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In the solutions, we denote: 
 
 •  scalar values with italic, lower case letters, as in a or α 
 •  column vectors with boldface lower case letters, as in b, 
 •  row vectors as transposed column vectors, as in b′, 
 • single population parameters with greek letters, as in β, 
 • sample estimates of parameters with English letters, as in b as an estimate of β, 
 • sample estimates of population parameters with a caret, as in α  ˆ
 • matrices with boldface upper case letters, as in M or Σ, 
 • cross section observations with subscript i, time series observations with subscript t. 
 
These are consistent with the notation used in the text. 
 
  
 



Chapter 1 
 

Introduction 
 
There are no exercises in Chapter 1. 
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Chapter 2 
 

The Classical Multiple Linear 
Regression Model 
 
There are no exercises in Chapter 2. 
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Chapter 3 
 

Least Squares 
 

1. (a) Let . The normal equations are given by (3-12), , hence for each of the 

columns of X, x
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′ =X e 0

=ii iexk, we know that xk’e=0. This implies that and .  0=∑i ie 0∑
(b) Use  to conclude from the first normal equation that 0=∑i ie xbya −= . 

(c) Know that ∑  and . It follows then that 0=
i ie 0=∑ ii iex ( ) 0=−∑ ii i exx . Further, the latter 

implies ( )( ) 0=ibx−∑i
a−− ii yxx  or ( ) ( )( ) 0=−−−− xxbyyxx iii i∑  from which the result 

follows. 
 
2.  Suppose b is the least squares coefficient vector in the regression of y on X and c is any other Kx1 vector.  
Prove that the difference in the two sums of squared residuals is  
   (y-Xc)′(y-Xc)  -  (y-Xb)′(y-Xb)  =  (c - b)′X′X(c - b). 
Prove that this difference is positive.   
 Write c as b + (c - b).  Then, the sum of squared residuals based on c is 
(y - Xc)′(y - Xc) = [y - X(b + (c - b))] ′[y - X(b + (c - b))] = [(y - Xb) + X(c - b)] ′[(y - Xb) + X(c - b)] 
   =  (y - Xb) ′(y - Xb) + (c - b) ′X′X(c - b) +  2(c - b) ′X′(y - Xb). 
But, the third term is zero, as  2(c - b) ′X′(y - Xb) =  2(c - b)X′e  =  0.  Therefore,  
   (y - Xc) ′(y - Xc) = e′e + (c - b) ′X′X(c - b) 
or         (y - Xc) ′(y - Xc) - e′e  =  (c - b) ′X′X(c - b). 
The right hand side can be written as d′d where d = X(c - b), so it is necessarily positive.  This confirms what 
we knew at the outset, least squares is least squares.   
 
3. Consider the least squares regression of y on K variables (with a constant), X.  Consider an alternative set of 
regressors, Z = XP, where P is a nonsingular matrix.  Thus, each column of Z is a mixture of some of the 
columns of X.  Prove that the residual vectors in the regressions of y on X and y on Z are identical.  What 
relevance does this have to the question of changing the fit of a regression by changing the units of 
measurement of the independent variables? 
 The residual vector in the regression of y on X is MXy  =  [I - X(X′X)-1X′]y.  The residual vector in 
the regression of y on Z is 
  MZy   =  [I - Z(Z′Z)-1Z′]y      
   =  [I - XP((XP)′(XP))-1(XP)′)y  
         =  [I - XPP-1(X′X)-1(P′)-1P′X′)y   
   =  MXy 
Since the residual vectors are identical, the fits must be as well.  Changing the units of measurement of the 
regressors is equivalent to postmultiplying by a diagonal P matrix whose kth diagonal element is the scale 
factor to be applied to the kth variable (1 if it is to be unchanged).  It follows from the result above that this 
will not change the fit of the regression.   
 
4. In the least squares regression of y on a constant and X, in order to compute the regression coefficients on 
X, we can first transform y to deviations from the mean, y , and, likewise, transform each column of X to 
deviations from the respective column means; second, regress the transformed y on the transformed X without 
a constant.  Do we get the same result if we only transform y?  What if we only transform X? 
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 In the regression of y on i and X, the coefficients on X are  b  =  (X′M0X)-1X′M0y.  M0  =  I - i(i′i)-1i′ 
is the matrix which transforms observations into deviations from their column means. Since M0 is idempotent 
and symmetric we may also write the preceding as  [(X′M0′)(M0X)]-1(X′M0′M0y) which implies that the 
regression of M0y on M0X produces the least squares slopes.  If only X is transformed to deviations, we 
would compute [(X′M0′)(M0X)]-1(X′M0′)y  but, of course, this is identical.  However, if only y is transformed, 
the result is (X′X)-1X′M0y which is likely to be quite different.  We can extend the result in (6-24) to derive 
what is produced by this computation.  In the formulation, we let X1 be X and X2 is the column of ones, so 
that b2 is the least squares intercept.  Thus, the coefficient vector b defined above would be  b  =  (X′X)-1X′(y 
- ai). But, a = y - b′ x so b  =  (X′X)-1X′(y - i( y - b′ x )). We can partition this result to produce 

    (X′X)-1X′(y - i y )=  b  -  (X′X)-1X′i(b′ x )=  (I - n(X′X)-1 x x ′)b. 

(The last result follows from X′i  = n x .)  This does not provide much guidance, of course, beyond the 
observation that if the  means of the regressors are not zero, the resulting slope vector will differ from the 
correct least squares coefficient vector.    
 
5. What is the result of the matrix product M1M where M1 is defined in (3-19) and M is defined in (3-14)? 
  M1M = (I - X1(X1′X1)-1X1′)(I - X(X′X)-1X′)  =  M - X1(X1′X1)-1X1′M 
There is no need to multiply out the second term.  Each column of MX1 is the vector of residuals in the 
regression of the corresponding column of X1 on all of the columns in X.  Since that x is one of the columns in 
X, this regression provides a perfect fit, so the residuals are zero.  Thus, MX1 is a matrix of zeroes which 
implies that M1M = M.    
 
6. Adding an observation.  A data set consists of n observations on Xn and yn. The least squares estimator 
based on these n observations is b X 1( )n n n n

−′ ′= X X .ny  Another observation, xs and ys, becomes 
available. Prove that the least squares estimator computed using this additional observation is 

  1
, 1

1 ( ) (
1 ( )n s n n n s s s n

s n n s

y−
−

′ ′= + −
′ ′+

b b X X x x b
x X X x

).  

Note that the last term is es, the residual from the prediction of ys using the coefficients based on Xn and bn. 
Conclude that the new data change the results of least squares only if the new observation on y cannot be 
perfectly predicted using the information already in hand. 
 
7. A common strategy for handling a case in which an observation is missing data for one or more variables is 
to fill those missing variables with 0s or add a variable to the model that takes the value 1 for that one 
observation and 0 for all other observations. Show that this ‘strategy’ is equivalent to discarding the 
observation as regards the computation of b but it does have an effect on R2. Consider the special case in 
which X contains only a constant and one variable. Show that replacing the missing values of X with the 
mean of the complete observations has the same effect as adding the new variable. 
 
8.  Let Y denote total expenditure on consumer durables, nondurables, and services, and Ed, En, and Es are the 
expenditures on the three categories.  As defined, Y = Ed + En + Es.  Now, consider the expenditure system 
  Ed  =  αd  +  βdY  +  γddPd  +  γdnPn  +  γdsPs  +  εγd 
  En  =  αn  +  βnY  +  γndPd  +  γnnPn  +  γnsPs  +  εn 
  Es  =  αs  +  βsY  +  γsdPd   +  γsnPn  +  γssPs  +  εs. 
Prove that if all equations are estimated by ordinary least squares, then the sum of the income coefficients will 
be 1 and the four other column sums in the preceding model will be zero. 
 For convenience, reorder the variables so that X  =  [i, Pd, Pn, Ps, Y].  The three dependent variables 
are Ed, En, and Es, and Y  = Ed + En + Es.  The coefficient vectors are 
  bd  =  (X′X)-1X′Ed,   bn  =  (X′X)-1X′En, and  bs  =  (X′X)-1X′Es. 
The sum of the three vectors is 
  b   =  (X′X)-1X′[Ed + En + Es]  =  (X′X)-1X′Y. 
Now, Y is the last column of X, so the preceding sum is the vector of least squares coefficients in the 
regression of the last column of X on all of the columns of X, including the last.  Of course, we get a perfect 
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fit.  In addition, X′[Ed + En + Es] is the last column of X′X, so the matrix product is equal to the last column of 
an identity matrix. Thus, the sum of the coefficients on all variables except income is 0, while that on income 
is 1.  
 
9. Prove that the adjusted R2 in (3-30) rises (falls) when variable xk is deleted from the regression if the square 
of the t ratio on xk in the multiple regression is less (greater) than one. 
 The proof draws on the results of the previous problem.  Let RK

2
 denote the adjusted R2 in the full 

regression on K variables including xk, and let R1
2

denote the adjusted R2 in the short regression on K-1 
variables when xk is omitted.  Let and denote their unadjusted counterparts.  Then, RK

2 R1
2

   =  1  -  e′e/y′MRK
2 0y 

   =  1  -  eR1
2

1′e1/y′M0y 
where e′e is the sum of squared residuals in the full regression, e1′e1 is the (larger) sum of squared residuals in 
the regression which omits xk, and y′M0y = Σi (yi - y )2 

Then,   RK
2

=  1  -  [(n-1)/(n-K)](1 - ) RK
2

and   R1
2

=  1  -  [(n-1)/(n-(K-1))](1 - ). R1
2

The difference is the change in the adjusted R2 when xk is added to the regression, 
   RK

2
-  R1

2
=  [(n-1)/(n-K+1)][e1′e1/y′M0y] - [(n-1)/(n-K)][e′e/y′M0y]. 

The difference is positive if and only if the ratio is greater than 1.  After cancelling terms, we require for the 
adjusted R2 to increase that e1′e1/(n-K+1)]/[(n-K)/e′e]  >  1.  From the previous problem, we have that e1′e1  =  
e′e  +  bK

2(xk′M1xk), where M1 is defined above and bk is the least squares coefficient in the full regression of y 
on X1 and xk. Making the substitution, we require [(e′e  +  bK

2(xk′M1xk))(n-K)]/[(n-K)e′e  +  e′e]  >  1.  Since 
e′e  =  (n-K)s2, this simplifies to [e′e  +  bK

2(xk′M1xk)]/[e′e  +  s2]  >  1.  Since all terms are positive, the fraction 
is greater than one if and only bK

2(xk′M1xk)  >  s2  or  bK
2(xk′M1xk/s2)  >  1.  The denominator is the estimated 

variance of bk, so the result is proved.   
 
10. Suppose you estimate a multiple regression first with then without a constant.  Whether the R2 is higher in 
the second case than the first will depend in part on how it is computed.  Using the (relatively) standard 
method,  R2  =  1  -  e′e / y′M0y,  which regression will have a higher R2? 
 This R2 must be lower.  The sum of squares associated with the coefficient vector which omits the 
constant term must be higher than the one which includes it.  We can write the coefficient vector in the 
regression without a constant as c  =  (0,b*) where b*  =  (W′W)-1W′y, with W being the other K-1 columns of 
X.  Then, the result of the previous exercise applies directly.    
 
11. Three variables, N, D, and Y all have zero means and unit variances.  A fourth variable is C = N + D.  In 
the regression of C on Y, the slope is .8.  In the regression of C on N, the slope is .5.  In the regression of D on 
Y, the slope is .4.  What is the sum of squared residuals in the regression of C on D?  There are 21 
observations and all moments are computed using 1/(n-1) as the divisor. 
 We use the notation ‘Var[.]’ and ‘Cov[.]’ to indicate the sample variances and covariances.  Our 
information is   Var[N] = 1,  Var[D] = 1, Var[Y] = 1. 
Since C = N + D, Var[C] = Var[N] + Var[D] + 2Cov[N,D]  =  2(1 + Cov[N,D]). 
From the regressions, we have 
   Cov[C,Y]/Var[Y] = Cov[C,Y] = .8. 
But,   Cov[C,Y] = Cov[N,Y] + Cov[D,Y]. 
Also,   Cov[C,N]/Var[N] = Cov[C,N] = .5, 
but,   Cov[C,N] = Var[N] + Cov[N,D]  =  1 + Cov[N,D], so Cov[N,D] = -.5, 
so that   Var[C] = 2(1 + -.5) = 1. 
And,   Cov[D,Y]/Var[Y] = Cov[D,Y] = .4. 
Since          Cov[C,Y] = .8 = Cov[N,Y] + Cov[D,Y],  Cov[N,Y] = .4. 
Finally,      Cov[C,D] = Cov[N,D] + Var[D] = -.5 + 1 = .5. 
Now, in the regression of C on D, the sum of squared residuals is (n-1){Var[C] - (Cov[C,D]/Var[D])2Var[D]} 
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based on the general regression result Σe2 =  Σ(yi - y )2  - b2Σ(xi - x )2.  All of the necessary figures were 
obtained above.  Inserting these and n-1 = 20 produces a sum of squared residuals of 15.    
 
12. Using the matrices of sums of squares and cross products immediately preceding Section 3.2.3, compute 
the coefficients in the multiple regression of real investment on a constant, real GNP and the interest rate. 
Compute R2. The relevant submatrices to be used in the calculations are 
          Investment      Constant     GNP      Interest 
  Investment        *   3.0500    3.9926   23.521 
  Constant                    15      19.310      111.79 
  GNP                                     25.218      148.98 
  Interest                                          943.86 

The inverse of the lower right 3×3 block is (X′X)-1, 
     7.5874  

   (X′X)-1  =    -7.41859      7.84078 
       .27313   -.598953 .06254637 

The coefficient vector is   b  =  (X′X)-1X′y  =  (-.0727985, .235622, -.00364866)′.  The total sum of squares is 
y′y = .63652, so we can obtain  e′e  =  y′y  -  b′X′y.  X′y is given in the top row of the matrix.  Making the 
substitution, we obtain e′e  =  .63652 - .63291  =  .00361.  To compute R2, we require Σi (xi - y )2  =   
.63652  -  15(3.05/15)2  =  .01635333, so R2  =  1   -   .00361/.0163533  =  .77925. 
 
13. In the December, 1969, American Economic Review (pp. 886-896), Nathanial Leff reports the 
following least squares regression results for a cross section study of the effect of age composition on 
savings in 74 countries in 1964: 
 

log S/Y = 7.3439 + 0.1596 log Y/N + 0.0254 log G - 1.3520 log D1 - 0.3990 log D2 (R2 = 0.57) 
 

log S/N = 8.7851 + 1.1486 log Y/N + 0.0265 log G - 1.3438 log D1 - 0.3966 log D2 (R2 = 0.96)  
 
where S/Y = domestic savings ratio, S/N = per capita savings, Y/N = per capita income, D1 = percentage of 
the population under 15, D2 = percentage of the population over 64, and G = growth rate of per capita 
income.  Are these results correct?  Explain. 

The results cannot be correct.  Since log S/N = log S/Y + log Y/N by simple, exact algebra, the 
same result must apply to the least squares regression results.  That means that the second equation 
estimated must equal the first one plus log Y/N.  Looking at the equations, that means that all of the 
coefficients would have to be identical save for the second, which would have to equal its counterpart in 
the first equation, plus 1.  Therefore, the results cannot be correct.  In an exchange between Leff and 
Arthur Goldberger that appeared later in the same journal, Leff argued that the difference was simple 
rounding error.  You can see that the results in the second equation resemble those in the first, but not 
enough so that the explanation is credible. 
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Chapter 4 
 

Finite-Sample Properties of the Least 
Squares Estimator 
 

1. Suppose you have two independent unbiased estimators of the same parameter, θ, say θ andθ , with 

different variances, v

∧
1

∧
2

1 and v2.  What linear combination, = cθ
∧

1θ
∧

1 + c2θ
∧

2  is the minimum variance unbiased 
estimator of θ?  
 Consider the optimization problem of minimizing the variance of the weighted estimator.  If the 

estimate is to be unbiased, it must be of the form c1θ
∧

1 + c2θ
∧

2 where c1 and c2 sum to 1.  Thus, c2 = 1 - c1.  The 
function to minimize is Minc1L*  =  c1

2v1 + (1 - c1)2v2.  The necessary condition is  ∂L*/∂c1  =  2c1v1 - 2(1 - 
c1)v2  =  0  which implies  c1  =  v2 / (v1 + v2).  A more intuitively appealing form is obtained by dividing 
numerator and denominator by v1v2 to obtain c1  =  (1/v1) / [1/v1 + 1/v2].  Thus, the weight is proportional to the 
inverse of the variance.  The estimator with the smaller variance gets the larger weight.    
 
2.  Consider the simple regression  yi  =  βxi  +  εi. 

(a)  What is the minimum mean squared error linear estimator of β?  [Hint: Let the estimator beβ  =  c′y].  

Choose c to minimize Var[β ] + [E(β - β)]

∧

∧ ∧
2.  (The answer is a function of the unknown parameters.)   

(b)  For the estimator in (a), show that ratio of the mean squared error of  to that of the ordinary leastβ
∧

 squares 

estimator, b, is MSE[ ] / MSE[b]  =  τβ
∧

2 / (1 + τ2)  where  τ2  =  β2  / [σ2/x′x].  Note that τ is the square of the 
population analog to the `t ratio' for testing the hypothesis that β = 0, which is given after (4-14).  How do you 
interpret the behavior of this ratio as τ→∞? 

 First, β =  c′y = c′x + c′ε.   So  E[β ]  =  βc′x  and  Var[β ]  =  σ
∧ ∧ ∧

2c′c.  Therefore,  

MSE[β ]  =  β
∧

2[c′x - 1]2 + σ2c′c.  To minimize this, we set ∂MSE[β ]/∂c  =  2β
∧

2[c′x - 1]x + 2σ2c = 0. 
Collecting terms,     β2(c′x - 1)x  =  -σ2c 
Premultiply by x′ to obtain β2(c′x - 1)x′x  =  -σ2x′c 
or                 c′x  =  β2x′x / (σ2 + β2x′x). 
Then,              c  =  [(-β2/σ2)(c′x - 1)]x, 
so                 c  =  [1/(σ2/β2  +  x′x)]x. 

Then,               =  c′y  =  x′y / (σβ
∧

2/β2  +  x′x). 
The expected value of this estimator is 

    E[β ]  =  βx′x / (σ
∧

2/β2  +  x′x) 

so                 E[β ] - β  =  β(-σ
∧

2/β2) / (σ2/β2  +  x′x) 
                      =  -(σ2/β) / (σ2/β2  +  x′x) 
while its variance is  Var[x′(xβ + ε) / (σ2/β2  +  x′x)]  =  σ2x′x / (σ2/β2  +  x′x)2 
The mean squared error is the variance plus the squared bias,  

    MSE[β ]  =  [σ
∧

4/β2 + σ2x′x]/[σ2/β2  +  x′x]2. 
The ordinary least squares estimator is, as always, unbiased, and has variance and mean squared error 
    MSE(b)  =  σ2/x′x. 
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The ratio is taken by dividing each term in the numerator 

  
MSE β

ΜΣΕ(β)

∧








   =   
( )

( / ) / ( / ' ) ' ( / '

/ '

σ σ σ σ

σ

4 2 2 2 2

2 2 2
β

β

x x x x / x x

x x

+

+

)  

              =   [σ2x′x/β2 + (x′x)2]/(σ2/β2  +  x′x)2 
        =   x′x[σ2/β2 + x′x]/(σ2/β2  +  x′x)2 
        =   x′x/(σ2/β2  +  x′x) 
Now, multiply numerator and denominator by β2/σ2 to obtain 

  MSE[β ]/MSE[b]  =  β
∧

2x′x/σ2/[1 + β2x′x/σ2]  =  τ2/[1 + τ2] 
As τ→∞, the ratio goes to one.  This would follow from the result that the biased estimator and the unbiased 
estimator are converging to the same thing, either as σ2 goes to zero, in which case the MMSE estimator is the 
same as OLS, or as x′x grows, in which case both estimators are consistent.   
 
3.  Suppose that the classical regression model applies, but the true value of the constant is zero.  Compare the 
variance of the least squares slope estimator computed without a constant term to that of the estimator 
computed with an unnecessary constant term. 
 The OLS estimator fit without a constant term is b  =  x′y / x′x.  Assuming that the constant term is, 
in fact, zero, the variance of this estimator is Var[b]  =  σ2/x′x.  If a constant term is included in the regression, 

then,    b′  =  ( )( )x x y yi ii

n
− −

=1∑ / ( )x xii

n
−

=

2

1∑  

The appropriate variance is  σ2/ (x xii

n
−

=∑ 2

1
) as always.  The ratio of these two is 

   Var[b]/Var[b′] =  [σ2/x′x] / [σ2/ ( )x xii

n
−

=∑ 2

1
] 

But,   (x xii

n
−

=∑ 2

1
) =  x′x + n x 2 

so the ratio is  Var[b]/Var[b′]  =  [x′x + n x 2]/x′x  =  1 - n x 2/x′x  =  1 - { n x 2/[Sxx + n x 2]} < 1 
It follows that fitting the constant term when it is unnecessary inflates the variance of the least squares 
estimator if the mean of the regressor is not zero.   
 
4.  Suppose the regression model is  yi  =  α  +  βxi  +  εi   f(εi)  =  (1/λ)exp(-εi/λ) > 0. 
This is rather a peculiar model in that all of the disturbances are assumed to be positive.  Note that the 
disturbances have E[εi]  =  λ. Show that the least squares constant term is unbiased but the intercept is biased. 
 We could write the regression as  yi  =  (α + λ)  +  βxi  +  (εi - λ)  =  α*  +  βxi  +  εi

*.   Then, we know 
that E[εi

*] = 0, and that it is independent of xi.  Therefore, the second form of the model satisfies all of our 
assumptions for the classical regression.  Ordinary least squares will give unbiased estimators of α* and β.  As 
long as λ is not zero, the constant term will differ from α.    
 
5.  Prove that the least squares intercept estimator in the classical regression model is the minimum variance 
linear unbiased estimator. 
 Let the constant term be written as a  =  Σidiyi  =  Σidi(α + βxi + εi)  =  αΣidi + βΣidixi + Σidiεi.  In 
order for a to be unbiased for all samples of xi, we must have Σidi = 1 and Σidixi = 0.  Consider, then, 
minimizing the variance of a subject to these two constraints.  The Lagrangean is 
  L*  =  Var[a] + λ1(Σidi - 1) +  λ2Σidixi  where   Var[a] = Σi σ2di

2. 
Now, we minimize this with respect to di, λ1, and λ2.  The (n+2) necessary conditions are 
 ∂L*/∂di  =  2σ2di + λ1 + λ2xi,   ∂L*/∂λ1  =  Σi di - 1,   ∂L*/∂λ2  =  Σi dixi 
The first equation implies that di  =  [-1/(2σ2)](λ1 + λ2xi). 
Therefore,         Σi di     =  1  =  [-1/(2σ2)][nλ1 + (Σi xi)λ2] 
and    Σi dixi   =  0  =  [-1/(2σ2)][(Σi xi)λ1 + (Σi xi

2)λ2]. 
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We can solve these two equations for λ1 and λ2 by first multiplying both equations by -2σ2 then writing the 

resulting equations as The solution is  
n x
x x

i i

i i i i

Σ
Σ Σ 2

1

2

22
0






















 =

−











 
λ
λ

σ .   
-1λ

λ
σ1

2 2

22

0














=












−











n x

x x
i i

i i i i

Σ

Σ Σ
.

Note, first, that Σi xi = n x  .  Thus, the determinant of the matrix is nΣi xi
2 - (n x )2  =  n(Σi xi

2 - n x 2) = nSxx 

where Sxx (xii

n
−

=∑ 1
)x

2
.  The solution is, therefore, 

λ
λ

σ1

2

2 21
0

2
0







 =

−
−







−









nS

x n
nxxx

i iΣ 





x   

or   λ1  =  (-2σ2)(Σi xi
2/n)/Sxx 

 
   λ2  =  (2σ2 x )/Sxx 
Then,   di  =  [Σi xi

2/n  - x xi]/Sxx 
This simplifies if we writeΣxi

2  =  Sxx + n x 2, so Σi xi
2/n  =  Sxx/n + x 2.  Then, 

di  =  1/n  + x ( x  -  xi)/Sxx, or, in a more familiar form, di  =  1/n  - x (xi  - x )/Sxx. 

This makes the intercept term Σidiyi  =  (1/n)Σiyi  - x ( )x x yii

n
−

=∑ 1 i /Sxx  = y  - b x   which was to be shown.  

 
6. As a profit maximizing monopolist, you face the demand curve  Q  =  α  +  βP  +  ε. 
In the past, you have set the following prices and sold the accompanying quantities: 
  

Q    3   3   7   6  10  15  16  13  9  15  9  15  12  18  21 
P 18 16 17 12  15  15    4  13 11   6  8  10    7    7    7 

Suppose your marginal cost is 10.  Based on the least squares regression, compute a 95% confidence interval 
for the expected value of the profit maximizing output. 
 Let q = E[Q].  Then,   q  =  α  +  βP,  
or                 P  =  (-α/β) + (1/β)q. 
Using a well known result, for a linear demand curve, marginal revenue is  MR  =  (-α/$) + (2/β)q.  The profit 
maximizing output is that at which marginal revenue equals marginal cost, or 10.  Equating MR to 10 and 
solving for q produces  q  =  α/2  +  5β, so we require a confidence interval for this combination of the 
parameters. 

 The least squares regression results are =   20.7691  -  .840583.  The estimated covariance matrix 

of the coefficients is  .  The estimate of q is 6.1816.  The estimate of the variance 

of is  (1/4)7.96124 + 25(.056436) + 5(-.0624559)  or  0.278415, so the estimated standard error is 0.5276.  
The 95% cutoff value for a t distribution with 13 degrees of freedom is 2.161, so the confidence interval is  
6.1816 - 2.161(.5276) to 6.1816 + 2.161(.5276) or 5.041 to  7.322.  

Q
∧






7 96124 0 624559
0 624559 0 0564361
. .
. .

−
−





q
∧

 
7.  The following sample moments were computed from 100 observations produced using a random number 

generator: X′X = , X′y = ,  



















168146189109
14616712596
189125252123
10996123100



















712
615
810
460

(X′X)-1=  , y’y=3924 

0 03767 0 06263 06247 01003
0 06263 1129 1107 2102
0 06247 1107 1110 2170
01003 2192 2170 4 292

. . . .
. . . .
. . .
. . . .

− −
− −
− −

− −



















.
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The true model underlying these data is y = x1 + x2 + x3 + ε. 
 (a)  Compute the simple correlations among the regressors. 
 (b)  Compute the ordinary least squares coefficients in the regression of y on a constant, x1, x2, and x3. 
 (c)  Compute the ordinary least squares coefficients in the regression of y on a constant, x1, and x2, on 
a constant, x1, and x3, and on a constant, x2, and x3. 
 (d)  Compute the variance inflation factor associated with each variable). 
 (e)  The regressors are obviously collinear.  Which is the problem variable? 
 The sample means are (1/100) times the elements in the first column of X'X.  The sample covariance 
matrix for the three regressors is obtained as (1/99)[(X′X) ij -100 x xi j ].  

Sample Var[x] =  The simple correlation matrix is 
10127 0 069899 0555489

0 069899 0 755960 0 417778
0555489 0 417778 0 496969

. . .
. . .
. . .

















 . The vector of slopes is (X′X)
1 07971 78043

07971 1 68167
78043 68167 1

. .
.
. .

















. -1X′y =  [-.4022, 6.123, 5.910, -7.525]′.  For the 

three short regressions, the coefficient vectors are 
   (1) one, x1, and x2:  [-.223, 2.28, 2.11]′ 
   (2) one, x1, and x3   [-.0696, .229, 4.025]′ 
   (3) one, x2, and x3:  [-.0627, -.0918, 4.358]′ 
The magnification factors are 
   for x1:  [(1/(99(1.01727)) / 1.129]2  =  .094 
   for x2:  [(1/99(.75596)) / 1.11]2  =  .109 
   for x3:  [(1/99(.496969))/ 4.292]2  =  .068. 
The problem variable appears to be x3 since it has the lowest magnification factor.  In fact, all three are highly 
intercorrelated.  Although the simple correlations are not excessively high, the three multiple correlations are 
.9912 for x1 on x2 and x3, .9881 for x2 on x1 and x3, and .9912 for x3 on x1 and x2.   
 
8.  Consider the multiple regression of y on K variables, X and an additional variable, z.  Prove that under the 
assumptions A1 through A6 of the classical regression model, the true variance of the least squares estimator 
of the slopes on X is larger when z is included in the regression than when it is not.  Does the same hold for 
the sample estimate of this covariance matrix?  Why or why not? Assume that X and z are nonstochastic and 
that the coefficient on z is nonzero. 
 We consider two regressions.  In the first, y is regressed on K variables, X.  The variance of the least 
squares estimator, b  =  (X′X)-1X′y, Var[b]  =  σ2(X′X)-1.  In the second, y is regressed on X and an additional 
variable, z. Using result (6-18) for the partitioned regression, the coefficients on X when y is regressed on X 
and z are b.z  =  (X′MzX)-1X′Mzy where Mz   =  I - z(z′z)-1z′. The true variance of b.z is the upper left K×K 

matrix in  Var[b,c]  =  s2
X X X z
z X z X

'
' '

'









−1

.  But, we have already found this above.  The submatrix is Var[b.z]  =  

s2(X′MzX)-1.  We can show that the second matrix is larger than the first by showing that its inverse is smaller.  
(See Section 2.8.3).  Thus, as regards the true variance matrices (Var[b])-1 - (Var[b.z])-1  =  (1/σ2)z(z′z)-1z′ 
which is a nonnegative definite matrix.  Therefore Var[b]-1 is larger than Var[b.z]-1, which implies that Var[b] 
is smaller. 
 Although the true variance of b is smaller than the true variance of b.z, it does not follow that the 
estimated variance will be.  The estimated variances are based on s2, not the true σ2.  The residual variance 
estimator based on the short regression is s2  =  e′e/(n - K) while that based on the regression which includes z 
is sz

2  =  e.z′e.z/(n - K - 1).  The numerator of the second is definitely smaller than the numerator of the first, but 
so is the denominator.  It is uncertain which way the comparison will go.  The result is derived in the previous 
problem.  We can conclude, therefore, that if t ratio on c in the regression which includes z is larger than one 
in absolute value, then sz

2 will be smaller than s2. Thus, in the comparison,   Est.Var[b]  =  s2(X′X)-1  is based 
on a smaller matrix, but a larger scale factor than  Est.Var[b.z]  =  sz

2(X′MzX)-1.  Consequently, it is uncertain 
whether the estimated standard errors in the short regression will be smaller than those in the long one.  Note 
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that it is not sufficient merely for the result of the previous problem to hold, since the relative sizes of the 
matrices also play a role. But, to take a polar case, suppose z and X were uncorrelated. Then, XNMzX equals 
XNX.  Then, the estimated variance of b.z would be less than that of b without z even though the true variance 
is the same (assuming the premise of the previous problem holds).  Now, relax this assumption while holding 
the t ratio on c constant.  The matrix in Var[b.z] is now larger, but the leading scalar is now smaller.  Which 
way the product will go is uncertain.    
 
9.  For the classical regression model y = Xβ + ε with no constant term and K regressors, assuming that the 
true value of β is zero,  what is the exact expected value of F[K, n-K]  =  (R2/K)/[(1-R2)/(n-K)]? 
  The F ratio is computed as  [b′X′Xb/K]/[e′e/(n - K)].  We substitute e  =  M, and 
b  =  β  +  (X′X)-1X′ε  =  (X′X)-1X′ε.  Then, F  =  [ε′X(X′X)-1X′X(X′X)-1X′ε/K]/[ε ′Mε/(n - K)]  =   
[ε′(I - M)ε/K]/[ε′Mε/(n - K)]. 
 The exact expectation of F can be found as follows: F  =  [(n-K)/K][ε′(I - M)ε]/[ε′Mε].  So, its exact 
expected value is (n-K)/K times the expected value of the ratio.  To find that, we note, first, that M, and  

(I - M), are independent because M(I - M) = 0.  Thus, E{[ε(I - M)ε]/[ε′Mε]} = E[ε′(I- M)ε]×E{1/[ε′Mε]}. 
The first of these was obtained above, E[ε′(I - M)ε]  =  Kσ2.  The second is the expected value of the 
reciprocal of a chi-squared variable.  The exact result for the reciprocal of a chi-squared variable is 
E[1/χ2(n-K)]  =  1/(n - K - 2).  Combining terms, the exact expectation is E[F]  =  (n - K) / (n - K - 2).  Notice 
that the mean does not involve the numerator degrees of freedom.   ~ 
 
10.  Prove that E[b′b]  =  β′β  +  σ2Σk (1/λk )  where b is the ordinary least squares estimator and λk  is a 
characteristic root of X′X. 
 We write  b  =  β  +  (X′X)-1X′ε, so b′b  =  β′β  +  ε′X(X′X)-1(X′X)-1X′ε  +  2β′(X′X)-1X′ε.  The 
expected value of the last term is zero, and the first is nonstochastic.  To find the expectation of the second 
term, use the trace, and permute ε′X inside the trace operator.  Thus, 
 E[β′β]   =  β′β +  E[ε′X(X′X)-1(X′X)-1X′ε] 
  =  β′β +  E[tr{ε′X(X′X)-1(X′X)-1X′ε}] 
  =  β′β  +  E[tr{(X′X)-1X′εε′X(X′X)-1}] 
  =  β′β  +  tr[E{(X′X)-1X′εε′X(X′X)-1}] 
  =  β′β  +  tr[(X′X)-1X′E[εε′]X(X′X)-1] 
  =  β′β  +  tr[(X′X)-1X′(σ2I)X(X′X)-1] 
  =  β′β  +  σ2tr[(X′X)-1X′X(X′X)-1] 
  =  β′β  +  σ2tr[(X′X)-1] 
  =  β′β  +  σ2Σk (1/λk ) 
The trace of the inverse equals the sum of the characteristic roots of the inverse, which are the reciprocals of 
the characteristic roots of X′X.   
 
11.  Data on U.S. gasoline consumption in the United States in the years 1960 to 1995 are given in Table F2.2. 
 (a)  Compute the multiple regression of per capita consumption of gasoline, G/Pop, on all of the other 
explanatory variables, including the time trend, and report all results.  Do the signs of the estimates agree with 
your expectations? 
 (b)  Test the hypothesis that at least in regard to demand for gasoline, consumers do not differentiate 
between changes in the prices of new and used cars. 
 (c)  Estimate the own price elasticity of demand, the income elasticity, and the cross price elasticity 
with respect to changes in the price of public transportation. 
 (d)  Reestimate the regression in logarithms, so that the coefficients are direct estimates of the 
elasticities.  (Do not use the log of the time trend.)  How do your estimates compare to the results in the 
previous question?  Which specification do you prefer? 

(e) Notice that the price indices for the automobile market are normalized to 1967 while the 
aggregate price indices are anchored at 1982.  Does this discrepancy affect the results?  How?  
If you were to renormalize the indices so that they were all 1.000 in 1982, how would your 
results change?  

Part (a) The regression results for the regression of G/Pop on all other variables are: 
+-----------------------------------------------------------------------+ 
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| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = G        Mean=   100.7008114    , S.D.=   14.08790232     | 
| Model size: Observations =      36, Parameters =  10, Deg.Fr.=     26 | 
| Residuals:  Sum of squares= 117.5342920    , Std.Dev.=        2.12616 | 
| Fit:        R-squared=  .983080, Adjusted R-squared =          .97722 | 
| Model test: F[  9,     26] =  167.85,    Prob value =          .00000 | 
| Diagnostic: Log-L =    -72.3796, Restricted(b=0) Log-L =    -145.8061 | 
|             LogAmemiyaPrCrt.=    1.754, Akaike Info. Crt.=      4.577 | 
| Autocorrel: Durbin-Watson Statistic =    .94418,   Rho =       .52791 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant -1859.389661      1699.6133       -1.094   .2840 
 YEAR      .9485446803      .87693228        1.082   .2893  1977.5000 
 PG       -12.18681017      2.6071552       -4.674   .0001  2.3166111 
 Y         .1110971600E-01  .32230846E-02    3.447   .0019  9232.8611 
 PNC       6.889686945      13.203241         .522   .6062  1.6707778 
 PUC      -4.121840732      2.8707832       -1.436   .1630  2.3436389 
 PPT       6.034560575      4.0693845        1.483   .1501  2.7448611 
 PN        20.50251499      16.556303        1.238   .2267  2.0851111 
 PD        14.18819749      17.122006         .829   .4148  1.6505636 
 PS       -31.48299999      12.795328       -2.461   .0208  2.3689802  
The price and income coefficients are what one would expect of a demand equation (if that is what this is -- 
see Chapter 16 for extensive analysis).  The positive coefficient on the price of new cars would seem 
counterintuitive.  But, newer cars tend to be more fuel efficient than older ones, so a rising price of new cars 
reduces demand to the extent that people buy fewer cars, but increases demand if the effect is to cause people 
to retain old (used) cars instead of new ones and, thereby, increase the demand for gasoline.  The negative 
coefficient on the price of used cars is consistent with this view.  Since public transportation is a clear 
substitute for private cars, the positive coefficient is to be expected.  Since automobiles are a large component 
of the ‘durables’ component, the positive coefficient on PD might be indicating the same effect discussed 
above.  Of course, if the linear regression is properly specified, then the effect of PD observed above must be 
explained by some other means.  This author had no strong prior expectation for the signs of the coefficients 
on PD and PN.  Finally, since a large component of the services sector of the economy is businesses which 
service cars, if the price of these services rises, the effect will be to make it more expensive to use a car, i.e., 
more expensive to use the gasoline one purchases.  Thus, the negative sign on PS was to be expected. 
Part (b)   The computer results include the following covariance matrix for the coefficients on PNC and PUC 

174 326 2 62732
2 62732 8 2414

. .
. .









 . The test statistic for testing the hypothesis that the slopes on these two variables are 

equal can be computed exactly as in the first Exercise.  Thus,  
t[26]  = [6.889686945-(-4.121840732)]/[(174.326+8.2414-2(2.62732)]1/2 = 0.827. 
This is quite small, so the hypothesis is not rejected. 
Part (c)  The elasticities for the linear model can be computed using η  =  b( x / G P  ) for the various xs.  
The mean of G is 100.701.  The calculations for own price, income, and the price of public transportation are 

op/

 Variable       Coefficient                     Mean       Elasticity 
          PG     -12.18681017           2.3166111     -0.280 
           Y       0.011109716       9232.8611        +1.019 
         PPT       6.034560575          2.7448611     +0.164 
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Part (d)   The estimates of the coefficients of the loglinear and linear equations are 
 Constant  2.276660667     -1859.389661 
 YEAR     -.00440933049        0.9485446803 
 LPG      -.5380992257       -12.18681017    (Elasticity = -0.28) 
 LY        1.217805741         0.01110971600 (Elasticity = +1.019) 
 LPNC      .09006338891        6.889686945 
 LPUC     -.1146769420        -4.121840732 
 LPPT      .1232808093         6.034560575   (Elasticity = +0.164) 
 LPN       1.224804198        20.50251499 
 LPD       .9484508600        14.18819749 
 LPS      -1.321253144       -31.48299999 

 The estimates are roughly similar, but not as close as one might hope.  There is little prior 
information which would suggest which is the better model. 
Part (e)   We would divide Pd by .483, Pn by .375, and Ps by .353.  This would have no effect on the fit of the 
regression or on the coefficients on the other regressors.  The resulting least squares regression coefficients 
would be multiplied by these values. 
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Chapter 5 
 

Large-Sample Properties of the Least 
Squares and Instrumental Variables 
Estimators 
 
1.  For the classical regression model y = Xβ + ε with no constant term and K regressors, what is  
  plim F[K,n-K]  =  plim (R2/K)/[(1-R2)/(n-K)] 
assuming that the true value of β is zero?  What is the exact expected value? 
  The F ratio is computed as  [b′X′Xb/K]/[e′e/(n - K)].  We substitute e  =  M, and 
b  =  β  +  (X′X)-1X′ε  =  (X′X)-1X′ε.  Then, F  =  [ε′X(X′X)-1X′X(X′X)-1X′ε/K]/[ε ′Mε/(n - K)]  =   
[ε′(I - M)ε/K]/[ε′Mε/(n - K)].  The denominator converges to σ2 as we have seen before.  The numerator is an 
idempotent quadratic form in a normal vector.  The trace of (I - M) is K regardless of the sample size, so the 
numerator is always distributed as σ2 times a chi-squared variable with K degrees of freedom.  Therefore, the 
numerator of F does not converge to a constant, it converges to σ2/K times a chi-squared variable with K 
degrees of freedom.   Since the denominator of F converges to a constant, σ2, the statistic converges to a 
random variable, (1/K) times a chi-squared variable with K degrees of freedom.    
 
2.  Let ei be the ith residual in the ordinary least squares regression of y on X in the classical regression model 
and let εi be the corresponding true disturbance.  Prove that plim(ei - εi) = 0. 
 We can write ei as  ei  =  yi - b′xi  =  (β′xi + εi) - b′xi  =  εi  +  (b - β)′xi 
We know that plim b = β, and xi is unchanged as n increases, so as n→∞, ei is arbitrarily close to εi.    
 
3.  For the simple regression model,  yi  =  µ  +  εi, εi ~ N(0,σ2), prove that the sample mean is consistent and 

asymptotically normally distributed.   Now, consider the alternative estimator  = Σµ
∧

i wiyi, where 
wi = i/(n(n+1)/2) = i/Σi i.  Note that Σiwi = 1.  Prove that this is a consistent estimator of µ and obtain its 
asymptotic variance.  [Hint: Σi i2 = n(n+1)(2n+1)/6.] 
 The estimator is y =  (1/n)Σi yi  =  (1/n)Σi (µ + εi)  =  µ  +  (1/n)Σi εi. Then, E[ y ] µ+  (1/n)Σi E[εi]  =  µ 

and Var[ y ]=  (1/n2)Σi Σj Cov[εi,εj]  =  σ2/n. Since the mean equals µ and the variance vanishes as n→∞, y is 

consistent. In addition, since y is a linear  combination of normally distributed variables, y   has a normal 
distribution with the mean and variance given above in every sample.  Suppose that εi were not normally 
distributed.  Then, n ( y -µ)  =  (1/ n )(Σiεi) satisfies the requirements for the central limit theorem.  Thus, 
the asymptotic normal distribution applies whether or not the disturbances have a normal distribution. 

 For the alternative estimator,  =  Σµ
∧

i wiyi, so E[µ ] =  Σ
∧

i wiE[yi]  =  Σi wiµ  =  µΣi wi  =  µ and 

Var[ ]=  Σµ
∧

i wi
2σ2  =  σ2Σi wi

2.  The sum of squares of the weights is Σiwi
2 = Σi i2/[Σi i]2 =  

[n(n+1)(2n+1)/6]/[n(n+1)/2]2 =  [2(n2 + 3n/2 + 1/2)]/[1.5n(n2 + 2n + 1)]. As n→∞, the fraction will be 
dominated by the term (1/n) and will tend to zero.  This establishes the consistency of this estimator.  The last 

expression also provides the asymptotic variance.  The large sample variance can be found as Asy.Var[ ]  =  

(1/n)lim 

µ
∧

n→∞Var[ n ( - µ)].  For the estimator above, we can use Asy.Var[µ ]  =  (1/n)lim µ
∧ ∧

n→∞nVar[ - µ] =  
(1/n)lim 

µ
∧

n→∞σ2[2(n2 + 3n/2 + 1/2)]/[1.5(n2 + 2n + 1)] =  1.3333σ2.  Notice that this is unambiguously larger 
than the variance of the sample mean, which is the ordinary least squares estimator.    
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4.  In the discussion of the instrumental variables estimator, we showed that the least squares estimator, b, is 
biased and inconsistent.  Nonetheless, b does estimate something; plim b = θ = β + Q-1γ.  Derive the 
asymptotic covariance matrix of b and show that b is asymptotically normally distributed.   
 To obtain the asymptotic distribution, write the result already in hand as b = (β + Q-1γ) + (X′X)-1X′ε - 
Q-1ε. We have established that plim b = β + Q-1γ.  For convenience, let θ ≠ β denote β + Q-1γ = plim b.  Write 
the preceding in the form b - θ = (X′X/n)-1(X′ε/n) - Q-1γ.  Since plim(X′X/n) = Q, the large sample behavior 
of the right hand side is the same as that of plim (b - θ) = Q-1plim(X′ε/n) - Q-1γ.  That is, we may replace 
(X′X/n) with Q in our derivation.  Then, we seek the asymptotic distribution of  n (b - θ) which is the same 
as that of 

n [Q-1plim(X′ε/n) - Q-1γ] = Q-1 n 1
1n i ii

n
x ε   -   γ

=∑







.  From this point, the derivation is exactly the 

same as that when γ = 0, so there is no need to redevelop the result.  We may proceed directly to the same 
asymptotic distribution we obtained before.  The only difference is that the least squares estimator estimates θ, 
not β.   
 
5.  For the model in (5-25) and (5-26), prove that when only x* is measured with error, the squared correlation 
between y and x is less than that between y* and x*.  (Note the assumption that y* = y.)  Does the same hold 
true if y* is also measured with error? 
 Using the notation in the text,  Var[x*] = Q*  so, if y  =  βx*  + ε, 
  Corr2[y,x*]  =  (βQ*)2 / [(β2Q* + σε

2)Q*]  =  β2Q*/[$2Q* + σε
2)] 

In terms of the erroneously measured variables, 
  Cov[y,x]   =  Cov[βx* + ε,x* + u]  =  βQ*, 
so  Corr2[y,x]   =  (βQ*)2/[(β2Q* + εε2)(Q* + σu

2)] 
    =  [Q*/(Q* + σu

2)]Corr2[y,x*] 
If y* is also measured with error, the attenuation in the correlation is made even worse.  The numerator of the 
squared correlation is unchanged, but the term (β2Q* + σε

2) in the denominator is replaced with (β2Q* + σε
2 + 

σv
2) which reduces the squared correlation yet further.   � 

 
6. Christensen and Greene (1976) estimate a generalized Cobb-Douglas function of the form  
  log(C/Pf)  =  α  +  βlogQ  + γlog2Y  +  δklog(Pk/Pf)  +  δllog(Pl/Pf)  +  ε. 
Pk, Pl, and Pf indicate unit prices of capital, labor, and fuel, respectively, Q is output and C is total cost. The 
purpose of the generalization was to produce a ∪-shaped average total cost curve. (See Example 7.3 for 
discussion of Nerlove’s (1963) predecessor to this study.) We are interested in the output at which the cost 
curve reaches its minimum.  That is the point at which  [∂logC/∂logQ]|Q = Q* = 1, or Q*  =  10(1 - β)/(2γ).  
(You can simplify the analysis a bit by using the fact that 10x = exp(2.3026x).  Thus, Q*  =  exp(2.3026[(1- 
β)/(2γ)]).  
The estimated regression model using the Christensen and Greene (1970) data are as follows, where estimated 
standard errors are given in parentheses: 
 
( )

( ) ( ) ( )
( )

( )
( )

( )
( )./ln2608.0/ln07479.02/ln062413.0ln39091.0294.7/ln

068109.0061645.0

2

0051548.0036988.034427.0 flfkf PPPPQQPC ++++−=

 
The estimated asymptotic covariance of the estimators of β and γ is –0.000187067. R2=0.991538, e’e = 
2.443509. 
Using the estimates given in the example, compute the estimate of this efficient scale.  Estimate the 

asymptotic distribution of this estimator assuming that the estimate of the asymptotic covariance of and is 
-.00008. 

β
∧

γ
∧

 The estimate is  Q*  =  exp[2.3026(1 - .151)/(2(.117))]  =  4248. The asymptotic variance of Q*  =  

exp[2.3026(1 - β )/(2 ) is [∂Q
∧

γ
∧

*/∂β  ∂Q*/∂γ] Asy.Var[β , ][∂Q
∧

γ
∧

*/∂β  ∂Q*/∂γ]′.  The derivatives are 
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∂Q*/∂β   =   Q*(-2.3026 )/(2 )  =  -6312.  ∂Q
∧

β
∧

γ
∧

*/∂   = Q*[-2.3026(1-β )]/(2γ
∧

008
0144

∧
γ
∧

2)  =  -303326.  The estimated 

asymptotic covariance matrix is   .  The estimated asymptotic variance of the estimate of 

Q* is thus 13,095,615.  The estimate of the asymptotic standard deviation is 3619.  Notice that this is quite 
large compared to the estimate.  A confidence interval formed in the usual fashion includes negative values.  
This is common with highly nonlinear functions such as the one above.   

. .
. .
00384 00
00008 00

−
−










 
7.  The consumption function used in Example 5.3 is a very simple specification. One might wonder if the 
meager specification of the model could help explain the finding in the Hausman test.  The data set used 
for the example are given in Table F5.1.  Use these data to carry out the test in a more elaborate 
specification 

ct  =  β1 + β2yt + β3it + β4ct-1 + εt 

where ct is the log of real consumption, yt is the log of real disposable income and it is the interest rate (90 
day T bill rate). 
 Results of the computations are shown below.  The Hausman statistic is 25.1 and the t statistic for 
the Wu test is -5.3.  Both are larger than the table critical values by far, so the hypothesis that least squares 
is consistent is rejected in both cases. 
 
--> samp;1-204$ 
--> crea;ct=log(realcons);yt=log(realdpi);it=tbilrate$ 
--> crea;ct1=ct[-1];yt1=yt[-1]$ 
--> samp;2-204$ 
--> name;x=one,yt,it,ct1;z=one,it,ct1,yt1$ 
--> regr;lhs=ct;rhs=x$ 
--> calc;s2=ssqrd$ 
--> matr;bls=b;xx=<x'x>$ 
--> 2sls;lhs=ct;rhs=x;inst=z$ 
--> matr;biv=b;xhxh=1/ssqrd*varb$ 
--> matr;d=biv-bls;vb=xhxh-xx$ 
--> matr;list;h=1/s2*d'*mpnv(vb)*d$ 
--> regr;lhs=yt;rhs=z;keep=ytf$ 
--> regr;lhs=ct;rhs=x,ytf$ 
 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = CT       Mean=   7.884560181    , S.D.=   .5129509097     | 
| Model size: Observations =     203, Parameters =   4, Deg.Fr.=    199 | 
| Residuals:  Sum of squares= .1318216478E-01, Std.Dev.=         .00814 | 
| Fit:        R-squared=  .999752, Adjusted R-squared =          .99975 | 
| Model test: F[  3,    199] =********,    Prob value =          .00000 | 
| Diagnostic: Log-L =    690.6283, Restricted(b=0) Log-L =    -152.0255 | 
|             LogAmemiyaPrCrt.=   -9.603, Akaike Info. Crt.=     -6.765 | 
| Autocorrel: Durbin-Watson Statistic =   1.90738,   Rho =       .04631 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant -.4413074204E-01  .12917632E-01   -3.416   .0008 
 YT           .1833744954   .32943409E-01    5.566   .0000     7.9953259 
 IT       -.1654147681E-02  .29350320E-03   -5.636   .0000     5.2499007 
 CT1          .8216667186   .32285244E-01   25.450   .0000     7.8757433 
 
+-----------------------------------------------------------------------+ 
| Two stage   least squares regression    Weighting variable = none     | 
| Dep. var. = CT       Mean=   7.884560181    , S.D.=   .5129509097     | 
| Model size: Observations =     203, Parameters =   4, Deg.Fr.=    199 | 
| Residuals:  Sum of squares= .1344364458E-01, Std.Dev.=         .00822 | 
| Fit:        R-squared=  .999742, Adjusted R-squared =          .99974 | 
|             (Note:  Not using OLS.  R-squared is not bounded in [0,1] | 
| Model test: F[  3,    199] =********,    Prob value =          .00000 | 
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| Diagnostic: Log-L =    688.6346, Restricted(b=0) Log-L =    -152.0255 | 
|             LogAmemiyaPrCrt.=   -9.583, Akaike Info. Crt.=     -6.745 | 
| Autocorrel: Durbin-Watson Statistic =   2.02762,   Rho =      -.01381 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant -.2023353156E-01  .13906118E-01   -1.455   .1457 
 YT        .9004120016E-01  .38219830E-01    2.356   .0185     7.9953259 
 IT       -.1168585850E-02  .31214268E-03   -3.744   .0002     5.2499007 
 CT1          .9130592037   .37448694E-01   24.382   .0000     7.8757433 
 (Note: E+nn or E-nn means multiply by 10 to + or -nn power.) 
 
 
Matrix H        has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|    25.0986 
 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = YT       Mean=   7.995325935    , S.D.=   .5109250627     | 
| Model size: Observations =     203, Parameters =   4, Deg.Fr.=    199 | 
| Residuals:  Sum of squares= .1478971099E-01, Std.Dev.=         .00862 | 
| Fit:        R-squared=  .999720, Adjusted R-squared =          .99972 | 
| Model test: F[  3,    199] =********,    Prob value =          .00000 | 
| Diagnostic: Log-L =    678.9490, Restricted(b=0) Log-L =    -151.2222 | 
|             LogAmemiyaPrCrt.=   -9.488, Akaike Info. Crt.=     -6.650 | 
| Autocorrel: Durbin-Watson Statistic =   1.77592,   Rho =       .11204 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant  .4045167318E-01  .13493797E-01    2.998   .0031 
 IT        .2943892707E-03  .32000803E-03     .920   .3587     5.2499007 
 CT1       .9130171904E-01  .35621085E-01    2.563   .0111     7.8757433 
 YT1          .9057719332   .36310045E-01   24.945   .0000     7.9868448 
 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = CT       Mean=   7.884560181    , S.D.=   .5129509097     | 
| Model size: Observations =     203, Parameters =   5, Deg.Fr.=    198 | 
| Residuals:  Sum of squares= .1151983043E-01, Std.Dev.=         .00763 | 
| Fit:        R-squared=  .999783, Adjusted R-squared =          .99978 | 
| Model test: F[  4,    198] =********,    Prob value =          .00000 | 
| Diagnostic: Log-L =    704.3099, Restricted(b=0) Log-L =    -152.0255 | 
|             LogAmemiyaPrCrt.=   -9.728, Akaike Info. Crt.=     -6.890 | 
| Autocorrel: Durbin-Watson Statistic =   2.35530,   Rho =      -.17765 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant -.2023559983E-01  .12905160E-01   -1.568   .1185 
 YT           .4752021457   .62720658E-01    7.576   .0000     7.9953259 
 IT       -.1168629424E-02  .28967486E-03   -4.034   .0001     5.2499007 
 CT1          .9130504994   .34753056E-01   26.273   .0000     7.8757433 
 YTF         -.3851520841   .72054899E-01   -5.345   .0000     7.9953259 
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8. Suppose we change the assumptions of the model in Section 5.3 to AS5: (xi,ε ) are an independent and 
identically distributed sequence of random vectors such that  xi has a finite mean vector, µx, finite positive 
definite covariance matrix Σxx and finite fourth moments  E[xjxkxlxm] = φjklm for all variables.  How does the 
proof of consistency and asymptotic normality of b change?  Are these assumptions weaker or stronger 
than the ones made in Section 5.2?  
 The assumption above is considerably stronger than the assumption AD5.  Under these 
assumptions, the Slutsky theorem and the Lindberg Levy versions of the central limit theorem can be 
invoked. 
 
9. Now, assume only finite second moments of x; E[xi

2] is finite.  Is this sufficient to establish consistency 
of b?  (Hint: the Cauchy-Schwartz inequality (Theorem D.13), E[|xy|] ≤ {E[x2]}1/2{E[y2]}1/2 will be 
helpful.)  Is 
 The assumption will provide that (1/n)X′X converges to a finite matrix by virtue of the Cauchy-
Schwartz inequality given above.  If the assumptions made to ensure that plim (1/n)X′ε = 0 continue to 
hold, then consistency can be established by the Slutsky Theorem. 
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Chapter 6 
 

Inference and Prediction 
 
1. A multiple regression of y on a constant, x1, and x2 produces the results below: 

y =  4  +  .4x1  +  .9x2,  R2  =  8/60, e′e  =  520, n = 29, X′X  = .  Test the hypothesis that the two 

slopes sum to 1. 

29 0 0
0 50 10
0 10 80

















 The estimated covariance matrix for the least squares estimates is 

s2(X′X)-1  =  20
3900

3900 29 0 0
0 80 1
0 10 8

/
−

−

















0
0

  =   where s
.

. .
. .

69 0 0
0 40 051
0 051 256

−
−

















2  =  520/(29-3) = 20.  Then, 

the test may be based on t = (.4 + .9 - 1)/[.410 + .256 - 2(.051)]1/2  =  .399.  This is smaller than the critical 
value of 2.056, so we would not reject the hypothesis.    
 
2. .  Using the results in Exercise 1, test the hypothesis that the slope on x1 is zero by running the restricted 
regression and comparing the two sums of squared deviations. 
 In order to compute the regression, we must recover the original sums of squares and cross products 
for y.  These areX′y  =  X′Xb  =  [116, 29, 76]′.  The total sum of squares is found using  R2 = 1 -  e′e/y′M0y, 
so y′M0y  =  520 / (52/60)  =  600. The means are x1 =  0, x2 =  0, y =  4, so, y′y  =  600 + 29(42)  =  1064.  
The slope in the regression of y on x2 alone is b2  =  76/80, so the regression sum of squares is b2

2(80)  =  72.2, 
and the residual sum of squares is 600  -  72.2  =  527.8.  The test based on the residual sum of squares is F  =    
[(527.8 - 520)/1]/[520/26]  =  .390.   In the regression of the previous problem, the t-ratio for testing the same 
hypothesis would be  t = .4/(.410)1/2 = .624 which is the square root of .39.    
 
3.  The regression model to be analyzed is y  =  X1β1 + X2β2 + , where X1 and X2 have K1 and K2 columns, 
respectively.  The restriction is β2 = 0.   
 (a)  Using (6-14), prove that the restricted estimator is simply [b1′,0′]′ where b1 is the least squares 
coefficient vector in the regression of y on X1. 
 (b)  Prove that if the restriction is β2 = β2

0 for a nonzeroβ2
0, the restricted estimator of β1 is b1*  =  

(X1′X1)-1X1′(y - X2β). 
 For the current problem, R = [0,I] where I is the last K2 columns.  Therefore, R(X′X)-1RN is the 
lower right K2×K2 block of (X′X)-1.  As we have seen before, this is (X2′M1X2)-1.  Also, (X′X)-1R′ is the last 

K2 columns of (X′X)-1.  These are (X′X)-1R′     =   [See (2-74).] Finally, 

since q = 0, Rb - q = (0b

- X X X X X M X
X M X
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1 + Ib2) - 0 = b2.  Therefore, the constrained estimator is 

b*  =  (X
b
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2′M1X2)b2,  where b1 and b2 are the multiple regression 

coefficients in the regression of y on both X1 and X2.  (See Section  6.4.3 on partitioned regression.)  

Collecting terms, this produces b*  =  .   But, we have from Section 6.3.4 

that b

- X X X X b
b

1 1 1 2 2

2

( ' ) '− 





1

1  =  (X1′X1)-1X1′y - (X1′X1)-1X1′X2b2 so the preceding reduces to b*  =   which was to 

be shown. 

( ' ) 'X X X y
0

1 1 1
−











1
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 If, instead, the restriction is β2 = β2
0 then the preceding is changed by replacing Rβ - q = 0 with  

Rβ - β2
0  = 0.  Thus,  Rb - q  =  b2 - β2

0.  Then, the constrained estimator is 

b*  =  (X
b
b

1

2









 -  - X X X X X M X

X M X
1 1 1 2 2 1 2

2 1 2

( ' ) ' ( ' )
( ' )

− −

−













1 1

1 2′M1X2)(b2 - β2
0) 

or 

b*  =   
b
b

1

2









 +  ( ' ) ' ( )

)
X X X X b

 -  b
1 1 1 2 2

2

− −











1
2
0

2
0

β
β(

Using the result of the previous paragraph, we can rewrite the first part as 
  b1*  =  (X1′X1)-1X1′y - (X1′X1)-1X1′X2β2

0 =  (X1′X1)-1X1′(y - X2β2
0) 

which was to be shown.    
 
4.  The expression for the restricted coefficient vector in (6-14) may be written in the form b* = [I - CR]b + w, 
where w does not involve b.  What is C?  Show that covariance matrix of the restricted least squares estimator 
is σ2(X′X)-1  -  σ2(X′X)-1R′[R(X′X)-1R′]-1R(X′X)-1 and that this matrix may be written as  
Var[b]{[Var(b)]-1  -  R′[Var(Rb)]-1R}Var[b] 
 By factoring the result in (6-14), we obtain  b*  =  [I - CR]b + w where C = (X′X)-1R′[R(X′X)-1R′]-1  
and  w   =  Cq.  The covariance matrix of the least squares estimator is 
 Var[b*] =  [I - CR]σ2(X′X)-1[I - CR]′ 
  =  σ2(X′X)-1 + σ2CR(X′X)-1R′C′ - σ2CR(X′X)-1 - σ2(X′X)-1R′C′. 
By multiplying it out, we find that CR(X′X)-1  =  (X′X)-1R′(R(X′X)-1R′)-1R(X′X)-1 =  CR(X′X)-1R′C′ 
so Var[b*]  =  σ2(X′X)-1 - σ2CR(X′X)-1R′C′ =  σ2(X′X)-1 - σ2(X′X)-1R′[R(X′X)-1R′]-1R(X′X)-1 
This may also be written as  Var[b*] = σ2(X′X)-1{I - R′(R(X′X)-1R′)-1R(X′X)-1} 
    = σ2(X′X)-1{[σ2(X′X)-1]-1 - R′[Rσ2(X′X)-1R′]-1R}σ2(X′X)-1 
Since Var[Rb]  =  Rσ2(X′X)-1R′  this is the answer we seek.   
 
5.  Prove the result that the restricted least squares estimator never has a larger variance matrix than the 
unrestricted least squares estimator. 
 The variance of the restricted least squares estimator is given in the second equation in the previous 
exercise.  We know that this matrix is positive definite, since it is derived in the form B′σ2(X′X)-1B′, and 
σ2(X′X)-1 is positive definite. Therefore, it remains to show only that the matrix subtracted from Var[b] to 
obtain Var[b*] is positive definite.  Consider, then, a quadratic form in Var[b*] 
 z′Var[b*]z  = z′Var[b]z - σ2z′(X′X)-1(R′[R(X′X)-1R′]-1R)(X′X)-1z 
              = z′Var[b]z - w′[R(X′X)-1R′]-1w   where  w  = σR(X′X)-1z. 
It remains to show, therefore, that the inverse matrix in brackets is positive definite.  This is obvious since its 
inverse is positive definite. This shows that every quadratic form in Var[b*] is less than a quadratic form in 
Var[b] in the same vector.   
 
6.  Prove the result that the R2 associated with a restricted least squares estimator is never larger than that 
associated with the unrestricted least squares estimator.  Conclude that imposing restrictions never improves 
the fit of the regression. 
 The result follows immediately from the result which precedes (6-19).  Since the sum of squared 
residuals must be at least as large, the coefficient of determination, COD  =  1 - sum of squares / Σi (yi - y )2, 
must be no larger.   
 
7.  The Lagrange multiplier test of the hypothesis Rβ-q=0 is equivalent to a Wald test of the hypothesis that λ 
= 0, where λ is defined in (6-14).  Prove that  χ2  =  λ′{Est.Var[λ]}-1λ  =  (n-K)[e*′e*/e′e  -  1].  Note that the 
fraction in brackets is the ratio of two estimators of σ2.  By virtue of (6-15) and the preceding section, we 
know that this is greater than 1.  Finally, prove that the Lagrange multiplier statistic is simply JF, where J is 
the number of restrictions being tested and F is the conventional F statistic given in (6-20). 
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 For convenience, let  F = [R(X′X)-1R′]-1.  Then, λ = F(Rb - q) and the variance of the vector of 
Lagrange multipliers is Var[8]  =  FRσ2(X′X)-1R′F =  σ2F.  The estimated variance is obtained by replacing 
σ2 with s2.  Therefore, the chi-squared statistic is 
χ2  =  (Rb - q) ′F′(s2F)-1F(Rb - q)   =  (Rb - q) ′[(1/s2)F](Rb - q) 
        =  (Rb - q) ′[R(X′X)-1R′]-1(Rb - q)/[e′e/(n - K)] 
This is exactly J times the F statistic defined in (6-19) and (6-20).  Finally, J times the F statistic in (6-20) 
equals the expression given above.   
 
8. Use the Lagrange multiplier test to test the hypothesis in Exercise 1. 
 We use (6-19) to find the new sum of squares.  The change in the sum of squares is 
   e*′e* - e′e  =  (Rb - q) ′[R(X′X)-1R′]-1(Rb - q) 
For this problem,  (Rb - q)  =  b2 + b3 - 1  =  .3.  The matrix inside the brackets is the sum of the 4 elements in 
the lower right block of (X′X)-1.  These are given in Exercise 1, multiplied by s2 = 20.  Therefore, the required 
sum is [R(X′X)-1R′]  =  (1/20)(.410 + .256 - 2(.051)) = .028.  Then, the change in the sum of squares is   
.32 / .028  =  3.215.  Thus, e′e = 520, e*′e* = 523.215, and the chi-squared statistic is  26[523.215/520  -  1]  =  
.16.  This is quite small, and would not lead to rejection of the hypothesis.   Note that for a single restriction, 
the Lagrange multiplier statistic is equal to the F statistic which equals, in turn, the square of the t statistic used 
to test the restriction.  Thus, we could have obtained this quantity by squaring the .399 found in the first 
problem (apart from some rounding error).   
 
9. Using the data and model of Example 2.3, carry out a test of the hypothesis that the three aggregate price 
indices are not significant determinants of the demand for gasoline. 
 The sums of squared residuals for the two regressions are 207.644 when the aggregate price indices 
are included and 586.596 when they are excluded.  The F statistic is F = [(586.596 - 207.644)/3]/[207.644/17]  
=  10.342.  The critical value from the F table is 3.20, so we would reject the hypothesis.    
 
10. The model of Example 2.3 may be written in logarithmic terms as 
lnG/Pop =  α + βplnPg + βylnY + γnclnPnc + γuclnPuc + γptlnPpt + βtyear + δdlnPd + δnlnPn  +  δslnPs + ε. 
Consider the hypothesis that the micro elasticities are a constant proportion of the elasticity with respect to 
their corresponding aggregate.  Thus, for some positive 2 (presumably between 0 and 1),  
  γnc  =  2δd, γuc  =  2δd, γpt  =  2δs. 
The first two imply the simple linear restriction γnc  = γuc.  Taking ratios, the first (or second) and third imply 
the  nonlinear restriction  γnc/γpt  =  δd/δs. 
(a)  Describe in detail how you would test the validity of the restriction. 
(b)  Using the gasoline market data in Table F2.2, test the restrictions separately and jointly. 
 Since the restricted model is quite nonlinear, it would be quite cumbersome to estimate and examine 
the loss in fit.  We can test the restriction using the unrestricted model.  For this problem, 
   f  =  [γnc - γuc, γncδs - γptδd] ′ 
The matrix of derivatives, using the order given above and " to represent the entire parameter vector, is 

G =  = .  The parameter estimates are 
∂ ∂
∂ ∂

f
f

1
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/
/
α
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0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0

−
− −









δ δ γs d pt ncγ

a = 18.5454, cuc = -.201536, dd = 1.50607, bp = -.581437, cpt = .0805074, dn = .999474, by = 1.39438, 
bt = -.0125129, ds = -.817896, cnc = -.294769. 
Thus, f  =  [-.092322, .119841]′.  The covariance matrix to use for the tests is 

  Gs2(X′X)-1G′  =   
. .
. .
053285 0362998
0362998 0342649

−
−










The statistic for the joint test  is χ2  =  f′[Gs2(X′X)-1G′]-1f  =  .5789.   This is less than the critical value for a 
chi-squared with two degrees of freedom, so we would not reject the joint hypothesis.  For the individual 
hypotheses, we need only compute the equivalent of a t ratio for each element of f.  Thus, 
  z1  =  -.092322/(.053285)2   =  .3999 
and  z2  =   .119841/(.0342649)2  =  .6474. 
Neither is large, so neither hypothesis would be rejected.  (Given the earlier result, this was to be expected.). 
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11.  Prove that under the hypothesis that Rβ = q, the estimator s  =  (y - Xb*)′(y - Xb*)/(n - K + J), where J is 
the number of restrictions, is unbiased for σ2. 
 First, use (6-19) to write  e*′e*  =  e′e + (Rb - q)′[R(X′X)-1R′]-1(Rb - q).  Now, the result that E[e′e] = 
(n - K)σ2 obtained in Chapter 6 must hold here, so E[e*′e*]  =  (n - K)σ2 + E[(Rb - q)′[R(X′X)-1R′]-1(Rb - q)]. 
Now, b  =  β  +  (X′X)-1X′ε,  so  Rb - q  =  Rβ - q  +  R(X′X)-1X′ε.  But, Rβ - q  =  0,  so under the 
hypothesis, Rb - q  =  R(X′X)-1X′ε.  Insert this in the result above to obtain  
E[e*′e*] = (n-K)σ2 + E[ε′X(X′X)-1R′[R(X′X)-1R′]-1R(X′X)-1X′ε].  The quantity in square brackets is a scalar, 
so it is equal to its trace. Permute ε′X(X′X)-1R′ in the trace to obtain 
  E[e*′e*]  =  (n - K)σ2  +  E[tr{[R(X′X)-1R′]-1R(X′X)-1X′εε′X(X′X)-1R′]} 
We may now carry the expectation inside the trace and use  E[εε′]  =  σ2I to obtain 
  E[e*′e*]  =  (n - K)σ2 + tr{[R(X′X)-1R′]-1R(X′X)-1X′σ2IX(X′X)-1R′]} 
Carry the σ2 outside the trace operator, and after cancellation of the products of matrices times their inverses, 
we obtain E[e*′e*]  =  (n - K)σ2 + σ2tr[IJ]  =  (n - K + J)σ2.  
 
12. Show that in the multiple regression of y on a constant, x1, and x2, while imposing the restriction  
β1 + β2 = 1 leads to the regression of y - x1 on a constant and x2 - x1. 
 For convenience, we put the constant term last instead of first in the parameter vector.  The constraint 
is Rb - q = 0 where  R  =  [1  1  0]  so  R1  =  [1]  and R2  =  [1,0].  Then, β1 = [1]-1[1 - β2]  =  1  -  β2.  Thus,  y  
=  (1 - β2)x1 + β2x2 + αi + ε or  y - x1  =  β2(x2 - x1) + αi + ε.   
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Chapter 7 
 

Functional Form and Structural 
Change 
 
1.   In Solow's classic (1957) study of technical change in the U.S. Economy, he suggests the following 
aggregate production function: q(t)  =  A(t)f[k(t)] where q(t) is aggregate output per manhour, k(t) is the 
aggregate capital labor ratio, and A(t) is the technology index.  Solow considered four static models, 
  q/A  =  α + βlnk,  q/A  =  α - β/k,  ln(q/A)  =  α + βlnk,  ln(q/A)  =  α - β/k. 
 (He also estimated a dynamic model, q(t)/A(t) - q(t-1)/A(t-1) = α + βk.) 
 (a)  Sketch the four functions. 
 (b)  Solow's data for the years 1909 to 1949 are listed in Table A8.1: (Op. cit., page 314.  Several 
variables are omitted.)  Use these data to estimate the α and β of the four functions listed above.  (Note, your 
results will not quite match Solow’s.  See the next problem for resolution of the discrepancy.)  Sketch the 
functions using your particular estimates of the parameters. 
 The least squares estimates of the four models are 
  q/A      =  .45237   + .23815lnk 
  q/A      =  .91967   - .61863/k 
  ln(q/A)  =  -.72274  + .35160lnk 
  ln(q/A)  =  -.032194 - .91496/k 
At these parameter values, the four functions are nearly identical.  A plot of the four sets of predictions from 
the regressions and the actual values appears below.    
 
2.  In the aforementioned study, Solow states 
 “A scatter of q/A against k is shown in Chart 4. Considering the amount of a priori doctoring which 
the raw figures have undergone, the fit is remarkably tight.  Except, that is, for the layer of points which are 
obviously too high.  These maverick observations relate to the seven last years of the period, 1943-1949.  
From the way they lie almost exactly parallel to the main scatter, one is tempted to conclude that in 1943 the 
aggregate production function simply shifted. 
(a)  Draw a scatter diagram of q/A against k.  [Or, obtain Solow’s original study and examine his.  An 
alternative source of the original paper is the volume edited by A. Zellner (1968).] 
(b)  Estimate the four models you estimated in the previous problem including a dummy variable for the years 
1943 to 1949.  How do your results change?  (Note, these results match those reported by Solow, though he 
did not report the coefficient on the dummy variable.) 
(c)  Solow went on to surmise that, in fact, the data were fundamentally different in the years before 1943 than 
during and after.  If so, one would guess that the regression should be as well (though whether the change is 
merely in the data or in the underlying production function is not settled). Use a Chow test to examine the 
difference in the two subperiods using your four functional forms.  Note that with the dummy variable, you 
can do the test by introducing an interaction term between the dummy and whichever function of k appears in 
the regression.  Use an F test to test the hypothesis. 
 
 

 23 



  

The regression results for the various models are listed below. (d is the dummy variable equal to 1 for the last  
seven years of the data set.  Standard errors for parameter estimates are given in parentheses.) 
        α                    β                  γ                 δ                R2                    e′e 
Model 1:q/A = α + βlnk + γd + δ(dlnk) + ε 
.4524      .2381                           .94355        .00213 
(.00903)   (.00932) 
.4477      .2396      .01900               .99914       .000032 
(.00113)   (.00117)    (.000384) 
.4476      .2397      .02746   -.08883     .99915       .000032 
(.00115)   (.00118)    (.0119)   (.0126) 
Model 2: q/A = α - β(1/k) + γd + δ(d/k) + ε 
  .9168      .6186                         .94915       .001915 
(.00891)    (.0229) 
.9167      .6185     .01961                .99321       .000256 
(.00331)   (.00849)   (.00108) 
.9168      .6187    .008651     .02140     .99322       .000255 
(.00336)   (.00863)    (.0354)    (.0917) 
Model 3: ln(q/A) = α + βlnk + γd + δ(dlnk) + ε 
-.7227       .3516                          .94069       .004882 
(.0137)     (.0141) 
-.7298       .3538    .002881               .99918       .000068 
(.00164)   (.00169)   (.000554) 
-.7300       .3540     .04961    -.02182    .99921       .000065 
(.00164)   (.00148)   (.0171)    (.0179) 
Model 4: ln(q/A) = α - β(1/k) + γd + δ(d/k) + ε 
-.03219      .9150                           .94964       .004146 
(.0131)     (.0337) 
-.03665      .9148     .02572                .99629       .000305 
(.00361)   (.00928)   (.00118) 
-.03646      .9153    .004290     .05556     .99632       .000303 
(.00366)   (.00941)   (.0386)    (.0999) 
 
 

 24 



 The scatter diagram is shown below. 
 

 
The last seven years of the data set show clearly the effect observed by Solow.   
 For the four models, the F test of the third specification against the first is equivalent to the 
Chow-test.  The statistics are: 
   Model 1:  F  =  (.002126 - .000032)/2 / (.000032/37)  = 1210.6 
   Model 2:  F  =                                          = 120.43 
   Model 3:  F  =                                          = 1371.0 
   Model 4:  F  =                                          = 234.64 
The critical value from the F table for 2 and 37 degrees of freedom is 3.26, so all of these are statistically 
significant.  The hypothesis that the same model applies in both subperiods must be rejected.    
 
3.     A regression model with K = 16 independent variables is fit using a panel of 7 years of data.  The 
sums of squares for the seven separate regressions and the pooled regression are shown below.  The model 
with the pooled data allows a separate constant for each year. Test the hypothesis that the same coefficients 
apply in every year. 

          1954      1955      1956      1957      1958      1959      1960      All 

Observations           65          55          87           95       103          87          78      570 
        e′e                          104          88        206         144      199         308        211    1425 
 The F statistic could be computed as 
  F  =   {[1425 - (104 + 88 + ... + 211)] / (70 - 16)}/[(104 + 88 + ... + 211) / (570 - 70)]  =  1.343 
The 95% critical value for the F distribution with 54 and 500 degrees of freedom is 1.363.   

 
4.  Reverse Regression  A common method of analyzing statistical data to detect discrimination in the 
workplace is to fit the following regression: 
 (1)   y  =  α  +  β′x  +  γd  +  ε, 
where y is the wage rate and d is a dummy variable indicating either membership (d=1) or nonmembership 
(d=0) in the class toward which it is suggested the discrimination is directed.  The regressors, x, include 
factors specific to the particular type of job as well as indicators of the qualifications of the individual.  The 
hypothesis of interest is H0: γ < 0 vs. H1: γ = 0.  The regression seeks to answer the question "in a given job, 
are individuals in the class (d=1) paid less than equally qualified individuals not in the class (d=0)?"  Consider, 
however, the alternative possibility.  Do individuals in the class in the same job as others, and receiving the 
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same wage, uniformly have higher qualifications?  If so, this might also be viewed as a form of discrimination.  
To analyze this question,  Conway and Roberts (1983) suggested the following procedure: 
 (a)  Fit (1) by ordinary least squares. Denote the estimates a, b,and c. 
 (b)  Compute the set of qualification indices, 
 (2)   q  =  ai  +  Xb. 
Note the omission of cd from the fitted value. 
 (c)  Regress q on a constant, y, and d.  The equation is 
 (3)   q  =  α*  +  β*y  +  γ*d  +  ε*. 
The analysis suggests that if γ < 0, γ* > 0. 
(1)  Prove that the theory notwithstanding, the least squares estimates, c and c* are related by 

 (4)   c*  = 
( )

 - c 
(

( )(
y y R

P ryd

1
2

2
1

1 1
− −
− −

)
)

where   y1 is the mean of y for observations with d = 1, 

   y is the mean of y for all observations, 
   P is the mean of d, 
   R2 is the coefficient of determination for (1) 
and   is the squared correlation between y and d. ryd

2

 [Hint:  The model contains a constant term.  Thus, to simplify the algebra, assume that all variables are 
measured as deviations from the overall sample means and use a partitioned regression to compute the 
coefficients in (3).  Second, in (2), use the fact that based on the least squares results, 
   y   =  ai  +  Xb  +  cd  +  e, 
so   q   =  y  -  cd  -  e. 
From here on, we drop the constant term.]  Thus, in the regression in (c), you are regressing [y - cd - e] on y 
and d.  Remember, all variables are in deviation form. 
(2)  Will the sample evidence necessarily be consistent with the theory? [Hint: suppose c = 0?] 
 Using the hint, we seek the c* which is the slope on d in the regression of q = y - cd - e on y and d.  

The regression coefficients are   =  .  In the 

preceding, note that (y′y,d′y)′ is the first column of the matrix being inverted while c(y′d,d′d)′ is c times the 
second.   An inverse matrix times the first column of the original matrix is the first column of an identity 
matrix, and likewise for the second.   Also, since d was one of the original regressors in (1), d′e = 0, and, of  
course, y′e = e′e. If we combine all of these, the coefficient vector is  
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second (lower) of the two coefficients.  The matrix product at the end is e′e times the first column of the 
inverse matrix, and we wish to find its second (bottom) element.  Therefore,  collecting what we have thus far, 
the desired coefficient is   c

−





 −






 −


















−1
0

0
1

1
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*  = -c - e′e times the off diagonal element in the inverse matrix.  The off diagonal 
element is 
 -d′y / [(y′y)(d′d) - (y′d)2]    =   -d′y / {[(y′y)(d′d)][1  -  (y′d)2/[(y′y)(d′d)]]} 
    =   -d′y / [(y′y)(d′d)(1 - )]. ryd

2

Therefore,  c*            =  [(e′e)(d′y)] / [(y′y)(d′d)(1 - )] -  c ryd
2

 (The two negative signs cancel.)  This can be further reduced.  Since all variables are in deviation form, 
e′e/y′y is (1 - R2) in the full regression.  By multiplying it out, you can show that d = P so that 
  d′d  =  Σi (di - P)2  =  nP(1-P) 
and   d′y  =  Σi (di - P)(yi - y )  =  Σi(di - P)yi  =  n1( y1  -  y ) 
where n1 is the number of observations which have di = 1.  Combining terms once again, we have 
  c*  =  {[n1( y1  -  y )(1 - R2)} / {nP(1-P)(1 - r )}  -  c yd

2

Finally, since P = n1/n, this further simplifies to the result claimed in the problem, 
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  c*  =  {( y  -  1 y )(1 - R2)} / {(1-P)(1 - )}  -  c ryd
2

The problem this creates for the theory is that in the present setting, if, indeed, c is negative, ( y1  -  y ) will 
almost surely be also.    Therefore,  the sign of c* is ambiguous.    
 
5.  Reverse Regression.  This and the next exercise continue the analysis of Exercise 10, Chapter 8.  In the 
earlier exercise, interest centered on a particular dummy variable in which the regressors were accurately 
measured.  Here, we consider the case in which the crucial regressor in the model is measured with error.  The 
paper by Kamlich and Polachek (1982) is directed toward this issue. 
 Consider the simple errors in variables model, y  =  α  +  βx*  +  ε,  x  =  x*  +  u, where u and ε are 
uncorrelated, and x is the erroneously measured, observed counterpart to x*. 
 (a)  Assume that x*, u, and ε are all normally distributed with means µ*, 0, and 0, variances σ*

2, σu
2, 

and σε
2 and zero covariances.  Obtain the probability limits of the least squares estimates of α and β. 

 (b)  As an alternative, consider regressing x on a constant and y, then computing the reciprocal of the 
      estimate.  Obtain the probability limit of this estimate. 
 (c)  Do the `direct' and `reverse' estimators bound the true coefficient? 

 We first find the joint distribution of the observed variables.  so [y,x] 

have a joint normal distribution with mean vector   and 

covariance matrix Var ,  The probability 

limit of the slope in the linear regression of y on x is, as usual, 
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   plim b  =  Cov[y,x]/Var[x]  =  β/(1 +  σu
2/σ*

2)  <  β. 
The probability limit of the intercept is plim  
   a =  E[y]  - (plim b)E[x]  =  α + βµ* - βµ*/(1 +  σu

2/σ*
2) 

      =  α + β[µ*σu / (σ*
2 + σu

2)]  >  α   (assuming β > 0). 
If x is regressed on y instead, the slope will estimate plim[b′]  =  Cov[y,x]/Var[y]  =  βσ*

2/(β2σ*
2 + σε

2).  
Then,plim[1/b′]  =  β + σε

2/β2σ*
2  >  β.  Therefore, b and b′ will bracket the true parameter (at least in their 

probability limits).  Unfortunately, without more information about σu
2, we have no idea how wide this 

bracket is.  Of course, if the sample is large and the estimated bracket is narrow, the results will be strongly 
suggestive.    
 
6.  Reverse Regression - Continued:  Suppose that the model in Exercise 5 is extended to 
    y  =  βx*  +  γd  +  ε,  x  =  x*  +  u. 
For convenience, we drop the constant term.  Assume that x*, ε, and u are independent normally distributed 
with zero means.  Suppose that d is a random variable which takes the values one and zero with probabilities π 
and 1-π in the population, and is independent of all other variables in the model.  To put this in context, the 
preceding model (and variants of it) have appeared in the literature on discrimination.  We view y as a "wage" 
variable, x* as "qualifications" and x as some imperfect measure such as education.  The dummy variable, d, is 
membership (d=1) or nonmembership (d=0) in some protected class.  The hypothesis of discrimination turns 
on γ<0 versus γ=0. 
(a)  What is the probability limit of c, the least squares estimator of (, in the least squares regression of y on x 
and d?  [Hints: The independence of x* and d is important. Also, plim d′d/n = Var[d] + E2[d] = 
π(1-π) + π2 = π.  This minor modification does not effect the model substantively, but greatly simplifies 
the algebra.]  Now, suppose that x* and d are not independent.  In particular, suppose E[x*|d=1] = µ1 and 
E[x*|d=0] = µ0.  Then, plim[x*′d/n] will equal πµ1.  Repeat the derivation with this assumption. 
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(b)  Consider, instead, a regression of x on y and d.  What is the probability limit of the coefficient on d in this 
regression?  Assume that x* and d are independent. 
(c)  Suppose that x* and d are not independent, but γ is, in fact, less than zero.  Assuming that both 
preceding equations still hold, what is estimated by y |d=1  -  y |d=0?  What does this quantity estimate if γ 
does equal zero? 
 In the regression of y on x and d, if d and x are independent, we can invoke the familiar result for 
least squares regression.  The results are the same as those obtained by two simple regressions.  It is instructive 

to verify this.  Therefore, 

although the coefficient on x is distorted, the effect of interest, namely, γ, is correctly measured.  Now consider 
what happens if x
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* and d are not independent.  With the second assumption, we must replace the off diagonal 
zero above with plim(x′d/n).  Since u and d are still uncorrelated, this equals Cov[x*,d].  This is  
  Cov[x*,d]  =  E[x*d]  =  πE[x*d|d=1] + (1-π)E[x*d|d=0]  =  πµ1. 
Also, plim[y′d/n] is now βCov[x*,d] + γplim(d′d/n) = βπµ1 + γπ and plim[y′x*/n] equals βplim[x*′x*/n] + 
γplim[x*′d/n] = βσ*

2 + γπµ1.  Then, the probability limits of the least squares coefficient estimators is 
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The second expression does reduce to plim c  =  γ  + βπµ1σu
2/[π(σ*

2 + σu
2) - π2(µ1)2], but the upshot is that in 

the presence of measurement error, the two estimators become an unredeemable hash of the underlying 
parameters.  Note that both expressions reduce to the true parameters if σu

2 equals zero. 
 Finally, the two means are estimators of 
  E[y|d=1]  =  βE[x*|d=1] + γ =  βµ1 + γ 
and  E[y|d=0]  =  βE[x*|d=0]       =  βµ0, 
so the difference is β(µ1 - µ0) + γ, which is a mixture of two effects.  Which one will be larger is entirely 
indeterminate, so it is reasonable to conclude that this is not a good way to analyze the problem.  If γ equals 
zero, this difference will merely reflect the differences in the values of x*, which may be entirely unrelated to 
the issue under examination  here. (This is, unfortunately, what is usually reported in the popular press.) 
 
7.  Data on the number of incidents of damage to a sample of ships, with the type of ship and the period 
when it was constructed, are given in Table 7.8 below There are five types of ships and four different 
periods of construction.   Use F tests and dummy variable regressions to test the hypothesis that there is no 
significant “ship type effect” in the expected number of incidents.  Now, use the same procedure to test 
whether there is a significant “period effect.” 
 

TABLE 7.8  Ship Damage Incidents 
Period Constructed Ship 

Type 1960–1964 1965–1969 1970–1974 1975–1979 
A   0   4 18 11 
B 29 53 44 18 
C   1   1   2   1 
D   0   0 11   4 
E   0   7 12   1 

Source: Data from McCullagh and Nelder (1983, p. 137). 
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According to the full model, the expected number of incidents for a ship of the base type A built in the base 
period 1960 to 1964, is 3.4. The other 19 predicted values follow from the previous results and are left as 
an exercise. The relevant test statistics for differences across ship type and year are as follows: 

(3925.2 660.9) / 4type: [4,12] 14.82,
660.9 /12

F −
= =  

(1090.3 660.9) / 3year: [3, 12] 2.60.
660.9 /12

F −
= =  

The 5 percent critical values from the F table with these degrees of freedom are 3.26 and 3.49, 
respectively, so we would conclude that the average number of incidents varies significantly across ship 
types but not across years.  
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Chapter 8 
 

Specification Analysis and Model 
Selection 
 
1.  Suppose the true regression model is given by (8-2).  The result in (8-4) shows that if either P1.2 and β2 
are nonzero, then regression of y on X1 alone produces a biased and inconsistent estimator of β1.  Suppose 
the objective is to forecast y, not to estimate the parameters.  Consider regression of y on X1 alone to 
estimate β1 with b1 (which is biased).  Is the forecast of computed using X1b1 also biased?  Assume that 
E[X2|X1] is a linear function of X1.  Discuss your findings generally.  What are the implications for 
prediction when variables are omitted from a regression? 

The result cited is E[b1]  =  β1  + P1.2β2 where P1.2 = (X1′X1)-1X1′X2, so the coefficient estimator is 
biased.  If the conditional mean function E[X2|X1] is a linear function of X1, then the sample estimator P1.2 
actually is an unbiased estimator of the slopes of that function.  (That result is Theorem B.3, equation (B-
68), in another form).  Now, write the model in the form 
 

y  =  X1β1 + E[X2|X1]β2 + ε + (X2 - E[X2|X1])β2 
 
So, when we regress y on X1 alone and compute the predictions, we are computing an estimator of   
X1(β1 + P1.2β2)  =  X1β1 + E[X2|X1]β2.  Both parts of the compound disturbance in this regression ε and  
(X2 - E[X2|X1])β2 have mean zero and are uncorrelated with X1 and E[X2|X1], so the prediction error has 
mean zero.  The implication is that the forecast is unbiased.  Note that this is not true if E[X2|X1] is 
nonlinear, since P1.2 does not estimate the slopes of the conditional mean in that instance.  The generality is 
that leaving out variables wil bias the coefficients, but need not bias the forecasts.  It depends on the 
relationship between the conditional mean function E[X2|X1] and X1P1.2. 
 
2.  Compare the mean squared errors of b1 and b1.2 in Section 8.2.2.  (Hint, the comparison depends on the 
data and the model parameters, but you can devise a compact expression for the two quantities.) 
 The “long” estimator, b1.2 is unbiased, so its mean squared error equals its variance, σ2(X1′M2X1)-

1 
The short estimator, b1 is biased; E[b1] = β1 + P1.2β2.  It’s variance is σ2(X1′X1)-1.  It’s easy to show that 
this latter variance is smaller.  You can do that by comparing the inverses of the two matrices.  The inverse 
of the first matrix equals the inverse of the second one minus a positive definite matrix, which makes the 
inverse smaller hence the original matrix is larger - Var[b1.2] > Var[b1].  But, since b1 is biased, the 
variance is not its mean squared error.  The mean squared error of b1 is Var[b1] + bias×bias′.  The second 
term is P1.2β2β2′P1.2′.  When this is added to the variance, the sum may be larger or smaller than Var[b1.2]; 
it depends on the data and on the parameters, β2.  The important point is that the mean squared error of the 
biased estimator may be smaller than that of the unbiased estimator. 
 
3.  The J test in Example is carried out using over 50 years of data.  It is optimistic to hope that the 
underlying structure of the economy did not change in 50 years.  Does the result of the test carried out in 
Example 8.2 persist if it is based on data only from 1980 to 2000?  Repeat the computation with this subset 
of the data. 
 The regressions are based on real consumption and real disposable income.  Results for 1950 to 
2000 are given in the text.  Repeating the exercise for 1980 to 2000 produces: for the first regression, the 
estimate of α is 1.03 with a t ratio of 23.27 and for the second, the estimate is -1.24 with a t ratio of -3.062.  
Thus, as before, both models are rejected.  This is qualitatively the same results obtained with the full 51 
year data set. 
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4.  The Cox test in Example 8.3 has the same difficulty as the J test in Example 8.2.  The sample period 
might be too long for the test not to have been affected by underlying structural change.  Repeat the 
computations using the 1980 to 2000 data. 
 Repeating the computations in Example 8.3 using the shorter data set produces q01 = -383.10 
compared to -15,304 using the full data set.  Though this is much smaller, the qualitative result is very 
much the same, since the critical value is -1.96.  Reversing the roles of the competing hypotheses, we 
obtain q10 = 2.121 compared to the earlier value of 3.489.  Though this result is close to borderline, the 
result is, again, the same. 
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Chapter 9 
 

Nonlinear Regression Models 
 
1.  Describe how to obtain nonlinear least squares estimates of the parameters of the model  y  =  αxβ  +  ε. 
 We cannot simply take logs of both sides of the equation as the disturbance is additive rather than 
multiplicative.  So, we must treat the model as a nonlinear regression.  The linearized equation is 
  y ≈ α α α α ββ β β0 0 00 0 0

x x x x+ − + −( ) (log ) ( β0)  

)β0

)xβ0

where α0 and β0 are the expansion point.  For given values of α0 and β0, the estimating equation would be 

   y x + ε( ) (x x x x x x− + + = +α α α α β αβ β β β0 0 0 00 0 0 0
(log ) (log ) * 

or   + ε( ) (y x x x x+ = +α α β αβ β0 00 0
(log ) (log ) *. 

Estimates of α and β are obtained by applying ordinary least squares to this equation.  The process is repeated 
with the new estimates in the role of α0 and β0.  The iteration could be continued until convergence.  Starting 
values are always a problem.  If one has no particular values in mind, one candidate would be α0 = y and β0 = 

0 or β0 = 1 and α0 either x′y/x′x or y / x .  Alternatively, one could search directly for the α and β to minimize 
the sum of squares,  S(α,β)  =  Σi (yi - αxβ)2  =  Σi εi

2.  The first order conditions for minimization are 
 ∂S(α,β)/∂α  =  -2Σi (yi - αxβ)xβ  =  0    and    ∂S(α,β)/∂β  =  -2Σi (yi - αxβ)α(lnx)xβ  =  0. 
Methods for solving nonlinear equations such as these are discussed in Chapter 5.   
 
2.  Use Mackinnon, et. al's PE test to determine whether a linear or log-linear production model is more 
appropriate for  the data in Table F6.1.  (The test is described in Section 9.4.3 and Example 9.8.) 
 First, the two simple regressions produce 
    Linear  Log-linear 
  Constant  114.338  1.17064 
     (173.4)  (.3268) 
  Labor           2.33814       .602999 
                         (1.039)      (.1260) 
  Capital        .471043        .37571 
                          (.1124)        (.08535) 
  R2            .9598       .9435 
  Standard Error   469.86          .1884 
In the regression of Y on 1, K, L, and the predicted values from the loglinear equation minus the predictions 
from the linear equation, the coefficient on α is -587.349 with an estimated standard error of 3135.  Since this 
is not significantly different from zero, this evidence favors the linear model.  In the regression of lnY on 1, 
lnK, lnL and the predictions from the linear model minus the exponent of the predictions from the loglinear 
model, the estimate of α is .000355 with a standard error of .000275.  Therefore, this contradicts the preceding 
result and favors the loglinear model.  An alternative approach is to fit the Box-Cox model in the fashion of 
Exercise 4. The maximum likelihood estimate of λ is about -.12, which is much closer to the log-linear model 
than the lonear one.  The log-likelihoods are -192.5107 at the MLE, -192.6266 at λ=0 and -202.837 at λ = 1.  
Thus, the hypothesis that λ = 0 (the log-linear model) would not be rejected but the hypothesis that λ = 1 (the 
linear model) would be rejected using the Box-Cox model as a framework.   
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3.  Using the Box-Cox transformation, we may specify an alternative to the Cobb-Douglas model as 
  lnY  =  α  +  βk(Kλ - 1)/λ + βl(Lλ - 1)/λ + ε. 
Using Zellner and Revankar's data in Table A9.1, estimate α, βk, βl, and λ by using the scanning method 
suggested in Section F9.2.  (Do not forget to scale Y, K, and L by the number of establishments.)  Use (9-16), 
(9-12) and (9-13) to compute the appropriate asymptotic standard errors for your estimates.  Compute the two 
output elasticities, ∂lnY/∂lnK  and ∂lnY/∂lnL at the sample means of K and L. [Hint: ∂lnY/∂lnK = K∂lnY/∂K.]  
How do these estimates compare to the values given in Example 10.5?   
 The search for the minimum sum of squares produced the following results: 
 

  

   λ  e′e 
-.500   .78477 
-.400   .67033 
-.300   .60587 
-.250   .59479 
-.245   .59451 
-.244   .59447 
-.243   .59444 
-.242   .59441 
-.241   .59439 
-.240   .59438 
-.239   .59437 
-.238   .59436 
-.237   .59437 
-.235   .59440 
-.225   .59492 
-.200   .59897 
-.100   .65598 
0.000   .78143 
 .100   .97742 
 .200  1.24354 
 
The sum of squared 
residuals is minimized at λ = -.238.  At this value, the regression results are as follows: 
  Parameter     Estimate     OLS Std.Error     Correct Std.Error 
  α           2.06092  .07718              .09723 
         βk          .178232        .04638              .04378 
  βl          .737988        .06996              .12560 
  λ          -.238            ----               .07710 
  Estimated Asymptotic Covariance Matrix 
   α        βk        βl        λ 
  α   .00945 
  βk  .00262     .00192 
  βl  .00511    -.00199    .01578 
  λ   .00500   .00037    .00825   .00594 
The output elasticities for this function evaluated at the sample means are 
  ∂lnY/∂lnK  =  βkKλ  =  (.178232).175905-.238    =  .2695 
  ∂lnY/∂lnL  =  βlLλ    =  (.443954).737988-.238    =  .7740. 
The estimates found for Zellner and Revankar's model were .254 and .882, respectively, so these are quite 
similar.  For the simple log-linear model, the corresponding values are .2790 and .927.   
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4.  For the model in Exercise 3, test the hypothesis that λ = 0 using a Wald test, a likelihood ratio test, and a 
Lagrange multiplier test.  Note, the restricted model is the Cobb-Douglas, log-linear model. 
 The Wald test is based on the unrestricted model.  The statistic is the square of the usual t-ratio, 
W  =  (-.232 / .0771)2  =  9.0546.  The critical value from the chi-squared distribution is 3.84, so the 
hypothesis that λ = 0 can be rejected.  The likelihood ratio statistic is based on both models.  The sum of 
squared residuals for both unrestricted and restricted models is given above.  The log-likelihood is 
lnL  =  -(n/2)[1 + ln(2π) + ln(e′e/n)], so the likelihood ratio statistic is  
 LR   =  n[ln(e′e/n)|λ=0  -  ln(e′e/n)| λ=-.238]  =  nln[(e′e|λ=0) / (e′e|λ=-.238) 
      =  25ln(.78143/.54369) =  6.8406. 
Finally, to compute the Lagrange Multiplier statistic, we regress the residuals from the log-linear regression on 
a constant, lnK, lnL, and (1/2)(bkln2K + blln2L) where the coefficients are those from the log-linear model 
(.27898 and .92731).  The R2 in this regression is .23001, so the Lagrange multiplier statistic is LM  =  nR2  =  
25(.23001)  =  5.7503.  All three statistics suggest the same conclusion, the hypothesis should be rejected.   
 
5.  To extend Zellner and Revankar's model in a fashion similar to theirs, we can use the Box-Cox 
transformation for the dependent variable as well.  Use the method of Section 10.5.2 (with θ = λ) to repeat the 
study of the previous two exercises.  How do your results change? 
 Instead of minimizing the sum of squared deviations, we now maximize the concentrated 
log-likelihood function,  lnL  =  -(n/2)ln(1+ln(2π)) + (λ - 1)Σi lnYi - (n/2)ln(ε′ε/n). 
The search for the maximum of lnL produced the following results: 
 
 

  

   λ          lnL 
-.200 -13.6284 
-.150 -12.8568 
-.100 -12.2423 
-.050 -11.7764 
0.000 -11.4476 
 .050 -11.2427 
 .100 -11.1480 
 .110 -11.1410 
 .120 -11.1378 
 .121 -11.1377 
 .122 -11.1376 
 .123 -11.1376 
 .124 -11.1375 
 .125 -11.1376 
 .130 -11.1383 
 .140 -11.1423 
 .200 -11.2344 
 .300 -11.6064 
 .400 -12.8371 
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The log-likelihood is maximized at λ = .124.  At this value, the regression results are as follows: 
  Parameter     Estimate     OLS Std.Error    Correct Std.Error 
  α           2.59465        .1283               .7151 
  βk          .378094        .1070               .3228 
  βl          1.13653        .1117               .4121 
  λ           .124            ----               .2482 
  σ2          .036922         ----               .0179 
   Estimated Asymptotic Covariance Matrix 
                α            βk          βl           λ              σ2 
  α   .5114 
  βk  .2203    .1042 
  βl  .2612    .0951     .1698 
  λ   .1747    .0730     .0953     .0617 
  σ2  .0104    .0044     .0059     .0038     .00032 
The output elasticities for this function evaluated at the sample means, K  = .175905, L  = .737988, Y =  
2.870777,  are   ∂lnY/∂lnK  =  bk(K/Y)λ  =  .2674 
  ∂lnY/∂lnL  =  bl(L/Y)λ   =  .9017. 
These are quite similar to the estimates given above.  The sum of the two output elasticities for the states given 
in the example in the text are given below for the model estimated with and without transforming the 
dependent variable.  Note that the first of these makes the model look much more similar to the Cobb Douglas 
model for which this sum is constant. 
 State      Full Box-Cox Model     lnQ on left hand side 
 Florida  1.2840    1.6598 
  Louisiana 1.2019   1.4239 
 California 1.1574   1.1176 
 Maryland 1.1657   1.0261 
 Ohio  1.1899    .9080 
 Michigan 1.1604    .8506 
 Once again, we are interested in testing the hypothesis that λ = 0.  The Wald test statistic is 
W  =  (.123 / .2482)2  =  .2455.  We would now not reject the hypothesis that λ = 0.  This is a surprising 
outcome.  The likelihood ratio statistic is based on both models.  The sum of squared residuals for the 
restricted model is given above.  The sum of the logs of the outputs is 19.29336, so the restricted 
log-likelihood is  lnL0 =  (0-1)(19.29336) - (25/2)[1 + ln(2π) + ln(.781403/25)]  =  -11.44757.  The likelihood 
ratio statistic is  -2[ -11.13758 - (-11.44757)]  =  .61998.  Once again, the statistic is small.   Finally, to 
compute the Lagrange multiplier statistic, we now use the method described in Example 10.12.  The result is 
LM = 1.5621.  All of these suggest that the log-linear model is not a significant restriction on the Box-Cox 
model.  This rather peculiar outcome would appear to arise because of the rather substantial reduction in the 
log-likelihood function which occurs when the dependent variable is transformed along with the right hand 
side.  This is not a contradiction because the model with only the right hand side transformed is not a 
parametric restriction on the model with both sides transformed.  Some further evidence is given in the next 
exercise.  
 
6.  Verify the following differential equation which applies to the Box-Cox transformation 
   dix(λ)/dλi    = (1/λ)[xλ(lnx)i  -  idi-1x(λ)/dλi-1]   (9-33) 
Show that the limiting sequence for λ = 0 is 
   dix(λ)/dλi|λ=0  =  (lnx)i/(i+1).     (9-34) 
 (These results can be used to great advantage in deriving the actual second derivatives of the log likelihood 
function for the Box-Cox model.  Hint:  See Example 10.11.) 
 The proof can be done by mathematical induction.  For convenience, denote the ith derivative by fi.  
The first derivative appears in Equation (9-34).  Just by plugging in i=1, it is clear that f1 satisfies the 
relationship.  Now, use the chain rule to differentiate f1, 
   f2  =  (-1/λ2)[xλ(lnx) - x(λ)] + (1/λ)[(lnx)xλ(lnx) - f1] 
Collect terms to yield f2  =  (-1/λ)f1 + (1/λ)[xλ(lnx)2 - f1]  =  (1/λ)[xλ(lnx)2 - 2f1]. 
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So, the relationship holds for i = 0, 1, and 2.  We now assume that it holds for i = K-1, and show that if so, it 
also holds for i = K.  This will complete the proof.  Thus, assume 
   fK-1  =  (1/λ)[xλ(lnx)K-1 - (K-1)fK-2] 
Differentiate this to give fK  =  (-1/λ)fK-1 + (1/λ)[(lnx)xλ(lnx)K-1 - (K-1)fK-1]. 
Collect terms to give fK  =  (1/λ)[xλ(lnx)K - KfK-1], which completes the proof for the general case. 
Now, we take the limiting value 
   limλ→0 fi  =  limλ→0 [xλ(lnx)i - ifi-1]/λ. 
Use L'Hospital's rule once again. 
   limλ→0 fi  =  limλ→0 d{[xλ(lnx)i - ifi-1]/dλ}/limλ→0 dλ/dλ. 
Then,   limλ→0 fi  =  limλ→0 {[xλ(lnx)i+1 - ifi]} 
Just collect terms,  (i+1)limλ→0 fi  =  limλ→0 [xλ(lnx)i+1] 
or   limλ→0 fi  =  limλ→0 [xλ(lnx)i+1]/(i+1)  =  (lnx)i+1/(i+1).    
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Chapter 10 
 

Nonspherical Disturbances - The 
Generalized Regression Model 
 
1.  What is the covariance matrix, Co  of the GLS estimator ˆ ˆv[ ],, − bβ β 1 1 1ˆ ( )− − −′ ′= X X X yΩ Ωβ and 
the difference between it and the OLS estimator, b = (X′X) 1X′y? The result plays a pivotal role in the 
development of specification tests in Hausman (1978). 
 Write the two estimators as =  β  +  (X′Ωβ̂ -1X)-1X′Ω-1ε  and   b  =  β  +  (X′X)-1X′ε. Then, 

(β - b)  =  [(X′Ωˆ -1X)-1X′Ω-1  -  (X′X)-1X′]ε  has   E[β - b] = 0 since both estimators are unbiased.  Therefore, ˆ

 Cov[ ,β - b]  =  E[( - β)(β - b)′]. β̂ ˆ β̂ ˆ

Then, 
 E{(X′Ω-1X)-1X′Ω-1εε′[(X′Ω-1X)-1X′Ω-1  -  (X′X)-1X′]′} 
   =  (X′Ω-1X)-1X′Ω (σ2Ω)[Ω-1X(X′Ω-1X)-1 - X(X′X)-1] -1

   =  σ2(X′Ω-1X)-1X′Ω-1ΩΩ-1X(X′Ω-1X)-1 - (X′Ω-1X)-1X′Ω-1ΩX(X′X)-1 
   =  (X′Ω-1X)-1(X′Ω-1X)(X′Ω-1X)-1  -  (X′Ω-1X)-1(X′X)(X′X)-1  =  0 
once the inverse matrices are multiplied.   
 
2.This and the next two exercises are based on the test statistic usually used to test a set of J linear 
restrictions in the generalized regression model: 

  
1 1 1ˆ ˆ( ) [ ( ) ] ( )

[ , ] 1ˆ ˆ( ) ( ) /( )

J
F J n K

n K

− − −′ ′ ′− −
− = −′− − −

R q R X X R R q

y X y X

Ω

Ω

β β

β β

/
, 

 where β  is the GLS estimator. Show that if Ω is known, if the disturbances are normally distributed and if 
the null hypothesis, Rβ = q, is true, then this statistic is exactly distributed as F with J and n  K degrees of 
freedom. What assumptions about the regressors are needed to reach this conclusion? Need they be 
nonstochastic? 

ˆ

 First,     (Rβ  - q)  =  R[β + (X′Ωˆ -1X)-1X′Ω-1ε)] - q  =  R(X′Ω-1X)-1X′Ω-1ε  if  Rβ - q  =  0. 
Now, use the inverse square root matrix of Ω, P  =  Ω-1/2  to obtain the transformed data, 
  X*  =  PX  =  Ω-1/2X,   y*  =  Py  =  Ω-1/2y,  and   ε*  =  Pε  =  Ω-1/2ε. 
Then,  E[ε*ε*′]  =  E[Ω-1/2εε′Ω-2]  =  Ω-1/2(σ2Ω)Ω-1/2   =  σ2I, 
and,   =  (X′Ωβ̂ -1X)-1X′Ω-1y  =  (X*′X*)-1X*′y* 
   =  the OLS estimator in the regression of y* on X*. 
Then,  Rβ  - q  =  R(Xˆ *′X*)-1X*′ε* 
and the numerator is ε*′X*(X*′X*)-1R′[R(X*′X*)-1R′]-1R(X*′X*)-1X*′ε* / J.  By multiplying it out, we find that 
the matrix of the quadratic form above is idempotent.  Therefore, this is an idempotent quadratic form in a 
normally distributed random vector.  Thus, its distribution is that of σ2 times a chi-squared variable with 
degrees of freedom equal to the rank of the matrix.  To find the rank of the matrix of the quadratic form, we 
can find its trace.  That is 
    tr{X*(X*′X*)-1R′[R(X*′X*)-1R′]-1R(X*′X*)-1X*} 
   =  tr{(X*′X*)-1R′[R(X*′X*)-1R′]-1R(X*′X*)-1X*′X*} 
   =  tr{(X*′X*)-1R′[R(X*′X*)-1R′]-1R} 
   =  tr{[R(X*′X*)-1R′][R(X*′X*)-1R′]-1}  =  tr{IJ}  =  J, 
which might have been expected.  Before proceeding, we should note, we could have deduced this outcome 
from the form of the matrix.  The matrix of the quadratic form is of the form Q  =  X*ABA′X*′ where B is the 
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nonsingular matrix in the square brackets and A  =  (X*′X*)-1R′, which is a K×J matrix which cannot have 
rank higher than J.  Therefore, the entire product cannot have rank higher than J.   Continuing, we now find 
that the numerator (apart from the scale factor, σ2) is the ratio of a chi-squared[J] variable to its degrees of 
freedom. 

 We now turn to the denominator.  By multiplying it out, we find that the denominator is 
(y*  -  X* β̂ )′(y*  -  X* β̂ )/(n - K).  This is exactly the sum of squared residuals in the least squares regression of 

y* on X*.  Since  y*  =  X*β  +  ε*  and β =  (Xˆ *′X*)-1X*′y* the denominator is ε*′M*ε*/(n - K), the familiar form 
of the sum of squares.  Once again, this is an idempotent quadratic form in a normal vector (and, again, apart 
from the scale factor, σ2, which now cancels).  The rank of the M matrix is n - K, as always, so the 
denominator is also a chi-squared variable divided by its degrees of freedom.  
 It remains only to show that the two chi-squared variables are independent.  We know they are if the 
two matrices are orthogonal.  They are since M*X* = 0.  This completes the proof, since all of the 
requirements for the F distribution have been shown.   
 
3.  Now suppose that the disturbances are not normally distributed, although Ω is still known. Show that 
the limiting distribution of previous statistic is (1/J) times a chi-squared variable with J degrees of freedom. 
(Hint: The denominator converges to σ2.)  Conclude that in the generalized regression model, the limiting 
distribution of the Wald statistic 

   W  1ˆ ˆ( ) { (Est. Var[ ]) } (−′ ′= −R q R R R qβ β ˆ )β −

is chi-squared with J degrees of freedom, regardless of the distribution of the disturbances, as long as the 
data are otherwise well behaved. Note that in a finite sample, the true distribution may be approximated 
with an F[J,n-K] distribution. It is a bit ambiguous, however, to interpret this fact as implying that the 
statistic is asymptotically distributed as F with J and n-K degrees of freedom, because the limiting 
distribution used to obtain our result is the chi-squared, not the F. In this instance, the F[J, n-K] is a 
random variable that tends asymptotically to the chi-squared variate. 
 First, we know that the denominator of the F statistic converges to σ2.  Therefore, the limiting 
distribution of the F statistic is the same as the limiting distribution of the statistic which results when the 
denominator is replaced by σ2.  It is useful to write this modified statistic as  
 W *  =  (1/σ2)(Rβ  - q)′[R(Xˆ *′X*)-1R′]-1(Rβ - q)/J.   ˆ

Now, incorporate the results from the  previous problem to write this as 
  W * = ε*′X*(X*′X*)-1R′[Rσ2(X*′X*)-1R′]-1R(X*′X*)-1X*′ε/J 
Let  ε0  =  R(X*′X*)-1X*′ε*. 
Note that this is a J×1 vector.  By multiplying it out, we find that E[ε0ε0′]  =  Var[ε0]  =  R{σ2(X*′X*)-1}R′.  
Therefore, the modified statistic can be written as W *  =  ε0′Var[ε0]-1ε0/J. This is the ‘full rank quadratic form’ 
discussed in Appendix B.  For convenience, let C  =  Var[ε0],  T  =  C-1/2,  and v  =  Tε0.   Then, W * =  v′v. By 
construction, v = Var[ε0]-1/2ε0,  so  E[v]  =  0  and  Var[v]  =  I.  The limiting distribution of v′v is chi-squared 
J if the limiting distribution of v is standard normal.  All of the conditions for the central limit theorem apply 
to v, so we do have the result we need.  This implies that as long as the data are well behaved, the numerator 
of the F statistic will converge to the ratio of a chi-squared variable to its degrees of freedom.    
 
4. Finally, suppose that Ω must be estimated, but that assumptions   (10-27) and (10-31) are met by the 
estimator. What changes are required in the development of the previous problem? 
The development is unchanged.  As long as the limiting behavior of (1/n) ′  = (1/n)X′ ΩX̂ X̂ ˆ -1X is the same as 
that of (1/n)X*′X*, the limiting distribution of the test statistic will be the same as if the true Ω were used 
instead of the estimate .  Ω̂
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5.  In the generalized regression model, if the K columns of X are characteristic vectors of Ω, then ordinary 
least squares and generalized least squares are identical.  (The result is actually a bit broader; X may be any 
linear combination of exactly K characteristic vectors.  This result is Kruskal’s Theorem.) 
 a.  Prove the result directly using matrix algebra. 
 b.  Prove that if X contains a constant term and if the remaining columns are in deviation form (so 
that the column sum is zero), then the model of Exercise 8 below is one of these cases. (The seemingly 
unrelated regressions model with identical regressor matrices, discussed in Chapter 14, is another.) 
 First, in order to simplify the algebra somewhat without losing any generality, we will scale the 
columns of X so that for each xk, xk′xk  =  1.  We do this by beginning with our original data matrix, say, X0 
and obtaining X as  X  =  X0D-1/2,  where D is a diagonal matrix with diagonal elements Dkk  =  xk

0′xk
0.  By 

multiplying it out, we find that the GLS slopes based on X instead of X0 are  
β̂ =  [(X0D-1/2)′Ω-1(X0D-1/2)]-1[(X0D-1/2)′Ω-1y]   =  D1/2[X′Ω-1X](D′)1/2(D′)-1/2X′Ω-1y  =  D1/2  β̂ 0 

with variance   Var[β ]  =  Dˆ 1/2σ2[X′Ω-1X]-1(D′)1/2  =  D1/2Var[ β̂ 0](D′)1/2.  Likewise, the OLS estimator based 
on X instead of X0 is  b  =  D1/2b0 and has variance Var[b]  =  D1/2Var[b0](D′)1/2.  Since the scaling affects both 
estimators identically, we may ignore it and simply assume that X′X = I. 
 If each column of X is a characteristic vector of Ω, then, for the kth column, xk,  Ωxk  =  λkxk.  
Further,  xk′Ωxk  =  λk  and  xk′Ωxj  =  0 for any two different columns of X.  (We neglect the scaling of X, so 
that X′X = I, which we would usually assume for a set of characteristic vectors.  The implicit scaling of X is 
absorbed in the characteristic roots.)  Recall that the characteristic vectors of Ω-1 are the same as those of Ω 
while the characteristic roots are the reciprocals. Therefore, X′ΩX  =  ΛK, the diagonal matrix of the K 
characteristic roots which correspond to the columns of X.  In addition,  X′Ω-1X  =  ΛK

-1,  so  (X′Ω-1X)-1  = ΛK,  
andX′Ω-1y =  ΛK

-1X′y.  Therefore, the GLS estimator is simply β =  X′y with variance  Var[β ]  = σˆ ˆ 2ΛK. The 
OLS estimator is  b  =  (X′X)-1X′y  =  X′y.  Its variance is  Var[b]  =  σ2(X′X)-1X′ΩX(X′X)-1  =  σ2ΛK, which 
means that OLS and GLS are identical in this case.   
 
6.  In the generalized regression model, suppose that Ω is known. 

a.  What is the covariance matrix of the OLS and GLS estimators of β? 
 b.  What is the covariance matrix of the OLS residual vector e = y - Xb? 
 c.  What is the covariance matrix of the GLS residual vector ? ˆˆ = −y Xε β
 d.  What is the covariance matrix of the OLS and GLS residual vectors? 
 
Write b  =  β  +  (X′X)-1X′ε  and =  β  +  (X′Ωβ̂ -1X)-1X′Ω-1ε. The covariance matrix is 

E[(b - β)(  - β)′]  =  E[(X′X)β̂ -1X′εε′Ω-1X(X′Ω-1X)-1]  =  (X′X)-1X′(σ2Ω)Ω-1X(X′Ω-1X)-1  =  σ2(X′Ω-1X)-1. 
 For part (b),  e  =  Mε  as always, so E[ee′] = σ2MΩM.  No further simplification is possible for the 
general case. 
 For part (c), ε =  y  -  Xβ  =  y  -  X[β + (X′Ωˆ ˆ -1X)-1X′Ω-1ε]   
    =  Xβ + ε - X[β + (X′Ω-1X)-1X′Ω-1ε] 
    =  [I - X(X′Ω-1X)-1X′Ω-1]ε. 
Thus,    E[ ′] = [I - X(X′Ωε̂ ε̂ -1X)-1X′Ω-1]E[εε′][I - X(X′Ω-1X)-1X′Ω-1] ′ 
  =  [I - X(X′Ω-1X)-1X′Ω-1](σ2Ω)[I - X(X′Ω-1X)-1X′Ω-1] ′ 
  =  [σ2Ω  -  σ2X(X′Ω-1X)-1X′][I - X(X′Ω-1X)-1X′Ω-1] ′ 
  =  [σ2Ω  -  σ2X(X′Ω-1X)-1X′][I - Ω-1X(X′Ω-1X)-1X′] 
  =  σ2Ω- σ2X(X′Ω-1X)-1X′ - σ2X(X′Ω-1X)-1X′ + σ2X(X′Ω-1)X)-1X′Ω-1X(X′Ω-1X)-1X′ 
  =  σ2[Ω - X(X′Ω-1X)-1X′] 
The GLS residual vector appears in the preceding part.  As always, the OLS residual vector is e  =  Mε  =   
[I - X(X′X)-1X′]ε.  The covariance matrix is   
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E[e ′]   =  E[(I - X(X′X)ε̂ -1X′)εε′(I - X(X′Ω-1X)-1X′Ω-1)′] 
  =  (I - X(X′X)-1X′)(σ2Ω)(I - Ω-1X(X′Ω-1X)-1X′) 
  =  σ2Ω - σ2X(X′X)-1X′Ω - σ2ΩΩ-1X(X′Ω-1X)-1X′ + σ2X(X′X)-1X′ΩΩ-1X(X′Ω-1X)-1X′ 
  =  σ2Ω - σ2X(X′X)-1X′ 
  =  σ2MΩ.   

7.  Suppose that y has the pdf  /( )( | ) (1/ ) , 0.yf y e y′−′= >xx x ββ
 Then E[y | x] = β′x and Var[y | x] = (β′x)2. For this model, prove that GLS and MLE are the same, 
even though this distribution, like the one in Exercise 2, involves the same parameters in the conditional 
mean function and the disturbance variance. 
 The GLS estimator is β =  (X′Ωˆ -1X)-1X′-1y  =  [Σixixi′/(β′xi)2]-1[Σixiyi/(β′xi)2]. The log-likelihood for 
this model is   lnL = -Σiln(β′xi) - Σiyi/(β′xi).   
The likelihood equations are 
  ∂lnL/∂β  =  -Σi(1/β′xi)xi  +  Σi[yi/(β′xi)2]xi  =  0 
or        Σi(xiyi/(β′xi)2)  =  Σixi/(β′x i). 
Now, write          Σixi/(β′xi)  =  Σixixi′β/(β′xi)2, 
so the likelihood equations are equivalent to  Σi(xiyi/(β′x i).2)  =  Σixixi′β/(β′x i).2, or X′Ω-1y  =  (X′Ω-1X)β.  
These are the normal equations for the GLS estimator, so the two estimators are the same.  We should note, 
the solution is only implicit, since Ω is a function of β.  For another more common application, see the 
discussion of the FIML estimator for simultaneous equations models in Chapter 15.    
 
8.    Suppose that the regression model is y = µ + ε, where ε has a zero mean, constant variance, and equal 
correlation ρ across observations. Then Cov[εi,εj] = σ2ρ if i ≠ j.   Prove that the least squares estimator of µ 
is inconsistent.  Find the characteristic roots of Ω and show that Condition 2. after Theorem 10.2 is 
violated. 
 The covariance matrix is 

1
1

1

1

ρ ρ ρ
ρ ρ

σ σ ρ ρ ρ

ρ ρ ρ

=

 
 
 
 
 
  

2 2Ω
ρ

. 

The matrix X is a column of 1s, so the least squares estimator of µ is .y  Inserting this Ω into (10-5), we 

obtain 
2

Var[ ] (1 ).y
n

σ
ρ ρ= − + n   The limit of this expression is ρσ 2, not zero. Although ordinary least 

squares is unbiased, it is not consistent. For this model, X′ΩX/n = 1 + ρ(n – 1), which does not converge. 
Using Theorem 10.2 instead, X is a column of 1s, so X′X = n, a scalar, which satisfies condition 1. To find 
the characteristic roots, multiply out the equation Ωx = λx = (1-ρ)Ix + ρii′x = λx.  Since i′x = Σixi, consider 
any vector x whose elements sum to zero.  If so, then it’s obvious that λ = ρ.  There are n-1 such roots.  
Finally, suppose that x = i.  Plugging this into the equation produces λ = 1 - ρ + nρ. The characteristic roots 
of Ω are (1 – ρ) with multiplicity n – 1 and (1 – ρ + nρ), which violates condition 2. 
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Chapter 11 
  

Heteroscedasticity 
 
1.  Suppose the regression model is  yi  =  µ  +  εi, where  E[εi|xi] = 0, but Var[εi|xi] = σ2xi

2, xi > 0. 
(a)  Given a sample of observations on yi and xi, what is the most efficient estimator of ε?  What is its     
variance? 
(b)  What is the ordinary least squares estimator of µ and what is the variance of the ordinary least squares 
estimator? 
(c)  Prove that the estimator in (a) is at least as efficient as the estimator in (b). 
 This is a heteroscedastic regression model in which the matrix X is a column of ones.  The efficient 

estimator is the GLS estimator, =  (X′Ωβ
∧

-1X)-1X′Ω-1y  =  [Σi1yi/xi
2] / [Σi 12/xi

2]  =  [Σi(yi/xi
2)] / [Σi(1/xi

2)].  As 

always, the variance of the estimator is  Var[ ]  =  σβ
∧

2(X′Ω-1X)-1  =  σ2/[Σi(1/xi
2)].  The ordinary least squares 

estimator is (X′X)-1X′y = y . The variance of y is σ2(X′X)-1(X′ΩX)(X′X)-1  =  (σ2/n2)Σixi
2.  To show that the 

variance of the OLS estimator is greater than or equal to that of the GLS estimator, we must show that 
(σ2/n2)Σixi

2  >  σ2/Σi(1/xi
2) or (1/n2)(Σixi

2)(Σi(1/xi
2))  >  1 or ΣiΣj(xi

2/xj
2)  >  n2.  The double sum contains n terms 

equal to one.  There remain n(n-1)/2 pairs of the form (xi
2/xj

2 + xj
2/xi

2). If it can be shown that each of these 
sums is greater than or equal to 2, the result is proved.  Just let zi = xi

2.  Then, we require zi/zj + zj/zi - 2  >  0. 
But, this is equivalent to  (zi

2  +  zj
2  -  2zizj) / zizj  >  0 or (zi - zj)2/zizj  >  0, which is certainly true if zi and zj are 

positive.  They are since zi equals xi
2.  This completes the proof.    

 
2.  For the model in the previous exercise, what is the probability limit of s2 = (1/(n-1))Σi(yi - y )2?  Note that 
this is the least squares estimate of the residual variance.  It is also n times the conventional estimator of the 
variance of the OLS estimator, Est.Var[ y ]=  s2(X′X)-1  =  s2/n. How does this compare to the true value you 
found in part (b) of Exercise 1?  Does the conventional estimator produce the correct estimate of the true 
asymptotic variance of the least squares estimator? 
 Consider, first, y .  We saw earlier that Var[ y ] =  (σ2/n2)Σixi

2  =  (σ2/n)(1/n)Σixi
2.  The expected 

value is E[ y ] =  E[(1/n)Σiyi]  =  α.  If the mean square of x converges to something finite, then y  is consistent 

for α.  That is, if plim(1/n)Σixi
2  = q where q is some finite number, then, plim y =  α.  As such, it follows that 

s2 and s*
2 = (1/(n-1))Σi(yi - α)2 have the same probability limit.  We consider, therefore, plim s*

2  =  
plim(1/(n-1))Σiεi

2. The expected value of s*
2 is E[(1/(n-1)) Σiεi

2]  =  σ2(1/Σixi
2).  Once again, nothing more can 

be said without some assumption about xi.  Thus, we assume again that the average square of xi converges to a 
finite, positive constant, q .  Of course, the result is unchanged by division by (n-1) instead of n, so  limn→∞ 

E[s*
2]  =  σ2 q . The variance of s*

2  is Var[s*
2]  =  ΣiVar[εi

2]/(n - 1)2 .  To characterize this, we will require the 
variances of the squared disturbances, which involves their fourth moments.  But, if we assume that every 
fourth moment is finite, then the preceding is (n/(n-1)2) times the average of these fourth moments.  If every 
fourth moment is finite, then the term is dominated by the leading (n/(n-1)2) which converges to zero.  It 
follows that plim s*

2  =  σ2 q .  Therefore, the conventional estimator estimates  Asy.Var[ y ]=  σ2 q /n. 

 The appropriate variance of the least squares estimator is Var[ y ]=  (σ2/n2)Σixi
2,  which is, of course, 

precisely what we have been analyzing above.  It follows that the conventional estimator of the variance of the 
OLS estimator in this model is an appropriate estimator of the true variance of the least squares estimator.  
This follows from the fact that the regressor in the model, i, is unrelated to the source of heteroscedasticity, as 
discussed in the text.    
 
3.  Two samples of 50 observations each produce the following moment matrices:  (In each case, X is a 
constant and one variable.) 
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   Sample 1        Sample 2 

        X′X        
50 300
300 1200










50 300
300 1200










  y′X      [300    2000 ]            [300    2200 ] 
  y′y           2100                     2800 
(a)  Compute the least squares regression coefficients and the residual variances, s2, for each data set.  
Compute the R2 for each regression. 
(b)  Compute the OLS estimate of the coefficient vector assuming that the coefficients and disturbance 
variance are the same in the two regressions.  Also compute the estimate of the asymptotic covariance matrix 
of the estimator. 
(c)  Test the hypothesis that the variances in the two regressions are the same without assuming that the 
coefficients are the same in the two regressions. 
(d)  Compute the two step feasible GLS estimator of the coefficients in the regression assuming that the      
constant and slope are the same in both regressions.  Compute the estimate of the covariance matrix and 
compare it to the result of (b) 
 The sample moments are obtained using, for example, Sxx  =  x′x  -  n x 2 and so on.  For the two 
samples, we obtain y  x   Sxx  Syy  Sxy  
 Sample 1 6   6 300 300 200    
 Sample 2 6 6 300 1000 400 
The parameter estimates are computed directly using the results of Chapter 6. 
   Intercept  Slope R2 s2 
 Sample 1  2           2/3 4/9 (1500/9)/48 = 3.472 
 Sample 2 -2  4/3 16/30 (4200/9)/48 = 9.722 

The pooled moments based on 100 observations are X′X = , X′y = , y′y = 4900.  The 

coefficient vector based on these data is [a,b] = [0,1].  This might have been predicted since the two X′X 
matrices are identical.  OLS which ignores the heteroscedasticity would simply average the estimates.  The 
sum of squared residuals would be e′e  =  y′y  -  b′X′y  =  4900 - 4200  =  700, so the estimate of σ

100 600
600 4200










600
4200










2 is s2  =  
700/98 = 7.142.  Note that the earlier values obtained were 3.472 and 9.722, so the pooled estimate is between 
the two, once again, as might be expected.  The asymptotic covariance matrix of these estimates is  s2(X′X)-1  

=  . 7142
07 01
01 167

.
. .
. .

−
−










 To test the equality of the variances, we can use the Goldfeld and Quandt test.  Under the null 
hypothesis of equal variances, the ratio F   =   [e1′e1/(n1 - 2)]/[e2′e2/(n2 - 2)] (or vice versa for the subscripts) is 
the ratio of two independent chi-squared variables each divided by their respective degrees of freedom.  
Although it might seem so from the discussion in the text (and the literature) there is nothing in the test which 
requires that the coefficient vectors be assumed equal across groups.  Since for our data, the second sample 
has the larger residual variance, we refer  F[48,48]  =  s2

2/s1
2  =  9.722 / 3.472  =  2.8 to the F table.  The 

critical value for 95% significance is 1.61, so the hypothesis of equal variances is rejected. 

 The two step estimator is β =  [(1/s
∧

1
2)X1′X1 + (1/s2

2)X2′X2]-1[(1/s1
2)X1′y1 + (1/s2

2)X2′y2].  The X′X 
matrices are the same in this problem, so this simplifies to  

β
∧

=  [(1/s1
2 + 1/s2

2)X′X]-1[(1/s1
2)X1′y1 + (1/s2

2)X2′y2]. .  The estimator is, therefore 

1
3472

1
9 722

50 300
300 2100

1
3472

300
2000

1
9 722

300
2200

9469
8422

1

. . . .
.
.
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4.  Using the data in the previous exercise, use the Oberhofer-Kmenta method to compute the maximum 
likelihood estimate of the common coefficient vector. 
 The estimator must be based on maximum likelihood estimators of the two disturbance variances, so 
they must be recomputed first.  Our initial estimators of them are s1

2 = (1500/9)/50 = 3.3333 and s2
2 =  

(4200/9)/50  =  9.3333.  Beginning from this point, we iterate between the estimator of the coefficient vector 

described above and the two variance estimators sj
2  =  (1/50)[(y′y)j - 2β ′(X′y)

∧

j +β ′X′X ].  The iterations 
are 

∧
β
∧

         s1
2               s2

2                    β  α
∧ ∧

   (0)    3.333333       9.33333    .947366    .824106 
   (1)    3.518005     10.78117    1.01588    .830686 
   (3)    3.494747     10.84926    1.02545    .829092 
   (4)    3.491626     10.85889    1.02676    .828873 
   (5)    3.491199     10.86021    1.02694    .828843 
   (6)    3.491141     10.86039    1.02697    .828839 
   (7)    3.491134     10.86042    1.02697    .828839  (Converged)   
 
5.  This exercise is based on the following data set: 
        50 observations on Y: 
   -1.42   2.75   2.10  -5.08   1.49   1.00    .16  -1.11   1.66 
    -.26  -4.87   5.94   2.21  -6.87    .90   1.61   2.11  -3.82 
    -.62   7.01  26.14   7.39    .79   1.93   1.97 -23.17  -2.52 
   -1.26   -.15   3.41  -5.45   1.31   1.52   2.04   3.00   6.31 
    5.51 -15.22  -1.47  -1.48   6.66   1.78   2.62  -5.16  -4.71 
    -.35   -.48   1.24    .69   1.91 
        50 observations on X1: 
   -1.65   1.48    .77    .67    .68    .23   -.40  -1.13    .15 
    -.63    .34    .35    .79    .77  -1.04    .28    .58   -.41 
   -1.78   1.25    .22   1.25   -.12    .66   1.06   -.66  -1.18 
    -.80  -1.32    .16   1.06   -.60    .79    .86   2.04   -.51 
     .02    .33  -1.99    .70   -.17    .33    .48   1.90   -.18 
    -.18  -1.62    .39    .17   1.02 
         50 observations on X2: 
    -.67    .70    .32   2.88   -.19  -1.28  -2.72   -.70  -1.55 
    -.74  -1.87   1.56    .37  -2.07   1.20    .26  -1.34  -2.10 
     .61   2.32   4.38   2.16   1.51    .30   -.17   7.82  -1.15 
    1.77   2.92  -1.94   2.09   1.50   -.46    .19   -.39   1.54 
    1.87  -3.45   -.88  -1.53   1.42  -2.70   1.77  -1.89  -1.85 
    2.01   1.26  -2.02   1.91  -2.23 
(a)  Compute the ordinary least squares regression of Y on a constant, X1, and X2.  Be sure to compute the   
conventional estimator of the asymptotic covariance matrix of the OLS estimator also. 
(b)  Compute the White estimator of the appropriate asymptotic covariance matrix for the OLS estimates. (See 
(12-9).) 
(c)  Test for the presence of heteroscedasticity using White's general test. Do your results suggest the nature of 
the heteroscedasticity? 
(d)  Use the Breusch and Pagan Lagrange multiplier test to test for heteroscedasticity. 
(e)  Sort the data keying on X1 and use the Goldfeld-Quandt test to test for heteroscedasticity.  Repeat using    
X2.  What do you find? 
(f)  Use one of Glesjer's tests to test for heteroscedasticity. 
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 The ordinary least squares regression of Y on a constant, X1, and X2 produces the following results: 
  Sum of squared residuals      1911.9275 
  R2                                 .03790 
  Standard error of regression     6.3780 
  Variable Coefficient Standard Error  t-ratio 
  One             .190394          .9144            .208 
  X1                1.13113           .9826           1.151 
  X2                 .376825          .4399            .857 
  Covariance Matrix  White’s Corrected Matrix 
   .836212                          .524589     
  -.115451  .96551                  .076578   .282366 
  -.047133  .051081  .193532       .399218  -.091608   1.14447 
 To apply White's test, we first obtain the residuals from the regression of Y on a constant, X1, and X2.  
Then, we regress the squares of these residuals on a constant, X1, X2, X1

2, X2
2, and X1X2.  The R2 in this 

regression is .78296, so the chi-squared statistic is 50×0.78296  = 39.148.  The critical value from the table of 
chi-squared with 6 degrees of freedom is 12.5916, so we would conclude that there is evidence of 
heteroscedasticity. 
 Referring back to the ordinary least squares regression, we now compute the mean squared residual, 
1911.9275/50 = 38.23855.  Then, we compute vi  =  (1/38.23855)ei

2 for each observation.  In the regression of 
v on a constant, X1, and X2, the regression sum of squares is 145.551, so the chi-squared statistic is 145.551/2 
= 72.775.  We reach the same conclusion as in the previous paragraph.  In this case, the degrees of freedom 
for the test are only two, so the conclusion is somewhat stronger. 
 To carry out the Goldfeld-Quandt test, we order the data first based on X1 then on X2.  The 
regressions are computed using the first and last 17 observations, so the F statistic in each case is F[14,14]  =  
e1′e1 / e2′e2 where  e1′e1  is the larger of the two sums of squares and  e2′e2 is the smaller.  For our data set, we 
find     Sorted on X1   Sorted on X2 
  e′e for obs.  1-17         385.974            246.026 
  e′e for obs. 34-50         273.404          1165.683 
  F[14,14]                     1.412             4.738 
The second is considerably larger than the critical value of 2.48.  We would conclude, therefore, that there is 
evidence of heteroscedasticity and it is related to X2 but not X1.  In view of this finding, it is instructive to go 
back to the White and Breusch and Pagan tests considered earlier.  Consider the Lagrange multiplier test, first.  
In the regression of the squared residuals from the original regression divided by e′e/n first on 1 and X1 then 
on 1 and X2, the regression sums of squares are .01805 and 105.906, respectively.  Therefore, the chi-squared 
statistics are .009025 and 52.953, respectively.  The implication is, once again, that there is substantial 
heteroscedasticity, of the form σi

2  =  σ2h(1+γXi2).  The White test involves regressing the squared residuals 
first on 1, X1, and X1

2 then on 1, X2, and X2
2.  The R2s in these two regressions are .02216 and .61380, 

respectively.  The test statistics are thus 1.108 and 30.69.  The conclusion is the same. 
 Finally, we compute Glesjer's test statistics for the three models discussed in Section 14.3.5.  We 
regress e2, |e|, and log|e| on 1, X1, and X2.  We use the White estimator for the covariance matrix of the 
parameter estimates in these regressions as there is ample evidence now that the disturbances are 
heteroscedastic related to X2.  To compute the Wald statistic, we need the two slope coefficients, which we 
denote q, and the 2×2 submatrix of the 3×3 covariance matrix of the coefficients, which we denote Vq.  The 
statistic is W  =  q′Vq

-1q.  For the three regressions, the values are 4.13, 6.51, and 6.60, respectively.  The 
critical value from the chi-squared distribution with 2 degrees of freedom is 5.99, so the second and third are 
statistically significant while the first is not. 
 The disturbance variance underlying these data is, in fact, σi

2  =  σ2(1 + γXi2
2) so the Goldfeld-Quandt 

and Glejser tests have given the right diagnosis.  For the Glejser test, the finding that the linear model is 
inappropriate makes sense since X2 takes negative values.    
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6.  Using the data of Exercise 5, reestimate the parameters, using a two step feasible GLS estimator.  Try 
(12-19), (12-20), and (12-21).  Which one appears to be most appropriate? 
 The ordinary least squares estimates are given above.  The estimates of the disturbance variances are 
based on the residuals from this regression.  For the three models, the disturbance variances are estimated as 
follows: 
(1) σi

2  =  σ2(α′zi):  Regress e2 on 1, X1, X2.  Estimates of σi
2 are the fitted values in this regression. 

 This produces numerous negative values and is clearly inappropriate. 
(2) σi

2  =  σ2(α′zi)2:  Regress |ei| on 1, X1, and X2.  The estimates of σi
2 are the squares of the predicted 

 values from this regression. 
(3) σi

2  =  σ2exp(α′zi):  Regress log(ei
2) on 1, X1, and X2. The estimates of σi

2 are the exponents of the 
 fitted values in this regression. 
Weighted least squares regressions based on the second and third sets of weights (1/σi

2) produces the 
following estimates (standard errors are shown in parentheses).  In each case, the weights are the reciprocals 
of the estimated standard deviations as described above. 
   Unweighted            (2)              (3) 
  One .190394 (.9144)  1.48129 (1.817)  .166626 (.7198) 
  X1 1.13113 (.9826)     1.44651 (.9716)  .776487 (.6388) 
  X2 .376825 (.4399)     .894613 (.7451)  .847177 (.3633) 
There is little in the way of guidance as to which model is the better one.  The OLS estimates are suggestive 
since they are consistent under all specifications.  The second set of estimates resemble the OLS estimates 
slightly more than the third.  As we discussed above, model (2) is, in fact, the right one.  Unfortunately, one 
would be hard pressed to reach that as a firm conclusion based on just these results.  Of course, the results of 
the tests in the previous exercise are much more convincing.   � 
 
7.  For the model in Exercise 1, suppose , is normally distributed with mean zero and variance σ2(1 + (γx)2).  
Show that σ2 and γ2 can be consistently estimated by a regression of the least squares residuals on a constant 
and x2.  Is this estimator efficient? 
 The residuals from the least squares regression are   ei  =  yi - y =  α + εi - (α + ε )  =  εi  - ε .  The 
expected value of the squared residual is 
  E[ei

2] =  E[εi
2] + E[ ε 2] - 2E[εi ε ]  =  σi

2 + (1/n2)E[(Σiεi)2] - (2/n)E[εi(Σjεj)] 
   =  σi

2 + (1/n2)ΣiE[εi
2] - (2/n)E[εi

2] 
since the disturbances are uncorrelated.  We can write this as 
  E[ei

2]  =  σ2  +  σ2γ2xi
2 + (1/n){[(1/n)Σiσi

2] - [2σi
2]}. 

And, of course, ei
2  =  E[ei

2]  +  (ei
2 - E[ei

2])  =  E[ei
2]  +  vi, where vi is uncorrelated with E[ei

2] by 
construction.  Now, if we regress ei

2 on a constant and xi
2, the estimates of σ2 and (σ2γ2) will be biased in a 

finite sample because of the left out variable, namely the term multiplied by (1/n) in the expression for E[ei
2].  

But, if the two terms inside the curled brackets above converge to finite quantities as n→∞, then the entire 
term will vanish, and the omitted variable problem will vanish with it.  Surely the second does since it is the 
variance of εi

2, assuming that xi
2 is finite.  To make the first converge, we will require that (1/n)Σi[σ2 + σ2γ2xi

2]  
=  σ2 + σ2γ2(1/n)Σixi

2 converge to a finite quantity, or that the mean square of the xs converge to a finite 
quantity.  This is a minimal requirement for a heteroscedastic regression, and would surely be met.  As such, if 
ei

2 is regressed on a constant and xi
2, we obtain consistent estimators of σ2 and σ2γ2.  The estimator of σ is the 

square root of the ratio of the slope to the constant. 
 The estimator is not efficient.  The expected fourth moment of a normally distributed variable is 3 
times the square of the variance.  Therefore, in the regression above, the variance of vi must be a function of 
[σ2(1 + γ2xi

2)]2.  Since the regression is heteroscedastic in a way which is not dependent on the sample size, 
OLS will not be efficient, but it will be consistent.   
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8.  Derive the log-likelihood function, first order conditions for maximization, and information matrix for the 
model yi  =  β′xi  +  εi,  εi ~ N[0,σ2(γ′zi)2]. 
 First,  logL      =  - (n/2) log(2π) - 2Σilogσi

2 - 2Σi(εi
2/σi

2) 
      =  - (n/2)ln(2π) - (n/2) logσ2 - 2Σilog(γ′zi)2  - [1/(2σ2)]Σi[(yi - β′xi)2/(γ′zi)2] 
  ∂logL/∂β   =  -(1/(2σ2))Σi(1/(γ′zi)2)(2)(yi - β′xi)(-xi)  =  Σi{εi/[σ2(γ′zi)2]}xi 
  ∂logL/∂γ    =  - 2Σi(1/(γ′zi)2)(2γ′zi)zi  - (1/(2σ2))Σi(yi - β′xi)2[-2/(γ′zi)3]zi  
      =  -Σi[1/(γ′zi)]zi + (1/σ2)Σi[εi

2/(γ′zi)2][1/(γ′zi)]zi 
      =    Σi{εi

2/[σ2(γ′zi)2]   -   1}[1/(γ′zi)]zi 
It is useful to note in passing that we can write this as  =  2Σi{εi

2/[σ2(γ′zi)2]   -   1}[1/(γ′zi)2]2(γ′zi)zi which is 
what appears in (12-28).  It is obvious that these first derivatives have expectation zero, the first since E[εi]  =  
0 and the second because the first term in large brackets has expectation zero. Finally, 
∂logL/∂σ2  =  -n/(2σ2) + (1/(2σ4))Σi[εi

2/(γ′zi)2)]. 
Since   E[εi

2]   =  σ2(γ′zi)2, this also has expected value zero. The second derivatives are 
∂2logL/∂β∂β′   =   Σixi(∂εi/∂β′)/[σ2(γ′zi)2]  =  -Σi[1/σ2(γ′zi)2]xixi′ 
∂2logL/∂β∂σ2   =   Σi{-εi/[(σ2)2(γ′zi)2]}xi 
∂2logL/∂β∂γ′   =   ΣEi{-2εi/[σ2(γ′zi)3]}xizi′ 
∂2logL/∂(σ2)2   =  n/(2σ4) - (1/σ4)Σi{εi

2/[σ2(γ′zi)2]} 
∂2logL/∂F2∂γ′   =  [1/(2σ4)]Σi{εi

2[-2/(γ′zi)3)]}zi  =  [-1/(2σ2)]Σi{εi
2[-2/(γ′zi)2)]}{1/(γ′zi)2}{2γ′zi }zi 

∂2logL/∂γ∂γ′   =   Σi{εi
2/[σ2(γ′zi)2]   -   1}[-1/(γ′zi)2]zizi′  +  Σi{-2εi

2/[σ2(γ′zi)3]}[1/(γ′zi)]zizi′ 
In the notation of (12-26) - (12-28), fi  =  (γ′zi)2  and  gi  =  2(γ′zi)zi.  Therefore,   Ω  =  diag[(γ′zi)2] and G  =  
the matrix whose rows are gi′.  The negatives of the expected second derivatives are simple to obtain since  
E[εi]  =  0  and  E[εi

2]  =  σ2(γ′zi)2.  We will write them in the form of (14-29).   Thus, 
  -E[∂2logL/∂β∂β′]    =  (1/σ2)Σi[1/(γ′zi)2]xixi′ 
  -E[∂2logL/∂β∂σ2]    =  0 
  -E[∂2logL/∂β∂γ′]    =  0 
  -E[∂2logL/∂(σ2)2]     =  n/(2σ4) 
  -E[∂2logL/∂σ2∂γ′]   =  [1/2σ2]Σi{1/(γ′zi)2}2(γ′zi)zi  =  [1/σ2]Σi{1/(γ′zi)}zi 
  -E[∂2logL/∂γ∂γ′]  =  2Σi{1/(γ′zi)4}[2(γ′zi)zi][2(γ′zi)zi]′  =  2Σi[1/(γ′zi)2]zizi′.   � 
 
9.  See Exercise 7 of Chapter 10. 
 
10.  In the discussion of Harvey’s model in Section 11.7, it is noted that the initial estimator of γ1, the constant 
term in the regression of logei

2 on a constant and zi is inconsistent by the amount 1.2704.  Harvey points out 
that if the purpose of this initial regression is only to obtain starting values for the interations, then the 
correction is not necessary.  Explain why this would be the case. 

 The constant is just an estimate of σ2 in σ2Ω.  Let W equal σ2Ω.  Then, the GLS estimator is β =  
[X′W

∧

-1X]-1[X′W-1y].  The scale factor is immaterial.  The estimator will be the same whether W is scaled or 
not, since the scale factor will fall out of the result.   
 
11.  (This exercise requires appropriate computer software.  The computations required can be done with 
RATS, EViews, Stata, TSP, LIMDEP, and a variety of other software using only preprogrammed 
procedures.)  Quarterly data on the consumer price index for 1950.1 to 2000.4 are given in Appendix Table 
F5.1.  Use these data to fit the model proposed by Engle and Kraft (1983).  The model is 
  πt = β0 + β1πt-1 + β2πt-2 + β3πt-3 + β4πt-4 + εt 
where πt = 100ln[pt/pt-1] and pt is the price index. 
a.   Fit the model by ordinary least squares, then use the tests suggested in the text to see if ARCH effects 
appear to be present. 
b.   The authors fit an ARCH(8) model with declining weights,  

  σt
2 = α0 + 8 2

1
9
36i t

i ε= −
− 

 
 

iΣ  
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Fit this model. If the software does not allow constraints on the coefficients, you can still do this with a two 
step least squares procedure, using the least squares residuals from the first step.  What do you find? 
 
c. Bollerslev (1986) recomputed this model as a GARCH(1,1).  Use the GARCH(1,1) form and refit your 
model. 

a.  We used LIMDEP with the macroeconomics data in table F5.1.  The rate of inflation was 
computed with all observations, then observations 6 to 204 were used to remove the missing data due to 
lags.  Least squares results were obtained first.  The residuals were then computed and squared.  Using 
observations 15-204, we then computed a regression of the squared residual on a constant and 8 lagged 
values.  The chi-squared statistic with 8 degrees of freedom is 28.24.  The critical value from the table for 
95% significance and 8 degrees of freedom is 15.51, so at this level of significance, the hypothesis of no 
GARCH effects is rejected. 
crea;pt=100*log(cpi_u/cpi_u[-1])$ 
crea;pt1=pt[-1];pt2=pt[-2];pt3=pt[-3];pt4=pt[-4]$ 
samp;6-204$ 
regr;lhs=pt;rhs=one,pt1,pt2,pt3,pt4;res=et$$ 
crea;vt=et*et$ 
crea;vt1=vt[-1];vt2=vt[-2];vt3=vt[-3];vt4=vt[-4];vt5=vt[-5];vt6=vt[-6];vt7=vt[-
7];vt8=vt[-8]$ 
samp;15-204$ 
regr;lhs=vt;rhs=one,vt1,vt2,vt3,vt4,vt5,vt6,vt7,vt8$ 
calc;list;lm=n*rsqrd$ 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = PT       Mean=   .9589185961    , S.D.=   .8318268241     | 
| Model size: Observations =     199, Parameters =   5, Deg.Fr.=    194 | 
| Residuals:  Sum of squares= 61.97028507    , Std.Dev.=         .56519 | 
| Fit:        R-squared=  .547673, Adjusted R-squared =          .53835 | 
| Model test: F[  4,    194] =   58.72,    Prob value =          .00000 | 
| Diagnostic: Log-L =   -166.2871, Restricted(b=0) Log-L =    -245.2254 | 
|             LogAmemiyaPrCrt.=   -1.116, Akaike Info. Crt.=      1.721 | 
| Autocorrel: Durbin-Watson Statistic =   1.80740,   Rho =       .09630 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant     .1296044455   .67521735E-01    1.919   .0564 
 PT1          .2856136998   .69863942E-01    4.088   .0001     .97399582 
 PT2          .1237760914   .70647061E-01    1.752   .0813     .98184918 
 PT3          .2516837602   .70327318E-01    3.579   .0004     .99074774 
 PT4          .1824670634   .69251374E-01    2.635   .0091     .98781131 
 LM      =  .28240022492847690D+02 
 
For the second step, we need an estimate of α0, which is the unconditional variance if there are no ARCH 
effects.  We computed this based on the ARCH specification by a regression of et

2 – (8/36)et-1
2 - … - 

(1/36)et-8
2 on just a constant term.  This produces a negative estimate of α0, but this is not the variance, so 

we retain the result.  We note, the problem that this reflects is probably the specific, doubtless unduly 
restrictive, ARCH structure assumed. 
 
samp;6-204$ 
crea;vt=et*et$ 
crea;ht=vt-8/36*vt[-1]-7/36*vt[-2]-6/36*vt[-3]-5/36*vt[-4]-4/36*vt[-5]-3/36*vt[-
6]-2/36*vt[-7]-1/36*vt[-8]$ 
samp;15-204$ 
calc;list;a0=xbr(ht)$ 
samp;6-204$ 
crea;qt=a0+8/36*vt[-1]+7/36*vt[-2]+6/36*vt[-3]+5/36*vt[-4]+4/36*vt[-5]+3/36*vt[-
6]+2/36*vt[-7]+1/36*vt[-8]$ 
samp;15-204$ 
plot;rhs=qt$ 
crea;wt=1/qt$ 
regr;lhs=pt;rhs=one,pt1,pt2,pt3,pt4;wts=wt$ 
regr;lhs=pt;rhs=one,pt1,pt2,pt3,pt4;model=garch(1,1)$ 
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Once we have an estimate of α0 in hand, we then computed the set of variances according to the ARCH(8) 
model, using the lagged squared residuals.  Finally, we used these variance estimators to compute a 
weighted least squares regression accounting for the heteroscedasticity.  This regression is based on 
observations 15-204, again because of the lagged values.  Finally, using the same sample, a GARCH(1,1) 
model is fit by maximum likelihood. 
 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = WT       | 
| Dep. var. = PT       Mean=   .8006997687    , S.D.=   .6327877239     | 
| Model size: Observations =     190, Parameters =   5, Deg.Fr.=    185 | 
| Residuals:  Sum of squares= 38.67492770    , Std.Dev.=         .45722 | 
| Fit:        R-squared=  .488964, Adjusted R-squared =          .47791 | 
| Model test: F[  4,    185] =   44.25,    Prob value =          .00000 | 
| Diagnostic: Log-L =   -147.7324, Restricted(b=0) Log-L =    -211.5074 | 
|             LogAmemiyaPrCrt.=   -1.539, Akaike Info. Crt.=      1.608 | 
| Autocorrel: Durbin-Watson Statistic =   1.90310,   Rho =       .04845 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant     .1468553158   .60127085E-01    2.442   .0155 
 PT1       .9760051110E-01  .88469908E-01    1.103   .2714     .77755556 
 PT2          .3328520370   .86772549E-01    3.836   .0002     .76745308 
 PT3          .1428889148   .85420554E-01    1.673   .0961     .76271761 
 PT4          .2878686524   .84090832E-01    3.423   .0008     .74173558 
 
The 8 period ARCH model produces quite a substantial change in the estimates.  Once again, this probably 
results from the restrictive assumption about the lag weights in the ARCH model.  The GARCH model 
follows. 
 
+---------------------------------------------+ 
| GARCH MODEL                                 | 
| Maximum Likelihood Estimates                | 
| Model estimated: Jul 31, 2002 at 01:19:14PM.| 
| Dependent variable                   PT     | 
| Weighting variable                 None     | 
| Number of observations              190     | 
| Iterations completed                 22     | 
| Log likelihood function       -135.5043     | 
| Restricted log likelihood     -147.6465     | 
| Chi squared                    24.28447     | 
| Degrees of freedom                    2     | 
| Prob[ChiSqd > value] =         .5328953E-05 | 
| GARCH Model, P = 1, Q = 1                   | 
| Wald statistic for GARCH =      521.483     | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
          Regression parameters 
 Constant     .1308478127   .61887183E-01    2.114   .0345 
 PT1          .1749239917   .70912277E-01    2.467   .0136     .98810078 
 PT2          .2532191617   .73228319E-01    3.458   .0005     .98160455 
 PT3          .1552879436   .68274176E-01    2.274   .0229     .97782066 
 PT4          .2751467919   .63910272E-01    4.305   .0000     .97277700 
          Unconditional Variance 
 Alpha(0)  .1005125676E-01  .11653271E-01     .863   .3884 
          Lagged Variance Terms 
 Delta(1)     .8556879884   .89322732E-01    9.580   .0000 
          Lagged Squared Disturbance Terms 
 Alpha(1)     .1077364862   .60761132E-01    1.773   .0762 
          Equilibrium variance, a0/[1-D(1)-A(1)] 
 EquilVar     .2748082674       2.0559946     .134   .8937 
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Chapter 12 
 

Autocorrelation 
 
1.  Does first differencing reduce autocorrelation?  Consider the models yt  =  β′xt + εt,  where εt = ρεt-1 + ut 
and   εt  =  ut  -  λut-1.  Compare the autocorrelation of εt in the original model to that of vt in yt - yt-1 =  β′(xt - xt-

1) + vt  where  vt  =  εt - εt-1. 
 For the first order autoregressive model, the autocorrelation is ρ.  Consider the first difference, vt =  
εt - εt-1  which has Var[vt] =  2Var[εt] - 2Cov[(εt,εt-1)]  =  2σu

2[1/(1 - ρ2)  -  ρ/(1 - ρ2)]  =  2σu
2/(1 + ρ) and 

Cov[vt,vt-1] = 2Cov[εt,εt-1] - Var[εt] - Cov[εt,εt-1] = σu
2[1/(1 - ρ2)][2ρ - 1 - ρ2]  =  σu

2[(ρ - 1)/(1 + ρ)].  
Therefore, the autocorrelation of the differenced process is Cov[vt,vt-1] / Var[vt]  =  (ρ - 1) / 2.  As the figure 
below on the left shows, first differencing reduces the absolute value of the autocorrelation coefficient when ρ 
is greater than 1/3.  For economic data, this is likely to be fairly common. 

 

   
 

For the moving average process, the first order autocorrelation is Cov[(εt,εt-1)]/Var[εt]  =  -λ/(1 + λ2).  To 
obtain the autocorrelation of the first difference, write εt - εt-1  = ut - (1 + λ)ut-1 + λut-2 and εt-1 - εt-2 =  
ut-1 - (1 + λ)ut-2 + λut-3.  The variance of the difference is Var[εt - εt-1] = σu

2[(1 + λ)2 + (1 + λ2)].  The 
covariance can be found by taking the expected product of terms with equal subscripts.  Thus, Cov[εt - εt-1,εt-1 
- εt-2] = -σu

2(1 + λ)2.  The autocorrelation is Cov[εt - εt-1,εt-1 - εt-2]/Var[εt - εt-1]   =  - (1 + λ)2/[(1 + λ)2 + (1 + 
λ2)].  A plot of the relationship between the differenced and undifferenced series is shown in the right panel 
above.  The horizontal axis plots the autocorrelation of the original series.  The values plotted are the absolute 
values of the difference between the autocorrelation of the differenced series and the original series.  The 
results are similar to those for the AR(1) model.  For most of the range of the autocorrelation of the original 
series, differencing increases autocorrelation.  But, for most of the range of values that are economically 
meaningful, differencing reduces autocorrelation.   
 
2.  Derive the disturbance covariance matrix for the model yt  =  β′xt + εt,   εt  =  ρεt-1 + ut - λut-1.  What 
parameter is estimated by the regression of the ordinary least squares residuals on their lagged values? 
 Solve the disturbance process in its moving average form.  Write the process as εt - ρεt-1 = ut -  λut-1  
or, using the lag operator,   εt(1 - ρL) = ut - λut-1 or εt  =  ut/(1 - ρL)  -  λut-1/(1 - ρL). After multiplying these 
out, we obtain εt   =  ut + ρut-1 + ρ2ut-2  + ρ3ut-3 + ... - λut-1 - ρλut-2 - ρ2λut-3 - ... 
   =  ut + (ρ-λ)ut-1 + ρ(ρ-λ)ut-2 + ρ2(ρ-λ)ut-3 + ... 
Therefore, Var[εt] =  σu

2(1 + (ρ-λ)2)(1 + ρ2 + ρ4 + ...)  =  σu
2(1 + (ρ-λ)2/(1 - ρ2)) 

   =  σu
2(1 + λ2 - 2ρλ)/(1 - ρ2) 

  Cov[εt,εt-1]  =  ρVar[εt-1] + Cov[εt-1,ut] - λCov[εt-1,ut-1]. 
To evaluate this expression, write 
  εt-1  =  ut-1 + (ρ-λ)ut-2 + ρ(ρ-λ)ut-3 + ρ2(ρ-λ)ut-4+ ... 
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Therefore, the middle term is zero and the third is simply λσu
2.  Thus, 

  Cov[εt,εt-1] = σu
2{[ρ(1 + λ2 - 2ρλ)]/(1 - ρ2)  - λ]} = σu

2[(ρ - λ)(1 - λρ)/(1 - ρ2)] 
For lags greater than 1,   Cov[εt,εt-j] = ρCov[εt-1,εt-j] + Cov[εt-j,ut] - λCov[εt-j,ut-1]. 
Since εt-j involves only us up to its current period, εt-j is uncorrelated with ut and ut-1 if j is greater than 1.  
Therefore, after the first lag, the autocovariances behave in the familiar fashion, Cov[εt,εt-j]  =  ρCov[εt,εt-j+1] 
The autocorrelation coefficient of the residuals estimates Cov[εt,εt-1]/Var[εt]  =  (ρ - λ)(1 - ρλ)/(1 + λ2 - 2ρλ).  
 
3.  The following regression is obtained by ordinary least squares using 21 observations: (Estimated 
asymptotic standard deviations are shown in parentheses).    yt  =  1.3(0.3) + .97(0.18)yt-1  +  2.31(1.04)xt,  DW 
= 1.21.  Test for the presence of autocorrelation in the disturbances. 
 Since the regression contains a lagged dependent variable, we cannot use the Durbin-Watson statistic 
directly.  The h statistic in (15-34) would be  h = (1 - 1.21/2)[21 / (1 - 21(.182)]2  =  3.201. 
The 95% critical value from the standard normal distribution for this one-tailed test would be 1.645.  
Therefore, we would reject the hypothesis of no autocorrelation.   
 
4.  It is commonly asserted that the Durbin-Watson statistic is only appropriate for testing for first order 
autoregressive disturbances.  What combination of the coefficients of the model is estimated by the 
Durbin-Watson statistic in each of the following cases:  AR(1), AR(2), MA(1)?  In each case, assume that the 
regression model does not contain a lagged dependent variable.  Comment on the impact on your results of 
relaxing this assumption. 
 In each case,  plim d  =  2 - 2ρ1  where ρ1  =  Corr[εt,εt-1].  The first order autocorrelations are as 
follows: AR(1):  ρ  (see (15-9))  and AR(2):  θ1/(1 - θ2).   For the AR(2), a proof is as follows:  First, εt = θ1εt-1 
+ θ2εt-2 + ut.  Denote Var[εt] as c0 and Cov[εt,εt-1] as c1.  Then, it follows immediately that c1 =  θ1c0 + θ2c1 
since ut is independent of εt-1.  Therefore ρ1  =  c1/c0  =  θ1/(1 - θ2).  For the MA(1):  -λ / (1 + λ2)  (See 
(15-43)).  To prove this, write εt  =  ut - λut-1.  Then, since the us are independent, the result follows just by 
multiplying out ρ1 = Cov[εt,εt-1]/Var[εt]  =  -λVar[ut-1]/{Var[ut] + λ2Var[ut-1]}  =  -λ/(1 + λ2).   
 
5.  The data used to fit the expectations augmented Phillips curve in Example 12.3  are given in Table F5.1. 
Using these data, reestimate the model given in the example.  Carry out a formal test for first order 
autocorrelation using the LM statistic.  Then, reestimate the model using an AR(1) model for the 
disturbance process. Since the sample is large, the Prais-Winsten and Cochrane-Orcutt estimators should 
give essentially the same answer. Do they?  After fitting the model, obtain the transformed residuals and 
examine them for first order autocorrelation.  Does the AR(1) model appear to have adequately “fixed” the 
problem? 
 
--> date;1950.1$ 
--> peri;1950.1-2000.4$ 
--> crea;dp=infl-infl[-1]$ 
--> crea;dy=loggdp-loggdp[-1]$ 
--> peri;1950.3-2000.4$ 
--> regr;lhs=dp;rhs=one,unemp$;ar1;res=u$ 
 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = DP       Mean=  -.1926996283E-01, S.D.=   2.818214558     | 
| Model size: Observations =     202, Parameters =   2, Deg.Fr.=    200 | 
| Residuals:  Sum of squares= 1592.321197    , Std.Dev.=        2.82163 | 
| Fit:        R-squared=  .002561, Adjusted R-squared =         -.00243 | 
| Model test: F[  1,    200] =     .51,    Prob value =          .47449 | 
| Diagnostic: Log-L =   -495.1583, Restricted(b=0) Log-L =    -495.4173 | 
|             LogAmemiyaPrCrt.=    2.084, Akaike Info. Crt.=      4.922 | 
| Autocorrel: Durbin-Watson Statistic =   2.82755,   Rho =      -.41378 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant     .4918922148       .74047944     .664   .5073 
 UNEMP    -.9013159906E-01      .12578616    -.717   .4745     5.6712871 
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--> peri;1951.2-2000.4$ 
--> regr;lhs=u;rhs=one,u[-1],u[-2]$ 
 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = U        Mean=  -.3890391012E-01, S.D.=   2.799476915     | 
| Model size: Observations =     199, Parameters =   3, Deg.Fr.=    196 | 
| Residuals:  Sum of squares= 1079.052269    , Std.Dev.=        2.34635 | 
| Fit:        R-squared=  .304618, Adjusted R-squared =          .29752 | 
| Model test: F[  2,    196] =   42.93,    Prob value =          .00000 | 
| Diagnostic: Log-L =   -450.5769, Restricted(b=0) Log-L =    -486.7246 | 
|             LogAmemiyaPrCrt.=    1.721, Akaike Info. Crt.=      4.559 | 
| Autocorrel: Durbin-Watson Statistic =   1.99273,   Rho =       .00363 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant -.5048615289E-01      .16633422    -.304   .7618 
 U[-1]       -.5946344724   .65920584E-01   -9.020   .0000 -.10234931E-01 
 U[-2]       -.3824653303   .65904378E-01   -5.803   .0000 -.14370453E-01 
 (Note: E+nn or E-nn means multiply by 10 to + or -nn power.) 
 
--> calc;list;lm=n*rsqrd$ 
    LM      =  .60618960968412850D+02 
+---------------------------------------------+ 
| AR(1) Model:     e(t) = rho * e(t-1) + u(t) | 
| Initial value of rho       =        -.41378 | 
| Maximum iterations         =            100 | 
| Method = Prais - Winsten                    | 
| Iter=  1, SS=   1299.275, Log-L=-474.710175 | 
| Final value of Rho    =            -.413779 | 
| Iter=  1, SS=   1299.275, Log-L=-474.710175 | 
| Durbin-Watson:   e(t) =            2.827557 | 
| Std. Deviation:  e(t) =            2.799716 | 
| Std. Deviation:  u(t) =            2.548799 | 
| Durbin-Watson:   u(t) =            2.340706 | 
| Autocorrelation: u(t) =            -.170353 | 
| N[0,1] used for significance levels         | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant     .4704274598       .47671946     .987   .3237 
 UNEMP    -.8709854633E-01  .80962277E-01   -1.076   .2820     5.6712871 
 RHO         -.4137785986   .64213081E-01   -6.444   .0000 
 
Regression results are almost unchanged.  Autocorrelation of transformed residuals is -.17, less than -.41 in 
original model. 
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or fitting an improved Phillips curve model can be obtained from many sources, including the 
 Economic Analysis’s (BEA) own website, Economagic.com, and so on.  Obtain the necessary 
6.   Data f
Bureau of

data and expand the model of example 12.3.  Does adding additional explanatory variables to the model 
reduce the extreme pattern of the OLS residuals that appears in Figure 12.3? 
 We added a dummy variable for the period after the 1973 oil shock.  The new variable did not 
seem to improve the model much, and the pattern of the residuals was unchanged. 
 
--> crea;newecon=dmy(1974.1,2000.4)$ 
--> regr;lhs=dp;rhs=one,unemp,newecon;plot$ 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = DP       Mean=  -.1926996283E-01, S.D.=   2.818214558     | 
| Model size: Observations =     202, Parameters =   3, Deg.Fr.=    199 | 
| Residuals:  Sum of squares= 1586.260338    , Std.Dev.=        2.82332 | 
| Fit:        R-squared=  .006357, Adjusted R-squared =         -.00363 | 
| Model test: F[  2,    199] =     .64,    Prob value =          .53017 | 
| Diagnostic: Log-L =   -494.7731, Restricted(b=0) Log-L =    -495.4173 | 
|             LogAmemiyaPrCrt.=    2.091, Akaike Info. Crt.=      4.928 | 
| Autocorrel: Durbin-Watson Statistic =   2.83473,   Rho =      -.41737 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant     .5507626279       .74399306     .740   .4600 
 UNEMP    -.9835166981E-01      .12621412    -.779   .4368     5.6712871 
 NEWECON     -2.474910396       2.8382661    -.872   .3843  .49504950E-02 
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Chapter 13 
 

Models for Panel Data 
 
1.  The following is a panel of data on investment (y) and profit (x) for n=3 firms over T=10 periods. 
             i=1               i=2               i=3 
          y       x         y       x         y       x 
 t= 1   13.32   12.85     20.30   22.93      8.85    8.65 
 t= 2   26.30   25.69     17.47   17.96     19.60   16.55 
 t= 3    2.62    5.48      9.31    9.16      3.87    1.47 
 t= 4   14.94   13.79     18.01   18.73     24.19   24.91 
 t= 5   15.80   15.41      7.63   11.31      3.99    5.01 
 t= 6   12.20   12.59     19.84   21.15      5.73    8.34 
 t= 7   14.93   16.64     13.76   16.13     26.68   22.70 
 t= 8   29.82   26.45     10.00   11.61     11.49    8.36 
 t= 9   20.32   19.64     19.51   19.55     18.49   15.44 
 t=10    4.77    5.43     18.32   17.06     20.84   17.87 
(a)  Pool the data and compute the least squares regression coefficients of the model yit =α+ β′xit + εit. 
(b)  Estimate the fixed effects model of (13-2), then test the hypothesis that the constant term is the same for 
all three firms. 
(c)  Estimate the random effects model of (13-18), then carry out the Lagrange multiplier test of the      
hypothesis that the classical model without the common effect applies. 
(d)  Carry out Hausman’s specification test for the random versus the fixed model. 
 The pooled least squares estimator is 

 =  -.747476   +  1.058959x,  e′e  =  120.6687 y
∧

   (.95595)   (.058656) 
The fixed effects regression can be computed just by including the three dummy variables since the sample 
sizes are quite small.  The results are 

 =  - 1.4684iy
∧

1 - 2.8362i2 + .12166i3  +  1.102192x e′e  =  79.183. 
                                                          (.050719) 
The F statistic for testing the hypothesis that the constant terms are all the same is 
 F[26,2]  =  [(120.6687 - 79.183)/2]/[79.183/26]  =  6.811. 
The critical value from the F table is 19.458, so the hypothesis is not rejected. 
 In order to estimate the random effects model, we need some additional parameter estimates.  The 
group means are       y      x  
  Group 1  15.502   14.962 
  Group 2  15.415   16.559 
  Group 3  14.373   12.930 
In the group means regression using these three observations, we obtain 
  y i. =  10.665  +  .29909 x i.  with  e**′e**  =  .19747. 
There is only one degree of freedom, so this is the candidate for estimation of σε

2/T + σu
2.  In the least squares 

dummy variable (fixed effects) regression, we have an estimate of σε
2 of 79.183/26  =  3.045. Therefore, our 

estimate of σu
2 is  =  .19747/1  -  3.045/10  =  -.6703.  Obviously, this won't do.  Before abandoning the 

random effects model, we consider an alternative consistent estimator of the constant and slope, the pooled 
ordinary least squares estimator.  Using the group means above, we find 

σ
∧

u

2

  Σ i [=1
3 y i. - (-.747476) - 1.058959 x i.]2  =  3.9273. 

One ought to proceed with some caution at this point, but it is difficult to place much faith in the group means 
regression with but a single degree of freedom, so this is probably a preferable estimator in any event.  (The 
true model underlying these data -- using a random number generator -- has a slope, β of 1.000 and a true 
constant of zero.  Of course, this would not be known to the analyst in a real world situation.)  Continuing, we 

 53 



  

now use σ =  3.9273 - 3.045/10  =  3.6227 as the estimator.  (The true value of ρ = σu
2
∧

u
2/(σu

2+σε
2) is .5.)  This 

leads to θ  =  1  -  [3.04551/2/(10(3.6227) + 3.045)1/2]  =  .721524.  Finally, the FGLS estimator computed 

according to (16-48) is =  -1.3415(.786)  +  1.0987 (.028998)x. y
∧

 For the LM test, we return to the pooled ordinary least squares regression.  The necessary quantities 
are e′e    =  120.6687,  Σt e1t  =  -.55314, Σt e2t  =  -13.72824,  Σt e3t  =  14.28138.  Therefore, 
 LM  =  {[3(10)]/[2(9)]}{[(-.55314)2 + (13.72824)2 + (14.28138)2]/120.687  -  1}2   =   8.4683 
The statistic has one degree of freedom.  The critical value from the chi-squared distribution is 3.84, so the 
hypothesis of no random effect is rejected.  Finally, for the Hausman test, we compare the FGLS and least 
squares dummy variable estimators.  The statistic is χ2  =  [(1.0987 - 1.058959)2]/[(.058656)2 - (.05060)2]  =  
1.794373.  This is relatively small and argues (once again) in favor of the random effects model.  
 
2.  Suppose that the model of (13-2) is formulated with an overall constant term and n-1 dummy variables 
(dropping, say, the last one).  Investigate the effect that this has on the set of dummy variable coefficients and 
on the least squares estimates of the slopes. 
 There is no effect on the coefficients of the other variables.  For the dummy variable coefficients, 
with the full set of n dummy variables, each coefficient is   
 y i * = mean residual for the ith group in the regression of y on the xs omitting the dummy variables. 
(We use the partitioned regression results of Chapter 6.)  If an overall constant term and n-1 dummy variables 
(say the last n-1) are used, instead, the coefficient on the ith dummy variable is simply y i* - y 1* while the 

constant term is still y 1* For a full proof of these results, see the solution to Exercise 5 of Chapter 8 earlier in 
this book.    
 
3.  Use the data in Section 13.9.7 (these are the Grunfeld data) to fit the random and fixed effects models.  
There are five firms and 20 years of data for each.  Use the F, LM, and/or Hausman statistics to determine 
which model, the fixed or random effects model, is preferable for these data. 
 The regression model is  Iit  =  β1i + β2Fit + β3Cit + βit.  We first fit the model by pooled OLS, 
ignoring the specific firm effect. 
+-----------------------------------------------------------------------+ 
| OLS Without Group Dummy Variables                                     | 
| Ordinary    least squares regression                                  | 
| Dependent variable is I         Mean =  248.95700, S.D. =    267.8654 | 
| Model size: Observations =     100, Parameters =   3, Deg.Fr. =    97 | 
| Residuals:  Sum of squares=   0.157088E+07 Std.Dev. =       127.25831 | 
| Fit:        R-squared = 0.77886, Adjusted R-squared =         0.77430 | 
| Model test: F[  2,     97] =  170.81,    Prob value =         0.00000 | 
| Diagnostic: Log-L =   -624.9928, Restricted(ß=0) Log-L =    -700.4398 | 
| Panel Data Analysis of I          [ONE way]                           | 
|           Unconditional ANOVA (No regressors)                         | 
| Source      Variation        Deg. Free.     Mean Square               | 
| Between      0.487817E+07            4.        0.121954E+07           | 
| Residual     0.222527E+07           95.         23423.9               | 
| Total        0.710344E+07           99.         71751.9               | 
+-----------------------------------------------------------------------+ 
  Variable  Coefficient   Standard Error  t-ratio  P[*T*$t]   Mean of X 
  ----------------------------------------------------------------------- 
  F          0.10509         0.11378E-01    9.236   0.00000   1922. 
  C          0.30537         0.43508E-01    7.019   0.00000   311.1 
  Constant   -48.030          21.480       -2.236   0.02764 
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The least squares regression with firm specific effects is 
+-----------------------------------------------------------------------+ 
| Least Squares with Group Dummy Variables                              | 
| Ordinary    least squares regression    Weighting variable = ONE      | 
| Dependent variable is I         Mean =  248.95700, S.D. =    267.8654 | 
| Model size: Observations =     100, Parameters =   7, Deg.Fr. =    93 | 
| Residuals:  Sum of squares=    444288.     Std.Dev. =        69.11797 | 
| Fit:        R-squared = 0.93745, Adjusted R-squared =         0.93342 | 
| Model test: F[  6,     93] =  232.32,    Prob value =         0.00000 | 
| Diagnostic: Log-L =   -561.8468, Restricted(ß=0) Log-L =    -700.4398 | 
+-----------------------------------------------------------------------+ 
  Variable  Coefficient   Standard Error  t-ratio  P[*T*$t]   Mean of X 
  --------------------------------------------------------------------- 
  F          0.10598         0.15891E-01    6.669   0.00000   1922. 
  C          0.34666         0.24161E-01   14.348   0.00000   311.1 
To estimate the variance components for the random effects model, we also computed the group means 
regression.  The sum of squared residuals from the LSDV estimator is 444,288.  The sum of squares from the 
group means regression is 22382.1.  The estimate of σε

2 is 444,288/93 = 4777.29.  The estimate of σu
2 is 

22,382.1/2 - (1/20)4777.29 = 10,952.2.  The model is then reestimated by FGLS using these estimates: 
            +--------------------------------------------------+ 
            | Random Effects Model: v(i,t) = e(i,t) + u(i)     | 
            | Estimates:  Var[e]              =  0.477729E+04  | 
            |             Var[u]              =  0.109522E+05  | 
            |             Corr[v(i,t),v(i,s)] =  0.696284      | 
            | Lagrange Multiplier Test vs. Model (3) =  453.82 | 
            | ( 1 df, prob value = 0.000000)                   | 
            | Fixed vs. Random Effects (Hausman)     =    3.14 | 
            | ( 2 df, prob value = 0.208081)                   | 
            +--------------------------------------------------+ 
 
  Variable  Coefficient   Standard Error  z=b/s.e. P[*Z*$z]   Mean of X 
  --------------------------------------------------------------------- 
  F          0.10489         0.14711E-01    7.130   0.00000   1922. 
  C          0.34602         0.24112E-01   14.350   0.00000   311.1 
  Constant   -60.291          54.167       -1.113   0.26568 
The F and LM statistics are not useful for comparing the fixed and random effects models.  The Hausman 
statistic can be used.  The value appears above.  Since the Hausman statistic is small (only 3.14 with two 
degrees of freedom), we conclude that the GLS estimator is consistent.  The statistic would be large if the two 
estimates were significantly different.  Since they are not, we conclude that the evidence favors the random 
effects model.  
 
4.  Derive the log-likelihood function for the model in (13-18) assuming that ,it and ui are normally distributed.  
[Hints: Write the log-likelihood function as lnL  =  Σ i lnLn

=1 i where lnLi is the log-likelihood function for the T 
observations in group i.  These T observations are joint normally distributed with covariance matrix given in 
(14-20).] The log-likelihood is the sum of the logs of the joint normal densities of the n sets of T observations, 
    εit + ui  =  yit  -  α  -  β′xit. 
This will involve the inverse and determinant of Ω.  Use (2-66) to prove that 
    Ω-1  =  (1/σε

2){I  -  [σu
2/(σε

2 +  Tσ u
2)]ii′]} 

To find the determinant, use the product of the characteristic roots. Note first that 
     |σI  +  σii′|  = (σε

2)|I + (σu
2/σε

2)ii′|. 
The roots are determined by  [I + (σu

2/σε
2)ii′]c  =  λc  or  (σu

2/σε
2)ii′c  =  (λ-1)c.  Any vector whose elements 

sum to zero is a solution.  There are T-1 such independent vectors, so T-1 characteristic roots are (λ-1)=0 or 
λ=1.  Premultiply the expression by i′ to obtain the remaining characteristic root.  (Remember to add 1 to the 
result.)  Now, collect terms to obtain the log-likelihood.  The ith group of T observations, 
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wi  =  yi  -  Xiβ  =    =  , is normally distributed with mean vector 0 and the covariance 

matrix given in (14-20).   We have included the constant term in X
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i.  The joint density of these T observations 
is, therefore, Li  =  f(wi)  =  (2π)-T/2|Ω|-1/2exp[(-1/2)wi′Ω-1wi].  The log of the joint density is  
  lnLi  =  -(T/2)ln(2π)  -  (1/2)ln|Ω|  -  (1/2)wi′Ω-1wi   
and, finally, for the full sample, lnL  =  ΣilnLi.  Consider the log-determinant first.  As suggested above, we 
write  Ω  =  σε

2[I + (σu
2/σε

2)ii′]. Then, |Ω|  =  (σε
2)T|I +(σu

2/σε
2)ii′|  or  ln|Ω|  =  Tlnσε

2 + ln|I + (σu
2/σε

2)ii′|. 
The determinant of a matrix equals the product of its characteristic roots, so the log determinant equals the 
sum of the logs of the roots.  The characteristic roots of the matrix above remain to be determined.  As shown 
in the exercise, T-1 of the T roots equal 1.  Therefore, the logs of these roots are zero, so the log-determinant 
equals the log of the remaining root. It remains only to find the other characteristic root.  Premultiply the result 
  (σu

2/σε
2)ii′c  =  (λ-1)c  by i′ to obtain (σu

2/σε
2)i′ii′c  =  (λ-1)i′c. 

Now, i′i = T.  Divide both sides of the equation by i′c -- remember, we now seek the characteristic root which 
corresponds to the characteristic vector whose elements do not sum to zero -- and obtain 
  T(σu

2/σε
2) = λ - 1  or  λ =  1 + T(σu

2/σε
2). 

Therefore,  ln|Ω|  =  Tlnσε
2 +  ln[1 + T(σu

2/σε
2)]. 

By writing 1 + T(σu
2/σε

2)  =  (1/σε
2)[ σε

2  + Tσu
2] 

we obtain  ln|Ω|  =  (T-1)lnσε
2 + ln[σε

2 + Tσu
2] 

We now turn to the exponential term.  The inverse matrix is given in the exercise, so it remains only to 
multiply it out.  Thus, wi′Ω-1wi  =  wi′wi/σε

2  -  (wi′i)2/[σε
2 + Tσu

2] 
Since wi  =  yi - Xiβ wi′Ω-1wi  =  (yi - Xiβ)′(yi - Xiβ)/σε

2  -  [i′(yi - Xiβ)]2/[ σε
2  + Tσu

2]. 
The first term is the usual sum of squared deviations.  The numerator in the second can be written as 
   [i′(yi - Xiβ)]2  =  [T( y i. - β′ x i.)]2. 

Collecting terms, lnLi = -(T/2)ln(2π) - [(T-1)/2]lnσε
2 - ½(yi - Xiβ)′(yi - Xiβ)/σε

2 - ½[T( y i. - β′ x i.)]2/[σε
2 + 

Tσu
2].  Finally, the log-likelihood for the full sample is the sum of these expressions over the i=1 to n groups.   

 
5.  Unbalanced design for random effects.  Suppose that the random effects model of Section 13.4 is to be 
estimated with a panel in which the groups have different numbers of observations.  Let Ti be the number of 
observations in group i. 
(a)  Show that the pooled least squares estimator in (13-11) is unbiased and consistent in spite of this 
complication. 
(b)  Show that the estimator in (13-29) based on the pooled least squares estimator of β (or, for that matter, any 
consistent estimator of β) is a consistent estimator of σε

2. 
 The model in (13-11) is a generalized regression model.   As we saw in Chapter 10, OLS is 
consistent in the GR model.  The unequal group sizes here does not have any effect on the result.  The residual 

using any estimators of α and β is eit  =  yti  - α  - β ′x
∧ ∧

it and e   =  i. yi.  - α  - β ′
∧ ∧

xi. .  Thus the estimator in (13-

29) is  [1/(nT-n-K)]ΣiΣt (eit - e )i.
2  =  [1/(nT-n-K)]ΣiΣt [(yit - y ) - β ′(xi.

∧

it - x )]i.
2.  The probability limit is the 

same as the probability limit of the statistic which results whenβ is replaced with its probability limit.  If is a 

consistent estimator of β, then the estimator converges to plim[1/(nT-n-K)]Σ

∧
β
∧

iΣt [(yit - yi. ) - β′(xit - x )]i.
2.  But, 

(yit - yi. ) - β′(xit - x )  =  εi. it  -  εi.  So, our estimator has the same limiting behavior as  =  [1/(nT-n-K)]Σσε
2
∧

iΣt 

(εit - ε )i.
2.  Write this as σ =  (1/n)Σ i  [Σε

2
∧

n
=1 t (εit - e )i.

2]/[(T-1) - K/n]. The expected value of sum of squared 
deviations in the brackets is (T-1)σε

2.  Each term in the outer sum has the same expectation, so the exact 
expectation is 1/n times n times this expectation, or 
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   E[σ ]  =  [(T-1) σε
2
∧

ε
2]/[(T-1) - K/n] 

This obviously converges to σε
2as n→∞.  The exact variance of the estimator depends upon what we assume 

about the fourth moment of εit.  If we assume only that the fourth moment of εit is finite, then the variance of 
each term in the inner sum is of the form 
   [T/(T - 1 - K/n)][φ1/T + φ2/T 2 + φ3/T 3]  =  φ. 
If φ is finite, then the variance of the entire expression is φ/n which converges to 0.  This completes the proof.  
To summarize the argument, we have shown that the limiting behavior of the statistic in (13-27) based on any 
consistent estimator of β is the same as that of a statistic which converges in mean square to σε

2 if the fourth 
moment of ε is finite. 
 
6.  What are the probability limits of (1/n)LM, where LM is defined in (13-31) under the null hypotheses that 
σu

2 = 0 and under the alternative that σu
2 ≠ 0? 

 To find plim(1/n)LM = plim [T/(2(T-1))]{[Σi(Σteit)2]/[ΣiΣteit
2]  -  1}2 we can concentrate on the sums 

inside the curled brackets.  First, Σi(Σteit)2  =  nT2{(1/n)Σi[(1/T)Σteit]2}  and   ΣiΣteit
2  =  nT(1/(nT))ΣiΣteit

2.  The 
ratio equals   [Σi(Σteit)2]/[ΣiΣteit

2]  =  T{(1/n)Σi[(1/T)Σteit]2}/{(1/(nT))ΣiΣteit
2}.  Using the argument used in 

Exercise 8 to establish consistency of the variance estimator, the limiting behavior of this statistic is the same 
as that which is computed using the true disturbances since the OLS coefficient estimator  is consistent.  Using 
the true disturbances, the numerator may be written  (1/n)Σi[(1/T)Σtεit]2  =  (1/n)Σi εi.

2
  Since  E[ ε ] =  0,  

plim(1/n)Σ
i.

i εi.
2

 =  Var[ εi. ] =  σε
2T + σu

2The denominator is simply the usual variance estimator, so  
plim(1/(nT))ΣiΣtεit

2    =  Var[εit]  =  σε
2+ σu

2Therefore, inserting these results in the expression for LM, we find 
that  plim (1/n)LM  =  [T/(2(T-1))]{[T(σε

2T + σu
2)]/[σε

2+ σu
2]   -   1}2.  Under the null hypothesis that σu

2 = 0, 
this equals 0.  By expanding the inner term then collecting terms, we find that under the alternative hypothesis 
that σu

2 is not equal to 0, plim (1/n)LM  =  [T(T-1)/2][ σu
2/(σε

2+σu
2)]2.  Within group i, Corr2[εit,εis]  =  ρ2  =  

σu
2/(σu

2+ σε
2)   so plim (1/n)LM  =  [T(T-1)/2](ρ2)2.  It is worth noting what is obtained if we do not divide the 

LM statistic by n at the outset.  Under the null hypothesis, the limiting distribution of LM is chi-squared with 
one degree of freedom.  This is a random variable with mean 1 and variance 2, so the statistic, itself, does not 
converge to a constant; it converges to a random variable.  Under the alternative, the LM statistic has mean 
and variance of order n (as we see above) and hence, explodes.  It is this latter attribute which makes the test a 
consistent one.  As the sample size increases, the power of the LM test must go to 1.    
 
7.  A two way fixed effects model:  Suppose the fixed effects model is modified to include a time specific 
dummy variable as well as an individual specific variable.  Then, yit  =  αi  +  γt  +  β′xit  +  εit.  At every 
observation, the individual- and time-specific dummy variables sum to one, so there are some redundant 
coefficients.   The discussion in Section 13.3.3 shows one way to remove the redundancy.  Another useful 
way to do this is to include an overall constant and to drop one of the time specific and one of the time-
dummy variables.  The model is, thus, yit  =  δ  +  (αi - α1)  +  (γt - γ1)  +  β′xit  +  εit.  (Note that the respective 
time or individual specific variable is zero when t or i equals one.)  Ordinary least squares estimates of β can 
be  obtained by regression of   yit - y - i. y t. + y on   xit - x -i. x.t  + x  Then, (αi-α1) and (γt-γ1) are estimated 

using the expressions in (13-17) while   d  = y - b′ x . 
 Using the following data, estimate the full set of coefficients for the least squares dummy variable 
model:      t=1    t=2   t=3   t=4   t=5   t=6   t=7   t=8   t=9  t=10 
                                  i=1 
 y    21.7   10.9  33.5  22.0  17.6  16.1  19.0  18.1  14.9  23.2  
 x1   26.4   17.3  23.8  17.6  26.2  21.1  17.5  22.9  22.9  14.9 
 x2   5.79   2.60  8.36  5.50  5.26  1.03  3.11  4.87  3.79  7.24 
                                  i=2 
 y    21.8   21.0  33.8  18.0  12.2  30.0  21.7  24.9  21.9  23.6 
 x    19.6   22.8  27.8  14.0  11.4  16.0  28.8  16.8  11.8  18.6 1
 x    3.36   1.59  6.19  3.75  1.59  9.87  1.31  5.42  6.32  5.35 2
                                  i=3 
 y    25.2   41.9  31.3  27.8  13.2  27.9  33.3  20.5  16.7  20.7  
 x    13.4   29.7  21.6  25.1  14.1  24.1  10.5  22.1  17.0  20.5 1
 x2   9.57   9.62  6.61  7.24  1.64  5.99  9.00  1.75  1.74  1.82 
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                                  i=4 
 y    15.3   25.9  21.9  15.5  16.7  26.1  34.8  22.6  29.0  37.1 
 x1   14.2   18.0  29.9  14.1  18.4  20.1  27.6  27.4  28.5  28.6 
 x2   4.09   9.56  2.18  5.43  6.33  8.27  9.16  5.24  7.92  9.63 
 
Test the hypotheses that (1) the "period" effects are all zero, (2) the "group" effects are all zero, and (3) both 
period and group effects are zero.  Use an F test in each case. 
 The ordinary least squares regression results are 
   R2  =  .92803,   e′e =  146.761,   40 observations 
   Variable Coefficient   Standard Error 
   X1    .446845          .07887  
   X2               1.83915         .1534 
   Constant               3.60568          2.555      
   Period 1             -3.57906         1.723      
          Period 2             -1.49784          1.716      
          Period 3              2.00677          1.760      
          Period 4             -3.03206          1.731      
          Period 5             -5.58937          1.768      
          Period 6             -1.49474          1.714      
          Period 7             1.52021          1.714      
          Period 8             -2.25414          1.737      
          Period 9             -3.29360          1.722      
   Group 1              -.339998          1.135      
          Group 2               4.39271          1.183      
          Group 3                5.00207          1.125      
    Estimated covariance matrix for the slopes: 
    β1  β2 
   β1 .0062209    
   β2 .00030947 .023523 
For testing the hypotheses that the sets of dummy variable coefficients are zero, we will require the sums of 
squared residuals from the restrictions.  These are 
 Regression                           Sum of squares 
 All variables included                   146.761 
 Period variables omitted                 318.503 
 Group variables omitted                  369.356 
 Period and group variables omitted    585.622 
The F statistics are therefore, 
 (1)  F[9,25]   =  [(318.503 - 146.761)/9]/[146.761/25]   =  3.251 
 (2)  F[3,25]   =  [(369.356 - 146.761)/3]/[146.761/25]   =  12.639 
 (3)  F[12,25]  =  [(585.622 - 146.761)/12]/[146.761/25]   =  6.23 
The critical values for the three distributions are 2.283, 2.992, and 2.165, respectively.  All sample statistics 
are larger than the table value, so all of the hypotheses are rejected.   � 
 
8.  Two way random effects model:  We modify the random effects model by the addition of a time specific 
disturbance.  Thus,  yit  =  α + β′xit + εit + ui + vt, where  E[εit] = E[ui] = E[vt] = 0, E[εitut] = E[εitvs] = E[uivt] = 
0, for all i,j,t,s, Var[εit] = σε

v

u

u v

2

2 2
σ

σ

2Cov[εit,εjs] = 0 for all t,j,s, Var[ui] = σu
2Cov[ui,uj] = 0 for all i,j Var[vt] = σv

2, 
Cov[vt,vs] = 0 for all t,s.  Write out the full covariance matrix for a data set with n=2 and T=2. 
 The covariance matrix would be 

   

i t i t i t i t
i t
i t
i t
i t

u v u v

u u v

v u v

v u

= = = = = = = =
= = + +
= = + +
= = + +
= = + +

1 1 1 2 2 1 2 2
1 1 0
1 2 0
2 1 0
2 2 0

2 2 2 2 2

2 2 2 2 2

2 2 2 2

2 2 2
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σ σ σ σ σ
σ σ σ σ σ
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9.  The model satisfies the groupwise heteroscedastic regression model of Section 

11.7.2.  All variables have zero means.  The following sample second moment matrix is obtained from a 
sample of 20 observations:   y

y
y

x
x

1

2

1

2

1

2









 =









 +









β

ε
ε

1      y2      x1    x2 
   y1       20      6      4      3 
   y2        6     10      3      6 
   x1        4      3      5      2 
   x2        3      6      2     10 
(a)  Compute the two separate OLS estimates of β, their sampling variances, the estimates of σ1

2 and σ2
2, and 

the R2s in the two regressions. 
(b)  Carry out the Lagrange Multiplier test of the hypothesis that σ1

2 =  σ2
2. 

(c)  Compute the two step FGLS estimate of β and an estimate of its sampling variance.  Test the hypothesis 
that β equals one. 
(d)  Carry out the Wald test of equal disturbance variances. 
(e)  Compute the maximum likelihood estimates of β, σ1

2, and σ2
2 by iterating the FGLS estimates to 

convergence. 
(f)  Carry out a likelihood ratio test of equal disturbance variances. 
(g)  Compute the two step FGLS estimate of β assuming that the model in (14-7) applies.  [That is, allow for  
cross sectional correlation.]  Compare your results to those of part (c). 
 The two separate regressions are as follows: 
     Sample 1             Sample 2 
  b  =  x′y/x′x          4/5 = .8                 6/10 = .6 
  e′e = y′y - bx′y     20 - 4(4/5) = 84/5      10 - 6(6/10) = 64/10 
  R2 = 1 - e′e/y′y       1 - (84/5)/20 = .16     1 - (64/10)/10 = .36 
  s2 = e′e/(n-1)         (84/5)/19 = .88421      (64/10)/19 = .33684 
  Est.Var[b] = s2/x′x   .88421/5 = .17684       .33684/10 = .033684 
 To carry out a Lagrange multiplier test of the hypothesis of equal variances, we require the separate 
and common variance estimators based on the restricted slope estimator.  This, in turn, is the pooled least 
squares estimator.  For the combined sample, we obtain 
  b  =  [x1′y1 + x2′y2]/[x1′x1 + x2′x2]  =  (4 + 6) / (5 + 10) = 2/3. 
Then, the variance estimators are based on this estimate.  For the hypothesized common variance,  
  e′e = (y1′y1 + y2′y2) - b(x1′y1 + x2′y2)  =  (20 + 10) - (2/3)(4 + 6) = 70/3, 
so the estimate of the common variance is  e′e/40  =  (70/3)/40  =  .58333. Note that the divisor is 40, not 39, 
because we are comptuting maximum likelihood estimators.  The individual estimators are 
 e1′e1/20  =  (y1′y1 - 2b(x1′y1) + b2(x1′x1))/20   =  (20 - 2(2/3)4 + (2/3)25)/20    =  .84444 
and      e2′e2/20  =  (y2′y2 - 2b(x2′y2) + b2(x2′x2))/20   =  (10 - 2(2/3)6 + (2/3)210)/20  =  .32222. 
The LM statistic is given in Example 16.3,   
 LM = (T/2)[(s1

2/s2 - 1)2 + (s2
2/s2 - 1)2] = 10[(.84444/.58333 - 1)2 + (.32222/.58333 - 1)2]  =  4.007. 

This has one degree of freedom for the single restriction.  The critical value from the chi-squared table is 3.84, 
so we would reject the hypothesis. 
 In order to compute a two step GLS estimate, we can use either the original variance estimates based 
on the separate least squares estimates or those obtained above in doing the LM test.  Since both pairs are 
consistent, both FGLS estimators will have all of the desirable asymptotic properties.  For our estimator, we 

used σ
∧

1
2 =  ej′ej/T from the original regressions.  Thus, σ

∧
1
2 =  .84  and  σ

∧
2
2 =  .32.  The GLS estimator is 

β
∧

=  [(1/σ
∧

1
2 )x1′y1 + (1/σ

∧
2
2)x2′y2]/[ (1/σ

∧
1
2 )x1′x1 + (1/σ

∧
2
2)x2′x2]  =  [4/.84 + 6/.32]/[5/.84 + 10/.32]  = .632. 

The estimated sampling variance is 1/[ (1/σ
∧

1
2 )x1′x1 + (1/σ

∧
2
2)x2′x2]  =  .02688.  This implies an asymptotic 

standard error of (.02688)2  =  .16395.  To test the hypothesis that β = 1, we would refer  z = (.632 - 1) / 
.16395  =  -2.245 to a standard normal table.  This is reasonably large, and at the usual significance levels, 
would lead to rejection of the hypothesis. 
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 The Wald test is based on the unrestricted variance estimates.  Using b = .632, the variance 

estimators are σ
∧

1
2 =  [y1′y1 - 2b(x1′y1) + b2(x1′x1)]/20  =  .847056 

and  σ
∧

2
2=  [y2′y2 - 2b(x2′y2) + b2(x2′x2)]/20  =  .320512 

while the pooled estimator would be σ
∧

σ
∧

2=  [y′y - 2b(x′y) + b2(x′x)]/40  =  .583784.  The statistic is given at the 

end of Example 16.3,   W  = (T/2)[( /σ
∧

1
2 - 1)2 + ( /σ

∧
σ
∧

2
2 - 1)2]  

   = 10[(.583784/.847056 - 1)2 + (.583784/.320512 - 1)2]  =  7.713. 
We reach the same conclusion as before. 
 To compute the maximum likelihood estimators, we begin our iterations from the two separate 

ordinary least squares estimates of b which produce estimates σ
∧

1
2 = .84 and σ

∧
2
2= .32.  The iterations are 

  Iteration   σ
∧

1
2  σ

∧
2
2   β

∧

  0        .840000    .320000     .632000 
  1        .847056    .320512     .631819 
  2        .847071    .320506     .631818 
  3        .847071    .320506     converged 
Now, to compute the likelihood ratio statistic for a likelihood ratio test of the hypothesis of equal variances, 
we refer χ2  =  40ln.58333 - 20ln.847071 - 20ln.320506 to the chi-squared table.  (Under the null hypothesis, 
the pooled least squares estimator is maximum likelihood.)  Thus,  χ2  =  4.5164, which is roughly equal to the 
LM statistic and leads once again to rejection of the null hypothesis. 
 Finally, we allow for cross sectional correlation of the disturbances.  Our initial estimate of b is the 
pooled least squares estimator, 2/3.  The estimates of the two variances are .84444 and .32222 as before while 
the cross sectional covariance estimate is 
  e1′e2/20  =  [y1′y2 - b(x1′y2 + x2′y1) + b2(x1′x2)]/20  =  .14444. 
Before proceeding, we note, the estimated squared correlation of the two disturbances is 
  r  =  .14444 / [(.84444)(.32222)]1/2  =  .277, 
which is not particularly large.  The LM test statistic given in (16-14) is 1.533, which is well under the critical 
value of 3.84.  Thus, we would not reject the hypothesis of zero cross section correlation.  Nonetheless, we 
proceed.   The estimator is shown in (16-6).  The two step FGLS and iterated maximum likelihood estimates 

appear below.  Iteration     σ
∧

1
2  σ

∧
2
2      σ

∧
12   β

∧

  0     .84444  .32222  .14444   .5791338 
  1     .8521955   .3202177 .1597994  .5731058 
  2     .8528702   .3203616 .1609133  .5727069 
  3     .8529155   .3203725 .1609873  .5726805 
  4     .8529185   .3203732 .1609921  .5726788 
  5     .8529187   .3203732 .1609925  converged 
Because the correlation is relatively low, the effect on the previous estimate is relatively minor.   � 
 
10.  Suppose that in the model of Section 15.2.1, Xi is the same for all i.  What is the generalized least squares 
estimator of β?  How would you compute the estimator if it were necessary to estimate σi

2? 
 If all of the regressor matrices are the same, the estimator in (15-6) reduces to 

  =  (X′X)β
∧

-1 Σ i  {(1/σn
=1 i

2)/[Σ n  (1/σj=1 j
2)]}X′yi  =  Σ i  wn

=1 ibi 
a weighted average of the ordinary least squares estimators,  bi  =  (X′X)-1X′yi with weights 
wi  =  (1/σi

2)/[Σ (1/σj
n
=1 j

2)].  If it were necessary to estimate the weights, a simple two step estimator could be 
based on individual variance estimators.  Either of  si

2  =  ei′ei/T based on separate least squares regressions 
(with different estimators of β) or based on residuals computed from a common pooled ordinary least squares 
slope estimator could be used.   
 
11.  Repeat Exercise for the model of Section 13.9.1. 
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 The estimator is shown in (15-11).  If all of the X matrices are the same, the estimator reduces to a 
weighted average of the OLS estimators again.  Using (15-11) directly with a common X, 

 = [Σβ
∧

iΣjσijX′X]-1[ΣiΣjσijX′yj] = [1/ΣiΣjσij][ΣiΣjσij[X′X]-1X′yj = [1/Σj(Σiσij)][Σj(Σiσij)bj] 
The disturbance variances and covariances can be estimated as suggested in the previous exercise.   ~ 
 
12.  The following table presents a hypothetical panel of data: 
  i=1               i=2               i=3 
          y        x        y        x        y        x 
t= 1    30.27    24.31    38.71    28.35    37.03    21.16     
t= 2    35.59    28.47    29.74    27.38    43.82    26.76     
t= 3    17.90    23.74    11.29    12.74    37.12    22.21     
t= 4    44.90    25.44    26.17    21.08    24.34    19.02     
t= 5    37.58    20.80     5.85    14.02    26.15    18.64     
t= 6    23.15    10.55    29.01    20.43    26.01    18.97     
t= 7    30.53    18.40    30.38    28.13    29.64    21.35     
t= 8    39.90    25.40    36.03    21.78    30.25    21.34     
t= 9    20.44    13.57    37.90    25.65    25.41    15.86     
t=10    36.85    25.60    33.90    11.66    26.04    13.28     
(a)  Estimate the groupwise heteroscedastic model of Section 11.7.2.  Include an estimate of the asymptotic 
variance of the slope estimator.  Use a two step procedure, basing the FGLS estimator at the second step on 
residuals from the pooled least squares regression. 
(b)  Carry out the Wald, Lagrange multiplier, and likelihood ratio tests of the hypothesis that the variances are 
all equal.  For the likelihood ratio test, use the FGLS estimates. 
(c)  Carry out a Lagrange multiplier test of the hypothesis that the disturbances are uncorrelated across 
individuals. 
 The various least squares estimators of the parameters are 
   Sample 1 Sample 2 Sample 3 Pooled 
  a  11.6644  5.42213  1.41116  8.06392 
   (9.658)  (10.46)  (7.328) 
  b    .926881  1.06410  1.46885  1.05413 
   (.4328)  (.4756)  (.3590) 
  e′e   452.206  673.409  125.281 
   (464.288) (732.560) (171.240) (1368.088) 
 (Values of e′e in parentheses above are based on the pooled slope estimator.)  The FGLS estimator and its 
estimated asymptotic covariance matrix  are 

  b  =  , Est.Asy.Var[b]  =   
717889
113792
.
.








22 8049 10629
10629 0 05197
. .
. .

−
−










Note that the FGLS estimator of the slope is closer to the 1.46885 of sample 3 (the highest of the three OLS 
estimates).  This is to be expected since the third group has the smallest residual variance.  The LM test 
statistic is based on the pooled regression, 
  LM  =  (10/2){[(464.288/10)/(1368.088/30) - 1]2 + ...}  =  3.7901 
To compute the Wald statistic, we require the unrestricted regression.  The parameter estimates are given 
above.  The sums of squares are 465.708, 785.399, and 145.055 for i = 1, 2, and 3, respectively.  For the 
common estimate of σ2, we use the total sum of squared GLS residuals, 1396.162. Then, 
  W  =  (10/2){[(1396.162/30)/(465.708/10) - 1]2 + ...}  =  25.21. 
The Wald statistic is far larger than the LM statistic.  Since there are two restrictions, at significance levels of 
95% or 99% with critical values of 5.99 or 9.21, the two tests lead to different conclusions.  The likelihood 
ratio statistic based on the FGLS estimates is  χ2  =  30ln(1396.162/30) - 10ln(465.708/10) ... = 6.42 
which is between the previous two and between the 95% and 99% critical values. 
 The correlation matrix for the residuals from the pooled OLS regression is 
    1.000    -.0704    -.7619 
  R  =    -.0704  1.000   -.0825 
                  -.7619    -.0825    1.000 
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so the LM statistic is   LM  =  10[(-.0704)2 + (-.7619)2 + (-.0825)2]  =  5.9225.    The 95% critical value from 
the chi-squared distribution with 3 degrees of freedom is 7.82, so we would not reject the hypothesis of 
uncorrelated disturbances.   
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Chapter 14  
 

Systems of Regression Equations 
  
1.  A sample of 100 observations produces the following sample data: 
  y1 =  1, y2  =  2, y′1y1 = 150 y′2y2 = 550,  y′1y2 = 260 
The underlying bivariate regression model is y1  =  µ  +  ε1,  y2  =  µ  +  ε2. 
(a)  Compute the ordinary least squares estimate of µ and estimate the sampling variance of this estimator. 
(b)  Compute the FGLS estimate of µ and the sampling variance of your estimator. 

 The model can be written as .  Therefore, the OLS estimator is 
y
y

i
i

1

2

1

2









 =








 +









µ

ε
ε

  m  =  (i′i + i′i)-1(i′y1 + i′y2)  =  (n y1 + n y2 ) / (n + n)  =  ( y1 + y2 )/2  = 1.5. 

The sampling variance would be Var[m]  =  (1/2)2{Var[ y1 ] + Var[ y2 ] + 2Cov[( y1 1, y2 )]}. 

We would estimate the parts with Est.Var[ y1 ]   =  s11/n   =  ((150 - 100(1)2)/99)/100  =  .0051 

    Est.Var[ y ]   =  s2 22/n   =  ((550 - 100(2)2)/99)/100  =  .0152 

    Est.Cov[ y , 1 y ]  =  s2 12/n  =  ((260 - 100(1)(2))/99)/100  =  .0061 
Combining terms,  Est.Var[m]  =  .0079. 
 The GLS estimator would be 
 [(σ11 + σ12)i′y1 + (σ22 + σ12)i′y2]/[(σ11 + σ12)i′i  + (σ22 + σ12)i′i] =   w y1 + (1-w) y2  

where   w = (σ11 + σ12) / (σ11 + σ22 + 2σ12).   Denoting , ΣΣ =










σ σ
σ σ

11 12

12 22

-1 = 1

11 22 12
2

22 12

12 11σ σ σ

σ σ
σ σ−

−
−








 . 

The weight simplifies a bit as the determinant appears in both the denominator and the numerator.  Thus, 
w  =  (σ22 - σ12) / (σ11 + σ22 - 2σ12).  For our sample data, the two step estimator would be based on the 
variances computed above and s11  =  .5051, s22  =  1.5152, s12  =   .6061.  Then, w   =  1.1250.   The FGLS 
estimate is   1.125(1) + (1 - 1.125)(2)  =  .875.  The sampling variance of this estimator is  
w2Var[ y1 ] + (1 - w)2Var[ y2 ] + 2w(1 - w)Cov[ y1 , y2 ]   =  .0050  as compared to .0079 for the OLS 
estimator.    

2.   Consider estimation of the following two equation model .  A sample of 50 observations 

produces the following moment matrix: 

y
y x

1 1 1

2 2

= +
= +
β ε
β ε2

    1     y1 y2 x 
 1  50 
 y1     150 500 
 y2      50       40    90 
 x      100       60    50   100 
(a)  Write out the explicit formula for the GLS estimator of [β1,β2].  What is the asymptotic covariance matrix 
of the estimator? 
(b)  Derive the OLS estimator and its sampling variance in this model. 
(c)  Obtain the OLS estimates of β1 and β2 and estimate the sampling covariance matrix of the two estimators. 
Use n instead of (n-1) as the divisor to compute the estimates of the disturbance variances. 
(d)  Compute the FGLS estimates of β1 and β2 and the estimated sampling covariance matrix. 
(e)  Test the hypothesis that β2 = 1. 
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 The model is  y  =   =  Xβ + ε  =  ,  σ
y
y

1

2











i 0
0 x
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The generalized least squares estimator is   

  =    β Ω Ω
∧
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where      sxx  =  x′x/n, sx1  =  x′y1/n, sx2  =  x′y2/n 
and    σij = the ijth element of the 2×2 Σ-1. 
To obtain the explicit form, note, first, that all terms σij are of the form σji/(σ11σ22 - σ2

12)  But, the denominator 
in these ratios will be cancelled as it appears in both the inverse matrix and in the vector.  Therefore, in terms 
of the original parameters, (after cancelling n), we obtain 
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The two elements are    =  [σβ
∧

1 11sxx(σ22 y1 - σ12 y2 ) - σ12 x (σ12sx1 -σ11sx2)]/[σ11σ22sxx - (σ12 x )2] 

   =  [σβ
∧

2 12 x (σ22 y1  - σ12 y2 ) - σ22(σ12sx1 - σ11sx2)]/[σ11σ22sxx - (σ12 x )2] 
The asymptotic covariance matrix is  

[X′Ω-1X]-1 = n x
x s

n x
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The OLS estimator is   b  =  (X′X)-1X′y  = 
y1

x' y x'x/







 .  The sampling variance is   

(X′X)-1X′ΩX(X′X)-1   = 
n

ns
n nx
nx ns

n
nsxx xx xx

0
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 .  The ns are carried outside the product 

and reduce to (1/n). This leaves Var[b]   =  
σ σ

σ σ
11 12

12 22

/ /
/ ( ) / (
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 2

(
)
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)
. 

      Using the results above, the OLS coefficients are b1 = y1 = 150/50 = 3 and b2 = x′y2/x′x = 50/100 = 1/2. 
The estimators of the disturbance (co-)variances are 
   s11  =  Σi (yi1 - y1 )2/n  =  (500 - 50(3)2)/50  =  1 
   s22  =  Σi (yi2 - b2xi)2/n  =  (90 - (1/2)50)/50 = 1.3 
   s12  =  Σi (yi1 - y1 )(yi2 - b2xi)2/n  =  [y1′y2 - n y1 y2 - b2x′y1 + nb2 y1 x ]/n 
        =  (40 - 50(3)(1) - (1/2)60 + 50(1/2)(3)(2)/50   =  .2 
Therefore, we estimate the asymptotic covariance matrix of the OLS estimates as 

 Est.Var[b]  =  .  
1 50 2 2 50 90

2 2 50 90 13 90
02 0000888

0000888 01444
/ . ( )[ ( )]

. ( )[ / ] . /
. .

. .








 =











 To compute the FGLS estimates, we use our results from part a. The necessary statistics for the 
computation are s11  =  1,  s22  =  1.3,   s11  =  .2, sxx  =  100/50  =  2, x =  100/50  =  2,   
  y1 =  150/50  =  3,  y2 =   50/50  =  1 
  sx1  =  60/50   =  1.2, sx2  =  50/50   =  1 

Then,  =  {1(2)[1.3(3) - .2(1)] - .2(2)[.2(1.2) - 1(1)]}/{1(1.3) - [.2(2)]β
∧

1
2}  =  3.157 

 64 



  

  =  {2(2)[1.3(3) - .2(1)] - 1.3[.2(1.2) - 1(1)]}/{1(1.3) - [.2(2)]β
∧

2
2} =  1.011 

The estimate of the asymptotic covariance matrix is    

 (1/50)[1(1.3) - (.2)2]/{1(1.3)2 - [.2(2)]2} .  Notice that the 

estimated variance of the FGLS estimator of the parameter of the first equation is larger.  The result for the 
true GLS estimator based on known values of the disturbance variances and covariance does not guarantee 
that the estimated variances will be smaller in a finite sample. However, the estimated variance of the second 
parameter is considerably smaller than that for the OLS estimate. 

1 2 2 2
2 2 13

020656 004131
004131 007945

( ) . ( )
. ( ) .

. .

. .








 =











 Finally, to test the hypothesis that β2 = 1 we use the z-statistic (asymptotically distributed as standard 
normal),  z  =  (1.011 - 1) / (.007945)2   =  .123.  The hypothesis cannot be rejected.    
 

3.  The model   satisfies all of the assumptions of the classical multivariate regression model.  

All variables have zero means.  The following sample second moment matrix is obtained from a sample of 20 
observations:  y

y
y

1 1 1

2 2 2

= +
= +
β ε
β

x
x

1

2ε

1 y2 x1 x2 
  y1 20  6 4  3 
  y2  6 10 3  6 
  x1  4  3 5  2 
  x2  3  6 2 10 
 (Note:  These are the data from Exercise 1 in Chapter 16.) 
(a)  Compute the FGLS estimates of β1 and β2. 
(b)  Test the hypothesis that β1 = β2. 
(c)  Compute the maximum likelihood estimates of the model parameters. 
(d)  Use the likelihood ratio test to test the hypothesis in part (b). 
 The ordinary least squares estimates of the parameters are 
  b1  =  x1′y1/x1′x1  =  4/5  = .8   and   b2  =  x2′y2/x2′x2 =  6/10 = .6 
Then, the variances and covariance of the disturbances are 
 s11  =  (y1′y1 - b1x1′y1)/n  = (20 - .8(4))/20  =  .84 
 s22  =  (y2′y2 - b2x2′y2)/n  = (10 - .6(6))/20  =  .32 
 s12  =  (y1′y2 - b2x2′y1 - b1x1′y2 + b1b2x1′x2 )/n =  (6 - .6(3) - .8(3) + .8(.6)(2))/20   =  .246 

We will require S-1    = .  Then, the FGLS estimator is 
. .

. .
84 246
246 32

1 11 12

12 11








 =













−
s
s s

β

β

1

2

11
1 1

12
1 2

12
1 2

22
2 2

1 11
1 1

12
1 2

12
2 1

22
2 2

∧

∧

−











 =













+
+













s s
s s

s s
s s

x x x x
x x x x

x y x y
x y x y

' '
' '

' '
' '

∧

1

∧

2

β
∧






 .

132565
0077645

.  Inserting the values given in the problem produces 

the FGLS estimates,β  = .505335, β  =  .541741  with estimated asymptotic covariance matrix equal to the 

inverse matrix shown above, Est.Var =

 .  To test the hypothesis, we use the t 

statistic, t = (.505335 - .541741)/[.132565  +  .0252505  -  2(.0077645)]

. .
.
0077645
0252505






2  =  -.0965 which is quite small.  We 
would not reject the hypothesis. 
 To compute the maximum likelihood estimates, we would begin with the OLS estimates of σ11, σ22, 
and σ12.  Then, we iterate between the following calculations 
 (1)  Compute the 2×2 matrix, S-1 

 (2)  Compute the 2×2 matrix   [X′(S-1⊗I)X] =  s s
s s

11
1 1

12
1 2

12
1 2

22
2 2

x x x x
x x x x

' '
' '













               [X′(S-1⊗I)y] =  s s
s s

11
1 1

12
1 2

12
2 1

22
2 2

x y x y
x y x y

' '
' '

+
+
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 (3)  Compute the coefficient vector  =  [X′(Sβ
∧

-1⊗I)X]-1[X′(S-1⊗I)y] 
Compare this estimate to the previous one.  If they are similar enough, exit the iterations. 

 (4)  Recompute S using  sij  =  yi′yj  - β x
∧

i i′yj  -  xβ
∧

j j′yi  +  β x
∧

i β
∧

j i′xj,  i,j = 1,2. 

 (5)  Go back to step (1) and continue. 
  Our iterations produce the two slope estimates 
   1:  .505335  .541741 
   2:  .601889  .564998 
   3:  .614884  .566875 
   4:  .616559  .567186 
   5:  .616775  .567227 
   6:  .616803  .567232 
   7:  .616807  .567232  converged. 
At convergence, we find the estimate of the asymptotic covariance matrix of the estimates as 

[XN(S-1⊗I)X]-1  =   and   S  =  . 
. .

. .
155355 00576887

00576887 029348










. .

. .
8483899 1573814
1573814 3205369










 To use the likelihood ratio method to test the hypothesis, we will require the restricted maximum 
likelihood estimate.  Under the hypothesis,the model is the one in Section 15.2.2.   The restricted estimate is 
given in (15-12) and the equations which follow.  To obtain them, we make a small modification in our 
algorithm above.  We replace step (3) with 

 (3') β =  [s
∧

11x1′y1 + s22x2′y2 + s12(x1′y2 + x2′y1)]/[s11x1′x1 + s22x2′x2 + 2s12x1′x2]. 

Step 4 is then computed using this common estimate for both and β .  The iterations produce β
∧

1

∧

2

    1:  .5372671 
    2:  .5703837 
    3:  .5725274 
    4:  .5726687 
    5:  .5726780 
    6:  .5726786  converged. 

At this estimate, the estimate of Σ is   The likelihood ratio statistic is given in (15-56).  

Using our unconstrained and constrained estimates, we find  |W

. .

. .
.

8529188 1609926
1609926 3203732










u| = .2471714 and |Wr| = .2473338. The 
statistic is λ  =  20(ln.2473338 - ln.2471714)  =  .0131.  This is far below the critical value of 3.84, so once 
again, we do not reject the hypothesis. 
 

4.  Prove that in the model , generalized least squares is equivalent to equation by equation 

ordinary least squares if X

y X
y X

1 1 1

2 2 2

= +
= +

β ε
β ε

1

2

)

1 = X2. Does your result hold if it is also known that β1 = β2? 
 The GLS estimator is 

  =  β
∧ σ σ

σ σ
σ σ
σ σ

11 12

12 22

1 11
1

12
2

12
1

22
2

X' X X'X
X'X X' X

X'y X' y
X'y X' y













+
+













−

The matrix to be inverted equals [Σ-1 ⊗X′X]-1.  But,  [Σ-1⊗X′X]-1  =  Σ⊗(X′X)-1.  (See (2-76).)  Therefore, 

  =  β
∧ σ σ

σ σ
σ σ
σ σ

11 12

12 22

1 11
1

12
2

12
1

22
2

(X'X) (X'X)
(X'X) (X'X)

X'y X'y
X'y X'y

-1 -1

-1 -1













+
+













−

We now make the replacements X′y1  =  (X′X)b1  and  X′y2  =  (X′X)b2.  After multiplying out the product, 
we find that 

β
∧

=  σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ

11
11

1 11
12

2 12
12

1 12
22

2

12
11

1 12
12

2 22
12

1 22
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2

11
11

12
12

1 11
12

12
22

2

12
11

22
12

1 12
12

22
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2

b b b b
b b b b

)b )b
)b b

+ + +
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=

+ + +
+ + +













( (
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The four scalar terms in the matrix product are the corresponding elements of ΣΣ-1 = I.  Therefore, β = 

 . 

∧ b
b

1

2




5.  Consider the two equation system    .  Assume the disturbance variances and 

covariance are known.  Now, suppose that the analyst of this model applies GLS, but erroneously omits x

y
y

1

2
=

β ε
β β

1 1 1

2 2 3 3 2

x
x x
+
+ +

             
ε

q

3 
from the second equation.  What effect does this specification error have on the consistency of the estimator of 
β1? 
 The algebraic result is a little tedious, but straightforward.  The GLS estimator which is computed is 

β

β

σ σ
σ σ

σ σ
σ σ

1

2

11
1 1

12
1 2

12
2 1

22
2 2

1 11
1 1

12
1 2

12
2 1

22
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−
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x x x x
x x x x

x y x y
x y x y

' '
' '

' '
' '

. 

It helps at this point to make some simplifying substitutions.  The elements in the inverse matrix, σij, are all 
equal to elements of the original matrix divided by the determinant.  But, the determinant appears in the 
leading matrix, which is inverted and in the trailing vector (which is not).  Therefore, the determinant will 

cancel out.  Making the substitutions, .  Now, 

we are concerned with probability limits.  We divide every element of the matrix to be inverted by n, then 
because of the inversion, divide the vector on the right by n as well.  Suppose, for simplicity, that  

β

β

σ σ
σ σ

σ
σ σ

1

2

22 1 1 12 1 2

12 2 1 11 2 2

1
22 1 1 12 1 2

12 2 1 22 2 2

∧

∧

−











 =

−
−










−
− +










x x x x
x x x x

x y x y
x y x y

' '
' '

' '
' '

σ

limn→∞xi′xj/n =  qij, i,j = 1,2,3. Then, plim  β

β

σ σ
σ σ

σ
σ σ

1

2

22 11 12 12

12 12 11 22

1
22 1 1 12 1 2

12 2 1 11 2 2

∧
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−











 =
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−
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q q
q q

plim
n n
n n

x y x y
x y x y

' / ' /
' / ' /

σ

Then, we will use plim (1/n)x1′y1  =  β1q11 + plim (1/n)x1Nε1  =  β1q11 
  plim (1/n)x1′y2  =  β2q12 + β3q13 
  plim (1/n)x2′y1  =  β1q12  
  plim (1/n)x2′y2  =  β2q22 + β3q23.  
Therefore, after multiplying out all the terms, 

plim 
 . β

β

σ σ
σ σ

β σ β β σ
β σ β σ β σ

1

2

22 11 12 12

12 12 11 22

1
1 22 11 2 12 12 3 12 13

1 12 12 2 11 22 3 11 23
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The inverse matrix is 1

11 22 11 22 12 12
2

11 22 12 12

12 12 22 22σ σ σ

σ σ
σ σq q q

q q
q q−









( )

, so with ∆  =  (σ11F22q11q22 - (F12q12)2) 

plim β

β

σ σ
σ σ

β σ β β σ
β σ β σ β σ

1

2

11 22 12 12

12 12 22 11

1
1 22 11 2 12 12 3 12 13

1 12 12 2 11 22 3 11 23

1
∧
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− −
− + +








∆

q q
q q

q q q
q q

σ
q

.  Taking the first coefficient 

separately and collecting terms, 

plim =  ββ
∧

1 1[σ11σ22q11q22-(σ12q12)2]/∆ + β2[σ11q22σ12q12 + σ12q12σ11q22]/∆ + β3[σ11q22σ12q13 + σ12q12σ11q23]/∆ 
The first term in brackets equals ∆ while the second equals 0.  That leaves  

plim =  ββ
∧

1 1 - β3[σ11σ12(q22q13 - q12q23)]/∆ which is not equal to β1.  There are two special cases worthy of 
note, though.  The right hand side does equal β1 if either (1)  σ12  =  0; the regressions are actually unrelated, 
or (2)  q12  =  q13  =  0; the regressors in the two equations are uncorrelated.  The second of these is similar to 
our finding for omitted variables in the classical regression model.  
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6.  Consider the system .The disturbances are freely correlated.  Prove that GLS applied to 

the system leads to the OLS estimates of α

y
y

1

2

= + +
= +
α β ε
α

1

2 2

x
       ε

1

1 and α2 but to a mixture of the least squares slopes in the 
regressions of y1 and y2 on x as the estimator of β.  What is the mixture?  To simplify the algebra, assume 
(with no loss of generality) that x = 0. 

 The model is .  The GLS estimator of the full coefficient vector, θ, 

is 

y
y

0
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σ12
.   Let qxx equal x′x/n, qx1 = x′y1/n and, qx2  

=  x′y2/n.  The ns in the inverse and in the vector cancel.  Also, as suggested, we assume that x =  0.  As in the 
previous exercise, we replace elements of the inverse with elements from the original matrix and cancel the 
determinant which multiplies the matrix (after inversion) and divides the vector.  Thus, 

θ
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x x .   The inverse of the matrix is straightforward.  Proceeding 

directly, we obtain θ  
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It remains only to multiply the matrices and collect terms.  The result is 

  =α
∧

1 y1 , α =
∧

2 y2 ,β =  [(q
∧

x1/qxx) - (σ12σ22)(qx2/qxx)]  =  b1 - γb2.    
7.  For the model  y1  =  α1  +  βx   +  ε1 
   y2  =  α2             +   ε2 
   y3  =  α3             +   ε3 
assume that yi2 + yi3 = 1 at every observation.  Prove that the sample covariance matrix of the least squares 
residuals from the three equations will be singular, thereby precluding computation of the FGLS estimator. 
How could you proceed in this case? 
 Once again, nothing is lost by assuming that x = 0.  Now, the OLS estimators are 
  a1  = y ,   a1 2  = y2 ,   a3  = y3 ,  b  =  x′y1/x′x. 

The vector of residuals is ei1  =  yi1  - y1 -  bxi 

   ei2  =  yi2  - y2  

   ei3  =  yi3  - y3  

Now, if yi2 + yi3 = 1 at every observation, then (1/n)Σi(yi2 + yi3) = y2 + y3 =  1  as well.  Therefore, by just 
adding the two equations, we see that  ei2 + ei3 = 0  for every observation.  Let ei  be the 3×1 vector of 
residuals.  Then,  ei′c  =  0, where  c  =  [0,1,1]′.  The sample covariance matrix of the residuals is 
 S  =  [(1/n)Σi eiei′].   Then,  Sc  =  [(1/n)Σi eiei′]c  =  [(1/n)Σi eiei′c]  =  [(1/n)Σi ei×0]  =  0, which 
means, by definition, that S is singular. 
 We can proceed simply by dropping the third equation.  The adding up condition implies that α3 = 1 
- α2.  So, we can treat the first two equations as a seemingly unrelated regression model and estimate a3 using 
the estimate of α2.    
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8.  Continuing the analysis of Section 14.3.2, we find that a translog cost function for one output and three 
factor inputs which does not impose constant returns to scale is 
 lnC  = α +  β1lnp1        + β2lnp2  +  β3lnp3 + δ11(ln2p1)/2  
  + δ12lnp1lnp2 + δ13lnp1lnp3 + δ22(ln2p2)/2 + δ23lnp2lnp3 + δ33(ln2p3)/2 + γy1lnYlnp1 + 
γy2lnYlnp2    + γy3lnYlnp3   + βylnY  +  βyy(ln2Y)/2  +  εc 
The factor share equations are 
 S1 = β1 + δ11lnp1 + δ12lnp2 + δ13lnp3 + γy1lnY + ε1 
 S2 = β2 + δ12lnp1 + δ22lnp2 + δ23lnp3 + γy2lnY + ε2 
 S3 = β3 + δ13lnp1 + δ23lnp2 + δ33lnp3 + γy3lnY + ε3. 
 [See Christensen and Greene (1976) for analysis of this model.] 
(a)  The three factor shares must add identically to 1.  What restrictions does this place on the model      
parameters? 
(b)  Show that the adding up condition in (14-39) can be imposed directly on the model by specifying the 
translog model in (C/p3), (p1/p3), and (p2/p3) and dropping the third share equation.  (See Example17.10.) 
Notice that this reduces the number of free parameters in the model to 10. 
(c)  Continuing part (b), the model as specified, with the symmetry and equality restrictions has 15 parameters.  
By imposing the constraints, you reduce this to 10 in the estimating equations?  How would you obtain 
estimates of the parameters not estimated directly? 
  The remaining parts of this exercise will require specialized software.  The TSP, LIMDEP, Shazam,  
Gauss, and E-Views programs are five that could be used.  All estimation is to be done using the data in 
Section 14.3.1. 
(d)  Estimate each of the three equations you obtained in part (b) by ordinary least squares.  Do the      
estimates appear to satisfy the cross equation equality and symmetry equations implied by the theory? 
(e)  Using the data in Section 14.3.1, estimate the full system of three equations (cost and the two      
independent shares) imposing the symmetry and cross equation equality constraints. 
(f)  Using your parameter estimates, compute the estimates of the elasticities in (15-7) at the means of the 
variables. 
(g)  Use a likelihood ratio to test the joint hypothesis that γyi = 1, i=1,2,3.  [Hint: just drop the relevant 
variables from the model.] 
 By adding the share equations vertically, we find the restrictions 
  β1  + β2  + β3   =  1 
  δ11 + δ12 + δ13  =  0 
  δ12 + δ22 + δ23  =  0 
  δ13 + δ23 + δ33  =  0 
  γy1 + γy2  + γy3  =  0. 
Note that the adding up condition also implies  ε1  + ε2  + ε3   =  0. 
We will eliminate the third share equation.  The restrictions imply 
  β3   =  1  -  β1  - β2  
  δ13  =  - δ11 - δ12 
  δ23  =  - δ12 - δ22 
  δ33  =  - δ13 - δ23  =  δ11 + δ22 + 2δ12 
  γy3  =  - γy1 - γy2. 
By inserting these in the three share equations, we find 
 S1   =  β1 + δ11lnp1 + δ12lnp2 - δ11lnp3 - δ12lnp3 + γy1lnY + ε1 
  =  β1 + δ11ln(p1/p3) + δ12ln(p2/p3) + γy1lnY + ε1 
 S2   =  β2 + δ12lnp1 + δ22lnp2 - δ12lnp3 - δ22lnp3 + γy2lnY + ε2 
  =  β2 + δ12ln(p1/p3) + δ22ln(p2/p3) + γy2lnY + ε2 
 S3   =  1 - β1 - β2 - δ11lnp1 - δ12lnp1 - δ12lnp2 - δ22lnp2 + δ11lnp3 + δ12lnp3 + δ12lnp3 
        + δ22lnp3 - γy1lnp3 - γy2lnp3 - ε1 - ε2 
  =  1  -  S1  -  S2 
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For the cost function, making the substitutions for β3, δ13, δ23, δ33, and γy3 produces 
 lnC   =  α + β1(lnp1 - lnp3) + β2(lnp2 - lnp3)  
   + δ11((ln2p1)/2 - lnp1lnp3 + (ln2p3)/2) 
   + δ22((ln2p2)/2 - lnp2lnp3 + (ln2p3)/2) + δ12(lnp1lnp2 - lnp1lnp3 - lnp2lnp3 + (ln2p3)) 
   + γy1lnY(lnp1 - lnp3) + γy2lnY(lnp2 - lnp3)  + βylnY + βyy(ln2Y)/2 + εc 
  =   α + β1ln(p1/p3) + β2ln(p2/p3)  
   + δ11(ln2(p1/p3))/2 + δ22(ln2(p2/p3))/2 + δ12ln(p1/p3)ln(p2/p3) 
   + γy1lnYln(p1/p3) + γy2lnYln(p2/p3) + βylnY + βyy(ln2Y)/2 + εc 
 The system of three equations (cost and two shares) can be estimated as discussed in the text.  
Invariance is achieved by using a maximum likelihood estimator.  The five parameters eliminated by the 
restrictions can be estimated after the others are obtained just by using the restrictions.  The restrictions are 
linear, so the standard errors are also striaghtforward to obtain. 
 The least squares estimates are shown below.   Estimated standard errors appear in parentheses. 
Variable             Cost Function   Capital Share    Labor Share 
One                  51.32 (45.91)  -.0174 (.4697)   .2172 (.2408) 
ln(pk/pf)           -21.74 (20.14)   .2380 (.1045)   .0033 (.0534) 
ln(p /p )             32.39 (21.81)   .0065 (.1059)   .0168 (.0542) l f
ln2(pk/pf)/2          4.596 (4.604)  -.0007 (.0098)  -.0117 (.0050) 
ln2(p /p )/2          8.216 (5.159) l f
ln(p /p )ln(p /p )  -6.238 (4.684) k f l f
lnY                  1.674 (.9297)     
ln2Y/2             ,006997 (.0313) 
lnYln(pk/pf)        -.3223 (.2652) 
lnYln(pl/pf)        .08631 (.1981) 
The estimates do not even come close to satisfying the cross equation restrictions.  The parameters in the cost 
function are extremely large, owing primarily to rather severe multicollinearity among the price terms. 
 The results of estimation of the system by direct maximum likelihood are shown.  The convergence 
criterion is the value of Belsley (discussed near the end of Section 5.5).  The value α shown below is g′H-1g 
where g is the gradient and H is the Hessian of the log-likelihood. 
 Iteration  0, F=46.76391, ln*S*= -7.514268, α= 2.054399     
 Iteration  1, F=136.7448, ln*S*= -16.51236, α= .5796486     
 Iteration  2, F=146.9803, ln*S*= -17.53591, α= .02179947 
 Iteration  3, F=147.2268, ln*S*= -17.56055, α= .0004222 
 Residual covariance matrix 
   Cost        Capital      Labor       
     Cost       .0145572 
     Capital    .000304768   .00303853 
     Labor     -.000317554  -.000887258   .000798128 
   Coefficient Estimate  Std. Error 
      α        -6.41878     .6637      
            βk       -.0546555     .2422      
            βl        .250976      .2138      
            δkk        .245259      .06904  
            δll       .0245770     .04788  
            δkl       -.00403448    .04779  
            βy        .572452      .1340      
            βyy       .0456587     .01908  
            γyk       -.00124236    .008409  
            γyl       -.0116921     .004442  
            βf        .8036795 
            δkf       -.2412245 
            δlf       -.0205425 
            δff        .261767 
            γyf        .0129345 

 The means of the variables are:  Y  =  3531.8,   p k =  169.35,  pl  =  2.039,   p f  = 26.41.   The 

three factor shares computed at these means are Sk  =  .4182, Sl  =  .0865,  Sf  =  .4953.  (The sample means are 
.411, .0954, and .4936.)  The matrix of elasticities computed according to (15-72) is 
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              k           l           f  

      .01115                    k 
  Σ  =   .8885    -7.2756          l 
                        -.1646     .5206     .04819    f 
 (Two of the three diagonals have the `wrong' sign.  This may be due to the very small sample size.  The cross 
elasticities however do conform to what one might expect, the primary one being the evident substitution 
between capital and fuel. 
 To test the hypothesis that γyi = 0, we reestimate the model without the interaction terms between lnY 
and the prices in the cost function and without lnY in the factor share equations.  The iterations for this 
restricted model are shown below. 
  Iter.=  0, F=46.76391, log|S|= -7.514268, α=    1.912223 
  Iter.=  1, F=123.7521, log|S|= -15.21308, α=    .5888180 
  Iter.=  2, F=136.3410, log|S|= -16.47198, α=    .2771995 
  Iter.=  3, F=141.3491, log|S|= -16.97279, α=    .08024513 
  Iter.=  4, F=142.5591, log|S|= -17.09379, α=    .01636212 
  Converged achieved 
Since we are interested only in the test statistic, we have not listed the parameter estimates.  The test statistic 
given in (17-26) is λ  =  T(ln|Sr| - ln|Su|)  =  20(-17.09379 - (-17.56055))  =  9.3352.  There are two restrictions 
since only two of the three parameters are free.  The critical value from the chi-squared table is 5.99, so we 
would reject the hypothesis.   
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Chapter 15 
 

Simultaneous Equations Models 
 
 
1.  Consider the following two equation model: 
   y1 = γ1y2 + β11x1 + β21x2 + β31x3 + ε1 
   y2 = γ2y1 + β12x1 + β22x2 + β32x3 + ε2. 
(a)  Verify that as stated, neither equation is identified. 
(b)  Establish whether or not the following restrictions are sufficient to identify (or partially identify) the 
model:   (1)  β21 = β32 = 0, 
   (2)  β12 = β22 = 0, 
   (3)  γ1 = 0, 
    (4)  γ1 = γ2 and β32 = 0, 
   (5)  σ12 = 0 and β31 = 0, 
          (6)  γ1 = 0 and σ12 = 0, 
           (7)  β21 + β22 = 1, 
   (8)  σ12 = 0, β21 = β22 = β31 = β32 = 0, 
   (9)  σ12 = 0, β11 = β21 = β22 = β31 = β32 = 0. 
 Since nothing is excluded from either equation and there are no other restrictions, neither equation 
passes the order condition for identification. 
 (1)  We use (15-12) and the equations which follow it.  For the first equation, [A3′,A5′] = β22, a scalar 
which has rank M-1 = 1 unless β22 = 0.  For the second, [A3′,A5′] = β31. Thus, both equations are identified. 
 (2)  This restriction does not restrict the first equation, so it remains unidentified.  The second 
equation is now identified, as [A3′,A5′] = [β11,β21] has rank 1 if either of the two ceofficients are nonzero. 
 (3)  If γ1 equals 0, the model becomes partially recursive.  The first equation becomes a regression 
which can be estimated by ordinary least squares.  However, the second equation continues to fail the order 
condition.  To see the problem, consider that even with the restriction, any linear combination of the two 
equations has the same variables as the original second eqation.  
 (4)  We know from above that if β32 = 0, the second equation is identifiable.  If it is, then γ2 is 
identified.  We may treat it as known.  As such, γ1 is known.  By regressing y1 - γ1y2 on the xs, we would 
obtain estimates of the remaining parameters, so these restrictions identify the model.  It is instructive to 
analyze this from the standpoint of  false structures as done in the text.  A false structure which incorporates 

the known restrictions would be  × .  If the false structure is to obey the restrictions, 

then f

1
1

0

11 12

21 22

31

−
−






















γ
λ

β β
β β
β

f f
f f
11 12

21 22











11 - γ f21 = 1, f22 - γ f12 = 1, f21 - γf11 = f12 - γ f22, β31 f12 = 0.  It follows then that f12 = 0 so f11 = 1.  Then, f21 - 
γf 11  =  -γ  or  f21  =  (f11 - 1)γ  so that f11 - γ2(f11 - 1) = 1.  This can only hold for all values of γ if f11 = 1 and, 
then, f21  =  0. Therefore, F = I which establishes identification. 
 (5)  If β31 = 0, the first equation is identified by the usual rank and order conditions.  Consider, then, 
the off-diagonal element of Σ  =  Γ′ΩΓ.  Ω is identified since it is the reduced form covariance matrix.  The 
off-diagonal element is σ12  =  ω11 + ω22 - (γ1 + γ2)ω12  =  0.  Since γ1 is zero, γ2  =  ω12/(ω11 + ω22).  With γ2 
known, the remaining parameters are estimable by least squares regression of (y2 - γ2y1) on the xs.  Therefore, 
the restrictions identify the model. 
 (6)  Since this is only a single restriction, it will not likely identify the entire model.  Consider again 
the false structure.  The restrictions implied by the theory are f11 - γ2f21  =  1,   f22 - γ1f12  =  1,   β21f11 + β22f21  =  
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β21f12 + β22f22.  The three restrictions on four unknown elements of F do not serve to pin down any of them.  
This restriction does not even partially identify the model. 
 (7)  The last four restrictions remove x2 and x3 from the model.  The remaining model is not 
identified by the usual rank and order conditions.  From part (5), we see that the first restriction implies σ12  =  
ω11 + ω22 - (γ1 + γ2)ω12  =  0.  But, with neither γ1 nor γ2 specified, this does not identify either parameter. 
 (8)  The first equation is identified by the conventional rank and order conditions.  The second 
equation fails the order condition.  But, the restriction σ12 = 0 provides the necessary additional information 
needed to identify the model.  For simplicity, write the model with the restrictions imposed as 
 y1 = γ1y2 + ε1 and  y2 = γ2y1 + βx + ε2. 
The reduced form is                                  y1 = π1x + v1 and y2 = π2x + v2  
where π1 = γ1β/∆ and π2 = β/∆ with ∆ = (1 - γ1γ2), and v1 = (ε1 + γ1ε2)/∆ and v2 = (ε2 + γ2ε1)/∆.  The reduced 
form variances and covariances are ω11 = (γ1

2σ22 + σ11)/∆2, ω22 = (γ2
2

3 2γ

3β

0
γ
γ

0

σ11 + σ22)/∆2, ω12 = (γ1σ22 + γ2σ11)/∆2. 
All reduced form parameters are estimable directly by using least squares, so the reduced form is identified in 
all cases.  Now, γ1 = π1/π2.  σ11 is the residual variance in the euqation (y1 - γ1y2) = ε1, so σ11 must be estimable 
(identified) if γ1 is.  Now, with a bit of manipulation, we find that γ1ω12 - ω11 = -σ11/∆.  Therefore, with σ11 and 
γ1 "known" (identified), the only remaining unknown is γ2, which is therefore identified.  With γ1 and γ2 in 
hand, β may be deduced from π2.  With γ2 and β in hand, σ22 is the residual variance in the equation (y2 - βx - 
γ2y1) = ε2, which is directly estimable, therefore, identified.   
 
2.  Verify the rank and order conditions for identification of the second and third behavioral equation in 
Klein's Model I.  [Hint: See Example 15.6.] 
 Following the method in Example 15.6, for identification of the investment equation, we require that 

the matrix have rank 5.  Columns (1), (4), (6), (7), and (8) 

each have one element in a different row, so they are linearly independent.  Therefore, the matrix has rank 

five.  For the third equation, the required matrix is .  

Columns (4), (6), (7), (9), and (10) are linearly independent.   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 5 6 7 8 9
1 0 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 1 0 0 0
0 1 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0

3 3

1

−
−

−
− −



























α α
γ γ

( )1

1

0

−













( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0

0 1 0 0 0 0 0
1 0 0 0 01 0 0 0 0

0 0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1

1 3 2

1 2−

− −
−














α α α
β β

 
3. Check the identifiability of the parameters of the following model:  

[y1  y2  y3  y4] + [x

1 0
1

0 1
0 1

12

21 23 24

32 34

41 42

γ
γ γ

γ
γ γ



















1  x2  x3  x4  x5] = [ε

0
1 0

0
0 0
0 0

12 13 14

21 24

31 32 33

43 44

52

β β β
β β
β β β

β β
β























1,ε2,ε3,ε4]. 
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 We find [A3′,A5′]′ for each equation. 
 (1)  (2)  (3)  (4) 
γ γ
β β β

β β
β

32 34

12 13 14

43 4

32

1

0
0 0



















,  [ ] ,  ,   0 43 44β β

1 0
1

1 0
0 0

12

41 42

21

52

γ
γ γ
β

β

















0

1 0

0 0

12

31 32 33

52

γ
β β β

β

















Identification requires that the rank of each matrix be M-1 = 3.  The second is obviously not identified.  In (1), 
none of the three columns can be written as a linear combination of the other two, so it has rank 3.  (Although 
the second and last columns have nonzero elements in the same positions, for the matrix to have short rank, 
we would require that the third column be a multiple of the second, since the first cannot appear in the linear 
combination which is to replicate the second column.)  By the same logic, (3) and (4) are identified.    
 
4.  Obtain the reduced form for the model in Exercise 1 under each of the assumptions made in parts (a) and 
(b1), (b6), and (b9). 
 (1).  The model is y1 = γ1y2 + β11x1 + β21x2 + β31x3 + ε1 
   y2 = γ2y1 + β12x1 + β22x2 + β32x3 + ε2. 

Therefore, Γ =  and B = and Σ is unrestricted.  The reduced form is 
1

1
2

1

−
−










γ
γ

− −
−

−
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β

β
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and 

Ω = (Γ-1)′Σ(Γ-1) = 1
1

2

2

1 2
2

11 1
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1 12

2 11 1 22
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2 11 1 22
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γ σ
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 (6)  The model is y1  =  β11x1 + β21x2 + β31x3  + ε1 
   y2  =  γ2y1  + β12x1 + β22x2 + β32x3  +  ε2 
The first equation is already a reduced form.  Substituting it into the second provides the second reduced form.  

The coefficient matrix is P= , Γ
β β γ β
β β γ β
β β γ β

11 12 2 11

21 22 2 21

31 32 2 31

+
+
+

















-1 =  so Ω = (Γ
1
0 1

2γ









-1)′Σ(Γ-1)   =

  
σ γ σ
γ σ γ σ σ

11 2 11

2 11 2
2

11 22+






 (9)  The model is 
  y1  =  γ1y2  +  ε1 
  y2  =  γ2y1  +  β12x1  +  ε2 

Then, Π = -BΓ-1 = [β12γ1/(1-γ1γ2)   β12/(1-γ1γ2)] and Ω = . σ γ σ γ σ γ σ
γ σ γ σ γ σ σ

11 1
2

22 2 11 1 22
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5.   The following model is specified: 
  y1  =  γ1y2  +  β11x1            +  ε1 
  y2  =  γ2y1  +  β22x2  +  β32x3  +  ε2 
All variables are measured as deviations from their means.  The sample of 25 observations produces the 
following matrix of sums of squares and cross products: 
  y1          y2       x1         x2         x3 
  y1       20         6        4          3         5 
 y2        6        10        3          6         7 
 x1        4         3        5          2         3 
 x2        3         6        2         10         8 
 x3        5         7        3          8        15 
(a)  Estimate the two equations by ordinary least squares. 
(b) Estimate the parameters of the two equations by two stage least squares.  Also estimate the asymptotic 
covariance matrix of the two stage least squares estimates. 
(c)  Obtain the LIML estimates of the parameters of the first equation. 
(d)  Estimate the two equations by three stage least squares. 
(e) Estimate the reduced form coefficient matrix by ordinary least squares and indirectly by using your 
structural estimates from part b. 

 The relevant submatrices are X′X = , X′y
5 2 3
2 10 8
3 8 15

















4 2 3
3 10 8
5 8 15









1  = , X′y
4
3
5

















3
5





2  = , y
3
6
7

















10
3 1
5 8

1′y1 = 20,  y2′y2  =  

10,  y1′y2  =  6, X′Z1  = , X′Z
3 5
6 2
7 3

















2  =  Z








1′Z1 = , Z
10
3




 2′Z2  = , 

3 5
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 Z1′Z2 = , Z
6 6 7
4 2 3








 1′y1  = , Z

6
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 1′y2  = , Z
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3









 2′y1 = , Z
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2′y2 = . 
6
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The two OLS coefficient vectors are 
 d1  =  (X′X)-1X′y1  =  [.439024,.536585] ′ 
 d2  =  (X′X)-1X′y2  =  [.193016,.384127,.19746] ′. 
The two stage least squares estimators are 

 = [Zδ
∧

1 1′X(X′X)-1X′Z1]-1[Z1′X(X′X)-1X′y1]  =  [.368816,.578711] ′. 

 = [Zδ
∧

2 2′X(X′X)-1X′Z2]-1[Z2′X(X′X)-1X′y2]  =  [.484375,.367188,.109375] ′. 

 = (yσ
∧

11 1′y1 - 2y1′Z  + ′Zδ
∧

1 δ
∧

1 1′Z1 δ
∧

1 ) / 25  =  .610397,  =  .268384. σ
∧

22
 
The estimated asymptotic covariance matrices are 

 Est.Var[ ] = [Zδ
∧

1 σ
∧

11 1′X(X′X)-1X′Z1]-1   =  
. .
. .
215858 129035
129036 1995










 Est.Var[Est.Var[ ]]  = . δ
∧

2

. . .
. . .
. . .

132423 007699 040035
007688 047259 022538
040035 022638 043311

− −
− −
− −

















The three stage least squares estimate is 
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   =  [.368817,.578708,.4706,.306363,.168294]′ . 
The estimated standard errors are the square roots of the diagonal elements of the inverse matrix, 
[.4637,.4466,.3626,.1716,.1628], compared to the 2SLS values,  [.4637,.4466,.3639,.2174,.2081]. 
 To compute the limited information maximum likelihood estimator, we require the matrix of sums of 
squares and cross products of residuals of the regressions of y1 and y2 on x1 and on x1, x2, and x3.  These are 

W0  =  Y′Y  -  Y′x1(x1′x1)-1x1′Y  = , W
165 360
360 8 20

. .
. .











1  =  Y′Y  -  Y′X(X′X)-1X′Y  =  
16 2872 2 55312
2 55312 53617

. .
. .

.










The two characteristic roots of (W1)-1W0 are 1.53157 and 1.00837.  We carry the smaller one into the k-class 
computation  [see, for example, Theil (1971) or Judge, et al (1985)]; 

δ
∧

1k =  
10 100837 53617 3

3 5
6 100837 2 55312
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−. ( . ) . ( . ) .
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Finally, the two estimates of the reduced form are 

 (OLS) P  =    
. .
. .
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−
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578711 0
0 367188
0 109375

1 484375
704581 341281
104880 447051
049113 133164

1

 
-.368816 1

 
6. For the model  y1 = γ1y2 + β11x1 + β21x2 + ε1 
   y2 = γ2y1 + β32x3 + β42x4 + ε2 
show that there are two restrictions on the reduced form coefficients.  Describe a procedure for estimating the 
model while incorporating the restrictions. 

 The structure is  [y1 y2]  
1

1 0
0

2

1
1 2 3 4 1 1

−
−








 +



















=
γ

γ

β
β

β
β

ε ε[ [x x x x      ]

0
0

  

11

21

32

42

].

or y′ Γ + x′B  =  ε′.  The reduced form coefficient matrix is 

Π  =  -BΓ-1   =  1
1 1 2

11 2 11

21 2 21

1 32 32

1 42 42

−



















γ γ

β γ β
β γ β
γ β β
γ β β

  =    The two restrictions are π

π π
π π
π π
π π

11 21

21 22

31 32

41 42



















12/π11 = π22/π21 and  

π31/π32  =  π41/π42.  If we write the reduced form as 
  y1  =  π11x1  +  π21x2  +  π31x3  +  π41x4  +  v1 
  y2  =  π12x1  +  π22x2  +  π32x3  +  π42x4  +  v2. 
We could treat the system as a nonlinear seemingly unrelated regressions model.  One possible way to handle 
the restrictions is to eliminate two parameters directly by making the substitutions 
  π12  =  π11π22/π21   and   π31  =  π32π41/π42. 
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The pair of equations would be 
  y1  =  π11x1  +  π21x2  +  (π32π41/π42)x3  +  π41x4  +  v1 
  y2  =  (π11π22/π21)x1  +  π22x2  +  π32x3  +  π42x4  +  v2. 
This nonlinear system could now be estimated by nonlinear GLS.  The function to be minimized would be 
  Σ i  vn

=1 i1
2σ11 + vi2

2

−

σ22 + 2vi1vi2σ12   =  ntr(Σ-1W). 
Needless to say, this would be quite involved.    
 
7.  An updated version of Klein’s Model I was estimated. Using the two stage least squares estimates, the 

relevant submatrix of ∆ (see (15-42)) is ∆1  = .  Is the model stable? 
− − −

− −

















. . .
.

. . .

1899 9471 8991
0 10287 0

0656 0791 0952
 We would require that all three characteristic roots have modulus less than one.  An intuitive guess 
that the diagonal element greater than one would preclude this would be correct.  The roots are the solutions to  

det
− − − −

−
− −

















. . .
.

. . .

1899 9471 8991
0 10287 0

0656 0791 0952

λ
λ

λ
= 0.  Expanding this produces   -(.1899 + λ)(1.0287 - λ)(.0952 - λ) 

- .0565(1.0287 - λ).8991 = 0.  There is no need to go any further.  It is obvious that λ = 1.0287 is a solution, so 
there is at least one characteristic root larger than 1.  The system is unstable.    
 
8.  Prove plim Yj′ε/T  =  ωj - Ωjjγj.  
  Consistent with the partitioning   y′  =  [yj  Yj′  Yi

*′],  partition Ω into 
    ωjj    ωj′ ω*

j′ 
   Ω  = ωj   Ωjj Ωj′ 
    ω*

j  Ω*
j Ωj

* 

and, as in the equation preceding (15-8), partition the jth column of Γ as Γj  =   .  Since the full set of 

reduced form disturbances is  V  =  EΓ

1
−












γ
0

-1,  it follows that   E  =  VΓ.  In particular, the jth column of E is  εj  =  
VΓj.  In the reduced form, now referring to (15-8),  Yj  =  XΠj  +  Vj, where Πj is the Mj columns of Π 
corresponding to the included endogenous variables and Vj is the T×Mj matrix of their reduced form 
disturbances.  Since X is uncorrelated with all columns of E, we have 

plim Yj′εj/T = plim Vj′ Γj /T = [ωj  Ωjj  Ωj* ]  =   ω
1
−
















γ
0

j - Ω γj as required.   � jj

 
9.  Prove that an underidentified equation cannot be estimated by two stage least squares. 
 If the equation fails the order condition, then the number of excluded exogenous variables is less than 
the number of included endogenous.  The matrix of instrumental variables to be used for two stage least 

squares is of the form =  [XA,XZ
∧

j], where XA is Mj linear combination of all K columns in X and Xj is Kj 

columns of X.  In total, K = Kj
* + Kj.  If the equation fails the order condition, then Kj

* < Mj, so is MZ
∧

j + Kj 

columns which are linear combinations of K = Kj
* + Kj < Mj + Kj.  Therefore, Z  cannot have full column 

rank.  In order to compute the two stage least squares estimator, we require ( ′Z )

∧

Z
∧ ∧

-1, which cannot be 
computed.    
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Chapter 16 
 

Estimation Frameworks in 
Econometrics 
 
1.  Compare the fully parametric and semiparametric approaches to estimation of a discrete choice model 
such as the multinomial logit model discussed in Chapter 21.  What are the benefits and costs of the 
semiparametric approach? 
 A fully parametric model/estimator provides consistent, efficient, and comparatively precise 
results.  The semiparametric model/estimator, by comparison, is relatively less precise in general terms. 
But, the payoff to this imprecision is that the semiparametric formulation is more likely to be robust to 
failures of the assumptions of the parametric model.  Consider, for example, the binary probit model of 
Chapter 21, which makes a strong assumption of normality and homoscedasticity.  If the assumptions are 
correct, the probit estimator is the most efficient use of the data.  However, if the normality assumption or 
the homoscedasticity assumption are incorrect, then the probit estimator becomes inconsistent in an 
unknown fashion.  Lewbel’s semiparametric estimator for the binary choice model, in contrast, is not very 
precise in comparison to the probit model. But, it will remain consistent if the normality assumption is 
violated, and it is even robust to certain kinds of heteroscedasticity. 
 
2.  Asymptotics take on a different meaning in the Bayesian estimation context, since parameter estimators 
do not “converge” to a population quantity. Nonetheless, in a Bayesian estimation setting, as the sample 
size increases, the likelihood function will dominate the posterior density.  What does this imply about the 
Bayesian “estimator” when this occurs. 
 The Bayesian estimator must “converge” to the maximum likelihood estimator as the sample size 
grows.  The posterior mean will generally be a mixture of the prior and the maximizer of the likelihood 
function.  We do note, however, that the likelihood will only dominate an informative prior asymptotically 
- the Bayesian estimator in this case will ultimately be a mixture of a prior with a finite precision and a 
likelihood based estimator whose variance converges to zero (thus, whose precision grows infinitely).  
Thus, the domination will not be complete in a finite sample. 
 
3.  Referring to the situation in question 2, one might think that an informative prior would outweigh the 
effect of the increasing sample size.  With respect to the Bayesian analysis of the linear regression, analyze 
the way in which the likelihood and an informative prior will compete for dominance in the posterior 
mean. 
 The Bayesian estimator with an informative prior in (16-10) is 
 

E[β|data,σ2]  =  Fβ0 + (I-F)b 
 
where β0 is the prior mean, b is the least squares estimator and F = [Σ0

-1 + [σ-2(X′X)-1]-1]-1Σ0
-1 where Σ0 is 

the prior variance.  Now, with well behaved data, F must ultimately converge to a zero matrix because the 
OLS estimator’s variance is shrinking, so it’s inverse is increasing inside the large square brackets. 
 
The following exercises require specific software.  The relevant techniques are available in several 
packages that might be in use, such as SAS, Stata, or LIMDEP.  The exercises are suggested as departure 
points for explorations using a few of the many estimation techniques listed in this chapter. 
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4.  Using the gasoline market data in Appendix Table F2.2, use the partially linear regression method in 
Section 16.3.3 to fit an equation of the form 
 
      ln(G/Pop)  =  β1ln(Income) + β2lnPnew cars + β3lnPused cars + g(lnPgasoline)  +  ε 
 
crea;gp=lg;ip=ly;ncp=lpnc;upp=lpuc;pgp=lpg$ 
sort;lhs=pgp;rhs=gp,ip,ncp,upp$ 
crea;dgp=.809*gp - .5*gp[-1] - .309*gp[-2]$ 
crea;dip=.809*ip - .5*ip[-1] - .309*ip[-2]$ 
crea;dnc=.809*ncp -.5*ncp[-1]-.309*ncp[-2]$ 
crea;duc=.809*upp -.5*upp[-1]-.309*upp[-2]$ 
samp;3-36$ 
regr;lhs=dgp;rhs=dip,dnc,duc;res=e$ 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = DGP      Mean=   .9708646870E-02, S.D.=   .4738748109E-01 | 
| Model size: Observations =      34, Parameters =   3, Deg.Fr.=     31 | 
| Residuals:  Sum of squares= .1485994289E-01, Std.Dev.=         .02189 | 
| Fit:        R-squared=  .799472, Adjusted R-squared =          .78653 | 
| Model test: F[  2,     31] =   61.80,    Prob value =          .00000 | 
| Diagnostic: Log-L =     83.2587, Restricted(b=0) Log-L =      55.9431 | 
|             LogAmemiyaPrCrt.=   -7.559, Akaike Info. Crt.=     -4.721 | 
| Model does not contain ONE. R-squared and F can be negative!          | 
| Autocorrel: Durbin-Watson Statistic =   1.34659,   Rho =       .32671 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 DIP          .9629902959       .11631885    8.279   .0000  .14504254E-01 
 DNC         -.1010972781   .87755182E-01   -1.152   .2581  .20153536E-01 
 DUC      -.3197058148E-01  .51875022E-01    -.616   .5422  .35656776E-01 
--> matr;varpl={1+1/(2*2)}*varb$ 
--> matr;stat(b,varpl)$ 
+---------------------------------------------------+ 
|Number of observations in current sample =      34 | 
|Number of parameters computed here       =       3 | 
|Number of degrees of freedom             =      31 | 
+---------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | 
+---------+--------------+----------------+--------+---------+ 
 B_1          .9629902959       .13004843    7.405   .0000 
 B_2         -.1010972781   .98113277E-01   -1.030   .3028 
 B_3      -.3197058148E-01  .57998037E-01    -.551   .5815 
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5.  To continue the analysis in question 4, consider a nonparametric regression of G/Pop on the price.  
Using the nonparametric estimation method in Section 16.4.2, fit the nonparametric estimator using a range 
of bandwidth values to explore the effect of bandwidth  
 
+---------------------------------------+ 
| Nonparametric Regression for G        | 
| Observations       =            36    | 
| Points plotted     =            36    | 
| Bandwidth          =       .468092    | 
| Statistics for abscissa values----    | 
| Mean               =      2.316611    | 
| Standard Deviation =      1.251735    | 
| Minimum            =       .914000    | 
| Maximum            =      4.109000    | 
| ----------------------------------    | 
| Kernel Function    =      Logistic    | 
| Cross val. M.S.E.  =    121.084982    | 
| Results matrix     =        KERNEL    | 
+---------------------------------------+ 
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6.  (You might find it useful to read the early sections of Chapter 21 for this exercise.)  The extramarital 
affairs data analyzed in Section 22.3.7 can be reinterpreted in the context of a binary choice model.  The 
dependent variable in the analysis is a count of events.  Using these data, first recode the dependent 
variable 0 for none and 1 for more than zero.  Now, first using the binary probit estimator, fit a binary 
choice model using the same independent variables as in the example discussed in Section 22.3.7.  Then 
using a semiparametric or nonparametric estimator, estimate the same binary choice model.  A model for 
binary choice can be fit for at least two purposes, for estimation of interesting coefficients or for prediction 
of the dependent variable.  Use your estimated models for these two purposes and compare the two models. 
A.  Using the probit model and the Klein and Spady semiparametric models, the two sets of coefficient 
estimates are somewhat similar. 
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+---------------------------------------------+ 
| Binomial Probit Model                       | 
| Maximum Likelihood Estimates                | 
| Model estimated: Jul 31, 2002 at 05:16:40PM.| 
| Dependent variable                    P     | 
| Weighting variable                 None     | 
| Number of observations              601     | 
| Iterations completed                  5     | 
| Log likelihood function       -307.2955     | 
| Restricted log likelihood     -337.6885     | 
| Chi squared                    60.78608     | 
| Degrees of freedom                    5     | 
| Prob[ChiSqd > value] =         .0000000     | 
| Hosmer-Lemeshow chi-squared =   5.74742     | 
| P-value=  .67550 with deg.fr. =       8     | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
          Index function for probability 
 Z2       -.2202376072E-01  .10177371E-01   -2.164   .0305     32.487521 
 Z3        .5990084920E-01  .17086004E-01    3.506   .0005     8.1776955 
 Z5          -.1836462412   .51493239E-01   -3.566   .0004     3.1164725 
 Z7        .3751312008E-01  .32844576E-01    1.142   .2534     4.1946755 
 Z8          -.2729824396   .52473295E-01   -5.202   .0000     3.9317804 
 Constant     .9766647244       .36104809    2.705   .0068 
+---------------------------------------------+ 
| Seimparametric Binary Choice Model          | 
| Maximum Likelihood Estimates                | 
| Model estimated: Jul 31, 2002 at 11:01:24PM.| 
| Dependent variable                    P     | 
| Weighting variable                 None     | 
| Number of observations              601     | 
| Iterations completed                 13     | 
| Log likelihood function       -334.7367     | 
| Restricted log likelihood     -337.6885     | 
| Chi squared                    5.903551     | 
| Degrees of freedom                    4     | 
| Prob[ChiSqd > value] =         .2064679     | 
| Hosmer-Lemeshow chi-squared = 118.69649     | 
| P-value=  .00000 with deg.fr. =       8     | 
| Logistic kernel fn. Bandwidth =  .34423     | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
          Characteristics in numerator of Prob[Y = 1] 
 Z2       -.3284308221E-01  .52254249E-01    -.629   .5297     32.487521 
 Z3           .1089817386   .86483083E-01    1.260   .2076     8.1776955 
 Z5          -.2384951835       .23320058   -1.023   .3064     3.1164725 
 Z7          -.1026067037       .17130225    -.599   .5492     4.1946755 
 Z8          -.1892263132       .21598982    -.876   .3810     3.9317804 
 Constant     .0000000000 ........(Fixed Parameter)........ 
 

 81 



  

The probit model produces a set of marginal effects, as discussed in the text.  These cannot be computed 
for the Klein and Spady estimator. 
+-------------------------------------------+ 
| Partial derivatives of E[y] = F[*]   with | 
| respect to the vector of characteristics. | 
| They are computed at the means of the Xs. | 
| Observations used for means are All Obs.  | 
+-------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
          Index function for probability 
 Z2       -.6695300413E-02  .30909282E-02   -2.166   .0303     32.487521 
 Z3        .1821006800E-01  .51704684E-02    3.522   .0004     8.1776955 
 Z5       -.5582910069E-01  .15568275E-01   -3.586   .0003     3.1164725 
 Z7        .1140411992E-01  .99845393E-02    1.142   .2534     4.1946755 
 Z8       -.8298761795E-01  .15933104E-01   -5.209   .0000     3.9317804 
 Constant     .2969094977       .11108860    2.673   .0075 
 
These are the various fit measures for the probit model 
+----------------------------------------+ 
| Fit Measures for Binomial Choice Model | 
| Probit   model for variable P          | 
+----------------------------------------+ 
| Proportions P0= .750416   P1= .249584  | 
| N =     601 N0=     451   N1=     150  | 
| LogL =  -307.29545 LogL0 =  -337.6885  | 
| Estrella = 1-(L/L0)^(-2L0/n) = .10056  | 
+----------------------------------------+ 
|     Efron |  McFadden  |  Ben./Lerman  | 
|    .10905 |    .09000  |       .66451  | 
|    Cramer | Veall/Zim. |     Rsqrd_ML  | 
|    .10486 |    .17359  |       .09619  | 
+----------------------------------------+ 
| Information  Akaike I.C. Schwarz I.C.  | 
| Criteria        1.04258     652.98248  | 
+----------------------------------------+ 
Frequencies of actual & predicted outcomes 
Predicted outcome has maximum probability. 
Threshold value for predicting Y=1 = .5000 
            Predicted 
------  ----------  +  ----- 
Actual      0    1  |  Total 
------  ----------  +  ----- 
  0       437   14  |    451 
  1       130   20  |    150 
------  ----------  +  ----- 
Total     567   34  |    601 
 
These are the fit measures for the probabilities computed for the Klein and Spady model.  The probit model 
fits better by all measures computed. 
+----------------------------------------+ 
| Fit Measures for Binomial Choice Model | 
| Observed = P        Fitted = KSPROBS   | 
+----------------------------------------+ 
| Proportions P0= .750416   P1= .249584  | 
| N =     601 N0=     451   N1=     150  | 
| LogL =  -320.37513 LogL0 =  -337.6885  | 
| Estrella = 1-(L/L0)^(-2L0/n) = .05743  | 
+----------------------------------------+ 
|     Efron |  McFadden  |  Ben./Lerman  | 
|    .05686 |    .05127  |       .64117  | 
|    Cramer | Veall/Zim. |     Rsqrd_ML  | 
|    .03897 |    .10295  |       .05599  | 
+----------------------------------------+ 
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The first figure below plots the probit probabilities against the Klein and Spady probabilities.  The models 
are obviously similar, though there is substantial difference in the fitted values. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Finally, these two figures plot the predicted probabilities from the two models against the respective index 
functions, b’x. Note that the two plots are based on different coefficient vectors, so it is not possible to 
merge the two figures. 
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Chapter 17 
 

Maximum Likelihood Estimation 
 
1.  Assume the distribution of x is  f(x)  =  1/θ, 0 < x < θ.  In random sampling from this distribution, prove that 
the sample maximum is a consistent estimator of θ.  Note: you can prove that the maximum is the maximum 
likelihood estimator of θ.  But, the usual properties do not apply here.  Why not?  (Hint:  Attempt to verify 
that the expected first derivative of the log-likelihood with respect to θ is zero.) 
 Using the result of the previous problem, the density of the maximum is 
    n[z/θ]n-1(1/θ),  0 < z < θ. 

Therefore, the expected value is E[z] = z
0

θ
∫

li
n

ndz = [θn+1/(n+1)][n/θn] = nθ/(n+1).  The variance is found 

likewise,  E[z2]  =  z
0

θ
∫ 2n(z/n)n-1(1/θ)dz  =  nθ2/(n+2) so Var[z]  =  E[z2] - (E[z])2  =  nθ2/[(n + 1)2(n+2)].  

Using mean squared convergence we see that E[z] = θ  and Var[z] = 0, so that plim z = θ.   m
→∞

lim
n→∞

2.  In random sampling from the exponential distribution, f(x)  = 1
θ

θe
x−

, x > 0, θ> 0, find the maximum 

likelihood estimator of θ and obtain the asymptotic distribution of this estimator.  
 The log-likelihood is lnL  =  -nlnθ - (1/θ) .  The maximum likelihood estimator is obtained as 

the solution to ∂lnL/∂θ = -n/θ  + (1/θ

xii
n
=∑ 1

ML

∧
2)  =  0, or θ  =  (1/n)  = xii

n
=∑ 1

xii
n
=∑ 1

x .  The asymptotic variance 

of the MLE is {-E[∂2lnL/∂θ2]}-1  =  {-E[n/θ2 - (2/θ3) ]}xii
n
=∑ 1

-1.  To find the expected value of this random 

variable, we need E[xi] = θ. Therefore, the asymptotic variance is θ2/n.  The asymptotic distribution is normal 
with mean θ and this variance.  
 
3.  Suppose the joint distribution of the two random variables x and y is 
  f(x,y)  =  ,θ  0,  y $ 0, x = 0,1,2,... θe yy x− +( ) ( ) /β θ β x!   β
 (a)  Find the maximum likelihood estimators of β and θ and their asymptotic joint distribution. 
 (b)  Find the maximum likelihood estimator of θ/(β+θ) and its asymptotic distribution. 
 (c)  Prove that f(x) is of the form f(x)  =  γ(1-γ)x, x = 0,1,2,... 
       Then, find the maximum likelihood estimator of γ and its asymptotic distribution. 

(d)  Prove that f(y*x) is of the form λe-λy(λy) x/x!  Prove that f(y|x) integrates to 1.  Find the 
       maximum likelihood estimator of λ and its asymptotic distribution.   (Hint:  In the conditional 
       distribution, just carry the xs along as constants.) 

 (e)  Prove that f(y)  =  θe-θy then find the maximum likelihood estimator of θ and its asymptotic 
                      variance. 
 (f) Prove that  f(x|y) = e-βy (βy) x/x! .  Based on this distribution, what is the maximum likelihood 
       estimator of β? 
 The log-likelihood is lnL = nlnθ - (β+θ)  + lnβ  + ∑ -  yii

n
=∑ 1

xii
n
=∑ 1

x yii
n

i=1
log log( !)xii

n
=∑ 1

The first and second derivatives are  ∂lnL/∂θ    =  n/θ-∑  yii
n
=1

     ∂lnL/∂β     =  -  + /β yii
n
=∑ 1

xii
n
=∑ 1

     ∂2lnL/∂θ2   =  -n/θ2 
     ∂2lnL/∂β2   =  -  /βxii

n
=∑ 1

2 

     ∂2lnL/∂β∂θ  =  0. 

 84 



  

Therefore, the maximum likelihood estimators are  =  1/θ
∧

y  and  = β
∧

x y/

β θ( )− +

 and the asymptotic covariance 

matrix is the inverse of . In order to complete the derivation, we will require the 

expected value of  = nE[x

E
n

xii

n
/

/
θ

β

2

1
2

0
0

=∑












xi

θ ββ θe yy x− +
∞

∫ ( ) ( ) / !
0

i
n
=∑ 1 i].   In order to obtain E[xi], it is necessary to obtain the marginal distribution 

of xi, which is f(x)  =  =   This is βx dy β θx y d( / !) .∫ y x y

 l

x e
∞

0

x(θ/x!) times a 

gamma integral.  This is f(x)  =  βx(θ/x!)[Γ(x+1)]/(β+θ)x+1.  But, Γ(x+1) = x!, so the expression reduces to 
    f(x)  =  [θ/(β+θ)][β/(β+θ)]x. 
Thus, x has a geometric distribution with parameter π = θ/(β+θ).  (This is the distribution of the number of 
tries until the first success of independent trials each with success probability 1-π.  Finally, we require the 
expected value of xi, which is E[x]  =  [θ/(β+θ)] x[β/(β+θ)]

x=
∞∑ 0

n/
βθ

2

0

x=  β/θ.  Then, the required asymptotic 

covariance matrix is . n
n n

/
( / ) / /

θ
β θ β

θ2

2

1
0

0
0











=












−

 The maximum ikelihood estimator of θ/(β+θ) is is  

   θ β =  (1/θ/ ( )+
∧

y )/[ x / y  + 1/ y ]  =  1/(1 +  x ). 
Its asymptotic variance is obtained using the variance of a nonlinear function 
       V  = [β/(β+θ)]2(θ2/n) + [-θ/(β+θ)]2(βθ/n)  =  βθ2/[n(β+θ)3]. 
The asymptotic variance could also be obtained as [-1/(1 + E[x])2]2Asy.Var[ x ].) 
 For part (c), we just note that γ = θ/(β+θ).  For a sample of observations on x, the log-likelihood 
would be   lnL = nlnγ + ln(1-γ)  xii

n
=∑ 1

    ∂lnL/dγ  =  n/γ - ∑ /(1-γ). xii
n
=1

A solution is obtained by first noting that at the solution, (1-γ)/γ  = x  =  1/γ  -  1.  The solution for γ is, thus, 

γ
∧

=  1 / (1 + x ).Of course, this is what we found in part b., which makes sense. 

 For part (d)  f(y|x)  =  f x y
f x
( , )
( )

 = θ β β θ β θ
θ β

β θe y
x x

y x x− + + +( ) ( ) ( ) ( )
!

.
      

[( ) ] / !( )β θ β θ β θ+ + − +y e xx y

/ ! λx y xx e y dy+ −
∞

∫0

  Cancelling terms and gathering 

the remaining like terms leaves f(y|x)  = ( )  so the density has the required form 

with λ = (β+θ).  The integral is { } .  This integral is a Gamma integral which equals 

Γ(x+1)/λ

[ ]λ 1

x+1, which is the reciprocal of the leading scalar, so the product is 1.  The log-likelihood function is 
  lnL  =  nlnλ - λ  + lnλ  -  yii

n
=∑ 1

xii
n
=∑ 1

ln !xii
n
=∑ 1

  ∂lnL/∂λ  =  (∑ + n)/λ  - . xii
n
=1

yii
n
=∑ 1

  ∂2lnL/∂λ2  =  -( + n)/λxii
n
=∑ 1

2. 

Therefore, the maximum likelihood estimator of λ is (1 +   x )/ y  and the asymptotic variance, conditional on 

the xs is Asy.Var.  =  (λλ
∧








2/n)/(1 + x ) 

 Part (e.)  We can obtain f(y) by summing over x in the joint density.  First, we write the joint density 

as  .  The sum is, therefore, .  The sum is 

that of the probabilities for a Poisson distribution, so it equals 1.  This produces the required result.  The 
maximum likelihood estimator of θ and its asymptotic variance are derived from 

f x y e e y xy y x( , ) ( ) / != − −θ βθ β f y e e y xy y x
x

( ) ( ) / != − −
=

∞∑θ βθ β
0
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    lnL  =  nlnθ - θ  yii
n
=∑ 1

    ∂lnL/∂θ  =  n/θ - ∑  yii
n
=1

    ∂2lnL/∂θ2  =  -n/θ2. 
Therefore, the maximum likelihood estimator is 1/ y  and its asymptotic variance is θ2/n.  Since we found f(y) 
by factoring f(x,y) into f(y)f(x|y) (apparently, given our result), the answer follows immediately.  Just divide the 
expression used in part e. by f(y).  This is a Poisson distribution with parameter βy.  The log-likelihood 
function  and its first derivative are 
   lnL  =  -β∑  + ln  +  -  yii

n
=1

xii
n
=∑ 1 x yi ii

n ln
=∑ 1 ln !xii

n
=∑ 1

   ∂lnL/∂β  =  -∑  + /β, yii
n
=1

xii
n
=∑ 1

from which it follows that  β
∧
= x y/ .   

 
4.  Suppose x has the Weibull distribution,  f(x) = αβxβ-1exp(-αxβ), x, α, β > 0. 
 (a)  Obtain the log-likelihood function for a random sample of n observations. 
 (b)  Obtain the likelihood equations for maximum likelihood estimation of α and β.  Note that the 
        first provides an explicit solution for α in terms of the data and β. But, after inserting this in the 
                      second, we obtain only an implicit solution for β.  How would you obtain the maximum 
                      likelihood estimators? 
 (c)  Obtain the second derivatives matrix of the log-likelihood with respect to α and β.  The exact 
       expectations of the elements involving β involve the derivatives of the Gamma function and are 
                     quite messy analytically.  Of course, your exact result provides an empirical estimator.  How 
                     would you estimate the asymptotic covariance matrix for your estimators in part (b)? 
 (d)  Prove that αβCov[lnx,xβ] = 1.  (Hint: Use the fact that the expected first derivatives of the 
       log-likelihood function are zero.) 
 The log-likelihood and its two first derivatives are 
  logL  =  nlogα + nlogβ + (β-1)∑  - α  log xii

n
=1

xii
n β
=∑ 1

  ∂logL/∂α  =  n/α -  xii
n β
=∑ 1

  ∂logL/∂β  =  n/β + - α  log xii
n
=∑ 1

(log )x xi ii

n β
=∑ 1

Since the first likelihood equation implies that at the maximum, =  n /∑ , one approach would be to 

scan over the range of β and compute the implied value of α.  Two practical complications are the allowable 
range of β and the starting values to use for the search. 

α
∧

xii
n β
=1

 The second derivatives are 
  ∂2lnL/∂α2  =  -n/α2 
  ∂2lnL/∂β2  =  -n/β2 - α  (log )x xi ii

n 2
1

β
=∑

  ∂2lnL/∂α∂β =  - . (log )x xi ii
n β
=∑ 1

If we had estimates in hand, the simplest way to estimate the expected values of the Hessian would be to 
evaluate the expressions above at the maximum likelihood estimates, then compute the negative inverse.  First, 
since the expected value of ∂lnL/∂α is zero, it follows that E[xi

β] = 1/α.  Now, 
   E[∂lnL/∂β]  =  n/β + E[ l ] - αE[ ]= 0 og xii

n
=∑ 1

(log )x xi ii
n β
=∑ 1

as well.  Divide by n, and use the fact that every term in a sum has the same expectation to obtain 
   1/β + E[lnxi] - E[(lnxi)xi

β]/E[xi
β] = 0. 

Now, multiply through by E[xi
β] to obtain E[xi

β]  =  E[(lnxi)xi
β] - E[lnxi]E[xi

β] 
or       1/(αβ)  =  Cov[lnxi,xi

β].  
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5.  The following data were generated by the Weibull distribution of Exercise 17: 
   1.3043   .49254   1.2742   1.4019   .32556   .29965   .26423 
   1.0878   1.9461   .47615   3.6454   .15344   1.2357   .96381   
   .33453   1.1227   2.0296   1.2797   .96080   2.0070     
 (a)  Obtain the maximum likelihood estimates of α and β and estimate the asymptotic covariance 
                     matrix for the estimates. 
 (b)  Carry out a Wald test of the hypothesis that β = 1. 
 (c)  Obtain the maximum likelihood estimate of α under the hypothesis that β = 1. 
 (d)  Using the results of a. and c. carry out a likelihood ratio test of the hypothesis that β = 1. 
 (e)  Carry out a Lagrange multiplier test of the hypothesis that β = 1. 
 As suggested in the previous problem, we can concentrate the log-likelihood over α.  From ∂logL/∂α 
= 0, we find that at the maximum, α = 1/[(1/n) ].  Thus, we scan over different values of β to seek the 

value which maximizes logL as given above, where we substitute this expression for each occurrence of α.  
Values of β and the log-likelihood for a range of values of β are listed and shown in the figure below.   

xii
n β
=∑ 1

  β           logL 
 0.1     -62.386 

  

 0.2     -49.175 
 0.3     -41.381 
 0.4     -36.051 
 0.5     -32.122 
 0.6     -29.127 
 0.7     -26.829 
 0.8     -25.098 
 0.9     -23.866 
 1.0     -23.101 
 1.05    -22.891 
 1.06    -22.863 
 1.07    -22.841 
 1.08    -22.823 
 1.09    -22.809 
 1.10    -22.800 
 1.11    -22.796 
 1.12    -22.797 
 1.2     -22.984 
 1.3     -23.693 
 
The maximum occurs at β = 1.11.  The 
implied value of α is 1.179.  The negative of the second derivatives matrix at these values and its inverse are 

 and . I α β
∧ ∧



 =
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. .
. .
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=
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2673 04148

The Wald statistic for the hypothesis that β = 1 is  W  =  (1.11 - 1)2/.041477 = .276.  The critical value for a 
test of size .05 is 3.84, so we would not reject the hypothesis. 

 If β = 1, then  =  = 0.88496.  The distribution specializes to the geometric distribution 

if β = 1, so the restricted log-likelihood would be 

α
∧

n ii
n/
=∑ 1

x

α
β

  logLr  =  nlogα - α  =  n(logα - 1) at the MLE. xii
n
=∑ 1

logLr at α = .88496 is -22.44435.  The likelihood ratio statistic is  -2logλ = 2(23.10068 - 22.44435)  = 1.3126. 
Once again, this is a small value.  To obtain the Lagrange multiplier statistic, we would compute 

  [ ]∂ ∂α ∂ ∂β
∂ ∂α ∂ ∂α∂β
∂ ∂α∂β ∂ ∂β

∂ ∂
∂ ∂

log / log / log / log /
log / log /
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log /
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at the restricted estimates of α = .88496 and β = 1.  Making the substitutions from above, at these values, we 
would have 
  ∂logL/∂α  =  0 

  ∂logL/∂β  =  n + - log xii
n
=∑ 1

1
1x
xii

n log
=∑ xi   =  9.400342 

  ∂2logL/∂α2  =  − nx
2

 =  -25.54955 

  ∂2logL/∂β2  =  -n - 1 2
1x
x xi ii

n (log )
=∑ =  -30.79486 

  ∂2logL/∂α∂β  =  =  -8.265. −
=∑ x xii

n log
1 i

The lower right element in the inverse matrix is .041477.  The LM statistic is, therefore, (9.40032)2.041477 = 
2.9095.  This is also well under the critical value for the chi-squared distribution, so the hypothesis is not 
rejected on the basis of any of the three tests.    
 
6.  (Limited Information Maximum Likelihood Estimation).  Consider a bivariate distribution for x and 
y that is a function of two parameters, α and β.  The joint density is f(x,y|α,β).  We consider maximum 
likelihood estimation of the two parameters.  The full information maximum likelihood estimator is the 
now familiar maximum likelihood estimator of the two parameters.  Now, suppose that we can factor the 
joint distribution as done in Exercise 3, but in this case, we have f(x,y|α,β)  =  f(y|x,α,β)f(x|α).  That is, the 
conditional density for y is a function of both parameters, but the marginal distribution for x involves only 
α. 

a.  Write down the general form for the log likelihood function using the joint density. 
b.  Since the joint density equals the product of the conditional times the marginal, the log 

likelihood function can be written equivalently in terms of the factored density.  Write this down, in 
general terms. 

c.  The parameter α can be estimated by itself using only the data on x and the log likelihood 
formed using the marginal density for x.  It can also be estimated with β by using the full log likelihood 
function and data on both y and x.  Show this. 

d.  Show that the first estimator in part c has a larger asymptotic variance than the second one.  
This is the difference between a limited information maximum likelihood estimator and a full information 
maximum likelihood estimator. 

e.  Show that if ∂2lnf(y|x,α,β)/∂α∂β = 0, then the result in d. is no longer true. 
 

a.  The full log likelihood is  logL  =  Σ log fyx(y,x|α,β).  
 b.  By factoring the density, we obtain the equivalent  logL  =  Σ[ log fy|x (y|x,α,β)  +  log fx (x|α)] 
 c.  We can solve the first order conditions in each case.  From the marginal distribution for x, 
 
 Σ ∂ log fx (x|α)/∂α  =  0   
 
provides a solution for α.  From the joint distribution, factored into the conditional plus the marginal, we have 
 
  Σ[ ∂log fy|x (y|x,α,β)/∂α  +  ∂log fx (x|α)/∂α   =  0 
 
  Σ[ ∂log fy|x (y|x,α,β)/∂β        =  0 
 
 d.  The asymptotic variance obtained from the first estimator would be the negative inverse of the 
expected second derivative,  Asy.Var[a]  =  {[-E[Σ2∂ log fx (x|α)/∂α2]}-1.  Denote this Aαα

-1.   Now, consider 
the second estimator for α and β jointly.  The negative of the expected Hessian is shown below.  Note that the 
Aαα from the marginal distribution appears there, as the marginal distribution appears in the factored joint 
distribution. 
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The asymptotic covariance matrix for the joint estimator is the inverse of this matrix.  To compare this to the 
asymptotic variance for the marginal estimator of α, we need the upper left element of this matrix.  Using the 
formula for the partitioned inverse, we find that this upper left element in the inverse is  
 
[(Aαα+Bαα) - (BαβBββ

-1Bβα)]-1  =  [Aαα  +  (Bαα - BαβBββ
-1Bβα)]-1  

 
which is smaller than Aαα as long as the second term is positive. 
 e.  (Unfortunately, this is an error in the text.)  In the preceding expression, Bαβ is the cross 
derivative.  Even if it is zero, the asymptotic variance from the joint estimator is still smaller, being [Aαα + 
Bαα]-1.  This makes sense.  If α appears in the conditional distribution, then there is additional information in 
the factored joint likelhood that is not in the marginal distribution, and this produces the smaller asymptotic 
variance. 
 
7.   Show that the likelihood inequality in Theorem 17.3 holds for the Poisson distribution used in Section 
17.3 by showing that E[(1/n)lnL(θ | y )] is uniquely maximized at θ = θ0.  Hint: First show that the 
expectation is  -θ +   θ0lnθ -  E0[lnyi!].  
 The log likelihood for the Poisson model is 
 
 LogL  =  -nλ + logλΣi yi - Σi log yi! 
 
The expected value of 1/n times this function with respect to the true distribution is 
 
 E[(1/n)logL]  =  -λ  +  logλ E0[ y ] – E0 (1/n)Σi logyi! 
 
The first expectation is λ0.  The second expectation can be left implicit since it will not affect the solution  
for λ - it is a function of the true λ0.  Maximizing this function with respect to λ produces the necessary 
condition 
 ∂E0 (1/n)logL]/∂λ  =  -1 + λ0/λ = 0 
 
which has solution λ = λ0 which was to be shown. 
 
8.    Show that the likelihood inequality in Theorem 17.3 holds for the normal distribution. 
 The log likelihood for a sample from the normal distribution is 
 
 LogL  =  -(n/2)log2π - (n/2)logσ2 – 1/(2σ2) Σi (yi - µ)2. 
 

E0 [(1/n)logL]  =  -(1/2)log2π - (1/2)logσ2 – 1/(2σ2) E0[(1/n) Σi (yi - µ)2]. 
 
The expectation term equals E0[(yi - µ)2]  =  E0[(yi - µ0)2] + (µ0 - µ)2  =  σ0

2 + (µ0 - µ)2 . Collecting terms, 
 
 E0 [(1/n)logL]  =  -(1/2)log2π - (1/2)logσ2 – 1/(2σ2)[ σ0

2 + (µ0 - µ)2] 
 
To see where this is maximized, note first that the term (µ0 - µ)2 enters negatively as a quadratic, so the 
maximizing value of µ is obviously µ0.  Since this term is then zero, we can ignore it, and look for the σ2 
that maximizes -(1/2)log2π - (1/2)logσ2 – σ0

2/(2σ2).  The –1/2 is irrelevant as is the leading constant, so we 
wish to minimize (after changing sign) logσ2 + σ0

2/σ2 with respect to σ2.  Equating the first derivative to 
zero produces 1/σ2 = σ0

2/(σ2)2 or σ2 = σ0
2, which gives us the result. 
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9. For random sampling from the classical regression model in (17-3), reparameterize the likelihood 
function in terms of η = 1/σ and δ = (1/σ)β.  Find the maximum likelihood estimators of η and δ and 
obtain the asymptotic covariance matrix of the estimators of these parameters. 
 The log likelihood for the classical normal regression model is 
 

LogL =  Σi -(1/2)[log2π + logσ2 + (1/σ2)(yi - xi′β)2] 
 
If we reparameterize this in terms of η = 1/σ and δ = β/σ, then after a bit of manipulation, 
 

LogL =  Σi -(1/2)[log2π - logη2 + (ηyi - xi′δ)2] 
 
The first order conditions for maximizing this with respect to η and δ are 
 
 ∂logL/∂η  =  n/η  -  Σi yi (ηyi - xi′δ)  =  0 
 
 ∂logL/∂δ  =              Σi xi (ηyi - xi′δ)  =  0 
 
Solve the second equation for δ, which produces δ  =  η (X′X)-1X′y  =  η b.  Insert this implicit solution 
into the first equation to produce n/η  =  Σi yi (ηyi - ηxi′b).  By taking η outside the summation and 
multiplying the entire expression by η,  we obtain n = η2 Σi yi (yi - xi′b) or η2  =  n/[Σi yi (yi - xi′b)].  This is 
an analytic solution for η that is only in terms of the data – b is a sample statistic.  Inserting the square root 
of this result into the solution for δ produces the second result we need.  By pursuing this a bit further, you 
canshow that the solution for η2 is just n/e′e from the original least squares regression, and the solution for 
δ is just b times this solution for η.  The second derivatives matrix is 
 

∂2logL/∂η2  =  -n/η2  -  Σiyi
2 

 
∂2logL/∂δ ∂δ′  =  -Σi xixi′ 
 
∂2logL/∂δ ∂η  =    Σi xiyi. 

 
We’ll obtain the expectations conditioned on X.  E[yi|xi] is xi′β from the original model, which equals 
xi′δ/η.  E[yi

2|xi]  =  1/η2 (δ′xi)2 + 1/η2.  (The cross term has expectation zero.)  Summing over observations 
and collecting terms, we have, conditioned on X, 
 

E[∂2logL/∂η2|X] =  -2n/η2  -  (1/η2)δ′X′Xδ 
 
E[∂2logL/∂δ ∂δ′|X]  =  -X′X 
 
E[∂2logL/∂δ ∂η|X]  =    (1/η)X′Xδ 

 
The negative inverse of the matrix of expected second derivatives is 
 

  
1' (1/ ) '

. [ , ] 2(1/ ) ' ' (1/ )[2 '

η

η η

−− 
=  

− +  
AsyVar h

n

X X X X
d

X X X X

δ

δ δ δ
 
(The off diagonal term does not vanish here as it does in the original parameterization.) 
 
 
10.  Section 14.3.1 presents estimates of a Cobb-Douglas cost function using Nerlove’s 1955 data on the 
U.S. electric power industry.  Christensen and Greene’s 1976 update of this study used 1970 data for this 
industry.  The Christensen and Greene data are given in Table F5.2.  These data have provided a standard 
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test data set for estimating different forms of production and cost functions, including the stochastic 
frontier model examined in Example 17.5.  It has been suggested that one explanation for the apparent 
finding of economies of scale in these data is that the smaller firms were inefficient for other reasons.  The 
stochastic frontier might allow one to disentangle these effects.  Use these data to fit a frontier cost function 
which includes a quadratic term in log output in addition to the linear term and the factor prices.  Then 
examine the estimated Jondrow et al. residuals to see if they do indeed vary negatively with output, as 
suggested.  (This will require either some programming on your part or specialized software.  The 
stochastic frontier model is provided as an option in TSP and LIMDEP.  Or, the likelihood function can be 
programmed fairly easily for RATS or GAUSS.  Note, for a cost frontier as opposed to a production 
frontier,  it is necessary to reverse the sign on the argument in the Φ function.) 
 We used LIMDEP to fit the cost frontier. The dependent variable is log(Cost/Pfuel).  The 
regressors are a constant, log(Pcapital/Pfuel), log(Plabor/Pfuel), logQ and log2Q.  The Jondrow measure 
was then computed and plotted against output.  There does not appear to be any relationship, though the 
weak relationship such as it is, is indeed, negative. 
+---------------------------------------------+ 
| Limited Dependent Variable Model - FRONTIER | 
| Dependent variable                  LCF     | 
| Number of observations              123     | 
| Log likelihood function        66.86502     | 
| Variances: Sigma-squared(v)=       .01185   | 
|            Sigma-squared(u)=       .02233   | 
|            Sigma(v)        =       .10884   | 
|            Sigma(u)        =       .14944   | 
| Sigma = Sqr[(s^2(u)+s^2(v)]=       .18488   | 
| Stochastic Cost Frontier, e=v+u.            | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
          Primary Index Equation for Model 
 Constant    -7.494211759       .30737742  -24.381   .0000 
 LPK       .5531289074E-01  .70211904E-01     .788   .4308     .88666047 
 LPL          .2605889758   .67708437E-01    3.849   .0001     5.5808828 
 LQ           .4109789313   .29495035E-01   13.934   .0000     8.1794715 
 LQ2       .6058235980E-01  .43732083E-02   13.853   .0000     35.112527 
          Variance parameters for compound error 
 Lambda       1.373117163       .33353523    4.117   .0000 
 Sigma        .1848750589   .28257115E-01    6.543   .0000 
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11.   Consider, sampling from a multivariate normal distribution with mean vector µ = (µ1, µ2, . . . , µM) and 
covariance matrix σ2I.   The log likelihood function is 

 2
2

1

1ln ln(2 ) ln ( ) ( ).
2 2 2

n

i i
i

nM nML π σ
σ =

− ′= − − −∑ y yµ µ−  

Show that the maximum likelihood estimates of the parameters are 
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Derive the second derivatives matrix and show that the asymptotic covariance matrix for the maximum 
likelihood estimators is 

 

1 22

4

/ln .
2 /( )

nLE
nM

σ
σ

−
    ∂ − =    ′∂ ∂     

I 0
0θ θ

 

Suppose that we wished to test the hypothesis that the means of the M distributions were all equal. First, 
we might have a particular value µ0 in mind. Show that the Wald statistic would be 

 
12

0 0 0
2

ˆ
( ) ( ), ( ) (n

n s
σµ µ µ

−
   ′ ′= − − = − −   

  
x i I x i x i x iW 0 ),µ  

where x  is the vector of sample means. 
 The first derivatives of the log likelihood function are ∂logL/∂µ = -(1/2σ2) Σi -2(yi - µ).  Equating 
this to zero produces the vector of means for the estimator of µ.  The first derivative with respect to σ2 is 
 
∂logL/∂σ2  =  -nM/(2σ2) + 1/(2σ4)Σi (yi - µ)′(yi - µ).  Each term in the sum is Σm (yim - µm)2.  We already 
deduced that the estimators of µm are the sample means.  Inserting these in the solution for σ2 and solving 
the likelihood equation produces the solution given in the problem.  The second derivatives of the log 
likelihood are 
 
∂2logL/∂µ∂µ′  =  (1/σ2)Σ i -I 
 
∂2logL/∂µ∂σ2  =  (1/2σ4) Σi -2(yi - µ)  
 
∂2logL/∂σ2∂σ2  =  nM/(2σ4) - 1/σ6 Σi (yi - µ)′(yi - µ) 
 
The expected value of the first term is (-n/σ2)I.  The second term has expectation zero.  Each term in the 
summation in the third term has expectation Mσ2, so the summation has expected value nMσ2.  Adding 
gives the expectation for the third term of -nM/(2σ4).  Assembling these in a block diagonal matrix, then 
taking the negative inverse produces the result given earlier.   
 For the Wald test, the restriction is 
 
 H0:  µ - µ0i  =  0. 
 
The unrestricted estimator of µ is x .  The variance of x  is given above, so the Wald statistic is simply 
( x  - µ0i )′ Var[( x  - µ0i )]-1( x  - µ0i ).  Inserting the covariance matrix given above produces the suggested 
statistic. 
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Chapter 18 
 

The Generalized Method of Moments 
 
1.  For the normal distribution µ2k = σ 2k(2k)!/(k!2k) and µ2k+1 = 0, k = 0, 1, . . . . Use this result to analyze 
the two estimators 

 3 4
1 23/ 2 2

2 2

 and m mb b
m m

= = . 

where 1
1(n

k i in x== Σ − )kxm .  The following result will be useful: 

2 1 1 1 1 1 1. [ , ]j k j k j k j k j k k jAsy Cov nm nm jk j kµ µ µ µ µ µ µ µ µ µ+ − − − += − + − − .− +  

Use the delta method to obtain the asymptotic variances and covariance of these two functions assuming 
the data are drawn from a normal distribution with mean µ and variance σ2.  (Hint: Under the assumptions, 
the sample mean is a consistent estimator of µ, so for purposes of deriving asymptotic results, the 
difference between x and µ may be ignored. As such, no generality is lost by assuming the mean is zero, 
and proceeding from there.  Obtain V, the 3×3 covariance matrix for the three moments, then use the delta 
method to show that the covariance matrix for the two estimators is 

   
6 0
0 24

 ′ =  
 

JVJ

       where J is the 2×3 matrix of derivatives. 
 The elements of J are 
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Using the formula given for the moments, we obtain, µ2 = σ2, µ3 = 0, µ4 = 3σ4.  Insert these in the 
derivatives above to obtain 

30 0
2 46 0

σ

σ σ

 −
 
 − −− 

=J .  

Since the rows of J are orthogonal, we know that the off diagonal term in JVJ′ will be zero, which 
simplifies things a bit.   Taking the parts directly, we can see that the asymptotic variance of 1b will be σ-6 
Asy.Var[m3], which will be 

Asy.Var[ 1b ]  =  σ-6(µ6 - µ3
2 + 9µ2

3 - 3µ2µ4 - 3µ2µ4). 
The parts needed, using the general result given earlier, are µ6 = 15σ6, µ3 = 0, µ2 = σ2, µ4 = 3σ4.  Inserting 
these in the parentheses and multiplying it out and collecting terms produces the upper left element of JVJ′  
equal to 6, which is the desired result.  The lower right element will be 
 Asy.Var[b2] = 36σ-4 Asy.Var[m2] + σ-8Asy.Var[m4] - 2(6)σ-6Asy.Cov[m2,m4]. 
The needed parts are 
 Asy.Var[m2] = 2σ4 
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 Asy.Var[m4] = µ8 - µ4
2 = 105σ8 - (3σ4)2 

 Asy.Cov[m2,m4] = µ6 - µ2µ4  =  15σ6 - σ2(3σ4). 
Inserting these parts in the expansion, multiplying it out and collecting terms produces the lower right 
element equal to 24, as expected. 
 
2. Using the results in Example 18.7, estimate the asymptotic covariance matrix of the method of moments 
estimators of P and λ based on  and  [Note: You will need to use the data in Example C.1 to 
estimate V.] 

1m′ 2.m′

 The necessary data are given in Examples 18.5 and 18.7.  The two moments are m =31.278 and 

=1453.96.  Based on the theoretical results m
1′

2.m′ 1′ = P/λ and m2′ = P(P+1)/λ2, the solutions are P = 
µ1′2/(µ2′ - µ1′2) and λ = µ1′/(µ2′ - µ1′2).  Using the sample moments produces estimates P = 2.05682 and λ = 
0.065759.  The matrix of derivatives is 

21/ / 15.207 475.648
.

2 3 1,182.551 44,221.20(2 1) / 2 ( 1) /

'/ '/1 1
'/ '/2 2

P

P P P

P

P
λ λ

λ λ

µ µ λ

µ µ λ

   − −  =    − + − + 

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂

 
 
 

G  

The covariance matrix for the moments is given in Example 18.7; 
25.0339 2313.41631

20 2313.4163 228047.8
 
 
 

Φ =  

The estimated asymptotic covariance matrix for the two estimators is  

(1/20)[G′Φ-1G]-1 =  so the two standard errors for the estimators of λ and P are 

0.01937 and 0.51656, respectively. 

.003752 .0084037
.0084037 .266831


 




 
3.  Exponential Families of Distributions)  For each of the following distributions, determine whether it 
is an exponential family by examining the log likelihood function.  Then, identify the sufficient statistics. 
 a.  Normal distribution with mean µ and variance σ2. 
 b.  The Weibull distribution in Exercise 4 in Chapter 17. 
 c.  The mixture distribution in Exercise 3 in Chapter 17. 
 a.  The log likelihood for sampling from the normal distribution is 
 
 logL  =  (-1/2)[nlog2π + nlogσ2 + (1/σ2)Σi (xi - µ)2] 
 
write the summation in the last term as Σxi

2 + nµ2 - 2µΣixi.  Thus, it is clear that the log likelihood is of the 
form for an exponential family, and the sufficient statistics are the sum and sum of squares of the 
observations. 
 b.  The log of the density for the Weibull distribution is  
 

logf(x) = logα + logβ + (β-1)logxi - αΣi xi
β. 

 
The log likelihood is found by summing these functions.  The third term does not factor in the fashion 
needed to produce an exponential family.  There are no sufficient statistics for this distribution.   
 c.  The log of the density for the mixture distribution is 
 
 logf(x,y) = logθ - (β+θ)yi + xilogβ + xilogyi - log(x!) 
 
This is an exponential family; the sufficient statistics are Σiyi and Σixi.. 
 
4.  In the classical regression model with heteroscedasticity, which is more efficient, ordinary least squares 
or GMM?   Obtain the two estimators and their respective asymptotic covariance matrices, then prove your 
assertion. 
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 The question is (deliberately) misleading. We showed in Chapter 11 that in the classical 
regression model with heteroscedasticity, the OLS estimator is the GMM estimator.  The asymptotic 
covariance matrix of the OLS estimator is given in Section 11.2.  The estimator of the asymptotic 
covariance matrices are s2(X′X)-1 for OLS and the White estimator for GMM. 
 
5.  Consider the probit model analyzed in Section 17.8.  The model states that for given vector of 
independent variables, 

Prob[ 1| ] [ ],  Prob[ 0 | ] 1 Prob[ 1| ].i i i i i iy yβ′= = Φ = = − =x x x xiy

)

0

 

We have considered maximum likelihood estimation of the parameters of this model at several points.  
Consider, instead, a GMM estimator based on the result that 

[ | ] (i i iE y ′= Φx x β  

This suggests that we might base estimation on the orthogonality conditions 

( )( )i i iE y ′− Φ =  x xβ  

Construct a GMM estimator based on these results.  Note that this is not the nonlinear least squares 
estimator.  Explain – what would the orthogonality conditions be for nonlinear least squares estimation of 
this model? 
 The GMM estimator would be chosen to minimize the criterion 
 
 q = n m′Wm 
 
where W is the weighting matrix and m is the empirical moment, 
 
 m  =  (1/n)Σi (yi - Φ(xi′β))xi 
 
For the first pass, we’ll use W = I and just minimize the sumof squares. This provides an initial set of 
estimates that can be used to compute the optimal weighting matrix.  With this first round estimate, we 
compute 
 
 W  =  [(1/n2) Σi (yi - Φ(xi′β))2 xi xi′]-1 

 
then return to the optimization problem to find the optimal estimator.  The asymptotic covariance matrix is 
computed from the first order conditions for the optimization.  The matrix of derivatives is 
 
 G  =  ∂m/∂β′  =  (1/n)Σi -φ(xi′β)xixi′ 
 
The estimator of the asymptotic covariance matrix will be 
 
 V  =  (1/n)[G′WG]-1 

 
6.  Consider GMM estimation of a regression model as shown at the beginning of Example 18.8.  Let W1 
be the optimal weighting matrix based on the moment equations.  Let W2 be some other positive definite 
matrix.  Compare the asymptotic covariance matrices of the two proposed estimators.  Show conclusively 
that the asymptotic covariance matrix of the estimator based on W1 is not larger than that based on W2.  
 This is the comparison between (18-12) and (18-11).  The proof can be done by comparing the 
inverses of the two covariance matrices. 
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7.  Suppose in a sample of 500 observations from a normal distribution with mean µ and standard deviation σ, 
you are told that 35% of the observations are less than 2.1 and 55% of the observations are less than 3.6.  
Estimate µ and σ. 
 If 35% of the observations are less than 2.1, we would infer that  
  Φ[(2.1 - µ)/σ]  =  .35, or  (2.1 - µ)/σ  =  -.385  ⇒  2.1 - µ  =  -.385σ. 
Likewise, Φ[(3.6 - µ)/σ]  =  .55, or  (3.6 - µ)/σ  =   .126  ⇒  3.6 - µ  =   .126σ. 

The joint solution is = 3.2301 and σ = 2.9354.  It might not seem obvious, but we can also derive asymptotic 
standard errors for these estimates by constructing them as method of moments estimators.  Observe, first, that 
the two estimates are based on moment estimators of the probabilities.  Let x

µ
∧ ∧

i denote one of the 500 
observations drawn from the normal distribution.  Then, the two proportions are obtained as follows:  Let 
zi(2.1) =  1[xi < 2.1] and zi(3.6) = 1[xi < 3.6] be indicator functions.  Then, the proportion of 35% has been 
obtained as z (2.1) and .55 is z (3.6).  So, the two proportions are simply the means of functions of the sample 
observations.  Each zi is a draw from a Bernoulli distribution with success probability π(2.1) = Φ((2.1-µ)/σ) 
for zi(2.1) and π(3.6) = Φ((3.6-µ)/σ) for zi(3.6).  Therefore, E[ z (2.1)] = π(2.1), and E[ z (3.6)] = π(3.6).  The 
variances in each case are Var[ z (.)] = 1/n[π(.)(1-π(.))].  The covariance of the two sample means is a bit 
trickier, but we can deduce it from the results of random sampling. Cov[ z (2.1), z (3.6)]]  
= 1/n Cov[zi(2.1),zi(3.6)], and, since in random sampling sample moments will converge to their population 
counterparts, Cov[zi(2.1),zi(3.6)] = plim [{(1/n) ∑ z

i
n
=1 i(2.1)zi(3.6)}  -  π(2.1)π(3.6)]. But, zi(2.1)zi(3.6) 

must equal [zi(2.1)]2 which, in turn, equals zi(2.1).  It follows, then, that  
Cov[zi(2.1),zi(3.6)] = π(2.1)[1 - π(3.6)]. Therefore, the asymptotic covariance matrix for the two sample 

proportions is Asy Var p p
n

. [ ( . ), ( . )]
( . )( ( . )) ( . )( ( . ))
( . )( ( . )) ( . )( ( . ))

21 36 1 21 1 2 1 21 1 36
21 1 36 36 1 36

= =
− −
− −









Σ

π π π π
π π π π

Est Asy Var p p. . [ ( . ), ( . )]
. .
. .

.21 36
0 000455 0 000315
0 000315 0 000495

= =








S

.  If we insert our 

sample estimates, we obtain   Now, ultimately, our 

estimates of µ and σ are found as functions of p(2.1) and p(3.6), using the method of moments.  The moment 
equations are 

   m , 
n

zii
n

2 1 1
1 21 21 0. ( . ) .

= 





−



=∑   -     =   Φ

µ
σ

   m n zii
n

3 1

1
36

36
0.6 ( . )

.
=







−



=∑   -     =   Φ

µ
σ . 

Now, let Γ = and let G be the sample estimate of Γ.  Then, the estimator of the 

asymptotic covariance matrix of ( , ) is [GS

∂ ∂µ ∂ ∂σ
∂ ∂µ ∂ ∂

m m
m m

2 1 2 1

3 6 3 61

. .

. .

/ /
/











µ
∧

σ
∧

σ/

-1G′]-1.  The remaining detail is the derivatives, which are just 
∂m2.1/∂µ = (1/σ)φ((2.1-µ)/σ) and ∂m2.1/∂σ = (2.1-µ)/σ[∂m2.1/∂σ]  and likewise for m3.6.  Inserting our sample 

estimates produces G = .  Finally, multiplying the matrices and computing the 

necessary inverses produces [GS

0 37046 014259
0 39579 0 04987
. .
. .

−









010
012−






-1G′]-1 = .  The asymptotic distribution would be 

normal, as usual.  Based on these results, a 95% confidence interval for µ would be 3.2301 ± 1.96(.10178)

178 012492
492 016973

. .
. .

− 




2 = 
2.6048 to 3.8554.    
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Chapter 19 
 

Models with Lagged Variables 
 
 
1.  Obtain the mean lag and the long and short run multipliers for the following distributed lag models. 
 (a)  yt = .55[.02xt + .15xt-1 + .43xt-2 + .23xt-3 + .17xt-4] + εt.  
 (b)  The model in Exercise 5. 
 (6)  The model in Exercise 8.  (Do for either x or z.) 
 For the first, the mean lag is  .55(.02)(0) + .55(.15)(1) + ... + .55(.17)(4)  =  1.31 periods. The impact 
multiplier is .55(.02)  =  .011 while the long run multiplier is the sum of the coefficients, .55. 
 For the second, the coefficient on xt is .6, so this is the impact multiplier.  The mean lag is found by 
applying (18-9) to B(L)  =  [.6 + 2L]/[1 - .6L + .5L2]  =  A(L)/D(L).  Then, B′(1)/B(1)  =   
{[D(1)A′(1) - A(1)D′(1)]/[D(1)]2} / [A(1)/D(1)] =  A′(1)/A(1) - D′(1)/D(1)  =  (2/2.6) / (.4/.9)  =  1.731 periods. 
The long run multiplier is B(1)  =  2.6/.9  =  2.888 periods. 
 For the third, since we are interested only in the coefficients on xt, write the model as 
yt  =  α +  βxt[1 + γL + γ2L2 + ...] + δzt

* +  ut.  The lag coefficients on xt are simply β times powers of γ.   
 
2.  Explain how to estimate the parameters of the following model: 
   yt  =  α  +  βxt  +  γyt-1 + δyt-2  + εt,    εt  =  ρεt-1  +  ut. 
Is there any problem with ordinary least squares?  Using the method you have described, fit the model above 
to the data in Table F5.1.  Report your results. 
 Because the model has both lagged dependent variables and autocorrelated disturbances, ordinary 
least squares will be inconsistent.  Consistent estimates could be obtained by the method of instrumental 
variables.  We can use xt-1 and xt-2 as the instruments for yt-1 and yt-2. Efficient estimates can be obtained by a 
two step procedure.  We write the model as yt - ρyt-1 =  α(1-ρ) + β(xt - ρxt-1) + γ(yt-1 - ρyt-2) + δ(yt-2 - ρyt-3) + ut.  
With a consistent estimator of ρ, we could use FGLS.  The residuals from the IV estimator can be used to 
estimate ρ.  Then OLS using the transformed data is asymptotically equivalent to GLS.  The method of 
Hatanaka discussed in the text is another possibility. 
 Using the real consumption and real disposable income data in Table F5.1, we obtain the following 
results:  Estimated standard errors are shown in parentheses. (The estimated autocorrelation based on the IV 
estimates is .9172.)  All three sets of estimates are based on the last 201 observations, 1950.4 to 2000.4 
              OLS   IV  2 Step FGLS 

  -1.4946 -64.5073 -4.6614  α
∧

  (3.8291) (46.1075)    (3.2041) 

  .007569 .7003     .3477 β
∧

  (.001662) (.4910)    (.0432) 

  1.1977  .5726      .2332 γ
∧

  (.006921) (.9043)   (.05933) 

  -0.1988 -.3324     .4072 δ
∧

  (.07109) (.4962)  (.05500)    
 
3.  Show how to estimate a polynomial distributed lag model with lags of 6 periods and a third order 
polynomial using restricted least squares. 
 Using (18-22), we would regress yt on a constant, xt, xt-1, ..., xt-6.  Constrained least squares using 
               1  -5  10  -10    5   -1    0    0                 0 
        R  =   0   1  -5   10  -10    5   -1    0  ,       q   =  0 
               0   0   1   -5   10  -10    5   -1                  0 
would produce the PDL estimates.   � 
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4.  Expand the rational lag model yt   =  {[.6  +  2L]/[1 - .6L + .5L2]} xt  +  εt. 
What are the coefficients on xt, xt-1, xt-2, xt-3, and xt-4? 
 The ratio of polynomials will equal  B(L)  =  [.6 + 2L]/[1 - .6L + .5L2].  This will expand to 
B(L)  =  β0 + β1L + β2L2 + ....  Multiply both sides of the equation by (1 - .6L + .5L2) to obtain 
(β0 + β1L + β2L2 + ....)(1 - .6L + .5L2) = .6 + 2L.  Since the two sides must be equal, it follows that 
β0  =  .6 (the only term not involving L)  -.6β0 + β1 = 2 (the only term involving only L.  Therefore, β1  =  2.36.  
All remaining terms, involving L2, L3, ... must equal zero.  Therefore, βj - .6βj-1 + .5βj-2  =  0  for all j > 1,  or βj  
=  .6βj-1 - .5βj-2.  This provides a recursion for all remaining coefficients.  For the specified coefficients, β2  =  
.6(2.36) - .5(.3)  =  1.266.  β3  =  .6(1.266) - .5(2.36)  =  -.4204,  β4  =  .6(-.4204) - .5(1.266)  =  -.88524 and so 
on.   
 
5.  Suppose the model of Exercise 4 were respecified as 
  yt   =  α  +  {[β  +  γL]/[1 + δ1L + δ2L2]} xt  +  εt. 
Describe a method of estimating the parameters.  Is ordinary least squares consistent? 
 By multiplying through by the denominator of the lag function, we obtain an autoregressive form 
  yt   =  α(1+δ1+δ2) + βxt + γxt-1 - δ1yt-1 - δ2yt-2 + εt + δ1εt-1 + δ2εt-2 
   =  α(1+δ1+δ2) + βxt + γxt-1 - δ1yt-1 - δ2yt-2 + vt 
The model cannot be estimated consistently by ordinary least squares because there is autocorrelation in the 
presence of a lagged dependent variable.  There are two approaches possible.  Nonlinear least squares could 
be applied to the moving average (distributed lag) form.  This would be fairly complicated, though a method 
of doing so is described by Maddala and Rao (1973).  A much simpler approach would be to estimate the 
model in the autoregressive form using an instrumental variables estimator.  The lagged variables xt-2 and xt-3 
can be used for the lagged dependent variables.  
 
6.    Describe how to estimate the parameters of the model  yt  =  α + βxt/(1 - γL) + δzt(1 - φL) + εt where 
εt is a serially uncorrelated, homoscedastic classical disturbance. 
 The model can be estimated as an autoregressive or distributed lag equation.  Consider, first, the 
autoregressive form.  Multiply through by (1 - γL)(1 - φL) to obtain 
 yt  =  α(1-γ)(1-φ) + βxt - (βφ)xt-1  + δzt - (δγ)zt-1 + (γ + φ)yt-1 - (γφ)yt-2 + εt -(γ+φ)εt-1 + (γφ)εt-2. 
Clearly, the model cannot be estimated by ordinary least squares, since there is an autocorrelated disturbance 
and a lagged dependent variable.  The parameters can be estimated consistently, but inefficiently by linear 
instrumental variables.  The inefficiency arises from the fact that the parameters are overidentified.  The linear 
estimator estimates seven functions of the five underlying parameters.  One possibility is a GMM estimator.  
Let vt  =  εt -(γ+φ)εt-1 + (γφ)εt-2.  Then, a GMM estimator can be defined in terms of, say, a set of moment 
equations of the form  E[vtwt]  =  0, where wt is current and lagged values of x and z.  A minimum distance 
estimator could then be used for estimation. 
 The distributed lag approach might be taken, instead.  Each of the two regressors produces a 
recursions xt

*  =  xt  +  γxt-1
*   and  zt

*  =  zt  +  γzt-1
*.  Thus, values of the moving average regressors can be built 

up recursively. Note that the model is linear in 1,  xt
*, and zt

*.  Therefore, an approach is to search a grid of 
values of (γ,φ) to minimize the sum of squares.  
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7.  We are interested in the long run multiplier in the model  

  
6

0
t j t

j
y xα β −

=

= + +∑ j tε

4

 
 
 
 
 
 
 
 
  

Assume that xt is an autoregressive series, xt = rxt-1 + vt where |r| < 1.   
a.  What is the long run multiplier in this model? 
b.  How would you estimate the long run multiplier in this model? 
c.  Suppose you that the preceding is the true model but you linearly regress yt  
     only on a constant and the first 5 lags of xt.  How does this affect your 
     estimate of the long run multiplier? 
d.  Same as c. for 4 lags instead of 5. 
e.  Using the macroeconomic data in Appendix F5.1, let yt be the log of real investment and xt be the log of 
real output.  Carry out the computations suggested and report your findings.  Specifically, how does the 
omission of a lagged value affect estimates of the short run and long run multipliers in the unrestricted lag 
model. 
 The long run multiplier is β0 + β1 + ... + β6.  The model is a classical regression, so it can be 
estimated by ordinary least squares.  The estimator of the long run multiplier would be the sum of the least 
squares coefficients.  If the sixth lag is omitted, then the standard omitted variable result applies, and all the 
coefficients are biased.  The orthogonality result needed to remove the bias explicitly fails here, since xt is 
an AR(1) process.  All the lags are correlated.  Since the form of the relationship is, in fact, known, we can 
derive the omitted variable formula.  In particular, by construction, xt will have mean zero.  By implication, 
yt will also, so we lose nothing by assuming that the constant term is zero.   To save some cumbersome 
algebra, we’ll also assume with no loss of generality that the unconditional variance of xt is 1.   Let X1 = 
[xt,xt-1,...,xt-5] and X2 = xt-6.  Then, for the regression of y on X1, we have by the omitted variable formula,  
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We can derive a formal solution to the bias in this estimator.  Note that the column that is to the right of the 
inverse matrix is r times the last column matrix.  Therefore, the matrix product is r times the last column of 
an identity matrix.  This gives us the complete result, 
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Therefore, the first 5 coefficients are unbiased, and the last one is an estimator of β5 + rβ6.  Adding these 
up, we see that when the last lag is omitted from the model, the estimator of the long run multiplier is 
biased downware by (1-r)β6.  For part d, we will use a similar construction.  But, now there are five 
variables in X1 and xt-5 and xt-6 in X2.  The same kind of computation will show that the first four 
coefficients are unbiased while the fifth now estimates β4 + rβ5 + r2β6.  The long run multiplier is estimated 
with downward bias equal to (1-r)β5 + (1-r2)β6. 
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+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 XT           .9726595701       1.9258818     .505   .6141     8.3384522 
 XT1          .7709686332       3.1555811     .244   .8072     8.3301663 
 XT2          .5450409860       3.1761465     .172   .8639     8.3218191 
 XT3         -.6061007409       3.1903388    -.190   .8495     8.3134324 
 XT4         -.2272352746       3.1729930    -.072   .9430     8.3050260 
 XT5         -1.916555094       3.1414210    -.610   .5425     8.2964570 
 XT6          1.218771893       1.8814874     .648   .5179     8.2878393 
Matrix LRM      has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|      .7575 
 XT           1.101551478       1.9126777     .576   .5653     8.3384522 
 XT1          .6941982792       3.1485851     .220   .8257     8.3301663 
 XT2          .5287939572       3.1712435     .167   .8677     8.3218191 
 XT3         -.7300170198       3.1797815    -.230   .8187     8.3134324 
 XT4         -.5552651191       3.1275848    -.178   .8593     8.3050260 
 XT5         -.2826674399       1.8697065    -.151   .8800     8.2964570 
Matrix LRM      has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|      .7566 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 XT           1.077633667       1.9012923     .567   .5715     8.3384522 
 XT1          .7070443138       3.1394606     .225   .8221     8.3301663 
 XT2          .5633400685       3.1549830     .179   .8585     8.3218191 
 XT3         -.6608149939       3.1386871    -.211   .8335     8.3134324 
 XT4         -.9304013056       1.8990464    -.490   .6247     8.3050260 
Matrix LRM      has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|      .7568 
--> calc;list;cor(xt,xt1)$ 
    Result  =  .99978740920470700D+00 
The results of the three suggested regressions are shown above.  We used observations 7 - 204 of the 
logged real investment and real GDP data in deviations from the means for all regressions.  Note that 
although there are some large changes in the estimated individual parameters, the long run multiplier is 
almost identical in all cases.  Looking at the analytical results we can see why this would be the case.  The 
correlation between current and lagged log gdp is r =  0.9998.  Therefore, the biases that we found, (1-r)β6 
and (1-r)β5 + (1-r2)β6 are trivial. 
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Chapter 20 
 

Time Series Models 
 
1.  Find the autocorrelations and partial autocorrelations for the MA(2) process  
εt = vt - θ1vt-1 - θ2vt-2. 
 
 The autocorrelations are simple to obtain just by multiplying out vt

2, vtvt-1 and so on. The 
autocovariances are 1+θ1

2 + θ2
2, -θ2(1 - θ2), -θ2, 0, 0, 0... which provides the autocorrelations by division 

by the first of these.  The partial autocorrelations are messy, and can be obtained by the Yule Walker 
equations.  Alternatively (and much more simply), we can make use of the observation on page 615 that 
the partial autocorrelations for the MA(2) process mirror tha autocorrelations for an AR(2).  Thus, the 
results on page 615 for the AR(2) can be used directly. 
 
2.  Carry out the ADF test for a unit root in the bond yield data of Example 20.1. 
 The regression results are shown below. We fit the regression using a constant, a time trend, the 
lagged dependent variable and three lagged first differences.  The coefficient on “R1” is used for the test. 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = R        Mean=   8.212678571    , S.D.=   .7762719558     | 
| Model size: Observations =      56, Parameters =   6, Deg.Fr.=     50 | 
| Residuals:  Sum of squares= .9651001703    , Std.Dev.=         .13893 | 
| Fit:        R-squared=  .970881, Adjusted R-squared =          .96797 | 
| Model test: F[  5,     50] =  333.41,    Prob value =          .00000 | 
| Diagnostic: Log-L =     34.2439, Restricted(b=0) Log-L =     -64.7739 | 
|             LogAmemiyaPrCrt.=   -3.846, Akaike Info. Crt.=     -1.009 | 
| Autocorrel: Durbin-Watson Statistic =   1.91589,   Rho =       .04205 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant     .2565690959       .47172815     .544   .5889 
 T         .4401352136E-03  .25092142E-02     .175   .8615     32.500000 
 R1           .9653227410   .48183346E-01   20.034   .0000     8.2305357 
 DR1          .5600009441       .14342088    3.905   .0003 -.12321429E-01 
 DR2         -.1739775168       .14781417   -1.177   .2448 -.20535714E-01 
 DR3      -.7792177815E-03      .11072916    -.007   .9944 -.11607143E-01 
 (Note: E+nn or E-nn means multiply by 10 to + or -nn power.) 
 
--> wald;fn1=b_r1-1$ 
+-----------------------------------------------+ 
| WALD procedure. Estimates and standard errors | 
| for nonlinear functions and joint test of     | 
| nonlinear restrictions.                       | 
| Wald Statistic             =       .51796     | 
| Prob. from Chi-squared[ 1] =       .47171     | 
+-----------------------------------------------+ 
+---------+--------------+----------------+--------+---------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | 
+---------+--------------+----------------+--------+---------+ 
 Fncn(1)  -.3467725900E-01  .48183346E-01    -.720   .4717 
Unit root hypothesis is definitely not rejected. 
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3.  Using the macroeconomic data in Appendix Table F5.1, estimate by least squares the parameters of the 
model 

ct = β0 + β1yt + β2ct-1 + β3ct-2 + εt, 
 

     where ct is the log of real consumption and yt is the log of real disposable income. 
a.  Use the Breusch and Pagan test to examine the residuals for autocorrelation. 
b. Is the estimated equation stable?  What is the characteristic equation for the autoregressive part of this 
model?  What are the roots of the characteristic equation, using your estimated parameters? 
c. What is your implied estimate of the short run (impact) multiplier for change in yt on ct?  Compute the 
estimated long run multiplier. 
 
--> samp;1-204$ 
--> crea;c=log(realcons);y=log(realdpi)$ 
--> crea;c1=c[-1];c2=c[-2]$ 
--> samp;3-204$ 
--> regr;lhs=c;rhs=one,y,c1,c2$ 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = C        Mean=   7.889033683    , S.D.=   .5102401315     | 
| Model size: Observations =     202, Parameters =   4, Deg.Fr.=    198 | 
| Residuals:  Sum of squares= .1519097328E-01, Std.Dev.=         .00876 | 
| Fit:        R-squared=  .999710, Adjusted R-squared =          .99971 | 
| Model test: F[  3,    198] =********,    Prob value =          .00000 | 
| Diagnostic: Log-L =    672.4019, Restricted(b=0) Log-L =    -150.2038 | 
|             LogAmemiyaPrCrt.=   -9.456, Akaike Info. Crt.=     -6.618 | 
| Autocorrel: Durbin-Watson Statistic =   1.89384,   Rho =       .05308 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant  .8165780259E-03  .10779352E-01     .076   .9397 
 Y         .7869591065E-01  .29020268E-01    2.712   .0073     7.9998985 
 C1           .9680839747   .72732869E-01   13.310   .0000     7.8802520 
 C2       -.4701660339E-01  .70076193E-01    -.671   .5030     7.8714299 
--> crea;e1=e[-1];e2=e[-3];e3=e[-3]$ 
--> crea;e1=e[-1];e2=e[-2];e3=e[-3]$ 
--> regr;lhs=e;rhs=one,e1,e2,e3$ 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = E        Mean=  -.6947138134E-15, S.D.=   .8693502258E-02 | 
| Model size: Observations =     202, Parameters =   4, Deg.Fr.=    198 | 
| Residuals:  Sum of squares= .1339943625E-01, Std.Dev.=         .00823 | 
| Fit:        R-squared=  .117934, Adjusted R-squared =          .10457 | 
| Model test: F[  3,    198] =    8.82,    Prob value =          .00002 | 
| Diagnostic: Log-L =    685.0763, Restricted(b=0) Log-L =     672.4019 | 
|             LogAmemiyaPrCrt.=   -9.581, Akaike Info. Crt.=     -6.743 | 
| Autocorrel: Durbin-Watson Statistic =   1.85371,   Rho =       .07314 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant  .2437121418E-04  .57884755E-03     .042   .9665 
 E1       -.2553462753E-01  .70917392E-01    -.360   .7192 -.21497022E-04 
 E2           .3385045374   .66904365E-01    5.060   .0000 -.56959898E-04 
 E3        .6894158132E-01  
--> calc;list;chisq=n*rsqrd$ 

.71101163E-01     .970   .3334 -.81793147E-04 

    CHISQ   =  .23822731697405480D+02 
--> matrix ; g=[.968083974,-.04701660339];root(g)$ 
The two roots of the matrix of the characteristic equation are  1.0688 and 19.8378.    Since the smallest is 
larger than one, the equation is stable. 

The short run multiplier is β = .07869.  Long run is β/(1-γ1 - γ2) = 12.669.  (Not very plausible.) 
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4.  Verify the result in (20-10). 
 The model is yt  =  µ  + γ1yt-1 + γ2yt-2 + εt - θεt-1.  Write the MA(1) disturbance as (1 - θL)εt where 
L is the lag operator.  Now, divide both sides of the equation by (1 - θL).  This produces 
 
 yt/(1 - θL) = µ/(1 - θL)   + γ1yt-1/(1 - θL)  + γ2yt-2/(1 - θL)  + εt. 
 
Recall 1/(1 - θL) = 1 + θL + θ2L2 + ....  Multiply out all the terms and assemble the sums to obtain 

 1 20 1 21
i i

t i t i t i ti i i
y yµθ γ θ γ θ

θ
∞ ∞ ∞

− −= = =
= + + +

−∑ ∑ ∑ i y ε−  

By expanding the sums and collecting the term in the respective lags of yt, we find the coefficients for the 
first several lags are (γ1 - θ) for lag 1, (γ1θ + γ2 - θ2) for lag 2, (γ1θ2 + γ2θ - θ3) for lag 3, and so on.  This is 
the pattern suggested in the text.  The constant term is obvious, as given. 
 
5. Show the Yule-Walker equations for an ARMA(1,1) process. 
 These are given on page 616 of the text. 
 
6.  Carry out an ADF test for a unit root in the rate of inflation using the subset of 
     the data in Table F5.1 since 1974I.  (This is the first quarter after the oil shock of 
     1973.) 
 To carry out the test, the rate of inflation is regressed on a constant, a time trend, the previous 
year’s value of the rate of inflation, and three lags of the first difference.  The test statistic for the ADF is 
(0.7290534455-1)/.011230759 = -2.373.  The critical value in the lower part of Table 20.4 with about 100 
observations is -3.45.  Since our value is large than this, it follows that the hypothesis of a unit root cannot 
be rejected. 
 
--> samp;1-204$ 
--> crea;ddp1=infl[-1]-infl[-2]$ 
--> crea;ddp2=ddp1[-1]$ 
--> crea;ddp3=ddp1[-2]$ 
--> crea;dp=infl[-1]$ 
--> samp;97-204$ 
--> crea;t=trn(1,1)$ 
--> regr;lhs=infl;rhs=one,t,dp,ddp1,ddp2,ddp3$ 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = INFL     Mean=   4.907672727    , S.D.=   3.617392978     | 
| Model size: Observations =     108, Parameters =   6, Deg.Fr.=    102 | 
| Residuals:  Sum of squares= 608.5020156    , Std.Dev.=        2.44248 | 
| Fit:        R-squared=  .565403, Adjusted R-squared =          .54410 | 
| Model test: F[  5,    102] =   26.54,    Prob value =          .00000 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant     2.226039717       1.1342702    1.963   .0524 
 T        -.1836785769E-01  .11230759E-01   -1.635   .1050     54.500000 
 DP           .7290534455       .11419140    6.384   .0000     4.9830886 
 DDP1        -.4744389916       .12707255   -3.734   .0003 -.58569323E-01 
 DDP2        -.4273030624       .11563482   -3.695   .0004 -.46827528E-01 
 DDP3        -.22484
--> wald;fn1=b_dp-1$ 

32703   .98954483E-01   -2.272   .0252 -.86558444E-02 

+---------+--------------+----------------+--------+---------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | 
+---------+--------------+----------------+--------+---------+ 
 Fncn(1)     -.2709465545       .11419140   -2.373   .0177 
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7. Estimate the parameters of the model in Example 15.1 using two stage least squares.  Obtain the 
residuals from the two equations.  Do these residuals appear to be white noise series? Based on your 
findings, what do you conclude about the specification of the model? 
 The two stage least squares regressions are shown below. Box-Jenkins analyses of the residuals 
shows fairly small, but significant autocorrelation of both sets of residuals.  Thus, the specification may not 
be quite complete.  There may be missing lags or other variables. 
--> samp;1-204$ 
--> crea;ct=realcons;yt=realgdp;gt=realgovt;rt=tbilrate$ 
--> crea;ct1=ct[-1];yt1=yt[-1]$ 
--> samp;2-204$ 
--> samp;1-204$ 
--> crea;ct=realcons;yt=realgdp;gt=realgovt;rt=tbilrate;it=realinvs$ 
--> crea;ct1=ct[-1];yt1=yt[-1]$ 
--> crea;dy=yt-yt1$ 
--> samp;2-204$ 
--> name;x=one,rt,ct1,yt1,gt$ 
--> 2sls;lhs=ct;rhs=one,yt,ct1;inst=x;res=ec$ 
--> 2sls;lhs=it;rhs=one,rt,dy;inst=x;res=ei$ 
--> iden;rhs=ec;pds=10$ 
--> iden;rhs=ei;pds=10$ 
 
+-----------------------------------------------------------------------+ 
| Two stage   least squares regression    Weighting variable = none     | 
| Dep. var. = CT       Mean=   3008.995074    , S.D.=   1456.900152     | 
| Model size: Observations =     203, Parameters =   3, Deg.Fr.=    200 | 
| Residuals:  Sum of squares= 96595.67529    , Std.Dev.=       21.97677 | 
| Fit:        R-squared=  .999771, Adjusted R-squared =          .99977 | 
|             (Note:  Not using OLS.  R-squared is not bounded in [0,1] | 
| Model test: F[  2,    200] =********,    Prob value =          .00000 | 
| Diagnostic: Log-L =   -913.8005, Restricted(b=0) Log-L =   -1766.2087 | 
|             LogAmemiyaPrCrt.=    6.195, Akaike Info. Crt.=      9.033 | 
| Autocorrel: Durbin-Watson Statistic =   1.61078,   Rho =       .19461 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant     6.666079115       8.6211817     .773   .4394 
 YT       -.2932041745E-01  .35260653E-01    -.832   .4057     4577.1882 
 CT1          1.051478712   .51482187E-01   20.424   .0000     2982.9744 
 (Note: E+nn or E-nn means multiply by 10 to + or -nn power.) 
 
 
+-----------------------------------------------------------------------+ 
| Two stage   least squares regression    Weighting variable = none     | 
| Dep. var. = IT       Mean=   654.5295567    , S.D.=   391.3705005     | 
| Model size: Observations =     203, Parameters =   3, Deg.Fr.=    200 | 
| Residuals:  Sum of squares= 54658669.31    , Std.Dev.=      522.77466 | 
| Fit:        R-squared= -.793071, Adjusted R-squared =         -.81100 | 
|             (Note:  Not using OLS.  R-squared is not bounded in [0,1] | 
| Diagnostic: Log-L =  -1557.1409, Restricted(b=0) Log-L =   -1499.3832 | 
|             LogAmemiyaPrCrt.=   12.533, Akaike Info. Crt.=     15.371 | 
| Autocorrel: Durbin-Watson Statistic =   1.49055,   Rho =       .25473 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant    -141.8297176       103.57113   -1.369   .1709 
 RT           52.04340559       12.971223    4.012   .0001     5.2499007 
 DY           13.80361384       1.7499250    7.888   .0000     37.898522 
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Time series identification for EC 
Box-Pierce Statistic =    40.8498      Box-Ljung Statistic  =    41.7842 
Degrees of freedom   =         10      Degrees of freedom   =         10 
Significance level   =      .0000      Significance level   =      .0000 
* => |coefficient| > 2/sqrt(N) or > 95% significant. 
PACF is computed using Yule-Walker equations. 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
Lag |  Autocorrelation Function     |Box/Prc|    Partial Autocorrelations   X 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
  1 | .194*|           |**          |  7.65*| .194*|            |**         X 
  2 | .264*|           |***         | 21.82*| .236*|            |***        X 
  3 | .273*|           |***         | 36.93*| .207*|            |**         X 
  4 | .067 |           |*           | 37.85*|-.063 |          * |           X 
  5 | .054 |           |*           | 38.44*|-.068 |          * |           X 
  6 | .073 |           |*           | 39.52*| .018 |            |*          X 
  7 | .009 |           |*           | 39.53*| .003 |            |*          X 
  8 |-.078 |          *|            | 40.78*|-.109 |          * |           X 
  9 | .019 |           |*           | 40.85*| .023 |            |*          X 
 10 | .002 |           |*           | 40.85*| .050 |            |*          X 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
Time series identification for EI 
Box-Pierce Statistic =    27.4753      Box-Ljung Statistic  =    28.3566 
Degrees of freedom   =         10      Degrees of freedom   =         10 
Significance level   =      .0022      Significance level   =      .0016 
* => |coefficient| > 2/sqrt(N) or > 95% significant. 
PACF is computed using Yule-Walker equations. 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
Lag |  Autocorrelation Function     |Box/Prc|    Partial Autocorrelations   X 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
  1 | .244*|           |***         | 12.13*| .244*|            |***        X 
  2 | .143*|           |**          | 16.27*| .096 |            |*          X 
  3 | .037 |           |*           | 16.55*|-.019 |          * |           X 
  4 |-.001 |          *|            | 16.55*|-.017 |          * |           X 
  5 |-.066 |          *|            | 17.42*|-.078 |          * |           X 
  6 | .003 |           |*           | 17.43*| .043 |            |*          X 
  7 |-.042 |          *|            | 17.79*|-.033 |          * |           X 
  8 |-.107 |          *|            | 20.10*|-.107 |          * |           X 
  9 | .108 |           |*           | 22.46*| .194*|            |**         X 
 10 | .157*|           |**          | 27.48*| .142*|            |**         X 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
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Chapter 21 

Models for Discrete Choice 
 
1.  A binomial probability model is to be based on the following index function model: 
    y*  =  α  +  βd  +  ε 
    y   =  1  if  y*  >  0,  
    y   =  0  otherwise. 
The only regressor, d, is a dummy variable.  The data consist of 100 observations that have the following: 
d y     0 1
0
1

24 28
32 26











.  Obtain the maximum likelihood estimators of α and β and estimate the asymptotic standard 

errors of your estimates.  Test the hypothesis that β equals zero by using a Wald test (asymptotic t test) and a 
likelihood ratio test.  Use the probit model and then repeat, using the logit model.  Do your results change?  
[Hint:  Formulate the log-likelihood in terms of α and δ = α+β.] 
 The log-likelihood is 
lnL  =  Σ0,0lnProb[y=0,d=0] + Σ0,1lnProb[y=0,d=1] + Σ1,0lnProb[y=1,d=0] + Σ1,1lnProb[y=1,d=1] 
where Σi,j indicates the sum over observations for which y = i and d = j.  Since there are no other regressors, 
this reduces to lnL  =  24ln(1 - F(α)) + 32ln(1 - F(δ)) + 28lnF(α) + 16lnF(δ).  Although it is straightforward to 
maximize the log-likelihood directly in terms of α and δ, an alternative, convenient approach is to estimate 
F(α) and F(δ).  These functions can then be inverted to estimate the original parameters.  The invariance of 
maximum likelihood estimators to transformation will justify this approach.  One virtue of this approach is 
that the same procedure is used for both probit and logit models.   Let A = F(α) and D = F(δ).  Then, the log 
likelihood is simply lnL  =  24ln(1 - A) + 32ln(1 - D) + 28lnA + 16lnD.  The necessary conditions are 
   ∂lnL/∂A  =  -24/(1 - A) + 28/A  =  0 
   ∂lnL/∂D  =  -32/(1 - D) + 16/D  =  0. 
Simple manipulations produce the two solutions  A = 28/(24+28) = .539 and D = 16/(32+16) = .333.  Then, 

these functions can be inverted to produce the MLEs of α and β.  Thus, α = F
∧

-1(A) and β  =  F
∧

-1(D) - α .  The 
two inverse functions are Φ

∧

-1(A) for the probit model, which must be approximated, and ln[F/(1-F)] for the 
logit model.  The estimates are, 
   Probit    Logit 
  α          .098      .156 
  δ         -.431     -.694 
  β         -.529     -.850 
 (Notice the proportionality relationship, .156/.098 = 1.592 and -.848/-.529 = 1.607.) 

 We will compute the asymptotic covariance matrix for and directly using (19-24) for the probit 
model and (19-22) for the logit model. We will require h

α
∧

β
∧

i  =  ∂2lnL/∂(α+βd)2 for the four cells.  For the 
computation, we will require φ(c)/Φ(c) and -φ(c)/[1-Φ(c)].  These are listed in the table below. 
                                                   λ1      λ0  
y       d       α+βd     Φ      φ    φ/Φ  -φ/(1-Φ)   λ0λ1  
0       0       .098   .539   .397    .737  -.861      -.636 
1       0       .098   .539   .397    .737  -.861      -.636 
0       1      -.431   .333   .364  1.093  -.546     -.597 
1       1      -.431   .333   .364  1.093  -.546     -.597 
The estimated asymptotic covariance matrix is the inverse of the estimate of -E[H]. 
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∧
H 24 636

1 0
0 0

28 636
1 0
0 0

32 597
1 1
1 1

16 597
1 1
1 1

(. ) (. ) (. ) (. ) .   Then, 

 106 



  

−








 =









 =

−
−











∧ − −

H
1 161728 28 656

28 656 28 656
03024 03024
03024 06513

. .

. .
. .
. .

.  The asymptotic standard errors are the square roots 

of the diagonal elements, which are .1739 and .2552, respectively.  To test the hypothesis that β = 0, we would 
refer z  =  -.529 / .2552 = -2.073 to the standard normal table.  This is larger than the 1.96 critical value, so we 
would reject the hypothesis.  To compute the likelihood ratio statistic, we will require the two log-likelihoods.  
The restricted log-likelihood (for both the probit and logit models) is given in (19-28).  This would be 
lnL0  =  100[.44ln.44 + .56ln.56]  =  -68.593.  Let the predicted values above be denoted 
  P00 = Prob[y=0,d=0]  =  .461  (i.e., 1 - .539) 
  P10 = Prob[y=1,d=0]  =  .539 
  P01 = Prob[y=0,d=1]  =  .667 
  P11 = Prob[y=0,d=1]  =  .333 
and let nij equal the number of observations in each cell Then, the unrestricted log-likelihood is 
lnL  =  24ln.461 + 28ln.539 + 32ln.667 + 16ln.333  =  -66.442.   The likelihood ratio statistic would be 
 λ  =  -2(-66.6442 - (-68.593))  =  4.302.  The critical value from the chi-squared distribution with one degree 
of freedom is 3.84, so once again, the test statistic is slightly larger than the table value. 
 We now compute the Hessian for the logit model.   The predicted probabilities are 
  Prob[y = 0 , d = 0] = P00  =  1/(1 + e.156)   =  .462 
  Prob[y = 1 , d = 0] = P10  =  1 - P00  =  .538 
  Prob[y = 0 , d = 1] = P01  =  1/(1 + e-.431)   =  .667 
  Prob[y = 1 , d = 1] = P11  =  1 - P01         =  .333. 
Notice that in spite of the quite different coefficients, these are identical to the results for the probit model.  
Remember that we originally estimated the probabilities, not the parameters, and these were independent of 
the distribution.   Then, the Hessian is computed in the same manner as for the probit model using 
hij  =  Fij(1-Fij) instead of λ0λ1 in each cell.  The asymptotic covariance matrix is the inverse of 

(28+24)(.462)(.538) +(32+16)(.667)(.333) .  The standard errors are .2782 and .4137.  For 

testing the hypothesis that β equals zero, the t-statistic is z  =  -.850/.4137  =  -2.055, which is almost the same 
as that for the probit model.  The unrestricted log-likelihood is lnL = 24ln.4285 + ... + 16ln.3635  =  -66.442  
(again).  The chi-squared statistic is 4.302, as before.    

1 0
0 0











1 1
1 1











 
2.  Suppose that a linear probability model is to be fit to a set of observations on a dependent variable, y, which 
takes values zero and one, and a single regressor, x, which varies continuously across observations.  Obtain the 
exact expressions for the least squares slope in the regression in terms of the mean(s) and variance of x and 
interpret the result. 
 Using the usual regression statistics, we would have a= y bx− , 

b x x y y x xi i i i i= − − −Σ Σ( )( ) / ( 2) . 
For data in which y is a binary variable, we can decompose the numerator somewhat further.  First, divide both 
numerator and denominator by the sample size.  Second, since only one variable need be in deviation form, 
drop the deviation in x.  That leaves [ ] [y y n x xi i i i i= − −Σ Σ( ) / / ( ) /2 ]nb x .  The denominator is the sample 

variance of x.  Since yi is only 0s and 1s, y is the proportion of 1s in the sample, P.  Thus, the numerator is 

(1/n)Σi xiyi - (1/n)Σi xi y =  (1/n)Σ1xi - P x =  (n1/n) x 1 - P[P x  + (1-P) x 0]  =  P(1 - P)( x 1  - x 0). 
Therefore, the regression is essentially measuring how much the mean of x varies across the two groups of 
observations.  The constant term does not simplify into any intuitively useful form.    
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3.  Given the following data set: 
  Y |  1  0  0  1  1  0  0  1  1  1 
  ---------------------------------- 
  X |  9  2  5  4  6  7  3  5  2  6 
Estimate a probit model, and test the hypothesis that X is not influential in determining the probability that Y 
equals one. 
 The model was estimated using Newton's method as described in the text.  The estimated coefficients 

and their standard are shown below:  =  -.51274  +  .15964X y
∧

               (1.042)       (.202) 
     Log-likelihood = -6.403  Restricted log-likelihood = -6.9315. 
The t-ratio for testing the hypothesis is .15964/.202 = .79.  The chi-squared for the likelihood ratio test is 
1.057.  Neither is large enough to lead to rejection of the hypothesis.    
 
4.  Construct the Lagrange multiplier statistic for testing the hypothesis that all of the slopes (but not the 
constant term) equal zero in the binomial logit model.  Prove that the Lagrange multiplier statistic is nR2 in the 
regression of (yi - P) on the xs, where P is the sample proportion of ones. 
 The derivatives of the log-likelihood are given in (19-19).  If all coefficients except the constant term 
are zero, then the first order condition for maximizing the log-likelihood would be ∂lnL/∂β  =  Σi(yi - λ)(1) = 0 

since with no regressors, λi will not vary with i.  This leads to the constrained maximum λ =  Σ
∧

i yi/n  =  P, 

which might be expected.  Thus, we estimate the constant term such that   P  =  e

e

α

α

∧

∧

+1
, or =  logit(P). α

∧

The LM statistic based on the BHHH estimator of the covariance matrix of the first derivatives would be 
   LM  =  [Σigi]′[Σigigi′]-1[Σigi]   where   gi  =  Σi(yi - P)xi. 
In full, the statistic is LM  =  [Σi(yi - P)xi]′[Σi(yi - P)2xixi′]-1[Σi(yi - P)xi]. 
 The actual (and expected) Hessian can be used instead by replacing (yi - P)2 with P(1 - P) in the 
inverse matrix.  The statistic could then be written 
   LM  =  [X′(y - Pi)]′[(X′X)-1][X′(y - Pi)]/P(1 - P)  =  e′X(X′X)-1X′e/P(1 - P) 
In the preceding, e′e  =  Σi(yi - P)2   =  nP(1 - P).  Therefore,  LM  = n[e′X(X′X)-1X′e/e′e], which establishes 
the result.  To compute the statistic, we regress (yi - P) on the xs, then carry nR2 into the chi-squared table.   
 
5.  We are interested in the ordered probit model.  Our data consist of 250 observations, of which the 
responses are   Y    0   1     2     3    4 
    ------------------------- 
    n   50  40  45  80  35 
Using the data above, obtain maximum likelihood estimates of the unknown parameters of the model.  [Hint:  
Consider the probabilities as the unknown parameters.] 
 Since there is no regressor, we may write the log-likelihood as 
  lnL =  50lnΦ(-α) + 40ln[Φ(µ1-α) - Φ(-α)] + 45ln[Φ(µ2-α) - Φ(µ1-α)] + 
   80ln[Φ(µ3-α) - Φ(µ2-α)] + 35ln[1 - Φ(µ3-α)]. 
There are four unknown parameters to estimate and four free probabilities.  Suppose, then, we treat Φ(-α), 
Φ(µ1-α), Φ(µ2-α), and Φ(µ3-α) as the unknown parameters, π0, π1, π2, and π3, respectively.  If we can find 
estimators of these, we can solve for the underlying parameters.  We may write the log-likelihood as 
  lnL = 50lnπ0 + 40ln(π1 - π0) + 45ln(π2 - π1) + 80ln(π3 - π2) + 35ln(1 - π3). 
The necessary conditions are 
  ∂lnL/∂π0  =  50/π0 - 40/(π1-π0)             =  0 
  ∂lnL/∂π1  =  40/(π1 - π0) - 45/(π2 - π1)   =  0 
  ∂lnL/∂π2  =  45/(π2 - π1) - 80/(π3 - π2)   =  0 
  ∂lnL/∂π3  =  80/(π3 - π2) - 35/(1 - π3)    =  0. 
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By a simple rearrangement, these can be recast as a set of linear equations.  Thus, 
   90π0 -  50π1                    =    0 
   45π0 -  85π1 + 40π2            =    0 
    80π1 - 125π2 +   45π3   =    0 
         -   35π2 + 115π3   =  80 

or    

90 50 0 00
45 85 40 0
0 80 125 45
0 0 35 115

0
0
0

80

0

1

2

3

−
−

−
−





































=



















 

π
π
π
π

The solution (as might be expected) is 
   π0  =  .2      (50/250) 
   π1  =  .36   ((50+40)/250) 
   π2  =  .54   ((50+40+45)/250) 
   π3  =  .86   ((50+40+45+80)/250). 
Now, we can solve for the underlying parameters. 
     -α =  Φ-1(.2)  =  -.841, so  α = .841. 
  µ1-α =  Φ-1(.36) =  -.358, so µ1 = .483 
  µ2-α =  Φ-1(.54) =   .101, so µ2 = .942 
  µ3-α =  Φ-1(.86) =  1.081, so µ3 = 1.922.    
 
6.  The following hypothetical data give the participation rates in a particular type of recycling program and 
the number of trucks purchased for collection by ten towns in a small mid-Atlantic state: 
  Town  Trucks  Participation 
     1             160                 11%  
     2             250                 74%  
     3             170                  8%  
     4             365                 87%  
     5             210                 62%  
     6             206                 83%  
     7             203                 48%  
     8             305                 84%  
     9             270                 71%  
    10             340                 79%  
The town of Eleven is contemplating initiating a recycling program but wishes to achieve a 95% rate of 
participation.  Using a probit model for your analysis, 
(a)  How many trucks would the town expect to have to purchase in order to achieve their goal?  [Hint:  See 
Section 19.4.3.]  Note that you will use ni = 1. 
(b)  If trucks cost $20,000 each, is a goal of 90% reachable within a budget of $6.5 million?  (That is,     
should they expect to reach the goal.) 
(c)  According to your model, what is the marginal value of the 301st truck in terms of the increase in the     
percentage participation? 
 To estimate the coefficients, we will use a two step FGLS procedure.  Ordinary least squares 
estimates based on Section 19.4.3 are consistent, but inefficient.  The OLS regression produces 

    Φ-1(Pi) = =  -2.18098  +  .0098898T zi

∧

                 (.7404)     (.002883). 
The predicted values from this regression can then be used to compute the weights in (21-39).  The weighted 

least squares regression produces =     -2.3116  +  .010646T zi

∧

                (.8103)     (.003322) 
In order to achieve a predicted proportion of 95%, we will require zi = 1.645.  The T required to achieve this is 
    T  =  (1.645 + 2.3116) / .010646  =  372. 
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 The zi which corresponds to 90% is 1.282.  Doing the same calculation as above, this requires T = 
338 trucks. At $20,000 per truck, this requires $6.751 million, so the budget is inadequate. 
 The marginal effect is  ∂Φi/∂T  =  .010646φ(zi).  At T = 300, zi = .8822, so φ(zi) = .2703 and the 
marginal effect is .00288.   
 
7.  A data set consists of n = n1 + n2 + n3 observations on y and x.  For the first n1 observations, y = 1 and x = 1.  
For the next n2 observations, y = 0 and x = 1.  For the last n3 observations, y = 0 and x = 0.  Prove that neither 
(19-19) nor (19-21) has a solution. 
 This is similar to Exercise 1.  It is simplest to prove it in that framework.  Since the model has only a 
dummy variable, we can use the same log likelihood as in Exercise 1.  But, in this exercise, there are no 
observations in the cell (y=1,x=0).  The resulting log likelihood is, therefore, 
  lnL  =  Σ0,0lnProb[y=0,x=0] + Σ0,1lnProb[y=0,x=1] + Σ1,1lnProb[y=1,x=1] 
or  lnL  =  n3lnProb[y=0,x=0] + n2lnProb[y=0,x=1] + n1lnProb[y=1,x=1]. 
Now, let δ = α + β.  The log likelihood function is lnL  =  n3ln(1 - F(α)) + n2ln(1 - F(δ)) + n1lnF(δ).   For 
estimation, let A = F(α) and D = F(δ).  We can estimate A and D, then α  =  F-1(A)  and  β  =  F-1(D) - α.  The 
first order condition for estimation of A is  ∂lnL/∂A  =  -n3/(1 - A)  =  0,  which obviously has no solution.  If A 
cannot be estimated then α cannot either, nor, in turn, can β.  This applies to both probit and logit models.   
 
8.  Data on t = strike duration and x = unanticipated industrial production for a number of strikes in each of 9 
years are given in Table 22.7.  Use the Poisson regressin model discussed in Section 21.8 to determine 
whether x is a significant determinant of the number of strikes in a given year. 
 Maximum likelihood estimates of the Poisson regression parameters are given below. 

  ln λ  =  1.90854  +  5.16577x 
∧

                (.1299)        (2.51307) 
The log-likelihood function at the maximum likelihood estimates is -28.993171.  For the model with only a 
constant term, the value is -31.19884.  The t statistic for testing the hypothesis that β equals zero is 
5.16577/2.51307 = 2.056.  This is a bit larger than the critical value of 1.96, though our use of the asymptotic 
distribution for a sample of 10 observations might be a bit optimistic.  The chi squared value for the likelihood 
ratio test is 4.411, which is larger than the 95% critical value of 3.84, so the hypothesis that β equals zero is 
rejected on the basis of these two tests.   
 
9.  Asymptotics. Explore whether averaging individual marginal effects gives the same answer as 
computing the marginal effect at the mean. 
 In general, the conditional mean function in the discrete choice models is of the form E[y|x]  = 
g(x,β) where g is a smooth and continuous function of both x and the parameters, β.  Thus, the marginal 
effect is ∂g(x,β)/∂x = h(x,β) which we have to assume is a set of also smooth and continuous functions in x 
and β.  The question then is whether evaluating h(x,β) at the mean of the xs gives the same answer as 
averaging the sample values of h(x,β) each evaluated at the individual data points.  The answer certainly is 
no in a finite sample since h(x,β) is nonlinear.  Do they converge to the same thing?  Suppose we assume 
that the data are well behaved so that the sample mean of the xs, x  converges to a true mean vector, µ.  
Then, the question is whether h( x ,β) converges to the same thing as (1/n)Σh(xi,β).  Since h(xi,β) is 
continuous and smooth, h( x ,β) converges to h(µ,β) by the Slutsky theorem.  Write each term in the 
average marginal effect as a linear Taylor series, and use the mean value theorem, so h(xi,β) = h(µ,β) + 
H(µ*,β)(xi-µ) where µ* is a point somewhere between x and µ and H is the second derivatives matrix.  
Presumably, H(µ*,β) is a matrix of constants.  When we average h(xi,β), the first term is constant and the 
second term converges to zero by our assumption of well behaved data.  So, at least in large samples, the 
answer is yes. 
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10.  Prove (21-28).  We’ll do this more generally for any model F(α).  Since the ‘model’ contains only a 
constant, the log likelihood is logL = Σ0log[1-F(α)] + Σ1logF(α) = n0log[1-F(α)]+n1logF(α) . The 
likelihood equation is ∂logL/∂α = Σ0[-f(α)/[1-F(α)] + Σ1f(α)/F(α) = 0 where f(α) is the density (derivative 
of F(α) so that at the solution, n0f(α)/[1-F(α)] = n1f(α)/F(α). Divide both sides of this equation by f(α) and 
solve it for F(α) = n1/(n0+n1), as might be expected.  You can then insert this solution for F(α) back into 
the log likelihood, and (21-28) follows immediately. 
 
11.  In the panel data models estimated in Example 21.5.1, neither the logit nor the probit model provides a 
framework for applying a Hausman test to determine whether fixed or random effects is preferred.  
Explain.  (Hint: Unlike our application in the linear model, the incidental parameters problem persists 
here.)  Look at the two cases.  Neither case has an estimator which is consistent in both cases.  In both 
cases, the unconditional fixed effects effects estimator is inconsistent, so the rest of the analysis falls apart.  
This is the incidental parameters problem at work.  Note that the fixed effects estimator is inconsistent 
because in both models, the estimator of the constant terms is a function of 1/T.  Certainly in both cases, if 
the fixed effects model is appropriate, then the random effects estimator is inconsistent, whereas if the 
random effects model is appropriate, the maximum likelihood random effects estimator is both consistent 
and efficient.  Thus, in this instance, the random effects satisfies the requirements of the test.  In fact, there 
does exist a consistent estimator for the logit model with fixed effects - see the text.  However, this 
estimator must be based on a restricted sample observations with the sum of the ys equal to zero or T muust 
be discarded, so the mechanics of the Hausman test are problematic.  This does not fall into the template of 
computations for the Hausman test. 
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Chapter 22 

Limited Dependent Variable and 
Duration Models 
 
 
1.  The following 20 observations are drawn from a censored normal distribution: 
3.8396, 7.2040, .00000, .00000, 4.4132, 8.0230, 5.7971, 7.0828, .00000, .80260, 13.0670, 4.3211, .00000, 
8.6801, 5.4571, .00000, 8.1021, .00000, 1.2526, 5.6015.  The applicable model is   
    yi

*  =  µ  +  εi 
    yi  =  yi

* if µ + εi > 0,  0  otherwise. 
     εi  ~  N[0,σ2]. 
All exercises in this section are based on the preceding. 
 The OLS estimator of µ in the context of this tobit model is simply the sample mean.  Compute the 
mean of all 20 observations.  Would you expect this estimator to over- or underestimate µ?   If we consider 
only the nonzero observations, the truncated regression model applies.  The sample mean of the nonlimit 
observations is the least squares estimator in this context. Compute it, then comment on whether this should be 
an overestimate or an underestimate of the true mean. 
 The sample mean of all 20 observations is 4.18222.  For the 14 nonzero observations, the mean is 
(20/14)4.18222 = 5.9746.  Both of these should overestimate µ.  In the first case, all negative values have been 
transformed to zeroes.  Therefore,  if we had had the original data, our estimator would include the negative 
values as well as the positive ones.  Since we have only the zeroes, instead, our estimator includes, for every 
negative y* a number which is larger than the true y*.  This will inflate the estimate.  Likewise, for the 
truncated mean, whereas a complete sample might include some negative values, the observed one will not.  
Once again, this will serve to inflate the estimator of the mean.    
 
2.    We now consider the tobit model that applies to the full data set. 
(a)  Formulate the log-likelihood for this very simple tobit model. 
(b)  Reformulate the log-likelihood in terms of θ = 1/σ and γ = µ/σ.  Then, derive the necessary conditions for 
maximizing the log-likelihood with respect to θ and γ. 
(c)  Discuss how you would obtain the values of θ and γ to solve the problem in part (b). 
(d)  Obtain the maximum likelihood estimators of µ and σ. 
  The log-likelihood for the Tobit model is given in (22-13).  With only a constant term, this is 
   lnL  =  (-n1/2)[ln(2π) + lnσ2] - (1/(2σ2))Σ1(yi - µ)2 + Σ0lnΦ(-µ/σ) 
In terms of γ and θ, this is lnL  =  (-n1/2)[ln(2π) - lnθ2] - (1/2)Σ1(θyi - γ)2 + Σ0lnΦ(-γ) 
          =  (-n1/2)ln(2π) + n1lnθ - (1/2)Σ1(θyi - γ)2 + Σ0lnΦ(-γ). 
The necessary conditions for maximizing this with respect to γ and θ are 
  ∂lnL/∂γ  =  Σ1(θyi - γ)  -  Σ0φ(-γ)/Φ(-γ)  =  θΣ1yi - n1γ  -  n0[φ(-γ)/Φ(γ)]  =  0 
  ∂lnL/∂θ  =  n1/θ - Σ1yi(θyi - γ)  =  n1/θ - θΣ1yi

2 + γΣ1yi  =  0. 
There are a few different ways one might solve these two equations.  A grid search over the values of γ and θ 
is a possibility.  A direct maximum likelihood estimator for the tobit model is the simpler choice if one is 
available.  The model with only a constant term is otherwise the same as the usual model.  Using the data 

above, the tobit maximum likelihood estimates are µ =  3.2731, σ   =  5.0303.   
∧ ∧
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3.  Using only the nonlimit observations, repeat the Exercise 2 in the context of the truncated regression 
model. Estimate µ and σ by using the method of moments estimator outlined in Example 20.4.  Compare your 
results to those in the previous problems. 
 The log-likelihood for the truncated regression is given in (20-9).  With only a constant term, 
  lnL  =  (-n/2)[ln(2π) + lnσ2] - (1/(2σ2))Σ1(yi - µ)2 - ΣilnΦ(µ/σ) 
Once again transforming to γ and σ, this is 
  lnL  =  -(n/2)ln(2π) + nlnθ - (1/2)Σi(θyi - γ)2 - nlnΦ(γ). 
The necessary conditions for maximizing this are 
  ∂lnL/∂γ  =  Σi(θyi - γ) - nφ(γ)/Φ(γ)  =  0 
  ∂lnL/∂θ  =  n/θ - Σiyi(θyi - γ) 
The first of the two equations can be y =  γ/θ + λ/θ,  where λ =  φ(γ)/Φ(γ).  Now, reverting back to µ and σ, 
this is 
y =  µ  +  σλ which is (20-5).  The second equation can be manipulated to produce Σyi

2/n - µ y  =  σ2.  Once 
again, trial and error could be used to find a solution.  As before, estimating the model as a truncated 

regression with only a constant term will also produce a solution.  The solution by this method is µ =  3.3439, 

=  5.6368.    

∧

σ
∧

 With the data of the first problem, we would have the following: Estimated Prob[y* > 0]  =  14/20  =  
.7.  This is an estimate of Φ(µ/σ), so we would have µ/σ = Φ-1(.7)  =  .525  or  µ  =  .525σ.  Now, we can use 
the relationship 
E[y|y > 0]  =  µ  +  σφ(µ/σ)/Φ(µ/σ)   =  µ  +  σλ.  Since µ/σ is now known, we have  λ  =  φ(.525) / Φ(.525)  =  

.496 so a second equation is 5.9746  =  µ  +  .496σ.  The joint solution is =  3.0697, σ =  5.8470.  The three 
solutions are surprisingly close.   

µ
∧ ∧

 
4.   Continuing to use the data in Exercise 1, consider, once again, only the nonzero observations.  Suppose 
that the sampling mechanism is as follows:  y* and another normally distributed random variable, z, have 
population correlation 0.7.  The two variables, y* and z are sampled jointly.  When z is greater than zero, y is 
reported.  When z is less than zero, both z and y* are discarded.  Exactly 35 draws were required in order to 
obtain the preceding sample.  Estimate µ and σ.  [Hint:  Use Theorem 20.4.] 
   Using Theorem 21.4, we have  1 - Φ(αz)  =  14/35  =  .4, αz  =  Φ-1(.6)  =  .253, λ(αz) = .9659,   
δ(αz)  =  .6886.  The two moment equations are based on the mean and variance of y in the observed data, 
5.9746 and 9.869, respectively.  The equations would be 5.9746  =  µ  +  σ(.7)(.9659) and 9.869   =  σ2(1 - 

.72(.6886)).  The joint solution is =  3.3651, σ =  3.8594. µ
∧ ∧

 
5.    Derive the marginal effects for the tobit model with heteroscedasticity that is described in Section 
22.3.4.a. 
 The conditional mean function is E[y|x] = Φ(β′xi/σi)β′x + σiΦ(β′xi/σi) using the equation before 
(22-12).  Suppose that σi = σexp(α′xi) for the same vector xi.  (We’ll relax that assumption shortly.)  Now, 
differentiate this expression with respect to x.  We differentiate the two parts, first with respect to β′x then 
with respect to σi. 
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After collecting the terms, we obtain ∂E[yi|xi]/∂xi  =  Φ(ai)β + σiφ(ai)α where ai = β′xi/σi.  Thus, the 
marginal effect has two parts. one for β and one for α.  Now, if a variable appears in σi but not in xi, then 
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only the second term appears while if a variable appears only in xi and not in σi, then only the first term 
appears in the marginal effect. 
 
6.     Prove that the Hessian for the tobit model in (22-14) is negative definite after Olsen’s transformation 
is applied to the parameters. 
 The transformed log likelihood function is 
 
logL = Σy > 0 (-1/2)[log2π  - logθ2 + (θy - x′γ)2]  +  Σy=0 log[1-Φ(x′γ)] 
 
It will be convenient to define ai = xi′γ.  Note also that 1 - Φ(ai) = Φ(-ai).  The first derivatives and Hessian 
in the transformed parameters are 
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The second derivatives can be collected in a matrix format: 

0 0

0 0log ' '
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i i
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         ∂
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x x x x
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where δi is the last scalar term in ∂2logL/∂δ∂γ′.  By Theorem 22.2 (see (22-4)), we know that δi is negative. 
Thus, all three parts of the matrix are negative semidefinite. Assuming the data are not linearly dependent 
and there are more than K observations, the Hessian will have full rank and be negative definite. 
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Appendix A  
 

Matrix Algebra 
 

1.  For the matrices  A =  and B =  compute AB, A′B′, and BA. 
1 3 3
2 4 1







2 4
1 5
6 2

















AB = ,  BA = ,  A′B′  =  (BA)′  = .  
23 25
14 30







10 22 10
11 23 8
10 26 20

















10 11 10
22 23 26
10 8 20

















 
2.  Prove that tr(AB) = tr(BA) where A and B are any two matrices that are conformable for both 
multiplications.  They need not be square. 
 The ith diagonal element of AB is .  Summing over i produces tr(AB) = .  

The jth diagonal element of BA is .  Summing over i produces tr(BA) = .   

aijb jij∑ aijb jiii ∑∑

ijb ji aijj∑ b jiaji ∑∑

3.   Prove that tr(A′A) = .   aijji
2∑∑

 The jth diagonal element of A′A is the inner product of the jth column of A, or .   Summing 

over j produces tr(A′A)  =  .   

aiji
2∑

aijij aijji
2 2∑∑ = ∑∑

 
4.  Expand the matrix product X = {[AB + (CD)′][(EF)-1 + GH]}′.  Assume that all matrices are square and E 
and F are nonsingular. 
 In parts, (CD)′ = D′C′ and (EF)-1 = F-1E-1.  Then, the product is  
 {[AB + (CD)′][(EF)-1 + GH]}′   =  (ABF-1E-1 + ABGH + D′C′F-1E-1 + D′C′GH)′ 
     =  (E-1)′(F-1)′B′A′ + H′G′B′A′ + (E-1)′(F-1)′CD + H′G′CD.   
 
5.  Prove for that for K×1 column vectors, xi i = 1,...,n, and some nonzero vector, a,  

( )( ) ( )( )x a x a X'M X x a x a0
ii

n
i n− − = + − −

=∑ 1
' ' . 

 Write xi - a as [( - xi x ) + ( x  - a)].  Then, the sum is 

i

n

=∑ 1
[( xi - x ) + ( x  - a)] [(xi - x ) + ( x  - a)]′  =   

  ( x
i

n

=∑ 1 i - x )( xi - x )′ + (
i

n

=∑ 1
x  - a) ( x  - a)′ 

    +∑ ( x
i

n

=1 i - x )( x  - a)′ +  (
i

n

=∑ 1
x  - a) (xi - x )′ 

Since ( x  - a) is a vector of constants, it may be moved out of the summations. Thus, the fourth term is  

( x  - a)  (x
i

n

=∑ 1 i - x )′  =  0.  The third term is likewise.  The first term is X′M0X by the definition while 

the second is n( x  - a) ( x  - a)′.    
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6.  Let A be any square matrix whose columns are [a1,a2,...,aM] and let B be any rearrangement of the columns 
of the M×M identity matrix.  What operation is performed by the multiplication AB?  What about BA? 
 B is called a permutation matrix.  Each column of B, say, bi, is a column of an identity matrix.  The 
jth column of the matrix product AB is A bi which is the jth column of A.  Therefore, post multiplication of A 
by B simply rearranges (permutes) the columns of A (hence the name).  Each row of the product BA is one of 
the rows of A, so the product BA is a rearrangement of the rows of A.  Of course, A need not be square for us 
to permute its rows or columns.  If not, the applicable permutation matrix will be of different orders for the 
rows and columns.     

7.  Consider the 3×3 case of the matrix B in Exercise 6.  For example,    B   =    Compute B
0 0 1
0 1 0
1 0 0

















2 and 

B3.  Repeat for a 4×4 matrix.  Can you generalize your finding? 

    B2  = 


 B
0 0 1
1 0 0
0 1 0













3  =  . 
1 0 0
0 1 0
0 0 1

















Since each power of B is a rearrangement of I, some power of B will equal I.  If n is this power, we also find, 
therefore, that Bn-1 = B-1.  This will hold generally.     
 

8.  Calculate |A|, tr(A) and A-1 for A = . 
1 4 7
3 2 5
5 2 8

















  |A| =  1(2)(8)+4(5)(5)+3(2)(7)-5(2)(7)-1(5)(2)-3(4)(8) = -18, 
  tr(A) =  1 + 2 + 8 = 11 

 A-1 = −
−
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1
18

2 5
2 8

4 7
2 8

3 5
5 8

1 7
5 8

1 7
3 5

3 2
5 2

1 4
5 2

1 4
3 2

det det det

det det

det det det

4 7
2 5

  det

 

 = .     
− −
− −

−

















6 18 18 18 6 18
1 18 27 18 16 18

4 18 18 18 10 18

/ / /
/ / /

/ / /

 

9.   Obtain the Cholesky decomposition of the matrix  A  =  
25 7
7 13






.

 Recall that the Cholesky decomposition of a matrix, A, is the matrix product LU = A where L is a 

lower triangular matrix and U = L′.  Write the decomposition as  =    By 

direct multiplication, 25 =   so  λ

25 7
7 13







.

λ
λ λ

11

21 22

0







.

2

λ λ
λ

11 21

220








.

λ λ21 22
2+λ11

2
11 = 5.  Then, λ11λ21= 7, so λ21 = 7/5 = 1.4.  Finally,  = 13, so 

λ22 = 3.322.     
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10.  A symmetric positive definite matrix, A, can also be written as A = UL, where U is an upper triangular 
matrix and L = U′.  This is not the Cholesky decomposition, however. Obtain this decomposition of the matrix 
in Exercise 9. 

 Using the same logic as in the previous problem,   =    Working 

from the bottom up, 

25 7
7 13






.

µ µ
µ

11 12

220








.

µ
µ µ

11

12 22

0







.

µ 22 13=  = 3.606.  Then, 7 = µ12µ22 so µ12 = 7/ 13  = 1.941.  Finally, 25 =  

 so  = 25 - 49/13 = 21.23, or µµ µ11
2

12
2+ µ11

2
11 = 4.61.    

 
11.  What operation is performed by postmultiplying a matrix by a diagonal matrix?  What about 
premultiplication? 
 The columns are multiplied by the corresponding diagonal element.  Premultiplication multiplies the 
rows by the corresponding diagonal element.     
 
12.  Are the following quadratic forms positive for all values of x?  
 (a)   y =  x x x x1

2
1 2 2

228 11− + ( ),

 

 (b)   y = 5 7  4 6 81
2

2
2

3
2

1 2 1 3 2 3x x x x x x x x x+ + + + + ?

 The first may be written [ ] .  The determinant of the matrix is 121 - 196 

= -75, so it is not positive definite.  Thus, the first quadratic form need not be positive.  The second uses the 

matrix .  There are several ways to check the definiteness of a matrix.  One way is to check the 

signs of the principal minors, which must be positive.  The first two are 5 and 5(1)-2(2)=1, but the third, the 
determinant, is -34.  Therefore, the matrix is not positive definite.  Its three characteristic roots are 11.1, 2.9, 
and -1. It follows, therefore, that there are values of , , and for which the quadratic form is negative.    

x x
x
x1 2

1 14
14 11

1
2

 
−

−






















x1 x2

5 2 3
2 1 4
3 4 7

















x3

 
13.   Prove that tr(A⊗B) = tr(A)tr(B). 
  The jth diagonal block of the product is ajjB.  Its ith diagonal element is ajjbii.  If we sum in the jth 
block, we obtain  = .  Summing down the diagonal blocks gives the trace, = 

tr(A)tr(B).  

a bjj iii∑ a bjj iii∑ a bjj iiij ∑∑

 

14.  A matrix, A, is nilpotent if = 0.  Prove that a necessary and sufficient condition for a symmetric 

matrix to be nilpotent is that all of its characteristic roots be less than one in absolute value.  (For an 
application, see Section 17.3.3.) 

lim
k

k

→∞
A

 Use the spectral decomposition to write A as CΛC′ where Λ is the diagonal matrix of characteristic 
roots.  Then, the Kth power of A is CΛKC′.  Sufficiency is obvious. Also, since if some λ is greater than one, 
ΛK must explode, the condition is necessary as well.   
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15.  Compute the characteristic roots of  A =  . 
2 4 3
4 8 6
3 6 5

















 The roots are determined by |A - I| = 0.  For the matrix above, this is λ
 |A - λI|  = (2-λ)(8-λ)(5-λ) + 72 + 72 - 9(8-λ) - 36(2-λ) - 16(5-λ) 
                    =  -λ3 + 15λ2 - 5λ  =  -λ (λ2- 15λ + 5) = 0. 
One solution is obviously zero.  (This might have been apparent.  The second column of the matrix is twice 
the first, so it has rank no more than two, and therefore no more than two nonzero roots.)  The other two roots 
are (  = .341 and 4.659.   )

)

) i j

b

15 205 2± /

 
16.  Suppose A = A(z) where z is a scalar.  What is ∂x′Ax/∂z?  Now, suppose each element of x is also a 
function of z.   Once again, what is ∂x′Ax/∂z? 
 The quadratic form is ∑ , so  x x ai j ijji ∑
              ∂x′A(z)x/∂z = = x′(∂A(z)/∂z)x where ∂A(z)/∂z is a matrix of partial derivatives. x x a zi j ijji

( /∂ ∂∑∑
Now, if each element of x is also a function of z, then, 

∂x′Ax/∂z = +  +  x x a zi j ijji
( /∂ ∂∑∑ ( / )∂ ∂x z x ai jji ∑∑ j x x z ai j iji ( / )∂ ∂∑∑

          = x′(∂A(z)/∂z)x +  (∂x(z)/∂z)′A(z)x(z) + x(z)′A(z)(∂x(z)/∂z) 
If A is symmetric, this simplifies a bit to x′(∂A(z)/∂z)x + 2(∂x(z)/∂z)′A(z)x(z).   
 
17.  Show that the solutions to the determinantal equations   |B - λA| = 0 and |A-1B - λI| = 0   are the same.  
How do the solutions to this equation relate to those of the equation |B-1A - µI| = 0?  (For an application of the 
first of these equations, see Section 16.5.2d.) 
 Since A is assumed to be nonsingular, we may write 
   B - λA  =  A(A B - λI).  Then,  |B - λA|  =  |A|×|A−1 -1B - λI|. 
 The determinant of A is nonzero if A is nonsingular, so the solutions to the two determinantal equations must 
be the same. B-1A is the inverse of A-1B, so its characteristic roots must be the reciprocals of those of A-1B.  
There might seem to be a problem here since  these two matrices need not be symmetric, so the roots could be 
complex.  But, for the application noted, both A and B are symmetric and positive definite.  As such, it can be 
shown (see Section 16.5.2d) that the solution is the same as that of a third determinantal equation involving a 
symmetric matrix.   
 
18.  Using the matrix A in Exercise 9, find the vector x that minimizes y = x′Ax + 2x1 + 3x2 - 10.  What is the 
value of y at the minimum?  Now, minimize y subject to the constraint x1 + x2 = 1.  Compare the two solutions. 
 The solution which minimizes y = x′Ax + b′x + d will satisfy ∂y∂x = 2Ax + b = 0.  For this problem, 

A = , b = , and A
25 7
7 13











2
3











-1 = , so the solution is x
13 276 7 276

7 276 25 276
/ /
/ /

−
−









 1 =-5/552  

= -.0090597 and x2 = -61/552 = -.110507. 
 The constrained maximization problem may be set up as a Lagrangean,  
L* = x′Ax + b′x + d + (c′x - 1) where c = [1,1]′.  The necessary conditions for the solution are λ
   ∂L*/∂x = 2Ax + b + λc  = 0  
   ∂L*/∂λ = c′x - 1 = 0, 

or,   . 
2

0 1
A c
c

x -
'



















 =









   

λ
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Inserting A, b, and c produces the solution   The solution to the three equations 

is obtained by premultiplying the vector on the right by the inverse of the matrix on the left.  The solutions are 
0.27083, 0.72917, and, -25.75.  The function value at the constrained solution is 4.240, which is larger than 
the unconstrained value of -10.00787.   

50 14 1
14 26 1
1 1 0

2
3

1

1

2

































−
−

















  =  
x
x
λ

.

 
19.   What is the Jacobian for the following transformations?  (A note for aspiring technical writers, about a 
common error in the literature.  A Jacobian is a determinant.  The term "Jacobian determinant" has superfluous 
redundancy.) y1  = x1 /x2 ,  
  lny2  = ln x1- lnx2 + lnx3, 
and  y3 = x1x2x3. 
 Let capital letters denote logarithms.  Then, the three transformations can be written as 
  Y1 = X1 - X2 
  Y2 = X1 - X2 + X3 
  Y3  = X1 + X2 +X3. 

This linear transformation is Y = .  The inverse transformation is  
1 1 0
1 1 1
1 1 1

−
−
















 X  =   JX

X =  =  .  In terms of the original variables, then, x
1 1 2 1 2
0 1 2 1 2
1 1 0

−
−

















/ /
/ /  Y J Y−1

1 = y1(y2/y3)1/2 , x2 = (y3/y2)1/2, 

and 
x3 = y1y2.  The matrix of partial derivatives can be obtained directly, but an algebraic shortcut will prove useful 
for obtaining the Jacobian.  Note first that  ∂xi/∂yj = (xi/yj)(∂logxi/∂logyj).  Therefore, the elements of the partial 
derivatives of the inverse transformations are obtained by multiplying the ith row by xi, where we will 
substitute the expression for xi in terms of the ys, then multiplying the jth column by (1/yj).  Thus, the result of 
Exercise 11 will be useful here.  The matrix of partial derivatives will be 

 =   
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

x y x y x y
x y x y x y
x y x y x y

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

/ / /
/ / /
/ / /

















x
x

x

1

2

3

0 0
0 0
0 0

















1 1 2 1 2
0 1 2 1 2
1 1 0

−
−

















/ /
/ /

1 0 0
0 1 0
0 0 1

1

2

3

/
/

/
.

y
y

y

















The determinant of the product matrix is the product of the three determinants.  The determinant of the center 
matrix is -1/2.  The determinants of the diagonal matrices are the products of the diagonal elements. Therefore, 
the Jacobian is J =  abs(|∂x/∂y′|)= ½(x1x2x3)/(y1y2y3) = 2(y1/y2) (after making the substitutions for xi).    
 
20.  Prove that exchanging two columns of a square matrix reverses the sign of its determinant.  (Hint: use a 
permutation matrix. See Exercise 6.) 
 Exchanging the first two columns of a matrix is equivalent to postmultiplying it by a permutation 
matrix B = [e2,e1,e3,e4,...] where ei is the ith column of an identity matrix.  Thus, the determinant of the matrix 
is |AB| = |A| |B|.  The question turns on the determinant of B. Assume that A and B have n columns. To obtain 
the determinant of B, merely expand it along the first row. The only nonzero term in the determinant is 
 (-1)|In-1 | = -1, where In-1 is the (n-1) (n-1) identity matrix.  This completes the proof.    ×
  
21.   Suppose x=x(z) where z is a scalar.  What is ∂[(x′Ax)/(x′Bx)]/z? 
 The required derivatives are given in Exercise 16.  Let g = ∂x/∂z and let the numerator and 
denominator be a and b, respectively. Then, 
 ∂(a/b)/∂ z    =  [b(∂a/∂z) - a(∂b/∂z)]/b2 
        =  [x′Bx(2x′Ag) - x′Ax(2x′Bg)] / (x′Bx) 2=  2[x′Ax/x′Bx][x′Ag/x′Ax - x′Bg/x′Bx].      
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22.  Suppose y is an n×1 vector and X is an n×K matrix.  The projection of y into the column space of X is 

defined in the text after equation (2-55), = Xb.  Now, consider the projection of yy
∧

* = cy into the column 
space of X* = XP where c is a scalar and P is a nonsingular K K matrix.  Find the projection of y× * into the 
column space of X*.  Prove that the cosine of the angle between y* and its projection into the column space of 
X* is the same as that between y and its projection into the column space of X.  How do you interpret this 
result? 
 The projection of y* into the column space of X* is X*b* where b* is the solution to the set of 
equations X*′y*  =  X*′X*b*  or  P′X′(cy)  =  P′X′XPb*.  Since P is nonsingular, P′ has an inverse.  
Premultiplying the equation by (P′)-1, we have cX′y  =  X′X(Pb*)  or  X′y  =  X′X[(1/c)Pb*].  Therefore, in 
terms of the original y and X, we see that b  =  (1/c)Pb*  which implies b*  =  cP-1 b.  The projection is X*b*  =  
(XP)(cP-1b)  =  cXb.  We conclude, therefore, that the projection of y* into the column space of X* is a 
multiple c of the projection of y into the space of X.  This makes some sense, since, if P is a nonsingular 
matrix, the column space of X* is exactly the same as the same as that of X.  The cosine of the angle between 
y* and its projection is that between cy and cXb.  Of course, this is the same as that between y and Xb since 
the length of the two vectors is unrelated to the cosine of the angle between them.  Thus,  
cosθ = (cy) ′(cXb))/(||cy||×||cXb||)  =  (y′Xb))/(||y||×||Xb||).    
 

23.   For the matrix X′  = , compute P  =  X(X ′X)
1 1 1 1
4 2 3 5− −











-1X′ and M = (I - P).  Verify that MP = 0.  

Let   Q  =   (Hint:  Show that M and P are idempotent.) 
1 3
2 8











(a)  Compute the P and M based on XQ instead of X. 
(b)  What are the characteristic roots of M and P? 

 First,  X′X  =  , (X ′X)
4 0
0 54











-1 =  ,  
1 4 0

0 1 54
/

/










X(X ′X)-1X ′ =   =  

1 4
1 2
1 3
1 5

−

−



















1 4 0
0 1 54
/

/










1 1 1 1
4 2 3 5− −











1
108

59 11 51 13
11 35 15 47
51 15 45 3
13 47 3 77

−

−
− −



















  =  P 

 M  =  I - P  = 1
108

49 11 51 13
11 73 15 47
51 15 63 3

13 47 3 31

− −
− −
− −

−



















−
 

 (a)  There is no need to recompute the matrices M and P for XQ, they are the same.  Proof:  The 
counterpart to P is (XQ)[(XQ) ′(XQ)]-1(XQ) ′ = XQ[Q ′X ′XQ]-1Q ′X ′ =  
XQQ-1(X ′X)-1(Q ′)-1Q ′X ′ = X(X′X)-1X ′.  The M matrix would be the same as well.  This is an application 
of the result found in the previous exercise.  The P matrix is the projection matrix, and, as we found, the 
projection into the space of X is the same as the projection into the space of XQ. 
 (b)  Since M and P are idempotent, their characteristic roots must all be either 0 or 1.  The trace of 
the matrix equals the sum of the roots, which tells how many are 1 and 0.  For the matrices above, the traces of 
both M and P are 2, so each has 2 unit roots and 2 zero roots.   
 
24.  Suppose that A is an n×n matrix of the form A = (1-ρI) + ρii′, where i is a column of 1s and 0 < ρ < 1.  
Write out the format of A explicitly for n = 4.  Find all of the characteristic roots and vectors of A.  (Hint: 
There are only two distinct characteristic roots, which occur with multiplicity 1 and n-1.  Every c of a certain 
type is a characteristic vector of A.)  For an application which uses a matrix of this type, see Section 14.5 on 
the random effects model. 
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 For n = 4, A =  .  There are several ways to analyze this matrix.  Here is a simple 

shortcut. The characteristic roots and vectors satisfy [(1-ρ)I + ρii′]c  =  λc.  Multiply this out to obtain 

1
1

1
1

ρ ρ ρ
ρ ρ
ρ ρ ρ
ρ ρ ρ



















ρ

(1-ρ)c + ρii′c = λc or ρii′c = [λ- (1-ρ)]c.  Let µ= λ - (1-ρ), so ρii′c=µc.  We need only find the characteristic 
roots of ρii′,µ.  The  characteristic roots of the original matrix are just λ = µ + (1-ρ).   Now, ρii′ is a matrix 
with rank one, since every column is identical.  Therefore, n-1 of the µs are zero.  Thus, the original matrix has 
n-1 roots equal to 0 + (1-ρ) = (1 -ρ).  We can find the remaining root by noting that the sum of the roots of ρii′ 
equals the trace of ρii′.  Since ρii′ has only one nonzero root, that root is the trace, which is nρ.  Thus, the 
remaining root of the original matrix is (1 - ρ+ nρ).  The characteristic vectors satisfy the equation  ρii′c  =  µc.  
For the nonzero root, we have ρii′c  =  nρc.  Divide by nρ to obtain  i(1/n)i′c  =  c.  This equation states that 
for each element in the vector, ci  =  (1/n) .   This implies that every element in the characteristic vector 

corresponding to the root (1-ρ+nρ) is the same, or c is a multiple of a column of ones.  In particular, so that it 
will have unit length, the vector is

cii∑

( /1 )n i.  For the remaining zero roots, the characteristic vectors must 
satisfy ρi(i′c)  =  0c = 0.  If the characteristic vector is not to be a column of zeroes, the only way to make this 
an equality is to require i′c to be zero.  Therefore, for the remaining n-1 characteristic vectors, we may use any 
set of orthogonal vectors whose elements sum to zero and whose inner products are one.  There are an infinite 
number of such vectors.  For example, let D be any arbitrary set of n-1 vectors containing n elements.  
Transform all columns of D into deviations from their own column means.  Thus, we let F  =  M0D where M0 
is defined in Section 2.3.6.  Now, let C  =  F(F′F)-2.  C is a linear combination of the columns of F, so its 
columns sum to zero.  By multiplying it out and using the results of Section 2.7.10, you will find that C′C = I, 
so the columns are orthogonal and have unit length.   
 
25.  Find the inverse of the matrix in Exercise 24. [Hint:  Use (2-66).] 
 Using the hint, the inverse is 

 ( ) ( )[( ) ] [( ) ] [ ' ][( ) ]
'[( ) ]

{ [ / ( )] '1 1 1
1 1

1
1

11
1 1

1
−

− −

+ − −
− +−

− −

−
ρ

ρ ρ ρ

ρ ρ ρ ρ
ρ ρ ρI I ii I

i I i
I i  -     =    -  n }i

'

 

 
26.  Prove that every matrix in the sequence of matrices Hi+1  =  Hi  +  didi′, where H0 = I, is positive definite.  
For an application,  see Section 5.5.  For an extension, prove that every matrix in the sequence of matrices 
defined in (5-22) is positive definite if H0 = I. 
 By repeated substitution, we find Hi+1  =  I + .  A quadratic form in Hd dj jj

i '
=∑ 1 i+1 is, therefore 

  x′Hi+1x =  x′x  +    = x′x  +   (x d )(d x)' j jj
i

=∑ 1 (x d )2' jj
i

=∑ 1

This is obviously positive for all x.  A simple way to establish this for the matrix in (5-22) is to note that in 
spite of its complexity, it is of the form  Hi+1  =  Hi  +  didi′  +  fifi′.  If this starts with a positive definite matrix, 
such as I, then the identical argument establishes its positive definiteness.   
 

27.  What is the inverse matrix of   P  =  ?  What are the characteristic roots of P? 
cos( ) sin( )
sin( ) cos( )

x x
x x−











 The determinant of P is cos2(x) + sin2(x) = 1, so the inverse just reverses the signs of the two off 
diagonal elements. The two roots are the solutions to |P-λI| = 0, which is cos2(x) + sin2(x) - 2λcos(x) + λ2 = 0.  
This simplifies because cos2(x) + sin2(x) = 1.  Using the quadratic formula, then, λ=  cos(x)  (cos± 2(x) - 1)1/2.  
But, cos2(x) - 1 = -sin2(x).  Therefore, the imaginary solutions to the resulting quadratic are λ1,λ2 = cos(x) ± 
isin(x).   
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28.  Derive the off diagonal block of A-1 in Section 2.6.4. 
 For the simple 2×2 case, F2 is derived explicitly in the text, as F2 = (x′M0x)-1  = 1 . 

Using (2-74), the off diagonal element is just F

2/ ( )x xii
−∑

2( ∑ )/n  =  xii
x x xii

/ ( )−∑ 2 .  To extend this to a matrix 

containing a constant and K-1 variables, use the result at the end of the section.  The off diagonal vector in A-1 
when there is a constant and K-1 other variables is -F2A21(A11)-1  =  [X′M0X]-1 x   .  In all cases, A11 is just n, 
so (A11)-1 is 1/n.   
 
29.  (This requires a computer.)  For the X′X matrix at the end of Section 6.4.1, 
 (a)  Compute the characteristic roots of X′X. 
 (b)  Compute the condition number of X′X.  (Do not forget to scale the columns of the matrix so that 
            the diagonal elements are 1.) 

 The matrix is   

15000 120 00 19 310 11179 99 770
120 00 1240 0 164 30 10359 87560
19 310 164 30 25 218 148 98 13122
11179 10359 148 98 94386 799 02
99 770 87560 13122 799 02 716 67

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .























Its characteristic roots are 2486, 72.96, 19.55, 2.027, and .007354.  To compute the condition number, we first 
extract D = diag(15,1240,25.218,943.86,716.67).  To scale the matrix, we compute V  =  D-2X′XD-2. 

The resulting matrix is . 

1 8798823 992845 939515 962265
879883 1 929119 957532 928828
992845 929119 1 965648 976079
939515 957532 965648 1 971503
962265 928828 976079 971503 1

. . . .
. . .
. . . .
. . . .
. . . .























.

The characteristic roots of this matrix are 4.801, .1389, .03716, .02183, and .0003527.  The square root of the 
largest divided by the smallest is 116.675.  These data are highly collinear by this measure    

 122 



  

Appendix B 
 

Probability and Distribution Theory 
 
1.  How many different 5 card poker hands can be dealt from a deck of 52 cards? 

 There are   = (52×51×51...×1)/[(5×4×3×2×1)(47×46×...×1)] = 2,598,960 possible hands.   
52
5







 
2.  Compute the probability of being dealt 4 of a kind in a poker hand. 
 There are 48(13) possible hands containing 4 of a kind and any of the remaining 48 cards.  Thus, 
given the answer to the previous problem, the probability of being dealt one of these hands is 48(13)/2598960 
=.00024, or less than one chance in 4000.   � 
 
3.  Suppose a lottery ticket costs $1 per play.  The game is played by drawing 6 numbers without replacement 
from the numbers 1 to 48. If you guess all six numbers, you win the prize.  Now, suppose that N = the number 
of tickets sold and P = the size of the prize.  N and P are related by 
     N  =  5  +  1.2P 
     P  =  1  +   .4N 
N and P are in millions.  What is the expected value of a ticket in this game? (Don't forget that you might have 
to share the prize with other winners.) 
 The size of the prize and number of tickets sold are jointly determined.  The solutions to the two 
equations are N = 11.92 million tickets and P = $5.77 million.  The number of possible combinations of 48 

numbers without replacement is = (48×47×46...×1)/[(6×5×4×3×2×1)(42×41×...×1)] = 12,271,512 so the 

probability of making the right choice is 1/12271512 = .000000081.  The expected number of winners is the 
expected value of a binomial random variable with N trials and this success probability, which is N times the 
probability, or 11.92/12.27 = .97, or roughly 1.  Thus, one would not expect to have to share the prize.  Now, 
the expected value of a ticket is  Prob[win](5.77 million - 1) + Prob[lose](-1) . -53 cents.    

48
6









 
4.  If x has a normal distribution with mean 1 and standard deviation 3, what are 
 (a)  Prob[|x| > 2]. 
 (b)  Prob[x > -1 | x < 1.5]. 
 Using the normal table, 
 (a)  Prob[|x| > 2]   = 1 - Prob[|x| < 2]  
                           = 1 - Prob[-2 < x < 2] 
     = 1 - Prob[(-2-1)/3 < z < (2-1)/3] 
    = 1 - [F(1/3) - F(-1)] = 1 - .6306 + .1587 = .5281 
 (b)  Prob[x > -1 | x < 1.5]   =  Prob[-1 < x < 1.5] / Prob[x < 1.5] 
        Prob[-1 < x < 1.5]  =  Prob[(-1-1)/3 < z < (1.5-1)/3)] 
          =  Prob[z < 1/6] - Prob[z < -2/3] 
          = .5662 - .2525 = .3137. 
The conditional probability is .3137/.5662 = .5540.    
 
5.  Approximately what is the probability that a random variable with chi-squared distribution with 264 
degrees of freedom is less than 297?  
 We use the approximation in (3-37), z = [2(297)]2 - [2(264) - 1]2  =  1.4155, so the probability is 
approximately .9215.  To six digits, the approximation is .921539 while the correct value is .921559.  
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6.  Chebychev Inequality  For the following two probability distributions, find the lower limit of the 
probability of the indicated event using the Chebychev inequality (3-18) and the exact probability using the 
appropriate table: 
 (a)  x ~ Normal[0,32], and -4 < x < 4. 
 (b)  x ~ chi-squared, 8 degrees of freedom, 0 < x < 16. 
 The inequality given in (3-18) states that Prob[|x - µ| < kσ] > 1 - 1/k2.  Note that the result is not 
informative if k is less than or equal to 1. 
 (a)  The range is 4/3 standard deviations, so the lower limit is 1 - (3/4)2 or 7/16 = .4375.  From the 
standard normal table, the actual probability is 1 - 2Prob[z < -4/3] = .8175. 
 (b)  The mean of the distribution is 8 and the standard deviation is 4.  The range is, therefore, µ ± 2σ.  
The lower limit according to the inequality is 1 - (1/2)2 = .75.  The actual probability is the cumulative 
chi-squared(8) at 16, which is a bit larger than .95. (The actual value is .9576.)    
 
7.  Given the following joint probability distribution, 
                  X 
          |  0      1     2 
        --+------------------ 
         0
   Y     1|  .21    .11   .19 

|  .05    .1    .03 

         2|  .08    .15   .08 
 (a)  Compute the following probabilities: Prob[Y < 2], Prob[Y < 2, X > 0], Prob[Y = 1, X > 1]. 
 (b)  Find the marginal distributions of X and Y. 
 (c)  Calculate E[X], E[Y], Var[X], Var[Y], Cov[X,Y], and E[X2Y 3]. 
 (d)  Calculate Cov[Y,X2]. 
 (e)  What are the conditional distributions of Y given X = 2 and of X given Y > 0? 
 (f)  Find E[Y|X] and Var[Y|X].  Obtain the two parts of the variance decomposition 
       Var[Y]  =  Ex[Var[Y|X]]  +  Varx[E[Y|X]]. 
 We first obtain the marginal probabilities.  For the joint distribution, these will be 
       X:  P(0) = .34, P(1) = .36, P(2) = .30 
 Y:  P(0) = .18, P(1) = .51, P(2)  = .31 
Then, 
 (a)  Prob[Y < 2] = .18 + .51 = .69. 
                      Prob[Y < 2, X > 0] = .1 + .03 + .11 + .19 = .43. 
        Prob[Y = 1, X $ 1] = .11 + .19 = .30. 
 (b)  They are shown above. 
 (c)  E[X]  = 0(.34) + 1(.36) + 2(.30) = .96 
       E[Y]  = 0(.18) + 1(.51) + 2(.31) = 1.13 
       E[X2]  = 02(.34) + 12(.36) + 22(.30)  = 1.56 
       E[Y2]  = 02(.18) +  12(.51) + 22(.31)  = 1.75 
       Var[X]   =  1.56 - .962  = .6384 
       Var[Y]   =  1.75 - 1.132 = .4731 
       E[XY]    =  1(1)(.11)+1(2)(.15)+2(1)(.19)+2(2)(.08)  =  1.11 
       Cov[X,Y]  = 1.11 - .96(1.13) = .0252 
       E[X2Y 3]  = .11 + 8(.15) + 4(.19) + 32(.08) = 4.63. 
 (d)  E[YX2]   = 1(12).11+1(22).19+2(12).15+2(22).08 = 1.81 
       Cov[Y,X2]  = 1.81 - 1.13(1.56) = .0472. 
 (e)  Prob[Y = 0 * X = 2]  = .03/.3 = .1 
        Prob[Y = 1 * X = 2]  = .19/.3 = .633 
       Prob[Y = 1 * X = 2]  = .08/.3 = .267 
       Prob[X = 0 * Y > 0]  = (.21 + .08)/(.51 + .31) = .3537 
       Prob[X = 1 * Y > 0]  = (.11 + .15)/(.51 + .31) = .3171 
       Prob[X = 2 * Y > 0]  = (.19 + .08)/(.51 + .31) = .3292. 
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 (f)  E[Y * X=0]   =  0(.05/.34)+1(.21/.34)+2(.08/.34) = 1.088 
      E[Y2 * X=0]  =  12(.21/.34)+22(.08/.34) = 1.559 
      Var[Y* X=0]    =  1.559 - 1.0882 = .3751 
      E[Y*X=1]   =  0(.1/.36)+1(.11/.36)+2(.15/.36) =  1.139 
      E[Y2*X=1]  =  12(.11/.36)+22(.15/.36) = 1.972 
      Var[Y*X=1]    =  1.972 - 1.1392 = .6749 
      E[Y*X=2]   =  0(.03/.30)+1(.19/.30)+2(.08/.30) =  1.167 
      E[Y2*X=2]  =  12(.19/.30)+22(.08/.30) =  1.700 
      Var[Y*X=2]    =  1.700 - 1.1672 = .6749 = .3381 
       E[Var[Y*X]]  = .34(.3751)+.36(.6749)+.30(.3381) = .4719 
      Var[E[Y*X]]  = .34(1.0882)+.36(1.1392)+.30(1.1672) - 1.132 = 1.2781 - 1.2769 = .0012 
      E[Var[Y*X]] + Var[E[Y*X]] = .4719 + .0012 = .4731 =  Var[Y].   
 
8.  Minimum mean squared error predictor.  For the joint distribution in Exercise 7, compute  
E[y - E[y|x]]2.  Now, find the a and b which minimize the function E[y - a - bx]2.  Given the solutions, verify 
that E[y - E[y|x]]2  <  E[y - a - bx]2.  The result is fundamental in least squares theory.  Verify that the a and b 
which you found satisfy (3-68) and (3-69). 
                                (x=0)               (x=1)              (x=2) 
E[y - E[y|x]]2 =  (y=0)          .05(0 - 1.088)2 + .10(0 - 1.139)2  + .03(0 - 1.167)2 
  (y=1)      + .21(1 - 1.088)2 + .11(1 - 1.139)2  + .19(1 - 1.167)2 
  (y=2)      + .08(2 - 1.088)2 + .15(2 - 1.139)2  + .08(2 - 1.167)2 
          =  .4719  =  E[Var[y|x]]. 
The necessary conditions for minimizing the function with respect to a and b are 
   ∂E[y - a - bx]2/∂a = 2E{[y - a - bx](-1)} = 0 
   ∂E[y - a - bx]2/∂b = 2E{[y - a - bx](-x)} = 0. 
First dividing by -2, then taking expectations produces 
   E[y] - a - bE[x]           = 0 
   E[xy] - aE[x] - bE[x2] = 0. 
Solve the first for a = E[y] - bE[x] and substitute this in the second to obtain 
    E[xy] - E[x](E[y] - bE[x]) - bE[x2] = 0 
or   (E[xy] - E[x]E[y])                            = b(E[x2] - (E[x])2) 
or         b  =  Cov[x,y] / Var[x]  =  -.0708 / .4731  =  -.150 
and        a  =  E[y] - bE[x] = 1.13 - (-.1497)(.96)    =  1.274. 
The linear function compared to the conditional mean produces 
            x=0      x=1     x=2 
   E[y|x]         1.088    1.139   1.167 
   a + bx          1.274    1.124    .974 
Now, repeating the calculation above using a + bx instead of E[y|x] produces 
           (x=0)             (x=1)            (x=2) 
E[y - a - bx]2 =   (y=0)        .05(0 - 1.274)2 + .10(0 - 1.124)2 + .03(0 - .974)2 
   (y=1)      + .21(1 - 1.274)2 + .11(1 - 1.124)2 + .19(1 - .974)2 
   (y=2)      + .08(2 - 1.274)2 + .15(2 - 1.124)2 + .08(2 - .974)2 
         =  .4950  >  .4719.   
 
9.  Suppose x has an exponential distribution,  f(x)  =  θe-θx,  x > 0.  (For an application, see Examples 3.5, 3.8, 
and 3.10.)  Find the mean, variance, skewness, and kurtosis of x.  (Hints:  The latter two are defined in 
Section 3.3.  The Gamma integral in Section 5.4.2b will be useful for finding the raw moments.) 

 In order to find the central moments, we will use the raw moments, E[x r ]  = .   These 

can be obtained by using the gamma integral.  Making the appropriate substitutions, we have 

θ θx e dxr x−
∞

∫   

0

    E[xr]  =  [θΓ(r+1)]/θr+1  =  r!/θ r. 
The first four moments are: E[x]   =  1/θ, E[x2]  =  2/θ2,  E[x3]  =  6/θ3, and E[x4]  =  24/θ4.  The mean is, thus, 
1/θ and the variance is 2/θ2 - (1/θ)2 = 1/θ2.  For the skewness and kurtosis coefficients, we have  
   E[x - 1/θ]3 = E[x3] - 3E[x2]/θ + 3E[x]/θ2 - 1/θ3 = 2/θ3. 
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The normalized skewness coefficient is 2.  The kurtosis coefficient is 
   E[x - 1/θ]4 = E[x4] - 4E[x3]/θ + 6E[x2]/θ2 - 4E[x]/θ3 + 1/θ4  =  9/θ4. 
The degree of excess is 6.    
 
10.  For the random variable in Exercise 9, what is the probability distribution of the random variable y = e-x?  
What is E[y]?  Prove that the distribution of this y is a special case of the beta distribution in (3-40). 
 If y = e-x, then x = -lny, so the Jacobian is |dx/dy| = 1/y.  The distribution of y is, therefore, 
   f(y)  =  θe-θ(-lny)(1/y)  =  (θyθ)/y = θyθ-1 for 0 < y < 1. 
This is in the form of (3-40) with y instead of x, c = 1, β = 1, and α= θ.    
 
11.  If the probability density of y is αy2(1-y)3 for y between 0 and 1, what is α?  What is the probability that y 
is between .25 and .75? 
 This is a beta distribution of the form in (3-40) with α = 3 and β = 4.  Therefore, the constant is 
Γ(3+4)/(Γ(3)Γ(4)) = 60.  The probability is  

 60y
.

.

25

75
∫ 2(1-y)3dy =  60 (y

.

.

25

75
∫ 2 - 3y3 + 3y4 - y5)dy  =  60(y3/3 - 3y4/4 + 3y5/5 - y6/6)| .

.   25
75

 = .79296.   

 
12.    Suppose x has the following discrete probability distribution:  X                1    2    3    4 
       Prob[X = x]    .1   .2   .4   .3. 
Find the exact mean and variance of X.  Now, suppose Y  =  1/X.  Find the exact mean and variance of Y.  Find 
the mean and variance of the linear and quadratic approximations to Y = f(X).  Are the mean and variance of 
the quadratic approximation closer to the true mean than those of the linear approximation? 
 We will require a number of moments of x, which we derive first: 
  E[x]   =  .1(1) + .2(2) + .4(3) + .3(4)  = 2.9 =  µ 
  E[x2]  =  .1(1) + .2(4) + .4(9) + .3(16)  = 9.3 
  Var[x] =  9.3 - 2.92  =  .89                =  σ2. 
For later use, we also obtain 
  E[x - µ]3  =  .1(1 - 2.9)3 + ...    =  -.432 
  E[x - µ]4  =  .1(1 - 2.9)4 + ...    =  1.8737. 
The approximation is y = 1/x.  The exact mean and variance are 
 E[y]   =   .1(1) + .2(1/2) + .4(1/3) + .3(1/4) = .40833 
 Var[y] =  .1(12) + .2(1/4) + .4(1/9) + .3(1/16) - .408332  =  .04645. 
The linear Taylor series approximation around µ is y ≈ 1/µ + (-1/µ2)(x - µ).  The mean of the linear 
approximation is 1/µ = .3448 while its variance is (1/µ4)Var[x-µ] = σ2/µ4 = .01258.  The quadratic 
approximation is  y  ≈   1/µ + (-1/µ2)(x - µ) + (1/2)(2/µ3)(x - µ)2 
              =  1/µ  -  (1/µ2)(x - µ) + (1/µ3)(x - µ)2. 
The mean of this approximation is  E[y] ≈ 1/µ + σ2/µ3 = .3813 while the variance is approximated by the 
variance of the right hand side, 
  (1/µ4)Var[x - µ] + (1/µ6)Var[x - µ]2 - (2/µ5)Cov[(x-µ),(x-µ)2]  
    =  (1/µ4)σ2 + (1/µ6)(E[x - µ]4 - σ4] - (2/µ5)E[x - µ]3   
    =  .01498. 
Neither approximation provides a close estimate of the variance.  Note that in both cases, it would be possible 
simply to evaluate the approximations at the four values of x and compute the means and variances directly.  
The virtue of the approach above is that it can be applied when there are many values of x, and is necessary 
when the distribution of x is continuous.   
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13.  Interpolation in the chi-squared table.  In order to find a percentage point in the chi-squared table 
which is between two values, we interpolate linearly between the reciprocals of the degrees of freedom. The 
chi-squared distribution is defined for noninteger values of the degrees of freedom parameter [see (3-39)], but 
your table does not contain critical values for noninteger values.  Using linear interpolation, find the 99% 
critical value for a chi-squared variable with degrees of freedom parameter 11.3.  (For an application of this 
calculation, see Section 8.5.1. and Example 8.6.) 
 The 99% critical values for 11 and 12 degrees of freedom are 24.725 and 26.217.  To interpolate 
linearly between these values for the value corresponding to 11.3 degrees of freedom, we use 

    c  =  26.217 +   ( . / )
( / / )
1113 1 12
1 11 1 12

−
−

 (24.725 - 26.217) = 25.2009.   

 
14.  Suppose x has a standard normal distribution.  What is the pdf of the following random variable? 

y e y
x

= < <
−1

2
0 1

2

2

2
π π

, .  [Hints:  You know the distribution of z = x2 from (3-30).  The density of this z 

is given in (3-39).  Solve the problem in terms of y = g(z).] 
 We know that z = x2 is distributed as chi-squared with 1 degree of freedom.  We seek the density of y 
= ke-z/2 where k = (2π)-2. The inverse transformation is z = 2lnk - 2lny, so the Jacobian is |-2/y| = 2/y. The 
density of z is that of Gamma with parameters 1/2 and 1/2.  [See (3-39) and the succeeding discussion.]  Thus, 

    f(z)  =  ( /  )
( / )

, .
/

/ /1 2
1 2

0
1 2

2 1 2

Γ
e z zz− − >

Note, Γ(1/2) = π .  Making the substitution for z and multiplying by the Jacobian produces 

   f(y) = ( /  )
( / )

( ln ln )
/

( / )( ln ln ) /1 2
1 2

2 2 2
1 2

1 2 2 2 1 2

Γ y
e kk y− − −− y

The exponential term reduces to y/k.  The scale factor is equal to 2k/y.  Therefore, the density is simply 
f(y)  =  2(2lnk - 2lny)-1/2 = 2 (lnk - lny)-1/2  =  {2/[ln(1/(y(2π)1/2))]}, 0 < y < (2π)-1/2.   
 
15.  The fundamental probability transformation.  Suppose that the continuous random variable x has 
cumulative distribution F(x).  What is the probability distribution of the random variable y = F(x)?  
(Observation: This result forms the basis of the simulation of draws from many continuous distributions.) 
 The inverse transformation is x(y) = F-1(y), so the Jacobian is dx/dy = F-1′(y) = 1/f(x(y)) where f(.) is 
the density of x.  The density of y is  f(y)  =  f [F-1(y)] × 1/f (x(y)) = 1, 0 < y < 1.  Thus, y has a continuous 
uniform distribution.  Note, then, for purposes of obtaining a random sample from the distribution, we can 
sample y1,...,yn from the distribution of y, the continuous uniform, then obtain x1 = x1(y1), ... xn = xn(yn).   
 
16.  Random number generators. Suppose x is distributed uniformly between 0 and 1, so f(x) = 1, 0 < x < 1.  
Let θ be some positive constant.  What is the pdf of y = -(1/θ)lnx.  (Hint: See Section 3.5.)  Does this suggest 
a means of simulating draws from this distribution if one has a random number generator which will produce 
draws from the uniform distribution?  To continue, suggest a means of simulating draws from a logistic 
distribution, f(x) =  e-x/(1+e-x)2. 
 The inverse transformation is x = e-θy so the Jacobian is dx/dy = θe-θy.  Since f(x) = 1, this Jacobian is 
also the density of y.  One can simulate draws y from any exponential distribution with parameter θ by 
drawing observations x from the uniform distribution and computing y = -(1/θ)lnx.  Likewise, for the logistic 
distribution, the CDF is F(x)  =  1/(1 + e-x).  Thus, draws y from the uniform distribution may be taken as 
draws on F(x).   Then, we may obtain x as  x  =  ln[F(x)/(1 - F(x)]  =  ln[y/(1 - y)].   
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17.  Suppose that x1 and x2 are distributed as independent standard normal.  What is the joint distribution of y1 
= 2 + 3x1 + 2x2 and y2 = 4 + 5x1?  Suppose you were able to obtain two samples of observations from 
independent standard normal distributions.  How would you obtain a sample from the bivariate normal 
distribution with means 1 and 2 variances 4 and 9 and covariance 3? 
 We may write the pair of transformations as 

   y     =      =     =   b  +  Ax. 
y
y

1

2










2
4

3 2
5 0

1

2





























 +   

x
x

The problem also states that  x ~ N[0,I].  From (3-103), therefore, we have y ~ N[b + A0, AIAN] where 

E[y]  =  b + A0  =  b  =   , Var[y]  =  AA′  =  . 
2
4










13 15
15 25











 For the second part of the problem, using our result above, we would require the A and b such that 

b + A0 = (1,2)′  and  AA′   =  .  The vector is obviously  b = (1,2)′.  In order to find the elements of A, 

there are a few ways to proceed.  The Cholesky factorization used in Exercise 9 is probably the simplest.  Let 
y

4 3
3 9











1  =  1 + 2x1. Thus, y1 has mean 1 and variance 4 as required.  Now, let y2  =  2 + w1x1 + w2x2.  The covariance 
between y1 and y2 is 2w1, since x1 and x2 are uncorrelated. Thus, 2w1 = 3, or w1 = 1.5.  Now, Var[y2] = 

= 9, so =  9 - 1.5w w1
2

2
2+ w2

2 2  =  6.75. The transformation matrix is, therefore, A   =  .  This is 

the Cholesky factorization of the desired AA′ above.  It is worth noting, this provides a simple method of 
finding the requisite A matrix for any number of variables.  Finally, an alternative method would be to use the 
characteristic roots and vectors of AA′.  The inverse square root defined in Section 2.7.12 would also provide 
a method of transforming x to obtain the desired covariance matrix.    

2 0
15 2 598. .











 
18.  The density of the standard normal distribution, denoted φ(x), is given in (3-28).  The function based on 
the ith derivative of the density given by Hi = [(-1)idiφ (x)/dxi]/φ(x), i = 0,1,2,... is called a Hermite polynomial.  
By definition, H0 = 1. 
 (a)  Find the next three Hermite polynomials. 
 (b)  A useful device in this context is the differential equation 
  drφ(x)/dxr + xdr-1φ(x)/dxr-1 + (r-1)dr-2φ(x)/dxr-2 = 0. 
Use this result and the results of part a. to find H4 and H5. 
 The crucial result to be used in the derivations is dφ(x)/dx  =  -xφ(x).   Therefore, 
   d2φ(x)/dx2  =  (x2 - 1)φ(x) 
and   d3φ(x)/dx3  =  (3x - x3)φ(x). 
The polynomials are H1  =  x,  H2  =  x2 - 1, and H3  =  x3 - 3x. 
For part (b), we solve for drφ(x)/dxr =  -xdr-1φ(x)/dxr-1 - (r-1)dr-2φ(x)/dxr-2 
Therefore,  d4φ(x)/dx4 = -x(3x - x3)φ(x) - 3(x2 - 1)φ(x)  =  (x4 - 6x2 + 3)φ(x) 
and   d5φ(x)/dx5 = (-x5 + 10x3 - 15x)φ(x). 
Thus,   H4  =  x4 - 6x2 + 3 and H5  =  x5 - 10x3 + 15x.   
 
19.  Continuation: orthogonal polynomials: The Hermite polynomials are orthogonal if x has a standard 
normal distribution.  That is, E[HiHj] = 0 if i ≠ j.  Prove this for the H1, H2, and H3 which you obtained above. 
   E[H1(x)H2(x)] = E[x(x2 - 1)] = E[x3 - x] = 0 
since the normal distribution is symmetric. Then,  
   E[H1(x)H3(x)] = E[x(x3 - 3x)] = E[x4 - 3x2] = 0. 
The fourth moment of the standard normal distribution is 3 times the variance.  Finally, 
   E[H2(x)H3(x)] = E[(x2 - 1)(x3 - 3x)]  =  E[x5 - 4x3 + 3x]  =  0 
because all odd order moments of the normal distribution are zero. (The general result for extending the 
preceding is that in a product of Hermite polynomials, if the sum of the subscripts is odd, the product will be a 
sum of odd powers of x, and if even, a sum of even powers.  This provides a method of determining the higher 
moments of the normal distribution if they are needed.  (For example, E[H1H3] = 0 implies that E[x4] = 
3E[x2].)   
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20.  If x and y have means µx and µy and variances  and and covariance σσ x
2 σ y

2
xy, what is the approximation 

of the covariance matrix of the two random variables f1 = x/y and f2 = xy? 

 The elements of JΣJN are (1,1) = σ
µ

σ µ

µ

σ µ

µ
x

y

y
x

y

xy x

y

2

2

2
2

4 3

2
+ −  

    (1,2) = σ - σ /  x
2

y
2 µ x

2 µ y
4

    (2,2) = σ µ  +  + 2σx
2

y
4 σ y

2 µ x
2

xyµxµy.    

 
21.  Factorial Moments.  For finding the moments of a distribution such as the Poisson, a useful device is the 
factorial moment. (The Poisson distribution is given in Example 3.1.)   The density is 
    f(x)  =  e-λλ

) !

x / x!, x = 0,1,2,... 

To find the mean, we can use E[x]   =   =  ∑  xf x
x

( )
=

∞∑ 0
xe xx

x
−

=

∞ λλ / !
0

          =  e xx
x

− −
=

∞
−∑ λλ 1

1
1/ ( )!

          =  λ  e yy
y

−
=

∞∑ λλ / !
0

     =  λ, 
since the probabilities sum to 1.  To find the variance, we will extend this method by finding E[x(x-1)], and 
likewise for other moments.  Use this method to find the variance and third central moment of the Poisson 
distribution.  (Note that this device is used to transform the factorial in the denominator in the probability.) 
 Using the same technique, 

   E[x(x-1)]   =  = ∑  x x f x
x

( ) (−
=

∞∑ 1
0

x x e xx
x

( ) /− −
=

∞
1

0
λλ

          =   e xx
x

− −
=

∞
−∑ λλ 2

2
2/ ( )!

          =  λ2 e yy
y

−
=

∞∑ λλ / !
0

 

     =  λ2 
     =  E[x2]  -  E[x] 
So,    E[x2] =  λ2 + λ. 
Since E[x] = λ, it follows that Var[x] = (λ2 + λ) - λ2 = λ.  Following the same pattern, the preceding produces 
   E[x(x-1)(x-2)]   =  E[x3] - 3E[x2] + 2E[x]. 
             =  λ3. 
Therefore,  E[x3]    =  λ3 + 3(λ + λ2) - 2λ 
                           =  λ3 + 3λ2 + λ. 
Then,   E[x - E[x]]3   =  E[x3] - 3λE[x2] + 3λ2E[x] - λ3 
           =  λ.    
 
22.  If x has a normal distribution with mean µ and standard deviation σ, what is the probability distribution of 
y = e x? 
 If y = e x, then x = lny and the Jacobian is dx/dy = 1/y.  Making the substitution, 

   f(y)  =  
[ ]1

2

1
2

2

y
e

y− −(ln )/µ σ

σ π
 

This is the density of the lognormal distribution.    
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23.  If y has a lognormal distribution, what is the probability distribution of y 2? 
 Let z = y2.  Then, y = z  and dy/dz = 1/(2 z ).  Inserting these in the density above, we find 

   f(z)   =  1
2

1 1
2

0
1
2

1
2

2

σ π z z
e z

z− −















>
ln /

,
µ σ

 

    =
[ ]

2 2
0

1
2

2 2 2

( )
, .

(ln ) / (

σ πz
e z

z− −
>

µ σ)1  

Thus, z has a lognormal distribution with parameters 2µ and 2σ.  The general result is that if y has a lognormal 
distribution with parameters µ and σ, y r has a lognormal distribution with parameters rµ and rσ.   
 
24.  Suppose y, x1, and x2 have a joint normal distribution with parameters  µN  =  [1, 2, 4] 

and covariance matrix Σ =   
2 3 1
3 5 2
1 2 6

















 (a)  Compute the intercept and slope in the function E[y*x1], Var[y*x1], and the coefficient of 
        determination in this regression. (Hint: See Section 3.10.1.) 
 (b)  Compute the intercept and slopes in the conditional mean function, E[y*x1,x2].  What is 
        E[y*x1=2.5,x2=3.3]?  What is Var[y*x1=2.5,x2=3.3]? 
 First, for normally distributed variables, we have from (3-102), 
   E[y*x]     =  µy  +  Cov[y,x]{Var[x]}-1(x - :x) 
and   Var[y*x]   =  Var[y] - Cov[y,x]{Var[x]}-1Cov[x,y] 
and   COD        =  Var[E[y*x]] / Var[y] 
       =  Cov[y,x]{Var[x]}-1Cov[x,y] / Var[y]. 
We may just insert the figures above to obtain the results. 
   E[y*x1]      =  1  +  (3/5)(x1 - 2)  =  -.2  +  .6x1, 
   Var[y*x1]    =  2  -  3(1/5)3  =  1/5 = .2 
   COD          =  .62(5) / 2  =  .9 

   E[y*x1,x2]   =  1 + [ ]3 1
5 2
2 6

3
1

1




















−

  

     =  -.4615 + .6154x1 - .03846x2, 
   Var[y*x1,x2]   =  2  -  (.6154,-.03846)(3,1)N  =  .1923. 
   E[y*x1=2.5,x2=3.3]  =  1.3017. 
The conditional variance is not a function of x1 or x2.   ~ 
 
25.   What is the density of y = 1/x if x has a chi-squared distribution? 
 The density of a chi-squared variable is a gamma variable with parameters 1/2 and n/2 where n is the 
degrees of freedom of the chi-squared variable.  Thus, 

   f x
n

e x x
n x n

( ) ( / )
( / )

, .
/

= >
− −1 2

2
0

2 1
2 2

1

Γ
 

If y = 1/x then x = 1/y and |dx/dy| =  1/y2.  Therefore, after multiplying by the Jacobian, 

   f y
n

e
y

y
n

y

n

( ) ( / )
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, .
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 >

− +
1 2

2
1 0

2 1
2 2
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Γ
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26.  What is the density and what are the mean and variance of y = 1/x if x has the gamma distribution 
described in Section 3.4.5. 

 The density of x is f x
P

e x x
P

x P( )
( )

,= − −λ λ

Γ
1 0.>   If y = 1/x, then x = 1/y, and the Jacobian is  |dx/dy| 

=  1/y2.  Using the change of variable formula, as usual, the density of y is 

f y
P y

e
y

y
P

y
P

( )
( )

,/=






 >−

−
λ λ

Γ
1 1 02

1
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.  This is a 

gamma integral (see Section 5.2.4b).  Combine terms to obtain E y
P

e
y
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P

y
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∫
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Γ
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0
.   Now, in 

order to use the results for the gamma integral, we will have to make a change of variable.  Let z = 1/y, so 
|dy/dz| = 1/z2.   Making the change of variable, we 

find E y
P

e z
z

dz
P

e z d
P

z P
P

z P( )
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zλ .  Now, we can use the gamma integral directly, 

to find E(y) = λ
λ
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−
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11   Note that for this to exist, P must be greater than one.  We can use 

the same approach to find the variance.  We start by finding E[y2].  First, 
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.  Once again, this is a gamma integral, 

which we can evaluate by first making the change of variable to z = 1/y.  The integral is  
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Now, Var[y] = E[y2] - E2[y]  =  λ3

21 2
2

( ) ( )
, .

P P
P

− −
>    

 
27.  Suppose x1 and x2 have the bivariate normal distribution described in Section 3.8.  Consider an 
extension of Example 3.4, where the bivariate normal distribution is obtained by transforming two 
independent standard normal variables.  Obtain the distribution of z = exp(y1)exp(y2) where y1 and y2 have 
a bivariate normal distribution and are correlated. Solve this problem in two ways.  First, use the 
transformation approach described in Section 3.6.4.  Second, note that z = exp(y1+y2) = exp(w), so you can 
first find the distribution of w, then use the results of Section 3.5 (and, in fact, Section 3.4.4 as well). 
 The (extremely) hard way to proceed is to define the joint transformations z1 = exp(y1)exp(y2) and z2 
= exp(y2).  The Jacobian is 1/(z1z2).  The joint distribution is the Jacobian times the bivariate normal 
distribution, evaluated at y1 = logz1 - logz2 and y2 = logz2, from which it is now necessary to integrate out 
z2.  Obviously, this is going to be tedious, but the hint gives a much simpler way to proceed.  The variable 
w = y1+y2 has a normal distribution with mean µ = µ1+µ2 and variance σ2 = (σ1

2 + σ2
2 + 2σ12).  We already 

have a simple result for exp(w) in Exercise 22; this has a lognormal distribution.   
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28.  Probability Generating Function.  For a discrete random variable, x, the function 
    E[tx]  =  ∑  t Xx

x
Prob[ ]=

=

∞

0
x

is called the probability generating function because in the function, the coefficient on ti is Prob[X=i].  
Suppose that x is the number of the repetitions of an experiment with probability π of success upon which the 
first success occurs.  The density of x is the geometric distribution, 
    Prob[X=x]  =  (1 - π)x-1π. 
What is the probability generating function? 

    E[tx]   =   t x x
x

( )1 1
0

− −
=

∞∑ π π

     =  π ∑  
π

π
( )

[ ( )]
1

1
0−

−
=

∞
t x

x

     =  π .    
π π( ) ( )1

1
1 1− − −t

 
29.  Moment Generating Function.  For the random variable X, with probability density function f(x), if the 
function M(t)  =  E[etx] exists, it is the moment generating function.  Assuming the function exists, it can be 
shown that drM(t)/dtr|t=0 = E[xr ].  Find the moment generating functions for 
 (a)  The Exponential distribution of Exercise 9. 
 (b)  The Poisson distribution of Exercise 21. 

 For the continuous variable in (a), For f(x) = θexp(-θx), M(t) =  = . e e dxtx xθ θ−
∞

∫   

0
θ θe dt x−

∞

∫ (  - )

0
x

x!

This is θ times a Gamma integral (see Section 5.4.2b) with p=1, c=1, and a = (θ-t).  Therefore,  
M(t)  =  θ/(θ- t). 
 For the Poisson distribution, 

  M(t)   =    e e x e e xtx x
x

t x
x

−
=

∞ −
=

∞∑ ∑λ λλ λ/ ! ( ) / !
0 0

 =  

   =  e e∑  e e xe e t x
x

t t− −
=

∞ λ λ λ λ( ) / !
0

 
∞

   =  e e  ee e t x
x

t t− + −
=∑λ λ λ λ( ) /

0

The sum is the sum of probabilities for a Poisson distribution with parameter λe t, which equals 1, so the term 
before the summation sign is the moment generating function, M(t)  =  exp[λ(e t - 1)].    
 
28.  Moment generating function for a sum of variables.  When it exists, the moment generating function 
has a one to one correspondence with the distribution.  Thus, for example, if we begin with some random 
variable and find that a transformation of it has a particular MGF, we may infer that the function of the 
random variable has the distribution associated with that MGF.  A useful application is the following: 
If x and y are independent, the MGF of x + y is Mx(t)My(t). 
 (a)  Use this result to prove that the sum of Poisson random variables has a Poisson distribution. 
 (b)  Use the result to prove that the sum of chi-squared variables has a chi-squared distribution. 
        [Note, you must first find the MGF for a chi-squared variate.  The density is given in (3-39).] 
 (c)  The MGF for the standard normal distribution is Mz  = exp(-t2/2).  Find the MGF for the N[µ,σ2] 
      distribution, then find the distribution of a sum of normally distributed variables. 
 
 (a)  From the previous problem, Mx(t) = exp[λ(et - 1)].  Suppose y is distributed as Poisson with 
parameter µ.  Then, My(t)=exp[µ(et-1)].  The product of these two moment generating functions is  
Mx(t)My(t)= exp[λ(e t - 1)]exp[µ(e t - 1)] =  exp[(λ+µ)(e t - 1)], which is the moment generating function of the 
Poisson distribution with parameter λ+µ.  Therefore, on the basis of the theorem given in the problem, it 
follows that x+y has a Poisson distribution with parameter λ+µ. 
 (b)  The density of the Chi-squared distribution with n degrees of freedom is [from (3-39)] 

f x
n

e x x
n x n

( ) ( / )
( / )

, .
/

= >
− −1 2

2
0

2 1
2 2

1

Γ
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Let the constant term be k for the present.  The moment generating function is 

    M(t)   =  k  e e x dxtx x n− −∞

∫ / ( / )2 2 1
0

     =  k e∫ . x dxx t n− − −∞ (1/ ) ( / )2 2 1
0

This is a gamma integral which reduces to M(t) = k(1/2 - t)-n/2Γ(n/2).  Now, reinserting the constant k and 
simplifying produces the moment generating function M(t)  =  (1 - 2t) -n/2.  Suppose that xi is distributed as 
chi-squared with ni degrees of freedom.  The moment generating function of Σi xi is 

    ΠiMi(t)  =   ( ) /1 2 2
−

−∑t nii

which is the MGF of a chi-squared variable with n = Σi ni degrees of freedom. 
 (c)  We let y = σz + µ.  Then, My(t) =  E[exp(ty)] =  [ ] [ ] [E e e E e e E et z t tz t t z( ) ( )σ µ µ µ  + = =σ σ ] 

2     =  e e  [ ]t tt tµ σ σ  − = −( ) / exp ( ) /
2 2 2 2µ

Using the same approach as in part b., it follows that the moment generating function for a sum of random 
variables with means µi and standard deviations σi is 

    M t
x ii iiii∑ = − 









∑ ∑exp µ σ

1
2

2 2 .   
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Appendix C 
 

Estimation and Inference 
 
1.  The following sample is drawn from a normal distribution with mean µ and standard deviation σ: 
   x  =  1.3, 2.1, .4, 1.3, .5, .2, 1.8, 2.5, 1.9, 3.2. 
Compute the mean, median, variance, and standard deviation of the sample. 

    x
x

n
ii

n

= =∑ 1 =  1.52, 

    s2 = 
( )x x

n
ii

n
−

−
=∑

2

1

1
 =   .9418, 

    s  =  .97 
    median  =  1.55, midway between 1.3 and 1.8.    
 
2.  Using the data in the previous exercise, test the following hypotheses: 
 (a)  µ  >  2. 
 (b)  µ  <  .7. 
 (c)  σ2 = .5. 
 (d)  Using a likelihood ratio test, test the following hypothesis µ = 1.8, σ2 = .8. 
 
 (a)  We would reject the hypothesis if 1.52 is too small relative to the hypothesized value of 2.  Since 
the data are sampled from a normal distribution, we may use a t test to test the hypothesis.  The t ratio is 
   t[9]  =  (1.52 - 2) / [.97/ 10 ]=  -1.472. 
The 95% critical value from the t distribution for a one tailed test is -1.833.  Therefore, we would not reject the 
hypothesis at a significance level of 95%. 
 (b)  We would reject the hypothesis if 1.52 is excessively large relative to the hypothesized mean of 
.7.  The t ratio is t[9]  =  (1.52 - .7) / [.97/ 10 ]=  2.673.   Using the same critical value as in the previous 
problem, we would reject this hypothesis. 
 (c)  The statistic (n-1)s2/σ2 is distributed as χ2 with 9 degrees of freedom.  This is 9(.94)/.5  =  
16.920. The 95% critical values from the chi-squared table for a two tailed test are 2.70 and 19.02. Thus we 
would not reject the hypothesis. 
 (d)  The log-likelihood for a sample from a normal distribution is 

  lnL = -(n/2)ln(2π) - (n/2)lnσ2 - 1
2 2σ

( )xii

n
−

=∑ µ 2
1

 

The sample values are µ  
∧

= =x 152. , σ
∧

2 = 
( )x x

n
ii

n
−

=∑
2

1  = .8476. 

The maximized log-likelihood for the sample is -13.363.  A useful shortcut for computing the log-likelihood at 

the hypothesized values is  = ( )xii

n
−

=∑ µ 2
1

( )x xii
n −
=∑ 2

1
 + (n x − µ

2)  .  For the hypothesized value of µ 

= 1.8, this is  =  9.26. The log-likelihood is -5(ln(2π) - 5(ln.8) - (1/1.6)9.26  =  -13.861.  The 

likelihood ratio statistic is -2(lnL 

( .xii
n

−
=∑ 18

1
)2

r - lnLu)  =  .996.  The critical value for a chi-squared with 2 degrees of 
freedom is 5.99, so we would not reject the hypothesis.    
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3.  Suppose that the following sample is drawn from a normal distribution with mean µ and standard deviation 
σ:  y  =  3.1, -.1, .3, 1.4, 2.9, .3, 2.2, 1.5, 4.2, .4.  Test the hypothesis that the mean of the distribution which 
produced these data is the same as that which produced the data in Exercise 1.  Test the hypothesis assuming 
that the variances are the same.  Test the hypothesis that the variances are the same using an F test and using a 
likelihood ratio test.  (Do not assume that the means are the same.) 
 If the variances are the same,  
    x N n1 1

2
1~ [ , /µ σ1 ] and x N n2 2

2
2~ [ , / ]µ σ2 , 

    x x N n n1 2
2

1 21 1− − +~ [ , {( / ) ( / )}]µ µ1 2 σ ,  
    (n1-1)s1

2/σ2 ~ χ2[n1-1] and (n2-1)s2
2/σ2 ~ χ2[n2-1] 

    (n1-1)s 2/σ2 + (n -1)s 2/σ2 ~  χ2[n  + n - 2] 1 2 2 1 2 

Thus, the statistic    t  = 
( ) ( ){ } [ ]

{ }
x x n n

n s n s n n

1 2 1 2
2

1 2

1 1
2 2

2 2
2 2

1 2

1 1

1 1

− − − +

− + − +

µ µ σ

σ σ

/ ( / ) ( / )

( ) / ( ) / / ( 2− )
 

is the ratio of a standard normal variable to the square root of a chi-squared variable divided by its degrees of 
freedom which is distributed as t with n1 + n2 - 2 degrees of freedom.  Under the hypothesis that the means are 

equal, the statistic is   t = 
( )

{ }
x x n n

n s n s n n

1 2 1 2

1 1
2

2 2
2

1 2

1 1

1 1

− +

− + − + −

/ ( / ) ( / )

( ) ( ) / ( 2)
 

The sample statistics are  n1  =  10, x1 =  1.52, =  .9418 s1
2

    n2  =  10, x2 =  1.62, = 2.0907 s2
2

so t[18]  =  .1816.  This is quite small, so we would not reject the hypothesis of equal means. 
 For random sampling from two normal distributions, under the hypothesis of equal variances, the 

statistic F[n1-1,n2-1] = 
[ ]
[ ]
( ) / / (

( ) / / ( )

n s n

n s n
1 1

2 2
1

2 2
2 2

2

1 1

1 1

− −

− −

σ

σ

s s1
2

2
2/

)
is the ratio of two independent chi-squared variables, each 

divided by its degrees of freedom.  This has the F distribution with n1-1 and n2-1 degrees of freedom.  If n1 = 
n2, the statistic reduces to F[n1-1,n2-1]  = .  For our purposes, it is more convenient to put the larger 
variance in the denominator.  Thus, for our sample data,  F[9,9]  =  2.0907 / .9418  =  2.2199.  The 95% 
critical value from the F table is 3.18.  Thus, we would not reject the hypothesis of equal variances.   
 The likelihood ratio test is based on the test statistic λ = -2(lnL r - lnLu).  The log-likelihood for the 
joint sample of 20 observations is the sum of the two separate log-likelihoods if the samples are assumed to be 
independent.  A useful shortcut for computing the log-likelihood arises when the maximum likelihood 

estimates are inserted:  At the maximum likelihood estimates, lnL  =  (-n/2)[1 + ln(2π) + ln ].  So, the log-
likelihood for the sample is lnL

σ2
∧

2=(-5/2)[1 + ln(2π) + ln((9/10)2.0907)]= -17.35007.  (Remember, we don't 
make the degrees of freedom correction for the variance estimator.)  The log-likelihood function for the 
sample of 20 observations is just the sum of the two log-likelihoods if the samples are completely 
independent.  The unrestricted log-likelihood function is, thus, -13.363+(-17.35001) = -30.713077.  To 
compute the restricted log-likelihood function, we need the pooled estimator which does not assume that the 

means are identical.  This would be  =  [(nσ2
∧

1-1)  +  (ns1
2

2-1) ]/[ns2
2

1 + n2] 
         =  [9(.9418) + 9(2.0907)]/20  =  1.36463. 
So, the restricted log-likelihood is lnLr  =  (-20/2)[1 + ln(2π) + ln(1.36463)]  =  -31.4876.  Minus twice the 
difference is λ  =  -2[-31.4876 - (-30.713077)]  =  1.541.  This is distributed as chi-squared with one degree of 
freedom.  The critical value is 3.84, so we would not reject the hypothesis.    
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4.  A common method of simulating random draws from the standard normal distribution is to compute the 
sum of 12 draws from the uniform [0,1] distribution and subtract 6.  Can you justify this procedure? 
 The uniform distribution has mean 2 and variance 1/12.  Therefore, the statistic 12( x - 1/2) = 

- 6 is equivalent to  z  =xii=∑ 1
12 n ( x - µ) / σ.  As n→∞, this converges to a standard normal variable.  

Experience suggests that a sample of 12 is large enough to approximate this result. However, more recently 
developed random number generators usually use different procedures based on the truncation error which 
occurs in representing real numbers in a digital computer.   
 
5.  Using the data in Exercise 1, form confidence intervals for the mean and standard deviation. 
 Since the underlying distribution is normal, we may use the t distribution.  Using (4-57), we obtain a 
95% confidence interval for the mean of 1.52 - 2.262[.97/ 10 ]  <  µ <  1.52 + 2.262[.97/ 10 ] or   
.826 < µ < 2.214.  Using the procedure in Example 4.30, we obtain a 95% confidence for σ2 of  
9(.941)/19.02 < σ2 < 9(.941)/2.70 or .445 < σ2 < 3.137.  Taking square roots gives the confidence interval  
for σ,  .667  <  σ  <  1.771.      
 
6.  Based on a sample of 65 observations from a normal distribution, you obtain a median of 34 and a standard 
deviation of 13.3.  Form a confidence interval for the mean.  (Hint:  Use the asymptotic distribution.  See 
Example 4.15.)  Compare your confidence interval to the one you would have obtained had the estimate of 34 
been the sample mean instead of the sample median. 
 The asymptotic variance of the median is πσ2/(2n).  Using the asymptotic normal distribution instead 
of the t distribution, the confidence interval is  34 - 1.96(13.32π/130)2 < µ < 34 + 1.96(13.32π/130)2 or       
29.95  <  µ  <  38.052.  Had the estimator been the mean instead of the median, the appropriate asymptotic 
variance would be σ2/n, instead, which we would estimate with 13.32/65 = 2.72 compared to 4.274 for the 
median.  The confidence interval would have been (30.77,37.24), which is somewhat narrower.    
 
7.   The random variable x has a continuous distribution f(x) and cumulative distribution function F(x).  What 
is the probability distribution of the sample maximum?  (Hint: In a random sample of n observations, x1, x2, 
..., xn, if z is the maximum, then every observation in the sample is less than or equal to z.  Use the cdf.) 
 If z is the maximum, then every sample observation is less than or equal to z.  The probability of this 
is Prob[x1 # z, x2 # z, ..., xn # z]  =  F(z)F(z)...F(z)  =  [F(z)]n.   The density is the derivative, n[F(z)]n-1f(z).    
 
8.  Assume the distribution of x is  f(x)  =  1/θ, 0 < x < θ.  In random sampling from this distribution, prove that 
the sample maximum is a consistent estimator of θ.  Note: you can prove that the maximum is the maximum 
likelihood estimator of θ.  But, the usual properties do not apply here.  Why not?  (Hint:  Attempt to verify 
that the expected first derivative of the log-likelihood with respect to θ is zero.) 
 Using the result of the previous problem, the density of the maximum is 
    n[z/θ]n-1(1/θ),  0 < z < θ. 

Therefore, the expected value is E[z] = z
0

θ
∫

l
n

ndz = [θn+1/(n+1)][n/θn] = nθ/(n+1).  The variance is found 

likewise,  E[z2]  =  z
0

θ
∫ 2n(z/n)n-1(1/θ)dz  =  nθ2/(n+2) so Var[z]  =  E[z2] - (E[z])2  =  nθ2/[(n + 1)2(n+2)].  

Using mean squared convergence we see that E[z] = θ  and Var[z] = 0, so that plim z = θ.   im
→∞

lim
n→∞

9.  In random sampling from the exponential distribution, f(x)  = 1
θ

θe
x−

, x > 0, θ> 0, find the maximum 

likelihood estimator of θ and obtain the asymptotic distribution of this estimator.  
 The log-likelihood is lnL  =  -nlnθ - (1/θ) .  The maximum likelihood estimator is obtained as 

the solution to ∂lnL/∂θ = -n/θ  + (1/θ

xii
n
=∑ 1

∧
2)  =  0, or θ  =  (1/n)  = xii

n
=∑ 1 ML xii

n
=∑ 1

x .  The asymptotic variance 

of the MLE is {-E[∂2lnL/∂θ2]}-1  =  {-E[n/θ2 - (2/θ3) ]}xii
n
=∑ 1

-1.  To find the expected value of this random 
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variable, we need E[xi] = θ. Therefore, the asymptotic variance is θ2/n.  The asymptotic distribution is normal 
with mean θ and this variance.   
 
10.  Suppose in a sample of 500 observations from a normal distribution with mean µ and standard deviation 
σ, you are told that 35% of the observations are less than 2.1 and 55% of the observations are less than 3.6.  
Estimate µ and σ. 
 If 35% of the observations are less than 2.1, we would infer that  
  Φ[(2.1 - µ)/σ]  =  .35, or  (2.1 - µ)/σ  =  -.385  ⇒  2.1 - µ  =  -.385σ. 
Likewise, Φ[(3.6 - µ)/σ]  =  .55, or  (3.6 - µ)/σ  =   .126  ⇒  3.6 - µ  =   .126σ. 

The joint solution is = 3.2301 and σ = 2.9354.  It might not seem obvious, but we can also derive asymptotic 
standard errors for these estimates by constructing them as method of moments estimators.  Observe, first, that 
the two estimates are based on moment estimators of the probabilities.  Let x

µ
∧ ∧

i denote one of the 500 
observations drawn from the normal distribution.  Then, the two proportions are obtained as follows:  Let 
zi(2.1) =  1[xi < 2.1] and zi(3.6) = 1[xi < 3.6] be indicator functions.  Then, the proportion of 35% has been 
obtained as z (2.1) and .55 is z (3.6).  So, the two proportions are simply the means of functions of the sample 
observations.  Each zi is a draw from a Bernoulli distribution with success probability π(2.1) = Φ((2.1-µ)/σ) 
for zi(2.1) and π(3.6) = Φ((3.6-µ)/σ) for zi(3.6).  Therefore, E[ z (2.1)] = π(2.1), and E[ z (3.6)] = π(3.6).  The 
variances in each case are Var[ z (.)] = 1/n[π(.)(1-π(.))].  The covariance of the two sample means is a bit 
trickier, but we can deduce it from the results of random sampling. Cov[ z (2.1), z (3.6)]]  
= 1/n Cov[zi(2.1),zi(3.6)], and, since in random sampling sample moments will converge to their population 
counterparts, Cov[zi(2.1),zi(3.6)] = plim [{(1/n) ∑ z

i
n
=1 i(2.1)zi(3.6)}  -  π(2.1)π(3.6)]. But, zi(2.1)zi(3.6) 

must equal [zi(2.1)]2 which, in turn, equals zi(2.1).  It follows, then, that  
Cov[zi(2.1),zi(3.6)] = π(2.1)[1 - π(3.6)]. Therefore, the asymptotic covariance matrix for the two sample 

proportions is Asy Var p p
n

. [ ( . ), ( . )]
( . )( ( . )) ( . )( ( . ))
( . )( ( . )) ( . )( ( . ))

21 36 1 21 1 2 1 21 1 36
21 1 36 36 1 36

= =
− −
− −









Σ

π π π π
π π π π

Est Asy Var p p. . [ ( . ), ( . )]
. .
. .

.21 36
0 000455 0 000315
0 000315 0 000495

= =








S

.  If we insert our 

sample estimates, we obtain   Now, ultimately, our 

estimates of µ and σ are found as functions of p(2.1) and p(3.6), using the method of moments.  The moment 
equations are 

   m , 
n

zii
n

2 1 1
1 21 21 0. ( . ) .

= 





−



=∑   -     =   Φ

µ
σ

   m n zii
n

3 1

1
36

36
0.6 ( . )

.
=







−



=∑   -     =   Φ

µ
σ . 

Now, let Γ = and let G be the sample estimate of Γ.  Then, the estimator of the 

asymptotic covariance matrix of ( , ) is [GS

∂ ∂µ ∂ ∂σ
∂ ∂µ ∂ ∂

m m
m m

2 1 2 1

3 6 3 61

. .

. .

/ /
/











µ
∧

σ
∧

σ/

-1G′]-1.  The remaining detail is the derivatives, which are just 
∂m2.1/∂µ = (1/σ)φ((2.1-µ)/σ) and ∂m2.1/∂σ = (2.1-µ)/σ[Mm2.1/Mσ]  and likewise for m3.6.  Inserting our sample 

estimates produces G = .  Finally, multiplying the matrices and computing the 

necessary inverses produces [GS

0 37046 014259
0 39579 0 04987
. .
. .

−









010
012−






-1G′]-1 = .  The asymptotic distribution would be 

normal, as usual.  Based on these results, a 95% confidence interval for µ would be 3.2301 ± 1.96(.10178)

178 012492
492 016973

. .
. .

− 




2 = 
2.6048 to 3.8554.    
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11.  For random sampling from a normal distribution with nonzero mean µ and standard deviation σ, find the 
asymptotic joint distribution of the maximum likelihood estimators of σ/µ and µ2/σ2. 

 The maximum likelihood estimators,  = (1/n)  and = (1/n) µ
∧

xii
n
=∑ 1

σ2
∧

( x xii
n

−
=∑ 1

2)  were given 

in (4-49).   By the invariance principle, we know that the maximum likelihood estimators of µ/σ and µ2/σ2 are 

/ and µ / σ and the maximum likelihood estimate of σ is µ
∧

σ
∧ ∧

2
∧

σ
∧

. To obtain the asymptotic joint distribution 

of the two functions of and , we first require the asymptotic joint distribution of µ  and .  This is 
normal with mean vector (µ,σ

µ
∧

σ
∧ ∧

σ2
∧

2) and covariance matrix equal to the inverse of the information matrix.  This is 
the inverse of  

−












E L L
L L

∂ ∂µ ∂ ∂µ∂σ
∂ ∂σ ∂µ ∂ ∂ σ

2 2 2

2 2 2
log / log /

log / log / ( )

2

2 ( )
− − −

− − −

















=

= =

∑
∑ ∑
n x

x n x

ii

n

ii

n
ii

n

/ ( / ) (

( / ) ( ) / ( ) ( / )

σ σ

σ µ σ σ

2 3
1

3
1

4 6 2

1

1

1 2 12 −

)µ

µ

2
4

)

=   

The off diagonal term has expected value 0.  Each term in the sum in the lower right has expected value σ2, so, 
after collecting terms, taking the negative, and inverting, we obtain the asymptotic covariance matrix, 

V  =  .  To obtain the asymptotic joint distribution of the two nonlinear functions, we use 

the multivariate version of Theorem 4.4.  Thus,  we require H  =  JVJ′ where  

σ
σ

2

4
0

0 2
/

/
n

n













J =   =  .  The product is  ∂ µ σ ∂µ ∂ µ σ ∂σ
∂ µ σ ∂µ ∂ µ σ ∂σ

( / ) / ( / ) /
( / ) / ( / ) /

2

2 2 2 2 2













1
2

3

2
/ / (
/ /
σ µ σ

µ σ µ σ
−

−













H = 1 1 2 2
2 4 2

2 2 3

3 2 2 4 4n
+ +

+ +













µ σ µ σ µ σ
µ σ µ σ µ σ µ σ

/ ( ) / ( / )
/ ( / ) / /

.   

 
12.  The random variable x has the following distribution:  f(x)  =  e-λλx / x!, x = 0,1,2,... The following random 
sample is drawn:  1,1,4,2,0,0,3,2,3,5,1,2,1,0,0. Carry out a Wald test of the hypothesis that λ= 2. 
 For random sampling from the Poisson distribution, the maximum likelihood estimator of λ is x = 
25/15.  (See Example 4.18.)  The second derivative of the log-likelihood is /λ−

=∑ xii
n

1
2, so the the 

asymptotic variance is λ/n.  The Wald statistic would be 

   W  = 
( )x

n

− 2
2

λ/
∧   =  [(25/15 - 2)2]/[(25/15)/15]  =  1.0. 

The 95% critical value from the chi-squared distribution with one degree of freedom is 3.84, so the hypothesis 
would not be rejected.  Alternatively, one might estimate the variance of  with s2/n = 2.38/15 = 0.159.  Then, 
the Wald statistic would be (1.6 - 2)2/.159 = 1.01.  The conclusion is the same.    
 
13.  Based on random sampling of 16 observations from the exponential distribution of Exercise 9, we wish to 
test the hypothesis that θ =1.  We will reject the hypothesis if x is greater than 1.2 or less than .8.  We are 
interested in the power of this test. 
(a)  Using the asymptotic distribution of x graph the asymptotic approximation to the true power function. 
(b)  Using the result discussed in Example 4.17, describe how to obtain the true power function for this test. 
 The asymptotic distribution of x is normal with mean θ and variance θ2/n.  Therefore, the power 
function based on the asymptotic distribution is the probability that a normally distributed variable with mean 
equal to θ and variance equal to θ2/n will be greater than 1.2 or less than .8.  That is, 
   Power  =  Φ[(.8 - θ)/(θ/4)] + 1 - Φ[(1.2 - θ)/(θ/4)]. 
Some values of this power function and a sketch are given below: 
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  θ   Approx.   True 
       Power   Power 
 .4   1.000   1.000 
 .5    .992    .985 
 .6    .908    .904 
 .7    .718    .736 
 .8    .522    .556 
 .9    .420    .443 
1.0    .423    .421 
1.1    .496    .470 
1.2    .591    .555 
1.3    .685    .647 
1.4    .759    .732 
1.5    .819    .801 
1.6    .864    .855 
1.7    .897    .895 
1.8    .922    .925 
1.9    .940    .946 
2.0    .954    .961 
2.1    .963    .972 
 
Note that the power function does 
not have the symmetric shape of Figure 4.7 because both the variance and the mean are changing as θ 
changes.  Moreover, the power is not the lowest at the value of θ = 1, but at about θ = .9.  That means 
(assuming that the normal distribution is appropriate) that the test is slightly biased.  The size of the test is its 
power at the hypothesized value, or .423, and there are points at which the power is less than the size. 

  

 According to the example cited, the true distribution of x is that of θ/(2n) times a chi-squared 
variable with 2n degrees of freedom.  Therefore, we could find the true power by finding the probability that a 
chi-squared variable with 2n degrees of freedom is less than .8(2n/θ) or greater than 1.2(2n/θ).  Thus, 
   True power  =  F(25.6/θ)    +    1 - F(38.4/θ) 
where F(.) is the CDF of the chi-squared distribution with 32 degrees of freedom.  Values for the correct 
power function are shown above.  Given that the sample is only 16 observations, the closeness of the 
asymptotic approximation is quite impressive.   
 
14.  For the normal distribution, µ2k = σ2k(2k)!/(k!2k) and µ2k+1 = 0, k = 0,1,...  Use this result to show that in 

Example 4.27, θ1 = 0 and θ2 = 3, and JVJ′ = . 
6 0
0 24











 For θ1 and θ2, just plug in the result above using k = 2, 3, and 4.  The example involves 3 moments, 
m2, m3, and m4.  The asymptotic covariance matrix for these three moments can be based on the formulas 
given in  Example 4.26.  In particular, we note, first, that for the normal distribution, Asy.Cov[m2,m3] and 
Asy.Cov[m3,m4] will be zero since they involve only odd moments, which are all zero.  The necessary even 
moments are µ2 = σ2, µ4 = 3σ4. µ6 = 15σ6, µ8 = 105σ8. The three variances will be 
  n[Asy.Var(m2)]  =  µ4 - µ2

2

4

 =  3σ4 - (σ2)2  =  2σ4 
  n[Asy.Var(m3)]  =  µ6 - µ3

2 - 6µ4µ2 + 9µ2
3 = 6σ6 

  n[Asy.Var(m4)]  =  µ8 - µ4
2 - 8µ5µ3 + 16µ2µ3

2 = 96σ8 
and  n[Asy.Cov(m2,m4)]  =  µ6 - µ2µ4 - 4µ3

2 =  12σ6. 
The elements of J are given in Example 4.27.  For the normal distribution, this matrix would be J = 

.  Multiplying out JVJN produces the result given above.    0 1 0
6 0 1

3

2
/

/ /
σ

σ σ−













 
15.  Testing for normality.  One method that has been suggested for testing whether the distribution underlying 
a sample is normal is to refer the statistic L  =  n{skewness2/6  +  (kurtosis-3)2/24} to the chi-squared 
distribution with 2 degrees of freedom.  Using the data in Exercise 1, carry out the test. 



  

 The skewness coefficient is .14192 and the kurtosis is 1.8447. (These are the third and fourth 
moments divided by the third and fourth power of the sample standard deviation.)  Inserting these in the 
expression above produces L = 10{.141922/6 + (1.8447 - 3)2/24} = .59.  The critical value from the 
chi-squared distribution with 2 degrees of freedom (95%) is 5.99.  Thus, the hypothesis of normality cannot be 
rejected.    
 
16.  Suppose the joint distribution of the two random variables x and y is 
  f(x,y)  =    β,θ  0,  y $ 0, x = 0,1,2,... θe yy x− +( ) ( ) /β θ β x!
 (a)  Find the maximum likelihood estimators of β and θ and their asymptotic joint distribution. 
 (b)  Find the maximum likelihood estimator of θ/(β+θ) and its asymptotic distribution. 
 (c)  Prove that f(x) is of the form f(x)  =  γ(1-γ)x, x = 0,1,2,... 
       Then, find the maximum likelihood estimator of γ and its asymptotic distribution. 

(d)  Prove that f(y*x) is of the form λe-λy(λy) x/x!  Prove that f(y|x) integrates to 1.  Find the 
       maximum likelihood estimator of λ and its asymptotic distribution.   (Hint:  In the conditional 
       distribution, just carry the xs along as constants.) 

 (e)  Prove that f(y)  =  θe-θy then find the maximum likelihood estimator of θ and its asymptotic 
                      variance. 
 (f) Prove that  f(x|y) = e-βy (βy) x/x! .  Based on this distribution, what is the maximum likelihood 
       estimator of β? 
 The log-likelihood is lnL = nlnθ - (β+θ)  + lnβ  + ∑ -  yii

n
=∑ 1

xii
n
=∑ 1

x yii
n

i=1
log log( !)xii

n
=∑ 1

The first and second derivatives are  ∂lnL/∂θ    =  n/θ- ∑  yii
n
=1

     ∂lnL/∂β     =  -  + /β yii
n
=∑ 1

xii
n
=∑ 1

     ∂2lnL/∂θ2   =  -n/θ2 
     ∂2lnL/∂β2   =  -  /βxii

n
=∑ 1

2 

     ∂2lnL/∂β∂θ  =  0. 

Therefore, the maximum likelihood estimators are  =  1/θ
∧

y  and  = β
∧

x y/

β θ( )− +

 and the asymptotic covariance 

matrix is the inverse of . In order to complete the derivation, we will require the 

expected value of  = nE[x

E
n

xii

n
/

/
θ

β

2

1
2

0
0

=∑












xi

θ ββ θe yy x− +
∞

∫ ( ) ( ) / !
0

i
n
=∑ 1 i].   In order to obtain E[xi], it is necessary to obtain the marginal distribution 

of xi, which is f(x)  =  =   This is βx dy β θx y d( / !) .∫ y x y

 l

x e
∞

0

x(θ/x!) times a 

gamma integral.  This is f(x)  =  βx(θ/x!)[Γ(x+1)]/(β+θ)x+1.  But, Γ(x+1) = x!, so the expression reduces to 
    f(x)  =  [θ/(β+θ)][β/(β+θ)]x. 
Thus, x has a geometric distribution with parameter π = θ/(β+θ).  (This is the distribution of the number of 
tries until the first success of independent trials each with success probability 1-π.  Finally, we require the 
expected value of xi, which is E[x]  =  [θ/(β+θ)] x[β/(β+θ)]

x =

∞∑ 0

n/
βθ

2

0

x=  β/θ.  Then, the required asymptotic 

covariance matrix is . n
n n

/
( / ) / /

θ
β θ β

θ2

2

1
0

0
0











=












−

 The maximum ikelihood estimator of θ/(β+θ) is is  

   θ β =  (1/θ/ ( )+
∧

y )/[ x / y  + 1/ y ]  =  1/(1 +  x ). 
Its asymptotic variance is obtained using the variance of a nonlinear function 
       V  = [β/(β+θ)]2(θ2/n) + [-θ/(β+θ)]2(βθ/n)  =  βθ2/[n(β+θ)3]. 
The asymptotic variance could also be obtained as [-1/(1 + E[x])2]2Asy.Var[ x ].) 
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 For part (c), we just note that γ = θ/(β+θ).  For a sample of observations on x, the log-likelihood 
would be   lnL = nlnγ + ln(1-γ)  xii

n
=∑ 1

    ∂lnL/dγ  =  n/γ - ∑ /(1-γ). xii
n
=1

A solution is obtained by first noting that at the solution, (1-γ)/γ  = x  =  1/γ  -  1.  The solution for γ is, thus, 

γ
∧

=  1 / (1 + x ).Of course, this is what we found in part b., which makes sense. 

 For part (d)  f(y|x)  =  f x y
f x
( , )
( )

 = θ β β θ β θ
θ β

β θe y
x x

y x x− + + +( ) ( ) ( ) ( )
!

.
      

[( ) ] / !( )β θ β θ β θ+ + − +y e xx y

/ ! λx y xx e y dy+ −
∞

∫0

  Cancelling terms and gathering 

the remaining like terms leaves f(y|x)  = ( )  so the density has the required form 

with λ = (β+θ).  The integral is { } .  This integral is a Gamma integral which equals 

Γ(x+1)/λ

[ ]λ 1

x+1, which is the reciprocal of the leading scalar, so the product is 1.  The log-likelihood function is 
  lnL  =  nlnλ - λ  + lnλ  -  yii

n
=∑ 1

xii
n
=∑ 1

ln !xii
n
=∑ 1

  ∂lnL/∂λ  =  ( ∑ + n)/λ  - . xii
n
=1

yii
n
=∑ 1

  ∂2lnL/∂λ2  =  -( + n)/λxii
n
=∑ 1

2. 

Therefore, the maximum likelihood estimator of λ is (1 +   x )/ y  and the asymptotic variance, conditional on 

the xs is Asy.Var.  =  (λλ
∧









2/n)/(1 + x ) 

 Part (e.)  We can obtain f(y) by summing over x in the joint density.  First, we write the joint density 

as  .  The sum is, therefore, .  The sum is 

that of the probabilities for a Poisson distribution, so it equals 1.  This produces the required result.  The 
maximum likelihood estimator of θ and its asymptotic variance are derived from 

f x y e e y xy y x( , ) ( ) / != − −θ βθ β f y e e y xy y x
x

( ) ( ) / != − −
=

∞∑θ βθ β
0

    lnL  =  nlnθ - θ  yii
n
=∑ 1

    ∂lnL/∂θ  =  n/θ - ∑  yii
n
=1

    ∂2lnL/∂θ2  =  -n/θ2. 
Therefore, the maximum likelihood estimator is 1/ y  and its asymptotic variance is θ2/n.  Since we found f(y) 
by factoring f(x,y) into f(y)f(x|y) (apparently, given our result), the answer follows immediately.  Just divide the 
expression used in part e. by f(y).  This is a Poisson distribution with parameter βy.  The log-likelihood 
function  and its first derivative are 
   lnL  =  -β ∑  + ln  +  -  yii

n
=1

xii
n
=∑ 1 x yi ii

n ln=∑ 1 ln !xii
n
=∑ 1

   ∂lnL/∂β  =  - ∑  + /β, yii
n
=1

xii
n
=∑ 1

from which it follows that  β
∧

= x y/ .   
 
17.  Suppose x has the Weibull distribution,  f(x) = αβxβ-1exp(-αxβ), x, α, β > 0. 
(a)  Obtain the log-likelihood function for a random sample of n observations. 
(b)  Obtain the likelihood equations for maximum likelihood estimation of α and β.  Note that the first 
provides an explicit solution for α in terms of the data and β. But, after inserting this in the second, we obtain 
only an implicit solution for β.  How would you obtain the maximum likelihood estimators? 
(c)  Obtain the second derivatives matrix of the log-likelihood with respect to α and β.  The exact expectations 
of the elements involving β involve the derivatives of the Gamma function and are quite messy analytically.  
Of course, your exact result provides an empirical estimator.  How would you estimate the asymptotic 
covariance matrix for your estimators in part (b)? 
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(d)  Prove that αβCov[lnx,xβ] = 1.  (Hint: Use the fact that the expected first derivatives of the log-likelihood 
function are zero.) 
 The log-likelihood and its two first derivatives are 
  logL  =  nlogα + nlogβ + (β-1) ∑  - α  log xii

n
=1

xii
n β
=∑ 1

  ∂logL/∂α  =  n/α -  xii
n β
=∑ 1

  ∂logL/∂β  =  n/β + - α  log xii
n
=∑ 1

(log )x xi ii

n β
=∑ 1

Since the first likelihood equation implies that at the maximum, =  n / ∑ , one approach would be to 

scan over the range of β and compute the implied value of α.  Two practical complications are the allowable 
range of β and the starting values to use for the search. 

α
∧

xii
n β
=1

 The second derivatives are 
  ∂2lnL/∂α2  =  -n/α2 
  ∂2lnL/∂β2  =  -n/β2 - α  (log )x xi ii

n 2
1

β
=∑

  ∂2lnL/∂α∂β =  - . (log )x xi ii
n β
=∑ 1

If we had estimates in hand, the simplest way to estimate the expected values of the Hessian would be to 
evaluate the expressions above at the maximum likelihood estimates, then compute the negative inverse.  First, 
since the expected value of ∂lnL/∂α is zero, it follows that E[xi

β] = 1/α.  Now, 
   E[∂lnL/∂β]  =  n/β + E[ l ] - αE[ ]= 0 og xii

n
=∑ 1

(log )x xi ii
n β
=∑ 1

as well.  Divide by n, and use the fact that every term in a sum has the same expectation to obtain 
   1/β + E[lnxi] - E[(lnxi)xi

β]/E[xi
β] = 0. 

Now, multiply through by E[xi
β] to obtain E[xi

β]  =  E[(lnxi)xi
β] - E[lnxi]E[xi

β] 
or       1/(αβ)  =  Cov[lnxi,xi

β].   
 
18.  The following data were generated by the Weibull distribution of Exercise 17: 
   1.3043   .49254   1.2742   1.4019   .32556   .29965   .26423 
   1.0878   1.9461   .47615   3.6454   .15344   1.2357   .96381   
   .33453   1.1227   2.0296   1.2797   .96080   2.0070     
 (a)  Obtain the maximum likelihood estimates of α and β and estimate the asymptotic covariance 
                     matrix for the estimates. 
 (b)  Carry out a Wald test of the hypothesis that β = 1. 
 (c)  Obtain the maximum likelihood estimate of α under the hypothesis that β = 1. 
 (d)  Using the results of a. and c. carry out a likelihood ratio test of the hypothesis that β = 1. 
 (e)  Carry out a Lagrange multiplier test of the hypothesis that β = 1. 
 As suggested in the previous problem, we can concentrate the log-likelihood over α.  From ∂logL/∂α 
= 0, we find that at the maximum, α = 1/[(1/n) ].  Thus, we scan over different values of β to seek the 

value which maximizes logL as given above, where we substitute this expression for each occurrence of α.  

xii
n β
=∑ 1
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Values of β and the log-likelihood for a range of values of β are listed and shown in the figure below.   
  β           logL 
 0.1     -62.386 

  

 0.2     -49.175 
 0.3     -41.381 
 0.4     -36.051 
 0.5     -32.122 
 0.6     -29.127 
 0.7     -26.829 
 0.8     -25.098 
 0.9     -23.866 
 1.0     -23.101 
 1.05    -22.891 
 1.06    -22.863 
 1.07    -22.841 
 1.08    -22.823 
 1.09    -22.809 
 1.10    -22.800 
 1.11    -22.796 
 1.12    -22.797 
 1.2     -22.984 
 1.3     -23.693 
 
The maximum occurs at β = 1.11.  The 
implied value of α is 1.179.  The negative of the second derivatives matrix at these values and its inverse are 

 and . I α β
∧ ∧



 =









,

. .
. .
2555 9 6506

9 6506 27 7552 I-1 α β
∧ ∧





=
−

−








,

. .
. .

04506 2673
2673 04148

The Wald statistic for the hypothesis that β = 1 is  W  =  (1.11 - 1)2/.041477 = .276.  The critical value for a 
test of size .05 is 3.84, so we would not reject the hypothesis. 

 If β = 1, then  =  = 0.88496.  The distribution specializes to the geometric distribution 

if β = 1, so the restricted log-likelihood would be 

α
∧

n ii
n/
=∑ 1

x

α
β

  logLr  =  nlogα - α  =  n(logα - 1) at the MLE. xii
n
=∑ 1

logLr at α = .88496 is -22.44435.  The likelihood ratio statistic is  -2logλ = 2(23.10068 - 22.44435)  = 1.3126. 
Once again, this is a small value.  To obtain the Lagrange multiplier statistic, we would compute 

  [ ]∂ ∂α ∂ ∂β
∂ ∂α ∂ ∂α∂β

∂ ∂α∂β ∂ ∂β

∂ ∂
∂ ∂

log / log / log / log /
log / log /

log /
log /

L L L L
L L

L
L

 − −
− −























−2 2 2

2 2 2

1

at the restricted estimates of α = .88496 and β = 1.  Making the substitutions from above, at these values, we 
would have 
  ∂logL/∂α  =  0 

  ∂logL/∂β  =  n + - log xii
n
=∑ 1

1
1x
xii

n log
=∑ xi   =  9.400342 

  ∂2logL/∂α2  =  − nx
2

 =  -25.54955 

  ∂2logL/∂β2  =  -n - 1 2
1x
x xi ii

n (log )
=∑ =  -30.79486 

  ∂2logL/∂α∂β  =  =  -8.265. −
=∑ x xii

n log
1 i

The lower right element in the inverse matrix is .041477.  The LM statistic is, therefore, (9.40032)2.041477 = 
2.9095.  This is also well under the critical value for the chi-squared distribution, so the hypothesis is not 
rejected on the basis of any of the three tests.    
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19.  We consider forming a confidence interval for the variance of a normal distribution.  As shown in 
Example 4.29, the interval is formed by finding clower and cupper such that Prob[clower < χ2[n-1] < cupper] = 1 - α. 
The endpoints of the confidence interval are then (n-1)s2/cupper and (n-1)s2/clower.  How do we find the 
narrowest interval?  Consider simply minimizing the width of the interval, cupper - clower subject to the 
constraint that the probability contained in the interval is (1-α).  Prove that for symmetric and asymmetric 
distributions alike, the narrowest interval will be such that the density is the same at the two endpoints. 
 The general problem is to minimize Upper - Lower subject to the constraint F(Upper) - F(Lower) = 1 
- α, where F(.) is the appropriate chi-squared distribution.  We can set this up as a Lagrangean problem, 
 minL,U L*  =  U - L + λ{(F(U) - F(L)) - (1 - α)} 
The necessary conditions are 
 ∂L*/∂U  =  1 + λf(U)  =  0 
 ∂L*/∂L  =  -1 - λf(L)  =  0 
 ∂L*/∂λ  =  (F(U) - F(L)) - (1 - α)  =  0 
It is obvious from the first two that at the minimum, f(U) must equal f(L).    
 
20.  Using the results in Example 4.26, and Section 4.7.2, estimate the asymptotic covariance matrix of the 
method of moments estimators of P and λ based on  and mm−1' 2′ .  (Note:  You will need to use the data in 
Table 4.1 to estimate V.) 
 Using the income data in Table 4.1, (1/n) times the covariance matrix of 1/xi and xi

2 is 

V  =  .  The moment equations used to estimate P and λ are 
. .

. .
000068456 2 811

2 811 228050
−

−










E m P[ ' / ( )]− − −1 1    λ

λ / ( )
( )− +





 2 1

2

= 0 0 and . The matrix of derivatives with respect to P 

and λ is G  =  .  The estimated asymptotic covariance matrix is  

E m P P[ ' ( ) / ]2 1    − + =λ

λ
λ λ

/ ( )
( ) /

P
P P P

− − −
+







1 1
2 12 3/

P

[GV-1G′]-1  =  .    
. .

. .
17532 0073617

0073617 00041871
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Appendix D 
 

Large Sample Distribution Theory 
 
There are no exercises for Appendix D. 
 

 145 



  

Appendix E 
 

Computation and Optimization 
 
1.  Show how to maximize the function 

  f(β)  =  ( )1
2

2
2

π
e c− −β /  

with respect to β for a constant, c, using Newton's method.  Show that maximizing logf(β) leads to the same 
solution.  Plot f(β) and logf(β). 
 The necessary condition for maximizing f(β) is 

  df(β)/dβ  = ( )1
2

2
2

π
e c− −β / [-(β - c)]  =  0  =  -(β - c)f(β). 

The exponential function can never be zero, so the only solution to the necessary condition is β = c.  The 
second derivative is  d2f(β)/dβ2  =  -(β-c)df(β)/dβ  -  f(β)  =   [(β-c)2 - 1]f(β).  At the stationary value b = c, the 
second derivative is negative, so this is a maximum.  Consider instead the function g(β) = logf(β) =  
-(1/2)ln(2π) - (1/2)(β - c)2.  The leading constant is obviously irrelevant to the solution, and the quadratic is a 
negative number everywhere except the point β = c.  Therefore, it is obvious that this function has the same 
maximizing value as f(β).  Formally,  dg(β)/dβ  =  -(β - c)  =  0 at β = c, and d2g(β)/dβ2 = -1, so this is indeed 
the maximum.  A sketch of the two functions appears below. 
 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that the transformed function is concave everywhere while the original function has inflection points.    
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2.  Prove that Newton’s method for minimizing the sum of squared residuals in the linear regression model 
will converge to the minimum in one iteration. 
 The function to be maximized is  f(β)  =  (y - Xβ)′(y - Xβ).  The required derivatives are 
∂f(β)/∂β  =  -X′(y - Xβ) and  ∂2f(β)/∂β∂β∂  =  X′X.  Now, consider beginning a Newton iteration at an 
arbitrary point, β0.  The iteration is defined in (12-17), 
β1  =  β0  -  (X′X)-1{-X′(y - Xβ0)}  =  β0  +  (X′X)-1X′y  -  (X′X)-1X′Xβ0  =  (X′X)-1X′y  =  b. 
Therefore, regardless of the starting value chosen, the next value will be the least squares coefficient vector.    
 

3.  For the Poisson regression model, Prob[Yi = yi|xi] = e
y

i i
i
y

i

−λ λ
!

where λi  = .  The log-likelihood 

function is lnL  = logProb[Y

e iβ 'x

i
n
=∑ 1 i = yi|xi]. 

 (a)  Insert the expression for λi to obtain the log-likelihood function in terms of the observed data. 
 (b)  Derive the first order conditions for maximizing this function with respect to β. 
 (c)  Derive the second derivatives matrix of this criterion function with respect to β.  Is this matrix 
                      negative definite? 
 (d)  Define the computations for using Newton’s method to obtain estimates of the unknown 
        parameters. 
 (e)  Write out the full set of steps in an algorithm for obtaining the estimates of the parameters of this       
        model.  Include in your algorithm a test for convergence of the estimates based on Belsley’s 
        suggested criterion. 
 (f)  How would you obtain starting values for your iterations? 
 (g)  The following data are generated by the Poisson regression model with  logλ  =  α + βx. 
     y   6    7    4   10   10    6    4    7    2    3    6    5    3    3    4 
         x 1.5  1.8  1.8  2.0  1.3  1.6  1.2  1.9  1.8  1.0  1.4   .5   .8  1.1   .7 
Use your results from parts (a) - (f) to compute the maximum likelihood estimates of α and β.  Also obtain 
estimates of the asymptotic covariance matrix of your estimates. 
 The log-likelihood is 
 logL = [-λ

i
n
=∑ 1 i + yilnλi - lnyi!]  =  - +  - ∑   e i

i
n β 'x
=∑ 1 ( )yi ii

n
β ' x=∑ 1 log yii

n
=1 !

!     =  - e∑ + β′ -  i
i
n β 'x
=1 xi ii

n y=∑ 1 log yii
n
=∑ 1

The necessary condition is  MlnL/Mβ  = - +  = 0 or XNy   = ∑ .  It is useful to 

note, since E[y

x x
ii

n e iβ '
=∑ 1 xi ii

n y=∑ 1 xi ii
n

λ=1

i iy
i
n
=∑ 1

i
n

i*xi]  =  λi  =  eβNxi, the first order condition is equivalent to =  xxi
n
=∑ 1 iE[yi*xi]  or  

XNy  =  XNE[y], which makes sense.  We may write the first order condition as MlnL/Mβ = ∑ x
=1 i(yi - λi)  =  

0 
which is quite similar to the counterpart for the classical regression if we view (yi - λi) = (yi - E[yi*xi]) as a 

residual. The second derivatives matrix is MlnL/MβMβN  =  - ∑   =  -∑ .  This is a 

negative definite matrix.  To prove this, note, first, that λ

( )e i
i
n

i i
β ' 'x x x=1 λii

n
i i=1

x x '

i must always be positive.  Then, let Ω be a diagonal 
matrix whose ith diagonal element is λi  and let Z  =  ΩX.  Then, MlnL/MβMβN = -ZNZ which is clearly 
negative definite.  This implies that the log-likelihood function is globally concave and finding its maximum 
using NewtonNs method will be straightforward and reliable. 
 The iteration for NewtonNs method is defined in (5-17).  We may apply it directly in this problem.  
The computations involved in using Newton's method to maximize lnL will be as follows: 
     (1)  Obtain starting values for the parameters. Because the log-likelihood function is globally concave, it  
will usually not matter what values are used.  Most applications simply use zero.  One suggestion which does 

appear in the literature is β0  =  [ ] where   qqi ii
n

ix x=

−
∑ 1

1
' [ q yi ii

n
ix

=∑ 1 ] i  =  log(max(1,yi)). 

 (2)  The iteration is computed asβ   =  β + 
 . 

∧

+t 1

∧

t λ
∧

=

−

∑





i ii

n
ix x

1

1

' xii

n
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∧
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 (3)  Each time we computeβ , we should check for convergence.  Some possibilities are 
∧

+t 1

      (a) Gradient:  Are the elements of MlnL/Mβ small? 

      (b) Change:  Is β -  small? 
∧

+t 1 β
∧

t

      (c) Function rate of change: Check the size of   

  δt =  ′  xii

n
i iy

=

∧

∑ −




1

( )λ λ
∧

=

−

∑






i ii

n
ix x

1

1

' xii

n
i iy

=

∧

∑ −




1

( )λ

           before computing β .  This measure describes what will happen to the function 
∧

+t 1

           at the next value of β. This is Belsley's criterion. 
 (4)  When convergence has been achieved, the asymptotic covariance matrix for the 
      estimates is estimated with the inverse matrix used in the iterations. 
 
 Using the data given in the problem, the results of the above computations are 
   Iter.     α      β         lnL     MlnL/Mα    MlnL/Mβ   Change 
    0        0      0    -102.387    65.       95.1       296.261 
    1  1.37105  2.17816  -1442.38   -1636.25  -2788.5     1526.36 
    2  .619874  2.05865  -461.989   -581.966  -996.711     516.92 
    3  .210347  1.77914  -141.022   -195.953  -399.751    197.652 
    4  .351893  1.26291  -51.2989   -57.9294  -102.847     30.616 
    5  .824956  .698768  -33.5530   -12.8702  -23.1932    2.75855 
    6  1.05288  .453352  -32.0824   -1.28785  -2.29289    .032399 
    7  1.07777  .425239  -32.0660   -.016067  -.028454   .0000051   
    8  1.07808  .424890  -32.0660      0         0          0 
 
At the final values, the negative inverse of the second derivatives matrix is 

λ
∧

=

−

∑






i ii

n
ix x

1

1

' = .   
. .
. .
151044 095961
095961 0664665

−
−











 

4.  Use Monte Carlo Integration to plot the function g(r) = E[xr*x>0] for the standard normal distribution. 
 The expected value from the truncated normal distribution is 

 E x x x f x x dx
x x dx

x dx
x e dxr r

r
r

x

[ | ] ( | )
( )

( )
.> = > = =

∞

∞

∞ −∞∫
∫

∫ ∫0 0 20

0

0
2

0

2φ

φ π
 

To evaluate this expectation, we first sampled 1,000 observations from the truncated standard normal 
distribution using (5-1).  For the standard normal distribution, µ = 0, σ = 1, PL = Φ((0 - 0)/1) = 2, and  
PU = Φ((+4 - 0)/1) = 1.  Therefore, the draws are obtained by transforming draws from U(0,1) (denoted Fi) to  
xi = Φ[2(1 + Fi)]. Since 0 < Fi < 1, the argument in brackets must be greater than 2, so xi > 0, which is to be 
expected.  Using the same 1,000 draws each time (so as to obtain smoothness in the figure), we then plot the 

values of xr i
r

i
=

=∑1
1000 1

1000 x , r = 0, .2, .4,.6, ..., 5.0. As an additional experiment, we generated a second 

sample of 1,000 by drawing observations from the standard normal distribution and discarding them and 
redrawing if they were not positive.  The means and standard deviations of the two samples were 
(0.8097,0.6170) for the first and (0.8059,0.6170) for the second.  Drawing the second sample takes 
approximately twice as long as the second.  Why? 
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5.  For the model 
in Example 5.10, derive the LM statistic for the test of the hypothesis that µ=0. 
 The derivatives of the log-likelihood with µ = 0 imposed are gµ = nx / σ 2 and 

g
n xii

n

σ σ σ
2 2 22

2
1
4=

−
+ =∑

.  The estimator for σ2 will be obtained by equating the second of these to 0, which 

will give (of course), v = x′x/n.  The terms in the Hessian are Hµµ = -n/σ2, H nxµσ σ2
4= − / , 

and n/(2σHσ σ2 2 = 4)-x′x/σ6.  At the MLE, = 0, exactly.  The off diagonal term in the expected Hessian is 

also zero.  Therefore, the LM statistic is 

gσ 2

[ ]LM = nx v

n
v

n
v

nx v
























/

/
0

0

0
2

0
2

  

-1

  =  x
v n/











2

. 

This resembles the square of the standard t-ratio for testing the hypothesis that µ = 0.  It would be exactly that 
save for the absence of a degrees of freedom correction in v.  However, since we have not estimated µ with x  
in fact, LM is exactly the square of a standard normal variate divided by a chi-squared variate over its degrees 
of freedom.  Thus, in this model, LM is exactly an F statistic with 1 degree of freedom in the numerator and n 
degrees of freedom in the denominator.   
 
6.  In Example 5.10, what is the concentrated over µ log likelihood function? 
 It is obvious that whatever solution is obtained for σ2, the MLE for µ will be x , so the concentrated 

log-likelihood function is ( ) ( )log log logL
n

x xc ii

n
=

−
+ − −

=∑2 2
1

2
2

2
2

1
π σ

σ
 

 
7.  In Example 5.13, suppose that E[yi] = µ, for a nonzero mean.   
(a)  Extend the model to include this new parameter.  What are the new log likelihood, likelihood equation, 
       Hessian, and expected Hessian?   
(b)  How are the iterations carried out to estimate the full set of parameters? 
(c)  Show how the LIMDEP program should be modified to include estimation of µ. 
(d)  Using the same data set, estimate the full set of parameters. 



  

 If yi has a nonzero mean, µ, then the log-likelihood is 

lnL(γ,µ|Z)  =  − − −
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The likelihood equations are 
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The expectations in the Hessian are found as follows:  Since E[yi] = µ, E[Hγµ] = 0.  There are no stochastic 

terms in Hµµ, so E[Hµµ] = Hµµ  = −
=∑ 1

21 σ i
i

n
.  Finally, E[(yi - µ)2] = σi

2, so E[Hγγ] = -1/2(Z′Z).   

 There is more than one way to estimate the parameters.  As in Example 5.13, the method of 
scoring (using the expected Hessian) will be straightforward in principle - though in our example, it does 
not work well in practice, so we use Newton’s method instead.  The iteration, in which we use index ‘t’ to 
indicate the estimate at iteration t, will be 
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 (t)  -  E[H(t)]-1 g(t). 

If we insert the expected Hessians and first derivatives in this iteration, we obtain 
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The zero off diagonal elements in the expected Hessian make this convenient, as the iteration may be 
broken into two parts.  We take the iteration for µ first.  With current estimates µ(t) and γ(t), the method of 

scoring produces this iteration: µ(t+1)  =  µ(t)  +  

y t
t

t

i

i
i

n

i
i

n

−
=

=

∑
∑

µ( )
( )

( )

σ

σ

21

21

1 .  As will be explored in Chapters 12 and 

13, this is generalized least squares.  Let i denote an n×1 vector of ones, let ei(t) = yi - µ(t) denote the 
‘residual’ at iteration t and let e(t) denote the n×1 vector of residuals.  Let Ω(t) denote a diagonal matrix 
which has σi

2 on its diagonal (and zeros elsewhere).  Then, the iteration for µ is  
µ(t+1) = µ(t) +  [i′Ω(t)-1i]-1[i′Ω(t)-1e(t)].  This shows how to compute µ(t+1).  The iteration for γ(t+1) is 
exactly as was shown in Example 5.13, save for the single change that in the computation, yi

2 is changed to 
(yi - µ(t))2.  Otherwise, the computation is identical.  Thus, we would have  
γ(t+1) = γ(t) + (Z′Z)-1Z′v(γ(t),µ(t)), where vi(γ(t),µ(t)) is the term in parentheses in the iteration shown 
above.  This shows how to compute γ(t+1). 
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/*================================================================ 
Program Code for Estimation of Harvey's Model 
The data set for this model is 100 observations from Greene (1992) 
Variables are: Y  = Average monthly credit card expenditure 
               Q1 = Age in years+ 12ths of a year 
               Q2 = Income, divided by 10,000 
               Q3 = OwnRent; individual owns (1) or rents (0) home 
               Q4 = Self employed (1=yes, 0=no) 
Read     ; Nobs = 200 ; Nvar = 6 ; Names = y,q1,q2,q3,q4 
         ; file=d:\DataSets\A5-1.dat$ 
Namelist ; Z = One,q1,q2,q3,q4 $ 
================================================================ 
Step 1 is to get the starting values and set some values for the 
iterations- iter=iteration counter, delta=value for convergence. 
*/ 
Create   ; y0 = y – Xbr(y) ; ui = log(y0^2) $ 
Matrix   ; gamma0 = <Z'Z> * Z'ui ; EH = 2*<Z'Z> $ 
Calc     ; c0 = gamma0(1)+1.2704     ? Correction to start value 
         ; s20 = y0'y0/n ; delta = 1 ; iter=0 $ 
Create   ; vi0 = y0^2 / s20 - 1 $  (Used in LM statistic) 
? Correct first element in gamma, then set starting vector. 
Matrix   ; Gamma0(1) = c0  ; Gamma = Gamma0 $ Start value for gamma 
Calc     ; mu0 = Xbr(y); mu = mu0$            Start value for mu 
Procedure ----------[This does the iterations]-------------------- 
Create   ; vari = exp(Z'Gamma)  ;  ei = y-mu  ; varinv=1/vari 
         ; hi   = ei^2 / vari  
         ; gigamma = .5*(hi - 1); gimu = ei/vari 
         ; logli = -.5*(log(2*pi) + log(vari) + hi) $ 
Matrix   ; ggamma = Z'gigamma ; gmu= 1’gimu 
         ; H = 2*<Z’[hi]Z> ; gupdate = H*ggamma  
? scoring, update = EH*ggamma 
         ; Gamma = Gamma + gupdate $ 
Calc     ; muupdate = Sum(gimu)/Sum(varinv) ; mu = mu + muupdate $ 
Matrix   ; update = [gupdate/muupdate] ; g = [ggamma/gmu] $ 
Calc     ; list ; Iter = Iter+1 ; LogLU = Sum(logli);delta=g'update$ 
EndProcedure   
Execute  ; While  delta > .00001 $ ------------------------------ 
Matrix   ; Stat (Gamma,H) $ 
Calc     ; list ; mu ; vmu = 1/Sum(varinv)   ; tmu = mu/Sqr(Vmu) $ 
Calc     ; list ; Sigmasq = Exp(Gamma(1))    ; K = Col(Z) 
                ; SE = Sigmasq * Sqr(H(1,1)) ; TRSE = Sigmasq/SE   
                ; LogLR = -n/2*(1 + log(2*pi)+ log(s20)) 
                ; LRTest = -2*(LogLR - LogLU) $ 
Matrix          ; Alpha = Gamma(2:K) ; VAlpha = Part(H,2,K,2,K) 
         ; list ; WaldTest = Alpha ' <VAlpha> Alpha   
                ; LMTest = .5* vi0'Z * <Z'Z> * Z'vi0   
                ; EH ; H ; VB = BHHH(Z,gi) ; <VB> $ 
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In the Example in the text, µ was constrained to equal y .  In the program, µ is allowed to be a free 
parameter.  The comparison of the two sets of results appears below. 
                         (Constrained model, µ = y )                (Unconstrained model) 
Iteration            log likelihood             δ      log-l;ikelihood     δ 
   1        -698.3888    19.7022   -692.2987 22.8406       2          -692.2986     4.5494   -683.2320  6.9005 
   3          -689.7029     0.406881    -680.7028  2.7494 
   4          -689.4980     0.01148798   -679,7461  0.63453 
   5          -689.4741     0.0000125995   -679.4856  0.27023 
   6          -689.47407    0.000000000016 -679.4856  0.08124 
    -679.4648    0.03079 
    -679.4568  0.0101793 
    -679.4542  0.00364255 
    -679.4533   0.001240906 
    -679.4530   0.00043431 
    -679.4529   0.0001494193 
    -679.4528  0.00005188501 
    -679.4528  0.00001790973 
    -679.4528  0.00000620193 
Estimated Paramaters 
Variable     Estimate   Std Error  t-ratio 
Age 0.013042   0.02310    0.565     -0.0134    0.0244  -0.550 
Income 0.6432     0.120001   5.360      0.9953    0.1375   7.236 
Ownrent      -0.2159     0.3073    -0.703      0.0774    0.3004   0.258 
SelfEmployed -0.4273     0.6677    -0.640     -1.3117    0.6719  -1.952 
γ1             8.465                           7.867 
σ2           4,745.92       2609.72 
µ   189.02 fixed      91.874     15.247   6.026 
Tests of the joint hypothesis that all slope coefficients are zero: 
LW           40.716       60.759 
Wald:        39.024        69.515 
 LM          35.115        35.115 (same by construction). 
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