f (c | X,Z), from f (c[2:N ] | X,Z). Thus, this example suggests how
an economist might recover information about bidders’ valuations in an IPV auc-
tion from only data on winning bids. The key simplifying assumption, which we
shortly relax, is that we assumed that the Bertrand competitors were not privately
informed about their costs. This makes the solution of the Bertrand and IPV auc-
tion very simple in that all but the winning bidder have an incentive to bid their true
costs.

Before introducing private information among bidders, it is useful to explore what
would happen if the economist had more data than just equilibrium price. For ex-
ample, suppose that the Bertrand market followed the format of an English but-
ton auction. In a descending-price English button auction, all bidders start the auc-
tion facing each other with their fingers depressing buttons. The seller then an-
nounces continuously lower prices starting from a very high price. Bidders drop out
of the auction when they remove their fingers from the buttons. The analogy in a
Bertrand market would have prices start out at very high levels with all firms be-
ing willing to supply the market. As firms continuously undercut one another, firms
would drop out once the price fell to their marginal cost. This process would con-
tinue until price hit the marginal cost of the firm with the second-lowest marginal
cost. At this point, the firm with the second-lowest marginal cost would drop out
and the firm with the lowest cost would supply the entire market at this price.
By observing the prices at which all firms dropped out, the economist could di-
rectly infer the marginal costs of all but the most efficient firm. Thus, the economist
could use the drop-out prices to improve their estimates of the density of marginal
costs f (cj ).

This next example considers the effect that correlation among private values has
on inferences made from bid data. To do this we compare an APV model to a
homogeneous-product, quantity-setting oligopoly model. Again we assume that the
oligopoly firms’ and bidders’ costs are known. Later we will draw a more formal anal-
ogy between this oligopoly example and a PV auction.

EXAMPLE 11. Consider an N -firm homogeneous product oligopoly in which firms’
constant marginal costs are drawn independently from the joint density
f (c1, c2, . . . , cN) = f (C). Let P(Q) denote the inverse market demand curve, qi

the output of firm i, and let Q = ∑N
i=1 qi denote industry output. Assume, as in the

previous example, that the suppliers observe C, the vector of marginal costs, before they
choose quantity to maximize profits (given the quantity choices of their competitors).
The profits of each firm are: πi(Q) = (P (Q) − ci)qi . The optimal Nash equilibrium
quantities solve the N first-order conditions:

(97)P = ci − ∂P (Q)

∂Q
qi.

As we shall see shortly, these first-order conditions closely parallel the first-order con-
ditions that determine equilibrium bids in private value auctions.
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Using the implicit function theorem, we can solve these equations for quantities as
a function of all firms’ costs. Similarly we can use a change-of-variables formula to
derive the joint density of (q1, q2, . . . , qN) from the joint density of (c1, c2, . . . , cN).
Both of these operations require a nonvanishing Jacobian, which amounts to an identi-
fication condition for obtaining the joint density of firms costs, f (c1, c2, . . . , cN), from
the joint density of (q1, q2, . . . , qN). Analogously, in an affiliated private values auc-
tion model, there are a set of first-order conditions that relate the privately-observed
costs and assumed joint distribution of costs to the optimal bids. [See, for example, Li,
Perrigne and Vuong (2002).] By observing a large sample of independent and identi-
cal auctions, one could construct an estimate of the joint distribution of the equilibrium
bids, g(B). The researcher could then substitute this estimate into the first-order condi-
tions and (provided certain technical conditions are satisfied) use it to recover estimates
of the unobserved costs.

Although the above discussion is heuristic, it makes clear that identification hinges on
having sufficient similarities in the sampled auctions.27 As soon as the sampled auctions
differ in observable or other unobservable ways, there may be no practical way by which
the researcher can reliably recover f (c1, c2, . . . , cN) from the observed bids.

This point is perhaps easier to appreciate by considering how researchers have esti-
mated the distribution of valuations nonparametrically in an IPV setting. Guerre, Per-
rigne and Vuong (2000) were the first to devise techniques for recovering a consistent
estimate of the underlying distribution of IPV model valuations without making specific
parametric assumptions. They model the behavior of N ex ante identical risk neutral
bidders in a first-price auction. In the case of a procurement auction, this amounts to
bidder j maximizing the expected profits

(98)E
[
πj (b1, b2, . . . , bN)

] = (bj − cj ) Pr(bk > bj , ∀k �= j | cj ),

by setting

(99)bj = cj − Pr(bk > bj , ∀k �= j | cj )

(
∂ Pr(bk � bj , ∀k �= j)

∂bj

)−1

.

Here Pr(bk � bj , ∀k �= j) is the probability that supplier j wins with a low bid of bj

and cj is bidder j ’s private cost.
In the symmetric IPV case, the equilibrium bid function simplifies to

(100)bj = β(cj | F,N) = cj +
∫∞
cj

[1 − F(τ)]N−1 dτ

[1 − F(cj )]N−1
,

where here we use β(·) to denote the equilibrium bid function, F(cj ) is the distribution
function of private cost (value) for the item being auctioned. This expression relates the

27 For illustrative discussions of identification issues see Laffont and Vuong (1996), Guerre, Perrigne and
Vuong (2000), and Athey and Haile (2002).
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equilibrium bids explicitly to the bidder j ’s own cost cj and the distribution function
F(·) of all bidders’ marginal costs. Because by assumption this expression holds for
each of the N bidders across each of the I auctions, the researcher could construct
and compare separate estimates of F(cj ) from different random collections of observed
bids.

Guerre, Perrigne and Vuong (2000, p. 529) describe a related nonparametric pro-
cedure as follows. Assuming no measurement error in the bid data, a straightforward
application of the change-of-variables formula yields an expression for the density of
each bid b:

(101)g(b) = f (ĉ)

|β ′(ĉ)| = f (β−1(b))

|β ′(β−1(b))|
where ĉ = β−1(b) is the inverse of the equilibrium bid function, b = β(ĉ), β ′(·) is
the first derivative of b = β(ĉ), and f (c) is the density associated with F(c). Thus,
ĉj = β−1(bj ) is the private cost given the observed bid bj . To apply this formula, they
require that the bid function be strictly monotone.

Equation (101) relates the density of observed bids to the unknown density of private
costs, apart from the derivative of the equilibrium bid function in the denominator. By
differentiating (100) one can obtain an expression for this derivative. Using this expres-
sion to substitute out the integral in (100), we obtain

(102)β(cj | F, n) = cj + β ′(cj )[1 − F(cj )]
(N − 1)f (cj )

.

Substituting (101) into this expression and making use of G(bj ) = F [β−1(bj )] gives

(103)cj = bj − 1

N − 1

1 − G(bj )

g(bj )
.

Here G(b) is the distribution of bids, g(b) is the density of bids, and N is equal to the
number of bidders. Thus, to recover the unobserved private costs on the left-hand side,
the researcher only requires estimates of the distribution function and density function
of bids. Under the assumption that there are no observable or other unobservable differ-
ences across auctions, and that G(·) and g(·) are the same across auctions, the researcher
can pool data on all bids to estimate G(·) and g(·) nonparametrically. From (103), the
researcher can estimate cj . Once the researcher has estimates of the cj , nonparametric
smoothing techniques can again be used to produce an estimate of the density f (c) or
distribution F(c) of private costs.

This same strategy can be used to estimate the density of private values nonparamet-
rically if the researcher only observes winning bids. In this case, Equation (101) must
be changed to account for the fact that the winning bid in an IPV procurement auction
is that of the lowest-cost bidder. Because the winning bidder has cost c(1:N), the density
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of the winning bid bw is

(104)h(bw) = ḡ(β−1(bw))

β ′(β−1(bw))
, where ḡ(z) = N

[
1 − G(z)

]N−1
g(z),

and z = c(1:N).
The strength of this nonparametric approach is that it does not require parametric

assumptions about unobserved valuations. To see why this flexibility is important eco-
nomically, it is useful to compare Equation (99)

(105)bj = cj − Pr(bk > bj , ∀k �= j | cj )

(
∂ Pr(bk � bj , ∀k �= j)

∂bj

)−1

to the standard oligopoly mark-up equation

P = ci − ∂P (Q)

∂Q
qi.

In both equations, the second term on the right-hand side determines the markup over
marginal cost. The numerator of Equation (105) is analogous to qi , the quantity sold.
The denominator is the decrease in the probability of winning the auctioned item with
an increase in the bid, which is analogous to the decrease in quantity with an increase in
price. Just as it was important in oligopoly models to use a demand model that yielded
flexible demand elasticities, so too it is important to have a distribution function F(·)
that yields flexible bid mark-ups.

There are of course costs to estimating G(·) and F(·) flexibly using nonpara-
metric methods. Chief among them is that the researcher will require data on a
large number of similar auctions. In practice the researcher may not be able to
reliably estimate F(·) when there are more than a few dimensions of observable
auction (X) or bidder (Z) heterogeneities. Moreover, reserve prices introduce the
similar truncation issues to those in Hendricks and Porter (1988). Here, trunca-
tion of the density typically will require the use of trimming or other data ad-
justment procedures to obtain an accurate representation of the density close to
reserve prices. Subsequent work has explored some of the issues, but substantial
problems remain in applying nonparametric techniques to standard auction data
sets with differing number of bidders and substantial observed bidder heterogene-
ity.

The structural modeling literature on auctions also has been concerned with the more
general question of whether it is possible to use bid data to discriminate between differ-
ent private information specifications. Given the analysis above, such questions would
seem to be relatively easy to resolve by matching observables to unobservables. For
example, it seems at first glance plausible that a general AV model is unidentified be-
cause one only has N bids from which to infer the N + 1 unobservables – the N costs
c1, c2, . . . , cN and the general valuation v. Laffont and Vuong (1996) were the first to
consider this question more formally and establish nonparametric identification results.
They showed that for the same number of risk neutral bidders N , that any symmetric
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AV model was observationally equivalent to some symmetric APV model. Moreover,
they showed that while the symmetric APV and IPV models were nonparamertrically
identified, the symmetric common values model was generally unidentified. Athey and
Haile (2002) and others have examined the sensitivity of these results to different mod-
eling assumptions and data sets. In particular, several authors have considered whether
variation in the number of bidders can add additional identifying information.

8.1.3.2. Pure common value auctions In a pure common value auction, each bidder’s
private information, si , is an imperfect signal about the future value of the item. This
additional source of uncertainty introduces another object of estimation – bidders’ prior
distribution on the value of the item, fv(v). To see how inferences are made about this
prior and the density of private information given v, we consider a common values
procurement auction.

In a pure common values procurement auction, all bidders have the same ex post
cost c of performing a task. By assumption, each bidder j has an unbiased cost signal
sj of the cost of the project. This signal has marginal density f (sj | c) and conditional
distribution function F(sj | c). In a PCV model, the bidders’ private information signals
are assumed conditionally independent and all agents are assumed to have the same
prior fc(c) on the cost c.

In a Bayesian–Nash equilibrium, bidder j chooses bj to solve the following expected
profit maximization problem:

(106)max
bj

Π(bj , sj ) =
∫ ∞

−∞
(bj − c)

[
1 − F

(
β−1(bj ) | c

)]N−1
h(c | sj ) dc.

In this maximization problem, bj −c is bidder j ’s profit from winning, [1−F(β−1(bj ) |
c)]N−1 is bidder j ’s probability of winning given cost c, and h(c | sj ) is the posterior
density of c given the signal sj . Bidder j ’s posterior density is

(107)h(c | sj ) = f (sj | c)fc(c)∫∞
−∞ f (sj | c)fc(c) dc

.

The symmetric Bayesian–Nash equilibrium bid function βc(sj ) is obtained from the
first-order condition for the maximization problem. It satisfies the following differential
equation

β ′
c(sj ) − βc(sj )p(sj ) = q(sj ),

where

p(sj ) =
∫∞
−∞(N − 1)[1 − F(sj | c)]N−2f 2(sj | c)fc(c) dc∫∞

−∞[1 − F(sj | c)]N−1f (sj | c)fc(c) dc
,

q(sj ) = −
∫∞
−∞ c(N − 1)[1 − F(sj | c)]N−2f 2(sj | c)fc(c) dc∫∞

−∞[1 − F(sj | c)]N−1f (sj | c)fc(c) dc
.
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This is an ordinary linear differential equation with solution

(108)

βc(sj ) = 1

r(sj )

[ ∫ sj

−∞
r(u)q(u) du + k

]
, with r(τ ) = exp

( ∫ τ

−∞
p(u) du

)
.

The constant k is determined by boundary conditions.
At first it might seem, following our discussion of the IPV model, that a researcher

could use these integral equations as a basis for nonparametric estimation. Closer in-
spection of the differential equation reveals that for a given bid function, βC(sj ), there
are a number of distribution functions f (sj | c) and fc(c) that could satisfy the above
differential equation. This is in fact the nonidentification result of Laffont and Vuong
(1996).

8.2. Further issues

These discussions of nonparametric identification show that identification can hinge
delicately on any of several stochastic and economic assumptions. Indeed, there remain
a great many combinations of auction formats and assumptions yet to be explored in
the literature. For example, there are few general results on what can be identified with
risk aversion. What results we do currently have suggest that much stronger identifying
assumptions will be required when bidders are risk averse. [See Campo et al. (2003).]

It also is important to realize that most auction models in the theoretical and empirical
literatures maintain that bidders’ beliefs are symmetric. When bidders’ beliefs differ for
observable and unobservable reasons, auction models become much more challenging –
both because it is more difficult to compute pure-strategy equilibrium bids and because
there may be no pure-strategy equilibrium bids.

There also remain many institutional details that have yet to be fully explored in
the nonparametric identification literature. For example, the presence of reserve prices
can complicate both equilibrium bid functions and nonparametric estimation. These
complications can destroy the identification of part or all of the relevant distributions
of signals and common values. Another important assumption that may not hold in
practice is the assumption that the number of bidders N is exogenous and known by
the researcher. In many auctions, there appear to be few limitations on who can bid.
One reason presumably why we do not see hundreds of bidders is because many are
confident that their probability of winning is sufficiently low that this does not justify
the expense of preparing and submitting a bid. Additionally, potential bidders could be
deterred by the knowledge that other bidders are participating in the auction.

Despite all these limitations, nonparametric identification results and nonparametric
estimation methods provide a useful reference for understanding what can be identified
by imposing minimal economic rationality on observed bids. We now briefly consider
what additional information can be gained by imposing parametric structure.
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8.3. Parametric specifications for auction market equilibria

The previous subsection showed how structural econometric modelers have used first-
order conditions from static auction models to estimate the primitives of alternative
auction models. These first-order conditions had the form

(109)bj = βj (vj ,N, Fj ),

where vj was a private valuation or signal, N is the number of potential or actual bid-
ders, and Fj (·) was a joint distribution of private information and common uncertainties.
From this equation we see that it is both bidder j ’s private valuation or signal vj as well
as bidder j ’s beliefs about other bidders’ private information and common uncertainties,
Fj (·), that affect observed bids. Under certain (identification) conditions, the system of
bid functions can be inverted to recover the vj⎡⎣ v1

...

vN

⎤⎦ =
⎡⎣β−1

1 (B,N, F1, . . . , FN)

...

β−1
N (B,N, F1, . . . , FN)

⎤⎦
but only provided the bidder beliefs, Fj , are known or can be consistently estimated.

Because in a typical application Fj is unknown, it seems highly desirable that empiri-
cists be as flexible as possible when estimating Fj . As we indicated repeatedly above,
this desire raises a paradox: the cost of statistical flexibility may be economic flexi-
bility. For example, to even begin to apply nonparametric techniques we must impose
symmetry, Fj = Fk . Further, researchers typically do not have sufficient data to esti-
mate general F ’s when N varies considerably across auctions or when there are many
variables that enter the bid function (109). For this reason alone, many researchers have
been willing to entertain parametric specifications for F . There are additional reasons
to favor parametric specifications. One important one is that parametric specifications
can identify economic quantities that are nonparametrically underidentified.

Some empirical researchers feel that as a matter of principle if something is not iden-
tified nonparametrically, one should never make parametric assumptions to identify it.
Other researchers favor such restrictions if they lead to useful parameter estimates or
counterfactuals. We hope it is clear by now that our position is that it is acceptable
to make parametric assumptions as long as these assumptions are economically sensi-
ble and do not contradict the data. To appreciate the trade-offs that can arise in adding
parametric structure, it is useful to see the trade-offs that Paarsch (1997) considered
when developing a structural model of British Columbia government timber auctions.
Paarsch’s goal was to estimate a model of open-outcry timber auction within which he
could ask whether the observed government reserve prices were revenue-maximizing.
This is an ideal setting in which to use a structural model, because Paarsch seeks to
perform counterfactual comparisons.

Several practical realities prevent Paarsch from employing the nonparametric estima-
tion procedures discussed in the previous subsection. First, Paarsch has data on fewer
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than 200 auctions. With less than 200 auctions, he has little hope of obtaining sensible
estimates of a high dimensional conditional bid density. Second, there are at least five
important observable dimensions along which the timber tracts differ. These differences
include: the species composition of the tract, the amount of each species on the tract,
the distance of the tract to local mills, and potential nonlinearities in harvesting costs.
Third, the presence of a reserve price in the timber auctions introduces the same trunca-
tion problems present in Hendricks and Porter’s (1988) descriptive study of offshore oil
and gas lease auctions. Because Paarsch does not observe bids below observed reserve
prices, he cannot estimate F(·) nonparametrically in these regions and thus cannot eval-
uate the revenue consequences of lowering reserve prices. Fourth, although his original
sample consists of open-outcry and sealed-bid auctions, he chooses to focus exclusively
on the open-outcry auctions. In open-outcry auctions, the dynamics of bidding can af-
fect the observed sequence of bids.

Individually and collectively, these practical realities force Paarsch into a parametric
specification of bidders’ valuations and harvesting costs. Moreover, these realities also
appear to force stark assumptions in order to obtain an estimable model. For instance,
while Hendricks and Porter’s discussion of oil and gas leases might suggest timber
auctions have common value components, Paarsch rules out this possibility for at least
two reasons. First, as a practical matter Paarsch’s previous work showed that the private
value auction framework provided as good or better explanation of winning bids as a
pure common value auction framework. Second, English auctions in which bidders have
common values are much more difficult to model. In an open-outcry English auction in
which bidders’ values are affiliated, bidders will revise their beliefs and bids according
to the bidding history – not just their own private signal. For these and perhaps other
reasons, Paarsch is led to adopt an independent private values framework.

In addition to adopting a private values framework, Paarsch also adopts a particular
auction format to model the open-outcry structure of his timber auctions. Specifically,
he assumes bid data are recorded via a “button” English auction. In an English button
auction, all bidders begin the auction in plain view of one another with their fingers on
a button. They listen to the auctioneer continuously call out increasing prices starting
from the reserve price. A bidder exits the bidding (permanently) by removing their
finger from the button. The last bidder depressing the button wins the auction at a price
equal to the second-to-last bidder’s value (or cost).

It is not hard to see why Paarsch makes this assumption. Because bidders’ valuations
are independent and private, bidders do not update their beliefs about valuations dur-
ing the bidding. Moreover, their equilibrium strategy is to stay in the auction until the
bidding reaches their valuation, at which point they drop out. (The winning bidder of
course drops out when the second-to-last bidder does.) How does this equilibrium map
into Equation (109)? Now, for all losing bidders

(110)bj = β(vj ,N, Fj ) = vj .

Thus, Paarsch’s IPV assumption, when combined with the button English auction as-
sumption, allows Paarsch to recover the valuations of all but the winning bidder from
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the observed bids. There is little to do in terms of estimation. From any and all of the los-
ing bids it would be possible to estimate a symmetric distribution of private values F(·)
nonparametrically were it not for the fact that F(·) is conditioned on a large number of
observables that vary across auctions.28

The automatic recovery of values from bids should sound familiar. This was exactly
the solution in Example 10 where we drew a parallel between a perfect-information
Bertrand model and an IPV model in which all bidders knew all costs. Here, Paarsch can
recover exactly the valuation (here, profits) of the second-highest bidder. Paarsch also
observes the third-highest valuation, and so on. Thus, if Paarsch were only interested
in recovering valuations from bids, he could effectively dispense with the private infor-
mation assumption altogether. To perform his reserve price counterfactuals, he could
simply treat F(·) as a statistical construct that captures not private information of the
bidders but simply unobserved (to him) reasons why bidders’ profits would differ across
tracts.

Other aspects of Paarsch’s application have a bearing on how Paarsch estimates and
interprets F(·) however. One of these is the match between the button auction model and
the way the auctions were run and data collected. In a button auction, the last “bid” of a
bidder is the price at which the bidder removes their finger from the button. In an open-
outcry auction, the last observed bid is the last oral bid. For a variety of reasons, bidders
may space their bids in an open out-cry auction, yielding the possibility of nonuniform
jumps in bids. If this is the case, it is unclear how one should interpret the last bids in
Paarsch’s data.

There are other features of the timber auctions that affect the empirical model. To
appreciate these features, it is useful to go into the details of his application. Paarsch de-
composes each bidder j ’s valuation vij into an average revenue per tree on the tract, ri ,
and average harvesting costs, cij . That is, vij = ri − cij . The absence of a bidder j

subscript on revenues, and the lack of any common value component in the auction,
immediately implies that revenues are known to all bidders. In addition, Paarsch as-
sumes that he observes the revenues bidders observe. He calculates these revenues as a
sum of species prices times the amount of each species the government estimates is on
each tract. Thus, when it comes to distinguishing between private information or unob-
served heterogeneity models, it is the individual differences in harvesting costs that are
important.

A key novelty of Paarsch’s paper is that he models the difference between the poten-
tial number of bidders in an auction and the number who end up bidding. To see why
this distinction is important, notice that the reserve prices in Paarsch’s auctions truncate
not only the distribution of observed bids, but lead to a difference between the potential
number, Ni, and actual number, Ni , of bidders. To model this difference, Paarsch makes
parametric assumptions about the distribution of bidders’ harvesting costs and how they

28 There is additional information in the condition that the winning bidder’s valuation exceeds the winning
bid. Paarsch could presumably use this inequality to improve the precision of estimates of F(·).
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vary across auctions. Specifically, he introduces two types of bidder heterogeneity. In
the leading case, he models a bidder’s average cost cij as being drawn from a Weibull
density

cij ∼ F(c | δ) = 1 − exp
(−δ1(c − cmin)

δ2
)
, c ∈ [cmin,∞],

where the δ’s are unknown parameters that affect the heterogeneity of costs and cmin is
a lower bound equal to

cmin = γ0
1

q
+ γ2q + γ3q

2 + γ4d.

Here, q measures the size of the tract and d is the distance to the closest timber mill.
The δ and γ parameters help capture reasons why the distribution of average harvesting
costs might vary across auctions. Adequately capturing such variation would be crucial
to accurate counterfactual calculations. In a second specification, Paarsch considers the
consequences of assuming fixed harvesting costs, γ0, are random.

By modeling costs parametrically, Paarsch can use maximum likelihood to estimate
the unknown costs of bidders. These costs are critical to his optimal reserve price cal-
culations. One major problem remains however – how to account for the fact that while
he observes the number of bidders, Ni , he does not observe the number of potential
bidders, Ni.

To appreciate this problem, consider timber auctions that have at least 2 bids, i.e.,
Ni � 2. There will be a difference between Ni and Ni when potential bidders with
extremely high harvesting costs find it unprofitable to bid above the reserve price. The
likelihood of observing the order statistic data c[2:Ni], c[3:Ni], . . . , c[Ni :Ni] and Ni is

L(γ, θ | Ci,Ni) =
(

Ni

Ni

)[
1 − F(c∗)

]Ni−Ni F (c∗)Ni

(111)× Ni !F(c[2:Ni])
F (c∗)Ni

Ni∏
j=2

f (c[j :Ni]).

The first portion of this likelihood function (before the ×) is the (binomial) prob-
ability of observing N1 − Ni cost draws below the cost c∗, where c∗ is the cost
that would result in profit of zero at the reserve price. The second portion is
the density of observable average harvesting costs given Ni and that the unob-
served lowest cost satisfies c[1:N ] < c[2:N ]. The problem with trying to estimate
δ and γ with this likelihood function is that Paarsch cannot compute the likeli-
hood function unless he knows the number of potential bidders Ni for each auc-
tion. Because he does not know Ni, he could treat each Ni as a parameter to be
estimated. This, however, amounts to introducing a new parameter for each auc-
tion. As is recognized in the econometrics literature, the introduction of so many
parameters will make the maximum likelihood estimator inconsistent. Absent a
solution then to this problem, Paarsch, and many later auction researchers, are
stuck.



Ch. 64: Structural Econometric Modeling 4379

A main contribution of Paarsch’s paper is to show that a conditional likelihood func-
tion approach [Andersen (1970)] can be used to obtain consistent estimates of δ and γ .
The conditional likelihood approach works as follows. Let f (Ci,Ni | Ni) be the joint
density of observed costs and bidders conditional on the unobserved potential number
of bidders in auction i. According to the conditional maximum likelihood approach, if
this density can be factored into two pieces of the form

f (Ci,Ni | Ni, δ, γ ) = g(Ni | Ni, δ, γ ) × h(Ci | Ni, δ, γ ),

then one can obtain consistent estimates of δ and γ by maximizing the conditional
likelihood function h(Ci | Ni, δ, γ ). Paarsch’s contribution is to show that for this
specific IPV auction, the likelihood function (111) has this form, with Ni serving as a
sufficient statistic for the unknown potential number of entrants.

We now are in a position to return to the point on which we began this example. While
the costs of parametric assumptions in many applications are self-evident, the benefits
are sometimes less clear. One important benefit of parametric structure is that it may
allow the researcher to identify a quantity of interest. In Paarsch’s case, the realities of
timber auctions necessitated several strong modeling and parametric assumptions, such
as private values and an English button format. On the other hand, the resulting model
did overcome a significant handicap, which is that the number of potential bidders is
rarely known.

Whether this benefit justifies the starkness of the assumptions, has to be viewed from
at least three vantages. First, is the benefit practically useful? The answer here appears
to be a resounding yes. Without it Paarsch could not estimate his model and perform the
counterfactual optimal reserve price calculations. Second, does the parametric structure
deliver the end result? In Paarsch’s case, the answer is unclear. Finally, does the addi-
tional structure adequately capture the economics of the agents’ behavior, particularly
when it comes to the counterfactuals? To answer this question, Paarsch tries to convince
readers by reporting alternative models and estimates.

8.4. Why estimate a structural auction model?

Previously, we asserted that researchers should not attempt a structural model without
a convincing explanation of how its benefits will outweigh potentially restrictive and
untestable assumptions. This advice seems particularly relevant when considering how
to model auction bid data.

The main benefit of a structural auction model would seem to be that it allows the
researcher to estimate the distribution of bidders’ valuations (or similar objects). Such
estimates can in principle be used to evaluate an auction’s efficiency or how changes in
the rules would affect the seller’s revenues.

In actual applications, however, these benefits are only achieved at the cost of re-
strictions on bidders’ information. In particular, the vast majority of structural auction
models either exclusively estimate independent private values or pure common values
models. The reasons for this specialization are not too hard to find – more realistic



4380 P.C. Reiss and F.A. Wolak

affiliated models are analytical and computationally intractable.29 Restrictions on the
distribution of bidders’ information naturally limit the applicability of the estimated
model. For example, it makes little sense to estimate an IPV model and then use those
estimates to model what would happen if there was a common value.

Even if we are willing to accept the independent private values or pure common val-
ues assumptions, there are other factors that can affect the value of structural estimates.
Consider what we learn from estimating an IPV model. The best one can hope for is to
be able to recover a precise nonparametric estimate of the distribution of bidder valu-
ations F(vj ) above for valuations that would lead to bids above the reserve price. But
what is the value of knowing F(vj )? We believe that the answer is that there is lit-
tle or no value unless we can somehow say that F(vj ) is applicable to past auctions
or future auctions. For example, we could imagine estimating F(vj ) during a period in
which there was no collusion among bidders and then trying to use the estimated density
to compare bids (valuations) when bidders were perhaps colluding. Alternatively, like
Paarsch (1997), one could perform counterfactuals that involve changing some aspect
of the auction like the reserve price.

The key question is: How does one know that the estimated valuation distribution is
relevant to other auctions? Our position is that to be convincing, the structural modeler
has to have a convincing explanation for when F(vj ) is likely or unlikely to change
from auction to auction. To take Paarsch’s (1997) timber auction model as an example,
we might ask: When would his estimates be relevant for a timber auction in another
Canadian province? To answer this question, we ultimately would need to understand
how timber auctions are different. This is not a question that auction theory itself can
answer directly. Instead, the answer likely lies in the specifics of what is being auc-
tioned and how it is auctioned. Thus, we see that economic theory often can only go so
far in answering specification issues. In the end, the econometrician will have to pick
and justify conditioning variables. Ideally, these choices will be made with the aid of
economics, but in practice it is knowledge of the industry, institutions and data that will
likely make the analysis convincing.

Suppose we can accept the assumptions of a structural auction model, what can we do
with the resulting estimates? Structural auction models can in principle facilitate useful
counterfactual experiments. Paarsch’s (1997) evaluation of optimal reserve prices is one
example. Other researchers have used structural models to evaluate alternative winning
bid rules. One area where structural auction models have yet to make much headway is
in diagnosing bidder collusion. Here there are two problems. First, economists do not
have particularly good models of how colluding bidders behave. Indeed, the modeler
often is confronted with the paradox: rationality suggests that colluding bidders will
scramble their bids so as to make detection extremely difficult. To date, most of what

29 Although there have been some attempts to compare private values and common values models, these tests
invariably rest heavily on functional form and other assumptions. In the end, little progress has been made
using structural models to decide the appropriateness of different information structures.
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structural models have contributed to the detecting collusion literature are benchmark
noncooperative models of bids. IO economists have used these models to look for sus-
pect bid clustering, skewing or correlation.

There are additional practical issues that limit the usefulness of structural auction
models. One set pertains to dynamic considerations. In many applications, the data come
from repeated auctions where the same bidders bid against one another. This repetition
raises two issues. First, in repeated auctions, bidders’ subsequent valuations may be
influenced by the number of units they have won in the past. In this case, symmetric
information models no longer make sense. Second, in repeated auctions bidders likely
will internalize information and strategic externalities that their bids today may have for
bids tomorrow.

8.5. Extensions of basic auctions models

Recent research has addressed many of the limitations associated with the auction
frameworks described in Table 1. It is well beyond the scope of this chapter to even
begin to survey this literature. Interested readers should consult Hendricks and Porter
(in press).

There are some developments that fit in with our earlier discussions that are worth
noting briefly. Laffont, Ossard and Vuong (1995), for example, extended the IPV par-
adigm to allow for both observable and unobservable heterogeneity across auctions.
Although their estimation procedure assumes a parametric model for the distribution of
private valuations, they devise a clever estimation technique based on simulated nonlin-
ear least-squares that does not require them to compute the equilibrium bid functions.
Instead their technique simulates the expected value of the winning bid for an arbitrary
distribution of private values and a potentially binding reserve price. They also treat the
number of potential bidders as a random variable.

Haile and Tamer (2003) explore the empirical implications of English auctions. The
button English auctions we considered earlier are a special type of English auction. In
open-outcry English auctions, bidders can bid whenever they are willing to best the out-
standing bid (plus any minimum bid increment). Exactly what order and when bidders
will bid is something left to the auction’s format and strategic considerations. In gen-
eral, the dynamics of English auctions are extremely difficult to analyze. Rather than
try and detail the dynamics of the bidding, Haile and Tamer take a minimalist approach
by using potentially weak restrictions on players’ bids. Specifically, Haile and Tamer
maintain that observed bids need only satisfy the following two restrictions: (1) bidders
do not bid more than they are willing to pay; and, (2) bidders do not allow an opponent
to win at a price they are willing to beat. Using these assumptions, they derive bounds
on the distribution of valuations and bids above reserve prices. These bounds become
exact for a button auction and are weak bounds for other English auctions.

There has also been recent empirical research on multi-unit auctions. Virtually all
wholesale electricity markets operating around the world run daily multi-unit auctions
to determine which generation facilities are able to supply energy. Each day suppliers
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submit nondecreasing step functions expressing their willingness each hour to supply
electricity for the next 24 hours. The system operator then computes the least cost way
to meet demand in each hour based on these bids. Wolak (2000) develops a model of
expected profit-maximizing bidding behavior in such markets. Wolak (2003) uses this
model to estimate bidder cost functions. He shows that because of the richness of the bid
functions that market participants submit, the only assumption required to recover these
cost function estimates is expected profit maximizing bidding behavior. An important
difference between these multiple-good auctions and single good auctions is that in
a multi-unit auction, suppliers compete over how many units they sell. Consequently,
residual demand (market demand less the willingness to supply functions of all other
market participants) is observable ex post, and this provides the information necessary
to identify the supplier’s underlying marginal cost function.

As should be clear from this brief discussion, significant progress has been made
in deriving flexible modeling frameworks which allow empirical IO researchers to re-
cover information about the distribution of private information in auction models under
minimal assumptions.

9. Games with incomplete information: Principal-agent contracting models

Recently, IO economists have begun to develop structural econometric models of regu-
lator and regulated firm interactions. These empirical models are more ambitious than
the auction or oligopoly models discussed in the previous sections. Similar to oligopoly
models but unlike auction models, these models seek to estimate production and de-
mand functions. Similar to auction models but unlike most oligopoly models, these
models seek to account for the impact of asymmetric information on agents’ strategic
interactions. These ambitious modeling goals usually require the researcher to rely on
stronger parametric and distributional assumptions to identify and estimate economic
primitives. The main goal of this section is to discuss why models of regulatory interac-
tions require this structure.

As in auctions, private information plays a critical role in regulatory proceedings. IO
economists have recently used principal-agent contracting models to characterize reg-
ulatory proceedings in which regulators set the prices (or “rates”) regulated firms (or
“utilities”) charge. A key insight from these models is that when a utility has superior
information about the underlying economic environment, it can exploit that informa-
tion to earn greater profits than it would if the regulator were equally informed. This
paradigm for studying regulator–utility interactions has received such widespread ac-
ceptance among IO economists that Laffont and Tirole (1993) have coined the phrase
“new regulatory economics”.

One of the most important economic primitives in these contracting models is the
economist’s specification of the regulated firm’s private information. The two main
types of private information a utility can have are private information about its pro-
duction process or its demand. The regulated firm has no incentive to reveal this private
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information to the regulator because the regulator would use this information against
them in the rate-setting process. The regulator in turn is aware that the firm has private
information, and takes this into account in setting rates. Economic theorists model this
interaction by computing optimal “second-best” solutions to a revelation game. In this
game, the regulator announces a price schedule and a transfer payment that are functions
of the firm’s reported private information.

A critical constraint on the firm is that it must serve all demand consistent with the
private information it reports. (Its private information determines the price granted by
the regulator.) Under an optimal “second-best” solution, the price schedule chosen by
the regulator maximizes a social welfare function subject to the constraints that: (1) the
firm finds it profit maximizing to report its true private information to the regulator; and,
(2) the firm expects to earn profits sufficient to keep it from exiting the industry. Al-
though these theoretical models are stylized static depictions of regulatory interactions,
they do capture important features of the asymmetric information problem faced by ac-
tual regulators. Important examples of this work include Baron and Myerson (1982),
Baron and Besanko (1984, 1987), Besanko (1984) and Laffont and Tirole (1986).

Historically, empirical IO economists have largely ignored the impact of regulated
firms’ private information on both regulated firm and regulator behavior. Instead, empir-
ical IO economists have estimated conventional cost and demand functions using stan-
dard cost functions, factor demand equations and product demand models. Christensen
and Greene’s (1976) study of electric utility costs is a classic example of regulated firm
cost function estimation. Evans and Heckman (1984) provide a more recent example of
cost function estimation applied to the AT&T divestiture decision. In virtually all cost
function studies, statistical tests of cost-minimizing behavior are rejected.

The rejection of cost-minimizing behavior is not too surprising if one recognizes the
presence of private information. A regulated firm with private information need not
find it profit-maximizing to minimize costs if it can distort its behavior to obtain better
prices from the regulator. Given these incentives, estimation procedures that assume
cost minimization behavior will yield inconsistent estimates of the underlying economic
primitives.

The remainder of this section follows the format of the previous section. First, we de-
scribe the data a researcher has in a typical application. We then develop a simple model
that illustrates what economic primitives can be recovered from these data. After consid-
ering nonparametric identification, we discuss the practical limitations of nonparametric
identification results. This then leads us to describe how parametric assumptions can be
used to identify economic primitives. We illustrate this discussion using Wolak’s 1994
study of Class A California Water Utilities. We close with a short discussion of subse-
quent related empirical work.

9.1. Observables and unobservables

Empirical research on regulated industries benefits from regulatory proceedings that
make rich cost and revenue data publically available. On the cost side, for example,
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regulated utilities typically must report detailed data on inputs, X, and input prices, pX.
Inputs consist of information on the firm’s capital (K), labor (L), energy (E) and ma-
terials (M) choices associated with an observed output Q. Additionally, the researcher
also will have information on input prices, pX = (pK, pL, pE, pM)′. Using these data,
a researcher can construct an estimate of the total cost, C, of producing the observed
output level Q. In terms of the above notation

(112)C = pKK + pLL + pEE + pMM.

On the output (or revenue) side, firms provide both retrospective and prospective
quantity and revenue data. The prospective quantity data reflect the reality that the regu-
lator must set prices before either it or the firm know what demand will be. When setting
price, the regulator attempts to balance two competing goals: (1) it must allow the firm
to recover all “prudently” incurred costs; and, (2) it must provide strong incentives for
the firm to produce in an efficient manner. To model the prospective nature of the regu-
lator’s pricing decisions, it is imagined that demand equals D(pQ,Z, εQ) = Q, where
pQ is an output price set by the regulator, Z is a vector of observable variables assumed
to shift demand and εQ is an unobserved demand shifter.

Regulatory models differ according to whether εQ is known to the firm (i.e., is pri-
vate information) or is unknown to the firm before the firm reports to the regulator. In
what follows, we only explore models in which the firm has private information about
its production function. Thus, εQ here does not reflect private information. The econo-
metrician of course never observes εQ.

Given these cost and output data, all an empirical researcher can do is consistently
estimate the joint density of regulated prices, firm outputs, firm input choices, and total
costs – conditional on input prices (pX) and any demand shifters (Z); i.e., the researcher
can estimate h(pQ,Q,X,C | pX,Z). Input prices and the demand observables are
used as conditioning variables because firms are thought to be unable to impact input
prices or factors that influence demand. Thus, these vectors Z and pX are usually as-
sumed to be distributed independently of all of the unobservables in the econometric
model.

To obtain a consistent estimate of the firm’s production process, the researcher must
be very specific about how the utility’s private information interacts with the regulatory
process. In what follows, we explore models in which the regulated firm has private in-
formation about its production process. We restrict our attention to private information
on the production side in keeping with Wolak’s (1994) empirical model. Specifically,
we model the firm’s private information as a single parameter that enters the firm’s
production function Q = f (K,L,E,M, θ). The firm knows θ from the start and all
the regulator knows at the start is the density of θ , fθ (θ), where θ ∈ [θl, θh]. Absent
further assumptions on the distributions of θ and εQ, and specific functional forms for
D(pQ,Z, εQ) and f (K,L,E,M, θ), little or nothing can be deduced about these un-
derlying economic primitives from h(pQ,Q,X,C | pX,Z). This is because the firm’s
input choices will depend in an unknown way on θ , which implies that total cost, C,
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does as well. Additionally, because the firm must by law satisfy all demand at the reg-
ulated price, the firm’s output will depend on the realization of εQ, the unobservable
demand shifter. This implies that the firm’s input choices and total cost will also be a
functions of the realization of εQ. Consequently, without functional form restrictions on
the demand and production functions, or assumptions about the forms of the distribu-
tions of θ and εQ, the researcher will be unable to identify demand and cost functions
from h(pQ,Q,X,C | pX,Z).

These observations lead us to consider the types of functional form and distributional
assumptions that can lead to identification. We will see that nonparametric identification
of the distribution of private information, as in independent private values auction mod-
els, hinges on a monotonicity condition. We show that strong economic or statistical
assumptions are required to guarantee monotonicity. We then discuss parametric mod-
els. These models rely on functional form and distributional assumptions to identify the
underlying economic and information primitives.

9.2. Economic models of regulator–utility interactions

Baron (1989) provides a useful theoretical model for thinking about empirical models
of regulator and utility interactions. He assumes C(q, θ) = θq+K where θ is the firm’s
private marginal cost of producing output q. No explicit economic rationale is provided
for the cost function. In particular, there is no reason to believe that the firm produces
its output at minimum cost for any value of θ . In this sense, we can think of C(q, θ) as a
behavioral cost function; it gives the cost of producing output q given θ .30 Additionally,
Baron assumes D(p) represents the quantity demanded at the regulated price p. Thus,
in his model there is no demand uncertainty.

In Baron’s model, the regulator fixes a price schedule, p(θ), and a monthly (or an-
nual) fixed fee schedule, T (θ), that give prices and fixed fees as a function of the firm’s
announced marginal cost θ . Given the price and fixed fee schedules, the firm announces
a marginal cost, θ̂ , to maximize its profits

(113)π(θ̂; θ) = p(θ̂)D
(
p(θ̂)

)+ T (θ̂) − θD
(
p(θ̂)

)− K.

There are two constraints imposed on the regulator’s price and fee optimization prob-
lem. The first is a truth-telling or incentive compatibility constraint. This constraint
requires that a firm of type θ will report its true type. In other words, a truthful report
must yield the firm profits that are greater than or equal to profits it could obtain through
any other feasible report in the support of θ . Mathematically, this implies:

(114)π(θ) ≡ π(θ; θ) � π(θ̂, θ), ∀θ̂ ∈ [θl, θh] and ∀θ ∈ [θl, θh].

30 By behavioral cost function we mean only that the firm behaves according to a consistent set of rules that
yield this stable relationship between costs and q for a given value of θ . One possible set of behavioral rules
is to minimize total production costs, but this is not necessary because, as discussed above, the firm may have
little incentive to produce its output according to minimum cost.
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As Baron notes, these constraints are global. That is, they must be satisfied for each θ

and all feasible reports θ̂ .
The second constraint is called the participation constraint or individual rationality

constraint. It states that regardless of the firm’s true value of θ , it must receive more
than its outside option. Here this means that the firm must earn nonnegative profits.
Mathematically,

(115)π(θ) � 0, ∀θ ∈ [θl, θh].
Because it is extremely complicated to impose the global truth-telling constraint on the
regulator’s optimization problem, theorists typically make assumptions about economic
primitives so that satisfaction of local truth-telling implies satisfaction of global truth-
telling. These assumptions are analogous to those in auction models that make the bid
functions monotone in the bidders’ valuations.

Baron (1989, pp. 1366–1367) shows that the local truth-telling constraint for this
problem is the following differential equation in θ :

(116)
dπ(θ)

dθ
= −Cθ

(
D
(
p(θ)

)
, θ
)
.

This equation tells how profits must increase as a function of θ in order to induce local
truth telling. In words, for small deviations from truthful reporting, the firm experiences
a decline in profits. This condition can easily be checked for the assumed cost function,
as Cθ = q > 0 for all θ .

As Baron notes, Equation (116) can be integrated to produce an expression for the
firm’s profit

(117)π(θ) =
∫ θh

θ

Cθ

(
D
(
p(x)

)
, x
)

dx + π(θh).

This equation implies that the participant constraint can be simplified to

(118)π(θh) � 0,

which means that the least efficient firm, as parameterized by θ , must earn nonnegative
profits. Using the definition of π(θ) in Equation (114), we can re-write Equation (113)
as

(119)π(θ) = p(θ)D
(
p(θ)

)+ T (θ) − θD
(
p(θ)

)− K.

Deriving the optimal price and fixed fee functions requires specifying the regulator’s
objective function. The general objective function considered for the regulator is a
weighted sum of consumer and producer surplus. Because both consumer and producer
surplus will depend on the firm’s actions, which depend on the unobserved θ , the regu-
lator must use its knowledge of f (θ) to compute an expected surplus function

(120)W =
∫ θh

θ

[ ∫ ∞

p(θ)

D(x) dx − T (θ) + απ(θ)

]
f (θ) dθ,
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where α is the relative weight given to the firm’s profits in the regulator’s objective func-
tion. The regulator is assumed to choose the price and fixed fee schedules to maximize
(120) subject to (115), (116), and (119) using calculus of variations techniques.

Baron (1989) shows that the optimal price schedule takes the form

(121)p(θ) = θ + (1 − α)
F (θ)

f (θ)
,

which looks very similar to Equation (99) in the independent private values auction case,
apart from the parameter α. Baron shows that a sufficient condition for satisfaction of
the local truth-telling constraint to imply satisfaction of the global truth-telling con-
straint is that p(θ) is nondecreasing in θ . This equation shows that monotonicity of the
price function imposes restrictions on the distribution of θ . Specifically, if F(θ)/f (θ)

is nondecreasing in θ , then p(θ) is nondecreasing in θ .
If the value of α is known to the econometrician and firms face the same cost function

and nonstochastic demand function, then it is possible to recover a consistent estimate
of the density of θ , f (θ), from prices. Such an exercise would follow the “change-of-
variables” logic applied to the first-order condition in sealed-bid IPV auction models. It
is important to emphasize all of the assumptions necessary for this identification result.
Besides assuming firms have the same cost function and density of private informa-
tion, we have assumed the demand function is the same across all observations. In other
words, D(p) cannot vary across observations and there are no unobservable εQ or ob-
servable demand shifters. Equation (121) also depends crucially on the functional form
of C(q, θ). Without the constant marginal cost assumption, the regulator’s optimal price
schedule will depend on the demand function D(p).31

Although this nonparametric identification result may at first seem appealing, it
should not give much comfort to regulatory economics researchers for three reasons.
First, it is difficult to imagine circumstances where the researcher will know the value
of α. Second, the underlying cost function tells the researcher nothing about the tech-
nology of production. As noted earlier, C(q, θ) simply characterizes the relationship
between production costs, q, and θ . The researcher cannot say anything about the re-
turns to scale in production, the elasticity of substitution between inputs or the extent
to which the regulatory process results in deviations from minimum cost production.
Moreover, the manner in which θ enters the cost function is extremely restrictive.
Third, nonparametric identification rests on unrealistic assumptions about the extent of
observed and unobserved heterogeneity in the production process and demand. Specif-
ically, in this model the only reason market prices differ across observations is because
of different realizations of θ . It is difficult to imagine a sample of regulator–utility in-
teractions with no observed or unobserved heterogeneity in the production and demand
functions.

31 See the discussion of Wolak (1994) below. In addition to recovering the density f (·) nonparametrically, it is
possible to recover a consistent estimate of K from information on the regulated quantity and total production
cost. Also, if the researcher is willing to assume D(p) is the same for all observations in the sample, then the
set of observed (pQ,Q) pairs will nonparametrically trace out the demand curve D(p).
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Some of these shortcomings can be overcome by explicitly specifying an underlying
production function and how it depends on θ . The firm’s observed cost function can then
be derived from the assumption of expected profit-maximizing behavior subject to the
constraints imposed on firm behavior by the regulatory process. Both observed and un-
observed heterogeneity can also be allowed in the production function and the demand
function facing the regulated firm. However, there is a cost of being more general – non-
parametric identification is lost, just as it is in the case of auction models. As we now
show, however, by clever choices of functional forms and distributional assumptions,
the researcher can estimate a rich set of underlying economic primitives.

9.3. Estimating productions functions accounting for private information

Wolak (1994) derives and implements a procedure to recover a consistent estimate
of a regulated firm’s production technology taking into account the impact of private
information on regulator–utility interactions. As noted above, this task requires the im-
position of parametric and distributional assumptions. These assumptions allow Wolak
to identify the underlying economic primitives from the joint density of the regulated
price, the firm’s output, input choices and total cost, conditional on the vectors of input
prices and demand shifters, h(pQ,Q,X,C | pX,Z). As we have said repeatedly, there
is no single “right” way to make these assumptions. It is presumably economics and the
specific features of a market and regulatory environment that can help the researcher
defend the assumptions necessary to obtain identification.

Wolak models the behavior of a sample of Class A California Water utilities using
annual data on utility outputs, production costs, input quantities and prices, several de-
mand shifters, and output prices. He has panel data from 1980 to 1986. Class A utilities
distribute water and provide services to large cities in California. Consistent with our
earlier discussion, the California Public Utilities Commission (CPUC) sets the retail
price of water for these utilities on a prospective basis.

As Wolak (1994) notes, the water supply industry was chosen, as opposed to other
regulated industries, such as telecommunications, or electricity, for two major reasons.
First, the structure of production in water delivery is extremely simple relative to pro-
ducing electricity or providing telecommunications services. Second, the assumption of
a single homogenous product is likely to be far less objectionable than would be the
case for either telecommunications or electricity. These reasons help Wolak to simplify
his econometric model.

As with any structural econometric modeling exercise, it is important to have a clear
idea of what economic magnitudes can be recovered from a structural model. Wolak
would first like to obtain a consistent estimate of the underlying production function. To
do this, he explicitly models the impact of the utility’s private information on produc-
tion. Instead of estimating the production function directly, Wolak derives the utility’s
cost function under the assumption of expected profit-maximizing behavior. He then es-
timates the production function parameters from the cost function. A useful by-product
of this approach is an estimate of the distribution of private information. A second goal
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of the structural model is to obtain an estimate of how much firm output is distorted
from minimum cost production due to the presence of private information. A third goal
is to test the relative performance of the asymmetric information model versus the con-
ventional symmetric information model of the regulator–utility interaction.

To evaluate the relative performance of the asymmetric information model, the pa-
per posits a second behavioral model of regulator–utility interaction for the same set
of underlying economic primitives. In this model, the utility initially possesses private
information. Through information gathering, however, the regulator is able to com-
pletely learn this parameter. Consequently, the regulator can impose what Wolak calls
the symmetric (or full) information regulatory outcome. Unfortunately, the econome-
trician is unable to observe this private information parameter and so must take it into
account.

Wolak does this when specifying and estimating the behavioral cost functions. The
asymmetric information model assumes that the utility possesses private information,
but the regulator is unable to completely learn this private information through its in-
formation gathering efforts. However, the regulator does learn the distribution of this
private information for each utility, and regulates using this incomplete information op-
timally. The regulator is assumed to impose a version of the asymmetric information
optimal “second-best” regulatory outcome described in the previous section. In this
case, the econometrician also is unable to observe the utility’s private information (or
even its distribution), but must account for this assumed utility–regulator interaction
when estimating the parameters of the utility’s production function.

Wolak assumes the production function for water delivery for utility i is

(122)Qi = f
(
Ki,L

∗
i , Ei, ε

Q
i | β

)
,

where Ki denotes capital (physical plant and water sources), L∗
i labor, and Ei electricity.

The parameter β is a vector describing the technical coefficients of production. It is
known to both the regulator and utility, but is unknown to the econometrician. The
variable ε

Q
i is a stochastic disturbance to the ith utility’s production process that is

realized after the utility makes its capital stock selection, but before it produces. The
utility knows the distribution of ε

Q
i , which is independently and identically distributed

over time and across utilities. Allowing for this source of unobservable heterogeneity in
the production function increases the realism of the model because there are a number of
factors that are unknown to the firm at the time it chooses the configuration and capacity
of its water distribution network. (A utility’s distribution network is a major component
of its capital stock.)

To account for all these forms of unobserved heterogeneity, Wolak must make para-
metric and distributional assumptions to identify the underlying economic primitives
from h(pQ,Q,X,C | pX,Z). Without these assumptions, it is impossible to proceed.
Once again, this illustrates our point that it is specific parametric economic and statis-
tical assumptions that allow us to go from the statistical joint distribution of the data,
h(pQ,Q,X,C | pX,Z), to statements about the production technologies, market de-
mand and information primitives.
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The source of the utility’s private information is the efficiency of its labor input. To
this end, Wolak makes the distinction between, L∗

i , the amount of labor actually used
in the production process, and Li , the observed physical quantity of labor input which
is implied by the utility’s total labor costs. These two magnitudes are related by the
equation L∗

i = Li/d(θi), where d(θ) is a known increasing function and θi is interpreted
as utility i’s labor inefficiency parameter. (Higher values of θi imply more inefficiency.)
The econometrician and regulator observe the utility using the quantity of labor Li , but
the actual amount of “standardized” labor available in the production process is L∗

i .
This specification is based on the fact that labor costs are a major component of total
maintenance expenditures, and system maintenance is a major determinant of water
system efficiency. Thus, while the regulator can observe how much labor is employed
at the utility, Li , it does not know the productivity of this labor. The utility’s ex post
observed costs have the form wiLi + riKi + peiEi , where wi is the wage rate, ri is the
price of capital, and pei is the price of electricity. Note that the utility pays for observed
labor, Li .

From the viewpoint of the econometrician, θi is an unobservable random variable that
determines the productivity of labor. In this sense, it is comparable to other unobserv-
ables, such as ε

Q
i . What is special about θi as an unobservable is that it may also be

unobserved by the regulator. This is the case of Model A, the asymmetric information
model. There, the regulator only knows the distribution of θi , F(θ), and thus can only
condition its decisions on that information – much like what happens in an auction. By
contrast, in the symmetric information model (Model S), the θi plays the role of unob-
served heterogeneity because the regulator and firm observe it but the econometrician
does not.

For both Model S and Model A, the utility chooses its input mix to maximize ex-
pected profits given its private information. Each utility faces the demand function
QD = Qi(pi)ε

D
i for its product, where εD

i is a positive, mean one stochastic shock
to demand. This shock is assumed independently and identically distributed across time
and utilities. Once p is set, the demand shock is realized; the utility then produces out-
put to satisfy demand (which in both models is known both to the regulator and the
utility).

Because the utility’s price and capital stock are set before the utility produces each
period, the utility’s desire to maximize expected profits will lead it to minimize to-
tal operating costs under both Models A and S for a fixed level of output and capital
stock. Thus, for each model, Wolak can compute a conditional variable cost function
CVC(pe,w, θ,K,Q, εQ, ηL, ηE | β), where ηL and ηE are mean one optimization
errors. Wolak introduces these errors to allow for the fact that the first-order conditions
for L and E do not hold exactly. Note that the utility’s private information, θ , enters into
the conditional variable cost function.

Using this expression for variable costs, utility i’s total observed costs equal:

(123)TC = CVC(pe,w, θ,K,Q, εq, ηL, ηE | β) + riKi.
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As noted earlier, the firm’s capital stock serves two roles: (1) it reduces the total cost of
serving demand; and, (2) it signals to the regulator the firm’s true productive efficiency.
This tension between increasing profits by choosing the minimum total cost level of
capital and increasing the size of the capital stock in an effort to be rewarded by the
regulator with a higher output price, leads to distortions from least-cost production by
the firm.

9.3.1. Symmetric information model

In the symmetric information model, the regulator observes each utility’s true θ and
sets the monthly fixed fee (F ) and per unit price (p) to maximize expected consumer
surplus subject to the constraint that the utility’s expected profits (with respect to the
distributions of εQ and εD) equal zero. This implies that the regulator will solve for the
p, T , and K which maximize expected consumer surplus for the utility’s consumers.

Let Si(p) = ED(εD
i )
∫∞
p

Qi(s) ds denote expected consumer surplus for the ith

utility, where ED(.) denotes the expectation with respect to the distribution of εD . In
terms of our notation, the regulator solves:

max
p,T ,K

Si

[
p(θi)

]− T (θi)

(124)

subject to EQD

(
π(θi)

) = EQd

[
p(θi)Q

[
p(θi)

]
εD
i + T (θi)

− CVC
(
pe,w, θi,K(θi),Q(θi)ε

D
i , ε

Q
i , ηi | β

)]
− riK(θi) = 0,

where EQd(.) is the expectation with respect to the distribution of both εQ and εD and
ηi = (ηL

i , ηE
i )

′
is the vector of optimization errors from the conditional variable cost

function optimization problem. The first-order conditions for the regulator’s problem
imply:

(125)pi = ∂EQD[CVC(pe,w, θi,K(θi),Q(θi), ε
D
i , ε

Q
i , ηi | β)]

∂Q
,

(126)ri = −∂EQD[CVC(pe,w, θi,K(θi),Q(θi), ε
D
i , ε

Q
i , ηi | β)]

∂K
.

The fixed fee, T (θi), is set so that expected profits are zero at the values of K(θi) and
p(θi) that solve (125) and (126).

9.3.2. Asymmetric information model

In the asymmetric information model (Model A), the regulator recognizes that the utility
may mis-report θ as higher than it really is (i.e., the utility claims to be less efficient than
it really is). Consequently, the regulator constructs price, fixed fee and capital stock (as
a function of θ ) such that given these schedules, the utility finds it profit-maximizing to
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report its true θ . The regulator picks price, the fixed fee, and the capital stock that max-
imize expected (with respect to the distributions of θ , εD , and εQ) consumer surplus.

To derive the Model A equilibrium, Wolak follows the approach given in Baron
(1989). The first step is to determine the global truth-telling constraints. A utility with
true parameter θx that reports θy earns expected profit

EQD

[
π(θy, θx)

] = EQD

[
p(θy)Q

(
p(θy)

)
εD − CVC

(
θx,K(θy),Q(θy)

)]
(127)− rK(θy) + T (θy),

where we suppress the dependence of the minimum variable cost function (CVC) on
pe, w, εQ and εD , η and β. Consequently, for any two arbitrary values θ might take
for a given utility, say θx and θy , incentive compatibility requires EQD[π(θx, θx)] �
EQD[π(θy, θx)], meaning that the firm expects to earn higher profits by announcing θx

when its true type is θx , than it expects to earn from announcing any other θy �= θx . The
next step is to specify the local version of this global constraint:

(128)
dEQD[π(θ)]

dθ
= −∂EQD[CVC(θ,K(θ),Q(θ))]

∂θ
,

for all θ ∈ [θl, θh]. Equation (128) is the local incentive compatibility condition that
quantifies how rapidly the regulator must raise the expected profits of a utility as its true
θ value falls (the utility becomes more efficient) in order to encourage truthful reve-
lation. By integrating (128), one obtains the expected profit function. This implies that
the expected profit function is locally decreasing in θ so that the participation constraint,
which requires the firm to earn nonnegative expected profits for all values of θ , can be
replaced by the single constraint that EQD[π(θh)] � 0, where θ lies in the interval
[θl, θh].

The regulator’s optimization problem is

max
p(θ),T (θ),K(θ)

∫ θh

θl

[
Si

(
p(θ)

)− T (θ)
]
f (θ) dθ

subject to EQD

(
π(θi)

) = EQD

[
p(θi)Q

(
p(θi)

)
εD
i + T (θi)

− CVC
(
pe,w, θi,K(θi),Q(θi), ε

D
i , ε

Q
i , ηi | β

)]
− riK(θi)

dEQD[π(θ)]
dθ

= −∂EQD[CVC(θ,K(θ),Q(θ))]
∂θ

,

(129)EQD

[
π(θh)

]
� 0.

Although Wolak does not explicitly include the restrictions implied by the global truth-
telling constraints, he derives restrictions on the regulatory environment and distribution
of θ necessary for the price, capital, and fixed fee functions that solve (129) to also
satisfy the global incentive compatibility constraints.

Note that the formulation in (129) refers specifically to the ith utility–regulator pair.
Because the regulator does not know utility i’s efficiency parameter, she must set p, T ,
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and K functions over the entire support of θ for each utility. Consequently, the regulator
must solve this problem for each utility that it regulates.

Wolak (1994) presents a detailed discussion of the derivation of the first-order con-
ditions for this optimization problem. For our purposes, we simply want to show how
these first-order conditions differ from those for the Model S solution. The first-order
conditions analogous to (125) and (126) for Model A are:

(130)

p(θ) =
[
∂EQD[CVC(θ,K(θ),Q(θ))]

∂Q
+ F(θ)

f (θ)

∂2EQD[CVC(θ,K(θ),Q(θ))]
∂θ∂Q

]
ηp,

(131)

r = −
[
∂EQD[CVC(θ,K(θ),Q(θ))]

∂K
+ F(θ)

f (θ)

∂2EQD[CVC(θ,K(θ),Q(θ))]
∂θ∂K

]
ηK,

where ηp and ηK are the mean one multiplicative optimization errors added for same
reasons given above in the discussion of the Model S solution. These two equations
determine the amount of capital stock K(θ) a utility of type θ will purchase, and the
price p(θ) it will be directed to charge. The demand function Qi(p) and these two
equations determine the two regulatory variables K(θ) and p(θ). The fixed fee T (θ) is
given by

T (θ∗) = EQD

[
π(θ∗)

]− EQD

[
p(θ∗)Q

(
p(θ∗)

)
εD + CVC

(
θ∗,K(θ∗),Q(θ∗)

)]
(132)+ rK(θ∗)

for a utility of type θ∗. Once a utility’s K is chosen and its p and T are set, its de-
mands for L and E can be determined from the solution to the minimum operating cost
problem.

These first-order conditions demonstrate that the presence of asymmetric information
in the regulator–utility interaction leads to both deviations from minimum cost produc-
tion and efficient output prices in the sense that price differs from marginal cost. As
discussed above, this deviation from minimum cost production occurs because the firm
also uses its capital stock to signal to the regulator its greater productive efficiency and
therefore lower value of θ .

9.4. Econometric model

Following our procedure outlined in Section 4 for constructing structural economet-
ric models, this section discusses the functional form of the production function Qi =
f (Ki, L

∗
i , Ei, ε

Q | β) and derives the cost function which is used to recover an estimate
of the parameter vector β. We then discuss the specification of distributions for the struc-
tural disturbances introduced into the model and derive the likelihood function. Wolak’s
model contains the first three types of disturbances discussed in Section 4: (1) unob-
served heterogeneity in the form of the utility’s private information θi , (2) shocks which
agents in the model optimize against (εQ and εD), (3) optimization errors which allow
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agents’ first-order conditions to only be satisfied in expectation (ηj , j = L,E,K, p).
Appendix A of Wolak (1994) shows that the composite errors to the structural equations
are functions of these disturbances.

Wolak’s choice of fairly simple functional forms for the production function and de-
mand function allows him to impose conditions on the parameters of the underlying
econometric model that guarantee a solution to the regulator’s problem. More flexible
functional forms for Qi = f (Ki, L

∗
i , Ei, ε

Q | β) would not allow this. These func-
tional forms allow constraints on the parameters of the economic environment which
guarantee the existence of a Model A solution. These functional forms allow Wolak
to perform counterfactual experiments with his parameter estimates which illustrate
several important empirical distinctions among Model S, Model A, and conventional
estimation procedures.

Wolak uses the Cobb–Douglas production function Q = β0K
βK (L/d(θ))βLEβEεQ,

where d(θ) = θ(βL+βE)/βL . The demand function for the utility’s output is

(133)Qd =
{

exp(Z′b)p−κεD if p � pmax,

0 if p > pmax,

where Z is a vector of utility service area characteristics assumed shift demand, b is a
parameter vector associated with Z, κ is the elasticity demand for water, and pmax is the
price beyond which demand for the firm’s output is zero.

Solving the minimum operating cost problem for this production function yields the
following (conditional on K) variable cost function:

CVC(pe,w,K,Q, θ, ε | β)

= θβ0
− 1

βL+βE K
− βK

βL+βE

[(
βL

βE

) βE
βL+βE +

(
βL

βE

)− βL
βL+βE

]
(134)× w

βL
βL+βE pe

βE
βL+βE Q

1
βL+βE u,

where u is a function of our previously defined disturbances εD , ηL and ηE and the
parameter vector β.

Taking the partial derivative of the expected value of this cost variable function,
EQD[CVC], with respect to K and inserting it into the first-order condition for the
symmetric information regulatory outcome with respect to K , yields the following un-
conditional variable cost (VC) function:

(135)VC(S) = D∗rαwγ θ(1−α)pe(1−α−γ )Qδ
dν.

Expressions for D∗ and ν in terms of the underlying parameters of the model are given
in Appendix A of Wolak (1994). The parameters α, γ and δ are defined as follows:

(136)α = βK

βK + βL + βE

, γ = βL

βK + βL + βE

,

(137)δ = 1

βK + βL + βE

.
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The only difference between this unconditional variable cost function and the usual
Cobb–Douglas unconditional variable cost function is the presence of the utility’s pri-
vate information, θ .

We should emphasize that because it excludes capital costs, this is the utility’s min-
imum variable cost function conditional on θ – not the minimum total cost function.
Although it is straightforward to derive the utility’s minimum total cost function from
(125), Wolak departs from the tradition of estimating a total cost function for the fol-
lowing reason. Operating or variable costs are measured with little if any error, whereas,
capital cost (the missing ingredient necessary to compute total production costs) is
extremely poorly measured. Rather than complicate the analysis with potentially sub-
stantial measurement error, he instead uses the variable cost function to estimate the
same parameters of the utility’s production function that can be recovered by estimating
a total cost function.

To derive the asymmetric information cost function, substitute the partial derivative
of the expected value of the variable cost function, EQD(CVC), with respect to K into
the first-order condition for the optimal capital stock given in (130). Simplifying this
expression gives the following variable cost function:

(138)VC(A) = D∗H(θ)−αθrαwγ pe(1−α−γ )Qδ
dν,

where H(θ) = [θ + F(θ)
f (θ)

]. The parameters α, γ and δ are as defined above.
The final step toward developing the structural econometric model is to specify distri-

butions for all of the stochastic shocks to the econometric model. This step is needed to
derive the likelihood function for the variable cost functions under the two information
structures. Wolak requires that ν be lognormally distributed with ln(ν) ∼ N(μν, σ

2
ν )

independent across time and utilities.
Taking the natural logarithm of both sides of (135) gives the following symmetric

information logarithm-of-variable-costs equation:

ln
(
VC(S)

) = ξ∗ + (1 − α) ln(θ) + γ ln(w) + α ln(r) + (1 − α − γ ) ln(pe)

(139)+ δ ln(Qd) + ζ,

where ξ∗ = ln(D∗)+μν and ζ = ln(ν)−μν . Therefore, ζ is N(0, σ 2
ζ ), where σ 2

ζ = σ 2
ν .

Repeating this procedure for Equation (138) yields the asymmetric information log-of-
variable-costs equation:

ln
(
VC(A)

) = ξ∗ − α ln
(
H(θ)

)+ γ ln(w) + α ln(r) + (1 − α − γ ) ln(pe)

(140)+ δ ln(Qd) + ζ.

The final step of the process is to define the likelihood function for each informa-
tion structure. First we define notation which simplifies the presentation. Let Γ ∗ =
(ξ∗, α, γ, δ)′. Define X = (ln(r), ln(w), ln(pe))′, q = ln(Qd), and Y = ln(V C). In
this notation we can abbreviate Equations (139) and (140) as:

(141)Y = ΩY (X, q, Γ ∗, θ) + ζ,
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(142)Y = ΨY (X, q, Γ ∗, θ) + ζ,

where ΩY (X, q, Γ ∗, θ) is the right-hand side of (139) excluding ζ and ΨY (X, q, Γ ∗, θ)

is the right-hand side of (140) excluding ζ .
We now derive the likelihood function and discuss the estimation procedure for the

case of Model S. Following this discussion, we describe the additional complications
introduced by Model A. Under Wolak’s assumptions on the functional form for the
production function and the aggregate demand function the equilibrium value of q under
Model S is

(143)q = (Z′, X′, ln(θ)
)
Λ∗ + ψ,

where Λ∗ is the vector of coefficients associated with (Z′, X′, ln(θ)) and ψ is assumed
to be joint normally distributed with ζ . Let ρζ,ψ denote the correlation between ζ and
ψ . Finally, define Λ = (Λ∗′, σ 2

ψ, ρζ,ψ)′. Conditional on the value of θ , Equations (141)
and (143) make up a triangular system of simultaneous equations. The determinant of
the Jacobian of the transformation from (ζ, ψ)′ to (Y, q)′ is one, so that the joint density
of (Y, q)′ conditional on θ , X and Z is

hS

(
Y, q | ln(θ), Γ,Λ

)
= 1

2πσ 2
ζ σ 2

ψ(1 − ρ2
ζ,ψ)1/2

(144)× exp

[
− 1

2(1 − ρ2
ζ,ψ)

[
(ψ/σψ)2]− 2ρζ,ψ(ψζ )/(σψσζ ) + (ζ/σζ )

2
]
,

where Γ = (Γ ∗, σζ )
′. Note that θ enters both (141) and (143) only through ln(θ), so

that without loss of generality we can express hS(·,·) as a function of ln(θ). Because θ is
unobservable, to construct the likelihood function in terms of the observable variables,
we must compute the density of (Y, q) given X and Z only. To obtain this density we
integrate the conditional density hS(Y, q | ln(θ), Γ,Λ) with respect to the density of θ .
Integrating with respect to the density of θ , yields

(145)g
(
Y, q | X,Z, Γ, λ, F (.)

) =
∫ θh

θl

hS

(
Y, q | X,Z, ln(θ), Γ

)
f (θ) d(θ).

This likelihood function is similar to Porter’s regime switching model likelihood func-
tion. In Porter’s case It is the unobserved regime indicator and in the present case θ is
a continuously distributed random variable with compact support. In the same way that
Porter was able to identify the density of It from his assumption of conditional nor-
mality of the density of equilibrium price and quantity, Wolak (1994) is able to identify
the distribution of θ from the joint normality assumptions of Y and q. In addition, in
the same sense that the economic structure of competitive and collusive pricing regimes
was identified by the conditional normality assumption in Porter’s model, the primitives
of the private information regulator–utility interaction are identified by the conditional
normality assumption in Wolak’s model.
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The construction of the likelihood function for the asymmetric information case pro-
ceeds in an analogous fashion, with the major complication being the presence of H(θ),
which is a function of both f (θ) and F(θ) in both regression equations. The conditional
density of (Y, q)′ given θ , X and Z under Model A takes the same form as for Model S
with Equation (141) replaced by Equation (142) and the log-output Equation (143) re-
placed by the following equation:

(146)q = (X′, Z′, ln(θ), ln
(
H(θ)

))
Φ + ψ,

where Φ is the vector of coefficients associated with (X′, Z′, ln(θ), ln(H(θ))′).
The conditional distribution of Y and q given Z, X, and θ for this information struc-

ture, hA(Y, q | X,Z, θ), depends on θ through both ln(θ) and ln(H(θ)). To construct
the likelihood in terms of only observables, we integrate this conditional density with
respect to f (θ) over the interval [θl, θh].

For both Model S and Model A, conventional maximum likelihood estimation proce-
dures can be applied to compute the coefficient estimates and their standard errors.

9.5. Estimation results

A major goal of the empirical analysis is to recover characteristics of production
process, and in particular, the returns to scale in production, accounting for the impact
of the utility’s private information. Wolak finds that applying conventional minimum
cost function Cobb–Douglas estimation techniques, the returns to scale estimates ob-
tained that are implausibly high, with cost elasticities with respect to output estimates
as high as 0.77, which means that a 10 percent increase in output only increases total
costs by 7.7%. Other estimates were even lower. However, applying the maximum like-
lihood estimation techniques outlined above for the Model S and Model A solutions,
Wolak finds cost elasticities with respect to output greater than 1, for both the Model S
and Model A estimates, which implies slight decreasing returns to scale in production,
although the null hypothesis of constant returns to scale cannot be rejected. This dra-
matic difference in returns to scale estimates points out the importance of controlling
for this unobserved firm-level heterogeneity in productive efficiency when attempting
to recover consistent estimates of the characteristics of the regulated firm’s production
process.

Wolak is also able to recover estimates of F(θ), which determines the form of the op-
timal regulatory contract under asymmetric information. Armed with this information
he is able to compute the following counterfactuals for each point in his dataset using
the Model A parameter estimates. First, he computes the ratio of total operating costs
under a Model A solution versus the Model S solution holding constant the level of out-
put produced by the firm under both scenarios. This answers the question of how much
less costly, in terms of variable costs, it is to produce a given level of output under the
Model A versus Model S versions of the regulatory process. Wolak also performs this
same counterfactual for total production costs and finds that in terms of total produc-
tion costs, the same level of output costs approximately 5–10 percent more to provide
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under the Model A regulatory process relative to the Model S regulatory process. These
distortions from minimum cost production occur because the more efficient firms find
it profitable to signal their superior productive efficiency to the regulator through their
capital stock choice.

Wolak also computes the welfare cost to consumers from asymmetric information by
comparing the market-clearing level of output under the Model A solution versus the
Model S solution for the same values of the input prices and θ . He finds the output level
produced under the Model A solution is roughly 20 percent less than the level of output
under the Model S solution for the Model A parameter estimates, which indicates a
significant welfare loss to consumers associated with asymmetric information.

In an attempt to see whether Model A or Model S provides a statistically superior de-
scription of the observed data, Wolak performs a nonnested hypothesis test of Model A
versus Model S. He finds that Model A provides a statistically significantly superior de-
scription of the observed data relative to Model S. As discussed in Section 3, this does
not validate Model A as the true model for the regulatory process. It only states that for
the same functional forms and economic primitives, the strategic interaction implied by
Model A provides a statistically superior description of the observed data.

9.6. Further extensions

There are variety of directions for future research in this area given the enormous
number of competing theoretical models of the private information regulator–utility in-
teraction. Sorting through the empirical implications of these models across a variety
of regulated industries would help to focus future theoretical and empirical research in
this area. Recent work in this area includes: Dalen and Gomez-Lobo (1997) who study
the impact of these incentive contracts in the Norwegian Bus Transport Industry and
Gagnepain and Ivaldi (2002) who assess the impact of incentive regulatory policies for
public transit systems in France.

10. Market structure and firm turnover

So far we have discussed IO models in which the number of market participants (e.g.,
firms or bidders) is given. IO economists have recently devoted considerable energy
toward modeling how changes in market structure can affect the extent of competition
in a market. In particular, the theoretical literature has explored two related questions:

1. “How many competitors are needed to insure effective competition?” and
2. “What factors encourage firms to enter markets?”

Theoretical answers to these questions often hinge delicately on the assumptions made
about firms’ costs, market demand and firms’ conjectures about competitors’ behavior.
Unfortunately, there are very few structural econometric models that would allow one to
identify the empirical relevance of demand, cost and strategic explanations. In large part
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this is because competition models in which the number of participants is endogenous
are complicated and difficult to solve.

Only recently have empirical researchers begun to make progress in developing struc-
tural econometric models that can speak to specific strategic models of entry and entry
deterrence. In this section we outline some of the econometric issues associated with
modeling the number of firms in oligopolistic markets. Again, our intent is not so much
to survey the literature as to show what one can learn from information about the number
and identities of firms in a market.32 We shall see that while structural models of entry,
exit and market structure raise many of the modeling issues discussed in Sections 5–9,
there are also new issues.

10.1. Overview of the issues

Sections 5–7 showed how economists have used information about the joint density of
prices and quantities f (P,Q | X,Z) = f (P1, . . . , PN,Q1, . . . ,QN | X,Z) to re-
cover information about firms’ demand curves and costs. In general, the conditional
density f (·) is a statistical object, and a high-dimensional one at that. In practice this
means that it would be hopeless to try and estimate a 2 × N conditional joint density
nonparametrically from market-level data. While going to consumer-level data can im-
prove inferences, in general it will be extremely difficult to obtain the representative
consumer-level datasets necessary to estimate flexible and yet precise estimates of firm-
level demands. These observations suggest that considerable economic structure will
have to be introduced if one is to obtain meaningful estimates of firms’ demands and
costs.

The literatures discussed in Sections 5–9 presume that the number of firms is exoge-
nous. One consequence of this assumption is that N enters objects such as f (P,Q |
X,Z) as a conditioning variable rather than something to be explained. One way to
make N endogenous is to imagine that each market has the same M > N poten-
tial entrants. Each of these potential entrants makes a discrete decision whether or
not to enter. The conditional density of the market data and these entry decisions is
f (P1, . . . , PM,Q1, . . . ,QM, a1, . . . , aM | X,Z,W,M). Here, the ai are zero-one
indicators for whether or not potential entrant i has entered and W are any new con-
ditioning variables.

This expression makes it easy to appreciate why many studies do not make N en-
dogenous. First, there are many different collections of the ai that yield the same N .
In principle, the researcher might wish to explain not just N but why a particular or-
dering of the ai was obtained. Second, because the dimensionality of f (·) has gone up
considerably, it becomes even more difficult to estimate nonparametrically. For exam-
ple, it seems unlikely that a researcher would have a large sample of markets that have
the same number of potential entrants M . Finally, the form of f (·) may differ with the
identities of each entrant.

32 For a more complete discussion see Berry and Reiss (in press).
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Because nonparametric methods are impractical, the researcher will have to impose
economic structure to get anywhere. In particular, now the researcher will have to add
equations that explain each of the ai . These conditions must explain why some but not
other potential entrants entered the market.

Our discussion so far has dealt with more obvious complications introduced by mak-
ing N and the identities of entrants endogenous. There are less obvious complications
as well. Two of the most critical are that: (1) the underlying theory may deliver am-
biguous predictions about which firms will enter in equilibrium; and, (2) the underlying
theory may deliver no (pure-strategy) predictions about which firms will enter in equi-
librium. These are new complexities, ones we did not really see in Sections 5–9. Before
we explore their significance for structural modeling, it is useful to back up and provide
a broader sense of the types of economic issues that one might hope to address with
structural models of market concentration and competition.

10.1.1. Airline competition and entry

Since the deregulation of US passenger airline markets in the late 1970s, travelers and
economists have speculated about whether sufficient competition exists in different city-
pair markets.33 One does not have to look far to understand why. Travelers routinely
encounter wide disparities in an airline’s fares (per seat mile) over time, across routes
and even for seats on the same flight. Despite this considerable variation in a given air-
line’s fares, there appears to be much less variation in fares across competing carriers.
Industry critics contend that such patterns are obvious evidence of ineffective com-
petition. They also argue that high concentration on some individual city-pair routes
contributes to the problem. Some industry advocates argue the opposite. They contend
that fare matching is evidence of competition, and that fare differences at worst reflect
price discrimination. Some also claim that high concentration is evidence of economies
of scale and route density, and that entry (or the threat of entry) of small upstart carriers
is enough to insure effective competition.

These two views provide a challenge to IO economists, and there have been many
attempts to distinguish between them. To delve deeper, it is useful to imagine that we
have data (consistent with the US experience) indicating that short haul routes between
small cities tend to be highly concentrated and have high (per seat mile) fares. The
technological and demand explanation for this correlation is that the costs of service on
these routes is high relative to demand. Thus, some routes will have so little demand
relative to costs, that at most one firm can profitably serve the market. This one firm
would behave as a monopolist and charge high prices to recover its costs. The anti-
competitive explanation for the observed correlation is that high concentration and fares
are the result of strategic behavior. For example, even if the small market could support

33 See for example Borenstein (1992), Brueckner, Dryer and Spiller (1992), Morrison and Winston (1996),
Ott (1990), and Windle (1993).
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many carriers, dominant carriers can convince potential entrants that entry would be
met with stiff competition.

Can we distinguish between these explanations? Our answer is: given the current
state of the theory, econometric models and data, we cannot generally. The main reason
is that much of what the theory points us toward is unobservable. Researchers do not
observe the marginal and fixed costs that are central to technological explanations. We
also do not observe potential entrants’ expectations about incumbent behavior, which
are central to strategic explanations. Does this mean we cannot learn anything from a
structural model of market structure? The answer to this is no.

What we can imagine doing in principle is building structural models that would
examine how alternative competitive models fit the data. For instance, we might begin
in the spirit of the models in Sections 5–7 by writing down functional forms for city-pair
demand, and firms’ fixed and variable costs. This is not, however, as easy as it sounds.
Prior studies have documented that airlines’ costs of service depend in complex ways
not only on route-specific factors, such as miles traveled, airport fees, etc., but also on
network and fleet characteristics (e.g., whether the plane will carry passengers beyond
a city or transfer passengers at a hub and code-sharing agreements). Nevertheless, we
might attempt a parametric model of demand and costs. At that point, unlike most of the
models in Sections 5–7, we would have to grapple with the problem that the number of
carriers in a market is endogenous: it is affected by demand and supply conditions. We
therefore also have to model how fixed and marginal costs impact the number of firms
in the market (and possibly the identities of those firms).

Here, we encounter tricky specification issues. Economic theory suggests that to
model the number of firms we need to model why (and possibly which) firms did not
enter. But this involves modeling potential entrants’ expectations about what would
happen after entry, something we never observe. Moreover, because the same carriers
compete with each other in other markets, we may have to model how actions in any
one market affect outcomes in other markets.

At this point, it might seem that a complete structural model of airline competition is
hopeless. There is, however, something that we can learn with the right data. The critical
events that tell us something about competition and market structure are instances of
entry and exit. Consider, for example, our sample of small markets. In principle, we
observe some city-pair markets in which there is no (direct) service, others in which
there is a monopoly, a duopoly, and so on. If (and this is an important if) we can control
for factors that might lead to cost of service and demand differences across markets,
then we can ask how much demand does it take to support at least one carrier. This level
of demand tells us something about a single carrier’s fixed and marginal costs relative
to demand. We can then compare this level of demand to what it takes to support a
second firm in the market. This level of demand tells us more about costs and potentially
behavior. Suppose, for instance, we do not observe a second carrier enter a city-pair
market until demand is roughly twenty times what it takes to support a single carrier.
One’s intuition is that if the second carrier has the same costs and product as the first,
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that this difference must reflect pessimism on the part of the second carrier as to value
of entering a monopoly market.

It is this type of intuition that structural models of the number of firms, or entry
and exit seek to make more precise. That is, the goal of a structural model is to show
how changes in population and other exogenous market conditions affect the (apparent)
ability of potential entrants to cover costs. The primary value of a formal model is
that it makes clear what economic and stochastic assumptions are necessary, given the
available data, to isolate differences between firms’ costs and the expectations they have
about post-entry competition.

10.2. An economic model and data

Our airline example makes three points that are worth emphasizing. First, debates about
the competitiveness of markets often hinge on assumptions about what determines a
market’s structure (e.g., the number of firms). Second, some of the most critical factors
affecting the ease of entry and exit are unobservable (e.g., firms’ fixed and marginal
costs, and expectations about post-entry competition). Third, while we can potentially
use structural models to draw inferences about the unobservables present in IO theories,
these models, like all structural models, will contain untestable assumptions. These as-
sumptions may be too numerous to be credible.

An important corollary to this third point is that the form of the data available will
have an important impact on what we can estimate. In our airline example, for instance,
we might have data on a cross section of similar city-pair markets or time series data
on the same market over time. Both of these data sets raise modeling issues. In cross-
section data we have to worry about changes in the identity and number of potential
entrants across markets. We may also have to worry that the behavior of firms in one
market may affect their behavior in other markets. While time-series data have the ad-
vantage of holding constant market-specific conditions, researchers must again worry
that the firms’ decisions may be linked through time. When they are, it makes sense to
model firms’ decisions using dynamic games. While some progress has been made in
formulating and solving such games, to date their computational demands have largely
made them impractical for empirical work. As a consequence, almost all structural mar-
ket structure models are static.

Most empirical work in this area has tended to rely on cross-section data. As such
they focus on modeling which firms are producing, as opposed to firm turnover; i.e.,
which firms are entering or exiting. In a typical cross-section application, a researcher
might have data on

1. the number of potential entrants into each market, M;
2. the entry decisions of each potential entrant: a = (a1, a2, . . . , aN);
3. market-specific information X (e.g., market size); and
4. firm-specific information, Z = (z1, z2, . . . , zM) (e.g., identities and product char-

acteristics).
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In addition, in an ideal application the researcher may also observe the prices and quan-
tities of actual entrants: P1, . . . , PN and Q1, . . . , QN .

In an ideal setting, the structural modeler would like to use this information to esti-
mate firm-level demand and cost specifications, such as those discussed in Sections 5–8.
Unlike these previous models, however, assumptions about firms’ fixed costs will now
play an important role in these models, as fixed costs help determine which set of firms
will produce. Additionally, assumptions about the timing of firms’ decisions and the
amount of information they possess become critical. These assumptions are important
because, unlike in previous models, they have a critical impact on whether the empiri-
cal model has a pure-strategy equilibrium and whether any pure-strategy equilibrium is
unique. In what follows, we use a series of models advanced by Bresnahan and Reiss
(1991a, 1991b) to highlight some of these issues and the strengths and weaknesses of
structural models.34

Bresnahan and Reiss develop econometric models to explain the number of sellers in
several different localized product markets (such as dental services, new car dealers and
movie theaters). For each product, they model how the number of sellers in a town varies
with the town’s population, and other demand and cost variables. The goal of their work
is to understand how technological, demand and strategic factors affect market structure
and competition. Like the airline example, they propose to do this by estimating how
much demand it takes to support different numbers of firms. Unlike the airline example,
however, the authors only have information on the number of firms in each market
and their identities a = (a1, . . . , aM); they do not have price or quantity information.
Thus, absent a structural model, the best they can do is summarize the conditional joint
distribution of entry decisions given industry and firm characteristics. Such an approach
is not that dissimilar from that taken in Dunne, Roberts and Samuelson (1988). When
developing a structural model, Bresnahan and Reiss must take into account the fact that
entry and exit are discrete events. Thus, their structural models will not typically involve
marginal conditions, such as those used in the models of Sections 5, 6 and 7. Instead,
they must rely on threshold conditions for entrants’ unobserved profits.

The threshold conditions that Bresnahan and Reiss use come from simple static,
perfect-information entry games. An example of such a game is the standard two-firm,
simultaneous-move entry game. The payoffs to the players in this game are:

Stay out (a2 = 0) Enter (a2 = 1)

Stay out (a1 = 0) Π1(0, 0) Π2(0, 0) Π1(0, 1) Π2(0, 1)

Enter (a1 = 1) Π1(1, 0) Π2(1, 0) Π1(1, 1) Π2(1, 1)

where the Πk(a1, a2) represent the profits firm k earns when firm 1 plays a1 and firm 2
plays a2 (a zero denotes the action “Stay Out” and a one denotes “Enter”). In most

34 See also the work of Berry (1992) and other references cited in Berry and Reiss (in press).
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textbook examples, the numbers in the payoff matrix are hypothetical. The economist
then adds assumptions about players’ information and a solution concept.

Bresnahan and Reiss’ structural models build on this strategic representation of an
entry game. Their econometric models postulate that the researcher observes the play-
ers’ equilibrium action(s) in each sample market (e.g., a1 = 0 and a2 = 1) but does not
observe the firms’ economic profits (the Πk(0, 1)). The logic of their models is to use a
specific equilibrium solution concept to work backward from the observed equilibrium
action(s) to statements about unobserved profits. Thus, the “structure” in their structural
model are the economic and stochastic assumptions that allow them to go from dis-
crete data to statements about continuous-valued profits. It should not be too surprising
given our discussions in Sections 5–9, that Bresnahan and Reiss will have to introduce
considerable structure in order to draw inferences about firm profits and behavior from
discrete outcomes.

10.3. Modeling profits and competition

To understand the process by which Bresnahan and Reiss work from firms’ observed
actions back to statements about firms’ unobserved profits, and to see what one can
hope to estimate, it is useful to work with a specific entry model. To keep matters sim-
ple, imagine that we are modeling the number of symmetric firms, N , that produce
a homogeneous good. The goal of the empirical analysis is to use the information in
the zero-one entry indicators a1, a2, . . . , aM of the M � N potential entrants to draw
inferences about firms’ profit functions, i.e.,

(147)Πk(a1, a2, . . . , aM,X,Z,W, θ).

Here X,Z, and W represents exogenous observables affecting demand and costs, and θ

represents parameters of the profit function (e.g., demand and cost function parameters)
that we wish to estimate. While the firms’ profit functions could in principle include
prices and quantities, Bresnahan and Reiss do not have this information. They thus
are forced to work with profit functions where these endogenous variables have been
substituted out.

The first step in the modeling process is to use assumptions about demand, costs and
how firms compete to derive the functional form of Equation (147). Here Bresnahan
and Reiss are helped by the presumption that if a potential entrant does not enter, it
likely will earn zero profit – regardless of what the other potential entrants do. If firm
i does enter, its profits depend on the number of other firms that enter (as summarized
in the aj ). The exact way in which the number of other firms affects profits depends on
what one assumes about demand, costs and competition. If, for example, firms have the
same constant marginal cost c, have fixed costs of F , compete as Cournot competitors,
and market demand is p = α − bQ, then one can show

(148)Πk(a1, a2, . . . , aM,Z, θ) = b

(
S∑M

j=1 aj + 1

)2

− F,
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where S = (α − c)/b is a measure of the potential size of the market. For firm i to have
entered along with N − 1 other firms it must be the case that Πi � 0. Similarly, if there
is free entry, then it must be that the (N + 1)st entrant found it unprofitable to enter.
These two bounds imply

S2

(N + 1)2
� F

b
� S2

(N + 2)2
.

These inequalities provide useful information. For instance, if we know or could esti-
mate the size of the market S and the slope of demand b, then we can place a bound on
firms’ unobserved fixed costs. While it is plausible to imagine having external measures
of the market’s size, S, it is much less likely one would have prior information about
b. One solution would be to use price and quantity data to estimate b, yet this is ex-
actly the problem that Bresnahan and Reiss have – they do not have price and quantity
information.

The question then is what can one infer about demand and cost conditions from a
cross section of markets? Bresnahan and Reiss’ idea is to use information on the number
of firms in very small to very large markets to estimate a sequence of so-called entry
thresholds. These thresholds are a simple transformation of the market sizes S1, S2, . . .

above, where Si represents the size of the market just needed to support i firms. While
the entry threshold levels are of limited use, their ratios are revealing. For example, if
we take the ratio of the duopoly to the monopoly entry threshold assuming firms are
Cournot competitors we get

(149)
S2

2

S2
1

= 9

4
= 2.25.

That is, we should observe a second firm entering at 2.25 the size of the market required
to support one firm. Similar calculations can be done for entry threshold ratios involving
higher numbers of identical firms.

Of course, we need not observe the estimated (or observed) duopoly-monopoly
threshold ratio equal to 2.25 (or the higher-order ratios consistent with this symmet-
ric Cournot model). The question then is what should we infer? The answer is that
economic theory can provide some suggestions. We can consider, for example, what
happens when we change the assumption about how the duopolists compete. If the
second entrant expects the monopolist to collude with it after entry, then the duopoly
to monopoly ratio would equal 2.0. The three-firm to monopoly entry threshold ratio
would be 3.0, and so on. Alternatively, if the second firm expected perfect competition
(or Bertrand competition) post entry, we would never observe the second firm enter this
natural monopoly. Thus, we can see that the degree of competition affects the entry
threshold ratio. While we might be tempted to think the entry threshold ratio then is
indicative of the degree of competition, with larger ratios suggesting more competition
post entry, this is only true if we maintain our other assumptions. If, for example, we
had used a quadratic cost function with increasing marginal costs, we also would see
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changes in the entry threshold ratios as minimum efficient scale changes [see Bresnahan
and Reiss (1991a)].

This last point brings us back to a point we made in the introduction: inferences in
structural models typically depend heavily on maintained functional form assumptions.
We often do not have the data to test these assumptions. In this application, for example,
the absence of price and quantity data considerably limit what we can infer. Does this
suggest that this structural model has little value because we have to make untestable
assumptions? Our answer is no. The model has value because it makes clear what one
can and cannot infer from the data. It also points future research toward what it is that
one needs to observe to draw sharper inferences.

10.4. The econometric model

Our discussion so far has largely been based on an economic model with symmetric
firms. We have yet to introduce stochastic assumptions or discuss the more realistic
cases where there are observed and unobserved differences among firms. These addi-
tions introduce further complexities.

Recall that the data Bresnahan and Reiss have are the number of potential entrants M ,
the number (and possibly the identities) of the actual entrants, and demand and cost
variables. Starting from primitive demand and cost function assumptions, they build a
model of firms’ equilibrium profits, which consists of a variable profit and a fixed cost
term

(150)Π̄k(a, Z, θ) = VPi (a, Z, θ) − Fi(a, Z, θ).

Here, a is a vector describing the M potential entrants’ entry actions, VP denotes vari-
able profits, F fixed costs and i subscripts potential entrants. Although this expression
depends on observable variables, the econometrician does not typically observe every-
thing the firm does. Following the discrete choice literature popularized by McFadden,
Heckman, and others, we might simply add an error term, ε, to profits to account for
what we do not observe. Notice, however, that by assuming that the error is additive,
we have placed structure on what it is about profits that the econometrician does not ob-
serve. Specifically, whatever it is that the econometrician does not observe, it enters the
firms’ optimal choices of prices and quantities in such a way that we obtain an additive
error in Equation (150). What types of unobservables do and do not fit this specifica-
tion? If we assume that the firms have unobserved differences in their constant marginal
costs, then we will not obtain an additive error specification. On the other hand, if we
assume that firms have different fixed costs, then we will. (This is because the marginal
conditions for prices or quantities do not depend on the unobservable fixed cost.) Thus,
while it is possible to justify the unrestricted additive structure in (150), it may make
more economic sense to entertain alternative stochastic specifications for profits.

Assuming that the unobserved portion of profits is additive, we are now in a position
to write down expressions for the equilibrium threshold conditions on firm profits. Fol-
lowing the discrete choice literature, we might consider modeling entry as the event that
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the firm i’s latent profits exceeds 0, or

(151)VPi (a, Z, θ) − F̃i(a, Z, θ) � εi(a),

where the tilde above fixed costs denotes fixed cost up to an additive mean zero error.
This model looks like a standard threshold condition in a conventional discrete choice
model. The key difference is that the threshold conditions in the entry model contain the
endogenous ai variables. In other words, unlike in the standard discrete choice model,
here agents’ discrete decisions are interrelated. We therefore have to model simultane-
ously the N potential entrants’ threshold conditions. This is the source of additional
complications.

There is some precedent in the discrete choice literature for threshold conditions that
include dummy endogenous variables (the ai). For example, the household labor supply
literature sometimes descriptively models the dependence of a household head’s labor
supply decision on their spouse’s labor supply decision. Amemiya (1974) and others
have studied the econometric properties of latent variable models that include dummy
endogenous variables. Heckman (1978) introduced a systematic formulation of linear
dummy endogenous variable models and discussed a variety of econometric issues as-
sociated with the formulation and estimation of such models. In particular, he and others
have noted that arbitrary specifications of dummy endogenous variable models can lead
to “coherency” and identification problems.

Bresnahan and Reiss showed that one could use the economic structure of discrete
games to produce structural choice models with Heckman’s econometric structure.
Moreover, the identification issues that arise in Heckman’s models often have natural
economic interpretations. To see some of the connections, let us return to the normal
form entry game above. Recall that the idea of Bresnahan and Reiss is to draw in-
ferences about the unobserved payoffs from the observed equilibrium actions of the
entrants. To link the observed actions to the payoffs, we employ an equilibrium solu-
tion concept. An obvious one to employ in analyzing an entry game is that of a Nash
equilibrium. An outcome {a∗

1 , a∗
2 } of the entry game is a Nash equilibrium if

(152)Π1
(
a∗

1 , a∗
2

)
� Π1

(
a1, a

∗
2

)
and Π2

(
a∗

1 , a∗
2

)
� Π2

(
a∗

1 , a2
)

for any a1 and a2. To make clear the connection between the Nash equilibrium outcomes
and payoffs, we can rewrite the two-by-two entry game as:

Stay out (a2 = 0) Enter (a2 = 1)

Stay out (a1 = 0) Π1(0, 0) Π2(0, 0) Π1(0, 1) Π2(0, 0) + Δ2
0

Enter (a1 = 1) Π1(0, 0) + Δ1
0 Π2(1, 0) Π1(0, 1) + Δ1

0 + Δ1
1 Π2(1, 0) + Δ2

0 + Δ2
1

where the Δ’s represent the incremental profits to each firm of entry. From the definition
of a Nash equilibrium and the above payoff matrix we can deduce

a1 = 0 ⇐⇒ Δ1
0 + a2Δ

1
1 � 0,
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(153)a2 = 0 ⇐⇒ Δ2
0 + a1Δ

2
1 � 0.

These conditions link the observed actions to profits. Specifically, they tell us that all
that the econometrician can infer from the observed equilibrium actions are statements
about the Δ terms. In the case of a Nash equilibrium, we see this means that the econo-
metrician cannot estimate Π1(0, 1) and Π2(1, 0), which are the profits the firms earn
when it is out of the market. This makes perfect sense, as we can only learn about prof-
its when a firm enters. To understand what we can estimate, it is useful to analyze the
Δ’s. The Δi

0 term are the incremental profits that firm i earns in a monopoly. We might
naturally think of this incremental profit as monopoly variable profits minus fixed costs,
net of opportunity costs. The Δi

1 terms are the profits that firm i gains (loses) relative to
its incremental monopoly profit when it enters its competitor’s monopoly market. This
profit is most naturally thought of as the loss in variable profit from moving from a
monopoly to a duopoly.

From assumptions about the structure of demand and costs, we can relate the incre-
mental profit terms to underlying demand and cost variables and parameters. For exam-
ple, in the symmetric linear demand and cost Cournot example, where Πi(0, 0) = 0 we
have

Δi
0 = (α − c)2

4b
− F = g(α, c) − F,

(154)Δi
1 = 5(α − c)2

36b
= h(α, c).

Knowing this relationship between the Δ’s and the underlying economic parameters,
we can proceed to add error terms to the model to generate stochastic specifications.
Assuming Fi = F + εi gives the following latent variable system

(155)ai =
{

1 if y∗
i = g(α, c) − F + ajh(α, c) − εi � 0,

0 if y∗
i = g(α, c) − F + ajh(α, c) − εi < 0,

for i = 1, 2 and i �= j . This system bears a resemblance to Heckman’s (1978) linear
dummy endogenous variable systems. For instance, if we ignore the demand and cost
parameters in g(·) and h(·), assume Δi

1 is a constant, and Δi
0 = Xβi , where X is a

vector of observable variables and βi is a vector of parameters, then we obtain the linear
dummy endogenous variable system

(156)ai =
{

1 if y∗
i = Xβi + aj δ − εi � 0,

0 if y∗
i = Xβi + aj δ − εi < 0.

Amemiya, Heckman, Maddala and others have noted we cannot estimate the above
systems in general if the errors have unbounded support. The reason for this is that
the reduced form is not always well defined for all values of the errors. Bresnahan
and Reiss show that this econometric problem has a natural economic interpretation:
namely, it is indicative of two types of problems with the underlying game. First, if the
errors are unrestricted. the underlying game may have multiple pure-strategy equilibria.
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Second, the underlying game may have no pure-strategy equilibria. These existence and
uniqueness problems cause havoc with pure-strategy reduced forms.

One proposed solution to these problems is to assume that the model is recursive.
This econometric solution, however, has unattractive economic implications for an en-
try game. Specifically, it amounts to assuming that a competitor’s entry into a monopoly
market does not affect the monopolist’s profits. Thus, while this assumption is compu-
tationally attractive, it is economically and empirically unrealistic.

Bresnahan and Reiss go on to suggest how one can impose restrictions on profits
that remove existence problems. They also suggest a solution for the nonuniqueness
problem, which is to aggregate the nonunique outcomes (in this case the nonunique
outcomes occur when one firm or the other firm could be a profitable monopolist) to
obtain an economic model of the number of firms in the market, rather than a model
of which firms are in the market. Bresnahan and Reiss also explore how changing the
solution concept for the entry model changes the econometric structure of the game.
The main one they explore is how changing the game from simultaneous-move Nash
to sequential-move Stackleberg. In the latter case, the entry game generically has a
unique equilibrium. The econometric model of this equilibrium also has a threshold
interpretation, but it is more complicated than the simple linear structure above.

10.5. Estimation

Turning now to estimation, Bresnahan and Reiss (1991a) propose maximum likelihood
methods for estimating the parameters of profits. In their empirical work, they focus on
estimating models where the number of potential entrants is small. A key assumption in
their work is that they actually know the number of potential entrants, and therefore the
number of threshold conditions to impose. In much of their work, they ignore systematic
differences in firms’ profits and focus instead on modeling the number of firms that will
enter geographically distinct markets. In particular, Bresnahan and Reiss assume that
the demand for the products they look at is proportional to a town’s current and future
population size, and that the per capita demands for these products does not depend on
population. This allows them to express market demand as Q = D(Z,P )S, where S

is the “size” of the market. To simplify the analysis, Bresnahan and Reiss assume that
sellers are the same, apart from potential differences in fixed costs.

Using these assumptions, Bresnahan and Reiss derive expressions for equilibrium
monopoly and duopoly profits as a function of the size of the market S, other demand
variables and cost variables. A key observation is that the size of the market S enters
linearly into firm profits. Assuming there are only two possible entrants, firm 1 has
post-entry profits

(157)Πi(1, a2) = (g(Z, β) + a2h(Z, δ)
)
S − F(a2) − ε.
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From this relation, Bresnahan and Reiss identify entry thresholds for a monopolist and
a duopoly. That is, the entry thresholds equal

(158)S(a2) = F(a2) − ε

g(Z, β) + a2h(Z, δ)
.

The entry thresholds are of interest because they tell us something about unobserved
fixed costs relative to the variable profit parameters. While in principle, Bresnahan and
Reiss should motivate the functions h(Z, δ) and g(Z, β) from a specific model of de-
mand and variable costs, in their empirical work they assume that these functions are
linear in the Z variables (or constants). Bresnahan and Reiss make these assumptions
both to simplify estimation and because they cannot easily separate cost and demand
variables.

In most of their work, Bresnahan and Reiss focus on estimating ratios of entry thresh-
olds. In their model, the ratio of the monopoly to the duopoly entry threshold equals:

(159)
S(1)

S(0)
= F(1)

F (0)

g(Z, β)

g(Z, β) + h(Z, δ)
.

This expression shows that the ratio depends on the extent to which the second entrant
has higher fixed costs than if it were a monopolist and the extent to which duopoly
profits are less than monopoly profits (here h(Z, δ) < 0). Bresnahan and Reiss esti-
mate the left-hand side by first estimating the parameters of the profit functions (150)
and then forming the ratio (159). They then draw inferences about competition based
on maintained demand and cost assumptions, much as we have discussed above. For
example, they observe that entry threshold ratios in several different product markets
are not dramatically different from that implied by a model where firms act as Cournot
competitors. Again, however, their inferences about product market competition rest
heavily on their assumptions about demand and costs, and they only explore a limited
set of alternative demand and cost assumptions.

10.6. Epilogue

In Section 4 we stated that a structural modeling exercise should not go forward with-
out a clear justification, in terms of economically meaningful magnitudes that can be
estimated, for the many untestable assumptions necessary to specify and estimate a
structural model. In this case, the justification for the structural model is its ability to
recover estimates of the entry thresholds and the fixed costs of entry from the num-
ber of firms in a market. Neither of these magnitudes are directly observable and thus
can be inferred after the researcher has made assumptions about the form of demand
and firm-level costs, including entry costs. In contrast to the literature described in Sec-
tions 5 through 7 that uses market prices and quantities, with fewer observable market
outcomes, these models rely more heavily on functional form and distributional assump-
tions to recover magnitudes of economic interest.
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A number of researchers have extended Bresnahan and Reiss’ models and explored
alternatives [see Berry and Reiss (in press)]. In many respects these models share a com-
mon feature: to draw economic inferences from qualitative data on entry and exit, they
have to impose considerable economic structure and in many cases sacrifice realism
to obtain empirically tractable specifications. So what does this say about IO econo-
mists’ progress in developing structural models of oligopolistic market structure? The
bad news is that the underlying economics can make the empirical models extremely
complex. The good news is that the attempts so far have begun to define the issues that
need to be addressed. They also have clarified why simple probit models and the like
are inadequate for modeling entry and exit decisions.

11. Ending remarks

More than fifty years ago, members of the Cowles Commission began a push to esti-
mate empirical models that combined economic models with probability models. They
labeled this enterprise econometrics. In the intervening years, some economists have
come to think of econometrics as high-tech statistics applied to economic data. That
is, that econometrics is a field that mainly focuses on the development of statistical
techniques. While this may be true of some of econometrics, much of the Cowles
Commission’s original vision is alive and well. In this chapter, we have tried to pro-
vide a sense of how structural modeling proceeds in industrial organization. We used
“structural econometric modeling” as opposed to “econometric modeling” in our title
to emphasize that an application’s setting and economics should motivate specific prob-
ability models and estimation strategies, and not the other way around.

We began by comparing nonstructural or descriptive, and structural models. We
should emphasize once more that we see great value in both descriptive and structural
models. IO economists, for example, have learned much about the sources of compe-
tition from case studies of competition in specific industries. Our introductory sections
tried to provide a sense of the benefits and costs associated with developing and estimat-
ing descriptive and structural models. An important benefit of a structural model is that
it allows the researcher to make clear how economics affects the conditional distribution
of the data. For example, we can always regress market quantity on price, but this does
not necessarily mean we have estimated the parameters of a market demand function.
To know whether we have or have not, we need to be clear about supply and the sources
of error in the estimating equation.

While economic theory can help guide the specification and estimation of economic
quantities, there is no simple recipe for developing structural econometric models. There
are a variety of factors that make structural modeling difficult. First, economic theories
often are sufficiently complex that it is difficult to translate them into estimable relations.
In this case, structural modelers who opt to estimate simpler models often are subject
to the criticism that their models are too naive to inform the theory. Second, structural
modelers often lack data on all of the constructs or quantities in an economic theory.



4412 P.C. Reiss and F.A. Wolak

The absence of relevant data can considerably complicate estimation and limit what
it is that the researcher can estimate with the available data. Third, economic theory
rarely delivers all that the structural modeler needs to estimate a model. Much is left to
the modeler’s discretion. The structural modeler typically must pick: functional forms;
decide how to measure theoretical constructs; decide whether to include and how to in-
clude variables not explicitly part of the theory; how to introduce errors into the model;
and decide on the properties of errors. Each of these decisions involve judgments that
cannot be tested. Thus, these maintained assumptions need to be kept in mind when
interpreting structural model estimates, parameter tests and performing counterfactual
calculations.

In our selective tour, we have tried to provide a sense of how IO researchers have
dealt with some of these issues. Our intent was not to be a comprehensive review of all
that has been done on a particular topic, but rather to provide a vision for some of the
general modeling issues IO researchers face in linking IO theories to data. We hope that
our chapter has conveyed a sense of progress, and also a sense that much remains for
IO economists to explore.
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Abstract

We survey recent microeconometric research on investment and employment that has
used panel data on individual firms or plants. We focus on model specification and
econometric estimation issues, but we also review some of the main empirical findings.
We discuss advantages and limitations of microeconomic data in this context.

We briefly review the neoclassical theory of the demand for capital and labour, on
which most of the econometric models of investment and employment that we consider
are based. We pay particular attention to dynamic factor demand models, based on the
assumption that there are costs of adjustment, which have played a prominent role espe-
cially in the microeconometric literature on investment. With adjustment costs, current
choices depend on expectations of future conditions. We discuss the challenges that this
raises for econometric model specification, and some of the solutions that have been
adopted. We also discuss estimation issues that arise for dynamic factor demand equa-
tions in the context of micro panel data for firms or plants.

We then discuss a number of topics that have been the focus of recent microecono-
metric research on investment and employment. In particular, we review the literatures
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on investment and financing constraints, relative price effects on investment and em-
ployment, investment and uncertainty, investment in research and development (R&D),
elasticities of substitution and complementarity between technology, capital and skilled
and unskilled labour, and recent work on models with non-convex adjustment costs.

Keywords

investment, employment, panel data

JEL classification: D92, G31, J23, D21, C50, O33
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1. Introduction

This chapter surveys the application of econometric methods to study investment and
employment decisions, using microeconomic data at the level of individual firms or
plants. We discuss a range of models and issues that have been at the centre of micro-
econometric research on company factor demand behaviour over the last decade. We
do not attempt to review the extensive econometric research on investment and employ-
ment that uses more aggregated data at the sectoral or macroeconomic levels. Chirinko
(1993a) and Caballero (1999) provide surveys of recent work on aggregate investment,
whilst Hamermesh (1993) provides a comprehensive survey of work on aggregate em-
ployment.

Microeconomic data offers several important advantages for the study of investment
and employment behaviour. First, it allows us to eliminate the impact of aggregation
over firms or plants when estimating a particular model. Second, there may be cross-
sectional variation in explanatory variables that helps to identify parameters of interest.
Perhaps more importantly, the availability of micro data allows the researcher to inves-
tigate heterogeneity in behaviour between different types of firms or plants that would
simply not be possible with more aggregated data.

On the other hand, microeconomic data sources are often unrepresentative in their
coverage (typically with a bias towards larger units), and severely limited in the type
of information that they provide. These limitations have shaped the research questions
that micro data sets have been widely used to address. A basic reason for estimating
models of investment or labour demand is to quantify how the employment of capital
or labour inputs responds to changes in factor prices – for example, the response of in-
vestment to interest rates or to an investment tax credit, or the response of employment
to minimum wage legislation. These questions require elasticities of substitution to be
estimated – serious investigation requires a flexible representation of substitution possi-
bilities to be specified, and estimation requires detailed information on a range of factor
inputs or cost shares, and the corresponding factor prices. Unfortunately many micro
data sources, particularly those obtained from company accounts, provide only crude or
partial measures of factor inputs or cost shares, and little or no information on the factor
prices faced by individual firms or plants.

Largely for this reason, much of the microeconometric work has focused on esti-
mating a single equation for company investment or company employment, rather than
the more ambitious systems of interrelated factor demand or share equations that are
often estimated using aggregate or industry level data.1 Also, where this literature has
investigated elasticities of substitution, considerable ingenuity has often been required,
either to obtain measurable variation across firms in factor prices, or to specify models
which can address some questions of interest without price information at all. Exam-
ples of the former include variation in the cost of capital due to a different mix between

1 See Berndt (1991) for an excellent introduction to the interrelated factor demand literature.
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tax-favoured and unfavoured types of investment, or variation in the effective impact
of taxes due to asymmetries between the tax treatment of profits and losses; examples
of the latter include work on technology-skill complementarity, which we discuss in
Section 7.5 below.

Notwithstanding these limitations, there are a range of interesting questions that can
be and have been addressed using microeconomic data. We are interested not only in
how much investment or employment will respond to a change in factor prices, but also
in how quickly. Once we recognise that complete adjustment does not occur imme-
diately, the question of how current investment and employment decisions depend on
expectations of future prices and demand conditions becomes important, and control-
ling for these unobserved expectations presents a particular challenge for econometric
modelling. Indeed for some policy questions, such as the evaluation of temporary tax
incentives, the characterisation of adjustment dynamics is of crucial importance. The
recognition that aggregation can distort the underlying dynamic relationship has moti-
vated the use of micro data to study adjustment processes for both capital and labour.2

Moreover, as we discuss in Section 3, models have been developed that allow adjustment
parameters to be estimated without necessarily restricting or identifying the long-run
elasticities of substitution.

Another major use of micro data has been to test some of the simplifying assump-
tions that are made in specifying traditional factor demand models. Leading examples
include the question of whether firms can finance their investment spending in ‘per-
fect’ capital markets, or whether they may face important financing constraints; and the
question of whether firms determine employment along a labour demand schedule, or
whether employment levels are subject to bargaining with workers. Micro data allows
heterogeneity across firms – for example, between small and large firms, or between
unionized and non-unionized plants – to be exploited in testing these specifications,
and the importance of differences among sub-samples of firms or plants to be investi-
gated. Again these questions can be addressed without fully specifying the nature of the
production technology.

The interest in testing hypotheses about the nature of the adjustment process or the
environment in which investment and employment decisions are taken has led to a fo-
cus on structural models of investment and employment dynamics, in which the optimal
evolution of the firm’s stock of capital or labour inputs is derived from some underlying
theoretical model of the firm, and this is used to obtain an econometric model whose
parameters reflect the firm’s technology. As we discuss further in Section 3.6, reduced
form dynamic models of investment or employment generally compound structural ad-
justment parameters with the process by which current expectations of future demand or
prices are formed, which makes it difficult to draw firm conclusions about the nature of

2 See Nickell (1978, 1986) for a discussion of aggregation biases in the context of dynamic investment and
labour demand equations, and Blundell and Stoker (Chapter 68 in this volume) for a survey of aggregation
issues more generally.

http://dx.doi.org/10.1016/S1573-4412(07)06068-0
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the adjustment process or the role of, say, financial variables in an investment equation.
Nevertheless, this relative disadvantage of reduced form models compared to actual (as
distinct from ideal) structural models should not be overstated. As we will emphasize,
the most commonly used structural dynamic models of investment and employment
are based on extreme simplifying assumptions, and are frequently rejected when sub-
jected to mild empirical testing. Moreover, the recent empirical work on models with
non-convex adjustment costs, whilst largely descriptive, has cast doubt on many of the
structural models developed in the 1980s.

Two further limitations of commonly used microeconomic data sets should be noted
at the outset. First, data on publicly traded companies or manufacturing plants already
reflect a considerable degree of aggregation over investment decisions in many different
types of equipment and structures, and employment decisions over many different types
of workers. For large units, there may also be aggregation over inputs used in different
lines of business, and for annual data there is the further question of aggregation over
time. Although these micro data may be the most appropriate level of aggregation for
investigating some questions – such as the relationship between investment and share
prices, debt structures, or other aspects of corporate finance and corporate governance –
we should recognise that they may still be too aggregated for identifying other parame-
ters of interest. Whilst these concerns are also present in the study of household level
data,3 they are probably more severe in the case of data on large firms or large plants.
Conversely, though, we should also recognise that if the object of interest is how ag-
gregate investment or employment responds to some change in wages or prices, then
the adjustment that we observe within existing firms or plants may be only one com-
ponent of the aggregate response. In particular, adjustment which takes the form of the
entry or exit of more or less capital intensive firms or plants is likely to be missed with
commonly used data sets, and for the same reason there may be no simple relation-
ship between aggregate adjustment dynamics and those observed at the micro level.4

Although there is much we can learn from the study of investment and employment ad-
justment in microeconomic data sets, we should be cautious in extending these findings
to address macroeconomic questions.

In this chapter we concentrate principally on the issues that have been the focus of
recent econometric research using firm or plant level data. We present the state of the art
as we perceive it and we do not hesitate to point out what we consider to be important
weaknesses and omissions in this literature. Today’s gaps are tomorrow’s opportuni-
ties for important progress to be made in research. Whilst we recognise that important
advances have been made in the specification and estimation of microeconometric in-
vestment and employment models in recent years, this is an area where the development
of new data resources is presenting new challenges to traditional approaches, as well as
exciting opportunities for richer structural models to be developed.

3 See, for example, Bourguignon and Chiappori (1992) and the discussion in Blundell, MaCurdy and Meghir
(Chapter 69 in this volume).
4 See Caballero (1992) and Campbell and Fisher (2000) for further discussion.

http://dx.doi.org/10.1016/S1573-4412(07)06069-2
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The chapter is organised as follows. Section 2 sets out the basic neoclassical theory
of factor demand, on which most of the econometric models we consider are based.
Section 2.1 briefly reviews the static factor demand literature, whilst Section 2.2 in-
troduces dynamic factor demand models based on the assumption that changing the
level of factor inputs involves adjustment costs. Section 3 illustrates how this approach
has been used to derive dynamic econometric investment equations. Sections 3.1–3.4
discuss alternative structural models based on strictly convex costs of adjustment, in-
cluding the popular Q model of investment and the Euler equation approach; Section 3.5
discusses more recent work on models with non-convex adjustment costs; and Sec-
tion 3.6 discusses the use of reduced form dynamic models in this context. Section 4
discusses some econometric issues that arise in the specification and estimation of these
dynamic factor demand equations, particularly those of stochastic specification, and es-
timation using micro panel data for individual firms or plants. Section 5 discusses the
sources of such data, and its limitations. Section 6 discusses some topics in the recent
empirical literature on investment. Section 6.1 presents some basic empirical findings;
Section 6.2 discusses the literature on testing for financing constraints; Section 6.3 dis-
cusses some recent research on taxes and investment; Section 6.4 discusses some recent
work on uncertainty and investment; and Section 6.5 discusses microeconometric mod-
els of research and development (R&D) investment. Section 7 discusses some topics
in the recent empirical literature on employment. Section 7.1 considers wage elastici-
ties; Section 7.2 discusses models of employment determination with union bargaining;
Section 7.3 discusses models of employment dynamics; Section 7.4 discusses whether
adjustment costs are important for net changes in the level of employment or for gross
flows of hiring and firing; and Section 7.5 discusses research on skill-biased technical
change. Section 8 presents our summary of the main themes, omissions and opportuni-
ties for future research in this area.

2. Theoretical framework

We begin this chapter with a brief exposition of the neoclassical theory of factor de-
mand. The model we consider is simplified in many respects. The firm’s objective is to
maximise the value of the equity owned by its shareholders, so that a host of interesting
corporate control issues are assumed away. These shareholders are assumed to be risk
neutral, so that the effects of risk on the firm’s required rate of return are not consid-
ered. The firm issues no debt and pays no taxes, so that corporate financial policy is
not considered. The firm operates in competitive markets and in a world characterised
by symmetric information, so that strategic behaviour is not considered, and the firm is
able to issue as much new equity as it chooses at an exogenously given required rate
of return, determined by the riskless interest rate. Hence internal finance from retained
profits and external finance from new share issues are perfect substitutes, and there is
separability between the firm’s real and financial decisions, as in the Modigliani–Miller
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(1958, 1961) theorems. It is not our intention to suggest that these omitted considera-
tions are unimportant or uninteresting. We will touch on some of these issues in later
sections, but to do full justice to them would take us well beyond the scope of this
chapter.

We distinguish between three types of factors of production: capital assets, which are
owned by the firm and provide productive services for several time periods; labour in-
puts, which are hired by the firm each period; and current inputs, which are purchased by
the firm but which are fully consumed in contributing to the current period’s production.
Capital assets, which may include both tangible assets like equipment and structures and
intangible assets like knowledge and reputation, are durable, whilst labour and current
inputs are not. However a more important distinction is whether the level of these in-
puts can be costlessly and immediately adjusted in response to new information. We
first examine the static case which abstracts from any adjustment costs or delays.

2.1. Static factor demand

It is useful to briefly review static models of the firm’s demand for capital and labour, in
order to introduce some important concepts and to clarify how the structural dynamic
models we consider later generalise this static framework. These static models also form
the basis for most reduced form dynamic factor demand equations, which we discuss
further in Section 3.6.

The basic factor demand model we consider can be characterised by the following
optimisation problem for the firm

(2.1)Vt (Kt−1) =
{

max
It ,Lt ,Mt

Πt (Kt , Lt ,Mt , It ) + βt+1Et

[
Vt+1(Kt )

]}
,

where Vt is the maximised value of the firm in period t , Πt(.) is the firm’s net revenue
function in period t , Kt = (K1

t , . . . , KN
t ) is a vector of N types of capital inputs,

Lt = (L1
t , . . . , L

R
t ) is a vector of R types of labour inputs, Mt = (M1

t , . . . , MS
t ) is a

vector of S types of current inputs, It = (I 1
t , . . . , IN

t ) is a vector of gross investments
in each type of capital, βt+1 = (1 + ρt+1)

−1 is the firm’s discount factor, where ρt+1
is the risk-free rate of interest between period t and period t + 1, and Et [ . ] denotes the
expected value conditional on information available in period t , where the expectation
is taken over the distribution of future prices and interest rates.

The equation of motion for the capital inputs is

(2.2)Ki
t = (

1 − δi
)
Ki

t−1 + I i
t for i = 1, . . . , N,

where δi is the rate of depreciation for capital of type i, assumed to be exogenous and
fixed. Note that gross investment may be positive or negative, so that disinvestment is
also assumed to be costless.

In the absence of any adjustment costs, the net revenue function may take the form

(2.3)Πt(Kt , Lt ,Mt , It ) = ptF (Kt , Lt ,Mt ) − pK
t It − wtLt − pM

t Mt ,
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where F(Kt , Lt ,Mt ) is the production function, pt is the price of the firm’s out-
put, pK

t = (p
K,1
t , . . . , p

K,N
t ) is a vector of prices for each type of capital goods,

wt = (w1
t , . . . , w

R
t ) is a vector of wage rates for each type of labour and pM

t =
(p

M,1
t , . . . , p

M,S
t ) is a vector of prices for each type of current inputs. Note that capital

inputs are assumed to be purchased and owned by the firm, whilst labour inputs are
assumed to be hired.5

The solution to the optimisation problem (2.1) subject to the constraints (2.2) can be
characterised by the first-order conditions

(2.4)−
(

∂Πt

∂I i
t

)
= λi

t for i = 1, . . . , N,

(2.5)λi
t =

(
∂Πt

∂Ki
t

)
+ (

1 − δi
)
βt+1Et

[
λi

t+1

]
for i = 1, . . . , N,

(2.6)

(
∂Πt

∂Li
t

)
= 0 for i = 1, . . . , R,

(2.7)

(
∂Πt

∂Mi
t

)
= 0 for i = 1, . . . , S,

where λi
t = 1

1−δi (
∂Vt

∂Ki
t−1

) is the shadow value of inheriting one additional unit of capital

of type i in period t . Equation (2.4) shows that the cost of acquiring additional units of
each type of capital in period t will be equated to their shadow values. Equation (2.5)
describes the evolution of these shadow values along the optimal path for the capital
stocks, whilst Equations (2.6) and (2.7) are standard first-order conditions for the non-
durable factors of production, equating the price of these inputs with their marginal
revenue products (see Equation (2.3)).

For a price-taking firm, we have −( ∂Πt

∂I i
t

) = p
K,i
t and ( ∂Πt

∂Ki
t

) = pt(
∂F

∂Ki
t

). Substitut-

ing these expressions into (2.4) and (2.5), respectively, combining these equations to
eliminate λi

t and Et [λi
t+1] from (2.5) and rearranging yields

(2.8)

(
∂F

∂Ki
t

)
= p

K,i
t

pt

(
1 −

(
1 − δi

1 + ρt+1

)
Et

[
p

K,i
t+1

p
K,i
t

])
= ri

t

pt

for i = 1, . . . , N.

This shows that if the level of capital inputs can be freely adjusted, the marginal product

of capital of type i will be equated in each period with the real user cost of capital ( ri
t

pt
)

for capital of type i [Jorgenson (1963)]. The user cost depends on the relative price of
capital goods of type i, the firm’s required rate of return, the depreciation rate for capital
of type i, and the expected rate of change in the price of capital goods of type i. This
is also the equilibrium price at which capital goods of type i could be rented for use in

5 The model can of course accommodate capital inputs that are leased; these would be treated in a similar
way as labour inputs are treated here.
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period t in a competitive rental market, so the user cost is also known as the rental price
of capital.6

2.1.1. Functional forms

To derive useful factor demand equations that can be estimated, we then need to para-
meterise the static production function F(Kt , Lt ,Mt ). First, we consider the popular
Constant Elasticity of Substitution (CES) functional form [Arrow et al. (1961)]. To il-
lustrate this we use a two factor production structure in which there is a single capital
good (Kt ), a single labour input (Lt ), and no other current inputs.7 Assuming constant
returns to scale, this production function has the form

(2.9)Yt = F(Kt , Lt ) = (
aKK

ρ
t + aLL

ρ
t

) 1
ρ ,

where ρ = ( σ−1
σ

) and σ is the elasticity of substitution between capital and labour.
To ensure that the firm’s value maximization problem has a solution in the absence of
adjustment costs, we also assume that there is some degree of monopolistic competition
and the firm faces a downward sloping demand curve for its output (Yt ) of the isoelastic
form

(2.10)pt = BY
− 1

ηD

t ,

where B is a demand shift parameter and ηD > 1 is the price elasticity of product
demand. Under these conditions the demands for capital and labour have the convenient
forms

(2.11)Kt = aσ
KYt

(
rt

pt (1 − 1
ηD )

)−σ

,

(2.12)Lt = aσ
LYt

(
wt

pt (1 − 1
ηD )

)−σ

,

giving the log-linear equations

(2.13)ln Kt = σ ln aK

(
1 − 1

ηD

)
+ ln Yt − σ ln

(
r

p

)
t

,

(2.14)ln Lt = σ ln aL

(
1 − 1

ηD

)
+ ln Yt − σ ln

(
w

p

)
t

,

6 The static model in which the firm purchases durable capital inputs is formally equivalent to a static model

in which capital inputs are leased at the rental price (ri
t ). A voluminous literature has considered how various

tax structures impact on the user cost of capital. See, for example, Hall and Jorgenson (1967), King (1974),
King and Fullerton (1984) and Jorgenson and Landau (1993).
7 Or more realistically, we treat F(Kt , Lt ) as a production function for value-added rather than gross output.
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which can be used as a basis for estimating the elasticity of substitution, or the respon-
siveness of factor intensities to changes in relative prices. Interpreted as expressions for
the desired levels of factor inputs in the long run, these static factor demand equations
form the basis for many reduced form models of investment and employment, as we
discuss further in Section 3.6 below.

Next, we consider the case of more than two factors of production. It is simple to
extend the basic CES production function to this case, but this imposes the unappealing
restriction that the elasticity of substitution between all pairs of inputs is the same. To
allow different patterns of substitution (or complementarity) between different factors
requires the use of a more flexible functional form. In this context it is convenient to
consider the dual of the firm’s profit maximisation problem, in which the firm is as-
sumed to minimise its costs taking the level of output as given. To illustrate this dual
approach we will assume that the cost function can be written as a translog [Christensen,
Jorgenson and Lau (1971, 1973)], which is a second-order approximation to an arbitrary
functional form.8

For n variable factors of production Xt = (X1t , . . . , Xnt ) – for example, the capi-
tal, labour and current inputs considered above – and their associated vector of factor
prices Wt = (W1t , . . . , Wnt ) – for example, the user costs, wage rates and input prices
considered above – the translog cost function has the form

ln Ct = ln α0 +
n∑

i=1

αi ln Wit + 1

2

n∑
i=1

n∑
j=1

γij ln Wit ln Wjt

+ αY ln Yt + 1

2
γYY (ln Yt )

2 +
n∑

i=1

γiY ln Wit ln Yt

(2.15)+ φτ t + 1

2
φττ t

2 + φτY t ln Yt +
n∑

i=1

φτWi
t ln Wit ,

where the coefficients on time (t) represent technical change. The φτ and φττ co-
efficients reflect factor-neutral technical change, whilst the φτWi

coefficients reflect
technical change that is biased towards factor i.9 The cost minimising choices of in-
put demands (Xit ) are then conveniently expressed as log-linear cost share equations.
From Shephard’s (1953) Lemma we have

(2.16)

∂ ln Ct

∂ ln Wit

= Wit

Ct

∂Ct

∂Wit

= WitXit

Ct

= αi +
n∑

j=1

γij ln Wjt + γiY ln Yt + φτWi
t,

8 This has been a popular choice in the applied microeconometric literature. Alternative functional forms
include the two-level CES and the Generalised Leontief [see Hamermesh (1993) or Berndt (1991) for a more
extended discussion].
9 See Chambers (1988) for an extensive discussion, and Section 7.5 below for a detailed treatment of skill-

biased technical change.
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where WitXit

Ct
= Sit is the share of factor i in total costs.

There are a series of economic restrictions that can be imposed on the system of
equations in (2.16). In order to correspond to a well behaved production function, a cost
function should be homogeneous of degree one in the vector of factor prices. That is, for
a given level of output, total cost must increase proportionally when all prices increase
proportionally. This implies the following relationships among the parameters

n∑
i=1

αi = 1,

n∑
i=1

γiY = 0,

(2.17)
n∑

j=1

γij =
n∑

i=1

γij =
n∑

j=1

n∑
i=1

γij = 0.

The returns to scale (μt ) can be computed as the inverse of the elasticity of costs with
respect to output. Specifically,

(2.18)μt =
(

∂ ln Ct

∂ ln Yt

)−1

.

Therefore, constant returns to scale implies that (for all i)

(2.19)γiY = 0 and γYY = 0,

and hence the output term drops out of the share equations (2.16) under this restriction.
Uzawa (1962) has shown that the Allen partial elasticities of substitution between

two inputs i and j [Allen (1938)] can be computed from the cost formula

(2.20)σijt = Ct(∂
2Ct/∂Wit ∂Wjt )

(∂Ct/∂Wit )(∂Ct/∂Wjt )
.

For the translog cost function we have

(2.21)σijt = γij + SitSjt

SitSjt

, i �= j,

and

(2.22)σiit = γii + S2
it − Sit

S2
it

.

The own and cross-price factor demand elasticities are given by εij t = Sjtσij t and
are also easily calculated from the estimated parameters. We discuss examples of the
implementation of this structure for the three-factor case with capital, skilled labour and
unskilled labour in Section 7.5 below. Notice that the basic CES production function
corresponds to the restriction that σiit = σijt = σ for all factors i and j and time
periods t . The Cobb–Douglas production function [Cobb and Douglas (1928)] imposes
the further restriction that σ = 1.
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2.2. Dynamic factor demand

We now introduce adjustment costs. The basic motivation for introducing costs of ad-
justment is to account for the observation that adjustment in the level of factor inputs
takes time to complete, or more specifically for the empirical failure of models which
assume adjustment to be costless and immediate. The assumption that an activity is
costly is a natural way for an economist to rationalise why more of it does not take
place, but it is not the only possibility. Alternative models of investment have, for exam-
ple, introduced exogenous delays (e.g. delivery lags) to explain investment dynamics,
or considered limited substitution possibilities between installed capital and variable
factors of production.10

We will continue to assume that current inputs are variable factors, in the sense that
the level of these inputs can be varied immediately and without paying any adjustment
costs. We will assume that capital inputs are quasi-fixed factors, in the sense that vari-
ations in their level impose costs of adjustment on to the firm, which will tend to delay
and may possibly prevent their adjustment in response to new information. Thus at any
point in time the level of capital inputs may differ from those which satisfy the static
first-order conditions (like those illustrated for a price-taking firm in Equation (2.8));
and if there are adjustment costs associated with, for example, replacement investment,
then the steady-state level of capital inputs may also differ from the solution to the sta-
tic problem with costless adjustment. We will also allow labour inputs to be subject to
adjustment costs. Define Ht = (H 1

t , . . . , HR
t ) as a vector of gross hiring in each type

of labour, and the equation of motion for labour as

(2.23)Li
t = (

1 − γ i
)
Li

t−1 + Hi
t for i = 1, . . . , R,

where γ i is the quit rate for labour of type i, also assumed to be exogenous and fixed.
The value maximisation problem analogous to (2.1) is now

Vt(Kt−1, Lt−1)

(2.24)=
{

max
It ,Ht ,Mt

Πt (Kt , Lt ,Mt , It , Ht ) + βt+1Et

[
Vt+1(Kt , Lt )

]}
where the dependence of net revenue on gross investment and gross hiring now reflects
the presence of adjustment costs. The net revenue function is now specified as

Πt(Kt , Lt ,Mt , It , Ht )

(2.25)= pt

[
F(Kt , Lt ,Mt) − G(It ,Ht ,Kt , Lt )

] − pK
t It − wtLt − pM

t Mt ,

where G(It ,Ht ,Kt , Lt ) is the adjustment cost function, with adjustment costs assumed
to take the form of foregone production and initially assumed to be strictly convex in
gross investment and gross hiring.

10 See Jorgenson (1971) and Nickell (1978) for comprehensive accounts of these approaches in the investment
context.
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Given this specification, the solution to the firm’s value maximisation problem con-
tinues to be characterised by first-order conditions (2.4), (2.5) and (2.7). The new
first-order conditions for hiring and labour are

(2.26)−
(

∂Πt

∂H i
t

)
= μi

t for i = 1, . . . , R,

(2.27)μi
t =

(
∂Πt

∂Li
t

)
+ (

1 − γ i
)
βt+1Et

[
μi

t+1

]
for i = 1, . . . , R,

where μi
t = 1

1−γ i (
∂Vt

∂Li
t−1

) is the shadow value of inheriting one additional unit of labour

of type i in period t .
We have assumed that these costs of adjustment are strictly convex and differentiable,

which will tend to smooth the adjustment of quasi-fixed factors to new information,
since a series of small adjustments is assumed to be cheaper than a single large change
in the level of these inputs. This limitation on the flexibility of factor inputs also ratio-
nalises forward-looking factor demand behaviour: since a change in the capital stock,
for example, will be costly to reverse subsequently, the response of investment to a given
change in the cost of capital will be different depending on whether that change is ex-
pected to be temporary or permanent. Hence these models predict that expectations of
future demand and prices will be important determinants of current investment and em-
ployment decisions, which presents a particular challenge for econometric modelling.
In the next section we discuss several approaches to this problem that have been used
in the investment literature, beginning with those that can be obtained as special cases
of the general factor demand model presented here. Specifications of dynamic labour
demand models are discussed more briefly in Section 7.

Whilst most structural models of investment and employment dynamics that have
been widely used in modelling factor demands at the firm level in the last twenty years
have been based on the assumption of strictly convex adjustment costs, it should be
noted that this specification was introduced into the literature principally as a matter
of analytical convenience. More recent models have considered the implications of
non-convex costs of adjustment, either by assuming (partial) irreversibility of current
investment decisions, or by introducing a fixed cost component in the specification of
adjustment costs. These models, which predict large but infrequent adjustments, will be
considered further in Section 3.5 below.

3. Dynamic investment models

Most of the structural models of investment used in empirical analysis of firm level data
can be obtained as special cases of the general factor demand model outlined in the
previous section. Most of these models assume a single (homogeneous) capital input,
and treat this as the only quasi-fixed factor used by the firm. The most popular of these
models has been the Q model, which requires assumptions under which the unobserved



Ch. 65: Microeconometric Models of Investment and Employment 4431

shadow value of capital is simply related to the observed market-to-book or average q

ratio. Specialising the assumption of strictly convex adjustment costs to a symmetric,
quadratic functional form then yields a convenient, linear equation based on (2.4), relat-
ing investment to observed average q. Although still widely used, dissatisfaction with
the empirical performance of the Q model has led to interest in less restrictive imple-
mentations of the basic adjustment costs model, such as the approach proposed by Abel
and Blanchard (1986) and the Euler equation approach, introduced into the investment
literature by Abel (1980). We consider each of these models in turn.

3.1. The Q model

To illustrate the Q model we assume that the firm’s only quasi-fixed input is a single ho-
mogeneous capital good. Most realistically, this can be thought of as a fixed coefficients
aggregate of the different capital goods used by the firm.11 Provided there are no adjust-
ment costs associated with labour and current inputs, the model can straightforwardly
allow for many types of these inputs. We consider the case of multiple quasi-fixed fac-
tors in Section 3.4 below.

Based on the net revenue equation (2.25) and the assumption of perfectly competitive
markets, we then obtain

(3.1)

(
∂Πt

∂It

)
= −pt

(
∂G

∂It

)
− pK

t ,

which substituted into (2.4) yields

(3.2)

(
∂G

∂It

)
=

(
λt

pK
t

− 1

)
pK

t

pt

= (qt − 1)
pK

t

pt

.

Moreover, solving Equation (2.5) forward by repeated substitution yields

(3.3)λt = Et

[ ∞∑
s=0

(1 − δ)sβt+s

(
∂Πt+s

∂Kt+s

)]
,

where βt+s is the discount factor that discounts period t + s revenues back to period t .
To interpret these expressions, notice that the shadow value of an additional unit of

capital (λt ) is a forward-looking measure of current and expected future values of the
marginal revenue product of capital, where the discounting reflects the diminution of
each current unit of capital over time through depreciation, as well as the standard com-
pensation for delay. In the static factor demand model, the optimal capital stock was
characterised by λt = pK

t , or by qt = λt

pK
t

= 1, where this ratio of shadow value to

purchase cost is known as marginal q. With strictly convex costs of adjustment, mar-
ginal adjustment costs ( ∂G

∂It
) are an increasing function of current gross investment, so

11 For example, the firm’s technology may be such that it must always combine 2 units of equipment with 1
unit of structures, but it can substitute between this capital aggregate and other labour and current inputs.
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Equation (3.2) shows that investment is an increasing function of the deviation between
the actual value of marginal q and this desired value in the absence of adjustment costs.
Moreover, we have the striking result that all influences of expected future profitabil-
ity on current investment are summarised in marginal q, through the shadow value of
capital.

To obtain an empirical investment model we require an explicit form for marginal
adjustment costs, and a way of measuring marginal q. Primarily for convenience, most
implementations of the Q model have assumed that the cost of adjusting the capital
stock is symmetric and quadratic about some ‘normal’ rate of investment, which may or
may not be related to the rate of depreciation. More fundamentally, the basic Q model
requires the adjustment cost function G(It ,Kt ) to be homogeneous of degree one in
(It , Kt ), consistent with constant returns to scale. One popular functional form that has
these properties, suggested by Summers (1981), is

(3.4)G(It ,Kt ) = b

2

[(
I

K

)
t

− a

]2

Kt,

where the parameter b reflects the importance of adjustment costs. Using this specifica-
tion in (3.2) gives the linear model

(3.5)

(
I

K

)
t

= a + 1

b

[
(qt − 1)

pK
t

pt

]
.

The distinctive feature of the Q model is the equality between marginal q and average
q established by Hayashi (1982). The basic requirement is that the net revenue function
Πt(Kt , Lt ,Mt , It ) is homogeneous of degree one, sufficient conditions for which are
that both the production function and the adjustment cost function display constant re-
turns to scale, and the firm is a price taker in all markets.12 In this case we can combine
Equations (2.4) and (2.5) to obtain

(3.6)λt (Kt − It ) =
(

∂Πt

∂It

)
It +

(
∂Πt

∂Kt

)
Kt + βt+1Et

[
(1 − δ)λt+1Kt

]
or

(3.7)(1 − δ)λtKt−1 = Πt(Kt , Lt ,Mt , It ) + βt+1Et

[
(1 − δ)λt+1Kt

]
,

since ( ∂Πt

∂Lt
) = ( ∂Πt

∂Mt
) = 0 for the variable factors of production. Solving forward by

repeated substitution gives

(3.8)(1 − δ)λtKt−1 = Et

[ ∞∑
s=0

βt+sΠt+s(Kt+s , Lt+s ,Mt+s , It+s)

]
= Vt ,

12 The presence of strictly convex adjustment costs in this model ensures that the value maximization problem
has a solution, even with perfect competition and constant returns.
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where Vt is again the maximised value of the firm. Thus we have

(3.9)λt = Vt

(1 − δ)Kt−1
or qt = Vt

(1 − δ)pK
t Kt−1

so that marginal q is equal to the ratio of the maximised value of the firm in period t

to the replacement cost value in period t of the capital stock that the firm inherits from
the previous period. This ratio, known as average q or Tobin’s q [Brainard and Tobin
(1968), Tobin (1969)], can in principle be measured.13 The usual implementation further
requires that share prices are not affected by bubbles or fads, so that the ‘fundamental’
value of the firm given in (3.8) can be measured by its stock market valuation.14

Substituting average q for marginal q in (3.5) then gives the basic Q investment equa-
tion as(

I

K

)
t

= a + 1

b

[(
Vt

(1 − δ)pK
t Kt−1

− 1

)
pK

t

pt

]
(3.10)= a + 1

b
Qt .

Notice that if share prices do correctly reflect fundamentals then the structure of the
Q model implies that all relevant expectations of future profitability are summarised by
the firm’s stock market valuation, and the prediction that Qt defined in (3.10) should be
a sufficient statistic for investment.

One further point to notice is that the Q model identifies the parameters (a, b) of the
adjustment cost function (3.4). These parameters are identified without requiring any
functional form for the gross production function to be specified, given the assumptions
of perfect competition and constant returns to scale. This may be an advantage or a
disadvantage, depending on the context. If the objective is to quantify the importance
of adjustment costs, or to test this specification, then this robustness to different func-
tional forms for the production function may be an advantage. On the other hand, if the
objective is to estimate the response of investment to some change in tax rates or other
component of the user cost of capital, then it is not sufficient to know the parameters
of the adjustment cost function. Simulating the effects of a tax change on investment
would require additional information about the elasticity of substitution between capi-
tal and other factors of production that is not identified by estimation of the Q model
alone.15

13 Abel and Eberly (1994) show more generally that average q is proportional to marginal q if the net revenue
function is homogeneous of degree k. The Hayashi (1982) equality result is the special case with k = 1.
14 The model extends straightforwardly to incorporate exogenous debt policies, in which case the numerator
of average q becomes the maximised value of the firm’s capital assets, and the firm’s equity market valuation
has to be adjusted by an estimate of the firm’s outstanding debt. The model can also be extended for various
forms of taxation. See, for example, Summers (1981) and Hayashi (1982).
15 See Summers (1981) and Salinger and Summers (1983) for examples of tax simulation in the context of
the Q model.
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We have highlighted the restrictive structure required to equate marginal q and av-
erage q, and the particular structure of adjustment costs needed to obtain a linear rela-
tionship between investment and marginal q. The advantages of the Q model compared
to reduced form models are that the influence of expectations on current investment
decisions is explicitly modelled, and that the parameters identified by estimating Equa-
tion (3.10) are technological parameters of the adjustment cost function, which should
be invariant to structural breaks in the underlying processes generating prices and inter-
est rates. These are important advantages in the literature which tests the null hypothesis
of perfect capital markets against an alternative in which financing constraints are im-
portant, as we discuss in Section 6.2 below.

Nevertheless there is no shortage of reasons why the Q model may be seriously mis-
specified. Adjustment costs may not be well described by the symmetric, quadratic
functional form that is commonly imposed – thus the relationship between investment
rates and Qt may be non-linear and asymmetric even within the convex adjustment
costs framework. Perfect competition and constant returns to scale may not be adequate
assumptions, in which case average q ceases to be a sufficient statistic for the influ-
ence of expectations, although marginal q may still be.16 Stock market valuations may
differ from fundamental values without necessarily violating weaker forms of the effi-
cient markets hypothesis [Summers (1986)] – for example, share prices may be affected
by rational bubbles [Blanchard and Watson (1982)] or liquidity traders [Campbell and
Kyle (1993)]. This would introduce severe measurement error problems if the average
q ratio is constructed using share price data, and could undermine identification of the
adjustment cost parameters.17 Note also that for share prices to measure marginal q

appropriately, the stock market must have the same expectations as the firm, in particu-
lar about the future path of the firm’s capital stock. More mundane measurement error
issues may also be important – the capital stock and debt measures that can be con-
structed from company accounts data are likely to be subject to substantial errors, and
accurately measuring the (tax-adjusted) prices of capital goods relevant for individual
firms is generally not possible with public data sets. It may be inappropriate to treat
a single capital aggregate as the only quasi-fixed factor of production, and it may be
necessary to distinguish between installed capital and new capital when specifying the
substitution possibilities between capital and other factors of production. Firms may op-
erate in imperfect capital markets, and the objectives of their managers may not always
coincide with shareholder value maximisation.

Thus it may not be completely surprising that the empirical performance of the
Q model has generally been disappointing. Estimates of Equation (3.10) have gener-
ally yielded extremely low values for the coefficient ( 1

b
), suggesting extraordinarily

high marginal costs of adjustment and implausibly slow adjustment of the actual cap-
ital stock. The prediction that Qt is a sufficient statistic for investment has generally

16 See Hayashi (1982).
17 See Erickson and Whited (2000) and Bond and Cummins (2001) for further discussion.
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been rejected in empirical tests, and the explanatory power of the Qt variable is often
found to be very weak when other variables such as sales and cash flow are added to
the econometric model. Most attempts to control for measurement error in Qt have
been unsuccessful in reversing these basic results, although Cummins, Hassett and
Hubbard (1994) find that the Q model provides a more satisfactory description of in-
vestment behaviour in periods when the variation in measured Qt is dominated by tax
changes. Recently Erickson and Whited (2000) and Bond and Cummins (2001) have
also reported more favourable results when accounting for forms of measurement error
suggested by the possibility of bubbles or fads in stock market valuations. These find-
ings are consistent with the interpretation that variation in Qt as normally measured is
dominated by uninformative ‘noise’ in share prices, although as we have emphasised
there are many other reasons why the Q model may be mis-specified.

3.2. The Abel and Blanchard model

If the concern is that the conditions required to equate marginal q and average q may
not hold, or if measures of average q based on stock market valuations are suspect,
then an alternative approach is to attempt to measure marginal q itself, and estimate
Equation (3.5) directly.

Abel and Blanchard (1986) suggested constructing an estimate of the shadow value of
capital using an auxiliary econometric model, based on Equation (3.3). This procedure
requires a specification for the marginal revenue product of capital in terms of observ-
able variables, and a forecasting model for these variables. Notice that this forecasting
model does not need to yield accurate predictions, but rather needs to mimic the expec-
tations of future marginal revenue products on which the firm’s investment decisions are
based. How well this can be done using the information available to the econometrician
is not entirely clear. Given a set of forecasts of the future marginal revenue products of
capital, these are discounted back to the current period to yield an estimate of λt . This
is then used to construct an estimate of marginal q, which can be used in place of the
average q ratio to estimate the investment equation.

This procedure avoids the use of share price data, and can in principle be used to relax
the assumptions of perfect competition and constant returns to scale if a suitable form
for the marginal revenue product of capital is specified. These assumptions are replaced
by a specification for the marginal revenue product, and the need to specify an auxiliary
forecasting model. The linear specification of the investment model still relies heavily
on the assumption of symmetric, quadratic costs of adjustment.

3.3. The Euler equation

The Euler equation approach introduced by Abel (1980) can also relax the linear homo-
geneity of the net revenue function and avoid the use of share price data. Perhaps more
importantly, this approach avoids the need to parameterise the expectations-formation
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process. This is achieved by using the first-order condition for investment (2.4) to elim-
inate the shadow value of capital from the Euler equation (2.5), and then estimating the
Euler equation itself rather than a model based on (2.4).

For the case of a single capital input this gives the expression

(3.11)−
(

∂Πt

∂It

)
= −(1 − δ)βt+1Et

[(
∂Πt+1

∂It+1

)]
+

(
∂Πt

∂Kt

)
.

Using the net revenue function (2.25) and assuming perfectly competitive markets then
gives

(3.12)
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where ψt+1 = ( 1−δ
1+ρt+1

)
pt+1
pt

is a real discount factor and ( r
p
)t is the user cost of capital,

as defined in Equation (2.8).
Comparing Equations (3.12) and (3.2) shows that the two terms on the right-hand

side of (3.12) contain essentially the same information as marginal q. In particular,
given the current difference between the marginal product of capital and the user cost,
all relevant information about expected future profitability is here summarised by the
one-step ahead forecast of discounted marginal adjustment costs.

Using the adjustment cost function (3.4) yields(
I

K

)
t

= a
(
1 − Et [ψt+1]

) + Et

[
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(
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(3.13)+ 1
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t

]
.

To implement this model, the one-step ahead expected values can be replaced by the
realised values of these variables in period t + 1, which introduces forecast errors that
will be orthogonal to information available in period t under the assumption of rational
expectations. Assuming constant returns to scale, the marginal product of capital can be
substituted without assuming a parametric form for the production function, as in Bond
and Meghir (1994). Alternatively the model can be implemented by assuming some
form for the production function, as in Abel (1980). Whilst this is more restrictive, it
shows that in principle substitution parameters can be identified from the Euler equation,
which is not the case for the Q model. The Euler equation model can also be extended
to allow for imperfectly competitive product markets and/or for decreasing returns to
scale.

3.4. Multiple quasi-fixed factors

All the models we have considered thus far in this section have treated capital as a single
quasi-fixed input, and assumed that all other inputs can be adjusted costlessly. The more
general model outlined in Section 2.2 can be used to show how these models are affected
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by the presence of more than one quasi-fixed factor. To illustrate this, we consider the
case in which the firm can substitute between two types of capital (e.g. equipment and
structures), both of which are subject to adjustment costs. The implications of treating
labour as a quasi-fixed factor of production are essentially similar.

Combining Equations (2.4) and (2.5) as we did to obtain Equation (3.6), assuming
Πt(K

1
t , K2

t , Lt ,Mt , I
1
t , I 2

t ) is again homogeneous of degree one, and summing across
the two types of capital yields

(3.14)
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i
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]
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Thus marginal q for the first type of capital can be expressed as
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and similarly for q2
t . Assuming for simplicity that the adjustment cost function is addi-

tively separable in the two types of investment, such as
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we obtain a model for investment in the first type of capital as(
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and similarly for investment in the second type of capital.
This shows that the basic Q model is mis-specified when there is more than one

quasi-fixed factor. Whilst this system of equations could in principle be estimated, the
literature has looked instead for restrictions on the form of adjustment costs that allow
a single equation for total investment to be estimated. In particular, Hayashi and Inoue
(1991) obtain conditions under which the structure of the basic Q model is preserved,
with the aggregate capital stock measure being constructed as a Divisia index of the
individual capital stocks, rather than as their sum.18

Both the Abel and Blanchard approach and the Euler equation approach extend more
straightforwardly to the case of additively separable adjustment costs. An expression

18 See also Galeotti and Schiantarelli (1991) and Chirinko (1993b).
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analogous to (3.3) holds for each type of capital. This can be used to obtain an estimate
of marginal q for each type of capital, provided one is willing to specify the marginal
revenue product for each type of capital. This will again yield a system of equations for
each type of investment. For the Euler equation case, expressions analogous to (3.11)
and (3.12) hold for each type of capital.

These approaches can also accommodate the case of interrelated adjustment costs,
provided one is willing to specify the form of the adjustment cost function. See, for
example, Shapiro (1986) for a system of Euler equations with interrelated adjustment
costs.

3.5. Non-convex adjustment costs

Several considerations have motivated researchers to consider models with non-convex
costs of adjustment. As noted earlier, the assumption of strictly convex adjustment costs
was introduced primarily for analytical convenience. Descriptive evidence on the time
series behaviour of investment in very disaggregated data sets has questioned the em-
pirical validity of this simplifying assumption. Analytical techniques that characterise
optimal investment behaviour in the presence of non-convex adjustment costs have be-
come more familiar to economists. And the empirical performance of the structural
dynamic models based on strictly convex adjustment costs has been sufficiently prob-
lematic to encourage investigation of alternatives.

Census of production data provides evidence at the level of manufacturing estab-
lishments (plants, or related groups of plants), which is much more disaggregated than
accounting data on companies. Doms and Dunne (1998) use data from the Longitudinal
Research Database (LRD), covering 12,000 US manufacturing plants over the period
1972–1989, to illustrate several aspects of the ‘lumpy’ adjustment of capital. For exam-
ple, more than half of all plants experience a year in which the capital stock increases by
over 35%; the two largest investment ‘spikes’ are often observed in consecutive years;
and the incidence of these investment spikes is highly correlated with the time series
of aggregate investment for these establishments. Anti Nilsen and Schiantarelli (2003)
report similar findings using plant level data for Norway. Their results also show that
around 30% of Norwegian plants have zero investment in an average year, although this
proportion falls to only 6% if they focus on main production plants, or aggregate over
multiple plants belonging to the same company. Although aggregation over plants to the
company level tends to smooth some of the discreteness observed for individual plants,
Abel and Eberly (1996) find that the distribution of investment rates is positively skewed
in a large sample of publicly traded US companies from the Compustat database, and
the two highest investment rates are observed in consecutive years for about half the
firms in their sample.

This evidence of infrequent and lumpy adjustment can be explained by the presence
of adjustment cost components that are not strictly convex in the level of investment.19

19 The same evidence could also be explained by indivisibilities, ruling out small purchases of capital. See
Nickell (1978) for further discussion.
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Complete irreversibility occurs when gross investment is restricted to be non-negative.
As Abel and Eberly (1996) report that some disinvestment (sales of capital) occurs in
about 50% of their observations, this assumption appears too extreme to characterise the
investment behaviour of most companies.20 Partial irreversibility occurs when used cap-
ital goods can only be sold for less than their true replacement cost value, for example as
a result of adverse selection in second-hand capital goods markets [cf. Akerlof (1970)].
This wedge between the purchase price and the sale price of capital goods introduces a
piecewise linear cost of adjustment, that is kinked at the point of zero gross investment.
This kink is sufficient to explain why zero investment may occur even though the firm is
not at its desired capital stock, but does not explain why observed adjustment should be
lumpy. The latter can be explained by assuming a fixed cost component to adjustment
costs, that is independent of the level of investment undertaken, although the size of the
fixed cost may depend on whether the adjustment is upwards (positive investment) or
downwards (disinvestment).

Theoretical models of investment have long since considered behaviour in the pres-
ence of irreversibility and linear adjustment costs [see, for example, Arrow (1968) and
Nickell (1978)]. However it is only more recently, and notably through the work of Dixit
and Pindyck (1994) and Bertola and Caballero (1994), that these models have begun to
have a major impact on the empirical literature.

Abel and Eberly (1994, 1996) have extended the Q model of investment to obtain
a structural model of investment dynamics in the presence of non-convex adjustment
costs. As in the traditional Q model, they assume constant returns to scale and perfect
competition in all markets. Their adjustment cost function has the form

(3.18)G(It ,Kt ) =
{

a+Kt + b+It + c+( I
K
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t Kt if It > 0,

a−Kt + b−It + c−( I
K

)2
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where aKt denotes a fixed cost of adjustment that is paid if investment is non-zero, bIt

denotes a linear adjustment cost, c( I
K

)2
t Kt denotes a strictly convex adjustment cost,

and each of the parameters is allowed to take different values depending on the sign of
gross investment. In this case the investment rate can be characterised as
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where λt is the shadow value of capital, λt is an upper threshold value below which the
firm does not find it worthwhile to undertake positive gross investment, and λt is a lower
threshold above which the firm does not find it worthwhile to undertake disinvestment.

20 This is not to suggest that models with complete irreversibility are not useful in characterising some invest-
ment decisions, for example the decision to develop an offshore oil field. See, for example, Pesaran (1990)
and Favero and Pesaran (1994).
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Moreover, since this adjustment cost function is homogeneous of degree one in (It , Kt ),
the model can be implemented by equating marginal q with average q in the standard
way. This model suggests a monotonic but non-linear relationship between investment
and average q, with a region of inactivity where gross investment is zero between the
two threshold values.

Caballero and Leahy (1996) have criticised the Abel and Eberly formulation. They
show that the assumptions of perfect competition and constant returns to scale take on a
more crucial role in the presence of fixed costs of adjustment. Not only is linear homo-
geneity of the net revenue function required to equate marginal and average q, but in the
presence of fixed adjustment costs this restriction is also needed to obtain a monotonic
relationship between investment and marginal q. If the net revenue function is concave,
they show that marginal q becomes a non-monotonic function of investment and the
inverse function, investment as a function of marginal q, does not exist. Thus the model
described by (3.19) would be fundamentally mis-specified, however one measures the
shadow value of capital.

Caballero and Leahy (1996) clearly regard the combination of perfect competition
and constant returns to scale as ‘unlikely’ to be appropriate assumptions, particularly
in the context of large firms. This is an interesting departure from Lucas (1967), who
viewed this combination of assumptions as a strength of the underlying q theory. With-
out linear homogeneity of the net revenue function, the firm has an optimal size, whereas
with linear homogeneity of the net revenue function the firm has no optimal size. This
reconciles the model with evidence suggesting that changes in firm size are difficult to
predict.21 Recall that these assumptions have been made in the vast majority of struc-
tural investment models derived in the absence of fixed costs. Given this, testing a model
which maintains these assumptions whilst introducing fixed costs does not seem to be an
unreasonable project a priori. Whilst linear homogeneity may not hold exactly, it may
provide a sufficiently good approximation to be useful, and the fact that this assumption
greatly simplifies the characterisation of optimal investment in the presence of fixed ad-
justment costs would be no small advantage if this is the case. In our view, conclusive
evidence that linear homogeneity should be abandoned in the investment literature has
not yet been presented.

Abel and Eberly (1996) and Barnett and Sakellaris (1998) have estimated non-linear
models relating the investment rate to average q using data on US publicly traded com-
panies. Both studies find significant non-linearities. Barnett and Sakellaris (1998) find a
concave relationship, with a flatter slope at higher values of average q. Abel and Eberly
(1996) find an S-shaped sigmoidal relationship, with a steeper slope at values of average
q around unity and a flatter response at both higher and lower values.22

21 The proposition that firm size follows a random walk is known as Gibrat’s Law, and a large literature
in empirical industrial organisation has sought to test this hypothesis [see Sutton (1998)]. Whilst the results
are somewhat inconclusive, the fact that a large literature exists suggests that the proposition is not without
interest, and is not rejected out of hand.
22 See also Eberly (1997).
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At first sight this seems inconsistent with the predictions of the model with non-
convex adjustment costs, which implies no response of investment to average q in the
intermediate range of inaction, and a response of investment to average q only when
average q moves outside this range. Abel and Eberly (1996) suggest that this appar-
ently paradoxical finding can be explained by aggregation over different types of capital
goods. The basic idea is that with non-convex adjustment costs, adjustment occurs at
both the extensive margin (the decision to invest or not to invest) and the intensive
margin (how much to invest or disinvest given that an adjustment is worthwhile). At
intermediate values, a rise in average q will trigger adjustment at the extensive margin
for some types of capital, with spending on those types of investment increasing from
zero to some level that is large enough to justify paying the corresponding fixed cost.
At higher values, a further rise in average q produces adjustment only at the intensive
margin for all types of capital, so that the response of total investment spending to the
change in average q may be flatter.

This argument is ingenious, but it should be noted that there are censoring and mea-
surement error problems that can also account for the non-linear shape found by Abel
and Eberly (1996), even if the true relationship is linear. Gross investment in their model
is allowed to be negative, and should be so if average q is low enough to justify dis-
investment. However the investment data used to estimate this relationship measures
only positive capital expenditures, without subtracting any measure of disinvestment.
Thus the measure of gross investment used in the empirical work is effectively cen-
sored below at zero. This censoring, which is not accounted for in their estimation, can
potentially explain a flattening in the response of measured investment to average q at
low values of q: once the dependent variable is close to zero, it cannot go much lower,
whatever happens to average q. Measurement error in average q can also explain the
flattening observed at the upper end of the distribution, particularly if, as seems likely,
the measurement error has a higher variance at higher values of average q – for example,
if high average q ratios are more likely to be affected by bubbles or fads in share prices.
More generally, measurement error in the explanatory variable can change the shape of
the underlying relationship, as well as introducing an attenuation bias [see, for example,
Chesher (1991)]. As noted earlier, measurement error is likely to be a serious problem
with the average q ratio. Bond and Cummins (2001) suggest that noise in share prices
can account for findings of non-linearity in this context, when average q is measured
using stock market valuations.

The censoring problem noted here may also be more fundamental than it appears.
The measure of disinvestment that we would like to subtract from capital expenditures
is the replacement cost value of the capital goods that are sold or disposed of. The
proceeds from sales of capital goods will underestimate this if there are adverse selec-
tion problems in second-hand capital goods markets, and the book value of disposals
will underestimate their replacement cost value by an unknown amount depending on
the age of the goods that are sold and the inflation rates that have been experienced.
Thus whilst it may be important to allow for non-linearities in the relationship between
measured investment and its determinants, it is not clear that these non-linearities can
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identify the shape of the underlying adjustment cost function, at least over the range
where disinvestment is important.

Caballero, Engel and Haltiwanger (1995) adopt a somewhat more ad hoc approach to
test for the importance of fixed adjustment costs.23 Their empirical analysis is motivated
by the following observations. In a model with (possibly asymmetric) fixed costs of
adjustment, but no linear or strictly convex components, capital adjustment if it occurs
will take the capital stock to the same target level, K∗

t , whether this adjustment occurs
from above or from below. Conditional on the fixed cost levels, positive investment will

occur when the ratio Zt = K∗
t

Kt
exceeds some critical threshold, and disinvestment will

occur when Zt goes below some threshold. However if the actual fixed cost levels are
stochastic and not observed by the econometrician, all we can say is that the probability
of observing investment or disinvestment should be increasing in the absolute value of
zt = ln Zt .

Caballero, Engel and Haltiwanger (1995) implement this test using LRD data on US
manufacturing plants. This requires constructing a measure of the target capital stock
(K∗

t ), and hence the ‘gap’ (zt ). Although in general this target will not be equal to
the optimum capital stock that the firm would choose in the absence of adjustment
costs, Caballero, Engel and Haltiwanger (1995) base their measure of the target on the
predicted values from a static demand for capital equation of the form (2.13). They find
that the probability of observing investment is clearly increasing with positive values
of zt , consistent with the presence of the fixed costs. They also find an asymmetry,
with the probability of observing disinvestment remaining low even at large negative
values of zt , although as they note this asymmetry could reflect mis-measurement of
disinvestment in the data. This ‘gap’ methodology has also been criticised by Cooper
and Willis (2004), who suggest that the findings may be sensitive to mis-specification
of the target level to which the actual capital stock is assumed to adjust.

Finally in this section we should mention interesting recent work by Cooper and
Haltiwanger (2006). They also use US plant level data to investigate capital stock ad-
justment, but rather than directly estimating an investment equation they use indirect
inference to estimate parameters of a general adjustment cost function. In essence, this
asks what forms of adjustment costs are required to match the non-linear relationship be-
tween investment and profitability found in their data set. Perhaps not surprisingly, they
find that a general specification of adjustment costs is required to fit this relationship,
combining both convex and non-convex components with irreversibility. This finding,
like the descriptive evidence on plant-level investment discussed earlier, casts doubt
on the structural econometric investment models that have maintained much simpler
adjustment cost specifications. The challenge remains to develop structural investment
equations that are consistent with richer forms of adjustment costs, without requiring
the net revenue function to be homogeneous of degree one.

23 See also Cooper, Haltiwanger and Power (1999) and Anti Nilsen and Schiantarelli (2003).
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3.6. Reduced form models

The actual adjustment process is likely to be extremely complex, particularly when we
consider that the data on investment at the firm level are an aggregate over many types
of capital goods, and possibly over multiple plants. The structural models of investment
dynamics that have been proposed to date have not been conspicuously successful in
characterising this adjustment process, possibly because they have neglected these ag-
gregation issues, and/or the implications of some of the non-convexities discussed in
the previous section. Nevertheless it is clear that capital cannot be adjusted costlessly
and immediately, so it is not appropriate to resort to static models.24 An intermediate
possibility is to rely on dynamic econometric specifications that are not explicitly de-
rived as optimal adjustment behaviour for some particular structure of adjustment costs.
A favourable interpretation of such reduced form models is that they represent an em-
pirical approximation to some complex underlying process that has generated the data.
A less favourable interpretation is that they compound parameters of the adjustment
process with parameters of the expectations-formation process, and are subject to the
Lucas (1976) critique. In any case it is useful to be aware of the form of these models,
and some of their limitations.

One approach which has been widely used in the investment literature is based on
first-differencing a static factor demand model to obtain an investment equation, for
example

(3.20)

(
It

Kt−1

)
− δ ≈ �kt = �k∗

t

where k∗
t is the logarithm of the optimal capital stock, which may for example be given

by Equation (2.13). If k∗
t is log-linear in the level of output, this leads to versions of the

popular accelerator model, in which investment is related to output growth. Recognising
that the actual capital stock does not adjust fully and immediately to changes in the
desired level, so-called flexible accelerator models introduce distributed lags in �k∗

t−s

and possibly �kt−s . This gives a dynamic specification of the form

(3.21)a(L)�kt = b(L)�k∗
t ,

where a(L) and b(L) are polynomials in the lag operator (i.e. Lsxt = xt−s). Flexible
accelerator models of this type have been estimated using firm data by, for example,
Eisner (1977) and Mairesse and Dormont (1985).

An alternative is to specify a simple partial adjustment model for the level of the
capital stock, such as

(3.22)

(
It

Kt−1

)
− δ ≈ �kt = θ

(
k∗
t − kt−1

)
,

24 Unless perhaps one is willing to treat all variables of interest as co-integrated non-stationary variables and
one has sufficiently long time series to appeal to co-integration results [cf. Engle and Granger (1987)].
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in which some constant fraction θ of the gap between the actual and desired levels of
the capital stock is closed in each period. This is obviously very restrictive, but a more
flexible dynamic adjustment model which nests both partial adjustment and accelerator
models as special cases is an error correction model, such as

(3.23)α(L)�kt = β(L)�k∗
t + θ

(
k∗
t−s − kt−s−1

)
where α(L) and β(L) are again polynomials in the lag operator, the form of which can
be chosen empirically.25 Error correction models were introduced into the investment
literature by Bean (1981), and have been considered in the context of firm data by Bond,
Harhoff and Van Reenen (2003) and Bond et al. (2003).

The connection between error correction models and co-integration techniques have
popularised these adjustment models in the time series literature, but the error correc-
tion model was introduced into econometrics long before the literature on co-integration
developed.26 In fact, the error correction model is nothing more than a particular pa-
rameterisation of an autoregressive distributed lag (ADL) model. For example, the
ADL(1, 1) model

(3.24)kt = α1kt−1 + β0k
∗
t + β1k

∗
t−1

can always be re-parameterised as

(3.25)�kt = −β1�k∗
t + (1 − α1)

(
k∗
t − kt−1

)
under the long-run proportionality restriction (

β0+β1
1−α1

) = 1.27

Implementation of the error correction model will require a specification for the target
level of the capital stock. Subject again to the observation that the target capital stock in
the presence of adjustment costs is not necessarily equal to the desired capital stock in
the absence of adjustment costs, this can be based on a static factor demand specification
such as (2.13). For example, combining (2.13) and (3.25) gives

� ln Kt = (1 − α1)σ ln aK

(
1 − 1

ηD

)
− β1� ln Yt + β1σ� ln

(
r

p

)
t

(3.26)+ (1 − α1)(ln Yt − ln Kt−1) − (1 − α1)σ ln

(
r

p

)
t

.

Notice that these models can be used to estimate the long-run elasticity of the capi-
tal stock with respect to the user cost of capital, whilst allowing for the fact that this
adjustment does not occur immediately. In principle these models can be extended to

25 See Hendry (1995, Chapter 7) for further discussion of alternative dynamic models.
26 See, for example, Sargan (1964) and Davidson et al. (1978).
27 This restriction can be tested by including an additional term in either k∗

t or kt−1 on the right-hand side of
(3.25).
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incorporate non-linear and asymmetric dynamics, for example by allowing the parame-
ters α1 and β1 to take different values depending on the sign of (k∗

t − kt−1) and whether
the absolute value of this gap is large or small.

Since these reduced form models are empirical generalisations of static factor demand
specifications, and the adjustment cost models considered previously are theoretical
generalisations of static factor demand theory, it is no surprise that the two approaches
are related. Nickell (1978, Chapter 11) shows that for a symmetric, quadratic adjustment
cost function, the level of investment can be obtained approximately as

(3.27)It − δKt−1 = �Kt ≈ φ(K̂t − Kt−1),

where

(3.28)K̂t = (1 − γ )Et

[ ∞∑
s=0

γ sK∗
t+s

]
and K∗

t is the capital stock level that the firm would have chosen in the absence of
adjustment costs. Thus the investment decision is approximately described by a partial
adjustment mechanism, in which the ‘target’ level of the capital stock is itself a func-
tion of both current and expected future levels of the static optimum.28 Nickell (1985)
characterises restrictive conditions for the K∗

t process under which this generates either
a partial adjustment or an error correction model relating investment to (K∗

t − Kt−1).
Whilst this relationship is of interest, it does not provide a very appealing motivation
for the use of these reduced form empirical models. If this structure for the adjustment
costs is taken seriously, we have seen how this structure can be identified and tested
more directly. The attraction of the reduced form models is that they may provide an
empirical approximation to a much more complex adjustment process, whose structure
we have not yet been able to characterise satisfactorily as the outcome of a richer dy-
namic optimisation problem.

The potential disadvantages of the reduced form approach can now be illustrated as
follows. Suppose for simplicity that the structural adjustment process was characterised
by

(3.29)It = αKt−1 + β0Yt + β1Et [Yt+1],
which is a special case of (3.27) in which we have omitted expected values beyond
period t +1, and assumed that the static optimum capital stock is proportional to output.
Suppose also that expectations of future output are formed according to

(3.30)Et [Yt+1] = π0Yt + π1Yt−1 + π2Xt,

where Xt is a vector containing any additional variables that happen to be useful in
forecasting future output. Then substituting (3.30) into (3.29) we obtain the reduced

28 Recall that this dependence of current investment decisions on expected future profitability was also evi-
dent from the first-order conditions (see Equation (3.3)).
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form investment equation

(3.31)It = αKt−1 + (β0 + β1π0)Yt + β1π1Yt−1 + β1π2Xt .

This shows how the reduced form models compound the parameters of the structural ad-
justment process (α, β0, β1) with the parameters of the expectations-formation process
(π0, π1, π2).29 This has two potentially important consequences. First, if the parameters
of the expectations-formation process are not stable, then the parameters of the reduced
form investment equation will also be unstable, even though the parameters of the struc-
tural adjustment process may have been constant. For example, if there is a structural
break in the process generating output, perhaps as a result of entry into the market or
some change in macroeconomic policy, this will induce parameter instability in the re-
duced form investment model. This simply illustrates that the reduced form models are
subject to the Lucas (1976) critique. In principle this is not the case for the structural
investment models we considered in Sections 3.1–3.3, whose parameters are ‘deep’ pa-
rameters describing the adjustment cost technology (see (3.10) or (3.13)), and which
are expected to be invariant to changes in the processes generating, for example, output
and the user cost. In practice, this claim relies on these structural models being correctly
specified, and even then we may find that the parameters of the adjustment cost function
are not constant over time.

The second consequence is that Xt variables will appear to be significant in reduced
form equations like (3.31), even though they play no role in the structural model for
investment, and their only role in the reduced form equation is to help to forecast fu-
ture values of the fundamental determinants of investment. This is clearly problematic
if we want to draw any inferences about the nature of the underlying structural model.
For example, finding that financial variables have significant coefficients in a reduced
form investment equation does not identify whether these financial variables are impor-
tant structural determinants of investment spending – perhaps as a result of financing
constraints – or whether they simply help to forecast future output or profitability. We
discuss some possible solutions to this identification problem further in Section 6.2 be-
low. Here we note that whilst the problem is particularly transparent in the context of
reduced form models, a similar issue will affect structural models that are not correctly
specified, and which therefore do not fully control for all influences of expected future
output or profitability on the level of current investment.

29 If the structural adjustment process were really as simple as Equation (3.29), we could of course substitute
the realised value of future output for the one-step ahead expectation. However this will not generally be
possible when the structural model relates current investment to expectations of output or profitability in the
distant future, as suggested by (3.27) or (3.3).



Ch. 65: Microeconometric Models of Investment and Employment 4447

4. Econometric issues

4.1. Stochastic specification and identification

One important issue in the implementation of econometric investment and employment
models concerns the sources of stochastic error terms. In this section we discuss in
particular the stochastic specifications that have been considered in microeconometric
applications of the Q and Euler equation models of investment, and their implications
for the consistent estimation of these models.

The Q model derived in Equation (3.10) is a deterministic relationship between the
investment rate and the Q variable. The intercept in this equation is a parameter of the
adjustment cost function, interpreted as a ‘normal’ rate of investment at which costs
of adjustment are zero. The standard way of introducing stochastic variation into the
Q model is to treat this parameter as stochastic, and to interpret the error term in the
Q investment equation as reflecting shocks to the adjustment cost function. Simply re-
placing the constant a with ait = a+eit for firm i in time period t gives the econometric
model

(4.1)

(
I

K

)
it

= a + 1

b
Qit + eit ,

where eit is an additive shock to the ‘normal’ rate of investment, or equivalently an
additive shock to marginal adjustment costs.

This approach is convenient, if somewhat ad hoc. Nevertheless it has several impli-
cations which should be taken seriously when estimating the Q model. Perhaps most
importantly, it implies that Qit should be an endogenous variable in the econometric
model (4.1). Current shocks to adjustment costs will affect the current period’s net rev-
enue (Πit ), and therefore the current value of the firm (Vit ).30 This endogeneity of Qit

will therefore need to be taken into account in order to obtain consistent estimates of
the adjustment cost parameters.

A second implication is that technological shocks need not be statistical innovations.
There may be permanent differences across firms in their ‘normal’ investment rates,
and there may be common trends in the nature of adjustment costs that affect all firms
in the same way, perhaps as a result of business cycle fluctuations. Thus for estimation
of the Q model using company panel data it is not inconsistent with the underlying
theory to include firm-specific and time-specific error components. Simply letting eit =
ηi + ζt + εit gives the error components specification

(4.2)

(
I

K

)
it

= a + 1

b
Qit + ηi + ζt + εit .

30 See Equation (3.8). Alternatively, the current adjustment cost shock affects the current marginal revenue
product of capital, and therefore the current shadow value of capital (λit ). See Equation (3.3).
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Moreover, there is no compelling reason for the idiosyncratic, time-varying component
of adjustment cost shocks (εit ) to be serially uncorrelated. For example, if these shocks
follow an AR(1) process, εit = ρεi,t−1 + νit , with νit serially uncorrelated, then we
obtain the dynamic specification(

I

K

)
it

= a(1 − ρ) + ρ

(
I

K

)
i,t−1

+ 1

b
Qit − ρ

b
Qi,t−1 + ηi(1 − ρ)

(4.3)+ ζt − ρζt−1 + νit ,

i.e. a dynamic model relating the current investment rate to both current and lagged Q

and the lagged dependent variable, subject to a non-linear common factor restriction.
More generally, the underlying theory does not rule out a dynamic relationship between
investment rates and the Q variable, provided these dynamics are consistent with some
serial correlation process in the adjustment cost shocks.

A second potential source of stochastic variation in the Q model is measurement er-
ror. In view of both the assumptions required to measure marginal q, using either the
average q ratio or an auxiliary econometric forecasting model, and the limitations of
most publicly available datasets,31 the likelihood of significant measurement error in
the Q variable does indeed seem overwhelming. Denoting the true value of the explana-
tory variable on the right-hand side of (3.5) or (3.10) by Q∗

it , and the measured value
by Qit = Q∗

it + mit , where mit is an additive measurement error, then gives an econo-
metric model of the same form as (4.1), with eit = −mit

b
. Again a principal implication

is that measured Qit will be correlated with the error term, and this endogeneity should
be allowed for in estimation.32 Moreover, the measurement error may also have firm-
specific, time-specific and serially correlated components. Unfortunately the residual
measurement error component may still not have properties that are convenient for es-
timation, and alternative techniques such as those considered in Erickson and Whited
(2000), or alternative measures such as those considered in Bond and Cummins (2001),
may still be required to identify the parameters of the underlying model.

In contrast to the Q model, the Euler equation approach considered in Section 3.3 has
an intrinsically stochastic specification when the one-step ahead expected values are
replaced by their realised values. Assuming the real discount factor ψt+1 is a constant
parameter ψ and denoting ( I

K
)i,t+1 = Eit [( I

K
)i,t+1] + εi,t+1, where εi,t+1 is the error

made by firm i when forecasting its period t + 1 investment rate using information
available in period t , the Euler equation in (3.13) becomes(

I

K

)
it

= a(1 − ψ) + ψ

(
I

K

)
i,t+1

31 See Section 5 below.
32 Though it is perhaps worth noting that whilst the theory predicts a positive correlation between current
Qit and adjustment cost shocks in the absence of measurement error, the correlation between measured Qit

and −mit
b

will be negative. Thus the direction of the potential simultaneity bias becomes ambiguous if both
adjustment cost shocks and measurement errors are present.
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(4.4)+ 1

b

[(
∂F

∂Kit

)
−

(
∂G

∂Kit

)
−

(
r

p

)
it

]
− ψεi,t+1.

The forecast error εi,t+1 will certainly be correlated with ( I
K

)i,t+1, but under weak
rational expectations should be orthogonal to information available in period t . One
implication is that this forecast error cannot be serially correlated, and cannot contain
a permanent firm-specific component.33 On the other hand, since firms are likely to
be subject to common shocks reflecting, for example, business cycle surprises, these
forecast errors are likely to be correlated across firms in each period. This suggests that
identification of the Euler equation may be problematic without long time series of data
for individual firms, since independence of the error terms across individuals is typically
required for consistent estimation in panels when the number of time periods is fixed.
The inclusion of time dummies will only permit consistent estimation in the special
case where the effects of aggregate shocks are perfectly correlated across individual
firms. Of course, the assumption that technological shocks and measurement errors are
independent across firms (conditional on time dummies) may also be problematic in
the context of the Q model and other factor demand specifications, but this assumption
is particularly difficult to reconcile with the underlying economic structure when the
stochastic disturbances contain a forecast error.34

It should also be noted that unobserved heterogeneity in the real discount factor
ψ could undermine the identification of the Euler equation. Measured heterogeneity
in ψ , reflecting for example differences in the mix of capital assets used by different
firms or differences in their required rates of return, can be allowed for by including
suitable interaction terms in the estimated model. Unobserved heterogeneity in ψ is
problematic because, as is clear from (4.4), this interacts with the endogenous variable
( I
K

)i,t+1. Unrestricted unobserved heterogeneity (ψit ) would therefore leave the Euler
equation unidentified. Restricting the unobserved heterogeneity to be permanent and
firm-specific (ψit = ψi) would allow consistent estimation if long time series data were
available, but even this restriction would leave an identification problem in panels with
a small number of time periods. As has been emphasised by Pesaran and Smith (1995),
heterogeneous slope coefficients will invalidate the instruments typically used to esti-
mate dynamic models from short panels.35 Again we should acknowledge that a similar

33 Although firm-specific measurement errors or omitted variables may rationalise firm-specific effects in
empirical applications of Euler equation models of factor demand.
34 Interested readers are referred to Altug and Miller (1990, 1991) and Blundell, Bond and Meghir (1996) for
further discussion of this issue.
35 Although it is less clear from (4.4), a similar issue can arise if there is unobserved heterogeneity in the

adjustment cost parameter a. The source of this potential problem is the [( ∂F
∂Kit

) − ( ∂G
∂Kit

)] term. If, as in
Bond and Meghir (1994), linear homogeneity of the production and adjustment cost functions is used to
measure this marginal product, the effect is to introduce a linear term in a( I

K
)it . Indeed it should be noted

that this form of the Euler equation is inconsistent with the presence of the kind of adjustment cost shocks
that are typically used to motivate stochastics in the Q model.
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issue may arise in the context of the Q model if the adjustment cost parameter (b) is
itself heterogeneous across firms.

The potential sources of stochastic variation in reduced form investment equations
are less transparent. If these models are regarded as empirical approximations to some
complex adjustment process, then the residual can be viewed as an approximation er-
ror, but this gives little guidance as to its statistical properties. One approach in this
context is to regard certain properties of the error term (e.g. lack of serial correlation)
and certain properties of the model parameters (e.g. stability) as features of a desirable
approximation to the data generation process, and to treat these properties as key ob-
jectives of an empirical specification search. Since this raises issues that are common to
reduced form models in a wide range of econometric applications, we refer interested
readers to Hendry (1995) for further discussion.

4.2. Estimation

Many of the issues that arise in estimating dynamic factor demand equations using
company panel data can be illustrated by considering a model of the form

yit = αyi,t−1 + βxit + uit for i = 1, . . . , N and t = 2, . . . , T ,

(4.5)uit = ηi + vit

where i indexes firms and t indexes time, and ηi is an unobserved firm-specific effect.36

For example, if yit is the investment rate, xit is Qit as defined in (3.10) and α = 0 then
we have the basic Q model, whilst if α �= 0 and xit is a vector containing both Qit and
Qi,t−1 we have the Q model with an AR(1) component to the adjustment cost shock.
The Euler equation model (4.4) has this form if we normalise on ( I

K
)i,t+1 rather than

( I
K

)it ,37 and the reduced form models considered in Section 3.6 are typically just more
general dynamic equations of this type. For simplicity, this section will focus on the
case where xit is a scalar.

Since the available company panels typically contain a large number of firms ob-
served for a relatively small number of time periods, we will concentrate on the estima-
tion issues that arise when N is large and T is small, assuming that the error term vit

is distributed independently across firms.38 OLS will give biased parameter estimates
since yi,t−1 is necessarily correlated with ηi (and xit may be), and the Within estimator
will give biased parameter estimates for small T since ỹi,t−1 is necessarily correlated
with ũit (and x̃it may be).39,40

36 See Arellano and Honoré (2001) for a more detailed discussion of the methods we review here.
37 Similar estimation issues will arise whichever normalisation is adopted.
38 Unless otherwise indicated, asymptotic properties will hold as N goes to infinity for fixed T .
39 The Within estimator is obtained as OLS after subtracting firm-means of each variable, so that ỹit =
yit − 1

T −1
∑T

s=2 yis and ỹi,t−1 = yi,t−1 − 1
T −1

∑T −1
s=1 yis . This is equivalent to the Least Squares Dummy

Variables (LSDV) estimator, obtained by including a dummy variable for each firm.
40 In the special case where β = 0, we can say that the OLS estimate of α will be biased upwards [Hsiao
(1986)] and the Within estimate of α will be biased downwards [Nickell (1981)]. Informally these estimates
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If xit is strictly exogenous with respect to uis , in the sense that E[xituis] = 0 for
all s, t (or some strictly exogenous instrument zit is available), the parameters (α, β)

can be estimated consistently by using the vector (xi1, . . . , xiT ) – or (zi1, . . . , ziT ) –
as instrumental variables for each of the levels equations in (4.5). If xit is correlated
with ηi but strictly exogenous with respect to vis (or some instrument zit with these
properties is available), the parameters (α, β) can be estimated consistently by taking
first-differences of (4.5) and then using the vector (xi1, . . . , xiT ) – or (zi1, . . . , ziT ) – as
instrumental variables for each of the resulting first-differenced equations. More com-
monly, in the absence of strictly exogenous instruments, identification of (α, β) relies
on assuming some limited serial correlation in the vit disturbances.

For example, consider the case in which xit is correlated with both ηi and vit . As-
suming that E[yi1vit ] = E[xi1vit ] = 0 for t = 2, . . . , T and that E[visvit ] = 0 for
s �= t yields the moment conditions

(4.6)E[wi,t−s�vit ] = 0 for s � 2 and t = 3, . . . , T ,

where wit = (yit , xit ). This allows the use of lagged values of endogenous variables
dated t − 2 and earlier as instrumental variables for the equations in first-differences.41

For T > 3 the parameters are over-identified, and alternative Generalised Method of
Moments (GMM) estimators are defined by different ways of weighting the moment
conditions. If instead of assuming no serial correlation we allow vit to be MA(q), the
implication is that only lagged endogenous variables dated t − 2 − q and earlier can be
used as instruments.

This first-differenced GMM estimator will provide consistent estimates of the para-
meters (α, β) as the number of firms becomes large. In some contexts these estimators
have good finite sample properties, but this will not be the case when the lagged values
of the series are only weakly correlated with subsequent first-differences. When the in-
struments available are weak, the GMM estimator can exhibit large finite sample biases,
as well as imprecision.42 In the context of Equation (4.5) this is particularly likely to be
a problem when the individual series for yit and xit are highly persistent, and when the
time series dimension of the panel is very short.43

Alternative estimators are available that have better small sample properties in these
cases, although they have been less commonly used in applied work to date. Alonso-
Borrego and Arellano (1999) propose a symmetrically-normalised GMM estimator that

provide guidance about the likely range of values for α, so that candidate consistent estimators which lie well
outside this range can often be regarded with suspicion.
41 See Holtz-Eakin, Newey and Rosen (1988) and Arellano and Bond (1991). xi,t−1 could be used as an
additional instrument if xit is predetermined with respect to vit . Additional instruments are available for the
levels equations if xit (or �xit ) is uncorrelated with ηi .
42 For general results, see Nelson and Startz (1990a, 1990b) and Staiger and Stock (1997). For the case of
dynamic panel data models, see Blundell and Bond (1998).
43 In the special case with β = 0, Blundell and Bond (1998) show that the first-differenced GMM estimator
of α has a serious downward bias in these cases.
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is median-unbiased even in the case of weak instruments. Ahn and Schmidt (1995)
note that estimators based on the linear moment conditions (4.6) are not efficient un-
der the standard ‘error components’ assumption that E(ηivit ) = 0, and that additional
non-linear moment conditions are available in this case. The resulting non-linear GMM
estimator is asymptotically efficient relative to the linear first-differenced GMM estima-
tor, and can be expected to have better small sample properties.44

Estimators with better properties can also be obtained in some contexts if one is
able to impose more restrictive assumptions than those considered above. Arellano and
Bover (1995) note that �xit may be uncorrelated with the unobserved firm-specific ef-
fects, even when the level of xit is correlated with ηi . Combined with the assumption
of limited serial correlation, this allows suitably lagged values of the first-differences
�xi,t−s to be used as additional instruments for the equations in levels. These addi-
tional moment conditions are over-identifying restrictions that can be tested, and where
they are valid they can significantly improve on both the asymptotic and small sample
properties of the first-differenced GMM estimator, particularly when the parameters
(α, β) are only weakly identified from the first-differenced equations. Blundell and
Bond (1998, 2000) note that if the initial conditions yi1 also satisfy the stationarity
restriction E[�yi2ηi] = 0 then suitably lagged values of �yi,t−s as well as �xi,t−s are
available as instruments for the levels equations.45 The resulting linear estimator, which
combines equations in levels with equations in first-differences and which they label
‘system GMM’, is shown to provide dramatic gains both in asymptotic efficiency and in
small sample properties, compared to both the linear first-differenced GMM estimator
and to the non-linear GMM estimator of Ahn and Schmidt (1995).

Another potentially important issue in the context of panel data on companies or
plants is that of non-random entry and exit. Entry into a panel of establishments may
reflect the decision by a firm to enter a particular market, whilst entry into a panel of
firms may reflect other economic choices such as the decision to obtain a stock market
listing. Exit from a panel of plants may reflect plant closure or acquisition, whilst exit
from a panel of companies may reflect mergers, takeovers and bankruptcies. Many of
these economic events are potentially correlated with shocks that affect investment and
employment decisions.

Non-random entry into the sample does not present a serious estimation problem,
however, since the entry decision is a function of variables dated at the time of en-
try, which can be regarded as fixed over the subsequent sample period. The variables

44 Again for the special case with β = 0, Ahn and Schmidt (1995) show that the gain in asymptotic efficiency
is largest in the cases where α is only weakly identified from the linear moment conditions (4.6) – i.e. when
α is high and T is small.
45 In the special case with β = 0, this initial condition restriction requires that the series (yi1, . . . , yiT )

have a constant first moment for each firm. In the multivariate context, Blundell and Bond (2000) show that a
sufficient condition is for the series (yit , xit ) to both have stationary means. However, this is not necessary. For
example, both yit and xit may have non-stationary means provided that the �xit series is always uncorrelated
with ηi and the conditional model (4.5) has generated the yit series for a sufficiently long pre-sample period.
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which determine entry may be correlated with the firm-specific effects in factor demand
equations, but this fixed correlation merely shifts the firm-specific effects and can be
controlled for using the estimation methods described above. The determinants of en-
try may also be correlated with subsequent shocks to the factor demand equation if the
latter are serially correlated, but this correlation can be controlled for by dropping a
limited number of initial periods.

Non-random exit from the sample could cause a potentially more serious attrition
bias, that would only be corrected by controlling for firm-specific effects under very
restrictive assumptions. This would remain an issue whether estimation is based on the
‘unbalanced’ panel, including those firms which exit, or the ‘balanced’ panel contain-
ing only the subset of firms which survive through to the end of the sample period.
The development of tests and controls for attrition bias in panels of firms and plants
is an important area for future research, although it should be recognised that this may
not be a purely statistical issue. For example, in principal-agent models of company
behaviour with incomplete contracts, where managers retain some flexibility not to pur-
sue shareholder value maximization, it may be the case that investment decisions are
directly influenced by the risk of being taken over or going bankrupt, since managers
who dislike these events may choose actions to reduce their risk. Thus the nature of the
exit processes may affect the specification of factor demand models, and not only the
estimation methods required for consistent estimation.

5. Data

The advantages of microeconomic data sets are that data is often available for a large
number of individual firms or plants, and aggregation problems are generally reduced
compared to industry level or aggregate data sets. Moreover, it is possible to move
beyond a representative firm framework, and to test models that imply heterogeneous
behaviour across firms, as for example may occur in the presence of financing con-
straints. The disadvantages are that the available measures of factor inputs and outputs
are often crude, and key variables like factor prices are generally not measured at the
firm or plant level. This is a major reason why much of the microeconometric literature
on investment and employment has focused on issues such as the nature of adjustment
dynamics and the presence of financing constraints, which can be investigated without
microeconomic variation in factor prices.

Until very recently, most microeconometric factor demand studies relied on pub-
licly available company data sets, generally obtained from company accounts. Examples
include Compustat data for US firms and Datastream data for UK firms. Company ac-
counts are not produced for the benefit of econometric research, and the measures that
are directly available are often inappropriate for testing economic models. Measures
based on recorded cash flows are likely to be most reliable, but even these can present
problems for econometric research. For example, whilst data on sales may be accurate,
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there may be too little information on changes in inventories to infer the value of pro-
duction. Similarly there may be insufficient information on the cost of current inputs
to infer value-added. However flow measures that are based on changes in accounting
valuations of assets and liabilities present more severe measurement issues, as does the
use of the book values of these stocks themselves.

These book values of assets and liabilities are generally based on historic cost val-
uations, which may deviate substantially from current economic values in the case of
long-lived capital assets and long-term debts. The historic cost valuation of the firm’s
capital stock is based on the prices at which assets were originally purchased, and so ne-
glects both general price inflation and relative price changes over the intervening period.
A related concern affects the depreciation deductions reported in company accounts.
Even in commercial accounts, these may be based on cautious assumptions about the
length of useful asset lives, and in some cases the only information available is based
on depreciation rules required for tax purposes. For these reasons economic researchers
have often preferred to construct their own capital stock estimates, based on cumulating
the observed investment flows in a perpetual inventory formula that can allow for infla-
tion and alternative estimates of economic depreciation rates. A similar problem affects
the valuation of inventories, although here it is important to know the valuation method
that has been used to construct the company accounts, which varies across countries
and may vary across firms within the same country. The historic cost valuation of debt
is based on the amounts borrowed and not yet repaid. The market value of the firm’s
outstanding debt may be different if interest rates have changed over the intervening
period. Again economic researchers have sometimes preferred to construct alternative
estimates of the market value of debt, although this is problematic without knowledge of
the maturity structure. Many of these valuation problems come together in accounting
measures of profit, with some of the principal concerns being the deduction of nomi-
nal rather than real interest payments, the inclusion of inflationary gains on holdings of
inventories, and the use of historic cost depreciation charges.46 Not to mention the pos-
sibility that the timing of some charges against profits may be manipulated to manage
the release of news about the company to the financial markets.

Of particular concern in the factor demand context is the poor quality of accounting
information on the use of various inputs. For example, company accounts may report
expenditures on direct purchases of fixed capital, but may give little information on the
breakdown of these expenditures by type of asset, or may provide little information
on the value of fixed capital obtained through the acquisition of other firms, or may
provide little information on the value of fixed capital sold or scrapped. Thus the avail-
able data on investment may be subject to measurement errors whose importance may
differ across sectors and over the business cycle. As we discussed in Section 3.5, the
absence of good data on disposals of capital may be particularly important when testing
for asymmetries in upward and downward adjustments. The available data on employ-
ment in company accounts is often limited to a snapshot of the number of employees:

46 See Edwards, Kay and Mayer (1987) for a comprehensive discussion of accounting measures of profit.
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it is comparatively rare to have information on hours worked, skill composition or flow
measures of hiring and separations, all of which would be desirable when investigating
the structure of labour demand. In company accounts data it is also unusual to have data
on the usage of factors other than capital and labour.

A distinct source of micro data is provided by the large establishment level data sets
that are compiled by government statistical agencies in order to estimate the aggregate
levels of production, investment and employment in different sectors of the economy.
Typically these are populations of all establishments above a certain size threshold, and
stratified random samples of smaller establishments. An establishment may comprise
one or more plants, which may account for all or part of a firm’s activities. In the last ten
years, these data sources have increasingly been made available for empirical research.
Examples include the Longitudinal Research Database (LRD) in the US; the Annual
Respondents Database (ARD) in the UK; the Norwegian data used by Anti Nilsen and
Schiantarelli (2003); and the French data underlying the Abowd, Kramarz and Margolis
(1999) study.47

There are several advantages of these establishment data sets over company accounts
data. First, they provide data at a more disaggregated level, with the unit of observa-
tion generally being a plant or plants in the same geographical location. The LRD also
provides quarterly observations. Secondly, these data sources provide far more cover-
age of the activities of smaller firms than do most company databases, which are often
limited to publicly traded firms. Thirdly, the establishment data usually disaggregate in-
formation on factor inputs to a greater degree, allowing some consideration of multiple
types of capital and labour. On the other hand, some variables may only be measured
at the level of the firm, such as stock market valuations and tax payments. Coverage
may also be limited to manufacturing or production industries, excluding the service
sector which accounts for a large and growing share of investment and employment in
developed economies.

As we have stressed in this chapter, a major problem facing microeconometric re-
search on factor demand is the absence of comprehensive micro data on factor prices.
This is partly a conceptual problem and not just a data limitation: if each factor of
production were bought and sold in a single competitive market, then all firms would
face the same price for each factor, and there would be no cross-section variation in
factor prices that could be used to identify factor demand parameters. In practice there
may be regional and sectoral differences in factor prices, although this is less useful in
the context of large firms which may operate in several locations and industries. Thus
considerable ingenuity is typically required to identify compelling sources of exoge-
nous price variation. Examples from the investment literature include variation in the
effects of taxes across different firms, either because they use different mixes of cap-
ital subject to different tax treatments, as in Auerbach and Hassett (1992), Cummins,
Hassett and Hubbard (1994) and Chirinko, Fazzari and Meyer (1999); or because they

47 See Abowd and Kramarz (1999) for more details.
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are affected differently by non-linearities in the tax system, as in Devereux (1989) and
Devereux, Keen and Schiantarelli (1994). Examples from the labour demand literature
include regional variation in minimum wage legislation, and variation in the extent of
unionisation.

Our final remarks on sources of microeconomic data for factor demand studies con-
cern different levels of aggregation at which data is available. Large companies may own
many subsidiary firms, so that even with company accounts data there is an important
distinction between the unconsolidated accounts reported by individual subsidiaries,
and the consolidated accounts reported by the group as a whole. Individual firms may
also operate multiple plants, either in different locations or performing different activi-
ties. Data at different levels of aggregation may be most suitable for addressing different
questions. For example, if the objective is to uncover the structure of the adjustment
cost technology, then it seems appropriate to use the most disaggregated data available,
to avoid the tendency for discrete adjustments to be smoothed by aggregation across
plants or types of capital or labour.48 As noted previously, commonly used micro data
on companies or large plants may still be too aggregated for this purpose. However if
the objective is to investigate the impact of financing constraints, it may well be appro-
priate to consider consolidated data for the company as a whole: even in the presence
of a financing constraint, the spending by an individual subsidiary firm or plant may
not be constrained by its own cash flow, since the company can reallocate financial re-
sources between different parts of the group. More generally, the relevant locus for at
least some aspects of corporate decision making may be at the level of the firm rather
than the plant, and it is worth noting that value-maximising behaviour at the level of
the company need not imply value maximisation for individual subsidiaries or plants.
There are also likely to be important advantages from combining both establishment
and firm level data, for example to investigate the impact of aggregation on investment
and employment dynamics. Finally, as we noted in the introduction, important aspects
of aggregate adjustment may take place through the entry and exit of individual firms
or plants, so evidence from microeconomic data will not necessarily provide the correct
answers to macroeconomic questions.

6. Topics in investment

6.1. Some basic findings

Many studies have used company panel data to evaluate the Q model of investment. This
model appeared particularly well suited to company data sets, since stock market valu-
ations are readily and accurately measured for companies with publicly traded shares,
and in contrast to the user cost of capital, there is rich cross-section variation in the av-
erage q ratio that should help to identify the model. There was also initial optimism that

48 See, for example, Hamermesh (1989) and Anti Nilsen and Schiantarelli (2003).
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some of the apparent failings of the Q model that had been reported in earlier studies
using aggregate data may be due to aggregation problems that arise when investment
rates and average q, both specified in ratios, are constructed using aggregate data.

In fact, as we noted in Section 3.1, most of the empirical problems found with the ag-
gregate data have been reproduced in microeconometric studies. These include very low
coefficients on the Q variable, suggesting incredibly high marginal costs of adjustment,
and violation of the prediction that Q should be a sufficient statistic for investment. In
most micro studies, additional variables such as cash flow or sales have been found to be
informative after controlling for Q, and in some cases the Q variable becomes insignifi-
cant when these other variables are added to the empirical model. Similar findings have
been reported independently using data for a wide variety of countries and time peri-
ods, and this has also been the case in the relatively small number of studies that have
recognised the potential importance of endogeneity and (transient) measurement error
in average q. For example, both Hayashi and Inoue (1991) and Blundell et al. (1992)
have used first-differenced GMM estimators of the type described in Section 4.2 to es-
timate versions of the Q model, for panels of Japanese and UK listed manufacturing
companies, respectively. Hayashi and Inoue (1991) consider a version of the Q model
that allows for multiple capital goods as well as the basic specification, whilst Blundell
et al. (1992) estimate a version of the Q model that allows for an AR(1) component in
the error term. Both papers report very low coefficients on their Q variables, and find ei-
ther cash flow or sales terms to be highly significant additional regressors, even allowing
these variables to be endogenous and correlated with firm-specific effects.

One potentially important exception to this general pattern of results is provided by
Cummins, Hassett and Hubbard (1994), who focus on periods around major tax reforms
in the US and report much higher coefficients on their Q variable in these years. This
is consistent with their interpretation that major tax reforms provide quasi-experiments
that help to identify the effects of economic ‘fundamentals’ on investment, so that dur-
ing these periods fluctuations in measured Q are dominated by informative changes in
tax parameters rather than uninformative measurement errors. Notice that if this inter-
pretation is correct, the conventional findings discussed in the previous paragraph can
only be explained if there are substantial and highly persistent measurement errors in
average q that are not easily controlled for by the use of lagged instruments.

Two more recent papers have developed alternative approaches to estimating the Q
model which take seriously this possibility of persistent measurement error in average q.
Erickson and Whited (2000) consider a GMM estimator based on higher order moment
conditions. Their approach can allow for persistent measurement error in the stock mar-
ket valuation as a measure of the firm’s fundamental value, for example as a result of
asset price bubbles, provided that the difference between the two values is independent
of the fundamental value. They find that additional cash flow variables are no longer
significant when this form of measurement error is allowed for in their sample. Bond
and Cummins (2001) consider identification of the Q model in the presence of share
price bubbles. They show that the parameters may not be identified, using conventional
measures of average q, in the more problematic case where the bubble component is
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itself correlated with the fundamental value of the firm. To deal with this case, they
consider using a direct estimate of the firm’s fundamental value, based on forecasts of
future profits published by securities’ analysts.49 When using this alternative measure,
they find a much higher coefficient on their average q variable than is usually obtained,
and neither cash flow nor sales variables are found to be significant.

Gilchrist and Himmelberg (1995) estimate a version of the Abel and Blanchard
(1986) model, based on Equation (3.3), for a panel of listed US manufacturing com-
panies. Unfortunately it is not clear whether the model they estimate has a structural
interpretation, since in their specification of ( ∂Πt

∂Kt
) they assume that net revenue Πt is

homogeneous of degree one in Kt , although their specification of adjustment costs de-
pends on current investment and is not homogeneous of degree one in Kt . Certainly in
the standard formulation of the Q model, net revenue is homogeneous of degree one in
the pair (It , Kt ), and not homogeneous of degree one in Kt alone.50 Nonetheless their
results are interesting in that they also find a much larger coefficient on their constructed
measure of marginal q than on a standard measure of average q, and conditional on this
measure of marginal q they also find smaller and weaker coefficients on a cash flow
variable for at least some sub-samples of their data. These findings are also suggestive
of a potentially severe measurement error problem for conventional measures of average
q constructed using stock market valuations.

Results based on the Euler equation approach have been mixed. Unrestricted esti-
mates of investment dynamics have generally been difficult to reconcile with the Euler
equation implied by the symmetric, quadratic adjustment costs model, in the sense that
estimated coefficients on leads or lags of the investment rate have not implied plau-
sible values for the discount factor (cf. Equation (3.13)). Tests of the over-identifying
restrictions implied by the Euler equation have often been rejected, at least for large
sub-samples of the data. On the other hand, some papers have reported more reason-
able estimates of the structural parameters and non-rejection of the over-identifying
restrictions for particular sub-samples, and suggested that these results are consistent
with a financing constraints interpretation. See Gilchrist (1991), Whited (1992), Bond
and Meghir (1994) and Hubbard, Kashyap and Whited (1995) for examples of this ap-
proach.

One conclusion from this literature seems to be that the standard implementations of
structural models based on the assumption of symmetric, quadratic costs of adjustment
do not provide an adequate characterisation of the observed investment data, at least
for a large part of the company data sets that have been used. Recent research in the
Q framework suggests that measurement error in stock market valuations, as measures

49 See also Cummins, Hassett and Oliner (2006) and Bond and Cummins (2000).
50 Gilchrist and Himmelberg (1995) use the same form for adjustment costs as that in Equation (3.4) – see

their Equation (7). Of course the formulation for (
∂Πt
∂Kt

) based on the assumption that Πt is homogeneous
of degree one in Kt may provide a good approximation if adjustment costs are sufficiently small. Abel and
Blanchard (1986) also used this approximation in one of their applications to time series data, but they were
careful not to claim that they were identifying a structural adjustment cost function. See their footnote 5.
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of the expectations of future profits relevant for investment decisions, should be taken
seriously – reflecting the intrinsic difficulty of controlling for firms’ expectations of fu-
ture conditions. However it would be too early to conclude that this is the only source
of mis-specification. As we emphasised in Section 3.1, there are many candidate expla-
nations for empirical rejections of these models. These results have motivated the huge
empirical literature on financing constraints that we consider in the next section, as well
as the more recent empirical work on non-convex adjustment costs that we discussed in
Section 3.5.

6.2. Financing constraints

A major topic of interest in recent microeconometric research on company investment
has been to test for the possibility that investment spending is subject to significant
financing constraints. In each of the basic investment models outlined above, capital
markets were assumed to be perfect in the sense that the firm can raise as much invest-
ment finance as it desires at some required rate of return (ρt+1) that is given exogenously
to the firm. In this case the firm’s real investment decision is separable from its financial
decisions, and investment depends only on the price (i.e. the required rate of return) at
which finance is available. Quantitative indicators of the availability of internal finance,
such as current profits or cash flow, should affect investment only to the extent that
they convey new information about its likely future profitability; and if the maintained
structure of the Q model were correct, these financial variables should not appear as
significant explanatory variables in an investment model after controlling for a measure
of (marginal) q.

This separability between real and financial decisions no longer holds if the firm faces
‘imperfect’ capital markets, in which internal and external sources of investment finance
are not perfect substitutes. We define a firm’s investment to be financially constrained
if a windfall increase in the supply of internal funds (i.e. a change which conveys no
new information about the profitability of current investment) results in a higher level
of investment spending. Clearly firms are not constrained in this sense in the Q model of
Equation (3.2), where given current prices and interest rates, investment depends only
on the current and expected future marginal revenue products of capital, as summarised
in marginal q through the shadow value of an additional unit of capital. However firms’
investment may be financially constrained in ‘hierarchy of finance’ or ‘pecking order’
models of corporate finance, in which external sources of finance (for example, from
new share issues or borrowing) are assumed to be more expensive than internal sources
of finance (for example, from retained earnings).51

51 See, for example, Myers (1984). Notice that this assumption does not require rationing to be present in
any of the external capital markets, although it can incorporate rationing [cf. Stiglitz and Weiss (1981)] as a
special case in which the cost of external funds becomes infinitely high.
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6.2.1. A simple hierarchy of finance model

To illustrate the implications of this assumption rigorously, but as simply as possible,
we maintain all the assumptions used to obtain the Q model, except that we introduce an
additional cost associated with using external finance. We continue to assume that the
firm issues no debt, pays no taxes and is characterised by symmetric information, but we
introduce an explicit transaction cost (ft ) per unit of new shares issued. Similar results
can be obtained in models where the cost premium reflects asymmetric information or
differential taxes, and can be extended to models with debt provided that lending to the
firm becomes a risky proposition for lenders beyond some level of debt (i.e. there is
some risk of default, all debt is not fully collateralized, and there are ‘deadweight’ costs
associated with defaulting on unsecured debt).52

Recognising the distinction between dividends paid (Dt ) and the value of new shares
issued (Nt ), the value of the firm’s equity is given by the expected present value of net
distributions to shareholders as

(6.1)Vt = Et

[ ∞∑
s=0

βt+s(Dt+s − Nt+s)

]
whilst the sources and uses of funds identity links dividends and new share issues to the
net revenue (Πt ) generated in period t , according to

(6.2)Dt = Πt + (1 − ft )Nt .

Introducing non-negativity constraints on dividends and new share issues, with associ-
ated shadow values (νD

t ) and (νN
t ), the firm’s optimisation problem becomes53

(6.3)Vt (Kt−1) =

⎧⎪⎨⎪⎩ max
It ,Lt ,Mt ,Nt

⎛⎜⎝Πt(Kt , Lt ,Mt , It ) − ftNt + νN
t Nt

+ νD
t [Πt(Kt , Lt ,Mt , It ) + (1 − ft )Nt ]

+ βt+1Et [Vt+1(Kt )]

⎞⎟⎠
⎫⎪⎬⎪⎭ .

The first-order condition for optimal investment becomes

(6.4)−(
1 + νD

t

)(∂Πt

∂It

)
= λt

and the Euler equation for λt becomes

(6.5)λt = (
1 + νD

t

)(∂Πt

∂Kt

)
+ (1 − δ)βt+1Et [λt+1].

52 See Hayashi (1985a) and Bond and Meghir (1994) for extensions to models with debt.
53 Notice that if ft = 0, these non-negativity constraints are redundant. The problem (6.3) reduces to that
considered in Sections 2.2 and 3.1, and the firm’s financial policy is indeterminate. This is a manifestation of
the Modigliani–Miller (1958, 1961) irrelevance theorems.
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In addition we now have a first-order condition for optimal new share issues, which for
Nt > 0 gives

(6.6)
(
1 + νD

t

) = 1

1 − ft

and for Dt > 0 gives νN
t = ft .

Assuming perfect competition and the same expression for net revenue as in (2.25),
the first-order condition for investment becomes

(6.7)

(
∂G

∂It

)
=

(
qt

1 + νD
t

− 1

)
pK

t

pt

where qt = λt

pK
t

is marginal q, as before.

This model has three distinct financial regimes. Retained earnings are the cheapest
source of finance, so if the firm has sufficient earnings to finance its desired investment,
it will issue no new shares. In this case the non-negativity constraint on dividends is not
binding, and the shadow value of an additional unit of internal finance (νD

t ) is zero. In
this regime the basic Q model given by Equation (3.2) describes the firm’s investment.

If the firm does not have sufficient earnings to finance its desired investment, the non-
negativity constraint on dividends is binding, and the shadow value of internal funds is
strictly positive. In this case the firm has to decide whether or not to finance additional
investment by using the more expensive external source of finance. If the investment
projects that would be foregone by not issuing shares are sufficiently profitable com-
pared to the higher cost of external funds, the firm will choose to issue shares, and using
(6.6) its investment in this regime will be described by

(6.8)

(
∂G

∂It

)
= (

(1 − ft )qt − 1
)pK

t

pt

.

However, if the investment projects foregone by not issuing new shares are not suffi-
ciently profitable to warrant paying the higher cost of external funds, the firm will be
in a financially constrained position, in which both dividends and new share issues are
zero. From the sources and uses of funds condition (6.2) and the net revenue function
(2.25), the level of investment expenditure is constrained to the level of cash flow (i.e.
pt(Ft − Gt) − wtLt − pM

t Mt ). Thus in this constrained regime, windfall changes in
cash flow have a direct effect on the level of investment, holding marginal q constant.
Allowing the firm to borrow will tend to weaken this sensitivity of investment to wind-
fall fluctuations in cash flow, but will only eliminate it in the special case where debt
acts as a perfect substitute for finance from retained earnings.54

These results are illustrated in Figure 1, which is adapted from Hayashi (1985a). In-
vestment rates (I/K) are shown on the horizontal axis, and marginal adjustment costs

54 See Hayashi (1985a) or Bond and Meghir (1994).
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Figure 1. The Q model with financial regimes.

are assumed to be linear in the investment rate, as in (3.4). Values of (
qt

1+νD
t

− 1)
pK

t

pt
are

shown on the vertical axis, and the diagram is drawn for a given level of marginal q.
The firm can finance investment rates up to (C/K) from internal funds. If the firm with
marginal q illustrated has marginal adjustment costs given by the schedule G1

I , it will
choose the investment rate (I/K)1, pay strictly positive dividends and issue no new
shares. If the firm has much lower marginal adjustment costs given by the schedule G3

I ,
it will choose the investment rate (I/K)3, financed partly (and, at the margin, com-
pletely) by issuing new shares, and pay zero dividends. However if the firm faces the
intermediate marginal adjustment cost schedule G2

I , it neither issues shares nor pays
dividends, and investment is constrained at the rate (C/K). In this position, a windfall
increase in cash flow that allows the firm to finance investment rates up to (C′/K) from
internal funds does indeed cause an increase in the firm’s investment rate, holding mar-
ginal q constant.55 Whilst we have illustrated these financial regimes by considering
different levels of adjustment costs for a given level of marginal q, the same conclu-
sions can be reached by considering different levels of marginal q for a given schedule
of marginal adjustment costs.

This model indicates that the simple relationship between investment and marginal
q described by Equation (3.2) or (3.5) no longer holds in the presence of financing

55 Given our timing convention, with current investment immediately productive, this experiment can be
thought of as resulting from some exogenous grant or ‘helicopter drop’ of money to the firm; changes in
cash flow resulting from changes to current prices would generally also affect the profitability of current
investment. In richer specifications, windfall changes in cash flow could arise from unrelated lines of business
[Lamont (1997)] or from certain tax changes [Calomiris and Hubbard (1995)].
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constraints. Given the maintained structure of the Q model, a simple test of the null hy-
pothesis that there are no financing constraints can be obtained by including additional
financial variables, such as cash flow, on the right-hand side of (3.10). Under the null
the estimated coefficients on additional financial variables should be insignificantly dif-
ferent from zero,56 whilst under the alternative, financial variables will be informative
about investment if some firms in the sample are in a financially constrained position.
Fazzari, Hubbard and Petersen (1988) and many subsequent papers have exploited this
property of the Q model to develop ‘excess sensitivity’ tests for the importance of fi-
nancing constraints on firms’ investment spending.57

It is worth stressing that it is the simple relationship between investment and mar-
ginal q that breaks down in the presence of financing constraints, not necessarily the
equality between average and marginal q. In the simple model we have described here,
we can show that the equality between average and marginal q is maintained, despite
the presence of financing constraints, although this need not be the case in richer ver-
sions of the hierarchy of finance model. Combining the first-order conditions (6.4) and
(6.5) and using the linear homogeneity of the net revenue function, as we did to derive
Equation (3.7), gives the expression

(1 − δ)λtKt−1 = (
1 + νD

t

)
Πt(Kt , Lt ,Mt , It ) + βt+1Et

[
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]
(6.9)= Et

[ ∞∑
s=0

βt+s

(
1 + νD

t+s

)
Πt+s(Kt+s , Lt+s ,Mt+s , It+s)

]
which depends on current and expected future shadow values of internal funds. How-
ever, it is straightforward to show that the relation(

1 + νD
t

)
Πt = Dt − Nt

holds in each of the three financial regimes, so using (6.1) we obtain the same expres-
sion for marginal q as in Equation (3.9), regardless of which regime the firm is currently
in or expects to experience in the future. Thus in this model the basic average Q model
(3.10) continues to characterise the investment of those firms that are currently paying
positive dividends and issuing no new shares, and in principle the parameters of the ad-
justment cost function could be identified from this sub-sample. However the literature
has focused on testing the null hypothesis that there are no significant financing con-
straints, for which this equality between average and marginal q under the alternative is
not essential.

56 Although even under the null, current financial variables are likely to be endogenous (e.g. current profits
or cash flow would be affected by adjustment cost shocks), and this endogeneity should be allowed for when
implementing such tests.
57 Chirinko (1997) correctly notes that the hierarchy of finance model typically does not imply a linear
relationship between investment rates, Q and financial variables, but this is not necessary to motivate these
excess sensitivity tests. It is sufficient to show that the simple linear relationship between investment rates and
Q is mis-specified under the financing constraints alternative.
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6.2.2. Excess sensitivity tests

These tests are justified formally because under the maintained structure of the Q model,
the Q variable summarises all the information about expected future profitability that is
relevant for the current investment decision. This is an important advantage of structural
investment models like the Q model or the Euler equation compared to reduced form
investment equations in the context of testing for the presence of financing constraints.
As we illustrated in Section 3.6, significant effects from financial variables in a reduced
form investment equation may simply reflect their role in forecasting future demand or
profitability.

Nevertheless this distinction should not be exaggerated, since it relies heavily on all
the assumptions that were used to derive the Q model, and becomes blurred once we
recognise that these assumptions may be invalid. Thus average Q, for example, would
not be a sufficient statistic for investment if the firm operates in imperfectly competitive
markets or subject to decreasing returns to scale58; standard measures of average Q
would not be a sufficient statistic if share prices are subject to bubbles or fads59; and
the simple linear relation between investment rates and Q would be mis-specified if
adjustment costs are not symmetric and quadratic. In all these cases, financial variables
may contain additional information that helps to explain investment after controlling for
a linear Q term, even under the null hypothesis of no financing constraints.

Fazzari, Hubbard and Petersen (1988) were certainly aware that adding financial vari-
ables to the basic Q model is a joint test of all the maintained assumptions of the model,
and not simply the assumption of no financing constraints. For this reason, they pro-
posed a test that exploits cross-sectional differences between firms in the relationship
between investment and financial variables. The basic idea is that even if the Q model is
mis-specified, it may be mis-specified for all firms in a similar way, so that differences in
the estimated coefficients on additional financial variables in an investment-Q equation
may be an indication of differences in the impact of financing constraints.

6.2.3. Sample-splitting tests

Formally this ‘sample-splitting’ test can be justified most easily in the following context.
Suppose we identify one group of firms for whom the cost premium for external finance
is likely to be negligible, and another group of firms for whom the cost premium for
external finance may be high. Then if all the assumptions of the Q model were correct
apart from the possibility that some firms face financing constraints, we should expect
that additional financial variables are insignificant for the first sub-sample; but such
financial variables may be significant for the second sub-sample if some of these firms
do indeed face binding financing constraints.

58 See Hayashi (1982), Schiantarelli and Georgoutsos (1990) and Cooper and Ejarque (2003), for example.
59 See Blanchard, Rhee and Summers (1993), Galeotti and Schiantarelli (1994) and Bond and Cummins
(2001), for example.
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This sample-splitting test is analogous to that found in the literature which tests for
the effect of liquidity constraints on household consumption by investigating hetero-
geneity in the relationship between consumption and current income across high wealth
and low wealth households.60 Several problems with the test have been noted in the
literature. The most favourable outcome would be if we found no evidence of mis-
specification for the sub-sample of firms that were considered on a priori grounds not
to face a cost premium for external finance, and evidence of excess sensitivity to cash
flow61 for the sub-sample of firms that were considered on a priori grounds to be po-
tentially subject to financing constraints. Even in this case, it is possible that the result
reflects some other source of mis-specification that is only relevant for the second group
of firms. For example, Fazzari, Hubbard and Petersen (1988) use the dividend payout
ratio as a sample-splitting criterion, arguing that firms facing a high cost premium for
external finance will tend to choose a low dividend payout ratio. However it has been
noted that their sub-sample of firms with a low dividend payout ratio also tend to be
younger and smaller than average, and it may be that share prices are subject to greater
pricing errors for this sub-sample. If that were the case, it could explain why average
Q is less informative, and additional financial variables more informative, for that sub-
sample, even if they are not subject to significant financing constraints.62

A second potential problem is that the sample-splitting criterion used may not be
exogenous for the investment equations estimated. If the allocation of firms to a partic-
ular sub-sample is correlated with shocks to the investment equation, then estimation
of the investment model on the endogenously selected sub-sample will be subject to
a sample selection bias of the type discussed in Heckman (1979). This suggests that
selection criteria based on current financial characteristics or current size may give po-
tentially misleading results unless care is taken to control for the endogeneity of the
selection.63

An important concern in practice has been the difficulty of finding any sub-samples
for which there is no evidence of mis-specification of the basic structural model. The
typical finding in studies based on the Q model has been that cash flow variables have
significantly larger coefficients in the sub-samples that are considered more likely to
be financially constrained, but that such terms also have coefficients that are signif-
icantly different from zero for the sub-samples that are considered less likely to be
financially constrained. One interpretation is that the Q model is mis-specified for both

60 See, for example, Hayashi (1985b) and Zeldes (1989).
61 I.e., significant coefficients on cash flow variables conditional on Q, and controlling for the endogeneity of
current cash flow.
62 This point was noted by James Poterba in his Brookings Panel discussion of Fazzari, Hubbard and Petersen
(1988). This particular problem could be avoided by using either an Abel–Blanchard model or Euler equation
in place of the average Q model, but the general point remains that the effects of other sources of mis-
specification of the basic structural model tested may not be common across different sub-samples of firms.
63 This point was noted by Alan Blinder in his Brookings Panel discussion of Fazzari, Hubbard and Petersen
(1988).



4466 S. Bond and J. Van Reenen

sub-samples, but in different ways. Suppose that the Q model is mis-specified even for
firms that do not face financing constraints, perhaps because they have market power
or non-convex costs of adjustment. This accounts for the significant effect of cash flow
even for the sub-sample that is maintained not to be financially constrained. Provided
the effects of this mis-specification are similar for the two sub-samples, however, the
presence of financing constraints for one group of firms could plausibly explain a signif-
icantly higher coefficient for this sub-sample. The difficulty with this interpretation lies
in establishing whether the effects of general model mis-specification are indeed sim-
ilar for the two sub-samples. One possibility would be to investigate directly whether
the current (or lagged) financial variables included in the investment equation are more
informative predictors of future demand or profitability for one of the two sub-samples;
if not, this would cast doubt on one of the leading alternative explanations for their
differential importance in the investment equation.64

A different interpretation of the same finding is that both sub-samples are subject
to financing constraints, but to differing degrees. Thus all firms may face a cost pre-
mium for external finance, but some firms may face a much higher cost premium than
others. Other things being equal, a bigger transactions cost on new share issues would
increase the probability that a firm finds itself in the financially constrained regime in
the model we outlined above, and this would tend to increase the sensitivity of invest-
ment to fluctuations in cash flow. This interpretation seems reasonable in the simple
model of financing constraints we have considered, and many papers have presented
evidence of differential cash flow sensitivities as being consistent with the presumption
of a higher cost premium for one sub-sample of firms. However there has been some
recent controversy about this interpretation, with Kaplan and Zingales (1997) claiming
that a higher cost premium for external finance may actually be associated with lower
sensitivity of investment to cash flow.65 To understand this Kaplan–Zingales critique,
and its limitations, it is necessary to briefly consider more realistic models of financing
constraints in which the firm has access to external finance by issuing debt as well as
new shares.

6.2.4. The Kaplan and Zingales critique

A standard model with debt finance, and the one analysed by Kaplan and Zingales
(1997), is illustrated in Figure 2.66 In the absence of financing constraints, this is sim-
ply a representation of the first-order condition (2.8) for a static model of investment:

64 Gilchrist and Himmelberg (1995) investigated the forecasting role of cash flow in their study. Notice that
this approach can be applied in the context of reduced form investment equations, as well as mis-specified
structural models. See Bond, Harhoff and Van Reenen (2003) for an application using error correction models.
65 See also Fazzari, Hubbard and Petersen (2000) and Kaplan and Zingales (2000).
66 See, for example, Hubbard (1998). For rigorous treatments of debt finance in the presence of default risk,
see Hayashi (1985a) and Bond and Meghir (1994).
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Figure 2. Static model, costly debt, linear MPK.

the downward-sloping line represents the marginal product of capital in the current pe-
riod,67 which is equated with the user cost of capital. Given the firm’s current cash
flow, suppose that borrowing provides a perfect substitute for retained earnings up to
the level of investment indicated by X, but becomes increasingly expensive at higher
levels of borrowing – perhaps because there is an increasing risk of default and there
are deadweight costs associated with bankruptcy. Firms wishing to invest more than X

will again find themselves in a financially constrained regime, in which investment is
sensitive to windfall fluctuations in cash flow. In this case, a windfall increase in cash
flow would increase the level of investment that can be financed without resorting to
more expensive debt, say from X to X′. This lowers the marginal cost of external fi-
nance for all levels of investment above X, and results in the firm optimally choosing a
higher level of investment. Moreover, it appears that firms facing a higher risk premium
in the cost of borrowing will display greater sensitivity of investment to cash flow than
firms facing a lower risk premium in the cost of borrowing: in Figure 2, a given windfall
increase in cash flow has a greater impact on the level of investment for a firm facing
the cost schedule A than for a firm facing the cost schedule B.

Kaplan and Zingales (1997) have pointed out that this last conclusion depends on
the presumed linearity of the marginal product of capital schedule, as illustrated in
Figure 2, and need not hold under alternative assumptions about the production func-
tion. To illustrate this possibility, suppose that the marginal product of capital has the

67 Given the capital stock inherited from the previous period, there is a one-to-one association between the
current period’s investment level and capital stock.
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Figure 3. Static model, costly debt, convex MPK.

piecewise linear form shown in Figure 3. In this case, the sensitivity of investment to
a given windfall increase in cash flow is greater for a firm facing the cost schedule
B than for a firm facing the cost schedule A. More generally, the degree of the fi-
nancing constraint faced by the firm, as measured by the slope of its cost of external
funds schedule, cannot be inferred simply from the sensitivity of investment to cash
flow.

This conclusion is certainly correct in the static model analysed by Kaplan and Zin-
gales (1997), but several limitations of the result should be noted. First, the result is
obtained under the alternative hypothesis that firms are indeed subject to important fi-
nancing constraints, and does not undermine the basic excess sensitivity test of the null
hypothesis of no financing constraints. As we discuss below, recent papers that have
not relied on the average Q model and have controlled for the endogeneity of current
cash flow have been more successful in finding some sub-samples of firms for which
there is no evidence of excess sensitivity to cash flow, whilst the same methods yield
significant evidence of excess sensitivity for other sub-samples of the data. Secondly,
the Kaplan–Zingales result does not itself provide any alternative explanation for the
common empirical finding that there are stronger effects of cash flow on investment for
some types of firms than for others; nor does their result rule out the possibility that
these differential cash flow sensitivities could indeed reflect differences in the severity
of financing constraints. Thirdly, their result is obtained in a static model with no adjust-
ment costs, and depends on the curvature of the marginal product of capital schedule.
It is not clear that their result extends to a model with strictly convex adjustment costs,
in which the first-order condition characterising optimal investment relates marginal
adjustment costs to marginal q, as in Equation (3.2), rather than equating the marginal



Ch. 65: Microeconometric Models of Investment and Employment 4469

product of capital to the user cost. In particular, it is not clear that there is a similar result
in the model with symmetric, quadratic adjustment costs, in which marginal adjustment
costs are a linear function of the investment rate. This limitation is potentially impor-
tant, since much of the empirical work in this area, including that reported by Kaplan
and Zingales (1997) themselves, is based on the assumption of symmetric, quadratic
adjustment costs, and not on a static investment model. Finally, their result is obtained
in a model where the cost of external funds is increasing at the margin. This may be a
reasonable assumption if debt is the only source of external finance. However, in mod-
els where the firm can issue new equity as well as debt, and in which the cost of new
equity finance is above the cost of internal finance but is not increasing at the margin,
the probability of the firm finding itself in the financially constrained regime again de-
pends on the cost premium for using new equity finance – as was the case in the simple
model we discussed in Section 6.2.1 above.68 In these models, a higher sensitivity of
investment to cash flow may reflect a higher cost premium for using new equity fi-
nance simply because the firm is more likely to be in the financially constrained regime,
whether or not investment also responds more to a given change in cash flow within that
regime.

In summary, the Kaplan and Zingales (1997) critique is limited to the claim that dif-
fering cash flow sensitivities reveal different degrees of financing constraints under the
alternative hypothesis that these types of firms are both subject to significant financing
constraints; and whilst they present one model in which a greater sensitivity of invest-
ment to cash flow could be associated with a lower cost premium for external finance,
it is not clear whether this result generalises to models with adjustment costs or a richer
specification of the firm’s financial policy. Nevertheless, even in the most favourable
scenario – for example, in studies which find no excess sensitivity to cash flow for
one sub-sample and significant excess sensitivity for another – this sample-splitting test
would not establish that heterogeneity in the cost premium for external finance is the
correct explanation for this difference. As we stressed in the previous section, it remains
quite possible that the different relationship between cash flow and investment among
sub-samples of firms can be explained by other sources of mis-specification in the basic
structural models that have been used as the basis for these tests.

6.2.5. Empirical results

Comprehensive surveys of empirical work investigating the impact of financing con-
straints on company investment can be found in Hubbard (1998) and Schiantarelli
(1996). As we have discussed, much of this literature has followed Fazzari, Hubbard
and Petersen (1988) in considering excess sensitivity tests based on adding financial
variables to the average Q model, and has tested for differences in the sensitivity of in-
vestment to financial variables between sub-samples of firms that are considered more

68 See Hayashi (1985a), Fazzari, Hubbard and Petersen (1988) and Bond and Meghir (1994) for examples of
models of this type.
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likely or less likely to be affected by significant financing constraints a priori. Sample-
splitting criteria that have been considered include dividend payout ratios [Fazzari,
Hubbard and Petersen (1988)]; firm size, age or growth [Devereux and Schiantarelli
(1990)]; the firm’s credit rating [Whited (1992)]; the dispersion in the firm’s share own-
ership [Schaller (1993)]; whether the firm is affiliated to a larger corporate grouping
[Hoshi, Kashyap and Scharfstein (1991)]; and whether the firm has a relationship with
a particular bank [Elston (1993)]. We do not attempt to review this extensive literature
here, but rather focus on a selection of papers that have extended this basic methodol-
ogy.

Gilchrist and Himmelberg (1995) present results based on a version of the Abel–
Blanchard (1986) model, as well as results for an average Q model. They also consider
a range of possible sample-splitting criteria, including firm size, dividends and credit
ratings. Their results are for a sample of publicly traded US manufacturing companies
from Standard & Poor’s Compustat database, over the period 1979–1989. They also use
a first-differenced GMM estimator of the kind described in Section 4.2 above, to allow
for the presence of unobserved firm-specific effects and the endogeneity of both current
Q and cash flow variables. Interestingly, when they use their measure of marginal q, they
find no significant effects from cash flow for their sub-samples of large firms, and firms
with either a bond rating or a commercial paper rating; whilst for their sub-samples of
small firms, and firms with no bond or commercial paper ratings, they find significant
effects from cash flow conditional on their measure of marginal q (and also conditional
on average q). Moreover, Gilchrist and Himmelberg (1995) confirm that these differ-
ences in the coefficients on cash flow in their investment equations cannot be accounted
for simply by current cash flow being a better predictor of future profitability in some
sub-samples than in others; in contrast, they show that the relationship between current
cash flow and future cash flow is very similar across the different samples. Although we
noted above that their model may not have a structural interpretation, their paper does
provide some very interesting evidence on the relationship between investment and cash
flow for different groups of US firms.

Bond, Harhoff and Van Reenen (2003) present results based on a reduced form error
correction model, for samples of British and German manufacturing companies. They
use a system GMM estimator [Blundell and Bond (1998)], which again allows for both
firm-specific effects and the endogeneity of their current sales and cash flow variables.
They also find no significant effects when cash flow terms are added to their basic er-
ror correction specification for investment by German companies, although they do find
significant cash flow effects in the same specification for investment by British compa-
nies.69 Again they confirm that this difference does not reflect current cash flow being a
better predictor of future cash flow or future sales for the British sample. Bond, Harhoff
and Van Reenen (2003) also find that, within their sample of UK companies, there is

69 Other cross-country comparisons of microeconometric investment equations include Hall et al. (1999) and
Bond et al. (2003).
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significantly less sensitivity of investment to cash flow for the sub-sample of firms that
perform R&D. They suggest that this finding is consistent with a ‘deep pockets’ ex-
planation for which firms participate in R&D, so that the R&D-performing firms are a
self-selected sub-sample where financing constraints associated with the cost of external
finance may be less significant.

Bond and Meghir (1994) present a more direct test of the empirical implications of the
hierarchy of finance model. They note that this model predicts that the same firm may
be financially constrained in some periods and not in others; and that the firm’s current
dividend and new share issuing behaviour should signal which financial regime the firm
is currently in. Thus in Figure 1, for example, the firms in the financially-constrained
regime should be paying zero dividends and issuing no new shares; whilst the firms in
the unconstrained regimes should be either paying positive dividends or issuing new
shares.70 Using an Euler equation specification for publicly traded UK manufacturing
companies, and a GMM estimator that allows for the endogeneity of current financial
choices, Bond and Meghir (1994) find that excess sensitivity to financial variables is
concentrated in periods when firms pay unusually low dividends (relative to their aver-
age payout ratios), and issue no new shares.71

Whilst most of the results in this literature appear to be consistent with the pos-
sibility of significant financing constraints, at least for some types of firms in some
periods, we have emphasized that these tests could also be detecting other sources of
mis-specification in the underlying investment models.72 It should also be noted that
there are alternative models in corporate finance, such as Jensen’s (1986) ‘free cash
flow’ theory, that could potentially account for the excess sensitivity of investment to
cash flow and other financial variables.73 An important limitation of this literature is that
it has not yet developed a convincing structural specification for company investment
under the alternative hypothesis that some form of financing constraints is important.
This is no easy task, since it would require both a model to allocate firms to different
financial regimes, and a rigorous characterisation of optimal financial behaviour in the
presence of bankruptcy costs and possibly asymmetric information. Nevertheless these

70 More generally, whilst most of the sample-splits that have been used in the literature are interpreted as
indicating whether or not a particular sub-sample of firms faces a significant cost premium for external finance,
those based on current (or average) dividend payout behaviour can be interpreted as indicating whether a
particular sub-sample of firms is currently (or predominantly) in a financially-constrained position. The latter
tests would continue to have power even if all firms faced potentially significant financing constraints.
71 Other microeconometric studies based on the Euler equation approach include Gilchrist (1991), Whited
(1992) and Hubbard, Kashyap and Whited (1995).
72 A different possibility, stressed by Gomes (2001), is that cash flow variables may contribute little addi-
tional explanatory power in an investment equation, even in the presence of financing constraints. Although
accounting for the insignificance of cash flow variables has not been the primary concern of this empirical
literature to date, the possibility that these tests have very low power does seem to be present in the simulation
model used by Gomes (2001).
73 In the free cash flow approach, managers have non-value maximising objectives (which may include over-
investment) and are subject to less effective monitoring when spending internal funds than external funds.
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developments will be important if we are to obtain more compelling evidence in favour
of the financing constraints hypothesis, and to obtain useful models for policy simula-
tion analysis in the presence of financing constraints.

6.3. Taxes and the user cost of capital

Compared to the voluminous literature on financing constraints and investment, there
has been a dearth of microeconometric studies that focus on estimating the sensitivity
of investment to changes in taxes, interest rates or other components of the user cost of
capital. This does not reflect any lack of interest in the topic – the relationship between
investment and interest rates is crucial to understanding the transmission mechanism of
monetary policy, and the effects of taxes and subsidies on investment are crucial for the
evaluation of tax policies and potential tax reforms. The frequency of tax changes that
are intended to influence investment behaviour suggests that policy makers believe in
the effectiveness of this policy, but this view has not received overwhelming support
from decades of econometric research based on aggregate time series data.74

The limited contribution of microeconometric research to date rather reflects the dif-
ficulty of measuring relevant cross-section variation in the user cost of capital. The
risk-free nominal interest rate is common to all firms in the same country. Firms pro-
ducing different products may experience variation in the own-price real interest rate,
but measuring this variation requires time series on the prices charged by individual
firms which are not widely available. There is more potential for measuring differences
in risk-premia across firms, at least to the extent that the relevant risk-premia are well
characterised by standard asset pricing models. This is one area where the increasing
availability of high-frequency data on stock returns for individual firms may provide a
promising direction for future research. Similarly it may be possible to exploit differ-
ences across firms in depreciation rates, although the accuracy of measured differences
in accounting data may be questionable.

The focus in existing micro studies has generally been on measuring differences in the
effects of taxes on the user cost of capital for different firms. One source of this variation
is the asymmetry in most corporate tax systems between the treatment of profits and
losses. The effective value of tax allowances is reduced for firms in a loss-making or
‘tax-exhausted’ position by the delay between incurring expenses and being able to
claim tax deductions. Unfortunately it is not straightforward to identify which firms are
currently in a tax-exhausted position from most publicly available data sources, and it
is still harder to forecast when these firms will resume paying taxes. Devereux (1989)
and Devereux, Keen and Schiantarelli (1994) have investigated the impact of this type
of tax variation on the investment behaviour of UK firms.

74 See Chirinko (1993a), Hassett and Hubbard (1996) and Caballero (1999) for reviews of this evidence.
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Variation also arises because firms use a different mix of capital inputs, some of which
receive a more favourable tax treatment than others. Thus firms which tend to use tax-
favoured types of capital face a relatively low user cost of capital. Ideally we would want
to use investment data disaggregated by type of asset, but even if this is not available it
may be possible to exploit the resulting variation across firms or industries in the user
cost of capital. Auerbach and Hassett (1992), Cummins, Hassett and Hubbard (1994)
and Chirinko, Fazzari and Meyer (1999) have exploited differences in the composition
of investment across US industries to measure variation in tax-related components of
both tax-adjusted Q variables and the user cost of capital.75 Cummins, Hassett and
Hubbard (1994) estimate significant effects from the cross-section variation that occurs
in this measure of the user cost in periods of major tax reforms, with an implied long-
run elasticity of the capital stock with respect to the user cost between −0.5 and −1.0
[Hassett and Hubbard (1996)]. Chirinko, Fazzari and Meyer (1999) report statistically
significant but smaller estimates, around −0.25, although the estimated returns to scale
implied by their reduced form models suggest some doubt about these findings.

Caballero, Engel and Haltiwanger (1995) also exploit this source of tax variation to
estimate long-run elasticities of the capital stock with respect to the user cost. Their
econometric approach is quite different, in that they rely on co-integration methods to
estimate a long-run relationship between the capital-output ratio and the user cost of
capital, both in logarithms, as in Equation (2.13) above. This is estimated using time
series data for individual US plants in the Longitudinal Research Database, imposing
the restriction that the elasticity is equal for all plants within each two-digit industry.
Caballero, Engel and Haltiwanger (1995) report estimates ranging from −0.01 to −2.0
across different sectors, with the average being about −1.0. This estimate is similar to
that found using co-integration methods on aggregate manufacturing data by Bertola
and Caballero (1994) and Caballero (1994).

Whilst it is certainly the case that these micro studies have found evidence consistent
with taxes and the user cost of capital having an economically significant effect on
capital intensities in the long run, it is perhaps a little early to agree with Hassett and
Hubbard (1996) that there is a new ‘consensus’ on the size and robustness of this effect.

6.4. Uncertainty

The relationship between investment and uncertainty has attracted considerable interest
in recent theoretical research, and has been investigated in some recent microecono-
metric studies. Renewed interest in this topic has followed from the development of the
literature on ‘real options’, which stresses that the option of waiting to invest until more
information has been revealed can be valuable.76 If so, then extinguishing this option by
investing today should be viewed as a cost. Moreover, the value of this foregone option

75 See also Cummins, Hassett and Hubbard (1996).
76 See Dixit and Pindyck (1994) for an excellent introduction to this literature.
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will be greater at higher levels of uncertainty, so that current investment may be deterred
by a higher level of uncertainty.

This intuitive prediction contrasts with earlier results on the relationship between
uncertainty and investment in the context of the Q model. Abel (1983) showed that a
higher level of uncertainty would be associated with higher investment in the Q model,
although this effect would of course be fully reflected in the behaviour of q, so that in
this case there should be no additional effect of uncertainty variables after conditioning
on q. Caballero (1991) reconciles these theoretical results by showing that much de-
pends on the nature of the net revenue function and the adjustment costs facing the firm.
By maintaining strictly convex adjustment costs and a linear homogeneous net revenue
function, the Q model rules out any value associated with the option of delaying invest-
ment. In contrast, real options become valuable when there are both non-convex costs
of adjustment, such as (partial) irreversibility, and a concave net revenue function. Even
then, the effects of a higher level of uncertainty on the average level of the capital stock
in the long run are found to be ambiguous [Abel and Eberly (1999), Caballero (1999)],
essentially because both investment and disinvestment actions may be deterred by these
real option effects. As stressed by Bloom, Bond and Van Reenen (2007), however, a less
ambiguous prediction is that a higher level of uncertainty will be associated with slower
adjustment of the capital stock, and in particular with a smaller impact effect of demand
shocks on current investment.

Empirical work has been limited by the difficulty of finding convincing empirical
counterparts to the concepts of ‘uncertainty’ used in this theoretical literature. Leahy
and Whited (1996) considered measures of uncertainty based on the volatility in stock
market returns for publicly traded US firms. They found that investment rates were neg-
atively related to these uncertainty measures in simple specifications, but that this effect
became insignificant when they conditioned on a standard measure of average q. One
concern with this kind of measure is that stock market returns may be subject to ‘excess
volatility’ if share prices are indeed subject to bubbles, fads or other influences over
and above firms’ fundamental valuations. Nevertheless, Bloom, Bond and Van Reenen
(2007) found a smaller impact effect of sales growth on current investment for publicly
traded UK firms facing higher volatility in stock returns, although this is in the context
of a reduced form, error correction model of investment with no explicit controls for the
effect of expected future levels of profitability. A concern in this context is that lower
uncertainty (stock market volatility) may be associated with greater optimism about
the firm’s future prospects. Guiso and Parigi (1999) address both these concerns using
data from a specially conducted survey of Italian firms, which asked firms both about
expected levels and perceived dispersion in future demand. They also found a weaker
effect of expected demand on current investment for firms that perceived greater uncer-
tainty about this future demand, although their results are based on a single cross-section
of firms, and the time horizon of these expectational variables is quite short.

Whilst these papers present findings that appear to be consistent with the predicted
effects of real options, the development of more convincing measures of uncertainty
and more rigorous testing strategies will be required before we can be confident that
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these effects are statistically or economically significant. In view of the considerable
theoretical and policy interest in this topic, this would seem to be a promising area for
further research.77

6.5. R&D investment

In modern economies a large proportion of firms’ investment is in intangible assets.
One of the most important of these are research and development (R&D) expendi-
tures. Economists have long regarded technical change as the most important driver of
economic growth, so much of the early microeconometric work on firm level R&D nat-
urally focused on analysing the effect of R&D on measures of firm performance (such
as productivity, firm market value or patenting activity).78 R&D is generally cumulated
into a ‘knowledge stock’ and then treated as one type of capital input amongst oth-
ers. More recently there has been renewed interest in understanding the determinants of
firms’ R&D decisions, as growth theory refocused on the endogenous decisions of firms
to invest in R&D [e.g. Romer (1986), Aghion and Howitt (1992)]. There are relatively
few papers which look at the demand for R&D using the dynamic structural models
discussed in Section 3,79 although clearly the results can be extended if we are prepared
to treat R&D symmetrically with physical investment. For example, Equation (3.17)
would have cross terms in the tangible and R&D capital stocks in addition to Q in the
R&D equation.

A key issue here is whether many of the problems inherent with modelling fixed
capital are just exacerbated in the case of R&D capital or whether they are qualitatively
different. For example, R&D is typically a highly risky and uncertain investment, has
large adjustment costs, enjoys many government subsidies (e.g. tax privileges and direct
grants), and is subject to strategic gaming (e.g. patent races). But all these issues also
arise with fixed capital. Perhaps altogether they add up to a difference in kind, but this
is unclear a priori.

The main difference between fixed capital and R&D capital is probably in regard to
externalities. R&D creates knowledge which is difficult to fully appropriate by the firm
making the investment. The ‘knowledge spillovers’ to other firms create the fundamen-
tal public goods problem which gives a rationale for governments to subsidise R&D.
Much of the literature on R&D and productivity is motivated by the idea that the so-
cial returns to R&D exceed the private returns and there is a large body of work on the
empirical search for spillovers [see Griliches (1998) for a summary].

Another problem with comparing R&D to fixed capital is measurement. First, in
building up a replacement cost capital stock measure there is typically a benchmark

77 See Bloom (2006) for a recent structural contribution that incorporates real options effects into investment
models.
78 See, for example, the collection of papers in Griliches (1984).
79 Hall (1993, 1992), Harhoff (1998), Klette and Moen (1999) report some results for the Euler equation for
R&D. Himmelberg and Peterson (1994) have a non-structural version of the Q model.
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year when either (i) there was a survey of replacement costs (e.g. fire insurance values)
or, more typically, (ii) historic cost stock data can be used. There is no equivalent for
R&D so researchers are forced to make assumptions about the pre-sample growth of
R&D along with an assumed ‘knowledge depreciation’ rate. A second problem is that
disclosure of R&D in company accounts is far more limited than investment, especially
outside the US. Typically, researchers have to deal with the fact that in many coun-
tries R&D is a voluntarily disclosed item in company accounts, and therefore subject to
serious selectivity biases. Finally, what counts as R&D is less clear than physical invest-
ment, as about 90% of reported outlays are current costs and 50% are wages and salaries.

There are large empirical literatures on the effects of firm size, product market
structure and labour market institutions on R&D. Since these have been surveyed else-
where80 we focus on three issues here – VAR approaches, financial constraints and
taxes.

6.5.1. VAR approaches

In light of these modelling and data difficulties, several authors take a vector autore-
gression (VAR) approach to examining R&D. Lach and Schankerman (1989) focus on
unravelling the pattern of Granger causality between R&D and fixed investment by pro-
jecting the log of both current R&D and current investment against lagged investment,
sales, R&D and other variables. They find that investment does not ‘Granger-cause’
R&D, but R&D does Granger-cause investment. Although they find corroborating ev-
idence at the industry level in Lach and Rob (1996), others find very different results.
Using British data, Nickell and Nicolitsas (1996) find that industry R&D (rather than
firm R&D) predicts investment. Toivanen and Stoneman (1998) find the exact oppo-
site result (investment predicts R&D and not vice versa). The atheoretical structure of
the VAR is problematic here and the interpretation of the correlation pattern (even if it
were robust) is difficult. In this context the paper by Pakes (1985) is more satisfactory
as his application of dynamic factor demand theory does place more restrictions on the
data (a three equation system for R&D, patents and market value). Even though the
restrictions are not rejected by the data, it has proved harder to push the theory much
further in this direction [e.g. Griliches, Hall and Pakes (1991)], as the framework is fun-
damentally driven by unobserved stochastic shocks which are only poorly tracked by
the observables in the system.

6.5.2. Financing constraints and R&D

A key area of interest for R&D models is the role of financing constraints. It has long
been recognised that the asymmetric information problems that lie at the heart of credit
constraints may be more important for R&D investments. Uncertainty, lack of collateral
and the danger of losing one’s ideas to competitors make it likely that firms will rely

80 See Cohen and Levin (1989) and Menezes-Filho, Ulph and Van Reenen (1998).



Ch. 65: Microeconometric Models of Investment and Employment 4477

on internal sources of finance for R&D more than for other types of investment. On the
other hand, the larger adjustment costs for R&D make it unlikely that transitory cash
flow shocks will have a very large impact on firms’ R&D decisions. Indeed, to the extent
that firms only participate in performing any R&D if they can be reasonably sure of not
encountering financial constraints, we may see less sensitivity to cash flow by R&D
performing firms than non-R&D performing firms.

Hall (1992) analyses a panel of large US manufacturing firms and finds that R&D is
significantly correlated with cash flow using a variety of model specifications (reduced
form and Euler equations). Himmelberg and Peterson (1994) find evidence that R&D is
sensitive to cash flow for small US firms in the high-tech sector. The evidence outside
the US is less clear. Hall et al. (1999) use a bivariate VAR approach to examine Granger
causality patterns in samples of US, Japanese and French firms in high-tech sectors.
They find that the cash flow correlation is far stronger in the US than in the other coun-
tries. Mulkay, Hall and Mairesse (2001) also find that the R&D–cash flow correlation is
stronger in the US than in France. Bond, Harhoff and Van Reenen (2003) find no effect
of cash flow on R&D in their samples of British and German firms. They do find, how-
ever, evidence that in Britain cash flow seems to matter for the decision to participate
in R&D, whereas it has no effect in the German sample. So the upshot of these stud-
ies is that the influence of cash flow on R&D appears stronger in the Anglo-American
countries than in Continental Europe or Japan, subject to the concerns we discussed in
Section 6.2 above.

6.5.3. Tax-price of R&D

There is a wide variation over time and across countries in the user cost of R&D cap-
ital. This is driven by the special treatment of R&D for tax purposes – many countries
have tax credits for R&D, super-deductions and accelerated depreciation schedules [see
Bloom et al. (1998) for a survey]. Since the tax rules for claiming these benefits of-
ten differ depending on corporation tax liabilities, size of firm, current and past R&D
spending, region and industry, these tax rules imply that there is a cross-sectional distri-
bution of user costs facing firms in a given year. Hall (1993) and Hines (1994) use US
firm panel data to investigate the impact of changes in the user cost on R&D. Dagenais,
Mohnen and Therrien (1997) implement a similar methodology using Canadian com-
pany data. These authors uncover significant effects of the tax-price on R&D, with a
price elasticity of around unity in the long run.81

A motivation for these studies is that changes in tax policy may cause some exoge-
nous variation in the price of R&D. Unfortunately, a problem with these studies is that
the user cost cannot be taken as truly exogenous as the tax position of individual firms
will depend on current shocks which could also influence their R&D decisions. Thus,
one still has to use some kind of instrumental variable procedure of the kind discussed
in Section 4.2.

81 Hall (1993) finds larger long-run elasticities than Dagenais, Mohnen and Therrien (1997). Bloom, Griffith
and Van Reenen (2002) also find long-run elasticities of around unity using macro data across eight countries.
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7. Topics in employment

The demand for labour is a particular case of the general model outlined in Section 2
above. Labour demand is particularly interesting from a policy perspective – the social
and political consequences of a 20% fall in the relative demand for less skilled workers
will have greater interest than a 20% fall in the relative demand for less sophisticated
capital equipment.

A popular approach here is a version of the ‘reduced form’ models discussed in Sec-
tion 3.6. For example, analogously to (3.24)

(7.1)lt = αL
1 lt−1 + βL

0 l∗t + βL
1 l∗t−1.

Using (2.14) we have

(7.2)lt = αL
0 + αL

1 lt−1 + βL
0 yt + βL

1 yt−1 − βL
0 σ(w − p)t − βL

1 σ(w − p)t−1

where αL
0 = (1 − αL

1 )σ ln aL(1 − 1
ηD ). This can also be rewritten (assuming constant

returns) in error correction form

�lt = αL
0 + βL

0 �yt − βL
0 σ�(w − p)t

(7.3)+ (
1 − αL

1

)[
(y − l)t−1 − σ(w − p)t−1

]
.

Again, equations of this form can be justified explicitly in a dynamic optimizing
framework under quadratic adjustment costs [Nickell (1985, 1986), Bresson, Kramarz
and Sevestre (1992)]. Often, researchers (especially in the UK) have assumed a Cobb–
Douglas production function and substituted out output for capital. This has the ad-
vantage that it is more reasonable to treat capital as predetermined in labour demand
equations than output which, in general, must be treated as endogenous. Versions of the
Euler equation analogous to (3.11) have also been estimated, although these are less
common than in the investment literature.82

There are several existing surveys on labour demand. We examine some topics of
particular interest arising since the publication of Nickell (1986), Hamermesh (1993)
and Hamermesh and Pfann (1996), which give a summary of the literature as it stood
at the beginning of the 1990s.83 The issues of exogenous factor price variation, union
bargaining, adjustment dynamics, gross and net flows, and heterogeneity by skill are
discussed in turn.

82 See, for example, Machin, Manning and Meghir (1993), Meghir, Ryan and Van Reenen (1996) and Alonso-
Borrego (1998).
83 We do not attempt to survey the literature which focuses on the adequacy of general equilibrium models of
the demand for skills. Interested readers are referred to Heckman and Sedlacek (1985) for an example which
examines the selection bias inherent in aggregate studies of wages and labour demand.
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7.1. Variation in wages

One important difference between the firm level study of investment and employment
is that firm level data often has some information on wages. Typically, these are quite
crude measures such as the average wage (wage bill divided by number of workers)
but this is a major advantage over capital where variation in the cost of capital between
firms has to be constructed by the econometrician as it is absent from firm accounts.
Of course, some of the variation in the average firm compensation cost will be varia-
tion in the quality mix of workers in the firm (e.g. by skill, gender or ethnic groups)
which is conflated with genuine changes in the price of labour facing the firm. Increas-
ingly though, the availability of matched worker-firm panels is enabling researchers to
improve their measurement of firm level wage rates.

What are the exogenous sources of variation in the price of labour facing firms? In
many contexts changes in the institutional structure surrounding wage determination
offer scope for instrumenting firm level wages. Union power, minimum wage changes
and regional variation (due to partial labour immobility) offer a much wider range of
possibilities than with investment. Unfortunately, when some of these institutionally
determined variations in the price of labour are used to examine labour demand, the
results have been mixed. The survey in Card and Krueger (1995), for example, illustrates
that it is very difficult to ascertain any clear evidence of significant wage elasticities in
minimum wage studies.

7.2. Union bargaining

A large sub-literature has developed in estimating employment equations to examine
different models of union behaviour. The traditional model of unionization keeps to the
neoclassical framework where the firm chooses employment unilaterally. The union,
however, has some influence over how the wage is set. The monopoly union model
allows the union complete power to set the wage whereas the more general ‘right to
manage’ model allows for genuine bargaining over the wage rate [see Pencavel (1991)
or Booth (1995) for an extensive discussion of these models]. These models have the
convenient property that the basic structure of the static labour demand model still holds,
but the wage will have some firm level variation due to differences in union power
between firms.

It is well known that these models are not Pareto efficient and a set-up allowing the
firm and union to bargain over both wages and employment can lead to utility gains
for both sides [Leontief (1946)]. A second class of ‘efficient bargaining’ models allows
explicitly for such contracts. Ashenfelter and Brown (1986) pointed out that in this
case employment will, in general, depend both on the bargained wage and the ‘outside’
wage (the income received in the event of a breakdown in bargaining). Thus the pres-
ence of the outside wage in an employment equation is potentially a test of ‘efficient
bargaining’. Further generalisations of these models are possible to allow for differ-
ential degrees of bargaining power in the wage decision and the employment decision
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[Manning (1987)] – this essentially means also including an extra term in union power
in the employment equation [Alogoskoufis and Manning (1991)].

There are various criticisms of these approaches. For one the presence of the outside
wage in the employment equation could be due to many reasons other than efficient bar-
gaining, such as efficiency wages [Nickell and Wadhwani (1991) attempt to test between
the general bargaining model and efficiency wages]. Another criticism is that the testing
procedure breaks down once we allow for forward-looking behaviour in the presence of
adjustment costs, as the alternative wage can enter the dynamic employment decision
rule [Machin, Manning and Meghir (1993)]. Most serious, however, is that it is very
difficult to measure what is actually the true alternative wage facing union bargainers.
It is quite likely that the average regional or industry wage is an extremely poor mea-
sure of this [see MaCurdy and Pencavel (1986)]. This applies even more to measures
of union power. The rather inconclusive and fragile results in this literature are likely to
stem from this basic problem.84

A small, closely related literature seeks to test the adequacy of the neoclassical model
of employment determination by analysing behaviour across different ownership struc-
tures. Probably the best example of this is Craig and Pencavel (1994) who examine the
differences between co-operatives and conventional firms within a single industry – the
Pacific Northwest Plywood industry. They found that the standard static model based
on profit maximisation was a reasonable description of employment behaviour for the
conventional firms, but was quite inadequate for the co-operatives (for example, there
was no effect of wages on employment in the latter group).

7.3. Dynamics of adjustment

Asymmetries in adjustment costs have been more of an issue in the labour context
because of various regulations aimed at increasing firing costs [e.g. Pfann and Palm
(1993), Pfann and Verspagen (1989), Burgess and Dolado (1989)]. Most European
countries place a large number of restrictions on the ability of firms to shed labour.
Pfann and Verspagen (1989) argued for keeping the assumption of convex adjustment
costs but allowing for asymmetries. They suggested an adjustment cost function of the
form

(7.4)G(�L) = 1

2
b(�L)2 − c�L + ec�L − 1

where b and c are parameters in the adjustment cost function. If costs are symmetric
then c = 0. If the marginal cost of a positive adjustment is greater than the marginal
cost of a negative adjustment then c > 0. Substitution of this adjustment cost function

84 See Card (1986), Abowd (1989), Christofides and Oswald (1991) and Boal and Pencavel (1994) for good
examples of attempts to examine different models of union behaviour. Another basic problem is that very
different models may apply in different industries and bargaining contexts.
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into the net revenue function (2.25) leads to a non-linear Euler equation. This can ei-
ther be estimated directly [Schiantarelli and Sembenelli (1993), Jaramillo, Schiantarelli
and Sembenelli (1993)] or with approximation methods [e.g. Pfann and Palm (1993)].
Studies using this approach have found evidence for asymmetries [see Hamermesh and
Pfann (1996)].

In an influential paper, Hamermesh (1989) examined monthly data on 7 manufac-
turing plants. Although the aggregate series appeared smooth, individual plant level
employment adjustment was extremely lumpy. Davis and Haltiwanger (1992) produced
the first large scale analysis of plant level employment changes in the US. They em-
phasised the fact that during times of net employment expansion there were very large
numbers of firms who were cutting employment, and vice versa in recessions. As with
Hamermesh (1989), much of the plant level employment changes occurred over short
periods.

One branch of the literature has gone on to focus on non-convex adjustment costs
as a reason for this heterogeneity (see Section 3.5 above). Caballero, Engel and Halti-
wanger (1997) take a similar approach to analysing plant level employment changes as
they do for investment (the dataset they use is essentially the same, the Longitudinal
Research Database). A crucial issue is how to measure empirically the ‘gap’ (or labour
shortage) term; that is, the difference between the actual level of employment and the
target/desired level of employment. They assume that hours per worker can be used to
infer a reliable measure of this gap, or rather the difference between hours intensity in
the current quarter and the plant’s mean hours per worker over the sample period.85

For a given target level of employment, a large change in employment will lower the
size of the gap and therefore the deviation of hours per worker from its long-run mean.
They therefore use the coefficient from a regression of the change in employment on
the change in hours to build a measure of the gap and then characterise the degree to
which a plant actually adjusts towards the optimal level of employment as a function
of the size of this gap. They find that the ‘adjustment hazard’ is not constant as the
partial adjustment model would predict but rather increases with the gap. That is, the
probability (and proportionate size) of the adjustment increases with the scale of the
shortage. They also find two modes of the distribution of employment changes, one at
(practically) zero adjustment and another at full adjustment. They conclude that this is
consistent with (S, s) types of adjustment behaviour.

One problem with this approach is that the OLS regression of employment changes on
hours changes, which is critical in defining the gap term, is subject to endogeneity. Pro-
ductivity shocks will increase the target level of employment and lead to simultaneous
increases in jobs and hours, leading to a strong upwards bias in the relevant parameter.
Caballero, Engel and Haltiwanger (1997) attempt to deal with this by conditioning their

85 An alternative method is to write down explicitly the firm’s dynamic optimization problem and use this to
calculate the gap. This requires many assumptions about the parameters to calibrate the optimization problem.
See Caballero and Engel (1993, 1999) for examples of this approach.
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regression sample only on observations where there have been very large changes in
both employment and hours. They argue that in these periods, the changes in employ-
ment targets will be swamped by the effects of large changes in hours and employment.
Cooper and Willis (2004) suggest that this approach may be misleading by analysing
some simulated data generated from a purely convex adjustment cost model in a sto-
chastic environment. In such an environment, the only periods of large employment and
hours changes are exactly those in which there are large changes in the employment tar-
get levels. Cooper and Willis (2004) also suggest that (mis)measuring the gap using the
Caballero, Engel and Haltiwanger (1997) methodology on their simulated data produces
the kind of non-linearities in the aggregate data that Caballero et al. interpreted as ev-
idence of non-convexities. However their simulation results are based on samples that
cover more time periods than those used in empirical work, and the degree to which
mis-specification of the gap can result in the appearance of quantitatively significant
non-linearities remains controversial.

Cooper and Willis (2004) argue for a more explicit structural approach to address the
issues of non-convex adjustment costs. An example of this is contained in Rota (1998)
who uses data on Italian firms. These firms are on average smaller than the plants studied
in Caballero, Engel and Haltiwanger (1997). There is a large mode at (absolutely) zero
adjustment and Rota (1998) uses this to define three regimes (adjust up, adjust down and
do not adjust). The adjustment regimes are characterised by an Euler equation analogous
to that described in Section 3.3 above and the selection rule into regimes is determined
by an ordered probit. Estimation of the Euler equations requires using the estimated
parameters from the ordered probit to correct for the endogenous selection into adjust-
ment regimes. Apart from the usual problems discussed above, her study raises several
additional issues. One worry is how the regime selection rule is separately identified
from the employment rule [this problem also arises in Hamermesh (1989)]. A second
(and related) issue is the fact that the model is silent on the structural form of the se-
lection rule which determines when an adjustment takes place. An attempt to explicitly
implement a dynamic discrete model of employment adjustment is Aguirregabiria and
Alonso-Borrego (1999),86 who consider a model with linear (but not fixed) adjustment
costs. The adjustment costs are amplified by the firing costs due to Spanish labour reg-
ulations and the authors examine the impact of a reduction in these for workers on
temporary contracts. They estimate the productivity shock through a first stage produc-
tion function and then use this explicitly in the dynamic optimization problem for the
employment decision in a second stage. They found important effects of the reform in
improving employment and job mobility. Although this approach is an advance it does
hinge critically on the correct specification and estimation of a production function to
identify the technology shock.87

86 See also Aguirregabiria (1997).
87 For discussions of some of the many problems with estimating production functions with firm level data,
see Griliches and Mairesse (1998), Olley and Pakes (1996) and Blundell and Bond (2000).
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7.4. Gross vs. net flows

Hamermesh and Pfann (1996) emphasize that most studies of adjustment costs consider
net rather than gross employment flows. A firm might have no net change in employ-
ment but hire 1000 workers and sack 1000 workers. It is likely that this firm will bear
more adjustment costs than one which had no gross changes in employment at all.88

Information on turnover is rare in most micro datasets, but a few studies have started
to examine the issue in more detail. Hamermesh and Pfann (1996) analysed a large
sample of Dutch plants and decomposed aggregate gross flows. They found that firm
level gross flows accounted for a substantial proportion of the total. Abowd, Kramarz
and Margolis (1999) examined French data on the entry and exit of workers from firms
and attempted to use information on the size of costs associated with the movements of
workers. They found that there were very high fixed costs associated with firing workers
and most adjustment was through varying the hiring rate.

7.5. Heterogeneous labour and skill-biased technical change

Most firm level datasets only have information on total employment. Aggregation over
different types of labour can cause many problems, for example the appearance of spu-
rious dynamics [Nickell (1986)]. If there is access to data disaggregated by skill type,
for example, a whole range of important questions are opened up. Most obviously there
is the question of how the wage elasticity of labour demand differs between different
groups of workers. Bresson, Kramarz and Sevestre (1992), for example, estimated em-
ployment equations for 3 different types of labour in 586 French manufacturing firms –
they found that the wage elasticities were greatest for the least skilled workers.

We have discussed the issue of multiple quasi-fixed factors in Section 3.4 above and
the analysis extends in a straightforward manner to multiple types of labour. Many au-
thors have been interested in how adjustment costs might differ for different groups of
workers: for example, are they higher for skilled than for unskilled workers? The is-
sue of dynamic complementarity and substitutability has been considered [Nadiri and
Rosen (1969)].

The debate over the (static) elasticities of complementarity and substitution between
heterogeneous labour, capital and technology has been a topic of long standing interest
to economists. Discussions have been enlivened in recent years by the rapid increase
in the college-high school premium in the United States, Great Britain and many other
countries. Many researchers have argued that this is primarily due to skill-biased tech-
nological change. We do not intend to review all the arguments here [see Autor and
Katz (1999) for a survey] but we will focus on a more narrow set of questions. First we

88 Note that this is a different meaning of gross job flows than that found in the job creation and destruction
literature discussed above.



4484 S. Bond and J. Van Reenen

consider some of the meanings of technology-skill complementarity. Second, we criti-
cally consider methodologies for testing its size and existence. Finally we review some
of the empirical results, particularly those based on micro data.

We examine the neoclassical analysis of skill-biased technical change initially in the
context of the static factor demand model described in Section 2.1. A closely related is-
sue is capital-skill complementarity.89 At issue here is the Hicks–Allen partial elasticity
of substitution discussed above. One could clearly take the same approach to technol-
ogy, viewing it as a form of (partially appropriable) ‘knowledge capital’ [Griliches
(1998)] and modelling it as simply another form of capital input. The alternative ap-
proach is more traditional, treating technology as a free good available to all firms in
the economy. Note that the key difference is that in the first approach technology is
essentially a choice variable for the firm: one factor among others. It may have special
features (such as non-rivalry as emphasized in the endogenous growth literature) but
can be considered as a choice variable for the firm. In the second approach technology
is ‘manna from heaven’. It is exogenous and does not change with economic conditions
(or at least is treated as such).90 Both these notions are discussed in the following simple
model.

Consider a production function for value-added (Y ) with three factors (skilled labour
(S), unskilled labour (U ) and capital (K)). Using the results from Section 2.1.1 the share
equations derived from the translog cost function (Equation (2.15)) are

SS = αS + γSS ln WS + γSU ln WU + γSK ln WK + γSY ln Y + φτWS
t,

SU = αU + γUS ln WS + γUU ln WU + γUK ln WK + γUY ln Y + φτWU
t,

(7.5)SK = αK + γKS ln WS + γKU ln WU + γKK ln WK + γKY ln Y + φτWK
t.

The restrictions that can be placed on the parameters of the share equations are
as follows. Symmetry will mean γij = γji . Homogeneity means we also have∑

i=S,U,K γij = 0 for all j factors,
∑

i=S,U,K γiY = 0,
∑

i=S,U,K φτWi
= 0 and∑

i=S,U,K αi = 1. Coupled with the fact that the shares add up to unity, one equation
becomes redundant and we need only estimate the system

SS = αS + γSS ln(WS/WU) + γSK ln(WK/WU) + γSY ln Y + φτWS
t,

(7.6)SK = αK + γKS ln(WS/WU) + γKK ln(WK/WU) + γKY ln Y + φτWK
t.

Constant returns to scale implies the restriction that γSY = γKY = 0. Symmetry
(γSK = γKS) implies a further cross equation restriction. Given estimates of the pa-
rameters we can calculate all the elasticities of substitution from the formulae in Sec-
tion 2.1.1.

89 Griliches (1969) is the pioneering paper here finding evidence in favour. Weiss (1977), by contrast, did not
find consistent evidence across sectors using more disaggregated data by skill type.
90 The exogenous technology approach is where the term ‘skill-biased technical change’ originated from.
The endogenous technology approach is closer to the idea of complementarity proper.
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A positive coefficient γSK implies substitutability, but complementarity between two
factors requires not only that the coefficient γSK be negative, but also more negative (in
absolute value) than the product of the factor shares.91 The bias of technical change
depends on the values of the φτW parameters. The price elasticities are Sjσij and are
also easily calculated from the estimated parameters (and the predicted shares).

There are various ways to bring dynamic considerations into this equation. A simple
way is to treat capital as quasi-fixed.92 Thus, instead of the long-run cost function many
researchers would consider a short-run variable cost function [e.g. Brown and Chris-
tensen (1981)]. This recognises that the quasi-fixed factors are not at their long-run
optimal values (without being explicit over the adjustment dynamics). In comparison to
Equation (2.15) we replace the cost of capital with the quantity of capital

ln V C = ln α0 +
n∑

i=1

αi ln Wi + 1

2

n∑
i=1

n∑
j=1

γij ln Wi ln Wj

+ αY ln Y + 1

2
γYY(ln Y)2 +

n∑
i=1

γiY ln Wi ln Y + γKY ln K ln Y

+ γK ln K + 1

2
γKK(ln K)2 +

n∑
i=1

γiK ln Wi ln K

(7.7)+ φτ t + 1

2
φττ t

2 + φτY t ln Y +
n∑

i=1

φτWi
t ln Wi + φτKt ln K

where i = S,U (n = 2). Using the same logic as before, using Shephard’s (1953)
Lemma for the variable factors and imposing homogeneity and symmetry, we end up
with a single (variable cost) share equation

(7.8)SS = αS + γSS ln(WS/WU) + γSK ln K + γSY ln Y + φτWS
t

where SS is now the share of skilled workers in variable costs (the wage bill). If we want
to impose constant returns here γSK = −γSY . Assuming that this is true, we can write
the wage bill share equation as

(7.9)SS = αS + φτWS
t + γSS ln(WS/WU) + γSK ln(K/Y ).

As before, the Allen partial elasticity of substitution between skilled and unskilled
labour is greater (less) than unity as γSS > (<) 0. The coefficient on the capital in-
tensity variable should be positive to be consistent with capital-skill complementarity.
Explicit calculation of the size of the elasticity of substitution/complementarity requires

91 See Equation (2.21). Even if all factors were substitutes, one might still be interested in whether the elas-
ticity of substitution with capital was greater for unskilled workers than for skilled workers.
92 This also has the practical advantage that, as we discussed in Section 6.3, measuring exogenous variation
in the user cost of capital is extremely difficult.
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additional information, such as direct estimates of the cost function parameters. If the
sign of φτWS

(essentially the time trend) is positive, this is consistent with skill-biased
technical change.

There are two major problems with using this method as a way for examining skill-
biased technical change. First, the time trend could be picking up many other aspects
of the economic environment rather than just technical change. This is the standard
problem of treating technology as a residual. A natural response to this is to find more
direct proxies for technology. Clearly all the usual problems arise in that there is no
perfect measure of technical change, but some observable measure (R&D, patents, etc.)
seems preferable to assuming the residual trend is all technology. Once we do use ex-
plicit measures of technical change, however, we run into the second problem that firms
have influence over technical progress. R&D for example, as discussed in Section 6.5,
is also a choice variable. One could set the problem up as a model where we consider
two capital stocks, knowledge capital (G) and physical capital (K), in the variable cost
function.93 This would imply adding an extra term ln(G/Y ) to (7.9), giving94

(7.10)SS = αS + φτWst + γSS ln(WS/WU) + γSK ln(K/Y ) + γSG ln(G/Y ).

We have not discussed the method of including technology variables in earnings
equations as a way of examining skill biases [e.g. Krueger (1993)]. The omission is
deliberate [see Chennells and Van Reenen (1997) for a longer discussion]. The theoret-
ical basis of such an equation is unclear. In the neoclassical model technology shocks
can affect the demand for labour, but the wage is exogenous to the firm as it is deter-
mined in the aggregate labour market (this is implicit in the structure discussed above).
Under this view the significance of technology indicators in individual earnings equa-
tions is likely to capture unobserved ability of individuals which is correlated with both
wages and the use of new technologies. There is evidence that this is indeed the case
[e.g. DiNardo and Pischke (1997)].

Although it uses industry data, a key paper in this area is Berman, Bound and
Griliches (1994), who estimate versions of Equations (7.9) and (7.10) on 4 digit US
manufacturing data in long differences.95 They use R&D expenditures and computer
investment as their measures of technical change. These proxies for technology are
found to have a positive and significant association with the growth in the wage bill
share of non-production workers, the computer variable accounting for about a third of

93 The distinction between skill-biased technical change and capital-skill complementarity can become
murky. In the standard approach technology is exogenous and capital is chosen by the firm. Capital-skill
complementarity is a conjecture about the shape of isoquants holding output constant. Technical change,
however, causes a move to a new isoquant. Embodied technical change makes the distinction even less clear.
94 Calculation of the elasticities of substitution/complementarity with two quasi-fixed factors is complex. The
sign of the cross-elasticity will depend on both γSK and γSG [see Brown and Christensen (1981)].
95 Although (like much of the subsequent literature) they replace wages with time dummies due to the prob-
lem that industry wage changes reflect a mix of genuine change in the price of labour and changes in the skill
mix.
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the increase in the share. Autor, Katz and Krueger (1998) extend this study over a longer
time period (from the 1940s to early 1990s) and to non-manufacturing industries. They
corroborated the importance of technical change (especially computer use) in account-
ing for the increase in skilled workers as a proportion of the wage bill. Machin and Van
Reenen (1998) compare the US to 6 other countries (Denmark, France, Germany, Japan,
Sweden and the UK). They find results which broadly support the importance of skill
bias using their measure of R&D intensity. Other papers with country-specific analyses
have also tended to find evidence of skill-biased technical change [e.g. Hansson (1997)
for Sweden and Gera, Gu and Lin (2001) for Canada], but Goux and Maurin (2000) are
more sceptical about its importance in France.

Aggregation may be a serious problem for these industry studies. The Longitudinal
Research Database (LRD), a manufacturing panel dataset for the population of larger
plants, has been a prime resource in the USA. Doms, Dunne and Troske (1997) and
Dunne, Haltiwanger and Troske (1997) both find evidence of skill bias, but Doms,
Dunne and Troske (1997) stress that they cannot find evidence for significant effects
in the time series dimension of their data. This is a worrying result, because it does sug-
gest that some other unmeasured factor may be driving both skills and technology. On
the other hand, measurement error issues and the fact that they use counts of production
technologies (rather than computer usage) might account for their results. Indeed, when
they use measures of computer capital instead of the count-based measure they find ev-
idence of significant skill bias even in the time series dimension. Adams (1999) focuses
on firms mainly operating in the chemical industry. He finds that firm R&D in the same
product field as that produced by the plant is associated with skill bias.

Duguet and Greenan (1997) use an innovations survey to estimate cost share equa-
tions for a panel of French manufacturing firms, 1986–1991, in long differences. They
find evidence for skill bias and argue that it comes primarily from the introduction of
new products, although their results here are mixed. One problem with subjective inno-
vations surveys is the comparability of the notion of innovation across different firms.
An interesting extension, given the increasing availability of this type of innovation
survey, would be to use the longitudinal aspect of the panel when the innovation ques-
tions are asked to the same firms in future. Machin (1996) uses the British Workplace
Industrial Relations Survey (WIRS) panel 1984–1990, which contains information on
the introduction of computers and also finds evidence for skill bias. Haskel and Heden
(1999) use data on about 10,000 British manufacturing establishments from the Annual
Respondents Database (ARD) panel to estimate (7.10). They also find that changes in
the wage bill share of non-production workers are correlated significantly with the inten-
sity of investment in computer technology. Aguirregabiria and Alonso-Borrego (2001)
use firm level Spanish panel data and attempt to control for some of the non-convexities
discussed above. They find effects from the first introduction of ‘technological capital’,
but they find no effects from subsequent increases in the stock of this capital or from
R&D.

Taken as a whole we draw three conclusions from this body of empirical work. First,
there does appear to be considerable support for the notion of skill-biased technical



4488 S. Bond and J. Van Reenen

change across a range of studies, and these are usually (but not always) robust to con-
trolling for fixed effects. Secondly, there have been few attempts to find instrumental
variables to deal with the potential endogeneity of technology. Candidate instruments
could include government-induced schemes to alter the incentives to accumulate tech-
nological capital (such as R&D tax credits, government grants, etc.). Thirdly, there are
surprisingly few studies which try to analyse the mechanisms by which technological
change translates into higher demand for skills96. One mechanism is through organi-
sational changes such as delayering, decentralisation and giving greater autonomy to
workers. These organisational factors have been found to be important in the case study
evidence and in the literature on the productivity paradox (investigating why computers
have not raised measured productivity by as much as might have been expected). Some
preliminary work suggests that this organisational restructuring could be the link be-
tween technology and labour demand [Bresnahan, Brynjolfsson and Hitt (2002), Caroli
and Van Reenen (2001)].

8. Conclusions

We can summarise the main themes from this chapter as follows. Structural micro-
econometric models of investment and employment are useful for testing hypotheses
about the environment in which firms make decisions about their factor inputs: is in-
vestment spending subject to financing constraints? Are employment levels subject to
union bargaining? Given that complete adjustment of capital stock and employment
levels does not occur immediately, these structural models need to be dynamic in na-
ture. This presents a major challenge for econometric modelling, since current decisions
depend on unobserved expectations of future demand conditions and factor prices.

Structural dynamic models developed in the 1980s generally assumed that firms face
strictly convex costs of adjustment. These models rationalise slow adjustment, and
allow structural econometric specifications to be derived that control for the role of
unobserved expectations. Examples include the Q model of investment and the Euler
equation models that have been used in both the investment and employment litera-
tures. However, these models predict a smooth, gradual pattern of adjustment. Recent
work, particularly that which uses plant level data, has suggested that a pattern of infre-
quent, large adjustments may be more relevant for both capital and labour. Moreover,
the structural dynamic models based on strictly convex adjustment costs have gener-
ally been rejected in microeconometric tests. Initial optimism that the rejection of these
models with more aggregated data may be attributed to aggregation biases does not
appear to have been well founded.

Whilst there is now a broad consensus that these traditional structural models appear
to be inadequate, there is less agreement on which sources of potential mis-specification

96 For a recent exception see Autor, Levy and Murnane (2003) who argue that IT substitutes for both manual
and non-manual ‘routine’ tasks.



Ch. 65: Microeconometric Models of Investment and Employment 4489

are most important. Does this reflect the importance of capital market imperfections, or
non-convex components of adjustment costs, or something else? How important is the
measurement error introduced by different approaches to controlling for firms’ expec-
tations of future conditions, particularly when stock market valuations are used? How
important are the simplifying assumptions typically made concerning market structure?
Whilst a lot of research in the last decade has implemented rigorous tests of relatively
simple structural specifications against specific alternatives, surprisingly little progress
has been made in developing richer structural models that incorporate these features.
This balance will need to be redressed if we are to provide more convincing evidence
that particular features of the firm’s technology and environment are important for un-
derstanding investment and employment behaviour.

As in other areas of microeconometric research, such as household consumption and
labour supply behaviour, it is important to recognise that all aggregation problems are
not circumvented by the use of data on microeconomic units. Annual investment spend-
ing by a large, publicly traded company is clearly aggregated both over time and over
different types of capital goods, and may be aggregated over multiple plants or sub-
sidiary firms. Total employment is also aggregated over heterogeneous types of workers,
and a constant level of employment may disguise significant inflows and outflows. Iden-
tification of structural models of investment and employment dynamics may require
more serious attention to be paid to these aggregation issues than has generally been the
case in previous research.

Another striking feature of this literature is the limited attention that has been paid to
directly estimating long-run price elasticities of demand for capital and labour inputs.
This is largely explained by the paucity of microeconomic data on factor prices. New
data sources may allow significant progress to be made in this area. In the employment
context, the development of matched panels covering both individual workers and indi-
vidual firms should provide more accurate information on wage rates paid by individual
firms than has been available hitherto. On the investment side, high frequency data on
stock returns may allow cross-firm variation in the risk premium component of the user
cost of capital to be exploited.

Another major area of interest that merits further research is the impact of technologi-
cal and organisational change on the demand for capital and labour. On the employment
side, there has been considerable research into the impact of skill-biased technical
change, but surprisingly little micro research has addressed the relationship between
technological opportunities and investment. Given the enormous policy interest in the
effects of technical progress, additional work is required on the nature of these effects
and the transmission mechanisms through which technical change affects investment
and employment.

Finally we note that whilst the vast majority of microeconometric research has used
data for firms and plants in the manufacturing sector, manufacturing industry now ac-
counts for a comparatively small and declining share of aggregate investment, employ-
ment and GDP in most developed economies. Similarly the globalization of business
activities has meant that multinational corporations now account for a significant and
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growing share of total domestic investment and employment in many countries. Multi-
national firms have opportunities to substitute between domestic and foreign factors
of production, which may make their investment and employment behaviour qualita-
tively different from that of purely domestic firms. Greater emphasis on the behaviour
of multinational companies and firms in service sectors is likely to be required if these
microeconometric studies are to provide useful insights into the broader behaviour of
investment and employment.
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Abstract

This chapter covers the theory and methods for productivity measurement for nations.
Labor, multifactor and total factor productivity measures are defined and are related to
each other and to gross domestic product (GDP) per capita. Their growth over time and
relative counterparts are defined as well.

Different conceptual meanings have been proposed for a total factor productivity
growth (TFPG) index. These are easiest to understand for the case in which the in-
dex number problem is absent: a production process that involves one input and one
output (a 1–1 process). It is easily seen that four common concepts of TFPG all lead to
the same result in the 1–1 case. Moving on to a general N input, M output production
scenario, we demonstrate that a Paasche, Laspeyres or Fisher index number formula
provides a measure for all four of the concepts of TFPG introduced for the 1–1 case.
This is an advantage of the Paasche–Laspeyres–Fisher family of formulas.

When multiple inputs or outputs are involved, there is the problem of choosing among
alternative functional forms. The axiomatic and economic approaches to index formula
choice are reviewed.

In addition, we briefly cover the Divisia index number approach and growth account-
ing, including the KLEMS (capital, labor, energy, materials and services) approach. The
gross output measures of the KLEMS approach are contrasted with value added output
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measures such as GDP. Also, an alternative family of revenue function based productiv-
ity growth indexes proposed by Diewert, Kohli and Morrison (DKM) is outlined. The
DKM approach facilitates the decomposition of productivity growth into economically
meaningful components. This approach is useful, for example, for examining the effects
of changes in the terms of trade on productivity growth.

Keywords

total factor productivity growth, labor productivity, living standards, exact index
numbers, capital deepening, real income growth, gross versus net output, growth
accounting, KLEMS, terms of trade, aggregation of capital, embodiment of technical
progress, depreciation, deterioration, obsolescence, index number theory
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1. Introduction

“The two main sources of economic growth in output are increases in the factors
of production (the labor and capital devoted to production) and efficiency or pro-
ductivity gains that enable an economy to produce more for the same amount of
inputs.”

[Baldwin, Harchaoui, Hosein and Maynard (2001),
“Productivity: Concepts and Trends”, Statistics Canada]

“Productivity is commonly defined as a ratio of a volume measure of output to a
volume measure of input use. While there is no disagreement on this general no-
tion, a look at the productivity literature and its various applications reveals very
quickly that there is neither a unique purpose for nor a single measure of produc-
tivity.”

[Paul Schreyer (2001), OECD Productivity Manual]

Productivity for nations is like love. Much is said about the benefits of having more
of it, but consensus is elusive on what “it” really is. As Schreyer (2001) writes, “pro-
ductivity is commonly defined as a ratio of a volume measure of output to a volume
measure of input use.” But how can the output and input volumes be defined and mea-
sured for a nation? This paper deals with the methods used for measuring aggregate
productivity, by which we mean the productivity of unique entities such as nations or
entire industries.

The best of all times for reviewing a subject area is when the reported findings are
impacting important decision processes, so the research matters; when there is a large
volume of recent research to be digested and integrated with previous findings; when
important data developments have taken place or are in progress; and when there is
informed and truly interactive debate on how best to proceed in areas where researchers
disagree on the appropriate directions. This is the current state of affairs for the subject
of this paper: the measurement of productivity for nations.

Multiple types of productivity measures are produced for nations. Official statistics
agencies in countries, including the United States and Canada, produce three sorts of
labor productivity measures. In this paper we refer to these using the designations of
per worker labor productivity (LP), per hour labor productivity (HLP), and per weighted
hour labor productivity (WHLP).

Many official statistics agencies also produce a multifactor productivity measure
(MFP) that takes account of machinery and equipment and other capital inputs as well
as labor, and sometimes energy and materials inputs as well. Even though it is probably
not possible to measure all inputs at a national level, economists define and consider
and estimate approximations to total factor productivity (TFP) measures.

In the rest of this paper we focus mostly on the TFP and TFPG measures, where we
use TFPG to denote both TFP growth and relative TFP. (Note that others sometimes
make this same distinction by using TFP for both the growth and relative total factor
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productivity measures with the qualifier of “levels” in referring to what we denote as
simply TFP.)

National productivity estimates are of special importance because they are an input
into many aspects of policy making.1 Although useful analogies can be drawn and there
are methodological commonalities, the measurement of productivity for nations is a
fundamentally different undertaking from the sorts of productivity measurement dealt
with by engineers for specific machines and production lines, and by accountants and
business analysts and economists working with micro level data for individual produc-
tion units. At this level of aggregation, the data available are limited to fairly short time
series, putting bounds on the scope for econometric estimation. Also feedback effects
among the measured inputs and outputs cannot be ruled out a priori. Index number
methods (including growth accounting) are the mainstay methodology.

Estimates of relative productivity or productivity growth do not, by themselves, pro-
vide causal insights. However, many aspects of federal government and other economic
planning are affected by reported productivity measures. Also, causal research on pro-
ductivity depends as well on having measures of productivity.2

Many economists seem not to look on index number theory and applied research as
belonging within the discipline of economics. And yet, there is scarcely an empirical
paper published in economics that does not utilize price or volume, if not productiv-
ity, index numbers. Certainly index numbers are ubiquitous in empirical macroeco-
nomics.

Also, economic theory and empirical findings provide the basis for a wide array of
choices made in defining and evaluating national price, volume and productivity in-
dexes. For example, the exact index number method for choosing among alternative
index number formulas involves showing that specific ones can be derived from opti-
mizing models for firms or households where these models include production, revenue,

1 A sense of the range of relevant public policy issues can be acquired from studies including Aschauer
(1989), Atrostic and Nguyen (2006), Baily (1981), Baldwin, Jarmin and Tang (2004), Balk (1998, 2003), Basu
and Fernald (1997), Basu et al. (2004), Berndt and Wood (1975), Black and Lynch (1996), Boskin (1997),
Bresnahan and Gordon (1997), Denison (1979), Diewert (1993a, 1995, 1998a, 1998b, 2001a, 2001c, 2002a,
2005e, 2005f, 2006c, 2007b), Diewert and Fox (1999), Diewert and Lawrence (2005), Diewert, Lawrence
and Fox (2006), Duguay (1994, 2006), Ellerman, Stoker and Berndt (2001), Feenstra and Hanson (2005),
Fortin (1996), Griliches (1997), Ho, Rao and Tang (2004, 2007), Hulten (1986, 2001), Jog and Tang (2001),
Jorgenson (2001, 2004), Jorgenson, Ho and Stiroh (2005), Jorgenson and Landefeld (2006), Jorgenson and
Lee (2001), Jorgenson and Motohashi (2005), Jorgenson and Nomura (2005), Jorgenson and Yun (1986,
1990, 1991), Kuroda and Nomura (2003), Lee and Tang (2001a, 2001b), Lipsey and Carlaw (2004), Lipsey,
Carlaw and Bekar (2006), Nakamura and Lipsey (2006), Maddison (1987), Mankiw (2001), Morrison (1992),
Muellbauer (1986), Nadiri (1980), Nakamura and Diewert (2000), Nordhaus (1982), Power (1998), Prescott
(1998), Smith (2005), Stiroh (2002) Tang and Wang (2004, 2005), Triplett and Bosworth (2004), van Ark,
Inklaar and McGuckin (2003), and Wolff (1996).
2 For gaining a causal understanding of the determinants of national productivity, data at lower levels of

aggregation are of obvious value, as are suitable econometric methods for analyzing panel and other sorts
of micro data files. See, for example, Bartelsman and Doms (2000), Foster, Haltiwanger and Krizan (2001),
Levinsohn and Petrin (1999), Olley and Pakes (1996), and Pavcnik (2002).
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cost, expenditure, transformation, or other aggregators with specific functional forms
such as the translog and the generalized quadratic with properties that have been ex-
plored by economists. We feel that index number theory and practice should (once more)
be a core subject within economics.

The traditional index number measures of TFPG are defined as ratios of output and in-
put volume indexes. As is appropriate, statistics agencies collect mostly value and price,
rather than volume and price, information, and then create the needed volume data by
deflating value data using price indexes. We show the relationships among price, volume
and productivity indexes, and how productivity indexes relate to real revenue/cost ratios.

Several different conceptual meanings have been proposed for a TFPG index. The
alternative concepts are easiest to understand for a one period production process that
uses a single input factor to make a single output product (a 1–1 process). In Section 2
we show that four common concepts of TFPG all lead to the same measure in the 1–1
case. Of course, the aggregation challenges that must be confronted in the construction
of national productivity measures do not arise in a 1–1 case context. To introduce these
issues, we use a hypothetical two input, one output production scenario (a 2–1 process).
We then move on to the general N input, M output case that is relevant for national
level productivity measurement.

In the final subsection of Section 2 we introduce three different labor productivity
indexes in common use, and relate these to the multifactor productivity (MFP) and total
factor productivity (TFP) measures that are our main focus in this paper. The Törnqvist,
and implicit Törnqvist volume and price indexes3 and the corresponding TFPG indexes
are also introduced and discussed.

In Section 3 we define Laspeyres, Paasche and Fisher measures for the general N

input, M output case for the four concepts of TFPG introduced in Section 2 for the 1–1
case.

With multiple inputs and outputs, different formula choices lead to different TFPG
findings. This raises the issue of choice among alternative TFPG formulas. The two
main approaches to choosing among the different index number functional forms are
the axiomatic (or test) approach and the economic approach.4

The axiomatic approach is taken up in Section 4. It was used extensively by the found-
ing contributors to index number theory, including Fisher (1911, 1922). This approach
makes use of lists of desired properties referred to as axioms or tests. They are either
formalizations of common sense properties of good index numbers or generalizations
of properties that hold for virtually all proposed index number formulas in the simplistic
1–1 case.

3 Perhaps the best source for learning about or checking details of price indexes are the new international
Consumer Price Index Manual [T.P. Hill (2004)] and Producer Price Index Manual [Armknecht (2004)]. The
Diewert chapters in the new International CPI and PPI Manuals are Chapters 15–20 and 22–23 of the CPI
Manual and Chapters 15–22 of the PPI Manual. See also Diewert (2002b).
4 A third approach – the statistical approach – is not discussed here. See Diewert (1981a, 1987, 2002b,

2004c, 2007c) on this parallel approach to the index number formula choice problem.
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The axiomatic approach to index number choice focuses on properties of the index
number formula itself. In contrast, the economic approach seeks to use principles and
implications of economic theory as a basis for choosing among proposed index formu-
las.

Exact index number theory is one important stream within the economic approach
to index numbers: the stream on which we focus in Section 5. The exact approach
transforms the index number choice problem into a problem of choosing the correct
functional form for a behavioral aggregator function of some sort. In order to use the
exact approach to derive the functional form for a TFPG index, it is first necessary to
decide on the perspective for the productivity analysis. When a producer perspective is
adopted, then the aggregator function for the economic approach can be the production
function, or it can be the corresponding cost, profit, or other dual representation of the
production process. Once the form of the aggregator has been determined, then the
exact index number approach can be applied in order to determine the corresponding
functional form for the TFPG index, as shown in Section 5.

When it can be established that some particular index number formula corresponds,
by the “exact” index number approach, to a linearly homogeneous producer behavioral
relationship that is “flexible”, meaning that it provides a second order approximation
to an arbitrary twice continuously differentiable linearly homogeneous function, then
the index number is said to be “superlative”. Diewert established that, under ordinary
conditions, all of the commonly used superlative index number formulas (including the
Fisher, Törnqvist, and implicit Törnqvist formulas introduced in Section 3) approximate
each other to the second order when evaluated at an equal price and volume point.
Diewert established as well that the two most commonly used index number formulas
that are not superlative – the Laspeyres and the Paasche indexes – approximate the
superlative indexes to the first order at an equal price and volume point.

The exact index number approach, together with Diewert’s numerical analysis ap-
proximation results for superlative index numbers, reduces the a priori information
requirements for choosing an index number formula to a list of general characteris-
tics of the production scenario. So long as there is agreement on those characteristics,
under ordinary conditions, any one of the commonly used superlative TFPG index num-
ber formulas should provide a reasonable estimate to the theoretical Malmquist TFPG
index introduced in Section 6.

The exact and the axiomatic approaches single out some of the same index number
formulas as especially desirable. The exact approach can be viewed as a methodology
for exploring the meaning of the proposed measures of TFPG and also of the intuitions
on which the axiomatic approach is based. This approach helps us interpret TFPG in-
dexes in the language of neoclassical theory. That the index number formulas which
have been in use since the early 1900s have interpretations in the language of modern
microeconomic theory suggests that the intuitions which guided the axiomatic approach
to index number theory and the axioms of microeconomic theory may have more in
common than is readily apparent.
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The data used in evaluating measures of productivity are discrete. Nevertheless, var-
ious properties of national productivity measures have been worked out utilizing the
convergence of continuous approximations. The Divisia method reviewed in Section 8
treats time as continuous. The Divisia method has been used extensively in growth ac-
counting studies for nations, which is the subject of Section 9. Section 9 also briefly
takes up the KLEMS (capital, labor, energy, materials and services) approach, and the
World KLEMS data development and analysis initiatives.

In Section 10, further consideration is also given to the choice of the measure of
output incorporated into productivity analyses and we review efforts to relax the as-
sumption of constant returns to scale.

In Section 11, an alternative family of theoretical productivity growth indexes pro-
posed by Diewert and Morrison (1986) and Kohli (1990) is introduced.5 This approach
has special advantages for examining the components of TFP growth.

Section 12 concludes.

2. Alternative productivity measurement concepts

“Productivity
A ratio of output to input.”

[Atkinson, Kaplan and Young (1995, p. 514)]

“While, for example, we look at the cost of power as a number of ‘analysed’ items
such as coal, water-rate, ash removal, drivers’ and stokers’ wages, etc., it will prob-
ably be a long time before it dawns upon us that all this expenditure can be reduced
to a horse-power-hour rate, and that such a factor, once known, may turn out to be
a standing reproach. The burning of 200 tons of coal per week may mean any-
thing or nothing, but the cost of a horse-power hour can be compared at once with
standard data . . . the publication of figures based on them would reveal amazing
inefficiencies that under present conditions are unsuspected and unknown because
no means of comparison exists.”

[A. Hamilton Church (1909, p. 190)]

The basic definition of total factor productivity (TFP) is the rate of transformation of
total input into total output. The output-over-input index approach to the measurement
of total factor productivity has early origins.6 In his Simon Kuznets Memorial Lecture,
Griliches remarked that “the first mention of what might be called an output-over-input
index that I can find appears in Copeland (1937)”. However, in an endnote to the written
version of the lecture Griliches (1997) writes:

5 This approach has been used lately in a growing number of other studies such as Feenstra et al. (2005).
6 Output over input measures are sometimes referred to as productivity levels measures.
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“Nothing is really new. Kuznets (1930) used the ‘cost of capital and labor per
pound of cotton yarn,’ the inverse of what would later become a total factor pro-
ductivity index (if the cost is computed in constant prices) . . . as a ‘(reflection of)
the economic effects of technical improvement’ and a few sentences later as a mea-
sure of ‘the effect of technical progress’ (p. 14). More thorough research is likely
to unearth even earlier references”.

Indeed, the early engineering and cost accounting literature contains numerous refer-
ences to unit costs used as efficiency measures (e.g., [Church (1909)]). For a one output
production process, the unit cost is the reciprocal of the TFP index.

Virtually all real production processes make use of multiple inputs and most yield
multiple outputs. Nevertheless, it is convenient to introduce basic concepts, terms and
notation in the simplified context of a production process with a single homogeneous
input factor and a single homogeneous output product. In a 1–1 context, the concepts of
total factor productivity and total factor productivity growth (TFPG) are easy to think
about because the measures are not complicated by choices about how different types
of inputs and different types of outputs should be aggregated. By the same token, of
course, the aggregation difficulties that arise when there are multiple inputs or outputs
cannot be introduced in a 1–1 context because they do not arise. Thus in Subsection 2.2
we also briefly consider a two input, one output process, a 2–1 case before moving on
in Subsection 2.3 to a general N input, M output setting. Labor, multifactor, and total
factor productivity measures are introduced in Subsection 2.3.

2.1. The 1–1 case7

For each time period (or scenario), suppose we know the volume of the one input used,
given by xt

1, its unit price wt
1, and the volume of the one output produced, given by yt

1,
and its unit price pt

1. TFP can be defined conceptually as the rate of transformation of
total input into total output. For the 1–1 case, the ratio of output produced to input used
is the measure for TFP for period t :

(2.1-1)TFP ≡ (
yt

1/x
t
1

) ≡ at .

The parameter at that is defined as well in (2.1-1) is a conventional output–input coef-
ficient.8

Total factor productivity growth, or TFPG, can be defined in several ways, four of
which are considered here.9 Our first concept of TFPG is the rate of transformation of

7 This section and some of what follows draws on Diewert (2000).
8 An output–input coefficient always involves just one output and one input. However, these coefficients can

be defined and used in multiple input, multiple output situations too, as is done in Diewert and Nakamura
(1999).
9 Some authors also use TFP to refer to total factor productivity growth. In line with Bernstein (1999), we

use TFPG rather than TFP for total factor productivity growth so as to avoid the inevitable confusion that
otherwise results.
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input into output for production period t versus s, where s comes before t here and
elsewhere in this paper if these are time periods. This concept of TFPG, denoted here
by TFPG(1), can be measured in the 1–1 case as10:

(2.1-2)TFPG(1) ≡
(

yt
1

xt
1

)/(
ys

1

xs
1

)
= at/as.

Three other concepts of total factor productivity growth are also in common use:
• the ratio of the output and the input growth rates, denoted by TFPG(2);
• the rate of growth in the real revenue/cost ratio; i.e., the rate of growth in the

revenue/cost ratio controlling for price change, denoted by TFPG(3); and
• the rate of growth in the margin after controlling for price change, denoted by

TFPG(4).
For a 1–1 production process, the obvious measure for the second concept of TFPG

is:

(2.1-3)TFPG(2) ≡
(

yt
1

ys
1

)/(
xt

1

xs
1

)
.

The third and fourth concepts of TFPG are financial in nature. Expressions for actual
revenue and cost are needed to form measures for these. For the 1–1 case, total revenue
and total cost are given by

(2.1-4)Rt ≡ pt
1y

t
1 and Ct ≡ wt

1x
t
1.

Thus, the third concept of TFPG can be measured by

(2.1-5)TFPG(3) ≡
[
Rt/Rs

pt
1/p

s
1

]/[
Ct/Cs

wt
1/w

s
1

]
=

(
yt

1

ys
1

)/(
xt

1

xs
1

)
,

where

(2.1-6)
(
Rt/Rs

)/(
pt/ps

) = (
pt

1y
t
1/p

s
1y

s
1

)/(
pt

1/p
s
1

) = yt
1/y

s
1, and

(2.1-7)
(
Ct/Cs

)/(
wt/ws

) = (
wt

1x
t
1/w

s
1x

s
1

)/(
wt

1/w
s
1

) = xt
1/x

s
1.

Business managers are usually interested in ensuring that revenues exceed costs, and
this leads to an interest in margins. The period t margin, mt , can be defined by

(2.1-8)1 + mt ≡ Rt/Ct .

Using this definition, in the 1–1 case TFPG(4) can be measured by

(2.1-9)TFPG(4) ≡ [(
1 + mt

)/(
1 + ms

)][(
wt

1/w
s
1

)/(
pt

1/p
s
1

)]
.

10 Here we refer to t and s as time periods. However, the ‘period s’ comparison situation could be for some
other unit of production in the same time period.
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If we interpret the margin as a reward for managerial or entrepreneurial input,
then TFPG(4) can be interpreted as the rate of growth of input prices, broadly de-
fined so as to include managerial and entrepreneurial input, divided by the rate of
growth of output prices. Note that if the margins are zero, then TFPG(4) reduces to
(wt

1/w
s
1)/(p

t
1/p

s
1).

11

Using (2.1-8) to eliminate the margin growth rate on the right-hand side of (2.1-9),
and comparing the resulting expression and those in (2.1-2), (2.1-3) and (2.1-5), it can
readily be seen that the four concepts of total factor productivity growth introduced here
all lead to the same pure volume measure. That is, for the 1–1 case the measures for all
four of the concepts for TFPG reduce to

(2.1-10)TFPG ≡
(

yt
1

ys
1

)/(
xt

1

xs
1

)
.

2.2. The 2–1 case

We next use a slightly more complex production process as the context for introducing
key choices that must be faced in order to specify multiple input, multiple output mea-
sures of TFP and TFPG. This hypothetical 2–1 production process uses the labor hours
of one man and logs as inputs and yields firewood as the output. The man buys the loads
of logs, splits them with an axe, and then sells the split logs as firewood. The axe was
inherited and has no resale or rental value. The man’s time, in hours, is denoted by xt

1,
and the number of truckloads of logs purchased is denoted by xt

2. The firewood output
is measured in kilograms and denoted by yt

1.
The labor productivity in each period is given by (yt

1/x
t
1). The materials utilization

productivity can also be defined as (yt
1/x

t
2). These are the two output–input coefficient

measures that can be specified for this production scenario, and their values will tend to
move in opposite directions from period to period. When the man splits logs at a faster
pace, unless he pays extra attention, he uses the raw resource input more wastefully.
The fact that the single factor productivity measures do not necessarily move together
closely (or even in the same direction) is a key reason why TFP and TFPG measures are
needed instead of just labor productivity measures.

In order to measure TFP for our log splitting process, a measure for total input is
needed. That is, we need a way of adding hours of labor and truckloads of logs. Different
perspectives can be adopted for forming this aggregate.12

In the economic approach to index number theory, the goal of producer revenue or
cost optimization dictates that unit revenues or costs should be used as weights in ag-
gregating the volumes of the different inputs and outputs.

11 One set of conditions under which the margins will be zero is perfect competition and constant returns to
scale.
12 This issue of perspective is taken up, for example, in Schultze and Mackie (2002).
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In our firewood production example, if the unit cost for an hour of labor is wt
1 and

the unit cost of a load of logs is wt
2, then the input volume aggregate could be defined

as the following price weighted sum:

(2.2-1)wt
1x

t
1 + wt

2x
t
2.

If the total input is measured as in (2.2-1), then total factor productivity, defined as
the rate of transformation of total input into total output, can be measured as

(2.2-2)TFP = yt
1

/(
wt

1x
t
1 + wt

2x
t
2

)
.

Now, suppose we want to measure TFPG. That is, suppose we want to compare the
ratio of output to input in period (or scenario) t with the ratio of output to input for some
earlier period (or some different production scenario) s. Should period t price weights
be used in forming both the period t and period s aggregates? Or, should period s price
weights be used in forming both of the aggregates? Or, should some sort of combination
of the period s and t prices be used as weights? Also, are there other functional forms
besides the linear one that might be preferable for combining the volumes of the differ-
ent inputs? These are the sorts of issues that are faced in the theory of index numbers
when it comes to choosing among alternative functional forms that have been proposed
for the indexes.

2.3. Different types of measures of productivity

For nations, a general N input, M output production setting applies. In the next sections,
we introduce formulas. Here, however, we first show how TFP and TFPG measures fit
with other general types of productivity measures that are commonly used at a national
level and with per capita gross domestic product (GDP). We do this here using words
rather than mathematical expressions for the relevant component parts.

GDP per capita equals the product of GDP per hour of work, the average hours of
work per worker, the employment rate, and the proportion of the population (denoted
by POP) that is old enough to work and hence in the potential labor force:

(2.3-1)
GDP

POP
≡ GDP[

Total
work
hours

] ×

[
Total
work
hours

]
[

Number
of

workers

] ×

[
Number

of
workers

]
[

Potential
labor
force

] ×

[
Potential

labor
force

]
POP

.

Variants of the above identity have been used in many published studies. For understand-
ing the commonly used measures of productivity, it is useful to expand this expression
as follows:



Ch. 66: The Measurement of Productivity for Nations 4513

GDP

POP
≡ GDP[

Total
input

] ×
[

Total
input

]
[

Total
measured

input

] ×

[
Total

measured
input

]
[

Total
labor
input

] ×

[
Total
labor
input

]
[

Total
work
hours

] ×

[
Total
work
hours

]
[

Number
of

workers

]

×

[
Number

of
workers

]
[

Potential
labour
force

] ×

[
Potential

labour
force

]
POP

(2.3-2)= (A) × (B) × (C) × (D) × (E) × (F) × (G).

For expositional convenience, we denote the terms on the right-hand side by A–G, re-
spectively.

All of the productivity measures we consider have as their numerator some measure
of total output. We follow common practice here in using GDP as the measure of na-
tional output.13 On a conceptual level, productivity is just output over input – that is, it
is the rate of conversion of input into output. These various productivity measures differ
in terms of the categories of included input.14

Productivity measures in common use and our designations for these are total fac-
tor productivity (TFP), multi factor productivity (MFP), labor productivity with wage
weighted hours of work used as the measure of labour input (WHLP), labor produc-
tivity with hours of work used as the measure of labor input (what we denote here as
HLP), and labor productivity with the number of workers used as the measure of labor
input (LP).

To be meaningfully interpreted, productivity measures must usually be placed in a
comparative context. The two most common contexts are comparisons of productivity
for two different time periods for the same productive unit – e.g., for the same nation –

13 Arguments for using other measures of total national output can be found, for example, in Kohli (1978,
1991, 2004, 2005, 2007). Diewert (2006d, 2007a) argues for the use of measures that are net of anticipated
depreciation and obsolescence of capital assets. See also Diewert, Nakamura and Schreyer (2007).
14 There are large literatures on measuring the various input volumes. On the labor input, see for example
Ahmad et al. (2003), Baldwin, Maynard and Wong (2005), Baldwin et al. (2005), Bresnahan, Brynjolfsson
and Hitt (2002), Nakamura (1995), Jorgenson and Fraumeni (1992), Jorgenson, Gollop and Fraumeni (1987),
Tang and MacLeod (2005), and Triplett (1990, 1991). On the capital inputs see, for example, Diewert (1977,
1980a, 1983, 2001b, 2004a, 2004b, 2005a, 2005b, 2005c), Diewert and Lawrence (2000, 2005), Diewert,
Mizobuchi and Nomura (2007), Diewert and Schreyer (2006), Diewert and Wykoff (2007), Hicks (1961),
T.P. Hill (1999, 2000), Hulten (1986, 1990, 1992, 1996), Jorgenson (1963, 1980, 1989, 1995a, 1995b, 1996),
and Schreyer (2001, 2005). See also Baldwin and Tanguay (2006), de Haan et al. (2005), Gu and Tang (2004),
Harper (2004), Harper, Berndt and Wood (1989), Hayashi and Nomura (2005), R.J. Hill and T.P. Hill (2003),
Inklaar, O’Mahony and Timmer (2005), Kuroda and Nomura (2004), Morrison (1988, 1999), Nomura (2004,
2005), Schreyer (2001, 2005), Timmer and van Ark (2005) and Triplett (1996).
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or a contemporaneous comparison for two different productive units such as for Canada
and the United States. Comparative productivity measures are sometimes referred to
more specifically as productivity growth, or as relative productivity, measures, depend-
ing on the nature of the comparison.

Economists have tended to prefer the most comprehensive of possible productivity
statistics: total factor productivity, designated commonly as TFP and defined as output
divided by a measure of total input – i.e., a price weighted aggregate of the volumes of
all of the inputs used in producing the designated output. In terms of the components of
(2.3-2) above, we can represent TFP as follows:

(2.3-3)TFP ≡ GDP[
Total
input

] = (A).

Statistical agencies charged with producing productivity figures for nations are
painfully aware that they do not manage to take account of all of the inputs used in
producing the output of a nation. Thus official statistics agencies usually refer to the
measures they compile, which are intended and used as approximations to TFP indexes,
as multifactor productivity measures. These MFP measures can also be represented in
terms of the components of the decomposition of GDP; i.e., we have

(2.3-4)MFP ≡ GDP[
Measured

input

] = TFP × (B).

Labor productivity measures are far easier to compile than TFP and MFP type mea-
sures because the only input information needed is for the volume of labor used in
producing the designated output. Labor productivity measures also have an especially
transparent relationship to per capita GDP, which has given these productivity measures
special public policy appeal.

One way of measuring the labor input is as an average wage weighted aggregate of the
hours of work for different types of workers. The resulting weighted hours productivity
measure can be specified as follows in terms of the components of per capita GDP given
in (2.3-2):

(2.3-5)WHLP ≡ GDP[
Total
labor
input

] = TFP × (B) × (C) = MFP × (C).

A simpler and more common way of measuring the labor input is as total hours of
work (i.e., as the unweighted sum). The resulting hours labor productivity measure can
be specified as:

HLP ≡ GDP[
Total
work
hours

] = TFP × (B) × (C) × (D) = MFP × (C) × (D)

(2.3-6)= WHLP × (D).
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An even simpler way of measuring the labor input is as the number of workers. The
resulting worker labor productivity measure is:

LP ≡ GDP[
Number

of
workers

] = TFP × (B) × (C) × (D) × (E) = MFP × (C) × (D) × (E)

(2.3-7)= WHLP × (D) × (E) = HLP × (E).

As noted above, to be meaningfully interpreted, productivity measures must usu-
ally be placed in a comparative context. Productivity growth (or relative productivity)
is evaluated by the ratio of the labor productivity, MFP or TFP measures for period
(or production scenario) t versus s.

3. Four TFPG concepts in the N–M case

“But even if we confine our attention to what is ordinarily called a commodity,
such as ‘wheat,’ we find ourselves dealing with a composite commodity made up
of winter wheat, spring wheat, of varying grades.”

[Paul A. Samuelson (1983, p. 130), Foundations of Economic Analysis]

Obviously, nations produce multiple outputs using multiple inputs. How can we mea-
sure the four concepts of TFPG introduced in Subsection 2.1 in general multiple input,
multiple output production situations? This is the question explored in this section.

We begin by defining volume aggregates that are components of the Paasche,
Laspeyres, and Fisher Ideal (referred to hereafter simply as Fisher) volume, price and
TFPG indexes, and then give the formulas for these indexes. Törnqvist and implicit
Törnqvist index numbers are also defined.

3.1. Price weighted volume aggregates

For a general N -input, M-output production process, the period t input and output
price vectors are denoted by wt ≡ [wt

1, . . . , w
t
N ] and pt ≡ [pt

1, p
t
2, . . . , p

t
M ], while

xt ≡ [xt
1, . . . , x

t
N ] and yt ≡ [yt

1, . . . , y
t
M ] denote the period t input and output volume

vectors.
Nominal total cost Ct and revenue Rt can be viewed as price weighted volume ag-

gregates of the micro data for the transactions, and are defined as follows for period s

and t :

(3.1-1)Ct ≡
N∑

n=1

wt
nx

t
n, Rt ≡

M∑
m=1

pt
myt

m,

(3.1-2)Cs ≡
N∑

n=1

ws
nx

s
n and Rs ≡

M∑
m=1

ps
mys

m.
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We also define four hypothetical volume aggregates.15 The first two result from evalu-
ating period t volumes using period s price weights:

(3.1-3)
N∑

n=1

ws
nx

t
n and

M∑
m=1

ps
myt

m.

These aggregates are what the cost and revenue would have been if the period t inputs
and outputs had been transacted at period s prices. In contrast, the third and fourth
aggregates are sums of period s volumes evaluated using period t prices:

(3.1-4)
N∑

n=1

wt
nx

s
n and

M∑
m=1

pt
mys

m.

These are what the cost and revenue would have been if the period s inputs had been
purchased and the period s outputs had been sold at period t prices. No assumptions are
involved in defining the hypothetical volume aggregates.16

3.2. The Paasche, Laspeyres and Fisher volume and price indexes

The Paasche (1874), Laspeyres (1871), and Fisher (1922, p. 234) output volume indexes
can be defined, respectively, as follows using the volume aggregates given in (3.1-1)–
(3.1-4):

(3.2-1)QP ≡
M∑

m=1

pt
myt

m

/ M∑
m=1

pt
mys

m,

(3.2-2)QL ≡
M∑

m=1

ps
myt

m

/ M∑
m=1

ps
mys

m, and

(3.2-3)QF ≡ (QP QL)(1/2).

15 Formally, the first two of these can be obtained by deflating the period t nominal cost and revenue by
a Paasche price index. The second two result from deflating the period t nominal cost and revenue by a
Laspeyres price index. See Horngren and Foster (1987, Chapter 24, Part One) or Kaplan and Atkinson (1989,
Chapter 9) for examples of this common accounting practice of controlling for price level change without
mention of price indexes. See also Armitage and Atkinson (1990).
16 Traditionally these aggregates were defined as weighted averages of volume and price relatives. A volume
(price) relative for a good is the ratio of the volume (price) for that good in a specified period t to the volume
(price) for that good in some comparison period s. One advantage of defining a volume (or price) index as a
weighted average of relatives is that the relatives are unit free, making it clear that this is an acceptable way
of incorporating even goods (prices) for which there is no generally accepted unit of measure. The equivalent
definitions presented here are more convenient for establishing that each of these TFPG indexes is a measure
of all four of the different concepts of TFPG introduced in Subsection 2.1.
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Similarly, the Paasche, Laspeyres, and Fisher input volume indexes can be defined as:

(3.2-4)Q∗
P ≡

N∑
n=1

wt
nx

t
n

/ N∑
n=1

wt
nx

s
n,

(3.2-5)Q∗
L ≡

N∑
n=1

ws
nx

t
n

/ N∑
n=1

ws
nx

s
n, and

(3.2-6)Q∗
F ≡ (

Q∗
P Q∗

L

)(1/2)
.

Output and input volume indexes are all that are needed to define measures of the first
and second concepts of TFPG. However, in order to specify measures of the third and
fourth concepts for the multiple input, multiple output case, price indexes are needed
too.

Price indexes can be constructed using any of the functional forms given for volume
indexes simply by reversing the roles of the prices and volumes. Thus output and input
price indexes for the Paasche, Laspeyres and Fisher formulas are given by:

(3.2-7)PP ≡
M∑

m=1

pt
myt

m

/ M∑
m=1

ps
myt

m,

(3.2-8)P ∗
P ≡

N∑
n=1

wt
nx

t
n

/ N∑
n=1

ws
nx

t
n,

(3.2-9)PL ≡
M∑

m=1

pt
mys

m

/ M∑
m=1

ps
mys

m,

(3.2-10)P ∗
L ≡

N∑
n=1

wt
nx

s
n

/ N∑
n=1

ws
nx

s
n,

(3.2-11)PF ≡ (PP PL)(1/2), and

(3.2-12)P ∗
F ≡ (

P ∗
P P ∗

L

)(1/2)
.

A price index is defined to be the implicit counterpart of a volume index if the product
rule (also called the product test or axiom) is satisfied.17 This rule requires that the
product of the volume and price indexes must equal the total cost ratio for input side
indexes or the total revenue ratio for output side indexes.18 Usually the implicit price
index will not have the same functional form as the volume index it is associated with.
For example, the Paasche price index is the implicit counterpart of a Laspeyres volume

17 For more on the properties of direct versus implicit indexes, see Allen and Diewert (1981).
18 The implicit price (volume) index corresponding to a given volume (price) index can always be derived by
imposing the product test and solving for the price (volume) index that satisfies this rule. The product test is
part of the axiomatic approach to the choice of an index number functional form that is reviewed in Section 4.
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index, and the Laspeyres price index is the implicit counterpart of a Paasche volume
index. The Fisher indexes are unusual in that the Fisher price index satisfies the product
test rule when paired with a Fisher volume index.19

In defining and proving equalities for the measures of the four concepts of TFPG
for a general multiple input, multiple output production situation, we use the following
implications of the product rule. In particular, for the Paasche, Laspeyres and Fisher
indexes, on the input side we have

(3.2-13a)Q∗
P × P ∗

L = Q∗
L × P ∗

P = Q∗
F × P ∗

F = Ct/Cs,

and on the output side we have

(3.2-13b)QP × PL = QL × PP = QF × PF = Rt/Rs.

3.3. TFPG measures for the N–M case

The traditional definition of a total factor productivity growth index in the index number
literature is as a ratio of output and input volume indexes:

(3.3-1)TFPG ≡ Q/Q∗.

Thus the Paasche, Laspeyres, and Fisher TFPG indexes can be defined using the
Paasche, Laspeyres, and Fisher volume indexes. Given a choice of any one of these
three functional forms, we prove here that the corresponding multiple input, multiple
output case measures are all equal for the four concepts of TFPG introduced in Subsec-
tion 2.1.

We proceed as follows to establish these equalities for the measures of the TFPG(1),
TFPG(2) and TFPG(3) concepts. We first use the product rule results to define Paasche,
Laspeyres and Fisher TFPG(3) measures. We substitute in the definitions of the com-
ponents of the TFPG(3) measures and rearrange terms to establish the equalities with
the TFPG(2) and TFPG(1) measures. Then we take up the TFPG(4) case.

For a Paasche TFPG index we have:

TFPGP = QP

Q∗
P

= (Rt/Rs)/PL

(Ct/Cs)/P ∗
L

≡ TFPG(3)P using (3.3-1) and (3.2-13)

=
∑M

m=1 pt
myt

m/
∑M

m=1 pt
mys

m∑N
n=1 wt

nx
t
n/

∑N
n=1 wt

nx
s
n

≡ TFPG(2)P

using (3.1-1), (3.1-2) and also (3.2-9) and (3.2-10)

19 When the product of a price and a volume index that both have the same formula equals the value ratio
(i.e., the revenue ratio in the case of output indexes, or the cost ratio in the case of input indexes), then the
formula satisfies the factor reversal test. The Fisher formula is unusual, but not unique, in satisfying this test.
See Diewert (1987) on the factor reversal test.
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(3.3-2)=
∑M

m=1 pt
myt

m/
∑N

n=1 wt
nx

t
n∑M

m=1 pt
mys

m/
∑N

n=1 wt
nx

s
n

≡ TFPG(1)P .

For a Laspeyres TFPG index we have:

TFPGL = QL

Q∗
L

= (Rt/Rs)/PP

(Ct/Cs)/P ∗
P

≡ TFPG(3)L using (3.3-1) and (3.2-13)

=
∑M

m=1 ps
myt

m/
∑M

m=1 ps
mys

m∑N
n=1 ws

nx
t
n/

∑N
n=1 ws

nx
s
n

≡ TFPG(2)L

using (3.1-1), (3.1-2) and also (3.2-7) and (3.2-8)

(3.3-3)=
∑M

m=1 ps
myt

m/
∑N

n=1 ws
nx

t
n∑M

m=1 ps
mys

m/
∑N

n=1 ws
nx

s
n

≡ TFPG(1)L.

And for a Fisher TFPG index we have:

TFPGF = QF

Q∗
F

= (Rt/Rs)/PF

(Ct/Cs)/P ∗
F

≡ TFPG(3)F using (3.3-1) and (3.2-13)

= [( Rt

Rs )PL]1/2[( Rt

Rs )PP ]1/2

[( Ct

Cs )P
∗
L]1/2[( Ct

Cs )P
∗
P ]1/2

=
[∑M

m=1 pt
myt

m∑M
m=1 pt

mys
m

]1/2[∑M
m=1 ps

myt
m∑M

m=1 ps
mys

m

]1/2

[∑N
n=1 wt

nxt
n∑N

n=1 wt
nxs

n

]1/2[∑N
n=1 ws

nxt
n∑N

n=1 ws
nxs

n

]1/2

≡ TFPG(2)F

using (3.2-3), (3.2-13), (3.1-1), (3.1-2), and (3.2-7)–(3.2-10)

(3.3-4)=
[∑M

m=1 pt
myt

m∑N
n=1 wt

nxt
n

]1/2[∑M
m=1 ps

myt
m∑N

n=1 ws
nxt

n

]1/2

[∑M
m=1 pt

mys
m∑N

n=1 wt
nxs

n

]1/2[∑M
m=1 pt

mys
m∑N

n=1 wt
nxs

n

]1/2
≡ TFPG(1)F .

The TFPG(4) concept is the rate of growth in the margin after controlling for price
change. In the N–M case, just as in the 1–1 one, the margin mt is given by

(3.3-5)1 + mt ≡ Rt/Ct .

Depending on whether Laspeyres, Paasche or Fisher price indexes are used to deflate
the cost and revenue components of the margin, the respective expressions for TFPG(3)

given in (3.3-2), (3.3-3) and (3.3-4) can be rewritten as:

(3.3-6)TFPG(4)P ≡ [(
1 + mt

)/(
1 + ms

)][
P ∗

L/PL

]
,

(3.3-7)TFPG(4)L ≡ [(
1 + mt

)/(
1 + ms

)][
P ∗

P /PP

]
, and

(3.3-8)TFPG(4)F ≡ [(
1 + mt

)/(
1 + ms

)][
P ∗

F /PF

]
.
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Notice that if the margins are zero, regardless of the reasons, then each of these ex-
pressions for TFPG(4) reduces to the ratio of the input price index to the output price
index.20

3.4. Other index number formulas

Many other index number formulas have been proposed besides the Paasche, Laspeyres
and Fisher.21 Here we will use QG and PG and Q∗

G and P ∗
G to denote any two pairs

of direct and implicit output and input volume and price indexes. These are any output
side and input side pairs of volume and price indexes that satisfy the product rule so that
QGPG = (Rt/Rs) and Q∗

GP ∗
G = (Ct/Cs). From these product rule results and (3.3-5),

it is easily seen that the following measures of concepts (3.3-2), (3.3-3) and (3.3-4) of
TFPG are all equal:

(Rt/Rs)/PG

(Ct/Cs)/P ∗
G

≡ TFPG(3)G

= QG/Q∗
G ≡ TFPG(2)G

(3.4-1)= [(
1 + mt

)/(
1 + ms

)][
P ∗/P

] ≡ TPFG(4).

This is a general result that nests the results given in Subsection 3.3.
But what about TFPG(1)G? A measure of the growth in the rate of transformation of

total input into total output ideally should be defined using measures of input and out-
put that are comparable for period s and t in the sense that the micro level volumes for
both periods are aggregated using the same price weights. This is a desirable property
if levels comparisons are to be made for pairs of nations. The volume aggregates that
are the components of the Paasche, Laspeyres and Fisher TFPG(1) measures defined in
the first line of (3.3-2), (3.3-3) and (3.3-4) satisfy what we refer to as this comparabil-
ity over time ideal.22 There are many other index number formulas for which it is not
possible to define this sort of a measure for the TFPG(1) concept that also equals the
corresponding measures for the other three concepts of TFPG. For those that are never-
theless superlative, an approximate equality of TFPG(1)G with the expressions for the
other three concepts of TFPG is established as follows.

20 One set of conditions under which the margins will be zero is perfect competition and a constant returns
to scale technology.
21 See Diewert (1993b, 1993c) and Fisher (1911, 1922).
22 The period t cost and revenue and the hypothetical aggregates of period s output and input volumes defined
in expressions (3.1-1) and (3.1-4) are comparable in this sense because the volumes for period s and t are
evaluated using the same period t price vectors. Similarly, the period s cost and revenue and the hypothetical
aggregates of period t output and input volumes defined in expressions (3.1-2) and (3.1-3) are comparable
in this sense because the volumes of the output and input goods are evaluated using the same period s price
vectors. These aggregates are what are used to define the Paasche, Laspeyres and Fisher measures given in
(3.3-2), (3.3-3) and (3.3-4).
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For any pair of volume and price indexes satisfying the product test, from (3.4-1) and
the product rule implications we see that the following expressions equal, respectively,
those given in (3.4-1) for TFPG(2)G, TFPG(3)G and TFPG(4)G:

(3.4-2)
QG

Q∗
G

= (Rt/Rs)/P

(Ct/Cs)/P ∗ =
∑M

m=1(p
t
m/PG)yt

m/
∑M

m=1 ps
mys

m∑N
n=1(w

t
n/P

∗
G)xt

n/
∑N

n=1 ws
nx

s
n

.

In the last of these expressions, the price vectors (pt/PG) and (wt/P ∗
G) appearing in

the period t output and input volume aggregates are the period t prices expressed in
period s dollars. If we choose this expression as the measure of TFPG(1)G, then with
the choice of a Paasche, Laspeyres or Fisher formula, this measure will be ideal in the
sense of using the same price weights to compare the period t and s volumes. When
some other formula is used, there is an approximate solution to this problem for indexes
that satisfy the product rule and are also “superlative”. This approximate solution makes
use of the Fisher functional form with the TFPG(1) measure, defined as in the last line
of (3.3-4).

Diewert coined the term superlative for an index number functional form that is
“exact” in that it can be derived algebraically from a producer or consumer behav-
ioral equation that satisfies the Diewert flexibility criterion. According to this crite-
rion, a functional form is flexible if it can provide a second order approximation to
an arbitrary twice continuously differentiable linearly homogeneous function. Diew-
ert (1976, 1978b) established that under usual conditions, all of the commonly used
superlative index number formulas (including the Fisher, and also the Törnqvist and
implicit Törnqvist functional forms introduced below) approximate each other to the
second order when evaluated at an equal price and volume point. This is a numerical
analysis approximation result that does not rely on any further assumptions.23

Because the Fisher volume and price indexes satisfy the product rule, we have

QGPG = (
Rt/Rs

) = QF PF and Q∗
GP ∗

G = (
Ct/Cs

) = Q∗
F P ∗

F ,

and dividing through by PG and P ∗
G, respectively, yields

(3.4-3)
QG

Q∗
G

=
[
QF

Q∗
F

][
PF /PG

P ∗
F /P ∗

G

]
.

From (3.4-3), (3.4-1) and (3.3-4) we see that if we define the measure for the first con-
cept of TFPG as

(3.4-4)TPFG(1)G ≡ TPFG(1)F

[
PF /PG

P ∗
F /P ∗

G

]
,

this measure will equal TFPG(2)G, TFPG(3)G and TFPG(4)G as defined in (3.4-1). In
this TFPG(1)G measure, the period t price vectors, pt and wt , of the TFPG(1)F com-
ponent are replaced by (pt/(PF /PG)) and (wt/(P ∗

F /P ∗
G)). As a consequence, unless

23 R.J. Hill (2006) shows, however, that being superlative does not, by itself, ensure an index is desirable.
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the given price indexes are Laspeyres or Paasche or Fisher ones, the period t and s vol-
umes compared by the measure will not be aggregated using the same price weights
when there have been changes in relative prices. Nevertheless, for superlative index
numbers, it follows that when the chosen volume and price indexes are any of the com-
monly used ones such as the Törnqvist or implicit Törnqvist, then we can use the result
that, under usual conditions, all of the superlative indexes in common use approximate
each other to the second order at an equal price and volume point. That is, we have
TFPG(1)G ∼= TFPG(1)F .

3.5. The Törnqvist (or Translog) indexes24

Törnqvist (1936) indexes are weighted geometric averages of growth rates for the vol-
ume or price relatives for the different products. These indexes have been widely used
by statistical agencies and in the economics literature. The formula for the natural log-
arithm of a Törnqvist index is usually shown as the definition for this index. For the
output volume index, this is

(3.5-1)

ln QT = (1/2)

M∑
m=1

[(
ps

mys
m

/ M∑
i=1

ps
i y

s
i

)
+

(
pt

myt
m

/ M∑
j=1

pt
j y

t
j

)]
ln

(
yt
m/ys

m

)
.

The Törnqvist input volume index Q∗
T is defined analogously, with input volumes and

prices substituted for the output volumes and prices in (3.5-1).
Reversing the role of the prices and volumes in the formula for the Törnqvist output

volume index yields the Törnqvist output price index, PT , defined by

(3.5-2)

ln PT = (1/2)

M∑
m=1

[(
ps

mys
m

/ M∑
i=1

ps
i y

s
i

)
+

(
pt

myt
m

/ M∑
j=1

pt
j y

t
j

)]
ln

(
pt

m/ps
m

)
.

The input price index P ∗
T is defined in a similar manner.

The implicit Törnqvist output volume index, denoted by QT̃ , is defined implicitly
by25 (Rt/Rs)/PT ≡ QT̃ , and the implicit Törnqvist input volume index, Q∗̃

T
, is defined

analogously using the cost ratio and P ∗
T . The implicit Törnqvist output price index, PT̃ ,

is given by (Rt/Rs)/QT ≡ PT̃ , and the implicit Törnqvist input price index, P ∗̃
T

, is
defined analogously.

Using the Törnqvist volume and the implicit Törnqvist price indexes, or the implicit
Törnqvist volume and the Törnqvist price indexes, measurement formulas for the sec-
ond, third and fourth concepts of TFPG can be specified as in (3.4-1) above. Moreover,

24 Törnqvist indexes are also known as translog indexes following Jorgenson and Nishimizu (1978) who
introduced this terminology because Diewert (1976, p. 120) related Q∗

T
to a translog production function.

The exact index number approach used for relating specific volume indexes to specific production functions
is the topic of Section 5.
25 See Diewert (1992a, p. 181).
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these are superlative indexes for which Section 3.4 approximation result applies; that is,
we have TFPG(1)T ∼= TFPG(1)F and TFPG(1)T̃

∼= TFPG(1)F .

4. The axiomatic (or test) approach to index formula choice

Multiple TFPG index number formulas can all be viewed as measures of total fac-
tor productivity growth. This was demonstrated in Section 3 for the commonly used
Laspeyres, Paasche, Fisher and Törnqvist indexes, and this result could be established
for other proposed index number formulas as well. Since different formulas will yield
different estimates for TFPG, which one should be used, and why? Historically, index
number theorists have relied on what is called the axiomatic or test approach to address
this functional form choice problem. An overview of this approach is provided here.

As before, Q denotes an output volume index and P denotes an output price index.
The corresponding input volume and price indexes are denoted by the same symbols
with a star superscript added. The axiomatic approach to the determination of the func-
tional forms for Q and P on the output side, or for Q∗ and P ∗ on the input side, works
as follows. The starting point is a list of mathematical properties that a priori reason-
ing suggests a price index should satisfy. These are the index number theory ‘tests’ or
‘axioms’. Mathematical reasoning is applied to determine whether the a priori tests are
mutually consistent and whether they uniquely determine, or usefully narrow, the choice
of the functional form for the price index.26 Once the form of the price index has been
decided on, imposition of the product test rule determines the functional form of the
volume index as well.

The product test was already introduced in Subsection 3.2.27 On the output side, this
rule states that the product of the output price and output volume indexes, P and Q,
should equal the nominal revenue ratio for periods t and s:

(4-1)PQ = Rt/Rs.

If the functional form for the output price index P is given, then imposing the product
rule means that the functional form for the volume index must be given by the expres-
sion28

(4-2)Q = (
Rt/Rs

)
/P.

26 Contributors to this approach include Walsh (1901, 1921), Fisher (1911, 1922), Eichhorn (1976), Eichhorn
and Voeller (1976), Funke and Voeller (1978, 1979), Diewert (1976, 1987, 1988, 1992b, 1999), Balk (1995)
and Armstrong (2003).
27 The product test was proposed by Irving Fisher (1911, p. 388) and named by Frisch (1930, p. 399).
28 Volume or price indexes derived by imposing the product rule and specifying the form of the price or
volume index are sometimes referred to as implicit indexes. The ∼ symbol is sometimes added on top of the
symbol for the index number when it is desired to call attention to the implicit nature of the index. Any test
that satisfies the factor reversal test would also satisfy the product test.
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Thus, unlike the other tests introduced below that are applied to the alternative price
indexes of interest and that may be passed or failed by each of the index number formu-
las tested, the product test is often imposed at the outset as part of the formula choice
process.29

We conclude this overview of the axiomatic approach by listing four tests that can
be applied for choosing among alternative functional forms for the price index. Only
the output side price indexes are considered here, but the tests are applied in the same
manner on the input side.

The identity or constant prices test is30

(4-3)P
(
p, p, ys, yt

) = 1.

What this means is that if all prices stay the same over the current and comparison time
periods so that ps = pt = p = (p1, . . . , pM), then the price index should be one
regardless of the volume values for period s and t .

The constant basket test, also called the constant volumes test, is31

(4-4)P
(
ps, pt , y, y

) =
N∑

i=1

pt
i yi

/ N∑
j=1

ps
jyj .

This test states that if the volumes produced for all output goods stay the same for
period s and t so that ys = yt = y ≡ (y1, . . . , yM), then the level of prices in period t

compared to s should equal the value of the constant basket of volumes evaluated at the
period t prices divided by the value of this same basket evaluated at the period s prices.

The proportionality in period t prices test is32

(4-5)P
(
ps, λpt , ys, yt

) = λP
(
ps, pt , ys, yt

)
for λ > 0.

According to this test, if each of the elements of pt is multiplied by the positive constant
λ, then the level of prices in period t relative to s should differ by the same multiplicative
factor λ.

Our final example of a price index test is the time reversal test33:

(4-6)P
(
pt , ps, yt , ys

) = 1/P
(
ps, pt , ys, yt

)
.

29 Note that the product test is not the same as the factor reversal test, although any formula that satisfies the
factor reversal test will satisfy the product test. As pointed out to us by Andy Baldwin in private correspon-
dance, in imposing the product test on a price index, one normally has already chosen the volume index and
the price index is chosen by default to satisfy the product index. Thus the Paasche formula is chosen for the
price index because one would like to have a Laspeyres volume index.
30 This test was proposed by Laspeyres (1871, p. 308), Walsh (1901, p. 308) and Eichhorn and Voeller (1976,
p. 24).
31 This test was proposed by many researchers including Walsh (1901, p. 540).
32 This test was proposed by Walsh (1901, p. 385) and Eichhorn and Voeller (1976, p. 24).
33 This test was first informally proposed by Pierson (1896, p. 128) and was formalized by Walsh (1901,
p. 368, 1921, p. 541) and Fisher (1922, p. 64).
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If this test is satisfied, then when the prices and volumes for period s and t are inter-
changed, the resulting price index will be the reciprocal of the original price index.

The Paasche and Laspeyres indexes, PP and PL, fail the time reversal test (4-6).
The Törnqvist index, PT , fails the constant basket test (4-4), and the implicit Törnqvist
index, P̃T , fails the constant prices test (4-3). On the other hand, the Fisher price index
PF satisfies all four of these tests. When a more extensive list of tests is compiled, the
Fisher price index continues to satisfy more tests than other leading candidates.34 These
results favor the Fisher TFPG index. However, the Paasche, Laspeyres, Törnqvist, and
implicit Törnqvist indexes all rate reasonably well according to the axiomatic approach.

5. The exact approach and superlative index numbers

“Tinbergen (1942, pp. 190–195) interprets the geometric volume index of total fac-
tor productivity as a Cobb–Douglas production function. As further examples of
index-number formulas that have been interpreted as production functions, a fixed-
weight Laspeyres volume index of total factor productivity may be interpreted as
a ‘linear’ production function, that is, as a production function with infinite elas-
ticity of substitution, as Solow (1957, p. 317) and Clemhout (1963, pp. 358–360)
have pointed out. In a sense, output-capital or output-labor ratios correspond to
Leontief-type production functions, that is, to production functions with zero elas-
ticity of substitution, as Domar (1961, pp. 712–713) points out.”

[Dale W. Jorgenson (1995a, p. 48), Productivity Vol. 1]

An alternative approach to the determination of the functional form for a measure of
total factor productivity growth is to derive the TFPG index from a producer behavioral
model. Diewert’s (1976) exact index number approach is a paradigm for doing this.
This approach places the index number formula choice problem on familiar territory
for economists, allowing the choice to be based on axioms of economic behavior or
empirical evidence about producer behavior rather than, or in addition to, the traditional
tests of the axiomatic approach.

The exact index number approach is perhaps most easily explained by outlining the
main steps in an actual application. In this section we sketch the steps involved in de-
riving a TFPG index that is exact for a translog cost function for which certain stated
restrictions hold.

The technology of a firm can be summarized by its period t production function f t .
If we focus on the production of output 1, then the period t production function can be
represented as

(5-1)y1 = f t (y2, y3, . . . , yM, x1, x2, . . . , xN).

34 See Diewert (1976, p. 131, 1992b) and also Funke and Voeller (1978, p. 180).
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This function gives the amount of output 1 the firm can produce using the technology
available in any given period t if it also produces ym units of each of the outputs m =
2, . . . ,M using xn units for each of the inputs n = 1, . . . , N .

The production function f t can be used to define the period t cost function:

(5-2)ct (y1, y2, . . . , yM,w1, w2, . . . , wN).

This function is postulated to give the minimum cost of producing the output volumes
y1, . . . , yM using the period t technology and with the given input prices wt

n, n =
1, 2, . . . , N . Under the assumption of cost minimizing behavior, the observed period t

cost of production, denoted by Ct , is the minimum possible cost, and we have

(5-3)Ct ≡
N∑

n=1

wt
nx

t
n = ct

(
yt

1, . . . , y
t
M,wt

1, . . . , w
t
N

)
.

We need some way of relating the cost functions for different time periods (or sce-
narios) to each other. One way is to assume the cost function for each period is a period
specific multiple of an atemporal cost function. As a simplest (and much used case), we
might assume that

ct (y1, . . . , yM,w1, . . . , wN) = (
1/at

)
c(y1, . . . , yM,w1, . . . , wN),

(5-4)t = 0, 1, . . . , T ,

where at > 0 denotes a period t relative efficiency parameter and c denotes an atem-
poral cost function which does not depend on time. We have assumed in (5-4) that
technological change is Hicks neutral. The normalization a0 ≡ 1 is usually imposed.
Given (5-4), a natural measure of productivity change (or relative productivity) for a
productive unit for period t versus s is the ratio

(5-5)at/as.

If this ratio is greater than 1, efficiency is said to have improved.
Taking the natural logarithm of both sides of (5-4), we have

(5-6)ln ct
(
yt

1, . . . , y
t
M,wt

1, . . . , w
t
N

) = − ln at + ln c
(
yt

1, . . . , y
t
M,wt

1, . . . , w
t
N

)
.

Suppose that a priori information is available indicating that a translog functional form
is appropriate for ln c. In this case, the atemporal cost function c on the right-hand side
of (5-6) can be represented by

ln c
(
yt

1, . . . , y
t
M,wt

1, . . . , w
t
N

)
= b0 +

M∑
m=1

bm ln yt
m +

N∑
n=1

cn ln wt
n + (1/2)

M∑
i=1

M∑
j=1

dij ln yt
i ln yt

j

(5-7)+ (1/2)

N∑
n=1

N∑
j=1

fnj ln wt
n ln wt

j +
M∑

m=1

N∑
n=1

gmn ln yt
m ln wt

n.
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An advantage of the choice of the translog functional form for the atemporal cost func-
tion part of (5-6) is that it does not impose a priori restrictions on the admissible patterns
of substitution between inputs and outputs, but this flexibility results from a large num-
ber of free parameters.35 There are M +1 of the bm parameters, N of the cn parameters,
MN of the gmn parameters, M(M + 1)/2 independent dij parameters and N(N + 1)/2
independent fnj parameters even when it is deemed reasonable to impose the symmetry
conditions that dij = dji for 1 � i < j � M and fnj = fjn for 1 � n < j � N .
If homogeneity of degree one in the input prices is also assumed, then the following
additional restrictions hold for the parameters of (5-7):

N∑
n=1

cn = 1,

N∑
j=1

fnj = 0 for n = 1, . . . , N, and

(5-8)
N∑

n=1

gmn = 0 for m = 1, . . . ,M.

With all of the above restrictions, the number of independent parameters in (5-6)
and in (5-7) is still T + M(M + 1)/2 + N(N + 1)/2 + MN . The number of pa-
rameters can easily end up being larger than the number of available observations.36

Thus, without imposing more restrictions, it may not be possible to reliably estimate
the parameters of (5-6) or to derive a productivity index from this sort of an estimated
relationship.

One way of proceeding is to assume the producer is minimizing costs so that the
following demand relationships hold37:

xt
n = ∂ct

(
yt

1, . . . , y
t
M,wt

1, . . . , w
t
N

)
/∂wn

(5-9)for n = 1, . . . , N and t = 0, 1, . . . , T .

Since ln ct can also be regarded as a quadratic function in the variables

ln y1, ln y2, . . . , ln yM, ln w1, ln w2, . . . , ln wN,

35 The translog functional form for a single output technology was introduced by Christensen, Jorgenson
and Lau (1971, 1973). See also Christensen and Jorgenson (1973). The multiple output case was defined by
Burgess (1974) and Diewert (1974a, p. 139).
36 On the econometric estimation of cost and related aggregator functions using more flexible functional
forms that permit theoretically plausible types of substitution, see for example Berndt (1991), Berndt and
Khaled (1979) and also Diewert (1969, 1971, 1973, 1974b, 1978a, 1981a, 1982) and Diewert and Wales
(1992, 1995).
37 This follows by applying a theoretical result due initially to Hotelling (1925) and Shephard (1953, p. 11).
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Diewert’s (1976, p. 119) logarithmic quadratic identity can be applied. Accordingly, we
have38:

ln ct − ln cs = (1/2)

M∑
m=1

[
yt
m

∂ ln ct

∂ym

(
yt , wt

) + ys
m

∂ ln cs

∂ym

(
ys, ws

)]
ln

(
yt
m/ys

m

)
+ (1/2)

N∑
n=1

[
wt

n

∂ ln ct

∂wn

(
yt , wt

) + ws
n

∂ ln cs

∂wn

(
ys, ws

)]
ln

(
wt

n/w
s
n

)
(5-10)+ (1/2)

[
∂ ln ct

∂a

(
yt , wt

) + ∂ ln cs

∂a

(
ys, ws

)]
ln

(
at/as

)
= (1/2)

M∑
m=1

[
yt
m

∂ ln ct

∂ym

(
yt , wt

) + ys
m

∂ ln cs

∂ym

(
ys, ws

)]
ln

(
yt
m/ys

m

)
+ (1/2)

N∑
n=1

[(
wt

nx
t
n/Ct

) + (
ws

nx
s
n/Cs

)]
ln

(
wt

n/w
s
n

)
(5-11)+ (1/2)

[−1 + (−1)
]

ln
(
at/as

)
.

If it is acceptable to impose the additional assumption of competitive profit maxi-
mizing behavior, we can simplify (5-11) even further. More specifically, suppose we
can assume that the output volumes yt

1, . . . , y
t
M solve the following profit maximization

problem for t = 0, 1, . . . , T :

(5-12)max
y1,...,yM

[
M∑

m=1

pt
mym − ct

(
y1, . . . , yM,wt

1, . . . , w
t
N

)]
.

This leads to the usual price equals marginal cost relationships that result when com-
petitive price taking behavior is assumed; i.e., we now have

(5-13)pt
m = ∂ct (yt

1, . . . , y
t
M,wt

1, . . . , w
t
N )/∂ym, m = 1, . . . ,M.

This key step permits the use of observed prices as weights for aggregating the observed
volume data for the different outputs and inputs. Making use of the definition of total
costs in (5-3), expression (5-11) can now be rewritten as:

ln
(
Ct/Cs

) = (1/2)

M∑
m=1

[(
pt

myt
m/Ct

) + (
ps

mys
m/Cs

)]
ln

(
yt
m/ys

m

)

(5-14)

+ (1/2)

N∑
n=1

[(
wt

nx
t
n/Ct

) + (
ws

nx
s
n/Cs

)]
ln

(
wt

n/w
s
n

) − ln
(
at/as

)
.

38 Expression (5-11) follows from (5-10) by applying the Hotelling–Shephard relations (5-9) for period t

and s.
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Total costs in period s and t presumably can be observed, as can output and input
prices and volumes. Thus the only unknown in Equation (5-14) is the productivity
change measure going from period s to t . Solving (5-14) for this measure yields

(5-15)at/as =
{

M∏
m=1

(
yt
m/ys

m

)(1/2)[(pt
myt

m/Ct )+(ps
mys

m/Cs)]
}

/Q̃∗
T ,

where Q̃∗
T is the implicit Törnqvist input volume index that is defined analogously to

the implicit Törnqvist output volume index introduced in Subsection 3.5.
Formula (5-15) can be simplified still further if it is appropriate to assume that the

underlying technology exhibits constant returns to scale. If costs grow proportionally
with output, then it can be shown [e.g., see Diewert (1974a, pp. 134–137)] that the
cost function must be linearly homogeneous in the output volumes. In that case, with
competitive profit maximizing behavior, revenues must equal costs in each period. In
other words, under the additional hypothesis of constant returns to scale, for each time
period t = 0, 1, . . . , T we have the equality:

(5-16)ct
(
yt , wt

) = Ct = Rt .

Using (5-16), we can replace Ct and Cs in (5-15) by Rt and Rs , and (5-15) becomes

(5-17)at/as = QT /Q̃∗
T ,

where QT is the Törnqvist output volume index and Q̃∗
T is the implicit Törnqvist input

volume index. This means that if we can justify the choice of a translog cost function
and if the assumptions underlying the above derivations are true, then we have a basis
for choosing (QT /Q̃∗

T ) as the appropriate functional form of the TFPG index.
The hypothesis of constant returns to scale that must be invoked in moving from

expression (5-15) to (5-17) is very restrictive. However, if the underlying technology is
subject to diminishing returns to scale, we can convert the technology into an artificial
one still subject to constant returns to scale by introducing an extra fixed input, xN+1
say, and setting this extra fixed input equal to one (that is, xt

N=1 = 1 for each period t).
The corresponding period t price for this input, wt

N+1, is set equal to the firm’s period
t profits, Rt − Ct . With this extra factor, the firm’s period t cost is redefined to be the
adjusted cost given by

(5-18)Ct
A = Ct + wt

N+1x
t
N+1 =

N+1∑
n=1

wt
nx

t
n = Rt .

The derivation can now be repeated using the adjusted cost Ct
A rather than the actual

cost Ct . This results in the same productivity change formula except that Q̃∗
T is now the

implicit translog volume index for N + 1 instead of N inputs. Thus, in the diminishing
returns to scale case, we could use formula (5-15) as our measure of productivity change
between period s and t , or we could use formula (5-17) with the understanding that the
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extra fixed input would then be added into the list of inputs and incorporated into the
adjusted costs.

Formulas (5-15) and (5-17) illustrate the exact index number approach to the deriva-
tion of productivity change measures. The method may be summarized as follows: (1)
a priori or empirical evidence is used as a basis for choosing a specific functional form
for the firm’s cost function,39 (2) competitive profit maximizing behavior is assumed
(or else cost minimizing plus competitive revenue maximizing behavior), and (3) vari-
ous identities are manipulated and a productivity change measure emerges that depends
only on observable prices and volumes.

In this section, the use of the exact index number method has been demonstrated
for a situation where the functional form for the cost function was assumed to be
adequately approximated by a translog with parameters satisfying symmetry, homo-
geneity, cost minimization, profit maximization, and possibly also constant returns to
scale conditions. The resulting productivity change term at/as given by the formula on
the right-hand side of (5-15) or (5-17) can be directly evaluated even with thousands of
outputs and inputs.

It is important to bear in mind, however, that all of the index number TFPG measures
defined in Section 3 can be evaluated numerically for each time period given suitable
volume and price data regardless of whether assumptions such as those made above
are true. The assumptions are used only to show that particular TFPG index number
formulas can be derived from certain optimizing models of producer behavior. Such a
model might then be used in interpreting the TFPG value. For instance, the model might
be used as a basis for breaking up the TFPG value into returns to scale and technical
progress components. Decompositions of this sort are taken up in Sections 6.1, 10.2
and 11.

6. Production function based measures of TFPG

When a TFPG index can be related to a producer behavioral relationship that is derived
from an optimizing model of producer behavior, this knowledge provides a potential
theoretical basis for defining various decompositions of TFPG and interpreting compo-
nent parts. This is the approach adopted here.

We begin in Subsection 6.1 by considering some production function based alterna-
tives for factoring TFPG into technical progress (TP) and returns to scale (RS) compo-
nents in the simplified one input, one output case. Even in the general multiple input,
multiple output case, a TP and RS decomposition of TFPG has no direct implications
for the choice of a measurement formula for TFPG since the new parameters introduced

39 In place of step (1) where a specific functional form is assumed for the firm’s cost function, some re-
searchers have specified functional forms for the firm’s production function [e.g., Diewert (1976, p. 127)] or
the firm’s revenue or profit function [e.g., Diewert (1988)] or for the firm’s distance function [e.g., Caves,
Christensen and Diewert (1982a and 1982b)].
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in making these decompositions cancel out in the representation of TFPG as a product
of the TP and RS components. However, the decomposition makes us more aware that
an index number TFPG measure typically includes the effects of both technical progress
(a shift in the production function) and nonconstant returns to scale if present (a move-
ment along a nonconstant returns to scale production function).40

After defining TP and RS components for the 1–1 case in Subsection 6.1, in Sub-
section 6.2 theoretical Malmquist output growth, input growth and TFPG indexes are
defined for a general multiple input, multiple output production situation.

6.1. Technical progress (TP) and returns to scale (RS) in the simple 1–1 case

The amount of output obtained from the same input volumes could differ in period t

versus s for two different sorts of reasons: (1) the same technology might be used, but
with a different scale of operation, or (2) the technology might differ. The purpose of
the decompositions introduced here is to provide a conceptual framework for thinking
about returns to scale versus technological shift changes in TFPG.

In the 1–1 case, TFPG can be measured as the ratio of the period t and s output–input
coefficients, as in (2.1-2). Suppose we know the period s and t volumes for the single
input and the single output, as well as the true period s and t production functions given
by:

(6.1-1)ys
1 = f s

(
xs

1

)
and

(6.1-2)yt
1 = f t

(
xt

1

)
.

Technical progress can be conceptualized as a shift in a production function due to a
switch to a new technology for some given scale of operation for the productive process.
Four of the possible measures of shift for a production function are considered here. For
the first two, the scale is hypothetically held constant by fixing the input level. For the
second two, the scale is hypothetically held constant by fixing the output level.

Some hypothetical volumes are needed for defining the four shift measures given
here: two on the output side and two on the input side. The output side hypothetical
volumes are

(6.1-3)ys∗
1 ≡ f t

(
xs

1

)
and

(6.1-4)yt∗
1 ≡ f s

(
xt

1

)
.

The first of these is the output that hypothetically could be produced with the scale fixed
by the period s input volume xs

1 but using the newer period t technology embodied in f t .
Given technical progress rather than regress, ys∗

1 should be larger than ys
1. The second

40 Favorable or adverse changes in environmental factors facing the firm going from period s to t are regarded
as shifts in the production function. We are assuming here that producers are on their production frontier each
period; i.e., that they are technically efficient. In a more complete analysis, we could allow for technical
inefficiency.
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volume, yt∗
1 , is the output that hypothetically could be produced with the scale fixed by

the period t input volume xt
1 but using the older period s technology. Given technical

progress rather than regress, yt∗
1 should be smaller than yt

1.
Turning to the input side now, xs∗

1 and xt∗
1 are defined implicitly by

(6.1-5)ys
1 = f t

(
xs∗

1

)
and

(6.1-6)yt
1 = f s

(
xt∗

1

)
.

The first of these is the hypothetical amount of the single input factor required to pro-
duce the actual period s output, ys

1, using the more recent period t technology. Given
technical progress, xs∗

1 should be less than xs
1. The second volume xt∗

1 is the hypothet-
ical amount of the single input factor required to produce the period t output yt

1 using
the older period s technology, so we would usually expect xt∗

1 to be larger than xt
1.

The first two of the four technical progress indexes to be defined here are the output
based measures given by41

(6.1-7)TP(1) ≡ ys∗
1 /ys

1 = f t
(
xs

1

)
/f s

(
xs

1

)
and

(6.1-8)TP(2) ≡ yt
1/y

t∗
1 = f t

(
xt

1

)
/f s

(
xt

1

)
.

Each of these describes the percentage increase in output resulting solely from switching
from the period s to the period t production technology with the scale of operation fixed
by the actual period s or the period t input level for TP(1) and TP(2), respectively.

The other two indexes of technical progress defined here are input based42:

(6.1-9)TP(3) ≡ xs
1/x

s∗
1 and

(6.1-10)TP(4) ≡ xt∗
1 /xt

1.

Each of these gives the reciprocal of the percentage decrease in input usage resulting
solely from switching from the period s to the period t production technology with the
scale of operation fixed by the actual period s or the period t output level for TP(3) and
TP(4), respectively. That is, for TP(3), technical progress is measured with the output
level fixed at ys

1 whereas for TP(4) the output level is fixed at yt
1.

Each of the technical progress measures defined above is related to TFPG as follows:

(6.1-11)TFPG = TP(i) RS(i) for i = 1, 2, 3, 4,

where, depending on the selected technical progress measure, the corresponding returns
to scale measure is given by

(6.1-12)RS(1) ≡ [
yt

1/x
t
1

]/[
ys∗

1 /xs
1

]
,

41 TP(1) and TP(2) are the output based ‘productivity’ indexes proposed by Caves, Christensen, and Diewert
(1982b, p. 1402) for the simplistic case of one input and one output.
42 TP(3) and TP(4) are the input based ‘productivity’ indexes proposed by Caves, Christensen, and Diewert
(1982b, p. 1407) for the simplistic case of one input and one output.
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(6.1-13)RS(2) ≡ [
yt∗

1 /xt
1

]/[
ys

1/x
s
1

]
,

(6.1-14)RS(3) ≡ [
yt

1/x
t
1

]/[
ys

1/x
s∗
1

]
, or

(6.1-15)RS(4) ≡ [
yt

1/x
t∗
1

]/[
ys

1/x
s
1

]
.

In the TFPG decompositions given by (6.1-11), the technical progress term, TP(i),
can be viewed as a production function shift43 caused by a change in technology, and the
returns to scale term, RS(i), can be viewed as a movement along a production function
with the technology held fixed. Each returns to scale measure will be greater than one if
output divided by input increases as we move along the production surface. Obviously,
if TP(1) = TP(2) = TP(3) = TP(4) = 1, then RS = TFPG and increases in TFPG are
due solely to changes of scale.

For two periods, say s = 0 and t = 1, and with just one input factor and one output
good, the four measures of TP defined in (6.1-7)–(6.1-10) and the four measures of
returns to scale defined in (6.1-12)–(6.1-15) can be illustrated graphically, as in Figure 1.
(Here the subscript 1 is dropped for both the single input and the single output.)

The lower curved line is the graph of the period 0 production function; i.e., it is
the set of points (x, y) such that x � 0 and y = f 0(x). The higher curved line is
the graph of the period 1 production function; i.e., it is the set of points (x, y) such
that x � 0 and y = f 1(x). The observed data points are A with coordinates (x0, y0)

Figure 1. Production function based measures of technical progress.

43 This shift can be conceptualized as either a move from one production function to another, or equivalently
as a change in the location and perhaps the shape of the original production function.
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for period 0, and B with coordinates (x1, y1) for period 1.44 Applying formula (2.1-2)
from Section 2, for this example we have TFPG = [y1/x1]/[y0/x0]. In Figure 1, this
is the slope of the straight line OB divided by the slope of the straight line OA. The
reader can use Figure 1 and the definitions provided above to verify that each of the
four decompositions of TFPG given by (6.1-11) corresponds to a different combination
of shifts of, and movements along, a production function that take us from observed
point A to observed point B.45 Of course, there would be no way of distinguishing
among the different possible mechanisms that could yield a move from A to B if nothing
were known but the values of the points.

Geometrically, each of the specified measures for the returns to scale is the ratio of
two output–input coefficients, say [yj /xj ] divided by [yk/xk] for points (yj , xj ) and
(xk, yk) on the same fixed production function with xj > xk . For the ith measure, if
the returns to scale component RS(i) = [yj /xj ]/[yk/xk] is greater than 1, the produc-
tion function exhibits increasing returns to scale, while if RS(i) = 1 we have constant
returns to scale, and if RS(i) < 1 we have decreasing returns. If the returns to scale are
constant, then RS(i) = 1 and TP = TFPG.46 Note, however, that it is unnecessary to
assume constant returns to scale in order to evaluate the index number TFPG measures
presented here or in previous sections.

6.2. Malmquist indexes

If the technology for a multiple input, multiple output production process can be rep-
resented in each time period by some known production function, this function can be
used as a basis for defining theoretical Malmquist volume and Malmquist TFPG in-
dexes. Malmquist indexes are introduced here, and then in the following subsection
we show conditions under which these theoretical Malmquist indexes can be evaluated
using the same information needed in order to evaluate the TFPG index numbers intro-
duced in Section 3.

Here as previously, we let yt
1 denote the amount of output 1 produced in period t

for t = 0, 1, . . . , T . Here we also let ỹt ≡ [yt
2, y

t
3, . . . , y

t
M ] denote the vector of other

outputs jointly produced in each period t along with output 1 using the vector of in-
put volumes xt ≡ [xt

1, x
t
2, . . . , x

t
N ]. Using these notational conventions, the production

44 In Figure 1, note that if the production function shifts were measured in absolute terms as differences in

the direction of the y axis, then these shifts would be given by y0∗ −y0 (at point A) and y1 −y1∗ (at point B).
If the shifts were measured in absolute terms as differences in the direction of the x axis, then the shifts would
be given by x0 − x0∗ (at point A) and x1∗ − x1 (at point B). An advantage of measuring TP (and TFPG)
using ratios is that the relative measures are invariant to changes in the units of measurement whereas the
differences are not.
45 In a regulated industry, increasing returns to scale is often the reason for the regulation. See Diewert
(1981b).
46 Solow’s (1957, p. 313) Chart I is similar, but his figure is for the simpler case of constant returns to scale.
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functions for output 1 in period s and t can be represented compactly as:

(6.2-1)ys
1 = f s

(
ỹs , xs

)
and yt

1 = f t
(
ỹt , xt

)
.

Three alternative Malmquist output volume indexes will be defined.47

The first Malmquist output index, αs , is the number which satisfies

(6.2-2)yt
1/α

s = f s
(
ỹt /αs, xs

)
.

This index is the number which just deflates the period t vector of outputs, yt ≡
[yt

1, y
t
2, . . . , y

t
M ], into an output vector yt/αs that can be produced with the period s

vector of inputs, xs , using the period s technology. Due to substitution, when the num-
ber of output goods, M , is greater than 1, then the hypothetical output volume vector
yt/αs will not usually be equal to the actual period s output vector, ys . However, with
only one output good, we have yt

1/α
s = f s(xs) = ys

1 and this Malmquist output index
reduces to αs = yt

1/y
s
1.

A second Malmquist output index, αt , is defined as the number which satisfies

(6.2-3)αtys
1 = f t

(
αt ỹs, xt

)
.

This index is the number that inflates the period s vector of outputs ys into αtys , an
output vector that can be produced with the period t vector of inputs xt using the period t

technology. The index αtys will not usually be equal to yt when there are multiple
outputs. However, when M = 1, then αtys

1 = f t (xt ) = yt
1 and αt = yt

1/y
s
1.

When there is no reason to prefer either the index αs or αt , we recommend taking the
geometric mean of these indexes. This is the third Malmquist index of output growth,
defined as

(6.2-4)α ≡ [
αsαt

]1/2
.

When there are only two output goods, the Malmquist output indexes αs and αt can be
illustrated as in Figure 2 for t = 1 and s = 0. The lower curved line represents the set of
outputs {(y1, y2, ): y1 = f 0(y2, x

0)} that can be produced with period 0 technology and
inputs. The higher curved line represents the set of outputs {(y1, y2, ): y1 = f 1(y2, x

1)}
that can be produced with period 1 technology and inputs. The period 1 output possi-
bilities set will generally be higher than the period 0 one for two reasons: (i) technical
progress and (ii) input growth.48 In Figure 2, the point α1y0 is the straight line projec-
tion of the period 0 output vector y0 = [y0

1 , y0
2 ] onto the period 1 output possibilities

47 These indexes correspond to the two output indexes defined in Caves, Christensen, and Diewert (1982b,
p. 1400) and referred to by them as Malmquist indexes because Malmquist (1953) proposed indexes similar
to these in concept, though his were for the consumer context. Indexes of this sort were subsequently defined
as well by Moorsteen (1961) and Hicks (1961, 1981, pp. 192 and 256) for the producer context. See also Balk
(1998, Chapter 4).
48 However, with technical regress, production would become less efficient in period 1 compared to period 0.
Also, if the utilization of inputs declined, then the period 1 output production possibilities set could lie below
the period 0 one.
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Figure 2. Alternative economic output indexes illustrated.

set, and y1/α0 = [y1
1/α0, y1

2/α0] is the straight line contraction of the output vector
y1 = [y1

1 , y1
2 ] onto the period 0 output possibilities set.

We now turn to the input side. A first Malmquist input index, βs , is defined as follows:

(6.2-5)ys
1 = f s

(
ỹs , xt /βs

) ≡ f s
(
ys

2, . . . , y
s
M, xt

1/β
s, . . . , xt

N/βs
)
.

This index measures input growth holding fixed the period s technology and output
vector. A second Malmquist input index, denoted by βt , is the solution to the following
equation

(6.2-6)yt
1 = f t

(
ỹt , βtxs

) ≡ f t
(
yt

2, . . . , y
t
M, βtxs

1, . . . , β
txs

N

)
.

This index measures input growth holding fixed the period t technology and output
vector.

When there is no reason to prefer βs to βt , we recommend a third Malmquist input
index:

(6.2-7)β ≡ [
βsβt

]1/2
.

Figure 3 illustrates the Malmquist indexes βs and βt for the case where there are just
two input goods and for t = 1 and s = 0.
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Figure 3. Alternative Malmquist input indexes illustrated.

The lower curved line in Figure 3 represents the set of inputs that are needed to pro-
duce the vector of outputs y0 using period 0 technology. This is the set {(x1, x2): y0

1 =
f 0(ỹ0, x1, x2)}. The higher curved line represents the set of inputs that are needed to
produce the period 1 vector of outputs y1 using period 1 technology. This is the set
{(x1, x2): y1

1 = f 1(ỹ1, x1, x2)}.49 The point β1x0 = [β1x0
1 , β1x0

2 ] is the straight line
projection of the input vector x0 ≡ [x0

1 , x0
2 ] onto the period 1 input requirements set.

The point x1/β0 ≡ [x1
1/β0, x1

2/β0] is the straight line contraction of the input vector
x1 ≡ [x1

1 , x1
2 ] onto the period 0 input requirements set.

Once theoretical Malmquist volume indexes have been defined that measure the
growth of total output and the growth of total input, then a Malmquist TFPG index
for the general N–M case can be defined too. The definition we recommend for the
Malmquist TFPG index is

(6.2-8)TFPGM ≡ α/β.

49 If technical progress were sufficiently positive or if output growth between the two periods were suffi-
ciently negative, then the period 1 input requirements set could lie below the period 0 input requirements
set.
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In the 1–1 case, expression (6.2-8) reduces to TFPG(2) as defined in expression (2.1-3),
which equals the single measure for TFPG for the 1–1 case.

6.3. Direct evaluation of Malmquist indexes for the N–M case

Using the exact index number approach, Caves, Christensen, and Diewert (1982b,
pp. 1395–1401) give conditions under which the Malmquist output and input volume
indexes α ≡ [αsαt ]1/2 and β ≡ [βsβt ]1/2 defined in (6.2-4) and (6.2-7) equal Törn-
qvist indexes. More specifically, Caves, Christensen, and Diewert give conditions under
which

(6.3-1)α = QT and

(6.3-2)β = Q∗
T ,

where QT is the Törnqvist output volume index and Q∗
T is the Törnqvist input volume

index. The assumptions required to derive (6.3-1) and (6.3-2) are, roughly speaking: (i)
price taking, revenue maximizing behavior, (ii) price taking, cost minimizing behavior,
and (iii) a translog technology. Under these assumptions, we can evaluate the theoret-
ical Malmquist measure TFPGM by taking the ratio of the Törnqvist output and input
volume indexes since we have

(6.3-3)TFPGM = α/β = QT /Q∗
T ≡ TFPGT .

The practical importance of (6.3-3) is that the Malmquist TFPG index can be evaluated
directly from observable prices and volumes without knowing the parameter values for
the true period specific production functions. This sort of result can be established as
well for other representations of the technology, as we show now.

An intuitive explanation for the remarkable equalities in (6.3-1) and (6.3-2) rests
on the following fact: if f (z) is a quadratic function, then we have f (zt ) − f (zs) =
(1/2)[∇f (zt )+∇f (zs)]T [zt − zs]. This result follows from applying Diewert’s (1976,
p. 118) Quadratic Approximation Lemma. Under the assumption of optimizing behavior
on the part of the producer, the vectors of first order partial derivatives, ∇f (zt ) and
∇f (zs), will be equal to or proportional to the observed prices. Thus the right-hand
side of the above identity becomes observable without econometric estimation.

Recall that the “best” productivity index from the axiomatic point of view is the
Fisher productivity index defined in (3.3-4) as

TFPGF ≡ QF /Q∗
F ,

with the Fisher output volume index QF defined by (3.2-3) and input volume index
Q∗

F defined by (3.2-6). Diewert (1992b, pp. 240–243) shows these Fisher indexes equal
Malmquist indexes when the firm’s output distance function over the relevant time span
has the functional form

dt (y, x) = σ t
[
yT Ay

(
xT Cx

)−1 + αt · yβt · x−1yT Btx−1]1/2
.
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Here superscript T denotes a transpose, the parameter matrices A and C are symmetric
and independent of time t , and the parameter vectors αt and βt and also the parameter
matrix Bt can depend on time. The vector x−1 is defined as consisting of components
that are the reciprocals of the components of the vector x of input volumes. The para-
meter matrices and vectors must also satisfy some additional restrictions that are listed
in Diewert (1992b, p. 241).

It should be noted that the above results do not rely on the assumption of constant
returns to scale in production. These results extend the concept of superlative index
numbers, which were originally defined under the assumption of constant returns to
scale. Also, the assumption of revenue maximizing behavior can be dropped if we know
the marginal costs in the two periods under consideration, in which case we could di-
rectly evaluate the Malmquist indexes. However, usually we do not know these marginal
costs.

In many respects, the Fisher TFPG index is the most attractive index formula.50 Nev-
ertheless, both the Fisher and the Törnqvist indexes should yield similar results.51 Both
are superlative index numbers. Diewert (1976, 1978b) established that all of the com-
monly used superlative index number formulas approximate each other to the second
order when each index is evaluated at an equal price and volume point.52 These ap-
proximation results, and also Diewert’s (1978b) result for the Paasche and Laspeyres
indexes, hold without the assumption of optimizing behavior and regardless of whether
the assumptions about the technology are true. These are findings of numerical rather
than economic analysis.

50 Recall that the Fisher TFPG index satisfies what we have termed the comparability over time ideal, as
shown in Subsections 3.3 and 3.4. For an index that satisfies this property, the aggregates that make up the
components are comparable for period s and t in the sense that the micro level volumes are aggregated using
the same price weights. Diewert (1992b) also shows that the Fisher index satisfies more of the traditional
index number axioms than any other formula considered.
51 See Diewert (1978b, p. 894).
52 The term superlative means that an index is exact for a flexible functional form. Since the Fisher and the
Törnqvist indexes are both superlative, they will both have the same first and second order partial derivatives
with respect to all arguments when the derivatives are evaluated at a point where the price and volume vectors
take on the same value for both period t and s. T.P. Hill (1993, p. 384) explains current accepted practice
as follows: “Thus economic theory suggests that, in general, a symmetric index that assigns equal weight
to the two situations being compared is to be preferred to either the Laspeyres or Paasche indices on their
own. The precise choice of superlative index – whether Fisher, Törnqvist or other superlative index – may
be of only secondary importance as all the symmetric indices are likely to approximate each other, and the
underlying theoretic index fairly closely, at least when the index number spread between the Laspeyres and
Paasche is not very great”. R.J. Hill (2006) showed that whereas the approximation result of Diewert (1978b)
which the remarks of T.P. Hill (1993) quoted above are based on and which have found their way into the
manuals of statistical agencies around the world do indeed apply to all of the commonly used superlative
indexes including the Fisher, Törnqvist, and implicit Törnqvist, the approximation can be poor for some other
superlative indexes.
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7. Cost function based measures

In this section, we define another set of theoretical output and input growth rate and
TFPG measures based on the true underlying cost function instead of the production
function as in Section 6. We give conditions under which these indexes equal the
Laspeyres and the Paasche indexes. For the two output case, we also show how the
Laspeyres and Paasche indexes relate to the Malmquist indexes defined in the previous
section.

The period t cost function given by ct (y1, y2, . . . , yM,w1, w2, . . . , wN) in (5-2)
is the minimum cost of producing the given volumes y1, y2, . . . , yM of the M

output goods using the input volumes x1, x2, . . . , xN purchased at the unit prices
w1, w2, . . . , wN and using the period t technology summarized by the production func-
tion constraint y1 = f t (y2, . . . , yM, x1, x2, . . . , xN). In this section, we assume that the
period s and t cost functions, cs and ct , are known and we examine theoretical output,
input and productivity indexes that can be defined using these cost functions.

Under the assumptions of perfect information and cost minimizing behavior on the
part of the production unit, the actual period t total cost equals the period t cost function
evaluated at the period t output volumes and input prices. Thus we have

(7-1)ct
(
yt , wt

) =
N∑

n=1

wt
nx

t
n ≡ wt · xt ≡ Ct .

(As in the above expression, weighted sums will sometimes be represented as inner
products of vectors in addition to, or as an alternative to, the summation sign represen-
tation.) The cost function in (7-1) is assumed to be differentiable with respect to the
components of the vector y at the point (yt , wt ). Under the assumed conditions, the ith
marginal cost for period t , denoted by mct

i , is given by

(7-2)mct
i ≡ ∂ct

(
yt , wt

)
/∂yi, i = 1, 2, . . . , M.

Marginal costs for period s are defined analogously.
Just as the output unit prices were used as weights for the period s and period t vol-

umes in the formulas for the Laspeyres and Paasche volume indexes given in Section 3,
here the marginal cost vectors, mcs and mct , are used to define theoretical Laspeyres
and Paasche type output and input volume indexes. These indexes are given by

(7-3)γL ≡ mcs · yt/mcs · ys and

(7-4)γP ≡ mct · yt/mct · ys.

When we have no reason to prefer γL over γP , we recommend using as a theoretical
measure of the output growth rate the geometric mean of γL and γP ; that is, we recom-
mend

(7-5)γ ≡ [γLγP ]1/2.
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Figure 4. Alternative price based theoretical output indexes.

With price taking, profit maximizing behavior, the observed output volume vector yt is
determined as the solution to the first order necessary conditions for the period t profit
maximization problem and economic theory implies that pt = mct . If this is the case,
then γL defined in (7-3) equals the usual Laspeyres output index, QL, defined in (3.2-2),
and γP defined in (7-4) equals the usual Paasche output index, QP , defined in (3.2-1).
Moreover, in this case, γ defined in (7-5) equals the Fisher output index, QF , defined
in (3.2-3).

With just two outputs and under the assumptions of price taking, profit maximizing
behavior, the differences between the new theoretical output indexes γP and γL and the
Malmquist output indexes α0 and α1 can be illustrated using Figure 4.

The lower curved line in Figure 4 is the period s = 0 output possibilities set,
{(y1, y2): y1 = f 0(y2, x

0)}. The higher curved line is the period t = 1 output pos-
sibilities set, {(y1, y2): y1 = f 1(y2, x

1)}. The straight line ending in D is tangent to the
period 0 output possibilities set at the observed period 0 output vector y0 ≡ [y0

1 , y0
2 ],

and the straight line ending in C is tangent to the period 1 output possibilities set at
the observed period 1 output vector y1 ≡ [y1

1 , y1
2 ]. The marginal costs for period 0 and

period 1 are denoted by mc0
i and mc1

i for outputs i = 1, 2. The tangent line through y0,
the output volume vector for period 0, has the slope −(mc0

1/mc0
2) and the tangent line
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through y1, the period 1 output volume vector, has the slope −(mc1
1/mc1

2). The straight
line ending in E passes through y1, and the straight line ending in F passes through
α1y0. Both of these lines are parallel to the line ending in D, which is the tangent to the
period 0 output possibility set at the point (y0

1 , y0
2). Similarly, the straight line ending

in A passes through y0, and is parallel to the straight line ending in B passes through
y1/α0, and both are parallel to the line ending in C,53 which is the tangent to the period 1
output possibility set at the point (y1

1 , y1
2).

For the theoretical output indexes defined above, we will always have γL =
OE/OD < OF/OD = α1 and γP = OC/OA > OC/OB = α0. Although the
four output indexes can be quite different in magnitude as illustrated in Figure 4, the
geometric average of γL and γP should be reasonably close to the geometric average
of α0 and α1. Moving to the input side, the theoretical input volume indexes are given
by54

(7-6)δL ≡ ct
(
yt , ws

)
/cs

(
ys, ws

)
and

(7-7)δP ≡ ct
(
yt , wt

)
/cs

(
ys, wt

)
.

In the case of two inputs and under the assumptions of price taking, profit maximizing
behavior, the differences between δL and δP on the one hand and the Malmquist indexes
βs and βt on the other hand can be illustrated as in Figure 5. The lower curved line is
the period s = 0 set of combinations of the two input factors that can be used to produce
y0 under f 0. The upper curved line is the period t = 1 set of input combinations that
can be used to produce y1 under f 1.

The straight line ending at the point E in Figure 5 is tangent to the input possibilities
curve for period 1 at the observed input vector x1 ≡ [x1

1 , x1
2 ]. This tangent line has

slope −(w1
1/w

1
2) and, by construction, the lines ending in A, B, and C have this same

slope. The line ending at point C passes through the period 0 observed input vector
x0 ≡ [x0

1 , x0
2 ]. The line ending at B passes through x1/β0 ≡ [x1

1/β0, x1
2/β0]. Finally,

the line ending at A is tangent to the period 0 input possibilities set.
Similarly, the straight line ending at the point D in Figure 5 is tangent to the period 0

input possibilities set at the point x0. The slope of this tangent line is −(w0
1/w

0
2) and,

by construction, the lines ending in F, G, and H have this same slope. The line ending
at H passes through x1. The line ending at G passes through β1x0 ≡ [β1x0

1 , β1x0
2 ], and

the line ending at F is tangent to the period 1 input possibilities curve. It can be shown
that δL = OF/OD < OG/OD = β1 and δP = OE/OA > OE/OB = β0.55

53 Note that the y1 intercept of a line with the slope of the relevant price ratio – i.e., the y1 intercept of a line
with the slope of the tangent to the designated production possibilities frontier – equals the revenue from the
designated output vector denominated in equivalent amounts of good 1.
54 If there is only one output and if cs = ct , then δL and δP reduce to indexes proposed by Allen (1949,
p. 199).
55 The tangency relation follows using Shephard’s (1953, p. 11) Lemma: x0

1 = ∂c0(y0, w0
1, w0

2)/∂w1 and

x0
2 = ∂c0(y0, w0

1, w0
2)/∂w2. Similarly, the fact that the tangent line ending at E has slope equal to w1

1/w1
2
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Figure 5. Alternative price based economic input indexes.

8. The Divisia approach

In discrete time approaches to productivity measurement, the price and volume data
are defined only for integer values of t , which denotes discrete unit time periods. In
contrast, in Divisia’s (1926, p. 40) approach, the price and volume variables are defined
as functions of continuous time.56 To emphasize the continuous time feature of the
Divisia approach, here the price and volume of output m at time t are denoted by pm(t)

and ym(t) and the price and volume of input n at time t are denoted by wn(t) and xn(t).
The price and volume functions are assumed to be differentiable with respect to time
over an interval of 0 � t � 1.

Revenue and cost can be represented as

(8-1)R(t) ≡
M∑

m=1

pm(t)ym(t)

follows from x1
1 = ∂c1(y1, w1

1, w1
2)/∂w1 and x1

2 = ∂c1(y1, w1
1, w1

2)/∂w2. Note that the x1 intercept of a

line with the slope of −(w0
1/w0

2), as is the case for the lines ending in D, F, G or H, or of a line with the slope

of −(w1
1/w1

2), as is the case for the lines ending in A, B, C or D, is equal to the cost of the stated input vector
denominated in units of input factor 1.
56 For more on the Divisia approach see Hulten (1973) and also Balk (2000).
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and

(8-2)C(t) ≡
N∑

n=1

wn(t)xn(t).

Differentiating both sides of (8-1) with respect to time and dividing by R(t), we obtain

(8-3)R′(t)/R(t) =
[

M∑
m=1

p′
m(t)ym(t) +

M∑
m=1

pm(t)y′
m(t)

]/
R(t)

=
M∑

m=1

[
p′

m(t)/pm(t)
][

pm(t)ym(t)/R(t)
]

+
M∑

m=1

[
y′
m(t)/ym(t)

][
pm(t)ym(t)/R(t)

]
(8-4)=

M∑
m=1

[
p′

m(t)/pm(t)
]
sR
m(t) +

M∑
m=1

[
y′
m(t)/ym(t)

]
sR
m(t),

where a prime denotes the time derivative of a function and sR
m(t) ≡ [pm(t)ym(t)]/R(t)

is the revenue share of output m at time t . R′(t)/R(t) represents the (percentage) rate
of change in revenue at time t .

The first set of terms on the right-hand side of (8-4) is a revenue share weighted sum
of the rates of growth in the prices. Divisia (1926, p. 40) defined the aggregate output
price growth rate to be57

(8-5)P ′(t)/P (t) ≡
M∑

m=1

[
p′

m(t)/pm(t)
]
sR
m(t).

The second set of terms on the right-hand side of (8-4) is a revenue share weighted
sum of the rates of growth for the volumes of the individual output products. Divisia
defined the aggregate output volume growth rate to be

(8-6)Y ′(t)/Y (t) ≡
M∑

m=1

[
y′
m(t)/ym(t)

]
sR
m(t).

Substituting (8-5) and (8-6) into (8-4) yields:

(8-7)R′(t)/R(t) = P ′(t)/P (t) + Y ′(t)/Y (t).

57 This is much like declaring the Törnqvist output index to be a measure of output price growth, since it is a
weighted aggregate of the growth rates for the prices of the individual output goods.
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In words, (8-7) says that the revenue growth at time t is equal to aggregate output price
growth plus aggregate output volume growth at time t . Equation (8-7) is the Divisia
index counterpart to the output side product test decomposition.

A decomposition similar to (8-7) can be derived in the same way for the (percentage)
rate of growth in cost at time t , C′(t)/C(t). Differentiating both sides of (8-2) with
respect to t and dividing both sides by C(t) yields

C′(t)/C(t) =
[

N∑
n=1

w′
n(t)xn(t) +

N∑
n=1

wn(t)x
′
n(t)

]/
C(t)

(8-8)=
N∑

n=1

[
w′

n(t)/wn(t)
]
sC
n (t) +

N∑
n=1

[
x′
n(t)/xn(t)

]
sC
n (t).

Here w′
n(t) is the rate of change of the nth input price, x′

n(t) is the rate of change of the
nth input volume, and sC

n (t) ≡ [wn(t)xn(t)]/C(t) is the input n share of total cost at
time t .

Let W(t) and X(t) denote the Divisia input price and input volume aggregates evalu-
ated at time t , where their proportional rates of change are defined by the two cost share
weighted sums of the rates of growth of the individual microeconomic input prices and
volumes:

(8-9)W ′(t)/W(t) ≡
N∑

n=1

[
w′

n(t)/wn(t)
]
sC
n (t) and

(8-10)X′(t)/X(t) ≡
N∑

n=1

[
x′
n(t)/xn(t)

]
sC
n (t).

Substituting (8-9) and (8-10) into (8-8) yields the following input side version of (8-7):

(8-11)C′(t)/C(t) = W ′(t)/W(t) + X′(t)/X(t).

In words, (8-11) says that the rate of growth in cost is equal to aggregate input price
growth plus aggregate input volume growth at time t . Equation (8-11) is the Divisia
index counterpart to the input side product test decomposition in the axiomatic approach
to index number theory.

The Divisia TFPG index can be defined as the Divisia measure for the aggregate out-
put volume growth rate, as given in (8-6), minus the Divisia measure for the aggregate
input volume growth rate, as given in (8-10)58:

(8-12)TFPG(t) ≡ [
Y ′(t)/Y (t)

] − [
X′(t)/X(t)

]
,

58 See Jorgenson and Griliches (1967, p. 252). Note that the Divisia productivity measure is defined as a
difference in rates of growth whereas our previous productivity definitions all involved taking a ratio of growth
rates. (Note that the log of a ratio equals the difference of the logs.)
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where Y ′(t)/Y (t) is given by (8-6) and X′(t)/X(t) is given by (8-10).59

A dual expression for TFPG can be derived under the additional assumption that costs
equal revenue at each point in time.60 In this case we have

(8-13)R′(t)/R(t) = C′(t)/C(t),

and hence the right-hand sides of (8-7) and (8-11) can be equated. Rearranging the
resulting equation and applying (8-12) yields:

TFPG(t) ≡ [
W ′(t)/W(t)

] − [
P ′(t)/P (t)

]
(8-14)= [

Y ′(t)/Y (t)
] − [

X′(t)/X(t)
]
.

Thus, under assumption (8-13), the Divisia TFPG measure equals the Divisia input price
growth rate minus the Divisia output price growth rate.

Continuous time formulations can be analytically convenient. Of course, to make
them operational for the production of index values, it is necessary to replace derivatives
by finite differences. The apparent precision of the Divisia approach vanishes when we
do this.61

9. Growth accounting

We begin in Section 9 by showing how the growth accounting framework is constructed
and its relationship to productivity growth measures and to the exact index number
approach. Productivity measures involve comparisons of output and input volume mea-
sures, where the volume data are usually derived (as is appropriate) by using price
information to transform value data. This same information can be reformulated in a
growth accounting framework.

Solow’s famous 1957 paper lays out the basics of the growth accounting approach.
We take this up in the following Subsection 9.1. We do not attempt to survey the vast
growth accounting literature;62 we seek only to establish the close relationship between
growth accounting and productivity measurement for nations.

We complete our brief treatment of growth accounting in Subsection 9.2 with an in-
troduction to the KLEMS approach and the EU KLEMS and World KLEMS initiatives.

59 For the one output, one input case when t = 0, we let Y (t) = y1(t) = y(t) and X(t) = x1(t) = x(t). In
order to operationalize the continuous time approach, we approximate the derivatives with finite differences
as Y ′(0) = y′(0) ∼= y(1) − y(0) = y1 − y0 and X′(0) = x′(0) ∼= x(1) − x(0) = x1 − x0. Substituting into
(8-12) yields TFPG(0) = [y′(0)/y(0)] − [x′(0)/x(0)], which is the Divisia approach counterpart to (2.1-3).
60 See Jorgenson and Griliches (1967, p. 252).
61 Diewert (1980a, pp. 444–446) shows that there are a wide variety of discrete time approximations to the
continuous time Divisia indexes. More recently, Balk (2000) shows how almost any bilateral index number
formula can be derived using some discrete approximation to the Divisia continuous time index. Also, as we
make the period of time shorter, price and volume data for purchases and sales become “lumpy” and it is
necessary to smooth out these lumps. There is no unique way of doing this smoothing.
62 Virtually all developments in growth accounting are relevant for productivity measurement, and vice versa.
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9.1. Solow’s 1957 paper

Solow begins with a production function:

(9.1-1)Y = F(K,L; t),

where Y denotes an output volume aggregate, K and L are aggregate measures for the
capital and labor inputs, and t denotes time. A host of index number and aggregation
issues are subsumed in the construction of the Y , K and L data series.63 Solow states
that the variable t “for time” appears in the production function F “to allow for techni-
cal change”. Having introduced t in this way, he goes on to state that this operational
definition in no way singles out the adoption of new production technologies. He notes
that “slowdowns, speed-ups, improvements in the education of the labor force, and all
sorts of things will appear as ‘technical change’ ”.

Solow suggests that we measure technical change by shifts in output associated with
the passage of time that are unexplained by increases in expenditures on factor inputs
(capital and labor) with all marginal rates of substitution unchanged. This definition of
technical change has obvious deficiencies. New technologies are often incorporated into
new machinery and new business processes. Solow and others recognized this issue, and
a large literature has developed on embodied technical change. However, here we use
the original 1957 Solow model because it is a convenient framework for introducing
growth accounting, and also for showing how productivity measurement for nations
and growth accounting are related. Since Solow assumes that technological change is
Hicks neutral in his 1957 paper, the production function in (9.1-1) can be rewritten as

(9.1-2)Y = A(t) · f (K,L).

That is, the production function can be decomposed into a time varying multiplicative
technical change term and an atemporal production function.64 The multiplicative fac-
tor, A(t), represents the effects of shifts over time after controlling for the growth of K

and L.
Solow’s 1957 study represented a reconciliation of the forecasting results for early

estimated aggregate production functions with direct measures of the growth of aggre-
gate product. Abramovitz (1956) had previously compared a weighted sum of labor and
capital inputs with a measure of total output and had concluded that to reconcile these,

63 Some studies such as Hall (1990) essentially treat the economy of a nation as though it produced the
single output of income or GDP. However, from one time period to another (or one nation to another) the
product mix that makes up national output can shift. See Diewert, Nakajima, A. Nakamura, E. Nakamura and
M. Nakamura (2007) – DN4 for short.
64 Solow’s recommendations in his 1957 paper encouraged other researchers to be interested in measuring
efficiency improvement in their econometric studies by the ratio of period t and period s efficiency parameters,
with the production function for each period specified as the product of a time varying efficiency parameter
and an atemporal production function f .
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it was necessary to invoke a positive role for technical progress over time. He recom-
mended using time itself as a proxy for productivity improvements. Still earlier, in a
1942 German article, Tinbergen made use of an aggregate production function that in-
corporated a time trend. His stated purpose in doing this was to capture changes over
time in productive efficiency.

In his 1957 paper, Solow re-formulates the output and capital input variables as
(Y/L) = y and (K/L) = k. Notice that y is output per unit of labor input: a labor
productivity index.65 He specifies that the production function is homogeneous of de-
gree one (thereby assuming constant returns to scale), and that capital and labor are paid
their marginal products so that total revenue equals the sum of all factor costs.

Making use of the Divisia methodology, Solow arrives at the following growth ac-
counting equation66:

(9.1-3)ẏ/y = (Ȧ/A) + sK(k̇/k),

where the dots over variables denote time derivatives, and sK stands for the national
income share of capital.67 Solow approximates the term (Ȧ/A) in (9.1-3) by (	A/A).
He uses similar discrete approximations for the other variables, and rearranges terms to
obtain

(9.1-4)(	A/A) = (	y/y) − sk(	k/k).

Solow then produces values for A(t) for the years of 1910 through 1949 by setting
A(1909) = 1 and using the formula A(t + 1) = A(t)[1 + 	A(t)/A(t)].

Solow computes his productivity growth values – the values for (	A/A) – using
index number rather than econometric methods. The correspondence he establishes be-
tween the functional form he assumes for the production function and this productivity
growth measure is an application of the exact approach to index numbers (outlined in
Section 5).

The growth accounting literature grew phenomenally from 1957 on. The methodol-
ogy was extended and applied in large scale empirical studies by Griliches (1960, 1963),
Denison (1967) and Kendrick (1973, 1976, 1977) and by Dale W. Jorgenson and his col-
leagues. In his Presidential Address delivered at the one-hundred tenth meeting of the
American Economic Association, Harberger (1998, p. 1) describes growth accounting
as an important success story for the economics profession, and asserts that the work of
Jorgenson and Griliches (1967), Jorgenson, Gollop and Fraumeni (1987), and Jorgenson
(1995a, 1995b) has carried growth accounting to the level of a “high art”.

65 If L is measured as an aggregate of hours for different types of labor weighted by their respective average
wages, then this is a wage weighted hours labor productivity measure, as defined in (2.3-4). If L is total
(unweighted) hours of work, then y is hours labor productivity, as defined in (2.3-5) in Section 2, whereas if
L is measured as the number of workers, then y is worker based labor productivity defined in (2.3-6).
66 The Divisia productivity index, defined by (8-12) in Section 8 of our paper, was related to measures of
production function shift by Solow (1957) for the two input, one output case, and by Jorgenson and Griliches
(1967) for the general N input, M output case.
67 Solow assumes that all factor inputs can be classified as capital or labor; hence sL = 1− sK is the national
income share of labor.
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9.2. Intermediate goods and the KLEMS approach

We come now to the question of how intermediate goods should be treated. Not all
current period production in a nation is for final demand. Many firms sell some or all of
their output to other firms as intermediate inputs. For example, increasing numbers of
firms are outsourcing business services such as call center and accounting operations.
Some of the outsourcing takes place with other firms in the same nation, but increasing
amounts are with firms in other nations (the so-called “off shoring”).

Output can be measured as value added, or as gross output. GNP and GDP are both
value added measures, despite the fact that these terms begin with the word “gross”.
GNP and GDP are value added measures because they exclude intermediate inputs (i.e.,
they exclude produced and purchased energy and goods and services used in the pro-
duction of final demand products). In contrast, a gross output measure includes the
intermediate products. Either a value added or a gross output measure can be used in a
growth accounting study and in specifying any of the productivity measures that have
been discussed in previous sections, but the results will differ depending on this choice.

The difference between the two output concepts is less pronounced at the national
level than it is at the sectoral or industry level. At the aggregate level, gross output
and value added measures differ only to the extent that intermediate inputs are part of
international trade.68

However, for the economy of a nation as a whole, changes in intermediate input us-
age can have productivity impacts (using either a gross or value added output measure).
Research efforts to understand productivity impacts with their origin in intermediate
product usage will be hampered if we do not have data on these inputs. For example,
there can still be ongoing substitution effects between factor inputs such as labor and
intermediate inputs, especially including business services through outsourcing and off
shoring.69 Also, modern productivity improvement techniques are aimed at improving
the efficiency with which both intermediate and primary inputs are used. For example, in
the manufacturing sector, just-in-time production, statistical process control, computer-
aided design and manufacturing, and other such processes reduce error rates and cut
down on sub-standard rejected production. In so doing, they reduce the wastage of ma-
terials as well as workers’ time. Such efficiencies should probably be taken into account
in measuring productivity growth.

An advantage of gross output measures is that they acknowledge and allow for in-
termediate inputs as a source of industry growth. In this sense, they provide a more
complete picture of the production process [Sichel (2001, p. 7)]. It is true that the
net productivity measures based on value added reflect savings in intermediate inputs

68 At the industry or sector level, intermediate usage tends to be a much higher proportion of gross output.
See Hulten (1978).
69 This is demonstrated, for instance, by Gullickson and Harper (1999). Price and output measurement in
many areas of business services are problematical, including core banking services. See Wang and Basu
(2007).
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because real value added per unit of primary input rises when unit requirements for
intermediate inputs are reduced, but the effect is not explicit. Gross output-based mea-
sures explicitly indicate the contribution of savings in intermediate inputs. The deflation
of gross output is conceptually straightforward too. An index of the nominal value of
output is divided by an output price index to derive a volume index of gross output.

The deflation of value added output is complex. It involves double deflation because
the volume change for value added combines the volume change of gross output and
intermediate inputs. The term ‘double’ indicates that both production and intermediate
inputs must be deflated in order to measure changes in the real output attributable to the
factors of production in an industry.

Since value added is defined as the difference between separately deflated gross
output and intermediate inputs, the use of value added as a measure of output in produc-
tivity studies imposes restrictions on the generality of the model of producer behaviour
and on the role of technological change [see Diewert (1980b)]. The implied model of
sectoral production does not allow for substitution possibilities between the elements
of the value added function (capital and labor) and intermediate inputs. For example,
it assumes that price changes in intermediate inputs do not influence the relative use
of capital and labor. It restricts the role of technological change by assuming that such
change only affects the usage of capital and labor.

With appropriate treatment of intermediate inputs, a mutually consistent set of es-
timates can be obtained at each level of economic activity. This is one objective of
the KLEMS (capital, labor, energy, materials and services) approach. This approach is
important because consistent aggregation is necessary to answer questions about the
contribution of individual industries to overall national economic growth and produc-
tivity growth.

Jorgenson, Gollop and Fraumeni (1987) were the first scholars to work out and apply
the basic KLEM methodology for a detailed industry analysis of productivity growth in
the post-war US economy.70

The primary aim of the European KLEMS (EU KLEMS) project is to arrive at an
internationally comparable dataset for a KLEMS-type analysis of productivity growth
for European countries. Originally there were eight participating nations – Denmark,
Finland, France, Germany, Italy, Netherlands, Spain and the United Kingdom – but the
list soon grew to more than 30.71 The World KLEM project, of which EU KLEM is the
first component, represents an international platform for national level research and data
collection efforts with a clear emphasis on the need for international comparability.

70 For more on the development of the KLEMS approach in the United States, see Dean and Harper (2000),
Gullickson (1995), and Gullickson and Harper (1999) and also Jorgenson (2001), Gollop (1979), and Gollop
and Jorgenson (1980, 1983).
71 In addition, the dataset, which includes the development of purchasing power parities, can be used for
other purposes such as the analysis of international competitiveness and investment opportunities. It can serve
as a base for further research into for example the impact of high-tech industries or human capital building
on economic growth and productivity change. For more information, and for free use of the EU KLEMS
database go to http://www.euklems.org/.

http://www.euklems.org/
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All of the productivity measures introduced in this paper can be recast in a KLEMS
formulation. TFP or MFP growth as measured by the value added method will sys-
tematically exceed the index values based on gross output by a factor equal to the
ratio of gross output to value added.72 Productivity in the gross output formulation
is Y/(E + M + L + K) where Y is gross output, E is energy, M is materials, L is
labor input and K is capital input. Productivity in the real value added framework is
roughly (Y − E − M)/(L + K). Given a productivity improvement of 	Y with all
inputs remaining constant, the gross output productivity growth rate is(

(Y + 	Y)/(K + L + E + M)
)/(

Y/(K + L + E + M)
)

(9.2-1)= (Y + 	Y)/Y = 1 + (	Y/Y ),

which is less than the real value added productivity growth rate of(
(Y + 	Y − E − M)/(K + L)

)/(
(Y − E − M)/(K + L)

)
(9.2-2)= 1 + (

	Y/(Y − E − M)
)
.

Thus, the smaller denominator in the value added productivity measure translates into
a larger productivity growth measure.73 Several studies have found that productivity
growth measured according to a value added model is greater than that derived from a
model that also takes intermediate inputs into account.74

Diewert (2002a) notes that industry estimates of output and intermediate input are
fragile in all countries due to the lack of adequate surveys on intermediate input flows
and in particular, of service flows between industries.

10. Improving the model

The basic framework for productivity measurement and growth accounting for nations
continues to be improved. Here we consider two of the areas of development: the spec-
ification of the measure of national output (Subsection 10.1), and efforts to relax the
assumption of constant returns to scale that has been a central feature of the conven-
tional productivity measurement and growth accounting framework (Subsection 10.2).

72 See Diewert (2002a, p. 46, endnote 21).
73 See also Schreyer (2001, p. 26).
74 For example, Oulton and O’Mahony (1994) show that the value added method produces estimates of MFP
growth for manufacturing in the United Kingdom that are roughly twice those given by the gross output
method. It is to be expected, of course, the sub-national level studies will be more affected by the choice of a
value added or gross output measure. For example, van der Wiel (1999) shows that MFP estimates for various
Dutch industries are much larger for the value added than for the gross output method.
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10.1. Different concepts of national product and income

Economists have long argued that net domestic product (NDP) is the proper measure of
national output for welfare analyses.75 Yet most studies of the economic strength of a
country use gross domestic product (or sometimes gross national product, GNP, as in
Solow’s 1957 paper) as “the” measure of output, as we did too in the previous sections
of this paper. The difficulty of devising satisfactory measures of depreciation is a key
reason for the dominance of the GDP and GNP measures.76 However, by deducting even
a very imperfect measure of depreciation (and obsolescence) from gross investment, we
could probably come closer to a measure of output that could be consumed period after
period without impairing future production possibilities.77

Each definition of net product gives rise to a corresponding definition of “income”.
In the economics literature, most of the discussion of alternative measures of net output
has been conducted in terms of alternative “income” measures, so here we follow the
literature and discuss alternative “income” measures rather than alternative measures of
“net product”. The key ideas can be understood by considering alternative income con-
cepts in a very simple two period (t = 0, 1) economy with only two goods: consumption
Ct with unit price pt

C and a durable capital input Kt . Net investment I t during period t

is defined as the end of the period capital stock, Kt , less the beginning of the period
capital stock, Kt−1: i.e., I t ≡ Kt − Kt−1.

Samuelson (1961, p. 45) used the Marshall (1890)–Haig (1921/1959) definition of in-
come as consumption plus the consumption equivalent of the increase in net wealth over
the period, and we follow his example in this regard. Nominal income in period 1 can
be represented as p1

CC1 + p1
I I

1 where I 1 can be defined as net investment in period 1.
Net investment can be redefined in terms of the difference between the beginning and

end of period 1 capital stocks. If we substitute this representation of net investment into
Samuelson’s definition of period 1 nominal income, we obtain the following definition
for period 1 nominal income:

Income A ≡ p1
CC1 + p1

I I
1 = p1

CC1 + p1
I

(
K1 − K0)

(10.1-1)= p1
CC1 + p1

IK
1 − p1

IK
0.

Here, the beginning and end of period capital stocks are valued at the same price, p1
I .

On conceptual grounds, it might be more reasonable to value the beginning of the
period capital stock at the beginning of the period opportunity cost of capital, p0

K , and

75 For a closed economy, there is no distinction between net domestic product (NDP) and net national product
(NNP), but the economies of countries like the United States, Canada and Japan are not closed, and the term
globalization that is often used in conjunction with commentaries on the way the world economic situation is
changing describes a condition of increasing openness.
76 On the treatment of depreciation effects in the US statistics, see Fraumeni (1997). See also Hulten and
Wykoff (1981a, 1981b). For a more current and international perspective and references, see T.P. Hill (2005).
This topic has long occupied economists. See, for example, Hotelling (1925).
77 This material is developed more fully in Diewert (2006d) and Diewert and Schreyer (2006b).
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the end of the period capital stock at the end of the period expected opportunity cost of
capital, p1

K . That is, perhaps we should replace p1
I in (10.1-1) by p1

K for the K1 portion
of I 1 = K1 − K0, and by p0

K , adjusted for the effects of inflation over the duration of
period 1, for the K0 portion.78 To adjust p0

K for inflation we could use either a capital
specific price index, denoted here by 1 + i0, or a general price index that is based on the
movement of consumer prices, denoted by 1 + ρ0:

(10.1-2)1 + i0 ≡ p1
K/p0

K or

(10.1-3)1 + ρ0 ≡ p1
C/p0

C.

These alternative adjustment factors lead to different measures of income from the per-
spective of the level of prices prevailing at the end of period 1:

(10.1-4)Income B ≡ p1
CC1 + p1

KK1 − (
1 + i0)p0

KK0,

(10.1-5)Income C ≡ p1
CC1 + p1

KK1 − (
1 + ρ0)p0

KK0.

Comparing (10.1-4) and (10.1-1), it is easily seen that Income B equals Income A.
Thus, for a measure of output, we are left with the options of choosing between In-
come A, which is adjusted for (i.e., net of) wear and tear,79 and Income C, which is
adjusted for wear and tear and also anticipated revaluation,80 or of sticking with a gross
output measure.

The “traditional” user cost of capital (which approximates a market rental rate for
the services of a capital input for the accounting period), u1, consists of three additive
terms:

(10.1-6)u1 = U1 + D1 + R1,

where U1 denotes the reward for waiting (an interest rate term), D1 denotes the cross
sectional depreciation term (the wear and tear depreciation term), and R1 is the antici-
pated revaluation term which can be interpreted as an obsolescence charge if the asset
is anticipated to fall in price over the accounting period. The gross output income con-
cept corresponds to the traditional user cost term u1. This gross income measure can
be used as an approximate indicator of short run production potential, but it is not suit-
able for use as an indicator of sustainable consumption. For an indicator of sustainable
consumption, income concept A or C is more appropriate.

Expressed in words, for Income A, we take the wear and tear component of
the traditional user cost, D1, times the beginning of period corresponding capi-
tal stock, K0, out of the primary input category and treat this as a negative off-
set to the period’s gross investment. Diewert (2006d) suggests that the Income A

78 In order to simplify our algebra, we will assume that it is not necessary to adjust p1
C

into an end of period 1
price.
79 We can associate this income concept with Marshall (1890), Haig (1921/1959), Pigou (1941) and
Samuelson (1961). On machine replacement issues, see, for example, Cooper and Haltiwanger (1993).
80 We can associate this income concept with Hayek (1941), Sterling (1975) and T.P. Hill (2000).
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concept can be interpreted as a maintenance of physical capital approach to in-
come measurement. In terms of the Austrian production model favored by Hicks
(1939, 1940, 1942, 1946, 1961, 1973) and by Edwards and Bell (1961), capital at
the beginning and end of the period (K0and K1, respectively) should both be val-
ued at the end of period stock price for a unit of capital, p1

K , and the contribution
of capital accumulation to current period income is simply the difference between
the end of period value of the capital stock and the beginning of the period value
(at end of period prices), p1

KK1 − p1
KK0. This difference between end and begin-

ning of period values for the capital stock can be converted into consumption equiv-
alents and then can be added to actual period 1 consumption in order to obtain In-
come A.

Income C can be computed by subtracting from gross output both wear and tear
depreciation, D1K0, and the revaluation term, R1K0, and treating both of these terms
as negative offsets to the period’s gross investment.81 Diewert (2006d) terms this a
maintenance of real financial capital approach to income measurement.

In the Austrian production model tradition followed by Hicks (1961) and Edwards
and Bell (1961), capital stocks at the beginning and end of the period should be valued
at the prices prevailing at the beginning and the end of the period,82 p0

K and p1
K respec-

tively, and then these beginning and end of period values of the capital stock should be
converted into consumption equivalents (at the prices prevailing at the beginning and
end of the period). Thus the end of the period value of the capital stock is p1

KK1 and
this value can be converted into consumption equivalents at the consumption prices pre-
vailing at the end of the period. The beginning of the period value of the capital stock is
p0

KK0. To convert this value into consumption equivalents at end of period prices, we
must multiply this value by (1 + ρ0), which is one plus the rate of consumer price in-
flation over the period. This price level adjusted difference between end and beginning
of period values for the capital stock, p1

KK1 − (1 + ρ0)p0
KK0, can be converted into

consumption equivalents and then can be added to actual period 1 consumption in order
to obtain Income C.

The difference between Income A and Income C can be viewed as follows. Income A
(asymmetrically) uses the end of period stock price of capital to value both the beginning
and end of period capital stocks and then converts the resulting difference in values into
consumption equivalents at the prices prevailing at the end of the period. In contrast,
Income C symmetrically values beginning and end of period capital stocks at the stock
prices prevailing at the beginning and end of the period and directly converts these
values into consumption equivalents and then adds the difference in these consumption
equivalents to actual consumption.

81 The resulting Income 3 can be interpreted to be consistent with the position of Hayek (1941), Sterling
(1975) and T.P. Hill (2000).
82 Strictly speaking, the end of period price is an expected end of period price.



Ch. 66: The Measurement of Productivity for Nations 4555

In symbols, the difference between income concepts A and C is as follows:

Income A − Income C

= p1
CC1 + p1

IK
1 − p1

IK
0 − [

p1
CC1 + p1

KK1 − (
1 + ρ0)p0

KK0]
(10.1-7)= (

ρ0 − i0)p0
KK0.

If ρ0 (the general consumer price inflation rate) is greater than i0 (the asset inflation
rate) over the course of the period, then there is a negative real revaluation effect (so
that obsolescence effects dominate). In this case, Income C will be less than Income A,
reflecting the fact that capital stocks have become less valuable (in terms of consumption
equivalents) over the course of the period. If ρ0 is less than i0 over the course of the
period, then the real revaluation effect is positive (so that capital stocks have become
more valuable over the period). In this case, Income C exceeds Income A, reflecting the
fact that capital stocks have become more valuable over the course of the period and
this real increase in value contributes to an increase in the period’s income which is not
reflected in Income A.

Both Income A and Income C have reasonable justifications. Choosing between them
is not a straightforward matter. Income A is easier to justify to national income accoun-
tants because it relies on the standard production function model. However, we lean
towards Income C over Income A for three reasons: (i) It seems to us that (expected)
obsolescence charges are entirely similar to normal depreciation charges and Income C
reflects this similarity. (ii) In contrast to Income A, Income C does not value the begin-
ning and end of period value of the capital stock in an asymmetric manner. And (iii) it
seems to us that waiting services (U1K0) along with labor services and land rents are
natural primary inputs whereas depreciation and revaluation services (D1K0 and R1K0,
respectively) are more naturally regarded as intermediate input charges.83

10.2. Relaxing the constant returns to scale assumption

There has also been strong and persistent interest in finding theoretically palatable and
empirically feasible ways to relax the assumption of constant returns to scale in the
growth accounting and productivity measurement literatures. Denny, Fuss and Waver-
man (1981, pp. 196–199) relate the Divisia TFP measure, given in Section 8 by (8-12),
to shifts in the cost function without making the assumption of constant returns to scale.
Here we summarize the analysis of Denny, Fuss and Waverman using slightly different
notation than they did.

Our discussion of Divisia indexes in Section 8 made no mention of cost minimizing
behavior. In contrast, the approach of Denny, Fuss and Waverman requires us to assume

83 Income C is based on the Austrian model of production which has its roots in the work of Böhm-Bawerk
(1891), von Neumann (1937) and Malinvaud (1953) but these authors did not develop the user cost impli-
cations of the model. On the user cost implications of the Austrian model, see Hicks (1973, pp. 27–35) and
Diewert (1977, pp. 108–111, 1980a, pp. 472–474).
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that the productive unit continuously minimizes costs over the time period of interest:
0 � t � 1. The production unit’s cost function will be written here as c(y,w, t) to
emphasize the treatment of time as continuous, where y(t) ≡ [y1(t), . . . , yM(t)] de-
notes the vector of outputs and w(t) ≡ [w1(t), . . . , wN(t)] denotes the vector of input
prices.84 (The t variable in c(y,w, t) is viewed as representing the fact that the cost
function is continuously changing due to technical progress.) Under the assumption of
cost minimizing behavior, for 0 � t � 1, we have

(10.2-1)C(t) ≡
N∑

n=1

wn(t)xn(t) = c
[
y(t), w(t), t

]
.

We define the continuous time technical progress measure as minus the (percentage)
rate of increase in cost at time t :

(10.2-2)TP(t) ≡ −{
∂c

[
y(t), w(t), t

]
/∂t

}
/c

[
y(t), w(t), t

]
.

Shephard’s (1953, p. 11) Lemma implies that the partial derivative of the cost function
with respect to the nth input price equals the cost minimizing demand for input n, given
by

(10.2-3)xn(t) = ∂c
[
y(t), w(t), t

]
/∂wn, n = 1, 2, . . . , N.

Differentiating both sides of (10.2-1) with respect to t , dividing both sides of the result-
ing equation by C(t), and using (10.2-2) and (10.2-3), we obtain

C′(t)/C(t) ≡
M∑

m=1

{
∂c

[
y(t), w(t), t

]
/∂ym

}[
y′
m(t)/C(t)

]
+

N∑
n=1

xn(t)
[
w′

n(t)/C(t)
] − TP(t)

(10.2-4)

=
M∑

m=1

εm(t)
[
y′
m(t)/ym(t)

] +
N∑

n=1

sC
n (t)

[
w′

n(t)/wn(t)
] − TP(t),

where

εm(t) ≡ {
∂c

[
y(t), w(t), t

]
/∂ym

}/{
c
[
y(t), w(t), t

]
/ym(t)

}
is the elasticity of cost with respect to the mth output volume and

sC
n (t) ≡ [

wn(t)xn(t)
]
/C(t)

is the nth input cost share.

84 To reconcile the notation used here with the notation used in Sections 2–8, note that

c0(
y0, w0) = c

[
y(0), w(0), 0

]
and c1(

y1, w1) = c
[
y(1), w(1), 1

]
with y(t) ≡ yt and w(t) ≡ wt for t = 0, 1.



Ch. 66: The Measurement of Productivity for Nations 4557

Denny, Fuss and Waverman (1981, p. 196) define the rate of change of the continuous
time output aggregate, Q(t), as follows:

(10.2-5)Q′(t)/Q(t) ≡
M∑

m=1

εm(t)
[
y′
m(t)/ym(t)

]/ M∑
i=1

εi(t).

Recall that the Divisia expression for the output growth rate given in (8-6) weights the
individual output growth rates, y ′

m(t)/ym(t), by the revenue shares, sR
m(t). Alternatively,

in (10.2-5), y′
m(t)/ym(t) is weighted by the mth cost elasticity share, εm(t)/

∑M
i=1 εi(t).

It can be shown that
∑M

i=1 εi(t) is the percentage increase in cost due to a one percent
increase in scale for each output.85 We define the reciprocal of this sum to be a measure
of (local) returns to scale:

(10.2-6)RS(t) ≡
[

M∑
i=1

εi(t)

]−1

.

Now equate the right-hand side of (8-11) to the right-hand side of (10.2-4). Using (8-9),
(10.2-5), and (10.2-6), we obtain the following decomposition of the technical progress
measure in terms of returns to scale, output growth and input growth:

(10.2-7)TP(t) = [
RS(t)

]−1[
Q′(t)/Q(t)

] − [
X′(t)/X(t)

]
.

In order to relate the technical progress measure TP(t) defined by (10.2-7) to the Di-
visia productivity measure TFPG(t) defined by (8-12), we use Equation (8-12) to solve
for X′(t)/X(t) = [Y ′(t)/Y (t)] − TFPG(t) and then solve for X′(t)/X(t). Equating
these two expressions for X′(t)/X(t) and rearranging terms yields

(10.2-8)TFPG(t) = [
Y ′(t)/Y (t)

] − [
RS(t)

]−1[
Q′(t)/Q(t)

] + TP(t)

= TP(t) + {
Q′(t)/Q(t)

}{
1 − [

RS(t)
]−1}

(10.2-9)+ {[
Y ′(t)/Y (t)

] − [
Q′(t)/Q(t)

]}
.

Equation (10.2-8) is due to Denny, Fuss, and Waverman (1981, p. 197). This equation
says that the Divisia productivity index equals the technical progress measure TP(t) plus

85 The elasticity of cost with respect to a scale variable k is defined as {1/c[y(t), w(t), t]} times the following
derivative evaluated at k = 1:

∂c
[
ky(t), w(t), t

]
/∂k =

M∑
m=1

ym(t)∂c
(
y(t), w(t), t

)
/∂ym = c

[
y(t), w(t), t

] M∑
m=1

εm(t),

where the last equality follows from the definition of εm(t) below (10.2-4). Therefore, the elasticity of cost
with respect to scale equals

{
1/c

[
y(t), w(t), t

]}{
c
[
y(t), w(t), y

]} M∑
m=1

εm(t) =
M∑

m=1

εm(t).
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the marginal cost weighted output growth index, Q′(t)/Q(t), times a term that depends
on the returns to scale term, {1 − [RS(t)]−1}, and that will be positive if and only if the
local returns to scale measure RS(t) is greater than 1, plus the difference between the
Divisia output growth index, Y ′(t)/Y (t), and the marginal cost weighted output growth
index, Q′(t)/Q(t).

Denny, Fuss, and Waverman (1981, p. 197) interpret the term Y ′(t)/Y (t) −
Q′(t)/Q(t) as the effect on TFPG of nonmarginal cost pricing of a nonproportional
variety. Their argument goes like this. Suppose that the mth marginal cost is propor-
tional to the period t selling price pm(t) for m = 1, 2, . . . ,M . Let the common factor
of proportionality be λ(t). Then we have:

(10.2-10)∂c
[
y(t), w(t), t

]
/∂ym = λ(t)pm(t), m = 1, 2, . . . ,M.

Using (10.2-10) together with the definitions of εm(t) and sR
m(t), we find that

(10.2-11)εm(t) = sR
m(t)λ(t)R(t)/C(t), m = 1, 2, . . . ,M.

Substituting (10.2-11) into (10.2-4) and using (8-6) yields

(10.2-12)Y ′(t)/Y (t) = Q′(t)/Q(t).

If marginal costs are proportional to output prices86 so that (10.2-10) holds, then the
term Y ′(t)/Y (t) − Q′(t)/Q(t) vanishes from (10.2-9).87 This approach provides a
continuous time counterpart to the economic approaches to productivity measurement
developed in previous sections.

Since the 1981 Denny–Fuss–Waverman paper was published, many others have
worked on finding empirically tractable ways of treating nonconstant returns to scale
in growth accounting and productivity analysis, and on dealing with the associated is-
sue of imperfect markets and markups.

The traditional approach to estimating returns to scale is to define the elasticity of
scale in the context of a producer behavioral relationship, and then estimate that pa-
rameter along with all the others for the behavioral relationship. This approach tends
to be plagued by degrees of freedom and multicollinearity problems. Building on the
original results of Yoshioka, Nakajima and M. Nakamura (1994) in a 2007 paper, Diew-
ert, Nakajima, A. Nakamura, E. Nakamura and M. Nakamura (DN4 for short) extend

86 It can be shown that if the firm (i) maximizes revenues holding constant its utilization of inputs and (ii)
minimizes costs holding constant its production of outputs, then marginal costs will be proportional to output
prices; i.e., we obtain pt /pt · yt = mct /mct · yt . Hence prices in period t , pt , are proportional to mar-
ginal costs, mct . Note that assumptions (i) and (ii) above are weaker than the assumption of overall profit
maximizing behavior.
87 Note also that if there is only one output good, then this will automatically hold. In this case, (10.2-9) can
be rewritten as TFPG(t) = TP(t)+[1− (1/ RS(t))]+[Y ′(t)/Y (t)]. This expression is analogous to Equation
(6.1-11) where, for the one input, one output case, we decomposed TFPG into the product of a technical
progress term and a returns to scale term. In both of these equations, if output growth is positive and returns
to scale are greater than one, then productivity will exceed technical progress.
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and apply what they term a semi exact estimation approach.88 In this approach, exact
index number methods are used to greatly reduce the number of other parameters that
must be estimated along with the elasticity of scale. This stream of work can be viewed
as a generalization of the basic theoretical results of Diewert (1976, Lemma 2.2, equa-
tions (2.11) and Theorem 2.16), the material on noncompetitive approaches in Diewert
(1978b) and additional results in Diewert (1981a, including Section 7 results on the
treatment of mark-ups).

The technology of a production unit can be represented by a production, revenue
or cost function. Technical progress can be conceptualized as a shift in the specified
producer behavioral relationship, and returns to scale can be defined as a change in scale
with the technology held fixed. Building on the work of Panzer (1989), Hall (1990) and
Klette and Griliches (1996), DN4 draw attention to the fact that production, cost and
revenue function based definitions of the elasticity of scale differ conceptually and are
suitable for different sorts of production situations. These issues must be faced whether
a traditional or a semi exact econometric approach is adopted.89

In the production function framework, returns to scale are defined as the percentage
change in the output quantity in response to a one percent increase in each of the N

input quantities. A production function framework is suitable when there is just one
output, or with multiple outputs produced in fixed proportions. However, when there
are multiple outputs that can be produced in varying proportions, a revenue or cost
function framework may be more suitable.

When a revenue function is used to characterize the technology of the designated
production unit, a measure of the elasticity of returns to scale for a multiple output,
multiple input production unit can be defined conceptually as the percentage change in
revenue due to a one percent increase in each of the input quantities. This definition of
returns to scale seems problematic because most of the sources of what is referred to
as returns to scale in the business and public policy literatures involve changes in input
mix as the scale of production increases. This is the same reason why the definition of
the elasticity of scale used in the data envelopment literature is problematic. According
to that approach, the returns to scale measure is defined as the equiproportionate change
in outputs resulting from an equiproportionate change in inputs. There is virtually no
real life change in scale that does not involve changes in the input or in the output

88 In Yoshioka, Nakajima and M. Nakamura (1994), Nakajima, M. Nakamura and Yoshioka (1998, 2001)
and in a 2006 Nakajima, A. Nakamura, E. Nakamura and M. Nakamura (N4 for short) present an estimator
for the elasticity of scale for a production process with multiple inputs but only one output. DN4 extend
this approach to allow for multiple outputs, but with the assumption of competitive output markets and price
taking behavior in these markets. Diewert and Fox (2004) generalize the approach to allow for limited types
of imperfect competition and markups in output markets, building as well on Berndt and Fuss (1986), Hall
(1990) and Basu and Fernald (1997). Imperfect competition in output markets is allowed for in the Hall
(1990), Bartelsman (1995), and Basu–Fernald studies, but with only a single output.
89 Other related work includes Fox (2007), Schreyer (2007), N4, Diewert and Lawrence (2005), Inklaar
(2006), Balk (1998, 2001, 2003), Bartelsman (1995), Basu and Fernald (1997), Hall (1990), Morrison and
Siegel (1997), and M.I. Nadiri and B. Nadiri (1999).
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mix: indeed, anticipated mix changes are typically a reason for a production unit (like a
nation) to strive to grow.

A cost function, like a revenue function, can be used to characterize a multi input,
multi output production unit’s technology. A cost function based measure of returns to
scale implies a conceptually more appealing definition of returns to scale: the percent-
age change in cost due to a one percent increase in all output quantities. Furthermore,
Diewert and Fox (2004) show that a cost function based measure of returns to scale can
accommodate certain (albeit restrictive) departures from the assumption of perfectly
competitive output markets. Using a cost function framework, a reciprocal form cost
function based measure of the elasticity of scale is defined as the percentage change in
cost due to a one percent increase in each of the output quantities, controlling for price
changes.

11. Diewert–Kohli–Morrison (DKM) revenue function based productivity
measures

Decompositions of a volume index number measure of overall growth into individ-
ual component sources of growth are not new; what is new are decompositions that
have explicit economic interpretations. Diewert and Morrison (1986) obtain this type
of economic decomposition for the Törnqvist volume index.90 The full potential of
these decompositions has only lately begun to be recognized by economists and statis-
ticians.

In Section 5, we used the period t production function f t to define the period t cost
function, ct . The period t production function can also be used to define the period t

(net) revenue function:

(11-1)rt (p, x) ≡ max
y

{
p · y: y ≡ (y1, y2, . . . , yM); y1 = f t (y2, . . . , yM ; x)

}
,

where p ≡ (p1, . . . , pM) is the output price vector that the producer faces and x ≡
(x1, . . . , xN) is the input vector.91 Diewert and Morrison (1986) use revenue functions
for period t and the comparison period s to define a family of theoretical productivity
growth indexes:

(11-2)RG(p, x) ≡ rt (p, x)/rs(p, x).

90 The same decomposition was independently derived by Kohli (1990). Diewert (2002c) obtained an anal-
ogous economic decomposition for the Fisher formula. Related material on decompositions can be found in
Balk and Hoogenboom-Spijker (2003) and Diewert and Nakamura (2003).
91 If ym is positive (negative), then the net volume m is for an output (input). We assume that all prices pm

are positive. We assume that all input volumes xn are positive and if the net input volume for product n is an
input (output) volume, then wn is positive (negative).
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This index is the ratio of the net value of the output that can be produced using the
period t versus the period s technology with input volumes held constant at some ref-
erence net input volume vector x and with prices held constant at some reference unit
price vector, p. This is a different approach to the problem of controlling for total factor
input utilization in judging the success of the period t versus the period s production
outcomes.

Two special cases of (11-2) are of interest:

RGs ≡ RG
(
ps, xs

) = rt
(
ps, xs

)
/rs

(
ps, xs

)
and

(11-3)RGt ≡ RG
(
pt , xt

) = rt
(
pt , xt

)
/rs

(
pt , xt

)
.

The first of these, RGs , is the theoretical productivity index obtained by letting the
reference vectors p and x take on the observed period s values. The second of these,
RGt , is the theoretical productivity index obtained by letting the reference vectors be
the observed period t output price vector pt and input volume vector xt .92

Under the assumption of revenue maximizing behavior in both periods, we have:

(11-4)pt · yt = rt
(
pt , xt

)
and ps · ys = rs

(
ps, xs

)
.

If these equalities hold, this means we observe values for the denominator of RGs and
the numerator of RGt . However, we cannot directly observe the hypothetical terms,
rt (ps, xs) and rs(pt , xt ). The first of these is the revenue that would result from using
the period t technology with the period s input volumes and output prices. The second
is the revenue that would result from using the period s technology with the period t

input volumes and output prices.
These hypothetical revenue figures can be inferred from observable data if we know

the functional form for the period t revenue function and it is associated with an index
number formula that can be evaluated with the observable data. Suppose, for example,
that the revenue function has the following translog functional form:

ln rt (p, x) ≡ αt
s +

M∑
m=1

αt
m ln pm +

N∑
n=1

βt
n ln xn + (1/2)

M∑
m=1

M∑
j=1

αmj ln pm ln pj

(11-5)+ (1/2)

N∑
n=1

N∑
j=1

βnj ln xn ln xj +
M∑

m=1

N∑
n=1

γmn ln pm ln xn,

where αmj = αjm and βnj = βjn and the parameters satisfy various other restrictions to
ensure that rt (p, x) is linearly homogeneous in the components of the price vector p. 93

92 This approach can be viewed as an extension to the general N–M case of the methodology used in defining
the output based measures of technical progress given in (6.1-7) and (6.1-8).
93 These conditions can be found in Diewert (1974a, p. 139). The derivation of (6.3-1) and (6.3-2) also
required the assumption of a translog technology.
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Note that the coefficient vectors αt
0, α

t
m and βt

n can be different in each time period but
that the quadratic coefficients are assumed to be constant over time.

Diewert and Morrison (1986, p. 663) show that under the above assumptions, the
geometric mean of the two theoretical productivity indexes defined in (11-3) can be
identified using the observable price and volume data that pertain to the two periods;
i.e., we have

(11-6)
[
RGs RGt

]1/2 = a/(bc),

where a, b and c are given by

(11-7)a ≡ pt · yt/ps · ys,

(11-8)ln b ≡
M∑

m=1

(1/2)
[(

ps
mys

m/ps · ys
) + (

pt
myt

m/pt · yt
)]

ln
(
pt

m/ps
m

)
, and

(11-9)ln c =
N∑

n=1

(1/2)
[(

ws
nx

s
n/p

s · ys
) + (

wt
nx

t
n/p

t · yt
)]

ln
(
xt
n/x

s
n

)
.

If we have constant returns to scale production functions f s and f t , then the value of
outputs will equal the value of inputs in each period and we have

(11-10)pt · yt = wt · xt .

Note that the same result can be derived without the constant returns to scale assump-
tion if we have a fixed factor that absorbs any pure profits or losses, with this fixed factor
defined as in (5-18) in Section 5.

Substituting (11-10) into (11-9), we see that expression c becomes the Törnqvist input
index Q∗

T . By comparing (11-8) and (3.5-2), we see also that b is the Törnqvist output
price index PT . Thus a/b is an implicit Törnqvist output volume index.

If (11-10) holds, then we have the following decomposition for the geometric mean
of the product of the theoretical productivity growth indexes defined in (11-3):

(11-11)
[
RGs RGt

]1/2 = [
pt · yt/ps · ys

]/[
PT Q∗

T

]
,

where PT is the Törnqvist output price index defined in (3.5-2) and Q∗
T is the Törn-

qvist input volume index defined analogously to the way in which the Törnqvist output
volume index is defined in (3.5-1). Diewert and Morrison (1986) use the period t and s

revenue functions to define two theoretical output price effects which show how rev-
enues would change in response to a change in a single output price:

P s
m ≡ rs

(
ps

1, . . . , p
s
m−1, p

t
m, ps

m+1, . . . , p
s
M, xs

)
/rs

(
ps, xs

)
,

(11-12)m = 1, . . . ,M, and

P t
m ≡ rt

(
pt , xt

)
/rt

(
pt

1, . . . , p
t
m−1, p

s
m, pt

m+1, . . . , p
t
M, xt

)
,

(11-13)m = 1, . . . ,M.
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More specifically, these theoretical indexes give the proportional changes in the value
of output that would result if we changed the price of the mth output from its period s

level ps
m to its period t level pt

m holding constant all other output prices and the input
volumes at reference levels and using the same technology in both situations. For the
theoretical index defined in (11-12), the reference output prices and input volumes and
technology are the period s ones, whereas for the index defined in (11-13) they are the
period t ones. Now define the theoretical output price effect bm as the geometric mean
of the two effects defined by (11-12) and (11-13):

(11-14)bm ≡ [
P s

mP t
m

]1/2
, m = 1, . . . , M.

Diewert and Morrison (1986) and Kohli (1990) show that the bm given by (11-14) can
be evaluated by the following observable expression, provided that conditions (11-4),
(11-5) and (11-10) hold:

ln bm = (1/2)
[(

ps
mys

m/ps · ys
) + (

pt
myt

m/pt · yt
)]

ln
(
pt

m/ps
m

)
(11-15)m = 1, . . . ,M.

Comparing (11-8) with (11-15), it can be seen that we have the following decomposition
for b:

(11-16)b =
M∏

m=1

bm = PT .

Thus the overall Törnqvist output price index, PT , can be decomposed into a product of
the individual output price effects, bm.

Diewert and Morrison (1986) also use the period t and s revenue functions in order
to define two theoretical input volume effects as follows:

Q∗s
n ≡ rs

(
ps, xs

1, . . . , x
s
n−1, x

t
n, x

s
n+1, . . . , x

s
N

)
/rs

(
ps, xs

)
(11-17)n = 1, . . . , N, and

Q∗t
n ≡ rt

(
pt , xt

)
/rt

(
pt , xt

1, . . . , x
t
n−1, x

s
n, x

t
n+1, . . . , x

t
N

)
,

(11-18)n = 1, . . . , N.

These theoretical indexes give the proportional change in the value of net output that
would result from changing input n from its period s level xs

n to its period t level xt
n,

holding constant all output prices and other input volumes at reference levels and using
the same technology in both situations. For the theoretical index (11-17), the reference
output prices and input volumes and the technology are the period s ones, whereas for
the index in (11-18) they are the period t ones.

Now define the theoretical input volume effect cn as the geometric mean of the two
effects defined by (11-17) and (11-18):

(11-19)cn ≡ [
Q∗s

n Q∗t
n

]1/2
, n = 1, . . . , N.



4564 W.E. Diewert and A.O. Nakamura

Diewert and Morrison (1986) show that the cn defined by (11-19) can be evaluated by
the following empirically observable expression provided that assumptions (11-4) and
(11-5) hold:

(11-20)ln cn = (1/2)
[(

ws
nx

s
n/p

s · ys
) + (

wt
nx

t
n/p

t · yt
)]

ln
(
xt
n/x

s
n

)
(11-21)= (1/2)

[(
ws

nx
s
n/w

s · xs
) + (

wt
nx

t
n/w

t · xt
)]

ln
(
xt
n/x

s
n

)
.

The expression (11-21) follows from (11-20) provided that the assumptions (11-10)
also hold. Comparing (11-20) with (11-9), it can be seen that we have the following
decomposition for c:

(11-22)c =
N∏

n=1

cn

(11-23)= Q∗
T ,

where (11-23) follows from (11-22) provided that the assumptions (11-10) also hold.
Thus if assumptions (11-4), (11-5) and (11-10) hold, the overall Törnqvist input volume
index can be decomposed into a product of the individual input volume effects, the cn

for n = 1, . . . , N .
Having derived (11-16) and (11-22), we can substitute these decompositions into

(11-6) and rearrange the terms to obtain the following decomposition:

(11-24)pt · yt/ps · ys = [
RGs RGt

]1/2
M∏

m=1

bm

N∏
n=1

cn.

This is a decomposition of the growth in the nominal value of output into the produc-
tivity growth term [RGs RGt ]1/2 times the product of the output price growth effects,
the bm, times the product of the input volume growth effects, the cn.94 All of the effects
on the right-hand side of (11-24) can be calculated using only the observable price and
volume data for the two periods.95

12. Concluding remarks

This paper surveys the index number methods and theory behind the national pro-
ductivity numbers. We close with some remarks on six aspects of the current state of

94 An interesting case of (11-24) results when there is only one fixed input in the x vector. Then the input
growth effect c1 is unity and variable inputs appear in the y vector with negative components. The left-hand
side of (11-24) becomes the pure profits ratio that is decomposed into a productivity effect times the various
price effects (the bm).
95 See Morrison and Diewert (1990a, 1990b), Diewert (2002c), and Reinsdorf, Diewert and Ehemann (2002)
for decompositions for other functional forms besides the translog. Kohli (1990), Fox and Kohli (1998), and
Diewert, Lawrence and Fox (2006) use this approach to examine the factors behind the growth in the nominal
GDP of several countries.
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productivity measurement for nations and directions for future research. Both method-
ological and data challenges remain, and the two are interrelated. Better data can ease
the methodology challenges.

12.1. Choice of measure effects

One goal of this paper has been to draw attention to, and help users distinguish among,
different types of productivity measures for nations. We show how different ones relate
to each other and to GDP per capita which is a commonly used measure of national
economic well being. It is important for the differences among the measures to be kept
in mind when it comes to interpreting empirical findings. Some authors make a point
of helping their readers to be aware of these differences. For example, in a recent paper
with important public policy implications for Canada and the US, Rao, Tang and Wang
(2007) note that, unlike their earlier studies, the labor productivity measure used is for
the number of persons employed rather than hours of work because they did not have
comparable hours of work data by industry for the two countries. Rao, Tang and Wang
note that they expect the resulting measured productivity gap with the United States to
be about 10 percent higher than in their earlier studies because Canadians, on average,
put in about 10 percent less hours on the job than their US counterparts. The continuing
development of harmonized data for widening numbers of nations will hopefully make
it possible in years to come for researchers to choose the productivity measures that best
fit their applied needs rather than having to bend their analysis needs to the available
data. But it will still be important for readers to be aware of how the choice of measure
affects reported results.

12.2. Better price measurement = better productivity measures

The traditional index number definition of a productivity growth index is an output
volume index divided by an input volume index. National statistical agencies (appropri-
ately) collect information on output and input values and prices; not volumes and prices.
Volume measures are then produced by applying price indexes to the value information
about the outputs and inputs. This means that having good price statistics is critical for
the quality of productivity measurement.

The new international CPI and PPI manuals provide an in-depth treatment of the
theoretical, methodological, and data advances of recent decades in official consumer
and producer price level measurement.96 Nevertheless, some important problem areas
remain.

The treatment of new products in price measurement remains on the critical list, and
is of special relevance for productivity measurement.97 New machinery and equipment,

96 We are referring here to the new international Consumer Price Index Manual [T.P. Hill (2004)] and Pro-
ducer Price Index Manual [Armknecht (2004)].
97 See A. Baldwin et al. (1997), Basu et al. (2004), Greenstein (1997), R.J. Hill (1999a, 1999b, 2001, 2004),
Nordhaus (1997), and Wolfson (1999). The treatment of quality change is also important. Hedonic methods
are increasingly being used in this regard; see Diewert (2002d, 2003a, 2003b).
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new business processes, new material inputs, and new consumer products are key ways
in which technological progress is manifested. Price setting mechanisms appear to be
evolving because marketing behavior is evolving to take advantage of new IT technolo-
gies, and this has potential implications for productivity measurement, along with other
aspects of the treatment of new goods.98

The proper measurement of the prices for machinery and equipment and other cap-
ital services – that is, the proper measurement of user costs for capital – is a second
important area of active debate for price measurement. In Subsection 10.1 we argued
that, ideally, the measure of the user cost of capital should allow for depreciation and
obsolescence effects.

For a KLEMS (capital, labor, energy, materials and services) approach, price indexes
are needed as well for the intermediate inputs. The major classes of intermediate inputs
at the industry level are: materials, business services and leased capital. In practice,
period by period information on costs paid for a list of intermediate input categories is
required along with either an intermediate input volume index or a price index for each
category. There is a lack of price survey data for intermediate inputs. Price indexes for
outputs are often used as proxies for the missing price indexes for intermediate inputs.
Also, the intermediate input prices should, in principle, include any commodity taxes
imposed on these inputs, since the tax costs are paid by producers.

Of course, many intermediate products are produced by different divisions of the
same firms that use these products for producing final demand products. This intra-firm
trade can be important for national productivity measurement and growth accounting
when the different divisions are in different nations, in which case these movements of
product will be counted as part of foreign trade.

Intermediate product transactions among firms can be observed and price and value
statistics can be collected for these transactions as for other sorts of product transactions.
This is not the case, however, for the intra firm transactions. As Diewert, Alterman and
Eden (2007) and Mann (2007) explain, the transfer prices that firms report for intra firm
transactions may not be a very satisfactory basis for the construction of price indexes
for the associated flows of goods and services. Even for measuring the productivity
of a single nation over time, or making inter-sector or inter-industry comparisons for
productivity levels or growth within a single nation, international trade issues must be
considered and dealt with. That is, international trade complicates even the choice of a
measure for national level output.99

Finally, on the subject of relevant price measurement problem areas, there is interest
not only in productivity comparisons over time, but also in inter-nation comparisons.

98 See Hausman (2003), Hausman and Leibtag (2006, 2007), Leibtag et al. (2006), E. Nakamura and Steins-
son (2006a, 2006b), Silver and Heravi (2003), Triplett (2002), Triplett and Bosworth (2004), and Timmer,
Inklaar and van Ark (2005). On hedonic pricing for new goods, see Diewert, Heravi and Silver (2007).
99 On the importance of allowing for trade in measuring productivity see, for example, Bernstein (1998),
Bernstein and Mohnen (1998), Bernstein and Nadiri (1989), Diewert and Woodland (2004), Woodland and
Turunen-Red (2004), Diewert (2007d), Trefler (2004), and Mann (2007).
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Thus, inter-nation price statistics are needed for making inter-nation productivity com-
parisons: international purchasing power parity statistics (PPPs). Methodological as
well as data challenges abound in the area of international price comparisons.100

12.3. The measurement of capital services

The OECD productivity database101 distinguishes seven types of assets: hardware, com-
munications equipment, other machinery, transport equipment, nonresidential buildings,
structures and software. Diewert, Harrison and Schreyer (2004) state that, conceptually,
there are many facets of capital input that bear a direct analogy to labor input. Capi-
tal goods are seen as carriers of capital services that constitute the actual input in the
production process just as workers are seen as carriers of labor services. When rentals
and the cost of capital services cannot be observed directly, methods must be adopted
to approximate the costs of capital services. Much progress has been made on the mea-
surement of capital services and user costs, but much still remains to be done.

For example, Brynjolfsson and Hitt (2000)102 and Corrado, Hulten and Sichel (2006)
note that both firm level and national income accounting practice has historically treated
expenditure on intangible inputs such as software and R&D as an intermediate expense
and not as an investment that is part of GDP. Corrado, Hulten and Sichel (2006) find
that the inclusion of intangibles makes a significant difference in the measured pattern
of economic growth: the growth rates of output and of output per worker are found to
increase at a faster rate when intangibles are included than under the status quo case in
which intangible capital is ignored.

Brynjolfsson and Hitt (2000) argue there are important interaction effects between the
intangible business practice and process capital investments that are going unmeasured.
Brynjolfsson and Hitt (1995), Atrostic et al. (2004), Atrostic and Nguyen (2007), and
Dufour, Nakamura and Tang (2007) provide empirical evidence for multiple countries
suggesting that IT-users that also invested in organizational capital had higher gains
in productivity compared to firms that invested only in IT capital or only in adopting

100 See, for instance, Armstrong (2001, 2003, 2007), Balk (1996), Diewert (2000, 2005d, 2006b), R.J. Hill
(1999a, 1999b, 2001, 2004, 2007), R.J. Hill and Timmer (2004), and D.S.P Rao (2007).
101 See OECD (2005).
102 In a 2000 Journal of Economic Perspectives article, Brynjolfsson and Hitt write: “Changes in multifactor
productivity growth, in turn, depend on accurate measures of final output. However, nominal output is affected
by whether firm expenditures are expensed, and therefore deducted from value added, or capitalized and
treated as investment. As emphasized throughout this paper, information technology is only a small fraction
of a much larger complementary system of tangible and intangible assets. However, current statistics typically
treat the accumulation of intangible capital assets, such as new business processes, new production systems
and new skills, as expenses rather than as investments. This leads to a lower level of measured output in
periods of net capital accumulation. Second, current output statistics disproportionately miss many of the
gains that information technology has brought to consumers such as variety, speed, and convenience . . .”. See
also Berndt and Morrison (1995), Brynjolfsson and Hitt (1995), Colecchia and Schreyer (2001, 2002), and
Prud’homme, Sanga and Yu (2005).
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new business practices. The idea is that investments in tangible and intangible assets
reinforce one another.

Findings of complementarities between business practices and high tech processes
lend support to the proposition that there are also important complementarities between
the largely intangible unmeasured assets of firms and the (mostly tangible) assets that
are being measured by national statistics agencies.

Regarding the measured assets, Jorgenson argues that rental values should be imputed
on the basis of estimates of capital stocks and of property compensation rates, with the
capital stock at each point of time represented as a weighted sum of past investment.
The weights are viewed as measures of the relative efficiencies of capital goods of dif-
ferent ages and of the compensation received by the owners.103 While agreeing with the
objective of adopting a user cost approach for asset pricing, nevertheless it is important
to note that the theoretical and empirical basis is slim for many of the practical choices
that must be made in doing this. Substantial differences in the productivity measurement
results can result from different choices about things such as physical depreciation rates
for which empirical or other scientific evidence is largely lacking. Nomura and Fu-
takamiz (2005) report on an initiative in Japan to use the complete records of assets
in place in some companies and also the registration data for particular assets to deter-
mine the service life of individual assets. We strongly support this sort of data collection
initiative.

Yet another capital measurement issue is that the System of National Accounts (SNA)
does not regard the placing of nonproduced assets at the disposal of a producer as
production in itself but as an action giving rise to property income. Nomura (2004,
Chapter 4) shows that neglecting land and inventories leads to a reduction in the aver-
age TFP growth rate.

12.4. Labor services of workers and service products

Diewert, Harrison and Schreyer (2004) state that, conceptually, there are many facets of
capital input that bear a direct analogy to labor input. They also state that when rentals
and the cost of capital services cannot be observed directly, methods must be adopted
to approximate the costs of capital services. With hourly workers, we have data on their
“rental rates”. But is it the right price information?

The issue of what sorts of labor to count must be agreed on first. For productivity
measurement purposes, there is agreement that the labor to be counted is what is used
for the production within the boundary of the System of National Accounts (SNA).
However, this still leaves three alternative definitions of the hours of work that have
been the subject of international debate on the proper measurement of labor input:

(H1) Active production time.

103 See for example Jorgenson (1963, 1980, 1995a), and Christensen and Jorgenson (1969, 1970).
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(H2) Paid hours, including agreed on allocations of employer financed personal time,
some of which may be taken away from the work site like paid vacation or sick
days.

(H3) Hours at work whether or not they are paid hours or used for production.

Each of these measurement concepts implies a different factorization of the dollar
amount spent on labor into quantity and price components.

The productivity programs in Canada and the United States use the concept of hours
at work: the H3 concept. H3 is also the concept that is agreed on for the 1993 System
of National Accounts as the most appropriate measure for determining the volume of
work.

For many workers, time at work includes some hours in addition to what are stipulated
in formal employment agreements. These are volunteered or informally coerced unpaid
overtime hours. Hours at work (H3) could rise (or fall) with or without changes in paid
hours (H2), but it seems unlikely there would be changes in hours at work without cor-
responding changes in the same direction in active production time (H1). Conceptually
at least, the H3 concept includes the increasing amounts of work done at home by those
tele-commuting, from other nations.104

A different sort of labor input measurement issue is that none of the measures dis-
cussed take account of differences in the knowledge and skills and innate abilities vested
in workers.

Economic development history could be written as the progressive substitution of ma-
chine for human services. Farmer laborers tilling the fields were replaced by machines
that do the tilling, pulled by farmers riding tractors. Phone operators were replaced by
electronic routing systems. Type setters were replaced by automated printing processes.
Secretarial typing of research papers was replaced by word processors on home or
portable computers and the typing of the researchers themselves. To properly account
for these substitutions of these sorts, we would need data on the respective volumes and
prices, or the value figures and prices, for workers with different types and levels of
specific skills.

12.5. A need for official statistics and business world harmonization

The models that economists use to interpret TFPG estimates typically rule out many of
the ways in which business and government leaders attempt to raise productivity. The
dominant economic index number approach is built, to date, on a neoclassical founda-
tion assuming perfect competition, perfect information and, in most studies, constant
returns to scale.

104 Note too that for materials, inventories represent the difference between the paid quantity for a given time
period (concept H2) and the quantity used in that time period (concept H1). In contrast, for material inputs,
time “at work” (quantity concept H3) is the same as the counterpart of “paid time” because the materials are
owned continuously, once paid for. Diewert and Nakamura (1999) are silent on the issue of inventories for
diesel and lube oil.
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In a world where all factor inputs are paid their marginal products and there is no
potential for reaping increasing returns to scale, then the only way in which growth in
output could occur would be through increased input use or through changes in external
circumstances, including spillovers from the R&D of others.105 This is the world as-
sumed by Solow (1957), for example. For such a world, after removing all factor costs
in evaluating productivity growth, we would be left with only revenue growth due to
purely external factors. Thus, Jorgenson (1995a) writes:

“The defining characteristic of productivity as a source of economic growth is that
the incomes generated by higher productivity are external to the economic activi-
ties that generate growth” (p. xvii).

However, this definition of productivity growth seems unlikely to satisfy Harberger’s
(1998, p. 1) recommendation that we should approach the measurement of productivity
by trying to “think like an entrepreneur or a CEO, or a production manager”. What
CEO would announce a productivity improvement plan for their company, and then add
that it depends entirely on external happenings including spillovers from the R&D of
competitors?

The private business sector is the engine of productivity growth in capitalist
economies. Business and government leaders need to be able to communicate effec-
tively about economic policy issues. National productivity matters are of concern to
both business and government leaders. When asked, business leaders mostly report
that they make little or no use of the productivity measures of economists, preferring
instead to use single factor input–output type performance measures. However, busi-
nesses make ubiquitous use of real revenue/cost ratios, and we have shown that this is
one way of writing a TFPG index. We suggest that the main differences between the
way that economists and business leaders have traditionally thought about productivity
lie in defining technical change as disembodied, the assumption of constant returns to
scale, and the definition of productivity change as due to externalities. Business lead-
ers see technological change as largely embodied in machines, business practices and
people working for them. They are obsessed with finding ways to profit from various
sorts of returns to scale. They see increasing productivity as a core function of business
managers and productivity gains as being achieved by economic activities that also gen-
erate growth. And they definitely intend to capture as much as possible of the incomes
generated by the productivity gains of their companies.

At present, there is a serious conceptual gulf between the economic approach to the
interpretation of TFPG measures and the business world perception of what productiv-
ity growth is. This is unfortunate since it is the private business sector on which nations
must mostly rely for their economic growth. The challenge for index number theorists

105 Studies of TFPG focusing explicitly on externalities such as R&D spillovers include Bernstein and Nadiri
(1989), Bernstein (1996), and Jaffe (1986). Bernstein (1998) and Bernstein and Mohnen (1998) extend the
theory and empirical treatment of spillover effects on productivity growth to an international context.
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is to develop models that incorporate rather than assume away what economic practi-
tioners view as some of the main means by which total factor productivity improvement
is accomplished. One key to making headway on this goal may be to notice that the pro-
ductivity measures themselves can be computed without making any of the restrictive
assumptions that have been used in showing that certain of these measures can also be
derived from economic optimizing models.

12.6. The role of official statistics for globally united nations

Masahiro Kuroda (2006), in his capacity as Director of the Economic and Social Re-
search Institute of the Cabinet Office of the Government of Japan, calls attention to
the need in Japan and elsewhere, to review and change the legal framework for offi-
cial statistics. He links this need to, for example, an emerging need for new rules to
enable wider use of administrative records as well as the survey data collected by gov-
ernments.106 We heartily support the sorts of goals enunciated by Kuroda. There is an
urgent need for initiatives that will allow statistical agencies to continue to produce
more and better data, and this situation will inevitably bring into play cost pressures. In
addition to the long established importance of official statistics in the management of
national economies, official statistics have been evolving into an important medium for
communication both within and among nations. Increasingly, the national choices that
affect all of us as global inhabitants are being made in the context, and with the aid, of
official statistics, including measures of the productivity of nations.
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Abstract

The greatest problem for empirical analysis is how best to allow the context to affect
the inferences. Econometric theory presupposes contextual “restrictions” that can be
taken as given or assigned a probability distribution. These contextual inputs are rarely
available. I illustrate this point with a review of the empirical work in international
economics which has focused not on properties of estimators but instead how best to
link the theory with the data. I argue that the two errors we should worry about are not
rejecting a true null or accepting a false null but rather taking the theory too seriously
and not taking the theory seriously enough.

Keywords

Heckscher–Ohlin theory, hypothesis testing, Leontief paradox, usefulness or
truthfulness
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1. Methodological shortcomings of econometric theory

1.1. The context matters

Econometric theory gets its questions from the numerous pathologies that afflict non-
experimental data. The treatment of these pathologies invariably requires significant
inputs of contextual information. For example, multicollinearity is solved by omitting
“irrelevant” variables. Simultaneity is solved by selecting “appropriate” instrumental
variables. Interdependence is solved by context-dependent modeling that reduces the
effective dimensionality of the interdependence. Self-selection is solved by assuming
“appropriate” distributions and “meaningful” selection mechanisms.

Thus the answers to the questions of how to deal with pathologies are new questions
about the context: Which do you think are the least relevant variables? Which variable is
a surrogate for the causal intervention you are imagining? What kind of interdependence
do you think is probable? What do you think about the selection mechanism and the
shape of the distributions of the observed and unobserved data?

In practice, the required contextual information is hardly ever available. This is not
always a deterrent to a data analysis since the contextual information can sometimes
be introduced casually without the audience and even the analyst being fully aware.
For example, angst over how to pick variables in regressions has led to the formula-
tion of automated variable selection methods by, among many others, Mallows (1973),
Mayer (1975), Akaike (1974), and Schwartz (1978). The Schwartz criterion is routinely
invoked today, but the same result is derived in Leamer (1978, p. 112) in a way that
properly emphasizes its contextual dependence. Along the same line White (1980) has
proposed corrections to standard errors that are now routinely used as if they were a
treatment for any kind of heteroscedasticity. “White-washing” contrasts with the tra-
ditional approach in which the analyst is expected to commit to some model of the
heteroscedasticity and thus to use corrections that are context-dependent.

In contrast with choice-of-variables and heteroscedasticity, the context-dependent
exclusion restrictions needed for causal inferences in simultaneous equations set-
tings seem painfully apparent. But despair over ever having the needed contextual
information usually precedes proposals for context-free inferences. When Liu (1960)
questions the identifying restrictions1 needed for causal inference, Sims (1980) and
Sargent and Sims (1977) agree, and they suggest what seems like a context-free vector-
autoregressive solution. But Leamer (1985) argues that it is actually impossible to de-
liver on the promise of context-free causal inferences from non-experimental data. Cor-
relation is in the data; causation is in the mind of the observer. When Judea Pearl (2000)

1 The simultaneous equations literature presumes the existence of variables that are known to enter one
“structural” equation and not to enter another. If years of schooling is endogenous and dependent on ability,
birth-date is not, and since birth-date can influence years of schooling, birth-date is a surrogate for a random
assignment of another couple of months of schooling. Angrist and Krueger (1991) reference. Maybe not, is
your reply. Being the biggest kid in the class is what matters, not those extra couple of months of schooling.
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claims “causality has been mathematized” he really means that he provides methods
for “deriving causal relationships from combinations of knowledge and data” where
“knowledge” is his way of saying “context.”

Sniping from the sidelines have been the Bayesians who think they have a diagnosis
and a solution. The problem, as they see it, is that the contextual inputs have been
assumed to be certain when no one can be so sure. Their solution is simple: treat those
inputs probabilistically. You do not need an exact identifying restriction, it is enough
that the parameter comes from a prior distribution located at zero. You do not actually
have to omit a doubtful variable to solve the collinearity problem; you can assume the
coefficient comes from a distribution located at zero.

Though offering a step in a useful direction, this Bayesian literature does not offer
a full solution. The difference between assuming that a parameter is exactly zero, and
assuming it is has 1/3rd chance of being −1, 0 or 1, leaves us still assuming contextual
inputs that may not be available.

1.2. All models are false

One critical methodological issue that we need to face is how best to input the requisite
amounts of ambiguous contextual information into a data analysis. There is a second
basic defect of the econometric methods that we deploy. These methods are premised
on the assumption that models are either true or false, but theories derive their value
precisely because they distort reality. Thus our models are neither true nor false. Our
models are sometimes useful for the design of interventions and sometimes misleading.
Insight, understanding and persuasiveness are the goals, not truthfulness.

The mistake of acting as though a model were true or false comes from being unclear
regarding the questions the model is intended to answer. The questions of economics
concern the effects of interventions such as an increase in the minimum wage, a reduc-
tion in the Federal Funds rate or a reduction of a tariff. When we build economic theory
and econometric theory without clear reference to the questions, we risk building tools
for tasks that do not exist. We pursue logical properties of models that may or may not
be relevant. We build econometric tools for testing the truthfulness of models, when
the real problem is to draw the line between settings in which a theory is useful and
settings in which it is misleading. Who, when testifying in front of the Federal Reserve
Board about interest rate policy, is going to discuss the “truthfulness” of a dynamic
over-lapping generations model? The question is only whether that model is a useful
guide for the design of monetary policy.

Once we state explicitly the intervention questions that drive the discipline, we will be
reluctant to pursue all the logical implications of our models, when those implications
are irrelevant to the task at hand. But the theory of econometrics does not recognize
the approximate nature of our economic theory. An analyst is expected instead to act
as if the economic theory were a literal and complete description of reality. A symptom
that the theory is taken literally is a formal econometric “test” of the “truthfulness” of
the theory. These tests routinely “accept” the theory when the sample size is small, but
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routinely “reject” the theory when the data sets are large enough. To put the matter
pointedly, formal hypothesis testing is only an elaborate and highly stylized ritual to
determine how large is the sample.

A Bayesian approach is not fundamentally different. Models are still either true or
false; it is only our knowledge that is limited.

Expressed a different way, the Type I and Type II errors that we should worry about
are not accepting a false hypothesis or rejecting a true hypothesis, since theories are
neither true nor false. The two relevant errors in a data analysis are treating the theory
too seriously and treating the theory too casually. When we treat a model as a literal
description of reality, we are being foolish. When we try to do a data analysis without
any model, we are being foolhardy. The art of data analysis is to fold in just the right
amount of context into the stew of data, and thus to chart a careful course between the
extremes of foolishness and foolhardiness.

1.3. The goal of this paper is to broaden the conversation

In this chapter, I illustrate the dangers of the extreme approaches, drawing on examples
from a field whose context I know best: international economics. One of the best-known
results in the field, the so-called “Leontief Paradox” is a good example of a foolhardy
approach – a data analysis without a clear theoretical foundation. Leontief found what
many economists regarded to be a decisive piece of evidence against the central model
of international comparative advantage – the Heckscher–Ohlin model. But Leontief
made no attempt to connect his calculation with any formal model. Whoops. If you do
the calculation with an explicit statement of the theory, the paradox completely unravels
[Leamer (1980)].

The field now has mostly abandoned foolhardy but may be edging toward foolish. We
are now starting to “test” the theory and often “rejecting” it. (And when I write “we”
I include myself.) But I think this is taking the literature too literally. We do not really
mean the model is not true; it is only not very accurate. And we are now trying to find
ways to tinker with the model to allow it to conform better with the facts.

In the writing of this paper I am asking for a broadening of the teaching and theory
of econometrics to include the possibility of approximate models and to recognize that
the computation of standard errors given a set of assumptions can be a technically de-
manding task, but that is only one of many steps in an empirical analysis. Indeed, there
is nothing of substance in the empirical literature in international microeconomics that
depends on a properly computed standard error, on the properties of an estimator or
on the significance level of a hypothesis test. Indeed, there is little if anything that is
econometric per se. The commitment to a model is too minimal, and the commitment
to the framework is too great. This is exploratory data analysis, not confirmatory.

The reason to publish this kind of paper in a Handbook of Econometrics is to re-
mind us all that a whole branch of empirical economics is able to develop without being
much affected by econometric theory. Reality can therefore be very different from our
econometrics classrooms. Our textbooks and our handbooks deal almost exclusively
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with formal probability theorems that cover only a portion of the problem while leav-
ing the impression that they cover 100%. This is positively harmful to our students
who memorize the blueprints but have none of the wisdom needed actually to build an
influential data analysis. To quote from myself, Leamer (1993, p. 437) “When some
beaming, newly minted PhD proclaims in a job seminar that he or she has managed
with the assistance of the latest high-powered econometric weapon to knock off an eco-
nomic theory, we offer the job for sheer brilliance, but we go on about the business
of being economists without otherwise being affected by the news. Most of these new
PhDs eventually ‘get it’, but some take longer than others.”

1.4. Summary

This is therefore a highly selected survey that is intended to illustrate how context mat-
ters, and how the international theory has been linked to the data. The goal is not to
cover completely the empirical work in international economics, but rather to refer to
examples of empirical work that help to illustrate methodological points. For a survey
of the empirical work see Leamer and Levinsohn (1995).

The formal theory of international comparative advantage is described in Section 2. In
Section 3, I review first the questions of international economics, questions that should
drive the data analysis. Sections 4–6 describe the empirical evidence. Tests of the truth-
fulness of the theory are the subject of Section 4. These studies implicitly or explicitly
take an hypothesis testing approach and therefore treat the model as if it had truth value.
Studies described in Section 5 explore the accuracy of the model. The borderline be-
tween Sections 4 and 5 is somewhat fuzzy, since measures of the inaccuracy of a model
can be used also to determine the model’s truthfulness. Section 6 surveys papers that
study the usefulness of the framework. This is a very short section. Then, in Section 7,
I refer to those papers that take the framework as given, and use it as a foundation of a
study of a policy intervention. Concluding remarks comprise Section 8.

2. Theory of international comparative advantage

2.1. The elements of a model of international competition

The Heckscher–Ohlin theory which is the workhorse of international economics is ba-
sically a simple linear programming problem. A country is assumed to be endowed
with a vector of factors of production, v, which are used to produce a vector of prod-
ucts, q. The ratios of inputs per unit of output are assumed to be fixed, independent of
scale of production and also independent of the intensity of use of other inputs. The key
assumption here is scale-independence, since substitutability of inputs can be handled
by expanding the list of “products”, allowing, for example, textiles made with labor-
intensive techniques and textiles made with capital-intensive techniques.
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The vector of inputs used to produce the vector of outputs, q, is then Aq, where A is
a matrix of fixed and given input intensities. It is further assumed that there is perfect
competition in the goods and factor markets, which implies that the economy acts as if
it were maximizing the value of GDP = p′q, where p is the vector of product prices
determined exogenously in global marketplaces. Thus the economy operates as if it
were solving the following linear programming problem, either the primal problem or
the dual:

Primal program
Given the prices p, choose output levels q to maximize revenues but limited by the

availability of inputs:

Maximize p′q
subject to Aq < v and q � 0.

Dual program
Given the factor supplies v, choose factor prices w to minimize costs limited by

profitability of the activity:

Minimize w′v
subject to A′w > p and w � 0.

2.2. Theorems: Outputs and factor prices

An outsider at this point is probably thinking this is a pretty silly way to model a com-
plex economic system. What really is the point? It must come as a shock that there is a
huge academic literature that explores features of this linear programming model. It is
even more surprising that there are some genuine intellectual returns to all this effort.

First consider the “even” case with a matrix A that is square and invertible. Then we
can write down the solutions to the primal and dual problems in terms of the inverse
of A:

(1)q = A−1v,

(2)w = A′ −1p.

Simplify even further and assume that the number of factors and the number of goods
are equal to two and thus that A is 2 by 2. Call the factors capital and labor. Now comes
the first series of remarkable results. First from (2), which determines factor rewards as
a function of product prices, we have:

• Factor Price Equalization: An increase in the labor supply has no effect on the
compensation rates of either labor or capital.

This follows from the fact that (2) does not depend on factor supplies v.
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The elements of A are inputs per unit of output and consequently are non-negative.
The content of the next two results is driven by the fact that the inverse of a 2 by 2
positive matrix has one sign on the diagonal and the opposite sign off the diagonal.
Which sign pattern depends on the ordering of the capital/labor ratios in the two sectors.
Thus we get the following results:

• Rybczynski Theorem: An increase in the labor supply causes an increase in the
output of the labor-intensive good but a fall in the output of the capital-intensive
good.

• Stolper–Samuelson Theorem: A tax, which increases the price of the labor-
intensive good, increases the compensation of labor but lowers the compensation
of capital.

Still, an outsider is likely to inquire: “So what?” My answer is given in the section
below titled “But what are the questions?” For now, let us complete the theory by con-
sidering other cases.

If the numbers of factors equals the number of goods but exceeds two, Equations (1)
and (2) still apply and the model mathematically is completely intact. However, the
model changes in very important ways in terms of its’ economics implications. What
remains true in higher dimensions is that the inverse of a strictly positive matrix has at
least one positive and at least one negative element in every row and column [Ethier
(1974)]. Thus each factor has among the goods at least one “friend” and at least one
“enemy”, meaning that there is at least one positive relationship between a goods price
and the selected factor price, and at least one negative relationship. But the algorithm
for determining the sign pattern is complex and does not yield the simple insights of
the 2 by 2 model. Thus I am inclined to argue that both the Rybczynski Theorem and
the Stolper–Samuelson Theorem are “true” in higher dimensions, but not “useful”. The
math does not depend on dimensionality; the economics does.

If the model is “uneven” with the number of goods not equal to the number of factors,
things change more dramatically. I will wait until it is relevant to discuss the theory
of the uneven model, but here I pose only the rhetorical question: “How should we
count factors of production, and how should we count the number of products?” This
rather simple question constitutes a serious attack on the very core of the discipline of
economics. The subject of economics presupposes that there are “markets” that organize
large numbers of identical transactions and that render the identity of the sellers and the
buyers completely irrelevant. In fact, most exchanges are made in the context of long-
term relationships, and are not mediated by markets that match faceless buyers with
faceless sellers. The very first step in any empirical enterprise is to find an answer to
this aggregation question: Which transactions can be aggregated together and treated as
if they were identical, as if they were coordinated by a market? Are a Samuelson and
an Arrow so similar that their work-hours can be added together to form a “high-skilled
labor” aggregate? Is a Hermes scarf with a “Made in China” label so similar to a Hermes
scarf with a “Made in France” label that they can be added together to form a “scarves”
aggregate?
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It is impossible to do empirical work in economics without implicitly or explicitly
solving this aggregation/heterogeneity problem. It is particularly important here to do
so because the effect of policy interventions depends very much on the number of factors
and the number of products.

2.3. Theorems: International trade

This model so far is only about production and not international trade. That is appro-
priate because the content of the general equilibrium model comes completely from the
production side. To get to trade, which is the difference between production and con-
sumption, we need to add to the model a consumption side. One way to do this is to
make an assumption that “neutralizes” the consumption side and allows external trade
to behave like production. Vanek (1968) has adopted the assumption that countries have
identical homothetic tastes, which is an economist’s elliptical way of saying that budget
shares depend on prices of products but not on income levels. Thus, if all countries face
the same prices, we can write the consumption vector of country i as: ci = siqW where
qW is the vector of total world outputs and si is the share of the world’s production con-
sumed in country i. Now with the trade vector of country i defined as Ti = qW − ci , it
is straightforward to solve for the Heckscher–Ohlin–Vanek equations that describe the
factors embodied in trade as a function of the domestic and global factor supplies:

(3)ATi = A(qW − ci ) = AqW − siAqW = vi − sivW .

Note the formal similarity between the trade equation (3) and the output equation (1).
Thus, we have been successful in finding a consumption assumption that allows trade
to behave like output.

Hidden in the symbols that comprise (3) is another important insight. Products are
only bundles of factor services. A country with an abundance of labor has two ways to
sell the labor services abroad. The direct way is through migration of the factor. A more
subtle way is to package factor services into products, and to ship the products not the
factors. Either way, arbitrage is complete and eliminates the differences in wages.

3. But what are the questions?

In the midst of all this theory, it is easy to lose track of the questions, but it is very unwise
to do so. The subject of international economics exists because countries reserve the
right to intervene in cross-border flows of goods, people and capital in a way that they do
not intervene in strictly internal transactions. The Heckscher–Ohlin model is therefore
not about why countries exchange products with each other or what they exchange,
though it seems to be. The real reason that we have this model is to use it to explore the
consequences of interventions that limit international exchanges, namely tariffs, quotas,
capital controls, and migration restrictions. For that purpose, it has some very surprising
and very important implications.
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First consider the impact of migration from Mexico to the United States. Pat
Buchanan would have us build walls to keep the Mexicans at home. “Not to worry”
is the message of the Heckscher–Ohlin model. Provided the migrant flow leaves un-
changed the mix of products made in the US and the mix of products made in Mexico,
the migrant inflow leaves wages in both the US and Mexico completely unaffected.
That is a very surprising implication since economists are used to thinking that there is
a downward sloping demand for labor. When something surprising pops out of a theory,
we need to ask why. The answer is that when we are thinking about the downward slop-
ing demand for labor, we may not be allowing for a shift of capital from capital-intensive
to labor-intensive sectors. According to the model, the potential effect of a Mexican mi-
grant inflow into Los Angeles on native wages is completely dissipated by a shift in
the product mix toward labor-intensive sectors, leaving wages completely unchanged.
See Leamer (1994) for the argument that it is not the volumes of imports coming from
low-wage countries that matter but the prices. Wood (1994), however, sees it differently,
suggesting a volume calculation allowing for differences in technologies.

This is best expressed in terms of a pair of equations that explain the determination
of wages and output mix:

w = f (p, v),

q = g(p, v)

meaning that wages w and outputs q both depend on product prices p and on factor
supplies v.

One very important message of this model is that the sensitivity of wages to factor
supplies is less if the sensitivity of output mix to factor supplies is more.

A second very important message of this model is that it is prices of tradables p that
are the principal determinants of wages. In particular, trade volumes are entirely irrel-
evant, a point that is not understood by many economists. It does not matter if imports
from low-wage countries comprise less than 3% of GDP. What matters is that a part of
the workforce is producing apparel and competing in the global apparel market. That
small fraction of the workforce is linked with all equivalent workers in other tradables
and in nontradables through factor market arbitrage – workers choosing the best jobs
available. Trade volumes are important however for one of the important targets of this
model: the design of commercial policy for raising wages. When trade volumes are
small, commercial policy can have only correspondingly small effects on wages.

4. Evidence regarding “truthfulness” of the model

Turning now to the empirical examination of this framework, I will try to separate
studies according to their apparent purpose: to test the truthfulness of the model, to
determine its accuracy or to explore its usefulness. This section deals with empirical
studies that test the truthfulness of the model. Some of these studies have an explicit
alternative hypothesis, but others do not.
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4.1. Leontief Paradox: Why did he not use a theory?

The first and by far the most influential study of the Heckscher–Ohlin model was done
by Leontief (1953) who found that US imports in 1947 were more capital intensive
relative to labor than US exports. This seemed so incompatible with the clear capital
abundance of the US that the finding earned the name “The Leontief Paradox”. The
finding was very broadly viewed as a serious empirical failure of the Heckscher–Ohlin
model. This empirical “paradox” sparked a search of great breadth and intensity for a
theory that could explain it. Among the explanations were labor skills, trade barriers,
natural resource abundance, capital-biased consumption, and technological differences.

But what theory was Leontief really testing? Leamer (1980) showed that a care-
fully formulated but entirely standard Heckscher–Ohlin model allows a capital abundant
country to have imports more capital intensive than exports. Indeed if one does the cal-
culation right, properly adjusting for the US external surplus, Leontief’s 1947 trade
data reveal the US to have been more abundant in capital than in labor, not the other
way round. This is a good illustration of the need for a clear conceptual framework
when empirical work is being carried out since in its absence substantial mistakes can
be made. We may think we are seeing evidence, when it is not evidence at all.2

4.2. Bowen–Leamer–Sveikauskas factor content “tests” are unsettling

Starting in the 1980s, there was a much greater emphasis on linking an explicit theoret-
ical model with the data. The Heckscher–Ohlin model describes relationships between
three separately observable phenomena: trade, resource supplies and technological input
coefficients. A full “test” of the theory accordingly must begin with separate measures
of all three of these concepts and must explore the extent to which the observed data vi-
olate the H–O restrictions. Bowen, Leamer and Sveikauskas (1987) use measurements
of all three concepts and link their work carefully to a fully formulated model, namely
the H–O–V model summarized by (3), which determines the factor content of trade as
a function of resource supplies and external imbalance. Recognizing the impossibility
of testing a theory without an alternative, these authors generalize the H–O–V model to
allow (a) non-homothetic tastes characterized by linear Engel curves, (b) technological

2 Leontief’s error can be illustrated by an example with three factors and three goods. Suppose there is a
capital abundant country (US), a capital scarce country (Japan), a very capital-intensive manufacture (ma-
chinery), a very labor intensive manufacture (apparel) and a moderately capital intensive agricultural activity:(
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Suppose further that the US has lots of land but Japan has none. The US will therefore export the agricultural
good to Japan. Then, after extracting the capital used in agriculture, what the US has left for manufactures
ends up with a capital abundance ratio which is less than Japan. Thus Japan then exports the most capital
intensive manufacture but imports the labor-intensive manufacture. The US, which is the capital-abundant
country, imports the most capital-intensive good and exports the other two.
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differences among countries that affect all technological coefficients proportionately
and (c) various kinds of measurement errors. In the words of Bowen, Leamer and
Sveikauskas (1987, p. 805) “The data suggest errors in measurement in both trade and
national factor supplies, and favor the hypothesis of neutral technological differences
across countries. However, the form of the technological differences favored by the
data involves a number of implausible estimates, including some in which factors yield
strictly negative outputs. Thus, the Heckscher–Ohlin model does poorly, but we do not
have anything that does better.”

4.3. Searching for the truth

Because of the real and imagined problems empirically with the H–O model, we are
now in the midst of a rather interesting search for amendments that will make the model
“work”. We very soon are likely to find just the right combination of amendments se-
lected from the following five categories or possibly new ones yet to be determined:

• Technological Differences. Leontief’s solution to the Leontief Paradox was sim-
ply to multiply the number of US workers by a productivity factor. Although the
US is scarce in workers it is abundant in labor because each US worker is the equiv-
alent of two or three or four foreign workers. This same idea has been employed
unsuccessfully by BLS (1987), but more successfully by Trefler (1993), Davis and
Weinstein (1998). Gabaix (1997) however sees it differently. Davis et al. (1997)
also rely on technological differences to save the Heckscher–Ohlin model.

• Home Bias. There is not nearly so much trade as the H–O–V model suggests
and not nearly so much international specialization. One reason is that distance
has a strong inhibiting effect on trade, creating a strong bias in favor of local
sources for most goods. Trefler (1995) has suggested one form of home bias which
though theoretically suspicious works empirically quite well. Leamer (1997a) al-
lows closeness to markets to be a source of comparative advantage. Davis and
Weinstein (1998) add the gravity model to the H–O–V structure.

• Multiple Cones. The linear programming model allows countries to produce dif-
ferent subsets of products. For example, labor abundant countries may have a
labor-abundant mix of products while capital-abundant countries have a capital-
intensive mix, possible with some products in common. The word “cone” is a
reference to the subset of factor supply vectors that all select the same mix of trad-
ables. The H–O–V model assumes that there is only one cone, in other words that
all countries have the same mix of tradables. Global general equilibrium with mul-
tiple cones of diversification is ever so much more complex than the simple model
with a single cone, and much more interesting for that matter. More on cones be-
low in the section on accuracy. Work in search of cones includes Schott (1998),
Davis and Weinstein (1998), and Bernard, Jensen and Schott (2001).

• More factors of production than tradables. If there are enough tradables, then
factor prices are set completely by external competitiveness conditions, but if the
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number of traded products is less than the number of factors, then the system of
zero profit conditions, Aw = p, cannot be solved uniquely for the factor prices.
The missing markets for nontradables have to be added to the model to deter-
mine all the factor prices. These missing markets have endogenously determined
prices, and the linear programming problem of maximizing the value of GDP given
product prices no longer applies, since the objective function becomes a nonlinear
function of the output levels. An important aspect of the solution to this nonlinear
maximization model is that the internal margin affects wages. Wages depend on
the demand for nontradables.

• Preference Differences. The Vanek assumption that budget shares are independent
of incomes works well theoretically but rather badly violates the facts.

5. Evidence regarding the “accuracy” of the model

The studies referenced in the previous section act as if the problem were to decide
if the model is true or false. These studies use likelihood ratios, or the equivalent, to
measure the inaccuracy of the model. The studies referenced in this section use informal
measures of the inaccuracy of the model, and come to no formal conclusion such as “the
model can be rejected”.

The large amount of intra-industry trade and the expansion of trade among the ad-
vanced developed countries while they were apparently becoming more similar are both
observations that are hard to square with the Heckscher–Ohlin framework.

5.1. Intra-industry trade and trade volumes

The vast amount of “intra-industry” or “two-way” trade is an uncomfortable fact of life
for the Heckscher–Ohlin framework. For example, Mercedes automobiles are shipped
one way across the Channel and Jaguars go the other way. Can the H–O model help us
understand the impact of British tariffs on Mercedes automobiles?

One reaction is to dismiss intra-industry trade as an artifact of the aggregation. Af-
ter all, at the highest level of aggregation, with only one aggregate, there are clearly
both imports and exports; indeed, if trade is balanced, exports and imports are exactly
equal. Empirically, the greater is the degree of disaggregation the less is the amount
of intraindustry trade. Moreover, Davis (1997) shows that the “anomaly” of intense
North–North bilateral trade is compatible with the traditional Heckscher–Ohlin model.
[See Davis (1995) for an amended Heckscher–Ohlin theory that can account for intra-
industry trade.]

Another reaction is to patch the theory to allow it to explain intra-industry trade. For
example, two-way trade in similar products is not mathematically incompatible with
the Heckscher–Ohlin theory if products are allowed to differ by location of production.
According to this way of thinking, the imposition of a tariff on Mercedes has a smaller
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quantitative effect because Jaguars and Mercedes are imperfect substitutes, but the same
qualitative effect since it raises the price of Jaguars in the UK.

Both of these reactions seem to me to represent an unnecessary clinging to the H–O
model as if a single instance in which the model was not very useful meant that there
are no instances in which it is useful. Better just to admit that competition between
Mercedes and Jaguars is not the domain of the model. The model is relevant for the
exchange between the US and Mexico of apparel and producer durables.

5.2. Cross-commodity comparisons

The Heckscher–Ohlin model has often been studied empirically with cross-commodity
comparisons of export performance with industry characteristics. Early examples are
Keesing (1966) and Baldwin (1971). These studies are apparently based on the assump-
tion that the H–O model implies that some measure of export performance is positively
correlated with some measure of industry capital intensity if the country is abundant in
capital. I have complained about the lack of a clear theoretical foundation for many of
these studies in Leamer and Levinsohn (1995), and do not need to repeat the arguments
here.

5.3. Cross-country comparisons

Cross-country comparisons are another way to study the accuracy of the Heckscher–
Ohlin Theorem. Studies of this type hold fixed the commodity and use the country as
the experimental unit. Normally the tool of analysis is multiple regression with some
measure of trade performance as the dependent variable and various characteristics of
countries as the explanatory variable. Chenery (1960), Chenery and Taylor (1968) and
Chenery and Syrquin (1975) were some of the earliest studies of this type although these
studies did not deal with details of the structure of trade but rather with more aggregate
features of the economy like the ratio of gross imports to GNP. The theory underlying
many of these early cross sections regressions was casual at best, but this has given way
to a formal H–O–V framework used explicitly by Leamer (1984) and more recently by
Harrigan (1995, 1997) who has done careful studies of OECD production patterns as a
function of their factor supplies.

5.4. Search for cones

A multiple cone model that gets the message across as simply and clearly as possible
has three goods and two factors of production (capital and labor). The linear program-
ming solution selects two out of the three goods: Countries that are abundant in capital
produce the two capital-intensive goods. Countries abundant in labor produce the two
labor-intensive goods. As a result, the output levels are a piecewise linear function of
the factor supplies. Within each cone, the solution is linear and takes the form of (1) but
the change in the mix of products from cone to cone alters the linear function. Here a
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Figure 1. Cones of diversification: Three goods and two factors.

picture that describes the changing product mix in a multi-cone model with two inputs:
capital and labor.

This linear programming problem underlying Figure 1 has three distinct kinds of so-
lutions. When capital is very scarce, only good one is produced (and labor is a redundant
factor with a zero wage). Accumulation of capital induces an increase in output of good
one until the capital/labor supply ratio is equal to the capital/labor ratio of good 1. Then
the country moves into cone 2 with goods one and two both produced. Further capital
accumulation causes a reduction in the value of output of the first, most labor-intensive
good, and an increase in output of good 2, which reaches a maximum when the factor
supply ratio is exactly equal to capital/labor ratio of good 2. Then, with further capital
accumulation, the country moves into cone 3 and starts to produce good 3.

This is an important change in the model because the effects of policy depend on the
cone. Are there, for example, a North American cone (producer durables and wheat),
a European cone (chemicals and machinery), a South American cone (wheat, beef and
copper) and an Asian cone (apparel and footwear)? If so, trade policy advice should be
different in each region.

The search for cones to date has been indecisive. Leamer (1984, 1987) and Leamer
et al. (1999) look for the kind of nonlinearities suggested by Figure 1 simply by esti-
mating a quadratic, never mind that the theory suggests that the function is piecewise
linear. Leamer (1995) presents the data in Figure 2 below which plots net exports of
a labor-intensive aggregate composed mostly of apparel and footwear divided by the
country’s workforce against the country’s overall capital/labor ratio. There is very clear
evidence of the nonlinearity here – countries which are very scarce in capital do not
engage in much trade in these products. Exports start to emerge when the capital/labor
abundance ratio is around $5000 per worker. Exports rise to around $1000 per worker
when the country’s abundance ratio is around $12,000 per worker. Thereafter, net ex-
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Figure 2. Net exports of labor-intensive manufactures per worker v. capital per worker, 1988.
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ports steadily decline, turning negative when the country’s capital/labor abundance ratio
is around $20,000.

Using more disaggregated data, and taking the suggestion of a piecewise linear func-
tional form more seriously, Schott (1998) in his dissertation work has estimated linear
splines with the constraints that all the knots occur at the same points across commodi-
ties. For intriguing evidence of cones inside the US, see Bernard, Jensen and Schott
(2001).

6. Evidence regarding “usefulness” of the model

The previous sections have summarized studies of the truthfulness and the accuracy of
the Heckscher–Ohlin framework. A problem common to all these studies is that the use
to which a model might be put is at best implicit. A model may be found to be false,
or even inaccurate, and may nonetheless be useful. This section summarizes all the
empirical literature on the only relevant question: How useful is the Heckscher–Ohlin
model? Is there empirical support for the idea that this model is useful for designing
trade interventions?

7. Applications of the model: The US labor market

In the 1990s the H–O model has been used as a basis for estimating the impact that trade
is having on US labor markets. Again getting the theory right has been the first and most
important step in the process. The H–O model has a very clear and very simple way of
linking events like the liberalization of China to the US labor market. The expansion
of Chinese exports of apparel drives down the global apparel price. In order to break
even, apparel producers everywhere in the globe have to find some way to lower costs.
If the technology is fixed, lower costs can come only from lower input prices – wages
of unskilled workers for example. These lower input prices create profit opportunities in
other sectors, which have to be eliminated with suitable increases in other input prices.
The full solution is a mapping of product prices into factor prices w = A′ −1p.

The equation that provides the accounting framework for determining the impact of
price changes on factor costs is found by differentiating a zero profit condition applica-
ble in sector i:

(4)p̂i = θ ′
iŵ − T̂FPi ,

where the carats indicate percentage changes, the subscript i the sector, p the price
level, θ the vector of factor shares, w the vector of factor prices and T̂FP is the growth
in “total factor productivity”.

A very surprising feature of Equation (4) is that only the overall TFP growth in
the sector matters, not the factor bias of that technological change. You are probably
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thinking that there must be something wrong with any model that does not allow la-
bor saving technological improvements to affect wages. Not to worry. There is a route
by which factor bias can affect compensation levels even with Equation (4) applicable.
Labor-saving technological improvements can release workers who find jobs only if
the labor-intensive sectors expand, which new output can be sold only at lower prices
for these labor-intensive products. In other words, factor-biased technological change
can beget sector-biased product price changes which then requires changes in compen-
sation rates to make Equation (4) hold. Thus the factor bias can matter. But be a little
careful here. There is a critical intermediary in transmitting the news of factor-bias tech-
nological change to the labor markets – it is sector biased product price changes. This is
exactly the same messenger that carries the news of the liberalization of China to the US
labor markets. The difficulties that many of us have had in finding sector biased changes
in product prices in the 1980s thus casts equivalent amounts of doubt on technological
change as on globalization as an explanation of increasing wage inequality.

This leads into a more general point. In order to determine the effect of technological
change on wages, we need to be very clear about the effect that technological change has
on product prices. For example, if TFP growth is exactly matched by price reductions,
then Equation (4) would be satisfied with no change in nominal factor earnings. The
overall reduction in prices would then raise real compensation of all factors by the same
percentage.

The problem of how properly to account for price changes induced by technological
change is very great and entirely unresolved. The resolution requires a full general equi-
librium system with a carefully specified demand side. Until this problem is resolved,
we really will not have much idea of the impact of technological change on the labor
market. Lawrence and Slaughter (1993) study the Stolper–Samuelson mapping from
prices to wages without explicitly referring to technology. Leamer (1997b) explores a
variety of ad hoc “pass-through” assumptions that allow technological improvements to
be partially or fully passed on to consumers in the form of lower prices. These yield
interesting results, but are not necessarily compelling.

8. Conclusions: Questions, theory and data

The academic subject of international economics has been dominated since its inception
by theorists. In the 1950s, 1960s and 1970s it was Samuelson, Jones, Johnson, Bhagwati
and Chipman who worked out the details of the Heckscher–Ohlin model. In 1980s it was
the three men – Grossman, Helpman and Krugman – plus Dixit, Brander and Spencer
who gave us a whole new set of wonderful “toys” for our theoretical playpen – models
with increasing returns and imperfect competition. In the 1990s we are struggling to
provide some empirical backbone for all of this theory. Though the models of the 1980s
still remain in the playpen, in the sense that they resist attempts to make them genuinely
empirical, the model of the 1950s, 1960s and 1970s – the Heckscher–Ohlin framework
– is being subjected to a considerable amount of empirical scrutiny. We are learning
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what is important about the Heckscher–Ohlin framework, and what is unimportant. We
are finding out what works empirically and what does not. We are discovering ways to
mend the framework but retain its basic messages. We are making progress. But not
because of econometric theory. Not a single bit of our progress depends meaningfully
on a standard error or a formal property of any estimator. These would require a much
greater commitment to a model than most of us are willing to make. Our problem is
how to connect a rich and complex theoretical structure with empirical data.

What we have learned is important methodologically: The type I and type II errors
that are really important are: taking the theory too seriously and not taking the theory
seriously enough. Every empirical enterprise makes some of both. The art of data analy-
sis is to optimally trade off the two errors, using just the right level of commitment to a
theory, but not too much.
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Abstract

This chapter covers recent solutions to aggregation problems in three application areas:
consumer demand analysis, consumption growth and wealth, and labor participation and
wages. Each area involves treatment of heterogeneity and nonlinearity at the individual
level. Three types of heterogeneity are highlighted: heterogeneity in individual tastes,
heterogeneity in income and wealth risks, and heterogeneity in market participation.
Work in each area is illustrated using results from empirical data. The overall aim is
to present specific models that connect individual behavior with aggregate statistics, as
well as to discuss the principles for constructing such models.
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1. Introduction

Models of optimal behavior typically apply at the individual level. Important issues
of economic policy typically apply to large groups or entire economies. If different
individuals behaved in essentially the same way, then group statistics would mirror
that common behavior. However, this is never the case. In virtually every applica-
tion area, there is evidence of extensive differences in behavior across individuals, or
individual heterogeneity. This is true whether the “individual agent” is a single per-
son, a household, a firm or some other decision-making entity that is relevant for the
applied question of interest. Individual differences are a fact of life. They create a para-
mount difference between behavior at the individual level and aggregate statistics for
an economy or large group. Resolving that difference involves solving the problem of
aggregation.

Some broad properties will transmit between the individual level and aggregate statis-
tics, but typically not enough for quantitative analysis. For instance, consider spending
behavior by households when the price of a good increases. If some households decrease
their purchases of that good and no household increases its purchases, then aggregate
spending on that good must decrease. However, knowing that aggregate spending will
decrease is very different from knowing the exact amount it will decrease, or how sen-
sitive aggregate spending is to that price increase. This latter information is required
for any analysis of aggregate demand–supply impacts or impacts of policy such as tax
changes. To pin down a value to use as the “aggregate price elasticity”, one must come
to grips with how individual households differ across the population. In an econometric
setting, this requires explicit modeling of household behavior and the differences rele-
vant to spending. Moreover, this example involves the simplest type of change, namely
a common price change faced by all households. The issues multiply when the changes
themselves vary across households. Consider spending impacts that arise from a policy
that injects new income into the household sector. Now it is not even clear how to make
sense of a value of an “income elasticity” for the economy. If the policy targets poor
households, then one likely gets different impacts than if the policy targeted middle-
income households.

The issues raised by aggregation are not new, but rather have been a part of the dis-
cussion of empirical work in economics for much of the past century. What is new is
the development of econometric models and methods that explicitly deal with aggrega-
tion problems. Such models apply equally well to individual data and to aggregate level
statistics. The purpose of this chapter is to cover these developments in a few selected
application areas. We include discussion of the principles that guide the construction of
such econometric models.

In line with the models we cover, we take a practical approach to the definitions
of “individual level” and “aggregate statistics”, sidestepping a number of issues about
the underpinnings of standard econometric models. For instance, empirical practice in
demand modeling is to define a household as the “individual agent” and study total
(economy-wide) expenditures on various commodities as the aggregate statistics of in-
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terest. Thus, at the micro level, purchase decisions made by individual family members
are assumed to be in line with an overall household plan, which sidesteps the issues
raised by bargaining within a family. In terms of the macro level, modeling total or “per
capita” commodity expenditures entails different issues from modeling an alternative
type of aggregate statistic. For instance, different issues would arise if one wanted to
study what fraction of households fell below a minimum threshold for food expendi-
tures, or if one wanted to study inequality in living standards from the Gini coefficient
of food expenditures.

While practical, this posture is not arbitrary. Much of the development we discuss has
been made possible by the enhanced availability of survey data on individual behavior.
Standard microeconometric models (and the assumptions that justify them) provide the
most natural starting point for building models that account for aggregation. The appro-
priate choice of aggregate statistics is driven by data availability and the policy question
of interest. Economy-wide totals or averages (from national accounts) are the most com-
monly available statistics for modeling. They are also the most important statistics for
most questions of economic policy, such as questions involving prices, interest rates,
total savings, market demand and supply, total tax revenues, aggregate wages and un-
employment.

Given the application area, an econometric model that accounts for aggregation con-
sists of individual-level equations and equations for aggregate statistics. Ideally, the
individual equations will capture all important economic effects and allow for realis-
tic individual heterogeneity. The aggregate equations must be fully consistent with the
individual equations, and typically will require assumptions on the distribution of indi-
vidual heterogeneity. Taken as a whole, these equations constitute a single model that
relates to data at all levels – individual cross-section or panel data and aggregate sta-
tistics over time. All relevant data sources can be used in estimation, and an estimated
model can be applied to any level – individual, proper subgroup or the full economy.
There are multiple levels of testable implications of such a model: from the individual
model, from the aggregate equations and from the necessary distributional assumptions.

This chapter covers specific models and related work in three application areas: con-
sumer demand analysis, consumption and saving analysis and analysis of wages and la-
bor market participation. A key issue is to identify what kinds of individual differences,
or heterogeneity, are relevant for each application area. As an organizing principle, we
consider (i) heterogeneity in individual tastes and incomes, (ii) heterogeneity in wealth
and income risks faced by individuals and (iii) heterogeneity in market participation.1

There is a generic tension between the degree of individual heterogeneity accounted for
and the ease with which one can draw implications for economic aggregates. We point
out how different types of heterogeneity are accommodated in the different application
areas.

1 This roughly coincides with the categorization of heterogeneity discussed in Browning, Hansen and Heck-
man (1999).
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We are concerned with models that strike a balance between realism (flexibility),
adherence to restrictions from economic theory and connections between individual be-
havior and aggregate statistics. We consider several settings where individual models
are intrinsically nonlinear, and for those we must make specific assumptions on the dis-
tributions of relevant heterogeneous characteristics. We present results that can be used
to explore the impact of heterogeneity in empirical applications, that assume reasonable
(and hopefully plausible) parameterizations of both individual equations and distribu-
tions of heterogeneity. We do not go into details about estimation; for each application
area, we present models with empirically plausible equations for individuals and con-
sistent equations for the relevant economic aggregates. Again, the point is to develop a
single framework that has the ability to address empirical issues at the individual (mi-
cro) level, the aggregate (macro) level or both.

We begin with our coverage of consumer demand models in Section 2, the area which
has seen the most extensive development of solutions to aggregation problems. The
difficult issues in consumer demand include clear evidence of nonlinearity in income
effects (e.g. Engel’s Law for food) and pervasive evidence of variations in demand with
observable characteristics of households. We discuss each of these problems in turn,
and use the discussion to cover traditional results as well as “aggregation factors” as
a method of empirically studying aggregation bias. We cover recent empirical demand
models, and present aggregation factors computed from data on British households.
That is, we cover the standard issues faced by aggregating over heterogeneous house-
holds in a static decision-making format, and illustrate with application to empirical
demand models in current use. We close with a discussion of recent work that studies
aggregate demand structure without making specific behavioral assumptions on indi-
vidual demands.

In Section 3 we discuss models of overall consumption growth and wealth. Here
we must consider heterogeneity in tastes, but we focus on the issues that arise from
heterogeneity in income shocks, showing how different types of shocks transmit to ag-
gregate consumption. We start with a discussion of quadratic preferences in order to
focus on income and wealth, and then generalize to recent empirical models that permit
precautionary saving. Because of the log-linear form of these models, we must make
explicit distributional assumptions to solve for aggregate equations. We cover the types
of heterogeneity found in consumption relationships, as well as various other aspects
of our modeling, illustrating with empirical data. We follow this with a brief discus-
sion of modeling liquidity constraints and the impacts on aggregate consumption. We
close this section with a discussion of recent progress in general equilibrium modeling
of consumption, saving and wealth.

Section 4 covers recent work on labor participation and aggregate wage rates. The
main issues here concern how to interpret observed variations in aggregate wages –
are they due to changes in wages of individuals or to changes in the population of
participating workers? We focus on the issues of heterogeneity in market participation,
and develop a paradigm that allows isolation of the participation structure from the
wage structure. This involves tracking the impacts of selection on the composition of
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the working population, the impacts of weighting individual wage rates by hours in
the construction of aggregate wages and the impact of observed wage heterogeneity.
We show how accounting for these features gives a substantively different picture of the
wage situation in Britain from that suggested by observed aggregate wage patterns. Here
we have a situation where there is substantial heterogeneity and substantial nonlinearity,
and we show how to address these issues and draw conclusions relevant to economic
policy.

Section 5 concludes with some general observations on the status of work on aggre-
gation in economics.

This chapter touches on many of the main ideas that arise in addressing aggregation
problems, but it is by no means a comprehensive survey of all relevant topics or recent
approaches to such problems. For instance, we limit our remarks on the basic nature
of aggregation problems, or how it is senseless to ascribe behavioral interpretations to
estimated relationships among aggregate data without a detailed treatment of the links
between individual and aggregate levels. It is well known that convenient constructs
such as a “representative agent” have, in fact, no general justification – we will not fur-
ther belabor their lack of foundation. See the surveys by Stoker (1993) and Browning,
Hansen and Heckman (1999) for background on these basic problems. It is useful to
mention two related lines of research, that we do not cover. The first is the work on
how economic theory provides few restrictions on market excess demands – see Son-
nenschein (1972) and Schafer and Sonnenschein (1982) among others, and Brown and
Matzkin (1996) for a more recent contribution. The second is the work on collective
decision making within households as pioneered by Chiappori (1988, 1994).

We will also limit our attention to aggregation over individuals, and not discuss the
voluminous literature on aggregation over commodities. This latter literature concerns
the construction of aggregate “goods” from primary commodities, as well as the consis-
tency of multistage budgeting and other simplifications of choice processes. While very
important for empirical work, the issues of commodity aggregation apply within de-
cision processes of individuals and, as such, would take us too far afield of our main
themes. See the survey by Blundell (1988) as well as the book by Blackorby, Pri-
mont and Russell (1978) for background on commodity aggregation and multistage
budgeting. We do not cover the growing literature on hedonic/characteristics models,
which can serve to facilitate commodity aggregation or other simplifications in deci-
sion making. Moreover, we do not cover recent advances that use aggregation to solve
microeconometric estimation problems: see Imbens and Lancaster (1994) for the basic
approach and Berry, Levinsohn and Pakes (2004) for a recent application to estimation
of demands for differentiated products.

Finally, we do not cover in great detail work that is associated with time-series ag-
gregation. That work studies how the time-series properties of aggregate statistics relate
to the time-series processes of associated data series for individuals, such as stationar-
ity and co-integration. To permit such focus, that work relies on strictly linear models
for individual agents, which again turn the discussion away from heterogeneity in in-
dividual reactions and other behavior. We do make reference to time-series properties
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of income processes as relevant to our discussion of individual and aggregate consump-
tion, but do not focus on time-series properties in any general way. Interested readers
can pursue Granger (1980, 1987, 1990) and the book by Forni and Lippi (1997) for
more comprehensive treatment of this literature.2

2. Consumer demand analysis

We begin with a discussion of aggregation and consumer demand analysis. Here the em-
pirical problem is to characterize budget allocation to several categories of commodities.
The individual level is that of a household, which is traditional in demand analysis. The
economic aggregates to be modeled are average (economy-wide, per household) expen-
ditures on the categories of commodities. We are interested in aggregate demand, or
how average category expenditures relate to prices and the distribution of total budgets
across the economy.

In a bit more detail, we assume that households have a two-stage planning process,
where they set the total budget for the current period using a forward-looking plan, and
then allocate that current budget to the categories of nondurable commodities.3 As such,
we are not concerned with heterogeneity in the risks faced by households in income and
wealth levels – they have already been processed by the household in their choice of
total budget (and, possibly, in their stocks of durable goods). We consider commodity
categories that are sufficiently broad that household expenditures are nonzero (food
categories, clothing categories, etc.), and so we are not concerned with zero responses,
or heterogeneity in market participation.

We are concerned with heterogeneity in total budgets and in needs and tastes. It is a
well-known empirical fact that category expenditure allocations vary nonlinearly with
total budget size (for instance, Engel’s Law with regard to food expenditures). Early
applications of exact aggregation demand systems had budget shares in semi-log form
(with or without attributes), namely the popular Translog models of Jorgenson, Lau and
Stoker (1980, 1982) and Almost Ideal models of Deaton and Muellbauer (1980a, 1980b)
respectively. More recent empirical studies have shown the need for further nonlin-
ear terms in certain expenditure share equations. In particular, evidence suggests that
quadratic logarithmic income terms are required [see, for example, Atkinson, Gomulka
and Stern (1990), Bierens and Pott-Buter (1990), Hausman, Newey and Powell (1994),
Härdle, Hildenbrand and Jerison (1991), Lewbel (1991) and Blundell, Pashardes and
Weber (1993)]. This nonlinearity means that aggregate demands will be affected by to-
tal budget size as well as the degree of inequality in budgets across consumers. It is

2 See Stoker (1986c, 1993), Lewbel (1994) and others for examples of clear problems in inferring behavioral
reactions from time-series results in the presence of individual heterogeneity.
3 Provided that intertemporal preferences are additive, this accords with a fairly general intertemporal model

of expected utility maximization [see Deaton and Muellbauer (1980b), among others].
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also well known that category expenditures vary substantially with demographic com-
position of households, such as how many children are present, or whether the head of
household is young or elderly [see Barten (1964), Pollak and Wales (1981), Ray (1983)
and Browning (1992)].

Our aim is to understand how behavioral effects for households impinge on price
effects and distributional effects on aggregate demands. Understanding these effects is
a key ingredient in understanding how the composition of the population affects demand
growth over time and relative prices across the different commodity categories.

2.1. Aggregation of consumer demand relationships

Our framework requires accounting for individuals (households), goods and time peri-
ods. In each period t , individual i chooses demands qijt (or equivalently expenditures
pjtqij t ) for j = 1, . . . , J goods by maximizing preferences subject to an income con-
straint, where i = 1, . . . , nt . Prices pjt are assumed to be constant across individuals
at any point in time, with pt = (p1t , . . . , pJ t ) summarizing all prices. Individuals have
total expenditure budget mit = ∑

j pjtqij t , or income for short,4 and are described by a
vector of household attributes zit , such as composition and demographic characteristics.
The general form for individual demands is written

(1)qijt = gjt (pt ,mit , zit ).

This model reflects heterogeneity in income mit and individual attributes zit . Specific
empirical models involve the specification of these elements,5 including a parametric
formula for gjt .

Economy-wide average demands and average income are

(2)

∑
i qij t

nt

, j = 1, . . . , J, and

∑
i mit

nt

.

We assume that the population of the economy is sufficiently large to ignore sampling
error, and represent these averages as the associated population means

(3)Et(qij t ), j = 1, . . . , J, and Et(mit ).

Our general framework will utilize various other aggregates, such as statistics on the
distribution of consumer characteristics zit .

4 It is common parlance in the demand literature to refer to “total budget expenditure” as “income”, as we do
here. In the later section on consumption, we return to using “income” more correctly, as current consumption
expenditures plus saving.
5 For most of our discussion, zit can be taken as observable. When we discuss explicit empirical models, we

will include unobserved attributes, random disturbances, etc.
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2.1.1. Various approaches: Exact aggregation and distributional restrictions

We begin by discussing various approaches to aggregation in general terms. From (1),
aggregate demand is given formally as

(4)Et(qij t ) =
∫

gjt (pt ,mit , zit ) dFt (mit , zit ),

where Ft(mit , zit ) is the cross-section distribution of income and attributes at time t .
At the simplest level, approaches to aggregation seek a straightforward relationship be-
tween average demand, average income and average attribute values

(5)Et(qij t ) = Gjt

(
pt , Et (mit ), Et (zit )

)
.

The exact aggregation approach is based on linearity restrictions on individual prefer-
ences/demands gijt that allow the relationship Gjt to be derived in a particularly simple
way, such that knowledge of Gjt is sufficient to identify (the parameters of) the individ-
ual demand model. Take, for example,

(6)gjt (pt ,mit , zit ) = b0j (pt )mit + b1j (pt )mit ln mit + b2j (pt )mit zit ,

where we suppose zit is a single variable that has zit = 1 for an elderly household and
zit = 0 otherwise. Individual demand has a linear term in income and a nonlinear term
in income, and the slope of the linear term is different for elderly households. All of
these slopes can vary with pt . Now, aggregate demand is

(7)Et(qij t ) = b0j (pt )Et (mit ) + b1j (pt )E(mit ln mit ) + b2j (pt )E(mit zit ),

which depends on average income Et(mit ) and two other statistics, E(mit ln mit ) and
E(mit zit ). The coefficients are the same in the individual and aggregate models, which
is the bridge through which individual preference parameters manifest in aggregate de-
mands (and can be recovered using aggregate data).

In order to judge the impact of aggregation on demand, it is convenient to use aggre-
gation factors.6 Write aggregate demand as

Et(qij t ) = b0j (pt )Et (mit ) + b1j (pt )π1tE(mit ) ln E(mit )

(8)+ b2j (pt )π2tE(mit )E(zit ),

where

(9)π1t = E(mit ln mit )

E(mit ) ln E(mit )
and π2t = E(mit zit )

E(mit )E(zit )
.

The factors π1t and π2t show how the coefficients in (7) are adjusted if individual
demand is evaluated at average income and average attributes, as in (8). π1t reflects
inequality in the income distribution through the entropy term E(mit ln mit ) and π2t

6 The use of aggregation factors was first proposed by Blundell, Pashardes and Weber (1993).
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reflects the distribution of income of the elderly, as the ratio of the elderly’s share in ag-
gregate income E(mit zit )/E(mit ) to the percentage of elderly E(zit ) in the population.
Aggregation factors are useful for two reasons. First, if they are stable, then aggregate
demand has similar structure to individual demand. Second, their average value indi-
cates how much bias is introduced in estimation using aggregate data alone.7

In contrast, the distributional approach considers restrictions on the heterogeneity
distribution Ft (mit , zit ). Suppose the density dFt(mit , zit ) is an explicit function of
Et(mit ), E(zit ) and other parameters, such as variances and higher-order moments.
Then with a general nonlinear specification of individual demands gijt , we could solve
(4) directly, expressing aggregate demand Et(qij t ) as a function of those distributional
parameters. Here, recovery of individual demand parameters from aggregate demand
would be possible with sufficient variation in the distribution Ft (mit , zit ) over t .8

While conceptually different from exact aggregation, the distributional approach
should not be thought of as a distinct alternative in empirical modeling. With distri-
bution restrictions, formulating a model via direct integration in (4) may be difficult in
practice. As such, distributional restrictions are often used together with exact aggrega-
tion restrictions, combining simplifying regularities of the income-attribute distribution
with linearity restrictions in individual demands.

One example is with mean-scaling, as discussed in Lewbel (1990), where the distrib-
ution of income does not change relative shape but just scales up or down. Mean-scaling
can arise with a redistribution mechanism where individual budgets are all scaled the
same, as in mit = mit−1(Et (mit )/Et−1(mit−1)). This structure allows distributional
statistics such as those in (7) to be computed from mean income only.

Another example arises from (distributional) exclusion restrictions. Certain attributes
can be excluded from aggregate demand if their distribution conditional on income is
stable over time; if

(10)dFt(mit , zit ) = fz(zit |mit ) dF ∗
t (mit )

where fz(zit |mit ) does not vary with t , then from (4),

Et(qij t ) =
∫

gjt (pt ,mit , zit )fz(zit |mit ) dF ∗
t (mit )

(11)=
∫

g∗
j t (pt ,mit ) dF ∗

t (mit ).

That is, zit and its distributional statistics are excluded from the equation for aggregate
demand. Aggregate demand reflects heterogeneity only through variation in the income

7 For instance, in (8), b1j (pt ) is the coefficient of E(mit ln mit ), whereas b1j (pt )π1t is the coefficient of
E(mit ) ln E(mit ). If π1t is stable, π1t = π0, then b1j (pt )π1t is proportional to b1j (pt ). In this sense, the
structure of aggregate demand matches that of individual demand, but the use of aggregate data alone would
estimate the individual coefficient with a proportional bias of π0.
8 Technically, what is necessary for recoverability is completeness of the class of income-attribute distribu-

tions; see Stoker (1984a).
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distribution – there is not enough variation in the zit distribution over t to recover the
individual effects from aggregate demand. We discuss various other examples of partial
distribution restrictions below.

2.1.2. Demand and budget share models

There has been a substantial amount of work on the precise structure of individual pref-
erences and demands consistent with exact aggregation. The most well-known result
of this kind is in the extreme case where the aggregate model simply relates average
demands Et(qij t ) to the vector of relative prices pt and average expenditure Et(mit ).
Gorman (1953) showed that this required preferences to be quasi-homothetic, with in-
dividual demands linear in mit .

Omitting reference to attributes zit for now, the general formulation for exact aggre-
gation has demands of the form

(12)qijt = a0j (pt ) + b0j (pt )h0(mit ) + · · · + bMj (pt )hM(mit )

with aggregate demands given as

(13)Et(qij t ) = a0j (pt ) + b0j (pt )Et

[
h0(mit )

] + · · · + bMj (pt )Et

[
hM(mit )

]
.

As above, provided there is sufficient variation in the statistics Et [h0(mit )], . . . ,
Et [hM(mit )], the coefficients a0j (pt ), b0j (pt ), . . . , bMj (pt ), and hence individual de-
mands, can be fully recovered from aggregate data.

Lau (1977, 1982) originally proposed the exact aggregation framework, and demon-
strated that demands of the form (12) were not only sufficient but also necessary for
exact aggregation, or aggregation without distributional restrictions [c.f. Stoker (1993)
and Jorgenson, Lau and Stoker (1982)]. Muellbauer (1975) studied a related problem,
and established results for the special case of (12) with only two income terms.9 These
both showed several implications of applying integrability restrictions to (12). If de-
mands are zero at zero total expenditure, then a0j (pt ) = 0. The budget constraint
implies that one can set h0(mit ) = mit , without loss of generality. With homogene-
ity of degree zero in prices and incomes, one can assert the forms of the remaining
income terms, which include the entropy form h1(mit ) = mit ln mit and the power
form h1(mit ) = mθ

it . This theory provides the background requirements for specific
exact aggregation demand models, such as those we discuss below.10

The tradition in empirical demand analysis is to focus on relative allocations, and
estimate equations for budget shares. The exact aggregation form (12) is applied to
budget shares for this purpose. In particular, if we set a0j (pt ) = 0 and h0(mit ) = mit

9 Muellbauer (1975) studied the conditions under which aggregate budget shares would depend only on a
single representative income value, which turned out to be analogous to the exact aggregation problem with
only two expenditure terms.
10 See also Lewbel (1989b, 1991, 1993) and Stoker (1984a, 1984b).
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in (12), then budget shares wijt = pjtqij t /mit take on a similar linear form. We have

(14)wijt = pjtqij t

mit

= b0j (pt ) + b1j (pt )h1(mit ) + · · · + bMj (pt )hM(mit )

where b0j (pt ), . . . , bMj (pt ) and h1(mit ), . . . , hM(mit ) are redefined in the obvious
way. If we denote individual expenditure weights as μit = mit/Et (mit ), then aggre-
gate budget shares are

Et(pjtqij t )

Et (mit )
= Et(μitwijt ) = b0j (pt ) + b1j (pt )Et

(
μith1(mit )

) + · · ·
(15)+ bMj (pt )Et

(
μithM(mit )

)
.

The same remarks on recoverability apply here: the individual budget share coefficients
b1j (pt ), . . . , bMj (pt ) can be identified with aggregate data with sufficient variation in
the distributional terms Et(μith1(mit )), . . . , Et (μithM(mit )) over time. As above, ag-
gregation factors can be used to gauge the difference between aggregate shares and
individual shares. We have

Et(pjtqij t )

Et (mit )
= Et(μitwijt ) = b0j (pt ) + b1j (pt )π1t h1

(
Et(mit )

) + · · ·
(16)+ bMj (pt )πMthM

(
Et(mit )

)
where by construction

(17)πkt = Et(μithk(mit ))

hk(Et (mit ))
, k = 1, . . . , M,

are the aggregation factors. These factors give a compact representation of the distribu-
tional influences that cause the aggregate model, and the elasticities derived from it, to
differ from the individual model.

The budget share form (14) accommodates exact aggregation through the separation
of income and price terms in its additive form. As before, when integrability restric-
tions are applied to (14), the range of possible model specifications is strongly reduced.
A particularly strong result is due to Gorman (1981), who showed that homogeneity
and symmetry restrictions imply that the rank of the J × (M + 1) matrix of coeffi-
cients [bmj (pt )] can be no greater than 3. Lau (1977), Lewbel (1991) and others have
characterized the full range of possible forms for the income functions.

2.1.3. Aggregation in rank 2 and rank 3 models

Early exact aggregation models were of rank 2 (for a given value of attributes zit ). With
budget share equations of the form11

(18)wijt = b0j (pt ) + b1j (pt )h1(mit ),

11 This is Muellbauer’s (1975) PIGL form.



Ch. 68: Models of Aggregate Economic Relationships 4621

preferences can be specified that give rise to either the log-form h1(mit ) = ln mit or the
power form h1(mit ) = mθ

it . Typically the former is adopted and this produces Engel
curves that are the same as those that underlie the Almost Ideal model and the Translog
model (without attributes).12 In this case, aggregate shares have the form

(19)
Et(pjtqij t )

Et (mit )
= Et(μitwijt ) = b0j (pt ) + b1j (pt )π1t ln Et(mit )

where the relevant aggregation factor is the following entropy measure for the mit dis-
tribution:

(20)π1t = Et(μit ln mit )

ln Et(mit )
= Et(mit ln mit )

Et (mit ) ln Et(mit )
,

where we have recalled that μit = mit/Et (mit ). The deviation of π1t from unity de-
scribes the degree of bias in recovering (individual) price and income elasticities from
aggregate data alone.

Distribution restrictions can be used to facilitate computation of the aggregate statis-
tics as well as studying the aggregation factors. For instance, suppose income is log-
normally distributed, with ln mit distributed normally with mean μmt and variance σ 2

mt .
The aggregation factor (20) can easily be seen to be

(21)π1t = 1 + 1

2(μmt/σ
2
mt ) + 1

.

To the extent that the log mean and variance are in stable proportion, π1t will be stable.
If the log mean is positive, then π1t > 1, indicating positive bias from using ln Et(mit ).

Distribution restrictions can also facilitate the more modest goal of a stable relation-
ship between aggregate budget shares and aggregate total expenditure. For instance,
suppose that the total expenditure distribution obeys

(22)Et(mit ln mit ) = c1Et(mit ) + c2Et(mit ) ln Et(mit ).

Then aggregate budget shares are

(23)
Et(pjtqij t )

Et (mit )
= b0j (pt ) + b1j (pt )

(
c1 + c2 ln Et(mit )

)
so that a relationship of the form

(24)
Et(pjtqij t )

Et (mit )
= b̃0j (pt ) + b̃1j (pt ) ln Et(mit )

would describe aggregate data well.

12 It is worthwhile to note that with the power form, estimation of θ with aggregate data would be compli-
cated, because the aggregation statistics would depend in a complicated way on θ .
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Here, integrability properties from individual demands can impart similar restrictions
to the aggregate relationship. Lewbel (1991) shows that if individual shares

(25)wijt = b0j (pt ) + b1j (pt ) ln mit

satisfy symmetry, additivity and homogeneity properties, then so will

(26)wijt = b0j (pt ) + b1j (pt )(κ + ln mit ).

The analogy of (23) and (26) makes clear that if c2 = 1, then the aggregate model
will satisfy symmetry, additivity and homogeneity. As such, some partial integrability
restrictions may be applicable at the aggregate level.13

As we discuss in Section 2.2 below, rank 2 models of the form (18) fail on empiri-
cal grounds. Evidence points to the need for more extensive income effects (for given
demographic attributes zit ), such as available from rank 3 exact aggregation specifica-
tions. In particular, rank 3 budget share systems that include terms in (ln mit )

2 (as well
as individual attributes) seem to do a good job of fitting the data, such as the QUAIDS
system of Banks, Blundell and Lewbel (1997), described further in Section 2.2 below.
In these cases, corresponding to the quadratic term (ln mit )

2, there will be an additional
aggregation factor to examine,

(27)π2t = Et(μit (ln mit )
2)

(ln Et(mit ))2
= Et(mit (ln mit )

2)

Et (mit )(ln Et(mit ))2
.

In analogy to (22), one can define partial distributional restrictions so that aggregate
shares are well approximated as a quadratic function of ln Et(mit ).

2.1.4. Heterogeneous attributes

As we noted in our earlier discussion, the empirical analysis of individual-level data has
uncovered substantial demographic effects on demand. Here we reintroduce attributes
zit into the equations, to capture individual heterogeneity not related to income. Since
zit varies across consumers, for exact aggregation, zit must be incorporated in a similar
fashion to total expenditure mit . The budget share form (14) is extended generally to

(28)wijt = b0j (pt ) + b1j (pt )h1(mit , zit ) + · · · + bMj (pt )hM(mit , zit ).

Restrictions from integrability theory must apply for each value of the characteris-
tics zit . For instance, Gorman’s rank theory implies that the share model can be rewritten

13 It is tempting to consider the case of c1 = 0, c2 = 1, which would imply that the aggregation factor
π1t = 1 (and no aggregation bias). However, that case appears impossible, although we do not provide a
proof. For instance, if mit were lognormally distributed, c1 = 0, c2 = 1 would only occur if ln mit had zero
variance.
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with two terms that depend on mit , but there is no immediate limit on the number of h

terms that depend only on characteristics zit .14

Budget share models that incorporate consumer characteristics in this fashion were
first introduced by Jorgenson, Lau and Stoker (1980, 1982). Aggregation factors
arise for attribute terms, that necessarily involve interactions between income and at-
tributes. The simplest factors arise for terms that depend only on characteristics, as in
hj (mit , zit ) = zit , namely

(29)πz
t = Et(μit zit )

Et (zit )
= Et(mit zit )

Et (mit )Et (zit )
.

This can be seen as the ratio of the income-weighted mean of zit to the unweighted mean
of zit. If zit is an indicator, say zit = 1 for households with children and zit = 0 for
households without children, then πz

t is the percentage of expenditure accounted for by
households with children, Et(mit zit )/Et (mit ), divided by the percentage of households
with children, Et(zit ).

More complicated factors arise with expenditure-characteristic effects; for example,
if hj (mit , zit ) = zit ln mit then the relevant aggregation factor is

(30)πz
1t = Et(μit zit ln mit )

Et (zit ) ln Et(mit )
= Et(mit zit ln mit )

Et (mit )Et (zit ) ln Et(mit )
.

As before, in analogy to (22), one can derive partial distributional restrictions so that
aggregate shares are well approximated as a function of Et(mit ) and Et(zit ).

2.2. Empirical evidence and the specification of aggregate demand models

2.2.1. What do individual demands look like?

Demand behavior at the individual household level is nonlinear. As we have mentioned,
it is not realistic to assume that demands are linear in total expenditures and relative
prices. To illustrate typical shapes of income structure of budget shares, Figures 1 and 2
present estimates of Engel curves of two commodity groups for the demographic group
of married couples without children, in the British Family Expenditure Survey (FES).15

Each figure plots the fitted values of a polynomial (quadratic) regression in log to-
tal expenditure, together with a nonparametric kernel regression. We see that for food

14 A simple linear transformation will not in general be consistent with consumer optimization. Blundell,
Browning and Crawford (2003) show that if budget shares have a form that is additive in functions of ln mit

and demographics, then if (i) Slutsky symmetry holds and (ii) the effects of demographics on budget shares
are unrestricted then they have to be linear in ln mit .
15 The FES is a random sample of around 7000 households per year. The commodity groups are nondurable
expenditures grouped into: food-in, food-out, electricity, gas, adult clothing, children’s clothing and footwear,
household services, personal goods and services, leisure goods, entertainment, leisure services, fares, motor-
ing and gasoline. More precise definitions and descriptive statistics are available on request.
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Figure 1. Nonparametric Engel curve: Food share.

Figure 2. Nonparametric Engel curve: Alcohol share.

expenditures, an equation that expressed the food share as a linear function of log ex-
penditure would be roughly correct. For alcohol expenditures, the income structure is
more complex, requiring quadratic terms in log expenditure. Moreover, as one varies
the demographic group, the shapes of the analogous Engel curves are similar, but they
vary in level and slope.

The QUAIDS model of Banks, Blundell and Lewbel (1997) seems to be sufficiently
flexible to capture these empirical patterns. In the QUAIDS model, expenditure shares
have the form

(31)

wijt = αj + γ ′
j ln pt + βj

(
ln mit − ln a(pt )

) + λj

(ln mit − ln a(pt ))
2

c(pt )
+ uijt
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where a(pt ) and c(pt ) are given as

ln a(pt ) = α′ ln pt + 1

2
ln p′

tΓ ln pt ,

ln c(pt ) = β ′ ln pt ,

with α = (α1, . . . , αN)′, β = (β1, . . . , βN)′, λ = (λ1, . . . , λN)′ and

Γ =
⎛⎝ γ ′

1
...

γ ′
N

⎞⎠ .

This generalizes the (linear) Almost Ideal demand system by allowing nonzero λi

values, with the denominator c(pt ) required to maintain the integrability restrictions.
Banks, Blundell and Lewbel (1997) do extensive empirical analysis and establish the
importance of the quadratic log expenditure terms for many commodities. Interestingly,
they find no evidence of the rejection of integrability restrictions associated with homo-
geneity or symmetry.

To include demographic attributes, an attractive specification is the ‘shape-invariant’
specification of Blundell, Duncan and Pendakur (1998). Suppose that g0

j (ln mi) denotes
a ‘base’ share equation, then a shape-invariant model specifies budget shares as

wijt = g0
j

(
ln mi − φ

(
z′
it θ

)) + z′
it ϕj .

The shape-invariant version of the QUAIDS model allows demographic variation in
the αj terms. In Banks, Blundell and Lewbel (1997), the αj , βj and λj terms in (31)
are allowed to vary with many attributes zit .16 Family size, family composition, labor
market status, occupation and education are all found to be important attributes for many
commodities.17

2.2.2. The implications for aggregate behavior

The stability and interpretation of aggregate relationships can be assessed from examin-
ing the appropriate aggregation factors. We can compute the empirical counterparts to
the factors by replacing expectations with sample averages. For instance, π1t of (20) is
estimated as

(32)π̂1t =
∑

i (μ̂it ln mit )/nt

ln(
∑

i mit /nt )

16 For instance, αj + δ′
j
zit is used in place of αj , and similar specifications for βj and λj terms.

17 Various methods can be used to estimate the QUAIDS model, with the iterated moment estimator of
Blundell and Robin (2000) particularly straightforward. Banks, Blundell and Lewbel (1997) deal with endo-
geneity of total expenditures, using various instruments. Finally, we note that Jorgenson and Slesnick (2005)
have recently combined a Translog demand model (of rank 3) with an intertemporal allocation model, to
model aggregate demand and labor supply in the United States.
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Figure 3. Aggregation factor for households with children.

and πz
t of (29) is estimated as

(33)π̂ z
t =

∑
i μ̂it zit /nt∑

i zit /nt

where we recall that the weights have the form μ̂it = mit/(
∑

i mit /nt ). Similarly,
quadratic terms in ln mit will require the analysis of the empirical counterpart to the term
(27). Interactions of the β and λ terms in (31) with demographic attributes necessitate
examination of the empirical counterparts of terms of the form (30). We can also study
aggregation factors computed over different subgroups of the population, to see how
aggregate demand would vary over those subgroups.

Figure 3 presents the estimated πz
t term for the impact of children on household de-

mands. This shows a systematic rise in the share of nondurable expenditures attributable
to families with children over the 1980s and 1990s. The aggregate bias associated with
using observed percentage of households with children (as opposed to the income dis-
tribution across households with and without children) varies from 15% to 25%. The
path of πz

t also follows the UK business cycle and the path of aggregate expenditure
with downturns in 1981 and 1992.

Figure 4 presents the estimated π1t and π2t terms relating to the ln mit and (ln mit )
2

expressions in the QUAIDS demand model. It is immediately clear that these also dis-
play systematic time-series variation, but in comparison to πz

t above, they increase over
the first period of our sample and fall towards the end. The bias in aggregation exhibited
for the (ln mit )

2 term is more than double that exhibited for the ln mit term.
Figure 5 presents the aggregation factors for the ln mit term delineated by certain

household types. The baseline ln m line is the same as that in Figure 4. The other two
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Figure 4. Aggregation factors for income structure.

Figure 5. Aggregation factors for income structure by certain household types.

lines correspond to interactions for couples without children and for couples with chil-
dren. While the time patterns of aggregation factors are similar, they are at different
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levels, indicating different levels of bias associated with aggregation over these sub-
groups.

Finally, it is worthwhile to mention some calculations we carried out on whether dis-
tributional restrictions such as (22) are capable of representing the aggregate movements
in total expenditure data. Using the time-series of distributional statistics from the FES
data, we followed Lewbel (1991) and implemented each of these approximations as a
regression. With demographic interaction terms, the aggregate model will only simplify
if these conditions also apply to each demographic subgroup. In virtually every case,
we found the fit of the appropriate regressions to be quite close (say R2 in the region
of 0.99). This gives support to the idea that aggregate demand relationships are reason-
ably stable empirically. However, the evidence on the cj terms implies that aggregation
factors are substantially different from one, so again, estimates of the price and income
elasticities using aggregate data alone will be not be accurate.

2.3. Aggregation of demand without individual structure

We close this section with discussion of a nontraditional approach given in Hildenbrand
(1994), which is to study specific aspects of aggregate demand structure without relying
on assumptions on the behavior of individual consumers. This work makes heavy use of
empirical regularities in the observed distribution of consumer expenditures across the
population.

We can understand the nature of this approach from a simple example. Suppose we
are interested in whether aggregate demand for good j decreases when price pj in-
creases (obeying the “Law of Demand”), and we omit reference to other goods and time
t for simplicity. Denote the conditional expectation of demand qij for good j , given
income mi and price pj , as gj (pj ,mi). Aggregate demand for good j is

E(qij ) = G(pj ) =
∫

g(pj ,m) dF(m)

and our interest is in whether dG/dpj < 0. Form this derivative, applying the Slutsky
decomposition to g(pj ,m) as

dG

dpj

=
∫ [

dg

dpj

∣∣∣∣
comp

− g(pj ,m)
dg

dm

]
dF(m)

=
∫

dg

dpj

∣∣∣∣
comp

dF(m) −
∫

g(pj ,m)
dg

dm
dF(m)

(34)= S − A.

The price effect on aggregate demand decomposes into the mean compensated price
effect S and the mean income effect A. If we take S as negative, which is fairly uncon-
troversial, then we know that dG/dpj < 0 if the income effect A > 0. Looking once
more at A, we can see various ways of ascertaining whether A > 0:

(35)A =
∫

g(pj ,m)
dg

dm
dF(m) = 1

2

∫
d[g(pj ,m)2]

dm
dF(m).
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Without making any structural assumptions on g(pj ,m), one could estimate A with
the first expression using nonparametric estimates of g(·) and its derivative. Or, we
could examine directly whether the “spread” g(pj ,m)2 is increasing with m, and if so,
conclude that A > 0.

This gives the flavor of this work without doing justice to the details. The main
contribution is to link up properties of aggregate demand directly with aspects of the
distribution of demands across the population. Hildenbrand (1998) shows that increas-
ing spread is a common phenomenon in data on British households, and it is likely
to be valid generally. More broadly, this work has stimulated extensive study of the
distribution of household expenditures, with a different perspective from traditional de-
mand modeling. Using nonparametric methods, Härdle, Hildenbrand and Jerison (1991)
study aggregate income effects across a wide range of goods, and conclude that the “law
of demand” likely holds quite generally. Hildenbrand and Kneip (1993) obtain similar
findings on income structure by directly examining the dimensionality of vectors of in-
dividual demands.18 See Hildenbrand (1994) for an overview of this work, as well as
Hildenbrand (1998) for an examination of variations in the British expenditure distrib-
ution within a similar framework.

3. Consumption and wealth

We now turn to a discussion of total consumption expenditures. Here the empirical
problem is to characterize consumption expenditures over time periods, including how
they relate to income and wealth. The individual level is typically that of a household (or
an individual person, depending on data source). The economic aggregate to be modeled
is average consumption expenditures over time, and we are interested in how aggregate
consumption and saving relate to income and wealth across the economy, as well as
to interest rates. This relationship is essential for understanding how interest rates will
evolve as the population changes demographically, for instance.

Consumption expenditures are determined through a forward-looking plan, that takes
into account the needs of individuals over time, as well as uncertainty in wealth levels.
There is substantial evidence of demographic effects and nonlinearities in consumption
at the individual level,19 so we will need to consider heterogeneity in tastes as before.
Accordingly, aggregate consumption is affected by the structure of households and es-
pecially the age distribution, and will also be affected by inequality in the distribution
of wealth. We are not concerned here with heterogeneity in market participation per se,
as everyone has nonzero consumption expenditures. Later we discuss some issues

18 This is related to the transformation modeling structure of Grandmont (1992). It is clear that the dimen-
sionality of exact aggregation demand systems is given by the number of independent income/attribute terms
[cf. Diewert (1977) and Stoker (1984b)].
19 See Attanasio and Weber (1993a, 1993b) and Attanasio and Browning (1995), among many others.
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raised by liquidity constraints, which have much in common with market participation
modeling as described in Section 4.

Our primary focus is on heterogeneity with regard to risks in income and wealth
levels, and how the forward-planning process is affected by them. We take into account
the nature of the income and wealth shocks, as well as the nature of the credit markets
that provide insurance against negative shocks.

We consider four different types of shocks, delineated by whether the effects are
permanent or transitory, and whether they are aggregate, affecting all consumers, or in-
dividual in nature. Aggregate permanent shocks can refer to permanent changes in the
productive capability of the economy – such as running out of a key natural resource, or
skill-biased technical change – as well as to permanent changes in taxes or other poli-
cies that affect saving. Individual permanent shocks include permanent changes in an
individual’s ability to earn income, such as chronic bad health and long-term changes in
type and status of employment. Aggregate transitory shocks refer to temporary aggre-
gate phenomena, such as exchange rate variation, bad weather and so forth. Individual
transitory shocks include temporary job lay-offs, temporary illnesses, etc. Many differ-
ent situations of uncertainty can be accounted for by combinations of these four different
types of shocks.

In terms of risk exposure and markets, there are various scenarios to consider. With
complete markets, all risks are insured, and an individual’s consumption path is unaf-
fected by the evolution of the individual’s income over time.20 When markets are not
complete, the extent of available insurance markets becomes important, and determines
the degree to which different individual risks are important for aggregate consumption
behavior. For example, in the absence of credit market constraints, idiosyncratic risks
may be open to self-insurance. But in that case there may be little insurance available
for aggregate shocks or even for permanent idiosyncratic shocks. Our discussion takes
into account the type of income risks and how risk exposure affects aggregate consump-
tion.

Most of our discussion focuses on individual consumption plans and their implica-
tions for aggregate consumption. Beyond this, we can consider the feedback effects
on consumption and wealth generated through general equilibrium. For instance, if a
certain group of consumers systematically saves more than others, then in equilibrium
those consumers will be wealthier, and their saving behavior will be a dominant influ-
ence on the evolution of aggregate wealth. The study of this important topic is in its
infancy, and has been analyzed primarily with calibrated macroeconomic growth mod-
els. We include a discussion of some of this work.

3.1. Consumption growth and income shocks

In our framework, in each period t , individual i chooses consumption expenditures cit

by maximizing expected utility subject to an asset accumulation constraint. Individual

20 See Atkeson and Ogaki (1996) for a model of aggregate expenditure allocation over time and to individual
goods based on addilog preferences, assuming that complete markets exist.
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i has heterogeneous attributes zit that affect preferences. There is a common, riskless
interest rate rt . We assume separability between consumption and labor supply in each
time period, and separability of preferences over time.

We begin with a discussion of aggregation with quadratic preferences. This allows
us to focus on the issues of different types of income shocks and insurance, without
dealing with nonlinearity. In Section 3.2, we consider more realistic preferences that
allow precautionary saving.

When individual within-period utilities are quadratic in current consumption, we have
the familiar certainty-equivalent formulation in which there is no precautionary saving.
Within-period utilities are given as

(36)Uit (cit ) = −1

2
(ait − cit )

2

for cit < ait . We model individual heterogeneity by connecting ait to individual at-
tributes as

(37)ait = α + β ′zit .

With the discount rate equal to the real interest rate, maximizing the expected sum of
discounted utilities gives the following optimal plan for the consumer [Hall (1978)]:

(38)�cit = �αit + ξit = β ′�zit + ξit .

Defining Ωi,t−1 as the information set for individual i in period t − 1, the consumption
innovation ξit obeys

(39)E[ξit |Ωi,t−1] = 0.

In what follows we will use a time superscript to denote this conditional expectation,
namely Et−1(·) ≡ E[·|Ωi,t−1] to distinguish it from the population average in period t

(which uses a time subscript as in Et(·)). Notice, the model (38) is linear in the change
in attributes �zit with constant coefficients β, plus the consumption innovation. In other
words, this model is in exact aggregation form with regard to the attributes zit that affect
preferences.

3.1.1. Idiosyncratic income variation and aggregate shocks

When the only uncertainty arises from real income, the consumption innovation ξit can
be directly related to the stochastic process for income. We begin by spelling out the
income process in a meaningful way. Express income yit as the sum of transitory and
permanent components

(40)yit = yP
it + yT

it

and assume that the transitory component is serially independent. We assume that the
permanent component follows a random walk

(41)yP
it = yP

it−1 + ηP
it ,



4632 R. Blundell and T.M. Stoker

where the innovation ηP
it is serially independent.

Next, decompose these two components into a common aggregate effect and an idio-
syncratic effect

(42)ηP
it = ηt + εit ,

(43)yT
it = ut + vit .

Here ηt is the common aggregate permanent shock, εit is the permanent shock at the
individual level, ut is the aggregate transitory shock and vit is the individual transitory
shock – the four types of income shocks discussed above. This mixture of permanent
and transitory shocks has been found to provide a good approximation to the panel data
process for log incomes; see MaCurdy (1982) and Meghir and Pistaferri (2004). We as-
sume that the individual shocks are normalized to average to zero across the population,
namely Et(εit ) = 0 and Et(vit ) = 0.

The stochastic process for individual income then takes the form

(44)�yit = ηt + εit + �ut + �vit .

The stochastic process for aggregate income has the form

(45)�Et(yit ) = ηt + �ut

where, again, Et denotes expectation (associated with averaging) across the population
of agents at time t .

3.1.2. Income shocks and insurance

The first scenario is where individual (and aggregate) shocks are not insurable. Here
the optimal consumption innovation ξit for the individual will adjust fully to permanent
income shocks but only adjust to the annuity value of transitory shocks. To see this,
again suppose that real interest rates are constant and equal the discount rate. Under
quadratic preferences (36), consumption growth can be written [Deaton and Paxson
(1994)] as

(46)�cit = β ′�zit + ηt + εit + τt (�ut + �vit ),

where τt is the annuitization rate for a transitory shock with planning over a finite hori-
zon.21 Clearly, expected growth is determined by preference attributes as

(47)Et−1(�cit ) = E(�cit |Ωi,t−1) = β ′�zit .

21 If L is the time horizon, then τt = r/[(1 + r)(1 − (1 + r)−(L−t+1))]. Clearly τt → 0 as r → 0. Note
that for a small interest rate, we have τt ≈ 0, so that the transitory shocks become irrelevant for consumption
growth.
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Aggregate consumption has the form

(48)�Et(cit ) = β ′�Et(zit ) + ηt + τt�ut .

Thus, the aggregate data are described exactly by a representative agent model with
quadratic preferences and characteristics Et(zit ) facing a permanent/transitory income
process.22

For the second scenario, suppose individual shocks can be fully insured, either
through informal processes or through credit markets. Now individual consumption
growth depends only on aggregate shocks

(49)�cit = β ′�zit + ηt + τt�ut .

Consequently, with (48), we will have

(50)�cit = β ′(�zit − �Et(zit )
) + �Et(cit ).

Thus, consumption growth at the individual level equals aggregate consumption growth
plus an adjustment for individual preferences.

Finally, the third scenario is where all shocks (aggregate and individual) are fully
insurable. Now individual consumption growth will be the planned changes β ′�zit only,
and aggregate consumption growth will be the mean of those changes β ′�Et(zit ). This
is the most complete “representative agent” case, as complete insurance has removed
the relevance of all income risks.

3.1.3. Incomplete information

It is interesting to note that in our simplest framework, incomplete information can
cause aggregate consumption to fail to have random walk structure. In particular, sup-
pose individual shocks are not completely insurable and consumers cannot distinguish
between individual and aggregate shocks. To keep it simple, also assume that there are
no varying preference attributes zit . Following Pischke (1995), individual i will view
the income process (44) as an MA(1) process:

(51)�yit = ζit − θζit−1,

where the θ parameter is a function of the relative variances of the shocks.
Changes in individual consumption are simply

�cit = (1 − θ)ζit .

22 Aside from the drift term β ′�Et (zit ), aggregate consumption is a random walk. In particular, the orthog-

onality conditions Et−1(ηt + τt�ut ) = E(ηt + τt�ut |Ωi,t−1) = 0 hold at the individual level and therefore
also hold at the aggregate level.
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Note that it is still the case that Et−1(�cit ) = E(�cit |Ωi,t−1) = 0. However, from (51)
we have that

(52)�cit − θ�cit−1 = (1 − θ)�yit .

Replacing �yit by (44) and averaging over consumers we find

(53)�Et(cit ) = θ�Et−1(cit−1) + (1 − θ)(ηt + �ut)

so that aggregate consumption is clearly not a random walk.

3.2. Aggregate consumption growth with precautionary saving

With quadratic preferences, consumption growth can be written as linear in individual
attributes – in exact aggregation form – and we are able to isolate the impacts of different
kinds of income shocks and insurance scenarios. To allow for precautionary saving, we
must also account for nonlinearity in the basic consumption process. For this, we now
consider the most standard consumption model used in empirical work, that based on
Constant Relative Risk Aversion (CRRA) preferences.

3.2.1. Consumption growth with CRRA preferences

We assume that within-period utility is

(54)Uit (cit ) = eait

[
c

1− 1
sit

it

1 − 1
sit

]
,

where ait permits scaling in marginal utility levels (or individual subjective discount
rates), and sit is the intertemporal elasticity of substitution, reflecting the willingness of
individual i to trade off today’s consumption for future consumption. As before, we will
model the heterogeneity in ait and sit via individual attributes zit .

We now adopt a multiplicative stochastic income process, with the decomposition
expressed in log form as

(55)� ln yit = ηt + εit + �ut + �vit .

The permanent and transitory error components in the income process are decomposed
into aggregate and individual terms, as in (44). As noted before, this income growth
specification is closely in accord with the typical panel data models of income or earn-
ings, and it will neatly complement our equations for consumption growth with CRRA
preferences. In addition, we assume that the interest rate rt is small, for simplicity, and
is not subject to unanticipated shocks.

With precautionary saving, consumption growth depends on the conditional variances
of the uninsurable components of shocks to income. Specifically, with CRRA prefer-
ences (54) and log income process (55), we have the following log-linear approximation
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for consumption growth23

(56)� ln cit = ρrt + (β + ϕrt )
′zit + k1σ

t−1
it + k2σ

t−1
At + κ1εit + κ2ηt ,

where σ t−1
it is the conditional variance of idiosyncratic risk (conditional on t − 1 infor-

mation Ωi,t−1) and σ t−1
At is the conditional variance of aggregate risk. The attributes zit

represent the impact of heterogeneity in ait , or individual subjective discount rates, and
the intertemporal elasticity of substitution sit = ρ+β+ϕ′zit . Typically in empirical ap-
plications, zit will include levels and changes in observable attributes, and unobserved
factors may also be appropriate.24 As before,

(57)E(εit |Ωi,t−1) = Et−1(εit ) = 0,

(58)E(ηt |Ωi,t−1) = Et−1(ηt ) = 0.

To sum up, in contrast to the quadratic preference case, the growth equation (56) is
nonlinear in consumption, and it includes conditional variance terms which capture the
importance of precautionary saving.

A consistent aggregate of the individual model (56) is given by

(59)Et(� ln cit ) = ρrt + (β + ϕrt )
′Et(zit ) + k1Et(σ

t−1
it ) + k2σ

t−1
At + κ2ηt ,

where Et(� ln cit ) refers to the population mean of the cross-section distribution of
� ln cit in period t , and so on. The t subscript again refers to averaging across the
population of consumers, and we have normalized Et(εit ) = 0 as before. Provided
Et(ln cit−1) = Et−1(ln cit−1), Equation (59) gives a model of changes over time in
Et(ln cit ), which is a natural aggregate given the log form of the model (56).

However, Et(ln cit ) is not the aggregate typically observed nor is it of much pol-
icy interest. Of central interest is per-capita consumption Et(cit ) or total consumption
ntEt (cit ). Deriving an equation for the appropriate aggregates involves dealing with the
‘log’ nonlinearity, to which we now turn.25

3.2.2. How is consumption distributed?

Since the individual consumption growth equations are nonlinear, we must make dis-
tributional assumptions to be able to formulate an equation for aggregate consumption.

23 See Blundell and Stoker (1999) for a precise derivation and discussion of this approximation.
24 See Banks, Blundell and Brugiavini (2001) for a detailed empirical specification of consumption growth
in this form.
25 If we evaluate the individual model at aggregate values, we get

� ln Et (cit ) = ρrt + (β + ϕrt )
′Et (zit ) + k2σ t−1

At
+ ωt .

Here ωt is a ‘catch-all’ term containing the features that induce aggregation bias, that will not satisfy the
orthogonality condition Et−1(ωt ) = 0. It is also worthwhile to note that empirical models of aggregate
consumption also typically omit the terms Et (zit ) and k2σ t−1

At
.
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Figure 6. The distribution of log nondurable consumption expenditure: US 1981–2001.

In the following, we will assume lognormality of various elements of the consumption
process. Here we point out that this is motivated by an important empirical regularity
– namely, individual consumption does appear to be lognormally distributed, at least in
developed countries such as the United States and the United Kingdom.

Figure 6 shows the distribution of log-consumption using US consumer expenditure
data across the last two decades. Consumption is taken as real expenditure on non-
durables and services, and is plotted by five-year bands to achieve a reasonable sample
size. Each log-consumption distribution has a striking resemblance to a normal density.
In the experience of the authors, this result is often replicated in more disaggregated
data by year and various demographic categorizations, such as birth cohort, and also in
other countries including in the Family Expenditure Survey data for the UK. Given this
regularity, one would certainly start with lognormality assumptions such as those we
make below, and any subsequent refinements would need to preserve normality of the
marginal distribution of log-consumption.

3.2.3. Insurance and aggregation with precautionary saving

As with our previous discussion, we must consider aggregation under different scenarios
of insurance for income risks. We again assume that agents have the same information
set, namely Ωi,t−1 = Ωt−1 for all i, t .

We begin with the scenario in which there is full insurance for individual risks, or
pooling of idiosyncratic risk across individuals. Here insurance and credit markets are
sufficiently complete to remove individual risk terms in individual income and con-
sumption streams, so εit = 0 and σ t−1

it = 0 for all i, t . The individual model (56)



Ch. 68: Models of Aggregate Economic Relationships 4637

becomes

(60)� ln cit = ρrt + (β + ϕrt )
′zit + k2σ

t−1
At + κ2ηt

with Et−1(ηt ) = 0. The mean-log model (59) is now written as

(61)Et(ln cit ) − Et(ln cit−1) = ρrt + (β + ϕrt )
′Et(zit ) + k2σ

t−1
At + κ2ηt .

The relevant aggregate is per-capita consumption Et(cit ). Per-capita consumption is
given by

Et(cit ) = Et

[
exp

(
ln cit−1 + ρrt + (β + ϕrt )

′zit + k2σ
t−1
At + κ2ηt

)]
(62)= exp

(
ρrt + k2σ

t−1
At + κ2ηt

) · Et

[
cit−1 exp

(
(β + ϕrt )

′zit

)]
with the impact of log-linearity arising in the final term, a weighted average of attribute
terms interacted with lagged consumption cit−1.

Of primary interest is aggregate consumption growth, or the log-first-difference in
aggregate consumption

� ln Et(cit ) = ln

(
Et(cit )

Et−1(cit−1)

)
.

This is expressed as

� ln Et(cit ) = ρrt + k2σ
t−1
At + κ2ηt

(63)+ ln

(
Et [cit−1 exp((β + ϕrt )

′zit )]
Et(cit−1)

)
+ ln

(
Et(cit−1)

Et−1(cit−1)

)
.

Aggregate consumption growth reflects the interest and risk terms that are common
to all consumers, a weighted average of attribute terms, and the log-difference in the
average of cit−1 at time t versus time t − 1.

Notice first that even if zit is normally distributed, we cannot conclude that ln cit

is normal. We also need (as a sufficient condition) that ln cit−1 is normal at time t to
make such a claim. This would further seem to require normality of ln cit−2 at t − 1,
and so forth into the distant past. In any case, we cover this situation with the broad
assumption:

(64)The distribution of cit−1 is the same in periods t − 1 and t.

That is, the population could grow or shrink, but the distribution of cit−1 is unchanged.
Under that assumption, we can drop the last term in (63)

(65)ln

(
Et(cit−1)

Et−1(cit−1)

)
= 0.

Lagging the individual model (60) gives an equation for cit−1, but there is no nat-
ural way to incorporate that structure directly into the equation for aggregate current



4638 R. Blundell and T.M. Stoker

consumption Et(cit ).26 Therefore, we further assume

(66)

(
ln cit−1
θ ′
t zit

)
∼ N

((
μc−1,t

θ ′
t Et (zit )

)
,

[
σ 2

c−1,t
Σ ′

zc−1,t
θt

θ ′
tΣzc−1,t θ ′

tΣzz,t θt

])
,

where we have set θt = (β + ϕrt ). This assumption says that

(67)ln cit−1 + θ ′
t zit ∼ N

(
μc−1,t + θ ′

t Et (zit ), σ
2
c−1,t

+ θ ′
tΣzz,t θt + 2θ ′

tΣzc−1,t

)
and

(68)ln cit−1 ∼ N
(
μc−1,t , σ

2
c−1,t

)
.

We can now solve for an explicit solution to (63): apply (65), (67) and (68) and
rearrange to get

� ln Et(cit ) = ρrt + (β + ϕrt )
′Et(zit ) + k2σ

t−1
At + κ2ηt

(69)+ 1

2

[
(β + ϕrt )

′Σzz,t (β + ϕrt ) + 2(β + ϕrt )
′Σzc−1,t

]
.

This is the aggregate model of interest, expressing growth in per-capita consumption as
a function of the mean of z, the conditional variance terms from income risk, and the
covariances between attributes z and lagged consumption cit−1. This shows how indi-
vidual heterogeneity manifests itself in aggregate consumption through distributional
variance terms. These variance terms vary with rt if the intertemporal elasticity of sub-
stitution varies over the population.

Now consider the scenario where some individual risks are uninsurable. This reintro-
duces terms εit and σ t−1

it in consumption growth at the individual level, and we must
be concerned with how those permanent risks are distributed across the population. In
particular, we assume in each period that each individual draws idiosyncratic risk from
a common conditional distribution, so that σ t−1

it = σ t−1
I t for all i. The individual con-

sumption growth equation (56) now appears as

(70)� ln cit = ρrt + (β + ϕrt )
′zit + k1σ

t−1
I t + k2σ

t−1
At + κ1εit + κ2ηt .

The mechanics for aggregation within this formulation are similar to the previous
case, including the normalization Et(εit ) = 0, but we need to deal explicitly with how
the permanent individual shocks εit covary with ln cit−1. As above, we adopt a stability
assumption (64). We then extend (66) to assume that (ln cit−1,(β + ϕrt )

′zit , εit ) is joint
normally distributed. The growth in aggregate average consumption is now given by

(71)� ln Et(cit ) = ρrt + (β + ϕrt )
′Et(zit ) + k1σ

t−1
I t + k2σ

t−1
At + κ2ηt + 1

2
(Λt )

26 This is because of the potential dependence of cit−1 on the same factors as cit−2, and so forth.
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where

Λt = (β + ϕrt )
′Σzz,t (β + ϕrt ) + κ2

1 σ 2
ε,t + 2(β + ϕrt )

′Σzc−1,t

+ 2κ1σεc−1,t + 2κ1Σεz,t (β + ϕrt ).

While complex, this formulation underlines the importance of the distribution of risk
across the population. In contrast to the full information model (69), there is a term
σ 2

ε,t in Λt that reflects the changing variance in consumption growth. The term σ t−1
I t

captures how idiosyncratic risk varies, based on t − 1 information.
We have not explicitly considered unanticipated shocks to the interest rate rt , or het-

erogeneity in rates across individuals.27 Unanticipated shocks in interest would manifest
as a correlation between rt and aggregate income shocks, and would need treatment via
instruments in estimation. Heterogeneity in rates could, in principle, be accommodated
as with heterogeneous attributes. This would be especially complicated if the overall
distributional structure were to shift as interest rates increased or decreased.

3.3. Empirical evidence on aggregating the consumption growth relationship

There are two related aspects of empirical research that are relevant for our analysis of
aggregation in consumption growth models. The first concerns the evidence on full in-
surance of individual risks. How good an approximation would such an assumption be?
To settle this, we need to examine whether there is evidence of risk pooling across differ-
ent individuals and different groups in the economy. For example, does an unexpected
change in pension rights, specific to one cohort or generation, get smoothed by trans-
fers across generations? Are idiosyncratic health risks to income fully insured? Even
though we may be able to cite individual cases where this perfect insurance paradigm
clearly fails, is it nonetheless a reasonable approximation when studying the time-series
of aggregate consumption?

The second aspect of empirical evidence concerns the factors in the aggregate model
(71) that are typically omitted in studies of aggregate consumption. From the point of
view of estimating the intertemporal elasticity parameter ρ, how important are these
aggregation factors? How well do they correlate with typically chosen instruments and
how likely are they to contaminate tests of excess sensitivity performed with aggregate
data?

3.3.1. Evidence on full insurance and risk pooling across consumers

If the full insurance paradigm is a good approximation to reality, then aggregation is
considerably simplified and aggregate relationships satisfying the standard optimality
conditions can be derived with various conditions on individual preferences. There is a
reasonably large and expanding empirical literature on the validity of the full insurance

27 Zeldes (1989b) points out how differing marginal tax rates can cause interest rt to vary across consumers.
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scenario, as well as complete markets scenario. This work is well reviewed in Attanasio
(1999) and Browning, Hansen and Heckman (1999). Here we present evidence directly
related to our discussion of consumption growth above. Two rather effective ways of
analyzing failures of the full insurance paradigm fit neatly with our discussion.

One approach to evaluating the full insurance hypothesis is to look directly for ev-
idence that unexpected shocks in income across different groups in the economy lead
to differences in consumption patterns (as consistent with (56), which assumes no in-
surance). This is not a trivial empirical exercise. First, such income shocks have to be
identified and measured. Second, there has to be a convincing argument that they would
not be correlated with unobservable variables entering marginal utility, or observables
such as labor supply (in a nonseparable framework).

Building on the earlier work by Cochrane (1991), Mace (1991), Hayashi, Altonji
and Kotlikoff (1996) and Townsend (1994), the study by Attanasio and Davis (1996)
presents rigorous and convincing evidence against the full insurance hypothesis us-
ing this approach. Low-frequency changes in wages across different education and
date-of-birth cohorts are shown to be correlated positively with systematic differences
in consumption growth. More recently, Blundell, Pistaferri and Preston (2003) use a
combination of the Panel Survey of Income Dynamics (PSID) and the Consumers Ex-
penditure Survey (CES) to investigate insurance of permanent and transitory income
shocks at the individual level. They find almost complete insurance to transitory shocks
except among lower-income households. They find some insurance to permanent shocks
particularly among the younger and higher educated. But they strongly reject the com-
plete insurance model.

The second approach to evaluating full insurance is to assume risk-averse preferences
and to model the evolution of idiosyncratic risk terms. In terms of the model (56), this
approach examines the relevance of individual risk terms (e.g. σ t−1

it ) once aggregate
risk (σ t−1

At ) has been allowed for. This is addressed by looking across groups where the
conditional variance of wealth shocks is likely to differ over time and to see whether
this is reflected in differences in consumption growth. Following earlier work by Dynan
(1993), Blundell and Stoker (1999), Caballero (1990) and Skinner (1988), the study
by Banks, Blundell and Brugiavini (2001) presents evidence that differential variances
of income shocks across date-of-birth cohorts do induce important differences in con-
sumption growth paths.

3.3.2. Aggregation factors and consumption growth

There are two issues. First, if one estimates a model with aggregate data alone, is there
likely to be bias in the estimated parameters of interest? Second, will the omission of
aggregation bias terms result in spurious inference concerning the presence of excess
sensitivity of consumption to transitory income shocks?

With regard to bias, we consider the elasticity of intertemporal substitution ρ, which
is normally a focus of studies of aggregate consumption. In Figure 7 we plot the aggre-
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Figure 7. Aggregation factor for consumption growth.

gation factor

(72)� ln Et(cit ) − �Et(ln cit )

for the sample of married couples from the British FES, used to construct the ag-
gregation factors for demand of Section 2. The figure shows a systematic procyclical
variation. We found the correlation coefficient between the real interest series and this
factor to be significant. This indicates that there will exist an important aggregation
bias in the estimated intertemporal substitution parameter from aggregate consumption
data (with a log-linear growth model). This is confirmed in the study by Attanasio and
Weber (1993a, 1993b), where aggregate data was constructed from micro survey infor-
mation.28 They find an elasticity estimate for aggregate data of around 0.35, and the
corresponding micro-level estimates were twice this size.

The study of excess sensitivity involves the use of lagged information as instrumental
variables in the estimation of the consumption growth relationship. Omitting aggrega-
tion bias terms can invalidate the instruments typically used. For the consumption data
used above, we computed the correlation of the aggregation factor with two typically
used instrumental variables in consumption growth equations – lagged real interest rates

28 Attanasio and Weber (1993a, 1993b) also note a strong impact of omitting the cross-section variance of
consumption growth.
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and lagged aggregate consumption. The estimated correlation coefficient between these
series and the omitted bias term was found to be strongly significant.29

Together these results suggest that aggregation problems are likely to lead to seri-
ous bias in estimated intertemporal substitution parameters and also to exaggerate the
presence of excess sensitivity in consumption growth regressions on aggregate data.
Attanasio and Browning (1995) investigate this excess sensitivity issue in more detail
and find that excess sensitivity still exists at the micro-data level but disappears once
controls for age, labour supply variables and demographics are introduced in a flexible
way. Moreover, these variables explain why excess sensitivity appears to vary system-
atically over the cycle.

It is an important finding that evidence of excess sensitivity vanishes once we move
to individual data and include observable variables that are likely to impact preferences
for the allocation of consumption over time. It has important consequences for our un-
derstanding of liquidity constraints and for partial insurance. It has implications for
understanding the path of consumption growth over the cycle. It also has implications
for the retirement-savings puzzle, or how consumption drops much more at retirement
than is predicted by standard consumption growth equations. Banks, Blundell and Tan-
ner (1998) find that once demographics and labor supply variables are allowed to affect
the marginal utility of consumption, nearly two thirds of the retirement-savings puzzle
disappears.

3.4. Consumption and liquidity constraints

Our previous discussion has focused on heterogeneity in wealth and income risk as
it impinges on consumption. We now turn to a discussion of liquidity constraints on
consumption, which generate a different kind of aggregation structure. The evidence
for liquidity constraints is relatively limited. Most studies of consumption smoothing
at the individual level find it difficult to reject the standard model once adequate care
is taken in allowing for demographic and labor market interactions; see Attanasio and
Weber (1993a, 1993b) and Blundell, Browning and Meghir (1994), for example. Much
of the excess sensitivity found in aggregate studies can be attributed to aggregation
bias as documented in Attanasio and Weber (1993a, 1993b), Goodfriend (1992) and
Pischke (1995). However, there is some evidence that does point to the possibility that a
fraction of consumers could be liquidity constrained at particular points in the life-cycle
and business cycle. At the micro level some evidence can be found in the studies by
Hayashi (1987), Zeldes (1989a), Jappelli (1990), Jappelli and Pagano (1994), Meghir
and Weber (1996) and Alessie, Devereux and Weber (1997). As mentioned earlier, the
Blundell, Pistaferri and Preston (2003) study shows that the consumption of low-income
households in the PSID does react to transitory shocks to income, which suggests that
such households do not have access to credit markets to smooth such shocks.

29 Detailed regression results available on request.
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For aggregation, liquidity constraints introduce regime structure into the population.
Namely, liquidity-constrained consumers constitute one regime, unconstrained con-
sumers constitute another regime, and aggregate consumption will depend upon the
relative distribution across regimes. This structure is particularly relevant for the reac-
tion of consumption growth to increases in current income, since constrained consumers
will show a stronger reaction than unconstrained consumers. In this section we dis-
cuss these basic issues, and indicate how a model of aggregates can be constructed.
Blundell and Stoker (2003) work out the details for aggregate consumption models of
this type.

There is some subtlety in considering what population groups are likely to be liq-
uidity constrained. Poor households with a reasonably stable but low expected stream
of income may have little reason to borrow. More likely to be constrained are young
consumers, who have much human capital but little financial wealth – college students
or perhaps poor parents of able children. Such individuals may want to borrow against
their future earned incomes but cannot, in part, because their eventual income is higher
than others’, and the growth of their income with experience is higher. Clearly such
consumers will react more than others to shocks in current income and wealth.

We start with the basic consumption model discussed earlier, with permanent and
transitory shocks to income. As in (55), the change in current income for consumer i at
time t is

(73)� ln yit = ηt + εit + �ut + �vit ,

where ηt +εit is the permanent component and �ut +�vit is the transitory component.
To keep things simple, we assume that permanent income shocks are not insurable, with
log-consumption given as

(74)� ln cit = ρrt + (β + ϕrt )
′zit + ηt + εit ,

where we assume the precautionary risk terms (σ t−1
it , σ t−1

At ) are included with the zit

effects. Note that (74) gives the consumption growth plan (ρrt + (β + ϕrt )
′zit ) as well

as how consumption reacts to permanent shocks in income (here ηt + εit ).
Liquidity constraints affect the ability of consumers to finance their desired consump-

tion growth path. We follow an approach similar to Zeldes (1989a), where the incidence
of liquidity constraints depends on the degree of consumption growth the consumer is
trying to finance and the existing stock of assets. In particular, liquidity constraints en-
ter the growth plan only if they are binding in planning period t − 1, and then the best
response will always be to increase consumption growth so as to “jump” back up to the
optimal path. If this response is further frustrated by a binding constraint in period t ,
consumption will simply grow by the amount of resources available.

This response structure is captured by additional terms in Equation (74). Let Iit de-
note the indicator

(75)Iit = 1[consumer i is constrained in period t − 1]



4644 R. Blundell and T.M. Stoker

and suppose that a consumer who is constrained in period t − 1 needs to increase con-
sumption growth by mit to return to the optimal growth plan.30 Then, consumption
growth for unconstrained consumers is

(76)� ln cit = ρrt + (β + ϕrt )
′zit + Iitmit + ηt + εit .

We now model the constraints, as well as consumption growth for constrained con-
sumers. With growth in income of � ln yit , consumer i needs to finance a growth rate
of

ρrt + (β + ϕrt )
′zit + Iit−1mit + ηt + εit − � ln yit

= ρrt + (β + ϕrt )
′zit + Iitmit − �ut − �vit

for consumption at time t to be on the growth plan. To model liquidity constraints at
time t , suppose that consumer i faces a borrowing constraint that is associated with a
maximum rate of increase of consumption of

γ + δAit + ζit ,

where Ait is (say) accumulated financial wealth. Consumer i is liquidity constrained in
period t , or cannot maintain the consumption growth plan, if

(77)ρrt + (β + ϕrt )
′zit + Iit−1mit − �ut − �vit > γ + δAit + ζit

which we indicate by Iit = 1, as above. In this case we assume that consumption growth
is as large as possible, namely

(78)� ln cit = � ln yit + γ + δAit + ζit .

In terms of permanent and transitory terms of income growth, (78) may be rewritten as

(79)� ln cit = ηt + εit + �ut + �vit + γ + δAit + ζit .

This is consumption growth for constrained consumers. The constraints have an impact;
as consumption growth clearly depends on transitory income shocks and wealth levels.

Aggregate consumption growth will clearly depend on the proportion of consumers
who are constrained and the proportion that are not. Consumers who were constrained
last period will have a boost in their consumption growth to return to the optimal path.
This regime-switching structure is nonlinear in character. Therefore, to model aggre-
gate consumption growth, we would need to specify distributional structure for all the
elements that are heterogeneous across the population. We then aggregate over the pop-
ulation of unconstrained individuals with consumption growth (76) and the population
of constrained individuals with consumption growth (79). Using log-normality assump-
tions, we carry out this development in Blundell and Stoker (2003). It is clear how
aggregate consumption is affected by transitory income shocks, as well as the distribu-
tion of wealth.

30 Various approaches have been applied to account for the jump term mit in studies of micro-level data. See
Zeldes (1989a), Jappelli, Pischke and Souleles (1998), Garcia, Lusardi and Ng (1997), Alessie, Melenberg
and Weber (1988), Alessie, Devereux and Weber (1997) and Attanasio and Weber (1993a, 1993b).
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3.5. Equilibrium effects

As we mentioned at the start, one use of aggregate consumption equations is to study
and understand the evolution of aggregate consumption and saving by themselves. An-
other important use is in studying equilibrium price and interest rate paths over time.
This is an exercise in general equilibrium analysis, and every feature that we have dis-
cussed above is relevant – consumer heterogeneity, heterogeneity in income and wealth
risks, liquidity constraints, and the distribution of wealth. Further complicating this ef-
fort is the dynamic feedback that occurs wherein the level and distribution of wealth
evolve as a result of the level and distribution of saving. These difficulties make it very
hard to obtain analytical results on equilibrium. Nevertheless, it is extremely important
to understand the nature of equilibrium here, including implications on prices and in-
terest rates. We now discuss some recent progress that has been made using calibrated
stochastic growth models. A leading example of this effort is provided by Krusell and
Smith (1998), although the approach dates from at least Aiyagari (1994a, 1994b) and
Heaton and Lucas (1996).

The Krusell–Smith setup has the following features. Consumers are infinitely-lived,
with identical (within-period) CRRA preferences, but they are heterogeneous with re-
gard to discount rates. Each consumer has a probability of being unemployed each
period, providing transitory, idiosyncratic income shocks. Production arises from a con-
stant returns-to-scale technology in labor and capital, and productivity shocks provide
transitory aggregate shocks. Consumers can insure by investing in capital only, so that
insurance markets are incomplete, and consumers’ capital holdings cannot be negative
(liquidity constraint). This setup is rich but in many ways is very simple. Nevertheless,
in principle, in order to predict future prices, each consumer must keep track of the
evolution of the entire distribution of wealth holdings.

Krusell and Smith’s simulations show a rather remarkable simplification to this fore-
casting problem. For computing equilibrium and for consumer planning, it is only
necessary for consumers to keep track of two things, the mean of the wealth distribution
and the aggregate productivity shock. Thus there is an informational economy afforded
in a similar fashion to a formal aggregation result: once mean wealth is known, the in-
formation contained in the distribution of wealth does not appear to improve forecasting
very much. This is true even with heterogeneity of many types, including individual and
aggregate income shocks (albeit transitory).

The reason for this is clear once the nature of equilibrium is examined. Most con-
sumers, especially those with lowest discount rates, save enough to insure their risk to
the point where their propensity to save out of wealth is essentially constant and unaf-
fected by current income or output. Those consumers also account for a large fraction
of the wealth. Therefore, saving is essentially a linear function in wealth, and only the
mean of wealth matters to how much aggregate saving is done each period. The same is
not true of aggregate consumption. There are many low-wealth consumers who become
unemployed and encounter liquidity constraints. Their consumption is much more sen-
sitive to current output than that of wealthier consumers. In essence what is happening
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here is that the dynamics of the saving process concentrates wealth in the hands of a
group that behaves in a homogeneous way, with a constant marginal propensity to save.
This (endogenous) simplification allows planning to occur on the basis of mean wealth
only.

It is certainly not clear how applicable this finding is beyond the context of this study.
This is a computational finding that depends heavily on the specifics of this particular
setup.31 Nonetheless, this form of feedback has some appeal as an explanation of the
smooth evolution of wealth distribution, as well as why forecasting equations that fit
well are so often much simpler than one would expect from the process that underlies
the data. The rich are different (and in this model, the difference makes them rich), but
what is important for forecasting is how similar the rich are to one another. With equal
saving propensities, it does not matter which group of rich people holds the most wealth.

The study of equilibrium effects and aggregation is in its infancy. Of further note are
recent attempts to model differences in micro and macro labor supply elasticities. This
includes Chang and Kim (2006) and Rogerson and Wallenius (2007), who incorporate
individual decisions at the extensive margin, such as labor participation. In the next
section, we discuss labor participation and selection from a partial equilibrium perspec-
tive. In any event, we expect the study of equilibrium effects to generate many valuable
insights.

4. Wages and labor participation

Our final topic area is the analysis of wages and labor participation. Here the empirical
problem is to understand the determinants of wages separately from the determinants
of participation. The individual level is that of an individual worker. The economic ag-
gregates to be modeled are aggregate wages and the aggregate participation rate, or one
minus the unemployment rate. These statistics are central indicators for macroeconomic
policy and for the measurement of economic well-being.

Our analysis is based on a familiar paradigm from labor supply. Potential wages are
determined through human capital, and labor participation is determined by comparing
potential wages to a reservation wage level. Empirically, there is substantial heterogene-
ity in the determinants of wages, and substantial heterogeneity in the factors determining
labor participation, and both processes are nonlinear. In particular, it is typical to specify
wage equations for individuals in log form, and there is much evidence of age and co-
hort effects in wages and employment. As with demand and consumption, we will need
to be concerned with heterogeneity in individual attributes. To keep things as simple as
possible, we do not consider forward-looking aspects of employment choice, and so are
not concerned with heterogeneity in income and wealth risks.

31 Carroll (2000) makes a similar argument, with emphasis on the role of precautionary saving. Krusell and
Smith (2007) survey recent work, arguing that their original findings are robust to many variations in their
framework.
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Our primary focus is on heterogeneity in market participation. Aggregate wages de-
pend on the rate of participation, and the important issues involve separation of the wage
process from the participation decision. To put it very simply, suppose aggregate wages
are increasing through time. Is this because typical wages for workers are increasing?
Or, is it because low-wage individuals are becoming unemployed? Do the sources of
aggregate wage growth vary other the business cycle? The aggregation problem must
be addressed to answer these questions.

We now turn to our basic model of wages that permits us to highlight these effects.
We then show the size of these effects for aggregate wages in the UK, a country where
there have been large and systematic changes in the composition of the workforce and
in hours of work. A more extensive version of this model and the application is given
in Blundell, Reed and Stoker (2003). They also summarize derivations of all aggregate
equations given below.

4.1. Individual wages and participation

We begin with a model of individual wages in the style of Roy (1951), where wages are
based on human capital or skill levels, and any two workers with the same human capital
level are paid the same wage. Our framework is consistent with the proportionality
hypothesis of Heckman and Sedlacek (1990), where there is no comparative advantage,
no sectoral differences in wages for workers with the same human capital level,32 and
the return to human capital is not a function of human capital endowments.

We assume that each worker i possesses a human capital (skill) level of Hi . Suppose
human capital is nondifferentiated, in that it commands a single price rt in each time
period t . The wage paid to worker i at time t is

(80)wti = rtHi.

Human capital Hi is distributed across the population with mean

Et(ln Hi) = δjs

where δjs is a level that varies with cohort j to which i belongs and education level s

of worker i. In other words, the log-wage equation has the additive form

(81)ln wit = ln rt + δjs + εit

where εit has mean 0.33 We will connect δjs to observable attributes below.
To model participation, we assume that reservation wages w∗

it are lognormal:

(82)ln w∗
it = α ln Bit + ηjs + ζit ,

32 Heckman and Sedlacek (1985) provide an important generalization of this framework to multiple sectors.
See also Heckman and Honoré (1990).
33 Clearly, there is an indeterminacy in the scaling of rt and Hi . Therefore, to study rt , we will normalize rt
for some year t = 0 (say to r0 = 1). We could equivalently set one of the δs to zero.
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where ζit has mean 0 and where Bit is an exogenous income (welfare benefit) level that
varies with individual characteristics and time. Participation occurs if wit � w∗

it , or
with

(83)ln rt − α ln Bit + δjs − ηjs + εit − ζit � 0.

We represent the participation decision by the indicator Iit = 1[wit � w∗
it ].

For aggregation over hours of work, it is useful to make one of two assumptions. One
is to assume that the distribution of hours is fixed over time. The other is to assume
that desired hours hit are chosen by utility maximization, where reservation wages are
defined as hit (w

∗) = h0 and h0 is the minimum number of hours available for full-time
work. We assume hit (w) is normal for each w, and approximate desired hours by

hit = h0 + γ
(
ln wit − ln w∗

it

)
(84)= h0 + γ (ln rt − α ln Bit + δjs − ηjs + εit − ζit ).

This is our base-level specification. It is simple to extend this model to allow dif-
ferentiated human capital, or differential cohort effects due to different labor market
experience, which permits a wide range of education/cohort/time effects to be included
[c.f. Blundell, Reed and Stoker (2003)]. Because our examples involve log-linear equa-
tions and participation (or selection), we summarize the basic framework as

ln wit = β0 + β ′xit + εit ,

Iit = 1[α0 + α′zit + νit � 0],
(85)hit = h0 + γ · (α0 + α′zit + νit ).

Here, xit denotes education, demographic (cohort, etc.) and time effects, zit includes
out-of-work benefit variables, and Iit = 1 denotes participation. It is clear that the scale
of γ is not identified separately from the participation index α0 + α′zit + νit ; however,
we retain γ to distinguish between the fixed hours case γ = 0 and the variable hours
case γ �= 0.

Our notation distinguishes two types of individual heterogeneity in (85). The vari-
ables xit and zit are observable at the individual level, while εit and νit are unobservable.
Analysis of data on wages and participation at the individual level requires assumptions
on the distribution of those unobservable elements, a process familiar from the literature
on labor supply and selection bias. We now review some standard selection formulae
here for later comparison with the aggregate formulations. Start with the assumption
that the unobserved elements are normally distributed

(86)

(
εit

νit

)
∼ N

((
0
0

)
,

(
σ 2

ε σεν

σεν σ 2
ν

))
.

This allows us to apply some well-known selection formulae (given in virtually every
textbook of econometrics). The micro participation regression, or the proportion of par-
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ticipants given xit and zit , is a probit model:

(87)Et [I |xit , zit ] = Φ

[
α0 + α′zit

σ 2
ν

]
.

The micro log-wage regression for participants is

(88)Et [ln wit |Iit = 1, xit , zit ] = β0 + β ′xit + σεν

σν

λ

[
α0 + α′zit

σ 2
ν

]
reflecting the typical (Heckman-style) selection term, which adjusts the log-wage equa-
tion to the group of participating workers.34

4.2. Aggregate wages and employment

The aggregate of interest is average hourly earnings, where aggregation occurs over all
workers, namely

(89)wt =
∑

i∈(I=1) hitwit∑
i∈(I=1) hit

=
∑

i∈(I=1)

μitwit ,

where i ∈ (I = 1) denotes a participant (worker), hitwit is the earnings of individual i

in period t , and μit are the hours-weights

μit = hit∑
i∈(I=1) hit

.

Modelling the aggregate wage (89) requires dealing with log-nonlinearity of the ba-
sic wage equation, dealing with participation and dealing with the hours-weighting. All
of these features require that distributional assumptions be made for (observable) indi-
vidual heterogeneity. In particular, we make the following normality assumption for xit

and zit :

(90)

(
β0 + β ′xit

α0 + α′zit

)
∼ N

((
β0 + β ′E(xit )

α0 + α′E(zit )

)
,

(
β ′Σxxβ α′Σ ′

xzβ

β ′Σxzα α′Σzzα

))
or that the indices determining log-wage and employment are joint normally distrib-
uted.35

We now discuss some aggregate analog of the micro regression equations, and then
our final equation for the aggregate wage. The aggregate participation (employment)

34 Here Φ(·) is the normal cumulative distribution function, and λ(·) = φ(·)/Φ(·), where φ(·) is the normal
density function.
35 Assuming that the linear indices are normal is much weaker than assuming that xit and zit are them-
selves joint multivariate normal. Such a strong structure would eliminate many important regressors, such as
qualitative variables.
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rate is

(91)Et [I ] = Φ

[
α0 + α′E(zit )√
α′Σzzα + σ 2

ν

]
,

using a formula originally due to McFadden and Reid (1975). Aggregate participation
has the same form as the micro participation regression (87) with zit replaced by E(zit )

and the spread parameter σ 2
ν replaced by the larger value

√
α′Σzzα + σ 2

ν , reflecting
the influence of heterogeneity in the individual attributes that affect the participation
decision. The mean of log-wages for participating (employed) workers is

Et [ln wit |Iit = 1] = β0 + β ′Et(xit |I = 1)

(92)+ σεν√
α′Σzzα + σ 2

ν

λ

[
α0 + α′Et(zit )√

α′Σzzα + σ 2
ν

]
,

using a formula originally derived by MaCurdy (1987). This matches the micro log-
wage regression (88) with xit replaced by Et(xit |I = 1), zit replaced by Et(zit ) and the
spread parameter changed from σ 2

ν to
√

α′Σzzα + σ 2
ν . This is an interesting result, but

does not deliver an equation for the aggregate wage wt .
Blundell, Reed and Stoker (2003) derive such an equation. The aggregate wage is

given as

(93)ln wt = ln
Et [hitwit |Iit = 1]

Et [hit |Iit = 1] = β0 + β ′Et(xit ) + [Ωt + Ψt + Λt ],
where the aggregation bias is comprised of a spread term

(94)Ωt = 1

2
[β ′Σxxβ + σ 2

ε ],
plus two terms Ψt and Λt , which represent separate sources of bias but have very com-
plicated expressions.36

What these terms represent can be seen most easily by the following construction.
Begin with the individual wage equation evaluated at mean attributes, β0 +β ′Et(xit ) =
Et(ln wit ), or overall mean log-wage. Adding Ωt adjusts for log-nonlinearity, as

ln Et(wit ) = Et(ln wit ) + Ωt.

36 In particular, we have

Ψt ≡ ln

{
Φ

[
α0 + α′E(zit ) + β ′Σxzα + σεν√

α′Σzzα + σ 2
ν

]/
Φ

[
α0 + α′E(zit )√
α′Σzzα + σ 2

ν

]}
,

Λt ≡ ln

[h0 + γα0 + γα′E(zit ) + γβ ′Σxzα + γ σεν + γ

√
α′Σzzα + σ 2

ν · λa
σev,t

h0 + γα0 + γα′E(zit ) + γ

√
α′Σzzα + σ 2

ν · λa
t

]
.
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Adding Ψt adjusts for participation, as

(95)ln Et [wit |Iit = 1] = ln Et(wit ) + Ψt .

Finally, adding Λt adjusts for hours-weighting, as

(96)ln wt = ln Et [wit |Iit = 1] + Λt = Et(ln wit ) + Ωt + Ψt + Λt .

Thus, the bias expressions are complicated but the roles of Ωt , Ψt and Λt are clear. In
words, the term Ωt captures the variance of returns, observable and unobservable. The
term Ψt reflects composition changes within the selected sample of workers from which
measured wages are recorded. The term Λt reflects changes in the composition of hours
and depends on the size of the covariance between wages and hours.

The formulation (93) of the log aggregate wage ln wt thus captures four important
sources of variation. First, aggregate wages increase if the distribution of log-wages
shifts to the right, which is the typical “well-being” interpretation of aggregate wage
movements.37 This source is reflected by the mean β0 +β ′E(xit ) of log-wages. Second,
because individual wages are given in log form, aggregate wages will increase with
increased spread of the log-wage distribution, as reflected by the heterogeneity term Ωt .
Third, aggregate wages will increase if the benefit threshold increases, causing more
lower-wage individuals to decide not to participate. This is reflected in the participation
term Ψt . Fourth, aggregate wages will increase if the hours of higher-wage individuals
increase relative to lower-wage individuals, which is captured by the hours adjustment
term Λt . The aggregate model (93) permits estimation of these separate effects.

This framework could be relaxed in many ways. We can allow all variance terms to
be time varying, as well as many of the basic behavioral parameters. If the normality
assumption on the overall log-wage and participation index is not accurate for the whole
population, the population can be segmented, with separate aggregate equations devel-
oped for each segment. These variations, among others, are discussed in Blundell, Reed
and Stoker (2003).

4.3. Empirical analysis of British wages

The different sources of aggregate wage variation bear directly on the issue of whether
aggregate wages are procyclical or not. In particular, the participation effect works
counter to a normal cyclical variation of aggregate wages – decreases in participation
can lead to aggregate wage increases when there is essentially no change in individual

37 Comparing ln w̄t to mean log-wage Et (ln wit ) is in line with the tradition of measuring “returns” from
coefficients in log-wage equations estimated with individual data; c.f. Solon, Barksy and Parker (1994). Other
comparisons are possible, and some may be preferable on economic grounds. For instance, if aggregate pro-
duction in the economy has total human capital (

∑
i Hi ) as an input, then the appropriate price for that input

is rt , so one might want to compare ln wt to ln rt for a more effective interpretation. In any case, it is useful
to point out that if E(ln Hi) is constant over time, then comparing ln rt to ln wt is the same as comparing
Et (ln wit ) to ln wt .
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wage levels or distribution. We now turn to an analysis of British wages that shows these
features.

Our microeconomic data are again taken from the UK Family Expenditure Survey
(FES), for the years 1978 to 1996. The FES is a repeated continuous cross-section
survey which contains consistently defined micro data on wages, hours of work, em-
ployment status and education for each year since 1978. Our sample consists of all men
aged between 19 and 59 (inclusive).38 The participating group consists of employees;
the nonparticipating group includes individuals categorized as searching for work as
well as the unoccupied. The hours measure for employees in FES is defined as usual
weekly hours including usual overtime hours, and weekly earnings includes overtime
pay. We divide nominal weekly earnings by weekly hours to construct an hourly wage
measure, which is deflated by the quarterly UK retail price index to obtain real hourly
wages.

Individual attributes include education level and cohort effects. Individuals are clas-
sified into three educational groups: those who left full-time education at age 16 or
lower, those who left aged 17 or 18, and those who left aged 19 or over. Dummy vari-
ables capture effects of five date-of-birth cohorts (b.1919–1934, b.1935–1944, b.1945–
1954, b.1955–1964 and b.1965–1977). We include various trend variables to account
for a common business-cycle effect. Finally, our measure of benefit income (income
at zero hours) is constructed for each individual as described in Blundell, Reed and
Stoker (2003). After making the sample selections described above, our sample con-
tains 40,988 observations, of which 33,658 are employed, or 82.1% of the total sample.

4.3.1. Real wages and employment

Figure 8 shows log average wages in Britain from 1978 to 1996. These show a strong
trend increase over the whole period. The trend appears for more disaggregate groups.
Blundell, Reed and Stoker (2003) present a more detailed breakdown by cohort, region
and education group, and show that the trend holds widely, including for the least-
educated group.

Figure 9 shows the overall male labor employment rate for the same period. Clearly
there has been a large fall in the participation rate of men. Figure 10 presents the em-
ployment rate for those with low education. For this group, there is a continued and
much steeper decline in employment. This period also included two deep recessions in
which there have been large fluctuations in male employment.

Considering Figures 8–10 together, one can understand the basic importance of sort-
ing out wage growth at the individual level from changes in participation. The strong
trend of aggregate wages is suggestive of great progress at increasing the well-being of

38 We exclude individuals classified as self-employed. This could introduce some composition bias, given
that a significant number of workers moved into self-employment in the 1980s. However, given that we have
no data on hours and relatively poor data on earnings for this group, there is little alternative but to exclude
them. They are also typically excluded in aggregate figures.
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Figure 8. Male hourly wages.

Figure 9. Male employment rate.

laborers in general.39 However, great increases in unemployment are likely associated
with unemployment of workers with lowest wages, or workers from the poorest groups.
It is very important to understand how much of the upward trend in average wages is
due to the elimination of low-wage earners from employment.

39 In fact, such a conclusion has been trumpeted by British newspapers.
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Figure 10. Employment rate for the low-educated.

There have also been well-documented changes in real benefit income over time and
across different groups of individuals. While it is unlikely that variation in real value
of benefit income relative to real earnings can explain all of the variation in participa-
tion rates, the changes in real benefits act as an important “instrumental variable” for
separating participation decisions from determinants of wages. Again, to the extent that
changes in benefit income have discouraged (or encouraged) participation, it is essential
to learn the size of this impact relative to the other factors driving changes in wages.

4.3.2. Aggregation results

The Blundell, Reed and Stoker (2003) study considers a number of possible specifica-
tions for our individual-level wage equations which relate to the various specifications.
In the simplest of our specifications, the full proportionality hypothesis is imposed on
the (nondifferentiated) human capital model, together with trend terms to reflect the
business-cycle effects on skill price. This specification was strongly rejected by the
data. The preferred model had full interactions of cohort, trend, region and education.
These additional variables could reflect many differences in minimum educational stan-
dards across cohorts such as the systematic raising of the minimum school-leaving age
over the postwar period in the UK. The prices of different (education-level) skills are
allowed to evolve in different ways, by including an interaction between high education
and the trend terms. These coefficients are marginally significant and show an increas-
ing trend among groups with higher levels of human capital. The impact of adjusting for
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Figure 11. Hourly wage growth.

participation is very important.40 To see the impact of these results on aggregate wages,
we turn to graphical analysis.

Figure 11 displays the (raw) log aggregate wage, the log aggregate wage minus the
estimated aggregation bias terms, and the mean of the log wage from the selectivity-
adjusted micro model. We have plotted the return from a common point at the start of
the time-series rebased to zero for 1978, to highlight the changes in trend growth in
wages indicated by our corrections. There is a clear downward shift in the trend, and an
increased cyclical component in wage growth shown by both the corrected aggregate
series and the estimated micro model.

This procedure is repeated for the lower-education group in Blundell, Reed and
Stoker (2003). Several features of this analysis are worth mentioning here. For instance,
even the direction of movement of the uncorrected log aggregate wage does not always
mirror that of the mean micro log wage. There is a reasonably close correspondence
between the two in the 1984–1988 period, but the 1990–1993 period is different. In
1990–1993, log aggregate wages are increasing, but the mean micro log wage (and
the corrected aggregate wage) is decreasing – precisely the period where there is a big
decline in participation. What is remarkable is that the aggregate data show reasonable
growth in real wages, but such growth is virtually absent from the corrected series. We
are left with a much more cyclical profile of wages.

40 Blundell, Reed and Stoker (2003) examined the impact of our normality assumptions by estimating with
semiparametric methods. The estimated wage coefficients were hardly affected by this generalization.
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If the model is exactly correct, the results from aggregating the selectivity-adjusted
micro model estimates should match the corrected aggregate series. They show a close
correspondence in Figure 11, and a similar close correspondence is noted by Blundell,
Reed and Stoker (2003) for more disaggregated groups.41 In any case, we view the
correspondence between the corrected log aggregate micro wage and the mean micro
log wage as striking validation of the framework. This model specification that provides
a good and parsimonious specification of the evolution of log real wages also seems to
work well in terms of the specification of aggregation factors.

5. Conclusion

Macroeconomics is one of the most important fields of economics. It has perhaps the
grandest goal of all economic study, which is to advise policymakers who are trying to
improve the economic well-being of entire populations of people. In the mid-twentieth
century, say 1940 to 1970, macroeconomics had an orientation toward its role much like
an oracle giving advice while peering down from the top of a mountain. That is, while
economists could see people making detailed decisions about buying products, investing
their wealth, choosing jobs or career paths, etc., macroeconomic models were extremely
simple. For instance, describing the aggregate consumption of an entire economy could
be done by taking into account just a few variables: aggregate income, lagged aggregate
consumption, etc. Such equations often fit aggregate data extremely well. Unfortunately,
such models could not predict future aggregate variables with sufficient precision to
dictate optimal policies. Even with great statistical fit, there was too much uncertainty
as to what the underlying processes were that drove the aggregate data, and for policy
prescriptions it is crucial to know something about those processes.42

What economists could get a handle on was how rational individuals and firms would
behave in various economic environments. Problems such as how to allocate one’s
budget, how much to save and invest, or whether to work hard or not so hard, are
sufficiently familiar that their essence could be captured with some mathematics, and

41 To get an idea of the precision of these results, Blundell, Reed and Stoker (2003) present bootstrap 95%
confidence bands for the corrected log wage estimates for various groups. These plots show that the micro
model prediction and the corrections to the log aggregate wage are both quite tightly estimated. In all cases,
the micro model prediction and the corrections to the aggregate wage plot are significantly different from the
raw aggregate wage measure and not significantly different from each other. This gives us confidence that we
have identified compositional biases in the measured real wage with a reasonable degree of precision.
42 There are many stories told in the economics profession about what giants of our field thought were the
greatest contributions to social science. In this spirit, we relate the following. In the mid-1980s, one of the
authors asked Paul Samuelson what he felt was the greatest failure in economics. Without hesitation, his
answer was “macroeconomics and econometrics”. The reason for this is that there had been an enormous
anticipation in the 40s, 50s and 60s that simple empirical macroeconomic models would, in fact, be accurate
enough to allow real economies to be guided and controlled, much like an automobile or a spacecraft. That
this turned out to not be possible was a source of great disappointment.
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economists could describe and prescribe optimal reactions. Economists could settle how
someone being really smart and clear-headed would behave. Notwithstanding the anom-
alies pointed out recently by behavioral economists, the predictive power of economics
rests on the notion that people facing a familiar situation will behave in their inter-
ests. Foolish, self-destructive or purely random behavior will not be repeated once it is
consciously seen to be less good than another course. The transformation of economic
analysis by mathematics occurred through the systematic understanding of rational and
learning behavior by individuals and firms, and the overall implications of that for mar-
ket interactions.

The merging of these two bodies of thought – macroeconomics and optimal behavior
of individuals – is among the greatest developments of economics in the last half cen-
tury. This advance has been recognized by Nobel prizes to Lucas, Kydland and Prescott,
and one should expect more prizes to be awarded to other important developers. Previ-
ous “schools of thought” have been replaced by groups differentiated by how they settle
the tradeoff between realism and strict adherence to optimal economic behavior. The
specification of macroeconomic models, the judgment of whether they are sensible, and
the understanding of the impacts of economic policy are now more systematic because
of their embedding in the rules of optimal individual behavior.

The trouble is, this embedding cannot be right without taking account of aggregation.
A one-person or five-person economy is just not realistic. One can simulate a model
with a few actors and pretend that it is realistic, but there is nothing in casual obser-
vation or empirical data or economic theory that suggests that such a stance is valid.
There is much to be learned from rational individual behavior, but there must be an
explicit bridge to economic aggregates because real people and their situations are so
very heterogeneous. Aggregation is essential, because heterogeneity is a pervasive and
indisputable fact of life.

In this chapter, we have covered recent work on aggregation problems in a style that
we hope is useful to empirical economists. Our orientation has been to highlight the
importance of different types of individual heterogeneity: in particular, heterogeneity
in tastes and reaction, heterogeneity in market participation, and heterogeneity in unin-
surable risks. Our approach has been practical; we have covered recent advances in
econometric modeling that address issues in aggregation, by considering explicit mod-
els at the individual level and among economic aggregates.

We have covered a wide range of ideas. First, we have detailed the main approach for
incorporating distributional information into aggregate relationships, namely exact ag-
gregation models, in the context of how that approach has been applied to the analysis
of consumer demands. Second, we have shown how one can incorporate basic non-
linearity, insurance and dynamic elements, in our coverage of aggregate consumption
based on CRRA preferences. Third, we have shown how to account for compositional
heterogeneity, in our coverage of labor participation and wages. The latter two top-
ics required explicit assumptions on the distribution of individual heterogeneity, and
we have based our solutions on normal and lognormal assumptions on individual het-
erogeneity. While these distributional restrictions are specific, they do permit explicit
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formulations of the aggregate relationships of interest to be derived, and those for-
mulations capture both location and spread (mean and variance) of the underlying
elements of individual heterogeneity. We view our solutions in these cases as repre-
sentative and clear, and good starting points for empirical modeling in the respective
areas.

Whether one dates the beginning of the study of aggregation problems from the
1940s, 1930s or perhaps earlier, one can at best describe progress toward solutions
as slow. Aggregation problems are among the most difficult problems faced in either
the theoretical or empirical study of economics. Heterogeneity across individuals is ex-
tremely extensive and its impact is not obviously simplified or lessened by the existence
of economic interaction via markets or other institutions. The conditions under which
one can ignore a great deal of the evidence of individual heterogeneity are so severe as
to make them patently unrealistic. There is no quick, easy or obvious fix to dealing with
aggregation problems in general.

Yet we see the situation as hopeful and changing, and offer the solutions discussed in
this chapter as evidence of that change. The sources of this change are two-fold, and it
is worth pointing them out as well as pointing out how both are necessary.

The first source of change is the increasing availability of data on individuals ob-
served over sequential time periods. To address questions of what kinds of individual
heterogeneity are important for aggregate relationships, one must assess what kinds of
heterogeneity are relevant to individual behavior for the problem at hand, and assess
how much the distributions of the relevant heterogeneity vary over time. To the extent
that this heterogeneity reflects differences in unexpected shocks to individual agents,
the mechanisms that are available to individuals to insure against such shocks will have
a strong bearing on the form of the aggregate relationship.

While we have advanced the idea of using aggregation factors (derived from time-
series of individual data) to summarize the impacts of aggregation, the specific method
one uses is less important than the ability to use all available types of information to
study economic relationships. That is, it is important to study any relationship among
economic aggregates with individual data as well as aggregate data, to get as complete a
picture as possible of the underlying structure. Even though modeling assumptions will
always be necessary to develop explicit formulations of aggregate relationships, testing
those assumptions is extremely important, and is not possible without extensive indi-
vidual data over sequential time periods. Our view is that the prospects for meaningful
advance continue to brighten, as the data situation with regard to individual behavior
and aggregate economic variables will continue to improve.

The second source of change in studying aggregation problems is the recent, rapid
rise in computing power. Realistic accommodation of individual heterogeneity typically
requires extensive behavioral models, let alone combinations of individual models with
aggregate relationships. Within the last twenty five years (or the professional lives of
both authors), there have been dramatic changes in the ability to implement realistic
models. Before this, it was extremely difficult to implement models that are necessary
for understanding impacts of individual heterogeneity in aggregation.
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Aggregation problems remain among the most vexing in all of applied economics.
While they have not become less difficult in the past decade, it has become possible to
study aggregation problems in a meaningful way. As such, there are many reasons to
be optimistic about the prospects for steady progress on aggregation problems in the
future. The practice of ignoring or closeting aggregation problems as “just too hard” is
no longer appropriate.
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Abstract

This chapter is concerned with the identification and estimation of models of labor
supply. The focus is on the key issues that arise from unobserved heterogeneity, non-
participation and dynamics. We examine the simple “static” labor supply model with
proportional taxes and highlight the problems surrounding nonparticipation and miss-
ing wages. The difference-in-differences approach to estimation and identification is
developed within the context of the labor supply model. We also consider the impact of
incorporating nonlinear taxation and welfare program participation. Family labor sup-
ply is looked at from both the unitary and collective perspectives. Finally we consider
intertemporal models focusing on the difficulties that arise with participation and het-
erogeneity.
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1. Introduction

This chapter is concerned with the identification and estimation of labor supply mod-
els. The specification and estimation of such models has already been the subject of
numerous studies and surveys.1 So why this one? The overall objective of this chapter
is to consider models that allow policy evaluation and simulation allowing for individ-
ual heterogeneity. Evaluation concerns the assessment of reforms that have taken place.
Policy simulation concerns the assessment of proposed reforms. For the most part it is
the latter that has been the central concern of empirical researchers. That is to construct
a model that can reliably be used for the assessment of proposed reforms. Since many
policy proposals involve the reform of highly nonlinear budget constraints and impact
decisions that are discrete and cover the whole life-cycle, we argue that a fully specified
dynamic structural model is the ideal. In particular, it is of central importance to con-
sider how labor supply and saving decisions interact and how policy affects labor supply
decisions within a period as well as intertemporally. However, this ideal has a number
of practical and theoretical difficulties. In certain situations, the evaluation of existing
reforms can be analyzed using much simpler and potentially more robust techniques.

To best convey the set of issues surrounding estimation of labor supply models we
start with the simplest static framework and build up to the more complete dynamic
models, adding important elements such as nonlinear budget sets on the way. Thus,
the layout of the chapter is as follows. Section 2 presents an assessment of the estima-
tion issues underlying the simple ‘static’ labor supply model with proportional taxes
and highlights the problems surrounding nonparticipation and missing wages. In Sec-
tion 3 we consider the natural experiment and difference-in-differences approaches to
estimation and evaluation of reforms, laying out the identifying assumptions underlying
interpretation of the results. We consider estimation of a simple discrete policy response
parameter as well as the estimation of income and substitution effects. In Section 4 we
examine the impact of incorporating nonlinear taxation and welfare program participa-
tion. Section 5 considers some of the specific issues that relate to family labor supply,
including the development of the collective approach and welfare program participa-
tion as previously articulated. Section 6 discusses intertemporal labor supply models.
This section reviews the various approaches taken to dynamic modeling and examines
the difficulties that arise with participation and heterogeneity. Section 7 concludes the
chapter.

2. Estimation and identification with participation with proportional taxes

We begin by considering the simple static model of hours and consumption choices. We
leave the discussion of nonlinear budget sets to Section 4.

1 For overall evaluations and surveys see Killingsworth (1983), MaCurdy (1985), Killingsworth and Heck-
man (1986), Heckman (1993), Mroz (1987), Hausman (1985a, 1985b), Pencavel (1986), Blundell and
MaCurdy (1999) to mention a few.
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2.1. Static specifications

2.1.1. The allocation of hours and consumption

Utility is defined over hours of work h and consumption c, both of which are restricted
to be nonnegative and h is restricted to be below a maximal amount of an available time
endowment. Formally, this discussion is easily extended to the case of family labor sup-
ply decisions where h is a vector of household labor supplies. However, there are many
specific issues relating to joint participation decisions and to the allocation of resources
within the family that are central to any study of family labor supply; we leave our
discussion of family labor supply models to Section 5. Equally, consumption decisions
can be disaggregated. This disaggregation is central to the analysis of nonseparability
of goods and leisure. We turn to this below.

If we let y represent the total unearned income available for consumption, and w the
real wage rate, then the optimal choices for c and h are given by the solution to

(2.1)max
c,h

{
U(c, h)

∣∣ c − wh = y; c � 0; h � 0
}

where U(c, h) is a quasiconcave utility index defined increasing in c and −h. The re-
sulting labor supply has the form

(2.2)h = h(w, y).

In the static model y is taken to be income from other sources. However it turns out
that the precise definition of y is crucial: If y is measured as the difference between
total consumption expenditure and earnings, c − wh = y, it is consistent both with
intertemporal two-stage budgeting both in the absence of liquidity constraints and with
the presence of liquidity constraints that are unrelated to labor supply. This is discussed
in a subsection below.

The indirect utility representation of preferences is given by

(2.3)V (w, y) ≡ U
(
wh(w, y) + y, h(w, y)

)
which is linear homogeneous, quasiconcave in prices p, w and y, decreasing in p and w

and increasing in y. The various representations of preferences (direct or indirect utility)
detailed below are going to be particularly useful in specifying empirical models and
defining the likelihood function.

2.1.2. Two-stage budgeting specifications and within-period allocations

Labor supply and consumption models are frequently analyzed in a two-good frame-
work. Such modeling is less restrictive than it sounds because under Gorman’s (1959,
1968) two-stage budgeting, this labor supply model can be seen as the top stage where
“full income” is shared between consumption and leisure and then the consumption
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budget is split among goods. However, for such an interpretation with all goods being
represented by one or two price indices, we require some conditions on preferences.

Suppose utility is defined over hours of work h and a vector of goods q. Assume the
individual has a within-period utility function of the form

(2.4)υt = v(ct , ht , pt ) = max
q,h

{
u(qt , ht )

∣∣ p′
tqt = ct

}
where pt is a vector of prices corresponding to the disaggregated commodity vector qt .
The function υt is a conditional indirect utility function which is increasing in total
consumption expenditure ct , decreasing and concave in prices and decreasing in hours
of work ht .

We say that qt is weakly separable from ht if the marginal rate of substitution be-
tween goods qt does not depend on ht . In this case the utility function can be written as
u(u1(qt ), ht ) where u1 is a sub-utility function. If in addition the marginal utilities of
qt and ht do not depend on each other then we say that the utility function is additively
separable, in which case the utility function can be written as u1(qt ) + u2(ht ). Blacko-
rby, Primont and Russell (1978) have a detailed analysis of the concepts of separability
and Deaton (1974) analyzes the empirical implications of the additive separability as-
sumption.

Gorman (1959) has shown that if a set of goods x1 is separable from goods x2 then
it is possible to express the demands for goods x1 simply as a function of the total
expenditure allocated to this group (x1) and the prices of these goods alone (say p1).
In addition, if preferences can be expressed in the generalized Gorman polar form, then
it is possible to express the overall expenditure allocations to each group as a function
of the price indices for each group. This theorem can justify considering the allocation
of total expenditure to overall consumption and leisure separately from the problem of
how expenditure is allocated to goods. However, it has to be borne in mind that the
justification which allows us to write labor supply as a function of the real wage alone
(rather than of all relative prices) does imply restrictions on preferences.

These results offer a justification of the static model within an intertemporal context
since the concept of separability can extend both over goods and over time.2 Typically
we impose additive separability over time in which case the marginal utility of con-
sumption or hours of work in one period is unaffected by consumption and hours in any
other time period. Additive intertemporal separability has the implication that we can
use two-stage budgeting to characterize consumption choices: given the level of con-
sumption and separability, the within-period demands for goods qt only depend on the
prices of those goods and on wages (if the goods are not separable from hours). The in-
direct utility function defined by (2.4) then becomes the criterion function for allocating
consumption (and hours) over the life-cycle.3

2 See Gorman (1959), MaCurdy (1983), Altonji (1986), Blundell and Walker (1986) and Arellano and
Meghir (1992).
3 Utility (2.4) implicitly assumes separability over time thus ruling out habits and/or adjustment costs [see

Hotz, Kydland and Sedlacek (1988) and Meghir and Weber (1996)].
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It is well known that taking a monotonic transformation of the utility function does
not change the observed within-period allocations. In an intertemporal context this is-
sue acquires a special importance: taking a monotonic transformation does not alter the
way that consumption and hours are allocated within period, under intertemporal sepa-
rability. However, it does potentially change the marginal rate of substitution between
periods. Hence, as we will discuss further below, estimating intertemporal preferences
generally requires intertemporal data.

Noting that modeling the monotonic transformation is modeling intertemporal pref-
erences, we use the slightly more elaborate notation

(2.5)υt = ψ
[
U(ct , ht |z1t ), z2t

]
where ψ[·] is a monotonic function of its first argument U and where z1 and z2 are
variables (observed or otherwise) that affect preferences over consumption and hours
of work. In particular, z2t affects intertemporal allocations but not within-period ones
(unless it contains common elements with z1t ). Our focus in this section is on within-
period allocations. The discussion here should make it clear that one can work with the
utility function (2.1) to represent within-period allocations of consumption and hours of
work consistent with life-cycle choices.

2.1.3. Empirical labor supply specifications

Preferences can be represented by direct utility functions, indirect utility functions or by
the labor supply equation itself. In each case the function has to satisfy some basic prop-
erties to be consistent with theory. Here we briefly review some standard specifications
of the static labor supply model (2.2) and relate them to their indirect utility function.
Such specifications are usually chosen for ease of estimation and here we simply con-
sider the specifications and their underlying model of preferences. With unobserved
heterogeneity and nonparticipation it is useful, if not essential, to have some relatively
simple parametric specification in mind.

The linear labor supply model

(2.6)h = α + βw + γy

has indirect utility

(2.7)V (w, y) = eγw

(
y + β

γ
w − β

γ 2
+ α

γ

)
with γ � 0 and β � 0.

Although popular [see Hausman (1981, 1985a, 1985b), for example], it is arguable that
this linear specification allows too little curvature with wages.

Alternative semilog specifications and their generalizations are also popular in em-
pirical work. For example, the semilog specification

(2.8)h = α + β ln w + γy
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with indirect utility

V (w, y) = eγw

γ

(
γy + α

β

γ
+ β ln w

)
− β

γ

∫
γy

eγy

γy
d(γy)

(2.9)with γ � 0 and β � 0.

Moreover, the linearity of (2.8) in α and ln w makes it particularly amenable to an empir-
ical analysis with unobserved heterogeneity, endogenous wages and nonparticipation as
discussed below. Consequently, this specification is used extensively in our discussion
of estimation that follows.

Neither (2.6) nor (2.8) allows backward-bending labor supply behavior although it
is easy to generalize (2.8) by including a quadratic term in ln w. Note that imposing
integrability conditions at zero hours for either (2.6) or (2.8) implies positive wage and
negative income parameters. A simple specification that does allow backward-bending
behavior, while retaining a three-parameter linear-in-variables form, is that used in
Blundell, Duncan and Meghir (1992):

(2.10)h = α + β ln w + γ
y

w

with indirect utility

(2.11)

V (w, y) = wβ+1

β + 1

(
y

w
(1 + γ )2 + β ln w + α − β

1 + γ

)
with γ � 0 and β � 0.

This form has similar properties to the MRS specification of Heckman (1974c).
Generalizations of the Linear Expenditure System or Stone–Geary preferences are

also attractive from certain points of view. For example suppose the indirect utility func-
tion for individual i in period t takes the form

(2.12)Vit =
[
wH + y − a(w)

b(w)

]
where H is the maximum amount of hours available to be allocated between hours
and leisure. This is the quasi-homothetic “Gorman polar form”. The linear expenditure
system belongs to this class. However, there is no need to impose additive separability
between consumption and hours of work as would be the case under Stone–Geary/LES
preferences. Indeed, such separability assumptions severely constrain the time path of
consumption and hours of work and can lead to the impression that the life-cycle model
is unable to explain a number of observed phenomena, see Heckman (1974b). In partic-
ular we may specify

(2.13)a(w) = a0 + a1w + 2a2w
1
2

and

(2.14)b(w) = wβ
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which is a Generalized Leontief model. Preferences are additive and reduce to LES if
a2 = 0.

The implied labor supply function using (2.12)–(2.14) can be derived using Roy’s
identity and takes the form

(2.15)hit = (H − a1) − a2w
− 1

2 − β

w

(
M − a0 + a1w + 2a2w

1
2
)

where M = wH + y. Unobserved heterogeneity can also easily be allowed for, as well
as measurement error in hours of work (but not in hourly wages) and/or consumption.
For example, we can allow a1 to be heterogeneous across individuals and time, i.e.
a1 = a1 +ε. Under the simplifying assumption that a1 is the only source of heterogene-
ity the error term in the earnings equation now becomes ν = −ε(1 + β).

2.2. Estimation of the static labor supply model

The main estimation issue, ignoring problems related to participation and nonlinear
taxation (discussed below), is the endogeneity of wages w and unearned income y.
Wages may well be endogenous because unobservables affecting preferences for work
may well be correlated with unobservables affecting productivity and hence wages.
Unearned income may be endogenous for a number of reasons: If y represents asset in-
come, then individuals who work harder (because of unobserved preferences for work)
are also likely to have accumulated more assets.4

Take as a simple example the semilog model of labor supply as above, i.e.

(2.16)hi = α′xi + β ln wi + γyi + ui.

The subscript i denotes an individual. The variables x denote observables which deter-
mine preferences. We avoid using the log of y because it is conceivable that it is zero
and, in some cases, even negative. We add to this system a wage equation

ln wi = δ′
1xi + δ′

2zi + vi

and a reduced form equation for unearned income

yi = ζ ′
1xi + ζ ′

2zi + εi .

Identification requires that the dimension of the variables excluded from the labor sup-
ply equation, zi , is at least two. It also requires that the matrix [δ′

2ζ
′
2] has rank 2. In

this linear framework, estimation is straightforward – two-stage least squares is the ob-
vious choice. However, we will see below that it is convenient to estimate the three
reduced forms first and then impose the parametric restrictions to recover the structural

4 If μ also represents income from spouses, positive assortative mating will imply that hard-working individ-
uals will tend to marry. Hence unobserved preferences for work will correlate with spousal income reflected
in μ.
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coefficients using minimum distance. The reduced form labor supply model is

hi = (α + βδ1 + γ ζ1)
′xi + (βδ2 + γ ζ2)

′zi + ui.

Given estimates of all the reduced form coefficients the restrictions can then be imposed
using minimum distance. Thus let

α1 = (α + βδ1 + γ ζ1), α2 = (βδ2 + γ ζ2), α3 = [δ′
1δ

′
2ζ

′
1ζ

′
2

]′
,

and let Ω represent the covariance matrix of the OLS estimator of the three-equation
reduced form system. Finally let α(θ) = [α1α2α3]′ where θ represents the set of para-
meters in the labor supply model, the wage equation and the unearned income equation.
Then the optimal minimum distance estimator is

θ̂ = arg min
θ

{(
α̂ − α(θ)

)′
Ω−1(α̂ − α(θ)

)}
.

The resulting estimator is efficient, to the extent that the first-step estimator is efficient.
When the labor supply model is nonlinear this straightforward procedure is no longer

available. In this case an alternative approach is maximum likelihood or semiparametric
instrumental variables. Maximum likelihood will be discussed below in the context of
the labor supply model with corner solutions and nonlinear taxation. Hence we avoid
duplication by deferring discussion until then.

In the absence of censoring, one can use nonparametric instrumental variables as in
Newey and Powell (2003) and Darolles, Florens and Renault (2000). Consider the case
where the labor supply is an unknown function of w and y

hi = h(wi, yi) + ui.

The object is to estimate the function h. Suppose we have a set of instruments z (at
least two if we are to treat both the wage and other income as endogenous). We assume
that the error in the labor supply function satisfies the rank condition, E(ui |zi) = 0. In
addition one needs a strong identification assumption ensuring that any function of w,
y can be explained by the instruments z. Under these conditions solving the moment
condition

E
(
hi − h(wi, yi)|zi

) = 0

for the function h(wi, yi) provides a nonparametric estimator.
In the context of censoring due to nonparticipation a control function approach turns

out to be more useful. However, it is important to note that the assumptions underlying
the control function are different from those underlying the IV approach above, unless
the instruments are independent of the unobservables.5 A form of the control function
approach relies on the assumption that

E(ui |z, x,w, y) = g(vi, εi)

5 Florens et al. (2007).
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where vi and εi are the error terms from the wage and unearned income equations re-
spectively.6 With unknown h, identification also requires measurable separability which
ensures that the functions g and h vary independently and is the equivalent of the rank
condition. In a parametric framework the requirements are less stringent since we are re-
stricting attention to specific functional forms. One approach to estimation would be to
take a series expansion of g. Alternatively we could use some kernel estimator. The pro-
cedure works under a generalized rank condition; however the important point to note is
that even under nonlinearity we do not require explicit distributional assumptions, other
than the restriction on the conditional expectation of u.7 Nevertheless it should be noted
that in practice it may be difficult to motivate the control function assumption, which
contrasts with the orthogonality conditions above that are often derived from economic
theory.

2.3. The censored regression model

Labor market participation raises two key questions for modeling labor supply. First,
what market wage distribution should be used for nonparticipants? Second, are there
features of the labor market that make labor supply behavior on the extensive margin
(participation) fundamentally different from behavior on the intensive margin (hours
of work)? These questions are not wholly unrelated since, without further restrictions
on the distribution of offered wages among nonparticipants, it is difficult to separately
identify a process for nonparticipation and for hours of work.

Among the most compelling reasons for separating these two margins is fixed costs
of work – either monetary or time. We take up the issue of fixed costs in Section 2.5, and
begin by working through a model without fixed costs. We consider first semiparametric
estimation in a model with missing wages.

Suppose individual heterogeneity in tastes for work is represented by the random vari-
able v. Observed hours of work (2.2) in the censored regression case can be represented
by

(2.17)h = max
{
f (w, y, x, v), 0

}
where f (w, y, x, v) represents desired hours of work

(2.18)f (w, y, x, v) ≡ h∗

and where y represents some measure of current period unearned income.
The censored labor supply model implies the reservation wage condition

(2.19)h > 0 ⇔ w > w∗(y, x, v)

6 For a more general case with unknown h see Newey, Powell and Vella (1999) or Florens et al. (2007) who
derive conditions for identification.
7 Two functions g(e) and h(v) are measurably separable iff whenever g(e) − h(v) = 0 a.s. implies g(e) and

h(v) are constant functions.
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where w∗ is defined implicitly by

(2.20)0 = f (w∗, y, x, v).

The existence and uniqueness of the reservation wage in this simple world is guaran-
teed by revealed preference arguments. Given the market wage w, (2.17) also defines a
threshold condition on the unobservable heterogeneity term v given by

h > 0 ⇔ v � v∗(w, y, x) ⇒ Pr(h > 0) =
∫

v�v∗
g(v) dv

where g(v) is the density function for v.
To implement this censored regression specification we define the index Ii as an in-

dicator variable that is unity if individual i participates8 and zero otherwise. Observable
hours of work then follow the rule

(2.21)hi =
{

h∗
i if Ii = 1,

0 otherwise.

That is

Ii = 1 ⇔ h∗
i > 0

(2.22)= 1
{
h∗

i > 0
}
.

This implies that participation in work follows a simple corner-solution framework and
is equivalent to assuming there are no fixed costs.9

The log likelihood for an independently distributed random sample of n individuals
in the censored model is given by

(2.23)ln L(θ) =
n∑

i=1

(
Ii ln g(ν; θ) + (1 − Ii) ln

∫
v�v∗

g(v; θ) dv

)
where θ are the unknown parameters of preferences and g is the distribution of v. In
a linear specification with a normal iid assumption on v, this is equivalent to the Tobit
censored regression specification.

The likelihood specification (2.23) makes two implicit assumptions on the wage dis-
tribution. First, that wages are observed for all individuals irrespective of their labor
market status. Second, that wages are exogenous for labor supply. Neither of these is
a priori reasonable.

8 By participation we mean participation in paid work.
9 By contrast, the fixed costs framework retains

Ii = 1 ⇒ h∗
i > 0

but not the reverse. As Cogan (1980) shows, fixed costs are equivalent to a positive reservation hours of work.
We elaborate on this in Section 2.5 below.
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2.4. Missing wages

Wages are not observed if h = 0. Suppose the model for wages can be written as

(2.24)ln w = γ1x + γ2q + η

where q are a set of variables that are exclusive to the determination of real wages and
where η is an iid error term with distribution gw(η). The likelihood contribution for
h = 0 becomes

h > 0, �0 = g(v)gw(η),

(2.25)h = 0, �0 =
∫ ∞ ∫ v∗

g(v)gw(η) dv dη.

By writing the joint distribution of ν and η as a product of the two marginals we
have implicitly maintained that wages are exogenous for labor supply. This implies that
the density of wages can be estimated separately; in a labor supply model linear in log
wages this further implies that we can simply impute wages for all nonworkers and
estimate the model as if wages are observed (correcting the standard errors of course
for generated regressor bias). However, if we wish to relax this assumption and permit
w to be endogenous in the hours equation, the sample likelihood becomes

(2.26)ln L(φ) =
n∑

i=1

(
Ii ln ghw(v, η) + (1 − Ii) ln

∫ ∞ ∫ v∗
ghw(v, η) dv dη

)
where ghw(v, η; φ) is the joint distribution of ν and η.

The resulting estimator simplifies enormously if we assume a parametric specification
that permits an explicit reduced form for desired hours of work. A popular example of
such a specification is the semilog labor supply model to which we now turn.

2.4.1. A semilog specification

Suppose we write the optimal labor supply choice for individual i as

(2.27)h∗
i = β1 ln wi + β2yi + β3xi + vi

where β1, β2 and β3 are unknown parameters of labor supply. Labor supply and wages
are now completely described by the triangular system consisting of (2.24) and the
following reduced form for desired hours of work:

h∗
i = (β1γ1 + β3)xi + β1γ2qi + β2yi + β1ηi + vi

= π1xi + π2qi + π3yi + ωi

(2.28)= πzi + ωi.
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2.4.2. Semiparametric estimation

If it can be assumed that vi and ηi are distributed independently of the explanatory
variables x, q and y then semiparametric identification and estimation can take the
following simple stepwise procedure.

The π coefficients in (2.28) can be estimated from a standard censored regression
estimation procedure. If gω(ω) describes the density of ω, then the sample likelihood
for a random sample of i = 1, . . . , n individuals is given by

(2.29)L(π) =
n∏

i=1

{
gω(ω|π)

}Ii

{
1 −

∫
−π ′zi

gω(ω|π) dω

}1−Ii

which is equivalent to the sample likelihood for the Tobit model when ω is homoskedas-
tic normal. Root-n consistent and asymptotically normal estimators of π can be derived
under much weaker assumptions on gω, see Powell (1987).

Given π , the conditional mean of (2.24) for participants can be used to estimate the
wage equation parameters. This is the Heckman (1976, 1979) selectivity framework.
Suppose we assume

(2.30)E(ηi |Ii > 0) = λη(π
′zi),

then the conditional mean of (2.24) given Ii > 0 is simply written as

(2.31)E(ln wi |z, Ii > 0) = γ ′
1xi + γ ′

2qi + λη(π
′zi).

If a joint normal distribution is assumed for vi and ηi then estimation can follow
the two-step selectivity estimation approach developed by Heckman (1979). Alterna-
tively, a

√
N consistent and asymptotically normal semiparametric estimator can be

constructed.
To consider the semiparametric estimator, notice that the conditional expectation of

(2.31) for participants given πzi is

(2.32)E(ln wi |π ′zi, Ii > 0) = γ1E(xi |π ′zi) + γ2E(qi |π ′zi) + λη(π
′zi).

Subtracting this from (2.31) eliminates the λη(π
′zi) term yielding

E(ln wi |z, Ii > 0) − E(ln wi |π ′zi, I > 0)

(2.33)= γ ′
1

(
xi − E(xi |π ′zi)

)+ γ ′
2

(
qi − E(qi |π ′zi)

)
.

The conditional expectation terms E(ln wi |πzi), E(xi |πzi) and E(qi |πzi) in (2.33)
can then be replaced by their unrestricted Nadaraya–Watson kernel regression estima-
tors.10

10 E.g.

̂E(qi |π ′zi ) = q̂h(πz) = r̂(π ′z)
f̂ (π ′z)
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The parameters of (2.31) can then be recovered by an instrumental variable re-
gression. Robinson (1988) suggests regressing ln w − l̂n wh(πz) on x − x̂h(πz) and
q − q̂h(πz) using I [f̂ (πz) > bN ]x and I [f̂ (πz) > bN ]q as the respective instrumental
variables, where I [f̂ (ln x) > bN ] is an indicator function that trims out observations
for which f̂ (ln x) < bN , for some sequence of trimming constants bN which tend to
zero with the sample size at some appropriate rate. An alternative estimator, due to Pow-
ell (1987), is to use f̂ (πz).x and f̂ (πz).q as instruments. This effectively removes the
random denominators from the kernel regression estimators.

Finally, given the γ1, γ2, π1, π2 and π3 parameters, the structural labor supply pa-
rameters β1, β2 and β3 can be recovered by minimum distance. In general, these steps
can be combined to improve efficiency. Provided a suitable instrumental variable is
available, this procedure can also be extended to control for the endogeneity of other
income yi . We consider this in more detail below.

2.5. Fixed costs

2.5.1. A structural model of fixed costs

Fixed costs imply that participation does not simply follow the corner-solution con-
dition (2.22). Instead participation will depend on the determinants of fixed costs as
well as the determinants of h∗

i . For example, suppose there is a fixed monetary cost of
working S; this implies that nonlabor income in the budget constraint becomes

y − S if h > 0,

y if h = 0,

and the distribution of S is only partially observable. If we denote utility in work at the
optimal hours point by the indirect utility level: ν(w, y, v) and utility at h = 0 by the
direct utility at h = 0: U(Y, 0, v), the decision to work follows from

ν(w, y, v) � U(Y, 0, v).

Note that if S > S 	 0 then there will be a discontinuity in the hours distribution at low
wages which should reflect itself as a “hole” at the low end of the hours distribution.11

in which

r̂(πz) = 1

n

∑
i

Kh(πz − πzi)qi and f̂ (πz) = 1

n

∑
i

Kh(πz − πzi ),

where Kh(·) = h−1k(·/h) for some symmetric kernel weight function k(·) which integrates to one. The
bandwidth h is assumed to satisfy h → 0 and nh → ∞ as n → ∞. Under standard conditions the estimator
is consistent and asymptotically normal, see Härdle and Linton (1994).
11 This may not be visible since heterogeneity in fixed costs and in unobserved tastes may imply a different
position for the discontinuity for different individuals, smoothing out the unconditional distribution. Hence
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This model is further developed in Section 4; here we analyze empirical models that are
motivated by the presence of fixed costs of work.

Cogan (1981) defines reservation hours h0 such that

U1(T − h0, y − S + wh0, x, v) = U0(T , y),

(2.34)h0 = h0(y − S,w, x, v) � 0

and the participation decision becomes

(2.35)Pr(work) = Pr
(
h > h0).

For any v and η, nonparticipation will occur if fixed costs are sufficiently high:
S > S∗(v, η).

Suppose we continue to assume wage equation (2.24) and also assume the specifica-
tion of fixed costs to be

(2.36)S = θ1x + θ2m + s

where m are a set of variables exclusive to the determination of fixed costs and s

represents unobserved heterogeneity in the distribution of fixed costs. In terms of the
likelihood contributions we have for the “no work” regime:

(2.37)�0 =
∫ ∞

−∞

∫ v∗

−∞

∫ ∞

S∗
g(v, η, s) ds dv dη;

and for the work regime:

(2.38)�1 =
∫ ∞

v∗

∫ S∗

0
g(ε, v, η, s) ds dv.

Given some parametric specification of direct (and indirect) utility, all the structural
parameters of fixed costs, preferences and wage determination are identified from a
likelihood based on the contributions (2.37) and (2.38).

Finally note that if we specify a model on the basis of the indirect utility or cost
function we may not have an analytical expression for the direct utility function. Conse-
quently this has to be obtained numerically. One way of doing this is to find the standard
reservation wage when hours are zero and the fixed costs have not been incurred. Eval-
uating the indirect utility function at that reservation wage and nonlabor income then
provides us with the utility value of not working. Another important difficulty is then to
derive the probability of participation given that the direct utility function at zero hours
of work will depend on unobserved heterogeneity both directly and via the reservation
wage – hence it is likely to be a highly nonlinear function of the underlying error term.
In practice, as we argue later, it may be easier to work with a direct utility specification
when we have to deal with such nonconvexities.

looking for such “odd” features in the hours distribution may not be a very good empirical strategy for detect-
ing fixed costs. However such features can be seen in the distribution of relatively homogeneous groups, e.g.
single women with no children or single men.
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2.5.2. Semiparametric estimation in the fixed costs model

Although the (semiparametric) censored regression approach to the estimation of the
hours equation described above is no longer valid in this fixed costs case, a semipara-
metric procedure applied to hours of work among the participants can be used as an
approximation to the fixed costs model. The optimal choice of hours of work among
those individuals who decide to join the labor market will have the form

h∗
i = β1 ln wi + β2(yi − Si) + β3xi + vi

= (β1γ1 + β2θ1 + β3)xi + β1γ2qi + β2yi + β2θ2mi + β1ηi + β2si + vi

= π̃1xi + π̃2qi + π̃3yi + π̃4mi + ui

(2.39)= π̃ z̃i + ui

where again the β1, β2 and β3 are unknown parameters of labor supply. Labor supply
and wages are now completely described by the triangular system consisting of (2.24)
and (2.39).

Assume that the participation condition (2.35) can be well approximated by the dis-
crete index model

(2.40)Ii = 1 ⇔ φz̃i + ei > 0

where z̃i contains all the exogenous variables determining reservation hours, log wages
and desired hours of work. The term ei is a random unobservable whose distribution Fe

is normalized up to scale and assumed to be independent of z̃i . Parameters φ will be a
convolution of parameters of fixed costs, the wage equation and preferences. They can
be identified through the condition

(2.41)E(Ii = 1|z̃i ) =
∫

−φz̃i

dFe(e).

The φ coefficients in (2.40) can be estimated up to scale from a standard binary choice
estimation procedure which replaces the censored regression rule (2.21) in this fixed
costs model. The sample likelihood for a random sample of i = 1, . . . , n individuals is
given by

(2.42)�(φ) =
n∏

i=1

{∫
−φz̃i

dF (e)

}Ii
{

1 −
∫

−φz̃i

dF (e)

}1−Ii

which is equivalent to the probit likelihood when e is homoskedastic normal.
√

N con-
sistent and asymptotically normal estimators of φ up to scale can be derived under much
weaker index assumptions on f , see Klein and Spady (1993) for example.

Given φ, the conditional mean of (2.24) for participants can be used to estimate
the wage and hours equation parameters. This is the Heckman (1976, 1979) selectiv-
ity framework. Suppose we assume the single index framework

(2.43)E(ηi |Ii > 0, z̃i ) = λη(φz̃i)
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and

(2.44)E(ui |Ii > 0, z̃i ) = λu(φz̃i),

then the conditional mean of (2.24) and (2.39) given Ii > 0 are simply written

(2.45)E(ln wi |Ii > 0) = γ1xi + γ2qi + λη(φz̃i)

and

E(hi |Ii > 0, z̃i )

(2.46)= (β1γ1 + β2θ1 + β3)xi + β1γ2qi + β2yi + β2θ2mi + λu(φz̃i),

where z̃i is taken to include all exogenous variables. If a joint normal distribution is
assumed for vi , ηi and si then estimation can follow the two-step selectivity estimation
approach developed by Heckman (1979).

Notice that (2.45) and (2.46) together only identify γ1, γ2, β1 and β2; the parame-
ters of fixed costs and β3 are not identified without more information on fixed costs.
A

√
N consistent and asymptotically normal semiparametric estimator of these para-

meters can be constructed from a natural extension of the procedures described above
for the censored labor supply model.

For participants we have

E(hi |φz̃i, Ii > 0) = π̃1E(xi |φz̃i, Ii > 0) + π̃2E(qi |φz̃i, Ii > 0)

+ π̃3E(yi |φz̃i , Ii > 0) + π̃4E(mi |φz̃i, Ii > 0)

(2.47)+ λu(φz̃i).

The nonparametric term describing the selection of participants can be eliminated as
in (2.33) and root-n estimation of the unknown index parameters can also follow the
same semiparametric techniques.12

Finally, we should note that endogeneity of yi can be handled in a similar fashion.
Suppose a reduced form for y is given by

(2.48)yi = ϑ ′di + ζi;
since yi is continuously observed for all individuals, ϑ can be estimated by least squares.
Now suppose we also assume that

(2.49)E(ui |Ii > 0, yi, z̃i ) = δyζi + λu(φz̃i).

Then adding the estimated residual from the regression (2.48) into the selection model
(2.46) appropriately corrects for the endogeneity of yi . This is an important considera-
tion given the consumption-based definition of yi in the life-cycle consistent specifica-
tion.

12 See Newey, Powell and Walker (1990) for some empirical results using semiparametric selection methods.
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3. Difference-in-differences, natural experiments and grouping methods

One of the central issues in labor supply is the endogeneity of marginal (post-tax) wages
and other incomes. The work incentives facing individuals are usually endogenous.
Consider as an example a world with a progressive tax system, as will be examined
in detail in the next section. In this case individuals earning more face a higher rate of
tax and hence a lower marginal incentive to work. Now take two individuals both of
whom have the same pre-tax wage but different tastes for work. The person working
longer hours will earn more and will face a higher tax rate, which translates to a lower
post-tax marginal wage. In a simple regression framework we would estimate a nega-
tive effect of the wage on hours of work since the person with higher hours (because of
tastes) will be facing a lower wage. This kind of endogeneity has prompted researchers
to seek exogenous sources of variation in policy that resemble experimental situations
with a “treatment” group affected by the policy and a “control” or “comparison” group
which is unaffected. The impact of incentives is then estimated by comparing the change
in hours between the two groups before and after the policy is implemented.

Using this basic idea one can attempt to estimate a “causal” impact of the policy on
labor supply, ignoring any structural considerations.13 Alternatively one can think of the
policy changes as an attempt to obtain quasi-experimental conditions for estimating the
structural parameters themselves. The former approach attempts to ignore the underly-
ing theory and wishes to go straight to the effects of the particular policy. The latter is
after structural parameters that can be used for extrapolation to other policy situations,
assuming the theory is a good approximation of reality.

In the following sections we describe this approach to estimating the impact of in-
centives on labor supply drawing in part from Blundell, Duncan and Meghir (1998). We
also discuss the validity of the approach under different circumstances.14 As one may
expect, even the “atheoretical” approach which seeks to estimate the impacts of policy
without reference to a model does implicitly make strong assumptions about behavior
and/or the environment, and we discuss this. We also discuss conditions under which
the quasi-experimental approach, which is a form of instrumental variables, can provide
estimates of structural parameters. We go through the difference-in-differences estima-
tor and a more general grouping estimator considering also the effects of selection due
to nonparticipation.

3.1. Difference-in-differences and fixed effects models

Suppose one is interested in estimating the influence of a policy instrument on an out-
come for a group, say outcome hit measuring hours of work or participation. The group
consists of individuals i = 1, . . . , N , with these individuals observed over a sample

13 See Eissa and Liebman (1995) as an example.
14 See also Blundell and MaCurdy (1999).
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horizon t = 1, 2, . . . . Suppose further that a policy instrument of interest changes in a
particular period t for only a segment of the individuals. Let δit be a zero-one indicator
that equals unity if the policy change was operative for individual i in period t . Mem-
bers of the group who experience the policy change react according to a parameter γ .
A framework for estimating expressed in terms of a conventional fixed effect model
takes the form

(3.1)hit = γ δit + ηi + mt + εit

where i is a time-invariant effect unique to individual i, mt is a time effect common
to all individuals in period t , and εit is an individual time-varying error distributed
independently across individuals and independently of all ηi and mt .

The least squares estimator of γ in (3.1), which regresses hit on δit and a set of in-
dividual and time dummy variables, is precisely the difference-in-differences estimator
for the impact of the reform. It can be given the interpretation of a causal impact of the
reform if E(εit |ηi,mt , δit ) = 0. In a heterogeneous response model

(3.2)hit = γiδit + ηi + mt + εit

the least squares dummy variable estimator recovers the average of the response para-
meters γi for those affected by the policy. Since the error term εit may be correlated both
over time and across individuals, this should be taken into account when constructing
standard errors.

Now suppose that the policy does not affect everyone in a treatment group, but that the
chance of being affected is higher among them (g = T ) than it is among a control group
(g = C). The error structure can be more general than above. Consider a specification
in which

(3.3)hit = γ δit + uit ,

where uit represents an individual-level heterogeneity term which may be fixed for
that individual over time or may vary over time. Moreover it may be correlated across
individuals and may have a cross-section mean that is nonzero. The implicit macro
component and the average group characteristics to which the individual belongs may be
correlated with δit . Suppose that limited time-series data is available across individuals,
either in terms of repeated cross-sections or as a panel data source. Under the following
assumption, and the presumption that the policy is introduced only for one group, the
impact of the policy may be identified by using two time periods of data, one before the
reform and one after. The assumption we require is that

(3.4)A1: E[uit |g, t] = ag + mt

which can be interpreted as saying that in the absence of the reform the changes in group
means are the same across the two groups. Then with two groups and two time periods
the slope coefficient γ can be written as

γ = �E(hit |T , t) − �E(hit |C, t)

�E(δit |T , t) − �E(δit |C, t)
,
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the difference-in-differences estimator is the sample analog given by

(3.5)γ̂ = �hT
t − �hC

t

� Pr(δit = 1|T , t) − �E(δit = 1|C, t)

where the “bar” denotes sample average, � the first difference and the superscript the
group for which first differences are taken. γ̂ is consistent for γ . This estimator is an
instrumental variables estimator with excluded instruments the group–time interactions.
If the effect of the treatment is heterogeneous and if the policy does not decrease the
chance of obtaining the treatment δ for anyone (monotonicity) then the difference-
in-differences estimator above identifies the impact of the policy for those obtaining
treatment as a result of the policy [Imbens and Angrist (1994)].

Assumption A1 is very strong indeed. Failure will result if there is a change in group
composition of unobservable individual effects over time or if there is a differential
impact of macro shocks across groups. Again it will depend critically on the choice of
groups which is a key issue in this framework. A1 implies:

(i) time-invariant composition for each group, and
(ii) common time effects across groups.

3.2. Estimating a structural parameter

Here we consider the use of this method in the estimation of a simple labor supply
model (ignoring income effects for notational simplicity; we return to this below)

(3.6)hit = α + β ln wit + uit .

Again uit represents an individual-level heterogeneity term which may be fixed for that
individual over time or may vary over time. Moreover it may be correlated across indi-
viduals and may have a cross-section mean that is nonzero. This represents the impact
of macro shocks to preferences on individual i’s labor supply. Both the implicit macro
component and the idiosyncratic heterogeneity may be correlated with the log wage
(ln wit ).

Make the following assumptions:

(3.7)A1: E[uit |g, t] = ag + mt,

A2:
[
E[ln wit |g = T , t] − E[ln wit |g = C, t]]

(3.8)− [E[ln wit |g = T , t − 1] − E[ln wit |g = C, t − 1]] �= 0.

Then with two groups and two time periods the slope coefficient β can be written as

β = �E(hit |T , t) − �E(hit |C, t)

�E(ln wit |T , t) − �E(ln wit |C, t)
.

The difference-in-differences estimator is the sample analog given by

(3.9)β̂ = �hT
t − �hC

t

�ln wT
it − �ln wC

it

and is consistent for β.
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Assumption A2 is simply analogous to a rank condition and should hold if the groups
are chosen to reflect some systematic reason for a differential growth in ln wit across
groups. The choice of groups in this difference-in-differences approach usually reflects
some policy change which affects the real wage – a tax change, for example, can be
argued to be incident on individuals in one group i ∈ [g = T ] but not on individuals
in another i ∈ [g = C]. It is clear, however, that the assumption A1 may be strong in
some circumstances. However note the big difference with the previous section. In the
previous section the policy was assumed to have no effect on wages of the treatment
group relative to the control group; this is the assumption implicit in the fact that we
only need to condition on time and group effects. Here we are conditioning on wages
and we are adding the assumption from economic theory, that log wages and taxes share
the same coefficient. Hence if the policy implicitly affecting incentives changes pre-tax
wages as well, this is allowed for; this in itself makes the assumptions underlying the
difference-in-differences approach more credible (see more on this below).

This method has some attractive features. It allows for correlated heterogeneity and
for general common time effects. Although for many choices of grouping, often pre-
cisely those associated with some policy reform, assumption A1 is likely to be invalid,
there are possible grouping procedures for estimating labor supply models that are more
convincing. This approach is also closely related to the natural experiment or quasi-
experimental estimators that typically employ before and after comparisons relating
directly to a policy reform.

Before moving on to consider these developments, we first simply outline how this
approach can be extended to allow for many groups, for many time periods (or many
reforms), for participation and for the inclusion of income terms and other regressors.

3.3. Grouping estimators

Suppose individuals can be categorized in one of a finite number of groups g each
sampled for at least two time periods. For any variable xit , define D

gt
x as the residual

from the following regression

(3.10)E(xit |Pit , g, t) =
G∑

g=1

ζgdg +
T∑

t=1

ξtdt + D
gt
x ,

where Pit indicates that the individual is observed working, that is Pit ≡ {Iit = 1} and
where dg and dt are group and time dummies respectively. Analogously with A1 and
A2 we make assumptions

(3.11)A1.1: E(uit |Pit , g, t) = ag + mt,

(3.12)A2.1: E
[
Dgt

w

]2 �= 0.

Assumption A1.1 summarizes the exclusion restrictions for identification; it states that
the unobserved differences in average labor supply across groups can be summarized by
a permanent group effect ag and an additive time effect mt . In other words differences
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in average labor supply across groups, given the observables, remain unchanged over
time. It also says that any self-selection into employment (the conditioning on Pit ) can
be controlled for by group effects and time effects additively. Assumption A2.1 is again
equivalent to the rank condition for identification; it states that wages grow differentially
across groups; this is because the assumption requires that after we have taken away
time and group effects there is still some variance of wages left. For example, if there
is a tax reform between two periods, affecting the post-tax wages of the two groups in
different ways, and assuming that tax incidence does not fully counteract the effects of
the reforms, identification of the wage elasticity will be guaranteed.15

With these assumptions we can implement a generalized Wald estimator [see
Heckman and Robb (1985)]. Defining the sample counterpart of D

gt
x as x̃gt , i.e. the

residual from regressing the time-group cell mean on time and group dummies, we can
write the estimator as

(3.13)β̂ =
∑

g

∑
t [h̃gt ][l̃n wgt ]ngt∑

g

∑
t (l̃n wgt )2ngt

where ngt is the number of observations in cell (g, t). The implementation of this esti-
mator is simple; group the data for workers by g and by time and regress by weighted
least squares the group average of hours of work on the group average of the log wage,
including a set of time dummies and group dummies. An alternative that gives numer-
ically identical results is as follows: regress using OLS the log after-tax wage rate on
time dummies interacted with the group dummies, over the sample of workers only and
compute the residual from this regression. Then use the original data to regress hours of
work on the individual wage, a set of time dummies and group dummies and the wage
residual. The t-value on the coefficient of the latter is a test of exogeneity, once the
standard errors have been corrected for generated regressor bias and intra-group depen-
dence. It is also important to allow for the possibility of serial correlation and correlation
of idiosyncratic shocks across individuals when computing the standard errors.

3.3.1. Controlling for participation

A potential problem with the approach above is that it assumes that the composition
effects from changes in participation can be fully accounted for by the additive group
and time effects, ag + mt . First, changes in mt will cause individuals to enter and leave
the labor market. Second, with nonconvexities, a tax policy reform may lead to changes
in participation. This will be particularly true if fixed costs are large relative to the
nontaxable allowance. The presence of composition effects is equivalent to saying that
E(uit |Pit , g, t) is some general function of time and group and does not have the addi-
tive structure assumed in A1.1.

To control for the possibility that E(uit |Pit , g, t) may vary over time requires struc-
tural restrictions. A parsimonious specification is to make the assumption of linear

15 See Bound, Jaeger and Baker (1995) for the implications of weak instruments in empirical models.
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conditional expectation. For example, we may extend A1.1 and A2.1 by assuming that

(3.14)A1.2: E(uit |Pit , g, t) = ag + mt + δλgt ,

(3.15)A2.2: E
[
Dgtλ

w

]2 �= 0

where λgt is the inverse Mills’ ratio evaluated at Φ−1(Lgt ), Φ−1 being the inverse
function of the normal distribution and Lgt being the proportion of group g working in

period t .16 Finally D
gtλ
w is defined by the population regression

(3.16)E(wit |Pit , g, t) =
G∑

g=1

ζgdg +
T∑

t=1

ξtdt + δwλgt + Dgtλ
w .

Assumption A1.2 models the way that composition changes affect differences in the
observed labor supplies across groups. It implies that

(3.17)E(hit |Pit , g, t) = βE(ln wit |Pit , g, t) + ag + mt + δλgt

where all expectations are over workers only. Assumption A2.2 states that wages must
vary differentially across groups over time, over and above any observed variation
induced by changes in sample composition. We have also implicitly assumed that
E[Dgt

λ ]2 �= 0. If this is not the case, there is no selection bias on the coefficients of
interest (here the wage effect) because composition effects can be accounted for by the
linear time and group effects. In this case we can use (3.13).

We can now estimate the wage effect using a generalization of (3.13), i.e.

(3.18)β̂ =
∑

g

∑
t [h̃gtλ][l̃n wgtλ]ngt∑

g

∑
t (l̃n wgtλ)2ngt

.

As before, this estimator can be implemented using a residual addition technique. We
can add an estimate of λgt as well as the residual of the wage equation estimated on the
sample of workers (with no correction for sample selection bias as implied by (3.17))
to an OLS regression of individual hours on individual wages, time dummies and group
dummies.

To determine whether (3.18) or (3.13) should best be used we can test the null hy-
pothesis that E[Dgt

λ ]2 = 0 which implies that the group effects ag and the time effects
mt adequately control for any composition changes (given our choice of groups). If we
do not reject this we can use (3.13).

The assumption in A1.2 is worth some discussion. First note that where all regres-
sors are discrete and a full set of interactions are included in the selection equation, use
of the normal distribution to compute λ̂gt imposes no restrictions. However, the linear
conditional expectation assumption implies that a term linear in λ̂gt is sufficient to con-
trol for selection effects and is potentially restrictive. Using the results in Lee (1984) in
general we have that

16 See Gronau (1974) and Heckman (1974a, 1979).
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(3.19)E(uit |Pit , g, t) = ag + mt +
K∑

k=1

δkλ
(k)
gt

where λ
(k)
gt are generalized residuals of order k. The linearity reduces the number of

parameters to be estimated and hence the number of periods over which we require ex-
ogenous variability in wages. If it is found that E[Dgt

λ ]2 �= 0 then one can experiment by
including higher-order generalized residuals after checking that they display sufficient
independent variability.

3.3.2. Income effects

Income effects are important for labor supply and we need to take them into account
for at least two reasons. First, the wage elasticity cannot in general be interpreted as
an uncompensated wage elasticity, unless we control for other income. Second, income
effects are important if we wish to compute compensated wage elasticities for the pur-
pose of evaluating the welfare effects of tax reforms. It is straightforward to extend the
estimator in (3.18) to allow for extra regressors, such as other income. This involves
regressing h̃gtλ on l̃n wgtλ and ỹgtλ where y is household other income. The rank con-
dition for identification is now more stringent: It requires that the covariance matrix
V = Ezgtλz

′
gtλ is full rank, where zgtλ = [Dgtλ

w ,D
gtλ
y ]′.

This is equivalent to requiring that the matrix of coefficients on the excluded ex-
ogenous variables in the reduced forms of log wage and other income, after taking
account of composition effects, is rank 2. A necessary but not sufficient condition for
this to be true is that these coefficients are nonzero in each of the reduced forms – i.e.
that E(D

gtλ
w )2 and E(D

gtλ
y )2 are nonzero. As before if we accept the hypothesis that

E(D
gt
λ )2 = 0 we need to consider whether the rank of V ∗ = Ez∗

gt z
∗′
gt is two, where

z∗
gt = [Dgt

w ,D
gt
y ]′. In this case we estimate the model using the sample counterparts

of z∗
gt as regressors.17

3.4. The difference-in-differences estimator and behavioral responses

As we have seen the simplest implementation of the difference-in-differences approach
simply includes a policy reform dummy. This avoids directly specifying a structural
model in the sense that the effect of the policy is not tied to a wage or income effect.
The idea is that the policy should be evaluated directly without the intermediation of an
economic model.

Suppose again there are simply two periods and two groups. Suppose the policy
reform is a tax change in which τ is the change in the marginal tax rate for the
treatment group. The natural experiment approach simply includes a policy dummy

17 Blundell, Duncand and Meghir use the changes in the distribution of wages, as documented in Gosling,
Machin and Meghir (2000) as a source of exogenous variation in wages.
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δ
g
t = 1{g = T , t = A} in the hours regression

(3.20)hi = α + βδ
g
t + ζit .

The quasi-experimental estimator in this case is just the difference-in-differences esti-
mator applied to (3.20).

To interpret this estimator suppose the hours equation has the simple form (3.6).
Suppose that pre- and post-reform wages are defined by

Before reform After reform
i ∈ Treated ln wiB ln

(
(1 − τ)wiA

)
i ∈ Control ln wiB ln wiA

Assuming A1 and A2, taking group means, we find

(3.21)h
g
t = α + β ln(1 − τ)δ

g
t + βln w

g
t + ag + mt .

If δ
g
t = 1{g = T , t = A} is all that is included in the regression then the difference-in-

differences estimator will only recover β if log wages have the group and common time
effect form

(3.22)ln w
g
t = ãg + m̃t .

This seems a particularly strong assumption given empirical knowledge about the dif-
ferential trends in wage rates across different groups in the economy. Clearly, the cost
of including simply the policy reform dummy δ

g
t = 1{g = T , t = A} alone is that the

common time effects and time-invariant composition effects assumptions become even
more difficult to satisfy.

4. Estimation with nonlinear budget constraints

A problem encountered in many analyses of consumption and labor supply involves
the presence of intricate nonlinearities in budget sets arising from wages and prices that
vary as a function of quantities. Tax and welfare programs constitute a prominent source
of such functional relationships in analyses of labor supply, for these programs induce
net wages to vary with the number of hours worked even when the gross wages remain
constant. Hedonic environments and price schedules dependent upon quantities give
rise to comparable sources of distortions in budget sets in many consumption settings.

To address the issues encountered with nonlinear budget sets, there has been steady
expansion in the use of sophisticated statistical models characterizing distributions
of discrete-continuous variables that jointly describe both interior choices and corner
solutions in demand systems. These models offer a natural framework for capturing ir-
regularities in budget constraints, including those induced by the institutional features
of tax and welfare programs.18

18 Some of the references include Heckman (1974c), Arrufat and Zabalza (1986), Keane and Moffitt
(1998), Hausman (1980, 1981, 1985a, 1985b), Moffitt (1983, 1986), Blomquist (1983, 1996), Blomquist and
Hansson-Brusewitz (1990), Blomquist and Newey (2002), MaCurdy, Green and Paarsch (1990), MaCurdy
(1992).
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This section briefly describes approaches for estimating models incorporating such
features, keeping the context general enough to illustrate how these models can read-
ily accommodate a wide variety of nonlinearities in price and wage structures. The
discussion begins with a brief overview of the methods implemented to model budget
constraints involving nonlinearities, and then goes on to survey instrumental variable
procedures applied in the literature to estimate behavioral relationships in the presence
of such constraints. We summarize the general approach for using maximum likelihood
procedures to estimate the more sophisticated variants of these models with either con-
vex or nonconvex budget sets. We provide simple illustrations of maximum likelihood
methods to estimate familiar specifications of labor supply with convex constraints. We
outline why the implementation of maximum likelihood procedures imposes interest-
ing and important restrictions on behavioral parameters in the presence of nonlinear
budget constraints. We then integrate the analysis of nonparticipation into our analysis
of nonlinear budget constraints and discuss estimation when the availability of welfare
programs affects the shapes of budget sets, which induces not only nonconvexities but
also opportunities for participating in multiple programs. Finally, we consider computa-
tional simplifications adopted in the literature to render maximum likelihood estimation
feasible.

4.1. Modeling nonlinear features of budget constraints

A general formulation for the economic problem considered in the subsequent discus-
sion specifies an agent as solving the following optimization problem:

(4.1)Max U(c, h, z, ν) subject to b(c, h,W, Y ) = 0

where U( ) delineates the utility function, c and h measure consumption and hours of
work, the quantities z and ν represent respectively the observed and unobserved fac-
tors influencing choices beyond those incorporated in budget sets, and the function b( )

specifies the budget constraint with W and Y designating the real gross wage per hour
and nonlabor income (note that we use upper case to distinguish from marginal wage
and virtual nonlabor income). For the moment, we restrict the economic framework to
be static and the quantities c and h to be single goods rather than multidimensional vec-
tors. In many applications the budget function, b, is not differentiable, and in some it is
not even continuous.

For the familiar linear specification of the budget constraint, b takes the form

(4.2)b(c, h,W, Y ) = Wh + Y − c.

Solving (4.1) for this form of b yields the following labor supply and consumption
functions:

h = �(W, Y, z, ν),

(4.3)c = c(W, Y, z, ν),
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which correspond to the standard demand functions for nonmarket time (i.e., leisure)
and consumption. (The subsequent analysis often suppresses the z argument in the func-
tions U( ), �( ) and c( ) to simplify notation.)

Another popular specification of b( ) incorporates income or sales taxes in character-
izing choices, with the budget constraint written as some variant of

(4.4)b(c, h,W, Y ) = Wh + Y − c − τ(Wh, Y ),

where the function τ( ) gives the amount paid in taxes. This formulation for b admits
different tax rates on earnings (Wh) and nonlabor income (Y ). If these income sources
are instead taxed the same, then (4.4) further simplifies to

(4.5)b(c, h,W, Y ) = Wh + Y − c − τ(I ),

where tax payments τ(I ) = τ(I (h)) where I (h) = taxable income = Wh+Y −D with
D designating allowable deductions. Different marginal tax rates in the various income
brackets combined with the existence of nonlabor income create inherent nonlinearities
in budget sets.

The literature relies on two approaches for modeling nonlinearities in budget sets:
piecewise-linear characterizations and smooth differentiable functions. To illustrate
these approaches, the subsequent discussion principally focuses on the income-tax for-
mulation of b given by (4.4) and (4.5) to illustrate central concepts.

4.1.1. Piecewise linear constraints

As a simple characterization of piecewise budget sets, Figure 4.1 shows a hypo-
thetical budget constraint for an individual faced with a typical progressive income
tax schedule defined by a series of income brackets. In this diagram, h denotes
hours of work, and the vertical axis measures total after-tax income or the con-
sumption of market goods. The budget constraint is composed of several segments
corresponding to the different marginal tax rates that an individual faces. In par-
ticular, he faces a tax rate of t1 between H0 hours and H1 hours (segment 1 of
his constraint) and tax rates of t2 and t3 respectively in the intervals (H1,H2) and
(H2,H ) (segments 2 and 3 in the figure). Thus, with the variable W denoting the
individual’s gross wage rate, the net wages associated with each segment are: w1 =
(1 − t1)W for segment 1; w2 = (1 − t2)W for segment 2; and w3 = (1 − t3)W

for segment 3. Also, each segment has associated with it a virtual income (i.e.,
income associated with a linear extrapolation of the budget constraint) calculated
as:

y1 = Y − τ(0, Y );
(4.6)yj = yj−2 + W(tj−2 − tj )hj−1 for j = 2, 3, . . . .

So, y3 = y1 + (w1 −w3)H2 and similarly for y. Changes in tax brackets create the kink
points at H1 and H2.
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Figure 4.1. Budget constraint with income taxes.

Figure 4.2. Budget constraint with EITC.

Figure 4.2 illustrates stylized features of a budget constraint modified to incorporate
an earned income tax credit (EITC) in conjunction with an income tax,19 and Figure 4.3

19 An earned income tax credit (EITC) constitutes a negative income tax scheme, which induces two kinks
in a person’s constraint in the simplest case: one where the proportional credit reached its maximum (H1 in
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Figure 4.3. Budget constraint with welfare.

shows a prototype budget set induced by a conventional welfare program (or social
security tax).20 In Figure 4.2, the EITC increases benefits until an individual reaches h1
hours of work, and then benefits decline until hours attain h2 when the regular income
tax schedule applies. In Figure 4.3, welfare benefits start at y1 − y2 when a family does
not work, they steadily decline as the family increases its hours of work until its earnings
reach the value implied at H1 hours when the family becomes disqualified for welfare.
Each of these low-income support programs introduces regressive features in the overall
tax schedule faced by a family, which in turn induces nonconvex portions in the budget
sets.

In real world applications of piecewise budget constraints, the combination of vari-
ous tax and public assistance programs faced by families implies budget sets have two
noteworthy features. First, the constraint faced by a typical individual includes a large
number of different rates. Translated into the hours-consumption space, this implies a
large number of kink points in the budget constraint. Second, for most individuals the
tax schedule contains nonconvex portions, arising from four potential sources. The first
arises from the EITC program, as illustrated in Figure 4.2. A second source arises if a

Figure 4.2), and one at the break-even point where the credit was fully taxed away (H2 in the figure). The tax
rates associated with the first two segments are tA, which is negative, and tB , which is positive. Thereafter,
the EITC imposed no further tax.
20 A welfare program pays a family some level of benefits at zero hours of work, and then “taxes” this
nonlabor income at some benefit reduction rate until all benefits are gone. Figure 4.3 assumes a proportional
benefit reduction rate applies on earnings until benefits decline to zero, after which the family pays normal
income tax which here too is assumed to be at a proportional rate. Thus, Figure 4.3 shows a constraint with
a single interior kink (given by H1 in the figure) corresponding to the level of earning when welfare benefits
first become zero. The Social Security system induces a similar effect on the budget constraint.
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worker’s family participates in any welfare program, wherein nonconvexities arise as
benefits are withdrawn as earnings increase as illustrated in Figure 4.3. Third, social
security taxes phase out after a fixed level of earnings, so they too induce a budget set
similar in structure to that given by Figure 4.3. Finally, the standard deduction present
in most income tax programs, wherein no taxes are paid on sufficiently low levels of
income, creates yet another source of regressivity in the tax schedule and corresponding
nonconvexities in the budget constraint.

4.1.2. Constructing differentiable constraints

Several approaches exist for approximating the piecewise-linear tax schedules by a dif-
ferentiable function. A convenient method for constructing this function is to fit the
marginal tax rate schedule – a step function – by a differentiable function. This ap-
proximation must itself be easily integrable to obtain a simple closed form for the tax
function.

An elementary candidate for constructing a differentiable approximation that can be
made as close as one desires to the piecewise-linear tax schedule has been applied in
MaCurdy, Green and Paarsch (1990). To understand the nature of the approximation,
return to Figure 4.1. One can represent the underlying schedule as follows:

τe(Wh, Y ) = t1 from I (H0) to I (H1)

= t2 from I (H1) to I (H2)

(4.7)= t3 above I (H2),

where τe(Wh, Y ) = the marginal tax rate on earnings,

I (h) = taxable income at h hours of work, and

ti = marginal tax rate, i = 1, 2, 3.

For expositional simplicity, suppose that t1 = 0. Consider the following approximation
of this schedule:

(4.8)τ̂e(Wh, Y ) = t2
{
Φ1
(
I (h)

)− Φ2
(
I (h)

)}+ t3Φ2
(
I (h)

)
.

This formulation for the marginal tax rate switches among three flat lines at the heights
t1 (= 0), t2 and t3. The weight functions Φi(I (h)) determine the rate at which the shift
occurs from one line to another, along with the points at which the switches take place.
Candidate weight functions are given by Φi(I (h)) = the cumulative distribution func-
tion with mean yi and variance σ 2

i , i = 1, 3. The middle segment of the tax schedule
has height t3 and runs from taxable income I (H1) to I (H2). To capture this feature,
parameterize Φ1(·) and Φ2(·) with means y1 = I (H1) and y3 = I (H2), respectively,
with both variances set small. The first distribution function, Φ1(·) takes a value close
to zero for taxable income levels below I (H1) and then switches quickly to take a value
of one for higher values. Similarly, Φ2(·) takes a value of zero until near I (H2) and one
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thereafter. The difference between the two equals zero until I (H1), one from I (H1) to
I (H2) and zero thereafter. Thus, the difference takes a value of one just over the range
where t2 is relevant. Notice that we can control when that value of one begins and ends
by adjusting the values y and y3. Also, one can control how quickly this branch of the
estimated schedule turns on and off by adjusting the variances of the cumulative distrib-
ution functions, trading off a more gradual, smoother transition against more precision.
In general, adjusting the mean and variance parameters allows one to fit each segment
of a schedule virtually exactly, switch quickly between segments, and still maintain
differentiability at the switch points.

A generalization of this approximation takes the form

(4.9)τ̂e(Wh, Y ) =
∑

i=1,3,...

[
Φi−2

(
I (h)

)− Φi

(
I (h)

)]
ti
(
I (h)

)
where the functions ti (I (h)) permit tax schedules to be nonconstant functions of taxable
income within brackets. With the Φi denoting many cdfs associated with conventional
continuously distributed distributions, function (4.9) yields closed form solutions when
it is either integrated or differentiated.21 Integrating (4.9) yields a formulation for the
budget constraint b(c, h,W, Y ). The resulting approximation can be made to look arbi-
trarily close to the budget set boundary drawn in Figure 4.1, 4.2 or 4.3, except that the
kink points are rounded.

Formula (4.9) can be extended to approximate virtually any specification of
b(c, h,W, Y ). One can readily allow for distinct relationships describing the deriva-
tives for each of the arguments of this function, and nonconvexities in budget sets cause
no particular problems.

4.2. Simple characterizations of labor supply and consumption with differentiable
constraints

A useful solution exists for the hours-of-work and consumption choices associated with
utility maximization when budget constraints form a set with a twice-differentiable

21 Total taxes are given by τ(I ) = ∫
τ ′(I ) dI . The following relations enable one to calculate an explicit

form for τ(X):∫
Φ dI = IΦ + ϕ,∫
IΦ dI = 1

2
I2Φ − 1

2
Φ + 1

2
Iϕ,∫

I2Φ dI = 1

3
I3Φ + 2

3
ϕ + 1

3
I2ϕ,∫

I3Φ dI = 1

4
I4Φ − 3

4
Φ + 3

4
IΦ + 1

4
I3ϕ.

In this expression, Φ refers to any Φi ’s, and ϕ designates the density function associated with Φi .
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boundary. Specify the marginal wage rate as

(4.10)ω = ω(h) = bh(c, h,W, Y ) = bh

and “virtual” income as

(4.11)y = y(h) which solves the equation b(hbh + y, h,W, Y ) = 0.

This solution for y satisfies

y = y(h) = c − ωh.

For the familiar specification given by b(c, h,W, Y ) = Wh+Y − c − τ(Wh+Y) with
the function τ constituting the amount paid in taxes at before-tax income Wh + Y , the
expressions for marginal wage and virtual income y simplify to

ω = ω(h) = (1 − τ ′)W,

(4.12)y = y(h) = Wh + Y − ωh − τ = Y + τ ′Wh − τ,

where τ and τ ′ (the derivative of the tax function with respect to income) are evaluated
at income level I = I (h) = Y + Wh which directly depends on the value of h.

Utility maximization implies solutions for hours of work and consumption that obey
the implicit equations:

h = �(ω, y, z, v) = �
(
ω(h), y(h), z, v

)
,

(4.13)c = c(ω, y, z, v) = c
(
ω(h), y(h), z, v

)
,

where � and c represent the same conventional forms for labor supply and consumption
demand functions given by (4.3). Figures 4.1 and 4.3 illustrate this representation of the
solution for optimal hours of work and consumption. The characterization portrays an
individual as facing a linear budget constraint in the presence of nonlinear tax programs.
This linear constraint is constructed in a way to make it tangent to the actual nonlinear
opportunity set at the optimal solution for hours of work. The implied slope of this
linearized constraint is ω(h) and the corresponding value of virtual income is y(h).

Relationships (4.13) constitute structural equations that determine hours of work and
consumption. By applying the Implicit Function Theorem to specification (4.13), we
can solve this implicit equation for h in terms of W,Y , and other variables and para-
meters entering the functions b and U . This operation produces the labor supply and
consumption functions applicable with general forms of nonlinear budget sets.

4.3. Instrumental variable estimation

The inclusion of taxes provides an additional reason for allowing for the endogeneity of
(after-tax) wages and other income. Writing the labor supply function as

(4.14)h = �
(
ω(h), y(h), z, υ

) = �∗(ω(h), y(h), z
)+ v
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makes the point explicitly. The instrumental variable approach described earlier can be
applied as well as the grouping method (which of course is just an application of IV).
The implementation of IV procedures imposes no parametric restrictions and it allows
one to consider a wide variety of exogeneity assumptions. The fact that the error term
does not interact with the wage and other income is critical for the interpretation of IV
as identifying the structural parameters of the model.

4.3.1. Including measurement error

In many data sets there are serious suspicions that hours of work and wages are reported
with error. This issue acquires added importance when we are dealing with nonlinear
tax schedules since this creates a problem of observability of the correct tax rate, which
is the reason we introduce the issue here.

Suppose H denotes measured hours of work and that the function

(4.15)H = H(h, ε)

relates H to actual hours h and to a randomly distributed error ε. Typically, analyses
presume that the state h = 0 is observed without error.

Measurement errors in hours often induce errors in observed wage rates since re-
searchers construct wages by dividing total labor earnings, E, by hours worked in the
period. Whereas W = E/h defines the true hourly wage rate, W̃ = E/H designates
the data available on wages. Measured wages W̃ are contaminated by reporting errors
even when E provides accurate quantities for each individual’s total labor earnings and
wages are indeed constant for hours worked over the period. This formulation presumes
a reciprocal relation in the measurement error linking data on hours and wages. More
generally, suppose W̃ links to the true wage rate according to the relationship

(4.16)W̃ = W̃ (W, h, ε).

In the reciprocal measurement error example, W̃ = W/H(h, ε) where H(h, ε) comes
from (4.15).

The presence of measurement errors in hours typically invalidates use of nonlinear IV
procedures to estimate the structural labor supply equation given by (4.14). Expressing
this equation in terms of H rather than h involves merely substituting (4.15) into (4.14);
and if measurement error also carries over to wages, then substitutions must be made
for wages as well. These replacements typically result in a variant of structural equation
(4.14) that cannot be transformed into a form that is linear in disturbances. Measure-
ment errors in hours invariably render the marginal tax rate unobservable, which in
turn makes both the marginal wage (ω(h)) and virtual income (y(h)) also unobserv-
able. Sophisticated adjustments must be included to account for such factors. These
complications motivate many researchers to turn to maximum likelihood procedures to
estimate hours-of-work specifications as we do below. However with some additional
assumptions IV procedures are still possible, at least when the issue of censoring does
not arise.
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Suppose measurement error is of the multiplicative kind

(4.17)H = H(h, ε) = heε with W̃ = E/H.

In the presence of such error, specifications can also be found that allow for use of
IV procedures to estimate substitution and income parameters. Incorporating the mul-
tiplicative measurement error model (4.17) into the semilog functional form of labor
supply given in relation (2.8) yields the empirical specification:

(4.18)H = u + Zγ + α ln ωm + βy + u

where

ln ωm = ln(E/H) + ln(1 − τ ′),
ỹ = y − ασ 2

ε /2,

u = ν + α
(
ε − E(ε)

)+ (H − h) = ν + α
(
ε − E(ε)

)+ h
(
eε − 1

)
.

The disturbance u possesses a zero mean since E(eε) = 1. Virtual income y(h) and
the marginal tax rate τ ′ are not contaminated by measurement error because they are
only functions of Y and hW = HW̃ , quantities which are both perfectly observed (by
assumption). The variable ln ωm represents the natural logarithm of the after-tax wage
rate evaluated at observed hours, which differs from the actual marginal wage due to the
presence of reporting error in hours. Assuming the error ε is distributed independently of
all endogenous components determining h, including the heterogeneity disturbance v,
the instrumental variables X applicable for estimation of the original specification can
also serve as the instrumental variables in estimating the coefficients of (4.18) by famil-
iar IV methods.

4.3.2. Sources of unobservables in budget sets

An important class of models not widely recognized in the literature involves budget
constraints that vary across individuals in ways that depend on unobserved factors. The
modification required in the above analysis to account for such factors replaces budget
function b( ) appearing in (4.1) by

(4.19)b(c, h,W, Y, z, ξ) = 0.

The quantity z captures the influence of measured characteristics on budget sets. Classic
examples include family characteristics that alter the form of the tax function relevant
for families. The error component ξ represents unobserved factors shifting budget sets.
Classic examples here include unmeasured components of fixed costs, prices, and ele-
ments determining tax obligations.

The presence of ξ in b( ) typically renders IV methods inappropriate for estimating
parameters of the labor supply function �. The usual problem comes about since struc-
tural variants of � cannot be found that are linear in disturbances, and this is especially
true when nonlinearities exist in tax schedules. When ξ appears as a component of b( ),
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researchers typically rely on the maximum likelihood methods summarized in the sub-
sequent discussion to conduct estimation of behavioral models of hours of work and
consumption.

4.3.3. Complications of IV estimation with piecewise-linear constraints

Naive application of instrumental variable methods with piecewise-linear budget con-
straints generally produces inconsistent estimates of behavioral parameters, even ig-
noring the potential presence of measurement error. Section 4.6 below presents the
structural specification – see (4.69) – implied for hours of work when Figure 4.1 des-
ignates the budget set and everyone works. As noted in Section 4.1, this budget set is
convex and consists of three segments. Inspection of structural equation (4.69) reveals
that the structural error is

∑
j=1,2,3 djv where dj represents an indicator variable sig-

nifying whether an individual selects segment j = 1, 2, or 3. If the individual occupies
any kink, then

∑
j=1,2,3 djv = 0. Suppose X includes the set of instrumental vari-

ables presumed to satisfy E(ν|X) = 0. The corresponding conditional expectation of
the structural error implied by Equation (4.69) is

∑
j=1,2,3 Pr(dj |X)E(v|dj = 1, X).

This expectation is typically not zero, a condition required to implement IV techniques.
To use IV procedures in the estimation of Equation (4.69) necessitates the inclusion of
sample selection terms adjusting for the nonzero expectation of

∑
j=1,2,3 djv.

4.3.4. Nonparticipation and missing wages

In the earlier sections we discussed how the estimation approach needs to be general-
ized so as to allow for nonparticipation and for missing wages, which present further
complications for estimation. We argued that standard instrumental variables are not ap-
propriate in this context. We now turn to maximum likelihood estimation which we set
up to deal with the problems introduced above, namely nonlinear taxes, measurement er-
ror, missing and/or endogenous wages and other income and of course nonparticipation.

4.4. Maximum likelihood estimation: A general representation

The instrumental variable estimator, developed in the last section, required exclusion
restrictions to consistently estimate the parameters of the labor supply and consumption
models involving nonlinear budget sets. In contrast, maximum likelihood estimation
exploits the precise structure of the budget constraint and need not rely on exclusion
restrictions to identify parameters. Even though marginal wages and virtual incomes
are endogenous, nonlinearities introduced through distributional assumptions provide
a valuable source of identification. However, exclusion restrictions are only avoided in
this approach if gross wages and incomes are assumed to be exogenous and in many ap-
plications of maximum likelihood researchers also impose stringent distributional and
independence assumptions on sources of errors capturing heterogeneity and measure-
ment error. Nonetheless, one can entertain a wide array of nonlinearities in budget sets
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and decision processes, along with rich specifications for heterogeneity and mismea-
surement of variables.

The following discussion begins with a general presentation describing the appli-
cation of maximum likelihood methods in hours of work and consumption analyses
allowing for flexible distributional assumptions and intricate forms of nonlinearities in
both preferences and budget constraints. This analysis draws heavily upon Appendix A.
Later subsections cover simple illustration of techniques, many of which have been im-
plemented in the empirical literature.

4.4.1. Dividing the budget constraint into sets

Irrespective of whether one considers differentiable or piecewise-linear formulations for
budget constraints, the essential idea underlying development of likelihood functions in
the presence of nonlinear constraints involves defining a set of “states of the world”.
Each state designates a particular segment of the budget set boundary, with states be-
ing mutually exclusive and states jointly covering all parts of budget constraints. One
interprets individuals as being endowed with a set of attributes determining their tastes,
resources and constraints, with these attributes viewed as random variables continu-
ously distributed across the population. Based on the realizations of these variables, an
individual selects consumption and hours of work to optimize utility.

Regarding the distribution of these variables in the previous discussion, suppose un-
observed heterogeneity influencing preferences, ν, the unmeasured factors determining
wages, η, and the unobservables incorporating budget sets, ξ , possess the following
joint density:

(4.20)ϕ(v, η, ξ) ≡ ϕ(v, η, ξ |X) for (v, η, ξ) ∈ Ω.

When errors, ε, contaminate the measurement of hours, the relevant joint distribution
becomes:

(4.21)ϕ(v, η, ξ, ε) ≡ ϕ(v, η, ξ, ε|X) for (v, η, ξ, ε) ∈ Ω.

Both these expressions admit conditioning on a set of exogenous variables X, but the
subsequent analysis suppresses X to simplify the notation. The set Ω designates the
domain of these random variables.

In this setting, n states of the world can occur. The discrete random variable δi sig-
nifies whether state i happens, with δi = 1 indicating realization of state i and δi = 0
implying that some state other than i occurred. A state refers to locations on boundaries
of budget sets, to be explained further below. Consequently, the value of δi depends on
where (v, η, ξ) falls in its domain determined by the rule:

(4.22)δi =
{

1 if (v, η, ξ) ∈ Ωi,

0 otherwise,

where the set Ωi constitutes that subset of the sample space Ω for which utility max-
imization yields a solution for consumption and hours that lies within the δi = 1
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portion of the budget. The mutually exclusive and exhaustive feature of the sets Ωi

for i = 1, . . . , n implies
⋃n

i=1 Ωi = Ω and Ωi ∩ Ωj = ∅ for i �= j .
A central requirement invoked in dividing a budget constraint into its various sec-

tions involves ensuring that unique solutions exist for c and h for any (v, η, ξ) ∈ Ωi .
Consumption and hours of work may take on discrete values when (v, η, ξ) ∈ Ωi . Al-
ternatively, there may be a continuous mapping relating c and h to (v, η, ξ) within the
set Ωi , but inverses must exist for the consumption and labor supply functions

h = �(ω, y, z, v) = �
(
ω(h), y(h), z, v

)
,

c = c(ω, y, z, v) = c
(
ω(h), y(h), z, v

)
expressed in terms of components of v. (These functions correspond directly to those in
(4.13) except that marginal wage ω and virtual income y now are functions of ξ , the un-
observable components of b.) Considering the labor supply function �, this requirement
implies existence of the inverse function

(4.23)v = vh
(
h, ω(h), y(h), z

) ≡ �−1(h, ω(h), y(h), z
)

for values of v within the set Ωi . If v is in fact multidimensional (i.e., v′ is a vector),
then an inverse must exist of the form

(4.24)v1 = vh
(
h, ω(h), y(h), z, v′

2

) ≡ �−1(h, ω(h), y(h), z, v2
)

for some decomposition v′ = (v1, v
′
2).

Division of the budget constraint into the events δi = 1 for i = 1, . . . , n generally
creates two varieties of sets: First, differentiable segments of the budget constraint over
which consumption and hours vary continuously in response to variation in preferences
and constraint variables; second, kink points at which consumption and hours of work
take fixed discrete values implied by the location of the kink.

4.4.2. Maximum utility determines placement on budget constraint

The portion of a budget constraint selected by an individual depends on the level of util-
ity assigned to this state. The following discussion first characterizes maximum utility
attainable on differentiable segments, and then considers evaluations at kink points.

For the differentiable segments of the constraint, utility is determined by function

V = U
(
c(ω, y, z, ν), �(ω, y, z, ν), z, ν

)
= U

(
c
(
ω(h, ξ), y(h, ξ), z, ν, ξ

)
, �
(
ω(h, ξ), y(h, ξ), z, ν, ξ

)
, z, ν

)
≡ V

(
ω(h, ξ), y(h, ξ), z, v

)
(4.25)= V (ω, y, z, v)

evaluated at optimal points in the specified set. The function V (W, Y, z, v) represents
the conventional indirect utility function associated with maximizing U(C, h, z, ν) in
(4.1) subject to the linear form of the budget constraint given by (4.2). Roy’s identity
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specifies that the labor supply function � can be written as

(4.26)�(ω, y, z, ν) ≡ Vω(ω, y, z, ν)

Vy(ω, y, z, ν)

with Vω and Vy denoting the partial derivatives of V . Suppose the interval (hi−1, hi+1)

identifies the differential segment under consideration. The subsequent discussion refers
to this segment as state i. Then the utility assigned to state i corresponds to the maxi-
mum value of V achievable for hours falling in the interval (hi−1, hi+1).

Difficulty in determining the achievable value of V depends on characteristics of
the budget function b(c, h,W, Y ). For the most general specifications of b, inspection
of relations (4.10) and (4.11) defining ω and y reveals that each depends on both c

and h through the derivative bh. If utility maximization occurs at an interior point of
(hi−1, hi+1) given the realization of (v, η, ξ), then the implied values of c and h solve
the system

h = �(ω, y, z, υ) ∈ (hi−1, hi+1),

(4.27)b(c, h,W, Y, ξ) = 0.

Consequently, the maximum utility attainable on the interval (hi−1, hi+1) is V (or U )
evaluated at these solutions for c and h. Define this maximum utility as V(i), where
the (i) subscript on V signifies utility assigned to state i. If one extends state i to
include either of the exterior points hi−1 or hi+1, and uniqueness and differentiability
continue to hold at these points, then the above procedure still applies in assigning
a value for V(i). The subsequent discussion ignores such easily-handled extensions to
simplify the exposition.

Use of indicator functions provides an expression for V(i). One can characterize the
set of values of c and h satisfying Equations (4.27) as

(4.28)
{
(c, h)

∣∣ I [h = �(ω, y, z, υ) ∈ (hi−1, hi+1); b(c, h,W, Y, ξ) = 0
] = 1

}
,

where I denotes the indicator function defined by

I [conditions] =
{

1 if [all conditions] are true,

0 if [any condition] is false.

The indicator function I in (4.28) depends on satisfaction of 2 conditions. Using I ,
a simple expression for the maximum utility attainable in state i is given by

(4.29)

V(i) = V (ω, y, z, v) ∗ I
[
h = �(ω, y, z, υ) ∈ (hi−1, hi+1); b(c, h,W, Y, ξ) = 0

]
.

For values of v, η and ξ not yielding a solution in state i, V(i) = 0. It is possi-
ble in this analysis for V(i) = 0 for all values of admissible values of (v, η, ξ) (i.e.,
Ωi = ∅). Throughout this discussion, we assume a utility function normalized so that
U(c, h, z, ν) > 0 for all admissible values of variables. So the event V(i) = 0 always
means that some state other than i has a higher assigned utility.
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The most popular specifications of the budget function b(c, h,W, Y ) have derivatives
bh that depend on h but not on c. Examples include those specifications incorporat-
ing income or sales taxes given by (4.4). Under these circumstances, the first equation
in (4.27) alone can be solved for h. Thus, V(i) simplifies to

(4.30)V(i) = V (ω, y, z, v) ∗ I
[
h = �(ω, y, z, υ) ∈ (hi−1, hi+1)

]
.

This expression serves as the principal formulation used in the subsequent discussion.
The portion of a budget constraint selected by an individual depends on the level of

utility assigned to this state. At kink points, utility takes the value

(4.31)V(i) = U(Ci, hi, z, ν),

where Ci and hi designate the values of consumption and hours at the kink point asso-
ciated with state i.

An individual occupies that portion of the budget constraint corresponding to state
i if the assigned utility is highest for this state. According to (4.22), the subspace of
(v, η, ξ) yielding this realization is the set Ωi . Correspondingly, one can represent Ωi

as

(4.32)Ωi = {(v, η, ξ)
∣∣V(i) > V(j) for all j �= i

}
.

Relationships (4.29) (or (4.30)) and (4.31) define V(i) depending on characteristics of
the state. For expositional simplicity, without loss of generality, the subsequent discus-
sion ignores equalities V(i) = V(j) in defining the sets Ωi since these events are zero
probability events.

4.4.3. Density functions for hours and wages

The distribution of consumption and hours of work depends on where individuals locate
on the budget constraints. The probability that an individual makes selections falling
within the state i portion of the budget equals:

P(δi = 1) = P
(
(v, η, ξ) ∈ Ωi

)
=
∫

· · ·
∫

Ωi

ϕ(v, η, ξ) dv dη dξ

(4.33)≡
∫

Ωi

ϕ(v, η, ξ) dv dη dξ.

The notation
∫ · · · ∫

Ωi
denotes integration over the set Ωi , which the third line of this

equation expresses in the shorthand notation
∫
Ωi

. The joint distribution of the δi’s takes
the form

P(δ1, . . . , δm) =
∏
i∈M

[
P(δi = 1)

]δi
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where the set M refers to the set of all possible states i that comprise the entire budget
constraint. As noted previously, the events δi = 1 may refer to either kinks or differen-
tiable constraints.

When an optimum occurs at a kink point, the distribution of hours conditional on this
event is

(4.34)P(h = hi | δi = 1) = 1.

This distribution is, of course, discrete.
On differentiable segments of the constraint, the distribution for hours is continuous.

Performing a conventional change of variables yields the density

(4.35)f (h, η, ξ) = dvh

dh
ϕ
(
vh, η, ξ

) = dvh

dh
ϕ
(
vh(h, ω, y, z), η, ξ

)
where

(4.36)vh = vh
(
h, ω(h), y(h), z

) = �−1(h, ω(h), y(h), z
)

refers to the inverse of labor supply function (4.3), and the quantity

(4.37)
dvh

dh
=
(

∂�

∂ω

∂ω

∂h
− ∂�

∂y

∂y

∂h

)(
∂�

∂v

)−1

represents the Jacobian associated with this inverse. The terms ∂�
∂ω

and ∂�
∂y

correspond

to the economic concepts of substitution and income effects, and the quantity ∂�
∂v

deter-
mines how unobserved components of preferences influence labor supply. (In applying
the change-of-variables formula, Jacobians must be constructed to be uniquely signed
for densities to be properly defined. This result follows here because the selection of
budget-set partitions ensures a unique solution exists for c and h for each partition com-
bined with the innocuous assumption that unobserved components enter preferences
such that ∂�

∂v
> 0.) For the remaining terms in (4.37), differentiation of the budget con-

straint implies:

(4.38)
∂ω

∂h
= bhh

and

(4.39)
∂y

∂h
= −bh

bc

− bh − bhhh

where the subscripts on the budget function b signify partial derivatives.22 Assuming the
popular tax form for the budget function given by (4.5), expressions (4.38) and (4.39)

22 Derivation of the expression for ∂y
∂h

follows from total differentiation of the relation (4.11) defining y

which yields

bc

(
bh + bhhh + ∂y

∂h

)
+ bh = 0

and solving this equation.
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simplify to

(4.40)
∂ω

∂h
= (1 − τ ′)W

and

(4.41)
∂y

∂h
= τ ′′W 2h

where τ ′ and τ ′′ denote the marginal tax rate and its derivative. Division of the budget set
into states ensures that inverse (4.36) and its Jacobian (4.37) exist in the space defined
by each state.

The implied density of h conditional on δi is

(4.42)f (h | δi = 1) =
∫
Φi|h f (h, η, ξ) dη dξ

P (δi = 1)
for h ∈ Θi· h

where the set Θi· h = (hi−1, hi+1) designates the domain of h given occurrence of
δi = 1 and the notation

∫
Φi|h denotes integration of (η, ξ) over the set

(4.43)Φi|h = {(η, ξ)
∣∣ I [h = �(ω, y, z, v); (v, η, ξ) ∈ Ωi

] = 1
}
.

The set Φi|h treats h as fixed and, therefore, is a function of h.
Performing a further change of variables for wages yields the following joint density

for hours and wages

(4.44)f (h,W, ξ) = dηw

dW
f
(
h, ηw, ξ

) = dηw

dW
f
(
h, ηw(W,Q), ξ

)
where

(4.45)ηw = ηw(W,Q) = W−1(W,Q)

denotes the inverse of the wage function, and the quantity

(4.46)
dηw

dW
=
[
∂W

∂η

]−1

represents the Jacobian associated with this inverse. (For expositional convenience, and
without loss of generality, this analysis assumes that a monotonically increasing rela-
tionship links W to η; so, (4.46) is positive.)

The density of h and W conditional on δi is

(4.47)f (h,W | δi = 1) =
∫
Φi|h,W

f (h,W, ξ) dξ

P (δi = 1)
for (h,W) ∈ Θi· h,W

where the notation
∫
Φi|h,W

denotes integration of ξ over the set

(4.48)

Φi|h,W = {(ξ)
∣∣ I [h = �(ω, y, z, υ); W = W(Q, η); (v, η, ξ) ∈ Ωi

] = 1
}
.
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The set Φi|h,W is a function of h and W . One can express the set Θi· h,W appearing in
(4.47) as

Θi· h,W = {(h,W)
∣∣ ξ ∈ Φi|h,W

}
,

which specifies the domain of h and W assuming occupancy of the state i part of the
budget constraint.

If v is multi-dimensional as specified in labor supply function (4.13), then (4.47)
becomes

(4.49)f (h,W | δi = 1) =
∫
Φi|h,W

f (h, v2,W, ξ) dv2 dξ

P (δi = 1)
for (h,W) ∈ Θi· h,W

where f (h, v2,W, ξ) has a form analogous to (4.44), and the notation
∫
Φi|h,W

now de-
notes integration of (v2, ξ) over the set

Φi|h,W = {(v2, ξ)
∣∣ I [h = �(ω, y, z, v); W = W(Q, η); (v, η, ξ) ∈ Ωi

] = 1
}
.

The set Φi|h,W still remains a function of h and W .
Finally, when an individual selects an optimum at a kink point and h = h is discrete,

then the distribution of wages takes the form

(4.50)f (h,W | δi = 1) =
∫
Φi|h,W

f (ν,W, ξ) dν dξ

P (δi = 1)
for W ∈ Θi· W

where the density f (ν,W, ξ) is specified analogous to (4.44), and the set Φi|h,W is a

function of h and W defined by

(4.51)Φi|h,W = {(ν, ξ)
∣∣ h = hi; W = W(Q, η); (v, η, ξ) ∈ Ωi

}
.

The domain Θi· W of W in (4.50) corresponds to that part of the overall range of W

consistent with being at kink hi .

4.4.4. Likelihood functions for hours and wages

Appendix A presents the results required to develop a complete specification of the
joint likelihood function for hours (h) and wages (W ). Suppose the state δ0 = 1 refers
to an individual choosing not to work; the states δi = 1 for i ∈ Mc designate those
circumstances when the person works and selects optimums on differentiable segments
of budget constraints; and the states δi = 1 for i ∈ Md denote those events when an
individual chooses hours located at a kink point. Hours (h) are continuously distributed
for states in the set i ∈ Mc, and h is discretely distributed in the no-work state and for
states in the set i ∈ Md . Hours possess a combined continuous/discrete distribution.
Knowledge of the value of h entirely determines the values of δ0, . . . , δn where n + 1
designates the total number of states.
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Formula (A.26) of Appendix A implies that the following specification delimits the
joint likelihood function of (h,W):

L(h,W) = L(h,W, δ0, . . . , δn)

= [P ((v, η, ξ) ∈ Ω0
)]δ0 ∗

∏
i∈Mc

[ ∫
Φi|h,W

f (h, v2,W, ξ) dv2 dξ

]δi

(4.52)∗
∏

i∈Md

[ ∫
Φi|h,W

f (ν,W, ξ) dν dξ

]δi

.

The first term of this expression delineates the probability of not working; the second
term – comprised of the numerators of (4.49) – designates the densities of (h,W) un-
conditional on δi = 1; and the third term – encompassing the numerators of (4.50) –
demarcates the probability that h = hi combined with the density of W unconditional
on δi = 1.

4.4.5. Density functions accounting for measurement error

With measurement error contaminating hours of work, h is no longer observed and
one instead has data on measured hours H specified by relation (4.15). Without loss of
generality, suppose (4.15) constitutes a monotonically increasing relationship that links
H to the measurement error component ε. The joint density function (4.21) relates the
distribution of ε to the distributions of the structural errors ν, η, and ξ .

On differentiable segments of the budget constraint, the density function for true
hours and wages is f (h,W, ξ, ε) which has a form entirely analogous to (4.44). Per-
forming a conventional change of variables yields the density

(4.53)f (h,W, ξ,H) = ∂εH

∂H
f
(
h,W, ξ, εH

) = ∂εH

∂H
f
(
h,W, ξ, εH (H, h)

)
where

(4.54)εH = εH (H, h) = H−1(H, h)

refers to the inverse of measurement error function (4.15), and the quantity

(4.55)
∂εH

∂H
=
[
∂H

∂h

]−1

designates the Jacobian associated with this inverse. The corresponding density of H

and W conditional on δi = 1 is

f (H,W | δi = 1) =
∫
Θi· h

∫
Φi|h,W̃

f (h,W, ξ,H) dξ dh

P (δi = 1)

(4.56)for (H,W) ∈ Θi· H,W
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where
∫
Θi· h

denotes integration over the set Θi· h which corresponds to the domain of
h conditional on δi = 1.

When wages are also measured with error through mismeasurement of hours as char-
acterized by relation (4.16), then (4.53) is replaced by

(4.57)f (h, W̃ , ξ,H) = f
(
h, W̃−1(W̃ , h,H), ξ,H

)
where

W = W̃−1(W̃ , h, εH (H, h)
) ≡ W̃−1(W̃ , h,H)

refers to the inverse of measurement error function (4.16). The corresponding density
of H and W̃ conditional on δi = 1 becomes

f (H, W̃ | δi = 1) =
∫
Θi· h

∫
Φi|h,W

f (h, W̃ , ξ,H) dξ dh

P (δi = 1)

(4.58)for (H, W̃ ) ∈ Θi· H,W̃ .

No change of variables occurs in deriving this expression since W̃ is fully known given
values for h, W and H .

A similar situation applies to incorporating measurement error when an individual
selects an optimum at a kink point of the budget set. Conditional on realization of the
state δi = 1, the value of ε is known since one sees H and h = hi with probability one.
Defining the f (ν,W, ξ, ε) as the generalization of the joint density function appearing
in (4.50) incorporating measurement error, then substitution of the inverse functions
W̃−1(W̃ , hi,H) and εH (H, hi) introduced above into this joint density yields

(4.59)f (ν, W̃ , ξ,H) = f
(
ν, W̃−1(W̃ , hi,H), ξ, εH (H, hi)

)
.

Following the steps above, one can readily verify that the density of (H, W̃ ) conditional
on δi = 1 takes the form

(4.60)f (H, W̃ | δi = 1) =
∫
Φi|h,W̃

f (ν, W̃ , ξ,H) dν dξ

P (δi = 1)
for W̃ ∈ Θi· W̃ .

Clearly, both specifications (4.59) and (4.60) depend directly on hi , but as in repre-
sentation of other specifications, the only arguments included in the function are those
variables that are random in the state; hi is fixed and known given δi = 1.

4.4.6. Likelihood functions for measured hours and wages

Formulating the likelihood function for (H, W̃ ) is complicated by the fact that a re-
searcher does not observe precisely which portion of the budget constraint an individual
selects since this decision reveals h and this quantity is unknown. Thus, when a per-
son works, one cannot distinguish which individual state i occurs. On the other hand,
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a researcher does observe when a person does not work. Expressed in terms of the en-
dogenous dummy variables δi , these circumstances imply that the data reveal the event
δ0 = 1 but not the individual events δi = 1 for i ∈ M = Mc ∪ Md . Instead, one merely
observes whether δ1 ≡∑i∈M δi = 1 or δ1 = 0.

Appealing to formula (A.34) of Appendix A, the following specification represents
the joint likelihood function of (h,W):

L(H, W̃ ) = [P ((v, η, ξ) ∈ Ω0
)]δ0

∗
[ ∑

i∈Mt

∫
Θi

[ ∫
Φi|h,W

f (h, v2, W̃ , ξ,H) dv2 dξ

]
dh

(4.61)+
∑
i∈Mt

∫
Φi|h,W

f (ν, W̃ , ξ,H) dν dξ

]δt

.

The first term of this expression delineates the probability of not working; and the sec-
ond term designates the density of (H, W̃ ) unconditional on δ1. Accordingly, both H

and W̃ are continuously distributed throughout the range on H > 0.

4.5. Maximum likelihood: Convex differentiable constraints with full participation

Developing specifications for likelihood functions when budget sets are convex and have
differentiable boundaries is straightforward, especially assuming labor force participa-
tion is not a factor for the population under investigation. The following discussion
presents two examples of such specifications to illustrate elementary versions of the
general formulas presented above.

4.5.1. Specifications for linear parameterizations of labor supply

Derivation of likelihood functions assuming a linear specification for hours of work
when (4.5) describes the budget constraint – wherein tax payments depend only on a
single taxable income quantity – follows directly from the previous results. Assuming
no measurement error (i.e., H = h), a change in variables from the heterogeneity error
ν to actual hours h yields the likelihood function for h:

(4.62)fh(h) = dν

dh
ϕν(h − yν − zγ − αω − βy)

where ϕv(ν) denotes the density of the heterogeneity component ν, and the Jacobian
term is

(4.63)
dν

dh
= 1 + (α − βh)W 2 ∂τ ′

∂I
.

This Jacobian term is restricted to be nonnegative over the admissible range. Maximiz-
ing (4.62) yields maximum likelihood estimates for the parameters of the labor supply
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function, �, which provide the information needed to infer the work disincentive effects
of taxation.

If hours are indeed contaminated by additive measurement error, then the likelihood
function for observed hours H = h + ε is given by

(4.64)fH (H) =
∫ max hours

0
ϕε(H − h)ϕh(h) dh

where ϕε(ε) denotes the density of the heterogeneity component ε. This expression
resembles relation (4.62) except that integration occurs over hours to account for
the existence of reporting error, and H replaces actual hours h in the Jacobian term
in (4.63).

4.5.2. Specifications for multiplicative measurement error

Now consider maximum likelihood estimation of the semilog specification of labor sup-
ply. Suppose the heterogeneity error component ν in the structural labor supply equation
and the disturbance ε in the measurement error equation for hours of work possess the
joint distribution ϕνε(ν, ε), where ϕνε designates a density function. For the moment,
suppose (ν, ε) are distributed independently of the gross wage and other income. Using
relations (4.35) and (4.44) to perform a standard change in variables from the errors
ν and ε to the variables h and H produces the likelihood function needed to compute
maximum likelihood estimates. The transformation from (ν, ε) to (h, H ) is monotonic
for a wide range of functional forms for � as long as the underlying preferences satisfy
quasiconcavity and budget sets are convex.

Without measurement error, the likelihood function for hours of work, h, takes the
form

(4.65)fh(h) = dν

dh
ϕν

(
h − y − zγ − α ln W − α ln(1 − τ ′) − βy

)
where ϕν is the marginal density for ν, and the Jacobian term is

(4.66)
dν

dh
= 1 +

((
α

W(1 − τ ′)
− βh

)
W 2 ∂τ ′

∂I

)
which is required to be nonnegative. In these expressions, the derivative τ ′ is evaluated
at I = Wh + Y − τ(Wh + Y).

With multiplicative measurement error, the likelihood function for observed hours H

becomes

L =
∫ max wage

0

∫ max hours

0

dν

dh

(4.67)× fνεw(h − y − zγ − α ln ω − βy, ln H − ln h,W) dh dW

where integration occurs over the hourly wage, which is unobserved, using the joint
density fνεw(ν, ε,W). The nonnegativity of the Jacobian term clearly places restrictions
on the behavioral parameters and we discuss these restrictions further below.
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4.6. Maximum likelihood: Convex piecewise-linear constraints with full participation

The majority of empirical labor supply studies incorporating taxes treat the tax sched-
ule as a series of brackets implying a piecewise-linear budget set. With such a tax
function, the familiar change-in-variables techniques implemented in conventional max-
imum likelihood do not apply due to the nonexistence of the Jacobian over measurable
segments of the sample space arising from nondifferentiability of functional relation-
ships characterizing hours-of-work choices. Moreover, a piecewise-linear budget set
creates endogenous variables (hours and after-tax wages) that are both discrete and con-
tinuous in character. Section 4.4 covers specifications for likelihood functions for such
endogenous variables.

4.6.1. Characterization of labor supply with piecewise-linear constraints

To illustrate the derivation of an estimable labor supply model using the piecewise-
linear approach assuming the linear structural specification for hours of work, consider
the simple case of a budget set with only three segments as presented in Figure 4.1.
The preceding discussion defines the variables yj , ωj and hj appearing in this figure.
To locate the kinks and slopes of the budget constraint for an individual, a researcher
must know the individual’s level of nonlabor income, gross wage rate, hours of work,
and the structure of the tax system. The hours of work at which kinks occur are given
by hj = (Ij − Y + D)/W , where Y and D, respectively, represent taxable nonlabor in-
come and deductions, and Ij is the maximum taxable income for segment j . The slope
of each segment is given by the marginal wage rate for that segment: ωj = W(1 − tj ),
where j denotes the segment, tj signifies the marginal tax rate for that segment, and W

is the gross wage rate per hour. Finally, the nonlabor income at zero hours of work –
the intercept of the budget line – is y1 = Y − τ(Y − D), where τ(·) is the tax func-
tion evaluated at the individual’s taxable income at zero earnings. Given this intercept
value, virtual incomes or the intercepts associated with successive budget segments are
computed by repeated application of the formula: yj = yj−1 + (ωj−1 − ωj )hj−1.

Given a convex budget constraint, an individual’s optimization problem amounts to
maximizing U(c, h) subject to

(4.68)c =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y1 if h = 0,

ω1h + y1 if H0 < h � h1,

ω2h + y2 if h1 < h � H1,

ω3h + y3 if H1 < h � h3,

ω3h3 + y3 if h = h3.

The solution of this maximization problem decomposes into two steps. First, determine
the choice of h conditional on locating on a particular segment or a kink. This step
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yields the solution:

(4.69)h =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if h = 0 (lower limit),
�(ω1, y1, ν) if 0 < h < h1 (segment 1),
h1 if h = h1 (kink 1),
�(ω2, y2, ν) if h1 < h < H1 (segment 2),
H1 if h = H1 (kink 2),
�(ω3, y3, ν) if H1 < h < h3 (segment 3),
h3 if h = h3 (kink 3 = upper limit).

Second, determine the segment or the kink on which the person locates. The following
relations characterize this solution: choose

(4.70)

0 if �(ω1, y1, ν) � 0,

(Segment 1) if H0 < �(ω1, y1, ν) < h1,

(Kink 1) if �(ω2, y2, ν) � h1 < �(ω1, y1, ν),

(Segment 2) if h1 < �(ω2, y2, ν) < H1,

(Kink 2) if �(ω3, y3, ν) � h2 < �(ω2, y2, ν),

(Segment 3) if H1 < �(ω3, y3, ν) < h3,

(Kink 3) if �(ω3, y3, ν) � h3.

Combined, these two steps imply the values of h and C that represent the utility-
maximizing solution for labor supply and consumption.

All studies implementing the piecewise-linear approach assume the existence of mea-
surement error in hours of work. With the linear measurement error model observed
hours H = h + ε. As long as the measurement error component ε is continuously
distributed, so is H . In contrast to information on h, knowledge of H suffices neither
to allocate individuals to the correct branch of the budget constraint nor to identify
the marginal tax rate faced by individuals, other than at zero hours of work. The state
of the world an individual occupies can no longer be directly observed, and one con-
fronts a discrete-data version of an errors-in-variables problem. The interpretation of
measurement error maintained in this analysis is that ε represents reporting error that
contaminates the observation on h for persons who work.23

23 Note that expected hours of work, in this convex piecewise-linear case, is additive in each hours choice
weighted by the probability of each segment or kink, each term in this sum being at most a function of two
marginal wages and two virtual incomes. Blomquist and Newey (2002) exploit this observation to develop a
semiparametric estimator for hours of work imposing the additivity through a series estimator.
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With measurement error, the linear specification of labor supply with ĥj ≡ μ+αωj +
βyj + Zγ implies the following stochastic specification:

(4.71)H =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ĥ1 + ν + ε if 0 < ĥ1 + ν � h1 (segment 1),
h1 + ε if ĥ2 + ν < h1 < ĥ1 + ν (kink 1),
ĥ2 + ν + ε if h1 < ĥ2 + ν � H1 (segment 2),
H1 + ε if ĥ3 + ν < h2 < ĥ2 + ν (kink 2),
ĥ3 + ν + ε if H1 < ĥ3 + ν � h3 (segment 3),
h3 + ε if ĥ3 + ν � h3 (upper limit).

This represents a sophisticated variant of an econometric model that combines discrete
and continuous choice elements.

4.6.2. Likelihood function with measurement error when all work

The log-likelihood function for this model is given by
∑

i ln fH (H), where i indexes
observations. Defining νj = hj−1 − ĥj and vj = hj − ĥj , the components fH (H) are
given by

fH (H) =
3∑

j=1

∫ vj

νj

ϕ2(H − ĥj , ν) dν (segments 1, 2, 3)

+
2∑

j=1

∫ νj+1

vj

ϕ1(H − hj , ν) dν (kinks 1, 2)

(4.72)+
∫ ∞

v3

ϕ1(H − h3, ν) dν (upper limit)

where ϕ1(·,·) and ϕ2(·,·) are the bivariate density functions of (ε, ν) and (ε + ν, ν),
respectively. Maximizing the log-likelihood function produces estimates of the coeffi-
cients of the labor supply function �. These estimates provide the information used to
infer both substitution and income responses, which in turn provide the basis for calcu-
lating the work disincentive effects of income taxation.

4.6.3. Shortcomings of conventional piecewise-linear analyses

The piecewise-linear approach for estimating the work disincentive effects of taxes
offers both advantages and disadvantages relative to other methods. Concerning the
attractive features of this approach, piecewise-linear analyses recognize that institu-
tional features of tax systems induce budget sets with linear segments and kinks. This
is important if one believes that a smooth tax function does not provide a reasonably
accurate description of the tax schedule. The piecewise-linear approach admits random-
ness in hours of work arising from both measurement error and variation in individual
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preferences and it explicitly accounts for endogeneity of the marginal tax rate in estima-
tion, but so do the instrumental variable and differentiable likelihood methods discussed
above. As we will see below, the piecewise-linear approach more readily incorporates
fixed costs of holding a job, regressive features of the tax code, and multiple program
participation than other procedures due to the discrete-continuous character of hours-
of-work choices induced in these environments. These features of the piecewise-linear
method make it a vital approach in empirical analyses of labor supply.

On the other hand, the following shortcomings of the piecewise-linear procedure raise
serious doubts about the reliability of its estimates of work disincentive effects. First,
the piecewise-linear methodology assumes that both the econometrician and each in-
dividual in the sample have perfect knowledge of the entire budget constraint that is
relevant for the worker in question. Errors are permitted neither in perceptions nor in
measuring budget constraints. Taken literally, this means that: all income and wage
variables used to compute each sample member’s taxes are observed perfectly by the
econometrician; individuals making labor supply choices know these variables exactly
prior to deciding on hours of work; each individual and the econometrician know
when the taxpayer will itemize deductions and the amount of these itemizations; and
each taxpayer’s understanding of the tax system is equivalent to that of the econome-
trician (e.g., the operation of such features as earned-income credits). Clearly, given
virtual certainty that most of these assumptions are violated in empirical analyses of
labor supply, the estimates produced by methods relying on these assumptions must
be interpreted very cautiously. The differentiable likelihood methods rely on the same
assumptions. The instrumental variable methods do not, so they are likely to be more
robust.

Second, measurement error plays an artificial role in econometric models based on
the piecewise-linear approach. Its presence is needed to avoid implausible predictions
of the model. The statistical framework induced by the piecewise-linear approach im-
plies that bunching in hours of work should occur at kink points if hours precisely
measure h. However, for the vast majority of data sources currently used in the litera-
ture, only a trivial number of individuals, if indeed any at all, report hours of work at
interior kink points. Unless one presumes that the data on hours do not directly rep-
resent h, such evidence provides the basis for immediately rejecting the distributional
implications of the above specifications. Considering, for example, the labor-supply
characterization proposed in Equation (4.69), almost any test of the distributional as-
sumptions implied by this specification would be readily rejected because observed
hours would take the values H0, h1, h2 and h3 with only a trivial or zero probability.
Instead, observed hours essentially look as if they are distributed according to a con-
tinuous distribution. When a continuously-distributed measurement error ε is added to
the model, observed hours H are continuously distributed. This provides an essential
reason for introducing measurement error in the data, for without it, the piecewise-
linear structure provides a framework that is grossly inconsistent with the data. Of
course, several sound reasons exist for admitting measurement error in a labor sup-
ply model, including the widespread suspicion that reporting error contaminates data
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on hours of work. However, measurement error in hours of work implies measure-
ment error in wages, since they are typically computed as average hourly earnings.
Current applications of the piecewise-linear analysis mistakenly ignore this by assum-
ing perfectly measured budget constraints.24 The unnatural role played by measurement
error raises questions about the credibility of findings derived from the piecewise-linear
approach. In contrast to the piecewise-linear approach, it is not essential to introduce
measurement error in either the differentiable likelihood or the instrumental variable
approach because hours in the distribution of h are continuous without measurement
error.

Third, existing research implementing the piecewise-linear methodology relies on
very strong exogeneity assumptions. Other than hours of work, all variables involved
in the calculation of taxes are presumed to be exogenous determinants of labor supply
behavior, both from a statistical and from an economic perspective. These variables in-
clude gross wages, the various components of nonlabor income, and deductions. In light
of the evidence supporting the view that wages and income are endogenous variables
in labor supply analyses, particularly in the case of wages, suspicions arise regarding
the dependability of estimated substitution and income effects based on procedures that
ignore such possibilities. Most of the exogeneity assumptions are also maintained in the
differentiable likelihood approach, but are easily relaxed when applying instrumental
variable procedures (given the availability of a sufficient number of other instrumental
variables).

Fourth, some concerns about the reliability of estimates produced by the piecewise-
linear approach ensue due to the static behavioral framework maintained in the for-
mulation of empirical relations. Piecewise-linear studies invariably rely on the textbook
one-period model of labor supply as a description of hours-of-work choices, and impose
it to estimate parameters. Existing implementations of the differentiable likelihood ap-
proach suffer from the same problem. Everyone acknowledges that individuals are not
simply myopic optimizers; they transfer income across periods to achieve consump-
tion plans that are infeasible without savings. A serious question arises concerning the
relevance of such considerations in estimating substitution and income effects used to
predict responses to tax policy.

4.7. Maximum likelihood estimation imposes restrictions on behavioral responses

The implementation of maximum likelihood procedures imposes interesting and im-
portant restrictions on behavioral parameters in the presence of nonlinear budget con-
straints. These restrictions come about in defining the statistical model to be coherent,
requiring probabilities to fall in the [0, 1] interval and densities to be nonnegative.

24 It is possible to argue that this error does not result in measurement error in the hourly wage, if the mea-
surement error is interpreted as an “optimization” error.
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4.7.1. Restrictions imposed under piecewise-linear constraints

The econometric model produced by the piecewise-linear formulation given by (4.72)
implicitly imposes parametric restrictions that constrain the signs of estimated sub-
stitution and income effects. As developed in MaCurdy, Green and Paarsch (1990),
particular inequality restrictions must hold in the application of estimation procedures
with piecewise-linear budget constraints for likelihood functions to be defined (i.e., to
ensure that the components of these functions are nonnegative). More specifically, in
applications of such procedures, the Slutsky condition must be locally satisfied at all
interior kink points of budget sets that represent feasible options for any individual in
the sample such that the compensated substitution effect must be positive. For the linear
specification of the labor supply function considered in the preceding discussion, the
specific inequality constraints imposed are

(4.73)α − βhjk � 0, ∀j, k,

where the quantities hjk represent the hours-of-work values that correspond to interior
kink points j on a sample member k’s budget set. Because many values of hjk exist in
most analyses of piecewise-linear constraints, fulfillment of relations (4.73) essentially
requires global satisfaction of the Slutsky condition by the labor supply function. Such
a requirement, in essence, globally dictates that the uncompensated substitution effect
of a wage change on hours of work must be positive for the labor supply specification
considered in the preceding discussion, and the income effect for hours of work must
be negative. The imposition of these restrictions, especially for men, is highly suspect
given the available evidence from other studies. These restrictions carry over to more
general labor supply functions.

4.7.2. Restrictions imposed under differentiable constraints

Maximum likelihood estimation with differentiable constraints induces comparable re-
strictions. Consider, for example, likelihood function (4.62). For this specification to be
a properly-defined likelihood function, the Jacobian dν

dh
must be nonnegative. Violation

of this condition implies that the density function for h is negative, which obviously
cannot occur. Nonnegativity of dν

dh
translates into the property

(4.74)
∂�

∂ω
− ∂�

∂y
h � −

(
∂τ

∂I
W 2
)−1

� 0,

where � refers to the labor supply function. The left-hand side of this inequality is the
Slutsky term. This inequality result does not require compensated substitution effects to
be positive as quasiconcave preferences mandate, only that these effects cannot become
too negative.

Maximum likelihood procedures yield nonsensical results unless Equation (4.74)
holds. Without measurement error, estimated parameter values cannot imply a violation



Ch. 69: Labor Supply Models 4721

of Equation (4.74) at any of the data combinations (h, ω(h), y(h)) actually observed
in the sample. If a violation occurs, then the evaluation of (4.62) for the observation
associated with this combination would result in a nonpositive value which causes the
overall log likelihood function to approach minus infinity which clearly cannot repre-
sent a maximum.

With measurement error, maximum likelihood estimation applied to function (4.64)
ensures that a weighted average of density functions appearing in (4.64) holds, with
weighting occurring over all combinations of hours, marginal wages, and virtual income
lying in the feasible range of the budget constraint of any individual included in the
sample. Since maximum likelihood procedures assume the validity of such restrictions
when calculating estimates of the coefficients of �, the resulting estimated labor supply
function can be expected to exhibit compensated substitution effects that obey inequality
(4.74) over a very wide range of hours, wages, and incomes.25

4.8. Maximum likelihood: Accounting for participation and missing wages

As mentioned in previous sections, some applications of the piecewise-linear approach
incorporate fixed costs to working – costs such as transportation that must be paid for
any amount of work but which may vary across individuals. This significantly com-
plicates the analysis because the optimized level of work under the budget constraint
while working may not represent the optimal choice overall; one must explicitly con-
sider the option of not working and thus avoiding the fixed cost. For any level of fixed
costs, a minimum number of hours worked is implied creating an attainable range in
the observable hours of work distribution; individuals will not work unless the gain
is large enough to overcome the fixed costs. In essence, these complications arise
because the budget constraint is not convex, invalidating simple maximization proce-
dures.

4.8.1. Fixed costs of working

If an individual must pay fixed monetary costs, F , to work, then nonlabor income, Y , in
the above budget constraints is replaced by

Y − F if h > 0,

(4.75)Y if h = 0.

F is partially unobservable and, thus, modeled as a stochastic element, varying across
individuals. Hence, we see that the budget constraint discontinuously jumps down by F

when the individual chooses to work.

25 It is, of course, computationally feasible to use (4.64) in estimation and not require fh to be defined over the
entire range of its support. Computationally one merely requires fh to be nonnegative over a sufficiently large
region to ensure (4.64) > 0. Of course, not requiring fh � 0 over its relevant range produces a nonsensical
statistical model.
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To solve for the optimum when faced with this budget constraint, two regimes must
explicitly be considered: working and not working. Estimation proceeds by finding the
maximum utility under each regime and then comparing these to determine which op-
tion is chosen. In neither regime, the utility function U(c, h, ν) – where we explicitly
note the unobserved component, ν – is maximized subject to optimization problem (4.1)
with (4.4) modified by (4.75).

In the no-work regime, the solution is simple. We know h is 0, so utility is given by
U(Y − τ(Y − D), 0, ν).

The solution in the work regime closely follows the solution presented in Section 4.6.
Again utilizing the labor supply function, �(ω, y, ν) yields the solution for h given in
(4.69), where the virtual income y now subtracts fixed costs F . However, to compute
maximum utility in this regime requires associating a utility level with each possible
hours choice. Utility along any segment, j , is given by the indirect utility function,
V (ωj , yj , ν). At kinks, the direct utility function must be used, so the utility at kink j

is given by U(ωjhj + yj , hj , ν). Hence, utilizing exactly the same solution procedure
exploited in Section 4.6, we can define maximized utility when working, V ∗:

(4.76)V ∗(w, y, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∞, �1 � 0,

V (ω1, y1, ν), 0 < �1 < h1,

U(ω1h1 + y1, h1, ν), �2 < h1 � �1,

V (ω2, y2, ν), h1 < �2 < H1,

U(ω2H1 + y2,H1, ν) �3 < H1 � �2,

V (ω3, y3, ν), H1 < �3 < h3,

U(ω3hm + y3, hm, ν), �3 � hm,

where

(4.77)�j ≡ �(ωj , yj , ν) ≡ Vω(ωj , yj , ν)

Vy(ωj , yj , ν)

with Vω and Vy denoting the partial derivatives of V ; relation (4.77) is, of course, Roy’s
identity defining the labor supply function, �, evaluated at wage and income levels ωj

and yj . The use of −∞ for h = 0 simply indicates that h = 0 is not included in
this regime and, thus, selecting it indicates that the no-work regime is preferred. Given
functional forms for V and U , finding V ∗ is straightforward.

Given maximized utility under each regime, the final step in the solution is to compare
the two regimes. An individual chooses to work at the hours specified by the solution
in (4.69) if

(4.78)V ∗(ω, y, ν) � U
(
Y − τ(Y − D), 0, ν

)
and chooses not to work otherwise. For any level of ν, treating Equation (4.78) as an
equality implies a critical level of fixed costs, F ∗(ν) above which the individual will
choose not to work; F enters this relation through the virtual income variable y. Because
desired hours of work increase with ν, this critical value will generally be increasing in
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ν – greater propensity to work implies that higher fixed costs are required to prefer the
no-work option. If restrictions are placed on the support of F , such as F > F , there
will be values of ν low enough to rule out the work regime, thus implying a hole at the
low end of the h distribution.

As a final step before deriving the likelihood function, note that in the no-work
regime, gross wage, W , is not observed and, thus, the budget constraint cannot be de-
rived. Hence, W must be endogenized. Such a step amounts to modeling the offered
gross wage rate as being generated by a variant of Equation (2.24) which presumes that
W is randomly distributed across the population depending on measured characteristics
Q = (x, q) and unobservable components η i.e., W = W ∗(Q) + η.

4.8.2. Likelihood function incorporating fixed costs

To derive the likelihood function, first consider the likelihood contribution of an indi-
vidual who does not work. We assume this no-work decision can be observed, so there
is no measurement error. In the no-work case, one of two situations applies: (i) fixed
costs are sufficiently high with F > F ∗ ≡ F ∗(ν, η) for any given ν and η, or (ii) if this
fixed-cost threshold falls below the lowest admissible value for F (i.e. F ∗ � F ), then
desired hours are sufficiently low with ν < ν∗ ≡ ν∗(η) for any η.26 The probability of
this event is

(4.79)L0 =
∫ ∞

−∞

∫ ν∗

−∞

∫ ∞

F ∗
ϕνηF (ν, η, F ) dF dη dν

where ϕνηF is the joint density of (ν, η, F ).
For the work regime, the likelihood contribution looks very much like that derived in

specification (4.72), as we continue to assume the linear hours of work function and the
form of measurement error assumed there. The only changes are the addition of terms
for δ and F (accounting for the fact that F < F ∗(ν)) and the removal of the term for
the lower limit which is no longer part of that regime and is now perfectly observable.
Using ϕ1 and ϕ2 to denote the distribution of (ε, ν, η, F ) and (ε + ν, ν, η, F ) yields:

L1 =
3∑

j=1

∫ νj

νj

∫ F ∗

0
ϕ2
(
H − ĥj , ν,W − W ∗(Q), F

)
dF dν

+
2∑

j=1

∫ νj+1

νj

∫ F ∗

0
ϕ1
(
H − hj , ν,W − W ∗(Q), F

)
dF dν

(4.80)+
∫ ∞

ν3

∫ F ∗

0
ϕ1
(
H − h3, ν,W − W ∗(Q), F

)
dF dν

26 The critical value υ∗ solves relation (4.78) treated as an equality with virtual income y evaluated at F .
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where

νj solves the equation �(ωj , yj , νj ) = hj−1,

(4.81)νj solves the equation �(ωj , yj , νj ) = hj .

All variables appearing in these expressions are defined as in Section 4.6.
The likelihood function for an individual is given by

(4.82)L = (L1)
δE (L0)

1−δE

where δE = 1 if the individual works and δE = 0 otherwise. Estimation proceeds
by maximizing the sum of log likelihoods across individuals, as always. This is quite
complex in this case, requiring knowledge of both the direct utility U and the indi-
rect utility V , and also requiring comparisons across regimes for all individuals and all
parameter values.

4.9. Welfare participation: Maximum likelihood with nonconvex constraints

A common source of nonlinearity in budget constraints involves participation in wel-
fare programs. To illustrate this situation, consider the simplest case in which the only
taxes faced by an individual result from benefit reduction on a single welfare program.
Figure 4.3 presents this scenario. Under most welfare programs, individuals face very
high effective tax rates when they initially work due to large reductions in their benefits
occurring when earnings increase. Once benefits reach 0, the tax rate drops to a lower
level, creating a nonconvex kink in the budget constraint. This nonconvexity invalidates
the simple procedures exploited in Section 4.6 implemented to divide sample spaces
into locations on budget sets.

4.9.1. Simple nonconvex constraints with no welfare stigma

Following the picture portrayed in Figure 4.3, an individual maximizes U(c, h, ν) sub-
ject to the budget constraint

(4.83)c = Wh + Y + b
(
I (h)

)
,

where benefits are given by the simple benefit schedule:

(4.84)b
(
I (h)

) =
{

G − ρWh if G − ρWh > 0,

0 otherwise.

G gives the guarantee amount which is reduced at the benefit reduction rate ρ as the
earnings, Wh, increase. This implies a kink point at H1 = G/ρW where benefits reach
0 and, thus, the marginal wage rises to W . So, the individual faces two segments: seg-
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ment 1 has h < h1 with net wage ω1 = (1 − ρ)W and virtual income y1 = Y + G; and
segment 2 has h > h1 with net wage ω2 = W and virtual income y2 = Y .27

Because the budget constraint is nonconvex, the solution cannot be characterized
simply by finding a tangency with the budget constraint as it was in Section 4.6. Multiple
tangencies are possible and these must be directly compared to determine the optimum.
Hence, one requires the regime shift approach summarized in Section 4.4.

Consider first the regime in which positive benefits are received; that is, h < h1.
Maximization, given the effective wage and income, on this linear segment follows
the approach of Section 4.4. We can characterize the optimal choice according to the
function �(ω1, y1, ν). Denote the value of ν which implies �(ω1, y1, ν) = 0 as ν0. Then
the optimal hours choice along that segment is given by

(4.85)h = �1 = �(ω1, y1, ν), ν > ν0; h = 0, ν � ν0.

The optimized value on this segment (including the zero work option), accounting
for the fact that h > h1 is not allowed, is given by

(4.86)V ∗
1 (ω1, y1, ν) =

⎧⎨⎩
V (ω1, y1, ν), 0 < �1 � h1,

U(y1, 0, ν), �1 � 0,

−∞, �1 > h1,

where Equation (4.85) defines �1.
Next, consider the regime without benefits, that is with h � h1. Again the optimal

choice, given the wage and income, on this segment is given by the labor supply function
�2 = �(ω2, y2, ν). The optimized value, accounting for the fact that h < h1 is not
admissible, is given by28

(4.87)V ∗
2 (ω2, y2, ν) =

{
V (ω2, y2, ν), �2 � h1,

−∞, �2 < h1.

Hence, the individual selects regime 1, with welfare receipt, if V ∗
1 > V ∗

2 , and
regime 2 otherwise. Since work propensity increases with ν, this can be characterized
by a cutoff value, ν∗, defined by

(4.88)V ∗
1

(
ω1, y1, ν

∗) = V ∗
2

(
ω2, y2, ν

∗).
For values of ν above ν∗, regime 2 is chosen; and for values below ν∗, regime 1 is
realized.

We can define three sets, Ω0, Ω1, and Ω2, such that for ν ∈ Ω0 the individual chooses
not to work, for ν ∈ Ω1 the individual locates on segment 1 receiving benefits with
positive hours of work, and for ν ∈ Ω2 the individual locates on segment 2. We must
consider two cases to define these sets exactly. First, suppose ν∗ > ν0. Then we have

Ω0 = {ν | ν � ν0},

27 We ignore any upper bound on hours worked for simplicity.
28 In the following formulation, we implicitly assume that the event �2 � H occurs with zero probability.
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Ω1 = {ν | ν0 < ν � ν∗},
(4.89)Ω2 = {ν | ν > ν∗}.

Alternatively, if ν∗ � ν0, then the switch to regime 2 occurs before positive hours are
worked in regime 1, that is

Ω0 = {ν | ν � ν∗},
Ω1 = ∅,

(4.90)Ω2 = {ν | ν > ν∗}.
Hence, for certain individuals and parameter values, no value of ν exists such that they
will locate on segment 1 with positive hours of work.

To characterize the likelihood function we again need a functional form for the gross
wage of the form W = W(Z) + η. We ignore measurement error here for simplicity,
and because there is no problem with individuals failing to locate at the kink in this
nonconvex case. Define δB = 1 if the individual receives benefits, and δE = 1 if the
individual works, both 0 otherwise. The likelihood function is given as follows, incor-
porating ϕην(η, υ) and the general inverse function ν = ν(h):

δB = 1, δE = 1, L11 = ∂ν

∂h
ϕνη

(
ν(h),W − W(Z)

)
I (ν ∈ Ω1),

δB = 0, δE = 1, L01 = ∂ν

∂h
ϕνη

(
ν(h),W − W(Z)

)
I (ν ∈ Ω2),

(4.91)δB = 1, δE = 0, L10 =
∫

Ω0

ϕνη(ν, η) dν dη,

where I (·) represents an indicator function equal to 1 if the condition in the parentheses
is true. Because the value of ν implied by the hours choice may be inconsistent with the
value implied by the regime choice, it is possible to have “holes” in the hours distribu-
tion around the kink point. For example, an individual on segment 1 must have ν � ν∗.
If his hours choice is too close to the kink, this may imply a value of ν > ν∗ and thus
an observation with zero likelihood.

The overall likelihood function is given by

(4.92)L = (L11)
(δB)(δE)(L01)

(1−δB)(δE)(L10)
(δB)(1−δE).

Estimation proceeds by maximizing the sum of log likelihoods across individuals, as
always. This is quite complex in this case, requiring knowledge of both the direct util-
ity U and the indirect utility V , and also requiring comparisons across regimes for all
individuals and all parameter values.

4.9.2. Welfare stigma implies selection of budget constraint

The above analysis assumes that all individuals eligible for welfare are on welfare. In-
dividuals working less than h0 but failing to receive welfare are operating below the



Ch. 69: Labor Supply Models 4727

implied budget constraint, a possibility not permitted in the analysis. Yet, many individ-
uals are in exactly this situation. This is generally explained by assuming the existence
of some utility loss or stigma associated with welfare.

To capture welfare stigma the utility function is modified to take the form

(4.93)U = U(c, h, ν) − δBζ,

where ζ is the level of welfare stigma which is greater than 0 and varies across individ-
uals.29 Two unobserved components now enter preferences, ν and ζ . Such cases were
considered in the general analysis of Section 4.4. With this modification we again con-
sider the welfare and nonwelfare regimes. Since the welfare stigma term does not affect
the marginal decisions, given that the individual is on welfare, the discussion of hours
of work presented above for regime 1 is still valid. The optimal utility is now given by

(4.94)V ∗(ω1, y1, ν) =
⎧⎨⎩

V1(ω1, y1, ν) − ζ, 0 < �1 � h1,

U(y1, 0, ν) − ζ, �1 � 0,

−∞, �1 > h1.

The analysis for regime 2 is altered in this case, because an individual can be observed
not receiving welfare for any value of h – that is, given welfare stigma, it is possible to
observe an individual with h < h1, but δB = 0. So regime 2 is now defined solely by
δB = 0. Optimal hours of work, given ω2 and y2, are given by �(ω2, y2, ν). Defining
the value of ν for which �(ω2, y2, ν) = 0 as ν+, hours of work under this regime are
now given by

h = �2 = �(ω2, y2, ν), ν > ν+,

(4.95)h = 0, ν � ν+.

Optimized utility is now

(4.96)V ∗
2 (ω2, y2, ν) =

{
V (ω2, y2, ν), �2 > 0,

U(y2, 0, ν), �2 � 0.

Choice of regime still proceeds by comparing V ∗
1 and V ∗

2 , as done in relationship
(4.88). For any ν in the sets Ω0 or Ω1 defined by expressions (4.89) or (4.90), there
is now some critical level of ζ ∗ = ζ ∗(ν), which depends on ν, such that regime 2 is
chosen when ζ > ζ ∗; regime 1 is chosen otherwise.

Given this characterization, we can derive the likelihood function for each combina-
tion of δB and δE , using the joint densities ϕνζη(ν, ζ, η) and ϕνη(ν, η):

δB = 1, δE = 1, L11 = ∂ν

∂h

∫ ζ ∗

0
ϕνζη

(
ν(h), ζ,W − W(z)

)
I (ν ∈ Ω1) dζ,

29 This additive form is used for simplicity. More general forms can be used, but change none of the substan-
tive points presented here.
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δB = 0, δE = 1, L01 = ∂ν

∂h
ϕνη

(
ν(h),W − W ∗(Z)

)
I (ν ∈ Ω1)

+ ∂ν

∂h

∫ ∞

ζ ∗
ϕνζη

(
ν(h), ζW − W ∗(Z)

)
I (ν ∈ Ω1) dζ,

δB = 1, δE = 0, L10 =
∫ ∞

−∞

∫
Ω0

∫ ζ ∗

0
ϕνζη(ν, ζ, η) dζ dν dη,

(4.97)δB = 0, δE = 0, L00 =
∫ ∞

−∞

∫ ν∗

−∞

∫ ζ ∗

0
ϕνζη(ν, ζη) dζ dν dη.

Estimation proceeds as in the nonstigma case by selecting the appropriate likelihood
branch for each individual and then maximizing the sum of the log likelihoods.

As with the fixed cost case, the likelihood function is complex even in this extremely
simplified welfare case. For each possible set of parameter values, the maximum must
be computed for each regime and then compared to compute ζ ∗. Adding the tax codes,
with their implied kinks, increases computational complexity. As a result, the literature
has adopted a simplifying methodology which we present in Section 4.10 below.

4.9.3. Multiple program participation

In principle, the extension to the case of multiple program participation is straightfor-
ward. For simplicity, we consider a case in which the individual can choose between
participating in no welfare programs, participating in welfare program 1, participating
only in program 2, or participating in both welfare programs 1 and 2. We extend the
utility function as follows:

(4.98)U = U(c, h, ν) − δ1ζ − δ2χ

where δ1 = 1 if the individual participates in program 1, and δ2 = 1 if the individual
participates in program 2.30 Benefits from program j , bj (I (h)), are given:

(4.99)bj

(
I (h)

) =
{

Gj − ρjWh if Gj − ρjWh > 0,

0 otherwise.

Benefits from both together are given as

b1
(
I (h)

)+ b2
(
I (h)

)
(4.100)=

{
G1 + G2 − ρ1Wh − ρ2Wh = G − ρWh if G − ρWh > 0,

0 otherwise,

where G = G1 + G2 and ρ = ρ1 + ρ2. In general, the benefit functions for programs 1
and 2 will have different breakeven points, implying the values of hours defining kinks
(H1 in Figure 4.3) will not be the same.

30 The use of two additive errors is a simplifying assumption which ensures that the stigma from both pro-
grams is higher than stigma from program 1 alone.
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This formulation expands the model considered in Sections 4.6 and 4.9.2. To adapt
this earlier model, one must designate three distinct regimes in place of regime 1 speci-
fied above: regime 1a indicating an individual participates only in program 1, regime 1b

signifying this person collects benefits only from welfare program 2, and regime 1c des-
ignating participation in both programs. Optimal hours and utility for participation in a
regime are given by (4.85), (4.86), (4.94), (4.95), and (4.96), with net wages and vir-
tual income in these formulations specified as ωj = W(1 − ρj ) and yj = Y + Gj ,
with j = 1a, 1b, or 1c. In particular, relations analogous to (4.85) and (4.86) define the
labor supply and utility functions for each of the new regimes for the “on-welfare” seg-
ments associated with the relevant combination of welfare programs. Relations (4.95)
and (4.96) still define the labor supply and utility functions for the nonwelfare regime.
The set of relations define thresholds for ν demarcating the regions of unobserved tastes
determining when a person works (ν0 in (4.85) and ν+ in (4.95)). Maximization again
requires selection of a regime. Relations analogous to (4.94) and (4.96) characterize
utilities corresponding to the various regimes. Conditional on values ν, these relations
in turn imply thresholds for the stigma errors ζ , χ , and ζ + χ that determine individu-
als’ welfare participation. The likelihood function for this model takes a form similar to
Equation (4.97), with more branches appearing in the function reflecting the additional
regimes analyzed in this formulation.

Again, note the complexity of these extremely simplified welfare cases; even these
involve a significant computational burden. For each possible set of parameter values,
one must compute the maximum for each regime, account for the benefit structure,
and then compare these to compute the error ranges for the likelihood function. When
the individual is unemployed, one must perform these calculations for all possible
wage values and all values of ν consistent with the no-work decision. Adding the tax
code, with its implied kinks, increases computational difficulties. Introducing additional
sources of unobserved heterogeneity enlarges the number of dimensions over which one
must calculate integrals, requiring sophisticated numerical procedures and considerable
computer resources. As a result, the literature has adopted simplifying methodologies,
a topic to which we now turn.

4.10. Computational simplification by making hours choices discrete

To make estimation problems manageable, a popular method is to presume that con-
sumers face only a limited set of hours choices. For example, a worker may choose only
full-time work, part-time work, or no work, with each of these options implying a pre-
scribed number of hours. Formally, this is done by assuming that unobservable tastes
components, ν, possess a discrete distribution, usually characterized as a multinomial
distribution conditional on covariates. Combined with a 0/1 welfare decision, this finite
set of hours choices yields a relatively small set of discrete states, say a set of S states,
over which the utility function must be maximized.

Given a specific form for the preference function, utility can be readily evaluated at
each of the hours choices and the maximum can be determined. Given an assumed joint
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distribution for unobservable taste components, ν, for the error component determining
wages, η, and for welfare stigma, ζ , one can compute a probability that a family selects
alternative j . This in turn defines a sample log likelihood of the form

(4.101)L =
∑
j∈S

dj ln P(j |X, θ)

where dj is an indicator for whether individual i chooses alternative j , X is a vector
of observable characteristics, and P(j |X, θ) is the probability of choosing alternative j

with θ the set of unknown parameters. Such formulations are substantially less compli-
cated than the specifications considered above because one avoids the intricate process
of calculating thresholds and dealing with combined continuous-discrete endogenous
variables; only discrete choices are allowed for here.

This formulation requires each individual to be placed into a limited set of preas-
signed work states, even though observed hours worked take many more values, making
hours look as if they were continuously distributed. To overcome this issue, analyses ap-
plying this approach necessarily introduce measurement error in hours of work to admit
hours to deviate from the discrete values assumed for the choice set. Hence, conditional
on ν, each alternative j contributes some positive probability P(j |X, θ, ν) which now
depends on the value of the unobservable measurement error variables.

We illustrate this approach by considering the linear measurement error model given
in Section 4.3.1 where the reporting error ε ∼ ϕε, with ε and ν independent. Further,
as typically assumed, we specify that hours are not subject to measurement error in
no-work states. The likelihood function for hours now takes the form

(4.102)L =
(∑

j∈S0

dj ln P(j |X, θ)

)1−δE
(∑

j∈S1

dj ln
(
ϕε(H − hj )P (j |X, θ)

))δE

where δE denotes a 0/1 variable with 1 indicating that the individual works, S0 desig-
nates the set of all states associated with the individual not working, the set S1 includes
all states in which the individual works, and hj denotes the admissible values of true
hours. Earnings depend on the values of hj and wages. In (4.102), observed hours (H )
are continuously distributed among workers.

5. Family labor supply

The study of family labor supply is motivated by a need to understand how a couple
responds to tax and welfare benefit incentives when the benefit rules create links in the
incentive structure as well as the need to understand how welfare is distributed within
the household, so as to design the targeting of benefits appropriately. Indeed the struc-
ture of family labor supply has changed quite substantially and this may be partly due
to changes in the benefit structure as well as a result of changes in relative wages. For
example, in the UK there has been a large increase in the participation rate of married



Ch. 69: Labor Supply Models 4731

women and a decrease in the participation of men. These changes have been accom-
panied by an increase in the number of families where no one works. This is perhaps
predictable given the structure of the benefit system. However the design of income
maintenance programs that target the right households and offer the right incentive sys-
tem is of course important and crucially relies on our knowing the way that family labor
supply is determined.

The basic family labor supply model for a married couple is the unitary model where
the household is seen as maximizing one (household) utility function whose arguments
are male and female labor supply and consumption. Applying demand analysis one can
derive the implications of changes in wages and unearned income for behavior. Since
taxes can be viewed as changes in wages and unearned income, such models can be used
to simulate the labor market effects of changes in the tax system or welfare benefits.
However in this model intra-household distribution has little meaning and of course the
model has nothing to say about this. In addition it is unclear how the household utility
function can come about from the interaction of two individuals with incentives that are
not necessarily perfectly aligned. This has led to the recognition that even when dealing
with households we need to account for individuals within households and we need to
model the way they share resources. This leads to potentially richer models of behavior
that are capable of explaining much more than the standard household model.

In the sections that follow we outline the two models and some of their implications
in greater detail.

5.1. The standard ‘unitary’ family labor supply model

Consider the family labor supply and consumption problem

max U(c, h1, h2, x)

such that c = y + w1h1 + w2h2

where U is a strictly quasiconcave function of consumption c and the two labor sup-
plies hi . The budget constraint equates household consumption to total income, consist-
ing of unearned income (y) and the two earnings (wihi), T being total time available
for market work and wi the two wages. In addition to the budget constraint, leisure can-
not exceed T and hence labor supply must be positive or zero (hi). This is a standard
demand analysis problem with the complication that there may be corner solutions and
wages being individual specific are not observed when the individual is working.

The first-order conditions for an interior solution simply state that the marginal rate
of substitution between the two leisures will equal the ratio of wages

(5.1)
Uh1

Uh2

= w1

w2
.

An implication of this model is that behavior is neutral to within-household lump-
sum redistributions of income. Thus paying a benefit to the male or the female will
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have exactly the same effect, so long as it does not distort wages. This is often termed
the income pooling hypothesis and we revisit the issue when we discuss the collective
model. Here it suffices to note that the symmetry condition and the income pooling
hypothesis are properties of the unitary model and may not be satisfied in the collective
one.

5.1.1. Nonparticipation

In this subsection we show how to deal with nonparticipation and missing wages in the
family labor supply context. The issues are very similar to those already discussed in
the single-person labor supply model.

The first issue to be addressed is allowing for unobserved heterogeneity in the pa-
rameters of the utility function. Typically this can be addressed in a number of ways.
One way would be to assume that the marginal rate of substitution for each of the two
leisures with consumption includes a multiplicative error term [see Heckman (1974a,
1974b, 1974c) for example]. In this case we could write the first-order conditions as

ln

(
−Uh1

Uc

)
= ln(w1) + ε1,

(5.2)ln

(
−Uh2

Uc

)
= ln(w2) + ε2.

We can also assume a (bivariate) density for the wage rates, say f (w1, w2|z) where
z are the observable characteristics that drive wages and ε1 and ε2 will be taken to
be independent of them. Typically one would assume a distribution function for ε =
[ε1, ε2]′, for example N(0,Ω).

The functions (5.2) together with the distributional assumption for the unobserved
heterogeneity define the distribution of hours of work. Hence the likelihood contribution
for a couple where both are participating is simply the joint density of hours of work
and wages for the two of them:

�(h1, h2, w1, w2)

= |J |g
(

ln

(
−Uh1

Uc

)
− ln(w1), ln

(
Uh2

Uc

)
− ln(w2)|w1, w2, x

)
× f (w1, w2|z),

J = ∂ε

∂h′ [Jacobian]
where x are observables affecting individual preferences and h = [h1, h2]′. When one
or both partners are not working, hours of work are censored and the respective wage is
unobserved. Take as an example the case where one of the two is not working (say 1).

In this case note that ε1 < ln(−Uh1
Uc

) − ln(w1), where −Uh1
Uc

is the marginal rate of
substitution evaluated at hours h1 = 0. The likelihood contribution must be written
taking this censoring into account. We will write this in terms of the joint density of
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hours and wages given above. Thus the likelihood contribution for this case is

�(h1 = 0, h2, w1, w2) =
∫

w1

∫
h1�0

�(h1, h2, w1, w2) dh1 dw1.

The integration with respect to the wage takes place over the entire range of wages.
The contributions to the likelihood for the case of the other partner not working or
both not working can similarly be derived. The sample likelihood is then the product of
all contributions. In a similar fashion one can construct the likelihood contribution for
the case where neither member of the household is working. The sample likelihood is
then the product of the contributions for each observation. This is the basic likelihood
structure. We next discuss issues relating to introducing taxation in this framework.

5.2. Discrete hours of work and program participation

It is straightforward to allow for proportionate taxes, or even piecewise-linear taxes, so
long as these lead to a budget constraint that is convex and so long as the endogeneity
of the tax rate is taken into account. However, most welfare programs are designed in
such a way that they define a nonconvex budget set: Implicit marginal tax rates are
higher at low hours of work, where increases in earnings lead to a rapid withdrawal of
benefits, and lower at higher hours where the individual pays the usual taxes. As we
showed earlier, this is a complex problem itself and in the family labor supply context
even more so because the benefits may be interdependent.

To simplify the problem it has now become almost standard to discretize hours of
work. Then the problem of utility maximization becomes one of choosing packages of
consumption and earnings – consumption is defined by the earnings of the individual,
the tax system and the benefit system. Within this context we can also account for fixed
costs of work (another nonconvexity) and for the decision to participate (or not) in a
welfare program [Hoynes (1996) and Keane and Moffitt (1998)].

We start with a utility function defined over hours of work H1 and H2 and we
discretize the distribution of hours. For example hours can take the discrete values
H ={0, 20, 40}. Suppose we write family utility at hours H1 = hi , H2 = hj where
hi and hj are the ith and j th point of the discrete hours distribution respectively:

Uhihj
= U(H1 = hi,H2 = hj , c, ε) − ηPB + uhihj

where PB is a 0–1 program participation dummy. The term ηPB reflects the utility costs
of program participation such as “stigma”. This may be randomly distributed over the
population. The term ε reflects unobserved heterogeneity in preferences and the term
uhihj

hours-specific unobserved heterogeneity. Given the associated wage, the discrete
hours imply a corresponding set of earnings for each individual.

The budget constraint incorporates all relevant aspects of the tax and benefit system
to define the resulting level of consumption

c = w1H1 + w2H2 + y − T (y,w1H1, w2H2) + B(y,w1H1, w2H2)PB

where T is the tax function and B is the program benefit function.
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The likelihood is derived taking into account program participation. First note that
the observation on whether an individual is participating in welfare programs or not is
informative about the range in which the participation cost η lies. Note also that for any
given η the utility function and the budget constraint define whether the person will be a
participant or not. At each observation we can derive the probability pr(Uhihj

> Uhkhs ,
∀k �= i and s �= j |w1, w2, η, ε) that the chosen point is optimal, conditional on η and
the heterogeneity terms ε. If the person is eligible for a welfare program at the observed
point and he does actually participate (i.e. receives benefits) then the range in which η

lies is defined by the fact that the utility gain from participating is higher than the cost η.
For the nonparticipants η lies in the complement of this set. This allows us to integrate
out η over the relevant range. When the person is ineligible at the observed point no
information is available for η and we integrate over its entire range. In this case as we
move over different values of η the probabilities change not only because of the direct
effect of η through the utility function but also because it induces different potential
participation decisions at each discrete hours point, thus changing both optimal hours
and consumption. Thus consider the likelihood contribution for a couple where both
work and participate in a welfare program (in-work benefits). This will take the form{∫

ηεQ

∫
ε

pr(Uhihj
> Uhkhs , ∀k �= i and s �= j |w1, w2, η, ε) dε dη

}
f (w1, w2|z)

where Q is the set of η such that program participation is optimal at the point of ob-
servation. The form of the probability is defined by Uhihj

. Imposing a logistic is not
restrictive if we allow for unobserved heterogeneity through the ε [Manski and Mc-
Fadden (1981)]. The contribution to the likelihood for a nonworker must also take into
account the fact that the wage will not be observed in that case. This is done as before
by integrating over all possible wages. Of course the practical difficulty is that the prob-
ability of participation is a complicated function of the wage rate through the formulae
of the tax and welfare benefit system.

The models estimated in this way have the great attraction that they allow us to sim-
ulate policies allowing for possible changes in the take-up of means-tested benefits. To
the extent that there is sufficient genuine exogenous variation in the data to allow us
to identify the factors that determine take-up these can be very useful for the ex ante
evaluation of welfare policies.

5.3. Collective models of family labor supply

The family labor supply model presented above treats the household as a single op-
timizing decision unit, and has nothing to say about within-household allocations. It
also imposes stronger restrictions than necessary, such as symmetry. An alternative ap-
proach, the collective model, looks upon the household as a set of individuals with their
own preferences, who have to decide how to share the overall set of resources available
to them. Within this framework we can have private goods (enjoyed by the members
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separately), public goods and household production.31 The main empirical issue is that
of identification: What can we learn about individual preferences and the sharing rule
when we observe aggregate household consumption. This has led to a number of im-
portant theoretical results by Chiappori (1988, 1992) recently extended by Blundell et
al. (2007) to allow for corner solutions and to discuss identification in the presence of
unobserved heterogeneity.

The framework we describe here is the collective model with two household mem-
bers and no public goods or household production.32 Each member supplies labor hi

(i = m, f ) and consumes a private good (Ci). A critical assumption in the collective ap-
proach as introduced by Chiappori is that the household only takes Pareto-efficient deci-
sions. That is, for any set of male and female wages and unearned income (wf ,wm, y),
there exists some level of male utility um(wf ,wm, y) such that labor supply and con-
sumption for each household member (hi, Ci) is a solution to the program:

max
hf ,hm,Cf ,Cm

Uf
[
1 − hf , Cf

]
,

Um
[
1 − hm,Cm

]
� um(wf ,wm, y),

C = wf .hf + wm.hm + y,

(5.3)0 � hi � 1, i = m, f,

where the labor supply has been normalized to lie between 0 and 1. The function
um(wf ,wm, y) defines the level of utility that member m can command when the rele-
vant exogenous variables take the values wf , wm, y. Underlying the determination of um

is some allocation mechanism (such as a bargaining model) that leads to Pareto-efficient
allocations. The nice thing about the collective approach is that there is no need to be
explicit about such a mechanism; identification does not rely on specific assumptions
about the precise way that couples share resources.

Suppose first that preferences are such that there are never any corner solutions. It is
assumed that we observe aggregate household consumption C = Cm + Cf and that we
know the locus of labor supplies as a function of (wf ,wm, y). Then Chiappori (1988)
proves the following:

PROPOSITION 5.1. [See Chiappori (1988).] Assume that hm and hf are twice differ-
entiable functions of wages and nonlabor income. Generically, the observation of hm

and hf allows us to recover individual preferences and individual consumptions of the
private good up to an additive constant.

31 There have also been a number of tests of the unitary model, typically rejecting it and motivating work on
collective models. These papers include Thomas (1990), Fortin and Lacroix (1997), Browning and Chiappori
(1998).
32 Blundell, Chiappori and Meghir (2005) further extend the model to discuss identification conditions with
public goods.



4736 R. Blundell et al.

There are two critical issues to be resolved following this proposition: One is what
happens with corner solutions and with discrete labor supply. The other is what happens
with unobserved heterogeneity in preferences, i.e. when we do not know the exact loci
hm and hf .

Blundell et al. (2007) set up a framework where the male decision is discrete (work or
not) and the female is continuous – however she can choose not to work. The framework
underlying the proposition above exploits the fact that the marginal rates of substitu-
tion between consumption and labor supply for each agent will be equalized within the
household, under efficiency. This result cannot help when one of the labor supplies is
discrete. Define the participation frontier to be the set of male and female wages and
unearned income y so that member m is indifferent between working and not working.
Blundell et al. (2007) then exploit the following implication of efficiency:

DEFINITION AND LEMMA DI (double indifference). The participation frontier L is
such that member m is indifferent between participating or not. Pareto efficiency then
implies that f is indifferent as well about whether m participates or not.

Technically, this amounts to assuming that in the program above, um is a continuous
function of both wages and nonlabor income. This will imply that the behavior of the fe-
male will depend on the male market wage even when he is not working. This continuity
assumption restricts the set of possible behavior and plays a key role for identification.
We will not go through the technical details, all of which are available in the paper
referenced above. However, identification of preferences and the consumption sharing
rule (up to an additive constant) follows from the assumption that all goods are private
(no public goods and no household production) as well as from the assumption above.
Blundell, Chiappori and Meghir (2005) discuss results in the presence of public goods.
The essence of the results there is that full identification of preferences over private and
public goods and the sharing rule follows when preferences over private consumption
and labor supply are weakly separable from the public good. In any case it is shown that
some aspects of the public good must be observable.

The next important obstacle for identification here is unobserved heterogeneity. The
results outlined above relate to the case where we know the locus of the observable
endogenous variables (labor supplies, the public good, etc.) as functions of wages and
unearned income. However for empirical purposes we need to establish identification in
the presence of unobserved heterogeneity in preferences. This is generally complicated
by the fact that any unobserved components affecting individual preferences are likely
to affect the sharing rule. Since this can take any form (more or less) we may well end
up with error terms that are nonseparable, which of course may lead to lack of identi-
fication in general. Identification problems are compounded by the specific context of
labor supply where wages are only observed for workers. Blundell et al. (2007) have es-
tablished identification in the special case where the labor supplies and the sharing rule
are linear in log wages and all have additive unobservables. Even in this case the proof
is not trivial because they do not rely on distributional assumptions. One conclusion of
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this study is that identification in more complex preference structures will have to be
established on a case-by-case basis. Nevertheless, the dividends of such an exercise are
probably very high. Blundell et al. (2007) reject the unitary model, while the collec-
tive model is not rejected and gives interesting insights into the way that resources are
split up within the household. Further empirical work needs to include public goods and
household production. This will allow an extension of this analysis to households with
children. Finally, this framework needs to be extended to deal explicitly with the is-
sues of taxation and means-tested benefits, which the previous analysis of the collective
model has not developed.

6. Intertemporal models of labor supply

The models discussed up to now focused on the work decision within a period. The
life-cycle and dynamic issues have not been addressed. However, studying dynamics
is of critical importance because of the numerous intertemporal dependencies in labor
supply and their implications for the design of policy.

The most obvious intertemporal dependence comes through borrowing and saving.
In this framework the credit market is used to shift labor income across periods of the
life-cycle so that labor supply can be concentrated in periods when the relative benefit
of supplying labor is highest or costs are lowest. This allows a reduction in labor supply
during college, during childrearing and during retirement while consumption can be
maintained at a level consistent with expectations and overall uncertainty. An additional
reason for changes in labor supply over the life-cycle is the precautionary motive, which
implies more labor supply when one is young and less when one is older and some of
the uncertainty has been resolved [Low (1999)].

However, intertemporal dependence may be more direct. Labor supply preferences
may depend on past actions (habit formation); current work may improve future wages
through learning by doing; current work may increase a future pension entitlement.
Since a rational individual will take into account the impact of current actions on fu-
ture budgets or preferences, the standard static labor supply model does not tell the
complete story and may in fact be misleading. With intertemporal dependencies the
individual may find it rational to work in circumstances where the static model would
exclude such a possibility. For example, it may still be worth working when welfare
benefits are reduced one for one with earnings, because work offers future returns in the
form of higher wages.

The recent intertemporal labor supply literature has developed along two lines. This
is reflected in these two intertemporal aspects of labor supply – through credit markets
and saving, and through intertemporal nonseparabilities. In the former case applications
exploit the continuity of consumption and saving to derive Euler equation conditions
for intertemporal labor supply. In the latter case the focus is more on participation and
intertemporal nonseparabilities, largely ignoring saving decisions.

This classification of approaches is necessarily too restrictive. There are intertemporal
substitution applications that allow nonseparability over time, but these are few and
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typically do not account for fixed costs and nonparticipation. Also there are examples
of dynamic programing models that account for saving decisions but to date these have
been quite rare and based on very specific assumptions concerning preferences and
markets.

This section presents dynamic models of labor supply and consumption and discusses
their estimation. We start by presenting the standard dynamic framework, followed by
the empirical models of MaCurdy (1981) and Heckman and MaCurdy (1980). We then
discuss issues to do with intertemporal nonseparability, and unobserved heterogeneity
in the context of incomplete insurance markets. We conclude with the presentation of a
framework in which all these aspects are taken into account in a theoretically coherent
fashion.

6.1. Intertemporal labor supply with saving

As we have mentioned in Section 2, the “static” labor supply model can be made consis-
tent with an additively separable life-cycle model under uncertainty using the two-stage
budgeting framework. However, this does not recover all of the parameters necessary for
intertemporal analysis and for that we need to look directly at the first-order conditions
for intertemporal optimization. Before moving to consider the problems of unobserved
heterogeneity in the context of uncertainty and with the possibility of corner solutions
we consider a simpler model.

Using the framework of Heckman and MaCurdy (1980) and MaCurdy (1981) we dis-
cuss estimation of life-cycle labor supply models in a complete markets setting, i.e. with
no uninsurable uncertainty and no aggregate shocks. We start by exposing the case of no
corner solutions, where all individuals work. We then allow for nonparticipation. Next
we introduce uncertainty, first by considering the no corners case and later allowing
for corners as well. Finally we discuss the issue of unobserved heterogeneity in models
with uncertainty and corner solutions and present an estimation framework based on the
complete dynamic programing characterization of the problem.

6.1.1. The life-cycle model

Before discussing the identification and estimation issues in the dynamic models of
labor supply and consumption we present the standard life-cycle model.33

The individual maximizes expected lifetime utility subject to an intertemporal budget
constraint. We assume that future wage rates, prices and interest rates are uncertain and
that labor market risk is uninsurable. Define At to be the assets, denominated in the
same units as consumption. Letting it denote the nominal interest rate and pt the price
level, we define the real rate of return on assets to be 1 + rt = pt

pt+1
(1 + it ). Thus rt is

to be taken as uncertain in period t . The real wage rate is denoted by wt .

33 We draw from Browning, Deaton and Irish (1985) and Blundell, Browning and Meghir (1994).
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Denote by Et the expectations operator with respect to the distribution of uncertain
future variables conditional on information in period t . These include interest rates,
wages, the price level, possible preference shocks and other variables which affect
choices either through their impact on expectations or directly. Denote the collection
of such state variables by St . The state variables contain all the information that is
needed to summarize the individual’s position at any point in time. Thus, conditional on
the state variables the past otherwise is irrelevant. We can also think of the taste shifter
variables z1t and z2t as being uncertain in future periods, in which case expectations are
taken with respect to their distribution as well. We abstract from issues relating to un-
certain date of death and the presence or absence of perfect annuity markets. Hence we
take the personal discount factor β to be constant over time as a simplifying assumption.

We can write the intertemporal optimization problem as

V0 = max
ht ,ct

{
E0

T∑
t=0

βtψ
[
U(ct , ht |z1t ), z2t

] ∣∣∣ T∑
t=0

1∏t
s=0(1 + rs)

(ct − wtht ) � 0

}
where the second part in the expression is the intertemporal budget constraint. The way
it is written implies that the individual can borrow and lend freely at a market rate of
interest rt .

The additive structure of this problem is viewed from the perspective of period 0.
However, since there exists uninsurable uncertainty the individual will replan in each
period as news arrives. In this context and since the problem is recursive (trivially since
it is additive over time) it is more convenient to use the Bellman equation formulation

(6.1)Vt(At |St ) = max
ht ,ct

{
ψ
[
U(ct , ht |z1t ), z2t

]+ EtβVt+1(At+1|St+1)
}

where Vt(At |St ) is the optimum value function given information up to period t and
St are relevant state variables which help predict future uncertain income, interest rates
and characteristics.

In the absence of credit market restrictions the intertemporal budget constraint im-
plies that

At+1 = (1 + rt )(At + wtht − ct )

with the terminal value of assets fixed at some value (say zero).34 This implies that the
revenues and expenditures need to balance over the entire life-cycle but not necessarily
at any point in time.

The first-order conditions for labor supply and consumption can be written as

−u′
h � λtwt , ht � 0,

u′
c � λt , ct � 0.

34 We abstract from issues relating to portfolio choices and rt is the return to the market portfolio.
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Usually an Inada condition is imposed which ensures that optimal consumption will
always be strictly positive. However, optimal labor supply may be zero which leads to
a corner solution.

For individuals with an interior solution the optimal allocation between consumption
and hours of work within a period equates the marginal rate of substitution to the real
wage rate. The important point is that even in this dynamic context the marginal rate of
substitution is the ratio of within-period marginal utilities. Thus consumption and labor
supply satisfy

(6.2)−u′
h

u′
c

= wt

where u′
x is the marginal utility of x. The important point to note is that the within-

period marginal rate of substitution between consumption and hours of work does not
depend directly on any expectations about the future, nor does it depend on interest
rates.35 Crucially, it does not depend on the monotonic transformation of the utility
function ψ . This is important because it implies that in general we cannot estimate
the parameters governing intertemporal allocations just by using within-period ones.
Condition (6.2) is the basis of the life-cycle consistent “static” labor supply model of
the earlier sections.

We can apply the envelope condition for assets on (6.1) to characterize the link be-
tween decisions over time. This gives

V ′
t = Et

{
β(1 + rt )V

′
t+1

}
.

Since the first-order conditions also imply that

ψ ′
tU

′
ct = Et

{
β(1 + rt )V

′
t+1

}
and

ψ ′
tU

′
ht = −Et

{
β(1 + rt )wtV

′
t+1

}
we can characterize the intertemporal rates of substitution for consumption and hours
of work for interior solutions as

(6.3)ψ ′
tU

′
ct = Et

{
β(1 + rt )ψ

′
t+1U

′
ct+1

}
,

(6.4)ψ ′
tU

′
ht = Et

{
β(1 + rt )

wt

wt+1
ψ ′

t+1U
′
ht+1

}
.

The object of the exercise is to estimate the parameters of ψ[U(ct , ht |z1), z2] from
observations of consumption and labor supply over time. It turns out that we need to use
two of the three conditions (6.2), (6.3) and (6.4). At this point note that the variables in

35 This important point has been made by among others MaCurdy (1983), Blundell and Walker (1986),
Altonji (1986) and Arellano and Meghir (1992).
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z1 affect both the within-period marginal rate of substitution and intertemporal alloca-
tions. The z2 variables only affect directly intertemporal allocations because they cancel
out of the monotonic transformation. Of course they do affect within-period allocations
indirectly and in a full solution the consumption and labor supply functions will depend
on all variables affecting tastes, expectations and the budget.

6.1.2. A simplification: A model with full participation

Before complicating matters with nonparticipation we consider the estimation problem
in a simpler model presented by MaCurdy (1981) where everybody works. The utility
specification he used does not allow for corner solutions and takes the form

(6.5)Ut = Btc
γ
t − AtH

α
t , 0 < γ < 1, α > 1,

where Ht corresponds to hours of work (rather than leisure) and Ct to consumption. The
range of parameters ensures positive marginal utility of consumption, negative marginal
utility of hours of work and concavity in both arguments. Applying exactly the same
analysis as above the implied intertemporal Frisch labor supply becomes

(6.6)ln Ht = A∗
t + 1

α − 1
ln λ + 1

α − 1
ln wt + ρ − r

α − 1
t

where the use of log hours of work presumes that all individuals work and hence H > 0.
In (6.6) λ is the shadow value of the lifetime budget constraint and t is the age of the
individual. Finally A∗

t reflects preferences and is defined by A∗
t = − 1

α−1 log At .
This equation is the Frisch labor supply equation. The important insight is that under

certainty (complete markets – no aggregate shocks) all relevant future variables, such
as wages are summarized by the fixed effect λ. So this equation has a simple message:
Hours of work are higher at the points of the life-cycle when wages are high ( 1

α−1 > 0).
Moreover if the personal discount rate is lower than the interest rate, hours of work
decline over the life-cycle. Finally, hours of work will vary over the life-cycle with A∗

t ,
which could be a function of demographic composition or other taste shifter variables.

Specifying A∗
t = γ ′xt + η1 + ut we obtain an econometric equation of the form

(6.7)ln Ht = γ ′xt + 1

α − 1
ln wt + ρ − r

α − 1
t +
[

1

α − 1
ln λ + η1

]
+ ut

where [ 1
α−1 ln λ + η1] is a fixed unobservable individual effect consisting of the mar-

ginal utility of wealth and of a permanent unobserved preference component. ut is an
idiosyncratic shock to individual preference. For simplicity we take this as serially un-
correlated.

As it is, this equation presents a problem for estimation to the extent that the fixed
unobservable effect (or the idiosyncratic shock ut ) is correlated with the hourly wage
rate wt . Because λ is a function of all wages over the life-cycle and because wages are
highly persistent it is not tenable to assume that the fixed unobservable is not correlated
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with wages. The simplest case here is to assume that all right-hand-side variables, in-
cluding wages, are strictly exogenous, namely that E(ut |xs, ln ws,∀s = 1, . . . , T ) = 0
in which case the model can be estimated using within-groups estimation: variables are
transformed into deviations from their individual-specific time mean and OLS is applied
on

(6.8)l̃n Ht = γ ′x̃t + 1

α − 1
l̃n wt + ρ − r

α − 1
t̃ + ũt

where z̃t = zt − z represents the deviation of an individual-specific variable from the
time mean for this individual. This model is estimable using panel data with a relatively
small number of repeated observations for each of many individuals.36 Here Ordinary
Least Squares on the transformed model is consistent and fully efficient.

This empirical strategy is sensitive to measurement error for the right-hand-side vari-
ables. Suppose that log wages are measured with additive and serially uncorrelated
(classical) measurement error. In this case the strict exogeneity assumption is violated
and (6.7) cannot be estimated by within groups. An alternative approach in this case
would be to take first differences, thus eliminating the fixed effect and then using in-
strumental variables to estimate the parameters based on the transformed equation. The
instruments would have to be dated t–2 or earlier because the error in the first dif-
ference equation will have an MA(1) structure. Thus, under the assumptions made,
valid instruments would be hours and wages lagged at least two periods. However,
these instruments will only be valid if they are able to explain future growth in wages
(� log wt); hence this rank condition needs to be tested.

6.1.3. The Heckman and MaCurdy study

The MaCurdy (1981) paper set out the first clear analysis of issues to do with estimating
intertemporal labor supply relationships. However the approach did not deal with corner
solutions, which is particularly relevant for women. The first attempt to do so in the
context of a life-cycle model of labor supply and consumption is the paper by Heckman
and MaCurdy (1980). In this model women are endowed with an explicitly additive
utility function for leisure L and consumption c in period t , of the form37:

(6.9)Ut = At

Lα
t − 1

α
+ Bt

c
γ
t − 1

γ
, α, γ < 1.

Consumers are assumed to maximize life-cycle utility

Vt =
T∑

t=1

βtUt

36 Fixed T and large N asymptotics.
37 See also Altonji (1982).
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subject to the lifetime budget constraint
T∑

t=1

1

(1 + r)t
[wtht − ct ] � 0

where ht = L − Lt , L being maximal time available for work, and where wt is the
hourly wage rate. Note that now utility depends on leisure and is well defined at the
point where hours are zero since there one obtains maximum leisure.

Optimization is assumed to take place under perfect foresight. Solving for the first-
order conditions we obtain the following equation for leisure:

(6.10)ln Lt =
{

A∗
t + 1

α−1 ln wt + ρ−r
α−1 t + λ∗ when the woman works,

ln L otherwise,

where

(6.11)λ∗ = 1

α − 1
ln λ and A∗

t = − 1

α − 1
ln At

and where we have approximated ln 1+ρ
1+r

≈ ρ − r . Note that in contrast to specification
(6.6), the parameter α is defined to be less than unity. As before in (6.11) λ is the
shadow value of the lifetime budget constraint which again is a fixed effect because of
the complete markets assumption and t is the age of the individual.

6.1.3.1. Estimation with nonparticipation To estimate the model, Heckman and
MaCurdy specify A∗

t = γ ′xt + η1 +u1t where u1t is normally distributed and where η1
is a fixed effect reflecting permanent unobserved differences in tastes across individuals.

Given λ∗, η1 and wages wt this gives rise to a Tobit model, with censoring whenever
the interior solution requires more hours of leisure than are available (Lt > L). There
are two main difficulties with this however. First, hourly wage rates are not observed
for nonworkers. Second, λ∗ and η1 are unobserved and cannot be differenced out in a
conventional manner since the Tobit model is essentially nonlinear. Finally, a problem
addressed only indirectly before (through the treatment of measurement error) is that of
the endogeneity of wages. To solve these problems and to take into account that wages
may be endogenous we may specify a wage equation of the form

ln wt = z′
t β2 + η2 + u2t

with η2 being an unobserved fixed effect reflecting permanent productivity character-
istics of the individual and u2t being normally distributed. Endogeneity may arise if
either the fixed effects in the wage and labor supply equations are correlated or if the
idiosyncratic components are correlated (or both). In the former case (correlated fixed
effects) treating the problem of fixed effects will also solve the endogeneity problem. In
this sense we can think of wages as being endogenous in the case where we dealt with
no corner solutions.

To proceed we can use the approach described earlier in the context of the static
labor supply models. The wage equation is substituted into the structural labor supply
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equation and the conditions for an interior solution or otherwise are given in terms of
the reduced form, i.e. not conditional on the wage rate. Hence we get

ln Lt =

⎧⎪⎨⎪⎩
γ ′xt + 1

α−1z′
t β2 + ρ−r

a−1 t + f + υt

when υt < ln L − (γ ′xt + 1
α−1z′

t β2 + ρ−r
a−1 t + f

)
,

ln L otherwise,

where f = λ∗ +η1 + 1
α−1η2, υ = u1t + 1

α−1u2t . This gives rise to a Tobit model for the
reduced form parameters. However, two important difficulties need to be addressed. The
first relates to estimating this reduced form and the second to recovering the structural
parameters characterizing labor supply.

The reduced form labor supply includes a fixed effect f . In a linear model and with
strict exogeneity the within-groups estimator is consistent and efficient. The model here
is nonlinear because of censoring. Heckman and MaCurdy (1980) treated the fixed ef-
fects as parameters to be estimated. Formally speaking, when the model is nonlinear,
this estimator is not consistent as the number of individuals N grows, while the number
of time periods per individual T remains fixed. This is because the number of (inci-
dental) parameters grows with the sample size. In practice the estimator is likely to
work well with strictly exogenous regressors for moderate to large T . Heckman and
MaCurdy provide Monte Carlo evidence showing that in their context the bias involved
when using this approach is likely to be minimal for moderate T . However, this is not
a general result and it depends very much on the model, the data and the number of
time periods available. For example with lagged endogenous variables the biases could
be substantial. Such lagged endogenous variables could appear in time nonseparable
models and in models with incomplete insurance markets as we will see subsequently.
Thus the complete markets assumption turns out to be particularly powerful as far as
identification is concerned.

An alternative approach is to use a semiparametric LAD estimator introduced by
Honore (1992). This estimator relies on symmetry of the difference of the errors
(uit − uit−1) conditional on the sum of the errors (uit + uit−1) and on the regressors,
which is weaker than the assumption of normality combined with iid errors.

We have described how the reduced form labor supply equation can be estimated.
This does not provide the parameters of the structural model because they are a func-
tion of the parameters of the wage equation. The next step is to recover the structural
parameters. The difficulty here is that we first need to identify the parameters of the
wage equation. This is not a simple problem because wages are observed for workers
only, who are endogenously selected. In addition both the selection mechanism and
probably the wage equation depend on fixed effects. Before we discuss estimation first
we need to ensure that the parameters are identified. A necessary condition is that the
wage equation includes variables that are excluded from the structural labor supply
equation. Under normality no further restrictions are required. However, if one applies
a semiparametric estimation framework that relaxes the normality assumption one also
requires variables included in the labor supply equation that are excluded from the wage
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equation. One approach to completing estimation is to apply the Kyriazidou (1997) es-
timator to the wage equation. This controls for selection allowing for fixed effects in
both the wage and the participation equations. Once the parameters of the wage equa-
tion have been recovered, one can use minimum distance to back out the parameters of
the labor supply equation, which were estimated as above.

An alternative approach, and one followed by Heckman and MaCurdy, is to use
maximum likelihood treating the fixed effects as parameters to be estimated jointly (as
discussed above). We turn to this approach now.

6.1.3.2. Maximum likelihood estimation The first step is to specify the joint distrib-
ution of hours of work and wages, conditional on the observables and the fixed unob-
served effects. This is denoted by

(6.12)ghw(h,w|z, f, η) = gh(h|x, f,w)gw(w|z, η1)

where z are the observed variables in the wage equation, which include all those in the
labor supply equation (x) and more for identification purposes. In the above equation
gh(h|x, f,w) is the conditional density of hours of work given wages, x, and f and
gw(w|z, η1) is the conditional distribution of wages given z and η1. Thus the model
likelihood is bivariate including that of wages.

The likelihood has the general form

L =
∏

workers

gh(h|x, f,w)gw(w|z, η1)

(6.13)·
∏

nonworkers

∫
h<0

∫
w

gh(h|x, f,w)gw(w|z, η1) dw dh.

The first part of the likelihood relates to workers, where both wages and hours are
jointly observed. The second part of the likelihood refers to nonworkers where all we
know is that desired hours are negative. Hence we integrate over h < 0 and over the
entire support of the wage distribution, since for any wage rate there is a configuration
of unobservables that would make the person a nonparticipant – being a nonworker
conveys no information about wages. This likelihood can recover the parameters in the
reduced form labor supply equation and in the wage equation.

As mentioned above, to identify the structural parameters of labor supply and the
wage equation it is necessary to impose exclusion restrictions or some other form of
parametric restrictions. Moreover, note that any variables that are fixed cannot be used
for identification since they will be absorbed by the fixed effect. Heckman and MaCurdy
exclude education/age interactions and aggregate unemployment from the labor supply
equation and husband’s labor market behavior from the wage equation. The former re-
striction effectively implies that differences in tastes across education groups vis à vis
labor supply do not change with age. Consequently any change in observed behavior
across education groups at different ages is attributed to education-specific changes in
individual productivity and hence to wages. The business-cycle indicator (the unem-
ployment rate) serves to identify wages for the nonworkers through the aggregate price
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of human capital. Note, however, that given the functional form assumptions the model
is then overidentified.

The Heckman and MaCurdy model presented above offers a way of handling unob-
served heterogeneity and corner solutions and even allows for persistent heterogeneity
and endogenous wages. These properties have been delivered at a cost. Preferences
between consumption and female hours are explicitly additively separable and no un-
certainty is allowed for. The explicit additivity implies that, given consumption data, all
parameters could be identified in principle using just within-period allocations. This is
worrying since it implies that intertemporal allocations are tied to the way that resources
are allocated within period – an implication that does not come from economic theory.
However, this assumption is testable since we can compare the estimates obtained from
data on within-period and data on intertemporal allocations. Finally, the perfect fore-
sight assumption which is equivalent to complete markets with no aggregate shocks is
also strong given the available evidence.

However, easy as it may be to criticize such an approach, it turns out that it is very
hard to generalize. In what follows we discuss how the existing literature has attempted
to build on this and what are the successes and shortcomings of these attempts. We
start by describing an estimation strategy for a model of consumption and labor sup-
ply with corner solutions but with no explicit treatment of unobserved heterogeneity.
As we argue below, an explicit treatment of unobserved heterogeneity places extensive
requirements on data and an approach based on the complete solution of the life-cycle
model, rather than on Euler equations.

6.1.4. Estimating the intertemporal substitution elasticity and other preference
parameters under uncertainty

We now consider explicitly estimation in the presence of uninsurable uncertainty.38

Estimation will be based on two marginal conditions: One defines the within-period
allocations and the other the intertemporal allocation. Combining these two conditions
in a suitable way can allow us to identify all parameters while accounting for corner
solutions.

We start by characterizing within-period preferences using the indirect utility func-
tion and appealing to two-stage budgeting. The within-period indirect utility function is
defined by

(6.14)ψ
[
vt (w, y)|zt

] = max
h,c

{
ψ
[
Ut(h, c)|zt

] ∣∣ ct = wtht + yt

}
where the variables zt are shown explicitly to emphasize that intertemporal allocations
will typically depend on taste shifter variables. As explained earlier in the chapter, the
variable yt reflects net saving or dissaving. Because ct is realized consumption and
wtht are actual earnings this amount (yt ) will only equal unearned income (e.g. from

38 See Blundell, Browning and Meghir (1994).
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transfers or income from investments) if there is neither borrowing nor saving by the
individual. Based on Roy’s identity it is possible to derive the implied within-period (or
Marshallian) labor supply function, i.e.

(6.15)h(w, y) = ∂v/∂w

∂v/∂y
.

This labor supply function is conditional on yt which reflects intertemporal decisions.
The labor supply function originating from (6.15) can be estimated using the methods

described in earlier sections. The estimation of the within-period labor supply function
allows us to estimate all the parameters characterizing within-period preferences, i.e. the
function vt (w, y) in (6.14) but not the parameters of the function ψ . The latter affects
intertemporal allocations only.

Thus we now need data on intertemporal allocations to estimate the parameters im-
plicit in the monotonic transformation ψ , which characterizes saving behavior and
intertemporal substitution in labor supply.

Consider again the Euler equation in an environment with uninsurable risk. This
equates the marginal utility of consumption today with the expected marginal utility
of consumption tomorrow:

ψ ′
t v

′
yt = Et

{
β(1 + rt )ψ

′
t+1v

′
yt+1

}
.

The term v′
yt = ∂v

∂y
is the marginal utility of money, and ψ ′

t = ∂ψ[vt (w,y)|zt ]
∂vt

reflects the
monotonic transformation of the utility function, which determines the intertemporal
substitution. The marginal utility of money v′

yt can be estimated as a first step based
on observations relating to within-period allocations. We denote the estimated quan-
tity by v̂′

yt . The next step is to parameterize the function ψ which can then be estimated
using the Euler condition. To write the Euler condition based on the indirect utility func-
tion we can use the envelope theorem to see that U ′

ct = v′
yt where U ′

ct is the marginal
utility of consumption which appears in the Euler condition (6.3). Based on this we can
estimate the parameters characterizing ψ ′

t using the following equation:

(6.16)ψ ′
t v̂

′
yt = β(1 + rt )ψ

′
t+1v̂

′
yt+1 + uit+1 + εit

where εit represents the estimation error due to the fact we are replacing v′
yt with its

estimated value. Under the hypothesis of rational expectations any variable dated t or
earlier will be orthogonal to uit+1. This observation can serve as a basis for estimation
using GMM [see Hansen (1982) and Hansen and Singleton (1982)]. Asymptotically εit

will become irrelevant if the first-step estimator is consistent, but it can have serious
implications in small samples.

With uninsurable uncertainty and in the presence of aggregate shocks it is impera-
tive to estimate (6.16) using long enough time series. The innovation to the marginal
utility of wealth uit+1 reflects uninsurable idiosyncratic risk and aggregate uncertainty.
As Altug and Miller (1990, 1998) have shown, the moment conditions do not hold in
the cross section. In fact, the conditional expectation E(uit+1|t, zit ) = m(zit ) where
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zit represents the vector of instruments. Consequently with idiosyncratic uninsurable
risk and aggregate uncertainty the model is not identifiable using methods that rely on
fixed T ; we require methods that rely on large T asymptotics and in practice we need
long enough time series of data that allow the aggregate shocks to average out. The suit-
able time series dimension depends on the variance of such shocks, with longer series
required the higher the variance. However, we do not require to observe the same indi-
vidual for a large number of time periods; just that the data covers long T .39 Moreover,
aggregate shocks cannot be accounted for using time dummies as emphasized by Altug
and Miller (1990) unless there is no idiosyncratic uncertainty.

6.1.4.1. Linearizing the Euler equation A simpler way to go about estimation is to
loglinearize (6.16):

(6.17)−� ln v̂′
iyt+1 − ln(1 + rt ) = dit + ln β + � ln ψ ′

t+1 + εit

where

dit = ln
[
Et

{
β(1 + rt )ψ

′
t+1v̂

′
yt+1

}]− Et ln
[
β(1 + rt )ψ

′
t+1v̂

′
yt+1

]
.

In the simplest case where the discounted marginal utility of consumption muit+1 =
β(1+ rt )ψ

′
t+1v̂

′
yt+1 is a log-normal random variable, dit will be proportional to its vari-

ance conditional on information in period t , i.e. dit = k Vart {muit+1}. It is precisely this
point that gives rise to the identification issue since the conditional variance will depend
on variables relevant for predicting future income or wage realizations. However, if we
are willing to restrict what the conditional variance depends on (and hence the stochas-
tic process governing wages), this linearization offers a great simplification and often
makes it easier to deal with measurement error in the underlying variables forming the
marginal utility. Under nonnormality dit will also depend on higher-order moments of
the marginal utility of consumption muit+1.

Loglinearization has been widely used in the empirical analysis of consumption.
However, identification in this case requires more restrictions than those implied by the
theory. Its usage has been controversial [see Carroll (1997) and Ludvigson and Pax-
son (2001)] precisely because the basic exclusion restrictions used for identification
in (6.16) may no longer be valid in (6.17). Implicitly linearization imposes restrictions
on expectation formation and on the underlying process of uncertainty. Attanasio and
Low (2002) examine these issues using Monte Carlo analysis in a wide variety of set-
tings and conclude that in practice linearization is unlikely to bias the results in a serious
way.

6.1.4.2. Accounting for corner solutions with no fixed costs When hours of work are
at a corner solution the Euler condition (6.16) does not hold when evaluated at market
prices. However, we can use the results of Heckman (1974a) and Neary and Roberts

39 Meghir and Weber (1996) discuss this point in relation to estimating Euler equations.
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(1980) to keep the Euler equation representation evaluated at shadow prices. Here we
assume that there are no fixed costs of work and no search frictions and consequently
that the participation decision is fully characterized by the standard reservation wage
condition [Heckman (1974a)]. In particular nonworkers have a negative desired labor
supply at the market wage corresponding to their skills, while workers have a positive
desired labor supply, which is observed. It is easy to show that the intertemporal first-
order conditions still hold, so long as we evaluate the indirect utility function at the
shadow (reservation) wage wR

it defined by

(6.18)h
(
wR

it , yit

) = 0.

Estimating the ‘static’ within-period labor supply function as described in earlier sec-
tions allows us to obtain a labor supply model that can then be solved for the reservation
wage as in (6.18). In the next step the consumption Euler equation can be estimated us-
ing observed market wages for workers and shadow wages for nonworkers.40

6.1.4.3. An example Consider the labor supply model

(6.19)hit = α(zit ) + β ln wit + γ
yit

wit

where zit are preference shifters such as household characteristics. This corresponds to
a particular form of the indirect utility function presented in an earlier section. The term
y is defined by y = c−wh, where w is the after tax wage and c is total household (non-
durable) consumption, and hence is endogenous. The utility index can be computed by
using the formula in (2.11). This gives the value of ν̂t , from which v̂′

yt can be calculated.
For workers the relevant wage will be the observed wage. For nonworkers the relevant
wage at which to evaluate within-period utility is the reservation wage which is given
by the positive solution for w in Equation (6.19) when h = 0, for given y. This has to
be solved for numerically in this example. Using the reservation wage is equivalent to
computing the direct utility function when hours are zero. This calculation is only valid
if there are no fixed costs of work.

In the next step we can specify the part of the utility function that is not revealed
by within-period choices. This is the monotonic transformation. One simple possi-
bility would be to use a linear transformation; for example ψ[vt (wit , yit )|zit ] =
a(zit )v(cit , hit ), which would be interpretable as saying that characteristics zit af-
fect the discount rate. A more general alternative would be to allow characteristics to
also affect the intertemporal substitution elasticity; for example ψ[vt (wit , y)|zit ] =

a(zit )
1+ρ(zit )

vit (wit , yit )
1+ρ(zit ), for some negative valued function ρ(zit ). The fact that all

or some of the characteristics z affect within-period allocations does not imply that they
will not also affect risk aversion or the way the future is discounted.

To obtain an example specification let a(zit ) = 1 and ρ(zit )= ρ0 + ρ1f sit where
f sit is family size for household i in period t . Using the utility function (2.11) term

40 See Blundell, Meghir and Neves (1993).
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v̂′
yt = (1 + γ̂ )2 wβ̂

β̂+1
can be evaluated at the estimated parameters. In this case the Euler

equation for consumption over time will take the form

(6.20)v̂′
iyt v̂

ρ0+ρ1f sit
it = Et

{
β(1 + rt )v̂

′
iyt+1v̂

ρ0+ρ1f sit
it+1

}
.

This can be estimated using nonlinear GMM treating the estimated marginal utility of
money v̂′

iyt and the within-period utility index v̂t as known [see Hansen (1982) and
Hansen and Singleton (1982)]. The fact that the expression depends on estimated pa-
rameters does not affect consistency because as the sample size goes to infinity the
parameters estimated on the first stage converge to the true values. Inference however
requires us to correct the standard errors for the fact that we are relying on pre-estimated
parameters.

The linearized version of the Euler equation here takes the form

−� ln v̂′
iyt+1 − ln(1 + rt )

= dit + ln β + ρo� ln v̂it+1 + ρ′
1� ln f sit v̂it+1 + εit

which, given the assumptions implied by the loglinearization, can be estimated by linear
GMM.

6.1.4.4. Testing for liquidity constraints One key issue for the interpretation of in-
tertemporal behavior is the extent to which individuals are liquidity constrained which
is defined as being able to borrow and save freely at a constant interest rate. It has
been observed from very early on that consumption seems to track income, which is a
fact often cited as evidence for liquidity constraints. However, this phenomenon can be
explained within the model we have presented.

First, Heckman (1974b) has argued that such income tracking can be induced by
nonseparability of consumption and labor supply: If consumption and leisure are strong
enough substitutes, higher amounts of consumption will be related to higher levels of
labor supply and hence higher income.

Second, family size and demographics, which affect consumption and labor supply
allocations, evolve very much alongside income over the life-cycle, with family size
growing when income grows most and declining when income declines [probably en-
dogenously: see Blundell, Browning and Meghir (1994)]. By allowing for this in our
model we have effectively accounted for another reason for tracking.

Finally, the evolution of the conditional variance of the marginal utility dit also leads
to consumption growth. This variance is likely to decline over the life-cycle as uncer-
tainty is revealed. This is particularly true if shocks to wages are permanent or highly
persistent. Thus a high dit when young and a lower dit when old will imply rapid con-
sumption growth early on declining later, much like the evolution of income over the
life-cycle [Carroll and Samwick (1998), Attanasio et al. (1999)].

The empirical challenge is to find sources of predictable income growth not already
included in the model to account for preferences (e.g. nonseparability) and to test the
hypothesis that they do not affect consumption growth. Browning and Collado (2001)
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use the powerful idea of predictable changes in income due to pre-announced and reg-
ular seasonal bonuses in Spain and establish that consumption growth is not sensitive
to these totally predictable changes in income. However we are not always as fortunate
as that and we need to use other perhaps less compelling sources of predictable growth.
One possibility is to include labor income growth. This is a useful source of variation for
two reasons: Conditional on the wage rate, labor income would have variability because
hours of work may change in a predictable way for other exogenous reasons. Second,
hours should not enter the Euler equation once we also include wages. Nevertheless it
is still an issue of what the exogenous source of hours would be that has not to do with
preferences or changes in wages. Another possibility is to use predictable changes in
other income. The problem is that income from investments, etc. is likely to be positive
only for the wealthier individuals who are unlikely to want to borrow anyway.

Tests of liquidity constraints find no evidence of their importance once nonsepara-
bilities and demographics are allowed for. This should not be interpreted as saying that
anyone can borrow any amount they wish at a fixed rate; after all, the lack of complete
markets is now generally accepted with moral hazard as its most probable source. How-
ever it may well mean that the lack of perfect credit markets is not important because
individuals do not wish to borrow much against future income growth anyway when
they would most need it (i.e. when young) because of uncertainty.

6.2. Further issues in the specification and estimation of dynamic models of labor
supply and consumption

The model we have presented up to now in the context of intertemporal optimization
lacks a number of potentially important features. These include unobserved preference
heterogeneity, fixed costs of work and nonseparability over time. We now discuss these
issues in turn and we complete our chapter by presenting the estimation of a model
containing potentially all these features.

6.2.1. Unobserved heterogeneity

Allowing for unobserved preference heterogeneity seems like a natural step in con-
structing realistic models. Thus, for example, both MaCurdy (1981) and Heckman and
MaCurdy (1980) recognize this and include fixed effects in their models. They recog-
nize that preference heterogeneity could be persistent and may well be correlated with
wages. The question is how to account for unobserved heterogeneity in a model with-
out complete markets. The key difficulty stems from the fact that it is not possible to
specify a model where both the Euler equation and the within-period condition have
additive errors without restricting the structure of intertemporal preferences. Inevitably
a model with unrestricted intertemporal preferences and unobserved heterogeneity will
be nonseparable in unobservables. Standard orthogonality conditions do not suffice for
identification in this case. In the Heckman and MaCurdy study the errors are effectively
nonseparable because of the corner solutions. However, the complete markets assump-
tion meant that a fixed effects Tobit estimator worked well even with moderate T .
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There is a developing literature on the identification and estimation of models with
nonseparable errors and endogenous regressors [e.g. Florens et al. (2007), Imbens and
Newey (2007), Blundell and Powell (2004)], which provide alternative identifying con-
ditions in this case. Even if one is to impose these stronger assumptions there remains
the problem of finding suitable instruments, which are an ingredient of all such meth-
ods. The problem is particularly acute if unobserved heterogeneity is serially correlated,
since the instruments are likely to be predetermined decisions. These difficulties will
lead us to an estimation method based on a complete solution of the dynamic program-
ing model.

6.2.2. Estimating the intertemporal substitution model with fixed costs of work

Fixed costs of work or other nonconvexities in the budget constraint pose a very serious
challenge to the empirical analysis, even within a static framework. In this context the
labor supply function is discontinuous at low hourly wage rates. Moreover as Cogan
(1981) pointed out, the standard reservation wage which sets labor supply to zero does
not generate a participation condition. Generally the participation and hours margins
are explained by different models, which could be the result of the existence of fixed
costs of work or of search frictions. The separation between the intensive and extensive
margins (hours of work) requires extra identifying assumptions.

Within an intertemporal context fixed costs pose additional difficulties for modeling
the participation decision. This involves a comparison between the life-cycle utility of
work and nonwork, which requires solving the life-cycle model conditional on the per-
son working and conditional on the person not working. Such a solution allows one to
evaluate the current and future welfare consequences of the two decisions.

In the presence of fixed costs we can follow two empirical strategies. The first is a
partial one and seeks to estimate the subset of parameters that are identifiable if one
keeps labor supply behavior fixed. As such it cannot be informative for policy questions
whose answer relies on the quantification of the complete labor supply and consumption
response. However, it offers a way of testing some aspects of the life-cycle model in a
relatively general setting and may be a first step in a stepwise approach for identifying
the complete set of preferences.

The second approach specifies a complete structural model of labor supply and par-
ticipation and uses methods from dynamic discrete choice to estimate labor supply
responses. Before moving to a discussion of the full solution approach we briefly outline
the conditional approach.

6.2.3. The conditional Euler equation for consumption

Consider the definition of the indirect utility function within period, based on a vector
of goods qt and prices pt conditional on labor supply behavior ht

(6.21)υt = ψ
[
v(ct |pt , ht ), ht

] = max
q

{
ψ
[
u(qt |ht ), ht

] ∣∣p′
tqt = ct

}
.
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We can then base the analysis of the intertemporal allocations on the utility index
υt = ψ[v(ct |pt , ht ), ht ]. As in the case of the joint labor supply and consumption
model presented earlier, all parameters implicit in v(ct |pt , ht ) can be estimated using a
conditional (on ht ) within-period demand system [see Browning and Meghir (1991)].
This will depend on ht if and only if the goods qt are nonseparable from ht . Under
weak separability ht will not affect demands directly. However, the intertemporal al-
locations can still depend on ht without this having any implications for the structure
of the within-period marginal rate-of-substitution functions between goods. This point
has been noted now in several papers, all of which have demonstrated its empirical
importance.41

The estimation approach is broadly similar to the one described above so we do not
go over it again in detail. Once the within-period demand system characterizing the con-
ditional choice of qt has been estimated, we can construct the utility index v(ct |pt , ht ).
The Euler equation for ct can then be used to estimate the parameters of the function
ψ up to an explicitly additive function of ht . In general, the Euler equation as well as
the demand system will be a function of ht . This can include both hours of work as
a continuous variable and indicators of whether the person is working or not, or other
functions of ht that are considered relevant. The crucial point to recognize however is
that labor supply is endogenous both for within-period and for intertemporal alloca-
tions. Thus estimation requires suitable instruments. One possibility is to use lags in
labor supply for this purpose. In the absence of unobserved heterogeneity the approach
is valid. However, if persistent preference shocks have been ignored this approach could
lead to inconsistent parameter estimates.

The conditional Euler equation for consumption provides a very powerful vehicle
for testing the life-cycle model in relation to consumption behavior and for estimating
some of the parameters in a way that is robust to the specific model of labor supply.
In principle, hours of work can be determined in a number of ways, which we do not
have to specify, subject to the proviso that we can specify instruments that can “predict”
labor supply. However, from a policy perspective, the conditional Euler equation for
consumption is of limited interest because it does not provide the full set of parameters
required to answer even a simple partial equilibrium question. Thus a complete analysis
of intertemporal labor supply and consumption needs to address directly estimation of
a model for the determination of hours of work.

6.2.4. Intertemporal nonseparability

A final issue is whether preferences should be taken as separable over time.42 It is
well documented that labor supply behavior is very persistent which may be interpreted

41 Attanasio and Weber (1993, 1995), Blundell, Browning and Meghir (1994) and Meghir and Weber (1996)
all strongly reject the hypothesis that intertemporal allocations do not depend directly on observed labor
supply.
42 For some studies that relax intertemporal separability see Shaw (1989), Hotz, Kydland and Sedlacek
(1988), Meghir and Weber (1996), Eckstein and Wolpin (1989) and Altug and Miller (1998).
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as being due to nonseparability, although the source of persistence could well be un-
observed heterogeneity. Another source of nonseparability can be the structure of the
intertemporal budget constraint since current behavior may affect eligibility for welfare
programs. Finally, if wages depend on past work experience, current work affects future
earning prospects, which also leads to intertemporal nonseparability. These issues are
considered in the next section.

6.3. Dynamic discrete choice models and intertemporal nonseparability

To address many of the issues presented above in a coherent and unified way we need
to consider a complete model of life-cycle labor supply and consumption. This can be
very complex and demanding on data. Thus in our presentation we start with a simplified
model along these lines which ignores the saving decision but offers a way forward on
the issue of fixed costs and nonseparability. We subsequently build on this to present a
more complete model that includes saving.

One of the first attempts to model the dynamics of participation decisions when
choices are discrete is given by Eckstein and Wolpin (1989). Their model concerns the
labor supply of women. Husband’s income is taken as exogenous. The within-period
utility function, which is nonseparable in consumption ct and participation pt , takes the
form

(6.22)Ut = ct + a1pt + a2ctpt + a3ptKt−1 +
J∑

j=1

a4jNtjpt + a5ptS

where Kt−1 is the number of periods worked in the past; depending on the sign of
a3 this may turn out to reinforce work habits or not. The law of motion of Kt is simply
Kt = Kt−1 +pt . Finally, S represents years of schooling and Ntj represents the number
of children in age group j . This utility function in itself gives rise to intertemporal de-
pendencies since current participation affects future preferences and a forward-looking
individual will take this into account when making participation decisions. Further dy-
namics are induced by the budget constraint. This takes the form

(6.23)yw
t pt + yh

t = ct +
J∑

j=1

κjNtjpt + bpt

where κj are costs relating to children in the j th age group, b is a fixed cost of work and
yh
t is husband’s income, which is taken to be an exogenous stochastic process, affecting

female utility only through total resources. The female wage, yw
t , depends on past work

decisions:

(6.24)ln yw
t = β1 + β2Kt−1 + β3K

2
t−1 + β4S + εt

where εt is an independently and identically distributed normal shock to wages. Hence
the implied dynamics in this model are quite intricate: Past work decisions produce
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human capital and enhance earnings potential. This should lead to increases in partic-
ipation. On the other hand, past work decisions change preferences, either dampening
down or reinforcing the effects due to enhanced human capital.

At this stage the only source of stochastic variation is the iid shock to wages εt . This
formulation has the undesirable feature that the minimum observed wage is a consistent
estimator for the reservation wage; this is because preferences are homogeneous in the
population. To overcome this problem Eckstein and Wolpin allow observed wages to
be measured with error, which turns out to be particularly important empirically. Thus
observed wages satisfy

(6.25)ln yw∗
t = ln yw

t + ut .

Eckstein and Wolpin assume that ut is normally distributed.
In such dynamic discrete choice models estimation is complicated by the fact that

participation in this period confers benefit/costs in future periods. Thus the future impact
of current choices needs to be computed explicitly in order to compute the probability
of participation. Eckstein and Wolpin follow a maximum likelihood approach where the
parameters of the participation decision, of wages and of the measurement error process
are estimated simultaneously.

Their estimation approach can be described as follows: An individual participates if
the utility from doing so is higher than the utility from not working. To illustrate the
approach we simplify further their model by assuming additive separability between
consumption and participation. In this case the husband’s income will not affect female
labor supply. For notational simplicity we also drop the schooling (S) and household
composition terms (Ntj ). In this simplified framework, utility when participating can be
written as

V
(1)
t = yw

t + yh
t − b + a1 + a3Kt−1 + δEtVt+1(Kt−1 + 1)

= exp
(
β1 + β2Kt−1 + β3K

2
t−1 + εt

)
(6.26)+ yh

t − b + a1 + a3Kt−1 + δEtVt+1(Kt−1 + 1)t

while the utility from nonparticipation is given by

(6.27)V
(0)
t = yh

t + δEtVt+1(Kt−1)t ,

where δ is the personal discount factor. Note that when the woman participates in this
period, human capital increases by one; it does not increase otherwise. This is what gives
rise to the difference in the future values associated with the current actions. In the ex-
pressions above the expectation is taken over the uncertain realizations of εt (and of the
husband’s income). This expectation is conditional on information known in period t .
However, since the shock is iid, conditional and unconditional expectations coincide.

A participation rule can be derived now from these two expressions written in terms
of thresholds for the unobserved shock εt . Workers are individuals with wage shocks



4756 R. Blundell et al.

such that43

εt � ln
[
b − a1 − a3Kt−1 + δ

(
EtVt+1(Kt−1) − EtVt+1(Kt−1 + 1)

)]
− (β1 + β2Kt−1 + β3K

2
t−1

)
or

(6.28)εt � ε∗
t (Kt−1).

Given a distributional assumption on εt this leads to a probability of participation. Note,
however that the expression in (6.28) depends on the future expected gain from work-
ing. Hence to estimate the model this gain needs to be computed. This is achieved by
backwards induction.

For a given set of parameters of the utility function and the distribution of the unob-
servable εt the value of participation and nonparticipation is constructed in a terminal
period, given all possible values of the state variables (in this case K). For each K

we then compute EtVT (K)t = E[max(V
(1)
T , V

(0)
T )] where the expectation is over the

realizations εT . Computing the value in period T is very simple since the problem is
essentially static then.

The only way by which past decisions affect the future is through the state variable K .
Hence the future gain from working this period when the current experience stock is K

is simply EtVT (K + 1) − EtVT (K). Whether this is positive or negative will depend
on the effect of an extra unit of human capital on wages and on preferences. Given the
terminal value function we can now compute the values in period T − 1 for all possible
K accumulated by period T − 1 and so on until we reach period t . This computation
is a simple recursion. The procedure requires one to specify a terminal period (age) T .
It also requires us to be specific about what happens beyond that period. In models that
require backwards induction it is often necessary to parameterize separately a terminal
value function. In Eckstein and Wolpin the value beyond the last decision period T is
assumed to be zero.

Given a way to compute EtVt+1(Kt−1) − EtVt+1(Kt−1 + 1) we can now easily
construct the likelihood function. For nonworkers this is simply Pr(εt < ε∗

t (Kt−1)) =
Φ(ε∗

t (Kt−1)) where Φ is the standard normal distribution function. For workers the
contribution to the likelihood function is the joint density of wages (driven by the sum
of the shock εt and the measurement error ut ) and the probability that εt > ε∗

t (Kt−1).
Hence estimation proceeds as follows: For an initial set of parameters the future gains
from work are computed. Then the observed event is computed and the likelihood func-
tion is constructed for each observation. A Newton-type algorithm can then be used
to update the parameters. The value functions need to be recomputed at each iteration
when updated parameters are available – this is what makes dynamic discrete choice
computationally burdensome.

43 In our simplified model the husband’s income plays no role in the wife’s decision. This is not a feature of
the Eckstein and Wolpin model but a result of our simplified exposition in which we have assumed additive
separability.
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Estimation of this model requires observations on Kt−1 and the choice pt as well as
wages. In general retrospective information on periods worked can be used, although
entire work histories constructed over time as events unfold would reduce the chance of
measurement error. Administrative data has now become available which improves the
data situation substantially [see Adda et al. (2006)].

The dynamic discrete choice model described above is a coherent and powerful way
of modeling the dynamics of participation and the evolution in wages. However, it does
not allow for unobserved heterogeneity and thus all dependence on the past is in effect
assumed to be pure state dependence.

The model by Eckstein and Wolpin is a prototype on which other researchers have
built, drawing also from the experience gained in the analysis of discrete choice in
other fields or in labor supply [Rust (1987), Pakes (1986), Hotz and Miller (1988),
Keane and Wolpin (1997)]. One of the most important subsequent contributions in the
field of labor supply is the paper by Rust and Phelan (1997). The crucial aspect of
this paper is that it models explicitly the relationship between work and future social
security entitlements, thus building a model that can be used to evaluate the impact of
policy reforms. An important feature, which complicates the model and makes it much
harder to implement, is that the individual’s choice depends on a large number of state
variables that evolve stochastically. In the Eckstein and Wolpin prototypical model there
was basically only one state variable: the number of periods worked in the past. Here the
state space includes health status, own earnings, spouse’s earnings and social security
income. Some of these variables are affected by past decisions. Hence the intertemporal
nonseparabilities in this model are primarily induced by the structure of the budget set:
Current work decisions affect both future earnings and future social security receipts.

The principle of estimating such a model does not differ fundamentally from that of
estimating the Eckstein and Wolpin model: The stochastic process for the exogenous
state variables is estimated from the data. Then, following the specification of a distri-
bution for the unobservables, the probability of observed choices is constructed, which
depends on the future and current utility gains from this choice. As before, for each set
of parameter values and at each value of the state variables the model has to be solved
and the optimal choice determined. The probabilities at each data point are combined
in the usual way to form the sample likelihood function. However, the problem is more
complicated because of the many sources of uncertainty, originating from the large
number of stochastically evolving state variables. These components are critical addi-
tions because they recognize explicitly that there are events such as the possibility of
death or taste shifter variables such as health that affect behavior but are fundamentally
uncertain. Such uncertainty is very likely to affect labor supply and retirement behavior
of individuals.

6.4. Estimation with saving, participation and unobserved heterogeneity

We conclude our chapter by a brief discussion of estimation of dynamic models with
saving in the absence of complete markets, which brings together the entire set of issues
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we have identified as challenges in estimating labor supply models and takes us right
against the research frontier in this field.

6.4.1. Estimation with complete markets

Altug and Miller (1998) specify a model of consumption and labor supply, where pref-
erences are nonseparable over time and where wages depend on past labor supply (expe-
rience). In a departure from the earlier literature, saving is explicitly taken into account
as are aggregate shocks. Moreover, the estimation methods proposed are relatively sim-
ple since they exploit a modified version of the conditional choice probability estimator
developed in Hotz and Miller (1993). The key assumption that allows them to estimate
such a complex model is that markets are complete. They also assume that preferences
for leisure and consumption are additive. Finally the problem is simplified further by
assuming that preference shocks are independently and identically distributed over time
(and individuals) and there is no source of persistent heterogeneity in preferences.

The complete markets assumption allows them to express consumption allocations
as a function of a fixed effect and an aggregate time effect. This solves at one go the
problem of dealing with aggregate shocks when the time period is short [Chamberlain
(1984)] and the problem of having to simulate alternative consumption paths explicitly
when solving the dynamic programing problem.

In Altug and Miller the complete markets assumption can be viewed as an approx-
imation that allows them to estimate a more general economic model than the ones
considered earlier in the literature. Indeed their model is particularly rich, because it
allows for endogenous human capital accumulation and for nonseparable preferences
as well as saving. However, the complete markets assumption is resoundingly rejected
whenever it is tested [Cochrane (1991) and Attanasio and Davis (1996)]. It is not known
how much bias the assumption would introduce in the parameter estimates. Neverthe-
less, the real empirical challenge is to relax both the complete markets assumption and
the structure of unobserved heterogeneity. In the next section we review the issues sur-
rounding this challenge.

6.4.2. Estimation with uninsurable idiosyncratic risk

We consider an economy where some idiosyncratic risk remains uninsurable. How-
ever we assume that perfect credit markets are available.44 Consider a utility function
depending on hours of work hit , on participation pit (to reflect fixed costs) and on con-
sumption cit :

Uit = U1(cit , hit , pit , fi |zit ) + U2(hit , fi |zit ) + γ (zit )pit + pitν
(1)
it

(6.29)+ (1 − pit )ν
(0)
it

44 Some may view this as a contradiction. However, given uncertainty, most individuals will typically not
want much uncolateralized borrowing, making the modeling of liquidity constraints probably redundant for all
practical purposes. This may be why many tests for liquidity constraints fail to reject the null of no constraints.
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where zit are taste shifter variables and where fi , ν
(1)
it and ν

(0)
it are heterogeneity terms,

the first being time invariant. Assets accumulate according to the difference equation

Ait+1 = (1 + rt )(Ait + withit − cit ).

The terminal condition for assets is

AiT = 0,

where T is the last period of the planning horizon. We do not discuss retirement ex-
plicitly. However, early retirement can be induced by the availability of pensions later
in life, by the accumulation of private assets, by aspects of the welfare system such as
easily available disability insurance and/or by a decline in wages at an older age.

We assume wages take the form

ln wit = de
t + κi + ζ ed ′

xit + eit

where de
t is the log price of human capital for education group e, xit denotes observable

characteristics, some of which may be common with zit , κi is a fixed effect and eit is an
iid shock with a known distribution, say normal.45

Suppose the function U1 in (6.29) is nonadditive in participation p, hours h and con-
sumption c with no components that are additive in p or h. In this case it is possible
to estimate U1 and U2 based on the conditional Euler equation for consumption and
on the within-period labor supply decision as discussed earlier, subject to being able
to deal with unobserved heterogeneity. However, the function γ cannot be identified in
this way. This missing component will be key to simulating counterfactual employment,
hours and consumption paths for individuals. Despite the relative simplicity of prefer-
ences and the wage function, both of which exclude intertemporal dependencies, the
estimation of all relevant parameters requires the full solution of the dynamic optimiza-
tion problem: the probability of working is a function of the utility gain from doing so.
To compute this utility gain one must know the consumption in the counterfactual state.
With incomplete markets and idiosyncratic shocks this is not as straightforward as in
the Altug and Miller case. We outline a possible approach.

We start by simplifying the model and assume a constant interest rate rt = r . Next
specify the conditional distribution governing the evolution of all other state variables,
i.e. gs(Sit |Sit−1, . . . , Sit−p), where S includes all stochastically time-varying charac-
teristics in x and z taken to be exogenous. In general gs can be estimated separately and
we can condition on it during estimation of the rest of the model.

In general heterogeneity in the wage rate κi will be correlated with the heterogeneity
in preferences fi . This implies that wages are endogenous for both labor supply and
consumption and this reflects the idea that unobserved productivity and the tastes for
work are related. A simplifying assumption could be made reducing the dimension of
heterogeneity, e.g. fi ∝ κi .

45 Richer stochastic structures are in principle possible, but they do increase the state space substantially.
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In this model assets are the only endogenous state variable, which in principle
should include all sources of household wealth, including housing and pension wealth.
This causes a very serious measurement problem. Leaving this aside, given suitable
data the model is solved numerically to obtain the value of consumption conditional
on the person’s labor market state. Denote the optimal solutions as follows: workers
c
(1)
it = c

(1)
t (wit , Ait |Sit , fi, pit = 1), nonworkers c

(0)
it = c

(0)
t (Ait |Sit , fi, pit = 0) and

h
(1)
it = ht (wit , Ait |Sit , fi, pit = 1). In general there will be no closed form solutions

to these functions and they will need to be computed numerically during estimation. To
compute these policy functions we need to solve for the future optimal policies. One
approach for this finite horizon problem is to use backwards induction. Starting from
some terminal period, the optimal policies are evaluated for all possible values of the
state variables backwards up until the current period. At this point we have all the ingre-
dients to evaluate the probability of work, including c(1) and c(0) and the future values
conditional on current actions working (EV(1)

it+1) and not working (EV(0)
it+1). The current

value of working and not working are then given by

V
(1)
it = U

(
c
(1)
it , h

(1)
it , pit = 1, fi

)+ ν
(1)
it + βEtV

(1)
it+1,

V
(0)
it = U

(
c
(0)
it , hit = 0, pit = 0, fi

)+ ν
(0)
it + βEtV

(0)
it+1,

which now allows us to specify the probability of working as

Pr(pit = 1|Ait , Sit , fi)

= Pr
(
ν

(1)
it − ν

(0)
it > U

(0)
it − U

(1)
it + β

[
EtV

(0)
it+1 − EtV

(1)
it+1

])
.

The consumption and labor supply as derived above are deterministic given the fixed
effect fi . The reason for this is that the time-varying heterogeneity terms v(1) and v(0)

do not affect the marginal utility of hours (given participation) or consumption. One
simple way to enrich the stochastic specification is to allow for measurement error in
consumption and hours. This will induce a density of observed hours mh among work-
ers and observed consumption m

(1)
c for workers and m

(0)
c for nonworkers. Thus the

likelihood conditional on the heterogeneity term is

L =
N∏

i=1

Ti∏
t=1

{[
mhmcg(wit |κi, Sit ) Pr(pit = 1|wit , Ait , Sit , fi)

]pit

·
[ ∫ [

m(0)
c g(wit |fi, Sit )

(
1 − Pr(pit = 1|wit , Ait , Sit , fi)

)]
dwit

]1−pit
}

·
N∏

i=1

Ti∏
t=1

Lit (fi)

where g(·) is the density of wages, N is the number of individuals, Ti is the number
of time periods over which individual i is observed and Lit (fi) is the likelihood con-
tribution for individual i. The stochastic dependence between the various elements in
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the likelihood is driven by the unobserved component fi , which needs to be integrated
out.

Allowing for persistent unobserved heterogeneity is complicated by the fact that at
any point in time fi will be correlated with assets: these are the outcome of past deci-
sions, themselves a function of fi . Thus in a panel of individual data the initial value
of assets cannot be taken as exogenous in general. To solve this problem we need to
specify a model for the initial value (Ai0), conditional on a set of variables assumed
themselves to be exogenous. Denote the distribution of initial assets by gA(Ai0|ζi, zit )

where zit are a set of instruments explaining initial assets, which are excludable from
the participation probability. Finding such instruments is not straightforward. One pos-
sibility could be to use random shocks that affected wealth at some point, but did not
change preferences, such as, for example, parental health. The unobserved variables ζi

and fi may be correlated, which is the source of endogeneity of initial assets. If these
are exogenous, fi and ζi would be independent of each other.46

Given a model for initial assets and using a discrete mixture as an approximation
to the distribution of the pair (fi, ζi) [see Heckman and Singer (1984)] the likelihood
function now becomes

L =
N∏

i=1

K∑
k=1

S∑
s=1

{
prks gA(Ai0|ζs, zit )

Ti∏
t=1

Lit (fk)

}
where K and S are the number of points of support for the distribution of fi and ζi

respectively and prks is the probability mass at a point of the (fi, ζi) distribution.
The computational burden in these models arises from having to solve the model at

each iteration and each individual type (defined by the observable and unobservable
characteristics) for all values of the state variables. If these are continuous (such as
assets) they need to be discretized.

Macroeconomic shocks The model allows for macroeconomic shocks through wages.
In its simplest form there is just one type of human capital and the time effect on the
wage reflects its value relative to the consumption good. In a richer setting there are
different types of human capital with relative prices that vary. To allow for macro-shocks
in the model we require a model that predicts forward prices as a function of current
observables. In principle, this process will have to be estimated simultaneously with the
model, because of the changes in labor force composition over time, which the model
accounts for.

6.4.3. Why allow for saving?

Allowing for saving is complicated both computationally and empirically. Allowing for
a linear utility in consumption would eliminate the complications. So why should we get

46 See Ham and LaLonde (1996) and Meghir and Whitehouse (1997) for applications in dynamic transition
models.
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into all this trouble? The answer lies in the fact that individuals are risk averse and risk
is not fully insurable. Modeling saving in this context is important for understanding a
number of issues, including self-insurance for events such unemployment [Low (1999)]
and more importantly pensions and retirement. For example, to understand the policy
impact of changes in pension arrangements we need to understand how such policies
interact with saving. The extent to which public policies crowd out private saving can
only be studied in a model that accounts for both. Similar issues will arise when studying
the impact of policies such as taxes and tax credits. The complete labor supply effect
cannot be understood if we do not know how saving behavior will be affected. On
the other hand, there are many questions relating to whether our fully rational forward-
looking model is a good enough representation of reality. Ignoring the issue is, however,
not the way forward.

7. Summary and conclusions

The study of labor supply is valuable from a number of perspectives. The analysis of
the impact of taxes and benefits is perhaps the best-established motivation. Within this
field we are concerned with the impact of taxes on effort as well as the role of taxes and
benefits in affecting education decisions; in this latter case labor supply is seen as an
alternative to school or training for younger individuals. From a more dynamic perspec-
tive, focus recently has also shifted to labor supply as a way of responding to uncertainty
and mitigating the amount of saving as well as for understanding the evolution of con-
sumption over the life-cycle: without allowing for changes in labor supply, it is very
difficult to rationalize the observed behavior of consumption. Finally, the relationship
of consumption and labor supply is critical for understanding issues to do with optimal
taxes and the design of benefits – in-work benefits in particular. For all the above rea-
sons, it is clearly important to understand the way labor supply is determined and how
this relates to intertemporal considerations, such as saving.

This chapter outlines a number of approaches to the study of labor supply beginning
with the original static models and ending with dynamic ones that allow for saving and
possibly intertemporal nonseparabilities. Along the way we have discussed incorpo-
rating taxes and allowing for nonconvex budget sets and the importance of unobserved
heterogeneity. Allowing for the last has proved particularly important empirically for es-
timating reliable models that are capable of fitting the data and accounting for the large
persistence in labor supply patterns. Empirically, labor supply analysis poses significant
challenges not only because of the nonconvexities but also because of the endogeneity
of the main variables whose effect we are attempting to measure. High-effort people are
likely to have invested more in human capital and thus have higher wages. They also
accumulate more wealth, making asset income potentially endogenous as well. Adding
dynamics and allowing for nonconvexities in the budget sets compounds the difficul-
ties. We have attempted to provide a flavor of these difficulties and point to solutions.
However, it is clear that there is more to be done. One relatively new and important area



Ch. 69: Labor Supply Models 4763

of research which we did not touch upon is modeling the entire career, starting with ed-
ucation choice and continuing with labor supply over the life-cycle. This is likely to be
of key importance for understanding the longer-term impact of public policy: programs,
such as tax credits, that encourage labor supply may well discourage education. Trad-
ing off these two margins of adjustment is important and requires reliable models for
both. Thus, considering the dynamics of labor supply and developing reliable modeling
methods will continue to be of key importance for policy purposes.

Appendix A

This appendix reviews general formulations for likelihood functions applicable to
econometric models involving any combination of five types of endogenous variables:
(1) discrete, (2) continuous, (3) censored, (4) truncated, and (5) continuous-discrete.
The subsequent discussion opens with an overview of the statistical framework consid-
ered here. It next considers increasingly complex variants of this framework, starting
with models incorporating just discrete variables, adding in continuous variables, and
then including endogenous variables of a combined continuous-discrete character. The
analysis proceeds to cover specifications appropriate when one does not observe all
states of the world but instead only knows whether various combinations of states have
occurred. The concluding subsection presents alternative representations of likelihood
functions commonly found in the literature comparable to the specifications presented
here, as well as presenting simple extensions of specifications that allow for dependence
on exogenous variables.

A.1. Overview of statistical framework

The basic idea at the foundation of econometric models characterizing distributions of
discrete-continuous variables relies on the notion that all endogenous quantities depend
on the values of an underlying set of continuously-distributed random variables. Specify
these underlying variables by the vector U , assumed to include r linearly-independent
components. This r × 1 vector possesses the joint density function

(A.1)ϕ(U) for U ∈ Ω

where the set Ω designates the sample space or domain of the random variables U .
In this model, m states of the world can occur. The discrete random variable δi sig-

nifies whether state i happens, with δi = 1 indicating realization of state i and δi = 0
implying that some state other than i occurred. The value of δi depends on where U

falls in its sample space; specifically,

(A.2)δi =
{

1 if U ∈ Ωi,

0 otherwise,
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where the set Ωi represents a nontrivial subset of the entire sample space Ω . Without
loss of generality, assume that the sets Ωi for i = 1, . . . , m are mutually exclusive and
exhaustive, meaning

⋃m
i=1 Ωi = Ω and the sets Ωi ∩Ωj = ∅ for i �= j (i.e., the sets Ωi

and Ωj are disjoint). In association with state i, there exist ni continuously distributed
random variables designated Yji , j = 1, . . . , ni . The following equations determine the
values of these continuous variables:

(A.3)Yji = gji(U).

Stacking these individual random variables into a vector yields

(A.4)Yi =
⎛⎜⎝Y1i

...

Yni i

⎞⎟⎠ =
⎛⎜⎝g1i

...

gni i

⎞⎟⎠ = gi.

To avoid introduction of redundant or ill-defined Yji’s, assume there exists an inverse
of gi such that

(A.5)U(i) = g−1
i (Yi, Ui)

for some subvector U(i) comprised of any ni components of U .47 The subvector Ui in-
cludes those elements of U not included in U(i). Designate Φi as the domain of (Yi, Ui)

and Θi as the domain of Yi .
Another interesting class of random variables consists of quantities that take a fixed

single value in some states and a continuous set of values in others. Denote these
discrete-continuous variables as Zji , with the index i signaling the state realized and
j = 1, . . . , ki signifying the particular Z realized in this state. The value of Zji follows
a rule of the form

(A.6)Zji =
{

Yji for j ∈ Kci,

Z∗
ji for j ∈ Kdi,

where the set Kci indexes those Zji taking the form of a continuous variable in state i,
and the set Kdi identifies those Zji equaling a constant value Z∗

ji in state i. Define Zi

as the vector containing the Zji , j = 1, . . . , ki , as elements analogous to Yi specified
in (A.4).

Finally, form all the unique variables appearing in any of the Yi’s into the vector Y ,
assumed to be of dimension n×1, and all the variables making up the Zi’s into the vec-
tor Z, assumed to be of dimension k × 1. For any event δi = 1, Y consists of two sets of
components: the vector Yi incorporating all the continuous random variables registering
in state i, and Y(i) made up of all other continuous variables unobserved in this state but

47 Assuming existence of the inverse of gi in (A.5) is not as restrictive as one might first surmise. If an inverse
does not exist on set Φi , then one can replace Φi with a further segment of this set with inverses defined on
each of these smaller sets. The subsequent analysis can then be carried out for this expanded decomposition
of Φ.
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seen in some other state j �= i. Similarly, Z consists of the vector Zi and Z(i) defined
analogously. In some states i, all of the elements of Y and Z may be observed, and
in others none may be. The subsequent discussion characterizes formulations of con-
ditional and unconditional likelihood functions associated with Y , Z and combinations
of the δi’s. As briefly noted at the end of this appendix, one can readily introduce the
presence of exogenous variables both in specifying the distribution of U and in defining
the regions of definition of δi . An exogenous variable in this analysis must be observed
in all states; otherwise, this variable must be included as a component of Y or Z.

A.2. Discrete variables: All and combinations of states

Initially consider empirical frameworks in which one observes only discrete variables
whose outcomes register the realization of m distinct regimes determined by the relative
values of U .

A common formulation specifies that a researcher sees exactly which state i occurs,
implying that one observes all individual δi , i = 1, . . . , m. From (A.2) we see that the
probability that δi = 1 equals

(A.7)P(δi = 1) = P(U ∈ Ωi) =
∫

· · ·
∫

Ωi

ϕ(U) dU ≡
∫

Ωi

ϕ(U) dU.

The notation
∫ · · · ∫

Ωi
denotes integration over the set Ωi , which the end of this equation

expresses in the shorthand notation
∫
Ωi

. The joint distribution of the δi’s takes the form

(A.8)P(δ1, . . . , δm) =
m∏

i=1

[
P(δi = 1)

]δi =
∏
i∈M

[
P(δi = 1)

]δi .

In the last part of this equation, the notation M = {i: i = 1, . . . , m} refers to the set of
all possible states i.

In other formulations, a researcher does not observe or chooses to ignore each state
individually. Instead, one accounts for only whether some combination of states has
been realized. More specifically, suppose one knows that at least one δi = 1 when
i ∈ Mt ⊂ M , but one does not account for which particular δi in this group actually
occurred. So,

(A.9)if i ∈ Mt, then δt ≡
∑
i∈Mt

δi = 1; otherwise, δt = 0.

The sets Mt , t = 1, . . . , τ , are mutually exclusive and exhaustive (i.e.,
⋃τ

t=1 Mt = M

and Mt ∩ Mj = ∅ for t �= j ). The probability of the occurrence of group state t equals

(A.10)P(δt = 1) =
∑
i∈Mt

P (δi = 1).
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The joint distribution of the δt ’s takes the form

(A.11)P(δ1, . . . , δτ ) =
∏
t∈T

[
P(δt = 1)

]δt

where the notation T = {t : t = 1, . . . , τ } refers to the set of all possible group states t .

A.3. Continuous variables: All states observed

Consider those models in which one observes each individual δi along with vectors Yi

of continuously distributed random variables for states i ∈ My ⊆ M . Conditional on
occurrence of a state, the components of Yi may either be truncated or censored. The
truncated elements of Yi refer to those that lie in a strict subset of their overall domain
given realization of the selection mechanism U ∈ Ωi (or, equivalently, (Yi, Ui) ∈ Φi).
The censored elements consist of those that instead range over their entire domain.
The set Θ = ⋃m

i=1 Θi defines the sample space of Y . So, if Yi includes truncated
components, then Θi ⊂ Θ .

The first step in formulating specifications for the distributions of the Yi’s involves
recognizing that the density of underlying random variables U conditional on the event
δi = 1 takes the form

(A.12)ϕ(U | δi = 1) = ϕ(U)

P (δi = 1)

where relationship (A.7) gives the formula for P(δi = 1). An alternative expression
(A.7) is given by

(A.13)P(δi = 1) = P(U ∈ Ωi) = P
(
(Yi, Ui) ∈ Φi

) =
∫

Φi

hi(Yi, Ui) dYi dUi

where the set Φ =⋃n
i=1 Φi defines the domain of (Y,U1, . . . , Un).

Application of a conventional change-in-variables formula exploiting relations (A.3)
and (A.5) yields the following specification for the density of Yi conditional on δi :

(A.14)f (Yi | δi = 1) =
∫
Φi|Yi

hi(Yi, Ui) dUi

P (δi = 1)
for Yi ∈ Θi

where

(A.15)hi(Yi, Ui) = Jiϕ
(
g−1

i (Yi, Ui), Ui

)
with Ji =

∣∣∣∣∂g−1
i

∂Y ′
i

∣∣∣∣+,

and the notation
∫
Φi|Yi

denotes integration of Ui over the set

(A.16)Φi|Yi
= {Ui : (Yi, Ui) ∈ Φi

}
.

The term Ji in (A.15) represents the Jacobian of the transformation associated with
(A.5) (i.e., Ji is the absolute value of the determinant of the matrix of partial derivatives
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∂g−1
i

∂Y ′
i

). One can express the domain of Yi as

(A.17)Θi = Θi·Yi
= {Yi : Ui ∈ Φi|Yi

},
where the notation Θi·Yi

simply signifies that this set is a subspace of Yi .
A compact expression for the conditional density of Y is

(A.18)f (Y | δi, i ∈ My) =
∏

i∈My

[
f (Yi | δi = 1)

]δi ,

where as defined above My designates the set of states in which one observes at least
one element of Y . An alternative representation for this conditional density takes the
form

(A.19)f (Y | δ1, . . . , δm) =
∏

i∈My

[
f (Yi | δi = 1)

]δi
∏

i∈Mc
y

[1]δi ,

where the set Mc
y denotes the complement of My with respect to M . Realizations of

i ∈ Mc
y mean that all elements of Y are either undefined or unobserved.

The joint density of Y and δ1, . . . , δm is the product of the conditional density of Y

given by (A.19) and the joint probability of δ1, . . . , δm given by (A.8), yielding

f (Y, δ1, . . . , δm)=
∏

i∈My

[
f (Yi | δi = 1)P (δi = 1)

]δi
∏

i∈Mc
y

[
P(δi = 1)

]δi

(A.20)=
∏

i∈My

[ ∫
Φi|Yi

hi(Yi, Ui) dUi

]δi ∏
i∈Mc

y

[ ∫
Ωi

ϕ(U) dU

]δi

.

The second line of this expression follows by substituting relationships from (A.7)
and (A.14).

A.4. Discrete/continuous variables: All states observed

Consider models in which one observes individual δi along with the vectors Zi com-
prised of discrete-continuous random variables for states i ∈ Mz ⊆ M . The components
included in Zi are either distributed continuously or equal to constants according to the
following rule:

(A.21)Zi =
(

Zci

Zdi

)
=
(

Yi

Z∗
di

)
for i ∈ Mz.

Inspection of (A.6) reveals that those individual Zji for j ∈ Kci make up the elements
of the vector Zci ; and those Zji for j ∈ Kdi form the vector Zdi . The set Mz comprises
all states in which any component of Z is realized.

For states i ∈ My , one can express the distribution of Zi conditional on δi = 1 as

f (Zi | δi = 1) = f (Zci, Zdi | δi = 1)
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= f (Zci | Zdi, δi = 1)P (Zdi | δi = 1)

(A.22)= f (Yi | Z∗
di, δi = 1)

where the third line follows from

(A.23)P(Zdi = Z∗
di | δi = 1) = 1.

Formally, the argument Z∗
di in f (Yi | Z∗

di , δi = 1) is redundant since the event δi = 1
already implies Zdi = Z∗

di ; the argument is included merely to remind the reader that
the density appearing in the last line of (A.22) typically depends on Z∗

di . A compact
expression for the conditional density of Z is

(A.24)f (Z | δi, i ∈ Mz) =
∏

i∈My

[
f (Yi | Z∗

di, δi = 1)
]δi
∏

i∈Md

[1]δi .

Realizations of i ∈ My mean that some of the elements of Zi are continuously distrib-
uted, whereas occurrence of i ∈ Md implies that all elements of Zi are discrete. One
can write an alternative representation for this conditional density as

f (Z | δ1, . . . , δm) =
∏

i∈My

[
f
(
Yi | Z∗

di, δi = 1
)]δi

∏
i∈Md

[1]δi
∏

i∈Mu

[1]δi

(A.25)=
∏

i∈My

[
f
(
Yi | Z∗

di, δi = 1
)]δi

∏
i∈Md∪Mu

[1]δi .

Realizations of i ∈ Mu mean that all components of Z are either undefined or un-
known.

The joint density of Z and δ1, . . . , δm is the product of the conditional density of Z

given by (A.25) and the joint probability of δ1, . . . , δm given by (A.8), yielding

f (Z, δ1, . . . , δm) =
∏

i∈My

[
f
(
Yi | Z∗

di, δi = 1
)
P(δi = 1)

]δi
∏

i∈Md∪Mu

[
P(δi = 1)

]δi

(A.26)

=
∏

i∈My

[ ∫
Φi|Yi , Z

∗
di

hi(Yi, Ui) dUi

]δi ∏
i∈Md∪Mu

[ ∫
Ωi

ϕ(U) dU

]δi

.

The second line of this expression follows by substituting relationships from (A.7) and
(A.14), where the notation Φi|Yi ,Z

∗
di

still refers to the set Φi|Yi
defined by (A.16) with

emphasis added to indicate that this set also depends on Z∗
di .

A.5. Discrete/continuous variables: Combinations of states

An important category of models involves characterizing the distribution of continuous
and discrete-continuous variables when one either observes or chooses to distinguish
the occurrence of groups rather than individual states. Define the relevant groups of
states by the δt ’s specified in (A.9) for t ∈ T as outlined in Section A.2.
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Consider the distribution of the continuous random variable

(A.27)Yt =
∑
i∈Mt

δiYi .

Relation (A.27) implicitly assumes that each Yi is defined and of comparable dimension
for i ∈ Mt . Application of the law of iterated expectations yields the following density
for Yt conditional on δt = 1:

f (Yt | δt = 1) =
∑
i∈Mt

f (Yt | δi = 1, δt = 1)P (δi = 1 | δt = 1)

=
∑
i∈Mt

f (Yt | δi = 1)P (δi = 1 | δt = 1)

(A.28)=
∑
i∈Mt

f (Yt | δi = 1)
P (δi = 1)

P (δt = 1)
.

The latter two lines of this relationship follow from the assumptions that the individual
states δi = 1 for i ∈ Mt making up the event δt = 1 are mutually exhaustive and
exclusive.

Discrete-continuous variables are realized according to the following rule:

(A.29)Zt =
(

Zct

Zdt

)
=
(

Yt

Z∗
dt

)
for t ∈ Tz.

The set Tz = Ty ∪ Td comprises all group states in which any component of Z is real-
ized. The set Ty includes those group states t in which Zt incorporates the continuously-
distributed vector Yt specified by (A.27); and the set Td includes those group states
wherein all the components of Zt equal constant values.48

For group states t ∈ Tc, the distribution of Zt conditional on δt = 1 takes the form

f (Zt | δt = 1) = f (Zct , Zdt | δt = 1)

= f (Zct | Zdt , δt = 1)P (Zdt | δt = 1)

(A.30)= f
(
Yi | Z∗

dt , δt = 1
)
,

where this latter expression exploits the relationship

(A.31)P
(
Zdt = Z∗

dt | δt = 1
) = 1 for t ∈ Td.

Analogous to (A.25), a compact expression for the conditional density of Z is

(A.32)f (Z | δ1, . . . , δτ ) =
∏
t∈Ty

[
f
(
Yt | Z∗

dt , δt = 1
)]δt

∏
t∈Td∪Tu

[1]δt

48 For notational simplicity, the specification of the values of Zt when t ∈ Td presumes that Z∗
t is common

across the individual states i ∈ Mt making up group state t . One can instead replace the common value Z∗
t by

a set {Z∗
t } consisting of several discrete values at the expense of introducing some complexity in specifying

likelihood functions.
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where the set Tu includes those state groups in which no Zjt are either undefined or
unknown.

Multiplying the conditional density (A.32) by the joint probability of the events
δ1, . . . , δτ given by (A.8) generates the following joint density for Z and the δt ’s:

f (Z, δ1, . . . , δτ )

=
∏
t∈Ty

[
f
(
Yt | Z∗

dt , δt = 1
)
P(δt = 1)

]δt
∏

t∈Td∪Tu

[
P(δt = 1)

]δt

(A.33)=
∏
t∈Ty

[ ∑
i∈Mt

∫
Φi|Yt Z

∗
dt

hi(Yt , Ui) dUi

]δt ∏
t∈Td∪Tu

[ ∑
i∈Mt

∫
Ωi

ϕ(U) dU

]δt

.

The last line of this expression follows from substitution of relationships from (A.7),
(A.10), (A.14), and (A.28).

A.6. Accounting for unobserved and exogenous variables

Specification (A.33) presents a general formulation for likelihood functions incorporat-
ing discrete, continuous and discrete-continuous variables. One often sees alternative
representations of this specification in the literature that may at first not appear as a
special case of (A.33).

One such representation defines a set of continuous or discrete-continuous variables
Z that are then presumed to be unobserved and, therefore, must be eliminated as ar-
guments of the f ’s in (A.33). In particular, suppose Z consists of two components
Z′

t = (Z′
1t , Z

′
2t ) where the variables Z′

1t are observed and those included in Z′
2t are not.

Correspondingly, decompose Y ′
t = (Y ′

1t , Y
′
2t ) and Z′

dt = (Z′
1dt , Z

′
2dt ), with the random

variables Y ′
2t and Z′

2dt unobserved.
Integrating (or summing) the joint likelihood function (A.33) over Z′

2t produces the
marginal distribution for Z′

1t . This exercise yields

f (Z1, δ1, . . . , δτ )

=
∏
t∈Ty

∫
Θt · Y2t

f
(
Y1t , Y2t | Z∗

dt , δt = 1
)
dY2tP (δt = 1)δt

∏
t∈Td∪Tu

[
P(δt = 1)

]δt

(A.34)=
∏
t∈Ty

f
(
Y1t | Z∗

d1t , δt = 1
)
P(δt = 1)δt

∏
t∈Td∪Tu

[
P(δt = 1)

]δt .

The last line of this expression exploits the relationship∫
Θt · Y2t

f
(
Y1t , Y2t | Z∗

dt , δt = 1
)
dY2t

=
∫

Θt · Y2t

f
(
Y2t | Y1t , Z

∗
dt , δt = 1

)
dY2t f

(
Y1t | Z∗

dt , δt = 1
)
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= f
(
Y1t | Z∗

dt , δt = 1
)
,

which follows since Θt · Y2t
constitutes the domain of Y2t given the event δt = 1. Clearly,

the last line in (A.34) is a special case of (A.33). This merely reflects the fact that an
unobserved Y2t has been reinterpreted as a component of the Ui’s implicit in (A.33).
The variables making up Ui in a state i (or t) may be observed as a Yj in some other
state.

Finally, throughout the above discussion one can readily interpret the distribution
of U as being conditional on a set of exogenous variables X, as well as define the regions
of definition of δi to depend on X (so, Ωi = Ωi(X)). To be deemed exogenous, each
component of X must be observed in all states; otherwise, this variable must be treated
as a component of Y or Z in the previous analysis. Modifying the above formulae to
admit exogenous X merely involves adding X as an argument of f (·) and interpreting
the sample subspaces Ωi , Φi|Yi

, and Θi as functions of X.
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– – GMM estimator 5516
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– – GMM-IV 5523
– Roy model 4811, 4813, 4816, 4825, 4826,

4856, 4858, 4860, 4879, 4888, 4890,
4892, 4894, 4895, 4899, 4900, 4912,
4913, 4919, 4922, 4931, 4934, 4941,
4950, 4967–4969, 4971, 5023,
5028–5031, 5043, 5047, 5058,
5060–5062, 5133, 5153, 5164, 5173, 5181

generated regressor 5507
global series estimation 5439
Gorman polar form 4180, 4673, 4675
gross national product 4552
gross output 4550
growth accounting 4546–4548
– framework 4551

H
habit persistence 3976
habits 4673, 4737
Hannan–Quinn 5440
Hannan–Quinn Criterion 5436
hazard rate 5232, 5233, 5235, 5236
hazard regression 5234
Heckscher–Ohlin 4592, 4595
Heckscher–Ohlin model 4591
Heckscher–Ohlin–Vanek 4595
Hermite polynomials 5574
heterogeneity 4046, 4356, 4357, 4372, 4612,

4751, 4879, 4890, 4900, 4902, 4912,
4916, 4919, 4928, 4964, 5000, 5009,
5010, 5023, 5024, 5038, 5059, 5063,
5067, 5185, 5211–5213, 5229–5232,
5237, 5238, 5245, 5250, 5263, 5272, 5274

– in attributes 4622
– in income 4612
– in individual tastes 4612
– in market participation 4612
– in preferences 4678, 4682, 4733, 4736,

4751, 4758, 4759
– in wealth and income risks 4612
heterogeneous agents 4178
heterogenous treatment effect case 4893
heteroscedastic 4071, 4110, 4145, 4148
heteroscedasticity 4101, 4111, 4118, 4127,

4129, 4139, 4148, 4589
Hilbert space 5648
– isomorphism 5654
Hilbert–Schmidt 5736, 5745
– operator 5658, 5706
histogram 5396
Hölder ball 5570

Hölder class 5570
home bias 4598
homogeneity restrictions 5352
homogeneous treatment effects 4892
homogenization 3891
homoscedastic 4065, 4078, 4082, 4087, 4089,

4118, 4146
homoscedasticity 4081, 4118, 4145
horizontal product differentiation 4356
Hotz and Miller 4246
hour labor productivity (HLP) 4504, 4513,

4514
hours of work 4672–4676, 4678–4680, 4683,

4684, 4686, 4690, 4694, 4695,
4697–4701, 4703–4705, 4707, 4710,
4711, 4713–4723, 4725–4727, 4729,
4730, 4732, 4733, 4740, 4741, 4745,
4748, 4751–4753, 4758

hours-weighting 4649
household production 4735–4737
household spending 4611
housing 4046
human capital 4004, 4646, 4746, 4755, 4756,

4758, 4759, 4761, 5276, 5277
hypothesis testing 4592
hypothetical volume aggregates 4516
hypothetical volumes 4531

I
identifiability 5164, 5178, 5179, 5191, 5231,

5235, 5243, 5244, 5257, 5258, 5268
identification 3852, 4234, 4269, 4298, 4321,

4322, 4332, 4368, 4372, 4374, 4387,
4407, 4879, 4880, 4884, 4887, 4888,
4897, 4898, 4903, 4910, 4914, 4915,
4917, 4951, 4952, 4959, 4972, 4981,
4983, 4999–5001, 5005, 5010–5012,
5014–5018, 5020, 5021, 5023, 5024,
5026, 5027, 5038, 5058, 5072, 5078,
5081, 5082, 5092, 5094–5096, 5123,
5130, 5131, 5149, 5150, 5165, 5166,
5170, 5175, 5180, 5181, 5184, 5190,
5230, 5235, 5236, 5238, 5242–5244,
5247, 5250, 5253, 5263, 5265, 5271,
5273, 5294, 5323, 5514, 5522

– at infinity 5265
– in additive models 5324
– in discrete choice models 5338
– in nonadditive index models 5331
– in nonadditive models 5326
– in simultaneous equations models 5333
– in triangular systems 5329
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– of a utility function 5338
– of average derivatives 5344
– of derivatives 5328
– of finite changes 5329
– problem 4325
identifier 5472, 5478
identifying assumption 4193
identifying restrictions 4196
ill-posed 5560
– equations of the second kind 5737
– problem 5670
impulse response 3987
imputation 5493
– estimator 5500
incentive compatibility 4385, 4392
inclusion and exclusion restrictions 4300
income 4179
– aggregate permanent shocks 4630
– aggregate transitory shocks 4630
– individual permanent shocks 4630
– individual transitory shocks 4630
– shocks 4613
income effect 4688, 4692, 4708, 4719, 4720
income maintenance programs 4731
income pooling hypothesis 4732
incomplete model 3876, 3877
increasing spread 4629
independence 3888
– of irrelevant alternatives (IIA) 4183–4185,

4187, 4345
independent 4880, 4882, 4889, 4890, 4895,

4900, 4902, 4905, 4908–4911, 4913,
4914, 4916, 4926, 4929, 4960, 4962,
4964, 4965, 4968, 4978, 4987, 4988,
5005, 5009, 5010, 5025, 5031, 5033,
5038, 5045, 5048, 5058, 5062, 5063,
5065, 5067, 5088, 5095, 5096, 5102,
5106, 5109, 5127, 5129–5133

– private values 4367
– random samples 5484
index models (single and multiple) 5413
index number methods 4505
index number theory 4506
index sufficiency 4950, 4961, 4963, 4983,

5116
– restriction 4896, 4982, 5123
indicator function 4888, 4961, 4978, 5111
indirect utility 4672, 4674, 4675, 4682, 4683,

4724, 4726
– function 4673–4675, 4683, 4705, 4722,

4746, 4747, 4749, 4752

individual
– effect 4688, 4741, 5517
– heterogeneity 4611
– level 4611
– – causal effect 4788, 4793, 4800, 4826
– rationality 4386
– specific coefficients 4185
– treatment effect 4793, 4802
individual-specific 4184
infinite-dimensional sieve space 5577
infinite-order distributed lag 4069
information set 4631, 4885–4887, 5018, 5045,

5069, 5153, 5182–5184, 5186–5188,
5194, 5213, 5216, 5218, 5219, 5244,
5262–5264, 5266, 5267

information structure 5227, 5229
information updating 5210, 5219, 5262, 5271,

5272, 5286
initial conditions 4091, 4094, 4095, 4098,

4099, 4270, 4271, 5239–5242, 5246
– problem 5240, 5241
input volume indexes 4542
inputs 4205
instrument 4226
instrumental variables (IV) 4207, 4297, 4299,

4641, 4879, 4887, 4889, 4890,
4894–4897, 4902, 4903, 4905–4909,
4912, 4914–4916, 4918–4920, 4928,
4934, 4959, 4960, 4962, 4964, 4984,
4999, 5001, 5005, 5010–5012, 5015,
5030, 5033, 5042, 5060, 5071, 5083,
5086, 5088, 5089, 5091, 5112, 5133,
5230, 5236, 5237, 5346, 5641, 5702

– estimators 4887, 4917, 4959
– procedure 4118
– Wald estimator 4918
– weights 4924, 4931, 4943, 4953, 4954, 4958,

4988, 4996, 4997, 5112, 5114, 5118
instruments 4105, 4188, 4196, 4226, 4298,

4339, 4359
insurance 4630
intangible capital 4567
integrability restrictions 4620
integral equations
– of the first kind 5669
– of the second kind 5670, 5727
integral operator 5655
integrated hazard rate 5232
integrated squared error (ISE) 5431
– criterion 5438
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integration estimator for the additively separable
models 5414

intensive margin 4678, 4752
intention to treat 5236, 5237
interdependent values 3856
interest rate 5697
intermediate inputs 4221, 4550
intermediate products 4566
internal validity 4791, 4815, 4879, 4967, 4976,

4978, 5059
Internet auctions 3915
interpretable parameters 4889, 4915, 4964,

4979
intertemporal
– budget constraint 4738, 4739, 4754
– complementarity 3976
– elasticity of substitution 4634, 4635
– labor supply 4737, 4738, 4753
– marginal rate of substitution 3977
– models of labor supply 4737
– nonseparability 4737, 4738, 4753, 4754
– substitution 3970, 4737, 4746, 4752
intervention 4590, 4786–4789, 4791, 4844,

4846, 4850, 4851
intra firm transactions 4566
intra-industry trade 4599
intrinsic uncertainty 5158, 5185, 5194
invariance conditions 4796, 4834, 4835, 4842,

5220
inverse 4214
– problems 5633
inversion 4224–4227, 4229, 4232
inverted 4214, 4221
investment function 4260
investments 4235

J
Jacobian 4708, 4709, 4711, 4713–4715, 4720
joint characteristic function 5725
joint generalized least squares 4092
JTPA 5155, 5157, 5160, 5162

K
Kendall’s τ 5154
Kendall’s rank 5161
kernel 3865, 3867, 4028
– estimation 5741
– estimator
– – of the density 5690
– function 5395
– – choice of 5400

– – efficiency of 5396
kink point 4695–4697, 4699, 4703, 4705,

4707, 4708, 4710, 4712, 4715–4718,
4720, 4722, 4724, 4726, 4728, 4729

KLEMS 4508, 4550, 4566
Kotlarski’s Theorem 5173, 5174
Kullback–Leibler information criterion 5431

L
Lr(Po)-covering numbers
– with bracketing 5594
– without bracketing 5591
Lr(Po)-metric entropy
– with bracketing 5594
– without bracketing 5592
labor 4206
– input 4568
– participation 4613
– productivity (LP) 4221, 4513
– services 4567
– supply function, 4667, 4672
– – function 4676, 4677, 4700, 4702, 4705,

4706, 4708, 4710, 4714, 4717,
4720–4722, 4725, 4747, 4752

labor-market history 5240, 5241
labor-market transition 5230, 5236, 5237,

5240
lag operator 3982
lagged dependent variable 5517
lagged duration dependence 5241
Laguerre polynomials 5574
Lancaster 4182
Landweber–Fridman 5678, 5679, 5682, 5684,

5687, 5708
Laspeyres price index 4518
Laspeyres volume index 4518
latent duration 5238
latent variable model 4894, 4896, 5018
Law of Demand 4628
learning 5262, 5263, 5271–5273, 5276, 5278
least absolute deviation (LAD) 4744
– procedures 4073, 4107
least squares 4839–4844, 4850
– cross-validation for selecting bandwidths in

regression estimation 5434
least-squares
– cross-validation bandwidth selector for density

estimation 5436
leave-one-out estimator 5438
leisure 4046
length-biased sample 5526
Leontief paradox 4597
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Lerner index 4326
LES preferences 4675
life-cycle 4673–4675, 4685, 4737–4739, 4741,

4742, 4746, 4750, 4752–4754
likelihood approaches to density estimation

5402
likelihood function 4322, 4393, 4395, 4396,

4672, 4679–4681, 4683, 4684, 4704,
4710, 4712–4715, 4717–4721, 4723,
4724, 4726–4730, 4732–4734, 4745,
4756, 4757, 4760, 4761

likelihood-ratio 4079
limit distributions 4202
limitations of kernel regression estimator 5446
limited dependent variable models 5373, 5521
linear
– binning 5449
– equations model 4882
– factor models 5358
– imputation estimator 5502
– labor supply 4674
– operator 5653
– programming 4593
linearity 4820, 4858, 4859, 4863
– restrictions 4617
linearly homogeneous 4561
Linton’s plug-in estimator for partially linear

model 5442
liquidity constraints 4613, 4672, 4750
local
– average treatment effect (LATE) 4817–4819,

4836, 5279–5281
– average treatment effect reversed (LATER)

5280, 5281
– constant estimator 5446
– identification 4030, 5347
– independence 5351
– instrument 5703
– instrumental variable (LIV) 4914, 4915,

4917–4919, 4928, 4930, 4950–4952,
4960, 4965, 4969, 4971, 4986, 4999,
5000, 5011–5016, 5020, 5021, 5025,
5037, 5105, 5106, 5109, 5120

– likelihood density estimation 5436
– likelihood estimation 5401
– returns to scale measure 4558
local linear 3933
– estimator 5446
– regression estimator
– – properties of 5446

locally asymptotically normal 5618
log-density estimation 5565
log-linear 4634
– approximation 3980
– dynamics 3993
logit 4353, 4355
lognormal distribution 4636
long-run return 4017
long-run risk 3984
longitudinal analyses 4120

M
macro level 4612
macro shocks 4688, 4761
macroeconomic policy 4646
maintenance of physical capital approach 4554
Malmquist
– indexes 4534, 4542
– input index 4536
– output volume 4535
– TFPG index 4537
margin 4510
margin of indifference 4818
marginal
– distribution 4882, 4906, 5037, 5059, 5063
– independence 5346
– information 5537
– investor 4046
– posterior 4050
– rate of substitution functions 4753
– returns 4912, 4928, 4996, 5029, 5032, 5036,

5042
– treatment effect (MTE) 4804, 4817–4819,

4865, 4879, 4881, 4882, 4895, 4897,
4899, 4900, 4911, 4915, 4917, 4926,
4927, 4942, 4943, 4951, 4953, 4955,
4968, 4999, 5008, 5011, 5012, 5014,
5017, 5021, 5022, 5024, 5025, 5039,
5042, 5098, 5101, 5102, 5127, 5149,
5258, 5264, 5279–5281, 5299

– utility 4673, 4740, 4741, 4747, 4748, 4750,
4760

– wage 4686, 4694, 4700–4703, 4705, 4715,
4716, 4721, 4724

market
– excess demand 4614
– power 4281, 4315, 4317, 4326, 4329
– return 4038
Markov
– chain 4051, 4237, 4238
– chain Monte Carlo 4033
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– kernel 5159
– perfect equilibrium 4177, 4237
– representation 3983
– strategy 4237
Markovian decision problem 5227
Marshallian 4793, 4850, 4863
– causal function 4829–4831, 4861
matching 4880, 4882–4885, 4887, 4889, 4890,

4894, 4897, 4898, 4907, 4928, 4942,
4943, 5026–5043, 5046–5049, 5052,
5053, 5056, 5057, 5062, 5094, 5097,
5129–5131, 5133, 5149, 5158, 5163,
5166, 5173, 5198, 5210, 5220, 5223,
5225, 5233, 5245, 5267, 5286, 5472

– error 5480
– estimators 5382
– identification 5130
– probabilities 5482
material 4221
Matzkin class of functions 5178, 5289, 5293
maximum likelihood (ML) 4032, 4313, 5498
– estimation 4677, 4694, 4701, 4703, 4713,

4715, 4719, 4721, 4724, 4745, 4755
mean compensated price effect 4628
mean income effect 4628
mean-integrated squared error (MISE) 5430
measurement equation 5179, 5187, 5189, 5263
measurement error 4287, 4305, 4311, 4312,

4362, 4395, 4676, 4701, 4703, 4711,
4713, 4714, 4716–4721, 4723, 4726,
4730, 4742, 4743, 4748, 4755–4757,
4760, 5349, 5473, 5510, 5644, 5745

– model 5511
medical trial 5181
mergers 4174
method
– of moment estimators 5383
– of moments 4062, 4074, 4111, 4115, 4254,

4262
– of sieves 5552
Metropolis–Hastings 4051
micro data 4192
micro level 4612
MicroBLP 4185, 4194, 4195
microeconometric models 4612
microeconomic data 4658
Mincer model 5378
mineral rights 3856
– model 3930

minimal relevant information set 4885–4887,
5046–5048, 5052, 5056, 5057

minimum distance 4677, 4682, 4745
– estimator 5509
MINPIN estimator 5607
mismeasured variables 5472
Missing At Random (MAR) 5474
missing wages 4678, 4680, 4703, 4721, 4732
misspecification 4222, 4914, 5052
mixed hitting-time model 5243
mixed proportional hazards model 5262, 5501,

5502
mixed semi-Markov model 5231, 5237, 5238,

5241
mixture of normals 5194
model
– misspecification 4033
– selection criteria 5439
– with endogeneity 5559
– with heterogenous responses 4913
moment condition 4359, 5498, 5500, 5515
monotonic 4220
monotonicity 3886, 4211, 4214, 4220, 4221,

4232, 4879, 4880, 4896, 4909–4911,
4922, 4926–4930, 4936, 4938, 4943,
4959, 4960, 4964, 4978, 4981, 5011,
5063, 5065, 5089, 5102–5106, 5112, 5122

Monte Carlo 4359, 4744, 4748
– study of bandwidth selector performance for

partially linear model 5442
moving-average 3982, 4135
– process 4070, 4097, 4102, 4103, 4106, 4129,

4131, 4132, 4135, 4144, 4150, 4151
multi factor productivity 4513, 4514
multi-object auctions 3953–3957
multi-step estimation 4086
multi-step procedures 4086
multi-unit auction 3950, 4382
multifactor productivity (MFP) 4504, 4513
multinomial discrete-choice model 5256
multiple entry locations 4255
multiple equilibria 4234
multiple outcomes 4879, 4880, 4907, 5076
multiple program participation 4694, 4718,

4728
multiple units of demand 4198
multiproduct firms 4191
multivariate
– ARMA model 4091
– LS regression 5564
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– quantile regression 5565
– unobservables 5362

N
Nadaraya–Watson kernel regression estimator

5404
Nash equilibrium 4407
Nash in prices 4191
national productivity 4505
natural experiment 4689, 4692, 5373
negative weights 4899, 4923–4926, 4929,

4934, 4936, 4958, 4960, 4986, 4989,
5063, 5121

nested fixed point 4233, 4242–4244, 4246
nested logit model 4344–4346
net domestic product 4552
net investment 4552
new goods 4180
– problem 4181
new products 4565
Neyman–Rubin model 4789, 4800, 4826,

4833–4835, 4837
NLSY79 5194
no-anticipation condition 5218, 5220, 5221,

5223, 5226, 5227, 5233–5235, 5252, 5260
non-parametric
– identification 5514
– inference 5494
– regression 5500
nonadditive index models 5319
nonadditive models 5317
noncompact operators 5669
nonconstant returns to scale 4558
nonconvex budget constraints 4724
nonconvexity 4683, 4690, 4694, 4697–4699,

4721, 4724, 4733, 4752
nonidentification 5234, 5244, 5268, 5273
nonlabor income 4682, 4683, 4694, 4715,

4719, 4721, 4735, 4736
nonlinear
– 3SLS 4088
– budget constraints 4693, 4719, 4724
– instrumental variable (NIV) 4073, 4074,

4082, 4086, 4087, 4106, 4107, 4109,
4111, 4119, 4126, 4154

– joint generalized least squares 4094
– simultaneous equation 4065, 4077, 4107,

4108, 4110
– solution 4047
– taxes 4676, 4677, 4700, 4702, 4703
– three-stage least squares 4131

nonlinearity 4613
nonmonotonicity 4925, 4936
nonnegative weights 4911, 4923, 4986
nonparametric 3847, 4026, 4283, 4371, 4372,

4375, 4380, 4387, 4400, 4998, 5552
– density 4368
– estimate 4177, 4244, 4245, 4249, 4259, 4262
– function 4362
– identifiability 5257
– identification 3851, 4383, 4385, 4387, 5000,

5039, 5095
– least squares 4880, 4884
– regression 4883, 4942, 4951, 5030
nonparticipation 4674, 4675, 4677, 4678,

4683, 4686, 4694, 4703, 4732, 4738,
4743, 4755, 4756

nonprice attributes 4339, 4346
nonrecursive model 4838, 4843, 4844, 4847
nonseparability 4672, 4737, 4750, 4751
nonseparable model 5646
nonseparable preferences 4758
nonstationarity 4071, 4072, 4098, 4101
normal density 4819
normal Roy selection model 4888
normality 4783, 4810, 4816, 4818, 4820,

4826, 4839, 4858–4860, 4866
normalization 4187, 4301
null space 5653

O
objective outcomes 4880, 5066, 5216, 5245,

5259
observationally equivalent 5324
observed consumer characteristics 4187
obsolescence 4566
occurrence dependence 5241, 5242
oligopoly 4315, 4334, 4362, 4382
omitted variables 4293
on-the-job training 5276
operators 5648
optimal
– behavior 4611
– choice 4078, 4082, 4119
– convergence rate 5385, 5386
– instrumental variables 4074, 4081, 4082,

4084, 4090, 4145
– policies 5225–5227
– treatment 5225, 5227
optimality criteria
– for bandwidth selection in density estimation

5438
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– for selecting bandwidths 5430
optimally weighted GMM 5611
optimization errors 4305, 4308, 4310, 4311,

4390
option value 5149, 5153, 5175, 5181, 5255,

5258, 5262, 5271
order statistics 3854, 3873, 3888, 3917, 3944
orthogonal expansion 5399
orthogonal wavelets 5572
out-of-work benefit 4648
outcome equations 4884, 4895, 4907, 4913,

4918, 4928, 4934, 4947, 4950, 4964,
5009, 5027, 5028, 5033, 5035, 5042,
5050, 5163, 5164, 5175, 5185, 5187,
5189, 5218, 5237, 5253, 5272

output growth rates 4557
output–input coefficient 4509
outputs 4205
outside good 4186, 4353
outside option 4186
overidentifying restrictions 4224, 4226, 5496,

5505
overlapping 5525

P
p-smooth 5570
Paasche price index 4517
Paasche volume index 4518
panel data 4423, 4447, 4450, 4452, 4456,

4477, 4487, 4612, 5170, 5171, 5185,
5193, 5194, 5204, 5471, 5514

Panel Survey of Income Dynamics (PSID)
4640

parametric
– bootstrap 4255
– inference 5494, 5498
– restrictions 5273
Pareto efficiency 4735, 4736
partial equilibrium 4879, 4972
partial identification 3871, 3877–3881, 3886,

4888
partially
– additive mean regression with a monotone

constraint 5616
– identified 3852
– linear model 5380, 5381, 5413, 5423, 5442
– – estimator for 5419
– nonparametric model 5732, 5733
participation 4671, 4686, 4689, 4690, 4713,

4715, 4721, 4730, 4731, 4736, 4737,
4741, 4745, 4749, 4752, 4754–4757

participation constraint 4392
pathologies 4589
pathwise regular 5618
penalized extremum estimation 5577
pension 4737, 4759, 4760, 4762
per capita 4612
perfect certainty 4810, 4815, 4856
perfect foresight 5182, 5237, 5253, 5276, 5278
performance
– of alternative bandwidth selectors for

nonparametric regression 5439
– of binning method for local linear regression

5453
physical return 4047
piecewise budget constraints 4697, 4698
piecewise-linear budget constraints 4695,

4703, 4704, 4715, 4720, 4721
planner’s information 5211, 5215, 5216
plant and/or firm level panels 4232
plant (sometimes firm) level data 4176
plug-in bandwidth selector
– for density estimation 5432
– for nonparametric regression 5439
– for regression estimation 5435
plug-in sieve MLE estimates 5618
point 5087, 5088
point identification 5081, 5084–5086, 5090
pointwise asymptotic normality of the spline

series LS estimator 5603
policy 5215–5217
– choice 5225
– evaluation 5215
– function 4245, 4257, 4264
– invariance 4795, 4796, 4846, 4847, 4879,

4905, 4906, 4915, 4962–4964, 4972,
5060, 5067

– – assumption 4797
– problem 4789, 4790, 4801, 4810, 4815,

4820, 4827, 4850, 4854
– regime 4795, 4799, 4804–4806, 4809, 4812,

4834, 4849, 4850
policy relevant treatment effect (PRTE) 4804,

4820, 4905, 4906, 4915, 4931, 4932,
4961–4965, 4971, 4972, 4984, 4998,
5030, 5064, 5066, 5112, 5123, 5125

policy relevant treatment parameter 4917,
4925, 4931

polynomial mixing approach 5440
pooled sample 5528
population distribution 4785, 4800, 4802
population mean treatment 4838, 4849
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positive operator 5657
posterior distribution 3997
power series 3983
– estimator 5387
precautionary saving 4634
predetermined variables 4074, 4080–4082,

4086, 4088–4090, 4092
predicted distribution 5489
preference 4788, 4793, 4798, 4803, 4809,

4810, 4812, 4814, 4839, 4845–4848, 4858
present values 3981
present-value–budget-balance 3983
price indexes 4506
price measurement 4565
price setting mechanisms 4566
price–dividend shock 3987
pricing 3977
– equation 4190
primitives 4174
principal components 5693
principal-agent 4382
private information 4361, 4362, 4377,

4383–4385, 4389
private values 3855, 3862, 3873, 3937–3946,

4381
probabilistic record linkage 5477
probability model 5383, 5502
probit 4649
procyclical 4651
product characteristics 4197
product space 4178
product test 4523, 4545
production function 4526, 4827
– framework 4559
production-based 4047
productivity 4176, 4205, 4211
– change 4526
– growth index 4565
– indexes 4506
profile MLE estimation 5611
program benefit function 4728, 4733
program gains 4805
program participation 4733
propensity score 4219, 4231, 4816,

4818–4820, 4889, 4896, 4898, 4910,
4912, 4913, 4922–4924, 4928, 4929,
4936, 5035, 5038, 5042, 5046, 5047,
5097, 5133

– matching 5049
proportionality hypothesis 4647

proportionality in period t prices test 4524
proxy measure 5168
proxy variable 4880, 4887, 5094
proxy/replacement function approach 5166
pseudo maximum likelihood 4253, 4254
pseudo-likelihood 4263
pseudosolution 5670, 5677
public goods 4735–4737
purchasing power parity 4567
pure characteristic model 4201, 4204
pure common values 3856, 3929

Q
Q model 4417, 4423, 4430–4437, 4439,

4447–4450, 4456–4461, 4463–4466,
4468–4470, 4474, 4488

Quadratic Almost Ideal Demand System
(QUAIDS) demand model 4622

Quadratic Approximation Lemma 4538
quadratic identity 4528
quadratic preferences 4631
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