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Preface

The analysis of real data by means of statistical methods with the aid of a software
package common in industry and administration usually is not an integral part of
mathematics studies, but it will certainly be part of a future professional work.

The practical need for an investigation of time series data is exemplified by the
following plot, which displays the yearly sunspot numbers between 1749 and 1924.
These data are also known as the Wolf or Wolfer (a student of Wolf) Data. For
a discussion of these data and further literature we refer to Wei (1990), Example
0.2,
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The present book links up elements from time series analysis with a selection of
statistical procedures used in general practice including the statistical software
package SAS (Statistical Analysis System). Consequently this book addresses
students of statistics as well as students of other branches such as economics, de-
mography and engineering, where lectures on statistics belong to their academic
training. But it is also intended for the practician who, beyond the use of statis-
tical tools, is interested in their mathematical background. Numerous problems
illustrate the applicability of the presented statistical procedures, where SAS gives
the solutions. The programs used are explicitly listed and explained. No previous
experience is expected neither in SAS nor in a special computer system so that a
short training period is guaranteed.

This book is meant for a two semester course (lecture, seminar or practical train-
ing) where the first two chapters can be dealt with in the first semester. They
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provide the principal components of the analysis of a time series in the time do-
main. Chapters [3] [4] and [f] deal with its analysis in the frequency domain and
can be worked through in the second term. In order to understand the math-
ematical background some terms are useful such as convergence in distribution,
stochastic convergence, maximum likelihood estimator as well as a basic knowl-
edge of the test theory, so that work on the book can start after an introductory
lecture on stochastics. Each chapter includes exercises. An exhaustive treatment
is recommended.

Due to the vast field a selection of the subjects was necessary. Chapter [1| contains
elements of an exploratory time series analysis, including the fit of models (logistic,
Mitscherlich, Gompertz curve) to a series of data, linear filters for seasonal and
trend adjustments (difference filters, Census X — 11 Program) and exponential fil-
ters for monitoring a system. Autocovariances and autocorrelations as well as vari-
ance stabilizing techniques (Box—Cox transformations) are introduced. Chapter
provides an account of mathematical models of stationary sequences of random
variables (white noise, moving averages, autoregressive processes, ARIMA mod-
els, cointegrated sequences, ARCH- and GARCH-processes, state-space models)
together with their mathematical background (existence of stationary processes,
covariance generating function, inverse and causal filters, stationarity condition,
Yule-Walker equations, partial autocorrelation). The Box—Jenkins program for
the specification of ARMA-models is discussed in detail (AIC, BIC and HQC in-
formation criterion). Gaussian processes and maximum likelihod estimation in
Gaussian models are introduced as well as least squares estimators as a nonpara-
metric alternative. The diagnostic check includes the Box—Ljung test. Many mod-
els of time series can be embedded in state-space models, which are introduced at
the end of Chapter 2l The Kalman filter as a unified prediction technique closes
the analysis of a time series in the time domain. The analysis of a series of data
in the frequency domain starts in Chapter [3| (harmonic waves, Fourier frequencies,
periodogram, Fourier transform and its inverse). The proof of the fact that the
periodogram is the Fourier transform of the empirical autocovariance function is
given. This links the analysis in the time domain with the analysis in the fre-
quency domain. Chapter [4] gives an account of the analysis of the spectrum of
the stationary process (spectral distribution function, spectral density, Herglotz’s
theorem). The effects of a linear filter are studied (transfer and power transfer
function, low pass and high pass filters, filter design) and the spectral densities of
ARMA-processes are computed. Some basic elements of a statistical analysis of a
series of data in the frequency domain are provided in Chapter 5} The problem of
testing for a white noise is dealt with (Fisher’s x-statistic, Bartlett—Kolmogorov—
Smirnov test) together with the estimation of the spectral density (periodogram,
discrete spectral average estimator, kernel estimator, confidence intervals).

This book is consecutively subdivided in a statistical part and an SAS-specific
part. For better clearness the SAS-specific part, including the diagrams generated
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with SAS, always starts with a computer symbol, representing the beginning of a
session at the computer, and ends with a printer symbol for the end of this session.

This SAS-specific part is again divided in a diagram created with SAS, the pro-
gram, which generated the diagram, and explanations to this program. In order to
achieve a further differentiation between SAS-commands and individual nomen-
clature, SAS-specific commands were written in CAPITAL LETTERS, whereas
individual notations were written in lower-case letters.

(=t
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Chapter 1

Elements of Exploratory
Time Series Analysis

A time series is a sequence of observations that are arranged according to the
time of their outcome. The annual crop yield of sugar-beets and their price per
ton for example is recorded in agriculture. The newspapers’ business sections re-
port daily stock prices, weekly interest rates, monthly rates of unemployment and
annual turnovers. Meteorology records hourly wind speeds, daily maximum and
minimum temperatures and annual rainfall. Geophysics is continuously observ-
ing the shaking or trembling of the earth in order to predict possibly impending
earthquakes. An electroencephalogram traces brain waves made by an electroen-
cephalograph in order to detect a cerebral disease, an electrocardiogram traces
heart waves. The social sciences survey annual death and birth rates, the number
of accidents in the home and various forms of criminal activities. Parameters in a
manufacturing process are permanently monitored in order to carry out an on-line
inspection in quality assurance.

There are, obviously, numerous reasons to record and to analyze the data of a
time series. Among these is the wish to gain a better understanding of the data
generating mechanism, the prediction of future values or the optimal control of
a system. The characteristic property of a time series is the fact that the data
are not generated independently, their dispersion varies in time, they are often
governed by a trend and they have cyclic components. Statistical procedures that
suppose independent and identically distributed data are, therefore, excluded from
the analysis of time series. This requires proper methods that are summarized
under time series analysis.



2 Chapter 1. Elements of Exploratory Time Series Analysis

1.1 The Additive Model for a Time Series

The additive model for a given time series y1, ..., Yy, is the assumption that these
data are realizations of random variables Y; that are themselves sums of four
components

Y;g:Tt+Zt+St+Rt, t:1,...,n. (].1)

where T} is a (monotone) function of ¢, called trend, and Z; reflects some non-
random long term cyclic influence. Think of the famous business cycle usually
consisting of recession, recovery, growth, and decline. S; describes some non-
random short term cyclic influence like a seasonal component whereas R; is a
random variable grasping all the deviations from the ideal non-stochastic model
yy = Ty + Zy + St. The variables T; and Z; are often summarized as

Gt :Tt+Zt, (12)

describing the long term behavior of the time series. We suppose in the following
that the expectation E(R;) of the error variable exists and equals zero, reflecting
the assumption that the random deviations above or below the nonrandom model
balance each other on the average. Note that E(R;) = 0 can always be achieved
by appropriately modifying one or more of the nonrandom components.

Example 1.1.1. (Unemployedl Data). The following data y;, t = 1,...,51, are
the monthly numbers of unemployed workers in the building trade in Germany

from July 1975 to September 1979.
=

MONTH T UNEMPLYD
July 1 60572
August 2 52461
September 3 47357
October 4 48320
November 5 60219
December 6 84418
January 7 119916
February 8 124350
March 9 87309
April 10 57035
May 11 39903
June 12 34053
July 13 29905
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August 14 28068
September 15 26634
October 16 29259
November 17 38942
December 18 65036
January 19 110728
February 20 108931
March 21 71517
April 22 54428
May 23 42911
June 24 37123
July 25 33044
August 26 30755
September 27 28742
October 28 31968
November 29 41427
December 30 63685
January 31 99189
February 32 104240
March 33 75304
April 34 43622
May 35 33990
June 36 26819
July 37 25291
August 38 24538
September 39 22685
October 40 23945
November 41 28245
December 42 47017
January 43 90920
February 44 89340
March 45 47792
April 46 28448
May a7 19139
June 48 16728
July 49 16523
August 50 16622
September 51 15499

Figure 1.1.1. Listing of Unemployedl Data.

* %k Program 1_1_1 * %ok
TITLE1 ’Listing’;
TITLE2 ’Unemployedl Data’;

DATA datal;
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INFILE
INPUT month $ t unemplyd;

PROC PRINT DATA =
RUN; QUIT;

’c:\data\unemployedl.txt’;

datal NOOBS;

This program consists of two main parts, a DATA
and a PROC step.

The DATA step started with the DATA statement
creates a temporary dataset named datal. The
purpose of INFILE is to link the DATA step to a
raw dataset outside the program. The path-
name of this dataset depends on the operat-
ing system; we will use the syntax of MS-DOS,
which is most commonly known. INPUT tells
SAS how to read the data. Three variables are
defined here, where the first one contains char-
acter values. This is determined by the $ sign
behind the variable name. For each variable
one value per line is read from the source into
the computer’s memory.

The statement PROC procedurename
DATA=filename; invokes a procedure that is
linked to the data from filename. Without
the option DATA=filename the most recently
created file is used.

The PRINT procedure lists the data; it comes
with numerous options that allow control of

the variables to be printed out, 'dress up’ of
the display etc. The SAS internal observation
number (0BS) is printed by default, NOOBS sup-
presses the column of observation numbers on
each line of output. An optional VAR statement
determines the order (from left to right) in
which variables are displayed. If not specified
(like here), all variables in the data set will be
printed in the order they were defined to SAS.
Entering RUN; at any point of the program tells
SAS that a unit of work (DATA step or PROC)
ended. SAS then stops reading the program
and begins to execute the unit. The QUIT;
statement at the end terminates the process-
ing of SAS.

A line starting with an asterisk * and ending
with a semicolon ; is ignored. These comment
statements may occur at any point of the pro-
gram except within raw data or another state-
ment.

The TITLE statement generates a title. Its
printing is actually suppressed here and in the
following.

(=¢

The following plot of the Unemployedl Data shows a seasonal component and a
downward trend. The period from July 1975 to September 1979 might be too
short to indicate a possibly underlying long term business cycle.
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Figure 1.1.2. Plot of Unemployedl Data.

* ok ok
TITLE1
TITLE2

Program 1_1_2 * %k
’Plot ’;
’Unemployedl Data’;

DATA datal;
INFILE
INPUT month $ t unemplyd;

AXIS1 LABEL=(ANGLE=90
AXIS2 LABEL=(’t’);

PROC GPLOT DATA=datal;

RUN; QUIT;

’c:\data\unemployedl.txt’;

>unemployed’) ;
SYMBOL1 V=DOT C=GREEN I=J0IN H=0.4 W=1;

PLOT unemplyd*t / VAXIS=AXIS1 HAXIS=AXIS2;

\S

Variables can be plotted by using the GPLOT
procedure, where the graphical output is con-
trolled by numerous options.

The AXIS statements with the LABEL options
control labelling of the vertical and horizontal

axes. ANGLE=90 causes a rotation of the label
of 90° so that it parallels the (vertical) axis in
this example.

The SYMBOL statement defines the manner
in which the data are displayed. V=DOT




6 Chapter 1. Elements of Exploratory Time Series Analysis

C=GREEN I=JOIN H=0.4 W=1 tell SAS to plot of the form PLOT y-variablexx-variable /
green dots of height 0.4 and to join options;, where the options here define the
them with a line of width 1. The horizontal and the vertical axes.

PLOT statement in the GPLOT procedure is

Models with a Nonlinear Trend

In the additive model Y; = T} + R;, where the nonstochastic component is only
the trend T reflecting the growth of a system, and assuming E(R;) = 0, we have

EYy) =T, =: f(t).

A common assumption is that the function f depends on several (unknown) para-
meters B1,..., 0By, ie.,

) = (B, By). (1.3)
However, the type of the function f is known. The parameters 31, ..., 3, are then
to be estimated from the set of realizations Yt of the random variables Y. A
common approach is a least squares estimate 31, ..., 3, satisfying

S (v = F6 b ) = min S (= S8 ) (1)

t

whose computation, if it exists at all, is a numerical problem. The value g; :=
ft; Bl, e ,Bp) can serve as a prediction of a future ;. The observed differences
y; — Uz are called residuals. They contain information about the goodness of the
fit of our model to the data. In the following we list several popular examples of
trend functions.

The Logistic Function
The function

fios(®) 1= fos(ts Br. s ) = 15 eil — t€R (9)

with 81, 82,83 € R\ {0} is the widely used logistic function.
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Figure 1.1.3. The logistic function fios with different values of 51, 82, 8s.

-
* k% Program 1_1_3 ok ok ;

TITLEl1 ’Plots of the Logistic Function’;

DATA datal;
beta3=1;
DO betal= 0.5, 1;
DO beta2=0.1, 1;
DO t=-10 TO 10 BY 0.5;

s = COMPRESS(’(’ || betal || ?,” || beta2 ||
»,2 || betal3 || ?)’);
f_log=beta3d/(l+beta2*EXP(-betal*t));
OUTPUT;

END; END; END;

SYMBOL1 C=GREEN V=NONE I=JOIN L=1;
SYMBOL2 C=GREEN V=NONE I=JOIN L=2;
SYMBOL3 C=GREEN V=NONE I=JOIN L=3;
SYMBOL4 C=GREEN V=NONE I=JOIN L=33;
AXIS1 LABEL=(H=2 ’f’ H=1 ’log’ H=2 ’(t)’);

AXIS2 LABEL=(’t’);
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LEGEND1 LABEL=(F=CGREEK H=2
b’ H=1 ’2° H=2
PROC GPLOT DATA=datal;

) )
,b

) (b’
H=1

H=1
130

110
H=2

H=2 7,
2)=7);

PLOT f_logx*t=s / VAXIS=AXIS1 HAXIS=AXIS2

LEGEND=LEGEND1;

RUN; QUIT;

\S

_

A function is plotted by computing its val-
ues at numerous grid points and then joining
them. The computation is done in the DATA
step, where the data file datal is generated. It
contains the values of f_log, computed at the
grid t = —10,—9.5,...,10 and indexed by the
vector s of the different choices of parameters.
This is done by nested DO loops. The operator
|| merges two strings and COMPRESS removes
the empty space in the string. OUTPUT then
stores the values of interest of f_log, t and s
(and the other variables) in the data set datal.

The four functions are plotted by the GPLOT
procedure by adding =s in the PLOT state-
ment. This also automatically generates a leg-
end, which is customized by the LEGEND1 state-
ment. Here the label is modified by using a
greek font (F=CGREEK) and generating smaller
letters of height 1 for the indices, while assum-
ing a normal height of 2 (H=1 and H=2). The
last feature is also used in the axis statement.
For each value of s SAS takes a new SYMBOL
statement. They generate lines of different line
types (L=1,2, 3, 33).

=
-

We obviously have lim; oo fiog(t) = B3, if 1 > 0. The value B3 often resembles
the maximum impregnation or growth of a system. Note that

L1406 exp(—0it)

fog(t) B3

N Pexﬁip(_ﬁl) + exp(—ppy) LRI D)
3 B3
_loew=8) sy b
= /63 + e p( ﬂl)flog(t — 1)
b

=a+ m. (16)

This means that there is a linear relationship among 1/ fiog(t).

This can serve

as a basis for estimating the parameters (1, 82, 03 by an appropriate linear least
squares approach, see Exercises 2 and 3. In the following example we fit the logistic
trend model to the population growth of the area of North Rhine-Westphalia
(NRW), which is a federal state of Germany.

Example 1.1.2. (Populationl Data). The following table shows the population
sizes y; in millions of the area of North-Rhine-Westphalia in 5 years steps from
1935 to 1980 as well as their predicted values ¢;, obtained from a least squares
estimation as described in for a logistic model.
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Year t  Population sizes y:  Predicted values g
(in millions) (in millions)
1935 1 11.772 10.930
1940 2 12.059 11.827
1945 3 11.200 12.709
1950 4 12.926 13.565
1955 5 14.442 14.384
1960 6 15.694 15.158
1965 7 16.661 15.881
1970 8 16.914 16.548
1975 9 17.176 17.158
1980 10 17.044 17.710

Table 1.1.1. Populationl Data.

As a prediction of the population size at time ¢t we obtain in the logistic model

Ps

Yt -

T exp(—fit)

21.5016

T 1+ 1.1436exp(—0.1675¢)

with the estimated saturation size 35

data and the fitted logistic curve.

21.5016. The following plot shows the
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populaliorn in millions
=
s
|

Figure 1.1.4. NRW population sizes and fitted logistic function.

* k% Program 1_1_4 * ok k ;
TITLE1l ’Population sizes and logistic fit’;
TITLE2 ’Populationl Data’;

DATA datal;
INFILE ’c:\data\populationl.txt’;
INPUT year t pop;

PROC NLIN DATA=datal OUTEST=estimate;
MODEL pop=beta3/(l+beta2*EXP(-betal*xt));
PARAMETERS betal=1 beta2=1 beta3=20;
RUN;

DATA data2;

SET estimate (WHERE=(_TYPE_=’FINAL’));

DO t1=0 TO 11 BY 0.2;
f_log=beta3/(1+beta2*EXP(-betalx*tl));
OUTPUT;

END;

DATA data3;
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MERGE datal data?2;

AXIS1 LABEL=(ANGLE=90
AXIS2 LABEL=(’t’);
SYMBOL1 V=DOT C=GREEN I=NONE;
SYMBOL2 V=NONE C=GREEN I=JOIN W=1;
PROC GPLOT DATA=data3;
PLOT pop#*t=1 f_log*tl1=2 / OVERLAY VAXIS=AXIS1
HAXIS=AXIS2;

’population in millions’);

RUN; QUIT;

~ J

rameter. Using the final estimates of PROC
NLIN by the SET statement in combination with

The procedure NLIN fits nonlinear regression
models by least squares. The OUTEST option

names the data set to contain the parame-
ter estimates produced by NLIN. The MODEL
statement defines the prediction equation by
declaring the dependent variable and defining
an expression that evaluates predicted values.
A PARAMETERS statement must follow the PROC
NLIN statement. Each parameter=value ex-
pression specifies the starting values of the pa-

The Mitscherlich Function

the WHERE data set option, the second data
step generates the fitted logistic function val-
ues. The options in the GPLOT statement cause
the data points and the predicted function to
be shown in one plot, after they were stored to-
gether in a new data set data3 merging datal
and data2 with the MERGE statement.

The Mitscherlich function is typically used for modelling the long term growth of

a system:

I (t) == fa(t; Br, B, Bs) = B1 + B2 exp(fst),

t>0, (1.7)

where 31, 82 € R and 83 < 0. Since (5 is negative we have lim;_, o fas(t) = 1 and
thus the parameter 1 is the saturation value of the system. The (initial) value of
the system at the time ¢t = 0 is f3,(0) = 81 + [Fa.

The Gompertz Curve

A further quite common function for modelling the increase or decrease of a system

is the Gompertz curve

fa(t) == fa(t; Br, B2, Bs) == exp(B1 + B2/35),

where (31,82 € R and 5 € (0,1).

t>0, (1.8)
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Figure 1.1.5. Gompertz curves with different parameters.

* %k Program 1_1_5 * %ok
TITLE1 ’Gompertz curves’;

DATA datail;
DO betal=1;
DO beta2=-1, 1;
DO beta3=0.05, 0.5;
DO t=0 TO 4 BY 0.05;

s = COMPRESS(’(’ || betal Il ?,” || beta2 ||
>, || beta3d || ’)’);
f_g=EXP(betal+beta2*betal3*xt);
OUTPUT ;

END; END; END; END;

SYMBOL1 C=GREEN V=NONE I=JOIN L=1;
SYMBOL2 C=GREEN V=NONE I=JOIN L=2;
SYMBOL3 C=GREEN V=NONE I=JOIN L=3;
SYMBOL4 C=GREEN V=NONE I=JOIN L=33;
AXIS1 LABEL=(H=2 °’f’ H=1 ’G’ H=2 ’(t)’);
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AXIS2 LABEL=(’t’);
LEGEND1 LABEL=(F=CGREEK H=2 ’(b’ H=1 ’1’ H=2
>’,b’> H=1 ’2° H=2 ’,b’ H=1 ’3° H=2 ’)=’);
PROC GPLOT DATA=datal;
PLOT f_g+*t=s / VAXIS=AXIS1
HAXIS=AXIS2 LEGEND=LEGENDI1;

RUN; QUIT;
\. Y

We obviously have

log(fa(t)) = B1 + B285 = P + B2 exp(log(Bs)t),

and thus log(fq) is a Mitscherlich function with parameters (1, 82,1log(8s). The
saturation size obviously is exp(f1).

The Allometric Function

The allometric function

fa(t) = falt; 51, B2) = Bot™, >0, (1.9)
with 81 € R, B2 > 0, is a common trend function in biometry and economics. It can

be viewed as a particular Cobb—Douglas function, which is a popular econometric
model to describe the output produced by a system depending on an input. Since

log(fa(t)) = log(B2) + B1log(t), t>0,

is a linear function of log(t), with slope 8; and intercept log(32), we can assume
a linear regression model for the logarithmic data log(y;)

log(y:) = log(B2) + B1log(t) + e, t>1,
where ¢; are the error variables.
Example 1.1.3. (Income Data). The following table shows the (accumulated)

annual average increases of gross and net incomes in thousands DM (deutsche
mark) in Germany, starting in 1960.
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Year t  Gross income T+ Net income y¢
1960 0 0 0
1961 1 0.627 0.486
1962 2 1.247 0.973
1963 3 1.702 1.323
1964 4 2.408 1.867
1965 5 3.188 2.568
1966 6 3.866 3.022
1967 7 4.201 3.259
1968 8 4.840 3.663
1969 9 5.855 4.321
1970 10 7.625 5.482

Table 1.1.2. Income Data.

We assume that the increase of the net income y; is an allometric function of the
time ¢ and obtain

log(y:) = log(B2) + 51 log(t) + &¢. (1.10)

The least squares estimates of 5, and log(2) in the above linear regression model
are (see, for example, Theorem 3.2.2 in Falk et al. (2002))

5, — Lica(log(t) — Tog(®)) (og(y) ~ Tog(y))
21 (log(t) — log(t))*

= 1.019,

where log(t) == 1071 32,2 log(t) = 1.5104, log(y) := 10~ 312, log(y:) = 0.7849,
and hence

log(B2) = log(y) — Ailog(t) = —0.7549

We estimate (35 therefore by
By = exp(—0.7549) = 0.4700.
The predicted value §; corresponds to the time ¢
G = 0.47¢1019, (1.11)

The following table lists the residuals y; — 3; by which one can judge the goodness

of fit of the model (1.11)).
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Yt — Qt
0.0159
0.0201
-0.1176
-0.0646
0.1430
0.1017
-0.1583
-0.2526
-0.0942
0.5662

O © 00 3O Ui W |

—_

Table 1.1.3. Residuals of Income Data.

A popular measure for assessing the fit is the squared multiple correlation coefficient

or R%-value " .
R2.—1— 21 (e — )

D1 (e — 9)?
where § := n~! Z?Zl y¢ is the average of the observations y; (cf Section 3.3 in
Falk et al. (2002)). In the linear regression model with ¢, based on the least
squares estimates of the parameters, R? is necessarily between zero and one with
the implications R? = 1 iﬂﬂ Sor i (ye — 9+)? = 0 (see Exercise 4). A value of R?
close to 1 is in favor of the fitted model. The model has R? equal to .9934,
whereas has R? = .9789. Note, however, that the initial model is not
linear and Bg is not the least squares estimates, in which case R? is no longer
necessarily between zero and one and has therefore to be viewed with care as a
crude measure of fit.

(1.12)

The annual average gross income in 1960 was 6148 DM and the corresponding net
income was 5178 DM. The actual average gross and net incomes were therefore
Ty := x4+ +6.148 and g := y; +5.178 with the estimated model based on the above
predicted values ¢,

G = G + 5.178 = 0.47¢019 1 5.178.

Note that the residuals g; — f/t = y; — 4 are not influenced by adding the constant
5.178 to y;. The above models might help judging the average tax payer’s situation
between 1960 and 1970 and to predict his future one. It is apparent from the
residuals in Table 1.1.3 that the net income y; is an almost perfect multiple of
t for t between 1 and 9, whereas the large increase y1¢ in 1970 seems to be an
outlier. Actually, in 1969 the German government had changed and in 1970 a long
strike in Germany caused an enormous increase in the income of civil servants.

Lif and only if
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1.2 Linear Filtering of Time Series

In the following we consider the additive model and assume that there is no
long term cyclic component. Nevertheless, we allow a trend, in which case the
smooth nonrandom component G; equals the trend function 73. Our model is,
therefore, the decomposition

Y;gZTt-f—St-'—Rh t:1,2, (113)

with E(R;) = 0. Given realizations y;, t = 1,2,...,n, of this time series, the aim
of this section is the derivation of estimators Tt, S, of the nonrandom functions 7}
and S and to remove them from the time series by considering y; — T, or Yt — S,
instead. These series are referred to as the trend or seasonally adjusted time series.
The data y; are decomposed in smooth parts and irregular parts that fluctuate
around zero.

Linear Filters

Let a—p,a_r41,...,as be arbitrary real numbers, where r,s > 0, r + s+ 1 < n.
The linear transformation

S
Yt*::ZauY}_u, t=s+1,...,n—r,

U=—rT

is referred to as a linear filter with weights a_.,...,as. The Y; are called input
and the Y;* are called output.

Obviously, there are less output data than input data, if (r, s) # (0,0). A positive
value s > 0 or r > 0 causes a truncation at the beginning or at the end of the time
series; see Example below. For convenience, we call the vector of weights
(au) = (a_r,...,as)T a (linear) filter.

A filter (a,), whose weights sum up to one, > a, = 1, is called moving
average. The particular cases a,, = 1/(2s+1), u = —s, ..., s, with an odd number
of equal weights, or a,, =1/(2s), u=—s+1,...,s—1, a_s = a; = 1/(4s), aiming
at an even number of weights, are simple moving averages of order 2s+ 1 and 2s,

respectively.

Filtering a time series aims at smoothing the irregular part of a time series, thus
detecting trends or seasonal components, which might otherwise be covered by
fluctuations. While for example a digital speedometer in a car can provide its
instantaneous velocity, thereby showing considerably large fluctuations, an analog
instrument that comes with a hand and a built-in smoothing filter, reduces these
fluctuations but takes a while to adjust. The latter instrument is much more
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comfortable to read and its information, reflecting a trend, is sufficient in most
cases.

To compute the output of a simple moving average of order 2s + 1, the following
obvious equation is useful:

1

tilzy;f*—"_ﬁ

(Y;ererl - thfs)~

This filter is a particular example of a low-pass filter, which preserves the slowly
varying trend component of a series but removes from it the rapidly fluctuating or
high frequency component. There is a trade-off between the two requirements that
the irregular fluctuation should be reduced by a filter, thus leading, for example, to
a large choice of s in a simple moving average, and that the long term variation in
the data should not be distorted by oversmoothing, i.e., by a too large choice of s.
If we assume, for example, a time series Y; = T; + R; without seasonal component,
a simple moving average of order 2s + 1 leads to

S

1 1 1 ®
Y = Y, ,=— T P —— Ri_, =T+ R}
¢ 25—}—12 t—u 28+1zstu+28+1u;8 t—u ¢ A,

U=—=s U=—

S

where by some law of large numbers argument

R ~E(R;) =0,
if s is large. But T} might then no longer reflect 7;. A small choice of s, however,
has the effect that R} is not yet close to its expectation.

Seasonal Adjustment

A simple moving average of a time series Y; = T; + S; + R; now decomposes as
Y =T, + 57 + Ry,

where S} is the pertaining moving average of the seasonal components. Suppose,
moreover, that S; is a p-periodic function, i.e.,

St:St+p, tzl,...7’l’},—p.

Take for instance monthly average temperatures Y; measured at fixed points, in
which case it is reasonable to assume a periodic seasonal component S; with period
p = 12 months. A simple moving average of order p then yields a constant value

F=8,t=p,p+1,...,n—p. By adding this constant S to the trend function
T; and putting T} := T; + 5, we can assume in the following that S = 0. Thus we
obtain for the differences

Dy:=Y, =Y ~ S+ R,
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and, hence, averaging these differences yields

ng—1

ZDt+ijSta t:]-a"'7p7
=0

Dt = Dt—p for t > D,

1

n¢

Dti

where n; is the number of periods available for the computation of D;. Thus,

. ~ 12 12
St::Dt—fZDjNSt—*ZSjZSt (1.14)

it pi3

is an estimator of S; = Si1, = Siy9p = ... satisfying

181, 154
52 Sy =0=123 Sty
i i

The differences Y; — S’t with a seasonal component close to zero are then the
seasonally adjusted time series.

Example 1.2.1. For the 51 Unemployedl Data in Example it is obviously
reasonable to assume a periodic seasonal component with p = 12 months. A simple
moving average of order 12

1

5
Yl‘f = 12(2}/;6+u;5}/;u+2n+6), t:7,...,45,

then has a constant seasonal component, which we assume to be zero by adding

this constant to the trend function. The following table contains the values of Dy,
D; and the estimates S; of S;.

d¢ (rounded values)

Month 1976 1977 1978 1979  d; (rounded) & (rounded)
January 53201 56974 48469 52611 52814 53136
February 59929 54934 54102 51727 55173 55495
March 24768 17320 25678 10808 19643 19966
April -3848 42 -5429 - -3079 -2756
May -19300 -11680 -14189 - -15056 -14734
June -23455 -17516  -20116 - -20362 -20040
July -26413  -21058  -20605 - -22692 -22370
August -27225  -22670  -20393 - -23429 -23107
September  -27358  -24646  -20478 - -24161 -23839
October -23967  -21397  -17440 - -20935 -20612
November  -14300 -10846 -11889 - -12345 -12023
December 11540 12213 7923 - 10559 10881

Table 1.2.1. Table of d:, d; and of estimates §; of the
seasonal component S; in the Unemployedl Data.
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We obtain for these data

12
. o 3867 -
So=d— 5 dj=di+ 5 = d, +322.25.

Jj=1

The Census X-11 Program

In the fifties of the 20th century the U.S. Bureau of the Census has developed a
program for seasonal adjustment of economic time series, called the Census X-11
Program. It is based on monthly observations and assumes an additive model

Y, =T, + 5 +R;

as in with a seasonal component S; of period p = 12. We give a brief
summary of this program following Wallis (1974), which results in a moving av-
erage with symmetric weights. The census procedure is discussed in Shiskin and
Eisenpress (1957); a complete description is given by Shiskin, Young and Mus-
grave (1967). A theoretical justification based on stochastic models is provided by
Cleveland and Tiao (1976).

The X-11 Program essentially works as the seasonal adjustment described above,
but it adds iterations and various moving averages. The different steps of this
program are

(1) Compute a simple moving average Y;* of order 12 to leave essentially a trend
Y ~T;.

(2) The difference
Dt ::Yti)/t* NSt+Rt
then leaves approximately the seasonal plus irregular component.
(3) Apply a moving average of order 5 to each month separately by computing

= (1 Lra 1 1 1 1

DY i= 5 (DY + 2D, +3D(" + 2D + Dy ) ~ S,
which gives an estimate of the seasonal component S;. Note that the moving
average with weights (1,2,3,2,1)/9 is a simple moving average of length 3
of simple moving averages of length 3.

(4) The Dgl) are adjusted to approximately sum up to 0 over any 12-months
period by putting

~(1 — (1 1 171 =(1 ~(1 1*1
Sf )= Dg)_ﬁ<§D§7)6+Dt(f)5+"'+D1£+)5+§D§+)6)'



20 Chapter 1. Elements of Exploratory Time Series Analysis

(5) The differences
v =Y - SV~ T+ Ry
then are the preliminary seasonally adjusted series, quite in the manner as
before.

(6) The adjusted data Yt(l) are further smoothed by a Henderson moving average
Y;* of order 9, 13, or 23.

(7) The differences
D =Y, —Y;* ~ S, + R,
then leave a second estimate of the sum of the seasonal and irregular com-
ponents.

(8) A moving average of order 7 is applied to each month separately

3
= (2 2
D= 3 auDh,,

u=-—3

where the weights a, come from a simple moving average of order 3 applied
to a simple moving average of order 5 of the original data, i.e., the vector of
weights is (1,2, 3,3,3,2,1)/15. This gives a second estimate of the seasonal
component S;.

(9) Step (4) is repeated yielding approximately centered estimates 315(2) of the
seasonal components.

(10) The differences
2 a(2
Y;( )= Y: — St( )

then finally give the seasonally adjusted series.

Depending on the length of the Henderson moving average used in step (6), Yt(2)
is a moving average of length 165, 169 or 179 of the original data. Observe that
this leads to averages at time ¢ of the past and future seven years, roughly, where
seven years is a typical length of business cycles observed in economics (Juglar

cycle)ﬂ

The U.S. Bureau of Census has recently released an extended version of the X-11
Program called Census X-12-ARIMA. It is implemented in SAS version 8.1 and
higher as PROC X12; we refer to the SAS online documentation for details.

We will see in Example[£.2.4]that linear filters may cause unexpected effects and so,
it is not clear a priori how the seasonal adjustment filter described above behaves.

2http://www.drfurfero.com/books/231book/ch05j . html
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Moreover, end-corrections are necessary, which cover the important problem of
adjusting current observations. This can be done by some extrapolation.

130000 4
110000
100000 ﬂ
90000 / /

800001 X X f
700001 *«%VX

RN

1200001 ]

unernployed

400001 . # X )\ #ﬁ o
. */
30000 | i p Y \Nlﬂ/ W
200001 \“ﬁ
100001
1975JAN 18%6IUN T 197TOCT - 1979MAR | 19B0JUL

+—*— original SR adjusted

Figure 1.2.1. Plot of the Unemployedl Data y; and of yt@), sea-
sonally adjusted by the X-11 procedure.

* k% Program 1_2_1 * ok k ;
TITLE1l ’Original and X11 seasonal adjusted data’;
TITLE2 ’Unemployedl Data’;

DATA datal;

INFILE ’c:\datal\unemployedl.txt’;
INPUT month $ t upd;
date=INTNX(’month’,’01jul75’d, _N_-1);
FORMAT date yymon.;

PROC X11 DATA=datal;

MONTHLY DATE=date ADDITIVE;

VAR upd;

OUTPUT 0UT=data2 Bl=upd Dll=updxlil;
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AXIS1 LABEL=(ANGLE=90
AXIS2 LABEL=(’Date’) ;

PROC GPLOT DATA=data2;
PLOT upd*date=1

RUN; QUIT;

\S

’unemployed ’) ;

SYMBOL1 V=DOT C=GREEN I=JOIN H=1 W=1
SYMBOL2 V=STAR C=GREEN I=JOIN H=1
LEGEND1 LABEL=NONE VALUE=(’origina

W=1;
1’ ’adjusted’);

updxllx*date=2
/ OVERLAY VAXIS=AXIS1 HAXIS=AXIS2 LEGEND=LEGEND1;

In the data, step values for the variables month,
t and upd are read from an external file, where
month is defined as a character variable by the
succeeding $ in the INPUT statement. By means
of the function INTNX, a new variable in a date
format is generated containing monthly data
starting from the 1st of July 1975. The tem-
porarily created variable _N_, which counts the
number of cases, is used to determine the dis-
tance from the starting value. The FORMAT
statement attributes the format yymon to this
variable, consisting of four digits for the year
and three for the month.

The SAS procedure X11 applies the Census X—
11 Program to the data. The MONTHLY state-

Best Local Polynomial Fit

ment selects an algorithm for monthly data,
DATE defines the date variable and ADDITIVE se-
lects an additive model (default: multiplicative
model). The results for this analysis for the
variable upd (unemployed) are stored in a data
set named data2, containing the original data
in the variable upd and the final results of the
X-11 Program in updx11.

The last part of this SAS program consists of
statements for generating the plot. Two AXIS
and two SYMBOL statements are used to cus-
tomize the graphic containing two plots, the
original data and the by X11 seasonally ad-
justed data. A LEGEND statement defines the
text that explains the symbols.

A simple moving average works well for a locally almost linear time series, but it
may have problems to reflect a more twisted shape. This suggests fitting higher
order local polynomials. Consider 2k + 1 consecutive data Yk, ..., Yt -, Yitrk
from a time series. A local polynomial estimator of order p < 2k+1 is the minimizer
Bo, - .., Bp satisfying

k

Z (Yt4u — Bo— Pru— -+ — BpuP)? = min.

u=—k

(1.15)

If we differentiate the left hand side with respect to each 3; and set the derivatives
equal to zero, we see that the minimizers satisfy the p + 1 linear equations

k k k k
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for j =0,...,p. These p+ 1 equations, which are called normal equations, can be
written in matrix form as

XT'XxXp=XTy (1.16)
where
1 -k (=K% ... (=k)
1 —k+1 (—k+1)?% ... (k+1)?

X - (1.17)

1 k k2 e kP
is the design matriz, B8 = (Bo,...,B,)" and y = (Y4—k,---,Ye+x)’. The rank of
XT X equals that of X, since their null spaces coincide (Exercise 11). Thus, the
matrix X7 X is invertible iff the columns of X are linearly independent. But this
is an immediate consequence of the fact that a polynomial of degree p has at most
p different roots (Exercise 12). The normal equations have, therefore, the

unique solution
B=(XTX)"'XTy. (1.18)

The linear prediction of ., based on u,u?, ..., uP, is
p .
Jepu = (Lu,...,uP)B = B,
j=0

Choosing u = 0 we obtain in particular that 8y = g, is a predictor of the central
observation y; among y;_g, ..., Y+k. Lhe local polynomial approach consists now
in replacing y; by the intercept .

Though it seems as if this local polynomial fit requires a great deal of computa-
tional effort by calculating 3y for each y, it turns out that it is actually a moving
average. First observe that we can write by (1.18)

k
Bo = Z Cult+u

u=—k

with some ¢, € R which do not depend on the values y, of the time series and
hence, (c,) is a linear filter. Next we show that the ¢, sum up to 1. Choose to
this end yiyy = 1 for u = —k,...,k. Then By =1, 1 = --- = B, = 0is an
obvious solution of the minimization problem . Since this solution is unique,

we obtain
k

1=0= Zcu

u=—k

and thus, (c,) is a moving average. As can be seen in Exercise 13 it actually has
symmetric weights. We summarize our considerations in the following result.
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Theorem 1.2.2. Fitting locally by least squares a polynomial of degree p to 2k +
1 > p consecutive data points Yi—k,...,Yi+r and predicting y, by the resulting
intercept Bo, leads to a moving average (c,) of order 2k + 1, given by the first row
of the matriz (XTX) 1 XT.

Example 1.2.3. Fitting locally a polynomial of degree 2 to five consecutive data
points leads to the moving average (Exercise 13)

1
W) = —(—3,12,17,12, -3)7.
(c) = 5= )

An extensive discussion of local polynomial fit is in Kendall and Ord (1993), Sec-
tions 3.2-3.13. For a book-length treatment of local polynomial estimation we
refer to Fan and Gijbels (1996). An outline of various aspects such as the choice of
the degree of the polynomial and further background material is given in Section
5.2 of Simonoff (1996).

Difference Filter

We have already seen that we can remove a periodic seasonal component from a
time series by utilizing an appropriate linear filter. We will next show that also a
polynomial trend function can be removed by a suitable linear filter.

Lemma 1.2.4. For a polynomial f(t) := co + c1t + -+ + c,t? of degree p, the
difference

Af@) = ft) = f(E=1)

s a polynomial of degree at most p — 1.

Proof. The assertion is an immediate consequence of the binomial expansion

-1r =3 (D)t =y
k=0

The preceding lemma shows that differencing reduces the degree of a polynomial.
Hence,

A2(t) == Af(H) — Af(t—1) = AAF(1))

is a polynomial of degree not greater than p — 2, and

ATf(t) == AAT (1),  1<q<p,
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is a polynomial of degree at most p—¢q. The function A? f(¢) is therefore a constant.
The linear filter

AYy =Y, =Y

with weights ag = 1,a; = —1 is the first order difference filter. The recursively
defined filter

APY; = A(APTYY),  t=p,...,m,

is the difference filter of order p.

The difference filter of second order has, for example, weights ag = 1,a1 = —2,as =
1

A%Y; = AY, — AY;
=Y, Y, 1 -V, 1 +Y, o=Y, -2Y, 1 +Y 0.

If a time series Y; has a polynomial trend T; = i:o ct® for some constants cy,
then the difference filter APY; of order p removes this trend up to a constant. Time
series in economics often have a trend function that can be removed by a first or
second order difference filter.

Example 1.2.5. (Electricity Data). The following plots show the total annual
output of electricity production in Germany between 1955 and 1979 in millions of
kilowatt-hours as well as their first and second order differences. While the original
data show an increasing trend, the second order differences fluctuate around zero
having no more trend, but there is now an increasing variability visible in the data.
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Figure 1.2.2. Annual electricity output, first and second order differences

* %k Program 1_2_2 * %ok
TITLE1 ’First and second order differences’;
TITLE2 ’Electricity Data’;

DATA datal (KEEP=year sum deltal delta2);
INFILE ’c:\datalelectric.txt’;
INPUT year t jan feb mar apr may jun
jul aug sep oct nov dec;
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sum=jan+feb+mar+apr+may+jun+
jul+aug+sep+oct+nov+dec;

deltal=DIF (sum) ;

delta2=DIF (deltal);

AXIS1 LABEL=NONE;
SYMBOL1 V=DOT C=GREEN I=JOIN H=0.5
GOPTIONS NODISPLAY;

PROC GPLOT DATA=datal GOUT=fig;
PLOT sum*year / VAXIS=AXIS1
PLOT deltal*year / VAXIS=AXIS1
PLOT delta2*year / VAXIS=AXIS1

HAXIS=AXIS2;
VREF=0;
VREF=0;

RUN;

GOPTIONS DISPLAY;

PROC GREPLAY NOFS
TEMPLATE=V3;
TREPLAY 1:GPLOT

RUN; DELETE _ALL_;

QUIT;
S

IGOUT=fig TC=SASHELP.TEMPLT;

2:GPLOT1 3:GPLOT2;

In the first data step, the raw data are read
from a file. Because the electric production is
stored in different variables for each month of
a year, the sum must be evaluated to get the
annual output. Using the DIF function, the re-
sulting variables deltal and delta2 contain the
first and second order differences of the original
annual sums.

To display the three plots of sum, deltal and
delta2 against the variable year within one
graphic, they are first plotted using the pro-
cedure GPLOT. Here the option GOUT=fig stores
the plots in a graphics catalog named fig,
while GOPTIONS NODISPLAY causes no output of
this procedure. After changing the GOPTIONS
back to DISPLAY, the procedure GREPLAY is in-
voked. The option NOFS (no full-screen) sup-
presses the opening of a GREPLAY window. The

subsequent two line mode statements are read
instead. The option IGOUT determines the in-
put graphics catalog, while TC=SASHELP . TEMPLT
causes SAS to take the standard template cata-
log. The TEMPLATE statement selects a template
from this catalog, which puts three graphics
one below the other. The TREPLAY statement
connects the defined areas and the plots of the
the graphics catalog. GPLOT, GPLOT1 and GPLOT2
are the graphical outputs in the chronologi-
cal order of the GPLOT procedure. The DELETE
statement after RUN deletes all entries in the
input graphics catalog.

Note that SAS by default prints borders, in or-
der to separate the different plots. Here these
border lines are suppressed by defining WHITE
as the border color.

For a time series Y; = T; + S; + R; with a periodic seasonal component S; =
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St+p = St2p = ... the difference
Y=Y - Yip

obviously removes the seasonal component. An additional differencing of proper
length can moreover remove a polynomial trend, too. Note that the order of
seasonal and trend adjusting makes no difference.

Exponential Smoother

Let Yy, ..., Y, be a time series and let o € [0, 1] be a constant. The linear filter

Y =aY,+ (1—a)¥y,, t>1,
with Y5 = Y is called exponential smoother.

Lemma 1.2.6. For an exponential smoother with constant o € [0, 1] we have

t—1
Yt*:aZ(l—a)jY},j—i—(l—a)tYo, t=1,2,...,n.
3=0

Proof. The assertion follows from induction. We have for ¢ = 1 by definition
Y = oY1 + (1 — «)Yp. If the assertion holds for ¢, we obtain for ¢ 4 1

Y1 = oY + (1 - @)Yy

t—1
=aYi+(1-a) (az (1-a)Y,,; (lfoz)tYo)
7=0

t
= oY (1 - a)fYeurj + (1 - )15,
=0
O

The parameter o determines the smoothness of the filtered time series. A value
of a close to 1 puts most of the weight on the actual observation Y;, resulting in
a highly fluctuating series Y;*. On the other hand, an « close to 0 reduces the
influence of Y; and puts most of the weight to the past observations, yielding a
smooth series Y;*. An exponential smoother is typically used for monitoring a
system. Take, for example, a car having an analog speedometer with a hand. It is
more convenient for the driver if the movements of this hand are smoothed, which
can be achieved by « close to zero. But this, on the other hand, has the effect that
an essential alteration of the speed can be read from the speedometer only with a
certain delay.
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Corollary 1.2.7. (i) Suppose that the random variables Yy, ..., Y, have common
expectation p and common variance o> > 0. Then we have for the exponentially
smoothed variables with smoothing parameter . € (0, 1)

B(Y,) = a Y (1 - afu+ p(l - )

=p(l—(1-a))+pl—-a)=p (1.19)
If the Y; are in addition uncorrelated, then

B((Y; — 1) = a2 Y_(1 - )P0 + (1 - a)o?

2 2
=0 a—— o) +(1—a)c

a’a 9
i 5= <O (1.20)

(ii) Suppose that the random variables Yy, Y1, ... satisfy E(Y;) = p for 0 <t <
N —1, and E(Y;) = A for t > N. Then we have for t > N

t—N t—1
EY)=a) (I-afA+a Y (I-afp+(1-a)u
7=0 j=t—N+1
=A1-(1—a) N+ u((1 —a)f Q-1 -a)N )+ (1 - a)t)

oo A (1.21)

The preceding result quantifies the influence of the parameter « on the expectation
and on the variance i.e., the smoothness of the filtered series Y;*, where we assume
for the sake of a simple computation of the variance that the Y; are uncorrelated.
If the variables Y; have common expectation p, then this expectation carries over
to Y. After a change point N, where the expectation of Y; changes for t > N
from p to A # w, the filtered variables Y;* are, however, biased. This bias, which
will vanish as ¢ increases, is due to the still inherent influence of past observations
Y;, t < N. The influence of these variables on the current expectation can be
reduced by switching to a larger value of «. The price for the gain in correctness
of the expectation is, however, a higher variability of Y;* (see Exercise 16).

An exponential smoother is often also used to make forecasts, explicitly by pre-
dicting Y341 through Y;*. The forecast error ;11 — Y;* =: e;41 then satisfies the
equation Y, | = aesr1 + V",
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1.3 Autocovariances and Autocorrelations

Autocovariances and autocorrelations are measures of dependence between vari-
ables in a time series. Suppose that Y7,...,Y,, are square integrable random vari-
ables with the property that the covariance Cov(Yiy, Y:) = E((Yiqr—E(Yitr))(Yi—
E(Y}))) of observations with lag k does not depend on ¢. Then

v(k) := Cov(Y41,Y1) = Cov(Yito,Ya) = ...

is called autocovariance function and

is called autocorrelation function.

Let y1, ..., yn be realizations of a time series Y7, ...,Y,. The empirical counterpart
of the autocovariance function is

i
o

_ o 1«
(s = D) =) with bary =~ g,
t=1 t=1

and the empirical autocorrelation is defined by

(k) = B _ T Wk = ) (e =)
"~ (0) Sy~ 9)?

See Exercise 8 (ii) in Chapter [2|for the particular role of the factor 1/n in place of
1/(n—k) in the definition of ¢(k). The graph of the function r(k), k =0,1,...,n—1,
is called correlogram. It is based on the assumption of equal expectations and
should, therefore, be used for a trend adjusted series. The following plot is the
correlogram of the first order differences of the Sunspot Data. The description
can be found on page It shows high and decreasing correlations at regular
intervals.
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Figure 1.3.1. Correlogram of the first order differences of the
Sunspot Data.

* Kk Program 1_3_1 *k Kk
TITLE1 ’Correlogram of first order differences’;
TITLE2 ’Sunspot Data’;

DATA datal;
INFILE ’c:\datal\sunspot.txt’;
INPUT spot @Q;
date=1748+_N_;
diff1=DIF (spot);

PROC ARIMA DATA=datal;
IDENTIFY VAR=diffl NLAG=49 0UTCOV=corr NOPRINT;

AXIS1 LABEL=(’r(k)’);
AXIS2 LABEL=(’k’) ORDER=(0 12 24 36 48) MINOR=(N=11);
SYMBOL1 V=DOT C=GREEN I=JOIN H=0.5 W=1;
PROC GPLOT DATA=corr;
PLOT CORR*LAG / VAXIS=AXIS1 HAXIS=AXIS2 VREF=0;
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tRUN; QUIT;

J

In the data step, the raw data are read into the
variable spot. The specification @@ suppresses
the automatic line feed of the INPUT statement
after every entry in each row. The variable date
and the first order differences of the variable of
interest spot are calculated.

The following procedure ARIMA is a crucial one
in time series analysis. Here we just need the
autocorrelation of delta, which will be cal-
culated up to a lag of 49 (NLAG=49) by the

IDENTIFY statement. The option OUTCOV=corr
causes SAS to create a data set corr containing
among others the variables LAG and CORR. These
two are used in the following GPLOT procedure
to obtain a plot of the autocorrelation func-
tion. The ORDER option in the AXIS2 statement
specifies the values to appear on the horizontal
axis as well as their order, and the MINOR option
determines the number of minor tick marks be-
tween two major ticks. VREF=0 generates a hor-
izontal reference line through the value 0 on the
vertical axis.

=

The autocovariance function 7 obviously satisfies v(0) > 0 and, by the Cauchy-

Schwarz inequality

Iy (R)| = [E((Yer — E(Yeqr)) (Y — E(V)))]
< E([Yix — E(Yiqn)|[Y: — E(Y2)])

< Var(Yisx)'/? Var(v;) /2

=(0)

for k£ > 0.

Thus we obtain for the autocovariance function the inequality

Ip(k)] <1 = p(0).

Variance Stabilizing Transformation

The scatterplot of the points (¢,y:) sometimes shows a variation of the data y:

depending on their height.

Example 1.3.1. (Airline Data). Figure 1.3.2, which displays monthly totals in
thousands of international airline passengers from January 1949 to December 1960,
exemplifies the above mentioned dependence. These Airline Data are taken from
Box and Jenkins (1976); a discussion can be found in Section 9.2 of Brockwell and

Davis (1991).
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Figure 1.3.2. Monthly totals in thousands of international airline
passengers from January 1949 to December 1960.

((

* k% Program 1_3_2 * ok ok ;
TITLE1 ’Monthly totals from January 49 to December 607;
TITLE2 ’Airline Data’;

DATA datal;
INFILE ’c:\datalairline.txt’;
INPUT vy;
t=_N_;

AXIS1 LABEL=NONE ORDER=(0 12 24 36 48 60 72 84
96 108 120 132 144) MINOR=(N=5);
AXIS2 LABEL=(ANGLE=90 ’total in thousands’);
SYMBOL1 V=DOT C=GREEN I=J0OIN H=0.2;
PROC GPLOT DATA=datal;
PLOT y*t / HAXIS=AXIS1 VAXIS=AXIS2;
RUN; QUIT;
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In the first data step, the monthly passenger The passenger totals are plotted against t with
totals are read into the variable y. To get a a line joining the data points, which are sym-
time variable t, the temporarily created SAS bolized by small dots. On the horizontal axis a
variable _N_ is used; it counts the observations. label is suppressed.

The variation of the data y; obviously increases with their height. The logtrans-
formed data x; = log(y:), displayed in the following figure, however, show no

dependence of variability from height.
=
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Figure 1.3.3. Logarithm of Airline Data z; = log(y:).

**x*%x Program 1_3_3 *kok
TITLE1l ’Logarithmic transformation’;
TITLE2 ’Airline Data’;

DATA datal;
INFILE ’c\datalairline.txt’;
INPUT vy;
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t=_N_;
x=L0G(y);

AXIS1 LABEL=NONE ORDER=(0 12 24 36 48 60 72 84
96 108 120 132 144) MINOR=(N=5);
AXIS2 LABEL=NONE;
SYMBOL1 V=DOT C=GREEN I=JOIN H=0.2;
PROC GPLOT DATA=datal;
PLOT x*t / HAXIS=AXIS1 VAXIS=AXIS2;
RUN; QUIT;

The plot of the log-transformed data is done log-transformation by means of the LOG func-
in the same manner as for the original data in tion and the suppressed label on the vertical
Program 1.3_2. The only differences are the axis.

&

The fact that taking the logarithm of data often reduces their variability, can
be illustrated as follows. Suppose, for example, that the data were generated by
random variables, which are of the form Y; = 0,Z;, where o; > 0 is a scale factor
depending on t, and Z;, t € Z, are independent copies of a positive random variable
Z with variance 1. The variance of Y; is in this case o, whereas the variance of
log(Y:) = log(ot) +1og(Z;) is a constant, namely the variance of log(Z), if it exists.

A transformation of the data, which reduces the dependence of the variability on
their height, is called variance stabilizing. The logarithm is a particular case of
the general Box—Cox (1964) transformation Ty of a time series (Y;), where the

parameter \ > 0 is chosen by the statistician:
YA =1)/A,  ¥i>0,1>0

T\(Y:) ==
log(Y2), Y: >0, A=0.

Note that limy\ 0 Th(Y;) = To(Y:) = log(Y) if ¥; > 0 (Exercise 19). Popular
choices of the parameter A are 0 and 1/2. A variance stabilizing transformation
of the data, if necessary, usually precedes any further data manipulation such as
trend or seasonal adjustment.

Exercises

1. Plot the Mitscherlich function for different values of 31, 82, 83 using PROC GPLOT.
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2. Put in the logistic trend model ze ' = 1/ys ~ 1/E(Y:) = 1/ fiog(t), t =1,...,n
Then we have the linear regression model z; = a + bz;—1 + €, where & is the error
variable. Compute the least squares estimates &,B of a,b and motivate the estimates
B1 := —log(b), B3 := (1 — exp(—31))/a as well as

ﬂg.:exp( +151—|— Zlog(@—l))

proposed by Tintner (1958); see also the next exercise.

3. The estimate 3> defined above suffers from the drawback that all observations y; have
to be strictly less than the estimate 3. Motivate the following substitute of 32

(Z 53 L exp )/Zexp Qﬁlt

as an estimate of the parameter 32 in the logistic trend model (|1.5)).

4. Show that in a linear regression model y; = fix: + B2, t = 1,. N the squared
multlple correlation coefficient R? based on the least squares estimates Bl, 62 and g 1=
ﬁlzt + ﬂz is necessarily between zero and one with R = 1 if and only if §: = y:,t =

0,...,n (see (1.12)).

5. (Population2 Data) The following table lists total population numbers of North Rhine-
Westphaha between 1961 and 1979. Suppose a logistic trend for these data and compute
the estimators 61, 63 using PROC REG. Since some observations exceed Bg, use 62 from
Exercise 3 and do an ex post-analysis.

Year | t | Total Population
in millions
1961 | 1 15.920
1963 | 2 16.280
1965 | 3 16.661
1967 | 4 16.835
1969 | 5 17.044
1971 | 6 17.091
1973 | 7 17.223
1975 | 8 17.176
1977 | 9 17.052
1979 | 10 17.002

Use PROC NLIN and do an ex post-analysis. Compare these two procedures by their
residual sums of squares.

6. (Income Data) Suppose an allometric trend function for the income data in Example
i

and do a regression analysis. Plot the data y; versus ﬁztﬁl. To this end compute the
R?-coefficient. Estimate the parameters also with PROC NLIN and compare the results.
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7. (Unemployed2 Data) The following table lists total numbers of unemployed (in thou-
sands) in West Germany between 1950 and 1993. Compare a logistic trend function with
an allometric one. Which one gives the better fit?

Year | Unemployed
1950 1869
1960 271
1970 149
1975 1074
1980 889
1985 2304
1988 2242
1989 2038
1990 1883
1991 1689
1992 1808
1993 2270

8. Give an update equation for a simple moving average of (even) order 2s.

9. (Public Expenditures Data) The following table lists West Germany’s public expen-
ditures (in billion D-Marks) between 1961 and 1990. Compute simple moving averages
of order 3 and 5 to estimate a possible trend. Plot the original data as well as the filtered
ones and compare the curves.

Year | Public Expenditures || Year | Public Expenditures
1961 1134 1976 546,2
1962 129,6 1977 582,7
1963 140,4 1978 620,8
1964 153,2 1979 669,8
1965 170,2 1980 722,4
1966 181,6 1981 766,2
1967 193,6 1982 796,0
1968 211,1 1983 816,4
1969 233,3 1984 849,0
1970 264,1 1985 875,5
1971 304,3 1986 912,3
1972 341,0 1987 949,6
1973 386,5 1988 991,1
1974 4448 1989 1018,9
1975 509,1 1990 1118,1

10. (Unemployed Females Data) Use PROC X11 to analyze the monthly unemployed
females between ages 16 and 19 in the United States from January 1961 to December
1985 (in thousands).
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11. Show that the rank of a matrix A equals the rank of AT A.
12. The p + 1 columns of the design matrix X in (1.17)) are linear independent.

13. Let (cu) be the moving average derived by the best local polynomial fit. Show that

(i) fitting locally a polynomial of degree 2 to five consecutive data points leads to
1 T
= —(-3,12,17,12, —
(CU) 35( 37 ) 77 ) 3) ’

(ii) the inverse matrix A" of an invertible m x m-matrix A = (a;;), ., j<m With the
property that a;; = 0, if ¢ + j is odd, shares this property, T

(iii) (cu) is symmetric, i.e., c—y = cy.

14. (Unemployedl Data) Compute a seasonal and trend adjusted time series for the
Unemployedl Data in the building trade. To this end compute seasonal differences and
first order differences. Compare the results with those of PROC X11.

15. Use the SAS function RANNOR to generate a time series Y; = bo+bit+e¢, t = 1,..., 100,
where bo, b1 # 0 and the e; are independent normal random variables with mean p and
variance o% if t < 69 but variance o3 # of if t > 70. Plot the exponentially filtered
variables Y;" for different values of the smoothing parameter « € (0,1) and compare the
results.

16. Compute under the assumptions of Corollary 1.2.7 the variance of an exponentially
filtered variable Y;* after a change point t = N with o2 := E(Y; — p)? for t < N and
72 := E(Y; — \)? for t > N. What is the limit for ¢ — co?

17. (Bankruptcy Data) The following table lists the percentages to annual bancruptcies
among all US companies between 1867 and 1932:

1.33 094 079 083 061 077 093 097 120 1.33
1.36 155 095 0.59 061 083 1.06 1.21 116 1.01
097 1.02 1.04 098 1.07 088 1.28 1.25 1.09 131
1.26 1.10 0.81 092 090 093 094 092 085 0.77
0.83 1.08 0.87 0.84 0.8 099 099 110 132 1.00
0.80 0.58 0.38 0.49 1.02 1.19 094 1.01 100 1.01
1.07 1.08 1.04 121 133 1.53

Compute and plot the empirical autocovariance function and the empirical autocorrela-
tion function using the SAS procedures PROC ARIMA and PROC GPLOT.

18. Verify that the empirical correlation r(k) at lag k for the trend y: = ¢, t =1,...,n
is given by
E o _k(k*-1)
k)=1—-3—+2———F
r(k) n + n(n?2 —1)’
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Plot the correlogram for different values of n. This example shows, that the correlogram
has no interpretation for non-stationary processes (see Exercise 17).

19. Show that
b Ty (¥) = To(¥)) = log(¥e),  ¥i >0

for the Box-Cox transformation T).






Chapter 2

Models of Time Series

Each time series Y7,...,Y, can be viewed as a clipping from a sequence of ran-
dom variables ..., Y _ o, Y 1,Yp, Y7, Y5, ... In the following we will introduce several
models for such a stochastic process Y; with index set Z.

2.1 Linear Filters and Stochastic Processes

For mathematical convenience we will consider complexr valued random variables
Y, whose range is the set of complex numbers C = {u + iv : u,v € R}, where
i = +/—1. Therefore, we can decompose Y as Y = Y1) +1iY(2), where Y(q) = Re(Y)
is the real part of Y and Y(9) = Im(Y") is its imaginary part. The random variable
Y is called integrable if the real valued random variables Y(1), ¥(2) both have finite
expectations, and in this case we define the expectation of Y by

E(Y) :=E(Y)) +iE(Yz) € C.

This expectation has, up to monotonicity, the usual properties such as E(aY +
bZ) =aE(Y)+bE(Z) of its real counterpart. Here a and b are complex numbers
and Z is a further integrable complex valued random variable. In addition we

have E(Y) = E(Y), where a = u — iv denotes the conjugate complex number of
a = u+iv. Since |a|? ;= u? + v? = aa = aa, we define the variance of Y by

Var(Y) :=E((Y — E(Y))(Y —E(Y))) > 0.

The complex random variable Y is called square integrable if this number is finite.
To carry the equation Var(X) = Cov(X, X) for a real random variable X over
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to complex ones, we define the covariance of complex square integrable random
variables Y, Z by

Cov(Y, Z) :=E((Y — E(Y))(Z — E(2))).

Note that the covariance Cov(Y, Z) is no longer symmetric with respect to Y and
Z, as it is for real valued random variables, but it satisfies Cov(Y, Z) = Cov(Z,Y).

The following lemma implies that the Cauchy—Schwarz inequality carries over to
complex valued random variables.

Lemma 2.1.1. For any integrable complez valued random variable Y = Y(q1)+iY(9)
we have
[E(Y)| < E(JY]) < E([Yy)]) + E([Yi2)])-

Proof. We write E(Y) in polar coordinates E(Y) = re?’, where r = |E(Y)| and
9 € [0,2m). Observe that Re(e™™’Y) = Re ((cos(z?) —isin(d)) (Y1) + Z'Y(Q))> =
cos(1) Yy +sin(9) Yoy < (cos2(19)+sin2(19))1/2(Y(21)+Y(22))1/2 = |Y| by the Cauchy—
Schwarz inequality for real numbers. Thus we obtain
[E(Y)|=r = E(e"Y)
- E (Re(e_wY)) < E(|Y)).

The second inequality of the lemma follows from [Y] = (Y3, + 1’(22))1/2 <Yyl +
Yoo .

The next result is a consequence of the preceding lemma and the Cauchy—Schwarz
inequality for real valued random variables.

Corollary 2.1.2. For any square integrable complex valued random variable we
have

|E(Y2)| <E(]Y]|Z]) <E(Y|})V2E(2]*)"/*
and thus,

| Cov (Y, Z)| < Var(Y)Y? Var(Z2)'/2.

Stationary Processes

A stochastic process (Y;):ez of square integrable complex valued random variables
is said to be (weakly) stationary if for any t1,to,k € Z

E(Ytl) = E(Y;fl-‘rk) and E()/l‘/l?tz) = E()/tl-l-k?tz-i-k)'
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The random variables of a stationary process (Y;):cz have identical means and
variances. The autocovariance function satisfies moreover for s,t € Z

v(t,s) = Cov(Yz,Ys) =Cov(Yi_s,Yy) =:7(t—s)
= COV(Yba Y;,S) = COV(Y;ftv Yb) = A/(S - t)a

and thus, the autocovariance function of a stationary process can be viewed as a
function of a single argument satisfying v(t) = y(—t),t € Z.

A stationary process (e¢)icz of square integrable and uncorrelated real valued
random variables is called white noise i.e., Cov(e, e5) = 0 for ¢ # s and there exist
€ R, o> 0 such that

E(et) = p, E((er — /,4)2) = 02’ t € Z.

In Section[I.2] we defined linear filters of a time series, which were based on a finite
number of real valued weights. In the following we consider linear filters with an
infinite number of complex valued weights.

Suppose that (g¢):ez is a white noise and let (at)iez be a sequence of complex
numbers satisfying > 7° fa¢| = Y ,50 lae] + Doy Ja—i| < oo. Then (a;)iez is
said to be an absolutely summable (linear) filter and

o0
Y, = Z Ay€t—n = Z QuEt—u + Z A—yEttu, te Zv
U=—00 u>0 u>1

is called a general linear process.

Existence of General Linear Processes

We will show that Y07 |ayei—y| < oo with probability one for ¢ € Z and, thus,
Y, = Yol o Quéi—y is well defined. Denote by Lo := La(€2, A, P) the set of all
complex valued square integrable random variables, defined on some probability
space (Q, A, P), and put ||Y]|z := E(|Y|?)'/2, which is the Lo-pseudonorm on L.
Lemma 2.1.3. Let X,,, n € N, be a sequence in Lo such that || X,41—Xp|l2 <277

for each n € N. Then there exists X € Lo such that lim, ... X, = X with
probability one.

Proof. Write X, =, (Xy — Xj—1), where X := 0. By the monotone conver-
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gence theorem, the Cauchy—Schwarz inequality and Corollary we have
B (1% = Xeeal) = YB(X = Xeoa) £ D0 1K = Koo le
k>1 k>1 k>1

1 Xall2+ ) 27F < o0
E>1

IN

This implies that ), <, | Xk — Xx—1] < oo with probability one and hence, the
limit limy, oo ey (Xk — Xg—1) = limy, 00 X;, = X exists in C almost surely.
Finally, we check that X € Ls:

B(IX[?) = E( lim_|X,|*)

< B im (L1 x))
k<n

= Jim B (21X xia)))
k<n

= lim > B(IX, - Xp1|[X; — X, 1)

n—oo

k,j<n

< limsup Z [[ Xk — X—1ll2 ||X5 — Xj-1ll2

" kyj<n

2

= limsup (Z [| Xk — Xk—1||2)

n— o0 k<n
= (Z ||Xk — Xk_1||2> < Q.

k>1

O

Theorem 2.1.4. The space (La, ||-||2) is complete i.e., suppose that X,, € Ly, n €
N, has the property that for arbitrary € > 0 one can find an integer N(g) € N such
that || X, — Xmll2 < € if n, m > N(g). Then there exists a random variable
X € Ly such that lim,,_, || X — X,||2 = 0.

Proof. We can obviously find integers nq < ng < ... such that
[ Xn — Xonll2 <27F  ifn,m > ny.

By Lemma, there exists a random variable X € Ls such that limg_,oo Xp, =
X with probability one. Fatou’s lemma implies

IXn — X3 = E(|X, — XJ?)

- E (likminf X, — Xnk|2) < liminf || X, — Xo, |3
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The right-hand side of this inequality becomes arbitrarily small if we choose n
large enough, and thus we have lim,, . || X, — X||3 = 0. O

The following result implies in particular that a general linear process is well
defined.

Theorem 2.1.5. Suppose that (Z;)iez is a complex valued stochastic process such
that sup, E(|Z:]) < oo and let (at)iez be an absolutely summable filter. Then
we have Y,y lauZi—y| < 00 with probability one for t € Z and, thus, Y; :=
Y wez Guls—u exists almost surely in C. We have moreover E(|Y;]) < oo, t € Z,
and

(i) E(Y:) =limy, 0o > i auB(Zi_y), t € Z,

u=—mn Yu

(i) B(|Y; = S0 auZi_u|) "=370.

If, in addition, sup, E(|Z;|?) < oo, then we have E(|Y;|?) < 0o, t € Z, and

n—oo

(iit) |Ye = 2 @uZi—ull2 —0.

Proof. The monotone convergence theorem implies

n
E (D laul1Zeal) < lim (3 Jau) Sup (| Ze-) < o0

[(N<y/ u=-—n

and, thus, we have >, |au||Z: | < co with probability one as well as E(|Y3|) <
E(Y) ez laul|Zi—u|) < oo, t € Z. Put X,(t) := >o__, ayZi_y. Then we
have |Y; — X, ()] —n—oo 0 almost surely. By the inequality |Y; — X, (¢)] <
23 ez lau]|Zi—ul, n € N, the dominated convergence theorem implies (ii) and

therefore (i):

n

|E(Y)) = Y auE(Zimu)l = [E(Y:) - E(Xa(t))]

u=-—n

< E([Y: = Xu()]) —n—oo 0.

Put K := sup, E(|Z;|?) < oo. The Cauchy—Schwarz inequality implies for m,n € N
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and € >0
2
n+m
E(|Xntm(t) — X)) = E[| 3 auZis
|u|=n+1
n+m n+m

Z Z Ay Gy E(thuthw)

lu|=n+1 |w|=n+1

- 2 2
< K? Z | < K? Z |ay] <e
|u|=n+1 |u|>n

if n is chosen sufficiently large. Theorem now implies the existence of a
random variable X (t) € Ly with lim, o || X5 (t) — X (¢)||2 = 0. For the proof of
(iii) it remains to show that X (¢) = Y; almost surely. Markov’s inequality implies

PY: = X (t)] 2 e} < e E(JY; = X (8)]) —n—o0 0
by (ii), and Chebyshev’s inequality yields
P{X(t) = Xn(t)| > e} < e7?|IX () = Xn(t)]l2 —n—c0 0
for arbitrary e > 0. This implies
P{Y: — X()] = 2} < P{Y; — Xa(t)] + 1 Xa(t) - X(8)] > ¢}
S P{lY: = Xau(8)] 2 €/2} + P{X(t) — Xu ()| =2 €/2} —n—00 0
and thus Y; = X (¢) almost surely, which completes the proof of Theorem O

Theorem 2.1.6. Suppose that (Zi)icz s a stationary process with mean pz =
E(Zp) and autocovariance function vz and let (a:) be an absolutely summable
filter. Then Yy =3 ayZi—y, t € Z, is also stationary with

py =E(Yo) = (Zau>/~bz

u

and autocovariance function

vy (t) = Z Z Ayl Yz (t+ w — u).

Proof. Note that
E(|Z)*) = E (12 — pz + Mz\z)
= E((Zi — pz + pz)(Ze — p- + i)
E(1Z; — pzl?) + |uzl?
v2(0) + |puz[?
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and, thus,

sup B(| Z;|?) < oo.

tez
We can, therefore, now apply Theorem [2.1.5] Part (i) of Theorem immedi-
ately implies E(Y;) = (3_, au)pz and part (iii) implies for t,s € Z

n n

E((th _NY)(YS_,U/Y)) = nh—{lgo COV( Z authua Z aszfw)

= nlglgo Z Z by COV(Zi_ry Zs—p)

U=—nNw=—m

n n
= nh_)néo Z Z Yz (t — s+ w —u)

U=—Nw=—mn

= Z Zau&w'yz(t —s+w—u).
The covariance of Y; and Y, depends, therefore, only on the difference t — s.
Note that |yz(t)] < 7z(0) < oo and thus, Y, > lawGwyz(t — s + w — u)| <
v2(0)(X, lau])? < oo, ie., (V3) is a stationary process. O

The Covariance Generating Function

The covariance generating function of a stationary process with autocovariance
function + is defined as the double series

Glz) =D )z =) ()" + Y y(~t)=",

teZ t>0 t>1

known as a Laurent series in complex analysis. We assume that there exists a real
number r > 1 such that G(z) is defined for all z € C in the annulus 1/r < |z] < r.
The covariance generating function will help us to compute the autocovariances of
filtered processes.

Since the coefficients of a Laurent series are uniquely determined (see e.g. Chap-
ter V, 1.11 in Conway (1975)), the covariance generating function of a stationary
process is a constant function if and only if this process is a white noise i.e.,
~(t) =0 for t # 0.

Theorem 2.1.7. Suppose that Y; = Zu AuEt—n, t € Z, is a general linear process
with 3_, |ay|[2"] < oo, if r™! < |z| <1 for some r > 1. Put 0 := Var(e). The
process (Y;) then has the covariance generating function

G(z2) = 02(2%2“) (Z&uz_"), rh <z <
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Proof. Theorem implies for t € Z

Cov(Y;, Yo) ZZauaw’ya (t+w—u)
= aQZauaU,t.
This implies u
z) = O'ZZZCLuC_Lu_tZt
(Z|au|2+zzauau Y Y et

t>1 u t<—1 u

2 t —t

(E |y +E E a2~ —1—5 E aua 2" )
u t<u—1 u t>u+1

= o2 Z Z a2ttt =0 (Z auz“) (Z @tz_t).
u t u t
O

Example 2.1.8. Let (g¢)icz be a white noise with Var(eg) =: 02 > 0. The
covariance generating function of the simple moving average Y; = >  ay&;—, with
a_1 =ap=a; =1/3 and a, = 0 elsewhere is then given by

G(z) = T 4+22 4+ 2+ 22+ 27

(272 +2:71 43204221 4+ 22%), z€eR.

IR

Then the autocovariances are just the coefficients in the above series

7(0) = %a y(1) =~(-1) = 2%, v(2) =7(-2) = %, v(k) = 0 elsewhere.

This explains the name covariance generating function.

The Characteristic Polynomial

Let (a,) be an absolutely summable filter. The Laurent series

= g ay 2"

UEL

is called characteristic polynomial of (a,). We know from complex analysis that
A(z) exists either for all z in some annulus r < |z| < R or almost nowhere. In the
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first case the coefficients a,, are uniquely determined by the function A(z) (see e.g.
Chapter V, 1.11 in Conway (1975)).

If, for example, (a,) is absolutely summable with a, = 0 for u > 1, then A(z)
exists for all complex z such that |z| > 1. If a,, = 0 for all large |ul|, then A(z)
exists for all z # 0.

Inverse Filters

Let now (a,) and (b,) be absolutely summable filters and denote by Y; :=
> @uZi—u, the filtered stationary sequence, where (Z,, ),z is a stationary process.
Filtering (Y):cz by means of (b,) leads to

wayrtfw - Z Z bwauthwfu = Z( Z bwau)thvy
w w o ou

v utw=v

where ¢, := Zu = by, v € Z, is an absolutely summable filter:
Z leo| < Z Z |bwaw| = (Z |au|)(z |bw]) < o0.
v v utw=v u w

We call (¢,) the product filter of (a,) and (by).

Lemma 2.1.9. Let (a,) and (b,,) be absolutely summable filters with characteristic
polynomials A1(z) and Az(z), which both exist on some annulus r < |z| < R. The
product filter (c,) = (Y, w—y bwau) then has the characteristic polynomial

A(z) = A1(2)Az(2).

Proof. By repeating the above arguments we obtain

Az =Y ( 3 bwau>z” — A1(2) As(2).

v utw=v

O

Suppose now that (a,,) and (b,,) are absolutely summable filters with characteristic
polynomials A;(z) and As(z), which both exist on some annulus r < z < R, where
they satisfy A;(2)A2(z) = 1. Since 1 = ) ¢,2" if cg = 1 and ¢, = 0 elsewhere,
the uniquely determined coefficients of the characteristic polynomial of the product
filter of (a,) and (b,) are given by

1 ifv=0
Z bwau: .
0 ifv#0.

utw=v
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In this case we obtain for a stationary process (Z;) that almost surely

Yi=Y auZiu and > bYi, =2, teL. (2.1)

The filter (b,) is, therefore, called the inverse filter of (a,).
Causal Filters

An absolutely summable filter (ay)ycz is called causal if a,, = 0 for u < 0.

Lemma 2.1.10. Let a € C. The filter (a,) with ag = 1, ay = —a and a,, = 0
elsewhere has an absolutely summable and causal inverse filter (by,)u>o0 if and only
if la| < 1. In this case we have b, = a*, u > 0.

Proof. The characteristic polynomial of (a,) is A;(2) = 1 —az, z € C. Since
the characteristic polynomial As(z) of an inverse filter satisfies A;(z)Az2(z) =1 on
some annulus, we have Az(z) = 1/(1 — az). Observe now that

1
T—as :Za“z“, if |2] < 1/]al.
u>0

As a consequence, if |a| < 1, then Ay(z) = >, a" 2" exists for all |z| < 1 and
the inverse causal filter (a"),>o is absolutely summable, i.e., > -, |a"*| < oco. If
la] > 1, then As(z) = Y, a"z" exists for all |z| < 1/|al, but Y, < la]* = oo,
which completes the proof. O

Theorem 2.1.11. Let a1, aq,...,a, € C, a, # 0. The filter (a,,) with coefficients
ap = 1,a1,...,a, and a, = 0 elsewhere has an absolutely summable and causal
inverse filter if the p roots z1,...,2, € C of A(z) = 1+ a1z +azz?+...+a,2? =0
are outside of the unit circle i.e., |z;| > 1 for 1 <i <p.

Proof. We know from the Fundamental Theorem of Algebra that the equation
A(z) = 0 has exactly p roots z1,...,2, € C (see e.g. Chapter IV, 3.5 in Conway
(1975)), which are all different from zero, since A(0) = 1. Hence we can write (see
e.g. Chapter IV, 3.6 in Conway (1975))

AR) = apz—21)- (2= 2)
=c(1-2)(-5) - (-2),

where ¢ := ap(—1)P2; - - - z,. In case of |z;| > 1 we can write for |z| < |z

1 1\,
1—é_z<2) =5
zZi u>0
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where the coefficients (1/z;)", u > 0, are absolutely summable. In case of |z;| < 1,
we have for |z| > |z

s LA e ()

zi Zi u>0 u<—1

where the filter with coefficients —(1/z;)%, u < —1, is not a causal one. In case of
|z;| = 1, we have for |z]| < 1

where the coefficients (1/z;)", u > 0, are not absolutely summable. Since the
coefficients of a Laurent series are uniquely determined, the factor 1 — z/z; has an
inverse 1/(1—2/z;) = Y, >0 buz" on some annulus with > - [b,| < oo if |z;] > 1.
A small analysis implies that this argument carries over to the product

1 1

) 0-5)

which has an expansion 1/A(z) =), < by2" on some annulus with ), < |by| < 00
if each factor has such an expansion, and thus, the proof is complete. O

Remark 2.1.12. Note that the roots z1,...,2, of A(2) =1+ a1z + ...+ ap2?
are complex valued and thus, the coefficients b, of the inverse causal filter will, in
general, be complex valued as well. The preceding proof shows, however, that if
a, and each z; are real numbers, then the coefficients b, u > 0, are real as well.

The preceding proof shows, moreover, that a filter (a,) with complex coeflicients
ag,ai,...,ap € C and a, = 0 elsewhere has an absolutely summable inverse filter
if no root z € C of the equation A(z) = ap+a1z+...+apz? =0 has length 1 i.e.,
|z| # 1 for each root. The additional condition |z| > 1 for each root then implies
that the inverse filter is a causal one.

Example 2.1.13. The filter with coefficients ag = 1,a; = —0.7 and a3 = 0.1 has
the characteristic polynomial A(z) = 1 — 0.7z + 0.12% = 0.1(z — 2)(z — 5), with
21 = 2,29 = 5 being the roots of A(z) = 0. Theorem 2.1.11 implies the existence
of an absolutely summable inverse causal filter, whose coeflicients can be obtained



52 Chapter 2. Models of Time Series

by expanding 1/A(z) as a power series of z:

A(lz) B (1 )1(1 ) =2 (%)“zu 22:0 (%)wzw

O (CANCE

v>0

The preceding expansion implies that b, := (10/3)(2~ "+ — 5=+ 4 > 0, are
the coeflicients of the inverse causal filter.

2.2 Moving Averages and Autoregressive Process-
es

Let a1,...,aq € R with a4 # 0 and let (e4)¢cz be a white noise. The process
Y=g+ a16i-1+ -+ aqei—q

is said to be a moving average of order g, denoted by MA(q). Put ag = 1. Theorem

and imply that a moving average Y; = >.?_, au&i—, Is a stationary
process with covariance generating function

q q

o2 ( Z auz“) ( Z awsz)
u=0 w=0
a q

= 02§ E Ay Qw2 ™Y

u=0w=0
q

o2 E E Ay Q2 ™Y

V=—q u—w=v

q q—v
2
o Z (Z av+waw)z”, z€eC,

v=—q w=0

G(2)

where 02 = Var(gg). The coefficients of this expansion provide the autocovariance
function v(v) = Cov(Yp,Y,), v € Z, which cuts off after lag g.
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Lemma 2.2.1. Suppose that Y; = > ayer—u, t € Z, is a MA(q)-process. Put
w:= E(gg) and 0? := Var(eqg). Then we have

(i) B(Yy) = n3 i Ous

0 , v>q,
(’LZ) ")/(’U) = COV(K,,Y()) = q—v
02 Z av+waw 9 0 S v S q,
w=0
Y(=v) =7(v),
(iii) Var(Yo) = 4(0) = 02 0y a2,
0 y V>4,
‘ ~(v) q-v
w) p(v) = —= = q 2 <
(i) ) = 35 = Y ( 2 aorwan) [ (Shaad) + 0<vsa
1 , v=0,
p(—v) = p(v).

Example 2.2.2. The MA(1)-process Y; = €; 4+ ag;—1 with a # 0 has the autocor-

relation function
1 ,v=20

pv) =3 a/(1+a2) ,v=+l
0 elsewhere.

Since a/(1 + a?) = (1/a)/(1 + (1/a)?), the autocorrelation functions of the two
MA(1)-processes with parameters a and 1/a coincide. We have, moreover, |p(1)| <
1/2 for an arbitrary MA(1)-process and thus, a large value of the empirical au-
tocorrelation function r(1), which exceeds 1/2 essentially, might indicate that an
MA(1)-model for a given data set is not a correct assumption.

Invertible Processes

The MA(q)-process Yy = Y0 ayei—y, with ag = 1 and a, # 0, is said to be
invertible if all ¢ roots z1,...,z4 € C of A(z) = >?_, a,z" = 0 are outside of the
unit circle i.e., if |z;| > 1 for 1 <i <gq.

Theorem [2.1.11| and representation (2.1) imply that the white noise process (&),
pertaining to an invertible MA(q)-process Y; = Y 1, ay&¢—y, can be obtained by
means of an absolutely summable and causal filter (b,),>0 via

&t = Zbuyrtfua te Za

u>0
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with probability one. In particular the MA(1)-process Y; = e, — ag;—1 is invertible
iff |a| < 1, and in this case we have by Lemma [2.1.10| with probability one

& = Z aYi_u, teZ.
u>0

Autoregressive Processes

A real valued stochastic process (Y;) is said to be an autoregressive process of
order p, denoted by AR(p) if there exist a1,...,a, € R with a, # 0, and a white
noise (g¢) such that

Y =a1Yi_1 +...—|—ath_p+5t, teZ. (22)

The value of an AR(p)-process at time ¢ is, therefore, regressed on its own past p
values plus a random shock.

The Stationarity Condition

While by Theorem MA(q)-processes are automatically stationary, this is
not true for AR(p)-processes (see Exercise 26). The following result provides a

sufficient condition on the constants a1, ..., a, implying the existence of a uniquely
determined stationary solution (Y;) of (2.2)).

Theorem 2.2.3. The AR(p)-equation with given constants ai,...,a, and
white noise (¢¢)tez has a stationary solution (Yi)iez if all p roots of the equation
1 —ajz —agz? — ... — apz? = 0 are outside of the unit circle. In this case, the
stationary solution is almost surely uniquely determined by

Y=Y bustu, tEL

u>0
where (by)y>0 s the absolutely summable inverse causal filter of co = 1, ¢, =
—ay, u=1,...,p and ¢, = 0 elsewhere.

Proof. The existence of an absolutely summable causal filter follows from Theorem
2.1.11] The stationarity of Y; = > - bu&¢—y is a consequence of Theorem
and its uniqueness follows from B

ath}—alY}_l—...—apY}_p, teZ,

and equation (2.1)). O
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The condition that all roots of the characteristic equation of an AR(p)-process
Y = Zﬁzl ayYi_y + € are outside of the unit circle i.e.,

l—ayz—agz? —...—ay,2? #0for 2] <1, (2.3)

will be referred to in the following as the stationarity condition for an AR(p)-
process.

Note that a stationary solution (Y;) of (2.1) exists in general if no root z; of the
characteristic equation lies on the unit sphere. If there are solutions in the unit
circle, then the stationary solution is noncausal, i.e., Y; is correlated with future
values of €5, s > t. This is frequently regarded as unnatural.

Example 2.2.4. The AR(1)-process Y; = aY;—1 + &4, t € Z, with a # 0 has the
characteristic equation 1 —az = 0 with the obvious solution z; = 1/a. The process
(Y3), therefore, satisfies the stationarity condition iff |z1| > 1 i.e., iff |a| < 1. In this
case we obtain from Lemma [2.1.10] that the absolutely summable inverse causal
filter of a9 = 1, a1 = —a and a, = 0 elsewhere is given by b, = a“, u > 0, and
thus, with probability one

Y, = Z buct—u = Z au5t7u~

©u>0 u>0

Denote by o2 the variance of eg. From Theorem we obtain the autocovariance
function of (Y7)

v(s)

Z Z bubw COV(507 €s+w—u)

u

Z bubu—s COV(€Oa 50)

u>0

s
= 0’2(18 E a2(u_s):0'21a o 520’172,.._
—a

u>s

and y(—s) = 7(s). In particular we obtain v(0) = 02/(1 — a?) and thus, the
autocorrelation function of (Y;) is given by

p(s) = al*l, s € Z.

The autocorrelation function of an AR(1)-process Y; = aY;_1 + ¢ with |a| < 1
therefore decreases at an exponential rate. Its sign is alternating if a € (—1,0).
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10 20

a= e (.7 e 05 e 09

Figure 2.2.1. Autocorrelation functions of AR(1)-processes
Y; = aY;_1 + e; with different values of a.

-
***% Program 2_2_1 KKk

TITLE1l ’Autocorrelation functions of AR(1l)-processes;

DATA datal;

DO a=-0.7, 0.5, 0.9;
DO s=0 TO 20;
rho=ax*x*s;

QUTPUT ;
END;
END;

SYMBOL1 C=GREEN V=DOT I=JOIN H=0.3 L=1;
SYMBOL2 C=GREEN V=DOT I=JOIN H=0.3 L=2;
SYMBOL3 C=GREEN V=DOT I=JOIN H=0.3 L=33;

AXIS1 LABEL=(’s’);
AXIS2 LABEL=(F=CGREEK ’r’ F=COMPLEX H=1 ’a’ H=2 ’(s)’);
LEGEND1 LABEL=(’a=’) SHAPE=SYMBOL(10,0.6);
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PROC GPLOT DATA=datal;

PLOT rhox*s=a / HAXIS=AXIS1 VAXIS=AXIS2
LEGEND=LEGEND1 VREF=0;

RUN; QUIT;

The data step evaluates rho for three differ-
ent values of a and the range of s from 0
to 20 using two loops. The plot is gener-
ated by the procedure GPLOT. The LABEL op-
tion in the AXIS2 statement uses, in addition
to the greek font CGREEK, the font COMPLEX

assuming this to be the default text font
(GOPTION FTEXT=COMPLEX). The SHAPE option
SHAPE=SYMBOL(10,0.6) in the LEGEND state-
ment defines width and height of the symbols
presented in the legend.

=
g

The following figure illustrates the significance of the stationarity condition |a| < 1
of an AR(1)-process. Realizations YV; = aY;—1 + ¢4, t = 1,...,10, are displayed

for a = 0.5 and a = 1.5, where €1, €9, ...

,€10 are independent standard normal in

each case and Yj is assumed to be zero. While for a = 0.5 the sample path follows
the constant zero closely, which is the expectation of each Y;, the observations Y;

decrease rapidly in case of a = 1.5.

15
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—301
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Figure 2.2.2. Realizations Y; = 0.5Y;_1+e; and Y; = 1.5Y;_1+
e, t = 1,...,10, with &, independent standard normal and

Yo = 0.
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* % %
TITLE1

Program 2_2_2 * %ok

DATA datal;
DO a=0.5,
t=0;

DO

1.5;
y=0; OUTPUT;
t=1 TO 10;
y=a*y+RANNOR (1) ;
QUTPUT;
END;
END;

SYMBOL1 C=GREEN V=DOT I=JOIN
SYMBOL2 C=GREEN V=DOT I=JOIN H=0.
AXIS1 LABEL=(’t’) MINOR=NONE;

AXIS2 LABEL=(C’Y’ H=1 °’t’);

’Realizations of AR(1)-processes;

LEGEND1 LABEL=(’a=’) SHAPE=SYMBOL(10,0.6);
PROC GPLOT DATA=datal (WHERE=(t>0));
PLOT y*t=a / HAXIS=AXIS1 VAXIS=AXIS2 LEGEND=LEGENDI1;

RUN; QUIT;

\S

The data are generated within two loops, the
first one over the two values for a. The vari-
able y is initialized with the value 0 correspond-
ing to t=0. The realizations for t=1, ..., 10
are created within the second loop over t and
with the help of the function RANNOR which re-
turns pseudo random numbers distributed as
standard normal. The argument 1 is the initial
seed to produce a stream of random numbers.
A positive value of this seed always produces
the same series of random numbers, a negative
value generates a different series each time the
program is submitted. A value of y is calcu-

The Yule—Walker Equations

lated as the sum of a times the actual value
of y and the random number and stored in a
new observation. The resulting data set has 22
observations and 3 variables (a, t and y).

In the plot created by PROC GPLOT the initial
observations are dropped using the WHERE data
set option. Only observations fulfilling the con-
dition t>0 are read into the data set used here.
To suppress minor tick marks between the inte-
gers 0,1, ...,10 the option MINOR in the AXIS1
statement is set to NONE.

The Yule-Walker equations entail the recursive computation of the autocorrelation
function p of an AR(p)-process satisfying the stationarity condition ([2.3)).
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Lemma 2.2.5. Let YV, = >.7_ a,Yi_y + & be an AR(p)-process, which satisfies
the stationarity condition (2.3). Its autocorrelation function p then satisfies for
s=1,2,... the recursion

p(s) = 3 aup(s —u), (2.4)

known as Yule-Walker equations.

Proof. With p := E(Yp) we have for t € Z

P
)/t_,u:Zau(Yt—u_,UJ)‘i'Et_,u(l_Zau)a (*)
u=1 u=1
and taking expectations of (ED gives (1 —>"_ a,) = E(g9) =: v due to the
stationarity of (Y;). By multiplying equation (ED with Y;_s — p for s > 0 and
taking expectations again we obtain

v(s) = E((Ye — ) (Yis — 1))

—~

Gy E((}/t—u - ,UJ)(YVt—s - /JJ)) + E((at - V)()/t—s - H))

I
M=

S
Il
—

ayy(s — u).

Il
M=

Il
—

u

for the autocovariance function «y of (¥;). The final equation follows from the fact
that Y;_, and €; are uncorrelated for s > 0. This is a consequence of Theorem
by which almost surely Y;_s = > < buct—s—u with an absolutely summable causal
filter (b,) and thus, Cov(Y;—s,e¢) = D ,50bu Cov(es—s—u,er) = 0, see Theorem
Dividing the above equation by (0) now yields the assertion. O

Since p(—s) = p(s), equations (2.4 can be represented as

p(1) p(1)  p(2) plp—1)\ [a
p(2) p(1) 1 p(1) pp—2) | | a2
pB) | = | ~,2)  p1) 1 p(p—=3)| | as (2.5)
p(p) pip—=1) p(p—=2) p(p—=3) -~~~ 1 ap
This matrix equation offers an estimator of the coefficients ay,...,a, by replac-

ing the autocorrelations p(j) by their empirical counterparts r(j), 1 < j < p.
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Equation (2.5) then formally becomes r = Ra, where » = (r(1),...,7(p))T,
a=(a,...,a,)" and

11 r(1) r(2) r(p—1)
| T T -2
=1 rp=2) rp-3) 1

If the p X p-matrix R is invertible, we can rewrite the formal equation r = Ra as
R 'r = a, which motivates the estimator

a:=R'r (2.6)
of the vector a = (ay,...,a,)” of the coefficients.

The Partial Autocorrelation Coefficients

We have seen that the autocorrelation function p(k) of an MA(q)-process vanishes
for k > ¢, see Lemma [2.2.1 This is not true for an AR(p)-process, whereas
the partial autocorrelation coefficients will share this property. Note that the
correlation matrix

Py := (Corr(Yi,Yj)>

1<i,j<k
1 p(l)  p2) ... pp—1)
p(1) 1 p(1) p(p—2)
| ~,2  p(1) 1 p(p—3) (2.7)
p(p.—l) pp—2) plp—3) o

is positive semidefinite for any k& > 1. If we suppose that Py is positive definite,
then it is invertible, and the equation

p(1) a1
| =Pr o (2.8)
p(k) Akk
has the unique solution
a1 p(1)
ap = =P
Qkk p(k)

The number agy, is called partial autocorrelation coefficient at lag k, denoted by
a(k), k > 1. Observe that for k > p the vector (a1, ...,ap,0,...,0) € R* with
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k — p zeros added to the vector of coefficients (ay,...,ap), is by the Yule-Walker
equations (2.4) a solution of the equation (2.8). Thus we have a(p) = ap, a(k) =0
for k > p. Note that the coefficient a(k) also occurs as the coefficient of Y,,_x

in the best linear one-step forecast Zﬁ:o cuYn—v of Yy11, see equation (2.17)) in
Section 2.3

If the empirical counterpart Ry of Py is invertible as well, then

A -1
ap = Rk Tk,

with 7, := (r(1),...,7(k))T being an obvious estimate of a;. The k-th component
of @y = (Gk1, ..., akk) is the empirical partial autocorrelation coefficient at lag k. It

can be utilized to estimate the order p of an AR(p)-process, since &(p) = a(p) = a,
is different from zero, whereas & (k) ~ a(k) = 0 for k > p should be close to zero.

Example 2.2.6. The Yule-Walker equations (2.4]) for an AR(2)-process Y; =
a1Yi_1+agY;_ o+ e, are for s=1,2

p(1) = a1 +azp(l),  p(2) =aip(l) + a

with the solutions

2

ay
2) = .
p(2) 1—a2+a2

a1

1 =
p(1) [

and thus, the partial autocorrelation coefficients are
a(l) = p(1), a(2) = az, a(j) =0, j=3.

The recursion ([2.4)) entails the computation of p(s) for an arbitrary s from the two
values p(1) and p(2).

The following figure displays realizations of the AR(2)-process Y; = 0.6Y;—1 —
0.3Y;_o + &4 for 1 <t < 200, conditional on Y_; = Yy = 0. The random shocks
e; are iid standard normal. The corresponding partial autocorrelation function is
shown in Figure 2.2.4.
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Figure 2.2.3. Realization of the AR(2)-process Y; = 0.6Y;—1 —
0.3Y;—2 + &4, conditional on Y_; = Yy = 0. The ¢, 1 <t < 200,
are iid standard normal.
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-

* % %
TITLE1

Program 2_2_3 ok

’Realisation of an AR(2)-process;

DATA datal;

t=-1; y=0; OUTPUT;

t=0; yl=y; y=0; OUTPUT;

DO t=1 TO 200;
y2=y1;
yi=y;
y=0.6%y1-0.3*xy2+RANNOR (1) ;
OUTPUT;

END;

SYMBOL1 C=GREEN V=DOT I=JOIN H=0.3;

AXIS1 LABEL=(’t’);

AXIS2 LABEL=(’Y’ H=1 ’t’);

PROC GPLOT DATA=datal (WHERE=(t>0));
PLOT y*t / HAXIS=AXIS1 VAXIS=AXIS2;
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J

tRUN; QUIT;

The two initial values of y are defined and
stored in an observation by the OUTPUT state-
ment. The second observation contains an ad-
ditional value y1 for y;—1. Within the loop

a(k)
1.0

0.94
0.84
0.79
0.64
0.59
0.44
0.31
0.24

0.14
A //\ \
/

the values y2 (for y¢—2), y1 and y are updated
one after the other. The data set used by PROC
GPLOT again just contains the observations with
t > 0.

AN

A P et ]\'/'\'/'

0.0 2
TN
~0.11 Y \/

—0.21 /
—0.34

M. AVA .

VY \
/ v M

Figure 2.2.4. Empirical partial autocorrelation function of the

AR(2)-data in Figure 2.2.3.

* ok ok
TITLE1
TITLE2

Program 2_2_4

AXIS1 LABEL=(’k’);
AXIS2 LABEL=(’a(k)’);
PROC GPLOT DATA=corr;

* ok ok
’Empirical partial autocorrelation function’;
’of simulated AR(2)-process data’;
* Note that this program requires
datal generated by program 2_2_3;

PROC ARIMA DATA=datal (WHERE=(t>0));
IDENTIFY VAR=y NLAG=50 OUTCOV=corr NOPRINT;

SYMBOL1 C=GREEN V=DOT I=JOIN H=0.7;

PLOT PARTCORR*LAG / HAXIS=AXIS1 VAXIS=AXIS2 VREF=0;
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tRUN; QUIT;

This program requires to be submitted to SAS
for execution within a joint session with Pro-
gram 2_2_3, because it uses the temporary data
step datal generated there. Otherwise you
have to add the block of statements to this pro-
gram concerning the data step.

Like in Program 1.3_1 the procedure ARIMA
with the IDENTIFY statement is used to create a
data set. Here we are interested in the variable
PARTCORR containing the values of the empir-
ical partial autocorrelation function from the
simulated AR(2)-process data. This variable is

plotted against the lag stored in variable LAG.

(=7

ARMA-Processes

Moving averages MA(q) and autoregressive AR(p)-processes are special cases of
so called autoregressive moving averages. Let (g;):ez be a white noise, p,g > 0
integers and ag, ..., ap,bo,...,b; € R. A real valued stochastic process (Y;)iez
is said to be an autoregressive moving average process of order p,q, denoted by
ARMA(p, q), if it satisfies the equation

Yi=a1Yio1+aYio+.. . +apYip+er+big—1 + ...+ bger—g. (2.10)

An ARMA(p,0)-process with p > 1 is obviously an AR(p)-process, whereas an
ARMA(O0, g)-process with ¢ > 1 is a moving average MA(q). The polynomials

A(z):==1—a1z — ... —apz® (2.11)

and

B(z):==14biz+...+by29, (2.12)

are the characteristic polynomials of the autoregressive part and of the moving
average part of an ARMA(p, q)-process (Y:), which we can represent in the form

Yi—a1Yi1— ... —apYi_p =€t Fbigr_1 + ...+ bger—g.

Denote by Z; the right-hand side of the above equation i.e., Z; := g + bies—1 +
...+ bget—q. This is a MA(q)-process and, therefore, stationary by Theorem
If all p roots of the equation A(z) =1 — a1z — ... —apz? = 0 are outside of the
unit circle, then we deduce from Theorem that the filter ¢y = 1, ¢, = —a,,
u=1,...,p, ¢, =0 elsewhere, has an absolutely summable causal inverse filter
(du)u>0. Consequently we obtain from the equation Z; =Y, —a1Y;_1—...—a,Y;—p
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and (2.1 that with by =1, b, =0 if w > ¢

Y, = Z duZt—u = Z du(et—u + blgt—l—u +...+ bqgt—q—u)

u>0 u>0
= Z Z dubwstfwfu = Z ( Z dubw)stfv
u>0w>0 v>0 utw=v
min(v,q)
= Z ( Z bwdv—w)st—v = Zavet—v
v>0 w=0 v>0

is the almost surely uniquely determined stationary solution of the ARMA(p, q)-
equation (2.10]) for a given white noise (&) .

The condition that all p roots of the characteristic equation A(z) = 1 — a1z —
asz® —...—apzP = 0 of the ARMA(p, q)-process (Y;) are outside of the unit circle
will again be referred to in the following as the stationarity condition (2.3). In
this case, the process Y; = Y o, @u€¢—y, t € Z, is the almost surely uniquely
determined stationary solution of the ARMA(p, q)-equation 7 which is called

causal.

The MA(q)-process Zy = e, + bigi—1 + ... + bgei—q is by definition invertible if
all g roots of the polynomial B(z) = 1+ b1z + ... + byz? are outside of the unit
circle. Theorem [2.1.11| and equation (2.1)) imply in this case the existence of an

absolutely summable causal filter (g,,),>0 such that with ag = —1
&t = Zguthu = Zgu(yrtfu —a1 Y1y — ... — ap}/tfpfu)
u>0 u>0
min(v,p)

= —Z( > awgvfw)thv.

v>0 w=0
In this case the ARMA(p, q)-process (Y;) is said to be invertible.

The Autocovariance Function of an ARMA-Process

In order to deduce the autocovariance function of an ARMA(p, q)-process (Y),
which satisfies the stationarity condition , we compute at first the absolutely
summable coefficients o, = Z:Ei:néq’v) bwdy—w, v > 0, in the above representation
Y, = Zv>0 a,€i—y. The characteristic polynomial D(z) of the absolutely sum-
mable causal filter (dy)u>o coincides by Lemma [2.1.9| for 0 < |z < 1 with 1/A(z2),
where A(z) is given in (2.1I). Thus we obtain with B(z) as given in for
0<|z| <1
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A(2)(B(2)D(z2)) = B(z)

& ( — i}auz“) (Zavz”) = i bwz®

v>0 w=0
& Z (f Z auozv) Y = bwz®
w>0 utv=w w>0
w
o X (- o) =Y b
w>0 u=0 w>0
Qo = 1
w
Qyy — AyQy—y = b forl <w<
p
Qg — Z Ay Qy—yy = 0 for w > p.
u=1

Example 2.2.7. For the ARMA(1,1)-process Y; —aY;—1 = e +bey—1 with |a] < 1
we obtain from ([2.13)

ag=1, a1 —a=0b, ay, —aa,_1 =0. w > 2,

This implies ag = 1, o, = a®~1(b+a), w > 1, and, hence,

Yi=e:+(b+a) Z a’ Loy

w>1

Theorem 2.2.8. Suppose that Y, = Y 0 _ a,Yi—u + > o byer—y, by := 1, is an
ARMA(p, q)-process, which satisfies the stationarity condition (2.3). Its autoco-
variance function v then satisfies the recursion

p q
7(8) - Z a’u')/(s - u) = o’ vaav—sa 0<s<q,
u=1 v=s

P
Ys) =Y auy(s—u) =0,  s>q+1, (2.14)
u=1

where a,,, v > 0, are the coefficients in the representation Y; = Zv>0 QyEi_y,
which we computed in [2.13) and o is the variance of €.

By the preceding result the autocorrelation function p of the ARMA(p, q)-process
() satisfies

p
p(s) = aup(s —u),  s>q+1,
u=1
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which coincides with the autocorrelation function of the stationary AR(p)-process
Xy =>"_auXi—u +et, cf. Lemma m

Proof of Theorem[2.2.8 Put u:=E(Yy) and v := E(gg). Then we have

q

p
Y;S_M:Zau(yvtfu_ﬂ)'i_zbv(gtfv_y)u teZ.

u=1 v=0

Recall that V; = >0 a, Yy +> 7o buei—v, t € Z. Taking expectations on both

sides we obtain = > ¥ _, au,lH-ZZ:o b, v, which yields now the equation displayed
above. Multiplying both sides with Y;_; — u, s > 0, and taking expectations, we
obtain

p q
COV(}/t—sa }/t) = Z Qy COV(Y;f—w }/t—u) + Z by COV(}/t—Sa 5t—'u)a
u=1 v=0
which implies

~v(s) — Z ayy(s —u) = Z by Cov(Yi—s, ).

v=0

From the representation Y;_, = )" < Qwe¢—s—w and Theorem we obtain

0 ifo<s
Cov(Yi—s,6t—0) = Z o Cov(ep—s—w,Et—v) = 9 .
w>0 l it e T ifv>s.

This implies

7(8) - Z au7(5 - u) = Z b, COV(Y;&—sa Et—v) =

V=8

o230 by, ifs<gq
0 ifs > g,
which is the assertion. O

Example 2.2.9. For the ARMA(1,1)-process Y; —aY;_1 = ey +bey—_1 with |a| < 1
we obtain from Example and Theorem with 02 = Var(eo)

7(0) = ay(1) = o*(1 + b(b + a)), ¥(1) = a(0) = o0,

and thus .

1+ 2ab +
0)=0>——5—
1) =0"——>5—;
For s > 2 we obtain from ([2.14)

Y(s) =ay(s—1) = =a*"1y(1).

5 (1 +ab)(a+b)
1—a? '

1) =0
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Figure 2.2.5. Autocorrelation functions of ARMA(1,1)-processes
with a = 0.8/ — 0.8, b=0.5/0/ — 0.5 and o = 1.

* %k Program 2_2_5 * %ok
TITLE1 ’Autocorrelation functions
of ARMA(1,1)-processes’;

DATA datal;
DO a=-0.8, 0.8;
DO b=-0.5, 0, 0.5;
s=0; rho=1;

q=COMPRESS (> (> || a Il ?>,> Il » Il ?)?); OUTPUT;
s=1; rho=(l+ax*xb)*(a+b)/(1+2*xa*xb+b*b) ;
q=COMPRESS (> (> ||l a Il 2>, Il o Il ?)?); OUTPUT;

DO s=2 TO 10;
rho=ax*rho;
q=COMPRESS(’(*> || a |l >,> |l b Il ?)’);
QUTPUT ;
END;
END;
END;
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SYMBOL1
SYMBOL2
SYMBOL3
SYMBOL4

C=RED V=DOT I=JOIN H=0.
C=YELLOW V=DOT I=JOIN H=0.
C=BLUE V=DOT I=JOIN H=0.7
C=RED V=DOT I=JOIN H=0.7 L
SYMBOL5 C=YELLOW V=DOT I=JOIN H=0.
SYMBOL6 C=BLUE V=DOT I=JOIN H=0.7 L=
AXIS1 LABEL=(F=CGREEK ’r’ F=COMPLEX
AXIS2 LABEL=(’lag k’) MINOR=NONE;
LEGEND1 LABEL=(’(a,b)=’) SHAPE=SYMBOL (10,0.8);
PROC GPLOT DATA=datal;

PLOT rho*s=q / VAXIS=AXIS1 HAXIS=AXIS2 LEGEND=LEGENDI;

RUN; QUIT;
\. Y

7 L=1;
= L=2;
3

(,0

3

7
L=
=3;
7

L=4;
5;
)

(k) 7);

In the data step the values of the autocor-
relation function belonging to an ARMA(1,1)
process are calculated for two different values
of a, the coefficient of the AR(1)-part, and
three different values of b, the coefficient of the
MA(1)-part. Pure AR(1)—processes result for
the value b=0. For the arguments (lags) s=0
and s=1 the computation is done directly, for

ARIMA-Processes

the rest up to s=10 a loop is used for a recursive
computation. For the COMPRESS statement see
Program 1.1_3.

The second part of the program uses PROC
GPLOT to plot the autocorrelation function, us-
ing known statements and options to customize
the output.

Suppose that the time series (Y;) has a polynomial trend of degree d. Then
we can eliminate this trend by considering the process (A?Y;), obtained by d
times differencing as described in Section u If the ﬁltered process (A%Yy) is an
ARMA(p, q)-process satisfying the stationarity condition (2.3)), the original process
(Y:) is said to be an autoregressive integrated moving avemge of order p,d,q,
denoted by ARIMA(p,d, q). In this case constants a1, ...,ap,b0 =1,b1,...,b, € R
exist such that

A%Y, =

ZauA th u+zbw5t w)

where () is a white noise.

teZ,

Example 2.2.10. An ARIMA(1,1,1)-process (Y;) satisfies

AY; = aAY;_ 1 + e+ bey_q, teZ,
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where |a| < 1, b# 0 and (&) is a white noise, i.e.,
i Y1 =a(Yi—1 —Yio2) + e + by, teZ.

This implies Y; = (a + 1)Y;—1 — aY;—o + & + bey_1.

A random walk X; = Xy_1 + € is obviously an ARIMA(0, 1,0)-process.

Consider Y; = S; + Ry, t € Z, where the random component (R;) is a stationary
process and the seasonal component (S;) is periodic of length s, i.e., Sy = Spys =
Sttos = ... for t € Z. Then the process (Y;) is in general not stationary, but Y;* :=
Y: — Y;_; is. If this seasonally adjusted process (Y;*) is an ARMA(p, q)-process
satisfying the stationarity condition , then the original process (Y;) is called
a seasonal ARMA(p, q)-process with period length s, denoted by SARMA(p,q).
One frequently encounters a time series with a trend as well as a periodic seasonal
component. A stochastic process (Y;) with the property that (A4(Y; — Y;_,)) is
an ARMA(p, q)-process is, therefore, called a SARIMA(p,d, q)-process. This is a

quite common assumption in practice.
Cointegration

In the sequel we will frequently use the notation that a time series (Y;) is I(d),
d = 0,1, if the sequence of differences (A?Y;) of order d is a stationary process.
By the difference A°Y; of order zero we denote the undifferenced process Y;, t € Z.

Suppose that the two time series (Y;) and (Z;) satisty
K:aWt+€t, Zt:Wt+5t7 tGZ,

for some real number a # 0, where (W;) is I(1), and (&), (J;) are uncorrelated
white noise processes, i.e., Cov(es, d5) =0, ¢, s € Z.

Then (Y;) and (Z;) are both I(1), but
XtZZ}/t—CLZtZEt—CL(St, t e,
is 1(0).

The fact that the combination of two nonstationary series yields a stationary
process arises from a common component (W;), which is 7(1). More generally,

two I(1) series (Y:), (Z:) are said to be cointegrated, if there exist constants
I, a1, as with aq, ao different from 0, such that the process

Xt:,U,-i—Oq}/t"'OéQZt, teZ

is 1(0). Without loss of generality, we can choose ay = 1 in this case.
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Such cointegrated time series are often encountered in macroeconomics (Granger
(1981), Engle and Granger (1987)). Consider, for example, prices for the same
commodity in different parts of a country. Principles of supply and demand, along
with the possibility of arbitrage, means that, while the process may fluctuate more-
or-less randomly, the distance between them will, in equilibrium, be relatively
constant (typically about zero).

The link between cointegration and error correction can vividly be described by the
humorous tale of the drunkard and his dog, c.f. Murray (1994). In the same way
a drunkard seems to follow a random walk an unleashed dog wanders aimlessly.
We can, therefore, model their ways by random walks

Y; =Y, 1+ and
Zy = Zy_1 + 0y,

where the individual single steps (&), (d¢) of man and dog are uncorrelated white
noise processes. Random walks are not stationary, since their variances increase,
and so both processes (Y;) and (Z;) are not stationary.

And if the dog belongs to the drunkard? We assume the dog to be unleashed and
thus, the distance Y; — Z; between the drunk and his dog is a random variable.
It seems reasonable to assume that these distances form a stationary process, i.e.,
that (Y;) and (Z;) are cointegrated with constants a; = 1 and ag = —1.

We model the cointegrated walks above more tritely by assuming the existence of
constants ¢, d € R such that

Y, - Y 1= +c(Yim1— Z;—1) and
Zy —Zy 1 =01 +d(Yee1 — Zi—q).

The additional terms on the right-hand side of these equations are the error cor-
rection terms.

Cointegration requires that both variables in question be I(1), but that a linear
combination of them be I(0). This means that the first step is to figure out if the
series themselves are I(1), typically by using unit root tests. If one or both are not
I(1), cointegration is not an option.

Whether two processes (Y:) and (Z;) are cointegrated can be tested by means of
a linear regression approach. This is based on the cointegration regression

Yy = Bo+ P12 + €,

where (g¢) is a stationary process and fy, 51 € R are the cointegration constants.
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One can use the ordinary least squares estimates (y, 31 of the target parameters
Bo, 1, which satisfy

Z (Yt — Bo — Bth)Z = ﬁoﬂéﬁéRzﬂ: (YZ — Bo — ﬁth)27
PIER =1

t=1

and one checks, whether the estimated residuals
& =Y, — bo— B2

are generated by a stationary process.

A general strategy for examining cointegrated series can now be summarized as
follows:

(i) Determine that the two series are I(1).
(i) Compute £, =Y; — Bo — 1 Z, using ordinary least squares.
(i) Examine é; for stationarity, using

e the Durbin—Watson test

e standard unit root tests such as Dickey—Fuller or augmented Dickey—
Fuller.

Example 2.2.11. (Hog Data) Quenouille’s (1957) Hog Data list the annual hog
supply and hog prices in the U.S. between 1867 and 1948. Do they provide a
typical example of cointegrated series? A discussion can be found in Box and Tiao
(1977).
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Figure 2.2.6. Hog Data: hog supply and hog prices.
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* %k Program 2_2_6 * %ok
TITLE1 ’Hog supply, hog prices and differences’;
TITLE2 ’Hog Data (1867-1948)°;

DATA datal;
INFILE ’c:\datal\hogsuppl.txt’;
INPUT supply @OQ;

DATA dataZ2;
INFILE ’c:\datal\hogprice.txt’;
INPUT price @Q;

DATA data3;
MERGE datal data?2;
year=_N_+1866;
diff=supply-price;

SYMBOL1 V=DOT C=GREEN I=J0OIN H=0.5 W=1;

AXIS1 LABEL=(ANGLE=90 'h o g \ s upp 1l y’);
AXIS2 LABEL=(ANGLE=90 ’h o g \ pr i c e s’);
AXIS3 LABEL=(ANGLE=90 ’d i f f e r e n c e s8’);

GOPTIONS NODISPLAY;
PROC GPLOT DATA=data3 GOUT=abb;

PLOT supply*year / VAXIS=AXIS1;

PLOT price*year / VAXIS=AXIS2;

PLOT diffx*year / VAXIS=AXIS3 VREF=0;
RUN;

GOPTIONS DISPLAY;

PROC GREPLAY NOFS IGOUT=abb TC=SASHELP.TEMPLT;
TEMPLATE=V3;
TREPLAY 1:GPLOT 2:GPLOT1 3:GPLOT2;

RUN; DELETE _ALL_; QUIT;

~ J

The supply data and the price data read
in from two external files are merged in
data3. Year is an additional variable with val-
ues 1867,1868,...,1932. By PROC GPLOT hog
supply, hog prices and their differences diff
are plotted in three different plots stored in the

graphics catalog abb. The horizontal line at the
zero level is plotted by the option VREF=0. The
plots are put into a common graphic using PROC
GREPLAY and the template V3. Note that the la-
bels of the vertical axes are spaced out as SAS
sets their characters too close otherwise.
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=

Hog supply (=: y:) and hog price (=: z;) obviously increase in time ¢ and do,
therefore, not seem to be realizations of stationary processes; nevertheless, as they
behave similarly, a linear combination of both might be stationary. In this case,
hog supply and hog price would be cointegrated.

This phenomenon can easily be explained as follows. A high price z; at time ¢ is a
good reason for farmers to breed more hogs, thus leading to a large supply 941 in
the next year ¢t + 1. This makes the price z;; fall with the effect that farmers will
reduce their supply of hogs in the following year ¢t + 2. However, when hogs are in
short supply, their price z;1o will rise etc. There is obviously some error correction
mechanism inherent in these two processes, and the observed cointegration helps

us to detect its existence.

The AUTOREG Procedure

Dependent Variable supply

Ordinary Least Squares Estimates

SSE 338324.258 DFE 80
MSE 4229 Root MSE 65.03117
SBC 924.172704 AIC 919.359266
Regress R-Square 0.3902 Total R-Square 0.3902
Durbin-Watson 0.5839

Phillips-QOuliaris
Cointegration Test

Lags Rho Tau
1 -28.9109 -4.0142
Standard Approx
Variable DF Estimate Error t Value Pr > |t]

Intercept 1 515.7978 26.6398 19.36 <.0001
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price 1 0.2059 0.0288 7.15 <.0001

Figure 2.2.7. Phillips—Ouliaris test for cointegration of Hog Data.
(Using PROC AUTOREG with STATIONARITY=(PHILLIPS) Option.)

p
* %k Program 2_2_7 * %ok

TITLEl1 ’Testing for cointegration’;
TITLE2 ’Hog Data (1867-1948)’;

PROC AUTOREG DATA=data3;
MODEL supply=price / STATIONARITY=(PHILLIPS);
RUN; QUIT;

\. J

The procedure AUTOREG (for autoregressive STATIONARITY=(PHILLIPS) makes SAS calcu-
models) uses data3 from Program 2.2.6. late the statistics of the Phillips—Ouliaris test
In the MODEL statement a regression from for cointegration of order 1.

supply on price is defined and the option

=

The output of the above program contains some characteristics of the regression,
the Phillips-Ouliaris test statistics and the regression coeflicients with their ¢-
ratios. The Phillips-Ouliaris test statistics need some further explanation.

The hypothesis of the Phillips—Ouliaris cointegration test is no cointegration. Un-
fortunately SAS does not provide the p-value, but only the values of the test
statistics denoted by RHO and TAU. Tables of critical values of these test statistics
can be found in Phillips and Ouliaris (1990). Note that in the original paper the
two test statistics are denoted by Z, and Z;. The hypothesis is to be rejected if
RHO or TAU are below the critical value for the desired type I level error «. For this
one has to differentiate between the following cases.

(1) If the estimated cointegrating regression does not contain any intercept, i.e.
Bo = 0, and none of the explanatory variables has a nonzero trend compo-
nent, then use the following table for critical values of RHO and TAU. This is
the so-called standard case.

«a 0.15 0.125 0.1 0.075 0.05 0.025 0.01
RHO | -10.74 | -11.57 | -12.54 | -13.81 | -15.64 | -18.88 | -22.83
TAU | -2.26 | -2.35 | -2.45 | -2.58 | -2.76 | -3.05 | -3.39
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(2) If the estimated cointegrating regression contains an intercept, i.e. By # 0,
and none of the explanatory variables has a nonzero trend component, then
use the following table for critical values of RHO and TAU. This case is referred
to as demeaned.

o 0.15 0.125 0.1 0.075 0.05 0.025 0.01
RHO | -14.91 | -15.93 | -17.04 | -18.48 | -20.49 | -23.81 | -28.32
TAU | -2.86 | -2.96 | -3.07 | -3.20 | -3.37 | -3.64 | -3.96

(3) If the estimated cointegrating regression contains an intercept, i.e. Sy # 0,
and at least one of the explanatory variables has a nonzero trend component,
then use the following table for critical values of RHO and TAU. This case is
said to be demeaned and detrended.

o 0.15 0.125 0.1 0.075 0.05 0.025 0.01
RHO | -20.79 | -21.81 | -23.19 | -24.75 | -27.09 | -30.84 | -35.42
TAU | -3.33 | -3.42 | -3.52 | -3.65 | -3.80 | -4.07 | -4.36

In our example with an arbitrary [y and a visible trend in the investigated time
series, the RHO-value is —28.9109 and the TAU-value —4.0142. Both are smaller
than the critical values of —27.09 and —3.80 in the above table of the demeaned
and detrended case and thus, lead to a rejection of the null hypothesis of no
cointegration at the 5%-level.

For further information on cointegration we refer to Chapter 19 of the time series
book by Hamilton (1994).

ARCH and GARCH-Processes

In particular the monitoring of stock prices gave rise to the idea that the volatility
of a time series (Y;) might not be a constant but rather a random variable, which
depends on preceding realizations. The following approach to model such a change
in volatility is due to Engle (1982).

We assume the multiplicative model
Y, = 0172, teZ,
where the Z; are independent and identically distributed random variables with
E(Z;) =0and E(Z}) =1, teZ.

The scale o, is supposed to be a function of the past p values of the series:

p
Uf:ao+2an,52_j, teZ,
Jj=1
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where p € {0,1,...} and ag >0, a; >0, 1 <j <p—1, ap > 0 are constants.

The particular choice p = 0 yields obviously a white noise model for (¥;). Common
choices for the distribution of Z; are the standard normal distribution or the
(standardized) t-distribution, which in the nonstandardized form has the density

T'((m+1)/2) a2\ "y
T(m/2)y/mm (” )

m
The number m > 1 is the degree of freedom of the t-distribution. The scale o; in
the above model is determined by the past observations Y;_1,...,Y;_,, and the
innovation on this scale is then provided by Z;. We assume moreover that the
process (Y;) is a causal one in the sense that Z; and Y;, s < ¢, are independent.
Some autoregressive structure is, therefore, inherent in the process (Y;). Condi-
tional on Y;_; = y;—;, 1 < j < p, the variance of Y; is ag +Z§=1 ajyffj and, thus,
the conditional variances of the process will generally be different. The process
Y; = 047, is, therefore, called an autoregressive and conditional heteroscedastic
process of order p, ARCH (p)-process for short.

fm(x) =

, x €R.

If, in addition, the causal process (Y;) is stationary, then we obviously have
and

o’ :=E(}) = E(o})E(Z})

p p
ap + Zaj E(Ytz_J) =ag + o2 Z aj,
j=1 j=1

which yields
2= 20
1- ?:1 a;
A necessary condition for the stationarity of the process (Y;) is, therefore, the in-
equality Z;’:l aj < 1. Note, moreover, that the preceding arguments immediately
imply that the Y; and Y; are uncorrelated for different values of s and ¢, but they

are not independent.

The following lemma is crucial. It embeds the ARCH (p)-processes to a certain
extent into the class of AR(p)-processes, so that our above tools for the analysis
of autoregressive processes can be applied here as well.

Lemma 2.2.12. Let (Y;) be a stationary and causal ARCH (p)-process with con-
stants ag, a1, ...,ap. If the process of squared random variables (Y?) is a station-
ary one, then it is an AR(p)-process:

}/tZ = a1YtQ_1 + ...+ Clp}/f_p + Et,
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where (g¢) s a white noise with E(e;) = ap, t € Z.

Proof. From the assumption that (Y;) is an ARCH (p)-process we obtain
p
€= YtQ—ZantQ_j:UthQ—af—i—aO:ao—i—af(Zf—l), teZ.

This implies E(e¢) = ag and
E((e: —a0)®) = E(o})E((Z} - 1)*)

- (a0+z% )?)E((ZE - 1)) =,

independent of ¢ by the stationarity of (V;?). For h € N the causality of (V;) finally
implies

E((e: — ao)(et+n — a0)) = B(o7of, (27 —1)(Zi1h — 1))
= E(0t20t+h<Zt2 - ))E(Zt+h 1)=0

i.e., (e¢) is a white noise with E(e;) = ao. O

The process (Y;?) satisfies, therefore, the stationarity condition if all p roots
of the equation 1 — ?:1 ajzj = 0 are outside of the unit circle. Hence, we can
estimate the order p using an estimate as in of the partial autocorrelation
function of (Y;2). The Yule-Walker equations provide us, for example, with an
estimate of the coefficients a1, ..., a,, which then can be utilized to estimate the
expectation ag of the error &;.

Note that conditional on Y;—1 = y¢—1,...,Ys—p = Yr—p, the distribution of ¥; =
07y is a normal one if the Z; are normally distributed. In this case it is possible
to write down explicitly the joint density of the vector (Y41, ...,Y}), conditional
onY; =uy1,...,Y, =y, (Exercise 36). A numerical maximization of this density
with respect to ag,ai,...,a, then leads to a mazimum likelihood estimate of the
vector of constants; see also Section

A generalized ARCH-process, GARCH (p, q) for short (Bollerslev (1986)), adds an
autoregressive structure to the scale o; by assuming the representation

p q
2 2 2
of =ao+ ) a7+ boiy,
=1 k=1

where the constants b, are nonnegative. The set of parameters a;, by can again
be estimated by conditional maximum likelihood as before if a parametric model
for the distribution of the innovations Z; is assumed.
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Example 2.2.13. (Hongkong Data). The daily Hang Seng closing index was
recorded between July 16th, 1981 and September 30th, 1983, leading to a total
amount of 552 observations p;. The daily log returns are defined as

Yyt = log(ps) — log(pi—1),

where we now have a total of n = 551 observations. The expansion log(1+¢) = ¢
implies that

bt *pt—1> bt =Dt

y; = log (1 +
Pt—1 DPt—1

)

provided that p, 1 and p; are close to each other. In this case we can interpret the
return as the difference of indices on subsequent days, relative to the initial one.

We use an ARCH (3) model for the generation of y;, which seems to be a plausible
choice by the partial autocorrelations plot. If one assumes ¢-distributed innova-
tions Zy, SAS estimates the distribution’s degrees of freedom and displays the
reciprocal in the TDFI-line, here m = 1/0.1780 = 5.61 degrees of freedom. Fol-
lowing we obtain the estimates ag = 0.000214, a; = 0.147593, ay = 0.278166
and asz = 0.157807. The SAS output also contains some general regression model
information from an ordinary least squares estimation approach, some specific in-
formation for the (G)ARCH approach and as mentioned above the estimates for
the ARCH model parameters in combination with t ratios and approximated p-
values. The following plots show the returns of the Hang Seng index, their squares,
the pertaining partial autocorrelation function and the parameter estimates.
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Figure 2.2.8. Log returns of Hang Seng index and their squares.
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* %k Program 2_2_8 * %ok
TITLE1 ’Daily log returns and their squares’;
TITLE2 ’Hongkong Data ’;

DATA datal;
INFILE ’c:\datal\hongkong.txt’;
INPUT p;
t=_N_;

y=DIF (LOG(p));
y2=y**2;

SYMBOL1 C=RED V=DOT H=0.5 I=JOIN L=1;
AXIS1 LABEL=(’y’ H=1 ’t’) ORDER=(-.12 TO .10 BY .02);
AXIS2 LABEL=(’y2’ H=1 ’t’);
GOPTIONS NODISPLAY;
PROC GPLOT DATA=datal GOUT=abb;
PLOT y=*t / VAXIS=AXIS1;
PLOT y2*t / VAXIS=AXIS2;
RUN;

GOPTIONS DISPLAY;

PROC GREPLAY NOFS IGOUT=abb TC=SASHELP.TEMPLT;
TEMPLATE=V2;
TREPLAY 1:GPLOT 2:GPLOT1;

RUN; DELETE _ALL_; QUIT;

A

In the DATA step the observed values of the After defining different axis labels, two plots
Hang Seng closing index are read into the vari- are generated by two PLOT statements in PROC
able p from an external file. The time index GPLOT, but they are not displayed. By means of
variable t uses the SAS-variable _N_, and the PROC GREPLAY the plots are merged vertically in
log transformed and differenced values of the one graphic.

index are stored in the variable y, their squared

values in y2.
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Dependent Variable =Y

Ordinary Least Squares Estimates

SSE 0.265971
MSE 0.000483
SBC -2643.82
Reg Rsq 0.0000

Durbin-Watson 1.8540

DFE 551
Root MSE  0.021971
AIC -2643.82

Total Rsq 0.0000

NOTE: No intercept term is used. R-squares are redefined.

GARCH Estimates

SSE 0.265971
MSE 0.000483
Log L 1706.532
SBC -3381.5

Normality Test 119.7698

Variable DF B Value

Std Error

0BS 551
UVAR 0.000515
Total Rsq 0.0000
AIC -3403.06

Prob>Chi-Sq 0.0001

t Ratio Approx Prob
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ARCHO 1 0.000214 0.000039 5.444 0.0001
ARCH1 1 0.147593 0.0667 2.213 0.0269
ARCH2 1 0.278166 0.0846 3.287 0.0010
ARCH3 1 0.157807 0.0608 2.594 0.0095
TDFI 1 0.178074 0.0465 3.833 0.0001

Figure 2.2.9. Partial autocorrelations of squares of log returns of
Hang Seng index and parameter estimates in the ARCH (3) model
for stock returns.

~

* %k Program 2_2_9 * ok ok ;
TITLE1 ’ARCH(3)-model’;
TITLE2 ’Hongkong Data’;

* Note that this program needs datal
generated by program 2_2_8;

PROC ARIMA DATA=datal;
IDENTIFY VAR=y2 NLAG=50 0UTCOV=dataZ2;

SYMBOL1 C=RED V=DOT H=0.5 I=JOIN;
PROC GPLOT DATA=data2;

PLOT partcorr*lag / VREF=0;
RUN;

PROC AUTOREG DATA=datal;
MODEL y = / NOINT GARCH=(q=3) DIST=T;
RUN;

~

To identify the order of a possibly underlying
ARCH process for the daily log returns of the
Hang Seng closing index, the empirical par-
tial autocorrelations of their squared values,
which are stored in the variable y2 of the data
set datal in Program 2_2_8, are calculated by
means of PROC ARIMA and the IDENTIFY state-
ment. The subsequent procedure GPLOT dis-
plays these partial autocorrelations. A hori-
zontal reference line helps to decide whether a
value is substantially different from 0.

PROC AUTOREG is used to analyze the ARCH(3)
model for the daily log returns. The MODEL
statement specifies the dependent variable y.
The option NOINT suppresses an intercept pa-
rameter, GARCH=(q=3) selects the ARCH(3)
model and DIST=T determines a ¢ distribution
for the innovations Z; in the model equation.
Note that, in contrast to our notation, SAS uses
the letter q for the ARCH model order.
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2.3 Specification of ARMA-Models: The Box—
Jenkins Program

The aim of this section is to fit a time series model (Y3),., to a given set of data
Y1, .., Yn collected in time t. We suppose that the data y,...,y, are (possibly)
variance-stabilized as well as trend or seasonally adjusted. We assume that they
were generated by clipping Y7, ...,Y,, from an ARMA(p, q)-process (Y})iez, which
we will fit to the data in the following. As noted in Section 2.2, we could also
fit the model Y; = > o, auei—y to the data, where (&) is a white noise. But
then we would have to determine infinitely many parameters «,, v > 0. By the
principle of parsimony it seems, however, reasonable to fit only the finite number
of parameters of an ARMA(p, q)-process.

The Box—Jenkins program consists of four steps:

1. Order selection: Choice of the parameters p and gq.

2. Estimation of coefficients: The coefficients a1, ...,a, and by,...,b, are es-
timated.

3. Diagnostic check: The fit of the ARMA(p, ¢)-model with the estimated co-
efficients is checked.

4. Forecasting: The prediction of future values of the original process.

The four steps are discussed in the following.
Order Selection

The order ¢ of a moving average MA(q)-process can be estimated by means of the
empirical autocorrelation function r(k) i.e., by the correlogram. Lemma[2.2.1] (iv)
shows that the autocorrelation function p(k) vanishes for k > g+ 1. This suggests
to choose the order g such that r(q) is clearly different from zero, whereas r(k)
for kK > g+ 1 is quite close to zero. This, however, is obviously a rather vague
selection rule.

The order p of an AR(p)-process can be estimated in an analogous way using
the empirical partial autocorrelation function &(k), k& > 1, as defined in .
Since &(p) should be close to the p-th coefficient a, of the AR(p)-process, which
is different from zero, whereas &(k) = 0 for k > p, the above rule can be applied
again with r replaced by a.
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The choice of the orders p and ¢ of an ARMA(p, q)-process is a bit more challenging.
In this case one commonly takes the pair (p,¢), minimizing some function, which
is based on an estimate &ZQW of the variance of ¢y. Popular functions are Akaike’s
Information Criterion

p+qg+1

AIC(p,q) = log(ﬁzyq) +2 o

)

the Bayesian Information Criterion

(p+q)log(n+1)
n+1

BIC(p.q) = log(62,) +

and the Hannan-Quinn Criterion

(p + g)clog(log(n + 1))

with ¢ > 1.
n+1

HQ(p,q) :=1log(67,) + 2

AIC and BIC are discussed in Section 9.3 of Brockwell and Davis (1991) for
Gaussian processes (Y;), where the joint distribution of an arbitrary vector (Y,,...,Y%,)
with t; < ... <t} is multivariate normal, see below. For the HQ-criterion we refer
to Hannan and Quinn (1979). Note that the variance estimate 612)_’(1 will in general
become arbitrarily small as p+q increases. The additive terms in the above criteria
serve, therefore, as penalties for large values, thus helping to prevent overfitting

of the data by choosing p and ¢ too large.
Estimation of Coefficients

Suppose we fixed the order p and ¢ of an ARMA(p,q)-process (Yi)icz, with
Y1,...,Y, now modelling the data yi,...,y,. In the next step we will derive
estimators of the constants ai,...,ap, b1,..., b, in the model

Yi=a1Yi_ 1+ ...+ ath,p +e+big_1+ ...+ qut,q, teZ.

The Gaussian Model: Maximum Likelihood Estimator

We assume first that (Y;) is a Gaussian process and thus, the joint distribution of
(Y1,...,Y,) is a n-dimensional normal distribution

S1 Sn
P{Yigsi,izl,...,n}:/ / Cus(@,...,2n)dey .. d2y
—0o0 — 00
for arbitrary si,...,s, € R. Here

Pus(T1,..., )
1

1 -1
= @) R(der sy P (=) == () = )7
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for arbitrary x1,...,z, € R is the density of the n-dimensional normal distri-
bution with mean vector pu = (i,...,u)7 € R™ and covariance matrix ¥ =
(v(@ — j))1<i,j<n denoted by N(u,X), where p = E(Yp) and v is the autoco-
variance function of the stationary process (Y;).

The number ¢, s:(21,...,2,) reflects the probability that the random vector
(Y1,...,Y,) realizes close to (x1,...,2,). Precisely, we have for ¢ | 0
P{Y; € z;—e,x;+¢|,i=1,...,n}
r1+€ Tnte
/ / (21,0, 2n)dzn o dzr = 27"y (21, .., TR).
Tp—E

The likelihood principle is the fact that a random variable tends to attain its
most likely value and thus, if the vector (Y1,...,Y,) actually attained the value
(Y1,-.-,Yn), the unknown underlying mean vector p and covariance matrix %
ought to be such that ¢, (y1,...,yn) is maximized. The computation of these
parameters leads to the maximum likelihood estimator of p and X.

We assume that the process (Y;) satisfies the stationarity condition (2.3, in which
case Y; = Y oo QuEt—v, t € Z, is invertible, where (¢;) is a white noise and the
coefficients «,, depend only on ay,...,a, and by,...,b;. Consequently we have for
s>0

~(s) = Cov(Yo, Ys ZZavawCova vy Es—w —UQZavaerv

v>0w>0 v>0
The matrix
Y =072y,
therefore, depends only on a1,...,a, and by, ..., b,. We can write now the density
Pu, (1, ..., z,) as a function of ¥ := (02, i, a1,...,ap,b1,...,b,) € RPTI2 and

(x1,...,2p) ER"
p(T1, .. 2a]|®) = pus(T, ..., 20)

1
= (2102)"2(det =) Y2 exp ( — 55QWla, .. x))

where

QMx1,. .., w0) = (1, ..., xn) — W) " ((x1,...,20) — )T

is a quadratic function. The likelihood function pertaining to the outcome (y, .. .,
Yn) 18
LONy1, -y Yn) =0Y1, .-, yn|?).

A parameter 9 maximizing the likelihood function

L(1A9|y1, cesUn) = Sl;,p LBy, ---,Yn),
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is then a maximum likelihood estimator of 9.

Due to the strict monotonicity of the logarithm, maximizing the likelihood function
is in general equivalent to the maximization of the loglikelihood function

Ny1y .- yn) =log L(O|y1, - -, Yn)-

The maximum likelihood estimator 1) therefore satisfies
l(1§|y1, ceyYn) = S%pl(19|y1, ceyYn)

1

_ _n 2y_ 1L no
= sgp ( 5 log(2mo*) 5 log(det 3) 202@(19|y1, . ,yn)>

The computation of a maximizer is a numerical and usually computer intensive
problem.

Example 2.3.1. The AR(1)-process Y; = aY;_1 +¢; with |a| < 1 has by Example
[2:2.4] the autocovariance function

_ 2 a
7(3)—01_a2, 5> 0,
and thus,
1 a a? a” !
—_ 1 a 1 a an?
1—a?
an—l an—2 an—3 1
The inverse matrix is
1 —a 0 0 - 0
—a 1+a? —a 0 0
51 0 —a 1+d* —a 0
0 .. —a 14+ad® —a
0 0 . 0 —a 1

Check that the determinant of /' is det(X'™") = 1 — a2 = 1/det(X’), sece
Exercise 40. If (Y;) is a Gaussian process, then the likelihood function of ¥ =
(0%, u,a) is given by

n 1
L@y, ..., yn) = (2m0°)"/2(1 — a®)"/? exp ( ~ 5,2Q00y, .. ,yn)),
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where

QOy1,- -, yn)
= ((y17"'ayn)_N)E,_l((yla---; )T

yn> — K
= -+ Wn—w>+Q1+a* Z(yi —p)* = 2a Z(y — 1) (Yir1 — ).

A Nonparametric Approach: Least Squares
If E(g;) = 0, then
Vi=a1Yi 1+ ... 4a)Yi p+bies 1+ ... +bei g
would obviously be a reasonable one-step forecast of the ARMA(p, q)-process

Yi=a1Y_1+ ...+ apY},p +ep+bieg—1+...+ qut,(p

based on Y;_1,...,Y;—, and €;—1,...,e,—4. The prediction error is given by the
residual )
Y, =Y, = ¢y
Suppose that &; is an estimator of &;, ¢ < n, which depends on the choice of
constants ai,...,ap,b1,...,b, and satisfies the recursion
ét =Yt —a1Yt—1 — - — AQpYt—p — blétfl el — bqétfq.

The function

S2(ar, .. ap, by, by)

n
_ 22
= 2

t=—0o0
n
= Z (yt —a1Yt—1 — .. — QpYt—p — blétfl — ... bqét,q)z
t=—00

is the residual sum of squares and the least squares approach suggests to estimate
the underlying set of constants by minimizers ai,...,ap,b1,...,b, of S?. Note
that the residuals €; and the constants are nested.

We have no observation y; available for ¢ < 0. But from the assumption E(e;) = 0

and thus E(Y;) = 0, it is reasonable to backforecast y: by zero and to put & :=0
for t < 0, leading to

n
2 2
S%(a1,...,ap, b1,...,by) = E ;.
t=1
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The estimated residuals é; can then be computed from the recursion

&1 = W

€y = Yo —amy1 — biéy

€3 = Y3 — a1y2 — Goy1 — b1éa — baéy

€ = Y; —a1yj—1 — ... —AQpYj—p — b1€j,1 — . quj,q,

where j now runs from max{p, ¢} to n.

The coefficients aq, . . ., a, of a pure AR(p)-process can be estimated directly, using
the Yule-Walker equations as described in (2.6)).

Diagnostic Check

Suppose that the orders p and ¢ as well as the constants aq,...,ap,,b1,..., b, have
been chosen in order to model an ARMA(p, q)-process underlying the data. The
Portmanteau-test of Box and Pierce (1970) checks, whether the estimated residuals
ét, t=1,...,n, behave approximately like realizations from a white noise process.
To this end one considers the pertaining empirical autocorrelation function

S (E =)k —E)
Z?:1(éj —&)? ’

where £ = n~! Z;lzl €;, and checks, whether the values 7. (k) are sufficiently close
to zero. This decision is based on

re(k) :==

which follows asymptotically for n — oo a y2-distribution with K —p—q degrees of
freedom if (Y;) is actually an ARMA(p, ¢)-process (see e.g. Section 9.4 in Brockwell
and Davis (1991)). The parameter K must be chosen such that the sample size
n — k in 7-(k) is large enough to give a stable estimate of the autocorrelation
function. The ARMA(p, q)-model is rejected if the p-value 1 — X%fpfq(Q(K)) is
too small, since in this case the value Q(K) is unexpectedly large. By X%(ﬂ)fq we
denote the distribution function of the y2-distribution with K — p — ¢ degrees of
freedom. To accelerate the convergence to the X%(ﬂ)f o distribution under the null
hypothesis of an ARMA(p, q)-process, one often replaces the Box—Pierce statistic
Q(K) by the Box-Ljung statistic (Ljung and Box (1978))

1/2

K (rn+2 ? Ko
Q*(K) =n ( ks r€<k>> = n(n+2) 72 (k)
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with weighted empirical autocorrelations.
Forecasting

We want to determine weights ¢fj,...,c_; € R such that for h € N

€0y--sCn—1€R

n—1 2 n—1 2
<Yn+h - Z CZYnu> = mln E (YnJrh - Z CuYnu>
u=0 u=0

o 1
Then Y, 45 = ZZ 0 € Yn—y with minimum mean squared error is said to be a

best (linear) h-step forecast of Y, 1, based on Yy,...,Y,. The following result
provides a sufficient condition for the optimality of weights.

Lemma 2.3.2. Let (Y;) be an arbitrary stochastic process with finite second mo-
ments. If the weights cfy,...,cl,_, have the property that

n—1
E (}g (Yn+hzcm_u>> =0, i=1,...,n, (2.15)
u=0

then Yn—i—h =" ! ciYn_y is a best h-step forecast of Yyip,.

uOu

Proof. Let }N/n+h = Zu échn « be an arbitrary forecast, based on Yi,...,Y,.
Then we have

E((YnJrh - ffn+h)2)
= E((Yn-‘rh - Yn+h + Yn-i—h - Yn+h)2)

O

Suppose that (Y;) is a stationary process with mean zero and autocorrelation
function p. The equations (2.15) are then of Yule-Walker type

plh+s)= Zcups—u s=0,1,...,n—1,
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or, in matrix language

<p(h) | s

p(h+1 ci

. -pr, | (2.16)
p(h+n—1) Cho1

with the matrix P,, as defined in (2.7). If this matrix is invertible, then

o p(h)
| =Pt : (2.17)

n

Cr1 p(h+n—1)
is the uniquely determined solution of ([2.16)).

If we put h = 1, then equation (2.17) implies that ¢_; equals the partial auto-
correlation coefficient a(n). In this case, a(n) is the coefficient of Y7 in the best
linear one-step forecast Y, 41 = Zz;é rYn_y of Yoyq.

Example 2.3.3. Consider the MA(1)-process Y; = e +ae;—1 with E(gg) = 0. Its
autocorrelation function is by Example given by p(0) = 1, p(1) = o/(1 +
a?), p(u) =0 for u > 2. The matrix P,, equals therefore

1 # 0 0 e 0

e 1 omae 0 0

Pn _ 0 1—;—1(12 1 1.—&?(12 0
0 e 1 %

0 0 T 1

Check that the matrix P,, = (Corr(Y;,Y;))1<i j<n is positive definite, T P,z > 0
for any @ € R™ unless © = 0 (Exercise 40), and thus, P, is invertible. The best
forecast of Yy, 1 is by (2.17), therefore, S."Z} ¢ Y, _, with

u=0 "u
_a
CS lJrOa2
=P
Cr1 O

which is a/(1 + a?) times the first column of P, *. The best forecast of Yy, for
h > 2is by (2.17)) the constant 0. Note that Y;,1 is for h > 2 uncorrelated with
Y1,...,Y, and thus not really predictable by Y7,...,Y,.
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Theorem 2.3.4. Suppose that Yy = 25:1 ayYi—u + €1, t € Z, is a stationary
AR(p)-process, which satisfies the stationarity condition (2.3) and has zero mean

E(Yo) =0. Let n > p. The best one-step forecast is

Yori=a1Yn +aYe 1+ ...+ apYarip
and the best two-step forecast is
}/}n+2 = alffm_l +aY, + ...+ apYuio_p.
The best h-step forecast for arbitrary h > 2 is recursively given by

Yn+h = alyArnJrh,l +...+ ah,1?n+1 +apY, +...+ apYnJrh,p.

Proof. Since (Y;) satisfies the stationarity condition , it is invertible by The-
orcm i.e., there exists an absolutely summable causal filter (b,),>0 such that
Y = > 50 buft—u, t € Z, almost surely. This implies in particular E(Y;ei4p) =
Y usobu E(e;_werin) = 0 for any h > 1, cf. Theorem m Hence we obtain for

N

>
=1

E((Yn+1 - YAVn-&-l)Y;) = E(En-ﬁ-l}/i) =0

from which the assertion for h = 1 follows by Lemma [2.3.2] The case of an
arbitrary h > 2 is now a consequence of the recursion

E((Yn-‘rh - Yn-‘rh)Yi)

min(h—1,p) min(h—1,p) .
= E En+h + Z auYn-‘rh—u - Z a'uYn—i-h—u Y;
u=1 u=1
min(h—1,p) R
= > @B ((Vernou = Yarnoa) i) =0, i=1...m,
u=1
and Lemma [2.3.2) 0

A repetition of the arguments in the preceding proof implies the following result,
which shows that for an ARMA(p, q)-process the forecast of Y, for h > ¢ is
controlled only by the A R-part of the process.

Theorem 2.3.5. Suppose that Yy =Y " _ a,Yi—y+er+Y o byei—y, t € Z, is an
ARMA(p, q)-process, which satisfies the stationarity condition (2.8) and has zero
mean, precisely E(eg) = 0. Suppose that n+q—p > 0. The best h-step forecast of

Yo+n for h > q satisfies the recursion

p
Yn+h: § auYnJrhfux
u=1



94 Chapter 2. Models of Time Series

Example 2.3.6. We illustrate the best forecast of the ARMA(1, 1)-process
Y; =04Y;_1 +¢; — 0.64_1, teZ,
with E(Y;) = E(e;) = 0. First we need the optimal 1-step forecast f/l for i =

1,...,n. These are defined by putting unknown values of Y; with an index ¢ <0
equal to their expected value, which is zero. We, thus, obtain

Y = 0, 6 =v-Y =¥,
Y = 0.4Y7 +0 — 0.6¢;
= —0.2Y, gy = Yo—Y, = Yo+0.2Y5,

~

Y; (= 0.4Y5 + 0 — 0.6é5
= 04Y; — 0.6(}/2 + 0.2}/1)

= —0.2Y, — 0.12Y, &y = Y3 — Y,
until ¥; and &; are defined for i = 1,...,n. The actual forecast is then given by

~

Vi1 = 04Y, 40— 0.6, = 0.4Y, — 0.6(Y, — Y,,),

Voio = 04Y, 1 4+0+0,
Yoan = 04Y, .1 = = 04" 1Y, 11 —pe 0,

where €; with index t > n + 1 is replaced by zero, since it is uncorrelated with Y;,
1 <n.

In practice one replaces the usually unknown coefficients a,,, b, in the above fore-
casts by their estimated values.

2.4 State-Space Models

In state-space models we have, in general, a nonobservable target process (X;)
and an observable process (Y;). They are linked by the assumption that (Y;) is a
linear function of (X;) with an added noise, where the linear function may vary in
time. The aim is the derivation of best linear estimates of X, based on (Y5)s<¢.

Many models of time series such as ARMA(p, q)-processes can be embedded in
state-space models if we allow in the following sequences of random vectors X; €
RF and Y; € R™.
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A multivariate state-space model is now defined by the state equation
Xt+1 = AtXt + Bt€t+1 S Rk, (218)

describing the time-dependent behavior of the state X; € R¥, and the observation
equation
Y, =C. X; + e € R™. (219)

We assume that (A;), (B;) and (C}) are sequences of known matrices, (&) and
(n¢) are uncorrelated sequences of white noises with mean vectors 0 and known
covariance matrices Cov(e;) = E(gel) =: Qy, Cov(n,) = E(munl) =: R,.

We suppose further that X, and ¢, 1+, t > 1, are uncorrelated, where two random
vectors W € RP and V' € R? are said to be uncorrelated if their components are
i.e., if the matrix of their covariances vanishes

E(W —E(W)(V —E(V))T) =0.

By E(W) we denote the vector of the componentwise expectations of W. We say
that a time series (Y;) has a state-space representation if it satisfies the represen-

tations (2.18]) and (2.19)).

Example 2.4.1. Let (7;) be a white noise in R and put
Yii=pu+m

with linear trend pu; = a+bt. This simple model can be represented as a state-space
model as follows. Define the state vector X; as

and put

From the recursion psy1 = ¢ + b we then obtain the state equation

15
s () ) () - 4.

C:=(1,0)

and with
the observation equation

Y, =(1,0) (lit> +n =CXy + n.

Note that the state X; is nonstochastic i.e., By = 0. This model is moreover
time-invariant, since the matrices A, B := B; and C do not depend on t.
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Example 2.4.2. An AR(p)-process
Yi=a1Yi 1+ ... +apY p+ &
with a white noise (g;) has a state-space representation with state vector
X, = (Y, Vi1, Yipy1)"

If we define the p x p-matrix A by

ap az ... ap—1 Qp
10 ... 0 O
A—|0 1 0 0
0O 0 ... 1 O

and the p x 1-matrices B, C”T by
B:=(1,0,...,00T = C7,
then we have the state equation
Xit1 = AX; + Beyyg

and the observation equation

Example 2.4.3. For the MA(q)-process
Yi=ct+bigr—1+ ...+ bger—q
we define the non observable state
X = (e, 801, - ,Et,q)T e Rt

With the (¢ + 1) x (g + 1)-matrix

000...00
100...00
A—|010 o00f,
000..10

the (¢4 1) x I-matrix

and the 1 x (¢ + 1)-matrix
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we obtain the state equation
Xit1 = AX; + Begyy

and the observation equation
Y, =CX,.

97

Example 2.4.4. Combining the above results for AR(p) and MA(q)-processes,

we obtain a state-space representation of ARMA(p, q)-processes
Yi=aYi1+.. . +apYip+er+bige—1 + ...+ bger—g.
In this case the state vector can be chosen as
X o= (Y,Yic1, . Yipi1,60,60-1, .- E—qi1)” € RPTY

We define the (p+ ¢q) x (p + ¢)-matrix

ap a2 ... Gp—1 Gp bl b2 . bq_l bq

10 0 00 0

0 0 10 0
A=1]0 0 01,

0 0 10 0

0 0 01 0

0 0 00 1 0

the (p 4+ ¢) x l-matrix
B:=(1,0,...,0,1,0,...,0)
with the entry 1 at the first and (p + 1)-th position and the 1 x (p + ¢)-matrix
C = (1,0,...,0).
Then we have the state equation
X1 =AX; 4+ Beyy
and the observation equation

}/t == CXt

The Kalman-Filter

The key problem in the state-space model (2.18]), (2.19) is the estimation of the
nonobservable state X;. It is possible to derive an estimate of X; recursively from
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an estimate of X;_; together with the last observation Y;, known as the Kalman
recursions (Kalman 1960). We obtain in this way a unified prediction technique
for each time series model that has a state-space representation.

We want to compute the best linear prediction
X, =D\Y, +...+ DY, (2.20)

of Xy, based on Y7,...,Y; i.e., the k X m-matrices Dy, ..., D; are such that the
mean squared error is minimized

E(X; — X)T (X, — X))

= B((X; - j:DjY}')T(Xt - Et:Dij))
j=1 J=1

t
_ : o / \T o A
SR SEA S DA TR

By repeating the arguments in the proof of Lemma[2.3.2] we will prove the following
result. It states that Xt is a best linear prediction of X; based on Y7,...,Y; if
each component of the vector X; — X, is orthogonal to each component of the
vectors Y, 1 < s < t, with respect to the inner product E(XY) of two random
variable X and Y.

Lemma 2.4.5. If the estimate X, defined in (2.20) satisfies
E(X, - X,)Y)=0, 1<s<t, (2.22)

then it minimizes the mean squared error (2.21).

Note that E((X; — Xt)YSTA) is a k x m-matrix, which is generated by multiplying
each component of X; — X; € R¥ with each component of Y, € R™.

Proof. Let X{ = 22:1 DlY; € R be an arbitrary linear combination of Y7, ..., Y.
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Then we have

E((X: — X)T(X; - X7))

=E((Xt—Xt+i<Dj—D;m)T(Xt—Xt+i<Dj—D;-m))

j=1

= B(X, - X)T(X +22E (X; — X)"(D; - D))Y;)

E((é(pj—p’ )iD D))Y;)

> B((X: - X)T (X, - X)), _

since in the second-to-last line the final term is nonnegative and the second one
vanishes by the property (2.22]). O

Let now Xt—l be the best linear prediction of X;_; based on Y7,...,Y;_1. Then
Xt = Atfl)ztfl (223)

is the best linear prediction of X; based on Y7,...,Y;_1, which is easy to see. We
simply replaced €; in the state equation by its expectation 0. Note that €, and Y
are uncorrelated if s < t i.e., E((X; — X;)Y,!)=0for 1 <s<t—1.

From this we obtain that _ _
Yt = CtXt

is the best linear prediction of Y; based on Yi,...,Y; 1, since E((Y; — f"t)YST) =
E(Cy(X:—X4)+n)Y.L) =0, 1 < s <t—1;note that n; and Y are uncorrelated
if s <t.

Define now by
A= B(Xy — Xt)(Xt - Xt>T) and A16 = E((X, — Xt>(Xt - Xt)T)'

the covariance matrices of the approximation errors. Then we have

A, = B(A—1(Xi—1 — Xyo1) + Biorer) (A1 (Xi—1 — Xy—1) + Bioier) )
E(Atfl(thl - Xt*l)(Atfl(thl - Xt*l))T)

((Bt 1€t)(Bt 1€t)T)
= A 1A 1At \+Bi-1QiB/_,

since &; and X;_1 — X¢_1 are obviously uncorrelated. In complete analogy one
shows that _ _ _
E(Y; - Y )(Y; - Y)T)=C,ACT +R,.
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Suppose that we have observed Yi,...,Y;—1, and that we have predicted X; by
X + = A;_1X;_1. Assume that we now also observe Y;. How can we use this
additional information to improve the prediction X; of X;? To this end we add a
matrix K; such that we obtain the best prediction Xt based on Y7,...Y;:

X +K,(Y;,-Y,) =X, (2.24)

i.e., we have to choose the matrix K; according to Lemma such that X; — X,
and Y, are uncorrelated for s = 1,...,¢. In this case, the matrix K; is called the
Kalman gain.

Lemma 2.4.6. The matriz K; in (2.24) is a solution of the equation

K,(C.A.CT + R,) = A,CT. (2.25)

Proof. The matrix K; has to be chosen such that X; — X + and Y, are uncorrelated
for s=1,...,t, ie.,

0=F((X; - X)Y,)") =E(X;, - X, - K,(Y; - Y,))Y]"), s<t
Note that an arbitrary & x m-matrix K, satisfies

((Xt X, - K.Y, - Yt))YT)
= E(X;, - X)YD) - K,E(Y;, - Y)Y ) =0, s<t—1

In order to fulfill the above condition, the matrix K; needs to satisfy only

0 = E( DY) - K E(Y; - Y)Y)

= E( DY —Y)") - K E(Y; - Y)(Y, - Y,)T)

= E( t)(Ct(Xt X)) +m)") - KE(Y, - Y)YV - Y)")
= B((X )

K.(C

= AtCT

(X = X)")CF = K E((Y, = Y)(Y, = Y)T)
AtC + R;).
But this is the assertion of Lemma Note that f’t is a linear combination of

Y:,..., Y, and that n, and X; — X ¢+ as well as 1, and Y; are uncorrelated for
s<t-—1. O

If the matrix C’tAtCtT + R; is invertible, then

Kt = AtC;T(CtAtC;T +Rt)71
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is the uniquely determined Kalman gain. We have, moreover, for a Kalman gain
A, = B((X; — X)(X, - X)7)
= B((Xi - X - Ki(Yi - V) (X, - X~ Ki(Yi - ¥)))7)

A+ K E(Y: - Y) (Y - Y)"K]
—E(X, - X)(Y, - YK - K,E(Y, - Y)(X, — X,)")
= A, + K,(C,ACT + R)KT
~-A,CT'KT - K,.C,A,
= A, — K,C,A,

by (2.25) and the arguments in the proof of Lemma

The recursion in the discrete Kalman filter is done in two steps: From X, and
A;_1 one computes in the prediction step first

X, = A X,

CtXh
A A, AT+ B, QB . (2.26)

b=
o

In the updating step one then computes K; and the updated values X, A,

Kt = AtC?(CtAtC?+Rt)717
X, = X, + K (Y - Y,),
A, = A, — K,.C,A,. (2.27)

An obvious problem is the choice of the initial values X 1 and A1 One frequently
puts X, =0 and A; as the diagonal matrix with constant entries 62 > 0. The
number o2 reflects the degree of uncertainty about the underlying model. Simula-
tions as well as theoretical results show, however, that the estimates X, are often
not affected by the initial values X1 and A; if ¢ is large, see for instance Example
2.4.7 below.

If in addition we require that the state-space model ( , is completely
determined by some parametrization ¥ of the dlstrlbutlon of (Y}) and (Xt) then
we can estimate the matrices of the Kalman filter in and (| under
suitable conditions by a maximum likelihood estimate of 19 see e.g. Sectlon 8.5 of
Brockwell and Davis (2002) or Section 4.5 in Janacek and Swift (1993).

By iterating the 1-step prediction X, = A, 1 X, ; of X;in (2.23) h times, we
obtain the h-step prediction of the Kalman filter

Xiin = Apn1 X1, h>1,
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with the initial value Xt+0 = Xt. The pertaining h-step prediction of Y4 is
then _ _
Yirn = CopnXitn, h>1.

2.4.7 Example. Let (7;) be a white noise in R with E(n;) = 0, E(n?) = 0% > 0
and put for some p € R
Y, i=p+n, teZ.

This process can be represented as a state-space model by putting X; := u, with
state equation X;; = X; and observation equation Y; = X; +1n; i.e., A, =1=C,
and B; = 0. The prediction step (2.26]) of the Kalman filter is now given by

Note that all these values are in R. The h-step predictions X’Hh, ?Hh are, there-
fore, given by X;. The update step (2.27)) of the Kalman filter is

A
K = ——t=1
Ai_q + 02
Xi = X1+ K(Ys — Xio1)
o2
Ay = Ay 1 — KAy 1 =0 1 ——.
t t—1 tA—1 LA, o2
Note that A, = E((X; — X;)2) > 0 and thus,
A o A
0<A =N 1——m— _
RAV IA g2 = Bl
is a decreasing and bounded sequence. Its limit A := lim; .., A; consequently
exists and satisfies
o2
A=A——
A + o2

i.e., A = 0. This means that the mean squared error E((X; —X;)?) = E((u—X;)?)
vanishes asymptotically, no matter how the initial values X; and A; are chosen.
Further we have lim;_,, K; = 0, which means that additional observations Y; do
not contribute to X, if ¢ is large. Finally, we obtain for the mean squared error of
the h-step prediction }7}+h of Yiin

E((Yern = Yien)?) = B((u+ 1hesn — X0)%)
= B((1 = X)*) + B0l 1) =00 07

Example 2.4.7. The following figure displays the Airline Data from Example
1.3.1 together with 12-step forecasts based on the Kalman filter. The original
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data yi, t = 1,..., 144 were log-transformed z; = log(y;) to stabilize the variance;
first order differences Ax; = x; — x;_1 were used to eliminate the trend and,
finally, z;, = Axy — Axy;_1o were computed to remove the seasonal component of
12 months. The Kalman filter was applied to forecast z;, t = 145,...,156, and
the results were transformed in the reverse order of the preceding steps to predict

the initial values vy, t = 145, ..., 156.

in

Foazse-qera

T
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¥ 5] P9 firecast

Figure 2.4.1. Airline Data and predicted values using the Kalman filter.
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* k% Program 2_4_1 *k Kk
TITLE1 ’Original and Forecasted Data’;
TITLE2 ’Airline Data’;

DATA datal;

INFILE ’c:\datalairline.txt’;
INPUT y;
y1=L0G(y); t=_N_;

PROC STATESPACE DATA=datal 0UT=data2 LEAD=12;

VAR y1(1,12); ID t;

DATA data3;
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SET data?2;

DATA data4 (KEEP=t y yhat);
MERGE datal data3;
BY t;

LEGEND1 LABEL=(’’) VALUE=(’original’

yhat=EXP (FOR1) ;

Chapter 2. Models of Time Series

>forecast ’);

SYMBOL1 C=BLACK V=DOT H=0.7 I=JOIN L=1;
SYMBOL2 C=BLACK V=CIRCLE H=1.5 I=JOIN L=1;

AXIS1 LABEL=(ANGLE=90

’Passengers ’) ;

AXIS2 LABEL=(’January 1949 to December 1961°);

PROC GPLOT DATA=data4;

PLOT y*t=1 yhat*t=2 / OVERLAY VAXIS=AXIS1
HAXIS=AXIS2 LEGEND=LEGEND1;

RUN; QUIT;

In the first data step the Airline Data are read
into datal. Their logarithm is computed and
stored in the variable y1. The variable t con-
tains the observation number.

The statement VAR y1(1,12) of the PROC
STATESPACE procedure tells SAS to use first or-
der differences of the initial data to remove
their trend and to adjust them to a seasonal
component of 12 months. The data are iden-
tified by the time index set to t. The results

Exercises

are stored in the data set data2 with forecasts
of 12 months after the end of the input data.
This is invoked by LEAD=12.

data3 contains the exponentially trans-
formed forecasts, thereby inverting the log-
transformation in the first data step.

Finally, the two data sets are merged and dis-
played in one plot.

1. Suppose that the complex random variables Y and Z are square integrable. Show

that

Cov(aY +b,Z) =aCov(Y, Z),

a,b e C.

2. Give an example of a stochastic process (Yz) such that for arbitrary ti,t2 € Z and

k#0

E(}/tl) 75 E(YtlJrk) but

COV(Ytl ) Yt2) = COV(Y;flJrk: }/terk)'

3. (i) Let (X:), (Y%) be stationary processes such that Cov(Xy,Ys) = 0 for ¢, s € Z. Show
that for arbitrary a,b € C the linear combinations (aX; + bY;) yield a stationary

process.
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(ii) Suppose that the decomposition Z: = X+ Y3, t € Z holds. Show that stationarity
of (Z;) does not necessarily imply stationarity of (X).

4. (i) Show that the process ¥; = Xe‘! a € R, is stationary, where X is a complex
valued random variable with mean zero and finite variance.

(ii) Show that the random variable Y = be’V has mean zero, where U is a uniformly
distributed random variable on (0,27) and b € C.

5. Let Z1, Z2 be independent and normal N (u;, U?), i = 1, 2, distributed random variables
and choose A € R. For which means u1, 2 € R and variances ¢3,03 > 0 is the cosinoid
process

Y, = Z1 cos(2mAt) + Zysin(2wAt), te€Z

stationary?

6. Show that the autocovariance function v : Z — C of a complex-valued stationary
process (Yz)tez, which is defined by

v(h) = E(Ye4rY:) — E(Yirn) E(Y:), h€Z,

has the following properties: v(0) > 0, |y(h)| < v(0), v(h) = v(—h), i.e., v is a Hermitian
function, and 37, ., z-y(r — 8)Zs > 0 for z1,...,2, € C, n € N, ie., v is a positive
semidefinite function.”

7. Suppose that Y;, t = 1,...,n, is a stationary process with mean pu. Then [, :=
nt >4, Y: is an unbiased estimator of u. Express the mean square error E(fin — w)?
in terms of the autocovariance function v and show that E(f, — u)*> — 0 if v(n) — 0,
n — oo.

8. Suppose that (Y;)tez is a stationary process and denote by

(k) o= {7 T = D)W =), RI= 0, m— 1,
0, |k| > n.

the empirical autocovariance function at lag k, k € Z.

(i) Show that c(k) is a biased estimator of y(k) (even if the factor n™" is replaced by
(n— k)1) i, B(e(k)) £ (k).

(ii) Show that the k-dimensional empirical covariance matrix

¢(0) 1) ... oc(k-1)
c(1) c(0) c(k —2)
Cr = : . :
ck—1) e(k=2) ... (0)

is positive semidefinite. (If the factor n™' in the definition of c(j) is replaced
by (n —j)"%, j = 1,...,k, the resulting covariance matrix may not be positive
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semidefinite.) Hint: Consider k& > n and write Cy = n 'AAT with a suitable
k x 2k-matrix A. Show further that C,, is positive semidefinite if C}, is positive
semidefinite for k > m.

(iii) If ¢(0) > 0, then C} is nonsingular, i.e., C} is positive definite.

9. Suppose that (Yz) is a stationary process with autocovariance function vy . Express
the autocovariance function of the difference filter of first order AY; = Y; —Y;_1 in terms
of vy. Find it when 7y (k) = MEL

10. Let (Yi)tez be a stationary process with mean zero. If its autocovariance function
satisfies v(7) = 0 for some 7 > 0, then ~ is periodic with length 7, i.e., v(t + 7) = ¥(t),
t €.

11. Let (Y:) be a stochastic process such that for t € Z
P{Yi=1}=p,=1-P{Y; =-1}, 0<p <1
Suppose in addition that (Yz) is a Markov process, i.e., for any t € Z, k > 1
PYi=yol|Yic1i =91,...,Yiw = yr) = P(Y: = yo|Yio1 = 11).

(i) Is (Yi),ey @ stationary process?

(ii) Compute the autocovariance function in case P(Y; = 1|Yi—1
1/2.

1) = Xand p; =

12. Let (e¢)¢ be a white noise process with independent ¢; ~ N(0,1) and define

P Et, if ¢t is even,
T (€2, —1)/v2, iftis odd.

Show that (&;): is a white noise process with E(£;) = 0 and Var(é;) = 1, where the &;
are neither independent nor identically distributed. Plot the path of (e¢): and (&¢)+ for
t=1,...,100 and compare!

13. Let (e¢)tez be a white noise. The process Y; = 2221 € 1s said to be a random walk.
Plot the path of a random walk with normal N (u, 0%) distributed ¢; for each of the cases
pu<0,p=0and u>0.

14. Let (aw) be absolutely summable filters and let (Z;) be a stochastic process with
sup,c; E(Z7) < 0. Put for t € Z

X = ZauZt—u7 Y, = ZbUZt—v-
u v

Then we have

B(XeY:) =Y aubs B(Zi-uZi).

u
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Hint: Use the general inequality |zy| < (z2 + y?)/2.

15. Let Y; = aYi—1 + &, t € Z be an AR(1)-process with |a|] > 1. Compute the
autocorrelation function of this process.

16. Compute the orders p and the coefficients a., of the process Y; = Y P _ auei—o with
Var(go) = 1 and autocovariance function v(1) = 2,v(2) = 1,7(3) = —1 and ~(¢) = 0 for
t > 4. Is this process invertible?

17. The autocorrelation function p of an arbitrary MA(q)-process satisfies

q
1
< Zﬂ(v) < 5
v=1

N | =

Give examples of MA(q)-processes, where the lower bound and the upper bound are
attained, i.e., these bounds are sharp.

18. Let (Yi)iez be a stationary stochastic process with E(Y;) =0, ¢t € Z, and

1 ift=0
Pty =13 p(1) ift=1
0 ift>1,

where |p(1)| < 1/2. Then there exists a € (—1,1) and a white noise (e¢)¢cz such that
Yi =ei+aee-1.

Hint: Example

19. Find two MA(1)-processes with the same autocovariance functions.

20. Suppose that Y; = e+ +ae¢—1 is a noninvertible MA(1)-process, where |a| > 1. Define

the new process
o0

&= (—a) 7Yy

=0

and show that (¢;) is a white noise. Show that Var(é;) = a® Var(e;) and (Y;) has the
invertible representation
Y =& +a &1

21. Plot the autocorrelation functions of MA(p)-processes for different values of p.

22. Generate and plot AR(3)-processes (Y:), ¢ = 1,...,500 where the roots of the
characteristic polynomial have the following properties:

(i) all roots are outside the unit disk,

(ii) all roots are inside the unit disk,
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(iii) all roots are on the unit circle,
(iv) two roots are outside, one root inside the unit disk,

(v) one root is outside, one root is inside the unit disk and one root is on the unit
circle,

(vi) all roots are outside the unit disk but close to the unit circle.

23. Show that the AR(2)-process Y: = a1Yi—1 + a2Yi—2 + &4 for a1 = 1/3 and as = 2/9
has the autocorrelation function

= B 5 (D" v

and for a1 = az = 1/12 the autocorrelation function
45 71\ 1kl 32 1\ Ikl
=2(= -z Z.
p(k) 77(3) +77( 4) » ke

24. Let (e¢) be a white noise with E(go) = p, Var(go) = 02 and put
Y=+ — Y1, t€N7Y0=OA
Show that
Corr(Ys, Y;) = (—=1)°t min{s, t}/V/st.
25. An AR(2)-process Y: = a1Y:—1+a2Y:—2+e; satisfies the stationarity condition (2.3),
if the pair (a1, a2) is in the triangle

A::{(a,ﬁ)eR2:—1<ﬁ<1,a+ﬁ<1and5—a<1}.

Hint: Use the fact that necessarily p(1) € (—1,1).

26. (i) Let (Y:) denote the unique stationary solution of the autoregressive equations
Yi=aYi—1+e, teEZ,

with |a| > 1. Then (Y?) is given by the expression Y; = — 3777 aJes1; (see the
proof of Lemma [2.1.10)). Define the new process

- 1
&t = Y; - 7Yt—17
a

and show that (£;) is a white noise with Var(¢;) = Var(e;)/a®. These calculations
show that (Y;) is the (unique stationary) solution of the causal AR-equations

1 -
Yt:E)/t—l + &4, teZ.

Thus, every AR(1)-process with |a| > 1 can be represented as an AR(1)-process
with |a| < 1 and a new white noise.



Exercises 109

(ii) Show that for |a|] = 1 the above autoregressive equations have no stationary
solutions. A stationary solution exists if the white noise process is degenerated,
i.e., B(e?) = 0.

27. (i) Consider the process

- €1 fort=1
Y; =
aYi—1+e fort>1,

ie., Yi, t > 1, equals the AR(1)-process Y; = aY;_1 + &, conditional on Yy = 0.
Compute E(Yz), Var(Y;) and Cov(Yz, Yit+s). Is there something like asymptotic
stationarity for t — oo?

(ii)) Choose a € (—1,1), a # 0, and compute the correlation matrix of Yi,..., Yio.

28. Use the IML function ARMASIM to simulate the stationary AR(2)-process
Y, = —-0.3Y;—1 + 0.3Yi—2 + &

Estimate the parameters a1 = —0.3 and a2 = 0.3 by means of the Yule-Walker equations
using the SAS procedure PROC ARIMA.

29. Show that the value at lag 2 of the partial autocorrelation function of the MA(1)-
process
Yi=¢et+ae—1, tEZ
is
2

a(2):_1+a2+a4'

30. (Unemployedl Data) Plot the empirical autocorrelations and partial autocorrela-
tions of the trend and seasonally adjusted Unemployedl Data from the building trade,
introduced in Example Apply the Box—Jenkins program. Is a fit of a pure MA(q)-
or AR(p)-process reasonable?

31. Plot the autocorrelation functions of ARMA(p, q)-processes for different values of
P, q using the IML function ARMACOV. Plot also their empirical counterparts.

32. Compute the autocovariance function of an ARMA(1,2)-process.

33. Derive the least squares normal equations for an AR(p)-process and compare them
with the Yule-Walker equations.

34. Show that the density of the t-distribution with m degrees of freedom converges to
the density of the standard normal distribution as m tends to infinity. Hint: Apply the

dominated convergence theorem (Lebesgue).

35. Let (Y2): be a stationary and causal ARCH (1)-process with |a1| < 1.
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(i) Show that Y;* = ao ity alZEZE - Z?_; with probability one.
(ii) Show that E(Y?) = ao/(1 — a1).

(iii) Evaluate E(Yy") and deduce that E(Z7)ai < 1 is a sufficient condition for E(Y;*) <
0.

Hint: Theorem 2.1.5

36. Determine the joint density of Yp41, ..., Y, for an ARCH (p)-process Y; with normal
distributed Z; given that Y1 = y1,...,Y, = yp. Hint: Recall that the joint density fx vy
of a random vector (X,Y) can be written in the form fx vy (z,y) = fyxyl|z)fx(z),
where fyx(y|z) == fx,v(z,v)/fx(x) if fx(z) >0, and fyx(y|r) = fr(y), else, is the
(conditional) density of Y given X = z and fx, fy is the (marginal) density of X,Y".

37. Generate an ARCH (1)-process (Y;); with ap = 1 and a1 = 0.5. Plot (Y;) as
well as (Y;?): and its partial autocorrelation function. What is the value of the partial
autocorrelation coefficient at lag 1 and lag 2?7 Use PROC ARIMA to estimate the parameter
of the AR(1)-process (Y;?); and apply the Box-Ljung test.

38. (Hong Kong Data) Fit an GARCH (p, q)-model to the daily Hang Seng closing index
of Hong Kong stock prices from July 16, 1981, to September 31, 1983. Consider in
particular the cases p=¢g =2 and p=3,q = 2.

39. (Zurich Data) The daily value of the Zurich stock index was recorded between
January 1st, 1988 and December 31st, 1988. Use a difference filter of first order to
remove a possible trend. Plot the (trend-adjusted) data, their squares, the pertaining
partial autocorrelation function and parameter estimates. Can the squared process be
considered as an AR(1)-process?

40. (i) Show that the matrix ¥’~' in Example has the determinant 1 — a?.

(ii) Show that the matrix P, in Example has the determinant (14 a® + a® +
e a) /(L4 a?)

41. (Car Data) Apply the Box—Jenkins program to the Car Data.

42. Consider the two state-space models

Xiy1 = A Xt + B
Y. =C: Xy + 1

and
XH_l = AtXt + Et§t+1
fft = étXt + ¢,

where (e ,n{, X, 77)7 is a white noise. Derive a state-space representation for (Y, , ¥;7)7.
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43. Find the state-space representation of an ARIMA(p, d, g)-process (Y;):. Hint: Y; =
Ay, — ijl(—l)J (%)Y:—; and consider the state vector Z; := (X¢,Yi—1)", where X, €
RP*9 is the state vector of the ARMA(p, q)-process A%, and Yi_q := (Yicd, .., Yt,1)T.

44. Assume that the matrices A and B in the state-space model are independent
of ¢ and that all eigenvalues of A are in the interior of the unit circle {z € C : |z| <
1}. Show that the unique stationary solution of equation is given by the infinite
series X; = Z;‘;O A7Be;_j1. Hint: The condition on the eigenvalues is equivalent to
det(I, — Az) # 0 for |2| < 1. Show that there exists some ¢ > 0 such that (I, — Az)™!
has the power series representation >377 A727 in the region |z| < 1+e.

45. Apply PROC STATESPACE to the simulated data of the AR(2)-process in Exercise 26.

46. (Gas Data) Apply PROC STATESPACE to the gas data. Can they be stationary?
Compute the one-step predictors and plot them together with the actual data.






Chapter 3

The Frequency Domain
Approach of a Time Series

The preceding sections focussed on the analysis of a time series in the time domain,
mainly by modelling and fitting an ARMA(p, q)-process to stationary sequences
of observations. Another approach towards the modelling and analysis of time
series is via the frequency domain: A series is often the sum of a whole variety of
cyclic components, from which we had already added to our model a long
term cyclic one or a short term seasonal one. In the following we show that a
time series can be completely decomposed into cyclic components. Such cyclic
components can be described by their periods and frequencies. The period is the
interval of time required for one cycle to complete. The frequency of a cycle is its
number of occurrences during a fixed time unit; in electronic media, for example,
frequencies are commonly measured in hertz, which is the number of cycles per
second, abbreviated by Hz. The analysis of a time series in the frequency domain
aims at the detection of such cycles and the computation of their frequencies.

Note that in this chapter the results are formulated for any data v, ..., y,, which
need for mathematical reasons not to be generated by a stationary process. Nev-
ertheless it is reasonable to apply the results only to realizations of stationary
processes, since the empirical autocovariance function occurring below has no in-
terpretation for non-stationary processes, see Exercise 18 in Chapter
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3.1 Least Squares Approach with Known Frequen-
cies

A function f:R — R is said to be periodic with period P > 0 if f(t+ P) = f(t)
for any t € R. A smallest period is called a fundamental one. The reciprocal value
A = 1/P of a fundamental period is the fundamental frequency. An arbitrary
(time) interval of length L consequently shows LA cycles of a periodic function f
with fundamental frequency A. Popular examples of periodic functions are sine
and cosine, which both have the fundamental period P = 27. Their fundamental
frequency, therefore, is A = 1/(27). The predominant family of periodic functions
within time series analysis are the harmonic components

m(t) := Acos(2mAt) + Bsin(2wAt), A, BeR, A>0,

which have period 1/\ and frequency A. A linear combination of harmonic com-
ponents

g(t) == p+ Y (Agcos(2mAgt) + By sin(2w\t)), pER,
k=1

will be named a harmonic wave of length r.

Example 3.1.1. (Star Data). To analyze physical properties of a pulsating star,
the intensity of light emitted by this pulsar was recorded at midnight during 600
consecutive nights. The data are taken from Newton (1988). It turns out that a
harmonic wave of length two fits the data quite well. The following figure displays
the first 160 data y; and the sum of two harmonic components with period 24 and
29, respectively, plus a constant term p = 17.07 fitted to these data, i.e.,

§¢ = 17.07 — 1.86 cos(2m(1/24)t) + 6.82sin(27w(1/24)t)
+ 6.09 cos(2m(1/29)t) + 8.01 sin(27(1/29)t).

The derivation of these particular frequencies and coefficients will be the content
of this section and the following ones. For easier access we begin with the case of
known frequencies but unknown constants.
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Figure 3.1.1. Intensity of light emitted by a pulsat-
ing star and a fitted harmonic wave.
Model: MODEL1
Dependent Variable: LUMEN
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 4 48400 12100 49297 .2 <.0001
Error 595 146.04384 0.24545
C Total 599 48546
Root MSE 0.49543 R-square 0.9970
Dep Mean 17.09667 Adj R-sq 0.9970
C.V. 2.89782
Parameter Estimates
Parameter Standard
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Variable DF Estimate Error t Value Prob > |T|
Intercept 1 17.06903 0.02023 843.78 <.0001
sin24 1 6.81736 0.02867 237.81 <.0001
cos24 1 -1.85779 0.02865 -64.85 <.0001
sin29 1 8.01416 0.02868 279.47 <.0001
cos29 1 6.08905 0.02865 212.57 <.0001

p

* Kk Program 3_1_1 *kk

TITLE1 ’Harmonic wave’;

TITLE2 ’Star Data’;

DATA datal;

INFILE ’c:\datal\star.txt’;
INPUT lumen QQ;

t=_N_;

pi=CONSTANT(’PI’);
$in24=SIN (2*pix*t/24);
c0s24=C0S (2*xpix*t/24);
sin29=8IN (2*pixt/29);
c0s29=C0S (2*pix*xt/29);

PROC REG DATA=datal;

MODEL lumen=sin24 cos24 sin29 cos29;
OUTPUT OUT=regdat P=predi;

SYMBOL1 C=GREEN V=DOT I=NONE H=.4;

SYMBOL2 C=RED V=NONE I=JOIN;

AXIS1 LABEL=(ANGLE=90 ’lumen’);

AXIS2 LABEL=(C’t’);

PROC GPLOT DATA=regdat (0BS=160);

PLOT lumen*t=1 predi*t=2 / OVERLAY VAXIS=AXIS1
HAXIS=AXIS2;
RUN; QUIT;

\S

The number 7 is generated by the SAS func-
tion CONSTANT with the argument °PI’. It is
then stored in the variable pi. This is used
to define the variables cos24, sin24, cos29 and
sin29 for the harmonic components. The other
variables here are lumen read from an external
file and t generated by _N_.

The PROC REG statement causes SAS to make a
regression from the independent variable lumen
defined on the left side of the MODEL statement

on the harmonic components which are on the
right side. A temporary data file named regdat
is generated by the OUTPUT statement. It con-
tains the original variables of the source data
step and the values predicted by the regression
for lumen in the variable predi.

The last part of the program creates a plot of
the observed lumen values and a curve of the
predicted values restricted on the first 160 ob-
servations.
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(=¢

The output of Program 3_1_1 is the standard text output of a regression with an
ANOVA table and parameter estimates. For further information on how to read
the output, we refer to Chapter 3 of Falk et al. (2002).

In a first step we will fit a harmonic component with fixed frequency A to mean
value adjusted data y; — gy, t = 1,...,n. To this end, we put with arbitrary A,
BeR

m(t) = Amg(t) + Bmo(t),

where

mq(t) := cos(2wAt), ma(t) = sin(2wAt).

In order to get a proper fit uniformly over all ¢, it is reasonable to choose the
constants A and B as minimizers of the residual sum of squares

R(A,B) = (ye — 4 — m(t)*.

t=1

Taking partial derivatives of the function R with respect to A and B and equating
them to zero, we obtain that the minimizing pair A, B has to satisfy the normal
equations

n

Aci1 + Beyg = Z(yt — 7) cos(2wAt)
t=1

Acoy + Bega = Z(yt — g) sin(2wAt),

t=1
where

Cij = Z m;(t)m;(t).

If ¢11c90 — c12¢21 # 0, the uniquely determined pair of solutions A, B of these
equations is

- nCQQC()\) — 0125()\)
C11C22 — C12€21
N nC210()\) — 0115()\)

C12C21 — C11C22
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where

Z(yt — y) cos(2mwAt),

Sl
~
Il
-

(y: — §) sin(27At) (3.1)

2
=
[
S~
NoE

~
I
—

are the empirical (cross-) covariances of (y1)1<i<n and (cos(2wAt))1<i<n and of
(yt)1<t<n and (sin(27At))1<i<n, respectively. As we will see, these cross-covarian-
ces C'(A\) and S()) are fundamental to the analysis of a time series in the frequency
domain.

The solutions A and B become particularly simple in the case of Fourier frequen-
cies A = k/n, k =0,1,2,...,[n/2], where [z] denotes the greatest integer less
than or equal to € R. If k # 0 and k # n/2 in the case of an even sample size n,
then we obtain from (3.2) below that ¢12 = co1 = 0 and ¢1; = ¢o2 = n/2 and thus

A=2C(\), B=2S(\).
Harmonic Waves with Fourier Frequencies
Next we will fit harmonic waves to data yi,...,¥y,, where we restrict ourselves to

Fourier frequencies, which facilitates the computations. The following equations
are crucial. For arbitrary 0 < k,m < [n/2] we have (Exercise 3)

n & . n, k=m=0orn/2, if n is even
Zcos (27rﬁt) cos (27rgt) =4n/2, k=m+#0and #n/2, ifniseven
t=1 0, kE#m

n f . 0, k=m=0orn/2, if n is even
Zsin (QWEt) sin (27rﬁt) =4n/2, k=m+#0and #n/2, ifniseven
t=1 0, kE#m

. k
Z cos (271'715) sin (27rmt) =0. (3.2)
n n
t=1
The above equations imply that the 2[n/2] + 1 vectors in R™

(sin@m(k/n))h<i<n,  k=1,...,[n/2],

and
(cos(2m(k/n)t))1<t<n, k=0,...,[n/2],

span the space R™. Note that by (3.2)) in the case of n odd the above 2[n/2]+1=n
vectors are linearly independent, whereas in the case of an even sample size n the
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vector (sin(2w(k/n)t))1<t<n with k& = n/2 is the null vector (0,...,0) and the
remaining n vectors are again linearly independent. As a consequence we obtain
that for a given set of data y1,...,y,, there exist in any case uniquely determined
coefficients Ay and By, k =0,...,[n/2], with By := 0 such that

[n/2] i i
Yt = Z (Ak cos (27rﬁt) + By sin (27rnt)>, t=1,...,n. (3.3)

k=0

Next we determine these coefficients Ay, Bi. They are obviously minimizers of the
residual sum of squares

. " 2
R = ; <yt — [sz)] (ak cos (271'%15) + B sin (27Tit>>>

with respect to ag, k. Taking partial derivatives, equating them to zero and
taking into account the linear independence of the above vectors, we obtain that
these minimizers solve the normal equations

= k = k

E Yt COS (27r7t> = ay, E cos? (277’*15), k=0,...,[n/2]
n n

t=1 t=1

;yt sin (27r§t) = By ;sinz (271'%1&), k=1,...,[(n—1)/2.

The solutions of this system are by (3.2]) given by

%Z?Zlytcos 27r%t , k=1,...,[(n—-1)/2]

Ay =
IS Lyrcos (2nEt), k=0and k=mn/2, if nis even
B =2 zn: sin (2 kt) k=1,...,[(n—1)/2 (3.4)
= - T =1,... - , ,
k n e Yt n)’ 3 ’

One can substitute Ay, By in R to obtain directly that R = 0 in this case. A
popular equivalent formulation of (3.3) is

7 [n/2]
Yr = % + ; (Ak cos (277%75) + By sin (2777]?))7 t=1,...,m, (3:5)

with Ag, By as in (3.4) for k =1,...,[n/2], B, /2 = 0 for an even n, and
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Up to the factor 2, the coefficients Ay, Bj coincide with the empirical covariances
C(k/n) and S(k/n), k=1,...,[(n—1)/2], defined in (3.1)). This follows from the
equations (Exercise 2)

Zcoa(Zw t) Zsm(Zﬂ' t) 0, k=1,...,[n/2]. (3.6)

3.2 The Periodogram

In the preceding section we exactly fitted a harmonic wave with Fourier frequencies
M = k/n, k =0,...,[n/2], to a given series y1,...,y,. Example shows
that a harmonic wave including only two frequencies already fits the Star Data
quite well. There is a general tendency that a time series is governed by different
frequencies A1, ..., A, with 7 < [n/2], which on their part can be approximated
by Fourier frequencies ki /n, ..., k./n if n is sufficiently large. The question which
frequencies actually govern a time series leads to the intensity of a frequency .
This number reflects the influence of the harmonic component with frequency A
on the series. The intensity of the Fourier frequency A = k/n, 1 < k < [n/2], is
defined via its residual sum of squares. We have by , and the normal
equations

Z (yt — 3y — Ag cos (277%75) — By, sin (2777]?))2

t=1

=Y -9’ - SR+ B, k=1...0n-1)/2,
t=1

and
n n [n/2]
S0P =23 (424 BY).
t=1 k=1
The number (n/2)(A2+B3) = 2n(C?(k/n)+S%(k/n)) is therefore the contribution
of the harmonic component with Fourier frequency k/n, k =1,...,[(n —1)/2], to

the total variation Y ;- (v — §)2. It is called the intensity of the frequency k/n.
Further insight is gained from the Fourier analysis in Theorem For general
frequencies A € R we define its intensity now by

IA) =n(C(A)?+S(N)?)

(( i ) cos( 27r)\t)>2 + <i(yt ) sin(27r)\t))2> . (3.7)

:M—‘

t=1 t=1
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This function is called the periodogram. The following Theorem implies in particu-
lar that it is sufficient to define the periodogram on the interval [0, 1]. For Fourier

frequencies we obtain from ((3.4)) and ([3.6)
I(k/n) = g(Ai +B2),  k=1,...[n—1)/2.

Theorem 3.2.1. We have

(1) 1(0) =0,
(i) I is an even function, i.e., I(X) = I(—\) for any A € R,

(iii) I has the period 1.

Proof. Part (i) follows from sin(0) = 0 and cos(0) = 1, while (ii) is a consequence
of cos(—z) = cos(x), sin(—z) = —sin(z), = € R. Part (iii) follows from the fact
that 27 is the fundamental period of sin and cos. O

Theoremimphes that the function I(\) is completely determined by its values
on [0,0.5]. The periodogram is often defined on the scale [0, 27] instead of [0, 1]
by putting I*(w) := 2I(w/(27)); this version is, for example, used in SAS. In view
of Theorem below we prefer I(\), however.

The following figure displays the periodogram of the Star Data from Example[3.1.1]
It has two obvious peaks at the Fourier frequencies 21/600 = 0.035 ~ 1/28.57
and 25/600 = 1/24 ~ 0.04167. This indicates that essentially two cycles with
period 24 and 28 or 29 are inherent in the data. A least squares approach for the
determination of the coefficients A4;, B;, i = 1,2 with frequencies 1/24 and 1/29 as
done in Program 3_1_1 then leads to the coefficients in Example
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Figure 3.2.1. Periodogram of the Star Data.
C0s_o01
34.1933
PERIOD C0S_01 SIN_O1 P LAMBDA
28.5714 -0.91071 8.54977 11089.19 0.035000
24.0000 -0.06291 7.73396 8972.71 0.041667
30.0000 0.42338 -3.76062 2148.22 0.033333
27.2727 -0.16333 2.09324 661.25 0.036667
31.5789 0.20493 -1.52404 354.71 0.031667
26.0870 -0.05822 1.18946 212.73 0.038333

Table 3.2.1. Print of the constant Ay = 249 = 27y and of the
six Fourier frequencies A = k/n with largest I(k/n)-values, their
inverses and the Fourier coefficients pertaining to the Star Data.
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* %k Program 3_2_1 * %ok
TITLE1 ’Periodogram’;
TITLE2 ’Star Data’;

DATA datal;
INFILE ’c:\data\star.txt’;
INPUT lumen QQ;

VAR lumen;
DATA data3;
SET data2(FIRSTOBS=2);
p=P_01/2;
DROP P_01 FREQ;

AXIS1 LABEL=(’I(’ F=CGREEK
AXIS2 LABEL=(F=CGREEK ’1°’);

PROC SPECTRA DATA=datal COEF P 0UT=dataZ2;

lambda=FREQ/ (2*xCONSTANT (’PI’));

SYMBOL1 V=NONE C=GREEN I=JOIN;
1))

PROC GPLOT DATA=data3(0BS=50);
PLOT p*lambda=1 / VAXIS=AXIS1 HAXIS=AXIS2;

PROC SORT DATA=data3 0UT=data4;

BY DESCENDING p;

PROC PRINT DATA=data2 (0BS=1)
VAR COS_01;

PROC PRINT DATA=data4 (0BS=6)

RUN; QUIT;

NOOBS ;

NOOBS;

\S

The first step is to read the star data from
an external file into a data set. Using
the SAS procedure SPECTRA with the options
P (periodogram), COEF (Fourier coefficients),
0UT=data2 and the VAR statement specifying
the variable of interest, an output data set is
generated. It contains periodogram data P_01
evaluated at the Fourier frequencies, a FREQ
variable for this frequencies, the pertaining pe-
riod in the variable PERIOD and the variables
C0S_-01 and SIN_01 with the coefficients for the
harmonic waves. Because SAS uses different
definitions for the frequencies and the peri-
odogram, here in data3 new variables lambda

(dividing FREQ by 27 to eliminate an additional
factor 27) and p (dividing P-01 by 2) are cre-
ated and the no more needed ones are dropped.
By means of the data set option FIRSTOBS=2 the
first observation of data2 is excluded from the
resulting data set.

The following PROC GPLOT just takes the first 50
observations of data3 into account. This means
a restriction of lambda up to 50/600 = 1/12,
the part with the greatest peaks in the peri-
odogram.

The procedure SORT generates a new data set
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datad containing the same observations as the two PROC PRINT statements at the end make
input data set data3, but they are sorted in de- SAS print to datasets data2 and data4.
scending order of the periodogram values. The

=

The first part of the output is the coefficient Ay which is equal to two times the
mean of the lumen data. The results for the Fourier frequencies with the six
greatest periodogram values constitute the second part of the output. Note that
the meaning of C0S_01 and SIN_01 are slightly different from the definitions of Ay
and By in , because SAS lets the index run from 0 to n — 1 instead of 1 to n.
The Fourier Transform

From Euler’s equation €% = cos(z) + isin(z), z € R, we obtain for A € R

D) :=C(\) —iS\\) =

S|

n
Z(yt _ ﬂ)e_ﬂﬂ)‘t.
t=1

The periodogram is a function of D()), since I(\) = n|D()\)|?>. Unlike the pe-
riodogram, the number D()\) contains the complete information about C'(A\) and
S(A), since both values can be recovered from the complex number D()), being
its real and negative imaginary part. In the following we view the data y1,...,y,
again as a clipping from an infinite series y;, t € Z. Let a := (at)tez be an ab-
solutely summable sequence of real numbers. For such a sequence a the complex
valued function
fa) =) ™™ X€R,

teEZ

is said to be its Fourier transform. It links the empirical autocovariance function
to the periodogram as it will turn out in Theorem [3:2.3] that the latter is the
Fourier transform of the first. Note that >, ., [a;e ™™ =}, |a;| < oo, since
le?*| = 1 for any z € R. The Fourier transform of a; = (y; — 4)/n, t =1,...,n,
and a; = 0 elsewhere is then given by D()). The following elementary properties
of the Fourier transform are immediate consequences of the arguments in the proof
of Theorem [3.:2.1] In particular we obtain that the Fourier transform is already
determined by its values on [0, 0.5].

Theorem 3.2.2. We have

(Z) fa(o) = ZtGZ at,
(ii) fa(=MN) and fo(N\) are conjugate complex numbers i.e., fo(—\) = fo(A),
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(iii) fo has the period 1.

Autocorrelation Function and Periodogram

Information about cycles that are inherent in given data, can also be deduced
from the empirical autocorrelation function. The following figure displays the
autocorrelation function of the Bankruptcy Data, introduced in Exercise 17 of

Chapter

r(k)
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Figure 3.2.2. Autocorrelation function of the
Bankruptcy Data.

* %k Program 3_2_2 * ok ok
TITLEl1 ’Correlogram’;
TITLE2 ’Bankruptcy Data’;

DATA datal;
INFILE ’c:\data\bankrupt.txt’;
INPUT year bankrupt;

PROC ARIMA DATA=datal;
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IDENTIFY VAR=bankrupt NLAG=64 O0UTCOV=corr NOPRINT;

AXIS1 LABEL=(’r(k)’);
AXIS2 LABEL=(’k’);
SYMBOL1 V=DOT C=GREEN I=J0IN H=0.4 W=1;
PROC GPLOT DATA=corr;
PLOT CORR*LAG / VAXIS=AXIS1 HAXIS=AXIS2 VREF=0;
RUN; QUIT;

\S

After reading the data from an external file into  them into a new data set. The correlogram is
a data step, the procedure ARIMA calculates the generated using PROC GPLOT.
empirical autocorrelation function and stores

The next figure displays the periodogram of the Bankruptcy Data.
=
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Figure 3.2.3. Periodogram of the Bankruptcy Data.
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* k% Program 3_2_3 *k kg
TITLE1 ’Periodogram’;
TITLE2 ’Bankruptcy Data’;

DATA datal;
INFILE ’c:\data\bankrupt.txt’;
INPUT year bankrupt;

PROC SPECTRA DATA=datal P 0UT=data2;
VAR bankrupt;

DATA data3;
SET data2 (FIRSTOBS=2);
p=P_01/2;
lambda=FREQ/(2*CONSTANT (’PI’));

SYMBOL1 V=NONE C=GREEN I=JOIN;
AXIS1 LABEL=(’I’ F=CGREEK ’(1)’) ;
AXIS2 ORDER=(0 TO 0.5 BY 0.05) LABEL=(F=CGREEK ’1’);
PROC GPLOT DATA=data3;
PLOT p*lambda / VAXIS=AXIS1 HAXIS=AXIS2;

RUN; QUIT;
\. Y

This program again first reads the data transformations of the periodogram and the
and then starts a spectral analysis by PROC frequency values generated by PROC SPECTRA
SPECTRA. Due to the reasons mentioned in the done in data3. The graph results from the
comments to Program 3_2_1 there are some statements in PROC GPLOT.

(=Y
ee=g

The autocorrelation function of the Bankruptcy Data has extreme values at about
multiples of 9 years, which indicates a period of length 9. This is underlined by
the periodogram in Figure 3.2.3, which has a peak at A = 0.11, corresponding to
a period of 1/0.11 ~ 9 years as well. As mentioned above, there is actually a close
relationship between the empirical autocovariance function and the periodogram.
The corresponding result for the theoretical autocovariances is given in Chapter

Theorem 3.2.3. De}zwte by ¢ the empirical autocovariance function of y1,...,Yn,
ie., c(k) =n~ 30 (= 9) (Yj4r—9), k=0,...,n—1, where §:==n"" 30, y;.
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Then we have with c(—k) := c(k)

I(\ )+ 2 Z ) cos(2m k)
n—1 .
— Z C(k‘)e_ﬂﬂ-)\k.
k=—(n—1)
Proof. From the equation cos(z1)cos(xa) + sin(zq)sin(z) = cos(x; — zq) for

z1, 29 € R we obtain

(ys — 9) (vt — 9)

~
>
I
S|
M=
M=

»
Il
-
~
Il
-

2mAs) cos(2mAt) + sin(2wAs) sin(27At))

—~
—~~

I
NE

V)
I
-
~
I
=

COS

Ast,

where ast := (ys — 7)(y: — §) cos(2mA(s — t)). Since ass = ags and cos(0) = 1 we

have moreover

n—1n—k
Zatt + - Z D i
= ==
1 n - 1 n—~k
= Z 242 Z (E Z )Ytk — y)) cos(2mAk)
t=1 k=1 ' j=1

)+2 Z ) cos(2mAk).

The complex representation of the periodogram is then obvious:

n—1

Z c(k)e ™ = ¢(0) + ) (k) (€PN 4 e 2TAF)

=¢(0) + c(k)2cos(2m k) = I(A).
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Inverse Fourier Transform

The empirical autocovariance function can be recovered from the periodogram,
which is the content of our next result. Since the periodogram is the Fourier
transform of the empirical autocovariance function, this result is a special case of
the inverse Fourier transform in Theorem B.2.5] below.

Theorem 3.2.4. The periodogram

n—1
IN= > ck)e ™ XeR,
k=—(n-1)

satisfies the inverse formula

1
c(k):/ I(N)e?™k g\, k| <n—1.
0

In particular for £ = 0 we obtain

The sample variance ¢(0) = n~! >y — 7)? equals, therefore, the area under

the curve I(\), 0 < A < 1. The integral f;‘f I(A\)dX can be interpreted as that
portion of the total variance ¢(0), which is contributed by the harmonic waves with
frequencies A € [A1, A2], where 0 < A\; < Ay < 1. The periodogram consequently
shows the distribution of the total variance among the frequencies A € [0,1]. A
peak of the periodogram at a frequency Ao implies, therefore, that a large part of
the total variation ¢(0) of the data can be explained by the harmonic wave with
that frequency \g.

The following result is the inverse formula for general Fourier transforms.

Theorem 3.2.5. For an absolutely summable sequence a := (at)ez with Fourier
transform fo(A) = 3,7 are " #™ M X € R, we have

1
a; = / fa(N)e2™ M d, teZ.
0

Proof. The dominated convergence theorem implies

! j2m AL ! 27 As ) i2m AL
aA 2TAL Iy = S—'ers 27 1N\
/Of()e /O(E ase )e

SEZ

1
_ Zas/ 6i27r)\(t75) d\ = ay,
0

SEZ
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since
1, ifs=t

/1 ei27r)\(t—s) d\ =
0 0, if s#t.
O

The inverse Fourier transformation shows that the complete sequence (a;):ez can
be recovered from its Fourier transform. This implies in particular that the Fourier
transforms of absolutely summable sequences are uniquely determined. The analy-
sis of a time series in the frequency domain is, therefore, equivalent to its analysis
in the time domain, which is based on an evaluation of its autocovariance function.

Aliasing

Suppose that we observe a continuous time process (Z;)¢cr only through its values
at kA, k € Z, where A > 0 is the sampling interval, i.e., we actually observe
(Yi)kez = (Zga)kez. Take, for example, Z; := cos(2m(9/11)t), t € R. The
following figure shows that at k € Z, i.e., A = 1, the observations Zj coincide
with X}, where X; := cos(27(2/11)t), t € R. With the sampling interval A = 1,
the observations Zj with high frequency 9/11 can, therefore, not be distinguished
from the X, which have low frequency 2/11.

o T L R VN (O R N =
IR U

Figure 3.2.4. Aliasing of cos(27(9/11)k) and
cos(2m(2/11)k).
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* Kk Program 3_2_4 *kk
TITLE1 ’Aliasing’;

DATA datal;
DO t=1 TO 14 BY .01;
y1=CO0S (2*xCONSTANT (’PI’)*2/11%t);
y2=C0S (2% CONSTANT (’PI’)*9/11%t);
OUTPUT ;
END;

DATA data2;
DO t0=1 TO 14;
y0=C0S (2% CONSTANT (*PI*)*2/11%t0);
OUTPUT ;
END;

DATA data3;
MERGE datal data?2;

SYMBOL1 V=DOT C=GREEN I=NONE H=.8;
SYMBOL2 V=NONE C=RED I=JOIN;
AXIS1 LABEL=NONE;
AXIS2 LABEL=(’t’);
PROC GPLOT DATA=data3;
PLOT yO*xt0=1 yi1*t=2 y2*t=2 / OVERLAY VAXIS=AXIS1
HAXIS=AXIS2 VREF=0;

RUN; QUIT;
\. Y

In the first data step a tight grid for the cosine After merging the two data sets the two waves
waves with frequencies 2/11 and 9/11 is gen- are plotted using the JOIN option in the SYMBOL
erated. In the second data step the values of statement while the values at the observation
the cosine wave with frequency 2/11 are gen- points are displayed in the same graph by dot
erated just for integer values of t symbolizing symbols.

the observation points.

=

This phenomenon that a high frequency component takes on the values of a lower
one, is called aliasing. It is caused by the choice of the sampling interval A, which
is 1 in Figure 3.2.4. If a series is not just a constant, then the shortest observable
period is 2A. The highest observable frequency A\* with period 1/A*, therefore,
satisfies 1/A\* > 2A, i.e., \* < 1/(2A). This frequency 1/(2A) is known as the
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Nyquist frequency. The sampling interval A should, therefore, be chosen small
enough, so that 1/(2A) is above the frequencies under study. If, for example, a
process is a harmonic wave with frequencies A1, ..., Ap, then A should be chosen
such that A; < 1/(2A), 1 < ¢ < p, in order to visualize p different frequencies.
For the periodic curves in Figure 3.2.4 this means to choose 9/11 < 1/(2A) or
A < 11/18.

Exercises
1. Let y(t) = Acos(2mAt) + Bsin(2mwAt) be a harmonic component. Show that y can be
written as y(t) = acos(2w At — ), where « is the amplitiude, i.e., the maximum departure

of the wave from zero and ¢ is the phase displacement.

2. Show that

i n, ANEZ
5(2TAL) = .
Z COS( ™ ) {COS(ﬂ'A(TL + 1)) sin(mwAn) A g 7

=1 sin(mw\) ?

n 0, AEZ
> sin(2mxt) = { (TA(n + 1))82E2n) -\ o 7
Py SIN(TA(T sin(wA) ? .

Hint: Compute 31" | €”>™* where €'? = cos(p) + isin(y) is the complex valued expo-
nential function.

3. Verify the equations (3.2)). Hint: Exercise 2.

4. Suppose that the time series (y:): satisfies the additive model with seasonal component

S k S ) k
s(t) = ZA’“ cos (27rgt) + Z By, sin (271';1?).
k=1 k=1
Show that s(t) is eliminated by the seasonal differencing Asy: = yr — Y¢—s-

5. Fit a harmonic component with frequency A to a time series y1,...,yn, where A € Z
and A — 0.5 € Z. Compute the least squares estimator and the pertaining residual sum
of squares.

6. Put ys =t, t=1,...,n. Show that
n

Ik/m) = Ttk m)

k=1,...,[(n—1)/2.

Hint: Use the equations

nl _ sin(nh) ncos((n — 0.5)0)
; tsin(6t) = 4sin%(6/2) 2sin(6/2)

n—1 B nsin((n — 0.5)0) 1 — cos(nb)
; tcos(0t) = 25in(0,2) — 1sm?(0/2) "
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7. (Unemployedl Data) Plot the periodogram of the first order differences of the numbers
of unemployed in the building trade as introduced in Example [I.1.1]

8. (Airline Data) Plot the periodogram of the variance stabilized and trend adjusted
Airline Data, introduced in Example Add a seasonal adjustment and compare the
periodograms.

9. The contribution of the autocovariance c(k), & > 1, to the periodogram can be
illustrated by plotting the functions + cos(2wAk), A € [0.5].

(i) Which conclusion about the intensities of large or small frequencies can be drawn
from a positive value ¢(1) > 0 or a negative one ¢(1) < 07

(ii) Which effect has an increase of |¢(2)] if all other parameters remain unaltered?

(iii) What can you say about the effect of an increase of ¢(k) on the periodogram at
the values 40,1/k,2/k,3/k,... and the intermediate values 1/2k, 3/(2k),5/(2k)?
Illustrate the effect at a time series with seasonal component k& = 12.

10. Establish a version of the inverse Fourier transform in real terms.
11. Let a = (at)tez and b = (b;)tcz be absolute summable sequences.
(i) Show that for aa + 8b := (aar + Bbi)iez, o, B € R,
faatso(A) = afa(N) + Bfo(N).
(ii) For ab := (atbt)iez we have
1
FabN) = o x 5o i= [ Faluhfo(X = ) i
0

(iii) Show that for @ * b := (3., asbi—s)tez (convolution)

faxb(A) = fa(N) fo ().

sEZL

12. (Fast Fourier Transform (FFT)) The Fourier transform of a finite sequence ao,
ai,...,an—1 can be represented under suitable conditions as the composition of Fourier

transforms. Put
N-1

F(s/N) =3 are ®™N s =0, N -1,
t=
which is the Fourier transform of length N. Suppose that N = KM with K, M € N.
Show that f can be represented as Fourier transform of length K, computed for a Fourier
transform of length M.
Hint: Each ¢,s € {0,..., N — 1} can uniquely be written as

t=to+t1 K, toE{O,...,K—l}, tle{O,...,M—l}
s=so+s1M, so€{0,....,.M—1}, s1€{0,...,K—1}.
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Sum over tg and ¢;.

13. (Star Data) Suppose that the Star Data are only observed weekly (i.e., keep only
every seventh observation). Is an aliasing effect observable?



Chapter 4

The Spectrum of a
Stationary Process

In this chapter we investigate the spectrum of a real valued stationary process,
which is the Fourier transform of its (theoretical) autocovariance function. Its
empirical counterpart, the periodogram, was investigated in the preceding sections,
cf. Theorem 3.2.3

Let (Yi):cz be a (real valued) stationary process with absolutely summable auto-
covariance function y(¢), t € Z. Its Fourier transform

FO) =) v(H)e ™ = 4(0) + 2> y(t) cos(2mAt), A €ER,

teEL teN

is called spectral density or spectrum of the process (Y:)iez. By the inverse Fourier
transform in Theorem 3.2.5 we have

y(t) = /O FN)e2™ g\ = /O F(X) cos(2mAt) dA.

For ¢t = 0 we obtain )
10 = [ s
0

which shows that the spectrum is a decomposition of the variance v(0). In Sec-
tion we will in particular compute the spectrum of an ARMA-process. As
a preparatory step we investigate properties of spectra for arbitrary absolutely
summable filters.
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4.1 Characterizations of Autocovariance Func-
tions

Recall that the autocovariance function v : Z — R of a stationary process (Y;)iecz
is given by
v(h) = E(YisrY:) — E(Yin) E(Y:), h€Z,

with the properties
7(0) >0, [y(h)[ <4(0), v(h) =~(—h), hEL. (4.1)

The following result characterizes an autocovariance function in terms of positive
semidefiniteness.

Theorem 4.1.1. A symmetric function K : Z — R is the autocovariance func-
tion of a stationary process (Yy)iez iff K is a positive semidefinite function, i.e.,
K(—n)=K(n) and
Z e K(r—s)zs >0 (4.2)
1<r,s<n

for arbitrary n € N and z1,...,2, € R.

Proof. Tt is easy to see that is a necessary condition for K to be the autoco-
variance function of a stationary process, see Exercise 19. It remains to show that
is sufficient, i.e., we will construct a stationary process, whose autocovariance
function is K.

We will define a family of finite-dimensional normal distributions, which satisfies
the consistency condition of Kolmogorov’s theorem, cf. Theorem 1.2.1 in Brockwell
and Davies (1991). This result implies the existence of a process (V;):cz, whose
finite dimensional distributions coincide with the given family.

Define the n x n-matrix

KM .— (K(T - 3))1§r,s§n’

which is positive semidefinite. Consequently there exists an n-dimensional normal
distributed random vector (V1,...,V,) with mean vector zero and covariance ma-
trix K. Define now for each n € N and ¢t € Z a distribution function on R”
by

Ft+1,...,t+n(U1a v 7Un) = P{‘/l < Viyenny Vn < Un}~

This defines a family of distribution functions indexed by consecutive integers.
Let now t; < - < t,, be arbitrary integers. Choose t € Z and n € N such that
ti =t+n;, where 1 <nq <--- <n,, <n. We define now

Ftla“wtm,((vi)lgig"n) = P{V,, <w;, 1<i <mj.
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Note that Fi, ., does not depend on the special choice of ¢t and n and thus,
we have defined a family of distribution functions indexed by t; < -+- < ¢,
on R™ for each m € N, which obviously satisfies the consistency condition of
Kolmogorov’s theorem. This result implies the existence of a process (V;)iecz, whose
finite dimensional distribution at ¢; < --- < t,, has distribution function F, .. .
This process has, therefore, mean vector zero and covariances E(Vi4, Vi) = K(h),
h € Z. O

Spectral Distribution Function and Spectral Density

The preceding result provides a characterization of an autocovariance function
in terms of positive semidefiniteness. The following characterization of positive
semidefinite functions is known as Herglotz’s theorem. We use in the following the
notation fol 9(A\) dF(X) in place of [, g(N) dF(A).

Theorem 4.1.2. A symmetric function v : Z — R is positive semidefinite iff it
can be represented as an integral

y(h) = /0 161’2””%1«“@): /0 1cos(27r)\h) dF(\), heZ, (4.3)

where F is a real valued measure generating function on [0,1] with F(0) = 0. The
function F is uniquely determined.

The uniquely determined function F', which is a right-continuous, increasing and
bounded function, is called the spectral distribution function of . If F has a
derivative f and, thus, F(X) = F(\) — F(0) = [ f(z)dx for 0 < A <1, then f is
called the spectral density of . Note that the property >, [v(h)| < co already
implies the existence of a spectral density of ~, cf. Theorem [3.2.5]

Recall that v(0) = fol dF(\) = F(1) and thus, the autocorrelation function
p(h) = v(h)/v(0) has the above integral representation, but with F' replaced by
the distribution function F/~(0).

Proof of Theorem[{.1.3 We establish first the uniqueness of F. Let G be another
measure generating function with G(\) =0 for A < 0 and constant for A > 1 such
that

1 1
’}/(h) — / ei27r>\h dF()\) _ / ei27r)\h dG(}\), h A
0 0

Let now ¢ be a continuous function on [0,1]. From calculus we know (cf. Sec-
tion 4.24 in Rudin (1974)) that we can find for arbitrary e > 0 a trigonometric
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polynomial p.(\) = ZthfN ape? ™ 0 < X <1, such that

sup [(A) —p(N)] <e.
0<A<1

As a consequence we obtain that
1 1
| o arm) = [ pdr) + )
0 0
1
- / eV dG(N) + ()
0

=A¢ummm+m@,

where r;(¢) - 0 as e — 0,4 = 1,2, and, thus,

1 1
/¢wwm:/wmmm
0 0

Since ¥ was an arbitrary continuous function, this in turn together with F(0) =
G(0) = 0 implies F = G.

Suppose now that v has the representation (4.3). We have for arbitrary x; € R,
1=1,...,n

1
Y anlr— sz = / > P TIAR(N)

1<r,s<n 0 1<r,s<n

1. n
— / ‘ § :xTeZQW)\T‘
0 "r=1

2
dF(\) > 0,

i.e. v is positive semidefinite.

Suppose conversely that v : Z — R is a positive semidefinite function. This implies
that for 0 < A <1 and N € N (Exercise 2)

1 , )
fN(/\) P Z 6—1,271'>\'r‘7(7,, _ 8)6227r)\s
1<r,s<N
1 —i2TAm
= Z (N — |m|)y(m)e~2™m > 0.
|m|<N

Put now

A
Fn()) ::/O fy(@)dr,  0<A<I.
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Then we have for each h € Z

1 1
6i27r)\h dFy(\) = 1— ‘m| ~(m / ei27r)\(h7m) d\
/ W= ¥ (1-5)m |

0

|m|<N
_ !
_ (1 N)'y(h), if [B] < N "
0, if |h| > N.

Since Fn (1) = v(0) < oo for any N € N, we can apply Helly’s selection theorem
(cf. Billingsley (1968), page 226ff) to deduce the existence of a measure generating
function F' and a subsequence (Fy, ) such that Fi, converges weakly to F i.e.,

/ () dFy, (\) — koo / g(\) dF ()
0 0

for every continuous and bounded function g : [0,1] — R (cf. Theorem 2.1 in
Billingsley (1968)). Put now F'(A) := F(A)—F(0). Then F is a measure generating
function with F(0) = 0 and

/O o\ dF(N) = /O g(N) dF(N).

If we replace N in (4.4) by Ny and let k tend to infinity, we now obtain represen-

tation (4.3). O

Example 4.1.3. A white noise (g¢):cz has the autocovariance function

o2, h=0
() = {0, hez\ {0}

Since

/1 0’2€i27r>\hd>\: 027 h=0
0 0, heZ\{0},

the process (e¢) has by Theorem the constant spectral density f()\) = o2,
0 < A < 1. This is the name giving property of the white noise process: As the
white light is characteristically perceived to belong to objects that reflect nearly
all incident energy throughout the visible spectrum, a white noise process weighs
all possible frequencies equally.

Corollary 4.1.4. A symmetric function v : Z — R is the autocovariance function
of a stationary process (Yi)iez, iff it satisfies one of the following two (equivalent)
conditions:

(i) v(h) = fol €™\ dF(N), h € Z, where F is a measure generating function on
[0,1] with F(0) = 0.
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() 31 <rscn TrY(r = s)zs >0 for eachn € N and x4, ..., 2, € R.

Proof. Theorem shows that (i) and (ii) are equivalent. The assertion is then
a consequence of Theorem [£.1.1] O

Corollary 4.1.5. A symmetric function v : Z — R with 3, ., |7(t)| < oo is the
autocovariance function of a stationary process iff

) = Z’y(t)e_i%)‘t >0, Aelo,1].

teZ

The function f is in this case the spectral density of .

Proof. Suppose first that ~ is an autocovariance function. Since +y is in this case
positive semidefinite by Theorem and ), ., [v(t)] < oo by assumption, we
have (Exercise 2)

1

0< fn(N) == Z e~ I2TAT (i _ g)ei2mAs
1<r,s<N
i —i27mAt
- Z 1— = )y([t)e ™™ — f(\) as N — oo,
[t|<N ( N>

see Exercise 8. The function f is consequently nonnegative. The inverse Fourier

. . . 1 27\ . .
transform in Theorem implies ~(t) = fo f\e d\, t € Z i.e., fis the
spectral density of ~.

Suppose on the other hand that f(\) = ,.,7(t)e®™ >0, 0 < A < 1. The
inverse Fourier transform implies () = fol FN)e2m™ d)\ = f01 2™\ dF(N), where

F(\) = fo)\ f(x)dz, 0 < X\ < 1. Thus we have established representation (4.3)),
which implies that  is positive semidefinite, and, consequently, v is by Corollary
the autocovariance function of a stationary process. O

Example 4.1.6. Choose a number p € R. The function

1, ifh=0
’Y(h) =935 if h € {_L 1}
0, elsewhere

is the autocovariance function of a stationary process iff |p| < 0.5. This follows
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from
FO) =D (e
tez
= 7(0) + (D)™™ + 4 (=1)e 7™
=1+4+2pcos(2mA) >0

for A € [0,1] iff |p| < 0.5. Note that the function + is the autocorrelation function
of an MA(1)-process, cf. Example

The spectral distribution function of a stationary process satisfies (Exercise 10)
F(0.54 X)) — F(0.57) = F(0.5) — F((0.5 — \)7), 0<A<0.5,

where F(x7) :=lim. o F(z — ) is the left-hand limit of F at x € (0,1]. If F' has
a derivative f, we obtain from the above symmetry f(0.5 4+ ) = f(0.5 — A) or,
equivalently, f(1 —X) = f(A) and, hence,

1 0.5
~v(h) = /0 cos(2mAh) dF'(\) = 2/0 cos(2AR) f(A) dA.

The autocovariance function of a stationary process is, therefore, determined by
the values f(A), 0 < A < 0.5, if the spectral density exists. Recall, moreover, that
the smallest nonconstant period P, visible through observations evaluated at time
points t = 1,2,... is Py = 2 i.e., the largest observable frequency is the Nyquist
frequency A\g = 1/ Py = 0.5, cf. the end of Section Hence, the spectral density
f(\) matters only for A € [0,0.5].

Remark 4.1.7. The preceding discussion shows that a function f : [0,1] — R
is the spectral density of a stationary process iff f satisfies the following three
conditions

(i) f(A) =0,
(il) ) =Ff1-N),
(ii) [ f(N)dA < oo.

4.2 Linear Filters and Frequencies

The application of a linear filter to a stationary time series has a quite complex
effect on its autocovariance function, see Theorem Its effect on the spectral
density, if it exists, turns, however, out to be quite simple. We use in the following
again the notation fo)\ g(x) dF(x) in place of f(07/\] g(x) dF(z).
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Theorem 4.2.1. Let (Z;)iez be a stationary process with spectral distribution
function Fz and let (at):cz be an absolutely summable filter with Fourier transform
fa- The linear filtered process Y; := ZUGZ ayZy_q, t € 7Z, then has the spectral
distribution function

A
Fy(\) ;:/0 |fa(z)[?dFz(z), 0< A< (4.5)

If in addition (Z;)iez has a spectral density fz, then
fr) = faWPfz(),  0<A<T, (4.6)
is the spectral density of (Yi)iez.

Proof. Theorem yields that (Y};)tez is stationary with autocovariance function
vy (t) = Z Z ayayyz(t—u+w), tez,
UELZ WEL

where 7 is the autocovariance function of (Z;). Its spectral representation (4.3))
implies

Y (t) = Z Z a’uaw/ iAW) g ())

1
UELZ WEL 0

1
— /O (% aue—ZZ'rr)\u) (EGZ awez2‘n’>\w)ez2ﬂ)\t dFZ ()\)
= [ 1nper ars )
0

1
_ / ei27'r>\t dFY()\)
0

Theorem now implies that Fy is the uniquely determined spectral distribu-
tion function of (Y;)iez. The second to last equality yields in addition the spectral

density (4.6). O

Transfer Function and Power Transfer Function

Since the spectral density is a measure of intensity of a frequency A inherent in
a stationary process (see the discussion of the periodogram in Section , the
effect of applying a linear filter (a;) with Fourier transform f, can easily be
interpreted. While the intensity of A is diminished by the filter (a;) iff | fo ()| < 1,
its intensity is amplified iff |f,(A\)] > 1. The Fourier transform f, of (a;) is,
therefore, also called transfer function and the function g, (\) := | fo(\)|? is referred
to as the gain or power transfer function of the filter (a;)iez.
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Example 4.2.2. The simple moving average of length three

. _{1/3, we{-1,0,1}

0 elsewhere

has the transfer function
1 2
fa(X) = 3 + 3 cos(2mA)
and the power transfer function

1, A=0

g”()\) = sin(37) 2
(3Sm(ﬂ)), A€ (0,0.5]

(see Exercise 13 and Theorem . This power transfer function is plotted in
Figure 4.2.1 below. It shows that frequencies A close to zero i.e., those corre-
sponding to a large period, remain essentially unaltered. Frequencies A close to
0.5, which correspond to a short period, are, however, damped by the approximate
factor 0.1, when the moving average (a,,) is applied to a process. The frequency
A =1/3 is completely eliminated, since g,(1/3) = 0.

g
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Figure 4.2.1. Power transfer function of the simple
moving average of length three.
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* Kk Program 4_2_1 *kk
TITLE1 ’Power transfer function’;
TITLE2 ’of the simple moving average of length 37;

DATA datal;
DO lambda=.001 TO .5 BY .001;
g=(SIN (3*CONSTANT (’PI’)*lambda)/
(3*SIN(CONSTANT (’PI’)*lambda)))**2;
OUTPUT;
END;

AXIS1 LABEL=(’g’ H=1 ’a’ H=2 ’(’ F=CGREEK ’1)°’);
AXIS2 LABEL=(F=CGREEK ’17);
SYMBOL1 V=NONE C=GREEN I=JOIN;
PROC GPLOT DATA=datal;
PLOT g+*lambda / VAXIS=AXIS1 HAXIS=AXIS2;

RUN; QUIT;
\. Y

Example 4.2.3. The first order difference filter

1, u=20
a, =4 -1, u=1
0 elsewhere
has the transfer function
fa(/\) — 1 _ 67i27r>\.

Since

fa(\) = 7™ (ei“ — e_i”‘) = ie" "™ 2sin(7w)),
its power transfer function is
ga(N) = 4sin?(7)).

The first order difference filter, therefore, damps frequencies close to zero but
amplifies those close to 0.5.
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Figure 4.2.2. Power transfer function of the first order
difference filter.

(=

Example 4.2.4. The preceding example immediately carries over to the seasonal
difference filter of arbitrary length s > 0 i.e.,

1, u=20
a®={-1, u=s
0 elsewhere,

which has the transfer function
fa(s) (/\) —1— e—i27r)\s
and the power transfer function

Guer () = 4sin®(7As).
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Figure 4.2.3. Power transfer function of the sea-
sonal difference filter of order 12.

=

Since sin?(x) = 0 iff x = kr and sin®(z) = 1 iff 2 = (2k 4+ 1)7/2, k € Z, the power
transfer function g, (A) satisfies for k € Z

o, fA=k/s
Ga (A) = {4 iff A= (2k +1)/(2s).

This implies, for example, in the case of s = 12 that those frequencies, which
are multiples of 1/12 = 0.0833, are eliminated, whereas the midpoint frequencies
k/12 + 1/24 are amplified. This means that the seasonal difference filter on the
one hand does what we would like it to do, namely to eliminate the frequency
1/12, but on the other hand it generates unwanted side effects by eliminating also
multiples of 1/12 and by amplifying midpoint frequencies. This observation gives
rise to the problem, whether one can construct linear filters that have prescribed
properties.
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Least Squares Based Filter Design

A low pass filter aims at eliminating high frequencies, a high pass filter aims at
eliminating small frequencies and a band pass filter allows only frequencies in a
certain band [Ag — A, A\g + A] to pass through. They consequently should have the
ideal power transfer functions

1, Me [O,)\o}
ow(A) =
giow(H) {o, A€ (A, 0.5]
0, Xe [07)\0)
igh A) =
Inigh(X) {1, A€ Mo, 0.5]

1, Ae[do—A N+ 4]
0 elsewhere,

9vand ()‘) = {

where )¢ is the cut off frequency in the first two cases and [Ag — A, A\g + A] is the
cut off interval with bandwidth 2A > 0 in the final one. Therefore, the question
naturally arises, whether there actually exist filters, which have a prescribed power
transfer function. One possible approach for fitting a linear filter with weights a,,
to a given transfer function f is offered by utilizing least squares. Since only filters
of finite length matter in applications, one chooses a transfer function

fa()\) _ Z aue—iQTr)\u
u=r

with fixed integers r, s and fits this function f, to f by minimizing the integrated
squared error

0.5
/0 FO) = fu(V)P dA

in (ay)r<u<s € R¥77F1. This is achieved for the choice (Exercise 16)

0.5 ]
ay = 2Re e , U=T,...,S,
2R f)\ z27rkud)\
0

which is formally the real part of the inverse Fourier transform of f.

Example 4.2.5. For the low pass filter with cut off frequency 0 < Ag < 0.5 and
ideal transfer function

F) = T1o.a01(A)

we obtain the weights

Ao 2\ =
Ay = 2/ cos(2mAu) dA = { 7} o u=0
0 sin(2wAou), u # 0.

U
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Figure 4.2.4. Transfer function of least squares fitted low pass filter with
cut off frequency Ao = 1/10 and r = —20, s = 20.

* %k Program 4_2_4 * %ok
TITLE1l ’Transfer function’;
TITLE2 ’of least squares fitted low low pass filter’;

DATA datal;
DO lambda=0 TO .5 BY .001;
£=2%1/10;
DO u=1 TO 20;
f=f+2%1/(CONSTANT (’PI’)*u)*SIN (2% CONSTANT (’PI’)*
1/10%u)*C0S (2% CONSTANT (’PI’)*lambda*u);
END;
OUTPUT;
END;

AXIS1 LABEL=(’f’ H=1 ’a’ H=2 F=CGREEK ’(1)°’);
AXIS2 LABEL=(F=CGREEK ’1°’);
SYMBOL1 V=NONE C=GREEN I=JOIN L=1;
PROC GPLOT DATA=datal;
PLOT fx*lambda / VAXIS=AXIS1 HAXIS=AXIS2 VREF=0;
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tRUN; QUIT;
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The programs in Section 4.2 are just made
for the purpose of generating graphics, which
demonstrate the sha