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CHAPTER 1

About this document

This document integrates lecture notes for a one year graduate level course with

computer programs that illustrate and apply the methods that are studied. The im-

mediate availability of executable (and modifiable) example programs when using the

PDF1 version of the document is one of the advantages of the system that has been

used. On the other hand, when viewed in printed form, the document is a somewhat

terse approximation to a textbook. These notes are not intended to be a perfect substi-

tute for a printed textbook. If you are a student of mine, please note that last sentence

carefully. There are many good textbooks available. A few of my favorites are listed

in the bibliography.

With respect to contents, the emphasis is on estimation and inference within the

world of stationary data, with a bias toward microeconometrics. The second half is

somewhat more polished than the first half, since I have taught that course more often.

If you take a moment to read the licensing information in the next section, you’ll see

that you are free to copy and modify the document. If anyone would like to contribute

material that expands the contents, it would be very welcome. Error corrections and

other additions are also welcome. As an example of a project that has made use of

these notes, see these very nice lecture slides.

1It is possible to have the program links open up in an editor, ready to run using keyboard macros. To
do this with the PDF version you need to do some setup work. See the bootable CD described below.

18
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1.2. OBTAINING THE MATERIALS 19

1.1. License

All materials are copyrighted by Michael Creel with the date that appears above.

They are provided under the terms of the GNU General Public License, which forms

Section 24 of the notes. The main thing you need to know is that you are free to modify

and distribute these materials in any way you like, as long as you do so under the terms

of the GPL. In particular, you must make available the source files, in editable form,

for your modified version of the materials.

1.2. Obtaining the materials

The materials are available on my web page, in a variety of forms including PDF

and the editable sources, at pareto.uab.es/mcreel/Econometrics/. In addition to the

final product, which you’re looking at in some form now, you can obtain the ed-

itable sources, which will allow you to create your own version, if you like, or send

error corrections and contributions. The main document was prepared using LYX

(www.lyx.org) and Octave (www.octave.org). LYX is a free2 “what you see is what

you mean” word processor, basically working as a graphical frontend to LATEX. It

(with help from other applications) can export your work in LATEX, HTML, PDF and

several other forms. It will run on Linux, Windows, and MacOS systems. Figure 1.2.1

shows LYX editing this document.

GNU Octave has been used for the example programs, which are scattered though

the document. This choice is motivated by two factors. The first is the high quality of

the Octave environment for doing applied econometrics. The fundamental tools exist

and are implemented in a way that make extending them fairly easy. The example

programs included here may convince you of this point. Secondly, Octave’s licensing

philosophy fits in with the goals of this project. Thirdly, it runs on Linux, Windows

2”Free” is used in the sense of ”freedom”, but LYX is also free of charge.

http://pareto.uab.es/mcreel/Econometrics/
http://www.lyx.org
http://www.octave.org
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FIGURE 1.2.1. LYX

and MacOS. Figure 1.2.2 shows an Octave program being edited by NEdit, and the

result of running the program in a shell window.

1.3. An easy way to use LYX and Octave today

The example programs are available as links to files on my web page in the PDF

version, and here. Support files needed to run these are available here. The files won’t

run properly from your browser, since there are dependencies between files - they are

only illustrative when browsing. To see how to use these files (edit and run them),

you should go to the home page of this document, since you will probably want to

download the pdf version together with all the support files and examples. Then set

http://pareto.uab.es/mcreel/Econometrics/Include
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles
http://pareto.uab.es/mcreel/Econometrics/
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FIGURE 1.2.2. Octave

the base URL of the PDF file to point to wherever the Octave files are installed. All of

this may sound a bit complicated, because it is. An easier solution is available:

The file pareto.uab.es/mcreel/Econometrics/econometrics.iso distribution of Linux

is an ISO image file that may be burnt to CDROM. It contains a bootable-from-CD

Gnu/Linux system that has all of the tools needed to edit this document, run the Octave

example programs, etcetera. In particular, it will allow you to cut out small portions

of the notes and edit them, and send them to me as LYX (or TEX) files for inclusion in

future versions. Think error corrections, additions, etc.! The CD automatically detects

the hardware of your computer, and will not touch your hard disk unless you explicitly

tell it to do so. It is based upon the ParallelKnoppix GNU/Linux distribution. The

http://pareto.uab.es/mcreel/Econometrics/econometrics.iso
http://pareto.uab.es/mcreel/ParallelKnoppix
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reason why these notes are integrated into a Linux distribution for parallel computing

will be apparent if you get to Chapter 20.

1.4. Known Bugs

This section is a reminder to myself to try to fix a few things.

• The PDF version has hyperlinks to figures that jump to the wrong figure. The

numbers are correct, but the links are not. ps2pdf bugs?



CHAPTER 2

Introduction: Economic and econometric models

Economic theory tells us that the demand function for a good is something like:

x = x(p,m,z)

• x is the quantity demanded

• p is G×1 vector of prices of the good and its substitutes and complements

• m is income

• z is a vector of other variables such as individual characteristics that affect

preferences

Suppose we have a sample consisting of one observation on n individuals’ demands at

time period t (this is a cross section, where i = 1,2, ...,n indexes the individuals in the

sample). The individual demand functions are

xi = xi(pi,mi,zi)

The model is not estimable as it stands, since:

• The form of the demand function is different for all i.

• Some components of zi may not be observable to an outside modeler. For

example, people don’t eat the same lunch every day, and you can’t tell what

they will order just by looking at them. Suppose we can break zi into the

observable components wi and a single unobservable component εi.
23
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A step toward an estimable econometric model is to suppose that the model may be

written as

xi = β1 + p′iβp +miβm +w′
iβw + εi

We have imposed a number of restrictions on the theoretical model:

• The functions xi(·) which in principle may differ for all i have been restricted

to all belong to the same parametric family.

• Of all parametric families of functions, we have restricted the model to the

class of linear in the variables functions.

• The parameters are constant across individuals.

• There is a single unobservable component, and we assume it is additive.

If we assume nothing about the error term ε, we can always write the last equation.

But in order for the β coefficients to have an economic meaning, and in order to be

able to estimate them from sample data, we need to make additional assumptions.

These additional assumptions have no theoretical basis, they are assumptions on top

of those needed to prove the existence of a demand function. The validity of any results

we obtain using this model will be contingent on these additional restrictions being at

least approximately correct. For this reason, specification testing will be needed, to

check that the model seems to be reasonable. Only when we are convinced that the

model is at least approximately correct should we use it for economic analysis.

When testing a hypothesis using an econometric model, three factors can cause a

statistical test to reject the null hypothesis:

(1) the hypothesis is false

(2) a type I error has occured

(3) the econometric model is not correctly specified so the test does not have the

assumed distribution
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We would like to ensure that the third reason is not contributing to rejections, so that

rejection will be due to either the first or second reasons. Hopefully the above example

makes it clear that there are many possible sources of misspecification of econometric

models. In the next few sections we will obtain results supposing that the economet-

ric model is entirely correctly specified. Later we will examine the consequences of

misspecification and see some methods for determining if a model is correctly spec-

ified. Later on, econometric methods that seek to minimize maintained assumptions

are introduced.



CHAPTER 3

Ordinary Least Squares

3.1. The Linear Model

Consider approximating a variable y using the variables x1,x2, ...,xk. We can con-

sider a model that is a linear approximation:

Linearity: the model is a linear function of the parameter vector β0 :

y = β0
1x1 +β0

2x2 + ...+β0
kxk + ε

or, using vector notation:

y = x′β0 + ε

The dependent variable y is a scalar random variable, x = ( x1 x2 · · · xk)
′ is a k-

vector of explanatory variables, and β0 = ( β0
1 β0

2 · · · β0
k)

′
. The superscript “0” in

β0 means this is the ”true value” of the unknown parameter. It will be defined more

precisely later, and usually suppressed when it’s not necessary for clarity.

Suppose that we want to use data to try to determine the best linear approximation

to y using the variables x. The data {(yt ,xt)} , t = 1,2, ...,n are obtained by some form

of sampling1. An individual observation is thus

yt = x′tβ+ εt

1For example, cross-sectional data may be obtained by random sampling. Time series data accumulate
historically.

26
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The n observations can be written in matrix form as

(3.1.1) y = Xβ+ ε,

where y =
(

y1 y2 · · · yn

)′
is n×1 and X =

(
x1 x2 · · · xn

)′
.

Linear models are more general than they might first appear, since one can employ

nonlinear transformations of the variables:

ϕ0(z) =
[

ϕ1(w) ϕ2(w) · · · ϕp(w)

]
β+ ε

where the φi() are known functions. Defining y = ϕ0(z), x1 = ϕ1(w), etc. leads to a

model in the form of equation 3.6.1. For example, the Cobb-Douglas model

z = Awβ2
2 wβ3

3 exp(ε)

can be transformed logarithmically to obtain

lnz = lnA+β2 lnw2 +β3 lnw3 + ε.

If we define y = lnz, β1 = lnA,etc., we can put the model in the form needed. The

approximation is linear in the parameters, but not necessarily linear in the variables.

3.2. Estimation by least squares

Figure 3.2.1, obtained by running TypicalData.m shows some data that follows the

linear model yt = β1 +β2xt2 +εt . The green line is the ”true” regression line β1 +β2xt2,

and the red crosses are the data points (xt2,yt), where εt is a random error that has mean

zero and is independent of xt2. Exactly how the green line is defined will become clear

later. In practice, we only have the data, and we don’t know where the green line lies.

We need to gain information about the straight line that best fits the data points.

http://pareto.uab.es/mcreel/Econometrics/Include/OLS/TypicalData.m
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FIGURE 3.2.1. Typical data, Classical Model
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The ordinary least squares (OLS) estimator is defined as the value that minimizes

the sum of the squared errors:

β̂ = argmins(β)

where

s(β) =
n

∑
t=1

(
yt −x′tβ

)2

= (y−Xβ)′ (y−Xβ)

= y′y−2y′Xβ+β′X′Xβ

= ‖ y−Xβ ‖2
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This last expression makes it clear how the OLS estimator is defined: it minimizes the

Euclidean distance between y and Xβ. The fitted OLS coefficients will define the best

linear approximation to y using x as basis functions, where ”best” means minimum

Euclidean distance. One could think of other estimators based upon other metrics. For

example, the minimum absolute distance (MAD) minimizes ∑n
t=1 |yt −x′tβ|. Later, we

will see that which estimator is best in terms of their statistical properties, rather than

in terms of the metrics that define them, depends upon the properties of ε, about which

we have as yet made no assumptions.

• To minimize the criterion s(β), find the derivative with respect to β and it to

zero:

Dβs(β̂) = −2X′y+2X′Xβ̂ = 0

so

β̂ = (X′X)−1X′y.

• To verify that this is a minimum, check the s.o.s.c.:

D2
βs(β̂) = 2X′X

Since ρ(X) = K, this matrix is positive definite, since it’s a quadratic form in

a p.d. matrix (identity matrix of order n), so β̂ is in fact a minimizer.

• The fitted values are in the vector ŷ = Xβ̂.

• The residuals are in the vector ε̂ = y−Xβ̂

• Note that

y = Xβ+ ε

= Xβ̂+ ε̂
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• Also, the first order conditions can be written as

X′y−X′Xβ̂ = 0

X′
(

y−Xβ̂
)

= 0

X′ε̂ = 0

which is to say, the OLS residuals are orthogonal to X. Let’s look at this more

carefully.

3.3. Geometric interpretation of least squares estimation

3.3.1. In X ,Y Space. Figure 3.3.1 shows a typical fit to data, along with the true

regression line. Note that the true line and the estimated line are different. This fig-

ure was created by running the Octave program OlsFit.m . You can experiment with

changing the parameter values to see how this affects the fit, and to see how the fitted

line will sometimes be close to the true line, and sometimes rather far away.

3.3.2. In Observation Space. If we want to plot in observation space, we’ll need

to use only two or three observations, or we’ll encounter some limitations of the black-

board. Let’s use two. With only two observations, we can’t have K > 1.

• We can decompose y into two components: the orthogonal projection onto

the K−dimensional space spanned by X , X β̂, and the component that is the

orthogonal projection onto the n−K subpace that is orthogonal to the span of

X , ε̂.

• Since β̂ is chosen to make ε̂ as short as possible, ε̂ will be orthogonal to the

space spanned by X . Since X is in this space, X ′ε̂ = 0. Note that the f.o.c. that

define the least squares estimator imply that this is so.

http://pareto.uab.es/mcreel/Econometrics/Include/OLS/OlsFit.m
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FIGURE 3.3.1. Example OLS Fit
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FIGURE 3.3.2. The fit in observation space
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3.3.3. Projection Matrices. X β̂ is the projection of y onto the span of X , or

X β̂ = X
(
X ′X

)−1 X ′y

Therefore, the matrix that projects y onto the span of X is

PX = X(X ′X)−1X ′

since

X β̂ = PX y.

ε̂ is the projection of y onto the N −K dimensional space that is orthogonal to the

span of X . We have that

ε̂ = y−X β̂

= y−X(X ′X)−1X ′y

=
[
In −X(X ′X)−1X ′]y.

So the matrix that projects y onto the space orthogonal to the span of X is

MX = In −X(X ′X)−1X ′

= In −PX .

We have

ε̂ = MXy.

Therefore

y = PX y+MX y

= X β̂+ ε̂.
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These two projection matrices decompose the n dimensional vector y into two orthog-

onal components - the portion that lies in the K dimensional space defined by X , and

the portion that lies in the orthogonal n−K dimensional space.

• Note that both PX and MX are symmetric and idempotent.

– A symmetric matrix A is one such that A = A′.

– An idempotent matrix A is one such that A = AA.

– The only nonsingular idempotent matrix is the identity matrix.

3.4. Influential observations and outliers

The OLS estimator of the ith element of the vector β0 is simply

β̂i =
[
(X ′X)−1X ′]

i· y

= c′iy

This is how we define a linear estimator - it’s a linear function of the dependent

variable. Since it’s a linear combination of the observations on the dependent vari-

able, where the weights are detemined by the observations on the regressors, some

observations may have more influence than others. Define

ht = (PX)tt

= e′tPX et

= ‖ PX et ‖2

≤ ‖ et ‖2= 1
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ht is the tth element on the main diagonal of PX ( et is a n vector of zeros with a 1 in

the tth position). So 0 < ht < 1, and

TrPX = K ⇒ h = K/n.

So, on average, the weight on the yt’s is K/n. If the weight is much higher, then the

observation has the potential to affect the fit importantly. The weight, ht is referred to

as the leverage of the observation. However, an observation may also be influential

due to the value of yt , rather than the weight it is multiplied by, which only depends on

the xt’s.

To account for this, consider estimation of β without using the t th observation

(designate this estimator as β̂(t)). One can show (see Davidson and MacKinnon, pp.

32-5 for proof) that

β̂(t) = β̂−
(

1
1−ht

)
(X ′X)−1X ′

t ε̂t

so the change in the tth observations fitted value is

Xt β̂−Xt β̂(t) =

(
ht

1−ht

)
ε̂t

While an observation may be influential if it doesn’t affect its own fitted value, it

certainly is influential if it does. A fast means of identifying influential observations

is to plot
(

ht
1−ht

)
ε̂t (which I will refer to as the own influence of the observation) as a

function of t. Figure 3.4.1 gives an example plot of data, fit, leverage and influence.

The Octave program is InfluentialObservation.m . If you re-run the program you will

see that the leverage of the last observation (an outlying value of x) is always high, and

the influence is sometimes high.

After influential observations are detected, one needs to determine why they are

influential. Possible causes include:

http://pareto.uab.es/mcreel/Econometrics/Include/OLS/InfluentialObservation.m
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FIGURE 3.4.1. Detection of influential observations
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• data entry error, which can easily be corrected once detected. Data entry

errors are very common.

• special economic factors that affect some observations. These would need to

be identified and incorporated in the model. This is the idea behind structural

change: the parameters may not be constant across all observations.

• pure randomness may have caused us to sample a low-probability observa-

tion.

There exist robust estimation methods that downweight outliers.

3.5. Goodness of fit

The fitted model is

y = X β̂+ ε̂
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Take the inner product:

y′y = β̂′X ′X β̂+2β̂′X ′ε̂+ ε̂′ε̂

But the middle term of the RHS is zero since X ′ε̂ = 0, so

(3.5.1) y′y = β̂′X ′X β̂+ ε̂′ε̂

The uncentered R2
u is defined as

R2
u = 1− ε̂′ε̂

y′y

=
β̂′X ′X β̂

y′y

=
‖ PX y ‖2

‖ y ‖2

= cos2(φ),

where φ is the angle between y and the span of X .

• The uncentered R2 changes if we add a constant to y, since this changes φ

(see Figure 3.5.1, the yellow vector is a constant, since it’s on the 45 degree

line in observation space). Another, more common definition measures the

contribution of the variables, other than the constant term, to explaining the

variation in y. Thus it measures the ability of the model to explain the variation

of y about its unconditional sample mean.

Let ι = (1,1, ...,1)′, a n -vector. So

Mι = In − ι(ι′ι)−1ι′

= In − ιι′/n
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FIGURE 3.5.1. Uncentered R2

Mιy just returns the vector of deviations from the mean. In terms of deviations from

the mean, equation 3.5.1 becomes

y′Mιy = β̂′X ′MιX β̂+ ε̂′Mιε̂

The centered R2
c is defined as

R2
c = 1− ε̂′ε̂

y′Mιy
= 1− ESS

T SS

where ESS = ε̂′ε̂ and T SS = y′Mιy=∑n
t=1(yt − ȳ)2.

Supposing that X contains a column of ones (i.e., there is a constant term),

X ′ε̂ = 0 ⇒ ∑
t

ε̂t = 0



3.6. THE CLASSICAL LINEAR REGRESSION MODEL 38

so Mιε̂ = ε̂. In this case

y′Mιy = β̂′X ′MιX β̂+ ε̂′ε̂

So

R2
c =

RSS
T SS

where RSS = β̂′X ′MιX β̂

• Supposing that a column of ones is in the space spanned by X (PX ι = ι), then

one can show that 0 ≤ R2
c ≤ 1.

3.6. The classical linear regression model

Up to this point the model is empty of content beyond the definition of a best linear

approximation to y and some geometrical properties. There is no economic content

to the model, and the regression parameters have no economic interpretation. For

example, what is the partial derivative of y with respect to x j? The linear approximation

is

y = β1x1 +β2x2 + ...+βkxk + ε

The partial derivative is
∂y
∂x j

= β j +
∂ε
∂x j

Up to now, there’s no guarantee that ∂ε
∂x j

=0. For the β to have an economic meaning, we

need to make additional assumptions. The assumptions that are appropriate to make

depend on the data under consideration. We’ll start with the classical linear regression

model, which incorporates some assumptions that are clearly not realistic for economic

data. This is to be able to explain some concepts with a minimum of confusion and

notational clutter. Later we’ll adapt the results to what we can get with more realistic

assumptions.
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Linearity: the model is a linear function of the parameter vector β0 :

y = β0
1x1 +β0

2x2 + ...+β0
kxk + ε(3.6.1)

or, using vector notation:

y = x′β0 + ε

Nonstochastic linearly independent regressors: X is a fixed matrix of constants,

it has rank K, its number of columns, and 3.6.2

lim
1
n

X′X = QX(3.6.2)

where QX is a finite positive definite matrix. This is needed to be able to identify the

individual effects of the explanatory variables.

Independently and identically distributed errors:

(3.6.3) ε ∼ IID(0,σ2In)

ε is jointly distributed IIN. This implies the following two properties:

Homoscedastic errors:

(3.6.4) V (εt) = σ2
0,∀t

Nonautocorrelated errors:

(3.6.5) E(εtεs) = 0,∀t 6= s

Optionally, we will sometimes assume that the errors are normally distributed.
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Normally distributed errors:

(3.6.6) ε ∼ N(0,σ2In)

3.7. Small sample statistical properties of the least squares estimator

Up to now, we have only examined numeric properties of the OLS estimator, that

always hold. Now we will examine statistical properties. The statistical properties

depend upon the assumptions we can make.

3.7.1. Unbiasedness. We have β̂ = (X ′X)−1X ′y. By linearity,

β̂ = (X ′X)−1X ′ (Xβ+ ε)

= β+(X ′X)−1X ′ε

By 3.6.2 and 3.6.3

E(X ′X)−1X ′ε = E(X ′X)−1X ′ε

= (X ′X)−1X ′Eε

= 0

so the OLS estimator is unbiased under the assumptions of the classical model.

Figure 3.7.1 shows the results of a small Monte Carlo experiment where the OLS

estimator was calculated for 10000 samples from the classical model with y = 1+2x+

ε, where n = 20, σ2
ε = 9, and x is fixed across samples. We can see that the β2 appears

to be estimated without bias. The program that generates the plot is Unbiased.m , if

you would like to experiment with this.

With time series data, the OLS estimator will often be biased. Figure 3.7.2 shows

the results of a small Monte Carlo experiment where the OLS estimator was calculated

http://pareto.uab.es/mcreel/Econometrics/Include/OLS/Unbiased.m
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FIGURE 3.7.1. Unbiasedness of OLS under classical assumptions
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for 1000 samples from the AR(1) model with yt = 0+0.9yt−1 + εt , where n = 20 and

σ2
ε = 1. In this case, assumption 3.6.2 does not hold: the regressors are stochastic. We

can see that the bias in the estimation of β2 is about -0.2.

The program that generates the plot is Biased.m , if you would like to experiment

with this.

3.7.2. Normality. With the linearity assumption, we have β̂ = β + (X ′X)−1X ′ε.

This is a linear function of ε. Adding the assumption of normality (3.6.6, which implies

strong exogeneity), then

β̂ ∼ N
(
β,(X ′X)−1σ2

0
)

since a linear function of a normal random vector is also normally distributed. In Fig-

ure 3.7.1 you can see that the estimator appears to be normally distributed. It in fact

is normally distributed, since the DGP (see the Octave program) has normal errors.

http://pareto.uab.es/mcreel/Econometrics/Include/OLS/Biased.m
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FIGURE 3.7.2. Biasedness of OLS when an assumption fails
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Even when the data may be taken to be IID, the assumption of normality is often ques-

tionable or simply untenable. For example, if the dependent variable is the number of

automobile trips per week, it is a count variable with a discrete distribution, and is thus

not normally distributed. Many variables in economics can take on only nonnegative

values, which, strictly speaking, rules out normality.2

3.7.3. The variance of the OLS estimator and the Gauss-Markov theorem.

Now let’s make all the classical assumptions except the assumption of normality. We

2Normality may be a good model nonetheless, as long as the probability of a negative value occuring is
negligable under the model. This depends upon the mean being large enough in relation to the variance.
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have β̂ = β+(X ′X)−1X ′ε and we know that E(β̂) = β. So

Var(β̂) = E
{(

β̂−β
)(

β̂−β
)′}

= E
{
(X ′X)−1X ′εε′X(X ′X)−1}

= (X ′X)−1σ2
0

The OLS estimator is a linear estimator, which means that it is a linear function of

the dependent variable, y.

β̂ =
[
(X ′X)−1X ′]y

= Cy

where C is a function of the explanatory variables only, not the dependent variable. It is

also unbiased under the present assumptions, as we proved above. One could consider

other weights W that are a function of X that define some other linear estimator. We’ll

still insist upon unbiasedness. Consider β̃ = Wy, where W = W (X) is some k × n

matrix function of X . Note that since W is a function of X , it is nonstochastic, too. If

the estimator is unbiased, then we must have W X = IK:

E(Wy) = E(WXβ0 +W ε)

= WXβ0

= β0

⇒

W X = IK

The variance of β̃ is

V (β̃) = WW ′σ2
0.
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Define

D = W − (X ′X)−1X ′

so

W = D+(X ′X)−1X ′

Since W X = IK, DX = 0, so

V (β̃) =
(
D+(X ′X)−1X ′)(D+(X ′X)−1X ′)′σ2

0

=
(

DD′+
(
X ′X

)−1
)

σ2
0

So

V (β̃) ≥V (β̂)

The inequality is a shorthand means of expressing, more formally, that V (β̃)−V (β̂)

is a positive semi-definite matrix. This is a proof of the Gauss-Markov Theorem. The

OLS estimator is the ”best linear unbiased estimator” (BLUE).

• It is worth emphasizing again that we have not used the normality assumption

in any way to prove the Gauss-Markov theorem, so it is valid if the errors are

not normally distributed, as long as the other assumptions hold.

To illustrate the Gauss-Markov result, consider the estimator that results from splitting

the sample into p equally-sized parts, estimating using each part of the data separately

by OLS, then averaging the p resulting estimators. You should be able to show that this

estimator is unbiased, but inefficient with respect to the OLS estimator. The program

Efficiency.m illustrates this using a small Monte Carlo experiment, which compares

the OLS estimator and a 3-way split sample estimator. The data generating process

follows the classical model, with n = 21. The true parameter value is β = 2. In Figures

http://pareto.uab.es/mcreel/Econometrics/Include/OLS/Efficiency.m
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FIGURE 3.7.3. Gauss-Markov Result: The OLS estimator

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0  0.5  1  1.5  2  2.5  3  3.5  4

Beta 2 hat, OLS

3.7.3 and 3.7.4 we can see that the OLS estimator is more efficient, since the tails of

its histogram are more narrow.

We have that E(β̂) = β and Var(β̂) =
(

X
′
X
)−1

σ2
0, but we still need to estimate

the variance of ε, σ2
0, in order to have an idea of the precision of the estimates of β. A

commonly used estimator of σ2
0 is

σ̂2
0 =

1
n−K

ε̂′ε̂

This estimator is unbiased:
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FIGURE 3.7.4. Gauss-Markov Result: The split sample estimator
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σ̂2
0 =

1
n−K

ε̂′ε̂

=
1

n−K
ε′Mε

E(σ̂2
0) =

1
n−K

E(Trε′Mε)

=
1

n−K
E(TrMεε′)

=
1

n−K
TrEXEε|X(Mεε′)

=
1

n−K
σ2

0EX TrM

=
1

n−K
σ2

0 (n− k)

= σ2
0
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where we use the fact that Tr(AB) = Tr(BA) when both products are conformable.

Thus, this estimator is also unbiased under these assumptions.

3.8. Example: The Nerlove model

3.8.1. Theoretical background. For a firm that takes input prices w and the out-

put level q as given, the cost minimization problem is to choose the quantities of inputs

x to solve the problem

min
x

w′x

subject to the restriction

f (x) = q.

The solution is the vector of factor demands x(w,q). The cost function is obtained by

substituting the factor demands into the criterion function:

Cw,q) = w′x(w,q).

• Monotonicity Increasing factor prices cannot decrease cost, so

∂C(w,q)

∂w
≥ 0

Remember that these derivatives give the conditional factor demands (Shep-

hard’s Lemma).

• Homogeneity The cost function is homogeneous of degree 1 in input prices:

C(tw,q) = tC(w,q) where t is a scalar constant. This is because the factor
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demands are homogeneous of degree zero in factor prices - they only depend

upon relative prices.

• Returns to scale The returns to scale parameter γ is defined as the inverse of

the elasticity of cost with respect to output:

γ =

(
∂C(w,q)

∂q
q

C(w,q)

)−1

Constant returns to scale is the case where increasing production q implies

that cost increases in the proportion 1:1. If this is the case, then γ = 1.

3.8.2. Cobb-Douglas functional form. The Cobb-Douglas functional form is lin-

ear in the logarithms of the regressors and the dependent variable. For a cost function,

if there are g factors, the Cobb-Douglas cost function has the form

C = Awβ1
1 ...wβg

g qβqeε

What is the elasticity of C with respect to w j?

eC
w j

=

(
∂C
∂WJ

)(w j

C

)

= β jAwβ1
1 .wβ j−1

j ..wβg
g qβqeε w j

Awβ1
1 ...wβg

g qβqeε

= β j

This is one of the reasons the Cobb-Douglas form is popular - the coefficients are easy

to interpret, since they are the elasticities of the dependent variable with respect to the
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explanatory variable. Not that in this case,

eC
w j

=

(
∂C
∂WJ

)(w j

C

)

= x j(w,q)
w j

C

≡ s j(w,q)

the cost share of the jth input. So with a Cobb-Douglas cost function, β j = s j(w,q).

The cost shares are constants.

Note that after a logarithmic transformation we obtain

lnC = α+β1 lnw1 + ...+βg lnwg +βq lnq+ ε

where α = lnA . So we see that the transformed model is linear in the logs of the data.

One can verify that the property of HOD1 implies that

g

∑
i=1

βg = 1

In other words, the cost shares add up to 1.

The hypothesis that the technology exhibits CRTS implies that

γ =
1
βq

= 1

so βq = 1. Likewise, monotonicity implies that the coefficients βi ≥ 0, i = 1, ...,g.

3.8.3. The Nerlove data and OLS. The file nerlove.data contains data on 145

electric utility companies’ cost of production, output and input prices. The data are

for the U.S., and were collected by M. Nerlove. The observations are by row, and

the columns are COMPANY, COST (C), OUTPUT (Q), PRICE OF LABOR (PL),

http://pareto.uab.es/mcreel/Econometrics/Include/Data/nerlove.data
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PRICE OF FUEL (PF) and PRICE OF CAPITAL (PK). Note that the data are sorted

by output level (the third column).

We will estimate the Cobb-Douglas model

(3.8.1) lnC = β1 +β2 lnQ+β3 lnPL +β4 lnPF +β5 lnPK + ε

using OLS. To do this yourself, you need the data file mentioned above, as well as

Nerlove.m (the estimation program) , and the library of Octave functions mentioned

in the introduction to Octave that forms section 22 of this document.3

The results are

*********************************************************
OLS estimation results
Observations 145
R-squared 0.925955
Sigma-squared 0.153943

Results (Ordinary var-cov estimator)

estimate st.err. t-stat. p-value
constant -3.527 1.774 -1.987 0.049
output 0.720 0.017 41.244 0.000
labor 0.436 0.291 1.499 0.136
fuel 0.427 0.100 4.249 0.000
capital -0.220 0.339 -0.648 0.518

*********************************************************

• Do the theoretical restrictions hold?

• Does the model fit well?

• What do you think about RTS?

While we will use Octave programs as examples in this document, since following the

programming statements is a useful way of learning how theory is put into practice,

3If you are running the bootable CD, you have all of this installed and ready to run.

http://pareto.uab.es/mcreel/Econometrics/Include/OLS/Nerlove.m
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you may be interested in a more ”user-friendly” environment for doing econometrics.

I heartily recommend Gretl, the Gnu Regression, Econometrics, and Time-Series Li-

brary. This is an easy to use program, available in English, French, and Spanish, and

it comes with a lot of data ready to use. It even has an option to save output as LATEX

fragments, so that I can just include the results into this document, no muss, no fuss.

Here the results of the Nerlove model from GRETL:

Model 2: OLS estimates using the 145 observations 1–145

Dependent variable: l_cost

Variable Coefficient Std. Error t-statistic p-value

const −3.5265 1.77437 −1.9875 0.0488

l_output 0.720394 0.0174664 41.2445 0.0000

l_labor 0.436341 0.291048 1.4992 0.1361

l_fuel 0.426517 0.100369 4.2495 0.0000

l_capita −0.219888 0.339429 −0.6478 0.5182

Mean of dependent variable 1.72466

S.D. of dependent variable 1.42172

Sum of squared residuals 21.5520

Standard error of residuals (σ̂) 0.392356

Unadjusted R2 0.925955

Adjusted R̄2 0.923840

F(4,140) 437.686

Akaike information criterion 145.084

Schwarz Bayesian criterion 159.967

http://gretl.sourceforge.net
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Fortunately, Gretl and my OLS program agree upon the results. Gretl is included in

the bootable CD mentioned in the introduction. I recommend using GRETL to repeat

the examples that are done using Octave.

The previous properties hold for finite sample sizes. Before considering the as-

ymptotic properties of the OLS estimator it is useful to review the MLE estimator,

since under the assumption of normal errors the two estimators coincide.
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Exercises

(1) Prove that the split sample estimator used to generate figure 3.7.4 is unbiased.

(2) Calculate the OLS estimates of the Nerlove model using Octave and GRETL, and

provide printouts of the results. Interpret the results.

(3) Do an analysis of whether or not there are influential observations for OLS esti-

mation of the Nerlove model. Discuss.

(4) Using GRETL, examine the residuals after OLS estimation and tell me whether or

not you believe that the assumption of independent identically distributed normal

errors is warranted. No need to do formal tests, just look at the plots. Print out any

that you think are relevant, and interpret them.

(5) For a random vector X ∼ N(µx,Σ), what is the distribution of AX +b, where A and

b are conformable matrices of contants?

(6) Using Octave, write a little program that verifies that Tr(AB) = Tr(BA) for A and

B 4x4 matrices of random numbers. Note: there is an Octave function trace.

(7) For the model with a constant and a single regressor, yt = β1 + β2xt + εt , which

satisfies the classical assumptions, prove that the variance of the OLS estimator

declines to zero as the sample size increases.



CHAPTER 4

Maximum likelihood estimation

The maximum likelihood estimator is important since it is asymptotically efficient,

as is shown below. For the classical linear model with normal errors, the ML and OLS

estimators of β are the same, so the following theory is presented without examples. In

the second half of the course, nonlinear models with nonnormal errors are introduced,

and examples may be found there.

4.1. The likelihood function

Suppose we have a sample of size n of the random vectors y and z. Suppose the

joint density of Y =
(

y1 . . . yn

)
and Z =

(
z1 . . . zn

)
is characterized by a

parameter vector ψ0 :

fYZ(Y,Z,ψ0).

This is the joint density of the sample. This density can be factored as

fYZ(Y,Z,ψ0) = fY |Z(Y |Z,θ0) fZ(Z,ρ0)

The likelihood function is just this density evaluated at other values ψ

L(Y,Z,ψ) = f (Y,Z,ψ),ψ ∈ Ψ,

where Ψ is a parameter space.

The maximum likelihood estimator of ψ0 is the value of ψ that maximizes the

likelihood function.
54
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Note that if θ0 and ρ0 share no elements, then the maximizer of the conditional

likelihood function fY |Z(Y |Z,θ) with respect to θ is the same as the maximizer of

the overall likelihood function fY Z(Y,Z,ψ) = fY |Z(Y |Z,θ) fZ(Z,ρ), for the elements

of ψ that correspond to θ. In this case, the variables Z are said to be exogenous for

estimation of θ, and we may more conveniently work with the conditional likelihood

function fY |Z(Y |Z,θ) for the purposes of estimating θ0.

DEFINITION 4.1.1. The maximum likelihood estimator of θ0 = argmax fY |Z(Y |Z,θ)

• If the n observations are independent, the likelihood function can be written

as

L(Y |Z,θ) =
n

∏
t=1

f (yt |zt,θ)

where the ft are possibly of different form.

• If this is not possible, we can always factor the likelihood into contributions

of observations, by using the fact that a joint density can be factored into the

product of a marginal and conditional (doing this iteratively)

L(Y,θ) = f (y1|z1,θ) f (y2|y1,z2,θ) f (y3|y1,y2,z3,θ) · · · f (yn|y1,y2, . . .yt−n,zn,θ)

To simplify notation, define

xt = {y1,y2, ...,yt−1,zt}

so x1 = z1, x2 = {y1,z2}, etc. - it contains exogenous and predetermined endogeous

variables. Now the likelihood function can be written as

L(Y,θ) =
n

∏
t=1

f (yt |xt ,θ)
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The criterion function can be defined as the average log-likelihood function:

sn(θ) =
1
n

lnL(Y,θ) =
1
n

n

∑
t=1

ln f (yt |xt ,θ)

The maximum likelihood estimator may thus be defined equivalently as

θ̂ = argmaxsn(θ),

where the set maximized over is defined below. Since ln(·) is a monotonic increasing

function, lnL and L maximize at the same value of θ. Dividing by n has no effect on θ̂.

4.1.1. Example: Bernoulli trial. Suppose that we are flipping a coin that may

be biased, so that the probability of a heads may not be 0.5. Maybe we’re interested

in estimating the probability of a heads. Let y = 1(heads) be a binary variable that

indicates whether or not a heads is observed. The outcome of a toss is a Bernoulli

random variable:

fY (y, p0) = py
0 (1− p0)

1−y ,y ∈ {0,1}

= 0,y /∈ {0,1}

So a representative term that enters the likelihood function is

fY (y, p) = py (1− p)1−y

and

ln fY (y, p) = y ln p+(1− y) ln(1− p)
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The derivative of this is

∂ ln fY (y, p)

∂p
=

y
p
− (1− y)

(1− p)

=
y− p

p(1− p)

Averaging this over a sample of size n gives

∂sn(p)

∂p
=

1
n

n

∑
i=1

yi − p
p(1− p)

Setting to zero and solving gives

p̂ = ȳ

So it’s easy to calculate the MLE of p0in this case.

Now imagine that we had a bag full of bent coins, each bent around a sphere of

a different radius (with the head pointing to the outside of the sphere). We might

suspect that the probability of a heads could depend upon the radius. Suppose that

pi ≡ p(xi,β) = (1+ exp(−x′iβ))−1 where xi =
[

1 ri

]′
, so that β is a 2×1 vector.

Now
∂pi(β)

∂β
= pi (1− pi)xi

so

∂ ln fY (y,β)

∂β
=

y− pi

pi (1− pi)
pi (1− pi)xi

= (yi − p(xi,β))xi



4.2. CONSISTENCY OF MLE 58

So the derivative of the average log lihelihood function is now

∂sn(β)

∂β
=

∑n
i=1 (yi − p(xi,β))xi

n

This is a set of 2 nolinear equations in the two unknown elements in β. There is no

explicit solution for the two elements that set the equations to zero. This is common

with ML estimators, they are often nonlinear, and finding their values often require use

of numeric methods to find solutions to the first order conditions.

4.2. Consistency of MLE

To show consistency of the MLE, we need to make explicit some assumptions.

Compact parameter space: θ ∈ Θ, an open bounded subset of ℜK. Maximix-

ation is over Θ, which is compact.

This implies that θ is an interior point of the parameter space Θ.

Uniform convergence:

sn(θ)
u.a.s→ lim

n→∞
Eθ0sn(θ) ≡ s∞(θ,θ0),∀θ ∈ Θ.

We have suppressed Y here for simplicity. This requires that almost sure convergence

holds for all possible parameter values. For a given parameter value, an ordinary Law

of Large Numbers will usually imply almost sure convergence to the limit of the ex-

pectation. Convergence for a single element of the parameter space, combined with

the assumption of a compact parameter space, ensures uniform convergence.

Continuity: sn(θ) is continuous in θ,θ ∈ Θ. This implies that s∞(θ,θ0) is con-

tinuous in θ.

Identification: s∞(θ,θ0) has a unique maximum in its first argument.

We will use these assumptions to show that θ̂n
a.s.→ θ0.
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First, θ̂n certainly exists, since a continuous function has a maximum on a compact

set.

Second, for any θ 6= θ0

E
(

ln
(

L(θ)

L(θ0)

))
≤ ln

(
E
(

L(θ)

L(θ0)

))

by Jensen’s inequality ( ln(·) is a concave function).

Now, the expectation on the RHS is

E
(

L(θ)

L(θ0)

)
=

Z L(θ)

L(θ0)
L(θ0)dy = 1,

since L(θ0) is the density function of the observations, and since the integral of any

density is 1. Therefore, since ln(1) = 0,

E
(

ln
(

L(θ)

L(θ0)

))
≤ 0,

or

E (sn (θ))−E (sn (θ0)) ≤ 0.

Taking limits, this is

s∞(θ,θ0)− s∞(θ0,θ0) ≤ 0

except on a set of zero probability (by the uniform convergence assumption).

By the identification assumption there is a unique maximizer, the inequality is strict

if θ 6= θ0:

s∞(θ,θ0)− s∞(θ0,θ0) < 0,∀θ 6= θ0,a.s.

Suppose that θ∗ is a limit point of θ̂n (any sequence from a compact set has at least

one limit point). Since θ̂n is a maximizer, independent of n, we must have
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s∞(θ∗,θ0)− s∞(θ0,θ0) ≥ 0.

These last two inequalities imply that

θ∗ = θ0,a.s.

Thus there is only one limit point, and it is equal to the true parameter value with

probability one. In other words,

lim
n→∞

θ̂ = θ0, a.s.

This completes the proof of strong consistency of the MLE. One can use weaker as-

sumptions to prove weak consistency (convergence in probability to θ0) of the MLE.

This is omitted here. Note that almost sure convergence implies convergence in prob-

ability.

4.3. The score function

Differentiability: Assume that sn(θ) is twice continuously differentiable in a

neighborhood N(θ0) of θ0, at least when n is large enough.

To maximize the log-likelihood function, take derivatives:

gn(Y,θ) = Dθsn(θ)

=
1
n

n

∑
t=1

Dθ ln f (yt |xx,θ)

≡ 1
n

n

∑
t=1

gt(θ).
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This is the score vector (with dim K × 1). Note that the score function has Y as an

argument, which implies that it is a random function. Y (and any exogeneous variables)

will often be suppressed for clarity, but one should not forget that they are still there.

The ML estimator θ̂ sets the derivatives to zero:

gn(θ̂) =
1
n

n

∑
t=1

gt(θ̂) ≡ 0.

We will show that Eθ [gt(θ)] = 0, ∀t. This is the expectation taken with respect to

the density f (θ), not necessarily f (θ0) .

Eθ [gt(θ)] =
Z

[Dθ ln f (yt |xt ,θ)] f (yt|x,θ)dyt

=
Z 1

f (yt |xt ,θ)
[Dθ f (yt |xt ,θ)] f (yt |xt,θ)dyt

=

Z

Dθ f (yt |xt ,θ)dyt .

Given some regularity conditions on boundedness of Dθ f , we can switch the order of

integration and differentiation, by the dominated convergence theorem. This gives

Eθ [gt(θ)] = Dθ

Z

f (yt |xt ,θ)dyt

= Dθ1

= 0

where we use the fact that the integral of the density is 1.

• So Eθ(gt(θ) = 0 : the expectation of the score vector is zero.

• This hold for all t, so it implies that Eθgn(Y,θ) = 0.
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4.4. Asymptotic normality of MLE

Recall that we assume that sn(θ) is twice continuously differentiable. Take a first

order Taylor’s series expansion of g(Y, θ̂) about the true value θ0 :

0 ≡ g(θ̂) = g(θ0)+(Dθ′g(θ∗))
(
θ̂−θ0

)

or with appropriate definitions

H(θ∗)
(
θ̂−θ0

)
= −g(θ0),

where θ∗ = λθ̂ +(1−λ)θ0,0 < λ < 1. Assume H(θ∗) is invertible (we’ll justify this

in a minute). So
√

n
(
θ̂−θ0

)
= −H(θ∗)−1√ng(θ0)

Now consider H(θ∗). This is

H(θ∗) = Dθ′g(θ∗)

= D2
θsn(θ∗)

=
1
n

n

∑
t=1

D2
θ ln ft(θ∗)

where the notation

D2
θsn(θ) ≡ ∂2sn(θ)

∂θ∂θ′
.

Given that this is an average of terms, it should usually be the case that this satisfies

a strong law of large numbers (SLLN). Regularity conditions are a set of assumptions

that guarantee that this will happen. There are different sets of assumptions that can

be used to justify appeal to different SLLN’s. For example, the D2
θ ln ft(θ∗) must not

be too strongly dependent over time, and their variances must not become infinite. We
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don’t assume any particular set here, since the appropriate assumptions will depend

upon the particularities of a given model. However, we assume that a SLLN applies.

Also, since we know that θ̂ is consistent, and since θ∗ = λθ̂+(1−λ)θ0, we have

that θ∗a.s.→ θ0. Also, by the above differentiability assumtion, H(θ) is continuous in θ.

Given this, H(θ∗) converges to the limit of it’s expectation:

H(θ∗) a.s.→ lim
n→∞

E
(
D2

θsn(θ0)
)

= H∞(θ0) < ∞

This matrix converges to a finite limit.

Re-arranging orders of limits and differentiation, which is legitimate given regu-

larity conditions, we get

H∞(θ0) = D2
θ lim

n→∞
E (sn(θ0))

= D2
θs∞(θ0,θ0)

We’ve already seen that

s∞(θ,θ0) < s∞(θ0,θ0)

i.e., θ0 maximizes the limiting objective function. Since there is a unique maximizer,

and by the assumption that sn(θ) is twice continuously differentiable (which holds in

the limit), then H∞(θ0) must be negative definite, and therefore of full rank. Therefore

the previous inversion is justified, asymptotically, and we have

(4.4.1)
√

n
(
θ̂−θ0

) a.s.→ −H∞(θ0)
−1√ng(θ0).
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Now consider
√

ng(θ0). This is

√
ngn(θ0) =

√
nDθsn(θ)

=

√
n

n

n

∑
t=1

Dθ ln ft(yt |xt ,θ0)

=
1√
n

n

∑
t=1

gt(θ0)

We’ve already seen that Eθ [gt(θ)] = 0. As such, it is reasonable to assume that a CLT

applies.

Note that gn(θ0)
a.s.→ 0, by consistency. To avoid this collapse to a degenerate r.v. (a

constant vector) we need to scale by
√

n. A generic CLT states that, for Xn a random

vector that satisfies certain conditions,

Xn −E(Xn)
d→ N(0, limV (Xn))

The “certain conditions” that Xn must satisfy depend on the case at hand. Usually, Xn

will be of the form of an average, scaled by
√

n:

Xn =
√

n
∑n

t=1 Xt

n

This is the case for
√

ng(θ0) for example. Then the properties of Xn depend on the

properties of the Xt . For example, if the Xt have finite variances and are not too strongly

dependent, then a CLT for dependent processes will apply. Supposing that a CLT

applies, and noting that E(
√

ngn(θ0) = 0, we get

I∞(θ0)
−1/2√ngn(θ0)

d→ N [0, IK]
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where

I∞(θ0) = lim
n→∞

Eθ0

(
n [gn(θ0)] [gn(θ0)]

′)

= lim
n→∞

Vθ0

(√
ngn(θ0)

)

This can also be written as

(4.4.2)
√

ngn(θ0)
d→ N [0,I∞(θ0)]

• I∞(θ0) is known as the information matrix.

• Combining [4.4.1] and [4.4.2], we get

√
n
(
θ̂−θ0

) a∼ N
[
0,H∞(θ0)

−1I∞(θ0)H∞(θ0)
−1] .

The MLE estimator is asymptotically normally distributed.

DEFINITION 1 (CAN). An estimator θ̂ of a parameter θ0 is
√

n-consistent and

asymptotically normally distributed if

(4.4.3)
√

n
(
θ̂−θ0

) d→ N (0,V∞)

where V∞ is a finite positive definite matrix.

There do exist, in special cases, estimators that are consistent such that
√

n
(
θ̂−θ0

) p→

0. These are known as superconsistent estimators, since normally,
√

n is the highest

factor that we can multiply by an still get convergence to a stable limiting distribution.

DEFINITION 2 (Asymptotic unbiasedness). An estimator θ̂ of a parameter θ0 is

asymptotically unbiased if

(4.4.4) lim
n→∞

Eθ(θ̂) = θ.
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Estimators that are CAN are asymptotically unbiased, though not all consistent

estimators are asymptotically unbiased. Such cases are unusual, though. An example

is

EXERCISE 4.5. Consider an estimator θ̂ with density

f (θ̂) =
1− 1

n , θ̂ = θ0

1
n, θ̂ = n

Show that this estimator is consistent but asymptotically biased. Also ask yourself how

you could define an estimator that would have this density.

4.6. The information matrix equality

We will show that H∞(θ) = −I∞(θ). Let ft(θ) be short for f (yt |xt ,θ)

1 =
Z

ft(θ)dy, so

0 =

Z

Dθ ft(θ)dy

=
Z

(Dθ ln ft(θ)) ft(θ)dy

Now differentiate again:

0 =

Z [
D2

θ ln ft(θ)
]

ft(θ)dy+

Z

[Dθ ln ft(θ)]Dθ′ ft(θ)dy

= Eθ
[
D2

θ ln ft(θ)
]
+

Z

[Dθ ln ft(θ)] [Dθ′ ln ft(θ)] ft(θ)dy

= Eθ
[
D2

θ ln ft(θ)
]
+ Eθ [Dθ ln ft(θ)] [Dθ′ ln ft(θ)]

= Eθ [Ht(θ)]+ Eθ [gt(θ)] [gt(θ)]′(4.6.1)
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Now sum over n and multiply by 1
n

Eθ
1
n

n

∑
t=1

[Ht(θ)] = −Eθ

[
1
n

n

∑
t=1

[gt(θ)] [gt(θ)]′
]

The scores gt and gs are uncorrelated for t 6= s, since for t > s, ft(yt |y1, ...,yt−1,θ) has

conditioned on prior information, so what was random in s is fixed in t. (This forms the

basis for a specification test proposed by White: if the scores appear to be correlated

one may question the specification of the model). This allows us to write

Eθ [H(θ)] = −Eθ
(
n [g(θ)][g(θ)]′

)

since all cross products between different periods expect to zero. Finally take limits,

we get

(4.6.2) H∞(θ) = −I∞(θ).

This holds for all θ, in particular, for θ0. Using this,

√
n
(
θ̂−θ0

) a.s.→ N
[
0,H∞(θ0)

−1I∞(θ0)H∞(θ0)
−1]

simplifies to

(4.6.3)
√

n
(
θ̂−θ0

) a.s.→ N
[
0,I∞(θ0)

−1]

To estimate the asymptotic variance, we need estimators of H∞(θ0) and I∞(θ0). We

can use

Î∞(θ0) = n
n

∑
t=1

gt(θ̂)gt(θ̂)′

Ĥ∞(θ0) = H(θ̂).
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Note, one can’t use

Î∞(θ0) = n
[
gn(θ̂)

][
gn(θ̂)

]′

to estimate the information matrix. Why not?

From this we see that there are alternative ways to estimate V∞(θ0) that are all

valid. These include

V̂∞(θ0) = −Ĥ∞(θ0)
−1

V̂∞(θ0) = Î∞(θ0)
−1

V̂∞(θ0) = Ĥ∞(θ0)
−1

Î∞(θ0)Ĥ∞(θ0)
−1

These are known as the inverse Hessian, outer product of the gradient (OPG) and

sandwich estimators, respectively. The sandwich form is the most robust, since it

coincides with the covariance estimator of the quasi-ML estimator.

4.7. The Cramér-Rao lower bound

THEOREM 3. [Cramer-Rao Lower Bound] The limiting variance of a CAN estima-

tor of θ0, say θ̃, minus the inverse of the information matrix is a positive semidefinite

matrix.

Proof: Since the estimator is CAN, it is asymptotically unbiased, so

lim
n→∞

Eθ(θ̃−θ) = 0

Differentiate wrt θ′ :

Dθ′ lim
n→∞

Eθ(θ̃−θ) = lim
n→∞

Z

Dθ′
[

f (Y,θ)
(
θ̃−θ

)]
dy

= 0 (this is a K ×K matrix of zeros).
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Noting that Dθ′ f (Y,θ) = f (θ)Dθ′ ln f (θ), we can write

lim
n→∞

Z (
θ̃−θ

)
f (θ)Dθ′ ln f (θ)dy+ lim

n→∞

Z

f (Y,θ)Dθ′
(
θ̃−θ

)
dy = 0.

Now note that Dθ′
(
θ̃−θ

)
= −IK, and

R

f (Y,θ)(−IK)dy = −IK. With this we have

lim
n→∞

Z (
θ̃−θ

)
f (θ)Dθ′ ln f (θ)dy = IK.

Playing with powers of n we get

lim
n→∞

Z √
n
(
θ̃−θ

)√
n

1
n

[Dθ′ ln f (θ)]
︸ ︷︷ ︸

f (θ)dy = IK

Note that the bracketed part is just the transpose of the score vector, g(θ), so we can

write

lim
n→∞

Eθ
[√

n
(
θ̃−θ

)√
ng(θ)′

]
= IK

This means that the covariance of the score function with
√

n
(
θ̃−θ

)
, for θ̃ any CAN

estimator, is an identity matrix. Using this, suppose the variance of
√

n
(
θ̃−θ

)
tends

to V∞(θ̃). Therefore,

(4.7.1) V∞




√
n
(
θ̃−θ

)

√
ng(θ)


=


 V∞(θ̃) IK

IK I∞(θ)


 .

Since this is a covariance matrix, it is positive semi-definite. Therefore, for any K

-vector α,

[
α′ −α′I−1

∞ (θ)

]

 V∞(θ̃) IK

IK I∞(θ)




 α

−I∞(θ)−1α


≥ 0.

This simplifies to

α′ (V∞(θ̃)− I−1
∞ (θ)

)
α ≥ 0.
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Since α is arbitrary, V∞(θ̃)− I∞(θ) is positive semidefinite. This conludes the proof.

This means that I −1
∞ (θ) is a lower bound for the asymptotic variance of a CAN

estimator.

DEFINITION 4.7.1. (Asymptotic efficiency) Given two CAN estimators of a param-

eter θ0, say θ̃ and θ̂, θ̂ is asymptotically efficient with respect to θ̃ if V∞(θ̃)−V∞(θ̂) is

a positive semidefinite matrix.

A direct proof of asymptotic efficiency of an estimator is infeasible, but if one can

show that the asymptotic variance is equal to the inverse of the information matrix,

then the estimator is asymptotically efficient. In particular, the MLE is asymptotically

efficient.

Summary of MLE

• Consistent

• Asymptotically normal (CAN)

• Asymptotically efficient

• Asymptotically unbiased

• This is for general MLE: we haven’t specified the distribution or the lineari-

ty/nonlinearity of the estimator
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Exercises

(1) Consider coin tossing with a single possibly biased coin. The density function for

the random variable y = 1(heads) is

fY (y, p0) = py
0 (1− p0)

1−y ,y ∈ {0,1}

= 0,y /∈ {0,1}

Suppose that we have a sample of size n. We know from above that the ML esti-

mator is p̂0 = ȳ. We also know from the theory above that

√
n(ȳ− p0)

a∼ N
[
0,H∞(p0)

−1I∞(p0)H∞(p0)
−1]

a) find the analytical expressions for H∞(p0) and I∞(p0) for this problem

b) Write an Octave program that does a Monte Carlo study that shows that
√

n(ȳ− p0)

is approximately normally distributed when n is large. Please give me histograms

that show the sampling frequency of
√

n(ȳ− p0) for several values of n.

(2) Consider the model yt = x′tβ + αεt where the errors follow the Cauchy (Student-t

with 1 degree of freedom) density. So

f (εt) =
1

π
(
1+ ε2

t
) ,−∞ < εt < ∞

The Cauchy density has a shape similar to a normal density, but with much thicker

tails. Thus, extremely small and large errors occur much more frequently with this

density than would happen if the errors were normally distributed. Find the score

function gn(θ) where θ =
(

β′ α
)′

.

(3) Consider the model classical linear regression model yt = x′tβ + εt where εt ∼

IIN(0,σ2). Find the score function gn(θ) where θ =
(

β′ σ
)′

.
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(4) Compare the first order conditional that define the ML estimators of problems 2

and 3 and interpret the differences. Why are the first order conditions that define

an efficient estimator different in the two cases?



CHAPTER 5

Asymptotic properties of the least squares estimator

The OLS estimator under the classical assumptions is unbiased and BLUE, for all

sample sizes. Now let’s see what happens when the sample size tends to infinity.

5.1. Consistency

β̂ = (X ′X)−1X ′y

= (X ′X)−1X ′ (Xβ+ ε)

= β0 +(X ′X)−1X ′ε

= β0 +

(
X ′X

n

)−1 X ′ε
n

Consider the last two terms. By assumption limn→∞

(
X ′X

n

)
= QX ⇒ limn→∞

(
X ′X

n

)−1
=

Q−1
X , since the inverse of a nonsingular matrix is a continuous function of the elements

of the matrix. Considering X ′ε
n ,

X ′ε
n

=
1
n

n

∑
t=1

xtεt

Each xtεt has expectation zero, so

E
(

X ′ε
n

)
= 0
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The variance of each term is

V (xtεt) = xtx′tσ
2.

As long as these are finite, and given a technical condition1, the Kolmogorov SLLN

applies, so
1
n

n

∑
t=1

xtεt
a.s.→ 0.

This implies that

β̂ a.s.→ β0.

This is the property of strong consistency: the estimator converges in almost surely to

the true value.

• The consistency proof does not use the normality assumption.

• Remember that almost sure convergence implies convergence in probability.

5.2. Asymptotic normality

We’ve seen that the OLS estimator is normally distributed under the assumption

of normal errors. If the error distribution is unknown, we of course don’t know the

distribution of the estimator. However, we can get asymptotic results. Assuming the

distribution of ε is unknown, but the the other classical assumptions hold:

β̂ = β0 +(X ′X)−1X ′ε

β̂−β0 = (X ′X)−1X ′ε

√
n
(

β̂−β0

)
=

(
X ′X

n

)−1 X ′ε√
n

1For application of LLN’s and CLT’s, of which there are very many to choose from, I’m going to avoid
the technicalities. Basically, as long as terms of an average have finite variances and are not too strongly
dependent, one will be able to find a LLN or CLT to apply.
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• Now as before,
(

X ′X
n

)−1
→ Q−1

X .

• Considering X ′ε√
n , the limit of the variance is

lim
n→∞

V
(

X ′ε√
n

)
= lim

n→∞
E
(

X ′εε′X
n

)

= σ2
0QX

The mean is of course zero. To get asymptotic normality, we need to apply a

CLT. We assume one (for instance, the Lindeberg-Feller CLT) holds, so

X ′ε√
n

d→ N
(
0,σ2

0QX
)

Therefore,
√

n
(

β̂−β0

)
d→ N

(
0,σ2

0Q−1
X

)

• In summary, the OLS estimator is normally distributed in small and large

samples if ε is normally distributed. If ε is not normally distributed, β̂ is

asymptotically normally distributed when a CLT can be applied.

5.3. Asymptotic efficiency

The least squares objective function is

s(β) =
n

∑
t=1

(
yt − x′tβ

)2

Supposing that ε is normally distributed, the model is

y = Xβ0 + ε,
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ε ∼ N(0,σ2
0In), so

f (ε) =
n

∏
t=1

1√
2πσ2

exp
(
− ε2

t

2σ2

)

The joint density for y can be constructed using a change of variables. We have ε =

y−Xβ, so ∂ε
∂y′ = In and | ∂ε

∂y′ | = 1, so

f (y) =
n

∏
t=1

1√
2πσ2

exp
(
−(yt − x′tβ)2

2σ2

)
.

Taking logs,

lnL(β,σ) = −n ln
√

2π−n lnσ−
n

∑
t=1

(yt − x′tβ)2

2σ2 .

It’s clear that the fonc for the MLE of β0 are the same as the fonc for OLS (up to multi-

plication by a constant), so the estimators are the same, under the present assumptions.

Therefore, their properties are the same. In particular, under the classical assumptions

with normality, the OLS estimator β̂ is asymptotically efficient.

As we’ll see later, it will be possible to use (iterated) linear estimation methods and

still achieve asymptotic efficiency even if the assumption that Var(ε) 6= σ2In, as long

as ε is still normally distributed. This is not the case if ε is nonnormal. In general with

nonnormal errors it will be necessary to use nonlinear estimation methods to achieve

asymptotically efficient estimation.



CHAPTER 6

Restrictions and hypothesis tests

6.1. Exact linear restrictions

In many cases, economic theory suggests restrictions on the parameters of a model.

For example, a demand function is supposed to be homogeneous of degree zero in

prices and income. If we have a Cobb-Douglas (log-linear) model,

lnq = β0 +β1 ln p1 +β2 ln p2 +β3 lnm+ ε,

then we need that

k0 lnq = β0 +β1 lnkp1 +β2 lnkp2 +β3 lnkm+ ε,

so

β1 ln p1 +β2 ln p2 +β3 lnm = β1 lnkp1 +β2 lnkp2 +β3 lnkm

= (lnk)(β1 +β2 +β3)+β1 ln p1 +β2 ln p2 +β3 lnm.

The only way to guarantee this for arbitrary k is to set

β1 +β2 +β3 = 0,

which is a parameter restriction. In particular, this is a linear equality restriction,

which is probably the most commonly encountered case.
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6.1.1. Imposition. The general formulation of linear equality restrictions is the

model

y = Xβ+ ε

Rβ = r

where R is a Q×K matrix, Q < K and r is a Q×1 vector of constants.

• We assume R is of rank Q, so that there are no redundant restrictions.

• We also assume that ∃β that satisfies the restrictions: they aren’t infeasible.

Let’s consider how to estimate β subject to the restrictions Rβ = r. The most obvious

approach is to set up the Lagrangean

min
β

s(β) =
1
n

(y−Xβ)′ (y−Xβ)+2λ′(Rβ− r).

The Lagrange multipliers are scaled by 2, which makes things less messy. The fonc

are

Dβs(β̂, λ̂) = −2X ′y+2X ′X β̂R +2R′λ̂ ≡ 0

Dλs(β̂, λ̂) = Rβ̂R− r ≡ 0,

which can be written as

 X ′X R′

R 0




 β̂R

λ̂


=


 X ′y

r


 .

We get 
 β̂R

λ̂


=


 X ′X R′

R 0



−1
 X ′y

r


 .

For the masochists: Stepwise Inversion
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Note that

 (X ′X)−1 0

−R(X ′X)−1 IQ




 X ′X R′

R 0


 ≡ AB

=


 IK (X ′X)−1 R′

0 −R(X ′X)−1 R′




≡


 IK (X ′X)−1 R′

0 −P




≡ C,

and

 IK (X ′X)−1R′P−1

0 −P−1




 IK (X ′X)−1 R′

0 −P


 ≡ DC

= IK+Q,

so

DAB = IK+Q

DA = B−1

B−1 =


 IK (X ′X)−1R′P−1

0 −P−1




 (X ′X)−1 0

−R(X ′X)−1 IQ




=


 (X ′X)−1 − (X ′X)−1R′P−1R(X ′X)−1 (X ′X)−1R′P−1

P−1R(X ′X)−1 −P−1


 ,
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so (everyone should start paying attention again)


 β̂R

λ̂


 =


 (X ′X)−1 − (X ′X)−1R′P−1R(X ′X)−1 (X ′X)−1R′P−1

P−1R(X ′X)−1 −P−1




 X ′y

r




=




β̂− (X ′X)−1R′P−1
(

Rβ̂− r
)

P−1
(

Rβ̂− r
)




=



(
IK − (X ′X)−1R′P−1R

)

P−1R


 β̂+


 (X ′X)−1R′P−1r

−P−1r




The fact that β̂R and λ̂ are linear functions of β̂ makes it easy to determine their dis-

tributions, since the distribution of β̂ is already known. Recall that for x a random

vector, and for A and b a matrix and vector of constants, respectively, Var (Ax+b) =

AVar(x)A′.

Though this is the obvious way to go about finding the restricted estimator, an

easier way, if the number of restrictions is small, is to impose them by substitution.

Write

y = X1β1 +X2β2 + ε

[
R1 R2

]

 β1

β2


 = r

where R1 is Q×Q nonsingular. Supposing the Q restrictions are linearly independent,

one can always make R1 nonsingular by reorganizing the columns of X . Then

β1 = R−1
1 r−R−1

1 R2β2.
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Substitute this into the model

y = X1R−1
1 r−X1R−1

1 R2β2 +X2β2 + ε

y−X1R−1
1 r =

[
X2 −X1R−1

1 R2

]
β2 + ε

or with the appropriate definitions,

yR = XRβ2 + ε.

This model satisfies the classical assumptions, supposing the restriction is true. One

can estimate by OLS. The variance of β̂2 is as before

V (β̂2) =
(
X ′

RXR
)−1 σ2

0

and the estimator is

V̂ (β̂2) =
(
X ′

RXR
)−1 σ̂2

where one estimates σ2
0 in the normal way, using the restricted model, i.e.,

σ̂2
0 =

(
yR −XRβ̂2

)′(
yR −XRβ̂2

)

n− (K −Q)

To recover β̂1, use the restriction. To find the variance of β̂1, use the fact that it is a

linear function of β̂2, so

V (β̂1) = R−1
1 R2V (β̂2)R′

2

(
R−1

1

)′

= R−1
1 R2

(
X ′

2X2
)−1 R′

2

(
R−1

1

)′
σ2

0
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6.1.2. Properties of the restricted estimator. We have that

β̂R = β̂− (X ′X)−1R′P−1
(

Rβ̂− r
)

= β̂+(X ′X)−1R′P−1r− (X ′X)−1R′P−1R(X ′X)−1X ′y

= β+(X ′X)−1X ′ε+(X ′X)−1R′P−1 [r−Rβ]− (X ′X)−1R′P−1R(X ′X)−1X ′ε

β̂R−β = (X ′X)−1X ′ε

+ (X ′X)−1R′P−1 [r−Rβ]

− (X ′X)−1R′P−1R(X ′X)−1X ′ε

Mean squared error is

MSE(β̂R) = E(β̂R−β)(β̂R−β)′

Noting that the crosses between the second term and the other terms expect to zero,

and that the cross of the first and third has a cancellation with the square of the third,

we obtain

MSE(β̂R) = (X ′X)−1σ2

+ (X ′X)−1R′P−1 [r−Rβ] [r−Rβ]′P−1R(X ′X)−1

− (X ′X)−1R′P−1R(X ′X)−1σ2

So, the first term is the OLS covariance. The second term is PSD, and the third term is

NSD.

• If the restriction is true, the second term is 0, so we are better off. True

restrictions improve efficiency of estimation.

• If the restriction is false, we may be better or worse off, in terms of MSE,

depending on the magnitudes of r−Rβ and σ2.
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6.2. Testing

In many cases, one wishes to test economic theories. If theory suggests parame-

ter restrictions, as in the above homogeneity example, one can test theory by testing

parameter restrictions. A number of tests are available.

6.2.1. t-test. Suppose one has the model

y = Xβ+ ε

and one wishes to test the single restriction H0 :Rβ = r vs. HA :Rβ 6= r . Under H0,

with normality of the errors,

Rβ̂− r ∼ N
(
0,R(X ′X)−1R′σ2

0
)

so
Rβ̂− r√

R(X ′X)−1R′σ2
0

=
Rβ̂− r

σ0
√

R(X ′X)−1R′ ∼ N (0,1) .

The problem is that σ2
0 is unknown. One could use the consistent estimator σ̂2

0 in place

of σ2
0, but the test would only be valid asymptotically in this case.

PROPOSITION 4.

(6.2.1)
N(0,1)√

χ2(q)
q

∼ t(q)

as long as the N(0,1) and the χ2(q) are independent.

We need a few results on the χ2 distribution.

PROPOSITION 5. If x ∼ N(µ, In) is a vector of n independent r.v.’s., then

(6.2.2) x′x ∼ χ2(n,λ)
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where λ = ∑i µ2
i = µ′µ is the noncentrality parameter.

When a χ2 r.v. has the noncentrality parameter equal to zero, it is referred to as a

central χ2 r.v., and it’s distribution is written as χ2(n), suppressing the noncentrality

parameter.

PROPOSITION 6. If the n dimensional random vector x ∼ N(0,V ), then x′V−1x ∼

χ2(n).

We’ll prove this one as an indication of how the following unproven propositions

could be proved.

Proof: Factor V−1 as PP′ (this is the Cholesky factorization). Then consider y =

P′x. We have

y ∼ N(0,P′V P)

but

VPP′ = In

P′VPP′ = P′

so PV P′ = In and thus y ∼ N(0, In). Thus y′y ∼ χ2(n) but

y′y = x′PP′x = xV−1x

and we get the result we wanted.

A more general proposition which implies this result is

PROPOSITION 7. If the n dimensional random vector x ∼ N(0,V ), then

(6.2.3) x′Bx ∼ χ2(ρ(B))

if and only if BV is idempotent.
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An immediate consequence is

PROPOSITION 8. If the random vector (of dimension n) x ∼ N(0, I), and B is idem-

potent with rank r, then

(6.2.4) x′Bx ∼ χ2(r).

Consider the random variable

ε̂′ε̂
σ2

0
=

ε′MX ε
σ2

0

=

(
ε

σ0

)′
MX

(
ε

σ0

)

∼ χ2(n−K)

PROPOSITION 9. If the random vector (of dimension n) x ∼ N(0, I), then Ax and

x′Bx are independent if AB = 0.

Now consider (remember that we have only one restriction in this case)

Rβ̂−r
σ0
√

R(X ′X)−1R′
√

ε̂′ε̂
(n−K)σ2

0

=
Rβ̂− r

σ̂0
√

R(X ′X)−1R′

This will have the t(n−K) distribution if β̂ and ε̂′ε̂ are independent. But β̂ = β +

(X ′X)−1X ′ε and

(X ′X)−1X ′MX = 0,

so
Rβ̂− r

σ̂0
√

R(X ′X)−1R′ =
Rβ̂− r

σ̂Rβ̂
∼ t(n−K)
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In particular, for the commonly encountered test of significance of an individual coef-

ficient, for which H0 : βi = 0 vs. H0 : βi 6= 0 , the test statistic is

β̂i

σ̂β̂i
∼ t(n−K)

• Note: the t− test is strictly valid only if the errors are actually normally

distributed. If one has nonnormal errors, one could use the above asymptotic

result to justify taking critical values from the N(0,1) distribution, since t(n−

K)
d→N(0,1) as n→∞. In practice, a conservative procedure is to take critical

values from the t distribution if nonnormality is suspected. This will reject

H0 less often since the t distribution is fatter-tailed than is the normal.

6.2.2. F test. The F test allows testing multiple restrictions jointly.

PROPOSITION 10. If x ∼ χ2(r) and y ∼ χ2(s), then

(6.2.5)
x/r
y/s

∼ F(r,s)

provided that x and y are independent.

PROPOSITION 11. If the random vector (of dimension n) x ∼ N(0, I), then x′Ax

and x′Bx are independent if AB = 0.

Using these results, and previous results on the χ2 distribution, it is simple to show

that the following statistic has the F distribution:

F =

(
Rβ̂− r

)′(
R(X ′X)−1 R′

)−1(
Rβ̂− r

)

qσ̂2 ∼ F(q,n−K).

A numerically equivalent expression is
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(ESSR −ESSU)/q
ESSU/(n−K)

∼ F(q,n−K).

• Note: The F test is strictly valid only if the errors are truly normally dis-

tributed. The following tests will be appropriate when one cannot assume

normally distributed errors.

6.2.3. Wald-type tests. The Wald principle is based on the idea that if a restriction

is true, the unrestricted model should “approximately” satisfy the restriction. Given

that the least squares estimator is asymptotically normally distributed:

√
n
(

β̂−β0

)
d→ N

(
0,σ2

0Q−1
X

)

then under H0 : Rβ0 = r, we have

√
n
(

Rβ̂− r
)

d→ N
(

0,σ2
0RQ−1

X R′
)

so by Proposition [6]

n
(

Rβ̂− r
)′(

σ2
0RQ−1

X R′
)−1(

Rβ̂− r
)

d→ χ2(q)

Note that Q−1
X or σ2

0 are not observable. The test statistic we use substitutes the con-

sistent estimators. Use (X ′X/n)−1 as the consistent estimator of Q−1
X . With this, there

is a cancellation of n′s, and the statistic to use is

(
Rβ̂− r

)′(
σ̂2

0R(X ′X)−1R′
)−1(

Rβ̂− r
)

d→ χ2(q)

• The Wald test is a simple way to test restrictions without having to estimate

the restricted model.

• Note that this formula is similar to one of the formulae provided for the F

test.
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6.2.4. Score-type tests (Rao tests, Lagrange multiplier tests). In some cases,

an unrestricted model may be nonlinear in the parameters, but the model is linear in

the parameters under the null hypothesis. For example, the model

y = (Xβ)γ + ε

is nonlinear in β and γ, but is linear in β under H0 : γ = 1. Estimation of nonlinear

models is a bit more complicated, so one might prefer to have a test based upon the

restricted, linear model. The score test is useful in this situation.

• Score-type tests are based upon the general principle that the gradient vec-

tor of the unrestricted model, evaluated at the restricted estimate, should be

asymptotically normally distributed with mean zero, if the restrictions are

true. The original development was for ML estimation, but the principle is

valid for a wide variety of estimation methods.

We have seen that

λ̂ =
(
R(X ′X)−1R′)−1

(
Rβ̂− r

)

= P−1
(

Rβ̂− r
)

Given that
√

n
(

Rβ̂− r
)

d→ N
(

0,σ2
0RQ−1

X R′
)

under the null hypothesis,

√
nλ̂ d→ N

(
0,σ2

0P−1RQ−1
X R′P−1

)

or
√

nλ̂ d→ N
(

0,σ2
0 limn(nP)−1 RQ−1

X R′P−1
)



6.2. TESTING 89

since the n’s cancel and inserting the limit of a matrix of constants changes nothing.

However,

limnP = limnR(X ′X)−1R′

= limR
(

X ′X
n

)−1

R′

= RQ−1
X R′

So there is a cancellation and we get

√
nλ̂ d→ N

(
0,σ2

0 limnP−1)

In this case,

λ̂′
(

R(X ′X)−1R′

σ2
0

)
λ̂ d→ χ2(q)

since the powers of n cancel. To get a usable test statistic substitute a consistent esti-

mator of σ2
0.

• This makes it clear why the test is sometimes referred to as a Lagrange mul-

tiplier test. It may seem that one needs the actual Lagrange multipliers to

calculate this. If we impose the restrictions by substitution, these are not

available. Note that the test can be written as
(

R′λ̂
)′

(X ′X)−1R′λ̂

σ2
0

d→ χ2(q)

However, we can use the fonc for the restricted estimator:

−X ′y+X ′X β̂R +R′λ̂
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to get that

R′λ̂ = X ′(y−X β̂R)

= X ′ε̂R

Substituting this into the above, we get

ε̂′RX(X ′X)−1X ′ε̂R

σ2
0

d→ χ2(q)

but this is simply

ε̂′R
PX

σ2
0

ε̂R
d→ χ2(q).

To see why the test is also known as a score test, note that the fonc for restricted least

squares

−X ′y+X ′X β̂R +R′λ̂

give us

R′λ̂ = X ′y−X ′X β̂R

and the rhs is simply the gradient (score) of the unrestricted model, evaluated at the

restricted estimator. The scores evaluated at the unrestricted estimate are identically

zero. The logic behind the score test is that the scores evaluated at the restricted esti-

mate should be approximately zero, if the restriction is true. The test is also known as

a Rao test, since P. Rao first proposed it in 1948.

6.2.5. Likelihood ratio-type tests. The Wald test can be calculated using the un-

restricted model. The score test can be calculated using only the restricted model. The

likelihood ratio test, on the other hand, uses both the restricted and the unrestricted

estimators. The test statistic is

LR = 2
(
lnL(θ̂)− lnL(θ̃)

)
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where θ̂ is the unrestricted estimate and θ̃ is the restricted estimate. To show that it is

asymptotically χ2, take a second order Taylor’s series expansion of lnL(θ̃) about θ̂ :

lnL(θ̃) ' lnL(θ̂)+
n
2
(
θ̃− θ̂

)′
H(θ̂)

(
θ̃− θ̂

)

(note, the first order term drops out since Dθ lnL(θ̂) ≡ 0 by the fonc and we need to

multiply the second-order term by n since H(θ) is defined in terms of 1
n lnL(θ)) so

LR '−n
(
θ̃− θ̂

)′
H(θ̂)

(
θ̃− θ̂

)

As n → ∞,H(θ̂) → H∞(θ0) = −I (θ0), by the information matrix equality. So

LR a
= n

(
θ̃− θ̂

)′
I∞(θ0)

(
θ̃− θ̂

)

We also have that, from [??] that

√
n
(
θ̂−θ0

) a
= I∞(θ0)

−1n1/2g(θ0).

An analogous result for the restricted estimator is (this is unproven here, to prove

this set up the Lagrangean for MLE subject to Rβ = r, and manipulate the first order

conditions) :

√
n
(
θ̃−θ0

) a
= I∞(θ0)

−1
(

In −R′ (RI∞(θ0)
−1R′)−1

RI∞(θ0)
−1
)

n1/2g(θ0).

Combining the last two equations

√
n
(
θ̃− θ̂

) a
= −n1/2I∞(θ0)

−1R′ (RI∞(θ0)
−1R′)−1

RI∞(θ0)
−1g(θ0)

so, substituting into [??]

LR a
=
[
n1/2g(θ0)

′I∞(θ0)
−1R′

][
RI∞(θ0)

−1R′]−1
[
RI∞(θ0)

−1n1/2g(θ0)
]
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But since

n1/2g(θ0)
d→ N (0,I∞(θ0))

the linear function

RI∞(θ0)
−1n1/2g(θ0)

d→ N(0,RI∞(θ0)
−1R′).

We can see that LR is a quadratic form of this rv, with the inverse of its variance in the

middle, so

LR d→ χ2(q).

6.3. The asymptotic equivalence of the LR, Wald and score tests

We have seen that the three tests all converge to χ2 random variables. In fact,

they all converge to the same χ2 rv, under the null hypothesis. We’ll show that the

Wald and LR tests are asymptotically equivalent. We have seen that the Wald test is

asymptotically equivalent to

W a
= n

(
Rβ̂− r

)′(
σ2

0RQ−1
X R′

)−1(
Rβ̂− r

)
d→ χ2(q)

Using

β̂−β0 = (X ′X)−1X ′ε

and

Rβ̂− r = R(β̂−β0)

we get

√
nR(β̂−β0) =

√
nR(X ′X)−1X ′ε

= R
(

X ′X
n

)−1

n−1/2X ′ε
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Substitute this into [??] to get

W a
= n−1ε′XQ−1

X R′
(

σ2
0RQ−1

X R′
)−1

RQ−1
X X ′ε

a
= ε′X(X ′X)−1R′ (σ2

0R(X ′X)−1R′)−1
R(X ′X)−1X ′ε

a
=

ε′A(A′A)−1A′ε
σ2

0

a
=

ε′PRε
σ2

0

where PR is the projection matrix formed by the matrix X(X ′X)−1R′.

• Note that this matrix is idempotent and has q columns, so the projection ma-

trix has rank q.

Now consider the likelihood ratio statistic

LR a
= n1/2g(θ0)

′I (θ0)
−1R′ (RI (θ0)

−1R′)−1
RI (θ0)

−1n1/2g(θ0)

Under normality, we have seen that the likelihood function is

lnL(β,σ) = −n ln
√

2π−n lnσ− 1
2

(y−Xβ)′ (y−Xβ)

σ2 .

Using this,

g(β0) ≡ Dβ
1
n

lnL(β,σ)

=
X ′(y−Xβ0)

nσ2

=
X ′ε
nσ2
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Also, by the information matrix equality:

I (θ0) = −H∞(θ0)

= lim−Dβ′g(β0)

= lim−Dβ′
X ′(y−Xβ0)

nσ2

= lim
X ′X
nσ2

=
QX

σ2

so

I (θ0)
−1 = σ2Q−1

X

Substituting these last expressions into [??], we get

LR a
= ε′X ′(X ′X)−1R′ (σ2

0R(X ′X)−1R′)−1
R(X ′X)−1X ′ε

a
=

ε′PRε
σ2

0
a
= W

This completes the proof that the Wald and LR tests are asymptotically equivalent.

Similarly, one can show that, under the null hypothesis,

qF a
= W a

= LM a
= LR

• The proof for the statistics except for LR does not depend upon normality of

the errors, as can be verified by examining the expressions for the statistics.

• The LR statistic is based upon distributional assumptions, since one can’t

write the likelihood function without them.
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• However, due to the close relationship between the statistics qF and LR, sup-

posing normality, the qF statistic can be thought of as a pseudo-LR statistic,

in that it’s like a LR statistic in that it uses the value of the objective functions

of the restricted and unrestricted models, but it doesn’t require distributional

assumptions.

• The presentation of the score and Wald tests has been done in the context

of the linear model. This is readily generalizable to nonlinear models and/or

other estimation methods.

Though the four statistics are asymptotically equivalent, they are numerically different

in small samples. The numeric values of the tests also depend upon how σ2 is esti-

mated, and we’ve already seen than there are several ways to do this. For example all

of the following are consistent for σ2 under H0

ε̂′ε̂
n−k

ε̂′ε̂
n

ε̂′Rε̂R
n−k+q

ε̂′Rε̂R
n

and in general the denominator call be replaced with any quantity a such that lima/n =

1.

It can be shown, for linear regression models subject to linear restrictions, and if

ε̂′ε̂
n is used to calculate the Wald test and ε̂′Rε̂R

n is used for the score test, that

W > LR > LM.
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For this reason, the Wald test will always reject if the LR test rejects, and in turn the

LR test rejects if the LM test rejects. This is a bit problematic: there is the possibility

that by careful choice of the statistic used, one can manipulate reported results to favor

or disfavor a hypothesis. A conservative/honest approach would be to report all three

test statistics when they are available. In the case of linear models with normal errors

the F test is to be preferred, since asymptotic approximations are not an issue.

The small sample behavior of the tests can be quite different. The true size (proba-

bility of rejection of the null when the null is true) of the Wald test is often dramatically

higher than the nominal size associated with the asymptotic distribution. Likewise, the

true size of the score test is often smaller than the nominal size.

6.4. Interpretation of test statistics

Now that we have a menu of test statistics, we need to know how to use them.

6.5. Confidence intervals

Confidence intervals for single coefficients are generated in the normal manner.

Given the t statistic

t(β) =
β̂−β

σ̂β̂

a 100(1−α)% confidence interval for β0 is defined by the bounds of the set of β such

that t(β) does not reject H0 : β0 = β, using a α significance level:

C(α) = {β : −cα/2 <
β̂−β

σ̂β̂
< cα/2}

The set of such β is the interval

β̂± σ̂β̂cα/2
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A confidence ellipse for two coefficients jointly would be, analogously, the set of

{β1,β2} such that the F (or some other test statistic) doesn’t reject at the specified

critical value. This generates an ellipse, if the estimators are correlated.

• The region is an ellipse, since the CI for an individual coefficient defines a (in-

finitely long) rectangle with total prob. mass 1−α, since the other coefficient

is marginalized (e.g., can take on any value). Since the ellipse is bounded

in both dimensions but also contains mass 1−α, it must extend beyond the

bounds of the individual CI.

• From the pictue we can see that:

– Rejection of hypotheses individually does not imply that the joint test

will reject.

– Joint rejection does not imply individal tests will reject.

6.6. Bootstrapping

When we rely on asymptotic theory to use the normal distribution-based tests and

confidence intervals, we’re often at serious risk of making important errors. If the

sample size is small and errors are highly nonnormal, the small sample distribution

of
√

n
(

β̂−β0

)
may be very different than its large sample distribution. Also, the

distributions of test statistics may not resemble their limiting distributions at all. A

means of trying to gain information on the small sample distribution of test statistics

and estimators is the bootstrap. We’ll consider a simple example, just to get the main

idea.
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FIGURE 6.5.1. Joint and Individual Confidence Regions
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Suppose that

y = Xβ0 + ε

ε ∼ IID(0,σ2
0)

X is nonstochastic

Given that the distribution of ε is unknown, the distribution of β̂ will be unknown in

small samples. However, since we have random sampling, we could generate artificial

data. The steps are:

(1) Draw n observations from ε̂ with replacement. Call this vector ε̃ j (it’s a

n×1).

(2) Then generate the data by ỹ j = X β̂+ ε̃ j

(3) Now take this and estimate

β̃ j = (X ′X)−1X ′ỹ j.

(4) Save β̃ j

(5) Repeat steps 1-4, until we have a large number, J, of β̃ j.

With this, we can use the replications to calculate the empirical distribution of β̃ j.

One way to form a 100(1-α)% confidence interval for β0 would be to order the β̃ j

from smallest to largest, and drop the first and last Jα/2 of the replications, and use

the remaining endpoints as the limits of the CI. Note that this will not give the shortest

CI if the empirical distribution is skewed.

• Suppose one was interested in the distribution of some function of β̂, for

example a test statistic. Simple: just calculate the transformation for each j,

and work with the empirical distribution of the transformation.



6.7. TESTING NONLINEAR RESTRICTIONS, AND THE DELTA METHOD 100

• If the assumption of iid errors is too strong (for example if there is het-

eroscedasticity or autocorrelation, see below) one can work with a bootstrap

defined by sampling from (y,x) with replacement.

• How to choose J: J should be large enough that the results don’t change with

repetition of the entire bootstrap. This is easy to check. If you find the results

change a lot, increase J and try again.

• The bootstrap is based fundamentally on the idea that the empirical distri-

bution of the sample data converges to the actual sampling distribution as n

becomes large, so statistics based on sampling from the empirical distribution

should converge in distribution to statistics based on sampling from the actual

sampling distribution.

• In finite samples, this doesn’t hold. At a minimum, the bootstrap is a good

way to check if asymptotic theory results offer a decent approximation to the

small sample distribution.

6.7. Testing nonlinear restrictions, and the Delta Method

Testing nonlinear restrictions of a linear model is not much more difficult, at least

when the model is linear. Since estimation subject to nonlinear restrictions requires

nonlinear estimation methods, which are beyond the score of this course, we’ll just

consider the Wald test for nonlinear restrictions on a linear model.

Consider the q nonlinear restrictions

r(β0) = 0.

where r(·) is a q-vector valued function. Write the derivative of the restriction evalu-

ated at β as

Dβ′r(β)
∣∣
β = R(β)
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We suppose that the restrictions are not redundant in a neighborhood of β0, so that

ρ(R(β)) = q

in a neighborhood of β0. Take a first order Taylor’s series expansion of r(β̂) about β0:

r(β̂) = r(β0)+R(β∗)(β̂−β0)

where β∗ is a convex combination of β̂ and β0. Under the null hypothesis we have

r(β̂) = R(β∗)(β̂−β0)

Due to consistency of β̂ we can replace β∗ by β0, asymptotically, so

√
nr(β̂)

a
=

√
nR(β0)(β̂−β0)

We’ve already seen the distribution of
√

n(β̂−β0). Using this we get

√
nr(β̂)

d→ N
(

0,R(β0)Q−1
X R(β0)

′σ2
0

)
.

Considering the quadratic form

nr(β̂)′
(

R(β0)Q−1
X R(β0)

′
)−1

r(β̂)

σ2
0

d→ χ2(q)

under the null hypothesis. Substituting consistent estimators for β0,QX and σ2
0, the

resulting statistic is

r(β̂)′
(

R(β̂)(X ′X)−1R(β̂)′
)−1

r(β̂)

σ̂2

d→ χ2(q)

under the null hypothesis.
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• This is known in the literature as the Delta method, or as Klein’s approxima-

tion.

• Since this is a Wald test, it will tend to over-reject in finite samples. The

score and LR tests are also possibilities, but they require estimation methods

for nonlinear models, which aren’t in the scope of this course.

Note that this also gives a convenient way to estimate nonlinear functions and associ-

ated asymptotic confidence intervals. If the nonlinear function r(β0) is not hypothe-

sized to be zero, we just have

√
n
(

r(β̂)− r(β0)
)

d→ N
(

0,R(β0)Q−1
X R(β0)

′σ2
0

)

so an approximation to the distribution of the function of the estimator is

r(β̂) ≈ N(r(β0),R(β0)(X ′X)−1R(β0)
′σ2

0)

For example, the vector of elasticities of a function f (x) is

η(x) =
∂ f (x)

∂x
� x

f (x)

where � means element-by-element multiplication. Suppose we estimate a linear

function

y = x′β+ ε.

The elasticities of y w.r.t. x are

η(x) =
β

x′β
� x

(note that this is the entire vector of elasticities). The estimated elasticities are

η̂(x) =
β̂

x′β̂
� x
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To calculate the estimated standard errors of all five elasticites, use

R(β) =
∂η(x)

∂β′

=




x1 0 · · · 0

0 x2
...

... . . . 0

0 · · · 0 xk




x′β−




β1x2
1 0 · · · 0

0 β2x2
2

...
... . . . 0

0 · · · 0 βkx2
k




(x′β)2 .

To get a consistent estimator just substitute in β̂. Note that the elasticity and the stan-

dard error are functions of x. The program ExampleDeltaMethod.m shows how this

can be done.

In many cases, nonlinear restrictions can also involve the data, not just the param-

eters. For example, consider a model of expenditure shares. Let x(p,m) be a demand

funcion, where p is prices and m is income. An expenditure share system for G goods

is

si(p,m) =
pixi(p,m)

m
, i = 1,2, ...,G.

Now demand must be positive, and we assume that expenditures sum to income, so we

have the restrictions

0 ≤ si(p,m) ≤ 1, ∀i
G

∑
i=1

si(p,m) = 1

Suppose we postulate a linear model for the expenditure shares:

si(p,m) = βi
1 + p′βi

p +mβi
m + εi

http://pareto.uab.es/mcreel/Econometrics/Include/Restrictions/ExampleDeltaMethod.m
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It is fairly easy to write restrictions such that the shares sum to one, but the restriction

that the shares lie in the [0,1] interval depends on both parameters and the values of p

and m. It is impossible to impose the restriction that 0 ≤ si(p,m)≤ 1 for all possible p

and m. In such cases, one might consider whether or not a linear model is a reasonable

specification.

6.8. Example: the Nerlove data

Remember that we in a previous example (section 3.8.3) that the OLS results for

the Nerlove model are

*********************************************************
OLS estimation results
Observations 145
R-squared 0.925955
Sigma-squared 0.153943

Results (Ordinary var-cov estimator)

estimate st.err. t-stat. p-value
constant -3.527 1.774 -1.987 0.049
output 0.720 0.017 41.244 0.000
labor 0.436 0.291 1.499 0.136
fuel 0.427 0.100 4.249 0.000
capital -0.220 0.339 -0.648 0.518

*********************************************************

Note that sK = βK < 0, and that βL +βF +βK 6= 1.

Remember that if we have constant returns to scale, then βQ = 1, and if there is

homogeneity of degree 1 thenβL + βF + βK = 1. We can test these hypotheses either

separately or jointly. NerloveRestrictions.m imposes and tests CRTS and then HOD1.

From it we obtain the results that follow:

http://pareto.uab.es/mcreel/Econometrics/Include/Restrictions/NerloveRestrictions.m
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Imposing and testing HOD1

*******************************************************

Restricted LS estimation results

Observations 145

R-squared 0.925652

Sigma-squared 0.155686

estimate st.err. t-stat. p-value

constant -4.691 0.891 -5.263 0.000

output 0.721 0.018 41.040 0.000

labor 0.593 0.206 2.878 0.005

fuel 0.414 0.100 4.159 0.000

capital -0.007 0.192 -0.038 0.969

*******************************************************

Value p-value

F 0.574 0.450

Wald 0.594 0.441

LR 0.593 0.441

Score 0.592 0.442

Imposing and testing CRTS

*******************************************************
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Restricted LS estimation results

Observations 145

R-squared 0.790420

Sigma-squared 0.438861

estimate st.err. t-stat. p-value

constant -7.530 2.966 -2.539 0.012

output 1.000 0.000 Inf 0.000

labor 0.020 0.489 0.040 0.968

fuel 0.715 0.167 4.289 0.000

capital 0.076 0.572 0.132 0.895

*******************************************************

Value p-value

F 256.262 0.000

Wald 265.414 0.000

LR 150.863 0.000

Score 93.771 0.000

Notice that the input price coefficients in fact sum to 1 when HOD1 is imposed.

HOD1 is not rejected at usual significance levels (e.g., α = 0.10). Also, R2 does not

drop much when the restriction is imposed, compared to the unrestricted results. For

CRTS, you should note that βQ = 1, so the restriction is satisfied. Also note that the

hypothesis that βQ = 1 is rejected by the test statistics at all reasonable significance
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levels. Note that R2drops quite a bit when imposing CRTS. If you look at the unre-

stricted estimation results, you can see that a t-test for βQ = 1 also rejects, and that a

confidence interval for βQ does not overlap 1.

From the point of view of neoclassical economic theory, these results are not

anomalous: HOD1 is an implication of the theory, but CRTS is not.

EXERCISE 12. Modify the NerloveRestrictions.m program to impose and test the

restrictions jointly.

The Chow test. Since CRTS is rejected, let’s examine the possibilities more care-

fully. Recall that the data is sorted by output (the third column). Define 5 subsamples

of firms, with the first group being the 29 firms with the lowest output levels, then the

next 29 firms, etc. The five subsamples can be indexed by j = 1,2, ...,5, where j = 1

for t = 1,2, ...29, j = 2 for t = 30,31, ...58, etc. Define a piecewise linear model

(6.8.1) lnCt = β j
1 +β j

2 lnQt +β j
3 lnPLt +β j

4 lnPFt +β j
5 lnPKt + εt

where j is a superscript (not a power) that inicates that the coefficients may be different

according to the subsample in which the observation falls. That is, the coefficients

depend upon j which in turn depends upon t. Note that the first column of nerlove.data

indicates this way of breaking up the sample. The new model may be written as

(6.8.2)




y1

y2
...

y5




=




X1 0 · · · 0

0 X2
... X3

X4 0

0 X5







β1

β2

β5




+




ε1

ε2

...

ε5



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where y1 is 29×1, X1 is 29×5, β j is the 5×1 vector of coefficient for the jth subsample,

and ε j is the 29×1 vector of errors for the jth subsample.

The Octave program Restrictions/ChowTest.m estimates the above model. It also

tests the hypothesis that the five subsamples share the same parameter vector, or in

other words, that there is coefficient stability across the five subsamples. The null to

test is that the parameter vectors for the separate groups are all the same, that is,

β1 = β2 = β3 = β4 = β5

This type of test, that parameters are constant across different sets of data, is sometimes

referred to as a Chow test.

• There are 20 restrictions. If that’s not clear to you, look at the Octave pro-

gram.

• The restrictions are rejected at all conventional significance levels.

Since the restrictions are rejected, we should probably use the unrestricted model for

analysis. What is the pattern of RTS as a function of the output group (small to large)?

Figure 6.8.1 plots RTS. We can see that there is increasing RTS for small firms, but

that RTS is approximately constant for large firms.

http://pareto.uab.es/mcreel/Econometrics/Include/Restrictions/ChowTest.m
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FIGURE 6.8.1. RTS as a function of firm size
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(1) Using the Chow test on the Nerlove model, we reject that there is coefficient

stability across the 5 groups. But perhaps we could restrict the input price

coefficients to be the same but let the constant and output coefficients vary by

group size. This new model is

(6.8.3) lnCi = β j
1 +β j

2 lnQi +β3 lnPLi +β4 lnPFi +β5 lnPKi + εi

(a) estimate this model by OLS, giving R, estimated standard errors for coef-

ficients, t-statistics for tests of significance, and the associated p-values.

Interpret the results in detail.

(b) Test the restrictions implied by this model using the F, Wald, score and

likelihood ratio tests. Comment on the results.
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(c) Plot the estimated RTS parameters as a function of firm size. Compare

the plot to that given in the notes for the unrestricted model. Comment

on the results.

(2) For the simple Nerlove model, estimated returns to scale is R̂TS = 1
β̂q

. Apply

the delta method to calculate the estimated standard error for estimated RTS.

Directly test H0 : RT S = 1 versus HA : RT S 6= 1 rather than testing H0 : βQ = 1

versus HA : βQ 6= 1. Comment on the results.

(3) Perform a Monte Carlo study that generates data from the model

y = −2+1x2 +1x3 + ε

where the sample size is 30, x2 and x3 are independently uniformly distributed

on [0,1] and ε ∼ IIN(0,1)

(a) Compare the means and standard errors of the estimated coefficients us-

ing OLS and restricted OLS, imposing the restriction that β2 +β3 = 2.

(b) Compare the means and standard errors of the estimated coefficients us-

ing OLS and restricted OLS, imposing the restriction that β2 +β3 = 1.

(c) Discuss the results.

(4) Get the Octave scripts bootstrap_example1.m , bootstrap.m , bootstrap_resample_iid.m

and myols.m figure out what they do, run them, and interpret the results.

http://pareto.uab.es/mcreel/Econometrics/Include/Restrictions/bootstrap_example1.m
http://pareto.uab.es/mcreel/Econometrics/Include/Restrictions/bootstrap.m
http://pareto.uab.es/mcreel/Econometrics/Include/Restrictions/bootstrap_resample_iid.m
http://pareto.uab.es/mcreel/Econometrics/Include/Restrictions/myols.m


CHAPTER 7

Generalized least squares

One of the assumptions we’ve made up to now is that

εt ∼ IID(0,σ2),

or occasionally

εt ∼ IIN(0,σ2).

Now we’ll investigate the consequences of nonidentically and/or dependently dis-

tributed errors. We’ll assume fixed regressors for now, relaxing this admittedly un-

realistic assumption later. The model is

y = Xβ+ ε

E(ε) = 0

V (ε) = Σ

where Σ is a general symmetric positive definite matrix (we’ll write β in place of β0 to

simplify the typing of these notes).

• The case where Σ is a diagonal matrix gives uncorrelated, nonidentically dis-

tributed errors. This is known as heteroscedasticity.

• The case where Σ has the same number on the main diagonal but nonzero

elements off the main diagonal gives identically (assuming higher moments

are also the same) dependently distributed errors. This is known as autocor-

relation.
111
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• The general case combines heteroscedasticity and autocorrelation. This is

known as “nonspherical” disturbances, though why this term is used, I have

no idea. Perhaps it’s because under the classical assumptions, a joint confi-

dence region for ε would be an n− dimensional hypersphere.

7.1. Effects of nonspherical disturbances on the OLS estimator

The least square estimator is

β̂ = (X ′X)−1X ′y

= β+(X ′X)−1X ′ε

• We have unbiasedness, as before.

• The variance of β̂ is

E
[
(β̂−β)(β̂−β)′

]
= E

[
(X ′X)−1X ′εε′X(X ′X)−1]

= (X ′X)−1X ′ΣX(X ′X)−1(7.1.1)

Due to this, any test statistic that is based upon σ̂2 or the probability limit σ̂2

of is invalid. In particular, the formulas for the t, F,χ2 based tests given above

do not lead to statistics with these distributions.

• β̂ is still consistent, following exactly the same argument given before.

• If ε is normally distributed, then

β̂ ∼ N
(
β,(X ′X)−1X ′ΣX(X ′X)−1)

The problem is that Σ is unknown in general, so this distribution won’t be

useful for testing hypotheses.
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• Without normality, and unconditional on X we still have

√
n
(

β̂−β
)

=
√

n(X ′X)−1X ′ε

=

(
X ′X

n

)−1

n−1/2X ′ε

Define the limiting variance of n−1/2X ′ε (supposing a CLT applies) as

lim
n→∞

E
(

X ′εε′X
n

)
= Ω

so we obtain
√

n
(

β̂−β
)

d→ N
(

0,Q−1
X ΩQ−1

X

)

Summary: OLS with heteroscedasticity and/or autocorrelation is:

• unbiased in the same circumstances in which the estimator is unbiased with

iid errors

• has a different variance than before, so the previous test statistics aren’t valid

• is consistent

• is asymptotically normally distributed, but with a different limiting covari-

ance matrix. Previous test statistics aren’t valid in this case for this reason.

• is inefficient, as is shown below.

7.2. The GLS estimator

Suppose Σ were known. Then one could form the Cholesky decomposition

P′P = Σ−1

Here, P is an upper triangular matrix. We have

P′PΣ = In
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so

P′PΣP′ = P′,

which implies that

PΣP′ = In

Consider the model

P′y = P′Xβ+P′ε,

or, making the obvious definitions,

y∗ = X∗β+ ε∗.

This variance of ε∗ = Pε is

E(Pεε′P′) = PΣP′

= In

Therefore, the model

y∗ = X∗β+ ε∗

E(ε∗) = 0

V (ε∗) = In

satisfies the classical assumptions. The GLS estimator is simply OLS applied to the

transformed model:

β̂GLS = (X∗′X∗)−1X∗′y∗

= (X ′PP′X)−1X ′PP′y

= (X ′Σ−1X)−1X ′Σ−1y
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The GLS estimator is unbiased in the same circumstances under which the OLS

estimator is unbiased. For example, assuming X is nonstochastic

E(β̂GLS) = E
{
(X ′Σ−1X)−1X ′Σ−1y

}

= E
{
(X ′Σ−1X)−1X ′Σ−1(Xβ+ ε

}

= β.

The variance of the estimator, conditional on X can be calculated using

β̂GLS = (X∗′X∗)−1X∗′y∗

= (X∗′X∗)−1X∗′ (X∗β+ ε∗)

= β+(X∗′X∗)−1X∗′ε∗

so

E
{(

β̂GLS −β
)(

β̂GLS −β
)′}

= E
{
(X∗′X∗)−1X∗′ε∗ε∗′X∗(X∗′X∗)−1}

= (X∗′X∗)−1X∗′X∗(X∗′X∗)−1

= (X∗′X∗)−1

= (X ′Σ−1X)−1

Either of these last formulas can be used.

• All the previous results regarding the desirable properties of the least squares

estimator hold, when dealing with the transformed model, since the trans-

formed model satisfies the classical assumptions..

• Tests are valid, using the previous formulas, as long as we substitute X ∗ in

place of X . Furthermore, any test that involves σ2 can set it to 1. This is

preferable to re-deriving the appropriate formulas.
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• The GLS estimator is more efficient than the OLS estimator. This is a con-

sequence of the Gauss-Markov theorem, since the GLS estimator is based on

a model that satisfies the classical assumptions but the OLS estimator is not.

To see this directly, not that (the following needs to be completed)

Var(β̂)−Var(β̂GLS) = (X ′X)−1X ′ΣX(X ′X)−1 − (X ′Σ−1X)−1

= AΣA
′

where A =
[
(X ′X)−1 X ′− (X ′Σ−1X)−1X ′Σ−1

]
. This may not seem obvious,

but it is true, as you can verify for yourself. Then noting that AΣA
′

is a

quadratic form in a positive definite matrix, we conclude that AΣA
′
is positive

semi-definite, and that GLS is efficient relative to OLS.

• As one can verify by calculating fonc, the GLS estimator is the solution to the

minimization problem

β̂GLS = argmin(y−Xβ)′Σ−1(y−Xβ)

so the metric Σ−1 is used to weight the residuals.

7.3. Feasible GLS

The problem is that Σ isn’t known usually, so this estimator isn’t available.

• Consider the dimension of Σ : it’s an n× n matrix with
(
n2 −n

)
/2 + n =

(
n2 +n

)
/2 unique elements.

• The number of parameters to estimate is larger than n and increases faster

than n. There’s no way to devise an estimator that satisfies a LLN without

adding restrictions.
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• The feasible GLS estimator is based upon making sufficient assumptions re-

garding the form of Σ so that a consistent estimator can be devised.

Suppose that we parameterize Σ as a function of X and θ, where θ may include β as

well as other parameters, so that

Σ = Σ(X ,θ)

where θ is of fixed dimension. If we can consistently estimate θ, we can consistently

estimate Σ, as long as Σ(X ,θ) is a continuous function of θ (by the Slutsky theorem).

In this case,

Σ̂ = Σ(X , θ̂)
p→ Σ(X ,θ)

If we replace Σ in the formulas for the GLS estimator with Σ̂, we obtain the FGLS

estimator. The FGLS estimator shares the same asymptotic properties as GLS.

These are

(1) Consistency

(2) Asymptotic normality

(3) Asymptotic efficiency if the errors are normally distributed. (Cramer-Rao).

(4) Test procedures are asymptotically valid.

In practice, the usual way to proceed is

(1) Define a consistent estimator of θ. This is a case-by-case proposition, depend-

ing on the parameterization Σ(θ). We’ll see examples below.

(2) Form Σ̂ = Σ(X , θ̂)

(3) Calculate the Cholesky factorization P̂ = Chol(Σ̂−1).

(4) Transform the model using

P̂′y = P̂′Xβ+ P̂′ε
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(5) Estimate using OLS on the transformed model.

7.4. Heteroscedasticity

Heteroscedasticity is the case where

E(εε′) = Σ

is a diagonal matrix, so that the errors are uncorrelated, but have different variances.

Heteroscedasticity is usually thought of as associated with cross sectional data, though

there is absolutely no reason why time series data cannot also be heteroscedastic. Ac-

tually, the popular ARCH (autoregressive conditionally heteroscedastic) models ex-

plicitly assume that a time series is heteroscedastic.

Consider a supply function

qi = β1 +βpPi +βsSi + εi

where Pi is price and Si is some measure of size of the ith firm. One might suppose

that unobservable factors (e.g., talent of managers, degree of coordination between

production units, etc.) account for the error term εi. If there is more variability in these

factors for large firms than for small firms, then εi may have a higher variance when Si

is high than when it is low.

Another example, individual demand.

qi = β1 +βpPi +βmMi + εi

where P is price and M is income. In this case, εi can reflect variations in preferences.

There are more possibilities for expression of preferences when one is rich, so it is

possible that the variance of εi could be higher when M is high.

Add example of group means.
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7.4.1. OLS with heteroscedastic consistent varcov estimation. Eicker (1967)

and White (1980) showed how to modify test statistics to account for heteroscedasticity

of unknown form. The OLS estimator has asymptotic distribution

√
n
(

β̂−β
)

d→ N
(

0,Q−1
X ΩQ−1

X

)

as we’ve already seen. Recall that we defined

lim
n→∞

E
(

X ′εε′X
n

)
= Ω

This matrix has dimension K ×K and can be consistently estimated, even if we can’t

estimate Σ consistently. The consistent estimator, under heteroscedasticity but no au-

tocorrelation is

Ω̂ =
1
n

n

∑
t=1

x′txt ε̂2
t

One can then modify the previous test statistics to obtain tests that are valid when there

is heteroscedasticity of unknown form. For example, the Wald test for H0 : Rβ− r = 0

would be

n
(

Rβ̂− r
)′
(

R
(

X ′X
n

)−1

Ω̂
(

X ′X
n

)−1

R′
)−1(

Rβ̂− r
)

a∼ χ2(q)

7.4.2. Detection. There exist many tests for the presence of heteroscedasticity.

We’ll discuss three methods.

Goldfeld-Quandt. The sample is divided in to three parts, with n1,n2 and n3 obser-

vations, where n1 +n2 +n3 = n. The model is estimated using the first and third parts

of the sample, separately, so that β̂1 and β̂3 will be independent. Then we have

ε̂1′ε̂1

σ2 =
ε1′M1ε1

σ2
d→ χ2(n1 −K)

and
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ε̂3′ε̂3

σ2 =
ε3′M3ε3

σ2
d→ χ2(n3 −K)

so
ε̂1′ε̂1/(n1 −K)

ε̂3′ε̂3/(n3 −K)

d→ F(n1−K,n3 −K).

The distributional result is exact if the errors are normally distributed. This test is a

two-tailed test. Alternatively, and probably more conventionally, if one has prior ideas

about the possible magnitudes of the variances of the observations, one could order

the observations accordingly, from largest to smallest. In this case, one would use a

conventional one-tailed F-test. Draw picture.

• Ordering the observations is an important step if the test is to have any power.

• The motive for dropping the middle observations is to increase the difference

between the average variance in the subsamples, supposing that there exists

heteroscedasticity. This can increase the power of the test. On the other hand,

dropping too many observations will substantially increase the variance of the

statistics ε̂1′ε̂1 and ε̂3′ε̂3. A rule of thumb, based on Monte Carlo experiments

is to drop around 25% of the observations.

• If one doesn’t have any ideas about the form of the het. the test will probably

have low power since a sensible data ordering isn’t available.

White’s test. When one has little idea if there exists heteroscedasticity, and no idea

of its potential form, the White test is a possibility. The idea is that if there is ho-

moscedasticity, then

E(ε2
t |xt) = σ2,∀t

so that xt or functions of xt shouldn’t help to explain E(ε2
t ). The test works as follows:

(1) Since εt isn’t available, use the consistent estimator ε̂t instead.
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(2) Regress

ε̂2
t = σ2 + z′tγ+ vt

where zt is a P-vector. zt may include some or all of the variables in xt , as

well as other variables. White’s original suggestion was to use xt , plus the set

of all unique squares and cross products of variables in xt .

(3) Test the hypothesis that γ = 0. The qF statistic in this case is

qF =
P(ESSR−ESSU)/P
ESSU/(n−P−1)

Note that ESSR = T SSU , so dividing both numerator and denominator by this

we get

qF = (n−P−1)
R2

1−R2

Note that this is the R2 or the artificial regression used to test for heteroscedas-

ticity, not the R2 of the original model.

An asymptotically equivalent statistic, under the null of no heteroscedasticity (so that

R2 should tend to zero), is

nR2 a∼ χ2(P).

This doesn’t require normality of the errors, though it does assume that the fourth

moment of εt is constant, under the null. Question: why is this necessary?

• The White test has the disadvantage that it may not be very powerful unless

the zt vector is chosen well, and this is hard to do without knowledge of the

form of heteroscedasticity.

• It also has the problem that specification errors other than heteroscedasticity

may lead to rejection.
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• Note: the null hypothesis of this test may be interpreted as θ = 0 for the

variance model V (ε2
t ) = h(α+ z′tθ), where h(·) is an arbitrary function of un-

known form. The test is more general than is may appear from the regression

that is used.

Plotting the residuals. A very simple method is to simply plot the residuals (or

their squares). Draw pictures here. Like the Goldfeld-Quandt test, this will be more

informative if the observations are ordered according to the suspected form of the

heteroscedasticity.

7.4.3. Correction. Correcting for heteroscedasticity requires that a parametric

form for Σ(θ) be supplied, and that a means for estimating θ consistently be deter-

mined. The estimation method will be specific to the for supplied for Σ(θ). We’ll

consider two examples. Before this, let’s consider the general nature of GLS when

there is heteroscedasticity.

Multiplicative heteroscedasticity

Suppose the model is

yt = x′tβ+ εt

σ2
t = E(ε2

t ) =
(
z′tγ
)δ

but the other classical assumptions hold. In this case

ε2
t =

(
z′tγ
)δ

+ vt

and vt has mean zero. Nonlinear least squares could be used to estimate γ and δ con-

sistently, were εt observable. The solution is to substitute the squared OLS residuals

ε̂2
t in place of ε2

t , since it is consistent by the Slutsky theorem. Once we have γ̂ and δ̂,
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we can estimate σ2
t consistently using

σ̂2
t =

(
z′t γ̂
)δ̂

p

→ σ2
t .

In the second step, we transform the model by dividing by the standard deviation:

yt

σ̂t
=

x′tβ
σ̂t

+
εt

σ̂t

or

y∗t = x∗′t β+ ε∗t .

Asymptotically, this model satisfies the classical assumptions.

• This model is a bit complex in that NLS is required to estimate the model of

the variance. A simpler version would be

yt = x′tβ+ εt

σ2
t = E(ε2

t ) = σ2zδ
t

where zt is a single variable. There are still two parameters to be estimated,

and the model of the variance is still nonlinear in the parameters. However,

the search method can be used in this case to reduce the estimation problem

to repeated applications of OLS.

• First, we define an interval of reasonable values for δ, e.g., δ ∈ [0,3].

• Partition this interval into M equally spaced values, e.g., {0, .1, .2, ...,2.9,3}.

• For each of these values, calculate the variable zδm
t .

• The regression

ε̂2
t = σ2zδm

t + vt

is linear in the parameters, conditional on δm, so one can estimate σ2 by OLS.



7.4. HETEROSCEDASTICITY 124

• Save the pairs (σ2
m,δm), and the corresponding ESSm. Choose the pair with

the minimum ESSm as the estimate.

• Next, divide the model by the estimated standard deviations.

• Can refine. Draw picture.

• Works well when the parameter to be searched over is low dimensional, as in

this case.

Groupwise heteroscedasticity

A common case is where we have repeated observations on each of a number of

economic agents: e.g., 10 years of macroeconomic data on each of a set of countries or

regions, or daily observations of transactions of 200 banks. This sort of data is a pooled

cross-section time-series model. It may be reasonable to presume that the variance is

constant over time within the cross-sectional units, but that it differs across them (e.g.,

firms or countries of different sizes...). The model is

yit = x′itβ+ εit

E(ε2
it) = σ2

i ,∀t

where i = 1,2, ...,G are the agents, and t = 1,2, ...,n are the observations on each agent.

• The other classical assumptions are presumed to hold.

• In this case, the variance σ2
i is specific to each agent, but constant over the n

observations for that agent.

• In this model, we assume that E(εitεis) = 0. This is a strong assumption that

we’ll relax later.

To correct for heteroscedasticity, just estimate each σ2
i using the natural estimator:

σ̂2
i =

1
n

n

∑
t=1

ε̂2
it
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• Note that we use 1/n here since it’s possible that there are more than n re-

gressors, so n−K could be negative. Asymptotically the difference is unim-

portant.

• With each of these, transform the model as usual:

yit

σ̂i
=

x′itβ
σ̂i

+
εit

σ̂i

Do this for each cross-sectional group. This transformed model satisfies the

classical assumptions, asymptotically.

7.4.4. Example: the Nerlove model (again!) Let’s check the Nerlove data for

evidence of heteroscedasticity. In what follows, we’re going to use the model with

the constant and output coefficient varying across 5 groups, but with the input price

coefficients fixed (see Equation 6.8.3 for the rationale behind this). Figure 7.4.1, which

is generated by the Octave program GLS/NerloveResiduals.m plots the residuals. We

can see pretty clearly that the error variance is larger for small firms than for larger

firms.

Now let’s try out some tests to formally check for heteroscedasticity. The Octave

program GLS/HetTests.m performs the White and Goldfeld-Quandt tests, using the

above model. The results are

Value p-value

White’s test 61.903 0.000

Value p-value

GQ test 10.886 0.000

All in all, it is very clear that the data are heteroscedastic. That means that OLS

estimation is not efficient, and tests of restrictions that ignore heteroscedasticity are not

http://pareto.uab.es/mcreel/Econometrics/Include/GLS/NerloveResiduals.m
http://pareto.uab.es/mcreel/Econometrics/Include/GLS/HetTests.m
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FIGURE 7.4.1. Residuals, Nerlove model, sorted by firm size
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valid. The previous tests (CRTS, HOD1 and the Chow test) were calculated assuming

homoscedasticity. The Octave program GLS/NerloveRestrictions-Het.m uses the Wald

test to check for CRTS and HOD1, but using a heteroscedastic-consistent covariance

estimator.1 The results are

Testing HOD1

Value p-value

Wald test 6.161 0.013

Testing CRTS

Value p-value

1By the way, notice that GLS/NerloveResiduals.m and GLS/HetTests.m use the restricted LS estimator
directly to restrict the fully general model with all coefficients varying to the model with only the
constant and the output coefficient varying. But GLS/NerloveRestrictions-Het.m estimates the model
by substituting the restrictions into the model. The methods are equivalent, but the second is more
convenient and easier to understand.

http://pareto.uab.es/mcreel/Econometrics/Include/GLS/NerloveRestrictions-Het.m
http://pareto.uab.es/mcreel/Econometrics/Include/GLS/NerloveResiduals.m
http://pareto.uab.es/mcreel/Econometrics/Include/GLS/HetTests.m
http://pareto.uab.es/mcreel/Econometrics/Include/GLS/NerloveRestrictions-Het.m


7.4. HETEROSCEDASTICITY 127

Wald test 20.169 0.001

We see that the previous conclusions are altered - both CRTS is and HOD1 are rejected

at the 5% level. Maybe the rejection of HOD1 is due to to Wald test’s tendency to over-

reject?

From the previous plot, it seems that the variance of ε is a decreasing function of

output. Suppose that the 5 size groups have different error variances (heteroscedastic-

ity by groups):

Var(εi) = σ2
j ,

where j = 1 if i = 1,2, ...,29, etc., as before. The Octave program GLS/NerloveGLS.m

estimates the model using GLS (through a transformation of the model so that OLS

can be applied). The estimation results are

*********************************************************

OLS estimation results

Observations 145

R-squared 0.958822

Sigma-squared 0.090800

Results (Het. consistent var-cov estimator)

estimate st.err. t-stat. p-value

constant1 -1.046 1.276 -0.820 0.414

constant2 -1.977 1.364 -1.450 0.149

constant3 -3.616 1.656 -2.184 0.031

constant4 -4.052 1.462 -2.771 0.006

http://pareto.uab.es/mcreel/Econometrics/Include/GLS/NerloveGLS.m
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constant5 -5.308 1.586 -3.346 0.001

output1 0.391 0.090 4.363 0.000

output2 0.649 0.090 7.184 0.000

output3 0.897 0.134 6.688 0.000

output4 0.962 0.112 8.612 0.000

output5 1.101 0.090 12.237 0.000

labor 0.007 0.208 0.032 0.975

fuel 0.498 0.081 6.149 0.000

capital -0.460 0.253 -1.818 0.071

*********************************************************

*********************************************************

OLS estimation results

Observations 145

R-squared 0.987429

Sigma-squared 1.092393

Results (Het. consistent var-cov estimator)

estimate st.err. t-stat. p-value

constant1 -1.580 0.917 -1.723 0.087

constant2 -2.497 0.988 -2.528 0.013

constant3 -4.108 1.327 -3.097 0.002

constant4 -4.494 1.180 -3.808 0.000

constant5 -5.765 1.274 -4.525 0.000
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output1 0.392 0.090 4.346 0.000

output2 0.648 0.094 6.917 0.000

output3 0.892 0.138 6.474 0.000

output4 0.951 0.109 8.755 0.000

output5 1.093 0.086 12.684 0.000

labor 0.103 0.141 0.733 0.465

fuel 0.492 0.044 11.294 0.000

capital -0.366 0.165 -2.217 0.028

*********************************************************

Testing HOD1

Value p-value

Wald test 9.312 0.002

The first panel of output are the OLS estimation results, which are used to consistently

estimate the σ2
j . The second panel of results are the GLS estimation results. Some

comments:

• The R2 measures are not comparable - the dependent variables are not the

same. The measure for the GLS results uses the transformed dependent vari-

able. One could calculate a comparable R2 measure, but I have not done so.

• The differences in estimated standard errors (smaller in general for GLS) can

be interpreted as evidence of improved efficiency of GLS, since the OLS stan-

dard errors are calculated using the Huber-White estimator. They would not

be comparable if the ordinary (inconsistent) estimator had been used.
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• Note that the previously noted pattern in the output coefficients persists. The

nonconstant CRTS result is robust.

• The coefficient on capital is now negative and significant at the 3% level.

That seems to indicate some kind of problem with the model or the data, or

economic theory.

• Note that HOD1 is now rejected. Problem of Wald test over-rejecting? Spec-

ification error in model?

7.5. Autocorrelation

Autocorrelation, which is the serial correlation of the error term, is a problem that

is usually associated with time series data, but also can affect cross-sectional data. For

example, a shock to oil prices will simultaneously affect all countries, so one could

expect contemporaneous correlation of macroeconomic variables across countries.

7.5.1. Causes. Autocorrelation is the existence of correlation across the error term:

E(εtεs) 6= 0, t 6= s.

Why might this occur? Plausible explanations include

(1) Lags in adjustment to shocks. In a model such as

yt = x′tβ+ εt,

one could interpret x′tβ as the equilibrium value. Suppose xt is constant over

a number of observations. One can interpret εt as a shock that moves the

system away from equilibrium. If the time needed to return to equilibrium is

long with respect to the observation frequency, one could expect εt+1 to be

positive, conditional on εt positive, which induces a correlation.
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FIGURE 7.5.1. Autocorrelation induced by misspecification

(2) Unobserved factors that are correlated over time. The error term is often

assumed to correspond to unobservable factors. If these factors are correlated,

there will be autocorrelation.

(3) Misspecification of the model. Suppose that the DGP is

yt = β0 +β1xt +β2x2
t + εt

but we estimate

yt = β0 +β1xt + εt

The effects are illustrated in Figure 7.5.1.
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7.5.2. Effects on the OLS estimator. The variance of the OLS estimator is the

same as in the case of heteroscedasticity - the standard formula does not apply. The

correct formula is given in equation 7.1.1. Next we discuss two GLS corrections for

OLS. These will potentially induce inconsistency when the regressors are nonstochas-

tic (see Chapter8) and should either not be used in that case (which is usually the

relevant case) or used with caution. The more recommended procedure is discussed in

section 7.5.5.

7.5.3. AR(1). There are many types of autocorrelation. We’ll consider two exam-

ples. The first is the most commonly encountered case: autoregressive order 1 (AR(1)

errors. The model is

yt = x′tβ+ εt

εt = ρεt−1 +ut

ut ∼ iid(0,σ2
u)

E(εtus) = 0, t < s

We assume that the model satisfies the other classical assumptions.

• We need a stationarity assumption: |ρ| < 1. Otherwise the variance of εt ex-

plodes as t increases, so standard asymptotics will not apply.

• By recursive substitution we obtain

εt = ρεt−1 +ut

= ρ(ρεt−2 +ut−1)+ut

= ρ2εt−2 +ρut−1 +ut

= ρ2 (ρεt−3 +ut−2)+ρut−1 +ut
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In the limit the lagged ε drops out, since ρm → 0 as m → ∞, so we obtain

εt =
∞

∑
m=0

ρmut−m

With this, the variance of εt is found as

E(ε2
t ) = σ2

u

∞

∑
m=0

ρ2m

=
σ2

u
1−ρ2

• If we had directly assumed that εt were covariance stationary, we could obtain

this using

V (εt) = ρ2E(ε2
t−1)+2ρE(εt−1ut)+ E(u2

t )

= ρ2V (εt)+σ2
u,

so

V (εt) =
σ2

u
1−ρ2

• The variance is the 0th order autocovariance: γ0 = V (εt)

• Note that the variance does not depend on t

Likewise, the first order autocovariance γ1 is

Cov(εt,εt−1) = γs = E((ρεt−1 +ut)εt−1)

= ρV (εt)

=
ρσ2

u
1−ρ2

• Using the same method, we find that for s < t

Cov(εt,εt−s) = γs =
ρsσ2

u

1−ρ2
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• The autocovariances don’t depend on t: the process {εt} is covariance sta-

tionary

The correlation (in general, for r.v.’s x and y) is defined as

corr(x,y) =
cov(x,y)

se(x)se(y)

but in this case, the two standard errors are the same, so the s-order autocorrelation ρs

is

ρs = ρs

• All this means that the overall matrix Σ has the form

Σ =
σ2

u
1−ρ2
︸ ︷︷ ︸

this is the variance




1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

... . . . ...
. . . ρ

ρn−1 · · · 1




︸ ︷︷ ︸
this is the correlation matrix

So we have homoscedasticity, but elements off the main diagonal are not zero.

All of this depends only on two parameters, ρ and σ2
u. If we can estimate these

consistently, we can apply FGLS.

It turns out that it’s easy to estimate these consistently. The steps are

(1) Estimate the model yt = x′tβ+ εt by OLS.

(2) Take the residuals, and estimate the model

ε̂t = ρε̂t−1 +u∗t
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Since ε̂t
p→ εt , this regression is asymptotically equivalent to the regression

εt = ρεt−1 +ut

which satisfies the classical assumptions. Therefore, ρ̂ obtained by applying

OLS to ε̂t = ρε̂t−1 +u∗t is consistent. Also, since u∗t
p→ ut , the estimator

σ̂2
u =

1
n

n

∑
t=2

(û∗t )
2 p→ σ2

u

(3) With the consistent estimators σ̂2
u and ρ̂, form Σ̂ = Σ(σ̂2

u, ρ̂) using the previ-

ous structure of Σ, and estimate by FGLS. Actually, one can omit the factor

σ̂2
u/(1−ρ2), since it cancels out in the formula

β̂FGLS =
(
X ′Σ̂−1X

)−1
(X ′Σ̂−1y).

• One can iterate the process, by taking the first FGLS estimator of β, re-

estimating ρ and σ2
u, etc. If one iterates to convergences it’s equivalent to

MLE (supposing normal errors).

• An asymptotically equivalent approach is to simply estimate the transformed

model

yt − ρ̂yt−1 = (xt − ρ̂xt−1)
′β+u∗t

using n−1 observations (since y0 and x0 aren’t available). This is the method

of Cochrane and Orcutt. Dropping the first observation is asymptotically ir-

relevant, but it can be very important in small samples. One can recuperate

the first observation by putting

y∗1 = y1

√
1− ρ̂2

x∗1 = x1

√
1− ρ̂2
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This somewhat odd-looking result is related to the Cholesky factorization of

Σ−1. See Davidson and MacKinnon, pg. 348-49 for more discussion. Note

that the variance of y∗1 is σ2
u, asymptotically, so we see that the transformed

model will be homoscedastic (and nonautocorrelated, since the u′s are uncor-

related with the y′s, in different time periods.

7.5.4. MA(1). The linear regression model with moving average order 1 errors is

yt = x′tβ+ εt

εt = ut +φut−1

ut ∼ iid(0,σ2
u)

E(εtus) = 0, t < s

In this case,

V (εt) = γ0 = E
[
(ut +φut−1)

2
]

= σ2
u +φ2σ2

u

= σ2
u(1+φ2)

Similarly

γ1 = E [(ut +φut−1)(ut−1 +φut−2)]

= φσ2
u

and

γ2 = [(ut +φut−1)(ut−2 +φut−3)]

= 0
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so in this case

Σ = σ2
u




1+φ2 φ 0 · · · 0

φ 1+φ2 φ

0 φ . . . ...
... . . . φ

0 · · · φ 1+φ2




Note that the first order autocorrelation is

ρ1 =
φσ2

u
σ2

u(1+φ2)
=

γ1

γ0

=
φ

(1+φ2)

• This achieves a maximum at φ = 1 and a minimum at φ = −1, and the maxi-

mal and minimal autocorrelations are 1/2 and -1/2. Therefore, series that are

more strongly autocorrelated can’t be MA(1) processes.

Again the covariance matrix has a simple structure that depends on only two parame-

ters. The problem in this case is that one can’t estimate φ using OLS on

ε̂t = ut +φut−1

because the ut are unobservable and they can’t be estimated consistently. However,

there is a simple way to estimate the parameters.

• Since the model is homoscedastic, we can estimate

V (εt) = σ2
ε = σ2

u(1+φ2)

using the typical estimator:

σ̂2
ε = ̂σ2

u(1+φ2) =
1
n

n

∑
t=1

ε̂2
t
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• By the Slutsky theorem, we can interpret this as defining an (unidentified)

estimator of both σ2
u and φ, e.g., use this as

σ̂2
u(1+ φ̂2) =

1
n

n

∑
t=1

ε̂2
t

However, this isn’t sufficient to define consistent estimators of the parameters,

since it’s unidentified.

• To solve this problem, estimate the covariance of εt and εt−1 using

Ĉov(εt ,εt−1) = φ̂σ2
u =

1
n

n

∑
t=2

ε̂t ε̂t−1

This is a consistent estimator, following a LLN (and given that the epsilon

hats are consistent for the epsilons). As above, this can be interpreted as

defining an unidentified estimator:

φ̂σ̂2
u =

1
n

n

∑
t=2

ε̂t ε̂t−1

• Now solve these two equations to obtain identified (and therefore consistent)

estimators of both φ and σ2
u. Define the consistent estimator

Σ̂ = Σ(φ̂, σ̂2
u)

following the form we’ve seen above, and transform the model using the

Cholesky decomposition. The transformed model satisfies the classical as-

sumptions asymptotically.

7.5.5. Asymptotically valid inferences with autocorrelation of unknown form.

See Hamilton Ch. 10, pp. 261-2 and 280-84.
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When the form of autocorrelation is unknown, one may decide to use the OLS es-

timator, without correction. We’ve seen that this estimator has the limiting distribution

√
n
(

β̂−β
)

d→ N
(

0,Q−1
X ΩQ−1

X

)

where, as before, Ω is

Ω = lim
n→∞

E
(

X ′εε′X
n

)

We need a consistent estimate of Ω. Define mt = xtεt (recall that xt is defined as a

K ×1 vector). Note that

X ′ε =
[

x1 x2 · · · xn

]




ε1

ε2
...

εn




=
n

∑
t=1

xtεt

=
n

∑
t=1

mt

so that

Ω = lim
n→∞

1
n

E

[(
n

∑
t=1

mt

)(
n

∑
t=1

m′
t

)]

We assume that mt is covariance stationary (so that the covariance between mt and

mt−s does not depend on t).

Define the v− th autocovariance of mt as

Γv = E(mtm′
t−v).

Note that E(mtm′
t+v) = Γ′

v. (show this with an example). In general, we expect that:
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• mt will be autocorrelated, since εt is potentially autocorrelated:

Γv = E(mtm′
t−v) 6= 0

Note that this autocovariance does not depend on t, due to covariance station-

arity.

• contemporaneously correlated ( E(mitm jt) 6= 0 ), since the regressors in xt

will in general be correlated (more on this later).

• and heteroscedastic (E(m2
it) = σ2

i , which depends upon i ), again since the

regressors will have different variances.

While one could estimate Ω parametrically, we in general have little information upon

which to base a parametric specification. Recent research has focused on consistent

nonparametric estimators of Ω.

Now define

Ωn = E
1
n

[(
n

∑
t=1

mt

)(
n

∑
t=1

m′
t

)]

We have (show that the following is true, by expanding sum and shifting rows to left)

Ωn = Γ0 +
n−1

n

(
Γ1 +Γ′

1
)
+

n−2
n

(
Γ2 +Γ′

2
)
· · ·+ 1

n

(
Γn−1 +Γ′

n−1
)

The natural, consistent estimator of Γv is

Γ̂v =
1
n

n

∑
t=v+1

m̂tm̂′
t−v.

where

m̂t = xt ε̂t
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(note: one could put 1/(n− v) instead of 1/n here). So, a natural, but inconsistent,

estimator of Ωn would be

Ω̂n = Γ̂0 +
n−1

n

(
Γ̂1 + Γ̂′

1

)
+

n−2
n

(
Γ̂2 + Γ̂′

2

)
+ · · ·+ 1

n

(
Γ̂n−1 + Γ̂′

n−1

)

= Γ̂0 +
n−1

∑
v=1

n− v
n

(
Γ̂v + Γ̂′

v

)
.

This estimator is inconsistent in general, since the number of parameters to estimate is

more than the number of observations, and increases more rapidly than n, so informa-

tion does not build up as n → ∞.

On the other hand, supposing that Γv tends to zero sufficiently rapidly as v tends to

∞, a modified estimator

Ω̂n = Γ̂0 +
q(n)

∑
v=1

(
Γ̂v + Γ̂′

v

)
,

where q(n)
p→ ∞ as n → ∞ will be consistent, provided q(n) grows sufficiently slowly.

• The assumption that autocorrelations die off is reasonable in many cases. For

example, the AR(1) model with |ρ| < 1 has autocorrelations that die off.

• The term n−v
n can be dropped because it tends to one for v < q(n), given that

q(n) increases slowly relative to n.

• A disadvantage of this estimator is that is may not be positive definite. This

could cause one to calculate a negative χ2 statistic, for example!

• Newey and West proposed and estimator (Econometrica, 1987) that solves

the problem of possible nonpositive definiteness of the above estimator. Their

estimator is

Ω̂n = Γ̂0 +
q(n)

∑
v=1

[
1− v

q+1

](
Γ̂v + Γ̂′

v

)
.
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This estimator is p.d. by construction. The condition for consistency is that

n−1/4q(n) → 0. Note that this is a very slow rate of growth for q. This esti-

mator is nonparametric - we’ve placed no parametric restrictions on the form

of Ω. It is an example of a kernel estimator.

Finally, since Ωn has Ω as its limit, Ω̂n
p→ Ω. We can now use Ω̂n and Q̂X = 1

n X ′X to

consistently estimate the limiting distribution of the OLS estimator under heteroscedas-

ticity and autocorrelation of unknown form. With this, asymptotically valid tests are

constructed in the usual way.

7.5.6. Testing for autocorrelation. Durbin-Watson test

The Durbin-Watson test statistic is

DW =
∑n

t=2 (ε̂t − ε̂t−1)
2

∑n
t=1 ε̂2

t

=
∑n

t=2
(
ε̂2

t −2ε̂t ε̂t−1 + ε̂2
t−1
)

∑n
t=1 ε̂2

t

• The null hypothesis is that the first order autocorrelation of the errors is zero:

H0 : ρ1 = 0. The alternative is of course HA : ρ1 6= 0. Note that the alternative

is not that the errors are AR(1), since many general patterns of autocorrelation

will have the first order autocorrelation different than zero. For this reason the

test is useful for detecting autocorrelation in general. For the same reason, one

shouldn’t just assume that an AR(1) model is appropriate when the DW test

rejects the null.

• Under the null, the middle term tends to zero, and the other two tend to one,

so DW
p→ 2.

• Supposing that we had an AR(1) error process with ρ = 1. In this case the

middle term tends to −2, so DW
p→ 0
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• Supposing that we had an AR(1) error process with ρ = −1. In this case the

middle term tends to 2, so DW
p→ 4

• These are the extremes: DW always lies between 0 and 4.

• The distribution of the test statistic depends on the matrix of regressors, X ,

so tables can’t give exact critical values. The give upper and lower bounds,

which correspond to the extremes that are possible. See Figure 7.5.2. There

are means of determining exact critical values conditional on X .

• Note that DW can be used to test for nonlinearity (add discussion).

• The DW test is based upon the assumption that the matrix X is fixed in re-

peated samples. This is often unreasonable in the context of economic time

series, which is precisely the context where the test would have application. It

is possible to relate the DW test to other test statistics which are valid without

strict exogeneity.

Breusch-Godfrey test

This test uses an auxiliary regression, as does the White test for heteroscedasticity.

The regression is

ε̂t = x′tδ+ γ1ε̂t−1 + γ2ε̂t−2 + · · ·+ γPε̂t−P + vt

and the test statistic is the nR2 statistic, just as in the White test. There are P restric-

tions, so the test statistic is asymptotically distributed as a χ2(P).

• The intuition is that the lagged errors shouldn’t contribute to explaining the

current error if there is no autocorrelation.

• xt is included as a regressor to account for the fact that the ε̂t are not indepen-

dent even if the εt are. This is a technicality that we won’t go into here.
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FIGURE 7.5.2. Durbin-Watson critical values

• This test is valid even if the regressors are stochastic and contain lagged de-

pendent variables, so it is considerably more useful than the DW test for typ-

ical time series data.

• The alternative is not that the model is an AR(P), following the argument

above. The alternative is simply that some or all of the first P autocorrelations

are different from zero. This is compatible with many specific forms of auto-

correlation.

7.5.7. Lagged dependent variables and autocorrelation. We’ve seen that the

OLS estimator is consistent under autocorrelation, as long as plim X ′ε
n = 0. This will

be the case when E(X ′ε) = 0, following a LLN. An important exception is the case

where X contains lagged y′s and the errors are autocorrelated. A simple example is the
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case of a single lag of the dependent variable with AR(1) errors. The model is

yt = x′tβ+ yt−1γ+ εt

εt = ρεt−1 +ut

Now we can write

E(yt−1εt) = E
{
(x′t−1β+ yt−2γ+ εt−1)(ρεt−1 +ut)

}

6= 0

since one of the terms is E(ρε2
t−1) which is clearly nonzero. In this case E(X ′ε) 6= 0,

and therefore plimX ′ε
n 6= 0. Since

plimβ̂ = β+ plim
X ′ε
n

the OLS estimator is inconsistent in this case. One needs to estimate by instrumental

variables (IV), which we’ll get to later.

7.5.8. Examples.

Nerlove model, yet again. The Nerlove model uses cross-sectional data, so one

may not think of performing tests for autocorrelation. However, specification error

can induce autocorrelated errors. Consider the simple Nerlove model

lnC = β1 +β2 lnQ+β3 lnPL +β4 lnPF +β5 lnPK + ε

and the extended Nerlove model

lnC = β j
1 +β j

2 lnQ+β3 lnPL +β4 lnPF +β5 lnPK + ε.
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FIGURE 7.6.1. Residuals of simple Nerlove model
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We have seen evidence that the extended model is preferred. So if it is in fact the

proper model, the simple model is misspecified. Let’s check if this misspecification

might induce autocorrelated errors.

The Octave program GLS/NerloveAR.m estimates the simple Nerlove model, and

plots the residuals as a function of lnQ, and it calculates a Breusch-Godfrey test statis-

tic. The residual plot is in Figure 7.6.1 , and the test results are:

Value p-value

Breusch-Godfrey test 34.930 0.000

Clearly, there is a problem of autocorrelated residuals.

EXERCISE 7.6. Repeat the autocorrelation tests using the extended Nerlove model

(Equation ??) to see the problem is solved.

http://pareto.uab.es/mcreel/Econometrics/Include/GLS/NerloveAR.m
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Klein model. Klein’s Model I is a simple macroeconometric model. One of the

equations in the model explains consumption (C) as a function of profits (P), both

current and lagged, as well as the sum of wages in the private sector (W p) and wages

in the government sector (W g). Have a look at the README file for this data set. This

gives the variable names and other information.

Consider the model

Ct = α0 +α1Pt +α2Pt−1 +α3(W
p

t +W g
t )+ ε1t

The Octave program GLS/Klein.m estimates this model by OLS, plots the residuals,

and performs the Breusch-Godfrey test, using 1 lag of the residuals. The estimation

and test results are:

*********************************************************

OLS estimation results

Observations 21

R-squared 0.981008

Sigma-squared 1.051732

Results (Ordinary var-cov estimator)

estimate st.err. t-stat. p-value

Constant 16.237 1.303 12.464 0.000

Profits 0.193 0.091 2.115 0.049

Lagged Profits 0.090 0.091 0.992 0.335

Wages 0.796 0.040 19.933 0.000

http://pareto.uab.es/mcreel/Econometrics/Include/Data/klein_readme.txt
http://pareto.uab.es/mcreel/Econometrics/Include/GLS/Klein.m
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FIGURE 7.6.2. OLS residuals, Klein consumption equation

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  5  10  15  20  25

Regression residuals

Residuals

*********************************************************

Value p-value

Breusch-Godfrey test 1.539 0.215

and the residual plot is in Figure 7.6.2. The test does not reject the null of nonautocor-

relatetd errors, but we should remember that we have only 21 observations, so power

is likely to be fairly low. The residual plot leads me to suspect that there may be auto-

correlation - there are some significant runs below and above the x-axis. Your opinion

may differ.

Since it seems that there may be autocorrelation, lets’s try an AR(1) correction.

The Octave program GLS/KleinAR1.m estimates the Klein consumption equation as-

suming that the errors follow the AR(1) pattern. The results, with the Breusch-Godfrey

test for remaining autocorrelation are:

http://pareto.uab.es/mcreel/Econometrics/Include/GLS/KleinAR1.m
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*********************************************************

OLS estimation results

Observations 21

R-squared 0.967090

Sigma-squared 0.983171

Results (Ordinary var-cov estimator)

estimate st.err. t-stat. p-value

Constant 16.992 1.492 11.388 0.000

Profits 0.215 0.096 2.232 0.039

Lagged Profits 0.076 0.094 0.806 0.431

Wages 0.774 0.048 16.234 0.000

*********************************************************

Value p-value

Breusch-Godfrey test 2.129 0.345

• The test is farther away from the rejection region than before, and the residual

plot is a bit more favorable for the hypothesis of nonautocorrelated residuals,

IMHO. For this reason, it seems that the AR(1) correction might have im-

proved the estimation.

• Nevertheless, there has not been much of an effect on the estimated coeffi-

cients nor on their estimated standard errors. This is probably because the

estimated AR(1) coefficient is not very large (around 0.2)
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• The existence or not of autocorrelation in this model will be important later,

in the section on simultaneous equations.

Exercises
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(1) Comparing the variances of the OLS and GLS estimators, I claimed that the fol-

lowing holds:

(2)

Var(β̂)−Var(β̂GLS) = AΣA
′

Verify that this is true.

(3) Show that the GLS estimator can be defined as

β̂GLS = argmin(y−Xβ)′Σ−1(y−Xβ)

(4) The limiting distribution of the OLS estimator with heteroscedasticity of unknown

form is
√

n
(

β̂−β
)

d→ N
(

0,Q−1
X ΩQ−1

X

)
,

where

lim
n→∞

E
(

X ′εε′X
n

)
= Ω

Explain why

Ω̂ =
1
n

n

∑
t=1

x′txt ε̂2
t

is a consistent estimator of this matrix.

(5) Define the v − th autocovariance of a covariance stationary process mt , where

E(mt = 0) as

Γv = E(mtm′
t−v).

Show that E(mtm′
t+v) = Γ′

v.

(6) For the Nerlove model

lnC = β j
1 +β j

2 lnQ+β3 lnPL +β4 lnPF +β5 lnPK + ε
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assume that V (εt|xt) = α+αQ lnQ.

Exercises

(a) Calculate the FGLS estimator and interpret the estimation results.

(b) Test the transformed model to check whether it appears to satisfy homoscedas-

ticity.



CHAPTER 8

Stochastic regressors

Up to now we have treated the regressors as fixed, which is clearly unrealistic.

Now we will assume they are random. There are several ways to think of the problem.

First, if we are interested in an analysis conditional on the explanatory variables, then

it is irrelevant if they are stochastic or not, since conditional on the values of they

regressors take on, they are nonstochastic, which is the case already considered.

• In cross-sectional analysis it is usually reasonable to make the analysis con-

ditional on the regressors.

• In dynamic models, where yt may depend on yt−1, a conditional analysis is

not sufficiently general, since we may want to predict into the future many

periods out, so we need to consider the behavior of β̂ and the relevant test

statistics unconditional on X .

The model we’ll deal will involve a combination of the following assumptions

Linearity: the model is a linear function of the parameter vector β0 :

yt = x′tβ0 + εt ,

or in matrix form,

y = Xβ0 + ε,

where y is n× 1, X =
(

x1 x2 · · · xn

)′
, where xt is K × 1, and β0 and ε are con-

formable.

Stochastic, linearly independent regressors
153
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X has rank K with probability 1

X is stochastic

limn→∞ Pr
(1

nX ′X = QX
)

= 1, where QX is a finite positive definite matrix.

Central limit theorem

n−1/2X ′ε d→ N(0,QXσ2
0)

Normality (Optional): ε|X ∼ N(0,σ2In): ε is normally distributed

Strongly exogenous regressors:

E(εt |X) = 0,∀t(8.0.1)

Weakly exogenous regressors:

E(εt|xt) = 0,∀t(8.0.2)

In both cases, x′tβ is the conditional mean of yt given xt : E(yt |xt) = x′tβ

8.1. Case 1

Normality of ε, strongly exogenous regressors

In this case,

β̂ = β0 +(X ′X)−1X ′ε

E(β̂|X) = β0 +(X ′X)−1X ′E(ε|X)

= β0

and since this holds for all X , E(β̂) = β, unconditional on X . Likewise,

β̂|X ∼ N
(
β,(X ′X)−1σ2

0
)
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• If the density of X is dµ(X), the marginal density of β̂ is obtained by mul-

tiplying the conditional density by dµ(X) and integrating over X . Doing this

leads to a nonnormal density for β̂, in small samples.

• However, conditional on X , the usual test statistics have the t, F and χ2

distributions. Importantly, these distributions don’t depend on X , so when

marginalizing to obtain the unconditional distribution, nothing changes. The

tests are valid in small samples.

• Summary: When X is stochastic but strongly exogenous and ε is normally

distributed:

(1) β̂ is unbiased

(2) β̂ is nonnormally distributed

(3) The usual test statistics have the same distribution as with nonstochastic

X .

(4) The Gauss-Markov theorem still holds, since it holds conditionally on X ,

and this is true for all X .

(5) Asymptotic properties are treated in the next section.

8.2. Case 2

ε nonnormally distributed, strongly exogenous regressors

The unbiasedness of β̂ carries through as before. However, the argument regarding

test statistics doesn’t hold, due to nonnormality of ε. Still, we have

β̂ = β0 +(X ′X)−1X ′ε

= β0 +

(
X ′X

n

)−1 X ′ε
n
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Now (
X ′X

n

)−1
p→ Q−1

X

by assumption, and
X ′ε
n

=
n−1/2X ′ε√

n
p→ 0

since the numerator converges to a N(0,QXσ2) r.v. and the denominator still goes

to infinity. We have unbiasedness and the variance disappearing, so, the estimator is

consistent:

β̂ p→ β0.

Considering the asymptotic distribution

√
n
(

β̂−β0

)
=

√
n
(

X ′X
n

)−1 X ′ε
n

=

(
X ′X

n

)−1

n−1/2X ′ε

so
√

n
(

β̂−β0

)
d→ N(0,Q−1

X σ2
0)

directly following the assumptions. Asymptotic normality of the estimator still holds.

Since the asymptotic results on all test statistics only require this, all the previous

asymptotic results on test statistics are also valid in this case.

• Summary: Under strongly exogenous regressors, with ε normal or nonnor-

mal, β̂ has the properties:

(1) Unbiasedness

(2) Consistency

(3) Gauss-Markov theorem holds, since it holds in the previous case and

doesn’t depend on normality.

(4) Asymptotic normality
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(5) Tests are asymptotically valid, but are not valid in small samples.

8.3. Case 3

Weakly exogenous regressors

An important class of models are dynamic models, where lagged dependent vari-

ables have an impact on the current value. A simple version of these models that

captures the important points is

yt = z′tα+
p

∑
s=1

γsyt−s + εt

= x′tβ+ εt

where now xt contains lagged dependent variables. Clearly, even with E(εt|xt) = 0, X

and ε are not uncorrelated, so one can’t show unbiasedness. For example,

E(εt−1xt) 6= 0

since xt contains yt−1 (which is a function of εt−1) as an element.

• This fact implies that all of the small sample properties such as unbiasedness,

Gauss-Markov theorem, and small sample validity of test statistics do not

hold in this case. Recall Figure 3.7.2. This is a case of weakly exogenous

regressors, and we see that the OLS estimator is biased in this case.

• Nevertheless, under the above assumptions, all asymptotic properties con-

tinue to hold, using the same arguments as before.

8.4. When are the assumptions reasonable?

The two assumptions we’ve added are

(1) limn→∞ Pr
(1

nX ′X = QX
)

= 1, a QX finite positive definite matrix.

(2) n−1/2X ′ε d→ N(0,QXσ2
0)
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The most complicated case is that of dynamic models, since the other cases can be

treated as nested in this case. There exist a number of central limit theorems for de-

pendent processes, many of which are fairly technical. We won’t enter into details

(see Hamilton, Chapter 7 if you’re interested). A main requirement for use of standard

asymptotics for a dependent sequence

{st} = {1
n

n

∑
t=1

zt}

to converge in probability to a finite limit is that zt be stationary, in some sense.

• Strong stationarity requires that the joint distribution of the set

{zt ,zt+s,zt−q, ...}

not depend on t.

• Covariance (weak) stationarity requires that the first and second moments of

this set not depend on t.

• An example of a sequence that doesn’t satisfy this is an AR(1) process with a

unit root (a random walk):

xt = xt−1 + εt

εt ∼ IIN(0,σ2)

One can show that the variance of xt depends upon t in this case.

Stationarity prevents the process from trending off to plus or minus infinity, and pre-

vents cyclical behavior which would allow correlations between far removed zt znd zs

to be high. Draw a picture here.

• In summary, the assumptions are reasonable when the stochastic conditioning

variables have variances that are finite, and are not too strongly dependent.
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The AR(1) model with unit root is an example of a case where the dependence

is too strong for standard asymptotics to apply.

• The econometrics of nonstationary processes has been an active area of re-

search in the last two decades. The standard asymptotics don’t apply in this

case. This isn’t in the scope of this course.
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Exercises

(1) Show that for two random variables A and B, if E(A|B) = 0, then E (A f (B)) = 0.

How is this used in the Gauss-Markov theorem?

(2) If it possible for an AR(1) model for time series data, e.g., yt = 0 + 0.9yt−1 + εt

satisfy weak exogeneity? Strong exogeneity? Discuss.



CHAPTER 9

Data problems

In this section well consider problems associated with the regressor matrix: collinear-

ity, missing observation and measurement error.

9.1. Collinearity

Collinearity is the existence of linear relationships amongst the regressors. We can

always write

λ1x1 +λ2x2 + · · ·+λKxK + v = 0

where xi is the ith column of the regressor matrix X , and v is an n× 1 vector. In the

case that there exists collinearity, the variation in v is relatively small, so that there is

an approximately exact linear relation between the regressors.

• “relative” and “approximate” are imprecise, so it’s difficult to define when

collinearilty exists.

In the extreme, if there are exact linear relationships (every element of v equal) then

ρ(X) < K, so ρ(X ′X) < K, so X ′X is not invertible and the OLS estimator is not

uniquely defined. For example, if the model is

yt = β1 +β2x2t +β3x3t + εt

x2t = α1 +α2x3t

161
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then we can write

yt = β1 +β2 (α1 +α2x3t)+β3x3t + εt

= β1 +β2α1 +β2α2x3t +β3x3t + εt

= (β1 +β2α1)+(β2α2 +β3)x3t

= γ1 + γ2x3t + εt

• The γ′s can be consistently estimated, but since the γ′s define two equations in

three β′s, the β′s can’t be consistently estimated (there are multiple values of β

that solve the fonc). The β′s are unidentified in the case of perfect collinearity.

• Perfect collinearity is unusual, except in the case of an error in construction

of the regressor matrix, such as including the same regressor twice.

Another case where perfect collinearity may be encountered is with models with dummy

variables, if one is not careful. Consider a model of rental price (yi) of an apartment.

This could depend factors such as size, quality etc., collected in xi, as well as on the

location of the apartment. Let Bi = 1 if the ith apartment is in Barcelona, Bi = 0 other-

wise. Similarly, define Gi, Ti and Li for Girona, Tarragona and Lleida. One could use

a model such as

yi = β1 +β2Bi +β3Gi +β4Ti +β5Li + x′iγ+ εi

In this model, Bi +Gi +Ti +Li = 1, ∀i, so there is an exact relationship between these

variables and the column of ones corresponding to the constant. One must either drop

the constant, or one of the qualitative variables.

9.1.1. A brief aside on dummy variables. Introduce a brief discussion of dummy

variables here.
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FIGURE 9.1.1. s(β) when there is no collinearity
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9.1.2. Back to collinearity. The more common case, if one doesn’t make mis-

takes such as these, is the existence of inexact linear relationships, i.e., correlations

between the regressors that are less than one in absolute value, but not zero. The basic

problem is that when two (or more) variables move together, it is difficult to deter-

mine their separate influences. This is reflected in imprecise estimates, i.e., estimates

with high variances. With economic data, collinearity is commonly encountered, and

is often a severe problem.

When there is collinearity, the minimizing point of the objective function that de-

fines the OLS estimator (s(β), the sum of squared errors) is relatively poorly defined.

This is seen in Figures 9.1.1 and 9.1.2.

To see the effect of collinearity on variances, partition the regressor matrix as

X =
[

x W
]
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FIGURE 9.1.2. s(β) when there is collinearity
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where x is the first column of X (note: we can interchange the columns of X isf we like,

so there’s no loss of generality in considering the first column). Now, the variance of

β̂, under the classical assumptions, is

V (β̂) =
(
X ′X

)−1 σ2

Using the partition,

X ′X =


 x′x x′W

W ′x W ′W




and following a rule for partitioned inversion,

(
X ′X

)−1
1,1 =

(
x′x−x′W (W ′W )−1W ′x

)−1

=
(

x′
(

In −W (W ′W )
′1W ′

)
x
)−1

=
(
ESSx|W

)−1
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where by ESSx|W we mean the error sum of squares obtained from the regression

x = W λ+ v.

Since

R2 = 1−ESS/TSS,

we have

ESS = T SS(1−R2)

so the variance of the coefficient corresponding to x is

V (β̂x) =
σ2

T SSx(1−R2
x|W )

We see three factors influence the variance of this coefficient. It will be high if

(1) σ2 is large

(2) There is little variation in x. Draw a picture here.

(3) There is a strong linear relationship between x and the other regressors, so

that W can explain the movement in x well. In this case, R2
x|W will be close to

1. As R2
x|W → 1,V (β̂x) → ∞.

The last of these cases is collinearity.

Intuitively, when there are strong linear relations between the regressors, it is dif-

ficult to determine the separate influence of the regressors on the dependent variable.

This can be seen by comparing the OLS objective function in the case of no correlation

between regressors with the objective function with correlation between the regressors.

See the figures nocollin.ps (no correlation) and collin.ps (correlation), available on the

web site.
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9.1.3. Detection of collinearity. The best way is simply to regress each explana-

tory variable in turn on the remaining regressors. If any of these auxiliary regressions

has a high R2, there is a problem of collinearity. Furthermore, this procedure identifies

which parameters are affected.

• Sometimes, we’re only interested in certain parameters. Collinearity isn’t a

problem if it doesn’t affect what we’re interested in estimating.

An alternative is to examine the matrix of correlations between the regressors. High

correlations are sufficient but not necessary for severe collinearity.

Also indicative of collinearity is that the model fits well (high R2), but none of the

variables is significantly different from zero (e.g., their separate influences aren’t well

determined).

In summary, the artificial regressions are the best approach if one wants to be

careful.

9.1.4. Dealing with collinearity. More information

Collinearity is a problem of an uninformative sample. The first question is: is all

the available information being used? Is more data available? Are there coefficient

restrictions that have been neglected? Picture illustrating how a restriction can solve

problem of perfect collinearity.

Stochastic restrictions and ridge regression

Supposing that there is no more data or neglected restrictions, one possibility is to

change perspectives, to Bayesian econometrics. One can express prior beliefs regard-

ing the coefficients using stochastic restrictions. A stochastic linear restriction would

be something of the form

Rβ = r + v
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where R and r are as in the case of exact linear restrictions, but v is a random vector.

For example, the model could be

y = Xβ+ ε

Rβ = r + v

 ε

v


 ∼ N


 0

0


 ,


 σ2

εIn 0n×q

0q×n σ2
vIq




This sort of model isn’t in line with the classical interpretation of parameters as con-

stants: according to this interpretation the left hand side of Rβ = r + v is constant

but the right is random. This model does fit the Bayesian perspective: we combine

information coming from the model and the data, summarized in

y = Xβ+ ε

ε ∼ N(0,σ2
εIn)

with prior beliefs regarding the distribution of the parameter, summarized in

Rβ ∼ N(r,σ2
vIq)

Since the sample is random it is reasonable to suppose that E(εv′) = 0, which is the

last piece of information in the specification. How can you estimate using this model?

The solution is to treat the restrictions as artificial data. Write

 y

r


=


 X

R


β+


 ε

v




This model is heteroscedastic, since σ2
ε 6= σ2

v . Define the prior precision k = σε/σv.

This expresses the degree of belief in the restriction relative to the variability of the
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data. Supposing that we specify k, then the model


 y

kr


=


 X

kR


β+


 ε

kv




is homoscedastic and can be estimated by OLS. Note that this estimator is biased. It

is consistent, however, given that k is a fixed constant, even if the restriction is false

(this is in contrast to the case of false exact restrictions). To see this, note that there

are Q restrictions, where Q is the number of rows of R. As n → ∞, these Q artificial

observations have no weight in the objective function, so the estimator has the same

limiting objective function as the OLS estimator, and is therefore consistent.

To motivate the use of stochastic restrictions, consider the expectation of the squared

length of β̂:

E(β̂′β̂) = E
{(

β+
(
X ′X

)−1 X ′ε
)′(

β+
(
X ′X

)−1 X ′ε
)}

= β′β+ E
(
ε′X(X ′X)−1(X ′X)−1X ′ε

)

= β′β+Tr
(
X ′X

)−1 σ2

= β′β+σ2
K

∑
i=1

λi(the trace is the sum of eigenvalues)

> β′β+λmax(X ′X−1)σ2(the eigenvalues are all positive, sinceX ′X is p.d.

so

E(β̂′β̂) > β′β+
σ2

λmin(X ′X)

where λmin(X ′X) is the minimum eigenvalue of X ′X (which is the inverse of the maxi-

mum eigenvalue of (X ′X)−1). As collinearity becomes worse and worse, X ′X becomes

more nearly singular, so λmin(X ′X) tends to zero (recall that the determinant is the prod-

uct of the eigenvalues) and E(β̂′β̂) tends to infinite. On the other hand, β′β is finite.
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Now considering the restriction IKβ = 0 + v. With this restriction the model be-

comes 
 y

0


=


 X

kIK


β+


 ε

kv




and the estimator is

β̂ridge =



[

X ′ kIK

]

 X

kIK






−1
[

X ′ IK

]

 y

0




=
(
X ′X + k2IK

)−1
X ′y

This is the ordinary ridge regression estimator. The ridge regression estimator can be

seen to add k2IK, which is nonsingular, to X ′X , which is more and more nearly singular

as collinearity becomes worse and worse. As k → ∞, the restrictions tend to β = 0,

that is, the coefficients are shrunken toward zero. Also, the estimator tends to

β̂ridge =
(
X ′X + k2IK

)−1
X ′y →

(
k2IK

)−1
X ′y =

X ′y
k2 → 0

so β̂′
ridgeβ̂ridge → 0. This is clearly a false restriction in the limit, if our original model

is at al sensible.

There should be some amount of shrinkage that is in fact a true restriction. The

problem is to determine the k such that the restriction is correct. The interest in

ridge regression centers on the fact that it can be shown that there exists a k such

that MSE(β̂ridge) < β̂OLS. The problem is that this k depends on β and σ2, which are

unknown.

The ridge trace method plots β̂′
ridgeβ̂ridge as a function of k, and chooses the value

of k that “artistically” seems appropriate (e.g., where the effect of increasing k dies

off). Draw picture here. This means of choosing k is obviously subjective. This is not
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a problem from the Bayesian perspective: the choice of k reflects prior beliefs about

the length of β.

In summary, the ridge estimator offers some hope, but it is impossible to guarantee

that it will outperform the OLS estimator. Collinearity is a fact of life in econometrics,

and there is no clear solution to the problem.

9.2. Measurement error

Measurement error is exactly what it says, either the dependent variable or the re-

gressors are measured with error. Thinking about the way economic data are reported,

measurement error is probably quite prevalent. For example, estimates of growth of

GDP, inflation, etc. are commonly revised several times. Why should the last revision

necessarily be correct?

9.2.1. Error of measurement of the dependent variable. Measurement errors

in the dependent variable and the regressors have important differences. First con-

sider error in measurement of the dependent variable. The data generating process is

presumed to be

y∗ = Xβ+ ε

y = y∗ + v

vt ∼ iid(0,σ2
v)

where y∗ is the unobservable true dependent variable, and y is what is observed. We

assume that ε and v are independent and that y∗ = Xβ + ε satisfies the classical as-

sumptions. Given this, we have

y+ v = Xβ+ ε
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so

y = Xβ+ ε− v

= Xβ+ω

ωt ∼ iid(0,σ2
ε +σ2

v)

• As long as v is uncorrelated with X , this model satisfies the classical assump-

tions and can be estimated by OLS. This type of measurement error isn’t a

problem, then.

9.2.2. Error of measurement of the regressors. The situation isn’t so good in

this case. The DGP is

yt = x∗′t β+ εt

xt = x∗t + vt

vt ∼ iid(0,Σv)

where Σv is a K ×K matrix. Now X∗ contains the true, unobserved regressors, and

X is what is observed. Again assume that v is independent of ε, and that the model

y = X∗β+ ε satisfies the classical assumptions. Now we have

yt = (xt − vt)
′β+ εt

= x′tβ− v′tβ+ εt

= x′tβ+ωt
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The problem is that now there is a correlation between xt and ωt , since

E(xtωt) = E
(
(x∗t + vt)

(
−v′tβ+ εt

))

= −Σvβ

where

Σv = E
(
vtv′t
)
.

Because of this correlation, the OLS estimator is biased and inconsistent, just as in

the case of autocorrelated errors with lagged dependent variables. In matrix notation,

write the estimated model as

y = Xβ+ω

We have that

β̂ =

(
X ′X

n

)−1(X ′y
n

)

and

plim
(

X ′X
n

)−1

= plim
(X∗′ +V ′)(X∗ +V )

n

= (QX∗ +Σv)
−1

since X∗ and V are independent, and

plim
V ′V

n
= limE

1
n

n

∑
t=1

vtv′t

= Σv

Likewise,

plim
(

X ′y
n

)
= plim

(X∗′+V ′)(X∗β+ ε)
n

= QX∗β
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so

plimβ̂ = (QX∗ +Σv)
−1 QX∗β

So we see that the least squares estimator is inconsistent when the regressors are mea-

sured with error.

• A potential solution to this problem is the instrumental variables (IV) estima-

tor, which we’ll discuss shortly.

9.3. Missing observations

Missing observations occur quite frequently: time series data may not be gath-

ered in a certain year, or respondents to a survey may not answer all questions. We’ll

consider two cases: missing observations on the dependent variable and missing ob-

servations on the regressors.

9.3.1. Missing observations on the dependent variable. In this case, we have

y = Xβ+ ε

or 
 y1

y2


=


 X1

X2


β+


 ε1

ε2




where y2 is not observed. Otherwise, we assume the classical assumptions hold.

• A clear alternative is to simply estimate using the compete observations

y1 = X1β+ ε1

Since these observations satisfy the classical assumptions, one could estimate

by OLS.
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• The question remains whether or not one could somehow replace the unob-

served y2 by a predictor, and improve over OLS in some sense. Let ŷ2 be the

predictor of y2. Now

β̂ =






 X1

X2



′
 X1

X2








−1
 X1

X2



′
 y1

ŷ2




=
[
X ′

1X1 +X ′
2X2
]−1 [X ′

1y1 +X ′
2ŷ2
]

Recall that the OLS fonc are

X ′X β̂ = X ′y

so if we regressed using only the first (complete) observations, we would have

X ′
1X1β̂1 = X ′

1y1.

Likewise, an OLS regression using only the second (filled in) observations would give

X ′
2X2β̂2 = X ′

2ŷ2.

Substituting these into the equation for the overall combined estimator gives

β̂ =
[
X ′

1X1 +X ′
2X2
]−1
[
X ′

1X1β̂1 +X ′
2X2β̂2

]

=
[
X ′

1X1 +X ′
2X2
]−1 X ′

1X1β̂1 +
[
X ′

1X1 +X ′
2X2
]−1 X ′

2X2β̂2

≡ Aβ̂1 +(IK −A)β̂2

where

A ≡
[
X ′

1X1 +X ′
2X2
]−1 X ′

1X1
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and we use

[
X ′

1X1 +X ′
2X2
]−1 X ′

2X2 =
[
X ′

1X1 +X ′
2X2
]−1 [(X ′

1X1 +X ′
2X2
)
−X ′

1X1
]

= IK −
[
X ′

1X1 +X ′
2X2
]−1 X ′

1X1

= IK −A.

Now,

E(β̂) = Aβ+(IK −A)E
(

β̂2

)

and this will be unbiased only if E
(

β̂2

)
= β.

• The conclusion is the this filled in observations alone would need to define an

unbiased estimator. This will be the case only if

ŷ2 = X2β+ ε̂2

where ε̂2 has mean zero. Clearly, it is difficult to satisfy this condition without

knowledge of β.

• Note that putting ŷ2 = ȳ1 does not satisfy the condition and therefore leads to

a biased estimator.

EXERCISE 13. Formally prove this last statement.

• One possibility that has been suggested (see Greene, page 275) is to estimate

β using a first round estimation using only the complete observations

β̂1 = (X ′
1X1)

−1X ′
1y1
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then use this estimate, β̂1,to predict y2 :

ŷ2 = X2β̂1

= X2(X ′
1X1)

−1X ′
1y1

Now, the overall estimate is a weighted average of β̂1 and β̂2, just as above,

but we have

β̂2 = (X ′
2X2)

−1X ′
2ŷ2

= (X ′
2X2)

−1X ′
2X2β̂1

= β̂1

This shows that this suggestion is completely empty of content: the final esti-

mator is the same as the OLS estimator using only the complete observations.

9.3.2. The sample selection problem. In the above discussion we assumed that

the missing observations are random. The sample selection problem is a case where

the missing observations are not random. Consider the model

y∗t = x′tβ+ εt

which is assumed to satisfy the classical assumptions. However, y∗t is not always

observed. What is observed is yt defined as

yt = y∗t if y∗t ≥ 0

Or, in other words, y∗t is missing when it is less than zero.
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FIGURE 9.3.1. Sample selection bias
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The difference in this case is that the missing values are not random: they are

correlated with the xt . Consider the case

y∗ = x+ ε

with V (ε) = 25, but using only the observations for which y∗ > 0 to estimate. Figure

9.3.1 illustrates the bias. The Octave program is sampsel.m

9.3.3. Missing observations on the regressors. Again the model is


 y1

y2


=


 X1

X2


β+


 ε1

ε2




but we assume now that each row of X2 has an unobserved component(s). Again,

one could just estimate using the complete observations, but it may seem frustrating

to have to drop observations simply because of a single missing variable. In general,

http://pareto.uab.es/mcreel/Econometrics/Include/Figures/sampsel.m
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if the unobserved X2 is replaced by some prediction, X ∗
2 , then we are in the case of

errors of observation. As before, this means that the OLS estimator is biased when

X∗
2 is used instead of X2. Consistency is salvaged, however, as long as the number of

missing observations doesn’t increase with n.

• Including observations that have missing values replaced by ad hoc values

can be interpreted as introducing false stochastic restrictions. In general, this

introduces bias. It is difficult to determine whether MSE increases or de-

creases. Monte Carlo studies suggest that it is dangerous to simply substitute

the mean, for example.

• In the case that there is only one regressor other than the constant, subtitution

of x̄ for the missing xt does not lead to bias. This is a special case that doesn’t

hold for K > 2.

EXERCISE 14. Prove this last statement.

• In summary, if one is strongly concerned with bias, it is best to drop observa-

tions that have missing components. There is potential for reduction of MSE

through filling in missing elements with intelligent guesses, but this could

also increase MSE.
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Exercises

(1) Consider the Nerlove model

lnC = β j
1 +β j

2 lnQ+β3 lnPL +β4 lnPF +β5 lnPK + ε

When this model is estimated by OLS, some coefficients are not significant. This

may be due to collinearity.

Exercises

(a) Calculate the correlation matrix of the regressors.

(b) Perform artificial regressions to see if collinearity is a problem.

(c) Apply the ridge regression estimator.

Exercises

(i) Plot the ridge trace diagram

(ii) Check what happens as k goes to zero, and as k becomes very large.



CHAPTER 10

Functional form and nonnested tests

Though theory often suggests which conditioning variables should be included,

and suggests the signs of certain derivatives, it is usually silent regarding the func-

tional form of the relationship between the dependent variable and the regressors. For

example, considering a cost function, one could have a Cobb-Douglas model

c = Awβ1
1 wβ2

2 qβqeε

This model, after taking logarithms, gives

lnc = β0 +β1 lnw1 +β2 lnw2 +βq lnq+ ε

where β0 = lnA. Theory suggests that A > 0,β1 > 0,β2 > 0,β3 > 0. This model isn’t

compatible with a fixed cost of production since c = 0 when q = 0. Homogeneity of

degree one in input prices suggests that β1 + β2 = 1, while constant returns to scale

implies βq = 1.

While this model may be reasonable in some cases, an alternative

√
c = β0 +β1

√
w1 +β2

√
w2 +βq

√
q+ ε

may be just as plausible. Note that
√

x and ln(x) look quite alike, for certain values

of the regressors, and up to a linear transformation, so it may be difficult to choose

between these models.

180
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The basic point is that many functional forms are compatible with the linear-in-

parameters model, since this model can incorporate a wide variety of nonlinear trans-

formations of the dependent variable and the regressors. For example, suppose that

g(·) is a real valued function and that x(·) is a K− vector-valued function. The follow-

ing model is linear in the parameters but nonlinear in the variables:

xt = x(zt)

yt = x′tβ+ εt

There may be P fundamental conditioning variables zt , but there may be K regressors,

where K may be smaller than, equal to or larger than P. For example, xt could include

squares and cross products of the conditioning variables in zt .

10.1. Flexible functional forms

Given that the functional form of the relationship between the dependent variable

and the regressors is in general unknown, one might wonder if there exist parametric

models that can closely approximate a wide variety of functional relationships. A

“Diewert-Flexible” functional form is defined as one such that the function, the vector

of first derivatives and the matrix of second derivatives can take on an arbitrary value

at a single data point. Flexibility in this sense clearly requires that there be at least

K = 1+P+
(
P2 −P

)
/2+P

free parameters: one for each independent effect that we wish to model.

Suppose that the model is

y = g(x)+ ε
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A second-order Taylor’s series expansion (with remainder term) of the function g(x)

about the point x = 0 is

g(x) = g(0)+ x′Dxg(0)+
x′D2

xg(0)x
2

+R

Use the approximation, which simply drops the remainder term, as an approximation

to g(x) :

g(x) ' gK(x) = g(0)+ x′Dxg(0)+
x′D2

xg(0)x
2

As x → 0, the approximation becomes more and more exact, in the sense that gK(x)→

g(x), DxgK(x) → Dxg(x) and D2
xgK(x) → D2

xg(x). For x = 0, the approximation is

exact, up to the second order. The idea behind many flexible functional forms is to

note that g(0), Dxg(0) and D2
xg(0) are all constants. If we treat them as parameters, the

approximation will have exactly enough free parameters to approximate the function

g(x), which is of unknown form, exactly, up to second order, at the point x = 0. The

model is

gK(x) = α+ x′β+1/2x′Γx

so the regression model to fit is

y = α+ x′β+1/2x′Γx+ ε

• While the regression model has enough free parameters to be Diewert-flexible,

the question remains: is plimα̂ = g(0)? Is plimβ̂ = Dxg(0)? Is plimΓ̂ =

D2
xg(0)?

• The answer is no, in general. The reason is that if we treat the true values

of the parameters as these derivatives, then ε is forced to play the part of the

remainder term, which is a function of x, so that x and ε are correlated in this

case. As before, the estimator is biased in this case.
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• A simpler example would be to consider a first-order T.S. approximation to a

quadratic function. Draw picture.

• The conclusion is that “flexible functional forms” aren’t really flexible in a

useful statistical sense, in that neither the function itself nor its derivatives are

consistently estimated, unless the function belongs to the parametric family

of the specified functional form. In order to lead to consistent inferences, the

regression model must be correctly specified.

10.1.1. The translog form. In spite of the fact that FFF’s aren’t really flexible for

the purposes of econometric estimation and inference, they are useful, and they are

certainly subject to less bias due to misspecification of the functional form than are

many popular forms, such as the Cobb-Douglas or the simple linear in the variables

model. The translog model is probably the most widely used FFF. This model is as

above, except that the variables are subjected to a logarithmic tranformation. Also, the

expansion point is usually taken to be the sample mean of the data, after the logarithmic

transformation. The model is defined by

y = ln(c)

x = ln
(

z
z̄

)

= ln(z)− ln(z̄)

y = α+ x′β+1/2x′Γx+ ε
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In this presentation, the t subscript that distinguishes observations is suppressed for

simplicity. Note that

∂y
∂x

= β+Γx

=
∂ ln(c)
∂ ln(z)

(the other part of x is constant)

=
∂c
∂z

z
c

which is the elasticity of c with respect to z. This is a convenient feature of the translog

model. Note that at the means of the conditioning variables, z̄, x = 0, so

∂y
∂x

∣∣∣∣
z=z̄

= β

so the β are the first-order elasticities, at the means of the data.

To illustrate, consider that y is cost of production:

y = c(w,q)

where w is a vector of input prices and q is output. We could add other variables by

extending q in the obvious manner, but this is supressed for simplicity. By Shephard’s

lemma, the conditional factor demands are

x =
∂c(w,q)

∂w

and the cost shares of the factors are therefore

s =
wx
c

=
∂c(w,q)

∂w
w
c
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which is simply the vector of elasticities of cost with respect to input prices. If the cost

function is modeled using a translog function, we have

ln(c) = α+ x′β+ z′δ+1/2
[

x′ z
]

 Γ11 Γ12

Γ′
12 Γ22




 x

z




= α+ x′β+ z′δ+1/2x′Γ11x+ x′Γ12z+1/2z2γ22

where x = ln(w/w̄) (element-by-element division) and z = ln(q/q̄), and

Γ11 =


 γ11 γ12

γ12 γ22




Γ12 =


 γ13

γ23




Γ22 = γ33.

Note that symmetry of the second derivatives has been imposed.

Then the share equations are just

s = β+
[

Γ11 Γ12

]

 x

z




Therefore, the share equations and the cost equation have parameters in common. By

pooling the equations together and imposing the (true) restriction that the parameters

of the equations be the same, we can gain efficiency.

To illustrate in more detail, consider the case of two inputs, so

x =


 x1

x2


 .
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In this case the translog model of the logarithmic cost function is

lnc = α+β1x1 +β2x2 +δz+
γ11

2
x2

1 +
γ22

2
x2

2 +
γ33

2
z2 + γ12x1x2 + γ13x1z+ γ23x2z

The two cost shares of the inputs are the derivatives of lnc with respect to x1 and x2:

s1 = β1 + γ11x1 + γ12x2 + γ13z

s2 = β2 + γ12x1 + γ22x2 + γ13z

Note that the share equations and the cost equation have parameters in common.

One can do a pooled estimation of the three equations at once, imposing that the pa-

rameters are the same. In this way we’re using more observations and therefore more

information, which will lead to imporved efficiency. Note that this does assume that

the cost equation is correctly specified (i.e., not an approximation), since otherwise the

derivatives would not be the true derivatives of the log cost function, and would then

be misspecified for the shares. To pool the equations, write the model in matrix form

(adding in error terms)




lnc

s1

s2


=




1 x1 x2 z x2
1
2

x2
2
2

z2

2 x1x2 x1z x2z

0 1 0 0 x1 0 0 x2 z 0

0 0 1 0 0 x2 0 x1 0 z







α

β1

β2

δ

γ11

γ22

γ33

γ12

γ13

γ23




+




ε1

ε2

ε3



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This is one observation on the three equations. With the appropriate notation, a

single observation can be written as

yt = Xtθ+ εt

The overall model would stack n observations on the three equations for a total of 3n

observations: 


y1

y2
...

yn




=




X1

X2
...

Xn




θ+




ε1

ε2
...

εn




Next we need to consider the errors. For observation t the errors can be placed in a

vector

εt =




ε1t

ε2t

ε3t




First consider the covariance matrix of this vector: the shares are certainly corre-

lated since they must sum to one. (In fact, with 2 shares the variances are equal and

the covariance is -1 times the variance. General notation is used to allow easy exten-

sion to the case of more than 2 inputs). Also, it’s likely that the shares and the cost

equation have different variances. Supposing that the model is covariance stationary,

the variance of εt won′t depend upon t:

Varεt = Σ0 =




σ11 σ12 σ13

· σ22 σ23

· · σ33




Note that this matrix is singular, since the shares sum to 1. Assuming that there is no

autocorrelation, the overall covariance matrix has the seemingly unrelated regressions
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(SUR) structure.

Var




ε1

ε2
...

εn




= Σ

=




Σ0 0 · · · 0

0 Σ0
. . . ...

... . . . 0

0 · · · 0 Σ0




= In ⊗Σ0

where the symbol ⊗ indicates the Kronecker product. The Kronecker product of two

matrices A and B is

A⊗B =




a11B a12B · · · a1qB

a21B . . . ...
...

apqB · · · apqB




.

10.1.2. FGLS estimation of a translog model. So, this model has heteroscedas-

ticity and autocorrelation, so OLS won’t be efficient. The next question is: how do

we estimate efficiently using FGLS? FGLS is based upon inverting the estimated error

covariance Σ̂. So we need to estimate Σ.

An asymptotically efficient procedure is (supposing normality of the errors)

(1) Estimate each equation by OLS
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(2) Estimate Σ0 using

Σ̂0 =
1
n

n

∑
t=1

ε̂t ε̂′t

(3) Next we need to account for the singularity of Σ0. It can be shown that Σ̂0 will

be singular when the shares sum to one, so FGLS won’t work. The solution

is to drop one of the share equations, for example the second. The model

becomes


 lnc

s1


=


 1 x1 x2 z x2

1
2

x2
2
2

z2

2 x1x2 x1z x2z

0 1 0 0 x1 0 0 x2 z 0







α

β1

β2

δ

γ11

γ22

γ33

γ12

γ13

γ23




+


 ε1

ε2




or in matrix notation for the observation:

y∗t = X∗
t θ+ ε∗t

and in stacked notation for all observations we have the 2n observations:



y∗1

y∗2
...

y∗n




=




X∗
1

X∗
2

...

X∗
n




θ+




ε∗1
ε∗2
...

ε∗n



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or, finally in matrix notation for all observations:

y∗ = X∗θ+ ε∗

Considering the error covariance, we can define

Σ∗
0 = Var


 ε1

ε2




Σ∗ = In ⊗Σ∗
0

Define Σ̂∗
0 as the leading 2×2 block of Σ̂0 , and form

Σ̂∗ = In ⊗ Σ̂∗
0.

This is a consistent estimator, following the consistency of OLS and applying

a LLN.

(4) Next compute the Cholesky factorization

P̂0 = Chol
(
Σ̂∗

0
)−1

(I am assuming this is defined as an upper triangular matrix, which is consis-

tent with the way Octave does it) and the Cholesky factorization of the overall

covariance matrix of the 2 equation model, which can be calculated as

P̂ = CholΣ̂∗ = In ⊗ P̂0

(5) Finally the FGLS estimator can be calculated by applying OLS to the trans-

formed model

P̂′y∗ = P̂′X∗θ+
ˆ̂ ′Pε∗
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or by directly using the GLS formula

θ̂FGLS =
(

X∗′ (Σ̂∗
0
)−1 X∗

)−1
X∗′ (Σ̂∗

0
)−1 y∗

It is equivalent to transform each observation individually:

P̂′
0y∗y = P̂′

0X∗
t θ+ P̂′

0ε∗

and then apply OLS. This is probably the simplest approach.

A few last comments.

(1) We have assumed no autocorrelation across time. This is clearly restrictive.

It is relatively simple to relax this, but we won’t go into it here.

(2) Also, we have only imposed symmetry of the second derivatives. Another

restriction that the model should satisfy is that the estimated shares should

sum to 1. This can be accomplished by imposing

β1 +β2 = 1
3

∑
i=1

γi j = 0, j = 1,2,3.

These are linear parameter restrictions, so they are easy to impose and will

improve efficiency if they are true.

(3) The estimation procedure outlined above can be iterated. That is, estimate

θ̂FGLS as above, then re-estimate Σ∗
0 using errors calculated as

ε̂ = y−X θ̂FGLS

These might be expected to lead to a better estimate than the estimator

based on θ̂OLS, since FGLS is asymptotically more efficient. Then re-estimate

θ using the new estimated error covariance. It can be shown that if this is
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repeated until the estimates don’t change (i.e., iterated to convergence) then

the resulting estimator is the MLE. At any rate, the asymptotic properties of

the iterated and uniterated estimators are the same, since both are based upon

a consistent estimator of the error covariance.

10.2. Testing nonnested hypotheses

Given that the choice of functional form isn’t perfectly clear, in that many pos-

sibilities exist, how can one choose between forms? When one form is a parametric

restriction of another, the previously studied tests such as Wald, LR, score or qF are

all possibilities. For example, the Cobb-Douglas model is a parametric restriction of

the translog: The translog is

yt = α+ x′tβ+1/2x′tΓxt + ε

where the variables are in logarithms, while the Cobb-Douglas is

yt = α+ x′tβ+ ε

so a test of the Cobb-Douglas versus the translog is simply a test that Γ = 0.

The situation is more complicated when we want to test non-nested hypotheses. If

the two functional forms are linear in the parameters, and use the same transformation

of the dependent variable, then they may be written as

M1 : y = Xβ+ ε

εt ∼ iid(0,σ2
ε)

M2 : y = Zγ+η

η ∼ iid(0,σ2
η)
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We wish to test hypotheses of the form: H0 : Mi is correctly specified versus HA : Mi is

misspecified, for i = 1,2.

• One could account for non-iid errors, but we’ll suppress this for simplicity.

• There are a number of ways to proceed. We’ll consider the J test, proposed

by Davidson and MacKinnon, Econometrica (1981). The idea is to artificially

nest the two models, e.g.,

y = (1−α)Xβ+α(Zγ)+ω

If the first model is correctly specified, then the true value of α is zero. On

the other hand, if the second model is correctly specified then α = 1.

– The problem is that this model is not identified in general. For example,

if the models share some regressors, as in

M1 : yt = β1 +β2x2t +β3x3t + εt

M2 : yt = γ1 + γ2x2t + γ3x4t +ηt

then the composite model is

yt = (1−α)β1 +(1−α)β2x2t +(1−α)β3x3t +αγ1 +αγ2x2t +αγ3x4t +ωt

Combining terms we get

yt = ((1−α)β1 +αγ1)+((1−α)β2 +αγ2)x2t +(1−α)β3x3t +αγ3x4t +ωt

= δ1 +δ2x2t +δ3x3t +δ4x4t +ωt

The four δ′s are consistently estimable, but α is not, since we have four equations in 7

unknowns, so one can’t test the hypothesis that α = 0.
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The idea of the J test is to substitute γ̂ in place of γ. This is a consistent estimator

supposing that the second model is correctly specified. It will tend to a finite probabil-

ity limit even if the second model is misspecified. Then estimate the model

y = (1−α)Xβ+α(Zγ̂)+ω

= Xθ+αŷ+ω

where ŷ = Z(Z′Z)−1Z′y = PZy. In this model, α is consistently estimable, and one

can show that, under the hypothesis that the first model is correct, α p→ 0 and that the

ordinary t -statistic for α = 0 is asymptotically normal:

t =
α̂

σ̂α̂

a∼ N(0,1)

• If the second model is correctly specified, then t
p→ ∞, since α̂ tends in prob-

ability to 1, while it’s estimated standard error tends to zero. Thus the test

will always reject the false null model, asymptotically, since the statistic will

eventually exceed any critical value with probability one.

• We can reverse the roles of the models, testing the second against the first.

• It may be the case that neither model is correctly specified. In this case,

the test will still reject the null hypothesis, asymptotically, if we use critical

values from the N(0,1) distribution, since as long as α̂ tends to something

different from zero, |t| p→ ∞. Of course, when we switch the roles of the

models the other will also be rejected asymptotically.

• In summary, there are 4 possible outcomes when we test two models, each

against the other. Both may be rejected, neither may be rejected, or one of the

two may be rejected.



10.2. TESTING NONNESTED HYPOTHESES 195

• There are other tests available for non-nested models. The J− test is simple

to apply when both models are linear in the parameters. The P-test is similar,

but easier to apply when M1 is nonlinear.

• The above presentation assumes that the same transformation of the depen-

dent variable is used by both models. MacKinnon, White and Davidson,

Journal of Econometrics, (1983) shows how to deal with the case of different

transformations.

• Monte-Carlo evidence shows that these tests often over-reject a correctly

specified model. Can use bootstrap critical values to get better-performing

tests.



CHAPTER 11

Exogeneity and simultaneity

Several times we’ve encountered cases where correlation between regressors and

the error term lead to biasedness and inconsistency of the OLS estimator. Cases in-

clude autocorrelation with lagged dependent variables and measurement error in the

regressors. Another important case is that of simultaneous equations. The cause is

different, but the effect is the same.

11.1. Simultaneous equations

Up until now our model is

y = Xβ+ ε

where, for purposes of estimation we can treat X as fixed. This means that when esti-

mating β we condition on X . When analyzing dynamic models, we’re not interested in

conditioning on X , as we saw in the section on stochastic regressors. Nevertheless, the

OLS estimator obtained by treating X as fixed continues to have desirable asymptotic

properties even in that case.
196
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Simultaneous equations is a different prospect. An example of a simultaneous

equation system is a simple supply-demand system:

Demand: qt = α1 +α2 pt +α3yt + ε1t

Supply: qt = β1 +β2 pt + ε2t

E




 ε1t

ε2t



[

ε1t ε2t

]

 =


 σ11 σ12

· σ22




≡ Σ,∀t

The presumption is that qt and pt are jointly determined at the same time by the in-

tersection of these equations. We’ll assume that yt is determined by some unrelated

process. It’s easy to see that we have correlation between regressors and errors. Solv-

ing for pt :

α1 +α2 pt +α3yt + ε1t = β1 +β2 pt + ε2t

β2 pt −α2 pt = α1 −β1 +α3yt + ε1t − ε2t

pt =
α1 −β1

β2 −α2
+

α3yt

β2 −α2
+

ε1t − ε2t

β2 −α2

Now consider whether pt is uncorrelated with ε1t :

E(ptε1t) = E
{(

α1 −β1

β2 −α2
+

α3yt

β2 −α2
+

ε1t − ε2t

β2 −α2

)
ε1t

}

=
σ11 −σ12

β2 −α2

Because of this correlation, OLS estimation of the demand equation will be biased and

inconsistent. The same applies to the supply equation, for the same reason.

In this model, qt and pt are the endogenous varibles (endogs), that are determined

within the system. yt is an exogenous variable (exogs). These concepts are a bit tricky,
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and we’ll return to it in a minute. First, some notation. Suppose we group together

current endogs in the vector Yt . If there are G endogs, Yt is G× 1. Group current and

lagged exogs, as well as lagged endogs in the vector Xt , which is K×1. Stack the errors

of the G equations into the error vector Et . The model, with additional assumtions, can

be written as

Y ′
t Γ = X ′

t B+E ′
t

Et ∼ N(0,Σ),∀t

E(EtE ′
s) = 0, t 6= s

We can stack all n observations and write the model as

Y Γ = XB+E

E(X ′E) = 0(K×G)

vec(E) ∼ N(0,Ψ)

where

Y =




Y ′
1

Y ′
2

...

Y ′
n




,X =




X ′
1

X ′
2

...

X ′
n




,E =




E ′
1

E ′
2

...

E ′
n




Y is n×G, X is n×K, and E is n×G.

• This system is complete, in that there are as many equations as endogs.

• There is a normality assumption. This isn’t necessary, but allows us to con-

sider the relationship between least squares and ML estimators.
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• Since there is no autocorrelation of the Et ’s, and since the columns of E are

individually homoscedastic, then

Ψ =




σ11In σ12In · · · σ1GIn

σ22In
...

. . . ...

· σGGIn




= In ⊗Σ

• X may contain lagged endogenous and exogenous variables. These variables

are predetermined.

• We need to define what is meant by “endogenous” and “exogenous” when

classifying the current period variables.

11.2. Exogeneity

The model defines a data generating process. The model involves two sets of

variables, Yt and Xt , as well as a parameter vector

θ =
[

vec(Γ)′ vec(B)′ vec∗(Σ)′
]′

• In general, without additional restrictions, θ is a G2 + GK +
(
G2 −G

)
/2 +

G dimensional vector. This is the parameter vector that were interested in

estimating.

• In principle, there exists a joint density function for Yt and Xt, which depends

on a parameter vector φ. Write this density as

ft(Yt ,Xt |φ,It)
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where It is the information set in period t. This includes lagged Y ′
t s and lagged

Xt ’s of course. This can be factored into the density of Yt conditional on Xt

times the marginal density of Xt :

ft(Yt ,Xt|φ,It) = ft(Yt |Xt,φ,It) ft(Xt|φ,It)

This is a general factorization, but is may very well be the case that not all

parameters in φ affect both factors. So use φ1 to indicate elements of φ that

enter into the conditional density and write φ2 for parameters that enter into

the marginal. In general, φ1 and φ2 may share elements, of course. We have

ft(Yt ,Xt|φ,It) = ft(Yt |Xt,φ1,It) ft(Xt|φ2,It)

• Recall that the model is

Y ′
t Γ = X ′

t B+E ′
t

Et ∼ N(0,Σ),∀t

E(EtE ′
s) = 0, t 6= s

Normality and lack of correlation over time imply that the observations are indepen-

dent of one another, so we can write the log-likelihood function as the sum of likeli-

hood contributions of each observation:

lnL(Y |θ,It) =
n

∑
t=1

ln ft(Yt ,Xt|φ,It)

=
n

∑
t=1

ln( ft(Yt |Xt,φ1,It) ft(Xt|φ2,It))

=
n

∑
t=1

ln ft(Yt |Xt,φ1,It)+
n

∑
t=1

ln ft(Xt|φ2,It) =
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DEFINITION 15 (Weak Exogeneity). Xt is weakly exogeneous for θ (the original

parameter vector) if there is a mapping from φ to θ that is invariant to φ2. More for-

mally, for an arbitrary (φ1,φ2), θ(φ) = θ(φ1).

This implies that φ1 and φ2 cannot share elements if Xt is weakly exogenous, since

φ1 would change as φ2 changes, which prevents consideration of arbitrary combina-

tions of (φ1,φ2).

Supposing that Xt is weakly exogenous, then the MLE of φ1 using the joint density

is the same as the MLE using only the conditional density

lnL(Y |X ,θ,It) =
n

∑
t=1

ln ft(Yt |Xt,φ1,It)

since the conditional likelihood doesn’t depend on φ2. In other words, the joint and

conditional log-likelihoods maximize at the same value of φ1.

• With weak exogeneity, knowledge of the DGP of Xt is irrelevant for inference

on φ1, and knowledge of φ1 is sufficient to recover the parameter of interest,

θ. Since the DGP of Xt is irrelevant, we can treat Xt as fixed in inference.

• By the invariance property of MLE, the MLE of θ is θ(φ̂1),and this mapping

is assumed to exist in the definition of weak exogeneity.

• Of course, we’ll need to figure out just what this mapping is to recover θ̂ from

φ̂1. This is the famous identification problem.

• With lack of weak exogeneity, the joint and conditional likelihood functions

maximize in different places. For this reason, we can’t treat Xt as fixed in

inference. The joint MLE is valid, but the conditional MLE is not.

• In resume, we require the variables in Xt to be weakly exogenous if we are to

be able to treat them as fixed in estimation. Lagged Yt satisfy the definition,

since they are in the conditioning information set, e.g., Yt−1 ∈ It . Lagged
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Yt aren’t exogenous in the normal usage of the word, since their values are

determined within the model, just earlier on. Weakly exogenous variables

include exogenous (in the normal sense) variables as well as all predetermined

variables.

11.3. Reduced form

Recall that the model is

Y ′
t Γ = X ′

t B+E ′
t

V (Et) = Σ

This is the model in structural form.

DEFINITION 16 (Structural form). An equation is in structural form when more

than one current period endogenous variable is included.

The solution for the current period endogs is easy to find. It is

Y ′
t = X ′

t BΓ−1 +E ′
t Γ

−1

= X ′
t Π+V ′

t =

Now only one current period endog appears in each equation. This is the reduced form.

DEFINITION 17 (Reduced form). An equation is in reduced form if only one cur-

rent period endog is included.

An example is our supply/demand system. The reduced form for quantity is ob-

tained by solving the supply equation for price and substituting into demand:
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qt = α1 +α2

(
qt −β1 − ε2t

β2

)
+α3yt + ε1t

β2qt −α2qt = β2α1 −α2 (β1 + ε2t)+β2α3yt +β2ε1t

qt =
β2α1 −α2β1

β2 −α2
+

β2α3yt

β2 −α2
+

β2ε1t −α2ε2t

β2 −α2

= π11 +π21yt +V1t

Similarly, the rf for price is

β1 +β2 pt + ε2t = α1 +α2 pt +α3yt + ε1t

β2 pt −α2 pt = α1 −β1 +α3yt + ε1t − ε2t

pt =
α1 −β1

β2 −α2
+

α3yt

β2 −α2
+

ε1t − ε2t

β2 −α2

= π12 +π22yt +V2t

The interesting thing about the rf is that the equations individually satisfy the classical

assumptions, since yt is uncorrelated with ε1t and ε2t by assumption, and therefore

E(ytVit) = 0, i=1,2, ∀t. The errors of the rf are


 V1t

V2t


=




β2ε1t−α2ε2t
β2−α2

ε1t−ε2t
β2−α2




The variance of V1t is

V (V1t) = E
[(

β2ε1t −α2ε2t

β2 −α2

)(
β2ε1t −α2ε2t

β2 −α2

)]

=
β2

2σ11 −2β2α2σ12 +α2σ22

(β2 −α2)
2

• This is constant over time, so the first rf equation is homoscedastic.

• Likewise, since the εt are independent over time, so are the Vt .
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The variance of the second rf error is

V (V2t) = E
[(

ε1t − ε2t

β2 −α2

)(
ε1t − ε2t

β2 −α2

)]

=
σ11 −2σ12 +σ22

(β2 −α2)
2

and the contemporaneous covariance of the errors across equations is

E(V1tV2t) = E
[(

β2ε1t −α2ε2t

β2 −α2

)(
ε1t − ε2t

β2 −α2

)]

=
β2σ11 − (β2 +α2)σ12 +σ22

(β2 −α2)
2

• In summary the rf equations individually satisfy the classical assumptions,

under the assumtions we’ve made, but they are contemporaneously correlated.

The general form of the rf is

Y ′
t = X ′

t BΓ−1 +E ′
t Γ

−1

= X ′
t Π+V ′

t

so we have that

Vt =
(
Γ−1)′Et ∼ N

(
0,
(
Γ−1)′ΣΓ−1

)
,∀t

and that the Vt are timewise independent (note that this wouldn’t be the case if the Et

were autocorrelated).

11.4. IV estimation

The IV estimator may appear a bit unusual at first, but it will grow on you over

time.
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The simultaneous equations model is

Y Γ = XB+E

Considering the first equation (this is without loss of generality, since we can always

reorder the equations) we can partition the Y matrix as

Y =
[

y Y1 Y2

]

• y is the first column

• Y1 are the other endogenous variables that enter the first equation

• Y2 are endogs that are excluded from this equation

Similarly, partition X as

X =
[

X1 X2

]

• X1 are the included exogs, and X2 are the excluded exogs.

Finally, partition the error matrix as

E =
[

ε E12

]

Assume that Γ has ones on the main diagonal. These are normalization restrictions

that simply scale the remaining coefficients on each equation, and which scale the

variances of the error terms.
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Given this scaling and our partitioning, the coefficient matrices can be written as

Γ =




1 Γ12

−γ1 Γ22

0 Γ32




B =


 β1 B12

0 B22




With this, the first equation can be written as

y = Y1γ1 +X1β1 + ε

= Zδ+ ε

The problem, as we’ve seen is that Z is correlated with ε, since Y1 is formed of endogs.

Now, let’s consider the general problem of a linear regression model with correla-

tion between regressors and the error term:

y = Xβ+ ε

ε ∼ iid(0, Inσ2)

E(X ′ε) 6= 0.

The present case of a structural equation from a system of equations fits into this no-

tation, but so do other problems, such as measurement error or lagged dependent vari-

ables with autocorrelated errors. Consider some matrix W which is formed of variables

uncorrelated with ε. This matrix defines a projection matrix

PW = W (W ′W )−1W ′
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so that anything that is projected onto the space spanned by W will be uncorrelated

with ε, by the definition of W. Transforming the model with this projection matrix we

get

PW y = PW Xβ+PW ε

or

y∗ = X∗β+ ε∗

Now we have that ε∗ and X∗ are uncorrelated, since this is simply

E(X∗′ε∗) = E(X ′P′
W PW ε)

= E(X ′PW ε)

and

PW X = W (W ′W )−1W ′X

is the fitted value from a regression of X on W. This is a linear combination of the

columns of W, so it must be uncorrelated with ε. This implies that applying OLS to the

model

y∗ = X∗β+ ε∗

will lead to a consistent estimator, given a few more assumptions. This is the general-

ized instrumental variables estimator. W is known as the matrix of instruments. The

estimator is

β̂IV = (X ′PW X)−1X ′PW y

from which we obtain

β̂IV = (X ′PW X)−1X ′PW (Xβ+ ε)

= β+(X ′PW X)−1X ′PW ε
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so

β̂IV −β = (X ′PW X)−1X ′PW ε

=
(
X ′W (W ′W )−1W ′X

)−1
X ′W (W ′W )−1W ′ε

Now we can introduce factors of n to get

β̂IV −β =

((
X ′W

n

)(
W ′W

n

−1
)(

W ′X
n

))−1(
X ′W

n

)(
W ′W

n

)−1(W ′ε
n

)

Assuming that each of the terms with a n in the denominator satisfies a LLN, so that

• W ′W
n

p→ QWW , a finite pd matrix

• X ′W
n

p→ QXW , a finite matrix with rank K (= cols(X) )

• W ′ε
n

p→ 0

then the plim of the rhs is zero. This last term has plim 0 since we assume that W and

ε are uncorrelated, e.g.,

E(W ′
t εt) = 0,

Given these assumtions the IV estimator is consistent

β̂IV
p→ β.

Furthermore, scaling by
√

n, we have

√
n
(

β̂IV −β
)

=

((
X ′W

n

)(
W ′W

n

)−1(W ′X
n

))−1(
X ′W

n

)(
W ′W

n

)−1(W ′ε√
n

)

Assuming that the far right term satifies a CLT, so that

• W ′ε√
n

d→ N(0,QWW σ2)

then we get
√

n
(

β̂IV −β
)

d→ N
(

0,(QXW Q−1
WW Q′

XW )−1σ2
)
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The estimators for QXW and QWW are the obvious ones. An estimator for σ2 is

σ̂2
IV =

1
n

(
y−X β̂IV

)′(
y−X β̂IV

)
.

This estimator is consistent following the proof of consistency of the OLS estimator of

σ2, when the classical assumptions hold.

The formula used to estimate the variance of β̂IV is

V̂ (β̂IV ) =
((

X ′W
)(

W ′W
)−1 (W ′X

))−1
σ̂2

IV

The IV estimator is

(1) Consistent

(2) Asymptotically normally distributed

(3) Biased in general, since even though E(X ′PW ε) = 0, E(X ′PW X)−1X ′PW ε

may not be zero, since (X ′PW X)−1 and X ′PW ε are not independent.

An important point is that the asymptotic distribution of β̂IV depends upon QXW and

QWW , and these depend upon the choice of W. The choice of instruments influences

the efficiency of the estimator.

• When we have two sets of instruments, W1 and W2 such that W1 ⊂ W2, then

the IV estimator using W2 is at least as efficiently asymptotically as the esti-

mator that used W1. More instruments leads to more asymptotically efficient

estimation, in general.

• There are special cases where there is no gain (simultaneous equations is an

example of this, as we’ll see).

• The penalty for indiscriminant use of instruments is that the small sample bias

of the IV estimator rises as the number of instruments increases. The reason
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for this is that PW X becomes closer and closer to X itself as the number of

instruments increases.

• IV estimation can clearly be used in the case of simultaneous equations. The

only issue is which instruments to use.

11.5. Identification by exclusion restrictions

The identification problem in simultaneous equations is in fact of the same na-

ture as the identification problem in any estimation setting: does the limiting objective

function have the proper curvature so that there is a unique global minimum or max-

imum at the true parameter value? In the context of IV estimation, this is the case if

the limiting covariance of the IV estimator is positive definite and plim 1
nW ′ε = 0. This

matrix is

V∞(β̂IV ) = (QXW Q−1
WW Q′

XW )−1σ2

• The necessary and sufficient condition for identification is simply that this

matrix be positive definite, and that the instruments be (asymptotically) un-

correlated with ε.

• For this matrix to be positive definite, we need that the conditions noted above

hold: QWW must be positive definite and QXW must be of full rank ( K ).

• These identification conditions are not that intuitive nor is it very obvious how

to check them.

11.5.1. Necessary conditions. If we use IV estimation for a single equation of

the system, the equation can be written as

y = Zδ+ ε
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where

Z =
[

Y1 X1

]

Notation:

• Let K be the total numer of weakly exogenous variables.

• Let K∗ = cols(X1) be the number of included exogs, and let K∗∗ = K −K∗ be

the number of excluded exogs (in this equation).

• Let G∗ = cols(Y1)+1 be the total number of included endogs, and let G∗∗ =

G−G∗ be the number of excluded endogs.

Using this notation, consider the selection of instruments.

• Now the X1 are weakly exogenous and can serve as their own instruments.

• It turns out that X exhausts the set of possible instruments, in that if the vari-

ables in X don’t lead to an identified model then no other instruments will

identify the model either. Assuming this is true (we’ll prove it in a moment),

then a necessary condition for identification is that cols(X2) ≥ cols(Y1) since

if not then at least one instrument must be used twice, so W will not have full

column rank:

ρ(W) < K∗ +G∗−1 ⇒ ρ(QZW ) < K∗ +G∗−1

This is the order condition for identification in a set of simultaneous equa-

tions. When the only identifying information is exclusion restrictions on the

variables that enter an equation, then the number of excluded exogs must be

greater than or equal to the number of included endogs, minus 1 (the normal-

ized lhs endog), e.g.,

K∗∗ ≥ G∗−1
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• To show that this is in fact a necessary condition consider some arbitrary set

of instruments W. A necessary condition for identification is that

ρ
(

plim
1
n

W ′Z
)

= K∗ +G∗−1

where

Z =
[

Y1 X1

]

Recall that we’ve partitioned the model

Y Γ = XB+E

as

Y =
[

y Y1 Y2

]

X =
[

X1 X2

]

Given the reduced form

Y = XΠ+V

we can write the reduced form using the same partition

[
y Y1 Y2

]
=
[

X1 X2

]

 π11 Π12 Π13

π21 Π22 Π23


+

[
v V1 V2

]

so we have

Y1 = X1Π12 +X2Π22 +V1

so
1
n

W ′Z =
1
n

W ′
[

X1Π12 +X2Π22 +V1 X1

]



11.5. IDENTIFICATION BY EXCLUSION RESTRICTIONS 213

Because the W ’s are uncorrelated with the V1 ’s, by assumption, the cross between W

and V1 converges in probability to zero, so

plim
1
n

W ′Z = plim
1
n

W ′
[

X1Π12 +X2Π22 X1

]

Since the far rhs term is formed only of linear combinations of columns of X , the rank

of this matrix can never be greater than K, regardless of the choice of instruments. If

Z has more than K columns, then it is not of full column rank. When Z has more than

K columns we have

G∗−1+K∗ > K

or noting that K∗∗ = K −K∗,

G∗−1 > K∗∗

In this case, the limiting matrix is not of full column rank, and the identification con-

dition fails.

11.5.2. Sufficient conditions. Identification essentially requires that the struc-

tural parameters be recoverable from the data. This won’t be the case, in general,

unless the structural model is subject to some restrictions. We’ve already identified

necessary conditions. Turning to sufficient conditions (again, we’re only considering

identification through zero restricitions on the parameters, for the moment).

The model is

Y ′
t Γ = X ′

t B+Et

V (Et) = Σ
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This leads to the reduced form

Y ′
t = X ′

t BΓ−1 +EtΓ−1

= X ′
t Π+Vt

V (Vt) =
(
Γ−1)′ΣΓ−1

= Ω

The reduced form parameters are consistently estimable, but none of them are known

a priori, and there are no restrictions on their values. The problem is that more than

one structural form has the same reduced form, so knowledge of the reduced form

parameters alone isn’t enough to determine the structural parameters. To see this,

consider the model

Y ′
t ΓF = X ′

t BF +EtF

V (EtF) = F ′ΣF

where F is some arbirary nonsingular G×G matrix. The rf of this new model is

Y ′
t = X ′

t BF (ΓF)−1 +EtF (ΓF)−1

= X ′
t BFF−1Γ−1 +EtFF−1Γ−1

= X ′
t BΓ−1 +EtΓ−1

= X ′
t Π+Vt

Likewise, the covariance of the rf of the transformed model is

V (EtF (ΓF)−1) = V (EtΓ−1)

= Ω
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Since the two structural forms lead to the same rf, and the rf is all that is directly

estimable, the models are said to be observationally equivalent. What we need for

identification are restrictions on Γ and B such that the only admissible F is an identity

matrix (if all of the equations are to be identified). Take the coefficient matrices as

partitioned before:


 Γ

B


=




1 Γ12

−γ1 Γ22

0 Γ32

β1 B12

0 B22




The coefficients of the first equation of the transformed model are simply these coeffi-

cients multiplied by the first column of F . This gives


 Γ

B




 f11

F2


=




1 Γ12

−γ1 Γ22

0 Γ32

β1 B12

0 B22





 f11

F2




For identification of the first equation we need that there be enough restrictions so that

the only admissible 
 f11

F2



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be the leading column of an identity matrix, so that



1 Γ12

−γ1 Γ22

0 Γ32

β1 B12

0 B22





 f11

F2


=




1

−γ1

0

β1

0




Note that the third and fifth rows are

 Γ32

B22


F2 =


 0

0




Supposing that the leading matrix is of full column rank, e.g.,

ρ




 Γ32

B22




= cols




 Γ32

B22




= G−1

then the only way this can hold, without additional restrictions on the model’s param-

eters, is if F2 is a vector of zeros. Given that F2 is a vector of zeros, then the first

equation
[

1 Γ12

]

 f11

F2


= 1 ⇒ f11 = 1

Therefore, as long as

ρ




 Γ32

B22




= G−1

then 
 f11

F2


=


 1

0G−1



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The first equation is identified in this case, so the condition is sufficient for identifica-

tion. It is also necessary, since the condition implies that this submatrix must have at

least G−1 rows. Since this matrix has

G∗∗ +K∗∗ = G−G∗ +K∗∗

rows, we obtain

G−G∗ +K∗∗ ≥ G−1

or

K∗∗ ≥ G∗−1

which is the previously derived necessary condition.

The above result is fairly intuitive (draw picture here). The necessary condition

ensures that there are enough variables not in the equation of interest to potentially

move the other equations, so as to trace out the equation of interest. The sufficient

condition ensures that those other equations in fact do move around as the variables

change their values. Some points:

• When an equation has K∗∗ = G∗−1, is is exactly identified, in that omission

of an identifiying restriction is not possible without loosing consistency.

• When K∗∗ > G∗ − 1, the equation is overidentified, since one could drop a

restriction and still retain consistency. Overidentifying restrictions are there-

fore testable. When an equation is overidentified we have more instruments

than are strictly necessary for consistent estimation. Since estimation by IV

with more instruments is more efficient asymptotically, one should employ

overidentifying restrictions if one is confident that they’re true.

• We can repeat this partition for each equation in the system, to see which

equations are identified and which aren’t.
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• These results are valid assuming that the only identifying information comes

from knowing which variables appear in which equations, e.g., by exclusion

restrictions, and through the use of a normalization. There are other sorts of

identifying information that can be used. These include

(1) Cross equation restrictions

(2) Additional restrictions on parameters within equations (as in the Klein

model discussed below)

(3) Restrictions on the covariance matrix of the errors

(4) Nonlinearities in variables

• When these sorts of information are available, the above conditions aren’t

necessary for identification, though they are of course still sufficient.

To give an example of how other information can be used, consider the model

Y Γ = XB+E

where Γ is an upper triangular matrix with 1’s on the main diagonal. This is a triangu-

lar system of equations. In this case, the first equation is

y1 = XB·1 +E·1

Since only exogs appear on the rhs, this equation is identified.

The second equation is

y2 = −γ21y1 +XB·2 +E·2

This equation has K∗∗ = 0 excluded exogs, and G∗ = 2 included endogs, so it fails the

order (necessary) condition for identification.
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• However, suppose that we have the restriction Σ21 = 0, so that the first and

second structural errors are uncorrelated. In this case

E(y1tε2t) = E
{
(X ′

t B·1 + ε1t)ε2t
}

= 0

so there’s no problem of simultaneity. If the entire Σ matrix is diagonal, then

following the same logic, all of the equations are identified. This is known as

a fully recursive model.

11.5.3. Example: Klein’s Model 1. To give an example of determining identifi-

cation status, consider the following macro model (this is the widely known Klein’s

Model 1)

Consumption: Ct = α0 +α1Pt +α2Pt−1 +α3(W
p

t +W g
t )+ ε1t

Investment: It = β0 +β1Pt +β2Pt−1 +β3Kt−1 + ε2t

Private Wages: W p
t = γ0 + γ1Xt + γ2Xt−1 + γ3At + ε3t

Output: Xt = Ct + It +Gt

Profits: Pt = Xt −Tt −W p
t

Capital Stock: Kt = Kt−1 + It



ε1t

ε2t

ε3t


 ∼ IID







0

0

0


 ,




σ11 σ12 σ13

σ22 σ23

σ33







The other variables are the government wage bill, W g
t , taxes, Tt , government nonwage

spending, Gt ,and a time trend, At . The endogenous variables are the lhs variables,

Y ′
t =

[
Ct It W p

t Xt Pt Kt

]
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and the predetermined variables are all others:

X ′
t =

[
1 W g

t Gt Tt At Pt−1 Kt−1 Xt−1

]
.

The model assumes that the errors of the equations are contemporaneously correlated,

by nonautocorrelated. The model written as Y Γ = XB+E gives

Γ =




1 0 0 −1 0 0

0 1 0 −1 0 −1

−α3 0 1 0 1 0

0 0 −γ1 1 −1 0

−α1 −β1 0 0 1 0

0 0 0 0 0 1




B =




α0 β0 γ0 0 0 0

α3 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 −1 0

0 0 γ3 0 0 0

α2 β2 0 0 0 0

0 β3 0 0 0 1

0 0 γ2 0 0 0




To check this identification of the consumption equation, we need to extract Γ32 and

B22, the submatrices of coefficients of endogs and exogs that don’t appear in this equa-

tion. These are the rows that have zeros in the first column, and we need to drop the
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first column. We get


 Γ32

B22


=




1 0 −1 0 −1

0 −γ1 1 −1 0

0 0 0 0 1

0 0 1 0 0

0 0 0 −1 0

0 γ3 0 0 0

β3 0 0 0 1

0 γ2 0 0 0




We need to find a set of 5 rows of this matrix gives a full-rank 5×5 matrix. For

example, selecting rows 3,4,5,6, and 7 we obtain the matrix

A =




0 0 0 0 1

0 0 1 0 0

0 0 0 −1 0

0 γ3 0 0 0

β3 0 0 0 1




This matrix is of full rank, so the sufficient condition for identification is met. Counting

included endogs, G∗ = 3, and counting excluded exogs, K∗∗ = 5, so

K∗∗−L = G∗−1

5−L = 3−1

L = 3

• The equation is over-identified by three restrictions, according to the count-

ing rules, which are correct when the only identifying information are the
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exclusion restrictions. However, there is additional information in this case.

Both W p
t and W g

t enter the consumption equation, and their coefficients are

restricted to be the same. For this reason the consumption equation is in fact

overidentified by four restrictions.

11.6. 2SLS

When we have no information regarding cross-equation restrictions or the structure

of the error covariance matrix, one can estimate the parameters of a single equation of

the system without regard to the other equations.

• This isn’t always efficient, as we’ll see, but it has the advantage that misspec-

ifications in other equations will not affect the consistency of the estimator of

the parameters of the equation of interest.

• Also, estimation of the equation won’t be affected by identification problems

in other equations.

The 2SLS estimator is very simple: in the first stage, each column of Y1 is regressed on

all the weakly exogenous variables in the system, e.g., the entire X matrix. The fitted

values are

Ŷ1 = X(X ′X)−1X ′Y1

= PXY1

= XΠ̂1

Since these fitted values are the projection of Y1 on the space spanned by X , and since

any vector in this space is uncorrelated with ε by assumption, Ŷ1 is uncorrelated with

ε. Since Ŷ1 is simply the reduced-form prediction, it is correlated with Y1, The only

other requirement is that the instruments be linearly independent. This should be the
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case when the order condition is satisfied, since there are more columns in X2 than in

Y1 in this case.

The second stage substitutes Ŷ1 in place of Y1, and estimates by OLS. This original

model is

y = Y1γ1 +X1β1 + ε

= Zδ+ ε

and the second stage model is

y = Ŷ1γ1 +X1β1 + ε.

Since X1 is in the space spanned by X , PX X1 = X1, so we can write the second stage

model as

y = PXY1γ1 +PX X1β1 + ε

≡ PX Zδ+ ε

The OLS estimator applied to this model is

δ̂ = (Z′PXZ)−1Z′PX y

which is exactly what we get if we estimate using IV, with the reduced form predictions

of the endogs used as instruments. Note that if we define

Ẑ = PX Z

=
[

Ŷ1 X1

]



11.6. 2SLS 224

so that Ẑ are the instruments for Z, then we can write

δ̂ = (Ẑ′Z)−1Ẑ′y

• Important note: OLS on the transformed model can be used to calculate the

2SLS estimate of δ, since we see that it’s equivalent to IV using a particular

set of instruments. However the OLS covariance formula is not valid. We

need to apply the IV covariance formula already seen above.

Actually, there is also a simplification of the general IV variance formula. Define

Ẑ = PX Z

=
[

Ŷ X
]

The IV covariance estimator would ordinarily be

V̂ (δ̂) =
(
Z′Ẑ
)−1 (Ẑ′Ẑ

)(
Ẑ′Z
)−1 σ̂2

IV

However, looking at the last term in brackets

Ẑ′Z =
[

Ŷ1 X1

]′ [
Y1 X1

]
=


 Y ′

1(PX)Y1 Y ′
1(PX)X1

X ′
1Y1 X ′

1X1




but since PX is idempotent and since PX X = X , we can write

[
Ŷ1 X1

]′[
Y1 X1

]
=


 Y ′

1PX PXY1 Y ′
1PXX1

X ′
1PXY1 X ′

1X1




=
[

Ŷ1 X1

]′ [
Ŷ1 X1

]

= Ẑ′Ẑ
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Therefore, the second and last term in the variance formula cancel, so the 2SLS varcov

estimator simplifies to

V̂ (δ̂) =
(
Z′Ẑ
)−1 σ̂2

IV

which, following some algebra similar to the above, can also be written as

V̂ (δ̂) =
(
Ẑ′Ẑ
)−1 σ̂2

IV

Finally, recall that though this is presented in terms of the first equation, it is general

since any equation can be placed first.

Properties of 2SLS:

(1) Consistent

(2) Asymptotically normal

(3) Biased when the mean esists (the existence of moments is a technical issue

we won’t go into here).

(4) Asymptotically inefficient, except in special circumstances (more on this later).

11.7. Testing the overidentifying restrictions

The selection of which variables are endogs and which are exogs is part of the

specification of the model. As such, there is room for error here: one might erroneously

classify a variable as exog when it is in fact correlated with the error term. A general

test for the specification on the model can be formulated as follows:

The IV estimator can be calculated by applying OLS to the transformed model, so

the IV objective function at the minimized value is

s(β̂IV ) =
(

y−X β̂IV

)′
PW

(
y−X β̂IV

)
,



11.7. TESTING THE OVERIDENTIFYING RESTRICTIONS 226

but

ε̂IV = y−X β̂IV

= y−X(X ′PW X)−1X ′PW y

=
(
I −X(X ′PW X)−1X ′PW

)
y

=
(
I −X(X ′PW X)−1X ′PW

)
(Xβ+ ε)

= A(Xβ+ ε)

where

A ≡ I −X(X ′PW X)−1X ′PW

so

s(β̂IV ) =
(
ε′+β′X ′)A′PW A(Xβ+ ε)

Moreover, A′PW A is idempotent, as can be verified by multiplication:

A′PW A =
(
I −PW X(X ′PW X)−1X ′)PW

(
I −X(X ′PW X)−1X ′PW

)

=
(
PW −PW X(X ′PW X)−1X ′PW

)(
PW −PW X(X ′PW X)−1X ′PW

)

=
(
I −PW X(X ′PW X)−1X ′)PW .

Furthermore, A is orthogonal to X

AX =
(
I −X(X ′PW X)−1X ′PW

)
X

= X −X

= 0

so

s(β̂IV ) = ε′A′PW Aε
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Supposing the ε are normally distributed, with variance σ2, then the random variable

s(β̂IV )

σ2 =
ε′A′PW Aε

σ2

is a quadratic form of a N(0,1) random variable with an idempotent matrix in the

middle, so
s(β̂IV )

σ2 ∼ χ2(ρ(A′PW A))

This isn’t available, since we need to estimate σ2. Substituting a consistent estimator,

s(β̂IV )

σ̂2

a∼ χ2(ρ(A′PW A))

• Even if the ε aren’t normally distributed, the asymptotic result still holds. The

last thing we need to determine is the rank of the idempotent matrix. We have

A′PW A =
(
PW −PW X(X ′PW X)−1X ′PW

)

so

ρ(A′PW A) = Tr
(
PW −PW X(X ′PW X)−1X ′PW

)

= TrPW −TrX ′PW PW X(X ′PW X)−1

= TrW (W ′W )−1W ′−KX

= TrW ′W (W ′W )−1 −KX

= KW −KX

where KW is the number of columns of W and KX is the number of columns of

X . The degrees of freedom of the test is simply the number of overidentifying

restrictions: the number of instruments we have beyond the number that is

strictly necessary for consistent estimation.
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• This test is an overall specification test: the joint null hypothesis is that the

model is correctly specified and that the W form valid instruments (e.g., that

the variables classified as exogs really are uncorrelated with ε. Rejection can

mean that either the model y = Zδ+ε is misspecified, or that there is correla-

tion between X and ε.

• This is a particular case of the GMM criterion test, which is covered in the

second half of the course. See Section 15.8.

• Note that since

ε̂IV = Aε

and

s(β̂IV ) = ε′A′PW Aε

we can write

s(β̂IV )

σ̂2
=

(
ε̂′W (W ′W )−1W ′)(W (W ′W )−1W ′ε̂

)

ε̂′ε̂/n

= n(RSSε̂IV |W /TSSε̂IV )

= nR2
u

where R2
u is the uncentered R2 from a regression of the IV residuals on all of

the instruments W . This is a convenient way to calculate the test statistic.

On an aside, consider IV estimation of a just-identified model, using the standard no-

tation

y = Xβ+ ε
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and W is the matrix of instruments. If we have exact identification then cols(W) =

cols(X), so W
′
X is a square matrix. The transformed model is

PW y = PW Xβ+PW ε

and the fonc are

X ′PW (y−X β̂IV ) = 0

The IV estimator is

β̂IV =
(
X ′PW X

)−1 X ′PW y

Considering the inverse here

(
X ′PW X

)−1
=

(
X ′W (W ′W )−1W ′X

)−1

= (W ′X)−1 (X ′W (W ′W )−1)−1

= (W ′X)−1(W ′W )
(
X ′W

)−1

Now multiplying this by X ′PW y, we obtain

β̂IV = (W ′X)−1(W ′W )
(
X ′W

)−1 X ′PW y

= (W ′X)−1(W ′W )
(
X ′W

)−1 X ′W (W ′W )−1W ′y

= (W ′X)−1W ′y
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The objective function for the generalized IV estimator is

s(β̂IV ) =
(

y−X β̂IV

)′
PW

(
y−X β̂IV

)

= y′PW

(
y−X β̂IV

)
− β̂′

IV X ′PW

(
y−X β̂IV

)

= y′PW

(
y−X β̂IV

)
− β̂′

IV X ′PW y+ β̂′
IV X ′PW X β̂IV

= y′PW

(
y−X β̂IV

)
− β̂′

IV

(
X ′PW y+X ′PW X β̂IV

)

= y′PW

(
y−X β̂IV

)

by the fonc for generalized IV. However, when we’re in the just indentified case, this

is

s(β̂IV ) = y′PW
(
y−X(W ′X)−1W ′y

)

= y′PW
(
I −X(W ′X)−1W ′)y

= y′
(
W (W ′W )−1W ′−W (W ′W )−1W ′X(W ′X)−1W ′)y

= 0

The value of the objective function of the IV estimator is zero in the just identified case.

This makes sense, since we’ve already shown that the objective function after dividing

by σ2 is asymptotically χ2 with degrees of freedom equal to the number of overidenti-

fying restrictions. In the present case, there are no overidentifying restrictions, so we

have a χ2(0) rv, which has mean 0 and variance 0, e.g., it’s simply 0. This means we’re

not able to test the identifying restrictions in the case of exact identification.

11.8. System methods of estimation

2SLS is a single equation method of estimation, as noted above. The advantage of

a single equation method is that it’s unaffected by the other equations of the system,
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so they don’t need to be specified (except for defining what are the exogs, so 2SLS can

use the complete set of instruments). The disadvantage of 2SLS is that it’s inefficient,

in general.

• Recall that overidentification improves efficiency of estimation, since an overi-

dentified equation can use more instruments than are necessary for consistent

estimation.

• Secondly, the assumption is that

Y Γ = XB+E

E(X ′E) = 0(K×G)

vec(E) ∼ N(0,Ψ)

• Since there is no autocorrelation of the Et ’s, and since the columns of E are

individually homoscedastic, then

Ψ =




σ11In σ12In · · · σ1GIn

σ22In
...

. . . ...

· σGGIn




= Σ⊗ In

This means that the structural equations are heteroscedastic and correlated

with one another

• In general, ignoring this will lead to inefficient estimation, following the sec-

tion on GLS. When equations are correlated with one another estimation

should account for the correlation in order to obtain efficiency.
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• Also, since the equations are correlated, information about one equation is

implicitly information about all equations. Therefore, overidentification re-

strictions in any equation improve efficiency for all equations, even the just

identified equations.

• Single equation methods can’t use these types of information, and are there-

fore inefficient (in general).

11.8.1. 3SLS. Note: It is easier and more practical to treat the 3SLS estimator

as a generalized method of moments estimator (see Chapter 15). I no longer teach

the following section, but it is retained for its possible historical interest. Another

alternative is to use FIML (Subsection 11.8.2), if you are willing to make distributional

assumptions on the errors. This is computationally feasible with modern computers.

Following our above notation, each structural equation can be written as

yi = Yiγ1 +Xiβ1 + εi

= Ziδi + εi

Grouping the G equations together we get



y1

y2
...

yG




=




Z1 0 · · · 0

0 Z2
...

... . . . 0

0 · · · 0 ZG







δ1

δ2
...

δG




+




ε1

ε2
...

εG




or

y = Zδ+ ε
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where we already have that

E(εε′) = Ψ

= Σ⊗ In

The 3SLS estimator is just 2SLS combined with a GLS correction that takes advantage

of the structure of Ψ. Define Ẑ as

Ẑ =




X(X ′X)−1X ′Z1 0 · · · 0

0 X(X ′X)−1X ′Z2
...

... . . . 0

0 · · · 0 X(X ′X)−1X ′ZG




=




Ŷ1 X1 0 · · · 0

0 Ŷ2 X2
...

... . . . 0

0 · · · 0 ŶG XG




These instruments are simply the unrestricted rf predicitions of the endogs, com-

bined with the exogs. The distinction is that if the model is overidentified, then

Π = BΓ−1

may be subject to some zero restrictions, depending on the restrictions on Γ and B,

and Π̂ does not impose these restrictions. Also, note that Π̂ is calculated using OLS

equation by equation. More on this later.

The 2SLS estimator would be

δ̂ = (Ẑ′Z)−1Ẑ′y



11.8. SYSTEM METHODS OF ESTIMATION 234

as can be verified by simple multiplication, and noting that the inverse of a block-

diagonal matrix is just the matrix with the inverses of the blocks on the main diagonal.

This IV estimator still ignores the covariance information. The natural extension is

to add the GLS transformation, putting the inverse of the error covariance into the

formula, which gives the 3SLS estimator

δ̂3SLS =
(

Ẑ′ (Σ⊗ In)
−1 Z

)−1
Ẑ′ (Σ⊗ In)

−1 y

=
(
Ẑ′ (Σ−1 ⊗ In

)
Z
)−1

Ẑ′ (Σ−1 ⊗ In
)

y

This estimator requires knowledge of Σ. The solution is to define a feasible estimator

using a consistent estimator of Σ. The obvious solution is to use an estimator based on

the 2SLS residuals:

ε̂i = yi −Ziδ̂i,2SLS

(IMPORTANT NOTE: this is calculated using Zi, not Ẑi). Then the element i, j of Σ

is estimated by

σ̂i j =
ε̂′iε̂ j

n

Substitute Σ̂ into the formula above to get the feasible 3SLS estimator.

Analogously to what we did in the case of 2SLS, the asymptotic distribution of the

3SLS estimator can be shown to be

√
n
(

δ̂3SLS −δ
)

a∼ N


0, lim

n→∞
E





(
Ẑ′ (Σ⊗ In)

−1 Ẑ
n

)−1







A formula for estimating the variance of the 3SLS estimator in finite samples (can-

celling out the powers of n) is

V̂
(

δ̂3SLS

)
=
(
Ẑ′ (Σ̂−1 ⊗ In

)
Ẑ
)−1
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• This is analogous to the 2SLS formula in equation (??), combined with the

GLS correction.

• In the case that all equations are just identified, 3SLS is numerically equiva-

lent to 2SLS. Proving this is easiest if we use a GMM interpretation of 2SLS

and 3SLS. GMM is presented in the next econometrics course. For now, take

it on faith.

The 3SLS estimator is based upon the rf parameter estimator Π̂, calculated equation

by equation using OLS:

Π̂ = (X ′X)−1X ′Y

which is simply

Π̂ = (X ′X)−1X ′
[

y1 y2 · · · yG

]

that is, OLS equation by equation using all the exogs in the estimation of each column

of Π.

It may seem odd that we use OLS on the reduced form, since the rf equations are

correlated:

Y ′
t = X ′

t BΓ−1 +E ′
t Γ

−1

= X ′
t Π+V ′

t

and

Vt =
(
Γ−1)′Et ∼ N

(
0,
(
Γ−1)′ΣΓ−1

)
,∀t

Let this var-cov matrix be indicated by

Ξ =
(
Γ−1)′ΣΓ−1
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OLS equation by equation to get the rf is equivalent to



y1

y2
...

yG




=




X 0 · · · 0

0 X
...

... . . . 0

0 · · · 0 X







π1

π2
...

πG




+




v1

v2
...

vG




where yi is the n×1 vector of observations of the ith endog, X is the entire n×K matrix

of exogs, πi is the ith column of Π, and vi is the ith column of V. Use the notation

y = Xπ+ v

to indicate the pooled model. Following this notation, the error covariance matrix is

V (v) = Ξ⊗ In

• This is a special case of a type of model known as a set of seemingly unrelated

equations (SUR) since the parameter vector of each equation is different. The

equations are contemporanously correlated, however. The general case would

have a different Xi for each equation.

• Note that each equation of the system individually satisfies the classical as-

sumptions.

• However, pooled estimation using the GLS correction is more efficient, since

equation-by-equation estimation is equivalent to pooled estimation, since X

is block diagonal, but ignoring the covariance information.

• The model is estimated by GLS, where Ξ is estimated using the OLS residuals

from equation-by-equation estimation, which are consistent.
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• In the special case that all the Xi are the same, which is true in the present

case of estimation of the rf parameters, SUR ≡OLS. To show this note that in

this case X = In ⊗X . Using the rules

(1) (A⊗B)−1 = (A−1 ⊗B−1)

(2) (A⊗B)′ = (A′⊗B′) and

(3) (A⊗B)(C⊗D) = (AC⊗BD), we get

π̂SUR =
(
(In ⊗X)′ (Ξ⊗ In)

−1 (In ⊗X)
)−1

(In ⊗X)′ (Ξ⊗ In)
−1 y

=
((

Ξ−1 ⊗X ′)(In ⊗X)
)−1 (Ξ−1 ⊗X ′)y

=
(
Ξ⊗ (X ′X)−1)(Ξ−1 ⊗X ′)y

=
[
IG⊗ (X ′X)−1X ′]y

=




π̂1

π̂2
...

π̂G




• So the unrestricted rf coefficients can be estimated efficiently (assuming nor-

mality) by OLS, even if the equations are correlated.

• We have ignored any potential zeros in the matrix Π, which if they exist could

potentially increase the efficiency of estimation of the rf.

• Another example where SUR≡OLS is in estimation of vector autoregres-

sions. See two sections ahead.

11.8.2. FIML. Full information maximum likelihood is an alternative estimation

method. FIML will be asymptotically efficient, since ML estimators based on a given

information set are asymptotically efficient w.r.t. all other estimators that use the same

information set, and in the case of the full-information ML estimator we use the entire
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information set. The 2SLS and 3SLS estimators don’t require distributional assump-

tions, while FIML of course does. Our model is, recall

Y ′
t Γ = X ′

t B+E ′
t

Et ∼ N(0,Σ),∀t

E(EtE ′
s) = 0, t 6= s

The joint normality of Et means that the density for Et is the multivariate normal,

which is

(2π)−g/2 (detΣ−1)−1/2
exp
(
−1

2
E ′

t Σ
−1Et

)

The transformation from Et to Yt requires the Jacobian

|det
dEt

dY ′
t
| = |detΓ|

so the density for Yt is

(2π)−G/2|detΓ|
(
detΣ−1)−1/2

exp
(
−1

2
(
Y ′

t Γ−X ′
t B
)

Σ−1 (Y ′
t Γ−X ′

t B
)′
)

Given the assumption of independence over time, the joint log-likelihood function is

lnL(B,Γ,Σ) =−nG
2

ln(2π)+n ln(|detΓ|)− n
2

lndetΣ−1− 1
2

n

∑
t=1

(
Y ′

t Γ−X ′
t B
)

Σ−1 (Y ′
t Γ−X ′

t B
)′

• This is a nonlinear in the parameters objective function. Maximixation of this

can be done using iterative numeric methods. We’ll see how to do this in the

next section.

• It turns out that the asymptotic distribution of 3SLS and FIML are the same,

assuming normality of the errors.
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• One can calculate the FIML estimator by iterating the 3SLS estimator, thus

avoiding the use of a nonlinear optimizer. The steps are

(1) Calculate Γ̂3SLS and B̂3SLS as normal.

(2) Calculate Π̂ = B̂3SLSΓ̂−1
3SLS. This is new, we didn’t estimate Π in this way

before. This estimator may have some zeros in it. When Greene says

iterated 3SLS doesn’t lead to FIML, he means this for a procedure that

doesn’t update Π̂, but only updates Σ̂ and B̂ and Γ̂. If you update Π̂ you

do converge to FIML.

(3) Calculate the instruments Ŷ = XΠ̂ and calculate Σ̂ using Γ̂ and B̂ to get

the estimated errors, applying the usual estimator.

(4) Apply 3SLS using these new instruments and the estimate of Σ.

(5) Repeat steps 2-4 until there is no change in the parameters.

• FIML is fully efficient, since it’s an ML estimator that uses all information.

This implies that 3SLS is fully efficient when the errors are normally dis-

tributed. Also, if each equation is just identified and the errors are normal,

then 2SLS will be fully efficient, since in this case 2SLS≡3SLS.

• When the errors aren’t normally distributed, the likelihood function is of

course different than what’s written above.

11.9. Example: 2SLS and Klein’s Model 1

The Octave program Simeq/Klein.m performs 2SLS estimation for the 3 equations

of Klein’s model 1, assuming nonautocorrelated errors, so that lagged endogenous

variables can be used as instruments. The results are:

CONSUMPTION EQUATION

*******************************************************

http://pareto.uab.es/mcreel/Econometrics/Include/Simeq/Klein.m
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2SLS estimation results

Observations 21

R-squared 0.976711

Sigma-squared 1.044059

estimate st.err. t-stat. p-value

Constant 16.555 1.321 12.534 0.000

Profits 0.017 0.118 0.147 0.885

Lagged Profits 0.216 0.107 2.016 0.060

Wages 0.810 0.040 20.129 0.000

*******************************************************

INVESTMENT EQUATION

*******************************************************

2SLS estimation results

Observations 21

R-squared 0.884884

Sigma-squared 1.383184

estimate st.err. t-stat. p-value

Constant 20.278 7.543 2.688 0.016

Profits 0.150 0.173 0.867 0.398

Lagged Profits 0.616 0.163 3.784 0.001

Lagged Capital -0.158 0.036 -4.368 0.000
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*******************************************************

WAGES EQUATION

*******************************************************

2SLS estimation results

Observations 21

R-squared 0.987414

Sigma-squared 0.476427

estimate st.err. t-stat. p-value

Constant 1.500 1.148 1.307 0.209

Output 0.439 0.036 12.316 0.000

Lagged Output 0.147 0.039 3.777 0.002

Trend 0.130 0.029 4.475 0.000

*******************************************************

The above results are not valid (specifically, they are inconsistent) if the errors

are autocorrelated, since lagged endogenous variables will not be valid instruments

in that case. You might consider eliminating the lagged endogenous variables as in-

struments, and re-estimating by 2SLS, to obtain consistent parameter estimates in this

more complex case. Standard errors will still be estimated inconsistently, unless use a

Newey-West type covariance estimator. Food for thought...



CHAPTER 12

Introduction to the second half

We’ll begin with study of extremum estimators in general. Let Zn be the available

data, based on a sample of size n.

DEFINITION 12.0.1. [Extremum estimator] An extremum estimator θ̂ is the opti-

mizing element of an objective function sn(Zn,θ) over a set Θ.

We’ll usually write the objective function suppressing the dependence on Zn.

Example: Least squares, linear model

Let the d.g.p. be yt = x′tθ0 + εt , t = 1,2, ...,n, θ0 ∈ Θ. Stacking observations verti-

cally, yn = Xnθ0 + εn, where Xn =
(

x1 x2 · · · xn

)′
. The least squares estimator

is defined as

θ̂ ≡ argmin
Θ

sn(θ) = (1/n)[yn −Xnθ]′ [yn −Xnθ]

We readily find that θ̂ = (X′X)−1X′y.

Example: Maximum likelihood

Suppose that the continuous random variable yt ∼ IIN(θ0,1). The maximum like-

lihood estimator is defined as

θ̂ ≡ argmax
Θ

Ln(θ) =
n

∏
t=1

(2π)−1/2 exp

(
−(yt −θ)2

2

)

242
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Because the logarithmic function is strictly increasing on (0,∞), maximization of the

average logarithm of the likelihood function is achieved at the same θ̂ as for the likeli-

hood function:

θ̂ ≡ argmax
Θ

sn(θ) = (1/n) lnLn(θ) = −1/2ln2π− (1/n)
n

∑
t=1

(yt −θ)2

2

Solution of the f.o.c. leads to the familiar result that θ̂ = ȳ.

• MLE estimators are asymptotically efficient (Cramér-Rao lower bound, The-

orem3), supposing the strong distributional assumptions upon which they are

based are true.

• One can investigate the properties of an “ML” estimator supposing that the

distributional assumptions are incorrect. This gives a quasi-ML estimator,

which we’ll study later.

• The strong distributional assumptions of MLE may be questionable in many

cases. It is possible to estimate using weaker distributional assumptions based

only on some of the moments of a random variable(s).

Example: Method of moments

Suppose we draw a random sample of yt from the χ2(θ0) distribution. Here, θ0 is

the parameter of interest. The first moment (expectation), µ1, of a random variable will

in general be a function of the parameters of the distribution, i.e., µ1(θ0) .

• µ1 = µ1(θ0) is a moment-parameter equation.

• In this example, the relationship is the identity function µ1(θ0) = θ0, though in

general the relationship may be more complicated. The sample first moment

is

µ̂1 =
n

∑
t=1

yt/n.
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• Define

m1(θ) = µ1(θ)− µ̂1

• The method of moments principle is to choose the estimator of the parameter

to set the estimate of the population moment equal to the sample moment,

i.e., m1(θ̂) ≡ 0. Then the moment-parameter equation is inverted to solve for

the parameter estimate.

In this case,

m1(θ̂) = θ̂−
n

∑
t=1

yt/n = 0.

Since ∑n
t=1 yt/n

p→ θ0 by the LLN, the estimator is consistent.

More on the method of moments

Continuing with the above example, the variance of a χ2(θ0) r.v. is

V (yt) = E
(
yt −θ0)2

= 2θ0.

• Define

m2(θ) = 2θ− ∑n
t=1 (yt − ȳ)2

n

• The MM estimator would set

m2(θ̂) = 2θ̂− ∑n
t=1 (yt − ȳ)2

n
≡ 0.

Again, by the LLN, the sample variance is consistent for the true variance,

that is,
∑n

t=1 (yt − ȳ)2

n
p→ 2θ0.

So,

θ̂ =
∑n

t=1 (yt − ȳ)2

2n
,

which is obtained by inverting the moment-parameter equation, is consistent.
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Example: Generalized method of moments (GMM)

The previous two examples give two estimators of θ0 which are both consistent.

With a given sample, the estimators will be different in general.

• With two moment-parameter equations and only one parameter, we have

overidentification, which means that we have more information than is strictly

necessary for consistent estimation of the parameter.

• The GMM combines information from the two moment-parameter equations

to form a new estimator which will be more efficient, in general (proof of this

below).

From the first example, define m1t(θ) = θ − yt . We already have that m1(θ) is the

sample average of m1t(θ), i.e.,

m1(θ) = 1/n
n

∑
t=1

m1t(θ)

= θ−
n

∑
t=1

yt/n.

Clearly, when evaluated at the true parameter value θ0, both E
[
m1t(θ0)

]
= 0 and

E
[
m1(θ0)

]
= 0.

From the second example we define additional moment conditions

m2t(θ) = 2θ− (yt − ȳ)2

and

m2(θ) = 2θ− ∑n
t=1 (yt − ȳ)2

n
.

Again, it is clear from the LLN that m2(θ0)
a.s.→ 0. The MM estimator would chose θ̂ to

set either m1(θ̂) = 0 or m2(θ̂) = 0. In general, no single value of θ will solve the two

equations simultaneously.
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• The GMM estimator is based on defining a measure of distance d(m(θ)),

where m(θ) = (m1(θ),m2(θ))′ , and choosing

θ̂ = argmin
Θ

sn(θ) = d (m(θ)) .

An example would be to choose d(m) = m′Am, where A is a positive definite ma-

trix. While it’s clear that the MM gives consistent estimates if there is a one-to-one

relationship between parameters and moments, it’s not immediately obvious that the

GMM estimator is consistent. (We’ll see later that it is.)

These examples show that these widely used estimators may all be interpreted as

the solution of an optimization problem. For this reason, the study of extremum esti-

mators is useful for its generality. We will see that the general results extend smoothly

to the more specialized results available for specific estimators. After studying ex-

tremum estimators in general, we will study the GMM estimator, then QML and NLS.

The reason we study GMM first is that LS, IV, NLS, MLE, QML and other well-known

parametric estimators may all be interpreted as special cases of the GMM estimator,

so the general results on GMM can simplify and unify the treatment of these other

estimators. Nevertheless, there are some special results on QML and NLS, and both

are important in empirical research, which makes focus on them useful.

One of the focal points of the course will be nonlinear models. This is not to

suggest that linear models aren’t useful. Linear models are more general than they

might first appear, since one can employ nonlinear transformations of the variables:

ϕ0(yt) =
[

ϕ1(xt) ϕ2(xt) · · · ϕp(xt)

]
θ0 + εt

For example,

lnyt = α+βx1t + γx2
1t +δx1tx2t + εt
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fits this form.

• The important point is that the model is linear in the parameters but not nec-

essarily linear in the variables.

In spite of this generality, situations often arise which simply can not be convincingly

represented by linear in the parameters models. Also, theory that applies to nonlinear

models also applies to linear models, so one may as well start off with the general case.

Example: Expenditure shares

Roy’s Identity states that the quantity demanded of the ith of G goods is

xi =
−∂v(p,y)/∂pi

∂v(p,y)/∂y
.

An expenditure share is

si ≡ pixi/y,

so necessarily si ∈ [0,1], and ∑G
i=1 si = 1. No linear in the parameters model for xi or si

with a parameter space that is defined independent of the data can guarantee that either

of these conditions holds. These constraints will often be violated by estimated linear

models, which calls into question their appropriateness in cases of this sort.

Example: Binary limited dependent variable

The referendum contingent valuation (CV) method of infering the social value of

a project provides a simple example. This example is a special case of more general

discrete choice (or binary response) models. Individuals are asked if they would pay

an amount A for provision of a project. Indirect utility in the base case (no project) is

v0(m,z) + ε0, where m is income and z is a vector of other variables such as prices,

personal characteristics, etc. After provision, utility is v1(m,z)+ε1. The random terms

εi, i = 1,2, reflect variations of preferences in the population. With this, an individual
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agrees1 to pay A if

ε0 − ε1
︸ ︷︷ ︸

ε
<

v1(m−A,z)− v0(m,z)︸ ︷︷ ︸
∆v(w,A)

Define ε = ε0 − ε1, let w collect m and z, and let ∆v(w,A) = v1(m−A,z)− v0(m,z).

Define y = 1 if the consumer agrees to pay A for the change, y = 0 otherwise. The

probability of agreement is

(12.0.1) Pr(y = 1) = Fε [∆v(w,A)] .

To simplify notation, define p(w,A) ≡ Fε [∆v(w,A)] . To make the example specific,

suppose that

v1(m,z) = α−βm

v0(m,z) = −βm

and ε0 and ε1 are i.i.d. extreme value random variables. That is, utility depends only

on income, preferences in both states are homothetic, and a specific distributional as-

sumption is made on the distribution of preferences in the population. With these

assumptions (the details are unimportant here, see articles by D. McFadden if you’re

interested) it can be shown that

p(A,θ) = Λ(α+βA) ,

where Λ(z) is the logistic distribution function

Λ(z) = (1+ exp(−z))−1 .

1We assume here that responses are truthful, that is there is no strategic behavior and that individuals
are able to order their preferences in this hypothetical situation.
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This is the simple logit model: the choice probability is the logit function of a linear in

parameters function.

Now, y is either 0 or 1, and the expected value of y is Λ(α+βA) . Thus, we can write

y = Λ(α+βA)+η

E(η) = 0.

One could estimate this by (nonlinear) least squares

(
α̂,β̂
)

= argmin
1
n ∑

t
(y−Λ(α+βA))2

The main point is that it is impossible that Λ(α+βA) can be written as a linear in the

parameters model, in the sense that, for arbitrary A, there are no θ,ϕ(A) such that

Λ(α+βA) = ϕ(A)′θ,∀A

where ϕ(A) is a p-vector valued function of A and θ is a p dimensional parameter.

This is because for any θ, we can always find a A such that ϕ(A)′θ will be negative

or greater than 1, which is illogical, since it is the expectation of a 0/1 binary random

variable. Since this sort of problem occurs often in empirical work, it is useful to study

NLS and other nonlinear models.

After discussing these estimation methods for parametric models we’ll briefly in-

troduce nonparametric estimation methods. These methods allow one, for example, to

estimate f (xt) consistently when we are not willing to assume that a model of the form

yt = f (xt)+ εt
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can be restricted to a parametric form

yt = f (xt ,θ)+ εt

Pr(εt < z) = Fε(z|φ,xt)

θ ∈ Θ,φ ∈ Φ

where f (·) and perhaps Fε(z|φ,xt) are of known functional form. This is important

since economic theory gives us general information about functions and the signs of

their derivatives, but not about their specific form.

Then we’ll look at simulation-based methods in econometrics. These methods

allow us to substitute computer power for mental power. Since computer power is

becoming relatively cheap compared to mental effort, any econometrician who lives

by the principles of economic theory should be interested in these techniques.

Finally, we’ll look at how econometric computations can be done in parallel on a

cluster of computers. This allows us to harness more computational power to work

with more complex models that can be dealt with using a desktop computer.



CHAPTER 13

Numeric optimization methods

Readings: Hamilton, ch. 5, section 7 (pp. 133-139)∗; Gourieroux and Monfort,

Vol. 1, ch. 13, pp. 443-60∗; Goffe, et. al. (1994).

If we’re going to be applying extremum estimators, we’ll need to know how to find

an extremum. This section gives a very brief introduction to what is a large literature

on numeric optimization methods. We’ll consider a few well-known techniques, and

one fairly new technique that may allow one to solve difficult problems. The main

objective is to become familiar with the issues, and to learn how to use the BFGS

algorithm at the practical level.

The general problem we consider is how to find the maximizing element θ̂ (a K

-vector) of a function s(θ). This function may not be continuous, and it may not be

differentiable. Even if it is twice continuously differentiable, it may not be globally

concave, so local maxima, minima and saddlepoints may all exist. Supposing s(θ)

were a quadratic function of θ, e.g.,

s(θ) = a+b′θ+
1
2

θ′Cθ,

the first order conditions would be linear:

Dθs(θ) = b+Cθ

so the maximizing (minimizing) element would be θ̂ =−C−1b. This is the sort of prob-

lem we have with linear models estimated by OLS. It’s also the case for feasible GLS,

251
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since conditional on the estimate of the varcov matrix, we have a quadratic objective

function in the remaining parameters.

More general problems will not have linear f.o.c., and we will not be able to solve

for the maximizer analytically. This is when we need a numeric optimization method.

13.1. Search

The idea is to create a grid over the parameter space and evaluate the function at

each point on the grid. Select the best point. Then refine the grid in the neighborhood

of the best point, and continue until the accuracy is ”good enough”. See Figure 13.1.1.

One has to be careful that the grid is fine enough in relationship to the irregularity of

the function to ensure that sharp peaks are not missed entirely.

To check q values in each dimension of a K dimensional parameter space, we need

to check qK points. For example, if q = 100 and K = 10, there would be 10010 points

to check. If 1000 points can be checked in a second, it would take 3.171× 109 years

to perform the calculations, which is approximately the age of the earth. The search

method is a very reasonable choice if K is small, but it quickly becomes infeasible if

K is moderate or large.

13.2. Derivative-based methods

13.2.1. Introduction. Derivative-based methods are defined by

(1) the method for choosing the initial value, θ1

(2) the iteration method for choosing θk+1 given θk (based upon derivatives)

(3) the stopping criterion.

The iteration method can be broken into two problems: choosing the stepsize ak (a

scalar) and choosing the direction of movement, dk, which is of the same dimension
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FIGURE 13.1.1. The search method

of θ, so that

θ(k+1) = θ(k) +akdk.

A locally increasing direction of search d is a direction such that

∃a :
∂s(θ+ad)

∂a
> 0

for a positive but small. That is, if we go in direction d, we will improve on the

objective function, at least if we don’t go too far in that direction.

• As long as the gradient at θ is not zero there exist increasing directions, and

they can all be represented as Qkg(θk) where Qk is a symmetric pd matrix and
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g(θ) = Dθs(θ) is the gradient at θ. To see this, take a T.S. expansion around

a0 = 0

s(θ+ad) = s(θ+0d)+(a−0)g(θ+0d)′d +o(1)

= s(θ)+ag(θ)′d +o(1)

For small enough a the o(1) term can be ignored. If d is to be an increas-

ing direction, we need g(θ)′d > 0. Defining d = Qg(θ), where Q is positive

definite, we guarantee that

g(θ)′d = g(θ)′Qg(θ) > 0

unless g(θ) = 0. Every increasing direction can be represented in this way

(p.d. matrices are those such that the angle between g and Qg(θ) is less that

90 degrees). See Figure 13.2.1.

• With this, the iteration rule becomes

θ(k+1) = θ(k) +akQkg(θk)

and we keep going until the gradient becomes zero, so that there is no increasing

direction. The problem is how to choose a and Q.

• Conditional on Q, choosing a is fairly straightforward. A simple line search

is an attractive possibility, since a is a scalar.

• The remaining problem is how to choose Q.

• Note also that this gives no guarantees to find a global maximum.

13.2.2. Steepest descent. Steepest descent (ascent if we’re maximizing) just sets

Q to and identity matrix, since the gradient provides the direction of maximum rate of

change of the objective function.
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FIGURE 13.2.1. Increasing directions of search

• Advantages: fast - doesn’t require anything more than first derivatives.

• Disadvantages: This doesn’t always work too well however (draw picture of

banana function).

13.2.3. Newton-Raphson. The Newton-Raphson method uses information about

the slope and curvature of the objective function to determine which direction and how

far to move from an initial point. Supposing we’re trying to maximize sn(θ). Take a

second order Taylor’s series approximation of sn(θ) about θk (an initial guess).

sn(θ) ≈ sn(θk)+g(θk)′
(

θ−θk
)

+1/2
(

θ−θk
)′

H(θk)
(

θ−θk
)
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To attempt to maximize sn(θ), we can maximize the portion of the right-hand side that

depends on θ, i.e., we can maximize

s̃(θ) = g(θk)′θ+1/2
(

θ−θk
)′

H(θk)
(

θ−θk
)

with respect to θ. This is a much easier problem, since it is a quadratic function in θ,

so it has linear first order conditions. These are

Dθs̃(θ) = g(θk)+H(θk)
(

θ−θk
)

So the solution for the next round estimate is

θk+1 = θk −H(θk)−1g(θk)

This is illustrated in Figure 13.2.2.

However, it’s good to include a stepsize, since the approximation to sn(θ) may be

bad far away from the maximizer θ̂, so the actual iteration formula is

θk+1 = θk −akH(θk)−1g(θk)

• A potential problem is that the Hessian may not be negative definite when

we’re far from the maximizing point. So −H(θk)−1 may not be positive def-

inite, and −H(θk)−1g(θk) may not define an increasing direction of search.

This can happen when the objective function has flat regions, in which case

the Hessian matrix is very ill-conditioned (e.g., is nearly singular), or when

we’re in the vicinity of a local minimum, H(θk) is positive definite, and our

direction is a decreasing direction of search. Matrix inverses by comput-

ers are subject to large errors when the matrix is ill-conditioned. Also, we
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FIGURE 13.2.2. Newton-Raphson method

certainly don’t want to go in the direction of a minimum when we’re maxi-

mizing. To solve this problem, Quasi-Newton methods simply add a positive

definite component to H(θ) to ensure that the resulting matrix is positive def-

inite, e.g., Q = −H(θ) + bI, where b is chosen large enough so that Q is

well-conditioned and positive definite. This has the benefit that improvement

in the objective function is guaranteed.

• Another variation of quasi-Newton methods is to approximate the Hessian by

using successive gradient evaluations. This avoids actual calculation of the

Hessian, which is an order of magnitude (in the dimension of the parameter

vector) more costly than calculation of the gradient. They can be done to
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ensure that the approximation is p.d. DFP and BFGS are two well-known

examples.

Stopping criteria

The last thing we need is to decide when to stop. A digital computer is subject to

limited machine precision and round-off errors. For these reasons, it is unreasonable

to hope that a program can exactly find the point that maximizes a function. We need

to define acceptable tolerances. Some stopping criteria are:

• Negligable change in parameters:

|θk
j −θk−1

j | < ε1,∀ j

• Negligable relative change:

|
θk

j −θk−1
j

θk−1
j

| < ε2,∀ j

• Negligable change of function:

|s(θk)− s(θk−1)| < ε3

• Gradient negligibly different from zero:

|g j(θk)| < ε4,∀ j

• Or, even better, check all of these.

• Also, if we’re maximizing, it’s good to check that the last round (real, not

approximate) Hessian is negative definite.

Starting values

The Newton-Raphson and related algorithms work well if the objective function

is concave (when maximizing), but not so well if there are convex regions and local
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minima or multiple local maxima. The algorithm may converge to a local minimum

or to a local maximum that is not optimal. The algorithm may also have difficulties

converging at all.

• The usual way to “ensure” that a global maximum has been found is to use

many different starting values, and choose the solution that returns the highest

objective function value. THIS IS IMPORTANT in practice. More on this

later.

Calculating derivatives

The Newton-Raphson algorithm requires first and second derivatives. It is often

difficult to calculate derivatives (especially the Hessian) analytically if the function

sn(·) is complicated. Possible solutions are to calculate derivatives numerically, or to

use programs such as MuPAD or Mathematica to calculate analytic derivatives. For

example, Figure 13.2.3 shows MuPAD1 calculating a derivative that I didn’t know off

the top of my head, and one that I did know.

• Numeric derivatives are less accurate than analytic derivatives, and are usu-

ally more costly to evaluate. Both factors usually cause optimization pro-

grams to be less successful when numeric derivatives are used.

• One advantage of numeric derivatives is that you don’t have to worry about

having made an error in calculating the analytic derivative. When program-

ming analytic derivatives it’s a good idea to check that they are correct by

using numeric derivatives. This is a lesson I learned the hard way when writ-

ing my thesis.

1MuPAD is not a freely distributable program, so it’s not on the CD. You can download it from
http://www.mupad.de/download.shtml
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FIGURE 13.2.3. Using MuPAD to get analytic derivatives

• Numeric second derivatives are much more accurate if the data are scaled so

that the elements of the gradient are of the same order of magnitude. Exam-

ple: if the model is yt = h(αxt +βzt)+εt , and estimation is by NLS, suppose

that Dαsn(·) = 1000 and Dβsn(·) = 0.001. One could define α∗ = α/1000;

x∗t = 1000xt ;β∗ = 1000β;z∗t = zt/1000. In this case, the gradients Dα∗sn(·)

and Dβsn(·) will both be 1.

In general, estimation programs always work better if data is scaled in

this way, since roundoff errors are less likely to become important. This is

important in practice.
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• There are algorithms (such as BFGS and DFP) that use the sequential gradi-

ent evaluations to build up an approximation to the Hessian. The iterations

are faster for this reason since the actual Hessian isn’t calculated, but more

iterations usually are required for convergence.

• Switching between algorithms during iterations is sometimes useful.

13.3. Simulated Annealing

Simulated annealing is an algorithm which can find an optimum in the presence

of nonconcavities, discontinuities and multiple local minima/maxima. Basically, the

algorithm randomly selects evaluation points, accepts all points that yield an increase

in the objective function, but also accepts some points that decrease the objective func-

tion. This allows the algorithm to escape from local minima. As more and more points

are tried, periodically the algorithm focuses on the best point so far, and reduces the

range over which random points are generated. Also, the probability that a negative

move is accepted reduces. The algorithm relies on many evaluations, as in the search

method, but focuses in on promising areas, which reduces function evaluations with

respect to the search method. It does not require derivatives to be evaluated. I have a

program to do this if you’re interested.

13.4. Examples

This section gives a few examples of how some nonlinear models may be estimated

using maximum likelihood.

13.4.1. Discrete Choice: The logit model. In this section we will consider max-

imum likelihood estimation of the logit model for binary 0/1 dependent variables. We

will use the BFGS algotithm to find the MLE.



13.4. EXAMPLES 262

We saw an example of a binary choice model in equation 12.0.1. A more general

representation is

y∗ = g(x)− ε

y = 1(y∗ > 0)

Pr(y = 1) = Fε[g(x)]

≡ p(x,θ)

The log-likelihood function is

sn(θ) =
1
n

n

∑
i=1

(yi ln p(xi,θ)+(1− yi) ln [1− p(xi,θ)])

For the logit model (see the contingent valuation example above), the probability

has the specific form

p(x,θ) =
1

1+ exp(−x′θ)

You should download and examine LogitDGP.m , which generates data according

to the logit model, logit.m , which calculates the loglikelihood, and EstimateLogit.m ,

which sets things up and calls the estimation routine, which uses the BFGS algorithm.

Here are some estimation results with n = 100, and the true θ = (0,1)′.

***********************************************
Trial of MLE estimation of Logit model

MLE Estimation Results
BFGS convergence: Normal convergence

Average Log-L: 0.607063
Observations: 100

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/LogitDGP.m
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/Logit.m
http://pareto.uab.es/mcreel/Econometrics/Include/NonlinearOptimization/EstimateLogit.m
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estimate st. err t-stat p-value
constant 0.5400 0.2229 2.4224 0.0154
slope 0.7566 0.2374 3.1863 0.0014

Information Criteria
CAIC : 132.6230
BIC : 130.6230
AIC : 125.4127

***********************************************

The estimation program is calling mle_results(), which in turn calls a number

of other routines. These functions are part of the octave-forge repository.

13.4.2. Count Data: The Poisson model. Demand for health care is usually

thought of a a derived demand: health care is an input to a home production func-

tion that produces health, and health is an argument of the utility function. Grossman

(1972), for example, models health as a capital stock that is subject to depreciation

(e.g., the effects of ageing). Health care visits restore the stock. Under the home pro-

duction framework, individuals decide when to make health care visits to maintain

their health stock, or to deal with negative shocks to the stock in the form of accidents

or illnesses. As such, individual demand will be a function of the parameters of the

individuals’ utility functions.

The MEPS health data file , meps1996.data, contains 4564 observations on six

measures of health care usage. The data is from the 1996 Medical Expenditure Panel

Survey (MEPS). You can get more information at http://www.meps.ahrq.gov/.

The six measures of use are are office-based visits (OBDV), outpatient visits (OPV),

inpatient visits (IPV), emergency room visits (ERV), dental visits (VDV), and number

of prescription drugs taken (PRESCR). These form columns 1 - 6 of meps1996.data.

The conditioning variables are public insurance (PUBLIC), private insurance (PRIV),

http://pareto.uab.es/mcreel/Econometrics/Include/Data/meps1996.data
http://www.meps.ahrq.gov/
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sex (SEX), age (AGE), years of education (EDUC), and income (INCOME). These

form columns 7 - 12 of the file, in the order given here. PRIV and PUBLIC are 0/1

binary variables, where a 1 indicates that the person has access to public or private

insurance coverage. SEX is also 0/1, where 1 indicates that the person is female. This

data will be used in examples fairly extensively in what follows.

The program ExploreMEPS.m shows how the data may be read in, and gives some

descriptive information about variables, which follows:

All of the measures of use are count data, which means that they take on the values

0,1,2, .... It might be reasonable to try to use this information by specifying the density

as a count data density. One of the simplest count data densities is the Poisson density,

which is

fY (y) =
exp(−λ)λy

y!
.

The Poisson average log-likelihood function is

sn(θ) =
1
n

n

∑
i=1

(−λi + yi lnλi − lnyi!)

We will parameterize the model as

λi = exp(x′iβ)

xi = [1 PUBLIC PRIV SEX AGE EDUC INC]′.

This ensures that the mean is positive, as is required for the Poisson model. Note that

for this parameterization

β j =
∂λ/∂β j

λ

so

http://pareto.uab.es/mcreel/Econometrics/Include/MEPS-I/ExploreMEPS.m
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β jx j = ηλ
x j

,

the elasticity of the conditional mean of y with respect to the jth conditioning variable.

The program EstimatePoisson.m estimates a Poisson model using the full data set.

The results of the estimation, using OBDV as the dependent variable are here:

MPITB extensions found

OBDV

******************************************************

Poisson model, MEPS 1996 full data set

MLE Estimation Results

BFGS convergence: Normal convergence

Average Log-L: -3.671090

Observations: 4564

estimate st. err t-stat p-value

constant -0.791 0.149 -5.290 0.000

pub. ins. 0.848 0.076 11.093 0.000

priv. ins. 0.294 0.071 4.137 0.000

sex 0.487 0.055 8.797 0.000

age 0.024 0.002 11.471 0.000

http://pareto.uab.es/mcreel/Econometrics/Include/MEPS-I/EstimatePoisson.m
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edu 0.029 0.010 3.061 0.002

inc -0.000 0.000 -0.978 0.328

Information Criteria

CAIC : 33575.6881 Avg. CAIC: 7.3566

BIC : 33568.6881 Avg. BIC: 7.3551

AIC : 33523.7064 Avg. AIC: 7.3452

******************************************************

13.4.3. Duration data and the Weibull model. In some cases the dependent vari-

able may be the time that passes between the occurence of two events. For example,

it may be the duration of a strike, or the time needed to find a job once one is unem-

ployed. Such variables take on values on the positive real line, and are referred to as

duration data.

A spell is the period of time between the occurence of initial event and the con-

cluding event. For example, the initial event could be the loss of a job, and the final

event is the finding of a new job. The spell is the period of unemployment.

Let t0 be the time the initial event occurs, and t1 be the time the concluding event

occurs. For simplicity, assume that time is measured in years. The random variable D

is the duration of the spell, D = t1 − t0. Define the density function of D, fD(t), with

distribution function FD(t) = Pr(D < t).

Several questions may be of interest. For example, one might wish to know the

expected time one has to wait to find a job given that one has already waited s years.

The probability that a spell lasts s years is

Pr(D > s) = 1−Pr(D ≤ s) = 1−FD(s).
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The density of D conditional on the spell already having lasted s years is

fD(t|D > s) =
fD(t)

1−FD(s)
.

The expectanced additional time required for the spell to end given that is has already

lasted s years is the expectation of D with respect to this density, minus s.

E = E(D|D > s)− s =

(
Z ∞

t
z

fD(z)
1−FD(s)

dz
)
− s

To estimate this function, one needs to specify the density fD(t) as a parametric

density, then estimate by maximum likelihood. There are a number of possibilities

including the exponential density, the lognormal, etc. A reasonably flexible model that

is a generalization of the exponential density is the Weibull density

fD(t|θ) = e−(λt)γ
λγ(λt)γ−1.

According to this model, E(D) = λ−γ. The log-likelihood is just the product of the log

densities.

To illustrate application of this model, 402 observations on the lifespan of mon-

gooses in Serengeti National Park (Tanzania) were used to fit a Weibull model. The

”spell” in this case is the lifetime of an individual mongoose. The parameter estimates

and standard errors are λ̂ = 0.559(0.034) and γ̂ = 0.867(0.033) and the log-likelihood

value is -659.3. Figure 13.4.1 presents fitted life expectancy (expected additional years

of life) as a function of age, with 95% confidence bands. The plot is accompanied by a

nonparametric Kaplan-Meier estimate of life-expectancy. This nonparametric estima-

tor simply averages all spell lengths greater than age, and then subtracts age. This is

consistent by the LLN.
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FIGURE 13.4.1. Life expectancy of mongooses, Weibull model

In the figure one can see that the model doesn’t fit the data well, in that it pre-

dicts life expectancy quite differently than does the nonparametric model. For ages

4-6, the nonparametric estimate is outside the confidence interval that results from the

parametric model, which casts doubt upon the parametric model. Mongooses that are

between 2-6 years old seem to have a lower life expectancy than is predicted by the

Weibull model, whereas young mongooses that survive beyond infancy have a higher

life expectancy, up to a bit beyond 2 years. Due to the dramatic change in the death
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rate as a function of t, one might specify fD(t) as a mixture of two Weibull densities,

fD(t|θ) = δ
(

e−(λ1t)γ1 λ1γ1(λ1t)γ1−1
)

+(1−δ)
(

e−(λ2t)γ2 λ2γ2(λ2t)γ2−1
)

.

The parameters γi and λi, i = 1,2 are the parameters of the two Weibull densities, and

δ is the parameter that mixes the two.

With the same data, θ can be estimated using the mixed model. The results are

a log-likelihood = -623.17. Note that a standard likelihood ratio test cannot be used

to chose between the two models, since under the null that δ = 1 (single density), the

two parameters λ2 and γ2 are not identified. It is possible to take this into account,

but this topic is out of the scope of this course. Nevertheless, the improvement in the

likelihood function is considerable. The parameter estimates are

Parameter Estimate St. Error

λ1 0.233 0.016

γ1 1.722 0.166

λ2 1.731 0.101

γ2 1.522 0.096

δ 0.428 0.035

Note that the mixture parameter is highly significant. This model leads to the fit in

Figure 13.4.2. Note that the parametric and nonparametric fits are quite close to one

another, up to around 6 years. The disagreement after this point is not too important,

since less than 5% of mongooses live more than 6 years, which implies that the Kaplan-

Meier nonparametric estimate has a high variance (since it’s an average of a small

number of observations).

Mixture models are often an effective way to model complex responses, though

they can suffer from overparameterization. Alternatives will be discussed later.
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FIGURE 13.4.2. Life expectancy of mongooses, mixed Weibull model

13.5. Numeric optimization: pitfalls

In this section we’ll examine two common problems that can be encountered when

doing numeric optimization of nonlinear models, and some solutions.

13.5.1. Poor scaling of the data. When the data is scaled so that the magnitudes

of the first and second derivatives are of different orders, problems can easily result. If

we uncomment the appropriate line in EstimatePoisson.m, the data will not be scaled,

and the estimation program will have difficulty converging (it seems to take an infinite

amount of time). With unscaled data, the elements of the score vector have very differ-

ent magnitudes at the initial value of θ (all zeros). To see this run CheckScore.m. With

http://pareto.uab.es/mcreel/Econometrics/Include/MEPS-I/EstimatePoisson.m
http://pareto.uab.es/mcreel/Econometrics/Include/MEPS-I/CheckScore.m
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unscaled data, one element of the gradient is very large, and the maximum and mini-

mum elements are 5 orders of magnitude apart. This causes convergence problems due

to serious numerical inaccuracy when doing inversions to calculate the BFGS direction

of search. With scaled data, none of the elements of the gradient are very large, and

the maximum difference in orders of magnitude is 3. Convergence is quick.

13.5.2. Multiple optima. Multiple optima (one global, others local) can compli-

cate life, since we have limited means of determining if there is a higher maximum the

the one we’re at. Think of climbing a mountain in an unknown range, in a very foggy

place (Figure 13.5.1). You can go up until there’s nowhere else to go up, but since

you’re in the fog you don’t know if the true summit is across the gap that’s at your

feet. Do you claim victory and go home, or do you trudge down the gap and explore

the other side?

The best way to avoid stopping at a local maximum is to use many starting values,

for example on a grid, or randomly generated. Or perhaps one might have priors about

possible values for the parameters (e.g., from previous studies of similar data).

Let’s try to find the true minimizer of minus 1 times the foggy mountain function

(since the algoritms are set up to minimize). From the picture, you can see it’s close

to (0,0), but let’s pretend there is fog, and that we don’t know that. The program

FoggyMountain.m shows that poor start values can lead to problems. It uses SA, which

finds the true global minimum, and it shows that BFGS using a battery of random start

values can also find the global minimum help. The output of one run is here:

MPITB extensions found

======================================================

BFGSMIN final results

http://pareto.uab.es/mcreel/Econometrics/Include/NonlinearOptimization/FoggyMountain.m
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FIGURE 13.5.1. A foggy mountain

Used numeric gradient

------------------------------------------------------

STRONG CONVERGENCE

Function conv 1 Param conv 1 Gradient conv 1

------------------------------------------------------

Objective function value -0.0130329

Stepsize 0.102833

43 iterations



13.5. NUMERIC OPTIMIZATION: PITFALLS 273

------------------------------------------------------

param gradient change

15.9999 -0.0000 0.0000

-28.8119 0.0000 0.0000

The result with poor start values

ans =

16.000 -28.812

================================================

SAMIN final results

NORMAL CONVERGENCE

Func. tol. 1.000000e-10 Param. tol. 1.000000e-03

Obj. fn. value -0.100023

parameter search width

0.037419 0.000018

-0.000000 0.000051

================================================

Now try a battery of random start values and

a short BFGS on each, then iterate to convergence

The result using 20 randoms start values

ans =
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3.7417e-02 2.7628e-07

The true maximizer is near (0.037,0)

In that run, the single BFGS run with bad start values converged to a point far from the

true minimizer, which simulated annealing and BFGS using a battery of random start

values both found the true maximizaer. battery of random start values managed to find

the global max. The moral of the story is be cautious and don’t publish your results

too quickly.
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Exercises

(1) In octave, type ”help bfgsmin_example”, to find out the location of the file.

Edit the file to examine it and learn how to call bfgsmin. Run it, and examine the

output.

(2) In octave, type ”help samin_example”, to find out the location of the file. Edit

the file to examine it and learn how to call samin. Run it, and examine the output.

(3) Using logit.m and EstimateLogit.m as templates, write a function to calculate the

probit loglikelihood, and a script to estimate a probit model. Run it using data that

actually follows a logit model (you can generate it in the same way that is done in

the logit example).

(4) Study mle_results.m to see what it does. Examine the functions that mle_results.m

calls, and in turn the functions that those functions call. Write a complete descrip-

tion of how the whole chain works.

(5) Look at the Poisson estimation results for the OBDV measure of health care use

and give an economic interpretation. Estimate Poisson models for the other 5

measures of health care usage.

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/Logit.m
http://pareto.uab.es/mcreel/Econometrics/Include/NonlinearOptimization/EstimateLogit.m


CHAPTER 14

Asymptotic properties of extremum estimators

Readings: Gourieroux and Monfort (1995), Vol. 2, Ch. 24∗; Amemiya, Ch. 4

section 4.1∗; Davidson and MacKinnon, pp. 591-96; Gallant, Ch. 3; Newey and

McFadden (1994), “Large Sample Estimation and Hypothesis Testing,” in Handbook

of Econometrics, Vol. 4, Ch. 36.

14.1. Extremum estimators

In Definition 12.0.1 we defined an extremum estimator θ̂ as the optimizing element

of an objective function sn(θ) over a set Θ. Let the objective function sn(Zn,θ) depend

upon a n× p random matrix Zn =
[

z1 z2 · · · zn

]′
where the zt are p-vectors and

p is finite.

EXAMPLE 18. Given the model yi = x′iθ + εi, with n observations, define zi =

(yi,x′i)
′. The OLS estimator minimizes

sn(Zn,θ) = 1/n
n

∑
i=1

(
yi − x′iθ

)2

= 1/n ‖ Y −Xθ ‖2

where Y and X are defined similarly to Z.

276
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14.2. Consistency

The following theorem is patterned on a proof in Gallant (1987) (the article, ref.

later), which we’ll see in its original form later in the course. It is interesting to com-

pare the following proof with Amemiya’s Theorem 4.1.1, which is done in terms of

convergence in probability.

THEOREM 19. [Consistency of e.e.] Suppose that θ̂n is obtained by maximizing

sn(θ) over Θ.

Assume

(1) Compactness: The parameter space Θ is an open bounded subset of Euclidean

space ℜK. So the closure of Θ, Θ, is compact.

(2) Uniform Convergence: There is a nonstochastic function s∞(θ) that is contin-

uous in θ on Θ such that

lim
n→∞

sup
θ∈Θ

|sn(θ)− s∞(θ)|= 0, a.s.

(3) Identification: s∞(·) has a unique global maximum at θ0 ∈ Θ, i.e., s∞(θ0) >

s∞(θ), ∀θ 6= θ0,θ ∈ Θ

Then θ̂n
a.s.→ θ0.

Proof: Select a ω ∈ Ω and hold it fixed. Then {sn(ω,θ)} is a fixed sequence of

functions. Suppose that ω is such that sn(θ) converges uniformly to s∞(θ). This hap-

pens with probability one by assumption (b). The sequence {θ̂n} lies in the compact

set Θ, by assumption (1) and the fact that maximixation is over Θ. Since every se-

quence from a compact set has at least one limit point (Davidson, Thm. 2.12), say that

θ̂ is a limit point of {θ̂n}. There is a subsequence {θ̂nm} ({nm} is simply a sequence of



14.2. CONSISTENCY 278

increasing integers) with limm→∞ θ̂nm = θ̂. By uniform convergence and continuity

lim
m→∞

snm(θ̂nm) = s∞(θ̂).

To see this, first of all, select an element θ̂t from the sequence
{

θ̂nm

}
. Then uniform

convergence implies

lim
m→∞

snm(θ̂t) = s∞(θ̂t).

Continuity of s∞ (·) implies that

lim
t→∞

s∞(θ̂t) = s∞(θ̂)

since the limit as t → ∞ of
{

θ̂t
}

is θ̂. So the above claim is true.

Next, by maximization

snm(θ̂nm) ≥ snm(θ0)

which holds in the limit, so

lim
m→∞

snm(θ̂nm) ≥ lim
m→∞

snm(θ0).

However,

lim
m→∞

snm(θ̂nm) = s∞(θ̂),

as seen above, and

lim
m→∞

snm(θ0) = s∞(θ0)

by uniform convergence, so

s∞(θ̂) ≥ s∞(θ0).

But by assumption (3), there is a unique global maximum of s∞(θ) at θ0, so we must

have s∞(θ̂) = s∞(θ0), and θ̂ = θ0. Finally, all of the above limits hold almost surely,
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since so far we have held ω fixed, but now we need to consider all ω ∈ Ω. Therefore

{θ̂n} has only one limit point, θ0, except on a set C ⊂ Ω with P(C) = 0.

Discussion of the proof:

• This proof relies on the identification assumption of a unique global maxi-

mum at θ0. An equivalent way to state this is

(2) Identification: Any point θ in Θ with s∞(θ)≥ s∞(θ0) must be such that ‖ θ−θ0 ‖=

0, which matches the way we will write the assumption in the section on nonparametric

inference.

• We assume that θ̂n is in fact a global maximum of sn (θ) . It is not required to

be unique for n finite, though the identification assumption requires that the

limiting objective function have a unique maximizing argument. The previous

section on numeric optimization methods showed that actually finding the

global maximum of sn (θ) may be a non-trivial problem.

• See Amemiya’s Example 4.1.4 for a case where discontinuity leads to break-

down of consistency.

• The assumption that θ0 is in the interior of Θ (part of the identification as-

sumption) has not been used to prove consistency, so we could directly as-

sume that θ0 is simply an element of a compact set Θ. The reason that we

assume it’s in the interior here is that this is necessary for subsequent proof

of asymptotic normality, and I’d like to maintain a minimal set of simple as-

sumptions, for clarity. Parameters on the boundary of the parameter set cause

theoretical difficulties that we will not deal with in this course. Just note that

conventional hypothesis testing methods do not apply in this case.

• Note that sn (θ) is not required to be continuous, though s∞(θ) is.

• The following figures illustrate why uniform convergence is important. In the

second figure, if the function is not converging around the lower of the two
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maxima, there is no guarantee that the maximizer will be in the neighborhood

of the global maximizer.

With uniform convergence, the maximum of the sample
objective function eventually must be in the neighborhood
of the maximum of the limiting objective function

With pointwise convergence, the sample objective function
may have its maximum far away from that of the limiting
objective function



14.2. CONSISTENCY 281

We need a uniform strong law of large numbers in order to verify assumption (2)

of Theorem 19. The following theorem is from Davidson, pg. 337.

THEOREM 20. [Uniform Strong LLN] Let {Gn(θ)} be a sequence of stochastic

real-valued functions on a totally-bounded metric space (Θ,ρ). Then

sup
θ∈Θ

|Gn(θ)| a.s.→ 0

if and only if

(a) Gn(θ)
a.s.→ 0 for each θ ∈ Θ0, where Θ0 is a dense subset of Θ and

(b) {Gn(θ)} is strongly stochastically equicontinuous..

• The metric space we are interested in now is simply Θ ⊂ ℜK, using the Eu-

clidean norm.

• The pointwise almost sure convergence needed for assuption (a) comes from

one of the usual SLLN’s.

• Stronger assumptions that imply those of the theorem are:

– the parameter space is compact (this has already been assumed)

– the objective function is continuous and bounded with probability one on

the entire parameter space

– a standard SLLN can be shown to apply to some point in the parameter

space

• These are reasonable conditions in many cases, and henceforth when deal-

ing with specific estimators we’ll simply assume that pointwise almost sure

convergence can be extended to uniform almost sure convergence in this way.

• The more general theorem is useful in the case that the limiting objective

function can be continuous in θ even if sn(θ) is discontinuous. This can hap-

pen because discontinuities may be smoothed out as we take expectations
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over the data. In the section on simlation-based estimation we will se a case

of a discontinuous objective function.

14.3. Example: Consistency of Least Squares

We suppose that data is generated by random sampling of (y,w), where yt =

α0 + β0wt +εt . (wt ,εt) has the common distribution function µwµε (w and ε are in-

dependent) with support W × E . Suppose that the variances σ2
w and σ2

ε are finite.

Let θ0 = (α0,β0)′ ∈ Θ, for which Θ is compact. Let xt = (1,wt)
′, so we can write

yt = x′tθ0 + εt . The sample objective function for a sample size n is

sn(θ) = 1/n
n

∑
t=1

(
yt − x′tθ

)2
= 1/n

n

∑
i=1

(
x′tθ

0 + εt − x′tθ
)2

= 1/n
n

∑
t=1

(
x′t
(
θ0 −θ

))2
+2/n

n

∑
t=1

x′t
(
θ0 −θ

)
εt +1/n

n

∑
t=1

ε2
t

• Considering the last term, by the SLLN,

1/n
n

∑
t=1

ε2
t

a.s.→
Z

W

Z

E
ε2dµW dµE = σ2

ε.

• Considering the second term, since E(ε) = 0 and w and ε are independent,

the SLLN implies that it converges to zero.

• Finally, for the first term, for a given θ, we assume that a SLLN applies so

that

1/n
n

∑
t=1

(
x′t
(
θ0 −θ

))2 a.s.→
Z

W

(
x′
(
θ0 −θ

))2
dµW(14.3.1)

=
(
α0 −α

)2
+2
(
α0 −α

)(
β0 −β

)Z

W
wdµW +

(
β0 −β

)2
Z

W
w2dµW

=
(
α0 −α

)2
+2
(
α0 −α

)(
β0 −β

)
E(w)+

(
β0 −β

)2
E
(
w2)



14.4. ASYMPTOTIC NORMALITY 283

Finally, the objective function is clearly continuous, and the parameter space is as-

sumed to be compact, so the convergence is also uniform. Thus,

s∞(θ) =
(
α0 −α

)2
+2
(
α0 −α

)(
β0 −β

)
E(w)+

(
β0 −β

)2
E
(
w2)+σ2

ε

A minimizer of this is clearly α = α0,β = β0.

EXERCISE 21. Show that in order for the above solution to be unique it is necessary

that E(w2) 6= 0. Discuss the relationship between this condition and the problem of

colinearity of regressors.

This example shows that Theorem 19 can be used to prove strong consistency of

the OLS estimator. There are easier ways to show this, of course - this is only an

example of application of the theorem.

14.4. Asymptotic Normality

A consistent estimator is oftentimes not very useful unless we know how fast it is

likely to be converging to the true value, and the probability that it is far away from the

true value. Establishment of asymptotic normality with a known scaling factor solves

these two problems. The following theorem is similar to Amemiya’s Theorem 4.1.3

(pg. 111).

THEOREM 22. [Asymptotic normality of e.e.] In addition to the assumptions of

Theorem 19, assume

(a) Jn(θ) ≡ D2
θsn(θ) exists and is continuous in an open, convex neighborhood of

θ0.

(b) {Jn(θn)} a.s.→ J∞(θ0), a finite negative definite matrix, for any sequence {θn}

that converges almost surely to θ0.

(c)
√

nDθsn(θ0)
d→ N

[
0,I∞(θ0)

]
, where I∞(θ0) = limn→∞ Var

√
nDθsn(θ0)
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Then
√

n
(
θ̂−θ0) d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1]

Proof: By Taylor expansion:

Dθsn(θ̂n) = Dθsn(θ0)+D2
θsn(θ∗)

(
θ̂−θ0)

where θ∗ = λθ̂+(1−λ)θ0, 0 ≤ λ ≤ 1.

• Note that θ̂ will be in the neighborhood where D2
θsn(θ) exists with probability

one as n becomes large, by consistency.

• Now the l.h.s. of this equation is zero, at least asymptotically, since θ̂n is

a maximizer and the f.o.c. must hold exactly since the limiting objective

function is strictly concave in a neighborhood of θ0.

• Also, since θ∗ is between θ̂n and θ0, and since θ̂n
a.s.→ θ0 , assumption (b) gives

D2
θsn(θ∗)

a.s.→ J∞(θ0)

So

0 = Dθsn(θ0)+
[
J∞(θ0)+op(1)

](
θ̂−θ0)

And

0 =
√

nDθsn(θ0)+
[
J∞(θ0)+op(1)

]√
n
(
θ̂−θ0)

Now J∞(θ0) is a finite negative definite matrix, so the op(1) term is asymptotically

irrelevant next to J∞(θ0), so we can write

0 a
=

√
nDθsn(θ0)+ J∞(θ0)

√
n
(
θ̂−θ0)

√
n
(
θ̂−θ0) a

= −J∞(θ0)−1√nDθsn(θ0)
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Because of assumption (c), and the formula for the variance of a linear combination of

r.v.’s,
√

n
(
θ̂−θ0) d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1]

• Assumption (b) is not implied by the Slutsky theorem. The Slutsky theorem

says that g(xn)
a.s.→ g(x) if xn → xand g(·) is continuous at x. However, the

function g(·) can’t depend on n to use this theorem. In our case Jn(θn) is a

function of n. A theorem which applies (Amemiya, Ch. 4) is

THEOREM 23. If gn(θ) converges uniformly almost surely to a nonstochastic func-

tion g∞(θ) uniformly on an open neighborhood of θ0, then gn(θ̂)
a.s.→ g∞(θ0) if g∞(θ0)

is continuous at θ0 and θ̂ a.s.→ θ0.

• To apply this to the second derivatives, sufficient conditions would be that the

second derivatives be strongly stochastically equicontinuous on a neighbor-

hood of θ0, and that an ordinary LLN applies to the derivatives when evalu-

ated at θ ∈ N(θ0).

• Stronger conditions that imply this are as above: continuous and bounded

second derivatives in a neighborhood of θ0.

• Skip this in lecture. A note on the order of these matrices: Supposing that

sn(θ) is representable as an average of n terms, which is the case for all es-

timators we consider, D2
θsn(θ) is also an average of n matrices, the elements

of which are not centered (they do not have zero expectation). Supposing a

SLLN applies, the almost sure limit of D2
θsn(θ0), J∞(θ0) = O(1), as we saw in

Example 51. On the other hand, assumption (c):
√

nDθsn(θ0)
d→ N

[
0,I∞(θ0)

]

means that
√

nDθsn(θ0) = Op()
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where we use the result of Example 49. If we were to omit the
√

n, we’d have

Dθsn(θ0) = n−
1
2 Op(1)

= Op

(
n−

1
2

)

where we use the fact that Op(nr)Op(nq) = Op(nr+q). The sequence Dθsn(θ0)

is centered, so we need to scale by
√

n to avoid convergence to zero.

14.5. Examples

14.5.1. Binary response models. Binary response models arise in a variety of

contexts. We’ve already seen a logit model. Another simple example is a probit

threshold-crossing model. Assume that

y∗ = x′β− ε

y = 1(y∗ > 0)

ε ∼ N(0,1)

Here, y∗ is an unobserved (latent) continuous variable, and y is a binary variable that

indicates whether y∗is negative or positive. Then Pr(y = 1) = Pr(ε < xβ) = Φ(xβ),

where

Φ(•) =
Z xβ

−∞
(2π)−1/2 exp(−ε2

2
)dε

is the standard normal distribution function.

In general, a binary response model will require that the choice probability be

parameterized in some form. For a vector of explanatory variables x, the response

probability will be parameterized in some manner

Pr(y = 1|x) = p(x,θ)
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If p(x,θ) = Λ(x′θ), we have a logit model. If p(x,θ) = Φ(x′θ), where Φ(·) is the

standard normal distribution function, then we have a probit model.

Regardless of the parameterization, we are dealing with a Bernoulli density,

fYi(yi|xi) = p(xi,θ)yi(1− p(x,θ))1−yi

so as long as the observations are independent, the maximum likelihood (ML) estima-

tor, θ̂, is the maximizer of

sn(θ) =
1
n

n

∑
i=1

(yi ln p(xi,θ)+(1− yi) ln [1− p(xi,θ)])

≡ 1
n

n

∑
i=1

s(yi,xi,θ).(14.5.1)

Following the above theoretical results, θ̂ tends in probability to the θ0 that maximizes

the uniform almost sure limit of sn(θ). Noting that Eyi = p(xi,θ0), and following

a SLLN for i.i.d. processes, sn(θ) converges almost surely to the expectation of a

representative term s(y,x,θ). First one can take the expectation conditional on x to get

Ey|x {y ln p(x,θ)+(1− y) ln [1− p(x,θ)]}= p(x,θ0) ln p(x,θ)+
[
1− p(x,θ0)

]
ln [1− p(x,θ)] .

Next taking expectation over x we get the limiting objective function

(14.5.2) s∞(θ) =
Z

X

{
p(x,θ0) ln p(x,θ)+

[
1− p(x,θ0)

]
ln [1− p(x,θ)]

}
µ(x)dx,

where µ(x) is the (joint - the integral is understood to be multiple, and X is the support

of x) density function of the explanatory variables x. This is clearly continuous in θ,

as long as p(x,θ) is continuous, and if the parameter space is compact we therefore

have uniform almost sure convergence. Note that p(x,θ) is continous for the logit and

probit models, for example. The maximizing element of s∞(θ), θ∗, solves the first
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order conditions

Z

X

{
p(x,θ0)

p(x,θ∗)
∂

∂θ
p(x,θ∗)− 1− p(x,θ0)

1− p(x,θ∗)
∂

∂θ
p(x,θ∗)

}
µ(x)dx = 0

This is clearly solved by θ∗ = θ0. Provided the solution is unique, θ̂ is consistent.

Question: what’s needed to ensure that the solution is unique?

The asymptotic normality theorem tells us that

√
n
(
θ̂−θ0) d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1] .

In the case of i.i.d. observations I∞(θ0) = limn→∞ Var
√

nDθsn(θ0) is simply the ex-

pectation of a typical element of the outer product of the gradient.

• There’s no need to subtract the mean, since it’s zero, following the f.o.c. in

the consistency proof above and the fact that observations are i.i.d.

• The terms in n also drop out by the same argument:

lim
n→∞

Var
√

nDθsn(θ0) = lim
n→∞

Var
√

nDθ
1
n ∑

t
s(θ0)

= lim
n→∞

Var
1√
n

Dθ ∑
t

s(θ0)

= lim
n→∞

1
n

Var∑
t

Dθs(θ0)

= lim
n→∞

VarDθs(θ0)

= VarDθs(θ0)

So we get

I∞(θ0) = E
{

∂
∂θ

s(y,x,θ0)
∂

∂θ′
s(y,x,θ0)

}
.

Likewise,

J∞(θ0) = E
∂2

∂θ∂θ′
s(y,x,θ0).
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Expectations are jointly over y and x, or equivalently, first over y conditional on x, then

over x. From above, a typical element of the objective function is

s(y,x,θ0) = y ln p(x,θ0)+(1− y) ln
[
1− p(x,θ0)

]
.

Now suppose that we are dealing with a correctly specified logit model:

p(x,θ) =
(
1+ exp(−x′θ)

)−1
.

We can simplify the above results in this case. We have that

∂
∂θ

p(x,θ) =
(
1+ exp(−x′θ)

)−2 exp(−x′θ)x

=
(
1+ exp(−x′θ)

)−1 exp(−x′θ)

1+ exp(−x′θ)
x

= p(x,θ)(1− p(x,θ))x

=
(

p(x,θ)− p(x,θ)2)x.

So

∂
∂θ

s(y,x,θ0) =
[
y− p(x,θ0)

]
x(14.5.3)

∂2

∂θ∂θ′
s(θ0) = −

[
p(x,θ0)− p(x,θ0)2]xx′.

Taking expectations over y then x gives

I∞(θ0) =
Z

EY
[
y2 −2p(x,θ0)p(x,θ0)+ p(x,θ0)2]xx′µ(x)dx(14.5.4)

=

Z [
p(x,θ0)− p(x,θ0)2]xx′µ(x)dx.(14.5.5)
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where we use the fact that EY (y) = EY (y2) = p(x,θ0). Likewise,

(14.5.6) J∞(θ0) = −
Z [

p(x,θ0)− p(x,θ0)2]xx′µ(x)dx.

Note that we arrive at the expected result: the information matrix equality holds (that

is, J∞(θ0) = −I∞(θ0)). With this,

√
n
(
θ̂−θ0) d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1]

simplifies to
√

n
(
θ̂−θ0) d→ N

[
0,−J∞(θ0)−1]

which can also be expressed as

√
n
(
θ̂−θ0) d→ N

[
0,I∞(θ0)−1] .

On a final note, the logit and standard normal CDF’s are very similar - the logit dis-

tribution is a bit more fat-tailed. While coefficients will vary slightly between the two

models, functions of interest such as estimated probabilities p(x, θ̂) will be virtually

identical for the two models.

14.5.2. Example: Linearization of a nonlinear model. Ref. Gourieroux and

Monfort, section 8.3.4. White, Intn’l Econ. Rev. 1980 is an earlier reference.

Suppose we have a nonlinear model

yi = h(xi,θ0)+ εi

where

εi ∼ iid(0,σ2)



14.5. EXAMPLES 291

The nonlinear least squares estimator solves

θ̂n = argmin
1
n

n

∑
i=1

(yi −h(xi,θ))2

We’ll study this more later, but for now it is clear that the foc for minimization will

require solving a set of nonlinear equations. A common approach to the problem seeks

to avoid this difficulty by linearizing the model. A first order Taylor’s series expansion

about the point x0 with remainder gives

yi = h(x0,θ0)+(xi − x0)
′ ∂h(x0,θ0)

∂x
+νi

where νi encompasses both εi and the Taylor’s series remainder. Note that νi is no

longer a classical error - its mean is not zero. We should expect problems.

Define

α∗ = h(x0,θ0)− x′0
∂h(x0,θ0)

∂x

β∗ =
∂h(x0,θ0)

∂x

Given this, one might try to estimate α∗ and β∗ by applying OLS to

yi = α+βxi +νi

• Question, will α̂ and β̂ be consistent for α∗ and β∗?

• The answer is no, as one can see by interpreting α̂ and β̂ as extremum esti-

mators. Let γ = (α,β′)′.

γ̂ = argminsn(γ) =
1
n

n

∑
i=1

(yi −α−βxi)
2

The objective function converges to its expectation

sn(γ)
u.a.s.→ s∞(γ) = EX EY |X (y−α−βx)2
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and γ̂ converges a.s. to the γ0 that minimizes s∞(γ):

γ0 = argminEX EY |X (y−α−βx)2

Noting that

EX EY |X
(
y−α− x′β

)2
= EX EY |X

(
h(x,θ0)+ ε−α−βx

)2

= σ2 + EX
(
h(x,θ0)−α−βx

)2

since cross products involving ε drop out. α0 and β0 correspond to the hyperplane

that is closest to the true regression function h(x,θ0) according to the mean squared

error criterion. This depends on both the shape of h(·) and the density function of the

conditioning variables.

x_0

α

β

x

x

x

x

x
x x

x

x

x

Tangent line

Fitted line

Inconsistency of the linear approximation, even at 
the approximation point

h(x,θ)

• It is clear that the tangent line does not minimize MSE, since, for example, if

h(x,θ0) is concave, all errors between the tangent line and the true function

are negative.
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• Note that the true underlying parameter θ0 is not estimated consistently, either

(it may be of a different dimension than the dimension of the parameter of the

approximating model, which is 2 in this example).

• Second order and higher-order approximations suffer from exactly the same

problem, though to a less severe degree, of course. For this reason, translog,

Generalized Leontiev and other “flexible functional forms” based upon second-

order approximations in general suffer from bias and inconsistency. The bias

may not be too important for analysis of conditional means, but it can be very

important for analyzing first and second derivatives. In production and con-

sumer analysis, first and second derivatives (e.g., elasticities of substitution)

are often of interest, so in this case, one should be cautious of unthinking

application of models that impose stong restrictions on second derivatives.

• This sort of linearization about a long run equilibrium is a common practice in

dynamic macroeconomic models. It is justified for the purposes of theoretical

analysis of a model given the model’s parameters, but it is not justifiable for

the estimation of the parameters of the model using data. The section on

simulation-based methods offers a means of obtaining consistent estimators

of the parameters of dynamic macro models that are too complex for standard

methods of analysis.
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Chapter Exercises

(1) Suppose that xi ∼ uniform(0,1), and yi = 1− x2
i + εi, where εi is iid(0,σ2).

Suppose we estimate the misspecified model yi = α+βxi +ηi by OLS. Find

the numeric values of α0 and β0 that are the probability limits of α̂ and β̂

(2) Verify your results using Octave by generating data that follows the above

model, and calculating the OLS estimator. When the sample size is very large

the estimator should be very close to the analytical results you obtained in

question 1.

(3) Use the asymptotic normality theorem to find the asymptotic distribution of

the ML estimator of β0 for the model y = xβ0 + ε, where ε ∼ N(0,1) and is

independent of x. This means finding ∂2

∂β∂β′ sn(β), J (β0),
∂sn(β)

∂β

∣∣∣ , and I (β0).

The expressions may involve the unspecified density of x.

(4) Assume a d.g.p. follows the logit model: Pr(y = 1|x) =
(
1+ exp(−β0x)

)−1.

(a) Assume that x ∼ uniform(-a,a). Find the asymptotic distribution of the

ML estimator of β0 (this is a scalar parameter).

(b) Now assume that x ∼ uniform(-2a,2a). Again find the asymptotic distri-

bution of the ML estimator of β0.

(c) Comment on the results



CHAPTER 15

Generalized method of moments (GMM)

Readings: Hamilton Ch. 14∗; Davidson and MacKinnon, Ch. 17 (see pg. 587 for

refs. to applications); Newey and McFadden (1994), “Large Sample Estimation and

Hypothesis Testing,” in Handbook of Econometrics, Vol. 4, Ch. 36.

15.1. Definition

We’ve already seen one example of GMM in the introduction, based upon the

χ2 distribution. Consider the following example based upon the t-distribution. The

density function of a t-distributed r.v. Yt is

fYt (yt ,θ0) =
Γ
[(

θ0 +1
)
/2
]

(πθ0)
1/2 Γ(θ0/2)

[
1+
(
y2

t /θ0)]−(θ0+1)/2

Given an iid sample of size n, one could estimate θ0 by maximizing the log-likelihood

function

θ̂ ≡ argmax
Θ

lnLn(θ) =
n

∑
t=1

ln fYt (yt ,θ)

• This approach is attractive since ML estimators are asymptotically efficient.

This is because the ML estimator uses all of the available information (e.g.,

the distribution is fully specified up to a parameter). Recalling that a dis-

tribution is completely characterized by its moments, the ML estimator is

interpretable as a GMM estimator that uses all of the moments. The method

of moments estimator uses only K moments to estimate a K− dimensional
295
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parameter. Since information is discarded, in general, by the MM estimator,

efficiency is lost relative to the ML estimator.

• Continuing with the example, a t-distributed r.v. with density fYt (yt ,θ0) has

mean zero and variance V (yt) = θ0/
(
θ0 −2

)
(for θ0 > 2).

• Using the notation introduced previously, define a moment condition m1t(θ) =

θ/(θ−2)− y2
t and m1(θ) = 1/n∑n

t=1 m1t(θ) = θ/(θ−2)− 1/n∑n
t=1 y2

t . As

before, when evaluated at the true parameter value θ0, both Eθ0
[
m1t(θ0)

]
= 0

and Eθ0
[
m1(θ0)

]
= 0.

• Choosing θ̂ to set m1(θ̂) ≡ 0 yields a MM estimator:

(15.1.1) θ̂ =
2

1− n
∑i y2

i

This estimator is based on only one moment of the distribution - it uses less information

than the ML estimator, so it is intuitively clear that the MM estimator will be inefficient

relative to the ML estimator.

• An alternative MM estimator could be based upon the fourth moment of the

t-distribution. The fourth moment of a t-distributed r.v. is

µ4 ≡ E(y4
t ) =

3
(
θ0)2

(θ0 −2)(θ0 −4)
,

provided θ0 > 4. We can define a second moment condition

m2(θ) =
3(θ)2

(θ−2)(θ−4)
− 1

n

n

∑
t=1

y4
t

• A second, different MM estimator chooses θ̂ to set m2(θ̂) ≡ 0. If you solve

this you’ll see that the estimate is different from that in equation 15.1.1.

This estimator isn’t efficient either, since it uses only one moment. A GMM estimator

would use the two moment conditions together to estimate the single parameter. The
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GMM estimator is overidentified, which leads to an estimator which is efficient relative

to the just identified MM estimators (more on efficiency later).

• As before, set mn(θ)= (m1(θ),m2(θ))′ . The n subscript is used to indicate the

sample size. Note that m(θ0) = Op(n−1/2), since it is an average of centered

random variables, whereas m(θ) = Op(1), θ 6= θ0, where expectations are

taken using the true distribution with parameter θ0. This is the fundamental

reason that GMM is consistent.

• A GMM estimator requires defining a measure of distance, d (m(θ)). A pop-

ular choice (for reasons noted below) is to set d (m(θ)) = m′Wnm, and we

minimize sn(θ) = m(θ)′Wnm(θ). We assume Wn converges to a finite positive

definite matrix.

• In general, assume we have g moment conditions, so m(θ) is a g -vector and

W is a g×g matrix.

For the purposes of this course, the following definition of the GMM estimator is

sufficiently general:

DEFINITION 24. The GMM estimator of the K -dimensional parameter vector

θ0, θ̂ ≡ argminΘ sn(θ) ≡ mn(θ)′Wnmn(θ), where mn(θ) = 1
n ∑n

t=1 mt(θ) is a g-vector,

g ≥ K, with Eθm(θ) = 0, and Wn converges almost surely to a finite g× g symmetric

positive definite matrix W∞.

What’s the reason for using GMM if MLE is asymptotically efficient?

• Robustness: GMM is based upon a limited set of moment conditions. For

consistency, only these moment conditions need to be correctly specified,

whereas MLE in effect requires correct specification of every conceivable

moment condition. GMM is robust with respect to distributional misspecifi-

cation. The price for robustness is loss of efficiency with respect to the MLE
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estimator. Keep in mind that the true distribution is not known so if we er-

roneously specify a distribution and estimate by MLE, the estimator will be

inconsistent in general (not always).

– Feasibility: in some cases the MLE estimator is not available, because

we are not able to deduce the likelihood function. More on this in the

section on simulation-based estimation. The GMM estimator may still

be feasible even though MLE is not possible.

15.2. Consistency

We simply assume that the assumptions of Theorem 19 hold, so the GMM estima-

tor is strongly consistent. The only assumption that warrants additional comments is

that of identification. In Theorem 19, the third assumption reads: (c) Identification:

s∞(·) has a unique global maximum at θ0, i.e., s∞(θ0) > s∞(θ), ∀θ 6= θ0. Taking the

case of a quadratic objective function sn(θ) = mn(θ)′Wnmn(θ), first consider mn(θ).

• Applying a uniform law of large numbers, we get mn(θ)
a.s.→ m∞(θ).

• Since Eθ′mn(θ0) = 0 by assumption, m∞(θ0) = 0.

• Since s∞(θ0) = m∞(θ0)′W∞m∞(θ0) = 0, in order for asymptotic identification,

we need that m∞(θ) 6= 0 for θ 6= θ0, for at least some element of the vector.

This and the assumption that Wn
a.s.→ W∞, a finite positive g× g definite g× g

matrix guarantee that θ0 is asymptotically identified.

• Note that asymptotic identification does not rule out the possibility of lack of

identification for a given data set - there may be multiple minimizing solutions

in finite samples.
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15.3. Asymptotic normality

We also simply assume that the conditions of Theorem 22 hold, so we will have

asymptotic normality. However, we do need to find the structure of the asymptotic

variance-covariance matrix of the estimator. From Theorem 22, we have

√
n
(
θ̂−θ0) d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1]

where J∞(θ0) is the almost sure limit of ∂2

∂θ∂θ′ sn(θ) and I∞(θ0) = limn→∞ Var
√

n ∂
∂θsn(θ0).

We need to determine the form of these matrices given the objective function sn(θ) =

mn(θ)′Wnmn(θ).

Now using the product rule from the introduction,

∂
∂θ

sn(θ) = 2
[

∂
∂θ

m
′
n (θ)

]
Wnmn (θ)

Define the K ×g matrix

Dn(θ) ≡ ∂
∂θ

m′
n (θ) ,

so:

(15.3.1)
∂

∂θ
s(θ) = 2D(θ)Wm(θ) .

(Note that sn(θ), Dn(θ), Wn and mn(θ) all depend on the sample size n, but it is omitted

to unclutter the notation).

To take second derivatives, let Di be the i− th row of D(θ). Using the product rule,

∂2

∂θ′∂θi
s(θ) =

∂
∂θ′

2Di(θ)Wnm(θ)

= 2DiW D′+2m′W
[

∂
∂θ′

D′
i

]
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When evaluating the term

2m(θ)′W
[

∂
∂θ′

D(θ)′i

]

at θ0, assume that ∂
∂θ′ D(θ)′i satisfies a LLN, so that it converges almost surely to a finite

limit. In this case, we have

2m(θ0)′W
[

∂
∂θ′

D(θ0)′i

]
a.s.→ 0,

since m(θ0) = op(1), W a.s.→ W∞.

Stacking these results over the K rows of D, we get

lim
∂2

∂θ∂θ′
sn(θ0) = J∞(θ0) = 2D∞W∞D′

∞,a.s.,

where we define limD = D∞, a.s., and limW = W∞, a.s. (we assume a LLN holds).

With regard to I∞(θ0), following equation 15.3.1, and noting that the scores have

mean zero at θ0 (since Em(θ0) = 0 by assumption), we have

I∞(θ0) = lim
n→∞

Var
√

n
∂

∂θ
sn(θ0)

= lim
n→∞

E4nDnWnm(θ0)m(θ)′WnD′
n

= lim
n→∞

E4DnWn
{√

nm(θ0)
}{√

nm(θ)′
}

WnD′
n

Now, given that m(θ0) is an average of centered (mean-zero) quantities, it is reasonable

to expect a CLT to apply, after multiplication by
√

n. Assuming this,

√
nm(θ0)

d→ N(0,Ω∞),

where

Ω∞ = lim
n→∞

E
[
nm(θ0)m(θ0)′

]
.
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Using this, and the last equation, we get

I∞(θ0) = 4D∞W∞Ω∞W∞D′
∞

Using these results, the asymptotic normality theorem gives us

√
n
(
θ̂−θ0) d→ N

[
0,
(
D∞W∞D′

∞
)−1 D∞W∞Ω∞W∞D′

∞
(
D∞W∞D′

∞
)−1
]
,

the asymptotic distribution of the GMM estimator for arbitrary weighting matrix Wn.

Note that for J∞ to be positive definite, D∞ must have full row rank, ρ(D∞) = k.

15.4. Choosing the weighting matrix

W is a weighting matrix, which determines the relative importance of violations

of the individual moment conditions. For example, if we are much more sure of the

first moment condition, which is based upon the variance, than of the second, which is

based upon the fourth moment, we could set

W =


 a 0

0 b




with a much larger than b. In this case, errors in the second moment condition have

less weight in the objective function.

• Since moments are not independent, in general, we should expect that there

be a correlation between the moment conditions, so it may not be desirable

to set the off-diagonal elements to 0. W may be a random, data dependent

matrix.
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• We have already seen that the choice of W will influence the asymptotic dis-

tribution of the GMM estimator. Since the GMM estimator is already ineffi-

cient w.r.t. MLE, we might like to choose the W matrix to make the GMM

estimator efficient within the class of GMM estimators defined by mn(θ).

• To provide a little intuition, consider the linear model y = x′β + ε, where

ε ∼ N(0,Ω). That is, he have heteroscedasticity and autocorrelation.

• Let P be the Cholesky factorization of Ω−1, e.g, P′P = Ω−1.

• Then the model Py = PXβ + Pε satisfies the classical assumptions of ho-

moscedasticity and nonautocorrelation, since V (Pε) = PV (ε)P′ = PΩP′ =

P(P′P)−1P′ = PP−1 (P′)−1 P′ = In. (Note: we use (AB)−1 = B−1A−1 for A,

B both nonsingular). This means that the transformed model is efficient.

• The OLS estimator of the model Py = PXβ + Pε minimizes the objective

function (y−Xβ)′Ω−1(y−Xβ). Interpreting (y−Xβ) = ε(β) as moment con-

ditions (note that they do have zero expectation when evaluated at β0), the

optimal weighting matrix is seen to be the inverse of the covariance matrix of

the moment conditions. This result carries over to GMM estimation. (Note:

this presentation of GLS is not a GMM estimator, because the number of mo-

ment conditions here is equal to the sample size, n. Later we’ll see that GLS

can be put into the GMM framework defined above).

THEOREM 25. If θ̂ is a GMM estimator that minimizes mn(θ)′Wnmn(θ), the as-

ymptotic variance of θ̂ will be minimized by choosing Wn so that Wn
a.s→ W∞ = Ω−1

∞ ,

where Ω∞ = limn→∞ E
[
nm(θ0)m(θ0)′

]
.

Proof: For W∞ = Ω−1
∞ , the asymptotic variance

(
D∞W∞D′

∞
)−1 D∞W∞Ω∞W∞D′

∞
(
D∞W∞D′

∞
)−1
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simplifies to
(
D∞Ω−1

∞ D′
∞
)−1

. Now, for any choice such that W∞ 6= Ω−1
∞ , consider the

difference of the inverses of the variances when W = Ω−1 versus when W is some

arbitrary positive definite matrix:

(
D∞Ω−1

∞ D′
∞
)
−
(
D∞W∞D′

∞
)[

D∞W∞Ω∞W∞D′
∞
]−1 (D∞W∞D′

∞
)

= D∞Ω−1/2
∞

[
I −Ω1/2

∞
(
W∞D′

∞
)[

D∞W∞Ω∞W∞D′
∞
]−1 D∞W∞Ω1/2

∞

]
Ω−1/2

∞ D′
∞

as can be verified by multiplication. The term in brackets is idempotent, which is also

easy to check by multiplication, and is therefore positive semidefinite. A quadratic

form in a positive semidefinite matrix is also positive semidefinite. The difference of

the inverses of the variances is positive semidefinite, which implies that the difference

of the variances is negative semidefinite, which proves the theorem.

The result

(15.4.1)
√

n
(
θ̂−θ0) d→ N

[
0,
(
D∞Ω−1

∞ D′
∞
)−1
]

allows us to treat

θ̂ ≈ N

(
θ0,

(
D∞Ω−1

∞ D′
∞
)−1

n

)
,

where the ≈ means ”approximately distributed as.” To operationalize this we need

estimators of D∞ and Ω∞.

• The obvious estimator of D̂∞ is simply ∂
∂θm′

n
(
θ̂
)
, which is consistent by the

consistency of θ̂, assuming that ∂
∂θm′

n is continuous in θ. Stochastic equicon-

tinuity results can give us this result even if ∂
∂θm′

n is not continuous. We now

turn to estimation of Ω∞.
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15.5. Estimation of the variance-covariance matrix

(See Hamilton Ch. 10, pp. 261-2 and 280-84)∗.

In the case that we wish to use the optimal weighting matrix, we need an estimate

of Ω∞, the limiting variance-covariance matrix of
√

nmn(θ0). While one could esti-

mate Ω∞ parametrically, we in general have little information upon which to base a

parametric specification. In general, we expect that:

• mt will be autocorrelated (Γts = E(mtm′
t−s) 6= 0). Note that this autocovari-

ance will not depend on t if the moment conditions are covariance stationary.

• contemporaneously correlated, since the individual moment conditions will

not in general be independent of one another (E(mitm jt) 6= 0).

• and have different variances (E(m2
it) = σ2

it ).

Since we need to estimate so many components if we are to take the parametric ap-

proach, it is unlikely that we would arrive at a correct parametric specification. For

this reason, research has focused on consistent nonparametric estimators of Ω∞.

Henceforth we assume that mt is covariance stationary (the covariance between mt

and mt−s does not depend on t). Define the v−th autocovariance of the moment condi-

tions Γv = E(mtm′
t−s). Note that E(mtm′

t+s)= Γ′
v. Recall that mt and m are functions of

θ, so for now assume that we have some consistent estimator of θ0, so that m̂t = mt(θ̂).

Now

Ωn = E
[
nm(θ0)m(θ0)′

]
= E

[
n

(
1/n

n

∑
t=1

mt

)(
1/n

n

∑
t=1

m′
t

)]

= E

[
1/n

(
n

∑
t=1

mt

)(
n

∑
t=1

m′
t

)]

= Γ0 +
n−1

n

(
Γ1 +Γ′

1
)
+

n−2
n

(
Γ2 +Γ′

2
)
· · ·+ 1

n

(
Γn−1 +Γ′

n−1
)
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A natural, consistent estimator of Γv is

Γ̂v = 1/n
n

∑
t=v+1

m̂tm̂′
t−v.

(you might use n − v in the denominator instead). So, a natural, but inconsistent,

estimator of Ω∞ would be

Ω̂ = Γ̂0 +
n−1

n

(
Γ̂1 + Γ̂′

1

)
+

n−2
n

(
Γ̂2 + Γ̂′

2

)
+ · · ·+

(
Γ̂n−1 + Γ̂′

n−1

)

= Γ̂0 +
n−1

∑
v=1

n− v
n

(
Γ̂v + Γ̂′

v

)
.

This estimator is inconsistent in general, since the number of parameters to estimate is

more than the number of observations, and increases more rapidly than n, so informa-

tion does not build up as n → ∞.

On the other hand, supposing that Γv tends to zero sufficiently rapidly as v tends to

∞, a modified estimator

Ω̂ = Γ̂0 +
q(n)

∑
v=1

(
Γ̂v + Γ̂′

v

)
,

where q(n)
p→ ∞ as n → ∞ will be consistent, provided q(n) grows sufficiently slowly.

The term n−v
n can be dropped because q(n) must be op(n). This allows information

to accumulate at a rate that satisfies a LLN. A disadvantage of this estimator is that it

may not be positive definite. This could cause one to calculate a negative χ2 statistic,

for example!

• Note: the formula for Ω̂ requires an estimate of m(θ0), which in turn requires

an estimate of θ, which is based upon an estimate of Ω! The solution to this

circularity is to set the weighting matrix W arbitrarily (for example to an

identity matrix), obtain a first consistent but inefficient estimate of θ0, then
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use this estimate to form Ω̂, then re-estimate θ0. The process can be iterated

until neither Ω̂ nor θ̂ change appreciably between iterations.

15.5.1. Newey-West covariance estimator. The Newey-West estimator (Econo-

metrica, 1987) solves the problem of possible nonpositive definiteness of the above

estimator. Their estimator is

Ω̂ = Γ̂0 +
q(n)

∑
v=1

[
1− v

q+1

](
Γ̂v + Γ̂′

v

)
.

This estimator is p.d. by construction. The condition for consistency is that n−1/4q →

0. Note that this is a very slow rate of growth for q. This estimator is nonparametric -

we’ve placed no parametric restrictions on the form of Ω. It is an example of a kernel

estimator.

In a more recent paper, Newey and West (Review of Economic Studies, 1994) use

pre-whitening before applying the kernel estimator. The idea is to fit a VAR model

to the moment conditions. It is expected that the residuals of the VAR model will be

more nearly white noise, so that the Newey-West covariance estimator might perform

better with short lag lengths..

The VAR model is

m̂t = Θ1m̂t−1 + · · ·+Θpm̂t−p +ut

This is estimated, giving the residuals ût . Then the Newey-West covariance estimator is

applied to these pre-whitened residuals, and the covariance Ω is estimated combining

the fitted VAR

̂̂mt = Θ̂1m̂t−1 + · · ·+ Θ̂pm̂t−p

with the kernel estimate of the covariance of the ut . See Newey-West for details.

• I have a program that does this if you’re interested.
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15.6. Estimation using conditional moments

So far, the moment conditions have been presented as unconditional expectations.

One common way of defining unconditional moment conditions is based upon condi-

tional moment conditions.

Suppose that a random variable Y has zero expectation conditional on the random

variable X

EY |XY =

Z

Y f (Y |X)dY = 0

Then the unconditional expectation of the product of Y and a function g(X) of X is

also zero. The unconditional expectation is

EY g(X) =
Z

X

(
Z

Y
Y g(X) f (Y,X)dY

)
dX .

This can be factored into a conditional expectation and an expectation w.r.t. the mar-

ginal density of X :

EY g(X) =
Z

X

(
Z

Y
Y g(X) f (Y |X)dY

)
f (X)dX .

Since g(X) doesn’t depend on Y it can be pulled out of the integral

EY g(X) =

Z

X

(
Z

Y
Y f (Y |X)dY

)
g(X) f (X)dX .

But the term in parentheses on the rhs is zero by assumption, so

EY g(X) = 0

as claimed.

This is important econometrically, since models often imply restrictions on condi-

tional moments. Suppose a model tells us that the function K(yt ,xt) has expectation,
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conditional on the information set It , equal to k(xt ,θ),

EθK(yt ,xt)|It = k(xt ,θ).

• For example, in the context of the classical linear model yt = x′tβ+εt , we can

set K(yt,xt) = yt so that k(xt ,θ) = x′tβ.

With this, the function

ht(θ) = K(yt ,xt)− k(xt ,θ)

has conditional expectation equal to zero

Eθht(θ)|It = 0.

This is a scalar moment condition, which isn’t sufficient to identify a K -dimensional

parameter θ (K > 1). However, the above result allows us to form various uncondi-

tional expectations

mt(θ) = Z(wt)ht(θ)

where Z(wt) is a g×1-vector valued function of wt and wt is a set of variables drawn

from the information set It . The Z(wt) are instrumental variables. We now have g

moment conditions, so as long as g > K the necessary condition for identification

holds.



15.6. ESTIMATION USING CONDITIONAL MOMENTS 309

One can form the n×g matrix

Zn =




Z1(w1) Z2(w1) · · · Zg(w1)

Z1(w2) Z2(w2) Zg(w2)

...
...

Z1(wn) Z2(wn) · · · Zg(wn)




=




Z′
1

Z′
2

Z′
n




With this we can form the g moment conditions

mn(θ) =
1
n

Z′
n




h1(θ)

h2(θ)

...

hn(θ)




=
1
n

Z′
nhn(θ)

=
1
n

n

∑
t=1

Ztht(θ)

=
1
n

n

∑
t=1

mt(θ)

where Z(t,·) is the tth row of Zn. This fits the previous treatment. An interesting ques-

tion that arises is how one should choose the instrumental variables Z(wt) to achieve

maximum efficiency.
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Note that with this choice of moment conditions, we have that Dn ≡ ∂
∂θm′(θ) (a

K ×g matrix) is

Dn(θ) =
∂

∂θ
1
n

(
Z′

nhn(θ)
)′

=
1
n

(
∂

∂θ
h′n (θ)

)
Zn

which we can define to be

Dn(θ) =
1
n

HnZn.

where Hn is a K×n matrix that has the derivatives of the individual moment conditions

as its columns. Likewise, define the var-cov. of the moment conditions

Ωn = E
[
nmn(θ0)mn(θ0)′

]

= E
[

1
n

Z′
nhn(θ0)hn(θ0)′Zn

]

= Z′
nE
(

1
n

hn(θ0)hn(θ0)′
)

Zn

≡ Z′
n

Φn

n
Zn

where we have defined Φn = Varhn(θ0). Note that the dimension of this matrix is

growing with the sample size, so it is not consistently estimable without additional

assumptions.

The asymptotic normality theorem above says that the GMM estimator using the

optimal weighting matrix is distributed as

√
n
(
θ̂−θ0) d→ N(0,V∞)
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where

(15.6.1) V∞ = lim
n→∞

((
HnZn

n

)(
Z′

nΦnZn

n

)−1(Z′
nH ′

n
n

))−1

.

Using an argument similar to that used to prove that Ω−1
∞ is the efficient weighting

matrix, we can show that putting

Zn = Φ−1
n H ′

n

causes the above var-cov matrix to simplify to

(15.6.2) V∞ = lim
n→∞

(
HnΦ−1

n H ′
n

n

)−1

.

and furthermore, this matrix is smaller that the limiting var-cov for any other choice

of instrumental variables. (To prove this, examine the difference of the inverses of the

var-cov matrices with the optimal intruments and with non-optimal instruments. As

above, you can show that the difference is positive semi-definite).

• Note that both Hn, which we should write more properly as Hn(θ0), since it

depends on θ0, and Φ must be consistently estimated to apply this.

• Usually, estimation of Hn is straightforward - one just uses

Ĥ =
∂

∂θ
h′n
(
θ̃
)
,

where θ̃ is some initial consistent estimator based on non-optimal instru-

ments.

• Estimation of Φn may not be possible. It is an n× n matrix, so it has more

unique elements than n, the sample size, so without restrictions on the pa-

rameters it can’t be estimated consistently. Basically, you need to provide

a parametric specification of the covariances of the ht(θ) in order to be able
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to use optimal instruments. A solution is to approximate this matrix para-

metrically to define the instruments. Note that the simplified var-cov matrix

in equation 15.6.2 will not apply if approximately optimal instruments are

used - it will be necessary to use an estimator based upon equation 15.6.1,

where the term Z′
nΦnZn

n must be estimated consistently apart, for example by

the Newey-West procedure.

15.7. Estimation using dynamic moment conditions

Note that dynamic moment conditions simplify the var-cov matrix, but are often

harder to formulate. The will be added in future editions. For now, the Hansen appli-

cation below is enough.

15.8. A specification test

The first order conditions for minimization, using the an estimate of the optimal

weighting matrix, are

∂
∂θ

s(θ̂) = 2
[

∂
∂θ

m
′
n
(
θ̂
)]

Ω̂−1mn
(
θ̂
)
≡ 0

or

D(θ̂)Ω̂−1mn(θ̂) ≡ 0

Consider a Taylor expansion of m(θ̂):

(15.8.1) m(θ̂) = mn(θ0)+D′
n(θ

0)
(
θ̂−θ0)+op(1).
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Multiplying by D(θ̂)Ω̂−1 we obtain

D(θ̂)Ω̂−1m(θ̂) = D(θ̂)Ω̂−1mn(θ0)+D(θ̂)Ω̂−1D(θ0)′
(
θ̂−θ0)+op(1)

The lhs is zero, and since θ̂ tends to θ0 and Ω̂ tends to Ω∞, we can write

D∞Ω−1
∞ mn(θ0)

a
= −D∞Ω−1

∞ D′
∞
(
θ̂−θ0)

or

√
n
(
θ̂−θ0) a

= −
√

n
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1
∞ mn(θ0)

With this, and taking into account the original expansion (equation 15.8.1), we get

√
nm(θ̂)

a
=
√

nmn(θ0)−
√

nD′
∞
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1
∞ mn(θ0).

This last can be written as

√
nm(θ̂)

a
=

√
n
(

Ω1/2
∞ −D′

∞
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1/2
∞

)
Ω−1/2

∞ mn(θ0)

Or

√
nΩ−1/2

∞ m(θ̂)
a
=
√

n
(

Ig −Ω−1/2
∞ D′

∞
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1/2
∞

)
Ω−1/2

∞ mn(θ0)

Now
√

nΩ−1/2
∞ mn(θ0)

d→ N(0, Ig)

and one can easily verify that

P =
(

Ig −Ω−1/2
∞ D′

∞
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1/2
∞

)
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is idempotent of rank g−K, (recall that the rank of an idempotent matrix is equal to

its trace) so

(√
nΩ−1/2

∞ m(θ̂)
)′(√

nΩ−1/2
∞ m(θ̂)

)
= nm(θ̂)′Ω−1

∞ m(θ̂)
d→ χ2(g−K)

Since Ω̂ converges to Ω∞, we also have

nm(θ̂)′Ω̂−1m(θ̂)
d→ χ2(g−K)

or

n · sn(θ̂)
d→ χ2(g−K)

supposing the model is correctly specified. This is a convenient test since we just

multiply the optimized value of the objective function by n, and compare with a χ2(g−

K) critical value. The test is a general test of whether or not the moments used to

estimate are correctly specified.

• This won’t work when the estimator is just identified. The f.o.c. are

Dθsn(θ) = DΩ̂−1m(θ̂) ≡ 0.

But with exact identification, both D and Ω̂ are square and invertible (at least

asymptotically, assuming that asymptotic normality hold), so

m(θ̂) ≡ 0.

So the moment conditions are zero regardless of the weighting matrix used.

As such, we might as well use an identity matrix and save trouble. Also

sn(θ̂) = 0, so the test breaks down.

• A note: this sort of test often over-rejects in finite samples. One should be

cautious in rejecting a model when this test rejects.
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15.9. Other estimators interpreted as GMM estimators

15.9.1. OLS with heteroscedasticity of unknown form.

EXAMPLE 26. White’s heteroscedastic consistent varcov estimator for OLS.

Suppose y = Xβ0 + ε, where ε ∼ N(0,Σ), Σ a diagonal matrix.

• The typical approach is to parameterize Σ = Σ(σ), where σ is a finite dimen-

sional parameter vector, and to estimate β and σ jointly (feasible GLS). This

will work well if the parameterization of Σ is correct.

• If we’re not confident about parameterizing Σ, we can still estimate β consis-

tently by OLS. However, the typical covariance estimator V (β̂) = (X′X)−1 σ̂2

will be biased and inconsistent, and will lead to invalid inferences.

By exogeneity of the regressors xt (a K×1 column vector) we have E(xtεt) = 0,which

suggests the moment condition

mt(β) = xt
(
yt −x′tβ

)
.

In this case, we have exact identification ( K parameters and K moment conditions).

We have

m(β) = 1/n∑
t

mt = 1/n∑
t

xtyt −1/n∑
t

xtx′tβ.

For any choice of W, m(β) will be identically zero at the minimum, due to exact iden-

tification. That is, since the number of moment conditions is identical to the number

of parameters, the foc imply that m(β̂)≡ 0 regardless of W. There is no need to use the

“optimal” weighting matrix in this case, an identity matrix works just as well for the

purpose of estimation. Therefore

β̂ =

(
∑
t

xtx′t

)−1

∑
t

xtyt = (X′X)−1X′y,
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which is the usual OLS estimator.

The GMM estimator of the asymptotic varcov matrix is
(

D̂∞Ω̂−1D̂∞
′)−1

. Recall

that D̂∞ is simply ∂
∂θm′ (θ̂

)
. In this case

D̂∞ = −1/n∑
t

xtx′t = −X′X/n.

Recall that a possible estimator of Ω is

Ω̂ = Γ̂0 +
n−1

∑
v=1

(
Γ̂v + Γ̂′

v

)
.

This is in general inconsistent, but in the present case of nonautocorrelation, it simpli-

fies to

Ω̂ = Γ̂0

which has a constant number of elements to estimate, so information will accumulate,

and consistency obtains. In the present case

Ω̂ = Γ̂0 = 1/n

(
n

∑
t=1

m̂tm̂′
t

)

= 1/n

[
n

∑
t=1

xtx′t
(

yt −x′t β̂
)2
]

= 1/n

[
n

∑
t=1

xtx′t ε̂
2
t

]

=
X′ÊX

n

where Ê is an n×n diagonal matrix with ε̂2
t in the position t, t.
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Therefore, the GMM varcov. estimator, which is consistent, is

V̂
(√

n
(

β̂−β
))

=

{(
−X′X

n

)(
X′ÊX

n

−1)(
−X′X

n

)}−1

=

(
X′X

n

)−1(X′ÊX
n

)(
X′X

n

)−1

This is the varcov estimator that White (1980) arrived at in an influential article. This

estimator is consistent under heteroscedasticity of an unknown form. If there is au-

tocorrelation, the Newey-West estimator can be used to estimate Ω - the rest is the

same.

15.9.2. Weighted Least Squares. Consider the previous example of a linear model

with heteroscedasticity of unknown form:

y = Xβ0 + ε

ε ∼ N(0,Σ)

where Σ is a diagonal matrix.

Now, suppose that the form of Σ is known, so that Σ(θ0) is a correct parametric

specification (which may also depend upon X). In this case, the GLS estimator is

β̃ =
(
X′Σ−1X

)−1 X′Σ−1y)

This estimator can be interpreted as the solution to the K moment conditions

m(β̃) = 1/n∑
t

xtyt

σt(θ0)
−1/n∑

t

xtx′t
σt(θ0)

β̃ ≡ 0.

That is, the GLS estimator in this case has an obvious representation as a GMM estima-

tor. With autocorrelation, the representation exists but it is a little more complicated.

Nevertheless, the idea is the same. There are a few points:
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• The (feasible) GLS estimator is known to be asymptotically efficient in the

class of linear asymptotically unbiased estimators (Gauss-Markov).

• This means that it is more efficient than the above example of OLS with

White’s heteroscedastic consistent covariance, which is an alternative GMM

estimator.

• This means that the choice of the moment conditions is important to achieve

efficiency.

15.9.3. 2SLS. Consider the linear model

yt = z′tβ+ εt,

or

y = Zβ+ ε

using the usual construction, where β is K×1 and εt is i.i.d. Suppose that this equation

is one of a system of simultaneous equations, so that zt contains both endogenous and

exogenous variables. Suppose that xt is the vector of all exogenous and predetermined

variables that are uncorrelated with εt (suppose that xt is r×1).

• Define Ẑ as the vector of predictions of Z when regressed upon X, e.g., Ẑ =

X(X′X)−1 X′Z

Ẑ = X
(
X′X

)−1 X′Z

• Since Ẑ is a linear combination of the exogenous variables x, ẑt must be un-

correlated with ε. This suggests the K-dimensional moment condition mt(β) =

ẑt (yt − z′tβ) and so

m(β) = 1/n∑
t

ẑt
(
yt − z′tβ

)
.
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• Since we have K parameters and K moment conditions, the GMM estimator

will set m identically equal to zero, regardless of W, so we have

β̂ =

(
∑
t

ẑtz′t

)−1

∑
t

(ẑtyt) =
(
Ẑ′Z
)−1 Ẑ′y

This is the standard formula for 2SLS. We use the exogenous variables and the reduced

form predictions of the endogenous variables as instruments, and apply IV estimation.

See Hamilton pp. 420-21 for the varcov formula (which is the standard formula for

2SLS), and for how to deal with εt heterogeneous and dependent (basically, just use the

Newey-West or some other consistent estimator of Ω, and apply the usual formula).

Note that εt dependent causes lagged endogenous variables to loose their status as

legitimate instruments.

15.9.4. Nonlinear simultaneous equations. GMM provides a convenient way to

estimate nonlinear systems of simultaneous equations. We have a system of equations

of the form

y1t = f1(zt ,θ0
1)+ ε1t

y2t = f2(zt ,θ0
2)+ ε2t

...

yGt = fG(zt ,θ0
G)+ εGt,

or in compact notation

yt = f (zt ,θ0)+ εt,

where f (·) is a G -vector valued function, and θ0 = (θ0′
1 ,θ0′

2 , · · · ,θ0′
G)′.
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We need to find an Ai × 1 vector of instruments xit , for each equation, that are

uncorrelated with εit . Typical instruments would be low order monomials in the ex-

ogenous variables in zt , with their lagged values. Then we can define the
(
∑G

i=1 Ai
)
×1

orthogonality conditions

mt(θ) =




(y1t − f1(zt ,θ1))x1t

(y2t − f2(zt ,θ2))x2t
...

(yGt − fG(zt ,θG))xGt




.

• A note on identification: selection of instruments that ensure identification is

a non-trivial problem.

• A note on efficiency: the selected set of instruments has important effects

on the efficiency of estimation. Unfortunately there is little theory offering

guidance on what is the optimal set. More on this later.

15.9.5. Maximum likelihood. In the introduction we argued that ML will in gen-

eral be more efficient than GMM since ML implicitly uses all of the moments of the

distribution while GMM uses a limited number of moments. Actually, a distribution

with P parameters can be uniquely characterized by P moment conditions. However,

some sets of P moment conditions may contain more information than others, since

the moment conditions could be highly correlated. A GMM estimator that chose an

optimal set of P moment conditions would be fully efficient. Here we’ll see that the

optimal moment conditions are simply the scores of the ML estimator.

Let yt be a G -vector of variables, and let Yt = (y′1,y
′
2, ...,y

′
t)
′. Then at time t, Yt−1

has been observed (refer to it as the information set, since we assume the conditioning
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variables have been selected to take advantage of all useful information). The likeli-

hood function is the joint density of the sample:

L(θ) = f (y1,y2, ...,yn,θ)

which can be factored as

L(θ) = f (yn|Yn−1,θ) · f (Yn−1,θ)

and we can repeat this to get

L(θ) = f (yn|Yn−1,θ) · f (yn−1|Yn−2,θ) · ... · f (y1).

The log-likelihood function is therefore

lnL(θ) =
n

∑
t=1

ln f (yt |Yt−1,θ).

Define

mt(Yt ,θ) ≡ Dθ ln f (yt |Yt−1,θ)

as the score of the tth observation. It can be shown that, under the regularity condi-

tions, that the scores have conditional mean zero when evaluated at θ0 (see notes to

Introduction to Econometrics):

E{mt(Yt ,θ0)|Yt−1} = 0

so one could interpret these as moment conditions to use to define a just-identified

GMM estimator ( if there are K parameters there are K score equations). The GMM

estimator sets

1/n
n

∑
t=1

mt(Yt , θ̂) = 1/n
n

∑
t=1

Dθ ln f (yt |Yt−1, θ̂) = 0,
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which are precisely the first order conditions of MLE. Therefore, MLE can be inter-

preted as a GMM estimator. The GMM varcov formula is V∞ =
(
D∞Ω−1D′

∞
)−1.

Consistent estimates of variance components are as follows

• D∞

D̂∞ =
∂

∂θ′
m(Yt , θ̂) = 1/n

n

∑
t=1

D2
θ ln f (yt |Yt−1, θ̂)

• Ω

It is important to note that mt and mt−s, s > 0 are both conditionally and

unconditionally uncorrelated. Conditional uncorrelation follows from the fact

that mt−s is a function of Yt−s, which is in the information set at time t. Un-

conditional uncorrelation follows from the fact that conditional uncorrelation

hold regardless of the realization of Yt−1, so marginalizing with respect to

Yt−1 preserves uncorrelation (see the section on ML estimation, above). The

fact that the scores are serially uncorrelated implies that Ω can be estimated

by the estimator of the 0th autocovariance of the moment conditions:

Ω̂ = 1/n
n

∑
t=1

mt(Yt , θ̂)mt(Yt , θ̂)′ = 1/n
n

∑
t=1

[
Dθ ln f (yt |Yt−1, θ̂)

][
Dθ ln f (yt |Yt−1, θ̂)

]′

Recall from study of ML estimation that the information matrix equality (equation ??)

states that

E
{[

Dθ ln f (yt |Yt−1,θ0)
][

Dθ ln f (yt |Yt−1,θ0)
]′}

= −E
{

D2
θ ln f (yt |Yt−1,θ0)

}
.

This result implies the well known (and already seeen) result that we can estimate V∞

in any of three ways:
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• The sandwich version:

V̂∞ = n





{
∑n

t=1 D2
θ ln f (yt |Yt−1, θ̂)

}
×

{
∑n

t=1
[
Dθ ln f (yt |Yt−1, θ̂)

][
Dθ ln f (yt |Yt−1, θ̂)

]′}−1
×

{
∑n

t=1 D2
θ ln f (yt |Yt−1, θ̂)

}





−1

• or the inverse of the negative of the Hessian (since the middle and last term

cancel, except for a minus sign):

V̂∞ =

[
−1/n

n

∑
t=1

D2
θ ln f (yt |Yt−1, θ̂)

]−1

,

• or the inverse of the outer product of the gradient (since the middle and last

cancel except for a minus sign, and the first term converges to minus the

inverse of the middle term, which is still inside the overall inverse)

V̂∞ =

{
1/n

n

∑
t=1

[
Dθ ln f (yt |Yt−1, θ̂)

][
Dθ ln f (yt |Yt−1, θ̂)

]′
}−1

.

This simplification is a special result for the MLE estimator - it doesn’t apply to GMM

estimators in general.

Asymptotically, if the model is correctly specified, all of these forms converge to

the same limit. In small samples they will differ. In particular, there is evidence that the

outer product of the gradient formula does not perform very well in small samples (see

Davidson and MacKinnon, pg. 477). White’s Information matrix test (Econometrica,

1982) is based upon comparing the two ways to estimate the information matrix: outer

product of gradient or negative of the Hessian. If they differ by too much, this is

evidence of misspecification of the model.

15.10. Example: The Hausman Test

This section discusses the Hausman test, which was originally presented in Haus-

man, J.A. (1978), Specification tests in econometrics, Econometrica, 46, 1251-71.
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Consider the simple linear regression model yt = x′tβ+εt. We assume that the func-

tional form and the choice of regressors is correct, but that the some of the regressors

may be correlated with the error term, which as you know will produce inconsistency

of β̂. For example, this will be a problem if

• if some regressors are endogeneous

• some regressors are measured with error

• lagged values of the dependent variable are used as regressors and εt is auto-

correlated.

To illustrate, the Octave program biased.m performs a Monte Carlo experiment where

errors are correlated with regressors, and estimation is by OLS and IV. Figure 15.10.1

shows that the OLS estimator is quite biased, while Figure 15.10.2 shows that the IV

estimator is on average much closer to the true value. If you play with the program,

increasing the sample size, you can see evidence that the OLS estimator is asymptoti-

cally biased, while the IV estimator is consistent.

We have seen that inconsistent and the consistent estimators converge to different

probability limits. This is the idea behind the Hausman test - a pair of consistent esti-

mators converge to the same probability limit, while if one is consistent and the other

is not they converge to different limits. If we accept that one is consistent (e.g., the

IV estimator), but we are doubting if the other is consistent (e.g., the OLS estimator),

we might try to check if the difference between the estimators is significantly different

from zero.

• If we’re doubting about the consistency of OLS (or QML, etc.), why should

we be interested in testing - why not just use the IV estimator? Because the

OLS estimator is more efficient when the regressors are exogenous and the

other classical assumptions (including normality of the errors) hold. When

we have a more efficient estimator that relies on stronger assumptions (such

http://pareto.uab.es/mcreel/Econometrics/Include/Hausman/biased.m
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FIGURE 15.10.1. OLS
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FIGURE 15.10.2. IV
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as exogeneity) than the IV estimator, we might prefer to use it, unless we have

evidence that the assumptions are false.

So, let’s consider the covariance between the MLE estimator θ̂ (or any other fully

efficient estimator) and some other CAN estimator, say θ̃. Now, let’s recall some

results from MLE. Equation 4.4.1 is:

√
n
(
θ̂−θ0

) a.s.→ −H∞(θ0)
−1√ng(θ0).

Equation 4.6.2 is

H∞(θ) = −I∞(θ).

Combining these two equations, we get

√
n
(
θ̂−θ0

) a.s.→ I∞(θ0)
−1√ng(θ0).

Also, equation 4.7.1 tells us that the asymptotic covariance between any CAN

estimator and the MLE score vector is

V∞




√
n
(
θ̃−θ

)

√
ng(θ)


=


 V∞(θ̃) IK

IK I∞(θ)


 .

Now, consider


 IK 0K

0K I∞(θ)−1






√
n
(
θ̃−θ

)

√
ng(θ)


 a.s.→




√
n
(
θ̃−θ

)

√
n
(
θ̂−θ

)


 .
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The asymptotic covariance of this is

V∞




√
n
(
θ̃−θ

)

√
n
(
θ̂−θ

)


 =


 IK 0K

0K I∞(θ)−1




 V∞(θ̃) IK

IK I∞(θ)




IK 0K

0K I∞(θ)−1




=


 V∞(θ̃) I∞(θ)−1

I∞(θ)−1 I∞(θ)−1


 ,

which, for clarity in what follows, we might write as

V∞




√
n
(
θ̃−θ

)

√
n
(
θ̂−θ

)


=


 V∞(θ̃) I∞(θ)−1

I∞(θ)−1 V∞(θ̂)


 .

So, the asymptotic covariance between the MLE and any other CAN estimator is equal

to the MLE asymptotic variance (the inverse of the information matrix).

Now, suppose we with to test whether the the two estimators are in fact both con-

verging to θ0, versus the alternative hypothesis that the ”MLE” estimator is not in fact

consistent (the consistency of θ̃ is a maintained hypothesis). Under the null hypothesis

that they are, we have

[
IK −IK

]



√
n
(
θ̃−θ0

)

√
n
(
θ̂−θ0

)


=

√
n
(
θ̃− θ̂

)
,

will be asymptotically normally distributed as

√
n
(
θ̃− θ̂

) d→ N
(
0,V∞(θ̃)−V∞(θ̂)

)
.

So,

n
(
θ̃− θ̂

)′ (
V∞(θ̃)−V∞(θ̂)

)−1 (θ̃− θ̂
) d→ χ2(ρ),
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where ρ is the rank of the difference of the asymptotic variances. A statistic that has

the same asymptotic distribution is

(
θ̃− θ̂

)′ (
V̂ (θ̃)− V̂ (θ̂)

)−1 (θ̃− θ̂
) d→ χ2(ρ).

This is the Hausman test statistic, in its original form. The reason that this test has

power under the alternative hypothesis is that in that case the ”MLE” estimator will

not be consistent, and will converge to θA, say, where θA 6= θ0. Then the mean of the

asymptotic distribution of vector
√

n
(
θ̃− θ̂

)
will be θ0 −θA, a non-zero vector, so the

test statistic will eventually reject, regardless of how small a significance level is used.

• Note: if the test is based on a sub-vector of the entire parameter vector of the

MLE, it is possible that the inconsistency of the MLE will not show up in the

portion of the vector that has been used. If this is the case, the test may not

have power to detect the inconsistency. This may occur, for example, when

the consistent but inefficient estimator is not identified for all the parameters

of the model.

Some things to note:

• The rank, ρ, of the difference of the asymptotic variances is often less than

the dimension of the matrices, and it may be difficult to determine what the

true rank is. If the true rank is lower than what is taken to be true, the test will

be biased against rejection of the null hypothesis. The contrary holds if we

underestimate the rank.

• A solution to this problem is to use a rank 1 test, by comparing only a single

coefficient. For example, if a variable is suspected of possibly being endoge-

nous, that variable’s coefficients may be compared.
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• This simple formula only holds when the estimator that is being tested for

consistency is fully efficient under the null hypothesis. This means that it

must be a ML estimator or a fully efficient estimator that has the same asymp-

totic distribution as the ML estimator. This is quite restrictive since modern

estimators such as GMM and QML are not in general fully efficient.

Following up on this last point, let’s think of two not necessarily efficient estimators,

θ̂1 and θ̂2, where one is assumed to be consistent, but the other may not be. We assume

for expositional simplicity that both θ̂1 and θ̂2 belong to the same parameter space, and

that they can be expressed as generalized method of moments (GMM) estimators. The

estimators are defined (suppressing the dependence upon data) by

θ̂i = arg min
θi∈Θ

mi(θi)
′Wi mi(θi)

where mi(θi) is a gi×1 vector of moment conditions, and Wi is a gi×gi positive definite

weighting matrix, i = 1,2. Consider the omnibus GMM estimator

(15.10.1)

(
θ̂1, θ̂2

)
= arg min

Θ×Θ

[
m1(θ1)

′ m2(θ2)
′
]

 W1 0(g1×g2)

0(g2×g1) W2




 m1(θ1)

m2(θ2)


 .

Suppose that the asymptotic covariance of the omnibus moment vector is

Σ = lim
n→∞

Var




√

n


 m1(θ1)

m2(θ2)





(15.10.2)

≡


 Σ1 Σ12

· Σ2


 .

The standard Hausman test is equivalent to a Wald test of the equality of θ1 and θ2 (or

subvectors of the two) applied to the omnibus GMM estimator, but with the covariance
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of the moment conditions estimated as

Σ̂ =


 Σ̂1 0(g1×g2)

0(g2×g1) Σ̂2


 .

While this is clearly an inconsistent estimator in general, the omitted Σ12 term cancels

out of the test statistic when one of the estimators is asymptotically efficient, as we

have seen above, and thus it need not be estimated.

The general solution when neither of the estimators is efficient is clear: the entire Σ

matrix must be estimated consistently, since the Σ12 term will not cancel out. Methods

for consistently estimating the asymptotic covariance of a vector of moment conditions

are well-known, e.g., the Newey-West estimator discussed previously. The Hausman

test using a proper estimator of the overall covariance matrix will now have an asymp-

totic χ2 distribution when neither estimator is efficient. However, the test suffers from

a loss of power due to the fact that the omnibus GMM estimator of equation 15.10.1

is defined using an inefficient weight matrix. A new test can be defined by using an

alternative omnibus GMM estimator

(15.10.3)
(
θ̂1, θ̂2

)
= arg min

Θ×Θ

[
m1(θ1)

′ m2(θ2)
′
](

Σ̃
)−1


 m1(θ1)

m2(θ2)


 ,

where Σ̃ is a consistent estimator of the overall covariance matrix Σ of equation 15.10.2.

By standard arguments, this is a more efficient estimator than that defined by equation

15.10.1, so the Wald test using this alternative is more powerful. See my article in

Applied Economics, 2004, for more details, including simulation results.

15.11. Application: Nonlinear rational expectations

Readings: Hansen and Singleton, 1982∗; Tauchen, 1986
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Though GMM estimation has many applications, application to rational expecta-

tions models is elegant, since theory directly suggests the moment conditions. Hansen

and Singleton’s 1982 paper is also a classic worth studying in itself. Though I strongly

recommend reading the paper, I’ll use a simplified model with similar notation to

Hamilton’s.

We assume a representative consumer maximizes expected discounted utility over

an infinite horizon. Utility is temporally additive, and the expected utility hypothesis

holds. The future consumption stream is the stochastic sequence {ct}∞
t=0 . The objec-

tive function at time t is the discounted expected utility

(15.11.1)
∞

∑
s=0

βsE (u(ct+s)|It) .

• The parameter β is between 0 and 1, and reflects discounting.

• It is the information set at time t, and includes the all realizations of random

variables indexed t and earlier.

• The choice variable is ct - current consumption, which is constained to be less

than or equal to current wealth wt .

• Suppose the consumer can invest in a risky asset. A dollar invested in the

asset yields a gross return

(1+ rt+1) =
pt+1 +dt+1

pt

where pt is the price and dt is the dividend in period t. The price of ct is

normalized to 1.

• Current wealth wt = (1+ rt)it−1, where it−1 is investment in period t −1. So

the problem is to allocate current wealth between current consumption and

investment to finance future consumption: wt = ct + it .
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• Future net rates of return rt+s,s > 0 are not known in period t: the asset is

risky.

A partial set of necessary conditions for utility maximization have the form:

(15.11.2) u′(ct) = βE
{
(1+ rt+1)u′(ct+1)|It

}
.

To see that the condition is necessary, suppose that the lhs < rhs. Then by reducing

current consumption marginally would cause equation 15.11.1 to drop by u′(ct), since

there is no discounting of the current period. At the same time, the marginal reduc-

tion in consumption finances investment, which has gross return (1+ rt+1) , which

could finance consumption in period t +1. This increase in consumption would cause

the objective function to increase by βE {(1+ rt+1)u′(ct+1)|It} . Therefore, unless the

condition holds, the expected discounted utility function is not maximized.

• To use this we need to choose the functional form of utility. A constant rela-

tive risk aversion form is

u(ct) =
c1−γ

t −1
1− γ

where γ is the coefficient of relative risk aversion. With this form,

u′(ct) = c−γ
t

so the foc are

c−γ
t = βE

{
(1+ rt+1)c−γ

t+1|It
}

While it is true that

E
(

c−γ
t −β

{
(1+ rt+1)c−γ

t+1

})
|It = 0
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so that we could use this to define moment conditions, it is unlikely that ct is stationary,

even though it is in real terms, and our theory requires stationarity. To solve this, divide

though by c−γ
t

E

(
1-β

{
(1+ rt+1)

(
ct+1

ct

)−γ
})

|It = 0

(note that ct can be passed though the conditional expectation since ct is chosen based

only upon information available in time t).

Now

1-β

{
(1+ rt+1)

(
ct+1

ct

)−γ
}

is analogous to ht(θ) defined above: it’s a scalar moment condition. To get a vector of

moment conditions we need some instruments. Suppose that zt is a vector of variables

drawn from the information set It . We can use the necessary conditions to form the

expressions [
1−β(1+ rt+1)

(
ct+1
ct

)−γ
]

zt ≡ mt(θ)

• θ represents β and γ.

• Therefore, the above expression may be interpreted as a moment condition

which can be used for GMM estimation of the parameters θ0.

Note that at time t, mt−s has been observed, and is therefore an element of the infor-

mation set. By rational expectations, the autocovariances of the moment conditions

other than Γ0 should be zero. The optimal weighting matrix is therefore the inverse of

the variance of the moment conditions:

Ω∞ = limE
[
nm(θ0)m(θ0)′

]
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which can be consistently estimated by

Ω̂ = 1/n
n

∑
t=1

mt(θ̂)mt(θ̂)′

As before, this estimate depends on an initial consistent estimate of θ, which can be

obtained by setting the weighting matrix W arbitrarily (to an identity matrix, for ex-

ample). After obtaining θ̂, we then minimize

s(θ) = m(θ)′Ω̂−1m(θ).

This process can be iterated, e.g., use the new estimate to re-estimate Ω, use this to

estimate θ0, and repeat until the estimates don’t change.

• In principle, we could use a very large number of moment conditions in es-

timation, since any current or lagged variable could be used in xt . Since use

of more moment conditions will lead to a more (asymptotically) efficient es-

timator, one might be tempted to use many instrumental variables. We will

do a computer lab that will show that this may not be a good idea with finite

samples. This issue has been studied using Monte Carlos (Tauchen, JBES,

1986). The reason for poor performance when using many instruments is that

the estimate of Ω becomes very imprecise.

• Empirical papers that use this approach often have serious problems in obtain-

ing precise estimates of the parameters. Note that we are basing everything

on a single parial first order condition. Probably this f.o.c. is simply not infor-

mative enough. Simulation-based estimation methods (discussed below) are

one means of trying to use more informative moment conditions to estimate

this sort of model.
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15.12. Empirical example: a portfolio model

The Octave program portfolio.m performs GMM estimation of a portfolio model,

using the data file tauchen.data. The columns of this data file are c, p, and d in that

order. There are 95 observations (source: Tauchen, JBES, 1986). As instruments we

use lags of c and r, as well as a constant. For a single lag the estimation results are

MPITB extensions found

******************************************************

Example of GMM estimation of rational expectations model

GMM Estimation Results

BFGS convergence: Normal convergence

Objective function value: 0.000014

Observations: 94

Value df p-value

X^2 test 0.001 1.000 0.971

estimate st. err t-stat p-value

beta 0.915 0.009 97.271 0.000

gamma 0.569 0.319 1.783 0.075

******************************************************

http://pareto.uab.es/mcreel/Econometrics/Include/GMM/portfolio.m
http://pareto.uab.es/mcreel/Econometrics/Include/GMM/tauchen.data
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For two lags the estimation results are

MPITB extensions found

******************************************************

Example of GMM estimation of rational expectations model

GMM Estimation Results

BFGS convergence: Normal convergence

Objective function value: 0.037882

Observations: 93

Value df p-value

X^2 test 3.523 3.000 0.318

estimate st. err t-stat p-value

beta 0.857 0.024 35.636 0.000

gamma -2.351 0.315 -7.462 0.000

******************************************************

Pretty clearly, the results are sensitive to the choice of instruments. Maybe there

is some problem here: poor instruments, or possibly a conditional moment that is not

very informative.
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Exercises

(1) Show how to cast the generalized IV estimator presented in section 11.4 as

a GMM estimator. Identify what are the moment conditions, mt(θ), what is

the form of the the matrix Dn, what is the efficient weight matrix, and show

that the covariance matrix formula given previously corresponds to the GMM

covariance matrix formula.

(2) Using Octave, generate data from the logit dgp . Recall that E(yt |xt) =

p(xt ,θ) = [1+exp(−xt ′θ)]−1. Consider the moment condtions (exactly iden-

tified) mt(θ) = [yt − p(xt ,θ)]xt

(a) Estimate by GMM, using these moments.

(b) Estimate by MLE.

(c) The two estimators should coincide. Prove analytically that the estima-

tors coicide.

(3) Verify the missing steps needed to show that n ·m(θ̂)′Ω̂−1m(θ̂) has a χ2(g−

K) distribution. That is, show that the monster matrix is idempotent and has

trace equal to g−K.

(4) For the portfolio example, experiment with the program using lags of 3 and 4

periods to define instruments

(a) Iterate the estimation of θ = (β,γ) and Ω to convergence.

(b) Comment on the results. Are the results sensitive to the set of instruments

used? (Look at Ω̂ as well as θ̂. Are these good instruments? Are the

instruments highly correlated with one another?



CHAPTER 16

Quasi-ML

Quasi-ML is the estimator one obtains when a misspecified probability model is

used to calculate an ”ML” estimator.

Given a sample of size n of a random vector y and a vector of conditioning variables

x, suppose the joint density of Y =
(

y1 . . . yn

)
conditional on X =

(
x1 . . . xn

)

is a member of the parametric family pY (Y|X,ρ), ρ ∈ Ξ. The true joint density is as-

sociated with the vector ρ0 :

pY (Y|X,ρ0).

As long as the marginal density of X doesn’t depend on ρ0, this conditional density

fully characterizes the random characteristics of samples: i.e., it fully describes the

probabilistically important features of the d.g.p. The likelihood function is just this

density evaluated at other values ρ

L(Y|X,ρ) = pY (Y|X,ρ),ρ ∈ Ξ.

• Let Yt−1 =
(

y1 . . . yt−1

)
, Y0 = 0, and let Xt =

(
x1 . . . xt

)
The

likelihood function, taking into account possible dependence of observations,

can be written as

L(Y|X,ρ) =
n

∏
t=1

pt(yt |Yt−1,Xt ,ρ)

≡
n

∏
t=1

pt(ρ)

338
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• The average log-likelihood function is:

sn(ρ) =
1
n

lnL(Y|X,ρ) =
1
n

n

∑
t=1

ln pt(ρ)

• Suppose that we do not have knowledge of the family of densities pt(ρ).

Mistakenly, we may assume that the conditional density of yt is a mem-

ber of the family ft(yt|Yt−1,Xt ,θ), θ ∈ Θ, where there is no θ0 such that

ft(yt |Yt−1,Xt ,θ0) = pt(yt |Yt−1,Xt,ρ0),∀t (this is what we mean by “mis-

specified”).

• This setup allows for heterogeneous time series data, with dynamic misspec-

ification.

The QML estimator is the argument that maximizes the misspecified average log like-

lihood, which we refer to as the quasi-log likelihood function. This objective function

is

sn(θ) =
1
n

n

∑
t=1

ln ft(yt |Yt−1,Xt ,θ0)

≡ 1
n

n

∑
t=1

ln ft(θ)

and the QML is

θ̂n = argmax
Θ

sn(θ)

A SLLN for dependent sequences applies (we assume), so that

sn(θ)
a.s.→ lim

n→∞
E

1
n

n

∑
t=1

ln ft(θ) ≡ s∞(θ)
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We assume that this can be strengthened to uniform convergence, a.s., following the

previous arguments. The “pseudo-true” value of θ is the value that maximizes s̄(θ):

θ0 = argmax
Θ

s∞(θ)

Given assumptions so that theorem 19 is applicable, we obtain

lim
n→∞

θ̂n = θ0,a.s.

• Applying the asymptotic normality theorem,

√
n
(
θ̂−θ0) d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1]

where

J∞(θ0) = lim
n→∞

ED2
θsn(θ0)

and

I∞(θ0) = lim
n→∞

Var
√

nDθsn(θ0).

• Note that asymptotic normality only requires that the additional assumptions

regarding J and I hold in a neighborhood of θ0 for J and at θ0, for I , not

throughout Θ. In this sense, asymptotic normality is a local property.

16.1. Consistent Estimation of Variance Components

Consistent estimation of J∞(θ0) is straightforward. Assumption (b) of Theorem 22

implies that

Jn(θ̂n) =
1
n

n

∑
t=1

D2
θ ln ft(θ̂n)

a.s.→ lim
n→∞

E
1
n

n

∑
t=1

D2
θ ln ft(θ0) = J∞(θ0).

That is, just calculate the Hessian using the estimate θ̂n in place of θ0.

Consistent estimation of I∞(θ0) is more difficult, and may be impossible.
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• Notation: Let gt ≡ Dθ ft(θ0)

We need to estimate

I∞(θ0) = lim
n→∞

Var
√

nDθsn(θ0)

= lim
n→∞

Var
√

n
1
n

n

∑
t=1

Dθ ln ft(θ0)

= lim
n→∞

1
n

Var
n

∑
t=1

gt

= lim
n→∞

1
n

E

{(
n

∑
t=1

(gt −Egt)

)(
n

∑
t=1

(gt −Egt)

)′}

This is going to contain a term

lim
n→∞

1
n

n

∑
t=1

(Egt)(Egt)
′

which will not tend to zero, in general. This term is not consistently estimable in

general, since it requires calculating an expectation using the true density under the

d.g.p., which is unknown.

• There are important cases where I∞(θ0) is consistently estimable. For exam-

ple, suppose that the data come from a random sample (i.e., they are iid). This

would be the case with cross sectional data, for example. (Note: under i.i.d.

sampling, the joint distribution of (yt ,xt) is identical. This does not imply that

the conditional density f (yt |xt) is identical).

• With random sampling, the limiting objective function is simply

s∞(θ0) = EX E0 ln f (y|x,θ0)

where E0 means expectation of y|x and EX means expectation respect to the

marginal density of x.
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• By the requirement that the limiting objective function be maximized at θ0

we have

DθEX E0 ln f (y|x,θ0) = Dθs∞(θ0) = 0

• The dominated convergence theorem allows switching the order of expecta-

tion and differentiation, so

DθEX E0 ln f (y|x,θ0) = EX E0Dθ ln f (y|x,θ0) = 0

The CLT implies that

1√
n

n

∑
t=1

Dθ ln f (y|x,θ0)
d→ N(0,I∞(θ0)).

That is, it’s not necessary to subtract the individual means, since they are zero.

Given this, and due to independent observations, a consistent estimator is

Î =
1
n

n

∑
t=1

Dθ ln ft(θ̂)Dθ′ ln ft(θ̂)

This is an important case where consistent estimation of the covariance matrix is pos-

sible. Other cases exist, even for dynamically misspecified time series models.

16.2. Example: the MEPS Data

To check the plausibility of the Poisson model for the MEPS data, we can compare

the sample unconditional variance with the estimated unconditional variance accord-

ing to the Poisson model: V̂ (y) = ∑n
t=1 λ̂t

n . Using the program PoissonVariance.m, for

OBDV and ERV, we get We see that even after conditioning, the overdispersion is not

TABLE 1. Marginal Variances, Sample and Estimated (Poisson)

OBDV ERV
Sample 38.09 0.151

Estimated 3.28 0.086

http://pareto.uab.es/mcreel/Econometrics/Include/MEPS-I/PoissonVariance.m
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captured in either case. There is huge problem with OBDV, and a significant problem

with ERV. In both cases the Poisson model does not appear to be plausible. You can

check this for the other use measures if you like.

16.2.1. Infinite mixture models: the negative binomial model. Reference: Cameron

and Trivedi (1998) Regression analysis of count data, chapter 4.

The two measures seem to exhibit extra-Poisson variation. To capture unobserved

heterogeneity, a possibility is the random parameters approach. Consider the possibil-

ity that the constant term in a Poisson model were random:

fY (y|x,ε) =
exp(−θ)θy

y!

θ = exp(x′β+ ε)

= exp(x′β)exp(ε)

= λν

where λ = exp(x′β) and ν = exp(ε). Now ν captures the randomness in the constant.

The problem is that we don’t observe ν, so we will need to marginalize it to get a

usable density

fY (y|x) =

Z ∞

−∞

exp[−θ]θy

y!
fv(z)dz

This density can be used directly, perhaps using numerical integration to evaluate the

likelihood function. In some cases, though, the integral will have an analytic solution.

For example, if ν follows a certain one parameter gamma density, then

(16.2.1) fY (y|x,φ) =
Γ(y+ψ)

Γ(y+1)Γ(ψ)

(
ψ

ψ+λ

)ψ( λ
ψ+λ

)y

where φ = (λ,ψ). ψ appears since it is the parameter of the gamma density.

• For this density, E(y|x) = λ, which we have parameterized λ = exp(x′β)
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• The variance depends upon how ψ is parameterized.

– If ψ = λ/α, where α > 0, then V (y|x) = λ+αλ. Note that λ is a function

of x, so that the variance is too. This is referred to as the NB-I model.

– If ψ = 1/α, where α > 0, then V (y|x) = λ + αλ2. This is referred to as

the NB-II model.

So both forms of the NB model allow for overdispersion, with the NB-II model allow-

ing for a more radical form.

Testing reduction of a NB model to a Poisson model cannot be done by testing

α = 0 using standard Wald or LR procedures. The critical values need to be adjusted to

account for the fact that α = 0 is on the boundary of the parameter space. Without get-

ting into details, suppose that the data were in fact Poisson, so there is equidispersion

and the true α = 0. Then about half the time the sample data will be underdispersed,

and about half the time overdispersed. When the data is underdispersed, the MLE of α

will be α̂ = 0. Thus, under the null, there will be a probability spike in the asymptotic

distribution of
√

n(α̂−α) =
√

nα̂ at 0, so standard testing methods will not be valid.

This program will do estimation using the NB model. Note how modelargs is used

to select a NB-I or NB-II density. Here are NB-I estimation results for OBDV:

MPITB extensions found

OBDV

======================================================
BFGSMIN final results

Used analytic gradient

------------------------------------------------------
STRONG CONVERGENCE
Function conv 1 Param conv 1 Gradient conv 1
------------------------------------------------------

http://pareto.uab.es/mcreel/Econometrics/Include/MEPS-II/EstimateNegBin.m
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Objective function value 2.18573
Stepsize 0.0007
17 iterations
------------------------------------------------------

param gradient change
1.0965 0.0000 -0.0000
0.2551 -0.0000 0.0000
0.2024 -0.0000 0.0000
0.2289 0.0000 -0.0000
0.1969 0.0000 -0.0000
0.0769 0.0000 -0.0000
0.0000 -0.0000 0.0000
1.7146 -0.0000 0.0000

******************************************************
Negative Binomial model, MEPS 1996 full data set

MLE Estimation Results
BFGS convergence: Normal convergence

Average Log-L: -2.185730
Observations: 4564

estimate st. err t-stat p-value
constant -0.523 0.104 -5.005 0.000
pub. ins. 0.765 0.054 14.198 0.000
priv. ins. 0.451 0.049 9.196 0.000
sex 0.458 0.034 13.512 0.000
age 0.016 0.001 11.869 0.000
edu 0.027 0.007 3.979 0.000
inc 0.000 0.000 0.000 1.000
alpha 5.555 0.296 18.752 0.000

Information Criteria
CAIC : 20026.7513 Avg. CAIC: 4.3880
BIC : 20018.7513 Avg. BIC: 4.3862
AIC : 19967.3437 Avg. AIC: 4.3750

******************************************************
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Note that the parameter values of the last BFGS iteration are different that those

reported in the final results. This reflects two things - first, the data were scaled be-

fore doing the BFGS minimization, but the mle_results script takes this into ac-

count and reports the results using the original scaling. But also, the parameterization

α = exp(α∗) is used to enforce the restriction that α > 0. The unrestricted parameter

α∗ = logα is used to define the log-likelihood function, since the BFGS minimiza-

tion algorithm does not do contrained minimization. To get the standard error and

t-statistic of the estimate of α, we need to use the delta method. This is done inside

mle_results, making use of the function parameterize.m .

Likewise, here are NB-II results:

MPITB extensions found

OBDV

======================================================
BFGSMIN final results

Used analytic gradient

------------------------------------------------------
STRONG CONVERGENCE
Function conv 1 Param conv 1 Gradient conv 1
------------------------------------------------------
Objective function value 2.18496
Stepsize 0.0104394
13 iterations
------------------------------------------------------

param gradient change
1.0375 0.0000 -0.0000
0.3673 -0.0000 0.0000
0.2136 0.0000 -0.0000
0.2816 0.0000 -0.0000
0.3027 0.0000 0.0000
0.0843 -0.0000 0.0000

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/parameterize.m
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-0.0048 0.0000 -0.0000
0.4780 -0.0000 0.0000

******************************************************
Negative Binomial model, MEPS 1996 full data set

MLE Estimation Results
BFGS convergence: Normal convergence

Average Log-L: -2.184962
Observations: 4564

estimate st. err t-stat p-value
constant -1.068 0.161 -6.622 0.000
pub. ins. 1.101 0.095 11.611 0.000
priv. ins. 0.476 0.081 5.880 0.000
sex 0.564 0.050 11.166 0.000
age 0.025 0.002 12.240 0.000
edu 0.029 0.009 3.106 0.002
inc -0.000 0.000 -0.176 0.861
alpha 1.613 0.055 29.099 0.000

Information Criteria
CAIC : 20019.7439 Avg. CAIC: 4.3864
BIC : 20011.7439 Avg. BIC: 4.3847
AIC : 19960.3362 Avg. AIC: 4.3734

******************************************************

• For the OBDV usage measurel, the NB-II model does a slightly better job than

the NB-I model, in terms of the average log-likelihood and the information

criteria (more on this last in a moment).

• Note that both versions of the NB model fit much better than does the Poisson

model (see 13.4.2).

• The estimated α is highly significant.

To check the plausibility of the NB-II model, we can compare the sample uncon-

ditional variance with the estimated unconditional variance according to the NB-II
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model: V̂ (y) =
∑n

t=1 λ̂t+α̂(λ̂t)
2

n . For OBDV and ERV (estimation results not reported),

we get For OBDV, the overdispersion problem is significantly better than in the Pois-

TABLE 2. Marginal Variances, Sample and Estimated (NB-II)

OBDV ERV
Sample 38.09 0.151

Estimated 30.58 0.182

son case, but there is still some that is not captured. For ERV, the negative binomial

model seems to capture the overdispersion adequately.

16.2.2. Finite mixture models: the mixed negative binomial model. The finite

mixture approach to fitting health care demand was introduced by Deb and Trivedi

(1997). The mixture approach has the intuitive appeal of allowing for subgroups of

the population with different health status. If individuals are classified as healthy or

unhealthy then two subgroups are defined. A finer classification scheme would lead to

more subgroups. Many studies have incorporated objective and/or subjective indica-

tors of health status in an effort to capture this heterogeneity. The available objective

measures, such as limitations on activity, are not necessarily very informative about a

person’s overall health status. Subjective, self-reported measures may suffer from the

same problem, and may also not be exogenous

Finite mixture models are conceptually simple. The density is

fY (y,φ1, ...,φp,π1, ...,πp−1) =
p−1

∑
i=1

πi f (i)
Y (y,φi)+πp f p

Y (y,φp),

where πi > 0, i = 1,2, ..., p, πp = 1−∑p−1
i=1 πi, and ∑p

i=1 πi = 1. Identification requires

that the πi are ordered in some way, for example, π1 ≥ π2 ≥ ·· · ≥ πp and φi 6= φ j, i 6= j.

This is simple to accomplish post-estimation by rearrangement and possible elimina-

tion of redundant component densities.
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• The properties of the mixture density follow in a straightforward way from

those of the components. In particular, the moment generating function is the

same mixture of the moment generating functions of the component densities,

so, for example, E(Y |x) = ∑p
i=1 πiµi(x), where µi(x) is the mean of the ith

component density.

• Mixture densities may suffer from overparameterization, since the total num-

ber of parameters grows rapidly with the number of component densities. It

is possible to constrained parameters across the mixtures.

• Testing for the number of component densities is a tricky issue. For example,

testing for p = 1 (a single component, which is to say, no mixture) versus

p = 2 (a mixture of two components) involves the restriction π1 = 1, which is

on the boundary of the parameter space. Not that when π1 = 1, the parameters

of the second component can take on any value without affecting the density.

Usual methods such as the likelihood ratio test are not applicable when pa-

rameters are on the boundary under the null hypothesis. Information criteria

means of choosing the model (see below) are valid.

The following results are for a mixture of 2 NB-II models, for the OBDV data, which

you can replicate using this program .

OBDV

******************************************************
Mixed Negative Binomial model, MEPS 1996 full data set

MLE Estimation Results
BFGS convergence: Normal convergence

Average Log-L: -2.164783
Observations: 4564

http://pareto.uab.es/mcreel/Econometrics/Include/MEPS-II/EstimateNegBin.m
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estimate st. err t-stat p-value
constant 0.127 0.512 0.247 0.805
pub. ins. 0.861 0.174 4.962 0.000
priv. ins. 0.146 0.193 0.755 0.450
sex 0.346 0.115 3.017 0.003
age 0.024 0.004 6.117 0.000
edu 0.025 0.016 1.590 0.112
inc -0.000 0.000 -0.214 0.831
alpha 1.351 0.168 8.061 0.000
constant 0.525 0.196 2.678 0.007
pub. ins. 0.422 0.048 8.752 0.000
priv. ins. 0.377 0.087 4.349 0.000
sex 0.400 0.059 6.773 0.000
age 0.296 0.036 8.178 0.000
edu 0.111 0.042 2.634 0.008
inc 0.014 0.051 0.274 0.784
alpha 1.034 0.187 5.518 0.000
Mix 0.257 0.162 1.582 0.114

Information Criteria
CAIC : 19920.3807 Avg. CAIC: 4.3647
BIC : 19903.3807 Avg. BIC: 4.3610
AIC : 19794.1395 Avg. AIC: 4.3370

******************************************************

It is worth noting that the mixture parameter is not significantly different from zero,

but also not that the coefficients of public insurance and age, for example, differ quite

a bit between the two latent classes.

16.2.3. Information criteria. As seen above, a Poisson model can’t be tested (us-

ing standard methods) as a restriction of a negative binomial model. But it seems,

based upon the values of the likelihood functions and the fact that the NB model fits

the variance much better, that the NB model is more appropriate. How can we deter-

mine which of a set of competing models is the best?
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The information criteria approach is one possibility. Information criteria are func-

tions of the log-likelihood, with a penalty for the number of parameters used. Three

popular information criteria are the Akaike (AIC), Bayes (BIC) and consistent Akaike

(CAIC). The formulae are

CAIC = −2lnL(θ̂)+ k(lnn+1)

BIC = −2lnL(θ̂)+ k lnn

AIC = −2lnL(θ̂)+2k

It can be shown that the CAIC and BIC will select the correctly specified model from a

group of models, asymptotically. This doesn’t mean, of course, that the correct model

is necesarily in the group. The AIC is not consistent, and will asymptotically favor

an over-parameterized model over the correctly specified model. Here are information

criteria values for the models we’ve seen, for OBDV. Pretty clearly, the NB models

TABLE 3. Information Criteria, OBDV

Model AIC BIC CAIC
Poisson 7.345 7.355 7.357

NB-I 4.375 4.386 4.388
NB-II 4.373 4.385 4.386

MNB-II 4.337 4.361 4.365

are better than the Poisson. The one additional parameter gives a very significant

improvement in the likelihood function value. Between the NB-I and NB-II models,

the NB-II is slightly favored. But one should remember that information criteria values

are statistics, with variances. With another sample, it may well be that the NB-I model

would be favored, since the differences are so small. The MNB-II model is favored

over the others, by all 3 information criteria.
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Why is all of this in the chapter on QML? Let’s suppose that the correct model for

OBDV is in fact the NB-II model. It turns out in this case that the Poisson model will

give consistent estimates of the slope parameters (if a model is a member of the linear-

exponential family and the conditional mean is correctly specified, then the parame-

ters of the conditional mean will be consistently estimated). So the Poisson estimator

would be a QML estimator that is consistent for some parameters of the true model.

The ordinary OPG or inverse Hessinan ”ML” covariance estimators are however biased

and inconsistent, since the information matrix equality does not hold for QML estima-

tors. But for i.i.d. data (which is the case for the MEPS data) the QML asymptotic

covariance can be consistently estimated, as discussed above, using the sandwich form

for the ML estimator. mle_results in fact reports sandwich results, so the Poisson

estimation results would be reliable for inference even if the true model is the NB-I or

NB-II. Not that they are in fact similar to the results for the NB models.

However, if we assume that the correct model is the MNB-II model, as is favored by

the information criteria, then both the Poisson and NB-x models will have misspecified

mean functions, so the parameters that influence the means would be estimated with

bias and inconsistently.
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Exercises

Exercises

(1) Considering the MEPS data (the description is in Section 13.4.2), for the OBDV

(y) measure, let η be a latent index of health status that has expectation equal to

unity.1 We suspect that η and PRIV may be correlated, but we assume that η is

uncorrelated with the other regressors. We assume that

E(y|PUB,PRIV,AGE,EDUC, INC,η)

= exp(β1 +β2PUB+β3PRIV +β4AGE +β5EDUC +β6INC)η.

We use the Poisson QML estimator of the model

y ∼ Poisson(λ)

λ = exp(β1 +β2PUB+β3PRIV +(16.2.2)

β4AGE +β5EDUC +β6INC).

Since much previous evidence indicates that health care services usage is overdis-

persed2, this is almost certainly not an ML estimator, and thus is not efficient.

However, when η and PRIV are uncorrelated, this estimator is consistent for the βi

parameters, since the conditional mean is correctly specified in that case. When η

and PRIV are correlated, Mullahy’s (1997) NLIV estimator that uses the residual

function

ε =
y
λ
−1,

1A restriction of this sort is necessary for identification.
2Overdispersion exists when the conditional variance is greater than the conditional mean. If this is the
case, the Poisson specification is not correct.
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where λ is defined in equation 16.2.2, with appropriate instruments, is consistent.

As instruments we use all the exogenous regressors, as well as the cross products

of PUB with the variables in Z = {AGE,EDUC, INC}. That is, the full set of

instruments is

W = {1 PUB Z PUB×Z }.

(a) Calculate the Poisson QML estimates.

(b) Calculate the generalized IV estimates (do it using a GMM formulation - see

the portfolio example for hints how to do this).

(c) Calculate the Hausman test statistic to test the exogeneity of PRIV.

(d) comment on the results



CHAPTER 17

Nonlinear least squares (NLS)

Readings: Davidson and MacKinnon, Ch. 2∗ and 5∗; Gallant, Ch. 1

17.1. Introduction and definition

Nonlinear least squares (NLS) is a means of estimating the parameter of the model

yt = f (xt ,θ0)+ εt .

• In general, εt will be heteroscedastic and autocorrelated, and possibly non-

normally distributed. However, dealing with this is exactly as in the case of

linear models, so we’ll just treat the iid case here,

εt ∼ iid(0,σ2)

If we stack the observations vertically, defining

y = (y1,y2, ...,yn)
′

f = ( f (x1,θ), f (x1,θ), ..., f (x1,θ))′

and

ε = (ε1,ε2, ...,εn)
′

we can write the n observations as

y = f(θ)+ ε
355
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Using this notation, the NLS estimator can be defined as

θ̂ ≡ argmin
Θ

sn(θ) =
1
n

[y− f(θ)]′ [y− f(θ)] =
1
n
‖ y− f(θ) ‖2

• The estimator minimizes the weighted sum of squared errors, which is the

same as minimizing the Euclidean distance between y and f(θ).

The objective function can be written as

sn(θ) =
1
n

[
y′y−2y′f(θ)+ f(θ)′f(θ)

]
,

which gives the first order conditions

−
[

∂
∂θ

f(θ̂)′
]

y+

[
∂

∂θ
f(θ̂)′

]
f(θ̂) ≡ 0.

Define the n×K matrix

(17.1.1) F(θ̂) ≡ Dθ′f(θ̂).

In shorthand, use F̂ in place of F(θ̂). Using this, the first order conditions can be written

as

−F̂′y+ F̂′f(θ̂) ≡ 0,

or

(17.1.2) F̂′ [y− f(θ̂)
]
≡ 0.

This bears a good deal of similarity to the f.o.c. for the linear model - the derivative of

the prediction is orthogonal to the prediction error. If f(θ) = Xθ, then F̂ is simply X,

so the f.o.c. (with spherical errors) simplify to

X′y−X′Xβ = 0,
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the usual 0LS f.o.c.

We can interpret this geometrically: INSERT drawings of geometrical depiction of

OLS and NLS (see Davidson and MacKinnon, pgs. 8,13 and 46).

• Note that the nonlinearity of the manifold leads to potential multiple local

maxima, minima and saddlepoints: the objective function sn(θ) is not neces-

sarily well-behaved and may be difficult to minimize.

17.2. Identification

As before, identification can be considered conditional on the sample, and asymp-

totically. The condition for asymptotic identification is that sn(θ) tend to a limiting

function s∞(θ) such that s∞(θ0) < s∞(θ), ∀θ 6= θ0. This will be the case if s∞(θ0) is

strictly convex at θ0, which requires that D2
θs∞(θ0) be positive definite. Consider the

objective function:

sn(θ) =
1
n

n

∑
t=1

[yt − f (xt ,θ)]2

=
1
n

n

∑
t=1

[
f (xt,θ0)+ εt − ft(xt ,θ)

]2

=
1
n

n

∑
t=1

[
ft(θ0)− ft(θ)

]2
+

1
n

n

∑
t=1

(εt)
2

− 2
n

n

∑
t=1

[
ft(θ0)− ft(θ)

]
εt

• As in example 14.3, which illustrated the consistency of extremum estimators

using OLS, we conclude that the second term will converge to a constant

which does not depend upon θ.

• A LLN can be applied to the third term to conclude that it converges pointwise

to 0, as long as f(θ) and ε are uncorrelated.
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• Next, pointwise convergence needs to be stregnthened to uniform almost sure

convergence. There are a number of possible assumptions one could use.

Here, we’ll just assume it holds.

• Turning to the first term, we’ll assume a pointwise law of large numbers ap-

plies, so

(17.2.1)
1
n

n

∑
t=1

[
ft(θ0)− ft(θ)

]2 a.s.→
Z [

f (z,θ0)− f (z,θ)
]2

dµ(z),

where µ(x) is the distribution function of x. In many cases, f (x,θ) will be

bounded and continuous, for all θ ∈ Θ, so strengthening to uniform almost

sure convergence is immediate. For example if f (x,θ) = [1+ exp(−xθ)]−1 ,

f : ℜK → (0,1) , a bounded range, and the function is continuous in θ.

Given these results, it is clear that a minimizer is θ0. When considering identification

(asymptotic), the question is whether or not there may be some other minimizer. A

local condition for identification is that

∂2

∂θ∂θ′
s∞(θ) =

∂2

∂θ∂θ′

Z [
f (x,θ0)− f (x,θ)

]2
dµ(x)

be positive definite at θ0. Evaluating this derivative, we obtain (after a little work)

∂2

∂θ∂θ′

Z [
f (x,θ0)− f (x,θ)

]2
dµ(x)

∣∣∣∣
θ0

= 2
Z [

Dθ f (z,θ0)′
][

Dθ′ f (z,θ0)
]′

dµ(z)

the expectation of the outer product of the gradient of the regression function evaluated

at θ0. (Note: the uniform boundedness we have already assumed allows passing the

derivative through the integral, by the dominated convergence theorem.) This matrix

will be positive definite (wp1) as long as the gradient vector is of full rank (wp1). The

tangent space to the regression manifold must span a K -dimensional space if we are
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to consistently estimate a K -dimensional parameter vector. This is analogous to the

requirement that there be no perfect colinearity in a linear model. This is a necessary

condition for identification. Note that the LLN implies that the above expectation is

equal to

J∞(θ0) = 2limE
F′F
n

17.3. Consistency

We simply assume that the conditions of Theorem 19 hold, so the estimator is con-

sistent. Given that the strong stochastic equicontinuity conditions hold, as discussed

above, and given the above identification conditions an a compact estimation space (the

closure of the parameter space Θ), the consistency proof’s assumptions are satisfied.

17.4. Asymptotic normality

As in the case of GMM, we also simply assume that the conditions for asymptotic

normality as in Theorem 22 hold. The only remaining problem is to determine the form

of the asymptotic variance-covariance matrix. Recall that the result of the asymptotic

normality theorem is

√
n
(
θ̂−θ0) d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1] ,

where J∞(θ0) is the almost sure limit of ∂2

∂θ∂θ′ sn(θ) evaluated at θ0, and

I∞(θ0) = limVar
√

nDθsn(θ0)

The objective function is

sn(θ) =
1
n

n

∑
t=1

[yt − f (xt ,θ)]2
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So

Dθsn(θ) = −2
n

n

∑
t=1

[yt − f (xt ,θ)]Dθ f (xt ,θ).

Evaluating at θ0,

Dθsn(θ0) = −2
n

n

∑
t=1

εtDθ f (xt,θ0).

Note that the expectation of this is zero, since εt and xt are assumed to be uncorrelated.

So to calculate the variance, we can simply calculate the second moment about zero.

Also note that

n

∑
t=1

εtDθ f (xt ,θ0) =
∂

∂θ
[
f(θ0)

]′ ε

= F′ε

With this we obtain

I∞(θ0) = limVar
√

nDθsn(θ0)

= limnE
4
n2 F′εε’F

= 4σ2 limE
F′F
n

We’ve already seen that

J∞(θ0) = 2limE
F′F
n

,

where the expectation is with respect to the joint density of x and ε. Combining these

expressions for J∞(θ0) and I∞(θ0), and the result of the asymptotic normality theorem,

we get
√

n
(
θ̂−θ0) d→ N

(
0,

(
limE

F′F
n

)−1

σ2

)
.
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We can consistently estimate the variance covariance matrix using

(17.4.1)
(

F̂′F̂
n

)−1

σ̂2,

where F̂ is defined as in equation 17.1.1 and

σ̂2 =

[
y− f(θ̂)

]′ [y− f(θ̂)
]

n
,

the obvious estimator. Note the close correspondence to the results for the linear

model.

17.5. Example: The Poisson model for count data

Suppose that yt conditional on xt is independently distributed Poisson. A Poisson

random variable is a count data variable, which means it can take the values {0,1,2,...}.

This sort of model has been used to study visits to doctors per year, number of patents

registered by businesses per year, etc.

The Poisson density is

f (yt) =
exp(−λt)λ

yt
t

yt!
,yt ∈ {0,1,2, ...}.

The mean of yt is λt , as is the variance. Note that λt must be positive. Suppose that the

true mean is

λ0
t = exp(x′tβ

0),

which enforces the positivity of λt . Suppose we estimate β0 by nonlinear least squares:

β̂ = argminsn(β) =
1
T

n

∑
t=1

(
yt − exp(x′tβ)

)2
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We can write

sn(β) =
1
T

n

∑
t=1

(
exp(x′tβ

0 + εt − exp(x′tβ)
)2

=
1
T

n

∑
t=1

(
exp(x′tβ

0 − exp(x′tβ)
)2

+
1
T

n

∑
t=1

ε2
t +2

1
T

n

∑
t=1

εt
(
exp(x′tβ

0 − exp(x′tβ)
)

The last term has expectation zero since the assumption that E(yt |xt) = exp(x′tβ0)

implies that E (εt|xt) = 0, which in turn implies that functions of xt are uncorrelated

with εt . Applying a strong LLN, and noting that the objective function is continuous

on a compact parameter space, we get

s∞(β) = Ex
(
exp(x′β0 − exp(x′β)

)2
+ Ex exp(x′β0)

where the last term comes from the fact that the conditional variance of ε is the same

as the variance of y. This function is clearly minimized at β = β0, so the NLS estimator

is consistent as long as identification holds.

EXERCISE 27. Determine the limiting distribution of
√

n
(

β̂−β0
)

. This means

finding the the specific forms of ∂2

∂β∂β′ sn(β), J (β0),
∂sn(β)

∂β

∣∣∣ , and I (β0). Again, use a

CLT as needed, no need to verify that it can be applied.

17.6. The Gauss-Newton algorithm

Readings: Davidson and MacKinnon, Chapter 6, pgs. 201-207∗.

The Gauss-Newton optimization technique is specifically designed for nonlinear

least squares. The idea is to linearize the nonlinear model, rather than the objective

function. The model is

y = f(θ0)+ ε.
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At some θ in the parameter space, not equal to θ0, we have

y = f(θ)+ν

where ν is a combination of the fundamental error term ε and the error due to evaluat-

ing the regression function at θ rather than the true value θ0. Take a first order Taylor’s

series approximation around a point θ1 :

y = f(θ1)+
[
Dθ′f

(
θ1)](θ−θ1)+ν+ approximation error.

Define z ≡ y− f(θ1) and b ≡ (θ−θ1). Then the last equation can be written as

z = F(θ1)b+ω,

where, as above, F(θ1) ≡ Dθ′f(θ1) is the n×K matrix of derivatives of the regres-

sion function, evaluated at θ1, and ω is ν plus approximation error from the truncated

Taylor’s series.

• Note that F is known, given θ1.

• Note that one could estimate b simply by performing OLS on the above equa-

tion.

• Given b̂, we calculate a new round estimate of θ0 as θ2 = b̂ + θ1. With this,

take a new Taylor’s series expansion around θ2 and repeat the process. Stop

when b̂ = 0 (to within a specified tolerance).

To see why this might work, consider the above approximation, but evaluated at the

NLS estimator:

y = f(θ̂)+F(θ̂)
(
θ− θ̂

)
+ω
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The OLS estimate of b ≡ θ− θ̂ is

b̂ =
(
F̂′F̂
)−1 F̂′ [y− f(θ̂)

]
.

This must be zero, since

F̂′ (θ̂
)[

y− f(θ̂)
]
≡ 0

by definition of the NLS estimator (these are the normal equations as in equation

17.1.2, Since b̂ ≡ 0 when we evaluate at θ̂, updating would stop.

• The Gauss-Newton method doesn’t require second derivatives, as does the

Newton-Raphson method, so it’s faster.

• The varcov estimator, as in equation 17.4.1 is simple to calculate, since we

have F̂ as a by-product of the estimation process (i.e., it’s just the last round

“regressor matrix”). In fact, a normal OLS program will give the NLS var-

cov estimator directly, since it’s just the OLS varcov estimator from the last

iteration.

• The method can suffer from convergence problems since F(θ)′F(θ), may be

very nearly singular, even with an asymptotically identified model, especially

if θ is very far from θ̂. Consider the example

y = β1 +β2xtβ3 + εt

When evaluated at β2 ≈ 0, β3 has virtually no effect on the NLS objective

function, so F will have rank that is “essentially” 2, rather than 3. In this

case, F′F will be nearly singular, so (F′F)−1 will be subject to large roundoff

errors.
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17.7. Application: Limited dependent variables and sample selection

Readings: Davidson and MacKinnon, Ch. 15∗ (a quick reading is sufficient), J.

Heckman, “Sample Selection Bias as a Specification Error”, Econometrica, 1979 (This

is a classic article, not required for reading, and which is a bit out-dated. Nevertheless

it’s a good place to start if you encounter sample selection problems in your research).

Sample selection is a common problem in applied research. The problem occurs

when observations used in estimation are sampled non-randomly, according to some

selection scheme.

17.7.1. Example: Labor Supply. Labor supply of a person is a positive number

of hours per unit time supposing the offer wage is higher than the reservation wage,

which is the wage at which the person prefers not to work. The model (very simple,

with t subscripts suppressed):

• Characteristics of individual: x

• Latent labor supply: s∗ = x′β+ω

• Offer wage: wo = z′γ+ν

• Reservation wage: wr = q′δ+η

Write the wage differential as

w∗ =
(
z′γ+ν

)
−
(
q′δ+η

)

≡ r′θ+ ε

We have the set of equations

s∗ = x′β+ω

w∗ = r′θ+ ε.
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Assume that 
 ω

ε


∼ N




 0

0


 ,


 σ2 ρσ

ρσ 1




 .

We assume that the offer wage and the reservation wage, as well as the latent variable

s∗ are unobservable. What is observed is

w = 1 [w∗ > 0]

s = ws∗.

In other words, we observe whether or not a person is working. If the person is work-

ing, we observe labor supply, which is equal to latent labor supply, s∗. Otherwise,

s = 0 6= s∗. Note that we are using a simplifying assumption that individuals can freely

choose their weekly hours of work.

Suppose we estimated the model

s∗ = x′β+ residual

using only observations for which s > 0. The problem is that these observations are

those for which w∗ > 0, or equivalently, −ε < r′θ and

E
[
ω|− ε < r′θ

]
6= 0,

since ε and ω are dependent. Furthermore, this expectation will in general depend on x

since elements of x can enter in r. Because of these two facts, least squares estimation

is biased and inconsistent.

Consider more carefully E [ω|− ε < r′θ] . Given the joint normality of ω and ε, we

can write (see for example Spanos Statistical Foundations of Econometric Modelling,
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pg. 122)

ω = ρσε+η,

where η has mean zero and is independent of ε. With this we can write

s∗ = x′β+ρσε+η.

If we condition this equation on −ε < r′θ we get

s = x′β+ρσE(ε|− ε < r′θ)+η

which may be written as

s = x′β+ρσE(ε|ε > −r′θ)+η

• A useful result is that for

z ∼ N(0,1)

E(z|z > z∗) =
φ(z∗)

Φ(−z∗)
,

where φ(·) and Φ(·) are the standard normal density and distribution func-

tion, respectively. The quantity on the RHS above is known as the inverse

Mill’s ratio:

IMR(z∗) =
φ(z∗)

Φ(−z∗)

With this we can write (making use of the fact that the standard normal density

is symmetric about zero, so that φ(−a) = φ(a)):
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s = x′β+ρσ
φ(r′θ)

Φ(r′θ)
+η(17.7.1)

≡
[

x′ φ(r′θ)
Φ(r′θ)

]

 β

ζ


+η.(17.7.2)

where ζ = ρσ. The error term η has conditional mean zero, and is uncorrelated with

the regressors x′ φ(r′θ)
Φ(r′θ)

. At this point, we can estimate the equation by NLS.

• Heckman showed how one can estimate this in a two step procedure where

first θ is estimated, then equation 17.7.2 is estimated by least squares using the

estimated value of θ to form the regressors. This is inefficient and estimation

of the covariance is a tricky issue. It is probably easier (and more efficient)

just to do MLE.

• The model presented above depends strongly on joint normality. There exist

many alternative models which weaken the maintained assumptions. It is

possible to estimate consistently without distributional assumptions. See Ahn

and Powell, Journal of Econometrics, 1994.



CHAPTER 18

Nonparametric inference

18.1. Possible pitfalls of parametric inference: estimation

Readings: H. White (1980) “Using Least Squares to Approximate Unknown Re-

gression Functions,” International Economic Review, pp. 149-70.

In this section we consider a simple example, which illustrates both why nonpara-

metric methods may in some cases be preferred to parametric methods.

We suppose that data is generated by random sampling of (y,x), where y = f (x)

+ε, x is uniformly distributed on (0,2π), and ε is a classical error. Suppose that

f (x) = 1+
3x
2π

−
( x

2π

)2

The problem of interest is to estimate the elasticity of f (x) with respect to x, throughout

the range of x.

In general, the functional form of f (x) is unknown. One idea is to take a Taylor’s

series approximation to f (x) about some point x0. Flexible functional forms such as the

transcendental logarithmic (usually know as the translog) can be interpreted as second

order Taylor’s series approximations. We’ll work with a first order approximation, for

simplicity. Approximating about x0:

h(x) = f (x0)+Dx f (x0)(x− x0)

If the approximation point is x0 = 0, we can write

h(x) = a+bx

369
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The coefficient a is the value of the function at x = 0, and the slope is the value of

the derivative at x = 0. These are of course not known. One might try estimation by

ordinary least squares. The objective function is

s(a,b) = 1/n
n

∑
t=1

(yt −h(xt))
2 .

The limiting objective function, following the argument we used to get equations

14.3.1 and 17.2.1 is

s∞(a,b) =

Z 2π

0
( f (x)−h(x))2 dx.

The theorem regarding the consistency of extremum estimators (Theorem 19) tells

us that â and b̂ will converge almost surely to the values that minimize the limiting

objective function. Solving the first order conditions1 reveals that s∞(a,b) obtains its

minimum at
{

a0 = 7
6 ,b0 = 1

π
}

. The estimated approximating function ĥ(x) therefore

tends almost surely to

h∞(x) = 7/6+ x/π

In Figure 18.1.1 we see the true function and the limit of the approximation to see the

asymptotic bias as a function of x.

(The approximating model is the straight line, the true model has curvature.) Note

that the approximating model is in general inconsistent, even at the approximation

point. This shows that “flexible functional forms” based upon Taylor’s series approxi-

mations do not in general lead to consistent estimation of functions.

The approximating model seems to fit the true model fairly well, asymptotically.

However, we are interested in the elasticity of the function. Recall that an elasticity is

1The following results were obtained using the command maxima -b fff.mac You can get the source
file at http://pareto.uab.es/mcreel/Econometrics/Include/Nonparametric/fff.mac .

http://pareto.uab.es/mcreel/Econometrics/Include/Nonparametric/fff.mac
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FIGURE 18.1.1. True and simple approximating functions
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the marginal function divided by the average function:

ε(x) = xφ′(x)/φ(x)

Good approximation of the elasticity over the range of x will require a good approxi-

mation of both f (x) and f ′(x) over the range of x. The approximating elasticity is

η(x) = xh′(x)/h(x)

In Figure 18.1.2 we see the true elasticity and the elasticity obtained from the limiting

approximating model.

The true elasticity is the line that has negative slope for large x. Visually we see

that the elasticity is not approximated so well. Root mean squared error in the approx-

imation of the elasticity is

(
Z 2π

0
(ε(x)−η(x))2 dx

)1/2

= .31546
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FIGURE 18.1.2. True and approximating elasticities
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Now suppose we use the leading terms of a trigonometric series as the approxi-

mating model. The reason for using a trigonometric series as an approximating model

is motivated by the asymptotic properties of the Fourier flexible functional form (Gal-

lant, 1981, 1982), which we will study in more detail below. Normally with this type

of model the number of basis functions is an increasing function of the sample size.

Here we hold the set of basis function fixed. We will consider the asymptotic behavior

of a fixed model, which we interpret as an approximation to the estimator’s behavior

in finite samples. Consider the set of basis functions:

Z(x) =
[

1 x cos(x) sin(x) cos(2x) sin(2x)
]
.

The approximating model is

gK(x) = Z(x)α.
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FIGURE 18.1.3. True function and more flexible approximation
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Maintaining these basis functions as the sample size increases, we find that the limiting

objective function is minimized at

{
a1 =

7
6
,a2 =

1
π
,a3 = − 1

π2 ,a4 = 0,a5 = − 1
4π2 ,a6 = 0

}
.

Substituting these values into gK(x) we obtain the almost sure limit of the approxima-

tion

(18.1.1)

g∞(x) = 7/6+ x/π+(cosx)
(
− 1

π2

)
+(sinx)0+(cos2x)

(
− 1

4π2

)
+(sin2x)0

In Figure 18.1.3 we have the approximation and the true function: Clearly the trun-

cated trigonometric series model offers a better approximation, asymptotically, than

does the linear model. In Figure 18.1.4 we have the more flexible approximation’s

elasticity and that of the true function: On average, the fit is better, though there is
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FIGURE 18.1.4. True elasticity and more flexible approximation
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some implausible wavyness in the estimate. Root mean squared error in the approxi-

mation of the elasticity is

(
Z 2π

0

(
ε(x)− g′∞(x)x

g∞(x)

)2

dx

)1/2

= .16213,

about half that of the RMSE when the first order approximation is used. If the trigono-

metric series contained infinite terms, this error measure would be driven to zero, as

we shall see.

18.2. Possible pitfalls of parametric inference: hypothesis testing

What do we mean by the term “nonparametric inference”? Simply, this means

inferences that are possible without restricting the functions of interest to belong to a

parametric family.

• Consider means of testing for the hypothesis that consumers maximize utility.

A consequence of utility maximization is that the Slutsky matrix D2
ph(p,U),



18.2. POSSIBLE PITFALLS OF PARAMETRIC INFERENCE: HYPOTHESIS TESTING 375

where h(p,U) are the a set of compensated demand functions, must be neg-

ative semi-definite. One approach to testing for utility maximization would

estimate a set of normal demand functions x(p,m).

• Estimation of these functions by normal parametric methods requires specifi-

cation of the functional form of demand, for example

x(p,m) = x(p,m,θ0)+ ε,θ0 ∈ Θ0,

where x(p,m,θ0) is a function of known form and Θ0 is a finite dimensional

parameter.

• After estimation, we could use x̂ = x(p,m, θ̂) to calculate (by solving the in-

tegrability problem, which is non-trivial) D̂2
ph(p,U). If we can statistically

reject that the matrix is negative semi-definite, we might conclude that con-

sumers don’t maximize utility.

• The problem with this is that the reason for rejection of the theoretical propo-

sition may be that our choice of functional form is incorrect. In the introduc-

tory section we saw that functional form misspecification leads to inconsistent

estimation of the function and its derivatives.

• Testing using parametric models always means we are testing a compound

hypothesis. The hypothesis that is tested is 1) the economic proposition we

wish to test, and 2) the model is correctly specified. Failure of either 1) or

2) can lead to rejection. This is known as the “model-induced augmenting

hypothesis.”

• Varian’s WARP allows one to test for utility maximization without specifying

the form of the demand functions. The only assumptions used in the test

are those directly implied by theory, so rejection of the hypothesis calls into

question the theory.
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• Nonparametric inference allows direct testing of economic propositions, with-

out the “model-induced augmenting hypothesis”.

18.3. The Fourier functional form

Readings: Gallant, 1987, “Identification and consistency in semi-nonparametric

regression,” in Advances in Econometrics, Fifth World Congress, V. 1, Truman Bewley,

ed., Cambridge.

• Suppose we have a multivariate model

y = f (x)+ ε,

where f (x) is of unknown form and x is a P−dimensional vector. For sim-

plicity, assume that ε is a classical error. Let us take the estimation of the

vector of elasticities with typical element

ξxi =
xi

f (x)

∂ f (x)

∂xi f (x)
,

at an arbitrary point xi.

The Fourier form, following Gallant (1982), but with a somewhat different parameter-

ization, may be written as

(18.3.1) gK(x | θK) = α+x′β+1/2x′Cx+
A

∑
α=1

J

∑
j=1

(
u jα cos( jk′

αx)− v jα sin( jk′
αx)
)
.

where the K-dimensional parameter vector

(18.3.2) θK = {α,β′,vec∗(C)′,u11,v11, . . . ,uJA,vJA}′.
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• We assume that the conditioning variables x have each been transformed to

lie in an interval that is shorter than 2π. This is required to avoid periodic

behavior of the approximation, which is desirable since economic functions

aren’t periodic. For example, subtract sample means, divide by the maxima

of the conditioning variables, and multiply by 2π− eps, where eps is some

positive number less than 2π in value.

• The kα are ”elementary multi-indices” which are simply P− vectors formed

of integers (negative, positive and zero). The kα, α = 1,2, ...,A are required to

be linearly independent, and we follow the convention that the first non-zero

element be positive. For example

[
0 1 −1 0 1

]′

is a potential multi-index to be used, but

[
0 −1 −1 0 1

]′

is not since its first nonzero element is negative. Nor is

[
0 2 −2 0 2

]′

a multi-index we would use, since it is a scalar multiple of the original multi-

index.

• We parameterize the matrix C differently than does Gallant because it simpli-

fies things in practice. The cost of this is that we are no longer able to test a

quadratic specification using nested testing.
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The vector of first partial derivatives is

(18.3.3) DxgK(x | θK) = β+Cx+
A

∑
α=1

J

∑
j=1

[(
−u jα sin( jk′

αx)− v jα cos( jk′
αx)
)

jkα
]

and the matrix of second partial derivatives is

(18.3.4) D2
xgK(x|θK) = C+

A

∑
α=1

J

∑
j=1

[(
−u jα cos( jk′

αx)+ v jα sin( jk′
αx)
)

j2kαk′
α
]

To define a compact notation for partial derivatives, let λ be an N-dimensional

multi-index with no negative elements. Define | λ |∗ as the sum of the elements of λ.

If we have N arguments x of the (arbitrary) function h(x), use Dλh(x) to indicate a

certain partial derivative:

Dλh(x) ≡ ∂|λ|∗

∂xλ1
1 ∂xλ2

2 · · ·∂xλN
N

h(x)

When λ is the zero vector, Dλh(x) ≡ h(x). Taking this definition and the last few

equations into account, we see that it is possible to define (1×K) vector Zλ(x) so that

(18.3.5) DλgK(x|θK) = zλ(x)′θK.

• Both the approximating model and the derivatives of the approximating model

are linear in the parameters.

• For the approximating model to the function (not derivatives), write gK(x|θK) =

z′θK for simplicity.

The following theorem can be used to prove the consistency of the Fourier form.

THEOREM 28. [Gallant and Nychka, 1987] Suppose that ĥn is obtained by max-

imizing a sample objective function sn(h) over HKn where HK is a subset of some
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function space H on which is defined a norm ‖ h ‖. Consider the following condi-

tions:

(a) Compactness: The closure of H with respect to ‖ h ‖ is compact in the relative

topology defined by ‖ h ‖.

(b) Denseness: ∪KHK , K = 1,2,3, ... is a dense subset of the closure of H with

respect to ‖ h ‖ and HK ⊂ HK+1.

(c) Uniform convergence: There is a point h∗ in H and there is a function s∞(h,h∗)

that is continuous in h with respect to ‖ h ‖ such that

lim
n→∞

sup
H

| sn(h)− s∞(h,h∗) |= 0

almost surely.

(d) Identification: Any point h in the closure of H with s∞(h,h∗)≥ s∞(h∗,h∗) must

have ‖ h−h∗ ‖= 0.

Under these conditions limn→∞ ‖ h∗− ĥn ‖= 0 almost surely, provided that limn→∞ Kn =

∞ almost surely.

The modification of the original statement of the theorem that has been made is to

set the parameter space Θ in Gallant and Nychka’s (1987) Theorem 0 to a single point

and to state the theorem in terms of maximization rather than minimization.

This theorem is very similar in form to Theorem 19. The main differences are:

(1) A generic norm ‖ h ‖ is used in place of the Euclidean norm. This norm

may be stronger than the Euclidean norm, so that convergence with respect

to ‖ h ‖ implies convergence w.r.t the Euclidean norm. Typically we will

want to make sure that the norm is strong enough to imply convergence of all

functions of interest.
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(2) The “estimation space” H is a function space. It plays the role of the parame-

ter space Θ in our discussion of parametric estimators. There is no restriction

to a parametric family, only a restriction to a space of functions that satisfy

certain conditions. This formulation is much less restrictive than the restric-

tion to a parametric family.

(3) There is a denseness assumption that was not present in the other theorem.

We will not prove this theorem (the proof is quite similar to the proof of theorem [19],

see Gallant, 1987) but we will discuss its assumptions, in relation to the Fourier form

as the approximating model.

18.3.1. Sobolev norm. Since all of the assumptions involve the norm ‖ h ‖ , we

need to make explicit what norm we wish to use. We need a norm that guarantees

that the errors in approximation of the functions we are interested in are accounted

for. Since we are interested in first-order elasticities in the present case, we need close

approximation of both the function f (x) and its first derivative f ′(x), throughout the

range of x. Let X be an open set that contains all values of x that we’re interested in.

The Sobolev norm is appropriate in this case. It is defined, making use of our notation

for partial derivatives, as:

‖ h ‖m,X = max
|λ∗|≤m

sup
X

∣∣∣Dλh(x)
∣∣∣

To see whether or not the function f (x) is well approximated by an approximating

model gK(x | θK), we would evaluate

‖ f (x)−gK(x | θK) ‖m,X .

We see that this norm takes into account errors in approximating the function and

partial derivatives up to order m. If we want to estimate first order elasticities, as is the
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case in this example, the relevant m would be m = 1. Furthermore, since we examine

the sup over X , convergence w.r.t. the Sobolev means uniform convergence, so that we

obtain consistent estimates for all values of x.

18.3.2. Compactness. Verifying compactness with respect to this norm is quite

technical and unenlightening. It is proven by Elbadawi, Gallant and Souza, Econo-

metrica, 1983. The basic requirement is that if we need consistency w.r.t. ‖ h ‖m,X ,

then the functions of interest must belong to a Sobolev space which takes into account

derivatives of order m+1. A Sobolev space is the set of functions

Wm,X (D) = {h(x) :‖ h(x) ‖m,X < D},

where D is a finite constant. In plain words, the functions must have bounded partial

derivatives of one order higher than the derivatives we seek to estimate.

18.3.3. The estimation space and the estimation subspace. Since in our case

we’re interested in consistent estimation of first-order elasticities, we’ll define the es-

timation space as follows:

DEFINITION 29. [Estimation space] The estimation space H = W2,X (D). The es-

timation space is an open set, and we presume that h∗ ∈ H .

So we are assuming that the function to be estimated has bounded second deriva-

tives throughout X .

With seminonparametric estimators, we don’t actually optimize over the estimation

space. Rather, we optimize over a subspace, HKn, defined as:

DEFINITION 30. [Estimation subspace] The estimation subspace HK is defined as

HK = {gK(x|θK) : gK(x|θK) ∈ W2,Z(D),θK ∈ ℜK},
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where gK(x,θK) is the Fourier form approximation as defined in Equation 18.3.1.

18.3.4. Denseness. The important point here is that HK is a space of functions

that is indexed by a finite dimensional parameter (θK has K elements, as in equation

18.3.2). With n observations, n > K, this parameter is estimable. Note that the true

function h∗ is not necessarily an element of HK, so optimization over HK may not

lead to a consistent estimator. In order for optimization over HK to be equivalent to

optimization over H , at least asymptotically, we need that:

(1) The dimension of the parameter vector, dimθKn →∞ as n→∞. This is achieved

by making A and J in equation 18.3.1 increasing functions of n, the sample

size. It is clear that K will have to grow more slowly than n. The second

requirement is:

(2) We need that the HK be dense subsets of H .

The estimation subspace HK , defined above, is a subset of the closure of the estimation

space, H . A set of subsets Aa of a set A is “dense” if the closure of the countable

union of the subsets is equal to the closure of A :

∪∞
a=1Aa = A

Use a picture here. The rest of the discussion of denseness is provided just for com-

pleteness: there’s no need to study it in detail. To show that HK is a dense subset of

H with respect to ‖ h ‖1,X , it is useful to apply Theorem 1 of Gallant (1982), who in

turn cites Edmunds and Moscatelli (1977). We reproduce the theorem as presented by

Gallant, with minor notational changes, for convenience of reference:

THEOREM 31. [Edmunds and Moscatelli, 1977] Let the real-valued function h∗(x)

be continuously differentiable up to order m on an open set containing the closure of

X . Then it is possible to choose a triangular array of coefficients θ1,θ2, . . .θK, . . . ,



18.3. THE FOURIER FUNCTIONAL FORM 383

such that for every q with 0 ≤ q < m, and every ε > 0, ‖ h∗(x)− hK(x|θK) ‖q,X =

o(K−m+q+ε) as K → ∞.

In the present application, q = 1, and m = 2. By definition of the estimation space,

the elements of H are once continuously differentiable on X , which is open and con-

tains the closure of X , so the theorem is applicable. Closely following Gallant and

Nychka (1987), ∪∞HK is the countable union of the HK . The implication of Theorem

31 is that there is a sequence of {hK} from ∪∞HK such that

lim
K→∞

‖ h∗−hK ‖1,X = 0,

for all h∗ ∈ H . Therefore,

H ⊂ ∪∞HK.

However,

∪∞HK ⊂ H ,

so

∪∞HK ⊂ H .

Therefore

H = ∪∞HK,

so ∪∞HK is a dense subset of H , with respect to the norm ‖ h ‖1,X .

18.3.5. Uniform convergence. We now turn to the limiting objective function.

We estimate by OLS. The sample objective function stated in terms of maximization

is

sn(θK) = −1
n

n

∑
t=1

(yt −gK(xt | θK))2
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With random sampling, as in the case of Equations 14.3.1 and 17.2.1, the limiting

objective function is

(18.3.6) s∞ (g, f ) = −
Z

X
( f (x)−g(x))2 dµx−σ2

ε .

where the true function f (x) takes the place of the generic function h∗ in the presenta-

tion of the theorem. Both g(x) and f (x) are elements of ∪∞HK .

The pointwise convergence of the objective function needs to be strengthened to

uniform convergence. We will simply assume that this holds, since the way to verify

this depends upon the specific application. We also have continuity of the objective

function in g, with respect to the norm ‖ h ‖1,X since

lim
‖g1−g0‖1,X →0

{
s∞
(
g1, f )

)
− s∞

(
g0, f )

)}

= lim
‖g1−g0‖1,X →0

Z

X

[(
g1(x)− f (x)

)2 −
(
g0(x)− f (x)

)2
]

dµx.

By the dominated convergence theorem (which applies since the finite bound D used

to define W2,Z(D) is dominated by an integrable function), the limit and the integral

can be interchanged, so by inspection, the limit is zero.

18.3.6. Identification. The identification condition requires that for any point (g, f )

in H ×H , s∞(g, f ) ≥ s∞( f , f ) ⇒ ‖ g− f ‖1,X = 0. This condition is clearly satisfied

given that g and f are once continuously differentiable (by the assumption that defines

the estimation space).

18.3.7. Review of concepts. For the example of estimation of first-order elastici-

ties, the relevant concepts are:
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• Estimation space H = W2,X (D): the function space in the closure of which

the true function must lie.

• Consistency norm ‖ h ‖1,X . The closure of H is compact with respect to this

norm.

• Estimation subspace HK. The estimation subspace is the subset of H that is

representable by a Fourier form with parameter θK . These are dense subsets

of H .

• Sample objective function sn(θK), the negative of the sum of squares. By

standard arguments this converges uniformly to the

• Limiting objective function s∞( g, f ), which is continuous in g and has a

global maximum in its first argument, over the closure of the infinite union of

the estimation subpaces, at g = f .

• As a result of this, first order elasticities

xi

f (x)

∂ f (x)

∂xi f (x)

are consistently estimated for all x ∈ X .

18.3.8. Discussion. Consistency requires that the number of parameters used in

the expansion increase with the sample size, tending to infinity. If parameters are

added at a high rate, the bias tends relatively rapidly to zero. A basic problem is

that a high rate of inclusion of additional parameters causes the variance to tend more

slowly to zero. The issue of how to chose the rate at which parameters are added

and which to add first is fairly complex. A problem is that the allowable rates for

asymptotic normality to obtain (Andrews 1991; Gallant and Souza, 1991) are very

strict. Supposing we stick to these rates, our approximating model is:

gK(x|θK) = z′θK.
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• Define ZK as the n×K matrix of regressors obtained by stacking observa-

tions. The LS estimator is

θ̂K =
(
Z′

KZK
)+ Z′

Ky,

where (·)+ is the Moore-Penrose generalized inverse.

– This is used since Z′
KZK may be singular, as would be the case for K(n)

large enough when some dummy variables are included.

• . The prediction, z′θ̂K, of the unknown function f (x) is asymptotically nor-

mally distributed:

√
n
(
z′θ̂K − f (x)

) d→ N(0,AV),

where

AV = lim
n→∞

E

[
z′
(

Z′
KZK

n

)+

zσ̂2

]
.

Formally, this is exactly the same as if we were dealing with a parametric lin-

ear model. I emphasize, though, that this is only valid if K grows very slowly

as n grows. If we can’t stick to acceptable rates, we should probably use some

other method of approximating the small sample distribution. Bootstrapping

is a possibility. We’ll discuss this in the section on simulation.

18.4. Kernel regression estimators

Readings: Bierens, 1987, “Kernel estimators of regression functions,” in Advances

in Econometrics, Fifth World Congress, V. 1, Truman Bewley, ed., Cambridge.

An alternative method to the semi-nonparametric method is a fully nonparametric

method of estimation. Kernel regression estimation is an example (others are splines,

nearest neighbor, etc.). We’ll consider the Nadaraya-Watson kernel regression estima-

tor in a simple case.
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• Suppose we have an iid sample from the joint density f (x,y), where x is k

-dimensional. The model is

yt = g(xt)+ εt,

where

E(εt|xt) = 0.

• The conditional expectation of y given x is g(x). By definition of the condi-

tional expectation, we have

g(x) =
Z

y
f (x,y)
h(x)

dy

=
1

h(x)

Z

y f (x,y)dy,

where h(x) is the marginal density of x :

h(x) =

Z

f (x,y)dy.

• This suggests that we could estimate g(x) by estimating h(x) and
R

y f (x,y)dy.

18.4.1. Estimation of the denominator. A kernel estimator for h(x) has the form

ĥ(x) =
1
n

n

∑
t=1

K [(x− xt)/γn]

γk
n

,

where n is the sample size and k is the dimension of x.

• The function K(·) (the kernel) is absolutely integrable:

Z

|K(x)|dx < ∞,
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and K(·) integrates to 1 :

Z

K(x)dx = 1.

In this respect, K(·) is like a density function, but we do not necessarily re-

strict K(·) to be nonnegative.

• The window width parameter, γn is a sequence of positive numbers that satis-

fies

lim
n→∞

γn = 0

lim
n→∞

nγk
n = ∞

So, the window width must tend to zero, but not too quickly.

• To show pointwise consistency of ĥ(x) for h(x), first consider the expectation

of the estimator (since the estimator is an average of iid terms we only need

to consider the expectation of a representative term):

E
[
ĥ(x)

]
=

Z

γ−k
n K [(x− z)/γn]h(z)dz.

Change variables as z∗ = (x− z)/γn, so z = x−γnz∗ and | dz
dz∗′ |= γk

n, we obtain

E
[
ĥ(x)

]
=

Z

γ−k
n K (z∗)h(x− γnz∗)γk

ndz∗

=
Z

K (z∗)h(x− γnz∗)dz∗.
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Now, asymptotically,

lim
n→∞

E
[
ĥ(x)

]
= lim

n→∞

Z

K (z∗)h(x− γnz∗)dz∗

=
Z

lim
n→∞

K (z∗)h(x− γnz∗)dz∗

=

Z

K (z∗)h(x)dz∗

= h(x)
Z

K (z∗)dz∗

= h(x),

since γn → 0 and
R

K (z∗)dz∗ = 1 by assumption. (Note: that we can pass the

limit through the integral is a result of the dominated convergence theorem..

For this to hold we need that h(·) be dominated by an absolutely integrable

function.

• Next, considering the variance of ĥ(x), we have, due to the iid assumption

nγk
nV
[
ĥ(x)

]
= nγk

n
1
n2

n

∑
t=1

V
{

K [(x− xt)/γn]

γk
n

}

= γ−k
n

1
n

n

∑
t=1

V {K [(x− xt)/γn]}

• By the representative term argument, this is

nγk
nV
[
ĥ(x)

]
= γ−k

n V {K [(x− z)/γn]}

• Also, since V (x) = E(x2)−E(x)2 we have

nγk
nV
[
ĥ(x)

]
= γ−k

n E
{

(K [(x− z)/γn])
2
}
− γ−k

n {E (K [(x− z)/γn])}2

=

Z

γ−k
n K [(x− z)/γn]

2 h(z)dz− γk
n

{
Z

γ−k
n K [(x− z)/γn]h(z)dz

}2

=

Z

γ−k
n K [(x− z)/γn]

2 h(z)dz− γk
nE
[
ĥ(x)

]2
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The second term converges to zero:

γk
nE
[
ĥ(x)

]2
→ 0,

by the previous result regarding the expectation and the fact that γn → 0.

Therefore,

lim
n→∞

nγk
nV
[
ĥ(x)

]
= lim

n→∞

Z

γ−k
n K [(x− z)/γn]

2 h(z)dz.

Using exactly the same change of variables as before, this can be shown to be

lim
n→∞

nγk
nV
[
ĥ(x)

]
= h(x)

Z

[K(z∗)]2 dz∗.

Since both
R

[K(z∗)]2 dz∗ and h(x) are bounded, this is bounded, and since

nγk
n → ∞ by assumption, we have that

V
[
ĥ(x)

]
→ 0.

• Since the bias and the variance both go to zero, we have pointwise consistency

(convergence in quadratic mean implies convergence in probability).

18.4.2. Estimation of the numerator. To estimate
R

y f (x,y)dy, we need an esti-

mator of f (x,y). The estimator has the same form as the estimator for h(x), only with

one dimension more:

f̂ (x,y) =
1
n

n

∑
t=1

K∗ [(y− yt)/γn,(x− xt)/γn]

γk+1
n

The kernel K∗ (·) is required to have mean zero:

Z

yK∗ (y,x)dy = 0



18.4. KERNEL REGRESSION ESTIMATORS 391

and to marginalize to the previous kernel for h(x) :

Z

K∗ (y,x)dy = K(x).

With this kernel, we have

Z

y f̂ (y,x)dy =
1
n

n

∑
t=1

yt
K [(x− xt)/γn]

γk
n

by marginalization of the kernel, so we obtain

ĝ(x) =
1

ĥ(x)

Z

y f̂ (y,x)dy

=

1
n ∑n

t=1 yt
K[(x−xt )/γn]

γk
n

1
n ∑n

t=1
K[(x−xt )/γn]

γk
n

=
∑n

t=1 ytK [(x− xt)/γn]

∑n
t=1 K [(x− xt)/γn]

.

This is the Nadaraya-Watson kernel regression estimator.

18.4.3. Discussion.

• The kernel regression estimator for g(xt) is a weighted average of the y j, j =

1,2, ...,n, where higher weights are associated with points that are closer to

xt . The weights sum to 1.

• The window width parameter γn imposes smoothness. The estimator is in-

creasingly flat as γn → ∞, since in this case each weight tends to 1/n.

• A large window width reduces the variance (strong imposition of flatness),

but increases the bias.

• A small window width reduces the bias, but makes very little use of informa-

tion except points that are in a small neighborhood of xt . Since relatively little

information is used, the variance is large when the window width is small.
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• The standard normal density is a popular choice for K(.) and K∗(y,x), though

there are possibly better alternatives.

18.4.4. Choice of the window width: Cross-validation. The selection of an ap-

propriate window width is important. One popular method is cross validation. This

consists of splitting the sample into two parts (e.g., 50%-50%). The first part is the “in

sample” data, which is used for estimation, and the second part is the “out of sample”

data, used for evaluation of the fit though RMSE or some other criterion. The steps

are:

(1) Split the data. The out of sample data is yout and xout .

(2) Choose a window width γ.

(3) With the in sample data, fit ŷout
t corresponding to each xout

t . This fitted value

is a function of the in sample data, as well as the evaluation point xout
t , but it

does not involve yout
t .

(4) Repeat for all out of sample points.

(5) Calculate RMSE(γ)

(6) Go to step 2, or to the next step if enough window widths have been tried.

(7) Select the γ that minimizes RMSE(γ) (Verify that a minimum has been found,

for example by plotting RMSE as a function of γ).

(8) Re-estimate using the best γ and all of the data.

This same principle can be used to choose A and J in a Fourier form model.

18.5. Kernel density estimation

The previous discussion suggests that a kernel density estimator may easily be

constructed. We have already seen how joint densities may be estimated. If were

interested in a conditional density, for example of y conditional on x, then the kernel
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estimate of the conditional density is simply

f̂y|x =
f̂ (x,y)
ĥ(x)

=

1
n ∑n

t=1
K∗[(y−yt)/γn,(x−xt )/γn]

γk+1
n

1
n ∑n

t=1
K[(x−xt )/γn]

γk
n

=
1
γn

∑n
t=1 K∗ [(y− yt)/γn,(x− xt)/γn]

∑n
t=1 K [(x− xt)/γn]

where we obtain the expressions for the joint and marginal densities from the section

on kernel regression.

18.6. Semi-nonparametric maximum likelihood

Readings: Gallant and Nychka, Econometrica, 1987. For a Fortran program to do

this and a useful discussion in the user’s guide, see

this link . See also Cameron and Johansson, Journal of Applied Econometrics, V.

12, 1997.

MLE is the estimation method of choice when we are confident about specifying

the density. Is is possible to obtain the benefits of MLE when we’re not so confident

about the specification? In part, yes.

Suppose we’re interested in the density of y conditional on x (both may be vectors).

Suppose that the density f (y|x,φ) is a reasonable starting approximation to the true

density. This density can be reshaped by multiplying it by a squared polynomial. The

new density is

gp(y|x,φ,γ) =
h2

p(y|γ) f (y|x,φ)

ηp(x,φ,γ)

where

hp(y|γ) =
p

∑
k=0

γkyk

http://www.econ.duke.edu/~get/snp.html


18.6. SEMI-NONPARAMETRIC MAXIMUM LIKELIHOOD 394

and ηp(x,φ,γ) is a normalizing factor to make the density integrate (sum) to one. Be-

cause h2
p(y|γ)/ηp(x,φ,γ) is a homogenous function of θ it is necessary to impose a

normalization: γ0 is set to 1. The normalization factor ηp(φ,γ) is calculated (following

Cameron and Johansson) using

E(Y r) =
∞

∑
y=0

yr fY (y|φ,γ)

=
∞

∑
y=0

yr [hp (y|γ)]2
ηp(φ,γ)

fY (y|φ)

=
∞

∑
y=0

p

∑
k=0

p

∑
l=0

yr fY (y|φ)γkγlykyl/ηp(φ,γ)

=
p

∑
k=0

p

∑
l=0

γkγl

{
∞

∑
y=0

yr+k+l fY (y|φ)

}
/ηp(φ,γ)

=
p

∑
k=0

p

∑
l=0

γkγlmk+l+r/ηp(φ,γ).

By setting r = 0 we get that the normalizing factor is

18.6.1

(18.6.1) ηp(φ,γ) =
p

∑
k=0

p

∑
l=0

γkγlmk+l

Recall that γ0 is set to 1 to achieve identification. The mr in equation 18.6.1 are the

raw moments of the baseline density. Gallant and Nychka (1987) give conditions under

which such a density may be treated as correctly specified, asymptotically. Basically,

the order of the polynomial must increase as the sample size increases. However, there

are technicalities.

Similarly to Cameron and Johannson (1997), we may develop a negative binomial

polynomial (NBP) density for count data. The negative binomial baseline density may
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be written (see equation as

fY (y|φ) =
Γ(y+ψ)

Γ(y+1)Γ(ψ)

(
ψ

ψ+λ

)ψ( λ
ψ+λ

)y

where φ = {λ,ψ}, λ > 0 and ψ > 0. The usual means of incorporating conditioning

variables x is the parameterization λ = ex′β. When ψ = λ/α we have the negative

binomial-I model (NB-I). When ψ = 1/α we have the negative binomial-II (NP-II)

model. For the NB-I density, V (Y ) = λ+αλ. In the case of the NB-II model, we have

V (Y ) = λ+αλ2. For both forms, E(Y ) = λ.

The reshaped density, with normalization to sum to one, is

(18.6.2) fY (y|φ,γ) =
[hp (y|γ)]2
ηp(φ,γ)

Γ(y+ψ)

Γ(y+1)Γ(ψ)

(
ψ

ψ+λ

)ψ( λ
ψ+λ

)y

.

To get the normalization factor, we need the moment generating function:

(18.6.3) MY (t) = ψψ (λ− etλ+ψ
)−ψ

.

To illustrate, Figure 18.6.1 shows calculation of the first four raw moments of the NB

density, calculated using MuPAD, which is a Computer Algebra System that (use to

be?) free for personal use. These are the moments you would need to use a second

order polynomial (p = 2). MuPAD will output these results in the form of C code,

which is relatively easy to edit to write the likelihood function for the model. This has

been done in NegBinSNP.cc, which is a C++ version of this model that can be compiled

to use with octave using the mkoctfile command. Note the impressive length of the

expressions when the degree of the expansion is 4 or 5! This is an example of a model

that would be difficult to formulate without the help of a program like MuPAD.

http://www.mupad.org
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/NegBinSNP.cc
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FIGURE 18.6.1. Negative binomial raw moments

It is possible that there is conditional heterogeneity such that the appropriate re-

shaping should be more local. This can be accomodated by allowing the γk parameters

to depend upon the conditioning variables, for example using polynomials.

Gallant and Nychka, Econometrica, 1987 prove that this sort of density can ap-

proximate a wide variety of densities arbitrarily well as the degree of the polynomial

increases with the sample size. This approach is not without its drawbacks: the sample

objective function can have an extremely large number of local maxima that can lead

to numeric difficulties. If someone could figure out how to do in a way such that the

sample objective function was nice and smooth, they would probably get the paper

published in a good journal. Any ideas?

Here’s a plot of true and the limiting SNP approximations (with the order of the

polynomial fixed) to four different count data densities, which variously exhibit over
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and underdispersion, as well as excess zeros. The baseline model is a negative bino-

mial density.
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18.7. Examples

We’ll use the MEPS OBDV data to illustrate kernel regression and semi-nonparametric

maximum likelihood.

18.7.1. Kernel regression estimation. Let’s try a kernel regression fit for the

OBDV data. The program OBDVkernel.m loads the MEPS OBDV data, scans over a

range of window widths and calculates leave-one-out CV scores, and plots the fitted

OBDV usage versus AGE, using the best window width. The plot is in Figure 18.7.1.

http://pareto.uab.es/mcreel/Econometrics/Include/Nonparametric/OBDVkernel.m
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FIGURE 18.7.1. Kernel fitted OBDV usage versus AGE
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Kernel fit, OBDV visits versus AGE

Note that usage increases with age, just as we’ve seen with the parametric models.

Once could use bootstrapping to generate a confidence interval to the fit.

18.7.2. Seminonparametric ML estimation and the MEPS data. Now let’s es-

timate a seminonparametric density for the OBDV data. We’ll reshape a negative bi-

nomial density, as discussed above. The program EstimateNBSNP.m loads the MEPS

OBDV data and estimates the model, using a NB-I baseline density and a 2nd order

polynomial expansion. The output is:

OBDV

======================================================
BFGSMIN final results

Used numeric gradient

http://pareto.uab.es/mcreel/Econometrics/Include/Nonparametric/EstimateNBSNP.m
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------------------------------------------------------
STRONG CONVERGENCE
Function conv 1 Param conv 1 Gradient conv 1
------------------------------------------------------
Objective function value 2.17061
Stepsize 0.0065
24 iterations
------------------------------------------------------

param gradient change
1.3826 0.0000 -0.0000
0.2317 -0.0000 0.0000
0.1839 0.0000 0.0000
0.2214 0.0000 -0.0000
0.1898 0.0000 -0.0000
0.0722 0.0000 -0.0000

-0.0002 0.0000 -0.0000
1.7853 -0.0000 -0.0000

-0.4358 0.0000 -0.0000
0.1129 0.0000 0.0000

******************************************************
NegBin SNP model, MEPS full data set

MLE Estimation Results
BFGS convergence: Normal convergence

Average Log-L: -2.170614
Observations: 4564

estimate st. err t-stat p-value
constant -0.147 0.126 -1.173 0.241
pub. ins. 0.695 0.050 13.936 0.000
priv. ins. 0.409 0.046 8.833 0.000
sex 0.443 0.034 13.148 0.000
age 0.016 0.001 11.880 0.000
edu 0.025 0.006 3.903 0.000
inc -0.000 0.000 -0.011 0.991
gam1 1.785 0.141 12.629 0.000
gam2 -0.436 0.029 -14.786 0.000
lnalpha 0.113 0.027 4.166 0.000
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Information Criteria
CAIC : 19907.6244 Avg. CAIC: 4.3619
BIC : 19897.6244 Avg. BIC: 4.3597
AIC : 19833.3649 Avg. AIC: 4.3456

******************************************************

Note that the CAIC and BIC are lower for this model than for the models presented

in Table 3. This model fits well, still being parsimonious. You can play around trying

other use measures, using a NP-II baseline density, and using other orders of expan-

sions. Density functions formed in this way may have MANY local maxima, so you

need to be careful before accepting the results of a casual run. To guard against hav-

ing converged to a local maximum, one can try using multiple starting values, or one

could try simulated annealing as an optimization method. If you uncomment the rel-

evant lines in the program, you can use SA to do the minimization. This will take

a lot of time, compared to the default BFGS minimization. The chapter on parallel

computations might be interesting to read before trying this.



CHAPTER 19

Simulation-based estimation

Readings: In addition to the book mentioned previously, articles include Gallant

and Tauchen (1996), “Which Moments to Match?”, ECONOMETRIC THEORY, Vol.

12, 1996, pages 657-681;ă Gourieroux, Monfort and Renault (1993), “Indirect In-

ference,” J. Apl. Econometrics; Pakes and Pollard (1989) Econometrica; McFadden

(1989) Econometrica.

19.1. Motivation

Simulation methods are of interest when the DGP is fully characterized by a pa-

rameter vector, but the likelihood function is not calculable. If it were available, we

would simply estimate by MLE, which is asymptotically fully efficient.

19.1.1. Example: Multinomial and/or dynamic discrete response models. Let

y∗i be a latent random vector of dimension m. Suppose that

y∗i = Xiβ+ εi

where Xi is m×K. Suppose that

(19.1.1) εi ∼ N(0,Ω)

Henceforth drop the i subscript when it is not needed for clarity.

• y∗ is not observed. Rather, we observe a many-to-one mapping

y = τ(y∗)
401
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This mapping is such that each element of y is either zero or one (in some

cases only one element will be one).

• Define

Ai = A(yi) = {y∗|yi = τ(y∗)}

Suppose random sampling of (yi,Xi). In this case the elements of yi may

not be independent of one another (and clearly are not if Ω is not diagonal).

However, yi is independent of y j, i 6= j.

• Let θ = (β′,(vec∗Ω)′)′ be the vector of parameters of the model. The contri-

bution of the ith observation to the likelihood function is

pi(θ) =
Z

Ai

n(y∗i −Xiβ,Ω)dy∗i

where

n(ε,Ω) = (2π)−M/2 |Ω|−1/2 exp
[−ε′Ω−1ε

2

]

is the multivariate normal density of an M -dimensional random vector. The

log-likelihood function is

lnL(θ) =
1
n

n

∑
i=1

ln pi(θ)

and the MLE θ̂ solves the score equations

1
n

n

∑
i=1

gi(θ̂) =
1
n

n

∑
i=1

Dθ pi(θ̂)

pi(θ̂)
≡ 0.

• The problem is that evaluation of Li(θ) and its derivative w.r.t. θ by standard

methods of numeric integration such as quadrature is computationally infea-

sible when m (the dimension of y) is higher than 3 or 4 (as long as there are

no restrictions on Ω).
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• The mapping τ(y∗) has not been made specific so far. This setup is quite

general: for different choices of τ(y∗) it nests the case of dynamic binary

discrete choice models as well as the case of multinomial discrete choice (the

choice of one out of a finite set of alternatives).

– Multinomial discrete choice is illustrated by a (very simple) job search

model. We have cross sectional data on individuals’ matching to a set of

m jobs that are available (one of which is unemployment). The utility of

alternative j is

u j = X jβ+ ε j

Utilities of jobs, stacked in the vector ui are not observed. Rather, we

observe the vector formed of elements

y j = 1
[
u j > uk,∀k ∈ m,k 6= j

]

Only one of these elements is different than zero.

– Dynamic discrete choice is illustrated by repeated choices over time be-

tween two alternatives. Let alternative j have utility

u jt = Wjtβ− ε jt,

j ∈ {1,2}

t ∈ {1,2, ...,m}

Then

y∗ = u2 −u1

= (W2 −W1)β+ ε2 − ε1

≡ Xβ+ ε
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Now the mapping is (element-by-element)

y = 1 [y∗ > 0] ,

that is yit = 1 if individual i chooses the second alternative in period t,

zero otherwise.

19.1.2. Example: Marginalization of latent variables. Economic data often presents

substantial heterogeneity that may be difficult to model. A possibility is to introduce

latent random variables. This can cause the problem that there may be no known closed

form for the distribution of observable variables after marginalizing out the unobserv-

able latent variables. For example, count data (that takes values 0,1,2,3, ...) is often

modeled using the Poisson distribution

Pr(y = i) =
exp(−λ)λi

i!

The mean and variance of the Poisson distribution are both equal to λ :

E(y) = V (y) = λ.

Often, one parameterizes the conditional mean as

λi = exp(Xiβ).

This ensures that the mean is positive (as it must be). Estimation by ML is straightfor-

ward.

Often, count data exhibits “overdispersion” which simply means that

V (y) > E(y).
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If this is the case, a solution is to use the negative binomial distribution rather than the

Poisson. An alternative is to introduce a latent variable that reflects heterogeneity into

the specification:

λi = exp(Xiβ+ηi)

where ηi has some specified density with support S (this density may depend on addi-

tional parameters). Let dµ(ηi) be the density of ηi. In some cases, the marginal density

of y

Pr(y = yi) =

Z

S

exp [−exp(Xiβ+ηi)] [exp(Xiβ+ηi)]
yi

yi!
dµ(ηi)

will have a closed-form solution (one can derive the negative binomial distribution in

the way if η has an exponential distribution), but often this will not be possible. In

this case, simulation is a means of calculating Pr(y = i), which is then used to do ML

estimation. This would be an example of the Simulated Maximum Likelihood (SML)

estimation.

• In this case, since there is only one latent variable, quadrature is probably

a better choice. However, a more flexible model with heterogeneity would

allow all parameters (not just the constant) to vary. For example

Pr(y = yi) =
Z

S

exp [−exp(Xiβi)] [exp(Xiβi)]
yi

yi!
dµ(βi)

entails a K = dimβi-dimensional integral, which will not be evaluable by

quadrature when K gets large.

19.1.3. Estimation of models specified in terms of stochastic differential equa-

tions. It is often convenient to formulate models in terms of continuous time using

differential equations. A realistic model should account for exogenous shocks to the

system, which can be done by assuming a random component. This leads to a model
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that is expressed as a system of stochastic differential equations. Consider the process

dyt = g(θ,yt)dt +h(θ,yt)dWt

which is assumed to be stationary. {Wt} is a standard Brownian motion (Weiner pro-

cess), such that

W (T ) =

Z T

0
dWt ∼ N(0,T )

Brownian motion is a continuous-time stochastic process such that

• W (0) = 0

• [W (s)−W(t)]∼ N(0,s− t)

• [W (s)−W(t)] and [W ( j)−W (k)] are independent for s > t > j > k. That is,

non-overlapping segments are independent.

One can think of Brownian motion the accumulation of independent normally dis-

tributed shocks with infinitesimal variance.

• The function g(θ,yt) is the deterministic part.

• h(θ,yt) determines the variance of the shocks.

To estimate a model of this sort, we typically have data that are assumed to be obser-

vations of yt in discrete points y1, y2, ...yT . That is, though yt is a continuous process it

is observed in discrete time.

To perform inference on θ, direct ML or GMM estimation is not usually feasible,

because one cannot, in general, deduce the transition density f (yt |yt−1,θ). This den-

sity is necessary to evaluate the likelihood function or to evaluate moment conditions

(which are based upon expectations with respect to this density).

• A typical solution is to “discretize” the model, by which we mean to find

a discrete time approximation to the model. The discretized version of the
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model is

yt − yt−1 = g(φ,yt−1)+h(φ,yt−1)εt

εt ∼ N(0,1)

The discretization induces a new parameter, φ (that is, the φ0 which defines

the best approximation of the discretization to the actual (unknown) discrete

time version of the model is not equal to θ0 which is the true parameter value).

This is an approximation, and as such “ML” estimation of φ (which is actu-

ally quasi-maximum likelihood, QML) based upon this equation is in general

biased and inconsistent for the original parameter, θ. Nevertheless, the ap-

proximation shouldn’t be too bad, which will be useful, as we will see.

• The important point about these three examples is that computational diffi-

culties prevent direct application of ML, GMM, etc. Nevertheless the model

is fully specified in probabilistic terms up to a parameter vector. This means

that the model is simulable, conditional on the parameter vector.

19.2. Simulated maximum likelihood (SML)

For simplicity, consider cross-sectional data. An ML estimator solves

θ̂ML = argmaxsn(θ) =
1
n

n

∑
t=1

ln p(yt |Xt,θ)

where p(yt |Xt,θ) is the density function of the t th observation. When p(yt |Xt,θ) does

not have a known closed form, θ̂ML is an infeasible estimator. However, it may be

possible to define a random function such that

Eν f (ν,yt ,Xt,θ) = p(yt |Xt,θ)
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where the density of ν is known. If this is the case, the simulator

p̃ (yt ,Xt,θ) =
1
H

H

∑
s=1

f (νts,yt ,Xt,θ)

is unbiased for p(yt |Xt,θ).

• The SML simply substitutes p̃(yt ,Xt ,θ) in place of p(yt |Xt,θ) in the log-

likelihood function, that is

θ̂SML = argmaxsn(θ) =
1
n

n

∑
i=1

ln p̃(yt ,Xt,θ)

19.2.1. Example: multinomial probit. Recall that the utility of alternative j is

u j = X jβ+ ε j

and the vector y is formed of elements

y j = 1
[
u j > uk,k ∈ m,k 6= j

]

The problem is that Pr(y j = 1|θ) can’t be calculated when m is larger than 4 or 5.

However, it is easy to simulate this probability.

• Draw ε̃i from the distribution N(0,Ω)

• Calculate ũi = Xiβ+ ε̃i (where Xi is the matrix formed by stacking the Xi j)

• Define ỹi j = 1
[
ui j > uik,∀k ∈ m,k 6= j

]

• Repeat this H times and define

π̃i j =
∑H

h=1 ỹi jh

H

• Define π̃i as the m-vector formed of the π̃i j. Each element of π̃i is between 0

and 1, and the elements sum to one.

• Now p̃(yi,Xi,θ) = y′iπ̃i
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• The SML multinomial probit log-likelihood function is

lnL(β,Ω) =
1
n

n

∑
i=1

y′i ln p̃ (yi,Xi,θ)

This is to be maximized w.r.t. β and Ω.

Notes:

• The H draws of ε̃i are draw only once and are used repeatedly during the

iterations used to find β̂ and Ω̂. The draws are different for each i. If the ε̃i are

re-drawn at every iteration the estimator will not converge.

• The log-likelihood function with this simulator is a discontinuous function of

β and Ω. This does not cause problems from a theoretical point of view since

it can be shown that lnL(β,Ω) is stochastically equicontinuous. However,

it does cause problems if one attempts to use a gradient-based optimization

method such as Newton-Raphson.

• It may be the case, particularly if few simulations, H, are used, that some

elements of π̃i are zero. If the corresponding element of yi is equal to 1, there

will be a log(0) problem.

• Solutions to discontinuity:

– 1) use an estimation method that doesn’t require a continuous and dif-

ferentiable objective function, for example, simulated annealing. This is

computationally costly.

– 2) Smooth the simulated probabilities so that they are continuous func-

tions of the parameters. For example, apply a kernel transformation such

as

ỹi j = Φ
(

A×
[

ui j −
m

max
k=1

uik

])
+ .5×1

[
ui j =

m
max
k=1

uik

]
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where A is a large positive number. This approximates a step function

such that ỹi j is very close to zero if ui j is not the maximum, and ui j = 1

if it is the maximum. This makes ỹi j a continuous function of β and Ω,

so that p̃i j and therefore lnL(β,Ω) will be continuous and differentiable.

Consistency requires that A(n)
p→ ∞, so that the approximation to a step

function becomes arbitrarily close as the sample size increases. There

are alternative methods (e.g., Gibbs sampling) that may work better, but

this is too technical to discuss here.

• To solve to log(0) problem, one possibility is to search the web for the slog

function. Also, increase H if this is a serious problem.

19.2.2. Properties. The properties of the SML estimator depend on how H is set.

The following is taken from Lee (1995) “Asymptotic Bias in Simulated Maximum

Likelihood Estimation of Discrete Choice Models,” Econometric Theory, 11, pp. 437-

83.

THEOREM 32. [Lee] 1) if limn→∞ n1/2/H = 0, then

√
n
(
θ̂SML −θ0) d→ N(0,I−1(θ0))

2) if limn→∞ n1/2/H = λ, λ a finite constant, then

√
n
(
θ̂SML −θ0) d→ N(B,I−1(θ0))

where B is a finite vector of constants.

• This means that the SML estimator is asymptotically biased if H doesn’t grow

faster than n1/2.
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• The varcov is the typical inverse of the information matrix, so that as long

as H grows fast enough the estimator is consistent and fully asymptotically

efficient.

19.3. Method of simulated moments (MSM)

Suppose we have a DGP(y|x,θ) which is simulable given θ, but is such that the

density of y is not calculable.

Once could, in principle, base a GMM estimator upon the moment conditions

mt(θ) = [K(yt ,xt)− k(xt,θ)]zt

where

k(xt ,θ) =
Z

K(yt ,xt)p(y|xt ,θ)dy,

zt is a vector of instruments in the information set and p(y|xt ,θ) is the density of y

conditional on xt . The problem is that this density is not available.

• However k(xt ,θ) is readily simulated using

k̃ (xt ,θ) =
1
H

H

∑
h=1

K(ỹh
t ,xt)

• By the law of large numbers, k̃ (xt ,θ)
a.s.→ k (xt ,θ) , as H → ∞, which provides

a clear intuitive basis for the estimator, though in fact we obtain consistency

even for H finite, since a law of large numbers is also operating across the

n observations of real data, so errors introduced by simulation cancel them-

selves out.

• This allows us to form the moment conditions

(19.3.1) m̃t(θ) =
[
K(yt ,xt)− k̃ (xt ,θ)

]
zt
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where zt is drawn from the information set. As before, form

m̃(θ) =
1
n

n

∑
i=1

m̃t(θ)

=
1
n

n

∑
i=1

[
K(yt ,xt)−

1
H

H

∑
h=1

k(ỹh
t ,xt)

]
zt(19.3.2)

with which we form the GMM criterion and estimate as usual. Note that the

unbiased simulator k(ỹh
t ,xt) appears linearly within the sums.

19.3.1. Properties. Suppose that the optimal weighting matrix is used. McFad-

den (ref. above) and Pakes and Pollard (refs. above) show that the asymptotic distri-

bution of the MSM estimator is very similar to that of the infeasible GMM estimator.

In particular, assuming that the optimal weighting matrix is used, and for H finite,

(19.3.3)
√

n
(
θ̂MSM −θ0) d→ N

[
0,

(
1+

1
H

)(
D∞Ω−1D′

∞
)−1
]

where
(
D∞Ω−1D′

∞
)−1 is the asymptotic variance of the infeasible GMM estimator.

• That is, the asymptotic variance is inflated by a factor 1 + 1/H. For this rea-

son the MSM estimator is not fully asymptotically efficient relative to the

infeasible GMM estimator, for H finite, but the efficiency loss is small and

controllable, by setting H reasonably large.

• The estimator is asymptotically unbiased even for H = 1. This is an advantage

relative to SML.

• If one doesn’t use the optimal weighting matrix, the asymptotic varcov is just

the ordinary GMM varcov, inflated by 1+1/H.

• The above presentation is in terms of a specific moment condition based upon

the conditional mean. Simulated GMM can be applied to moment conditions

of any form.
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19.3.2. Comments. Why is SML inconsistent if H is finite, while MSM is? The

reason is that SML is based upon an average of logarithms of an unbiased simulator

(the densities of the observations). To use the multinomial probit model as an example,

the log-likelihood function is

lnL(β,Ω) =
1
n

n

∑
i=1

y′i ln pi(β,Ω)

The SML version is

lnL(β,Ω) =
1
n

n

∑
i=1

y′i ln p̃i(β,Ω)

The problem is that

E ln(p̃i(β,Ω)) 6= ln(E p̃i(β,Ω))

in spite of the fact that

E p̃i(β,Ω) = pi(β,Ω)

due to the fact that ln(·) is a nonlinear transformation. The only way for the two to be

equal (in the limit) is if H tends to infinite so that p̃(·) tends to p(·).

The reason that MSM does not suffer from this problem is that in this case the

unbiased simulator appears linearly within every sum of terms, and it appears within

a sum over n (see equation [19.3.2]). Therefore the SLLN applies to cancel out sim-

ulation errors, from which we get consistency. That is, using simple notation for the

random sampling case, the moment conditions

m̃(θ) =
1
n

n

∑
i=1

[
K(yt ,xt)−

1
H

H

∑
h=1

k(ỹh
t ,xt)

]
zt(19.3.4)

=
1
n

n

∑
i=1

[
k(xt ,θ0)+ εt −

1
H

H

∑
h=1

[k(xt ,θ)+ ε̃ht]

]
zt(19.3.5)
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converge almost surely to

m̃∞(θ) =
Z [

k(x,θ0)− k(x,θ)
]

z(x)dµ(x).

(note: zt is assume to be made up of functions of xt). The objective function converges

to

s∞(θ) = m̃∞(θ)′Ω−1
∞ m̃∞(θ)

which obviously has a minimum at θ0, henceforth consistency.

• If you look at equation 19.3.5 a bit, you will see why the variance inflation

factor is (1+ 1
H ).

19.4. Efficient method of moments (EMM)

The choice of which moments upon which to base a GMM estimator can have very

pronounced effects upon the efficiency of the estimator.

• A poor choice of moment conditions may lead to very inefficient estimators,

and can even cause identification problems (as we’ve seen with the GMM

problem set).

• The drawback of the above approach MSM is that the moment conditions

used in estimation are selected arbitrarily. The asymptotic efficiency of the

estimator may be low.

• The asymptotically optimal choice of moments would be the score vector of

the likelihood function,

mt(θ) = Dθ ln pt(θ | It)

As before, this choice is unavailable.
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The efficient method of moments (EMM) (see Gallant and Tauchen (1996), “Which

Moments to Match?”, ECONOMETRIC THEORY, Vol. 12, 1996, pages 657-681)

seeks to provide moment conditions that closely mimic the score vector. If the approx-

imation is very good, the resulting estimator will be very nearly fully efficient.

The DGP is characterized by random sampling from the density

p(yt |xt ,θ0) ≡ pt(θ0)

We can define an auxiliary model, called the “score generator”, which simply pro-

vides a (misspecified) parametric density

f (y|xt ,λ) ≡ ft(λ)

• This density is known up to a parameter λ. We assume that this density func-

tion is calculable. Therefore quasi-ML estimation is possible. Specifically,

λ̂ = argmax
Λ

sn(λ) =
1
n

n

∑
t=1

ln ft(λ).

• After determining λ̂ we can calculate the score functions Dλ ln f (yt |xt , λ̂).

• The important point is that even if the density is misspecified, there is a

pseudo-true λ0 for which the true expectation, taken with respect to the true

but unknown density of y, p(y|xt ,θ0), and then marginalized over x is zero:

∃λ0 : EX EY |X
[
Dλ ln f (y|x,λ0)

]
=

Z

X

Z

Y |X
Dλ ln f (y|x,λ0)p(y|x,θ0)dydµ(x) = 0

• We have seen in the section on QML that λ̂ p→ λ0; this suggests using the

moment conditions

(19.4.1) mn(θ, λ̂) =
1
n

n

∑
t=1

Z

Dλ ln ft(λ̂)pt(θ)dy
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• These moment conditions are not calculable, since pt(θ) is not available, but

they are simulable using

m̃n(θ, λ̂) =
1
n

n

∑
t=1

1
H

H

∑
h=1

Dλ ln f (ỹh
t |xt, λ̂)

where ỹh
t is a draw from DGP(θ), holding xt fixed. By the LLN and the fact

that λ̂ converges to λ0,

m̃∞(θ0,λ0) = 0.

This is not the case for other values of θ, assuming that λ0 is identified.

• The advantage of this procedure is that if f (yt |xt ,λ) closely approximates

p(y|xt ,θ), then m̃n(θ, λ̂) will closely approximate the optimal moment con-

ditions which characterize maximum likelihood estimation, which is fully

efficient.

• If one has prior information that a certain density approximates the data well,

it would be a good choice for f (·).

• If one has no density in mind, there exist good ways of approximating un-

known distributions parametrically: Philips’ ERA’s (Econometrica, 1983)

and Gallant and Nychka’s (Econometrica, 1987) SNP density estimator which

we saw before. Since the SNP density is consistent, the efficiency of the in-

direct estimator is the same as the infeasible ML estimator.

19.4.1. Optimal weighting matrix. I will present the theory for H finite, and

possibly small. This is done because it is sometimes impractical to estimate with H

very large. Gallant and Tauchen give the theory for the case of H so large that it may

be treated as infinite (the difference being irrelevant given the numerical precision of
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a computer). The theory for the case of H infinite follows directly from the results

presented here.

The moment condition m̃(θ, λ̂) depends on the pseudo-ML estimate λ̂. We can

apply Theorem 22 to conclude that

(19.4.2)
√

n
(

λ̂−λ0
)

d→ N
[
0,J (λ0)−1I (λ0)J (λ0)−1]

If the density f (yt |xt , λ̂) were in fact the true density p(y|xt ,θ), then λ̂ would be the

maximum likelihood estimator, and J (λ0)−1I (λ0) would be an identity matrix, due

to the information matrix equality. However, in the present case we assume that

f (yt |xt , λ̂) is only an approximation to p(y|xt ,θ), so there is no cancellation.

Recall that J (λ0) ≡ p lim
(

∂2

∂λ∂λ′ sn(λ0)
)

. Comparing the definition of sn(λ) with

the definition of the moment condition in Equation 19.4.1, we see that

J (λ0) = Dλ′m(θ0,λ0).

As in Theorem 22,

I (λ0) = lim
n→∞

E
[

n
∂sn(λ)

∂λ

∣∣∣∣
λ0

∂sn(λ)

∂λ′

∣∣∣∣
λ0

]
.

In this case, this is simply the asymptotic variance covariance matrix of the moment

conditions, Ω. Now take a first order Taylor’s series approximation to
√

nmn(θ0, λ̂)

about λ0 :

√
nm̃n(θ0, λ̂) =

√
nm̃n(θ0,λ0)+

√
nDλ′m̃(θ0,λ0)

(
λ̂−λ0

)
+op(1)

First consider
√

nm̃n(θ0,λ0). It is straightforward but somewhat tedious to show

that the asymptotic variance of this term is 1
H I∞(λ0).
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Next consider the second term
√

nDλ′m̃(θ0,λ0)
(

λ̂−λ0
)

. Note that Dλ′m̃n(θ0,λ0)
a.s.→

J (λ0), so we have

√
nDλ′m̃(θ0,λ0)

(
λ̂−λ0

)
=

√
nJ (λ0)

(
λ̂−λ0

)
,a.s.

But noting equation 19.4.2

√
nJ (λ0)

(
λ̂−λ0

)
a∼ N

[
0,I (λ0)

]

Now, combining the results for the first and second terms,

√
nm̃n(θ0, λ̂)

a∼ N
[

0,

(
1+

1
H

)
I (λ0)

]

Suppose that Î (λ0) is a consistent estimator of the asymptotic variance-covariance

matrix of the moment conditions. This may be complicated if the score generator is

a poor approximator, since the individual score contributions may not have mean zero

in this case (see the section on QML) . Even if this is the case, the individuals means

can be calculated by simulation, so it is always possible to consistently estimate I (λ0)

when the model is simulable. On the other hand, if the score generator is taken to

be correctly specified, the ordinary estimator of the information matrix is consistent.

Combining this with the result on the efficient GMM weighting matrix in Theorem 25,

we see that defining θ̂ as

θ̂ = argmin
Θ

mn(θ, λ̂)′
[(

1+
1
H

)
Î (λ0)

]−1

mn(θ, λ̂)

is the GMM estimator with the efficient choice of weighting matrix.

• If one has used the Gallant-Nychka ML estimator as the auxiliary model, the

appropriate weighting matrix is simply the information matrix of the auxil-

iary model, since the scores are uncorrelated. (e.g., it really is ML estimation
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asymptotically, since the score generator can approximate the unknown den-

sity arbitrarily well).

19.4.2. Asymptotic distribution. Since we use the optimal weighting matrix, the

asymptotic distribution is as in Equation 15.4.1, so we have (using the result in Equa-

tion 19.4.2):

√
n
(
θ̂−θ0) d→ N


0,

(
D∞

[(
1+

1
H

)
I (λ0)

]−1

D′
∞

)−1

 ,

where

D∞ = lim
n→∞

E
[
Dθm′

n(θ
0,λ0)

]
.

This can be consistently estimated using

D̂ = Dθm′
n(θ̂, λ̂)

19.4.3. Diagnotic testing. The fact that

√
nmn(θ0, λ̂)

a∼ N
[

0,

(
1+

1
H

)
I (λ0)

]

implies that

nmn(θ̂, λ̂)′
[(

1+
1
H

)
I (λ̂)

]−1

mn(θ̂, λ̂)
a∼ χ2(q)

where q is dim(λ)− dim(θ), since without dim(θ) moment conditions the model is

not identified, so testing is impossible. One test of the model is simply based on this

statistic: if it exceeds the χ2(q) critical point, something may be wrong (the small

sample performance of this sort of test would be a topic worth investigating).

• Information about what is wrong can be gotten from the pseudo-t-statistics:

(
diag

[(
1+

1
H

)
I (λ̂)

]1/2
)−1√

nmn(θ̂, λ̂)
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can be used to test which moments are not well modeled. Since these mo-

ments are related to parameters of the score generator, which are usually re-

lated to certain features of the model, this information can be used to revise

the model. These aren’t actually distributed as N(0,1), since
√

nmn(θ0, λ̂)

and
√

nmn(θ̂, λ̂) have different distributions (that of
√

nmn(θ̂, λ̂) is somewhat

more complicated). It can be shown that the pseudo-t statistics are biased

toward nonrejection. See Gourieroux et. al. or Gallant and Long, 1995, for

more details.

19.5. Examples

19.5.1. Estimation of stochastic differential equations. It is often convenient to

formulate theoretical models in terms of differential equations, and when the observa-

tion frequency is high (e.g., weekly, daily, hourly or real-time) it may be more natural

to adopt this framework for econometric models of time series.

The most common approach to estimation of stochastic differential equations is to

“discretize” the model, as above, and estimate using the discretized version. However,

since the discretization is only an approximation to the true discrete-time version of

the model (which is not calculable), the resulting estimator is in general biased and

inconsistent.

An alternative is to use indirect inference: The discretized model is used as the

score generator. That is, one estimates by QML to obtain the scores of the discretized

approximation:

yt − yt−1 = g(φ,yt−1)+h(φ,yt−1)εt

εt ∼ N(0,1)
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Indicate these scores by mn(θ, φ̂). Then the system of stochastic differential equations

dyt = g(θ,yt)dt +h(θ,yt)dWt

is simulated over θ, and the scores are calculated and averaged over the simulations

m̃n(θ, φ̂) =
1
N

N

∑
i=1

min(θ, φ̂)

θ̂ is chosen to set the simulated scores to zero

m̃n(θ̂, φ̂) ≡ 0

(since θ and φ are of the same dimension).

This method requires simulating the stochastic differential equation. There are

many ways of doing this. Basically, they involve doing very fine discretizations:

yt+τ = yt +g(θ,yt)+h(θ,yt)ηt

ηt ∼ N(0,τ)

By setting τ very small, the sequence of ηt approximates a Brownian motion fairly

well.

This is only one method of using indirect inference for estimation of differential

equations. There are others (see Gallant and Long, 1995 and Gourieroux et. al.).

Use of a series approximation to the transitional density as in Gallant and Long is

an interesting possibility since the score generator may have a higher dimensional

parameter than the model, which allows for diagnostic testing. In the method described

above the score generator’s parameter φ is of the same dimension as is θ, so diagnostic

testing is not possible.
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19.5.2. EMM estimation of a discrete choice model. In this section consider

EMM estimation. There is a sophisticated package by Gallant and Tauchen for this,

but here we’ll look at some simple, but hopefully didactic code. The file probitdgp.m

generates data that follows the probit model. The file emm_moments.m defines EMM

moment conditions, where the DGP and score generator can be passed as arguments.

Thus, it is a general purpose moment condition for EMM estimation. This file is

interesting enough to warrant some discussion. A listing appears in Listing 19.1. Line

3 defines the DGP, and the arguments needed to evaluate it are defined in line 4. The

score generator is defined in line 5, and its arguments are defined in line 6. The QML

estimate of the parameter of the score generator is read in line 7. Note in line 10 how

the random draws needed to simulate data are passed with the data, and are thus fixed

during estimation, to avoid ”chattering”. The simulated data is generated in line 16,

and the derivative of the score generator using the simulated data is calculated in line

18. In line 20 we average the scores of the score generator, which are the moment

conditions that the function returns.

1 function scores = emm_moments(theta, data, momentargs)

2 k = momentargs{1};

3 dgp = momentargs{2}; # the data generating process (DGP)

4 dgpargs = momentargs{3}; # its arguments (cell array)

5 sg = momentargs{4}; # the score generator (SG)

6 sgargs = momentargs{5}; # SG arguments (cell array)

7 phi = momentargs{6}; # QML estimate of SG parameter

8 y = data(:,1);

9 x = data(:,2:k+1);

10 rand_draws = data(:,k+2:columns(data)); # passed with data to ensure

fixed across iterations

http://www.econ.duke.edu/~get/emm.html
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/ProbitDGP.m
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/ParallelKnoppix/gmm/emm_moments.m
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11 n = rows(y);

12 scores = zeros(n,rows(phi)); # container for moment contributions

13 reps = columns(rand_draws); # how many simulations?

14 for i = 1:reps

15 e = rand_draws(:,i);

16 y = feval(dgp, theta, x, e, dgpargs); # simulated data

17 sgdata = [y x]; # simulated data for SG

18 scores = scores + numgradient(sg, {phi, sgdata, sgargs}); # gradient

of SG

19 endfor

20 scores = scores / reps; # average over number of simulations

21 endfunction

LISTING 19.1

The file emm_example.m performs EMM estimation of the probit model, using a

logit model as the score generator. The results we obtain are

Score generator results:
=====================================================
BFGSMIN final results

Used analytic gradient

------------------------------------------------------
STRONG CONVERGENCE
Function conv 1 Param conv 1 Gradient conv 1
------------------------------------------------------
Objective function value 0.281571
Stepsize 0.0279
15 iterations
------------------------------------------------------

param gradient change

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/ParallelKnoppix/gmm/emm_example.m
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1.8979 0.0000 0.0000
1.6648 -0.0000 0.0000
1.9125 -0.0000 0.0000
1.8875 -0.0000 0.0000
1.7433 -0.0000 0.0000

======================================================

Model results:
******************************************************
EMM example

GMM Estimation Results
BFGS convergence: Normal convergence

Objective function value: 0.000000
Observations: 1000

Exactly identified, no spec. test

estimate st. err t-stat p-value
p1 1.069 0.022 47.618 0.000
p2 0.935 0.022 42.240 0.000
p3 1.085 0.022 49.630 0.000
p4 1.080 0.022 49.047 0.000
p5 0.978 0.023 41.643 0.000
******************************************************

It might be interesting to compare the standard errors with those obtained from

ML estimation, to check efficiency of the EMM estimator. One could even do a Monte

Carlo study.
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Exercises

(1) Do SML estimation of the probit model.

(2) Do a little Monte Carlo study to compare ML, SML and EMM estimation of

the probit model. Investigate how the number of simulations affect the two

simulation-based estimators.



CHAPTER 20

Parallel programming for econometrics

The following borrows heavily from Creel (2005).

Parallel computing can offer an important reduction in the time to complete com-

putations. This is well-known, but it bears emphasis since it is the main reason that

parallel computing may be attractive to users. To illustrate, the Intel Pentium IV

(Willamette) processor, running at 1.5GHz, was introduced in November of 2000. The

Pentium IV (Northwood-HT) processor, running at 3.06GHz, was introduced in No-

vember of 2002. An approximate doubling of the performance of a commodity CPU

took place in two years. Extrapolating this admittedly rough snapshot of the evolution

of the performance of commodity processors, one would need to wait more than 6.6

years and then purchase a new computer to obtain a 10-fold improvement in compu-

tational performance. The examples in this chapter show that a 10-fold improvement

in performance can be achieved immediately, using distributed parallel computing on

available computers.

Recent (this is written in 2005) developments that may make parallel computing at-

tractive to a broader spectrum of researchers who do computations. The first is the fact

that setting up a cluster of computers for distributed parallel computing is not difficult.

If you are using the ParallelKnoppix bootable CD that accompanies these notes, you

could create a cluster in less that 10 minutes, given a few easily satisfied conditions.

See the Tutorial, on the Desktop if you’re running the bootable CD, or available at the

preceeding link. The second development is the existence of extensions to some of

426

http://pareto.uab.es/mcreel/ParallelKnoppix
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the high-level matrix programming (HLMP) languages1 that allow the incorporation

of parallelism into programs written in these languages.

Following are examples of parallel implementations of several mainstream prob-

lems in econometrics. A focus of the examples is on the possibility of hiding paral-

lelization from end users of programs. If programs that run in parallel have an interface

that is nearly identical to the interface of equivalent serial versions, end users will find

it easy to take advantage of parallel computing’s performance. We continue to use

Octave, taking advantage of the MPI Toolbox (MPITB) for Octave, by by Fernández

Baldomero et al. (2004). There are also parallel packages for Ox, R, and Python which

may be of interest to econometricians, but as of this writing, the following examples

are the most accessible introduction to parallel programming for econometricians.

20.1. Example problems

This section introduces example problems from econometrics, and shows how they

can be parallelized in a natural way.

20.1.1. Monte Carlo. A Monte Carlo study involves repeating a random exper-

iment many times under identical conditions. Several authors have noted that Monte

Carlo studies are obvious candidates for parallelization (Doornik et al. 2002; Bruche,

2003) since blocks of replications can be done independently on different computers.

To illustrate the parallelization of a Monte Carlo study, we use same trace test example

as do Doornik, et. al. (2002). tracetest.m is a function that calculates the trace test

statistic for the lack of cointegration of integrated time series. This function is illustra-

tive of the format that we adopt for Monte Carlo simulation of a function: it receives

a single argument of cell type, and it returns a row vector that holds the results of

1By ”high-level matrix programming language” I mean languages such as MATLAB (TM the Math-
works, Inc.), Ox (TM OxMetrics Technologies, Ltd.), and GNU Octave (www.octave.org), for exam-
ple.

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/ParallelKnoppix/montecarlo/tracetest.m
www.octave.org
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one random simulation. The single argument in this case is a cell array that holds the

length of the series in its first position, and the number of series in the second position.

It generates a random result though a process that is internal to the function, and it

reports some output in a row vector (in this case the result is a scalar).

mc_example1.m is an Octave script that executes a Monte Carlo study of the trace

test by repeatedly evaluating the tracetest.m function. The main thing to notice

about this script is that lines 7 and 10 call the function montecarlo.m. When called

with 3 arguments, as in line 7, montecarlo.m executes serially on the computer it is

called from. In line 10, there is a fourth argument. When called with four arguments,

the last argument is the number of slave hosts to use. We see that running the Monte

Carlo study on one or more processors is transparent to the user - he or she must only

indicate the number of slave computers to be used.

20.1.2. ML. For a sample {(yt ,xt)}n of n observations of a set of dependent and

explanatory variables, the maximum likelihood estimator of the parameter θ can be

defined as

θ̂ = argmaxsn(θ)

where

sn(θ) =
1
n

n

∑
t=1

ln f (yt |xt ,θ)

Here, yt may be a vector of random variables, and the model may be dynamic since xt

may contain lags of yt . As Swann (2002) points out, this can be broken into sums over

blocks of observations, for example two blocks:

sn(θ) =
1
n

{(
n1

∑
t=1

ln f (yt |xt ,θ)

)
+

(
n

∑
t=n1+1

ln f (yt |xt ,θ)

)}

Analogously, we can define up to n blocks. Again following Swann, parallelization

can be done by calculating each block on separate computers.

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/ParallelKnoppix/montecarlo/mc_example1.m
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mle_example1.m is an Octave script that calculates the maximum likelihood esti-

mator of the parameter vector of a model that assumes that the dependent variable is

distributed as a Poisson random variable, conditional on some explanatory variables.

In lines 1-3 the data is read, the name of the density function is provided in the vari-

able model, and the initial value of the parameter vector is set. In line 5, the function

mle_estimate performs ordinary serial calculation of the ML estimator, while in line

7 the same function is called with 6 arguments. The fourth and fifth arguments are

empty placeholders where options to mle_estimate may be set, while the sixth argu-

ment is the number of slave computers to use for parallel execution, 1 in this case. A

person who runs the program sees no parallel programming code - the parallelization

is transparent to the end user, beyond having to select the number of slave computers.

When executed, this script prints out the estimates theta_s and theta_p, which are

identical.

It is worth noting that a different likelihood function may be used by making the

model variable point to a different function. The likelihood function itself is an ordi-

nary Octave function that is not parallelized. The mle_estimate function is a generic

function that can call any likelihood function that has the appropriate input/output syn-

tax for evaluation either serially or in parallel. Users need only learn how to write the

likelihood function using the Octave language.

20.1.3. GMM. For a sample as above, the GMM estimator of the parameter θ can

be defined as

θ̂ ≡ argmin
Θ

sn(θ)

where

sn(θ) = mn(θ)′Wnmn(θ)

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/ParallelKnoppix/mle/mle_example1.m
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and

mn(θ) =
1
n

n

∑
t=1

mt(yt |xt ,θ)

Since mn(θ) is an average, it can obviously be computed blockwise, using for example

2 blocks:

(20.1.1) mn(θ) =
1
n

{(
n1

∑
t=1

mt(yt |xt ,θ)

)
+

(
n

∑
t=n1+1

mt(yt |xt ,θ)

)}

Likewise, we may define up to n blocks, each of which could potentially be computed

on a different machine.

gmm_example1.m is a script that illustrates how GMM estimation may be done

serially or in parallel. When this is run, theta_s and theta_p are identical up to

the tolerance for convergence of the minimization routine. The point to notice here is

that an end user can perform the estimation in parallel in virtually the same way as it

is done serially. Again, gmm_estimate, used in lines 8 and 10, is a generic function

that will estimate any model specified by the moments variable - a different model

can be estimated by changing the value of the moments variable. The function that

moments points to is an ordinary Octave function that uses no parallel programming,

so users can write their models using the simple and intuitive HLMP syntax of Octave.

Whether estimation is done in parallel or serially depends only the seventh argument

to gmm_estimate - when it is missing or zero, estimation is by default done serially

with one processor. When it is positive, it specifies the number of slave nodes to use.

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/ParallelKnoppix/gmm_example1.m
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20.1.4. Kernel regression. The Nadaraya-Watson kernel regression estimator of

a function g(x) at a point x is

ĝ(x) =
∑n

t=1 ytK [(x− xt)/γn]

∑n
t=1 K [(x− xt)/γn]

≡
n

∑
t=1

wtyy

We see that the weight depends upon every data point in the sample. To calculate the

fit at every point in a sample of size n, on the order of n2k calculations must be done,

where k is the dimension of the vector of explanatory variables, x. Racine (2002)

demonstrates that MPI parallelization can be used to speed up calculation of the kernel

regression estimator by calculating the fits for portions of the sample on different com-

puters. We follow this implementation here. kernel_example1.m is a script for serial

and parallel kernel regression. Serial execution is obtained by setting the number of

slaves equal to zero, in line 15. In line 17, a single slave is specified, so execution is in

parallel on the master and slave nodes.

The example programs show that parallelization may be mostly hidden from end

users. Users can benefit from parallelization without having to write or understand

parallel code. The speedups one can obtain are highly dependent upon the specific

problem at hand, as well as the size of the cluster, the efficiency of the network, etc.

Some examples of speedups are presented in Creel (2005). Figure 20.1.1 reproduces

speedups for some econometric problems on a cluster of 12 desktop computers. The

speedup for k nodes is the time to finish the problem on a single node divided by the

time to finish the problem on k nodes. Note that you can get 10X speedups, as claimed

in the introduction. It’s pretty obvious that much greater speedups could be obtained

using a larger cluster, for the ”embarrassingly parallel” problems.

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/ParallelKnoppix/kernel/kernel_example1.m
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FIGURE 20.1.1. Speedups from parallelization
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CHAPTER 21

Final project: econometric estimation of a RBC model

THIS IS NOT FINISHED - IGNORE IT FOR NOW

In this last chapter we’ll go through a worked example that combines a number

of the topics we’ve seen. We’ll do simulated method of moments estimation of a real

business cycle model, similar to what Valderrama (2002) does.

21.1. Data

We’ll develop a model for private consumption and real gross private investment.

The data are obtained from the US Bureau of Economic Analysis (BEA) National

Income and Product Accounts (NIPA), Table 11.1.5, Lines 2 and 6 (you can download

quarterly data from 1947-I to the present). The data we use are in the file rbc_data.m.

This data is real (constant dollars).

The program plots.m will make a few plots, including Figures 21.1.1 though 21.1.3.

First looking at the plot for levels, we can see that real consumption and investment are

clearly nonstationary (surprise, surprise). There appears to be somewhat of a structural

change in the mid-1970’s.

FIGURE 21.1.1. Consumption and Investment, Levels

Include/RBC/levels.eps not found!
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http://www.bea.gov/bea/dn/nipaweb/TableView.asp?SelectedTable=5&FirstYear=2002&LastYear=2004&Freq=Qtr
http://pareto.uab.es/mcreel/Econometrics/Include/RBC/rbc_data.m
http://pareto.uab.es/mcreel/Econometrics/Include/RBC/plots.m
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FIGURE 21.1.2. Consumption and Investment, Growth Rates

Include/RBC/growth.eps not found!

FIGURE 21.1.3. Consumption and Investment, Bandpass Filtered

Include/RBC/filtered.eps not found!

Looking at growth rates, the series for consumption has an extended period of high

growth in the 1970’s, becoming more moderate in the 90’s. The volatility of growth of

consumption has declined somewhat, over time. Looking at investment, there are some

notable periods of high volatility in the mid-1970’s and early 1980’s, for example.

Since 1990 or so, volatility seems to have declined.

Economic models for growth often imply that there is no long term growth (!) - the

data that the models generate is stationary and ergodic. Or, the data that the models

generate needs to be passed through the inverse of a filter. We’ll follow this, and

generate stationary business cycle data by applying the bandpass filter of Christiano

and Fitzgerald (1999). The filtered data is in Figure 21.1.3. We’ll try to specify an

economic model that can generate similar data. To get data that look like the levels for

consumption and investment, we’d need to apply the inverse of the bandpass filter.
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21.2. An RBC Model

Consider a very simple stochastic growth model (the same used by Maliar and

Maliar (2003), with minor notational difference):

max{ct ,kt}∞
t=0

E0 ∑∞
t=0 βtU(ct)

ct + kt = (1−δ)kt−1 +φtkα
t−1

logφt = ρ logφt−1 + εt

εt ∼ IIN(0,σ2
ε)

Assume that the utility function is

U(ct) =
c1−γ

t −1
1− γ

• β is the discount rate

• δ is the depreciation rate of capital

• α is the elasticity of output with respect to capital

• φ is a technology shock that is positive. φt is observed in period t.

• γ is the coefficient of relative risk aversion. When γ = 1, the utility function

is logarithmic.

• gross investment, it , is the change in the capital stock:

it = kt − (1−δ)kt−1

• we assume that the initial condition (k0,θ0) is given.

We would like to estimate the parameters θ =
(
β,γ,δ,α,ρ,σ2

ε
)′ using the data that

we have on consumption and investment. This problem is very similar to the GMM

estimation of the portfolio model discussed in Sections 15.11 and 15.12. Once can
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derive the Euler condition in the same way we did there, and use it to define a GMM

estimator. That approach was not very successful, recall. Now we’ll try to use some

more informative moment conditions to see if we get better results.

21.3. A reduced form model

Macroeconomic time series data are often modeled using vector autoregressions.

A vector autogression is just the vector version of an autoregressive model. Let yt be a

G-vector of jointly dependent variables. A VAR(p) model is

yt = c+A1yt−1 +A2yt−2 + ...+Apyt−p + vt

where c is a G-vector of parameters, and A j, j=1,2,...,p, are G×G matrices of parame-

ters. Let vt = Rtηt , where ηt ∼ IIN(0, I2), and Rt is upper triangular. So V (vt |yt−1, ...yt−p) =

RtR
′
t . You can think of a VAR model as the reduced form of a dynamic linear simulta-

neous equations model where all of the variables are treated as endogenous. Clearly, if

all of the variables are endogenous, one would need some form of additional informa-

tion to identify a structural model. But we already have a structural model, and we’re

only going to use the VAR to help us estimate the parameters. A well-fitting reduced

form model will be adequate for the purpose.

We’re seen that our data seems to have episodes where the variance of growth

rates and filtered data is non-constant. This brings us to the general area of stochastic

volatility. Without going into details, we’ll just consider the exponential GARCH

model of Nelson (1991) as presented in Hamilton (1994, pg. 668-669).

Define ht = vec∗(Rt), the vector of elements in the upper triangle of Rt (in our case

this is a 3×1 vector). We assume that the elements follow

logh jt = κ j +P( j,.)

{
|vt−1|−

√
2/π+ℵ( j,.)vt−1

}
+G( j,.) loght−1



21.3. A REDUCED FORM MODEL 438

The variance of the VAR error depends upon its own past, as well as upon the past

realizations of the shocks.

• This is an EGARCH(1,1) specification. The obvious generalization is the

EGARCH(r,m) specification, with longer lags (r for lags of v, m for lags of

h).

• The advantage of the EGARCH formulation is that the variance is assuredly

positive without parameter restrictions

• The matrix P has dimension 3×2.

• The matrix G has dimension 3×3.

• The matrix ℵ (reminder to self: this is an ”aleph”) has dimension 2×2.

• The parameter matrix ℵ allows for leverage, so that positive and negative

shocks can have asymmetric effects upon volatility.

• We will probably want to restrict these parameter matrices in some way. For

instance, G could plausibly be diagonal.

With the above specification, we have

ηt ∼ IIN (0, I2)

ηt = R−1
t vt

and we know how to calculate Rt and vt , given the data and the parameters. Thus,

it is straighforward to do estimation by maximum likelihood. This will be the score

generator.
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21.4. Results (I): The score generator

21.5. Solving the structural model

The first order condition for the structural model is

c−γ
t = βEt

(
c−γ

t+1
(
1−δ+αφt+1kα−1

t
))

or

ct =
{

βEt

[
c−γ

t+1
(
1−δ+αφt+1kα−1

t
)]}−1

γ

The problem is that we cannot solve for ct since we do not know the solution for the

expectation in the previous equation.

The parameterized expectations algorithm (PEA: den Haan and Marcet, 1990), is

a means of solving the problem. The expectations term is replaced by a parametric

function. As long as the parametric function is a flexible enough function of variables

that have been realized in period t, there exist parameter values that make the approx-

imation as close to the true expectation as is desired. We will write the approximation

Et

[
c−γ

t+1
(
1−δ+αφt+1kα−1

t
)]

' exp(ρ0 +ρ1 logφt +ρ2 logkt−1)

For given values of the parameters of this approximating function, we can solve for ct ,

and then for kt using the restriction that

ct + kt = (1−δ)kt−1 +φtkα
t−1

This allows us to generate a series {(ct ,kt)}. Then the expectations approximation is

updated by fitting

c−γ
t+1
(
1−δ+αφt+1kα−1

t
)

= exp(ρ0 +ρ1 logφt +ρ2 logkt−1)+ηt
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by nonlinear least squares. The 2 step procedure of generating data and updating the

parameters of the approximation to expectations is iterated until the parameters no

longer change. When this is the case, the expectations function is the best fit to the

generated data. As long it is a rich enough parametric model to encompass the true

expectations function, it can be made to be equal to the true expectations function by

using a long enough simulation.

Thus, given the parameters of the structural model, θ =
(
β,γ,δ,α,ρ,σ2

ε
)′, we can

generate data {(ct ,kt)} using the PEA. From this we can get the series {(ct, it)} using

it = kt − (1−δ)kt−1. This can be used to do EMM estimation using the scores of the

reduced form model to define moments, using the simulated data from the structural

model.
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CHAPTER 22

Introduction to Octave

Why is Octave being used here, since it’s not that well-known by econometricians?

Well, because it is a high quality environment that is easily extensible, uses well-tested

and high performance numerical libraries, it is licensed under the GNU GPL, so you

can get it for free and modify it if you like, and it runs on both GNU/Linux, Mac OSX

and Windows systems. It’s also quite easy to learn.

22.1. Getting started

Get the bootable CD, as was described in Section 1.3. Then burn the image, and

boot your computer with it. This will give you this same PDF file, but with all of the

example programs ready to run. The editor is configure with a macro to execute the

programs using Octave, which is of course installed. From this point, I assume you

are running the CD (or sitting in the computer room across the hall from my office),

or that you have configured your computer to be able to run the *.m files mentioned

below.

22.2. A short introduction

The objective of this introduction is to learn just the basics of Octave. There are

other ways to use Octave, which I encourage you to explore. These are just some

rudiments. After this, you can look at the example programs scattered throughout the

document (and edit them, and run them) to learn more about how Octave can be used

to do econometrics. Students of mine: your problem sets will include exercises that
442
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FIGURE 22.2.1. Running an Octave program

can be done by modifying the example programs in relatively minor ways. So study

the examples!

Octave can be used interactively, or it can be used to run programs that are written

using a text editor. We’ll use this second method, preparing programs with NEdit, and

calling Octave from within the editor. The program first.m gets us started. To run this,

open it up with NEdit (by finding the correct file inside the /home/knoppix/Desktop/Econometrics

folder and clicking on the icon) and then type CTRL-ALT-o, or use the Octave item in

the Shell menu (see Figure 22.2.1).

http://pareto.uab.es/mcreel/Econometrics/Include/OctaveIntro/first.m
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Note that the output is not formatted in a pleasing way. That’s because printf()

doesn’t automatically start a new line. Edit first.m so that the 8th line reads ”printf(”hello

world\n”);” and re-run the program.

We need to know how to load and save data. The program second.m shows how.

Once you have run this, you will find the file ”x” in the directory Econometrics/Include/OctaveIntro/

You might have a look at it with NEdit to see Octave’s default format for saving data.

Basically, if you have data in an ASCII text file, named for example ”myfile.data”,

formed of numbers separated by spaces, just use the command ”load myfile.data”.

After having done so, the matrix ”myfile” (without extension) will contain the data.

Please have a look at CommonOperations.m for examples of how to do some basic

things in Octave. Now that we’re done with the basics, have a look at the Octave

programs that are included as examples. If you are looking at the browsable PDF

version of this document, then you should be able to click on links to open them.

If not, the example programs are available here and the support files needed to run

these are available here. Those pages will allow you to examine individual files, out of

context. To actually use these files (edit and run them), you should go to the home page

of this document, since you will probably want to download the pdf version together

with all the support files and examples. Or get the bootable CD.

There are some other resources for doing econometrics with Octave. You might

like to check the article Econometrics with Octave and the Econometrics Toolbox ,

which is for Matlab, but much of which could be easily used with Octave.

22.3. If you’re running a Linux installation...

Then to get the same behavior as found on the CD, you need to:

• Get the collection of support programs and the examples, from the document

home page.

http://pareto.uab.es/mcreel/Econometrics/Include/OctaveIntro/second.m
http://pareto.uab.es/mcreel/Econometrics/Include/OctaveIntro/CommonOperations.m
http://pareto.uab.es/mcreel/Econometrics/Include/EconometricsOctaveFiles.html
http://pareto.uab.es/mcreel/Econometrics/Include/SupportOctaveFiles.html
http://pareto.uab.es/mcreel/Econometrics
http://ideas.repec.org/a/jae/japmet/v15y2000i5p531-542.html
http://www.spatial-econometrics.com/
http://pareto.uab.es/mcreel/Econometrics/Include/
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• Put them somewhere, and tell Octave how to find them, e.g., by putting a link

to the MyOctaveFiles directory in /usr/local/share/octave/site-m

• Make sure nedit is installed and configured to run Octave and use syntax

highlighting. Copy the file /home/econometrics/.nedit from the CD to do

this. Or, get the file NeditConfiguration and save it in your $HOME directory

with the name ”.nedit”. Not to put too fine a point on it, please note that

there is a period in that name.

• Associate *.m files with NEdit so that they open up in the editor when you

click on them. That should do it.

http://pareto.uab.es/mcreel/NeditConfiguration


CHAPTER 23

Notation and Review

• All vectors will be column vectors, unless they have a transpose symbol (or

I forget to apply this rule - your help catching typos and er0rors is much

appreciated). For example, if xt is a p×1 vector, x′t is a 1× p vector. When I

refer to a p-vector, I mean a column vector.

23.1. Notation for differentiation of vectors and matrices

[3, Chapter 1]

Let s(·) : ℜp → ℜ be a real valued function of the p-vector θ. Then ∂s(θ)
∂θ is orga-

nized as a p-vector,

∂s(θ)

∂θ
=




∂s(θ)
∂θ1

∂s(θ)
∂θ2
...

∂s(θ)
∂θp




Following this convention, ∂s(θ)
∂θ′ is a 1× p vector, and ∂2s(θ)

∂θ∂θ′ is a p× p matrix. Also,

∂2s(θ)

∂θ∂θ′
=

∂
∂θ

(
∂s(θ)

∂θ′

)
=

∂
∂θ′

(
∂s(θ)

∂θ

)
.

EXERCISE 33. For a and x both p-vectors, show that ∂a′x
∂x = a.

Let f (θ):ℜp → ℜn be a n-vector valued function of the p-vector θ. Let f (θ)′ be

the 1×n valued transpose of f . Then
(

∂
∂θ f (θ)′

)′
= ∂

∂θ′ f (θ).

446



23.2. CONVERGENGE MODES 447

• Product rule: Let f (θ):ℜp →ℜn and h(θ):ℜp →ℜn be n-vector valued func-

tions of the p-vector θ. Then

∂
∂θ′

h(θ)′ f (θ) = h′
(

∂
∂θ′

f
)

+ f ′
(

∂
∂θ′

h
)

has dimension 1× p. Applying the transposition rule we get
∂

∂θ
h(θ)′ f (θ) =

(
∂

∂θ
f ′
)

h+

(
∂

∂θ
h′
)

f

which has dimension p×1.

EXERCISE 34. For A a p× p matrix and x a p×1 vector, show that ∂x′Ax
∂x = A+A′.

• Chain rule: Let f (·):ℜp → ℜn a n-vector valued function of a p-vector ar-

gument, and let g():ℜr → ℜp be a p-vector valued function of an r-vector

valued argument ρ. Then

∂
∂ρ′ f [g(ρ)] =

∂
∂θ′

f (θ)

∣∣∣∣
θ=g(ρ)

∂
∂ρ′g(ρ)

has dimension n× r.

EXERCISE 35. For x and β both p×1 vectors, show that ∂exp(x′β)
∂β = exp(x′β)x.

23.2. Convergenge modes

Readings: [1, Chapter 4];[4, Chapter 4].

We will consider several modes of convergence. The first three modes discussed

are simply for background. The stochastic modes are those which will be used later in

the course.

DEFINITION 36. A sequence is a mapping from the natural numbers {1,2, ...} =

{n}∞
n=1 = {n} to some other set, so that the set is ordered according to the natural

numbers associated with its elements.
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Real-valued sequences:

DEFINITION 37. [Convergence] A real-valued sequence of vectors {an} converges

to the vector a if for any ε > 0 there exists an integer Nε such that for all n > Nε,‖

an −a ‖< ε . a is the limit of an, written an → a.

Deterministic real-valued functions. Consider a sequence of functions { fn(ω)}

where

fn : Ω → T ⊆ ℜ.

Ω may be an arbitrary set.

DEFINITION 38. [Pointwise convergence] A sequence of functions { fn(ω)} con-

verges pointwise on Ω to the function f (ω) if for all ε > 0 and ω ∈ Ω there exists an

integer Nεω such that

| fn(ω)− f (ω)| < ε,∀n > Nεω.

It’s important to note that Nεω depends upon ω, so that converge may be much

more rapid for certain ω than for others. Uniform convergence requires a similar rate

of convergence throughout Ω.

DEFINITION 39. [Uniform convergence] A sequence of functions { fn(ω)} con-

verges uniformly on Ω to the function f (ω) if for any ε > 0 there exists an integer N

such that

sup
ω∈Ω

| fn(ω)− f (ω)| < ε,∀n > N.

(insert a diagram here showing the envelope around f (ω) in which fn(ω) must lie)

Stochastic sequences. In econometrics, we typically deal with stochastic sequences.

Given a probability space (Ω,F ,P) , recall that a random variable maps the sample

space to the real line, i.e., X(ω) : Ω → ℜ. A sequence of random variables {Xn(ω)} is
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a collection of such mappings, i.e., each Xn(ω) is a random variable with respect to the

probability space (Ω,F ,P) . For example, given the model Y = Xβ0 + ε, the OLS es-

timator β̂n = (X ′X)−1 X ′Y, where n is the sample size, can be used to form a sequence

of random vectors {β̂n}. A number of modes of convergence are in use when deal-

ing with sequences of random variables. Several such modes of convergence should

already be familiar:

DEFINITION 40. [Convergence in probability] Let Xn(ω) be a sequence of random

variables, and let X(ω) be a random variable. Let An = {ω : |Xn(ω)−X(ω)|> ε}. Then

{Xn(ω)} converges in probability to X(ω) if

lim
n→∞

P(An) = 0,∀ε > 0.

Convergence in probability is written as Xn
p→ X , or plim Xn = X .

DEFINITION 41. [Almost sure convergence] Let Xn(ω) be a sequence of random

variables, and let X(ω) be a random variable. Let A = {ω : limn→∞ Xn(ω) = X(ω)}.

Then {Xn(ω)} converges almost surely to X(ω) if

P(A) = 1.

In other words, Xn(ω) → X(ω) (ordinary convergence of the two functions) except on

a set C = Ω−A such that P(C) = 0. Almost sure convergence is written as Xn
a.s.→ X ,

or Xn → X ,a.s. One can show that

Xn
a.s.→ X ⇒ Xn

p→ X .

DEFINITION 42. [Convergence in distribution] Let the r.v. Xn have distribution

function Fn and the r.v. Xn have distribution function F. If Fn → F at every continuity

point of F, then Xn converges in distribution to X .
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Convergence in distribution is written as Xn
d→ X . It can be shown that convergence in

probability implies convergence in distribution.

Stochastic functions. Simple laws of large numbers (LLN’s) allow us to directly

conclude that β̂n
a.s.→ β0 in the OLS example, since

β̂n = β0 +

(
X ′X

n

)−1(X ′ε
n

)
,

and X ′ε
n

a.s.
→ 0 by a SLLN. Note that this term is not a function of the parameter β.

This easy proof is a result of the linearity of the model, which allows us to express

the estimator in a way that separates parameters from random functions. In general,

this is not possible. We often deal with the more complicated situation where the

stochastic sequence depends on parameters in a manner that is not reducible to a simple

sequence of random variables. In this case, we have a sequence of random functions

that depend on θ: {Xn(ω,θ)}, where each Xn(ω,θ) is a random variable with respect to

a probability space (Ω,F ,P) and the parameter θ belongs to a parameter space θ ∈ Θ.

DEFINITION 43. [Uniform almost sure convergence] {Xn(ω,θ)} converges uni-

formly almost surely in Θ to X(ω,θ) if

lim
n→∞

sup
θ∈Θ

|Xn(ω,θ)−X(ω,θ)|= 0, (a.s.)

Implicit is the assumption that all Xn(ω,θ) and X(ω,θ) are random variables w.r.t.

(Ω,F ,P) for all θ ∈ Θ. We’ll indicate uniform almost sure convergence by u.a.s.→ and

uniform convergence in probability by
u.p.→ .

• An equivalent definition, based on the fact that “almost sure” means “with

probability one” is

Pr
(

lim
n→∞

sup
θ∈Θ

|Xn(ω,θ)−X(ω,θ)|= 0
)

= 1
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This has a form similar to that of the definition of a.s. convergence - the

essential difference is the addition of the sup.

23.3. Rates of convergence and asymptotic equality

It’s often useful to have notation for the relative magnitudes of quantities. Quanti-

ties that are small relative to others can often be ignored, which simplifies analysis.

DEFINITION 44. [Little-o] Let f (n) and g(n) be two real-valued functions. The

notation f (n) = o(g(n)) means limn→∞
f (n)
g(n) = 0.

DEFINITION 45. [Big-O] Let f (n) and g(n) be two real-valued functions. The

notation f (n) = O(g(n)) means there exists some N such that for n > N,
∣∣∣ f (n)

g(n)

∣∣∣ < K,

where K is a finite constant.

This definition doesn’t require that f (n)
g(n) have a limit (it may fluctuate boundedly).

If { fn} and {gn} are sequences of random variables analogous definitions are

DEFINITION 46. The notation f (n) = op(g(n)) means f (n)
g(n)

p→ 0.

EXAMPLE 47. The least squares estimator θ̂ = (X ′X)−1X ′Y = (X ′X)−1X ′ (Xθ0 + ε
)
=

θ0 + (X ′X)−1X ′ε. Since plim (X ′X)−1X ′ε
1 = 0, we can write (X ′X)−1X ′ε = op(1) and

θ̂ = θ0 + op(1). Asymptotically, the term op(1) is negligible. This is just a way of

indicating that the LS estimator is consistent.

DEFINITION 48. The notation f (n) = Op(g(n)) means there exists some Nε such

that for ε > 0 and all n > Nε,

P
(∣∣∣∣

f (n)

g(n)

∣∣∣∣< Kε

)
> 1− ε,

where Kε is a finite constant.
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EXAMPLE 49. If Xn ∼ N(0,1) then Xn = Op(1), since, given ε, there is always

some Kε such that P(|Xn| < Kε) > 1− ε.

Useful rules:

• Op(np)Op(nq) = Op(np+q)

• op(np)op(nq) = op(np+q)

EXAMPLE 50. Consider a random sample of iid r.v.’s with mean 0 and variance

σ2. The estimator of the mean θ̂ = 1/n∑n
i=1 xi is asymptotically normally distributed,

e.g., n1/2θ̂ A∼ N(0,σ2). So n1/2θ̂ = Op(1), so θ̂ = Op(n−1/2). Before we had θ̂ = op(1),

now we have have the stronger result that relates the rate of convergence to the sample

size.

EXAMPLE 51. Now consider a random sample of iid r.v.’s with mean µ and vari-

ance σ2. The estimator of the mean θ̂ = 1/n∑n
i=1 xi is asymptotically normally dis-

tributed, e.g., n1/2 (θ̂−µ
) A∼ N(0,σ2). So n1/2 (θ̂−µ

)
= Op(1), so θ̂−µ = Op(n−1/2),

so θ̂ = Op(1).

These two examples show that averages of centered (mean zero) quantities typi-

cally have plim 0, while averages of uncentered quantities have finite nonzero plims.

Note that the definition of Op does not mean that f (n) and g(n) are of the same order.

Asymptotic equality ensures that this is the case.

DEFINITION 52. Two sequences of random variables { fn} and {gn} are asymptot-

ically equal (written fn
a
= gn) if

plim
(

f (n)

g(n)

)
= 1

Finally, analogous almost sure versions of op and Op are defined in the obvious

way.
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Exercises

(1) For a and x both p×1 vectors, show that ∂a′x
∂x = a.

(2) For A a p× p matrix and x a p×1 vector, show that ∂x′Ax
∂x = A+A′.

(3) For x and β both p×1 vectors, show that Dβ expx′β = exp(x′β)x.

(4) For x and β both p×1 vectors, find the analytic expression for D2
β expx′β.

(5) Write an Octave program that verifies each of the previous results by taking nu-

meric derivatives. For a hint, type help numgradient and help numhessian

inside octave.



CHAPTER 24

The GPL

This document and the associated examples and materials are copyright Michael

Creel, under the terms of the GNU General Public License. This license follows:

GNU GENERAL PUBLIC LICENSE Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place, Suite

330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute ver-

batim copies of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and

change it. By contrast, the GNU General Public License is intended to guarantee your

freedom to share and change free software–to make sure the software is free for all its

users. This General Public License applies to most of the Free Software Foundation’s

software and to any other program whose authors commit to using it. (Some other Free

Software Foundation software is covered by the GNU Library General Public License

instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our Gen-

eral Public Licenses are designed to make sure that you have the freedom to distribute

copies of free software (and charge for this service if you wish), that you receive source

code or can get it if you want it, that you can change the software or use pieces of it in

new free programs; and that you know you can do these things.

454
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To protect your rights, we need to make restrictions that forbid anyone to deny you

these rights or to ask you to surrender the rights. These restrictions translate to certain

responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee,

you must give the recipients all the rights that you have. You must make sure that they,

too, receive or can get the source code. And you must show them these terms so they

know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer

you this license which gives you legal permission to copy, distribute and/or modify the

software.

Also, for each author’s protection and ours, we want to make certain that everyone

understands that there is no warranty for this free software. If the software is modified

by someone else and passed on, we want its recipients to know that what they have

is not the original, so that any problems introduced by others will not reflect on the

original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to

avoid the danger that redistributors of a free program will individually obtain patent

licenses, in effect making the program proprietary. To prevent this, we have made it

clear that any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPY-

ING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice

placed by the copyright holder saying it may be distributed under the terms of this

General Public License. The "Program", below, refers to any such program or work,

and a "work based on the Program" means either the Program or any derivative work



24. THE GPL 456

under copyright law: that is to say, a work containing the Program or a portion of it,

either verbatim or with modifications and/or translated into another language. (Here-

inafter, translation is included without limitation in the term "modification".) Each

licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this

License; they are outside its scope. The act of running the Program is not restricted,

and the output from the Program is covered only if its contents constitute a work based

on the Program (independent of having been made by running the Program). Whether

that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code

as you receive it, in any medium, provided that you conspicuously and appropriately

publish on each copy an appropriate copyright notice and disclaimer of warranty; keep

intact all the notices that refer to this License and to the absence of any warranty; and

give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at

your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus

forming a work based on the Program, and copy and distribute such modifications or

work under the terms of Section 1 above, provided that you also meet all of these

conditions:

a) You must cause the modified files to carry prominent notices stating that you

changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a whole

at no charge to all third parties under the terms of this License.
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c) If the modified program normally reads commands interactively when run, you

must cause it, when started running for such interactive use in the most ordinary way,

to print or display an announcement including an appropriate copyright notice and a

notice that there is no warranty (or else, saying that you provide a warranty) and that

users may redistribute the program under these conditions, and telling the user how to

view a copy of this License. (Exception: if the Program itself is interactive but does not

normally print such an announcement, your work based on the Program is not required

to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections

of that work are not derived from the Program, and can be reasonably considered

independent and separate works in themselves, then this License, and its terms, do not

apply to those sections when you distribute them as separate works. But when you

distribute the same sections as part of a whole which is a work based on the Program,

the distribution of the whole must be on the terms of this License, whose permissions

for other licensees extend to the entire whole, and thus to each and every part regardless

of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to

work written entirely by you; rather, the intent is to exercise the right to control the

distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the

Program (or with a work based on the Program) on a volume of a storage or distribution

medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section

2) in object code or executable form under the terms of Sections 1 and 2 above provided

that you also do one of the following:
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a) Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium

customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third

party, for a charge no more than your cost of physically performing source distribution,

a complete machine-readable copy of the corresponding source code, to be distributed

under the terms of Sections 1 and 2 above on a medium customarily used for software

interchange; or,

c) Accompany it with the information you received as to the offer to distribute

corresponding source code. (This alternative is allowed only for noncommercial dis-

tribution and only if you received the program in object code or executable form with

such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making mod-

ifications to it. For an executable work, complete source code means all the source

code for all modules it contains, plus any associated interface definition files, plus the

scripts used to control compilation and installation of the executable. However, as a

special exception, the source code distributed need not include anything that is nor-

mally distributed (in either source or binary form) with the major components (com-

piler, kernel, and so on) of the operating system on which the executable runs, unless

that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from

a designated place, then offering equivalent access to copy the source code from the

same place counts as distribution of the source code, even though third parties are not

compelled to copy the source along with the object code.
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4. You may not copy, modify, sublicense, or distribute the Program except as

expressly provided under this License. Any attempt otherwise to copy, modify, sub-

license or distribute the Program is void, and will automatically terminate your rights

under this License. However, parties who have received copies, or rights, from you un-

der this License will not have their licenses terminated so long as such parties remain

in full compliance.

5. You are not required to accept this License, since you have not signed it. How-

ever, nothing else grants you permission to modify or distribute the Program or its

derivative works. These actions are prohibited by law if you do not accept this Li-

cense. Therefore, by modifying or distributing the Program (or any work based on the

Program), you indicate your acceptance of this License to do so, and all its terms and

conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the

recipient automatically receives a license from the original licensor to copy, distribute

or modify the Program subject to these terms and conditions. You may not impose any

further restrictions on the recipients’ exercise of the rights granted herein. You are not

responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement

or for any other reason (not limited to patent issues), conditions are imposed on you

(whether by court order, agreement or otherwise) that contradict the conditions of this

License, they do not excuse you from the conditions of this License. If you cannot

distribute so as to satisfy simultaneously your obligations under this License and any

other pertinent obligations, then as a consequence you may not distribute the Program

at all. For example, if a patent license would not permit royalty-free redistribution of

the Program by all those who receive copies directly or indirectly through you, then
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the only way you could satisfy both it and this License would be to refrain entirely

from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular

circumstance, the balance of the section is intended to apply and the section as a whole

is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other

property right claims or to contest validity of any such claims; this section has the sole

purpose of protecting the integrity of the free software distribution system, which is

implemented by public license practices. Many people have made generous contri-

butions to the wide range of software distributed through that system in reliance on

consistent application of that system; it is up to the author/donor to decide if he or she

is willing to distribute software through any other system and a licensee cannot impose

that choice.

This section is intended to make thoroughly clear what is believed to be a conse-

quence of the rest of this License. 8. If the distribution and/or use of the Program is

restricted in certain countries either by patents or by copyrighted interfaces, the orig-

inal copyright holder who places the Program under this License may add an explicit

geographical distribution limitation excluding those countries, so that distribution is

permitted only in or among countries not thus excluded. In such case, this License

incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the

General Public License from time to time. Such new versions will be similar in spirit

to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a

version number of this License which applies to it and "any later version", you have

the option of following the terms and conditions either of that version or of any later
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version published by the Free Software Foundation. If the Program does not specify

a version number of this License, you may choose any version ever published by the

Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose

distribution conditions are different, write to the author to ask for permission. For

software which is copyrighted by the Free Software Foundation, write to the Free

Software Foundation; we sometimes make exceptions for this. Our decision will be

guided by the two goals of preserving the free status of all derivatives of our free

software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE

IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE

COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM

"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-

PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-

TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM

IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME

THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED

TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY

WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMIT-

TED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-

ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
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NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE

OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE

PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH

HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to

the public, the best way to achieve this is to make it free software which everyone can

redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to

the start of each source file to most effectively convey the exclusion of warranty; and

each file should have at least the "copyright" line and a pointer to where the full notice

is found.

<one line to give the program’s name and a brief idea of what it does.> Copyright

(C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify it under the

terms of the GNU General Public License as published by the Free Software Founda-

tion; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-

NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for

more details.

You should have received a copy of the GNU General Public License along with

this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place,

Suite 330, Boston, MA 02111-1307 USA
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Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in

an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author Gnomovision comes

with ABSOLUTELY NO WARRANTY; for details type ‘show w’. This is free soft-

ware, and you are welcome to redistribute it under certain conditions; type ‘show c’

for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate

parts of the General Public License. Of course, the commands you use may be called

something other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu

items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your school,

if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample;

alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovi-

sion’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into pro-

prietary programs. If your program is a subroutine library, you may consider it more

useful to permit linking proprietary applications with the library. If this is what you

want to do, use the GNU Library General Public License instead of this License.



CHAPTER 25

The attic

This holds material that is not really ready to be incorporated into the main body,

but that I don’t want to lose. Basically, ignore it, unless you’d like to help get it ready

for inclusion.

25.1. Hurdle models

Returning to the Poisson model, lets look at actual and fitted count probabilities.

Actual relative frequencies are f (y = j) = ∑i 1(yi = j)/n and fitted frequencies are

f̂ (y = j) = ∑n
i=1 fY ( j|xi, θ̂)/n We see that for the OBDV measure, there are many

TABLE 1. Actual and Poisson fitted frequencies

Count OBDV ERV
Count Actual Fitted Actual Fitted

0 0.32 0.06 0.86 0.83
1 0.18 0.15 0.10 0.14
2 0.11 0.19 0.02 0.02
3 0.10 0.18 0.004 0.002
4 0.052 0.15 0.002 0.0002
5 0.032 0.10 0 2.4e-5

more actual zeros than predicted. For ERV, there are somewhat more actual zeros than

fitted, but the difference is not too important.

Why might OBDV not fit the zeros well? What if people made the decision to

contact the doctor for a first visit, they are sick, then the doctor decides on whether or

not follow-up visits are needed. This is a principal/agent type situation, where the total

number of visits depends upon the decision of both the patient and the doctor. Since
464
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different parameters may govern the two decision-makers choices, we might expect

that different parameters govern the probability of zeros versus the other counts. Let

λp be the parameters of the patient’s demand for visits, and let λd be the paramter of

the doctor’s “demand” for visits. The patient will initiate visits according to a discrete

choice model, for example, a logit model:

Pr(Y = 0) = fY (0,λp) = 1−1/ [1+ exp(−λp)]

Pr(Y > 0) = 1/ [1+ exp(−λp)] ,

The above probabilities are used to estimate the binary 0/1 hurdle process. Then, for

the observations where visits are positive, a truncated Poisson density is estimated.

This density is

fY (y,λd|y > 0) =
fY (y,λd)

Pr(y > 0)

=
fY (y,λd)

1− exp(−λd)

since according to the Poisson model with the doctor’s paramaters,

Pr(y = 0) =
exp(−λd)λ0

d
0!

.

Since the hurdle and truncated components of the overall density for Y share no pa-

rameters, they may be estimated separately, which is computationally more efficient

than estimating the overall model. (Recall that the BFGS algorithm, for example, will

have to invert the approximated Hessian. The computational overhead is of order K2
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where K is the number of parameters to be estimated) . The expectation of Y is

E(Y |x) = Pr(Y > 0|x)E(Y |Y > 0,x)

=

(
1

1+ exp(−λp)

)(
λd

1− exp(−λd)

)
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Here are hurdle Poisson estimation results for OBDV, obtained from this estimation program

**************************************************************************

MEPS data, OBDV

logit results

Strong convergence

Observations = 500

Function value -0.58939

t-Stats

params t(OPG) t(Sand.) t(Hess)

constant -1.5502 -2.5709 -2.5269 -2.5560

pub_ins 1.0519 3.0520 3.0027 3.0384

priv_ins 0.45867 1.7289 1.6924 1.7166

sex 0.63570 3.0873 3.1677 3.1366

age 0.018614 2.1547 2.1969 2.1807

educ 0.039606 1.0467 0.98710 1.0222

inc 0.077446 1.7655 2.1672 1.9601

Information Criteria

Consistent Akaike

639.89

Schwartz

632.89

Hannan-Quinn

614.96

Akaike

603.39

**************************************************************************

http://pareto.uab.es/mcreel/Econometrics/Include/MEPS-II/estimate_hpoisson.ox
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The results for the truncated part:

**************************************************************************

MEPS data, OBDV

tpoisson results

Strong convergence

Observations = 500

Function value -2.7042

t-Stats

params t(OPG) t(Sand.) t(Hess)

constant 0.54254 7.4291 1.1747 3.2323

pub_ins 0.31001 6.5708 1.7573 3.7183

priv_ins 0.014382 0.29433 0.10438 0.18112

sex 0.19075 10.293 1.1890 3.6942

age 0.016683 16.148 3.5262 7.9814

educ 0.016286 4.2144 0.56547 1.6353

inc -0.0079016 -2.3186 -0.35309 -0.96078

Information Criteria

Consistent Akaike

2754.7

Schwartz

2747.7

Hannan-Quinn

2729.8

Akaike

2718.2

**************************************************************************
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Fitted and actual probabilites (NB-II fits are provided as well) are:

TABLE 2. Actual and Hurdle Poisson fitted frequencies

Count OBDV ERV
Count Actual Fitted HP Fitted NB-II Actual Fitted HP Fitted NB-II

0 0.32 0.32 0.34 0.86 0.86 0.86
1 0.18 0.035 0.16 0.10 0.10 0.10
2 0.11 0.071 0.11 0.02 0.02 0.02
3 0.10 0.10 0.08 0.004 0.006 0.006
4 0.052 0.11 0.06 0.002 0.002 0.002
5 0.032 0.10 0.05 0 0.0005 0.001

For the Hurdle Poisson models, the ERV fit is very accurate. The OBDV fit is not

so good. Zeros are exact, but 1’s and 2’s are underestimated, and higher counts are

overestimated. For the NB-II fits, performance is at least as good as the hurdle Poisson

model, and one should recall that many fewer parameters are used. Hurdle version of

the negative binomial model are also widely used.

25.1.1. Finite mixture models. The following are results for a mixture of 2 neg-

ative binomial (NB-I) models, for the OBDV data, which you can replicate using

this estimation program

http://pareto.uab.es/mcreel/Econometrics/Include/MEPS-II/estimate_mixnegbin.ox
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**************************************************************************

MEPS data, OBDV

mixnegbin results

Strong convergence

Observations = 500

Function value -2.2312

t-Stats

params t(OPG) t(Sand.) t(Hess)

constant 0.64852 1.3851 1.3226 1.4358

pub_ins -0.062139 -0.23188 -0.13802 -0.18729

priv_ins 0.093396 0.46948 0.33046 0.40854

sex 0.39785 2.6121 2.2148 2.4882

age 0.015969 2.5173 2.5475 2.7151

educ -0.049175 -1.8013 -1.7061 -1.8036

inc 0.015880 0.58386 0.76782 0.73281

ln_alpha 0.69961 2.3456 2.0396 2.4029

constant -3.6130 -1.6126 -1.7365 -1.8411

pub_ins 2.3456 1.7527 3.7677 2.6519

priv_ins 0.77431 0.73854 1.1366 0.97338

sex 0.34886 0.80035 0.74016 0.81892

age 0.021425 1.1354 1.3032 1.3387

educ 0.22461 2.0922 1.7826 2.1470

inc 0.019227 0.20453 0.40854 0.36313

ln_alpha 2.8419 6.2497 6.8702 7.6182

logit_inv_mix 0.85186 1.7096 1.4827 1.7883

Information Criteria
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Consistent Akaike

2353.8

Schwartz

2336.8

Hannan-Quinn

2293.3

Akaike

2265.2

**************************************************************************

Delta method for mix parameter st. err.

mix se_mix

0.70096 0.12043

• The 95% confidence interval for the mix parameter is perilously close to 1,

which suggests that there may really be only one component density, rather

than a mixture. Again, this is not the way to test this - it is merely suggestive.

• Education is interesting. For the subpopulation that is “healthy”, i.e., that

makes relatively few visits, education seems to have a positive effect on visits.

For the “unhealthy” group, education has a negative effect on visits. The other

results are more mixed. A larger sample could help clarify things.

The following are results for a 2 component constrained mixture negative binomial

model where all the slope parameters in λ j = exβ j are the same across the two compo-

nents. The constants and the overdispersion parameters α j are allowed to differ for the

two components.
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**************************************************************************

MEPS data, OBDV

cmixnegbin results

Strong convergence

Observations = 500

Function value -2.2441

t-Stats

params t(OPG) t(Sand.) t(Hess)

constant -0.34153 -0.94203 -0.91456 -0.97943

pub_ins 0.45320 2.6206 2.5088 2.7067

priv_ins 0.20663 1.4258 1.3105 1.3895

sex 0.37714 3.1948 3.4929 3.5319

age 0.015822 3.1212 3.7806 3.7042

educ 0.011784 0.65887 0.50362 0.58331

inc 0.014088 0.69088 0.96831 0.83408

ln_alpha 1.1798 4.6140 7.2462 6.4293

const_2 1.2621 0.47525 2.5219 1.5060

lnalpha_2 2.7769 1.5539 6.4918 4.2243

logit_inv_mix 2.4888 0.60073 3.7224 1.9693

Information Criteria

Consistent Akaike

2323.5

Schwartz

2312.5

Hannan-Quinn
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2284.3

Akaike

2266.1

**************************************************************************

Delta method for mix parameter st. err.

mix se_mix

0.92335 0.047318

• Now the mixture parameter is even closer to 1.

• The slope parameter estimates are pretty close to what we got with the NB-I

model.

25.2. Models for time series data

This section can be ignored in its present form. Just left in to form a basis for

completion (by someone else ?!) at some point.

Hamilton, Time Series Analysis is a good reference for this section. This is very

incomplete and contributions would be very welcome.

Up to now we’ve considered the behavior of the dependent variable yt as a function

of other variables xt . These variables can of course contain lagged dependent variables,

e.g., xt = (wt ,yt−1, ...,yt− j). Pure time series methods consider the behavior of yt as

a function only of its own lagged values, unconditional on other observable variables.

One can think of this as modeling the behavior of yt after marginalizing out all other

variables. While it’s not immediately clear why a model that has other explanatory

variables should marginalize to a linear in the parameters time series model, most time

series work is done with linear models, though nonlinear time series is also a large and

growing field. We’ll stick with linear time series models.

25.2.1. Basic concepts.
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DEFINITION 53 (Stochastic process). A stochastic process is a sequence of random

variables, indexed by time:

(25.2.1) {Yt}∞
t=−∞

DEFINITION 54 (Time series). A time series is one observation of a stochastic

process, over a specific interval:

(25.2.2) {yt}n
t=1

So a time series is a sample of size n from a stochastic process. It’s important to

keep in mind that conceptually, one could draw another sample, and that the values

would be different.

DEFINITION 55 (Autocovariance). The jth autocovariance of a stochastic process

is

(25.2.3) γ jt = E(yt −µt)(yt− j −µt− j)

where µt = E (yt) .

DEFINITION 56 (Covariance (weak) stationarity). A stochastic process is covari-

ance stationary if it has time constant mean and autocovariances of all orders:

µt = µ,∀t

γ jt = γ j,∀t

As we’ve seen, this implies that γ j = γ− j : the autocovariances depend only one the

interval between observations, but not the time of the observations.
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DEFINITION 57 (Strong stationarity). A stochastic process is strongly stationary if

the joint distribution of an arbitrary collection of the {Yt} doesn’t depend on t.

Since moments are determined by the distribution, strong stationarity⇒weak sta-

tionarity.

What is the mean of Yt? The time series is one sample from the stochastic process.

One could think of M repeated samples from the stoch. proc., e.g., {ym
t } By a LLN,

we would expect that

lim
M→∞

1
M

M

∑
m=1

ytm
p→ E(Yt)

The problem is, we have only one sample to work with, since we can’t go back in time

and collect another. How can E(Yt) be estimated then? It turns out that ergodicity is

the needed property.

DEFINITION 58 (Ergodicity). A stationary stochastic process is ergodic (for the

mean) if the time average converges to the mean

(25.2.4)
1
n

n

∑
t=1

yt
p→ µ

A sufficient condition for ergodicity is that the autocovariances be absolutely sum-

mable:
∞

∑
j=0

|γ j| < ∞

This implies that the autocovariances die off, so that the yt are not so strongly depen-

dent that they don’t satisfy a LLN.

DEFINITION 59 (Autocorrelation). The jth autocorrelation, ρ j is just the jth auto-

covariance divided by the variance:

(25.2.5) ρ j =
γ j

γ0
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DEFINITION 60 (White noise). White noise is just the time series literature term

for a classical error. εt is white noise if i) E(εt) = 0,∀t, ii) V (εt) = σ2, ∀t, and iii) εt

and εs are independent, t 6= s. Gaussian white noise just adds a normality assumption.

25.2.2. ARMA models. With these concepts, we can discuss ARMA models.

These are closely related to the AR and MA error processes that we’ve already dis-

cussed. The main difference is that the lhs variable is observed directly now.

MA(q) processes. A qth order moving average (MA) process is

yt = µ+ εt +θ1εt−1 +θ2εt−2 + · · ·+θqεt−q

where εt is white noise. The variance is

γ0 = E (yt −µ)2

= E
(
εt +θ1εt−1 +θ2εt−2 + · · ·+θqεt−q

)2

= σ2 (1+θ2
1 +θ2

2 + · · ·+θ2
q
)

Similarly, the autocovariances are

γ j = θ j +θ j+1θ1 +θ j+2θ2 + · · ·+θqθq− j, j ≤ q

= 0, j > q

Therefore an MA(q) process is necessarily covariance stationary and ergodic, as long

as σ2 and all of the θ j are finite.

AR(p) processes. An AR(p) process can be represented as

yt = c+φ1yt−1 +φ2yt−2 + · · ·+φpyt−p + εt
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The dynamic behavior of an AR(p) process can be studied by writing this pth order

difference equation as a vector first order difference equation:




yt

yt−1
...

yt−p+1




=




c

0
...

0







φ1 φ2 · · · φp

1 0 0 0

0 1 0 . . . 0
... . . . . . . . . . 0 · · ·

0 · · · 0 1 0







yt−1

yt−2
...

yt−p




+




εt

0
...

0




or

Yt = C +FYt−1 +Et

With this, we can recursively work forward in time:

Yt+1 = C +FYt +Et+1

= C +F (C +FYt−1 +Et)+Et+1

= C +FC +F2Yt−1 +FEt +Et+1

and

Yt+2 = C +FYt+1 +Et+2

= C +F
(
C +FC +F2Yt−1 +FEt +Et+1

)
+Et+2

= C +FC +F2C +F3Yt−1 +F2Et +FEt+1 +Et+2

or in general

Yt+ j = C +FC + · · ·+F jC +F j+1Yt−1 +F jEt +F j−1Et+1 + · · ·+FEt+ j−1 +Et+ j
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Consider the impact of a shock in period t on yt+ j. This is simply

∂Yt+ j

∂E ′
t (1,1)

= F j
(1,1)

If the system is to be stationary, then as we move forward in time this impact must

die off. Otherwise a shock causes a permanent change in the mean of yt . Therefore,

stationarity requires that

lim
j→∞

F j
(1,1) = 0

• Save this result, we’ll need it in a minute.

Consider the eigenvalues of the matrix F. These are the for λ such that

|F −λIP| = 0

The determinant here can be expressed as a polynomial. for example, for p = 1, the

matrix F is simply

F = φ1

so

|φ1 −λ| = 0

can be written as

φ1 −λ = 0

When p = 2, the matrix F is

F =


 φ1 φ2

1 0




so

F −λIP =


 φ1 −λ φ2

1 −λ



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and

|F −λIP| = λ2 −λφ1 −φ2

So the eigenvalues are the roots of the polynomial

λ2 −λφ1 −φ2

which can be found using the quadratic equation. This generalizes. For a pth order AR

process, the eigenvalues are the roots of

λp −λp−1φ1 −λp−2φ2 −·· ·−λφp−1 −φp = 0

Supposing that all of the roots of this polynomial are distinct, then the matrix F can be

factored as

F = T ΛT−1

where T is the matrix which has as its columns the eigenvectors of F, and Λ is a

diagonal matrix with the eigenvalues on the main diagonal. Using this decomposition,

we can write

F j =
(
T ΛT−1)(T ΛT−1) · · ·

(
T ΛT−1)

where T ΛT−1 is repeated j times. This gives

F j = T Λ jT−1

and

Λ j =




λ j
1 0 0

0 λ j
2

. . .

0 λ j
p



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Supposing that the λi i = 1,2, ..., p are all real valued, it is clear that

lim
j→∞

F j
(1,1)

= 0

requires that

|λi| < 1, i = 1,2, ..., p

e.g., the eigenvalues must be less than one in absolute value.

• It may be the case that some eigenvalues are complex-valued. The previous

result generalizes to the requirement that the eigenvalues be less than one in

modulus, where the modulus of a complex number a+bi is

mod(a+bi) =
√

a2 +b2

This leads to the famous statement that “stationarity requires the roots of the

determinantal polynomial to lie inside the complex unit circle.” draw picture

here.

• When there are roots on the unit circle (unit roots) or outside the unit circle,

we leave the world of stationary processes.

• Dynamic multipliers: ∂yt+ j/∂εt = F j
(1,1) is a dynamic multiplier or an impulse-

response function. Real eigenvalues lead to steady movements, whereas comlpex

eigenvalue lead to ocillatory behavior. Of course, when there are multiple

eigenvalues the overall effect can be a mixture. pictures

Invertibility of AR process

To begin with, define the lag operator L

Lyt = yt−1
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The lag operator is defined to behave just as an algebraic quantity, e.g.,

L2yt = L(Lyt)

= Lyt−1

= yt−2

or

(1−L)(1+L)yt = 1−Lyt +Lyt −L2yt

= 1− yt−2

A mean-zero AR(p) process can be written as

yt −φ1yt−1 −φ2yt−2 −·· ·−φpyt−p = εt

or

yt(1−φ1L−φ2L2 −·· ·−φpLp) = εt

Factor this polynomial as

1−φ1L−φ2L2 −·· ·−φpLp = (1−λ1L)(1−λ2L) · · ·(1−λpL)

For the moment, just assume that the λi are coefficients to be determined. Since L is

defined to operate as an algebraic quantitiy, determination of the λi is the same as

determination of the λi such that the following two expressions are the same for all z :

1−φ1z−φ2z2 −·· ·−φpzp = (1−λ1z)(1−λ2z) · · ·(1−λpz)
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Multiply both sides by z−p

z−p−φ1z1−p −φ2z2−p −·· ·φp−1z−1 −φp = (z−1 −λ1)(z−1 −λ2) · · ·(z−1 −λp)

and now define λ = z−1 so we get

λp −φ1λp−1 −φ2λp−2 −·· ·−φp−1λ−φp = (λ−λ1)(λ−λ2) · · ·(λ−λp)

The LHS is precisely the determinantal polynomial that gives the eigenvalues of F.

Therefore, the λi that are the coefficients of the factorization are simply the eigenvalues

of the matrix F.

Now consider a different stationary process

(1−φL)yt = εt

• Stationarity, as above, implies that |φ| < 1.

Multiply both sides by 1+φL+φ2L2 + ...+φ jL j to get

(
1+φL+φ2L2 + ...+φ jL j)(1−φL)yt =

(
1+φL+φ2L2 + ...+φ jL j)εt

or, multiplying the polynomials on th LHS, we get

(
1+φL+φ2L2 + ...+φ jL j −φL−φ2L2 − ...−φ jL j −φ j+1L j+1)yt

==
(
1+φL+φ2L2 + ...+φ jL j

)
εt

and with cancellations we have

(
1−φ j+1L j+1)yt =

(
1+φL+φ2L2 + ...+φ jL j)εt

so

yt = φ j+1L j+1yt +
(
1+φL+φ2L2 + ...+φ jL j)εt
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Now as j → ∞, φ j+1L j+1yt → 0, since |φ| < 1, so

yt ∼=
(
1+φL+φ2L2 + ...+φ jL j)εt

and the approximation becomes better and better as j increases. However, we started

with

(1−φL)yt = εt

Substituting this into the above equation we have

yt ∼=
(
1+φL+φ2L2 + ...+φ jL j)(1−φL)yt

so
(
1+φL+φ2L2 + ...+φ jL j)(1−φL) ∼= 1

and the approximation becomes arbitrarily good as j increases arbitrarily. Therefore,

for |φ| < 1, define

(1−φL)−1 =
∞

∑
j=0

φ jL j

Recall that our mean zero AR(p) process

yt(1−φ1L−φ2L2 −·· ·−φpLp) = εt

can be written using the factorization

yt(1−λ1L)(1−λ2L) · · ·(1−λpL) = εt

where the λ are the eigenvalues of F, and given stationarity, all the |λi|< 1. Therefore,

we can invert each first order polynomial on the LHS to get

yt =

(
∞

∑
j=0

λ j
1L j

)(
∞

∑
j=0

λ j
2L j

)
· · ·
(

∞

∑
j=0

λ j
pL j

)
εt
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The RHS is a product of infinite-order polynomials in L, which can be represented as

yt = (1+ψ1L+ψ2L2 + · · ·)εt

where the ψi are real-valued and absolutely summable.

• The ψi are formed of products of powers of the λi, which are in turn functions

of the φi.

• The ψi are real-valued because any complex-valued λi always occur in con-

jugate pairs. This means that if a+bi is an eigenvalue of F, then so is a−bi.

In multiplication

(a+bi)(a−bi) = a2 −abi+abi−b2i2

= a2 +b2

which is real-valued.

• This shows that an AR(p) process is representable as an infinite-order MA(q)

process.

• Recall before that by recursive substitution, an AR(p) process can be written

as

Yt+ j = C +FC + · · ·+F jC +F j+1Yt−1 +F jEt +F j−1Et+1 + · · ·+FEt+ j−1 +Et+ j

If the process is mean zero, then everything with a C drops out. Take this and

lag it by j periods to get

Yt = F j+1Yt− j−1 +F jEt− j +F j−1Et− j+1 + · · ·+FEt−1 +Et

As j → ∞, the lagged Y on the RHS drops out. The Et−s are vectors of zeros

except for their first element, so we see that the first equation here, in the



25.2. MODELS FOR TIME SERIES DATA 485

limit, is just

yt =
∞

∑
j=0

(
F j)

1,1 εt− j

which makes explicit the relationship between the ψi and the φi (and the λi as

well, recalling the previous factorization of F j).

Moments of AR(p) process. The AR(p) process is

yt = c+φ1yt−1 +φ2yt−2 + · · ·+φpyt−p + εt

Assuming stationarity, E(yt) = µ,∀t, so

µ = c+φ1µ+φ2µ+ ...+φpµ

so

µ =
c

1−φ1 −φ2 − ...−φp

and

c = µ−φ1µ− ...−φpµ

so

yt −µ = µ−φ1µ− ...−φpµ+φ1yt−1 +φ2yt−2 + · · ·+φpyt−p + εt −µ

= φ1(yt−1 −µ)+φ2(yt−2 −µ)+ ...+φp(yt−p −µ)+ εt

With this, the second moments are easy to find: The variance is

γ0 = φ1γ1 +φ2γ2 + ...+φpγp +σ2
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The autocovariances of orders j ≥ 1 follow the rule

γ j = E
[
(yt −µ)

(
yt− j −µ)

)]

= E
[
(φ1(yt−1 −µ)+φ2(yt−2 −µ)+ ...+φp(yt−p −µ)+ εt)

(
yt− j −µ

)]

= φ1γ j−1 +φ2γ j−2 + ...+φpγ j−p

Using the fact that γ− j = γ j, one can take the p+1 equations for j = 0,1, ..., p, which

have p+1 unknowns (σ2, γ0,γ1, ...,γp) and solve for the unknowns. With these, the γ j

for j > p can be solved for recursively.

Invertibility of MA(q) process. An MA(q) can be written as

yt −µ = (1+θ1L+ ...+θqLq)εt

As before, the polynomial on the RHS can be factored as

(1+θ1L+ ...+θqLq) = (1−η1L)(1−η2L)...(1−ηqL)

and each of the (1−ηiL) can be inverted as long as |ηi| < 1. If this is the case, then

we can write

(1+θ1L+ ...+θqLq)−1(yt −µ) = εt

where

(1+θ1L+ ...+θqLq)−1

will be an infinite-order polynomial in L, so we get

∞

∑
j=0

−δ jL j(yt− j −µ) = εt
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with δ0 = −1, or

(yt −µ)−δ1(yt−1 −µ)−δ2(yt−2 −µ)+ ... = εt

or

yt = c+δ1yt−1 +δ2yt−2 + ...+ εt

where

c = µ+δ1µ+δ2µ+ ...

So we see that an MA(q) has an infinite AR representation, as long as the |ηi| < 1,

i = 1,2, ...,q.

• It turns out that one can always manipulate the parameters of an MA(q) pro-

cess to find an invertible representation. For example, the two MA(1) pro-

cesses

yt −µ = (1−θL)εt

and

y∗t −µ = (1−θ−1L)ε∗t

have exactly the same moments if

σ2
ε∗ = σ2

εθ2

For example, we’ve seen that

γ0 = σ2(1+θ2).

Given the above relationships amongst the parameters,

γ∗0 = σ2
εθ2(1+θ−2) = σ2(1+θ2)
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so the variances are the same. It turns out that all the autocovariances will

be the same, as is easily checked. This means that the two MA processes are

observationally equivalent. As before, it’s impossible to distinguish between

observationally equivalent processes on the basis of data.

• For a given MA(q) process, it’s always possible to manipulate the parameters

to find an invertible representation (which is unique).

• It’s important to find an invertible representation, since it’s the only repre-

sentation that allows one to represent εt as a function of past y′s. The other

representations express

• Why is invertibility important? The most important reason is that it provides

a justification for the use of parsimonious models. Since an AR(1) process

has an MA(∞) representation, one can reverse the argument and note that at

least some MA(∞) processes have an AR(1) representation. At the time of

estimation, it’s a lot easier to estimate the single AR(1) coefficient rather than

the infinite number of coefficients associated with the MA representation.

• This is the reason that ARMA models are popular. Combining low-order AR

and MA models can usually offer a satisfactory representation of univariate

time series data with a reasonable number of parameters.

• Stationarity and invertibility of ARMA models is similar to what we’ve seen

- we won’t go into the details. Likewise, calculating moments is similar.

EXERCISE 61. Calculate the autocovariances of an ARMA(1,1) model: (1+φL)yt =

c+(1+θL)εt
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