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PREFACE TO THE HANDBOOK

As conceived by the founders of the Econometric Society, econometrics is a field that
uses economic theory and statistical methods to address empirical problems in eco-
nomics. It is a tool for empirical discovery and policy analysis. The chapters in this
volume embody this vision and either implement it directly or provide the tools for do-
ing so. This vision is not shared by those who view econometrics as a branch of statistics
rather than as a distinct field of knowledge that designs methods of inference from data
based on models of human choice behavior and social interactions. All of the essays in
this volume offer guidance to the practitioner on how to apply the methods they discuss
to interpret economic data. The authors of the chapters are all leading scholars in the
fields they survey and extend.

Auction theory and empirical finance are two of the most exciting areas of empirical
economics where theory and data combine to produce important practical knowledge.
These fields are well represented in this Handbook by Susan Athey and Philip Haile
(auctions) and Lars Hansen, John Heaton, Nikolai Roussanov and Junghoon Lee (fi-
nance). Both papers present state of the art knowledge of their respective fields and
discuss economic models for the pricing of goods and risk. These papers feature agent
response to uncertainty as an integral part of the analysis. Work on the pricing of labor
services lies at the core of empirical labor economics. Thomas MaCurdy surveys empir-
ical methods for estimating wage equations from panel data in a way that is accessible
to practitioners.

The econometrics of industrial organization (IO) is another vibrant area of applied
econometrics. Scholars in the field of IO have embraced econometrics. The resulting
symbiosis between theory and practice is a paragon for econometric research. Modern
developments in game theory have been incorporated in econometric models that enrich
both theory and empirical analysis. These developments are well-represented in this vol-
ume by the essays of Daniel Ackerberg, Lanier Benkard, Steven Berry, and Ariel Pakes
and of Peter Reiss and Frank Wolak. Stephen Bond and John van Reenen summarize
the related literature on modeling the dynamics of investment and employment, which
is an integral part of macroeconomics and modern IO.

The essay by Erwin Diewert and Alice Nakamura surveys methods for measuring
national productivity. They exposit a literature that provides the tools for comparing the
economic performance of policies and of nations. The authors survey the methods that
underlie this important field of economics. Edward Leamer’s essay stresses the interplay
between data and theory in the analysis of international trade patterns. In an increasingly
global market, the measurement of trade flows and the study of the impact of trade on
economic welfare is important for understanding recent economic trends.

XV
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Modern economics has come to recognize heterogeneity and diversity among eco-
nomic agents. It is now widely acknowledged that the representative agent paradigm is
an inaccurate and misleading description of modern economies. The essay by Richard
Blundell and Thomas Stoker summarizes and synthesizes a large body of work on the
aggregation of measurements across agents to produce reliable aggregate statistics and
the pitfalls in the use of aggregates.

Consumer theory, including the theory of labor supply, is at the heart of empirical
economics. The essay by Richard Blundell, Thomas MaCurdy, and Costas Meghir sur-
veys a vast literature with an ancient lineage that has been at the core of empirical
economics for over 100 years. They develop empirical models of consumer demand
and labor supply in an integrated framework.

The evaluation of economic and social programs is a central activity in economics. It
is the topic of three essays in this Handbook. James Heckman and Edward Vytlacil
contribute two chapters. The first chapter moves the literature on program evalua-
tion outside of the framework of conventional statistics to consider economic policy
questions of interest, to incorporate agent choice behavior and the consequences of un-
certainty, and to relate the recent work on policy evaluation in statistics to older and
deeper frameworks developed in econometrics. Issues of causality and the construction
of counterfactuals are addressed within the choice-theoretic framework of economics.

Their second chapter uses the marginal treatment effect to unify a diverse and dis-
jointed literature on treatment effects and estimators of treatment effects. The marginal
treatment effect can be interpreted as a willingness to pay parameter. This chapter
focuses on mean treatment effects in static environments without explicit analysis of
uncertainty.

The essay by Jaap Abbring and James Heckman surveys new methods for identifying
distributions of treatment effects under uncertainty. It surveys and develops methods for
the analysis of dynamic treatment effects, linking the statistical literature on dynamic
sequential randomization to the econometric literature on dynamic discrete choices.
It also surveys recent approaches to the general equilibrium evaluation of social pro-
grams.

One of the most important contributions of econometric theory to empirical knowl-
edge is the analysis of the identifiability of econometric models — determining under
what conditions a unique model describes the data being used in an empirical analy-
sis. Cowles Commission analysts formalized these ideas, focusing largely on linear
systems [Tjalling Koopmans, Herman Rubin, and Roy Leipnik (1950)]. Later work
by Franklin Fisher (1966) extended the Cowles analysis to nonlinear, but parametric
systems. Rosa Matzkin’s contribution to this Handbook synthesizes and substantially
extends these analyses to consider a large body of work on the identification of non-
parametric models. The methods she surveys and extends underlie a large literature in
applied economics.

Hidehiko Ichimura and Petra Todd present a guide to the recent literature on non-
parametric and semiparametric estimators in econometrics that has been developed in
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the past 20 years. They conduct the reader through the labyrinth of modern nonpara-
metric econometrics to offer both practical and theoretical guides to this literature.

Robert Moffitt and Geert Ridder address the important problem of how to combine di-
verse data sets to identify models and improve the precision of estimation of any model.
This topic is of great importance because many data sets in many areas of economics
contain valuable information on subsets of variables which, if they were combined in
a single data set, would identify important empirical relationships. Moffitt and Ridder
present the state of the art in combining data to address interesting economic questions.

Xiaohong Chen presents a detailed, informative survey of sieve estimation of semi-
parametric models. The sieve principle organizes many different approaches to non-
parametric and semiparametric estimation within a common analytical framework. Her
analysis clarifies an extensive and widely used literature. Marine Carrasco, Jean-Pierre
Florens, and Eric Renault survey the literature on nonparametric and semiparametric
econometrics that is based on inverse operators. Their analysis subsumes recent research
on nonparametric instrumental variable methods as well as research on deconvolution
of distributions. They present both theoretical and practical guides to this frontier area
of econometrics.
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Abstract

This chapter discusses structural econometric approaches to auctions. Remarkably,
much of what can be learned from auction data can be learned without restrictions
beyond those derived from the relevant economic model. This enables us to take a
nonparametric perspective in discussing how the structure of auction models can be
combined with observables to uncover (or test hypotheses about) primitives of interest
in auction markets. We focus on first-price sealed-bid and ascending auctions, including
extensions to Dutch auctions, Internet auctions, multi-unit auctions, and multi-object
auctions. We consider a wide range of underlying structures of bidder demand and in-
formation, as well as a variety of types of data one may encounter in applications. We
discuss identification and testable restrictions of these models and present a variety of
estimation approaches.

Keywords
auctions, identification, estimation, testing

JEL classification: CS, C14, D44
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1. Introduction

Auctions provide opportunities for economists to examine field data from markets that
can involve rich strategic interaction and asymmetric information while nonetheless
being simple enough that the salient forces can be convincingly captured by a tractable
economic model. The primitives of any strategic model include the set of players, the
information structure, the rules of play, and players’ objectives. In auction markets, one
can often describe these key elements with an unusually high degree of confidence.
Consequently, auctions have been at the center of efforts to combine economic theory
with econometric analysis to understand behavior and inform policy.

Early work by Hendricks and Porter (1988) and others played an important role in
demonstrating the empirical relevance of private information and the ability of strategic
models to predict behavior. More recently, there has been a great deal of attention to
econometric approaches to auctions that incorporate restrictions from economic theory
as assumptions of an econometric model.! The goal of this structural approach is to ad-
dress questions that can only be answered with knowledge concerning the distribution
functions that characterize the underlying demand and information structure. Structural
empirical work on auctions has examined, for example, the division of rents in auctions
of public resources, whether reserve prices in government auctions are adequate, the ef-
fects of mergers on procurement costs, whether changes in auction rules would produce
greater revenues, whether bundling of procurement contracts is efficient, the value of
seller reputations, the effect of information acquisition costs on bidder participation and
profits, whether bidders’ private information introduces adverse selection, and whether
firms act as if they are risk averse.

Many of these questions have important implications well beyond the scope of auc-
tions themselves. In all of economics there is a tradeoff between the assumptions one
relies on and the questions one can address. Because an auction is a market institu-
tion that is particularly easy to capture with a theoretical model, one may have more
confidence than usual that imposing significant structure from economic theory in inter-
preting data can be useful. Combined with the fact that private information and strategic
behavior are paramount in auctions, this suggests that auctions may enable economists
to get at questions of importance to many other types of markets.

Remarkably, much of what can be learned from auction data can be learned with-
out restrictions beyond those derived from economic theory. In particular, identification
often does not depend on unverifiable parametric distributional assumptions. This is im-
portant: although economics can determine or at least shape the specification of many
components of an empirical model, it rarely provides guidance on distribution functions
governing unobservables.

I A seminal paper in this literature is Paarsch (1992a), which builds on insights in Smiley (1979) and Thiel
(1988).
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Our focus in this chapter is on structural econometric approaches to auctions, with an
emphasis on nonparametric identification. This focus should not be confused with a pre-
sumption that nonparametric estimation methods are always preferred. Approximation
methods are virtually always needed for estimation in finite samples, and parametric es-
timators will be most appropriate in some applications. However, as emphasized at least
since Koopmans (1945), the question of what the observables and the assumed underly-
ing structure are capable of revealing (i.e., the identification question) is fundamentally
distinct from the choice of statistical methods used in practice for estimation. When
identification holds nonparametrically, one can be confident that estimates have valid
interpretations as finite sample approximations and are not merely artifacts of unverifi-
able maintained assumptions. Equally important for our purpose, because a discussion
of nonparametric identification makes clear how the structure of a model and the ob-
servables enable (or, in some important cases, fail to enable) estimation, it also provides
an ideal perspective for discussing recent developments in empirical approaches to auc-
tions. Our goals are to describe key insights from a wide range of recent work in this
area in a unified framework, to present several new results, and to point out areas ripe
for exploration.

We focus on two auction formats that are dominant in practice: first-price sealed-
bid auctions and ascending (or “English”) auctions. First-price auctions are particularly
prevalent in government procurement — a common source of data in applied work. Our
discussion of first-price auctions will include the closely related Dutch auction. As-
cending auctions, in several variations, are the most frequently observed in practice.
They are widely used in sales of antiques, art, timber, and in Internet auctions.z As we
will see below, each type of auction presents different econometric challenges. We will
also examine extensions to other environments, including multi-unit and multi-object
auctions. We consider a wide range of underlying structures of bidder demand and in-
formation, as well as a range of types of data one may encounter in applications. We
discuss identification, testable restrictions, and a variety of parametric, semi-parametric,
and nonparametric estimation approaches. Much of the recent innovation in the litera-
ture has been on the identification question. In many cases this is because standard
statistical methods can be applied for estimation and testing once identification results
are obtained. This is not always the case, however, and in some cases the development
of methods for estimation has lagged development of identification results. Here and
elsewhere, our discussion will point to a number of opportunities for additional work.

2 Among the auction forms commonly discussed in the theoretical literature, we exclude the second-price
sealed-bid (“Vickrey”) auction, which is closely related to the ascending auction but uncommon in practice.
Some Internet auctions, like those on the eBay site, use a system of proxy bidding that has the flavor of a
second-price sealed bid auction, although in practice bidders usually have the ability to observe and respond
to the bids of at least some of their opponents, as in an ascending auction (see Lucking-Reiley (2000) for
more stylized facts about Internet auctions). Alternative models of Internet auctions are offered by Bajari and
Hortagsu (2003a), Ockenfels and Roth (2006) and Song (2003). We will discuss a structural empirical model
based on the last of these in Section 6.3.4.
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Before proceeding, we first make precise what is meant by identification in this con-
text. Let G denote the set of all joint distributions over a specified set of observable
random variables. Define a model as a pair (IF, I'), where I is a set of joint distribu-
tions over a specified set of latent random variables and I” is a collection of mappings
y :F — G. In this chapter, F will typically be the set of joint distributions of bidder
valuations and information (“types”) satisfying certain statistical properties (e.g., in-
dependence, symmetry, etc.), while I" will consist of a single mapping from the true
distribution of types to a distribution of bids implied by the assumption of Bayesian
Nash equilibrium. Implicit in the specification of a model is the assumption that it
contains the true structure (F, y) generating the observables. A model is said to be
identified (or identifiable) if the observables uniquely determine the true structure within
F, I).

DEFINITION 1.1. A model (F, I') is identified if for every (F, F) € F? and (v, 7) €
2, y(F) =y(F)implies (F,y) = (F. 7).

In some cases, useful inferences can be made even when a model is not identified. In
partially identified models one may be able to identify some components of interest, or
place bounds on components of interest [see, e.g., Manski (1995)]. A separate question
is whether a model places refutable restrictions on observables; i.e., whether the model
is testable. A model is testable if some joint distributions in G cannot be generated by
the model.

DEFINITION 1.2. A model (IF, I') is testable if UyeF, rep ¥ (F)is astrict subset of G.

With these definitions in hand, we can preview some of the themes that emerge in
what follows. First, a remarkable number of positive nonparametric identification results
can be obtained by exploiting the relationships between observables and the primitives
of interest that are implied by economic theory. Richer statistical structures (e.g., arbi-
trary correlation) for bidders’ information and/or more limited sets of observables (e.g.,
only the winning bid) create greater challenges, but even here a number of positive re-
sults can be obtained. There are limits to the positive results, however. For example,
identification of models with common values, risk aversion, or unobserved heterogene-
ity can be obtained only with strong a priori restrictions. This is particularly the case in
ascending auctions, where theory provides less guidance on the appropriate interpreta-
tion of the observed bids.

A second major theme is the need to make modeling choices and the importance
of testing these choices when possible. Often a particular set of assumptions (e.g., in-
dependent private values, risk neutral bidders) is postulated for particular application
based on characteristics of the relevant market. Modeling choices can have important
implications for the conclusions one reaches. Ideally, researchers would like to com-
bine economic justifications for modeling choices with statistical evidence supporting
these choices and/or an analysis of the range of outcomes possible under alternative
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assumptions. We discuss a number of results that clarify when this will be possible.
In many cases some assumptions can be tested while maintaining others. In general
this possibility depends on the auction format (e.g., ascending versus first-price) and
the data configuration (e.g., whether all bids are observed or just the winning bid, or
whether particular types of exogenous variation are present and observable). For exam-
ple, an assumption of private values is testable under some data configurations but not
others (Section 8). Another example arises when the econometrician must make mod-
eling choice regarding the source of observed correlation among bids: this may result
from correlation of bidders’ private information or from common knowledge among
bidders of auction-specific factors affecting all bidders’ valuations. These alternative
models often have different implications for counterfactuals, but it is difficult to distin-
guish between them empirically (Section 6.1.2). Other examples include choices of how
participation is modeled (Section 6.3), and of bidders’ risk preferences (Section 6.4).
Typically, some modeling choices will be testable (particularly in data configurations
that include some type of exogenous variation in the environment — e.g., in the number
of bidders or bidder covariates), while others will not.

Our focus in this chapter unavoidably leads us to ignore many interesting and im-
portant issues given attention in the empirical auctions literature. Fortunately, there are
now several excellent surveys, each with a somewhat different focus, that provide useful
complements to our chapter. Laffont (1997) and Hendricks and Paarsch (1995) provide
early surveys reviewing empirical studies of the implications of equilibrium bidding
in auctions as well as approaches to estimation of the primitives of auction models.
Perrigne and Vuong (1999) survey methods for structural analysis of first-price auc-
tions, including a synthesis of their own extensive contributions (with several coauthors)
to nonparametric identification and estimation of these models. Hong and Shum (2000)
provide an introduction to parametric structural approaches. Kagel (1995) surveys the
extensive work on auctions in the experimental economics literature. Finally, Hendricks
and Porter (in press) provide a recent and extensive review of the large empirical lit-
erature on auctions, covering a wide range of economic questions and econometric
approaches.’

The structure of the chapter can be described as follows. Section 2 describes the
underlying theoretical framework for our initial focus and provides the characterizations
of equilibrium bidding behavior that underlie the econometric approaches that follow.*
In Sections 3 and 4 we then discuss first-price and ascending auctions in the simplest
and most widely considered case of private values, assuming that there is no binding

3 Reiss and Wolak (Chapter 64 in this volume) include a discussion of auctions among several examples
of the structural empirical approach in industrial organization. See also the recent monograph by Hong and
Paarsch (20006).

4 For additional detail, Krishna (2002) provides an excellent synthesis of a large theoretical literature on
auctions. McAfee and McMillan (1987) provide a shorter introduction to much of the relevant theory. Milgrom
and Weber (1982) is a central paper in the early theoretical literature that covers many of the models we
consider. Milgrom (2004) treats some of the newer literature on combinatorial auctions.
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reserve price and that the data available consist of bids from independent auctions of
identical goods. These results provide many of the key building blocks for considering
richer private values specifications, specification testing, endogenous participation, risk
aversion, as well as other types of data in Sections 5 and 6. In Section 7 we take up the
case of common values models, where identification is more difficult and often fails.
This provides one motivation for a discussion of testing for common values in Section 8.
We conclude with two sections on important topics that have been the subject of very
recent work. Section 9 addresses dynamics. Section 10 discusses work in progress on
multi-unit and multi-object auctions.

2. Theoretical framework
2.1. Demand and information structures

Throughout we denote random variables in upper case and their realizations in lower
case. We use boldface to indicate vectors. To emphasize the distinction between latent
variables and observables, we adopt the convention of denoting the cumulative dis-
tribution function (CDF) of a latent random variable Y by Fy(-) and the CDF of an
observable random variable Y by Gy (). Much of the discussion will involve order sta-
tistics. We let Y& denote the kth order statistic from the sample (Y7, ...Y,), with
F ;,k:") (+) denoting the corresponding marginal CDF. We follow the standard convention
of indexing order statistics lowest to highest so that, e.g., ¥ *") is the maximum.

For most of the chapter, the underlying theoretical framework involves the sale of a
single indivisible good to one of n € {n, ..., n} risk neutral bidders, withn > n > 25
Later, when we consider auctions with reserve prices or participation costs, these n
bidders will be referred to as “potential bidders.” We consider risk aversion, sequen-
tial auctions, multi-unit auctions, and multi-object auctions separately below. We let A/
denote the set of bidders, although when bidders are symmetric, n = |A/| will be a suf-
ficient statistic. We let N_; denote the set of competitors faced by bidder i. The utility
bidder i € {1, ..., n} would receive from the good is U;, which we assume to have
common support (denoted supp Fy, (-) or supp U;) for all i. Often U; is referred to as i’s
“valuation.” We let U = (Uy, ..., U,).

Bidder i’s private information (his “type”) consists of a scalar signal X;. We let X =
(X1,..., Xn), x; = infsupp X;, and X; = sup supp X;. Signals are informative in the
sense that the expectation

ElU; | Xi = x;, Xoj =x4]

strictly increases in x; for all realizations x_; of i’s opponents’ signals. Note that be-
cause signals play a purely informational role and any monotonic transformation 6 (X;)

5 Translation to procurement settings, where bidders compete to sell, is straightforward.
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contains the same information as X; itself, the marginal distribution of X; is irrelevant;
i.e., without a normalization on X;, the theoretical model is over-parameterized. It is
therefore desirable (and without loss of generality) to impose a normalization such as®

X; = E[U; | X;].

We will see below that different normalizations will sometimes turn out be more con-
venient.

Except where otherwise stated, we assume that the set of bidders and the joint dis-
tribution Fx y(-; A') of bidders’ signals and valuations are common knowledge. While
these are standard assumptions in the theoretical literature on auctions, in a few cases
(e.g., an ascending auction with private values) these assumptions are inconsequential.
In a first-price auction, these assumptions can be relaxed somewhat; for example, we
consider the possibility that A" is unknown in Section 6.3.3.

This framework is a generalization of that studied in Milgrom and Weber’s (1982) in-
fluential theoretical exploration of auctions and nests a wide range of special cases, each
involving different assumptions about bidders’ private information. One key distinction
is that between private values (PV) and common values (CV) models.

DEFINITION 2.1. Bidders have private values if E[U; | X1 = x1,..., Xn = x3] =
E[U; | X1 = xi] for all xq, ..., x, and all i; bidders have common values if E[U; |
X1 =x1,..., X, = x,] strictly increases in x; for all i, j, and xj.7

In private values models, bidders do not have private information about the valuations
of their opponents. For the settings we will consider, this is equivalent to assuming bid-
ders know their own valuations (X; = U;). In a common values model, by contrast,
each bidder i would update her beliefs about her valuation U; if she learned an op-
ponent’s signal X ; in addition to her own signal X;. Even in a private values auction
a bidder would like to know her competitors’ private information for strategic reasons.
However, in a common values auction, knowledge of opponents’ signals would alter her
expectation of her own valuation. This is the characteristic of common values auctions
that leads to the “winner’s curse.” Roughly speaking, winning a common values auction
reveals (in equilibrium) to the winner that her signal was more optimistic than those of
her opponents. Rational bidders anticipate this information when forming expectations

6 It s important to avoid confusing this extra degree of freedom in the usual specification of the theoretical
model with issues concerning econometric identification. Since the marginal distribution of X; is irrelevant
in the theoretical model, it is not a primitive whose identification should even be considered.

7 Alternatively, one might define private and common values in terms of the conditional distributions
Fy,(U; | X1,..., Xn) and Fy, (U; | X;). For our purposes a definition in terms of conditional expectations
is adequate. Note that for simplicity of exposition our definition of common values rules out cases where the
winner’s curse arises for some realizations of types but not others.
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of the utility they would receive by winning.® Note that common values models incor-
porate a wide range of structures in which information about the value of the good is
dispersed among bidders, not just the special case in which the value of the object is
identical for all bidders (defined as pure common values below).”

A second way in which this general framework can be specialized is through re-
strictions on the joint distribution of signals. Common assumptions are independence
or affiliation.'® Note that dependence (or affiliation) of signals is neither necessary nor
sufficient for common values. Finally, a common restriction in the literature is symme-
try, i.e., that the joint distribution Fx y(X1, ..., Xn, U1, ..., Uy; N') is exchangeable
in the bidder indices. For clarity, we will often explicitly refer to models as “symmet-
ric” or “asymmetric.” Combining these types of restrictions leads to a number of special
cases that have been considered in the literature, including:

Independent Private Values (IPV): private values with U; independent;
Symmetric Independent Private Values: private values with U; i.i.d.;
Affiliated Private Values (APV): private values with (U, .. ., Uy,) affiliated;
Pure Common Values: common values with U; = Uy Vi,

Mineral Rights: pure common values with signals i.i.d. conditional on Up.

Finally, for a few results we will make an additional assumption of exogenous vari-
ation in the number of bidders, which holds when variation in the set of bidders is
independent of the joint distribution of bidders’ valuations and signals.

DEFINITION 2.2. A bidding environment has exogenous variation in the number of
bidders if n > n and, for all N, N’ such that N' ¢ N7 C {1,...,7n}, Fxu(xN) is
identical to the marginal distribution of {(U;, X;)};eAr obtained from Fx y(-; N7).

2.2. Equilibrium bidding

We restrict attention to econometric approaches that exploit the structure of equilibrium
bidding to obtain identification or testable restrictions. Hence we must first provide the

8 Note that the presence of the winner’s curse does not imply that winners regret winning; rather, the winner’s
curse refers to the “bad news” [Milgrom (1981)] about the object’s value contained the information that one
has won the auction. Rational bidders anticipate this.

9 While our terminology follows, e.g., Klemperer (1999), Athey and Haile (2002), and Haile, Hong and

Shum (2003), there is some variation in the terminology used in the auction literature. Early on, the term
“common values” was sometimes used in the way we use it but sometimes used to refer to the special case
we call “pure common values.” Similarly, “affiliated values” was sometimes used for the class of models we
call “common values,” despite the fact that purely private values can be affiliated (see below). Recently some
authors [e.g., Krishna (2002)] have adopted the term “interdependent values” to refer to the broad class of
models we refer to as common values models.
10 The random variables Y = (Y1,...,Y,) with joint density fy(-) are affiliated if for all y and y/,
ANOVY)fy(YAY) = fy(y) fy '), where V denotes the component-wise maximum, and A the component-
wise minimum. See Milgrom and Weber (1982) for additional discussion. Note that affiliation allows inde-
pendence as a special case.
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necessary characterizations of equilibrium. Following the literature, we generally re-
strict attention to (perfect) Bayesian Nash equilibria in weakly undominated strategies.
We focus on equilibrium in pure bidding strategies B; (-; N), i = 1,..., n, mapping
each bidder’s signal (and, implicitly, any public information) into a bid. When bid-
ders are ex ante symmetric we further restrict attention to symmetric equilibria, so
that B;(-) = B(-) Vi. Below we discuss conditions under which there are other equi-
libria in first-price auctions. We will denote a bidder i’s equilibrium bid by B;, with
B ={Bi,..., By}. We let b; = inf[supp[B;]] and bi = sup[supp[B;1l.

2.2.1. First-price auctions

In a first-price sealed-bid auction bidders submit bids simultaneously, and the good is
awarded to the high bidder at a price equal to his bid. If there is a reserve price, r, the
seller has committed to consider only bids of at least r. For first-price auctions we make
the following additional assumptions:

ASSUMPTION 2.1 (First-price auction assumptions).
(1) For all i, U; has compact, convex support denoted supp Fy; (-) = [u, u].
(i1) The signals X are affiliated, with supp Fx(-) = x;’ZI supp Fy; (+).
(iii)) Fx(-) has an associated joint density fx(-) that is strictly positive on the interior
of supp Fx(-).

The following result summarizes existence and uniqueness results for this model.
This will enable us to then proceed to the key characterization results used for empirical
work.

THEOREM 2.1. Consider the first-price auction.

(i) (Existence in strictly increasing strategies) An equilibrium exists in pure, non-
decreasing strategies, where for each i, supp[B;] C supp[max;ecan; Bjl. In
addition, a pure strategy equilibrium in strictly increasing strategies exists in all
models except in the CV model with asymmetric bidders and signals that are not
independent; in the latter case, strategies are strictly increasing except that at
most one bidder may bid inf[supp[ B"" 1] with positive probability.!!

(i1) (Uniqueness) In a PV model with either (a) independence (IPV), or (b) sym-
metry, if fx(-) is continuously differentiable there is a unique equilibrium. This
equilibrium is in pure, strictly increasing, and differentiable strategies.'?

I See Athey (2001) and Reny and Zamir (2004) for existence of equilibrium in nondecreasing strategies,
and Milgrom and Weber (1982), McAdams (2007) and Lizzeri and Persico (2000) for the characterization.
McAdams (2007) argues that in any monotone equilibrium, strategies are strictly increasing except that at
most one bidder may, with positive probability, choose the lowest bid that wins with strictly positive proba-
bility, if such a bid exists. In PV auctions it is possible to rule out mass points at the reserve price, if it binds,
or at the bottom of the value distribution if the reserve price does not bind.

12 In the IPV case, all equilibria are in monotone strategies; see Lebrun (1999), Bajari (2001), and Maskin
and Riley (2003) for uniqueness results. Milgrom and Weber (1982) show existence of the equilibrium for
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(iii) (Uniqueness in monotone class for symmetric models) If we restrict attention
to pure strategy equilibria in nondecreasing strategies, then when bidders are
symmetric and fx(-) is continuously differentiable there is a unique equilibrium,
which is in symmetric, strictly increasing, and differentiable strategies."

All of our positive identification results for common values models rely on symmetry,
so in our discussions of CV auctions we will proceed under the assumption that strate-
gies are strictly increasing. For the first-price auction models for which uniqueness has
not been established, we will also assume that all observations in a given data set are
derived from the same equilibrium.

As shown by Milgrom and Weber (1982), a bidder i participates if and only if his
signal exceeds a threshold value

W) =inffxi: E[U;

X; = x;, max ngr]>r}. @.1)
JEN_;
When there is no reserve price, let x;" (M) = x;. Here, expectations over others’ bids

represent equilibrium expectations. A bidder i who has observed signal X; = x; >
x}(\V') solves

max(E[Ul-
b

X,‘ = Xj, jl;lf\l/): Bj < b:l — b) Pr(jren/?/i Bj < b ‘ X,’ = x,'), (22)

where we adopt the convention that B; < r for any bidder j who does not participate.
Define

Ui (xi, mi; N') = E[Ui

X,-:x,- max B-:mi].
' JEN_; !

This is bidder i’s expectation of his valuation conditional on his own signal and the high-

est competing bid. This highest competing bid is informative because, in equilibrium,
bids are strictly increasing in signals. In particular, if we let

vi (xi, yii N) = E[Ui ‘ Xi =x;, j?/?/)f,- Bj = ﬁi(yi;J\f)] (2.3)

APV auctions. McAdams (2007) shows that for a nonmonotone equilibrium to exist, both independence of
signals and private values must be relaxed. He shows that with private values or independent signals, all
equilibria are outcome-equivalent to a monotone equilibrium; i.e., bidding strategies are identical to those in a
monotone equilibrium except possibly for subsets of types whose equilibrium bids win with probability zero.
McAdams (2004b) shows that if bidders are symmetric, there is a unique equilibrium within the monotone
class. So together, these results imply that for the symmetric PV model, there is a unique equilibrium.

13 See footnote 12 for a discussion of when nonmonotone equilibria can exist. McAdams (2004b) proves
uniqueness within the monotone class. For characterizations, see Milgrom and Weber (1982). See also Lizzeri
and Persico (2000), who show that when the density of the value distribution is C ! in two-bidder first-
price auctions with a binding reserve price, among monotone pure strategy equilibria there exists a unique
equilibrium in strictly increasing, differentiable strategies, except that one bidder may choose the reserve price
with positive probability.
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then
vi(xi, yis N) = 0 (xi, Bi is N N).

The expectation v; (x;, x;; ') will play an important role below. This expectation is
taken conditioning both on i’s own private information and on the event that i’s equilib-
rium bid is “pivotal,” i.e., that infinitesimal deviations from his equilibrium bid would
change the outcome of the auction.

Let

G m;1B; (milbis; N') = Pr(mixBj < my
J#i

B; =bi,N)

denote the distribution of the maximum equilibrium bid among i’s opponents condi-
tional on i’s own equilibrium bid and the set of bidders NV Let g M;|B; (m;|b;; N) denote
the corresponding conditional density, which exists and is positive for all b; and almost
every m; in the support of B; under the assumptions outlined above. Note that with
strictly increasing equilibrium bidding, conditioning on {B; = b} is equivalent to con-
ditioning on {X; = /31._1 (b; N')}. Bidder i’s bidding Problem (2.2) can then be rewritten

b

In?X/ [0 (i, mis N') — b gay s, (mil B (xis N); N) dm.
b —00

This objective function is differentiable almost everywhere. Differentiating with respect

to b, we see that for almost every signal x; of bidder i, a necessary condition for b; to

be an optimal bid (i.e., for 8; (x;; N') = b;) is

G wm,1B; (bibi: N')
gm;1B; (bilbis N)

Equation (2.4) characterizes an equilibrium bid as equal to the bidder’s expec-

tation of his valuation (conditional on being pivotal) less a strategic “markdown”

Gy 1B: hl' hl' ;N . " .
%.14 This first-order condition does not always lead to an analytic solu-

vi (xi, xi; N) = by + =& iy N). (2.4)

tion for equilibrium bidding strategies. With ex ante symmetric bidders, however, we
can write

vi(x, x; N) =v(x,x;n) = E[U,-

X,‘ = max Xj = x]
J#i

and x/ (V) = x*(n) Vi. In that case, Milgrom and Weber (1982) have shown that the

equilibrium bid function has the form

X

B(x:n) =rL(x*(n)|x;n)+/ v(t, t; n) dL(t|x; n) (2.5)

x*(n)

14 This is analogous to the markdown of an oligopsonist, which bases its price on the equilibrium elasticity of
its residual supply curve; in the auction model, Gy, |5, (b |b;; N') plays the role of the residual supply curve.
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for x > x*, where

Lt n) = eXp<— " hGlzn dz)

¢ Fi(zlzin)
and Fi(-|x; n) is the distribution of the maximum signal among a bidder’s opponents
conditional on the number of bidders and on his own signal being x.

Before proceeding, we pause to make two observations about the support of the equi-
librium bid distribution.'

THEOREM 2.2. In the IPV model of the first-price auction, supp|B;] is the same for
alli.

PRrOOF. With independence, the inverse bid function for bidder i can be written

1

gp, (bi)
keN\i T, (b))

§(bi; N) =b; +

If there are two bidders, the result is immediate given that the value distributions have
the same support. Now suppose n > 2 and b; < b;. We know that £;(b;; N') must
be continuous at b;: otherwise (given strictly monotone strategies) we would contradict

our assumption that valuations are drawn from a convex set. Then, note that
- 1

o it &)
8By (bi 8B (bi
Zke}\/\i GBk(};i) ZkEN\{i,j} GBk(}_)i)

n=&WbiN)=>b; + =&;(bi; N).

But §; (bi; N') > i contradicts the assumption that U; has the same support for all i.
Given the properties established in Theorem 2.1, standard arguments then show that
supp[B;] = [max{r, u}, b] Vi. U

Outside of the IPV model, it is not known in general whether bid distributions have
the same support for all bidders when bidders are asymmetric. We do know that if we
relax the assumption that valuations have common support, the bids may or may not
have the same support.'©

Note that the theory also implies that the upper bound of the bid distribution is closely

related to features of the distribution of valuations. In the symmetric IPV model,
Gp(B;;n
U =B; + #
(n — 1Dgp(Bi;n)

15 See Lebrun (1999) for an alternative proof.

16 In Section 5.1 we give an example where valuations have different supports but bids have identical
supports. To see an example where bid distributions have different supports, suppose that there are three
bidders. Fyy, (u1) = Suy — 18u? for u; € [0,5/41, while for i € {2.3), Fy, () = 7554 + 2u; —

2,/8 —Tu; +2u; ) for u; € [0,3/2] and Fy. (u;) = gu; for u; € [3/2,3]. For this example,
V2 P s gu; f i 1
Gp (b)) =2b; — b% for by € [0, 1], while for i € {2,3}, Gp, (b;) = bi2/4 for b; € [0, 2].
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SO
1 b n—2 1 -
ElU;]= E[Bi]+ —— Gpg(b;n)db = ——E[B;]+ ——b.
n—1J n—1 n—1

Thus, the mean \ialuation is a linear function of the mean bid and b. When n = 2, this
yields E[U;] = b. The average “markdown” for a bidder in the symmetric IPV model
is given by

1 -
E[U; — B;i]1 = nTl(b — E[B;]).

Although it seems that these kinds of relationships might be useful, they have not to our
knowledge been explored in the econometric analysis of auctions.

2.2.2. Ascending auctions

The standard model of an ascending auction is the so-called “clock auction” or “but-
ton auction” model of Milgrom and Weber (1982), where the price rises continuously
and exogenously. Bidders indicate their willingness to continue bidding continuously
as well, for example by raising their hands or depressing a button as the price rises. As
the auction proceeds, bidders exit observably and irreversibly (by lowering their hands,
releasing their buttons, etc.) until only one bidder remains. This final bidder obtains the
good at the price at which his last opponent exited; i.e., the auction ends at a price equal
to the second highest exit price (“bid”) b"~ 1),

The participation rule for an ascending auction is identical to that for a first-price
auction. An equilibrium bidding strategy specifies a price at which to exit, conditional
on one’s own signal and on any information revealed by previous exits by opponents.
With strictly increasing bidding strategies, the price at which a bidder exits reveals his
signal to others. So in a common values auction, an exit causes the remaining bidders to
update their beliefs about their valuations; hence, the prices at which bidders plan to exit
change as the auction proceeds. In a private values auction there is no such updating,
and each bidder has a weakly dominant strategy to bid up to his valuation, i.e.,

Bi(xi; N') = E[U; | Xi = xi] = x; = u;. (2.6)

In common values auctions there are multiple equilibria, even with ex ante symmetric
bidders and restriction to symmetric strictly increasing weakly undominated strategies
[Bikhchandani, Haile and Riley (2002)]. In any such equilibrium, however, if i is one
of the last two bidders to exit, his exit price b; is

E[Ui | Xi=xi;, Xj=x;Vj ¢ {iU&}, Xp =xx Vk € &], .7)

where &; denotes the set of bidders who exit before i. Milgrom and Weber (1982) orig-
inally identified the equilibrium in which all bidders follow (2.7), which reduces to the
weakly dominant strategy (2.6) in the case of private values.
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While the Milgrom—Weber model yields a trivial relation between a bidder’s val-
uation and his bid in a private values auction, we will see that even in this case
identification can present challenges, due to the fact that the auction ends before the
winner bids (exits). Furthermore, in many applications the Milgrom—Weber model may
represent too great an abstraction from actual practice, for example if prices are called
out by bidders rather than by the auctioneer, or if bidders are free to make a bid at any
point in the auction, regardless of their activity (or lack thereof) earlier in the auction.
In Section 4.3 we will discuss an econometric approach that relaxes the structure of the
button auction model.

3. First-price auctions with private values: Basic results
3.1. Identification

We begin by considering the case of private values auctions, assuming that bidders’ val-
uations at each auction are draws from the same joint distribution Fy(-). The primitive
of interest in a PV auction is this joint distribution: it completely characterizes bid-
der demand and information. With knowledge of Fy(-) one can, for example, simulate
outcomes under alternative market mechanisms, assess efficiency and the division of
surplus, and determine an optimal reserve price. The simple idea underlying the struc-
tural approach to PV auctions is to use the distribution of bids observed in a sample of
auctions along with the equilibrium mapping between valuations and bids (the observ-
ables) to learn about Fy(-).

Even when a closed form solution like (2.5) is available, however, it is not imme-
diately clear how one would proceed to use this equilibrium characterization for a
first-price auction to obtain identification. Even in the simplest symmetric IPV model,
the equilibrium bid function takes the form (recall that x; = u;)

f_uoo th(]n—l:n—l)(t) dr
F[(]n—l:n—l)(u)

Bu;n) =

which depends on the unknown distribution Fy (-) of valuations, i.e., on the object one
would like to estimate.

Several approaches were initially taken to address this problem within the symmetric
IPV model. Following Smiley (1979) and Paarsch (1992a), early work focused on para-
metric specifications of Fy(-) admitting simple closed form equilibrium bid functions
that made it feasible to derive likelihoods or moment conditions.!” Laffont, Ossard and
Vuong (1995) proposed an approach combining parametric assumptions with a sim-
ulation based estimator that is made feasible in the symmetric IPV framework by the
revenue equivalence theorem [e.g., Myerson (1981)]. Bajari (1997) proposed a Bayesian

17 Smiley (1979) considered only common values models.
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approach applicable in the more difficult case of asymmetric independent private val-
ues. The role of the parametric distributional assumptions in these empirical approaches
was not initially clear.

An important breakthrough due to Guerre, Perrigne and Vuong (2000) came from the
simple but powerful observation that equilibrium is attained when each player is acting
optimally against the distribution of behavior by opponents.!® When bids are observ-
able, both the distribution of opponent behavior and the optimal (equilibrium) action of
each bidder are observable, enabling identification of the latent joint distribution of bid-
der valuations under fairly weak restrictions. In particular, the first-order condition (2.4)
can be written

G m; B, (bilbi; N)
gum; B, (bilbis N') -
Thus, each bidder’s latent private value can be expressed as a functional of his equilib-

rium bid and the joint distribution of the competing equilibrium bids he faces.'® In fact,
the function &; (b;, N') = b; + %7) is the inverse of bidder i’s equilibrium bid

uj = b; + 3.1

function, the mapping needed to infer valuations from bids. Since the joint distribution
of bids is observable, identification of each private value u; (and, therefore, of the joint
distribution Fy(-)) follows directly from (3.1). Formally,

Fy) = Gp(& "1, V), o & e, N)). (3.2)

This proves the following identification result, combining results from Guerre, Perrigne
and Vuong (2000), Li, Perrigne and Vuong (2002), and Campo, Perrigne and Vuong
(2003).

THEOREM 3.1.
(1) Suppose all bids are observed in first-price sealed-bid auctions. Then the sym-
metric affiliated private values model is identified.
(i) Suppose all bids and bidder identities are observed in first-price sealed-bid auc-
tions. Then the asymmetric affiliated private values model is identified.

3.2. Estimation

For purposes of estimation, suppose one observes bids from independent auctions
t =1,...,T. We will add an auction index ¢ to the notation above as necessary. For

18 This approach was first described in print by Laffont and Vuong (1993), who attribute the idea to an early
draft of Guerre, Perrigne and Vuong (2000).

19 Note that in general this kind of approach relies on there being a unique equilibrium or on an assumption
that the equilibrium selected is the same across observations. Otherwise the observed distribution of opponent
bids would be a mixture of those in each equilibrium, and would not match the distribution characterizing a
bidder’s beliefs in a given auction.
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example, b;; will denote the realized bid of bidder i at auction 7. Let Tns denote the
number of auctions in which  is the set of bidders. We let T,, = > _ 5. Wi=n TA- We
assume that foralln =n...n, T, - ooand T — oo. When we consider asymmetric
settings, we consider only sets A/ for which Ty — oo.

A two-step estimation procedure can be employed, closely following the identifi-
cation result in Theorem 3.1. In the first step, estimates of each m%@ are
obtained from the observed bids. These estimates are then used with thation (3.1) to
construct estimates of each latent valuation u;. This pseudo-sample of valuations (often
referred to as a sample of “pseudo-values™) is then treated as a sample from the true
distribution Fy(-), subject to first-stage estimation error.

In principle each step could be parametric or nonparametric. As noted by Perrigne
and Vuong (1999), a challenge in a fully parametric method is the need for internal
consistency between the parametric families chosen for the distributions of bids and of
valuations, since these are related by the equilibrium bid function. This issue would be
avoided if only one of the two steps were treated parametrically. Jofre-Bonet and Pe-
sendorfer (2003) and Athey, Levin and Seira (2004) follow this approach, motivated by
a desire to include covariates in a parsimonious way.?® Fully parametric methods based
on maximum likelihood or moment conditions (rather than the two-step “indirect” ap-
proach discussed here) have been explored by, e.g., Paarsch (1992a, 1992b), Donald
and Paarsch (1993, 1996), and Laffont, Ossard and Vuong (1995). In practice the ap-
plicability of these methods has been limited to distributional families leading to simple
closed forms for equilibrium bid functions and/or to the symmetric independent private
values setting. As first explored by Donald and Paarsch (1993), a violation of a standard
regularity condition for maximum likelihood estimation arises in a first-price auction,
leading to nonstandard asymptotic distributions [see also Donald and Paarsch (1996),
Chernozhukov and Hong (2003), and Hirano and Porter (2003)].

Below we describe the fully nonparametric estimators that have thus far been pro-
posed in the literature.”!

3.2.1. Symmetric bidders

Consider first the case of symmetric bidders, where G, g, (b|b; N') can be written
G m|B(b|b; n) Vi. Following Li, Perrigne and Vuong (2002), let

Gum,p(m,b;n) = Gy p(m|b; n)gp(b; n)

20 Note, however, that theory predicts that bid distributions should have compact support. To be consistent
with theory, an upper bound on the support of the bid distributions should be incorporated in estimation.

21 Thus far, the literature has focused on kernel estimators. One possible alternative is sieve estimation [e.g.,
Chen (2007)]. As we discuss below, such an approach might have a practical advantage in environments with
observed auction heterogeneity.
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and

gm,B(m; b;n) = gy p(m|b; n)gp(b; n)

where gp(-) is the marginal density of a bidder’s equilibrium bid, given the number of
bidders n. Note that here we depart from our usual notational convention, since G s g (-)
is not the joint distribution of (M, B) but its derivative with respect to its second argu-
ment. Let

G (b, b n) ! ET: ; x(2=bu 1 b } (3.3)
,b:n) = mi; < b,ny =ny, .
M,B l’lTnl’lG e hG it t
T n
~ 1 b — bit b — mjy
b,b;n) = 1 =n}K , , 3.4
8m,B( n) nT,,h§ ;:1 ;:1 {n: = n} ( ™ hy ) (3.4)

where M;,; denotes the maximum of i’s opponents’ bids at auction ¢, K (-) is a kernel,
and hg and hg are appropriately chosen bandwidth sequences. Under standard condi-
tions, /G\M,B(b, b; n) and gur p(b, b; n) are consistent estimators of Gy (b, b; n) and
gm.B(b; b; n). Noting that

Gu,g(b,b;n) Gy p(blb;n)

gm,B(b,b;n)  guB(blb;n)

Gu.p(b,b;n)
8gm,B(b,b;n)

£ G (blb;n)

1S a consistent estimator o -
gm|B(blb;n)

we see that . Equation (3.1) then im-

plies that
G 5 (bir, bir:
ﬁ” = b, + AM,B( it» bir; n)
gm,B(bir, birsn)

is a consistent estimate of the latent valuation u;, that generated the observed bid b;;.
Naively treating each i1;; as a draw from Fy(-) might suggest a kernel density esti-
mator of the form

T N N
- 1 Uy Up—lpt
fu(ul,...,un)=Tnh,}ZKf< e gt =)

=1

where K ¢(-) is a multivariate kernel and /4 is a bandwidth. Li, Perrigne and Vuong
(2002, Proposition 2) show that with bandwidths 4, h,, and & ¢ that vanish at appro-
priate rates, under standard smoothness conditions fU(~) is in fact a uniformly consistent
estimator of fy(-) on any inner compact subset of its support. The restriction to the re-
gion of support away from the boundaries follows from the usual problem of asymptotic
bias at the boundaries with kernel estimates.

Li, Perrigne and Vuong (2002, pp. 180-181) suggest triweight kernels (using prod-
ucts of univariate kernels for the multivariate kernels) and a standard rule of trimming
the pseudo-values associated with bids within one bandwidth of either boundary of the
bid data. The most important practical question is the choice of bandwidth. Guerre,
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Perrigne and Vuong (2000) and Li, Perrigne and Vuong (2002) suggest following Sil-
verman’s (1986) “rule of thumb.” To our knowledge, data driven bandwidth selection
procedures have not been explored. Guerre, Perrigne and Vuong (2000) also point out
that the assumption of exchangeability can be imposed by averaging fU Wy, ..., uy)
over all permutations of the bidder indices. When there is exogenous variation in the
number of bidders, it may be useful to further exploit this restriction by optimally com-
bining information from auctions with different numbers of bidders. As we discuss in
more detail below, the overidentifying exchangeability restriction or exogenous varia-
tion in participation can also serve as a basis for specification testing.

An important but largely unresolved question is the asymptotic distribution of the
estimator fy(-). The challenge is to appropriately account for the estimation error aris-
ing from the first-stage estimation of the markdown component of the equilibrium bid
functions [Guerre, Perrigne and Vuong (2000)]. Of course, one is often interested in
confidence intervals on an estimate of some functional of fy(-), rather than on fU(-)
itself. For example, the goal of the empirical exercise may be to determine optimal
selling procedures, to assess efficiency, or to describe how valuations are affected by
various factors. For the symmetric case, Haile, Hong and Shum (2003) have shown
that the estimates i;, themselves have asymptotic normal distributions, as do all fixed
quantiles (and many other functionals) of their empirical distribution. In practice, a
bootstrap procedure has sometimes been applied for inference on these functionals of
Fy(+) or others expected to have a normal limiting distribution [e.g., Hendricks, Pinkse
and Porter (2003), Haile, Hong and Shum (2003), Krasnokutskaya (2004)]. Outside the
IPV model, a block bootstrap is used, reflecting the assumption that auctions are inde-
pendent, whereas bids may be correlated within an auction. In particular, to construct
one bootstrap sample of bids for a given value of n, auction indices s are sampled with
replacement from the set {r: n; = n}. All bids from each selected auction s are then
included in the bootstrap sample. Haile, Hong and Shum (2003) have also explored the
use of subsampling.

In the special case of (symmetric) independent private values, the joint distribution
Fy(+) is a product of identical marginal distributions, Fy (-), and the first order condi-
tion (3.1) simplifies to

u=p—CBEN (3.5)
(n—1gp(b;n)
where G p(-; n) is the marginal distribution of equilibrium bids in auctions with n bid-
ders, and g (-; n) is the associated density. Because G g (-; n) and gp (-; n) are univariate
functions, this simplifies estimation. Let

T n
~ 1
Gybim) = —— > Mbii <b, ny=n},
o
n

[ b — b;
Gp(byn) = > Y K = )1{n, = n},
gp(b; n) WTh 2 ( hy ) {n; = n}

i=1
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G g (bir; 1)
(ny — 1gp(bis; ny) ’
where K (-) is a kernel (satisfying standard conditions) and /4 is an appropriately chosen
bandwidth sequence.?? Guerre, Perrigne and Vuong (2000) show that with appropriately

chosen bandwidth sequence / 7, one then obtains a uniformly consistent estimator of
Jfu (-) from the kernel density estimator

fow = = anz (”‘”)

t=1 i=l1

ujp = bj +

3.2.2. Asymmetric bidders

Extending the approach above to the case of asymmetric bidders is straightforward,
but more data intensive. With symmetric bidders, estimation of the distribution of op-
posing bids (and the markdown term % this distribution implies) is performed
separately for each value of n. This reflects the fact that variation in n changes the dis-
tribution of the maximum opposing bid and, therefore, the equilibrium bidding strategy
that is inverted to recover private values from the observed bids. With asymmetric bid-
ders, variation in the identities of opposing bidders can have a similar effect, even when
the number of opponents is held constant. Depending on the nature of bidder asym-

metries, different approaches will be taken, although the general principle is clear: to

. G bilbisNp)
estimate the markdown %'— for a bidder i in auction ¢, the relevant sample is

the set of auctions s in which G 5, (:|; Ny) = G, (|3 No).

In the most general case, each bidder is allowed to draw her valuation from a different
distribution and each set of bidders N is treated separately. Again let M;, denote the
maximum bid among i’s opponents at auction t. Letting 7y, denote the number of
auctions in which the set of bidders is \; > i, one could let

T
~ 1 bir — b;
G, (bir, bis; Ny) = T §K<”TG”)1{"M < by, Ny =Ny},
d —b bis — m;
& pbir, bis N) = ——= Y 1N, = M}K( - )K( = )
Tn,h g —l hg hg

22 See Guerre, Perri gne and Vuong (2000) for details. They also propose kernel smoothing over the different
values of n in estimating each G g(-; n) and g(-; n) rather than the pure “binning” approach described here.
Asymptotically there is no difference and, since N is discrete, kernel smoothing is a generalization. In finite
sample, kernel smoothing that is not equivalent to binning will utilize bids from auctions with n” # n bidders
% in (3.5). Whether this is desirable will depend on the data available,
although we are not aware of a careful analysis of this question.

to estimate the markdown
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and

GM,B(bin bir; Nb)
gm,B(bir, bir; Ny)

to obtain consistent estimators under standard conditions. In practice, however, this ap-
proach may require a great deal of data, since many observations will be needed for
each set A/ considered.

In some cases, one may be able to categorize bidders into a smaller set of heteroge-
neous classes, assuming exchangeability within each class. This structure can lead to
significant practical advantages, as it allows use of substantially more data for each es-
timated pseudo-value. For example, Campo, Perrigne and Vuong (2003) studied “wild-
cat” auctions for mineral extraction rights on the US outer-continental shelf, where bids
may come from “solo” bidders (a single firm) or *“joint” bidders (more than one firm,
legally bidding as one).?? This leads them to consider the case of two classes of bidders,
I and II. The first-order condition for a class-I bidder in an auction in which the set of
bidders is A/ can be written

Gly g1, bi; N)

up=by+ —— . (3.6)
gim(bl, b N)

ujy = biy +

Define the relation =L guch that N; =M A holds iff M and N have the same
number of bidders, n' and nH from each class. Let TI I Zt_l 1{N; =M ). Now

M 5 (b1, br; N') can be estimated by

Gly (b, b; N)
T N

ZZ <b b”)l{m,s<b Ny =M A i e class T}

s=1i=1

T/I\/I Iy hg x n!
Analogous adjustments are made to an estimator for g}w 5 (b, b; N) and to the first-order

condition for a class-II bidder [see Campo, Perrigne and Vuong (2003, pp. 186-187)
M 5 (LN
G )

all auctions ¢ with N; =" A/. Furthermore, the sample of bids is cut less finely across

bidders than in the completely general case.

Note that we have treated asymmetries as resulting from differences in the distribu-
tions from which bidders draw unobservables. In some cases, it may be more natural
that asymmetries arise instead from observable covariates Z; that are idiosyncratic to
each bidder — e.g., distance to a construction site [e.g., Bajari (1997), Flambard and

for details]. Note in particular that in estimating one can use data from

_LII

23 Athey, Levin and Seira (2004) provide another example, treating loggers and sawmills as two different
classes of bidders at timber auctions.
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Perrigne (2006)]. Conditional on having the same value of the covariates, bidder valua-
tions may still be exchangeable. Without further restriction, this is similar to the case in
which bidders fall into discrete categories; indeed, it is exactly the same if the covariates
are discrete. In the case of continuous covariates, standard smoothing techniques would
lead to similar approaches for estimating the joint distribution Fx y(-|Z1, ..., Z,). In
Section 6.2.1 we will see how the presence of bidder-specific covariates can actually aid
identification in some cases.

3.3. Incomplete bid data and Dutch auctions
3.3.1. Independent private values

The results above exploited the assumed observability of all bids from each auction. In
some applications, however, not all bids are available. For example, for some auctions
only the transaction price B”™ is recorded. One example is a Dutch auction, where
the auctioneer starts with a very high price and lowers it continuously until one bidder
is willing to take the good at the current price. Although a Dutch auction is seemingly
different from a first-price sealed-bid auction, the two formats are strategically equiv-
alent (assuming the same information is observable prior to bidding).?* Since a Dutch
auction ends as soon as the winner makes his bid, only the winning bid can be observed.
We will see that in some cases the winning bid is sufficient for identification. In other
environments, only a partial set of bids may be available. For example, in a procure-
ment setting, the buyer might retain information regarding the best losing bid in case
the auction winner defaults. Viewed somewhat differently, identification results for the
case of incomplete bid data can clarify how much information one would need to collect
to create a useful data set.

In an asymmetric IPV first-price (or Dutch) auction, identification of each marginal
distribution G p, () from observation of the winning bid and winner’s identity is formally
equivalent to identification of the well known competing risks model with indepen-
dent nonidentically distributed ri sks.2> For that model, nonparametric identification was
shown by Berman (1963). Since knowledge of each G p, (-) completely determines the
distribution of

Gwm, B (Bi|Bi; N)
gm;|B; (Bi|Bi; N)

B +

24 Brendstrup and Paarsch (2003) point out that in a Dutch auction the set of actual opponents may be observ-
able before the bidding decision is made. With a binding reserve price that creates a distinction between the
potential bidders and actual bidders (see Section 6.3 for definitions), this destroys strategic equivalence. The
basic approach for first-price auctions can still be applied, however, if the distribution of the actual bidders’
valuations (which reflects truncation at the reserve price) is the object of interest. See the related discussion
in Section 6.3.1.

25 The data generating process mapping bids to observables is formally identical to that in a complementary
risks model, where failure of all components triggers the observable system failure, and one observes the
identity of the last component to fail. This is isomorphic to the competing risks model.
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identification of the marginal distributions Fy;, (-) then follows. This gives the following
result from Athey and Haile (2002).

THEOREM 3.2. Suppose that the transaction price and the number of bidders (and, if
bidders are asymmetric, the set N and identity of the winner) are observed in first-price
auctions with independent private values. Then Fy(-) is identified.

To gain some intuition, consider the symmetric case, where the observable transaction
price B has distribution Ggm)(b), G, (-) can be written as G(-), and

Gy Gy _n—1< Gp(b) )
gy ngs®GE®™ T n \(1—Dgp®))’

As first observed by Guerre, Perrigne and Vuong (1995), identification then follows
from (3.5).

In the asymmetric case, the derivation of Berman’s (1963) equation (2) [see also
Prakasa-Rao (1992, Theorem 7.3.1 and Remarks 7.3.1)] yields the relation (fixing N")

b [ 1 -1
G, (b)) = exp{/ (Z G}”@)) dGY (s) } (3.8)
o\ 5

where G}’ (b;) = Pr(B; < bi, Bi > Bj Vj). Since each G}"(b;) is observable, each
G g, (b;) is identified. The marginal distributions G p; (-) uniquely determine the under-
lying distributions Fy, (-) through the first-order condition (3.1) as in the case in which
all bids are observed.

An immediate implication of Theorem 3.2 is identification from the transaction price
in a Dutch auction.

(3.7)

COROLLARY 3.1. Suppose that the transaction price and the number of bidders (and,
if bidders are asymmetric, the set N and the identity of the winner) are observed in
Dutch auctions with independent private values. Then Fy(-) is identified.

As suggested by Laffont, Ossard and Vuong (1995), the requirement that n be observ-
able by the econometrician may fail in some Dutch auctions, where one might expect
only the transaction price (i.e., the only bid made in the auction) to be recorded. It
should be clear that without knowledge of n, knowledge of Gg”’)() is insufficient to
determine even G 5(-).20

Extending the estimation approaches described in the preceding sections to cases in
which only the transaction price (winning bid) is observed is straightforward in the sym-
metric case, where (3.7) can be used. In the asymmetric case, Brendstrup and Paarsch

26 Laffont, Ossard and Vuong (1995) suggest an approach for estimating n when it is unknown but fixed.
They assume that identification follows from a parametric distributional assumption.
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(2003) have recently proposed substituting the empirical distribution function and a
kernel density estimator for, respectively, G}(s) and ng; © in Equation (3.8). The
close relation of the model to the competing risks model suggests that other nonpara-
metric estimators such as the Nelson—Aalan or Kaplan—Meier estimators [e.g., David
and Moeschberger (1978), Andersen et al. (1991)] might also be used to estimate
each G, (). Once these distributions are estimated, one might then simulate bids from
these estimated distributions in order to estimate pseudo-values using the first-order

condition (3.1).

3.3.2. Affiliated private values

Next we consider what can be learned from the top two bids in first-price auctions in
a richer private values environment. Intuitively, the top two bids contain much of the
critical information for a first-price auction. First, these are the only two bids necessary
to determine the distribution of the maximum opposing bid for each bidder, suggesting
that at least some information about the markdown components of the equilibrium bid
functions could be learned. Second, in equilibrium, the top two bids are monotonic
transformations of the top two signals. As the following result, adapted from Athey
and Haile (2002) shows, this is sufficient to enable partial identification in a symmetric
first-price sealed-bid auction.

THEOREM 3.3. Assume that the two highest bids are observed in first-price auctions.
If bidders are asymmetric, assume that the set N and the identity of the winner are also
observed. Then
(i) the equilibrium bid functions B; (-; N') are identified foralli =1, ..., n,
(ii) with symmetric private values, the joint distribution of U~ and U®™™ s
identified.

PROOF. Part (ii) follows immediately from part (i), since in the symmetric private val-
ues case the two highest bids are made by the bidders with the two highest valuations.
To prove part (i) for the more general asymmetric case, consider bidder 1 without loss
of generality. Let 1™ denote the identity of the winning bidder. For almost all such
by € supp[G p, (-)] (using Bayes’ rule, and canceling common terms)

Pr(max .+ Bj < by | By =b;; N)
%Pr(maxﬁgl Bj <m| By = bl§N)|m:b1
3 az’—yPr(maxj¢1 B; < by, By < Y§N)|y=b1

=5
amay

Pr(max ;| Bj <m, By < y; N)lm=y=b,
5 GB(, bi, o b Ny,

92 .
Z];él 3)’3_&‘]' GB(yv 8§25« o5 Sn;5 N)|}'252:"':Sn:bl
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LB <y, 10 = 1N )|y,

g PH(BO=Im By 1) = 1N ey,

Since the last expression is the ratio of two observable functions, the right-hand side
of (2.4) is identified almost everywhere, which determines bidder 1’s (inverse) equilib-
rium bid function. O

Estimation approaches based on this partial identification result have not yet been
explored. Note that estimates of each B;(-; N') are themselves of interest, since these
characterize the wedge between bids and valuations that determine the division of sur-
plus and can lead to inefficiencies. In the symmetric case, knowledge of 8(-; n) and the
joint distribution of (U~ 7)) would enable evaluation of rent extraction by the
seller, the effects of introducing a reserve price, and the outcomes under a number of
alternative selling mechanisms. As discussed in Section 8, this partial identification re-
sult can also be sufficient to enable discrimination between private and common values
environments.

Observing the top two bids, however, is insufficient to identify the full joint distrib-
ution Fy(-). In fact, Athey and Haile (2002) have shown that observation of all bids is
needed, even in a symmetric setting.

THEOREM 3.4. In the symmetric private values model, suppose that (B"™ | B—1:n)
are observed in first-price auctions but some BU™ | j < n — 1 is unobserved. Then
Fy(+) is not identified.

PROOF. Let the point (41, us, ..., u,) be on the interior of the support of Fy(-), with
up < --- < uy,. Starting with the true joint density fy(-), define a new joint den-
sity fU(-) by shifting mass § from a neighborhood of (uy,...,uj,...,u,) (and each
permutation) to a neighborhood of the point (u1, ..., u; +€, ..., u,) (and each permu-
tation).>” For small € and 8, this change preserves exchangeability. Since the distribution
of maxy-; By is unaffected for any i by this change, equilibrium bidding strategies
(given by (3.1)) remain the same for all bidders. Furthermore, the only order statis-
tic affected in moving from fy(-) to fy(-) is UY™. Since BY™ = BWUU™: n) is
unobserved, the distribution of observables is unchanged. O

Intuitively, even under exchangeability, Fy(-) is an n-dimensional joint distribution.
Identifying this distribution with data of dimension n — 1 or lower would require addi-
tional restrictions.

21 Athey and Haile (2002, Theorem 4) describe this in more detail.



Ch. 60: Nonparametric Approaches to Auctions 3873
4. Ascending auctions with private values: Basic results
4.1. Identification

With private values, equilibrium bidding strategies in Milgrom and Weber’s (1982)
model of the ascending auction are particularly simple: it is a weakly dominant strategy
for each bidder to exit the auction at his valuation. Hence, unlike the first-price auction,
here there is no need to estimate inverse bid functions in order to relate the observed
bids to the underlying valuations. This does not make identification trivial, however.
The reason is the fact that the auction ends as soon as only one bidder remains. Because
the auction stops at the second highest bid, the only information revealed about the win-
ner’s valuation is the censoring point B"~17)_ This partial observability of bids is the
main challenge to identification.

When valuations are independent, Athey and Haile (2002) have shown that identi-
fication does hold, even if one observes only the transaction price (and the identity of
the winner, if bidders are asymmetric). This is easier to see when bidders are symmet-
ric. In that case valuations are i.i.d. draws from the marginal distribution Fy(-). The
transaction price is the order statistic U (n=1:n) \which has distribution FL(,"_I:")(-). The
distribution of an order statistic from an i.i.d. sample of size n from an arbitrary distri-
bution F'(-) has the distribution [see, e.g., Arnold, Balakrishnan and Nagaraja (1992)]

. n! F(s) )
Fim()y = ——— / 1A =" tdr Vs, 4.1)
mn=0D!GC—-D!Jy
Since the right-hand side of (4.1) is strictly increasing in F(s) € [0, 1], FE™(s)
uniquely determines F(s) for every s.

When bidders have asymmetric independent private values, the identification argu-
ment is more subtle. Athey and Haile (2002) point out that the asymmetric ascending
auction model is isomorphic to a model considered in the statistics literature on relia-
bility, where Meilijson (1981) has provided a proof. To get some intuition, fix A with
V| = 3 and define

C~?3 (t) = Pr(price < ¢, 3 is the winner)
=Pr(By <t; Bp<t; B3 >t)+Pr(B; < B3s; B, < Bs; B3 <1)

t
— Fu, (0 Fu,0)(1 = Fu, () + / Fu, (x) Fu, (x) dFy, (x)

t
2/ (Fu, (x) Fu, () (1 = Fy,(x)) dx,

where (Fy, FUZ)’ is the first derivative of Fy, Fyy, and the last equality follows from
integration by parts. Differentiating both sides, we obtain

g1 = (Fu, () Fu, () (1 — Fu, (1)),
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which implies that

g3 ()
Fy, () Fy,(®)) = —>—
(Fu, (1) Fu, (1)) o
t ~
83(x)
Fy, (1) Fy, (1) :/ _ oo ’
Uy U, ; 11— FU3 ®
log Fy, (t) + log Fy, (t) = log /t ﬂ
u 1 = Fy,(x)
Rewrite this as
4 <§3(x) d)C
I 107 rlog Fu, (x) fzz hor
NI log Fy, (x) | = log flﬁ 1-Fy, (x) dx |. “4.2)
0 1 1 log Fy, (x) S
’ f‘i l—g[lv‘UT(x) dx

This is a 3 x 3 system of operator equations defining how the three observable marginal
distributions are related to the three marginal distributions Fy, (-) of interest. Meilijson
(1981) showed that this system has a unique solution.

We summarize these results in the following theorem.

THEOREM 4.1. In an ascending auction with symmetric independent private values,
Fu (") is identified when the transaction price and the number of bidders are observ-
able. In an ascending auction with asymmetric independent private values, Fy(-) is
identified when the transaction price, the identity of the winning bidder, and the set N'
are observable.

One attractive feature of this result is that it implies that one need not use bids other
than the transaction price to estimate Fy (-). This is valuable because in many appli-
cations one may have little confidence in the interpretation of losing bids implied by
Milgrom and Weber’s (1982) button auction model. With independence, one is free to
ignore losing bids altogether, relying only on the assumption that the transaction price
equals the second highest valuation.

Athey and Haile (2002) give a much more negative result when the independence
assumption is dropped, even with symmetric bidders. The proof mirrors that of Theo-
rem 3.4.

THEOREM 4.2. In a symmetric private values model, the joint distribution Fy(-) is not
identified from the observable bids in an ascending auction.

4.2. Estimation

Here we make the same sampling assumptions made in the discussion of estimation
for first-price sealed bid auctions (see Section 3.2). In an ascending auction, typically
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one treats the highest price offered by each bidder as his “bid,” i.e., his exit price in
the button auction model.”® Using these data, several parametric estimation approaches
for the symmetric IPV model have been explored in the literature. Maximum likeli-
hood, nonlinear least squares, and GMM are among the methods considered. Due to the
simplicity of the equilibrium bid function, likelihood functions or moment conditions
are easily derived from the probability density function of the winning bid alone [e.g.,
Paarsch (1992b), Donald and Paarsch (1996), Baldwin, Marshall and Richard (1997),
Haile (2001)], or of the n — 1 losing bids [e.g., Donald and Paarsch (1996), Paarsch
(1997)]. In the former case, the likelihood of a winning bid b is £~ "™ (b). For the
latter case, the likelihood for the losing bids in a given auction is

nl[1 = Fy (6" ") [T fu (@9™).
j<n
To our knowledge, nonparametric estimation of the symmetric [PV model has been
performed only in simulations [Haile and Tamer (2003)], although this is actually sim-
pler than nonparametric estimation in the case of a first-price auction. Following Haile

and Tamer (2003), for H € [0, 1] define the strictly increasing differentiable function
¢ (H; i, n) implicitly as the solution to

n! ¢ i1 iy 4
H_mfos (1—s5)""ds ws)
so that by (4.1)

Fy) = ¢(FS™ w);ion) Vu,i <n. (4.4)
In particular,
Fy@) = ¢(FS "™ wy;n —1,n) Vu. 4.5)

Since the winning bid is B~ = "= one can construct an estimator of Fy; (u)
by substituting the empirical distribution

T
~_1- 1 1.
Gg’ 1'")(u) =7 E l{nt =n, B~ < u}

mo=1

for F'""(u) inside the function ¢(-) on the right-hand side of (4.5). Since
GY"™ () = F"™"™ (), by standard arguments G '™ (u) converges uniformly to

F [(]"71:") (#) almost surely and has a normal asymptotic approximation. Convergence of

28 See, e.g., the surveys of Paarsch (1994) and Hendricks and Paarsch (1995). A source of ambiguity arises
when one observes n such bids, with B®") significantly higher than B®~1") In such cases, one may
question the applicability of the button auction model. For now we assume the button auction structure and
treat the distributions Gg“")(~) and Gglfl:")(‘) as identical.
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& (F l(]"_h") (u); n — 1, n) to Fy (u) then follows, with an asymptotic normal distribution
obtainable by the delta method.? In practice, one can use the relation

n

ey =y C)Fy(u)f(l—FU(u))nj (46)

j=n—1

instead of the equivalent but more computationally demanding (4.5) when solving for
each Fy (u). Monotonicity of the relation between F, ,(]"71:") (1) and Fy (1) makes nu-
merical solution particularly simple.

Note that when there is exogenous variation in the number of bidders, there will be
as many different estimators qj(f l(]n_l:")(u); n — 1,n) of Fy(u) available as there are
different values of n in the data. If one observes losing bids beyond the transaction price
and assumes these are generated by the button auction model, additional estimators will
be available, based on Equation (4.4) withi < n — 1. An efficient estimator would take
an optimally weighted average of these different estimators, imposing the constraint that
the estimated CDF be monotone.

In the case of asymmetric bidders, no simple relation like (4.6) is available. However,
a likelihood approach provides several possible estimation strategies. The likelihood for
the observable event {i wins at price p} is

(1= Fu,(») > fu;(p) ] Fu(p)-

J#l ki, j
Hence, if we let I; denote the winner of auction #, the likelihood function has the form
L=[]0=Fu, )Y fu;(» [] Fup). (4.7)
t J#IL k#l;,j

Parametric or nonparametric MLE might then be applied. Brendstrup and Paarsch
(2004) have recently proposed a “‘semi-nonparametric”’ [Gallant and Nychka (1987)]
estimation approach based on this likelihood.3°

4.3. An alternative, incomplete model of ascending auctions

In some cases an auction institution closely matching the structure of the button auction
model is observed in practice. Bidders may, for example, raise their hands or other
objects to indicate their participation continuously as the auctioneer raises the price [see,
e.g., Zulehner’s (2003) description of cattle auctions]. When the auction is conducted in
a less structured oral format, however, one may question the applicability of the button

2 In fact, the convergence is uniform. These results follow from those given in Haile and Tamer (2002,
Appendix A; 2003, Theorem 3).

30 They also consider auctions in which multiple units are sold sequentially, focusing on bids in the (single-
unit, asymmetric) auction of the final unit.
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auction model as an empirical structure. Of particular concern is the fact that there is
no need for a bidder to continuously indicate whether she is “in” or “out” as the auction
proceeds. Nontrivial minimum bid increments are often used, and a bidder is free to
“jump bid” or to remain silent for most of the auction and bid only when it looks like
the auction is about to end (if others do not bid the price past her valuation first). Such
behaviors are common in practice and raise the possibility that bidders will fail to reveal
their full willingness to pay, or even fail to bid altogether. Several theoretical extensions
of the standard model have been proposed, mainly focusing on the case of common
values [Avery (1998), Harstad and Rothkopf (2000), Izmalkov (2003)]. Until recently,
however, all empirical models of the ascending auction relied on significant abstractions
for tractability of the underlying theoretical model.

As an alternative to relying on the structure of the button auction or another styl-
ized model, Haile and Tamer (2003) have proposed an empirical approach to ascending
auctions with symmetric independent private values using two simple assumptions to
govern the interpretation of the observed bids:

ASSUMPTION 4.1. Bidders do not bid more than they are willing to pay.

ASSUMPTION 4.2. Bidders do not allow an opponent to win at a price they are willing
to beat.

These assumptions allow bidding as in the dominant strategy equilibrium of the but-
ton auction model but do not require it. In particular, bids need not be equal to valuations
or even monotonic in valuations, and the price need not equal the second highest valu-
ation. These assumptions define an “incomplete” model of an ascending auction: they
place some restrictions on the relation between valuations and bids, but do not fully
characterize behavior. While this incomplete model is insufficient to identify the distri-
bution of valuations from the distribution of bids, it does provide partial identification;
in particular, one may still obtain informative bounds on the distribution of valuations.

4.3.1. Bounding the distribution of bidder valuations

To obtain an upper bound on the distribution function Fy (), observe that Assump-
tion 4.1 is equivalent to assuming b; < u; for all i. In an n-bidder auction, it is easy to
confirm that this implies pim < 4 i which then gives

GY"w) = FI™ w) Vi n,u. (4.8)
Recalling the definition (4.3) and Equation (4.4), we know that
Fy) = ¢(FS™ u);i,n)  Vin,u. (4.9)

Since the function ¢ (-; i, n): [0, 1] — [0, 1] is strictly increasing, (4.8) and (4.9) to-
gether give

o(GY™ )i n) = Fyu) Vi,n,u.
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For each u, this yields Zﬁzn n upper bounds on Fy (u). The most informative bound
(i.e., the smallest upper bound) is obtained by taking the minimum at each value of u:

Fff ) = ming(GY™ ); i, n). (4.10)

A similar approach can be taken to obtain a lower bound on Fy (-). Letting A > 0
denote the minimum bid increment in the auction, Assumption 4.2 implies that all losing
bidders have valuations less than b"") + A, implying u =1 < "™ 4+ A, If G(A":") )
denotes the distribution of B™™ + A, this gives

Gy < F )
Applying the monotonic transformation ¢ (-; n — 1, n) to both sides gives
$(GU™ u);n —1,n) < Fyw) Vn,u.

This yields multiple lower bounds on Fy (1) (one for each value of ). The most infor-
mative bound can be constructed by taking the pointwise maximum:

Fyy (u) = max ¢ (G4 ™ w)in — 1.n). (4.11)
We summarize these results in the following theorem.

THEOREM 4.3. Fy; (1) < Fy(u) < FJ(u)for all u.

Note that in principle this approach can be followed even when the transaction price
is the only bid available from each auction — the only modification required is that
the minimum in (4.10) would be taken over n only, fixing i = n. However, an essen-
tial requirement of the approach is that the number of bidders, n, be observable to the
econometrician. This is also essential for the methods discussed above for both sealed-
bid and button auction models, but the assumption may be more suspect in an ascending
auction in which the button auction structure is inappropriate. The number n will be ob-
served if all bidders make some bid during the auction, or if bidders must pre-qualify,
register, or otherwise identify themselves in order to be eligible to bid. This is the case
in the timber auctions studied by Haile and Tamer (2003) and many other public sector
auctions.’!

In general, the informativeness of the bounds F, [Jj (1) and F; (1) depends on the devi-
ation of the true data generating process from that implied by the button auction model.
In fact, if the restriction B = B~ implied by the button auction model is
consistent with the data, the bounds Fy; () and F; J (+) collapse to the true distribution
Fy (+), providing point identification. By contrast, imposing the full structure of the but-
ton auction model when this is not the true data generating process need not result in

31 Song (2004) has recently considered identification and estimation for ascending auctions (and others) when
n is not observed. We will discuss one such case in Section 6.3.4 below.
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an estimate of Fy(-) that lies within the bounds, regardless of sample size.>> While
this should not be surprising — imposing false restrictions should be expected to yield
misleading estimates — it is a useful reminder that imposing structure in order to ob-
tain point identification is not equivalent to selecting a point estimate within bounds
obtained from a less restrictive but incomplete model.

Estimation of the bounds is achieved by substituting the empirical distributions

T
o 1 )
GY"(b) = - > 1{n, =n, b < b}
=1

and

~n 1 < 4

GO (b) = T ; n, = n, b"" 4 A, < b)
for the corresponding CDFs in (4.10) and (4.11). Since the empirical distribu-
tion functions are uniformly consistent and asymptotically normally distributed es-
timators of their population analogs, differentiability of ¢(-; i, n) ensures that each
¢ (Gg:”) (u);i,n) and ¢ (G(A":") (u); n—1, n) are consistent and asymptotically normally
distributed as well. Continuity of the min and max functions then ensures consistency
of the estimates of the estimators

fl}r(u) = minqb(ag:”)(u); i,n),
n
f[j(u) = mnaxqb(a(An:")(u); n— l,n).

These estimators have nonnormal asymptotic distributions, due to the max and min.
However, Haile and Tamer (2002) show that the bootstrap (see Section 3.2.1) may be
used for inference. A more difficult problem is that, while these estimators are consis-
tent, in practice the max and min can lead to severe finite sample bias, potentially even
leading to estimated upper and lower bounds that cross. Intuitively, taking the minimum
(maximum) of several consistent estimators makes it likely that an estimator with down-
ward (upward) sampling error is selected. One solution, discussed in greater detail by
Haile and Tamer (2003), is to define bounds in finite samples based on smooth approx-
imations to the max and min functions in the definitions of F, J (1) and F, o () above.
This amounts to using weighted averages instead of the max or min.

4.3.2. Bounding the optimal reserve price

Unlike point estimates of Fy (-), it is not immediately clear whether bounds on Fy;(-)
would be useful.>3 For example the key policy choice for the seller in the symmetric

32 See Haile and Tamer (2003) for additional discussion and simulation results.
33 Haile and Tamer (2003) demonstrate an additional use of the bounds by showing how to incorporate auc-
tion covariates nonparametrically. Building on Manski and Tamer (2002), the resulting bounds on conditional
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IPV environment is the reserve price [Myerson (1981)]. When Fy (-) is continuously

differentiable, the optimal reserve price r* is defined by the equation*
1 —Fy@*
= g4 A FUCD) 4.12)
Ju(r®)

where g is the seller’s valuation (or marginal cost) of the good. However, nondegenerate
bounds on Fy (-) place no restriction on its derivative fy (-) at any given point. Hence,
just as a monopolist’s price need not shift in the same direction as demand, r* need
not lie between the reserve prices that would be optimal if FJ () or Fy; (-) were the
true distribution of valuations. Note that the same problem arises any time one wishes
to construct confidence bands on the optimal reserve price from confidence bands on
nonparametric point estimates of Fy (1), e.g., using the method described in Section 4.2.

Observe, however, that when the seller’s own valuation for the good is ¢g, r* solves
max, 7 (r), where®

n(r) = (r —co)(1 — Fy(r)).
Since Fyy(r) must lie between F~(r) and FT(r),  (r) must lie between

mi(r) = (r —co)(1 — Fff (r)
and

m(r) = (r — co)(l — F&(r)).
Figure 1 illustrates. Under the additional assumption that 7 (r) is strictly quasi-concave
in r (which ensures a unique solution to (4.12)) we can use the bounding “profit” func-
tions 771 (-) and 72 (-) to place bounds on r*. Let r* € argsup 71 (r), ry € argsup ma(r),
and 77| = 71 (r{’). We obtain the trivial result r* = r when m2(r{") = m2(r3) = 7}, or
when 73 (r{') = 7r{ and either 71 (-) or 2(-) has slope zero at r}". For these trivial cases

letr—=rt = rf. For all other cases define
r~ =sup{r <rf: m@) < nf},
rt = inf{r >t m(r) < nf}

Haile and Tamer (2003) prove the following result.3¢

distributions can then be used to estimate bounds on parameters of a semiparametric model describing how
valuations shift with auction characteristics.

34 This is easily derived for a second-price sealed-bid or button auction, where a reserve price of r implies
expected revenue rn Fy (r)”_l (11— Fy@)+ jtoo un(n — 1) fy (w) Fy (u)(1 — Fy (1)) du. Myerson (1981)
shows that, under a regularity condition, a standard auction with an optimal reserve price is optimal among
all possible selling mechanisms. Haile and Tamer (2003) show that r* is also optimal in their incomplete
model ascending auction as long as Assumptions 4.1 and 4.2 are interpreted as a partial characterization of
equilibrium behavior in some true but unspecified auction mechanism.

35 Note that 7 (r) is not the expected profit of the seller when n > 1. The usefulness of this function is the
fact that its maximum is attained at the same value of r that maximizes the seller’s expected profit.

36 Bounds are said to be sharp if they exhaust all information available from the data and a priori assump-
tions.
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Figure 1.

THEOREM 4.4. Suppose 1 (r) is continuously differentiable and strictly quasi-concave
inr. Then r* e [r—,rt]. Given the bounds FT(-) and F~(-) on Fy(-), the bounds r~
and r* onr are sharp.

Intuition for the result can be seen in Figure 1. We know that the true function 7 (-)
lies between 71 (-) and 72(-) and must, therefore, reach a peak of at least 7;". Such a
peak cannot be reached outside the interval [r~, r*]. However, prices arbitrarily close
to either of these endpoints could be the true optimum r*.

For estimation, assume for simplicity that 75 (r) has nonzero slope at r = r~ and
r=rt37 Let

71(r) = (r — co)(1 — Fyj (r)),
2 (r) = (r — co)(1 = Fyy (),
) =supa(r),
r
Fi = argsup 711 (r)
r

and define the correspondence 75 (-) by

{n € nf(r)} — {yrﬁfzz(/) <7 < 9?}7%2(#)}.

37 Haile and Tamer (2003) provide estimators that do not require this assumption.



3882 S. Athey and PA. Haile

This defines a smooth sample analog of m;(-) that can be used to define consistent
estimators of 7~ and r:

P = sup{r < it =7 forsome 7 € nzc(r)},

Pt = inf{r > 7{: w = 7} for some 7 € nzc(r)}.
4.3.3. Asymmetric and affiliated private values

In principle, the applicability of Assumptions 4.1 and 4.2 is not limited to environments
with symmetric independent private values. Haile and Tamer (2001) have explored
extensions to models of asymmetric and/or affiliated private values. While it is encour-
aging that any restrictions at all on the joint distribution Fy(-) can be obtained without
the assumption of independence that was required for identification in the button auc-
tion model, in practice the bounds one can obtain without the independence assumption
are likely to be quite wide. Intuitively, when one observes only bounds on realizations
of random variables, it is difficult to learn much about their correlation structure. Of
course, without knowledge of the correlation structure, a number of important positive
and normative questions cannot be answered.3® Thus, while the bounds approach pro-
vides a way of addressing concerns about the appropriateness of the standard button
auction model, it may provide little help in environments in which the button auction
model itself is unidentified.

5. Specification testing

Identification of the models discussed above relies on behavioral assumptions and on
assumptions about the underlying demand and information structure. Obviously, then,
the choice of model is important. In some environments there are overidentifying re-
strictions that can be used to test some assumptions while maintaining others. Several
testing approaches have been described in the literature to date, although so far there
has been little attention to development of formal statistical tests.

38 Optimal auction design with correlated valuations is much more complex than in the IPV case, requiring
precise information about the underlying correlation structure [cf., Crémer and McLean (1988) and McAfee
and Reny (1992)]. Quint (2004) has shown that even the simpler question of the optimal reserve price cannot
be addressed with a bounds approach in such an environment. In particular, for any reserve price r > ug and
any distribution of bids, there exists an underlying joint distribution of valuations consistent with these bids
and Assumptions 1 and 2 such that r is the optimal reserve price. Hence, no restriction on the optimal reserve
price can be obtained from nondegenerate bounds on the joint distribution of valuations.
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5.1. Theoretical restrictions in first-price auction models

We first consider restrictions imposed by equilibrium bidding in first-price auctions.?”
Recall that a model is testable if there exists some joint distribution of observables
that cannot be rationalized by the model. It is then natural to ask what set of distribu-
tions can be rationalized. Here we provide two results for the affiliated private values
(APV) framework.*? The first gives necessary conditions for a distribution of bids to
be rationalized by equilibrium behavior, while the second gives necessary and sufficient
conditions in two special cases: symmetric affiliated private values, or independent pri-
vate values (IPV).

THEOREM 5.1. Consider the APV first-price auction with fixed N'. Necessary condi-
tions for Gg(-; N) to be rationalized by equilibrium bidding are

(a) (B, ..., By) are affiliated,

(b) foreach i, & (-, N) is continuous and strictly increasing on supp[B;1;

(c) supplé1(B1, N)] x - -+ x suppl&, (B, N)] is a convex, compact set, and on this
set the joint distribution GB(Sl_l(ul, N, &7 Y, N)) is absolutely contin-
uous (with respect to the Lebesgue measure) as a function of u, with a strictly
positive density;

(d) b =bforalli,and &b, N) =bforalli € N,

() &bi, N') =&;(bj, N) foralli, j € N;and

(f) for each i, supp[B;] € supplmax jean; B, and supplmax jean; Bl is convex.

PROOF. Given strictly increasing bidding strategies and affiliated private values with
an atomless type distribution, affiliation of bids and strict monotonicity of & (-, N') on
supp[B;] follow directly. Continuity of &; (-, A/) follows from strict monotonicity of
the bidding strategies together with the assumption that supp Fy, (-) is convex. Since
Assumption 2.1 requires that Fy(-) have a strictly positive joint density on a compact
convex set, the relationship between Fy(-) and Gg(-) given by (3.2) implies that (c)
must hold. The assumption that supp Fy, (-) does not vary with i, together with the
equilibrium conditions max(r, u) = b; and B; (max(r, v)) = max(r, u) for each i, im-
ply (d) and (e). The necessity of supp[B;] € supp[max;can; Bj] follows from (d) and
the fact that when bidding against opponents who use strictly increasing strategies it
is never optimal for bidder i to bid more than the minimum necessary to win with a
particular probability. The same logic implies that supp[max ;can; B;] is convex, since

39 Recall that we maintain Assumption 2.1, restricting the primitives of the model, and that we focus on
equilibria in strictly increasing strategies. Theorem 2.1 guarantees that such an equilibrium exists for the
APV model. If bidders are symmetric, Theorem 2.1 implies that there is a unique equilibrium in the class of
equilibria in nondecreasing strategies. When bidders are asymmetric, we do not have a uniqueness result.

40 Guerre, Perrigne and Vuong (2000) gave a similar result for the symmetric independent private values
model. See also Li, Perrigne and Vuong (2002).
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no bidder j € M\i would find it optimal to place a bid at the upper boundary of a gap
in this support. U

Note that we do not provide sufficient conditions for Gg(-) to be rationalized in the
APV model with asymmetric bidders, since a full equilibrium characterization is not
available for that case. However, in the special cases of IPV or symmetric bidders when
valuations have a continuously differentiable density, Theorem 2.1 implies that there
is a unique equilibrium, which has strictly increasing and differentiable strategies and
the same support for the equilibrium bids of all bidders. When bidders are symmetric,
the unique equilibrium is symmetric. In these settings we have necessary and sufficient
conditions for a bidding distribution to be rationalized. The statement of the conditions
of Theorem 5.1 can then also be simplified somewhat, exploiting differentiability of
strategies.

THEOREM 5.2. Consider the APV first-price auction with fixed N'. Assume that fy(-)
is continuously differentiable and suppose, further, that either
1) Uy, ..., U,) are mutually independent or

(ii) bidders are symmetric.

Necessary and sufficient conditions for Gg(-; N') to be rationalized by equilibrium bid-
ding are:

(a) (Bi, ..., By) are affiliated, and in case (i) they are independent, while in case (ii)
they are exchangeable;

(b) for each i, & (-, N') is differentiable and strictly increasing on supp[B;];

(c) Gg (Sf] wi, N, ..., én’l (un, N)) is absolutely continuous (with respect to the
Lebesgue measure) as a function of u, with a positive continuously differentiable
density on supp[&1 (B1, N)] x - - - x suppl&,, (B, N')] and zero density elsewhere;

(d) & @, N)=bforallieN;

() &bi, N') =¢&;(bj, N) foralli, j € N;and

(f) suppl[B;] is convex, compact, and the same for all i.

PROOF. Given strictly increasing, differentiable bidding strategies and the conditions
on the Fy(-), affiliation of bids and the relevant independence and symmetry condi-
tions follow directly. For condition (f), equal supports is necessary by Theorem 2.2 in
case (i) and by symmetry in case (ii). Convex, compact support follows because bidding
strategies are strictly increasing, continuous functions of random variables with con-
vex, compact support. Condition (b) is necessary because differentiability of & (-, ') is
equivalent to differentiability of Ei_l (-, N) (since &; (-, N) is strictly increasing), with
the latter equal to the equilibrium bidding strategy under the assumptions of the model.
Conditions (d) and (e) are necessary following the arguments in Theorem 5.1. Recall
that Assumption 2.1 requires that Fy(-) have a strictly positive joint density on a com-
pact, convex set, and that we have assumed that it has a differentiable density. The set
supp[&1(B1, N)] x -+ x supp[&,(By, N)] is the support of valuations implied by the
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model, and it is convex and compact by (f) and differentiability of £; (-). The relationship
between Fy(-) and Gg(-) specified by (3.2) then implies (c).

To see that the stated conditions are sufficient for Gg(-; N) to be rationalized, ob-
serve that they ensure that Ei_l (+) is well defined, differentiable, and strictly increasing
on supp[&; (B;)] for each i, and that in symmetric models it is the same for each i, so
that the expression for Fy(-) in (3.2) is well defined and satisfies the relevant affiliation,
independence, symmetry, and differentiability conditions. The conditions guarantee that
the implied Fy(-) has a support that is convex and compact; that it has a strictly positive,
continuously differentiable density on this support; and that the support is the same for
all bidders. The definition of &;(-) implies that if each bidder i uses the bidding strat-
egy 5;1 (+), his first-order condition for optimality is satisfied. Under independence or
symmetry, bidder payoffs satisfy a single crossing property: for any fixed monotone
strategies by opposing bidders, a higher realized valuation u; leads to a higher marginal
return to increasing one’s bid. Standard results from the literature on auctions and mech-
anism design [see, e.g., Fudenberg and Tirole (1991)] imply when the single crossing
property holds, local optimality of a bid (i.e., first-order conditions hold) together with
monotonicity of the bidding strategy are necessary and sufficient for global optimality
of the strategy. Thus the strategies {Sfl ()}ien form an equilibrium. O

The importance of a result providing sufficient conditions for a bid distribution to
be rationalized by equilibrium behavior should not be underappreciated. Without such
a result, one would have no way of ensuring that the interpretation of bids based on
the first-order conditions is valid. In particular, for an observed bid b; and an implied
valuation u; = &;(b;), there would be no guarantee that b; was actually an equilib-
rium bid for a bidder with valuation u;. Verifying that the observed bids actually can
be rationalized by equilibrium behavior is analogous to verifying second-order condi-
tions for optimality: only when such sufficient conditions are verified can we be sure
that the mappings (forward or inverse) provided by the first-order conditions relate val-
uations to optimal (best-response) bids. Theorem 5.2 can then be used in two ways.
First, in an application one can attempt to verify that sufficient conditions for bid data
to be consistent with the assumptions of the model are satisfied. Second, the neces-
sary conditions suggest specification tests, which we discuss further in the following
section.

We note that it is possible to generalize the overall empirical approach to the case
where condition (e) above fails by relaxing the assumption that supp[U;] is the same
for all bidders i. The latter assumption is typically maintained in the literature [see, e.g.
Campo, Perrigne and Vuong (2003)]. In independent private values models, it ensures
that supp[B;] is the same for all bidders i [Lebrun (1999)] and that the equilibrium is
unique [Lebrun (1999), Bajari (2001)]. However, plausible specifications of primitives
would lead to distributions of bids that violate condition (e), so it may be useful to relax
that assumption in practice.

Let us briefly consider some examples. Consider maintaining the assumption that
inf[supp[U; 1] is the same for all i, but allow u#; = sup[supp[U;]] to vary with i. For affili-
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ated private values models, there exists an equilibrium in nondecreasing strategies where
supp[B;] € supp[max; Bj], and these supports are convex and compact; in addition,
in any equilibrium (mixed or pure) strategies must be strictly increasing (i.e., separat-
ing) [Maskin and Riley (2003), McAdams (2007)]. Thus, the distributions of valuations
can be identified using (3.1). For example, suppose n = 2, U is uniformly distributed
on [0, 3/2], and U, is independent of Uy, with distribution Fy, (u2) = (1/4)14% on the
support [0, 2]. Then, it can be shown that supp[B;] = [0, 1] for i € {1, 2}, and that for
bel0,1],Gp, (b) =band Gp,(b) = b2. With these bid distributions, gy (LN) =1
while gy, (1; N') = 2, violating the boundary condition (¢). However, in this example,
the Fy,(-) each can be identified if we expand the set of permissible distributions of
valuations to allow supports that vary across bidders.

If both inf[supp[U;]] and sup[supp[U;]] vary with i, then it is possible that some bid-
ders never win in equilibrium. For example, if there are two bidders in an IPV auction,
and supp[U1] = [0, 1] while supp[U>] = [100, 101], in equilibrium B, = 1 with prob-
ability 1, while B; < 1 Maskin and Riley (2000a). Clearly, very little can be said about
the distribution of U, in this case. Despite the possibility of degenerate equilibria like
this, Maskin and Riley (2000b) show that the distribution of winning bids, Gg’:")(), is

continuous on its support. This implies that a mass point in Gg“") () such as the one in
the latter example can only occur either (i) at the bottom of the support if the support of
winning bids is nondegenerate, or (ii) if the support of winning bids is degenerate. Thus,
outside of cases (i) and (ii), the equilibrium must be in strictly increasing strategies on
supp[ B, so that it will be possible to recover the distribution of bidders’ valuations
on the pre-image of the interior of supp[ B "] using (3.1). This would lead to a partial
identification result.

For the remainder of the chapter, we follow the existing literature and maintain the
assumption that valuation distributions have the same support, while noting that many
of the results generalize.

5.2. Testing monotonicity of bid functions and boundary conditions

Here we consider two possible types of tests based on Theorem 5.1. Guerre, Perrigne
and Vuong (2000) have suggested a specification test based on the observation that the
right-hand side of bidder i’s first-order condition (2.4), i.e.,

G m; 8, (bilbi; N)

gm;1B; (bilbi; N)

is the inverse of his equilibrium bidding strategy. This is true for private and common
value auctions.*! Since bidding strategies must be strictly increasing, so must & (-, \).

& i, N) =bi +

41 One way to see this in the common values case is to note that one possible normalization of signals sets
X; = v;(X;, X;; N'), so that the first order condition may still be directly interpreted as giving bidder i’s
inverse bidding strategy.
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Although testing monotonicity of & (-, N') is conceptually straightforward, no formal
statistical test has been developed for this problem. Existing tests of monotonicity in the
statistics literature*? are not directly applicable due to the fact that realizations of the
random variables &; (B;, \') are estimated rather than observed directly. In applications,
researchers often find few (if any) violations of strict monotonicity [e.g., Hendricks,
Pinkse and Porter (2003), Haile, Hong and Shum (2003)], in which case no formal test
would reject. Nonetheless, formal tests could be valuable.

Two things about such a test should be noted, however. First, the alternative hy-
pothesis is simply that some component of the specification is incorrect. A failure of
monotonicity may indicate the presence of unobserved heterogeneity, risk aversion,
nonequilibrium bidding behavior, or violation of some other maintained assumption.
In general, testing one assumption will require maintaining others, so many of the other
specification tests discussed below will share this limitation. Second, no test of this
hypothesis will be consistent against all violations of the maintained assumptions. In
particular, one can easily construct examples in which one or more maintained assump-
tions are violated, but monotonicity of &; (-, ') still holds.

Another potential specification test is based on the boundary condition (e) from Theo-
rem 5.1. This restriction can be simplified in the case of the [PV model. Let the common
support of the bid distribution be denoted supp[B;] = [b, b]. Then, the boundary con-
dition requires

au, B N) = gu, (B3 N) Vi, j € N ] 5.1)

which is a testable restriction.
5.3. Multi-sample tests with exogenous variation in participation

Athey and Haile (2002) discuss a different principle for specification testing that can be
used in both first-price and ascending auctions whenever (a) there is exogenous varia-
tion in the number of bidders, and (b) the underlying model is identified with a fixed
number of bidders. For simplicity, consider the case of symmetric bidders, although the
same principle applies to asymmetric settings. Let FU(u; n) denote a consistent esti-
mator of Fy(u) obtained using data from n-bidder auctions. With exogenous variation
in the number of bidders, for n’ # n, fU(u; n) should equal I?U (u; n’) up to sampling
error. Hence a test of the null hypothesis of equal distributions provides a specification
test.

While testing equality of distributions is a standard problem [e.g., McFadden (1989)],
complications arise both in ascending and first-price auctions. In an ascending auction,
the complication is the fact that identification relies on mappings between distributions
of order statistics and the underlying marginal distributions (Theorem 4.1). Hence, as-
ymptotic distributions of test statistics must account for this transformation of the data.

42 gee, e.g., Bowman, Jones and Gijbels (1998), Gijbels et al. (2000), or Hall and Heckman (2000).
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In a first-price auction, the complications are more challenging, arising from the fact that
valuations are estimated rather than observed directly. This first-stage nonparametric es-
timation of Fy(-) introduces nontrivial complications to the asymptotic theory needed
for inference. Haile, Hong and Shum (2003) develop several formal tests applicable
when all bids are observed, based on comparisons of different estimates of the marginal
distribution Fy (-) obtained from auctions with different number of bidders.*> In models
identified with partially observed bids, similar tests may be applicable, although this has
not yet been explored.

5.4. Multi-sample tests with multiple order statistics

In IPV settings, a variation on the type of testing approach above may be available with-
out exogenous variation in participation. In an IPV auction each marginal distribution
Fy, () is identified from observation of the transaction price (and bidder identities if the
environment is asymmetric) in both ascending and first-price auctions. Athey and Haile
(2002) have shown that observation of any other order statistic B/ ) can be substituted
for observability of the transaction price — in a symmetric environment, for example,
this follows from (4.1). When two or more order statistics (e.g., the top two bids) are
observed, the estimates of Fy, (-) implied by each of these should be identical up to
sampling error.

5.5. Direct tests of exchangeability or independence

There are other potential approaches to specification testing when bidders are assumed
to be symmetric or types are assumed independent. With symmetric bidders, the joint
distribution of bidder valuations is exchangeable and each bid B; = B(U;; n). Hence,
the joint distribution of bids must also be exchangeable. When bidder identities are
observed, there are several ways to approach testing such a hypothesis. One is to test
exchangeability of the bids (or subsets of bids) directly. Nonparametric tests from the
statistics literature may be directly applicable. For example, Romano (1988, 1989) sug-
gests tests based on the supremum distance between the values of a multivariate CDF
evaluated at permutations of its arguments.

One implication of exchangeability is equality of marginal distributions. For example,
in a symmetric model, any subset of bidders should have bids governed by the same
marginal distribution as those of another subset of bidders. A standard Kolmogorov—
Smirnov test of equal distributions could then be applied.

Alternative tests may be useful when covariates are available and additional structure
is assumed. Suppose, for example, that valuations are assumed to have the structure

Uit = h(Z11, Zai, Lo—iy, Air)
3 They focus on tests of the private values hypothesis. However, their tests, which are based on compar-

isons of the empirical distributions of pseudo-values for auctions with different numbers of bidders, could be
directly applied.
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where Z1; is an auction-specific covariate, Z; is a bidder-specific covariate, Zy(_;) de-
notes the bidder-specific covariates of i’s opponents, and A;; is a private idiosyncratic
factor. The restriction to scalar covariates is only for expositional simplicity. Assume
further that the conditional distribution function FA(A1, ..., AulZ1, Z21, ..., Z3y) is
exchangeable in the indices (1, ..., n). Loosely speaking, with this structure, all bidder
valuations are affected in the same way by covariates. In particular, the distribution
of bidder i’s valuation conditional on (Z;, Zy;, Zy(—;)) is the same for all i. Since
bids are equal to valuations in an ascending auction, this can be tested, for example,
by examining coefficient estimates in a regression of bids on covariates (auction- and
bidder-specific) interacted with bidder dummies (or indicators for different “classes” of
bidders).

In a first-price auction, the structure above implies that the distribution of max ;-; B;
is the same for all i conditional on (Z1, Z3;, Zy(—;). Hence, the distribution of i’s bids
should depend only on (Zy, Z2;, Z»(—;)), not on the index i itself. This may again be
evaluated in a regression. Bajari and Ye (2003) apply these regression-based approaches
in their analysis of highway construction contracts [see also Porter and Zona (1993,
1999)].

Note that similar restrictions will hold in a common values model, where it is the
joint distribution of the random variables

vi(Xi, Xiw N)

that must be exchangeable. As we will see below, this distribution will often be identi-
fied in a common values model, even though Fy x(-) is not identified. Hence, specifica-
tion testing may be possible even for under-identified models.

Another direct approach to specification testing is applicable in first-price auctions
in the widely used independent private values model (symmetric or asymmetric). Since
each B; is a measurable function of U;, bids must also be independent. In a first-price
sealed-bid auction in which all bids are observed, one can directly test this restriction
using standard nonparametric tests [Guerre, Perrigne and Vuong (2000)]. For exam-
ple, Romano (1988, 1989) suggests tests based on the supremum distance between an
estimated joint distribution and the joint distribution obtained as the product of the
estimated underlying marginal distributions.** In practice, it is typical to assume that
valuations, and thus bids, are independent conditional on a set of auction-specific and
perhaps bidder-specific covariates. Su and White (2003) propose a testing approach that
may then be applicable. An alternative is to test for correlation of residuals from a re-
gression of bids on bidder-specific or auction-specific covariates. Bajari and Ye (2003)
do this in their analysis of highway construction procurement auctions. In an ascending
auction, the problem of partially observed bids appears to make direct testing impossible
(recall, however, the indirect tests discussed in Section 5.4).

44 Other tests of the hypothesis that bids are uncorrelated (an implication of independence) could also be
applied. See, e.g., Chapter 8 of Hollander and Wolfe (1999).
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6. Extensions of the basic results

6.1. Auction heterogeneity

6.1.1. Observed auction heterogeneity

In practice, one rarely has access to data from auctions of identical objects. For example,
the goods for sale at each auction often differ in observable characteristics, and we may
expect distributions of valuations to shift with these observables. All of the identifica-
tion results above hold in the presence of auction-specific covariates. In particular, the
previous discussion can be reinterpreted as being conditioned on a given realization of
the covariate values. To make this concrete, let Z be a vector of auction covariates. We
extend the notation defined above to condition on Z by defining 8; (-; N, Z), Fy(-|Z),
Gum; 8, (bIb; N, Z) and g, 5, (blb; N, Z), etc. Assuming all auction-specific hetero-
geneity is captured by Z, in a first-price auction the first-order condition for bidder i at
auction ¢ becomes

G um; 1B, (bit|bir; N, 2;)
&um;1B; (it |bir; N, z;)
which uniquely determines Fy(-|z;) in the affiliated private values model when all bids

and bidder identities are observable. In an ascending auction with private values that are
independent conditional on Z;, one can use the conditional distribution of transaction

uir = biy + (6.1)

prices F [(1"71:")(~|Zt) for any given value of z; to uniquely determine Fy(-|z;) through
Equation (4.4).

The nonparametric estimation methods discussed above can also be extended, for ex-
ample by using standard kernel smoothing over covariates. Guerre, Perrigne and Vuong
(2000) discuss details of such an approach for the case of a first-price auction with
symmetric independent private values, and this approach is easily extended to the other
models. This type of approach has been applied to ascending auctions by Haile and
Tamer (2003).

Unless the dimensionality of the covariates is fairly small relative to the sample size,
however, a fully general nonparametric estimation approach may not be practical. One
alternative suggested by Haile, Hong and Shum (2003) exploits the observation that
additive (or multiplicative) separability is preserved by equilibrium bidding.*> In par-
ticular, suppose that in an auction with characteristics z, valuations are given by

ujp = I'(z;) + ajy (6.2)

for some (possibly unknown) function I"(-), with the bidder-specific private information
Aj; independent of Z,. Then, if we let zy be such that*®

45 This approach has been applied by Krasnokutskaya (2004), Bajari, Houghton and Tadelis (2004), and
Shneyerov (2005).

46 We assume for simplicity that such a z exists. If it does not, the argument extends but with more cumber-
some notation.
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I'(zg) =0 (6.3)
equilibrium bidding also follows the additively separable structure (an analogous result
applies in the case of multiplicative separability)

Biuis N,z) = ') + Bi(ui; N, 2p). (6.4)

Proving this is trivial in an ascending auction, where the bid function is the identity
function. For a first-price sealed-bid auction, let

Bitai, z; N') = Bi(a;i + I'(2); N, z)
so that under (6.2) a bidder’s first-order condition can be written

Gy 3 (BiCair, 23 NO\Biair, 2; N3 N, )
gm;18; (Biair, 2i; N Bi(air, 2; N )y N, z)

(6.5)
Note that the events (Bi(Ai,zzN) = PBi(ai,z; N)} and {BiSAi7ZO;N) =
Bi(a;i, zo; N')} are equivalent for any z. Under (6.4), the events {Bj(A;, zN) =
Bi(ai, z; N')} and {Ej(Aj,zo;./\/) = Bi(ai, 20; N')} are also equivalent for j # i,
so the expression

G m; 8 (Bi (@irs s NI Bi(air, 20 N s N 2)
em; B (Bi @i, s N\ Bi(aie, 2 N s N z4)

on the right-hand side of (6.5) is invariant to z,. Hence, (6.4) guarantees that (6.5) is
satisfied for all z, whenever it is for z, = zg.

This preservation of additive separability is useful because it implies that the effects
of covariates on valuations can be controlled for using a regression of bids on covariates.
In particular, we can write

aip + I'(z) = Bi(ait: z; N) +

biy = a(N}) + I'(z) + €iq, (6.6)

where o (;) is an intercept specific to auctions in which the set of bidders is N; (in a
symmetric environment, this can be «(n;)) and €;; = B; (u;r; Ni, zo) — a(N;) has mean
zero conditional on z;. Both «(N;) and I'(z;) are then identified from observation of
bids, NV;, and z; indeed, they can be estimated consistently using standard regression
techniques.

Let I (z;) denote a consistent estimate of I'(z;). Then b;; — r (z;) provides a con-
sistent estimate of B; (u;;; NV;, 7o), i.e., the bid i would have submitted in auction t if Z,
were equal to zg. Of course, a sample of bids from auctions with the same value of Z
of is exactly what we would like to have. Estimation of (6.6) provides an approach for
“homogenization” of the bid data by replacing each b;; with

b{-/lt = bi[ — ﬁ(zt).

These homogenized bids can then be used to consistently estimate the underlying dis-
tribution of valuations Fy(-; Zo) using the methods described in the previous sections;
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i.e., with I"(-) known, Fy(-; Zo) is identified through (6.1). Finally, since (6.3) and (6.2)
imply

Pr(Ult < U, ..., Unt < un) = FU(MI - F(Zit)’ cee,Up — F(Zil); ZO)’

Fy(+; z) is then identified for all z in the support of the auction covariates. As usual, in a
first-price auction, equilibrium bidding implies that the distribution of the mean-zero €;;
will vary with AV;. So the “second stage” of estimating the joint distribution Fy(-; zo)
must be done separately for each N;.

The number of observations available for the first-stage regression of bids on covari-
ates is Zn nT,, which is often quite large. Hence, a nonparametric or flexible parametric
specification of I"(-) will be feasible in data sets of reasonable size. Assuming that I"(-)
is known up to a finite parameter vector has an advantage for some purposes in that es-
timates from the first stage will converge at the parametric rate, leaving the asymptotic
distribution of nonparametric estimators applied to the homogenized sample unaffected.
Note that the function I" (), which characterizes the effects of covariates on valuations,
is sometimes of direct interest itself. Equation (6.4) implies that one can estimate this
primitive directly with a regression of bids on covariates. Bajari, Houghton and Tadelis
(2004), for example, have recently exploited this observation to investigate the impor-
tance of renegotiation costs in procurement auctions.

This approach preserves the fully nonparametric specification of the idiosyncratic
component of bidders’ private values and allows direct inference (through the first-
stage estimates) on the way observables affect valuations. However, it places a strong
restriction on the way observables enter. An alternative nonparametric approach is to
use series or sieves [e.g., Chen (2007)], approximating the bid distribution with a se-
quence of parametric models. In a given data set this will amount to assuming a flexible
parametric model, and one might also take such an approach directly. For example,
in an ascending auction with symmetric independent private values, one might specify
the conditional distribution F ,(J"_l:") (u]z) as a finite mixture of parametric distributions.
Letting H(-; y) be a parameterized distribution function, the distribution of the transac-
tion price could be specified as

J
. 1
(n—1:n)
F (ulz,0,J]) = —— a)(Z;O-)H(u;y(z;G-)) 6.7)
U J j
211:1 w(z;0)) ;
given parametric specifications of the functions y (-) and w(-). Given an estimate 0 of
the parameter vector 8 = (01, ..., 6 ), Equation (4.9) implies that
Fylz) = ¢(F "™ lz: 0, J);n — 1, n) 6.8)

would provide a consistent estimator of Fyy (u|z) under (6.7).
In a first-price sealed-bid auction, a similar approach might be applied. For a given
set of bidders )V, the conditional distribution G M;|B; (mi|bj; N, z) could be assumed to



Ch. 60: Nonparametric Approaches to Auctions 3893

have the parametric form

T o, z:0))
GMi\Bi(mi|bi§NvZ’0’J)=Z 7 -
o X @iz 05)

providing a flexible parametric first step of the two-step estimation procedure discussed
in Section 3.2. This kind of specification allows the distribution of bids to vary with
auction covariates in richer ways than is allowed by the “homogenization” approach
described above. This flexibility comes at the price of placing a priori structure on the
distributions of bids and valuations. Of course, some approximation must always be
used in a finite sample, and a finite mixture may perform well in practice. Note that here
the effects of covariates on valuations, which are often of primary interest, would be
obtained indirectly, through (6.8) or through (6.1) and (6.9).

H(m:y(bi.z:0))  (69)

6.1.2. Unobserved auction heterogeneity

In many applications one may suspect that there are factors affecting bidder valuations
that are common knowledge among bidders but unobserved by the econometrician. For
example, suppose valuations are given by the equation

Ui =Vo+ A, (6.10)

Even if the idiosyncratic components Ay, ..., A, are i.i.d., the valuations Uy, ..., U,
will be correlated unconditional on Vg (they will be affiliated if the densities fy, (-) are
log-concave). When bidders’ information consists only of their valuations u;, not the
individual components vy and g;, this merely provides one motivation for an affiliated
private values model. When bidders observe both vy and a;, however, the situation can
be more complicated.

As noted above, information regarding an auction that is common knowledge among
the bidders creates no problem for the characterization of equilibrium bidding strategies
— the theory can be thought of as holding for each value of the public information.
However, for empirical work, difficulties can arise when the econometrician is unable
to condition on all the information that is public to bidders.

There are at least three issues that arise in the presence of unobserved heterogeneity.
The first is whether unobserved heterogeneity is empirically distinguishable from other
structures that introduce correlation among bids. In an ascending auction, equilibrium
bids satisfy B; = U; regardless of whether bidders observe only their own valuations or
also factors shifting all bidders’ valuations. Hence it will be impossible to distinguish
an environment with unobserved heterogeneity from an environment with correlated
private values but no unobserved heterogeneity. In a first-price auction, the situation is
similar. As long as the conditions of Theorem 5.2 hold, the data can be rationalized by
equilibrium bidding. However, unobserved heterogeneity can account for some or all of
the observed correlation (if any) among bids.
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This observational equivalence can be important. If (6.10) holds, for example, an
assumption about whether each bidder i observes only U; or also Vj can have sig-
nificant implications for bidding strategies (and, therefore, the appropriate interpreta-
tion of bids) in a first-price auction. Thus, one must rely on an assumption regarding
which model is appropriate.*’ In her application to highway procurement auctions,
Krasnokutskaya (2004) compares the estimated bid function under an assumption of
affiliated private values (with no unobserved heterogeneity) to the average (over the
unobserved heterogeneity) bid function under the assumption of independent private
values with unobserved heterogeneity. She finds that the estimated average bid function
under unobserved heterogeneity is steeper than the estimated bid function under affili-
ated private values, and that estimated average markups are substantially higher when
one ignores unobserved heterogeneity. Hence, the modeling choice can have important
implications.

The second issue is whether the joint distribution Fy(-), is identified under the
assumption of unobserved heterogeneity. We will see that in a first-price sealed-bid
auction, identification can be obtained through additional structure, e.g., on the sta-
tistical and functional relationships between the unobserved heterogeneity and bidder
valuations or on the effects of unobserved heterogeneity on observed outcomes other
than bids. In an ascending auction, the available identification results require additional
sources of variation in the data, such as bidder-specific covariates.

The third issue is whether identification of Fy(-) is adequate for the economic ques-
tions one wishes to answer. In the presence of unobserved heterogeneity, knowledge of
this distribution is sufficient to answer some important questions but not others — in par-
ticular, not those concerning outcomes that depend on bidders’ beliefs about opponents’
valuations, since these beliefs vary with the realization of the factor that is unobserv-
able to the econometrician. In ascending or second-price auctions (or any mechanism
with a dominant strategy equilibrium), Fy(-) is the only primitive relevant for predicting
equilibrium outcomes, designing the auction rules, or performing counterfactual simu-
lations. However, if we wish to consider policy questions concerning first-price auctions
or other mechanisms in which beliefs play a more significant role, it will be necessary
to know the joint distribution of bidders’ private information and the unobserved het-
erogeneity (e.g., the distribution Fy v, (-) if one assumes (6.10)), not just Fy(-). Below
we will discuss conditions under which this joint distribution is identified.

47 Although the literature has not yet considered approaches for distinguishing between the two models, it
may be possible to develop a test based on exogenous variation in participation. In particular, it is possible
to estimate the primitives of each model for a fixed set of potential bidders N. Then, these primitives can
be used to make “out of sample” predictions about bid distributions for other sets of potential bidders (e.g.,
a subset of the original set N/ C A). We conjecture that in general the specific bid distributions predicted
by the two models for the set of bidders A will differ across the two models. However, to our knowledge
this has not been formally analyzed. Note that a test of this restriction would rely on the assumption that
participation does not vary with the unobserved heterogeneity. This assumption may be strong in practice; it
may be satisfied, however, if bidders pay a cost to acquire a signal and the unobserved heterogeneity is not
observed by bidders until they bear the cost of investigating the auction. Instrumental variables approaches
like that explored in Haile, Hong and Shum (2003) may also be useful.
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6.1.2.1. First-price sealed-bid auctions To demonstrate the problem of unobserved
heterogeneity in first-price auctions, we begin with a very general case. In a private
values first-price sealed-bid auction, suppose that information w; is common knowledge
among the bidders at auction ¢. Following the discussion in Section 6.1.1, the first-order
condition relating bids to the underlying valuations is

GM,~|B; (bir|bis; N, W;)

uir = bir + .
" " gm;|B; (Bit|bis; N, wy)

(6.11)

If the econometrician does not observe w;, the conditional distribution Gy, 8, (bit|bis;
N, w;) is not identified. This creates a serious challenge to any attempt to uncover the

AT RUAIR'D) . . . .
markdown g;“lg‘(h,l t‘lb_l a w') . Indeed, because this markdown is a nonlinear function
ilBj it it s WE

of w;, even the average markdown is not identified in general [Hendricks, Pinkse and
Porter (2003)].

Identification requires additional structure, and several possibilities have been ex-
plored in the literature. All begin by assuming that the unobservable is a scalar, which
we will denote by W. Some early work took parametric approaches to disentangling the
common shock W from idiosyncratic factors, but more recently nonparametric identi-
fication results have been derived, exploiting additional data and/or assumptions about
the way common shocks affect outcomes.

One approach, first proposed by Campo, Perrigne and Vuong (2003), is to exploit ob-
servables that are sufficient for the unobserved factor. This can be natural when there is
an observable endogenous variable besides bids that responds to the unobservable W.*8
Both Campo, Perrigne and Vuong (2003) and Haile, Hong and Shum (2003) have used
this approach by positing a model in which the number of bidders in auction ¢ can be
represented as a function of observables Z; and the unobservable W;:

Nt =a(Z,, Wt) (612)

If a(z,-) is a strictly increasing function for all z, then the joint distribution of
(X1,...,X,,Uy,...,U,) conditional on (N;, Z,) is identical to that conditional on
(N[, Z[, W[) Then
U(.x,.x;n, wvz) = E[Ul | Xi =X, NI =n, Wt =w, Zl =Z]
=E[Ui | Xi=x, Ny=n, Z; =1]

=v(x,x;n,z)

and identification follows from the first-order condition

48 A similar idea was used to address the problem of identification with unobserved heterogeneity in a very
different environment by Olley and Pakes (1996).
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v(xi17 Xits Nty Zl)
Pr(max;.; Bj: < bit | Bir = bit, Zy = 2;, Ny = ny)
<

=b;y + )
m | By = bj;, Ly =12;,, N; = ”t)lm:hi,

% Pr(max;; Bj;
where the right-hand side is a known function of observables.

The assumption of strict monotonicity of N in W is strong although it is clear that
there must be an invertible relation between W and the observables for this kind of
approach. With weak monotonicity, conditioning on (N;, Z,) would limit the realization
of W, to some set W(N;, Z;), and in some applications this might be sufficient to use
the first-order condition above as a useful approximation.

The economic interpretation of (6.12) can be important when taking this kind of ap-
proach. For example, to predict outcomes under alternative selling mechanisms, one
must consider whether changing mechanisms would alter the relation between bidder
participation and Z [see, e.g., Athey, Levin and Seira (2004)]. If so, one would need a
fully specified economic model of participation and bidding. However, a reduced form
may be adequate for some questions and applications — for example, when (6.12) de-
scribes the determination of matches between auctions and potential bidders based on
unobserved characteristics of the object offered for sale, or when the economic ques-
tions of interest do not depend on counterfactual predictions regarding participation.

Other approaches to handling unobserved heterogeneity in a first-price auction are
closely related to ideas from the econometrics literatures on measurement error with
repeated measures [Li and Vuong (1998), Li (2002), Schennach (2004)] and dura-
tion models with unobserved heterogeneity and multiple spells [see, e.g., Lancaster
(1990)]. These literatures consider multiple observations for each of many units, with
observations within each unit reflecting both a common (unobserved) shock as well as
idiosyncratic shocks. In the auction setting, the auction plays the role of the unit, with
the individual bids being the observations within unit.

Consider a simplified model of unobserved heterogeneity in which bidder valuations
take the additively separable form in (6.10), and (Ay, ..., A,, Vo) are mutually inde-
pendent with compact support. This is a special case of a conditionally independent
private values model (itself a special case of affiliated private values, so long as each
fa; () is log-concave).49 Li, Perrigne and Vuong (2000) considered this structure under
the assumption that bidders observe only their valuations U;. They showed that, in that
case, the joint distribution Fj v, (-) is nonparametrically identified up to a location nor-
malization. While there is no unobserved heterogeneity in their model, their approach

OIn a general specification of conditionally independent private values, one would assume only
Favplar, ..., an, v9) = Fy,(vo) ]_[:7:l Fy, (a;|vg). With this more general specification, the linearity as-
sumed in (6.10) would be without loss of generality, since whatever the distributions of U;|V(), one can let
A; = U; — V. The de Finetti Theorem [e.g., Chow and Teicher (1997)] tells us that any infinite sequence of
exchangeable random variables can be represented by this more general conditionally independent structure.
However, finite exchangeable sequences, like those arising in symmetric auctions with a finite number of po-
tential bidders, need not have such a representation. Athey and Haile (2000, Proposition 4) explore limitations
of the flexibility of the more restrictive conditionally independent structure considered here.
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turns out to be a useful starting point. To see the idea behind their result, recall that
observation of all bids and bidder identities is sufficient to identify the joint distribution
Fy(+) in a first-price auction with affiliated private values. Once Fy(-) is known, a result
from the literature on measurement error can be applied to separately identify the com-
ponent distributions F(-) and Fy,(-) up to a location normalization. Li, Perrigne and
Vuong (2000) develop consistent nonparametric estimators for this environment using
empirical characteristic functions.>

Krasnokutskaya (2004) shows that a very similar approach can be applied in the case
of unobserved heterogeneity — i.e., when valuations take the additively separable form
in (6.10) and v is observed by bidders but not the econometrician.’! In essence, she
reverses the two steps of Li, Perrigne, and Vuong’s (2000) approach: she first uses a
deconvolution technique to remove the effects of unobserved heterogeneity from bids,
then recovers the idiosyncratic factors a; through the first-order condition for a hypo-
thetical auction with no unobserved heterogeneity. In this sense, the approach is similar
to the “homogenization” approach for incorporating observable auction heterogeneity,
discussed in Section 6.1.1.

For the first step, recall from Section 6.1.1 that the additive separability in (6.10) is
preserved by equilibrium bidding.52 Soif B; (uir; Ny, vor) denotes bidder i’s equilibrium
bid given u;;, N;, and vy, then

Bi(uir; Ny, vor) = Bi(uis — vors Ni, 0) + vy (6.13)

If one observes all bids from each auction, the following result from Kotlarski (1966)
implies identification of the joint distribution of (81(A1; N, 0), ..., B.(A; N, 0), Vo)
up to a location normalization.>

LEMMA 6.1. Let Y1, Ya, and Y3 be mutually independent random variables with nonva-
nishing characteristic functions ¢1(-), $2(-), and ¢3(-), respectively. Let Q1 = Y1 + Y3,
Q2 =Y, + Y3. Then
(1) the joint distribution of (Q1, Q2) completely determines the distributions of
Y1, Y, and Y3 up to location;
@ii) if ¥ (-,-) denotes the characteristic function of (Q1, Q2), and V; (-,-) is its deriv-
ative with respect to its ith argument, then under the normalization E[Y1] = 0,

$3(0) = expl [y L9 ds), ¢1(1) = L and (1) = L0

50 See also the discussion of a closely related special case of the mineral rights model in Section 7.2.1 below.
51 An alternative is discussed in Section 8.2 below.

52 Krasnokutskaya (2004) focuses on the case of multiplicative rather than additive separability. The analysis
is equivalent with a logarithmic transformation. As she points out, a more general model allowing unobserved
heterogeneity affecting both the location and scale of private values is also identifiable, since one can apply
the deconvolution step (Lemma 6.1) to the bids twice — once in logs and once in levels.

33 To see the connection to the original measurement error framework, observe that with an appropriate
location normalization, under (6.10) each A; can be interpreted as an independent mean-zero measurement
error on v.
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A proof can be found in Prakasa-Rao (1992, Theorem 2.1.1 and Remark 2.1.1 1).54
A key to the result is the fact that the characteristic function of the sum of indepen-
dent random variables is the product of the characteristic functions of the component
variables. With multiple observations involving one component in common, this sepa-
rability can be exploited to isolate the characteristic functions (and, thereby, the distri-
butions) of the individual components. Identification is up to a location normalization,
since adding a constant to Y3 and subtracting the same constant from Y and Y> has no
effect on observables.

Lemma 6.1 can be used to relate characteristic functions of the observed bids to
those of the “homogenized” bids 81 (A1; N, 0), ..., B.(A,; N, 0) and the unobserved
factor V{. Identification of the distribution of each A; then follows from the first-order
condition for a hypothetical auction in which vy, = 0. In particular, if we let Bl.O =
Bi(Ai; N,0) = B; — W,

., B L. 0
Ai =B + - Primaxji B4 N.O S B) E(B):N). (6.14)
7= Pr(max ;- Bj(Aj; N, 0) < LI

Note that unlike the case without unobserved heterogeneity, it is not possible to iden-
tify the valuations of bidders in a particular auction, because the realization of Vj is
unobserved. Despite this, because Lemma 6.1 implies that G zo(-) is identified, it fol-

lows that §5(-; N) is also identified, so that the distribution of private information is
given by

Fa(ai) = Gpo(§7 (@i \).

Nonparametric estimators can be developed by first substituting empirical character-
istic functions for the population characteristic functions in part (ii) of Lemma 6.1, and
then using simulation to construct pseudo-draws of the random variable on the right-
hand-side of (6.14). We sketch the approach here. For simplicity, consider the special
case in which there are two classes of bidders, with bidders in the same class draw-
ing their valuations from the same marginal distribution (extension to more than two
types is straightforward). Suppose one has a sample of T auctions in which there are n
class-1 and n, class-2 bidders in each auction, and that all bids and bidder identities are
observable. As above, estimation must be undertaken fixing the number of bidders of
each type, which is equivalent here to fixing the set N

Let c(j,t) denote the class of bidder j in auction . Impose the normalization
E[A;] = O for any class-1 bidder i. Let G;(-) denote the marginal distribution of
the equilibrium bid B J of a class- Jj bidder, and let G g1 B2 (bl, bz) denote the joint dis-
tribution of (B!, B?). Similarly, let B%/ = B/ — V}) denote the homogenized bid of
a class-j bidder. Note that the homogenized bids are independent. Let ¥ (-,-), ¢o(-),

54 See also Li and Vuong (1998, Lemma 2.1).
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¢po.1(-) and ¢ o2 (-) denote the characteristic functions of (B', B?), V, B%!, and B%-2,
respectively.

Following Li and Vuong (1998) and Krasnokutskaya (2004) [see also Li, Perrigne
and Vuong (2000)], define estimators

T
A 1 . .
v ) = Tniny Z Z Z exp(itibji +it2bu),

t=1 j:c(j,)=1 k: c(k,t)=2

T

o 1

1//'1 (‘[1’ ‘52) = Thin E E E lb]t eXp(i‘Clbjt + ifzbkt),
Y2520 i eGin=1 k: c(kn=2

where, for each estimator, an average is taken over all possible pairs (b', b?). Let

F 100, v) dv},

bo(v) = exp{

0 ¥(0,v)
. ¥ (z,0)
Ppoi(t) = o=,
B o)
] _¥0,7)
Ppo2(e) = do(r)

Given these estimated characteristic functions, one can obtain estimates of the marginal
densities of B%!, B%2 and V} using the inverse Fourier transform. In particular, let

M ~
gpoi(b) = L/ exp(—ith)pgo.i (v) dr, (6.15)
2 J_,
A 1 H ~
fvo(v) = 2—/ exp(—itv)ey, (r)dr, (6.16)
T J—n

where p is a trimming parameter.

As shown by Li and Vuong (1998), under certain smoothness conditions (6.15) and
(6.16) provide uniformly consistent estimators of the density fy,(-) of Vy and the den-
sities of the homogenized bids Bl.0 for each bidder i. These densities can then be used to
construct estimates of the right-hand-side of the first-order condition (rewriting (6.14))

Hj;éi GBo,c(_/,H(BiOz)

A = BY + , (6.17)
i TN g0 (BY) i, ; G poctn (BY)
where
b
G o (b) = / 20, () ds. (6.18)
—0oQ

In contrast to other applications of the indirect approach to first-price auctions [e.g.,
Guerre, Perrigne and Vuong (2000)], however, here draws of the bids Biot on the right-
hand-side of (6.17) cannot be taken directly from the data. Instead, they must be
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simulated from the estimated densities g zo(b). Using simulated bids, (6.17) makes it

possible to construct a pseudo-sample of draws of the idiosyncratic components A;,
which can be used to obtain estimates of their underlying densities f,4,(-) using stan-
dard methods. Krasnokutskaya (2004) provides additional details and conditions under
which this leads to uniformly consistent estimates of the marginal densities fy,(-)
and f,;(-) for each bidder class j. She suggests the use of the bootstrap for infer-
ence.

Note that while the approach here is similar to that in Li, Perrigne and Vuong (2000),
there are important distinctions. When V) is not observed by bidders, the joint distri-
bution Fy(-) is identified directly from the first-order condition and completely char-
acterizes bidder demand and information. Since knowledge of Fy(-) is sufficient for
counterfactual simulations in a private values model with no unobserved heterogeneity,
it is not clear under what circumstances one would need to separately identify Fa (-) and
Fy, (-).55 When Vj is observed by the bidders, however, identification of the joint dis-
tribution Fy(-) no longer follows directly from the first-order condition. Furthermore,
even if Fy(-) were identified, in this environment separate identification of Fa(-) and
Fy,(-) is required for many counterfactuals.

The approach proposed by Krasnokutskaya (2004) is attractive in that it places no
restriction on the distribution of the idiosyncratic factor A; or the distribution of Vj. It
does restrict the way unobservables affect valuations. It may also require large samples
— the slow convergence rates of deconvolution estimators is well known. Athey, Levin
and Seira (2004) propose an alternative, trading flexibility in the specifications of Fy, (-)
and the Fy, (-) for flexibility in how unobservable and observable auction characteristics
affect valuations. They propose parametric estimation of the bid distributions and the
distribution of auction heterogeneity. This is followed by estimation of the distribution
of valuations based on (6.14) in a manner similar to Krasnokutskaya (2004). Mixtures
of parametric models might be introduced to allow for more flexibility, as described at
the end of Section 6.1.1. Although using a parametric first step is restrictive, it allows
a parsimonious specification whereby the unobserved heterogeneity may affect some
types of bidders differently than others, and where the distribution of the unobserved
heterogeneity depends on auction characteristics. In principle, these features could be
incorporated into Krasnokutskaya’s (2004) approach by allowing auction characteristics
to interact with V and A; in (6.10), but in practice this may be not be feasible in data
sets of moderate size.

6.1.2.2. Ascending auctions The challenges created by unobserved auction hetero-
geneity in an ascending auction are quite different. Because equilibrium is in weakly
dominant strategies in the standard model of the ascending auction, unobserved het-
erogeneity does not affect the equilibrium mapping (the identity function) between

5 A separate (and open) question, however, is whether imposing the structure of this model in estimation
leads to more precise estimates in counterfactual simulations.
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valuations and bids. For example, bidding in an environment with valuations charac-
terized by (6.10) is the same regardless of whether bidders observe both vy and a; or
only their sum. The main problem posed by such an environment is the fact that positive
identification results for ascending auctions have been obtained primarily for environ-
ments with independent valuations, yet the presence of an unobserved factor like vy
generally leads to a violation of independence.

In Section 6.2.1 we will show how additional data on bidder characteristics can be
used to obtain identification of the joint distribution of valuations in an ascending auc-
tion without independence. This would not be sufficient for all economic questions of
interest, however. As the preceding section makes clear, for example, separate identi-
fication of Fy,(-) and each Fjy;,(-) is needed even to simulate outcomes in a first-price
sealed-bid auction. However, with an estimate of the joint distribution Fy(-), it should
be possible to use deconvolution techniques similar to those discussed above to sepa-
rately estimate Fy,(-) and each Fy, () when U; = A; + Vj, under assumptions similar
to those discussed above. This has not yet been investigated.

6.2. Bidder heterogeneity
6.2.1. Observed bidder heterogeneity

As discussed in prior sections, observable differences across bidders introduce asym-
metry that can complicate the analysis of bidding data. However, when bidder-specific
covariates are observable and vary across auctions, they can actually aid identifica-
tion by enabling the distribution function for a single order statistic to reveal more
information. This is particularly valuable in an ascending auction given the negative
identification results above for environments without independence. In fact, with suf-
ficiently rich variation in covariates, identification can be obtained with asymmetric
dependent valuations, even when the transaction price is the only bid available (or the
only bid assumed to have the unambiguous interpretation implied by the button auction
model).

The idea behind this approach is familiar from other types of models, including the
Roy model of labor supply [e.g., Heckman and Honoré (1990)] and competing risks
models [e.g., Heckman and Honoré (1989)]. To see how this can work in the auction
environment, suppose

Ui =g W)+ A,

where each g;(-) is an unknown function, W; is a covariate reflecting characteristics
of bidder i, and the private stochastic components (A, ..., A,) are drawn from an
arbitrary joint distribution F (-) and are independent of the matrix W = (Wy, ..., W,).
Suppose for the moment that each g;(-) is known and that we could somehow observe
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umm 56 Conditional on the vector w, U ™™ has cumulative distribution

FU™ (uw) = Pr(U™™ < u | w)
= Fg(u, ..., ulw)
= Pr(gi(wi) + A; <uVi)
= Fa(u —g1(wp), ... u — gu(Wp)).

While the joint distribution Fy(-|w) is observed only along the diagonal (U} = --- =
U,), sufficient variation in (g;(wy), ..., g,(W,)) would “trace out” the entire joint
distribution Fy(-). Furthermore, prior knowledge of the functions g;(-) is not nec-
essary with sufficient variation in covariates: at sufficiently large negative values of
gj(w;) Yj # i, bidder i will have the largest valuation with probability arbitrarily
close to one, so that variation in w; and the point of evaluation # would trace out the
function g; (-).

In practice we cannot observe u™™ in an ascending auction, and the distribution
of an interior order statistic has a more complicated relation to the underlying joint
distribution than does the maximum (or minimum, as in the case of competing risks).
However, the following result shows that the fundamental idea behind this approach can
be used to obtain identification in an ascending auction when only the transaction price
is observable.>’

THEOREM 6.1. Assume
O U =gW)+A,i=1,...,n

(1) FA(:) has support R" and a continuously differentiable density.

(iii) A; and W are independent for all i, j.

(iv) supp(gi(W1), ..., gn(W,)) = R,

(v) Foralli, g;(-) is continuously differentiable, with limy, _ (co,....00) &i (W;) = 00

and limy, s (—co,..., —00) 8i (W;) = —00.

Then Fa(-) and each g;i (), i = 1, ..., n, are identified up to a location normalization
from observation of UY™ and W, for any single value of j € {1, ..., n}.

PROOF. For simplicity let each W; = W; be a scalar. For 7 C {1, ..., n} define

Fl,...,a)=Pr(A;i >a;VieT, Aj<a;Vj¢T)

56 This is the observable order statistic in the Roy model, where the wage in the chosen sector (the one
offering the highest wage) is the only one observed, yet one is interested in the joint distribution of wage
offers from all sectors.

57 The result is a slight modification of Theorem 5 of Athey and Haile (2002), correcting a minor error in
their proof.
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and let fZAi(al, cay) = B%FZ(al, ...,ay). For arbitrary u € R, define z =
(u —g1(wr), ..., u — gn(wy)). Then

PI’(U(j:n) <u |W) Z Z/ FAA M_gl(wl) _gn(wn))du

wn}yi¢T
ITI—n —J

where the summations are over the possible identities of the bidders with the n — j
highest bids, and the identity of the bidder i with bid BYU"_ Differentiation yields

ol 0"

ou owp - -+ 0wy,

Yoo = 'H —8k(wn) 5 fA(a)

Tcil,..., n} i¢T
ITI n—j

n— n— "9
(n )( 1 ,1—[ gk<wk>)28—aifA(a)

i=1

Pr(UY™ < u | w)

a=z

a=z

since there are (Z:;) subsets 7 of size n — j that exclude i. Now observe that

O (- i) (wn)
— — wi), ..., U — w
91 dw) - w, Alu — 81wy U — gn(Wy
n n a
= [1(giwo) }- 5 - fa@
k=1 i 4 a=z
1 d "

=— — Pr(UY™ <u|w).
(n_j)(_1)n Jou dwy -+ - dwy

Hence, using the fundamental theorem of calculus,

8}1
mFA(’l —g1(wy), ..., u— gn(wn))
1 a"

= — — Pr(UY™ < u | w).
(n_j)(_l)n Jowy--- 0wy,

Repeated application of the fundamental theorem of calculus shows that

/ / 57 ——————Fa(u— g1 (@), ..., u — gu(Wy)) diby ... dw,
wq Wy Wy

= (—1)"FA(M —g1(wi), ..., u— gy(wy))

so that
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Fa (” - gl(wl) s U — gn(wn))

( 1)1 Gn) N\ g~ -
Pr(UU™ < u | W)di, ... dby.  (6.19)
w wy awn

Now note that hmw,ﬁ(foo,...,fo@ Fau—gi(wy), ..., u—gn(wy)) = Fa, (u—gi(w;)),
where Fy, () is the marginal distribution of A;. For each i, then, variation in u and
w; identifies g; (-) through Equation (6.19) by standard arguments. With knowledge of
each g; (-) we can then use (6.19) to uniquely determine Fj () at any point (aq, ..., d,)
through appropriate choices of u and w. O

Estimation based on this result has not yet been explored. For the competing risks
model, however, Fermanian (2003) has recently proposed kernel methods that build
directly on the closely related identification proof of Heckman and Honoré (1989).

6.2.2. Unobserved bidder heterogeneity

We have already discussed several models with bidder heterogeneity that is either fixed
across all auctions or captured by observable bidder-specific covariates. However, one
can imagine situations in which asymmetries between bidders vary across auctions due
to factors that are common knowledge to bidders but unobserved to the econometrician.
For example, the match between the specifications of a procurement contract and each
contractor’s particular expertise might be common knowledge within the industry but
unobservable to outsiders.

In the most general case, this type of environment requires a different marginal dis-
tribution Fy,, () for each bidder i’s valuation in each auction ¢. It should be clear that
identification of such a model from bid data alone is impossible: the number of mar-
ginal distributions in the model is equal to the number of observations, even assuming
one observes all bids from each auction.

Consider instead a more restrictive model

Uit = Ait + Eir,

where all (i) A;; are i.i.d. draws from a cumulative distribution F4 (-) with density f4(-);
(ii) E;; and A;; are mutually independent; (iii) E;; is common knowledge among the
bidders but unobserved to the econometrician; and (iv) each E;; is an independent draw
from a cumulative distribution F, (-) with density fg, (-). From the econometrician’s
perspective, each bidder’s valuation is then an independent draw from a density

fU,'(') = fA() * fE,'(')v

where * denotes convolution.

In an ascending auction, Theorem 4.1 implies that each Fy, (-) is identified if one ob-
serves the transaction price, the set of bidders V, and the winner’s identity. This would
be sufficient for some important questions and policy simulations, although not all. For
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example, it would not be sufficient to simulate outcomes under a first-price sealed-bid
auction, since to do this one would need to know how much of the variation in valu-
ations was common knowledge (through E;) and how much was private information
(through A;). Separate identification of F4(-) and FE, () for all i is not possible from
bid data, however. There are n + 1 marginal distribution functions of interest. Yet even
if one observed bids from all bidders (instead of the n — 1 losing bids, as usually as-
sumed), there are only n marginal distributions of observable bids. Without additional
restrictions, identification will not be possible.

In a first-price auction, the situation is further complicated by the nontrivial strategic
behavior. In particular, even identification of each Fy, () in the special case above is
doubtful, since the markdown in each bidder’s first-order condition

Pr(max;.; B; < b; | Bi =b;, Eq,..., E))
%Pr(maxj;éi B; <b; | Bi =b;, Ei,..., Ej)ln=p

uj =b; +

involves expectations that are conditioned on the information Ej, ..., E; that is unob-
servable to the econometrician.’® The problem here is closely related to that discussed
in Section 6.1.2, although the dimensionality of the unobserved heterogeneity is higher,
and the approaches thus far proposed to address unobserved heterogeneity do not appear
to be applicable.

6.3. Endogenous participation

So far, we have focused on models in which any variation in the set of bidders is ex-
ogenous (the exception is the discussion of endogenous participation with unobserved
heterogeneity in Section 6.1.2). In this section we consider several different models of
how the set of bidders is determined, and we explore the consequences of these models
for identification. Here it will be useful to draw a distinction between potential bidders
and actual bidders. As before, we let N (with |[A/| = n) denote the set of potential
bidders — those who draw signals and decide whether to bid.>® We let A € N (with
| A| = a) denote the set of actual bidgers, i.e., those who actually place a bid. Variation
in both N and A is possible. Let N be the random set whose realization is denoted
by N, and let A be the random set whose realization is denoted by A.

58 Models similar to this have been explored in the related context of differentiated products oligopoly price
competition [e.g., Berry, Levinsohn and Pakes (1995); see also Chapter 63 by Ackerberg et al. in this volume].
There, common knowledge differences in unobservable (to the econometrician) quality of products that differ
across markets lead to asymmetries in the effective common knowledge marginal costs of supplying utility to a
buyer choosing between firms. Identification in those models is obtained through a combination of parametric
assumptions and restrictions from the demand side of the market. In the auction setting, the latter would
be analogous to restrictions from the seller’s (or auctioneer’s) side of the market, for example using the
assumption that the reserve price is set optimally. We are not aware of empirical approaches exploiting such
information, although this is a direction worth exploring. See Einav (2004) for a related discussion.

59 In the literature, sometimes agents with the option of acquiring a signal are referred to as potential bidders
[e.g., Hendricks, Pinkse and Porter (2003)].
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An example of why the set of potential bidders may vary is an environment in which
obtaining a signal is costly. Firms may then decide whether to investigate a particular
opportunity at random or based on some summary statistics about the auction (for ex-
ample, the appraised value of the object). Fixing the set of potential bidders, the set of
actual bidders may vary, for example, if there is a binding reserve price or if submitting
a bid is costly. In such cases, typically only bidders with sufficiently favorable signals
will bid. In addition, in an ascending auction that lacks a strict “activity rule” like that
in the standard Milgrom—Weber model, the set of actual bidders can exclude even po-
tential bidders with relatively high valuations, since others may push the price beyond
these bidders’ willingness to pay before they ever make a bid.®

In this section we will see that the consequences of endogenous variation in .4 and
N for equilibrium and identification will depend on whether bidders’ participation de-
cisions are common knowledge among the bidders and whether these are observable by
the econometrician. Often the number of actual bidders in an auction is observed by the
econometrician; the set of potential bidders may or may not be observed. °!

6.3.1. Binding reserve prices

We first consider the case in which a reserve price may be binding. Recalling (2.1),
in an n-bidder auction with reserve price r, only bidders with signals x; > xl.* T N)
participate (with x*(r, V) = r in a private values auction). Ignoring this endogenous
participation can result in misleading estimates due to the selection introduced by the
participation decisions.®> Throughout this section, we will assume N is observable,
hold WV fixed, and consider only bidders i € N.

6.3.1.1. Ascending auctions For ascending auctions we obtained positive identifica-
tion results above primarily for models with independent private values (the exception
is Theorem 6.1), so we will focus on such models here. Donald and Paarsch (1996)

60 Auction-specific unobservables may affect either the number of potential bidders (e.g., if unobservables de-
termine whether there is a suitable match between a specialized contractor and a contract offered by auction),
or the number of actual bidders (e.g., if unobservables affect the profitability of an auction in an environment
with costly signal acquisition). See Section 6.1.2 as well as Athey, Levin and Seira (2004), and Li and Zheng
(2005).

61 In the case that A is not observed but fixed in a sample, in most models of endogenous participation
the common support assumption ensures that the union of identities of all actual bidders ever observed will
converge to V" as the sample of auctions grows [cf. Guerre, Perrigne and Vuong (2000)].

62 A closely related model is that in which bidders must pay a fee to enter the auction [Samuelson (1985)] or,
equivalently from the perspective of identification, preparing a bid is costly. This can lead to a participation
rule very similar to that with a binding reserve price [Milgrom and Weber (1982)]. For first-price sealed-bid
auctions, Haile, Hong and Shum (2003) discuss this case and provide results similar to those given in this sec-
tion. Note that bid preparation costs are different from costs of acquiring a signal (discussed in Section 6.3.2),
because in the former case a bidder places a bid if his signal is high enough, while in the latter case the partic-
ipation decision must be made before bidders have obtained signals, and all bidders who acquire signals will
bid (unless there is a binding reserve price).
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and Paarsch (1997) were the first to incorporate reserve prices in structural models of
ascending auctions in the IPV setting.®3 They observed that in a parametric framework
one may account for the endogeneity of participation in one of two ways. First, if the
number of potential bidders is observable, one may explicitly account (e.g., in a likeli-
hood function) for the fact that the valuations (bids) of (n — a) potential bidders were
censored because these were below r. Alternatively, one can examine the bidding be-
havior of the actual bidders conditional on their decision to participate. This second
approach is based on the fact that under independence each participating bidder i has a
valuation that is an independent draw from the distribution

FU;(M)_FU,'(V).

Foulny = =5 )

(6.20)
This observation is useful for considering nonparametric identification as well. With
this observation, Theorem 4.1 implies that each truncated distribution Fy, (:|r) is non-
parametrically identified.

COROLLARY 6.1. In an ascending auction with symmetric independent private values,
Fy (-|r) is identified when the transaction price and the number of actual bidders is ob-
servable. In the asymmetric independent private values model, for eachi € N, Fy, (-|r)
is identified when the transaction price, the identity of the winning bidder, and the set
A are observable.

In many cases, this result alone will be sufficient to enable one to address interesting
questions. In the symmetric case, for example, Haile and Tamer (2003) have shown
that the truncated distribution Fy (-|r) can be sufficient to determine the optimal reserve
price (recall Equation (4.12)). To state the result, let Fy-(-) denote Fy (-|r), and let co
be the value the seller places on the good (or her marginal cost of providing it).

THEOREM 6.2. Given any univariate CDF ®(-), let 7 (r; ®) = (r —co)(1 — @ (r)) and
pH(P) € argmax pesupp o() T(p; ). Suppose w(-; Fy) is continuously differentiable
and strictly quasi-concave. Then (i) if r < p*(Fy), r*(Fy,) = p*(Fy); (i) if r >
p*(Fy), p*(Fyy) =r.

This result implies that in a symmetric IPV environment, the optimal reserve one
would calculate by ignoring the endogenous participation is actually optimal, except
when the actual reserve price results in truncation of the relevant region of support. This
follows from the fact that the objective functions 7 (-; Fy) and 7 (-; Fy),) differ only by
a multiplicative constant. The qualification concerning truncation is important but not
surprising: if there are no data below the true optimal reserve price, this optimum cannot

63 More recently, Donald, Paarsch and Robert (2006), and Bajari and Hortagsu (2003a) have considered
parametric models incorporating endogenous participation with reserve prices.
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be detected. However, part (ii) of Theorem 6.2 ensures that when such truncation has
occurred, the data will at least reveal this fact.

For some policy questions, including predicting revenues under a different mecha-
nism or reserve price, the full (untruncated) distributions Fy, (-) will be needed, even
under the independent private values assumption. It should be clear that the value of
Fy, (u) for u lower than all observed reserve prices could not be determined except
through a parametric assumption. However, if both A and A are observable, each
Fy, (1) can be recovered for all u > r. In particular, since Fy, (r) = Pr(i ¢ A), identi-
fication of Fy, (1) for all u > r follows immediately from (6.20) and Corollary 6.1.

THEOREM 6.3. In the symmetric independent private values model, Fy (u) is identified
for all u > r when the transaction price and | A| are observable. In the asymmetric
independent private values model, each Fy;, (-) is identified when the transaction price,
the identity of the winning bidder, and A is observable.

An estimate of Fy, (u) for u > r will be sufficient for some policy questions, e.g., cal-
culations of revenues with higher reserve prices or under some alternative mechanisms.
Estimation of each Fy, (r) = Pr(i ¢ A) based on a sample analog is straightforward. In
the case of symmetry, a different approach to estimation of Fy (-) is available: observe
that exchangeability implies [Haile, Hong and Shum (2003)]

Fy(r) =Pr(Ur <)

= Fy(r,00,...,00;n)
=y Z Pr(lA] = n — k). 6.21)
k=1

A sample analog of (6.21) places much weaker demands on the data than a sample
analog of Pr(i ¢ A). Estimates of Fy (-|r) can be obtained from the winning bids as in
Section 4.2, simply replacing A/ with .A. Combining such estimators to form

Fy, () = [1 = Fy, ("] Fu, (ulr) + Fy, (r)

leads to a consistent estimator of F, ().

Haile and Tamer (2003) point out that similar extensions apply to the bounds ap-
proach to ascending auctions discussed in Section 4.3. Their assumptions (see Sec-
tion 4.3) imply that all bidders with valuations above the reserve price must participate,
as in the standard model. Ignoring the endogenous participation and treating A as the
set of potential bidders then leads to bounds on the CDF Fy (u|r) for u > r. Combin-
ing these with an estimate of Fy () obtained from the observable participation decision
leads to bounds on Fy (1) foru > r.

While we have treated the reserve price above as fixed, it should be clear that this
is not necessary. As with other auction-specific covariates, the results above can be in-
terpreted as holding for a given value of the reserve price. However, because economic
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theory places considerable structure on the effect of the reserve price on the distrib-
ution of participating bidders’ valuations, in practice this structure should be utilized
in estimation. For example, one would want to use data from all auctions with reserve
prices below s to estimate Fy, (u) for u > s. This requires a modified estimation ap-
proach that combines data drawn from different truncated distributions. Indeed, if the
reserve price varies exogenously (e.g., as it would if it were set optimally by sellers with
stochastic private values for the good that are independent of bidders’ valuations), this
variation can trace out much (or even all) of the distributions Fy, (). For example, if
the support of the reserve price includes values below the lower boundary of the sup-
port of bidder valuations, then identification of the full distribution Fy (-) is immediate
from the arguments above. The estimation problem in such cases is similar to that for
other models with random truncation [e.g., Woodroofe (1985), Wang, Jewell and Tsai
(1986)]. While this idea has been mentioned by Guerre, Perrigne and Vuong (2000),
nonparametric estimators exploiting the presence of variation in reserve prices have not
yet been investigated, either for ascending or first-price auctions.

6.3.1.2. First-price auctions Similar arguments apply to first-price auctions, although
here we can consider a richer set of private values models. We will focus on the case in
which the econometrician observes all of the bids as well as the realizations of the sets
A and V. In first-price auctions, it is necessary to make an assumption about whether
the bidders observe the set A before placing their bids. Since participation is determined
by the realization of bidders’ private information, it will often be most natural to assume
that bidders do not know A when choosing their bids. We will focus on this case.®*
Since for any bidder i making a bid in equilibrium

Gy g, (milbi; N) = Pr(A = (i} | i € A, Bi = b;, N)
+ Pr(ﬂ:A’, max Br < m; ieX,B-zb-,N’)
A’CAX/;GA’ ediigs Y

the observables and the first-order condition (2.4) uniquely determine the valuation u;;
associated with the bid b;; of each actual bidder. Letting Fy(-|.A, r) denote the joint
distribution of {U,-: U >r i€ A}, this gives the following result.

THEOREM 6.4. For each A C N, the joint distribution Fy(-|A, r) is identified in a
first-price auction from observation of the reserve price r, all bids, and the associated
bidder identities. In a symmetric environment, it is sufficient to observe r and all bids.

Combined with the probabilities Pr(.,Z = A | N, r) (for which identification is im-
mediate when A, A/, and r are all observed), the joint distributions Fy(-; A, r) will be
sufficient for a number of questions of interest, including predicting the effects of an

64 In some auctions, bidders may be required to register or make a deposit in order to participate. If these
actions are observable to bidders, .4 will be known at the time they choose their bids.
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increase in the reserve price. As discussed above, however, in some cases one will need
an estimate of the untruncated distribution of valuations. This does not appear to be pos-
sible in the case of correlated private values: there is simply no information available
regarding the correlation of valuations below the reserve price. However, maintaining
the assumption that V' is observable, one can identify the marginal distributions of bid-
der valuations evaluated at values above .5

THEOREM 6.5. In a first-price auction with private values, Fy, (u;) is identified for all
u; > r from observation of all bids and the associated bidder identities. In a symmetric
environment, it is sufficient to observe all bids.

PROOF. Foreach A and each i € A, the joint distribution Fy(-|.4, r) completely deter-
mines the conditional distribution Fy, (u;|r) = Pr(U; < u; | U; > r). Further,

Fy,(u;) — Fy,;(r)

Fy, (ui|r) = 1 — Fy.(r)

(6.22)
for all u; > r. Fy, (r) is identified from the observed participation decisions, as in the
case of an ascending auction. The result then follows from (6.22). [l

Note that in an independent private values auction, this provides identification of
Fy(u) for u such that u; > r for all i. As with similar results in preceding sections,
estimation is possible building directly on the identification result, substituting sample
analogs for the probabilities Fy, (u;|r) and Fy, (r) in (6.22).

6.3.2. Costly signal acquisition and the identification of acquisition costs

Levin and Smith (1994) have considered a model in which players (“firms”) first choose
whether to become potential bidders (“enter”’) by investing in signals of their valuations.
Firms that invest observe private signals. The assumption of costly signals is natural in
many environments, particularly in the procurement contexts that account for a large
share of the data studied in the auctions literature. For example, acquiring a signal might
require conducting/analyzing a seismic survey or reviewing detailed contract specifica-
tions. In this subsection, we discuss identification of both value distributions and the
costs of signal acquisition.

Levin and Smith (1994) assume that the bidders observe the set of potential bidders
before placing their bids; in Section 6.3.3 we discuss the alternative assumption that
investments in signal acquisition are private information so that bidders place their bids
without knowing which firms are potential bidders. Levin and Smith focus on symmetric

65 Analogs of Theorems 6.4 and 6.5 were demonstrated for the case of symmetric independent private values
by Guerre, Perrigne and Vuong (2000). Haile, Hong and Shum (2003) extended these results to symmetric
affiliated private values and common values models.
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equilibria of models with symmetric bidders. In equilibrium, firms acquiring a signal
must expect to recover the cost of doing so on average. So when there are sufficiently
many firms in the market, some must choose not to enter. In the unique symmetric
equilibrium, entry is determined by mixed strategies, leading to exogenous variation in
the set of potential bidders.°® One caveat is that, as in virtually all entry games, when
asymmetric equilibria are allowed, there will be multiple equilibria [see, e.g., Berry and
Tamer (2005)].

To extend the econometric model to this setting, observe that the distribution of the
set of potential bidders is determined by the mixing probabilities. Since firms make
independent decisions about signal acquisition, the event || = 1 occurs with positive
probability. This case was ruled out above because typically this is not an interesting
case: if a bidder knows that |N'| = 1, she will simply bid the reserve price. However,
for the purposes of this section and the next, we will allow || = 1. If we assume
that the reserve price r is less than u; for all firms i, the reserve price plays a role
only when |[A| = 1, in which case the lone potential bidder bids the reserve. Hence
when r < u; for all i, the number of potential bidders is equal to the number of actual
bidders, the model generates exogenous variation in the number of bidders, and the
methods described above can be used to estimate primitive value distributions. When
r > u; there will also be also variation in the number of actual bidders for a given
set of potential bidders, as in Section 6.3.1. There we assumed that the set of potential
bidders was observable to the econometrician for some results. That may be unlikely in
the presence of both a reserve price and costly signals, since the set of potential bidders
varies across auctions. Li (2003) considers parametric estimation of a model based on
Levin and Smith’s model with r > u;.

In their study of US Forest Service timber auctions, Athey, Levin and Seira (2004)
consider a variation of this model, allowing asymmetric bidders. They assume firms
fall into two classes, “weak” and “strong” (generalizations to more than two types are
also possible). Strong firms that choose to invest draw valuations from a distribution
that stochastically dominates that of the “weak” firms. They restrict attention to type-
symmetric equilibria, in which all members of a given class use the same strategies.
Because firms are asymmetric, however, there may be multiple type-symmetric equilib-
ria. Athey, Levin and Seira (2004) derive a restriction on primitives that guarantees a
unique type-symmetric equilibrium, and this restriction can be verified empirically.

In any signal acquisition model that generates exogenous variation in N, if N and all
bids are observed (or in an IPV model if A and the winning bid are observed), our prior
results imply that (assuming r < u;) a bidder’s ex ante gross expected profit IT; (N')
from entering the auction is identified. In particular,

IT;(N) = Ey,[(Ui — Bi(Uis N))G gy 8, (Bi (Ui N) | Bi(Uis N); N)

66 Hendricks, Pinkse and Porter (2003) have considered a variation on this model in a common values set-
ting in which bidders choose whether to invest in a signal based on noisier (in a precise sense) preliminary
estimates of their valuations. As they point out, their model can be interpreted as providing a purification of
Levin and Smith’s (1994) mixed strategy equilibrium.
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with the right-hand side determined by the observed bid distribution and the first-order
conditions for equilibrium bidding. Identification of IT; (N') requires no assumptions
about the nature of the signal acquisition equilibrium (or equilibrium selection) beyond
what is required to guarantee that variation in AV is exogenous. Estimates of IT; (N') can
then be used to calculate all equilibria of an entry game for given entry costs. Thus, in
an application, the existence of multiple equilibria in the entry game can be assessed
empirically.

Athey, Levin and Seira (2004) show that in the unique type-symmetric equilibrium in
their application, strong firms enter with probability one and weak firms are indifferent
about entry. They further observe that for any firms that are indifferent about acquiring a
signal (the weak firms in their application), the expected profit from entry must be zero.
Thus entry costs are identified using IT; (N) and the distribution of N/, which is directly
observable. In particular, for any firm i that is indifferent about acquiring a signal, signal
acquisition costs must be equal to

M= Y PN =N]|ieMTW).
N:ieN
Thus, in contrast to much of the empirical industrial organization literature on entry
(where entry corresponds to signal acquisition in this model), which draws inferences
solely from entry decisions,%” the level of entry costs can be inferred. Hence it is
possible to conduct counterfactual simulations about changes in these costs on the com-
petitiveness of markets and bidder rents.

6.3.3. Bidder uncertainty about the competition

Throughout the preceding sections we maintained the assumption that bidders make
their bids knowing the set of competitors they face. In the standard model of the as-
cending auction with private values, this is without loss of generality since the dominant
strategy is not affected by the set of opponents. Furthermore, the assumption may be
uncontroversial in an ascending auction; certainly if one believes bidders observe their
opponents’ exit prices (as in the standard model) it is natural to presume that bidders
are aware of all competitors. In a sealed-bid auction, however, bidders need not gather
to participate, making it less certain that bidders will know what competition they face.
And in a first-price auction, a bidder’s information about the competition is critical to
the characterization of equilibrium bidding. In some procurement settings, firms may in
fact know which of their competitors have the capability to compete for a given contract
or even which firms have been invited to bid, but in other contexts this may not be public
information.

Even if the set of firms who could in principle compete in an auction is common
knowledge, in models where firms incur a cost to acquire a signal (see, e.g., Sec-
tion 6.3.2) bidders may not know which other firms have actually invested in a signal

67 See, e.g., Berry and Reiss (in press).
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for a particular auction. There the investment choice is determined by randomization (in
the case of a mixed strategy equilibrium) or as a function of private information (in a
pure strategy equilibrium).

It is straightforward to modify theoretical models of costly signal acquisition to ac-
commodate the case where bidders do not observe who has acquired a signal before
bidding. McAfee, Quan and Vincent (2002) and Hendricks, Pinkse and Porter (2003)
consider models with this feature for the case of first-price auctions. McAfee, Quan and
Vincent (2002) show that a slightly stronger condition than affiliation of signals is re-
quired to ensure existence of a pure strategy Nash equilibrium in increasing strategies.%®
Li and Zheng (2005) also study such a model, highlighting an interesting testable theo-
retical possibility: bids may decrease when the number of firms increases, because each
firm will enter with lower probability, and the resulting change in the distribution of
potential bidders has ambiguous consequences for bidding strategies.

6.3.3.1. Unknown potential competition Now consider a first-price sealed-bid auction
where A is unobserved to both bidders and the econometrician. Pr(A/ = A/) is iden-
tified as long as the set of bidders is observable at each auction. The distribution of
the highest bid among i’s opponents is calculated taking the expectation over the set of
potential bidders:

GM\B(m'”?')
=Pr(N ={i} i e N)
+ Z Pr( max B; <m; ieJ\N/,Bi:bi>Pr(/\7:N|ie/\7).

NiieN N1 N
(6.23)
Bidder i’s first-order condition is then given by
G (bi|b;
ui = by + M Bilbi) (6.24)
gm; B; (bi|b;)

This takes the usual form; however, here Gy, (-) does not depend on N. Equa-
tion (6.24) and observation of all bids then identifies the distribution of U;, and straight-
forward extensions of the estimation techniques described above can be applied.

So far we have considered two assumptions that might be made when interpreting

data from first-price auctions: (i) N is observed by all bidders prior to bidding, or (ii) N

68 In particular, they assume that there exists a nondecreasing function %(-) such that for each i, U; =
h(X;, Vo), where (X1, ..., Xy) are i.i.d. conditional on V{y. Private values, where U; = Xj, is a special
case. Each bidder bears a cost (constant across bidders) to learn the value of X;. Bidders first invest in their
signals and then place bids, but investment decisions are not publicly observable. They derive an equilibrium
in which firms randomize in the signal acquisition decision. Then, for bidders who acquire a signal, bidding
is in strictly monotone pure strategies. They show that a sufficient (but not necessary) condition for existence
of a such an equilibrium is that 1 — p(1 — Fx; v, (xi|vg)) is log-supermodular in (x;, vg), where p is the entry
probability in the mixed strategy equilibrium of the entry game.
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is unobserved prior to bidding. In many settings, institutional detail may be available
to guide the choice between these assumptions. When there is variation in N, the data
can also help guide this choice. If A/ is observed by all bidders prior to bidding, then
when |N| = 1 the bidder must bid the reserve price. Thus, the hypothesis that N is
observable to bidders could be rejected if Pr(B*D = r | IN| = 1) < 1. In addition,
building on the discussion in Section 5, we note that both assumptions can have addi-
tional testable implications. If variation in V' is exogenous (as in the models of costly
signal acquisition described above), it will be possible to estimate Fy(-) separately for
each N and compare the resulting estimates. If N is observed by bidders before bid-
ding, these estimates should be equal to each other (up to sampling error). On the other
hand, if bidders have no information regarding the realization of N when choosing their
bids, then the distribution of B; itself should not vary with A (recall (6.24)).

6.3.3.2. Noisy knowledge of the competition Once we allow the possibility that bid-
ders do not observe N prior to bidding, it is natural to consider more carefully what
bidders do know. In particular, it may be more reasonable to imagine that bidders have
noisy signals of A/ when choosing their bids. When the econometrician can condition
on the same information available to bidders (excluding their signals of course), ex-
tending the methods is straightforward. Suppose, for example, that bidders form their
beliefs about the set of competitors based on a public signal 5 that is also observable to
the econometrician. The signal, n, might contain information about how costly it will
be to evaluate the object and acquire a signal, or information about the expected value
of the object. In a model of costly signal acquisition, such factors will affect the entry
probability of each bidder.

We can extend the methods above by treating 1 as an auction-specific covariate to
be conditioned on in bidders’ first-order conditions. Note that the signal n need not be
a scalar and can include any information that may affect the set of potential bidders,
including, e.g., characteristics of the good for sale or market conditions. Hendricks,
Pinkse and Porter (2003) consider a simple example of this approach. They construct a
binary signal n; = 1{7; > T7*} of the number of potential bidders for tract ¢, where 7;
is the number of firms ever to bid on an oil tract in a geographic neighborhood of the
tract offered in auction ¢, and 7* is a specified threshold value.

In contrast, if bidders have signals (public or private) about factors that affect the
number of competitors, but these signals are not observable to the econometrician, the
problem of unobserved heterogeneity discussed in Section 6.1.2 arises. For example,
in a model where acquiring a signal is costly, firms might observe an auction char-
acteristic vy before making entry decisions. Another possibility is that firms observe
auction characteristics that affect the cost of acquiring information about a particular
object. Li and Zheng (2005) develop a model of a first-price auction with these features.
They specify a semi-parametric model, leaving the distribution of unobserved hetero-
geneity unrestricted while assuming a functional form for the marginal distributions of
valuations conditional on the heterogeneity. They estimate the model using Bayesian
methods.
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6.3.4. Internet auctions and unobserved participation

Internet auctions have recently attracted considerable attention from economists. In ad-
dition to providing a great deal of new data, Internet auctions introduce a number of new
and interesting questions, including the role of seller reputations [see, e.g., the papers
surveyed by Bajari and Hortagsu (2003b, 2004)] and competition between sellers [e.g.,
Peters and Severinov (2006)].

Internet auctions are most often conducted in one of several variations on the standard
ascending auction mechanism [Lucking-Reiley (2000)]. However, a challenge to struc-
tural analysis of bid data from Internet auctions is the fact that the number of bidders
cannot be observed. Recall from Section 4 that a key assumption for the identification
arguments in even the simplest ascending auction environments was observation of the
number of bidders — either the number of potential bidders or the number who have
valuations above the reserve price. An Internet auction typically takes place over sev-
eral days (usually a week or more on eBay, for example), with bidders becoming aware
of the auction at different times as they log onto the auction site while the auction is
underway. A bidder who logs on to discover that the price has already risen past his
valuation will not bid. Hence the number of submitted bids will not generally equal the
number of bidders willing to pay the reserve price (if any).®® The usual assumption that
the transaction price is equal to the second-highest valuation is of little use if it is not
known whether it is the second highest of two valuations or of ten, for example.

This problem has accounted for a substantial impediment to progress in addressing
questions about the underlying demand structures at Internet auctions.’® This includes
even seemingly simple questions like how seller reputations affect bidders’ willingness
to pay, since this requires inference on the underlying distribution of bidder valuations.

Song (2003) has proposed a model capturing key departures of Internet auctions from
the standard ascending auction model. Using this model, she derives conditions under
which the identification of the distribution Fy(-) can be obtained in the symmetric in-
dependent private values paradigm without observing the number of bidders, or even
assuming that this number is constant.

In her model, an auction takes place over an interval of time [0, 7]. The distribution
of N can vary across auctions, and need not be known to bidders. In a given auction,
each potential bidder i draws a vector of “bidding opportunities” (ti1 ey tl.Ti ), with each
tl.k € [0, t]. Taking tl.l <. < tl.r" without loss of generality, tl.l represents the time of i’s
“arrival” at the auction, and tl.T" represents i’s final bidding opportunity. No restriction is

9 This problem can also arise in other applications, particularly in other ascending auctions with similar
deviations from the button auction model, or in Dutch auctions, where only the winner makes a bid. Song
(2004) explores identification and estimation in these and other auction models when the number of bidders
is not observable to the econometrician.

70 Bajari and Hortacsu (2003a) avoid this problem with a common values model that admits an equilibrium
in which all bidders willing to pay the reserve price will bid simultaneously at the end of the auction, as if in a
second-price sealed bid auction. See Ockenfels and Roth (2006) for an alternative model of Internet auctions.
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placed on the joint distribution of (N, {t;}, {tl.k}) except that (a) these are independent of
bidders’ valuations, and (b) each tir" is continuously distributed on some interval (tl.O , Tl
In this model, bidders may “arrive” early or late, bid frequently or infrequently, and
have different notions of what bidding at the “last minute” means.

At each bidding opportunity, a bidder may specify a “cutoff price” of any value above
the current standing bid. Whenever a new cutoff price is submitted, the auctioneer raises
the standing bid (denoted s;) to the second-highest cutoff price, and the bidder with the
highest cutoff price is named the standing high bidder. This matches the actual pro-
cedure on eBay, the most popular Internet auction site, for example. At time t, the
standing high bidder wins the object at the standing bid (for simplicity we assume no
reserve price and no minimum bid increment). Typically, the econometrician can ob-
serve the history of submitted cutoff prices (except the winner’s), as well as the identity
of the bidder who placed each bid. This information is publicly available for eBay auc-
tions, for example.

There are many equilibria of this game. For example, all bidders can submit cutoff
prices equal to their valuations at their first bidding opportunities; bidders may start with
low cutoff prices and gradually raise them as the auction proceeds; or some/all bidders
may wait until their final bidding opportunities to submit a cutoff price. In some of these
equilibria (like the last example), some potential bidders will not bid, since at their
planned bidding time the standing bid will already exceed their valuations. However,
Song (2003) shows that in all equilibria the highest cutoff price submitted by bidder i
will be no larger than his valuation u;, and it will equal his valuation if the standing bid
at time ¢ was below u;.”!

Since the price can never rise above u™=1m) this ensures that the allocation is effi-
cient and that the transaction price is u =1 Further, in some cases, the third-highest
cutoff price submitted will be equal to =™ To see this, let b; denote the highest cut-
off price submitted by bidder i (i.e., his “bid”) and let 5" ~2™ denote the third-highest
such bid (or —oo if there is no such bid). Here m represents the number of observed
bidders — those submitting cutoff prices at some point in the auction. Now suppose that
at time 7 the standing bid s7 is no higher than 5"~2")_In practice, whether this is true
can be directly determined from the available bidding histories. In particular, recalling
that two bids above b are required for the standing bid to exceed b, this occurs when-
ever at least one of the two bidders making the highest bids (as of the end of the auction)
makes no bid above b =™ prior to time 7. In that case we have

57 < b(m72:m) < u(m72:m) < u(n72:n)

implying that if the bidder with valuation =" has his final bidding opportunity
at time 7 or earlier, he will submit a cutoff price equal to his valuation. In that case,

71 The first property is easily understood. The second follows from arguments similar to those used in ana-
lyzing a second-price auction.
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pm=2m) — (=21 WWhile the final bidding time of this bidder is not known, by look-
ing at auctions in which s; < b2 for { sufficiently close to 7, the probability that
pUn=2m) = "=21) can be made arbitrarily close to one.”

This is useful because we typically cannot observe the cutoff price submitted by the
auction winner.”3 However, by examining only the set of auctions in which

s; <HMTEM  fe(r -6, 1), (6.25)

for small 8§ > 0, we can treat the order statistics (U ®~1) y®=2my 35 “observed.” The
following result, proved in Song (2003), implies that observation of (U "~ {y=2n))
is sufficient to identify Fy (-), even though the realization of N at each auction is un-
known.

LEMMA 6.2. Let (Y<N:N), yWN-=LN) Y(NfzzN)) denote random variables equal to the
three highest of N > 3 independent draws from a univariate distribution Fy (-), where

N is stochastic and unobserved. Fy (-) is uniquely determined by the joint distribution
of (YWN=I:N) |y (N=2:N))

PROOF. Given Y(V=2:N) — y’, the pair (YW=LN) 'y (N:N)y can be reinterpreted as the
two order statistics for an i.i.d. sample of size two from the distribution

Fy() — Fr(y)
1= Fy(y)
Although ¥ V*N) is unobserved, Equation (4.1) implies that the observation of ¥ (N =1:N)

alone is sufficient to identify the parent distribution Fy (-|y’) for this sample. Identifica-
tion of Fy () then follows from the fact that

lim  FyCly) = FrO.
¥ dinfsupp 7y 2 ()

Fy(ly) =

O

Key to the applicability of this result is an assumption that auctions in which at least
one of the two high bidders make late bids (i.e., where (6.25) holds) are representative
of all auctions. If 7; = 1 Vi, this follows from the assumption that {r;} and {U;} are
independent. In general, when 7; > 1, this requires the additional assumption that the
equilibrium selection does not depend on (uq, ..., u,)."*

72 In finite sample, of course, there will be a tradeoff between the bias of including auctions with f far from t
and the reduction in the variance from doing so. Song (2003) suggests a data-driven approach for choosing
the sample.

73 If we could — for example, if such data were provided directly by eBay — a variation on the result below
would still be applicable to address the problem that the number of potential bidders is unobserved.

74 More precisely, the distribution of U =17y ("=2:) conditional on at least three bidders’ being observed

and (6.25) holding must be the same as the unconditional distribution of U (=), gy (n=2:m)
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Song (2003) proposes a semi-nonparametric estimator [Gallant and Nychka (1987)]
applicable to the subset of auctions in which bids are observed from at least three distinct
bidders. The likelihood function is constructed from the conditional density of U "1
given ye=2zn je.

2 Pr(UC=I <y | U020 = x) = 20 = FuG)fu )
o (1= Fy()?

in which n does not appear. Monte Carlo experiments suggest that the approach can
perform well in sample sizes easily attainable from Internet auctions.

6.4. Risk aversion

Most of the empirical literature on auctions assumes risk neutrality of bidders. Risk neu-
trality is a natural assumption when the value of the object being sold is small relative
to each bidder’s wealth. Furthermore, in many applications bidders are firms, which
economists usually assume to be profit maximizers. However, many auctions involve
highly valuable goods (or contracts). And even when bidders represent firms, they may
themselves be risk averse.”> Risk aversion can have important implications for a wide
range of policy questions, including the optimal reserve price and a seller’s preference
between the standard auction formats.”®

Risk aversion also creates significant challenges for identification. In an ascending
auction with private values, for example, risk aversion has no effect on equilibrium
bidding in the standard model: bidding one’s valuation is still a dominant strategy. While
this implies that identification of Fy(-) holds with risk aversion whenever it holds with
risk neutrality, it also implies that there is no way to distinguish risk neutrality from risk
aversion, i.e., no way to identify bidders’ preferences. While the distribution Fy(-) will
be sufficient for some questions (for example, the effect of changing the reserve price)
it will be inadequate for many others.

In a first-price auction, the implications of risk aversion for equilibrium bidding are
nontrivial, since bidding involves a gamble. Bidding less aggressively leads to a lower
chance of winning but higher profits conditional on winning. A more risk averse bidder
will be less willing to accept a reduced probability of winning in order to obtain a
higher profit when she wins. This suggests that there is at least hope for identification of
preferences using data from first-price auctions. However, identifying risk preferences
generally requires observation of choices from different menus of lotteries. Variations

75 The incentives provided by the firms they work for may or may not “undo” such risk aversion. Athey and
Levin (2001), Campo et al. (2002), and Perrigne (2003), for example, find evidence consistent with risk averse
bidding behavior by firms at timber auctions.

76 See, e. 2., McAfee and McMillan (1987) and references therein. The theory of first-price auctions with risk
averse bidders was initially developed by Maskin and Riley (1984). Campo et al. (2002) extend the analysis
to the case in which there is no binding reserve price and establish additional smoothness properties used for
identification and estimation.



Ch. 60: Nonparametric Approaches to Auctions 3919

in bidders’ valuations do change the sets of lotteries available to them, but not in ways
that are observable to the econometrician, since valuations are private information. This
suggests that some observable exogenous variation will be needed to separately identify
preferences and the distribution of valuations.”” Below we will first explore possible
approaches to identification in symmetric models, proceeding to consider models with
asymmetric preferences in Section 6.4.2.

6.4.1. Symmetric preferences

We begin with a more formal illustration of the fundamental challenge for identification
in models of first-price auctions with risk aversion. For simplicity, consider the case of
symmetric independent private values, and assume that all bids are observable. Assume
further that all bidders share the same continuously differentiable utility function w(-).
Taking equilibrium behavior of her opponents as given, bidder i solves the problem

max w(u; — I;,-)Pr( max B; < 5,-).
I;,' jGN—i

If we define
A(s) = w(s) /o (s), (6.26)
then first-order condition
o' (uj — b)Gp(b)) = (n — D (u; — b)gp(b;)
can be rewritten usefully as
1 GB(bi))
n—1ggb) )
Now define the function

uj = b; +)r1< 6.27)

E(bi,n,A) = b; +A‘1< 1 GB(b[))

n—1ggbi)

and let A1(-) denote the identity function — i.e., the function A(-) implied in the case of
risk neutrality. Campo et al. (2002) show that as long as bids are independent (and addi-
tional regularity conditions are satisfied), an observed marginal bid distribution Gp(-)
can be rationalized by equilibrium behavior if and only if there exists a utility function
() such that, for the associated A(-), £(-; n, A) is increasing (see Section 5.1). Hence,
if bids are independent and £ (-, n, A1) is increasing, it will be possible to find a distri-
bution Fy(-) that rationalizes the observed bids within the symmetric risk neutral IPV

77 However, if the distribution Fyy(-) is known or identified from other data — for example, in a laborator

U p y
setting or when one observes the same bidders participating in both first-price and ascending auctions — bid
data from first-price auctions might then be used to estimate the utility function.
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model. If £(-, n, A1) is decreasing at some point, the observed bids could not have been
generated by equilibrium bidding by risk-neutral bidders, although there may exist an-
other utility function w(-) with associated A(-) such that £(-; n, 1) is increasing. Thus,
allowing for risk aversion expands the set of observable bid distributions that can be
rationalized by equilibrium bidding [Campo et al. (2002)].

Unfortunately, £ (-, n, ) need not violate the monotonicity restriction when the model
is misspecified — in particular when the given function A(-) does not correspond to that
for the true preferences. When & (-, n, A1) is increasing, for example, the observed bids
can be rationalized with risk neutrality, but they can also be rationalized with many
different specifications of risk aversion To suggest why, observe that if as long as a
bidder is sufficiently risk averse, l(n i g :((g))) does not vary much with b, ensuring
that £ (b; n, A) strictly increases in b. Consider the following example of a CRRA utility
function (with zero initial wealth): w(u) = u'~¢, with 0 < ¢ < 1. Then A(s) =
s/(1 —c),and Al =z(1=¢). Asc approaches 1, £(-; n, 1) approaches the identity
function. Intuitively, sufficiently risk averse bidders are not willing to risk losing the
object by shading their bids, so they do not respond to the shape of the opposing bid

distribution. Thus, even if GB((f)) is sharply decreasing in some places, there will be a

critical level of risk aversion above which £(-; n, A) is everywhere increasing.

Similarly, it is generally impossible to identify the degree of risk aversion from bid
data in a fixed environment. Perhaps surprisingly,’® however, this is true even with a
strong functional form assumption on bidders’ preferences. Again consider the CRRA
example, and suppose that the data can be rationalized by a distribution Fy (-) and co-
efficient of relative risk aversion c. Then, for any ¢ € (c, 1), if we let o(s) = s17¢ we
can find another distribution F7;(-) that implies the same distribution of bids, but where
F(+) stochastically dommates Fy (+). In particular, to satisfy (6.27), we define U to be
equal in distribution to

~ 1—¢ Gp(B;
£(B;in, %) = B, ¢ Gu(B)
n—1gp(B;)
— 1-¢ 1—cGpg(B;
:c CB+ CB,-—i— c Gp(By)
1—c 1—c¢ n—1 gp(B;)
c—c 1—c¢
= Bi + —&(Bi;n, 2)
1—c¢ 1—c¢
_5—CB_+1—EU_
T 1l—c¢ ' 1=c "

It follows that whenever & (b;; n, A) is increasing in b;, so is £(b;; n, ):). Hence, the data
can be rationalized with risk aversion ¢. Campo et al. (2002) show that this argument
holds for other parameterized families, as well as general utility functions.

78 Recall that with risk neutrality the symmetric IPV model is overidentified when one observes all bids from
each auction.
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These results are quite negative. Only for bid distributions such that G (ll; ) decreases
sufficiently sharply in b in places can risk aversion be distinguished from risk neutral-
ity; it is impossible to distinguish among different parameterized functional forms for
risk aversion; and there exists a large range of risk aversion parameters that can ratio-
nalize the observed bid data, even when attention is restricted to a particular functional
form.

Following the intuition at the beginning of this section, however, this nonidentifi-
cation might be overcome with observable exogenous variation in the sets of gambles
available to bidders. One possibility is a covariate that shifts bidders’ initial wealth or,
equivalently, bidders’ valuations for the good. Suppose, for example, that each bidder
i’s utility from winning the auction is

o(h(w;) + u; — b;) (6.28)

for some increasing function 4(-), where the covariate w; is independent of u; and
is observable to all bidders prior to the auction as well as to the econometrician. Let
w = (wy, ..., w,). The model then becomes asymmetric, even though bidders’ pref-
erences are given by the same function. Let Gy, (b; |w, N) be the distribution of the
maximum bid of bidder i’s opponents, conditional on w and N. Let b, w a7 denote the
ath quantile of the distribution Gy, (b;|w, V'), while u, is the ath quantile of Fy (-).
Then equilibrium requires that

1 Gum; (bgwn1x, N)
Ug = bg, —h(w-)+k1( oW,
o o, w, N i gMi(ba,w,N|va)
Yw € supp W, Va € [0, 1]. (6.29)

The data can be rationalized by the model only if we can find a A(-) such that (6.29)
holds and such that
_1( Gm; (bilw, N)
i (bis Ny A, w) = by — h(w;) + A 1(’7
& (bi ) = bi — h(w;) aun (B 1w, V)
is increasing in b;.

This may not be possible, especially within a restricted class of utility functions. To
see this, again consider the one-parameter CRRA example and suppose that the vector
W takes on only two values, w’ and w”. Then equilibrium requires that for all @ € [0, 1],
Gy, (baw NIW' N)
gMi (bol,W//,N|WNa N)

GM,' (ba,w’,/\/’|w/v N)
8M; (ba,w’,/\/'|w/’ N)

Uy = bow N —h(w/) + (1 —c)

= bo,w N — h(wl/) +{ -0

_ ba,w”, - ba,w’,/\f - (h(w,”) - h(w,/))
Gty by AW N) - Gty (b v pr W N)
8M; By NTWNY gty (g e W N)

(6.30)
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For a given quantile «, rationalizing the data with the CRRA model requires that there
exist a function A(-) such that this ¢ lies in the interval [0, 1). If no such A(-) exists,
then we can immediately reject the CRRA model. Of course, (6.30) must hold for all
quantiles «. Unless the ratio on the right side of (6.30) is invariant to the quantile «,
the model will be rejected. Thus, a more flexible specification of risk preferences will
typically be required to rationalize the observed bidding data when there are bidder-
specific covariates shifting wealth or valuations.

Of course, there is more than one way to relax the structure imposed by (6.28) and
CRRA. Campo et al. (2002) maintain the CRRA specification above but assume a func-
tional form for the effect of covariates on valuations only at a single quantile of the
distribution of valuations. By leaving the effects at other quantiles unspecified, the prob-
lem that the data may reject the model is avoided. We refer readers to their paper for
details, as well as an estimation approach.”®

Another possible approach to identification is to exploit exogenous variation in the
number of bidders [e.g., Bajari and Hortacsu (2005)]. Such exogenous variation changes
the equilibrium probability that each given bid wins and, therefore, changes the lotteries
available to bidders. Note that unlike the effect of a covariate on the utility gain from
winning, this variation in the probability of winning can be determined directly from the
equilibrium bid distribution for each V. Using the CRRA model as an example, suppose
that there are two groups of bidders, A" and N, with |[A| = n and [N’| = n+1. Letting
by be the ath quantile of G g, (b; |N'), equilibrium requires

1 —cGpbueNINV) 1 — ¢ Gp(bg N/ INT)

Uy =>b + = i
N T e Ga V) N T T g e V)
so that
N by N — ba N
c=1-—

1 Gy banIN) 1 Gy by 7N
n—1 gp, (ba NIN) 1 gB; (b A7 INT)

Again, for a given «, this ¢ may not lie in [0, 1) and, further, the right-hand side may
not be constant in « as required. Thus, exogenous variation in participation may allow
us to reject the CRRA model (or other parameterized utility functions). This suggests
some hope of identifying preferences. In the completely general case, one would need
to find a utility function such that

1 Gp (ba,N|N)>
n—1gp (banIN)

ba,N+)\1(

.. . . C . Gpg, (b NIN
is invariant to \V for each . Depending on how much variation in b, _ar and %7)

is induced by variation in A/ and «, it may be possible to identify the entire utility
function.

ks Bajari and Hortagsu (2005) propose an alternative estimation approach.
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6.4.2. Asymmetric preferences

As we discussed at the start of Section 6, in many cases the econometrician is faced
with several modeling alternatives when attempting to rationalize a given distribution
of observables. So far, we have assumed that all bidders had the same preferences (either
risk averse or risk neutral), but we have allowed distributions of valuations to vary across
bidders. This allows us to reconcile bid distributions that vary across bidders. However,
a natural alternative is that the distribution of valuations is the same for all bidders, but
preferences differ. As mentioned above, in an ascending auction, behavior depends only
on a bidder’s valuation for the object, so it is impossible to distinguish these two cases.
In a first-price auction with a fixed number of bidders, it is also difficult to distinguish
G m; B; (bilbi)
gm;|B; (bilbi)
rationalize bidding data using a model with homogeneous preferences. More generally,
following the logic outlined above, there will generally exist homogeneous preferences

with sufficient risk aversion such that

b +A‘1< 1 GMi|B;(bi|bi)>
l n—1 g (bilbi)

is increasing for all i.

However, there may be settings in which institutional information leads the econo-
metrician to believe that a model with heterogeneous preferences is more natural than
a model with heterogeneous value distributions. Campo (2002) has recently explored a
model in which different bidders are permitted to have different preferences even though
they draw their valuations from the same distribution. For @ € [0, 1] let u; o and b;
denote the ath quantile of bidder i’s valuation and bid distributions, respectively. Gen-
eralizing our notation from above to allow bidders to have heterogeneous preferences
represented by w; (+), let A;(s) = w; (s)/a)l/- (s). Then, for all i, j, o, we have

_1( Gm; (i)

. :b )\"1 1 9 ,
Yia = Ot A <gM1(bi.a)>
GM'(bjOl)

Ujo =bj, +A71<#>.
PO gy (bja)

Since the distributions of valuations are assumed to be the same across bidders, it fol-
lows that

(G, (biw) 1 Om;ja)
b; +/\.1<7' : ):b- +/\.< / . 6.31)
PETTE N gmy (i) T amy (bja)

these cases: in particular, as long as is increasing for each i, it is possible to

Campo (2002) shows that a set of observed bid distributions that are independent and
satisfy standard regularity conditions can be rationalized using this model if and only
if (i) there exist functions Ay (-), ..., A, (-) such that (6.31) holds for every quantile « €

[0, 1] where, for each 7, ; (0) = 0, /(-) > 1, and (i) & (b) = b+,\i—1(g”;f((:))

increasing. There is no guarantee that these conditions can be satisfied, because (6.31)

) is strictly
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must hold for all « € [0, 1].8° Indeed, Campo (2002) provides an example where the
conditions cannot be satisfied, and establishes that the set of bid distributions that can be
rationalized using her model is a strict subset of those that can be rationalized using the
model with homogeneous preferences and heterogeneous distributions of valuations.

Rather than analyze conditions under which risk preferences are nonparametrically
identified, Campo (2002) takes a semi-parametric approach, with preferences given by
w(+; 6;) (implying an associated A(-; 8;)), where 6; is a finite dimensional parameter. To
analyze identification, observe that for all i, j, o, @, we have

Gy (b;
Wiy =big + 27! <M 91'),

gm; (big)’
Gu;(bja)
pe gm;(bja)
_1{Gpm (biy)
Py = b / )\. 1 ;’ R
Yot = Ot ¥ (gM,- Bia) )

G (bi o)
Ujog = bj,ol’ + )\‘_I(M; 9/>
2, ()

Suppose, for example, that each 6; is a scalar. Since by assumption u; o = u; and
Ui = Uj o, for a given pair of quantiles o and o', this is a system of four equations in
four unknowns (#; o, ; o, 0;,0;), so that 6; and 0; are identified using data from just
two quantiles. Once 6; and 6; are known, Fy (-) is uniquely determined by the first-order
conditions and the observed distribution Gy, (+). Similarly, once Fy (-) is identified, the
first-order conditions and Gy, () determine 6 for k # i, j. Campo (2002) considers
the case of CRRA preferences discussed above and gives the nonsingularity conditions
for the system of equations above (restrictions on the pair (G u; (), G m; (+))) that ensure
identification in that case. It is crucial that there are some asymmetries in the bid distri-
butions. She proposes a parametric estimation approach. We refer readers to her paper
for details.

Since it is possible to identify 6; and 6; using data from just two quantiles of the
bidding distribution when 6; is a scalar, there is no guarantee that, given observed bid
distributions, a particular functional form can rationalize the data at every quantile. In-
deed, the example considered by Campo (2002) of CRRA preferences w; (1) = u'~¢i
requires the existence of constants c;, ¢; on [0, 1) such that

Gum; (i) Gu; (bj,a)>
bi l—c)| ———— ) =bj, 1l—cj)| ———— ). 6.32
atl ‘ )< gm; (bia) ) et C])( 8M; (b)) ¢ )

80 Campo (2002) requires the condition )L;(~) > 1 in order to guarantee that the induced preferences sat-
isfy risk aversion; in fact, existence of an equilibrium in increasing strategies requires a slightly weaker
condition, namely that In(w; (-)) is concave in the relevant region, which is guaranteed if A;(-) > 0. To
see why log-concavity of w;(-) is important, note that in an IPV auction, a bidder’s objective function is
w; (bj — u;)G p,; (b;). Maximizing this is equivalent to maximizing its logarithm; but, if In(w; (-)) is strictly

52 . . . . .
convex, then ﬁwi (b; — uj) < 0, so that bidders with higher valuations choose lower bids.
1 1
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Suppose, for example, that there are just two bidders and that Bj is uniformly distributed
on [0, 1]. Then, (6.32) becomes, for all « € [0, 1],

Gp, ()

1— —o
a+( Cl)(ng(a)

) =2 - )Gy (@). (6.33)
Clearly, this places strong restrictions on G, (). For example, this would rule out a
distribution of the form G, (by) = bg with supp[B2] = [0, 1] (unless y = 1, which
would violate the assumption of asymmetric bid distributions).

Finally, we note that even when the data can be rationalized by both the homogeneous
preference-heterogeneous valuations and the heterogeneous preference-homogeneous
valuations models, it may be possible to extend the testing approaches described above
that exploit exogenous variation in participation or other exclusion restrictions. When
each model is identified for fixed \V, exogenous variation in A leads to over-identifying
restrictions. In general, even if two different models rationalize the same data for
fixed \V, the out-of-sample predictions of the models for N7 # A will differ between
the two models. When data from auctions with both A" and A are observed, the out-
of-sample predictions might be tested.

7. Common values auctions

While we have discussed a wide range of private values models in the preceding sec-
tions, in many applications a common values model may seem more natural. Recall that
we use the term “common values” to refer to a broad class of models in which infor-
mation about each bidder’s valuation is dispersed among bidders (see Section 2).We
emphasize, however, that the presence of factors affecting all bidders’ valuations need
not imply common values. For example, if

Xi=U=VW+e

this is a private values specification despite the “common” factor V. Indeed, in this
example each bidder knows his own valuation with certainty.3! The presence of Vo
does introduce correlation of bidders’ valuations and of bidders’ information, and even
causes one bidder’s signal to be correlated with another’s valuation; however, it does
not introduce common values because no opponent has information that is relevant to
a bidder’s assessment of his own valuation, given that he has observed his own sig-
nal. The critical distinction concerns the nature of bidders’ private information. When
each bidder’s private information concerns only idiosyncratic determinants of his own
valuation, this is a private values setting.

81 This is not essential for a private values environment. For example, if U; = X; + ¢; with ¢; independent
of X forall j # i, this remains a private values setting.
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Nonetheless, many auction environments seem likely to fall in the common values
category. Often the good for sale will not be consumed immediately (or the procure-
ment contract being bid for will not be fulfilled immediately), and bidders may have
different information about future states of the world — e.g., market conditions or the
supply and demand of substitute objects. In some applications bidders will naturally
have access to different information. A bidder might conduct her own seismic survey of
an oil tract or might learn about market conditions from her own customers and suppli-
ers. Furthermore, even if bidders have access to the same market data, they may have
different algorithms or rules-of-thumb for using this information to form beliefs about
the object’s value. The output of one bidder’s algorithm (i.e., its signal) might then be
useful to another bidder in assessing her own valuation even after seeing the output
of her own algorithm. In such cases it may be appropriate to model bidders as having
different private information of a common values nature.

Aside from the potential prevalence of common values in practice, common values
models are also of particular interest because they provide an example of a market en-
vironment in which adverse selection may play an important role. In a private values
auction, bidders need only to follow a simple dominant (“bid your value”) strategy in
an ascending auction or to respond optimally to a distribution of opposing bids in a
first-price auction. In a common values auction, bidders must understand the strategies
that underlie the competing bids in order to make correct inferences about their infor-
mational content; in particular, bidders must account for the information that would be
implied by their winning the auction in order to avoid the winner’s curse. An important
contribution of the empirical industrial organization literature has been to confirm some
of the fairly subtle equilibrium predictions of common values auction models.3?> How-
ever, a number of positive and normative questions depend not just on whether bidder
behavior is broadly consistent with theory, but on the exact structure of demand and
information.

For example, typically the seller or auctioneer has some discretion over the auction
rules. As first demonstrated by Milgrom and Weber (1982) for symmetric common
values environments, the information revealed publicly by losing bidders’ exits in an
ascending auction reduces both the severity of the winner’s curse and the informational
rents obtained by the winner, leading to higher expected revenues than with a first-price
sealed-bid auction. With asymmetries, first-price auctions may allocate the good ineffi-
ciently; however, they tend to raise more revenue in private values settings, may be less
susceptible to collusion (detection and response to defections are more difficult than in
an ascending auction), and may be less costly to administer. The choice of auction for-
mat also affects bidder entry when bidders are asymmetric [Klemperer (2002), Athey,
Levin and Seira (2004)]. In trading off these factors, a seller must understand the un-
derlying structure of bidder demand and information that determines the significance

82 Examples include Hendricks, Porter and Boudreau (1987), Hendricks and Porter (1988), Hendricks, Porter
and Wilson (1994), Athey and Levin (2001), and Haile (2001).
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of each factor. Even within an auction format, the joint distribution of signals and val-
uations is important for positive questions (e.g., the division of surplus) and for design
issues (e.g., the optimal reserve price, the optimal entry fee, and whether restrictions on
participation would be profitable).3?

7.1. Limits of identification with a fixed number of bidders

In a common values environment, identifying the joint distribution Fx y(-) requires
substantial restrictions on the underlying structure, and/or data beyond bids from a fixed
environment. To suggest why, observe that in common values auctions the primitives of
the model involve two different random variables for each bidder i: X; and U;. Hence,
the joint distribution Fx y(-) governs 2n random variables, yet an auction will reveal at
most n bids.3* Even in the special case of pure common values, where U; = Uy for all i,
the primitive of interest, Fx y,(-) has dimension n+ 1. So some additional structure will
be necessary to obtain identification.

We begin by considering first-price auctions. One convenient normalization of signals
(recall that this is without loss of generality) is®

E[U,- X,-:maijzx,N] = x. 7.1)
J#L
With this normalization, (2.3) and the first-order condition (2.4) imply
G u;18; (bilbis N')

vi(xi, xi; N) =x; =b; + (7.2)

gm; B (bilbis N)
In Section 3.2 we discussed the identification and estimation of the distribution of the
random variable

G m, B, (Bi|Bi; N)
gm;B; (BilBi; N')

All that changes when we consider common values settings is the interpretation of this
distribution: using (7.2) we now interpret it as the distribution of the random variable
vi(Xi, Xis N).

This distribution alone will be sufficient for some questions of interest (see, e.g., Sec-
tion 8), but certainly not all. In particular, it does not provide identification of the joint
distribution Fy x(-). Consider the case in which one observes all bids from auctions with
n symmetric bidders. Under the private values assumption, v(X;, X;;n) = X; = U,

83 In a common values auction, restricting participation reduces the severity of the winner’s curse, leading to
more aggressive bidding. This can result in higher expected revenues despite the presence of fewer bidders,
depending on the underlying distributions [e.g., Smiley (1979), Matthews (1984), Hong and Shum (2002)].
84 Note that a normalization of signals does not change this argument, since the normalization cannot address
the correlation between signals and valuations.

85 Note, however, that this normalization cannot be maintained if A varies.
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and the joint distribution Fy(-) is just identified (see Section 3). Under the common
values assumption the joint distribution of (v(X1, X1;n), ..., v(X,, X,;n)) is Fx(-)
under the normalization (7.1). Since this distribution is just identified when » is fixed,
it follows that it is impossible to distinguish common values from private values based
on bidding data from first-price auctions with no reserve price and a fixed number of
bidders [Laffont and Vuong (1996), Guerre, Perrigne and Vuong (2000)]. Thus, it is
important to emphasize that any conclusions from data from a fixed set of bidders (and
with no reserve price) rely on a maintained assumption of common values or private
values. For example, it might be possible to justify a wide range of reserve prices as
optimal for the seller under different assumptions about Fy x(-) that are consistent with
the identified marginal distribution Fx(-).

Ascending auctions are even more difficult in the common values setting. First, just
as in a first-price auction, it would be impossible to distinguish common values from
private values using a data set with a fixed number of bidders, even if all bids (including
the planned exit price of the winner) were observed. Any observed distribution of bids
could simply be equal to the distribution of private values for the bidders [Laffont and
Vuong (1996)]. Second, exactly as in the case of a private values ascending auction,
the unobservability of the winner’s planned exit price can challenge even the identi-
fication of Fx(-). Further, while a normalization like (7.1) can be applied to signals
in the initial phase of an ascending auction (the period before any bidders drop out),
no single normalization can induce the simple strategy B; (x;, n) = x; throughout the
auction, since bidders modify their strategies each time an opponent exits. The exact
forms of these modifications depend on the joint distribution of signals and valuations.
While we might hope that this dependence would enable observed bids to provide in-
formation about this joint distribution, it also creates serious challenges. Finally, further
complications arise from the fact that, when n > 2, there is a multiplicity of symmetric
equilibria in weakly undominated strategies in common values auctions [Bikhchandani,
Haile and Riley (2002)], implying that there is no unique interpretation of bids below
the transaction price.

The following result from Athey and Haile (2002) establishes that the common values
model is generally not identified in ascending auctions. Here we ignore the multiplicity
of equilibria and assume a special case of a pure common values model in which signals
are i.i.d. Even this very restrictive common values model is not identified.

THEOREM 7.1. In an ascending auction, assume the pure common values model, i.i.d.
signals X;, and select the equilibrium characterized by Milgrom and Weber (1982).
With n fixed, the model is not identified (even up to a normalization of signals) from the
observable bids.

PROOF. Take n = 3 and consider two models. In both, signals are uniform on [0, 1]. In

the first, the value of the good is

D %i
3

uo = u(xy, x2,x3) =

3
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while in the second model
. K13 @3 33
uo = u(xy, x2,x3) = 3 T t 3
Because in both models E[Up | X1 = X2 = X3 = x] = x, equilibrium bidding in
the initial phase of the auction is identical in the two models in the Milgrom—Weber
equilibrium (see Section 2.2.2); i.e., Gy~ (b) = Fy'™) (b) = 1 — (1 —b)? in both cases.
Similarly, since b2 = E[U, | X3 = p3) xG3) — x23) — @3 the fact
that it(x, y, y) = u(x, y, y) for all x and y implies that Gg:3)(~|B(1‘3)) is identical un-

der the two models. Since Gg:3)(~) and Gg:3)(~|B<1:3)) completely determine the joint
distribution of the observable bids, the two models are observationally equivalent. [

This is a strong negative result for common values ascending auctions. Even ignoring
the equilibrium selection problem and possible doubts about the interpretation of losing
bids in an ascending auction, this most restrictive of common values models is not
identified. This nonidentification is important for policy. Continuing the example from
the proof of Theorem 7.1, consider the simple problem of setting an optimal reserve
price for a second-price sealed-bid auction. Recalling the participation threshold (2.1),
the optimal reserve price solves

max 3(1 — Fx)(x*(r, 3)) Fx (x*(r, 3))*r

1
+/*( , v(y, ¥;:3)6 fx () (1 — Fx () Fx(y) dy.

By construction, v(x, x; 3) is the same for all x in the two models. However, for any r,
the participation threshold x*(r, 3) is lower in the second model, due to the reduced
dependence of each U; on X_; when X; is maximal. Hence, the objective function
above differs for the two models and (as can be confirmed directly) implies different
optimal reserve prices.

We will see in Section 8 that variation in the number of bidders can be useful for
overcoming at least some of these limitations. In particular, this variation can be suf-
ficient to enable discrimination between private and common values models. Whether
this kind of variation can go farther to enable nonparametric identification of a com-
mon values model is a question not yet explored. Below we will consider identification
through additional structure and through additional data.3°

7.2. Pure common values
Given the negative identification results obtained thus far, it is natural to consider
whether additional assumptions can alleviate the problem. One possible approach is

to restrict attention to the pure common values model, where U; = Uy Vi.

86 Parametric models of common values auctions have been estimated by, e.g., Smiley (1979), Paarsch
(1992a), Hong and Shum (2002, 2003), and Bajari and Hortagsu (2003a).
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In the pure common values model, the joint distribution Fx y(-) governs n+1 random
variables (Uy, X1, ..., X,); however, at most n bids are revealed in a first-price auction,
and only n — 1 “bids” are revealed in the standard model of an ascending auction. This
suggests that the pure common values assumption alone will not be sufficient to obtain
identification, and that either additional structure or additional data will be needed. Be-
low, we explore examples of both: we first consider additional restrictions on Fx g, (-),
and then consider cases in which the realization of Uy is observable ex post.

7.2.1. Identification with additional structure: The mineral rights model

A special case of the pure common values model given considerable attention in the
literature is the symmetric “mineral rights model” defined in Section 2.1. Here, bidders’
signals are i.i.d. conditional on the realization of the common value Uy. As the name
suggests, this model is motivated by auctions in which firms bid for the right to extract
oil from an offshore tract. All firms may place the same value on the oil, since it is sold
in a common market, but none knows how much oil (if any) there is. Each receives a
seismologist’s report, providing a (conditionally independent) noisy signal of Uy. This
structure may be natural in other applications as well.

Even with this structure, identification from bid data is not straightforward since this
requires somehow separating the variation in bids due to the randomness of Uy from
that due to the randomness of X; conditional on uy. One possible approach is to as-
sume a separable functional form like X; = Uy + A;, where the “errors” A; mutually
independent conditional on Uy. This can be useful, although the additive structure need
not survive the normalization (7.1) in general. Put differently, while it will be useful for
the left-hand side of the first-order condition (7.2) to have a separable form, one must
be careful about what underlying structures on (X;, Up) can deliver this separability.
This is a question that has been explored by Li, Perrigne and Vuong (2000). To discuss
their approach, we first define two (nested) special cases of the symmetric mineral rights
model.

Linear Mineral Rights (LMR): U; = Ujp. In addition, for each n there exist two
known constants (C, D) € R x R4 and random variables (Ay, ..., A,) with joint
distribution F(-) such that, with the normalization E[Up | X; = max;»; X; =
x, n] = x, either (i) X; = exp(C) - (Up - AP Vi, with (4;, Uy, X;) nonnegative; or
(i) X; = C + D(Uy + A;) Vi. Further, conditional on Uy, the components of A are
mutually independent and identically distributed.

LMR with Independent Components (LMR-I): In the LMR model, (Uy, A) are mu-
tually independent, with all A; identically distributed.

Li, Perrigne and Vuong (2000) focus on the LMR-I model and provide examples
satisfying its assumptions. Under the LMR-I model, taking case (ii), (7.2) simplifies to

G, B; (bilbi; n)

C + D(ug + a;j) = b; + .
l " gmy s (bilbis n)

(7.3)
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Since C and D are known and the right-hand side of (7.3) is observable, it follows
that the joint distribution of (Uy + A1, ..., Uy + A,) is identified from a data set
containing all bids in first-price auctions. Li, Perrigne and Vuong (2000) note that
standard deconvolution results, such as those used in the literature on measurement
error (see Section 6.1.2), can then be used to separately identify the distributions Fy, (-)
and Fy().%7

THEOREM 7.2. Assume that for all i, the characteristic functions Yy, (-) and V¥4, () of
the random variables Uy and A; are nonvanishing. If all bids are observed in a first-
price auction, then the LMR-I model is identified.

Even with these kinds of strong assumptions, identification is problematic when some
bids are unobserved. Bids reveal realizations of order statistics of the form Uy + A,
Since order statistics are correlated even when the underlying random variables are
independent, the identification approach based on the measurement error literature fol-
lowed by Li, Perrigne and Vuong (2000) fails, unless all order statistics are observed
(impossible in an ascending auction).

7.2.2. Identification and testing when ex post values are observable

In some applications, an ex post measure of the realized common value ug will be
observable to the econometrician. One notable example is an US outer-continental-shelf
auction of drilling rights, where the quantities of oil and other minerals extracted from
a tract are metered [e.g., Hendricks and Porter (1988), Hendricks, Pinkse and Porter
(2003)]. Another example is a “scaled sale” timber auction, common in the US and
Canada, where the quantity of each species of timber extracted from a tract is recorded
by an independent agent at the time of harvest [e.g., Athey and Levin (2001)]. In other
cases, resale prices can provide measures of realized values [e.g., McAfee, Takacs and
Vincent (1999)]. Such additional data can be helpful in the mineral rights model.®® In
practice, the measures of u( available may be only imperfectly correlated with the true
value to the bidders; we discuss this possibility below.

7.2.2.1. First-price auctions When we impose the structure of the symmetric pure
common values model, the first-order condition (7.2) and the normalization (7.1) give

G ;8 (bilbi; n)

: (7.4)
gm;|B; (bi|bi; n)

E[Uo ‘ X; =max X =xl~,n] =x; =b; +
J#EL

87 Février (2004) has recently proposed an interesting alternative restriction of the mineral rights model
that enables identification. He considers the case in which, conditional on u(, each X; has support [u, ug]
and density fx‘uo(-) = H%)O) for some function H(-) with derivative A (-) satisfying H(u) = 0. With this
structure, conditional on having the highest signal, there is no information in the signals of one’s opponents.
He shows that this structure enables identification up to scale.

88 Smiley (1979) was the first to suggest the value of such information. In his application he did not have

access to an ex post measure and instead explored use of a noisy ex ante measure.
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When all bids and the realization of Uy are observed, (7.4) enables identification of the
joint distribution Fx g, (-).

With knowledge of Fx y,(-), it is possible to perform counterfactual experiments,
quantify the extent to which information is dispersed among the bidders, and character-
ize the magnitude of the “winner’s curse.” For example, it is interesting to examine the
differences

E[UolXizxi,n]—E[Uo‘X,-:m;lij:xi,n] (1.5)
J#i
and
ElUo | Xi = xi,n] = E[Uo | Xi = %, max X, <o) (7.6)
JF#i

since these provide a measure bidders’ equilibrium responses to the winner’s curse un-
der the pure common values assumption.%’

Hendricks, Pinkse and Porter (2003) were the first to suggest this and also proposed
a test of equilibrium bidding in this model. Let

{(bi,bj,n)zE[Uo‘Bizbi, mixszbj,n]. 17
JFEi
When the equilibrium bid function B(-; n) is strictly increasing, 8(x;; n) = b; implies

E[Uo ‘ X; = max X =x,-,n]
i

= E[Un | BCXi:m) = max X m) = Bl .

= E[Uo ) B; = max B; =b,-,n]
J#i

= ¢(bi, bi, n).
Thus, the first-order condition (7.4) can be written
G m g (bilbi; n)
£(bi, by m) = by + — S = g (b ). (7.8)
gm|B(bilbi; n)

89 Hendricks, Pinkse and Porter (2003) point out that a positive value for the difference in (7.6) cannot be
used as evidence against a private values assumption. The problem is that the interpretation of the empirical
measure of u( as the realized value of the good relies on the pure common values assumption. For example,
consider a symmetric independent private values environment and suppose the measured “ex post value” u
is actually just max U, i.e., the value to the winner. Then the difference (7.6) is

E[maXUj ’ U; :u,-,n] — E[maxUj ‘ U; = u;, max Uy <ui,n]
J J ki

which is positive. We will discuss approaches that can be used to discriminate private from common values
models in Section 8.
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Note that because the joint distribution of (Up, B, N) is observable, ¢ (b;, b;, n) is iden-
tified directly through Equation (7.7). No behavioral assumption is required for this
identification: ¢ (b;, b;, n) is simply a conditional expectation of the observable Uy given
that the observable bids satisfy B; = max;; B; = b;. Since &(b;, n) is also identified
from the bidding data under the assumption of equilibrium bidding, the overidentifying
restriction ¢ (b;, b;, n) = £(b;, n) can be tested.

To examine the differences (7.5) and (7.6) empirically, Hendricks, Pinkse and Porter
(2003) first observe that since b; = B;(x;; n) and bidding is strictly monotonic, these
differences are equal to the differences

ElUy | Bi =bj,n] — E[Uo ‘ B; =m;".‘Bj =b,~,n]
J 1
and
ElUo | Bi = bi.nl — E[Uo | Bi = b, max B; < binl.
VES

They suggest a univariate local linear estimator w(b; n) of E[Uy | B; = b, n], where
w(b; n) is the solution for w in the problem
w,y ;

> (o —w =y (0 = i) 1, = n}K(b _hb"’)
t=1 i=1

with K (-) denoting a kernel and 4 a bandwidth [see, e.g., Loader (1999)]. A similar
estimator for E[Ug | B; = max;x; B; < b;, n] is obtained by using only the winning
bid b; from each auction ¢, rather than all bids.

To examine the overidentifying restriction (7.8), the right-hand side can be estimated
using the kernel methods described in Section 3.2.1. A bivariate local linear estimator
v(b) of the conditional expectation ¢ (b;, b;,n) = E[Uy | B; = max;»; Bj = b;,n]is
obtained from the solution to

. Ty 1
min

L

n
. 2
,min > - > (w0 — v = y1(b = bi) — ya2(b — my))” Un, = n}
T =1 =1

< K b —bj; K b—mj, )
hi hy

Here m;; is the maximum realized bid among i’s opponents at auction ¢. Hendricks,
Pinkse and Porter (2003) suggest the use of the bootstrap to construct confidence inter-
vals for testing.

Because of their focus on testing, Hendricks, Pinkse and Porter (2003) did not explore
estimation of the joint distribution Fx, g, (-). However, with the normalization (7.1), an
estimate of

E[Uo ‘ B,‘ =b,‘, maxBj =b,~,n]
J#
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(such as that obtained using the first-order condition and kernel methods described in
Section 3.2.1) provides an estimate of each realized x;. Combining this with the ob-
servable realizations of Uj presumably would enable consistent estimation of the joint
distribution Fx g, (-) and/or the associated density fx,y, ().

7.2.2.2. Ascending auctions Since the common values model is over-identified in a
first-price auction when ex post values are observed, one might hope for identification
in an ascending auction with similar data. However, the partial observability of bids in
ascending auctions again presents serious challenges. Consider the case of two sym-
metric bidders. Recall that in an ascending auction, B; (X;; n) is bidder i’s planned exit
price when his opponent has not yet exited the auction. With n = 2 there is no problem
of multiple equilibria [Bikhchandani, Haile and Riley (2002)], and

bi =Bi(xi;2) =E[Up | X1 = X2 =x;, n=2]

= E[Uo | B1(X1:2) = Ba(X2;2) = Bi(xi52), n =2]
= {(bi, bi, 2).

However, it is not possible to estimate
¢(b1,b2,2) = E[Uy | By = b1, By = bs]

directly from the data (as is possible in a first-price auction) since in any given auction
we observe the exit price of only one bidder. We never observe By and B, in the same
auction. We can observe the joint distribution of (U, BU1:2)_ Under (7.1), this is also
the distribution of (Up, X 1*?)), but without additional structure this information is not
sufficient to recover Fy, x(-).

If we impose the additional structure of the mineral rights model, however, then con-
ditional on Uy, X1'? is an order statistic from a sample of independent draws from
Fx\u,(-). Exploiting Equation (4.1), identification is then obtained in the symmetric
two bidder case when the transaction price and ex post value are observed. Extending
this approach to the case with n > 2 symmetric bidders is possible as well, using the or-
der statistic B! although the suitability of this extension may be doubted in practice.
To see one possible approach, note that with the normalization

xi=E[Uy| Xj=x;Vje({l,...,n}]

we have B = x(:m  Exploiting (4.1) again, we could recover the distribution
of X;|Up, which then delivers identification of Fy, x (). This relies on the interpre-
tation of bids implied by the button auction model, which may be especially dubious
when applied to the interpretation of the lowest bid. To apply a similar approach using
the transaction price B”~1" it is still necessary to make use of the losing bids be-
cause the bidders themselves condition on this information. However, it may be easier
to defend an approach which incorporates the information from all bids than one based
entirely on the lowest bid. Here, we sketch one possibility.
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Fix a set of realized values for the n — 2 lowest bids at (b, ..., pb®*=2M) Then,
the (observable) distribution of

B(n—l:n) } {UO = uo, B(l:n) — b(l:n)’ o, B(n—2:n) — b(n—2:n)}
is equal to the distribution of
B(n—l:n) } {UO = up, B(n—l:n) > b(n—Z:n)} (79)

since bids (which are strictly increasing functions of the signals) are independent con-
ditional on Uy in the mineral rights model. Consider the following normalization of
signals:

x=E[Uo| Xp—1 = Xy =x, BY =... = B" %" = inf[supp[ B]]].
Imposing this normalization, when b"—2")
in (7.9) is equal in distribution to

= inf[supp[B;]], the random variable

X(n—l:n) |U0 = uyg.

Equation (4.1) then uniquely determines the distribution of X;|Up and thus Fy, x(-),
since Uy is directly observable.

This result is not as strong as one might hope for. It relies on an interpretation of
the losing bids in an ascending auction (although it is not essential that the bidders use
Milgrom and Weber’s (1982) equilibrium) and on an assumption that the econometri-
cian’s inferences about exit prices match those that the bidders make during the auction.
Furthermore, the identification argument relies on the tails of the distribution of bids.
In particular, building a nonparametric estimator based on this argument would seem
to require an estimate of the distribution of B”~!" conditional on both the ex post
value u( and the event that n — 2 losing bids are increasingly close to the bottom of the
support of the bid distribution. Whether this kind of approach can work well in sample
sizes typically available has not been investigated.

7.2.2.3. Biased or noisy observations of ex post values So far in this section we have
assumed that the econometrician observes the true realization of Up. In the case of an oil
auction, for example, this requires that the oil extracted is measured without error and
that the econometrician has accurate measures of all costs (including opportunity costs)
incurred in extracting the oil. These may be strong assumptions in some applications, so
it is useful to consider the degree to which they can be relaxed. With the exception of Yin
(2004), which does not fully address identification, the literature has not analyzed the
issue of imperfect measures of ex post values.”® Here, we present some initial results.

90 Yin (2004) obtained descriptions of items auctioned on eBay and recruited volunteers to make subjective
assessments of the value of the objects. The mean assessment was then treated as a potentially biased proxy
for Up. Smiley (1979, Appendix), explored the use of a noisy ex ante measure of Uy within a parametric
model.
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Consider a first-price auction in which all bids are observable and suppose the avail-
able measure of Uy is

Uo =y + U +e, (7.10)

where yp and y; are fixed parameters, unknown to the econometrician, and ¢ is an
unobserved random variable satisfying E[e | X = x] = 0 for all x. Recall that, given
the normalization (7.1), Fx(-) is identified from the bidding data alone in this setting.
Since we observe 170 in every auction, the distribution Fx go(~) is identified as well.
With this, we can compute

U(X) EEI:&() ’ Xi =maXXj :_xil.

J#

Given (7.10), the normalization (7.1), and E[e | X = x] = 0, we also have
1) =+ NE[Uo | Xi = maxX; =x] =y + . .1
JFi

Since 7(-) is identified, the joint distribution of (1(X), X) is identified, as is the bias in
the measure of the common value, determined by the parameters yp and y;.
Identification of yy, y1, and FX,ﬁo(') implies identification of quantities such as

ElUo | X; = x] = E[Uy — yo | Xi = x1/y1,

and

E[Uo X; =x, max X ]:E[ﬁo—yo‘Xizx, maijSx]/m,
JF JF

so that the differences (7.5) and (7.6) discussed above are identified, for example.

Unfortunately, unless ¢ is degenerate, the variance of Uy is not identified, nor is the

joint distribution Fx ¢, (-). In the setting studied by Yin (2004), where l70 is the mean

estimate from a survey, the assumption that ¢ is degenerate may be a reasonable approx-

imation when the number of survey respondents per auction is large.

In ascending auctions, the analysis is more complex. Let us focus on the case of a pure
CV model with two bidders. Let us maintain the assumption E[e | X = x] = 0 for all x,
and in addition, assume that (X1, ..., Xy) are independent conditional on ﬁo The joint
distribution of (B2 Uo) is then 1dent1ﬁed and, under (7.1), this is equal to the joint
distribution of (X2 Uo) Given that X is independent of X, conditional on Uo, the
parent distribution Fy (-) is identified using (4.1), so that the joint distribution of (X, Uo)
is identified. This completely determines 7(-), which in turn yields identification of yy
and yj through (7.11).

Of course, the assumption that X is independent conditional on U may be strong,
especially if l70 is a noisy measure of Uy. In practice this may be most defensible when
¢ is degenerate, so that &0 is a deterministic function of Uj.
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8. Private versus common values: Testing

Negative identification results for common values models provide one important mo-
tivation for formal tests that could distinguish between common and private values
models. Distinguishing private values from common values was, in fact, the goal be-
hind Paarsch’s (1992a) pioneering work on structural empirical approaches to auctions.
The distinction between the two paradigms is central to our understanding of behavior
in auction markets and has important implications for market design. For example, rev-
enue superiority of an ascending auction relative to a second-price sealed-bid auction
in symmetric settings [Milgrom and Weber (1982)] holds only in a common values en-
vironment. Furthermore, a common values environment is one with adverse selection.
There is relatively little evidence on the empirical significance adverse selection, and an
examination of the prevalence of common values in auctions might be suggestive of the
nature of private information in other market environments as well.

It might be surprising that questions about the qualitative nature of private informa-
tion could be answered at all empirically. In fact, early approaches to testing based on
reduced-form relationships between bids and the number of bidders were eventually
discovered to be invalid. With the structural approach proposed by Paarsch (1992a), it
was possible to test particular common values or private values models, but only with
maintained parametric distributional assumptions. More recently, Laffont and Vuong
(1996) have pointed out that private values and common values models are empirically
indistinguishable, suggesting that testing was impossible (see Section 7.1).°! However,
they did not consider the possibilities created by variation in the number of bidders or a
binding reserve price. Below we will show how either of these can offer approaches for
discriminating between private and common values.

In the case of variation in the number of bidders, the idea is simple. The winner’s
curse is present only in common values models and becomes more severe as more com-
petitors are added. Having a signal of the object’s value that is the highest among twenty
implies a more severely biased signal than does having the highest signal among two,
for example. This greater severity manifests itself as a reduction in a bidder’s expec-
tation of his valuation conditional on winning a large auction. In particular, while the
unconditional expectation E[U; | X; = x;] is invariant to the set of opponents i faces,
his equilibrium bid reflects a downward adjustment

E[U;i | Xi = xi]l —vi(xi, xis N)

that accounts for the information implied by his bid being pivotal. In a symmetric envi-
ronment, this downward adjustment is always larger when i faces more competition.

To make this precise, suppose that the number of bidder is exogenous and let NV ;
denote the set of bidders comprised of all members of A/ plus bidder ;.2

91 This can be thought of as a nonidentification result for the affiliated values model, which nests the private
and common values models.

92 Note that because the normalization (7.1) depends on the set of bidders, we could not maintain this partic-
ular normalization for all . Other normalizations, e.g., x; = F x; (x;), are of course possible.
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LEMMA 8.1. Suppose the number of bidders varies exogenously. With private values,
vi(x, x; N') = vi(x, x; Niyj) for all x, N, i, j. With common values and symmetric
bidders, vi(x,x; N') > vi(x, x; Nyj) forall x, N, i, j.

PROOF. The first claim is immediate from the fact that v; (x, x; V') = x with private
values. With common values and symmetric bidders,

vix,x; N') = E[Ui

X; =x, kren/?/')f- B, = ﬁ(x;]\/)].

i

Let m = arg maxgepr , Bx and suppose j ¢ N. Then

vi(x, x; N)
=E[Ui | Xi =x, By =Bi(x;N'), By < Bi(x; N)Vk € N'sit.k #i,m]
= Ex,[E[Ui | Xi =x, X =x, Xx <xVk e Nst.k#i,m]]
> E[U; | Xi = x, max{X,, Xj} =x, Xy <xVkeNst.k#i,jm]
=vi(x, x; N4 j)

where the last two lines follow from Definition 2.1 and the strict monotonicity of equi-
librium bidding strategies.”3 U

This result provides the basis for testing using variation in the number of bidders.
Although to our knowledge the proof was first given by Athey and Haile (2002) and
Haile, Hong and Shum (2003), the idea behind this result and its potential value for
detecting the winner’s curse goes back at least to Gilley and Karels (1981), who sug-
gested regressing bids from first-price auctions on the number of bidders as a test of a
common values model. This reflected a belief that bids must increase with # in a private
values auction (since adding bidders makes the auction more competitive) but might
decline in n in a common values auction if the winner’s curse were sufficiently severe
to overcome the competitive effect of adding additional bidders [see, e.g., Brannman,
Klein and Weiss (1987), Paarsch (1992a, 1992b), Laffont (1997)]. However, Pinkse and
Tan (2005) have recently shown that this is incorrect: bids may increase or decrease in
n in both private values and common values models. The regression approach might
seem more promising in an ascending auction, due to the simplicity of equilibrium bid
functions in the button auction model. The multiplicity of equilibria in common values
auctions creates one problem. But even ignoring this [e.g., selecting the equilibrium
of the button auction given by Milgrom and Weber (1982)] this approach fails due to
the fact that the winner’s bid is never revealed. For example, in a private values auc-
tion the observable bids reveal ("™, ..., u®=1) but u™™ is censored. Because the

93 Note that the second equality need not hold without symmetry. Conditions under which more competition
(appropriately defined) implies a more severe winner’s curse have not been fully explored.
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distribution of the censored valuation U ™™ varies with n, so does the resulting censor-
ing bias. This makes it impossible to discriminate between private values and common
values models based on a regression of bids on n.*

In spite of this, and in spite of the lack of identification of many common values
models, testing is often possible. Lemma 8.1 makes use of the assumption of exoge-
nous (to the distribution of signals and valuations) variation in the number of bidders.
As discussed by Athey and Haile (2002) and Haile, Hong and Shum (2003), this can be
reasonable in some applications. Furthermore, it is implied by some models of partic-
ipation (see Section 6.3.2). However, the assumption of exogenous participation is not
always necessary. Initially we will maintain this assumption to simplify the exposition
of the basic testing approaches. In Section 8.2 we discuss an approach to testing with
endogenous participation.

8.1. Testing in first-price auctions when all bids are observed

In the common values first-price auction, the first-order condition (7.2) requires that
v(x;, xi; N') = £(b;, N'). Note that both sides of this equation vary with . However,
because & (b;, N') is identified, it is possible to isolate the effect of A on v(x;, x;; N')
when N varies exogenously. Since v(x;, x;; N) does not vary with AV in a private values
model, it is possible to distinguish the two models, even though Fx y(-) is not identi-
fied. To see how, let Fy, ar(-) denote the marginal distribution of the random variable
v; (X;, Xi; N'). Lemma 8.1 implies the following result.

COROLLARY 8.1. Assume exogenous variation in the number of bidders. Then
Fy, & (v) is invariant to N in a private values model for all v. In a common values
model with symmetric bidders

Fyu N (W) < Fyn,, (V) @&.1)
foralli, j and all v on the interior of the support of Fy, nr(-) or Fy, nr,; ().

Haile, Hong and Shum (2003) use this result to develop tests of the null hypothesis
of private values against the common values alternative.”> They focus on the case of
symmetric bidders, where F; ar(-) can be more simply represented by Fy ,,(-), and (8.1)
can be written

Fyn(v) < Fypt1(v)  Vn,v. (8.2)

94 However, as Bajari and Hortagsu (2003a) have pointed out, the recurrence relation (8.6) below implies that
with this censoring, the average observed bid must increase in n in the dominant strategy equilibrium of a
private values button auction. While this is also possible in a common values auction, it provides a testable
restriction of the private values hypothesis.

95 They apply their tests to two types of auctions held by the US Forest Service. Shneyerov (2005) has
recently applied one of their tests to data from municipal bond auctions.
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Their approach involves two steps. The first is to form estimates v;, of each v(x;;, xi;; ns)
using the methods described in Section 3.2. The second step is to compare the empirical
distributions

T n;
Fynw) = % D2 Mm=n, b < v)
t=1i=1
for different values of n.

While tests of equality of distributions (or of the alternative of first-order stochas-
tic dominance) are common in statistics and econometrics, a complication here is the
fact that only empirical distributions of the “pseudo-values” v;; can be compared, not
those of the “values” v(x;;, xj;; n). Hence, the first-stage estimation error (which will
be correlated in finite sample for nearby v;; and 0 i) must be accounted for. A second
complication is the fact that trimming, which must be done separately for each value
of n, must be done carefully to avoid creating the appearance of a winner’s curse when
there is none, or hiding the winner’s curse in a common values model.

Haile, Hong and Shum (2003) explore two types of tests.’® The first is a comparison
of trimmed means of each empirical distribution I?l;,n(~).97 For t € (0, %) let x; denote
the rth quantile of the marginal distribution Fy (-) and define the quantile-trimmed mean

Mn,r = E[U(Xis Xiyn) | Xi € [x, x]—‘[]]-

Trimming at the same quantiles for all n fixes the set of signals x; implicitly included in
each mean. This is important since the first-order stochastic dominance relation in (8.2)
extends to the distributions of v(X;, X;; n) over any fixed interval in [x, x] but need not
hold for intervals that vary with n. One can then test the hypotheses

Hy:  ppe=---= ta,
Hy: ppe >0 > Ui, (8.3)
which are implied by Lemma 8.1.

Let b, denote the tth quantile of the observed bids. Since bids are strictly increasing
in signals, wu, . has sample analog

T n
1
fne = — YO 1 =n. by € e, by}

=1 i=1

Haile, Hong and Shum (2003) show that the vector (fluc, ..., fds,r) is consistent
and has a multivariate normal asymptotic distribution with diagonal covariance ma-
trix X', enabling adaptation of a standard multivariate one-sided likelihood-ratio test

96 Section 5 discusses several other hypotheses to which their tests may be adaptable.
97 The test generalizes to other finite vectors of functionals — e.g., a vector of quantiles. See Haile, Hong and
Shum (2003) for details.
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[Bartholomew (1959)]. Monte Carlo evidence suggests that size distortions may be re-
duced by using the bootstrap to estimate the elements of the covariance matrix X.%

The second testing approach uses a generalized version of a multi-sample one-sided
Kolmogorov—Smirnov test of equal distributions. Given a differentiable strictly decreas-
ing function A(-), let

T n
1 N
M) = o ; ; n, = n}A(bi; — v)

and

I
|
-

sup [An+l(v) — Ap (U)]»

vely,v]

I
S
I

n

where the compact interval [v, v] is bounded away from the endpoints of the support
Fy.»(-) under the null. If A(:) is the smoothed step function

exp(—y/h)
1+ exp(—y/h)

with & denoting a bandwidth, §7 is easily interpreted as an approximation of a more
familiar looking one-sided test statistic

Ay) =

n—1

o = Z sup {F,01(0) — F5 ()}

n=n V€[V, V]

where F@, ne1(-) and F{)’ » () denote empirical distribution functions.
Strict monotonicity of A(-) and the fact that

A, (v) —> E[A(ﬁ,-, —v) ’ ni; = n]

uniformly in v € [v, ] imply that 7 — O under the private values null. Under the
common values alternative 87 — 8 > 0. This is the basis for using dr as a test statistic.
Haile, Hong and Shum (2003) show that for an appropriate normalizing sequence 7nr,
the generalized Kolmogorov—Smirnov statistic Sy = 1787 has a nondegenerate limit-
ing distribution under Hy, enabling use of subsampling for estimation of critical values
[e.g., Politis, Romano and Wolf (1999)].

Both types of test are easily adapted to the case in which bidders observe only a
signal n of the number of opponents they face before submitting their bids, as long
as the econometrician also observes (or can condition on) 7. In that case estimation
of pseudo-values follows the discussion in Section 6.3.3. One could then compare the
distribution of pseudo-values in auctions with higher signals to those with lower signals.

98 The block bootstrap procedure is identical to that discussed in Section 3.2.1. Haile, Hong and Shum (2003)
point out that using the bootstrap to estimate the distribution of the test statistic itself would be difficult, due
to the need to resample bids under the null hypothesis on the functions v(-,-; n).
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8.2. Testing with endogenous participation

Haile, Hong and Shum (2003) discuss extensions of their testing approaches to cases in
which bidder participation is endogenous. If there is a binding reserve price or a cost
of preparing a bid, for example, bidders’ participation decisions introduce truncation in
the set of types submitting bids. They show how their basic approach can still be ap-
plied in such cases by comparing estimated distributions of v(X;, X;; n), appropriately
adjusted for truncation, on regions of common support. We refer readers to their paper
for details.

A more difficult case is that in which participation is affected by unobserved fac-
tors that also affect valuations. This leads to two quite different threats to the basic
testing approach. First, variation in F, ,(-) with n will arise from variation in the un-
observed factors, confounding attempts to detect responses to the winner’s curse. For
example, if auctions of goods that are more valuable in unobserved dimensions also at-
tract greater participation, this could mask the effects of the winner’s curse in a common
values auction. The second problem is even more fundamental: unobserved heterogene-
ity threatens the identification of the distributions F, ,(-) that underlies the approach
(recall Section 6.1.2).

Haile, Hong and Shum (2003) have proposed an instrumental variables approach for
such situations. Consider a simplified version of their approach in which the number of
actual bidders in auction ¢ is a function of two scalar factors Z; and W;:

Ay =a(Z, Wy).

Here Z; is an index capturing the effects of factors observable to the econometrician
as well as the bidders, while W, is an index capturing the effects of unobservables.”
Assume that (i) Z is independent of (X1, ..., X5, U1, ..., Uy) and (i) a(-,-) is weakly
increasing in its first argument and strictly increasing in its second.

Assumption (i) is a standard exclusion restriction: Z; is an instrument affecting par-
ticipation but not the distribution of valuations and signals. This instrument might be
the number of potential bidders or a proxy for it, like the number of firms in the local
market. Of course, in principle there need not be any difference between the potential
and actual bidders here, based on our definitions. For example, if there is a cost of ac-
quiring a signal but bidders have access to some information about the distribution of
valuations before bearing this cost, the number of potential bidders will be correlated
with unobservable factors shifting all bidder valuations. Valid instruments in that case
might be the number of firms in the market (those who choose whether to invest in a
signal), or factors affecting the cost of acquiring a signal.

Assumption (ii) is a monotonicity restriction. Monotonicity in the instrument Z; im-
plies that changes in Z; will provide the exogenous variation in the level of competition

99 For simplicity we assume there are no auction-specific observables other than Z;, although this is easily
relaxed.
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that will make it possible to isolate the effects (if any) of the winner’s curse. Strict
monotonicity in W; is a key restriction that requires that W; be discrete (since A; is). As
discussed in Section 6.1.2, this restriction enables identification of the expectations

v(x,x;a,2) = E[U; | Xi =x, Ay =a, Z; =2]
through the first-order condition

V(Xir, Xits Gt Zt)
Pr(max;.; Bj: < bit | Bit = bit, Zt = 21, Ay = ay)
<

=bis + (8.4)

3 .
MPr(man;éi Bj; <m | Bit = bir, Z; = z¢, Ay = ap)lm=b;,

Estimation of the pseudo-values on the left-hand side of (8.4) proceeds by holding
fixed both the value of A and the value of the instrument Z to construct estimators of the
right-hand side of (8.4). To test for common values, the pseudo-values v(x;;, Xit; as, 2t)
are then pooled across realizations of A; to compare the cumulative distributions

Fy-(v) = Pr(E[v(Xif, Xir; A, ZD)] < v | Z, =2)

across values of z. While these distributions must be the same for all z under private
values, the assumptions above imply that F;, ;(v) is increasing in z under the common
values alternative. Haile, Hong and Shum (2003) provide additional details and an al-
ternative control function estimation approach allowing for multiple instruments. Their
application to US Forest Service timber auctions uses the numbers of sawmills and log-
ging firms in a geographic neighborhood of a sale as instruments for the number of
bidders.

8.3. Testing with incomplete bid data

Athey and Haile (2002) show that testing is also possible in ascending auctions (as-
suming the button auction model) and in first-price auctions in which not all bids are
observable.'® For the symmetric common values model, recall that the challenge arises
because the distribution of v(X®~1" x®=In) ) varies with n both due to the win-
ner’s curse and because the distribution of the order statistic varies with n even without
any winner’s curse. However, since X (1) is unobserved, the distribution of v(X;, Xi,n)
is not identified.

100 Hajle (2001) develops a different testing approach based on detecting bidders’ updating of their willing-
ness to pay as an ascending auction proceeds. The insight is that there is no such updating in a private values
auction or in a 2-bidder common values auction. Hence one can compare distributions of bidders’ willingness
to pay (i.e., ¢(G(§171:") (-); n — 1, n)) in 2-bidder auctions to that in auctions with larger numbers of bidders,
with a difference suggesting common values. A major limitation of this approach is a requirement of indepen-
dent signals under both the null and alternative hypotheses. While independence is implied by Haile’s model
of auctions with resale, this will typically be a strong restriction for a common values auction.
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Athey and Haile’s (2002) approach exploits the fact that for exchangeable random
variables Y1, ..., Y,, the marginal distributions F ;“") (+) of the order statistics must sat-
isfy the recurrence relation [see, e.g., David (1981)]

R0+ R 0) = FV0) i <n— 1. (8.5)

Intuitively, in an ex ante sense, moving from a sample of n draws to a sample of n — 1
draws is equivalent under exchangeability to taking the n draws and then dropping one
at random. When one draw, Y, is dropped at random from the larger sample, the ith
order statistic in the smaller sample will be either the ith order statistic from the larger
sample (when Y; was one of the n —i highest draws), or the (i 4 1)st order statistic (if ¥
was among the i lowest draws). Note that one direct implication of (8.5) is a recurrence
relation between means:

o E[Y%m] + iE[Y“’“i’“] = E[y" D] vni<n-1. (8.6)
n

n
Using (8.5) and (8.6), the private values null can be tested against the common values
alternative in both first-price and ascending auctions. This is possible even when not all
bids are observable (as is always the case in an ascending auction) and despite the fact
that the ascending auction has multiple equilibria in the case of common values. The
following theorem combines results originally given in Athey and Haile (2002).

THEOREM 8.1. Assume exogenous variation in the number of bidders. In an ascending
auction or first-price sealed-bid auction, the symmetric private values model is testable
against the symmetric common values alternative if one observes the bids B"=2m gqpd
B in the ascending auction, or B™"~™ and B™™ in a first-price auction.

PROOF. For the first-price auction, we have seen in Theorem 3.3 that the marginal dis-
tributions F" "1 () and F{"™ () of v(X@—1m) | x =11 3y and p(X @) X(’“”); n)
are identified for all n. In a private values auction, these distributions are Fl(/" —Lm (+) and

F l(]":") (+) so that (8.5) implies the restriction

(n ]l’l)( )+ 1 (nn)(v) (n lin— ])(U) VU

Under the common values alternative, v(x, x;n) is still a strictly increasing func-
tion of x, so that the random variables v(X;, X;; n) are still exchangeable. But since
v(X;, X;; n) strictly decreases in n (Lemma 8.1),

1F(n ln)( )+ IF(nn)(v) - F(n 1:n— 1)(1))
n

for all v on the interior of the support of Fy, or(-) or Fy, A7, ().
For the ascending auction, under the private values null, Equation (8.6) implies
2 2

= (n—2:n) n-— (n—1:m)] _ (n—2:n—1)
nE[B |+ —E[B |=E[B ] va>n.
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Under the common values alternative, Athey and Haile (2002, Theorem 9) show that,
regardless of the equilibria selected in the n-bidder and (n — 1)-bidder auctions, one
obtains the relation

2 n—2
“ (n—2:n)
E[ I+ —

E[B("_IZ")] < E[B("_zzn_l)] Vn > n.
n

O

While Theorem 8.1 relies on exchangeability, Athey and Haile (2002) show how this
kind of approach can be adapted to asymmetric ascending auctions as well.!! To see the
key idea, observe that if (Y1, ..., ¥,;) have an arbitrary joint distribution, one can obtain
a sample of exchangeable random variables (Yg,, Yr,, ..., Yg,) by taking a random
subsample of size Ry < n from the original sample (Y7, ..., ¥;). Hence, even without
exchangeability of (Y7, ..., ¥;), arecurrence relation must hold for random subsamples
[Balasubramanian and Balakrishnan (1994)]. In a private values auction this implies a
recurrence relation between distributions F l(]’ ") () in auctions with bidders N and those
from smaller auctions in which the set of bidders is a subset of N.

Formal testing approaches based on these results have not yet been explored. Since
the null (alternative) hypothesis can be represented as the hypothesis of equal (stochasti-
cally ordered) distributions, it may be possible to adapt the testing approaches of Haile,
Hong and Shum (2003), which account for the estimation error arising from the non-
parametric estimation of pseudo-values.

8.4. Testing with a binding reserve price

While Haile, Hong and Shum (2003) show that their testing approach can be extended
to cases in which there is a binding reserve price, Hendricks, Pinkse and Porter (2003)
and Haile, Hong and Shum (2003) have each shown that the presence of a binding
reserve price can make possible a different sort of test for the winner’s curse in first-
price auctions. Both approaches rely on observing the number of potential bidders.

Focusing on the symmetric case, recall that participation is determined by the thresh-
old signal x*(n) defined by (recall Equation (2.1))

x*(n) = inf{x: E[Ui ’ X; =x, I}l;llXXJ < x] > r}. (8.7)

The equilibrium bid of a bidder with signal x*(n) is
,B(x*(n); n) = v(x*(n), x*(n); n) = E[Ui

X; =x*(n), I?;ng = x*(n)].

In a private values model, E[U; | X; = x, max;» X; < x] = E[U; | X; = x,
max;-; X; = x], so that

,B(x*(n); n) =r. (8.8)

101 They also discuss extension to cases in which only nonadjacent values of n are observed in the data.
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As originally noted by Milgrom and Weber (1982), in a common values model the fact
that E[U; | X; = x, max;»; X; < x] < E[U; | X; = x, max;x X; = x] implies

,B(x*(n); n) > 7. (8.9)

Hence, a test for common values can be based on the distinction between (8.8) and (8.9).
In particular, if we let b = inf supp B;,

) GumB(bl|b; n)
lim b s ———
b—b gmB(blb; n)

should equal r under the private values hypothesis but should be strictly greater than r
with common values. While this idea was first mentioned by Hendricks, Pinkse and
Porter (2003), a formal test based on this idea has not yet been developed.

A second possibility, suggested by Haile, Hong and Shum (2003), is to examine vari-
ation in the probability Fx (x*(n)) that the reserve price excludes a potential bidder. It is
easy to verify (following the proof of Lemma 8.1) that x*(n) is invariant to n in a private
values model but strictly increasing in z in a common values model. By exchangeability,

Fx(x*(n)) = Fx(x*(n), 00, ..., 00) = ZSPr(A =n—k|N=n).
k=1

So if both the number of potential bidders, NV, and the number of actual bidders, A, are
observed, Fx (x*(n)) is identified for all n, and one can test whether this is constant or
decreasing in 7.

9. Dynamics

Until very recently, virtually all structural empirical work on auctions has considered
static models, treating each auction in the data as an independent game. There are sev-
eral reasons this may not be the case. First, even in a stationary environment, dynamic
considerations arise if firms engage in collusion.'> We do not consider collusion in this
chapter.!%% Second, bidders’ valuation distributions may change over time in a way that

102 Many models of collusion at auctions are static [e.g. McAfee and McMillan (1992)]. Recently, the theory

of tacit collusion in repeated auctions has grown rapidly [Aoyagi (2003), Athey and Bagwell (2001, 2004a),
Athey, Bagwell and Sanchirico (2004) and Skryzpacz and Hopenhayn (2004)]. Athey, Bagwell and Sanchirico
(2004) show that when only the winning bid, but not the bidder’s identity, is revealed by the auctioneer,
optimal collusion entails bidding at the reserve price with each bidder having an equal chance of winning,
while Athey and Bagwell (2001, 2004a) show that when the bidder’s identity is revealed as well, bidders
engage in sophisticated rotation schemes so that a bidder’s probability of winning is less correlated over time
than the bidder’s valuation.

103 For empirical studies of collusion (which typically do not explicitly consider dynamics), see Porter and
Zona (1993, 1999), Bajari and Ye (2003), Pesendorfer (2000), Baldwin, Marshall and Richard (1997), and
Athey, Levin and Seira (2004). See Bajari and Summers (2002) for a survey.
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is exogenous, but is private information to each bidder.'%* This can create dynamic links
in bidder strategies. In particular, a bidder’s behavior in an auction will affect opponents’
beliefs about his valuation distribution in future auctions, changing the equilibrium of
the auction game in each period.'®> To our knowledge, there has been no empirical
investigation focusing on the dynamics of such models.

Finally, the underlying distribution of valuations might change as a function of auc-
tion outcomes, potentially in ways that are observable (or can be directly inferred) by
the other bidders. For example, there may be learning-by-doing, so that a firm that wins
an auction today might have stochastically lower costs (higher valuations) in the future.
Alternatively, firms may have capacity constraints (or more general forms of disec-
onomies of scale). In that case, a firm that wins an auction today might draw a valuation
from a less favorable distribution in the future. In either case, the resulting dynamic
considerations for bidders will change the equilibrium at each point in time.

To explore this type of environment, consider a model based on that of Jofre-Bonet
and Pesendorfer (2000, 2003).1% Time is discrete, and firms compete over an infinite
horizon. In each period ¢, an item is sold by first-price auction to one of n bidders.
For simplicity, assume that there is no reserve price and that all objects to be auctioned
have the same observable characteristics [see Jofre-Bonet and Pesendorfer (2003) for
extensions]. The distribution of bidder valuations depends on the bidders’ capacities
(more generally, it could depend on other covariates as well). Conditional on capacities,
bidder valuations are independent across bidders and over time. Letting c; ; be bidder
i’s publicly observable capacity in period ¢, the conditional distribution of bidder i’s
valuation in period ¢ is denoted Fy (:|c; ), where for simplicity we let this function be
the same for all bidders.

The econometrician and the bidders both know the (deterministic) transition function
for bidder capacities. In particular, if k is the identity of the winning bidder in period ¢
and ¢; is the vector of bidder capacities in period ¢, then'?”

Cit+1 = wi (¢, k).

The solution concept is Markov-perfect equilibrium. Thus, collusion is ruled out, and
dynamic considerations in bidder strategies arise only because bidders anticipate that
the identity of today’s winner will affect future capacities, which in turn will affect

104 If the distribution of valuations changes over time in a way that is observed by all bidders, then either the
econometrician can observe (and condition on) the factors affecting distribution, or the problem of unobserved
heterogeneity discussed in Section 6.1.2 arises. The literature has not explored intertemporal correlation in
unobserved auction heterogeneity.

105 See e.g., Bikhchandani (1988), Bikhchandani and Huang (1989), Haile (1999, 2003), Katzman and
Rhodes-Kropf (2002), Das Varma (2003), Goeree (2003), and Athey and Bagwell (2004b).

106 They analyze a procurement auction. We recast the problem as one in which the bidders are buyers. They
also consider two types of bidders, “regular bidders” who bid often, and “fringe bidders” who bid rarely and
do not consider the future. We focus on regular bidders to simplify the analysis.

107 Jofre-Bonet and Pesendorfer (2003) allow a sli ghtly richer specification in which transitions reflect infor-
mation about the size and duration of projects that have been won in the past.
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outcomes in future auctions. Since all asymmetries are captured through capacities,
Jofre-Bonet and Pesendorfer (2003) focus on exchangeable strategies. In particular,
each bidder’s bid in a given period depends on the bidder’s own valuation and the vector
of capacities, so that strategies can be written §; (u; ;, c,).108

In this environment, Jofre-Bonet and Pesendorfer (2003) combine the insights of Hotz
and Miller (1993) (who studied dynamic discrete choice problems for individuals) with
the approach of Guerre, Perrigne and Vuong (2000) in an insightful way, providing very
general conditions for identification when the discount factor is known.

The first step in the analysis is to use dynamic programming to represent bidder
payoffs.!% Suppressing N in the notation, let G u; (+|¢) be the equilibrium distribution
of the maximum opponent bid for bidder i when the vector of bidder capacities is c.
Let § denote the discount factor and let w(c, k) = (wi(c, k), ..., w,(c, k)). Holding
opponents’ strategies fixed, the interim expected discounted sum of future profits for
bidder i is given by

Wi(u;i, ¢) = mbax{(ui — b;i)Gy; (bile)

n
—i—(SZPr(j wins |b;, ¢) / Wi (uj, w(e, ) fu, (u; | wi(e, j))duj ¢,
j=1 i

where the second term sums over the possible identities of the winner to form an ex-
pectation of the continuation value to player i, given current capacities. One can then
define the ex ante value function

Vi(e) = / Wi (i, ) fu, (uilo) duz,

which can be rewritten as

Vile) = /{mbaX{(ui — b)Gu; (bile) +8Vi(w(e, i)

+8 ) Pr(j wins |b;, [ Vi(w(c, j)) — Vi(e(e, i))]”fui (uil) du;.
J#
Note that in equilibrium, the probability that bidder i wins with bid b; is given by

Pr(bi > max (U5, ©) | ¢) = G, (bile) = ];[ G, (bilo), ©.1)
JF#i

108 Jofre-Bonet and Pesendorfer (2000, 2003) establish existence of an equilibrium within the parametric
framework they use for estimation, and also sketch an approach for showing existence in general.

109 Ackerberg et al. (Chapter 63 in this volume) discuss estimation of dynamic strategic models more gener-
ally, which relies on very similar ideas.
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where G, (-|¢) is the cumulative distribution of B; conditional on capacity vector c.
The probability that bidder j # i wins when bidder i bids b; is

f%m<
b;

where b j(e) =supsupp G B; (*]¢). Finally, using (9.1) note that

[T Gn6s10))en, b1,

ki, j

Gum; (bile) 1
M; (bile) gs; (bile) *
M0 2 j#i o, il

The next step is to solve for the ex ante value functions in terms of observables.
This requires a significant generalization of the two-step indirect approach proposed
by Guerre, Perrigne and Vuong (2000). Consider bidder i’s optimization problem in a
given auction:

rr}jgx{ (i — bi)G g (bile) + 8Vi(w(c, i)

+<SZ( / e [1 G5.®j1088,®;l0) db,;)[v,-(w@, ») - Vi(w(c,i))]}.
FETR S o7

The first-order condition is

GM,' (btlc) P Z GM,' (bl|c) gBj (bllc)
gm; (bilo) gm; (bile) Gg; (bilc)

uj = b; (Vi(w(e, ) = Vi(w(e, i))).

J#
9.2)

After substituting this into the ex ante value function, a change of variables yields

bi© Gy (b
Vi(e) = / G i) G (bile) dG s, (bilo)
biey &m;(bilc)

bi(c)
+8) Vi(w(e, j)){f [] Gs.bjlc)gs; (bjlc) db;
J#i b ki
/bi@ G, (bile) gs;(bilc)
bie) &m;(bile) Gp;(bilc)

G m; (bile) dG g; (b; IC)}.

For any capacity vector ¢, this expresses each V;(c) as a linear function of V;(-) evalu-
ated at other capacity vectors. The coefficients of this linear relation depend only on the
observable bid distributions. Thus, it is possible to solve for the ex ante value functions
in terms of the observable bid distributions.

Once the ex ante value functions have been computed, identification of the distrib-
utions Fy (-|¢) (assuming the discount factor § is known) follows from the first-order
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condition (9.2). In particular, we can use the observed bid distributions and the ex ante
value functions to compute the right-hand side of (9.2). Then, if the discount factor § is
known (for example, from other empirical studies), (9.2) implies that F;, (-|¢) is identi-
fied from the observed bids and capacities.

In addition to demonstrating the nonparametric identification of their model, Jofre-
Bonet and Pesendorfer (2003) propose a parametric estimation approach, motivated in
part by a desire to include covariates in a parsimonious manner. To solve for the value
functions, they follow Judd (1998) and discretize the set of possible capacities. Then,
calculating the value functions entails solving a system of linear equations. They fur-
ther simplify the estimation by using a quadratic approximation of the value function.
They apply their approach to California highway construction contracts. Using their
estimates, they are able to assess the importance of private information, capacity con-
straints, and the inefficiencies that arise due to the asymmetries induced by capacity
differences among bidders under the assumption of forward-looking equilibrium be-
havior. Note that it is impossible to fest whether bidders are forward looking in this
environment, since the discount factor § is not identified.

10. Multi-unit and multi-object auctions
10.1. Auctions of perfect substitutes

While most of the empirical literature on auctions focuses on the case of single-unit auc-
tions, auctions of multiple units of identical goods (“multi-unit auctions”) have recently
begun to gain significant attention. One motivation is their importance in the public sec-
tor. For example, multi-unit auctions have recently been implemented in restructured
electricity markets to assign electric power generation to different plants [see, e.g.,
Wolfram (1998), Borenstein, Bushnell and Wolak (2002), or Wolak (2003)]. Optimal
design of such markets is complex: the usual goals of efficiency and surplus extrac-
tion in single-unit auctions are complicated by (among other issues) nonlinearities in
cost functions, incentives to exercise market power by withholding marginal produc-
tion capacity, and the need for firms to recover substantial fixed costs [Wolak (2003)].
Empirical analysis of these markets can provide valuable information about the under-
lying cost structure, market power opportunities, and profitability. Another important
policy question that has been the subject of discussion among economists at least since
Friedman (1960) is how governments should auction treasury securities to maximize
revenues. This question is potentially relevant to the design of markets for other types
of securities as well.

In treasury auctions, a large number of identical securities is sold in a mechanism
in which each bidder submits an entire “demand function,” i.e., each bidder i offers a
(downward sloping) schedule of price-quantity combinations (b;;, g;) specifying the
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price he is willing to pay for his g;th unit.!'% Two auction mechanisms are commonly
used: discriminatory and uniform-price. A discriminatory auction is the most common
in practice (although recently the US adopted uniform-price auctions after conducting
an experiment to evaluate alternative formats). In this mechanism, each bidder who
offers more than the market clearing bid for a unit receives that unit at the price he
offered. As the name suggests, this results in different prices for different units of the
same security — even a given bidder will pay different prices for each unit he wins. In
contrast, in a uniform-price auction, the market clearing price (lowest accepted bid) is
paid on all units sold. In addition to US treasury bill auctions, electricity auctions are
often uniform price, and some firms have used uniform price auctions in initial public
offerings.!!!

Of course, bidders will bid differently depending on whether a discriminatory or
uniform-price auction is used. The revenue ranking of the two mechanisms is theo-
retically ambiguous [Ausubel and Cramton (2002)] and can only be determined with
knowledge of the true distribution of bidder valuations. To our knowledge, the litera-
ture has not yet presented a comprehensive analysis of identification and estimation in
uniform-price auctions, although Wolak (2003) provides some initial results.

Before proceeding, we pause to highlight the fact that the theory of multi-unit auc-
tions is much less well developed than the theory of first-price auctions and ascending
auctions. Although existence of equilibrium in mixed strategies can be guaranteed quite
generally [Jackson et al. (2002), Jackson and Swinkels (2005)], existence of pure strat-
egy Nash equilibria in monotone strategies has been established for only a limited class
of models, such as private or common value models where bidder signals are indepen-
dent [McAdams (2004a)]. In addition, examples have shown that there can be multiple
equilibria [e.g. Back and Zender (1993)]. Thus, most existing econometric approaches
to these auctions require assumptions on endogenous variables to guarantee that the
requisite regularity properties are satisfied, although in practice some of the conditions
can be verified empirically.

Hortagsu (2002) has empirically analyzed the question of which auction mechanism
raises higher revenue, and has shown that the relevant primitives can be identified non-
parametrically in a private values model of the discriminatory auction.!!? His empirical
model is based on the theoretical framework of Wilson (1979).'!3 Building on the in-
sight of Guerre, Perrigne and Vuong (2000), he points out that equilibrium bidding

110 Note that this is a bidder’s strategic expression of quantities he demands at each price. This need not
correspond to the usual notion of a price-taking buyer’s demand function.

11 1y the finance literature, these are often referred to as “Dutch auctions,” conflicting with economists’ use
of this term for descending price single-unit auctions.

12 parametric structural models have been studied recently by Février, Préget and Visser (2002) and by
Armantier and Sbai (2003), both of which consider common values models. Common values models may be
appropriate for many securities auctions, although this is ultimately an empirical question — one for which
testing approaches have not been developed. Hortagsu (2002) discusses institutional details that motivate the
assumption of private values in the case of the Turkish treasury bill auctions he studies.

113 The analysis in Wilson’s model relies on an assumption that bidders can bid continuous demand functions.
In most applications, bids are restricted (by rule or in practice) to step functions — i.e., finite sets of discrete
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strategies can be characterized as best responses by each bidder to the distribution of
opposing bids he faces. In this multi-unit setting, the distribution of opposing bids can-
not be described by the distribution of the maximum opposing bid (as in a single-unit
auction); rather, it is the stochastic residual supply curve that characterizes the equi-
librium probabilities with which various quantities could be obtained at each possible
price.

For a discriminatory auction, suppose that the total quantity of securities to be offered
is Q. Let g; (-) denote the demand function offered by bidder i; i.e., g; (p) is the largest
quantity for which bidder i is offering a price of p or more for his final unit. For a
given set of demand functions ¢ (-), . . ., ¢, (+), the market clearing price p° then equates
supply and demand:

0= Z%’ (r°).

This market clearing price can be reinterpreted as the price at which i’s demand function
and his residual supply curve intersect:

Or (D) =0~ q;b).
J#

Let v; (y; x;) denote bidder i’s marginal valuation for a yth unit of the good, given
the realization of his signal x;. Each bidder i’s equilibrium strategy specifies, for each
possible realization of x;, a demand function g; (b) = ¢; (b; x,-j expressing the quantity
demanded at each price b. Let

Gi(b. y) =Pr<y <0—) ¢jb; x,-)) (10.1)
J#
so that G; (b, y) is the probability that, given equilibrium bidding by i’s opponents, the
market clearing price falls below b if i himself demands quantity y at price b.
For each X; = x;, bidder i’s optimal strategy ¢; (-; x;) then solves the problem

00 qi (p©) B 3G; (pS, qi (p©))
maX/ (/ (vi (v, xi) — g ‘(y))dy)%dp?
qi() Jo 0 ap

One can show that the optimal bidding strategy can be characterized by the necessary
condition

Gi(b, ¢(b; xi))
35Gi(b. (b X))
While this is an Euler—Lagrange condition for a functional optimization problem, this
equation closely resembles the first-order condition (2.4) used by Guerre, Perrigne and

vi(pb; xi), xi) = b+

price-quantity pairs. Recently, Wolak (2004), McAdams (2005), and Kastl (2005) have explored empirical
models explicitly accounting for this discreteness.
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Vuong (2000) to show identification of the single-unit discriminatory (i.e., first-price
sealed-bid) auction with private values. Its role in the identification argument is simi-
lar. Because the demand functions g;(b) = ¢; (b; x;) are directly observed, G; (b, y)
is identified from Equation (10.1). Then, for any quantity y demanded at price b by
bidder i, we have

Gi(b,y)
vi(y, x) =b+ 317)),
%Gi(bv )’)

which uniquely determines the realizations of bidder i’s marginal valuations at each
quantity y. This implies identification of the distributions of each v;(y, X;), which are
the primitives needed for policy simulations.!'* In particular, if for each quantity y we
let B[:V be a random variable equal in distribution to ¢, ! (y; Xi), vi(y, X;) must be equal
in distribution to

v GiBl.y
b GG Yy

Hortagsu (2002) explores several estimation approaches, both parametric and non-
parametric. He also finds a clever way to place an upper bound on the revenue that
would be obtained under the uniform price auction, while avoiding the difficult prob-
lem of solving for the equilibrium given the estimated distribution of valuations: since
a bidder will never bid more than her marginal valuation for each unit, the revenue that
would be obtained if bidders simply bid their marginal valuations for each unit in a
uniform auction provides an upper bound on the equilibrium revenue.

10.2. Auctions of imperfect substitutes and complements

One prominent area in which economists’ understanding of auctions has been used to
guide policy over the last decade is in the design of institutions to allocate spectrum
rights [see, e.g., McAfee and McMillan (1996)]. Questions regarding the optimal design
of spectrum auctions led to much new theoretical work considering the complications to
equilibrium strategies arising in multi-object auctions, where the heterogeneous goods
auctioned at the same time may be imperfect substitutes, complements, or combina-
tions of these. Similar issues arise in a number of procurement applications, where
complementarities may exist between contracts, and some bundles of contracts may
be substitutes for others. Cantillon and Pesendorfer (2003) study one such application:
auctions for bus services in London, where it may be cheaper to operate one route if a
nearby route is also served. Here, we describe their model and identification results. For

114 Note that signals play a purely informational role here. Hence, their distribution can be normalized (and
assumed symmetric) without loss of generality. Put differently, only the distribution of marginal valuations,
not that of the underlying signals, is of economic relevance.
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consistency with the rest of the chapter, we treat the auction as one in which the bidders
are buyers rather than sellers of services.

Let S be the set of goods offered for sale, with | S| = m. Let U; ; be bidder i’s valua-
tion for the bundle s € S, with U; € RZ"-1 denoting the vector of his valuations for all
possible bundles s € S. Bidders’ preferences over combinations of goods may exhibit
sub- and/or super-additivity. Let Fy,(-) be the joint distribution of U;, while Fy, (-)
denotes the marginal distribution of U; ;. Let B; ; denote bidder i’s bid on bundle s, and
let B; be the vector of bids placed by bidder i. We let B; _; denote the vector of bids
placed by bidder i on all bundles other than s.

For simplicity, we focus on a fixed set of n symmetric bidders. Bidders participate in
a sealed-bid discriminatory auction with combination bidding: each bidder submits bids
on all bundles, and the auctioneer chooses the allocation of all objects that maximizes
total revenue, charging each bidder the price he offered for each bundle he is allocated.

Combination bidding enables bids to express complementarities and substitutabilities
between objects and/or bundles. Further, we might expect combination bidding to aid
efficiency and to encourage less cautious bidding by bidders who desire certain com-
binations of goods. However, combination bidding also introduces a strategic incentive
absent in auctions of homogeneous goods. This arises from the fact that a bidder’s bid
on one bundle competes with his own bids on other bundles. If a bidder raises his bid
for bundle s, for example, that will make him more likely to win s, but it may reduce his
chances of winning a different bundle ¢. This is because an increase in b; ; may make it
profitable for the seller to allocate bundle s to i instead of bundle #, allocating ¢ to some
other bidder instead.

A bidder’s problem here turns out to be very closely related to the problem of mul-
tiproduct pricing, where it is known that a firm may find it profitable to bundle goods
for which demands are independent. Analogously, here a bidder may find it profitable
to place bids on bundles (i.e., to make “combination bids” or “bundle bids”) even if
the goods in the bundle are independent in the sense that U; ;u; = U; s + U;; when
s Nt = (. This is because the combination bid on the bundle s U ¢ can enable bid-
der i to win bundle s even when bidder i’s opponents place a high bid for bundle s,
unless they also place a high bid for bundle 7. Thus, the combination bid allows bid-
der i to “leverage” a high valuation for bundle s into a lower price paid for bundle #, or
vice versa [cf. Whinston (1989)]. Note that this leads bidder i to bid less aggressively
on the individual bundles s and ¢, in order to avoid competing with her combination
bid.

Following intuition from the literature on bundling [see McAfee, McMillan and
Whinston (1989) or Armstrong and Rochet (1999)], as long as the correlation among
opponent bids for s and ¢ is not too high, making a combination bid is profitable for
the bidder. Cantillon and Pesendorfer (2003) describe a plausible environment in which
allowing combination bids will reduce both expected revenue and efficiency if goods
are independent. This provides one motivation for determining whether bidders view
the goods as independent, substitutes, or complements.
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For the purposes of this section, we will make the following nonprimitive assump-
tions (Cantillon and Pesendorfer use slightly weaker assumptions)'!>: a pure strategy
Nash equilibrium exists, the joint distribution of equilibrium bid vectors (By, ..., B,)
is differentiable almost everywhere in the support of equilibrium bids, and there is zero
probability that bidder i uses a bid in equilibrium at which the joint distribution of op-
ponent bids fails to be differentiable.

Given the equilibrium distribution of bid vectors for bidder i’s opponents j # i, let
G®(b;) denote the probability that bidder i wins the objects in bundle s when bidder
i chooses the bid vector b;. Note that G*(-) generally is not a cumulative distribution
function and need not even be increasing, since increasing b; ; for a bundle ¢ such that
s Nt # ¥ might lead to a lower probability that i wins all objects in bundle s. When
there are no reserve prices, bidder i solves the problem

max } (i = bis)G* (bi).
! sCS
If b; is the equilibrium bid for bidder i when his type is u;, then as long as the objective

function is differentiable at b;, the following system of first-order conditions must be
satisfied:

0
ob; s

~G*(b) + Y (uiy —bi)——G'(b;) =0 foralls C §. (10.2)

tCS
Let G(b;) denote the (2" — 1) x 1 vector with components G* (b;), and let VG(b;) be
the 2™ — 1) x (2™ — 1) matrix with (s, ¢) element %”Gt (b;). Then we can rewrite the
system of first-order conditions in matrix notation as Y

VG(b;)[u; — b;] = G(b;).

This is a system of linear equations in the vector of valuations u;. If VG(b;) is invertible,
we can rewrite the first-order conditions in a form analogous to the single-unit auction
case (2.4):

u =b; +[VGDb)] ' Gby). (10.3)

Invertibility of VG(b;) would then imply that the distribution of (multidimensional)
valuations were nonparametrically identified, following the logic developed above for
the single-object first-price auction.

115 They argue that a mixed strategy equilibrium exists, but to our knowledge it is not known what additional
assumptions would be required to guarantee that a pure strategy equilibrium exists. Although it might seem
that a mixed strategy equilibrium should be inconsistent with identification, that is not necessarily true. In a
mixed strategy equilibrium, for at least some valuations, a bidder uses more than one bid vector: the mapping
from valuations to bids is one-to-many. Identification of the primitive valuation functions will require that
for each bid vector, there is a unique valuation that uses that bid vector; i.e, that the mapping from bids to
valuations is many-to-one.
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One unresolved question is whether there are useful sufficient conditions on the
distribution of bids (or on G(-)) that ensure that observed bidding is consistent with
equilibrium behavior (see Section 5.1). First-order conditions are, of course, neces-
sary but not sufficient for equilibrium. In the case of a single-unit first-price auction,
Theorem 5.2 ensures that the first-order conditions together with monotonicity of the
(inverse) bid function are necessary and sufficient for optimality of each bidder’s best
response. Thus far there is no analogous result for the multi-object auction considered
here. Hence, for an observed bid vector b; it is possible that there is a unique u; satisfy-
ing (10.3), yet for that u;, b; is not a best response to the distribution of i’s opponents’
bids. However, it should be possible to rule this out in a given application: since the
bidder’s objective function can be calculated from observables for each vector of val-
uations, for each observed b; and corresponding u; satisfying (10.3) it is possible to
compute the globally optimal bid vector for u; and confirm that it is equal to b;, thereby
verifying that the inverse bid functions implied by (10.3) are mutual best responses.

A second difficulty with using (10.3) arises from the fact VG(-) will not in general
be invertible, since bidders need not make bids on all bundles — not even on all those for
which they have positive valuations. Making no bid on a given bundle (or, equivalently,
making a bid for this bundle that is sure to lose) can be optimal for a bidder since this
ensures that she does not compete with her own bids on other bundles. Given a bid
vector b; _, Cantillon and Pesendorfer (2003) call a bid b; 5 irrelevant if

bis < inf{b;s: G*(bis, bi,—s) > 0O}.
Irrelevant bids are bids that could never win. The problem for identification is that if a
bidder places an irrelevant bid on bundle s, %G‘Y (b;j) = 0 and a%”G’ (b;) = 0 for
all 1 C S, implying that VG(b;) is not invertible. Indeed, Cantillon and Pesendorfer
(2003) establish that VG(b;) is invertible if and only if there are no irrelevant bids. In
their application, bidders appear to make many irrelevant bids.''6

Although irrelevant bids preclude point identification, there is still information in
such bids. First observe that if b; includes an irrelevant bid for bundle 7, it is still possible
to identify the valuations associated with the bids for other bundles. To see this, note that
if for valuation vector u; it is optimal to place relevant bids for all bundles in K C 25
and irrelevant bids on other bundles, one obtains the same solution if one treats the
bidder’s optimization problem as a constrained problem, with the bidder required to
place irrelevant bids on all bundles 25\ K. Formally, let biK be the subvector of bids on
the elements of K, and let G} (biK ) denote the probability that bidder i wins bundle
s when he places irrelevant bids on bundles ¢ € 25\K and bids biK on bundles in K.
Finally, let Gg () denote a vector with elements given by GsK(-) for s € K. Then the
optimal bid for type u; of bidder i in the original game is also the solution to
max Z (uis — bis)G% (blK)

K
b’ sck

116 Trrelevant bids are identified by replacing G(-) with the empirical analog and directly checking whether
each bid has a positive probability of winning.
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The solution to this problem will involve no irrelevant bids, so VG K(bl.K ) will be in-
vertible. Hence, the valuations uiK that in equilibrium correspond to bids biK will be
identified.

There is also information in bids about valuations for bundles for which irrelevant
bids have been placed. Given a bid vector b; _, define the “effective bid”

bET = inf{b: G*(by. by,—y) > 0}.
Given continuity of payoffs and the opponent bid distribution, bidder i will always be

indifferent between bidding (b; 5, b; ), where b; s is irrelevant, and (bfCff b; —s). This

1,8’
implies that increasing b; s is unprofitable at b; ; = bffst when b; ; is irrelevant, i.e.,

ff
8[?,"5 G* (bi,s, bi,—‘\') — (ui,s - bl:c’x)
a
+ D Wi = bin) =G (i, b ) <0 foralls €S, (10.4)
1CS s LS bis=bsh

where all derivatives are taken from the right. Since %“G’(biefyf ,bi—s) = 0 (again
taking the derivative from the right) for all 7 # s such that b;; is irrelevant, and since
we have just argued that u; ; is identified for all ¢ such that b; ; is relevant, the only
remaining unknown in (10.4) is u; 5. Thus, (10.4) places an upper bound on the bidder’s
valuation for bundle s. In particular, the true u; ; must be less than the value of u; ¢
that makes (10.4) hold with equality. This can be used to provide a lower bound on the
cumulative distribution of U; ;. More generally, a lower bound on the distribution of U;
is identified using (10.4).

In Cantillon and Pesendorfer’s application, two additional constraints are imposed on
bids. First, there are reserve prices, denoted ry; bids below the reserve price win with
probability zero. Second, the auction rules specify that

bisut = bis+biy foralls,t € SsuchthatsNr=. (10.5)

This rule is motivated by the idea that if this constraint were violated, the auctioneer
could choose to ignore the bid b; s, and instead accept the bids b; s and b; ;. Thus,
bidders can express preferences for complements, but their bids cannot be less for a
combination than for the component parts. Cantillon and Pesendorfer (2003) extend
the analysis to incorporate these constraints, showing that even in their presence, it is
possible to place an upper bound on the extent of the synergies that exist between items.

11. Concluding remarks
The prominent role of auctions in allocating a wide range of public and private resources

provides one strong motivation for empirical work on auctions. Recent methodologi-
cal advances have made it possible to address old market design questions (e.g., how
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to auction Treasury bills), while new policy questions (e.g., how to auction multiple
complementary goods) have motivated development of new methodological tools. In
addition, auctions hold the promise of shedding light on fundamental questions about
the nature of information, preferences, and behavior that are of importance to a much
broader scope of economic environments. Like earlier descriptive empirical work on
auctions that provided influential evidence on the importance of asymmetric informa-
tion and strategic behavior, recent empirical work using structural econometric models
has also begun to deliver on this promise, addressing such questions as the empirical
importance of reputations, entry costs, or adverse selection. Because of the close match
between the theory and actual institutions, auctions have the potential to provide insights
into fundamental questions that are difficult or impossible to address without the benefit
of structure from economic theory. We expect much of the most interesting future work
in the empirical auction literature to push farther in this direction.

It is worth noting that the analysis of identification in auction models is useful outside
of the realm of econometrics. For example, in some models of learning in games, a
central component of the analysis concerns whether it is possible to infer primitives of
the game from the distribution of equilibrium outcomes that can be observed by players.
The equilibrium concept of self-confirming equilibrium [Fudenberg and Levine (1993),
Dekel, Fudenberg and Levine (2003)], motivated by learning models, hinges on just
this issue.!!” Recently, Esponda (2004) analyzed self-confirming equilibria in auction
games, focusing on the extent to which information revealed by an auctioneer allows
bidders to infer the distribution over opponent types. This problem is closely related to
the identification problem.!!3

Auctions have long been recognized as providing ideal market institutions for ex-
ploring the relationships between economic theory and the actual behavior of economic
agents. Since the seminal work of Vickrey (1961) and Wilson (1967), rich theoreti-
cal and empirical literatures on auctions have developed. In our view, one of the most
exciting advances in this literature is the development of methods for combining theo-
retical and statistical analysis in order to learn about the primitive features of an auction
environment from observed bidding behavior. We have focused our discussion on non-
parametric identification, in part because this makes transparent how the relationships
derived from theory can be used to make valid inferences from data. We hope that this
chapter will be a valuable reference and starting point for researchers who will apply
and expand upon these methods to explore the wide range of open questions in the
future.

17 This concept relaxes the common knowledge assumption of Nash equilibrium, but requires that bidders

best-respond to beliefs that are consistent with the equilibrium distribution of outcomes that is observable to
the bidders. For example, the bidders might observe the distribution of transactions prices, or the distribution
of all bids.

18 Eyrthermore, this alternative to the standard common knowledge assumption may be an interesting pos-
sibility to explore in an empirical model.
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1. Introduction

Households save and invest both for intertemporal reasons and to control exposure to
risk. The resulting patterns of consumption, savings and investment, at both the house-
hold and the aggregate level, reveal information about the parameters of preferences that
govern intertemporal substitution and risk aversion. Prices that clear financial markets
must also reflect the demands of investors and hence are affected by their preferences. In
this way security market data convey information from asset prices that complements
that from microeconomic data sets, from experimental evidence, or from survey evi-
dence. An important aim of this chapter is to understand better how changes in investor
preferences alter asset prices. This guides our understanding of the consequences of in-
puts from external data sources and the value of asset market data for revealing investor
preferences.

Risk premia in security returns provide compensation for risk averse investors. These
risk premia often have simple characterizations. For instance, in the capital asset pricing
model (CAPM), risk premia are proportional to the covariances between the return to
the aggregate wealth portfolio and asset returns. More generally, in the consumption-
based capital asset pricing model (CCAPM) the covariance between consumption and
asset returns determines the riskiness of returns. Since the dynamics of consumption are
linked to the dynamics of wealth, this model implies that understanding the riskiness of
the wealth of investors is ultimately important in understanding security returns. This
linkage is heavily influenced by the assumed form of investor preferences.

While asset market data offer fertile proving ground for theories of investor behavior
and market structure, this data source also poses special challenges or puzzles. In the
case of the CAPM, differences across securities in the measured covariance of returns
with aggregate stock market indices have been shown to have little relationship with av-
erage returns [see for example Fama and French (1992)]. Similarly there appears to be
very little covariance between measures of the aggregate consumption of investors, and
asset returns. The empirical results in Grossman and Shiller (1981), Hansen and Sin-
gleton (1983), Mehra and Prescott (1985), Shiller (1982) and Hansen and Jagannathan
(1991) give alternative characterizations of puzzles that emerge in the study of security
market returns and aggregate consumption. Thus, when we look to security market data
for information about preference parameters, we are exposed to the empirical challenges
posed by this source of data.

Our chapter features alternative and complementary methods of analysis for the study
of the macroeconomic underpinning of asset valuation. We describe some alternative
ways to characterize model implications, and we show how statistical methods can be
put to good use. While we apply some of these methods to illustrate substantive results,
our chapter is not intended as comprehensive of empirical evidence. Excellent surveys
with more extensive empirical discussions are given in Campbell (2003) and Lettau and
Ludvigson (2003).

Alternative specifications of investor preferences and their links to prices are given in
Sections 2 and 3. Specifically in Section 3 we show how to construct stochastic discount
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factors used in representing prices for the alternative models of investor preferences de-
scribed in Section 2. While we describe the investor preferences for an array of models,
we focus our equilibrium price calculations and quantification on a particular subset
of these preferences, the CES Kreps and Porteus (1978) model. This model is rich
enough to draw an interesting distinction between risk aversion and intertemporal sub-
stitution and to pose important measurement and econometric challenges. Some basic
statistical methods for characterizing present-value implications as they relate to asset
pricing are developed in Section 4. Section 5 develops some analytical results and local
approximations designed to reveal how intertemporal substitution and risk aversion al-
ter equilibrium prices. Section 6 uses vector-autoregressive (VAR) statistical models to
measure risk aversion from a heterogenous set of asset returns and quantifies the result-
ing statistical uncertainty. Section 7 develops generalized method of moments (GMM)
and related estimation methods and illustrates their use in extracting measures of in-
tertemporal substitution and risk aversion. These latter sections add some important
qualifications to the existing empirical literature.

2. Investor preferences

In this section we survey a variety of models of investor preferences that are used in the
literature. These specifications of investor preferences imply, through their intertempo-
ral marginal rates of substitution, stochastic discount factors that represent risk prices
and interest rates. This discussion is complementary to the Backus, Routledge and Zin
(2004) survey of exotic preferences pertinent to macroeconomics. As in what follows,
they provide alternative specifications of intertemporal and risk preferences.'

Recursive utility gives a useful framework for parameterizing risk aversion and in-
tertemporal substitution. As advocated by Epstein and Zin (1989a) and Constantinides
(1990), it gives a convenient way to introduce parameters that serve distinct roles in
decision making. Let {¥;: t > 0} denote the sequence of conditioning information
sets (sigma algebras) available to an investor at dates t+ = 0, 1, .... Adapted to this
sequence are consumption processes {C;: t > 0} and a corresponding sequence of
continuation values {V;: ¢ > 0} associated with this consumption process. The date ¢
components C; and V; are restricted to be in the date ¢ conditioning information set.>
The continuation values are determined recursively and used to rank alternative con-
sumption processes.

Consider three approaches. The first approach takes a risk adjustment of the contin-
uation value; the second approach introduces intertemporal complementarities; and the
third approach social externalities.

! While Backus, Routledge and Zin (2004) do an admirable job of describing a broad class of preference
specifications and their use in macroeconomics, the empirical challenge is how to distinguish among these
alternatives. As Hansen (2004) emphasizes, some specifications are inherently very difficult to distinguish
from one another.

2 More formally, C; and V; are restricted to be F; measurable.
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2.1. Risk adjustment

Consider investor preferences that can be represented recursively as

Vi =¥ (Cr, Vil F0)

where C; is current consumption. Given a consumption process, this recursion takes
future values and maps them into current values. It requires a terminal condition for the
continuation value to initiate a backward induction. A familiar example is:

Vi=(0=BUC) + BEVi11F)

where U is a concave utility function. This recursion is additive in expected utility. More
general depictions of recursive utility provide a way to allow for alternative adjustments
to risk and uncertainty.

2.1.1. A smooth adjustment

Following Kreps and Porteus (1978) and Epstein and Zin (1989a), introduce a strictly
increasing, smooth concave function /. In applications this function is typically

vizr i
rV)y=1{ T ° y>0.y#L
logV, y =1.

Then a risk adjusted version of the continuation value is
R(VIF) = h™ Y (E[R(V)|F]).

The presumption is that V; depends on the continuation value through the risk adjust-
ment R(V;41|F;), which is a restriction on function :

Vi = ¥(Cy, Vi1l F) = ¥*[Cr, ROV | F)]

The function £ is strictly increasing and adjusts for the riskiness of the continua-
tion value for the consumption profile {C;1.: T = 1,2,...}. It imposes a nontrivial
preference over lotteries indexed by calendar time. The parametric form of & gives a
convenient way to parameterize risk preferences.

Consider the special case in which the continuation value is perfectly predictable,
implying that E(V;4+1|F;) = Vi+1. Then R(V;41|F;) = Vi41 so that the function % has
no bearing on the specification of preferences over perfectly forecastable consumption
plans. The incremental risk adjustment does alter the implications for intertemporal
substitution for predictable consumption plans.

Examples of ¥* function are as follows:

EXAMPLE 2.1.

Yy*(C,R)=(1-pU(C) + BR

for some increasing concave function U.
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The concavity of U already induces some degree of risk aversion, but it also has an
impact on intertemporal substitution.

It is often convenient to work with an aggregator that is homogeneous of degree one.
Curvature in U can be offset by transforming the continuation value. In the case of a
constant elasticity of substitution (CES) specification this gives:

EXAMPLE 2.2.

1
VHCR) = [ =B(O) P + BRI

for p > 0. The case in which p = 1 requires taking limits, and results in the Cobb—

Douglas specification:

v*(C,R) = C'PRP,

The parameter p is the reciprocal of the elasticity of intertemporal substitution.

EXAMPLE 2.3. There is an extensive literature in control theory starting with the work
of Jacobson (1973) and Whittle (1990) on introducing risk sensitivity into control prob-
lems. Hansen and Sargent (1995) suggest a recursive version of this specification in
which

Y (C,R) =U(C) + AR

as in Example 2.1 with the incremental risk adjustment given by

1
R(Vi1|Fp) = —7 log E[exp(—0Vi11)|F ]

The parameter 6 is the risk sensitivity parameter. As emphasized by Tallarini (1998),
this specification overlaps with the CES specification when p = 1, U(C) = logC
and & = y — 1. To verify this link, take logarithms of the continuation values in the
CES recursions. The logarithmic function is increasing and hence ranks of hypothetical
consumption processes are preserved.

Although it is convenient to make a risk adjustment of the continuation value, there
is an alternative transformation of the continuation value that depicts preferences as a
nonlinear version of expected utility. Let

Vi = h(V,).
Then

Vi = h[y*(Cr, h [EVi1|FD])] = ¥ [Cry EVis1 | 7))

The introduction of / can induce nonlinearity in the aggregator v/. Kreps and Porteus
(1978) use such a nonlinear aggregator to express a preference for early and late reso-
lution of uncertainty. When v is convex in this argument there is a preference for early
resolution of uncertainty and conversely when v is concave. We will show that the
intertemporal composition of risk also matters for asset pricing.
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2.1.2. A version without smoothness

The Epstein and Zin (1989a) recursive formulation was designed to accommodate
more fundamental departures from the standard expected utility model. This includes
departures in which there are kinks in preferences inducing first-order risk aversion.
First-order risk aversion is used in asset pricing as a device to enhance risk aversion.
Examples of applications in the asset pricing include Bekaert, Hodrick and Marshall
(1997) and Epstein and Zin (1990), but we shall feature a more recent specification
due to Routledge and Zin (2003). Routledge and Zin (2003) propose and motivate an
extension of Gul (1991)’s preferences for disappointment aversion. These preferences
are based on a different way to compute the risk adjustment to a continuation value and
induce first-order risk aversion. Continuation values are risk adjusted in accordance to

h(V) = ETh(V)|F] + e E(Ly _sy<oy[h(V) — h(8V)]IF)

which is an implicit equation in V. In this equation, 1 is used as the indicator function of
the subscripted event. The random variable h(\7) is by construction less than or equal to
the conditional expectation of £ (V') with an extra negative contribution coming because
of the averaging over the bad events defined by the threshold 4 (V) < h(§V). The risk
adjusted value is defined to be

R(V|F)=V.

The h function is used as a risk adjustment as in our previous construction, but the
parameters 0 < § < 1 and o > O capture a notion of disappointment aversion. While
the Gul (1991) specification assumes that § = 1, this limits the preference kink to be
on the certainty line. By allowing 6 to be less than one, the disappointment cutoff is
allowed to be lower.

2.2. Robustness and uncertainty aversion

Investors may be unsure about the probability used to evaluate risks. Instead of using one
model, they may choose a family of such models. In some circumstances this also leads
to what looks like a risk adjustment in the continuation value to a consumption plan.
We illustrate this using the well-known close relationship between risk sensitivity and
robustness featured in the control theory literature starting with the work of Jacobson
(1973). As in Hansen and Sargent (1995) we may formulate this recursively as

v = (1=B)U(C)

min E Fi 2 lo Fi
qt+1>0,E(qr+1|fz)=l[ﬂ (Gr+1vi111F) + BOE(qr 41108 qi41|177) ]

where 6 is a penalization parameter and g, is a random variable used to distort the
conditional probability distribution. The minimization is an adjustment for uncertainty
in the probability model, and E[g;+1(logg;+1)|F:] is a discrepancy measure for the
probability distortion called conditional relative entropy.
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The solution to the minimization problem is to set

V41
qr+1 X eXP(—T>

where the proportional constant is conditional on F; and chosen so that E(g;+1|F;) = 1.
This solution gives an exponential tilt to the original conditional probability distribution
based on the continuation value and penalty parameter 6. Substituting this minimized
choice of g, gives the recursion:

v = (1= BUC) + Bh ™ E[h(vi11)IF] ey

where

h(v) = exp(—v/0).

Hence this setting is equivalent to assuming an exponential risk adjustment in the con-
tinuation value function.

As emphasized by Tallarini (1998), when U is the logarithmic function, we may
transform the continuation value of (1) to obtain the Cobb-Douglas recursion in Exam-
ple 2.2 with 6 = ﬁ and V; = exp(v;). Maenhout (2004) and Skiadas (2003) give a
characterization of this link in more general circumstances that include the CES spec-
ification in a continuous time version of these preferences by making the penalization
depend on the endogenous continuation value [see also Hansen (2004)].

Strictly speaking, to establish a formal link between inducing a concern about model
misspecification and a concern about risk required a special set of assumptions. These
results illustrate, however, that it may be difficult in practice to disentangle the two
effects. What may appear to be risk aversion emanating from asset markets may instead
be a concern that a conjectured or benchmark probability model is inaccurate. Risk
aversion from asset market data may be different from risk aversion in an environment
with well-defined probabilities.

There are other ways to model uncertainty aversion. Following Epstein and Schneider
(2003) we may constrain the family of probabilities period by period instead penaliz-
ing deviations. If we continue to use relative entropy, the constrained worst case still
entails exponential tilting, but 6 becomes a Lagrange multiplier that depends on date
t information. The recursion must subtract off f6; times the entropy constraint. As
demonstrated by Petersen, James and Dupuis (2000) and Hansen et al. (2006), a time
invariant parameter & may be interpreted as a Lagrange multiplier of an intertempo-
ral constraint, in contrast to the specifications advocated by Epstein and Schneider
(2003).

The challenge for empirical work becomes one estimating penalization parameters
or alternatively the size of constraints on the families of probabilities. These objects
replace the incremental risk adjustments.
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2.3. Intertemporal complementarity and social externalities

Consider next a specification with intertemporal complementarities. Introduce a habit
stock, which we model as evolving according to

Hy =0 —-20)C; +AH;

where A is a depreciation factor and H; is a geometric average of current and past
consumptions. In building preferences, form an intermediate object that depends on
both current consumption and the history of consumption:

S = [5(C)1 ™ + (1 — 8)(H,)!~2] ™=

where o > 0 and 0 < § < 1. Construct the continuation value recursively via

1

Vi = [(1 = BYS)' 7 + B[R(Vis11FD] "]

Alternatively, H; may be used as a subsistence point in the construction of S; as in
St = Ct - SHt

Typically R(Vy4+1|Fy) = [E(VIIJ:IP | F)] ﬁ , and this specification is used as a distinct
way to separate risk aversion and intertemporal substitution. Intertemporal substitution
is now determined by more than just p: in particular the preference parameters (5, o)
along with p and the depreciation factor A. The parameter p is typically featured as the
risk aversion parameter.

Preferences of this general type in asset pricing have been used by Novales (1990),
Constantinides (1990), Heaton (1995) and others. Novales used it to build an equilib-
rium model of real interest rates, but used a specification with quadratic adjustment
costs in consumption. Instead of using CES specification, Constantinides and Heaton
use H; to shift the subsistence point in the preferences to study the return differences
between equity and bonds. It remains an open issue as to how important these various
distinctions are in practice.

When the consumer accounts for the effect of the current consumption choice on
future values of the habit stock, the habit effects are internal to the consumer. Some-
times the habit stock H; is taken to be external and outside the control of the consumer.
The habit stock serves as a social reference point. Examples include Abel (1990) and
Campbell and Cochrane (1999).

3. Stochastic discount factors

In this section we describe how investor preferences become encoded in asset prices
via stochastic discount factors. Our use of stochastic discount factor representations
follows Harrison and Kreps (1979) and Hansen and Richard (1987) and many others.
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For the time being we focus on one-period pricing and hence one-period stochastic dis-
count factors; but subsequently we will explore multi-period counterparts. Multi-period
stochastic discount factors are built by forming products of single period stochastic dis-
count factors.

3.1. One-period pricing

Consider the one-period pricing of elements X, in a space of asset payoffs. An asset
payoff is a bundled (across states) claim to a consumption numeraire over alternative
states of the world that are realized at a future date. Thus payoffs x;+1 € X,+1 depend
on information available at 4+ 1. Mathematically they are depicted as a random variable
in the date  + 1 conditioning information set of investors. The time ¢ price of x;41 is
denoted by 7, (x;4+1) and is in the date ¢ information set F; of investors.

Hansen and Richard (1987) give restrictions on the set of payoffs and prices for there
to exist a representation of the pricing function of the form

E(Str+1%411F) = 11 (Xe1) ()

where F; is the current conditioning information set which is common across investors.
These restrictions allow investors to use information available at date ¢ to trade in fric-
tionless markets.> The positive random variable S, is a stochastic discount factor
used to price assets. It discounts asset payoffs differently depending on the realized
state in a future time period. Consequently, this discounting encompasses both the dis-
counting of known payoffs using a risk-free interest rate and the adjustments for risk.
As argued by Harrison and Kreps (1979) and others, the existence of a positive stochas-
tic discount factor follows from the absence of arbitrage opportunities in frictionless
markets.

A common and convenient empirical strategy is to link stochastic discount factors to
intertemporal marginal rates of substitution. We illustrate this for a two-period economy,
but we will deduce formulas for dynamic economies in subsequent presentation.

EXAMPLE 3.1. Suppose that investor j maximizes the utility function
Elu/(c/, ¢/11)1 7]

by trading financial claims. Let (&/, Ei] +1) be the optimal consumption choices for
this consumer. Consider a perturbation of this consumption bundle in the direction
(¢] — 1 (x141). €, | + 1x:41) which is parameterized by the real number r. Notice that
this change in consumption is budget neutral for all choices of r. Differentiating with

3 Hansen and Richard (1987) impose conditional second moment restrictions on payoffs and a specific form
of conditional continuity. Other conditional moment and conditional continuity restrictions can also be used
to justify this representation.
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respect to r, at the optimal choices we have

E[u}(& &)1 Fi]m (o) = E[u3 (& &) x| 7).

As aresult

E(M], xe1|F) = muis) (3)
where the intertemporal marginal rate of substitution:
P (%)
“ B @ IE)
This same argument applies to any feasible perturbation and hence (3) is applicable
to any payoff as long as the perturbation away from the optimal that we explored is

permitted. This gives a link between important economic quantities and asset prices.
Note that

E[(Mtj;t+l - Mti,t+1)xf+1|‘7:l] =0

for all investors j and i. Therefore any difference in the marginal rates of substitution
across agents are orthogonal to the payoff space X;1.

Suppose now that X, includes any bounded function that is measurable with respect
to a sigma algebra G,y that is contained in F; 1. Then this orthogonality implies:

E(Mtj,t-',-l |gt+1) = St,t+1

for all j. The stochastic discount factor is unique if it is restricted to be measurable
with respect to G, 1. More generally, any of the intertemporal marginal rates of substi-
tution of the investors can be used as a stochastic discount factor to depict prices. One
economically important example of the difference between G, and F; is the case
where there are traded claims to aggregate uncertainty but claims to individual risk are
not. Therefore there is limited risk-sharing in financial markets in this economy.*

Suppose that investors can trade contracts contingent on any information that is avail-
able as of date 7+ 1. Further suppose that these investors do not face any trading frictions
such as transactions costs or short-sale constraints. Under this complete market specifi-
cation G; 11 = F;+1 and F; 4 includes all individuals’ information. In this case

Mtj’H_l = St,t+1

and S; ;41 is unique. The marginal rates of substitution are equated across investors.

For pedagogical simplicity we compute shadow prices. That is we presume that
consumption is fixed at some determined process. Subsequently, we will have to add
specificity to this process, but for the time being we remain a bit agnostic. It can be
the outcome of a decentralized production economy, but we place production consider-
ations on the back burner.

4 See, for example, Constantinides and Duffie (1996).
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3.2. CES benchmark

Consider an economy with complete markets and investors with identical preferences
of this CES type. In what follows we will use the common preference specification
to deduce a formula for the stochastic discount factor. For the recursive utility model
with a CES specification, it is convenient to represent pricing in two steps. First we
value a contingent claim to next period’s continuation value. We then change units from
continuation values to consumption by using the next-period marginal utility for con-
sumption. In all cases, marginal utilities are evaluated at aggregate consumption. The
CES specification makes these calculations easy and direct.

Because the CES recursion is homogeneous of degree one in its arguments, we can
use Euler’s Theorem to write

Vi = (MC)C; + E[((MV11) Vi1 F1]. “4)

Claims to future continuation values V;4 can be taken as substitutes for claims to fu-
ture consumption processes. When current consumption be the numeraire, equilibrium
wealth is given by W; = V;/MC,. Divide (4) by MC, to obtain a recursive expression
for wealth:

Wi = Ci + E[St 141 Wit Fr].
The marginal utility of consumption is
MC; = (1 — ﬂ)(ct)ip(vz)pv
and the marginal utility of next-period continuation value is

MVig1 = BVie) Y[RV 17D ] P (V)*. )

Forming the intertemporal marginal rate of substitution gives

S _ ﬂ(CrH)p Vit Y
S C RViilF)|

When we incorporate kinks in preferences as in setting suggested by Routledge and
Zin (2003), the marginal utility of next-period continuation value is

MV = B(Vig) Y[RV 17D ] P (V)P

[ 1+ alyy,, <RV, 1) }
1+ 31*VaE(1{Vt+1gBR(VIHI}—r)} | F)

Combining these terms, the one-period intertemporal marginal rate of substitution is

g y Cir1\ ” Vit Yy
S C R(Vi111F1)

) [ 1L+ aliy, <sRV 1) }
1+ 87 aE(Lyy,, <sr(v 170y 1F0)
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The stochastic discount factor depends directly on current consumption, and indirectly
on future consumption through the continuation value.
We now consider some special cases of the CES version of the Kreps—Porteus model:

EXAMPLE 3.2. Let p = y and « = 0. Then the contribution to the continuation value
drops out from the stochastic discount factor. This is the model of Lucas (1978) and
Breeden (1979).

EXAMPLE 3.3. Consider the special case with p = 1 and @« = 0, but allow y to
Lot Vit1 o=y .
be distinct from one. Then the counterpart to the term (RI(VIHI 7 )) entering the

stochastic discount factor is

Vi)'
E[(VieD 7| FT

Notice that this term has conditional expectation equal to unity.

EXAMPLE 3.4. Consider the special case in which y = 1 and & = 0, but allow p to be

distinct from one. In this case the counterpart to the term (#ﬁ‘]_}))p 7 entering the

stochastic discount factor is

|: Vit ]p_l
exp E(log Vi41|F:) ’

The logarithm of this term has expectation zero.

4. Empirical observations from asset returns

Time series observations of asset returns and consumption are needed to identify the
parameters governing the preferences of consumers. The stochastic discount factor
developed in Section 3 and its implications for security prices impose a set of joint
restrictions on asset prices and consumption. Before analyzing these restrictions, we
first display some important empirical regularities from asset markets alone. Besides
standard sample statistics for asset returns we also examine some standard decompo-
sitions of prices. These are based on a log-linear approximation and the present-value
relationship.

This decomposition was proposed by Campbell and Shiller (1988a, 1988b) and
Cochrane (1992). The methods have been used extensively in the finance literature
to summarize statistical evidence about dividend—price ratios, dividend growth and
returns. We develop these methods and show their link to related work in the macro-
economics literature by Hansen, Roberds and Sargent (1991). We then apply these
decompositions to an important set of test assets.
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4.1. Log linear approximation and present values

The price of a security at time 7 is given by P;. The return to this security from time ¢
to time 7 + 1 is determined by the cash flow received at time ¢ 4+ 1, denoted D;4; and
the price of the security at time ¢ + 1, denoted Py . The return is given by

Diyi+ Py (Dr+1><1 + Pt+1/Dt+1>
Pt Dt Pt/Dl ’

The cash flow, D;, is the dividend in the case of stocks or a coupon in the case of
bonds. Although many individual companies do not pay dividends, our empirical analy-
sis is based on the analysis of portfolios of stocks and these dividends will be positive.

This allows us to take logarithms of (6). Using lower case letters to denote logarithms
of each variable we have

(6)

Rip1 =

Fi1 = (dry1 — dp) — (pr — dy) + log[1 + exp(pr41 — di1)]. (7)

We view this as a difference equation for the logarithm of the price—dividend ratio with
forcing processes given by the returns and dividend growth rate. The use of returns as
a forcing process allow us to deduce some statistical restrictions. The valuation models
of Section 3 determine both the prices and the returns endogenously.

To make (7) a linear difference equation, consider the approximation

log[1 + exp(pi1 = di1)] ~ log[1 + exp(up-a)] + K (Pri1 = dig1 = 1p—a)
®)
where
. — exp(ip—a)
1+ exp(ip—a)
and g is a constant centering point for the linearization. This point is usually taken
to be the mean of the logarithm of the price—dividend ratio which will be different for
alternative cash flows because of differences in cash flows and discount rates.
Substitute approximation (8) into the difference equation (7) and rearrange terms:
pr—dy = (div1 —dp) —req1 Hi(pry1 —dig1) +C ©)

where

¢ =log[1 + exp(up—a)] — kit p—a-

For the remainder of this section, we will ignore the approximation error and treat (9)
as the difference equation of interest.
Solving (9) forward gives

Cc

o
pr—dy = Z(K)‘/[dt+j+1 —diyj —reyj+1l+

11—«
=0
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Notice that the constant term in this solution satisfies the approximation

4.1.1. Moving-average models

The implications of the linear difference equation for returns will be examined using
simple linear time series models. We therefore assume that there is a first-order Markov
process for a state vector x; where the dynamics are given by

Xi+1 = Ax; + Bwyyg (10)

where {w;41: t =...,0,1,...}is a sequence of iid normally distributed random vec-
tors with E[w;1+1] = 0 and E(wt+1w;+1) = I. The matrix A is assumed to have
eigenvalues with absolute values less than 1. This assumption implies a stochastic steady
state for x; where x; is a moving-average of current and past shocks:

o0 o0
x; =Y A/Bw,_j=) A/BLIw = A(L)w,
j=0 =0

where L denotes the “lag” operator.
Dividends, returns and prices are linked to the state vector x; via

dit1 —dy = pa + Gaxy + Hqwi41,

Fe4l = WUy =+ erl + Hrwt+]a

pr—dy = Mp—d+ Gp_qX;.
The present-value model implies restrictions on this representation, which we now ex-
plore. We will derive these restrictions in two ways. Substitute these depictions into (9)
and obtain:

prdxt =(Gg— G, + KprdA)xt:

0= (Hy — H; + KGp—dB)wt+l-
Since these restrictions must hold for all realized values of x; and w;1, these two equa-
tions restrict directly the representation for dividends, returns and the price—dividend
ratio.

To obtain an alternative perspective on these restrictions, we use the implied moving-
average representations. In stochastic steady state, dividends and returns satisfy

diy1 —dy = S(L)wrt1 + pa,
Frp1 = p(L)weg1 + W,
pr —dy = w(L)wy + pp—d,
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where

[e¢) o
8y =) 87/, D 181> < oo,
j=0 j=0
o o0
p(z) = Z,szj, Z lpjl* < o,
=0 j=0

o o0
n(z):anzj, Zlnj|2<oo.
i=0 =0

The variable z is introduced so that we may view §(z), p(z), w(z) as power series. They
are sometimes referred to as the z-transforms of the moving-average coefficients. The
coefficients of the power series are the moving-average coefficients. The power series
converge at least on the domain |z| < 1.

In this case, the coefficients of the power series §(z) and p(z) are given by

80 = Hy, po = H,,

8 = GqAI"'B, p;=G,AI7!B.
Hence

8(z) = Hy + 2G4(I — zA)™'B,

p(z) = H +2G,(I —zA)"'B.

Difference equation (9) implies that

2 (2) = 8(2) — p(2) + k7 (2). (11)

This is an equation that restricts the moving average coefficients. We may evaluate these
functions at z = «:

kw(k) =6(k) — p(k) + km (k).

This implies that

8(k) = p(k). 12)

Using the power series representation of p and §, this implies that the discounted (by «)

impulse responses for returns and cash flow growth rates must be equal. This is the

present-value—budget-balance restriction of Hansen, Roberds and Sargent (1991). This

restriction is necessary in order that the future shocks to cash flow growth rates and to

returns net out so that the price—dividend ratio only depends on current and past shocks.
Under the Markov representation of the state variable x;, the restriction

pk) = 8(x)
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becomes
Hy +kG,(I —kA)"'B=Hy +xGyg(I — kA" 'B.

The moving average representation for the price—dividend ratio is obtained by solving
Equation (11) for 7:

_ 8(z) — p(2)

ZI—K

7(z) (13)

Because of the denominator term, the right-hand side looks like it explodes at z = «.
This is not the case, however. The numerator is also zero at z = k. After dividing
out the common zero at «, 7 will have a well-defined power series for |z] < 1, and
formula (13) for 7 (z) is a valid formula for the z-transform of the moving-average
coefficients. Performing this division is consistent with the formula

Gpa=(Gg— G —rkA)!

used in representing the price—dividend ratio.

This “solution” is a bit unusual. It takes returns and dividend growth as given and
solves for the price—dividend ratio. A structural asset pricing model does in fact have
different primitives. Even when cash flows are given exogenously, returns and price—
dividend ratios are both determined endogenously. The rationale for “solving” the model
in this manner is instead a way to allow for prices or returns to reveal additional in-
formation used by investors to forecast future cash flows. It is a restriction imposed
on a moving-average representation of the shocks that are pertinent to the investors’
decision-making.

4.1.2. Decompositions

This solution for 7 is often used to motivate empirical decompositions of prices and
measurement of return risk.
1. Return decomposition. The risk in returns from time ¢ to time ¢ + 1 is captured by
the term pow;41. Since p(k) = 8(k),

o0
po =38(k) — Zijj~

j=1

Hence one period exposure to risk has both a discounted cash flow component and
a component due to return predictability. When return predictability is not very
strong, the discounted impact of shocks on future dividends is the most important
source of risk. In addition if « is close to one, §(x) measures the accumulated
impact of current shocks on dividends far into the future. This measure of long-run
risk is featured in the work of Bansal, Dittmar and Lundblad (2005) and Hansen,
Heaton and Li (2005).
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2. Price—dividend decomposition. Using p (k) = 8(k), express 7 as

_ |:5(Z) - 5(/()} [P(Z) - ,O(K):|
w(z) = - .

Z—K Z—K
The first term is the discounted expected future cash flow growth and the second is
the discounted expected future returns both net of constants. This decomposition
is used to measure the importance of discounted cash flows in accounting for
variation in the price—dividend ratio. This decomposition was originally proposed
by Campbell and Shiller (1988a, 1988b).

4.1.3. Identifying shocks

For the restriction on the joint dynamics of returns, dividends and prices to be testable,
we must be able to identify shocks. Vector autoregressive (VAR) methods are commonly
used in conjunction with other restrictions to identify shocks. Hansen, Roberds and
Sargent (1991) show that there is a tension, however, between the use of VAR methods
to identify shocks and the present-value-budget-balance implications that are imposed
in the log-linear model.

Let y; be a vector of observables with moving average representation:

Ve+1 = B(L)wry1 + py.
To construct w;4 from y,;+1, yr, ... requires that B(z) be of full rank for |z] < 1. In
vector autoregressive applications, it is typically assumed that y and w have the same
number of entries. In this case B(z) must be nonsingular for z < 1, and, in particular,
B(x) must be nonsingular. If y,; contains d; 11 — d; and r, as the first two entries,
then § (k) = p(k) implies that
[1 —1 0]1Bk)=0
which violates the restriction that B(z) be nonsingular. Returns do not contain enough
information to reveal shocks along with dividend growth. This is the dividend-return
counterpart to a claim established in Hansen, Roberds and Sargent (1991), and it gives
a warning against using VAR methods in conjunction with dividends and returns alone.
Let y;4+1 include cash flow growth rates d;y; — d; and the price—dividend ratio

Pr+1 — diy1. Given the implied moving-average representations from a state-space
model or a VAR form:

pr—d = (L)wy + pp—d,
diy1 —dy = 5(L)wey1 + (g

In this case construct the moving-average representation for the approximate return via

Feel = p(L)weg1 + iy

where p(z) = 8(2) + (k — z)7(z). This necessarily satisfies the present-value restric-
tion (12). Thus we sidestep the informational inconsistency mentioned previously by
using prices to reveal shock components instead of returns.
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4.2. Test assets

To illustrate the construction of these returns we use the prices, returns and dividends
constructed from six portfolios. The portfolios returns and dividends are constructed as
in Hansen, Heaton and Li (2005).

The first portfolio is a market portfolio of stocks traded on the NYSE and NASDAQ.
The other portfolios are constructed by sorting stocks on the basis of book value relative
to market value of equity as in Fama and French (1992). Five portfolios with equal
numbers of stocks in each portfolio are constructed from the entire universe of stocks.
Dividends are then constructed from the return series for each portfolio with and without
dividends. This construction is done on a quarterly basis from 1947 to 2005. Because of
the pronounced seasonality in dividends, dividends are smoothed over a year. Details of
the data construction can be found in Hansen, Heaton and Li (2005).

Table 1 reports summary statistics for the five book-to-market portfolios (portfo-
lios “1” through “5”). Notice that portfolio 1 has the lowest average book-to-market
value (B/M) and the highest average price—dividend ratio (P/D) and the lowest average
return. Moving from portfolio 1 to portfolio 5, the average book-to-market value in-
creases, the average price—dividend ratio declines and the average return increases. As
we will see in Section 6, differences in the average returns are not explained by exposure
to contemporaneous covariance with consumption.

Table 1
Properties of portfolios sorted by book-to-market

Portfolio
1 2 3 4 5 Market
One-period exp. return (%) 6.79 7.08 9.54 9.94 11.92 7.55
Long-run return (%) 8.56 8.16 10.72 10.84 13.01 8.77
Avg. BIM 0.32 0.61 0.83 1.10 1.80 0.65
Avg. P/D 51.38 34.13 29.02 26.44 27.68 32.39

Notes. Data are quarterly from 1947 Q1 to 2005 Q4 for returns and annual from 1947 to 2005 for B/M ratios.
Returns are converted to real units using the implicit price deflator for nondurable and services consumption.
Average returns are converted to annual units using the natural logarithm of quarterly gross returns multiplied
by 4. “One-period exp. return,” we report the predicted quarterly gross returns to holding each portfolio
in annual units. The expected returns are constructed using a separate VAR for each portfolio with inputs
(¢t —c¢¢—1, er —ct, rr) where r; is the logarithm of the gross return of the portfolio. We imposed the restriction
that consumption and earnings are not Granger caused by the returns. One-period expected gross returns are
calculated conditional on being at the mean of the state variable implied by the VAR. “Long-run return”
reports the limiting value of the logarithm of the expected long-horizon return from the VAR divided by the
horizon. “Avg. B/M” for each portfolio is the average portfolio book-to-market over the period computed
from COMPUSTAT. “Avg. P/D” gives the average price—dividend for each portfolio where dividends are in
annual units.
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4.2.1. Vector autoregression

We first consider a statistical decomposition of the price—dividend ratio for each portfo-
lio using vector autoregressions. To do this let

= |:dt _dt—l]
' pr —dy ’
We fit a VAR of the form

yi=A0o+ A1yi—1+---+ Aryi— + Bw;

where the two-dimensional shock vector w; has mean zero and covariance matrix 1.
Further Ag is two-dimensional, the matrices Aj, j = 1,2, ...,[, and B are two by two.
We further impose the normalization that B is lower triangular so that the second shock
(the second element of w;) does not impact dividend growth contemporaneously.

This VAR implies linear dynamics for the Markov process x;. To see this, let

p=EQ)=I-A —-A) A
and
=y — .

Then x; is given by

yz* A1Ay-- A B

yE I 0---0 0
= =1 , G=| .. and H =

yt*—l 0---10 0

For each portfolio we estimate a VAR with [ = 5 and consider the properties of
portfolio cash flows and prices using estimated impulse response functions.

Figure 1 reports the impulse response functions for the market. The top panel of
the figure reports the response of the level of log dividends to the two shocks. The
first shock has an immediate effect on dividends and then the response builds going
forward. The second shock has a very small effect on dividends. The second panel of
the figure reports the response of the log price—dividend ratio to the shocks. Notice that
the first shock has a very little effect on the price—dividend ratio, while the second shock
increases the price—dividend ratio and the impact persists for many periods. The pattern
of responses indicates that the two shocks can be labeled as a dividend shocks and a
separate price—dividend shock. Shocks to the price—dividend ratio are long-lasting and
have little ability to forecast future dividends. This reflects the well-known inability of
the price—dividend ratio at the aggregate level to forecast future dividends.

The bottom panel of Figure 1 reports the implied response of returns to the two
shocks. To better understand the effects of the shocks, the results are reported for the
cumulative impact of the shocks on returns. Notice that the dividend shock (shock 1)
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Figure 1. Impulse response functions for the market portfolio. Top panel: response of log dividends to shocks.
Middle panel: response of the log price—dividend ratio to shocks. Bottom panel: response of returns to shocks.
— depicts impulse responses to the first shock. —- — depicts impulse responses to the second shock.

has little effect on returns while the price—dividend shock has an initial positive impact
on returns followed by a slowly building negative impact on returns in the future. For
the market portfolio, variation in the price—dividend ratio has some predictive ability
for future returns, while variation in dividends that have no effect on prices, has little
ability to forecast future returns.

These results are interpreted by Campbell and Shiller (1988a, 1988b) and others as
implying that variation in future returns is the most important factor explaining variation
in the price—dividend ratio. Further this variation is empirically independent of varia-
tion in future dividends. This implies that for this aggregate portfolio variation in the
price—dividend ratio must be driven by required returns. This has potentially important
implications for the stochastic discount factor of Section 3.

The corresponding impulse response functions for portfolios 1 and 5 are reported in
Figures 2 and 3, respectively. Notice that for these portfolios the labeling of the two
shocks as dividend and return shocks is not clear. For example, shocks to dividends
now have an ability to forecast future returns. As portfolio returns and dividends are
disaggregated, the predictability of dividends rises. This fact is emphasized in the work
of Vuolteenaho (2002).
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Figure 2. Impulse response functions for the portfolio 1. Top panel: response of log dividends to shocks.
Middle panel: response of the log price—dividend ratio to shocks. Bottom panel: response of returns to shocks.
— depicts impulse responses to the first shock. —- — depicts impulse responses to the second shock.

5. Intertemporal substitution and pricing

To understand how investor preference parameters and the stochastic environment in-
fluence asset prices, we explore further the solution of the CES version of the Kreps—
Porteus model for fixed, prespecified consumption process as in a Lucas-style endow-
ment economy. We derive some approximation results where we approximate around
a unitary intertemporal substitution parameter p = 1 for an arbitrary value of y > 0.
Thus we feature the role of this parameter in our characterizations. As in Restoy and
Weil (1998) consumption dynamics plays a central role in these characterizations. For
some specifications of consumption dynamics we obtain a structural model of the type
analyzed in Section 4.

Our expansion in p follows in part the work of Kogan and Uppal (2001).5 The
economy we study is different from that of Kogan and Uppal (2001), but they sug-
gest that extensions such as those developed here would be fruitful. By approximating
around p, we are approximating around a stochastic economy with a constant consump-
tion wealth ratio. As we will see, the p = 1 limit economy leads to other less dramatic

5 Our p derivatives will be heuristic in the sense that we will not provide a rigorous development of their
approximation properties.
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Figure 3. Impulse response functions for the portfolio 5. Top panel: response of log dividends to shocks.
Middle panel: response of the log price—dividend ratio to shocks. Bottom panel: response of returns to shocks.
— depicts impulse responses to the first shock. —- — depicts impulse responses to the second shock.

simplifications that we exploit in characterizing asset prices and risk premia. The sim-
plifications carry over the p derivatives that we calculate for asset prices and returns.
While Campbell and Viceira (2002, Chapter 5) show the close connection between ap-
proximation around the utility parameter p = 1 and approximation around a constant
consumption-wealth ratio for portfolio problems, there are some interesting differences
in our application. Moreover, p = 1 is inconveniently ruled out in the parameterization
of recursive utility considered by Restoy and Weil (1998) and others because of their
use of the return-based Euler equation.

We consider first a family of discrete-time economies with log-linear consumption
dynamics indexed by p. When we introduce stochastic volatility in consumption, we
find it more convenient to explore a family of economies specified in continuous time.
We illustrate these economies using some parameter values extracted from existing re-
search.

5.1. Discrete time
The initial step in our calculation is the first-order expansion of the continuation values

in the parameter p. Let v/ denote the logarithm of the continuation value for intertempo-
ral substitution parameter p, and let ¢; denote the logarithm of consumption. We rewrite
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the CES recursion as

1
vf = 1, loe[ (1 = prexp[(1 = p)er] + Bexp[(1 = 9 (v2)]]: (14)

where Q; is

1
Qu(vrs1) = 7 log E(exp[(1 = y)vi1]1 7).

When p = 1 this recursion simplifies to
vl = (1= B)cr + B (v4y)- (15)
5.1.1. Continuation values

We compute the first-order expansion
vf ~ vl + (o — 1D}

where v/ is the continuation value for the case in which p = 1 and the notation D
denotes the differentiation with respect to p. We construct an approximate recursion
for thl by expanding the logarithm and exponential functions in (14) and including up
to second-order terms in ¢; and Q;. The approximate recursion is:

[Q () — i
vf & (1= e + B (v ,+1)+ﬂ<1—f>>(1—ﬂ)%'

As is evident from (15), this approximation is exact when p = 1.

Our aim is to construct an exact recursion for the derivative of v; with respect to p.
One way to do this is to differentiate directly (14). It is simpler to differentiate the
approximate recursion (16) for the logarithm of the continuation value v; with respect
to p. This is valid because the approximation error in the recursion does not alter the
derivative with respect to p. Performing either calculation gives

[Q (v} )) — ]

(16)

Dv! = —p(1 - B) 5 +BE* (D |F)
_ I .52
__d ﬂ);l;’ ) + BE*(Dv} | F) an

where E* is the distorted expectation operator associated with a Radon—-Nikodym deriv-
ative
expl(1 — y)v, ]
Mt,t+1 = 1 . (18)
E(exp[(1 — y)v, 1 11F1)

The Radon-Nikodym derivative is a measure-theoretic notion of a derivative. Since
M; ;41 is a positive random variable with conditional expectation one, it induces a dis-
torted probability by scaling random variables. For instance, the distorted expectation
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of a random variable is

E*(Zt+1|-7:t) = E(Mt,t-HZt-H [F2).

Solving recursion (17) forward gives the derivative thl. This derivative is necessarily
negative. By using the distorted expectation operator E* to depict the recursion for Dv,l,
the recursion has a familiar form that is convenient for computing solutions.

To implement this approach we must compute vt1 and the distorted conditional expec-
tation E*, which will allow us to the solve (17) for thl. Later we give some examples
when this is straightforward.

5.1.2. Wealth expansion

When p is different from one, the wealth—consumption ratio is not constant. Write

_ vl _(C)PV)I
(1= BCH=P (V) -8
A first-order expansion of the continuation value implies a second-order expansion of

the wealth—consumption ratio. This can be seen by taking logarithms and substituting
in the first-order approximation for the continuation value:

Wi

log W; —log C; = —log(1 — B) + (1 — p)[v} — ¢ + (p — ) DV, ]
= —log(1 = B) = (p = D(v, — 1) = (0 — 1)’ Dv;. (19)

The first-order term of (19) compares the logarithm of the continuation value for
p = 1 with the logarithm of consumption. The continuation value is forward looking
and time varying. Thus when future looks good relative to the present, the term v} — ¢
can be expected to be positive. When the intertemporal elasticity parameter p exceeds
one, the first-order term implies that a promising future relative to the present has an
adverse impact on equilibrium wealth and conversely when p is less than one. As we
will see, the term v,1 is very similar to (but not identical to) the term typically used when
taking log-linear approximations.®

By construction, the second-order term adjusts the wealth—consumption ratio in a

manner that is symmetric about p = 1, and it is always positive.
5.1.3. Stochastic discount factor expansion

Consider next the first-order expansion of the logarithm of the stochastic discount factor:

Pl |
Sat XSy T (0 = DDsiy

6In log-linear approximation the discount rate in this approximation is linked to the mean of the wealth
consumption ratio. In the p expansion, the subjective rate of discount is used instead.
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Recall that the log discount factor is given by

s =10g B — plerp1 — ) + (o —[vfy — 2 (v)))]-
Differentiating with respect to p gives

Dsll+]’t = _(Cl+1 - CT) + [Utl+1 - Qt(vll+1)]

+ (1 - y)[Dv}y, — E*(Dv.,1F)] (20)
Thus we obtain the approximation:

P ~ ol
i1 S T (0 = DDsry1 s

=1logB — plcip1 — ) + (0 = M[v)y — Q@ ))]
+ (1= y)p — D[Dv},, — E*(Dv/|F))].

This shows how changes in p alter one period risk prices. For instance consider approx-
imating one period prices of contingent claim z;4 to consumption:

Elexp(s) 41)ziv1lF:] = E[exp(sy.;1)zr+11]
+ (p — l)E[eXp(S,l),H)Dst,t+th+1 |ft]~

We will explore the ramifications for local risk prices subsequently when we consider a
continuous time counterpart to these expansions. This will provide us with formulas for
how p alters risk premia.

5.1.4. Log-linear dynamics

To show how the previous formulas can be applied, consider the following evolution for
consumption in the log linear Markov economy:

Xi+1 = Ax; + Bwyyy,
I /
1l — ¢ = pe + G xp + H w1,

where {w;4+1: t =0, 1, ...} is an iid sequence of standard normally distributed random
vectors. Recall that for p = 1, the continuation value must solve

v = (1= Ber + B (v))-
Conjecture a continuation value of the form
Uzl =Uy - Xt + Wy + 4.

Given this guess and the assumed normality,

1 —
Qt(vtl.H) = ULAxt + pe + po+ G'xr o + TV U;B +H 2.
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Thus
U, = BA'U, + BG
and
to = ﬂ[uc + o + 1_TV|U;B + H’|2}.
Solving for U, and p,,
U, =B — BA)'G
Ly = %[uc+ (1;’/)|H’+/3G/(1—A/3)IB|2]. @1
For p = 1 the formulas for the continuation value have simple interpretations. The

formula for U, is also the solution to the problem of forecasting the discounted value of
future consumption growth:

o
Uy -x = Z,BJE(Cl+j = Crj—1 — MelXt)
Jj=1

—(1—p) ;ﬂfﬂctmm B - (%)m.
Therefore,
—(l—ﬂ)ZﬂfE(c |f)+ﬂ(1 |H + BG (I — AB)~ 13]
41t 21 —

j=0

The log of the continuation value is a geometric weighted average of logarithms of cur-
rent and future consumption using the subjective discount factor in the weighting. In
addition there is a constant risk adjustment. When consumption growth rates are pre-
dictable, they will induce movement in the wealth—consumption ratio as reflected in
formula (19). The coefficient on the first-order term in p — 1 compares the expected dis-
counted average of future log consumption to current log consumption. If this geometric
average future consumption is higher than current consumption and p exceeds one,
the optimistic future induces a negative movement in the wealth—consumption ratio.
Conversely a relatively optimistic future induces a positive movement in the wealth—
consumption ratio when p is less than one.
The constant risk correction term

Bl —
2(1
entering the continuation value is negative for large values of y. Consequently, this

adjustment enhances the wealth consumption ratio when p exceeds one. In the log-
linear consumption dynamics, this adjustment for risk induced by y is constant. An

|H +BG (I — AB)'B[
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important input into this adjustment is the vector
H+ BB'(I — BA)'G. (22)

To interpret this object, notice that the impulse response sequence for consumption
growth to a shock w1 is: H'wyy1, G'Bw;y1, G'’ABw;y1, . ... Then (22) gives the dis-
counted impulse response vector for consumption. It is the variance of this discounted
response vector (discounted by g) that enters the constant term of the continuation value
as a measure of the risk.

The formulas that follow provide the ingredients for the second-order adjustment in
the wealth—consumption ratio and the first-order adjustment in risk adjusted prices.

We use the formula for the continuation value to infer the distorted expectation op-
erator. The contribution of the shock w4+ to (1 — y)v[1 41 is given by (1 — y)(H +
B'U,) w;4 1. Recall that wy | is a multivariate standard normal. By a familiar complete-
the-square argument:

1
exp|:(1 —Y)(H+B'U)w— Ew’w]

1 ,
o exp(—z[w —(1=y)H+BU)|[w—0-y)H+ B/U,,)]>.

The left-hand side multiplies the standard normal by the distortion implied by (18)
up to scale. The right-hand side is the density of the normal up to scale with mean
(1 — ¥)(H + B'U,) and covariance matrix I. This latter probability distribution is the
one used for the distorted expectation operator E* when computing the derivative of the
continuation value. Under this alternative distribution, we may write

wip1 = (1 —y)(H + B'Uy) + wfy,

where wy | is a standard normal distribution. As a consequence, consumption and the

Markov state evolve as:

Xi41 = Ax; + (1 —y)B(H + B'U,) + Bw}, |,
ciy1—¢ =G'xi+puc+ A —y)H'(H+ B'U,) + Hwy,,.

5.1.5. Example economies

To illustrate the calculations we consider two different specifications of consumption
dynamics that include predictable components to consumption growth rates. One of
these is extracted from Bansal and Yaron (2004) but specialized to omit time variation
in volatility. Later we will explore specifications with time varying volatility after devel-
oping a continuous time counterpart to these calculations. This specification is designed
to capture properties of consumption variation of the period 1929 to 1998 and is speci-
fied at a monthly frequency. The second specification is obtained from an estimation in
Hansen, Heaton and Li (2005). In this specification quarterly post World War II data is
used. This data is described in Appendix D.
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The first specification is:

el — ¢ = 0.0015 4 x; +[0.0078 0 Jw,1,
X1 = 0.98x, + [0 0.00034 Jw; 1.

There are two shocks, one directly impacts on consumption and the second one on the
conditional mean of consumption. In the Breeden (1979)-Lucas (1978) specification
of preferences with power utility, only the first shock will have a local price that is
different from zero. In the recursive utility the second shock will also have a nonzero
price because of the role of the continuation value.

Figure 4 reports the impulse response functions for consumption in reaction to the
two shocks. The first shock by construction has a significant immediate impact that
is permanent. The second shock has a relatively small initial impact on consumption
but the effect builds to a significant level. With recursive utility this long-run impact
can produce a potentially large effect on risk prices especially since the effect can be
magnified by choice of the risk aversion parameter y.

The second specification is inferred by fitting a vector autoregression of ¢;+1 — ¢;
and c¢;4+1 — e;4+1 the logarithm of the ratio of consumption to corporate earnings. It is
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Figure 4. Consumption impulse responses implied by Bansal—Yaron model. — depicts response of consump-
tion to a consumption shock. — - — depicts response of consumption to a predicted consumption shock.
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Figure 5. Approximate posterior distribution for cointegration parameter. Construction uses Box—Tiao priors
for each equation of the VAR for consumption and corporate earnings. The posterior distribution is for the
parameter A where ¢, — Ae;4 1 is assumed to be stationary. The histogram is scaled to integrate to one.

important in this specification that corporate earnings and consumption are cointegrated
with a coefficient of one. Most models of aggregate growth yield this restriction. There
is also empirical support for our assumption. For example, consider Figure 5 which
reports an approximate Bayesian posterior distribution for the parameter A where ¢;41 —
Aery1 is assumed to be stationary. This distribution was calculated using the technique
described in Appendix B. Notice that the distribution of A is centered very close to one.
There is some variation around this point but it is very minor so that restricting A = 1
is empirically grounded.

In this model there are also two shocks. We identify one as being proportional to the
one-step ahead forecast error to consumption scaled to have a unit standard deviation.
The second shock is uncorrelated with this first shock and has no immediate impact
on consumption. Figure 6 reports the estimated response of consumption to the two
shocks. Notice that both shocks induce important long-run responses to consumption
that are different from the short-run impulse. For example, the long-run response of
consumption to its own shock is almost twice the immediate response. As in the Bansal—
Yaron model, consumption has an important low-frequency component. With recursive
preferences this low-frequency component can have an important impact on risk premia.

We can identify shocks using an alternative normalization that emphasizes long-run
effects. In particular we identify one shock from the VAR that has a transient effect
with no impact on consumption in the long run. The other shock is uncorrelated with
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Figure 6. Impulse responses implied by the VAR of Hansen-Heaton-Li model. — depicts response to a
consumption shock. — - — depicts response to an earnings shock.
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Figure 7. Impulse responses of consumption to permanent and temporary shocks. — depicts impulse response
to a permanent shock. — - — depicts impulse response to a temporary shock.
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response of consumption to the permanent shock. Construction uses Box—Tiao priors for each equation. The
histograms are scaled to integrate to one.
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this transient shock and has permanent consequences for consumption.” The impulse
response function of consumption to these two shocks is displayed in Figure 7. Notice
that the long-run response to a permanent shock is almost twice the immediate response
to this shock.

Although the VAR does identify an important long-run shock to consumption, there
is substantial statistical uncertainty surrounding this estimate. To assess this uncertainty
we use the technique discussed in Appendix B. Figure 8 reports the approximate pos-
terior distributions for the immediate response of consumption to the temporary shock
along with the long-run response of consumption to a permanent shock. Notice that the
long-run response is centered at a larger value but that there is uncertainty about this
value. The short-run response is measured with much more accuracy.

5.2. Wealth and asset price variation

Pricing models need to imply significant variation in the stochastic discount factor in
order to be consistent with some important empirical regularities from financial markets.
We also see this when examining aggregate wealth and consumption.
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Figure 9. Wealth—consumption ratio from 1952 to 2006.

7 This approach is an adaptation of the identification scheme advocated by Blanchard and Quah (1989).
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When p = 1 the ratio of consumption to wealth is constant. As we change p, this
ratio varies. For the alternative models of the dynamics of consumption, we examine
whether the pricing model can result in significant variation in the wealth—consumption
ratio. This is an important issue because aggregate wealth varies significantly over time
due to variation in the market value of wealth. For example in Figure 9 we plot the ratio
of wealth to consumption quarterly from 1952 to 2005. Aggregate wealth is measured as
the difference between financial wealth and financial liabilities for the household sector
of the US economy. This measure of wealth does not include other types of wealth such
as human capital.

Notice that there is significant variation in the wealth to consumption ratio. Much of
this variation is due to the variability of the market value of traded equity. For example
during the late 1990 there was a significant increase in the value of the US stock market
which resulted in a substantial increase in the wealth to consumption ratio during this
period. With the decline in equity values the wealth to consumption ratio has come back
down.

5.2.1. Wealth variation

We now examine the model’s implication for wealth when p differs from one. We are
interested in the effects of alternative parameter values on the predicted level of wealth,
the variation in wealth over time and the response of wealth to shocks.

Consider the implications for the wealth—consumption ratio using the dynamics
from the VAR with consumption and corporate earnings. Properties of the log wealth—
consumption ratio implied by the VAR and the CES model are given in Table 2 for y
and g fixed at 5 and 0.99'/4 respectively. Several different values of p are considered.

Notice that variation in p has a significant impact on the forecasted level of the
wealth—consumption ratio. Given a value for § this variation could be used to iden-
tify p based on the observed mean of the ratio. Variation in the mean of the wealth—

Table 2
Properties of the log wealth—consumption ratio

o
0.5 0.67 0.9 1.1 1.33 1.5
Mean 9.16 7.78 6.39 5.70 5.50 5.74
STD 0.0092 0.0060 0.0017 0.0017 0.0054 0.0079
STD w/o 2nd order term 0.0086 0.0057 0.0017 0.0017 0.0057 0.0086
Corr. with consumption 0.22 0.22 0.23 —-0.23 —-0.23 —0.24

Notes. The parameters y and § are fixed at 5 and 0.991/4, respectively. Statistics are calculated via simulation
based on a times-series simulation with 60,000 draws of the random vector w;. The first 10,000 draws were
discarded.
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consumption ratio induced by p can be unwound by choice of 8, however. Of interest
then is the effect of p on the dynamics of the wealth—consumption ratio.

The row “STD” reports the standard deviation of the wealth—consumption ratio which
is increasing in the difference between p and 1. The row below that ignores term
with (o — 1)2 in the expansion (19). Notice that this “second-order” term provides lit-
tle extra variation in the wealth—consumption ratio. Although variation in p away from
unity does produce variation in the wealth—consumption ratio, this variation is nowhere
near the size observed in the data.

The first-order term in the wealth—consumption ratio (19) indicates that shocks to
the continuation value affect the wealth—consumption ratio and the sign of the effect
depends on the value of p relative to 1. In the consumption dynamics estimated by HHL,
positive shocks to consumption also have positive impact on the continuation value
relative to consumption. When p is less than 1 this model predicts a positive covariance
between shocks to consumption and wealth. This is reflected in the last line of Table 2
which reports the correlation between the log wealth—consumption ratio and the log
consumption growth. Notice that when p is less than 1, this correlation is positive.
When p is greater than 1, this correlation is negative.

To further examine this effect we report the impulse response of the log wealth—
consumption ratio with reaction to the two shocks in the VAR in Figure 10. In con-
structing these impulse response functions we ignored the second-order terms in (19).

Consistent with the correlations between consumption growth and the wealth—
consumption ratio reported in Table 2 we see that when p is less than 1 a positive shock
to consumption has a positive effect on the wealth—consumption ratio. These shocks
have positive risk prices in the model and hence a claim on aggregate wealth has a
potentially significant risk premium.

The specification considered by Bansal and Yaron (2004) predicts a similar pattern
of responses to shocks. Figure 11 reports the response of wealth—consumption ratio to
a one standard deviation shock to predicted consumption. Since the first shock has no
impact on the state variable the response of wealth—consumption ratio to it is zero in this
model. Notice that as in the dynamics estimated by HHL the direction of the response of
wealth to a predicted consumption shock depends critically upon the size of p relative
to unity. When p is less than one, the wealth—consumption ratio increases with the
shock to predicted consumption. As a result this endogenous price moves positively with
consumption and the return on the wealth portfolio is riskier than under the assumption
that p = 1.5.

Since wealth is linked to the continuation value, observed wealth can also be used
to identify long-run shocks to consumption. We estimate a bivariate VAR for loga-
rithm consumption growth and the logarithm of the observed wealth—consumption ratio
reported in Figure 9. Figure 12 reports the estimated impulse response functions for
consumption and wealth implied by this alternative bivariate VAR. As with corporate
earnings, the wealth—consumption ratio identifies a potentially important long-run shock
to consumption. Notice, however, that the shock to wealth has a very substantial tem-
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Figure 10. Implied impulse responses of wealth—consumption ratio, Hansen—Heaton-Li model. — depicts
impulse response to a consumption shock. — - — depicts impulse response to an earnings shock. The parame-
ters y and B are set at 5 and 0.991/4, respectively.

porary effect on wealth. There is substantial transitory variation in wealth that does not
affect consumption as noted by Lettau and Ludvigson (2004).

The relationship between wealth and consumption predicted by the first-order terms
of (19) and p imposes a joint restriction on the impulse response functions of wealth
and consumption. Because of the substantial response of wealth to its own shock, this
restriction cannot be satisfied for reasonable values of p. As we will see below the nec-
essary variation in p results in implausible levels of returns and the wealth—consumption
ratio. Ignoring this shock we can examine the restriction of (19) based on the consump-
tion shock alone.

To do this we construct the spectral density of w; — ¢; — (1 — ,())(vt1 — ¢;) implied
by the VAR but setting the variance of the wealth shock to zero. The model implies
that at the true value of p this density function should be flat. The predicted density is
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Figure 11. Impulse responses of wealth—consumption ratio to predicted consumption shock, Bansal—Yaron
model. The parameters y and f are set at 5 and 0.998, respectively.

displayed in Figure 13 for p = 0.5 and p = 1.5. Smaller values of p come closer to
satisfying the restriction than the large values of p as we will see in Section 7.

5.2.2. Measurement of wealth

Inferences drawn from the recursive utility model based on direct measures of aggre-
gate wealth are sensitive to the wealth proxy used. With a fully specified model of the
dynamics of consumption, we circumvent this issue since we can construct implied con-
tinuation values and the stochastic discount factors needed to price any series of cash
flows. We are therefore able to examine the model’s implications for any part of ag-
gregate wealth once we specify the dynamics of the cash flows accruing to the wealth
component.

A particularly important part of aggregate wealth is human capital which by its nature
is not included in direct measures of wealth. Unobserved human capital may move in
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a way that offsets variation in measured wealth so that the true wealth to consumption
ratio is relatively constant as predicted by the recursive utility model with p close to one.
Lustig and Van Nieuwerburgh (2006) use this idea to infer the dynamics of unobserved
human capital. As an alternative we specify a dynamic model of the cash flows produced
by human capital.

In our analysis we assume that these cash flows are given by labor income. We mea-
sure labor income as “Wages and salary disbursements” as reported by the National
Income and Product Accounts. As with corporate earnings, we impose the restriction
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Table 3
Summary statistics for corporate and human capital

Capital measure Standard deviation Correlation with corporate capital
Human capital 0.056 0.56

Corporate capital 0.033 1

Total 0.034 0.70

Note. Statistics are reported for the natural logarithm of each measure of capital relative to consumption.

that labor income and aggregate consumption are cointegrated with a unit coefficient.
We further assume that 8 = 0.99'/4,y = 5and p = 1.

The model’s implication for the standard deviation of the (log) ratio of human cap-
ital to consumption is reported in Table 3. For comparison the corresponding standard
deviation for the ratio of “corporate capital” to consumption is also calculated by valu-
ing the stream of corporate earnings. This measure of wealth does not correspond to
any direct measure of the value of capital held by the corporate sector since corporate
earnings do not account for investment. Further earnings are reported after payments to
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bond holders. Finally in the table “Total” refers to the ratio of the sum of human plus
corporate capital to consumption.

Although there are issues of interpretation with these measures of capital, notice that
the implied standard deviations are different from zero and that the ratio of human
capital to consumption has the greatest variance. In contrast to the analysis of Lustig
and Van Nieuwerburgh (2006), human and corporate capital are predicted to be posi-
tively correlated. Further, although the model does predict variation in these measures
of wealth relative to consumption, the variation is no where near the level depicted in
Figure 9. For example, the standard deviation of the logarithm of measured wealth to
consumption is 0.24.

This tension is a standard feature of this type of model. Some additional source of
variation due to discount factors appears to be necessary to better fit the observed volatil-
ity of aggregate wealth and security prices. In the next subsection we add time varying
volatility to consumption which provides one potential source of the required variation.

5.3. Continuous time

So far we have seen how predictability in consumption is related to movements in the
wealth consumption ratio. The intertemporal substitution parameter is an important in-
gredient in this relation. In order to permit the risk aversion parameter y to play a more
central role in this time series variation, we consider an extension in which consump-
tion displays stochastic volatility. This volatility gives a source of time-variation in risk
premia. To capture this we introduce square root process as a model of volatility and
shift our analysis to continuous time. The continuous time formulation we now explore
simplifies the analysis of volatility.
Suppose that:

dx, = A.Xt dr + \/Z_tB th,
dz = Az — p2) dt + /2, B dW,,
dlog C; = G'x; dt + pedt + /z H' AW, + /z H dW,, (23)

where the matrix A has eigenvalues with real parts that are strictly negative. The
process z is scalar and the coefficient A is negative. The processes W and W are mu-
tually independent standard Brownian motions. The process W can be multivariate and
the process W is scalar. The volatility process {z;} follows a Feller square root process
and Ap; + %E 2 < 0. In this specification the process {z,} is used to model macroeco-
nomic volatility in an ad hoc but convenient manner.

5.3.1. Continuous time Bellman equation

Consider a stochastic evolution for the continuation value of the form:

dlog V/ =&, dt + zi0) , dW; + /z,G} ; dW,.
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For this continuous time diffusion structure, we derive an equation linking the drift é,ﬁ p
with current consumption and continuation values as well as diffusion coefficients.

For this Brownian motion information structure, the continuous time evolution for
the continuation value, indexed by p, must satisfy:

8 c\'"* 1—y o
=1—p[<v_;> _I}Jréf”ﬂ’( 2 >[C’5t"’5t+(05t) I
t

Heuristically this can be obtained by taking limits of the discrete time recursion (14) as
the sample horizon shrinks to zero. The rigorous formulation of recursive preferences
in continuous time is given by Duffie and Epstein (1992b).

Thus

-5 c, \1=~ y —1 _
éf,t = m[(V_}) — 1] + Zz(T)[UIIJO,I -a,f)’, + (051)2]'

In the special case in which p = 1, the drift is given by

—1 _
61— 5(o —logCy) + ZI(VT)[UU{I ol + (@)Y 24)

When y = 1, the volatility adjustment for the continuation value vanishes and this
recursion coincides with the continuation value for preferences with a logarithmic in-
stantaneous utility function. When y is different from one, there is an adjustment for
the volatility of the continuation value. In particular, when y exceeds one, there is a
penalization for big volatility. Typically we are interested in large values of y to explain
the cross section of asset returns.

In what follows we derive the corresponding asset pricing results for a particular
endowment economy specified above.®

5.3.2. Value function when p = 1

Guess a continuation value of the form
vf = Uy -x+ Uyze + 00+ o
where v} = log V! as in the discrete-time solution. Thus

U)Ax + G'x + UyAz — UyAu; + ie
-1

= 8Ux + 8Uyz + Spay +z,(y >[|U;B +H'|" + @B+ ).

8 Asset pricing applications of these preferences are developed by Duffie and Epstein (1992a). They in-
corporate these preferences into a standard representative agent economy with exogenous asset returns and
endogenous consumption in the style of Merton (1973) and Breeden (1979).
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Equating coefficients on x gives
UA+ G =480,

or
U, = (61 — A)7'G.

This formula for U, is the continuous time analog of our previously derived discrete
time formula given in (21).
Equating coefficients in z; gives the following equation

— — -1, — — =
U,A =80, + *——[U,B+ B +|v)B+ H'[']

in the unknown coefficient U,. This equation can be solved using the quadratic formula,
provided that a solution exits. Typically two solutions to this equation exist, and we
select the one that is closest to zero. When y = 1, U, = 0. Large B and large values
of y can result in the absence of a solution. On the other hand, shrinking B to zero will
cause z; to be very smooth and ensure a solution. The limit can be thought of as giving
us the continuous time counterpart to the discrete-time model specified previously in
Section 5.1.4.

Consider the special case in which H is zero, and suppose that y exceeds one. Thus
there is no immediate impact of the shock dW, on the growth rate of consumption.
When solutions exist, they will necessarily be negative because the quadratic function
of U, is always positive for all positive values of U,. Thus when volatility increases the
continuation value declines. The discrete time wealth—consumption expansion (19) in p
continues to apply in this continuous time environment. Thus when volatility increases
the wealth—consumption ratio will increase as well provided that p exceeds one, at least
for values of p local to unity. Conversely, the ratio declines when p is less than one.

Finally, the constant term satisfies

He — UZZMZ = Sy

which determines .
For future reference, the local shock exposure of dvt1 is

Vzi(B'Uy + HY dW; + /z;(BU, + H) dW,.
Thus o}, = (B'U, + H) and 6!, = (U, B + H).

5.3.3. Derivative with respect to p

Next we derive the formula for the derivative of the continuation value with respect to p
evaluated at one. Our aim is to produce a formula of the form:

vf ~ vl + (o — DD,
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The derivative { Dv,} evolves as an Ito process:

dDUt = ng,t dr + «/Z_tDUt th + ﬁD&, th,

where D&, ; is drift coefficient and Do; and Da; are the coefficients that govern the
shock exposures. We obtain these coefficients by differentiating the corresponding co-
efficients for the continuation value process with respect to p. For instance,

dey,
dp

DSU,t -

p=1
Recall the formula for the drift:

5 [/ C\'"* y — 1 o -
aﬁt:m[(V_f) —1 —i—Zz(T (Uzﬁt'azﬁz"'alﬁt'aéo,t)'

Differentiating with respect to p gives
(c: —v})?
2

To compute this derivative, as in discrete time it is convenient to use a distorted prob-
ability measure. Thus we use

DEy =38 +8Dv; +z:(y — 1)(Doy, -0y, + D&y - Gy ). (25)

dW: = Vz,(1 = y)o,  dr + AW/,
AW = z,(1 = )Gy, di + dW/,

where {(W}, Wt*): t > 0} is a multivariate Brownian motion. As a consequence, the
distorted evolution is

dx; = Ax,dt + (1 — y)B(B'Uy + H)z; dt + /7 BdW/',
dz; = A(z, — p;)dt + (1 — y)B(BU, + H)z, dt + /7, B dW/,
dlogC; = G'x; dt + pdt + (1 —y)H'(B'U, + H)z; dt
+ (1 —y)HBUy + H)z; dt + /zH' AW, + /2, H dW;". (26)

Let D~§m ; denote the resulting distorted drift for the derivative. Then rewrite Equa-
tion (25) as

(¢ —v})?

D&, , =38 + 8Dv) (27)

which can be solved forward as

8 o
thl = —5/0 exp(—Su)E*[(c,+u - vt1+u)2|xt, zl] du.

thl is a linear/quadratic function of the composite Markov state (x, z). See Appen-
dix A.2.
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5.3.4. Stochastic discount factor

Let s/ be the logarithm of the continuous time stochastic discount factor for parame-
ter p. This stochastic discount factor process encodes discounting for all horizons from
the vantage pomt of time zero. Specifically exp(s/) is discount factor over horizon ¢ and
exp(s’ LSt ?) is the discount factor for horizon ¢ from the vantage point of date 7. Then

dstp = —45dr —Pdc, +(/0_V)|:dv;o _étpdt

1—
—z,(%)(olﬁ ovt—i—ov, Gl )dti|

= —6dt — pde;
+ 0= )| VEoL, AW, + V6L, aT,

p—y o =
~a( 250 Yoty ol + oty st |

Differentiating, we find that the p derivative process {Ds;: t > 0} evolves as

dDS[ = _dct + [\/Z_lo'vl’l dWl + \/Z_t&vl’t th
-y -1 =1
— 7 (T)(J”l" . Ulp +0,, - av’t) dt]
+ (1 = Y)[Vzi Doy AW, + /2, DGy AW,
—z(1 —y)(Doy, -0y, + D&y, - G, ,) dt].

Thus the p approximation is

st ~ s, + (o — 1)Ds;
with the following contributions to the stochastic evolution of the approximation:
(a) —p+/ziH' —Breeden term for exposure to dW; risk;
(b) —p/zr H — Breeden term for exposure to dW, risk;
©) Vzi(p — y)avl)t + /zi(p — DA — y)Doy,; — recursive utility adjustment for
exposure to dW; risk;
d) zi(p — y)&vlj + J/zi(p — 1)(1 — y)Da&,; — recursive utility adjustment for
exposure to dW; risk.

5.3.5. Risk prices

Of particular interest is the recursive utility adjustment to the Brownian motion risk
prices. The p approximations are given by the negatives of the values reported in (b)
and (c):
() VapH' +Jzi(y — p)o), + zi(p — 1)(y — 1) Do, ; —risk prices for exposure
todW;;
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(ii) ﬂp17+ Ny — ,0)5'vlJ + z:(p — D (y — 1) Do, ; —risk prices for exposure

to dW,.

These prices are quoted in terms of required mean compensation for the correspond-
ing risk exposure. The first vector is the mean compensation for exposure to dW; and
the second vector is the mean compensation for exposure to dW;.

The risk premia earned by an asset thus consist of a covariance with consumption
innovations (multiplied by the intertemporal substitution parameter) and components
representing covariance with innovations in the continuation value (weighted by a com-
bination of intertemporal substitution and risk aversion parameters). This characteriza-
tion is closely related to the two-factor model derived by Duffie and Epstein (1992a),
where the second risk term is the covariance with the total market portfolio.

Consider the special case in which H is zero. Then under the Breeden model, the
volatility shock dW; has zero price. Under the forward-looking recursive utility model,
this shock is priced. For instance, for large y and p close to one, the contribution
is approximately /z;(y — 1)BU,. The recursive utility also amplifies the risk prices
for dW,; risk exposure. For large y and p close to one the prices are approximately
JVzi(y — D(H' + U} B), which is the continuous time counterpart to the discounted
impulse response function for consumption growth rates. When the importance of
volatility becomes arbitrarily small (B declines to zero), the volatility state ceases to
vary and collapses to w,. The predictability in consumption continues to amplify risk
prices but the prices cease to vary over time.

Again we consider two specifications. The first is a continuous time version of Bansal
and Yaron (2004). In contrast with our discrete time example, but consistent with Bansal
and Yaron (2004), we introduce stochastic volatility:

de; = 0.0015ds + x; df + /z,0.0078 AW .,
dx, = —0021)(; dr + \/5000034 dWZ,h
dz; = —0.013(z; — 1) dt + /z;0.038 dW,. (28)

By construction the volatility process {z;} has a unit mean.

In the Bansal and Yaron (2004) model, risk premia fluctuate. We use a Feller square
root process for conditional variances while Bansal and Yaron (2004) used first-order
autoregression with normal errors. In our specification, the stationary distribution for
conditional variances is in the gamma family and in their specification the distribution is
in the normal family. We report the two densities in Figure 14. Our square root specifica-
tion is by design analytically tractable and it formally restricts variances to be positive.’
Thus it is more convenient for our purposes to work with a square root process. The
two densities are quite similar, and both presume that there are considerable long run
fluctuations in volatility.

9 Negative variances are very unlikely for the parameter values used by Bansal and Yaron (2004). Moreover,
in the unlikely event that zero is reached in a continuous time version of their model, one could impose a
reflecting barrier.



Ch. 61: Intertemporal Substitution and Risk Aversion 4013

1.8 T T T T T T T T T
I 7 .
1.4} i : .

/ \
/ J’ \\
1.2F / % g

0.8 /11

0.6 It

0.4r /

0 1 1 L 1 1 1 8 — 1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 22

Figure 14. Stationary density of z. — depicts the stationary density of z: gamma(18.0, 0.056). — - — depicts
the normal density with the same mean 1 and the same standard deviation 0.236 for comparison.

While we expect y to have direct impact on risk prices, it is useful to quantify the
role of p because changing intertemporal substitution parameter will alter risk prices.
To quantify this effect, consider the first-order combined expansion in p and y around
the values p = 1 and y = 11°:

VulH = (p = D)B'Uy + (v = )(B'Uy + H)]
=va([ %]~ o= 0[5 ] o[ 50))

While Bansal and Yaron (2004) use monthly time units, we have rescaled the time
units to annual and we have further multiplied prices by one hundred so that the value
units are in expected rates of return expressed as percentages.

In contrasting the contributions of p and y, note that while increases in y amplify
both risk prices, increases in p reduce the risk price for the shock to the growth rate in
consumption. It is the recursive utility adjustment induced by persistence in the growth
rate to consumption that makes the risk price of exposure to thZ different from zero.

10 This expansion illustrates a point made by Garcia, Renault and Semenov (2006) that when p is small,
y underestimates the contribution of risk aversion and conversely when p is large.
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In this Bansal and Yaron (2004) specification, the risk price of th2 exposure is double
that of thl. As we will see, the recursive utility contribution is much more challenging
to measure reliably.

For pedagogical convenience, we have featured the first-order term in y, in fact this
is not critical. The higher-order term allows us to explore nonlocal changes in the para-
meter y. For instance, as we change y to be five and then ten, the first-order expansions
in p evaluated at x; = 0 and z; = 1 are:

v =3 ﬁ([égig]_(p”)[s%b’

y =10: ﬁ([ig:?] — (- 1)[5(.)3D'

The p derivatives change as we alter y, but not dramatically so.

Consider next the price of exposure to volatility risk. For model (28), H = 0 and the
magnitude of U, depends explicitly on the choice of y. In the local to unity expansion
of y and p, level term and the coefficients on both p—1 and y —1 are zero suggesting that
volatility risk premia are relatively small. When we increase y we obtain the following
first-order expansions in p evaluated at z; = 1 and x, = 0:

y=>5: Vzi[-2.0+ (p — D0.7],

y = 10: Vzi[-103 + (p — D1.1].

The level terms in the risk prices are negative for the volatility shock. While increases in
consumption are valued, increases in consumption volatility are not. There is apparently
substantial nonlinearity in how these level terms increase in . Doubling y from five to
ten leads to a five fold increase in the magnitude of the volatility risk price.

Consider next the continuous time counterpart to our second specification. In this
specification there is no stochastic volatility. The first-order expansion in p and y around
the values p = 1 and y = 1 is:

[H—(p—DB'Uy+ (y — D(B'Uy + H)]

0.96 0.79 1.75
= ([ 0 } — - 1)[1.01}“” - 1)[1.01])'

Again the coefficient on p — 1 is negative while the coefficient on y — 1 is positive
so that increasing p diminishes the risk prices. The magnitude of the p derivative for
pricing the shock to corporate earnings is larger than for the shock to consumption, but
the reverse is true for the y derivative. As we change y to five and then 10, we find that

_ 7.95 1.08
y=s [4.04]_(’0_1)[1.63]’

. [16.69 1.43
y =10 [ 9.09 } — - 1)[2.36}

so the p derivatives get larger in magnitude for larger values of y .
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Overall the risk prices are smaller for the second specification than for the first one.
Bansal and Yaron (2004) intended to match data going back to 1929 including the pre-
war period whereas Hansen, Heaton and Li (2005) used estimates obtained with post-
war data. There is much less consumption volatility in this latter sample.

5.3.6. Risk-free rate

Consider next the instantaneous risk-free rate. For an arbitrary p, this is given by limit:
rf . =lim —log E[exp(s;4+e — 5:)|F7]
fit 10 t+e t t

2
Z —
=5+ pG'x; + pie — %(H’H—FHZ)

+zp(p—y)(H -of + H*G))
(o — —1 _
_ %(Ufj ol 4 (50, 29)

The last two terms on the right-hand side give the contribution for recursive utility and
depends in part on the discrepancy between p and y .
In particular, when p = 1

Z — —_
r}’l =8+ G'x; + pe — EZ(H/H +H) +z(1-y)(H -0,, + H5},).
The p derivative of the risk free rate is
Dry;=G'x 4+ pc+z[-H +Q2—-y)o,, + (1 —y)Doy,,| - H’
+au[-H+@=y)5,, + (1 ~y)Dy JH
- 2
—z (1= V)(le,t 'Uz;l,t + (le,t) )
The approximation is
= rii+ (o —DDrp;.
While this expression is a bit tedious, it is informative to contrast the local to unity
contributions of p to those of y. Aty = 1, ,,; = 0 and thus the local approximation is
’ Lt / 72
+ (o = D[G'x + pe —z(H'H+ HH) + 2, H' -0, , + 2, H5, ]
+(y — l)z,(—H’ . UUIJ — I-T&UIJ).

Importantly, the term multiplying (y — 1) does not include G'x; + e —z; (H'H + HH).
In particular, the conditional mean in the growth rate of consumption, as reflected in
e + G'x; contributes only to the p derivative. Increases in p will unambiguously
increase pu., making the interest rate larger. This can be offset to some extent by
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shrinking § but only up to the point where § = 0. This tension is a version of Weil
(1989)’s risk free rate puzzle. The term

(b —v)z(H o), + H5!,)

has the interpretation of changing probability measures by adding drift (o — y)ztavlJ

and (p — y)z,&l,l,, to the respective Brownian motions dW; and dw,. Changing p or y
will, of course, alter this term, but

ZT(H/ : le,t + ﬁ(}vl‘t)

is typically smaller than the mean growth rate of consumption.!! More generally, these
risk-free rate approximations give a formal sense in which changes in y have a much
more modest impact on the instantaneous interest rate than changes in p and allows us
to consider a wide range of values of y.

5.3.7. Cash flow returns

As we have seen, the local evolution of the stochastic discount factor implies a vector
of local risk prices. Next we explore cash-flow counterparts, including a limiting notion
of an expected rate of return that compensates for exposure to cash flow risk.

Consider a cash flow that can be represented as

D; = G, f(X:)Do

where G, is a stochastic growth process initialized to be one at date zero, Dy is an initial
condition and f(X;) is a transient component and the process X evolves as a Markov
process. For instance, the Markov process X could consist of (x, z) with evolution equa-
tion (23). Multiperiod discounting from time i to time j is denoted S; ;.

Define the expected rate of return to a cash flow as

1 1
7 log E[G, f(X1)|Fo] — " log E[S0./G, f (X1)|Fo)-
Let the gross return to holding a cash flow over a unit horizon be

log E(S1,:G: f (X1)|F1) —log E (S0, G1 f (X1)|Fo).

An equity is a portfolio of claims to such returns. Both of these returns typically have
well-defined limits as # — oo and these limits will remain invariant over a class of func-
tions f used to define transient components to cash flows. As emphasized by Hansen,

11 This term is 0.07 (in annualized percent) in the Bansal and Yaron (2004) model, which is small relative to
the 1.8 percent growth rate in consumption when evaluated at z = 1. In the Hansen, Heaton and Li (2005)
model this term is 0.02 percent which is small relative to a per capita consumption growth rate of 2.9 percent.
The remaining term from consumption volatility z;(H'H + H?2) at z = 1is also small, 0.07 in the Bansal
and Yaron (2004) model and 0.01 in the Hansen, Heaton and Li (2005) model.
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Heaton and Li (2005) and Lettau and Wachter (2007), the intertemporal composition of
these returns is of interest.

As featured by Hansen, Heaton and Li (2005) and Hansen (2006), we can construct
long run counterpart to risk prices by considering the long run excess returns for alter-
native G specified by martingales that feature the components of cash flow risk. To be
concrete, suppose that:

1 — —
dlog G, = —E(K/K + K'K)z 4+ VoK' AW, + 2 K dW,. (30)

This specification allows us to focus on the growth rate risk exposure as parameterized
by K and K. For instance, K and K can be vectors of zeros except on one entry in
which there is a nonzero entry used to feature this specific risk exposure.

Then the logarithm of the limiting cash flow return is

. 1 1
zlinolo<? log E[th(Xz)U:()] -7 log E[SO,thf(XtN}-O]) =n—-v

The derivative of n — v with respect to K and K gives the long run cash flow counterpart
to a local risk price. Using the method of Hansen and Scheinkman (2006), the family of
functions f for which these limits remain invariant can be formally characterized. For
such functions f, the cash flow contribution f(X;) can be viewed as transient from the
vantage point of long run risk prices.

Following Hansen, Heaton and Li (2005), Hansen and Scheinkman (2006) and
Hansen (2006), we characterize these limits by solving so-called principal eigenfunc-
tion problems:

1%1 E[Ge(X)|Xo = X] = ne(X),
t
11£E[SOJG,@(X,)|X0 = X] =veX).
t
Finally the logarithm of the limiting holding period return is

Jim [log E(81.,G: f(X)IF1) = log E(S0.4G1 f (X0)|Fo)]
= —v+loge(Xy) —loge(Xp) + log G.

This latter return has three components: (a) an eigenvalue component, (b) a pure cash
flow component and (c) an eigenfunction component. The choice of the transient com-
ponent f(X;) typically does not contribute to the value. The valuation implicit in the
stochastic discount factor is reflected in both —v and loge(X) — loge(Xp), but of
course not in the cash flow component log G;. In contrast to the log-linear statistical
decompositions of Campbell and Shiller (1988a), the decompositions we just described
require an explicit valuation model reflected in a specification of the stochastic discount
factor.

Consider first the Bansal and Yaron (2004) model. The risk prices computed as deriv-
ative of long-run return with respect to K depends on the values of K. As the baseline
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values of K, we use the risk exposure of the consumption and the state variable. At
these baseline values, we obtain the following long run risk prices for p = 1 as we
increase y '2:

2.70 13.87 30.30
5.62 26.85 58.33

y=1 y =5 y =10

where B = 0.998 is assumed as in Bansal and Yaron (2004). The prices are close to lin-
ear in y but there is nonlinear contribution caused by stochastic volatility, which makes
the risk prices more than proportional to y. Although the second shock has no immedi-
ate impact on consumption and hence a zero local risk price, it has long lasting impact
on the stochastic discount factor by altering the predicted growth rate in consumption.
As expected in Figure 4, it turns out that the long run risk price for this shock is bigger
than that for consumption shock.

Consider next the Hansen, Heaton and Li (2005) model. For this model, the risk
prices computed as derivatives of long run return with respect to K are insensitive to
the baseline choice of K. In other words the component prices are constant as shown by
Hansen, Heaton and Li (2005). For this model we report the long run prices for p = 1
for three different values of y:

1.77 8.76 17.50
1.06 5.10 10.15 |
y =1 y=5 y=10

The prices are linear and are approximately proportional to y and are computed assum-
ing that 8 = 0.99!/# as in Hansen, Heaton and Li (2005). Even when y and p are one,
the long run cash flow risk price is positive for the shock to corporate earnings. While
the corporate earnings shock is normalized to have no immediate impact on consump-
tion, it will have a long run impact and hence this will show up in the equilibrium risk
prices.

We report the derivatives of long-run risk price with respect to p for both specifica-
tions in Figure 15. Recall that these derivatives were negative for the local prices. As is
evident from this figure, for the Bansal and Yaron (2004) model the derivative is positive
for low and high values of y for the shock to growth rate in consumption. The derivative
is negative for a range of intermediate values.

These differences between the derivatives for long run and local prices are due to the
predictability of consumption. With the predictability of consumption, the permanent

12 The prices are slightly decreasing in K. At 10 times baseline values of K, they are

2.69 13.54 28.66
5.61 26.80 58.04 |

y=1 y=>5 y =10



Ch. 61: Intertemporal Substitution and Risk Aversion 4019

0.5 ~ ]

0.5 T T T T T T T T

Figure 15. The top panel is Bansal-Yaron model: — depicts p derivative of long run risk price of exposure
to consumption shock. It is calculated by dividing the difference between p derivatives of long-run return at
K =[00] and K = [0.0078 0]’ (risk exposure of ¢;) by 0.0078. It is the approximation to the cross derivative
of long run return with respect to K and p, that is, p derivative of long run risk price. The —- — curve depicts p
derivative of long run risk price of exposure to predicted consumption shock. It is calculated by dividing the
difference between p derivatives of long-run return at K = [0 0]’ and K = [0 0.00034]’ (risk exposure of x;)
by 0.000034. The bottom panel is Hansen—Heaton—Li model: — depicts p derivative of long run risk price
of exposure to consumption shock and —- — depicts p derivative of the long run risk price of the exposure to
corporate earnings. For this model the risk prices, the derivatives with respect to the individual entries of K,
are constant.

response of consumption and hence, the permanent response of stochastic discount fac-
tor to a shock are more than their contemporary responses. This additional contribution
makes the long run risk price and its derivative with respect to p larger than their local
counterparts. Figure 16 shows this point: long run considerations shift up risk prices and
the corresponding p derivative.'3

13 Because of stochastic volatility, long run considerations tilt the risk price and its derivative along with
shifting them.
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Figure 16. Long run versus local derivatives. Risk price (top panel) and its derivative (bottom panel) with
respect to p for the shock to growth rate in consumption in Bansal-Yaron model: — depicts long run risk
price and p derivative; —- — depicts local counterparts. Both levels and derivatives are evaluated at p = 1.

6. Information about risk aversion from multiple returns

In the previous section we examined how risk aversion and intertemporal substitution
affect predicted risk premia. We now examine predictions for risk aversion using in-
formation from the returns to the test assets described in Section 4.2. Because of the
substantial differences in average returns we will be driven to large levels of risk aver-
sion. For these parameter values, variation in p around one has little effect. For this
reason and for tractability we assume that p = 1. For similar reasons Campbell (1996)
also considers the case where p is close to one and shows that a cross-section of returns
can be used to identify y.

Returns to our test portfolios are known to have differential predictive power for con-
sumption as shown in the work of Parker and Julliard (2005). To the cointegrated model
of consumption and corporate earnings of Hansen, Heaton and Li (2005) we add the log
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price—dividend ratio and the log dividend growth for each of the five portfolios. To avoid
substantial parameter proliferation we estimate each system portfolio by portfolio.

Returning to the discrete time, log-linear setting of Section 5.1, the excess return to an
asset is determined by the covariance between shocks to the return and shocks to current
and future consumption. As in Section 4 the return to security j has a moving-average
representation given by

rly = o (Lwig1 + pi.
Hence the on impact effect of the shock vector w4 on return j is given by the vec-
tor ,oj 0).

Under recursive utility risk premia are determined by the exposure of both con-
sumption and the continuation value to shocks. When the intertemporal elasticity of
substitution is assumed to be one, shocks to the log continuation value are given by
the discounted impulse responses of log consumption to the shocks. These discounted
responses are given by the vector:

©(B) = H + BB'(I — BA)'G.

Hence we can write the risk premium for security j as

. J 0 2 )
E(r/1F) =)y = —% +[H+ = DOB)] - p’ 0. 3D

Risk aversion can have a large impact on risk premia if consumption is predictable so
that ® (B) is significant and if innovations to discounted future consumption covary with
shocks to returns. This covariance is captured by the term © (8) - 07 (0).

As an initial proxy for this covariance we calculate the covariance between returns at
time ¢ 4+ 1 and ¢(¢ + t) — c(¢) conditional on being at the mean of the state variable and
for different values of r. This calculation ignores discounting through 8 and truncates
the effects at a finite horizon. The results of this calculation are reported in Figure 17
for each of the five book-to-market portfolios. The calculation is done using the point
estimates from the VAR for each portfolio.

For small values of t there is relatively little heterogeneity in the conditional covari-
ance between consumption and portfolio returns. The risk exposure in consumption over
the short-term is not a plausible explanation for differences in observed average returns
as reported in Table 1. Notice, however, that as 7 increases there are pronounced dif-
ferences in the covariances. For example the covariance between long-run consumption
and returns is much higher for portfolio 5 than it is for portfolio 1. Further when t = 40
the estimated covariances follow the order of the observed average returns. Portfolio 1
has the lowest average return and lowest covariance with consumption. Portfolio 5 has
the highest average return and highest covariance.

Figure 18 displays the estimated value of @ (B) - p/ (0) for each security and alterna-
tive values of 8. As in Figure 17 there are substantial differences in the estimated level
of risk exposure across the portfolios as 8 approaches 1.
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Figure 17. Conditional covariance between returns and future consumption. Conditional covariance between
portfolio returns and consumption growth between time ¢ and time ¢ + 7.
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Figure 18. Conditional covariance between returns and © (8)w; .
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An implied level of the risk aversion parameter y can be constructed using the esti-
mates reported in Figure 18. To do this consider the difference between (31) for j = 5
and j = 1 yields:

PO 1p' 02
T T
+[H+ @ -DOPB]- (0’0 - p'(0).

E(’"t5+1|]:t) - E(’"t1+1|]:t) =

Hence

_EGE1F) — EGl |17 + P — 2OE — (1 - 0(8) - (0°(0) — 0! (0)
re o) - (p50) — p1(0)) '

(32)

Using the estimated mean returns reported in Table 1 and the estimates of p/ (0) from
each VAR system we construct estimates of y for different values of 8. These are given
in Table 4. When 8 is small the estimated value of y is quite large. Notice, however that
as 8 approaches 1, the two returns have substantially different risk exposures which is
reflected in a much smaller estimate of y .

The estimates reported in Table 4 both ignore sampling uncertainty and are based
on estimation that treats each portfolio independently. We repeat the estimation of the
VAR except now we consider a six variable system where the dividend growth and
price—dividend ratios of portfolio 1 and 5 are included along with ¢; — ¢;—1 and e; — ¢;.
Further we use the Bayesian simulation technique outlined in Appendix B to determine
the posterior distribution of the parameters of the VAR systems. For each simulation we
infer a value of y using (32).

In our first set of simulations we ignore the estimation in the mean returns. The quan-
tiles from the posterior distribution of y are reported in Table 5 where inference about y

Table 4
Estimates of y for different values
of B, based on (32)

B Y

0.90 318.1
0.91 252.0
0.92 199.4
0.93 157.0
0.94 122.7
0.95 94.9
0.96 72.2
0.97 53.6
0.98 38.5
0.99 26.1

1.00 16.1
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Table 5

Quantiles for y, mean returns fixed, 5 lags

L.P. Hansen et al.

Quantile: 0.10 0.25 0.50 0.75 0.90
B =0.98 —134.66 44 .47 76.59 135.94 279.83
B =0.99 —58.71 34.53 57.76 99.48 194.87
B=1 —14.41 20.72 37.37 63.84 119.84
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Figure 19. Conditional covariance between returns and ® (8)w; 4. Covariance between shocks to portfolio
returns and accumulated shocks to future consumption growth, @ (8)w;, 4 for different values of .

is done conditional on a fixed value of 8. Notice that even when f is equal to 1 and sam-
pling error in the means is ignored, there is substantial uncertainty in the estimates of y.

When p = 1 the wealth—consumption ratio is constant and innovations in consump-
tion could be measured by innovations to wealth. Since the return on the aggregate
wealth portfolio is not observable, a proxy is necessary. A common procedure is to use
the return to an aggregate stock index. One justification for this procedure is to assume
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that the missing components have returns that are proportional to the stock return as in
Campbell (1996).'4

We repeat the empirical strategy above but assume that the growth rate in consump-
tion is proportional to return on the market portfolio discussed in Appendix D. Figure 19
displays the conditional covariance between the test asset returns and the implied values
of ®(B)w;4; for different values of 8. In this case we fit a VAR with 5 lags to the log
market return, the log price—dividend ratio for the market along with the log dividend
growth and price—dividend ratio for each portfolio.

In this case the implied ordering of risk across the portfolios is consistent with the
observed average returns only when g is large enough. When g is small the implied
values of y are negative. For values of § large enough the differences in the covariances
between portfolios 1 and 5 imply that portfolio 5 should have a larger return than portfo-
lio 1. Essentially the differential in the return to portfolios 5 and 1, the “return to value”
is able to forecast the market return. As in the work of Campbell and Vuolteenaho (2004)
the CES model with the market return as a proxy for consumption growth implies that
there should be a premium for value over growth: the “value premium”.

7. GMM estimation of stochastic discount factor models

For a given financial data set, multiple stochastic discount factors typically exist. Only
when the econometrician uses a complete set of security market payoffs will there be
a unique discount factor. Either an ad hoc identification method is used to construct
a discount factor, or an explicit economic model is posed that produces this random
variable. Alternative economic models imply alternative measurements of a stochastic
discount factor including measurements that depend on unknown parameters. Rational
expectations come into play through the use of historical time series data to test re-
lation (2). See Hansen and Singleton (1982) and Hansen, Heaton and Luttmer (1995).
Macroeconomics and finance are integrated through the use of dynamic macroeconomic
equilibrium models to produce candidate discount factors.

7.1. Identification

As we have seen, pricing restrictions are typically formulated as conditional moment
restrictions. For the purposes of this discussion, we rewrite Equation (2):

E(Si.1v1ai411F1) = mi(ar11) (33)

where a;41 is the one period gross payoff to holding an asset. It is a state-contingent
claim to the numeraire consumption good at date ¢ 4+ 1. Suppose an econometrician

14 Lustig and Van Nieuwerburgh (2006) infer the return to nontraded human capital by using the link between
consumption and unobserved wealth implied by several different assumptions about preferences.
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observes a vector of asset payoffs: x;41, a corresponding price vector g, and a vector
of conditioning variables z; that are measurable with respect to F;. Moreover, the price
vector must be a Borel measurable function of z,. The vector ¢, might well be degen-
erate and consist of zeros and ones when the payoffs are returns and/or excess returns.
An implication of (33) is that

E(St,t+1xt+1|Zt) =dqt- (34)

Suppose for the moment that S; ;41 is represented as a nonparametric function of a
k-dimensional vector of variables y;1 1. That is

Ste+1 = fr+1)

for some Borel measurable function f mapping R¥ — R. Can f be identified? Suppose
that we can construct a function 4 such that & satisfies

E[h(yesD)xi11lz:] = 0. (33)

Then clearly f cannot be distinguished from f 4 rh for any real number r. Thus non-
parametric identification depends on whether or not there is a nontrivial solution to (35).

Consider the following problematic examples. If y; 11 includes x;41 and z;, then many
solutions exist to (35). For any Borel measurable function g, run a population regression
of g(y;+1) onto x;11 conditioned on z; and let & (y,+1) be the regression residual:

-1
h(ye+1) = g(r41) — E[g(yt+l)xt/+1|Zt](E[xt+lxl/+1|Zt]) Xt41-

By construction, this % satisfies (35).

Suppose that we do not impose exclusion restrictions. Instead suppose the vector y; 41
includes x;11 and z;. Stochastic discount factors from explicit economic models are
often restricted to be positive. A positive stochastic discount factor can be used to extend
the pricing to include derivative claims on the primitive securities without introducing
arbitrage.!> Our construction so far ignores this positivity restriction. As an alternative,
we may impose it. Identification remains problematic in this case, there are various ways
to construct discount factors.

As shown by Hansen and Jagannathan (1991) and Hansen, Heaton and Luttmer
(1995), the solution to the optimization problem

max —E[(max{—x/4+1 - a(z)), O})2|zt] —20(z¢) - g1 (36)

gives a nonnegative function of x;4; and z; that solves the pricing equation where o
is a function of z;. From the solution «* to this concave problem, we may construct a
solution to (34) by

Sta41 = max{—x;41 - &*(z), 0}.

15 On the other hand, stochastic discount factors that are negative with positive probability can price incom-
plete collections of payoffs without inducing arbitrage opportunities.
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This is the nonnegative solution that minimizes the second moment. Formally opti-
mization problem (36) is the conjugate to an optimization problem that seeks to find a
nonnegative stochastic discount factor that prices the securities correctly whose second
moment is as small as possible. Hansen and Jagannathan (1991) were interested in such
problems as a device to restrict the set of admissible stochastic discount factors.'® As
demonstrated by Luttmer (1996), convex constraints on portfolios can be incorporated
by restricting the choice of «. In contrast to Hansen and Jagannathan (1991), Luttmer
(1996) and Hansen, Heaton and Luttmer (1995), we have posed this problem condition-
ally. We say more about this distinction in the next subsection.

Another extraction choice follows Bansal and Lehmann (1997) and Cochrane (1992)
by solving

IIEn—E(log[—a(Zt) 'xt+l]|Zt) —a(zr) - qr-

Provided this problem has a solution a*, then

1
o*(21) - Xp41
is a strictly positive solution to (34). This particular solution gives an upper bound on
ETlog S;1+1]z:]. In this case the optimization problem is conjugate to one that seeks to
maximize the expected logarithm among the family of stochastic discount factors that
price correctly the vector x;4 of asset payoffs.

A variety of other constructions are also possible each of which is an extremal point
among the family of stochastic discount factors. Conjugate problems can be constructed
for obtaining bounds on convex functions of stochastic discount factors (as in the case
of second moments) or concave functions (as in the case of logarithms). As an alterna-
tive, Snow (1991) considers bounding other than second moments and Stutzer (1996)
constructs discount factors that limit the relative entropy of the implied risk neutral
probabilities vis a vis the objective probability distribution.

Thus one empirical strategy is to give up on identification and characterize the family
of solutions to Equation (34). While this can be a useful way to generate model diag-
nostics, its outcome for actual pricing can be very limited because the economic inputs
are so weak. Alternatively, additional restrictions can be imposed, for example, para-
metric restrictions or shape restrictions. Motivated by asset pricing models that exhibit
habit formation Chen and Ludvigson (2004) specify a stochastic discount factor as a
semiparametric function of current and lagged consumption. They use sieve minimum
distance estimation in order to identify the shape of this function. In what follows we
will focus on parametric restrictions. We consider estimation with parametric restric-
tions, say S; ;11 = f(yi+1, B) for B contained in a parameter space PP, a subset of R,
by fitting the conditional distribution of x,11 and y;4 conditioned on z;. (As a warning

Sl = —

16 While this solution need not be strictly positive with probability one, it is nevertheless useful in restricting
the family of strictly positive stochastic discount factors.
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to the reader, we have recycled the 8 notation. While 8 is now a vector of unknown
parameters, exp(—3) is reserved for the subjective rate of discount. Also we will use the
notation « for a different purpose than in Section 2.)

7.2. Conditioning information

Gallant, Hansen and Tauchen (1990) fit conditional distributions parameterized in a
flexible way to deduce conditional bounds on stochastic discount factors.!” Relatedly,
Wang (2003) and Roussanov (2005) propose ways of imposing conditional moment
restrictions nonparametrically using kernel methods. An alternative is to convert the
conditional moment restriction into an unconditional moment restriction by applying
the Law of Iterated Expectations:

E[f 41, B)xi41 —a:] = 0.

A concern might be the loss of information induced by the conditioning down.

As shown by Hansen and Singleton (1982) and Hansen and Richard (1987), this loss
can be reduced by expanding the array of assets. For instance consider any vector of
conditioning variables /(z;) with the same dimension as x;1. Then x;1 - h(z;) should
have a price h(z;) - g;. Thus it is straightforward to increase the number of asset payoffs
and prices by forming synthetic securities with payoffs & (z;) - x;41 and prices q; - h(z;)
through scaling by variables in the conditioning information set of investors.

If we perform such a construction for all possible functions of z;, that is if we verify
that

E[fGrs1. B () %41 — h(z) ;] = 0

for any bounded Borel measurable vector of functions #, then it is necessarily true that

E[fr+1, B)xe1 — qrlz] = 0.

This, however, replaces a finite number of conditional moment restrictions with an
infinite number of unconditional moment restrictions. It suggests, however, a way to
approximate the information available in the conditional moment restrictions through
the use of unconditional moment restrictions.

For future reference, let X, be the entire vector payoffs including the ones con-
structed by the econometrician and let Q; be the corresponding price vector. The corre-
sponding unconditional moment restriction is

E[f g1, B)Xir1 — Q1] =0. (37)

17 Cochrane and Hansen (1992) show how to use such estimates to decompose the unconditional volatility of
stochastic discount factors into on average conditional variability and unconditional variability in conditional
means.
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7.3. GMM estimation

In this discussion we work with the £-period extension of (37):

E[ feQises B)Xige — Q] = 0. (38)

The most direct motivation for this is that the data used in the investigation are asset
payoffs with a £-period horizon: fy(y:+¢, B). If purchased at date ¢, their payoff is at
date r + £.'8 Then fy(y;4¢, B) is the £-period stochastic discount factor. For instance,
consider Example 3.2. Then

C -y
feOise, B) = exp(—8)< g‘)
t

where 8 = (4, y).
Construct the function
&:(B) = fe(Yixe, B)Xive — Qs

of the unknown parameter vector 8. The pricing model implies unconditional moment
restriction:

E[fei+e. B X140 — Q:] = 0. (39)

Using this as motivation, construct

T ' 1 &
b) =|— b) | Wrb)| — b
Y (b) [ﬁg@( )] 7( )[ﬁgqx( )}

where the weighting matrix W, is adjusted to allow for the moving-average structure in
error terms:

-1 -1
Wr(b) = |:Cov(} (b) + Z(Co% (b) + Covh, (b)/):| (40)
j=1
where

T
. 1
Covr(b) = — > ¢i(b)pi—; ().
1=j+1
Then the so-called continuous updating GMM estimator (CU) suggested by Hansen,
Heaton and Yaron (1996) is given by

br = argmin Y7 (b),
belP

18 Considerations of aggregation over time leads some researchers to very similar econometric considera-
tions, but only as an approximation. See Hall (1988) and Hansen and Singleton (1996). For a more ambitious
attempt to address this issue via numerical simulation see Heaton (1995).
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although there are well-known two-step and iterated alternatives. Hansen, Heaton and
Yaron (1996) give some comparisons of the approaches.

By construction, the GMM criterion function has close ties to the chi-square distrib-
ution. In particular when b = B, then

vr(B) = X’ (41)

where n is the number of moment conditions. As emphasized by Hansen, Heaton and
Yaron (1996), this by itself gives a way to conduct inferences about the unknown para-
meter vector. Construct the set of b’s for which 7 (b) is less than a threshold value
where the threshold value is obtained from the chi-square distribution.!® Stock and
Wright (2000) show formally that such a method accommodates a form of weak identi-
fication and leads to robust inference. Alternatively,

Vr(f) —minyr(b) = X2 (n—1k) (42)

where k is number of free parameters. The minimized objective function is itself dis-
tributed as a chi-square as shown in Sargan (1958) for the linear simultaneous equations
model and by Hansen (1982) for the more general GMM estimation environment. More-
over,

Yr(B) = [yr(B) = minyr () | + | minyr (b)) 43)

gives a decomposition of 7 (8) into two components that are asymptotically indepen-
dent and each have limiting chi-square distributions.

The limiting chi-square distribution for (42) presumes the local identification condi-
tion that matrix

e
b=p

ab
has full rank k. When the partial derivative matrix has reduced rank or when one con-
siders a sequence of experiments with limiting singularity, as in the work of Stock and
Wright (2000), the limiting chi-square distribution given in (42) is no longer valid. Limit
approximation (41) remains valid, however. Kleibergen (2005) suggests an alternative
approach to using the latter approximation to conduct inferences. To test a candidate
value of B, he constructs a test based directly on the first derivative of the CU-GMM
objective function. The limiting distribution has a convenient characterization and leads
to an alternative chi-square distribution with degrees of freedom equal to the number of
free parameters instead of the number of moment conditions. Interestingly, the test does

19 Stock and Wright (2000) relate this method to an inversion of the Anderson and Rubin (1949) statistic
when specialized to the linear simultaneous equations model.
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not require the local identification condition.”® As discussed in Kleibergen (2005) this
approach can be applied to testing restrictions and constructing confidence intervals.
Also it can be used to produce an alternative decomposition of (43) that can help to dis-
tinguish parameter values for which first-order conditions are approximately satisfied
but the underlying moment conditions are not satisfied.

7.4. GMM system estimation

As we have seen, the stochastic discount factor formulation often leads directly to a
set of estimation equations, but these are estimation equations for a partially identified
model. As an alternative, we add in the remaining components of the model and proceed
with a system estimation. One stab at this is given in Hansen and Singleton (1996). The
log linear, conditional counterpart to (39) in the case of the power utility model is

E[—y(log Cr4¢ —log C)1y + log xi4¢lz ]| + @ — logg, = 0 (44)

where 1,, is an m-dimensional vector of ones and w is an m-dimensional vector of
constants introduced to compensate for taking logarithms and to capture the subjective
rate of discount §. Here we are abstracting from conditional heteroskedasticity. For
simplicity, suppose that ¢, is a vector of ones and hence its logarithm is a vector of
ZEeros.

System (44) gives m {-period forecasting equations in m + 1 variables, the m com-
ponents of log x;4, and log C;+¢ — log C;. Following Hansen and Singleton (1996) we
could append an additional forecasting equation and estimate the full system as an m + 1
dimensional system of ¢-period forecasting equations. The reduced form is a system of
forecasting equations for log x;41 and log C;4¢ — log C; conditioned on z;:

log Cr4¢ — log G
=Mzi+o +w
[ - ,
where

E(wi¢ ®2z) = 0.

Then under restriction (44), the matrix I7 satisfies
[—yly 1u 1T =0, 45)

where 1,, is an m-dimensional vector of ones, I, is an m-dimensional identity matrix
and 0,, is an m-dimensional vector of zeros.

20 1¢ requires use of an alternative weighting matrix, one which estimates the spectral density at frequency
zero without exploiting the martingale structure implicit in multi-period conditional moment restrictions. For
instance, W7 (b) given in formula (40) can be replaced by the weighting matrix estimator of Newey and
West (1987). While such an estimator tolerates much more general forms of temporal dependence, its rate of
convergence is slower than that of (40). On the other hand, the spectral density estimators are, by construction,
positive semidefinite in finite samples.
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Notice that (44) also implies the conditional moment restriction:

E([_ylm Im]wt+Z|Zt) =0.

Hansen and Singleton (1996) show that even if you impose the stronger condition that

E(wiyelze) = 0.

in estimation, this does not distort the asymptotic inferences for the curvature parame-
ter y. This means that the reduced-form equation can be estimated as a system GMM
estimation, with a weighting matrix constructed so that it does not require a prior or
simultaneous estimation of y. Estimates of y can be constructed as a restricted reduced-
form system. Hansen and Singleton (1996) produce inferences in the analogous ways
as for the CU-GMM estimator by constructing confidence sets from a GMM objective
function by concentrating all but the parameters of interest.

Notice that if E[¢;(8)] = O then it is also true that E[® (8)¢:(8)] = 0 where @ is
a function that maps elements of parameter space PP into nonsingular matrices. Thus we
may use ¢, (b) in constructing GMM estimators or @ (b)¢, (b). For instance in the log-
linear power utility model just considered we might divide the moment conditions by %

and instead estimate 1. Both this restricted reduced form method and the CUE method
yield an estimator that is invariant to transformations of this type. The same estimator of
the original parameter will be obtained, as is the case in maximum likelihood estimation.
This invariance property is not shared by other methods such as two-step methods where
a weighting matrix is constructed from an initial consistent estimator. Specifically, it is
not satisfied by two-stage least squares when the structural equation to be estimated is
over-identified.

7.5. Inference by simulation

The shape of GMM objective, beyond just derivative calculations with respect to pa-
rameters, is informative. For low dimensional problems or problems with sufficient
linearity, we can depict this function, its level sets, its behavior as we vary one para-
meter while minimizing out others. For nonlinear problems, an alternative convenient
method is to follow Chernozhukov and Hong (2003) by constructing

1
or(b) x CXP[—E!Z'T (b)]

over the set P provided that this set is a compact subset of R¥ with positive Lebesgue
measure.”! The right-hand side function is scaled so that

/ pr(b)db =1
P

21 If P is not compact, then the objective could be scaled by a weighting function that has finite measure
over P.
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although there will be no need to compute this scaling factor analytically. The choice of
the compact parameter space will be potentially important in applications.

Armed with this construction, we may now use MCMC (Markov chain Monte Carlo)
methods to summarize properties of the function ¢7 and hence of ¥r. Appendix D
illustrates how to implement MCMC approach. MCMC methods are widely used in
making Bayesian inferences, but also can be applied to this problem even though we
will use a transformed CU-GMM criterion function instead of a likelihood function.??
We use the MCMC approach as a way to systematically represent the shape of the
GMM objective function via random parameter searches, but we will not attempt to
give a Bayesian interpretation of this exercise.

Since ¢7(b) may be treated mathematically as a density, we may infer “marginals”
for individual components of the parameter vector averaging out the remaining com-
ponents. This integration step is in contrast to practice of concentration producing an
objective over a single component of the parameter vector by minimizing the GMM
objective over the remaining component for each hypothetical value of the single com-
ponent. Using the random search embedded in MCMC, approximate level sets can also
be inferred.”> Thus this approach can be used fruitfully in characterizing the behavior
of the GMM objective function and offers an attractive alternative to minimization and
computing derivatives at minimized values.

7.6. Estimation under misspecification

A feature of the weighting matrix W7 in GMM is that it rewards parameter configura-
tions that imply a large asymptotic covariance matrix. A parameter configuration might
look good simply because it is hard to estimate, it is hard to reject statistically. A model
specified at the level of a set of moment conditions is in reality only partially specified.
Even if we knew the true parameters, we would not know the full time series evolution.
If we did, we could form a likelihood function. When combined with a prior distrib-
ution over the parameters, we could compute the corresponding posterior distribution;
and when combined with a loss function we could produce a parameter estimator that
solves a Bayesian decision problem. The GMM estimation is meant to side step the
specification of the full model, but at a cost of distancing the inferences from Bayesian
methods.

Another way to address this issue is to repose the estimation problem by intro-
ducing model misspecification. Instead of aiming to satisfy the moment conditions,
suppose we wish to get close to such a specification. This requires a formal state-
ment of what is meant by close, and this choice will alter the population value of
the objective. For instance, consider the mean square error objective of minimizing

22 To make this link, view the function —yr as the log-likelihood and @7 as the posterior density associated
with a uniform prior over the parameter space.

23 Chernozhukov and Hong (2003) justify estimators of the parameter based on averaging or computing
medians instead of minimizing the GMM objective.
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E([fe(yr1e, b) — St,t+£]2) by choice of S; ;¢ subject to

E[St,t+£Xt+Z - Qt] =0.

Since the space of stochastic discount factors S; ;1 that satisfies this moment restriction
can be infinite dimensional, it is most convenient to work with the conjugate problem,
which will need to be solved for each value of b. For fixed b the conjugate problem is a
finite-dimensional concave optimization problem. In this case of mean square approx-
imation of the parameterized model to an admissible stochastic discount factor S; ;1¢,
we follow Hansen, Heaton and Luttmer (1995) and Hansen and Jagannathan (1997) by
using the conjugates problems

min max E[f/z()’wrz, b)2 - [fz())z+z, by —a- Xt+/é]2 - 205/Qt] (46)

beP «

or
fbnei]gmfx E[ fe(iye. b)* — [max{ fo(ye. b) — o - Xipe, 0}]2 — 2/ Q] (47)

where in both cases the inner problem is concave in «. The second conjugate problem
is derived by restricting S; ;4 to be nonnegative while the first problem ignores this
restriction.

In the case of problem (46), the inner maximization problem is solved by

«*(b) = [EXre X )] E[fe Gire, D) Xeve — O]

provided that E(X;1¢X;y¢) is nonsingular. The concentrated objective function for
problem (46) expressed as a function of b is

E[feGise, D) Xive — O [EXire Xl 0] E[ feGirer D) Xire — O],

which is the population GMM objective function evaluated using

[EreX 0]

as a weighting matrix. Importantly, this matrix does not depend on b. There is no reward
for imprecision in estimation.

Alternatively, inner part of problem (47) (optimization over «) does not have such a
convenient analytical solution nor does it provide a simple link to GMM estimation, but
it is constructed by restricting the admissible stochastic discount factors to be nonneg-
ative. Specifically, the inner problem provides a solution to stochastic discount factor
that satisfies the pricing restrictions of the form

max{ fy(vi+¢.b) — o™ - X110, 0}.

The term o™ - X;4¢ is a correction term for misspecification, but is limited so that the
resulting stochastic discount factor remains nonnegative.

The sample counterparts to problems (46) and (47) are saddle-point versions of M-
estimation problems from the statistics literature instead of GMM estimation problems.
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In the sample counterpart problems, the sample average objective function is minimized
instead of the population objective function.

Hansen and Jagannathan (1997) show that these two problems can be re-interpreted
as ones in which the parameters are chosen to minimize pricing errors over alternative
families of payoffs, where pricing errors are measured relative to the square root of
the second moment of the payoffs. As a consequence, it is informative to characterize
either:

max E(fe(vire: b = [ferse, b) = o - Xewe] =22/ Q1).
mc?XE(ff(yt'i‘fv b)2 - [max{flz()’t—&-é’ b) —a- Xl+£v 0}]2 - 2a/Q[)

as a function of b to assess model performance for alternative parameter values. Of
course other measures of discrepancy between the modeled stochastic discount factor
fe(Yi+e, b) and the stochastic discount factors S; ;¢ that satisfy pricing restrictions can
be employed. Provided the objective is convex in the stochastic discount factor S; ;4¢,
we will be led to a conjugate problem that is concave in «, the Lagrange multiplier on
the pricing equation.

While we have formulated these as unconditional problems, there are obvious condi-
tional counterparts that use x,y¢ in place X;1¢, ¢; in place of Q; and condition on z;.
Then while « is a function of z;, the problem can be solved separately for each z;.

7.7. Intertemporal elasticity estimation

Consider first estimation that features a specific set of assets and other payoffs con-
structed via scaling. We use the power utility specification and make no attempt to
separate risk aversion and intertemporal substitution. Arguably, this is designed to fea-
ture estimation of the intertemporal substitution elasticity because by focusing on time
series data about a single return, the estimation is not confronting evidence about risk
prices. In our first-order expansion of the risk free rate, we saw the impact of both p and
y on returns. Arguably the impact of changes in p might be more potent than changes
in y, and subsequently we will consider multiple returns and the resulting information
about y. Specifically, we will freely estimate p with a single return in this subsection
and then estimate y for fixed alternative values of p when we study multiple returns in
the Section 7.9.

7.7.1. Treasury bills

Let x;4+1 be the quarterly return to holding Treasury bills, which has price one by
construction. In addition to this return we construct two additional payoffs scaling by
consumption ratio between dates ¢ and t — 1, C;/C,_; and the date ¢ Treasury bill. Thus
there were a total of three moment conditions. Nominal Treasury bill returns were con-
verted to real returns using the consumption deflator. We used per-capita consumption.
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Figure 20. Continuously-updated GMM criterion function for the Treasury bill Euler equation: for ¢ = 1. The

top panel depicts the objective function with and without the constraint that § = 0. The bottom panel gives

the associated values of § obtained by minimizing the GMM objective for each value of p. The parameter §
is expressed as percent per annum.

To facilitate the discussion of inference based on the CU-GMM criterion functions,
in Figure 20 we report plots of the concentrated criterion function constructed by min-
imizing with respect to § holding p fixed over a range of values. We also report the
values of the discount rate § that minimize the criterion concentrated over p. The crite-
rion function is minimized at large values of p if we do not restrict §. When we restrict
8 > 0, this restriction binds for modest values of p and there is notable curvature in the
objective function to the right of p = 0.5. On the other hand, the criterion is very large
even at the minimized parameter values. Apparently, it is not possible to satisfy all three
moment conditions, even if we allow for sampling uncertainty.

In Figure 21 we construct the payoffs differently. We lag the consumption growth
factor and return to Treasury bills one period to remove the effect of overlapping infor-
mation induced by time aggregation. We also set £ = 2 when constructing the weighting
matrix. The shape of the objective (with § concentrated out), is very similar to that of
Figure 20 except that it is shifted down. While reduction in the objective function is to
be expected because the conditioning information is less potent, the objective function is
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Figure 21. Continuously-updated GMM criterion function for the Treasury bill Euler equation: for £ = 2. The

top panel depicts the objective function with and without the constraint that § = 0. The bottom panel gives

the associated values of § obtained by minimizing the GMM objective for each value of p. The parameter §
is expressed as percent per annum.

still quite large. The nonnegativity restriction remains important for inducing curvature
to the right of p = 0.5.

Other researchers have argued that the study of the interest rate Euler equation is
fertile territory for weak instrument asymptotics, or more generally for weak formula-
tions of identification.?* While the evidence for predictability in consumption growth
is weak, risk free rates are highly predictable. This is potentially powerful identifying
information, suggesting perhaps that the intertemporal elasticity of consumption is very
small, p is large. Given the observed consumption growth, a large value of p requires

24 Stock and Wright (2000) consider setups in which the expected derivative matrix of the moment conditions
drifts to a singular matrix. For the log linear version of the Euler equation, we might ask that the projection
of consumption growth onto z; drifts to zero. If the projection of the Treasury bill onto z; does not also drift
to zero then the coefficient of interest, p must drift, changing the nature of the large sample embedding. See
Hansen and Singleton (1983) for a related discussion.
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a negative subjective rate of discount. Unfortunately, as we have seen this simple argu-
ment for large values of p ignores restrictions on § and the overall statistical evidence
against the model. Considerations of weak identification are more germane for the study
of value-weighted returns.

7.7.2. Market return

Next we let x;4 be the value-weighted return. We form two additional payoffs by using
consumption growth between date r — 1 and ¢ along with the date ¢ dividend price ratio.
The results are depicted in Figure 22. The objective function is lower than for Treasury
bills. Again the imposition of a nonnegativity constraint is inducing curvature in the
objective function, in this case to the right of p = 3.5. For market returns there is
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Figure 22. Continuously-updated GMM criterion function for the market return Euler equation: £ = 1. The

top panel depicts the objective function with and without the constraint that § = 0. The bottom panel gives

the associated values of § obtained by minimizing the GMM objective for each value of p. The parameter §
is expressed as percent per annum.
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Figure 23. Continuously-updated GMM criterion function for the market return Euler equation: £ = 2. The

top panel depicts the objective function with and without the constraint that § = 0. The bottom panel gives

the associated values of § obtained by minimizing the GMM objective for each value of p. The parameter §
is expressed as percent per annum.

considerably less evidence against the model, but also very limited statistical evidence
about p.»

The results when the scaling variable is shifted back one time period are given in
Figure 23. Again the shape is similar, and the objective functions is a bit lower.

7.8. CES Preferences and the wealth return

While the CES parameterized version of the recursive utility model gives a leading ex-
ample of a stochastic discount factor model, as we have seen the stochastic discount
factors depend on continuation values. We have already explored constructions of these

25 The chi-square critical values for two degrees of freedom are 6.0 for probability value of 0.05 and 9.2 for
a probability value of 0.01. Since the nonnegativity constraint on § sometimes binds the chi-square critical
values for three degrees of freedom also give a useful reference point. They are 7.8 for probability 0.05
and 11.3 for probability 0.01.
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values and their use in empirical investigation. Typically, the computation of contin-
uation values requires a complete specification of the consumption dynamics. In this
section we have abstracted from that complication. As emphasized by Epstein and Zin
(1989b), an appropriately constructed measure of the wealth return can be used in place
of continuation values as we now verify.

Pricing the next period wealth is equivalent to imputing the shadow price to the next
period continuation value. Thus we are led to compute

EVig MV Fi] [ exp(—94)

]E[(vtﬂ)l—ﬂf,][rz(vzﬂ 7)) "7 (C?

MC; 1 —exp(—§)
exp(—9) _
- [ 728 Rz e

where

R(Vis1lF) = (E[(Vie) TV IF]) =3

Thus the return on wealth is given by

Cz+1>p[ Vit1 :|]p
RY , =exp(§ .
1 = eXP( )< ¢ ) [RimIA)

Recall that our previous empirical calculations presumed that y = p. If we mistakenly
impose this restriction, then the Euler equation error is

Cit1\ " Vit 1=p
() Re =
X )< C ) o+ [R(vmm)

Suppose that the continuation value is conditionally normally distributed with variance
|ow,t . While this will typically not be case, it can be justified by taking continuous time
limits along the lines we have discussed previously. Then the conditional expectation for
this misspecified model is

(I=p)y —p) )
exp flowl .

This distortion can be bigger or less than unity depending on whether or not y is less
than or greater than p. To the extent that correction is almost constant, it can be absorbed
into the subjective rate of discount. Thus GMM estimation with this form of misspec-
ification at the very least alters the restriction imposed on the (potentially distorted)
subjective discount rate. Recall that the subjective rate of discount can be an important
source of identifying information.

The case of y = 1 gives an interesting benchmark. In this special case the log-linear
version of the Euler equation holds with:

—8 — p[log Cry1 —log C;] +log R = (1 — p)(log Vi1 — Ellog Vi+1]F1]).
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(See Epstein and Zin (1989b) for an original reference.) In this special case it is not
necessary to use the constant term to even approximately correct for volatility in either
consumption or the return to wealth. The constant term captures the true subjective rate
of discount for investors. Large values of p ( small values of 1) are ruled out by the
positive growth rate in per-capita consumption. More generally, studies like those of
Hansen and Singleton (1996), and Yogo (2004) report inferences that apparently toler-
ate large values of p, but they ignore restrictions on the constant term. This additional
information can be very informative as we have illustrated.?®

7.9. Multiple assets and Markov chain Monte Carlo

When p # 1, we may invert the relation between continuation values and the return on
the wealth portfolio as suggested by Epstein and Zin (1989b):

—p
Vit L (Cry1\T7
L Texp(—8)RY lﬂ( ) .
RV 117 — (XPCORI]T =

Thus an alternative stochastic discount factor is

Cir1\ ” Vit =y
p—— (—5)( ) [
Ll = P c, R(Vis1177)

ply—=1

Ly /C 1=p o=
= [exp(—S)] = ( gtﬂ) ( tu_)H) = (48)

The Euler equation for a vector X,; of asset payoffs with corresponding price vec-
tor Qy is

<

ply=1

Iy /C 1= =7
E([GXP(—(S)] 1”( gl) ' (R1) ™ X1 — Q,IZ;) =1

t

where R/", | is the return on the total wealth portfolio.

In the empirical analysis that follows, we follow Epstein and Zin (1989b) by using
the market return as a proxy for the return on the wealth portfolio. Since the market
return omits important components to investor wealth, there are well-known defects in
this approach that we will not explore here. Also, we impose some severe restrictions
on p as a device to illustrate the information available for identifying y and §. Freely
estimating p is problematic because of the poor behavior of the CU-GMM objective in
the vicinity of p = 1. This poor behavior is a consequence of our using an empirical
proxy for the return on the wealth portfolio in constructing the stochastic discount factor.

26 On the other hand, the notion of using single returns to identify p independently of y is typically compro-
mised. The value of y determines in part what the distortion is in the subjective rate of discount induced by
omitting continuation values from the analysis.
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Figure 24. MCMC with the continuously-updated GMM criterion function: p = .5. The histograms are

scaled to integrate to one. The parameter § is restricted to be in the interval [0, 5] expressed as an annualized

percent, and the parameter y is restricted to be in the interval [0, 10]. The smallest CU-GMM objective
encountered in the random search was 9.8.

We apply the MCMC simulation method described previously to estimate y and &
for alternative choices of p. This gives us a convenient way to summarize the shape of
the CU-GMM criterion function through the use of simulation instead of local approxi-
mation. A consequence of our stochastic discount factor construction is that the market
portfolio cannot be used as one of the test assets and p = 1 cannot be entertained. In-
stead we use the “value minus growth” excess return constructed using the portfolios
sorted on book-to-market equity, together with Treasury bill return, in order to identify
the preference parameters. The scaling factor for the Treasury bill return are the same
ones we used previously, the consumption growth factor between t — 1 and ¢ and the
time ¢ Treasury bill return. The value-growth excess return is scaled by the consump-
tion growth factor and the date ¢ value-growth excess return. Thus we use six moments
conditions in estimation.

In our estimation we use two different values of p, p = 0.5 and p = 1.5 and estimate
y and § subject to the constraints that 0 < § < 5Sand 0 < y < 10 where § scaled
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Figure 25. MCMC with continuously-updated GMM criterion function: p = 1.5. The histograms are scaled

to integrate to one. The parameter § is restricted to be in the interval [0, 5] expressed as an annualized percent,

and the parameter y is restricted to be in the interval [0, 10]. The smallest CU-GMM criterion function value
that was encountered in the random search is 21.7.

by 400 so that it is expressed as a percent per annum. The resulting histograms are
reported in Figures 24 and 25. When p = 0.5, the histogram for § is very much tilted
toward zero, and the histogram for y is very much tilted towards ten. The parameter
space bounds play an important role in these calculations, but it is straightforward to
impose other bounds. When p = 1.5, the histogram for y is centered around 3.5, but
the histogram for § is very much tilted towards the upper bound of five. Increasing the
upper bound on § causes the y distribution to shift to the right. Thus our chosen upper
bound on § induces a modest estimate of y. The lowest CU-GMM objective encountered
in the random search is 9.8 for p = 0.5 and 21.7 for p = 1.5 suggesting that there is
considerably less evidence against the specification with a lower value of p.2”

2T Asa point of reference, the critical values for the chi-square distribution with 4 degrees of freedom are
9.5 for a probability value of 0.05 and 13.3 for a probability value of 0.01. Given the important role of
the constraints on parameters, the chi-square distribution with five degrees of freedom gives an alternative
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Figure 26. Specification errors: p = 0.5. The top panel gives the specification error as a function of y

when the value of § is chosen to minimize the pricing error objective. This pricing error is expressed as the

mean-square distance from the misspecified stochastic discount factor to the closest random variable that

prices on average the vector of assets. Alternatively, it is the maximal average pricing error per mean-square
unit of payoff norm. The bottom panel gives the minimizing choices of § for each value of y.

The CU-GMM criterion function has the property that the parameter configurations
that induce considerable sampling uncertainty in the moment conditions are toler-
ated because the weighting matrix is the inverse of the sample covariance matrix. For
instance, large values of y may induce large pricing errors but nevertheless be toler-
ated. To explore this possibility, we compute the implied specification errors using the
weighting matrix described previously. This weighting matrix is invariant to the para-
meters and instead comes from a best least squares fit of a misspecified model. The
outcome of this calculation is depicted in Figure 26 for p = 0.5 and in Figure 27 for
p = L1.5. When p = 0.5, the lower bound of zero on § binds, and the specification
errors become large for large values of y. When p = 1.5, the upper bound of five binds

interesting benchmark. The critical values are 11.1 for a probability value of 0.05 and 15.1 for a probability
value of 0.01.
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Figure 27. Specification errors: p = 0.5. The top panel gives the specification error as a function of y

when the value of § is chosen to minimize the pricing error objective. This pricing error is expressed as the

mean-square distance from the misspecified stochastic discount factor to the closest random variable that

prices on average the vector of assets. Alternatively, it is the maximal average pricing error per mean-square
unit of payoff norm. The bottom panel gives the minimizing choices of § for each value of y.

for large values of y which in turn leads to large specification errors. For both figures
the implied value of § when y is near one becomes enormous to offset the fact that the
subjective discount factor is being raised to a very small number.

8. Conclusions

Our chapter explores the role of intertemporal substitution and risk aversion in asset
pricing. We feature the CES recursive utility model, but of course other asset pricing
models warrant comparable consideration. Parameters extracted from other sources,
including micro or experimental evidence can be inputs into an analysis of the asset
pricing implications of models. For example, Malloy, Moskowitz and Vissing-Jorgensen
(2005) use evidence from household level data to explore macroeconomic risk. Even
with known preference parameters, measurements of macroeconomic risk exposures
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are required for quantitative prediction. Since the intertemporal composition of risk can
play a central role in asset valuation, this puts an extra premium on the measurement of
long-run components to risk. We have not embarked on a comprehensive survey of the
empirical literature, but we now explore some of the challenges.

The parameter governing the intertemporal elasticity of substitution is key for linking
consumption and wealth. For this link we find it useful to feature the role of continuation
values. Since the CES aggregator is homogeneous of degree one, these continuation val-
ues encode the shadow values of wealth. In effect the continuation values appropriately
scaled give us one side of the intertemporal budget constraint and direct measures of
wealth the other side. There is a return counterpart to this link that has been featured in
some portions of the asset pricing literature, but the return based formulations typically
omit information, in particular information linking current responses of consumption
and wealth.

As we have illustrated following the work Lettau and Ludvigson (2001), use of con-
sumption and financial wealth leads to a macroeconomic version of Shiller (1981)’s
excess sensitivity puzzle. There is substantial variability in financial wealth that is not
reflected in aggregate consumption. This opens up a variety of measurement challenges
that have been explored in the asset pricing literature. For example, financial wealth
omits any contribution of labor income [see Campbell (1996) and Jagannathan and
Wang (1996) for studies of implications for pricing returns], but the remaining challenge
is how to measure and credibly price the corresponding labor income risk exposure.
Related to this, Lustig and Van Nieuwerburgh (2006) explore the required stochastic
properties of the omitted components of wealth that are required to repair the model
implications.

The use of aggregate nondurable consumption might also be too narrow. For this
reason, many studies expand the definition of consumption and refine the preference
assumptions when examining both the cross section and time series of asset returns.
For example, Piazzesi, Schneider and Tuzel (2007) consider a separate role for hous-
ing, Yogo (2006) and Pakos (2006) examine the importance of consumer durables, and
Uhlig (2006) considers leisure. Including these other components of consumption may
also prove fruitful for our understanding of the wealth—consumption link. Further as
emphasized by Uhlig (2006) these components are also germane to the evaluation of
risk embedded in continuation values.

In this chapter we have been guilty of pushing the representative consumer model
too hard. As an alternative to broadening the measure of wealth, we might focus on
narrowing the definition of the marginal investor. Heaton and Lucas (2000) and others
explore important aspects of investor heterogeneity, participation, market segmenta-
tion and limited risk sharing. Others, including Alvarez and Jermann (2000) and Lustig
(2004) consider models in which there are important changes over time in the mar-
ginal investor participating in market. These changes induce an extra component to risk
prices. All of these models provide alternative valuable frameworks for measurement.
They do not, however, remove from consideration the modeling and measurement ques-
tions explored in this chapter.
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Claims made in the empirical literature that intertemporal substitution can be inferred
from the study of single asset returns such as Treasury bills or the risk free rate require
qualification.?® They ignore potentially important information that is often buried in the
constant terms of log-linear estimation. We have seen how this additional information
can rule out small values of the intertemporal substitution parameter (large values of p).
The crude counterpart to this that abstracts from uncertainty can be seen by setting the
subjective rate of discount to zero and comparing the growth rate of consumption to
that of the average logarithm of returns. Excessively large values of our parameter p are
inconsistent with the observed relation between means. While suggestive, this simple
imitation of macro calibration is not formally correct in this context. As we have seen,
the risk aversion parameter also comes into play. Separation can only be achieved as an
approximation that abstracts from potentially important sample information.?’

GMM inferences that explore shapes of the objective function through concentra-
tion or simulation are often the most revealing, even if they fail to achieve the simplified
aims of Murray (2005). While the continuously-updated-GMM estimation has some ad-
vantages in terms of reliable inference, it can also reward parameter configurations that
make the implied moment conditions hard to estimate. Thus naive use of such methods
can lead to what turn out to be uninteresting successes. It is valuable to accompany such
estimation with explorations of implied pricing errors or other assessments of potential
misspecification.

Consumption-based models with long-run risk components pose interesting statisti-
cal challenges because they feature macroeconomic risk exposure over long horizons.
Macroeconomic growth rate risk is reflected in continuation values, and continuation
values contribute to risk prices defined both locally and in the long run. These prices
along with cash-flow and return risk exposure determine the heterogeneity in asset
prices. Investor risk preference is thus encoded in the predicted asset prices and ex-
pected returns. We have illustrated why this source of identifying information about
investor risk preferences presents challenges for reliable measurement. Here we have
illustrated this using VAR methods to assess such estimates. For more general specifi-
cations nonlinear solution methods and estimation methods will come into play.

The incorporation of more formal macroeconomics promises to aid our understand-
ing of sources of long run risk. Work by Fisher (2007), Mulligan (2001) and others is
suggestive of such links. Both use production-based macroeconomic models. Fisher fo-
cuses on long run potency of alternative sources of technology shocks. Mulligan (2001)
considers consumption — physical return linkages as an alternative to the study of finan-
cial returns. Although stochastic volatility in consumption can potentially have long-run
effects as well, this additional source of risk should ultimately have its source in shocks
to technology and other economic fundamentals. Exploring these features in more fully
specified models and focusing on long-run components hold promise for aiding our
understanding of asset price heterogeneity.

28 See Hansen and Singleton (1996), Campbell (2003) and Yogo (2004).
29 Even in the power utility model with stochastic consumption, risk free rates are sometimes plausible with
very large value of p as revealed by the volatility correction in a log-normal approximation.
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Appendix A: Additional formulas for the Kreps—Porteus model
A.l. Discrete time

Recall that v; — ¢; = Uy - x; + p, where the formulas for U, and u, are given in (21).
Write

(v,1 — c,)2 = x; Ax; + 20 x, + €.

‘We look for a solution for the derivative of the form

| 1_, w
th = — EXIQX[+X[C()+—

2
where
Q= (I;ﬂ)A—F,BA’.QA,
(1 _ﬂ) / / /
w= 5 A+ B(1—y)A2B(H + B'Uy) + BA w,
_ (1 _,B) 2 / 1% /
w= 5 {4+ B8(1—y)(H+ B'Uy)B22B(H + B'Uy)
+28(1 — y)o'B(H + B'U,) + BTr(B'2B) + Bw. 49)

The first equation in (49) is a Sylvester equation and is easily solved. Given §2, the
solution for w is
1 —
w=(I-pA)"! (T'Bk +B0—y)ARQB(H + B/UU)>,

and given o, the solution for w is obtained similarly by solving the third equation of (49).
Next we produce a formula for Ds; 41 ; based on Equation (20). From our previous
calculations

—(crpt =€) + vy = Q)]
— U/Bwy1 — G'x; — pie — l_Ty|z1;19 +H|.
Using our formulas for Dv, 4 for the distorted conditional expectation:
Dv},, — E*(Dv}, || F)
= —%(Bw;’:r])/.QBw;kH + %Tr(B/.QB)
— (Bw},,)'2[Ax; + (1 — y)B(H + B'U,)] — ' Bw},,.

Substituting for w; | from the relation wy 41 = w}, | +(1—y)[H +BB'(I-A'B)~1G]

we may implement formula (20) via,

1
Dstl-i-l,t = Ew;+1@0wt+1 + w;_H@l)C, + Po + Px: + Thwip
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by constructing the coefficients &g, @1, ¥y, 91, V7.
A.2. Continuous time

In what follows, we derive the equations implied by (27) that can be used to compute
the derivative of the value function in practice. Many readers may choose to skip this
part.

To construct the solution, form the state vector

o]
2t
and write composite state evolution (26) as
dX, = AX,dt + F dr + /z; B1 AW} + /7, B, dW},
and write
Uy - x 4+ Upz 4+ pp)> = X' AX + 20X + €.

Look for a derivative expressed as
1 1, w
DUt = — _X[QXI+XI cw+ = ).
2 2
Substituting into Equation (27), §2 solves

—SA+ R =AQ + NA:

w solves:

— OF 1L A 0 .
8A+8w_QF+Aw+[%Tr(.QBlB{)—i—%Tr(.QBzBé) :
and w solves:

—80 4w ="2w-F.

These three equations should be solved in sequence.
Given this solution we may compute the shock exposure vector for the derivative as
follows:

DG;I /_ D D _ ’ B 0

[D&M] =—-[2X;+w]l[B1 By]=-[2X;+ o] 0o Bl

Using these formulas, the risk prices are: _
() dW,: zpH' + Jziy = p)(B'Uy + HY = Jz(p — D(y = DX, + o] Bi;
(i) dW;: zipH + /i (y — p)(BUy + H) — /Z:(p — D(y — D[R2X; + o] Bs.
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Appendix B: Bayesian confidence intervals

Consider the VAR:

A(L)y; + Co+ Cit = wy

where y;1 is d-dimensional. The matrix A(0) = Ay is lower triangular. We base infer-
ences on systems that can be estimated equation-by-equation. The w; is assumed to be
normal with mean zero and covariance matrix /. We follow Sims and Zha (1999) and
Zha (1999) by considering a uniform prior on the coefficients and we follow Zha (1999)
by exploiting the recursive structure of our models.

Write a typical equation as

azr+y - xp =

where v, is distributed as a standard normal, x; is a vector of variables that are uncorre-
lated with vy, but z; is correlated with v;. This equation can be transformed to a simple

regression equation of z; onto x; with regression coefficients § = —éy and regression

error variance o2 = 5. Imposing a uniform prior over («, ) does not imply a uniform

prior over the regression coefficients, however.
The piece of the likelihood for sample of 7" observations pertinent for this equation
has the familiar form

T 2
Ero<|oc|Texp|: Z(O[ZH—XI v) j|

t=1

Consider first the posterior distribution of y given «. Using familiar calculations e.g.
see Box and Tiao (1973), it follows that

y ~ Normal(—abr, Vr)

where br is the least squares estimate obtained by regressing z; onto x;, and

T —1
Vr = (Zx,xt’) )
=1

The marginal posterior for & has a density that is proportional to

2
T
|a|Texp<—“ 2”)

where s7 is the least squares residual variance

T
1
= ? E (zr — x¢ 'bT)z-
t=1

This is just a special case of a formula of Theorem 2 of Zha (1999).
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It is convenient to use the distribution for v = «?T's7. By the change-of-variables
formula the density for v is proportional to

5t v
exp| —= ),
v P 2

which is the chi-square density with 7 + 1 degrees of freedom.

We simulate the joint posterior by first simulating v using the chi-square distribution,
then constructing « up to sign, and finally simulating y conditioned on « according to
a normal distribution.

Given the recursive nature of our model, we may follow Zha (1999) by building the
joint posterior for all parameters across all equations as a corresponding product. This
requires that we include the appropriate contemporary variables on the right-hand side
of the equation to ensure that w; | has the identity as the covariance matrix. In effect we
have divided the coefficients of the VAR into blocks that have independent posteriors
given the data. We construct posterior confidence intervals for the objects that interest
us a nonlinear functions of the VAR coefficients.

Appendix C: MCMC

The MCMC simulations follow a version of the standard Metropolis—Hastings algo-
rithm [see Chernozhukov and Hong (2003)]. Let the parameter combination correspond-
ing to the ith draw be b = [§@), )] (since we hold p constant in these simulations,
we omit reference to it here). Then

1. draw b© from the prior distribution (uniform on A);

2. draw ¢ from the conditional distribution g (¢ |b®);

) ity inf( LY@ D)g(BD10)
3. with probability 1nf( exp(v7 B)g 5D 1
pli+h — p@)

) update b = ¢; otherwise keep

A typical choice of transition density is Gaussian, which results in a Markov chain
that is a random walk. We are interested in constraining the parameter space to a com-
pact set. Therefore an adjustment needs to be made for truncating the distribution.
Specifically, let ¢ be the bivariate normal density centered around zero with cdf @.
Then

px —y)
qxly) = Prx € A)’ wherex =y +2z, 7~ ®,

which can be computed straightforwardly. In simulations, the truncation is accom-
plished by discarding the values of ¢ that fall outside of A. A choice needs to be made
regarding the dispersion of ¢. Too large a variance would generate too many trunca-
tions and thus result in slow convergence while too low a value would produce a very
slowly-moving random walk that might fail to visit substantial regions of the parameter
space and also lead to slow convergence. We set the standard deviations of ¢ for both
parameters equal to their respective ranges divided by 50. The reported results are based
on simulations with 1,000,000 draws.
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Appendix D: Data description

Data: population is from NIPA Table 2.1. Risk-free rate is the 3-month Treasury Bill
rate obtained from CRSP Fama Risk Free Rates files.

Book-to-market portfolios: Returns to value weighted portfolios of stocks listed on
NASDAQ, AMEX and NYSE. Stocks sorted by book-to-market value of equity. Con-
struction of these portfolio returns is detailed in Hansen, Heaton and Li (2005).

Consumption: Aggregate US consumption of nondurables and services as reported in
the National Income and Product Accounts of the United States. Seasonally adjusted
and converted to real units using the implicit price deflators for nondurables and
services. Quarterly from 1947 to 2006.

Corporate earnings: “Corporate profits with IVA and CCAdj” from the National In-
come and Product Accounts of the United States. Quarterly, seasonally adjusted from
1947 to 2005.

Dividends: Constructed from the portfolio returns “with” and “without” dividends.
Seasonality removed by taking a moving average. Construction of this series is de-
tailed in Hansen, Heaton and Li (2005).

Market return: Value weighted return to holding stocks listed on NASDAQ, AMEX
and NYSE. Constructed from CRSP data base. Quarterly from 1947 to 2006.

Population: US civilian noninstitutionalized population 1947 to 2005.

Price deflator: Implicit price deflator for nondurables and services. Quarterly from
1947 to 2005.

Risk free rate: Three-month Treasury Bill return from CRSP. Quarterly from 1947 to
2006.

Wages and salaries: Wages and salary disbursement from the National Income and
Product Accounts of the United States. Seasonally adjusted and converted to real
units using the implicity price deflators for nondurables and services. Quarterly from
1947 to 2005.

Wealth: Total financial assets of the United States personal sector less Total liabili-
ties as reported in table L.10 of the Flow of Funds Accounts of the United States.
Quarterly from 1952 to 2005.
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Abstract

This chapter presents a unified set of estimation methods for fitting a rich array of
models describing dynamic relationships within a longitudinal data setting. The dis-
cussion surveys approaches for characterizing the micro dynamics of continuous de-
pendent variables both over time and across individuals, focusing on two flexible sets of
empirical specifications: dynamic simultaneous equations models incorporating error-
components structures, and autoregressive quantile models. The chapter is motivated
by the principle that, whenever possible, estimation methods should rely on routines
available in familiar software packages to make them accessible to a wide range of prac-
titioners. Conventional method-of-moments procedures offer a general apparatus for
estimating parameters of panel-data specifications, though one must introduce a series
of modifications to overcome challenges arising from: (1) use of unbalanced data struc-
tures, (2) weighting to account for stratified sampling inherent in survey longitudinal
data, (3) incorporation of predetermined variables in estimation, and (4) computational
complexities confronted when estimating large systems of equations with intricate in-
tertemporal restrictions. To allow researchers to separate the estimation of longitudinal
time-series specifications into manageable pieces, the discussion describes multi-step
approaches that estimate subsets of parameters appearing in a single model component
(such as the autoregressive or moving-average structure of the error process) without
having to estimate all parameters of the entire model jointly. Such procedures offer a
powerful set of diagnostic tools for narrowing model choices and for selecting among
specifications that fit the underlying data. To illustrate all of the econometric methods
outlined in this chapter, the analysis presents a set of empirical applications summariz-
ing the dynamic properties of hourly wages for adult men using data from the Panel
Study of Income Dynamics.

Keywords

earnings dynamics, longitudinal data, dynamic simultaneous equations, dynamic
quantile regressions, error structure, nonlinear simultaneous equations, method of
moments, optimal instruments, sample weighting, stratified sample, unbalanced data,
multi-step estimation, autoregressive, ARMA, times series
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1. Introduction

Few topics in empirical economics have received as much attention as the dynamic
properties of wages and earnings. The questions asked in this work include: To what
extent does the dispersion of an individual’s earnings grow over time? Is this disper-
sion shared by other individuals and groups? Does this dispersion give rise to a shift
in rankings of individuals within groups? Comprehensive answers to such questions
require knowledge of two factors that jointly determine the dynamic properties of an
individual’s earnings: market-wide trends governing the evolution of cross-sectional
distributions over time, and forces underlying an individual’s mobility within distri-
butions. Empirical analyses exploiting micro-longitudinal data constitute a prominent
approach for acquiring this knowledge, an approach that relies on a rich array of econo-
metric specifications to uncover the intertemporal relationships linking an economic
agent’s variables over both short and long time horizons. This chapter overviews the
panel data models and estimation methods found in the literature on earnings and in-
come dynamics. While it motivates the discussion by drawing upon the questions and
analyses found in this extensive literature, one can readily apply the empirical methods
covered here to characterize the intertemporal properties of a wide range of variables
available in longitudinal settings.

The discussion surveys methods for estimating specifications designed to character-
ize the dynamic properties of continuous dependent variables in panel data settings,
variables whose stochastic fluctuations follow patterns consistent with sophisticated
forms of time-series and error-component models. In addition to considering flexible
intertemporal specifications for error structures, the analysis admits nonlinear structural
equations as a vehicle for relating measured variables both contemporaneously and over
time. This chapter not only covers such specifications that provide a summary of the au-
tocorrelation patterns of variables, which link the first and second moments of variables
over time, but it also explores procedures for fitting quantiles to describe dynamic re-
lationships. Panel data offer multiple observations on individuals over several periods,
often supplying only short and noncontiguous time series for members of a large cross
section of individuals. This feature of longitudinal data means that not all of the specifi-
cations and estimation procedures applicable in conventional time series analysis carry
over to panel data, and, alternatively, many of the problems and options relevant in
analyzing longitudinal data are not found in standard time series studies.

Familiar “method of moments” (MM) procedures provide a general apparatus for
estimating parameters of panel data specifications, but one encounters a variety of chal-
lenges in implementing such procedures in longitudinal data settings. One issue, easily
overcome by drawing upon findings in the literature, concerns how to exploit prede-
termined variables — quantities which are endogenous in some equations but not in
others — as instrumental variables in estimation. More demanding challenges involve
computational complexities confronted when estimating large systems of equations with
intricate nonlinearities, circumstances that often come about in panel data applications,
especially when one incorporates empirical specifications to estimate dynamic struc-
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tures describing error processes. Still more formidable challenges concern how to use
weights to account for the stratified samples that are a part of all longitudinal sur-
veys, and how to carry out estimation with unbalanced samples — samples that have
an uneven number of, and possibly different, time series observations across individ-
vals. Longitudinal surveys supply a variety of weights for use in the calculation of
statistics to compensate for nonrandom sampling, and the question arises as to which
weights one should use in MM procedures when estimating dynamic relationships. Use
of unbalanced datasets in MM procedures to avoid discarding data typically leads to
the reporting of invalid standard errors and test statistics by conventional MM formu-
las.

To surmount the computational challenges one can encounter with implementation
of MM procedures, this chapter lays out several options enabling practitioners to esti-
mate sophisticated longitudinal data specifications using standard routines available in
familiar software packages. Linear/nonlinear 3SLS procedures rely on convenient com-
putational formulas for large systems of equations. While 3SLS routines do not allow
for the inclusion of predetermined variables as instrumental variables, the subsequent
discussion demonstrates how to modify a conventional 3SLS system to exploit predeter-
mined variables fully in estimation with a minimal amount of extra programming and
computational burden. In addition, to allow researchers to separate the estimation of
longitudinal time-series specifications into manageable pieces, the discussion describes
multi-step approaches. When carrying out a step, a researcher can focus on estimat-
ing only the subset of parameters appearing in a single model component (such as the
AR or MA structure of the error process) without having to estimate all parameters of
the entire model jointly. Such procedures offer a powerful set of diagnostic tools for
narrowing model choices and for selecting among specifications that fit the underlying
data.

Regarding other challenges, this chapter demonstrates how to incorporate weights in
MM procedures to compensate for the nonrandom sampling frames inherent in longi-
tudinal surveys — thus avoiding naive MM implementations that produce inconsistent
estimates and/or test statistics. It also describes how to construct weights to enable use
of unbalanced data structures. In addition to describing estimation of dynamic simulta-
neous equations that relate the moments and autocorrelation patterns of earnings over
time, the analysis also outlines how this apparatus can be applied to estimate specifica-
tions characterizing the autoregressive properties of the quantiles of earnings.

To illustrate implementation of the econometric methods outlined in this chapter, the
exposition relies on a unified set of empirical applications rather than attempting to
cite examples from the existing literature; the current body of studies does not offer
sufficient overlap or cover all issues necessary to exemplify approaches. All empiri-
cal illustrations presented here utilize a common dataset on men’s wages drawn from
the Panel Study of Income Dynamics (PSID). The discussion presents ideas in a way
useful to practitioners who wish to specify and estimate models capable of addressing
their empirical questions, not to readers desiring a knowledge of the rigorous theoretical
underpinnings of econometric results or a comprehensive documentation of studies in
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the field. While the chapter draws heavily on existing results in the literature and does
not claim originality of the concepts outlined here, it does not attempt to attribute each
development to specific authors and omits many references. Instead, as concepts are
introduced, it directs readers to a variety of other surveys, especially to other chapters
in this and other Handbooks, that offer a wealth of citations and references along with
alternative presentations of the material.

This chapter does not address a variety of interesting topics important in analyses
of longitudinal data and aggregate trends. First, this chapter focuses on estimation
approaches applicable for continuous dependent variables, and not for dependent vari-
ables that are discrete, censored, or truncated. For discrete variables in a longitudinal
setting, popular estimation approaches include duration and competing risk models,
topics comprehensively covered in Handbook of Econometrics chapters by Heckman
and Singer (1986) and van den Berg (2001). Handbook chapters by McFadden (1984),
Hajivassiliou and Ruud (1994), and Arellano and Honoré (2001) describe other valuable
approaches for estimating dynamic relationships involving discrete, as well as censored
and truncated, variables. Second, this chapter interprets specifications of market-wide
trends as time effects that are common across population segments, and estimates these
effects as parameters. Therefore, the analysis does not consider the more elaborate spec-
ifications for aggregate trends that incorporate sophisticated forms of stochastic com-
ponents of the sort entertained in Handbook chapters surveying time-series techniques
by Granger and Watson (1984), Hendry, Pagan and Sargan (1984), Geweke (1984),
Wooldridge (1994), Stock (1994), Watson (1994), Terasvirta, Tjgstheim and Granger
(1994) and Hamilton (1994); nor does this chapter survey the empirical methods found
in the extensive literature documenting the market-wide trends in wage growth and earn-
ings inequality that have occurred during the past three decades, a topic covered in the
Handbook of Labor Economics chapter by Katz and Autor (1999). Third, this chapter
restricts attention to classical estimation methods applicable for parametric specifica-
tions; consequently, it does not cover the burgeoning literature on nonparametric and
semi-parametric estimation methods, nor does it address the use of Bayesian proce-
dures. Handbook chapters by Hirdle and Linton (1994), Powell (1994), Geweke and
Keane (2001) and Abbring, Heckman and Vytlacil (2007) provide insightful overviews
of these alternative estimation methods.

Six sections make up the core of this chapter. Section 2 surveys the wide variety of
empirical specifications applied in the longitudinal data literature to characterize the
dynamic properties of wages and earnings, considering specifications for both error
structures and distributed lag relationships linking measured variables. Section 3 briefly
covers the key asymptotic results underlying MM estimation and testing procedures,
along with the challenges encountered in implementing these methods in panel data
settings. Section 4 presents several approaches for simplifying the estimation problem
confronted when fitting sophisticated longitudinal specifications, with the focus on sub-
dividing the overall estimation problem into a series of manageable steps. Section 5
outlines how to adapt the empirical apparatus covered in the earlier sections to provide
for estimation of autoregressive specifications for the quantiles of variables. Section 6
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describes how to integrate the weights provided by longitudinal surveys into the es-
timation of panel data models, and it goes on to develop a modified weighting-type
procedure enabling one to use unbalanced data structures to estimate dynamic speci-
fications. To illustrate application of the modeling and theoretical concepts covered in
this chapter, Section 7 presents a series of empirical examples designed to explore the
dynamic properties of the hourly wages of men using data from the PSID for the years
1980-1991. The purpose of this empirical analysis is not only to enhance accessibility
to practitioners, but also to offer some insights into the sensitivities of findings induced
by relying on alternative methods. As a conclusion to the overall chapter, Section 8
offers an abbreviated summary and concluding remarks.

2. Empirical specifications describing panel data dynamics

The empirical literature characterizing wage and earnings dynamics in panel data set-
tings exploits a wide variety of specifications. Modeling the intertemporal properties
of continuously-distributed variables using longitudinal surveys involves distinguishing
two sources of variation in data: aggregate dynamics determining how cross-sectional
distributions evolve over time, and micro dynamics describing the evolution of individ-
ual agents’ relative positions within cross-sectional distributions from period to period.
This chapter reviews empirical approaches focused on characterizing the micro aspects
of dynamics.

Two components make up panel data specifications designed to capture the underly-
ing sources of micro dynamics experienced by individuals. The first relates to measured
variables, be they endogenous, predetermined or exogenous quantities. These speci-
fications may be nonlinear in both parameters and variables; they often incorporate
distributed lag relationships. The second model component describes the stochastic
properties of error terms appearing in structural equations. These properties reflect
features of the time series processes generating individual-specific errors. One finds
elaborate representations for these time-series models in longitudinal data analyses,
including sophisticated integration of nonstationary ARMA specifications and error-
component models comprised of time-varying combinations of individual-specific fac-
tors.

This section begins with a broad characterization of the empirical specifications
whose estimation occupies the remainder of this chapter. After identifying how such
specifications account for the underlying aggregate and micro aspects of dynamics, the
discussion reviews the empirical parameterizations applied to model complex autocor-
relation structures linking both measured variables and unobserved errors over time.
In addition to exploring parameterizations that describe the intertemporal pattern of the
moments of variables, this section ends with a discussion of empirical parameterizations
aimed at modeling the dynamic properties of dependent variables through the evolution
of quantiles over time.
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2.1. General characterization of empirical specifications

The panel data models discussed in this survey belong to parameterizations of the fol-
lowing nonlinear simultaneous equation:

fi = fi(Yiis Ziis Xiiy y) = Uy 2.1

The function f;; possesses a known form, but the parameter vector y is unknown and
must be estimated. The data vectors Y;;, Z;; and X;; have the structure

Vi Zti Xti
Y”' = N Zn' = 5 Xn' = N (22)

Y(t—ky)i L(t—ky)i X(t—ky)i
with observations available for “agent” or “individual” i in time period 7. The models
considered here assume that a panel dataset supplies 7 time series observations for each
of N cross sectional observations on individuals. The y;;’s in (2.2) represent current
and lagged endogenous variables; the z;;’s comprise additional sets of endogenous and
predetermined quantities; and the x;;’s constitute exogenous variables. The quantities
fri» Vii» z¢i and x;; may all be interpreted as column vectors, but much of the discussion
treats them as scalars to simplify the exposition.
The error term Uy; in (2.1) follows a generalized ARMA(p, g) process given by

P q
Ui =— Zath(t—j)i + ijtg(t—j)i»
=1 =0

where the ¢;;’s constitute mean-zero disturbances that are independently distributed over
both time and individuals, and the a,’s and m j;’s are parameters with ap, = mo, = 1.
A compact representation of this equation is

ar(L)Uyi = my(L)gy, (2.3)

where a;(L) = Z;’:o aj L’ and m,(L) = Z;i':o m j;L/ are lag polynomials of orders
p and g respectively.! In many longitudinal data specifications, the coefficients of a, (L)
and m, (L) are time invariant. The error terms &;; are independently distributed over time
and individuals, with a variance—covariance structure given by

X ifi=sandt =k,

i (2.4)
0 otherwise.

E(erigrs) = {
When ¥, = X); = X; for all ¢ and £, the literature designates the &;;’s as white
noise, for they satisfy a weak stationarity property (i.e., have constant variances over
time). When X;; = X,; = X, for all i and j, the disturbances &;; are homoscedastic

! The roots of the polynomial m; (L) are assumed to lie on or outside the unit circle. This restriction is the
usual one imposed in the time series literature to guarantee identification of the coefficients of m; (L).
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across individuals. The subsequent discussion covers estimation procedures allowing
for the parameters X;; to be constant over time and/or across agents. Regardless of the
specification of Xy;, the following exposition refers to the ¢;;’s as white noise.

2.2. Sources of dynamics

Modeling the dynamic properties of variables for individuals requires distinguishing
two sources of variation: components reflecting shared time effects that jointly displace
measures for entire groups, and individual-specific sources of variation. In practice,
there can be considerable discretion in attributing fluctuations to these different sources,
making this conceptually-simple task quite difficult. Often this task is accomplished
without researchers explicitly realizing that they have done so.

To fix ideas, consider the simple linear regression specification

Vi = TYe—1i + Birxi + Boxg-ni +wt v, t=1,....,T, i=1,...,N,

2.5)
where t; constitutes a time effect common to all individuals i in period ¢, and the error
terms vy; are distributed independently of all time components making up the vector of
t/ = (11...771). According to this relation, time effects influence the dynamics of y;;’s
only by shifting the means of the cross-sectional distributions from one period to the
next. If, in addition, the variance of the v;; systematically grows or declines over time,
then one might replace (2.5) by

Yii = TYa—1yi + B1Xni + Bax—1yi + T1e + T2 V5 (2.6)

where 71; and 1o are distinct time components realized in period ¢, and now v,*i is
distributed independently of all the 71,’s and 72;’s. When there are multiple time effects
operative in period 7, the subsequent analysis interprets t; as a vector incorporating
these effects, and the vector T as including all time components ;.

Inspection of (2.5) reveals that the overall dynamic properties of y;; depend on four
sources: (1) the stochastic behavior of the time components t;; (2) the parameters
determining the distributed lag relationships involving past y;;’s and x;’s; (3) the in-
tertemporal properties of the x;;’s; and (4) the stochastic process of the errors vy;.

2.2.1. Aggregate dynamics

Many studies focus on understanding the forces underlying trends in the economy or
in a market, rather than how individuals sort themselves around these trends from one
period to the next. These forces determine the evolution of cross-sectional distributions

2 Analyses may further specify that time effects differ across groups of individuals, in which one might

further substitute g, s and 7g,; for 71, and 7, in (2.6) where the subscript “g” distinguishes particular groups.
In this case, the notation t; would be a vector incorporating the elements 7g,; and g, for all groups.
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over time. This exercise requires knowledge of the time patterns followed by the t;’s,
for movements in the t;’s determine how cross-sectional distributions shift over time.

In a micro empirical analysis, one can treat the 7,’s as fixed or random effects. The
majority of micro studies estimate the elements of 7 as parameters, thus implicitly in-
terpreting the 7;’s as fixed effects. Another popular approach treats the time effects t; as
deterministic functions of exogenous variables, with year and age variables introduced
to capture underlying trends. Such analyses often abandon attempts to learn much about
the intertemporal process determining time effects and merely plot the estimated values
of 71, ..., Tr against time.

When studies interpret the t,’s as random time effects, their purpose is to estimate re-
lationships characterizing the stochastic properties of these time components. Typically,
micro analyses interpret the time effects as being independently distributed over time.
In contrast, macroeconomic analyses introduce sophisticated relationships to model the
dynamic properties of these economy-wide effects, exploiting rich specifications based
on ARMA, ARCH, or GARCH models. These models are not pursued in most longitu-
dinal studies due to small samples in 7', which render consistent estimation infeasible.

2.2.2. Micro dynamics

Treating the time components (7;) as parameters in estimation renders a micro analysis
that depicts the stochastic properties of the y;;’s conditional on the 7;’s. This variation
characterizes how individuals sort themselves within cross-sectional distributions over
time after removing aggregate or economy-wide effects. Such information reveals how
individuals systematically deviate from the aggregate trends measured by the quanti-
ties T from one period to the next.

There are two routes through which specification (2.1) captures the micro sources of
dynamics: the measured function f;; that relates current and past y;;’s and x;;’s, and the
stochastic process generating the unobserved quantities U;; . Expressed in terms of these
micro dynamic components, prototype specification (2.5) becomes:

JtiYris Zeis Xiis V) = Yti — TY@a—1)i — B1Xei — BaX@—1)i — Trs
@2.7)
Ui = vy

Thus, f;; incorporates features of the distributed lag relationships involving measured
variables, along with the time effects estimated as parameters. The error U;; captures
the time series properties of disturbances. If one were instead to consider specifica-
tion (2.6), then the error becomes U;; = 1o Vz*i which depends directly on time effects
and may, as a consequence, exhibit heteroscedasticity properties over time in addition
to its autocorrelation attributes.

The remainder of this section discusses a rich array of empirical specifications for
modeling both f;; and the intertemporal properties of U;. The particular variety of
model introduced in a longitudinal analysis to characterize individual variation fun-
damentally depends on the character of the dependent variables. When variables are
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discrete, duration or competing risk models are popular candidates. When variables are
censored or truncated, researchers commonly specify complete distributional assump-
tions combining continuous and discrete variables and carry out maximum likelihood
procedures. This chapter primarily focuses on estimation methods applicable when
the y;;’s are continuously distributed with 7 treated as fixed. The analysis covers two
distinct types of empirical specifications devised to summarize the micro dynamic prop-
erties of y: (i) relationships that link the moments of y determining its autocorrelation
structure, and (ii) empirical formulations that describe the evolution of the quantiles of y
over time.

2.3. Dynamic simultaneous equation models

Starting with flexible specifications for the function f;; in (2.1) designed to model the
intertemporal moments of y, a popular formulation consists of a structural equation
from a DSEM (dynamic simultaneous equation model), such as

L)y = ¥ (L)zii + B(L)x;i + Ui, (2.8)

where IT(L) = Z?:o II; L/ is a finite-order lag polynomial with [Ty = 1, and ¥ (L) =
Y0¥ L/ and B(L) = 0B ;L7 are row vectors of finite-order lag polynomials.
Written in terms of (2.1), this DSEM implies the specification

JiiYriy Ziis Xgiy y) = L)y — W (L)zei — B(L)xy.

An alternative representation of (2.8) is

n r N
Vi = — Z iy ji + Z Vize—ji + Z Bjxq—ji + Ui,
j=1 =0 j=0

which may be expressed compactly as

Vi = Y(/;_l)iﬂ' + Z;ilﬂ + X;,ﬂ + Ui, 2.9)

where the vectors Y(;_1y;, Zs, and X;; are defined by (2.2), and the parameter vec-
tors m, ¢ and B incorporate coefficients included in 1, ¥, and B, respectively.
With T* denoting the total number of time periods supplied by the panel data source,
T = T* —max(n, r, s) is the number of periods for which there are data on all the vari-
ables appearing in Equation (2.9). Period 1 in this discussion refers to the first period in
which data are available,sotr =1,...,T.

Combining observations on Equation (2.9) for a given individual into a single system
creates a model that is particularly useful for the analysis of panel data. Stacking these
observations in descending order starting with the last period yields

VTi Yir 1 Zyi X Ur;
C ] = : e B LAY EEE :h B
Vi Y, zZ, X\ Uy
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which, in matrix notation, is

yi=Yim +Ziy + X;B + Ui, (2.10)

i =1,..., N.The disturbances U;; of Equation (2.9) may be autocorrelated over time,
but they are assumed to be independently distributed over individuals after the removal
of common period effects achieved by including time dummies or polynomials in time
among the exogenous variables. Denote the variance—covariance matrix of U; by ® =
E{U;U/}. With distributed lag structures common across individuals, the panel data
source offers N independent sets of T time series observations with which to estimate
the parameters of Equation (2.9).

Equation (2.8) provides a framework for considering a wide variety of distributed lag
relationships among the elements of Y, Z, and X using panel data, including infinite
order schemes. The assumption that the lag polynomials I7(L), ¥ (L), and B(L) are
of finite order is not as restrictive as it may at first appear. One can derive a specifi-
cation in the form of (2.8) for any infinite-order distributed lag relationship that can
be written as a ratio of finite order lag polynomials. Such lag schemes, known as ra-
tional distributed lags, admit flexible weighting patterns on past variables and contain
many well-known schemes as special cases. Analyzing rational distributed lag schemes
using specifications (2.8) or (2.9) can imply nonlinear restrictions relating the coeffi-
cients of the polynomials I7(L), ¥ (L), and B(L). The estimation procedures developed
below permit such restrictions. While imposing these constraints may yield increased
efficiency in estimation, one can construct less efficient estimates of infinite-order lag
structures using unconstrained estimates and the formulas implied by ¥ (L)/I1(L) and
B(L)/IT(L).?

The desirability of imposing “smoothness” restrictions of the sort implied by a ratio-
nal distributed lag structure has been questioned in the time series literature,* and it is
natural to question the value of such restrictions in a longitudinal analysis as well. In
contrast to a time series analysis, one can completely relax these smoothness restrictions
in a panel data setting and test the constraints implied by a particular rational distrib-
uted lag scheme before accepting it as a specification. The main implication of assuming
that a DSEM characterizes distributed lag relationships among measured variables is the
imposition of constraints across equations associated with different time periods for a
given individual. Inspection of model (2.10) reveals that these constraints translate into
an equality restriction that requires m, ¥ and B to be constant across equations. It is

3 Consider, for example, the construction of estimates for the coefficients of an infinite order rational dis-
tributed lag that relates Y;; to a single exogenous variable K;;. According to Equation (2.8), this distributed
lagé(L) = ;?OZO 3; L) is given by 8(L) = B(L)/IT(L). The result IT(L)5(L) = B(L) implies formulas for
the §;’s. In particular, equating the coefficients associated with each L/ term in the polynomial I7(L)§(L) to
the corresponding coefficient in the polynomial B(L) yields a set of difference equations that can be solved
foréj, j =0,..., given estimates of the /7;’s and the B;’s.

4 See, for example, Sims (1974) for a discussion of this issue.
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straightforward to relax this equality restriction when estimating the system of equa-
tions given by (2.10) and to test whether it can be accepted for the longitudinal dataset
under consideration.

While specification (2.9) presumes that a researcher wishes to analyze only a single
structural equation per period, it is straightforward to modify this specification to permit
analysis of a multicolumn vector and of the coefficients IT;, ¥; and B; as matrices of
parameters.

2.4. Modeling dynamics through error structures

In many applications, modeling the autocorrelation properties of disturbances is an im-
portant component of a panel data analysis. Indeed, it is the focus of most longitudinal
studies in the empirical literature concerned with characterizing the dynamic aspects
of an individual’s wages or earnings.’ Besides providing a framework for summarizing
the intertemporal properties of variables, the introduction of a stochastic process for
disturbances can create a statistical model that may be used for prediction outside the
sample period. In the case of simultaneous equations, its inclusion can aid in securing
the identification of structural parameters.

2.4.1. Addition of other error components

Many longitudinal analyses combine pure autoregressive or pure moving-average error
terms with permanent components and random trend components to model the intertem-
poral correlation pattern of disturbances. Thus, U;; in Equation (2.8) becomes

Ui = ¢1i + ¢oit + viis 2.11)

where v;; is now generated by the ARMA process (2.3) with either a(L) = 1 or
m(L) = 1, and ¢1; and ¢,; are time-invariant random components distributed indepen-
dently across individuals.

For those procedures in the subsequent discussion that provide for the direct esti-
mation of either autoregressive or moving-average coefficients contained in the lag
polynomials a(L) and m(L), the difference disturbances (1 — L)v,; or (1 — L)%y,
should be used in place of the Uy;’s when either ¢; or ¢; are present. In particular,
if only the permanent component ¢1; is admitted (i.e., ¢2; = 0), then first-differencing

5 See, for example, Hause (1977), Lillard and Willis (1978), Baker and Solon (2003), Altonji and Dunn
(2000).

6 The most popular specification is one that combines a permanent component with a pure autoregressive
scheme. David (1971), Hause (1977, 1980), Lillard and Willis (1978), and Lillard and Weiss (1979) are
examples of studies that estimate first-order schemes (i.e., p = 1 and ¢ = 0 in (2.3)); Ashenfelter (1978)
considers higher-order autoregressive processes. Friedman and Kuznets (1945, p. 353) estimate a first-order
moving-average scheme (i.e., p = 0 and ¢ = 1 in (2.3)) with a permanent component; Hause (1977) considers
higher-order moving-average processes. MaCurdy (1982a) considers a mixture of an autoregressive and a
moving-average process.
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Equation (2.8) creates a new error (1 — L)Uy; that follows an ARMA structure of the
sort given by (2.3). If ¢»; is also admitted, then second-differencing changes the spec-
ification of the ARMA process for the disturbances in a known way and introduces no
new parameters. The same is true if a DSEM specification happens to describe the rela-
tionships involving the measured variables. Thus, it is possible to construct a full set of
estimates for the coefficients of the polynomials I7(L), ¥ (L), B(L), a(L), and m(L)
using only the parameter estimates of the differenced equations.

Alternatively, if the error components ¢1; and ¢»; are assumed to be independent of
the v;;’s, as is often maintained in longitudinal studies, it is straightforward to modify
the specification of ® = E{U; Ul./ } developed below to reflect the influence of ¢y;, ¢2;,
or both. This adjusted specification of ® can then be used in the estimation procedures
proposed in later sections.

Yet another set of error structures implemented in a longitudinal setting describes
disturbances as taking the form

Ui=M¢i+vi, t=1,...,T,i=1,...,N, (2.12)
where A} = (A1, ..., A) is a vector of factor-loading coefficients (which may or may
not be known); and ¢lf = (¢1i, - - - » $ri) 18 a vector of individual-specific time-invariant
disturbances with

2 ifi=j

El(o:0.) = { Js

(¢l 9 ) 0 otherwise.

According to (2.12), U;; equals a weighted sum of two error structures: a k-dimensional
“factor” model consisting of a sum of correlated individual-specific errors ¢;; and an
individual-time-specific error v;; which is distributed independently of ¢; and may be
serially independent over time or follow an ARMA(p, g) process. This error structure
admits a wide variety of autocorrelation patterns with a minimal number of parame-
ters.

As in the case of (2.11), it is elementary to modify the specification of @ = E{U; U/}
developed below to account for the influence of the factor components ¢; appearing
in (2.12). This adjusted specification of ® can then be used in the estimation procedures
proposed in later sections. Alternatively, one can often transform (2.12) into a form that
eliminates the ¢ components, and one can estimate the transformed error structure uti-
lizing approaches similar to the differenced specifications outlined above. For example,
in the most common formulations, the factor loading A; and error component ¢; are each
scalars. In such cases, one can divide (2.12) by A, and apply first-differencing to elimi-
nate ¢;. The resulting specification introduces an individual-time-specific error, v;; /A;,
which may be heteroscedastic over time. In terms of specification (2.4), this implies the
white noise errors &;; will be nonstationary.

2.4.2. Admitting nonstationarity in longitudinal analysis

Permitting the errors &;; to be heteroscedastic over time gives rise to no conceptual
difficulties in analyses of panel data. The variance—covariance parameters X; in (2.4)
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differ across ¢ but remain constant over individuals i. In standard time series analysis,
this sort of nonstationarity does not necessarily create estimation problems, but it does
require an explicit parameterization of the suspected form of the heteroscedasticity that
avoids an incidental parameters problem. In the case of panel data, however, estimation
procedures allow for arbitrary forms of serial heteroscedasticity.

A second form of nonstationarity permitted in panel data analysis provides for the co-
efficients of the lag polynomials a(L) and m (L) to vary arbitrarily across periods so that
there are new sets of autoregressive and moving-average parameters for each 7. Specifi-
cation (2.3) incorporated such options by including ¢ subscripts on the lag polynomials
a; (L) and m;(L); testing of common coefficients in a longitudinal analysis setting is
discussed below.

A third source of nonstationarity readily admitted in panel data analysis involves
relaxing the requirement for the roots of the autoregressive lag operator a(L) to lie out-
side the unit circle. Thus, it is possible to consider such error processes as random walks
when using longitudinal data. In a time series analysis the existence of such nonstation-
arity has significant consequences on the asymptotic properties of estimators, but in the
case of panel data, where asymptotic results rely on a large number of individuals rather
than a large number of time periods, its inclusion has no such effects.

A fourth form of nonstationarity found in panel data studies comes about due to the
influence of initial conditions associated with the starting values of an ARMA model,
a set of conditions that differ across individuals. Section 4 considers this topic in detail.

To highlight key ideas, Sections 4 and 7 focus on the modeling and estimation
problems encountered when assuming that a common ARMA process generates the
disturbances U;; over time and across individuals, with the white noise errors &;; as-
sumed to be stationary and the same for all individuals. Such error structures admit a
wide variety of time series aspects of panel data with a minimal number of parame-
ters. Moreover, in longitudinal analyses this class of error specifications has performed
well in describing the intertemporal features of the data. The subsequent discussion also
covers modifications needed to accommodate each of the sources of nonstationarity out-
lined above.”

2.5. Dynamic quantile regressions

Rather than introducing specifications describing the evolution of the mean and the au-
tocorrelation structure of the y;;’s, suppose one instead wishes to characterize the micro
dynamic properties of these dependent variables by modeling the intertemporal features
of the conditional quantiles of y. To interpret prototype equation (2.5) in this context,
assume the error vy; in this specification is distributed independently both over time and
across individuals; so, v;; = &, the white noise error term specified in (2.4). The au-
toregressive coefficient 7t characterizes the dynamic properties of wages after removing

7 Baltagi (2002) surveys recent developments of panel data methods for estimating parameters in the pres-
ence of several varieties of nonstationarity popular in the times series literature.
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trends, and one can readily generalize this prototype specification to incorporate an au-
toregressive structure with multiple lags, as analogous to the DSEM specified by (2.8).
A conventional autoregressive formulation of (2.5) invokes the moment restriction

EilY—1yi, Xii) =0, (2.13)

where Y(;_1); signifies the past wages y—1);, ..., Y(z—k)i- This condition implies that
(2.5) characterizes how the first moment of the Markov distribution of y;; conditional
on Y;_1); and X;; evolves over time. One applies least squares or generalized least
squares methods to estimate the parameters of such formulations, suitably adjusting for
heteroscedasticity or correlation in an individual’s errors when appropriate.

Alternatively, one can associate relation (2.5) with an autoregressive formulation of
the xth percent quantile (or percentile) of the Markov distribution of y;; by imposing
the restriction

g Vil Y@=y, X4i) =0, 2.14)

where g, () designates the xth percent quantile of the distribution of v;; conditional on
Y1y and X;;, where « € (0, 100). When « = 50, Equation (2.5) determines how the
conditional median of y;; evolves over time. Conceptually, the application of LAD pro-
cedures would produce consistent estimates of the autoregressive coefficients appearing
in (2.5). Such relations have only rarely been estimated in a panel data context, but
specifying variants of (2.14) for several values of « offers a parsimonious and flexible
framework for describing micro dynamic relationships.

Section 5 summarizes a class of quantile estimators for systems of simultaneous
equation models comprised of time series observations on f;; (Y;;, Zsi, X;i, v) that pro-
vides a flexible and noncumbersome procedure for estimating parameters of dynamic
relationships of the sort specified by (2.5). In essence, assuming specifications for the
quantiles of structural error distributions conditional on exogenous or predetermined
instruments, the estimators formulate these conditional quantiles into moment condi-
tions capable of being estimated within a conventional nonlinear instrumental variable
or MM (method of moments) framework. This apparatus matches the sample analog
of the conditional quantiles against their population value, employing a smoothing pro-
cedure familiar in various problems found in nonparametric inference and simulation
estimation. The analysis applies standard arguments to demonstrate consistency and
asymptotic normality of the resulting Smoothed MM Quantile estimator.

3. Basic estimation concepts and challenges

Much is known about the estimation of nonlinear simultaneous equations of the sort
encountered in longitudinal data analyses, and this section outlines the key results. The
discussion opens with a brief summary of the “method of moments” (MM) estimation
framework, which also goes by the names of “generalized method of moments” (GMM),
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“nonlinear instrumental variables” (NIV), and “minimum chi-squared” estimation.8 In
addition to reviewing the central asymptotic results exploited in the MM estimation ap-
proach, the discussion also highlights the procedures for selecting optimal instrumental
variables and for testing joint hypotheses.

While this apparatus offers a comprehensive framework for estimating a wide variety
of models, one encounters several challenges in applying these methods in a panel data
context. One challenge, which has been addressed fully in the literature, concerns how
to exploit predetermined variables — variables that are endogenous in some equations but
not in others — as instrumental variables in estimation. More demanding undertakings
involve computational complexities that arise when one incorporates large numbers of
equations in estimation with intricate nonlinearities, as well as development of empirical
specifications enabling estimation of the dynamic structure describing error processes.
Still more formidable challenges concern how to use weights to account for stratified
samples that are a part of all longitudinal surveys, and how to carry out estimation with
unbalanced datasets — samples with an uneven number of time periods and possibly
nonoverlapping time periods of data available for individual sample members. The sec-
ond part of this section provides an overview of these challenges, whereas Sections 4
through 6 lay out specific approaches for dealing with each challenge in a longitudinal
data setting.

3.1. Overview of method of moments estimation procedures

Suppose one is interested in calculating a consistent estimate of the “true” value of a
p x 1 parameter vector y that is an unknown determinant of the distribution generating
a random vector Y. Denote this true value as yp, and let ¥; and X;,i = 1,..., N,
denote N observations on Y and on a vector of measured characteristics X. The Y;’s are
assumed to be independently distributed across observations after conditioning on the
X;’s, or when these characteristics are treated as known constants.

3.1.1. Method-of-moments estimators

The MM approach offers a general procedure for estimating the parameters yy in large
samples. To characterize this class of estimators, let £;(y) = £(y, M;),i = 1,..., N,
represent a b x 1 vector of known functions with b > p where the vector M; includes
elements of ¥; and X;. Consider the system of equations

1 N
Ly(y) =5 tiy) =0. 3.1)
i=1

8 Many have contributed to the development of this estimation methodology. Most notably, Sargan
(1958, 1961) initiated the study of this class of estimators, and Amemiya (1974, 1975, 1977) and Hansen
(1982) substantially generalized and expanded these methods to create the broad framework summarized
in this section. Handbook chapters by Amemiya (1983) and Manski (1994) present valuable overviews and
alternative presentations of these approaches.
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Assuming each ¢; possesses a sufficiently well-behaved distribution and the ¢;’s are
chosen so that limy_, oo E(Lx(y0)) = 0, one can show that setting y = yy solves (3.1)
in the sense that Ly (yp) converges in probability to zero as the sample size goes to
infinity. Identification of y requires the existence of a unique solution to (3.1), which
requires the Jacobian of Ly to have the appropriate rank, as dictated by the implicit
function theorem.® The MM estimation approach maintains that the matrices of first
partials g—}‘i",, i =1,..., N, exist with each element uniformly continuous in y. De-

N ¢

note the average of these partials by Sy(y) = % diny 37 assumed to possess full

column rank, and define the matrix Vy(y) = % ZZN= 1 i(y)i(y) as an average of
outer products. By maintaining further assumptions guaranteeing satisfaction of a set
of regularity conditions, one can demonstrate that computing a solution to (3.1) yields
a strongly consistent estimate for y that is asymptotically normally distributed.'” To
derive the asymptotic results cited below, the distributions associated with the ¢;’s and
the matrices of first partials cannot have too much weight in the tails.!!

When the number of equations in (3.1) used to compute estimates surpasses the num-
ber of parameters, there seldom exists a value for y that solves all equations making up
(3.1) exactly in finite samples. Thus, one requires a weighting scheme for comparing
the errors obtained in solving the various equations. A standard approach is to compute
a value y to minimize the quadratic form

Ly(y) HvLn(y), (3.2)

where Hy is a positive definite symmetric matrix for all N (including its probability
limit as N — o0). When the number of equations exceeds the number of parameters,
the form of Hy determines the relative tradeoffs in solving (3.1), which in turn defines
the estimator 7.'%> Essentially any 7 that minimizes (3.2) yields a strongly consistent
estimator for yg that is asymptotically normally distributed as follows:

VNG =) % N(0, plim [[Siy Hn 3] [Siy H Ty v S8 HaSv] ).
N—oo

% In many applications, one cannot rule out the possibility that values of y other than y may also satisfy
(3.1) in the limit. One can, however, easily resolve this issue for the estimation problems considered below,
and for simplicity this analysis assumes the solution to (3.1) is unique.

10 10 prove consistency and asymptotic normality of the solution to Ly (y) = 0, the convergence of Ly,
Sy, and Vy to their respective limits must be uniform in y, and this assumption is maintained through-
out the discussion. Chapter 4 in Amemiya (1985) provides detailed definitions of several forms of uniform
convergence.

1 Letting £;; and s;;; denote the j and (j, k) elements of ¢; and g—f/",, respectively, sufficient conditions
restricting the tails of distributions are: E\Zji|2+82 < Cp < oo and Elsj-k,-|1+81 < Cy < oo for some
81,60 >0andally e I'.

12 Ordinary least squares derives an estimate for y by minimizing the sum of squared errors associated with
the b equations appearing in (3.1), which implies setting Hy = [ (= identity matrix), corresponding to
minimizing the quantity Ly (y) Ly (¥).
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where EN = Sy(y) and VN = Vn(y). Thus, the approximate distribution for y in large
samples is

y ~N (yo, N[[s;VHNSN] [SyHnVNHNSN][SyHNnSN] ]). (3.3)
The efficiency of the estimator y depends on the choice of Hy .
3.1.2. Generalized least squares

According to generalized least squares theory, selecting Hy in (3.2) to be a matrix
that is proportional to the inverse of the variance—covariance matrix of Ly (yp) leads
to the most efficient parameter estimate obtained by minimizing (3.2). Such a choice is
Hy =[E(Vy (yo))]_l, where this expression relies on the relation

E[Ln(yo)Ln(v0)' ] — ;]E[VN(VO)]

following from the independence of observations ¢; with the notation LN designating
convergence in probability. The matrix E(Vy (y0)) is unknown, but as with many gener-
alized least squares analyses, a consistent estimate for this matrix is easily constructed
and the asymptotic properties of estimators are unaffected if one substitutes this consis-
tent estimate for the true value of the matrix. Accordingly, when computing an estimate
for yy, one sacrifices no estimation efficiency by instead minimizing the quadratic-form
distance function

Cy) =Ly Vy'Ly(y), (3.4)

where Vy = Vy(y) with y representmg any consistent estimate for yp, implying
VN LN limy_ o0 E(Vy(30)). Let y denote that value of y minimizing (3.4).

The asymptotic properties of the estimator y follow from (3.3). With Hy = Vﬁ ' we
have 7 = yp and

VNG =) S N, [S60) VT a0 Sa] ),

where the matrices S(yp) and V () respectively denote the probability limits of Sy (yp)
and Vy (yp). Thus, the approximate distribution for y in large samples is

7 &N(yo, %[s;,v,;ls,v]‘l), (3.5)
where Sy = Sn(P).

Distribution formula (3.5) also applies when equation system (3.1) yields a just-
identified solution for the parameters y. In such instances, the number of equations
in (3.1) equals the number of elements in y. Since the system of equations Ly = 0
alone fully defines y, the choice of Hy in (3.2) is irrelevant in the calculation of y. In
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such circumstances, the asymptotic distribution simplifies to
~ l~ 15 w1
Y ~ N\ v, NSN VNSN . (3.6)

One finds this specification of the large-sample distribution reported for many estima-
13
tors.

3.1.3. Instrumental variable estimators

Longitudinal empirical models of the sort outlined in Section 2 comprise special cases
of the following system of nonlinear simultaneous equations:

fri fr(M;,y) &ri
filvo) =&, where f; = fi(y) = : = : and & = :
fii fi(M;, y) &1
3.7
where the f;;,i =1,...,N,t =1,..., T, are vectors of known functions, the column

vector M; represents the ith observation on measured variables, yy denotes the true
value of the parameter vector y that generates the sample under consideration, and &;
represents an error vector which is distributed independently across observations with
E{&;} = 0. Designate Q; as a vector whose elements are functions of instrumental vari-
ables, and which is presumed in the subsequent discussion to always include a constant.
In conventional simultaneous nonlinear equations, one maintains the assumption that
E{&10Q;} = 0, so we have conditional-first-moment independence of &; and Q;.

A formulation for ¢;’s in the MM framework satisfying the properties needed for
consistent estimation of y takes the form

(fri ® Ori)
¢ = : = A fi, (3.8)
(f1i ® Q1i)
where the operator ® designates a matrix Kronecker product,'* and the matrix A; is
given by
(Iny ® Or1i) 0 e 0 0
0 (Iny_, ® Qr—1)i)
A = . 0 0 0 ,
(In, ® Q2i) 0
0 0 0 (In, ® Q1)

13 pProminent examples include least squares procedures, wherein (3.1) corresponds to the “moment condi-
tions”.

S1ji Oki Siji
14 The Kronecker is defined as (fji ® Qki) = : , where fj; = :

Smji Qki Smji
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with I,; denoting an identity matrix of dimension n ;. If there exist the same number of
structural equations in each period, then ny = --- = ny. This formulation of ¢; allows
different functions of the instrumental variables to be applied to each set of equations

fii in estimating the parameter vector y. The distance function (3.4) multiplied by N2
takes the form

1 -t
N*C(y) = [m«m’][ﬁ&- (M;)] [Ziti(n)].
where ¢; is a consistent estimate of ¢;. This may also be written as:
1 Al 1 S Sl Al !
[Zi f A7] ﬁEi(AiéiEiAi) [2i 4 fil, (3.10)

where &; is a consistent estimate of &. According to (3.5), this instrumental variable
estimator possesses the large sample multivariate normal distribution:

/ —1
v &N<yo,[[2-% H ) (3.11)
Y

.- _ of;
& |lzakgap) | gt

13)/

14

where gﬁ, |; is a matrix of gradients evaluated at y.
y'yY

3.1.4. Optimal choice of instrumental variables

The efficiency of the MM estimator depends on the selection of the instrumental vari-
ables Q;; implemented to estimate the various equations. Assuming the errors &; in
system (3.7) have a common variance—covariance structure across individuals, the op-
timal choice of the functional forms of the instrumental variables — the form producing
the most efficient estimates — is given by

0fri
Oii = E( i
s

|X,'), t=1,...,T, (3.12)
Yo

where the parameter vector y; includes the components of y appearing in f;;. The
expectations in (3.12) condition on all the exogenous variables available in the simul-
taneous equations system (3.7), designated here as X;.!> With this formulation for the
Qy;’s, minimizing the function (3.4) computes the MM estimate, and its asymptotic
distribution is given by (3.11). Considering the class of all MM estimators with Qy;
being any function of the instrumental variables, the estimator computed with the Q;
selected according to (3.12) yields the most efficient estimator in this class when errors
are homoscedastic.

15 See Amemiya (1975) for the original demonstration of this result. Formula (3.12) assumes that f;; is
a single structural equation. If f;; is a vector, then one forms Q;; by stacking the columns of the matrix

af/.
E(T}ZWO‘XI')-
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In general, this choice of Q;; is not directly observed because yy is unknown. How-
ever, there is no loss of efficiency by replacing (3.12) with

01 = E(?}fn‘
Vi

|xi>, t=1,...,T, (3.13)

12
where y is a consistent estimate for yy, treated as fixed in the calculations of the expec-
tation. A popular procedure for approximating the formulation of Q;; given by (3.13) is
to

. 0fu
project —
Vi

on functions of elements of X;. (3.14)

Y

This is usually accomplished by regressing components of ?,f—;fh? on functions of X;.
One then uses the fitted values from this regression to serve as Qy;.

3.1.5. Testing procedures

Two approaches are popular for testing hypotheses involving general forms of nonlinear
restrictions relating the elements of y. Consider the null and alternative hypotheses

Hp: r(y) =0 versus H,: r(y) #0, (3.15)

where r(y) is a ¢ x 1 vector of known functions specifying the g restrictions linking
the components of y. One form of test relies on a Wald statistic, and a second exploits
a likelihood-ratio type statistic.

To construct a Wald statistic, define the partial derivative matrix and its corresponding
estimate as

ar ~ .
R(y)=— and R = R(y).
ay’
Assuming that Hy contains no redundant restrictions, one can formulate a matrix R that
possesses full row rank. If Hy is true, then

ATBTS =l 1-131-1 Ay -
Nr(?)[R[SyVy'Sn] R r(9) + xg: (3.16)
that is, under the null hypothesis, the Wald statistic is approximately distributed, for
sufficiently large N, according to a chi-squared distribution with ¢ degrees of freedom.
A comparison of the optimized values of the distance functions (3.4) when assuming
the null and alternative hypotheses provides another basis for testing Hy. If Hy is true,
then it can be shown that
N min_ C)|=[Nminco)] < x, 3.17
(¥ min_co] = [Vmincon] < (3.17)
where \7N in (3.4) is kept constant when minimizing C(y) under Hy and H,. The first
term in (3.17) computes C(y) imposing the constraints r(y) = 0, whereas the sec-
ond term minimizes C (y) invoking no restrictions. Thus, under the null hypothesis, the
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difference in optimized distance functions used to calculate estimates is approximately
distributed, for sufficiently large N, according to a chi-squared distribution with g de-
grees of freedom.

3.2. Challenges

One encounters a variety of problems in implementing the above MM framework when
estimating panel data specifications. Some are easily overcome, such as incorporating
predetermined variables as instruments in estimation. Others can become particularly
troublesome, such as avoiding computational difficulties with large systems, formulat-
ing empirical specifications to estimate the correlation pattern of sophisticated error
structures, and using weights and unbalanced samples in estimation. The following dis-
cussion briefly reviews these challenges, while the next sections present options for
overcoming the various problems.

3.2.1. Simultaneous equations with predetermined variables

When estimating time series models within a simultaneous equation system, it is often
necessary or desirable to exploit the fact that certain variables can be considered prede-
termined for a subset of the equations. This involves using these variables as instruments
in estimating some equations, while treating these same variables as endogenous in
others. Previous literature has fully addressed methods for exploiting predetermined
variables in the estimation of longitudinal models.'®

To convey the essential ideas underlying these methods, consider a system of struc-
tural equations

8Ti gri(Mri, v0) vri

; : =1 |=w (3.18)
81 g1i(M1i, v0) Vi
where g;;(-) and v;; are directly analogous to f;; () and &; appearing in model (3.7).
Interpret g;; as a structural equation associated with time period 7. Suppose that the
variables included in the column vector Py; (a subset of M;;) are predetermined for this
equation. While a “predetermined property” often refers only to covariance restrictions
(e.g., E{P:jvs;} = 0), much of the discussion below interprets predetermined as imply-
ing that all the elements of the vector P;; are distributed independently of the error vy;,
but not necessarily of the errors vk, k < t. The exogenous variables of model (3.18) —

8i =

16 The Handbook chapter by Arellano and Honoré (2001) presents an extensive review of these methods.
Studies exploiting predetermined variables as instrumental variables in the estimation of longitudinal models
include Anderson and Hsiao (1982), Bhargava and Sargan (1983), Amemiya and MaCurdy (1986), Holtz-
Eakin, Newey and Rosen (1988), Arellano and Bond (1991), Keane and Runkle (1992), and Arellano and
Bover (1995).
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grouped into the vector X; — are assumed to be distributed independently of the errors
vi,t=1,...,T.

Efficient estimation of this system of equations requires the use of the Py;’s as in-
strumental variables for the appropriate equations. More importantly, for some models,
predetermined variables are the only source of instruments, which makes it necessary
to devise an estimation procedure that exploits these variables.

An obvious method for using the MM procedure described above to calculate an esti-
mate for yy utilizing all the available instrumental variables is to create a new structural
model in the form of (3.8) by setting

gri ® (%T,’) gri ® 0%,
b = : = : = A;kgl‘, (3.19)

g1 ® (%‘;) g1i ® 07;
with A¥ defined analogously to (3.9). This formulation for ¢; satisfies the properties
required in the above discussion for minimization of (3.4) to result in a consistent esti-
mate for yy that is asymptotically normally distributed according to distribution (3.5).
Accordingly, the distance function (3.10) and the asymptotic distribution (3.11) apply
when estimating (3.18) with g;;, V;, Q};, and A7 replacing f;;, &, Oy, and A; in (3.10)
and (3.11), respectively.

3.2.2. Optimal instrumental variables with predetermined variables in the MM
framework

As in the case with only exogenous variables, with predetermined variables present the
efficiency of the MM estimator depends on the selection of the instrumental variables.
Assuming homoscedasticity of errors v;, a linear transformation of equation system
(3.18) puts it into a simpler form for characterizing this efficient estimator. Premulti-
plying Equation (3.18) by the matrix B that is constructed to be lower triangular with
BE(vv")B’ = I transforms the model into the form

¢ = Bgi = By = (3.20)

This linear transformation creates a model with errors possessing the covariance struc-
ture E(v¥v*’) = I, while maintaining the particular “predetermined properties” as-
sumed for the Py;’s, with the Ufi’s serving in place of the vy’s; namely, the vari-

ables Py; are distributed independently of the errors vfi, e, v?ﬁi, but not of the errors
Implementing MM to estimate the coefficients y computes an estimator to minimize

(3.10) with
fi=gl
A = Af with Q;; = Qfl- fort=1,...,7; and
It = E{v*v*'} replaces &&/.
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With these substitutions, distribution (3.11) specifies the asymptotic distribution of this
NIV estimator.

In place of expression (3.12), the optimal choice for in accounting for predeter-
mined variables takes the form!”

#
ol = E(—ag”
l

Yt

|Xi’PIi>s t:1,,T (321)
Yo

Considering the class of all NIV estimators with Qfl. being any functions of the exoge-
nous and predetermined variables available for errors vy, ..., vr;, the NIV estimator
computed with in selected according to (3.21) yields the most efficient estimator in
this class when errors v; are homoscedastic across individuals. Because in is not di-
rectly observed, a procedure for constructing (3.21) is to
. ogh .
project —=| on functions of elements of X; and P;;, (3.22)
Vi ly

where y is any consistent estimate of yy. Then use the fitted values of this projection as
the optimal Qfl..

3.2.3. Specifications providing for estimation of ARMA coefficients and dynamic
quantiles

Often the aim of a longitudinal analysis involves discovering the characteristics of the
error structure of a model, and the challenge becomes developing empirical specifica-
tions that allow for the estimation of parameters governing either the autocorrelation
pattern or the dynamic evolution of the quantiles associated with errors appearing in
structural equations. Obviously, if the f;;’s in the above framework only refer to the
original structural equations linking measured variables, then the information signaling
the dynamic properties of error terms merely shows up as a determinant of the stan-
dard errors of coefficients that the above analysis computes in an unrestricted fashion.
For the MM framework to be of use in informing researchers about the intertemporal
properties of error processes, additional specifications must be formulated for some of
the f;;’s that capture the restrictions implied by the proposed error structure. Moreover,
these additional f;;’s must be combined with the original structural equations so as to
identify all parameters and meet the conditions maintained by the MM framework.
When the disturbances U;; in (2.7) follow a pure AR process, simple and well-
known linear transformations of the original equations create the specifications needed

17 See the appendix of Amemiya and MaCurdy (1986) for the derivation of this optimal choice. The Hand-
book chapter by Arellano and Honoré (2001) surveys recent developments and generalizations of this spec-
ification of optimal instrumental variables, and also covers a variety of interesting refinements in estimation
methods.
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to estimate the AR coefficients. It is also straightforward to derive the additional spec-
ifications needed to estimate parameters associated with a pure MA error process. The
task becomes substantially more difficult when a mixed ARMA model describes the
intertemporal properties of the U;;’s. In such instances, one must accommodate the
consequences of “initial conditions” in specifications, which can be a formidable task,
as demonstrated in the next section.

An attractive alternative to estimating moment relationships characterizing the mi-
cro intertemporal properties of variables involves using conditional quantile regressions
to describe these dynamics. To date, the MM framework outlined above has not been
directly applied to estimate parameters of such specifications in a panel data setting.
As demonstrated in Section 5, this framework offers a flexible empirical approach for
estimating autoregressive specifications of quantile equations.

3.2.4. Potential computational issues

A variety of software routines exist for implementing the above formulation of the MM
estimation framework, albeit in some conventional statistical packages one must under-
take programming beyond the built-in procedures. In the use of any of these routines,
one can encounter considerable computational problems in applying this approach in a
panel data setting. Two factors contribute to these difficulties.

First, estimation of longitudinal specifications often results in structures of the ¢;’s
that have large dimensions, leading to potential problems in inverting the matrix Vy as
required to calculate estimates using (3.4) and to compute asymptotic distributions us-
ing (3.5). Consider, for example, estimation of the simple linear prototype equation (2.5)
using a longitudinal dataset. In conducting this estimation, suppose: (i) the errors v;; in
(2.5) follow a MA(2) process; (ii) the vectors x;; each include 5 exogenous variables
that are linearly independent of the other xy;’s, k # ¢; (iii) the coefficients 7, 81, and 8,
differ over time; and (iv) a researcher has 10 periods of data along with information on
the initial conditions yq; and y_j;. To estimate coefficients of the period-¢ variant (2.5),
available instrumental variables include the exogenous variables x;;, x(;—1);, the prede-
termined variables y;_2y;, ..., y_1;, and time dummies. (The inclusion of the 10 time
dummies, of course, identifies the time effects t.) Thus, joint estimation of all 10 period
equations implies a construction of ¢; in (3.19) that incorporates at least 165 elements.
Moreover, for each period- equation, all xi; for k # ¢, t — 1 also constitute valid instru-
mental variables providing for increased prediction of variation in y_1); beyond that
captured in the above list, instruments which if exploited would enhance the efficiency
of estimation. This implies existence of an additional 45 (= 5 -9) instrumental variables
per equation. Incorporating all these over-identifying variables in estimation would ex-
pand ¢; by 450 elements. If, instead, a researcher merely employs 4 over-identifying
restrictions per equation, then ¢; contains more than 200 elements. Consequently, the
dimension of the Vy matrix is over 200 x 200 in this simple case. While inverting
such a matrix is conceptually manageable using familiar statistical software, problems
can arise if the panel data source supplies less than 500 observations on individuals,
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which is not an uncommon occurrence. One may have to resort to quadruple precision
or generalized inverse routines to conduct such inversions. Regardless of whether one
can invert Vy, reliable estimates of its individual elements are unlikely since this ma-
trix contains over 20,000 unique quantities. Problems do not necessarily go away if the
sample size were to double to 1000 or quadruple to 2000 observations. Of course, even
with these larger samples one would still have little hope of jointly estimating the 10
period model using all over-identifying instrumental variables, since the dimension of
VN would balloon to 615 x 615.18 As we will see in the next section, estimation of
sophisticated variants of an ARMA process for errors can readily enlarge the number of
equations in ¢; even further.

Second, longitudinal surveys sometimes supply very large amounts of data that lead
to exceeding memory barriers imposed in software applications, making the implemen-
tation of the above MM methods problematic, if not impossible. This issue is especially
prevalent in Windows statistical software where the memory barrier currently falls be-
tween 1.5 and 2 GB. One must conscientiously accommodate this barrier when using
monthly data from a longitudinal survey such as SIPP96 or NLSY79.

There are additional reasons for simplifying estimation within the MM framework,
beyond providing options for avoiding the potential computational difficulties described
above. Most importantly, less-burdensome methods would offer valuable procedures
for carrying out diagnostic tests without the need to estimate the entire model, as the
previous discussion assumes. The next section reviews a variety of simplifications in
estimation methods.

3.2.5. Estimation with stratified and unbalanced data

Practically all micro data are collected using a stratified sampling frame, meaning that
observations with particular characteristics are drawn in proportions differing from
those of the true population. Failure to account for this sampling frame in an empiri-
cal analysis results in the computation of inconsistent estimates, even when calculating
simple statistics such as means. Consequently, naive application of the MM approach
produces inconsistent estimates as well.

The question is how to modify MM estimation methods to recognize the implications
of the stratified sampling present in longitudinal surveys. These surveys provide weights
for use in the calculation of statistics to compensate for nonrandom sampling, but they
invariably supply many weights. Besides offering at least one set for each time period for
the purpose of computing the appropriate cross section statistics, surveys regularly pro-
vide different weights to compensate for over-samples of particular race/ethnic groups

18 1n this simple linear model, approaches exist for reducing the number of instrumental variables in the
construction of the ¢;’s while resulting in little or no loss in estimation efficiency. For example, according to
(3.22), near-optimal instrumental variables for the coefficients 7, 81, and B consist of the quantities J;_1);,
Xti, and x(;_1);, where y;_1); represents the fitted value of y(_1); regressed on y;_2);, ..., y—1; and all
Xji — with time effects removed from all variables. This yields an ¢; with 120 elements.
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or low-income families. Which weights should one use in MM procedures when esti-
mating dynamic relationships, and how should these weights be incorporated in forming
the ¢;’s appearing in equation systems (3.8) and (3.19)?

Another important question concerns how to carry out estimation when one has an
unbalanced data structure. Whereas balanced samples restrict data to be available for a
common set of time periods for each individual included in the analysis, unbalanced
samples retain individuals without requiring data for every period. Typically, when
faced with unbalanced data, researchers discard observations until they have constructed
a balanced sample. The resulting loss of data not only lowers efficiency, but, more fun-
damentally, it often leads to the selection of nonrepresentative segments of the original
sample, and also eliminates a rich source of information for identifying dynamic rela-
tionships for sample members seen sporadically or for short horizons.

One might initially surmise that the MM framework can be easily modified to account
for unbalanced samples. After all, one can readily portray the ¢;’s as having a different
number of elements — consistent with a different number of time periods — for each
individual. However, as demonstrated in Section 6, the formulas reported above do not
give the correct representations for the asymptotic distributions of the MM estimators
in this case. More sophisticated adjustments are required.

4. Simplified estimation approaches

The following discussion, in conjunction with the next two sections, lays out specific
approaches for dealing with the challenges outlined above in a longitudinal data setting.
The current section focuses on a variety of simplifications in estimation methods.

The discussion opens with an overview of 3SLS procedures, a well-known special
case of the MM framework that yields convenient computational formulas for large
systems of equations. It is not straightforward to incorporate predetermined variables
in such a procedure, for most 3SLS routines presume common instrumental variables
across all equations. The subsequent analysis shows how to surmount this problem with
a minimal amount of extra programming and computational burden.

There are considerable advantages to breaking up a longitudinal data estimation prob-
lem into parts, allowing researchers to focus on one part of the model at a time. The
panel data models introduced in Section 2 provide a rich set of specifications, making
the task of choosing among these specifications a formidable endeavor. Not only do
they permit flexible parameterizations relating measured variables, but numerous for-
mulations are available for error processes; indeed, far more than can be entertained
in standard time series analyses. A researcher rarely knows precisely which parame-
terizations are consistent with data, and typically must invest considerable effort in
performing diagnostic procedures designed to narrow model choices.

This section presents an array of procedures that subdivide the problem of estimating
the many parameters introduced in a longitudinal time-series specification into manage-
able pieces. This multi-step approach permits a researcher to focus on fitting particular
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components of the model (such as the AR or MA structure of the error process) without
having either to estimate all parameters jointly or to adjust output reported by statistical
packages when conducting tests among alternative structures. These procedures offer a
powerful set of diagnostic tools useful not only for evaluating the basic features of spec-
ifications — such as identifying the orders of ARMA models consistent with the data —
but also for discovering reliable values for parameters that can serve as starting values
for the larger estimation exercises.

4.1. Several important computational simplifications

Three approaches assist in dealing with the computational challenges of MM meth-
ods outlined in Section 3.2. The first relates to the design of the estimation problem so
as to permit application of multi-step procedures requiring computation of only sub-
sets of the parameters at a time. The second involves specialization of MM methods
to 3SLS procedures, irrespective of whether estimation is linear or nonlinear. Finally,
the third proposes adaptations of 3SLS procedures to incorporate predetermined vari-
ables as instrumental variables in estimation. This subsection elaborates on each of these
computational simplifications.

4.1.1. A condition simplifying multi-step estimation

In the application of estimation procedures considered in Section 4.2, it is very conve-
nient to limit the number of parameters estimated at any stage of the analysis by fixing
a subset of the parameters at a consistent estimate obtained from a previous stage. With
fi (Yo, po) replacing f; (yo) in model (3.7), these estimation procedures can be described
as computing an estimate y for yy by minimizing (3.10) with f;(y, it) substituted for
fi(¥), where [ is a consistent estimate of wo. The application of NIV produces standard
errors and test statistics for y according to (3.11), with gradient matrix g—ﬁ’, |7, replacing

the gradient matrix 3—{/’, |7 in the expression for the asymptotic variance—covariance ma-
trix. In general, these standard errors and test statistics are invalid because they ignore
any correction for estimation error induced by imperfect knowledge of o. However,
given a special set of conditions stated in the following proposition, no correction for
estimation error is needed when computing standard errors.

PROPOSITION 4.1. Suppose fi(vo, no) replaces fi(yo) in model (3.7) and this vector
of structural equations satisfies the property

E( o ) —0. “.1)
L

Then, NIV applied to the system of equations f;(y, i), where [i is a consistent estimate
of 1o, yields an estimator y whose asymptotic distribution is given by (3.11) with the
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dfi

gradient matrix 3y

af"a(—;:;”)h; replacing the matrix 5.5 |; in the formula for the variance—

covariance matrix."

This proposition has two important implications for the following analysis: (i) the
application of a standard NIV procedure for these cases not only produces a consistent
estimate of 3y when [t is treated as fixed, but also reports asymptotically valid stan-
dard errors and test statistics; and (ii) joint estimation of yy and o by NIV using the
equations in f; will not lead to an improvement in asymptotic efficiency. Many of the
econometric specifications considered in the subsequent discussion satisfy this condi-
tion, so attention can be focused on estimating and testing hypotheses involving subsets
of the parameters.

4.1.2. Three-stage least squares

Conventional 3SLS analysis — a special case of NIV — maintains the assumption that the
error vector &; is homoscedastic or distributed independently of Q;, where the vector
Q; contains all the linearly independent elements of the Q;;’s. Such an assumption is
often satisfied in longitudinal analyses. Thus, the variance—covariance matrix E{§£'} =
E{&; Si’ |Q;} is constant across observations.

Accordingly, in the formula for the NIV distance function given by (3.10), one can
replace the estimated matrices & §i’ by a consistent estimate of the variance—covariance

19 To demonstrate this proposition, define F(y, ji) as the function given by (3.10), with f; (y, /i) substituted
for f;(y). Minimizing F defines the estimator y by the first-order condition

o . oF
Fy.m=-— =0
Vip.a
Taking an exact first-order Taylor expansion of this system of equations in y and u around the true values of
these parameters yields

o oo oo
F(vo, 110) + Fy (v ", W)@ — o) + Fu (™, W) (it — o) =0,

where

o o

oo oF oo oF

Fy=——. Fu=+——

Y oy’ 2 au/

and the values (y*, u*) lie between (7, ji) and (g, io). Solving these equations for y — yy, it can be shown
using the standard regularity assumptions that

plim{VN (7 — yo)} = plim{G[F(vo. 120)/V'N + HVN (i — )]}
where
G~ = plim{—Fy (0. 1o)/N} and H = plim{F  (yo, 110)/N}.

Condition (4.1) implies that H = 0. Consequently, v/N (7 — yp) has the same asymptotic distribution as
GISi (¥, o)/~ N; and (3.11) gives a large-sample approximation to the distribution of yo + GIg (o, no)/N.
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matrix of the error vector £. Designating this estimate as E (£€"), a standard calculation
for this quantity is

- A
Egeh =5 ) & (4.2)
i=1

One computes the 3SLS estimator, then, by minimizing the distance function

The asymptotic normal distribution for the 3SLS estimator is

.. af!
Y ’.“N<J/0, HEZ-—’
v |

14

1 - —1
(z7a)| y Ei(aiE ez .
Ag} [Zi (A EEera)] ™! [E,Ai%

—1
. 4.4
Ll ) e

In those software packages specifying a common set of instrumental variables for
each equation, the nonlinear 3SLS estimator y is defined by that value of y minimizing
the function

- 1 -1
[Zifiy) ® Q;][E(és’) ® NEiQ,-QQ} [Zi fi(y) ® Qi]. (4.5)

The matrix [E &) ® %Z‘i Qi Q;] in these expressions corresponds to the matrix VN
appearing in the MM distance function (3.4). Even for large equation systems including
many measured variables and time periods, this construction of Vy is easily computed,
as is its inverse. The dimension of the matrix E (£&") is merely the number of structural
equations (or the number of time periods if there exists a single equation per period),
whereas the dimension of %Ei Q; Q! corresponds to the total number of instrumental
variables used in the analysis.?’ This estimator is consistent for yp, and in large sam-
ples 7 approximately follows a multivariate normal distribution given by

a ./ ; —1
oo 52 4l 50]]")
Y v

~ -1
® Q§i|[E($§/) ® ;0 0;] [Ei—
v
(4.6)
4.1.3. Adding equations to account for predetermined variables

ay’

Conventional linear/nonlinear 3SLS computer programs (including seemingly unrelated
regression routines) do not permit inclusion of predetermined variables as instrumen-
tal variables. In conventional 3SLS programs, one must classify a variable either as

20 1f a linear/nonlinear 3SLS procedure encounters difficulties in inverting the matrix % 20 Q;, it elimi-
nates elements of Q; until this matrix becomes invertible. This results in no effective loss of efficiency since
this smaller variant of Q; spans the same space as the original instrumental variable vector; consequently, it
does as well in predicting all endogenous components of the structural equation.
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endogenous or as an instrumental variable for the entire system of equations. Includ-
ing predetermined variables in the list of instruments or in any prediction equation for
endogenous variables in the application of these programs will result in inconsistent
parameter estimates.

Fortunately, one can devise a relatively simple and computationally feasible method
for using predetermined variables as instruments in the estimation of model (3.18)
within a standard 3SLS program. This approach adds several new structural equations
to the model. Suppose that the predetermined variables can be related to the exogenous
variables by the regression equations

P =680;i +ny, t=1,...,T, 4.7)

where §; is a matrix of coefficients, and the errors 7 are distributed independently
across observations and are independent of the exogenous variables X; (and, therefore,
of the elements of the instrumental variables Q;).

For the moment assume that the 7;; are observed (i.e., that data are provided for
these errors) and that g;; in (3.18) embodies a single structural equation in period ¢. To
model (3.18), add the structural equations 7,;g,; = & fort =1, ..., T. This creates an
expanded system of equations that can be compactly expressed in terms of model (3.7)
with

fti=< 8ui ) 4.8)
Nti 8ti

The error vector &; implied by this specification has a zero mean and is homoscedastic
across individuals given the assumption of the independence of n,; with g;; and Q;.

Thus, this particular specification of model (3.7) can be estimated by a standard
3SLS procedure with a common set of instrumental variables Q; used for all equa-
tions. The estimator calculated from this procedure is consistent and the output reported
by this computation is asymptotically valid. Moreover, its asymptotic efficiency at least
matches that of the NIV estimator computed with ¢; specified by (3.19), which uses all
the predetermined variables as instrumental variables in the estimation of y.?!

This 3SLS estimator can be easily modified to account for the fact that the distur-
bances 1;; are not directly observed. In particular, in the specification of the f;;’s given
by (4.8), one merely needs to replace the 7;;’s by their corresponding LS or GLS resid-
uals — defined by 7;; = Py — 3; Q;. Application of the standard 3SLS program to this
modified specification of (4.8) continues to produce asymptotically valid standard er-
rors and test statistics, and an estimator with the same large sample properties as one
computed using the true n;;’s. This conclusion follows directly from Proposition 4.1 by
interpreting  as (81, ..., 87)".

21 This claim follows from the observation that the quantity [g;; ® (Q;;+ P;)'1 - used in (3.19) to compute
the instrumental variable estimator — is a strict linear combination of the quantity [(g;; ® (1, r]; i)/) ® 0il-
used in the computation of 3SLS with Q; used as instrumental variables for all equations. This observation
presumes that Q; contains a constant.



4090 T. MaCurdy

The following proposition summarizes the key results that allow one to compute an
estimate of the coefficients y appearing in model (3.7) using both the available exoge-
nous and predetermined variables as instrumental variables.

PROPOSITION 4.2. With Q; as the instrumental variables, 3SLS applied to model (3.7)
with the specification

8ti
8ii ® Mri
vields an estimator for yo whose large-sample distribution is given by (4.6) and whose

asymptotic efficiency attains that associated with the instrumental variable estimator
obtained by minimizing (4.3) with {; specified by (3.19).

ﬁ,-(y,,&):( ), fort=1,...,T 4.9)

This proposition implies two important results: (i) standard 3SLS estimation of this
model produces standard errors and test statistics that are asymptotically valid; and
(ii) the estimate of yy computed by this procedure is as efficient as one calculated using
the exogenous variables as instruments for all equations and the predetermined variables
as instruments for the subset of equations for which they are appropriate.

4.1.4. Incorporating optimal instruments with predetermined variables in 3SLS

If one desires to exploit a near-optimal set of instrumental variables in the application
of 3SLS estimation, analogous to the set characterized in Section 3.2.2 for the general
MM case, a straightforward modification of Equations (4.9) achieves this formulation.
One must first transform equation system (3.18) into the form given by model (3.20).
Then, g? replaces g;; in (4.9).

The formulation of the #;;’s appearing in (4.9) changes as well. Accordmg to (3.22),
the near-optimal instrumental variables for the system are the Q ’s representing the

Bf/’zl |7 on functions of the elements

fitted values obtained by regressing the quantities
of Q; and P;;. Replacing P;; by ’Q\f; in regression equation (4.7) produces the residuals
Nii = éfl — §,0;. It is the linearly independent components of these residuals that go
into constructing the expanded system of structural equations given by (4.9).

Simpler procedures exist for attaining most of the gains achievable through explicit
use of optimal instrumental variables in 3SLS. If one spec1ﬁes a Q; and P;;’s in the
original formulation of 3SLS that virtually span the space of Q then few efficiency
improvements are possible with the actual use of Qn"

4.2. Estimating subsets of parameters

Proposition 4.1 serves as the cornerstone for many estimation methods that rely on
multi-stage procedures wherein a later stage conditions on parameter values estimated in
earlier stages without recognizing any estimation error associated with the fixed parame-
ters. Generalized least squares represents the classic example of such a procedure. A first



Ch. 62: A Practitioner’s Approach to Estimating Intertemporal Relationships 4091

stage estimates parameters describing the error structure, and a second stage uses this
estimated structure to compute a weighting matrix in the application of least squares.
The second stage ignores that the weighting matrix depends on estimated parameters.
The form of this estimation method satisfies the conditions listed in Proposition 4.1.

The following discussion exploits this proposition to provide a variety of procedures
allowing researchers to subdivide the problem of estimating parameters of sophisticated
longitudinal specifications into a multi-stage approach. In each step, the application
of familiar estimation routines yield valid test statistics that are useful for discovering
which parts of a model fit the data without having to specify all parts together. The
analysis assumes that a panel data source offers a fixed number of time periods 7 and
asymptotic results depend on a large number of individuals N. Later sections develop
results when 7 differs across individuals.

4.2.1. Distinguishing the different parameter subsets

The parameters of the longitudinal specifications introduced in Section 2 may be
grouped into two sets: the first — hereafter called the structural coefficients — consists
of those coefficients included in the matrices IT, ¥, and B which relate measured vari-
ables and determine distributed lag relationships; and the second set — hereafter called
the covariance parameters and denoted by the vector o — consists of those parameters
involved in the specification of the covariance matrix @ = E{U;U/}. If a researcher
considers a specification other than a DSEM of the sort described in Section 2.3, then
“structural parameters” refer to those coefficients appearing in the specification of f;;
characterizing the dynamic relationships linking Y;;, Z;;, and X;;. The covariance pa-
rameters « include coefficients of the lag polynomials a(L) and m(L), variances of
white noise and any permanent components if they are present, and the elements of the
covariance matrix summarizing information on initial conditions.??

4.2.2. Estimation of structural coefficients

If the sole aim of a longitudinal analysis is to estimate the coefficients of distributed
lag structures relating measured variables, it is well known that one can carry out this

22 The following analysis does not present any formal identification conditions. For the standard multivariate
ARMA model, Kashyap and Nasburg (1974) develop necessary and sufficient conditions for identification
and Hannan (1969) presents sufficient conditions. These conditions are not easily applied in practice and
panel data introduce additional complications. The length of the time series, for example, becomes a crucial
factor. Also, the treatment of initial conditions reduces the effective length of the panel and at the same time
introduces new parameters. Considering an error specification that combines a permanent component with
a time series process does not complicate the identification problem. First differencing equations eliminates
permanent components, and it does not introduce any new parameters. Thus, introducing a permanent com-
ponent only has the effect of reducing the length of the time series by one period, and identification will be
lost only in those cases in which the orders of the autoregressive and the moving average components are
sufficiently high to make the length of the time series a crucial factor.
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estimation without assuming anything about the stochastic process generating the dis-
turbances U;;. Given a large sample of individuals, the variance—covariance matrix ®&
can be left unconstrained and estimated by standard methods using residuals computed
for Uy;.

When one disregards predetermined variables as instruments, standard procedures
can be directly applied to estimate the coefficients of model (2.10) and to test hypotheses
regarding these coefficients. Joint generalized least squares can be employed to estimate
this equation system and the parameter vector § when no predetermined or endogenous
variables appear in this system (i.e., when ¥ = 0 and ¥ = 0). Otherwise, 3SLS can
be applied to estimate 7, ¢ and B in (2.10), with X; used as instrumental variables and
with Z; treated as endogenous. To account for the restrictions implied by distributed lag
structures, one must impose equality constraints across equations when applying these
estimation methods.

Expressed in terms of the simultaneous equation framework outlined in Section 3,
define the vector f; as the system of equations in model (2.10), which is given by

FVG@ . ) =yi = Yim — Ziv — Xi = Us. (4.10)
Applying 3SLS (or joint generalized least squares) to model (2.10) amounts to specify-
ing fi = fim in (3.7) and computing an estimate of y = (x/, ¥/, /) by minimizing
(3.10) or (4.5), including in the instrumental variables Q; all the unique elements of X;
and a constant.

When one wants to use predetermined variables as instruments in the estimation of
the structural coefficients, then fi(l) is modified according to Proposition 4.2, with g; =
yi—Yimr—Ziy—X;Bandy = (n/, ¥, B/).23 Instrumental variable estimation is then
carried out as outlined in this proposition, with Q; consisting of all the unique elements
of X; along with a constant. In the subsequent discussion all references to (4.10) as
the specification of fl.(l) are meant to imply this modified formulation of fi(l) in which
predetermined variables are also exploited as instruments in the estimation of model
(2.10).

These estimation methods offer a simple framework for performing preliminary data
analysis to determine the order of the polynomials associated with distributed lags (i.e.,
I1(L), ¥ (L) and B(L) in (2.8)) and to test whether the coefficients of these polynomials
are constant across periods. This form of data analysis involves standard tests of linear
hypotheses.

While specification (2.9) presumes that a researcher wishes to analyze only a single
structural equation per period, it is straightforward to modify this specification to permit
analysis of a multicolumn vector, and of the coefficients I7;, ¥; and B; as matrices of
parameters.

23 The past values of Y; will not be predetermined, except for special cases of the stochastic process gen-
erating U;;. Thus, in applications where a researcher wants to estimate structural coefficients in complete
ignorance of the variance—covariance matrix @, lagged values of Y; cannot be considered as predetermined
variables.
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4.3. Estimation of covariance parameters

As briefly noted in Section 2.4, estimating parameters determining the autocorrelation
structure of the disturbances Uy; is far more difficult than estimating structural coef-
ficients linking measured variables. Part of the reason for difficulties arises from the
fact that the U;;’s are unobserved and must themselves be estimated. Further complica-
tions come about with the presence of moving-average error structures that (i) introduce
problems due to initial conditions and (ii) require sophisticated transformations to iso-
late ARMA coefficients.

Two basic approaches provide for the estimation of coefficients determining the spec-
ification of the variance—covariance matrix @ for the error vector U; appearing in (4.10).
One expresses the elements of ® in terms of the underlying ARMA coefficients and es-
timates these coefficients using fitted values of U; and nonlinear regression methods,
with adjustments introduced to compute standard errors and test statistics that account
for use of estimated values in place of the true values of U;. The second set of ap-
proaches further subdivides the estimation problem by allowing researchers to estimate
autoregressive and moving-average coefficients separately. These latter procedures are
especially applicable when the particular orders of the AR and MA lags in the ARMA
model are unknown and one needs procedures for testing and identifying the basic form
of the lag structure. Whereas this subsection summarizes features of the first approach,
Sections 4.4-4.7 outline estimation procedures relevant for the second approach.

4.3.1. Framework for estimating variance and covariance parameters

Suppose for the moment that one directly observes U;. Consider the problem of esti-
mating a single element of the covariance matrix @, say the one corresponding to the
covariance E{U;; Ui}, denoted by the parameter 6;,. A simple way to proceed for
obtaining an estimate of 6y, is to consider the regression equation

UiiUg—iyi = Okt + Viai (4.11)

fori =1,..., N, where U;; U —y); is the dependent variable and Vj;; is an error term
defined to have a zero mean. Since the dependent variables and, thus, the Vj;; are in-
dependently distributed across individuals, it is evident that least squares estimation of
Equation (4.11) using cross-sectional data on individuals will yield a consistent estimate
for 6;; and valid test statistics.

Combining these regression equations for estimating the different elements of the
covariance matrix @ into a single seemingly unrelated regression model provides a
convenient framework for estimating the set of covariance parameters. In particu-
lar, stacking Equations (4.11) for various values of # and k (ie.,t = 1,..., T, and
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k=0,...,¢t —1)for a given individual i yields the system of equations

UriUri
UriUa—1i

UriUy;
Ur-niUa-ni
) " =squiul) =0+ v, (4.12)
Ur-1iUii
Ur-2iUr-2)i

UiiUii
where St{-} denotes an operator that stacks the transposes of the rows of a matrix after
deleting all elements that lie below the diagonal, 8 = St{®} is a vector of intercepts,
and V; is an error vector composed of the disturbances Vi;; of Equation (4.11) for the
implied values of ¢ and k. Writing the intercepts of model (4.12) as functions of the
form 6 = St{®(«)} = O(«) and given data for U;, one can — using data on individ-
uals — compute an estimate for o and test hypotheses concerning its structure using a
conventional nonlinear joint generalized least squares procedure.

One encounters three formidable challenges in utilizing equation system (4.12) to
estimate parameters of the ARMA process (i.e., the coefficients @, m and X in (2.3)
and (2.4)) determining the elements of 6. First, one requires a complete specification
for @ relating how each element of 6 depends on coefficients a, m and X'. As illustrated
below, such an exercise is not as easy as one may initially surmise. Second, an obvious
challenge involves unavailability of data on U;. Using residuals U; in place of the actual
U; typically implies that standard errors and test statistics must be adjusted to account
for estimation error present in dependent variables. Finally, for even short panels, the
number of equations in system (4.12) is quite large, making estimation burdensome as
outlined in Section 3.2. The subsequent discussion deals with each of these problems.

4.3.2. Specification of variance—covariance matrix accounting for initial conditions

Regarding the first challenge, any development of a specification for ® requires a com-
plete understanding of the initial conditions problem associated with ARMA processes.
The consequence of assuming that the disturbances appearing in (2.8) follow the error
specification given by (2.3) is the imposition of restrictions on the variance—covariance
matrix @ = E{U;U]} associated with the stacked representation of the DSEM given
by (2.10). The following analysis describes the exact restrictions on autocovariances
implied by this error specification, and formulates an explicit parameterization for @.
Appendix A expands upon this discussion and presents a more elaborate derivation of
this parameterization. While solutions to this problem can be found in the panel data
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literature for pure autoregressive or pure moving-average schemes, none are available
for mixed ARMA processes.

According to (2.3) with AR and MA coefficients constant over time, U; is determined
by the system of equations

Uri YiiaiUa—pi Y iomje—pi
vi=| : |=- : + : . (4.13)

Ui i iajUa-pi Y i_omjea—ji
This system does not represent a one-to-one transformation fromthe ;;’s,t = 1,..., T,
to U;. One cannot derive the covariance matrix for U; from (4.13) given only the
distributional assumptions for €7, ..., €1;. Also appearing in (4.13) are the variables
Uoi, ..., Uq—pyi,and &g, . . ., &(1—¢); which are known in the time series literature as
initial conditions or starting values for the error process. To derive a parameterization
for ®, one requires a specification of initial conditions.

Conventional time series techniques that consider starting values as known constants
(usually chosen to be zero) result in inconsistent estimates for the parameters of the
error process if the technique is applied in a panel data analysis where T is fixed.
Similarly, time series procedures that “backforecast”, or treat initial conditions as pa-
rameters, introduce an incidental parameters problem in a panel data analysis which,
under most circumstances, also leads to inconsistent estimates for all parameters of the
error process.”* A third way to deal with these initial conditions for the disturbances is
to treat them as random variables. This is the procedure followed below. Treating ini-
tial conditions as random variables avoids problems with inconsistency by introducing
only a finite number of new parameters: those determining the distribution of the start-
ing values and those relating the distribution of the starting values to the distribution of
disturbances realized in periods 1 through 7.

There are several complications associated with choosing a distribution for the initial
conditions specified above. If we assume that the stochastic process generating distur-
bances during the sample period is also operative prior to this period, then one would
expect the Uy;’s, k = (1 — p), ..., 0, to be not only correlated with one another and
with the &;’s,t = (1 — gq), ..., 0, but also with all the U;;’s realized after period 0.
Furthermore, the correlations relating these variables will, in general, depend directly
on parameters of the ARMA process given by (2.3), and one must account for these
restrictions to achieve efficient estimation.

A natural approach for dealing with this specification of the correlation properties
of initial conditions is to assume that the time series process generating disturbances
over the sample period started some time prior to this period at an unknown date and
under an unknown set of circumstances. In particular, assume the ARMA process given
by (2.3) started in the finite past between periods £, and ¢1 with £, < £ and with ¢4
occurring at least p — g + 1 periods prior to the first sample observation. One can write

24 See Hsiao (1986) for further discussion of this problem.
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each of the U,;’s realized after period £ as a moving-average scheme of the form

1= t—;
Utl _ Z ;/8(1‘ j)l + Z {j(p(t j)h (414)
Jj=t—L£1+1

where the ¢; coefficients are defined as {p = 1 and ¢; = m; — Z;l:l aplj—p for
Jj > 0; the &;’s for k > £; are white noise; and the ¢y;’s are error terms distributed
independently of ¢;; for T > £;. Formally, one can derive a relation like (4.14) by
starting with the ARMA representation U;; = — Zf:] ajUq—jy + Z?:o meq—jyi
and successively substituting out for past Uy _ j);’s using their ARMA representations
until # — j = €1 — 1. The ¢%;’s in (4.14) may be interpreted as the true starting values
of the ARMA process. Specifying the distribution of these variables determines exactly
how and when the ARMA process generating the Uy;’s began.

Given this moving-average representation of the ARMA process generating transi-
tory components, one can derive a complete specification for the covariance matrix
of U;. A change of variables simplifies the derivation. Define the random variable

e,i by e;; = Zfzo ajUq—j) and consider a linear transformation from the vector
= (Uri, ..., Uy;) to a new vector (e}, U(/l)i), where ¢, = (er;, ..., e(p+1)) and
U (/1)1 (Upi, - .., Uy;). With F denoting this linear transformation,
(Ufi)) = FU;, (4.15)
l

where F is a T x T matrix that can be partitioned as

F= <A<T—p>x<T> )
Opx(r—p)  Ipxp
with A representing a diagonal band matrix with the elements (ag, ..., a,) running

down the diagonal.”> The following analysis first develops the covariance matrix for
the vector (e, (1)1) and then uses this result to obtain ®. The covariance matrix

of (e;, (1) l) is convemently partitioned into three blocks: the (1, 1) block, E{e;e;};
the (2, 2) block, E{U(); U, (1) }; and the (2, 1) block E{U(j);e;}. Below we derive the
implied parameterization for each of these blocks in turn.

25 A matrix Q is a diagonal band with the elements (a, b, ¢, d) running down the diagonal if it has the form

d

a b c
a b ¢ d

0= 0 0
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Since e;; = a(L)U;; = m(L)g;;, we see thatthe e;’s, fort = (p+1), ..., T, are gen-
erated by a pure moving-average process. Their covariance matrix, then, is determined
uniquely by the relationships

>0 mj+hE[‘9(2,_h_j)i]mj =31 mjpom;
Efeiieq—nyi} = for0 < h <gq, (4.16)
0 forh >gq,

fort=p+1,...,Tandp+ 1<t —h<t.

The moving-average expression for the U;;’s, t =1, ..., p, given by (4.14) provides
the only information available for determining a parameterization for E {U(])iU(/ 1 i
Inspection of this expression reveals that the elements of U(j); depend directly on the
random variables ¢y; and on the number of periods since these variables were realized.
Unless one is willing to be very specific about how and when the ARMA process gen-
erating transitory components started for each individual in the sample, nothing can be
said about the number or the correlation properties of the ¢y;’s, or about how far in the
past they were realized. To avoid specifying this information, one can simply assume
that starting times and the ¢y;’s are randomly distributed over the population, in which
case no restrictions are implied for the covariance structure associated with Uyy);. Thus,
assume

E(UayiUy,) =T, 4.17)

where 7" is an unconstrained, positive definite, symmetric matrix. As a consequence of
this assumption, the time series process generating disturbances need not be stationary.

Finally, one requires a specification for E{U(y);e;}. Using the moving-average repre-
sentation for e;;,t = (p + 1), ..., T, and those for Uy;, k =1, ..., p, given by (4.14),
the implied covariance between e;; and U —p); is

—h —h
Z?:o mj+hE[5(2t—h—j)i]§j = Z?:o mjno?;
EfeUa—nyi} = forO < h <gq, (4.18)
0 forh>gq.

Implicit in this formula is the nonrestrictive assumption that the ARMA process for dis-
turbances starts prior to period p — g + 1,26 and, as a consequence, covariance terms
like E{ex;¢si} do not appear. An attractive feature of this formulation for the covari-
ance is that no new parameters appear in the expression. If one is willing to introduce
new parameters into the analysis, it is possible to avoid constructing the ¢;’s and im-
posing the restrictions implied by (4.18). In particular, one can simply treat the nonzero
values of E{e;;U—p);} as arbitrary parameters and estimate them directly along with

26 This assumption concerning the starting time of the ARMA process generating the Uy;’s follows immedi-
ately from the assumption that U, 1); can be represented by the specification given by (2.3). This restriction
ensures that no ¢y;’s appear in the moving average component of (2.3) fort = p + 1.



4098 T. MaCurdy

the other parameters of the error process. While this alternative parameterization avoids
the need for imposing some nonlinear restrictions, it has the disadvantage of reducing
the efficiency of estimation; and in some instances, it can destroy the identification of
some parameters of the error process if the time series supplied by the panel dataset is
short.

The relations given by (4.16)—(4.18) imply an explicit parameterization for the co-
variance matrix associated with the vector (el’., U (’1) l.)’. Denote this matrix by £2. Since
this vector and U; are linearly related according to Equation (4.15), it follows that

E{uU]} =F'QF ", (4.19)

This parameterization imposes all of the covariance restrictions implied by the ARMA
process, unless one is willing to introduce precise information about how and when this
process began. Appendix A presents explicit expressions for 6 that impose all nonlinear
constraints. These formulas have relatively simple representations, thus making them
particularly useful when applying estimation procedures.

The above treatment of initial conditions induces a source of nonstationarity in the
U;;’s, even when all the coefficients of the ARMA model and the variances of white
noise are constant over time. Permitting the AR coefficients to be different over time
changes the form of the matrix A in a straightforward way, and allowing the MA coeffi-
cients to differ alters the form of the matrix £2.27 In conventional time-series analyses,
these generalizations are either not possible or introduce substantial complications in
estimation.

4.3.3. Joint estimation of structural coefficients and covariance parameters

With a specification of € in hand, we now turn to the second challenge, which involves
estimation of the covariance parameters without direct data on the U;’s in (4.12). With
observations on U; unavailable, combining equation systems (4.10) and (4.12) to es-
timate structural coefficients and covariance parameters jointly offers a conceptually
simple framework for estimating the elements of 6 or «.

To describe this estimation approach in terms of the nonlinear system of simultaneous
equations given by (3.7), split the vector of structural equations f; in (3.7) into two
subvectors f; = ( fi(l)/, fi(z) "), The system of equations fi(l) given by (4.10) is used
in 3SLS estimation of the structural coefficients. In the specification of model (4.12),
substitute y; — Y;m — Z;yy — X; B for U; to obtain the vector of equations

2 (v, B,0(@) = S (i — Yim — Ziy — Xi)
x (yi = Yiwt — Ziy — X; )’} — 6(@) = V. (4.20)

27 Baltagi (2002) surveys recent developments of panel data methods for estimating parameters in the pres-
ence of several varieties of nonstationarity popular in the times series literature.
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Combining (4.10) and (4.20) to form f; (7, ¥, B, 0(x)) = (fl.(l)/, fl.e)/)’ satisfies the
assumptions of model (3.7).28 Since U; is assumed to be independent of X;, these ex-
ogenous variables constitute valid instruments for all the equations incorporated in f;.
Thus, 3SLS applied to model (3.7) with this specification of f; produces consistent
estimates of m, ¥, B, and 6 (or ) and asymptotically valid standard errors and test
statistics.?’

Simultaneously estimating structural coefficients and covariance parameters yields
estimates that are, in general, more efficient than those obtained from the other meth-
ods outlined in this paper. There are two sources for this increase in efficiency. First,
in those instances in which the third moments of U; are nonzero (which implies that
E{U; Vi/ } # 0), the estimates based on joint estimation of fl.(l) and fi(z) will be more
efficient for the same reason that generalized least squares estimates are more efficient
than ordinary least squares estimates. The second source of efficiency gain arises if there
are any constraints involving both structural coefficients and covariance parameters, and
if it is possible to impose these restrictions when estimating (4.10) and (4.20) jointly.

4.3.4. Further subdivision of estimation of covariance parameters

Two unattractive features of this joint estimation approach are the large number of equa-
tions involved in the implementation of GMM or 3SLS and the nonlinear parametric
restrictions that must be imposed across equations when computing estimates. Fortu-
nately, simpler estimation methods are available if a researcher is willing to estimate
parameters in subsets.

Appendix B offers one approach for estimating all parameters appearing in specifica-
tion (2.3) of the ARMA process underlying the Uy;’s, without the need to introduce any
parameters associated with initial conditions. This approach replaces equation system
(4.20) with an alternative set of equations exploiting relationships implied by system
(4.13). In addition to reducing the number of parameters, this replacement simplifies
imposition of the nonlinear restrictions inherent in relating autocorrelations. A short-
coming of this approach concerns its provision of insufficient information to develop a
full specification of ® without relying on ancillary assumptions; as demonstrated above,
such a specification requires knowledge of the process generating ARMA-model initial
conditions. If a researcher desires, however, to estimate only parameters of the ARMA
process, then Appendix B offers a more manageable approach for conducting this esti-
mation than use of Equations (4.12).

28 This statement assumes that at least fourth moments of U; exist. Homoscedasticity follows from the as-
sumption that the U;’s are distributed independently of X; and across individuals. Clearly E{f;} = O at the
true parameter values.

29 This procedure corresponds to an estimation approach suggested by Chamberlain (1982). In Chamberlain’s
approach, nonlinear generalized least squares is applied to a larger model that includes the equations f; =
St{G,-G; —E (G,-G;)}, where the vector G; contains all the unique elements of ¥;, Z; and X;.
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One can achieve further simplifications in estimating parameters of error processes
by developing procedures that use fitted values of U; as dependent variables and that
enable one to estimate finer subsets of parameters, such as just the AR or just the MA
coefficients, using linear methods. The following subsections describe such procedures.
These approaches provide especially useful diagnostic tools for inferring the basic char-
acteristics of the underlying autocorrelation structure.

4.4. Direct estimation of autocovariances using residuals

Under conventional assumptions, econometric theory implies that one can replace the
U;’s in an MM framework by their estimated residual counterparts and still obtain con-
sistent estimates of other parameters. The residuals U; must be consistent estimates of
the U; for this property to hold. The problem is how to adjust the standard errors and
test statistics to make this procedure of use in learning about that aspect of the error
structure analyzed by the estimation approach.

A natural place to consider using residuals to form dependent variables is in system
(4.13). This would eliminate the need to combine models (4.10) and (4.20) as suggested
above, which involves jointly estimating numerous equations. From a methodological
perspective, replacing the U; by their fitted values amounts to fixing a subset of para-
meters at consistently estimated values and proceeding with estimation of another set
appearing in structural equations. Proposition 4.1 identifies the conditions needed for
this procedure to report asymptotically valid results for the nonfixed coefficients.

Inspection of specification (4.20) of fi(z) reveals that it satisfies the property

3£@
E(a%) = —E(St{(U] ® Xan) + (X ® Ui)}) = 0, “2D)

where Bi designates any element of the parameter vector 8, and X ); constitutes the
kth column vector of the matrix X;. Define the new system of equations

(0, 0@) = £2 (7, v, B,0(w)), 4.22)

where ,3 is a consistent estimator of §, and now specify f; in model (3.7) as

filmv. B.0@) = (£, 1.

Given (4.21), it is evident that this specification of f; satisfies the conditions of Propo-
sition 4.1, with the parameter vector y in this proposition interpreted as including
and ¢ in both fi(l) and fi(3), B only in fl.(l) ,and 6 () in fio), and with the parameter
vector u interpreted as including only 8 in fi(z). Thus, as indicated by Proposition 4.1,
NIV or 3SLS applied to the system of structural equations

( yi—Yim —Ziy — X;p )_(Ui>
SHO; — Yimr — Ziy — XiB) (i — Yimt — Ziy — XiB)} —0(@) ) — \ Vi)’
(4.23)
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with X; used as instrumental variables, yields consistent estimates of m, ¥, 8, and 6 («)
and asymptotically valid standard errors and test statistics. These estimates have the
same asymptotic efficiency as the ones produced by the above joint estimation pro-
cedure, but they are easier to compute since B is not estimated in the second set of
equations and parametric restrictions relating 8 in the two sets of equations are ig-
nored.

When 7 = 0 and ¥ = 0 — that is, when no lags in ¥;; and no predetermined or
endogenous variables appear in Equation (2.9) — then residuals alone can be used to
estimate covariance parameters. With Ul =y — X; /§ s fl.(3) in (4.22) becomes

2 =sdu.0!) —o.
A corresponding formulation for this system of equations takes the form:
ST,0/} =6 + vy, 4.24)

which constitutes a seemingly unrelated regression model with ﬁtiﬁ(tfk)i as depen-
dent variables and with only intercepts as explanatory variables. Condition (4.21) and
Proposition 4.1 imply that standard generalized least squares applied to model (4.24)
produces consistent estimates of the elements of 8 and asymptotically valid standard
errors and test statistics. To estimate the covariance parameters o, nonlinear generalized
least squares can be applied to model (4.24), with the functions 6 («) substituted for 6.

Estimating subsets of the equations in (4.24) offers a simple framework for con-
structing estimates of the covariogram and the correlogram, which are valuable data
analysis tools that can aid in choosing among competing specifications for the stochas-
tic process generating the disturbances. Since estimation of the model discussed above
requires only residuals, the model permits a researcher to ignore the specification of
the relationships among measured variables once such a specification has been chosen,
and to concentrate only on fitting the error process. Many simple tests are available
for distinguishing among competing specifications. For example, with the imposition
of linear constraints in subsets of equations in model (4.24), one can test whether au-
tocovariances of a given order are constant over periods, and one can obtain a unique
estimate of each autocovariance if the constancy hypothesis is accepted. Using these
results, one can also perform tests for nonstationarity and other forms of heteroscedas-
ticity. These preliminary data analyses are particularly useful for identifying the orders
of the autoregressive and moving average lag polynomials and for determining whether
it is reasonable to assume that the coefficients of these polynomials are constant over
time.

4.5. Direct estimation of autoregressive parameters
This discussion describes a simple procedure for estimating coefficients of the autore-

gressive lag polynomial a (L) without requiring the joint estimation of all the covariance
parameters, as required in the previous approaches. This procedure offers a useful
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framework for testing hypotheses that involve just the coefficients of a(L). To simplify
the exposition, suppose for the moment that the disturbances U;; are directly observed
and follow a mixed ARMAC(1, 1) scheme; in particular, Uy; = —a;Ug—1y; + &1 +
M1E(r—1)i-

This stochastic process implies that U;; satisfies the linear structural equation

Ui = _atU(tfl)i +ei, t=3,...,T, (4.25)

where the error e;; = &; + mig;—1); follows a first-order moving-average process.
The disturbance Uy; is predetermined for equation ¢+ = 3 in (4.25); the disturbances
Ui; and Uy; are predetermined for equation ¢ = 4, and so on, with Uy;, ..., Ui —2);
predetermined for equation ¢+ = 7. To use all the available predetermined variables
as instruments in the estimation of the a;’s, application of Proposition 4.2 considers
expanding the system beyond (4.25) to include the structural equations:

Ui-n)iUii = —a;Ug—iyiUp—1yi + €},
t=3,....,T, k=2,...,t—1), (4.26)

where e}, = Uq_pyie;; with Efef;} = 0. Formulating f; in (3.7) according to (4.9)
implies combining structural equations (4.25) and (4.26) to form f;;. Applying 3SLS
to this model with a constant as the only instrument in this procedure (i.e., with
Q; = 1in (4.5)) produces consistent estimates of @’ = (—as, ..., —ar) exploiting
Uji, ..., Uy—2) as instrumental variables in the estimation of the 7th equation.
Without data on U;, combined estimation of equation systems (4.10) and (4.26) offers
a framework for jointly estimating the structural coefficients and a. To translate this es-
timation approach into the notation of Section 3, split the vector of structural equations
fi in (3.7) into two subvectors so that f; = ( fi(l)/, fi(4)/)’ . As specified by (4.10), let
fi(l) denote the set of equations used in 3SLS estimation of the structural coefficients.
Further, let j = =2 4 (k — 1), wherek = 2,..., (r— 1) and7 = 3, ..., T. Then,
with y,; — Y(/t_l)l.rr — Z;, — X;; B substituted for U;; in Equations (4.26), form the

vector fi<4) whose jth element is given by
)
fji (. ¢, B.a) = [y(t—k)i - Y(/t—k—l)i” - Zét—k)iw - X(z—k)iﬁ]
X [(vi = Y1y = Zi¥ — X3, 8)
+ar(Ye-ni = Yoo = Zi_y¥ = X(_pyiB)]. - (427

Stacking (4.10) and (4.27) to obtain f;(w, ¥, B,a) = (f\V/, £ creates a model
in the form of (3.7). All the variables in X; can serve as instruments for the equations
incorporated in f; since U; is assumed to be independent of these exogenous variables.
Consequently, 3SLS applied to model (3.7) with this specification of f; yields consistent
estimates of m, ¥, 8 and a, along with the appropriate asymptotic standard errors and
test statistics.

As in the above case, joint estimation of these parameters can be simplified by eval-

uating B in fl.(4) at a consistent estimate 8, which avoids the need of imposing some
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(or all) of the nonlinear parametric restrictions in estimation. Define this new system of
structural equations as

Py, a) = [P, v, B, a). (4.28)

Differentiating the elements of fi(4) in (4.27) with respect to 8 and computing expecta-
tions at the true parameter values yields the result

(4)

of;

E /i =0. (4.29)
ap’

This finding implies that the stacked system of equations f; (7, ¥, 8, a) = (fi(l) ’, f,@ "y

satisfies the conditions of Proposition 4.1, with the parameter vector y in this proposi-

tion incorporating the coefficients & and ¥ in both fi(l) and fi(s), B only in fi(l), and a

in fi(s), and with the parameter vector p interpreted as including only B in fi(4). Thus,
according to Proposition 4.1, NIV or 3SLS applied to this specification of f;, with all
the elements of X; used as instrumental variables, yields consistent estimates of 7, ¥,
B, and a and asymptotically valid standard errors and test statistics.

For those models in which 7 = 0 and iy = 0, residuals alone can be used to estimate
the autoregressive parameters a. With these parametric restrictions, one can estimate
the coefficients a using only the equations in fi(s). Defining U;; = yii — X ﬁ, these
equations are

[’J\(;,k)il’]\;,' = _atﬁ(sz)iﬁ(tfl)i ~|—e;kl-, t=3,....,T, k=2,...,t —1. (4.30)

Condition (4.29) and Proposition 4.1 imply that 3SLS applied to this system of equa-
tions with a constant as the only instrument produces consistent estimates of the a
coefficients and asymptotically appropriate standard errors and test statistics.

Model (4.30) offers a valuable data analysis tool that can aid in determining the form
of the ARMA process generating disturbances. Testing the linear constraint that a; = ag
for all # provides a simple test for the constancy of autoregressive coefficients over time.
Of course, many such tests can be carried out using only subsets of the equations in-
cluded in model (4.30). It is straightforward to modify this model to admit a second or
higher-order autoregressive process, which provides the basis for testing for the pres-
ence of higher-order schemes. Changing the order of the moving average component of
the error process alters which of the past U —);’s are predetermined, and hence which
can serve as instrumental variables for each equation. Thus, increasing the order of the
moving-average process implies a reduction in the number of equations that can be in-
cluded in model (4.30). Furthermore, increasing this order precludes the possibility of
using this data analysis framework to estimate some period-specific values of a for the
early periods of the sample.

4.6. Estimation of the partial correlation coefficients

Another useful data analysis tool found in the time series literature is the partial correla-
tion function. The kth order partial correlation coefficient associated with the stochastic
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process generating U;; corresponds to the coefficient agy, in the regression equation

Ui = —ar1Ug—1yi — -+ — @ik U—kyi + i (4.31)

where the error 7;; is uncorrelated with the regressors Ug—1y;, . .., Ug—k);-

The procedures outlined in Section 4.5 provide a method for estimating the coeffi-
cients agy; for different orders and time periods. In the application of these procedures,
the disturbances U(;_1);, ..., Uy—k)i are considered to be predetermined for the equa-
tion corresponding to period ¢, but are not necessarily predetermined for any other
equation. Thus, to estimate the first-order partial correlation coefficients for periods
t = 2,..., T using the above procedures, one would set k = 1 in Equation (4.26) with
ay1; substituted for a;.

When the Uy;’s represent disturbances from a regression equation (i.e., when v = 0
and ¥ = 0 in Equation (2.9)), a more elementary approach exists for estimating the
coefficient ayj,. With ﬁn‘ =yi — X ;lﬁ denoting the least squares residuals, consider
the seemingly unrelated regression model

Ui =—axUg—1yi — —aaUg—tyi + 050 t=k+1,...,T. (4.32)

Generalized least squares applied to this model can be shown to produce consistent es-
timates of the coefficients ayj, and appropriate large sample standard errors and test
statistics.? Estimating these coefficients imposing equality constraints across the equa-
tions of this model (i.e., ayj; = ai;j fort = k +1,..., T) generates a unique estimate
of the kth order partial correlation coefficient and an asymptotic standard error for this
coefficient. Graphing these constrained estimates of the ay;’s for each value of k cre-
ates the sample partial correlation function, which is useful in the identification of time
series processes.>!

4.7. Direct estimation of moving-average parameters

This last procedure provides a method for estimating parameters associated with the
moving average component of the ARMA process. These parameters include the coef-
ficients of the lag polynomial m (L) and the variance of the white noise errors, which
are grouped into the parameter vector A. There are no new concepts encountered in this
estimation method.

Continuing to assume, for expositional simplicity, that an ARMA(1, 1) process gen-
erates Uy;, the errors e;; = &; + m1&¢—1); appearing in Equation (4.25) capture the

30 10 verify this claim, write the seemingly unrelated regression model obtained by combining Equa-

tions (4.32) as @; = H;p + n;, where o; = (Upy. .. ., 17(;(+1),-)’. With 2 = E{n;n}), generalized least
squares applied to this model yields the estimate p = [ZIN:I Hi’fZ\*lHi]*l[ZfV:I Hi/fz\*la)i]. In terms of
the framework of Section 3, this GLS estimate is obtained when f; = Hiﬁ_l (wj — Hip) and Q; = 1in

(4.5). For this specification of f;, the conditions of Proposition 4.1 hold with y = p and with /& interpreted
to include B and the elements of £2.
31 Section 7 presents an application illustrating this claim.
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information about the moving average portion of this process. Define the vector of errors
associated with Equations (4.25) as ¢; = (e, ..., e3;)’. The moving-average parame-
ters A determine the parameterization of the variance—covariance matrix R = E{e; el’. 1.
Given data on ¢;, one could estimate the elements of » = St{ R} by applying generalized
least squares to the model St{e;e/} = r + v; — analogous to the regression model for
St{U; Ul./ } given by (4.12). With the functions r () substituted for » in this model, one
could estimate the parameters A by nonlinear generalized least squares.

As in the previous analysis, jointly estimating parameters provides a method for esti-
mating r or A without data on e;. Observe that

eri = (yi = Y(_1m — Zyi¥ — X;B)
+ar(Ya—vi = Y0 = Z(ypyi¥ — X(i_1yiB)-
Corresponding to the system of equations included in St{U; U/}, form the vector of

equations fi(é) whose jth element is:

(v Boa.r ()
=i = Y1y = Zi;¥ — X, 8)

+ar(ya—1i = Y(_0® = Zs_1¥ — X1 B)]

X [(Va-ri = Yooty = Z—ii¥ — X(o—1i B)

+ @k (Ya—k-1)i — Y(/t7k72)i7r - Zétfkfl)il/f - thfkfl)iﬂ)]’ (4.33)
with j = E0TH=D 4 p g2y fort =T,...,3,andk = (1—3), ..., 0. Combining
these equations along with those in fl.(l) and fl.(4) creates a model in the form of (3.7)
with

filw . Brar ) = (£ 12 10

Applying 3SLS to this model, with the exogenous variables X; used as instruments, pro-
duces consistent estimates for , ¥, 8, a and r (or A) and asymptotically valid standard
errors and test statistics.

To reduce computational burden, this estimation procedure can be carried out with g

in fi(4) and fl.(é) replaced by a consistent estimate 4. With

FP (v a,r ) = (O v, B.a, 1), (4.34)

this approach involves 3SLS applied to model (3.7) with fi(mw, ¥, B,a,r(})) =
( fi(l)/, fi(s)/, fi(7) ’)’ and with the elements of X; used as instrumental variables. Con-
dition (4.29), along with the finding

(6)
E(af’ ) =0, (4.35)
ap’
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implies that this specification of f; satisfies the requirements of Proposition 4.1. Con-
sequently, application of 3SLS to this model not only yields consistent parameter esti-
mates, but also the appropriate large sample standard errors and test statistics.

Once again, as in the previous approaches, if # = 0 and ¥ = 0, then the sys-
tem of equations in fl.(l) can be eliminated from the model and only data on residuals
are needed to carry out estimation. With ﬁn‘ = Vi — X;i,é, the vector fj(a,r(A)) =

( fi(s) !, fi(7) ") includes equations of the form

fj(tfk)iﬁti = _atﬁ(tfk)iﬁ(tfl)i +ef, k=2,...,t—1,1t=3,...,T,
(Ui + a:Ug—1yillUq—jyi + ar—jUq—j—1yil = rje + 07y,
i=(=3),....0,t=T,....3. (4.36)

Applying 3SLS to this system of equations using a constant as the only instrumental
variable produces consistent estimates of a and r (or 1) and asymptotically valid stan-
dard errors and test statistics.

Similar to model (4.24), model (4.36) offers a relatively simple framework for con-
structing estimates of the covariogram and the correlogram associated with the moving
average component of the error process, both of which are useful for preliminary data
analysis. After one has settled on the specification of the autoregressive component,
model (4.36) can potentially be useful for testing for various features of the moving-
average process, such as whether it is stationary or the length of its order.

5. Estimating dynamic quantile specifications

An attractive alternative to estimating moment relationships characterizing the micro
intertemporal properties of variables involves using conditional quantile regressions
to describe these dynamics. This section presents a flexible empirical approach based
on nonlinear instrumental variable specifications for estimating autoregressive quantile
equations, exploiting the procedures outlined in the previous discussion.

5.1. Using nonlinear instrumental variable procedures to estimate quantile regressions

A familiar empirical formulation for modeling the growth of wages experienced by
individuals in longitudinal data takes the form:

Yii = P1Ye—-Di + -+ PrYe—r)i X;i.Bt + Vi
=Y, 1P+ XB+vi, t=1,...,T, i=1,...,N, G-

where y;; is the dependent variable for the ith individual in the ¢th year, X;; is a vector
of exogenous measured variables, and the coefficients p; and B, are parameters. (The
t = 1 period in (5.1) corresponds to the first period in which a researcher has data on
all ys, ..., y¢—ri.) The elements of X;; include exogenous variables such as year and
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age effects, measures of educational attainment, and gender and race indicators. The
following analysis assumes the error v;; is distributed independently both over time and
across individuals. Thus, the autoregressive coefficients p; characterize the dynamic
properties of the dependent variable after removing trends. For notational simplicity,
the subsequent discussion typically ignores the i subscript on variables.

One can associate relation (5.1) with an autoregressive formulation of the xth percent
quantile of the Markov distribution of y; by imposing the restriction:

G Wil Ya—1yi» X1i) =0, (5.2)

where ¢, () designates the «th percent quantile of the distribution of v;; conditional on
Y(—1); — a shorthand notation signifying all the past wages y—1); . . . Y(1—r)i appearing
in (5.1) — and Xy;, where « € (0, 100). When « = 50, Equation (5.2) determines
how the conditional median of y, evolves over time. Although LAD procedures provide
consistent estimates of the autoregressive coefficients appearing in (5.2), they have not
been extensively employed.

5.1.1. Representing dynamic quantile regressions as nonlinear simultaneous equations

A class of estimators based on simultaneous equation models provides a flexible and
noncumbersome procedure for estimating parameters of the dynamic quantile wage
growth equation introduced above.3? Conditioning on exogenous and predetermined
instruments, this method specifies conditional quantiles of the structural error distribu-
tion as moment conditions capable of being estimated within a conventional nonlinear
instrumental variables framework of the sort described in Section 3. This apparatus
matches the sample analog of the conditional quantiles against their population values,
employing a smoothing procedure familiar in various problems in nonparametric infer-
ence and simulation estimation. The analysis applies standard arguments to demonstrate
consistency and asymptotic normality of the resulting Smoothed MM Quantile estima-
tor.

To apply this MM quantile procedure, let y; denote the dependent variable in year ¢,
and let X; denote the exogenous variables such as demographic characteristics. We are
interested in obtaining information about the distribution of y, conditional on X; and
Y;_1 (past values of the dependent variable). Let g, (Y;—1, X;) represent the «th percent
quantile of this conditional distribution, where « € (0, 100). This defines the equation

Pf()’t < qe(Yio1, X)|Y—1, Xt) =K, (5.3)

which underlies the construction of most quantile estimation procedures. The Smoothed
MM Quantile estimator uses relation (5.3) to form moment conditions. This relation
implies the condition

E[1(y: < qe(Yi—1, X1)) —|Yio1, X;] =0, (5.4)

32 The material presented in Sections 5.1.1 and 5.1.2 draws heavily on MaCurdy and Hong (1998).
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where 1( ) represents the indicator function which takes value 1 when the condition
expressed in the parentheses is true, and 0 otherwise. The indicator function inside the
moment condition is neither continuous nor differentiable.

To develop a variant of this relationship capable of being specified as a moment con-
dition in the standard framework of nonlinear method of moments estimation, observe
that a smooth representation of this condition takes the form:

E[ lim q><y’_q“(y""x’)) —a —K)i| =0, (5.5)

N—o00 SN

where N represents the sample size, @ is a continuously differentiable cumulative distri-
bution function with bounded symmetric density function ¢, and sy is the “bandwidth”
function of N that converges to 0 as N goes to 0o at a rate slower than N~!/2. The
following analysis selects @ to be the standard normal cumulative distribution function;
a natural alternative choice would be the logit or any other cdf.

The specification of the conditional quantile function adopted in our characterization
of wage dynamics is the linear distributed lag relation:

G, Yio1, X0) = p1ye—1 + -+ pryi—r + X1 ;. (5.6)

Given longitudinal data for a sample of individuals i to estimate this conditional quan-
tile, the variant of the nonlinear simultaneous equation implied by (3.7) takes the form:

Vi = PIYG-1)i ~ — prya—ni — X;br
fn~=ﬁ,~(p,ﬂ>=¢< AL PSP ) (1 - k)
SN
= Ui, (5.7)
where Uy is treated as a structural error with E (Ui |y—1yis - - - Ye—r)i> X1i) = 0.

5.1.2. Nonlinear instrumental estimation of quantile specifications

Viewing (5.7) as a system of nonlinear simultaneous equations, application of con-
ventional nonlinear IV or 2SLS/3SLS procedures to (5.7) yields consistent p and 8
estimates possessing large sample normal distributions. The formal proof of this propo-
sition assumes the bandwidth parameter sy = N~¢ for 0 < d < 1/2.3% One can
readily verify that when sy — 0, @ () converges almost surely to the indicator function
1(yr > q«(Yi—1, X¢)). Since @ is a bounded function, one can exchange the expecta-
tion and limit operators to obtain the above smoothed moment condition. A generalized
nonlinear two stage least squares estimation routine can be directly applied to this as-
ymptotic moment condition. The estimation approach selects instrumental variables that
are conditionally independent of the error terms defined by

1()’t > g (Yr—1, Xt)) — (I =x).

33 The condition imposed on the convergence rate 0 < d < 1/2 is needed for the proof of asymptotic
normality.
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The resulting Smoothed MM Quantile (SMMQ) estimators are consistent and asymp-
totically normally distributed with standard errors computed using robust methods.
Simulation exercises reveal that this procedure accurately reproduces estimators and
test statistics generated by conventional quantile estimation approaches.3*

The selection of the value of «; in (5.7) determines the quantile estimated in the non-
linear IV estimation analysis. Setting k; = k50 = 0.5 estimates the median, whereas
setting k; = k25 = 0.25 estimates the lower quartile and «; = k75 = 0.75 the up-
per quartile. Conceptually, one can generalize specifications (5.6) and (5.7) to allow
parameters to be year (or age) dependent. Estimation in this instance would require an
equation for each quantile for each year (or age) that a person has current and past
wage observations. Within- and cross-equation restrictions on the quantile regression
coefficients could be imposed in the standard way using the multi-equation MM frame-
work discussed below. If weighting is required to adjust for the stratified character of a
dataset, then one applies the procedures summarized in Section 6.

5.2. Jointly estimating combinations of quantile regressions

This estimation framework extends readily to consideration of a set of quantile relations.
This set may describe how a particular percentile of a distribution evolves over time, or
it may summarize the relationship among several different percentiles of a conditional
distribution, either in a single period or over time.

5.2.1. Nonlinear instrumental variable estimation of quantiles in panel data

Understanding how the jth quantile of wage rates shifts over time in a longitudinal
setting involves estimating variants of (5.7) for each period available in the dataset. Al-
lowing for the coefficients of this conditional quantile to vary over periods, the nonlinear
structural equation representation of the « ;th percentile for individual i in period ¢ takes
the form

g = ¢(y,,- = PAYa—1)i = = PrYa—r)i —
rn —

X'
- ”ﬁ’> —(l—k)=U; (58
fort =1,..., T. Conditional on past wages, Y(—1)i, - - . » Yt—r)i»> and Xy;, the error Uy,
has mean 0. Constraining the coefficients p;,, = p,, for all 7 yields a parameterization
analogous to a conventional ARMA(r, 0) process.

With the structural errors Uy; distributed independently over time as well as across
individuals, nonlinear 2SLS offers a simple procedure for estimating the coefficients p;
and B — assumed here to be constant over time. This approach treats each g;; in (5.8)
as a separate observation, with the sample made up of all the combinations of (z, i)

34 MaCurdy and Hong (1998) explore the performance of various choices for the bandwidth parameter in a
simulation study; the estimation analysis below relies on the results of this exercise.
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wheret = 1,...,T andi = 1, ..., N. The instrumental variables used in estimation
consist of functions of y;—_1y;, ..., y¢—r) and X;;. Expressed in terms of the notation
of Section 3, this estimation procedure amounts to setting

fi=gj; and Q; = {functions of y;_1)j, ..., y¢—r); and X;;}
wheret =1,...,Tand j=1,..., N. 5.9

This formulation for f; substitutes for (3.7), with the index i merely counting all ob-
servations obtained by stacking the time series observations for all individuals. If one
suspects the errors Uy; are heteroscedastic, then nonlinear 2SLS estimation should be
implemented calculating robust standard errors corresponding to the asymptotic distri-
bution (3.11).

Alternatively, if one wishes to allow for an individual’s U;; errors to be dependent in
some way over time, with Uy;’s still being independent across individuals, then multi-
equation methods incorporating predetermined variables described in Sections 3.2.1
and 4.1.3 offer an approach for estimating the parameters of (5.8). The predetermined
variables include the past values of wages, so the analog of regression equation (4.7)
becomes

yi=68&0i+ni, t=1,...,T. (5.10)

The regressors Q; incorporate all of the exogenous variables of the model, including the
relevant functions of the components making up X;. The implied formulation for f;; in
this case is

8ti
ﬁ(z—l)igzi
fri(y) = . , t=1,...,T. (5.11)
N(t—r)i8ti
The parameters y include all the coefficients po;1, ..., ps, Br fort = (r +1),...,T.

(These coefficients may be constrained.) Relation (4.9) gives the specification for f;;.
In constructing f;;, one can replace the 7),; with functions of the 75;;. Moreover, one can
expand f7; to include additional elements involving extra functions of the 7;;. Formulas
(3.21) and (3.22) give the optimal specification for the instrumental variables.

5.2.2. Estimating dynamic specifications describing several quantiles

Suppose a researcher wishes to estimate more than one quantile to describe the evolution
of the wage distribution more fully. In particular, suppose interest focuses on estimating
the J quantiles 0 < k1 < k3 < --- < Ky < 1. The system of J nonlinear simultaneous
equations providing for the estimation of these percentiles takes the form

Y = Gic;t (Yi—1, Xy)
8jti = Cb( !
SN

)—(1—K,-)=o, =1, (5.12)
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These equations apply to period ¢. Introducing a variant of system (5.12) for each avail-
able period in panel data permits an analysis of how these J quantiles shift over time.

Each of these equations can be separately estimated using single equation two-stage
least square methods. To improve efficiency given the available instruments, one can
apply a three-stage nonlinear least squares or joint-equation MM estimation procedure
by weighting the J equations optimally. Under the conditions noted briefly in Sec-
tion 5.1.2,% the nonlinear instrumental variable procedures presented in Sections 3 and
4 applied to (5.12) produce consistent estimates and valid asymptotic distributions for
the coefficients of the quantile functions. The optimal weighting matrix is determined
by the variance—covariance matrix of J sign-variables defined by

Uy > g, Yo X)), j=1.....J. (5.13)

This matrix depends only on the «’s associated with the specific distribution of the error
term. In particular, Var[1(y; > g, (Y;—1, X;)] = k(1 — «), and for k, > «;,

COV[l()’t > 6]/«p(Yt—l, Xt))v I(Yt > Gk; (Yr—1, Xt))]
=1—kp—(1A—kp) —«j). (5.14)

One can permit flexible and unknown forms of heteroscedasticity in calculating the
optimal weighting matrix used in MM estimation. Incorporating these generalizations
involves implementing the conventional approach utilized in multiple-equation MM
procedures.

6. Use of sample weights and unbalanced data

When and how to weight data are two of the most important and least understood
concepts in estimation. The subsequent discussion begins with the basic principles un-
derlying weighting, and then summarizes how these basics apply to MM estimation with
longitudinal data with nonlinear specifications. The discussion documents how one must
modify MM formula to account for stratified sampling. The section ends by describing
a modified weighting-type procedure enabling researchers to use conventional methods
to estimate intertemporal specifications using unbalanced datasets — datasets not supply-
ing a perfect overlap in the time periods for individuals included in the cross-sectional
samples.

6.1. Basics of weighting to account for stratified sampling

Practically all micro data are collected using a stratified sampling frame, meaning that
observations with particular characteristics are drawn in proportions differing from

35 See MaCurdy and Hong (1998) for more details.
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those of the true population. Throughout this section, the discussion considers house-
holds as observations, but the weighting procedures outlined here obviously apply for
whatever observation unit happens to be relevant for an analysis, such as individuals or
firms. The true population refers to the group whose distribution a researcher wishes to
discern.

Suppose one would like to infer the mean of a variable y, say income, in a population
with households of two types: Type 1 and Type 2. Type 1 may refer to a poor house-
hold, and Type 2 to a nonpoor household; alternatively, Type 1 may designate a black
family, whereas Type 2 indicates a white one. In the true population, assume Type 1
households make up proportion P; of the population, and Type 2 households constitute
the remaining P, = (1 — Pj) proportion. Thus, P; represents the probability that a
randomly drawn household from the true population is Type 1. With y; denoting the
value of y for household i, suppose the expected value of y differs for the two types of
household with

E(yi|Type 1) = u1, E(yi|Type 2) = ua

Thus, the mean of y in the population is

E(y))=pn=pm P+ p2Pa. 6.1)

A stratified sample includes observations on household types in proportions that dif-
fer from P; and P». Data collectors may want an oversample of poor or black families
to enable them to learn about the circumstances of these groups with added precision.
Suppose this oversample occurs for Type 1 households; out of a sample of size N, N
are of Type 1 with the sample share S| = Ni/N > P;. The sample average of y equals

§=NZ —Sl— > yz+Sz— >

1 {1€Type 1} {zeType 2}
= S1i1 + S2022, (6.2)

where $ = (N — N1)/N = N> /N, and

Z i, J=12.

{ieType j}

The sample mean f[i; calculated over Type j households in the sample consistently
estimates the expected value p ;. Since the sample shares S and S, do not converge
asymptotically to the true population shares Py and P,, y clearly does not consistently
estimate .

Weighting the data solves this problem. Define the weight for observation i as

w; = —, (6.3)
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where j signifies household i’s type. Weighting observations and recalculating the sam-
ple mean yields

sz)’z —Slwl_ Z Vi +S2w2_ Z Vi

{zeType 1} {1€Type 2}
= le + P2t = i 6.4)

The use of a weight inflates observations that are under-represented and deflates values
associated with over-represented households.

6.2. Weighting to account for more sophisticated sample stratification

One can readily generalize the above scheme to admit many types of households. Sup-
pose the vector of characteristics X; designates a household i’s type, and the share of
this type in the overall population equals P; = P(X;). The expected value of y in this
population is

N N
w=>Y EW|X)P(X;) =Y wP
i=1 i=1
With S; representing the share of Type X; in the sample, the weight for observation i
with these characteristics is
w; = i (6.5)
S

Computing the average of the sample using weights (6.5) yields
N
v L =Esuly Tl
i=1

N {i€Type j}
= Z Pjji;
j

N
= Z Py = [i. (6.6)

This relation generalizes (6.4). In the first and second lines of (6.6), the index j desig-
nates types. The last line presumes each observation is its own type, producing the most
general form of weighting.

6.2.1. Typical form of weights provided in survey data

Datasets often report weights in a way such that adding weights for observations of
a particular type X; yields the total number of households of that type in the overall
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population. Thus, in place of (6.5), datasets may provide the weight:

%
w;

1
N P; - (Total number of households in true population)
i

1
= I w; - (Total number of households in true population). (6.7)

The i subscript in these expressions designates observation i’s type. Summing these
weights over all members of types in the set K yields

1
Z w} Z Nw j[ Z 1:| - (Total number in true population)

{ieK} {jeK} {i€Type j}

1
= Z Nw ;N - (Total number in true population)
{jekK}
= Z P; - (Total number of households in true population)
{jek}
= Total number of households in true population of types included
in the set K. (6.8)
Thus, when the set K includes all types j, this quantity measures the total number of
households in the true population; equivalently,

N
Z w = Z w; = Total number of households in true population.
{ick) i=1

Computing weighted averages of the observations y; to estimate expected values of y
in the true population takes the form

1 > Kwy
N O wiyi= S = 3 Py = (6.9)

{iek} Z{ZEK {iek}

The last step in (6.9) treats every individual as his/her own type, with K covering all
possible types. The standard error of this estimated mean is the square root of the quan-
tity
v X lw—if =55 3w
{ieK} {ieK}
. 2iiexylwf yil? B i[Z{ieK} w;y; T
D jiek) wiT? D jieky Wi

Most software packages use these formulas to compute weighted means and their asso-
ciated standard errors.’®

(6.10)

36 Software packages often present several options for using different forms of weights.
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6.2.2. Calculating statistics for subpopulations

Instead of representing the entire population, suppose the set K includes only a subset
of household types. Let wg designate the mean of the subpopulation comprised of all
household types making up the set K. A consistent estimate of this mean takes the form

Tck) Wi 3L wf )3 Loy
- N Vi)
Diien) Wi Lyek) Wi fg N

Z{:;w Zs‘”[ > ]

{jekK} ] {ieType j}
—1
Zl Z Pii;
{IEK} jEK}
= k. (6.11)

In this weighted average, note that the expression

corresponds to the proportion of Type j households that make up the true subpopulation
defined by set K.

The variable y; in the above discussion can represent any general quantity of the
data, including higher-order terms, allowing the estimation of higher order moments
of y. This analysis merely shows how to estimate moments associated with the true
population using observations from a stratified sample. As one example, a consistent
estimate of the variance of y; in subpopulation K is:

Yieky wilvil? [Z{ieK} wiyi :|2
D fick) Wi D lick) Wi

Note, in contrast to the classic unweighted case — which corresponds to the situation

w} = 1 for all i — the square of the standard error of the weighted estimated mean is

not proportional to the estimated variance of y;. Weighting alters the variability of the
sample average.

E(y*lli € K}) — [E(vlti € K})]* =

6.3. Weighting in method-of-moments procedures to compute estimators

Nonlinear functions of variable and parameter vectors can also be represented by the y;
variable in the above discussion. The analysis merely shows how to estimate moments
associated with the true population using observations from a stratified sample. An
important question concerns how these lessons can be implemented using the general
estimation procedures described in Section 3.
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As noted in Section 3, MM procedures minimize a distance function of the form
(3.2) to compute estimates () for the parameters y. The quantities Ly (y), Vn(y), and
Sn (y) appearing in (3.2) and (3.3), which specify the asymptotic distribution of y, take
the form

1 N
Ly(y) =5 ) i), Sv

i=1 i=1

| X
V) = ;mm(w.
As in the previous analysis, the matrix Hy appearing in distance function (3.2) and the
asymptotic distribution (3.3), is any positive definite matrix.

The asymptotic properties of the estimator y critically rely on Ly(y9) <> 0, and
this convergence property in turn relies on the sample average of the £; (y)’s converging
to an expectation of zero based on the true distribution. Thus, to have average (3.1)
converge to the appropriate expectation in the case of a stratified sample, one replaces
Lx(y) by its weighted counterpart

Yex) WEG(G) 1
Ly(y) = S & —ms = 3 wili(y), (6.12)
Z{iek} w; iek}

where the set K includes all types included in the overall dataset. The corresponding
formulations for Sy (y) and Vi (y) take the form

D _liek) wl*% Vn(y) = 1Y jiexy Wit (y)
Yiexy Wi V=N ek wiT?
With (6.12) used to construct the distance function (3.2) with any positive-definite
matrix Hy, the extremum estimator y consistently estimates the value of y associ-
ated with the true population. Moreover, y possesses asymptotic distribution (3.3) with
\7N = Vy(y) and §N = Sy (y), where (6.13) gives the formula for Vx(y) and Sy (y).
The generalized least-squares variant of the distance function providing for the com-
putation of the most efficient method-of-moments estimator 7 is still the function C(y)
specified by (3.4). The quadratic form matrix in C(y) is the inverse of \7N = Vn(y),
with (6.13) again giving the formula for Vi (y), and y being any consistent weighted
estimator. The extremum estimator 7, the value of y minimizing C(y), consistently
estimates the value yq associated with the true population. Moreover, y follows an as-
ymptotic distribution given by (3.5) with (6.13) giving the formulas for Vx(y) and

Sn().

Sn(y) =

6.13)

6.4. Weighting in LS and instrumental variable procedures to compute estimators

What are the implications of applying the above weighting procedures for implementing
least squares? For nonlinear least squares? For nonlinear 3SLS?
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6.4.1. Familiar form of weighting in LS procedures

For least squares, consider the simple linear model
yi=Xjy+& i=1,...,N.

Expressed in terms of equation system (3.7), this relation translates as
fi=yi—Xjy=4&. (6.14)

Least squares amounts to selecting the instrumental variables Q; = X;, and minimizing
distance function (3.2) with

N
1
L) =D iy),  where £i(y) = Xi(yi — Xjy),
i=l (6.15)

1 & -
Hy = [ﬁ inxg} :
i=1
The implied formulations for the matrices Sy and VN are:
~ 1 ) ~ 1 -
Sy = _[ﬁz,-(x,-xl.)}, Vy = [ﬁz,»(x,»xg;?)]. (6.16)

Since the system of equations Ly = 0 fully defines the least squares estimator y (i.e.,
the number of equations equals the number of elements estimated in y), asymptotic
distribution (3.6) approximates the large-sample distribution of . The formula for the
variance—covariance matrix in (3.6) provides for the computation of robust standard
errors. Obviously, under the assumption of homoscedasticity, this formula simplifies to
the familiar least squares specification.

Weighting to account for stratified sampling amounts to computing a least squares
estimator (or generalized least squares estimator) for the equation

Jwiyi = JwiXjy + Jwiki.

Considered in the context of the general estimation approach described in Section 3.1,
this estimation procedure sets

fi = Jwilyi — Xjy] = Jwiti, 6.17)

and selects the instrumental variables Q; = ./w; X;. The weighted least squares esti-
mator y,,, minimizes the distance function (3.2) with

N
1
Ly(y) = ~ ZZ,»(;/), where ¢; () = w; X; (vi — X}y),
i=1
(6.18)
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The implied formulations for the matrices §N and VN are:
~ 1 ~ 1 ~
SN = —[NE,- (w,-X,-X;)i|, VN = [NZ, (wIZXlX{EIZ)} (619)

The specification for L in (6.18) clearly possesses the form required by (6.12) to adjust
for the use of a stratified sample, so y,, consistently estimates the value of y associated
with the true population. Asymptotic distribution (3.6) approximates the large-sample
distribution of y,,, with (6.19) serving as the components appearing in the formula for
the variance—covariance matrix of this distribution.

Although the variance—covariance formula agrees with what one would obtain
through computing robust standard errors by applying least squares to estimate the
weighted regression equation (6.17), be aware that this formula is not the one typi-
cally reported by weighted regression software packages. These packages presume that
weighting is done to induce homoscedasticity, which renders the matrix Vy propor-
tional to §N with the factor of proportionality consistently estimated by

1 ~
5'1%/ = |:N21 (w,'f;'iz):| .

This simplification relies on the assumption that Var(§;) is proportional to w;. There
is little reason to believe this relationship holds in a stratified sample, for the sampling
weights are not designed with this consideration in mind. For example, it is possible
for a stratified sample to have different means but the same variances across groups. In
this case, weighting is needed to compute means for the overall population, but a sim-
ple average estimates variances. Weighting in this instance induces heteroscedasticity.
The variance—covariance formula appearing in (3.5), with (6.19) inserted as the compo-
nents of this expression, consistently estimates the appropriate standard errors and test
statistics regardless of how weighting alters the variances of disturbances.

6.4.2. Weighting with LS interpreted as an IV procedure

Alternatively, representing the weighted least squares estimators within a 2SLS frame-
work offers an approach for computing the appropriate standard errors when one is
willing to assume the regression errors & are homoscedastic across observations. Desig-
nate the specification for f; by (6.14), and implement 2SLS selecting the instrumental
variables Q; = w; X;. The application of 2SLS minimizes distance function (3.2) with

N
1
L) =5 ) biy),  where ti(y) = wiXi(yi = Xjy),
i=1
(6.20)

N -1
1 2
Hy = |:—N i_E 1 w; X,‘Xl/-:| .

Relations (6.19) give the implied formulations for the matrices Sy and Vy. As men-
tioned before, the specification of Hy is irrelevant in the calculation of estimates with
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the form of Ly given by (6.18) — in the terminology of 2SLS, this equation is exactly
identified. So, the weighted least squares estimator 9, is the 2SLS estimator. Asymp-
totic distribution (3.6) once again approximates the large-sample distribution of 7,,, with
(6.19) serving as the components appearing in the formula for the variance—covariance
matrix of this distribution. Carrying out 2SLS estimation with the robust standard error
option selected to calculate standard errors uses this formula for the variance—covariance
matrix. If one assumes the errors £ are homoscedastic, then the conventional standard
error formula for 2SLS consistently estimates the variance—covariance matrix of (3.6).
This 2SLS representation of weighted least squares readily accommodates the non-
linear regression case. One computes the weighted nonlinear least squares estimator
using nonlinear 2SLS procedures by specifying f; = y; — g(X;, y), where g is a known

nonlinear function, and selecting the instrumental variables as 37.
agi
Qi =wim| .
vy

With these specifications of f; and Q;, all of the above findings apply in computing the
weighted nonlinear least squares estimator and its asymptotic distribution.

6.4.3. Weighting in nonlinear IV procedures

Now consider NIV and nonlinear 3SLS estimation with weighting, which encompass all
other linear and nonlinear MM procedures. Application of weighted NIV to the model
specified in system (3.7) selects the instrumental variables

Qji =wGj, (6.21)

where G j; represents the instrumental variables a researcher would use in the absence
of weighting. The implied formulation for the ¢;’s in the NIV framework takes the form

LN Lri(y) | w; G fri LN Ori fri
mor=t ()i () ks
N 4 ) N 4 : N 4 :
=1\ Ly (y) =1\ w;Gy; fii =L\ Qi fii
L
=~ ZAifi, (6.22)

i=1
where the matrix A; is given by (3.9). (Relation (6.22) presumes consideration of only a
single structural equation per period for expositional simplicity; inclusion of Kronecker
products in forming the ¢;’s as in (3.8) will generalize this expression to permit consid-
eration of multiple structural equations per period.) The specification of Ly implied by
(6.22) clearly possesses the form required by (6.12) to adjust for the use of a stratified

37 Note, this specification of Q; corresponds to the weighted value of the optimal choice of instrumental
variables presented in (3.13).
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sample, so the value of y,, minimizing distance function (3.10) consistently estimates
the value of y associated with the true population. Moreover, the weighted estimator
Pw possesses asymptotic distribution (3.11). If the homoscedasticity assumption applies
for the structural errors &;, then 7, can be interpreted as the nonlinear 3SLS estimator
obtained by minimizing distance function (4.3), and (4.4) gives the asymptotic distrib-
ution of y,,. An equivalent representation has the 3SLS estimator y,, minimize distance
function (4.5) with its asymptotic distribution given by (4.6), where the quantities w; Q;
replace Q; in these expressions.

6.5. Which weights should be used in longitudinal analyses?

The selection of weights appropriate for a panel data exercise requires the following
steps: first, a decision of exactly which population a researcher wants to emulate; and,
second, a clear understanding of what the weights are intended to represent. Documen-
tation accompanying survey data on weights seldom discuss their use other than vaguely
noting the broad category of the population the weights are meant to replicate. For ex-
ample, there are usually weights for estimating relationships involving observations on
individuals, and weights for families. The choice among these options is usually ob-
vious since one emulates the population of individuals for some region or age range,
and the other models a population of families or households. However, there are often
different sets of weights for each year as well, leaving the question of which to use.

To discuss the principles underlying the answer to this question, return to the problem
of estimating the expected value of a variable y;;, where i refers to a household and ¢
designates the year. The variable y may represent a simple variable such as income, or
it may equal the product of income in the current period and some previous period. To
estimate the mean of y in the target population using the framework outlined above, the
specification f;; in equation system (3.7) takes the form

fi=yi—y=&; t=1..T i=1..N. (6.23)

With G4; again representing the instrumental variables used ignoring weighting, replace
the weighted variant of instrumental variables appearing in (6.22) by the quantity

Ori = wyi Gy, (6.24)

with the specification of w;; designated below. In the estimation of Equation (6.23), the
constant G;; = 1 constitutes the only instrumental variable. The implied formulation
for the ¢;’s in the MM framework becomes

Ori fri

1 . 1
NZ : = NZ : NZ :
=1\ Ly (y) =1\ wy; Gy fii '\ Qi fii

N [(Lri(y) L wriGTi fri N
Ly(y) :
i=

1 N
¥ > Aifi, (6.25)
i=1
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where relation (3.9) gives the formula for the matrix A;. Implementing the weighted
NIV procedure described above produces consistent estimates for the value of yy asso-
ciated with the true population assuming the weights correspond to this population.

So how does one select the wy; ? Rarely would one select the w;; to be the annual
weights provided in survey longitudinal data. The annual weights are meant to adjust
for the fact that households attrit from the sample over time, and this attrition does not
occur randomly across household types. Moreover, these weights may also adjust to
recognize that, for example, the national population changes due to immigration. These
adjustments recognize that what was representative in one year is not representative a
decade later.

Most empirical analyses investigating intertemporal relationships work with balanced
data, meaning that all observations i are deleted from the dataset if any of their obser-
vations (¢, i) are missing. Suppose a researcher wishes to estimate relationships over
the period 1 to T, and uses all data on households i who are in the data in period 1 and
still part of the dataset through period 7. Conceptually, the weight wr; would be the
proper one to use in such analyses; so, in (6.24) and (6.25) one would set w;; = wr; for
all z. This selection would also be appropriate if the researcher conducted the analysis
starting after period 1.

The validity of this choice, of course, critically depends on the weights properly ad-
justing for attrition. The circumstances under which weights accomplish this task rely
on accounting for the potential presence of endogenous sample selection, an exceed-
ingly complicated problem that requires implementation of a structural analysis to infer
corrected probabilities of sample inclusion. This significant topic is beyond the scope of
the chapter.®® Additional problems can arise if the annual weights in longitudinal data
attempt to adjust for recent-arrival immigrant households who were underrepresented
in the original sample. For the weights to adjust properly for stratification, a researcher
must presume that households designated to be equivalent by sample weights do not
differ depending on whether they are original-sample or recent-arrival immigrant house-
holds.

6.6. Estimation with unbalanced data

What about using all observations available in panel data to estimate relationships, irre-
spective of whether these observations come from households who were not represented
in some years? Using an unbalanced dataset requires adjustments to the output of test
statistics reported by conventional estimation procedures.

6.6.1. Characterizing estimators computed using unbalanced data

Suppose a data source offers observations on N households i for some years ¢ during
the period 1, ..., T. In year t, observations exist on all households who are members of

38 The creation of weights in such instances is closely linked to the theory underlying choice based sampling,
a topic touched upon in the Handbook chapter by McFadden (1984).
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the set {i € {r}}; there are N, such households in year . A particular household j may
be represented in a combination of years, implying it may be in any combination of the
sets {i € {1}}, ..., {i € {T'}}. A stratified sample assigns a household missing in year ¢
a weight equal to O; that is, w;; = 0 when an observation on i is unavailable for year .
A convenient reformulation of the weights useful in the subsequent analysis takes the
form

W,,’ = %w”’. (6.26)
Often the weights provided in data sources are in fact W;; and not wy;, for they adjust
for the smaller sizes of the cross-sectional samples. Generally, the weight w;; appearing
in (6.26) refers to the cross-sectional weight applicable for year ; this selection of wy;
presumes that the most recent endogenous variable included in the equation weighted by
wy; 1s from period 7. A household i with a missing observation in period t has W;; = 0.
One need not distinguish between W;; and wy; in the formulation of the w* weights
(representing population sizes) discussed in Section 6.2.

An MM estimator using unbalanced data minimizes a distance function of the form
(3.2) where

N Zien 0\ v (W)
L = : = — :
L N; L
N_|Zie{l}zli(y) »iw)
LN Lri(y)
ENZ : ) (6.27)
=L\ 2y (y)

This relation defines the vectors £}; and £;; so they differ only by the factor N /N;, which
enlarges values of £}; to account for summing over a greater number of households than
there are observations in year . When an observation on household i is missing in year
t, £;; = 0 as is the case for the weight W;. In the case of NIV estimation with stratified
samples, (6.27) becomes

1 1
N Z,’e{]‘} ’},-(J/) Nr Zie{T} wriGri fri
Ly(y) = : = :
N Liey i) w7 Licy wiiGii fi
| NﬂTwTiGTifTi . WriGri fri
1 : _1 : , 6.28
NZ ~ NZ : o
i=1 Nllw”G”f” =1\ Wi;Gy fii

where Gj; again constitutes the instrumental variables a researcher would use in the
absence of weighting. Expressed in terms of the notation of Section 3, (6.28) trans-
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lates to
| WriGri fri | Ori fri
Ly =+ : =52 |
=1\ W;Gy fii =1\ Q4 fui
| Lri(y)
=~ Z : ) (6.29)
=1\t (y)

Thus, ¢;, formed by stacking the elements of the £;;’s, possesses the same structure as
(3.8);and Ly(y) = % ZZN=1 A; fi where (3.9) gives the matrix A;.

6.6.2. What is the asymptotic distribution of estimators computed using unbalanced
data?

The large-sample distribution of the unbalanced MM estimator y,, depends on the as-
ymptotic properties of the vector

VNT = Dierry G ()
: =NLy(). (6.30)

x/N_INL1 Zie{l} £ (v)

In sharp contrast to all previous interpretations of the expression /N Ly (yp), this
expression in (6.30) and throughout this subsection merely serves as a notation rep-
resenting the unequally-normalized vectors specified on the left-hand side of definition
(6.30). (So, this expression does not equal the square root of N times L y listed in (6.28)
or (6.29).) The term /N L y (yo) defined in (6.30) corresponds to its analogous expres-
sion appearing in Section 3 in that it possesses an asymptotic normal distribution with
a form comparable to the representations considered above.

In particular, assuming the £}; vectors satisfy the same distributional properties main-
tained for the £;;’s in Section 3, (6.30) converges to a normal distribution possessing the
form

VNLy () 4 N(o, plim {N;’;}).

N—o0
The variance—covariance matrix \7;\", = V3 (Yw) has as its (r, s) block the matrix

* _ 1 * * l
{(r, ) element of Vy ()} = { N LK) } (6.31)

S ie{r,s)

where the notation {i € {r, s}} signifies the set of all households with observations in
both years r and s, and N,; denotes the total number of households in this set. The
approximate large-sample distribution of Ly becomes

: 1~
L (y0) ’?N<0, NV[\'?),
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where the (r, s) element of the variance—covariance matrix — v Vx (v) takes the form

1 * * !/
{(r, 5) element ofNVN(y)} ={ Z () } (6.32)

ie{r,s}

/NNy Npg

Similar to the reinterpretation of notation exploited at the beginning of this subsection,
the expression % V5 in (6.32) does not designate the matrix V divided by N, as has
been true in the previous discussion. It merely represents the sample size-normalized
variant of the variance—covariance matrix.

Paralleling the steps outlined in Section 3.1, the approximate large-sample distrib-
ution of the weighted estimator y,,, calculated by minimizing distance function (3.2)
using weighted data, is

~ ~ 1—1[~ 1 ~ ~ |~ ~ -
» &N(yo, [[S’NHNSN] I[S;VHN(NV,’\‘j)HNSN}[S;VHNSN] 1]) (6.33)

where §N = Sy (yy) with

1y a N alri
Nr Z-ie{T} 3y’ | N Nt 0y’ | N ay’
Sn(y) = : == = |1==> | ©39
y . N - . v
| s, i=1\ n o i=1 \ 9y
N Zicll) 3y N o 3y’

When implementing estimation procedures with parameters exactly identified — in
which case the choice of Hy is irrelevant in the calculation of the estimator — the esti-
mator y,, possesses the simpler asymptotic distribution

: -1 1~* -1
w N0 S5 (VA )SV ). (6.35)

(This distribution is the analog to (3.6).) Finally, the estimator y,,, computed by mini-
mizing the counterpart to the optimal quadratic-form distance function C(y) given by
(3.4), approximately follows the large-sample distribution

. . 1 ~ —1A —1
uer(yo, [Sﬁv<ﬁvis> SNi| ) (6.36)

6.6.3. Wrong variance—covariance matrix reported by conventional estimation
procedures

Unfortunately, the familiar estimation procedures compute incorrect values for the
variance—covariance matrix, even after implementing robust standard errors options.
This produces invalid test statistics for some hypotheses. The conventional approaches
report variance—covariances based on the following formula to compute V

1 N
VN =5 DLt

i=1
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The (r, s) element of this matrix is

11
N 4

Mz

1
{(r, s) element of v Vn(y) }

ri (V)gsi (V)/ }

1

= 2 Z en()/)ﬁu(y) }

” ze{r s}

N NN N,s 24 (7/)5“-(7/)}. (6.37)

IEVY

— -
Il

Comparing (6.32) to (6.37) reveals discrepancies in the off-diagonal elements of the
valid specification of % V5 and the reported value % Vi . The relationship between the
(r, s) elements of these matrices is

V' NNy

Ny

This formula shows how to adjust each element of the reported matrix — the right-hand
side elements in (6.38) — to the appropriate values.

Inspection of (6.38) reveals that the diagonal blocks of these matrices are the same
since, with r = s, N,y = N, = N;. This implies that standard errors, ¢-statistics,
and test statistics reported by the regular estimation procedures are valid as long as
no constraints are imposed across equations. When restrictions are considered across
equations, the off diagonal blocks come into play and the elements in these blocks differ
depending on the relative sample sizes in distinct periods. In many longitudinal datasets,
observations are dropped after the period they first attrit from the panel. Consequently,
assuming period r comes before period s and some attrition occurs, then N, > N;. If
all households present in period s were also observed in period r, then N,; = N;. In
this case the conversion factor becomes

NN _ VN,

N, rs Ns )

Thus, the (r, s) element reported by conventional estimation is too low, and it must
be enlarged by the ratio of the square roots of the early sample size to the later one
to calculate the correct covariance. So, if the period r sample is twice as large as the
period s sample, the covariances associated with coefficients across the year r and s

{(r, s) element of %Vf&(y)} = {(r s) element of iVN()/)} (6.38)

(6.39)

equations must be multiplied by ? ~ 1.4. Of course, if all households are observed in
all years, then N,y = N, = Ny = N, and no adjustments are required.

6.7. Weighting and unbalanced data in the estimation of quantile specifications
The above procedures readily apply in estimating the parameters of conditional quantile

relationships using a stratified and/or an unbalanced sample. When faced with a strati-
fied sample in a longitudinal data context, selecting instrumental variables according to
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(6.24) in the implementation of Section 5.1 quantile estimation approach yields consis-
tent estimates of the coefficients o1, ..., o, Br. As noted in Section 6.5, the selection
of weights wy; in (6.24) depends on precisely which population a dataset’s weights em-
ulate, and which population a researcher wishes to replicate. Often an analyst estimates
intertemporal relationships using balanced data, restricting the sample to include ob-
servations for periods 1 through T for all individuals i who remain sample members
during this time horizon. In such a situation, one would select w;; = wr; for all # when
forming the weighted instrumental variables in (6.24).

When estimating dynamic quantile specifications using unbalanced data, the dis-
cussion of Section 6.6 applies fully. One carries out nonlinear instrumental variable
estimation using weights specified by (6.26) and the formulation of L given by (6.28)
and (6.29). This formulation applies directly when implementing the multi-equation
method described above with f;; specified by (5.11). This framework also permits im-
plementation of the nonlinear 2SLS procedure discussed above, which assumes the
structural errors Uy; are distributed independently over time as well as across individu-
als. In this 2SLS case, f;; in (6.28) is a scalar and the specification of the Hy matrix in
the formulation of the distance function (3.2) takes the form:

| TN -1
HN:|:“®|:W§;Q”Q”C| :|,

where ¢ in this Kronecker product refers to a column vector of 1°s of dimension 7', and
Equations (6.29) define the instrumental variables Qy;.

7. An empirical application to wage dynamics

This section introduces a set of empirical examples to illustrate the econometric meth-
ods presented in the previous four sections. These examples characterize the dynamic
properties of hourly wages of men during the period 1980-1991 using the Panel Study of
Income Dynamics (PSID). This empirical analysis is not intended to provide a compre-
hensive investigation of wage dynamics; instead, its aim is to enhance the accessibility
of the procedures discussed in this chapter to practitioners. The section reports empirical
findings applying many of these procedures, explaining implementation in a concrete
context and comparing standard-error estimates obtained through the use of both classi-
cal and bootstrap approaches. It also highlights the differences in estimation from using
balanced data, where individuals are restricted to have data for every period ¢, versus
unbalanced data, where individuals who are only available for part of the sample period
are retained. After illustrating the proper use of stratified sample weights, the section
ends by using quantile regression procedures to characterize the dynamic properties of
median hourly wages for men.

Section 7.1 summarizes the data used, while Section 7.2 estimates covariograms us-
ing the method described in Section 4.4. Section 7.3 uses the methods of Sections 4.5
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and 4.7 to illustrate how the autoregressive parameters can be estimated alone, or jointly
along with the moving-average parameters. Section 7.4 reports the results of the esti-
mation proposed in Section 7.3. Section 7.5 provides bootstrapped standard errors for
comparison to the asymptotic standard errors reported in Section 7.4. Section 7.6 ap-
plies results in Section 6.6 to illustrate the utilization of information from unbalanced
data, and Section 7.7 applies the results in Section 6.4 to show the correct use of strati-
fied sampling weights. Section 7.8 is an application of quantile regressions to estimate
ARMA processes, as discussed in Section 5. Finally, Section 7.9 summarizes the find-
ings.

7.1. Data description and prototype model

Data are drawn from the randomly-designed sample of the Michigan Panel Study of
Income Dynamics.>® The dataset consists of 959 observations on prime-age males for
the years 19801990, a total of 11 years of data for each individual. Only males 25-46
years old in 1980 are included in the sample. The wage rate is defined to be annual real
earnings deflated by the Consumer Price Index and divided by hours of work reported
during the year.

Because the PSID is a stratified sample, one must apply weights to adjust for dif-
ferences between the sample and national populations in order to obtain consistent
estimates of population parameters. Regrettably, most standard software routines do not
use weights properly in calculating standard errors when weights adjust for stratified
sampling; these routines instead assume weights merely adjust for heteroscedasticity.
Routines that do make proper adjustments are often termed “survey sampling” proce-
dures. Given the illustrative nature of the empirical examples presented below, and the
fact that most economists ignore weighting, the following empirical examples do not
use weighting in calculating estimates. To assess the impact of weighting, Section 7.7
presents the findings of several exercises.

The following exercises assume that wages obey the regression/median equation:

wri = X1 B+ Uy, (7.1)

where w;; measures the growth in an individual’s hourly wages from period (¢ — 1) to z.
This equation is a special case of relation (2.10), with = and ¥ set equal to zero and B
constrained across time.*? The majority of the analysis presumes that the disturbances
in (7.1) follow the ARMA process specified in Equation (2.3)

a(L)Us; = m(L)é&i,

39 The panel study’s procedures and methods are detailed in Hill (1992).
40 Regression coefficients are constrained to be equal across years. Formal hypothesis tests easily accept this
restriction at conventional levels of significance.
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which the following empirical applications respecify as

P q
Ui = Zath(t—j)i + ijzE(t—j)i- (7.2)
j=1 j=0

(Note, the coefficients aj; in (7.2) have been redefined to have the opposite sign as
the corresponding coefficients appearing in relation (2.3) and the previous discussion;
expression (7.2) takes the form typically found in empirical earnings literature.) Both
mean and quantile regression techniques can be used to consistently estimate the para-
meters of interest. For simplicity, the subscript i will be omitted from equations when
this causes no confusion.

Least squares estimation of the reduced-form model (7.1) produces the residuals
ﬁ, used in much of the subsequent empirical exercises. The variables incorporated as
regressors in X; are designed to capture the measured component of wage growth, in-
cluding four education dummy variables, a quadratic in age, full interactions between
the age polynomial and the education dummy variables and a dummy variable for each
year of the sample after the first. With time effects included in X;, the errors U; represent
the vector of deviations in individuals’ wage growth from averages in the population in
period ¢, after accounting for age and education. Thus this exercise seeks to characterize
the correlation across years in unmeasured (residual) wage growth.

7.2. Estimation of autocorrelations

Prior to estimating specifications of model (7.1), it is necessary to investigate two ques-
tions: (1) Do the vectors Uy, ..., Ur satisfy the weak stationarity property implicitly
assumed in the multiple time series specifications presented in Equation (7.2)? (2) What
are the orders of the autoregressive and the moving average lag polynomials in the mul-
tivariate ARMA process that best describe the intertemporal variation in the U;’s?

7.2.1. Estimating covariograms

Estimating autocovariances provides the essential information needed to answer these
questions. Section 4.4 describes the approach utilized to calculate these quantities im-
plementing the joint generalized least squares or seemingly unrelated regression frame-
work specified by Equation (4.24) using the fitted values of U, ﬁ,. This procedure
estimates the second moments E(U; Ul’_k) for each value of ¢ and k, setting each
moment equal to its sample analog U,U,_y, which consistently estimates population
autocovariances when averaged. Weak stationarity follows if one can accept the hy-
pothesis that these second moments are independent of ¢ for any k (i.e., independent
of year for any lag). One can test weak stationarity with a standard F'-test on the joint
hypothesis that for a given k, E(U,U,;_i) is the same for all 7. Further, the properties
of these estimated second moments provide information allowing one to choose which
ARMA process best fits the data.



Ch. 62: A Practitioner’s Approach to Estimating Intertemporal Relationships 4129

The estimation of the sample moments is done within a seemingly unrelated regres-
sion context in order to account for unspecified heteroscedasticity and autocorrelation
across time for a given individual. Thus the values U, f U, _x for all available combinations
of ¢ and k are constructed for each individual to form the system of Equations (4.24).

7.2.2. Implications of covariograms for stationarity and ARMA specifications

Table 1 presents estimates of the covariogram associated with specification (7.1). The
first row presents estimates for autocovariances of order k = 0, 1, ..., 6 when the au-
tocovariances of the specified order are constrained to be equal across time. These are
the constrained estimates of # from the version of Equation (4.24) described above. The
second row lists the autocorrelation coefficients implied by these estimates. The third
row reports the minimum and maximum estimates of the autocovariances when the 6°s
are not restricted to be equal over time. The fourth row reports the test results for the
hypothesis that the kth order autocovariance is equal across periods, e.g., the hypothesis
is that the covariance between Ujgg; and Ujogy is the same as the covariance between
Ui9gz and Ujog3.

Table 1 provides answers to the two questions posed above. The F-test in row 4 is
easily accepted for all k. Therefore, the data do accept a weak stationarity restriction.

The second question, how to model the error structure process in a tractable way,
amounts to picking an ARMA process that best fits the data. Autoregressive processes
lead to autocovariances that, at orders higher than the order of the process, gradually
fall to zero. Moving-average processes exhibit autocovariances that sharply drop to
zero once one moves to an order higher than the order of the moving average. These
two theoretical predictions are the guidelines from which to specify the error structure.
Note that these predictions involve evaluating magnitudes (i.e., absolute values) of the
coefficients.

Using the above theoretical predictions as guidelines, it is easy to see the existence of
a first-order moving average in the data. The first-order autocovariance term, estimated
to be —0.048, is by far the largest in magnitude. The second-order term, while still
statistically different from zero, takes a sharp drop to —0.006, an eighth the size of
the first. The higher order autocovariance terms get progressively smaller and are all
statistically indistinguishable from zero.

The sharp drop after the first-order autocovariance term suggests a first-order moving-
average process, but it also suggests a short autoregressive process. A lengthy autore-
gressive process would not have autocovariance terms that drop off so fast. The gradual
fall in the terms of order two and higher invites one to consider a low-order autore-
gressive process. Based on the autocovariance coefficients and prior work, this section
will investigate models with a first-order moving average component and either a first-
or second-order autoregressive process (ARMA(1, 1) or ARMA(2, 1)). One could in-
vestigate a wider class of specifications, but these two specifications should serve to
sufficiently illustrate the methods without getting bogged down in repetitive tables. For



Table 1
Covariogram for wage growth residuals

Statistics Lag (order)
0 1 2 3 4 5 6
Constrained autocovariances 0.131 —0.048 —0.006 —0.004 —0.003 —0.001 0.002
(standard errors in parentheses) (0.007) (0.004) (0.002) (0.0025) (0.003) (0.003) (0.003)
Autocorrelation 1 —0.37 —0.05 —0.03 —0.02 —0.01 0.01
Range of autocovariances (0.120,0.171) (—0.035,0.067) (—0.011, 0.005) (—0.021,0.002) (—0.013,0.005) (—0.004,0.007) (—0.006,0.005)
Test for constant autocovariance yes yes yes yes yes yes yes
(probability of event in parentheses) (0.46) (0.60) (0.63) (0.32) 0.71) (0.85) (0.80)

Note. Based on seemingly unrelated regression model.

ocly
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notational simplicity, equations will be in terms of the ARMA(2, 1) specification, and
the changes that are required to estimate the ARMA(1, 1) process will be noted.

7.3. Empirical specifications for ARMA error process

This section describes specifications and methods used to estimate the autoregressive
and moving-average coefficients in Equation (7.2). The estimation done here uses the
framework outlined in Section 4 with 7 = 0 and ¢ = 0, meaning that there are no right
hand endogenous variables. Combining Equations (7.1) and (7.2), the researcher wishes
to estimate the parameters of the following equation:

—XiBt+a(w—1 — X, 1B) +ax(wr—2 — X, 2B) =& +mi&—q, (7.3)

an ARMA(2, 1) specification. When ay = 0, Equation (7.3) specifies an ARMA(1, 1)
process.

7.3.1. Specifications for estimating only autoregressive coefficients

Section 4.5 outlines methods for directly estimating the autoregressive parameters of
ARMA processes. Starting with Equation (7.1) one can follow Section 4.5 to estimate
both the structural parameters 8 and the autoregressive parameters of the error process.
Assuming that the moving-average process is first-order implies that error terms from
two or more periods back are predetermined and can be used as instruments. In this case,
define a system of equations of the following form (modeled after Equations (4.10) and
(4.27)):
¥ = o - X.B,
9
f,( ) = [wr—k — Xi—kB]
[(C‘)t - XiB) —ai(wr—1 — X;—18) — ax(wr—2 — XI—Z,B)]
k=2,...,(t—1983), t = 1983, ..., 1990. (7.4)
Stacking these equations to obtain f;(8,a) = (f,(S)/a ©) 'Y for all ¢ creates a model
in the form of Equation (3.7). This can be estimated usmg nonlinear three-stage least
squares. Following the discussion in the second half of Section 4.5, if one wishes to

estimate only the autoregressive parameters then one could use a consistent estimate of
B to form

U0 =0k x U —arUy—1 — arU; ),
k=2,...,(t—1983), t = 1983, ..., 1990, (7.5)

where U, = w,— X ;B and B is the ordinary least squares estimate from OLS in Equation
(7.1). This equation is an ARMA(2, 1) version of Equation (4.30). The second half
of the product in fl(klo) is the g; of Equation (3.18); it is multiplied by an orthogonal
regressor in order to provide the identifying restrictions.
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Equation (7.5) is the specification estimated, with one modification. Instead of es-
timating the model with all available predetermined variables as instruments, i.e., all
residuals from two or more periods back, this section uses a linear combination of those
predetermined variables — specifically the linear combination that brings them closest to
being the optimal instruments discussed in Sections 3.2.2 and 4.1.4: namely, E ( Bar A | X:i)

and E( Bf 1L1X,;). This is done by regressing U, 1 and Ut 2 on all available predeter-
mined and exogenous variables. This yields predicted values for these two quantities
for every year ¢, which can then be used as instruments. Formally, let l7 " be the pre-
dicted value of U, based on a regression on all its previous (predetermined) lags. For
example, regress U1984 on U1981 R U1982, and U1983 Then use the predicted value, U1984,
as an instrument in Equation (7.5) where ¢+ = 1985. In the 1986 equation, it will also
serve as an instrument, but since it is two periods back it is predetermined in the 1986
equation and therefore can be perfectly predicted by itself. This allows one to get instru-
ments that are close to the optimal instruments but are uncorrelated with the first-order
moving-average error term.
Implementing the above specification yields

ﬁ(“)=l7”1 x (U —a1Ui—1 —axU,—2) = U | x g1,
f;(lz) X (Ut _alUt 1 —azUt 2) = t 2 X 81,
t = 1983, ..., 1990. (7.6)

Stacking these equations to obtain f; (a1, az) = ("7, £12") fort = 1983, ..., 1990
creates a model of the form of (3.7). Using these two projected instruments is conve-
nient because they are sufficient to identify both a; and a,, while reducing the number
of equations in the system makes it easier to estimate computationally and decreases

programming time. In the case of the ARMA(I, 1), ft(lz) is dropped from estimation as
f,(1 D is sufficient to identify the system.

7.3.2. Specifications for estimating autoregressive and moving-average coefficients
Jjointly

Since the covariograms gave strong evidence of a moving-average process, one might
wish to estimate jointly the autoregressive and moving-average parameters as described
in Section 4.7. This can be done by adding the relevant moment restrictions to the esti-
mation. Using the notation from above, one would estimate:

13 [J
ft( ) =U;_ kX (Ut - alUt 1 _azUl‘ 2) 1=k X 8t
14 — oy =
ft( ) _ (Ut _ alUt—l — agUt_z) o11 gz — Ol
15 — U U L
ft( ) U —aUi—1 — U 2)(Ui—1 — a1U;—2 — a2U;—3) — 012

=8t X &t—1 — 012,
k=2,...,(—1983), r =1983,...,1990. 7.7
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The value 011 in ft(M) estimates the variance of the residual term (g, + m&,—-1) while
o172 in ft(ls) estimates the residual first-order autocovariance. To estimate the moving
average component, use the estimates of the variance and the first-order autocovari-
ance to derive the parameter m . This requires extracting it from the equations o1; =
(1+ m%)(rg2 and ojp = mlaaz, which follow from standard time-series results.*!

The estimation of Equation (7.7) can be simplified through the use of near-optimal
instruments as discussed above. Using similar notation, the optimal instruments are
predicted using all predetermined variables, and then these estimated instruments are
introduced into the estimation, yielding:

£ = U” x (U —arUi-1 —axUi2) = UL | x g,

FP =0, < U -l — U, 2) = UF ) x g,

ft(14) _ (Ut —a\U_1 —ayU,_2)? — o011 = g — o,

=0 - aUi—y = aUi)Ui—t — arUr—2 — axUs—3) — o1
=gt X &-1—012,

t =1983, ..., 1990. (7.8)

Stacking these equations to obtain f; (a1, az, 011, 012) = (f,(“)/, ,(12)/, ,(14)/, f,(ls)/)/

fort = 1983, ..., 1990 creates a model of the form of (3.7). When the model tested is
ARMA(1, 1), the ap parameter is set to zero and the second moment restriction, ft(u),

is unnecessary for identification and is dropped.

7.3.3. Estimators for ARMA coefficients

This estimation can be done in several different ways, two of which are mentioned here.
The first is to use a method of moments procedure to relate the ARMA parameters to the
sample mean and autocovariances through the system of moment restrictions as given
in Equations (7.6) and (7.8). The equations are estimated with a constant as the only
instrument specified for the software. This gives consistent results with asymptotically
valid standard errors and covariances.

The second method is similar; the researcher uses nonlinear three-stage least squares
with a constant as the only designated instrument. This also produces asymptotically
valid results. Note that the “real” instruments are embedded in the equations to be esti-
mated and differ from equation to equation. Thus the researcher instruments manually
instead of using software commands to designate an instrument set. Reported below are
estimates from the method-of-moments approach.

41 The quadratic in the equations yields two answers. The convention is to use the root that is less than one
in absolute value, making the series invertible.
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7.4. Empirical findings for ARMA estimation

Turning to the results, Tables 2 and 3 present estimates for the two candidate ARMA
specifications generating the individual error terms in wage growth. Results are un-
weighted and standard errors are given in parentheses. This subsection will discuss each
table in turn. The goals are to compare the specifications to see which better fits the data
and to determine how robust the results are across models.

7.4.1. Estimates of only autoregressive coefficients

Table 2 presents the coefficient estimates for the autoregressive component of the
ARMA(1, 1) and ARMA(2, 1) models specified by Equation (7.6). Recall that Equa-
tion (7.6) estimates only the autoregressive parameters of each ARMA model. Looking
at the ARMAC(1, 1) specification, estimating just a; gives a smaller coefficient in mag-
nitude than when a5 is not constrained to be zero, —0.134 vs. —0.189. So from year to
year approximately 13 to 19 percent of the residual variation in wage growth is undone
the following year through the autoregressive parameter. In terms of their sampling dis-

Table 2
Estimates of only autoregressive coefficients for wage growth
error structure

ARMA(p, q) aj a)

1,1 —0.134
(0.0354)

2,1 —0.189 —0.024
(0.0491) (0.0254)

Note. Specification based on Equation (7.6) (standard errors in
parentheses).

Table 3
Joint estimates of autoregressive and covariance parameters for wage growth error structure

ARMA(p, q) Direct estimates Implied values from delta method
ai az o11 012 o mi
(1,1 —0.151 0.131 —0.060 0.305 —0.645
(0.0339) (0.0074) (0.0040) (0.0076) (0.0279)
2,1 —0.186 —0.020 0.132 —0.062 0.300 —0.686

(0.0405) (0.0225) (0.0089) (0.0052) (0.0075) (0.0441)

Note. Specification based on Equation (7.8) (standard errors in parentheses).
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tributions, the two estimates are several standard deviations from O and so the effect is
significantly different from zero.

The ARMA(2, 1) specification reports an estimate for the a; parameter. The estimate
is negative and small. The a, estimate, —0.024, cannot be statistically distinguished
from zero, despite the fact that the standard errors are tighter than those reported on the
ay coefficient. Regardless, the value indicates that if there is a second-order term it is
probably negative and small.

7.4.2. Estimates of autoregressive and moving-average coefficients jointly

Table 3 reports the results from the joint estimation of the autoregressive and moving-
average coefficients as specified by Equation (7.8) in Section 7.3.2. The first four
columns are self-explanatory in that the parameters listed appear directly in Equa-
tion (7.8); the last two columns are delta method extrapolations of moving-average
parameters. These columns give both the implied standard deviation of the white noise
process, o, and the coefficient on the first-order moving average, m.

The results are similar, in some respects, to what was observed in Table 2. The first-
order autoregressive parameter a; is reported as —0.151 in the ARMAC(1, 1) and —0.186
in the ARMA (2, 1). These estimates are close to one another and close to the estimates
found when just the autoregressive parameters were estimated. The a, parameter in the
ARMA (2, 1) model looks almost exactly as it did when only the autoregressive para-
meters were estimated. It remains small and statistically indistinguishable from zero.

Turning to the covariance terms, the table shows that both specifications return stable
and precisely estimated results. The o7 coefficient is about 0.13 and the o1, coefficient
is almost half as large at about —0.06. The standard errors on these estimates are small,
providing confidence of a reasonably good estimate. Notably, the o1, estimate is clearly
not zero, reinforcing the hypothesis that there is a first-order moving-average process.
From these two parameter estimates one can get the implied estimates for the standard
deviation on the white noise process, o, and the coefficient on the moving average
component, m 1. Using linear extrapolation (the delta method) one can also compute an
asymptotic approximation for standard errors. The reported coefficient on o is about
0.3 in both specifications. For m, the two specifications return values of —0.645 and
—0.686, respectively. The standard error is less than 0.03 in the ARMA(1, 1) but 0.044
in the second. Regardless, both procedures find evidence of what previous analysis of
the covariogram indicated — a large negative first-order moving average.

In summary, the data strongly support the hypothesis of serial correlation in the er-
ror terms. The first-order autoregressive component is somewhere between —0.13 and
—0.19. The moving-average parameter is between —0.6 and —0.7. The second-order
autoregressive lag is probably slightly negative but cannot be distinguished from zero.
Looking back to the covariogram in Table 1, these parameter estimates easily account
for the large negative correlation between wage residuals in adjacent years. They also
fit with the observed lack of correlation beyond the first lag.
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7.5. Bootstrapping ARMA models using panel data

This discussion very briefly presents findings illustrating the consequences of utilizing
bootstrap procedures to fit the two models considered above. The goal is to compare the
standard errors calculated by classical first-order normal asymptotic theory and those
computed by the residual resampling method. This section illustrates the bootstrapped
version of the method-of-moments estimator considered above.

7.5.1. Estimates with bootstrapped standard errors

There may be some doubt as to the effectiveness of using first-order asymptotic theory
as a guide to constructing standard errors. As always, the asymptotic theory offers only
a guideline. At times there is reason to question the validity of this guideline. This may
be because the model was misspecified or because the sample is too small to be well-
approximated by its large-sample distribution. One can cross-check the validity of the
asymptotic approximation by comparing it to a bootstrapped estimate. Instead of relying
on a linear extrapolation at infinite sample size to guide standard error calculation, one
assumes that the sampled data is representative of the population density, and thus can
be used to evaluate the sampling distribution of the estimators.

No special techniques are required to produce these results. Bootstrapping begins
with the residuals first described in Section 7.2.1 and used in Section 7.4 to estimate
the ARMA processes. Each individual’s set of residuals is given an equal probability of
being drawn with replacement. To preserve the serial correlation, the resampling is done
over the individuals, not over each year of each individual. The sample consists of 959
individuals, so 959 draws are made in each resample. 1000 resamples are performed and
Equations (7.6) and (7.8) are estimated, for both the ARMA(1, 1) and the ARMA(2, 1)
specifications. These 1000 estimated coefficients are used to create a sampling distribu-
tion for each estimator. The standard deviation of these 1000 coefficients is the standard
error for the estimator. The following subsection compares the asymptotic standard er-
rors reported in Tables 2 and 3 to those implied by the bootstrap procedure. Once again,
the estimation is performed on the unweighted sample.

7.5.2. Implications of bootstrap estimates

Table 4 reports comparisons for specifications of Equations (7.6) and (7.8) estimated
in Section 7.4. It first estimates the subset of autoregressive parameters as in Equa-
tion (7.6), and then adds the covariance parameters as in Equation (7.8). Each specifi-
cation lists the previously developed asymptotic estimation results and is immediately
followed by the bootstrap results.

All of the standard errors are wider for the bootstrapped sample, typically — although
not always — on the order of 25 percent. Thus the asymptotic standard errors are biased
downwards for this sample size. Turning to parameter estimates, when the autocovari-
ance terms are estimated alone, the bootstrap gives results that are very close to the
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Table 4
Bootstrapped estimates of ARMA processes for wage growth error structure

ARMA(p,¢q)  Estimation method ay ap o1 o012
(1, 1) Autoregressive subset estimation —0.134
Asymptotic theory (0.0354)
Autoregressive subset estimation —0.136
Bootstrap with 1000 replications (0.0406)
Full estimation —0.151 0.131 —0.060
Asymptotic theory (0.0339) (0.0074) (0.0040)
Full estimation —0.115 0.120 —0.054
Bootstrap with 1000 replications (0.0448) (0.0088) (0.0048)
2,1 Autoregressive subset estimation —0.189 —0.024
Asymptotic theory (0.0491) (0.0254)
Autoregressive subset estimation —0.173 -0.017
Bootstrap with 1000 replications (0.0540) (0.0274)
Full estimation —0.186 —0.020 0.132 —0.062
Asymptotic theory (0.0405) (0.0225) (0.0089) (0.0052)
Full estimation -0.117 0.003 0.116 —0.052

Bootstrap with 1000 replications (0.0807) (0.0331) (0.0123) (0.0076)

Note. Specifications based on Equations (7.6) and (7.8) (standard errors in parentheses).

original estimates. When the joint system is estimated, the bootstrapped a; and a, pa-
rameter estimates move noticeably. The largest effect is for the a; parameter estimate
in the ARMA(2, 1) model. It goes from —0.186 in the method-of-moments routine to
a bootstrapped estimate of —0.117.#? Unsurprisingly, the standard error doubles. Note
that the bootstrapped estimate of a; is still close to the original range of —0.13 to —0.19
observed in the original data, but it has jumped from the high end to the low end. The
estimates for 011 and o2, on the other hand, are fairly stable.*3

7.6. Results based on balanced versus unbalanced data

Practitioners of econometrics often are confronted with thorny problems stemming from
data collection. Although these problems do not draw as much attention in the literature

42 These large changes are possible when one is dealing with a nonlinear estimation method such as the
one used here. But the magnitude of the change is cause for wonder. Preliminary data research uncovered
several large outliers, which are not unusual in sample data, especially when they have been first-differenced.
This leads to an extremely fat-tailed distribution for the residuals. This could make the 4-equation system
(7.8) vulnerable to outliers due to its squared term. These vulnerabilities were apparently uncovered in the
bootstrap estimation.

43 For a comprehensive and enlightening discussion of the issues involved in bootstrap estimation, see the
Handbook chapter by Horowitz (2001).
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as other, more provocative subjects, they can have a large effect on the estimates’ va-
lidity. This subsection and the next deal with a brief application of the two data issues
discussed in Section 6: unbalanced data and stratified sampling.

The first concern, unbalanced data, stems from the fact that many sampled units (in
this case, people) do not have data in one or more years of a panel dataset. One could
assume random attrition (which probably is not true but is very convenient) and form
estimates using just those people having all observations.** This ignores potentially
valuable information. In the PSID sample utilized thus far, roughly a third of the obser-
vations were dropped due to incomplete data over the sample period. Section 7.6 looks
at how one might conveniently estimate the covariogram for the PSID data using an
unbalanced sample.

Section 7.7 looks at stratified sampling weights. Datasets frequently oversample cer-
tain groups in order to provide researchers with a more detailed picture of a small
segment of the population. This oversampling destroys the randomness of the sample
and, as noted in Section 6, requires some care in correcting. Section 7.7 will give an
example correctly using the stratified sampling weights by designating them as instru-
ments.

7.6.1. Estimates with unbalanced data

Researchers prefer to use all the data available to conduct an empirical analysis to en-
hance the efficiency of estimation. For this reason, many would like to recapture the
information contained in observations that do not have data for one or more years of the
sample.

The seemingly unrelated regression method used in Section 7.2 requires complete
data, i.e., the dataset must be balanced. This has the unfortunate result that one must
throw out observations that contain all the necessary information but are missing even
just one year. Section 6.6 details a method to recover this lost information while stay-
ing within the simple seemingly unrelated regression framework. Applying this method
assigns a zero person-year weight to those person-year observations that are missing
and proceeds with estimation as if the data were balanced. This amounts to replacing
the entire equation for the person-year by zero. In conducting this estimation, the pro-
cedure formulates weights — or adjusts stratified sample weights if they are used in the
analysis — for the remaining observed data to reflect the number of missing observations
associated with each equation.

As discussed in Section 6.6.3, an additional correction is necessary to perform mul-
tivariate, multi-equation tests when using unbalanced data. The off-diagonal elements
of the sample covariance matrix require the correct denominator. Working from the

44 Fitzgerald, Gottschalk and Moffitt (1998), in an analysis of PSID attrition, conclude that use of the avail-
able weights maintains the representativeness of the survey.
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formulas already used to correct the variance terms,* multiply the i, j element of the
cross-equation covariance matrix by the square roots of the number of available ob-
servations in equation i and the number of available observations in equation j, then
divide by the number of common observations between i and j. This corrected covari-
ance matrix can then be used to test the weak stationarity hypothesis first discussed in
Section 7.2.

7.6.2. Implications of estimating with unbalanced data

Table 5 presents estimates of the covariogram when using the unbalanced data. Its for-
mat is the same as Table 1. The zero-order variance term is larger at 0.162. The higher
order terms also tend to be larger so that the autocorrelation terms are very close to
what they were in Table 1. Instead of the first-order autocorrelation of —0.37, the un-
balanced sample reports the slightly weaker —0.35. The second order term was —0.05
in the balanced data but now is —0.04. Regardless, the inferences made in Section 7.2
are unchanged. The tests of weak stationarity all fail to reject at a 5 percent significance
level, if only barely. Thus, there is room to doubt the assumption, but not nearly enough
evidence to overturn it.

7.7. Results based on weighted versus unweighted data

Up to now this section has ignored the implications of weighting stratified samples
like the PSID. Section 6 explained some of the difficulties that can arise in properly
weighting stratified samples. In this subsection there is a short discussion of how the
principles outlined in Section 6 apply to the estimation done here.

7.7.1. Estimates with stratified sample weights

Several statistical packages offer a weighting option in their estimation routine. Usu-
ally this is the standard weighted least squares procedure designed to account for het-
eroscedasticity. If a researcher uses weighted least squares to calculate standard errors,
the package premultiplies the regressor and the regressand by the square root of the
weight and then proceeds with the rest of the estimation as usual In the linear case it
reports estimator variances of the form 62(X'2X)~! where 62 = - Ziv #2and 2 isa
diagonal matrix with the weight w; for each observation on the d1ag0nal This is correct

if the weighting is designed to correct for heteroscedasticity of the form £ —2 . Itis not cor-
rect for the case of a stratified sample. The general framework is outhned in Section 6.
The proposed solution when using instrumental variables techniques is to premultiply
the instruments by the weight w; (making sure that the weight is properly normalized).

45 Recall that since each equation estimates a single parameter, the mean, the cross-equation covariance
system is exactly the same size as the unrestricted coefficient covariance matrix.



Covariogram based on unbalanced wage growth residuals

Table 5

Statistics Lag (order)

0 1 2 3 4 5 6
Constrained autocovariances 0.162 —0.056 —0.007 —0.004 —0.004 —0.001 0.003
(standard errors in parentheses) (0.008) (0.004) (0.002) (0.003) (0.003) (0.003) (0.004)
Autocorrelation 1 —0.35 —0.04 —0.02 —0.02 —0.01 0.02
Range of autocovariances (0.148, 0.206) (—0.080, —0.043) (—0.020, 0.004) (—0.026,0.005) (—0.012,0.008) (—0.011,0.003) (0.002,0.003)
Test for constant autocovariance yes yes yes yes yes yes yes
(probability of event in parentheses) (0.40) 0.47) (0.46) (0.06) (0.10) (0.73) (0.58)

Note. Based on seemingly unrelated regression model.
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When one is estimating with the method outlined in Sections 7.3 and 7.4 (where the only
instrument is a constant) one could simply designate the stratified sampling weights as
the instruments. These new instruments will impose the correct weighting for consistent
estimates and will yield asymptotically correct standard errors. Before giving results
there are two things which should be noted. First, as noted in Equation (6.7), stratified
weights in survey data are often designed to sum to the size of the total population.
These w} weights can be converted to w; weights by dividing them by their average
value. This is the strategy followed in Section 6.3. Thus all weights discussed in this
subsection are normalized weights. Second, as explained in Section 6.5, the correct
weight to use for all years of the PSID is the weight given in the last year of the sample,
as this weight reflects the longitudinal changes in the data.

7.7.2. Implications of stratified sampling weights

Tables 6 and 7 redo the estimation of Sections 7.2 and 7.4 using the balanced data and
sample weights from 1990. Table 6 is the covariogram and is designed the same as
Table 1. The methodological difference is that in the seemingly unrelated regression
framework used to construct the covariogram, the dependent variable was premultiplied
by the weight for 1990.# One could obtain the same result by switching to a three-stage
least squares framework and designating the weight as the only instrument.

The results are quantitatively different but the implications are identical. The variance
(zero-order autocovariance) falls from an unweighted value of 0.13 to a weighted value
of 0.11. All the other terms tend to be proportionately lower and so the autocorrelations
are almost identical to the unweighted sample. Thus, the ARMA(2, 1) and ARMA(1, 1)
models are still the best candidate specifications.

Table 7 gives the weighted estimates for ARMA(1, 1) and ARMA(2, 1) specifica-
tions. The estimation is done using the same method-of-moments routine previously
described. The only methodological difference between the two estimates (besides dif-
ferent sample sizes) is that the previous estimation programmed the statistical package
to use a constant as the only instrument. The weighted estimation is done by designating
in the statistical package the 1990 weights as instruments (which is the same as using a
constant as an instrument but multiplying it by the weight).

The same balanced data are used here as were used in Sections 7.2 and 7.4, but this
is somewhat misleading. The PSID assigns zero weights to many people in the sample
for certain years, so the effective sample size for weighted regression falls from 959
to 720. Thus, there should be a slight widening of standard errors attributable to this
sample size effect. Indeed, the weighted sample does have larger standard errors than
the unweighted sample.

46 Normally, one weights the entire moment condition. But when the only regressor is a constant the desired
result can also be achieved by simply weighting the dependent variable. This convenient result turns on the
fact that the weights are normalized to have an average value of one, thus they drop out of terms where they
are multiplied by a constant.



Table 6
Covariogram based on weighted wage growth residuals

Statistics Lag (order)
0 1 2 3 4 5 6
Constrained autocovariances 0.112 —0.042 —0.004 —0.005 —0.002 —0.001 0.002
(standard errors in parentheses) (0.007) (0.004) (0.002) (0.003) (0.003) (0.003) (0.003)
Autocorrelation 1 —0.37 —0.04 —0.04 —0.02 —0.01 0.02
Range of autocovariances (0.101, 0.159) (—0.061, —0.028) (—0.011,0.003) (—0.006,0.001) (—0.014,0.005) (—0.007,0.010) (—0.007, 0.005)
Test for constant autocovariance yes yes yes yes yes yes yes
(probability of event in parentheses) (0.15) (0.22) (0.90) (0.52) (0.10) (0.70) (0.73)

Note. Based on seemingly unrelated regression model.
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Table 7
Weighted estimates of ARMA processes for wage growth error structure

ARMA Estimation method Direct estimates Implied values from
(p,q) delta method
aj a o11 012 o mj

(1,1)  Estimating only autoregressive —0.110

coefficients (0.0401)

Estimating autoregressive and ~ —0.102 0.119  —0.052 0.295  —0.598

covariance parameters jointly (0.0395) (0.0079)  (0.0042) (0.0090) (0.0312)
(2,1)  Estimating only autoregressive —0.181 ~ —0.027

coefficients (0.0558) (0.0302)

Estimating autoregressive and ~ —0.062 0.025 0.110  —0.048 0.286  —0.587
covariance parameters jointly (0.0507)  (0.0260) (0.0090) (0.0056) (0.0090) (0.0569)

Note. Specifications based on Equations (7.6) and (7.8) (standard errors in parentheses).

Looking first at the results for the ARMA(1, 1) model, the a; parameter estimate is
reasonably close to its unweighted value. Estimated alone or with the moving-average
parameters it is about —0.11. In the joint estimation based on system (7.8), the covari-
ance parameters are slightly lower in magnitude than in the unweighted sample and this
shows up in a moving-average parameter of —0.598. This is only slightly smaller in
magnitude than the estimates in the unweighted sample.

The most noteworthy difference from weighting is the effect that it has on the
ARMA (2, 1) model autoregressive coefficient estimates. While estimation of just the
autoregressive parameters (system (7.6)) gives similar results to those in Table 2, the co-
efficients change significantly when estimation includes the covariance parameters. The
largest change shows up in the a; coefficient that moves from —0.186 to —0.062. This
is beyond what one would expect and resembles the jump encountered in the bootstrap
estimation, where the a; parameter in the full estimation also proves to be sensitive.
Other parameter values do not change as much; the a, coefficient is of opposite sign but
remains insignificant. The variance and autocovariance terms are both slightly lower
in magnitude than earlier estimates. This leads to lower values of ¢ and m1, 0.29 and
—0.59. The unweighted estimates are not consistent for the same values as the weighted
population and so there is no reason to expect them to be the same, but the joint estima-
tion does appear to be sensitive to minor changes.

7.8. Results based on median regressions

The above empirical exercises investigate trends in mean wages, which involve the use
of regression analysis. Such estimation techniques, of course, suffer from the fact that
individual observations have unbounded influences upon the regression. Coding errors,
reporting errors, and other anomalous events can have large effects on the estimated
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coefficients. Such outliers might induce the sensitivity of the autoregressive parameters
uncovered in the bootstrap and weighted estimators. Consequently, one might wish to
consider bounded influence methods, such as median regression.

Section 5 offers a convenient approach for estimating a smoothed version of median
regression using standard nonlinear equation methods discussed in Sections 3 and 4.
This subsection illustrates the use of these quantile regression procedures to estimate
the parameters of the ARMA process governing the error structure of equations like
(5.1). The models estimated below modify the specifications considered in Section 7.3
to estimate the error structure of (7.1). As such, although the computational problems of
quantile regressions may involve a somewhat heavier burden due to their nonlinearities,
the specifications are still relatively simple to implement.

An important difference between the estimation procedures outlined in Section 7.3
and those outlined below is that the researcher cannot use residuals ﬁt instead of wy
to simplify the estimation. Equation (5.1) specifies an equation where w; (= y;) de-
pends on its own past values and a set of exogenous X,’s. Using mean regressions, as
in Section 7.3, allows the researcher to estimate the error structure using the estimated
residuals from regressing w; on the X,’s, due to the applicability of Proposition 4.1. This
simplification cannot be used here — the smoothed median regression wraps the parame-
ters into a cdf function @, and this nonlinearity leads to a violation of Proposition 4.1.
Thus, median regressions require joint estimation of 8 and the a’s.

The theory in Section 5 does not consider moving-average processes. Although it is
possible to estimate a median version of Equation (7.8) when such a process is present —
see Section 7.8.3 below — it is not entirely clear how the additional moving-average para-
meters are to be interpreted. Estimates are no longer consistent for autocovariances, but
are instead consistent for some ‘median’ version of the autocovariances. Additionally,
the easiest median specification requires assuming that, after accounting for the autore-
gressive component, the errors are uncorrelated across time. To illustrate this simple
technique, this subsection starts with a purely autoregressive process even though the
evidence presented above supports a moving average component. Given this focus, the
estimation allows for the existence of a third autoregressive lag (ARMA(3, 0)), instead
of just the first- or second-order models already considered.

7.8.1. Single equation estimation of a strictly autoregressive model

Section 5.2.1 outlines two approaches for estimating quantiles with panel data. The first
and simplest assumes that error terms are independently distributed after one accounts
for the autoregressive process. The second, using a system of equations, does not require
this assumption for efficiency or correct inference.

For the sake of illustrating the first approach, assume the data satisfy an ARMA(3, 0)
type process. Thus, one can consistently estimate coefficients using a structural equation

47 As discussed in Section 5.2.2, one might also wish to use this type of estimator at several percentile points
to better characterize the entire wage distribution [see Buchinsky (1994) for an example].
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analogous to (5.8), which implies the following form for g;:

16 W — a1 — aaw;—3 — azw;—3 — X;
ft( ) = 8t = qI)(

Sy > -1 —=-a), (19

where the w;’s and the X;’s are defined in Section 7.1. To estimate the median, set o
equal to 0.5, and the smoothing parameter Sy equal to 0.03.*® & is the standard normal
cdf. The sample used to estimate Equation (7.9) consists of multiple years stacked as
multiple observations. Thus, the sample size equals the number of people multiplied by
the number of years in the panel. Setting f;; = g;; in Equation (3.7) and using functions
of the X;;’s and all past values of wy; as the instrumental variables in formulating the
Q;i’s in (3.8), one can apply nonlinear two-stage least squares (N2SLS) to estimate the
structural and autoregressive parameters of Equation (7.9).* If one suspects the struc-
tural errors g;; are heteroscedastic, then one can select a robust option when computing
standard errors.

As an alternative for increasing estimation efficiency, Sections 3.1.4, 3.2.2 and 4.1.4
outline the development of optimal instrumental variables. In the case considered here,
due to the use of the normal cdf, the optimal instrument for a; takes the form

0
E(ﬁ |Xi,wt—1,--~»wt—k)
aal ai
_ g o wp — A1 — drw;—n — a3w—3 — X B ’ (7.10)
SN SN

where ¢ is the standard normal density. Designating y = (ai, a2, a3, B), optimal in-
struments for each element of y look similar; they are the standard normal density
multiplied by the appropriate regressor. For (7.10) to constitute optimal instrumental
variables in estimation requires structural errors, defined by g;; in (7.9), to exhibit ho-
moscedasticity across observations ¢ and i. Given the nonlinear form of g,; and its direct
functional dependence on X;;, satisfaction of this homoscedasticity assumption may be
dubious.

Unfortunately, the expectations in (7.10) are unobserved and must be estimated.
Given a consistent set of parameter estimates y = (ay, az, as, ,5), form the estimated

analog of (7.10), (?,—g;l,;), the gradient vector of g;, for each observation. To estimate

an approximation for (7.10), regress (%—fjl;) on flexible functions of the X,’s and all

48 Setting Sy to other small values does not change the findings in any substantive way.

49 Note that all lagged values of w; are predetermined since the model assumes there is no serial correlation
beyond the autoregressive process already accounted for. Although one can use all past values of wy, a subset
of early lags would also provide consistent estimates and may be more manageable to program and estimate.
The important thing is to use instruments that provide the best predictive power while being uncorrelated
with g;.
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past values of w,.”° Call the fitted value of this regression (%—f/’ |};)P ; this quantity cor-

responds to the predicted value or projection of (%—";’/’ |7) conditioning on all exogenous
and predetermined variables.

Using the (33—5; |,;)P in place of the X;;’s and past values of wy; as the instrumental
variables in the application of N2SLS offers an alternative approach for estimating co-
efficients of Equation (7.9). This method improves efficiency in estimation assuming
the g;;’s are homoscedastic across observations. As recognized in 2SLS theory, if one
were to use a series of flexible functional forms in the X;;’s and past values of wy;, then
one would expect little gain in efficiency in using the quantities (2—% |J;)1D even with ho-
moscedasticity since these functions would effectively span the space of these projected
gradients.

The first row of Table 8 reports the results of estimating equation (7.9) using the op-
timal instrument set. The three autoregressive parameters are all large and significantly
different from zero with point estimates of —0.397, —0.225, and —0.112. Note that
these estimates are not necessarily consistent for the same coefficients estimated using
mean regression, as these parameters are consistent for medians, not means. Regressed
around the median, the autoregressive lag is much longer than its mean counterpart. The
standard errors are all quite small, less than 0.02. So the smoothed median regression in
this case appears to give precise results. Of course, these standard errors are constructed
under the classical hypothesis of serially uncorrelated, homoscedastic error terms.

To check the validity of the asymptotic standard errors, Table 8 reports bootstrapped
standard errors as well. The bootstrap, done in a manner similar to that in Section 7.5,
yields identical standard errors to the asymptotically approximated errors. Note that this

Table 8
Quantile regression estimates of AR processes for wage growth error structure

ARMA (p, q) Estimation method ay ap as

3,0 Individual regression —0.397 —0.225 —0.112
(asymptotic standard errors) (0.019) (0.017) (0.014)
(1000 reps bootstrap standard errors) (0.019) (0.017) (0.016)
System of equations —0.463 —0.250 —0.065
(asymptotic standard errors) (0.010) (0.007) (0.006)
(1000 reps bootstrap standard errors) (0.027) (0.022) (0.024)

3,1 System of equations —0.637 —0.308 —0.131
(asymptotic standard errors) (0.014) (0.010) (0.009)
(1000 reps bootstrap standard errors) (0.069) (0.028) (0.025)

Note. Standard errors in parentheses.

50 Duye to the nonlinearity in g;, the researcher might get better results by adding interactions and higher
powers of the X;’s and lagged wy’s.
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bootstrap maintained the assumption of independence over time and so sampling was
done on person-years, not on individuals; these bootstrapped standard errors and the
estimates are inconsistent if there is serial correlation after accounting for the autore-
gressive process.

7.8.2. System of equations estimation of a strictly autoregressive process

While maintaining the assumption of an ARMA(3, 0), one can conceptually improve
the efficiency of estimation by allowing for heteroscedasticity in structural disturbances
across years for individuals. Moreover, one can allow for the possibility that coefficients
are nonconstant over time. Instead of treating each person-year as an observation in
Equation (7.9), one stacks these equations into a multiple equation system and treats
each person as an observation of this system. This approach amounts to formulating a
variant of f;; given by (5.11), relying on Proposition 4.2 to compute estimates of the
structural and autoregressive parameters of Equation (7.9).

When using functions of the X;;’s and all past values of w;; as the instrumental vari-
ables, the procedure specifies the components of the f;;’s as

17
fz( )Zgr,
I =h  x g, k=1,...,(t—1984), t = 1984, ..., 1990, (7.11)

where g; is defined in Equation (7.9) with 7;_; calculated using Equation (5.10). Stack-
ing these equations across years to obtain f;;(ay, az, az, ) = (ft(m/ (18)/)/ produces
a model in the form of Equations (4.9) and (3.7). Estimation specifies all the elements
of the X;;’s as instrumental variables comprising Q; appearing in (3.8).

One can again in principle achieve improved efficiency by exploiting an optimal set
of instrumental variables given by (7.10). Approximating these quantities by the pro-

jections ( ag’ l7 )P discussed above, this use of instruments implies that one calculates
98 l; )P

flr—k appearing in (7.11) using Equation (5.10) with (3 By replacing the dependent
variables y;; and with Q;, including a flexible set of quantlties involving the X;;’s pro-
viding for accurate approximations of the expected values of the gradients. Note that
the vector ( dg’ l; )P varies for each year, and is predicted with an ever-expanding set
of predetermmed values of w;; therefore the researcher cannot simply designate all the
instruments as applying to all of the years. For example, (=% 381087 1987 ;)7 is predicted using

w1985, which is correlated with gj9gs5. So (dg raal P cannot serve as an instrument for

the g1985 equation. If one were to introduce a full set of optimal instruments, then there
will be as many 7, terms/equations in (7.11) for any given ¢ as there exist parameters
in the dynamic median equation (7.9). Attaining improved efficiency requires applica-
tion of transformation (3.20) and the assumption of homoscedasticity across persons.
Admittedly, the validity of this assumption may be suspect in light of the nonlinear
character of the structural equation (7.9).

If one is not intending to attain full efficiency, then one can include only a subset
of the 7;_ terms/equations in (7.11) associated with selected elements of ("g’ l; YP . To
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avoid having to include predetermined variables among the instrumental variable list
used in estimation, a natural selection would be to include the terms corresponding to
the elements linked to the autoregressive coefficients a, a; and a3. The remaining para-
meters are identified through the incorporation of all the X;;’s among the instrumental
variable Q;.

Depending on the assumptions maintained concerning the homoscedasticity of struc-
tural errors across individuals, nonlinear three-stage least squares (N3SLS) or method
of moments (MM) offer procedures for estimating the structural and autoregressive co-
efficients of the dynamic median given by Equation (7.9). If one believes that errors
are heteroscedastic, then use of the optimal weighting matrix in MM will increase ef-
ficiency over the single equation system estimated in Section 7.8.1. In the empirical
illustration considered here, estimation relies on N3SLS and the variance—covariance
matrix of the system of equations is assumed to satisfy homoscedasticity across indi-
viduals.

Row 2 of Table 8 reports the results from the application of N3SLS estimation of
equation system (7.11) with 7,_; terms/equations incorporated corresponding to the aj,
ap and a3 components of (%iy’h;)P . Instrumental variables include all the exogenous
variables X;. Whereas the estimated value of a, in this row is similar to the findings
obtained in the N2SLS estimation based on the single equation case discussed above,
the estimate for aj, at —0.463, is much higher in magnitude, especially given the tight
standard error reported of 0.005. The a3 coefficient drops to —0.065.

To examine the robustness of the standard errors, Table 8 also reports bootstrap stan-
dard errors. This bootstrap is done by sampling over the 959 individuals in the sample
to preserve serial correlation. All three bootstrap standard errors are three times larger
than their asymptotic counterparts, moving from around 0.007 to 0.024, implying that
the asymptotic standard errors are misleading. Theoretically, (7.11) should be consis-
tent for the same values as the estimation in Section 7.8.1, and may be more efficient.
This requires the researcher to consider two questions. Why do these estimates from the
system of equations not appear to be converging to the same value as those estimated
in Section 7.8.1? And why are the standard errors reported on the supposedly more
efficient procedure far larger?

The marked change in the parameter estimates may indicate misspecification. Specif-
ically, if there is correlation across time in the g, terms, then the first lagged residual,
ws—1, is likely to be correlated with g;, leading to inconsistent estimates. In this case the
researcher should consider another specification — such as an ARMA(3, 1).

Although the bootstrap standard error estimates are larger for the system of equa-
tions than for the single-equation estimation, this is expected because the standard error
estimates in Section 7.8.1 assume classical errors and are wrong in the presence of
heteroscedastic errors or serial correlation. But the bootstrap standard errors reported
in Section 7.8.1 are consistent under heteroscedasticity and they are identical to their
asymptotic counterparts; thus the differences between the standard error estimates in
Sections 7.8.1 and 7.8.2 are probably due to serial correlation. Section 7.8.2 imposes
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neither homoscedasticity nor independence in computing standard errors.”! Thus it is
not surprising that the more efficient estimation reports larger standard errors, because
the asymptotic standard errors calculated in Section 7.8.1 make much stronger assump-
tions. Given these findings, the researcher should consider another specification, such
as an ARMA(3, 1), that is still consistent under the assumption of first-order serial cor-
relation.

7.8.3. Estimation of autoregressive coefficients allowing for a moving average
component

If the researcher wishes to allow for a first-order moving-average type process to be
present in a quantile regression specification, then the system of equations introduced
in Section 7.8.2 can be used to estimate autoregressive parameters with a slight mod-
ification. Under the assumption of an ARMA(3, 1), the approaches in Sections 7.8.1
and 7.8.2 are inconsistent because they treat the first lag in wage growth, w;_1, as a
predetermined variable when in reality it is correlated with g;.

Conceptually, a researcher could increase efficiency by using optimal instruments

as in Section 7.8.2. In this case one would compute (%ly)}) from a least squares

Y
prediction of (gﬁh;) using a flexible set of regressors depending on X; and all the
predetermined values of w; (i.e., w;—» and those farther back). These predictions would
then be used as described in Section 7.8.2.

Row 3 of Table 8 reports the results of N3SLS estimation of Equation (7.11) with
instrumental variables incorporating the exogenous variables X;’s. The change in iden-
tifying assumptions does affect the estimates. The a; and a, parameter estimates are
larger in magnitude than in the single equation procedure of Section 7.8.1: —0.637 vs.
—0.397 and —0.308 vs. —0.225. The a3 parameter, —0.131, is also larger in magnitude
than it was in Section 7.8.1 or Section 7.8.2. These final estimates are consistent under
heteroscedasticity and even under one-period serial correlation in the error terms.

Although the asymptotic standard errors imply minuscule confidence intervals,
a bootstrap performed in the same manner as in the last subsection reveals standard er-
rors that are, as before, three to five times larger than the asymptotically approximated
standard errors. For example, the a; standard error estimate is 0.014 under the asymp-
totic approximation, while the bootstrap approximation is 0.069. Thus the asymptotic
standard errors are not correctly approximating the small sample distribution. Note that
these bootstrap standard errors are larger than those that resulted under the ARMA(3, 0)
assumption. This is expected as w;_1 is an important part of the identification strategy
followed in Sections 7.8.1 and 7.8.2.

Although the median regression estimates do shift somewhat in response to assump-
tions about the specification, the qualitative implications are robust. The coefficients on

51 Serial correlation would make the parameter estimates inconsistent due to the presence of correlated in-
struments, but the standard errors for these estimates would be correctly estimated.
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the autoregressive parameters are about —0.40, —0.22, and —0.11. All three coefficients
are statistically nonzero under either standard error estimate for all specifications. After
adjusting for schooling and age, the average worker’s wage growth is typically low in
the years following a high growth year, and high in years following a low growth year.
This is the same implication found using mean regression, but the autoregressive effect
is stronger in medians than in means.

7.9. Summary of findings

The above empirical example characterizes the dynamic properties of hourly wages of
men using the estimation procedures for time series models applied to panel data as de-
scribed in Sections 3 and 4. Estimates of the covariogram associated with specification
(7.1), and the autocorrelation coefficients implied by those estimates, accept the hypoth-
esis of weak stationarity of the data. In addition, the sharp drop in the absolute value
of the autocovariances after the first-order implies the existence of a first-order moving-
average process. The gradual decline of the autocovariances of the second order and
above also suggests a short autoregressive process. As a result, the mean regressions fo-
cused on estimating the autoregressive and moving average components of ARMA(1, 1)
and ARMA(2, 1) time series processes in the errors.

Section 7.3 described procedures for estimating the autoregressive parameters alone
and in conjunction with the moving-average parameters for the ARMA models implied
by the results of Section 7.2. The pattern that emerges from Tables 2 and 3 is that the
ARMA(1, 1) specification fits the data better than the ARMA(2, 1) specification does.
Estimates of the first-order autoregressive parameter were similar across all versions
of estimation, implying that 13 to 19 percent of residual wage growth dissipates the
next year through the autoregressive parameter. The estimates for the second-order au-
toregressive parameter were small with standard errors of the same magnitude, leading
to the conclusion that the ARMA(1, 1) model fits the data better than the ARMA(2, 1)
does. Estimating the autoregressive parameters jointly with the moving-average parame-
ters did not have any significant effect on the estimates of the autoregressive parameters
and the moving-average parameters were tightly estimated. The first order moving-
average parameter had a coefficient of about —0.65, implying that residual wage growth
in one year typically reverts about halfway back in the next year.

Reliance on classical asymptotic standard errors for sample sizes as small as 1000 can
potentially lead to overconfidence in one’s inferences. The bootstrap standard errors cal-
culated in Section 7.5 show that this is the case for the ARMA models estimated in Sec-
tion 7.4. Specifically, bootstrap standard errors were larger than the classical asymptotic
standard errors in all cases, and typically were about 25 percent larger. The second-order
autoregressive parameter remained statistically indistinguishable from zero, and despite
these changes the first-order autoregressive parameter remained statistically different
from zero in all but one case. The bootstrap estimate of the first-order autoregressive pa-
rameter from the joint estimation of the ARMA(2, 1) procedure is significantly smaller
than that given in Table 3. Viewed in light of the results of Section 7.7, it appears as
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though joint estimation of the ARMA(2, 1) process is sensitive to changes in the proce-
dure used.

The use of a balanced set of data in a panel context often requires that the researcher
throw out individuals who do not have observations for every year of the sample. Sec-
tion 7.6 re-estimates the covariogram and the autocorrelation coefficients associated
with it using an unbalanced version of the data. Although comparisons of Table 5 with
Table 1 show some difference in the estimates of the autocovariance parameters, the
estimates presented in Table 5 still lead to the same conclusions: acceptance of the hy-
pothesis of weak stationarity and the existence of a first-order moving-average process
accompanied by a short autoregressive process in the errors.

Section 7.7 repeats the estimation reported in Sections 7.2 and 7.4 while accounting
for the stratified sampling of the data through weighting. The relatively few quantitative
or qualitative differences in these estimates should not be taken as an indication that
weighting for a stratified sample is unimportant. For the particular PSID sample used
here, Table 6 shows that weighting for the stratified nature of the data changes the covar-
iogram quantitatively, but none of the qualitative conclusions change; the hypothesis of
weak stationarity is maintained, as well as the existence of a first-order moving-average
process and a short first- or second-order autoregressive process. Using the stratified
sample weights to estimate the autoregressive parameters alone led to little change
quantitatively or qualitatively versus the unweighted estimates. The weighted first-order
autoregressive parameter estimates from the ARMA(1, 1) and ARMA(2, 1) models im-
ply that 11 to 18 percent of residual variation in wage growth is undone the next year
through the autoregressive parameter, as opposed to 13 to 19 percent for the unweighted
counterpart. The weighted second-order parameter estimate for the ARMA(2, 1) model
remains small and insignificant.

Joint estimation of the autoregressive and moving-average parameters using stratified
sampling weights does lead to some important changes. Although the joint estimates of
the ARMA(1, 1) coefficients using weights are similar to those from the unweighted
procedure, the joint estimates for the ARMA(2, 1) model are different. Specifically,
the estimate of the first-order autoregressive parameter is 1/3 the size of any of the
other ARMA(2, 1) specifications, with a standard error that implies that the estimate is
statistically indistinguishable from zero. In conjunction with the results of the bootstrap
estimates of Section 7.5, it appears that joint estimation of the ARMA(2, 1) process is
sensitive to changes in the procedure used.

Turning to the median regressions, one can limit the sensitivity of the estimation
to outliers in a tractable way by using the techniques developed in Section 5. This
smoothed median regression estimator can be done with one equation or several, and
can be thought of as a fairly standard nonlinear optimization problem. The estimation
revealed a three period lag in the autoregressive parameters with coefficients of —0.397,
—0.225, and —0.112, respectively. Single and multiple equation techniques are illus-
trated, both of which can be estimated using standard techniques of two and three stage
least squares or method of moments. The single equation estimator reports identical
standard errors under asymptotic and bootstrap approximations. The same cannot be
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said for the system of equations methods that use an optimal weighting matrix. Judg-
ing from the bootstrapped standard errors, the asymptotic standard errors reported here
under report the true variance in the sampling distribution by a factor of three.

The techniques executed above show how to apply fairly sophisticated methods of
estimation within a very simple estimation framework. Any software package capable
of estimating a nonlinear system of equations (preferably with instrumental variables,
although this is not required) should be able to perform all the techniques introduced
here. The standard errors reported by these routines are asymptotically valid.

Bootstrapped standard errors indicate that the asymptotic estimates may be a useful
guide, but could deviate substantially from the true values. This is especially true in a
median regression of systems of equations where one uses an optimal weighting matrix.
Thus, there is a potential gain from bootstrapping estimates in systems of equations.

8. Summary and concluding remarks

The goal of this chapter has been to present a unified set of estimation methods for fit-
ting a rich array of models describing dynamic relationships within a longitudinal data
setting. The chapter is motivated by the principle that, whenever possible, these methods
should rely on routines available in familiar software packages to make them accessible
to a broad range of practitioners. The discussion covers both the empirical specifica-
tions and estimation methods applicable in a wide variety of longitudinal analyses.
The exposition motivates approaches by considering applications aimed at character-
izing the intertemporal properties of wages and earnings, a research area in which one
finds virtually all assortments of longitudinal applications. In addition to presenting the
econometric principles underlying approaches, this chapter illustrates methods through
a series of empirical examples using hourly wages data on men from the PSID.

As outlined in Section 2, panel data specifications designed to capture the underly-
ing sources of micro dynamics experienced by individuals consist of two components:
(i) parametric relationships depicting the links among current, past and future values
of measured variables, be they endogenous, predetermined or exogenous quantities;
and (ii) error structures describing the stochastic properties of disturbances introduced
in relationships to account for unmeasured factors. Nonlinear simultaneous equation
specifications provide a general class of models for the relationships linking measured
variables. Especially useful simplifications include dynamic simultaneous equations
models (DSEM) incorporating rational distributed lags that allow researchers to en-
tertain flexible lag structures having finite or infinite order using short time series of the
sort available in longitudinal data.

Popular formulations for error structures include variants of autoregressive-moving
average (ARMA) processes. In a panel data setting, a researcher enjoys a wider choice
of specifications because distributed lag and ARMA parameters can be permitted to vary
freely over time. Furthermore, error specifications provided by ARMA schemes can be
readily extended to incorporate permanent and random trend error components. Special
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problems arise in deriving parameterizations of the variance—covariance matrix associ-
ated with ARMA processes in a longitudinal data setting. These problems pertain to the
treatment of initial conditions, which are particularly troublesome for mixed ARMA
specifications. Section 4.3 proposes a general solution to this problem. The DSEM and
these extensions encompass most of the specifications found in the longitudinal litera-
ture.

The “method of moments” (MM) framework conceptually provides a general ap-
proach for estimating parameters of panel data specifications, and Section 3 outlines
the particular formulations and key asymptotic results relied upon in this framework for
computing estimates and testing hypotheses. The discussion summarizes approaches in
the literature for exploiting predetermined variables as instrumental variables in the MM
framework, as well as selecting instrumental variables that yield the greatest efficiency.

Section 4 covers several specializations of the MM approach that can substantially
simplify the problem of estimating sophisticated specifications or many equations in a
longitudinal data context. One application includes linear/nonlinear 3SLS procedures,
a well-known special case of the MM framework that yields convenient computa-
tional formulas for large systems of equations. While conventional implementation of
3SLS routines do not permit use of predetermined variables as instruments, Section 4.1
demonstrates how one can readily overcome this shortcoming by adding new structural
equations to the model while staying within a standard 3SLS program.

There are also considerable advantages to breaking up a longitudinal data estimation
problem into parts, allowing researchers to focus on one part of the model at a time.
The panel data models introduced in Section 2 provide a rich set of specifications, mak-
ing the task of choosing among these specifications a formidable endeavor. Not only do
they permit flexible parameterizations relating measured variables, but numerous for-
mulations are available for error processes; indeed, far more than can be entertained
in standard time series analyses. A researcher rarely knows precisely which parame-
terizations are consistent with the data, and typically must invest considerable effort in
performing diagnostic procedures designed to narrow model choices.

In view of this complexity, Section 4 presents a variety of procedures allowing re-
searchers to subdivide the problem of estimating parameters of sophisticated longitudi-
nal specifications into a multi-stage approach. One can estimate parameters determining
the autocovariance patterns of errors separately from the structural coefficients directly
associated with measured variables, as well as further separating estimation of parame-
ters of the AR and the MA components of the error process. In each step, the application
of familiar estimation routines reports valid test statistics that are useful for discovering
which parts of a model fit the data without having to specify all parts together. Moreover,
these procedures offer a powerful set of diagnostic tools useful not only for evaluating
the basic features of specifications — such as identifying the orders of ARMA models
consistent with the data — but also for discovering reliable values for parameters that
can serve as starting values for the larger estimation exercises.

Section 5 considers using conditional quantile regressions to describe the dynam-
ics of earnings, a set of empirical specifications representing an attractive alternative
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to DSEMs. The analysis considers the formulation of quantiles analogous to autore-
gressive models, including systems of equations permitting one to evaluate how several
different percentiles jointly evolve over time. The section further describes a flexible
approach for estimating the coefficients of autoregressive quantile equations by imple-
menting conventional nonlinear instrumental variable procedures. Thus, the estimation
approaches and issues considered throughout this chapter apply to computing estimates
and test statistics for these dynamic quantile specifications as well.

Section 6 describes how to incorporate weighting and unbalanced data in the esti-
mation of longitudinal data models, which is applicable for both linear and nonlinear
specifications. The type of weighting considered in this discussion corresponded to the
sort typically provided in survey data to account for stratified sampling designs imple-
mented during data collection, designs which produce nonrandom samples. Not only
must the construction of weights account for the stratification of the original sample,
this construction must also adjust for the sample attrition which contributes to a varying
sample composition over time. Virtually all survey data sources contain such weights,
and not using them in estimation produces inconsistent estimates of even basic statistics.
Naive use of weighting options available in standard software packages also generates
incorrect calculations for standard errors and test statistics. The discussion documents
how one must modify the MM formula to account for stratified sampling. The section
ends by describing a modified weighting-type procedure enabling one to use conven-
tional methods to estimate intertemporal specifications with unbalanced data, which are
samples supplying an imperfect overlap in the time periods available for individuals in-
cluded in the longitudinal survey. The procedures covered in this discussion also apply
to estimating the parameters of conditional quantile relationships using stratified and/or
unbalanced samples.

To illustrate the estimation approaches covered in this chapter, Section 7 applies many
of the methods in an empirical analysis of the dynamic properties of the hourly wages
of men during the period 1980-1991 using data from the PSID. While this analysis
merely provides examples of methods to highlight critical concepts, comparisons of
findings across procedures offers insights into how various procedures influence re-
sults. Estimates of the covariogram using data on residuals support the hypothesis of
weak stationarity for wage growth, with the pattern of estimated autocovariances and
test statistics suggesting that an ARMA(1, 1) model adequately describes the data. Ap-
plying procedures that estimate parameters of the AR and MA portions of this model
in separate steps yields values for the coefficients similar to those obtained by joint
estimation of the parameters of the ARMA(1, 1) specification.

The empirical analysis goes on to examine the sensitivity of results to using: (1) boot-
straps to calculate estimates and standard errors, (2) unbalanced data, and (3) weighting
to account for stratified sampling inherent in survey data. According to the findings,
bootstrap standard errors tend to exceed those based on classical asymptotic theory,
typically being about 25 percent larger. The calculation of estimates using unbalanced
data allows a researcher to exploit all data available for a person, without requiring dele-
tion of individuals who do not have observations for every year of the sample. Although
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results for the balanced and unbalanced data show differences, both sets of findings still
allow acceptance of the hypothesis of weak stationarity and the underlying presence
of an ARMA(2, 1) process. Finally, joint estimation of the autoregressive and moving-
average parameters using stratified sampling weights does lead to substantial changes
for some estimates of the ARMA (2, 1) model.

Section 7 also illustrates the estimation of dynamic quantiles, focusing on the in-
tertemporal variation in medians. The empirical analysis reveals the presence of at least
a three-period lag in the autoregressive structure in the median of wages. The application
of bootstrap procedures yields substantially larger standard errors for the multi-equation
estimation methods, but not for the single equation approach.

Other chapters in the Handbook of Econometrics and the Handbook of Labor Eco-
nomics offer valuable alternative or complementary discussions of the topics covered
here. In the area of estimation approaches applicable for panel data, Chamberlain (1984)
has become a standard reference, and Arellano and Honoré (2001) provides a thoughtful
update of recent developments. Horowitz (2001) discusses the theoretical underpinnings
for the bootstrap procedures pertinent to the estimation methods described in this study.
Variants of the empirical models discussed in this chapter also appear in the body of
work surveyed by Solon (1999), which summarizes what has been learned from recent
research on intergenerational earnings mobility. Beyond the Handbooks, the textbooks
by Hsiao (1986, 2003) and Baltagi (1995) provide comprehensive reviews of the panel
data literature, offering a wealth of references and detailed presentations of many con-
cepts only touched on in this chapter.

Econometric developments introduced to analyze longitudinal data comprise one of
the most active research areas in the past three decades. No doubt these developments
will continue since these data constitute the richest sources of information available to
economists hoping to understand a wide range of phenomena. Just as in the past, the
study of wage, earnings and income dynamics will motivate many of these econometric
innovations.

Appendix A: Specifying the covariance matrix for an ARMA process

The purpose of this appendix is to provide explicit parameterizations for the covariance
matrix E{U;U/} associated with the vector of transitory components. The assump-
tions and notation introduced to derive the specification for E(U; U/} given by relations
(4.16)—(4.19) are also used here. The following discussion begins with the development
of a simple parameterization corresponding to relations (4.16)—(4.19).

Using (4.14), it is possible to reformulate the system of equations given by (4.13). To
avoid the need for dealing with several possible cases, it is convenient to introduce the
notation ¢ = 0 for j < 0 (for j =0,y = landfor j > 0,¢; =m; — Y 1_, anlj—pn)
and the definition that a summation of the form ) j _, is equal to zero whenever ¢ < 0.
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Using this notation, Equations (4.13) and (4.14) imply

_ o[ Xiomiea—ji
Y=o aiUa—ji 7= -0 T
. q ’ .
» 2 im0 M jE(p+1- i
20 Up+1-pi . 0
Upi = Xicolfw-ni |+ | i |, (A.D)
Up—1yi qg—1 H(p—1yi
(=D D=0 Si-1E(p—i .
L Ui i g1, L uu
L2 =0 Si—p+1€(p—i -
where
t—0 t—{p
i = Z Cieu—ji + Z Ciba—jpi» t=1,...,p.
J=t—p+q Jj=t—41+1
The first set of T — p equations in (A.1) is simply the standard representation of the
ARMA process generating Uyt 1)i, . .., Ur;, and the second set of p equations is the
moving average representation of the ARMA process for Uy, ..., Up; with the uy;’s,
t =1,..., p,defined to include all disturbances realized prior to period p — g + 1. The

formulation of (A.1) assumes that £; < p — ¢ + 1.2 In matrix notation, (A.1) may be
written as

&
FU, =G(M), (A2)
where
Uri eTi M pi
Ui=| |, &= : NUES
Ui E(p—q+Di 15T

F isthe T x T matrix defined below (4.15), and Gisa T x (T + g) matrix defined as

G = |:M(TP)X(TP+¢]) O(Tp>xz7]

Opx(T-p) Kpxq Ip
M is a diagonal band matrix with the elements (my, ..., mg) running down the diago-
nal,> and the matrix K has (0, - - ., &g—1) asits firstrow, (0, &, ..., {;—2) asits second

row, and so on until the pth row is reached, or if ¢ < p, until the gth row is reached,
after which the rows of K contain zeros. When forming the partitioned matrices as-
sociated with F and G, the above analysis assumes that any matrix with an implied

52 The justification for the restriction can be found in the footnote following Equation (4.18).
3 A diagonal band matrix is specified in the first footnote following Equation (4.15).
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dimension equal to zero is deleted from the specification. Thus, when p = 0, F = [A]
and G = [M]; and when ¢ = 0, K is eliminated and

M O
o=y 7]
Given the expression for U; implied by (A.2), the problem of parameterizing

E{U;U/} becomes one of specifying a correlation structure for disturbance vectors &;
and ;. Since each of the components of ¢; follows a white noise error process, we have

Eleie]} = (Ir—pig ® 0%) = Z, (A3)

where o2 = E{etzi} fort = p—q+1,...,T.Inspection of the formulas for the ug;’s
reveals three facts: (i) the pug;’s depend on a common set of disturbances; (ii) all of
these disturbances are realized prior to period p — ¢ + 1; and (iii) included among these
disturbances are the initial conditions for the ARMA process (i.e., the ¢y;’s). Since each
of the components of ¢; are realized during and after period p — g + 1, fact (ii) implies
E(pie!) = 0. Fact (i) implies that the components of y; are mutually correlated, so
E{pu;} contains no zero elements in general. In addition, without imposing rigorous
conditions, fact (iii) indicates that no restrictions will exist on the form of E{u;u;}. In
general, then, u; will possess an arbitrary covariance structure which we may formally
express as

E{uin;} = A, (A4)

where A is any positive definite, symmetric matrix.
Combining the above results, we obtain the following specification for E{U; U;}:

@:FIG[g g}GT]C (A.5)

This parameterization imposes all of the restrictions implied by the ARMA process
unless one is willing to introduce precise information about how and when this process
started.

There are two modifications of the above parameterization that may be useful in ap-
plied work. First, to simplify the construction of the matrix K, one may replace each
of the nonzero elements of this matrix (i.e., all the ¢;’s, j > 0) by arbitrary parame-
ters, rather than using the coefficients of the ARMA process and the formulas specified
above to form these elements. This modification avoids the need for imposing nonlinear
restrictions, but it introduces new parameters and reduces the efficiency of estimation.

The second modification concerns the parameterization of A defined by (A.4). This
matrix is purely a theoretical construct and represents nuisance parameters. An unattrac-
tive feature of this parameterization is that one cannot easily infer an approximate value
for A using preliminary data analysis techniques or estimation methods that do not re-
quire the full estimation of ®@. An alternative specification is obtained if one replaces
the matrix A by the matrix ¥ = E{u;u} + K (I; x o2)K’ which is also only restricted
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to be positive definite and symmetric. Substituting this new parameterization into (A.5)
implies

0/
MIM MZ‘|:K/:| iy

[OK1ZM' T

e =F"" (A.6)

According to this new specification, T = E {U(l)iU(/l)i}, where the vector U(/l)l. =
(Upi, ..., Uy;) includes the last p components of U;. In contrast to the previous para-
meterization, 7" can be estimated prior to the full estimation of &. The specification
given by (A.6) is equivalent to the one implied by relations (4.16)—(4.19) presented in
Section 4.

It is straightforward to generalize the above specifications to deal with the case where
more than one structural equation is included in model (4.10) (i.e., there are several
equations for each period) and where the disturbance vector U;; follows a multivariate
ARMA process. One merely needs to replace the coefficients a;, m;, and ¢; in the
above specifications by matrices with dimensions equal to the number of equations and
redefine the dimensions of other matrices so that they are conformable.

Appendix B: A general approach for estimating ARMA processes

This appendix presents a general framework for estimating parameters of a stationary
multivariate autoregressive moving-average (ARMA) process applying the procedures
summarized in Sections 4, 6 and 7.

Consider the following stationary multivariate ARMA process

J
F(L)V, =Y Mj(L)e;, (B.1)
j=1

where V4, is a vector of observed variables with zero mean, F (L) = Fo+ FiL +---
+ F,L? and M;(L) = Mjo + M;;L + --- + M, L9 are matrix lag polynomials, and
the &;; are mutually independent, white-noise error vectors with

E(Stjgfj) =X, j=1...,J.

The inclusion of more than one moving average component in relation (B.1) allows the

model to incorporate error-component specifications. Obviously, if error components

are present, then the forms of the F(L) and M;(L) lag matrices must be restricted

according to some structural constraints to achieve identification of coefficients.
Represent the kth order autocovariances of V;, by

O_c = E(V,V/_}).

The stationarity of the process implies that ®, = ©_,.
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Using multivariate extensions of equations (9), (10), and (11) in Section 5.8 of
Anderson (1971), one can derive from (B.1) the following system of equations:

p

Z(ZFh@h ,)F _ZZM,kzM

i Jj=0 k=0

p J q-1
Z(ZFh@h i- 1>F =22 Mjxn1ZM),
i=0 =0 k=0

p /o J
Z( 3 Fh@hiq>F,~’ =) M 2;Mj,

i=0 \ h=0 j=0

P
Z Fp©®p—g—1 =0,
h=0

p
Z Fp®p 741 =0, (B.2)
h=0
where T is the farthest time period available in the longitudinal data set for computing
autocovariances (assumed to satisfy 7 — 1 > ¢). Let 6 be a vector which stacks the
own and cross-autocovariances in (B.2), and let « be a parameter vector in which the
unknown elements of the matrices F j» M and X; are stacked. With some algebraic
manipulations, the system of equations in (B.2) can be stacked to yield a vector equality
of the form

f(@,0) =0, (B.3)

with evaluation of this relationship at the true values of the parameters.
To understand how f (¢, 0) is formed, first consider the case of a univariate ARMA
process. Then

pp

il 0) =" FhFO) ZZ 7ot
i=0 h=0 j=0k=0
PP J g-1

Hl,0) =YY FFOu i1 — Y Y MjiiMjo;,
i=0 h= j=0k=0

and so on. In the case of an n-variate ARMA process, recognize that the matrix

i(ZFhOh l) ZXq:MjkEjM}k

i=0 j=0k=0



4160 T. MaCurdy

is symmetric. Hence, to form f(«, 6) one stacks only the upper triangular part of this
matrix. Thus, the first (n(n + 1)/2) elements of f («, 6) are generated by the first matrix
equation in (B.2), the next n? are generated by the second matrix equation in (B.2), and
SO on.

Let o™ and 6* denote the true values of @ and 6. Further, suppose that 6 is a consistent
estimate of 6* with v/N (6 — 6%) converging in distribution to N (0, H), where N is the
sample size. Then, as long as f («, 6) satisfies the general conditions given in Section 3,

it is the case that
)) (B.4)
o*,0%

R 1)
VN f(a*, 6) 4 N(O, <£

When (8f/8a’) has full column rank, it will be possible in (B.3) to solve for the
elements of « in terms of the elements of 6. Since 6 will typically be overidentified, the
result in (B.4) justifies the applicability of MM procedures to compute a unique estimate
of «. This procedure calculates an estimate « to minimize the function

(S /
el
a*’g* 59

0= f(a,0)Wf(ab), (B.5)

where W is any positive definite matrix. The resulting estimate is consistent and asymp-

totically normal given (B.4). Further, if H is a consistent estimate of H and & is a con-
~ !

sistent estimate of «, the result in (B.4) enables one to conclude that [% Iz 0H % 5 é]_l

is an optimal choice for W. Standard MM procedures then imply that

x ~ N|a* Lo of ﬁaf/ o o o (B.6)
o~ af, —| — — —_— — , .
N \ Sa 4.6 80’ &b Sa’ 4.0

&’é 66
where & is the estimate of @ when W is chosen optimally.

The value of the function Q given in (B.5), with W chosen optimally, forms the ba-
sis for a statistic to test whether the autocovariances of V;, have a parameterization
implied by (B.1). Let @ be the value of the function Q, let ky denote the number
of elements in 6, and let k, denote the number of parameters contained in «. Ac-
cording to the findings in (3.17), it follows that if the null hypothesis given by (B.3)
is true, then N Q is approximately distributed as a chi-squared random variable with
(kg — ko) degrees of freedom. This statistic provides a measure of fit of the parameter-
ized multiple time series model to the sample own- and cross-covariograms, with the
alternative hypothesis interpreting all variances and autocovariances as being entirely
unconstrained.
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Abstract

This paper outlines recently developed techniques for estimating the primitives needed
to empirically analyze equilibrium interactions and their implications in oligopolistic
markets. It is divided into an introduction and three sections; a section on estimating
demand functions, a section on estimating production functions, and a section on esti-
mating “dynamic” parameters (parameters estimated through their implications on the
choice of controls which determine the distribution of future profits).
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The introduction provides an overview of how these primitives are used in typical
I.O. applications, and explains how the individual sections are structured. The topics of
the three sections have all been addressed in prior literature. Consequently each section
begins with a review of the problems I.O. researchers encountered in using the prior
approaches. The sections then continue with a fairly detailed explanation of the recent
techniques and their relationship to the problems with the prior approaches. Hopefully
the detail is rich enough to enable the reader to actually program up a version of the
techniques and use them to analyze data. We conclude each section with a brief dis-
cussion of some of the problems with the more recent techniques. Here the emphasis is
on when those problems are likely to be particularly important, and on recent research
designed to overcome them when they are.

Keywords

demand estimation, production function estimation, dynamic estimation, strategic
interactions, equilibrium outcomes
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Recent complementary developments in computing power, data availability, and econo-
metric technique have led to rather dramatic changes in the way we do empirical analy-
sis of market interactions. This paper reviews a subset of the econometric techniques
that have been developed. The first section considers developments in the estimation
of demand systems, the second considers developments in the estimation of production
functions, and the third is on dynamic estimation, in particular on estimating the costs of
investment decisions (where investments are broadly interpreted as any decision which
affects future, as well as perhaps current, profits).

These are three of the primitives that are typically needed to analyze market interac-
tions in imperfectly competitive industries. To actually do the analysis, that is to actually
unravel the causes of historical events or predict the impact of possible policy changes,
we need more information than is contained in these three primitives. We would also
need to know the appropriate notion of equilibrium for the market being analyzed, and
provide a method of selecting among equilibria if more than one of them were consis-
tent with our primitives and the equilibrium assumptions. Though we will sometimes
use familiar notions of equilibrium to develop our estimators, this paper does not ex-
plicitly consider either the testing of alternative equilibrium assumptions or the issue
of how one selects among multiple equilibria. These are challenging tasks which the
profession is just now turning to.

For each of the three primitives we do analyze, we begin with a brief review of the
dominant analytic frameworks circa 1990 and an explanation of why those frameworks
did not suffice for the needs of modern Industrial Organization. We then move on to
recent developments. Our goal here is to explain how to use the recently developed
techniques and to help the reader identify problems that might arise when they are used.
Each of the three sections have a different concluding subsection.

There have been a number of recent papers which push the demand estimation lit-
erature in different directions, so we conclude that section with a brief review of those
articles and why one might be interested in them. The section on production function
concludes with a discussion of the problems with the approach we outline, and some
suggestions for overcoming them (much of this material is new). The section on the
costs of investments, which is our section on “dynamics”, is largely a summary and in-
tegration of articles that are still in various stages of peer review; so we conclude here
with some caveats to the new approaches.

We end this introduction with an indication of the ways Industrial Organization makes
use of the developments outlined in each of the three sections of the paper. This should
direct the researcher who is motivated by particular substantive issues to the appropriate
section of the paper. Each section is self-contained, so the reader ought to be able to read
any one of them in isolation.

Demand systems are used in several contexts. First demand systems are the major
tool for comparative static analysis of any change in a market that does not have an
immediate impact on costs (examples include the likely effects of mergers, tax changes,
etc.). The static analysis of the change usually assumes a mode of competition (almost
always either Nash in prices or in quantities) and either has cost data, or more frequently
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estimates costs from the first order conditions for a Nash equilibrium. For example, in a
Nash pricing (or Bertrand) equilibrium with single product firm, price equals marginal
cost plus a markup. The markup can be computed as a function of the estimated de-
mand parameters, so marginal costs can be estimated as price minus this markup. Given
marginal costs, demand, and the Nash pricing assumption the analyst can compute an
equilibrium under post change conditions (after the tax or the merger). Assuming the
computed equilibrium is the equilibrium that would be selected, this generates the pre-
dictions for market outcomes after the change. If the analyst uses the pre-change data
on prices to estimate costs, the only primitive required for this analysis is the demand
function and the ownership pattern of the competing products (which is usually ob-
served).

A second use of demand systems is to analyze the effect of either price changes
or new goods on consumer welfare. This is particularly important for the analysis of
markets that are either wholly or partially regulated (water, telecommunications, elec-
tricity, postage, medicare and medicaid, ...). In this context we should keep in mind
that many regulatory decisions are either motivated by nonmarket factors (such as eq-
uity considerations), or are politically sensitive (i.e. usually either the regulators or those
who appointed them are elected). As a result the analyst often is requested to provide a
distribution of predicted demand and welfare impacts across demographic, income and
location groups. For this reason a “representative agent” demand system simply will not
do.

The use of demand systems to analyze welfare changes is also important in several
other contexts. The “exact” consumer price index is a transform of the demand sys-
tem. Thus ideally we would be using demand systems to construct price indices also
(and there is some attempt by the BLS research staff to construct experimental indexes
in this way). Similarly the social returns to (either publicly or privately funded) re-
search or infrastructure investments are often also measured with the help of demand
systems.

Yet a third way in which demand systems are important to the analysis of I.O. prob-
lems is that some of them can be used to approximate the likely returns to potential
new products. Demand systems are therefore an integral part of the analysis of product
placement decisions, and more generally, for the analysis of the dynamic responses to
any policy or environmental change. Finally the way in which tastes are formed, and the
impacts of advertising on that process, are problems of fundamental interest to 1.O. Un-
fortunately these are topics we will not address in the demand section of this paper. Our
only consolation is the hope that the techniques summarized here will open windows
that lead to a deeper understanding of these phenomena.

Production or cost functions are a second primitive needed for comparative static
analysis. However partly because product specific cost data are not available for many
markets, the direct estimation of cost functions has not been an active area of research
lately. There are exceptions, notably some illuminating studies of learning by doing [see
Benkard (2000) and the literature cited there], but not many of them.
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What has changed in the past decade and a half is that researchers have gained access
to a large number of plant (sometimes firm) level data sets on production inputs and
outputs (usually the market value of outputs rather than some measure of the physical
quantity of the output). This data, often from various census offices, has stimulated
renewed interest in production function estimation and the analysis of productivity. The
data sets are typically (though not always) panels, and the availability of the data has
focused attention on a particular set of substantive and technical issues.

Substantively, there has been a renewal of interest in measuring productivity and
gauging how some of the major changes in the economic environment that we have
witnessed over the past few decades affect it. This includes studies of the productiv-
ity impacts of deregulation, changes in tariff barriers, privatization, and broad changes
in the institutional environment (e.g. changes in the legal system, in health care deliv-
ery, etc.). The micro data has enabled this literature to distinguish between the impacts
of these changes on two sources of growth in aggregate productivity: (i) growth in the
productivity of individual establishments, and (ii) growth in industry productivity result-
ing from reallocating more of the output to the more productive establishments (both
among continuing incumbents, and between exitors and new entrants). Interestingly,
the prior literature on productivity was also divided in this way. One part focused on
the impacts of investments, in particular of research and infrastructure investments, on
the productive efficiency of plants. The other focused on the allocative efficiency of
different market structures and the impacts of alternative policies on that allocation (in
particular of merger and monopoly policy).

From an estimation point of view, the availability of large firm or plant level panels
and the desire to use them to analyze the impacts of major changes in the environment
has renewed interest in the analysis of the effects of simultaneity (endogeneity of inputs)
and selection (endogeneity of attrition) on parameter estimates. The data made clear that
there are both: (i) large differences in measured “productivity” across plants (no matter
how one measures productivity) and that these differences are serially correlated (and
hence likely to effect input choices), and (ii) large sample attrition and addition rates
in these panels [see Dunne, Roberts and Samuelson (1988) and Davis and Haltiwanger
(1992) for some of the original work on US manufacturing data]. Moreover, the changes
in the economic environment that we typically analyze had different impacts on different
firms. Not surprisingly, the firms that were positively impacted by the changes tended
to have disproportionate growth in their inputs, while those that it affected negatively
tended to exhibit falling input demand, and not infrequently, to exit.

The traditional corrections for both simultaneity and selection, corrections based
largely on simple statistical models (e.g. use of fixed effect and related estimators for
simultaneity, and the use of the propensity score for selection) were simply not rich
enough to account for the impacts of such major environmental changes. So the litera-
ture turned to simultaneity and selection corrections based on economic models of input
and exit choices. The section of this chapter on production functions deals largely with
these latter models. We first review the new procedures emphasizing the assumptions
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they use, and then provide suggestions for amending the estimators for cases where
those assumptions are suspect.

The last section of the paper deals explicitly with dynamic models. Despite a blos-
soming empirical literature on the empirical analysis of static equilibrium models, there
has been very little empirical work based on dynamic equilibrium models to date. The
L.O. literature’s focus on static settings came about not because dynamics were thought
to be unimportant to the outcomes of interest. Indeed it is easy to take any one of the
changes typically analyzed in static models and make the argument that the dynamic
implications of the change might well overturn their static effects. Moreover, there was
areasonable amount of agreement among applied researchers that the notion of Markov
perfect equilibrium provided a rich enough framework for the analysis of dynamics in
oligopolistic settings.

The problem was that even given this framework the empirical analysis of the dy-
namic consequences of the changes being examined was seen as too difficult a task to
undertake. In particular, while some of the parameters needed to use the Markov per-
fect framework to analyze dynamic games could be estimated without imposing the
dynamic equilibrium conditions, some could not. Moreover, until very recently the only
available methods for estimating these remaining parameters were extremely burden-
some, in terms of both computation and researcher time.

The computational complexity resulted from the need to compute the continuation
values to the dynamic game in order to estimate the model. The direct way of obtaining
continuation values was to compute them as the fixed point to a functional equation,
a high order computational problem. Parameter values were inferred from observed be-
havior by computing the fixed point that determines continuation values at different trial
parameter values, and then searching for the parameter value that makes the behavior
implied by the continuation values “as close as possible” to the observed data. This
“nested fixed point” algorithm is extremely computationally burdensome; the continua-
tion values need to be computed many times and each time they are computed we need
to solve the fixed point.

A recent literature in industrial organization has developed techniques that substan-
tially reduce the computational and programming burdens of using the implications of
dynamic games to estimate the parameters needed for subsequent applied analysis. That
literature requires some strong assumptions, but delivers estimating equations which
have simple intuitive explanations and are easy to implement.

Essentially the alternative techniques deliver different semiparametric estimates of
continuation values. Conditional on a value of the parameter vector, these estimated
continuation values are treated as the true continuation values and used to determine
optimal policies (these can be entry and exit policies, investments of various forms, or
bidding strategies in dynamic auctions). The parameters are estimated by matching the
policies that are predicted in this way to the policies that are observed in the data. Note
that this process makes heavy use of nonparametric techniques; nonparametric estimates
of either policies or values must be estimated at every state observed in the data. Not
surprisingly then Monte Carlo evidence indicates that the small sample properties of the
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estimators can be quite important in data sets of the size we currently use. This, in turn,
both generates preferences for some semiparametric estimators over others, and makes
obvious a need for small sample bias correction procedures which, for the most part,
have yet to be developed. We now move on to the body of the paper.

1. Demand systems

Demand systems are probably the most basic tool of empirical Industrial Organization.
They summarize the demand preferences that determine the incentives facing produc-
ers. As a result some form of demand system has to be estimated before one can proceed
with a detailed empirical analysis of pricing (and/or production) decisions, and, conse-
quently of the profits and consumer welfare likely to be generated by the introduction
of new goods.

Not long ago graduate lectures on demand systems were largely based on “repre-
sentative agent” models in “product” space (i.e. the agent’s utility was defined on the
product per se rather than on the characteristics of the product). There were a number
of problems with this form of analysis that made if difficult to apply in the context of
I.O. problems. We begin with an overview of those problems, and the “solutions” that
have been proposed to deal with them.

Heterogeneous agents and simulation

First, almost all estimated demand systems were based on market level data: they would
regress quantity purchased on (average) income and prices. There were theoretical pa-
pers which investigated the properties of market level demand systems obtained by
explicitly aggregating up from micro models of consumer choices [including a semi-
nal paper by Houthakker (1955)]. However we could not use their results to structure
estimation on market level data without imposing unrealistic a priori assumptions on
the distribution of income and “preferences” (or its determinants like size, age, location,
etc.) across consuming units.

Simulation estimators, which Pakes (1986) introduced for precisely this problem, i.e.
to enable one to use a micro behavioral model with heterogeneity among agents to
structure the empirical analysis of aggregate data, have changed what is feasible in this
respect. We can now aggregate up from the observed distribution of consumer charac-
teristics and any functional form that we might think relevant. That is we allow different
consumers to have different income, age, family size, and/or location of residence. We
then formulate a demand system which is conditional on the consumer’s characteristics
and a vector of parameters which determines the relationship between those character-
istics and preferences over products (or over product characteristics). To estimate those
parameters from market level data we simply

e draw vectors of consumer characteristics from the distribution of those character-

istics in the market of interest (in the US, say from the March CPS),
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e determine the choice that each of the households drawn would make for a given

value of the parameter vector,

e aggregate those choices into a prediction for aggregate demand conditional on the

parameter vector, and

e employ a search routine that finds the value of that parameter vector which makes

these aggregate quantities as close as possible to the observed market level de-
mands.

The ability to obtain aggregate demand from a distribution of household preferences
has had at least two important impacts on demand analysis. First it has allowed us to
use the same framework to study demand in different markets, or in the same market at
different points in time. A representative agent framework might generate a reasonable
approximation to a demand surface in a particular market. However there are often large
differences in the distribution of income and other demographic characteristics across
markets, and these in turn make an approximation which fits well in one market do
poorly in others.

For example, we all believe (and virtually all empirical work indicates) that the im-
pact of price depends on income. Our micro model will therefore imply that the price
elasticity of a given good depends on the density of the income distribution among the
income/demographic groups attracted to that good. So if the income distribution differed
across regional markets, and we used an aggregate framework to analyze demand, we
would require different price coefficients for each market. Table 1 provides some data
on the distribution of the income distribution across US counties (there are about three
thousand counties in the US). It is clear that the income distribution differs markedly
across these “markets”; the variance being especially large in the high income groups
(the groups which purchase a disproportionate share of goods sold).

Table 1
Cross county differences in household income

Income Fraction of US Distribution of fraction
group population in over counties
(thousands) income group Mean Std. dev.
0-20 0.226 0.289 0.104
20-35 0.194 0.225 0.035
35-50 0.164 0.174 0.028
50-75 0.193 0.175 0.045
75-100 0.101 0.072 0.033
100-125 0.052 0.030 0.020
125-150 0.025 0.013 0.011
150-200 0.022 0.010 0.010
200+ 0.024 0.012 0.010

Source: From Pakes (2004).



4180 D. Ackerberg et al.

A heterogenous agent demand model with an interaction between price and income
uses the available information on differences in the distribution of income to combine
the information from different markets. This both enables us to obtain more precise
parameter estimates, and provides a tool for making predictions of likely outcomes in
new markets.

The second aspect of the heterogenous agent based systems that is intensively used
is its ability to analyze the distributional impacts of policies or environmental changes
that affect prices and/or the goods marketed. These distributional effects are often of
primary concern to both policy makers and to the study of related fields (e.g. the study
of voting patterns in political economy, or the study of tax incidence in public finance).

The too many parameters and new goods problems

There were at least two other problems that appeared repeatedly when we used the ear-
lier models of demand to analyze Industrial Organization problems. They are both a
direct result of positing preferences directly on products, rather than on the characteris-
tics of products.

1. Many of the markets we wanted to analyze contained a large number of goods
that are substitutes for one another. As a result when we tried to estimate demand
systems in product space we quickly ran into the “too many parameters problem”.
Even a (log) linear demand system in product space for J products requires esti-
mates of on the order of J? parameters (J price and one income coefficient in the
demand for every one of the J products). This was often just too many parameters
to estimate with the available data.

2. Demand systems in product space do not enable the researcher to analyze demand
for new goods prior to their introduction.

Gorman’s polar forms [Gorman (1959)] for multi-level budgeting were an ingenious
attempt to mitigate the too many parameter problem. However they required assump-
tions which were often unrealistic for the problem at hand. Indeed typically the grouping
procedures used empirically paid little attention to accommodating Gorman’s condi-
tions. Rather they were determined by the policy issue of interest. As a result one would
see demand systems for the same good estimated in very different ways with results
that bore no relationship to each other.! Moreover, the reduction in parameters obtained
from multilevel budgeting was not sharp enough to enable the kind of flexibility needed
for many 1.O. applications [though it was for some, see for e.g. Hausman (1996) and the
literature cited there].

! For example, it was not uncommon to see automobile demand systems that grouped goods into imports and
domestically produced in studies where the issue of interest involved tariffs of some form, and alternatively by
gas mileage in studies where the issue of interest was environmental or otherwise related to fuel consumption.
Also Gorman'’s results were of the “if and only if” variety; one of his two sets of conditions were necessary
if one is to use multi-level budgeting. For more detail on multi-level budgeting see Deaton and Muellbauer
(1980).
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The new goods problem was central to the dynamics of analyzing market outcomes.
That is in order to get any sort of idea of the incentives for entry in differentiated product
markets, we need to be able to know something about the demand for a good which
had not yet been introduced. This is simply beyond the realm of what product based
demand systems can do. On the other hand entry is one of the basic dynamic adjustment
mechanisms in Industrial Organization, and it is hard to think of say, the likely price
effects of a merger,” or the longer run effects of an increase in gas prices, without some
way of evaluating the impacts of those events on the likelihood of entry.

The rest of this section of the paper will be based on models of demand that posit
preferences on the characteristics of products rather than on products themselves. We
do not, however, want to leave the reader with the impression that demand systems in
product based, in particular product space models that allow for consumer heterogene-
ity, should not be used. If one is analyzing a market with a small number of products,
and if the issue of interest does not require an analysis of the potential for entry, then it
may well be preferable to use a product space system. Indeed all we do when we move
to characteristic space is to place restrictions on the demand systems which could, at
least in principle, be obtained from product space models. On the other hand these re-
strictions provide a way of circumventing the “too many parameter” and “new goods”
problems which has turned out to be quite useful.

1.1. Characteristic space: The issues

In characteristics space models

e Products are bundles of characteristics.

e Preferences are defined on those characteristics.

e Each consumer chooses a bundle that maximizes its utility. Consumers have dif-
ferent relative preferences (usually just marginal preferences) for different charac-
teristics, and hence make different choices.

e Simulation is used to obtain aggregate demand.

Note first that in these models the number of parameters required to determine ag-
gregate demand is independent of the number of products per se; all we require is the
joint distribution of preferences over the characteristics. For example, if there were five
important characteristics, and preferences over them distributed joint normally, twenty
parameters would determine the own and cross price elasticities for all products (no
matter the number of those products). Second, once we estimate those parameters, if we
specify a new good as a different bundle of characteristics then the bundles currently in
existence, we can predict the outcomes that would result from the entry of the new good

2 Not surprisingly, then, directly after explaining how they will analyze the price effects of mergers among
incumbent firms, the US merger guidelines [DoJ (1992)] remind the reader that the outcome of the analysis
might be modified by an analysis of the likelihood of entry. Though they distinguish between different types
of potential entrants, their guidelines for evaluating the possibility of entry remain distinctly more ad hoc then
the procedures for analyzing the initial price changes.
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by simply giving each consumer an expanded choice set, one that includes the old and
the new good, and recomputing demand in exactly the same way as it was originally
computed.’

Having stated that, at least in principle, the characteristic space based systems solve
both the too many parameter and the new goods problems, we should now provide
some caveats. First what the system does is restrict preferences: it only allows two
products to be similar to one another through similarities in their characteristics. Below
we will introduce unmeasured characteristics into the analysis, but the extent to which
unmeasured characteristics have been used to pick up similarities in tastes for different
products is very limited. As a result if the researcher does not have measures of the
characteristics that consumers care about when making their purchase decisions, the
characteristic based models are unlikely to provide a very useful guide to which prod-
ucts are good substitutes for one another. Moreover, it is these substitution patterns that
determine pricing incentives in most 1.O. models (and as a result profit margins and the
incentives to produce new goods).

As for new goods, there is a very real sense in which characteristic based systems
can only provide adequate predictions for goods that are not too “new”. That is, if we
formed the set of all tuples of characteristics which were convex combinations of the
characteristics of existing products, and considered a new product whose characteris-
tics are outside of this set, then we would not expect the estimated system to be able
to provide much information regarding preferences for the new good, as we would be
“trying to predict behavior outside of the sample”. Moreover, many of the most suc-
cessful product introductions are successful precisely because they consist of a tuple of
characteristics that is very different than any of the characteristic bundles that had been
available before it was marketed (think, for example, of the lap top computer, or the
Mazda Miata%).

Some background

The theoretical and econometric groundwork for characteristic based demand systems
dates back at least to the seminal work of Lancaster (1971) and McFadden (1974,
1981).5 Applications of the Lancaster/McFadden framework however, increased sig-
nificantly after Berry, Levinsohn and Pakes (1995) showed how to circumvent two

3 This assumes that there are no product specific unobservables. As noted below, it is typically important to
allow for such unobservables when analyzing demand for consumer products, and once one allows for them
we need to account for them in our predictions of demand for new goods. For example, see Berry, Levinsohn
and Pakes (2004).

4 For more detail on just how our predictions would fail in this case see Pakes (1995).

5 Actually characteristics based models have a much longer history in 1.O. dating back at least to Hotelling’s
(1929) classic article, but the I.O. work on characteristic based models focused more on their implications for
product placement rather than on estimating demand systems per se. Characteristic based models also had a
history in the price index literature as a loose rational for the use of hedonic price indices; see Court (1939),
Griliches (1961), and the discussion of the relationship between hedonics and 1.O. equilibrium models in
Pakes (2004).



Ch. 63:  Econometric Tools for Analyzing Market Outcomes 4183

problems that had made it difficult to apply the early generation of characteristic based
models in I.O. contexts.

The problems were that

1. The early generation of models used functional forms which restricted cross and

own price elasticities in ways which brought into question the usefulness of the
whole exercise.

2. The early generation of models did not allow for unobserved product characteris-

tics.

The second problem was first formulated in a clear way by Berry (1994), and is par-
ticularly important when studying demand for consumer goods. Typically these goods
are differentiated in many ways. As a result even if we measured all the relevant charac-
teristics we could not expect to obtain precise estimates of their impacts. One solution
is to put in the “important” differentiating characteristics and an unobservable, say &,
which picks up the aggregate effect of the multitude of characteristics that are being
omitted. Of course, to the extent that producers know & when they set prices (and recall
& represents the effect of characteristics that are known to consumers), goods that have
high values for £ will be priced higher in any reasonable notion of equilibrium.

This produces an analogue to the standard simultaneous equation problem in esti-
mating demand systems in the older demand literature; i.e. prices are correlated with
the disturbance term. However in the literature on characteristics based demand sys-
tems the unobservable is buried deep inside a highly nonlinear set of equations, and
hence it was not obvious how to proceed. Berry (1994) shows that there is a unique
value for the vector of unobservables that makes the predicted shares exactly equal to
the observed shares. Berry, Levinsohn and Pakes (1995) (henceforth BLP) provide a
contraction mapping which transforms the demand system into a system of equations
that is linear in these unobservables. The contraction mapping is easy to compute, and
once we have a system which is linear in the disturbances we can again use instru-
ments, or any of the other techniques used in more traditional endogeneity problems, to
overcome this “simultaneity problem”.

The first problem, that is the use of functional forms which restricted elasticities in
unacceptable ways, manifested itself differently in different models and data sets. The
theoretical 1.O. literature focussed on the nature competition when there was one di-
mension of product competition. This could either be a “vertical” or quality dimension
as in Shaked and Sutton (1982) or a horizontal dimension, as in Salop (1979) [and in
Hotelling’s (1929) classic work]. Bresnahan (1981), in his study of the automobile de-
mand and prices, was the first to bring this class of models to data. One (of several)
conclusions of the paper was that a one-dimensional source of differentiation among
products simply was not rich enough to provide a realistic picture of demand: in partic-
ular it implied that a particular good only had a nonzero cross price elasticity with its
two immediate neighbors (for products at a corner of the quality space, there was only
one neighbor).

McFadden himself was quick to point out the “IIA” (or independence of irrelevant
alternatives) problem of the logit model he used. The simplest logit model, and the one
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that had been primarily used when only aggregate data was available (data on quanti-
ties, prices, and product characteristics), has the utility of the ith consumer for the jth
product defined as

Uij=x;jP +¢j,

where the x; are the characteristics of product j (including the unobserved characteristic
and price) and the {¢; ;} are independent (across both j for a given i and across i for
a given j) identically distributed random variables.® Thus x;B is the mean utility of
product j and ¢; ; is the individual specific deviation from that mean.

There is a rather extreme form of the IIA problem in the demand generated by this
model. The model implies that the distribution of a consumer’s preferences over prod-
ucts other than the product it bought, does not depend on the product it bought. One can
show that this implies the following:

e Two agents who buy different products are equally likely to switch to a particular
third product should the price of their product rise. As a result two goods with the
same shares have the same cross price elasticities with any other good (cross price
elasticities are a multiple of s s, where s; is the share of good j). Since both very
high quality goods with high prices and very low quality goods with low prices
have low shares, this implication is inconsistent with basic intuition.

e Since there is no systematic difference in the price sensitivities of consumers
attracted to the different goods, own price derivatives only depends on shares
(0s/0p) = —s(1 — ). This implies that two goods with same share must have
the same markup in a single product firm “Nash in prices” equilibrium, and once
again luxury and low quality goods can easily have the same shares.

No data will ever change these implications of the two models. If your estimates do not
satisfy them, there is a programming error, and if your estimates do satisfy them, we are
unlikely to believe the results.

A way of ameliorating this problem is to allow the coefficients on x to be individual-
specific. Then, when we increase the price of one good the consumers who leave that
good have very particular preferences, they were consumers who preferred the x’s of
that good. Consequently they will tend to switch to another good with similar x’s gen-
erating exactly the kind of substitution patterns that we expect to see. Similarly, now
consumers who chose high priced cars will tend to be consumers who care less about
price. Consequently less of them will substitute from the good they purchase for any
given price increase, a fact which will generate lower price elasticities and a tendency
for higher markups on those goods.

6 In the pure logit, they have a double exponential distribution. Though this assumption was initially quite
important, it is neither essential for the argument that follows, nor of as much importance for current applied
work. Its original importance was due to the fact that it implied that the integral that determined aggregate
demand had a closed form, a feature which receded in importance as computers and simulation techniques
improved.
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This intuition also makes it clear how the IIA problem was ameliorated in the few
studies which had micro data (data which matched individual characteristics to the
products those individuals chose), and used it to estimate a micro choice model which
was then explicitly aggregated into an aggregate demand system. The micro choice
model interacted observed individual and product characteristics, essentially producing
individual specific B’s in the logit model above. The IIA problem would then be ame-
liorated to the extent that the individual characteristic data captured the differences in
preferences for different x-characteristics across households. Unfortunately many of the
factors that determine different households preferences for different characteristics are
typically not observed in our data sets, so without allowing for unobserved as well as
observed sources of differences in the §, estimates of demand systems typically retain
many reflections of the ITA problem as noted above; see, in particular Berry, Levinsohn
and Pakes (2004) (henceforth MicroBLP) and the literature cited there.

The difficulty with allowing for individual specific coefficients on product charac-
teristics in the aggregate studies was that once we allowed for them the integral deter-
mining aggregate shares was not analytic. This lead to a computational problem; it was
difficult to find the shares predicted by the model conditional on the model’s parameter
vector. This, in turn, made it difficult, if not impossible, to compute an estimator with
desirable properties. Similarly in micro studies the difficulty with allowing for unob-
served individual specific characteristics that determined the sensitivity of individuals
to different product characteristics was that once we allowed for them the integral de-
termining individual probabilities was not analytic. The literature circumvented these
problems as did Pakes (1986), i.e. by substituting simulation for integration, and then
worried explicitly about the impact of the simulation error on the properties of the esti-
mators [see Berry, Linton and Pakes (2004) and the discussion below].

1.2. Characteristic space: Details of a simple model

The simplest characteristic based models assumes that each consumer buys at most one
unit of one of the differentiated goods. The utility from consuming good j depends
on the characteristics of good j, as well as on the tastes (interpreted broadly enough
to include income and demographic characteristics) of the household. Heterogenous
households have different tastes and so may choose different products.

The utility of consumer (or household) i for good j in market (or time period) 7 if it
purchases the jth good is

Uijjt =U()Ejt,éjt,zitavit,)7it—Pjt,e), (D

where Xj; is a K-dimensional vector of observed product characteristics other than
price, pj; is the price of the product, &;; represents product characteristics unobserved
to the econometrician, z;; and v;; are vectors of observed and unobserved (to the econo-
metrician) sources of differences in consumer tastes, y;; is the consumer’s income, and
0 is a vector of parameters to be estimated. When we discuss decisions within a single
market, we will often drop the ¢ subscript.
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Note that the “partial equilibrium” nature of the problem is incorporated into the
model by letting utility depend on the money available to spend outside of this market
(yi — pj)- In many applications, the expenditure in other markets is not explicitly mod-
elled. Instead, y; is subsumed into either v; or z; and utility is modelled as depending
explicitly on price, so that utility is

uij =U(;, &, zi,vi, pj, 0). )

The consumer chooses one of j products and also has the j = 0 choice of not buying
any of the goods (i.e. choosing the “outside option”). Denote the utility of outside good
as

ujo = U(Xo, &0, 2i, vi, 0), (3)

where X could either be a vector of “characteristics” of the outside good, or else could
be an indicator for the outside good that shifts the functional form of U (because the
outside good may be difficult to place in the same space of product characteristics as
the “inside” goods). The existence of the outside option allows us to model aggregate
demand for the market’s products; in particular it allows market demand to decline if all
within-market prices rise.

The consumer makes the choice that gives the highest utility. The probability of that
product j is chosen is then the probability that the unobservables v are such that

uij > ujr, Vr #* . )

The demand system for the industry’s products is obtained by using the distribution of
the (z;, v;) to sum up over the values for these variables that satisfy the above condition
in the market of interest.

Note that, at least with sufficient information on the distribution of the (z;, v;), the
same model can be applied when: only market level data are available, when we have
micro data which matches individuals to the choices they make, when we have stratafied
samples or information on the total purchases of particular strata, or with any combina-
tion of the above types of data. In principal at least, this should make it easy to compare
different studies on the same market, or to use information from one study in another.

Henceforth we work with the linear case of the model in Equations (2) and (3). Let-
ting x; = (X;, p;), that model can be written as

Uij = Zxjibik +§j + €ijs ®)
with

Oic = O + 6"z + 6w,

«0% wu

where the and superscripts designate the interactions of the product character-
istic coefficients with the observed and the unobserved individual attributes, and it is
understood that x;o = 1.

We have not written down the equation for Uj o, i.e. for the outside alternative, be-
cause we can add an individual specific constant term to each choice without changing
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the order of preferences over goods. This implies we need a normalization and we chose
U;.o = 0 (that is we subtract U; o from each choice). Though this is notationally conve-
nient we should keep in mind that the utilities from the various choices are now actually
the differences in utility between the choice of the particular good and the outside alter-
native.’

Note also that we assume a single unobservable product characteristic, i.e. §; € R,
and its coefficient does not vary across consumers. That is, if there are multiple unob-
servable characteristics then we are assuming they can be collapsed into a single index
whose form does not vary over consumers. This constraint is likely to be more bind-
ing were we to have data that contained multiple choices per person [see, for example
Heckman and Snyder (1997)].8 Keep in mind, however, that any reasonable notion of
equilibrium would make p; depend on &; (as well as on the other product characteris-
tics).

The only part of the specification in (5) we have not explained are the {¢;;}. They
represent unobserved sources of variation that are independent across individuals for a
given product, and across products for a given individual. In many situations it is hard
to think of such sources of variation, and as a result one might want to do away with the
{€ij}. We show below that it is possible to do so, and that the model without the {¢;;} has
a number of desirable properties. On the other hand it is computationally convenient to
keep the {¢;;}, and the model without them is a limiting case of the model with them
(see below), so we start with the model in (5). As is customary in the literature, we will
assume that the {¢;;} are i.i.d. with the double exponential distribution.

Substituting the equation which determines 6;; into the utility function in (5) we have

Uij = 8j + ZprXjizirbyy + ZraX jkvitbyy + €ijs (6)

where

8j = Zyxjkbr + &

Note that the model has two types of interaction terms between product and consumer
characteristics: (i) interactions between observed consumer characteristics (the z;) and
product characteristics (i.e. Xg-x jkz,-,é’r"k), and (ii) interactions between unobserved
consumer characteristics (the v;) and product characteristics (i.e. X x;xvis60;)). It is
these interactions which generate reasonable own and cross price elasticities (i.e. they
are designed to do away with the IIA problem).

7 We could also multiply each utility by positive constant without changing the order, but we use this nor-
malization up by assuming that the ¢; ; are i.i.d. extreme value deviates, see below.

8 Attempts we have seen to model a random coefficient on the £ have lead to results which indicate that
there was no need for one, see Das, Olley and Pakes (1996).
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1.3. Steps in estimation: Product level data

There are many instances in which use of the model in (6) might be problematic, and we
come back to a discussion of them below. Before doing so, however, we want to consider
how to estimate that model. The appropriate estimation technique depends on the data
available and the market being modelled. We begin with the familiar case where only
product level demand data is available, and where we can assume that we have available
a set of variables w that satisfies E[£|w] = 0. This enables us to construct instruments
to separate out the effect of £ from that of x in determining shares. The next section
considers additional sources of information, and shows how the additional sources of
information can be used to help estimate the parameters of the problem. In the section
that follows we come back to the “identifying” assumption, E[§|w] = 0, consider the
instruments it suggests, and discuss alternatives.

When we only have product level data all individual characteristics are unobserved,
i.e. z; = 0. Typically some of the unobserved individual characteristics, the v; will
have a known distribution (e.g. income), while some will not. For those that do not we
assume that distribution up to a parameter to be estimated, and subsume those parame-
ters into the utility function specification (for example, assume a normal distribution
and subsume the mean in 64 and the standard deviation in 6;). The resultant known
joint distribution of unobserved characteristics is denoted by f,(-). We now describe
the estimation procedure.

The first two steps of this procedure are designed to obtain an estimate of £(-) as a
function of 6. We then require an identifying assumption that states that at 6 = 6y, the
true value of 6, the distribution of £(-; 8) obeys some restriction. The third step is a
standard method of moments step that finds the value of 6 that makes the distribution of
the estimated & (-, ) obey that restriction to the extent possible.

STEP I. We first find an approximation to the aggregate shares conditional on a partic-
ular value of (8, 0). As noted by McFadden (1974) the logit assumption implies that,
when we condition on the v;, we can find the choice probabilities implied by the model
in (6) analytically. Consequently the aggregate shares are given by

6:(0.8) = f expld; + Zixjkvirty]
]7 1+, expl8y + Zpaxqrvirfyy]

S d). (7

Typically this integral is intractable. Consequently we follow Pakes (1986) and use
simulation to obtain an approximation of it. I.e. we take ns pseudo-random draws
from f,(-) and compute

O"(Q S Pns) _ i expld; + z:klxjkvilrellcll] ®)
e 143, expldy + Zixgrvinr O]

r=I1

where P™ denotes the empirical distribution of the simulation draws. Note that the use
of simulation introduces simulation error. The variance of this error decreases with ns
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but for given ns can be made smaller by using importance sampling or other variance re-
duction techniques [for a good introduction to these techniques see Rubinstein (1981)].
Below we come back to the question of how the simulation error affects the precision
of the parameter estimates.

STEP II. Let the vector of observed shares be s = [s’f, e, s?], where n denotes the
size of the sample from which these shares are calculated (which is often very large).
Step II finds the unique values of § that makes the predicted shares for a given 6 and set
of simulation draws equal to s”. BLP show that iterating on the system of equations

85©) = 85710) + In[s}] = In[o; (6, 87", P™)] )

leads to the unique & that makes o (6, §, P") = s"! for all j?
Call the fixed point obtained from the iterations §(6, s, P"). The model in (6) then
implies that

éjj(@, s", Pm) = 5(9, s", Pns) — Ekxjkék- (10)

Le. we have solved for the {§;} as a function of the parameters, the data, and our simu-
lation draws.

“IDENTIFICATION”. An identifying restriction for our model will be a restriction on
the distribution of the true &, the £ obtained when we evaluate the above equation at
n = ns = 00, that will only be satisfied by £; (6, s°°, P°°) when 6 = 6 (but not at other
values of #). Different restrictions may well be appropriate in different applied cases,
and we come back to a discussion of possible restrictions below. For now, however, we
illustrate by assuming we have a set of instruments, say w that satisfy E[£(6p)|w] = 0.
In that case the third and final step of the algorithm is as follows.

STEP III. Interact &;(6, s", P™) with function of w and find that value of & that makes
the sample moments as close as possible to zero. I.e. minimize ||G j , s(6)| where

Grnns®) =) _&i(6,5", P™) fj(w). (11
J

Formal conditions for the consistency and asymptotic normality of this estimator are
given in Berry, Linton and Pakes (2004), and provided one accounts for simulation and
sampling error in the estimate of the objective function, standard approximations to the
limit distribution work [see, for e.g. Pakes and Pollard (1989)]. A few of the properties
of this limit distribution are discussed below. For now we want only to note that there
is an analytic form for the @ parameters conditional on the #Y; i.e. for the given 8" the
solution for 6 is given by the standard instrumental variable formula. So the nonlinear
search is only over 6".

9 Note that one has to recompute the shares at the “new” § at each iteration. The system of equations is
a mapping from possible values of § into itself. BLP prove that the mapping is a contraction mapping with
modulus less that one. The iterations therefore converge geometrically to the unique fixed point of the system.
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1.4. Additional sources of information on demand parameters

Often we find that there is not enough information in product level demand data to
estimate the entire distribution of preferences with sufficient precision. This should not
be surprising given that we are trying to estimate a whole distribution of preferences
from just aggregate choice probabilities. Other than functional form, the information
that is available for this purpose comes from differences in choice sets across markets
or time periods (this allows you to sweep out preferences for given characteristics),
and differences in preferences across markets or over time for a fixed choice set (the
preferences differences are usually associated with known differences in demographic
characteristics). The literature has added information in two ways. One is to add an
equilibrium assumption and work out its implications for the estimation of demand
parameters, the other is to add data. We now consider each of these in turn.

1.4.1. Adding the pricing equation

There is a long tradition in economics of estimating “hedonic” or reduced form equa-
tions for price against product characteristics in differentiated product markets [see, in
particular Court (1939) and Griliches (1961)]. Part of the reason those equations were
considered so useful, useful enough to be incorporated as correction procedures in the
construction of most countries’ Consumer Price Indices, was that they typically had
quite high R?’s.'0 Indeed, at least in the cross section, the standard pricing equations
estimated by 1.O. economists have produced quite good fits (i.e. just as the model pre-
dicts, goods with similar characteristics tend to sell for similar prices, and goods in parts
of the characteristic space with lots of competitors tend to sell for lower prices). Perhaps
it is not surprising then that when the pricing system is added to the demand system the
precision of the demand parameters estimates tends to improve noticeably (see, for e.g.
BLP).

Adding the pricing system from an oligopoly model to the demand system and es-
timating the parameters of two systems jointly is the analogue of adding the supply
equation to the demand equation in a perfectly competitive model and estimating the
parameters of those systems jointly. So it should not be surprising that the empirical
oligopoly literature itself started by estimating the pricing and demand systems jointly
[see Bresnahan (1981)]. On the other hand there is a cost of using the pricing equation.
It requires two additional assumptions: (i) an assumption on the nature of equilibrium,
and (ii) an assumption on the cost function.

The controversial assumption is the equilibrium assumption. Though there has been
some empirical work that tries a subset of the alternative equilibrium assumptions and
sees how they fit the data [see, for e.g. Berry, Levinsohn and Pakes (1999) or Nevo

10 For a recent discussion of the relationship between hedonic regressions and pricing equations with special
emphasis on implications for the use of hedonics in the CPI, see Pakes (2004).
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(2001)], almost all of it has assumed static profit maximization, no uncertainty, and that
one side of the transaction has the power to set prices while the other can only decide
whether and what to buy conditional on those prices. There are many situations in which
we should expect current prices to depend on likely future profits (e.g.’s include any sit-
uation in which demand or cost tomorrow depends on current sales, and/or where there
are collusive possibilities; for more discussion see the last section of this chapter). Ad-
ditionally there are many situations, particularly in markets where vertical relationships
are important, where there are a small number of sellers facing a small number of buy-
ers; situations where we do not expect one side to be able to dictate prices to another
[for an attempt to handle these situations see Pakes et al. (2006)].

On the other hand many (though not all) of the implications of the results that are of
interest will require the pricing assumption anyway, so there might be an argument for
using it directly in estimation. Moreover, as we have noted, the cross-sectional distrib-
ution of prices is often quite well approximated by our simple assumptions, and, partly
as a result, use of those assumptions is often quite helpful in sorting out the relevance
of alternative values of 6.

We work with a Nash in prices, or Bertrand, assumption. Assume that marginal cost,
to be denoted by mc, is log linear in a set of observables r;; and a disturbance which
determines productivity or wj, i.e.

In[mc;] = Zrk,‘,e,f + w;j. (12)

r will typically include product characteristics, input prices and, possibly the quantity
produced (if there are nonconstant returns to scale). As a result our demand and cost
disturbances (i.e. £ and w) will typically be mean independent of some of the compo-
nents of r but not of others. Also we might expect a positive correlation between & and
o since goods with a higher unobserved quality might well cost more to produce.

Since we characteristically deal with multiproduct firms, and our equilibrium as-
sumption is that each firm sets each of its prices to maximize the profits from all of
its products conditional on the prices set by its competitors, we need notation for the
set of products owned by firm f, say J¢. Then the Nash condition is that firms set each
of their prices to maximize }_;c; (pj — C;())Ms;(-), where C; is total costs. This
implies that for j =1,...,J

doy ()
opj

0;()+ ) (pr—mep)M——— =0. (13)

leJy
Note that we have added a system of J equations (one for each price) and R = dim(r)
parameters to the demand system. So provided J > R we have added degrees of free-
dom.
To incorporate the information in (13) and (12) into the estimation algorithm rewrite
the first order condition as s + (p — mc)A = 0, where A; ; is nonzero for elements of
a row that are owned by the same firm as the row good. Then

p —mc = A_10(~).
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Now substitute from (12) to obtain the cost disturbance as

In(p — A7'o) = r'6° = w(0), (14)
and impose the restrictions that

Efi(w)w;j(0) =0 atf =6p.

We add the empirical analogues of these moments to the demand side moments
in (11) and proceed as in any method of moments estimation algorithm. This entails
one additional computational step. Before we added the pricing system every time we
evaluated a 6 we had to simulate demand and do the contraction mapping for that 6.
Now we also have to calculate the markups for that 6.

1.4.2. Adding micro data

There are a number of types of micro data that might be available. Sometimes we have
surveys that match individual characteristics to a product chosen by the individual. Less
frequently the survey also provides information on the consumer’s second choice (see,
for e.g. MicroBLP), or is a panel which follows multiple choices of the same consuming
unit over time. Alternatively we might not have the original survey’s individual choice
data, but only summary statistics that provide information on the joint distribution of
consumer and product characteristics [for a good example of this see Petrin’s (2002)
use of Consumer Expenditure Survey moments in his study of the benefits to the in-
troduction of the minivan]. We should note that many of the micro data sets are choice
based samples, and the empirical model should be built with this in mind [see, for e.g.
MicroBLP (2004); for more on the literature on choice based sampling see Manski and
Lerman (1977) and Imbens and Lancaster (1994)].

Since the model in (6) is a model of individual choice, it contains all the detail needed
to incorporate the micro data into the estimation algorithm. Thus the probability of an
individual with observed characteristics z; choosing good j given (0, §) is given by

expld; + Tuxjkzitbp + Tuix jkvit]
L+, expl8q + ZiaxqrzitO + Ziax jkvitfy]

f)d().
s)

Pr(j|z. 6, 5) =/
v

1.4.2.1. What can be learned from micro data Assume temporarily that we can actu-
ally compute the probabilities in (15) analytically. Then we can use maximum likelihood
to estimate (6°, 6"). These estimates do not depend on any restrictions on the distribu-
tion of &. Le. by estimating free §; coefficients, we are allowing for a free set of §;.

On the other hand recall that

8; = Ekxj'kék +&;.

So we cannot analyze many of the implications of the model (including own and cross
price elasticities) without a further assumption which enables us to separate out the
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effect of £ from the effect of the x on § (i.e. without the identifying assumption referred
to above). The availability of micro data, then, does not solve the simultaneity problem.
In particular, it does not enable us to separate out the effect of price from unobservable
characteristics in determining aggregate demand. On the other hand there are a few
implications of the model that can be analyzed from just the estimates of (3, 6°, 6Y).
In particular, estimates of consumer surplus from the products currently marketed (and
hence “ideal” consumer price indices) depend only on these parameters, and hence do
not require the additional identifying assumption.

Now say we wanted to use the data to estimate . In order to do so we need a further
restriction so assume, as before, that we have instruments w, and can provide instru-
mental variable estimates of the 6. The number of observations for the instrumental
variable regressions is the number of products. That is, at least if we chose to estimate
(6°, 6") without imposing any constraints on the distribution of &, the precision of the
estimates of # will depend only on the richness of the product level data. Moreover,
IV regressions from a single cross-section of products in a given market are not likely
to produce very precise results; in particular there is likely to be very little independent
variance in prices. Since additional market level data is often widely available, this ar-
gues for integrating it with the micro data, and doing an integrated analysis of the two
data sources.

One more conceptual point on survey data. What the survey data adds is information
on the joint distribution of observed product and consumer attributes. We would expect
this to be very helpful in estimating 6°, the parameters that determine the interactions
between z and x. There is a sense in which it also provides information on ", but that
information is likely to be much less precise. That is we can analyze the variance in
purchases among individuals with the same choice set and the same value of z and use
that, together with the i.i.d. structure of the €, to try and sort out the variance-covariance
of the v. However this requires estimates of variances conditional on z, and in practice
such estimates are often quite imprecise. This is another reason for augmenting cross-
sectional survey data with aggregate data on multiple markets (or time periods) in an
integrated estimation routine; then the observed variance in z could determine the 6°
and differences in choice sets could help sweep out the impact of the 6" parameter.

When the data does have second choice information, or when we observe the same
consuming unit purchasing more than one product, there is likely to be much more
direct information on #". This because the correlation between the x-intensity of the
first choice and the second choice of a given individual is a function of both 6° and the
0" terms, and the 6° terms should be able to be estimated from only the first choice
data. A similar comment can be made for repeated choices, at least provided the utility
function of the consuming unit does not change from choice to choice.

Table 2 illustrates some of these points. It is taken from MicroBLP where the data
consisted of a single cross-sectional survey of households, and the market level data
from the same year. The survey contained information on household income, the number
of adults, the number of children, the age (of the head) of household, and whether their
residence was rural, urban, or suburban (and all of these were used in the estimation).
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Table 2
Price substitutes for selected vehicles, a comparison among models

Vehicle Full model Logit st Logit Ist and 2nd Sigma only
Metro Tercel Caravan Ford FS PU Civic
Cavalier Escort Caravan Ford FS PU Escort
Escort Tempo Caravan Ford FS PU Ranger
Corolla Escort Caravan Ford FS PU Civic
Sentra Civic Caravan Ford FS PU Civic
Accord Camry Caravan Ford FS PU Camry
Taurus Accord Caravan Ford FS PU Accord
Legend Town Car Caravan Ford FS PU LinTnc
Seville Deville Caravan Ford FS PU Deville
Lex LS400 MB 300 Econovan Ford FS PU Seville
Caravan Voyager Voyager Voyager Voyager
Quest Aerostar Caravan Caravan Aerostar

G Cherokee Explorer Caravan Chv FS PU Explorer
Trooper Explorer Caravan Chv FS PU Rodeo
GMCFS PU Chv FS PU Caravan Chv FS PU Chv FS PU
Toyota PU Ranger Caravan Chv FS PU Ranger
Econovan Dodge Van Caravan Ford FS PU Dodge Van

Source: From Berry, Levinsohn and Pakes (2004).

That study had particularly rich information on vehicle preferences, as each household
reported its second as well as its first best choice.

Table 2 provides the best price substitutes for selected models from demand systems
for automobiles that were estimated in four different ways: (i) the full model allows
for both the z; and the v; (i.e. for interactions between both observed and unobserved
individual characteristics and product characteristics), (ii) the logit models that allow for
only the z;, and (iii) the o ’s only model allows for only the v;. The most important point
to note is that without allowing for the v; there is a clear IIA problem. The prevalence of
the Caravan and the Full Size (FS) pickups when we use the logit estimates (the models
without the v;) is a result of them being the vehicles with the largest market shares
and the apparent absence of the observed factors which cause different households to
prefer different product characteristics differentially. Comparing to column (iv) it is
clear that the extent of preference heterogeneity caused by household attributes not in
our data is large. MicroBLP also notes that when they tried to estimate the full model
without the second choice information their estimates of the " parameters were very
imprecise; too imprecise to present. However when they added the second choice data
they obtained both rather precise estimates of the contributions of the unobserved factors
and substitution patterns that made quite a bit of sense. Finally we note that the fact that
there was only a single year’s worth of data made the estimates of 6 quite imprecise,
and the paper uses other sources of information to estimate those parameters.
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1.4.2.2. Computational and estimation issues: Micro data There are a number of
choices to make here. At least in principal we could (i) estimate (6°, 8%, §) pointwise,
or (ii) make an assumption on the distribution of & (e.g. E[§|w] = 0), and estimate
(6°, 6%, 6) instead of (6°, 8%, 8). However the fact that & is a determinant of price, and
price is in the x vector, makes it difficult to operationalize (ii). To do so it seems that
one would have to make an assumption on the primitive distribution of &, solve out
for equilibrium prices conditional on (6, &, x), substitute that solution into the choice
probabilities in (15), and then use simulation to integrate out the £ and v in the formula
for those probabilities. This both involves additional assumptions and is extremely de-
manding computationally. The first procedure also has the advantage that its estimates
of (6°, 6") are independent of the identifying restriction used to separate out the effect
of & from the effect of x on 6.

Assume that we do estimate (6°, 6", §). If there are a large number of products or J,
this will be a large dimensional search (recall that there are J components of §), and
large dimensional searches are difficult computationally. One way to overcome this
problem is to use the aggregate data to estimate § conditional on 6 from the contraction
mapping in (9), and restrict the nonlinear search to searching for (6°, 6).

Finally since the probabilities in (15) are not analytic, either they, or some transform
of them (like the score), will have to be simulated. There is now quite a bit of work on
simulating the probabilities of a random coefficient logit model [see Train (2003) and
the literature cited there]. Here we only want to remind the reader that in the applications
we have in mind it is likely to be difficult to use the log (or a related) function of the
simulated probabilities in the objective function. Recall that if p™*(6) is the simulated
probability, and p™(0) = p(6) + €, where €™ is a zero mean simulation error, then

e ( ens>2
pO)  2x p©)*
So if the simulated probabilities are based on ns independent simulation draws each

of which has variance V (p(6)) the bias in the estimate of the log probability will be
approximately

log[p™(0)] ~ log[p(®)] +

1

Elog[p"(@)] ~log[p®)] ~ —5———— -

and ns must be large relative to p(0) for this bias to go away (this uses the fact that
Var(p™(6)) ~ p(6)/ns).

In many Industrial Organization problems the majority of the population do not pur-
chase the good in a given period, and the probabilities of the inside goods are formed
by distributing the remainder of the population among a very large number of goods.
For example, in MicroBLP’s auto example, only ten per cent of households purchase a
car in the survey year, and that ten percent is distributed among more than two hundred
models of cars. So it was common to have probabilities on the order of 10™*. It should
not be a surprise then that they chose to fit moments which were linear functions of
the error in estimating the probabilities (they fit the covariances of car characteristics
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and household characteristics predicted by the model to those in the data) rather than
maximizing a simulated likelihood.

1.4.3. Identifying restrictions

Recall that the source of the endogeneity problem in the demand estimates is the
correlation of the product specific unobservable, our &, with some of the observable
characteristics of the product; in particular we are worried about a correlation of £ with
price. The contraction mapping in (9) is helpful in this respect as it delivers & as a linear
function of observables. As a result, any of the standard ways of solving endogeneity
problems in linear models can be employed here.

The most familiar way of dealing with endogeneity problems in linear models is to
use instruments. The question then becomes what is an appropriate instrument for x’s
in the demand system, a question which has been discussed extensively in the context
of perfectly competitive models of supply and demand. As in those models cost shifters
that are excluded from demand and uncorrelated with the demand error are available as
instruments. The familiar problem here is that input prices typically do not vary much;
at least not within a single market. There are a couple of important exceptions. One
is when production takes place in different locations even though the products are all
sold in one market [as is common when investigating trade related issues, see Berry,
Levinsohn and Pakes (1999)]. Another is when a subset of the x’s are exogenous, the
cost factors are differentially related to different x’s, and the x-intensity of different
product varies. In this case interactions between the cost factors and those x’s should be
useful instruments.

In addition to cost instruments, Nevo (2001) uses an idea from Hausman (1996)
market-equilibrium version of the AIDS model, applied to a time-series/cross-section
panel of geographically dispersed set of markets. The underlying assumption is that de-
mand shocks are not correlated across markets while cost shocks are correlated across
markets. The prices of goods in other markets then become instruments for the price of
goods in a given market. Nevo (2001) studies breakfast cereals and so sources of com-
mon cost shocks include changes in input prices; sources of common demand shocks
(which are ruled out) include national advertising campaigns.

In oligopoly markets prices typically sell at a markup over marginal cost. So if the
product’s own (X}, r;)’s are used as instruments, then so might the (X_;, r_;) of other
products, giving us a lot of potential instruments. Moreover, if price setting models like
the one in Equation (13) are appropriate (and recall that they often have a lot of explana-
tory power), the impact of the (x_;,7_;) on p; will depend on whether the product’s
are owned by the same or by different firms. This type of reasoning dates back at least
to Bresnahan (1987), who notes the empirical importance of the idea that markups will
be lower in “crowded” parts of the product space and that they will be higher when
“nearby” products are owned by the same firm. BLP and Berry, Levinsohn and Pakes
(1999) rely on this sort of argument to propose the use of functions of rivals’ observed
product characteristics, and of the ownership structure of products, as instruments. Re-
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latedly exogenous changes in competitive conditions across markets are also candidate
instruments (say due to the size of the market, or heterogeneity in entry costs).

It is difficult to specify a priori how to make optimal use of the product characteristics
to predict markups. Both BLP and Berry, Levinsohn and Pakes (1999) try approxi-
mations to the “optimal instrument” formula suggested by Chamberlain (1984). This
assumes

E[‘Ejsz, f_j, rj, r_j] = E[wj|)zj, )E_j, rj, I’_j] = 0,
homoscedasticity, and ignores the within market dependence induced by the market in-
teractions. Chamberlain’s results then imply that the optimal instrument for our problem
is the derivative of these expectations with respect to the parameter vector.

In our context this will be a difficult to compute function of all the product char-
acteristics. BLP tries to approximate this function “nonparametrically” using the ex-
changeable basis provided in Pakes (1994). Berry, Levinsohn and Pakes (1999), try
an alternative approximation which is more direct, but also more computationally bur-
densome. They use a first-stage estimate of the parameter vector, 6, to recalculate
equilibrium prices with all values of £ = w = 0. They then compute the derivative
of £ and w with respect to 6 at the first stage estimate of 6 and the new equilibrium
prices, and use it as an instrument. L.e. instead of evaluating the mean of the deriva-
tive they evaluate the derivative at the mean of the disturbance vector. Note that the
instrument is then a function only of exogenous variables, and so results in consistent
estimators (even though they are not quite efficient).

So far we have assumed mean independence of the unobservable characteristics, and,
as noted, there are plausible reasons to believe that product characteristics themselves
are correlated with &. After all the product design team has at least some control over the
level of &, and the costs and benefits of producing different levels of the unobservable
characteristics might well vary with the observed characteristics of the product. One
possible solution would be to completely model the choice of product characteristics,
as in the dynamic models considered later in this chapter.

That said since p is typically not as hard to adjust as the other product characteristics,
the relationship between & and x does not seem to be nearly as direct as that between &
and p (which is the reason it is often ignored; just as it was in traditional models of
demand and supply). So one might be willing to make some reduced form assumption
which allows us to proceed without all the detail of a dynamic game. In particular, one
might try to use changes in demand over time, or across markets, for the same good to
control for the influence of unobserved product characteristics.

For example, suppose that we observe demand for the same product over time. It
might be reasonable to suppose that the product characteristics are correlated with the
unobservable in the year of product introduction. However one might also argue that any
changes in the level of unobserved characteristics over time are due to changes in either
perception of the product or in customer service that have little to do with the initial x
choices. So if #y were the date of introduction of the good we might assume that

§j.0 = &jrg T Mja+15 (16)
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where 71,11 is mean independent of the observed characteristics of all products. Alter-
natively we could assume that &; ; followed a first order Markov process with only &; ,,
and not the increments in the process, correlated with observed characteristics.
Relatedly if the data contains sales of the same product in many markets one could
think of restrictions on how the unobservable for a single product changes across mar-
kets. The most straightforward example of this is to require £ to be the same across
markets. This is quite a powerful restriction, and one might question it on the basis of
differences in the distribution of consumer preferences across markets that impact on
their estimated £’s. A weaker assumption would be that the difference between &’s for
the same product across markets is uncorrelated with the observed x. Similarly, some
products within a market may differ only by the addition of some optional features and
we could restrict the way that & changes across products that vary only in their options.

1.5. Problems with the framework

We have motivated our discussion on demand estimation by noting how the recent liter-
ature dealt with the problems that arose in using representative agent models in product
space. There are many senses, however, in which the framework outlined above can be
too restrictive for particular problems. This section reviews some of the more obvious
of them. The impact of these problems depend upon the market one is analyzing and the
issues one is focusing on. Also, at least partial solutions to some of these problems are
available, and we will direct the reader to them where we can. In large part, however,
this section is an outline of agendas for future research on demand estimation for 1.O.
problems.

We begin with multiple choice and/or dynamics, and then come back to the prob-
lem in the static discrete choice model considered above. Most empirical studies simply
ignore issues related to multiple choices and/or dynamics. The hope is that the esti-
mated demand system is still the best currently available approximation for analyzing
the question of interest. To us the surprising part of the results of those studies is that the
framework seems to provide a “reasonable” approximation to substitution patterns, and
even more surprisingly, a reasonable approximation to pricing patterns. This despite the
fact that we know that consumers’ demands and the market equilibrium outcomes are
products of much more complicated processes than those we model. Even so, as will
become clear presently, there are a number of issues of importance to I.O. which cannot
be studied empirically without a more detailed understanding of multiple choice and/or
the dynamic aspects of demand.

Multiple units of demand

There are many situations for which a model based on the choice of either one or zero
units of a good does not match reality.'! Models for choosing a finite number of units

' Dubin and McFadden (1984) provide an earlier example with one discrete choice and one continuous
choice.
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from a set of substitute goods require a specification for the utility from multiple units.
Then, at least in principle, we are back to a discrete choice for “tuples” of goods. How-
ever to maintain tractability when the number of units can grow large the specification
is likely to require constraints which cut down the choice set by implying that some
choices are dominated by others (otherwise the size of the choice set grows as J€,
where J is the number of products and C is the maximum number of purchases).

One example of the use of such constraints is Hendel’s (1999) two-stage multiple-
unit/multiple good framework for the demand of a firm for computers. He simplifies the
problem by imagining that the firm faces a random, discrete number of tasks. For each
task, it chooses only one type (brand) of computer and, according to the random size of
the tasks, a number of computers to purchase. This explicitly accounts for decisions to
purchase multiple units of multiple kinds of goods.

Gentzkow (2004) considers a problem with a small number of goods, but where there
are a small number of choices. In that study of online and print newspapers, some of the
goods are potentially complements, and this requires a different set of modifications.
Moreover, as Gentzkow shows the determination of whether goods are in fact comple-
ments or substitutes interacts with the issue of the form of consumer heterogeneity in
subtle ways reminiscent of the initial condition problems in panel data estimation [see
Heckman (1981)].

A related problem involves continuous choice over multiple goods. If all goods are
purchased in some positive amount by every consumer, then a traditional continuous
demand approach, equating marginal rates of substitution across all goods, is appropri-
ate. But many real-world consumer data problems involve a large number of goods with
many zero purchase decisions and many positive purchase decisions. Chan (2002) con-
siders the Kuhn—Tucker version of the traditional continuous choice problem to study
soft drink purchases.

Dynamic demand

Yet another set of problems arises when the demand for the good is inherently dynamic,
as occurs with either durable, storable, or experience goods. Models which are appro-
priate for dynamic demand estimation can become quite complex; they require forward
looking consumers whose behavior depends on the likely distribution of future (as well
as current) offerings. Moreover, in a complete model these future offerings would, in
turn, depend on producer’s perceptions of consumer demand. A number of new studies
make simplifying assumptions which allow them to make some headway.

Both Hendel and Nevo (2002) and Erdem, Imai and Keane (2003) consider a problem
of durable good demand in an explicitly dynamic framework. They consider shopping
decisions when consumers are allowed to store purchases, and use a reduced form as-
sumption on the process generating prices. It has been clear to 1.O. economists for some
time that we are going to have to model intertemporal substitution of this form in order
to understand “sales” in retail markets [see Sobel (1984)].
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Two problems in this kind of study are that the rate of consumption (inventory re-
duction) at home is typically not observed and the dimension of the state space (which
involves both the current price vector, which predicts future prices, and also the vector
of household inventories of different brands). In these models new purchases are added
to a single-index of home inventories, with different brands of product receiving differ-
ent utility weights in the inventory stock. This single index of inventories reduces the
dimensionality of the state space. Another simplifying assumption is that unobserved
household consumption follows a simple rule.

Esteban and Shum (2002) consider a model of durable automobile purchases. They
assume a used-car market with zero transaction costs. The zero transaction costs imply
that the joint distribution of past choices and consumer characteristics are not a state
variable of the problem. Under these assumptions they are able to derive empirical im-
plications about the dynamic pricing problem of the durable goods manufacturer (in
determining current price the manufacturer has to worry about future aggregate supply
of the used goods). Many, if not most, manufacturing goods are durable.

Studies of demand for advertised experience goods include Erdem and Keane (1996),
Ackerberg (2003), and Crawford and Shum (2007). All of these papers feature Bayesian
consumers who learn both from experience and from adverting. This leads to a fairly
complex dynamic programming problems for the consumer. The studies largely ignore
the firm’s endogenous pricing and advertising decisions.

Problems with the static discrete choice specification

There are also aspects of the static discrete choice specification of the model outlined
above whose flexibility, and/or implications, are not yet well understood. One such
issue is whether the second derivatives of the demand function are very flexibly es-
timated. This will determine whether two goods are strategic substitutes or strategic
complements, and hence has implications for the analysis of the structure of strategic
interaction, and appears to be largely unexplored in the current literature. More gen-
erally there are a host of questions on what we can learn nonparametrically about the
structure of demand from different kinds of data that we have not touched on here (for
a discussion of some of them, see Matzkin’s contribution to this volume).

A second such issue concerns the role of the i.i.d. “idiosyncratic match values”, the
€;;’s, in the models above. These are added to the model largely for computational con-
venience; they do not seem to match any omitted causal demand determinant. Moreover,
the presence of the ¢;; has implications. They imply that each product is “born” with a
distribution of consumer tastes whose conditional distribution, conditional on the tastes
for other products, has support that ranges from minus to plus infinity. This implies that
every conceivable product, no matter its characteristics and price, will have a strictly
positive (though perhaps quite tiny) expected market share.

Given the standard ¢;;’s, each product will also have a positive cross-price effect with
every other product: competition is never completely local. Perhaps most problematic,
it also implies that if we define a consumer by a (z, v) combination, every consumer’s
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utility will grow without bound as we increase the number of products — regardless of
the characteristics or prices of the new products that are introduced. As a result there is
a worry about the ability of the model in (6) to provide an adequate approximation to
the benefits from introducing new goods.!?

To investigate these issues more fully, Berry and Pakes (2005) consider a “pure char-
acteristic” model of demand. That model is exactly the model in Equation (6) once we
omit the ¢;; terms. They consider the analytic properties of the model, then provide an
estimation algorithm for it and explore its computational properties, and finally provide
Monte Carlo evidence on its performance. Song (2004) has used this model to evaluate
the gains from new semiconductor chips. The pure characteristics model is somewhat
more computationally burdensome then the model in Equation (6), largely because the
equation for solving for § for that model (the analogue to Equation (9)) is not necessar-
ily a contraction with modulus less than one. On the other hand its shares are easier to
simulate to sufficient accuracy. However the jury is still out on the major question; the
question of whether the pure characteristic model tends to provide a better approxima-
tion to the consumer surplus gains from new goods then the model with the ¢;;.

Berry and Pakes (2005) and Bajari and Benkard (2005) discuss two different versions
of the “pure characteristics” model with “no €”’s. Berry and Pakes (2005) consider a
discrete choice version of the model, with a utility function of

uij =x;Bi —a;pj +§;, )

where f; and «; are random coefficients associated with consumer i’s tastes for char-
acteristics and price of product j. Berry and Pakes suggest a BLP-style estimation
algorithm.

In contrast, Bajari and Benkard (2005) obtain an estimate of the unobservable de-
mand component, &, from the pricing side of the model rather than the demand side.
The argument is that in a “pure characteristics” model, prices must be strictly increasing
in & conditional on other x’s. Following on recent econometric literature, they show that
a monotonic transformation of the £ can be obtained from data on prices and x’s. This
transformed £ is then used in the demand-side analysis to control for unobserved char-
acteristics. Note, however, that consistency of this approach relies on asymptotics in the
number of products, and further requires the assumption that products enter the market
in such a way that eventually they “fill up” the product space (i.e., for every product, it is
assumed that eventually there will be other products whose observed characteristics are
arbitrarily close to those of the given product). In practice it is clear that the approach

12 We hasten to note that estimating the consumer surplus generated by new products is an extremely difficult
task in any frame