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Part I

Components of an economy





Chapter 1

Introduction

1.1. Introduction

This book views many apparently disparate dynamic economic models as ex-

amples of a single class of models that can be adapted and specialized to study

diverse economic phenomena. The class of models was created by using recent

advances in (i) the theory of recursive dynamic competitive economies;1 (ii)

methods for estimating and interpreting vector autoregression;2 (iii) linear op-

timal control theory;3 and (iv) computer languages for rapidly manipulating

linear optimal control systems.4 We combine these elements to build a class of

models for which the competitive equilibria are vector autoregressions that can

be swiftly computed, represented, and simulated using the methods of linear

optimal control theory. We use the computer language MATLAB to implement

the computations. This language has a powerful vocabulary and a convenient

structure that liberate time and energy from programming, and thereby spur

creative application of linear control theory.

Our goal has been to create a class of models that merge recursive economic

theory and with dynamic econometrics.

Systems of autoregressions and of mixed autogregressive, moving average

processes are a dominant setting for dynamic econometrics. We constructed our

economic models by adopting a version of recursive competitive theory in which

an outcome of theorizing is a vector autoregression.

We formulated this class of models because practical difficulties of comput-

ing and estimating recursive equilibrium models still limit their use as a tool

for thinking about applied problems in economic dynamics. Recursive competi-

tive equilibria were themselves developed as a special case of the Arrow-Debreu

competitive equilibrium, both to restrict the range of outcomes possible in the

1 This work is summarized by Harris (1987) and Stokey, Lucas, and Prescott (1989).
2 See Sims (1980), Hansen and Sargent (1980, 1981, 1990).
3 For example, see Kwakernaak and Sivan (1972), and Anderson and Moore (1979).
4 See the MATLAB manual.
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4 Introduction

Arrow-Debreu setting and to create a framework for studying applied problems

in dynamic economies of long duration. Relative to the general Arrow-Debreu

setting, the great advantage of the recursive competitive equilibrium formulation

is that equilibria can be computed by solving a discounted dynamic program-

ming problem. Further, under particular additional conditions, an equilibrium

can be represented as a Markov process in the state variables. When that

Markov process has an invariant distribution to which the process converges,

there exists a vector autoregressive representation. Thus, the theory of recur-

sive competitive equilibria holds out the promise of making closer contact with

econometric theory than did previous formulations of equilibrium theory.

Two computational difficulties have left much of this promise unrealized.

The first is Bellman’s “curse of dimensionality” which usually makes dynamic

programming a costly procedure for systems with even small numbers of state

variables. The second problem is that after a dynamic program has been solved

and the equilibrium Markov process computed, the vector autoregression implied

by the theory has to be computed by applying classic projection formulas to a

large number of second moments of the stationary distribution associated with

that Markov process. Typically, each of these computational problems can be

solved only approximately. Good research along a number of lines is now being

directed at evaluating alternative ways of making these approximations.5

The need to make these approximations originates in the fact that for gen-

eral functional forms for objective functions and constraints, even one iteration

on the functional equation of Richard Bellman cannot be performed analytically.

It so happens that the functional forms economists would most like to use have

been of this general class for which Bellman’s equation cannot be iterated upon

analytically.

Linear control theory studies the most important special class of prob-

lems for which iterations on Bellman’s equation can be performed analytically:

problems with a quadratic objective function and a linear transition function.

Application of dynamic programming leads to a system of well understood and

rapidly solvable equations known as the matrix Riccati equation.

The philosophy of this book is to swallow hard and to accept up front

as primitive descriptions of tastes, technology, and information specifications

that satisfy the assumptions of linear optimal control theory. This approach

5 See Marcet (1989) and Judd (1990). Also see Coleman (1990) and Tauchen (1990).
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purchases the ability rapidly to compute equilibria together with a form of equi-

librium that is automatically in the form of a vector autoregression. A cost

of the approach is that it does not accommodate many specifications that we

would like to be able to analyze.

The purpose of this book is to display the versatility and tractability of

our class of models. Versions of a wide range of models from modern capital

theory and asset pricing theory can be represented within our framework. The

equilibria of these models can be computed so easily that we hope that the

reader will soon be thinking of improvements to our specifications. We provide

formulas and software for the reader to experiment.

1.2. Computer Programs

In writing this book, we put ourselves under a restriction that we should supply

the reader with a computer program that implements every equilibrium concept

and mathematical representation that we describe. The programs are written in

MATLAB, and are described throughout the book. When a MATLAB program

is referred to in the text, we place it in typewriter font. Similarly, all computer

code is placed in typewriter font.6 You will get much more out of this book

if you use and modify our programs as you read.

1.3. Organization

This book is organized as follows. Chapter 10 describes the first order lin-

ear vector stochastic difference equation, and shows how special cases of it are

formed by a variety of models of time series processes that have been studied by

economists. This difference equation will be used to represent the information

flowing to economic agents within our models. It will also be used to represent

the equilibrium of the model.

Chapter 3 defines an economic environment in terms of the preferences of

a representative agent, the technology for producing goods, stochastic processes

6 To run our programs, you will need MATLAB’s Control Toolkit in addition to the basic

MATLAB software.
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disturbing preferences and the technology, and the information structure of the

economy. The stochastic processes fit into the model introduced in chapter 10,

while the preferences, technology, and information structure are specified with

an eye toward making the competitive equilibrium one that can be computed

by the application of linear control theory.

Chapter 4 describes a social planning problem associated with the equilib-

rium of the model. The problem is formulated in two ways, first as a variational

problem using stochastic Lagrange multipliers, and then as a dynamic program-

ming problem. We describe how to compute the solution of the dynamic pro-

gramming problem using formulas from linear control theory. The solution of

the social planning problem is a first order vector stochastic difference equation

of the form studied in chapter 10. We also show how to use the value function

for the social planning problem to compute the Lagrange multipliers associated

with the planning problem. These multipliers are later used in chapter 6 to

compute the equilibrium price system.

Chapter 5 describes the price system and the commodity space that sup-

port a competitive equilibrium. We use a formulation that lets the values that

appear in agents’ budget constraints and objective functions be represented as

conditional expectations of geometric sums of streams of future “prices” times

quantities. Chapter 5 relates these prices to Arrow-Debreu state contingent

prices.

Chapter 6 describes a decentralized version of our economy, and defines and

computes a competitive equilibrium. Competitive equilibrium quantities solve a

social planning problem. The price system can be deduced from the stochastic

Lagrange multipliers associated with the social planning problem.

Chapter 7 describes versions of several dynamic models from the literature

that fit easily within our class of models.

Chapter 9 describes the links between our theoretical equilibrium and au-

toregressive representations of time series of observables. We show how to obtain

an autoregressive representation for a list of observable variables that are linear

functions of the state variables of the model. The autoregressive representation

is naturally affiliated with a recursive representation of the likelihood function

for the observable variables. In describing how to deduce the autoregressive

representation from the parameters determining the equilibrium of the model,

and possibly also from parameters of measurement error processes, we are com-

pleting a key step needed to permit econometric estimation of the model’s free
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parameters. Chapter 9 also treats two other topics intimately related to econo-

metric implementation of the models; aggregation over time, and the theory of

approximation of one model by another.

Chapter 8 describes fast methods to compute equilibria. We describe how

doubling algorithms can speed the computation of expectations of geometric

sums of quadratic forms, and help to solve dynamic programming problems.

Chapter 11 describes alternative ways to represent demand. It identifies

an equivalence class of preference specifications that imply the same demand

functions, and characterizes a special subset of them as canonical household

preferences. Canonical representations of preferences are useful for describing

economies with heterogeneity among household’s preferences.

Chapter 12 describes a version of our economy with the type of heterogene-

ity among households allowed when preferences aggregate in a sense introduced

by Terrance Gorman . In this setting, affine Engle curves of common slope pre-

vail and give rise to a representative consumer. This representative consumer is

‘easy to find,’ and from the point of view of equilibrium computation of prices

and aggregate quantities, adequately stands in for the household of chapters 3–6.

The allocations to individual consumers require additional computations, which

this chapter describes.

Chapter 13 uses our model of preferences to represent multiple goods ver-

sions of permanent income models along the lines of Robert Hall’s (1978). We

retain Hall’s specification of the ‘storage’ technology for accumulating physical

assets, and also the restriction on the discount factor, depreciation rate, and

gross return on capital that delivered to Hall a martingale for the marginal

utility of consumption. Adopting Hall’s specification of the storage technology

imparts a martingale characterization to the model, but it is hidden away in an

‘index’ whose increments drive the behavior of consumption demands for various

goods, which themselves are not martingales. This model forms a convenient

laboratory for thinking about the sources in economic theory of ‘unit roots’ and

‘co-integrating vectors.’

Chapter 14 describes a setting in which there is more heterogeneity among

households’ preferences, causing the conditions for Gorman aggregation to fail.

Households’ Engle curves are still affine, but dispersion of their slopes arrests

Gorman aggregation. There is another sense, originating with Negishi, in which

there is a representative household whose preferences represent a complicated

kind of average over the preferences of different types of households. We show
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how to compute and interpret this preference ordering over economy-wide aggre-

gates. This average preference ordering cannot be computed before one knows

the distribution of wealth evaluated at equilibrium prices.

Chapter 15 describes economies with production and consumption exter-

nalities and also distortions due to a government’s imposing distorting flat rate

taxes. Equilibria of these economies has to be computed by a direct attack on

Euler equations and budget constraints, rather than via dynamic programming

for an artificial social planning problem.

Chapter 16 describes a recursive version of Jacobson’s and Whittle’s ‘risk

sensitive’ preferences. This preference specification has the features that, al-

though it violates certainty equivalence – so that the conditional covariance of

forecast error distributions impinge on equilibrium decision rules – it does so in

a way that preserves linear equilibrium laws of motion, and retains calculation

of equilibria and asset prices via simple modifications of our standard formulas.

These preferences are a version of those studied by Epstein and Zin ( ) and

Weil ( ).

Chapter 17 describes how to adapt our setup to include features of the

periodic models of seasonality that have been studied by Osborne (1988), Todd

(1990), and Ghysels (1993).

Chapter 20 is a manual of the MATLAB programs that we have prepared

to implement the calculations described in this book. The design is consistent

with other MATLAB manuals.

The notion of duality and the ‘factorization identity’ from recursive lin-

ear optimal control theory are used repeatedly in Chapter 9 (on representing

equilibria econometrically), and chapters 11, 12, and 14 (on representing and

aggregating preferences). ‘Duality’ is the observation that recursive filtering

problems (Kalman filtering) have the same mathematical structure as recursive

formulations of linear optimal control problems (leading to Riccati equations via

dynamic programming). That duality applies so often in our settings in effect

‘halves’ the mathematical apparatus that we require.



Chapter 2

Stochastic Linear Difference Equations

2.1. Introduction

This chapter introduces the first-order vector linear stochastic difference equa-

tion, which we use in two important ways. We use it first to represent the

information flowing to economic agents, then again to represent equilibria of

our models. The first-order linear stochastic difference equation is associated

with a tidy theory of prediction and a host of procedures for econometric appli-

cation. Their ease of analysis has prompted us to adopt economic specifications

that cause our equilibria to have representations in terms of a first-order linear

stochastic difference equation.

The first order vector stochastic difference equation is recursive because

it expresses next period’s vector of state variables as a linear function of this

period’s state vector and a vector of new disturbances to the system. These

disturbances form a “martingale difference sequence,” and are the basic building

block out of which the time series are created. Martingale difference sequences

are easy to forecast, a fact that delivers convenient recursive formulas for optimal

predictions.

2.2. Notation and Basic Assumptions

Let {xt : t = 1, 2, . . .} be a sequence of n -dimensional random vectors, i.e. an

n -dimensional stochastic process. The vector xt contains variables observed

by economic agents at time t . Let {wt : t = 1, 2, . . .} be a sequence of N -

dimensional random vectors. The vectors {wt} will be treated as building blocks

for {xt : t = 1, 2, . . .} , in the sense that we shall be able to express xt as the sum

of two terms. The first is a moving average of past wt ’s. The second describes

the effects of an initial condition. The {wt} process is used to generate a

sequence of information sets {Jt : t = 0, 1, . . .} . Let J0 be generated by x0

and Jt be generated by x0, w1, . . . , wt , which means that Jt consists of the set

– 9 –
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of all measurable functions of {x0, w1, . . . , wt} .1 The building block process

is assumed to be a martingale difference sequence adapted to this sequence of

information sets. We explain what this means by advancing the following

Definition 1: The sequence {wt : t = 1, 2, . . .} is said to be a martingale

difference sequence adapted to {Jt : t = 0, 1, . . .} if E(wt+1|Jt) = 0 for t =

0, 1, . . . .

In addition, we assume that the building block process is conditionally ho-

moskedastic, a phrase whose meaning is conveyed by

Definition 2: The sequence {wt : t = 1, 2, . . .} is said to be conditionally

homoskedastic if E(wt+1w
′
t+1 | Jt) = I for t = 0, 1, . . . .

It is an implication of the law of iterated expectations that {wt : t = 1, 2, . . .} is a

sequence of (unconditional) mean zero, serially uncorrelated random vectors.2 In

addition, the entries of wt are assumed to be mutually uncorrelated.

The process {xt : t = 1, 2, . . .} is constructed recursively using an initial

random vector x0 and a time invariant law of motion:

xt+1 = Axt + Cwt+1 , for t = 0, 1, . . . , (2.2.1)

where A is an n by n matrix and C is an n by N matrix.

Representation (2.2.1) will be a workhorse in this book. First, we will

use (2.2.1) to model the information upon which economic agents base their

decisions. Information will consist of variables that drive shocks to preferences

and to technologies. Second, we shall specify the economic problems faced by the

agents in our models and the economic process through which agents’ decisions

1 The phrase “J0 is generated by x0 ” means that J0 can be expressed as a measurable

function of x0 .
2 Where φ1 and φ2 are information sets with φ1 ⊂ φ2 , and x is a random variable, the

law of iterated expectations states that

E (x | φ1) = E (E (x | φ2) | φ1) .

Letting φ1 be the information set corresponding to no observations on any random variables,

letting φ2 = Jt , and applying this law to the process {wt} , we obtain

E
(

wt+1

)

= E
(

E
(

wt+1 | Jt
))

= E (0) = 0.
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are coordinated (competitive equilibrium) so that the state of the economy has

a representation of the form (2.2.1).

2.3. Prediction Theory

A tractable theory of prediction is associated with (2.2.1). This theory is

used extensively both in computing the equilibrium of the model and in repre-

senting that equilibrium in the form of (2.2.1).

The optimal forecast of xt+1 given current information is

E (xt+1 | Jt) = Axt, (2.3.1)

and the one-step-ahead forecast error is

xt+1 − E (xt+1 | Jt) = Cwt+1. (2.3.2)

The covariance matrix of xt+1 conditioned on Jt is just CC ′ :

E (xt+1 − E (xt+1 | Jt)) (xt+1 − E (xt+1 | Jt))′ = CC ′. (2.3.3)

Sometimes we use a nonrecursive expression for xt as a function of x0, w1, w2, . . . ,

wt . Using (2.2.1) repeatedly, we obtain

xt = Axt−1 + Cwt

= A2xt−2 +ACwt−1 + Cwt

=
[

t−1
∑

τ=0

AτCwt−τ
]

+Atx0.

(2.3.4)

Representation (2.3.4) is one type of moving-average representation. It ex-

presses {xt : t = 1, 2, . . .} as a linear function of current and past values of

the building block process {wt : t = 1, 2, . . .} and an initial condition x0 . 3

3 Slutsky (1937) argued that business cycle fluctuations could be well modelled by moving

average processes. Sims (1980) showed that a fruitful way to summarize correlations between

time series is to calculate an impulse response function. In chapter 8, we study the relationship

between the impulse response functions calculated by Sims (1980) and the impulse response

function associated with (2.3.4).
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The moving average piece of representation (2.3.4) is often called an impulse

response function. An impulse response function depicts the response of current

and future values of {xt} to an imposition of a random shock wt . In represen-

tation (2.3.4), the impulse response function is given by entries of the vector

sequence {AτC : τ = 0, 1, . . .} .4

Shift (2.3.4) forward in time:

xt+j =

j−1
∑

s=0

AsCwt+j−s +Ajxt. (2.3.5)

Projecting both sides of (2.3.5) on the information set {x0, wt, wt−1, . . . , w1}
gives5

Etxt+j = Ajxt. (2.3.6)

where Et(·) ≡ E[(·) | x0, wt, wt−1, . . . , w1] = E(·) | Jt , and xt is in Jt . Equation

(2.3.6) gives the optimal j step ahead prediction.

It is useful to obtain the covariance matrix of the j -step ahead prediction

error

xt+j − Etxt+j =

j−1
∑

s=0

AsCwt−s+j (2.3.7)

We have
E(xt+j − Etxt+j) (xt+j − Etxt+j)

′

=

j−1
∑

k=0

AkCC ′Ak
′ ≡ vj

(2.3.8a)

Note that vj defined in (2.3.8a) can be calculated recursively via

v1 = CC ′

vj = CC ′ +Avj−1A
′, j ≥ 2.

(2.3.8b)

The matrix vj is the covariance matrix of the errors in forecasting xt+j on

the basis of time t information xt . To decompose these covariances into parts

attributable to the individual components of wt , we let iτ be an N -dimensional

4 Given matrices A and C , the impulse response function can be calculated using the

MATLAB program dimpulse.m.
5 For an elementary discussion of linear least squares projections, see Sargent (1987b,

chapter IX).
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column vector of zeroes except in position τ , where there is a one. Define a

matrix υj,τ by

υj,τ =

j−1
∑

k=0

AkCiτ i
′
τC

′A
′k. (2.3.8c)

Note that
∑N
τ=1 iτ i

′
τ = I , so that from (2.3.8a) and (2.3.8c) we have

N
∑

τ=1

υj,τ = υj .

Evidently, the matrices {υj,τ , τ = 1, . . . , N} give an orthogonal decomposition

of the covariance matrix of j -step ahead prediction errors into the parts at-

tributable to each of the components τ = 1, . . . , N .6

The “innovation accounting” methods of Sims (1980) are based on (2.3.8).

Sims recommends computing the matrices vj,τ in (2.3.8) for a sequence j =

0, 1, 2, . . . . This sequence represents the effects of components of the shock

process wt on the covariance of j -step ahead prediction errors for each series in

xt .

2.4. Transforming Variables to Uncouple Dynamics

A convenient analytical device for the analysis of linear system (2.2.1) is to

uncouple the dynamics using the distinct eigenvalues of the matrix A . We use

the Jordan decomposition of the matrix A :

A = TDT−1, (2.4.1)

where T is a nonsingular matrix and D is a matrix constructed as follows.

Recall that the eigenvalues of A are the zeroes of the polynomial det (ζI −A).

This polynomial has n zeroes because A is n by n . Not all of these zeroes are

necessarily distinct, however.7 Suppose that there are m ≤ n distinct zeroes

6 For given matrices A and C , the matrices vj,τ and vj are calculated by the MATLAB

program evardec.m.
7 In the case in which the eigenvalues of A are distinct, D is taken to be the diagonal

matrix whose entries are the eigenvalues and T is the matrix of eigenvectors corresponding

to those eigenvalues.
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of this polynomial, denoted δ1, δ2, . . . , δm . For each δj , we construct a matrix

Dj that has the same dimension as the number of zeroes of det (ζI − A) that

are equal to δj . The diagonal entries of Dj are δj and the entries in the single

diagonal row above the main diagonal are all either zero or one. The remaining

entries of Dj are zero. Then the matrix D is block diagonal with Dj in the

jth diagonal block.

Transform the state vector xt as follows:

x∗t = T−1xt. (2.4.2)

Substituting into (2.2.1), we have that

x∗t+1 = Dx∗t + T−1Cwt+1. (2.4.3)

Since D is block diagonal, we can partition x∗t according to the diagonal blocks

of D or, equivalently, according to the distinct eigenvalues of A . In the law of

motion (2.4.3), partition j of x∗t+1 is linked only to partition j of x∗t . In this

sense, the dynamics of system (2.4.3) are uncoupled. To calculate multi-period

forecasts and dynamic multipliers, we must raise the matrix A to integer powers

(see (2.3.6)). It is straightforward to verify that

Aτ = T (Dτ )T−1. (2.4.4)

Since D is block diagonal, Dτ is also block diagonal, where block j is just

(Dj)
τ . The matrix (Dj)

τ is upper triangular with δτj on the diagonal, with all

entries of the kth upper right diagonal given by

(δj)
τ−k τ !/[k!(τ − k)!] for 0 ≤ k ≤ τ, (2.4.5)

and zeroes elsewhere. Consequently, raising D to an integer power involves

raising the eigenvalues to integer powers. Some of the eigenvalues of A may

be complex. In this case, it is convenient to use the polar decomposition of the

eigenvalues. Write eigenvalue δj in polar form as

δj = ρj exp(iθj) = ρj [cos(θj) + i sin(θj)] (2.4.6)

where ρj =| δj | . Then

δτj = (ρj)
τ exp(iτθj) = (ρj)

τ [cos(τθj) + i sin(τθj)]. (2.4.7)
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We shall often assume that ρj is less than or equal to one, which rules out

instability in the dynamics. Whenever ρj is strictly less than one, the term

(ρj)
τ decays to zero as τ → ∞ . When θj is different from zero, eigenvalue j

induces an oscillatory component with period (2π/ | θj |).

2.5. Examples

Next we consider some examples of processes that can be accommodated by

(2.2.1).

2.5.1. Deterministic seasonals

We use (2.2.1) to represent the model yt = yt−4 . Let n = 4, C = 0, xt =

(yt, yt−1, yt−2, yt−3)
′, x0 = (0 0 0 1)′ ,

A =









0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0









, C =









0

0

0

0









. (2.5.1)

In this case the A matrix has four distinct eigenvalues and the absolute

values of each of these eigenvalues is one. Two eigenvalues are real (1,−1) and

two eigenvalues are imaginary (i,−i), and so have period four. The resulting

sequence {xt : t = 1, 2, . . .} oscillates deterministically with period four. It can

be used to model deterministic seasonals in quarterly time series.
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2.5.2. Indeterministic seasonals

We want to use (2.2.1) to represent the model

yt = α4yt−4 + wt, (2.5.2)

where wt is a martingale difference sequence and | α4 |≤ 1. We define xt =

[yt, yt−1, yt−2, yt−3]
′, n = 4,

A =









0 0 0 α4

1 0 0 0

0 1 0 0

0 0 1 0









, C =









1

0

0

0









.

With these definitions, (2.2.1) represents (2.5.2). This model displays an “in-

deterministic” seasonal. Realizations of (2.5.2) display recurrent, but aperiodic,

seasonal fluctuations.

2.5.3. Univariate autoregressive processes

We can use (2.2.1) to represent the model

yt = α1yt−1 + α2yt−2 + α3yt−3 + α4yt−4 + wt, (2.5.3)

where wt is a martingale difference sequence. We set n = 4, xt = [yt yt−1 yt−2 yt−3]
′ ,

A =









α1 α2 α3 α4

1 0 0 0

0 1 0 0

0 0 1 0









, C =









1

0

0

0









.

The matrix A has the form of the companion matrix to the vector

[α1 α2 α3 α4] .
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2.5.4. Vector autoregressions

Reinterpret (2.5.3) as a vector process in which yt is a (k × 1) vector, αj a

(k× k) matrix, and wt a k× 1 martingale difference sequence. Then (2.5.3) is

termed a vector autoregression. To map this into (2.2.1), we set n = k · 4,

A =









α1 α2 α3 α4

I 0 0 0

0 I 0 0

0 0 I 0









, C =









I

0

0

0









where I is the (k × k) identity matrix.

2.5.5. Polynomial time trends

Let n = 2, x0 = [0 1]′ , and

A =

[

1 1

0 1

]

, C =

[

0

0

]

. (2.5.4)

Notice that D = A in the Jordan decomposition of A . It follows from (2.4.5)

that

At =

[

1 t

0 1

]

. (2.5.5)

Hence xt = (t, 1)′ , so that the first component of xt is a linear time trend and

the second component is a constant.

It is also possible to use (2.2.1) to represent polynomial trends of any order.

For instance, let n = 3, C = 0, x0 = (0, 0, 1)′ , and

A =





1 1 0

0 1 1

0 0 1



 . (2.5.6)

Again, A = D in the Jordan decomposition of A . It follows from (2.4.5) that

At =





1 t t(t− 1)/2

0 1 t

0 0 1



 . (2.5.7)

Then x′t = [t(t−1)/2, t, 1], so that xt contains linear and quadratic time trends.
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2.5.6. Martingales with drift

We modify the linear time trend example by making C nonzero. Suppose that

N is one and C ′ = [1 0]. Since A =

[

1 1

0 1

]

and At =

[

1 t

0 1

]

, it follows that

AτC =

[

1

0

]

. (2.5.8)

Substituting into the moving-average representation (2.3.4), we obtain (2.25)

x1t =
t−1
∑

τ=0

wt−τ + [1 t]x0

where x1t is the first entry of xt . The first term on the right-hand side of the

preceding equation is a cumulated sum of martingale differences, and is called

a martingale, while the second term is a translated linear function of time.

2.5.7. Covariance stationary processes

Next we consider specifications of x0 and A which imply that the first two

moments of {xt : t = 1, 2, . . .} are replicated over time. Let A satisfy

A =

[

A11 A12

0 1

]

, (2.5.9)

where A11 is an (n − 1) × (n − 1) matrix with eigenvalues that have moduli

strictly less than one and A12 is an (n− 1)× 1 column vector. In addition, let

C ′ = [C ′
1 0]. We partition x′t = [x′1t x

′
2t] where x1t has n− 1 entries. It follows

from (2.2.1) that

x1t+1 = A11x1t +A12x2t + C1wt+1 (2.5.10)

x2t+1 = x2t. (2.5.11)

By construction, the second component, x2t , simply replicates itself over time.

For convenience, take x20 = 1 so that x2t = 1 for t = 1, 2, . . . .

We can use (2.5.10) to compute the first two moments of x1t . Let µt =

Ex1t . Taking unconditional expectations on both sides of (2.5.10) gives

µt+1 = A11µt +A12. (2.5.12)
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We can solve the nonstochastic difference equation (2.5.12) for the stationary

value of µt . Define µ as the stationary value of µt , and substitute µ for µt

and µt+1 in (2.5.12). Solving for µ gives µ = (I −A11)
−1A12 . Therefore, if

Ex10 = (I −A11)
−1A12, (2.5.13)

then Ex1t will be constant over time and equal to the value on the right side of

(2.5.13). Further, if the eigenvalues of A11 are less than unity in modulus, then

starting from any initial value of µ0 , µt will converge to the stationary value

(I −A11)
−1A12 .

Next we use (2.5.10) to compute the unconditional covariances of xt . Sub-

tracting (2.5.12) from (2.5.10) gives

(x1t+1 − µt+1) = A11(x1t − µt) + C1wt+1 (2.5.14)

From (2.5.14) it follows that

(x1t+1 − µt+1)(x1t+1 − µt+1)
′ = A11(x1t − µt)(x1t − µt)

′A′
11

+ C1wt+1w
′
t+1C

′
1 + C1wt+1(x1t − µt)

′A′
11 +A11(x1t − µt)w

′
t+1C

′
1.

The law of iterated expectations implies that wt+1 is orthogonal to (x1t − µt).

Therefore, taking expectations on both sides of the above equation gives

Vt+1 = A11VtA
′
11 + C1C

′
1,

where Vt ≡ E(x1t − µt)(x1t − µt)
′ . Evidently, the stationary value V of the

covariance matrix Vt must satisfy

V = A11V A
′
11 + C1C

′
1. (2.5.15)

It is straightforward to verify that V is a solution of (2.5.15) if and only if

V =
∞
∑

j=0

Aj11C1C
′
1A

j′
11. (2.5.16)

The infinite sum (2.5.16) converges under the condition that the eigenvalues of

A11 are less in modulus than unity.8 If the covariance matrix of x10 is V and

8 Equation (2.5.15) is known as the discrete Lyapunov equation. Given the matrices A11

and C1 , this equation is solved by the MATLAB program dlyap.m.
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the mean of x10 is (I−A11)
−1A12 , then the covariance and mean of x1t remain

constant over time. In this case, the process is said to be covariance stationary.

If the eigenvalues of A11 are all less than unity in modulus, then Vt → V as

t→ ∞ , starting from any initial value V0 .

From (2.3.8) and (2.5.16), notice that if all of the eigenvalues of A11 are

less than unity in modulus, then limj→∞ vj = V . That is, the covariance matrix

of j -step ahead forecast errors converges to the unconditional covariance matrix

of x as the horizon j goes to infinity.9

The matrix V can be decomposed according to the contributions of each

entry of the process {wt} . Let ιτ be an N -dimensional column vector of zeroes

except in position τ , where there is a one. Then

I =
N
∑

τ=1

ιτ ι
′
τ . (2.5.17)

Define a matrix Ṽτ

Ṽτ ≡
∞
∑

j=o

(A11)
jC1ιτ ι

′
τC

′
1(A11)

j′ (2.5.18)

We have, by analogy to (2.5.15) and (2.5.16), that Ṽτ satisfies Ṽτ = A11ṼτA
′
11+

C1iτ i
′
τC

′
1 . In light of (2.5.17), (2.5.18), and (2.5.16) we have that

V =

N
∑

τ=1

Ṽτ . (2.5.19)

The matrix Ṽτ has the interpretation of being the contribution to V of the

τ th component of the process {wt : t = 1, 2, . . .} . Hence, (2.5.19) gives a

decomposition of the covariance matrix V into the portions attributable to

each of the underlying economic shocks.

Next, consider the autocovariances of {xt : t = 1, 2, . . .} . From the law of

iterated expectations, it follows that

E[(x1t+τ − µ)(x1t − µ)′] = E{E[(x1t+τ − µ) | Jt](x1t − µ)′}
= E[Aτ11(x1t − µ)(x1t − µ)′]

= Aτ11V.

(2.5.20)

9 The doubling algorithm described in chapter 9 can be used to compute the solution of

(2.5.15) via iterations that approximate (2.5.16). The algorithm is implemented in the

MATLAB programs doublej.m and doublej2.m .
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Notice that this expected cross-product or autocovariance does not depend on

calendar time but only on the gap τ between the time indices.10 Indepen-

dence of means, covariances, and autocovariances from calendar time defines

covariance stationary processes. For the particular class of processes we are

considering, if the covariance matrix does not depend on calendar time, then

none of the autocovariance matrices does.

2.5.8. Multivariate ARMA processes

Specification (2.2.1) assumes that xt contains all the information that is avail-

able at time t to forecast xt+1 . In many applications, vector time series are

modelled as multivariate autoregressive moving-average (ARMA) processes. Let

yt be a vector stochastic process. An ARMA process {yt : t = 1, 2, . . .} has a

representation of the form:

yt = α1yt−1 + α2yt−2 + · · · + αkyt−k

+ γ0wt + γ1wt−1 + · · · + γkwt−k.
(2.5.21)

where E[wt | yt−1, yt−2, · · · yt−k+1, wt−1, wt−2, · · ·wt−k+1] = 0. The require-

ment that the same number of lags of y enter (2.5.21) as the number of lags of

w is not restrictive because some coefficients can be set to zero. Hence we can

think of k as being the greater of the two lag lengths. A representation such as

(2.5.21) can be shown to satisfy (2.2.1). To see this, we define

xt =














yt
α2yt−1 + α3yt−2 · · · + αkyt−k+1 + γ1wt + γ2wt−1 · · · + γk−1wt−k+2 + γkwt−k+1

α3yt−1 · · · + αkyt−k+2 + γ2wt · · · + γk−1wt−k+3 + γkwt−k+2
.
..

αkyt−1 + γk−1wt + γkwt−1

γkwt















(2.5.22)

10 Equation (2.5.20) shows that the matrix autocovariogram of x1t (i.e., Γτ ≡ E[(x1t+τ −
µ)(x1t − µ)′] taken as a function of τ ) satisfies the nonrandom difference equation Γt+1 =

A11Γt with initial condition Γ0 = V .
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C =











γ0

γ1
...

γk











(2.5.23)

and

A =















α1 I · · · 0

α2 0 · · · 0
...

...
. . .

...

αk 0 · · · I

0 0 · · · 0















(2.5.24)

It is straightforward to verify that the resulting process {xt : t = 1, 2, . . .}
satisfies (2.2.1).

2.5.9. Prediction of a univariate first order ARMA

Consider the special case of (2.5.21)

yt = α1yt−1 + γ0wt + γ1wt−1 (2.5.25)

where yt is a scalar stochastic process and wt is a scalar white noise. Assume

that | α1 |< 1 and that | γ1/γ0 |< 1. Applying (2.5.22), we define the state xt

as

xt =

[

yt

γ1wt

]

.

Applying (2.5.23) and (2.5.24), we have

C =

[

γ0

γ1

]

, A =

[

α1 1

0 0

]

.

We can apply (2.3.6) to obtain a formula for the optimal j -step ahead prediction

of yt . Using (2.3.6) in the present example gives

Et

[

yt+j
γ1wt+j

]

=

[

αj1 αj−1
1

0 0

] [

yt
γ1wt

]

which implies that

Etyt+j = αj1yt + αj−1
1 γ1wt. (2.5.26)
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We can use (2.5.26) to derive a famous formula of John F. Muth (1960).

Assume that the system (2.5.25) has been operating forever, so that the initial

time is infinitely far in the past. Then using the lag operator L , express (2.5.25)

as

(1 − α1L)yt = (γ0 + γ1L)wt.

Solving for wt gives

wt = γ−1
0

(1 − α1L

1 + γ1
γ0
L

)

yt,

which expresses wt as a geometric distributed lag of current and past yt ’s.

Substituting this expression for wt into (2.5.26) and rearranging gives

Etyt+j = αj−1
1

[α1 + γ1
γ0

1 + γ1
γ0
L

]

yt.

In the limiting case as α1 → 1 from below, this formula becomes

Etyt+j =
[ 1 + γ1

γ0

1 + γ1
γ0
L

]

yt, (2.5.27)

which is independent of the forecast horizon j . In the limiting case of α1 = 1,

it is optimal to forecast yt for any horizon as a geometric distributed lag of past

y ’s. This is Muth’s finding that a univariate process whose first difference is a

first order moving average is optimally forecast via an “adaptive expectations”

scheme (i.e., a geometric distributed lag with the weights adding up to unity).

2.5.10. Growth

In much of our analysis, we assume that the eigenvalues of A have absolute

values less than or equal to one. We have seen that such a restriction still

allows for polynomial growth. Geometric growth can also be accommodated by

suitably scaling the state vector. For instance, suppose that {x+
t : t = 1, 2, . . .}

satisfies:

x+
t+1 = A+x+

t + Cw+
t+1 (2.5.28)

where E(w+
t+1 | Jt) = 0 and E[w+

t+1(w
+
t+1)

′ | Jt] = (ε)tI . The positive number

ε can be bigger than one. The eigenvalues of A+ are assumed to have absolute

values that are less than or equal to ε
1
2 , an assumption that we make to assure
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that the matrix A to be defined below has eigenvalues with modulus bounded

above by unity. We transform variables as follows:

xt = (ε)−
t
2x+

t (2.5.29)

wt = (ε)−
t
2w+

t . (2.5.30)

The transformed process {wt : t = 1, 2, . . .} is now conditionally homoskedastic

as required because E[wt+1(wt+1)
′ | Jt] = I . Furthermore, the transformed

process {xt : t = 1, 2, . . .} satisfies (2.2.1) with A = ε−
1
2A+ . The matrix

A now satisfies the restriction that its eigenvalues are bounded in modulus by

unity. The original process {x+
t : t = 1, 2, . . .} is allowed to grow over time at a

rate of up to .5 log (ε).

2.5.11. A rational expectations model

Consider a model in which a variable pt is related to a variable mt via

pt = λEtpt+1 + γmt , 0 < λ < 1 (2.5.31)

where

mt = Gxt (2.5.32)

and xt is governed by (2.2.1). In (2.5.31), Et(·) denotes E(·) | Jt . This is a

rational expectations version of Cagan’s model of hyperinflation (here pt is

the log of the price level and mt the log of the money supply) or a version of Le

Roy and Porter’s and Shiller’s model of stock prices (here pt is the stock price

and mt is the dividend). Recursions on (2.5.31) establish that a solution to

(2.5.31) is pt = Etγ
∑∞
j=0 λ

jmt+j . Using (2.3.6) and (2.5.32) in this equation

gives pt = γG
∑∞
j=0 λ

jAjxt, or pt = γG(I − λA)−1xt. Collecting our results,

we have that (pt,mt) satisfies

[

pt

mt

]

=

[

γG(I − λA)−1

G

]

xt

xt+1 = Axt + Cwt+1.

(2.5.33)

System (2.5.33) embodies the cross-equation restrictions associated with ratio-

nal expectations models: note that the same parameters in A,G that pin down
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the stochastic process for mt also enter the equation that determines pt as a

function of the state xt .

It is useful to show how to derive (2.5.33) using the method of undetermined

coefficients. Returning to (2.5.31), we guess that a solution for pt is of the form

pt = Hxt , where H is a matrix to be determined. Given this guess and (2.2.1),

it follows that Etpt+1 = HEtxt+1 = HAxt. Substituting this and (2.5.32) into

(2.5.31) gives Hxt = λHAxt + γGxt, which must hold for all realizations xt .

This implies that H = λHA + γG or H = γG(I − λA)−1 , which agrees with

(2.5.33).

2.6. The Spectral Density Matrix

Let the mean vector of xt from the stationary distribution of an {xt} process

be denoted µ . Define the autocovariance function of the {xt} process to be

Cx(τ) = E[xt − µ] [xt−τ − µ]′ . The spectral density matrix of the {xt} process

is defined as

Sx(ω) =
∞
∑

τ=−∞
Cx(τ)e

−iωτ . (2.6.1)

Consider an {xt} process governed by (2.2.1), in which xt is partitioned as in

equations (2.5.10),(2.5.11), so that x2t is the constant term. Then the spectral

density can be represented as

Sx(ω) = (I −A11e
−iω)−1C1C

′
1 (I −A′

11e
+iω)−1. (2.6.2)

From Sx(ω),11 the autocovariances can be recovered via the inversion formula

Cx(τ) =
( 1

2π

)

∫ π

−π
Sx(ω)e+iωτ dω. (2.6.3)

These formulas enable us to compute the spectral and cross-spectral statis-

tics for any of the large variety of models that are special cases of (2.2.1).

11 The MATLAB program spectral.m can be used to compute a spectral density matrix.

The program requires that the position of the constant term, denoted nnc, in xt be specified.

The program then forms the appropriate matrices A11 and C1 in equations (2.5.10),(2.5.11),

and applies formula (2.6.2).
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2.7. Computer Examples

We now use some MATLAB programs to generate examples that fit into the

framework of this chapter.

2.7.1. Deterministic seasonal

We can use the program dlsim.m to simulate the model of the deterministic

seasonal described above. In using dlsim.m, we specify four matrices A,C,G,D

whose dimensions must be comparable. In particular, we require that A be

n× n , that C be n× k , that G be ℓ× n , and that D be ℓ× k . For the case

of an indeterministic seasonal, we want to create the following matrices:

A =









0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0









, C =









0

0

0

0









G =I,D =









0

0

0

0









To accomplish this, we use the following MATLAB code

a= [0 0 0 1]

A= compn (a)

(This sets A equal to the companion matrix of a .)

C = zeros(4, 1)

(This sets C equal to a 4 × 1 matrix of zeros.)

G = eye (4)

(This sets G equal to the 4 × 4 identify matrix.)

D = zeros(4, 1)
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Fig. 2.7.1.a. Deterministic Seasonal.
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Fig. 2.7.1.b. Indeterministic Seasonal

with unit root.

We want to simulate the system

xt+1 = Axt + Cwt+1

yt = Gxt +Dwt+1

with an “input” of wt+1 ≡ 0. We form an input vector w of length 20 by the

statement:

w = zeros (20, 1)

We set the initial condition by

x0 = [1 0 0 0]′

To generate the simulation, we set

y = dlsim(A, C, G, D, w, x0).

This generates the 20 × 4 matrix y , the ith column of which is the time path

taken by the ith state variable (remember that G = I and D = 0). We plot

the time path of the first component of the state vector in Fig. 2.7.1.a and

Fig. 2.7.1.b.
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2.7.2. Indeterministic seasonal, unit root

We implement a model of an indeterministic seasonal by altering the pre-

ceding example by replacing w with a sequence of i.i.d. normal random variates.

We specify that Ewt+1 = 0, Ew2
t+1 = 1. We accomplish this by the MATLAB

phrase

w = randn(150, 1)

We have generated a white noise of length 150. We create the simulation by

setting
C = [1 0 0 0]′

y = dlsim (A, C, G, D, w, x0).

We report the first component of y in figure 2. Note the tendency of the system

to display explosive oscillations. We invite the reader to calculate the variance

of x1t as a function of t .

2.7.3. Indeterministic seasonal, no unit root

We now set
a= [0 0 0 .7]

A = compn(a)

With all other matrices defined as in the preceding example, we form

y = dlsim (A, C, G, D, w, x0)

We plot the component x1t in figure 2.7.2. Notice that the explosive oscillations

that were present in Fig. 2.7.1.b are no longer present.
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Figure 2.7.2: Indeterministic seasonal with no unit root.

2.7.4. First order autoregression

We want to simulate the first order autoregression

x1t+1 = .9x1t + wt+1,

where wt+1 is a normally distributed white noise with unit variance. We accom-

plish this by modifying the MATLAB code of the previous example as follows:

x0= [0 0 0 0]′

a= [.9 0 0 0]

A= compn(a)

y= dlsim(A, C, G, D, w, x0)

Fig. 2.7.3.a graphs the first component of y , which is the process {x1t} .
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Fig. 2.7.3.a. Simulation of first-order

autoregression.
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Fig. 2.7.3.b Simulation of second-order

autoregression.

2.7.5. Second order autoregression

We simulate the system

x1t+1 = 1.2x1t − .3x1t−1 + wt+1

by modifying the code of the preceding example as follows:

a= [1.2 − .3 0 0]

A= compn (a)

y= dlsim (A, C, G, D, w, x0)

Fig. 2.7.3.b displays the output of {x1t} .
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2.7.6. Growth with homoskedastic noise

We want to simulate the model

x1t+1 = 1.025x1t + wt+1

where {wt+1} continues to be a normal white noise with unit variance. We set

the initial condition as x10 = 5. We modify the MATLAB code of the preceding

example as follows:
x0= [5 0 0 0]

a= [1.025 0 0 0 ]

A= compn(a)

y= dlsim(A, C, G, D, w, x0)

Figure 2.7.4.a displays {x1t} . Notice the tendency for the randomness to die

out, in the sense that the one-step ahead prediction error variance remains unity

while the mean level of the process is growing exponentially at rate 1.025 per

period.
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Fig. 2.7.4.a. Growth with homoskedas-

tic noise.
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Fig. 2.7.4.b. Growth with heteroskedas-

tic noise.
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2.7.7. Growth with heteroskedastic noise

To arrest the tendency of the relative uncertainty to die out in the previous

example, we modify it by setting

x1t+1 = 1.025x1t + w∗
t+1

where

w∗
t = 1.025t/2wt

and where {wt} continues to be a normal white noise with unit variance. This

specification makes the variance of w∗
t equal to (2.025)t .

To simulate this model, we modify the code of the previous example as

follows:

n= 150

t= [1 : n]′

t= t./2

g= (1.025). ∧ t

wg= w. ∗ g
y= dlsim (A, C, G, D, wg, x0)

Figure 2.7.4.b displays {x1t} . Notice that the randomness now fails to die out.

2.7.8. Second order vector autoregression

We want to simulate the second order vector autoregression

z1t+1 = .9z1t + .05z1t−1 + .05z2t + .01z2t−1 + w1t+1

z2t+1 = −.04z1t − .06z1t−1 + .75z2t − .1z2t−1 + w2t+1

where wt = [w1t, w2t]
′ is a normally distributed vector white noise with identity

covariance matrix. To simulate this system, we define

xt =









z1t

z1t−1

z2t

z2t−1








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We use the MATLAB code

A= [.9 .05 .05 .01; 1 0 0 0; −.04 − .06 .75 − .1; 0 0 1 0]

C= [1 0 0 0; 0 0 1 0]

G= zeros (2, 4)

G(1, 1)= 1

G(2, 3)= 1

w= randn (150, 2)

D= zeros (2, 2)

x0= zeros (4, 1)

y= dlsim (A, C, G, D, w, x0)

In figure Fig. 2.7.5, we plot the first and third columns of y , which equal

{z1t,z2t} .
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Figure 2.7.5: Simulation of second-order vector autoregres-

sion.

We can use the MATLAB command dimpulse to compute the impulse

response of this system in response to each innovation (w1t, w2t). We employ

the following code:

i1 = dimpulse(A, C, G, D, 1, 20)
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This creates the response over twenty periods of the two variables z1t and z2t

to the first innovation w1t . We also use

i2 = dimpulse(A, C, G, D, 2, 20)

This creates the response over twenty periods of the two variables z1t and z2t
to the second innovation w2t . We display these impulse response functions in

figure 2.7.6.
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Fig. 2.7.6.a. Response to first innova-

tion.
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Fig. 2.7.6.b. Response to second inno-

vation.

We can use the MATLAB file evardec.m to compute the decomposition of

j -step ahead prediction error variances. If we want to compute this decomposi-

tion for horizons j extending from 1 to 20, we use the code:

[tab1, tab2] = evardec(A, C, G,−20,−1, eye(2))

The output in tab1 is a 20 × (1 + 2) table. The first column records the

horizon j . For i = 1, 2, the (i + 1)th column records the diagonal element of

vj corresponding to the ith variable zit . An orthogonal decomposition of these

variances into the parts attributable to w1 and w2 is contained in tab2. The

first column of tab2 records the horizon j , followed by two columns giving the
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diagonal element of the matrix vj,1 defined by (2.3.8) as the jth row element.

Then j is repeated in the fourth column, followed by two columns giving the

diagonal element of the matrix vj,2 .

2.7.9. A rational expectations model

We now indicate how to simulate the model described by equations (2.5.33).

We let the variable mt be generated by

mt+1 = 1.2mt − .3mt−1 + wt+1.

To implement this we set

A= compn ([1.2 − .3])

C= [1 0]′

G1= [1 0]

D= zeros(2, 1)

We set γ = .5 and λ = .9. To implement formula (2.5.33) we set

G2 = .5 ∗ G1/(eye (2) − .7 ∗ A)

Then we set

G = [G1; G2]

To simulate the system we set

x0= [1 0]′

w= rand(150, 1)

y= dlsim(A, C, G, D, w, x0)

The first column of y is the simulation for m , while the second is the simulation

for p . We plot these in figure 2.7.7.a.
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Fig. 2.7.7.a. Simulation of m and p .
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Fig. 2.7.7.b. Impulse Response to in-

novation in m .

Figure 2.7.7.b gives the response of pt and mt to an innovation in money

w1 . We compute this by using

y = dimpulse(A, C, G, D, 1, 20)

To obtain a representation of the solution (2.5.33) in the vector arma form

d(L)

[

pt

mt

]

=

[

n1(L)

n2(L)

]

wt,

we use the command

[n, d] = ss2tf(A, C, G, D, 1)

For our example, we obtain the output

n =

[

0 1 0

0 3.0675 −.8282

]

d = [ 1 −1.2 .3 ]

This output implies that our system has the representation

(1 − 1.2L+ .3L2)

[

mt

pt

]

=

[

1

3.0675 −.8282L

]

wt.

Notice that the first row of this representation agrees with the process for mt

that we assumed.
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2.8. Conclusion

In the following chapter we describe a class of economic structures with prices

and quantities that can be represented in terms of a vector linear stochastic

difference equation. In particular, the state of the economy xt will be repre-

sented by a version of (2.2.1), while a vector yt containing various prices and

quantities will simply be linear functions of the state, i.e., yt = Gxt . The rest

of this book studies how the parameters of the matrices A,C,G can be inter-

preted as functions of parameters that determine the preferences, technology,

and information flows in the economy.





Chapter 3

The Economic Environment

This chapter describes an economic environment with five key components: a

sequence of information sets, laws of motion for taste and technology shocks, a

technology for producing consumption goods, a technology for producing ser-

vices from consumer durables and consumption purchases, and a preference

ordering over consumption services. A particular economy is selected by spec-

ifying a set of matrices A22, C2, Ub , and Ud that characterize the motion of

information sets and of taste and technology shocks; matrices Φc,Φg,Φi,Γ,∆k ,

and Θk that determine the technology for producing consumption goods; and

matrices ∆h,Θh,Λ, and Π and a scalar β that determine the preference order-

ing over consumption goods. This chapter describes and gives examples of each

component of the economic environment.

3.1. Information

Agents have a common information set at each date t . We use a vector mar-

tingale difference sequence {wt : t = 1, 2, . . .} to construct the sequence of

information sets {Jt : t = 0, 1, . . .} . The initial information set J0 is generated

by a vector x′0 = (h′−1, k
′
−1, z

′
0) of initial conditions, each component of which

will be described subsequently. The time t information set Jt is generated by

x0, w1, w2, . . . , wt .

We maintain:

Assumption 1: E(wt | Jt−1) = 0 and E(wtw
′
t | Jt−1) = I for t = 1, 2, . . . .

– 39 –
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3.2. Taste and Technology Shocks

We use an nz -dimensional process {zt : t = 0, 1, . . .} to generate two underlying

shocks in our economy. The first shock, denoted bt , is an nb -dimensional vector

taste shock, and the second shock, denoted dt , is an nd -dimensional vector

technology or endowment shock. These vectors of shocks are each assumed to

be linear functions of the time t exogenous state vector zt :

bt = Ubzt and dt = Udzt (3.2.1)

where Ub and Ud are matrices used to select entries of zt . The law of motion

for {zt : t = 0, 1, . . .} is

zt+1 = A22zt + C2wt+1 for t = 0, 1, . . . (3.2.2)

where z0 is a given initial condition. We make the following technical assump-

tion:

Assumption 2: The eigenvalues of the matrix A22 have absolute values that

are less than or equal to one.

In chapter 2, we showed that (3.2.2) can accommodate a rich variety of time

series processes. The matrices Ub and Ud can be chosen to pick off appropriate

components of zt in such a way as to make bt or dt follow any of those stochastic

processes.

3.3. Technologies

At date t the inputs into production include a scalar household input ℓt ,

an nk –dimensional vector kt−1 of capital stocks available at time t , and the

vector dt of technology shocks. The vector k−1 is taken as an initial condition

for the economy. The outputs at time t include the time t vector of capital

stocks kt and a composite vector ōt that is partitioned into three subvectors,

an nc–dimensional vector of consumption goods ct , an ng –dimensional vector

of intermediate goods gt , and an ni -dimensional vector of investment goods it .

The composite output vector ōt is constrained by kt−1 via the Leontief

technology

Φōt = Γkt−1 + dt. (3.3.1)
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It is convenient to partition Φ = [Φc Φg Φi] conformably with ōt so that an

alternative representation of (3.3.1) is

Φcct + Φggt + Φiit = Γkt−1 + dt. (3.3.2)

Entries in the matrix Φg can be negative because intermediate goods are

used in producing consumption and investment goods. We make the following

assumption about Φ:

Assumption 3: [Φc Φg] is nonsingular.

This assumption guarantees that the levels of consumption and intermedi-

ate goods are determined uniquely by the current period’s values of investment

and technology shocks and the previous period’s capital stock. This assumption

can readily be relaxed. Doing so would require that we alter the algorithm to be

described in chapter 4 for solving the social planning problem, to accommodate

a different definition of the ‘control.’ In practice, a technology for which as-

sumption 3 is violated can usually be approximated arbitrarily well by another

technology for which it is satisfied. We illustrate this below in our descriptions

of example technologies 1 and 4.

An alternative specification, which we do not use, would replace the equality

in (3.3.1) with a weak inequality, which would allow for the presence of idle

capital. For some specifications of (Φ,Γ), it could then turn out to be optimal

for there to be idle capital in some time periods. We will eventually describe

a Lagrange multiplier on capital that indicates whether idle capital would be

preferred to the outcome that we impose by insisting that (3.3.2) hold with

equality.

There is an additional constraint to the production of gt :

| gt |≤ ℓt, (3.3.3)

where | · | denotes the norm of a vector. The intermediate goods vector gt

is introduced as a device for modelling symmetric adjustment costs, with the

household input ℓt being used to measure the magnitude of these costs. In

equilibrium, (3.3.3) always holds. For some interesting special cases, gt does

not enter (3.3.1) and hence ℓt is zero. In these cases, household inputs into

production, such as labor supply, can be modeled as components of ct .
1

1 It is straightforward to extend (3.3.3) to the case in which there are multiple household

inputs. Suppose there is a partition g
j
t of gt corresponding to input ℓ

j
t . Then we would

assume: g
j
t ≤| ℓjt | for all j .
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Finally, investment goods are used to augment the capital stock for the

subsequent time period, with capital possibly depreciating over time:

kt = ∆kkt−1 + Θkit. (3.3.4)

We maintain:

Assumption 4: The absolute values of the eigenvalues of ∆k are less than or

equal to one.

3.4. Examples of Technologies

We provide eight illustrations of the technology (3.3.1), (3.3.3), and (3.3.4).

Technology 1: Pure consumption endowment

There is a single consumption good that cannot be stored over time. In time

period t , there is an endowment dt of this single good. There is neither a capital

stock, nor an intermediate good, nor a rate of investment. Only constraint

(3.3.2) is operative, and in this case it simplifies to ct = dt .

To implement this specification we could set Φc = 1,Φg = 0,Φi = 0,Γ =

0,∆k = 0,Θk = 0. We can choose A22, C2 , and Ud to make dt follow any of

the variety of stochastic processes described in chapter 1.

However this specification would violate assumption 3 because [1 0] is a

singular matrix. We can implement this technology by the following specification

that does satisfy assumption 3:

ct + it = d1t

gt = φ1it

where φ1 is a small positive number. To implement this version, we set ∆k =

Θk = 0 and

Φc =

[

1

0

]

,Φi =

[

1

φ1

]

, Φg =

[

0

−1

]

, Γ =

[

0

0

]

, dt =

[

d1t

0

]

,

Evidently this specification satisfies assumption 3.
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We shall eventually use this specification to create a linear-quadratic version

of Lucas’s (1978) asset pricing model.

Technology 2: Single-Period Adjustment Costs

There is a single consumption good, a single intermediate good, and a single

investment good. The technology obeys

ct = γkt−1 + d1t , γ > 0

φ1it = gt + d2t , φ1 > 0

ℓ2t = g2
t

kt = δkkt−1 + it , 0 < δk < 1

(3.4.1)

where d1t is a random endowment of the consumption good at time t , and d2t

is a random disturbance to adjustment costs at time t . Given d2t , investment

can be increased or decreased only by adjusting the amount of the intermediate

good employed. The larger is the parameter φ1 , the higher are adjustment

costs. Employment of the intermediate good requires labor input on a one-for-

one-basis. Physical capital depreciates over time.

To capture this technology, we specify

Φc =

[

1

0

]

, Φg =

[

0

−1

]

, Φi =

[

0

φ1

]

,

Γ =

[

γ

0

]

, ∆k = δk, Θk = 1.

We set A22, C2 and Ud to make (d1t, d2t)
′ = dt follow one of the stochastic

processes described in chapter 2.

This technology embodies a linear quadratic, general equilibrium version

of the adjustment-cost technology used in Lucas and Prescott’s [1971] model of

investment under uncertainty.

Technology 3: Multi-Period Adjustment Costs and “Time to Build”

A single consumption good is produced by a single capital good. The capital

good can be produced in two ways: a fast and relatively resource-intensive way,

and a slow and less resource intensive way. Different amounts of intermediate

goods are absorbed in producing investment goods in the fast and the slow ways.
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We model this by positing that there are two capital stocks, two investment

goods, and four intermediate goods, and that adjustment costs are larger for

the faster investment technology.

This technology is represented as

ct = γk1t−1 + d1t , γ > 0 (3.4.2a)

k1t = δkk1t−1 + k2t−1 + i1t , 0 < δk < 1 (3.4.2b)

k2t = i2t (3.4.2c)

g1t = φ1(i1t + i2t) , φ1 > 0 (3.4.2d)

g2t = φ2(i1t + k2t−1) , φ2 > 0 (3.4.2e)

g3t = φ3i1t , φ3 > 0 (3.4.2f)

g4t = φ4i2t , φ4 > 0 (3.4.2g)

ℓ2t = gt · gt (3.4.2h)

Equation (3.4.2a) describes how physical capital, k1t , and an endowment shock,

d1t , are transformed into the consumption good. Equations (3.4.2b) and (3.4.2c)

tell how capital, k1t , can be augmented by “quick investment”, i1t , and by “slow

investment”, i2t . Notice that (3.4.2b) and (3.4.2c) imply that physical capital,

k1t , is determined by

k1t = δkk1t−1 + i1t + i2t−1,

an equation that exhibits the status of i1t and i2t as ‘fast’ and ‘slow’ investment

processes, respectively.

Equations (3.4.2d) and (3.4.2e) describe how the intermediate goods, g1t
and g2t , are required to produce investment goods. According to (3.4.2d) and

(3.4.2e), it is as though two stages of production are required to produce cap-

ital, the first stage using intermediate good g1t , and the second stage using

intermediate good g2t . According to (3.4.2d) and (3.4.2e), fast investment i1t
undergoes both stages of production in the same period t , while slow investment

i2t undergoes the first stage described by (3.4.2d) in period t and the second

stage described by (3.4.2e) in period (t+ 1).

Equations (3.4.2f ) and (3.4.2g ) describe some additional inputs of inter-

mediate goods that are specific to the two types of investment processes. We

can set φ3 > φ4 to capture the notion that it is more resource intensive to invest

quickly. In equation (3.4.2h), ‘ · ’ denotes an inner product.
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To map this technology into our setup, we set

∆k =

[

δk 1

0 0

]

, Θk = I

Φc =















1

0

0

0

0















,Φg =















0 0 0 0

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1















,Φi =















0 0

φ1 φ1

φ2 0

φ3 0

0 φ4















(3.4.3)

Γ =















γ 0

0 0

0 −φ2

0 0

0 0















Recall that the matrices Φc,Φg,Φi multiply the vectors ct, [g1t g2t g3t g4t]
′ , and

[i1t i2t]
′ , respectively, while Γ multiplies the vector [k1t−1, k2t−1]

′ . Again, we

set Ud, A22, C2 to make d1t obey one of the processes described in Chapter 2.

This technology captures aspects of those used by Park (1984) and Kydland

and Prescott (1982).

Technology 4: Growth

There are a single consumption good, a single investment good, a single

capital good, and no intermediate good. Output obeys

ct + it = γkt−1 + dt

where dt is a random endowment of output at time t . The motion of capital

obeys

kt = δkkt−1 + it.

To represent this technology, we could set Φc = 1, Φi = 1, Φg = 0, Γ =

γ, ∆k = δk, Θk = 1.

The reader can verify that this specification of the technology violates as-

sumption 3 ( [Φc Φg] is singular). To analyze such an economy, we could modify

some of our calculations to dispense with assumption 3. An alternative way is
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to approximate the technology with another one that satisfies assumption 3. In

particular, assume that
ct + it = γkt−1 + d1t

gt = φ1it

kt = δkkt−1 + it

where φ1 is a very small positive number and d2t ≡ 0. To implement this

technology, set

Φc =

[

1

0

]

, Φg =

[

0

1

]

, Φi =

[

1

−φ1

]

, Γ =

[

γ

0

]

,

∆k = δk, Θk = 1.2

This technology can be used to create a model of consumption along the

lines of Hall (1978) and Flavin (1981), and a linear quadratic version of a model

of capital accumulation along the lines of Cass (1965), Koopmans (1965), and

Brock and Mirman (1972) . We shall also use later it to represent aspects of a

model of economic growth authored by Jones and Manuelli (1988).

Technology 5: Depletable Resource

There is a single consumption good, a single investment good, two inter-

mediate goods and one capital stock. The capital stock is the cumulative stock

of the resource that has been extracted. We let investment it be the extraction

rate, so that

kt = kt−1 + it. (3.4.4a)

All of the amount extracted is consumed, so that

ct = it. (3.4.4b)

There are two sources of extraction costs. The first, which is coincident with

using the first intermediate good g1t , depends on the amount extracted in the

current time period

g1t = φ1it. (3.4.4c)

2 In effect, the modification induces investment to be associated with the use of a small (be-

cause φ1 ≈ 0) amount of intermediate goods, which require labor input. The matrix [Φc Φg ]

is now nonsingular, so that assumption 3 is satisfied. When φ1 > 0 , technical conditions are

satisfied that are required for the solution of the social planning problem automatically to

lie in the space L2
0 (see Chapters 4 and 5). When φ1 is close to zero, the solution of the

social planning problem will closely approximate the solution of the social planning problem

for φ1 = 0, augmented with the restriction that the solution lie in L2
0 .
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The second source of extraction costs, captured by the intermediate good g2t ,

depends on the cumulative amount extracted at period t , which we approximate

as (it/2 + kt−1):
3

g2t = φ2(it/2 + kt−1). (3.4.4d)

To represent this technology, we set

Φc =





1

0

0



 , Φg =





0 0

−1 0

0 −1



 , Φi =





−1

φ1

φ2/2



 Γ =





0

0

−φ2



 ,

∆k = 1,Θk = 1.

In this technology, we have included no endowment shock process dt , so that we

can take Ud = 0, A22 = 0, C2 = 0. It would be possible to modify the technology

in various ways to provide a role for an endowment or technology shock.

Such a technology was used by Hansen, Epple and Roberds [1985] to study

alternative arrangements for an exhaustible resource market.

Technology 6: Learning by Doing

There is a single consumption good, a single investment good, a single inter-

mediate good, and a single capital stock. The capital stock is interpreted as the

cumulative stock of knowledge, the accumulation of which requires expenditure

of current output and the intermediate good. Thus, we set

ct + it = γ1kt−1 + dt

kt = δkkt−1 + (1 − δk)it
(3.4.5)

Setting Θk = (1− δk) makes kt a weighted average of current and past rates of

investment. Possession of knowledge (capital) lowers the amount of intermediate

goods required to accumulate more knowledge:

gt = φit − γ2kt−1,

where φ ≥ γ2 > 0.

3 We add half the current extraction rate it to kt−1 to approximate the average amount

over the period that has been extracted cumulatively.



48 The Economic Environment

To represent this economy, we set

Φc =

[

1

0

]

, Φg =

[

0

−1

]

, Φi =

[

1

φ

]

Γ =

[

γ1

γ2

]

, ∆k = δk,Θk = (1 − δk).

(3.4.6)

Technology 7: Fixed Proportions

There is a single consumption good, a single capital good, and a single

“intermediate good” to be interpreted as labor. Labor and capital are required

in fixed proportions, apart from the effects of a random “labor-requirements”

shock d2t . The technology requires

ct + it = γ1 kt−1 + d1t

gt = γ2 kt−1 + d2t

g2
t = ℓ2t

kt = δk kt−1 + it.

Here gt represents employment of labor input. The parameter γ2 determines

the nonstochastic part of the capital-labor ratio.

To map this technology into our setup, we set

Φc =

[

1

0

]

, Φi =

[

1

0

]

, Φg =

[

0

1

]

,

Γ =

(

γ1

γ2

)

, ∆k = δk, Θk = 1.

Technology 8: Interrelated Factor Demand with Costs of Adjust-

ment

To produce output requires physical capital, k1t , and labor, k2t . It is

costly to adjust the stock of either factor of production. To adjust capital, the

intermediate good g1t must be employed, while to adjust labor, the intermediate

good g2t must be employed. To implement this technology, we require k2t = g3t ,
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which identifies k2t with the direct input of labor. The technology satisfies

c1t + it = [γ1 γ2]

[

k1t−1

k2t−1

]

+ d1t

k1t = δkk1t−1 + i1t

k2t = k2t−1 + i2t

g1t = φ2i1t

g2t = φ3i2t

g3t = k2t.

When φ3 < φ2 , it is more costly to adjust capital than labor. To capture this

technology, we set

∆k =

[

δk 0

0 1

]

, Θk =

[

1 0

0 1

]

Φc =









1

0

0

0









, Φi =









1 0

0 0

φ2 0

0 φ3









, Φg =









0 0 0

1 0 0

0 −1 0

0 0 −1









, Γ =









γ1 γ2

0 1

0 0

0 0









This technology is a version of one used by Mortensen [1973] and Hansen

and Sargent [1981].

3.4.1. Other technologies

Alternative technologies can be constructed that blend features of two or more

of those described here. For instance, multiple-period adjustment costs can

be incorporated into the growth technology, while learning by doing can be

introduced into one of the adjustment cost technologies. Also versions of these

single consumption good technologies can be combined to yield technologies for

the production of multiple consumption goods.



50 The Economic Environment

3.5. Preferences and Household Technologies

We assume a representative household. We postpone until Chapter 12 dis-

cussing ways that heterogeneity among consumers can be accommodated within

this assumption. We describe preferences in terms of two elements. First we

describe a household technology for accumulating a vector of household capital

and for using it to produce a vector of consumption services. Then we specify

intertemporal preferences for consumption services in different dates and states

of the world.

We assume that there is an nh –dimensional vector of household capital

stocks ht−1 brought into time t . The vector h−1 is taken as an initial condition.

The vectors of consumption goods ct and household capital stocks ht−1 are

inputs into the household technology at time t . The outputs of this technology

are an ns –dimensional vector of household services st and a new vector of stocks

of household capital ht . The relation between inputs and outputs is described

by

ht = ∆hht−1 + Θhct (3.5.1)

and

st = Λht−1 + Πct. (3.5.2)

We maintain the following technical assumption:4

Assumption 5: The absolute values of the eigenvalues of ∆h are less than or

equal to one.

Preferences are defined over stochastic processes for household services and

household inputs into production. These preferences are separable across com-

ponents of services, across states of the world, and over time. In particular,

preferences are described by the quadratic utility functional:

−(
1

2
)E

∞
∑

t=0

βt
[

(st − bt) · (st − bt) + (ℓt)
2
]

| J0 , 0 < β < 1. (3.5.3)

where β is a subjective discount factor.

The household services in this economy play the role of characteristics or

attributes in the analyses of Gorman (1980) and Lancaster (1966). We can think

4 The purpose of this assumption is to assure that under the equilibrium (optimal) decision

rule, the state vector for the economy has a transition matrix that is ‘stable’.
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of consumption ct at date t as generating a bundle of consumption services in

current and future time periods. Thus, the consumption vector ct generates a

vector Πct of consumption services at time t and a vector Λ(∆h)
j−1Θhct of

consumption services at time t+j , for j ≥ 1. In effect, the household technology

puts time and component nonseparabilities into the indirect preference ordering

for consumption goods induced by (3.5.3). We do not impose nonnegativity

constraints on consumption goods.

3.6. Examples of Household Technology Preference

Structures

We describe five examples of household technology-preference structures.

Household Technology 1: Time Separability

There is a single consumption good which is identical with the single service.

There is no household capital. Preferences are described by

−1

2
E

∞
∑

t=0

βt
[

(ct − bt)
2 + ℓ2t

]

| J0 , 0 < β < 1 (3.6.1)

where ℓt is labor supplied in period t and bt is a stochastic “bliss point”. Notice

that when ct is less than bt , utility is increasing in consumption. Typically, we

would try to specify the parameters of the bt process and the household and

production technologies so that in equilibrium ct is usually less than bt .

Household Technology 2: Consumer Durables

There are a single consumption good and a single service. A single durable

household good obeys

ht = δhht−1 + ct , 0 < δh < 1.

Services at t are related to the stock of durables at the beginning of the period:

st = λht−1 , λ > 0.
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Preferences are described by

−1

2
E

∞
∑

t=0

βt
[

(λht−1 − bt)
2 + ℓ2t

]

| J0, (3.6.2)

where bt is again a univariate stochastic process that represents a stochastic

bliss point. We intend to set parameters so that (λht−1 − bt) is ordinarily

negative, so that utility is rising in consumption services λht−1 .

To implement these preferences, we would set ∆h = δh,Θh = 1,Λ = λ,Π =

0.

Household Technology 3: Habit Persistence

There is a single consumption good, a single consumption service, and a

single household capital stock which is a weighted average of consumption in

previous time periods. We want preferences to be

−1

2
E

∞
∑

t=0

βt[(ct − λ(1 − δh)

∞
∑

j=0

δjh ct−j−1 − bt)
2 + ℓ2t ],

0 < β < 1 , 0 < δh < 1 , λ > 0.

(3.6.3)

Here the bliss point is in effect bt + λ(1 − δh)
∑∞
j=0 δ

j
h ct−j−1 , so that the bliss

point shifts in response to a moving average of past consumption. Preferences

in this form require an initial condition for the geometric sum
∑∞
j=0 δ

j
hct−j−1 ,

which we specify as an initial condition for the ‘stock of household durables,’

h−1 .

To implement these preferences, let the household capital stock be

ht = δhht−1 + (1 − δh)ct , 0 < δh < 1.

This implies that

ht = (1 − δh)

t
∑

j=0

δjh ct−j + δt+1
h h−1

Let consumption services be

st = −λht−1 + ct , λ > 0.

We can represent the desired preferences by setting Λ = −λ, Π = 1, ∆h =

δh, Θh = 1 − δh .
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The parameter λ governs the strength of habit persistence. When λ = 0,

we recover a version of household technology 1.

Household technology-preferences 3 is a version of the model of habit persis-

tence of Ryder and Heal [1973]. Later we shall use this specification to represent

aspects of some ideas of Jones and Manuelli [1988].

Household Technology 4: Adjustment Costs

There is a single consumption good, a single household capital stock equal to

consumption, and two consumption services. We want to represent preferences

of the form

−1

2
E

∞
∑

t=0

βt[(ct−b1t)2 + λ2(ct − ct−1)
2 + ℓ2t ] | J0

0 < β < 1 , λ > 0

(3.6.4)

where b1t is a stochastic bliss process, intended ordinarily to exceed ct . A

consumer with these preferences prefers more ct to less, but dislikes variability

of consumption, as represented by the term λ2(ct − ct−1)
2 .

To capture such preferences, we set

ht = ct

st =

[

0

−λ

]

ht−1 +

[

1

λ

]

ct

so that

s1t = ct

s2t = λ(ct − ct−1)

We set the first component b1t of bt to capture the stochastic bliss process, and

set the second component identically equal to zero. Thus, we set ∆h = 0,Θh =

1,

Λ =

[

0

−λ

]

, Π =

[

1

λ

]

.

This specification captures a linear-quadratic version of Houthakker and

Taylor’s (1970) model of adjustment costs or habit persistence.

Household Technology 5: Multiple Consumption Goods
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There are two consumption goods and two consumption services. The first

consumption service is proportional to the first consumption good, and the

second consumption service is a linear combination of the two consumption

goods. As in household technology 1, preferences for consumption goods are

time separable. There are no durable household goods. We specify

Λ =

[

0

0

]

and Π =

[

π1 0

π2 π3

]

(3.6.5)

Although preferences for consumption goods are state and date-separable,

they are not separable across components. Following Frisch (1932), Heckman

and MaCurdy (1980), and Browning, Deaton, and Irish (1985), it is convenient

to exploit the separability across time and states and to analyze the implied

consumption demands in each state of the world and time period separately.

For a given state of the world and time period t , the contribution of ct to the

utility function is

−1

2
βt(Πct − bt)

′(Πct − bt). (3.6.6)

The corresponding marginal utility vector mut for consumption is then

mut = −βt[Π′Π ct − Π′ bt]. (3.6.7)

Solving (3.6.7) for ct in terms of mut and bt gives

ct = −(Π′Π)−1β−tmut + (Π′Π)−1Π′bt (3.6.8)

Relation (3.6.8) is referred to as the Frisch demand function for consumption.

We can think of the vector mut as playing the role of prices, up to a common

factor, for all dates and states. The scale factor is determined by the choice of

numeraire.5

Notions of substitutes and complements can be defined in terms of these

Frisch demand functions. Two goods can be said to be substitutes if the cross-

price effect is positive and to be complements if this effect is negative. Hence

this classification is determined by the off-diagonal element of −(Π′Π)−1 , which

5 Frisch demand functions are different from Marshallian and Hicks demand functions.

In Frisch demand functions, compensation is required to hold the marginal utility of the

numeraire good constant.
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is equal to π2π3/det(Π′Π). If π2 and π3 have the same sign, the goods are

substitutes. If they have opposite signs, the goods are complements.

This household technology can be modified to incorporate features of the

first four household technologies for each of the consumption goods.

3.7. Constraints to Keep the Solutions “Square Summable”

To complete our description of the economic environment, we impose the

following additional constraints on the two endogenous state vectors ht and kt :

E

∞
∑

t=0

βtht · ht | J0 <∞ and E

∞
∑

t=0

βtkt · kt | J0 <∞. (3.7.1)

We define the space

L2
0 = [{yt} : yt is a random variable in Jt and

E

∞
∑

t=0

βty2
t | J0 < +∞].

We can express (3.7.1) by saying that each component of ht and each component

of kt belongs to L2
0 .

These restrictions substitute for terminal conditions on the capital stocks.

For many specifications of our model, constraints (3.7.1) are redundant because

it is optimal for a social planner to stabilize the economy. For such specifica-

tions a set of transversality conditions implying (3.7.1) are among the first-order

necessary conditions for the planner’s problem. For some other specifications,

however, the transversality conditions do not imply (3.7.1). For those specifica-

tions, we impose (3.7.1) as an additional constraint to give a sensible economic

interpretation to the problem.6 For such specifications, imposing (3.7.1) can

be justified informally as a practical way of approximating solutions with non-

negativity constraints on capital stocks.

6 See the discussion of Hall’s model in chapter 4 for an illustration.
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3.8. Summary

Information flows in our economy are governed by an exogenous stochastic pro-

cess zt that follows

zt+1 = A22zt + C2wt+1,

where wt+1 is a martingale difference sequence. Preference shocks bt and tech-

nology shocks dt are linear functions of zt :

bt = Ubzt

dt = Udzt

The matrices A22, C2, Ub, and Ud characterize the laws of motion of bt and dt .

There is the following technology for producing consumption goods:

Φcct + Φggt + Φiit = Γkt−1 + dt

kt = ∆kkt−1 + Θkit

gt · gt = ℓ2t

Here ct is a vector of consumption goods, gt a vector of intermediate goods,

it a vector of investment goods, kt a vector of physical capital goods, and ℓt

an amount of labor supplied by the representative household. The matrices

Φc,Φg,Φi,Γ,∆k , and Θk determine a particular technology.

Preferences of a representative household are described by

−(
1

2
)E

∞
∑

t=0

βt[(st − bt) · (st − bt) + ℓ2t ], 0 < β < 1

st = Λht−1 + Πct

ht = ∆hht−1 + Θhct

where st is a vector of consumption services, and ht is a vector of household

capital stocks. A particular set of preferences is specified by naming the matrices

Λ,Π,∆h,Θh , and the scalar β .

Having specified the structure of information, technology, and preferences,

we must tell how the economy allocates resources in light of what is technically

possible and what people want. We do this in the coming chapters.
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Optimal Resource Allocation

We eventually want to use our models to study aspects of competitive equilib-

ria, including time series properties of various spot market prices, asset prices,

and rates of return. The first welfare theorem makes competitive equilibrium

allocations solve a particular resource allocation problem, which in our setting

is a linear-quadratic optimal control problem.

In this chapter, we state the optimal resource allocation problem, and com-

pare two methods for solving it. The first method uses state and date-contingent

Lagrange multipliers; the second uses dynamic programming. The first method

exposes the direct connection between the Lagrange multipliers and the equilib-

rium prices in a competitive economy to be analyzed in chapter 6. The second

method provides good algorithms for calculating both the law of motion for the

optimal quantities and the Lagrange multipliers.

We also describe a set of MATLAB programs that solve the social planning

problem and that represent its solution in various ways. We use these programs

to solve the social planning problem for six sample economies that are formed by

choosing particular examples of the ingredients that were described in chapter

3.

4.1. Planning problem

The social planning problem is to maximize the representative household’s utility

subject to the resource constraints described in chapter 3. Constraint (3.5) can

be substituted directly into the objective function (3.16) to yield

−(1/2)E

∞
∑

t=0

βt[(st − bt) · (st − bt) + gt · gt]. (4.1.1)

The remaining constraints are all linear:

Φcct + Φg gt + Φiit = Γkt−1 + dt,

kt = ∆kkt−1 + Θkit,

ht = ∆hht−1 + Θhct,

st = Λht−1 + Πct,

(4.1.2)

– 57 –
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and

zt+1 = A22zt + C2wt+1, bt = Ubzt and dt = Udzt (4.1.3)

for t = 0, 1, . . . where h−1, k−1 , and z0 are given as initial conditions. The

process {zt : t = 0, 1, . . .) is uncontrollable in the sense that the social planner

cannot influence its evolution. The planner’s problem is to choose stochastic pro-

cesses {ct, st, gt, it, kt, ht}∞t=0 that maximize (4.1.1) subject to (4.1.2), (4.1.3),

and the given initial conditions. All components of the processes chosen by the

planner are required to be in the space L2
0 given by

L2
0 = {y : yt is in Jt for t = 0, 1, . . . , and

E

∞
∑

t=0

βty2
t | J0 <∞}.

(4.1.4)

Among other things, this requires that the time t decisions depend only on

information available at time t .

4.2. Lagrange Multipliers

Our first approach to solving the constrained optimization problem uses La-

grange multipliers. We begin by focussing on the linear constraints given in

(4.1.2) and the constraints in (4.1.3) that determine the evolution of the pro-

cess governing taste and technology shocks. The constraints in (4.1.2) are in-

dexed explicitly by the calendar date t and implicitly by the state of the world

(wt, x0), where wt = (w1, w2, . . . , wt). Associated with these constraints are

four vector multiplier processes {Md
t }, {Mk

t }, {Mh
t } , and {Ms

t} . Because the

constraints are required to hold in all states of the world, the multipliers are

stochastic processes, the time t values of which are functions of the state of the

world (wt, x0). The components of the multiplier processes are in L2
0 .1

1 Chapter 6 discusses the space of stochastic processes in which there exist equilibrium

prices that can be used to decentralize the economy. The discussion in chapter 6 also per-

tains to the Lagrange multipliers of this chapter. The equilibrium prices and the Lagrange

multipliers both live in L2
0 .
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To calculate the solution to the optimal resource allocation problem, we

find the saddle point of the Lagrangian:2

L = −E
∞
∑

t=0

βt
[

(
1

2
)[(st − bt) · (st − bt) + gt · gt]

+ Md′
t · (Φcct + Φggt + Φiit − Γkt−1 − dt)

+ Mk′
t · (kt − ∆kkt−1 − Θkit)

+ Mh′
t · (ht − ∆hht−1 − Θhct)

+ Ms′
t · (st − Λht−1 − Πct)

]

| J0.

(4.2.1)

The social planner solves the saddle point problem by choosing contingency plans

(stochastic processes) for {ct, gt, ht, it, kt, st} , and for the multipliers {Md
t } ,

{Mk
t } , {Mh

t } , and {Ms
t} . Each of these objects must be an element of L2

0 .

2 In obtaining the first order conditions for the optimization of (4.5), it is useful to remem-

ber the integration operation represented by the conditional expectation operator E(· | J0) .

Let ft(wt, x0) be the density of (wt, x0) . Then the representation (4.5) for the Lagrangian

is equivalent with

L = −
∞
∑

t=0

βt
∫ {

[(
1

2
)[(st − bt) · (st − bt) + gt · gt]

+ Md′
t (Φcct + Φggt + Φiit − Γkt−1 − dt)

+ Mk′
t (kt − ∆kkt−1 − Θkit) + Mh′

t (ht − ∆hht−1 − Θhct)

+ Ms′
t (st − Λhht−1 − Πct)

}

ft(wt, x0)dwt.

(4.2.0′)

In this expression, it is understood that each element of {st , bt, gt , ct, it kt, dt , Md
t , Mk

t ,

Mh
t , Mk

t } is to be regarded as a function of (wt, x0) . The planner is to choose stochastic

processes that make each element of {ct, st , gt, it , kt, ht , Md
t , Mk

t , Mh
t , Mk

t } a function

of (wt, x0) , taking as given the initial state vector x0 and the stochastic processes for bt
and dt . Expression (4.2.0′ ) emphasizes the fact that each constraint in (4.1.2) applies for

each t and each (wt, x0) , and that a distinct multiplier is attached to each constraint for

each (wt, x0) . In obtaining the first order necessary conditions for an optimum, it is in effect

necessary to differentiate (4.2.0′ ) with respect to each choice variable of the planner for each

contingency (wt, x0) . Thus for (4.2.0) the first order condition with respect to kt(w
t, x0)

is βtMk
t f
t(wt, x0) − βt+1

∫

(∆′
k
Mk
t+1 + Γ′Md′

t+1)ft+1(wt+1, x0)dwt+1 = 0 or βtMk
t −

rβt+1
∫

(

∆′
k
Mk
t+1+Γ′Md′

t+1

)

ft+1(wt+1,x0)
ft(wt,x0)

dwt+1 = 0 or βtMk
t−βtE(∆′

k
Mk
t+1+Γ′µd′t+1) |

Jt = 0. This is the first order condition for kt displayed in (4.8).
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First order necessary conditions can be deduced by computing Gateaux or di-

rectional derivatives around a putative optimum, and by setting them all to

zero.3

The method of directional derivatives can be illustrated as follows. Let cot
be the optimal plan for consumption. Consider a class of admissible perturba-

tions around cot of the form cot + rαt , where r is an arbitrary real number and

αt is an nc -dimensional random vector in Jt with finite second moments. The

vector αt gives the direction of the derivative. For any direction αt , we want

the optimal setting of r to be zero. We replace cot by the perturbation cot + rαt

in the objective function, differentiate with respect to r , evaluate the result at

r = 0 and set it equal to zero. This results in

−βtE[α′
t(Φ

′
cMd

t − Θ′
hMh

t − Π′Ms
t )] = 0, (4.2.2)

where we have evaluated the derivative with respect to r at the optimal choice

of r , namely r = 0. Since αt can be chosen to be any nc -dimensional random

vector in Jt , (4.2.2) can be satisfied only if Φ′
cMd

t−Θ′
hMh

t −Π′Ms
t is identically

zero in every state of nature.4

It is useful to illustrate how this method applies to the determination of

first order conditions for the terms ht and kt , each of which makes two appear-

ances under the sum in (4.2.1), namely as ht and ht−1 , and as kt and kt−1 ,

respectively. We shall indicate how things work for kt . Let αt now be of the

same dimension as kt . For each t ≥ 0, the terms involving kt in the sum (4.2.1)

are
E{βtMk′

t (kot + rαt)

− βt+1[Mk′
t+1∆k(k

o
t + rαt) + Md′

t+1Γ(kot + rαt)]},
where kot is the optimal capital sequence. Differentiating this expression with

respect to r and setting the result to zero for r = 0 gives

βtEα′
t{Mk

t − β[∆′
kMk

t+1 + Γ′Md
t+1]} = 0. (4.2.3)

3 An alternative approach is to compute Frechet derivatives of the Lagrangian (4.2.1)

with respect to the stochastic process {ct, gt, ht, it, kt, st , Md
t , Mk

t , Mh
t , Ms

t} . These

derivatives are taken with respect to entire stochastic processes. To use this approach, we

would have to define a sense of differentiation for criterion functions that depend on elements

in L2
0 . Such a construction turns out to be straightforward in our context and exploits that

fact that the space L2
0 is a Hilbert space.

4 See Chapter 6 for further discussion that is pertinent to understanding the use of stochas-

tic Lagrange multipliers.
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This equation must hold for all directions αt that can be chosen as functions of

time t information (wt, x0). This implies that

Mk
t −Eβ[∆′

kMk
t+1 + Γ′Md

t+1] | Jt = 0.

Applying the law of iterated expectations to the above equation gives

E{Mk
t − β[∆′

kMk
t+1 + Γ′Md

t+1]} = 0,

which implies (4.2.3).

In this way, we can compute first-order necessary conditions for all of the

processes to be chosen by the social planner. The first-order necessary conditions

for maximization with respect to ct, gt, ht, it, kt , and st , respectively, are:

−Φ′
cMd

t + Θ′
hMh

t + Π′Ms
t = 0,

− gt − Φ′
gMd

t = 0,

−Mh
t + βE(∆′

hMh
t+1 + Λ′Ms

t+1) | Jt = 0,

− Φ′
iMd

t + Θ′
kMk

t = 0,

−Mk
t + βE(∆′

kMk
t+1 + Γ′Md

t+1) | Jt = 0,

− st + bt −Ms
t = 0

(4.2.4)

for t = 0, 1, . . . . In addition, we have the transversality conditions

lim
t→∞

βtE[Mk′
t kt] | J0 = 0

lim
t→∞

βtE[Mh′
t ht] | J0 = 0.

(4.2.5)

By way of enforcing (4.2.5), we impose the additional condition that each of

the processes {ct, gt, ht, it, kt, st} belongs to the space L2
0 . This requirement is

stronger than the transversality conditions, and makes the transversality con-

ditions redundant. In an extended example in an appendix to this chapter, we

illustrate the connection between the transversality conditions and the require-

ment that elements of the solution lie in L2
0 .5

The optimal plan can now be computed by solving the stochastic expec-

tational difference equation system formed by augmenting (4.1.2)–(4.1.3) with

5 In (4.2.4), we have abused notation a little bit. The Lagrangian is defined in terms of

general processes for {ct, gt, ht, it, kt, st,Md
t ,Mk

t ,Mh
t ,Ms

t} . In (4.2.4) we have used the

same notation for the general processes and the optimal choices of these processes.
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(4.2.4). This system is to be solved jointly for the process {ct, gt, ht, it, kt, st,Md
t ,Mk

t ,Mh
t ,Ms

t ,

zt} subject to the initial conditions for (h′−1, k
′
−1, z

′
0, )

′ and to the side condi-

tion that all individual component processes be in L2
0 . It is feasible to solve this

system of difference equations using the invariant subspace methods described

in chapter 9. We shall rely on the dynamic programming here.

Before describing dynamic programming, we manipulate some of the first-

order conditions given in (4.2.4) to deduce economic interpretations for the

Lagrange multipliers. The multipliers have a direct connection to the price

system to be used in Chapter 6 to support the optimal resource allocation in a

competitive economy.

Solving the sixth equation in (4.2.4) for Ms
t gives

Ms
t = bt − st. (4.2.6)

We can interpret Ms
t as the marginal utility vector or, equivalently, as the

shadow price vector (in terms of utility) for services at date t . Solving the third

equation in (4.2.4) forward yields

Mh
t = E[

∞
∑

τ=1

βτ (∆′
h)
τ−1Λ′Ms

t+τ | Jt]. (4.2.7)

We interpret Mh
t as the indirect marginal utility vector for the household capital

stock at time t . The infinite discounted sum in (4.2.7) captures the notions that

household capital at date t generates services in subsequent time periods, and

that the Lagrange multiplier Mh
t reflects this valuation. The indirect marginal

utility vector for consumption at date t is just Mc
t ≡ Θ′

hMh
t +Π′Ms

t because a

vector ct of consumption goods at time t yields Θhct units of household capital

and Πct units of consumption services at time t .

It is also of interest to deduce marginal valuations or shadow prices (in

terms of utility) of investment and productive capital. These can be expressed

in terms of the shadow price of consumption and the indirect marginal disutility

of intermediate goods gt . Combining the first two equations in (4.2.4) gives
[

Φ′
c

Φ′
g

]

Md
t =

[

Θ′
hMh

t + Π′Ms
t

−gt

]

. (4.2.8)

Since Assumption 3 is satisfied, the matrix on the left side of (4.2.8) is nonsin-

gular. Solving (4.2.8) for Md
t , we obtain

Md
t =

[

Φ′
c

Φ′
g

]−1 [
Θ′
hMh

t + Π′Ms
t

−gt

]

. (4.2.9)
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The multiplier Md
t is used in representing the shadow price of capital in time

period t . Solving the fifth equation in (4.2.4) forward gives

Mk
t = E[

∞
∑

τ=1

βτ (∆′
k)
τ−1Γ′Md

t+τ | Jt]. (4.2.10)

We interpret Mk
t as the shadow price vector for the capital stock.

Representation (4.2.10) can be interpreted as follows. Capital at time t is

valued because it is useful for producing output in subsequent time periods. The

contribution to value from helping to produce output at time t+τ is manifested

in the term Γ′Md
t+τ . This term is discounted by βτ (∆′

k)
τ−1 , reflecting both

the discounting in the consumer’s utility function and the depreciation in the

capital stock. The vector Γ′Md
t can be used to ascertain whether there are

incentives to hold idle capital at time t . In particular, negative values of this

multiplier indicate that a better solution to the social planning problem could

be obtained if the equality in resource constraint (2.4) were relaxed to be an

inequality.

Finally, the shadow price for new investment is given by Mi
t = Θ′

kMk
t

because a vector it of investment goods at time t yields Θkit units of capital at

time t . In light of the fourth equation in (4.2.4), Mi
t is also given by Φ′

iMd
t ,

which reflects the resource cost of producing new investment goods. Notice

that (4.2.6), (4.2.7), (4.2.9), and (4.2.10) can be used to obtain expressions

for the multiplier processes in terms of the endogenous process {gt, st} and the

exogenous process {zt} . The fact that we obtain two equivalent representations

for the shadow price of investment is an implicit restriction on the optimal choice

of {gt, st} .
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4.3. Dynamic programming

This section briefly describes how the method of dynamic programming can be

used to solve the social planning problem.6 The the nuts and bolts of linear

quadratic dynamic programming are described in Chapter 9.

Recall that the vector of initial conditions at time zero consists of x′0 ≡
(h′−1, k

′
−1, z

′
0). The social planning problem can be solved in the following way.

First, temporarily assume that someone has handed us the solution of the time

shifted version of the problem that takes x′1 ≡ (h′0, k
′
0, z

′
1) as a given set of

initial conditions, and that shifts forward the constraints and objective function

one time period. Let V (x1) be the optimal value function that is equal to the

objective function of this altered problem evaluated at the initial condition x1

and the associated optimal plan. Then solve a two-period problem with the

objective to maximize:

[−.5[(s0 − b0) · (s0 − b0) + g0 · g0] + βEV (x1)] (4.3.1)

subject to the linear constraints

Φcc0 + Φgg0 + Φii0 = Γk−1 + d0,

k0 = ∆kk−1 + Θki0,

h0 = ∆hh−1 + Θhc0,

s0 = Λh−1 + Πc0,

(4.3.2)

and

z1 = A22z0 + C2w1, b0 = Ubz0 and d0 = Udz0 (4.3.3)

The problem is to be solved taking as given the value of the initial state vector

x0 . If the function V is concave, the problem can be solved for policy functions

denoted by the vector valued function F (x0) that express c0, g0, h0, i0, k0 , and

s0 as functions of the vector x0 . Then dynamic programming tells us that the

optimal values of ct, gt, ht, it, kt and st for the original problem are given by

F (xt). So if we could somehow discover the function V (·), we would be able

to solve the social planning problem simply by solving the two period problem

(4.3.1) – (4.3.3).

6 See Stokey, Lucas, and Prescott [1989] and Sargent [1987b, chapter 1] for background on

dynamic programming and some of its uses in macroeconomics.
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We need a way to compute the value function V . Dynamic programming

calculates V by exploiting the fact that the objective (4.3.1) evaluated at the

optimal policy functions is given by V (x0). This means that the value function

is the same at time zero as it is at time one, and that V solves a fixed-point

problem that is formulated as follows. First, solve the two-period optimization

problem (4.3.1) – (4.3.3) for a given value function V , then compute the time

zero value function T (V ). The optimization problem thus induces an operator

mapping a value function V into a new value function T (V ). The optimal value

function V solves the functional equation V = T (V ), known as the Bellman

equation.

One way to compute V is to iterate on the operator T . Let T j denote

the operator T applied j times. Then the sequence {T j(0) : j = 1, 2, . . .} of

functions converges to V (under some assumptions about our matrices to be

described in chapter 9), where 0 is interpreted as a function that is zero over

its entire domain. This method works under quite general circumstances.7

There is a special structure to the social planning problem. If we let V be

a quadratic function of the form x′Px + ρ , then T (V ) is a quadratic function

x′T1(P )x+T2(P, ρ). The optimal decision rule depends on P but is independent

of the scalar ρ . The optimal value of the matrix P can be calculated by iterating

on the T1 transformation. That is, P can be computed as the limit point of

the sequence {T j1 (0) : j = 1, 2, . . .} where 0 now denotes a matrix with entries

that are all zero. However, iteration on the operator T1 is computationally

inefficient. There exists a doubling algorithm that speeds up convergence by

computing only members of the subsequence {T 2j

1 (0) : j = 1, 2, . . .} . This and

other algorithms are described in Chapter 9.

The time-invariant character of the social planning problem makes the op-

timal policy functions or decision rules time invariant. The time t state vector

is x′t ≡ (h′t−1, k
′
t−1, z

′
t). The time t decision rules depend on xt . From P , it is

straightforward to deduce these rules by solving the two-period problem (4.3.1)

7 This method works whenever technical conditions on the social planning problem are

satisfied that make it redundant to impose the side conditions (2.24). However, for problems

in which those technical conditions aren’t satisfied, it is necessary to start the iterations on T

from an initial value function of the form x′W1x+W2 where W1 is a negative semidefinite

matrix with particular eigenvalues less than zero. Pages (BLANK) describe a problem in

which it will not work to initiate the iterations on T from an identically zero value function.
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– (4.3.3). Since this problem has a quadratic objective function and linear con-

straints, the contingency plans are all linear in the state vector xt . We denote

these rules ct = Scxt, gt = Sgxt, ht = Shxt, it = Sixt, kt = Skxt, st = Ssxt .

Similarly, the law of motion for the state vector is linear:

xt+1 = Aoxt + Cwt+1

where

Ao ≡
[

Ao11 Ao12
0 A22

]

, C ≡
[

0

C2

]

. (4.3.4)

The partitioning of the Ao and C matrices is according to the endogenous state

vector (h′t−1, k
′
t−1)

′ and the exogenous state vector zt . The zero restriction on

the (2,1) partition of Ao reflects the fact that the exogenous state vector at

time t + 1 does not depend on the endogenous state vector at time t . The

zero restriction on the first rows in the partition of C reflects the fact that the

endogenous state vector at time t + 1 is predetermined (i.e., depends only on

time t information). The contingency plans for ht and kt are embedded in

the part of (4.3.4) that determines the endogenous state vector [h′t k
′
t]
′ as a

function of xt . In particular,

[

Sh

Sk

]

= [Ao11 Ao12 ] . (4.3.5)

Notice that the decision rules are recursive in the sense that the time t decision

depends on the state vector at time t , which in turn depends on the state vector

at time t − 1. It would be possible to eliminate this dependence via recursive

substitutions and to deduce a time-varying representation of the state-contingent

decision at time t on current and past values of the noise vector wt and the

initial condition x0 , as in equation (2.5).

Recall that the eigenvalues of Ao determine the growth of the state vector

{xt} . Since Ao is block triangular, the set of eigenvalues of Ao is the union

of the set of eigenvalues of Ao11 and the set of eigenvalues of A22 . We refer

to the first set of eigenvalues as the endogenous eigenvalues because Ao11 is

determined by the solution to the social planning problem. These eigenvalues

must have absolute values strictly less than 1/
√
β to satisfy the requirement that

the elements of {xt} be in L2
0 . We refer to the second set of eigenvalues as the

set of exogenous eigenvalues because the matrix A22 is specified exogenously.
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By assumption, the eigenvalues of A22 have absolute values that are less than

or equal to one.

4.4. Lagrange multipliers as gradients of value function

Associated with the solution of the social planning problem is the quadratic

value function V (x0) = x′0Px0 + ρ . The function V (x0) gives the maximal

value that the social planner can attain when he starts from initial state x0 .

In this section, we show how the Lagrange multipliers are related to the

value function. We attach Lagrange multipliers to each of the constraints, and

formulate the Lagrangian associated with iterating once on Bellman’s equation.

The first-order conditions associated with the saddle point of this Lagrangian

restrict the multipliers in terms of the value function. The multipliers become

linear functions of the state xt . Consider the two-period optimization problem

that is the time t counterpart to that described by (4.3.1) – (4.3.3).

Form the Lagrangian:

L = −(1/2)[(st − bt) · (st − bt) + gt · gt] + βE[V (xt+1) | Jt]
−Md′

t · (Φcct + Φggt + Φiit − Γkt−1 − dt)

−Mk′
t · (kt − ∆kkt−1 − Θkit)

−Mh′
t · (ht − ∆hht−1 − Θhct)

−Ms′
t · (st − Λht−1 − Πct).

(4.4.1)

To obtain the first order conditions for the Lagrangian (4.4.1), recall that

V (xt+1) = x′t+1Pxt+1+ρ. Notice that ∂
∂ht

E(x′t+1Pxt+1+ρ) | It = ∂xt+1

∂ht

∂
∂xt+1

E(x′t+1Pxt+1+

ρ) | Jt = [I 0 0]E(2Pxt+1) | It = 2[I 0 0]PAoxt. Here the matrix [I 0 0] satisfies

ht = [I 0 0]xt+1 . Similarly ∂
∂kt

E(x′t+1Pxt+1 + ρ) | It = 2[0 I 0]PAoxt, where

kt = [0 I 0]xt+1 . Differentiating (4.4.1) with respect to ct, gt , ht, it , kt , and st
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and using the above expressions for ∂
∂ht

and ∂
∂kt

yields

−Φ′
cMd

t + Θ′
hMh

t + Π′Ms
t = 0,

− gt − Φ′
gMd

t = 0,

−Mh
t + 2β[I 0 0]PAoxt = 0,

− Φ′
iMd

t + Θ′
kMk

t = 0,

−Mk
t + 2β[0 I 0]PAoxt = 0,

− st + bt −Ms
t = 0.

(4.4.2)

Solving the third and fifth equations of (4.4.2) for Mk
t and Mh

t gives

Mk
t = Mkxt and Mh

t = Mhxt where

Mk = 2β[0 I 0]PAo

Mh = 2β[I 0 0]PAo.

(4.4.3)

In comparing (4.4.3) to (4.2.7) and (4.2.10), we see that the derivatives of

E[V (xt+1) | Jt] with respect to the endogenous state vectors ht and kt give

expressions in terms of xt for the conditional expectations of the infinite sums

that appear in (4.2.7) and (4.2.10). Solving the sixth equation (4.4.2) for Ms
t

yields

Ms
t = Msxt where Ms = (Sb − Ss) and Sb = [0 0 Ub]. (4.4.4)

Solving the first two equations of (4.4.2) for Md
t results in

Md
t = Mdxt where Md =

[

Φ′
c

Φ′
g

]−1 [
Θ′
hMh + Π′Ms

−Sg

]

. (4.4.5)

Finally, the shadow price vectors for consumption and investment are given by

Mc
t = Mcxt where Mc = Θ′

hMh + Π′Ms (4.4.6)

Mi
t = Mixt where Mi = Θ′

kMk. (4.4.7)

Formulas (4.4.3) – (4.4.7) express the Lagrange multipliers for the social plan-

ning problem in terms of the optimal value function associated with that prob-

lem.
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4.5. Planning problem as linear regulator

Our social planning problem can be cast as an optimal linear regulator problem.

A discounted linear regulator problem has the form:

max
{ut}

−E
∞
∑

t=0

βt[x′tRxt + u′tQut + 2u′tWxt], 0 < β < 1,

subject to

xt+1 = Axt +But + Cwt+1, t ≥ 0

where {wt+1} is a martingale difference sequence adapted to its own history

and x0 , xt is a vector of state variables, and ut is a vector of control variables;

the matrices R,Q , and W are conformable with the objects they multiply. The

maximization is subject to the requirement that ut be chosen to be a function

of information known at t , namely {xt, xt−1, . . . , x0, ut−1, . . . , u0} .

To show how our social planning problem maps into the optimal linear regu-

lator problem, we must tell how to choose the objects [xt, ut , wt+1 , R,Q,W,A,B,C]

in the optimal regulator problem. We choose these objects as follows:

xt =





ht−1

kt−1

zt



 , ut = it

and wt is the martingale difference sequence in (2.2);

A =





∆h ΘhUc[Φc Φg]
−1Γ ΘhUc[Φc Φg]

−1Ud

0 ∆k 0

0 0 A22





B =





−ΘhUc[Φc Φg]
−1Φi

Θk

0



 , C =





0

0

C2





[

xt

ut

]′
S

[

xt

ut

]

=

[

xt

ut

]′ [

R W ′

W Q

] [

xt

ut

]

where S = (G′G+H ′H)/2 and

H = [Λ
... ΠUc[Φc Φg]

−1Γ
... ΠUc[Φc Φg]

−1Ud − Ub
... − ΠUc[Φc Φg]

−1Φi]



70 Optimal Resource Allocation

G = Ug[Φc Φg]
−1[0

... Γ
... Ud

... − Φi].

Here, Uc and Ug are selector matrices to be defined in Appendix A. In Ap-

pendix A, we show show constructively that these choices work to map the

social planning problem into the linear regulator.

The Bellman equation for the linear regulator is

V (xt) = max
ut

{−(x′tRxt + u′tQut + 2u′tWxt) + βEtV (xt+1)} (4.5.1)

where the maximization is subject to

xt+1 = Axt +But + Cwt+1.

The value function V (x) is quadratic: V (xt) = −x′tPxt − ρ, where the matrix

P and the scalar ρ satisfy the equations

P = R+ βA′PA− (βA′PB +W ′)(Q+ βB′PB)−1(βB′PA+W ) (4.5.2)

ρ = β(1 − β)−1trace(PCC ′). (4.5.3)

The solutions of (4.5.1) can be computed by iterating on the T mapping defined

above.8 Chapter 9 describes faster methods of solving these equations.

The optimal control law is given by

ut = −Fxt (4.5.4)

where

F = (Q+ βB′PB)−1(βB′PA+W ). (4.5.5)

Substituting (4.5.4) into (4.5.1) gives the optimal closed loop system

xt+1 = (A−BF )xt + Cwt+1 (4.5.6)

which we represent as

xt+1 = Aoxt + Cwt+1 (4.5.7)

where Ao = A−BF .

8 The MATLAB program double.m implements this algorithm.
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We can use the solution of the linear regulator problem to represent the

solution of the social planning problem in a useful way. In particular, where

ht = Shxt dt = Sdxt

kt = Skxt ct = Scxt
kt−1 = Sk1xt gt = Sgxt

it = Sixt st = Ssxt

bt = Sbxt

we have
[

Sh

Sk

]

= [Ao11 Ao12 ]

Sk1 = [0 I 0]

Si = −F
Sd = [0 0 Ud]

Sb = [0 0 Ub]

Sc = Uc[Φc Φg]
−1{−ΦiSi + ΓSk1 + Sd}

Sg = Ug[Φc Φg]
−1{−ΦiSi + ΓSk1 + Sd}

Ss = Λ[I 0 0] + ΠSc

Here

[

Ao11 Ao12
0 A22

]

= A−BF .

We also have a convenient set of formulas for the Lagrange multipliers

associated with the social planning problem. Where

Mk
t = Mkxt Md

t = Mdxt

Mh
t = Mhxt Mc

t = Mcxt
Ms

t = Msxt Mi
t = Mixt

we have
Mk = 2β[0 I 0]PAo

Mh = 2β[I 0 0]PAo

Ms = (Sb − Ss)

Md =

[

Φ′
c

Φ′
g

]−1 [
Θ′
hMh + Π′Ms

−Sg

]

Mc = Θ′
hMh + Π′Ms

Mi = Θ′
kMk.
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Here the partitions [0 I 0] and [I 0 0] are conformable with the partition

[h′t−1, k
′
t−1, zt]

′ of xt .

4.6. Solutions for five economies

We now show by example how solutions of social planning problems for our

models can be computed by using MATLAB programs. Tables 1 and 2 describe

how we have translated the symbols in the model (many of them Greek) into

symbols to be manipulated by our programs. The translations are mnemonic, so

that it ought to be easy to keep in mind the connections between the expressions

in our MATLAB programs and the matrices in our models. We have prepared

a battery of programs, to be used in sequence, that compute the objects that

define and characterize the solution of the planning problem for a member of

our class of models. To use these programs, we first have to feed in the matrices

defined in Table 1, using the notation employed in Table 1. We have prepared a

number of .m files that input these parameters for various particular economies.

These files are called clex*.m,where the * is replaced by a particular integer

to denote a particular economy. The economies corresponding to particular

clex*.m files are listed in the MATLAB manual which we have included as

chapter 12 of this book. The clex*.m files are MATLAB script files (i.e., they

are not functions). To input the paramters of, say, of a version of Hall’s economy

that we have stored in clex11.m, the user just types clex11.

Table 1

Correspondence Between Symbols in Model

and Symbols in MATLAB programs



Solutions for five economies 73

Symbol in Symbol in

Model Computer Program

A22 a22

C2 c2

Ub ub

Ud ud

Φc phic

Φg phig

Φi phii

Γ gamma

∆k deltak

Θk thetak

∆h deltah

Θh thetah

Λ lambda

Π pih

β beta

Table 2

Correspondence Between Symbols in Solution of the

Planning Problem and Symbols in MATLAB programs
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Symbol in Symbol in

Model Computer Program

Ao ao

C c

Sc sc

Sg sg

Ss ss

Sk sk

Si si

Sh sh

Sb sb

Sd sd

Mc mc

Mg mg

Ms ms

Mk mk

Mi mi

Mh mh

The MATLAB programs perform the following tasks:

a. The program solvea.m accepts as inputs a collection of matrices that

specify a particular economy. It then computes the solution of the

planning problem, and for future use creates and stores the matrices

listed in table 2.

b. The program steadst.m computes the nonstochastic steady state, or

equivalently the unconditional mean for the asymptotic stationary dis-

tribution, of the state vector, provided that this object is well defined.

c. The program aarma.m computes an ARMA representation for the re-

sponse of a specified list of variables to one of the innovations in the

model.

d. The program aimpulse.m computes the impulse response function of

a specified list of variables to one of the innovations in the model.

e. The program asimul.m computes a random or nonrandom simulation

of a specified list of variables.



Solutions for five economies 75

f. The program asseta.m computes equilibrium prices for some particu-

lar assets to be specified. (The use of this program will be explained

in chapter 5.)

The program solvea.m makes use of the following two programs in order to

solve the social planning problem efficiently.

g. The program doubleo.m solves a matrix Riccati equation swiftly via a

“doubling algorithm.”

h. The program double2j.m uses a doubling algorithm to compute variance-

like terms that can be represented as particular infinite series of some

matrix products.

The user can find out how to use these and all other programs by using the

‘help’ facility in MATLAB. Thus, to learn how to run the program solvea.m,

the user just types help solvea. In addition, we have included as an appendix

to this book a MATLAB manual of all the programs associated with our models.

The purpose of this section is to illustrate how easy it is to use these pro-

grams to analyze our models, and how rapidly things can be learned about the

structures of our models by representing their solutions in the ways that our

programs facilitate. In the spirit of learning by doing, we analyze five related

models that can generate a range of behavior for time series of quantities (and

also of the equilibrium prices to be studied in chapter 5).

We study a class of models that we form by combining technologies 4

(growth) and 2 (costs of adjustment) with preference specification 3 (habit per-

sistence). By setting the parameters at different particular values, we are able

to generate versions of several models that have been studied in the literature.

Each of these models is specified by defining preference and technology matrices

of the same dimension. To create a new model of this class, we simply reset

some parameter values, while leaving the dimensions of the matrices that define

the economy unaltered.

Our models are generated by the following specification for preferences,

technology, and information.
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4.6.1. Preferences

−.5E
∞
∑

t=0

βt[(st − bt)
2 + ℓ2t ]|J0

st = λht−1 + πct

ht = δh ht−1 + θhct

bt = Ubzt

4.6.2. Technology

ct + it = γ1kt−1 + d1t

kt = δk kt−1 + it

gt = φ1it, φ1 > 0
[

d1t

0

]

= Udzt

4.6.3. Information

zt+1 =





1 0 0

0 .8 0

0 0 .5



 zt +





0 0

1 0

0 1



wt+1

Ub = [ 30 0 0 ]

Ud =

[

5 1 0

0 0 0

]

x0 = [ 5 150 1 0 0 ]
′

Notice that the information process and the initial condition are specified

so that the constant is the third state variable. Notice that we have set the bt

process equal to a constant value of 30. There is no random component of the

preference shock process. Notice that there is a single nontrivial endowment

shock, the second component of dt having been set to zero via the specification

of the matrix Ud . The first component of dt has been specified to follow a first

order autoregressive process with positive mean. The autoregressive parameter

for the endowment process has been set at .8. Notice that the third component of
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the zt vector is a first order autoregressive process with coefficient .5. However,

this component of the zt vector impinges neither on bt nor on dt , given the way

that we have specified Ub and Ud . We include the third component of the zt
process in case the reader would like to edit one our files, say, to add a random

component to the preference shock bt .

These specifications of preferences and technology are rich enough to en-

compass versions of several models that have been popular in the recent macroe-

conomic literature. The preference specification can accommodate preferences

that are quadratic in consumption, as used by Hall [1978]; preferences incor-

porating habit persistence, as used recently by Becker and Murphy [1988]; and

preferences for a durable consumption good, as used by Mankiw [1982]. The

technology specification is a version of the one-good ‘growth’ technology of chap-

ter 2, modified to include costs of adjusting capital.9 We shall initially set the

parameters of the technology to satisfy the necessary condition for consumption

to be a random walk in Hall’s model, namely, the condition β(γ1 + δk) = 1.

This is also the condition for the ‘growth condition’ of Jones and Manuelli just

to be satisfied. For all of the specifications, we set Ub so that bt = 30 for all t .

By setting the parameter values of this general model to particular values,

we can capture the following models.

4.6.4. Brock-Mirman model

Set the preference parameters as λ = 0, π = 1, δh and θh arbitrarily. This

makes preferences take the form

−.5E
∞
∑

t=0

βt[(ct − bt)
2 + ℓ2t ]|J0.

Set the technology parameters so that γ1 > 0, φ1 > 0 but φ1 ≈ 0, (γ1+δk)β = 1.

9 The parameters for our first version of Hall’s economy are in clex11.m; those for our

second version of Hall’s economy are in clex12.m; those for our third version of Hall’s economy

are in clex13.m; those for the Jones-Manuelli model are in clex10.m; those for the model with

durable consumption goods are in clex15.m; and those for Lucas’s economy are in clex14.m.
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4.6.5. A growth economy fueled by habit persistence

Set the technology parameters as in Hall’s model, but set the preference

parameters to capture preference specification 3 of chapter 2. In particular, set

1 > δh > 0, θh = (1 − δh), π = 1, λ = −1. This makes preferences assume the

form

−.5E
∞
∑

t=0

βt[(ct − bt − λ(1 − δh)

∞
∑

j=0

δjhct−j−1)
2 + ℓ2t ]|J0.

4.6.6. Lucas’s pure exchange economy

Set preference parameters as in Hall’s model, but alter the technology to

render capital unproductive, i.e., set γ1 = 0.

4.6.7. An economy with a durable consumption good

Set the technology as in Hall’s model, but alter preferences to capture the idea

that the consumption good is durable. Set π = 0, λ > 0, 0 < δh < 1, θh = 1.

We now illustrate how the solutions of the social planning problem associ-

ated with several of these models can be computed and analyzed. Generally, we

proceed as follows. First we read in the parameters that represent our economy

by way of the matrices listed in Table 1. We have prepared a set of ‘.m’ files that

read in these matrices for the several economies listed above. Thus, clex11.m,

clex12.m, and clex13.m are files that read in matrices corresponding to Hall’s

model for various different parameter settings. Next, we use solvea.m to com-

pute all of the matrices listed in Table 2, which characterize the solution of the

planning problem. To compute the vector ARMA representation of any subset

of quantities or Lagrange multipliers, we use aarma.m. To compute the impulse

response functions of any set of quantities and/or Lagrange multipliers to com-

ponents of w(t), we use the program aimpulse.m. Finally, we can use simul.m

or asimul.m to simulate the solution of the model.
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4.7. Hall’s model

We begin with the version of Hall’s model which we solved by hand earlier in this

chapter. We begin by setting the parameters in a way that is designed to make

consumption follow a random walk. In particular, we set φ1 = .00001, γ1 =

.1, δk = .95, β = 1/1.05. Notice that β(γ1 + δk) = 1. We set the remaining

parameters to the values described above.

After reading in the matrices by typing clex11, we compute the solution

of the planning problem by typing solvea. Issuing this command causes the

computer to respond as follows:

Calculating, please wait

The matrix ao has been calculated for the law of

motion of the entire state vector. This matrix

satisfies

x(t+1) = ao*x(t) + c*w(t+1).

The endogenous eigenvalues are in the vector endo,

and the exogenous eigenvalues are in the vector exog.

The solution to the model is given by c(t) = sc*x(t),

g(t) = sg*x(t), h(t) = sh*x(t), i(t) = si*x(t)

k(t) = sk*x(t), and s(t) = ss*x(t).

The matrices sc, sg, sh, si, sk, and ss have now been

computed and can be used in other matlab programs.

The matrices sb and sd are constructed so that b(t)

= sb*x(t) and d(t) = sd*x(t) and can be used in other

matlab programs.

The shadow price vectors satisfy Mc(t) = mc*x(t),

Mg(t) = mg*x(t), Mh(t) = mh*x(t), Mi(t) = mi*x(t),

Mk(t) = mk*x(t), Ms(t) = ms*x(t), and Md(t) = md*x(t).

The matrices of these linear combinations can

be used in other matlab programs.

Your equilibrium has been calculated.

You are now ready to experiment with the economy.

This is the end of the output that appears on the screen. The solution

of the planning problem is stored in the matrices listed in table 2. To inspect

these matrices, we just ask MATLAB to show them to us. Thus, issuing the



80 Optimal Resource Allocation

MATLAB command ao results in the output

ao =















0.9000 0.0050 0.5000 0.0200 0.0000

0.0000 1.0000 0.0000 0.8000 0.0000

0.0000 0.0000 1.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.8000 0.0000

0.0000 0.0000 0.0000 0.0000 0.5000















To see the matrix c , we type c and elicit the response

c =















0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

1.0000 0.0000

0.0000 1.0000















Recall that various quantities in the model are determined by premulti-

plying the state xt by matrices Sj which are stored by MATLAB in sj. For

various purposes, it is useful to create a matrix by stacking various sj’s on top of

one another. For example, we can stack the s matrices for consumption, house-

hold durables, services, physical investment, and physical capital by issuing the

MATLAB command G=[sc;sh;ss;si;sk], which evokes the response

G =















0.0000 0.0500 5.0000 0.2000 0.0000

0.9000 0.0050 0.5000 0.0200 0.0000

0.0000 0.0500 5.0000 0.2000 0.0000

0.0000 0.0500 0.0000 0.8000 0.0000

0.0000 1.0000 0.0000 0.8000 0.0000















The first row of G is Sc , and so on. Similarly, various Lagrange multipliers in

the model are determined by premultiplying xt by the matrices Mj , which are

stored by MATLAB in mj. We can create a matrix by stacking various mj’s by

issuing the command H=[mc;ms;mh;mi;mk], which evokes

H =















0.0000 −0.0500 25.0000 −0.2000 0.0000

0.0000 −0.0500 25.0000 −0.2000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 −0.0500 25.0000 −0.2000 0.0000

0.0000 −0.0500 25.0000 −0.2000 0.0000














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The endogenous and exogenous eigenvalues of Ao or ao are stored in endo

and exo, respectively. For the present model, they are given by

endo =

[

.90

1.0

]

exo =





1.00

.80

.50





The exogenous eigenvalue of unity corresponds to the constant (unity) in the

state vector, while the other two exogenous eigenvalues are also directly inherited

from our specification of the A22 matrix. The endogenous eigenvalue of .9 is

inherited from the depreciation factor of .9 which we set for consumer durables,

which is irrelevant in Hall’s model because we set λ = 0. This eigenvalue will

become relevant below in specifications in which λ 6= 0. The eigenvalue of unity

reflects the random walk character of consumption in Hall’s model. Actually,

the second endogenous eigenvalue is not really unity, it is only close to unity. To

see this, we switch to a long format in MATLAB by typing format long and

then we type endo to receive the response

endo =

[

0.90000000000000

0.99999999999048

]

The eigenvalue is not exactly unity because of the very small costs of adjusting

capital that we have imposed.

The fact that the endogenous eigenvalues of this model are below unity

means that it possesses a nonstochastic steady state. To compute the steady

state, we set nnc=3, which tells the computer that the constant term is the third

component of the state vector. Then we type steadst, which causes the steady

state to be computed and stored in zs. To compute the steady state value of

consumption, just type sc*zs, and so on. For the present model, we obtain

zs =















5.0003

0.0061

1.0000

0.0000

0.0000















The steady state value of consumption is given by sc*zs, which is

sc ∗ zs = [ 5.0003 ]
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The steady state value of investment is given by si*zs, which is

si ∗ zs = [ 0.0003 ]

For the present model, these stationary steady state values are of little practical

value because of the near unit endogenous eigenvalue. It will take very many

periods for the effect of the initial conditions to die out in this model, despite

the fact that a steady state for the nonstochastic version of the model does exist.

We can compute an ARMA representation for the impulse response of any

quantities or Lagrange multipliers to a given component of the white noise pro-

cess wt . We can learn how aarma.m works by typing help aarma, which delivers

the response

function[num,den]=aarma(ao,c,sy,ii)

Creates ARMA Representation for linear recursive

equilibrium models. The equilibrium is

x(t+1) = ao*x(t) + c*w(t+1)

and is created by running SOLVEA. A vector of

observables is given by

y(t) = sy*x(t)

where sy picks off the desired variables.

For example, if we want y=[c’,i’], we set

sy=[sc;si]. AARMA creates the representation

den(L)y(t) = num(L)wi(t)

This is an arma representation for the response of

y(t) to the i-th component of w(t).

For example, to compute the ARMA representation for the impulse response

of ct, it to the first component of wt , we type sy=[sc;si] and [num,den]=aarma(ao,

c,sy,1) which gives the response

num =

[

0.0000 0.2000 −0.6400 0.7540 −0.3860 0.0720

0.0000 0.8000 −2.6800 3.3040 −1.7660 0.3420

]

den = [ 1.0000 −4.2000 6.9700 −5.7000 2.2900 −0.3600 ]
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This output is to be interpreted as follows. For i = 0, . . . , 5. Define αi as

the element in the (i+ 1) column of den. For i = 0, . . . 5 define ξi as the 3× 1

matrix that is the i + 2st column of num. Define two polynomials in the lag

operator L by

α(L) =
∑5
i=0 αiL

i

ξ(L) =
∑5
i=0 ξiL

i

Let w1t be the first innovation in the system, which drives the endowment

process. Then we have the representation

α(L)





ct

it

mct



 = ξ(L)w1t

For example, the first row of this representation is

(1 − 4.2L+ 6.97L2 − 5.7L3 + 2.29L4 − .36L5)ct

= (.2 − .64L+ .754L2 − .386L3 + .0072L4)w1t

We can also create the impulse response function for a list of variables in

response to a particular innovation. We shall compute the impulse response

function for the two variables, c, i . To accomplish this, we set sy by typing

sy = [sc;si]. We set ii at 1 (we want the response to the first innovation),

and specify the number of lags we want to perform the calculation for. We

want the impulse response out to forty lags, so we specify ni=40. To compute

the impulse response, we issue the MATLAB function aimpulse, which has the

syntax [z]=aimpulse(ao,c,sy,ii,ni), where sy,ii,ni have the settings just

described.10 The impulse response function is returned in z. In Fig. 4.7.1.a we

plot the impulse response functions for this model in response to the first inno-

vation, which is the innovation in the endowment shock. These impulse response

functions have shapes that are characteristic of a random walk for consumption

and a unit root in capital. For consumption, the impulse response is an open

“box” which attains its maximum height immediately. This impulse response

is characteristic of a random walk consumption process. For investment, the

impulse response has an asymptote.11

10 The MATLAB program aimpulse.m takes the inputs we have created from the solution

of the social planning problem and feeds them into the MATLAB program dimpulse.m, which

computes impulse response functions.
11 In actuality, there is really no asymptote for the impulse response function for either

consumption or investment, because the largest eigenvalue is just a little bit less than unity.
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Fig. 4.7.1.a. Impulse response of consump-

tion and investment to an endowment inno-

vation in a version of Hall’s model.
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Fig. 4.7.1.b. Simulation of consumption

and investment for Hall’s model.

We now generate a random simulation of the model for 150 periods. We

use the non-interactive program asimul.m to generate this simulation. To use

this program we must specify an observer matrix sy that links the called-for

variables to the state. Since we want to simulate the four series c, i, k , and

the shadow price of consumption, we set sy=[sc;si;sk;mc]. We also have

to specify the length of the simulation t1, whether we want a random (k=1) or

nonrandom (k=2) simulation, and the initial state vector x0. We want a random

simulation of length 150 with the initial condition specified above. After setting

these parameters, we execute the simulation by commanding asimul. We obtain

the response:

Your simulated vector is in the vector ‘‘y’’.

We display aspects of this simulation in Fig. 4.7.1.b.The sample paths of

c, k , and the shadow price drift in the fashion that random walks do. For

paths that are long enough, a random simulation of this model will eventually

In fact, the impulse response functions for both consumption and investment are ‘square

summable’, but it would take a very long realization of them for this behavior to become

apparent.
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encounter negative values for capital and consumption. The key to rigging

samples so that capital and consumption for a long time remain positive with

high probability is to select the initial condition for capital large enough and

the elements of c2 small enough.

Figure 4.7.1.b indicates that investment is relatively more variable than

consumption, a pattern that is found in aggregate data for a variety of countries.

The fact that this version of Hall’s model, like the stochastic growth model of

Brock and Mirman [1972], so easily delivers this pattern is an important feature

that has attracted adherents to this and other versions of ‘real business cycle’

theories.

4.8. Higher Adjustment Costs

We now turn to a second model which is created by making one modification

to the economy we have just studied. The one change we make is to raise the

costs associated with adjusting capital. We raise the absolute value of the cost

parameter to φ1 = .2. All other parameters remain as in the previous economy.

We computed the solution of the social planning problem using solvea.m.

The endogenous eigenvalues were computed to be:

endo =

[

0.9000

0.9966

]

Notice that relative to the previous economy, one endogenous eigenvalue is left

unaltered at .9, while the other endogenous eigenvalue has fallen below unity.

The endogenous eigenvalue of .9 is inherited from the law of accumulation that

we posit for household capital (which in this model is again irrelevant). The

drop below unity of the second endogenous eigenvalue is the result of our having

increased the costs of adjusting capital. The analysis that we performed on pages

BLANK indicates that this is exactly what should occur when adjustment costs

increase.

Figure 4.8.1.a reports impulse response functions for the response of ct and

it and to an innovation in the endowment process. Notice how these no longer

have the tell tale signs of the presence of an endogenous unit eigenvalue. The
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Fig. 4.8.1.a. Impulse response of consump-

tion and investment to an endowment in-

novation in a version of Hall’s model with

higher costs of adjusting capital and no ran-

dom walk in consumption.
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Fig. 4.8.1.b. Simulation of a version of

Hall’s model with higher costs of adjusting

capital and no random walk in consump-

tion.

impulse response for consumption and investment now both appear to be con-

vergent and ‘square summable’. Figure 4.8.1.b shows a random simulation be-

ginning from the same value for x0 used with the earlier version of Hall’s model.

Notice how consumption, while still smoother than income, has increased high

frequency volatility relative to that depicted in figure 4.7.1.a, while the high

frequency volatility of investment has decreased. This pattern is a response

to the higher costs for adjusting capital. Notice also that there seems to be a

downward ‘trend’ in both consumption and investment. This is a consequence

of the decrease in the largest endogenous eigenvalue from being very nearly one

in the earlier economy. The present economy has a nonstochastic steady state

value for capital of .0000, for consumption of 5.00 (which is the mean of the

endowment process), and for investment of .0000, each of which we computed

using steadst.m. These nonstochastic steady state values correspond to the un-

conditional means from the asymptotic stationary distribution of our variables.

Because the largest endogenous eigenvalue for this economy is .9966 rather than
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.9999, the economy is headed toward these mean values much more rapidly than

for our previous economy.

4.9. Altered ‘growth condition’

We generate our next economy by making two alterations in the preceding econ-

omy. First, we raise the adjustment cost parameter from .2 to 1. This will have

the effect of further lowering the endogenous eigenvalue that is not .9, and of

causing the impulse response functions to dampen faster than they did in the

previous economy. Second, we raise the production function parameter from

.1 to .15. This will have the effect of raising the optimal stationary value of

capital to a positive value for the nonstochastic version of the model. Recall

that the optimal stationary value of capital was zero in the previous economy.

The nonstochastic steady state values of consumption, investment, and capital

are 17.5, 6.25, and 125, respectively, for this economy.

The endogenous eigenvalues are

endo =

[

0.9000

0.9524

]

We also created the impulse response function for c and i , which is reported in

figure 4.9.1.a. Notice the much faster rate of damping relative to the impulse

responses displayed for the previous economies.

Figure 4.9.1.b displays a random simulation of this economy. Notice that

the “transient” behavior displayed by our simulation of the previous economy

is not present here. This is a consequence of our having altered the production

function parameter value to induce a positive optimal stationary value for the

capital stock of 125, and from our having started the simulation at an initial

condition of 125 for the capital stock.
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Fig. 4.9.1.a. Simulation of consumption

and investment in a version of Hall’s model

with higher adjustment costs and the ‘growth

condition’ altered.

4.10. A Jones-Manuelli economy

A notable feature of the models for the previous simulations is that consumption,

investment, and capital generally failed to grow. We now define the matrices and

set parameters with a view toward attaining a version of Jones and Manuelli’s

model of economic growth. We set the parameters of the technology so that

Jones and Manuelli’s “growth condition” is just satisfied.12 Our version of Jones

and Manuelli’s model has the feature that their growth condition is a necessary

but not a sufficient condition for growth to occur. Their growth condition makes

sustained growth feasible in our model. In order for growth to occur, it is also

necessary that it be desirable, a condition that is determined by the preference

parameters λ , δh , and θh . We set these parameters in order to generate growth.

12 The Jones-Manuelli growth condition on the technology in our notation is β(γ+δk) ≡ 1 .

This is also a condition that makes the marginal utility of consumption follow a martingale

in Hall’s model.
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In particular, setting λ equal to minus one turns out to generate a preference

for growth.13

As usual, we compute the equilibrium by using asolve.m. For this model,

the endogenous eigenvalues are

endo =

[

1.0000 + 0.0000i

1.0000− 0.0000i

]

The exogenous eigenvalue of unity is inherited from the law of motion of the

unit vector, which is the third state variable. Notice that there are two unit

endogenous eigenvalues. With some experimentation, the reader can determine

how these two unit endogenous eigenvalues result from specifying the parameters

of technology to obey the growth condition, and the parameters of preferences

(especially λ) to capture a longing for consumption growth.14

Figure 4.10.1.a displays impulse responses of consumption and investment

to an innovation in the endowment process. For both consumption and invest-

ment, the effect of an innovation actually grows indefinitely over time. This is

a product of the second unit endogenous eigenvalue that is inherited from the

preference parameter λ .

Figure 4.10.1.b displays a simulation of consumption and investment for

this economy. The economy grows. Notice that consumption is much smoother

than investment. Notice also that investment typically exceeds consumption. In

order to support the ‘habit’ that fuels growth, the economy has to accumulate

physical capital.15

We invite the reader to experiment with this economy by altering the set-

tings of some parameter values one at a time relative to the parameter settings

that we have made. In particular, we recommend that the following experiments

be tried:

13 The parameter values for this economy are stored in clex10.m
14 One unit endogenous eigenvalue stems from setting β,Γ, and ∆k at the boundary of the

Jones-Manuelli growth condition. The other unit endogenous eigenvalue results from setting

λ = −1 . The presence of very small positive adjustment costs for capital is what prevents

these two endogenous eigenvalues from being exactly unity. The reader can check that they

are not exactly unity by using the format long command in MATLAB.
15 It is a feature of models of addiction based on the type of preference specification used

here, e.g., Becker and Murphy [1988], that ‘addicts’ grow wealthier and wealthier over time as

they follow a consumption plan that allows for enough accumulation to support their growing

addiction.
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Fig. 4.10.1.b. Simulation of consumption

and investment in a Jones-Manuelli econ-

omy.

1. Change the value of λ to −.7, leaving the other parameters unaltered.

Obtain the solution of the planning problem, and inspect the endogenous

eigenvalues. Also compute the impulse response function and simulate the

model in response to the same initial condition that we used above. Does

the economy still grow? Explain.

2. Change the value of β to .94. Recompute the solution of the planning

problem. Does the economy grow? Link your explanation to the Jones-

Manuelli growth condition.

3. Change the value of Γ(1) to .09. Does the economy still grow?
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4.11. Durable consumption goods

For our next example economy, we restore the productivity of capital to a value

of .1 and raise the level of the parameter measuring adjustment costs for capital

to a value of 1. We change the specification of preferences to make the consump-

tion good durable. In particular, we adopt a version of preference specification

2. We implement this by setting λ equal to .1, π equal to zero, and θh equal

to one. We leave δh at the value .9. 16
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Fig. 4.11.1.a. Impulse response of con-

sumption and investment to an endowment

innovation in an economy with a durable

consumption good.
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Fig. 4.11.1.b. Simulation of consumption

and investment in an economy with a durable

consumption good.

Figure 4.11.1.a displays the impulse response functions to an innovation in

the endowment process. The impulse response function for consumption and for

investment are very different than for our first model. In particular, from the

impulse response function, we can see that in choosing consumption, the social

planner ‘smooths’ the endowment shock much less than he does in Hall’s original

model, in which the planner in effect makes consumption an equal-weight moving

average of current and lagged innovations to the endowment process. In the

16 These parameters settings are created by the file clex15.m.
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present model, the planner makes consumption a much shorter, more peaked

moving average of the endowment process. This shows up in the simulation of

consumption and investment, which is reported in figure 4.11.1.b. Notice that

now, in contrast to Hall’s model, it is investment that is much smoother than

consumption. This example thus illustrates how making consumption goods

durable tends to undo the strong consumption smoothing result which Hall

obtained.

4.12. Summary

In this chapter, we have formulated a planning problem, and described how to

compute its solution. We have also described computer programs that solve the

planning problem, and that characterize the solution in a variety of ways.

Associated with the solution of the planning problem are a set of Lagrange

multipliers, which we have shown how to compute in terms of the derivatives

of the value function for the planners dynamic programming problem. In the

next two chapters, we shall show how those Lagrange multipliers are related to

the price system for a competitive equilibrium. We begin by describing how to

represent values.

A. Synthesizing the linear regulator

The social planning problem is to maximize

−.5E
∞
∑

t=0

βt
[

(st − bt) · (st − bt) + gt · gt
]

(4.A.1)

subject to

Φcct + Φggt + Φiit = Γkt−1 + dt (4.A.2)

kt = ∆kkt−1 + Θkit (4.A.3)

ht = ∆hht−1 + Θhct (4.A.4)

st = Λht−1 + Πct (4.A.5)

zt+1 = A22zt + C2wt+1 (4.A.6)
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bt = Ubzt

dt = Udzt
(4.A.7)

We define the state of the system as xt =

[

ht−1

kt−1

zt

]

and the control as ut = it. In

defining the control to be it , we exploit the assumption that [Φc Φg ] is nonsingular.

Solve (4.A.2) for (ct , gt) :

[

ct
gt

]

= [Φc Φg ]
−1{Γkt−1 + Udzt − Φiit}.

Let Uc and Ug be selector matrices that pick off the first nc and the last ng rows, respectively,

of the right side of the above expression, so that the expression can be written

ct = Uc[Φc Φg ]
−1{Γkt−1 + Udzt − Φiit}

gt = Ug [Φc Φg ]
−1{Γkt−1 + Udzt − Φiit}.

(4.A.8)

Substituting (4.A.8) into (4.A.4) and (4.A.5) gives

ht = ∆hht−1 + ΘhUc[Φc Φg ]
−1{Γkt−1 + Udzt − Φiit} (4.A.9)

st = Λht−1 + ΠUc[Φc Φg ]
−1{Γkt−1 + Udzt − Φiit} (4.A.10)

Combining (4.A.3), (4.A.9), and (4.A.6) gives the law of motion for the linear regulator

(

ht
kt
zt+1

)

=

(

∆h ΘhUc[Φc Φg ]−1Γ ΘhUc[Φc Φg ]−1Ud
0 ∆k 0

0 0 A22

)(

ht−1

kt−1

zt

)

+

(−ΘhUc[Φc Φg ]−1Φi
Θk
0

)

it +

(

0

0

C2

)

wt+1

(4.A.11)

or

xt+1 = Axt +But + Cwt+1 (4.A.12)

where the matrices A,B , and C in (4.A.12) equal the corresponding matrices in (4.A.11).

Now use (4.A.10) to compute (st−bt) = Λht−1+ΠUc[Φc Φg ]−1Γkt−1+(ΠUc[Φc Φg ]−1Ud−
Ub)zt − ΠUc[Φc Φg ]−1Φiit. Express this in matrix notation as

(st − bt) = [Λ
.
.
. ΠUc[Φc Φg ]

−1Γ
.
.
. ΠUc[Φc Φg ]

−1Ud − Ub

.

.

. − ΠUc[Φc Φg ]
−1Φi]







ht−1

kt−1

zt
it







(4.A.13)

or

(st − bt) = [Hs
..
. Hc]

[

xt
it

]

(4.A.14)
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where the matrix [Hs
..
. Hc] in (4.A.14) equals the corresponding matrix in (4.A.13).

Next, use (4.A.8) to express gt as

gt = [0
.
.. Ug [Φc Φg ]

−1Γ
.
.. Ug [Φc Φg ]

−1Ud

.

.. − Ug [Φc Φg ]
−1Φi]

′







ht−1

kt−1

zt
it







(4.A.15)

or

gt = [Gs
.
.
. Gc]

[

xt

it

]

(4.A.16)

where the matrix [Gs
.
.. Gc] in (4.A.16) equals the corresponding matrix in (4.A.15).

Define the matrices

R = .5(H′
sHs +G′

sGs), Q = .5(H′
cHc +G′

cGc), W = .5(H′
cHs +G′

cGs). (4.A.17)

Then the current period return function for the social planning problem is

−(x′tRxt + u′tQut + 2u′tWxt). (4.A.18)

In view of (4.A.14), (4.A.16), (4.A.17) and (4.A.18), we can represent the objective

function in the social planning problem as

−E
∞
∑

t=0

βt(x′tRxt + u′tQut + 2u′tWxt), (4.A.19)

which is to be maximized over {ut}∞t=0 subject to

xt+1 = Axt +But + Cwt+1, t ≥ 0, (4.A.20)

x0 given. Thus, we have mapped the social planning problem into a discounted optimal linear

regulator problem.



A Brock-Mirman model 95

B. A Brock-Mirman model

We shall usually use the recursive numerical methods described above to compute a solution of

a social planning problem. These computational methods are quick and easy to use. However,

to deepen our understanding of the structure of the social planning problem and the role

played by various technical assumptions, and also to heighten our appreciation of the ease and

power of those recursive numerical methods, it is useful to solve one problem by hand.

We solve a social planning problem for a model with one consumption good and one

capital good. We include costs of adjusting the capital stock, but permit them to be zero as

a special case. When these costs of adjustment are zero (i.e., when the parameter φ in the

model is set to zero), the model becomes a linear - quadratic, equilibrium version of Hall’s

consumption model. To recover Hall’s solution of the model when φ = 0, it is necessary to

impose a side condition in the form of a version of our restriction (2.24) that forces the capital

stock sequence {kt} to belong to L2
0 . The example is a useful laboratory for illustrating the

relationships among the presence of costs to control (φ > 0) , the transversality condition, and

the side condition that the solution lie in L2
0 . After we work out the answer by hand, we can

solve the problem by using the MATLAB program solvea.m .

The social planning problem comes from combining versions of our preference specifi-

cation number 1 and our technology specification number 4: choose a contingency plan for

{ct, kt}∞t=0 to maximize:

−E0

∞
∑

t=0

βt[(ct − bt)
2 + ℓ2t ] , 0 < β < 1 (4.B.1)

subject to

ct + it = γkt−1 + d1t , γ > 0 (4.B.2)

φit = gt , φ ≥ 0 (4.B.3)

kt = δkt−1 + it , 0 < δ < 1 (4.B.4)

g2t = ℓ2t (4.B.5)

k−1 given (4.B.6)

The stochastic processes bt and d1t are given by bt = Ubzt and d1t = Ud1zt , where zt
obeys a version of (1.1). We assume that {d1t} and {bt} each belong to L2

0 , and do not

impose that {kt} belongs to L2
0 .

We begin by forming the Lagrangian

J = −E0

∞
∑

t=0

βt{1

2
[(ct − bt)

2 + ℓ2t ] − λ1t[γkt−1 + d1t − ct − it]

− λ2t[gt − φit]

− λ3t[δkt−1 + it − kt] − λ4t[
1

2
(ℓ2t − g2t )]}

(4.B.7)

Here {λ1t, λ2t, λ3t, λ4t}∞t=0 is a 4-tuple of stochastic Lagrange multipliers. We obtain the

first order necessary conditions for a saddle point with respect to {ct, it, kt, ℓt, gt , λ1t, λ2t ,
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λ3t , λ4t}∞t=0 , and display the transversality condition for capital. First order conditions with

respect to ct, it, kt, lt , and gt are:

ct : −(ct − bt) − λ1t = 0, t ≥ 0 (4.B.8)

it : −λ1t − φλ2t + λ3t = 0, t ≥ 0 (4.B.9)

kt : γβEtλ1t+1 + βδEtλ3t+1 − λ3t = 0, t ≥ (4.B.10)

ℓt : −ℓt + λ4tℓt = 0, t ≥ 0 (4.B.11)

gt : λ2t − λ4tgt = 0, t ≥ 0 (4.B.12)

In addition, we have the transversality condition

lim
t→∞

E0β
tktλ3t = 0. (4.B.13)

Equation (4.B.10) can be solved forward to yield

λ3t = γβ

∞
∑

j=1

(δβ)j−1Etλ1t+j . (4.B.14)

Our strategy is to substitute the above expressions for the multipliers into the first-order

condition with respect to kt to obtain an ‘Euler equation, and to study under what conditions,

if any, this equation implies that the marginal utility of consumption is a martingale. Solving

the first order conditions for the multipliers, we obtain

λ1t = bt − ct (4.B.15)

λ2t = gt (4.B.16)

λ3t = φgt + (bt − ct) (4.B.17)

λ4t = 1 (4.B.18)

Substituting (4.B.17) into (4.B.10) gives the “Euler equation”

γβEt(bt+1 − ct+1) + βδEt(φgt+1 + bt+1 − ct+1)

= φgt + (bt − ct)
(4.B.19)

or
βδEtφgt+1 + β(γ + δ)Et(bt+1 − ct+1)

= φgt + (bt − ct).
(4.B.20)

Under the special condition that φ = 0, this equation becomes

Et(bt+1 − ct+1) = [β(γ + δ)]−1(bt − ct), (4.B.21)
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which states that the shadow price of consumption (λ1t = bt − ct) follows a first-order

autoregressive process. Under the further special condition that β(γ + δ) = 1, the shadow

price of consumption follows a martingale.17 Finally, under the even further special condition

that bt is a martingale, (4.B.21) asserts that consumption is a martingale.

The Euler equation (4.B.21) is satisfied by the consumption plan

ct = bt for t ≥ 0. (4.B.22)

Solving (4.B.2) and (4.B.4) for it under this plan gives

kt = (γ + δ)kt−1 + d1t − bt. (4.B.23)

Note that in the special case that λ1t (and maybe also ct ) is a martingale, (γ + δ) = 1/β ,

so that {kt} given by (4.B.23) is a “process of exponential order 1/β ”. This implies that

kt does not belong to L2
0 . Nevertheless, the transversality condition (4.B.13) is satisfied

because λ3t = φgt + (bt − ct) = 0 along this solution, so that

lim
t→∞

βtλ3tkt = 0

along this solution.

Thus, when φ = 0, it is optimal to consume bliss consumption always and to adjust the

capital stock to support this consumption plan. The difference equation (4.B.23) implies that

kt = ξtk0 +

t−1
∑

j=0

ξj(d1t−j − bt−j)

where ξ ≡ γ + δ . If bt − d1t > α > 0 for some α for all t , then kt will eventually

become negative and, indeed, will eventually fall below any finite negative number. Such a

consumption path is eventually being supported by “borrowing” or by ‘negative capital.’

In the interests of attaining an ‘Euler equation’ for capital, we substitute the following

two implications of the constraints into the Euler equation:

ct = (γ + δ)kt−1 + d1t − kt

gt = φkt − φδkt−1

After rearrangement, this gives the following Euler equation for capital:

ηEt{kt+1 − ψkt + β−1kt−1} = Etzt (4.B.24)

where
η = β[δφ2 + (γ + δ)]

ψ =
βδ2φ2 + β(γ + δ)2 + φ2 + 1

β(δφ2 + (γ + δ))

zt = bt − β(γ + δ)bt+1

− d1t + β(γ + δ)d1t+1

(4.B.25)

17 The condition that β(γ + δ) ≡ 1 plays the role of a “growth condition” in the model of

Jones and Manuelli [1988].
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We will solve the Euler equation (4.B.24) using the “certainty equivalence” methods de-

scribed in Sargent [1987, ch. XIV] and Hansen and Sargent [1980, 1981]. This involves first

solving the deterministic version of (4.B.25), and then replacing “feedforward” terms with

their expectations conditioned on time t information.

We begin by solving the deterministic version of the Euler equation (4.B.24):

η{kt+1 − ψkt + β−1kt−1} = zt (4.B.26)

Write this as

ηL−1{1 − ψL+ β−1L2}kt = zt. (4.B.27)

We seek a factorization of the polynomial in L :

(1 − ψL+ β−1L2) = (1 − λ1L)(1 − λ2L) (4.B.28)

Evidently

ψ = λ1 + λ2

λ1λ2 = β−1.

Thus we have

λ2 =
1

λ1β
(4.B.29)

and

λ1 +
1

λ1β
= ψ. (4.B.30)

Equations (4.B.29) and (4.B.30) imply that λ1 and λ2 = 1
λ1β

are the intersections of the

line of zero slope and height ψ with the curve λ + 1
λβ in figure 4.B.1. Since the function

f(λ) = λ + 1
λβ achieves a minimum of 2/

√

β at the value λ = 1/
√

β , it follows that if a

solution of (4.B.30) exists, it satisfies, without loss of generality,

0 < λ1 <
1
√

β

λ2 >
1
√

β
.

Substituting (4.B.28) into (4.B.27) gives

η[(1 − λ1L)(1 − 1

λ1β
L)]kt+1 = zt. (4.B.31)
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Figure 4.B.1: The function bλ + 1/λ and its intersections with ψ ,

which determine the roots λ of the characteristic polynomial (4.B.28).

We start analyzing the solution of (4.B.31) by returning to the special case in which

φ = 0. In this case, (4.B.25) implies that

ψ = ξ +
1

βξ
, ξ = γ + δ,

η = βξ.

(4.B.32)

It then follows immediately from (4.B.30) that we can take

λ1 =
1

βξ

λ2 = ξ.

(4.B.33)

In the special case that the shadow price of consumption is a martingale, βξ = 1, so that

λ1 = 1 and λ2 = 1
β . The Euler equation thus becomes, in the special case that φ = 0,

βξ{(1 − 1

βξ
L)(1 − ξL)}kt+1 = zt.

But from the constraints to our problem,

(1 − ξL)kt+1 = d1t+1 − ct+1
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Substituting this and the last line of (4.B.25) into the Euler equation gives

βξ(1 − 1

βξ
L)(d1t+1 − ct+1) = (βξ − L)(d1t+1 − bt+1)

or

(βξ − L){(d1t+1 − ct+1} = (βξ − L)(d1t+1 − bt+1),

an equation that is satisfied by setting ct = bt for all t . Thus, our analysis of the Euler

equation for capital in the case that φ = 0 reconfirms our earlier derivation that the optimal

plan involves setting ct = bt and choosing whatever capital path is required to support this.

We begin to study the case when φ > 0 by considering the special case in which φ is

positive but arbitrarily close to zero. In particular, φ can be chosen sufficiently close to zero

that in the Euler equation for capital,

η{(1 − λ1L)(1 − λ2L)}kt+1 = zt,

η is arbitrarily close to βξ, λ1 is arbitrarily close 1
βξ , and λ2 is arbitrarily close to ξ . This

can be verified by using a version of figure 4.B.1.

It is tempting to suppose that since the Euler equation is arbitrarily close to that for the

φ = 0 case, the optimal solution for kt will be close to the solution for kt found in the φ = 0

case, namely,

kt = ξtk0 +

t−1
∑

j=0

ξj(d1t−j − bt−j). (4.B.34)

We now show that this supposition is wrong.

Note that when kt obeys (4.B.34), it = kt − δkt−1 , obeys

it = ξt−1(ξ − δ)k0

+ d1t − bt + (ξ − δ)

t−2
∑

j=0

ξj(d1t+j−1 − bt−j−1).
(4.B.35)

Also, ct = bt ∀t in this case. When it follows (4.B.35), it is a process of exponential order

ξ . It follows that φit is also a process of exponential order ξ when φ > 0 .

Now since ℓt = φit along the optimal path, we have that

∞
∑

i=0

βtℓ2t = φ2
∞
∑

t=0

βti2t . (4.B.36)

The process i2t is of exponential order ξ2t along the solution (4.B.35). The infinite series

(4.B.36) will converge if and only if

β · ξ2 < 1, or ξ <
1
√

β
.
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In the case for which the shadow price of consumption is a martingale, ξ = 1/β > 1√
β

, so

that this condition is violated. In this case, (4.B.36) diverges to +∞ .

This means that when investment follows the path (4.B.35), the objective function

for the social planning problem diverges to −∞ when φ = 0. Since it is possible to find

investment paths that leave the value of the objective function finite, a plan in which the

objective function diverges to −∞ cannot be optimal.

Notice the role that the assumption that φ > 0 plays in the above argument.

An alternative argument can be used to show that the path (4.B.35), or one close to

it, cannot be optimal when φ > 0 and ξ > 1√
β

. This argument involves checking the

transversality condition, which is

lim
t→∞

βtktλ3t = 0.

Computing, we have

lim
t→∞

βtktλ3t

= lim
t→∞

βtkt(φgt + λ1t)

= lim
t→∞

βtkt[φ
2(kt − δkt−1) + (bt − ct)].

= lim
t→∞

βt[φ2(k2t − δktkt−1) + (bt − ct)kt]

For a solution that involves setting bt = ct , this becomes

lim
t→∞

βt[φ2(k2t − δktkt−1)] = 0 (4.B.37)

A necessary and sufficient condition for (4.B.37) to be satisfied is that {kt} be of exponential

order less than 1√
β

. Along a solution like (4.B.34), this requires that ξ < 1√
β

, which is

ruled out in the special case that the shadow price of consumption is a martingale. Arguments

along these lines can be used to establish generally that when φ > 0 , the solutions for it and

for kt are required to be of exponential order less than 1√
β

.

To solve for the optimal plan when φ > 0 , we return to the factored Euler equation

(4.B.31):

η[(1 − λ1L)(1 − 1

λ1β
L)]kt+1 = zt (4.81)

where 0 < λ1 < 1/
√

β . Formally, express (1 − 1
λ1β

L) = − 1
λ1β

L(1− λ1βL
−1) . Substitute

this into (4.B.31) to get

−η
λ1β

[(1 − λ1βL
−1)(1 − λ1L)]kt = zt (4.B.38)

Operating on both sides of (4.B.38) with the stable (forward) inverse of (1 − λ1βL
−1) gives

(1 − λ1L)kt = −λ1β

η

1

(1 − λ1βL
−1)

zt (4.B.39)
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or

kt = λ1kt−1 − λ1β

η

∞
∑

j=0

(λ1β)jzt+j . (4.B.40)

Since λ1 < 1/
√

β, λ1β <
√

β . It follows (in the deterministic case) that the infinite se-

ries on the right converges, {zt} being a sequence of exponential order less then 1/
√

β (or

equivalently, residing in L2
0 ).

When φ > 0 , equation (4.B.40) gives the unique solution of the Euler equation that

satisfies the transversality condition. Because λ1 < 1/
√

β , kt belongs to L2
0 .

4.B.1. Uncertainty

In the case that zt is a random sequence, the solution when φ1 > 0 is given by

kt = λ1kt−1 − λ1β

η

∞
∑

j=0

(λ1β)jEtzt+j (4.B.41)

That this is the solution can be verified by applying the methods of Sargent [1987, chapter

XIV].

Consider applying (4.B.41) in the special case that makes consumption a martingale:

βξ = 1, η = βξ = 1, λ1 = 1, bt = b̄ for all t . In this case (4.B.41) becomes,

kt − kt−1 = −β
∞
∑

j=0

βjEt(d1t+j+1 − d1t+j) (4.B.42)

We can use a summation by parts argument to show that

Et

∞
∑

j=0

βj(d1t+j+1 − d1t+j)

= (β−1 − 1)Et

∞
∑

j=0

βjd1t+j − β−1d1t

(4.B.43)

In particular, note that

∞
∑

j=0

βj(d1t+j+1 − d1t+j)

=

∞
∑

j=1

βj−1d1t+j −
∞
∑

j=0

βjd1t+j

= (β−1 − 1)

∞
∑

j=0

βjd1t+j − β−1d1t.
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Note that from the constraints

ct = (γ + δ)kt−1 − kt + d1t

or

ct =
1

β
kt−1 − kt + d1t (4.B.44)

in the special case that (γ + δ)β = 1, which we are studying. Substituting (4.B.42) and

(4.B.43) into (4.B.44) and rearranging gives

ct =
( 1

β
− 1
)

kt−1 + (1 − β)

∞
∑

j=0

βjEtd1t+j . (4.B.45)

With kt−1 interpreted as “assets” and {d1t} interpreted as “labor income”, representation

(4.B.45) matches the representation of the permanent income theory of consumption that is

associated with a linear quadratic version of Hall’s model.

In this model, φ = 0, so that (4.B.42) and (4.B.45), which emerge from imposing

that {kt} reside in L2
0 , are not optimal for the original problem as stated. The solution

(4.B.45)results from imposing as a side condition on the problem a version of (4.A.10). This

side condition is intended to capture the idea that it is not really feasible to drive capital to

negative infinity as quickly as the (unrestricted) φ = 0 solution would require.

The solution (4.B.45) is well approximated by the solution of the original problem with

φ > 0 but φ very close to zero. Instead of imposing the requirement that {kt}ǫL2
0 as a sort of

“feasibility” condition, setting φ > 0 rigs preferences so that the social planner always prefers

to make {kt} ∈ L2
0 .

4.B.2. Optimal Stationary States

Temporarily assume that bt = b̄ and d1t = d̄ for all t . To solve for the optimal stationary

values of ct and kt (if they exist), we can use equation (4.B.20) and the following constraints:

φit = gt (4.52)

it = kt − δkt−1 (4.53)

ct + it = γkt−1 + d1t (4.51)

Evaluating these at steady state levels ct = c̄ and kt = k̄ for all t gives

c̄ = (γ + δ − 1)k̄ + d̄.

Substituting the constraints into the Euler equation (4.B.20) and evaluating at ct = c̄ and

kt = k̄ gives

φ2(βδ − 1)(1 − δ)k̄ = [1 − β(γ + δ)](b̄− c̄)
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Solving the two preceding equations for c̄ and k̄ gives

k̄ = [φ2(βδ − 1)(1 − δ) + (1 − β(γ + δ))(γ + δ − 1)]−1

(1 − β(γ + δ)) · (b̄− d̄)
(4.B.46)

c̄ =
(γ + δ − 1)(1 − β(γ + δ))

[φ2(βδ − 1)(1 − δ) + (1 − β(γ + δ))(γ + δ − 1)]

(b̄− d̄) + d̄.

(4.B.47)

In the special case that φ = 0, these solutions imply that c̄ = b̄ , so that consumption is at

bliss consumption and the steady state value of the multiplier λ1t is zero. When φ = 0, the

steady state value of k can be taken to be

k̄ =
1

1 − (γ + δ)
[d̄− b̄], (4.B.48)

a solution that makes sense only when (γ + δ) < 1 . Note that the constraints imply that

capital evolves according to

kt = (γ + δ)kt−1 − ct + d1t.

Setting ct = c̄ and d1t = d̄ implies

kt = (γ + δ)kt−1 − c̄+ d̄.

The solution of this equation is

kt = (γ + δ)tk0 + (d̄− c̄)

t−1
∑

j=0

(γ + δ)j .

This solution converges to the solution (4.B.48) for k̄ when c̄ = b̄ and (γ + δ) < 1 .



Chapter 5

The Commodity Space

5.1. Valuation

This chapter describes a concept of value that we shall later use to formulate a

decentralized version of our model in which the decisions of agents are reconciled

in a competitive equilibrium. We describe a commodity space in which both the

quantities and prices will reside. The stochastic Lagrange multipliers of chapter

4 are very closely related to the equilibrium prices that we shall compute, and

live in the same mathematical space with prices.

The social planning problem studied in chapter 4 produces an outcome in

which the process for consumption {ct} is an n -dimensional stochastic process

that belongs to L2
0 . To calculate the value π(c) of a particular consumption

plan c = {ct} from the vantage of time zero, we shall use the representation

π(c) = E

∞
∑

t=0

βtp0
t · ct | J0,

where p0
t belongs to L2

0 . The text of this chapter presents a heuristic justifi-

cation for so representing the value of {ct} . We proceed by reviewing several

examples of commodity spaces and valuation functions. The appendix contains

a more formal treatment.

– 105 –
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5.2. Price systems as linear functionals

We follow Debreu (1954) and express values by using a linear functional π that

maps elements of a linear space L into the real line. The space L is taken as

the commodity space, elements of which are the vectors of commodities to be

evaluated. The functional π assigns values to points in L . It is convenient when

the functional π has an inner-product representation, which is a representation

in which the value π(c) of a commodity point c equals the inner product of c

with a point p in another linear space L̃ . When such a representation exists,

we can write

π(c) =< c | p > for all c in L (5.2.1)

where pε L̃ and < · | · > denotes an inner product. In all of the cases that we

consider, it turns out that L̃ = L , so that c and p reside in the same linear

space. Next we consider several examples of a commodity space L , a valuation

functional π , and an inner product representation for π .

5.3. A one period model under certainty

Suppose that there is one period and no uncertainty. Let there be n consump-

tion goods. Let c be an n× 1 vector of consumption goods. Let the commodity

space L be Rn , the n -dimensional Euclidean space. In this case, the value of

a vector c is given by

π(c) =< c | p >≡
n
∑

i=1

cipi

where < · | · > denotes the inner product, and p is an n -dimensional price

vector that belongs to L = Rn . Note that both c and p belong to the same

linear space L .
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5.4. One period under uncertainty

Suppose there is again one period, but now there is uncertainty about economic

outcomes. Prior to the resolution of uncertainty, the quantity of the ith con-

sumption good is a random variable ci(ω), where ω is the state of the world

to be realized. Let c = c(ω) be an n -dimensional random vector whose ith

component is ci(ω). Let prob(ω ) be the probability density function of ω .

We want to evaluate a bundle of consumption goods prior to the resolution

of uncertainty. Introducing uncertainty serves to increase the dimension of the

commodity space, there being a vector c(ω) for each state of the world ω ∈ Ω,

where Ω is the set of possible states of the world. When there is an infinite

number of states of the world Ω, the commodity space L becomes infinite

dimensional. To evaluate a state-contingent bundle of consumption goods prior

to the resolution of uncertainty requires a well defined notion of “adding up” or

integrating across states of the world.

When the number of states of the world is finite (or countable), it is natural

to follow Arrow and Debreu and to define an n -dimensional vector of state-

contingent prices q(ω), where Ω = [ω1, ω1, . . . , ωN ] is the set of possible states

of the world. The value of the random vector c can then be represented as

π(c) =

N
∑

j=1

c(ωj) · q(ωj) ≡< c | q > . (5.4.1)

Here both c and q are elements of L , the space of n -dimensional random vectors

indexed by the state of the world. The ith component of q(ω), qi(ω), is to be

interpreted as price of one unit of the ith consumption good contingent on the

state of the world being ω .

It is convenient to represent π(c) in the alternative form

π(c) =

N
∑

j=1

c(ωj) · p(ωj) prob (ωj), (5.4.2)

where q(ωj) = p(ωj) prob (ωj). Here c and p are each vectors in L , the space

of n -dimensional random vectors. Notice that (5.4.2) implies

π(c) = Ec · p ≡< c | p > .

Representation (5.4.1) is often used in contexts in which there is a finite or

countable number of states of the world. We find it easier to use representations
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that build upon (5.4.2) because we shall be dealing with environments with an

uncountable number of states of the world.

5.5. An infinite number of periods and uncertainty

We now come to the main case studied in this book. The n -dimensional vector

of consumption goods ct is indexed both by states of the world and by time.

We define an information set Jt as in chapters 2 and 3. Let L be the space of

all n -dimensional stochastic processes {ct : t = 0, 1, . . .} for which ct is in Jt
for all t and for which ∞

∑

t=0

βtE(ct · ct) <∞. (5.5.1)

The constraint that ct be in Jt is imposed because we want to represent the

values only of contingent claims that depend on information available when the

contingency is realized. The inequality restriction in (5.5.1) identifies which

claims might have finite value.

In addition to integrating over states of the world, we also must sum over

points in time. We find it convenient to use the discount factor β in performing

this summation. Hence we use the following inner product:

< c | p >=

∞
∑

t=0

βtE(ct · pt). (5.5.2)

In this case, the price system used to represent the valuation functional is an

n -dimensional stochastic process {pt : t = 0, 1, . . .} in L .
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5.5.1. Conditioning information

So far we have considered valuation functions that map into the real numbers

IR . This approach suffices for representing competitive equilibrium prices for

markets that meet and clear prior to the realization of any information. How-

ever, we also want to reopen markets and to study valuations at later points in

time, conditioned on information available then.

Consider valuation from the vantage point of time τ . Let valuation be

conditioned on the time τ information set Jτ . Let πτ be a time τ valuation

function. We take the domain of πτ to be the space Lτ consisting of all n -

dimensional processes {ct+τ : t = 0, 1 . . .} where ct+τ is in Jτ and

∞
∑

t=0

βtE(ct+τ · ct+τ ) | Jτ <∞ (5.5.3)

with probability one. The range of πτ is Jτ because valuations reflect the

available conditioning information.

There is no longer an inner-product representation for πτ because the range

of πτ is not the real line. Rather, the range is the space of random variables

depending on Jτ . However, we can follow Harrison and Kreps (1979) and

Hansen and Richard (1987) by using a conditional inner-product representation:

πτ (c) =< c | p >τ=
∞
∑

t=0

βtE(ct+τ · pt+τ | Jτ ) (5.5.4)

where {pt+τ : t = 0, 1, . . .} is a price process in L . The value assigned by πτ is

a random variable in L2
τ .
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5.6. Lagrange multipliers

While we have focused on representing valuation in a competitive equilibrium,

much of our discussion applies to using the method of Lagrange multipliers for

solving constrained optimization problems. The vector of Lagrange multipliers

for a vector of constraints indexed by states of the world and calendar time can

be regarded as a stochastic processes {Mt : t = 0, 1, . . .} in a space L . The

contribution to the Lagrangian is given by a corresponding linear functional µ

with an inner product representation

µ(ε) =< ε | M >=

∞
∑

t=0

βtE(εt · Mt) (5.6.1)

where εt is the deviation of the constraint at time t .

5.7. Summary

Our purpose in this chapter has been to lay groundwork necessary to decentralize

the economy described in chapter 3 into one with a collection of price-taking

agents whose decisions are coordinated through markets. The Appendix to this

chapter describes the valuation functions that we use in more mathematical

detail.

A. Appendix

As was indicated above, we model π as a linear functional on a space L . The space

L is assumed to be a linear space, by which we mean that for any two members x1 and x2

in L and any two real numbers c1 and c2 in R , c1x1 + c2x2 are in L . In addition, we

suppose that there is an inner product < · | · > defined on L . This inner product can be

used to define a norm || x ||=< x | x >1/2 and hence a metric. We take L to be complete.

This means that all Cauchy sequences in L converge to an element of L . The commodity

spaces in all of the examples described in the text are complete linear spaces. The restriction

that π be linear requires that π(c1x1 + c2x2) = c1π(x1) + c2π(x2) . According to the Riesz

Representation Theorem, π has an inner product representation whenever π is continuous at

zero.

When conditioning information is introduced, it is convenient to work with a space

LJ that is linear conditioned on J . For the moment, consider LJ to be a collection of
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random variables. Products and sums of random variables are also random variables. For

LJ to be linear conditioned on J , for any two elements x1 and x2 of LJ and any w1

and w2 in J, we require that w1x1 +w2x2 is in LJ . Similarly, πJ is conditionally linear if

πJ (w1x1+w2x2) = w1πJ (x1)+w2πJ (x2) . The rationale for focusing on conditional linearity

is that information in J can be used to construct consumption plans or trading strategies.

Hansen and Richard (1987) obtained a conditional counterpart to the Riesz Representation

Theorem that establishes the existence of a representation πJ (x) = E(x · p | J) for some p in

LJ .

The restriction that LJ be a space of random variables is too limited for our purposes.

Instead, we are interested in spaces of n -dimensional stochastic processes. Given an initial

probability space (Ω, F,Pr) and a sequence {Ft : t = 0, 1, . . .} of subsigma algebras of F ,

we construct a new probability space (Ω+, F+, Pr+) where Ω+ is the Cartesian product

of Ω+ , the nonnegative integers, and the set {1, 2, . . . , n} , and where Pr+ is the product

measure of Pr , a measure that assigns βt(1 − β) to integer t , and 1/n to integer j . The

sigma algebra F+ is generated by sets of the form:

{(w, t, j) : w ∈ ft,j} (5.A.1)

where {ft,j : t = 0, 1, . . . ; , j = 1, 2, . . . , n} is a collection of sets in F such that ft,j is in

Ft for all t and j . An n -dimensional stochastic process defined on the original space can be

viewed as a random variable on the product space. Thus we can apply the preceding analysis

to obtain a conditional inner product representation for πτ described in the text.





Chapter 6

A Competitive Economy

6.1. Introduction

This chapter describes a decentralized version of our economy. We assign own-

ership and decision making to three distinct economic entities, a household and

two kinds of firms. We define a competitive equilibrium. Versions of the two

fundamental theorems of welfare economics are true. We establish these the-

orems by exhibiting the connection between a competitive equilibrium and a

social planning problem. A price system supports the competitive equilibrium,

and implies interest rates and prices for derivative assets.

The representative household can be interpreted as a single individual

drawn from a population that is homogeneous in all respects. Alternatively,

the representative household can be interpreted along lines to be described in

chapter 12, as an artificial or “average” household that emerges from aggregating

over the preferences and endowments of a collection of households. The repre-

sentative household owns the technology shock process dt , and each period sells

to firms the current period’s realization of the shock process. The household

owns the initial stocks h−1 of household capital and k−1 of productive capital,

the latter of which it sells to firms. It sells this initial capital for a value v0 ·k−1 .

The household sells its input ℓt to firms. The household uses its resources to

purchase consumption goods, which add to its stocks of consumer durables and

thereby generate consumption services and utility.

Of the two types of firms, the first type rents capital from firms of type

II, rents labor from the household, and buys the current period’s realization of

the technology shock process dt from the household. A firm of type I produces

new consumption and investment goods, sells the consumption goods to the

household, and sells the investment goods to the firms of type II. A firm of

type II purchases the initial capital stock k−1 and all of the investment goods

produced each period, then rents capital to firms of type I.

We use a formulation of a price system which is mathematically convenient,

as well as economically interpretable. We let the price system be [v0, {p0
t , w

0
t , α

0
t , q

0
t ,
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r0t }∞t=0] , where v0 is a vector that prices the initial capital stock k−1 ; p0
t is an

nc × 1 stochastic process that prices the consumption process ct; w
0
t is a scalar

stochastic process that prices ℓt ; α
0
t is a vector stochastic process that prices the

process {dt}; q0t is an nk×1 vector stochastic process that prices new investment

goods; and r0t is an nk×1 vector stochastic process of capital rental rates. Each

component of [{p0
t , w

0
t , α

0
t , q

0
t , r

0
t }∞t=0] resides in the mathematical space L2

0

defined earlier, namely, L2
0 =

[

{yt}∞t=0: yt is a random variable in Jt for t ≥
0, and E

∑∞
t=0 β

t y2
t | J0 < +∞

]

. That ‘yt is in Jt ’ means that yt can be

expressed as a measurable function of Jt = [wt, x0] , where J0 = [x0] . The

square summability requirement, E
∑∞
t=0 β

ty2
t | J0 < ∞ , imposes a stochastic

version of a requirement that yt not grow too fast in absolute value.

Stochastic processes for both prices and quantities in our economy must

reside in L2
0 . By virtue of a Cauchy-Schwartz inequality, this makes the condi-

tional inner products to be used in the budget constraints and objective functions

below well defined and finite in equilibrium.

This chapter formulates and computes a competitive equilibrium. We pro-

ceed by first describing the problem for each of our three classes of agents in

terms of a Lagrangian. Next we obtain the first order conditions from these

Lagrangians. By “matching up” these first-order conditions to the first order

conditions found in chapter 3 for the social planning problem, we accomplish two

goals. First, we can verify the two fundamental theorems of welfare economics

for our economy. Second, we can describe an efficient algorithm for computing

the equilibrium price system in terms of the matrices Mk, Mh, Ms, Md, Mc ,

and Mi of chapter 3 associated with the multipliers for the social planning

problem.

We first describe the problems faced by each of our three types of agents.
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6.2. The Problems of Households and Firms

6.2.1. Households

The household chooses stochastic processes for {ct, st, ht, ℓt}∞t=0 , each element

of which is in L2
0 , to maximize

− 1

2
E0

∞
∑

t=0

βt
[

(st − bt) · (st − bt) + ℓ2t

]

(6.2.1)

subject to

E

∞
∑

t=0

βt p0
t · ct | J0 = E

∞
∑

t=0

βt (w0
t ℓt + α0

t · dt) | J0 + v0 · k−1 (6.2.2)

st = Λht−1 + Πct (6.2.3)

ht = ∆hht−1 + Θhct, h−1, k−1 given. (6.2.4)

The household and each firm acts as a price taker. The optimal contingency

plan for (ct, st, ht, ℓt) must be “realizable” in the sense that time t decisions

must be contingent only on information available at time t , i.e., it must reside

in L2
0 .

6.2.2. Firms of type I

A firm of type I rents capital and labor, and buys the realization of the

endowment process dt . It uses these inputs to produce consumption goods and

investment goods, which it sells.

The firm of type I chooses stochastic processes for {ct, it, kt, ℓt, gt, dt} , each

element of which is in L2
0 , to maximize

E0

∞
∑

t=0

βt (p0
t · ct + q0t · it − r0t · kt−1 − w0

t ℓt − α0
t · dt) (6.2.5)

subject to

Φc ct + Φg gt + Φi it = Γkt−1 + dt (6.2.6)
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− ℓ2t + gt · gt = 0 (6.2.7)

6.2.3. Firms of type II

A firm of type II is in the business of purchasing investment goods and

renting capital to firms of type I. A firm of type II faces as a price taker the

vector v0 and the stochastic processes {r0t , q0t } . The firm chooses k−1 and

stochastic processes for {kt, it}∞t=0 to maximize

E

∞
∑

t=0

βt(r0t · kt−1 − q0t · it) | J0 − v0 · k−1 (6.2.8)

subject to

kt = ∆kkt−1 + Θkit. (6.2.9)

6.3. Competitive Equilibrium

We define a competitive equilibrium for this economy.

Definition: A competitive equilibrium is a price system [v0, {p0
t , w

0
t , α

0
t , q0t , r

0
t }∞t=0]

and an allocation {ct, it, kt, ht, gt, dt}∞t=0 that satisfy the following conditions:

a. Each component of the price system and the allocation resides in the

space L2
0 .

b. Given the price system and given h−1, k−1 , the stochastic process

{ct, st, ℓt,
ht}∞t=0 solves the consumer’s problem.

c. Given the price system, the stochastic process {ct, it, kt, ℓt, dt, gt} solves

the problem of the firm of type I.

d. Given the price system, the vector k−1 and the stochastic process

{kt, it}∞t=0 solve the problem of the firm of type II.
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6.4. Lagrangians

We now formulate each agent’s problem as a Lagrangian, and obtain the

associated first order conditions.

6.4.1. Households

The household’s Lagrangian is

L = − E0

∞
∑

t=0

βt
{

[

(st − bt) · (st − bt) + ℓ2t
]

/2

+ µw0 [p0
t · ct − w0

t ℓt − α0
t · dt]

+ µs′t [st − Λht−1 − Πct]

+ µh′t [ht − ∆hht−1 − Θhct]

}

+ µw0 v0 · k−1.

Here µw0 is a scalar and {µst , µht } are sequences of vectors of stochastic La-

grange multipliers. The first order conditions with respect to st, ℓt, ct, and ht ,

respectively, are:

st : (st − bt) + µst = 0, t ≥ 0

ℓt : ℓt − w0
t · µw0 = 0, t ≥ 0

ct : µw0 p
0
t − Π′ µst − Θ′

h µ
h
t = 0, t ≥ 0

ht : − β Et Λ′ µst+1 − β Et ∆′
h µ

h
t+1 + µht = 0, t ≥ 0

Solving these equations, we obtain

µst = bt − st, t ≥ 0 (6.4.1)

w0
t = ℓt/µ

w
0 , t ≥ 0 (6.4.2)

µht = Et

∞
∑

τ=1

βτ (∆′
h)
τ−1 Λ′ µst+τ , t ≥ 0 (6.4.3)

µw0 p
0
t = Π′ µst + Θ′

h µ
h
t , t ≥ 0 (6.4.4)
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6.4.2. Firms of type I

The Lagrangian of a type I firm is

LI = E0

∞
∑

t=0

βt
{

[p0
t · ct + q0t · it − r0t · kt−1 − w0

t ℓt − α0
t · dt]

+ Ld′t [Γkt−1 + dt − Φcct − Φggt − Φiit]

+ Lℓ′t [(ℓ2t − gt · gt)/2]

}

.

Here {Ldt , Lℓt} is a vector stochastic process of Lagrange multipliers. The first

order conditions associated with interior solutions for ct, it, kt, ℓt, dt , and gt ,

respectively, are

ct : p0
t − Φ′

cLdt = 0, t ≥ 0 (6.4.5)

it : q0t − Φ′
iLdt = 0, t ≥ 0 (6.4.6)

kt : r0t+1 − Γ′Ldt+1 = 0, t ≥ −1 (6.4.7)

ℓt : − w0
t + Lℓtℓt = 0, t ≥ 0 (6.4.8)

dt : − α0
t + Ldt = 0, t ≥ 0 (6.4.9)

gt : − Φ′
gLdt − gtLℓt = 0, t ≥ 0 (6.4.10)

Solving (6.4.5) and (6.4.10) for Ldt gives

Ldt =

[

Φ′
c

Φ′
g

]−1 [

p0
t

−gtLℓt

]

. (6.4.11)

From (6.4.8), the solution for Lℓt satisfies

Lℓt = w0
t /ℓt. (6.4.12)

Equations (6.4.6), (6.4.7) and (6.4.9) imply

q0t = Φ′
i Ldt (6.4.13)

r0t = Γ′ Ldt (6.4.14)

α0
t = Ldt (6.4.15)
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6.4.3. Firms of type II

The Lagrangian of a type II firm is

LII = E0

∞
∑

t=0

βt
{

(r0t · kt−1 − q0t · it)

+ η′t (∆kkt−1 + Θkit − kt)

}

− v0 · k−1

where {ηt} is a sequence of stochastic Lagrange multipliers. The first order

conditions for interior solutions with respect to kt, it , and k−1 , respectively, are

kt : βEt r
0
t+1 − ηt + βEt ∆

′
k ηt+1 = 0, t ≥ 0 (6.4.16)

it : − q0t + Θ′
k ηt = 0, t ≥ 0 (6.4.17)

k−1 : r00 + ∆′
kη0 − v0 = 0 (6.4.18)

Solving (6.4.16) for ηt gives

ηt = Et

(

∞
∑

j=1

βj ∆
′(j−1)
k r0t+j

)

, t ≥ 0 (6.4.19)

Equation (6.4.17) implies

q0t = Θ′
k ηt, t ≥ 0 (6.4.20)

Equation (6.4.18) implies

v0 = r00 + ∆′
k η0 (6.4.21)
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6.5. Equilibrium Price System

Our task now is to find stochastic processes of prices, quantities, and La-

grange multipliers that satisfy the first-order conditions for each of our three

classes of agents for all time and contingencies. We proceed constructively to

link equilibrium prices to the Lagrange multipliers for the planning problem.

Recall the following equations obeyed by the Lagrange multipliers associ-

ated with the social planning problem:

(4.8) Ms
t = bt − st

(4.9) Mh
t = E

[ ∞
∑

τ=1

βτ (∆′
h)
τ−1Λ′Ms

t+τ | Jt
]

(4.11) Md
t =

[

Φ′
c

Φ′
g

]−1 [

Φ′
hMh

t + Π′Ms
t

−gt

]

(4.19) Mk
t = E

[ ∞
∑

τ=1

βτ (∆′)τ−1 Γ′ Md
t+τ | Jt

]

In chapter 3, we gave formulas for these multipliers along the optimum of the

social planning problem, namely,

(4.21) Mk
t = Mkxt and Mh

t = Mhxt

(4.22) Ms
t = Msxt

(4.23) Md
t = Mdxt.

We also defined shadow prices for consumption and investment:

(4.24) Mc
t = Mcxt, Mc = Θ′

hMh + Π′Ms

(4.25) Mi
t = Mixt, Mi = Θ′

iMk.
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We gave formulas for the matrices Ms,Mk,Mh and Md in terms of the optimal

value function of the social planning problem. The formulas (4.21), (4.22),

(4.23), (4.24), (4.25) for the multipliers are evaluated along the solution xt+1 =

Aoxt + Cwt+1 of the social planning problem.

We can compute the equilibrium price system in terms of the multipliers

from the social planning problem. For the time being let µw0 be a free parameter.

Later we shall indicate how choosing the scalar marginal utility of wealth at time

zero, µw0 , amounts to specifying a numeraire for our price system. We propose

to set

p0
t =

[

Π′Ms
t + Θ′

hMh
t

]

/µw0 = Mc
t/µ

w
0 (6.5.1)

w0
t =| Sgxt | /µw0 (6.5.2)

r0t = Γ′Md
t /µ

w
0 (6.5.3)

q0t = Θ′
kMk

t /µ
w
0 = Mi

t/µ
w
0 (6.5.4)

α0
t = Md

t /µ
w
0 (6.5.5)

v0 = Γ′Md
0/µ

w
0 + ∆′

kMk
0/µ

w
0 . (6.5.6)

We shall verify that with this price system, values can be assigned to the La-

grange multipliers for each of our three classes of agents that cause all of their

first-order necessary conditions to be satisfied at these prices and at the quan-

tities associated with the optimum of the social planning problem.

For the household, we set

µst = Ms
t (6.5.7)

µht = Mh
t (6.5.8)

With these choices of multipliers, equations (6.4.1), (6.4.2), (6.4.3) and (6.4.4)

are evidently satisfied at the proposed equilibrium prices (6.5.1) – (6.5.6) and

at the quantities associated with the optimum of the social planning problem.

For the firm of type I, we set

Ldt = Md
t /µ

w
0 (6.5.9)

Lℓt = 1/µw0 . (6.5.10)

With the settings (6.5.9) for Ldt , (6.5.10) for Lℓt , and the price process (6.5.1),

equation (6.4.11) becomes equivalent with (4.11) from the social planning prob-

lem. Equation (6.5.3) for r0t implies that the firm’s marginal condition (6.4.14)
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is satisfied along the solution of the social planning problem. Similarly, (6.4.20)

implies that (6.4.15) is satisfied. Formula (6.5.4) for q0t together with the fourth

equation of (4.8) (−Φ′
iMd

t +Θ′
kMk

t = 0) implies that (6.4.13) is satisfied along

the solution of the social planning problem. Finally, (6.5.9)–(6.5.10) imply that

(6.4.10) is equivalent with the second equation of (4.8) (−gt − Φ′
gMd

t = 0).

Thus, with settings (6.5.8), (6.5.9), price system (6.5.1)–(6.5.6) implies that

firm I’s first order necessary conditions are satisfied along the quantity path

implied by the social optimum.

For the firm of type II, we set

ηt = Mk
t /µ

w
0 . (6.5.11)

With this setting, (6.5.6) and (3.19) imply that (6.4.19) (and thus (6.4.16)) is

satisfied. Also, (6.4.20) is evidently satisfied as is (6.4.21). Thus, the first order

conditions for firms of type II are all satisfied at price system (6.5.1)–(6.5.6)

along the solution of the social planning problem. We are finished.

In summary, the price system (6.5.1)–(6.5.6) supports the allocation asso-

ciated with the optimum of the social planning problem as a competitive equilib-

rium. The direction of argument can be reversed to establish that a competitive

equilibrium solves the social planning problem. This argument uses a competi-

tive equilibrium allocation and price system to define multiplier processes that

satisfy the first order conditions for the social planning problem.1

The scalar µw0 that appears as a free parameter in (6.5.1)–(6.5.6) is ev-

idently the marginal utility of wealth at time zero. In setting this parameter,

we select a numeraire for our price system. For example, the jth consumption

good at time zero can be selected as the numeraire by setting

µw0 = ējMc
t = ējMcx0

where ēj is a (1×nc) vector consisting of zeros in each location except the j th,

where there is a one. For the j th consumption good at time zero to be a valid

numeraire, we require that ējMcx0 not equal zero. This is imposed in:

Assumption 5.1: The random variable ējMcx0 selected as numeraire differs

from zero with probability one.

1 Since the solution of the social planning problem is unique, so is the competitive equilibrium.
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6.6. Asset Pricing

We can use the main idea behind “arbitrage pricing theory” to motivate

asset pricing formulas. Arbitrage pricing theory extracts solely from the weak

implication of equilibrium that assets must be priced so that budget sets offer

no opportunities for earning sure returns with a zero commitment of resources.

To illustrate this approach, imagine altering the representative household’s

problem (6.2.1) – (6.2.4) by supplying it with one additional opportunity. The

household can go into the securities business on the side by issuing securities that

promise to pay off a stream of the (nc × 1) vector of consumption goods {yt} .

We assume that {yt} ∈ L2
0 . Suppose there is a market in such securities and that

the price at time 0 of one unit of such security is a0 . If the household sells S of

these securities, its revenue at time 0 is Sa0 . To cover itself in all contingencies,

the household must purchase state contingent claims to consumption in the

amount {yt} for each unit of the security issued. The cost of purchasing these

claims to support the sale of S securities is

S · E
∞
∑

t=0

βt p0
t · yt | J0.

With this opportunity opened up to the household, the following term must be

added to the right side of household’s budget constraint (6.2.2):

S(a0 − E

∞
∑

t=0

βt p0
t · yt | J0).

If a0 > E
∑∞
t=0 β

t p0
t · yt | J0 , the household can make the present value of con-

sumption as large as it wants by setting S equal to a suitable positive number,

i.e., by selling the security whose price is a0 . However, for our economy, it is

not feasible for the consumer to achieve any such desired present value of con-

sumption. Therefore, in equilibrium we cannot have a0 > E
∑∞
t=0 β

t p0
t ·yt | J0 .

Similarly, we cannot have a0 < E
∑∞
t=0 β

t p0
t · yt | J0 , because that would

confront the household with the opportunity to make the present value of con-

sumption as large as it wants by buying the security at prices a0 , then selling

the returns yt in the market for state contingent claims. Therefore, we must

have

a0 = E

∞
∑

t=0

βtp0
t · yt | J0. (6.6.1)
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We can use (6.6.1) to derive formulas for various special {yt} processes,

and thereby recover versions of Lucas’s asset pricing model [1978], and theories

of the term structure of interest rates. We derive more explicit formulas for

assets with payoffs of the form

yt = Ua xt (6.6.2)

where Ua is an nc × n matrix. Substituting (6.6.2) and the pricing formula

p0
t = Mcxt/µ

w
0 into (6.6.1) gives

a0 = E

∞
∑

t=0

βt x′t Zaxt | J0 (6.6.3)

where

Za = U ′
aMc/µ

w
0 . (6.6.4)

We shall now show that a0 can be represented as

a0 = x′0 µa x0 + σa (6.6.5)

where

µa =

∞
∑

τ=0

βτ (Ao′)τ ZaA
oτ (6.6.6)

σa =
β

1 − β
trace Za

∞
∑

τ=0

βτ (Ao)τ CC ′(Ao′)τ . (6.6.7)

According to (6.6.5), the asset price a0 turns out to be the sum of a constant

σa , which reflects a “risk premium,” and a quadratic form in the state vector

xt . To understand why σa reflects a risk premium, notice how the parameters

in C influence σa but do not influence µa .

To derive (6.6.5), first express (6.6.3) as2

a0 = E
∞
∑

t=0

βt trace [Zaxtx
′
t] | J0. (6.6.8)

For t ≥ 1, (1.5) implies that

Ext x
′
t | J0 =

t−1
∑

τ=0

(Ao)τ CC ′(Ao′)τ + (Ao)t x0 x
′
0 (Ao′)t. (6.6.9)

2 An alternative way to derive these formulas is described in chapter [ ] (seasonality).
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Substituting (6.6.9) into (6.6.8) and rearranging gives

a0 =

∞
∑

t=1

βt trace
[

Za

t−1
∑

τ=0

(Ao)τ CC ′ (Ao′)τ
]

+ trace Za

∞
∑

t=0

βt (Ao)t x0 x
′
0 (Ao′)t.

(6.6.10)

Exchanging orders of summation in the first term on the right of (6.6.10) gives

∞
∑

t=1

βt trace
[

Za

t−1
∑

τ=0

(Ao)τ CC ′ (Ao′)τ
]

= trace Za

∞
∑

τ=0

∞
∑

t=τ+1

βt (Ao)τ CC ′ (Ao′)τ

=
β

1 − β
trace Za

∞
∑

τ=0

βτ (Ao)τ CC ′ (Ao′)τ

≡ σa

which establishes (6.6.7).

The second term on the right side of (6.6.10) can be transformed (by re-

peatedly using the rule traceAB = traceBA) to

x′0

∞
∑

t=0

βt (Ao′)t Za (Ao)t x0 ≡ x′0 µax0,

which defines the matrix µ given in (6.6.6). This completes our verification of

the asset pricing formulas (6.6.5) – (6.6.7).

To implement (6.6.5) requires the application of numerical methods to cal-

culate the matrices µa and σa that satisfy (6.6.6) and (6.6.7). An efficient

‘doubling algorithm’ for calculating these matrices is described in chapter 8.

As an application of (6.6.3) – (6.6.5), let us compute the value of a title to

one unit of the stream of the j th endowment shock, {djt}∞t=0 . Let djt = ej xt ,

where ej is a selection vector that picks off the appropriate linear combination

of xt . From (6.5.5) we have that the time zero value of the time t shock djt is

djtM
dxt/µ

w
0 = x′t e

′
jM

dxt/µ
w
0 .
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The value of the entire stream is then given by

E
∞
∑

t=0

βt x′t Zaxt | J0

where Za = e′jM
d/µw0 . This matches (6.6.3), so that formulas (6.6.5)–(6.6.7)

are applicable.

6.7. Term Structure of Interest Rates

The value at time zero of a sure claim to one unit of the first consumption

good at time zero is evidently given by

R0
1 = βE[ē1 · p0

1] | J0

or

R0
1 = β ē1 ·McA

o x0/µ
w
0 . (6.7.1)

Here R0
1 is the reciprocal of the gross one-period sure interest rate at time zero.

For longer horizons, we have

R0
j = βj E[ē1 · p0

j ] | J0, j ≥ 1

or

R0
j = βj ē1 ·McA

oj x0/µ
w
0 . (6.7.2)

Here R0
j is the reciprocal of the gross interest factor for a sure claim on the first

consumption good j periods into the future at time zero.
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6.8. Re-opening Markets

The competitive equilibrium prices state– and date–contingent commodities that

are traded at time zero. After time zero, markets are “closed,” with traders

simply executing agreements entered into at time zero. As usual in Arrow-

Debreu models, markets can be opened in subsequent time periods, but are

redundant in the sense that zero trades occur. However, for the purpose of

extracting the time series implications of our model, it is useful to compute the

prices in such re-opened markets.

Suppose that markets re-open at some time t ≥ 1, and that the household

and firms re-evaluate their contingency plans at new prices. The household

now values consumption services from time t forward. Only goods from time t

forward enter the valuations appearing in the budget sets and objective functions

of each of our agents. We use L2
t as the commodity space, defined as

L2
t = [{ys}∞s=t : ys is a random variable in Js for s ≥ t

and E

∞
∑

s=t

βs−t y2
s | Jt < +∞]

Expectations conditioned on Jt replace those conditioned on J0 in the intertem-

poral budget constraint of the household and the cash flow evaluations of the

firms. For convenience, we use the j th consumption good at time t as the

numeraire. For this choice to deliver a valid numeraire, we invoke

Assumption 5.2: The random variable ējM
c xt differs from zero with proba-

bility one.

We set the household’s marginal utility of time t wealth, µwt , equal to

ējM
c xt in order to select the time t , jth consumption good as numeraire.

With these specifications, we can simply replicate the time zero analysis to

obtain equilibrium prices from the vantage point of time t . This yields the

following price system:

pts = Mcxs/[ējMcxt], s ≥ t (6.8.1)

wts =| Sgxs|/[ējMcxt], s ≥ t (6.8.2)

rts = Γ′Mdxs/[ējMcxt], s ≥ t (6.8.3)

qts = Mixs/[ējMcxt], s ≥ t (6.8.4)
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αts = Mdxs/[ējMcxt], s ≥ t (6.8.5)

vt = [Γ′Md + ∆′
kMk]xt/ [ējMcxt] (6.8.6)

Of particular interest are the spot market prices implied by (6.8.1) – (6.8.6),

namely, ptt, w
t
t, r

t
t, q

t
t , α

t
t .

6.8.1. Recursive price system

Prescott and Mehra [1980] and Lucas [1982, JME] extensively utilized recursive

formulas expressed in terms of one period forward state contingent claims prices.

Counterparts to their recursive pricing formulas are easy to express for our

framework. In particular, one-period forward claims on consumption are priced

by the function

ptt+1 = Mc xt+1/ējMcxt.

At time t , claims on consumption j -period forward are priced by

ptt+j = Mcxt+j/ējMcxt.

Evidently, ptt+j can be built up recursively using the equality

ptt+j = pt+1
t+j ēj p

t
t+1

=
Mc xt+j
ējMcxt+1

ēj
Mc xt+1

ējMc xt
.

This is a version of a recursive pricing formula often used in formulations of

recursive competitive equilibria.



Summary of Pricing Formulas 129

6.8.2. Non-Gaussian asset prices

The time t value of a permanent claim to a stream ys = Uaxs, s ≥ t is

given by

at = (x′t µa xt + σa)/(ējMc xt) (6.8.7)

where µa and σa satisfy (6.6.6) and (6.6.7) with Za = U ′
aMc . Notice how

(6.8.7) makes the asset price at a nonlinear function of the state vector xt .

Suppose, for example, that the wt process is Gaussian. This implies that the

equilibrium xt process given by is a multivariate normal process. Even so, the

asset prices determined by (6.8.7) are not normally distributed, being deter-

mined as the ratio of a quadratic form in the Gaussian state vector xt to a

linear form in xt . Thus, the asset prices generated by this “most Gaussian of

economies” are highly nonlinear stochastic processes.

The term structure of interest rates on perfectly safe claims on the first

consumption good j periods ahead is characterized by the gross interest factors

Rtj = βj ē1 ·McA
ojxt/[ējMcxt], j ≥ 1, t ≥ 0 (6.8.8)

which generalizes (6.7.2).

6.9. Summary of Pricing Formulas

For convenience, we now summarize our formulas for the competitive equilibrium

price system. They are:

(6.58) pts = Mcxs/[ējMc xt], s ≥ t

(6.59) wts =| Sgxs | /[ējMc xt], s ≥ t

(6.60) rts = Γ′Mdxs/[ējMc xt], s ≥ t

(6.61) qts = Mixs/[ējMc xt], s ≥ t

(6.62) αts = Mdxs/[ējMc xt], s ≥ t
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(6.63) υt = [Γ′Md + ∆′
kMk]xt/ējMc xt

The asset that entitles the owner to the stream of returns yt = Uaxt is priced

according to

(6.64) at = (x′t µa xt + σa)/[ējMc xt]

where

(6.51) µa =
∞
∑

τ=0

βτ (Ao′)τ ZaA
oτ

(6.52) σa =
β

1 − β
trace Za

∞
∑

τ=0

βτ (Ao)τCC ′ (Ao′)τ

Za = U ′
aMc

The term structure of interest rates is determined by

(6.65) Rtj = βj ē1McA
oj xt/[ējMc xt],

which gives the price at t of a sure claim on the first consumption good j periods

ahead.

6.10. Asset Pricing Example

We3 use the simple pure exchange one good model that is contained in clex14.m

to illustrate our asset pricing formulas. The economy in clex14.m is a linear-

quadratic version of an economy that Lucas (1978) used to develop an equilib-

rium theory of asset prices.

The economy is a member of the special class of structures described in

chapter 3. The economy is described as follows:

3 Note to Sargent. This section was 0 in /mnt2/linquad on the SUN. This file is hsch5in.tex.

The figures are in hsch*.ps. The MATLAB program used to generate this is hschap5.m. A

diary of these runs is in hsch5 in the /linquad directory.
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6.10.1. Preferences

−.5E
∞
∑

t=0

βt[(ct − bt)
2 + ℓ2t ]|J0

st = ct

bt = Ubzt

6.10.2. Technology

ct = d1t

kt = δk kt−1 + it

gt = φ1it, φ1 > 0
[

d1t

0

]

= Udzt

6.10.3. Information

zt+1 =





1 0 0

0 .8 0

0 0 .5



 zt +





0 0

1 0

0 1



wt+1

Ub = [ 30 0 0 ]

Ud =

[

5 1 0

0 0 0

]

x0 = [ 5 150 1 0 0 ]
′

To compute the asset prices in this economy we issue the following MAT-

LAB commands:

clex14

solvea

t1 = 100;

nt = t1;

sy=sc;

asimul

pay=sd(1,:)

asseta
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The program asseta constructs a simulation of length nt of the price and rate

of return of an asset that yields a stream of returns equal to pay ∗xt , where the

user specifies the matrix pay . Here we specified that pay = sd(1, :) , so that we

are pricing a perpetual claim on the endowment process d1t , which is the asset

that Lucas priced in his 1978 paper. If the user desires to price a vector of assets,

he should simply feed in the matrix pay such that pay ∗xt is the payout vector

of those assets. Let nn be the number of rows of pay , i.e., nn is the number

of assets being priced. The program asseta creates a vector y of length nt that

equals the vector [mrs, payoff, asset prices, returns], where mrs is the

one period intertemporal marginal rate of substitution; payoff is the payoff on

the asset(s), which equals pay ∗ xt ; asset prices is the series of asset prices;

and ret is the one period gross realized rate of return on the asset(s). For

j = 1, 2, 5, the program also creates the reciprocals of the j-period ahead gross

rates of return on safe assets, and stores them in the vectors R1, R2, R5.

We have computed asset prices for two versions of this economy. The first

has the parameter settings listed above, while the second alters the autoregres-

sive parameter in the endowment process to be .4 rather than .8. Figures 6.10.1

through 6.10.3 record the results of one hundred period simulations for each of

these two economies. Figure 6.10.1 displays the simulated value of the asset

price for the first economy. Figures 6.10.2 displays the gross rates of return on

the ‘Lucas tree’ and on a sure one-period bond. We computed the correlation

coefficient between these two returns to be -.49. For this economy, the ‘risk

premium’ term in the price of the Lucas tree, namely σa in formula (6.8.7), is

calculated to be -12.80. To give an idea of how the term structure of interest

rates moves in this economy, Figure 6.10.2.b displays the net rates of return on

one period and five period sure bonds. (We computed the net rate of return on

j -periods bonds by taking the log of the gross rate of return and dividing by

j .) Notice the tendency of the term structure to slope upward when rates are

low, and to slope downward when rates are high.

Figures 6.10.3.a and 6.10.3.b record rates of return for the ‘Lucas tree’

and for sure bonds in the economy with the autoregressive parameter for the

endowment process equaling .4. Figure 6.10.3.a shows the gross rates of return

on the ‘Lucas tree’ and on a sure one-period bond. The correlation between these

two was computed to be -.62. From Figure 6.10.3.b, we see that the tendency

for the yield curve to slope upward when rates are low and to slope downward

when rates are high has been accentuated relative to our first economy. For the
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Figure 6.10.1: Price of a ‘stock’ entitling the owner to a

perpetual claim on the dividends of a ‘Lucas tree’ when the

autoregressive parameter for the endowment process is .8.
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Fig. 6.10.2.a. Realized one period gross

rates of return on a Lucas tree (solid

line) and on a sure one period bond (dot-

ted line) when the autoregressive param-

eter for the endowment process is .8.
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Fig. 6.10.2.b. Net rates of return on

a one-period (solid line) and a five pe-

riod (dotted line) when the autoregres-

sive parameter for the endowment pro-

cess is .8.
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second economy, the ‘risk premium’ term σa in the price of the Lucas tree is

calculated to be -5.90.
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Fig. 6.10.3.a. Realized one period gross

rates of return on a Lucas tree (solid

line) and on a sure one period bond (dot-

ted line) when the autoregressive param-

eter for the endowment process is .4.
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Fig. 6.10.2.b. Net rates of return on

a one-period (solid line) and a five pe-

riod (dotted line) when the autoregres-

sive parameter for the endowment pro-

cess is .4.

The pure exchange economy in clex14.m is one of the simplest to which

our asset pricing formulas can be applied. Indeed, for this simple economy, the

pricing formulas can be worked out by hand, as the exercises at the end of this

chapter indicate. In chapter 4, we shall apply these formulas and our computer

programs in much richer contexts in which one can’t get very far ‘by hand’
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6.11. Exercises

1. Consider an economy that consists of technology specification 1 and prefer-

ence specification 1. The social planning problem is simply to maximize

E0 −
∞
∑

t=0

βt {1

2
(ct − bt)

2}

subject to

ct = dt

Assume that bt = b̄ > 0 for all t and that dt = ξ0 + ξ1 dt−1 + εdt , where εdt is

a white noise with mean zero and variance σ2
ε , ξ0 > 0, and | ξ1 |< 1/

√
β . The

endowment process {dt} is produced by “trees”, there being one tree for each

(representative) household. The household owns the “tree” at the beginning of

time (time t = 0).

a. Carefully define a competitive equilibrium for this economy. In your

definition, describe a particular decentralization scheme, being careful

to tell who owns what and who trades with whom.

b. Calculate the time-zero equilibrium price system.

c. Let υ0 be the time zero value in terms of the time zero consumption

good of a title to the entire stream of dividends {dt}∞t=0 . Prove that

υ0 satisfies

υ0 =
[

E0

∞
∑

t=0

βt b̄ dt − E0

∞
∑

t=0

βt d2
t

]

/(b− d0)

d. Compute the gross one period sure rate of interest.

e. Compute the gross two period sure rate of interest.

2. Consider an economy with preference specification 1. The technology is

specified as

ct = dt −Gt

where Gt is government purchases. We assume that Gt = UG zt , and dt =

Ud zt . Assume that bt = b̄ > 0 for all t .

Assume that the government levies state-contingent lump sum taxes τt on

the household at time t , where

τt = τt(w
t, x0)
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where wt = (w1, w2, . . . , wt). Lump sum taxes τt are denominated in units of

the time t consumption good.

a. Formulate the government’s time zero budget constraint.

b. Define a competitive equilibrium for this economy.

c. Compute a time zero equilibrium price system.

d. Define a formula like the one derived under (c) in problem 1 for the

time zero value of a title to the dividends from the tree.

e. Suppose that the lump sum taxes are on trees, not on the household.

Derive a formula for the value of a tree at time zero.

f. Compute the gross interest rate on sure one period loans.

3. Consider an economy defined by the social planning problem: maximize

the utility of the representative household

(1) −
(

1

2

)

E

∞
∑

t=0

βt
[

(ct − b)2 + ℓ2t
]

| J0, 0 < β < 1, b > 0

subject to the technology

(2) ct = dt + φgt , φ > 0

(3) gt = ℓt.

Here dt is an exogenous process describing the flow of dividends from a single

tree (per representative household). The dividend obeys the stochastic process

d0 given , b > d0 > 0

dt = d0 + wt, t ≥ 1

where wt is an independently and identically distributed random process with

Ewt = 0

Ew2
t = σ2

w.

In (1), b is a constant, ct is consumption at t , and ℓt is labor supplied at t ;

E is the mathematical expectation operator, and J0 is information available at
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t = 0, namely, d0 . Equation (2) describes how consumption is related to the

exogenous level of dividends at t and the amount φgt = φℓt produced through

the application of labor.

a. Solve the social planning problem, finding the optimal strategy for

consumption and the labor supply.

Now decentralize the economy as follows. Let households own the stock

of one tree initially. Households sell the tree to a representative firm at time

zero (before d0 has been realized). Households sell their labor to the firm each

period. The firm buys the tree at the beginning of time zero, hires labor, and

sells output to the household.

b. State the maximum problems of the representative household and the

representative firm for the decentralized economy.

c. Find a representation for the time zero Arrow-Debreu price system that

supports the solution of the social planning problem as a competitive

equilibrium. Give formulas for the price of consumption goods and for

the wage of labor.

d. Derive a formula for the time zero price of trees in terms of the param-

eters of preferences, technology, and stochastic process for dividends.

(Get as far you can in deriving a closed form).

e. Give a formula for the gross interest rate on sure one period loans.





Chapter 7

Applications

7.1. Introduction

7.2. Partial Equilibrium Interpretation

The models studied in this book can be reinterpreted as partial equilibrium

models which employ the notion of a representative firm, and which generalize

the preference and technology specifications of Lucas and Prescott (1971). The

idea is that there is a large number of identical firms that produce the same

goods and sell them in competitive markets. Because they are all identical, we

carry along only one of these firms, and let it produce the entire output in the

industry (which is harmless under constant returns to scale). But we have to

be careful in our analysis because this representative firm’s decisions play two

very different roles: as a stand–in for the ‘average’ competitive producer, and as

producer of the entire industry’s output. We make the firm act as a competitor

in solving its optimum problem.

Demand is governed by the system (11.3.14), with p0
t simply being replaced

by pt , namely,

ct = −Π−1Λht−1 + Π−1bt − Π−1Et{Π′ −1 − Π′ −1Θ′
h

[I − (∆′
h − Λ′Π′ −1Θ′

h)βL
−1]−1Λ′Π′−1βL−1}pt

ht = ∆hht−1 + Θhct

(7.2.1)

Here ct is a vector of consumption goods. Through this demand system, the

representative firm’s output decisions influence the evolution of the market price.

However, we want the representative firm to ignore this influence in making its

output decisions.

A representative firm takes as given and beyond its control the stochastic

process {pt}∞t=0 . The firm sells its output ct in a competitive market each

– 139 –
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period. Only spot markets convene at each date t ≥ 0. The firm also faces an

exogenous process of cost disturbances dt .

The firm chooses stochastic processes {ct, gt, it, kt}∞t=0 to maximize

E0

∞
∑

t=0

βt{pt · ct − gt · gt/2}

subject to
Φcct+Φiit + Φggt = Γkt−1 + dt

kt = ∆kkt−1 + Θkit
(7.2.2)

given k−1 . This problem is not well posed until we describe perceived laws of

motion for the processes {pt, dt}∞t=0 that the firm does not control, but which

influence its returns. Specifying the law for the exogenous process {dt} is easy,

because the representative firm’s decisions are assumed not to influence it. The

situation is different with the price process, because the price is influenced by

the output decisions of the representative firm. Despite this influence, we want

the firm to behave competitively, that is, to regard the price process as beyond its

control. We want to specify the firm’s beliefs about the evolution of the price so

that: (a) the firm has ‘rational expectations’, i.e., its beliefs about the evolution

of prices allow it to forecast future prices optimally, given the information that

it has at each moment; and (b) the firm acts competitively and treats the price

process as given and beyond its control.

We assume that the firm takes as given a law of motion for spot prices and

for the information variables that help to predict spot prices. We model this

forecasting problem as follows. The firm observes the state of the market Xt at

t , and believes that the law of motion for the spot price is

pt = mpXt

Xt+1 = apXt + Cwt+1

(7.2.3)

where Xt = [h′t−1,K
′
t−1, z

′
t]
′ , where Kt is the market-wide capital stock, which

the firm takes as given and beyond its control. The firm believes that the cost

shock process evolves according to dt = SdXt . The state for the firm at date t

is

x̃t = [X ′
t, k

′
t−1]

′.

The firm’s problem is a discounted linear regulator problem. Under our as-

sumptions about the technology, the firm’s control can be taken to be it . The
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solution of the firm’s problem is a decision rule for investment of the form

it = −fix̃t. (7.2.4)

This decision rule and equations (7.2.2) then determine [ct, gt, kt] as linear

functions of x̃t . The matrix fi in the above equation is a function of all of the

matrices describing the firm’s constraints, including ap and mp . The firm’s rule

for ct , implied by (7.2.2) and (7.2.4) can be represented as

ct = fcx̃t. (7.2.5)

Equation (7.2.2) implies that the firm’s capital evolves according to

kt = ∆kkt−1 − Θkfix̃t. (7.2.6)

At this point, but not earlier, impose that the ‘representative firm is represen-

tative’ by setting kt ≡ Kt in (7.2.6), use it to deduce the actual law of motion

for Kt , and then use this to fill in the rows corresponding to Kt of the actual

law of motion for Xt :

Xt+1 = aaXt + Cwt+1. (7.2.7)

To get the rows corresonding to ht , use (7.2.5) together with the law of motion

ht = ∆hht−1 + Θhct .

To get a formula for the actual law of motion of the price, use (11.1.1) and

the actual law of motion (7.2.7) for xt = Xt to solve for a consumption process.

Put the consumption process and preference shock into (11.3.1) and solve for

µst . Then solve (11.3.3) forward for µht ; substitute into (11.3.2) to solve for p0
t .

Set pt = p0
t , then express the motion of prices as

pt = maXt. (7.2.8)

The system (7.2.7), (7.2.8) describes the actual law of motion for spot prices

that is induced by the firm’s optimizing behavior and market clearing when the

firm’s perceived law of motion for the spot prices is (7.2.3). The firm’s opti-

mization problem and market clearing thus induce a mapping from a perceived

law of motion (ap,mp) for spot prices to an actual law (aa,ma).

Definition: A rational expectations equilibrium (or a partial equilibrium) is a

fixed point of the mapping from the perceived law of motion for spot prices to

the actual law of motion for spot prices.
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An equivalent definition is:

Definition: A partial equilibrium is a stochastic process {pt, ct, it, gt, kt,Kt, ht}∞t=0 ,

each element of which belongs to L2
0 , such that:

i. Given {pt}∞t=0 , in particular given the law of motion (7.2.3), {ct, it,
gt, kt}∞t=0 solve the firm’s problem.

ii. {pt, ct, ht}∞t=0 satisfy the demand system (7.2.1).

iii. {kt}∞t=0 = {Kt}∞t=0 .

This is a version of Lucas and Prescott’s (1971) rational expectations com-

petitive equilibrium, which they used to study investment under uncertainty

with adjustment costs. The following proposition states the relationship be-

tween a partial equilibrium and our earlier notion of competitive equilibrium:

Proposition: Let {ct, st, it, gt, kt, p0
t , w

0
t , α

0
t , r

0
t , q

0
t }∞t=0, v0 be a competitive equi-

librium. Then {p0
t , ct, it, gt, kt, kt, ht}∞t=0 is a partial equilibrium.

This proposition can be proved directly by verifying that the proposed par-

tial equilibrium satisfies the first order necessary and sufficient conditions for the

firm’s problem in the partial equilibrium, and that the proposed {pt, ct, ht}∞t=0

process satisfies the demand system (11.3.14).

7.2.1. Partial equilibrium investment under uncertainty

Our partial equilibrium structure includes many examples of linear rational ex-

pectations models (e.g., Sargent (1987, chapter XVI), Eichenbaum (1983), and

Hansen and Sargent (1991, Two Difficulties). Here is how we can apply these

ideas to a version of Lucas and Prescott’s (1971) model of investment under

uncertainty. There is one good produced with one factor of production (capital)

via a linear technology. A representative firm maximizes

E

∞
∑

t=0

βt{ptct − g2
t /2},

subject to the technology
ct = γkt−1

kt = δkkt−1 + it

gt = f1it + f2dt,
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where dt is a cost shifter, γ > 0, and f1 > 0 is a cost parameter and f2 = 1.

Demand is governed by

pt = α0 − α1ct + ut,

where ut is a demand shifter with mean zero and α0, α1 are positive parameters.

Assume that ut, dt are uncorrelated first-order autoregressive processes.

Lucas and Prescott computed rational expectations equilibrium quantities

by forming a social planning problem with criterion

E

∞
∑

t=0

βt
{∫ ct

0

(α0 − α1ν + ut)d ν − .5g2
t

}

,

where the integral under the demand curve is ‘consumer surplus.’ Consumer

surplus equals

(α0 + ut)ct −
α1

2
c2t .

To map this model into our framework, set Λ = 0,∆h = 0,Θh = 0,Π2 =

α1, bt = α0

Π + 1
Πut . Notice that with this specification,

(st − bt)
2/2 = (α0 + ut)ct −

α1

2
c2t + b2t/2.

The term in b2t can be ignored because it influences no decisions. With

this specification, our social planning problem is equivalent with Lucas and

Prescott’s. After we have computed the equilibrium quantities by solving the

social planning problem, we can compute the ‘marginal utility price’

pt = Π(bt − st)

= α0 + ut − α1ct,

where we are using α1 = Π2 .
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7.3. Introduction

The remainder of chapter provides more examples of models that conform to our

framework. Most of these examples were originally stated as partial equilibrium

models. The appendix of the chapter describes a scheme for pricing objects that

until now were unpriced because they were sheltered from the market by the

warmth of the household. We use this decentralization when we want to price

some of the household capital stocks.

7.4. A Housing Model

Rosen and Topel (1988) formulated a partial equilibrium model of a housing

market consisting of a linear demand curve relating a stock of housing inversely

to a rental rate; an equilibrium condition relating the price of houses to the

discounted present value of rentals, adjusted for depreciation; and a quadratic

cost curve for producing houses.

7.4.1. Demand

We can capture Rosen and Topel’s specification by sweeping house rentals into

the household sector. See the appendix of this chapter for an account of a

decentralization that supports this interpretation. Rosen and Topel expressed

the demand side of their model in terms of the two equations

Rt = bt + αht

pt = Et

∞
∑

τ=0

(βδh)
τRt+τ

where ht is the stock of housing at time t , Rt is the rental rate for housing,

pt is the price of new houses, and bt is a demand shifter; α < 0 is a demand

parameter, and δh is the depreciation factor for houses. We cast this demand

specification within our class of models by letting the stock of houses ht evolve

according to

ht = δhht−1 + ct, δh ∈ (0, 1),

where ct is the rate of production of new houses. Houses produce services st

according to st = λ̄ht or st = λht−1 +πct, where λ = λ̄δh, π = λ̄ . We can take
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λ̄ρ0
t = Rt as the rental rate on housing at time t , measured in units of time t

consumption (housing).

Demand for housing services is

st = bt − µ0ρ
0
t ,

where the price of new houses pt is related to ρ0
t by ρ0

t = π−1[pt − βδhEtpt+1].

This equation, which is a special case of equation (11.3.7) from chapter 11,

imposes the feature of the present specification that δh − λπ−1θh = 0, is a

version of Rosen and Topel’s equation (12). It can be solved to yield pt =

λ̄Et
∑∞
τ=0(βδh)

τρ0
t , a version of Rosen and Topel’s equation (14). The parame-

ter λ̄ governs the slope of the demand curve for housing, in terms of the rental

rate for housing.

7.4.2. House producers

Rosen and Topel’s representative firm maximizes

E0

∞
∑

t=0

βt[ptct − Ω(ct, ct − ct−1, et)],

where Ω(ct, ct− ct−1, et) is the cost of producing new houses, and {et} is a cost

shifter. The function Ω incorporates costs of adjusting the rate of production

of new houses. The firm takes the stochastic process for pt as given. Costs are

given by

Ω(ct, ct − ct−1, et) = gt · gt

where
g1t = f1ct + f2et

g2t = f3(ct − ct−1),

where et is our cost-shifter. To map this into our specification, we use the

technology
f1ct − g1t = 0kt−1 − f2et

ct − it = 0

f3ct − g2t = f3kt−1

kt = 0kt−1 + it.
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7.5. Cattle Cycles

Rosen, Murphy, and Scheinkman (1994) used a partial equilibrium model

to interpret recurrent cycles in U.S. cattle prices. Their model has a static linear

demand curve interacting with a ‘time-to-grow’ structure for raising cattle. Let

pt be the price of freshly slaughtered beef, mt the feeding cost of preparing an

animal for slaughter, h̃t the one-period holding cost for a mature animal, γ1h̃t

the one-period holding cost for a yearling, and γ0h̃t the one period holding cost

for a calf. The costs {h̃t,mt}∞t=0 are exogenous stochastic processes, while the

stochastic process {pt}∞t=0 is determined by a rational expectations equilibrium.

Let x̃t be the breeding stock, and ỹt be the total stock of animals. The law of

motion for stocks is

x̃t = (1 − δ)x̃t−1 + gx̃t−3 − ct, (7.5.1)

where ct is a rate of slaughtering. The total head count of cattle is

ỹt = x̃t + gx̃t−1 + gx̃t−2, (7.5.2)

which is the sum of adults, calves, and yearlings, respectively.

A representative farmer maximizes

E0

∞
∑

t=0

βt{ptct−h̃tx̃t − (γ0h̃t)(gx̃t−1) − (γ1h̃t)(gx̃t−2) −mtct

− Ψ(x̃t, x̃t−1, x̃t−2, ct)},
(7.5.3)

where

Ψ =
ψ1

2
x̃2
t +

ψ2

2
x̃2
t−1 +

ψ3

2
x̃2
t−2 +

ψ4

2
c2t . (7.5.4)

The maximization is subject to the law of motion (7.5.1), taking as given the

stochastic laws of motion for the exogenous random processes and the equilib-

rium price process, and the initial state [x̃−1, x̃−2, x̃−3] . Here (ψj , j = 1, 2, 3)

are small positive parameters that represent quadratic costs of carrying stocks,

and ψ4 is a small positive parameter. The costs in (7.5.4) are implicitly taken

into account by Rosen, Murphy, and Scheinkman, and motivate their decision to

“solve stable roots backwards and unstable roots forwards.” To capture Rosen,

Murphy, and Scheinkman’s solution, we shall set each of the φj ’s to a positive

but very small number.

Demand is governed by

(5) ct = α0 − α1pt + d̃t,
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where α0 > 0, α1 > 0, and {d̃t}∞t=0 is a stochastic process with mean zero

representing a demand shifter.

7.5.1. Mapping cattle farms into our framework

We show how to map the model of Rosen, Murphy, and Scheinkman into our

general setup.

7.5.2. Preferences

Set Λ = 0,∆h = 0,Θh = 0,Π = α−1
1 , bt = Πd̃t + Πα0 . With these settings,

first-order condition (6.13) for the household’s problem becomes

ct = Π−1bt − Π−2pt,

or

ct = α0 − α1pt + d̃t.

7.5.3. Technology

The law of motion for capital is





x̃t

x̃t−1

x̃t−2



 =





(1 − δ) 0 g

1 0 0

0 1 0









x̃t−1

x̃t−2

x̃t−3



+





1

0

0



 it,

or

kt = ∆kkt−1 + Θhit.

Here it = −ct .

We use adjustment costs to capture the holding and slaughtering costs. We

set

g1t = f1x̃t + f2h̃t,

or

g1t = f1[(1 − δ)x̃t−2 + gx̃t−3 − ct] + f2h̃t.
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We set
g2t = f3x̃t−1 + frh̃t

g3t = f5x̃t−1 + f6h̃t.

Notice that
g2
1t = f2

1 x̃
2
t + f2h̃

2
t + 2f1f2x̃th̃t

g2
2t = f2

3 x̃
2
t−1 + f2h̃

2
t + 2f3f4x̃t−1h̃t

g2
3t = f2

5 x̃
2
t−2 + f6h̃

2
t + 2f5f6x̃t−2h̃t.

Thus, we set

f2
1 =

ψ1

2
f2
2 =

ψ2

2
f2
3 =

ψ3

2

2f1f2 = 1 2f3f4 = γ0g 2f5f6 = γ1g

To capture the feeding costs we set g4t = f7ct+f8mt , and set f2
7 = ψ4

2 2f7f8 =

1. Thus, we set


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


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0

0
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




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ct +
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
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1
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
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
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


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

.

We set dt = Udzt where

Ud =















0

f2Uh

f4Uh

f6Uh
f8Um















,

where [Uh, Um] are selector vectors that pick off h̃t and mt from the exogenous

state vector zt . We specify the information matrices [A22, C2] to incorporate

Rosen, Murphy, and Scheinkman’s specification that [h̃t,mt, d̃t] consists of three

uncorrelated first order autoregressive processes.1

1 This model is estimated by Anderson, Hansen, McGrattan, and Sargent (1996).
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7.6. Models of Occupational Choice and Pay

Aloyisius Siow (1984) and Sherwin Rosen (1995) and have used pure ‘time-

to-build’ structures to represent entry cycles into occupations, and also inter-

occupational wage movements. It is easiest to incorporate these models into

our framework by putting production into the household technology, using the

decentralization described in the appendix to generate prices.

7.6.1. A one-occupation model

Rosen [1995] studied a partial equilibrium model determining a stock of ‘en-

gineers’ Nt ; the number of new entrants into engineering school, nt ; and the

wage level wt of engineers. It takes k periods of schooling to become an engi-

neer. The model consists of the following equations: first, a demand curve for

engineers

wt = −αdNt + ǫ1t , αd > 0; (7.6.1)

second, a time-to-build structure of the education process

Nt+k = δNNt+k−1 + nt , 0 < δN < 1; (7.6.2)

third, a definition of the discounted present value of each new engineering stu-

dent

vt = βkEt

∞
∑

j=0

(βδN )jwt+k+j ; (7.6.3)

and fourth, a supply curve of new students driven by vt

nt = αsvt + ǫ2t , αs > 0. (7.6.4)

Here {ǫ1t, ǫ2t} are stochastic processes of labor demand and supply shocks. A

partial equilibrium is a stochastic process {wt, Nt, vt, nt}∞t=0 satisfying these four

equations, and initial conditions N−1, n−s, s = 1, . . . ,−k .

We can represent this model by sweeping the time-to-build structure and

the demand for engineers into the household technology, and putting the supply

of new engineers into the technology for producing goods. Here is how. We take
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the household technology to be

st = [λ1 0 . . . 0]











h1t−1

h2t−1

...

hk+1,t−1


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



+ 0 · ct
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








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
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
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
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













+















0

0
...

0

1















ct

bt = ǫ1t

This specification sets Rosen’s Nt = h1t−1, nt = ct, hs+1,t−1 = nt−s, s =

1, . . . , k , and uses the home-produced good to capture the demand for labor.

Here λ1 embodies Rosen’s demand parameter αd .2

To capture Rosen’s supply curve, we use the physical technology

ct = it + d1t

ϕ1it = gt

where d1t is proportional to Rosen’s supply shock ǫ2t , and where the adjustment

cost parameter ϕ1 varies directly with Rosen’s supply curve parameter αs .

Rosen showed that the equilibrium decision role for new entrants (our ct )

must satisfy the condition

nt = f1EtNt+k + f2ǫ1t + f3ǫ2t

where f1 < 0.

2 In the definition of Λ in the household technology, we would replace the zeros with ε > 0

as a trick to acquire detectability; see chapter 9 and its appendix for the definition and role

of detectability.
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7.6.2. Skilled and unskilled workers

We can generalize the preceding model to two occupations, called skilled and

unskilled, to obtain alternative versions of a model estimated by A. Siow (1984).

The model consists of the following elements: first, a demand curve for labor

[

wut

wst

]

= αd

[

Nut

Nst

]

+ ǫ1t;

where αd is a (2 × 2) matrix of demand parameters and ǫ1t is a vector of

demand shifters; second, time-to-train specifications for skilled and unskilled

labor, respectively:

Nst+k = δNNst+k−1 + nst

Nut = δNNut−1 + nut;

where Nst, Nut are stocks of the two types of labor, and nst, nut are entry rates

into the two occupations; third, definitions of discounted present values of new

entrants to the skilled and unskilled occupations, respectively:

vst = Etβ
k

∞
∑

j=0

(βδN )jwst+k+j

vut = Et

∞
∑

j=0

(βδN )jwut+j ,

where wut, wst are wage rates for the two occupations; and fourth, supply curves

for new entrants:
[

nst

nut

]

= αs

[

vut

vst

]

+ ǫ2t. (7.6.5)

As an alternative to (7.6.5), Siow simply used the ‘equalizing differences’ con-

dition

vut = vst. (7.6.6)

We capture this model by pushing most of the ‘action’ into the household

sector. Households decide what kind of durable good to accumulate, namely, un-

skilled labor or skilled labor. Unskilled labor and skilled labor can be combined

to produce services, which we specify to generate the demands labor. We let

c1t, c2t be rates of entry nut, nst into unskilled and skilled labor, and constrain
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them to satisfy c1t + c2t = it + d1t , the rate of total new entrants. To generate

the upward sloping supply curves (7.6.5), we specify that φ1it + φ2c2t = gt .

The technology is thus





1 1

0 −φ2

0 1





[

c1t

c2t

]

+





−1 0

−φ1 0

0 −1





[

i1t

i2t

]

+





0

1

0



 gt =





0

0

0



 kt−1 +





d1t

0

0



 ,

where d1t is a supply shifter. To get Siow’s model, we set φ1 = φ2 = 0, in which

case d1t becomes an exogenous supply of new entrants into the labor force.

We specify the law of motion for household capital
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[

c1t

c2t

]

.

where h1t−1 = Nut−1, h2t−1 = Nst, hj+2,t−1 = ns,t−j , j = 1, . . . , k . We generate

the demand for labor by specifying services as

[

s1t

s2t

]

= Λ̄

[

h1t

h2t

]

= Λ̄e∆hht−1 + Λ̄eΘhct

where e is a selector vector that verifies

[

h1t

h2t

]

= eht We set the preference

shock process bt = [ b1t b2t 0 0 ]
′

to capture the shifters in the demands for

labor.
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7.7. A Cash-in-Advance Model

We want to use our framework to mimic a situation in which households are in a

cash-in-advance environment in which they face a sequence of budget constraints

c̃t +
mt

pt
+Bt ≤ yt +Rgt−1Bt−1 +

mt−1

pt

c̃t ≤
mt−1

pt

Here Rgt−1 is the gross rate of return on indexed bonds Bt−1 held from t− 1

to t ; pt is the price level at t ; c̃t is time t consumption;

and mt is currency held from t to t + 1. The household’s preferences

are ordered by E0

∑∞
t=0 β

tu(c̃t). (We use c̃t to denote consumption in order to

separate this notation from the ct of our framework, which is soon to be defined.)

Using the cash-in-advance constraint at equality in the budget constraint gives

Bt +
c̃t+1

Rt
= yt +Bt−1Rgt−1,

where Rt = pt

pt+1
is the gross rate of return on currency between t and t+1. The

force of the cash-in-advance restriction is that decisions about time t money-

holding influence time t + 1 consumption c̃t+1 , but time t consumption is

predetermined.

7.7.1. Reinterpreting the household technology

We can specify the household technology to capture key elements of the cash-in-

advance specification. We can use a ‘back-solving’ approach, and let R = pt

pt+1

be a constant rate of return on currency. We shall set c̃t = st and ct = mt/pt ,

and sweep the cash-in-advance specification into a one-period time delay between

a decision to consume (i.e., hold real balances) and when consumption goods

are actually enjoyed. Thus, we take the household technology to be

st = Rct−1,

which we accomplish by taking Λ = R,Π = 0, δh = 0, θh = 1. When there is

inflation, R < 1. When R > 1, there is deflation. Preferences are of the usual

kind

−.5E0

∞
∑

t=0

βt[(st − bt) · (st − bt) + ℓ2t ].
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With these matchups, the time t ‘seignorage’ component of government revenue

is

r̃t =
mt −mt−1

pt

= ct − st.

This means that given R , the present value of seignorage revenues can be com-

puted using the methods in chapter 8. With these specifications, an equilibrium

with present value government budget balance can be computed, possibly in-

cluding the inflation rate parameter R along with some of the τ ’s over which

we search for an equilibrium.

Once an equilibrium is computed, the time series for real balances can be

found from
mt

pt
= ct,

and the price level and nominal level of currency can be computed using the

assumed R .

7.8. Taxation in a Vintage Capital Model

Owens (1994) has studied the effects of taxation on prices of new and old

commercial buildings. His analysis requires keeping track of the age distribution

of capital, which we can accomplish by specifying, for example,
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+









1

0

0

0









it.

Here k1t is new capital, k2t is one year old capital, and so on. We could also

include a time-to-build aspect, but have not here. To differentiate among the

services produced by capital of different ages, we specify

ct = Γckt−1,

where we make ct a vector that is comparable in dimension with kt−1 and Γc

is diagonal. ‘Office services’ are then produced according to

st = [π1 π2 . . . πn ] ct.
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We can set the π vector to make new office space more desirable than old office

space.

We let the government tax capital of different ages differently, which puts

terms like E0

∑

βtτkr
0
t · kt or E0

∑

βtτkkp
0
kt · kt−1 in the budget constraints of

households and the government, as in the framework of chapter 14. The tax ma-

trices τk, τkk can be chosen to model different kinds of policies for depreciating

capital

for tax purposes.

This framework can be used to model the effects on the prices of capital of

alternative policies for capital taxation.

A. Decentralizing the Household

It can be useful to decentralize the household sector in order to price household

services and stocks. Suppose that the household buys a vector of services from

firms of type III at the price of services ρ0
t . The household sells its initial stocks

of both physical and household capital and also its labor and endowment process

to firms. The price of the initial stock of household capital is ṽ0 . The household

maximizes

E0

∞
∑

t=0

βt[(st − bt) · (st − bt) + ℓ2t}

subject to the budget constraint

E0

∞
∑

t=0

βtρ0
t · st = E0

∞
∑

t=0

βt(w0
t ℓt + α0

t · dt) + (v0 · k−1 + ṽ0 · h−1). (7.A.1)

Firms of type III

Firms of type III purchase the consumption vector ct , rent household cap-

ital, and produce and sell household services and additions to the stocks of

household capital. Type III firms sell st to households at price ρ0
t and new

household capital Θhct to firms of type IV at price p0
ht . Firms of type III rent

household capital from firms of type IV at a rental price r0ht , and maximize

E0

∞
∑

t=0

βt{ρ0
t · st + p0

htΘhct − r0ht · ht−1 − p0
t · ct}
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subject to

st = Λht−1 + Πct.

Firms of type IV

Firms of type IV purchase new household capital from firms of type III, and

rent existing household capital to firms of type III at rental price r0ht . Firms of

type IV maximize

E0

∞
∑

t=0

βt{r0ht · ht−1 − p0
htΘhct} − ṽ0 · h−1

subject to

ht = ∆hht−1 + Θhct.

Computing Prices

If we formulate the optimum for a firm of type III, obtain the associated

first order necessary conditions and rearrange, we get the following restrictions

on prices:
p0
t = Θ′

hpht + Π′ρ0
t

r0ht = Λ′ρ0
t .

(7.A.2)

From the first order conditions for a firm of type IV, obtain

p0
ht = Etβ[∆′

hp
0
ht+1 + r0ht+1]. (7.A.3)

We can use (7.A.2) with (7.A.3) to obtain

p0
t = Θ′

hEt[
∞
∑

j=1

β(j)∆′(j−1)r0ht+j ] + Π′ρ0
t .

This is a generalization of Siow’s equilibrium condition (7.6.6). For us p0
t =

Mcxt is the vector of shadow prices of new entrants into the two types of pro-

fession.

We have already shown how to compute the price ρ0
t . Indeed, this decen-

tralization is a way to set up an explicit market in the ‘implicit’ services priced

by ρ0
t . The prices of stocks of household capital can be computed from the

multipliers on ht−1 and ct in the social planning problem.
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Efficient Computations

8.1. Introduction

This chapter describes fast algorithms for computing the value function and

the optimal decision rule of our social planning problem.1 The decision rule

determines the allocation. The value function determines competitive equilib-

rium prices. The optimal value function and the optimal decision rules can be

computed by iterating to convergence on the T operator associated with Bell-

man’s functional equation. These iterations can be accelerated by using ideas

from linear optimal control theory. We avail ourselves of these faster methods

because we want to analyze high dimensional systems.

This chapter is organized as follows. First, we display a transformation

that removes both discounting and cross-products between states and controls.

This transformation simplifies the algebra without altering the substance. Next

we describe invariant subspace methods for solving an optimal linear regulator

problem, which are typically faster than iterating on the Bellman equation.

We then describe a closely related method called the doubling algorithm, which

‘skips steps’ in iterating on the Bellman equation. The calculations can be fur-

ther accelerated by partitioning the state vector to take advantage of the pattern

of zeros in A and B . Next we discuss fast methods for computing equilibria for

periodic economies. We describe the periodic optimal linear regulator problem,

and show how to solve it rapidly. We conclude the chapter by describing how

our calculations can be adapted to handle Hansen and Sargent’s (1995) recursive

formulation of Jacobsen’s and Whittle’s risk-sensitive preferences, which will be

used in Chapter @robust@.

This chapter focuses mostly on nonstochastic optimal linear regulator prob-

lems. As indicated in chapter 3, the optimal decision rule for a stochastic optimal

1 Parts of this chapter use results described in Anderson, Hansen, McGrattan, and Sargent

(1995). Also see Kwakernaak and Sivan [1972] for what is mostly a treatment of continuous

time systems.

– 157 –
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linear regulator problem equals the optimal decision rule for the associated non-

stochastic optimal linear regulator problem. Furthermore, from chapter 3, the

matrices determining the Lagrange multipliers depend only on the piece of the

optimal value function associated with the nonstochastic part of our problem.

Throughout this chapter, we study solutions of our control problem that

satisfy the additional condition

E

∞
∑

t=0

βt(|xt|2 + |ut|2) <∞, (8.1.1)

where xt is the state and ut is the control. In an appendix, we describe con-

ditions on the matrices determining returns and the transition law that are

sufficient by themselves to imply condition (8.1.1).2

8.2. The Optimal Linear Regulator Problem

Consider the following version of the optimal linear regulator problem: choose

a contingency plan for {ut}∞t=0 to maximize

−E
∞
∑

t=0

βt[x′tRxt + u′tQut + 2u′tWxt], 0 < β < 1 (8.2.1)

subject to

xt+1 = Axt +But + Cwt+1, t ≥ 0, (8.2.2)

where x0 is given. In (8.2.1) – (8.2.2), xt is an n× 1 vector of state variables,

and ut is a k × 1 vector of control variables. In (8.2.2), we assume that wt+1

is a martingale difference sequence with Ewtw
′
t = I , and that C is a matrix

conformable as required to x and w . We also impose condition (8.1.1). We

temporarily assume that R and Q are positive definite matrices, although in

practice we use weaker assumptions about both matrices.

A standard way to solve this problem is the method of dynamic program-

ming. Let V (x) be the optimal value associated with the program starting from

initial state vector x0 = x . Bellman’s functional equation is

V (xt) = max
ut

{

−(x′tRxt + u′tQut + 2u′tWxt) + βEtV (xt+1)
}

(8.2.3)

2 For conditions sufficient to imply this condition, see Kwakernaak and Sivan [1972], An-

derson and Moore [1979], and Anderson, Hansen, McGrattan, and Sargent (1995).
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where the maximization is subject to (8.2.2). One way to solve this functional

equation is to iterate on a version of (8.2.3), thereby constructing a sequence

Vj(xt) of successively better approximations to V (xt). In particular, let

Vj+1(xt) = max
ut

{

−(x′tRxt + u′tQut + 2u′tWxt) + βEtVj(xt+1)
}

, (8.2.4)

where again the maximization is subject to (8.2.2). Suppose that we initiate the

iterations from V0(x) = 0 (which is the appropriate terminal value function for

a one-period problem). Then direct calculations show that successive iterates

on (8.2.4) take the quadratic form

Vj(xt) = −x′tPjxt − ρj , (8.2.5)

where Pj and ρj satisfy the equations

Pj+1 = R+ βA′PjA− (βA′PjB +W )

× (Q+ βB′PjB)−1(βB′PjA+W ′)
(8.2.6)

ρj+1 = βρj + β trace PjCC
′. (8.2.7)

Equation (8.2.6) is the matrix Riccati difference equation. Notice that it

involves only {Pj} and is independent of {ρj} . Notice also that C , which

multiplies the noises impinging on the system and so determines the variances

of innovations to information in the system, affects the {ρj} sequence but not

the {Pj} sequence. We can say that {Pj} is independent of the system’s noise

statistics.3

Let P and ρ be the limits of (8.2.6) and (8.2.7), respectively. Then the

value function V (xt) that satisfies the Bellman equation (8.2.3) is given by

V (xt) = −x′tPxt − ρ,

where P and ρ are the limit points of iterations on (8.2.6) and (8.2.7) starting

from P0 = 0, ρ = 0.

The decision rule that attains the right side of (8.2.4) is given by

ut = −Fjxt
3 This fact is what permits us to focus on nonstochastic problems in devising our algorithms.
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where

Fj = (Q+ βB′PjB)−1(βB′PjA+W ′). (8.2.8)

The optimal decision rule for the original problem is given by ut = −Fxt , where

F = limj→∞ Fj , or

F = (Q+ βB′PB)−1(βB′PA+W ′). (8.2.9)

According to (8.2.9), the optimum decision rule for ut is independent of the

parameters C , and so of the noise statistics.

The limit point P of iterations on (8.2.6) evidently satisfies

P = R+ βA′PA− (βA′PB +W )

× (Q+ βB′PB)−1(βB′PA+W ′)
(8.2.10)

This equation in P is called the algebraic matrix Riccati equation.

One way to solve an optimal linear regulator problem is to iterate directly

on (8.2.6) and (8.2.7). Faster algorithms are available. First, we describe a

useful transformation that simplifies some of the formulas.

8.3. Transformations to eliminate discounting and cross-

products

The following transformation eliminates both discounting and cross-products

between states and controls. Define the transformed control vt and transformed

state x̂t by

vt = βt/2(ut +Q−1W ′xt), x̂t = βt/2xt. (8.3.1)

Notice that

v′tQvt = βt [x′t u
′
t ]

[

WQ−1W ′ W

W ′ Q

] [

xt

ut

]

.

It follows that

βt [x′t u
′
t ]

[

R W ′

W Q

] [

xt

ut

]

= x̂′tR
∗x̂t + v′tQvt

where R∗ = R−WQ−1W ′ . The transition law (8.2.2) can be represented as

x̂t+1 = A∗x̂t +B∗vt + β
t+1

2 Cwt+1
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where A∗ = β1/2(A − BQ−1W ′), B∗ = β1/2B . Therefore, regulator problem

(8.2.1) – (8.2.2) is equivalent to the following regulator problem without cross-

products between states and controls and without discounting: choose {vt} to

maximize

−E
∞
∑

t=0

[x̂′tR
∗x̂t + v′tQvt] (8.3.2)

subject to

x̂t+1 = A∗x̂t +B∗vt + β
t+1

2 Cwt+1, (8.3.3)

where

P = R∗ +A∗′PA∗ −A∗′PB∗(Q+B∗′PB∗)−1B∗′

PA∗ (8.3.4)

F ∗ = (Q+B∗′PB∗)−1B∗′PA∗, (8.3.5)

it being understood that P is the positive semi-definite solution of (8.3.4).

The optimal closed loop system in terms of transformed variables is

x̂t+1 = (A∗ −B∗F ∗)x̂t + β
t+1

2 Cwt+1 (8.3.6)

Multiplying both sides of this equation by β−( t+1

2
) gives

xt+1 = β− 1
2 (A∗ −B∗F ∗)xt + Cwt+1. (8.3.7)

8.4. Stability Conditions

We shall typically restrict the undiscounted linear regulator (8.3.2), (8.3.3)

defined by the matrices (A∗, B∗, R∗, Q) to satisfy some conditions from control

theory designed to render the problem well behaved.

In particular, let DD′ = R∗ , so that D is said to be a factor of R∗ . Our

conditions are cast in terms of the concepts of stabilizability and detectability

defined in Appendix A. We make

Assumption A1: The pair (A∗, B∗) is stabilizable. The pair (A∗,D) is de-

tectable.

Then there obtains:
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Stability Theorem: Under assumption A1: (i.) starting from any negative

semi-definite matrix Po , iterations on the matrix Riccati difference equation

converge; and (ii.) The eigenvalues of (A∗ −B∗F ∗) are stable.

In the next section, we describe a class of algorithms that exploit the sta-

bilizing property of the optimal (A∗ −B∗F ).4

8.5. Invariant Subspace Methods

Following Vaughan [1970], a literature has developed fast algorithms for com-

puting the limit point of the matrix Riccati equation (8.2.6), based on an eigen-

structure of a matrix associated with the Riccati equation. These methods work

with a Lagrangian formulation of the problem and with the linear restrictions

that stability condition (8.1.1) imposes on the multipliers and the state vector.

These conditions restrict the matrix P that solves the algebraic matrix Riccati

equation.

Without loss of generality, we work with the undiscounted deterministic

optimal linear regulator problem: choose {ut}∞t=0 to maximize

−
∞
∑

t=0

{x′tRxt + u′tQut} (8.5.1)

subject to

xt+1 = Axt +But. (8.5.2)

4 Because the eigenvalues of (A∗ −B∗F∗) are less than unity in modulus, it follows that

the eigenvalues of Ao = β−
1
2 (A∗ −B∗F∗) are less than 1√

β
in modulus.
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8.5.1. Px as Lagrange multiplier

It is convenient to write a Lagrangian for the Bellman equation:

V (x) = max{−(x′Rx+ u′Qu+ 2µ′[Ax+Bu− x̃]) + V (x̃)},

where x̃ is next period’s value of the state, µ is a vector of multipliers, and

V (x) = −x′Px where the matrix P solves the matrix Riccati equation. The

first-order condition for the above Lagrangian with respect to x̃ implies that

µ = Px . Thus, as usual, the multipliers are linked to the gradient of the value

function.

8.5.2. Invariant subspace methods

Invariant subspace methods compute P indirectly by restricting the initial

vector of the multipliers µ to stabilize the solution for xt, ut , as required by

(8.1.1). For now, we assume that A is invertible. We move to the space of

sequences, and let {µt}∞t=0 be a sequence of vectors of Lagrange multipliers.

Form the Lagrangian

J = −
∞
∑

t=0

{x′tRxt + u′tQut + 2µ′
t+1[Axt +But − xt+1]} − 2µ′

0(x̄0 − x0). (8.5.3)

Here x̄0 is the given initial level of x0 . First order necessary conditions for the

maximization of J with respect to {ut}∞t=0 and {xt}∞t=0 are

ut : Qut +B′µt+1 = 0 , t ≥ 0 (8.5.4)

xt : µt = Rxt +A′µt+1, t ≥ 0. (8.5.5)

Solve (8.5.4) for ut and substitute into (8.5.2) to obtain

xt+1 = Axt −BQ−1B′µt+1. (8.5.6)

Represent (8.5.5) and (8.5.6) as

L

[

xt+1

µt+1

]

= N

[

xt

µt

]

, (8.5.7)
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where

L =

[

I BQ−1B′

0 A′

]

, N =

[

A 0

−R I

]

.

Represent (8.5.7) as
[

xt+1

µt+1

]

= Mf

[

xt

µt

]

(8.5.8)

or

[

xt
µt

]

= Mb

[

xt+1

µt+1

]

(8.5.9)

where

Mf = L−1N =

[

A+BQ−1B′A′−1
R −BQ−1B′A′−1

−A′−1
R A′−1

]

, (8.5.10)

and

Mb = N−1L =

[

A−1 A−1BQ−1B′

RA−1 RA−1BQ−1B′ +A′

]

. (8.5.11)

Evidently Mb = M−1
f . The matrices Mf and Mb each have the property that

their eigenvalues occur in reciprocal pairs: if λo is an eigenvalue, then so is

λ−1
o . We postpone a proof of the ‘reciprocal pairs’ property of the eigenvalues

to the subsequent section on the doubling algorithm, where it will follow simply

by verifying that Mb and Mf are examples of symplectic matrices.

Because its eigenvalues occur in reciprocal pairs, we can represent the ma-

trix Mf in (8.5.8) via a Schur decomposition

Mf = VWV −1, (8.5.12)

where V is a nonsingular matrix,

W =

[

W11 W12

0 W22

]

,

where W11 is a stable matrix, and W22 is an unstable matrix. In terms of

transformed variables y∗t = V −1yt ≡ V −1

[

xt

µt

]

, the system can be written

y∗t+1 = Wy∗t . (8.5.13)
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Let V −1 =

[

V 11 V 12

V 21 V 22

]

, where the partitions conform in size to those of W .

The solution of (8.5.13) is

y∗t =

[

W t
11 φt

0 W t
22

] [

V 11x0 + V 12µ0

V 21x0 + V 22µ0

]

, (8.5.14)

where φ0 = W12, φj+1 = W j
11W12 + φjW22 for j ≥ 0. Because W22 is an

unstable matrix, to guarantee that limt→∞ y∗t = 0, we require that

V 21x0 + V 22µ0 = 0, (8.5.15)

which sets an initial condition that replicates itself over time in the sense that

recursions on (8.5.14) imply

V 21xt + V 22µt = 0, (8.5.16)

for all t ≥ 0. Equation (8.5.15) implies

µ0 = −(V 22)−1V 21x0.

Substituting (8.5.16) into (8.5.13) and using

[

xt

µt

]

= V y∗t gives

xt+1 = V11W11(V
11 − V 12(V 22)−1V 21)xt

µt+1 = V21W11(V
11 − V 12(V 22)−1V 21)xt.

(8.5.17)

However, as noted above, µt = Pxt , where P solves the algebraic Riccati

equation (8.3.4). Therefore, (8.5.17) implies that PV11 = V21 or

P = V21V
−1
11 = −(V 22)−1V 21. (8.5.18)

Equation (8.5.18) is our formula for P .
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8.5.3. Distorted Economies

The invariant subspace method can also be applied to compute solutions of dis-

torted economies whose equilibrium conditions can be arranged into the form

(8.5.7). Examples of such economies are described in Chapter 15, where equi-

librium conditions of the form (8.5.7) cannot be interpreted as the first order

conditions of any linear quadratic control problem. For these economies, the

matrix Mf in general fails to have eigenvalues in reciprocal pairs. It may or

may not be possible to sort the eigenvalues into equal numbers of stable and un-

stable ones, which are to become the eigenvalues of W11 and W22 , respectively.

Whether it is possible becomes a check for the existence and uniqueness of a

stable solution of the model. The condition that there exist a unique solution

of (8.5.8) with |xt|2 < ∞ is that there exists a Schur decomposition (8.5.12)

of Mf in which half the eigenvalues of Mf are stable, and the other half are

unstable. An excess of stable eigenvalues indicates nonuniqueness; an excess of

unstable eigenvalues indicates nonexistence of a stable solution. Where a unique

solution exists, it can be computed using formula (8.5.18).5

8.5.4. Transition Dynamics

Invariant subspace algorithms can be adapted to solve models in which elements

of the matrices determining preferences, technologies, information, and govern-

ment policies vary deterministically over time, before some date T1 , after which

they are constant. The procedure is to use the algorithm (8.5.18) to solve the

model for t ≥ T1 , then to work backwards for earlier dates.

We want to compute an equilibrium in which the L,N matrices are time-

varying in a simple deterministic way, say, due to once and for all changes in

tax rates at some date t = T1 > 0. Suppose that we want to solve

N

[

xt
µt

]

= L

[

xt+1

µt+1

]

, t ≥ T1 (8.5.19)

and

Ñ

[

xt

µt

]

= L̃

[

xt+1

µt+1

]

, 0 ≤ t < T1, (8.5.20)

where Ñ , L̃ are the ‘temporary’ versions of the matrices whose ‘permanent’

values are L,N .

5 See Blanchard and Kahn (1981) and Whiteman (1983).
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For t ≥ T1 , we use the solution of the ‘permanent’ system, with

V 21xt + V 22µt = 0. (8.5.21)

In particular, (8.5.21) implies that

G1T1
xT1

+G2T1
µT1

= 0, (8.5.22)

where G1T1
= V 21, G2T1

= V 22 .

We know that

[

xT1

µT1

]

=

[

V11 V12

V21 V22

] [

W11 W12

0 W22

] [

V 11xT1−1 + V 12µT1−1

V 21xT1−1 + V 22µT1−1

]

. (8.5.23)

We want to impose restriction (8.5.22) on (8.5.23) and use it to solve for xT1−1

as a linear function of µT1−1 . A couple of lines of algebra leads to the restriction

[G1T1
V11 +G2T1

V21][W11V
11 +W12V

21] + [G1T1
V12 +G2T1

V22]W22V
21xT1−1

+
{

[G1T1
V11 +G2T1

V21][W11V
12 +W12V

22] + [G1T1
V12 +G2T1

V22]W22V
22
}

µT1−1

≡ G1,T1−1xT1−1 +G2,T1−1µT1−1 = 0.
(8.5.24)

This equation can be written as

G1T1−1xT1−1 +G2T1−1µT1−1 = 0, (8.5.25)

and it can be solved for µT1−1 as a linear function of xT1−1 . Equations (8.5.24)

and (8.5.25) define (G1t, G2t) as a function of (G1t+1, G2t+1). We use (8.5.25)

to ‘backdate’ the Git, i = 1, 2, matrices, and iterate back to t = 0.

These calculations will produce time-varying versions of all of our equilib-

rium matrices Ao, C, Sc,Mc, . . . for t = 0, 1, . . . , T1 described in chapters 4 and

6.
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8.6. The Doubling Algorithm

The algebraic matrix Riccati equation can be solved with a doubling algo-

rithm.6 The algorithm shares with invariant subspace methods the prominent

role it assigns to the matrix Mb of equation (8.5.9).

We start with a finite horizon version of our problem for horizon t =

0, . . . , τ − 1, which leads to a two point boundary problem. We continue to

assume that A is nonsingular, iterate on (8.5.8), and impose the boundary

condition µτ = 0 to get

M̂

[

xτ

0

]

=

[

x0

µ0

]

, (8.6.1)

where

M̂ = M−τ
f = Mτ

b . (8.6.2)

We want to solve (8.6.2) for µ0 as a function of x0 , and from this solution

deduce a finite-horizon approximation to P . Partitioning M̂ conformably with

the state-co-state partition, we deduce M̂11xτ = x0, M̂21xτ = µ0 . Therefore,

we choose µ0 = M̂21(M̂11)
−1x0 , and set the matrix

P = M̂21(M̂11)
−1. (8.6.3)

The plan is efficiently to compute M̂ for large horizon τ , then use (8.6.3) to

compute P . We can accelerate the computations by choosing τ to be a power

of two and using

M−2k+1

f = (M−2k

f )M−2k

f . (8.6.4)

Thus, for τ = 2j , the matrix M̂ = M−τ
f can be computed in j iterations

instead of 2j iterations, inspiring the name doubling algorithm.

Because M−1
f has unstable eigenvalues, direct iterations on (8.6.4) can be

unreliable. Therefore, the doubling algorithm transforms iterations on (8.6.4)

into other iterations whose important objects converge. These iterations exploit

the fact that the matrix Mf is symplectic (see Appendix B). The eigenvalues

of symplectic matrices come in reciprocal pairs. The product of symplectic

matrices is symplectic; for any symplectic matrix S , the matrices S21(S11)
−1

and (S11)
−1S12 are both symmetric; and

S22 = (S′
11)

−1 + S21(S11)
−1S12

= (S′
11)

−1 + S21(S11)
−1S11(S11)

−1S12.

6 This section is based on Anderson, Hansen, McGrattan, and Sargent (1995). For another

discussion of the doubling algorithm, see Anderson and Moore [1979, pp. 158–160].
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Therefore, a (2n × 2n) symplectic matrix can be represented in terms of three

(n × n) matrices α = (S11)
−1, β = (S11)

−1S12, γ = S21(S11)
−1, the latter two

matrices being symmetric.

These properties of symplectic matrices inspire the following parameteriza-

tion of M−2k

f

M−2k

f =

[

α−1
k α−1

k βk
γkα

−1
k α′

k + γkα
−1
k βk

]

, (8.6.5)

where the n× n matrices αk, βk, γk satisfy the recursions

αk+1 = αk(I + βkγk)
−1αk

βk+1 = βk + αk(I + βkγk)
−1βkα

′
k

γk+1 = γk + α′
kγk(I + βkγk)

−1αk.

(8.6.6)

To initialize, we use representation (8.5.11) for Mb = M−1
f to induce the set-

tings: α0 = A, γ0 = R, β0 = BQ−1B′ .

Anderson, Hansen, McGrattan, and Sargent (1996) describe a version of

the doubling algorithm modified to build in a positive definite terminal value

matrix Po . Their scheme initializes iterations on (8.6.6) as follows:

α0 = (I +BQ−1B′Po)
−1A

β0 = (I +BQ−1B′Po)
−1BQ−1B′

γ0 = R− Po +A′Po(I +BQ−1B′Po)
−1A.

(8.6.7)

The modified algorithm then works as follows:

1. Initialize α0, β0, γ0 according to (8.6.7).

2. Iterate on (8.6.6).

3. Form P as the limit of γk + Po .

We have assumed that A is nonsingular, but Anderson (1985) argues that

the doubling algorithm is applicable also in circumstances where A is singular.7

Anderson, Hansen, McGrattan, and Sargent (1996) report the results of compu-

tations in which the doubling algorithm is among the fastest and most reliable

available algorithms for solving several example economies.

7 See Anderson, Hansen, McGrattan, and Sargent (1996) for conditions under which the

matrix sequences {αk}, {βk}, {γk} converge.
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8.7. Partitioning the State Vector

Undiscounted versions of the control problem solved by our social planner

assume a form for which it is natural to partition the state vector to take ad-

vantage of the pattern of zeros in A and B . This leads to a control problem of

the form: choose {ut}∞t=0 to maximize

−
∞
∑

t=0

{
[

x1t

x2t

]′ [
R11 R12

R21 R22

] [

x1t

x2t

]

+ u′tQut} (8.7.1)

subject to

[

x1t+1

x2t+1

]

=

[

A11 A12

0 A22

] [

x1t

x2t

]

+

[

B1

0

]

ut, (8.7.2)

with [x′10, x
′
20]

′ given.8

For this problem, the operator associated with Bellman’s equation is

T (P ) = R+A′PA−A′PB(Q+B′PB)−1B′PA. (8.7.3)

Partitioning P and T (P ) conformably with the partition

[

x1t

x2t

]

makes the

(1, 1) and (1, 2) components of T (P ) satisfy

T11(P11) = R11 +A′
11P11A11 −A′

11P11B1(Q+B′
1P11B1)

−1B′
1P11A11 (8.7.4)

T12(P11,P12) = R12 +A′
11P11A12

−A′
11P11B1(Q+B′

1P11B1)
−1B′

1P11A12

+ [A′
11 −A′

11P11B1(Q+B′
1P11B1)

−1B′
1]P12A22

(8.7.5)

Equation (8.7.4) shows that T11 depends on P11 , but not on other elements

of the partition of P . From (8.7.5), T12 depends on P11 and P12 , but not on

P22 . Because T maps symmetric matrices into symmetric matrices, the (2, 1)

8 System (8.7.1) – (8.7.2) is called a controllability canonical form (see Kwakernaak and

Sivan [1972]). Two things distinguish a controllability canonical form: (1) the pattern of

zeros in the pair (A,B, ) and (2) a requirement that (A11, B1) be a controllable pair (see

Appendix A of this chapter). A controllability canonical form adopts a description of the state

vector that separates it into a part x2t that cannot be affected by the controls, and a part x1t

that can be controlled in the sense that there exists a sequence of controls {ut} that sends

x1 to any arbitrarily specified point within the space in which x1 lives.
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block of T is just the transpose of the (1, 2) block. Finally, the (2, 2) block of

T depends on P11, P12 , and P22 .

Partition the optimal feedback matrix F = [F1 F2] , where the partition is

conformable with that of xt . Then the optimal control is

ut = [F1 F2]

[

x1t

x2t

]

.

Let P f11 be the fixed point of (8.7.4) and let P f12 be the fixed point of T12(P
f
11, P12).

Then F1 and F2 are given by

F1 = (Q+B′
1P

f
11B1)

−1B′
1P

f
11A11 (8.7.6)

F2 = (Q+B′
1P

f
11B1)

−1(B′
1P

f
11P12 +B′

1P
f
12A22) (8.7.7)

Equation (8.7.6) shows that F1 depends only on P f11 , while F2 depends on P f11
and P f12 , but not on P f22 , the fixed point of T22 .

We aim to compute [F1, F2] and the multipliers described in chapter 3,

which turn out only to depend on P f11 and P f12 . We can compute these objects

rapidly by using the structure exposed by (8.7.4) and (8.7.5). First, note that

the T11 operator identified by (8.7.4) is formally equivalent with the T operator

of (8.7.3), except that (1, 1) subscripts appear on A and R , and a (1) subscript

appears on B . Thus, the T11 operator is simply the operator whose iterations

define the matrix Riccati difference equation for the small optimal regulator

problem determined by the matrixes (A11, B1, Q,R11). We can compute P f11
by using any of the algorithms described above for this smaller problem. We

have chosen to use the doubling algorithm (8.6.6).

Second, given a fixed point P f11 of T11 , we apply another sort of doubling

algorithm to compute the fixed point of T12(P
f
11, ·). This mapping has the form

T12(P
f
11, P12) = D +G′P12H (8.7.8)

where D = R12+A′
11P

f
11A12−A′

11P
f
11B1(Q+B′

1P
f
11B1)

−1B′
1P

f
11A12, G = [A11−

B1(Q+B′
1P

f
11B1)

−1B′
1P

f
11A11],H = A22. Notice that G = A11 −B1F1 , where

F1 is computed from (8.7.6). When x2t is set to zero for all t , the law of motion

for x1t under the optimal control is thus given by

x1t+1 = Gx1t.
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For problems for which condition (8.1.1) is either automatically satisfied or else

imposed, the eigenvalues of G and H each have absolute values strictly less

than unity. That the eigenvalues of G and H are both less than unity assures

the existence of a limit point to iterations on (8.7.8). The limit point satisfies

the Sylvester equation

P12 = D +G′P12H, (8.7.9)

which is to be solved for P12 . The limit point of iterations on T12 initiated from

P12(0) = 0 can be represented

P f12 =

∞
∑

j=0

G′jDHj , (8.7.10)

whose status as a fixed point of T12(P
f
11, ·) can be verified directly. However,

iterations on (8.7.9) would not be an efficient way to compute P12 . Instead,

we recommend using this doubling algorithm. Compute the following objects

recursively:
Gj = Gj−1Gj−1

Hj = Hj−1Hj−1

P12,j = P12,j−1 +G′
j−1P12,j−1Hj−1

(8.7.11)

where we set P12,0 = D,G0 = G,H0 = H . By repeated substitution it can be

shown that

P12,j =

2j−1
∑

i=0

Gi′DHi. (8.7.12)

Each iteration doubles the number of terms in the sum.9 , 10

9 This algorithm is implemented in the MATLAB program double2j.m.
10 The (1, 2) partition of P is simply P

f ′
12 . We could derive an algorithm similar to (8.7.11)

to compute P
f
22 , but we don’t need to compute P

f
22 , which is used to compute neither [F1 F2]

nor the Lagrange multipliers that determine the price system associated with our equilibrium.
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8.8. The Periodic Optimal Linear Regulator

In chapter 17, we study a class of models of seasonality whose social planning

problems form a periodic optimal linear regulator problem: choose {ut}∞t=0 to

maximize ∞
∑

t=0

{x′s(t)Rs(t)xt + u′tQs(t)ut} (8.8.1)

subject to

xt+1 = As(t)xt +Bs(t)ut. (8.8.2)

Here s(t) is a periodic function that maps the integers into a subset of the

integers:
s : (· · · − 1, 0, 1, · · ·) → [1, 2, · · · , p]
s(t+ p) = s(t) for all t.

In problem (8.8.1) - (8.8.2), the matrices As, Bs, Qs, and Rs that define the

linear regulator problem are each periodic with common period p .

Associated with problem (8.8.1) – (8.8.2) is the following version of the

matrix Riccati difference equation:

Pt = Rs(t) +A′
s(t)Pt+1As(t)

−A′
s(t)Pt+1Bs(t)(Qs(t) +B′

s(t)Pt+1Bs(t))
−1B′

s(t)Pt+1As(t).
(8.8.3)

Under conditions that generalize assumption A1, which were discussed by Richard

Todd [1983], iterations on (8.8.3) yield p convergent subsequences, whose limit

points we denote P1, P2, . . . , Pp . The optimal decision rule in period t is

ut = −Fs(t)xt, (8.8.4)

where

Fs(t) = −(Qs(t) +B′
s(t)Ps(t+1)Bs(t))

−1B′
s(t)Ps(t+1), As(t). (8.8.5)

Thus, the optimal decision rules themselves have period p .

One way to compute the optimal decision rules is to iterate on (8.8.3) to

convergence of the p subsequences, and then to use (8.8.5). Faster algorithms

can be obtained by adapting calculations described earlier in this chapter. In

the next section, we show how doubling algorithms apply to the periodic lin-

ear regulator problem, and also how the ‘controllability canonical form’ can be

exploited.
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8.9. A Periodic Doubling Algorithm

First-order conditions for the periodic linear regulator can be represented

as
[

xt+1

µt+1

]

= Mf,s(t)

[

xt

µt

]

, (8.9.1)

where Mf,s(t) is the periodic counterpart to the matrix Mf defined in (8.5.10).

Iterating this equation p times and using the periodic structure of s(t) gives

[

xt+p

µt+p

]

= Γp

[

xt

µt

]

, (8.9.2)

where

Γp ≡Mf,p−1Mf,p−2 · · ·Mf,1Mf,p. (8.9.3)

The matrix Γp is the product of p symplectic matrices, and therefore is sym-

plectic. Equation (8.9.2) at t = p can be represented

Γ−1
p

[

x2p

µ2p

]

=

[

xp

µp

]

, (8.9.4)

where

Γ−1
p = M−1

f,pM
−1
f,1 · · ·M−1

f,p−1. (8.9.5)

Iterating (8.9.4) τ − 1 ≥ 1 times and imposing the same boundary condition

used in (8.6.1) gives

M̂

[

xpτ

0

]

=

[

xp

µp

]

, (8.9.6)

where M̂ = Γ−τ
p . An argument used earlier implies that the doubling algorithm

can be applied to our redefined M̂ to compute

Pp = M̂21(M̂11)
−1. (8.9.7)

It is straightforward to compute the remaining p−1 value functions. Notice

that (8.9.4) implies

M̂

[

xpτ

0

]

= Mf,p−1

[

xp−1

µp−1

]

,

or

M−1
f,p−1M̂

[

xpτ

0

]

=

[

xp−1

µp−1

]

.
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The same argument used above now implies that

µ1 = M̃21(M̃22)
−1x1 ≡ P1x1,

where M̃ = M̂p−1 ≡ M−1
f,p−1M̂ is symplectic because it is the product of two

symplectic matrices. The product of two symplectic matrices Z1, Z2 has repre-

sentation

Z1Z2 = Z̄ =

[

α̃−1 α̃−1β̃

γ̃α̃−1 α̃1 + γ̃α̃−1β̃

]

where
α̃ = α2(I + β1γ2)

−1α1

γ̃ = γ1 + α′
1γ2(I + β1γ2)

−1α1

β̃ = β2 + α2(I + β1γ2)
−1β1α

′
2.

(8.9.8)

We can use this feature to compute Pp−1 from the γ term produced by this

representation of multiplication.

Iterating this argument leads us to compute Pp−2, . . . , P1 as the corre-

sponding γ matrices in the successive multiplications used to form M̂p−2 =

M−1
f,p−2M̂p−1, . . . , M̂1 = M−1

f,1M̂2 .

Thus, the algorithm works as follows.

1. Initialize α0, β0, γ0 according to (8.6.7).

2. Use the algorithm (8.9.8) for multiplying symplectic matrices to form Γ−1
p

defined as in (8.9.5).

3. Iterate on (8.6.6).

4. Form Pp as the limit of γk + Po .

5. Successively form M̂p−1, M̂p−2, . . . , M̂1 using (8.9.8), and set the corre-

sponding γ terms to Pp−1, Pp−2, . . . , P1 .

Having computed P1, . . . , Pp , we can use (8.8.5) to compute the optimal

decision rules. The optimal feedback laws are periodic, so that ut = −Fs(t)xt .
The matrices F1, . . . Fp are computed from

Fj = (Qj +Bj
′Pj+1Bj)

−1Bj
′Pj+1Aj ,

where it is understood that Pp+1 = P1 .
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8.9.1. Partitioning the state vector

We can also apply the partitioning technique to the periodic optimal linear regulator problem

in order to accelerate the computations. We partition the state vector into

[

x1t

x2t

]

exactly as

above. With the appropriate specification of Rs, Qs, As , and Bs , we obtain a periodic version

of the T11(P11) mapping described in equation (8.7.4). Use our procedures to compute

P1, P2, . . . , Pp as described above, then set P
f
11,j = Pj for j = 1, . . . , p .

The T12 mapping for the periodic model becomes

T12,k(P
f
11,k+1

, P12,k+1) = Dk +Gk
′P12,k+1Hk (8.9.9)

where

Dk = R12,k +A′
11,kP

f
11,k+1

A12,k −A′
11,kP

f
11,k+1

B1k

× (Qk +B′
1kP

f
11,k+1

B1k)−1B′
1kP11,k+1A12,k

Gk = [A11,k −B1k(Qk +B′
1kP

f
11,k+1

B1k)−1B′
1kP11,k+1A11,k

Hk = A22,k

(8.9.10)

In (8.9.9) – (8.9.10), P
f
11k+1

is the fixed point for P11,k+1 corresponding to period k + 1.

Iterations on (8.9.9) will give rise to a sequence consisting of p convergent subsequences,

whose limit points we call P
f
12,1, . . . , P

f
12,p . We desire to compute these limiting matrices.

We begin by creating an operator T̄12,1 whose fixed point is P
f
12,1 . We define

T̄12,1(P12,1) = D̄1 + Ḡ′
1P12,1H̄1 (8.9.11)

where D̄1 = D1+G′
1D2H1+· · ·+G′

1G
′
2 · · ·G′

p−1DpHp−1Hp−2 · · ·H1Ḡ
′
1 = G′

1G
′
2 · · ·G′

pH̄1 =

HpHp−1 · · ·H1. We can compute the fixed point of (8.9.11) by using the standard doubling

algorithm that is described in section blank and that is implemented in the MATLAB program

double2j.m.

Once we have computed P
f
12,1 , we can compute P

f
12,j for j = p, p− 1, . . . , 2 by using

P
f
12,p = Dp +G′

pP
f
12,1H1

P
f
12,j = Dj +G′

jP
f
12,j+1Hj , j = p− 1, p− 2, · · · , 2

(8.9.12)

The optimal feedback laws ut ≡ −Fs(t), xt can be computed as follows. Let Fs(t) =

[F1s(t) F2s(t)] , where the partition of Fs(t) matches that of the state vector into x1(t), x2(t) .

Then we have

F1j = (Qj +B′
1jP

f
11,j+1B1j)

−1B′
1jP

f
11,j+1A11,j

F2j = (Qj +B′
1jP

f
11,j+1B1j)

−1(B′
1jP

f
11,j+1A12,j +B′

1jP
f
12,j+1A22,j)

for j = 1, . . . , p.

(8.9.13)
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The optimal closed loop system is then

xt+1 = (As(t) −Bs(t)Fs(t))xt. (8.9.14)

8.10. Linear Exponential Quadratic Gaussian Control

In chapter 16, we shall reinterpret some of our economies in terms of risk-

sensitive control theory. In this section, we describe how to adapt the preceding

computational strategies to handle versions of the ‘risk-sensitivity corrections’ of

Jacobsen (1973, 1977) and Whittle (1990). We use Hansen and Sargent’s (1995)

method of implementing discounting. The resulting specification preserves the

computational ease of the original linear quadratic specification, while relaxing

‘certainty equivalence.’ Let Vt1(xt1) = −x′t1Pt1xt1 − ηt1 . Let β ∈ (0, 1) and

consider the sequence {Vt(xt)}t1t=t0 of value functions generated by the following

constrained optimization problems:

Vt(xt) = max
ut

{

−(x′tRxt + u′tQut) + β
2

σ
logEt exp

σ

2
Vt+1(xt+1)

}

(8.10.1)

subject to

xt+1 = Axt +But + Cwt+1, (8.10.2)

where wt+1 is an (N ×1) martingale difference sequence with Gaussian density

f(wt+1) =
1

(2π)N/2|Σ|1/2 exp{− 1

2
w′
t+1 Σ−1 wt+1}. (8.10.3)

Usually, we shall set the covariance matrix Σ = Ewtw
′
t = I . We momentarily

retain the more general notation in order to state a useful lemma in greater

generality.

In solving this discounted linear exponential quadratic Gaussian (LEQG)

control problem, we use the following lemma due to Jacobson (1973).

Lemma (Jacobson): Let wt+1 ∼ N (0,Σ) and xt+1 = Axt + But + Cwt+1 .

Suppose that the matrix (Σ−1 − σC ′Pt+1C) is positive definite. Then

Et exp{σ
2
x′t+1 Pt+1 xt+1} =
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∫ ∞

−∞

1

(2π)N/2|Σ|1/2 exp{−1

2
w′
t+1Σ

−1wt+1} exp{σ
2
x′t+1 Pt+1 xt+1} (8.10.4)

= k exp
{σ

2
(Axt +But)

′P̃t+1 (Axt +But)
}

where

P̃t+1 = Pt+1 + σPt+1C(Σ−1 − σC ′Pt+1C)−1 C ′Pt+1 (8.10.5)

k =

√

| (Σ−1 − σC ′Pt+1C)−1 |
| Σ | . (8.10.6)

This concludes the statement of the lemma.

Let Vt+1(xt+1) = −x′t+1Pt+1xt+1 − ηt+1 , and apply the lemma to evaluate

the term inside the braces on the right side of (8.10.1):

x′tRxt+u
′
tQut + β

2

σ
logEt exp

{σ

2
[x′t+1Pt+1xt + ηt+1]

}

= x′tRxt + u′tQut + β(Axt +But)
′P̃t+1(Axt +But)

+ constant

(8.10.7)

where P̃t+1 is given by equation (8.10.5). Maximizing the right hand side of

(8.10.7) with respect to ut gives the linear decision rule ut = −Ftxt , where Ft

is determined by the recursions:

P̃t+1 = Pt+1 + σPt+1C(Σ−1 − σC ′Pt+1C)−1C ′Pt+1 (8.10.8)

Ft = {Q+ βB′P̃t+1B}−1βB′P̃t+1A (8.10.9)

Pt = R+ βA′P̃t+1A (8.10.10)

− β2A′P̃t+1B(Q+ βB′P̃t+1B)−1B′P̃t+1A.

Notice that in the special case that σ = 0, these equations are versions of the

Riccati difference equation and the associated decision rule. Notice also that

when σ 6= 0, equations (8.10.8), (8.10.9), and (8.10.10) imply that the decision

rules Ft depend on the innovation variances of the exogenous processes (note

the appearance of C in (8.10.8)).
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We can obtain a more compact version of these recursions as follows. Apply

the matrix identity (a− b d−1c)−1 = a−1 + a−1b(d− ca−1b)−1ca−1 to (8.10.10)

using the settings a−1 = βP̃t+1 , b = −B, d = Q , c = B′ to obtain

βP̃t+1 − βP̃t+1B(B′(βP̃t+1)B +Q)−1B′(βP̃t+1)

= (
1

β
P̃t+1 +BQ−1B′)−1.

Substituting into the right side of (8.10.10) gives

Pt = R+A′(
1

β
P̃t+1 +BQ−1B′)−1A . (8.10.11)

Now apply the same matrix identity to the right side of (8.10.8) to obtain

P̃t+1 = (P−1
t+1 − σCΣC ′)−1. (8.10.12)

Substituting (8.10.12) into (8.10.11) gives the version

Pt = R+A′(β−1P−1
t+1 +BQ−1B′ − σβ−1CΣC ′)−1A. (8.10.13)

Collecting results, we have that the solution of the problem can be rep-

resented via the recursions (8.10.13), (8.116), (8.10.9). We are interested in

problems for which recursions on these equations converge as t → −∞ . In

situations in which convergence prevails, we can avail ourselves of a doubling

algorithm to accelerate the computations.

8.10.1. Doubling algorithm

It suffices to consider the undiscounted (β = 1) version of our problem, because

we can transform a discounted problem into an undiscounted one. Represent

the Riccati equation (8.10.13) in the form (see Appendix C)

Pt = R+A′(P−1
t+1 + J)−1A (8.10.14)

where J = BQ−1B′ − σCΣC ′ . The doubling algorithm applies with

M−1
f = Mb =

[

A−1 A−1J

RA−1 A′ +RA−1J

]

,
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and with the settings α0 = A, γ0 = R, β0 = J . To compute the solution

with terminal value matrix Po , use the initializations α0 = (I + JPo)
−1A, β0 =

(I + JPo)
−1J, γ0 = −Po + R + A′Po(I + JPo)

−1A . The algorithm then works

as follows.

1. Initialize α0, β0, γ0 according to the formulas just given.

2. Iterate on (8.6.6).

3. Form P as the limit of γk + Po .

A. Concepts of Linear Control Theory

Assume in the deterministic linear regulator (8.5.1)–(8.5.2) that matrix R is

positive semi-definite and that Q is positive definite. Sufficient conditions for

existence and stability of a solution of the deterministic linear regulator are

typically stated in terms defined in the following four definitions.

Definition: The pair (A,B) is stabilizable if y′B = 0 and y′A = λy′ for some

complex number λ and some complex vector y implies that |λ| < 1 or y = 0.

Definition: The pair (A,B) is controllable if y′B = 0 and y′A = λy′ for some

complex number λ and some complex vector y implies that y = 0.

Definition: The pair (A,D) is detectable if D′y = 0 and Ay = λy for some

complex number λ and some complex vector y implies that |λ| < 1 or y = 0.

Definition: The pair (A,D) is observable if D′y = 0 and Ay = λy for some

complex number λ and some complex vector y implies y = 0.

Stabilizability and controllability evidently form a pair of concepts, with

controllability implying stabilizability, but not vice versa (i.e., controllability is

a more restrictive assumption. Similarly, detectability and observability form a

pair of concepts, with observability implying detectability, but not vice versa.

Stabilizability is equivalent with existence of a time-invariant control law

that stabilizes the state vector. Controllability implies that there exists a se-

quence of controls that can attain an arbitrary value for the state vector starting

from any initial state vector, within n periods, where n is the dimension of the

state. When (A,B) is controllable, the entire state vector is ‘endogenous,’ in

the sense of being potentially ‘under control.’
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The concepts of detectability and observability are applied to the pair of

matrices (A,D), where DD′ = R (i.e., D is a factor of R).

Assume (a.) that the pair (A,B) is stabilizable, which implies that it is

feasible to stabilize the state vector; and that (b.) the pair (A,D) is detectable,

which means that it is desirable to stabilize the state vector. Together, assump-

tions (a.) and (b.) imply that the optimal control stabilizes the state vector.

When R is nonsingular, the pair (A,D) is observable, and the value func-

tion is strictly concave.
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B. Symplectic Matrices

We now define symplectic matrices11 and state some of their properties.

Definition: A (2n × 2n) matrix Z is said to be symplectic if Z ′JZ = J ,

where

J =

[

0 −In
In 0

]

.

The following properties of symplectic matrices follow directly from the defini-

tion of a symplectic matrix:

Property 1: If the matrix Z is symplectic, then so is any positive integer

power of Z .

Property 2: If Z1 and Z2 are both (2n× 2n) symplectic matrices, then their

product Z1Z2 is also symplectic.

Property 3: If a symplectic matrix Z is written in partitioned form

Z =

[

Z11 Z12

Z21 Z22

]

,

and if Z−1
11 exists, then

Z22 = (Z ′
11)

−1 + Z21Z
−1
11 Z12

Property 4: The eigenvalues of any symplectic matrix Z occur in reciprocal

pairs, i.e., if λi is an eigenvalue of a symplectic matrix Z , then so is λ−1
i .

To establish property 4, that from the definition that any symplectic matrix

Z satisfies Z−1 = J−1Z ′J . Since Z−1 and Z ′ are thus related by a similarity

transformation, they have common eigenvalues. This implies that the eigenval-

ues of Z must occur in reciprocal pairs.

Property 3 means that if Z−1
11 exists, then a symplectic matrix Z can be

represented in the form

Z =

[

α−1 α−1β

γα−1 α′ + γα−1β

]

(8.B.1)

11 See Anderson and Moore [1979, pp. 160–161] and also Anderson, Hansen, McGrattan,

and Sargent (1996).
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Let Zj , for j = 1, 2, be two symplectic matrices, each represented in the

form (8.B.1):

Zj =

[

α−1
j α−1

j βj

γjα
−1
j α′

j + γjα
−1
j βj

]

. (8.B.2)

It can be verified directly that the product Z1Z2 = Z̄ has the same form,

namely,

Z1Z2 = Z̄ =

[

α̃−1 α̃−1β̃

γ̃α̃−1 α̃′ + γ̃α̃−1β̃

]

. (8.B.3)

where
α̃ = α2(I + β1γ2)

−1α1

γ̃ = γ1 + α′
1γ2(I + β1γ2)

−1α1

β̃ = β2 + α2(I + β1γ2)
−1β1α

′
2

(8.B.4)

This algorithm is implemented in our MATLAB program mult.m.

C. Alternative forms of Riccati equation

It is useful to display alternative forms of the Riccati equation

P = R+A′PA−A′PB(Q+B′PB)−1B′PA. (8.C.1)

We first apply the following matrix identity from Noble and Daniel [1977,

p. 29]. Assume that d−1 and a−1 exist. Then (a− bd−1c)−1 = a−1 + a−1b[d−
ca−1b]−1ca−1 . Apply this identity, setting a−1 = Pt+1, b = −B, d = Q, c = B′

to obtain

(P−1
t+1 +BQ−1B′)−1 = Pt+1 − Pt+1B(B′Pt+1B +Q)−1B′Pt+1.

Substituting the above identity into (8.C.1) establishes

Pt = R+A′(P−1
t+1 +BQ−1B′)−1A. (8.C.2)

Now write (8.C.2) as

Pt = R+A′Pt+1P
−1
t+1(P

−1
t+1 +BQ−1B′)−1A

Pt = R+A′Pt+1(P
−1
t+1Pt+1 +BQ−1B′Pt+1)

−1A

Pt = R+A′Pt+1(I +BQ−1B′Pt+1)
−1A



Assume that A−1 exists, and write the preceding equation as

Pt = R+A′Pt+1(A
−1 +A−1BQ−1B′Pt+1)

−1

Pt = A′Pt+1(A
−1 +A−1BQ−1B′Pt+1)

−1

+R(A−1 +A−1BQ−1B′Pt+1)(A
−1 +A−1BQ−1B′Pt+1)

−1

This equation can be represented as

Pt = {RA−1 + [A′ +RA−1BQ−1B′]Pt+1}
{A−1 +A−1BQ−1B′Pt+1}−1.

(8.C.3)

Equation (8.C.3) takes the form

Pt = {C +DPt+1} × {E + FPt+1}−1 (8.C.4)

where
C = RA−1

D = A′ +RA−1BQ−1B′

E = A−1

F = A−1BQ−1B′,

which can be represented as

[

Xt

Yt

]

=

[

E F

C D

] [

Xt+1

Yt+1

]

,

where Pt = YtX
−1
t . Notice that

[

E F

C D

]

= M−1
f = Mb,

and that limt→−∞ Pt = limt→−∞ YtX
−1
t can be computed as the limit of the

γj term in the representation of the symplectic matrix M−2j

f .
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Chapter 9

Representation and Estimation

This chapter shows how our models restrict moments of observed prices and

quantities, and how observations can be used to make inferences about the

parameters of our models. Earlier chapters have prepared a state-space rep-

resentation that expresses states xt and observables yt as linear functions of

an initial x0 and histories of martingale difference sequences wt . The wt ’s

are shocks to endowments and preferences whose histories are observed by the

agents in the economy. The econometrician does not see those shocks, at least

directly. Therefore, to prepare a model for estimation we obtain another repre-

sentation of it that is cast in terms of shocks that can in principle be recovered

from an econometrician’s observations. By using the Kalman filter we shall ob-

tain what is known as an ‘innovations representation’. It is a workhorse. It can

be transformed to yield a Wold representation or a vector autoregression for

observables.1 An important approach to estimation, approximation, and aggre-

gation over time is to deduce the restrictions that the models of the economy

and of data collection impose on the innovations representation. The Kalman

filter does this efficiently, and enables a recursive way of calculating a Gaussian

likelihood function.

We describe how to obtain maximum likelihood and generalized method of

moments estimates of a model’s parameters, using both time domain and fre-

quency domain methods. As by-products of time domain estimation, we deduce

autoregressive and Wold representations for observables. As a by-product of fre-

quency domain estimation, we recover a theory of specification error. We also

study the effects of aggregation over time, and how to estimate a model speci-

fied at a finer time interval than pertains to the available data. These methods

must be augmented to incorporate data on asset prices, which are non-linear

functions of the state of the economy. The last part of the chapter describes

how asset prices, returns, and other nonlinear functions of the state can be used

in estimation.

The Kalman filter is intimately connected to the optimal linear regulator

(i.e., the linear-quadratic dynamic programming problem). Remarkably, the key

1 See Sims (1972, 1980), Whittle (1983), and Sargent (1987) for definitions and discussions

of the Wold and autoregressive representations.

– 187 –
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mathematical formula associated with the Kalman filter is the same matrix Ric-

cati equation that solves the linear regulator. Furthermore, the same key ‘factor-

ization identity’ occurring with the Kalman filter plays a role in linear-quadratic

optimization theory. In chapters 11 and 14, we shall use a ‘factorization identity’

to provide information about alternative representations of preferences.

9.1. The Kalman Filter

We regard a vector of time t data yt as error-ridden measures of linear com-

binations of the state vector xt . We append a measurement equation to the

equilibrium law of motion of the state to attain the following state space sys-

tem:
xt+1 = Aoxt + Cwt+1

yt = Gxt + vt
(9.1.1)

where vt is a martingale difference sequence of measurement errors that satisfies

Evtv
′
t = R,Ewt+1v

′
s = 0 for all t + 1 ≥ s . Here G is a matrix whose rows

are composed of entries of the Sj and Mj matrices, computed for example in

chapters 4, 6, and 7, that select those components of quantities and prices for

which data are available.2 We assume that x0 is a random vector with known

mean x̂0 and covariance matrix E(x0 − x̂0)(x0 − x̂0)
′ = Σ0 . Using (9.1.1), we

have Ey0 = Gx̂0 .

We adopt the notation yt0 = [yt, yt−1, . . . , y0] , y
t = yt−∞ . For any variable

zt, t ≥ 0, we let ẑt = Ê[zt|yt−1
0 , x̂0] , where Ê(·) is the linear least squares

projection operator. Also, we occasionally use the notation Êtzt = Ê[zt|yt0, x̂0] .

We want recursive formulas for ŷt, x̂t . We begin by constructing an innovation

process {at} such that [at0, x̂0] forms an orthogonal basis for the information

set [yt0, x̂0] . We recursively calculate the projections x̂t+1 and ŷt by regressing

on the orthogonal basis [at0, x̂0] .

The orthogonal basis for [yt0, x̂0] is constructed using a Gram-Schmidt pro-

cess. Begin with the regression equation y0 = Ey0 + a0 = Gx̂0 + a0 or

a0 = y0 −Gx̂0,

2 Later we shall permit serially correlated measurement errors. It is easy to modify the

calculations to permit Ewt+1v
′
t to be nonzero.
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where the residual a0 satisfies the least squares normal equation Ea′0 = 0.

Evidently, [y0, x̂0] and [a0, x̂0] span the same linear space. Next, form a1 as

the residual from a regression of y1 on [y0, x̂0] , or equivalently, a regression of

y1 on [a0, x̂0] : a1 = y1 − Ê[y1 | y0, x̂0] or

a1 = y1 − Ê[y1 | a0, x̂0];

a1 is by construction orthogonal to a0 and x̂0 ; i.e., E(a1a
′
0) = 0, E(a1) = 0.

Continuing in this way, form at = yt − Ê[yt | yt−1
0 , x̂0] = yt − Ê[yt | at−1

0 , x̂0] ,

where E(ata
′
s) = 0 for s = 0, . . . , t−1 and E(at) = 0. We call at the innovation

in yt .

It is useful to represent at as follows. From the second equation of (9.1.1)

and from the fact that vt is orthogonal to yt−s and xt−s for s ≥ 1, it follows

that

ŷt = Gx̂t

and that

yt = Gx̂t +G(xt − x̂t) + vt.

By subtracting the first equation from the second, we find that the innovation

at in yt satisfies

at ≡ yt − ŷt = G(xt − x̂t) + vt. (9.1.2)

Calculate the second moment matrix of at to be

Eata
′
t = GE(xt − x̂t)(xt − x̂t)

′G′ + Evtv
′
t

= GΣtG
′ +R ≡ Ωt

where Σt ≡ E(xt− x̂t)(xt− x̂t)′ . We shall soon give a recursive formula for Σt .

From the first equation in (9.1.1), it follows that

Êtxt+1 = AoÊtxt = AoÊt−1xt +Ao(Êtxt − Êt−1xt), (9.1.3)

where again Êt denotes projection on [yt0, x̂0] . Express the projection Êtxt =

Ext+
∑t
j=0 Γjaj where xt = Êtxt+ψt , ψt is a least squares residual vector, and

the regression coefficients Γj are determined by the least squares orthogonality

conditions Eψta
′
s = 0 for s = 0, . . . , t . Because [at0, x̂0] is an orthogonal basis

for [yt0, x̂0] , these orthogonality conditions imply

(Exta
′
t)(Ωt)

−1 = Γt, (9.1.4)
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where Eata
′
t = Ωt . To compute Exta

′
t , first notice that Êt−1xt = Ext +

∑t−1
j=0 Γjaj . Then xt = Êt−1xt + Γtat + ψt can be interpreted in terms of the

regression equation

(xt − Êt−1xt) = Γtat + ψt, (9.1.5)

where Γtat = Ê[(xt − Êt−1xt)|at] . Evidently, E(xt − Êt−1xt)a
′
t = Exta

′
t . Use

(9.1.2) to compute E(xt − Êt−1xt)a
′
t = ΣtG

′ . It follows that (9.1.4) becomes

Γt = ΣtG
′(GΣtG

′ +R)−1, (9.1.6)

and from (9.1.5) that

Êtxt = Êt−1xt + Γtat. (9.1.7)

Substituting (9.1.7) into (9.1.3) gives x̂t+1 = Aox̂t +AoΓt(yt −Gx̂t) or

x̂t+1 = Aox̂t +Ktat, (9.1.8)

where at = yt −Gx̂t , and where from (9.1.6) Kt must satisfy

Kt = AoΣtG
′(GΣtG

′ +R)−1. (9.1.9)

Equation (9.1.9) expresses the ‘Kalman gain’ Kt in terms of the state covariance

matrix Σt = E(xt − x̂t)(xt − x̂t)
′ .

We need an equation for Σt . Subtract x̂t+1 = Aox̂t +Kt(yt − Gx̂t) from

the first equation of (9.1.1) to obtain xt+1 − x̂t+1 = (Ao − KtG)(xt − x̂t) +

Cwt+1 − Ktvt . Multiply each side of this equation by its own transpose and

take expectations to obtain

Σt+1 = (Ao −KtG)Σt(A
o −KtG)′

+ CC ′ +KtRK
′
t.

(9.1.10)

Substituting (9.1.9) into (9.1.10) and rearranging gives a matrix Riccati differ-

ence equation for Σt :

Σt+1 = AoΣtA
o′ + CC ′

−AoΣtG
′(GΣtG

′ +R)−1GΣtA
o′.

(9.1.11)

The recursive (9.1.9) and (9.1.11) for Σt,Kt determine the Kalman filter. They

are to be initialized from a given Σ0 . Later we discuss alternative ways to choose

Σ0 .
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9.2. Innovations Representation

The Kalman filter lets us associate with representation (9.1.1) an ‘innovations

representation’:
x̂t+1 = Aox̂t +Ktat

yt = Gx̂t + at,
(9.2.1)

where Eata
′
t ≡ Ωt = GΣtG

′ +R . This time varying representation is obtained

starting from arbitrary initial conditions x̂0,Σ0 . We can rearrange (9.2.1) into

the form of a whitening filter

at = yt −Gx̂t

x̂t+1 = Aox̂t +Ktat,
(9.2.2)

which can be used for recursively constructing a record of innovations {at}Tt=0

from an x̂0 and a record of observations {yt}Tt=0 . The filter defined by (9.2.2)

is called a “whitening filter” because it accepts as “input” the serially correlated

process {yt} and produces as “output” the serially uncorrelated (i.e., “white”)

vector stochastic process {at} . The process {at} is said to be a fundamental

white noise for the {yt} process, because it equals the one-step ahead prediction

error in a linear least squares projection of yt on the history of y .3

Later, we shall use the whitening filter in several ways. We shall use it to

study how the innovations {at} from a population vector autoregression for {yt}
are related to the {yt} process and to the underlying martingale process {wt}
of information flowing to agents. We shall also use it to construct a recursive

representation of a Gaussian likelihood function for a sample drawn from the

{yt} process.

3 See Sims (1972), Hansen and Sargent (1991, chapter 2), and Sargent (1987, chapter XI)

for the role such an error process plays in the construction of Wold’s representation theorem.
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9.3. Convergence results

For the purpose of obtaining a time-invariant counterpart to (9.2.1), we intro-

duce two assumptions.

Assumption A1: The pair (Ao′, G′) is stabilizable.

Assumption A2: The pair (Ao′, C) is detectable.

See the appendix to chapter 8 for definitions of stabilizability and detectabil-

ity. Assumptions A1 and A2 are typically met for our applications. Under A1

and A2, two useful results occur. The first is that iterations on the matrix Ric-

cati difference equation (9.1.11) converge as t→ ∞ , starting from any positive

semi-definite initial matrix Σ0 . The limiting matrix Σ∞ ≡ limt→∞ Σt is the

unique positive semi-definite matrix Σ that satisfies the algebraic matrix Riccati

equation4

Σ = AoΣAo′ + CC ′

−AoΣG′(GΣG′ +R)−1GΣAo′.
(9.3.1)

If we initiate the Kalman filter by choosing Σ0 = Σ∞ , then from (9.1.11)

and (9.1.9), we obtain a time invariant Kt matrix, call it K . Under this

circumstance, representation (9.2.1) becomes time invariant. The stationary

covariance matrix of the innovations is given by Ω = Eata
′
t = GΣG′ +R , where

Σ = Σ∞ = Σ0 .

The second useful result is that Assumptions A1 and A2 imply that Ao −
KG is a stable matrix, i.e., its eigenvalues are strictly less than unity in modulus.

Later we shall see how the stability of the matrix Ao −KG plays a key role in

a convenient formula for the autoregressive representation for the {yt} process.

4 The limiting form of (9.1.10) is evidently a discrete Lyapunov or Sylvester equation. See

chapter 8.
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9.3.1. Time-Invariant Innovations Representation

The infinite-horizon time invariant Kalman filter defines a matrix valued func-

tion, which we express as
[

K,Σ
]

= kfilter (Ao, G, V1, V2, V3) (9.3.2)

where V1 = CC ′, V2 = Evtv
′
t, V3 = Ewt+1v

′
t,Σ = Et−1(xt−x̂t)(xt−x̂t)′. For our

model, we can use (9.3.2) with the following settings for the matrices V1, V2, V3 :

V1 = CC ′, V2 = R, V3 = a matrix of zeros conformable to x and y. 5

By using the function kfilter, we can evidently associate with represen-

tation (9.1.1) a time-invariant innovations representation (9.2.1) in which Kt

is constant.

9.4. Serially Correlated Measurement Errors

It is useful to adapt the preceding calculations to cover the case in which the

measurement errors vt in (9.1.1) are serially correlated.6 Modify (9.1.1) to be

xt+1 = Aoxt + Cwt+1

yt = Gxt + vt

vt = Dvt−1 + ηt

(9.4.1)

where D is a matrix whose eigenvalues are strictly below unity in modulus and

ηt is a martingale difference sequence that satisfies

Eηtη
′
t = R

Ewt+1η
′
s = 0 for all t and s.

In (9.4.1), vt is a serially correlated measurement error process that is orthog-

onal to the xt process.

Define the quasi-differenced process

yt ≡ yt+1 −Dyt. (9.4.2)

5 The function kfilter defined in (9.3.2) solves a version of (9.1.9) and (9.1.11) for Σ∞
and K∞ , a version that has been generalized to permit arbitrary covariance between wt+1

and vt , which is required for several of our applications.
6 The calculations in this section imitate those of Anderson and Moore [1979].
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From (9.4.1) and the definition (9.4.2) it follows that

yt = (GAo −DG)xt +GCwt+1 + ηt+1

Thus, (xt, yt) is governed by the state space system

xt+1 = Aoxt + Cwt+1

yt = Gxt +GCwt+1 + ηt+1

(9.4.3)

where G = GAo − DG . This state space system has nonzero covariance be-

tween the state noise Cwt+1 and the “measurement noise” (GCwt+1 + ηt+1).

Define the covariance matrices V1 = CC ′, V2 = GCC ′G′ + R, V3 = CC ′G′. By

applying the Kalman filter to (9.4.3), we obtain a gain sequence Kt with which

to construct the associated innovations representation

x̂t+1 = Aox̂t +Ktut

yt = Gx̂t + ut
(9.4.4)

where x̂t = Ê[xt | yt−1
0 , x̂0], ut = yt−Ê[yt | yt−1

0 , x̂0],Ω1 ≡ Eutu
′
t = GΣtG

′
+V2.

Using definition (9.4.2), it follows that [yt+1
0 , x̂0] and [yt0, x̂0] span the same

space, so that x̂t = Ê[xt | yt0, x̂0], ut = yt+1 − Ê[yt+1 | yt0, x̂0]. Thus, ut is the

innovation in yt+1 .

9.5. Combined System

It is useful to have a formula that gives a state space representation for yt driven

by the innovations to yt . We obtain this by combining the innovations system

(9.4.4) for yt with the system

yt+1 = Dyt + yt. (9.5.1)

The system (9.5.1) accepts {yt} as an “input” and produces {yt} as an “out-

put”. The two systems (9.4.4) and (9.5.1) can be combined in a series to give

the state space system:
[

x̂t+1

yt+1

]

=

[

Ao 0

G D

] [

x̂t

yt

]

+

[

Kt

I

]

ut

yt = [ 0 I ]

[

x̂t

yt

]

+ [0]ut

(9.5.2)
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The MATLAB program evardec.m uses the time-invariant version of (9.5.2),

obtained using kfilter.m, to obtain a decomposition of the j -step ahead pre-

diction error variance associated with the Wold representation for yt .
7

9.6. Recursive Formulation of Likelihood Function

The Kalman filter enables a recursive algorithm for computing a Gaussian like-

lihood function for a sample of observations {ys}Ts=0 on a (p×1) vector yt . We

assume that these data are governed by the innovations representation (9.2.1)

The likelihood function of {ys}Ts=0 is defined as the density f(yT , yT−1, . . . , y0).

It is convenient to factor the likelihood function

f(yT , yT−1, . . . , y0) = fT (yT |yT−1, . . . , y0)fT−1(yT−1|yT−2, . . . , y0) · · ·
f1(y1|y0)f0(y0).

(9.6.1)

The Gaussian likelihood function for an n× 1 random vector y with mean

µ and covariance matrix V is

N (µ, V ) = (2π)−n/2|V |− 1
2 exp

(

−1

2
(y − µ)′V −1(y − µ)

)

. (9.6.2)

Evidently, from (9.1.1), the distribution f0(y0) is N (Gx0,Ω0), where Ωt =

GΣtG
′+R and Σt is the covariance matrix of xt around x̂t . Further, f(yt|yt−1, . . . , y0) =

N (Gx̂t,Ωt). It is easy to verify that the distribution gt(at) of the innovation

at is N (0,Ωt) Thus, f0(y0) equals g0(a0), the distribution of the initial inno-

vation. More generally, from (9.2.1), the conditional density ft(yt|yt−1, . . . , y0)

equals the density gt(at) of at . Then the likelihood (9.6.1) can be represented

as

gT (aT )gT−1(aT−1) . . . g1(a1)g0(a0). (9.6.3)

Expression (9.6.3) implies that the logarithm of the likelihood function for yT0
is

−.5
T
∑

t=0

{p ln(2π) + ln |Ωt| + a′tΩ
−1
t at}. (9.6.4)

7 The MATLAB program series.m can be used to obtain the time-invariant system (9.5.2)

from the two systems (9.4.4) and (9.5.1).



196 Representation and Estimation

9.6.1. Initialization

Two alternative sets of assumptions are commonly used to initiate the Kalman

filter, corresponding to different information about y0 .

(a.) The distribution of the initial y0 is treated as if it were conditioned on an

infinite history of y ’s. This idea is implemented by specifying that x0 has mean

x̂0 = E[x0|y−1, y−2, . . .] , and a covariance matrix Σ0 = Σ∞ coming from the

steady state of the Kalman filter. In this case, the time-invariant Kalman filter

can be used to construct the Gaussian log likelihood:

−.5
T
∑

t=0

{p ln(2π) + ln |Ω| + a′tΩ
−1at}, (9.6.5)

where Ω = GΣ∞G′ +R , and where the innovations at are computed using the

steady state Kalman gain K . This procedure amounts to replacing f0(y0) in

(9.6.1) with f(y0|y−1
−∞).

(b.) The initial value y0 is drawn from the stationary distribution of y , meaning

that it is associated with an x0 governed by the stationary distribution of xt , an

assumption implemented by initiating the Kalman filter with Σ0 = Σx , where

Σx is the asymptotic stationary covariance matrix of x .

Assumptions (a) and (b) pertain to how one selects the matrix Σ0 . Under

each of assumptions (a) and (b), it is common to set x̂0 equal to the uncondi-

tional mean of x , provided that this exists.

9.6.2. Non-existence of a stationary distribution

Approach (b) assumes that the law of motion xt+1 = Aoxt + Cwt+1 is such

that the {xt} process has an asymptotic stationary distribution, and cannot

be used without modification in models that violate this assumption. When an

asymptotic stationary distribution doesn’t exist, one procedure is to assume a

‘diffuse’ initial distribution over the piece of x0 that has no stationary distribu-

tion. The models described in chapter 13, with their co-integrated equilibrium

consumption processes, necessitate such a procedure.

In the appendix, we describe a method for coping with this situation, in-

spired by ideas of Kohn and Ansley (19XXX). It is most useful for us to describe
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their idea in the context of models with serially correlated measurement errors,

which we treat in the next section.

9.6.3. Serially correlated measurement errors

When we use the state space model with serially correlated measurement errors

(9.4.1), some adjustments are called for in the above procedures for forming the

log likelihood. These adjustments are occasioned by

the timings in the definitions of x̂t, ut . In particular, the notation now

denotes x̂t = E[xt|yt] and Σt = E(xt− x̂t)(xt− x̂t)
′ . These changes mean that

the distribution gt−1(ut−1) equals ft(yt|yt−1, . . . , y0). So corresponding to the

factorization (9.6.1) we have

gT−1(uT−1)gT−2(uT−2) . . . g0(u0)g−1(u−1). (9.6.6)

To deduce the appropriate distribution of y0 , or equivalently, of u−1 , notice

that the time 0 version of the ‘whitener’ is

u−1 = y0 −Dy−1 −Gx̂−1

x̂0 = Aox̂−1 +K0u−1,

where K0 is the time 0 value for the Kalman gain. It is natural to start

the system with y−1 = GEx and x̂−1 = Ex , where Ex is the stationary

mean of xt ,
8 and to initiate the Kalman filter from the mean of the stationary

distribution of x . So the Gaussian log likelihood function is

−.5
T−1
∑

t=−1

{p ln(2π) + ln |Ωt| + u′tΩ
−1
t ut}. (9.6.7)

We now indicate how these procedures can be adapted to handle models

for which no stationary distribution for xt exists, following procedures of Kohn

and Ansley (BLANK). The idea is to factor the likelihood function as

f(yT , yT−1, . . . , y0) = fT (yT |yT−1, . . . , y0)fT−1(yT−1|yT−2, . . . , y0) · · ·
fm(ym|ym−1, . . . , y0)f(ym−1, . . . , y0).

(9.6.8)

8 Notice that G and not G appears in the equation for the unconditional mean.
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Kohn and Ansley assign a ‘diffuse prior’ to that subset of the state vector that

does not possess a stationary distribution, and let the remaining piece of x0 be

distributed according to its stationary distribution. This specification embodies

an ‘improper prior’ distribution for (ym−1, . . . , y0). Under this specification, we

use the first m observations of yt to estimate xm−1 , then form x̂m−1,Σm−1

from which to initiate the Kalman filter for the system (9.4.3) with serially

correlated measurement errors. The Kalman filter is applied to compute the

likelihood for the sample {ys}Ts=m . In addition, we can adjust (9.6.8) to account

for the first m observations. Details are given in the appendix.

9.7. Wold Representation

For the purpose of describing the relationship of the time-invariant innovations

representation to the Wold and autoregressive representations, we shall avail

ourselves when needed of:

Assumption A3: The eigenvalues of Ao are all less than unity in modulus,

except possibly for one associated with a constant.

A Wold representation for a stationary stochastic process yt is a moving

average of the form

yt = Ey +

∞
∑

j=0

Γjǫt−j ,

where ǫt = yt − Ê[yt|yt−1] , and
∑∞
j=0 traceΓjΓ

′
j < +∞ . (Below, we shall

for the most part set the unconditional mean vector Ey to zero, to conserve on

notation.) We can attain a Wold representation by manipulating the innovations

system in a way that amounts to driving the date for the initial x̂0 arbitrarily

far into the past. Thus, the first equation of (9.4.4) can be solved recursively

for

x̂t+1 =

t
∑

j=0

(Ao)jKut−j + (Ao)t+1x̂0.

Now assume that x̂0 was itself formed by having observed the history y−1 , so

that

x̂0 = (I −AoL)−1Ku−1 + µx,
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where µx is the unconditional mean of x . Under this specification for x̂0 ,

x̂t+1 = (I −AoL)−1Kut + µx. (9.7.1)

Below, we shall omit the unconditional mean term, by assuming that µx = 0.

To get a Wold representation for yt , substitute (9.4.2) into (9.4.4) to obtain

x̂t+1 = Aox̂t +Kut

yt+1 −Dyt = Gx̂t + ut.
(9.7.2)

Then (9.7.2) and (9.7.1) can be used to get a Wold representation for yt :

yt+1 = [I −DL]−1[I +G(I −AoL)−1KL]ut, (9.7.3)

where again L is the lag operator. Also, from (9.7.2) a “whitening filter” for

obtaining {ut} from {yt} is given by

ut = yt+1 −Dyt −Gx̂t

x̂t+1 = Aox̂t +Kut.
(9.7.4)

9.8. Vector Autoregression for {yt}

We can use the innovations representation and some results from linear algebra

to derive a convenient formula for the one-step-ahead linear least squares fore-

cast of yt based on the history of the {yt} process. We begin by deriving a

version of the factorization identity, which asserts equality between two repre-

sentations of the spectral density matrix of the observables. We will encounter a

mathematically equivalent form of this identity in Chapter 11 when we discuss

observationally equivalent representations of preferences.
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9.8.1. The factorization identity

For the model with serially uncorrelated measurement errors, we have two

alternative representations for an observed process {yt} , the original state space

representation (9.1.1) and the innovations representation (9.2.1). Because they

describe the same stochastic process {yt} , they give two alternative represen-

tations of the spectral density matrix of {yt} , an outcome that expresses the

factorization identity.

The original state space representation is

xt+1 = Aoxt + Cwt+1

yt = Gxt + vt,
(9.8.1)

where wt+1 is a martingale difference sequence of innovations to agents’ infor-

mation sets, and vt is another martingale difference sequence of measurement

errors. We assumed that wt+1, vt are mutually orthogonal stochastic processes.

The first line of representation (9.8.1) can be written L−1xt = (I−AoL)−1Cwt+1

or xt = (L−1 −Ao)−1Cwt+1 . It follows that the covariance generating function

of {xt} satisfies

Sx(z) = (zI −Ao)−1CC ′(z−1I − (Ao)′)−1.

Using this expression and the second line of (9.1.1), together with the observa-

tion that vt is orthogonal to the process xt , shows that the covariance generating

function of yt is given by

Sy(z) = G(zI −Ao)−1CC ′(z−1I − (Ao)′)−1G′ +R. (9.8.2)

Representation (9.2.1) implies x̂t = (L−1 −Ao)−1Kat , and

yt = [G(L−1 −Ao)−1K + I]at. (9.8.3)

Because at is a white noise with covariance matrix GΣG′ + R , it follows that

the covariance generating function of {yt} equals

Sy(z) = [G(zI −Ao)−1K + I][GΣG′ +R][K ′(z−1I −Ao′)−1G′ + I]. (9.8.4)

Expressions (9.8.2) and (9.8.4) are alternative representations for the covariance

generating function Sy(z). Equating them leads to the factorization identity:

G(zI −Ao)−1CC ′(z−1I −Ao′)−1G′ +R =

[G(zI −Ao)−1K + I][GΣG′ +R][K ′(z−1I −Ao′)−1G′ + I].
(9.8.5)
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The importance of the factorization identity hinges on the fact that, under

assumptions A1 and A2, the zeros of the polynomial det[G(zI−Ao)−1K+I] all

lie inside the unit circle, which means that in the representation (9.8.3) for yt ,

the polynomial in L on the right hand side has a one-sided inverse in nonnegative

powers of L , so that at lies in the space spanned by yt . We establish this result

in the next section, then apply it in subsequent ones.

9.8.2. Location of zeros of characteristic polynomial

We utilize two theorems from the algebra of partitioned matrices. Let a, b, c, d be appropriately

conformable and invertible matrices. Then

(a− bd−1c)−1 = a−1 + a−1b(d− ca−1b)−1ca−1 (9.8.6)

and

det(a) det(d+ ca−1b) = det(d) det(a+ bd−1c). (9.8.7)

Apply equality (9.8.6) to [I + G(zI − Ao)−1K]−1 with the settings a = I, b = −G, d =

(zI −Ao), c = K , to get

[I +G(zI −Ao)−1K]−1 = I −G[zI − (Ao −KG)]−1K. (9.8.8)

Apply equality (9.8.7) with the settings a = I, b = G, d = (zI −Ao), c = K to get

det(zI − (Ao −KG)) = det(zI −Ao) det(I +G(zI −Ao)−1K),

or

det[I +G(zI −Ao)−1K] =
det(zI − (Ao −KG))

det(zI −Ao)
. (9.8.9)

It follows from (9.8.9) that the zeros of det[I + G(zI − Ao)−1K] are the eigenvalues of

Ao−KG , and the poles of det[I +G(zI −Ao)−1K] are the eigenvalues of Ao . Assumptions

A1 and A2 guarantee that the eigenvalues of Ao −KG are less than unity in modulus. We

have already made assumptions that assure that the eigenvalues of Ao are less than unity

in modulus. These conditions on the eigenvalues together with equations (9.8.8) and (9.8.9)

permit us to obtain the Wold and autoregressive representations of {yt} in convenient forms.
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9.8.3. Wold and autoregressive representations (white measure-
ment errors)

From (9.8.8), we have that

[G(I −AoL)−1KL+ I]−1 = I −G[I − (Ao −KG)L]−1KL. (9.8.10)

For the model with serially uncorrelated measurement errors, the Wold repre-

sentation for {yt} is

yt = [G(I −AoL)−1KL+ I]at. (9.8.11)

Applying the inverse of the operator on the right of (9.8.11) and using (9.8.10)

gives

yt = G[I − (Ao −KG)L]−1Kyt−1 + at, (9.8.12)

which decomposes yt into an innovation at and a one-step ahead linear least

squares predictor

E[yt|yt−1] = G[I − (Ao −KG)L]−1Kyt−1. (9.8.13)

Equation (9.8.12) is equivalent with

yt =

∞
∑

j=1

G(Ao −KG)j−1Kyt−j + at. (9.8.14)

Equation (9.8.14) is a vector autoregressive representation for yt . Thus, the

Kalman filter allows us to move from the original state space representation to

a vector autoregression.
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9.8.4. Serially correlated measurement errors

With few modifications, the preceding analysis can be adapted to calculate the

vector autoregressive representation and the one-step ahead prediction for yt for

the case in which the measurement errors are vector first-order autoregressive

processes. We have seen that the Wold representation in this case takes the

form

yt+1 = [I −DL]−1[I +G(I −AoL)−1KL]ut. (9.8.15)

Operating on both sides of (9.8.15) with the inverse of the operator in L on the

right side, and using (9.8.10), we obtain

[I −DL] {I −G[I − (Ao −KG)L]−1KL}yt+1 = ut,

or

yt+1 = {D + (I −DL)G[I − (Ao −KG)L]−1K} yt + ut, (9.8.16)

where recall that ut = yt+1 − Ê[yt+1|yt] . The above equation can be expressed

in the alternative forms

yt+1 = Dyt +G
∞
∑

j=1

(Ao −KG)j−1Kyt−j+1

−DG
∞
∑

j=1

(Ao −KG)j−1Kyt−j + ut,

or

yt+1 =[D +GK]yt +
∞
∑

j=1

[G(Ao −KG)jK

−DG(Ao −KG)j−1K]yt−j + ut.

(9.8.17)

These equations express yt+1 as the sum of the one-step ahead linear least

squares forecast and the one-step prediction error.9

9 The MATLAB program varrep.m uses (9.8.17) to obtain a vector autoregressive repre-

sentation for an equilibrium set of yt ’s, given [Ao, C,G,D,R] .
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9.9. Innovations in yt+1 as Functions of Innovations wt+1

and ηt+1

By coupling the original state space system with the associated innovations

representation, it is possible to express the innovations in the {yt} process as

functions of the disturbances {wt} and the measurement errors {vt} . Having

a method for expressing this connection can be useful when we want to inter-

pret the innovations in {yt} as functions of the shocks impinging on agents’

information sets and the measurement errors.

The state space system is

xt+1 = Aoxt + Cwt+1

yt = Gxt +GCwt+1 + ηt+1,
(9.9.1)

which corresponds to an innovations representation, which can be expressed as

the “whitener”
x̂t+1 = (Ao −KG)x̂t +Kyt

ut = yt −Gx̂t.
(9.9.2)

Substituting the second equation of (9.4.3) into the first equation of (9.9.2)

gives

x̂t+1 = (Ao −KG)x̂t +KGxt +KGCwt+1 +Kηt+1. (9.9.3)

Using (9.9.3), systems (9.4.3) and (9.9.2) can be combined to give the consoli-

dated system
[

xt+1

x̂t+1

]

=

[

Ao 0

KG Ao −KG

] [

xt

x̂t

]

+

[

Cwt+1

KGCwt+1 +Kηt+1

]

(9.9.4)

ut = [G −G]

[

xt
x̂t

]

+ [GCwt+1 + ηt+1]

In system (9.9.4), the “inputs” are the innovations to agents’ information sets,

namely, wt+1 , and the innovations to the measurement errors, namely, ηt+1 .

The “output” of the system is the innovation to yt+1 , namely ut = yt+1−Êyt+1 |
yt . By computing the impulse response function of system (9.9.4), we can study

how the innovations ut depend on current and past values of wt+1 and ηt+1 .

Versions of formula (9.9.4) are useful for studying the range of issues considered

by Hansen and Sargent [1991, “Two Difficulties”].10 In the next section, we

illustrate one such issue in the context of a permanent income example.

10 The MATLAB programs white1.m and white2.m use formula (9.9.4) to compute impulse

response functions of ut with respect to wt and ηt , respectively.
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9.10. Innovations in the yt ’s and the wt ’s in a Permanent

Income Model

This section illustrates some of the preceding ideas in the context of an economic

model that implies that the econometrician’s information set spans a smaller

space than agents’ information. The context is a class of models which impose

a form of expected present value budget balance. As we shall see, expected

present value budget balance is characterized by a condition that implies that

the moving average representation associated with the model, which records the

response of the system to the wt ’s, fails to be invertible. The outcome is that the

innovations in the autoregressive representation don’t coincide with the wt ’s.

Representation (9.9.4) can be used to compute a distributed lag expressing the

innovations as functions of the lagged wt ’s.

We consider the following version of Hall’s model in which the endowment

process is the sum of two orthogonal autoregressive processes. Preferences,

technology, and information are specified as follows:

9.10.1. Preferences

−1

2
E

∞
∑

t=0

βt[(ct − bt)
2 + ℓ2t ] | J0

9.10.2. Technology

ct + it = γkt−1 + dt

φ1it = gt

kt = δkkt−1 + it

gt · gt = ℓ2t
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9.10.3. Information

A22 =



















1 0 0 0 0 0

0 .9 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0



















, C2 =



















0 0

1 0

0 4

0 0

0 0

0 0



















Ud =

[

5 1 1 .8 .6 .4

0 0 0 0 0 0

]

Ub = [ 30 0 0 0 0 0 ]

We specify that γ = .05, δk = 1, β = 1/1.05, φ1 = .00001. Note that

β(δk + γ) = 1, which is the condition for consumption to be a random walk

in Hall’s model. The preference shock is constant at 30, while the endowment

process is the sum of a constant (5) plus two orthogonal processes. In particular,

we have specified that dt = 5 + d1t + d2t , where

d1t = .9d1t−1 + w1t

d2t = w̃2t + .8w̃2t−1 + .6w̃2t−2 + .4w̃2t−3

where (w1t, w̃2t) = (w1t, 4w2t). Notice that we have set

E

[

w1t

w̃2t

] [

w1t

w̃2t

]′
=

[

1 0

0 16

]

.

Here d1t is a first order autoregressive process, while d2t is a third order pure

moving average process.

We define the household’s net of interest deficit as ct−dt . Hall’s model im-

poses “expected present value budget balance,” in the sense that E
∑∞
j=0 β

j(ct+j−
dt+j) | Jt = β−1kt−1 for all t ,11 which implies that the present value of the

moving average coefficients in the response of the deficit to innovations in agents’

information sets must be zero. That is, let the moving average representation

of (ct, ct − dt) in terms of the wt ’s be12

[

ct

ct − dt

]

=

[

σ1(L)

σ2(L)

]

wt, (9.10.1)

11 See Sargent [1987] and Hansen, Roberds, and Sargent [1990].
12 Without loss of generality, the covariance matrix of wt can be chosen to be the identity

matrix.
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where σ1(L) and σ2(L) are each (1 × 2) matrix polynomials, and σ(L) =
∑∞
j=0 σjL

j . Then Hall’s model imposes the restriction

σ2(β) = [ 0 0 ] . (9.10.2)

The agents in this version of Hall’s model observe Jt at t , which includes

the history of each component of wt up to t . This means that agents see histo-

ries of both components of the endowment process d1t and d2t . Let us now put

ourselves in the shoes of an econometrician who has data on the history of the

pair [ ct, dt ] , but not directly on the history of wt . We imagine the econometri-

cian to form a record of consumption and the deficit [ ct, ct − dt ] , and to obtain

a Wold representation for the process [ ct, ct − dt ] . Let this representation be

denoted13
[

ct

ct − dt

]

=

[

σ∗
1(L)

σ∗
2(L)

]

ut, (9.10.3)

where σ∗(L) is one-sided in nonnegative powers of L , and ut is a serially un-

correlated process with mean zero and Eutu
′
t = I ; ut is the innovation of

[ ct, ct − dt ] relative to the history [ct−1, ct−1−dt−1] . In representation (9.10.3),

ut is the object that would appear in the Gaussian log likelihood function, as

in formula (9.6.4).

It is natural to ask whether the impulse response functions σ∗(L) in the

Wold representation (or vector autoregression) (9.10.3) estimated by the econo-

metrician “resemble” the impulse response functions σ(L) that depict the re-

sponse of ( ct, ct − dt ) to the innovations to agents’ information. A way to

attack this question is to ask whether the history of the {ut} process of innova-

tions to the econometrician’s information set in (9.10.3) reveals the history of

the {wt} process impinging on agents’ information sets. In the present model,

the answer to this question is ‘no’ precisely because restriction (9.10.2) holds. In

particular, (9.10.2) implies that the history of ut ’s in (9.10.3) spans a smaller

linear space than does the history of wt ’s.

Here is the reason. The ut ’s in (9.10.3) are constructed to lie in the space

spanned by the history of the [ ct, ct − dt ] process.14 Technically, this implies

13 Without loss of generality, the covariance matrix of ut can be chosen to be the identity

matrix.
14 Recall the construction underlying Wold’s representation theorem, e.g., see Sargent [1987,

chapter XI].
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that the operator σ∗(L) in (9.10.3) is invertible, so that (9.10.3) can be ex-

pressed as

ut = σ∗(L)−1

[

ct

ct − dt

]

,

where σ∗(L)−1 is one-sided in nonnegative powers of L , and where the coeffi-

cients in its power series expansion are square summable. Given that σ∗(z)σ∗(z−1)′

is of full rank, a necessary condition for σ∗(L)−1 to exist (i.e., to have a repre-

sentation as a square-summable polynomial in nonnegative powers of L) is that

det σ∗(z) have no zeros inside the unit circle.

Condition (9.10.2) then rules out the possibility that σ∗(L) is related to

σ(L) by a relation of the form σ∗(L) = Uσ(L) where U is a nonsingular 2 × 2

matrix. For (9.10.2) implies that det σ(z) has a zero at β , which is inside the

unit circle. In circumstances in which [ ct, ct − dt ] is a full rank process,15 the

history of [ ct, ct − dt ] generates a smaller information set than does the history

of the wt process.

When ut spans a smaller space than wt , ut will typically be a distributed

lag of wt that is not concentrated at zero lag:

ut =
∞
∑

j=0

αj wt−j . (9.10.4)

Thus the econometrician’s news ut potentially responds with a lag to the agents’

news wt . The calculations leading to representation (9.9.4) can be used to

compute the vector distributed lag αj .

To illustrate these ideas in the context of the present version of Hall’s

model, figures 9.10.1.a and 9.10.1.b display the impulse response functions of

[ ct, ct − dt ] to the two innovations in the endowment process. Consumption

displays the characteristic “random walk” response with respect to each inno-

vation. Each endowment innovation leads to a temporary surplus followed by

a permanent net-of-interest deficit. The temporary surplus is used to accumu-

late a stock of capital sufficient to support the permanent net of interest deficit

that is to follow it. Restriction (9.10.2) states that the temporary surplus just

offsets the permanent deficit in terms of expected present value. For each inno-

vation, we computed the present value of the response of (ct − dt) to be zero,

as predicted by (9.10.2).

15 By a full rank process we mean that σ∗(z)σ∗(z−1) .
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Fig. 9.10.1.a. Impulse response of con-

sumption and deficit to first endowment

innovation. The dotted line denotes the

deficit, the dark line consumption.
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Fig. 9.10.1.b. Impulse response of con-

sumption and deficit to second endow-

ment innovation. The dotted line de-

notes the deficit, the dark line consump-

tion.

Figures 9.10.2.a and 9.10.2.b report the impulse responses from the Wold

representation, which we obtained using the programs varma.m and varma2.m.

The innovation covariance matrix for the ut ’s was

Eσ∗
0σ

∗′
0 =

[

.3662 −1.9874

−1.9874 12.8509

]

.

Notice that consumption responds only to the first innovation in the Wold repre-

sentation, and that it responds with an impulse response symptomatic of a ran-

dom walk. That consumption responds only to the first innovation in the vector

autoregression is indicative of the Granger-causality imposed on the [ ct, ct − dt ]

process by Hall’s model: consumption Granger causes ct − dt , with no reverse

causality.

Unlike consumption, the response of the deficit (ct − dt) to the innova-

tions in the vector autoregression depicted in figures 9.10.2.a and 9.10.2.b fail

to match up qualitatively with the patterns displayed in figures 9.10.1.a and

9.10.1.b. In particular, the present values (σ∗
2(β)) of the response of ct − dt to

ut are (6.0963, 6.6544). By construction, σ∗
2(β) cannot be zero because σ∗

2(L)

is invertible.
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Fig. 9.10.2.a. Impulse response of con-

sumption and deficit to first innovation

in Wold representation. The dotted line

denotes the deficit, the dark line con-

sumption.
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Fig. 9.10.2.b. Impulse response of con-

sumption and deficit to second innova-

tion in Wold representation. The dot-

ted line denotes the deficit, the dark line

consumption.

Figures 9.10.3.a and 9.10.3.b display the impulse responses of ut to wt , the

kind of representation depicted in equation (9.10.4). While the responses of the

innovations to consumption are concentrated at lag zero for both components of

wt , the responses of the innovations to (ct−dt) are spread over time (especially

the response to w1t ). Thus, the innovations to (ct − dt) as revealed by the

vector autoregression depend on what to economic agents is “old news”.

Hansen, Roberds, and Sargent [1991] describe how such issues impinge on

strategies for econometrically testing present value budget balance. Hansen

and Sargent [1991] and Marcet [1991] more generally study the link between

innovations in a vector autoregression and the innovations in agents’ information

sets.
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Fig. 9.10.3.a. Impulse response of in-

novations in Wold representation for con-

sumption and deficit to first endowment

innovation. The dotted line denotes the

deficit, the dark line consumption.
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Fig. 9.10.3.b. Impulse response of in-

novations in Wold representation for con-

sumption and deficit to second endow-

ment innovation. The dotted line de-

notes the deficit, the dark line consump-

tion.

9.11. Frequency Domain Estimation

We now describe how to estimate the free parameters of the model (9.4.1)

using the frequency domain approximation to the likelihood function of Hannan

[1970].We assume a model for which yt is asymptotically stationary. Let the

mean vector for the observable {yt} process be denoted µ . The mean vector µ

is a function of the parameters of the model. The spectral density matrix of the

{yt} process is defined as

Sy(ω) =

∞
∑

τ=−∞
Cy(τ)e

−iωτ (9.11.1)

where Cy(τ) = E[yt−µ][yt−τ −µ]′ . For the model (9.4.1), the spectral density

can be represented as

Sy(ω) = G(I −Aoe−iω)−1CC ′(I −Ao′e+iω)−1G′

+ (I −De−iω)−1R(I −D′e+iω)−1
(9.11.2a)
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and the unconditional means can be represented via a function

Eyt ≡ µ = µ(Ao, G). (9.11.2b)

The autocovariances can be recovered from Sy(ω) via the inversion formula16

Cy(τ) =

(

1

2π

)∫ π

−π
Sy(ω)e+iωτdω. (9.11.3)

Let yt be a (p × 1) vector. Suppose that a sample of observations on {yt}Tt=1

is available. Define the Fourier transform of {yt}Tt=1 as

y(ωj) =

T
∑

t=1

yte
−iωjt, ωj =

2πj

T
, j = 1, . . . , T. (9.11.4)

The periodogram of {yt}Tt=1 is defined as

Jy(ωj) =
1

T
y(ωj)y(ωj)

′, (9.11.5)

where the overbar denotes complex conjugation.

Following Hannan [1970], the Gaussian log likelihood of {yt}Tt=1 as a func-

tion of the free parameters determining Ao, C,D, and R can be approximated

as

L∗ = −
(

1

2

)

(T + Tp) log 2π −
T/2+1
∑

j=1

log{detSy(ωj)}

−
T/2+1
∑

j=1

trace
[

Sy(ωj)
−1Jy(ωj)

]

− T

2
trace

{

Sy(0)−1
[

T−1
T
∑

t=1

yt − µ
] [

T−1
T
∑

t=1

yt − µ
]′}

(9.11.6)

In (9.11.6), p is the dimension of the yt vector.

The free parameters determining Ao, C,D , and R can be estimated by

maximizing the right side of (9.11.6) with respect to them. Notice that the

data {yt}Tt=1 enter the right side of (9.11.6) only through the sample mean

16 The MATLAB programs spectral.m and spectr1.m can be used to compute a spectral

density matrix for one of our models. These programs implement formula (9.11.2).
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T−1
∑T
t=1 yt and the periodogram Jy(ωj), while the theory enters through re-

lation (9.11.2) which determines µ and Sy(ωj) as functions of the free param-

eters. Parameter estimation uses any of a variety of hill-climbing algorithms on

(9.11.6).17

An advantage of frequency domain estimation is that it avoids the need,

associated with time domain estimation, to deduce a Wold representation for yt .

Notice that estimation proceeds without factoring the spectral density matrix

(9.11.2).

9.12. Approximation Theory

When an economist estimates a misspecified model, how are the probability

limits of the parameters that he estimates related to the parameters of a “true”

model? This question is not well posed until one states an alternative model

relative to which the model at hand is regarded as misspecified. If such an

alternative model is on the table, then the question can be answered by adapting

the analysis of approximation used by Christopher Sims [1972] and Halbert

White [1982]. A modification of (9.11.6) underlies the theory of approximation.

To state a complete theory of approximation, these elements are required:

(1) a model that in truth generates the data (to speak of approximation, it is

necessary to specify what is being approximated); (2) the model being estimated;

and (3) the method of parameter estimation. We make the following assumption

about these three elements. The true model is a member of the class of models

described earlier in this book, with parameters denoted by a vector δ . The true

mean vector for the observables is ν(δ), and the true spectral density matrix is

Sy(ω, δ), where Sy(ω, δ) is determined by a version of (9.11.2a) with parameters

A
o
, C,G,R,D , which depend on the parameter vector δ . The estimated model

is another version of (9.11.2), where the parameters determining the matrices

Ao, C,G,R,D , are denoted α , the spectral density matrix is Sy(ω, α), and the

mean vector is µ(α). The method of estimation is maximum likelihood. It can

be shown (see Hansen and Sargent (1993)) that the probability limits of the free

17 For example, see Bard (1974 XXXX).
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parameters α satisfy

plim α̂ = arg max
α

{

− 1

2π

∫ π

−π
log detSy(ω, α) dω

− 1

2π

∫ π

−π
trace

[

Sy(ω, α)−1 Sy(ω, δ)
]

dω

− [ν − µ(α)]Sy(0, α)−1[ν − µ(α)]′
}

.

(9.12.1)

The right side of (9.12.1) is obtained from (9.11.6) by appropriately taking

limits as T → ∞ . Roughly speaking, taking limits replaces the periodogram

Jy(ωj) with the spectral density for the true model Sy(ωj), and replaces the

sample mean with the true mean vector.

9.13. Aggregation Over Time

In this section, we describe how to use the Kalman filter to calculate the like-

lihood for data that are “aggregated over time.” We formulate a model that

generates observations in state space form and then use the Kalman filter to

derive an associated innovations representation from which the Gaussian log

likelihood function can be constructed.

Let the original equilibrium model have the state space form

xt+1 = Aoxt + Cwt+1

yt = Gxt
(9.13.1)

where wt+1 is a martingale difference sequence with Ewt+1w
′
t+1|Jt = I . We

assume that the model is formulated to apply at a finer time interval than that

for which data are available. For example, the model (9.13.1) may apply to

weekly or monthly data, while only quarterly or annual data may be available

to the economist. Furthermore, some of the observed data may be averages over

time of the {yt} data generated by (9.13.1), as when “flow” data are generated

by averaging over time. (Data on output, consumption, and investment flows

are usually generated in this way.) Others of the data may simply be point-in-

time “skip sampled” versions of the data. That is, “quarterly” data are formed

by sampling every thirteenth observation of the “weekly” data. We want to

catalogue the restrictions imposed on these time aggregated data by the model
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(9.13.1). We accomplish this by deducing the likelihood function of these data

as a function of the free parameters for (9.13.1).

We perform our analysis of aggregation over time in two steps. First, we

expand the state space by including enough lagged states to accommodate what-

ever averaging over time of data is occurring. Let m be the number of dates

over which data are potentially to be averaged. Then we form the augmented

system















xt+1

xt
xt−1

...

xt−m+2















=















Ao 0 · · · 0 0

I 0 · · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0





























xt

xt−1

xt−2

...

xt−m+1















+















C

0

0
...

0















wt+1

or

xt+1 = Axt + Cwt+1 (9.13.2)

where

xt+1 =















xt+1

xt

xt−1

...

xt−m+2















, A =















Ao 0 · · · 0 0

I 0 · · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0















, C =















C

0

0
...

0















. (9.13.3)

Once we have formed A and C , it is easy to form the appropriate model for

averaged data. For example, suppose that we are interested in forming the

model governing three period averages of consumption. We would set m equal

to 3 in (9.13.2) and (9.13.3), and could then model averaged consumption

via the observer equation yt = Gxt where G = [Sc Sc Sc] . The MATLAB

program avg.m obtains the matrices A and C of (9.13.3) for a given m , thereby

accomplishing the first step in our analysis of aggregation over time.

The second step is actually to perform the aggregation over time by skip-

ping observations on a representation of the form (9.13.1) or (9.13.2). Let an

equilibrium be represented in the state space form

xt+1 = Axt + Cwt+1, t = 0, 1, 2, . . .

yt = Gxt
(9.13.4)
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where the first line of (9.13.4) could correspond either to (9.13.2) or to its

special case, the first line of (9.13.1). Suppose that data on yt are available

only every r > 1 periods, where r is an integer. Then the data are generated

by the model
xt+r = Arxt + wrt+r, t = 0, r, 2r, . . .

yt = Gxt
(9.13.5)

where

Ar = Ar

wrt+r = Ar−1Cwt+1 +Ar−2Cwt+2 + · · · +ACwt+r−1 + Cwt+r
(9.13.6)

Represent (9.13.5),(9.13.6) as the state space system

xs+1 = Arxs + wrs+1 , s = 0, 1, 2, . . .

ys = Gxs
(9.13.7)

where wrs+1 is a martingale difference sequence with contemporaneous covari-

ance matrix

Ewrsw
r′
s = CC ′ +ACC ′A′ + · · · +Ar−1CC ′Ar−1′

≡ V.
(9.13.8)

Now suppose that only error-corrupted observations on the time aggregated

{ys} data are available, and that the measurement errors are first-order serially

correlated. To capture this assumption, augment (9.13.7) – (9.13.8) to become

the state space system
xs+1 = Arxs + wrs+1

ys = Gxs + υs

υs = Dυs−1 + ηs

(9.13.9)

where Eηsη
′
s = R and Ews+1η

′
s = 0 for all t and s .

System (9.13.9) is a version of the state space system (9.4.1). Proceeding

as in our analysis of (9.4.1), define ys ≡ ys+1 −Dys and Gr = (GAr −DG).

Then (9.13.9) implies the system

xs+1 = Arxs + wrs+1

ys = Grxs +Gwrs+1 + ηs+1.
(9.13.10)

Define the covariance matrices Ewrsw
r′

s = V ≡ V1, E(Gwrs+1 + ηs+1)(Gw
r
s+1 +

ηs+1)
′ = GV G′ +R ≡ V2, Ew

r
s+1(Gw

r
s+1 +ηs+1)

′ = V G′ = V3. Use the function
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kfilter to obtain [K,Σ] = kfilter(Ar, Gr, V1, V2, V3). Then an innovations

representation for system (9.13.10) is

x̂s+1 = Arx̂s +Kas

ys = Grx̂s + as
(9.13.11)

where x̂s = E[xs | ys−1
0 ], as = ys − E[ys | ys−1

0 ],Ω1 ≡ Easa
′
s = GrΣG

′
r +

V2. Once again, the innovations representation (9.13.11) can be used to form

the residuals at recursively, and thereby to form the Gaussian log likelihood

function.18

We illustrate the programs avg.m and aggreg.m by showing how they

can be used to analyze the effects of aggregation over time in the context of

our equilibrium version of Hall’s model. We want to deduce the univariate

Wold representation for consumption data that are constructed by taking a

three period moving average, and then “skip sampling” every third period. The

following MATLAB code performs these calculations:

clex11; reads in parameters of Hall’s economy

solvea; computes the equilibrium

[AA,CC]= avg(a0,C,3); forms state for three period averaging

G = [sc sc sc]; forms observer for three-period moving average

of consumption

R = .0001; D = 0; sets parameters of measurement error process

[Ar,Cr,aa,bb,cc,dd,V1] =

aggreg (AA,CC,G,D,R,3)

y = dimpulse(aa,bb,cc,dd,1,20); forms moving average representation

We have set the parameters of Hall’s model at the values that make unaver-

aged consumption follow a random walk. Notice that we set R and D so that

only a very small measurement error is present in consumption. The impulse

response function for skip-sampled three period moving average consumption

reveals the following representation for the skip-sampled moving average data

ct :

ct − ct−1 = at + .2208at−1

where at = ct − E(ct | ct−1, ct−2, . . .). Thus, the first difference of ct is a first-

order moving average process. These calculations recover a version of Holbrook

18 The MATLAB program aggreg.m constructs the innovations representation (9.13.11)

from inputs in the form of the state space representation (9.13.4) and the parameters R and

D of the measurement error model (9.13.2).
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Working’s [1960] findings about the effects of skip sampling a moving average

of a random walk.

9.14. Simulation Estimators

We have described how to estimate the free parameters of a model using data

that are possibly error-ridden linear functions of the state vector xt . In our

models, quantities and (scaled Arrow-Debreu) prices are linear functions of the

state, but asset prices and rates of return are non-linear functions of the state.

In this section, we describe how observations of non-linear functions of the state

can be used in estimation.

The equilibrium transition law for the state vector xt is given by

xt+1 = Ao(θ)xt + C(θ)wt+1, Ewtw
′
t = I (9.14.1)

where the r × 1 vector θ contains the free parameters of preferences, technolo-

gies, and information. We partition the data into two parts, (z1t, t = 0, . . . T )

and (z2t, t = 0, . . . T ), where the z1t ’s are linear functions of the state xt , and

the z2t ’s are nonlinear functions of the state. Assume that z1t is k× 1 and z2t

is m × 1. The data are related to the state xt and measurement errors vt as

follows:
z1t = G(θ)xt + v1,t

z2t = f(xt, v2,t, θ),

where

E

(

wt+1

vt

)(

wt+1

vt

)′
=

(

Q(θ) W (θ)

W (θ)′ R(θ)

)

,

and where Q(θ) = C(θ)C(θ)′ .

The Gaussian log likelihood function of {z1t}Tt=0 is

L(θ) =
T
∑

t=0

ℓt = −1

2

T
∑

t=0

[

p log(2π) + log |Ωt| + a′tΩ
−1
t at

]

where zt is p× 1 and at = z1,t−E[z1,t|z1,t−1, . . . , z1,0] is the innovation vector

from the ‘innovations representation’ and Ωt = Eata
′
t .
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Maximizing the log likelihood function with respect to θ is equivalent with

a particular Generalized Method of Moments (GMM) procedure using obser-

vations on (z1t, t = 0, . . . T ). Note that the first-order order conditions for

maximizing the log likelihood function are

∂L

∂θ
= 0.

To see how this matches up with GMM, compute the score vector st = ∂ℓt
∂θ

which has elements,

∂ℓt
∂θi

= −1

2
tr

{

(

Ω−1
t

∂Ωt
∂θi

)(

I − Ω−1
t ata

′
t

)

}

−
(∂at
∂θi

)′
Ω−1
t at.

Using the notation of Hansen (1982), the GMM estimator of θ minimizes

JT (θ) = gT (θ)′WT gT (θ) (9.14.2)

where

gT (θ) =
1

T + 1

T
∑

t=0

st(θ)

and WT is any positive definite r×r weighting matrix. Notice that gT (θ) = ∂L
∂θ ,

so that for any positive definite weighting matrix, (9.14.2) is minimized by the

minimizer of L(θ). The irrelevance of the weighting matrix WT reflects the

property that from the viewpoint of GMM, this is a ‘just-identified’ system,

with as many moment conditions as free parameters.

Suppose that we want to use the observations in z1t and in z2t to estimate

θ . We can apply a method described by Ingram and Lee. Given the law of

motion in (9.14.1) and a realization from a pseudo-random number generator for

{wj+1, v1j , v2j}Nj=0 , we can generate a pseudo-random realization of the series

{z1j , z2j}Nj=0 . Let q(·) be a given function of the data. Use the data and the

simulation of the model, respectively, to compute the two moment vectors:

HT (z) =
1

T + 1

T
∑

t=0

q(z1t, z2t)

HN (θ) =
1

N + 1

N
∑

j=0

q(z1j , z2j ; θ).
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Define hT (θ) as follows

hT (θ) =
1

T + 1

T
∑

t=0

[

q(z1t, z2t) −
1

n+ 1

n
∑

j=0

q(z1j , z2j ; θ)
]

= HT (z) −HN (θ),

where n + 1 = (N + 1)/(T + 1) and N + 1 is some integer multiple of T + 1.

Then the estimation strategy for obtaining θ is to minimize

JT (θ) =

[

∂L/∂θ

hT (θ)

]′
WT

[

∂L/∂θ

hT (θ)

]

for some weighting matrix WT . To estimate WT , we can use the two-stage

procedure in Hansen (1982), which is to start with WT = I and then construct

the weighting matrix associated with the resulting estimate of θ .

A. Initialization of the Kalman Filter

This appendix describes how Kohn and Ansley’s idea for estimating the initial

state can be applied in the context of our class of models. Aside from numer-

ical issues, Kohn and Ansley’s procedure is equivalent to using all of the data

{ys}Ts=0 , and initializing the Kalman filter from a partitioned covariance matrix

designed to approximate

Σ0 =

[

+∞I +∞1

+∞Q′ Σ0,22

]

,

where Σ0,22 is the asymptotic covariance matrix of that piece of the state vector

that has an asymptotically stationary distribution, and 1 is a matrix of ones.

The +∞I pertains to elements of the state that have no asymptotic stationary

distribution. In practice, +∞ is approximated by a large positive scalar. This

procedure was used by Harvey and Pierse.19 This procedure ought to be close

to Kohn and Ansley’s, though the literature contains examples of cases in which

the numerical properties of the ‘+∞ ≈ a big number’ approach are poor. For

that reason, it is good to have in hand procedures like the one we shall describe.

19 Another approach has been to use an ‘inverse filter’ in which the recursions are cast in

terms of the inverse of Σt .
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For convenience, we temporarily work with the state-space system20

xt+1 = Axt + Cw∗
t+1

yt = Gxt +Qw∗
t+1,

(9.A.1)

where w∗
t+1 is a martingale difference sequence with identity for its conditional

covariance matrix. In the interest of eventually imputing a diffuse prior to the

initial values of that part of the state vector that has no stationary distribution,

we represent the initial state as

x0 = φη + ψ +Nν,

where ψ is an n × 1 vector with all zeros except possibly for one value of

one, which locates the constant in the state; and ν is normally distributed

with mean zero and covariance I , and η is normally distributed with mean

zero and covariance kI , where the random vectors ν and η are assumed to

be independent. We use φη to represent the piece of the initial state that has

no stationary distribution, and Nν to represent the piece with a stationary

distribution. We attain a diffuse prior on the stationary distribution by driving

k to +∞ . Our plan is to project xm on ym−1, . . . , y0 , while driving k → +∞ ,

and then to initialize the Kalman filter from the resulting estimators of the

distribution of xm .

By iterating on the state equation (9.A.1), we can write:

xm = Amφη +Amψ +Hmw
m (9.A.2)

where wm′ = ( ν′ w1
∗′ . . . w∗′

m ) and

Hm = (Am−1N Am−2C . . . C ) .

Now create a vector Y m−1′ = ( y′0 y′1 ... y′m−1 ) that obeys:

Y m−1 = Mmη + α+Gmw
m (9.A.3)

20 It is easy to map (9.4.3), which describes the state-space system wih serially correlated

measurement errors, into this form. Define w∗
t+1 =

(

wt+1

ηt+1

)

and represent (9.4.3) as

xt+1 = Axt + (C O) w∗
t+1

yt = Gxt + (GC I) w∗
t+1.
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where

Mm =











Gφ

GAφ
...

GAm−1φ











, α =











G

GA
...

GAm−1











ψ

and

Gm =





















GN Q 0 0 · · · 0 0

GAN GC Q 0 · · · 0 0

GA2N GAC GC Q · · · 0 0
...

...
...

...
. . .

...
...

GAm−2N GAm−3C GAm−4C GAm−5C · · · Q 0

GAm−1N GAm−2C GAm−3C GAm−4C · · · GC Q





















Transform equation (9.A.2) as follows. Regress Hmw
m onto Gmw

m , and

denote the residual as Rmw
m , to obtain the representation

Hmw
m = H∗

mGmw
m +Rmw

m, (9.A.4)

where H∗
m = (EHmw

mwm−1′G′
m)(EGmw

mwm−1′G′
m)−1 is a matrix of least

squares regression coefficients and Rm = Hm−H∗
mGm. Thus H∗

m = HmG
′
m(GmGm

′)−1.

Also, since Gmw
m = Y m−1 −Mmη − α , (9.A.4) implies the representation

Hmw
m = H∗

m(Y m−1 −Mmη − α) +Rmw
m.

Rewrite state equation (9.A.2) as:

xm = (Amφ−H∗
mMm)η +Amψ −H∗

mα+H∗
mY

m−1 +Rmw
m. (9.A.5)

Next we compute some conditional expectations and covariances. Initially,

we use (9.A.5) and the facts that (i) by assumption, wm is orthogonal to η ,

and (ii) by construction, Rmw
m is orthogonal to Gmw

m , to compute:

E(xm|Y m−1, η) = (Amφ−H∗
mMm)η +Amψ −H∗

mα+H∗
mY

m−1,

and

cov(xm|Y m−1, η) = RmR
′
m.
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To compute the conditional expectation and covariance matrix conditioning only

Y m−1 , we first compute the projection of η on Y m−1 − α :

η = β∗(Y m−1 − α) + ε,

where ε is a least squares residual. We compute Eη(Y m−1 −α) and the second

moment matrix of Y m−1 − α and use them in the projection formula:

β∗ = (kM ′
m)(kMmM

′
m +GmG

′
m)−1.

Premultiply by [M ′
m(GmG

′
m)−1Mm]−1[M ′

m(GmG
′
m)−1Mm] to get β∗ = [M ′

m(Gm

G′
m)−1Mm]−1M ′

m(GmG
′
m)−1[kMmM

′
m(kMmM

′
m+GmG

′
m)−1] . If we drive k →

+∞ , the last term in square brackets approaches the identity matrix, so that

we have

E(η|Y m−1−α) = [M ′
m(GmGm

′)−1Mm]−1M ′
m(GmGm

′)−1(Y m−1−α). (9.A.6)

Notice that ε = β∗(Mmη + Gmw
m) − η = (β∗Mn − I)η + β∗Gmwm , and that

(β∗Mm − I) = 0. It follows that

cov(η|Y m−1 − α) = [M ′
m(GmGm

′)−1Mm]−1. (9.A.7)

Using these results and applying the Law of Iterated Expectations to (9.A.5)

gives:21

E(xm|Y m−1) = (Am−1φ−H∗
mMm)[M ′

m(GmG
′
m)−1Mm]−1

M ′
m(GmG

′
m)−1(Y m−1 − α) +Am−1ψ −H∗

mα+H∗
mY

m−1, (9.A.8)

and

cov(xm|Y m−1) = RmR
′
m + (Am−1φ−H∗

mMm)[M ′
m(GmG

′
m)−1Mm]−1

(Am−1φ−H∗
mMm)′. (9.A.9)

The Kalman filter is to be initialized by using these values of x̂m,Σm , then

applied to compute (9.6.8), using observations {ys}Ts=m .

21 Note that equations (9.A.6) and (9.A.7) result from applying generalized least squares

to the system of equations (9.A.3), where η is regarded as a matrix of constants and Mm is

a matrix of regressors.
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When we apply this procedure with (9.A.1) corresponding to the system

(9.4.3), we should interpret Y m−1 in the preceding development as Y
m−1

which

corresponds to Y m in the real data. In this case, we should interpret x̂m,Σm
according to definitions of the (̂·) variables defined for the system with serially

correlated measurement errors.22

We can also include a contribution to the likelihood function to account

for the initial observations used to form x̂m . Begin with (9.A.3) and let Ω =

GmG
′
m , which we take to be nonsingular. Suppose that Mm is dimensioned r

by s where r > s so that η is ‘overidentified.’ Construct two matrices labeled

M⊥ and M∗ , dimensioned (r − s) × r and s× r , respectively, to satisfy:

M⊥Ω−1Mm = 0

M∗Ω−1M⊥′ = 0,

and construct the nonsingular matrix:

D =

(

M∗Ω−1

M⊥Ω−1

)

.

Define:

z1 = M∗Ω−1Y m

z2 = M⊥Ω−1Y m.

Notice that conditioned on η , z1 and z2 are uncorrelated. Moreover, by con-

struction z2 does not depend on η .

We deduce the initial likelihood contribution as follows. First note that

(

z1

z2

)

= DY m.

Transforming the z ’s introduces a Jacobian term:

log detD,

which is the first contribution to the likelihood.

22 Notice that with serially correlated measurement errors, (9.A.8), (9.A.9) give the ap-

propriate initial conditions for the Kalman filter, because of the dating conventions that make

ut the innovation to yt+1 .
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The second and third contributions are the likelihoods of the z ’s. Condi-

tioned on η , the likelihood can be factored. Only the first term in the factoriza-

tion depends on η , and is present in the ‘exactly identified’ case. The quadratic

form term converges to zero for this contribution. We deduce the log det term

by taking the limit as k goes to infinity of:

log det(kM∗Ω−1MmM
′
mΩ−1M∗′ +M∗GmG

′
mM

∗′) =

n1 log k + log det(M∗Ω−1MmM
′
mΩ−1M∗′ +

1

k
M∗GmG

′
mM

∗′)

where n1 is the dimension of z1 . Taking the limit and neglecting the term

n1 log k , which is the same for all settings of the parameter values and so can

be ignored, leaves the term:

log det(M∗Ω−1MmM
′
mΩ−1M∗′).

The z2 contribution to the likelihood retains both a log det and a quadratic

form contribution. Notice that the z2 term is absent in the ‘exactly identified’

case.





Chapter 10

Semiparametric Estimation with Limited Infor-
mation

10.1. Introduction

This chapter describes semiparametric estimation of transmission mechanisms

under limited information.

10.2. Underlying Economic Model

Consider the following economic model. The information available to economic

agents at time t is denoted Jt . There is an endogenous state vector kt−1 which

we will think of as a vector of capital stocks. The capital stocks evolve according

to the evolution equation:

kt = ∆kt−1 + Θit (10.2.1)

where it is a vector of flow variables which we refer to as investment goods. The

absolute values of eigenvalues of the matrix ∆ are presumed to be strictly less

than one. There is also an exogenous state vector zt with dynamics given by:

zt+1 = A22zt + C2wt+1 (10.2.2)

where {wt} is a martingale difference sequence adapted to {Jt} with a condi-

tional covariance matrix I . It is known that a first-order linear specification

of the dynamics is quite flexible because it can represent multivariate ARMA

models of arbitrary orders. The composite state vector at time t is denoted

xt ≡
(

kt−1

zt

)

.

The recursive solution to the model gives investment it as a function of the

state vector xt :

it = Sxt = Skkt−1 + Szzt.

– 227 –
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Substituting this solution into equations (10.2.1) and (10.2.2), we find that

xt+1 = Axt + Cwt+1 (10.2.3)

where

A ≡
(

∆ − ΘSk ΘSz
0 A22

)

, C ≡
(

0

C2

)

.

Thus, equation (10.2.3) gives the evolution of the state vector process when the

optimal or equilibrium investment rule is imposed.

The state vector zt may enter into the decision rule or equilibrium invest-

ment relation for one of two reasons. Some components of zt may enter directly

into the objective functions of economic agents; and other components may

simply be used in forecasting future values of these variables. Let z1
t denote a

vector of the former components, which we presume are related to zt via:

z1
t = H1zt

where H1 is just a matrix that selects elements from zt . The solution for

investment can often be represented as:

it = Skkt−1 + S0z
1
t + Sf

∞
∑

j=0

(Λ)jS1E(z1
t+j |Jt) (10.2.4)

and hence

Sz = S0H1 + Sf (I − Λ)−1S1H1

(see Hansen and Sargent 1981 and Sargent 1987). One way to obtain a solution

of this form is to stack the first order conditions for the endogenous state vector

and its corresponding co-state vector into an expectational first-order difference

equation driven by the forcing process {z1
t } , then to solve that difference equa-

tion. A similar structure can be obtained even when the endogenous state vector

is not the solution to an optimal resource allocation problem. The estimation

method we describe below exploits the feedforward structure of the solution for

investment whereby investment depends on current and expected future values

of the forcing process {z1
t } .
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10.3. Econometrician’s information and the implied orthog-

onality conditions

We presume that the econometrician observes a time series of investment

it, t = 1, 2, ..., T . With knowledge of the depreciation matrix ∆, he can con-

struct an approximate capital series, ‘approximate’ because the initial capital

stock k0 may be unknown. Because the dominant eigenvalue of ∆ is strictly

less than unity in modulus, the approximation error vanishes as the sample size

T gets large. The econometrician also observes some but not all of the vector

zt .

Partition

z1
t =

(

yt
ut

)

where yt is observed by the econometrician by ut is not. To have any hope of

identifying the parameters in the underlying model, we assume that the exoge-

nous state vector process can be uncoupled in the following way:

zyt+1 = Ayz
y
t + Cyw

y
t+1

and

zut+1 = Auz
u
t + Cuw

u
t+1

where

zt =

(

zyt
zut

)

, wt =

(

wyt
wut

)

and

yt = Hyz
y
t and ut = Huz

u
t .

To guarantee asymptotic stationarity, we restrict the absolute values of the

eigenvalues of Au to be strictly less than one. The {ut} process gives us one

interpretation of why investment is not an exact function of variables observed

by an econometrician. Therefore, we rewrite the investment relation as:

it = Skkt−1 + S0,yyt + Sf

∞
∑

j=0

(Λ)jS1,yE(yt+j |Jt) + et

where

et ≡ S0,uut + Sf

∞
∑

j=0

(Λ)jS1,uE(ut+j |Jt)
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and

Sj = (Sj,y Sj,u ) , j = 0, 1.

The process {et} provides an error term that can be interpreted along the

lines of Hansen and Sargent (1980). By construction it is uncorrelated with

the process {yt} at all leads and lags. This uncorrelatedness can be directly

exploited in estimating the parameters of endogenous dynamics of the model,

e.g., the parameters governing the transmission mechanism. In fact, this can be

accomplished in ways that permit a robust specification of the dynamics associ-

ated with the underlying shock process {ut} . In other words, a semiparametric

estimation method is possible in this setting.

Another source of omitted information is in the forecasting of future values

of the process {yt} . For instance, let Kt denote the information set used by the

econometrician, constructed in a way so that at least it is no larger than Jt . This

gives rise to an additional model “specification” error, say ft , as emphasized

by Shiller (1978) and Hansen and Sargent (1980, 1982). Thus, the investment

equation used by an econometrician is given by:

it = Skkt−1 + S0,yyt + Sf

∞
∑

j=0

(Λ)jS1,yE(yt+j |Kt) + et + ft (10.3.1)

where

ft ≡ Sf

∞
∑

j=0

(Λ)jS1,y[E(yt+j |Jt) − E(yt+j |Kt)].

By the Law of Iterated Expectations, the error term ft is uncorrelated with

current and past values of {yt} , but can be correlated with future values of

this process. As a consequence, the orthogonality conditions that are robust to

misspecifying the information set are:

E[(ft + et)yt−j
′] = 0 for j = 0, 1, .... (10.3.2)

The presence of the component ft in the disturbance term is what limits the

orthogonality conditions to be one-sided. Future values of yt may be correlated

with the disturbance term in the investment equation.

Since the information set Kt is a misspecified version of Jt , unless one

is willing to specify the omitted information precisely, it is most convenient to

envision an econometrician modeling the evolution equation for {yt} in a flexible
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manner. Although information is omitted, so long as {yt} has a state-space

representation, we know that it can be represented as a multivariate version of

an ARMA model, although the autoregressive and moving-average orders will

be unknown to the econometrician. For the sake of simplicity, we assumethat

the {yt} process is stationary and has a moving-average representation:

yt = B(L)vt (10.3.3)

where the operator B has a one-sided inverse, and current and past values of

vt also generate the information set Kt . In what follows, it is not necessary

to limit B to be a ratio of polynomials, as in ARMA models. More general

dynamics can be accommodated. As we will see, this in effect introduces an

infinite dimensional nuisance parameter into the moment conditions (10.3.2).

Finally, note that by omitting information relative to that used by economic

agents, we cannot expect to deduce impulse response functions that are inter-

pretable in terms of the economic shocks impinging on the decision maker. In

other words, the response of investment or capital stock to an innovation in {yt}
(i.e., in economic agents’ information set) will be contaminated. Nevertheless,

we will still be in a position to identify parameters of the endogenous dynamics.

10.4. An Adjustment Cost Example

A linear-quadratic model of adjustment costs has a solution for investment that

is of the form given by (3) with a scalar investment and capital stock and a

scalar Λ that we will denote by λ . For simplicity, we presume that the obervable

forcing process {yt} is also scalar. Write the econometric relation for investment

in feedforward form as:

it = ρkt−1 + ψoyt + ψf

∞
∑

j=0

(λ)jE(yt+j |Kt) + et + ft

kt = δkt−1 + it.

(10.4.1)

The operator B enters into the model solution because of its role in the

solution to the prediction problem:

ypt = E(

∞
∑

j=0

λjyt+j |Kt).
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It is known from Hansen and Sargent (1980) that

ypt = B∗(L)vt

where

B∗(ζ) =
ζB(ζ) − λB(λ)

ζ − λ
. (10.4.2)

Substituting this formula into (10.4.1) and solving for the econometric distur-

bance term, we obtain:

ft + et = it − ρkt−1 − ψoyt − ψfB
∗(L)vt. (10.4.3)

Prior to investigating the estimation of endogenous dynamics as captured by

the parameters ρ, ψo, ψf , δ, λ we will study the impact of estimating B in both

parametric and nonparametric settings.

10.5. A Slightly Simpler Estimation Problem

Let Yt denote a random vector, each entry of which is a linear combination

of current and past values of yt . Suppose the unconditional moment condition

used in estimation is:

E[(ft + et)Yt] = 0.

A component of these moment conditions that depends on B is:

βo ≡ E[YtB
∗(L)vt], (10.5.1)

and for the moment let us suppose that βo is the parameter of interest.
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10.5.1. Scalar Parameterizations of B

As a preliminary step to studying nonparametric estimators of B , we ini-

tially consider very simple scalar parameterizations of B :

Bα = B + αF.

We suppose that for sufficiently small values of α we can invert the operator Bα .

We must explore what happens to the moment condition for small perturbations

in α .

Define:

φt(α) ≡ Bα(L)
−1
yt.

Differentiating φt with respect to α and evaluating we find that

B(L)Dφt(0) + F (L)vt = 0,

or

Dφt(0) = −[B(L)]−1F (L)vt. (10.5.2)

Then differentiating the moment relation:

β(α) = E[zytB
∗
α(L)φt(α)]

we find that

dβ(0)/dα = E{Yt[F ∗(L)vt]} + E{Yt[B∗(L)Dφt(0)]}. (10.5.3)

The * notation is used to denote the transformation of an operator given by

(10.4.2).

Let αT denote the maximum likelihood estimator for α = 0 for sample size

T , and let

βT ≡ (1/T )
T
∑

t=1

YTB
∗
αT

(L)φt,T (αT )

denote the sample estimator of βo where the notation φt,T (αT ) denotes the

time t approximation for vt using the estimator αT . Then the sampling error

in βT as an estimator of βo can be decomposed into two components:

√
T (βT − βo) ≈ (1/

√
T )

T
∑

t=1

[YtB
∗(L)vt − βo] + [dβ(0)/dα]

√
TαT . (10.5.4)
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The first term is the usual central limit approximation for sample moment esti-

mators while the second term accounts for the additional sampling error induced

by having to estimate B . It is the second term that we turn our attention to.

The limiting distribution of {αT } is determined by the score of the condi-

tional likelihood of yt conditioned on the past. This score is given by

st = −vtDφt(0) + E[v(t)Dφt(0)]. (10.5.5)

The first term of the score comes from differentiating the quadratic form in the

one-step ahead forecast error of yt , and the second term from differentiating the

log variance term of the time t contribution to the conditional log likelihood.

The score variable has mean zero conditioned on Kt−1 and the resulting score

process is a martingale difference sequence. Then

√
TαT ≈

∑T
t=1 st√

TE(st2)
. (10.5.6)

In light of the fundamental role played by the score variable in deteriming

the limiting distribution for the estimator sequence {αT } , it will prove to be

very useful to represent the derivative dβ(0)/dα as an expected cross product of

some random vector with the score st . We now deduce what that random vector

is by obtaining an alternative expression for the right-hand side of (10.5.3). Note

that

E{Yt[F ∗(L)vt]} = E

[

Yt

([

LF (L)

L− λ

]

vt

)]

= −E
[

Yt

([

LB(L)

L− λ

]

Dφt(0)

)] (10.5.7)

where the first equality follows because future values of vt are orthogonal to Yt
and the second equality follows from formula (10.5.2) for Dφt(0). Substituting

(10.5.7) into (10.5.3) and using formula (10.4.2) for B∗ results in:

dβ(0)/dα = −E
[

Yt

([

λB(λ)

L− λ

]

Dφt(0)

)]

= −λB(λ)E

[([

1

L−1 − λ

]

Yt

)

Dφt(0)

]

= −λB(λ)E

[([

1

1 − λL

]

Yt−1

)

Dφt(0)

]

(10.5.8)

where the second equality follows from the joint stationarity of the composite

process {[Yt,Dφt(0)]} . Formula (10.5.8) is almost what we want, except that
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we need an expression in terms of st instead of Dφt(0). This can be obtained

by noting that

E

[([

1

1 − λL

]

Yt−1

)

Dφt(0)

]

= −E
[

vt

([

1

1 − λL

]

Yt−1

)

st

]

(10.5.9)

which can be verified as follows. Compute the expectation on the right-hand

side by conditioning first on Kt−1 and using the two facts that (i) Dφt(0) is

the sum of a term in vt and E[Dφt(0)|Kt−1] , and (ii) the third moment of vt

is zero. Then apply the Law of Iterated Expecations again to obtain the left-

hand side of (10.5.9). Combining (10.5.8) and (10.5.9), we obtain the desired

formula:

dβ(0)/dα = λB(λ)E

[

vt

([

1

1 − λL

]

Yt−1

)

st

]

. (10.5.10)

Armed with this formula, we can think of the time t contribution of the

“correction term” for estimating B as the outcome from running a least squares

regression of λB(λ)vt

([

1
1−λL

]

Yt−1

)

onto the score st . This interpretation can

be seen by substituting (10.5.7) and (10.5.10) into (10.5.4) and interpreting
dβ(0)/dα
E(st

2) as a population regression coefficient. Although we performed this

computation for an affine scalar parameterization of B , it can be mimicked for

any sufficiently smooth one dimensional parameterization. The correction term

will continue be interpretable as a regression score.

10.6. Multidimensional Parameterizations of B

As a further step in studying the impact on βo of using a nonparametric estima-

tor of B, we now briefly consider what happens when we use parameterizations

that have more than one dimension but are still finite dimensional. This turns

out to be an easy extension of our previous analysis. Let st be the score vector

associated with any such nondegenerate parameterization. (By “nondegener-

ate” we simply mean that the second moment of the score vector is nonsingular,

a local identification condition.) The entries of the score vector st can be repre-

sented as in (14), and the derivative matrix ∂β(0)/∂α′ is given by the expected

cross product:

∂β(0)/∂α′ = λB(λ)E

[

vt

([

1

1 − λL

]

Yt−1

)

st
′
]

.
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Therefore,

√
T (βT − βo) ≈(1/

√
T )

T
∑

t=1

[YtB
∗(L)vt − βo]

+ λB(λ)E

[

vt

([

1

1 − λL

]

Yt−1

)

st
′
]

[E(stst
′)]−1(1/

√
T )

T
∑

t=1

st.

Again the correction term for the first stage estimation of B has a regression

interpretation: regress λB(λ)vt

([

1
1−λL

]

Yt−1

)

onto the score vector st .

10.7. Nonparametric Estimation of B

Since the derivative matrix has an expected cross product representation

for any finite dimensional parameterization, we can use an insight from Stein

(1956) and Levit (1975), developed more fully by Van der Vaart (1991) and

Newey (1993), to deduce the asymptotic distribution when B is estimated non-

parametrically. We simply ask what happens to the population regression of

λB(λ)vt

([

1
1−λL

]

Yt−1

)

onto the linear space of time t scores for all possible

parameterizations of B . Since the elements of the regressand can be viewed as

scores of hypothetical parameterizations, the resulting limiting distribution for

βo is

√
T (βT − βo) ≈

T
∑

t=1

[

YtB
∗(L)vt − βo + vt

([

1

1 − λL

]

Yt−1

)]

. (10.7.1)

This additive decomposition gives a time series counterpart to the “correction

terms” for semiparametric M-estimators derived by Newey (1993), (e.g., see

formula (3.10) in Newey).1

1 One diffference between Newey’s derivation and ours is that Newey works with score

vectors for the entire process of observables. Given the additive structure of our model we

can work with the simpler scores of maximum likelihood estimators of B using only data on

{yt} .
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10.8. Back to the Adjustment Cost Model

Let us now revert to the estimation problem of interest posed using the ad-

justment cost model. We let βo denote the parameter vector governing the

endogenous dynamics and view ρ, ψo, ψf , δ and ρ as functions of the unknown

parameter vector βo . When the capital stock is not directly observable, the

generated stock sequence will also depend on βo through its dependence on the

depreciation factor δ . Suppose that we estimate βo using a GMM estimator

that exploits the unconditional moment restriction:

E[Yt(ft + et)] = 0.

Then the usual GMM inference works with an additional correction term in

which the derivatives of the moment conditions are computed by differentiating

with respect to β and evaluating these derivatives at the true value of βo and

B . Let this derivative be denoted do , and let ao denote the limiting matrix

that selects the moment conditions to be used in estimation. Then

√
T (βT−βo) ≈ −(aodo)

−1ao(1/
√
T

T
∑

t=1

[

Yt(ft + et) + λB(λ)

([

1

1 − λL

]

Yt−1

)

vt

]

.





Chapter 11

Representation of Demand

11.1. Introduction

This chapter derives demand schedules from our preference specification

ht = ∆hht−1 + Θhct

st = Λht−1 + Πct
(11.1.1)

with preference shock bt = Ubzt . An equivalence class of preferences (∆h,Θh,Π,

Λ, Ub) give rise to identical demand schedules. Among such preferences, partic-

ular ones that we call canonical are easiest to work with.

We apply the concept of canonical representation of preferences to a version

of Becker and Murphy’s model of rational addiction. The chapter also uses

demand curves to to construct partial equilibrium interpretations of our models.

This chapter sets the stage for the studies of aggregation in chapters BLANK

and BLANK.

11.2. Canonical Representations of Services

We begin with a definition.

Definition: A representation of a household service technology

(∆h,Θh,Π,Λ, Ub) is said to be canonical if it satisfies the following two require-

ments:

i. Π is nonsingular.

ii. The absolute values of the eigenvalues of (∆h − ΘhΠ
−1Λ) are strictly

less than 1/
√
β .

A canonical household service technology maps any given service process {st} in

L2
0 into a corresponding consumption process {ct} for which the implied house-

hold capital stock process {ht} is also in L2
0 . To verify this, we use the canonical

– 239 –
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representation to obtain a recursive representation for the consumption process

in terms of the service process:

ct = −Π−1Λht−1 + Π−1st

ht = (∆h − ΘhΠ
−1Λ)ht−1 + ΘhΠ

−1st
(11.2.1)

The restriction on the eigenvalues of the matrix (∆h − ΘhΠ
−1Λ) keeps the

household capital stock {ht} in L2
0 .

11.3. Dynamic Demand Functions for Consumption

Goods

We postpone constructing a canonical representation, and proceed immediately

to use one to construct a dynamic demand schedule. In Chapter 6 we derived

the following first-order conditions for the household’s optimization problem:

st = bt − µst (11.3.1)

Π′µst = −Θ′
hµ

h
t + µw0 p

0
t (11.3.2)

µht = βEt(Λ
′µst+1 + ∆′

hµ
h
t+1). (11.3.3)

As a prelude to computing demand for consumption, we compute the demand for

services. Our strategy is to use (11.3.2) and (11.3.3) to solve for the multiplier

µst , and then to substitute this solution into (11.3.1). Shift (11.3.2) forward

one time period and solve (11.3.2) for µst+1 . Substitute this expression into

(11.3.3):

µht = βEt(−Λ′Π−1′Θ′
hµ

h
t+1 + µw0 Λ′Π−1′p0

t+1 + ∆′
hµ

h
t+1). (11.3.4)

Solve (11.3.4) forward to obtain:

µht = µw0 Et

∞
∑

τ=1

βτ (∆′
h − Λ′Π−1′Θ′

h)
τ−1Λ′Π−1′p0

t+τ . (11.3.5)
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Because we are using a canonical household service technology, the infinite sum

on the right side of (11.3.5) converges (in L2
0 ). Therefore, the service demand

can be expressed as

st = bt − µw0 ρ
0
t (11.3.6)

where

ρ0
t ≡ Π−1′

[

p0
t − Θ′

hEt

∞
∑

τ=1

βτ (∆′
h − Λ′Π−1′Θ′

h)
τ−1Λ′Π−1′p0

t+τ

]

. (11.3.7)

Equations (11.3.6) and (11.3.7) represent the service demands in terms of ex-

pected future prices of the consumption good. The random vector ρ0
t is the

implicit rental price for services expressed in terms of current and expected fu-

ture prices of consumption goods. Equation (11.2.1) transforms {st} in L2
0 into

{ct} in L2
0 .

11.3.1. The multiplier µw0

The service demands given in (11.3.6) depend on the endogenous scalar mul-

tiplier µw0 . To compute µw0 , we partition the household capital and service

sequences into two components. One component is a service sequence obtained

from the initial endowment of household capital. The other component is the

service sequence obtained from market purchases of consumption goods. The

service sequence {si,t} obtained from the initial endowment of household capital

evolves according to:

si,t = Λhi,t−1

hi,t = ∆hhi,t−1

(11.3.8)

where hi,−1 = h−1 . The service sequence {sm,t} obtained from purchases of

consumption satisfies:

sm,t = bt − si,t − µw0 ρ
0
t . (11.3.9)

We can compute the time zero cost of the sequence {sm,t} in one of two equiv-

alent ways. One way is to compute the time zero cost of the consumption

sequence {ct} needed to support the service demands using the price sequence
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{p0
t} . Another way is to use the implicit rental sequence {ρ0

t} directly to com-

pute the time zero costs of {sm,t} . In the appendix to this chapter, we verify

that the two measures of costs agree:

E0

∞
∑

t=0

βtρ0
t · sm,t = E0

∞
∑

t=0

βtp0
t · ct. (11.3.10)

It is reasonable that, starting from h−1 = 0, the value of services equals the

value of the associated consumption stream.

It follows from (11.3.9) that

E0

∞
∑

t=0

βtρ0
t · sm,t = E0

∞
∑

t=0

βtρ0
t · (bt − si,t) − µw0 E0

∞
∑

t=0

βtρ0
t · ρ0

t . (11.3.11)

Substitute (11.3.10) and (11.3.11) into the consumer’s budget constraint (6.2),

and solve for the time zero marginal utility of wealth µw0 :

µw0 =
E0

∑∞
t=0 β

tρ0
t · (bt − si,t) −W0

E0

∑∞
t=0 β

tρ0
t · ρ0

t

, (11.3.12)

where W0 denotes initial period wealth given by

W0 = E0

∞
∑

t=0

βt(w0
t ℓt + α0

t · dt) + v0 · k−1. (11.3.13)

Taken together, (11.3.6), (11.3.7), (11.3.12) and (11.3.13) give the demand

functions for consumption services. A recursive representation for the dynamic

demand function for consumption goods is obtained by substituting for st in

(11.2.1).
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11.3.2. Dynamic Demand System

Substituting (11.3.6) and (11.3.7) into (11.2.1) gives

ct = −Π−1Λht−1 + Π−1bt − Π−1µw0 Et{Π′ −1 − Π′ −1Θ′
h

[I − (∆′
h − Λ′Π′ −1Θ′

h)βL
−1]−1Λ′Π′−1βL−1}p0

t

ht = ∆hht−1 + Θhct

(11.3.14)

Equation system (11.3.14) can be regarded as a system of dynamic demand

functions for consumption, which express consumption demand at date t as a

function of future scaled Arrow-Debreu prices p0
t and, as mediated through the

state variable ht−1 , past values of consumption.

11.3.3. Foreshadow of Gorman aggregation

In the chapter 12, we shall explore how the dynamic demand schedule for con-

sumption goods opens up the possibility of satisfying Gorman’s (1953) condi-

tions for aggregation in a heterogeneous consumer version of the model. The first

equation of (11.3.14) amounts to an Engle curve for consumption that is linear

in individual wealth with a coefficient on µwo (which depends on wealth)1 that

only depends on prices. In a model of consumers who have the same household

technologies (∆h,Θh,Λ,Π) but possibly different preference shock processes,

the coefficient on wealth is the same for all consumers. Gorman showed that

when Engel curves satisfy this property, there exists a unique community or

aggregate preference ordering over aggregate consumption that is independent

of the distribution of wealth. This property will be exploited in chapter 12 when

we solve for the equilibrium of a multiple consumer version of our economy. The

community dynamic demand schedule for a heterogeneous agent economy will

be obtained by summing the individual Engel curves.

1 Through (11.3.12) the multiplier µw0 depends on wealth in an affine relationship.
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11.4. Computing Canonical Representations

In deriving a dynamic demand function, we assumed that the representation of

the household service technology is canonical. Now we start with a preference

shock process {bt} and a specification of (∆h,Θh,Λ,Π) that is not necessarily

canonical and show how to find a canonical representation. In the appendix, we

establish that for any (∆h,Θh,Λ,Π), there exists a canonical service technology

(∆h,Θh, Λ̂, Π̂) and accompanying preference shock process {b̂t} that induces

an identical preference ordering over consumption. In the text, we display the

mechanics of how to compute the canonical technology and associated preference

shock process, assigning the technical details to the appendix.2 These mechanics

are closely related to mathematics of innovations representations.

11.4.1. Heuristics

We study two polynomials in the lag operator L :

σ(L) = Π + ΛL[I − ∆hL]−1Θh

σ̂(L) = Π̂ + Λ̂L[I − ∆hL]−1Θh.

As explained in the appendix, when ct = 0∀t < 0, applying the operator σ(L) to

ct gives st , so that st = σ(L)ct . For two household technologies [∆h,Θh,Π,Λ]

and [∆̂h,Θh, Π̂, Λ̂] to give rise to the same preference ordering over {ct} it is

necessary that

σ(β.5L−1)′σ(β.5L) = σ̂(β.5L−1)′σ̂(β.5L).

If the [Λ̂, Π̂] technology is to be canonical, it is necessary that σ̂(β.5L) be

invertible.
In the appendix, we verify the following version of the factorization identity:

[Π + β1/2L−1Λ(I − β1/2L−1∆h)−1Θh]′[Π + β1/2LΛ(I − β1/2L∆h)−1Θh]

= [Π̂ + β1/2L−1Λ̂(I − β1/2L−1∆h)−1Θh]′[Π̂ + β1/2LΛ̂(I − β1/2L∆h)−1Θh],

where [Λ̂, Λ̂] satisfy (10.16), (10.19), and (10.20) below. As part of the factor-

ization identity, it is proved that the [Λ̂, Π̂] representation satisfies both of the

requirements to achieve the status of a canonical representation. Thus, to attain

a canonical household technology, we have to implement this factorization. We

can do this by solving a control problem.

2 The MATLAB program canonpr.m computes a canonical representation.
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11.4.2. An auxiliary problem that induces a canonical representa-
tion

An artificial optimization problem and the associated optimal linear regulator

facilitate computing a canonical representation. Thus, confront a household

with the optimization problem: choose {ct}∞t=0 to maximize

−.5
∞
∑

t=0

βt(st − bt) · (st − bt)

subject to
ht = ∆hht−1 + Θhct

st = Λht−1 + Πct.

The recursive solution to this optimization problem contains all of the ingredi-

ents for a canonical service technology.

This optimization problem is a version of one a household confronts in a

competitive equilibrium, except that we have eliminated the budget constraint.

For a canonical technology, the solution to this optimization problem is trivial:

choose {ct} so that the implied service sequence matches the preference shock

sequence, st = bt ∀ t . However, when the service technology is not canonical, it

might not be feasible to construct a consumption process that attains that goal,

in which case the optimization problem is not trivial.

We simplify the household optimization problem further by initially setting

the preference shock process to zero for all t ≥ 0. In making this simplification,

we are exploiting the fact that for the optimal linear regulator problem, the

feedback part of the decision rule can be computed independently of the feed-

forward part, and that the {bt} process influences only the feedforward part. In

this optimization problem it is feasible to stabilize the state vector {ht} so that

it satisfies the square summability requirement. For instance, one can set the

consumption process to zero for all t ≥ 0. So long as it is also optimal to stabi-

lize the household capital stock process, it is known that there will be a unique

positive semidefinite matrix P satisfying the algebraic Riccati equation:3

P = Λ′Λ + β∆′
hP∆h − (β∆′

hPΘh + Λ′Π)

(Π′Π + βΘ′
hPΘh)

−1(βΘ′
hP∆h + Π′Λ).

(11.4.1)

3 We require that assumption A1 and the stability theorem of chapter 9 apply to this

control problem.
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The optimal choice of consumption can be represented as

ct = −(Π′Π + βΘ′
hPΘh)

−1(βΘ′
hP∆h + Π′Λ)ht−1. (11.4.2)

When this optimal rule is implemented, the evolution equation for the household

capital stock is

ht = [∆h − Θh(Π
′Π + βΘ′

hPΘh)
−1(βΘ′

hP∆h + Π′Λ)]ht−1, (11.4.3)

where the eigenvalues of the matrix multiplying ht−1 are strictly less than

1/
√
β .4 With this in mind, we choose Π̂ and Λ̂ so that

Π̂−1Λ̂ = (Π′Π + βΘ′
hPΘh)

−1(βΘ′
hP∆h + Π′Λ). (11.4.4)

For this choice, condition (ii) for a canonical service technology is met.

We still have to construct Π̂. In the appendix, it is shown as an implication

of the factorization identity that we should set Π̂ to be a factor of the symmetric

positive definite matrix (Π′Π + βΘ′
hPΘh):

(Π′Π + βΘ′
hPΘh) = Π̂′Π̂. (11.4.5)

Any factorization will work so long as Π̂ is a square matrix. Since (Π′Π +

βΘ′
hPΘh) is nonsingular, Π̂ satisfies condition (i) for a canonical representation.

In summary, (11.4.1), (11.4.4), and (11.4.5) compute a (Π̂, Λ̂) that cor-

responds to a canonical representation. The service process {ŝt} for this new

household technology satisfies:

ŝt = Λ̂ht−1 + Π̂ct. (11.4.6)

We also need to construct a preference shock process to accompany the

canonical service technology. One way to do this is simply to reintroduce the

preference shock process {bt} into the auxiliary household optimization prob-

lem, and recompute the optimal decision rule for consumption. The decision

rule can be represented as:

ct = −(Π̂)−1Λ̂ht−1 + (Π̂)−1Ûbzt (11.4.7)

4 This condition on the eigenvalues of the ‘closed loop system’ follows from the assumption

that it is optimal to stabilize the system (i.e., that the system is detectable).
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for some matrix Ûb . As discussed in chapter 4, the feedback portion of this

decision rule [(Π̂)−1Λ̂] is the same as for the problem in which the preference

shock process was set to zero. The feedforward part [(Π̂)−1Ûb] can be computed

using the method described in chapter 4, which permits the optimal decision rule

to be calculated efficiently in two steps. Using those methods, the shock process

associated with the canonical service technology is

b̂t = Ûbzt. (11.4.8)

An alternative method for computing {b̂t} is more useful and revealing. As

shown in the appendix to this chapter, two preference representations having

the same demand functions give rise to the same preference ordering over con-

sumption paths. Therefore, the marginal utilities are also the same across the

two preference representations, and in particular across the two specifications

of household technologies and preference shock processes. Equality between the

indirect marginal utility of consumption and the current and expected future

marginal utilities of consumption services and (11.3.1), (11.3.2), and (11.3.3)

implies that the two preference shock processes must satisfy:

Π′bt + Θ′
hEt

∞
∑

τ=1

βτ (∆′
h)
τ−1Λ′bt+τ = Π̂′b̂t + Θ′

hEt

∞
∑

τ=1

βτ (∆′
h)
τ−1Λ̂′b̂t+τ .

(11.4.9)

Let the left side of (11.4.9) be denoted b̃t for each t . Since the (Λ̂, Π̂) technology

is canonical, it follows that we can solve (11.4.9) for b̂t :

b̂t = Π̂−1′b̃t − Π̂−1′Θ′
hEt

∞
∑

τ=1

βτ (∆′
h − Λ̂′Π̂−1′Θ′

h)
τ−1Λ̂′Π̂−1′b̃t+τ . (11.4.10)

Relation (11.4.10) is derived by applying an operator identity to equation (11.4.9).
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11.5. Operator Identities

For canonical household technologies a matrix identity is

[Π + Λ(I − ∆hL)−1ΘhL]−1 =

{Π−1−Π−1Λ[I − (∆h − ΘhΠ−1Λ)L]−1ΘhΠ−1L}.
The identity shows that for canonical representations of preferences (∆h,Θh,

Π,Λ, Ub) , there are two equivalent ways of expressing the mapping between sequences {st}
and sequences {ct} . To establish the identity, assume that h−1 = 0, or equivalently that

ct = 0 ∀ t < 0 . Note that the second equation of representation (11.2.1) implies

ht = [I − (∆h − ΘhΠ−1Λ)L]−1ΘhΠ−1st.

Lagging this one period and substituting into the first equation of (11.2.1) gives

ct = {Π−1 − Π−1Λ[I − (∆h − ΘhΠ−1Λ)L]−1ΘhΠ−1L}st.
This equation shows how to obtain sequences {ct} ∈ L2

0 that are associated with arbitrary

sequences {st} ∈ L2
0 . Now recall that the household technology implies

st = [Π + Λ(I − ∆hL)−1ΘhL]ct,

which expresses {st} ∈ L2
0 as a function of {ct} ∈ L2

0 . The assumption that (Λ,Π) is

canonical implies that the operator [Π + Λ(I − ∆hL)−1ΘhL] mapping sequences from L2
0

into L2
0 is invertible, which implies the identity.

Here is how to derive the ‘dual’ or transposed version of the identity, which is the one

used to get (11.4.10). Use (11.3.3) to deduce

µht = (I − β∆′
hL

−1)−1βΛ′L−1µst+1.

Then use (11.3.2) to deduce

(†) µw0 pt = [Π′ + Θ′
h(I − β∆′

hL
−1)−1βL−1]µst .

Alternatively, solve (11.3.2) for µst ,

µst = Π′ −1(−Θ′
hµ
h
t + µw0 p

0
t ).

Substitute this into (11.3.3) to get

(‡) µst = {Π′ −1 − Π′ −1Θ′
h[I − (∆′

h − Λ′Π′ −1Θ′
h)βL−1]−1Λ′Π′−1βL−1}µw0 p

0
t .

When (∆h,Θh,Π,Λ) is canonical, the operator on the right side of (†) has an inverse equal

to the operator on the right side of (‡) :

[Π′ + Θ′
h(I − β∆′

hL
−1)−1βL−1]−1 =

{Π′ −1−Π′ −1Θ′
h[I − (∆′

h − Λ′Π′ −1Θ′
h)βL−1]−1Λ′Π′−1βL−1}.

In the appendix to this chapter, we use Fourier transforms to show that the

alternative service technology (Λ̂, Π̂) and preference shock process {b̂t} induce

the same preference ordering for consumption goods as did the original ones.
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11.6. Becker-Murphy Model of Rational Addiction

We illustrate our analysis with a discrete-time version of the habit-persistence

model advocated by Becker and Murphy (1988). The household technology is

a parametric version of induced preferences for consumption of the form sug-

gested by Pollak (1970), Ryder and Heal (1973), and Stigler and Becker

(1977). The household technology has a single consumption good, two ser-

vices, and a single household capital stock. The household capital measures a

habit stock constructed to be a geometrically-weighted average of current and

past consumptions:

ht = δhht−1 + (1 − δh)ct, (11.6.1)

where 0 < δh < 1. The first service is proportional to consumption, and the

second one is a linear combination of consumption and the habit stock:

st =

[

π1 0

π2 π3

] [

ct
ht

]

. (11.6.2)

We normalize π1 and π3 to be strictly positive. Imagine for a moment that

ct and ht are distinct consumptions goods and that there is no intertempo-

ral connection between them. Then recall from our discussion of preferences

for multiple consumption goods in Chapter 3, that the Frisch classification of

complements is equivalent to requiring π2 to be negative.

In light of the evolution equation (11.6.1) for the household capital stock,

this notion of complementarity is limiting because it ignores the fact that ht is a

weighted average of current and past consumptions. For this reason, we consider

a related notion of complementarity referred to by Ryder and Heal (1973) and

Becker and Murphy (1988) as adjacent complementarity. Substituting (11.6.1)

into (11.6.2) we obtain the following service technology:

st = Λht−1 + Πct, (11.6.3)

where

Λ =

[

0

π3δh

]

and Π =

[

π1

π2 + π3(1 − δh)

]

.

Service technology (11.6.3) is clearly not canonical: simply note that two ser-

vices are constructed from one underlying consumption good, so we cannot con-

struct a consumption sequence to support any hypothetical admissible service

sequence.
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To capture the notion of adjacent complementarity, we consider a canonical

representation for household services. The canonical household service technol-

ogy has a single service and can be expressed as:

ŝt = Λ̂ht−1 + Π̂ct, (11.6.4)

where {ŝt} is a scalar service process and (Λ̂, Π̂) satisfies:

| δh − (1 − δh)Λ̂/Π̂ |< 1/
√

β. (11.6.5)

We normalize the scalar Π̂ to be positive so that increases in time t consumption

increase the time t canonical service ŝt . When specialized to this parametric

model, Ryder and Heal’s (1973) notion of adjacent complementarity becomes

the restriction that Λ̂ must be negative. In this case, (11.6.5) implies that

0 ≤ δh − (1 − δh)Λ̂/Π̂ ≤ 1/
√

β. (11.6.6)

As shown by Becker and Murphy (1988), adjacent complementarity (Λ̂ ≤ 0)

implies that π2 ≤ 0. The converse is not true, however. To see the relation

between Λ̂ and π2 , multiply both sides of (9.64) by (1−β1/2ζ−1δh)(1−β1/2ζδh)

to obtain:

Π′Π(1 − β1/2ζ−1δh)(1 − β1/2ζδh) + βΛ′Λ(1 − δh)
2+

β1/2ζ−1(1 − δh)(1 − β1/2ζδh)Λ
′Π + β1/2ζ(1 − δh)(1 − β1/2ζ−1δh)Λ

′Π

= Π̂2(1 − β1/2ζ−1δh)(1 − β1/2ζδh) + βΛ̂Λ̂(1 − δh)
2+

β1/2ζ−1(1 − δh)(1 − β1/2ζδh)Λ̂Π̂ + β1/2ζ(1 − δh)(1 − β1/2ζ−1δh)Λ̂Π̂.
(11.6.7)

This equality holds for all ζ except ζ = 0. Evaluate both sides of (11.6.7) at

ζ = β1/2δh :

βΛ′Λ(1 − δh)
2 + (1 − δh)(1 − βδ2h)Λ

′Π/δh

= βΛ̂2(1 − δh)
2 + (1 − δh)(1 − βδ2h)Λ̂Π̂/δh.

(11.6.8)

The right side of (11.6.8) can be expressed as

βΛ̂2(1 − δh)
2 + (1 − δh)(1 − βδ2h)Λ̂Π̂/δh

= β(1 − δh)Λ̂Π̂{[(1 − δh)Λ̂/Π̂ − δh] + (1/βδh)}.
(11.6.9)



Fourier transforms 251

Since Λ̂Π̂ < 0 and inequality (11.6.6) is satisfied, it follows that

β(1 − δh)Λ̂Π̂{[(1 − δh)Λ̂/Π̂ − δh] + (1/βδh)}
≤ β(1 − δh)Λ̂Π̂[−1/

√

β + (1/βδh)]

≤ 0.

(11.6.10)

Combining (11.6.10) and (11.6.8), we have that if Λ̂ ≤ 0, then

βΛ′Λ(1 − δh)
2 + (1 − δh)(1 − βδ2h)Λ

′Π/δh ≤ 0. (11.6.11)

Inequality (11.6.11) is satisfied only when Λ′Π ≤ 0. This in turn requires that

π2 ≤ 0 because
Λ′Π = π3δh[π2 + π3(1 − δh)],

0 < δh < 1 and π3 > 0.
(11.6.12)

Inequality (11.6.6) permits δh−(1−δh)Π̂/Λ̂ to exceed one. In this case, growth

in consumption is required to support most constant service sequences, although

this growth will be dominated by {βt/2 : t = 0, 1, . . .} . This is a household

technology with an extreme form of addiction to the consumption good. Note

that

δh − (1 − δh)Λ̂/Π̂ = δh(1 + Λ̂/Π̂) − Λ̂/Π̂. (11.6.13)

Therefore, instability is implied whenever −Λ̂ exceeds Π̂ in the canonical house-

hold service technology.

A. Fourier transforms

This appendix applies Fourier transforms to establish some key equalities as-

serted in the text. We begin with some background on 0.
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11.A.1. Primer on transforms

For a two-sided scalar sequence {cj}∞j=−∞ , the z−transform is defined as the

complex valued function

c(z) =
∞
∑

j=−∞
cjz

j ,

where z is a scalar complex number.5 The inversion formula asserts

ck =
1

2πi

∫

Γ

c(z)z−k−1dz

where Γ is any closed contour around zero in the complex plane, and the in-

tegration is complex integration counterclockwise along the path Γ. If we take

Γ to be the unit circle and set z = e−iω , we get the following version of the

inversion formula

ck =
1

2π

∫ π

−π
c(e−iω)eiωkdω.

We denote transform pairs with the notation

{ck} ↔ c(z).

The convolution of two sequences {yk}, {xk} , is denoted {y ∗ x} and is

defined as

{y ∗ x}∞k=−∞ ≡ {
∞
∑

s=−∞
ysxk−s}∞k=−∞.

Direct calculations establish the convolution property

{y ∗ x}∞k=−∞ ↔ x(z)y(z).

We have the linearity property that for any scalars (a, b)

a{xk} + b{yk} ↔ ax(z) + by(z).

5 For descriptions of Fourier and z-transforms, see Gabel and Roberts (1973), Liu and Liu

(19**). For some of their uses in time series economics see Nerlove, Grether and Carvalho

(1979) and Sargent (1979).
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11.A.2. Time reversal and Parseval’s formula

Let c̃−k = ck for all k . Then {c̃k}∞k=−∞ has transform

c̃(z) =

∞
∑

k=−∞
c̃kz

k =

∞
∑

k=−∞
ckz

−k = c(z−1).

Applying the convolution theorem to c(z)c(z−1) gives

c(z)c(z−1) ↔ {
∞
∑

s=−∞
cscs−k}∞k=−∞.

Applying the inversion formula gives

∞
∑

s=−∞
cscs−k =

1

2π

∫ π

−π
c(e−iω)c(eiω)eiωkdω.

If we set k = 0, we obtain Parseval’s equality:

∞
∑

s=−∞
c2s =

1

2π

∫ π

−π
|c(e−iω)|2dω.

11.A.3. One sided sequences

There are two types of one-sided sequences (also called ‘half-infinite’ sequences).

A sequence is called a causal sequence if ck = 0 ∀k < 0, and is anti-causal if

it has zero elements ∀ k > 1. A one-sided causal sequence can be obtained by

setting to zero all elements of a two-sided sequence with negative subscripts.

Let {uk}∞k=−∞ be the step sequence, which is zero for k < 0, and 1 for k ≥ 0.

Evidently {ukck} is always a one-sided sequence.
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11.A.4. Useful properties

1. z0 is said to be a pole of order m ≥ 1 of c(z) if limz→z0(z − z0)
mc(z) 6= 0.

2. c(z) is the transform of a causal sequence if all of its poles lie outside

the unit circle.

3. c(z) is the transform of an anti-causal sequence if all of its poles lie

inside the unit circle.

4. If c(z) is either causal or anti-causal, the inversion formula can be

implemented by ‘long division.’

5. Initial value theorem:

lim
z→0

c(z) = c0.

6. Final value theorem:

lim
k→∞

ck = lim
z→1

(1 − z)c(z).

11.A.5. One sided transforms

A one-sided transform is defined as

c+(z) =
∞
∑

k=0

ckz
k ≡ [c(z)]+,

where [ ]+ is the ‘annihilation operator’ that sets to zero all coefficients on

negative powers of z . The same inversion formulas hold, with c+(z) replacing

c(z). Notice that c+(z) = c(z) only if {ck} is causal. We shall adopt the

notation

F (c)(z) = c+(z).

For one-sided transforms, we have the shift theorem

F ({ct−n})(z) = znF ({ct})(z) +

n
∑

k=1

zn−kc−k.
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11.A.6. Discounting

For the purpose of introducing discounting, we shall work with the alternative

transformation defined by

T ({ct}∞t=0)(z) ≡ F ({ctβt/2}∞t=0)(z),

so that T (y) is the ordinary transform of {βt/2yt} . The inversion formula is

then

βt/2yt =
1

2π

∫ π

−π
T (e−iω)eiωtdω,

and the shift theorem is

T ({ct−n})(z) = (β.5z)nF ({ct})(z) +

n
∑

k=1

(zβ.5)n−kc−k.

11.A.7. Fourier transforms

Below we shall work with vector versions of the transforms T . Consider a

vector sequence y = {yt} satisfying

∞
∑

t=0

βtyt · yt <∞, (11.A.1)

define the transform:

T (y)(ζ) ≡
∞
∑

t=0

βt/2ytζ
t. (11.A.2)

This transform is at least well-defined for | ζ |< 1 and can also be defined

through an appropriate limiting argument for | ζ |= 1.6 For vector sequences

{yt} and {ŷt} satisfying (11.A.1), Parseval’s formula is

(1/2π)

∫ π

−π
T (y)[exp(iθ)] · T (ŷ)[exp(−iθ)]dθ =

∞
∑

t=0

βt(yt · ŷt). (11.A.3)

6 The boundary of the unit circle can be parameterized by ζ = exp(iθ) for θ ∈ (−π, π] .

Using this parameterization, the infinite series on the right side of (11.4.6) converges in L2

where the L2 space is constructed using Lebesgue measure on (−π, π] .
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We use Fourier 0 to represent our dynamic household technologies. It fol-

lows from (11.2.1) and the definitions of smt and sit that

ΠT (c)(ζ) = −β1/2ζΛT (hm)(ζ) + T (sm)(ζ)

T (hm)(ζ) =β1/2ζ(∆h − ΘhΠ
−1Λ)T (hm)(ζ) + ΘhΠ

−1
T (sm)(ζ)

(11.A.4)

where hm,−1 = 0. The transforms of the consumption sequence and the market

service sequence are related by

T (c)(ζ) = C (ζ)T (sm)(ζ) (11.A.5)

where

C (ζ) ≡ Π−1
{

I − β1/2ζΛ[I − β1/2ζ(∆h − ΘhΠ
−1Λ)]−1ΘhΠ

−1
}

. (11.A.6)

The matrix function C of a complex variable ζ represents the mapping from

desired consumption services into the consumption goods required to support

those services.

11.A.8. Verifying Equivalent Valuations

Our derivation of the dynamic demand functions for consumption goods

relied on two intermediate results: (a) equivalent 0 of market services and

consumption goods asserted in (11.3.10); and (b) for a given specification of

preferences and household technology, the existence of a canonical service tech-

nology that induces the same preference ordering over consumption streams. To

establish these intermediate results we use Fourier transforms.

We now show establish the valuation equivalence asserted in (11.3.10).

Applying Parseval’s formula (11.A.3), we have that

∞
∑

t=0

βtp0
t · ct = (1/2π)

∫ π

−π
T (p0)[exp(iθ)] · T (c)[exp(−iθ)]dθ

= (1/2π)

∫ π

−π
T (p0)[exp(iθ)] · {C [exp(−iθ)]T (sm)[exp(−iθ)}]dθ

= (1/2π)

∫ π

−π
{C [exp(−iθ)]′T (p0)[exp(iθ)]} · T (sm)[exp(−iθ)]dθ.

(11.A.7)
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Formula (11.A.7) gives us the following candidate for the transform of the rental

sequence for consumption services: C (ζ−1)′T (p0)(ζ). The rental sequence {ρ̃0
t}

associated with this transform is given by:

ρ̃0
t ≡ Π−1′

{

I − βL−1Θ′
h[I − βL−1(∆h − ΘhΠ

−1Λ)′]−1Λ′Π−1′
}

p0
t

= Π−1′
[

p0
t − Θ′

h

∞
∑

τ=1

βτ (∆h − ΘhΠ
−1Λ)′τ−1Λ′Π−1′p0

t+τ

]

.
(11.A.8)

Using this rental sequence, it follows from (11.A.5) that

∞
∑

t=0

βtp0
t · ct =

∞
∑

t=0

βtρ̃0
t · smt. (11.A.9)

Notice that the candidate rental sequence {ρ̃0
t} violates the information con-

straints because ρ̃0
t will not necessarily be in Jt . From the vantage point of

valuation, all that we require is equality of the expectations of the infinite sums

in (11.A.9) conditioned on J0 . It follows from the Law of Iterated Expectations

that

E0ρ̃
0
t · st = E0ρ

0
t · st (11.A.10)

where

ρ0
t ≡ Etρ̃

0
t , (11.A.11)

since hypothetical service vectors st are restricted to be in the information

set Jt . Taking expectations of both sides of (11.A.11) conditioned on J0 and

substituting from (11.A.11) establishes the value equivalence given in (11.3.10).
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11.A.9. Equivalent representations of preferences

We now turn to task (b), to show that the candidate canonical representation

of the service technology implies the same induced preference ordering for con-

sumption. There are two preference representations on the table (Λ,Π), (Λ̂, Π̂) ,

where the objects with hats are canonical. Again we partition the household

capital stock and the consumption service process into two components. Similar

to (11.A.4) we have that

T (sm)(ζ) = β1/2ζΛT (hm)(ζ) + ΠT (c)(ζ)

T (hm)(ζ) = β1/2ζ∆hT (hm)(ζ) + ΘhT (c)(ζ).
(11.A.12)

Hence

T (sm)(ζ) = S (ζ)T (c)(ζ) (11.A.13)

where

S (ζ) ≡ [Π + β1/2ζΛ(I − β1/2ζ∆h)
−1Θh]. (11.A.14)

The function S represents the mapping from consumption goods into market

supplied consumption services. An analogous argument leads to the formula:

T (ŝm)(ζ) = Ŝ (ζ)T (c)(ζ) (11.A.15)

where

Ŝ (ζ) ≡ [Π̂ + β1/2ζΛ̂(I − β1/2ζ∆h)
−1Θh], (11.A.16)

where objects with hats, including ŝm , correspond to the canonical representa-

tion. It is straightforward to show that

T (si)(ζ) = Λ(I − β1/2ζ∆h)
−1h−1 (11.A.17)

and

T (ŝi)(ζ) = Λ̂(I − β1/2ζ∆h)
−1h−1. (11.A.18)

The time t contribution to the consumers’ utility function can be expressed as:

−(1/2)βt
[

(bt − si,t − sm,t) · (bt − si,t − sm,t)
]

= −(1/2)βt
[

sm,t · sm,t + 2sm,t · si,t − 2sm,t · bt+

(bt − si,t) · (bt − si,t)

]

.

(11.A.19)
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Note that the fourth term is not affected by the consumption choice, and thus

can be ignored.

We now study the Fourier representations of the sums:

∞
∑

t=0

βtsm,t · sm,t,
∞
∑

t=0

βtsm,t · si,t and

∞
∑

t=0

βtsm,t · bt. (11.A.20)

11.A.10. First term: factorization identity

The first infinite sum in (11.A.20) can be represented as:

∞
∑

t=0

βtsm,t · sm,t =

(1/2π)

∫ π

−π

{

T (c)[exp(iθ)]
}′

S [exp(iθ)]′S [exp(−iθ)]

T (c)[exp(−iθ)]dθ.

(11.A.21)

To show that (Π̂, Λ̂) and {b̂t} imply the same induced preferences for consump-

tion goods, we must first establish the factorization:

S (ζ−1)′S (ζ) = Ŝ (ζ−1)′Ŝ (ζ). (11.A.22)

To verify this result, note that

[Π + β1/2ζ−1Λ(I − β1/2ζ−1∆h)
−1Θh]

′[Π + β1/2ζΛ(I − β1/2ζ∆h)
−1Θh]

= Π′Π + βΘ′
h(I − β1/2ζ−1∆h)

−1′Λ′Λ(I − β1/2ζ∆h)
−1Θh

+ β1/2ζ−1Θ′
h(I − β1/2ζ−1∆h)

−1′Λ′Π

+ β1/2ζΠ′Λ(I − β1/2ζ∆h)
−1Θh.

(11.A.23)

Since P satisfies the algebraic Riccati equation(11.4.1), it follows that

Λ′Λ = P − β∆′
hP∆h + Λ̂′Λ̂

= (I − β1/2ζ−1∆h)
′P (I − β1/2ζ∆h) + β1/2ζ−1∆′

hP (I − β1/2ζ∆h)

+ β1/2ζ(I − β1/2ζ−1∆h)
′P∆h + Λ̂′Λ̂.

(11.A.24)
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Therefore,

Θ′
h(I − β1/2ζ−1∆h)

−1′Λ′Λ(I − β1/2ζ∆h)
−1Θh

= Θ′
hPΘh + β1/2ζ−1Θ′

h(I − β1/2ζ−1∆h)
−1′∆′

hPΘh

+ β1/2ζΘ′
hP∆h(I − β1/2ζ∆h)

−1Θh

+ Θ′
h(I − β1/2ζ−1∆h)

−1′Λ̂′Λ̂(I − β1/2ζ∆h)
−1Θh.

(11.A.25)

Furthermore, it follows from (11.4.4) and (11.4.5) that

Π̂′Λ̂ = Π̂′Π̂(Π̂)−1Λ̂

= (βΘ′
hPΘh + Λ′Π).

(11.A.26)

Substituting (11.A.25) and (11.A.26) into (11.A.23) results in

[Π + β1/2ζ−1Λ(I − β1/2ζ−1∆h)−1Θh]′[Π + β1/2ζΛ(I − β1/2ζ∆h)−1Θh]

= Π′Π + βΘ′
hPΘh + βΘ′

h(I − β1/2ζ−1∆h)−1′Λ̂′Λ̂(I − β1/2ζ∆h)−1Θh

+ β1/2ζ−1Θ′
h(I − β1/2ζ−1∆h)−1′(β∆′

hPΘh + Λ′Π)

+ β1/2ζ(ΠΛ′ + βΘ′
hP∆h)(I − β1/2ζ∆h)−1Θh

= Π̂′Π̂ + βΘ′
h(I − β1/2ζ−1∆h)−1′Λ̂′Λ̂(I − β1/2ζ∆h)−1Θh

+ β1/2ζ−1Θ′
h(I − β1/2ζ−1∆h)−1′Λ̂′Π̂

+ β1/2ζΛ̂′Π̂(I − β1/2ζ∆h)−1Θh

= [Π̂ + β1/2ζ−1Λ̂(I − β1/2ζ−1∆h)−1Θh]′[Π̂ + β1/2ζΛ̂(I − β1/2ζ∆h)−1Θh]
(11.A.27)

which proves factorization (11.A.22).
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11.A.11. Second term

The second infinite sum in (11.A.20) can be represented as

∞
∑

t=0

βtsm,t · si,t = (1/2π)

∫ π

−π
{T (c)[exp(iθ)]}′S [exp(iθ)]′Λ

[I − β1/2 exp(−iθ)∆h]
−1h−1dθ.

(11.A.28)

We will verify that

S (ζ−1)′Λ∆h(I − β1/2ζ∆h)
−1 =

Ŝ (ζ−1)′Λ̂∆h(I − β1/2ζ∆h)
−1 + β1/2ζ−1Θ′

h(I − β1/2ζ−1∆h)
−1′P∆h.

(11.A.29)

It then follows that

(1/2π)

∫ π

−π
{T (c)[exp(iθ)]}′S[exp(iθ)]′Λ∆h[I − β1/2 exp(−iθ)∆h]−1h−1dθ

= (1/2π)

∫ π

−π
{T (c)[exp(iθ)]}′Ŝ[exp(iθ)]′Λ̂∆h[I − β1/2 exp(−iθ)∆h]−1h−1dθ

(11.A.30)

because

(1/2π)

∫ π

−π
{T (c)[exp(iθ)]}′β1/2 exp(iθ)

Θ′
h[I − β1/2 exp(iθ)∆h]

−1′P∆hh−1dθ = 0.

(11.A.31)

Relation (11.A.31) holds since T (c)(ζ)′β1/2ζ∆′
h(I − β1/2ζ∆h)

−1′ has a power

series expansion and is zero when ζ = 0 and P∆hh−1 can be viewed a constant

function with a trivial power series expansion. Relation (11.A.31) then follows

from Parseval’s formula (11.A.3) where βt/2yt is constructed from the tth co-

efficient of the power series expansion for the first function and βt/2ỹt from the

tth coefficient of the power series expansion for the second function.

It remains to establish (11.A.29). Note that the left side of (11.A.29) can

be expanded as follows:

[Π + β1/2ζ−1Λ(I − β1/2ζ−1∆h)
−1Θh]

′Λ(I − β1/2ζ∆h)
−1∆h

= Π′Λ(I − β1/2ζ∆h)
−1∆h + β1/2ζ−1Θ′

h(I − β1/2ζ−1∆h)
−1′Λ′Λ

(I − β1/2ζ∆h)
−1∆h.

(11.A.32)
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It follows from the algebraic Riccati equation (11.4.1) that

Λ′Λ = P (I − β1/2ζ∆h) + β1/2ζP∆h − β∆′
hP∆h + Λ̂′Λ̂

= P (I − β1/2ζ∆h) + β1/2ζ(I − β1/2ζ−1∆′
h)P∆h + Λ̂′Λ̂,

(11.A.33)

and hence

β1/2ζ−1Θ′
h(I − β1/2ζ−1∆h)

−1′Λ′Λ(I − β1/2ζ∆h)
−1∆h

= β1/2ζ−1Θ′
h(I − β1/2ζ−1∆h)

−1′P∆h + βΘ′
hP∆h(I − β1/2ζ∆h)

−1∆h

+ β1/2ζ−1Θ′
h(I − β1/2ζ−1∆h)

−1′Λ̂′Λ̂(I − β1/2ζ∆h)
−1∆h

(11.A.34)

Substituting (11.A.34) and (11.A.26) into (11.A.32) gives

[Π + β1/2ζ−1Λ(I − β1/2ζ−1∆h)
−1Θh]

′Λ(I − β1/2ζ∆h)
−1∆h

= Π′Λ(I − β1/2ζ∆h)
−1∆h+

β1/2ζ−1Θ′
h(I − β1/2ζ−1∆h)

−1′Λ′Λ(I − β1/2ζ∆h)
−1∆h

= (Π′Λ + βΘ′
hP∆h)(I − β1/2ζ∆h)

−1∆h+

β1/2ζ−1Θ′
h(I − β1/2ζ−1∆h)

−1′P∆h+

β1/2ζ−1Θ′
h(I − β1/2ζ−1∆h)

−1′Λ̂′Λ̂(I − β1/2ζ∆h)
−1∆h

= Π̂′Λ̂/(I − β1/2ζ∆h)
−1∆h+

β1/2ζ−1Θ′
h(I − β1/2ζ−1∆h)

−1′Λ̂′Λ̂(I − β1/2ζ∆h)
−1∆h+

β1/2ζ−1Θ′
h(I − β1/2ζ−1∆h)

−1′P∆h

= [Π̂ + β1/2ζ−1Λ̂(I − β1/2ζ−1∆h)
−1Θh]

′Λ̂(I − β1/2ζ∆h)
−1∆h+

β1/2ζ−1Θ′
h(I − β1/2ζ−1∆h)

−1′P∆h

(11.A.35)

which establishes (11.A.29).
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11.A.12. Third term

The third sum in (11.A.20) can be represented as

∞
∑

t=0

βtsm,t · bt =

(1/2π)

∫ π

−π
{T (c)[exp(iθ)]}′S [exp(iθ)]′T (b)[exp(−iθ)]dθ.

(11.A.36)

Note that

S (ζ−1)′T (b)(ζ) = Ŝ (ζ−1)′Ŝ (ζ−1)′ −1
S (ζ−1)′T (b)(ζ). (11.A.37)

With this in mind, we define

b̂t = E{[Ŝ (L−1)′]−1
S (L−1)′bt | Jt}. (11.A.38)

Then by reasoning similar to that leading to result (a), we have that

∞
∑

t=0

βtsm,t · bt =

∞
∑

t=0

βtŝm,t · b̂t. (11.A.39)

Taken together (11.A.22), (11.A.29) and (11.A.37) show that the induced pref-

erence ordering for consumption is the same for (Λ̂, Π̂) and {b̂t} as it is for the

original specification (Λ,Π) and {bt} . This establishes result (b).





Chapter 12

Gorman Heterogeneous Households

12.1. Introduction

This chapter and the next describe methods for computing equilibria of versions

of our economies in which consumers have heterogeneous preferences and endow-

ments. In each chapter, we adopt simplifications that make it possible for us to

cope with the complications introduced by heterogeneity. In the present chap-

ter, we adopt a version of Terrance Gorman’s (1953) specification. We describe

a class of heterogeneous consumer economies that satisfy Gorman’s conditions

for aggregation, which lets us compute equilibrium aggregate allocations and

prices before computing allocations to individuals.1

In the following chapter, we adopt a more general specification of hetero-

geneity that causes us to depart from the representative consumer framework

of Gorman. In particular, we adapt the idea of Negishi (1960), who described

a social welfare function that is maximized, subject to resource and techno-

logical constraints, by a competitive equilibrium allocation. For Negishi, that

social welfare function is a “linear combination of the individual utility func-

tions of consumers, with the weights in the combination in inverse proportion

to the marginal utilities of income.” Because Negishi’s weights depend on the

allocation through the marginal utilities of income, computing a competitive

equilibrium via constrained maximization of a Negishi-style welfare function re-

quires solving a fixed point problem in the weights. In the following chapter,

we apply such a fixed point approach. The beauty of Gorman’s aggregation

conditions is that, when they apply, time series aggregates and market prices

can be computed without resorting to Negishi’s fixed point approach.

In the present chapter, consumers are permitted to differ only with respect

to their endowments and the process {bt} that disturbs their preferences. We

1 The discussion in this chapter is patterned after the material in section 3 of Hansen

(1987).

– 265 –
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assume that all consumers have a common information set that includes observa-

tions on past values of the economy wide capital stocks ht−1, kt−1 , and the com-

mon exogenous state variables in zt that drive each of the individual preference

shock processes and the technology shock process {dt} . Preferences of the indi-

vidual consumers can be aggregated simply by summing both preference shocks

and initial endowments across consumers, thereby forming a representative con-

sumer. We can compute all aggregate aspects of a competitive equilibrium of the

economy with heterogeneous consumers by forming the representative consumer

and proceeding as in chapters 3, 4, and 5. We show how to calculate individual

allocations by using the demand functions that were described in the previous

chapter.

In the next section, we briefly describe Gorman aggregation in a standard

static section before adapting it to our purposes.

12.2. A Digression on Gorman Aggregation

Suppose for the moment that there are n consumption goods, taking into

account indexation by dates and states, and that consumption of person j =

1, . . . , J is denoted cj . Let ca denote the aggregate amount of consumption to

be allocated among consumers. Associated with ca is an Edgeworth box and a

collection of Pareto optimal allocations. From the Pareto optimal allocations,

one can construct utility allocation surfaces describing the frontier of alternative

feasible utility assignments to individual consumers. Imagine moving from the

aggregate vector ca to some other vector c̃a and hence to a new Edgeworth

box. If neither the original box nor the new box contain one another, then it is

possible that the utility allocation surfaces for the two boxes may cross, in which

case there exists no ordering of aggregate consumption that is independent of

the utility weights assigned to individual consumers.

Before describing a special case in which an aggregate social preference

ordering does exist, we illustrate a situation in which there doesn’t exist a social

preference ordering that is independent of the aggregate allocation.

Figures 12.2.1 and Fgpareto2f describe efficient allocations in a two person,

two good, pure exchange economy with a structure of preferences that violate the
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Figure 12.2.1: Utility allocation for Agents A and B for

endowment vectors E = (8,3) and E = (3,8).

Gorman aggregation conditions. Agent A has utility function UA = X
1/3
A Y

2/3
A ,

while consumer B has utility function given by UB = X
2/3
B Y

1/3
B , where the

aggregate endowment pair is E = (XA + XB , YA + YB). Figure 12.2.1 shows

two utility possibility frontiers, one associated with E = (8, 3), a second one

associated with E = (3, 8).2 The fact that the utility possibility frontiers in fig-

ure 12.2.1 cross indicates that the two aggregate endowment vectors (8, 3), (3, 8)

cannot be ranked in a way that ignores how utility is distributed between con-

sumers A and B.

In the same economy, Figure 12.2.2 shows the Edgeworth boxes and contract

curves with the two allocations E = (8, 3) and E = (3, 8).

For a given endowment, the slope of the consumers’ indifference curves at

the tangencies between indifference curves that determines the contract curve

varies as one moves along the contract curve. This means that for a given aggre-

gate endowment, the competitive equilibrium price depends on the allocation

between consumers A and B. It follows that for this economy, one cannot expect

to determine equilibrium prices independently of the equilibrium allocation.

2 A utility possibility frontier is the locus of pairs (UA, UB) that solve UA = maxXA,YA
X

1/3
A

Y
2/3
A

subject to the constraints X
2/3
B

Y
1/3
B

≥ UB , (XA +XB , YA + YB) = E .
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Gorman (1953) described restrictions on preferences under which it is possi-

ble to obtain a community preference ordering. Whenever Gorman’s conditions

are satisfied, there occur substantial simplifications in solving multiple-consumer

optimal resource allocation problems: in intertemporal contexts, it becomes pos-

sible first to determine the optimal allocation of aggregate resources over time.

Then the aggregate consumption can be allocated among consumers by allocat-

ing utility levels to each person.

To understand Gorman’s restrictions, imagine specifying the preferences of

consumer j in one of two equivalent ways: in terms either of a family of indiffer-

ence curves indexed by the utility level, or in terms of a family of compensated

demand functions. Following Gorman (1953), let ψj(p) denote the baseline in-

difference curve for person j parameterized in terms of a price vector (or vector

of utility gradients) p . In addition, let ψc(p) denote a common indifference

curve for all consumers used to measure deviations from the baseline curves.

This lets the compensated demand function for person j be represented as

0
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Figure 12.2.2: Overlapping Edgeworth Boxes for endow-

ment vectors E = (8,3) and E = (3,8).

cj = ψj(p) + ujψc(p) (12.2.1)

where uj is a scalar utility index for person j . The baseline functions ψj

and the common function ψc are the derivatives of concave functions that are
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positively homogeneous of degree 1. Hence these functions are homogeneous

of degree zero in prices, assuring that the slopes of indifference curves should

depend only on the ratio of prices. The baseline indifference curves are either

the highest or lowest indifference curves, corresponding respectively to cases in

which the utility indices are restricted to be nonpositive or nonnegative. As

noted by Gorman, when preferences are of this form, there is a well defined

compensated demand function for a fictitious representative consumer obtained

by aggregating (12.2.1):

ca = ψa(p) + uaψc(p) (12.2.2)

where

ua =
∑

uj and ψa =
∑

ψj . (12.2.3)

In this case, optimal resource allocation in a heterogeneous consumer economy

simplifies as follows. Preferences (12.2.2), define a community preference order-

ing for aggregate consumption. This preference–ordering can be combined with

a specification of the technology for producing consumption goods to determine

the optimal allocation of aggregate consumption.

Mapping (12.2.2) can be inverted to obtain a gradient vector p that is

independent of how utilities are allocated across consumers. Since ψc and ψa

are homogeneous of degree zero, gradients are only determined up to a scalar

multiple. Armed with p , we can then allocate utility among J consumers

while respecting the adding up constraint given in (12.2.3). The allocation of

aggregate

consumption across goods and the associated gradient are determined in-

dependently of how the aggregate utility is divided among the individual con-

sumers.

A decentralized version of this analysis proceeds as follows. Let W j denote

the wealth of consumer j and W a denote aggregate wealth. Then W j should

satisfy:

W j = p · cj = p · ψj(p) + ujp · ψc(p). (12.2.4)

Solving (12.2.4) for uj gives

uj = [W j − p · ψj(p)]/p · ψc(p). (12.2.5)

Hence the Engel curve for consumer j is given by
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cj = ψj(p) − p · ψj(p)/p · ψc(p) +W jψc(p)/p · ψc(p). (12.2.6)

Notice that the coefficient on W j is the same for all j since ψc(p)/p · ψc(p)
is only a function of the price vector p in a decentralized economy. The in-

dividual allocations can be determined from the Engel curves by substituting

for p the gradient vector obtained from the single consumer optimal allocation

problem. Individual consumption cj as given by (12.2.6) depends directly on

prices through the functions ψj and ψc and indirectly through the evaluation

of wealth.

For the specifications of preferences adopted in this book, the baseline in-

difference curves are degenerate because they do not depend on p . A finite-

dimensional counterpart to this circumstance occurs when

ψj(p) = χj , (12.2.7)

where χj is a vector with the same dimension as cj . With this specification, the

rules for allocating consumption across individuals become linear in aggregate

consumption. To see this, observe that an implication of (12.2.2) is

ψc(p) = (ca − χa)/ua. (12.2.8)

Substituting (12.2.8) into (12.2.1) gives

cj − χj = (uj/ua)(ca − χa), (12.2.9)

so that there is a common scale factor (uj/ua) across all goods for person j .

Hence the fraction of total utility assigned to consumer j determines his fraction

of the vector (ca − χa).

Here is an example. Suppose that the preferences of consumer j are repre-

sented using the utility function:

U j(cj) = −[(cj − χj)′V (cj − χj)]1/2. (12.2.10)

The compensated demand schedule is then obtained by solving the first-order

conditions:

V (cj − χj)/U j(cj) = µjp (12.2.11)
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U j(cj) = uj ,

where µj is a Lagrange multiplier. Substitute the second equation into the first

and solve for cj − χj :

cj − χj = ujµjV −1p. (12.2.12)

Substitute the right side of (12.2.12) into the utility function and solve for the

multiplier µj :

µj = 1/(p′V −1p)1/2 (12.2.13)

Hence the compensated demand function is given by

cj = bj + ujV −1p/(p′V −1p)1/2. (12.2.14)

In this example,

ψj(p) = χj and ψc(p) = V −1p/(p′V −1p)1/2. (12.2.15)

Notice that to obtain a representation of preferences linear in the utility index

requires using a particular monotonic transformation of the utility function. In

our example, the quadratic form on the right side of (12.2.10) is raised to the

one-half power.

12.3. An Economy with Heterogeneous Consumers

We now specify a multi-consumer version of our dynamic linear economy

designed to satisfy counterparts to Gorman’s conditions for aggregation. There

is a collection of consumers, indexed by i = 1, 2, . . . , I . Consumers differ

both in their preferences and in their endowments, but not in their information.

Consumer i has preferences that are ordered by

−
(

1

2

)

E

∞
∑

t=0

βt
[

(sit − bit) · (sit − bit) + ℓi2t
]

| J0 (12.3.1)
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where {sit} is linked to {hit} and {cit} via

sit = Λhit−1 + Π cit (12.3.2)

hit = ∆h h
i
t−1 + Θh c

i
t, (12.3.3)

and hi−1 is given. In (12.3.1), (12.3.2), (12.3.3), the i superscript pertains to

consumer i . The preference disturbance bit is determined by

bit = U ib zt (12.3.4)

where zt continues to be governed by (3.2). The ith consumer maximizes

(12.3.1) subject to (12.3.2), (12.3.3) and the budget constraint

E

∞
∑

t=0

βt p0
t · cit | J0 = E

∞
∑

t=0

βt (w0
t ℓ

i
t + α0

t · dit) | J0 + v0 · ki−1, (12.3.5)

where ki−1 is given. The ith consumer owns an endowment process dit , governed

by the stochastic process dit = U id zt.

Each consumer observes the aggregate information Jt at time t , as well as

the idiosyncratic capital stocks kit−1 and hit−1 . The information set Jt continues

to be defined as Jt = [wt, x0] .

This specification confines heterogeneity among consumers to differences

in the preference {bit} processes, represented by different selections of U ib ; dif-

ferences in the endowment {dit} processes, represented by different selections

of U id ; differences in hi−1 ; and differences in ki−1 . The matrices Λ, Π, ∆h, Θh

do not depend on i . This makes everybody’s demand curve have the form of

(10.15), with different µw0 (reflecting different wealth levels) and different bt

processes.

Prices and the aggregate real variables can be computed by synthesizing

a representative consumer and solving a version of the social planning prob-

lem that was described in chapter 3. Use the settings h−1 =
∑

i h
i
−1, k−1 =

∑

i k
i
−1 Ub,=

∑

i U
i
b , and Ud =

∑

i U
i
d . This gives us aggregate quantities and

prices. We let µwao denote the multiplier on wealth in the budget constraint

of the representative (or average) household. To compute individual individual

allocations requires more work, to which we now turn.
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12.4. Allocations

A direct way to compute individual allocations would be to solve the prob-

lem each household faces in the competitive equilibrium at the competitive equi-

librium prices. For a fixed Lagrange multiplier on the household’s budget con-

straint, the household’s problem can be expressed as an optimal linear regulator,

with a state vector augmented to reflect the aggregate state variables determin-

ing the scaled Arrow-Debreu prices. It is possible to compute the allocation to

a particular household by using an iterative scheme to calculate the Lagrange

multiplier that assures that the household’s budget constraint is satisfied, but

this is not the procedure that we recommend. Instead note that the allocation

rule for labor is

ℓjt = (µwj0 /µwa0 )ℓat . (12.4.1)

If we substitute this expression for ℓjt into versions of (10.13) and (10.14) for the

j th consumer, we get the following version of the household’s budget constraint:

µjw0 E0

∞
∑

t=0

βt{ρ0
t · ρ0

t +(w0
t /µ

aw
0 )ℓat } = E0

∞
∑

t=0

βt{ρ0
t · (bjt − sjti)−α0

t · djt}− v0k
j
−1.

Solve this equation for µwj0 , using a doubling algorithm. With µjw0 in hand,

we can use the first-order conditions for services and the canonical service tech-

nology to solve for the equilibrium allocation to household j . For a canonical

service technology, the first-order conditions for consumption services are:

sjt − bjt = µjw0 ρ0
t . (12.4.2)

Given ρ0
t , which we know from the aggregate allocation and (10.8), we can solve

(12.4.2) for sjt , then plug sjt into the ‘inverse canonical representation’ to solve

for cjt :

cjt = −Π−1Λhjt−1 + Π−1sjt

hjt = (∆h − ΘhΠ
−1Λ)hjt−1 + Π−1Θhs

j
t ,

(12.4.3)

hj−1 given.
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12.4.1. Consumption sharing rules

Our preference specification is an infinite-dimensional generalization of the

one described in our digression on Gorman aggregation, a version in which goods

are indexed by both dates and states of the world. The counterpart to the

matrix V is determined by the probability distribution over states of the world

conditioned on J0 and on the parameters of the household technology. The

counterpart to χj is determined by the preference shock process {bjt} and the

initial endowment of household capital hj−1 . The allocation rule for consumption

has the form:

cjt − χjt = (uj/ua)(cat − χat ), (12.4.4)

where the ratio (uj/ua) is time invariant and depends only on information

available at time zero. We can express (12.4.4) as

cjt = (uj/ua)cat + χ̃jt

c̃jt = χ̃jt ,

where χ̃jt ≡ χjt − (uj/ua)χat . Our goal is to show how to compute χ̃jt and

(uj/ua). We shall show that the utility indexes can be set at the consumers’

marginal utilities of wealth µjw0 , and that the ‘deviation’ baseline process for

consumption {χ̃jt} can be computed by initializing the inverse canonical repre-

sentation at a vector h̃j−1 and using a ‘deviation’ preference process {b̃jt} as the

‘driving’ service process.

In terms of ‘deviation’ processes, the allocation rule for consumption ser-

vices is

sjt − bjt = (µjw0 /µaw0 )(sat − bat ) (12.4.5)

or

s̃jt = b̃jt ,

where ỹjt ≡ yjt − (µjw0 /µaw0 )yat . The beauty of this representation is that it does

not directly involve prices. The ˜ version of (12.4.3) is

c̃jt = −Π−1Λh̃jt−1 + Π−1s̃jt

h̃jt = (∆h − ΘhΠ
−1Λ)h̃jt−1 + Π−1Θhs̃

j
t ,

(12.4.6)

h̃j−1 given. Associated with s̃jt is a synthetic consumption process χ̃jt such

that c̃jt = χ̃tj is the optimal sharing rule. To construct χ̃jt we simply substitute
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s̃jt = b̃jt into the inverse canonical representation:

χ̃jt = −Π−1Λη̃jt−1 + Π−1b̃jt

η̃jt = (∆h − ΘhΠ
−1Λ)η̃jt−1 + Π−1Θhb̃

j
t

η̃j−1 = h̃j−1.

(12.4.7)

Since s̃jt = b̃jt and η̃j−1 = h̃j−1 , it follows from (12.4.6) and (12.4.7) that c̃jt =

χ̃jt . Equivalently, allocation rule (12.4.4) holds with {χjt} given by recursion

(12.4.7), {χat }by its aggregate counterpart, and (uj/ua) = (µjw0 /µaw0 ). Since

the allocation rule for consumption can be expressed as

cjt = (µjw0 /µaw0 )cat + χ̃jt , (12.4.8)

we can append the recursion in (10.27) for ct and χt from the aggregate, single-

consumer economy to obtain a recursion for generating cjt .

12.5. Risk Sharing Implications

Because the coefficient (uj/ua) is invariant over time and across goods,

allocation rule (12.4.4) implies a form of risk pooling in the deviation process

{cjt − χjt} . Nonseparabilities (either over time or across goods) in the induced

preference ordering for consumption goods appear only in the construction of the

baseline process {χjt} and in calculation of the risk-sharing coefficient (uj/ua)

implied by the distribution of wealth. In the special case in which the preference

shock processes {bjt} are deterministic (in the sense that they reside in the

information set J0), individual consumption goods will be perfectly correlated

with their aggregate counterparts (conditioned on J0 ).3

3 Need to add references to literature on risk sharing: Altug-Miller, MaCurdy, Mace,

Cochrane, Townsend etc.
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12.6. Implementing the Allocation Rule with Limited

Markets

We have seen that one way to implement the allocation rule (12.4.4) is to

introduce a complete set of markets in state and date contingent consumption.

In some environments, a much smaller set of security markets suffices. An

example occurs where a single consumption good is produced according to the

linear technology:

cat + iat = γkat−1 + dat

kat = δkk
a
t−1 + iat , β = 1/(γ + δk).

(12.6.1)

Each consumer has a common household technology with a heterogeneous pref-

erence shock process {bjt} and a heterogeneous initial endowment of household

capital hj−1 . The preference shock process is constrained to be in J0 . Each

consumer is endowed with a heterogeneous initial level of capital kj−1 and an

endowment process {djt} for consumption.

Instead of introducing a full array of contingent claims markets, there is

a stock market for J securities that pay dividends {djt} . In addition, one-

period riskless claims to consumption are traded. To devise a way to implement

allocation rule (12.4.4), note that

cjt − χjt + (uj/ua)χ
a
t + (uj/ua)k

a
t = (uj/ua)[(δk + γ)kat−1 + dat ]. (12.6.2)

Let consumer j sell all its shares of stock j and purchase (uj/ua) shares of all

securities traded in the stock market. Once purchased at date zero, let consumer

j hold onto this portfolio for all time periods. The total dividends paid in period

t will be (uj/ua)d
a
t . Suppose that the consumer purchases fraction (uj/ua) of

the capital stock each period in the one period bond market. The time t payoff

to the t− 1 purchase will be (uj/ua)(δk + γ)kat−1 and the time t purchase will

be (uj/ua)k
a
t . Taken together, these market transactions have a time t receipt

of (uj/ua)[(δk + γ)kat−1 + dat ] and a time t payout of (uj/ua)k
a
t for t = 1, 2, . . .

.

The difference between payouts and receipts in time t is not equal to cjt ,

but to cjt −χjt +(uj/ua)χ
a
t . This deviation induces trading in the bond market.

Note that χjt − (uj/ua)χ
a
t is in the time zero information set J0 by assumption.
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Let k̂jt denote additional purchases in the bond market by person j at time t .

Construct k̂jt so that

χjt − (uj/ua)χ
a
t + k̂jt = (δk + γ)k̂jt−1, t = 1, 2, . . . (12.6.3)

Solve this equation forward to determine an initial value k̂j0 :

k̂j0 =
∞
∑

t=1

βt[χjt − (uj/ua)χ
a
t ]. (12.6.4)

Notice that k̂j0 is in J0 so that it is feasible to construct the sequence {k̂jt } .

Modify the previous investment strategy so that the bond market purchases

of person j at time t equals (uj/ua)k
a
t + k̂jt for t = 1, 2, . . . . The time t

receipts from the previous period purchases in the bond and stock markets equal

(δk + γ)[(uj/ua)k
a
t−1 + k̂jt−1] . In light of (12.6.2) and (12.6.3), the difference

between time t payouts and receipts is cjt for t = 1, 2, . . . . The coefficient

(uj/ua) in the allocation rules is determined so that initial period consumption

cj0 can be purchased from the difference between the time zero receipts and

payouts.

In this implementation, all consumers hold the same stock portfolio or mu-

tual fund, but make a sequence of person-specific trades in the market for one-

period bonds. We have allowed for nonseparabilities over time in the induced

preference ordering for consumption goods, which have important effects on

bond market transactions.

This construction displays a multiperiod counterpart to an aggregation re-

sult for security markets that was derived by Rubinstein (1974). In a two-period

model, Rubinstein provided sufficient conditions on the preferences of con-

sumers and asset market payoffs for the implementation of an Arrow-Debreu

contingent claims economy in an environment with incomplete security mar-

kets. In Rubinstein’s implementation, all consumers hold the same portfolio of

risky assets. In our construction, consumers also hold the same portfolio of risky

assets, and portfolio weights do not vary over time. All of the changes over time

in portfolio composition take place through transactions in the bond market.
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12.7. A Computer Example

The MATLAB program computes the allocation to individual i by executing the computa-

tions described above. The program heter.m requires that be run first, and that its output

reside in memory. The program heter.m computes individual allocations in the form

cit = SicXt, h
i
t = SihXt,

and so on. The matrices Sij are returned. The program also computes the matrices Sac , S
a
h

,

and so on, which determine the aggregate allocations ct, ht, . . . as functions of the augmented

state variable Xt :

ct = Sac Xt

ht = SahXt,

and so on. The MATLAB program can then be used to simulate the allocation to individual

i and the aggregate allocation. The programs and must both be run for each individual i

in a heterogeneous consumer economy.

We illustrate the workings of these programs with the following pure exchange economy.

There are two households, each with identical preferences

−
(

1

2

)

E

∞
∑

t=0

βt
[

(cit − bit)
2 + ℓ2t

]

| J0, i = 1, 2

We specify that bit = 15 for i = 1, 2 . The aggregate preference shock is bt =
∑

i
bit = 30.

We specify the following endowment processes. For consumer 1,

d1t = 4 + .2w1
t ,

where w1
t is a Gaussian white noise with variance (.2)2 . For consumer 2, we specify

d2t = 3 + d̃2t

d̃2t = 1.2 d̃2t−1 − .22 d̃2t−2 + .25w2
t

where w2
t is a Gaussian white noise with variance (.25)2 . To capture the pure exchange

setup, we specify ∆k = 0, Θk = 0, ∆h = 0, Θh = 0, Λ = 0, Π = 1. We set β = 1/1.05 .

We have used and to simulate a realization of this economy. Figure 12.7.1 reports the individ-

ual allocations to consumers 12.2.1 and 12.2.2. Notice how they appear perfectly correlated.

Household one is wealthier than the other and so always consumes more (notice that the mean

of the first household’s endowment process is 4, while the mean of the second household’s is 3).

The perfect correlation between the two consumption services reflects the sharing present in

Arrow-Debreu models with time separable preferences. Figure 12.7.2.a graphs d1t − c1t while

figure 12.7.2.b graphs d2t − c2t . These figures indicate the “balance of payments” between the

two households.
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Figure 12.7.1: Consumption allocations of consumers one and two in

pure endowment economy.
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12.8. Exercises
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Exercise 1: The first part of this exercise is to be answered using “pencil

and paper” as your tools. The second part is to be done on a computer using

MATLAB.

12.8.1. Part one

An economy consists of identical numbers of two types of infinitely lived con-

sumers. Type i consumers all have preferences that are ordered by

(1) − .5E
∞
∑

t=0

[

(cit − bi)
2
]

|J0 , i = 1, 2 , 0 < β < 1,

where cit is consumption of a single good by an consumer of type i , E is the

mathematical expectation operator, and J0 is information known at time 0. In

(1), bi is a parameter that determines the satiation level of consumption for

consumers of type i .

This is a pure endowment (or pure exchange) economy. The only sources of

the single consumption good are two types of trees, the first initially being owned

by the first type of consumer, the second type of tree initially being owned by

the second type of consumer. Initially, there is one tree owned by each consumer

in the economy. The first type of tree yields a constant “dividend” of fruit at

the rate

(2a) d1t = d1 ∀ t ≥ 0.

The second type of tree yields dividends at time t of

(2b)
d2,t+1 = d2 + g wt+1, t ≥ 0,

d20 = d2

where d2 is a constant and where {wt+1}∞t=0 is a martingale difference sequence

with Ew2
t+1|Jt = 1, where Jt = wt ≡ (wt, wt−1, . . . , w1). Notice that at time

0, d2t = d2 , where d2 is the stationary mean of {d2t} .

The feasibility constraint is

2
∑

i=1

cit =

2
∑

i=1

dit.
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You are to consider the following decentralized version of this economy.

At time 0, there are open a complete array of Arrow-Debreu contingent claims

markets. We use the Harrison-Kreps commodity space and pricing system. At

time 0, households of type i face the problem of maximizing (1) subject to

(3) E

∞
∑

t=0

βt p0
t cit|J0 =

∞
∑

t=0

βt p0
t dit|J0.

A. Define a competitive equilibrium for this economy.

B. Construct an argument to show that this is a representative consumer

economy in the sense that the equilibrium price system can be deter-

mined without simultaneously determining individual allocations.

C. Describe the preferences and constraints faced by the representative

consumer in this economy.

D. Compute the equilibrium price system {p0
t}∞t=0 .

E. At the equilibrium prices, compute the right hand side of (3), namely,

(4) a0
i = E

∞
∑

t=0

βt p0
t dit|J0,

for i = 1, 2. Go as far as you can in getting an analytic, closed form

expression for a0
i .

F. Use your answer to E to establish that the value of trees of type 2 is

smaller the larger is the absolute value of g . Interpret this result.

G. Give an argument to establish that a0
i given by (4) would be the equi-

librium price of type i trees if a market in trees (or equivalently, per-

petual claims to the dividends from a tree) were opened at time 0.

H. Suppose that d1 = d2 < b1 = b2 . Suppose that g = 0, so that

the second tree has a perfectly sure yield. Compute the equilibrium

consumption allocation.

I. Suppose that d1 = d2 = 8, that b1 = b2 = 15, and that g = 1.

Compute the equilibrium consumption allocation (for both types of

consumer).

i. Verify that the equilibrium consumption allocations sat-

isfy a “sharing rule”.



282 Gorman Heterogeneous Households

ii. Which type of consumer consumes more in equilibrium?

Why?

J. For this economy, compute the price at time t of a perfectly sure claim

to one unit of consumption at time t+ 1.

12.8.2. Part two

Now you are to use the computer. Use MATLAB to do the computations.

Hint: We have written some programs that should be a big help in doing this

problem. The main programs are and ; does the main calculations while

reads in the parameter values for the economy. A program called does the

asset pricing calculations. You can edit these files and run them to answer the

question.

A. For the economy described in Exercise 1 of Part One, compute the equi-

librium consumption allocation and simulate it. Write down the con-

sumption allocations and the endowment realizations for t = 0, . . . , 10.

B. For the economy described in Exercise 1 of Part One, change the value

of g from 1 to 0. Recompute the equilibrium consumption alloca-

tion, and simulate it. Write down the consumption allocations and

endowment realizations for t = 0, . . . , 10.

C. How do the results of A and B conform to your answers in Part One?

D. Use the program to compute the value of trees at time 0 under the

specification of parameter values given in Exercise 1 of Part One (in

particular, set g = 1). Do the results conform with your reasoning in

Part One?
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12.9. Economic integration

A. The world consists of two virtually identical but separated economies, j =

1, 2. The economies never trade with one another. Within each economy there

exist Arrow-Debreu markets at time 0.

Economy j has the following structure:

12.9.1. Preferences:

−1

2
E0

∞
∑

t=0

βt[(cjt − bj)
2 + ℓ2t ]

12.9.2. Technology

cjt + ijt = γkjt−1 + djt, γ > 0

φijt = gjt, φ > 0

kjt = δkkjt−1 + ijt, 0 < δk < 1

g2
jt = ℓ2jt

kj,−1 given

12.9.3. Information

zt+1 = A22zt + C2wt+1

djt = Udjzt

z0 given.

Here cjt is consumption at t , ijt is investment at t , kjt is the capital stock at

the end of period t , g2
jt is the square of labor absorbed in adjusting the capital

stock, djt is an endowment shock, and bj is a fixed (across time) preference

parameter; all of these objects are scalars. The vector zt is a set of information

variables common to the two economies, and {wt+1} is a martingale difference

sequence with Ewt+1w
′
t+1 = I . The parameters γ, φ, β, δk, A22, and C2 are

common across the two economies. The two economies differ in their values for

bj and Udj .
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a. Define a competitive equilibrium for economy j .

b. Describe how to compute a competitive equilibrium for economy j

using dynamic programming.

c. Let p0
jt be the (scaled) time zero Arrow-Debreu price for consump-

tion in economy j . Show that there exists a representation for the

equilibrium for economy j of the form
[

kjt

zt+1

]

=

[

Ao11 Ao12,j
0 A22

] [

kjt−1

zt

]

+

[

0

C2

]

wt+1

(1)

[

cjt

p0
jt

]

=

[

Scj

Mcj

] [

kjt−1

zt

]

.

In particular, argue that Ao11 is the same across the two economies,

but that Ao12,j , Scj , and Mcj depend on j .

Hint: Two approaches to this problem will bear fruit. First, one can obtain

an Euler equation for capital and solve it, as in our treatment of Hall’s model

in chapter 3. Second, one can use the method of “adding speed by partitioning

the state vector” described in chapter 9.

B. Consider a world consisting of two economies with preferences, technology,

information, and initial capital stocks identical to the previous one. Now, how-

ever, the two economies are integrated, there being world-wide time zero Arrow-

Debreu markets. Residents of country j own the initial capital stock kj,−1 and

the endowment process {dj,t} .

a. Define a competitive equilibrium for the integrated economy.

b. Argue that the integrated economy is a representative consumer econ-

omy, being careful to define what you mean by a representative con-

sumer economy.

c. Describe how to compute the equilibrium of the representative con-

sumer economy.

d. Let p̂0
t be the (scaled) time zero Arrow-Debreu price for consumption in

the integrated economy, and let k̂t = k̂1t+k̂2t , and ĉt = ĉ1t+ĉ2t , where

(̂·) denotes equilibrium objects for the integrated economy. Show that

for the integrated economy, the equilibrium has a representation
[

k̂t

zt+1

]

=

[

Ao11 Ao12
0 A22

] [

k̂t−1

zt

]

+

[

0

C2

]

wt+1
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[

ĉt

p̂0
t

]

=

[

Sc

Mc

] [

k̂t−1

zt

]

,

where Ao11 and A22 and the same objects that appear in (1).

e. Show that k̂t = k1t + k2t and ĉt = c1t + c2t .

f. Find formulas for ĉ1t and ĉ2t . Show that ĉ1t 6= c1t and ĉ2t 6= c2t .

g. Show that p0
1t + p0

2t = α p̂0
t for some positive α .





Chapter 13

Permanent Income Models

This chapter describes a class of permanent income models of consumption,

which stress a connection between consumption and income implied by present

value budget balance, and which generate interesting predictions about the re-

sponses of various components of consumption to identifiable shocks to the in-

formation sets of economic agents. The models allow us to characterize how

consumption of durables act as a form of savings and how habit persistence

alters consumption-savings profiles.

13.1. Technology

To focus on dynamics induced by the household technology, it serves our pur-

poses to adopt the following technology specification:

φc · ct + it = γkt−1 + et

kt = kt−1 + it
(13.1.1)

where φc is a vector of positive real numbers with nc elements, et is a scalar

exogenous endowment of consumption and kt−1 is a scalar capital stock. We

set δk = 1, thereby ignoring depreciation in capital so that it is net investment.

Introducing depreciation in capital would add nothing to our analysis because

we shall eliminate any additional input requirement for making new capital

productive. With no intermediate inputs required for investment, even if there

were depreciation in the capital stock, a version of the first equation of (13.1.1)

would apply to net investment by suitably altering the marginal product of

capital parameter γ .

The empirical counterpart to the scalar endowment process {et} is typ-

ically labor income (e.g., see Flavin 1981, and Deaton 1992). Labor is sup-

plied inelastically and produces et units of output independently of the level

of capital. The absence of curvature in the technology has some troublesome

implications for equilibrium prices that we will discuss later. Nevertheless, this

technology provides a good laboratory for studying how the household technol-

ogy alters consumption-savings profiles. Moreover, this specification has played

– 287 –
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a prominent role in the empirical literature on the permanent income theory of

consumption.

To make the model behave well, we impose the restriction that (1+γ)β = 1.

Relaxing this restriction to make capital more or less productive has unpleasant

implications for the solution to the model. Thus, reducing the marginal product

of capital will produce a solution in which the capital stock must eventually

become negative.4 Increasing the marginal product of capital typically produces

a solution with asymptotic satiation in a deterministic version of the model;

stochastic versions yield a marginal utility vector with mean zero in a stochastic

steady state. This razor’s edge linkage between the marginal product of capital

and subjective discount factor is the price we pay for eliminating the role of

intermediate goods in making new capital productive.

To put this technology within the general specification of Chapter 3, we

include an additional equation

φiit − gt = 0, (13.1.2)

where φi is a small positive number. Strictly speaking, this introduces a form

of adjustment cost by requiring a household input be used to make capital

productive. This small penalty makes capital satisfy the square summability

constraint. When there are multiple consumption goods, to make the resulting

matrix [Φc Φg] nonsingular, we introduce nc − 1 additional investment goods

equal to the last nc − 1 entries of ct Thus, combining these constraints, when

nc is one, we form

Φc =

(

φc

0

)

Φi =

(

1

φi

)

,Φg =

(

0

−1

)

, (13.1.3)

Γ =

(

γ

0

)

,∆k = 1,Θk = 1;

and when nc is greater than one,

Φc =





φ′c
0

0 − I



 Φi =





1 0

φi 0

0 I



 ,Φg =





0

−1

0



 , (13.1.4)

4 A more interesting solution of the model imposes a period-by-period nonnegativity con-

straint on capital. Instead we limit the terminal behavior of the capital stock by imposing

square summability.
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Γ =





γ

0

0



 ,∆k = 1,Θk = ( 1 0 ) ;

Thus, to embed this model into the general setup of Chapter 3, we have nc
investment goods (the original good and nc − 1 additional ones introduced for

technical purposes), and one intermediate good (used to enforce square summa-

bility in the capital stock).

13.2. Two Implications

We extract two sharp implications of this class of permanent income models of

consumption. We obtain the first by substituting kt − kt−1 for it in (13.1.1)

and solving the resulting difference equation for kt−1 :

kt−1 = β

∞
∑

j=0

βj(φc · ct+j − et+j). (13.2.1)

From this formula, it follows that

kt−1 = β

∞
∑

j=0

βjE(φc · ct+j − et+j)|Jt. (13.2.2)

Relation (13.2.2) will help us to find recursive solutions to the model.

Formula (13.2.1) also has important implications for how consumption and

(endowment) income respond to the underlying shocks, as displayed by a set

of dynamic multipliers - or impulse responses – {χj} and {ǫj} for {ct} and

{et} , respectively, where χjwt gives the response of ct+j to wt and ǫjwt the

response of et+j to wt . Since the capital stock kt−1 cannot depend on wt it

follows from (13.2.1) that the shock must be present-value neutral. In other

words, the impact of wt on current and future values of et must be offset in a

present-value sense by its impact on current and future values of ct :

∞
∑

j=0

βj(φc)
′χj =

∞
∑

j=0

βjǫj . (13.2.3)

Equality (13.2.3) is precisely the present-value relation studied by Flavin (1981),

Hamilton and Flavin (1986), Sargent (1987), Hansen, Roberds and Sargent

(1991), and Gali (1991).
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The second implication pertains to the martingale behavior of the shadow

price vector for consumption and capital. To begin, note that the forward

evolution equation for the shadow price of capital is

Mk
t = E(βMk

t+1|Jt) + E(βγMe
t+1|Jt). (13.2.4)

The first-order conditions for the first component of investment imply that

Me
t + φiMg

t = Mk
t , (13.2.5)

where the left side captures the cost of an additional unit of investment and right

side the benefit. The second term on the left side reflects the adjustment cost,

and is zero in the limiting φi = 0 case. By substituting (13.2.5) into (13.2.4)

and using the fact that β(1 + γ) = 1, we obtain the martingale implication for

the shadow price of capital:

Mk
t = E(Mk

t+1|Jt), (13.2.6)

and likewise for the multiplier process {Me
t} .

Finally, the shadow price of consumption is given by:

Mc
t = (Φc)

′Md
t = φcMe

t , (13.2.7)

since the last nc − 1 components of Md
t are zero because these are the mul-

tipliers on a set of bookkeeping identities. Hence the shadow price process for

consumption depends on a single scalar multiplier process {Me
t} , a martingale

that we call the marginal utility process for income. We shall pursue the present-

value budget balance and martingale implications further, and use them to find

and represent the solution of the model.
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13.3. Solution

To solve the model, we begin by deriving allocation rules for consumption and

investment which can be represented in terms of the scalar martingale process

{Me
t} . Then we use present-value relation (13.2.2) to compute Me

t . Our focus

on the marginal utility of income imitates an aspect of the analysis in Bewley

(1977).

To accomplish the first step, we use the notion of a canonical household

technology. Recall that the household technology determines the sequence of

consumption services associated with a given sequence of consumption goods

and an initial condition for the household capital stock. When the household

technology is canonical, we can construct an inverse system which maps a given

sequence of consumption services and an initial condition on the household cap-

ital stock uniquely into a sequence of consumption goods required to support

that service sequence. For a household technology to be canonical, there must

be the same number of services as goods, the matrix Π must be nonsingular,

and the absolute values of the eigenvalues of the matrix (∆h − ΘhΠ
−1Λ) must

be strictly less than β−1/2 . Under these restrictions, the inverted system can

be represented recursively as:

ct = Λ∗ht−1 + Π∗st (13.3.1)

ht = ∆∗
hht−1 + Θ∗

hst

where

Λ∗ ≡ −Π−1Λ, Π∗ ≡ Π−1;

and

∆∗
h ≡ (∆h − ΘhΠ

−1Λ), Θ∗
h ≡ ΘhΠ

−1.

In chapter @preferences@, we showed that there always exists a representa-

tion of the induced preferences for consumption goods in terms of a canonical

technology.

Governing the multipliers is an analogous dual system:

Mh
t = E[β(∆h)

′Mh
t+1|Jt] + E[βΛ′Ms

t+1|Jt] (13.3.2)

Mc
t = (Θh)

′Mh
t + Π′Ms

t ;
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and an associated inverse system:

Mh
t = E[β(∆∗

h)
′Mh

t+1|Jt] − E[β(Λ∗)′Mc
t+1|Jt] (13.3.3)

Ms
t = −(Θ∗

h)
′Mh

t + (Π∗)′Mc
t .

Since {Mc
t} is a martingale sequence, it follows from the inverse dual system

that {Mh
t } and {Ms

t} are both martingales. In fact they are linear combina-

tions of the scalar martingale sequence Me
t . For instance,

Ms
t = MsMe

t (13.3.4)

where

Ms ≡ {(Π∗)′ + (Θ∗
h)

′[I − β(∆∗
h)

′]−1βΛ∗′}φc (13.3.5)

Consequently, we can solve for the service sequence in terms of the scalar mar-

tingale {Me
t} from the simple link between the vector of services and the cor-

responding marginal utility vector:

st = −MsMe
t + bt. (13.3.6)

From this relation and from the inverse household technology (13.3.1) it follows

that

ct = Λ∗ht−1 − Π∗MsMe
t + Π∗bt (13.3.7)

ht = ∆∗
hht−1 − Θ∗

hMsMe
t + Θ∗

hbt.

To characterize the decision rule for investment, we solve (13.1.1) for it and

substitute the right-hand side of (13.3.7) for ct :

it = γkt−1 + et − φc · ct (13.3.8)

= γkt−1 + et − (φc)
′Λ∗ht−1 − (φc)

′Π∗(bt −MsMe
t ).

So far, we have derived a recursive representation for consumption, invest-

ment and household capital in terms of the scalar multiplier process {Me
t} .

However, we have not shown how to initialize this sequence, and we do not yet

have a formula relating the time t increment of this process to the underlying

martingale difference sequence {wt} . We now derive formulas for both of these

objects.
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To find an expression for the marginal utility of income process, we exploit

the present-value budget balance restriction (13.2.2). In light of the inverse sys-

tem (13.3.1) for the household technology, we are led to compute the expected

discounted sum of services and household capital:

∞
∑

j=0

βjE(st+j |Jt) = −[1/(1 − β)]MsMe
t +

∞
∑

j=0

βjE(bt+j |Jt), (13.3.9)

and

β

∞
∑

j=0

βjE(ht+j |Jt) = β

∞
∑

j=0

βjE(∆∗
hht+j−1 + Θ∗

hst+j |Jt). (13.3.10)

Rewriting (13.3.10), we see that

(I − β∆∗
h)

∞
∑

j=0

βjE(ht+j−1|Jt) = ht−1 + βΘ∗
h

∞
∑

j=0

βjE(st+j |Jt),

or ∞
∑

j=0

βjE(ht+j−1|Jt) =

(I − β∆∗
h)

−1ht−1 + β(I − β∆∗
h)

−1Θ∗
h

∞
∑

j=0

βjE(st+j |Jt).
(13.3.11)

Since φc · ct = (φc)
′(Λ∗ht−1 + Π∗st), it follows from equation (13.3.1) and

(13.3.9) that

(1 + γ)kt−1 − (φc)
′Λ∗(I − β∆∗

h)
−1ht−1 = (13.3.12)

− M ′
sMsMe

t/(1 − β) +

∞
∑

j=0

βjE(M ′
sbt+j − et+j |Jt).

Solving for {Me
t} results in

Me
t = 1/(M ′

sMs)[(1 − β)
∞
∑

j=0

βjE(M ′
sbt+j − et+j |Jt) − (13.3.13)

γkt−1 + (1 − β)(φc)
′Λ∗(I − β∆∗

h)
−1ht−1].

To interpret this solution, it is useful to decompose the right-hand side

of (13.3.13) into three components. First, we follow the permanent income



294 Permanent Income Models

literature by defining permanent income to be that amount of income to be

spent on consumption that can be expected to persist in the future and still

satisfy (13.2.2):

ypt ≡ γkt−1 + (1 − β)
∞
∑

j=0

E(βjet+j |Jt). (13.3.14)

Formally, this is obtained by letting {ypt } be a hypothetical expenditure process

for consumption, assuming it is a martingale, substituting ypt+j for φc · ct+j in

equation (13.2.2), and solving for ypt .

Note that this measure of permanent income does not adjust for risk in

the endowment sequence and hence even when divided by (1 − β) is distinct

from equilibrium wealth. Nevertheless, it is an important component of the

solution to the model. In fact, ct = ypt is the solution for consumption in the

in the special case of single good, no preference shocks (bt constant), and time

separable preferences (Λ zero), which is Hall’s (1978) permanent income model

of consumption. In this simple case, the marginal utility process for endowment

income is formed by translating the negative of permanent income: Me
t = b−ypt .

More generally, when the preference shock process is not expected to be

constant, the term of interest is a ‘permanent’ measure of the preference shock

sequence:

bpt ≡ (1 − β)
∞
∑

j=0

E[βj(Ms)
′bt+j |Jt]. (13.3.15)

Finally, when preferences are not separable over time, the household capital

stock also enters the solution for the marginal utility of endowment income. To

interpret its coefficient, consider the sequence of consumption goods required

to support zero consumption services from now into the future. To compute

this sequence, simply feed a sequence of zeros into the inverse of the household

technology. Discounting the resulting consumption sequence and premultiplying

by (φc)
′ results in:

yht ≡ (1 − β)(φc)
′Λ∗(I − β∆∗

h)
−1ht−1. (13.3.16)

Hence yht adjusts the permanent income measure to account for implicit con-

sumption associated with a “baseline” zero service sequence.

To summarize, the marginal utility of endowment income can be represented

as:

Me
t = (1 − β)(1/M ′

sMs)(b
p
t − ypt + yht ). (13.3.17)
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Relation (13.3.17) gives a decomposition of marginal utility of income into three

components: bpt , y
p
t and yht . Increases in bpt result in an outward shift in prefer-

ence for consumption, which increases the marginal utility of income; increases

in ept correspond to an outward shift of permanent income, which reduces the

marginal utility of income; and alterations in yht reflect movements in the initial

household capital stock. The measurement of this third component is the dis-

counted endowment-equivalent consumption sequence associated with a baseline

(zero) sequence of services. Increasing it has an opposite impact on the marginal

of income from increasing permanent income.

The final task of this section is to deduce a formula for the increment of Me
t

of the form µwt for some µ . Note that yht depends on time t− 1 information.

Hence only the bpt and ypt terms enter into consideration. Let {ψj} denote

the sequence of matrices of dynamic multipliers for the preference shock process

{bt} . It follows from (13.3.13) that

µ = [(1 − β)/(M ′
sMs)]

∞
∑

j=0

βj [(Ms)
′ψj − ǫj ]. (13.3.18)

The dynamic multipliers {χj} for consumption can then be computed recur-

sively from (13.3.7), and by construction satisfy the present-value budget bal-

ance restriction (13.2.3).

13.4. Deterministic Steady States

It is useful to study consumption in a deterministic steady state, partly to verify

that there exist configurations of the model for which consumption of all goods

is positive in this steady-state. Otherwise, the stochastic versions of the model

would likely have some perverse implications. We consider cases in which {bt}
and {et} are constants set at the values b and e , respectively.

For a deterministic version of the model, the marginal utility of income

is constant over time. Of course, we are only interested in initial conditions

such that the initial marginal utility is positive and hence the entire sequence is

positive. Thus from equation (13.3.17), we are lead to require that:

Me
0 = (1/M ′

sMs)(M
′
sb− e− γk−1 + yh0 ) > 0. (13.4.1)
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Since 1/(M ′
sMs) is positive by construction, we only need to be concerned with

requiring that (M ′
sb−e−γk−1 +yh0 ) be positive. Any changes in (b, e, h−1, k−1)

that alter the right side of (13.4.1) will clearly change the marginal utility of

income (in all time periods).

Since the preference shifter sequence is fixed at a constant level, the constant

marginal utility of income sequence implies a constant service sequence given

by:

s = b−MsMe
0. (13.4.2)

The corresponding sequences of consumption goods and household capital need

not be constant, and we now investigate the limiting behavior of these objects.

Armed with the consumption service sequence, the consumption and household

capital sequences can be computed from the inverse household technology.

The absolute values of the eigenvalues of ∆∗
h are less than β−1/2 but can be

greater than or equal to one. Without further restricting the eigenvalues of ∆∗
h

to have absolute values that are strictly less than one, the consumption sequence

may not converge to a steady state.5 With the additional restriction that the

absolute values of eigenvalues are strictly less than one, the consumption and

household capital sequences will converge with limits:

h∞ = (I − ∆∗
h)

−1Θ∗
hs

c∞ = Λ∗h∞ + Π∗s
(13.4.3)

where variables with subscript ∞ denote limit points. By combining (13.4.2)

and (13.4.3), it can be checked whether the limiting consumption vector is

strictly positive.

As an illustration, consider a setting with a single consumption good, a

single physical capital stock, and the following household technology:

ht = δhht−1 + (1 − δh)ct

st = λht−1 + ct,
(13.4.4)

where δ is a depreciation factor between zero and one. Notice that the house-

hold capital stock is constructed to be a weighted average of current and past

consumption. The inverse system is given by:

ht = [δh − λ(1 − δh)]ht−1 + (1 − δh)st

ct = −λht−1 + st.
(13.4.5)

5 As emphasized by Becker and Murphy (1988), configurations with explosive eigenvalues

can arise in models of ‘rational addiction’.
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In this simple case, the eigenvalue of ∆∗
h is simply the coefficient on the lagged

capital stock in the evolution equation for household capital. This coefficient

has an absolute value less than one if:

−1 < λ < (1 + δ)/(1 − δ). (13.4.6)

When these inequalities are satisfied consumption and the household capital

stock both converge to s/(1 + λ).

Negative values of λ that violate the inequalities in (13.4.6) display a form

of ‘rational addiction’ as analyzed by Becker and Murphy (1988). For instance,

when λ is −1, the coefficient on lagged capital is unity, and the consumption

sequence required to support a constant service sequence must grow linearly

over time. Lower values of λ (i.e., negative ones with larger absolute values)

imply geometric growth in consumption.

Simply requiring the limiting value of consumption to be positive guarantees

that consumption will be positive for initial levels of household capital close

to the steady state, but it would be nice to obtain a stronger result. One

strategy would require entries of the matrices of the inverse household technology

all to be positive. Unfortunately, this restriction that would eliminate some

important examples in which there is substitutability across goods or over time.

For instance, in (13.4.4), when λ is positive as in the case of a durable good, the

inverse household technology has a negative coefficient. Nevertheless, starting

from an initial level of household capital below the steady state will result in a

positive consumption sequence.

13.5. Cointegration

A key feature of our solution is that the marginal utility of income process is a

martingale, which implies via (13.3.6) that the consumption service process is

nonstationary. If in addition the preference shock process {bt} is asymptotically

stationary, then the service process and consumption are each cointegrated.

Suppose that the preference shock process {bt} is asymptotically stationary,

but unobservable to the econometrician. This implies that there are ns − 1

linear combinations of consumption services that are asymptotically stationary.

To show this, take any vector ψ that is orthogonal to Ms . It follows from
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(13.3.6) that

ψ′st = ψ′bt. (13.5.1)

Evidently there are ns − 1 linearly independent ψ ’s. Each such ψ is referred

to as a cointegrating vector, in the terminology of Granger and Engle (19??).

An extensive literature treats the efficient estimation of cointegrating vec-

tors. However, what interest us are not the cointegrating vectors but rather the

vector Ms that is orthogonal to all of the cointegrating vectors for consumption

services.

The cointegrating vectors for consumption services differ from the cointe-

grating vectors for consumption goods. To deduce the cointegrating vectors for

the consumption flows, we shall build upon the deterministic steady-state cal-

culations reported in (13.4.3). From (13.4.3), we know that for a deterministic

steady state

c∞ = [Λ∗(I − ∆∗)−1Θ∗ + Π∗]s∞. (13.5.2)

The matrix on the right-hand side of (13.5.2) also gives the transformation

mapping a date t shock to consumption services to the limiting response of

consumption. Any vector ψ satisfying

ψ′[Λ∗(I − ∆∗)−1Θ∗ + Π∗]Ms = 0 (13.5.3)

is a cointegrating vector for consumption. Let Ψ denote an nc−1 by nc matrix

with rows that are linearly independent cointegrating vectors. Notice that the

implied model for Ψct and c1,t − c1,t−1 contains only stationary endogenous

variables, so that it can be estimated using methods that require asymptotic

stationarity, like the frequency-domain methods of chapter 9. An estimation

strategy based on recursive formulations of the Gaussian conditional likelihood

function would not require such a transformation to a stationary set of endoge-

nous variables, but would require confronting the nonexistence of an asymptot-

ically stationary distribution of the state vector from which to draw an initial

estimator of the state. In chapter 9, we described a method based on ideas of

Kohn and Ansley (1985) designed to construct an initial estimator of the state

in such a circumstance.

If we were to assume that the preference shock process is itself nonstationary

and that there does not exist any nontrivial cointegrating vector for this process,

then it would follow that there exist no cointegrating vectors for either the service

process or the consumption process. In this case, to utilize estimation methods
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requiring stationary, we would base parameter estimation on the implications

for the differenced processes for consumption and household capital.

13.6. Constant Marginal Utility of Income

In the absence of uncertainty, the marginal utility of income process will be con-

stant. In this section we introduce uncertainty in the endowment and preference

shock processes, and ask: when will the marginal utility of income process re-

main constant through time? Constancy of the marginal utility of income is an

extreme version of the prediction of permanent income theory that the ability

to transfer consumption over time results in “smoothness of consumption” over

time. In the absence of preference shocks, a constant marginal utility of income

process implies that consumption services will also be constant through time.

We address this question from two angles. Initially, we investigate the lim-

iting behavior as the subjective discount factor β approaches unity, and provide

conditions on the stochastic structure sufficient to imply constant marginal util-

ities of income in the limit. In taking this limit, we will not concern ourselves

with interpreting directly the limit economy. Instead we will study the limiting

behavior of the solutions to the optimal resource allocation problems along with

the associated marginal utility of income processes. The second attack on the

question is to characterize the specifications of uncertainty that imply a constant

marginal utility of income process for a given β that is strictly less than one.

The initial portion of our investigation will imitate and replicate features

of Bewley’s (1977) study of the permanent income model of consumption. Our

analysis is mechanically simpler than Bewley’s, but different. When we drive

β to one, we maintain the link between the subjective discount factor and the

marginal product of capital. Hence as β tends to one in our analysis, the

marginal product of capital as measured by γ is simultaneously being driven

to zero. In contrast, Bewley considered setups in which the counterpart to the

marginal product of capital is always zero. Since capital is less productive,

nonnegativity constraints are a central feature of his analysis of the economies

with β strictly less than one.

Suppose that {zt} is a stationary stochastic process and that zt has a finite

second moment. Then it is known that the time series average (1/N)
∑N−1
j=0 zt+j
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converges.6 Moreover, the limit vector is invariant to the starting date t of the

average. Consistent with our setup in previous chapters, we assume that both

bt and et are linear functions of zt . Recall that the portion of the solution

for the marginal utility of income that is not predetermined (the portion that

can respond to a current-period shock) is a linear combination, say ν , of a

conditional expectation of the geometric average (1 − β)
∑∞
j=0 β

jzt+j where

ν ≡ [1/(M ′
sMs)](MsUb − Ue) (13.6.1)

bt = Ubzt and et = Uezt [see (13.3.13)]. While the simple time-series average

and the geometric average will not typically agree, they can be made arbitrarily

close by driving N to infinity and β to one. Under both limits, tail terms in

the average become relatively more important as the limit point is approached.

Formally, it follows from the theory of Cesaro and Abel summability that

lim
N→∞

(1/N)
N−1
∑

j=0

zt+j = lim
β→1

(1 − β)
∞
∑

j=0

βjzt+j (13.6.2)

(e.g. see Zygmond 1979, Theorem 1.33, page 80). Therefore, as the discount

factor tends to one, the right side of (13.6.2) converges to a vector independent

of t . Moreover, for the information structures we impose, the limit vector must

be in the initial period information set.7 The constancy of the marginal utility

of income as β goes to unity follows immediately.

The argument just provided relies on stationarity but does not require lin-

earity in the evolution equation for {zt} . In fact, stationarity often can be

replaced by a weaker notion of “asymptotic stationarity” as we now illustrate

using the linear specification

zt+1 = A22zt + C2wt+1 (13.6.3)

imposed elsewhere in this book. This specification can be exploited to obtain

an alternative demonstration of the constancy of the marginal utility of income.

6 The convergence is both with probability one and in mean square, where mean-square

convergence is defined using the square root of the second moment as a norm. We use mean-

square convergence in our subsequent analysis.
7 This follows because the limiting random variable has a finite second moment. As long

as the forecast error variance is independent of calendar time and information accumulates

over time, the forecast error variance must be zero.
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Recall that

(1 − β)

∞
∑

j=0

βjE(zt+j |Jt) = (1 − β)(I − βA22)
−1zt. (13.6.4)

To investigate the limit as β tends to one, it is convenient to uncouple the

dynamics according to the eigenvalues. Let

A22 = TDT−1 (13.6.5)

be the Jordan decomposition, and suppose that D can be partitioned as:

D =

(

I 0

0 D2

)

(13.6.6)

where the absolute values of the diagonal entries of D2 are all strictly less than

one. Using the Jordan decomposition, it follows that

(1 − β)(I − βA22)
−1 = T

(

I 0

0 (1 − β)(I − βD2)
−1

)

T−1. (13.6.7)

Taking limits, we see that

lim
β→1

(1 − β)(I − βA22)
−1 = T

(

I 0

0 0

)

T−1. (13.6.8)

Therefore, (1 − β)
∑∞
j=0 β

jE(zt+j |Jt) depends only on

z∗t ≡ ( I 0 )T−1zt, (13.6.9)

where z∗t has law of motion

z∗t+1 = z∗t + C∗wt+1, (13.6.10)

where

C∗ ≡ ( I 0 )T−1C2. (13.6.11)

Sufficient conditions for the marginal utility of income to be constant are

that the Jordan decomposition of A22 satisfies (13.6.6) and C∗ be zero. When

these restrictions are satisfied, the process {zt} will be asymptotically stationary

because the process {z∗t } will be constant over time and because {( 0 I )T−1zt}
will converge to a stationary process. This latter result follows since the diagonal
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entries of D2 have absolute values that are strictly less than unity. Stationarity

is only implied when the {zt} is initialized appropriately.

The arguments just given cannot be extended to {zt} processes with more

fundamental forms of nonstationarity. For instance, time trends or unit roots

in the endowment process would suffice to overturn constancy of the marginal

utility of income in the limit. In the case of time trends, the averages may

diverge as the limits are taken. For unit root processes (without drifts) the

limits are well defined, but the uncertainty in the marginal utility of income

process does not vanish.

We now change experiments and hold fixed the subjective discount factor

and ask if it is still possible for the marginal utility of income to be constant. The

answer to this question turns out to be yes. Assume the Jordan decomposition

(13.6.5) and (13.6.6) along with restriction (13.6.11), except that D2 can now

have eigenvalues with absolute values that are equal or even greater than one

(but less than β−1/2 ). If

ν(I − βA22)
−1 = ( ν∗ 0 ) (13.6.12)

for some vector ν∗ , then the marginal utility of income will be constant over

time. While this clearly imposes a restriction on the matrix A22 , it is satis-

fied by some stationary and nonstationary specifications of the endowment and

preference shock processes.

13.7. Consumption Externalities

One of the prime motivations for intertemporal complementarities put forth by

Ryder and Heal (1973) is that individual consumers are concerned in part about

their consumption relative to the past community average. In other words, there

is an externality in consumption. This motivation is in contrast to that given

by Becker and Murphy (1988) in which the complementarities are purely pri-

vate. The solution described previously is applicable even if this consumption

externality is present as a solution to an optimal resource allocation problem.

However, the link between optimal resource allocation and competitive equilib-

rium may vanish when there is a consumption externality. We now investigate

this issue.
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To capture the externality, we endow the consumer with the household

technology:
Ht = ∆hHt−1 + ΘhCt

st = ΛHt−1 + Πct
(13.7.1)

where Ht,Ht−1 and Ct are interpreted as community-wide vectors that are

beyond the control of the private consumers but are equal to their lower case

counterparts in equilibrium.

The previous argument justifying the martingale properties of the marginal

utilities of income and consumption relied only on the technology specification

and still applies when the externality is present. In light of the externality

interpretation, the marginal utility of services now satisfies:

Ms
t = (Π∗)′Mc

t

= (Π∗)′φcMe
t .

(13.7.2)

Recall that Π∗ is equal to Π−1 . Although the link between the marginal

utility of services and marginal utility of consumption goods is altered, the

marginal utility of service process remains a martingale. The previous solution

method can now be imitated by substituting the matrix (Π∗)′φc for Ms given

by (13.3.4).

When there is a single consumption good and the household technology is

canonical, the two solutions coincide. This alteration can be verified by taking

the previous solution for the marginal utility of income and showing that all of

the equilibrium conditions and first-order conditions remain satisfied. While the

marginal utility of services is altered by a constant scale factor over time, this

clearly has no impact on the implied marginal rates of substitution for consump-

tion services and therefore the original quantity allocation remains intact with

the externality interpretation. When there are multiple consumption goods, the

quantity allocations can be altered. Also, when the original household technol-

ogy is not ‘canonical,’ the quantity allocations can be altered even when there is

a single consumption good. While there generally exists a canonical household

technology that implies the same induced preferences for consumption goods,

the externality version of the specification can give rise to a fundamentally dif-

ferent canonical technology, breaking the simple link between solution to the

resource allocation problem and the decentralized economy.

To elaborate on this last point, suppose the original household technology is

not canonical. In Chapter ? we showed how to find the corresponding canonical
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technology to be used in solving the optimal resource allocation problem. In

the presence of consumption externalities, we can find the analog to a canonical

household technology by first noting that

bt − st = Bt − Πct, (13.7.3)

where

Bt ≡ bt − ΛHt−1.

Consequently,

(bt − st) · (bt − st) = Bt ·Bt − 2(Bt)
′Πct + (ct)

′Π′Πct. (13.7.4)

Suppose that Π′Π is nonsingular, and obtain a factorization:

Π̂′Π̂ = Π′Π (13.7.5)

where Π̂ is nonsingular. Also, define

Λ̂ ≡ Π̂′−1Π′Λ

b̂t ≡ Π̂′−1Π′bt

ŝt ≡ Λ̂Ht−1 + Π̂ct.

(13.7.6)

Then (bt − st) · (bt − st) and (b̂t − ŝt) · (b̂t − ŝt) agree except for a term that is

not controllable by the individual consumer. Consequently, technology (13.7.6)

and the implied preferences for the original household technology are the same.

For this solution method to apply, we need this transformed version of

the household technology to be canonical. Since the matrix Π̂ is nonsingular

by construction, it suffices for the matrix ∆h − ΘhΠ̂
−1Λ̂ to have eigenvalues

with absolute values that are strictly less than β−1/2 . If this restriction is not

satisfied then there fails to exist a competitive equilibrium.
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13.8. Tax Smoothing Models

By reinterpreting variables, our model can represent a class of linear models

of optimal taxation, versions of which were studied by Barro (1979) and Judd

(1990). Let τt be a vector of taxes collected from various sources (e.g., capital,

labor, imports, etc.); Gt a scalar stochastic process of government expenditures;

Bt−1 the stock of risk-free one-period government debt bearing net one-period

interest rate of γ = 1
β − 1; and deft the gross-of-interest 0 deficit. Match up

variables as follows: ct ∼ τt, et ∼ Gt, kt−1 ∼ Bt−1, it ∼ deft . Set φc to a vector

of ones, so that φ′cτt measures total time t government tax revenues. With

these associations, (13.1.1) become

deft = γBt−1 +Gt − φ′cτt

Bt = Bt−1 + deft.

The preference ordering is interpreted as minus the loss function associated with

taxation, and measures the dynamics of tax distortions.

Consider three special cases of this model, each of which sets bt to a vector

of zeroes.

1. Random walk taxes. To capture Robert Barro’s specification, set φc = 1

(so there is only one kind of tax revenues), Λ = 0,Π = 1,Θh = ∆h = 0. This

version makes taxes follow a random walk. It is a relabelling of Hall’s model of

consumption.

2. White noise taxes. To capture a one-tax version of Judd’s specification,

again set φc = 1, but now set Π = ∆h = 1,Θh = Λ = −1. With these

settings, the government’s objective function is −.5E0

∑∞
t=0 β

t(
∑t
j=0 τt−j)

2 .

This specification is intended to capture the long-lived adverse effects of taxation

on capital. The optimal policy makes taxes a white noise process, a feature that

characterizes the asymptotic behavior of capital taxation in the model of Chari,

Christiano, and Kehoe (1994). To deduce the white noise property for this

model, use (13.3.7) and the relations defining Λ∗,Π∗,∆∗
h,Θ

∗
h under (13.3.1).

In particular, we obtain τt = −Ms(Me
t −Me

t−1).

3. Two taxes. Set φc = [ 1 1 ], and specify two taxes whose ‘distortion

technology’ is obtained by stacking the two technologies described in examples

1 and 2. This is the kind of setup advocated by Judd (1990), and makes one

tax a random walk, the other a white noise.





Chapter 14

Non-Gorman Heterogeneity Among Households

14.1. Introduction

The previous chapter studied a setting in which households have heterogeneous

endowments and preference shock, but otherwise have identical preferences and

household technologies, implying that all Engle curves are linear with the same

slopes. The property of identically sloped linear Engle curves delivers a tidy and

tractable theory of aggregation assuring the existence of a representative house-

hold. This theory applies when different households share the same household

technology (Λ,Π,∆h,Θh).

In this chapter, we maintain the linearity of households’ Engle curves, but

permit their slopes to vary across classes of households. In particular, we now al-

low households’ technology parameters (Λi,Πi,∆hi,Θhi) to differ across classes

of households indexed by i . This alteration causes the existence of a representa-

tive household, in the sense of there being a preference ordering over stochastic

processes for aggregate consumption that is independent of the initial wealth

distribution, to vanish. Nevertheless, the structure still fits within a class that

readily yields to linear quadratic dynamic programming algorithms. Competi-

tive equilibria can be calculated using an algorithm based on Negishi’s idea of

finding a fixed point within a class of Pareto problems, where the fixed point

is a list of Pareto weights that deliver budget balance at candidate equilibrium

prices. In this chapter, we describe how the algorithms can be applied very effi-

ciently within our class of economies. We also describe how a more limited form

of aggregation than Gorman’s can be carried out for this economy. In particu-

lar, implementation of the Negishi algorithm enables us to uncover a ‘mongrel’

preference ordering over aggregate consumption streams, where the preference

ordering depends on the initial distribution of wealth, as do the parameters of

any ‘household technology’ for representing those preferences.

– 307 –
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14.2. Households’ Preferences

There are equal numbers of two types of households, indexed by i = 1, 2. House-

holds of type i have preferences ordered by

−1

2
E

∞
∑

t=0

βt [(sit − bit) · (sit − bit) + ℓ2it] | J0. (14.2.1)

Here sit is a consumption service vector for consumer i , bit is a preference shock

process, and ℓit is labor supplied by consumer i . Services sit are produced via

the technology

sit = Λihit−1 + Πi cit (14.2.2)

hit = ∆hi
hit−1 + Θhi

cit , i = 1, 2 (14.2.3)

Here hit is consumer i ’s stock of household durables at the end of period t ,

and cit is consumer i ’s rate of consumption. The preference shock process bit

is governed by

bit = Ubizt (14.2.4)

where zt continues to be governed by

zt+1 = A22zt + C2wt+1

Notice that this specification permits each class of households to have its

own list of matrices (Λi,Πi,∆hi,Θhi) that determine a technology for converting

consumption goods into services.
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14.2.1. Technology

Consumption goods (c1t, c2t) are produced via the technology

Φc(c1t + c2t) + Φggt + Φiit = Γkt−1 + d1t + d2t (14.2.5)

kt = ∆kkt−1 + Θkit (14.2.6)

gt · gt = ℓ2t , ℓt = ℓ1t + ℓ2t. (14.2.7)

As before, gt denotes the quantity of labor-using intermediate production ac-

tivities; dit is the amount of the endowment vector of household i used in the

production process. We assume that

dit = Udi
zt , i = 1, 2. (14.2.8)

14.3. A Pareto Problem

The social welfare function is a weighted average of the utilities of the two

households, with weight on household 1’s utility being λ, 0 < λ < 1. For fixed

λ , we want to find an allocation that maximizes

−1

2
λE0

∞
∑

t=0

βt[(s1t − b1t) · (s1t − b1t) + ℓ21t]

−1

2
(1 − λ)E0

∞
∑

t=0

βt[(s2t − b2t) · (s2t − b2t) + ℓ22t]

subject to the constraints that describe the household and production technolo-

gies. By way of fitting it into an optimal linear regulator, it is convenient to

note a property of the solution to the problem that permits us to avoid carrying

along ℓ1t and ℓ2t as variables, and to replace them by functions of ℓt . The

solution of the social planning problem implies a pair of simple ‘sharing rules’

for labor. We deduce these sharing rules before solving the full problem in order

to economize the number of control variables.
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Let M ℓ
t be the stochastic Lagrange multiplier associated with the con-

straint ℓ1t + ℓ2t = ℓt . With respect to ℓ1t and ℓ2t , the first order condi-

tions are M ℓ
t = λℓ1t and M ℓ

t = (1 − λ)ℓ2t . These conditions imply that

ℓt = ℓ1t + ℓ2t = M ℓ
t /(λ(1 − λ)), or M ℓ

t = λ(1 − λ)ℓt . Substituting this last

equality for M ℓ
t into the marginal conditions for ℓ1t and ℓ2t gives the ‘sharing

rules’

ℓ1t = (1 − λ)ℓt, ℓ2t = λℓt.

Use these two equations to represent the terms in ℓ1t and ℓ2t in the social

planning criterion as

λℓ21t + (1 − λ)ℓ22t = λ(1 − λ)ℓ2t .

Substituting in the constraint gt · gt = ℓ2t , we can represent the social planning

criterion as

−1

2
E0

∞
∑

t=0

βt[λ(s1t − b1t) · (s1t − b1t) + (1 − λ)(s2t − b2t) · (s2t − b2t)

+ λ(1 − λ)gt · gt].
(14.3.1)

The objective function (14.3.1) is to be maximized subject to the following

constraints:

sit = Λi hit−1 + Πicit , i = 1, 2(12.2)

hit = ∆hi
hit−1 + Θhi

cit , i = 1, 2(12.3)

(12.5) Φc(c1t + c2t) + Φggt + Φiit = Γkt−1 + d1t + d2t

(12.6) kt = ∆k kt−1 + Θkit

(12.4)
dit = Udi

zt , bit = Ubi
zt , i = 1, 2

zt+1 = A22zt + C2wt+1
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This problem can be set up as an optimal linear regulator problem by following

steps paralleling those for the single-household economy described in Chapter

4. Define the state and controls of the system as

xt =









h1t−1

h2t−1

kt−1

zt









, ut =

(

it

c1t

)

.

Notice that from (14.2.5), (c2t, gt) can be expressed as functions of the state

and controls at t :

[

c2t

gt

]

= [Φc Φg]
−1
{

Γ kt−1 + (Ud1 + Ud2) zt − Φc c1t − Φi it

}

. (14.3.2)

Substitution from the above equation into (14.2.3) for i = 2 shows that the law

of motion for xt+1 can be represented







h1t

h2t

kt
zt+1







=







∆h1 0 0 0

0 ∆h2 Θh2Uc[Φc Φg ]−1Γ Θh2Uc[Φc Φg ]−1(Ud1 + Ud2)

0 0 ∆k 0

0 0 0 A22













h1t−1

h2t−1

kt−1

zt







+







0 Θh1
−Θh2Uc[Φc Φg ]−1Φi −Θh2

Θk 0

0 0







(

it
c1t

)

+







0

0

0

C2







wt+1

or

xt+1 = Axt +But + C wt+1. (14.3.3)

Here Uc is a matrix that selects the first nc rows of the right hand side of

(14.3.2), the rows corresponding to c2t , and Ug is a matrix that selects the

rows of (14.3.2) corresponding to g1t . Here and below, we use the equalities
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Uc[Φc Φg]
−1Φc = I, Ug[Φc Φg]

−1Φg = I, Uc[Φc Φg]
−1Φg = 0, Ug[Φc Φg]

−1Φc =

0. Now substitute from (14.3.2) into (14.2.2) for i = 2 to get

s2t = Λ2h2t−1 + Π2Uc[Φc Φg]
−1
{

Γkt−1 + (Ud1 + Ud2)zt − Φcc1t − Φiit

}

.

Use this equation and (14.2.2) for i = 1 to deduce

(s1t − b1t) =



















Λ1

0

0

−Ub1
0

Π1



















′ 

















h1t−1

h2t−1

kt−1

zt

it

c1t



















(s2t − b2t) =



















0

Λ2

Π2Uc[ΦcΦg]
−1Γ

Π2Uc[Φc Φg]
−1(Ud1 + Ud2) − Ub2

−Π2Uc[Φc Φg]
−1Φi

−Π2



















′ 

















h1t−1

h2t−1

kt−1

zt
it

c1t



















or

(s1t − b1t) = H1

(

xt

ut

)

(14.3.4)

(s2t − b2t) = H2

(

xt

ut

)

. (14.3.5)

Similarly, we have

gt = Ug[Φc Φg]
−1



















0

0

Γ

(Ud1 + Ud2)

−Φi

0



















′ 

















h1t−1

h2t−1

kt−1

zt

it

c1t



















or

gt = G

(

xt

ut

)

. (14.3.6)
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Now notice that the current return function in (14.3.1) can be represented as

λ(s1t − b1t) · (s1t − b1t)

+ (1 − λ)(s2t − b2t) · (s2t − b2t) + λ(1 − λ)gt · gt

=

(

xt

ut

)′
S

(

xt

ut

)

(14.3.7)

where

S = λH ′
1H1 + (1 − λ)H ′

2H2 + λ(1 − λ)G′G. (14.3.8)

The analysis on pages 79–80 now applies to the present system. In partic-

ular, let x′tSxt = x′tRxt + u′tQut + 2x′tWut , and write the law of motion in the

form (14.3.3). This makes the Pareto problem with weight λ into a discounted

optimal linear regulator problem. The solution of the Pareto problem is a law

of motion

xt+1 = A0(λ)xt + CWt+1 (14.3.9)

and a list of matrices Sj(λ) such that optimal allocations are given by

cit = Sci
(λ)xt , i = 1, 2

it = Si(λ)xt

hit = Shi
(λ)xt , i = 1, 2

sit = Ssi
(λ)xt , i = 1, 2

(14.3.10)

The value function for the Pareto problem has the form

V (xt) = x′tV1(λ)xt + V2(λ). (14.3.11)

Associated with the solution of the Pareto problem for a given λ are a set

of Lagrange multiplier processes given by
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M
h1

t (λ) = 2β[I 0 0 0]V1(λ)A0(λ)xt

M
h2

t (λ) = 2β[0 I 0 0]V1(λ)A0(λ)xt

M
k
t (λ) = 2β[0 0 I 0]V1(λ)A0(λ)xt ≡Mk(λ)xt

M
s1
t (λ) = λ(Sb1 − Ss1(λ))xt

M
s2
t (λ) = (1 − λ)(Sb2 − Ss2(λ))xt

M
c1
t (λ) = Θ′

h1
M

h1

t (λ) + Π′
1M

s1
t (λ)

M
c2
t (λ) = Θ′

h2
M

h2(λ) + Π′
2M

s2
t (λ)

M
i
t (λ) = Mi(λ)xt , Mi(λ) = Θ′

tMk(λ)

M
d
t (λ) =

[

Φ′
c

Φ′
g

]−1 [
Θ′
hi

M
hi

t (λ) + Π′
iM

si

t (λ)

−λ(1 − λ)gt

]

,

(14.3.12)

From the structure of the Pareto problem and the fact that c1t, c2t appear

additively in the technology (14.2.5), it follows that M
c1
t (λ) = M

c2
t (λ).

14.4. Competitive Equilibrium

We will use the following

Definition: A price system is a list of stochastic processes [{p0
it, w

0
t ; q

0
t , r

0
t , α

0
t }∞t=0, v0] ,

each element of which belongs to L2
0 .

Definition: An allocation is a list of stochastic processes {cit, sit, hit, ℓit, i =

1, 2; kt}∞t=0 each element of which is in L2
0 .
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14.4.1. Households

Households of type i face the problem of maximizing

(12.1) − 1

2
E

∞
∑

t=0

βt
[

(sit − bit) · (sit − bit) + ℓ2it
]

|J0

subject to the budget constraint

E

∞
∑

t=0

βtp0
t · cit | J0 = E

∞
∑

t=0

βt[w0
t ℓit + α0

t · dit] | J0 + v0 k
i
−1, (14.4.1)

the household technology

sit = Λi hit−1 + Πi cit (12.2)

hit = ∆h hit−1 + Θhi
cit, (12.3)

and the initial conditions hi,−1 , ki,−1 .

14.4.2. Firms of type I and II

Firms of type I and II face the problems described in chapter 6, with ct = c1t+c2t

and dt = d1t + d2t .

14.4.3. Definition of competitive equilibrium

We use the following standard definition:

Definition: A competitive equilibrium is an allocation and a price system

such that, given the price system, the allocation solves the optimum problem of

households of each type and firms of each type.
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14.5. Computation of Equilibrium

To compute an equilibrium, we use an iterative algorithm based on ideas of

Negishi (1960). For each given value of the Pareto weight λ , we know that

there exists a competitive equilibrium, though it will typically be associated

with some distribution of wealth other than the one associated with the allo-

cation of ownership of capital and endowment processes that we have assigned.

An algorithm for computing an equilibrium with a pre-assigned distribution of

ownership is to search for a λ ∈ (0, 1) that delivers budget balance for each

household.

14.5.1. Candidate equilibrium prices

For a given λ , candidate equilibrium prices can be computed from the Lagrange

multipliers associated with the solution of the Pareto problem for that value of

λ . By pursuing arguments paralleling those of Chapter 6, we find

p0
t = M

c1
t (λ)/µw0

r0t = Γ′
M

d
t (λ)/µw0

q0t = Θ′
kM

k
t (λ)

α0
t = M

d
t (λ)/µw0

v0 = Γ′
M

d
0 (λ)/µw0 + ∆′

kM
k
0 (λ)/µw0

w0
t = λ(1 − λ) | Sg(λ)xt | /µw0

(14.5.1)

These prices and the associated allocations are the ingredients used in the

Negishi algorithm.
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14.5.2. A Negishi algorithm

The algorithm consists of the following steps.

1. For a given λ ∈ (0, 1), solve the Pareto problem. Compute the La-

grange multipliers from (14.3.12) and use them to compute the candi-

date competitive equilibrium prices and quantities via (14.5.1).

2. At the candidate equilibrium prices and quantities, compute the left

and right side of each household’s budget constraint (14.4.1). In par-

ticular, compute

Gi = E

∞
∑

t=0

βt[w0
t ℓit + α0

t · dit] | J0 + v0 · ki,−1 − E

∞
∑

t=0

βtp0
t · cit | J0

Use the method described in chapter 10 to compute this. For our two-

household economy, G1 and G2 will either be of opposite signs, or both

will equal zero.

3. If G1 > 0, increase λ and return to step 1. If G1 = G2 = 0, terminate

the search and accept the allocation and price system associated with

the current value of λ as equilibrium objects.1

In practice, one can improve on this algorithm by using any of a number

of root finders to find the zero of the function Gi(λ) defined in step 2. We have

found it efficient to use a ‘secant method.’

1 The Negishi algorithm is implemented in the MATLAB program solvehet.m. Some trial

inputs are contained in the file clex11h.m, which inputs a two agent version of the economy

in clex11.m, the one good stochastic growth model. As a benchmark, clex11h.m has the

economy start out with identical endowments for the two households, and has them share

identical household technologies. With these inputs, solvehet.m should find Pareto weight

(which the program calls ‘alpha’) equal to .5, and should recover the same solution that

solvea.m does with inputs clex11.m. Modify the inputs to get a non-Gorman aggregatable

example. The program simulhet.m simulates the equilibrium computed by solvehet.m.
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14.6. Mongrel Aggregation

Except in the special case that Λ1 = Λ2, Π1 = Π2, ∆h1 = ∆h2, Θh1 = Θh2 , the

specification of household technologies (14.2.2) – (14.2.3) violates the Gorman

conditions for aggregation, so that there does not exist a representative house-

hold in the sense described in Chapter 7. However, for each Pareto weight λ ,

there does exist a representative household in the sense of a mongrel preference

ordering over total consumption (c1t + c2t). This mongrel preference ordering

depends on the distribution of wealth, i.e., the value of initial endowments and

capital stocks evaluated at equilibrium prices.

14.6.1. Static demand

Mongrel aggregation of preferences is easiest to analyze in the special case that

the demand curve is ‘static’ in the sense that time t demand is a function

only of the current price p0
t . Let the household technology be determined by

a nonsingular square matrix Π, where each of Λ,∆h,Θh are matrices of zeros

of the appropriate dimensions. For this specification, the (canonical) demand

curve is

ct = Π−1bt − µ0Π
−1Π−1′pt, (14.6.1)

where µ0 is the Lagrange multiplier on the household’s budget constraint. The

inverse demand curve is

pt = µ−1
0 Π′bt − µ−1

0 Π′Πct. (14.6.2)

In equations (14.6.1) and (14.6.2), the price vector pt can be interpreted as the

marginal utility vector of the consumption vector pt . Integrating the marginal

utility vector shows that preferences can be taken to be

(−2µ0)
−1(Πct − bt) · (Πct − bt). (14.6.3)

From (14.6.2) or (14.6.3) it is evident that the preference ordering is determined

only up to multiplication of Π, bt by a common scalar. We are free to normalize

preferences by setting µ0 = 1.

Now suppose that we have two consumers, i=1,2, with demand curves

cit = Π−1
i bit − µ0iΠ

−1
i Π−1′

i pt.
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Adding these gives the total demand

c1t + c2t = (Π−1
1 b1t + Π−1

2 b2t) − (µ01Π
−1
1 Π−1′

1 + µ02Π2Π
−1′
2 )pt. (14.6.4)

Setting c1t + c2t = ct and solving (14.6.4) for pt gives

pt = (µ01Π
−1
1 Π−1′

1 + µ02Π
−1
2 Π−1′

2 )−1(Π−1
1 b1t + Π−1

2 b2t)

− (µ01Π
−1
1 Π−1′

1 + µ02Π
−1
2 Π−1′

2 )−1ct.
(14.6.5)

We want to interpret (14.6.5) as an aggregate preference ordering associated

with an aggregate demand curve of the form (14.6.2). To do this, we shall

evidently have to choose the Π associated with the aggregate ordering to satisfy

µ−1
0 Π′Π = (µ01Π

−1
1 Π−1′

2 + µ02Π
−1
2 Π−1′

2 )−1. (14.6.6)

To find a matrix Π determining an aggregate preference ordering, we have

to form and then factor the matrix on the right side of (14.6.6). This matrix

looks like the inverse of a weighted sum of two moment matrices. Even after

normalizing Π by setting µ0 = 1, a solution Π will in general depend on

the ratio µ01/µ02 , which functions like a Pareto weight on the two types of

consumers.

There is a special case for which the aggregate or mongrel preference matrix

Π is independent of µ01/µ02 , namely:

Π1 = kΠ2 for scalar k > 0 (14.6.7)

Notice that when Π1 and Π are scalars, condition (14.6.7) is automatically

satisfied. So for the one consumption good case with this special specification

(i.e., with Λ being zero), Gorman aggregation obtains.

In the more general case that demand curves are dynamic (quantities de-

manded at t depending on future prices), attaining a mongrel preference or-

dering becomes more difficult. In place of the problem of factoring a moment

matrix as required in (14.6.6), we have to factor something that resembles a

spectral density matrix, frequency by frequency. For studying mongrel prefer-

ence orderings in the general case, it is convenient to work with a frequency

domain representation of preferences.
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14.6.2. Frequency domain representation of preferences

From chapter 9, recall the decomposition of services st = smt + sit , where smt

are services resulting from market purchases of consumption and sit are services

flowing from the initial household capital stock. Let (∆h,Θh,Λ,Π) correspond

to a canonical household service technology, and recall that

smt = σ(L)ct

where

σ(L) = [Π + ΛL[I − ∆hL]−1Θh]

σ(L)−1 = Π−1 − Π−1Λ[I − (∆h − ΘhΠ
−1Λ)L]−1ΘhΠ

−1L,

and

sit = Λ∆t
h h−1.

We use the transform methods described in the appendix to chapter 9. For

any matrix sequence {yt} satisfying
∑∞
t=0 β

tyty
′
t < +∞ , define T (y) (ζ) =

∑∞
t=0 β

t/2ytζ
t . We define S(ζ) = σ(β.5ζ). Evidently, the transforms obey

T (sm) (ζ) = S(ζ)T (c)(ζ)

T (sit)(ζ) = Λ[I − β1/2∆hζ]
−1h−1.

As in chapter 9, express the one-period return as

(st − bt) · (st − bt) = smt · smt + 2smt · sit − 2smt · bt
+ (bt − sit) · (bt − sit)

(14.6.8)

The term (bt − sit) · (bt − sit) is beyond control and therefore influences no

decisions. So it can be ignored in describing a preference ordering. In terms of

Fourier transforms, we have

∞
∑

t=0

βtsmt · smt =
1

2π

∫ π

−π
T (c)′S′ST (c) dθ (14.6.9)

∞
∑

t=0

βtsmt · sit =
1

2π

∫ π

π

T (c)′S′T (si) dθ (14.6.10)

∞
∑

t=0

βtsmt · bt =
1

2π

∫ π

−π
T (c)′S′T (b) dθ, (14.6.11)



A Programming Problem for Mongrel Aggregation 321

where it is understood that S = S(ζ), T (c) = T (c)(ζ), T (b) = T (b)(ζ), and

ζ = e−iθ . Here ( ′) denotes transposition and complex conjugation.

14.7. A Programming Problem for Mongrel Aggregation

To find a preference ordering over aggregate consumption, we can pose a non-

stochastic optimization problem.2 We rely on a certainty equivalence result to

assert that the preference ordering over random consumption streams is given by

the conditional expectation of the optimized value of this nonstochastic problem.

Thus, our strategy in deducing the mongrel preference ordering over ct = c1t+c2t

is to solve the programming problem: maximize over {c1t, c2t} the criterion

∞
∑

t=0

βt[λ(s1t − b1t) · (s1t − b1t) + (1 − λ)(s2t − b2t) · (s2t − b2t)] (14.7.1)

subject to

hjt = ∆hj hjt−1 + Θhj cjt j = 1, 2

sjt = ∆jhjt−1 + Πjcjt , j = 1, 2

c1t + c2t = ct

subject to (h1,−1, h2,−1) given, and {b1t}, {b2t}, {ct} being known and fixed

sequences. Substituting the {c1t, c2t} sequences that solve this problem as

functions of {b1t, b2t, ct} into the objective (14.7.1) will determine the mon-

grel preference ordering over {ct} . In solving this problem, it is convenient to

proceed by using Fourier transforms.

Using versions of (14.6.8), (14.6.9), (14.6.10), and (14.6.11) for households

1 and 2, in terms of transforms we can represent the Pareto-weighted average

of discounted utility from consumption as

2 These calculations are done by the MATLAB program .
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−
∞
∑

t=0

βt[λ(s1t − b1t) · (s1t − b1t) + (1 − λ)(s2t − b2t) · (s2t − b2t)]

= − 1

2π

∫ π

−π

{

[λT (c1)
′S′

1S1T (c1) + (1 − λ)T (c2)
′S′

2S2T (c2)]

+ 2[λT (c1)
′S′

1T (s1i) + (1 − λ)T (c2)
′S′

2T (s2i)]

− 2[λT (c1)
′S′

1T (b1) + (1 − λ)T (c2)
′S′

2T (b2)]
}

dθ

+ terms not involving T (c1) or T (c2).

(14.7.2)

where it is understood that each transform on the right side is to be evaluated

at ζ = e−iθ .

We want to maximize the right side of (14.7.2) over choice of {c1t, c2t}∞t=0 or

equivalently T (c1), T (c2), subject to the constraint c1t+c2t = ct , or equivalently

the restriction

T (c1) + T (c2) = T (c).

To do this optimization, we form the Lagrangian

J = − 1

2π

∫ π

−π

{

[λT (c1)
′S′

1S1T (c1) + (1 − λ)T (c2)
′S′

2S2T (c2)]

+ 2[λT (c1)
′S′

1T (s1i) + (1 − λ)T (c2)
′S′

2T (s2i)]

− 2[λT (c1)
′S′

1T (b1) + (1 − λ)T (c2)
′S′

2T (b2)]

+ µ[T (c) − T (c1) − T (c2)]

}

dθ

(14.7.3)

where it is understood that there is a Lagrange multiplier µ = µ(e−iθ) for

each frequency θ ∈ [−π, π] . We can perform this maximization “frequency

by frequency” (i.e., pointwise for each θ ∈ [−π, π]). The first-order necessary

conditions with respect to T (c1) and T (c2), respectively, are

λS′
1S1T (c1) + λS′

1T (s1i) − λS′
1T (b1) = µ/2

(1 − λ)S′
2S2T (c2) + (1 − λ)S′

2T (s2i) − (1 − λ)S′
2T (b2) = µ/2

Using these two equations and the constraint T (c1) + T (c2) = T (c) to solve for

µ gives

µ = 2
[ 1

λ
(S′

1S1)
−1 +

1

1 − λ
(S′

2S2)
−1
]−1

×
{

T (c) + S−1
1

(

T (s1i) − T (b1)
)

+ S−1
2

(

T (s2i) − T (b2)
)

}

.

(14.7.4)
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Let

S′S =
[ 1

λ
(S′

1S1)
−1 +

1

1 − λ
(S′

2S2)
−1
]−1

(14.7.5)

where S is a matrix Fourier transform that satisfies the condition: detS(ζo) = 0

implies |ζo| > 1. Equation (14.7.5) is the dynamic counterpart of (14.6.6), and

collapses to (14.6.6) in the special case in which Sj(L) = Πj . Recall that in the

static case, constructing the aggregate preference ordering required factoring

the inverse of a ‘moment’ matrix formed as a weighted sum of Π−1
j Π−1′

j .

The matrix [ 1
λ (S′

1S1)
−1 + 1

1−λ (S′
2S2)

−1]−1 can be regarded as a spectral

density matrix. Equation (14.7.5) expresses S′S as a spectral factorization

of [ 1
λ (S′

1S1)
−1 + 1

1−λ (S′
2S2)

−1]−1 . Later, we shall show how to achieve the

factorization expressed in (14.7.5). For now, we just assume that we have an

S that satisfies (14.7.5) and the condition that the zeros of detS(ζ) all exceed

unity in modulus.

Using (14.7.5) in (14.7.4) gives

µ = 2S′S

[

T (c)+S−1
1

(

T (s1i) − T (b1)
)

+ S−1
2

(

T (s2i) − T (b2)
)

]

.

The fact that the Lagrange multiplier is the derivative of the return function with

respect to T (c) implies that the mongrel return function has the representation

1

2π

∫ π

−π





T (c)

T (s1i) − T (b1)

T (s2i) − T (b2)





′ 



S′S S′SS−1
1 S′SS−1

2

S−1′
1 S′S − −
S−1′

2 S′S − −









T (c)

T (s1i) − T (b1)

T (s2i − T (b2)



 dθ

where the blank terms do not involve T (c), and do not affect the choice of T (c).

Therefore, we can represent the mongrel preference ordering over T (c) by

1

2π

∫ π

−π

{

T (c)S′ST (c) + (2T (c)′S′)SS−1
1 (T (s1i) − T (b1))

+ (2T (c)S′)SS−1
2 (T (s2i) − T (b2))

}

dθ.

(14.7.6)



324 Non-Gorman Heterogeneity Among Households

Compare this with the single agent case of chapter 9, in which the preference

ordering was shown to be

1

2π

∫ π

−π

{

T (c̄)′S̄′S̄T (c̄) + 2T (c̄)′S̄′(T (s̄i) − T (b̄))
}

dθ, (14.7.7)

where we have put bars (¯) over the objects in (14.7.7) to represent the cor-

responding single agent-objects. Evidently, for the mongrel preference ordering

(14.7.6) to match up with a single agent ordering (14.7.7), we can match objects

up as

T (c) ∼ T (c̄)

S ∼ S̄

SS−1
1 (T (s1i) − T (b1))+

SS−1
2 (T (s2i) − T (b2)) ∼ T (s̄i) − T (b̄)

(14.7.8)

where the object on the right of the right of the ∼ corresponds in each case to

the single-agent 4.

We have two major tasks to complete our work. First, we have to show how

to achieve the factorization (14.7.5). Second, we have to show how to interpret

and to implement the correspondence given in (14.7.8).

14.7.1. Factoring S′S

To achieve the spectral factorization (14.7.5), we notice that

[ 1
λ (S′

1S1)
−1 + 1

1−λ (S′
2S2)

−1] can be regarded as the spectral density matrix of

a stochastic process cλt that is generated by the state space system

h1t = β.5(∆h1 − Θh1Π
−1
1 Λ1)h1t−1 + Θh1Π

−1
1 s1t

h2t = β.5(∆h2 − Θh2Π
−1
2 Λ2)h2t−1 + Θh2Π

−1
2 s2t

cλt = β.5[− 1√
λ

Π−1
1 Λ1, − 1√

1 − λ
Π−1

2 Λ2]

[

h1t−1

h2t−1

]

+ ( 1√
λ

Π−1
1 , 1√

1−λ Π−1
2 )

(

s1t

s2t

)

(14.7.9)

where (∆hi,Θhi,Λi,Πi) are each associated with a canonical representation,

and where st =

(

s1t

s2t

)

is a white noise with covariance Ests
′
t = I . Write this
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system compactly as
ht = ∆̃h ht−1 +Hst

cλt = Gλht−1 +Mλst.

The spectral density of cλt can be directly computed to be [ 1
λ (S′

1S1)
−1+ 1

1−λ (S′
2S2)

−1] .3

We can factor the inverse of

[
1

λ
(S′

1S1)
−1 +

1

1 − λ
(S′

2S2)
−1]

by obtaining an innovations representation for the system (14.7.9), then using

it to form a ‘whitener’. The innovations representation is

ĥt = ∆̃hĥt−1 +Kat

cλt = Gλĥt−1 + at
(14.7.10)

where Eata
′
t = Ω = GλΣG

′
λ+MλM

′
λ , and [K,Σ] = kfilter (∆̃h, Gλ,HH

′,MλM
′
λ,

HM ′
λ), where kfilter is the matrix valued function defined in chapter 7 .

To get the inverse of [ 1
λ (S′

1S1)
−1 + 1

1−λ (S′
2S2)

−1] , let r′r = Ω be the

Cholesky decomposition of Ω, and define ŝt by ŝt = r′ −1at . Then use (14.7.10)

to get the ‘whitener’

ĥt = (∆̃h −KGλ)ĥt−1 +Kcλt

ŝt = −r′−1Gλĥt−1 + r′−1cλt

or
ĥt = ∆̂hĥt−1 + Θ̂hc

λ
t

ŝt = Λ̂ĥt−1 + Π̂cλt
(14.7.11)

where
∆̂h = (∆̃h −KGλ)

Θ̂h = K

Λ̂ = −r′−1Gλ

Π̂ = r′−1

(14.7.12)

3 To see this, we make use of the fact that

σj(ζ)
−1 = Π−1

j − Π−1
j Λj [I − (∆hj − ΘhjΠ

−1
j Λj)ζ]

−1 ΘhjΠ
−1
j ζ.



326 Non-Gorman Heterogeneity Among Households

As a consequence of the factorization identity and associated matrix identities

described in chapter 7,4 we have that S′S satisfies (14.7.5) where

S(ζ) =
[

Π̂ + Λ̂ζ[I − ∆̂hζ]
−1Θ̂h

]

=
[

Π + Λβ.5ζ[I − ∆hβ
.5ζ]−1Θh

]

.

It follows that a (canonical) version of the mongrel household technology is

ht = ∆hht−1 + Θh(c1t + c2t)

st = Λht−1 + Π(c1t + c2t),
(14.7.13a)

where
∆h = β−.5∆̂h, Θh = Θ̂h

Λ = β−.5Λ̂, Π = Π̂.
(14.7.13b)

Collecting results, we have that the canonical household technology is de-

termined by the matrices

∆h = β−.5(∆̃h −KGλ)

Θh = K

Λ = −r′−1
Gλβ

−.5

Π = r′
−1
.

These equalities imply that

∆h − ΘhΠ
−1Λ =

[

∆h1 − Θh1Π
−1
1 Λ1 0

0 ∆h2 − Θh2Π
−1
2 Λ2

]

.

It follows that for the mongrel household technology, the counterpart to (BLANK.1)

is

ct = [− 1√
λ

Π−1
1 Λ1, − 1√

1 − λ
Π−1

2 Λ2]ht−1 + r′st

ht =

[

∆h1 − Θh1Π
−1
1 Λ1 0

0 ∆h2 − Θh2Π
−1
2 Λ2

]

ht−1 +Kr′st.

4 In effect, we are using the factorization identity (7.33) and the matrix inversion identity

(7.36). We are expressing (S′S)−1 from (14.7.5) first in a form like (7.31a), then via the

factorization identity in a form like (7.31b). Then we apply the inversion formula (7.36) to

the two factors of (7.31b), replacing Ω with its Cholesky factorization, to construct a factored

version of S′S .
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Notice how the weight λ influences this representation: λ appears in the ‘ob-

server’ matrix multiplying ht−1 in the first equation, and it appears indirectly

through its influence on the matrices [r′,K] . However, the state transition

matrix ∆h − ΘhΠ
−1Λ is independent of λ .

14.8. Summary of Findings

We have found that the operator σj(L)−1 is implemented by the state space

system defined by the four matrices5 [∆hj −ΘhjΠ
−1
j Λj ,ΘhjΠ

−1
j ,Π−1

j Λj ,Π
−1
j ] .

The operator σ(L) associated with the mongrel household technology is realized

by the state space system [∆h,Θh,Λ,Π] determined by (14.7.12) and (14.7.6).

We can use these state space systems to derive a state space system for the

mongrel preference shock.

14.9. The Mongrel Preference Shock Process

Our next goal is to construct a mongrel preference shock process that achieves

the match up given in (14.7.8). Evidently, from (14.7.6), we have to operate

on T (s1i) − T (b1) with the “filter” SS−1
1 , operate on T (s2i) − T (b2) with the

“filter” SS−1
2 , then add the results to get a process that we can interpret as the

mongrel T (si)−T (b). The following cascading of state space systems evidently

implements the required filtering and adding:

A



































zt+1 = A22zt + C2wt+1

b1t = Ub1zt

b2t = Ub2zt

hjt = ∆hjhjt−1 j = 1, 2

sjt = Λjhjt−1 , j = 1, 2

B

{

xjt = (∆hj − ΘhjΠ
−1
j Λj)xjt−1 + ΘhjΠ

−1
j (bjt − sjt)

yjt = −Π−1
j Λjxjt−1 + Π−1

j (bjt − sjt) , j = 1, 2

5 Defined as usual as the matrices in the state equation followed by the matrices in the

observation equation.
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C

{

gt = ∆hgt−1 + Θh(y1t + y2t)

(bt − ŝt) = Λgt−1 + Π(y1t + y2t).

System A generates the “inputs” (b1t, b2t), (si1t, s
i
2t). System B operates on

(bjt − sijt) with σ−1
j . System C operates on

∑

j σ
−1
j (bjt − sijt) with σ , as

required by (14.7.8). In C , we are free to set ŝt = 0, and to regard the resulting

bt as our mongrel preference shock process. A recursive representation of bt−st
is attained by linking the three systems in a series.6

It is evident how to use similar methods to break out the processes bt and

ŝt separately.

14.9.1. Interpretation of ŝt component

The term SS−1
1 T (s1i) has the following interpretation. T (s1i) is (the trans-

form of) the contribution of services flowing to the household from the initial

household capital stock h−1 . Then S−1
1 T (s1i) is the (transform of the) equiva-

lent amount of consumption that it would have taken to generate those services

had they been acquired through new market purchases. The term S−1
1 T (s1i)

amounts to a consumption goods equivalent of the transient component of ser-

vices flowing to the first household.

14.10. Choice of Initial Conditions

Our calculations do not tell us how to choose the correct initial condition at time

0 for the mongrel household capital stock vector ht−1 . Here is the reason. The

first-order necessary conditions leading to (14.7.4)–(14.7.5) imply the following

solution for the transform T (c1):

T (c1) =
1

λ
(S′

1S1)
−1(S′S)T (c) +

1

λ
(S′

1S1)
−1(S′S)S−1

2 (T (s2i − T (b2))

+ (
1

λ
(S′

1S1)
−1(S′S) − I)S−1

1 (T (b1) − T (s1i)).

(14.10.1)

6 The MATLAB command series can be used to link the systems.
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A similar expression holds for T (c2). Our calculations assure that T (c1) +

T (c2) = T (c). We assume that T (c) is the transform of a sequence that is one-

sided (i.e., ct = 0 ∀t < 0), but this does not guarantee that T (c1) and T (c2)

are each transforms of one-sided sequences, only that their sum is. When S′
jSj

is not a constant times S′S for j = 1, 2, as will generally be the case when the

two household technologies are not identical, then T (c1) given by (14.10.1) will

be the transform of a sequence that is nonzero for t < 0.7 Thus, our frequency

domain programming problem allows the ‘mongrel planner’ to reallocate past

consumptions between the two types of households, subject to the restriction

c1t + c2t = 0 for t < 0. These choices of cjs for s < 0 translate into choices

of initial conditions for h−1 , the vector of mongrel household capital stocks at

date t = −1.

We will not pursue calculations of the initial conditions here, because they

are intricate and only effect the transient responses of services. Our main interest

is not in the selection of the initial conditions but in the ‘nontransient’ part of

the mapping from total consumption ct = c1t+c2t to the mongrel service vector

st , which is given by (14.7.6).

7 The operator (S′1S1)−1(S′S) is two-sided except when it is proportional to the identity

operator.
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Chapter 15

Equilibria with Distortions

15.1. Introduction

In earlier chapters, we often used the fact that the competitive equilibrium allo-

cations solve a Pareto problem. This chapter describes classes of economies for

which the connection between Pareto optimality and equilibrium breaks down,

because distortions cause competitive equilibrium allocations not to be Pareto

optimal. The distortions occur in the form of externalities in preferences and

production technologies, and distorting taxes. These features can be accom-

modated using the invariant subspace methods described in chapter 8, which

provide an approach to studying the existence and uniqueness of an equilib-

rium, and if one exists, to computing it.

This chapter describes ways of adapting our earlier methods to compute,

represent, and manipulate equilibria.1 We describe two classes of economies

with distortions. The first class is designed partly as a warmup for the second,

but is also interesting in its own right. In this first class of models, an equilib-

rium can be computed by one pass through the invariant subspace algorithm.

This is possible possible because of two sorts of simplifying assumptions: first,

that there is a representative agent (which permits Gorman-heterogeneity);and

1 The invariant subspace computational approach follows the tradition of Blanchard and

Khan (1980), Whiteman (1983), Anderson and Moore (1985), King, Plosser, and Rebelo

(1989), and McGrattan (1991) in expressing the equilibrium conditions as a system of linear

difference equations, then adapting the method of Vaughan to solve it. The principal caveat

to keep in mind in applying these methods is that in distorted economies, there is no guar-

antee that the eigenvalues of the matrix ‘characteristic equation’ of the system of equilibrium

conditions will ‘split’ half into those exceeding 1/
√

β in modulus, and half into those falling

short of 1/
√

β in modulus. Failure of the eigenvalues to divide in that way signals either an

existence or a uniqueness problem.

– 333 –
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second, that the government has the ability to levy lump sum taxes or trans-

fers.2 Thus, the first setup is a representative agent setting with consumption

and production externalities and distorting taxes.3 .

In the second setup, equilibria must be computed with multiple passes

through the invariant subspace algorithm. What necessitates this is that there

are (non-Gorman) heterogeneous agents with consumption externalities and dis-

torting taxes, but no lump sum taxes or transfers. In this setting, equilibrium

computation means finding a set of taxes and households’ marginal utilities of

wealth that assure present value budget balance for households and the gov-

ernment. We find the equilibrium taxes and marginal utilities of wealth by

repeatedly resorting to the invariant subspace algorithm, constructing candi-

date prices and quantities at each pass of the invariant subspace algorithm,

then checking every agent’s budget constraint at each pass.

It is convenient to describe these two classes of models sequentially, partly

because the first one is complicated enough, and because it reveals about half

of the difficulties involved in calculating models of the second class.

We shall use our machinery to compute equilibria of some simple models

embodying preference and technology specifications that have occurred in the

recent literature.

2 The MATLAB program solvdist.m computes equilibria for the first type of economy,

while disthet.m computes equilibria for the second type of economy. The MATLAB program

compare.m is useful for comparing the results of disthet.m with related undistorted economies

whose equilibria have been computed with solvea.m.
3 The first class of models are linear-quadratic relatives of the ones studied by Braun (1991)

and McGrattan (1991b). In particular, both Braun and McGrattan use lump sum transfers

to balance the government’s budget.
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15.2. A Representative Agent Economy with Distortions

We alter the model discussed in chapters 3 and 5 by adding two sorts of dis-

tortions: consumption and production externalities, and distorting taxes. We

add these distortions in a way that is designed to preserve the applicability of

the forms of equilibrium prices and quantities: we want the equilibrium law of

motion to be linear in the state, quantities and (scaled Arrow-Debreu) prices to

be linear functions of the state, and asset prices to be quadratic functions of the

state. We add the following distortions to the Chapter 3–5 model.

15.2.1. a. Consumption externalities

The technology for producing household services is now taken to be

st = Λh ht−1 + ΛH Ht−1 + Πct + ΠCCt

ht = ∆hht−1 + ∆H Ht−1 + Θh ct + ΘH Ct,

where Ht−1 is the vector of aggregate household capital stocks, and Ct is the

vector of aggregate consumption rates. In equilibrium, ct = Ct and ht = Ht ,

but the representative household is assumed to take {Ht, Ct} as given and

beyond control when allocating its resources.

15.2.2. b. Production externalities

Firms produce subject to the linear technology

Φc(ct +Gt) + Φiit + Φggt = Γkkt−1 + ΓKKt−1 + dt

where Kt−1 is the vector of aggregate capital stocks, and Gt is government

purchases of consumption goods. In equilibrium, kt−1 = Kt−1 , but the repre-

sentative firm is assumed to regard {Kt−1} as beyond its control when choosing

its inputs and outputs. The presence of Kt−1 on the right side of the technol-

ogy constraint is designed to accommodate externalities of the sort analyzed by

Paul Romer (1985). Below, we shall assign ownership of the ‘technology’ so that

households sell the joint process ΓKKt−1 + dt to firms. This assignment will

confront the firm with a constant returns to scale technology. We assume that

the government purchase vector process is exogenous and satisfies Gt = UG zt .
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15.2.3. c. Taxes

We add to the model of chapters 3–5 a government that taxes consumption

goods, investment goods, capital goods, and the intermediate labor activity.

The government’s budget constraint is

E
∞
∑

t=0

βt
{

p0
t
′
τcct + q0t

′
τiit + r0t

′
τkkt−1 + w0

t
′
τℓgt

}

|J0

= E

∞
∑

t=0

βtp0
t ·Gt|J0 + T0

where Gt = UGzt . Here τc is a diagonal matrix of tax rates on consumption

goods, τi is a diagonal matrix of tax rates on investment goods, τk is a diagonal

matrix of tax rates on rentals of capital, and τℓ is a diagonal matrix of tax

rates on the labor-using activity vector gt ; T0 is lump sum transfers to the

household. The government sets the tax rates τc, τi, τk, τℓ and the expenditure

process UGzt = Gt .

For this economy, a price system is a collection of stochastic processes

{p0
t , q

0
t , r

0
t ,

w0
t , α

0
t }∞t=0 , each element of which belongs to L2

0 . A tax system is a list of diag-

onal matrices [τc, τi, τk, τℓ] . An allocation is a collection of stochastic processes

{st, ct, ht, kt, gt, it}∞t=0 each element of which belongs to L2
0 .

We now describe the choices faced by households and firms.

15.3. Households

Households own an ‘endowment stream’ {dt + ΓKKt−1}∞t=0 and the initial

capital stocks, all of which they take as given. Households take the price system,

the tax system, and {Ct, Ht−1,Kt−1}∞t=0 as given, and choose contingency plans

for {ct, it, st, ht, kt, gt}∞t=0 to maximize

−1

2
E

∞
∑

t=0

βt[(st − bt) · (st − bt) + gt · gt] | J0 (15.3.1)

subject to the household technology,

st = Λhht−1 + ΛHHt−1 + Πct + ΠCCt (15.3.2)

ht = ∆hht−1 + ∆HHt−1 + Θhct + ΘHCt (15.3.3)
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the law of accumulation for physical capital,

kt = ∆kkt−1 + ∆KKt−1 + Θkit, (15.3.4)

and the budget constraint

E

∞
∑

t=0

βt[p0
t
′
(I + τc)ct + q0t

′
(I + τi)it] | J0

= E

∞
∑

t=0

βt[w0
t
′
(I − τℓ)gt + α0

t · (dt + ΓKKt−1)

+ r0t
′
(I − τk)kt−1] | J0 + T0

(15.3.5)

15.4. Firms

There is one kind of firm, a production firm that takes the price system

and {Kt−1}∞t=0 as fixed, and chooses an allocation and a process {ζt} ∈ L2
0

that maximize

E

∞
∑

t=0

βt{p0
t · (ct +Gt) + q0t · it − r0t · kt−1 − α0

t · ζt − w0
t · gt|J0} (15.4.1)

subject to the technology

Φc(ct +Gt) + Φggt + Φiit = Γkkt−1 + ζt · ζt. (15.4.2)
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15.5. Information

We assume that

zt+1 = A22zt + C2wt+1,

where {wt} is a martingale difference sequence with identity covariance matrix.

The stochastic process {zt} drives the exogenous processes

bit = Ubizt

dit = Udizt

Gt = UGzt.

15.6. Equilibrium

An equilibrium is defined as an allocation, a price system, and a tax system

such that

(i) Given the price system, the tax system, and {Ht−1, Ct−1,Kt−1}∞t=0 ,

the allocation solves the household’s problem;

(ii) Given the price system and {Kt−1}∞t=0 , the allocation solves the firm’s

problem with ζt ≡ ΓKKt−1 + dt ;

(iii) The representative household is representative, Ht−1 = ht−1, Ct = ct ;

and the representative firm is representative, Kt−1 = kt−1 for all t ≥ 0.

Given that conditions (i), (ii), (iii), are satisfied, the lump sum tax T0 ,

which is a present value, can be chosen to make the government budget con-

straint hold.

We have set things up so that the equilibrium law of motion takes the form

xt+1 = Aoxt + Cwt+1,

and equilibrium quantities and normalized Arrow-Debreu prices are linear func-

tions of the state x′t = [h′1t−1h
′
2t−1k

′
t−1z

′
t] .

Appendix A describes how to compute the equilibrium of this model by

manipulating agents’ first order conditions and the other equilibrium conditions
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into a system susceptible to the application of Vaughan’s algorithm. The MAT-

LAB program solvdist.m computes an equilibrium. Equilibrium calculation is

facilitated by the fact that there is a representative households (so that if there

is heterogeneity among households, the features of Gorman aggregation isolate

demand functions from effects of redistributions of wealth) and the permission

that we give the government to levy lump sum taxes. In the next class of models,

we give up both of these simplifying features.

15.7. Heterogeneous Households with Distortions

In this section, we describe how to extend the above setup to enable us to com-

pute the equilibrium of a model with externalities, government expenditures and

taxes, and two classes of agents with non-Gorman aggregable preferences. To

produce the model, we combine elements of the preference specification treated

in chapter 8 with the specification and methods described earlier in this chap-

ter. We do not let the government raise lump sum taxes or dispense lump sum

transfers, but require the government to balance its budget by levying only flat

rate taxes. These changes vis a vis the first class of models have the conse-

quence that equilibrium must now be computed by finding values of tax rates

and marginal utilities of wealth for each household that make households’ and

the government’s budgets balance.4

4 Between these two classes of models, we have changed the way we price labor or ‘inter-

mediate goods’ gt . In the first class, the households own and sell to the firm the vector gt ,

which is priced by the vector w0
t . In the second model, households sell ℓit for w0

t to firms.
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15.7.1. Households

There are two classes of households, indexed by i = 1, 2. Preferences of a

household of type i are ordered by

−.5E
∞
∑

t=0

βt[(sit − bit) · (sit − bit) + ℓ2it]|J0, (15.7.1)

where the household has access to the household technology

sit = Λi1hit−1 + Λi2H1t−1 + Λi3H2t−1

+ Πi1cit−1 + Πi2C1t + Πi3C2t

hit = ∆hihit−1 + ∆Hi1Hit−1 + ∆Hi2H2t−1

+ Θhicit + ΘH1iC1t + ΘH2iC2t

dit = Udizt

bit = Ubizt.

(15.7.2)

Here Cit,Hit are the aggregate consumption and stock of durables, respectively,

of household type i , and cit, hit are the individual consumption and durables,

respectively, of a household of type i . There are firms of two types, to be

described in detail below. A household of type i is assumed to own a a fraction

fi of the ‘technology’, which entitles it to sell fi(Γk + dt) of an ‘endowment’

to a type I (production) firm, and to rent fi∆KKt−1 of capital to a type II

(capital renting) firm at time t . Thus, the intertemporal budget constraint of a

household of type i is

E

∞
∑

t=0

βt{p0
t
′
(I + τc)cit − fiα

0
t · (ΓKKt−1 + dt)

− fir
0
t · ∆KKt−1 − w0

t (1 + τℓ)ℓit}|J0 − v0k−1,i = 0

(15.7.3)

No lump sum transfers occur in (15.7.3), because we shall require the govern-

ment to balance its budget using flat rate taxes only. Below, we will carry along

a Lagrange multiplier µ0i on (15.7.3) for each type of household.
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15.7.2. Firms of type I

Firms of type I are production firms. They maximize

E

∞
∑

t=0

βt{p0
t · (ct +Gt) + q0t · it − r0t · kt−1 − α0

t · ζt − w0
t ℓt}|J0 (15.7.4)

subject to
Φc(ct +Gt) + Φiit + Φggt = Γkkt−1 + ζt,

gt · gt = ℓ2t
(15.7.5)

15.7.3. Firms of type II

Firms of type II are capital renting firms. They maximize

E0

∞
∑

t=0

βt{r0t
′
(I − τk)kt−1 − q0t

′
(I + τi)it − νtrt · ∆KKt−1}|J0 − v0k−1 (15.7.6)

subject to

kt = ∆kkt−1 + νt∆KKt−1 + Θkit.

Here νt is the amount of the ‘endowment’ ∆KKt−1 purchased from households.

15.7.4. Government

The government makes a flow of expenditures Gt on consumption goods,

governed by

Gt = UGzt. (15.7.7)

The government’s budget constraint is

E

∞
∑

t=0

βt{p0
t ·Gt − p0

t
′
τc · (c1t + c2t) − q0t

′
τiit − r0t

′
τkkt−1

− τℓw
0
t (ℓ1t + ℓ2t)}|J0 = 0

(15.7.8)

A fiscal policy is a collection of diagonal matrices (τc, τi, τk, τℓ) determining

taxes and a matrix UG determining government expenditures.
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15.7.5. Definition of equilibrium

An equilibrium is a price system [{p0
t , q

0
t , r

0
t , α

0
t , w

0
t }∞t=0, v0] , an individual

allocation {c1t, c2t, h1t, h2t, kt, it, gt} , an aggregate allocation {C1t, C2t,H1t,H2t,Kt} ,

and a fiscal policy (τc, τi, τk, τℓ, UG) that satisfy the following conditions:

i. Given the aggregate allocation, the price system, and the fiscal policy, the

individual allocation solves the optimum problems of households and the

firms, with ζt ≡ 1 and νt ≡ 1.

ii. The allocations satisfy

cit = Cit, i = 1, 2

hit = Hit, i = 1, 2

kt = Kt

ζ = (ΓKKt−1 + dt).

iii. The government budget constraint is satisfied.

As we have defined it, an equilibrium is typically not unique. In particular,

there will usually be a set of taxes that serve to assure equilibrium. Below, we

shall select one from among these equilibria partly by fixing enough of these

taxes and ‘solving’ for others.5

15.7.6. Equilibrium computation

We compute an equilibrium by finding a fixed point in the parameters that index

the tax system τc, τi, τk, τℓ and a pair of marginal utilities of wealth (multipli-

ers) µ01, µ02 for households. For fixed values of the tax system and multiplier

parameters, we can use the modified Vaughan algorithm described in the pre-

ceding section to compute a ‘candidate’ 0 allocation and price system. For that

allocation and price system, we evaluate all elements of the budget constraints

of the government and the two types of households. We use a nonlinear search

algorithmWe use a secant algorithm. to find a tax system and pair of multi-

pliers µ01, µ02 that assure that the budget constraints are all satisfied. Thus,

we compute an equilibrium by solving a fixed point problem in a space of tax

rates and marginal utilities of wealth for the different household types.

5 Even when we fix the ‘right number’ of the taxes there can still be multiple equilibria

for reason of ‘Laffer curves’.
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Appendix B describes how the first order conditions for households and

firms together with the other equilibrium conditions can be arranged to obtain

a system of equations of the form (9.25), which with the invariant subspace

methods of chapter 9 permits us to compute our candidate equilibrium. The

equilibrium is computed by disthet.m.

15.8. Government Deficits and Debt

The government deficit at time t , measured in time t ‘spot’ prices, is

Dt
t = ptt · (Gt − τc(c1t + c2t)) − qtt · τiit − rtt · τkkt−1 − wttτℓ(ℓ1t + ℓ2t).

Evidently, Dt
t can be represented as

Dt
t =

x′tQDxt
e1Mcxt

, (15.8.1)

where
QD = M ′

c[SG − τc(Sc1 + Sc2)] −M ′
iτiSi

−M ′
kτkSk1 −

τℓ
(1 − τℓ)(µ01 + µ02)

S′
gSg.

Let Vt denote the present value of the government deficit, which satisfies the

difference equation

Vt = −Dt
t + βEt{pt1,t+1Vt+1}, (15.8.2)

where pt1,t+1 = e1Mcxt+1/e1Mcxt is the time t price of a state contingent claim

to the first (numeraire) consumption good in time t + 1. Notice that βpt1,t+1

acts as a stochastic discount factor for evaluating government indebtedness next

period from the standpoint of this period. This equation is the counterpart of

the following version of a one period government budget constraint, which occurs

in various nonstochastic macroeconomic models: −Dt + Vt+1/Rt = Vt , where

here Vt is interpreted as one-period debt falling due at time t .

Equations (15.8.1) and (15.8.2) imply that

Vt =
xtQV xt + σV

e1Mcxt
, (15.8.3)

where QV , σV are determined as follows. Define

ṽ =
β

1 − β
doublej2(βAo, C,Ao, C).
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Then [QV ] = doublej2(βAo′, QD, Ao
′, 1) and σV = trace(QV ṽ). The matrix

valued function doublej2 was used repeatedly in our asset pricing calculations.

The forms of (15.8.2) and (15.8.3) mean that the econometric methods

described in Hansen and Sargent (1993) for interpreting observations on asset

prices can be used to model government budgets and bond holdings.6

15.9. Examples

15.9.1. A production externality

The following technology is designed to capture features of a specification of

DeLong and Summers. There is one consumption good, but two capital goods

(‘machines’ and ‘structures’) and two rates of investment. Machines generate a

positive production externality, but not structures:

ct+Gt + i1t + i2t = γ1k1t−1 + γ2k2t−1

+ Γ1K1t−1 + Γ2K2t−1 + dt

φ1i1t = g1t

φ2i2t = g2t

k1t = δk1k1t−1 + i1t

k2t = δk2k2t−1 + i2t

To capture DeLong and Summers’s idea, we set Γ1 = 0,Γ2 > 0, so that we

interpret the first capital good as structures and the second as machines.

To complete this example, we incorporate a single-agent version of a simple

quadratic utility specification. We suppress heterogeneity among consumers and

instead make the two types of consumers be identical in their preferences and

endowment sequences. Preferences are ordered by

−1

2

∞
∑

t=0

βt[(cit − bit)
2 + ℓ2it].

6 The restrictions embedded in (15.8.2) and (15.8.3) should be compared with those

studied in the literature on linear models of ‘present value budget balance.’ See Hansen,

Roberds, and Sargent (1991) for a summary of this literature.
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The information process satisfies

A22 =









1 0 0 0

0 .95 0 0

0 0 .8 0

0 0 0 .1









C2 =









0 0 0
1

20
√

2
0 0

0 .5 0

0 0 1









d1t = d2t = [ 3.5 0 .5 0 ] zt,

Gt = [ 5 1 0 1 ] zt.

b1t = b2t = 30.

These settings make endowments of the two types of households each the same

first order autoregressive processes with mean 3.5 and serial correlation param-

eter .8, while government expenditures follows the process

Gt − 5 =
(20

√
2)−1

1 − .95L
w1t +

.5

1 − .1L
w3t,

where L is the lag operator. This process approximates a mixture of a ‘perma-

nent shock’ (the moving average in w1t ) and a ‘transitory shock’ (the moving

average in w3t . The mean of government expenditures is 5.

We set γ1 = γ2 = .12,Γ1 = 0,Γ2 = .04, φ1 = φ2 = .5, δk1 = δk2 = .95, β =

1/1.05. These parameter settings make the two types of capital symmetric with

respect to adjustment costs and ‘private productivity’ (γi ), but inject a positive

production externality for the second capital good.

15.9.2. Consumption tax only

With these parameter settings, we computed an equilibrium where the only

tax is the scalar consumption tax τc on the single consumption good. The equi-

librium tax τc = .2497. Figures 15.9.1.a and 15.9.1.b show a simulation of

this equilibrium starting from the initial condition k−1,1 = k−1,2 = 100. Be-

cause we start from equal initial stocks of machines and structures, and because

their private productivities are the same, the equilibrium must retain equality of

structures and machines throughout time. Figures 15.9.1.a and 15.9.1.b embody

this property, the rates of investment in machines and structures being identi-

cal. Figures 3 display realizations of government indebtedness Vt determined

by (15.8.2). Figure 4 shows the government flow deficit.
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Fig. 15.9.1.a. Total consumption, in-

vestment, and government expenditures

in Delong-Summers economy with τc =

.2497 and no investment subsidy.

100

101

102

103

104

105

106

107

108

109

110

0 10 20 30 40 50 60 70 80 90 100

Fig. 15.9.1.b. Machines and structures

in Delong-Summers economy with τc =

.2497 and no investment subsidy.

15.9.3. Machinery investment subsidy

Figures 15.9.2 and 15.9.3 report the results of recomputing the equilibrium when

we impose an investment subsidy τi2 = −.04. The only other tax that we permit

the consumption tax, which must be set at τc = .2611 to induce equilibrium.

The simulations show how the investment rates for machines and structures now

diverge in the direction that we would expect: the economy moves to a path

with more machines and fewer structures than the first (no machine subsidy)

equilibrium.7

7 Realizations of the exogenous stochastic processes are held constant across these simulations.
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Fig. 15.9.2.a. Present value of govern-

ment surplus in Delong-Summers econ-

omy with τc = .2497 and no investment

subsidy.
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Fig. 15.9.2.b. Government deficit in

Delong-Summers economy with τc = .2497

and no investment subsidy.

15.9.4. ‘Personal’ habit persistence

We consider an economy with one consumption good that is allocated to

two types of households. The first type of household has preferences ordered by

E0 − .5

∞
∑

t=0

βt[(c1t − 15)2 + ℓ21t],

while the second has the habit-persistence indicated by the preferences

E0 − .5

∞
∑

t=0

βt[(s2t − 15)2 + ℓ22t]

where
s2t = −1h2t−1 + 2c2t

h2t = .8h2t−1 + .2c2t

We set β = 1/1.05.

The production technology has

ct + it = .11kt−1 + .0001Kt−1 + dt

kt = .95kt−1 + it

g1t = .5it



348 Equilibria with Distortions

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

cons

machines

structures

Fig. 15.9.3.a. Total consumption, in-

vestment, and government expenditures

in Delong-Summers economy with τc =

.2611 and investment subsidy, τi2 = −.04 .
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Fig. 15.9.3.b. Machines and structures

in Delong-Summers economy with τc =

.2611 and investment subsidy, τi2 = −.04 .

which is a version of our one-good “growth, adjustment cost” technology with

a small production externality.

We set

A22 =





1 0 0

0 .8 0

0 0 .5





UG = [ 4 .1 0 ]

Ud2 = Ud1 =

[

3.5 0 1

0 0 0

]

k−1,1 = 125, k−1,2 = 25.

Notice that we endow the first household with more capital and equal claim to

the endowment stream, so the first household is richer.

We do the following experiments with this economy. First, we set all taxes

except τc equal to zero, and solve for the equilibrium values of (µ02, τc). They

are (2.0765,.2117). A simulation of this economy is in figure 7. Then we reset
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τi = .08, and solve again for (µ02, τc) = (2.0467, .27). A simulation of this

economy is in figure 8. The simulations start from identical initial conditions.

In this economy, the habit persistence of the second type of consumer is

something of an “engine of growth”. The second type of household accumulates

capital to support planned growth in its consumption. Taxing investment causes

the household to cut back on these investments.
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Fig. 15.9.4.a. Simulation of two-agent

economy with τc = .2117, τi = 0. Four

series are plotted: consumption of type

1 consumer, consumption of type 2 con-

sumer, investment, and government pur-

chases. Equilibrium marginal utilities of

wealth are µ01 = 1, µ02 = 2.0765 .
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Fig. 15.9.4.b. Simulation of two-agent

economy with τc = .1884, τi = .08 . Equi-

librium marginal utilities of wealth are

(1, 2.0467) .
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15.9.5. ‘Social’ habit persistence

Our next example is identical to the previous one, except that we alter the

equation generating ‘habits’ of the second type of household to

h2t = .8h2t−1 + .2C2t.

We computed equilibria of this economy with the same government expenditure

process and the same permissible tax instruments as for the previous economy.

Figures 15.9.4 and 15.9.5 report simulations of this economy starting from the

same initial conditions as for the previous economy. Notice that slightly lower

consumption tax rates provide equilibria in this economy, for the reason that

due to the ‘social’ rather than ‘personal’ nature of habit persistence, they have

slightly lower adverse demand effects on the second type of household.
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Fig. @Fg.feb1c31@.a. Simulation of

two-agent economy with τc = .2101, τi =

0. The second type of agent has ‘keep-

ing up with the Jones’ habit persistence

with other agents of his type. Four series

are plotted: consumption of type 1 con-

sumer, consumption of type 2 consumer,

investment, and government purchases.
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Fig. 15.9.5.b. Simulation of two-agent

economy with τc = .1883, τi = .08 .
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15.10. Conclusions

The models that we have described are rigged to make it practical to extend the

data matching exercises performed by Braun (1991) and McGrattan (1991b).

Our calculations make possible various extensions of Braun and McGrattan.

The ease of computing equilibrium quantities, prices, and present values means

that we can use data on quantities, interest rates, and asset prices to do method

of moment estimation along the lines described by Hansen and Sargent (1993,

chapter 11). In particular, we can use data on government indebtedness and

deficits as well as asset prices to help estimate parameters. By accepting our

linear-quadratic specifications, we purchase the ability to get our hands on the

Arrow-Debreu prices (which is harder with the approximations used by Braun,

McGrattan and others in the real business cycle literature), which makes it

feasible for us to do without lump sum taxes in our second class of models. It

is possible for us to have numbers of capital stocks and enough heterogeneity

among households to generate interesting tax incidence effects. Finally, the

machinery in this chapter is a useful one within which to revisit issues in the

literature on time series implications of ‘present value budget balance’ (e.g.,

Hansen, Roberds, and Sargent (1991)).

A. Invariant subspace equations for first specification

Our strategy is to use Lagrangian methods to obtain first order necessary

conditions for households and firms. After obtaining those first order conditions,

we substitute the equilibrium conditions (Ht−1 = ht−1, Kt−1 = kt−1, Ct = ct ,

and so on) into them. Then we rearrange the system into the form of (9.25) so

that it is susceptible to application of the modified Vaughan method. We can

exploit the certainty equivalence principle and solve a nonstochastic version of

the model first, and later adjust the solution to accommodate randomness.
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15.A.1. Household’s Lagrangian

A Lagrangian for a nonstochastic version of the household’s problem is

L =

∞
∑

t=0

βt
{

−1

2
[(st − Ubzt) · (st − Ubzt) + gt · gt]

+ µ0[w
0
t
′
(I − τℓ)gt + α0

t (Udzt + ΓKKt−1)

+ r0t
′
(I − τk)kt−1 + Tt − p0

t
′
(I + τc)ct − q0t

′
(I + τi)it]

+ µs′t [Λhht−1 + ΛHHt−1 + Πct + ΠCCt − st]

+ µh′t [∆hht−1 + ∆HHt−1 + Θhct + ΘHCt − ht]

+ µk′t [∆kkt−1 + ∆KKt−1 + Θkit − kt]

+ µz′t [A22zt − zt+1]

}

(15.A.1)

We can set the multiplier on the budget constraint µ0 = 1, which will amount

to selecting a numeraire.

The first-order conditions for the household’s problem are

µst = (bt − st) (15.A.2)

(I + τc)p
0
t = Π′µst + Θ′

hµ
h
t (15.A.3)

µht = βΛ′
hµ

s
t+1 + β∆′

hµ
h
t+1 (15.A.4)

µkt = β∆′
kµ

k
t+1 + β(I − τk)r

0
t+1 (15.A.5)

gt = (I − τℓ)w
0
t (15.A.6)

(I + τi)q
0
t = Θ′

kµ
k
t (15.A.7)

µzt = β[A′
22µ

z
t+1 + U ′

b(st+1 − Ubzt+1) + U ′
dα

0
t+1] (15.A.8)
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The law of motion for the state variables chosen by the household and by nature

is





ht

kt

zt+1



 =





∆h 0 0

0 ∆k 0

0 0 A22









ht−1

kt−1

zt



+





Θh 0

0 Θk

0 0





(

ct

it

)

+





∆H 0 ΘH

0 ∆K 0

0 0 0









Ht−1

Kt−1

Ct





(15.A.9)

15.A.2. Firm’s first order conditions

The first-order conditions for the firm’s problem are

p0
t = Φ′

cα
0
t (15.A.10)

q0t = Φ′
iα

0
t (15.A.11)

w0
t = −Φ′

gα
0
t (15.A.12)

r0t = Γ′
kα

0
t (15.A.13)

The feasibility condition is

Φc(ct +Gt) + Φiit + Φggt = Γkkt−1 + ΓKKt−1 + dt (15.A.14)
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15.A.3. Representativeness conditions

Additional equilibrium conditions are

ht−1 = Ht−1

kt−1 = Kt−1

ct = Ct

(15.A.15)

We describe in detail how to compute the equilibrium of the first type of

model by arranging its equilibrium conditions into the form of equation (9.25).

Substituting the equilibrium conditions (15.A.15) into (15.A.9) gives





ht
kt

zt+1



 =





∆̄h 0 0

0 ∆̄k 0

0 0 A22









ht−1

kt−1

zt



 +





Θ̄h 0

0 Θk

0 0





(

ct

it

)

(15.A.16)

where ∆̄h = ∆h + ∆H , ∆̄k = ∆k + ∆K , Θ̄h = Θh + ΘH . Equations (15.A.10)

and (15.A.12) imply

α0
t =

[

Φ′
c

Φ′
g

]−1 [
p0
t

−w0
t

]

. (15.A.17)

Substituting from (15.A.3) and (15.A.6) into (15.A.17) gives

α0
t =

[

Φ′
c

Φ′
g

]−1 [
(I + τc)

−1[Π′µst + Θ′
hµ

h
t ]

−(I − τℓ)
−1 gt

]

(15.A.18)

Using kt−1 = Kt−1 in (15.A.14) and solving for [c′t g
′
t]
′

[

ct

gt

]

= [Φc Φg]
−1 {Γ̄kt−1 + Ufzt − Φiit} (15.A.19)

where Uf = Ud − ΦcUG and Γ̄ = Γk + ΓK .

Substituting ht−1 = Ht−1 and ct = Ct into equation (15.3.2) st gives

st = Λht−1 + Π̄ct

where Λ = Λh + ΛH and Π̄ = Π + ΠC .

Collecting our results to this point, we want to solve the following system

of difference equations

µst = (Ubzt − st) (15.A.20)
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st = Λht−1 + Π̄ct (15.A.21)

µht = βΛ′
hµ

s
t+1 + β∆′

hµ
h
t+1 (15.A.22)

µkt = β∆′
kµ

k
t+1 + β(I − τk)Γ

′
kα

0
t+1 (15.A.23)

µzt = β[A′
22µ

z
t+1 + U ′

b(st+1 − Ubzt+1) + U ′
dα

0
t+1] (15.A.24)





ht

kt
zt+1



 =





∆̄h 0 0

0 ∆̄k 0

0 0 A22









ht−1

kt−1

zt



 +





Θ̄h 0

0 Θk

0 0





(

ct
it

)

(15.A.25)

[

ct

gt

]

= [Φc Φg]
−1 {Γ̄kt−1 + Ufzt − Φiit} (15.A.26)

α0
t =

[

Φ′
c

Φ′
g

]−1 [
(I + τc)

−1 [Π′µst + Θ′
hµ

h
t ]

−(I − τℓ)
−1gt

]

(15.A.27)

Φ′
iαt = (I + τi)

−1 Θ′
kµ

k
t , (15.A.28)

where the last equation comes from combining (15.A.11) (among the firm’s first-

order necessary conditions) with (15.A.7) (among the household’s first-order

necessary conditions).

Our goal is to manipulate this system into the form (9.25) that is susceptible

to the application of the invariant subspace algorithm of chapter 9. Our strategy

will be successively to eliminate it, ct, gt, α
0
t , st , and µst from the system, so

that we are left with a difference equation in the “state” (ht−1, kt−1, zt) and

the “co-state” variables µht , µ
k
t , µ

z
t .

We begin by substituting (15.A.27) and (15.A.26) into (15.A.28) to get

Φ′
i

[

Φ′
c

Φ′
g

]−1 [
(I + τc)

−1 [Π′µst + Θ′
hµ

h
t ]

−(I − τℓ)
−1Ug[Φc Φg]

−1 {Γ̄kt−1 + Ufzt − Φiit}

]

= (I + τi)
−1Θ′

kµ
k
t

(15.A.29)
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where as usual Ug is a selection matrix that picks off the components of the

right side of (15.A.26) corresponding to gt . We adopt the partition

Φ̃ =

[

Φ′
c

Φ′
g

]−1

= [Φ̃1 Φ̃2] (15.A.30)

where Φ̃1 is (nd × nc) and Φ̃2 is (nd × ng). Then equation (15.A.29) can be

written as

Φ′
i Φ̃1(I + τc)

−1[Π′µst + Θ′
hµ

h
t ]

− Φ′
i Φ̃2(I − τℓ)

−1Ug[Φc Φg]
−1 {Γ̄kt−1 + Ufzt}

− (I + τi)
−1Θ′

kµ
k
t = −Φ′

i Φ̃2(I − τℓ)
−1Ug [Φc Φg]

−1 Φiit

Solving for it gives

it = L1µ
s
t + L2µ

h
t + L3µ

k
t + L4kt−1 + L5zt (15.A.31)

where

L1 = G−1
1 Φ′

i Φ̃1(I + τc)
−1Π′

L2 = G−1
1 Φ′

i Φ̃1(I + τc)
−1 Θ′

h

L3 = −G−1
1 (I + τi)

−1Θ′
k

L4 = −G−1
1 Φ′

i Φ̃2(I − τℓ)
−1Ug [Φc Φg]

−1Γ̄

L5 = −G−1
1 Φ′

i Φ̃2(I − τℓ)
−1Ug [Φc Φg]

−1 Uf

G1 = −Φ′
i Φ̃2(I − τℓ)

−1Ug [Φc Φg]
−1 Φi

(15.A.32)

Substituting (15.A.31) into (15.A.26) and rearranging gives

ct = L6kt−1 + L7zt + L8µ
s
t + L9µ

h
t + L10µ

k
t (15.A.33)

gt = L11kt−1 + L12zt + L13µ
s
t + L14µ

h
t + L15µ

k
t (15.A.34)

where
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L6 = Uc[Φc Φg]
−1 (Γ̄ − ΦiL4)

L7 = Uc[Φc Φg]
−1 (Uf − ΦiL5)

L8 = −Uc[Φc Φg]
−1ΦiL1

L9 = −Uc[Φc Φg]
−1ΦiL2

L10 = −Uc[Φc Φg]
−1ΦiL3

L11 = Ug[Φc Φg]
−1(Γ̄ − ΦiL4)

L12 = Ug[Φc Φg]
−1(Uf − ΦiL5)

L13 = −Ug[Φc Φg]
−1ΦiL1

L14 = −Ug[Φc Φg]
−1ΦiL2

L15 = −Ug[Φc Φg]
−1ΦiL3

(15.A.35)

Substituting (15.A.34) into (15.A.27) and using our partition [Φ̃1 Φ̃2] =

[

Φc

Φg

]−1

gives

α0
t = L16µ

s
t + L17µ

h
t + L18µ

k
t + L19kt−1 + L20zt (15.A.36)

where

L16 = Φ̃1(I + τc)
−1Π′ + Φ̃2(I − τℓ)

−1Ug[Φc Φg]
−1ΦiL1

L17 = Φ̃1(I + τc)
−1Θ′

h + Φ̃2(I − τℓ)
−1Ug[Φc Φg]

−1ΦiL2

L18 = Φ̃2(I − τℓ)
−1Ug[Φc Φg]

−1ΦiL3

L19 = −Φ̃2(I − τℓ)
−1Ug[Φc Φg]

−1{Γ̄ − ΦiL4}
L20 = −Φ̃2(I − τℓ)

−1Ug[Φc Φg]
−1(Uf − ΦiL5)

(15.A.37)

Substituting (15.A.33) for ct into (15.A.20) and (15.A.21) gives

µst = L21ht−1 + L22kt−1 + L23zt + L24µ
h
t + L25µ

k
t (15.A.38)

where
L21 = −A

−1Λ

L22 = −A
−1Π̄L6

L23 = A
−1(Ub − Π̄L7)

L24 = −A
−1Π̄L9

L25 = −A
−1Π̄L10

A = (I + Π̄L8)

(15.A.39)
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Because st = Ubzt − µst , (15.A.38) implies

st = L26ht−1 + L27kt−1 + L28zt + L29µ
h
t + L30µ

k
t (15.A.40)

where
L26 = −L21

L27 = −L22

L28 = Ub − L23

L29 = −L24

L30 = −L25

(15.A.41)

We can use (15.A.38) to eliminate µst from the right sides of (15.A.31),

(15.A.33), (15.A.34), (15.A.36) to obtain

it = N1ht−1 +N2kt−1 +N3zt +N4µ
h
t +N5µ

k
t (15.A.42)

ct = N6ht−1 +N7kt−1 +N8zt +N9µ
h
t +N10µ

k
t (15.A.43)

gt = N11ht−1 +N12kt−1 +N13zt

+N14µ
h
t +N15µ

k
t (15.A.44)

αt = N16ht−1 +N17kt−1 +N18zt

+N19µ
h
t +N20µ

k
t (15.A.45)

where


































N1 = L1L21

N2 = L1L22 + L4

N3 = L1L23 + L5

N4 = L1L24 + L2

N5 = L1L25 + L3

(15.A.46)



































N6 = L8L21

N7 = L8L22 + L6

N8 = L8L23 + L7

N9 = L8L24 + L9

N10 = L8L25 + L10

(15.A.47)
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

































N11 = L13L21

N12 = L13L22 + L11

N13 = L13L23 + L12

N14 = L13L24 + L14

N15 = L13L25 + L15

(15.A.48)



































N16 = L16L21

N17 = L16L22 + L19

N18 = L16L23 + L20

N19 = L16L24 + L17

N20 = L16L25 + L18

(15.A.49)

We now substitute (15.A.42), (15.A.43), (15.A.44), (15.A.45) into (15.A.22),

(15.A.23), (15.A.24), (15.A.25) to obtain the following system of difference

equations:

µht = βΛ′
hL21ht + βΛ′

hL22kt + βΛ′
hL23zt+1

+ (βΛ′
hL24 + β∆′

h)µ
h
t+1 + βΛ′

hL25µ
k
t+1

(15.A.50)

µkt = [β∆′
k + β(I − τk)Γ

′
kN20]µ

k
t+1

+ β(I − τk)Γ
′
kN16ht + β(I − τk)Γ

′
kN17kt

+ β(I − τk)Γ
′
kN18zt+1 + β(I − τk)Γ

′
kN19µ

h
t+1

(15.A.51)

µzt = βA′
22µ

z
t+1 + β[U ′

bL26 + U ′
dN16]ht

+ β[U ′
bL27 + U ′

dN17]kt

+ β[U ′
bL28 + U ′

dN18 − U ′
bUb] zt+1

+ β[U ′
bL29 + U ′

dN19]µ
h
t+1

+ β[U ′
bL30 + U ′

dN20]µ
k
t+1

(15.A.52)

ht = (∆̄h + Θ̄hN6)ht−1 + Θ̄hN7kt−1

+ Θ̄hN8zt + Θ̄hN9µ
h
t + Θ̄hN10µ

k
t

(15.A.53)

kt = (∆̄k + ΘkN2)kt−1 + ΘkN1ht−1

+ ΘkN3zt + ΘkN4µ
h
t + ΘkN5µ

k
t

(15.A.54)

zt+1 = A22zt (15.A.55)
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We can arrange these equations in the form of (9.25) as follows:

m2

[

xt
µt

]

= m1

[

xt+1

µt+1

]

,

where

m2 =


















0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I

(∆̄h + Θ̄hN6) Θ̄hN7 Θ̄hN8 Θ̄hN9 Θ̄hN10 0

ΘkN1 ∆̄k + ΘkN2 ΘkN3 ΘkN4 ΘkN5 0

0 0 A22 0 0 0



















and

m1 =


















βΛ′
hL21 βΛ′

hL22 βΛ′
hL23

β(I − τk)Γ
′
kN16 β(I − τk)Γ

′
kN17 β(I − τk)Γ

′
kN18

β(U ′
bL26 + U ′

dN16) β(U ′
bL27 + U ′

dN17) β(U ′
bL28 + U ′

dN18 − U ′
bUb)

I 0 0

0 I 0

0 0 I

βΛ′
hL24 + β∆′

h βΛ′
hL25 0

β(I − τk)Γ
′
kN19 β∆′

k + β(I − τk)Γ
′
kN20 0

β(U ′
bL29 + U ′

dN19) β(U ′
bL30 + U ′

dN20) βA′
22

0 0 0

0 0 0

0 0 0



















where we set x′t = [h′t−1, k
′
t−1, z

′
t] and µ′

t = [µh′t µk′t µz′t ] . Then the equilibrium

law of motion for {xt} is given by

xt+1 = Ao xt (15.A.56)

where

Ao = W11∆1(V11 − V12V
−1

22 V21).

The shadow prices are determined via (12.5b), namely,

µt = Mxt (15.A.57)
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where M = W21W
−1

11 . Using (15.A.42), (15.A.43), (15.A.44), and (15.A.45)

with (15.A.56) we can write

it =
{

[N1 N2 N3] + [N4 N5 0]M
}

xt (15.A.58)

ct =
{

[N6 N7 N8] + [N9 N10 0]M
}

xt (15.A.59)

gt =
{

[N11 N12 N13] + [N14 N15 0]M
}

xt (15.A.60)

α0
t =

{

[N16 N17 N18] + [N19 N20 0]M
}

xt (15.A.61)

or
it = Sixt

ct = Scxt

gt = Sgxt

α0
t = Sαxt.

(15.A.62)

Substituting (15.A.62) for α0
t into (15.A.10), (15.A.11), (15.A.12), (15.A.13)

gives
p0
t = Spxt

q0t = Sqxt

w0
t = Swxt

r0t = Srxt

(15.A.63)

where
Sp = Φ′

cSα, Sq = Φ′
iSα

Sw = −Φ′
gSα, Sr = Γ′

kSα
(15.A.64)

We also have

ht = Shxt , kt = Skxt (15.A.65)

where

Sh = [I 0 0]Ao , Sk = [0 I 0]Ao. (15.A.66)

These formulas express the law of motion for the state xt and all quantities

and prices in forms identical to those described in chapters 3–5. With these

formulas in hand, all subsequent features of our analysis proceed identically as

with that for an undistorted economy.
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B. Invariant subspace equations for heterogeneous agent

model

From the first-order conditions of the two types of households and firms the

market clearing conditions we can deduce the following set of equations:

s1t = Λ1h1t−1 + Λ13h2t−1 + Π1c1t + Π13c2t (15.B.1)

s2t = Λ2h2t−1 + Λ22h1t−1 + Π2c2t + Π22c1t (15.B.2)

h1t = ∆̃h1h1t−1 + ∆H12h2t−1 + Θ̃h1c1t + ΘH12c2t (15.B.3)

h2t = ∆̃h2h2t−1 + ∆H21h1t−1 + Θ̃h2c2t + ΘH21c1t (15.B.4)

zt+1 = A22zt (15.B.5)

(ΦcΦg)

(

ct

gt

)

= Γkt−1 + dt − Φiit − ΦcUGzt (15.B.6)

kt = ∆̃kkt−1 + Θkit (15.B.7)

(I + τc)µ0ip
0
t = Π′

i1(Ubizt − sit) + Θ′
hiMhi

t i = 1, 2 (15.B.8)

Mhi
t = β∆′

hiMhi
t+1 + βΛ′

i1(Ubizt+1 − sit+1) i = 1, 2 (15.B.9)

Mzi
t = β[A′

22Mzi
t+1 + U ′

bi(sit+1 − Ubizt+1)

+ U ′
diα

0
t+1µ0i] i = 1, 2 (15.B.10)

α0
t =

(

Φ′
c

Φ′
g

)−1(
p0
t

−w0
t

lt
gt

)

(15.B.11)

lit = (1 − τl)µ0iw
0
t i = 1, 2 (15.B.12)

Mk
t = β∆′

kMk
t+1 + β(I − τk)Γ

′
kα

0
t+1 (15.B.13)

(I + τi)Φ
′
iα

0
t = Θ′

kMk
t (15.B.14)
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where
Λ1 = Λ11 + Λ12

Π1 = Π11 + Π12

Λ2 = Λ21 + Λ23

Π2 = Π21 + Π23

∆̃h1 = ∆h1 + ∆H11

∆̃h2 = ∆h2 + ∆H22

Θ̃h1 = Θh1 + ΘH11

Θ̃h2 = Θh2 + ΘH22

∆̃k = ∆k + ∆K

Γ = Γk + ΓK

Now, use (15.B.8) twice for i = 1, 2 and (15.B.1), (15.B.2), we get

µ−1
01 (Π′

11(Ub1zt − Λ1h1t−1 − Λ13h2t−1 − Π1c1t − Π13c2t)

+ Θ′
h1Mh1

t ) =

µ−1
02 (Π′

21(Ub2zt − Λ2h2t−1 − Λ22h1t−1 − Π2c2t − Π22c1t)

+ Θ′
h2Mh2

t )

(15.B.15)

From (15.B.6) we get

c1t + c2t = Uc(Φc Φg)
−1[Γkt−1 − Φiit + Ufzt] (15.B.16)

gt = Ug(Φc Φg)
−1[Γkt−1 − Φiit + Ufzt] (15.B.17)

Also, combining (15.B.14), (15.B.11), (15.B.12) and (15.B.8) gives us

µ−1
01 Φ′

iΦ̃1(I + τc)
−1[Π′

11(Ub1zt − Λ1h1t−1

− Λ13h2t−1 − Π1c1t − Π13c2t) + Θ′
h1Mh1

t ]

− Φ′
iΦ̃2gt/(1 − τl)(µ01 + µ02) = (I + τi)

−1Θ′
kMk

t

(15.B.18)

Here Φ̃1 , Φ̃2 , Uc and Ug are as defined in Chapter 10, Uf = Ud1 + Ud2 −
ΦcUG . Equations (15.B.15) – (15.B.18) can be used to solve 4 variables c1t ,

c2t , gt and it in terms of the state variables zt , hit−1 , Mhi
t , kt−1 and Mk

t ,

i = 1, 2, as:
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L̃









c1t

c2t
gt

it









= Ñ





































zt
zt

h1t−1

h2t−1

kt−1

Mz1
t

Mz2
t

Mh1
t

Mh2
t

Mk
t





































(15.B.19)

where

L̃ =






µ01Π′
21Π22 − µ02Π′

11Π1 µ01Π′
21Π2 − µ02Π′

11Π13

Ic Ic
0 0

µ−1
01 Φ′

iΦ̃1(I + τc)−1Π′
11Π1 µ−1

01 Φ′
iΦ̃1(I + τc)−1Π′

11Π13

0 0

0 Uc(Φc Φg)−1Φi
Ig Ug(Φc Φg)−1Φi

(1 − τl)
−1(µ01 + µ02)−1Φ′

iΦ̃2 0







and
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Ñ =


























[−µ02Π′
11Ub1]′ [Uc(Φc Φg)−1Uf ]′

[µ01Π′
21Ub2]′ 0

[µ02Π′
11Λ1 − µ01Π′

21Λ22]′ 0

[µ02Π′
11Λ13 − µ01Π′

21Λ2]′ 0

0 [Uc(Φc Φg)−1Γ]′

0 0

0 0

[−µ02Θ′
h1

]′ 0

[µ01Θ′
h2

]′ 0

0 0

[Ug(Φc Φg)−1Uf ]′ [µ−1
01 Φ′

iΦ̃1(I + τc)−1Π′
11Ub1]′

0 0

0 [−µ−1
01 Φ′

iΦ̃1(I + τc)−1Π′
11Λ1]′

0 [−µ−1
01 Φ′

iΦ̃1(I + τc)−1Π′
11Λ13]′

[Ug(Φc Φg)−1Γ]′ 0

0 0

0 0

0 [µ−1
01 Φ′

iΦ̃1(I + τc)−1Θ′
h1

]′

0 0

0 [−(I + τi)
−1Θ′

k
]′





























′

From equation (15.B.19) c1t, c2t, gt, it can be expressed as a linear combi-

nation of state vector xt and costate vector Mt , as:









c1t

c2t

gt

it









= N

(

xt

Mt

)

where

N = L̃−1Ñ

xt = ( z′t z′t h′1t−1 h′2t−1 k′t−1 )
′

and Mt is the corresponding multipliers of each component of xt .

Divide N into blocks according to the dimensions of cit, gt, it, xt and Mt ,

such that:
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c1t = N11xt +N12Mt = N1 (x′t M′
t)

′

c2t = N21xt +N22Mt = N2 (x′t M′
t)

′

gt = N31xt +N32Mt = N3 (x′t M′
t)

′

it = N41xt +N42Mt = N4 (x′t M′
t)

′

(15.B.20)

As an intermediate step, we express s1t, s2t and α0
t in terms of xt and Mt .

This is done by using (15.B.1), (15.B.2), (15.B.8), (15.B.11) and (15.B.12):

s1t = Ns1 (x′t M′
t)

′

s2t = Ns2 (x′t M′
t)

′

α0
t = Nα (x′t M′

t)
′

(15.B.21)

such that

Ns1 = Π1N1 + Π13N2 + (0 0 Λ1 Λ13 0 0 0 0 0 0)

Ns2 = Π22N1 + Π2N2 + (0 0 Λ22 Λ2 0 0 0 0 0 0)

Nα = µ−1
01 Φ̃1(I + τc)

−1[−Π′
11Ns1 + (Π′

11Ub1 0 0 0 0 0 0 Θ′
h1 0 0)]

− (1 + τl)
−1(µ01 + µ02)

−1Φ̃2N3

Now, it is possible to combine all equations (15.B.1)–(15.B.14) to write

down the Vaughan’s linear equations:

M̃1

(

xt+1

Mt+1

)

= M̃2

(

xt

Mt

)

(15.B.22)

where
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M̃1 =



























I 0 0 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0 0 0

0 0 I 0 0 0 0 0 0 0

0 0 0 I 0 0 0 0 0 0

0 0 0 0 I 0 0 0 0 0

−βU ′
b1
Ub1 0 0 0 0 βA′

22 0 0 0 0

0 −βU ′
b2
Ub2 0 0 0 0 βA′

22 0 0 0

βΛ′
11Ub10 0 0 0 0 0 β∆′

h1
0 0

0 βΛ′
21Ub2 0 0 0 0 0 0 β∆′

h2
0

0 0 0 0 0 0 0 0 0 β∆′
k



























+

β



























0

0

0

0

0

U ′
b1
Ns1 + µ01U

′
d1
Nα

U ′
b2
Ns2 + µ02U

′
d2
Nα

−Λ′
11Ns1

−Λ′
21Ns2

(I − τk)Γ′
k
Nα



























and

M̃2 =



























A22 0 0 0 0 0 0 0 0 0

0 A22 0 0 0 0 0 0 0 0

0 0 ∆̃h1 ∆H12 0 0 0 0 0 0

0 0 ∆H21 ∆̃h2 0 0 0 0 0 0

0 0 0 0 ∆̃k 0 0 0 0 0

0 0 0 0 0 I 0 0 0 0

0 0 0 0 0 0 I 0 0 0

0 0 0 0 0 0 0 I 0 0

0 0 0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 0 0 I



























+



























0

0

Θ̃h1N1 + ΘH12N2

ΘH21N1 + Θ̃h2N2

ΘkN4

0

0

0

0

0































Chapter 16

Recursive Risk Sensitive Control

16.1. Introduction

This chapter describes a class of preferences with a single additional parameter

that permits us to represent altered attitudes toward risk vis a vis our ear-

lier quadratic specification. We build on work by Jacobson (1973) and Whittle

(1990), who proposed an exponential type of risk adjustment that, in linear–

quadratic environments with Gaussian disturbances, preserves most of the com-

putational conveniences of the standard undiscounted linear quadratic dynamic

programming problem. But Whittle’s (1981, 1990) way of introducing discount-

ing into this problem had the unpleasant feature of introducing time dependence

into the optimal decision rules, with the time dependence causing the effects of

the risk parameter σ to wear off as the planning horizon is extended. By using a

recursive specification of utility along the lines of Koopmans, Lucas and Stokey,

Epstein and Zin, and Weil, Hansen and Sargent (1992) altered Whittle’s spec-

ification to model discounting in a way that implies time invariance of optimal

decision rules.

In this chapter we describe this preference specification and how it can be

implemented with versions of our earlier formulas for computing equilibria and

asset prices. The principal features of our specification are that: (a.) the equa-

tions for solving the optimal linear regulator problem are modified by replacing

the operator associated with the usual matrix Riccati equation with the com-

position of that operator with another operator that is easily computed and

interpreted; (b.) optimal decision rules remain linear in the state; (c.) ‘cer-

tainty equivalence’ no longer holds, i.e., the decision rules, although linear in

the state, depend on the conditional covariance matrix of the innovations to the

state; (d.) asset pricing formulas have an additional layer of ‘risk adjustments,’

because the covariance conditional covariance matrix of the innovations to the

state now enter the quadratic form in the state in our asset pricing formulas.

– 369 –
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16.2. A Control Problem

This section describes a ‘discounted linear quadratic exponential Gaussian con-

trol problem that we shall eventually use for the social planning problem of our

standard economy. This is an infinite horizon control problem associated with

iterations to convergence on the following equation in the value functions Vj(x):

Vj+1(x) = max
u,x′

{u′Qu+ x′Rx+
2β

σ
logE(exp(σVj(x

′)/2)|J)}, (16.2.1)

where the maximization is subject to

x′ = Ax+Bu+ Cw,

where w is a Gaussian random vector with Eww′ = I , and where β ∈ (0, 1) is

a discount factor. Associated with the solution of this control problem are three

operators:

D(V ) = V + σV C(I − σC ′V C)−1C ′V

T (W ) = R+A′(βW − β2WB(Q+ βB′WB)−1B′W )A

d(k, V ) = βk −
(

β

σ

)

log det(I − σC ′V C).

(16.2.2)

The operator T is the usual one associated with the matrix Riccati difference

equation for the discounted optimal linear regulator problem. We shall give an

interpretation of the new operator D shortly.

The value function associated with the solution of the infinite horizon con-

trol problem is

V∞(x) = x′U1x+ U0 (16.2.3)

where

U1 = lim
j→∞

(T ◦D)j(0)

U0 = lim
j→∞

dj(0, 0)

The optimal decision rule is time invariant ut = −Fxt where

F = β[Q+ βB′D(U1)B]−1B′D(U1)A. (16.2.4)

These formulas can be derived by solving the maximization problem on

the right side of (16.2.1) and using a Lemma stated by Jacobson (1973) on
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a property of the Gaussian distribution. For details, see Hansen and Sargent

(1992).1

The optimal decision rule is linear in the state. When σ = 0, we get the

standard linear–quadratic situation, because in that case D = I , so that the

operator T ◦D = T . When σ = 0, the feedback rule F is independent of the

conditional covariance parameters in C , so that ‘certainty equivalence’ holds

when σ = 0. When σ 6= 0, the decision rule F depends on the parameters in

C .

16.3. Pessimistic Interpretation

For some purposes, it is convenient to use an interpretation of the D operator

due to Jacobson (1973) and Whittle (1990).

Evaluate the following ‘aggregator function’ associated with the functional

equation (16.2.1):

A(−Fx, x, y′V y + k|J) = x′R∗x+
2β

σ
logE{exp(σ(y′V y + k)/2)|J} (16.3.1)

where A∗ = A−BF,R∗ = F ′QF +R, and

y = A∗x+ Cw.

We obtain

A(−Fx, x, y′V y + k|J) = x′[R∗ + βA∗′D(V )A∗]x+ d(k).

The piece x′[R∗ +βA∗′D(V )A∗]x has an interpretation in terms of ‘pessimism,’

to be seen as follows.

Consider the following deterministic minimum problem

min
w,y

{−β
σ
w′w + x′R∗x+ βy′V y}

subject to

y = A∗x+ Cw.

1 This specification of discounting differs from the one used by Whittle (1990) in a way

designed to assure time-invariant decision rules.
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In this problem, w is treated as a control vector. As long as (I − σC ′V C) is

positive definite, this problem has a unique solution. The minimized value of

the criterion is verified to be x′[R∗ + βA∗′D(V )A∗]x , which is the quadratic in

x part of A(−Fx, x, y′V y + k|J). The ‘solution’ for w is

w = σ(I − σC ′V C)−1C ′V A∗x.

Thus, the optimum problem gives an interpretation of the operator D and

a piece σ(I − σC ′V C)−1C ′V A∗x in terms of a ‘pessimistic’ (when σ < 0) or

‘optimistic’ (when σ > 0) adjustment to the random term wt in the law of

motion for the state.

16.4. Recursive Preferences

The preceding generalization of linear–quadratic control theory can readily be

applied in the context of representative agent versions of the class of economic

models that we have been studying. We use the usual household technology

st = Λht−1 + Πct

ht = ∆hht−1 + Θhct.

We define the information process zt as usual by

zt+1 = A22zt + C2zt,

and let the law of motion for the complete state xt be denoted

xt+1 = Axt + Cwt+1,

where now wt is a Gaussian white noise. We define a utility index recursively

by

Ut = −(st − bt) · (st − bt)/2 + βRt(Ut+1) (16.4.1)

where

Rt(Ut+1) =

(

2

σ

)

logE[exp(σUt+1/2)|Jt].



Asset Pricing 373

Hansen, Sargent, and Tallarini (1993) have shown how to construct the

prices induced by this preference specification. We describe these prices first in

the context of an endowment economy.2

16.4.1. Endowment economy

Consider a pure endowment economy in which ct = Uczt is exogenous. Infinite

recursions on (16.4.1) lead to the quadratic form

Uet = x′tΩxt + ρ,

where Ω, ρ are the limits as j → ∞ of recursions on

Ωj+1 = −(Ss − Sb)
′(Ss − Sb)/2 + βA′D(Ωj)A

ρj+1 = d(ρj ,Ωj).

For endowment economies, we use Ω as one of the ingredients in constructing a

probability measure appropriate for the inner-product representation for asset

pricing.

16.5. Asset Pricing

We want to represent asset prices in the usual way as a conditional mathematical

expectation of an infinite discounted sum of an inner product of a ‘scaled Arrow-

Debreu price’ vector and the payout of the asset. Hansen, Sargent, and Tallarini

(1993) show that when σ 6= 0, the required conditional expectations operator

for representing asset prices corresponds to a probability distribution that is

distorted relative to the ‘objective’ one. In particular, they show that to attain

the inner product representation of asset prices it is appropriate to construct a

conditional expectations operator Ft defined by

FtUt+1 = E(Vt+1Ut+1|Jt)/E(Vt+1|Jt),

2 The Matlab program solvex.m computes equilibrium quantities and prices in one of our

economies with this preference specification; solvex.m calls doublex.m, which implements a

doubling algorithm to solve the control problem.
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where

Vt+1 = exp(σUet+1/2).

The operator Ft behaves like a conditional expectation operator in that it is

linear, monotone, and maps bounded random variables that are measurable with

respect to Jt+1 into bounded random variables that are measurable with respect

to Jt .
3 We can use βFt to value a contingent claim to time t+ 1 utility, and

Ms
t for the equilibrium valuation of services.

Recursively define the sequence of expectations operators

St,τ = FtFt+1Ft+2 · · · Ft+τ−1,

where Ft,0 = I . Then the valuation of a stream of consumption services {st}
is just

∞
∑

t=0

St,τMs
t+τ · st+τ .

To compute equilibrium asset prices, we have to evaluate consumption rates

ct . We compute a multiplier Mc
t from Ms

t in the usual way, except that

we substitute the conditional expectation operators St,τ for the usual ones in

equation (6.*) (refer to asset pricing chapter):

Mc
t = Π′Ms

t + Θ′
h

∞
∑

τ=1

βτ (∆h)
τ ′Λ′St,τ (Ms

t+τ ).

3 Vt+1/EVt+1|Jt is used as a Radon-Nikodym derivative in this construction.
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16.6. Characterizing the Pricing Expectations Operator

Hansen, Sargent, and Tallarini show how to evaluate the conditional expecta-

tions operators St,τ by constructing a distorted probability measure for the

state xt .
4 In particular, consider the phony law of motion for xt

xt+1 = Âxt + Ĉwt+1

where
Â = [I + σC(I − σC ′ΩC)−1C ′Ω]A

ĈĈ ′ = C(I − σC ′ΩC)−1C ′.

Then we can compute Mc
t = Mcxt where

Mc = [Π′ + Θ′
h

∞
∑

τ=1

βτ∆τ ′
h Λ′Âτ ](Sb − Ss).

We can evaluate a claim on a stream dt = Sdxt by

∞
∑

τ=0

βτSt,τMc
t+τ · dt+τ = Êt

∞
∑

τ=0

βτMc
t+τ · dt+τ

= x′t

∞
∑

τ=0

βτ (Â′)τS′
dMcÂ

τxt

+

(

β

1 − β

)

trace[S′
dMc

∞
∑

τ=0

βτ Âτ ĈĈ ′(A′)τ ].

4 These calculations are implemented in the program assetxq.m.
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16.7. Production Economies

The preceding formulas also apply to asset pricing in production economies, with

the understanding that the matrix Ω now corresponds to the ‘quadratic-form’

matrix in the value function for the social planning problem.

16.8. Risk-Sensitive Investment under Uncertainty

For sake of illustration, we now consider a one consumption good, one capital

good production economy that is a version of a Brock-Mirman stochastic growth

model with adjustment costs. This delivers a linear-quadratic version of Lucas

and Prescott’s (1971) theory of investment under uncertainty. Consumption

and investment satisfy:

ct + it = γkt−1 + dt (16.8.1)

where the capital stock kt evolves according to:

kt = δkkt−1 + it (16.8.2)

and {dt} is an exogenous endowment process. Labor input is required to adjust

the capital stock, reflected in a quadratic adjustment cost in the preferences of

the fictitious social planner. Also, there is an exogenous ideal consumption level

process {b1t} . The time t contribution to preferences is:

−(ct − b1t)
2 − φ2it

2 = −(γkt−1 + dt − it − b1t)
2 − φ2it

2

which is quadratic in the control it , the endogenous state variable kt−1 and the

exogenous states b1t and dt .

We begin with a parameter specification that implies no investment in a

deterministic steady state, an unrealistic but useful starting point that we adopt

to compare two alternative ‘explanations’ for investment. One is that altering

the risk parameter σ induces a precautionary savings motive into the preference

ordering. The other is that capital is more productive than in the benchmark

economy, increasing the physical return to investment.

Benchmark Economy with No Steady-State Investment

We set β = 1/1.05, γ = .1, δk = .95, φ = .5. With this parameter configu-

ration and constant values of dt and b1t , the model implies steady state values
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of zero for capital and investment. This follows from the fact that γ+δk = β−1 ,

which equates the physical rate of return to investment net of adjustment costs

to the subjective rate of time discount. Since adjustment costs are also present,

reflected by a positive value of φ , physical investment in new capital becomes

‘unattractive.’ As a consequence, asymptotically there are no savings in the

deterministic version of this model.

To see this, the Euler equation for capital is given by

E[(1 − L−1)(1 − β−1L)kt + φ2(1 − βδkL
−1)(1 − δkL)kt | Jt] =

E[(1 − L)(b1t+1 − dt+1) | Jt]
(16.8.3)

where L is the lag operator. For future reference we have permitted there to

be uncertainty in the forcing processes for {b1t} and {dt} . The solution to this

stochastic difference equation has representation:

kt = λkt−1 + ψ[(dt − b1t) − (1 − βλ)

∞
∑

j=0

(βλ)jE(dt+j − b1t+j | Jt)]. (16.8.4)

where 0 < λ < 1, and 0 < ψ . In contrast to the familiar permanent income

model in which λ and ψ are one, the presence of adjustment costs lowers λ .

Notice that the term multiplying ψ is the difference between dt − b1t and a

geometric average of current and future values of dt − b1t . This simple link to

the forcing processes is a result of the γ + δk = β−1 restriction. For a model

with b1t and dt constant, the term multiplying ψ will be zero and the capital

stock sequence will converge to zero.

An Economy with Risk Sensitivity

As a precursor to illustrating investment induced by risk sensitivity, we

now introduce a specific model of uncertainty in the endowment and preference

shock processes. Let an exogenous state vector process {zt} follow a first-order

vector autoregression:

zt+1 = A22zt + C2wt+1,

and suppose that b1t = Sbzt and dt = Sdzt , so that both the endowment and

the preference shock are linear functions of exogenous state vector. Construct

A22 =





1 0 0

0 .8 0

0 0 .5



 C2 =





0 0

1 0

0 .1



 , (16.8.5)
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and set Sb = [ 30 0 1 ] , Sd = [5 1 0]. We initialize the first component of zt

to be one, which replicates itself over time. Consequently, the preference shock

process has mean 30 and the endowment shock process has mean 5.

For the σ = 0 version of this economy, ordinary certainty equivalence ap-

plies. Since {dt} and {b1t} are asymptotically stationary, so are the endoge-

nous processes for consumption, capital, and investment. It again follows from

(16.8.4) that investment and capital both have mean zero in the stochastic

steady state, and consumption has a mean equal to the mean of the endowment

shock dt . Because of certainty equivalence, no precautionary savings occur in

this model.

When σ is less than zero, ordinary certainty equivalence no longer holds,

and mean investment is positive in a stochastic steady state. Table 2.1 re-

ports the means and standard deviations computed with respect to both the

objective probability distribution, and the appropriate distorted distribution

for σ = −.005.

TABLE 2.1: Means and Standard Deviations for the Adjustment Cost

Economy with σ = −.005

True Process Pessimistic Process

standard standard

mean deviation mean deviation

c1t 9.83 1.37 2.07 1.57

it 4.83 1.22 0.00 1.32

b1t 30.00 .12 30.01 .12

dt 5.00 1.67 2.07 1.71

The mean of consumption is now notably higher than the mean endowment and

the mean of investment is positive. In effect, there is a precautionary savings

motive at work here.

A version of the pessimistic certainty equivalence principle derived by Ja-

cobson (1973) and Whittle (1981) applies here. Thus, an alternative way to

obtain the same solution is to endow the fictitious social planner with a pes-

simistic view of the world. The stochastic difference equation (16.8.3) and its

solution (16.8.4) still apply except that the distorted expectation operator, call

it Ê , is used in place of E. As originally suggested by Jacobson (1973), we can
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imagine there being a second agent, say distinct from the social planner, that

picks future values of the shocks in a pessimistic fashion. The degree of pes-

simism is governed by the value of σ , and the difference equations associated

with these pessimistic forecasts for b1t+j and dt+j used for the time t decisions

are given by:

(1 − β−1L)kt+j − dt+j + b1t+j + (100/σ)(1 − .5βL−1)(1 − .5L)(b1t+j − 30)] = 0

(16.8.6)

−(1 − β−1L)kt+j + dt+j − b1t+j + (1/σ)(1 − .8βL−1)(1 − .8L)(dt+j − 5)] = 0.

for j = 1, 2, . . . , where kt−1, b1t and dt are given initial conditions. In effect,

we can think of these as the Euler equations for the second agent. Notice that

the capital stock enters these difference equations, and hence the pessimistic

forecasts of future values of dt and b1t depend on kt−1 .

Certainty equivalence works here because the optimal choice for kt can be

obtained by (i) shifting (16.8.3) forward j − 1 periods for j = 1, 2, . . . and

eliminating the conditional expectation operator; (ii) combining the resulting

difference equation with (16.8.6); and (iii) solving the composite system of dif-

ference equations for kt, b1t+1, dt+1 as a function of the state vector kt−1, b1t
and dt , imposing the appropriate terminal conditions. The composite solution

gives the evolution equation for the pessimistic forecasts of b1t and dt , and the

solution for kt gives the optimal decision rule for kt . This latter equation, when

combined with the actual law of motion for b1t and dt , governs the evolution

of the optimal capital stock process.

While λ is .9852 for this economy, once this forecasting dependence is

incorporated, the feedback of kt onto kt−1 drops slightly to .9817. A more

dramatic implication is that there is now a positive constant term (1.766) in the

decision rule for capital, whereas in the σ = 0 economy the constant term is

zero. Table 2.1 also reports the pessimistic means and standard deviations for

forcing processes and for consumption and investment. Notice that the perceived

means for dt and c1t are considerably less than their true means. The mean of

investment for the perceived process is again zero because of the applicability

of (16.8.4) with distorted expectations. Hence the perceived long run average

of the capital stock is not altered by changing expectations operators. Not

surprisingly, the perceived standard deviations are larger than the true ones.
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An Approximating Economy with σ = 0

Next we show that we can mimic the quantity implications of the preceding

model by setting σ = 0 and modifying some of its parameters. The parameters

that we alter are the mean of b1t , the mean of dt and the productivity parameter

for capital γ . In light of our previous discussion, to make average investment

positive it is necessary to relax the restriction that δk + γ = β−1 by making

capital more productive.

We used the Kullback-Leibler (1951) information criterion as a device for

picking the three parameters because of its well known link to maximum like-

lihood estimation (e.g., see Akaike (1973), Ljung (1978), and White (1982)).5

The information criterion was constructed in the same manner as in Hansen and

Sargent (1993) using the consumption and investment processes implied by the

original model and the approximating σ = 0 economy. The parameters that

make the approximate (σ = 0) model as close as possible to the original model

are .1032 for the productivity parameter γ and 47.0522 and 4.6812 for the means

of b1t and dt . In addition to increasing γ to compensate for setting σ = 0,

we were led to increase substantially the mean of b1t and decrease slightly the

mean of dt .

It turns out that these three parameter adjustments are sufficient to make

the quantity implications for the two models to be extremely close. This is

shown in Figure 16.8.1 which displays the ratios of the spectral densities of

consumption and investment, respectively, for the approximating economy to

the corresponding spectral densities for the original economy. Departures from

5 Let each model be a member of our class of models, with parameters of the first model

being denoted by a vector δ and those of the second model being denoted by α . For the first

model, let the mean vector for the observables be ν(δ) , and the spectral density matrix be

S̄y(ω, δ) . For the second model let the spectral density matrix be Sy(ω, α) , and the mean

vector be µ(α) . The parameters α that make the second model as close as possible to the

first are those that minimize the criterion

{

− 1

2π

∫ π

−π
log detSy(ω, α) dω

− 1

2π

∫ π

−π
trace

[

Sy(ω, α)−1 S̄y(ω, δ)
]

dω

− [ν − µ(α)]Sy(0, α)−1[ν − µ(α)]′
}

.
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unity are small, and confined to very low frequencies. Departures of this small

magnitude and frequency-location would be virtually impossible to detect, via

say a likelihood ratio test, without an extremely large time series sample. The

adjustments in the means of b1t and dt are sufficient to make the means for

consumption and investment the same for both economies. Hence, from the

standpoint of data on consumption and investment, the precautionary savings

version of the model is (almost) observationally equivalent to a specification in

which savings are induced by making capital more productive.
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Figure 16.8.1: Ratio of spectral density of consumption and

investment (dotted line) in the approximating economy to the

spectral density of consumption and investment in the true

economy.
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16.9. Equilibrium Prices in the Adjustment Cost

Economies

We now return to the two adjustment cost economies with their competing ex-

planations for investment. While the quantities for the σ = 0 ‘approximating’

economy are, by design, close to those for the ‘true’ risk-sensitive economy, be-

haviors of asset prices and rates of return differ markedly. To illustrate this

phenomenon, we first consider the implications for the two components of equi-

librium wealth: the value of the endowment process from the current period

forward (a Lucas tree), and the value of the existing capital stock. Figures

16.9.1.a and 16.9.1.b depict realizations of these two components to wealth for

a common realization of the vector of Gaussian noises driving the composite

preference and endowment shock process.

The value of the endowment process is always lower and the value of the

capital stock higher for the original economy than for the approximating σ = 0

economy. Hence a bigger fraction of wealth is held in the form of capital in

the original (risk-adjusted) economy. This is true even though the mean of the

endowment process is higher for the original economy. The mean gross returns

are (1.0444, 1.0786) for capital and the endowment process, respectively, in the

true economy; and (1.0500, 1.0504) in the approximating economy.6 These

phenomena trace to the fact that the capital stock is a less risky investment

than the endowment and that less risky investments are more highly valued in

the original (risk-adjusted) economy than in the approximating economy.

Figure 16.9.2 shows probability densities for risk-free gross returns for both

economies. Notice that the density for the approximating economy is centered

around β−1 , and the modal value is higher than for the original economy with

a risk adjustment. The density for the original (risk-adjusted) economy displays

more dispersion than its counterpart for the approximating economy, reflecting

in part the smaller mean of b1t .

Consider next the market prices of risk for the two economies. The prob-

ability densities for these prices are reported in Figures 16.9.3.a and 16.9.3.b.

The market price of risk is considerably higher in the risk-sensitive (σ = −.005)

economy.

Finally, Figures 16.9.4.a and 16.9.4.b report spectral densities for the log-

arithmic one-period returns to holding a claim to the endowment process and

6 These means were computed from simulations of length 100,000.
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to holding capital, respectively. Both returns are more variable in the original

(risk-adjusted) economy than in the approximating one. Moreover, the low fre-

quency dip in the spectral density for the return to holding the endowment is

substantially more pronounced.

Returning to the decomposition of equilibrium wealth described earlier, it

is clear from Figures 16.9.4.a and 16.9.4.b that holding capital is much less risky

than holding the endowment for both economies. It is also evident from Figure

16.9.2 that a riskless security is more valued (commands a lower equilibrium

rate of return) in the original economy. This apparently underlies the fact that

the capital stock is more highly valued in the original (σ = −.005) economy

as depicted in Figure 16.9.1a. Moreover, as illustrated in Figures 16.9.3.a and

16.9.3.b, the market prices of risk tend to be higher in the original economy,

so that the equilibrium risk adjustments are more pronounced. This helps to

explain why equilibrium values for claims to the endowment process are lower

for the original economy as depicted in Figure 16.9.1.a even though the mean

of the endowment process is higher.
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Fig. 16.9.1.a. Realizations of price of

Lucas tree in true economy (σ = −.005)

and approximating (σ = 0) economy

(dashed line).
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and approximating (σ = 0) economy

(dashed line).
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Figure 16.9.2: Figure 5.3 Densities of risk-free interest
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Chapter 17

Periodic Models of Seasonality

17.1. Introduction

Until now, each of the matrices defining the preferences, technology and in-

formation flows has been specified to be constant over time. In this chapter,

we relax this assumption, and let the matrices be strictly periodic functions of

time. Our interest is to apply and extend an idea of Denise Osborn (1988) and

Richard Todd (1983, 1990) to arrive at a particular model of “seasonality”.

Seasonality can be characterized in terms of the spectral density of a vari-

able. A variable is said to “have a seasonal” if its spectral density displays peaks

at or in the vicinity of the frequencies commonly associated with the seasons

of the year, e.g., every twelve months for monthly data, every four quarters for

quarterly data. Within one of our equilibria, it is possible to think of three

ways of modelling seasonality. The first two ways can be represented within

the time-invariant setup of our previous chapters, while the third way requires

following Todd and departing from the assumption that the matrices that define

our economies are time invariant.

The first model of seasonality is created by specifying the matrices [A22, C22, Ub, Ud]

that determine the information structure in the economy. We can exogenously

inject a seasonal preference shock into the model by specifying [A22, Ub] in such

a way that components of the shock process bt have seasonals. Similarly, we

can specify [A22, Ud] so that components of the endowment shock process dt

have seasonals. The seasonality of these exogenous processes will be transmit-

ted to the prices and quantities determined in equilibrium. The way in which

this seasonality is transmitted can be subtle, determined as it is by the restric-

tions across the parameters of the {bt, dt} processes and the price and quantity

processes that are determined by the equilibrium.1

1 Sargent [1976, 1987,chap XI] described some of the ways in which the cross equation

restrictions of linear rational expectations models determine the kind of seasonality in endoge-

nous variables that is induced by imposing seasonality in the variables that agents within a

model are implicitly forecasting.

– 387 –
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The second model of seasonality is created by specifying the matrices [∆h, Θh, Λ, Π]

that determine preferences and the matrices [Φc, Φi, Φc, Γ, ∆k, Θk] that deter-

mine the technology so that they make prices and quantities display seasonality

even when the preference shocks bt and the endowment shocks dt do not dis-

play any seasonality. Seasonality can come either from the technology side or

from the preference side. Notice that in the first kind of model the source of

seasonality is imposed exogenously, while in this second kind of model the idea

is that preferences and technology are such that the equilibrium of the economy

creates a “propagation mechanism” that converts nonseasonal impulses into sea-

sonal responses in prices and quantities.

This chapter is devoted to studying a third model of seasonality, by follow-

ing Todd. We now specify an economy in terms of matrices that are periodic

functions of time. This specification captures the idea, for example, that the

technology is different in Winter than it is in Spring. You will get less corn if

you plant in Minnesota in January than if you plant in May. As we shall see,

this model of seasonality has properties that contrast in interesting ways to the

other two models of seasonality.

17.2. A Periodic Economy

The social planner now faces the problem of maximizing

−.5
∞
∑

t=0

βt
[

(st − bt) · (st − bt) + l2t
]

(17.2.1)

subject to

Φc,s(t) ct + Φi,s(t) it + Φg,s(t) gt = Γs(t) kt−1 + dt

kt = ∆k,s(t) kt−1 + Θk,s(t) it

ht = ∆h,s(t) ht−1 + Θh,s(t) ct

st = Λs(t) ht−1 + Πs(t) ct

zt+1 = A22,s(t) zt + C22,s(t) wt+1

bt = Ub zt

dt = Ud zt

(17.2.2)
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In (17.2.2), s(t) is a periodic function that assigns integers to integers. In

particular,
s : (. . . , −1, 0, 1, . . .) → [1, 2, . . . , p]

s(t+ p) = s(t) ∀ t
s(t) = t for t = 1, 2, . . . , p.

(17.2.3)

A consequence of (17.2.3) is that the constraints in (17.2.2) can be represented

in the form

Φc,j cp·t+j + Φi,j ip·t+j + Φg,j gp·t+j = Γj kp·t+j+1 + dp·t+j

kp·t+j = ∆k,j kp·t+j+1 + Θk,j ip·t+j

hp·t+j = ∆h,j hp·t+j+1 + Θh,j cp·t+j

sp·t+j = Λj hp·t+j+1 + P ēj cp·t+j

zp·t+j+1 = A22,j zp·t+j + C22,j wp·t+j

bp·t+j = Ub zp·t+j

dp·t+j = Ud zp·t+j

(17.2.4)

where t = 0, 1, 2, . . . , and j = 1, 2, . . . , p . Notice for t = 0, as j goes from

1 to p , that p · t + j goes from 1 to p ; for t = 1, as j goes from 1 to p , that

p · t+ j goes from p+ 1 to 2p , and so on.

Thus, (17.2.4) describes a setting in which the matrices that represent

preferences and the technology are periodic with period p .

The social planning problem can be expressed in the form of a periodic

optimal linear regulator problem. The social planner chooses a sequence of

functions expressing ut as functions of xt , for all t ≥ 0, to maximize

−E
∞
∑

t=0

βt {x′t Rs(t) xt + u′t Qs(t) ut + 2u′t Ws(t) xt} (17.2.5)

subject to the constraints

xt+1 = As(t) xt +Bs(t) + Cs(t) wt+1 (17.2.6)

where x′t = [h′t−1, k
′
t−1, zt] . In (17.2.5), (17.2.6), the matrices [Rs(t), Qs(t),Ws(t) ,

As(t), Bs(t), Cs(t)] are the same functions of the matrices [Φc,s(t),Φi,s(t),Φg,s(t) ,

Γs(t),∆k,s(t),Θk,s(t),∆h,s(t),Θh,s(t),Λs(t),Πs(t), A22,s(t) , C22,s(t), Ub, Ud] that the
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matrices [R,Q,W,A,B,C] are of the matrices [Φc,Φi,Φc,Γ,∆k,Θk,∆h,Θh,Λ,

Π, A22, C22, Ub, Ud] in the constant coefficient case. These functions were de-

scribed in chapter 3.

The Bellman equations for this problem are

Vt(xt) = max
ut

{x′tRs(t)xt + u′tQs(t)ut + 2u′tWs(t)xt

+ βEtVt+1(xt)}
(17.2.7)

where the maximization is subject to

xt+1 = As(t)xt +Bs(t) + Cs(t)wt+1. (13.6)

In (17.2.7), Vt(xt) is defined as the optimal value of the problem starting from

state xt at time t .

For the periodic optimal linear regulator problem, the optimal value func-

tion is quadratic but time varying:

Vt(xt) = x′tPtxt + ρt, (17.2.8)

where the n× n matrix Pt satisfies the matrix Riccati difference equation

Pt = Rs(t) + βA′
s(t)Pt+1As(t) − (βA′

s(t)Pt+1Bs(t) +W ′
s(t))

× (Qs(t) + βB′
s(t)Pt+1Bs(t))

−1(βB′
s(t)Pt+1As(t) +Ws(t)),

(17.2.9)

while the scalar ρt satisfies

ρt = βρt+1 + β trace (Pt+1Cs(t)C
′
s(t)). (17.2.10)

Now think of solving Bellman’s equation by iterating backwards on (17.2.9),

(17.2.10), starting from some terminal values for P and ρ . Because the matrices

[Rs(t), Qs(t), Ws(t), As(t), Bs(t)] are all functions of time when p ≥ 2, it is

too much to hope that {Pt, ρt} will converge in these iterations as t→ −∞ to

objects that are independent of time. What is reasonable to hope for, and what

will indeed obtain under the assumptions made in our setup, is that iterations

on (17.2.9) and (17.2.10) will each produce p convergent subsequences. In

particular, backwards iterations on (17.2.9) and (17.2.10) will converge to a

sequence that oscillates periodically among p value functions associated with
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the p seasons of the year. Thus, after many iterations, we will eventually have

Vt(xt) = Vs(t)(xt), where

Vs(t)(xt) = x′tPs(t)xt + ρs(t) (17.2.11)

We can also represent these value functions as

Vj(xp·t+j) = x′p·t+jPjxp·t+j + ρj , (17.2.12)

where t = 0, 1, 2, . . . and j = [1, 2, . . . , p] . Equation (17.2.12) summarizes the

outcome that there are p value functions, one for each of the p seasons of the

year.

The optimal decision rules can be represented as

ut = −Fs(t)xt (17.2.13)

where

Fs(t) = −(Qs(t) + βB′
s(t)Ps(t+1)Bs(t))

−1 βB′
s(t)Ps(t+1)As(t). (17.2.14)

The optimal decision rules are thus periodic with period p . Substituting

(17.2.13) into the law of motion (17.2.6) gives the following “closed loop” rep-

resentation of the solution of the social planning problem:

xt+1 =
(

As(t) −Bs(t)Fs(t)
)

xt + Cs(t)wt+1 (17.2.15)

or

xt+1 = Aos(t)xt + Cs(t)wt+1 (17.2.16)

where Aos(t) = As(t) −Bs(t)Fs(t) . We can also represent (17.2.16) in the form

xp·t+j+1 = Aojxp·t+j + Cjwp·t+j+1 (17.2.17)

for t = 0, 1, 2, . . . and j = [1, 2, . . . , p] . Thus the laws of motion are peri-

odic with a periodicity p that is inherited from that of the matrices specifying

preferences, technology, and information flows.

The matrices [Aoj , Pj ] for j ∈ [1, 2, . . . , p] can be used to construct the

quantities and prices associated with the equilibrium of our model. Formulas

for the matrices determining our equilibrium, namely the M and S matrices,
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are given by the very same formulas described in chapters 3 and 5, with the

proviso that in the periodic case s(t) or j subscripts appear on all objects in

those formulas. Thus, we have that the quantities determined in our equilibrium

are given by
ht = Sh,s(t)xt dt = Sd,s(t)xt

kt = Sk,s(t)xt ct = Sc,s(t)xt

kt−1 = Sk1,s(t)xt gt = Sg,s(t)xt

it = Si,s(t)xt st = Ss,s(t)xt

bt = Sb,s(t)xt

(17.2.18)

where

[

Sh,s(t)
Sk,s(t)

]

=

[

Ao11,s(t)
Ao12,s(t)

]

Sk1,s(t) = [0 I 0]

Si,s(t) = −Fs(t)
Sd,s(t) = [0 0 Ud]

Sb,s(t) = [0 0 Ub]

Sc,s(t) = Uc,s(t)[Φc,s(t) Φg,s(t)]
−1

[−Φi,s(t)Si,s(t) + Γs(t)Sk1,s(t) + Sd,s(t)]

Sg,s(t) = Ug,s(t)[Φc,s(t) Φg,s(t)]
−1

[−Φi,s(t)Si,s(t) + Γs(t)Sk1,s(t) + Sd,s(t)]

Ss,s(t) = Λs(t)[I 0 0] + Πs(t)Sc,s(t)

(17.2.19)

The Lagrange multipliers associated with the social planning problem are

determined by the following counterparts of the formulas that we described in

chapters 3 and 5:

Mk,s(t) = 2β[0 I 0]Ps(t)A
o
s(t)

Mh,s(t) = 2β[I 0 0]Ps(t)A
o
s(t)

Ms,s(t) = Sb,s(t) − Ss,s(t)

Md,s(t) =

[

Φ′
c,s(t)

Φ′
g,s(t)

]−1 [
Θ′
h,s(t)Mh,s(t) + Π′

s(t)M
′
s,s(t)

−Sg,s(t)

]

Mc,s(t) = Θ′
h,s(t)Mh,s(t) + Π′

s(t)Ms,s(t)

Mi,s(t) = Θk,s(t)Mk,s(t)

(17.2.20)
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Formulas for the equilibrium price system can be stated in terms of the

objects defined in (17.2.20):

ptt′ = Mc,s(t′)xt′/[ējMc,s(t)xt]

wtt′ = |Sg,s(t′)xt′ |/[ējMc,s(t)xt]

rtt′ = Γ′
s(t)Md,s(t′)xt′/[ējMc,s(t)xt]

qtt′ = Mi,s(t′)xt′/[ējMc,s(t)xt]

αtt′ = Md,s(t′)xt′/[ējMc,s(t)xt]

vt = [Γs(t′)Md,s(t′) + ∆′
k,s(t′)]xt′/[ējMc,s(t)xt]

(17.2.21)

These formulas give the time t price system for pricing goods to be delivered at

all t′ ≥ t .

17.3. Asset Pricing

With the above formulas in hand, we can derive formulas for pricing assets.

These formulas generalize those described in chapter 5 to the case in which the

economy is strictly periodic. We begin by pricing an asset that entitles its owner

to a stream of returns in the form of a vector of consumption goods described by

yt = Ua,s(t)xt , where Ua,s(t) is a periodic sequence of matrices. We let at denote

the price of this asset at time t . By the same reasoning applied in chapter 5,

at satisfies

at = Et

∞
∑

h=0

βhx′t+hZa,s(t+h)xt+h/[ējMc,s(t)xt], (17.3.1)

where Zaj = U ′
a,jMc,j . We shall show that (17.2.5) can be represented as

at = [x′tµa,s(t)xt + σa,s(t)]/[ējMc,s(t)xt], (17.3.2)

where µa,s(t) and σa,s(t) satisfy
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µa,1 = Za,1 + βAo′1 Za,2A
o
1 + β2Ao′1 A

o′
2 Za,3A

o
2A

o
1 + · · ·

+ βp−1Ao′1 A
o′
2 · · ·Ao′p−2A

o′
p−1Za,pA

o
p−1A

o
p−2 · · ·Ao2Ao1

+ βpAo′1 A
o′
2 · · ·Ao′p−1A

o′
p µa,1A

o
pA

o
p−1 · · ·Ao2Ao1

µa,p = Za,p + βAo′p µa,1A
o
p

µa,p−1 = Za,p−1 + βAo′p−1µa,pA
o
p−1

...

µa,2 = Za,2 + βAo′2 µa,3A
o
p−2

(17.3.3)

and
σa,1 = β trace(µa,2C1C

′
1) + βσa,2

σa,2 = β trace(µa,3C2C
′
2) + βσa,3

...

σa,p = β trace(µa,1CpC
′
p) + βσa,1

(17.3.4)

The matrix µa,1 can be computed from the first equation of (17.3.3) by using a

doubling algorithm that is described in chapter 8. Then the remaining equations

of (17.3.3) can be used to compute the remaining µa,j ’s. Given the µa,j ’s,

(17.3.4) is a system of p equations that can be solved for the p σa,j ’s.

To verify (17.3.3), (17.3.4), we can proceed as follows. Let the numerator

of (17.3.1), (17.3.2) be denoted

ãt = Et

∞
∑

h=0

βhx′t+hZa,s(t+h)xt+h

= x′tµa,s(t)xt + σa,s(t)

(17.3.5)

Recall the equilibrium transition laws (17.2.16):

xt+1 = Aos(t)xt + Cs(t)wt+1. (13.19)

Evidently, (17.3.5) and (17.2.16) imply that

ãt = x′tZa,s(t)xt + β Etãt+1

or
x′tµa,s(t)xt + σa,s(t) = x′tZa,s(t)xt

+βEt (A
o
s(t)xt + Cs(t)wt+1)

′µa,s(t+1)(A
o
s(t)xt + Cs(t)wt+1)

+ βσa,s(t+1)
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The above equation implies that

µa,s(t) = Za,s(t) + βAo′s(t)µa,s(t+1)A
o
s(t) (17.3.6)

σa,s(t) = β σa,s(t+1) + β trace (µa,s(t+1)Cs(t)C
′
s(t)) (17.3.7)

Equation (17.3.4) is equivalent with (17.3.7). The first equation of (17.3.3) is

the result of recursions on (17.3.6) starting from s(t) = 1, while the remaining

equations of (17.3.3) are simply (17.3.6) for s(t) = 2, 3, . . . , p .

This completes the verification of (17.3.3), (17.3.4).

We shall give a formula for the term structure of interest rates after we

have described the prediction theory associated with (17.2.16).

17.4. Prediction Theory

For a model with period p ≥ 2, there are two natural alternative ways of specify-

ing the information sets upon which means, covariances, and linear least squares

predictions are conditioned. First, we can calculate moments and forecasts by

conditioning on the season. This amounts to computing different moments and

different forecasting formulas for each of the p seasons. In the appendix to this

chapter, we formally describe a sigma algebra, which we denote Ip , that con-

tains the information that corresponds to conditioning on the season. Second,

we can calculate moments and forecasts by disregarding information about the

season, which amounts to averaging data across seasons in a particular way. In

the appendix, we formally describe a sigma algebra, denoted I , which corre-

sponds to not conditioning on the season.

In this section, we describe parts of the prediction theory for our periodic

models that correspond to conditioning on the season. In this section,the no-

tation Et ( · ) denotes a mathematical expectation conditioned on xt , under

the assumption that we are also conditioning on the information in Ip . We are

assuming that the fictitious social planner uses this information to compute all

relevant prices.

Recursions on (17.2.16) can be used to deduce the linear least squares

predictions of the state vector xt . There are p different sets of formulas for the

j -step ahead predictions of xt+k conditioned on xt , one for each season of the
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year. Recursions on (17.2.16) lead directly to

xt+k = Aos(t+k−1)A
o
s(t+k−2) · · ·Aos(t)xt

+Aos(t+k−1)A
o
s(t+k−2) · · ·Aos(t+1)Cs(t)wt+1 + · · ·

+Aos(t+k−1)Cs(t+k−2)wt+k−1 + Cs(t+k−1)wt+k

(17.4.1)

Equation (17.4.1) implies

Etxt+k = Aos(t+k−1)A
o
s(t+k−2) · · ·Aos(t)xt (17.4.2)

and

E(xt+k − Etxt+k)(xt+k − Etxt+k)
′ ≡ Σk,s(t)

= Aos(t+k−1)A
o
s(t+k−2) · · ·Aos(t+1)Cs(t)C

′
s(t)A

o′
s(t+1) · · ·

Ao′s(t+k−2)A
o′
s(t+k−1)

+ · · · +Aos(t+k−1)Cs(t+k−2)C
′
s(t+k−2)A

o′
s(t+k−1)

+ Cs(t+k−1)C
′
s(t+k−1)

(17.4.3)

Recursive versions of (17.4.2) and (17.4.3) are available. Equation (17.4.2)

implies

Etxt+k = Aos(t+k−1)Etxt+k−1.

Equation (17.4.3) implies

Σk,s(t) = Aos(t+k−1)Σk−1,s(t)A
o′
s(t+k−1) + Cs(t+k−1)C

′
s(t+k−1).

The prediction formulas (17.4.2), (17.4.3) are evidently predicated on the

assumption that we know the matrices [Aoj , Cj ] for j = [1, . . . , p] . They also

assume that xt is in the information set of the forecaster.

Later in this chapter, we shall briefly describe how the Kalman filter can

be used to compute the linear least squares forecast of yt , conditioned only on

the history of observed y′s , and also on Ip . We shall also describe a different

theory of prediction, which assumes that we do not know the values of [Aoj , Cj ] ,

and that we cannot condition on the season, so that all that we possess is a time

invariant representation for the {xt, yt} process.
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17.5. The Term Structure of Interest Rates

In light of formula (17.4.2), the same logic that led to formula (5.65) for the

reciprocal of the risk-free interest rate on j -period loans, Rtj , now leads to the

following formula:

Rtj = βj ē1Mc,s(t+j)A
o
s(t+j−1)A

o
s(t+j−2) · · ·Aos(t)xt/[ējMc,s(t)xt] (17.5.1)

This formula gives the price at time t of a sure claim on the first consumption

good j periods ahead.

17.6. Conditional Covariograms

In this section, we present formulas for the covariance function of x and y ,

conditioned on season, i.e., conditioned on Ip . The conditional covariogram of

{xt} can be expressed in terms of the conditional contemporaneous covariance

function cx,t(0) = Extx
′
t|Ip via the formulas

cx,t(−k) ≡ Extx
′
t+k|Ip

= Extx
′
t|IpAo′s(t)Ao′s(t+1) · · ·Ao′s(t+k−2)A

o′
s(t+k−1), k ≥ 1

or
cx,t(−k) = cx,t(0)Ao′s(t)A

o′
s(t+1) · · ·

Ao′s(t+k−2)A
o′
s(t+k−1), k ≥ 1.

(17.6.1)

To solve for the matrices cx,t(0), we can solve the equations

Ext+1x
′
t+1|Ip = Aos(t)Extx

′
t|IpAo′s(t) + Cs(t)C

′
s(t)

or

cx,t+1(0) = Aos(t)cx,t(0)Ao′s(t) + Cs(t)C
′
s(t). (17.6.2)

By solving the system formed by (17.6.2) for t = 1, 2, . . . , p , we can determine

the p contemporaneous covariance matrices cx,1(0), cx,2(0), . . . , cx,p(0). Here is

a fast way of solving this system. Iterating on (17.6.2) p times yields

cx,t+p(0)

= Aos(t+p−1)A
o
s(t+p−2) · · ·Aos(t) cx,t(0)Ao′s(t) · · ·Ao′s(t+p−2)A

o′
s(t+p−1)

+Aos(t+p+1)A
o
s(t+p−2) · · ·Aos(t+1)Cs(t)C

′
s(t)A

o′
s(t+1) · · ·Ao′s(t+p−1)

· · · +Aos(t+p−1)Cs(t+p−2)C
′
s(t+p−2)A

o′
s(t+p−1) + Cs(t+p−1)C

′
s(t+p−1).

(17.6.3)
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We compute cx,t(0) by setting cx,t+p(0) equal to cx,t(0) in (17.6.3). Equa-

tion (17.6.3) is a discrete Lyapunov equation that can be solved by a doubling

algorithm that is described in chapter 8. Once (17.6.3) is solved for t = 1

to compute cx,1(0), (17.6.2) can be used to compute cx,t(0) for t = 2, . . . , p .

There is one covariance matrix cx,t(0) for each of the p seasons of the year.

Given cx,t(−k) for k ≥ 0, we can compute cy,t+k(−k) = Eyty
′
t+k|Ip by

using (17.6.1). We obtain

Eyty
′
t+k | Ip = Gs(t)cx,k(−k)G′

s(t+k), k ≥ 0. (17.6.4)

Although we are starting calendar time at t = 0, cx,t(k) and cy,t(k) are

both defined for positive k so long as t ≥ k . For any such t , cx,t(k) =

cx,t−k(−k)′ and cy,t(k) = cy,t−k(−k)′ , implying that {cy,t(k)} and {cy,t(k)}
are both periodic starting from t = k . For notational convenience, we ex-

tend this construction for 0 ≤ t ≤ k by defining cx,t(k) = cx,t+ℓp(k) and

cy,t(k) = cy,t+ℓp(k) for any ℓ such that t + ℓp ≥ k . This guarantees that the

conditional covariograms are periodic for all values of k .

17.7. The Stacked and Skip-Sampled System

The equilibrium has the system of periodic transition laws described in

(17.2.16) or (17.2.17). The equilibrium stochastic process for xt is time-varying,

albeit in a highly structured way. We have seen that conditional on knowledge

of the season, there are p covariograms, and p sets of formulas for linear least

squares predictions that apply in the p seasons of the year. Using these for-

mulas requires knowledge of the set of matrices [Aoj , Cj ] for j = [1, . . . , p] that

characterize the transition laws (17.2.16).

In this section, we describe a time invariant representation that also char-

acterizes the system. We shall use this representation for several purposes. We

shall use it to deduce two kinds of impulse response functions or moving average

representations that can be defined for periodic models.2 We shall also use it to

compute a population version of a time-invariant vector autoregression for xt .

2 Each of these impulse response functions conditions on knowledge of the season. Later

we shall describe yet another moving average representation that does not condition on season.
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The p distinct covariograms as described by equations (17.6.1) and (17.6.4)

are conditional covariograms, meaning that they are computed by conditioning

on the season of the year. Sample counterparts of these conditional covariograms

are computed by creating p distinct averages, averaging each over observations

p periods apart. Sample covariograms can also be computed ‘unconditionally’,

i.e., in a way that ignores the seasonal structure of the transition laws. This

amounts to computing sample moments in the standard way, simply by averag-

ing over adjacent observations, namely, as T−1
∑T
t=1 yt y

′
t−j . For a periodic

model, such averages will converge as T → ∞ , and they will converge to well

defined functions of the parameters of the model. In particular, as T → ∞ ,

T−1
∑T
t=1 yty

′
t−k would converge to an average of the p covariograms, namely,

p−1[cy,1(k) + cy,2(k) + . . . + cy,p(k)] . The convergence of these sample auto-

covariances assures the existence of a time invariant vector autoregressive rep-

resentation for yt .

We begin by defining for t = 0, 1, . . . the vector

X ′
t = [x′p·t−p+1, x

′
p·t−p+2, . . . , x

′
p·t]

′. (17.7.1)

Evidently, we have

X ′
t+1 = [x′p·t+1, x

′
p·t+2, . . . , x

′
p·t+p]. (17.7.2)

To verify this, substitute (t + 1) for t everywhere that t appears on the right

side of (17.7.1). We also define

W ′
t+1 = [w′

p·t+1, w
′
p·t+2, . . . , w

′
p·t+p]. (17.7.3)

It follows from (17.2.17) that

DXt+1 = FXt + GWt+1, (17.7.4)

where

D =















I 0 0 · · · 0 0

−Ao1 I 0 · · · 0 0

0 −Ao2 I · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −Aop−1 I















(17.7.5)

F =

[

0 Aop
0 0

]

(17.7.6)
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G =











Cp 0 0 · · · 0

0 C1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · Cp−1











(17.7.7)

Solving (17.7.4) for Xt+1 gives

Xt+1 = ÂXt + ĈWt+1 (17.7.8)

where Â = D−1F and Ĉ = D−1G . We also define the vector Y ′
t = [y′p·t−p+1, y

′
p·t−p+2, . . . ,

y′p·t] . Then we have that

Yt = HXt (17.7.9)

where H =











G1 0 · · · 0

0 G2 · · · 0
...

...
. . .

...

0 0 · · · Gp











. Thus we have that {Yt} is governed by the

time invariant state space system

Xt+1 = ÂXt + ĈWt+1 (17.7.10)

Yt = HXt (17.7.11)

Notice that while {xt, yt} is governed by a time varying linear state space sys-

tem, the stacked and skip sampled process {Xt, Yt} is governed by a time in-

variant system.3

From representation (17.7.10) – (17.7.9), we can use standard formulas to

deduce the moving average representation of Yt in terms of Wt

Yt =

∞
∑

j=0

C̄jWt−j . (17.7.12)

The moving average representation (17.7.12) implies the following representa-

tion for the components of Yt in terms of the components of Wt :

ypt−p+k =

∞
∑

j=0

p
∑

h=1

C̄j(k, h)wp(t−j)−p+h, k = 1, . . . , p, (17.7.13)

3 In terms of the language introduced in the appendix, because S is of period p, Sp is of

period one.
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where C̄j(k, h) denotes the (k, h)th (m × m) block of C̄j , where m is the

dimension of yt .

According to representation (17.7.13), there are two distinct concepts of a

moving average representation, and p embodiments of each of these concepts.

The first concept is a representation of ypt−p+k in terms of current and lagged

wt ’s. The response of ypt−p+k to lagged w ’s is evidently given by the sequence4

{dk,v}∞v=0 = {C̄0(k, k), C̄0(k, k − 1), . . . C̄0(k, 1)C̄1(k, p), C̄1(k, p− 1), . . . ,

C̄1(k, 1), C̄2(k, p), C̄2(k, p− 1), . . . , C̄1(k, 1), . . .}.
(17.7.14)

In particular, we have from (17.7.13) that

ypt−p+k =
∞
∑

v=0

dk,v wpt−p+k−v. (17.7.15)

Notice that there is a different moving average of type (17.7.15) for each season

k = 1, . . . , p .

The second concept of a moving average is the response of the {yt} process

to an innovation wpt−p+k in a particular season k . The response of {yt} to

wpt−p+k is evidently given by the sequence

{gk,v}∞v=0 = {C̄0(k, k), C̄0(k + 1, k), . . . , C̄0(p, k),

C̄1(1, k), C̄1(2, k), . . . , C̄1(p, k), . . .}.
(17.7.16)

In the special case in which the true periodicity is one, it is straightforward to

verify that for any p > 1, the impulse functions constructed from the stacked

system (17.7.10) – (17.7.9) satisfy the restrictions:

C̄j(1, 1) = C̄j(2, 2) = . . . = C̄j(p− 1, p− 1) = C̄j(p, p)

C̄j(2, 1) = C̄j(3, 2) = . . . = C̄j(p, p− 1) = C̄j+1(1, p)

C̄j(3, 1) = C̄j(4, 2) = . . . = C̄j+1(1, p− 1) = C̄j+1(2, p)

...

C̄j(p− 1, 1) = C̄j(p, 2) = . . . = C̄j+1(p− 2, p− 1) = C̄j(p− 2, p)

C̄j(p, 1) = C̄j+1(1, 2) = . . . = C̄j+1(p− 2, p− 1) = C̄j+1(p− 1, p)

(4.14)

4 Notice that by construction C̄0(k, j) = 0 for k < j .
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Under these restrictions, it follows that

gk,v = gj,v for all j, k, for all v

dk,v = dj,v for all j, k, for all v

dk,v = gk,v for all k, for all v

Thus, in the case in which the hidden periodicity is truly one, all of the impulse

response functions defined in (17.7.15) and (17.7.16) are equal, and are equal

to each other.

However, when the hidden periodicity is truly some p > 1, there are p

distinct impulse response functions {dk,v} of ypt−p+k to lagged w ’s, and p

distinct impulse responses {gk,v} of {yt} to wpt−pk
, for k = 1, . . . p . In general

the {dk,v} are different from one another and from the {gk,v} ’s for k = 1, . . . , p .

These differences provide a useful way of describing how the operating charac-

teristics of a periodic model with p ≥ 2 differ from a period one model.5

Later in this chapter, we compute the impulse response functions {dk,v}
and {gk,v} for investment for a period 4 version of Hall’s model described above.

These impulse response functions are depicted in figures 17.10.1.a and 17.10.1.b.

The impulse responses are with respect to the one shock in the model, which is

a white noise endowment process. Figure 17.10.2 depicts the impulse responses

{dk,v} for k = 1, . . . , 4. Notice that they are smooth, but that they vary across

quarters. Figure 17.10.3 shows the impulse response {gk,v} for k = 1, . . . , 4.

They vary across quarter k , and have shapes that are jagged, in contrast to the

smooth {dk,v} ’s. Notice how the amplitude of the oscillations in {dk,v} grows

as v increases from v = 0 to v about 30.

5 A MATLAB program simpulse performs these calculations.
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17.8. Covariances of the Stacked, Skip Sampled Process

The stacked, skip-sampled process {Yr} is constructed to have periodicity one.
We can compute for k ≥ 1,

Cr(−k) ≡ E(YrY
′
r+k | Ip) =









cy,pr(−pk) cy,pr(−pk − 1) · · · cy,pr(−pk − p+ 1)

cy,pr+1(−pk + 1) cy,pr+1(−pk) · · · cy,pr+1(−pk − p+ 2)

..

.
..
.

..

.
..
.

cy,pr+p−1(−pk + p− 1) cy,pr+p−1(−pk + p− 2) · · · cy,pr+p−1(−pk)









.

(17.8.1)

An implication of the period 1 nature of {Yr} is that Cr(−k) is independent
of r . This follows immediately from (17.8.1). In particular, we have for k ≥ 1,

C(k) ≡ C0(−k)

=









cy,0(−pk) cy,0(−pk − 1) . . . cy,0(−pk − p+ 1)

cy,1(−pk + 1) cy,1(−pk) . . . cy,1(−pk − p+ 2)

..

.
..
.

. . .
..
.

cy,p−1(−pk + p− 1) cy,p−1(−pk + p− 2) . . . cy,p−1(−pk)









.
(17.8.2)

The k = 0 term must be treated separately. It is given by

Cr(0) ≡ E(YrY
′
r | Ip)

=











cy,pr(0) cy,pr(−1) · · · cy,pr(−p+ 1)

cy,pr(−1)′ cy,pr+1(0) · · · cy,pr+1(−p+ 2)
...

...
. . .

...

cy,pr(−p+ 1)′ cy,pr+1(−p+ 2)′ · · · cy,pr+p−1(0)











,
(17.8.3)

which can also be shown to be independent of r .

The covariance generating function of the {Yr} process is given by

S(z) ≡ C(0) +
∞
∑

k=1

[C(−k)z−k + C(−k)′zk]. (17.8.4)

It is useful to calculate the covariance generating function S(z) of {Yr} by

substituting (17.8.2) – (17.8.3) into (17.8.4). We obtain

S(z) =

















sf11(z) sf12(z) sf13(z) · · · sf1p(z)

sf21(z) sf22(z) sf23(z) · · · sf2p(z)

sf31(z) sf32(z) sf33(z) · · · sf3p(z)
...

...
...

. . .
...

sfp1(z) sfp2(z) · · · · · · sfpp(z)

















(17.8.5)
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where
sfj,j+ℓ(z) = cj−1(−ℓ)

+
∞
∑

k=1

[cy,j−1(−pk − ℓ)z−k

+ cy,j+ℓ−1(−pk − ℓ)′zk],

(17.8.6)

and where the lower triangular terms of S(z) are obtained from the upper by

setting S(z) = S(z−1)′ for z = e−iω .

The hypothesis that {yt} is of period one places restrictions on S(z). Pe-

riod one of {yt} implies that cy,j(k) = cy,1(k) for all j . By using this equality

in (17.8.6) it can be shown that

sf11(z) = sf22(z) = · · · = sfpp(z)

sf12(z) = sf23(z) = · · · sfp−1,p(z) = z−1sfp,1(z)

sf13(z) = sf24(z) = · · · = sfp−2,p(z) = z−1sfp−1,1(z) = z−1sfp,2(z)

...

zsf1,p(z) = sf2,1(z) = sf3,2(z) · · · = sfp,p−1(z)

(17.8.7)

The first line of equalities in (17.8.7) asserts that the block of matrices along

the diagonal of S(z) are equal to each other, and to a folded spectrum of the

original unsampled {yt} process.
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17.9. The Tiao-Grupe Formula

Define

ry,t(−k) = E(yty
′
t+k | I).

It follows that ry,t(−k) = ry,1(−k) ≡ ry(−k) for all t . Furthermore, by the law

of iterated expectations

ry(−k) = ry,t(−k) = E
[

cy,t(−k) | I
]

. (17.9.1)

It follows from (17.9.1) that ry(−k) can be computed either by computing

covariances without skip sampling, or by averaging across covariances that have

been computed by skip sampling. That is,

ry(−k) = p−1

p
∑

j=1

cy,j(−k),

and by a law of large numbers

ry(−k) = lim
N→∞

1

N

N
∑

t=1

yty
′
t+k.

It is useful to derive Tiao and Grupe’s (1980) formula for the covariance

generating function of {yt} , not conditioned on season, as a function of the

covariance generating function conditioned on season. Tiao and Grupe’s formula

expresses the generating function for the covariances not conditioned on season

in terms of the (conditional on season) covariance generating function of the

stacked and skip sampled process Yt .
6 We define the generating function for

the covariances not conditioned on season to be:

sy(z) =

∞
∑

k=−∞
r(k)zk

or

sy(z) = p−1
∞
∑

k=−∞
zk

p
∑

j=1

cy,j(k).

(17.9.2)

6 Gladysev (1960) states a formula restricting the Cramer representations for Yt and yt
that has the same content as the Tiao-Grupe formula.
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To compute sy(z), define the operator

Q(z) = [I zI . . . zp−1I], (17.9.3)

where each of the p identity matrices in (17.9.3) is (n×n). Note that for k ≥ 1,

Q(z)C(k)Q(z−1)′

= [cy,0(−pk) + cy,0(−pk + 1)z−1 + · · · + cy,0(−pk − p+ 1)z−p+1

+ cy,1(−pk + 1)z + cy,1(−pk) + · · · + cy,1(−pk − p+ 2)z−p+2

...

+ cy,p−1(−pk + p− 1)zp−1 + cy,p−1(−pk + p− 2)zp−2 + . . .+ cy,p−1(−pk)]
(17.9.4a)

Notice also that for k = 0, we have

Q(z)C(0)Q(z−1)′ = [I z I . . . zp−1I]C(0)











I

zI−1

...

z−p+1I











= cy,0(0) + cy,1(0) + . . .+ cy,p−1(0)

+ z[cy,0(−1)′ + cy,1(−1)′ + . . .+ cy,p−2(−1)′]

+ z−1[cy,0(−1) + cy,1(−1) + . . .+ cy,p−2(−1)]+

...

+ zp−1cy,0(−p+ 1)′ + z−p+1cy,0(−p+ 1).

(17.9.4b)

Applying (13.67) to (17.9.2) gives

sy(z) = p−1
∞
∑

h=−∞
zphQ(z)C(h)Q(z−1)′

sy(z) = p−1Q(z)[

∞
∑

h=−∞
zphC(h)]Q(z−1)′

sy(z) = p−1Q(z)S(zp)Q(z−1)′,

(17.9.5)

where S(z) is the generating function for the {Yr} process, which is defined in

(17.7.9) and (17.8.4). Equation (17.9.5) is the Tiao–Grupe formula.
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Equation (17.9.5) shows how the generating function of the {yt} process

can be obtained by transforming the generating function of the stacked, skip

sampled process {Yr} . Equation (17.9.5) is helpful in displaying the types of

fluctuations that will occur in a periodic process {yt} . Suppose that we were to

take a realization {yt}Tt=1 of the {yt} process, compute the sample covariances

as

r̂(k) =
1

T

T
∑

t=k+1

ytyt−k (17.9.6)

and the sample spectrum as

ŝ
(

e−iωh
)

=

T
∑

k=−T+1

w(k)r̂(k)e−iωhj , ωh =
2πh

T
, h = 1, . . . , T (17.9.7)

where w(k) is one of the popular windows. Notice that in computing (17.9.6)

and (17.9.7) we are ignoring the hidden periodicity. In large samples, r̂(k) given

by (17.9.6) will converge to r(k) defined in (17.9.1), and ŝ
(

e−iωh
)

will converge

to sy
(

e−iωh
)

.

17.9.1. A state space realization of the Tiao-Grupe formulation

We now return to representation (17.7.10) – (17.7.9). We will use this

representation in conjunction with formula (17.9.3) to get a representation for

the generating function sy(z) in terms of the parameters of our economic model.

Then we shall describe how to use state space methods to factor this covariance

generating function, thereby obtaining a Wold representation for yt .

If the eigenvalues of Â are bounded in modulus by unity,7 then {Xt, Yt}
will be asymptotically covariance stationary, with covariance generating matri-

ces SX(z) and SY (z) given by

SX(z) =

∞
∑

k=−∞
RX(k)zk

or

SX(z) = (I − Âz)−1ĈĈ ′(I − Âz−1)−1′

(17.9.8)

7 This is the condition alluded to in section 1.
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and

SY (z) =

∞
∑

k=−∞
RY (k)zk

SY (z) = HSX(z)H ′
(17.9.9)

where RX(k) = EXtX
′
t−k, RY (k) = EYtY

′
t−k .

By substituting SX(z) or SY (z) for S(z) in formula (17.9.2), we can com-

pute the covariance generating function for the process {yt} by averaging across

covariograms for different periods. For the yt process under study here, we

have8

sy(z) = Q(z)SY (zp)Q(z−1)′

or

sy(z) = Q(z)H(I − Âzp)−1ĈĈ ′(I − Âz−p)−1′H ′Q(z−1)′.

(17.9.10)

We now show how to use (17.9.10) to deduce a state-space representation for

{yt} . The first step involves recognizing that (17.9.10) is realized by the system

Zt+p = ÂZt + ĈVt+p

yt = Q(L)HZt
(17.9.11)

where L is the lag operator and {Vt} is a vector white noise with identity

contemporaneous covariance matrix.

It is convenient to stack (17.9.11) into the first order system















Zt+p

Zt+p−1

Zt+p−2

...

Zt+1















=















0 0 . . . 0 Â

I 0 . . . 0 0

0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0





























Zt+p−1

Zt+p−2

Zt+p−3

...

Zt















+















Ĉ

0

0
...

0















Vt+p

yt+p−1 = H̃















Zt+p−1

Zt+p−2

Zt+p−3

...

Zt















(17.9.12)

8 A MATLAB program spectrs implements (17.9.10) for the equilibrium of one of our

periodic general equilibrium models.
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where

H̃ = p−.5[G1 0 0 . . . 0
... 0 G2 0 . . . 0

... . . .
... 0 0 0 . . . Gp].

To see why H̃ takes this form, recall that the operator Q(L) is defined as

p.5Q(L) = [I IL . . . ILp−1]

= [I 0 . . . 0]

+ [0 I . . . 0]L+ . . .

+ [0 0 . . . I]Lp−1.

This structure for Q(L) and the form of H dictates that H̃ take the form

that it does and that the state in (17.9.12) takes the form that it does in order

to map (17.9.11) into a first-order system. Notice that the structure of H̃

implies that yt is formed by averaging over linear combinations of the first n

rows of Zt+p−r , the second n rows of Zt+p−2, . . . , and the pth n rows of Zt .

Furthermore, notice that according to (17.9.12), the np×np process Zt consists

of p completely uncoupled systems, each of which depends on its own past in

exactly the same was as do the others. That is, (17.9.12) has the property that

Zt is independent of Zt−1, Zt−2, . . . , Zt−p+1 for all t ; and that Zt is correlated

with Zt−p in exactly the same way for all t . Thus, the “state equations” of

(17.9.12) in effect describe p “parallel realizations” of the process Zt+p defined

in (17.9.11). Running p parallel processes is a way of realizing in the time

domain the randomization over laws of motion that is involved in adopting a

description of {yt} in terms of a stationary probability distribution. As noted

above, yt is formed by averaging across these p uncoupled realizations.

We can use Kalman filtering methods to derive a Wold representation for

{yt} . Modify and represent system (17.9.12) as

Z̃t+1 = ÃZ̃t + C̃Ṽt+1

yt = H̃Zt + ǫ̃t
(17.9.13)

where Z̃ ′
t = [Z̃ ′

t+p−1, Z̃
′
t+p−2, . . . , Z̃

′
t] and

Ã =















0 0 . . . 0 Â

I 0 . . . 0 0

0 I . . . 0 0
...

...
. . .

...
...

0 0
... I 0















, C̃ =















C̃

0

0
...

0















,
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where {Ṽt} is a white noise, and where ǫt is a (potentially very small) mea-

surement error which is a white noise process that is orthogonal to {Ṽt} and

satisfies Eǫ̃tǫ̃
′
t = R .

To obtain the Wold representation for yt which achieves the factorization

of the spectral density matrix (17.9.10) for yt , we use the Kalman filter to

obtain an innovations representation associated with system (17.9.13). The

innovations representation is

Ẑt+1 = ÃẐt + K̃ãt

yt = H̃Ŷt + ãt,
(17.9.14)

where ãt = yt − E[yt | yt−1, yt−2, . . .], Ẑt = E[Zt | yt−1, yt−2, . . .],

Σ = E(Zt−Zt)(Zt− Ẑkt)′ and where Σ and K̃ are the state covariance matrix

and the Kalman gain computed via the Kalman filter for system (17.9.13). The

covariance matrix of the innovations is given by Eãtã
′
t = H̃ΣH̃ ′ +R .9

17.10. Some Calculations with a Periodic Hall Model

We use a periodic version of Hall’s model as an example. The model is

identical to the version of Hall’s model described in chapters 3 and 5, except

that the productivity parameter γ now varies periodically. The social planner

chooses contingency plans {ct, kt, it}∞t=0 to maximize the utility functional

− (
1

2
)E

∞
∑

t=0

βt[(ct − bt)
2 + ℓ2t ] | J0

0 < β < 1

subject to the technology

ct + it = γs(t)kt−1 + dt, γs(t) ≥ 0

kt = δkkt−1 + it, 0 < δk < 1

φ1it = gt, φ1 > 0, φ1 > 0

g2
t = ℓ2t ,

s(t+ p) = s(t), ∀t, s(t) = t for t = 1, . . . , p

9 These calculations are performed by the MATLAB program .
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and subject to the (exogenous) laws of motion

bt = 30

dt = .8dt−1 + w1t + 5 ∗ (1 − .8)

We set p = 4, and γ1 = .13, γ2 = .1, γ2 = .1, γ4 = .08. We set φ1 = .3, δk =

.95, β = 1/1.05. The only source of disturbance in the model is the endowment

shock, which is a first order autoregression. The variance of the innovation w1t

is unity.

The following MATLAB programs can be used to analyze the model.

solves.m: computes the equilibrium of a periodic model,

simuls.m: simulates a periodic equilibrium;

steadsts.m: computes the means of variables from a peri-

odic equilibrium, conditional on the season;

assets.m: computes the objects in the formulas for equi-

librium assets prices and the term structure

of interest rates for a periodic model;

assetss.m: simulates the asset prices in a periodic equilib-

rium;

seasla.m: computes the time invariant state-space rep-

resentation for the stacked, skip sampled ver-

sion of a periodic model;

simpulse.m: computes the two different concepts of period-

dependent impulse response functions;

spectrs.m: computes the spectral density of a periodic

model, using the Tiao-Grupe formula;

factors.m: factors a univariate spectral density computed

via the Tiao-Grupe formula in order to ob-

tain a univariate Wold representation for a

single variable of a periodic equilibrium model.

We computed the equilibrium of the periodic version of Hall’s model using

solves.m. Figures 17.10.1.a and 17.10.1.b report the spectral density of con-

sumption and investment, computed by using the Tiao-Grupe formula. Both

consumption and investment display seasonality, it being more pronounced in
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investment than in consumption. This is a reflection of the consumption-

smoothing property of the model. For the impulse response functions of invest-

ment with respect to the innovation in the endowment sequence, we used sim-

pulse.m to compute the {dk,v} and {gk,v} sequences corresponding to the mov-

ing average representations defined in (17.7.15) and (17.7.16). Figure 17.10.3

reports {dk,v} . The coefficients for each quarter are smooth functions of the

lag, but they vary across quarters. Figure 17.10.3 reports {dk,v} , which are

each oscillatory functions of the lag. Recall that our periodic 1 of Hall’s model

is a one-shock model, with the only stochastic source of disturbances coming

from the white noise endowment process. It follows that if we were to shut

down the periodic time variation in the productivity of capital, all of the im-

pulse response functions displayed in figure 17.10.3 and 17.10.4 would be equal

to one another.10 The discrepancies across these impulse response functions is

a convenient “window” for examining the hidden periodic structure present in

investment in this model.

Figure 17.10.4 reports the moving average coefficients associated with the

univariate Wold representation for investment, which we have normalized by

setting the innovation variance equal to unity (so that it is comparable in units

with the impulse response functions in figures 17.10.2 and 17.10.3. The coeffi-

cient at zero lag in this moving average is .7528, while the coefficients at zero lag

for the moving average kernels in figures 17.10.2 and 17.10.3 are (by quarters)

.7075, .7069, .7062, .7002.11 The squared values of each of these coefficients

are the one-step ahead forecast error variances in investment, by quarter, when

we condition on knowledge of the quarter. The squared value of the coefficient

.7528 from the (time-invariant) Wold representation formed by not conditioning

on quarter is larger, as we would expect.

10 For this statement to be true in general requires checking that the first of the “two

difficulties” discussed by Hansen and Sargent [1990] is not present.
11 The zero lag coefficients are equal for both the {dk,v} and the {gk,v} sequences.
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Fig. 17.10.1.a. Spectral density of con-

sumption for a periodic version of Hall’s

model, calculated by applying the Tiao-Grupe

formula.
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Fig. 17.10.1.b2. Spectral density of in-

vestment for a periodic version of Hall’s

model, calculated by applying the Tiao-Grupe

formula.
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Figure 17.10.2: The response of the investment component

of yp·t−p+k to an innovation in the endowment shock in a

periodic verions of Hall’s model.
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Figure 17.10.3: The response of investment to wp·t−p+k in

a periodic version of Hall’s model.
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Figure 17.10.4: The moving average coefficients for a Wold

moving average representation of investment, calculated by

factoring the spectral density of investment given by the Tiao-

Grupe formula.
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17.11. Periodic Innovations Representations for the

Periodic Model

An equilibrium can be represented as

xt+1 = Aos(t)xt + Cs(t)wt+1 (17.11.1)

yt = Gs(t)xt + εyt (17.11.2)

where yt is a vector of objects that are linear combinations of the state xt ,

plus a white noise measurement error εyt . The matrix Gs(t) is built up from

components of the matrices S·,s(t) and M·,s(t) described above. We assume

that the measurement error εyt is orthogonal to the wt+1 process, and that it

is serially uncorrelated with contemporaneous covariance matrices

E εyt ε
′
yt = R̄s(t). (17.11.3)

Associated with system (17.11.1) – (17.11.2) is a periodic innovations rep-

resentation
x̂t+1 = Aos(t)x̂t +Ks(t)at

yt = Gs(t)x̂t + at
(17.11.4)

where x̂ht = E[xt | yt−1, . . . , y1, x̂0], at = yt − E[yt | yt−1, . . . , y1, x̂0], and

Eata
′
t = Σs(t) . In (17.11.4), Ks(t) is the periodic Kalman gain. The ma-

trices {Σs(t),Ks(t)} are the p limits of the p convergent subsequences of the

Kalman filtering equations:

Σt+1 = Aos(t)ΣtA
o′
s(t) + Cs(t)C

′
s(t)

−Aos(t)ΣtG
′
s(t)(Gs(t)ΣtG

′
s(t) + R̄s(t))

−1Gos(t)ΣtA
′
s(t)

Kt = Aos(t)ΣtG
′
s(t)(Gs(t)ΣtG

′
s(t) + R̄s(t))

−1.

(17.11.5)

Because the matrices [Aos(t), Cs(t), Gs(t), R̄s(t)] are time-varying, system (17.11.5)

will not converge. But because the matrices [Aos(t), Cs(t),

Gs(t), R̄s(t)] periodic, there is a prospect that {Σt,Kt}∞t=1 will consist of p con-

vergent subsequences. This prospect is realized under regularity conditions that

typically obtain for our problems.
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The innovation covariance matrix associated with (17.11.4) is

Eata
′
t = Ωs(t)

= Gs(t)Σs(t)G
′
s(t) + R̄s(t).

(17.11.6)

Given a sample of observations for {yt}Tt=1 , the likelihood function conditioned

in x̂0 can be expressed as

L∗ = − T ln 2π − .5

T
∑

t=1

ln | Ωs(t) |

− .5

t
∑

t=1

a′tΩ
−1
s(t)at.

(17.11.7)

A. A Model of Disguised Periodicity

This appendix characterizes a notion of hidden periodicity in a stationary time

series, and describes a strategy for detecting its presence in a given vector time

series.12 The notion of hidden periodicity permits realizations of a stochastic

process to be aperiodic, but requires that some particular functions of the tail

of the stochastic process be periodic. As we shall see, these particular functions

are time series averages of skip-sampled versions of the underlying process. It

is averaging and skip sampling that causes the hidden periodicity to drop its 0.

Because the apparatus introduced in this appendix is abstract, we begin in

section A1 with a heuristic account that is designed to indicate the motivation

behind the formal apparatus introduced in section A2.

12 Breiman [1968] is a useful background for the material presented in this section.
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17.13. A1. Two Illustrations of Disguised Periodicity

Let {yt} be an n -dimensional stochastic process that is observed by an econo-

metrician. We can use the Kolmogorov Extension Theorem to construct such

a process on a sample space Ω = (Rn)∞ , which is the infinite product space

formed by taking copies of n -dimensional Euclidean space. A sample point in Ω

can be expressed as an infinite-dimensional vector (r0, r1, . . .) where rj is in Rn

for each j . Probabilities are then defined over the product sigma algebra gener-

ated by taking products of the Borel sets of Rn . Armed with this construction,

for any ω = (r0, r1, . . .), let

yt(ω) = rt.

Thus, yt(ω) is simply the tth component of the sample point ω = (r0, r1, . . .).

An alternative way to represent the process {yt} is in terms of a shift

operator S . First, define a random variable y : Ω → Rn as

y(ω) = r0.

Define the shift transformation S via:

S[(r0, r1, r2, . . .)] = (r1, r2, r3, . . .).

Then because yt(ω) = rt , an alternative representation of yt is

yt(ω) = y[St(ω)],

where St is interpreted as applying S t times in succession.

In thinking about hidden periodicity, the following example is of pedagogical

interest.

Example 1: Suppose that n is one and that all of the probability on Ω is

concentrated onto two points, say a and b . Let a be a sequence of alternating

ones and minus ones, beginning with a one. Let b be a similar sequence except

that it begins with a minus one. Note that S(a) = b, and S(b) = a .

There are many probability structures that we can impose on Ω in Example 1.

We can assign any probability between zero and one to a and the remaining

probability to b . This assignment amounts to initializing the process. Unless

we assign probability one half to each point, the resulting process will not be

stationary.
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In one sense, the initial assignment of the probability is quite irrelevant.

The {yt} process is deterministic in the sense that given knowledge of the y0 ,

the entire future of process can be forecast perfectly. Since the initial condition

tells the whole story, one might just as well condition on it.

However, from the vantage point of interpreting time averages of the pro-

cess, the initial assignment of probability one half to each point is convenient.

Independently of how we initialize the stochastic process, it obeys a Law of

Large Numbers. Thus, take any Borel measurable function φ mapping Ω into

R and form the sequence {zt} where

zt = φ(yt, yt+1, . . .). (17.13.1)

Then

lim
N→∞

(1/N)

N−1
∑

t=0

zt = (1/2)z(a) + (1/2)z(b) (17.13.2)

where z0 ≡ z . The equality holds when the left-side of equation (17.13.2)

is evaluated at either a or b . When probability one half is assigned to each

point, the right side of (17.13.2) can be expressed as Ez , so that we have the

usual characterization of the limit points of sample averages as mathematical

expectations. With this assignment of probabilities, the process {yt} is both

stationary and ergodic.

For this particular example, realizations of both the original process {yt}
and the constructed process {zt} are periodic sequences. While realizations

of {yt} have period two, realizations of the constructed process {zt} can have

period one for particular choices of zt . For instance, let

zt = yt + yt+1.

Then for either a or b, {zt} is a sequence of zeroes and hence has period

one. More generally, for this example the periodicity of {zt} can never exceed

two. This follows from the fact that S2(a) = a and S2(b) = b implying that

zt+2(ω) = zt[S
2(ω)] = zt(ω). Since the maximum periodicity of any constructed

process {zt} is two, we will say that the periodicity of S is two.

There is something very special about Example 1. Since realizations of the

original {yt} process are periodic, every constructed process {zt} turns out to be

periodic. In this paper, we are interested in more general circumstances in which

the periodicity is disguised. We do not wish to confine attention to processes {yt}
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whose realizations have an exact periodicity. The following example embodies

what we mean by a hidden periodicity.

Example 2: Let {wt} be an nw -dimensional Gaussian white noise with covari-

ance matrix I . Construct an nx -dimensional stochastic process {xt} recursively

via

xt+1 = Atxt +Btwt+1

where {(At, Bt)} is a periodic sequence with period two, where At is an (nx ×
nx) matrix, and {Bt} is an (nx × nw) matrix. Let {yt} be an n -dimensional

process generated as a time-varying function of {xt}

yt = ft(xt)

where {ft} is a sequence of Borel measurable functions mapping nx -dimensional

Euclidean space into n -dimensional Euclidean space. Let ft be a sequence of

period two. Realizations of {yt} will not be periodic, but will inherit a sort of

disguised periodicity from {(At, Bt, ft)} .

There are two aspects of the process {yt} that we have left unspecified,

namely x0 and the periodic sequence {(At, Bt, ft)} . As in Example 1, there is

flexibility in the probabilistic specification of {(At, Bt, ft)} . One possibility is,

in effect, to condition on {(At, Bt, ft)} , in which case the resulting process {yt}
will not, in general, be stationary. Alternatively, we can view {(At, Bt, ft)} as

emerging from a random draw from two possible sequences indexed by, say, a

and b where [At(b), Bt(b), ft(b)] = [At+1(a), Bt+1(a), ft+1(a)] for all t . As in

Example 1, if we assign probability one half to each of these outcomes, under a

restriction13 on a matrix that is a function of At(a) and At(b), we can find an

initial specification of x0 under which {yt} is a stationary stochastic process.

In this case, we can apply the Law of Large Numbers for stationary processes

both to show that time series averages converge and to obtain a characterization

of the limit points.

Suppose that it is possible to complete the specification in Example 2 so that

{yt} is stationary. Consider how the hidden periodicity can be characterized and

detected. Let ψ be a Borel measurable function mapping Ω → R and form a

13 The restriction is that the matrix Â in equation (4.7) below have eigenvalues that are

bounded in modulus by unity.
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scalar stochastic process {z∗t } via

z∗t ≡ ψ(yt, yt+1, . . .)

or

z∗t = z∗(St(ω))

(17.13.3)

We assume that

E | z∗(ω) |< +∞,

where z∗(ω) = z∗0 .

In contrast to Example 1, when the periodicity is hidden, there is no neces-

sity that {z∗t } form a periodic sequence. Hence we must have a weaker notion

of periodicity, if the S implied by Example 2 is to be classified as periodic with

period 2. A workable notion of hidden periodicity can be formulated in terms

of a reduced class of constructed processes. Given an integer j ≥ 1 and given

ψ , define φ : Ω → R , via φ(yt, yt+1 . . .) = zt where

zt ≡ lim
N→∞

(1/N)

N−1
∑

τ=0

z∗t+τ ·j , (17.13.4)

and where the right side of (17.13.4) is defined as an almost sure limit. Note that

the process {zt} is constructed by taking time series averages of skip samples of

the process {z∗t } with skip interval j . Notice that zt depends only on the tail

of the stochastic process {yt} . It follows by construction that zt is a periodic

process with a period not exceeding j . The time series averages of skip samples

will reveal the hidden periodicity. The idea is to compute (17.13.4) for j =

2, 3, 4, . . . , and then to determine the period p̂ of this sequence for each j . Thus,

in example 2, it will turn out that for j = 1, 3, 5, . . . the number p̂ is one. For

j = 2, 4, 6, 8, . . . , the number p̂ will turn out to be 2. We shall define the hidden

periodicity p as the maximum of these numbers p̂ over j = 1, 2, 3, . . . , where

the maximum is also understood to be taken over a class of “test functions” ψ .

Thus, the notion of hidden periodicity in a stochastic process that we shall

use is the periodicity to be found in time series averages of skip sampled versions

of the data. In the next subsection, we develop these ideas formally, and define

hidden periodicity precisely in terms of the properties of the shift operator S

and its iterates.
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17.14. A2. Mathematical Formulation of Disguised

Periodicity

We now use the familiar formalism for stationary stochastic processes.14 As in

the previous subsection, let (Ω, F, Pr) denote the underlying probability space,

and let S be a measurable, measure-preserving transformation mapping Ω into

itself.

Definition 1: A transformation S is measure preserving if Pr(f) = Pr(S−1f)

for all f ∈ F .

Let I be the collection of invariant sets of the transformation S .

Definition 2: f ∈ F is an invariant set of S if S−1(f) = f .

The collection I turns out to be a sigma algebra of events (see Breiman), so

expectations conditioned on I are well defined. The invariant events of the

transformation S given in example 1 are the null set and any set containing

{a, b} .

Definition 3: S is ergodic if all invariant events have probability zero or one.

Notice that S in example 1 is ergodic.

Let L be the space of random variables with finite absolute first moments,

and let M be the subspace of L consisting of the random variables that are

I measurable. The expectation operator E(· | I) maps L into M . Through-

out this section, we use the common convention that equality between random

variables is interpreted formally as equality with probability one. Hence the

equivalence class of random variables in L that are equal almost surely are

treated as one element. Similarly, for a random variable to be in M , it suffices

for it to be in L and to be equal almost surely to a random variable that is

measurable with respect to

I . When S is ergodic, M contains only random variables that are constant

almost surely.

A transformation S that is measure-preserving can be used to construct

processes that are strictly stationary. Let z be a random variable in L , and

construct

zt(ω) ≡ z[St(ω)]. (17.14.1)

14 See Breiman [1968, chapter 6].
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Then {zt} is strictly stationary and hence obeys a Law of Large Numbers. The

limit point of the time series averages is given by E(z|I). A z ∈ L has two

interpretations. First, it indexes a stochastic process via (17.14.1); and second

it denotes the time zero component of that stochastic process.

Our purpose is to define a notion of periodicity for the transformation S .

Suppose there exists a random variable z such that the realizations of the re-

sulting process {zt} are periodic. That is, for some j the resulting process

satisfies:

zt+j = zt for all t ≥ 0. (17.14.2)

The fact that (17.14.2) holds for a particular stochastic process is informa-

tive about the periodicity of S but falls short of determining the periodicity of

S . Notice that one can always find a random variable z such that (17.14.2) is

satisfied for j = 1. In particular, let z be constant over states of the world.

Since S is measure-preserving, zt = z for all t . Heuristically, we shall define the

periodicity of S by forming a large set of periodic stochastic processes defined

as in (17.14.1) and satisfying (17.14.2) for some j , and then calling the peri-

odicity S the maximum j over these processes. Notice that all transformations

S have periodicity of at least one.

To define formally the periodicity of S , we investigate the collection of

invariant events of integer powers of the transformation S . Evidently, if S is

measure-preserving, then Sj is measure-preserving for any positive integer j .

We can think of Sj as corresponding to skip-sampling every j time periods.

Let Ij denote the collection of invariant events of Sj , and let Mj denote the

corresponding subspace of L of random variables that are Ij measurable. Any

invariant event of S is also an invariant event of Sj . Consequently M ⊂ Mj .

The converse is not true, however. Consider example 1. Note that S2(a) = a

and S2(b) = b . Consequently, {a} and {b} are invariant events of S2 but not of

S . In this case I2 = F . When M consists only of random variables that have

the same values on a and b,M2 = L . Processes that are generated (indexed)

by elements of M are constant over time and hence have period one. On the

other hand, processes generated by elements of M2 can oscillate with period

two.

It of interest to obtain a characterization of Mj that applies more generally.

Lemma 1: For any z ∈ Mj , zt+j = zt for all t ≥ 0. Conversely, for any z ∈ L
such that zt = zt+j for all t ≥ 0, zt ∈ Mj for all t ≥ 0.



A2. Mathematical Formulation of Disguised Periodicity 423

Proof: Suppose that z ∈ Mj . Then S−j({z ∈ b}) = {z ∈ b} for any Borel set

b of R . Note that S−j({z ∈ b}) = {zj ∈ b} . Consequently for any Borel set

b , {z ∈ b} = {zj ∈ b} . Equivalently, zj = z . Repeating this same argument, it

follows that z = zτ ·j for any positive integer τ .

Recall that S is measure-preserving, as is St . Consequently, for any Borel

set b ,

Pr({zt ∈ b} ∩ {zt+τ ·j ∈ b}) = Pr({z ∈ b} ∩ {zτ ·j ∈ b}),

P r({zt ∈ b}) = Pr({z ∈ b}), and Pr({zt+τ ·j ∈ b}) = Pr({zτ ·j ∈ b}). Since

z = zτ ·j , it follows that Pr{zt = zt+τ ·j} = 1 for any positive integer τ .

Next consider the converse. Suppose that z ∈ L such that zt = zt+j for all

t ≥ 0. It remains to show that zt ∈ Mj . The sequence of time series averages

{(1/N)

N−1
∑

τ=0

zt+τ ·j}

converges almost surely to zt as well as to E(zt | Ij). Therefore, Pr{zt =

E(zt | I)} = 1.

In light of Lemma 1, processes generated by elements of Mj are periodic

with a period that is no greater than j . We wish to use this insight to construct

a formal definition of periodicity. Let Mcℓ be the closed linear space generated

by {Mj}∞j=1 where closure is defined using the standard norm on L, E(| · |).

Definition 4: The transformation S is said to have periodicity p if p is the

smallest integer such that Mp = Mcℓ . Under this definition, random variables

in Mcℓ generate periodic processes with maximum period p . Applying this

definition to the transformation S given in example 1, we verify that S has

period 2.

Next we describe an alternative way to deduce the periodicity of S . Mim-

icking the previous logic, we can show that for any positive integer j ,

Mj ⊂ Mτ ·j for τ = 1, 2, . . . . (17.14.3)

It turns out that if ⊂ in (17.14.3) can be replaced by =, the period of S is

no greater than j , and in fact j must be an integer multiple of the actual

periodicity p . In other words, once skip-sampling reaches a point where further

sampling fails to increase the collection of invariant events, this point is an

integer multiple of the periodicity of S .
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Lemma 2: Let j be any positive integer such that Mj = Mj·τ for τ = 1, 2, . . . .

Then Mcℓ = Mj and S has periodicity p where j = ℓ · p for some positive

integer ℓ .

Proof: First we show that Mcℓ = Mj . Suppose to the contrary that there

is some random variable in Mcℓ that is not in Mj . Since Mj is closed and

random variables in Mcℓ are limit points of sequences of random variables in
⋃Mτ , there exists a positive integer τ and a random variable z such that z

is in Mτ but not in Mj . However, Mτ ·j = Mj by assumption, which is a

contradiction. Therefore Mcℓ = Mj and p ≤ j .

It remains to show that j = p·ℓ for some integer ℓ . Note that Mp = Mj =

Mcℓ . In light of Lemma 1, random variables in Mj generate processes with

period p and period j . Let ℓ be the smallest integer such that ℓ · p ≤ j and

suppose that ℓ·p < j . Then p > k > 0 where k ≡ j−ℓ·p . For any z ∈ Mp , with

probability one z = zp = zℓ·p = zℓ·p+k . Since S is measure-preserving, {zt} is

periodic with period k . It follows from Lemma 1 that, z ∈ Mk . Consequently,

Mk = Mp which is a contradiction. This in turn implies that the period of S

is at least j − ℓ · p , which is a contradiction. Therefore j = ℓ · p .

An implication of Lemma 2 is that processes generated by random variables

in Mcℓ are periodic with a period equal to j , where j = ℓ · p for some integer

ℓ . Note that if S has periodicity p , then Sp has periodicity one.

Definition 4 of periodicity can be applied to any S transformation that is

measure-preserving. Our interest is in the case in which S is the shift transfor-

mation described in section 1a. This transformation is measure-preserving by

construction as long as the probability measure induced on Ω comes from a pro-

cess {yt} that is strictly stationary. When the shift transformation is periodic

with period p , we say that the process {yt} has hidden periodicity p .

Consider again constructions (17.13.3) and (17.13.4). The processes {zt}
constructed via (17.13.4) are periodic by construction and hence it follows from

Lemma 1 (or from the Law of Large Numbers for Stationary Processes) that

the corresponding random variable z is in Mj . The periodicity of {zt} can, in

fact, be less than j . By choosing a sufficiently rich collection of test functions,

we can span Mj . Let p̂(j) be the maximum periodicity over such a class

of functions. The hidden periodicity p of {yt} is then the supremum of the

sequence {p̂(j) : j = 1, 2, . . .} . Lemma 2 describes a particular feature of

subsequences of {p̂(j) : j = 1, 2, . . .} . For instance, for any j = p · ℓ for some ℓ ,

the subsequence {p̂(τ · j) : τ = 1, 2, . . .} is constant. Turning this observation
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around, if one finds a constant subsequence of the form {p(τ · j) : τ = 1, 2, . . .} ,

then the hidden periodicity of {yt} must satisfy j = p · ℓ .
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Chapter 18

Introduction to Objects

This help manual is intended to help students use the MATLAB programs

referenced in this book. To that end, it is divided into two main chapters, orga-

nized by increasing level of difficulty. This first chapter explains a little about

object oriented programming (OOP), and why it’s so useful in this context. The

second chapter applies these ideas to the construction of an economy object, and

offers a more in-depth coverage of all the features of an economy and all the nifty

things one can do with it. This second chapter also provides the user with the

tools, via examples, to invent new economies to experiment with.

Throughout, actual code and MATLAB file names will be in typewriter

font, but references to an object will not be. For example, economy.m is in

typewriter font, but when an economy is referred to, it is not. Also note that

any actual MATLAB file has a short help section at the beginning, which can

be accessed by typing help file name at the MATLAB prompt.

18.1. Matlab Objects

For those users who have not encountered OOP before, this subsection goes

over some definitions and some examples of what one can and cannot do with

objects. Of course, all examples are in the context of MATLAB.

18.1.1. Definitions

We start with some definitions of basic concepts in OOP.

Class

The relevant analogy here is that of a type. A class is a new data type that

you define. It includes not only the actual structure of the type, but also

the functions that operate on it. So, for example, suppose we define a new

class called a slde (short for stochastic linear difference equation) which is

a collection of two matrices, and we need a function on it that displays it

– 429 –
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in a nice way. Then both the constructor slde.m and the display function

disp.m are in the class.

Objects

An object is a run-time value which belongs to some class. If a class is a

type, an object is a variable. A variable of a given class is called an instance

of that class. For example, suppose we define a class that is a matrix. Then

the identity matrix would be an object, or an instance of the matrix class.

Hierarchy

Classes in OOP are arranged in a tree-like hierarchy. A class’ superclass

is the class above it in the tree. The classes below it are subclasses. By

convention, the root of the tree is called the “Object” class. The semantics

of the hierarchy are that any class includes all the properties of its super-

classes. In this way the hierarchy is general towards the root and specific

towards its leaves. The hierarchy helps add logic to a collection of classes.

It also enables similar classes to share properties through inheritance. Su-

perclasses are often referred to as parent classes, and subclasses are often

referred to as children.

Inheritance

A subclass inherits all of the data and functionality of its parent classes.

In particular, a class inherits all of the methods. When an object receives

a message, it checks for a corresponding method. If one is found, it is exe-

cuted. Otherwise the search for a matching method travels up the tree to

its parent and so on recursively. This means that a class automatically re-

sponds to all the messages of its superclasses. Most OOP languages include

controls to limit how the data and methods are inherited. A subclass can

also extend beyond the inherited functionality by adding data and defining

new methods.

Overriding and Overloading

A class inherits all the methods of its superclasses, but a class can choose

to respond to a message in a different way by re-defining a method. When

an object receives a message, it checks its own methods before consulting

it superclass. If the object’s class and its superclass both contain a method

for a message, the object’s method is used. In other words, the first method

found in the hierarchy takes precedence. When a subclass responds to a
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message in a different way than its superclass does, the subclass is said to

have overriden its superclass’s method—the class overrides and intercepts

the message before it gets to the superclass. When a method has more than

one definition depending on the context (i.e., it’s defined for both a class

and its parent), it is said to be overloaded. In MATLAB, most functions,

including addition and subtraction, for example, can be overloaded to be

class specific. For example, the function disp.m is overloaded for each class,

so that it displays each class properly.

Fields

A field is a component of a class which is itself a class, or predefined type.

For example, if we define a class called foo that consists of an integer and a

matrix, then foo has two fields. If we defined a child class called foo child

that additionally has a vector, then foo child also has two fields. The first

is the foo field that is inherited, and the second is the vector field. There

are not three fields, as the first two are subsumed into the foo field that

foo child inherits.

18.1.2. Matlab Specifics

There are two main ways in which MATLAB departs from the structure

laid out above: accessing fields, and overloading certain functions. Additionally,

there is a specified way in which MATLAB checks for methods, which we discuss

here, as it may sometimes cause confusion.

Accessing Fields

Generally, the most direct way to access a field of an object is to call

it via foo.fieldname. When defining new objects, this method works

immediately within the functions of a class. However, to be able to do so at

the command line, two extra functions are needed in each class directory:

subsref.m and subsasgn.m. The first allows you to reference the value in

the field, so if you type foo object.fieldname on the command line, it

returns the value contained in the fieldname field of object foo object.

The latter function, subsasgn.m, allows you to reassign a field of an object

to be a different value. These two functions should be overloaded for every

class. They work by taking an object both as an argument and as the
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output. This will turn out to be especially handy for reassigning values in

an object in the economy class, as we will see in the next chapter.

Overloading Functions

One must be wary about overloading certain functions in MATLAB. For

example, we defined our own method sigma.m to extract the sigma field

from an economy object. However, sometimes it seems to work, and some-

times it seems to not work. We suspect that this is because there is already

a sigma function defined by MATLAB, which it does not like to override.

In general, it may be wise to try and name a function a different name,

such as sig.m, rather than overloading. One can always check for taken

names by typing help function name; if MATLAB says it cannot find the

function, it hasn’t been taken.

Calling Functions

MATLAB has a specified protocol for where to seach when a new name is

called. In the following order it looks for a: variable, subfunction, private

function, or function on the search path. A subfunction is a function that

resides in the same file as the calling function; we almost never use these.

A private function is one that is in a private directory, and hence is only

accessible to files in the directory immediately above it. An example of this

is the solve.m function in the @economy/private directory. The search

path is the predefined path along which MATLAB searches, to which we

have added paths for examples/econ and clex. For more information on

paths in MATLAB, type help path.

18.1.3. How to Define a Matlab Class

Suppose one wants to define a MATLAB class called foo. Then in a folder

called @foo there must a constructor function called foo.m. If one defines a

child class called foo child, then there must be another folder @foo child with

a constructor function foo child.m. Note that when constructing a foo object,

one must be in a directory such that @foo is a subdirectory. The folders @foo

and @foo child may both be in the same directory.

The constructor function takes inputs and assigns them to fields. Once all

fields are assigned, there is a declaration of the class, and the new object is
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returned. A short example for @foo/foo.m follows, where foo has two fields, an

integer and a matrix.

Note that it is a good idea to include some comments about what a function

does in the function definition file. In Matlab, the first comments section is

displayed when help function name is typed. The character for commenting

out a line is the percent symbol: %. The help section should include definitions of

all variables used, the first line of the function definition, and a short description

of what the function does.

function f = foo(integer1, matrix2);

% function f = foo(integer1, matrix2);

% This function is the constructor called when a new

foo object % is defined. It takes two arguments, an

integer and a matrix % and assigns them to the two fields

of a foo object.

foo.integerfield = integer1;

foo.matrixfield = matrix2;

f = class(f, ‘foo’);

To create an object called foo1 using the integer 5 and the matrix eye(4),

one simply types at the command line: foo1 = foo(5, eye(4)).

Now suppose one wants to define a class called foo child that is a child of foo.

In the same directory as @foo create a folder called @foo child that contains the

constructor function foo child.m. Suppose that in addition to the two fields in

foo, one wants foo child to have a vector field. The file @foo child/foo child.m

is given for reference..

function fc = foo child(foo1, vector2);

% function fc = foo child(foo1, vector2);

% This function is the constructor called when a new

foo child % object is defined. It takes two arguments,

a foo object % and a vector, and assigns them to the

two fields of a foo child % object.

foo child.vectorfield = vector2;

fc = class(fc, ‘foo child’, foo1);
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Notice that, since foo1 is an object of the foo class, foo child automatically

inherits from foo, and the inherited fields are filled with the values from foo1.

For a more thorough introduction to defining MATLAB objects, see Chap-

ter 14 of the MATLAB manual “Using MATLAB”.

18.2. Summary

In this chapter we have defined some of the basic concepts in object oriented

programming: classes, objects, hierarchy, inheritance, overriding and overload-

ing, and fields. We then went on to point out some pitfalls of MATLAB objects:

field access and overloading. Finally, very briefly, we went over how to define a

MATLAB class.

One can now see why object oriented programming would be a valuable

tool in defining and using economies. An economy is defined to be a collection

of matrices. These divide naturally into three categories, each of which define

the information, technology and preferences structures. Thus one can create

three classes representing these structures, and have an economy class inherit

from all three. Also, most interesting operations are executed on an economy,

and with an economy class, one can simply define functions that operate on an

economy object. The exact definitions and functionality of these four classes are

discussed in the next chapter.



Chapter 19

Economies as Matlab Objects

19.1. Introduction

We describe in the first few sections the structure of the economy class starting

with the structure of the parent classes: information, technology and preferences.

Notice that the field names correspond as much as possible with the names of

matrices and vectors in the main book. We also describe the functions available

to manipulate the various objects. To get more information on any of these

functions, type help function name in the MATLAB command window. Also,

recall that the information, technology and preference divisions are introduced

in Chapter 3 of Hansen and Sargent.

The last section deals with three different ways of working with objects of

this class: using the built-in economies, mixing and matching the built-in parent

objects (information, technology and preferences) and building a customized

economy.

19.2. Parent Classes: Information

19.2.1. Structure

The first parent of the economy class is the information class. An information

object contains matrices describing the laws of motion of taste and technology

shocks.
zt+1 = A22zt + C2wt+1

bt = Ubzt

dt = Udzt.

An information object has four fields:

a22: The matrix A22

– 435 –
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c2: The matrix C2

ub: The selector matrix Ub , which transforms the process zt into taste

shocks.

ud: The selector matrix Ud , which transforms the process zt into technology

shocks.

19.2.2. Functions

construction: information, a constructor function that takes as argument

the matrices a22, c2, ub, ud

19.3. Parent Classes: Technology

19.3.1. Structure

The technology class contains matrices that describe the technology of the econ-

omy :
Φcct + Φggt + Φiit = Γkt−1 + dt

kt = ∆kkt−1 + Θkit.

Recall that ct is consumption, gt a vector of intermediate goods, it investment,

kt capital, and dt the production shock.

A technology object has six fields :

phic: The matrix Φc

phig: The matrix Φg

phii: The matrix Φi

gamma: The matrix Γ

deltak: The matrix ∆k

thetak: The matrix Θk
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19.3.2. Functions

construction: technology, a constructor function which takes as arguments

the matrices phic, phig, phig, gamma, deltak, thetak

19.4. Parent Classes: Preferences

19.4.1. Structure

The preferences object contains scalars β, σ and matrices ∆h,Θh,Λ,Π that

describe the preferences of the representative agent. The household technology

is:
ht = ∆hht−1 + Θhct

st = Λht−1 + Πhct

and preferences are ordered by

E0

∞
∑

t=0

βt
[

(st − bt)
2 + ℓ2t

]

.

Recall that ht is a household stock of durables, ct is a consumption, and st
is services from the stock of durables. The vector bt is used in the household

objective function.

A preferences object has six fields :

deltah: The matrix ∆h

thetah: The matrix Θh

lambda: The matrix Λ

pihh: The matrix Πh

beta: The discount factor β

sigma: The risk sensitivity σ
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19.4.2. Functions

construction: preferences, a constructor function that takes as argument

deltah, thetah, lambda, phih, beta, sigma

19.5. Child Class: Economy

19.5.1. Structure

The elements of an economy are contained in the parent fields: informa-

tion, technology, and preferences. An economy as a child object inherits

these three fields from its three parents (technology, preferences, and informa-

tion). In addition, an economy object has several other fields that are not

inherited, namely a set of matrices that characterize a competitive equilibrium.

These are calculated automatically when an economy object is defined and be-

come fields in the economy object. Furthermore, the function subsasgn.m for

the economy class has been defined so that whenever one changes the value

of a field of an object, the equilibrium is automatically recalculated. We shall

illustrate this useful feature below.

Chapters 4 and 6 showed that an equilibrium has the representation

xt+1 =A0xt + Cwt+1

yt =Gxt.

where x′t =





ht−1

kt−1

zt−1





′

, Ao =

[

A11 A12

0 A22

]

, C =

[

0

C2

]

.

The observables and the shadow prices are in the vector yt . They are all

linear combinations of the state variables in xt . The coefficients of these linear

combinations are in the matrix G , various rows of which were denoted Mj in

Chapter 4 for a price of a quantity j .

The fields containing the solutions of the resource allocation problem are

the following :
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ao : The matrix A0

endo: The eigenvalues of the block A11 of A0

exo: The eigenvalues of the block A22 of A0

nnc: The coordinate of the row of x containing a constant, if any

c: The matrix C

sj, mj: Quantities and shadow price are stored in sixteen different fields: sb,

sc, sd, sg, sh, si, sk, skl, ss, mc, md, mg, mh, mi, mk, ms. These

correspond with the matrices of analogous names.

For example, sc is the Sc of Chapter 4, which multiplies xt to yield the

optimal decision for ct . And mc multiplies xt to yield the Lagrange multiplier

Mc
t (the shadow price of consumption).

s space: An s space (state space) object containing the state space represen-

tation of the economy (@Eq.sspace@). To have more information about what

a state space object is, type help s space at the MATLAB prompt. This field

is useful for computations involving the MATLAB control toolbox.

19.5.2. Fields containing the history of the economy

An economy object contains also the history of the economy, that is an initial

condition x0 . and a sequence of shocks {wt}Tt=0 . (The sequence of shocks can be

initialized at a null matrix, and has been in our sample economies. We include

it as a potential field because it can be useful for generating simulations.) This

information is stored in the following fields:

hinitial: The initial condition for the household capital goods

kinitial: The initial condition for the capital stock

zinitial: The initial condition for the information process

shocks : The sequence of shocks in the information process
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19.5.3. Functions

19.5.4. Constructing the object and changing parameters

This part will be detailed in section 3 where we will explain what sequence of

commands is needed to construct an economy object. For the time being, we

simply list the functions :

construction: economy, a constructor function that takes as arguments an

information object, a technology object and a preferences object.

display: A function disp which display the structure of the economy

19.5.5. Analyzing the economy

steady state: A function steadst to compute the steady state of the model.

This uses the resource allocation solution fields.

asset pricing:

A function asset price to compute and simulate the price of an asset with

payoffs that are linear combinations of the state variable of the economy

A function riskprem to compute the risk premium on an asset

A function sure4j to compute the prices of a j-period sure claim on con-

sumption

simulation: A function simulate to compute and graph time path for the

observables and shadow prices.

reopening markets: A function reopening to compute and graph the time

path of prices in markets that reopen every period

impulse response: A function impulse to compute and graph the impulse

response of the observables and shadow price to the shocks hitting the economy

arma representation: A function arma rep to compute the arma represen-

tation of the
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spectral density: A function spect to compute and graph the spectral den-

sities of the observables and shadow prices.

19.6. Working with economies

19.6.1. The built-in economies

You will find in the directory examples/econ a series of script files which build

standard economies – most of them described in the book. A typical script file

is named economy name.m. MATLAB will build the economy when you type

economy name.m at the command line. The program will create the following

variable :

eeconomy name: an economy object

19.6.2. Mixing and matching built-in parent objects

By using the built-in economies, your freedom is very restricted: you cannot

set any structural parameters, the only thing you can modify is the history of

the economy.

To give more freedom to your experiments, we have constructed some stan-

dard structures corresponding to the examples given in chapter 3. You can mix

and match them and set some of their parameters.

Technology You will find in the directory examples/tech functions which

create the technologies given as examples in chapter 3. A typical function is

named techj.m. By typing help techj you will get a description of the param-

eters you are free to set. Note that all these parameters have default values.

You build a technology by typing name of tech = techj(parameters)

Preferences You will find in the directory examples/pref functions which

create the preferences given as examples in chapter 3. A typical function is

named prefj.m. By typing help prefj you will get a description of the param-

eters you are free to set. Note that all these parameters have default values.

You build a technology by typing name of pref = prefj(parameters)
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Information You will find in the directory examples/info functions which cre-

ate information processes, most of them following the examples given in chapter

2. A typical function is named infoj.m. You will have to specify parameters

of an underlying stochastic linear difference equation and extractor matrices ub

and ud. This is a delicate step: you have to make sure that those matrices are

comformable in columns with the process zt and in rows with the consumption

services vector (for ub) or with the technology shocks vector (for ud). Having a

look at the script files in examples/econ can be useful, although the information

constructor is designed to warn you when your matrices are not conformable.

Economy After you have built the three parents objects info, tech and pref

you are ready to create their child, the economy object. To do so you simply

type econ name = economy(i,t,p) and a new economy will be born.

You will probably immediately want to reset the initial conditions for the

h−1, k−1, z0 , which the economy constructor sets at vectors of 1’s as their de-

fault values. The initial conditions can be assessed from the economy object by

typing econ name.hinitial, econ name.kinitial, and econ name.zinitial,

respectively. To reset z0 , for example, type econ name.zinitial = [ 5 2 0

]’. You can also directly reset other objects of any of the three parent ob-

jects (preferences, technology, or information), which will then be automatically

inherited by the child economy object. We’ll describe how to do this soon.

19.6.3. Building your own economy

In the directory examples/econ there is a script file blank.m which may be

useful in building your first economies. Just fill in the blanks (the null matrices)

with conformable matrices and run the script file; you’ll be ready to experiment

with your new economy.

% Creates an economy with null matrices everywhere.

% Required dimensions are given in comments.

%%% Technology %%%

deltak=[] ; % n k by n k

thetak=[]; % n k by n i

phic=[]; % m by n c

phig=[] ; % m by n g

phii=[]; % m by n i
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gamma=[] ; % m by n k

%%% Preferences %%%

deltah=[]; % n h by n h

lambda=[]; % n s by n h

thetah=[]; % n h by n c

pih=[] ; % n s by n c

beta=; % scalar

sigma = 0; % scalar

%%% Information %%%

a22=[]; % n z by n z

c2=[]; % n z by n w

ud=[]; % n d by n z

ub=[]; % n b by n z

%%% Construction %%%

iblank = information (a22, c2, ub, ud);

tblank = technology (phic, phig, phii, gamma, deltak,

thetak);

pblank = preferences (deltah, thetah, lambda, pih,

beta, sigma);

eblank1 = economy (iblank, tblank, pblank);

eblank1.hinitial = [];

eblank1.kinitial = [];

eblank1.zinitial = [];

clear iblank1 tblank1 pblank1;

clear phi gam sigma beta;

clear a22 c2 u* phi*;

clear gamma del* the* lambda pih;
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19.7. Tutorial

Our object oriented programs are contained in a directory called hansar1 that

contains various subdirectories. Say that you keep the directory hansar1 in

the location c:\projects\hansar1. After you start MATLAB type addpath

c:\projects\hansar1 then type startup. To read one of our existing economies,

type for example clex11. The object eclex11 is then created. Type eclex11

to display it. Then to conserve notation rename the economy object sim-

ply e by typing e=eclex11. To access one of the fields of the economy e, a

child object, type e.j where j is one of the economy fields described above,

namely, ao, c, endo, exo, sv, mv, hinitial, kinitial, zinitial, where v denotes

one of the variables c, i, h, k. To assess one of the parent objects, type ei-

ther e.information or e.technology or e.preferences. To assess one of the

fields of one of the parent objects, type either e.information.j where j=a22,

c or e.preferences.j where j= lambda, deltah, pi, thetah,beta, sigma

or e.technology.j where j = deltak, thetak, gamma, phig, phii, phic.

To reset an element of a parent object, type for example e.information.a22(2,2)

= .4, a command that sets A22(2, 2) = .4, and that then recomputes all of the

equilibrium objects in the child economy e.
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MATLAB Programs

This chapter consists of a manual of MATLAB programs that implement the

calculations described in earlier chapters. Many of the programs use programs in

MATLAB’s Control Toolkit. You should load our programs into a subdirectory

of MATLAB, and put this subdirectory on the matlabpath statement in your

matlab.bat file.

There is a demonstration facility for some of our programs, which supplies

a small course on how to use many of our programs. To use this program, just

get into MATLAB, type hsdemo, and choose one of the options that the menu

offers you.

20.1. Matlab programs

Our ordinary MATLAB programs are available via ftp at

< ftp://zia.stanford.edu/pub/˜sargent/webdocs/matlab/hansar/hansarprograms.zip> .

Our object oriented programs are available at

< ftp://zia.stanford.edu/pub/˜sargent/webdocs/matlab/hansarobjects.zip>

– 445 –
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aarma

Purpose:

Creates arma representation for a recursive linear equilibrium model.

Synopsis:

[num,den,p,z]=aarma(ao,c,sy,i)

Description:

The equilibrium is computed by first running solvea. The equilibrium is

xt+1 = ao xt + c wt+1

A vector of observables is given by

yt = sy xt,

where sy is formed to pick off the described variables. For example, if we want

yt = [c′t, i
′
t] , we set sy=[sc; si]. aarma creates num and den, which pertain to the

representation

den (F )yt = num (F )wit

where F is the forward shift operator defined by Fyt = yt+1 . This is an arma

representation for the response of yt to the i-th component of wt . num(F) and

den(F) are each stored with the coefficients being arranged in order of descending

powers of F . The poles (zeros of den(F)) are returned in the vector p. The zeros

of num(F) for each variable are returned in a column vector z, where each column

corresponds to a variable.

References:

[1] Hansen, Lars Peter and T.J. Sargent, Recursive Linear Models of Dynamic

Economies, manuscript, Dec. 1988.
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aggreg

Purpose:

Computes state space representation of sampled (time aggregated) data.

Synopsis:

[ Ar , Cr , aa, bb, cc, dd, V1] = aggreg (A,C,G,D,R).

Description:

The underlying model is

xt+1 = Axt + Cwt+1

yt = Gxt

where wt+1 is a martingale difference sequence. Error ridden observations on y

are available only every r periods. The state space model for the data is then

xs+1 = Arxs + Crwrs+1

ys = Gxs + vs

vt+1 = Dvs + us+1

where s = t·r, Eutu′t = R,Ar = Ar, Cr = I, Ewrtw
′
rt = VrVr = CC ′+ACC ′A′+

· · ·Ar−1CC ′A′ r−1 . The program uses innov to create an innovations represen-

tation for the sampled process {yt, t = 0, r, 2r, 3r, . . .} = {ys, s = 0, 1, 2, . . .} .

varma2 can be used to compute an arma representation for the sampled data.

References:

[1] Hansen, Lars Peter and T.J. Sargent, Recursive Linear Models of Dynamic

Economies, manuscript, Dec. 1988.
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aimpulse

Purpose:

Computes impulse response function for a recursive linear equilibrium model

Synopsis:

[z]=aimpulse(ao,c,sy,ii,ni)

Description:

The equilibrium is computed by first running solvea. The equilibrium is

xt+1 = ao xt + c wt+1.

A vector of observables is given by

yt = sy xt

where sy is formed to pick off the desired variables. For example, if we want

yt = [c′t, i
′
t]
′ , we set sy=[sc;si]. aimpulse computes the impulse response of yt with

respect to component ii of yt for ni periods.

References:

[1] Hansen, Lars Peter and T.J. Sargent, Recursive Linear Models of Dynamic

Economies, manuscript, Dec. 1988.
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asimul

Purpose:

Simulate a recursive linear equilibrium model

Synopsis:

asimul, a script file. The outputs of solvea must be in memory, as must the matrix

sy and the integer t1 .

Description:

The equilibrium is

xt+1 = Aoxt + Cwt+1

A vector of observables yt obeys

yt = sy ∗ xt,

where sy is to be specified by the user. If we want yt = (c′t i
′
t)

′ , we would set sy

= [ sc; si]. asimul computes a simulation of y of length t1 and stores the output

in the matrix y .

References:

[1] Hansen, Lars Peter and T.J. Sargent, Recursive Linear Models of Dynamic

Economies, manuscript, Dec. 1988.
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asseta

Purpose:

Computes and simulates asset prices for a recursive equilibrium model.

Synopsis:

asseta is a script file which requires that pay and nt, as well as the output of solvea,

reside in memory.

Description:

Run solvea and asimul first. An asset pays out a stream of returns

yt = pay ∗ xt

where pay is a vector and where xt is governed by the equilibrium law of motion

xt+1 = Aoxt + Cwt+1

The asset is priced by

asset price at t = Et

∞
∑

t=0

βtptt+jyt+j .

The program computes the intertemporal marginal rate of substitution, the pay-

off, the asset price, and the gross rate of return on the asset. A similation of

these of length nt is stored in y . The program also calculates the prices of claims

on sure j -period forward consumption for j = 1, 2, 5. A simulation of length nt

of these for j = 1, 2, 5 are stored in R1, R2, and R5, respectively.

References:

[1] Hansen, Lars Peter and T.J. Sargent, Recursive Linear Models of Dynamic

Economies, manuscript, Dec. 1988.
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assets

Purpose:

Creates matrices and scalars needed to price an asset in a strictly periodic

equilibrium model of period p .

Synopsis:

assets is a script file. solves must be run first and its output must be in memory.

Description:

An asset with payoff payt = Ua ∗xt is to be priced, where xt is the state vector

for a dynamic linear equilibrium model that is periodic with period p . The asset

price at is given by

xt = [x′tµa,s(t)xt + σa,s(t)]/[ij ·Mc,s(t)xt].

This program computes the matrices µa,s(t) and the scalars σa,s(t) for

s(t) = 1, 2, . . . , p . These matrices and scalars are stored in memory. To simulate

the asset price, use the program assetss.

See also:

simuls, assetss.
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assetss

Purpose:

Simulates asset price and term structure of interest rates for a strictly periodic

equilibrium model with period p .

Synopsis:

assetss is a script file. The programs solves, simuls, and assets must be run

first and their outputs must reside in memory.

Description:

A simulation is constructed for the asset priced in assets. The term structure of

interest rates is also computed.

The output of the simulation is returned in the vector y , which equals [mrs,

pays, as, ret]. Here mrs is the marginal rate of substitution at time, pays is the

payoff of the asset, as is the price of the asset and ret is the return on the asset.

The prices of risk free claims on comsumption 1, 2, and 5 periods forward are

returned in R1, R2, R5, respectively.

See also:

simuls, solves, assets
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assetx

Purpose:

Computes and simulates asset prices for a recursive equilibrium model with

Gaussian Exponential Quadratic specification.

Synopsis:

assetx is a script file which requires that pay and nt , as well as the output of

solvex, reside in memory.

Description:

Run solvex and asimul first. An asset pays out a stream of returns

yt = pay ∗ xt

where pay is a vector and where xt is governed by the equilibrium law of motion

xt+1 = Aoxt + Cwt+1

The asset is priced by

asset price at t = Et

∞
∑

t=0

βtptt+jyt+j .

The program computes the intertemporal marginal rate of substitution, the pay-

off, the asset price, and the gross rate of return on the asset. A similation of

these of length nt is stored in y . The program also calculates the prices of

claims on sure j -period forward consumption for j = 1, 2, 5. A simulation of

length nt of these for j = 1, 2, 5 are stored in R1, R2, and R5, respectively.

See also:

asseta, solvex

References:

[1] Hansen, Lars Peter and T.J. Sargent, Recursive Linear Models of Dynamic

Economies, manuscript, Dec. 1988.
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avg

Purpose:

Prepares linear system for analysis of aggregation over time with “integrated”

or “summed” data

Synopsis:

[AA,CC] = avg(A,C,m)

Description:

The state xt evolves according to

xt+1 = Axt + Cwt+1

Let zt = [x′t, x
′
t−1, . . . , x

′
t−m+1]

′ . Then zt evolves according to

zt+1 = AA ∗ zt + CC ∗ wt+1

where

AA =















A 0 · · · 0

I 0 · · · 0

0 I · · · 0
...

...
. . .

...

0 · · · I 0















, CC =











C

0
...

0











.

The program forms AA and CC .

See also:

aggreg
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canonpr

Purpose:

Computes canonical representation of preferences.

Synopsis:

[lamh, pihh] = canonpr (beta, lamba, pih, deltah, thetah)

Description:

The program computes a canonical representation of preferences by solving the

auxiliary consumer choice problem, maximize

−1

2
E0

∞
∑

t=0

βtst · st

subject to
ht = ∆hht−1 + Θhct

st = Λht−1 + Πct,

h1 given. The solution is a feedback rule ct = −Fht−1 where F = (Π′Π +

βΘ + h′PΘh)
−1(βΘ′

hP∆h + Π′Λ), and where P is the nonnegative definite P

that solves the algebraic Riccati equation for the problem. A canonical (Λ̂, Π̂)

is chosen for the equations

Π̂−1Λ̂ = F

Π̂′Π̂ = (Π′Π′ + βΘ′
hPΘh).



456 MATLAB Programs

clex 10, 11, 13, 14, 18, 35, 101c, 101f

Purpose:

Read in matrices defining an economy.

Synopsis:

clex*.m is always a script file.

Description:

Each clex*.m file creates a list of matrices Φc, Φg, Φi, Γ, ∆k, Φk, ∆h, Φh, Γ,

Π, A22, Ud, Ub , and Ud that define an economy. The economies are as follows:

clex 10 The Jones-Manuelli examples of chapter 3.

clex 11 Hall’s model of chapter 3.

clex 13 Hall’s model with higher adjustment costs.

clex 14 Lucas’s model of chapter 3.

clex 18 The “seasonal preferences” model of chapter 7.

clex 35 The “heterogeneous agent” example of chapter 6.

clex 101c The hog model of chapter 8.

clex 101f The corn-hog model of chapter 8.
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compn

Purpose:

compn creates companion matrix.

Synopsis:

[B] = compn[a]

Description:

The companion matrix B of the 1 × n row vector a is defined as

B =















a1 a2 · · · an−1 an

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0















.
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disthet

Purpose:

Compute equilibrium of general equilibrium with two types of households, ex-

ternalities, distorting taxes, and exogenous government expenditures.

Synopsis:

disthet is a script file. All matrices must be in memory.

Description:

disthet computes a competitive equilibrium of a distorted heterogeneous econ-

omy. Two types of agents live in an economy with a government. There are

externalities. Type i agent’s problem is to maximize:

E0 − 0.5{
∞
∑

t=0

βt[(si(t) − bi(t)) · (si(t) − bi(t)) + ℓi(t)
2]}

subject to:

si(t) = Λi1hi(t− 1) + Λi2 ∗H1(t− 1) + Λi3H2(t− 1)

+ Πi1ci(t) + Πi2C1(t) + Πi3C2(t)

hi(t) = ∆hi ∗ hi(t− 1) + ∆Hi1H1(t− 1) + ∆Hi2H2(t− 1)

+ Θhici(t) + ΘHi1C1(t) + ΘHi2C2(t)

E{
∑

∞
t=0β

t[(I + τc)p(t) · ci(t) − (1 − τℓ)w(t)li(t) − α(t) · di(t)
− fi ∗ (P1(t) + P2(t) − Ti(t)]}|I0 − v0 ∗ k0i = 0

where si, hi, ℓi, ci, Ti, Pi are consumption services, household capital stock, la-

bor, consumption, government transfer of type i agent and firms of type i’s

profit at t, i=1,2. Capital letters denote aggregate variables. τj is tax on j,

j=c,l,k,i. Firms of type 1’s problem is to maximize expected profit:

E

∞
∑

t=0

{βt[p(t)[c(t) + E(t)] + q(t) · i(t) − r(t) · k(t− 1) − α(t) · d(t) − w(t)ℓ(t)]}

subject to:

Φc(c(t) + E(t)) + Φii(t) + Φgg(t) = Γkk(t− 1) + ΓK ∗K(t− 1) + d(t)

g(t) · g(t) = ℓ(t)2
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where c(t) = c1(t)+c2(t), and similarly for d(t), ℓ(t). E(t), g(t) are government

spending and intermediate goods, respectively. Firms of type 2’s problem is to

maximize expected profit:

E

∞
∑

t=0

βt[(I − τk)r(t) · k(t− 1) − (I + τi)q(t) · i(t)] − v0 ∗ k0

subject to:

k(t) = ∆kk(t− 1) + ∆KK(t− 1) + Θki(t),

where k0 = k01+k02 . The state vector in this program is defined as [z(t); z(t);h1(t−
1);h2(t− 1); k(t− 1)] .
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dog

Purpose:

Compute ‘mongrel’ (i.e., non-Gorman) preference ordering over aggregate con-

sumption for two households.

Synopsis:

function[Deltah,Thetah,Lambdah,Pih,Am3,Bm3,Cm3]=dog(alpha, beta,lambda1,

pih1, deltah1,thetah1,lambda2,pih2,deltah2,thetah2, a22,c2,ub1,ub2)

Description:

Computes the canonical mongrel service technology for two households with pa-

rameter alpha (the Pareto weight on the first consumer). The mongrel household

technology is
H(t) = ∆hH(t− 1) + Θh c(t)

s(t) = ΛH(t− 1) + Πc(t)

The mongrel preference shock is given by the series connection of the three state

space systems (A1,B1,C1,D1), (AA,BB,GG,HH), (∆h,Θh,Λ,Π). We calculate

a system representation (Am,Bm,Cm,Dm) for the mongrel shock. The mongrel

shock is thus described by

Z(t+ 1) = Am2Z(t) +Bm3w(t+ 1)

bb(t) = Cm3Z(t).

In using this program, it is important to set the initial condition for the state

appropriately. The given initial conditions for h01 and h02 are loaded into the

SHOCK process, and the initial conditions for the MONGREL h01,h02 are set

to zero.

Type [Amm,Bmm,Cmm,Dmm]=minreal(Am,Bm,Cm,Dm) to find minimal re-

alization for preference shock.



Matlab programs 461

doubleo

Purpose:

Computes time invariant Kalman filter or time invariant linear optimal control.

Synopsis:

[K,S] = double (A,C,Q,R)

Description:

The program creates the Kalman filter for the following system:

xt+1 = Axt + et+1

yt = Cxt + vt

where Eet+1e
′
t+1 = Q,Evtv

′
t = R , and vt is orthogonal to et for all t and s .

Here A is n×n , C is k×n , Q is n×n , and R is k× k . The program creates

the observer system
x̂t+1 = Ax̂t +Kat

yt = Cx̂t + at,

where K is the Kalman gain, and S = E(xt − x̂t)(xt − x̂t)
′ where x̂t = Ext |

yt+1yt−2, . . . . Also, at = yt − Eyt | yt−1, yt−2, . . . .

By using duality, the program can be used to solve optimal linear control

problems. Let the control problem be to choose a feedback law ut = −Fxt to

maximize

−
∞
∑

t=0

{x′tQxt + u′tRut}

subject to

xt+1 = A′xt +B′ut,

with x0 given. The optimum control is then given by F = K ′ , where

[K,S] = double (A,B,Q,R)

and where the optimal value function is x′tSxt .

The doubling algorithm is used to compute the solution.

See also:

mult and double3.

References:

[1] Anderson, B.D.O., and J. Moore, Optimal Filtering, 1979, p. 160.
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doublex

Purpose:

Solves recursive undiscounted Gaussian Quadratic Exponential control problem.

Synopsis:

[K,S, ST ] = doublex (A,C,Q,R, c, sig)

Description:

This program uses the “doubling algorithm” to solve the Riccati matrix dif-

ference equations associated with the undiscounted quadratic-Gauusian linear

optimal control problems. The control problem has the form

S(t) = max
u(t)

{x(t)′Qx(t) + u(t)′Ru(t) + (2/σ) logEt exp(σ/2)S(x(t+ 1))},

subject to

x(t+ 1) = A′x(t) + C ′u(t) + cw(t+ 1),

where w(t+1) is a Gaussian martingale difference sequence with unit covariance

matrix. The program returns the steady state value function in S . The optimal

control law is u(t) = −K ′ ∗ x(t) The program also returns ST , which

is the quadratic form in Et exp(sig/2)S(x(t+ 1)).

See also:

mult and double and solvex.

References:

[1] Anderson, B.D.O., and J. Moore, Optimal Filtering, 1979, p. 160.

[2] Jacobson, D.H. “Optimal stochastic linear systems with exponential perfor-

mance criteria and their relation to deterministic differential games.”IEEE

Transactions on Automatic Control, AC-18, 124–31.



Matlab programs 463

doublej

Purpose:

Computes infinite matrix sums of squares.

Synopsis:

V = double (a1, b1)

Description:

The program computes the infinite sum V in

V =

∞
∑

j=0

aj1b1a
j′,

where a1 and b1 are each n×n matrices. The program iterates to convergence

on the following doubling algorithm, starting from V0 = 0:

a1j = a1j−1 ∗ a1j−1

Vj = Vj−1 + a1j−1 ∗ Vj−1 ∗ a1j−1.

The limiting value of Vj is returned in V .

References:

[1] Hansen, Lars P. and Thomas J. Sargent Recursive Linear Models of Dy-

namic Economies, manuscript, Dec. 1988.
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doublej2

Purpose:

Computes infinite matrix sums of squares.

Synopsis:

[V ] = doublej2 (a1, b1, a2, b2)

Description:

The program computes the infinite sum V in

V =

∞
∑

j=o

aj1(b1b2)a
j
2

where a1 and a2 are each n × n matrices, b1 is n × k and b2 is k × n . The

program iterates to convergence on the following doubling algorithm, starting

from V0 = 0:
a1j = a1j−1 ∗ a1j−1

a2j = a2j−1 ∗ a2j−1

Vj = Vj−1 + a1j−1Vj−1a2j−1.

The limit point is returned in V .

References:

[1] Hansen, Lars P. and Thomas J. Sargent Recursive Linear Models of Dy-

namic Economies, manuscript, Dec. 1988.
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double3

Purpose:

Raw doubling algorithm for raising a symplectic matrix to higher and higher

powers.

Synopsis:

[aa, bb, gg] = double3 (a, b, g)

Description:

The algorithm iterates to convergence of gj in the following recursions:

aj+1 = aj(I + bjgj)
−1gj

gj+1 = gj + a′jgj(I + bjgj)
−1aj

bj+1 = bj + aj(I + bjgj)
−1bja

′
j

,

where aj , bj , gj are each n×n matrices. If we let Ej , be the symplectic matrix

[

a−1
j a−1

j bj

gja
−1
j a′j + gja

−1
j bj

]

then Ej = (E0)
2j

.

References:

[1] Anderson, B.D.O., and J. Moore, Optimal Filtering, 1979, p. 160.

[2] Hansen, Lars Peter and T.J. Sargent, Recursive Linear Models of Dynamic

Economies, manuscript, Dec. 1988.
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heter

Purpose:

Computes allocation to an individual who lives within a recursive linear equi-

librium model.

Synopsis:

heter is a script file. The program solvea must be run first, and its inputs and

outputs must be in memory. The matrices U cd and U ib , and the scalars k0i, h0i ,

and tol > 0 must all be in memory.

Description:

The consumer maximizes

−(
1

2
)E

∞
∑

t=o

βt[(sit − bit) · (sit − bit) + ℓ2t ], 0 < β < 1

subject to
sit = Λhit−1 + Πcit

hit = ∆hh
i
t−1 + Θhc

i
t

E

∞
∑

t=0

βtp0
t c
i
t | Io = E

∞
∑

t=0

βt(w0
t ℓ
i
t + α0

td
i
t) | Io

+ υ0k
i
−1

bit = U ibzt

dit = U idzt

where ki−1 = k0i, hi−1 = h0i are parameters to be fed in. The matrices U id = udi

and U ib = ubi must also be fed in. The

parameter tol > 0 must be fed in. The program computes the optimal

solution for consumer i in the form cit = Sicxt, h
i
t = Sihxt, s

i
t = Sisxt, b

i
t =

Sibxt, d
i
t = Sidxt , where xt is the state variable of the economy augmented by

the state variables kit−1, h
i
t−1 ideosyncratic to the individual. The program also

computes the aggregate allocations ct = Sac xt, ht = Sahxt , and so on. The indi-

vidual allocations are determined by the matrices sci, shi, . . . , which are placed

in memory. The aggregate allocation are placed in the matrices sca, sha, . . . ,

which are placed in memory.

Algorithm:
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See Hansen and Sargent, Chapter 6

See also:

simulh
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innov

Purpose:

Compute the innovations representation for a recursive linear model whose ob-

servations are corrupted by first-order serially correlated measurement errors.

Synopsis:

[aa, bb, cc, dd, V1 ] = innov (ao, c, sy,D,R)

Description:

The model is assumed to have the state space representation

xt+1 = aoxt + cwt+1

yt = Syxt + et+1

where wt is a white noise with Ewtwt
′ = I and et is a measurement error

process governed by

et+1 = Det + ηt+1

where ηt is a white noise with contemporaneous covariance matrix R . The

matrices R and D must each be m×m where [m,n] = size(Sy). The program

forms the innovations representation for yt ,

ẑt+1 = aaẑt + bbut

yt = ccẑt + ddut

where ut = yt+1 − E[yt+1 | yt, yt−1, . . .], and Eutu
′
t = V1.

Algorithm:

aa =

[

ao 0

GG D

]

, bb =

[

k1

I

]

cc = [0 I], dd = [0],

where k1 is the Kalman gain associated with the Kalman filter for the original

system.

References:

[1] Sargent, Thomas, “Two Models of Measurements and the Investment Ac-

celerator,” Journal of Political Economy, April 1989.
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mult

Purpose:

Multiplies two symplectic matrices.

Synopsis:

[a, b, g] = mult (a1, b1, g1, a2, b2, g2)

Description:

A symplectic matrix Ei is represented in the form

(∗) Ei =

[

a−1
i a−1

i bi

gia
−1
i a′i + gia

−1
i bi

]

.

We desire to form E = E2E1 . We can compute

a = a2(I + b1g2)
−1g1

g = g1 + a′1g2(I + b1g2)
−1a1

b = b2 + a2(I + b1g2)
−1b1a

′
2,

and represent E as in representation (∗).

References:

[1] Anderson, B.D.O., and J. Moore, Optimal Filtering, 1979, p. 160.
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seasla

Purpose:

Creates a time invariant representation for a strictly periodic, time varying linear

equilibrium model

Synopsis:

seasla is a script file, which requires that the output of simuls reside in memory.

Description:

Let xt be the state vector for a strictly periodic seasonal process of period p .

Let X ′
t = [x′pt−p+1, x

′
pt−p+2, . . . , x

′
pt] . The law of motion for Xt is

Xt+1 = ÂXt + ĈWt+1

where Wt+1 is a vector white noise and Â and Ĉ are defined as simuls. The

spectral density matrix of the Xt process is given by S(z) = (I−ÂZ)−1ĈĈ ′(I−
ÂZ)−1′ . Embedded in the spectral density matrix of the stacked process Xt

are the spectral density matrices s1(z), s2(z), . . . , sp(z) for the periodic pro-

cess {xt} . The process xt whose spectral density is defined to be s(z) =

p−1
∑p
k=1 sk(z). It can be shown that

(∗) s(z) = p−1Q(z)(I − Âzp)−1ĈĈ ′(I − Âz−p)−1′,

where Q(z) = [I zI · · · zp−1I] . A state space representation for a process xt

with spectral density matrix (*) is

(†)
Yt+p = ÂYt + ĈVt+p

xt = p−.5Q(L)Yt

where Vt is a vector white noise with identity covariance matrix.

The program seasla creates the spectral density for a univariate process that

is a linear function of the state. Let the process be ct = scs(t)xt . We form the

time invariant, averaged process, as c̃t which is determined by the system

(‡)
Yt+p = ÂYt + ĈVt+p

ct = p−1Qc(L)Yt

where Qc(z) = [sc1
... sc2z

... · · ·
...scpz

p−1] .
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The program maps into a first-order system, then deduces the impulse

response of ct with respect to innovations Vt corresponding to representation

(‡). This is stored in z1 . The program also uses the Kalman filter to obtain

an innovations representation corresponding to (‡), and returns the impulse

response of ct with respect to the innovation in ct in the vector z2 .

See also:

simuls, assets, assetss
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seas1

Purpose:

To aid in creating the matrices that define a periodic recursive linear equilibrium

model.

Synopsis:

seas1.m is a script file.

Description:

seas1 creates matrices Φcs(t) , Φgs(t), Φis(t), Γs(t), ∆ks(t), ∆hs(t), A22s(t), Cs(t),

Φks(t), Φhs(t), Λs(t) , and Πs(t) that are needed to define a periodic linear re-

cursive model. It creates time invariant versions of these matrices as follows. It

first reads in Φc,Φi,Φy,Γ,

∆k,∆h, A22, C,Φk,Φh,Λ1 and Π for a time invariant economy. One of our

clex*.m files can be used to read in such matrices. Then seas1 simply sets the

matrices Φcs(t) = Φc , and so on.

To create a periodic model, the user may find it useful to run seas1 first, and

then to modify the resulting time invariant setup, rather than building up all

of the matrices from scratch. In a typical periodic model, many of the matrices

may in fact be time invariant.

See also:

solves.m
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simpulse

Purpose:

Creates different impulse response functions for a periodic linear equilibrium

model.

Synopsis:

simpulse is a script file. solves must be run first, and its outputs must be in

memory.

Description:

A stacked version of a periodic model has state space form

(†)
Xt+1 = ÂXt + ĈWt+1

Yt = HXt,

where X ′
t = [x′tp−p+1, x

′
tp−p+2, . . . , x

′
tp] , Y

′
t = [y′tp−p+1, . . . , y

′
tp], W

′
t = [w′

tp−p+1,

. . . , w′
tp] and where Â, Ĉ , are as defined in simuls.

This program first uses dimpulse to compute the impulse response function

of the stacked system (†). From this impulse response function, it forms two

impulse response functions for the periodic process yt . First, it computes {dk,υ}
in the representation

ypt−p+k =
∞
∑

υ=0

dk,υwpt−p+k−υ.

This is the response of ypt−p+k (i.e., yt in a particular season) to lagged w ’s.

Second, the program computes the {hk,υ} that give the response of {yt} to

wpt−p+k (i.e. an innovation in a particular season). The value of p must be in

memory. The program prompts the user for the index of the innovation whose

response functions are to be computed.

See also:

solves, simuls
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simulh

Purpose:

Simulates allocation of individual i who lives within a recursive linear equilib-

rium model.

Synopsis:

simulh is a script file. heter must be run first and its output must be in memory.

Description:

The user is asked to specify which series he wants to simulate; e.g., to simulate

the consumption allocation to agent i and the aggregate consumption allocation,

respond [sci; sca] .

See also:

heter
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simulhet

Purpose:

Simulates heterogeneous agent economy.

Synopsis:

simulhet is a script file, not a function.

Description:

Simulates the prices and quantities for a recursive linear equilibrium model with

non-Gorman heterogeneity. solvehet must be run first and its output must be in

memory. To simulate the individual consumption allocations, set sy=[sc1;sc2]

when asked what series you want to simulate. To simulate the individual con-

sumption service allocations, set sy= [ss1;ss2].

See also:

solvea and heter.
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simuls

Purpose:

To simulate a strictly periodic recursive linear model.

Synopsis:

simuls is a script file, which requires that all of the outputs of solves be in memory.

simuls prompts the user for the number of “years” to simulate.

Description:

simuls creates a simulation of the state vector xt for a strictly periodic model of

period p . The stacked state vector Xt is formed, where X ′
t = [x′pt−p+1, x

′
pt−p+2, . . . , x

′
pt

] .

The law of motion for Xt is

Xt+1 = ÂXt + ĈWt+1

where Â = D−1F, Ĉ = D−1G , where

D =















I 0 0 · · · 0 0

−A0
1 I 0 · · · 0 0

0 −A0
2 I · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −A0
p−1 1















F =

[

0 A0
p

0 0

]

G =











Cp 0 0 · · · 0

0 C1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · Cp−1











,

and where W ′
t = [w′

pt+1, w
′
pt+2, . . . , w

′
pt+p]

′ .

The output of simuls is returned in the matrix X . The matrix X is arranged

as follows:

X =











x′1 x′2 · · · x′p
x′p+1 x′p+2 · · · x′2p

...
...

. . .
...

x′Tp+1 x′Tp+2 · · · x′Tp+p










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where T is the number of “years” specified by the user.

To simulate ct, it , etc., the user can write a program to put the relevant

linear combinations off X . Alternatively, the user can edit the files simulc, simulk,

simuli, simulg, simulb, or simuld.
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solvea

Purpose:

Computes solution of recursive linear equilibrium model

Synopsis:

solvea is a script file. The matrices A22, C2, Ud, Ub,Φc,Φg,Φi,Γ,∆k,Θk,

∆h,Θh,Λ, and Π and the scalar β must be in memory.

Description:

The social planning problem is to maximize

−(
1

2
)E

∞
∑

t=0

βt[(st − bt) · (st − bt) + ℓ2t ], 0 < β < 1

subject to

Φcct + Φggt + Φiit = Γkt−1 + dt

gt · gt = ℓ2t

kt = ∆kkt−1 + Θkit

ht = ∆hht−1 + Θhct

st = Λht−1 + Πct

zt+1 = A22zt + C2wt+1

bt = Ubzt, dt = Udzt

Here st is consumption services, bt a stochastic bliss process, ℓt is labor services,

ct is consumption rates, gt is “intermediate goods”, it is investment goods, dt

is an endowment shock process, kt is physical capital, ht is household capital,

zt is a vector of exogenous information variables, and wt+1 is a martingale

difference sequence. Each of these is a vector, except for ℓt , which is scalar. Let

xt = [h′t−1, k
′
t−1, z

′
t]
′ . The program computes the solution of the social planning

problem in the form

xt+1 = Aoxt + Cwt+1

kt = Skxt , gt = Sqxt

ht = Shxt , it = Sixt

ct = Scxt , bt = Sbxt

st = Ssxt , dt = Sdxt
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The program also computes Lagrange multipliers µjt = Mjxt for variable j =

k, c, h, s, i . The program computes and leaves in memory Ao, C, Sj (for j =

k, h, c, s, g, i, b, and d) and Mj (for j = k, c, h, s, and i).

Algorithm:

The social planning problem is formulated and solved as an optimal linear reg-

ulator problem.

References:

[1] Hansen, Lars Peter and T.J. Sargent, Recursive Linear Models of Dynamic

Economies, manuscript, Dec. 1988.
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solvdist

Purpose:

Computes equilibrium of representative agent economy with distorting taxes,

exogenous govenment expenditures, and externalities.

Synopsis:

solvdist is a script file.

Description:

solvdist, a script file (not a function), finds a competitive equilibrium for a rep-

resentative agent economy with distortions. Households maximize:

E0 − .5
∑

βt[(s(t) − b(t)) · (s(t) − b(t)) + ℓ(t)2]

subject to

g(t) · g(t) = ℓ(t)2

z(t+ 1) = a22 ∗ z(t) + c2 ∗ w(t+ 1)

b(t) = ub ∗ z(t), d(t) = ud ∗ z(t), E(t) = ue ∗ z(t)
h(t) = ∆hh(t− 1) + ∆HH(t− 1) + Θhc(t) + θHC(t)

s(t) = Λhh(t− 1) + ΛHH(t− 1) + Πcc(t) + ΠCC(t)

k(t) = ∆kk(t− 1) + Θki(t)
∞
∑

t=0

βt[(I + τc)p(t) · c(t) + (I + τi)q(t) · i(t) − (1 − τℓ)w(t) · g(t)

−α(t) · (d(t) + γKK(t− 1)) − (I − τk)r(t) · k(t− 1) − T (t)] = 0

Firms maximize profits:

E0

∞
∑

t=0

βt[p(t) · (c(t) +E(t)) + q(t) · i(t)− r(t) · k(t− 1)−α(t) · d(t)−w(t) ∗ g(t)]

subject to

g(t) · g(t) = ℓ(t)2

Φc(c(t) + E(t)) + Φgg(t) + Φii(t) = Γkk(t− 1) + ΓKK(t− 1) + d(t)

Where x(t) = [h(t− 1)′, k(t− 1)′, z(t)′]′ , the solution of the problem is

x(t+ 1) = ao ∗ x(t) + c ∗ w(t+ 1)

j(t) = sj ∗ x(t),
where j = k, h, c, e, s, g, i, b, d, p, q, w, r, α . The program also computes the

household’s Lagrange multipliers µj = mj x(t) for j = k, h, s, z . (µ0 is set

to 1.)
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solvehet

Purpose:

Solves Pareto problem for two-agent, non-Gorman preferences.

Description:

solvehet solves the pareto problem for two agents with heterogeneous household

production functions, i.e. to maximize

E

∞
∑

t=0

βt − .5α([(s1(t) − b1(t)) · (s1(t) − b1(t)) + ℓ1(t)
2])

+ (1 − α)([(s2(t) − b2(t)).(s2(t) − b2(t)) + ℓ2(t)
2])

subject to

Φcc(t) + Φgg(t) + Φii(t) = Γk(t− 1) + d(t)

gi(t) · gi(t) = ℓi(t)
2, i = 1, 2

g1(t) + g2(t) = g(t)

k(t) = ∆kk(t− 1) + Θki(t)

hi(t) = ∆hihi(t− 1) + Θhici(t)

si(t) = Λi ∗ hi(t− 1) + Πhici(t), i = 1, 2

c1(t) + c2(t) = c(t)

z(t+ 1) = a22 ∗ z(t) + c2 ∗ w(t+ 1)

i(t) = ubi ∗ z(t), i = 1, 2; d(t) = ud ∗ z(t)

The state vector is x(t) = [h1(t-1)’,h2(t-1)’,k(t-1)’,z(t)]’. The control vector is

u(t) = [c1(t)’,i(t)’]. The solution of the problem is given by:

x(t+ 1) = ao ∗ x(t) + c ∗ w(t+ 1)

j(t) = sj x(t)

for j = k,c,g,i,d, and ci,bi,gi,hi,si, for i=1,2. The program also computes La-

grange multipliers.
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solvex

Purpose:

Computes solution of recursive linear equilibrium model with Gaussian Quadratic

Exponential preference specification.

Synopsis:

solvex is a script file. The matrices A22, C2, Ud, Ub,Φc,Φg,Φi,Γ,∆k,Θk,

∆h,Θh,Λ, and Π and the scalars σ and β must be in memory.

Description:

Let xt = [h′t−1, k
′
t−1, z

′
t]
′ , and let the law of motion for xt be xt+1 = Axt +

But + Cwt+1 . The social planning problem is to find a value function

V (x(t)) = max{−.5[(s(t) − b(t)).(s(t) − b(t)) + l(t)2]

+β ∗ (2/σ) ∗ logEt exp(σ/2 ∗ (V (x(t+ 1))}

subject to
Φcct + Φggt + Φiit = Γkt−1 + dt

gt · gt = ℓ2t

kt = ∆kkt−1 + Θkit

ht = ∆hht−1 + Θhct

st = Λht−1 + Πct

zt+1 = A22zt + C2wt+1

bt = Ubzt, dt = Udzt

Here st is consumption services, bt a stochastic bliss process, ℓt is labor services,

ct is consumption rates, gt is “intermediate goods”, it is investment goods, dt

is an endowment shock process, kt is physical capital, ht is household capital,

zt is a vector of exogenous information variables, and wt+1 is a martingale

difference sequence. Each of these is a vector, except for ℓt , which is scalar.

The program computes the solution of the social planning problem in the form

xt+1 = Aoxt + Cwt+1

kt = Skxt , gt = Sqxt

ht = Shxt , it = Sixt

ct = Scxt , bt = Sbxt

st = Ssxt , dt = Sdxt
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The program also computes Lagrange multipliers µjt = Mjxt for variable j =

k, c, h, s, i . The program computes and leaves in memory Ao, C, Sj (for j =

k, h, c, s, g, i, b, and d) and Mj (for j = k, c, h, s, and i).

Algorithm:

The social planning problem is formulated and solved using doublex.

References:

[1] Hansen, Lars Peter and T.J. Sargent, Recursive Linear Models of Dynamic

Economies, manuscript, Dec. 1988.
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solves

Purpose:

Computes the solution of recursive linear equilibrium model with periodic coef-

ficients.

Synopsis:

solves is a script file. The matrices A22s(t), C2s(t), Ud, Ub, Φcs(t), Φgs(t), Φis(t),

Γs(t), ∆ks(t), Θks(t), ∆hs(t), Θhs(t), Λs(t), and Πs(t) and the scalar β must be

in memory.

Description:

The social planning problem is to maximize

−(
1

2
)E

∞
∑

t=0

βt[(st − bt) · (st − bt) + ℓ2t ], 0 < β < 1

subject to

Φcs(t)ct + Φgs(t)gt + Φis(t)it = Γs(t)kt−1 + dt

gt · gt = ℓ2t

kt = ∆ks(t)kt−1 + Φks(t)it

ht = ∆hs(t)ht−1 + Φhs(t)ct

st = Λs(t)ht−1 + Πs(t)ct

zt+1 = A22s(t)zt + C2s(t)wt+1

bt = Ubzt, dt = zt.

where s(t+p) = s(t), where p is the period of the model. Here st is consumption

services, bt is a stochastic bliss process, ℓt is labor services, ct is a vector of

consumption rates, gt is “intermediate goods”, it is investment goods, dt is

an endowment shock process, kt is physical capital, ht is household capital,

zt is a vector of exogenous information variables, and wt+1 is a martingale

difference sequence. Each of these is a vector, except for ℓt , which is a scalar.

Let xt = [h′t−1, k
′
t−1, z

′
t]
′ . The program computes the solution of the social
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planning problem in the form

xt+1 = Aos(t)xt + Cs(t)wt+1

kt = Sks(t)xt, gt = Sgs(t)xt

ht = Shs(t)xt, it = Sis(t)xt

ct = Scs(t)xt, bt = Sbs(t)xt

st = Sss(t)xt, dt = Sds(t)xt

The program also computes Lagrange multipliers µjt = Mjs(t)xt for variables

j = k, c, h, s, i . The program computes and leaves in memory Aos(t), Cs(t) , Sjs(t)
for j = k, h, c, s, g, i, b and d , and Mj for j = k, c, h, s, and i .

The user is advised to use the Matlab program seas1 an an aid in creating

the matrices that must be fed into solves.

The user must edit solves to set the period p . Also, it will vastly accelerate

computations if the user will load either the file seas4.mat (in the case p = 4) or

the file seas12.met (in the case p = 4). The lines to edit occur immediately after

the information provided by the help command, i.e. the first lines without %.

Algorithm:

The social planning problem is formulated as a periodic optimal linear regulator

problem and solved using doubling algorithms described by Hansen and Sargent.

References:

[1] Hansen, Lars Peter and T.J. Sargent, Recursive Linear Models of Dynamic

Economies, manuscript, Dec. 1988.
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spectr1

Purpose:

Computes spectral density of endogenous variables of a dynamic linear equilib-

rium model.

Synopsis:

spectr1 is a script file. The matrices ao, c, sy,R,D , and the scalar nnc must be

in memory.

Description:

The equilibrium model is of the form

xt+1 = ao xt + cwt+1

yt = sy xt + vt

vt+1 = Dvt + ut+1

where Ewtw
′
t = I, E, utu

′
t = R . The constant corresponds to row number nnc

of the state vector xt . The eigenvalues of D and the eigenvalues of A (except

for the unit eigenvalue associated with the constant term) must be less than

unity in modulus. spectr1 computes the spectral densities variables in yt .

Algorithm:

spectr1 deletes the nncth row and/or column of ao, c, and sy , which correspond

to the constant term. Then spectral is used to compute the spectral density

matrix of yt .

See also:

spectral
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spectral

Purpose:

Computes spectral density matrix for a linear system.

Synopsis:

spectral, a script file. The inputs A,C,G,D,R and T must reside in memory.

Description:

Let the system be
xt+1 = Axt + Cet+1

yt = Gxt + vt

vt+1 = Dvt + ut

where Eete
′
t = I, Eutu

′
t = R , and where et and us are orthogonal for all t

and s . The vector yt is rg× 1. The spectral density matrix for y is computed

for ordinates ωj = 2πj/T, j = o, 1, . . . , T − 1. The spectral density matrix for

ordinate j is stored in Syj, j = 0, 1, . . . , T −1. The spectral densities (diagonals

of the spectral density matrices) are stored in the matrix S . The matrix S has

rg rows and T columns, and S(k, j) = Syj(k, k). The eigenvalues of A and D

must all be less than unity in modulus.

Algorithm:

Let Sy(ωj) be the spectral density matrix at frequency wj . Then

Sy(ωj) = G(I −Ae−iω−j )−1CC ′(I −Aeiωj )−1G′

+ (I −De−iωj )−1R(I −De+iωj )−1
.
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spectrs

Purpose:

Computes spectral density matrix for set of variables determined by a periodic

linear equilibrium model.

Synopsis:

spectrs is a script file. solves and simuls must be run first, and their outputs must

reside in memory. The integer nnc (the index of the constant in the state vector)

must be in memory.

Description:

The spectral density of a process yt with hidden periodicity p is given by the

Tiao-Grupe formula

Sy(z) = Q(z)H(I − Âzp)−1ĈĈ(I − Âz−p)−1′H ′Q(z−1)′,

where z = e−iωj ; where Â, Ĉ , and Ĥ are from the stacked state space system

Xt+1 = ÂXt + ĈWt+1

Yt = HXt,

and where X ′
t = [x′pt−p+1, x

′
pt−p+2, . . . , x

′
pt], Y

′
t = [y′pt−p+1, y

′
pt−p+2,

. . . , y′pt], W
′
t = [w′

pt−p+1, w
′
pt−p+2, . . . , w

′
pt] . The program returns the spectral

density matrices for frequencies ωj = 2πj/T , for j = 0, 1, . . . , T − 1 in the

matrices Sy0, Sy1, . . . , SyT − 1. The spectral densities of the individual series

are returned in the matrix S .

The user can edit the file to specify T and the particular series whose

spectrum is computed.

See also:

solves, simuls
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steadst

Purpose:

steadst computes steady state values of observable variables determined by a

recursive linear equilibrium model.

Synopsis:

steadst is a script file which requires that the scalar nnc and matrices ao, sc, ss, si, sd, sb, sk, sh

reside in memory.

Description:

The equilibrium model is represented as

xt+1 = ao ∗ xt + c ∗ wt+1

yt = Gxt

where G = [sc; ss; si; sd; sb; sk; sh] . The integer nnc gives the row in the state

vector xt that corresponds to the constant term. steadst assumes that except

for the eigenvalue associated with the constant term, all eigenvalues of ao are

less than unity in modulus. The program calculates the steady state value of

xt , putting its value in zs . Then the program successively calculates the steady

state values of c, s, i, d, b, k, and h , which are the components of y .

Algorithm:

The steady state value of x is obtained as a basis vector for the null space of

(I−ao), normalized so that the component corresponding to the constant equals

unity.

References:

[1] Hansen, Lars Peter and T.J. Sargent, Recursive Linear Models of Dynamic

Economies, manuscript, Dec. 1988.

See also:

null
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steadsts

Purpose:

Computes seasonal steady states and seasonal means for a periodic recursive

linear equilibrium model.

Synopsis:

steadsts is a script file. solves and simuls must be run first, and their outputs must

be in memory. So must nnc, the index of the constant term in the state vector.

Description:

The equilibrium for the stacked version of a periodic model can be represented

as

Xt+1 = ÂXt + ĈWt+1

where X ′
t = [x′tp−p+1,...,x

′
tp],W

′
t = [wpt−p+1,...,wpt] . The program computes the

null space of (I− Â), which gives the steady for Xt = X̄ . Then seasonal means

for individual variables are formed by pre-multiplying X̄ by matrices formed

from appropriate seasonal decision rules. The user must edit the file to compute

seasonal means of the particular variables he is interested in.

See also:

steadst, solves, simuls.



Matlab programs 491

vardec

Purpose:

Calculates variance of k -step ahead prediction errors in zt for k = 1, 2, . . . , N

for an “innovations system”.

Synopsis:

[tab] = vardec (A,C,K, V,N)

Description:

Consider the innovations system

xt+1 = Axt +Kut

zt = Cxt + ut

Eutu
′
t = V

vardec prepares a table of diagonal elements of the covariance matrices of k -step

ahead errors in predicting zt, k = 1, . . . , N . The output is returned in tab, which

has N rows and max(size(V )) columns. The (k, h) element of tab gives the

variance of the k -step ahead prediction errors for the hth variable in zt.

Algorithm:

Let the covariance matrix of k -step ahead prediction error in z be Vk . Then

V1 = V

V2 = CKVK ′C ′ + V

Vk = Vk−1 + CAk−1KVK ′Ak−1C ′.

References:

[1] Sims, Christopher “Macroeconomics and Reality,” Econometrica, 1980.

[2] Hansen, Lars Peter and Thomas Sargent, Recursive Linear Models of Dy-

namic Economies, (manuscript), Dec. 1988.
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vardeci

Purpose:

Compute decomposition of k -step ahead prediction error variances for an “in-

novations system”.

Synopsis:

[tab ] = vardeci (A,C,K, V,N, j)

Description:

Consider an innovations system

xt+1 = Axt +Kut

zt = Cxt + ut

where Eutu
′

t = V. Let r′r = V be a Cholesky decomposition of V . Form the

innovations system with orthogonalized innovations

xt+1 = Axt +Bvt

zt = Cxt +Dvt

where B = K · r′,D = r′ , and Evtv
′
t = I . The program prepares a table of

the part of the diagonal elements of the covariance matrix of the k -step ahead

prediction errors, k = 1, . . . , N , that is attributable to the jth innovation. The

table is returned in tab , which has dimension N ×max(size(V )). The (k, h)

element of tab gives the variance in the k -step ahead variance in predicting the

hth component of z due to the jth orthogonalized innovation in vt .

Algorithm:

Let Sj be a selector matrix for j , equal to an m×m matrix of zeros except of a

one in the (j, j) element. Let Vk be the covariance of the k -step ahead predic-

tion error in z due the jth orthogonalized innovation. The Vk are calculated

using the ecursions

V1 = DSjS
′
jD

′

V2 = CBSjS
′
jB

′C ′ + V1

Vk = Vk−1 + CAk−1BSjS
′
jB

′A′k−1
C ′

References:

[1] Sims, Christopher “Macroeconomics and Reality,” Econometrica, 1980.

[2] Hansen, Lars Peter and Thomas Sargent, Recursive Linear Models of Dy-

namic Economies.
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varma

Purpose:

varma computes an innovations representation for a recursive linear model whose

observations are corrupted by first-order serially correlated measurement errors.

Synopsis:

varma is a script file, which requires that the matrices ao, c, sy,D , and R reside

in memory.

Description:

The model is assumed to have the state space representation

xt+1 = ao ∗ xt + c ∗ wt+1

yt = Sy ∗ xt + et+1

where wt is a white noise with Ewtwt
′ = I, and et is a measurement error

process governed by

et+1 = Det + ηt+1,

where ηt+1 is a vector white noise with contemporaneous covariance matrix R .

The matrices R and D must each be m ×m , where [m,n] = size(sy). The

program uses the Kalman filter to form the innovations representation

x̂t+1 = aox̂t + k1 ∗ ut
ỹt+1 = GGxt + ut

where GG = [syao −DSy], ỹt = yt+1 −Dyt, and ut is the innovation in yt+1 ,

ut = yt+1 − E[yt+1 | yt, yt−1, . . .] . The program uses evardec to compute a

decomposition of variance for the innovations system.

References:

[1] Hansen, Lars Peter and T.J. Sargent, Recursive Linear Models of Dynamic

Economies, manuscript, Dec. 1988.

[2] Sargent, Thomas, “Two Models of Measurements and the Investment Ac-

celerator,” Journal of Political Economy, April 1989.
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varma2

Purpose:

varma2 creates impulse response functions associated with an innovations repre-

sentation.

Synopsis:

varma2 is a script file which requires that the matrices aa, bb, cc, dd,

V 1 be in memory.

Description:

varma2 takes the output of innov and creates impulse response functions of y

with respect to components of u . Impulse response functions with respect to

the orthogonalized innovations vt = r′−1
ut are also computed, where r′r = V 1

is a Cholesky decomposition of V1.

Algorithm:

dimpulse is applied.

References:

[1] Sims, Christopher, “Macroeconomics and Reality,” Econometrica, 1980.
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varrep

Purpose:

Computes a vector autoregressive representation from a state space model with

serially correlated measurement errors.

Synopsis:

function [AA,V1]=varrep(ao,c,sy,D,R,nj,nnc)

Description:

Computes (an infinite order) vector autoregressive representation for a recursive

linear model whose observations are corrupted by first-order serially correlated

measurement errors. The model occurs in the state space form

x(t+ 1) = ao ∗ x(t) + c ∗ w(t+ 1)

y(t) = sy ∗ x(t) + e(t+ 1)

where e(t) is a measurement error process

e(t+ 1) = D ∗ e(t) + ee(t+ 1)

and where ee(t+1) is a vector white noise with covariance matrix R. We assume

that ee(t+1) and w(t+1) are orthogonal at all leads and lags. The program

computes the autoregressive representation

y(t) =
∞
∑

j=1

A(j)y(t− j) + a(t)

where a(t)=y(t) - E[y(t)— y(t-1),y(t-2),...], and the A(j) are square matrices.

The program creates the covariance matrix of a, which it stores in V1. The

program returns nj of the matrices A(j), stacked into the ((m times nj) by m)

matrix AA, where m is the number of rows of y. A(j) occurs in rows ((j-1)*m+1)

to row j*m of AA. nnc is the location of the constant term in the state vector.
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white1

Purpose:

Creates a state space system [AA,BB,CC,DD] that accepts the innovation to

the (information) state vector wt+1 as in input and puts out the innovation ut

to yt as an output.

Synopsis:

function[AA,BB,CC,DD]=white1(ao,c,sy,D,R)

Description:

The program couples the systems

x(t+ 1) = ao ∗ x(t) + c ∗ w(t+ 1)

y(t) = sy ∗ x(t) + v(t)

v(t) = D ∗ v(t− 1) + η(t)

Eη(t)η(t)′ = R.

and
xh(t+ 1) = (ao− k1 ∗GG) ∗ xh(t) + k1 ∗ y(t)

u(t) = −GG ∗ xh(t) + u(t)

where w(t+1) is the innovation to agents’ information sets and where u(t) is the

fundamental (Wold) representation innovation. A (minimum-realization) state

space system [AA,BB,CC,DD] for the coupled system is returned. To compute

the impulse response function, use dimpulse.
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white2

Purpose:

Creates the state space system [AA,BB,CC,DD] that accepts the measurement

error v(t+1) as in input and puts out the innovation u(t) to y(t) as an output.

Synopsis:

function[AA,BB,CC,DD]=white2(ao,c,sy,D,R)

Description:

The program couples the systems

x(t+ 1) = ao ∗ x(t) + c ∗ w(t+ 1)

y(t) = sy ∗ x(t) + v(t)

v(t) = D ∗ v(t− 1) + η(t)

Eη(t)η(t)′ = R.

and
xh(t+ 1) = (ao− k1 ∗GG) ∗ xh(t) + k1 ∗ y(t)

u(t) = −GG ∗ xh(t) + u(t)

where w(t+ 1) is the innovation to agents’ information sets, η(t) is the innova-

tion to measurement error, and where u(t) is the fundamental (Wold) represen-

tation innovation. The (minimum-realization) state space system [AA,BB,CC,DD]

for the coupled system is returned. To compute the impulse response function,

use dimpulse.





References

Akaike, H. (1973). ‘Information Theory and an Extension of the Likelihood Principle’. In B.N.

Petrov and F. Csaki (eds.), Proceedings of the Second International Symposium

of Information Theory. Budapest: Akademiai Kiado.

Anderson, B.D.O. (1978). ‘Second-Order Convergent Algorithms for the Steady-State Riccati

Equation’. International Journal Control, 28, 295–306.

Anderson, Brian D.O. and John B. Moore (1979). Optimal Filtering. Englewood Cliffs:

Prentice Hall.

Anderson, Evan W., L.P. Hansen, Ellen R. McGrattan, and T.J. Sargent (1995). ‘Mechanics

of Forming and Estimating Dynamic Linear Economies’. In John Rust (ed.),

Handbook of Computational Economics, forthcoming.

Anderson, Gary S. and George R. Moore (1985). ‘A Linear Algebraic Procedure for Solving

Linear, Perfect Foresight Models’. Economic Letters, vol. 17, No. 3, 247–252.

Ansley, C.F., and R. Kohn (1983). ‘Exact Likelihood of Vector Autoregressive-Moving Average

Process with Missing or Aggregated Data’. Biometrika, 70, 275–278.

Ansley, C.F., and R. Kohn (1985). ‘Estimation, Filtering, and Smoothing in State Space

Models with Incompletely Specified Initial Conditions’. The Annals of Statistics,

Vol. 13, No. 4, 1286–1316.

Bell, William (1984). ‘Signal Extraction for Nonstationary Time Series’. The Annals of

Statistics, Vol. 12, No. 2, pp. 646–664.

Barro, R. J. (1977). ‘Unanticipated Money Growth and Unemployment in the United States’.

American Economic Review, 67.

Barro, R.J. (1979). ‘On the Determination of the Public Debt’. Journal of Political Economy,

87, 940–71.

Becker, Gary and Kevin Murphy (1988). ‘A Model of Rational Addiction’. Journal of Political

Economy, 96:4, 675–700.

Beltrami, E.J. and M.R. Wohlers (1966). Distributions and the Boundary Values of Analytic

Functions. Academic Press, New York.

Bernanke, B. (1985). ‘Adjustment Costs, Durables, and Aggregate Consumption’. Journal of

Monetary Economics, 15, 41–68.

Bernanke, B. (1986). ‘Alternative Explorations of the Money-Income Correlation’. In Karl

Brunner and Allan H. Meltzer (eds.), Real Business cycles, Real Exchange Rates,

and Actual Policies. Carnegie-Rochester Conference Series on Public Policy. 25,

49–99, Amsterdam: North-Holland

Bergstrom, A.R. (1976). Statistical Inference in Continuous Time Economic Models. Amster-

dam: North-Holland.

Bergstrom, A.R. (1983). ‘Gaussian Estimation of Structural Parameters in Higher Order

Continuous Time Dynamic Models’. Econometrica, 51, 117–152.

Birchenhall, C.R., R.C. Bladen-Hovell, A.P.L. Chui, D.R. Osborne, and J.P. Smith (1989). ‘A

Seasonal Model of Consumption’. Economic Journal, Vol. 99, No. 397, Septem-

ber, pp. 837–843.

Blanchard, Olivier J., and C.M. Kahn (1980). ‘The Solution of Linear Difference Models

Under Rational Expectations’. Econometrica, 48: pp. 1305–11.

– 499 –



500 References

Blinder, A.S. and A. Deaton (1985). ‘The Time Series Consumption Function Revisited’.

Brookings Paper on Economic Activity, 2, 465–511.

Braun, R. Anton (1991). ‘The Dynamic Interaction of Distortionary Taxes and Aggregate

Variables in Postwar U.S. Data’. Mimeo. University of Virginia.

Breeden, D.T. (1979). ‘An Intertemporal Asset Pricing Model with Stochastic Consumption

and Investment Opportunities’. Journal of Financial Economics, 7, 265–296.

Breiman, Leo (1968). Probability. Addisson-Wesley Publishing Company, Reading, Mas-

sachusetts.

Brock, William A. (1982). ‘Asset Prices in a Production Economy’. In The Economics of

Information and Uncertainty (ed.), John J. McCall Chicago: University of Chicago

Press, pp. 1–43.

Brock, William A., and Leonard J. Mirman (1972). ‘Optimal Economic Growth and Uncer-

tainty: the Discounted Case’. Journal of Economic Theory, 4: 479–513.

Brock, W.A. and M.J.P. MaGill (1979). ‘Dynamics Under Uncertainty’. Econometrica, 47,

843–868.

Burdick, Clark, Lars Hansen and T.J. Sargent (1990). ‘Statistics for Detecting Hidden Peri-

odicity as a Source of Seasonality’. Mimeo. forthcoming.

Burridge, Peter and Kenneth F. Wallis (1990). ‘Seasonal Adjustment and Kalman Filtering:

Extension to Periodic Variances’. Journal of Forecasting, vol. 9, pp. 109-118.

Campbell, J.Y. (1986). ‘Bond and Stock Returns in a Simple Exchange Model’. Quarterly

Journal of Economics, 101, 785–803.

Campbell, J.Y. (1987). ‘Does Saving Anticipate Declining Labor Income? An Alternative

Test of the Permanent Income Hypothesis’. Econometrica, 55, 1249–1273.

Campbell, J.Y. and R.J. Shiller (1987). ‘Cointegration and Tests of Present Value Models’.

Journal of Political Economy, 95, 1062–1088.

Campbell, J.Y. and R.J. Shiller (1988). ‘Dividend-Price Ratios and Expectations of Future

Dividends and Discount Factors’. Review of Financial Studies, 1, 195–228.

Cassing, Shirley and Tryphon Kollintzas (1991). ‘Recursive Factor of Production Interrelations

and Endogenous Cycling’. International Economic Review, Vol. 32, No. 2, pp.

417–440.

Christiano, L.J. (1980). ‘Notes on Factoring Continuous Time Rational Spectral Densities’.

Mimeo. Federal Reserve Bank of Minneapolis.

Christiano, L.J. (1984). ‘The Effects of Aggregation over Time on Tests of the Representative

Agent Model of Consumption’. Mimeo. University of Chicago Working Papers in

Economics and Econometrics, 84–15. December.

Christiano, L.J. and M.S. Eichenbaum (1985). ‘A Continuous Time, General Equilibrium,

Inventory-Sales Model’. Mimeo. COMPLETE REFERENCE.

Christiano, L. J. and M.S. Eichenbaum (1986). ‘Temporal Aggregation and Structural Infer-

ence in Macroeconomics’. Carnegie-Rochester Conference on Public Policy, Vol.

26.

Christiano, L.J., M.S. Eichenbaum, and D. Marshall (1991). ‘The Permanent Income Hypoth-

esis Revisited’. Econometrica, Vol. 59, No. 2, pp. 397–423.

Churchill, R.V., J.W. Brown and R.F. Verhey (1974). Complex Variables and Applications.

3rd edition, New York: McGraw Hill.

Cleveland, W.P., and G.C. Tiao (1979). ‘Modeling Seasonal Time Series’. Économie Ap-
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