PASCALE

Programming
Fundamentals

P.S.GROVER

ALLIED PUBLISHERS LIMITED

Regd. Off. : 15 J.N. Heredia Marg, Ballard Estate, Mumbai 400001
Prarthna Flats (2nd Floor), Navrangpura, Ahmedabad 380009
3-2-844/6 & 7 Kachiguda Station Road, Hyderabad 500027
16-A Ashok Marg, Patiala House, Lucknow 226001
Sth Main Road, Gandhinagar, Bangalore 560009
1/13-14 Asaf Ali Road, New Delhi 110002
17 Chittaranjan Avenue, Kolkata 700072
81 Hill Road, Ramnagar, Nagpur 440080
751 Anna Salai, Chennai 600002

First published, 1988
© P.S. Grover, 1988
8th Reprint, 2001

ISBN 81-7764-193-X

Published by Sunil Sachdev and printed by Ravi Sachdev at Allied Publishers
Limited, Printing Division, A-104 Mayapuri, Phase-II, New Delhi - 110 064

82001

"

Preface

Contents

Chapter 1 : Introduction

Chapter 2 :

1.1 Computers 1

1.2 Computer Systems 2

1.3 Computer Generations 4

1.4 Bit, Byte, Word and Number Systems 6

1.5 Binary Computer Codes 13

1.6_Modes of Computer Sysiem Operations 18
Exercises 20

Problem Solving and Pascal

23

Chapter 3 :

2.1 Algorithms 23
2.2 Data Assignment 25
2.3 Flowcharts 27
2.4 Programming Languages and Pascal 35
2.5 Source and Object Programs 37
2.6 Features of Computer Programs 39
2.7 Syntax Diagrams 41
Exercises 45

Elementary Concepts and Primitive Data Types

49

Chapter 4 :

3.1 Character Set 49

3,2 Numbers 49

3.3 Identifiers 51

3.4 DataTypes 52

3.5 Type Declarations 54

3.6 Constants 56

3.7 Variables 58

3.8 Standard Built-in Functions 60
Exercises 63

Expressions

66

4.1 Arithmetic Expressions 66
4.2 Evaluation of Arithmetic Expressions 69
4.3 Boolean Expressions 73
4.4 Relational Expressions 75
Exercises 78

Chapter 5 :

CONTENTS

Simple Statements and Programs 81

Chapter 6 :

5.1 Structure of a Pascal Program 81

5.2 Comments in a Program 84

5.3 The Assignment Statement 84

5.4 Data Output Statements 87

5.5 Formatting of Output Data 91

5.61Data Input Statements 94

3.7 The Label Declaration 98

5.8 The Compound Statement 99
Exercises 102

Enumerated and Subrange Data Types 105

Chapter 7 :

6.1 Enumerated Data Types 105

6.2 Subrange Data Types 109
6.3 Uses and Limitations of Subrange Data Types 113
Exercises 114

Program Execution Control 116

7.1 Theif Statement 116
7.2 The case Statement 122
7.3 The goto Statement 126
Exercises 131

: Repetitive Computations 134

8.1 The for-do Statement 134

8.2 The while-do Statement 139

8.3 The repeat-until Statement 144

8.4 Differences between while-do and repeat-until
~ Statemenis 148

Exercises 148

: Structured Data Type: Arrays 152

9.1 Subscripted Variables 152
92 Arrays 153 i
9.3 Two-dimensional Arrays 159
9.4 Multidimensional Arrays 163
9.5 Compatible Arrays 165
9.6 Packed Arrays 169
9.7 Character Strings 171
9.8 Operations on Strings 173

" Exercises 177

Chapter 10 : Subprograms : Functions and Procedures 182

10.1 Functions 183
10.2 Procedures 191

10.4 Local and Global Identifiers 196
10.5 Value and Varable Parameters 199
10.6 Arrays as Subprogram Parameters 203
10.7 Functions/Procedures as Subprogram Parameters 206
10.8 Recursion 207
10.9 Uses of Subprograms 210
Exercises 211

Chapter 11 : Record Data Types 218

111 Recordsand Files 218
11.2 Record Data Types 220
11.3 Accessing Fields of a Record 223

11.4 Hierarchical Records 224

11.5 Shared Type Record Variables 228
11.6 Arraysof Records 229

11.7 The with Statement 235

11.8 Varant Records 236

11.9 Packed Records 240
11.10 Differences between Arrays and Records 242
Exercises 242

Chapter 12 : File Types 246
12.1 File Data Type 246

Fi 250
12.4 Files as Parameters in Subprograms 256
125 TextFiles 261
Exercises 263

Chagter 13 ;: Set Operations and Data Types 268

13.1 Set Definition and Elementary Operations 268
13.2 Set Constants 270
13.3 Set Type and Variables 271
13.4 Set Operators and Expressions 273
13.5 Set Operator Hierarchy 278
Exercises 279

CONTENTS

Chapter 14 : Pointers and Dynamic Data Structures

282

Chapter 15 : Structured Program Design Concepts

14.1 Pointer Data Type 282

14.2 Operations on Pointers 285

14.3 Differences between Static and Dynamic
Variables 287

14.4 Creation and Annihilation of Dynamic Variables

287

14.5 Dynamic Data Structures 290
Exercises 297

300

151 Pseudocode 300
15.2 Modular Design 303
15.3 Structured Programming 304

15.5 Structured Programs 309

15.6 Extension of Structured Constructs and use of goto
Statement 312

15.7 Structured Modular Programming 317
15.8 Advantages and Disadvantages of Structured
i 9

Programming 319
Exercises 320

Appendix I : Pascal Operators and their Precedence 327

Appendix IT : Standard Identifiers and Pascal Reserved Words

328

Appendix Il : Pascal supplied Functions and Procedures 329

Appendix IV : Syntax of Pascal 331

Appendix V : Syntax Diagrams 335

Appendix VI: ASCII and EBCDIC Character Sets 343

Bibliography 345

Index 347

Chapter 1

Introduction

A computer is an information processing machine. It can perform arithmetic
operations (addition, subtraction, multiplication and division) and take logical
decisions. It has a memory and can store lot of information. The stored
information may be retrieved, moved and operated upon as desired.
. Computations are done at an extremely fast speed with complete reliability and
accuracy. The speed of execution of operations by modern computers ranges
from several hundred million operations per second for fast computers to tens
of thousands of operations per second for slow computers.

1.1 Computers

There are basically two types of computers—analog and digital.

(a) The analog computer accepts, processes and generates continuous
{unbroken) data. Computations are carried out with physical quantities, such as
length, voltage, current, etc. Slide rule, voltmeter, ammeter, potentiometer, are
examples of analog devices. You know that when current is passed through an
ammeter, the deflecton of the needle indicates the amount of current passing,
Deflection is more for higher currents and less for lower currents. Now current
and deflection are both continuous quantities. The ammeter receives current
(input) and gives deflection (output) after detecting current (processing of
input). Thus, ammeter is an analog device. Analog computers use this principle,
though they are much more complicated and can perform sophisticated
processing of data.

Analog computers are comparatively slow and less accurate. They are
designed for special applications only. We cannot use a given analog computer
for all purposes.

(b) The digital computer accepts, processes and produces discrete
(discontinuous) data. Computations are done with discrete quantitics, such as
numerical digits. Usual facit machines, electronic calculators are simple
examples of digital devices.

Digital computers are much faster than analog computers and the
computations are far more accurate. They come in various sizes-starting from
pocket size to large systems which occupy few normal-sized rooms. Digital
computers can be designed either for special or for general purposes.

Another type of computer which combines the salient features of both analog
and digital computers, is referred to as Hybrid computer. It is faster than analog

2 PASCAL PROGRAMMING FUNDAMENTALS

but much slower than digital computer, Hybrid computers find applications in
special areas only.

Normally, when we speak of a computer, it is understood as a digital
computer. Nowadays these are the most widely used machines:

1.2 Computer Systems

A computer system consists of a computer and supporting devices for input and
output of data. The data to be processed are supplied to the computer with the
help of input devices. The processing unit performs the desired operations on
the information and the results of calculations/processing are obtained on the
output devices. Several types of input/output devices can be attached to the
computer. A computer consists of electronic circuits only, whilec the
input/output devices have both electronic and mechanical components. A
representative organization of a c~mputer system may be as shown in Fig. 1.1.

Fig. 1.1: Organization of a computer system

The input device supplies'data, as obtaine. from us, to the computer. Most
commonly used input devices are: teletypewriter and cathode ray tube (In the
past, it used to be card reader but not now). We specify the data in a form which
we use in our everyday lite, that is, in the numeric and alphabetic form. These
are converted into the form which the computer can ‘understand’. Data are ,
stored in the computer in binary form (sce later). (The conversion to the binary
form is performed with the help of electronic circuits called Encoders) After
the computer has processed the data, results are tained in the human
readable form on the output devices, such as printer, visual display unit (VDU).
Computer data (as stored inside it) is changed into this form by electronic
circuits called Decoders.

In addition to encoders and decoders, there are other electronic circuits also

INTRODUCTION 3

which perform several functions, such as correct transfer of data from the input
device to the computer and from the computer to the output device, regulate
flow of data, act as temporary data storage (buffering), etc. This is done with
additional electronic circuits, referred to as control input/output unit. All
input/output devices are connected to the computer via control units.

The computer does all the computing and data processing work. Its
components are:

(a) Arithmetic and logical unit (ALU)
(b) Control unit (CU)
(c) Main memory unit (MMU).
Information is transferred to and from among these units for all processing
and computing work as indicated by arrows in Fig. 1.2.

Fig. 1.2: Information flow in the computer
Artithmetic and Logical Unit

This unit consists of a complicated clectronic circuits designed using the
concepts of Boolean algebra. All arithmetic operations-addition, subtraction,
multiplication, division and logical operations-comparison, decision, etc. are
performed by this unit.

Control Unit

The control unit also consists of clectronic circuits. It acts as a supervisor in a
computer system. It obtains instructions from the main memory, interprets
them, decides the action to be taken and directs other units to execute them. It
keeps check on correct information flow in the computer system. Normally, the
instructions are executed sequentially (one after another) in the machine. The
control umt also provides the facility to alter this sequence.

The ALU and the CU are also referred to as Central Processing Unit (CPU).

Main Memory Unit

This unit stores all the data which are to be processed and the program

4 PASCAL PROGRAMMING FUNDAMENTALS

instructions for carrying out the processing/computing work. The main memory
is also referred to as primary or main storage. It is extremely fast (high speed
memory). Information can be entered/retrieved at random from this memory.

Commonly used memories have been magnetic cores (older systems) and
semiconducting elements (modern systems). With these, it is possible to have
very large and fast memories. Semiconductor memory consists of electronic
circuits prepared on silicon chips. The electronic circuit is called a Flip-flop. A
flip-flop circuit can generate either 1 or 0, that is, it is a two-state element. A
flip-flop is also called a Storage Cell. Thousands of these storage cells can be
prepared on a single silicon chip. Due to this, the physical size of the
semiconductor memories is very small. Moreover, their cost is decreasing every
year as the fabrication technology is advancing. The common type of
semiconductor storage devices are: Random Access Memory (RAM) and Read
only Memory (ROM). Besides these, there are other forms of semiconducting
memories as well.

In RAM, information may be read or written into the memory at random. It is
aiso called a Read/Write memory. It is a volatile memory, that is, information
stored there is lost when the electrical power to the circuit is switched off.
Normally, user programs and data are stored in RAM.

In ROM, information is written permanently into the memory. It cannot be
changed easily. Data can be read from the memory but cannot be written there.
This is why the name ROM. Morcover, it is a non-volatile memory. ROMs are
normally used to store information that the computer may need frequently for
its own operation.

1.3 Computer Generations

Several types of computers, having wide range of characteristics have been
designed. The design, speed, size and performance of computers have been
changing continuously. Due to this, it has become customary to divide computers
into what has come to be known as “generations”. Broadly speaking, following
are the generations of the computers.

First Generation (~ 1946-1959)

The computers of first generation used vacuum tubes. They were bulky and
slow. Their memory was limited and used punched-card and punched paper
tape for input and output of data. These machines used low-level programming
languages and involved manual controls. They were special purpose machines
with limited applications. Examples of first generation computers include
ENIAC, EDSAC, UNIVACT, IBM 650.

Second Generation (~ 1959-1965)

The second generation computers are characterized by their use of tiny
transistors as active elements. Due to this, these were compact and substantially

INTRODUCTION 5

smaller in size. They required less power to operate. They were much more
reliable as compared to the first generation computers. Second generation
computers had more speed (about 10° operations per second), larger memory
and faster input/output devices. They accepted procedure-oriented languages,
such as Fortran, Cobol and other utility programs.

Several companies started manufacturing computers. Systems were designed for
special applications, such as business and scientific data processing. Prominent
second generation computers have been IBM 1401, IBM 7090/7094 scrics,
IBM 1620, Burroughs B5000, CDC 3600, GE 635, Honeywall 400 series,
UNIVAC III, and several others.

Third Generation (~ 1965-1975)

The third generation computers used integrated circuits (electronic circuits
designed on silicon chips) instead of transistors. The size of such circuits is
hundreds of times smaller than the transistor circuit size. Moreover, the
associated electronic circuitry is also reduced in dimensions many times. This
leads to several advantages: (i) small size and increased processing speed (= 10"
operations/second), (ii) more reliability and higher accuracy, (iii) ecasy
maintenance and simple repair requirements. Moreover, these machines have
very large storage capacity. Faster and more versatile input/output devices, such
as video display, graphic terminals, plotters, magnetic disks, drums, tapes, efc.
may be used with them. They have highly sophisticated operating systems,
application software and packages.

Third generaticn computers are mostly general purpose, that is, they may be
used for processing business, scientific or text-oriented problems. Some
examples of third generation systems are IBM 360 series, Burroughs
6700/7700 series, CDC 6000/7000 series, digital equipment PDP-8/11 series,
UNIVAC 1108/9 series, ICL 1900/2900 series, and so on.

Fourth Generation (~ 1972-1982)

The fourth generation computers use very large scale integrated (VLSI) circuits
in their design. As compared to the third generation systems, these systems
possess much larger computing powers. They have extremely large memories
and are very versatile. In addition to conventional input/output devices, other
minicomputers, magnetic ink readers, laser printers, optical readers, audio
response terminals, etc. can be attached to them. Some examples of fourth
generation computers are IBM 370, AMADAHL 470, CRAY XMP, CYBER

and many other systems.
Fifth Generation and Beyond (~ 1981 onwards)
The computer technology has made phenomenal progress, starting from first to

fourth generation systems. Computers have been used to solve almost any type
of problem whose algorithm can be described explicitly. However, still there are

6 PASCAL PROGRAMMING FUNDAMENTALS

areas, where computers have not been used successfully. This is because the
problems in those areas involve human intelligence, that is, reasoning,
understanding, drawing inferences, adaptling to new situations, making out
relationship between facts, discovering meanings, recognizing truth, and so on.
Attenipt is being made to incorporate such characterisitics into computers and
computer programs. Such computers (though not commercially available as yet)
have been said to belong to Fifth generation. Lot of work is being done on the
hardware and software of such systems. These are also known as Knowledge
Information Processing Systems (KIPS). They will have knowledge bases and
are expected to be able to draw inferences from the knowledge and solve
problems as humans do. These are the goals and their successful completion
may completely revolutionize the computer field.

1.4 Bit, Byte, Word and Number Systems

Binary number system is used for information representation and storage in
computers. This system uses two digits: 0 and 1. Any object which can assume
two states can be used to represent these digits. As for example an electric
switch, an electric bulb, a magnetic core or some electric circuit, such as
flip-flop, and so on.

A magnetic core can be magnetized either clockwise or anticlowise. We can
say that the clockwise state of magnetization represents 1 and the anticlockwise
state of magnetization indicates 0.

Thus, a collection of magnetic cores can be used to store binary digits. A
binary digit is also called a Binary bit. Thus, each core represents a binary bit.

Binary bits are grouped together. A collection of 4 bits is called a Nibble,
while a group of 8 bits is referred to as a Byte. Normally, a byte is treated as a
single memory location. It generally represents a single character of information.
As for example, if we wish to store the character A in the computer memory, a
byte (or 8 bits) may be required. Further bytes are grouped together to form a
bigger unit. This unit is referred to as a Word. A word may consist of a single
nibble (4-bit word), two nibbles (8-bit word), 3 nibbles (12-bit word), 4
nibbles/2 bytes (16 bit word) and so on. This depends on the make of the
computer. The size of the computer memory is commonly expressed in terms of
bytes/words. As for example, it is common to say that the memory size is 64
KB (kilo byte), 128 KB, 256 KB, and so on. Here k = 2'" = 1024 and indicates
kilo.

A memory of 16 KB will have 16 X 1024 X 8 = 131072 bits. Thus a
semiconductor memory should have these many flip-flop circuits as each flip-flop
represents one binary bit.

Nowadays, very large memories are also available. Memory sizes in the range
1—8MB (or higher) are common. (MB = million bytes). Moreover,
computers are available with different word sizes such as 8—, 16—, 32—, 64—,
96-bits and so on. Larger word size affords several advantages :

® bigger main memory size

INTRODUCTION 7

® larger instruction set and more versatile commands

higher speed

® better data processing capabilitics

* more sophisticated software systems

® use of a variety of input/output and peripheral devices

® better control and utilization of the different hardware computer system
resources, such as memories, data transfer channels, disks/drums, etc.

® implementation of several efficiency and better system utilization
techniques, such as multiprogramming, time-sharing, multiprocessing, and
soon,

¢ higher accuracy of floating point computations

Many of the concepts, introduced above, will get clarified as we go along.

Number Systems

You are all familiar with decimal number system. It consists of digits 0, 1, 2,
«... 9 which form its basis and all numbers are formed by a combination of
these. Other number systems commonly used are binary, octal and hexa-
decimal. Numbers expressed in one system are easily changed into the other.
Table 1.1 gives the equivalence among the four systems. These are positional
number systems and the value at cach position is shown in Table 1.2, starting
from right to left. We shall describe briefly the number systems and explain
conversion from one system to another.

(A) Binary Number System

The two digits of binary number system are 0 and 1. All numbers in this system
are designed using these digits only. Like decimal, binary system is also
positional, that is, the digit takes a different value according to the position it
occupies. Let us consider the binary number : 1. It stands for 1 = 2°=110. 10is
the subscript. It indicates decimal. Thus 1, implies 1 in decimal system. Now
consider

11
1t stands for
1 X2'+1x2=3,
that is, it is equivalent to 3 in decimal system.
Now look at
1101
It implies
1101= 1X2*+ 1X23+ 0x2' + 1%2°
= § + 4 + 0 + 1
= (13)10

8 PASCAL PROGRAMMING FUNDAMENTALS

Thus, a string of 1's and 0’ is used to represent a number of binary system.
The binary equivalent of the first 17 decimal numbers are indicated in Table

1A

Table 1.1: Equivalence between decimal and other systems

Decimal Binary Octal Hexadecimal

Number Number Number Number

0 00 0 0

1 01 1 1

2 10 2 2

3 11 3 3

4 100 4 4

5 101 5 5

6 110 6 6

7 111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

16 10000 20 10

17 10001 21 i

Table 1.2: Number systems and positional values

Position -~ Five Four Two One
24 2? 2! 20

Binary
16 8 2 1
84 8 8! 8°

Octal
4096 512 8 1
16* 16* 16’ 16°

Hexa
65536 4096 16 1

Conversion of binary numbers to decimal form was studied above. Let us see
the reverse process. The method given below may be used for small as well as

for large numbers.

Take the decimal integer number, Divide it by 2, say the quotient is Q; and
remainder R,. Then divide Q, by 2. Now, let the quotient be Q, and remainder
R,. Further, divide Q, by 2. Suppose, a new quotient is Q;, and remainder is R;.
Continue dividing the new quotient by 2 and getting new remainders till the

INTRODUCTION 9

quotient is 0. Say, the remainders for successive” divisions are R;, R,,
Ry, ... ,Rs-), Ry Then the binary representation of the given decimal number
will be

RyRo-y.... ReR3R: Ry (i)

That is, the binary number is obtained by writing the remainders in the reverse
order.

We explain this procedure by an example. Say, we want to find the binary
equivalent of the decimal number 85. Proceed as follows:

Quotients Remainders

85/2=42(Q) 1(Ry)
Q,/2=42/2=21(Q;) 0(R;)
Qy/2=231/2=10(Qy) 1(Ry)
Qy2=10/2= 5(0Qy) 0(Ry)
Qu2= 5/2= 2(Q) 1(Rs)
Q2= /2= 1(Q,) O(Ry)
Q2= 1/2= 0(Qy) 1(R5)

Thus, the binary number, according to prescription (i) will be
R, Rs Rs R; R; R; R,
1 0 1 0 1 0 1 (Binarynumber)

You can verify that this binary number is equivalent to 85 as

10 1 0 1 0 1
‘ | l__lxz"-ixl-l
O0X2=1X 1= 0
1 X2 m X 4= 4

0x2=0%x B= 0
1 X2 =1 X 16 =16
DX22=0X32= 0
I X 28 = | X 64 = 64

85
Thus

(85)10 = (1010101),
Now we look at the following example which gives the binary equivalent of
24.
Quotients Remainders

24/2=12(Qy) O(Ry) »
Q/2=12/2= 6(Qy) 0(Rz)

10 PASCAL PROGRAMMING FUNDAMENTALS

Q;/2= 6/2= 3(Qu) 0(Ry)
Qu2= 3/2= 1(Qy) 1(Rs)
Q2= 1/2= 2(Qs) 1(Rs)

Thus, the binary representation of 24 is 11 000 or
(24),0 = (11000),

You can verify that this number is equivalent to 24 by the procedure
explained earlier.

In practice, we can have integers or mixed numbers. Examples of mixed
numbers are 12.65, 16.018, 211.101, and so on. (Remember, mixed numbers
have integral part and a fractional part). In the number 12.65, the integral part is
12 while the fractional part is 0.65. We can find the binary representation of
the mixed numbers also. Now it will be necessary to apply the conversion to the
integral and fractional parts separately.

The conversion of integral part is to be performed as explained above. The
number (12), = (1100),. What is (0.65),, = (?);. The conversion rule is:

Take the fractional part and multiply it by 2 (base). Set aside the integral part
(it will be cither 1 or 0) and again multiply the fractional part by two. Do this
repeatedly till the fractional part is zero. The sequence of integral parts (that is,
0s and Is), thus generated, along with the decimal point in the left most position,
gives the required binary representation of the decimal fractional part.

Using this rule, the equivalent form of (.65 can be obtained as

Integer Fractional

Pan Part

I 1 30 1.30+ .65%2
I 0 60 0.60+.30%2
Ll 20 1.20+.60x2
I, o A0 0.40+.20x2
Is0 80 (L8O = 40%2
o 1 .60 160 80%2
11 .20 1.20 - .60x2

The representation of .65 is

(.65)1“ - .I| Ig [3 14]s l(, I',r
=(.1010011.....),

We observe that the process of multiplying by 2 and getting the integer part, till
the fractional part is zero, can become inordinately long. This is a drawback of the
binary system as regards the representation of decimal fractions is concerned.
The binary representation is truncated after a certain number of places,
depending on the word size of the computer. It is easy to convert .1010011
back to decimal form as

A010011=1X2"' +0X 22+ 1 X2 +0X 2744+ 0X 275+ 1x 20+ 1x 277

=05 +0 +0.125 +0 +0 +.015625 + 1
= (.6484375),, 0078125

INTRODUCTION 11

Hence (12.65)10 = (1100.1010011),

In order to get better accuracy and approach .65, more terms, such Ty, I,
will have to be included. Thus, decimal conversions are the source of truncation
errors in floating point calculations in computers.

(B) Octal and Hexadecimal Systems

(a) Octal System

Octal number system has the base 8 and consists of the digits 0,1,2,3,4,5,6,7.
Like binary and decimal, octal system is also a positional number system. Table
1.1 gives the equivalence of decimal, binary and octal numbers upto 17, while
Table 1.2 shows the positional value. The reader should note that upto 7, both
octal and decimal numbers are same. Represenation differs beyond this.
Transformation from one system to the other is similar to as was for binary-
decimal-binary. As an illustration, let us consider the octal number (27),. We
want its value in decimal system:

Q27 =M
(27), =2x8'+7x8"
=16+7
=(23)y
Further

(305)s=3 X 82 + 0X8' + 5X8°
=192 +0 +5 =(197),

Similarly, conversion from decimal to octal system can be performed following
the procedure as indicated for decimal to binary system. Now, as the base of
octal system is 8, so while converting decimal integer to octal, we need to divide
the integer by 8 repeatedly until the quotient is 0. Similarly, to convert a decimal
fraction to octal form, decimal fraction is multiplied repeatedly by 8 and
numbers left of the decimal point are collected and arranged from left to right in
the order they occurred.

Conversions binary-octal-binary are also straightward. The rule is:

Arrange the binary number digits in groups of three for octal number
equivalence, starting from the right, going to left. Replace each group by its octal

equivalent digit.
This rule is illustrated by the following examples.

(i) Binary-Octal Conversion
(11011); = (?)s

Arrange the binary digits in groups of three starting from right and going to left.

12 PASCAL PROGRAMMING FUNDAMENTALS

Add leading zeroes (zeroes at the left) if required, to complete group of three.

011 011
3 3 =(33)

(11100111), = (s
(11100111), = 011 100 111 ~ Binary-coded octal number
304 7 =347

(ii) Octal-Binary Conversion
Now replace each octal digit by the corresponding group of three digits.
(24)s=(":
(24)s= 2 4
010 100 =(010100),

(7315)s= ("2 .
(M35 = 7 3 1 5
111 011 001 101 =(111011001101),

Conversions binary-hexa-binary are similar to binary-octal-binary, except that
now bits are to be arranged in groups of 4. The process is explained below.

(b) Hexadecimal System
In hexadecimal (or hexa) system, base is 16 and consists of the digits:
0,1,2,3,4,5.6,7,8,9,A(10), B(i1), C(12), D(13), E(14), F(15). Hexadecimal
numbers are strings of these digits. The equivalence between decimal, binary,
octal and hexa system digits are given in Table 1.1 (upto 17). Again hexa system
is a positional system. The value at each position in this system is shown in
Table 1.2. The following examples illustrate the hexa-decimal conversion
further.

(12)6=1X% 16" +2 X 16" =16 + 2= (18),,

(123);s=1X 167+ 2 X 16' +3 X 16° =256 + 32 + 3 =(291),o

Conversion rules for decimal-hexa-decimal system are identical to decimal-

binary-decimal or decimal-octal-decimal, as discussed earlier. Remember, now
the base is 16.

(i) Binary-Hexa Conversion

Arrange the bits in groups of four, starting from right and going to left. Add
leading zeroes (that is, Os at the left), if needed, to complete a group of four bits.
Replace each group by the equivalent hexa digit.

(11011), =(?),4
(11011), = 0001 1011
1 B = (1B);
(11110111), = (")
(11110111), = 1111 0111 + Binary coded hexa number
. F 7 =FThs

INTRODUCTION 13

(ii) Hexa-Binary Conversion
Replace each hexa digit by the corresponding four-digit binary number.
(AB)s =(7);,

(AB)is= A B
1010 1011 =(10101011),

(3F8D)i6= ("2

(3F8D),, =3 F 8 D
0011 1111 1000 1101
= (00111111 1000 11011),

The above examples illustrate how to convert the integer numbers. The
procedure for converting a binary fraction to octal (or hexa) is similar, Now,
the grouping begins at the binary point, starting from left and going to right.
A binary fraction is divided into groups of three bits (or four for hexa) for
octal, starting from the left of the binary point. The need may be there to add
zero at the right-most side to make each group of three for octal (or four for
hexa) digits. Replace each group of bits by its equivalent octal or hexa digit, as
. the case may be.

Further, the reader should appreciate that the binary number and its
equivalent in binary-coded octal and hexa numbers have exactly the same bit
arrangement. So the string of 0’s and 1's stored in the computer memory unit

. may represent a binary number or an octal number or a hexa number in binary
coded form if we group the bits in units of three (octal) or four (hexa) bits. The
number of digits is reduced by one-third in octal representation and by one-
fourth in the hexa representation. (How?)

We saw that direct conversions decimal-octal-decimal, decimal-hexa-decimal
are possible. However, in applications, it is found to be more convenient and
fast to use binary as intermediate base instead of converting directly. This is
because simple grouping of bits yields the desired conversion.

Octal and hexadecimal systems also find applications in data communications
and I/0 unit interfacing. They are also used in small computers. For example, in
computers with 16-bit word lengths, the hexa digits are more convenient to use.
We can represent a 16-bit number with exactly four hexa digits. The hexa
numbers are more compact, but are less easy to convert because of the mixture
of numerals and letters.

Arithmetic calculations are generally done in binary system because they are
simpler to implement electronically. When octal/hexa systems are used, they
are converted to binary, computations made and then numbers converted back
to octal/hexa system.

1.5 Binary Computer Codes

We have been talking about binary digits and data representation. Decimal
numbers are represented by a string of 0's and 1's. How about other characters,

14 PASCAL PROGRAMMING FUNDAMENTALS

such as A, B, P, Q, a, r, e +, 72, etc. To represent letters, special characters and
numerals (collectively referred to as alphanumeric characters), we need
appropriate codes. Many different codes are available. They all use binary bits
because the computers can hold only binary information. Here we shall present
commonly available coding schemes.

(1) BCD Code

BCD indicates Binary Coded Decimal. Four bits are used to represent decimal
digits 0 to 9. For example, consider the decimal number 25. Its binary
representation is

(25)10 = (11001),

In BCD code, binary representation is used for each of the digits in a number.
Thus, the representation of 25 in BCD code is

(25)|0 = 2 5
0010 0101 (BCD code)

25 will be represented by 8 bits or 00100101 in BCD code. In pure binary
form, 5 bits were needed. Similarly,

600 = 6 0 7
0110 0000 0111 (BCD code)

Thus 12 bits: 011000000111 represent the decimal number 607. (What is
607 in pure binary form? Calculate the number of bits required). The reader
should appreciate the difference between conversion of decimal numbers to
binary form and binary coding of decimal numbers very carefully.

Four bits can be arranged in 2* = 16 different possible ways. These are
indicated in Table 1.3. }

The first ten of these arrangements are used to represent decimal digits 0-9.
The other six combinations 1010, 1011, 1100, 1101, 1110, 1111
corresponding to decimal numbers 10, 11, 12,.13, 14, 15 are not used. As the
BCD representation of, say 13, will be

(130 = 1 3
0001 0011=00010011 (BCD code)

Remember, 4 bits for each decimal digit. The BCD code is also referred to as
8-4-2-1 code.

(2) 6-bit BCD Code

This code uses 6 bits to reprsent a character. That is why it is called a 6-bit BCD
code. Now 26 = 64 characters can be represented. This is a sufficient number to
code the decimal digits (10), capital alphabetic letters (26) and other special

INTRODUCTION 15

Table 1.3: Place value in BCD code

Place value - 8 4 2 1 Decimal digit
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
o 0 1 1 3
0 1 0 Q 4
0 1 0 1 5
0 1 | 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1] 10
1 0 1 1 11
1 1 0 0 12
1 1 0 1 13
1 1 1] 14
1 1 1 1 15

sybmols (28). In this code, the four BCD numeric place positions (1,2,4,8) are
retained but two extra zone positions are added. The format of a 6-bit code is

Zone bits Numeric bits

BIA[B |4)21

Table 1.4 gives the 6-bit BCD code for decimal and alphabetic characters, along
with the 8-bit EBCDIC and ASCII codes.

Table 1.4: Representation of selected symbols

Character 6-bit BCD ‘EBCDIC ASCII 8-bit
0 00 0000 1111 0000 1011 0000
1 00 0001 1111 0001 1011 0001
2 00 0010 1111 0010 1011 0010
3 0d 0011 1111 0011 1011 0011
4 00 0100 1111 0100 1011 0100
5 00 0101 111 ot 1011 010
f 00 0110 1111 0110 1011 0110
7 00 0111 1111 01 1011 o111
8 00 1000 1111 1000 1011 1000

16 PASCAL PROGRAMMING FUNDAMENTALS

Character 6-bit BCD EBCDIC ASCII 8-bit
9 00 1001 1111 1001 1011 1001
A 01 0001 1111 0001 1100 0001
B 010010 11000010 11000010
c 01 0011 11000011 11000011
D 010100 11000100 11000100
5] 010101 11000101 11000101
F 010110 11000110 11000110
G 010111 11000111 11000111
H 01 1000 1100 1000 1100 1000
1 01 1001 1100 1001 1100 1001
J 10 0001 1101 0001 1100 1010
K 100010 1101 0010 1100 1011
L 100011 1101 0011 1100 1100
M 100100 1101 0100 1100 1101
N 100101 11010101 11001110
o 100110 1101 0110 11001111
P 100111 11010111 1101 0000
Q 10 1000 1101 1000 1101 0001
R 101001 1101 1001 1101 0010
5 110010 11100010 1101 0011
T 110011 11100011 1101 0100
u 110100 11100100 11010101
v 110101 11100101 1101 0110
w 110110 11100110 11010111
X 110111 11100111 1101 1000
Y 11 1000 1110 1000 1101 1001
z 111001 11101001 1101 1010

The word INDIA will be represented in 6-bit BCD code as
I N D I A
011001 100101 010011 011001 001001
and the number of bits required to represent INDIA will be 6 X 5 = 30,
The number 607 will be represented as
(607]")- 6 0 7
000110 000000 000111

that is, by 0001 10000000000111 in 6-bit BCD code. There are 18 bits.
Similarly, we can represent A4D9 as

AdDY= A 4 D 9
010001 000100 010100 001001

or 010001 000100 010100 001001 will stand for A4D9. In this system, a byte
is if 6 bits.

INTRODUCTION 17
(3) 8-bit Binary Codes

You have seen that only 64 characters can be represented in 6-bit BCD code.
This is not sufficient to represent the lower case and graphic symbols which are
required in many computer applications. Due to this, 6-bit code has been
extended to 8 bits. With 8 bits, it is possible to have 2* = 256 different
combinations. Now there are four zone bits. The format of a 8-bit code is:

Zone bits Numeric bits

Z1Z|Z|Z|8 421

There are two commonly used 8-bit codes. One is called Extended Binary
Coded Decimal Interchange Code (EBCDIC). It was developed by IBM and is
used in most IBM machines and many other computers. The other 8-bit code is
referred to as the American Standard Code for Information Interchange
(ASCH). This code is used in microcomputers and data communications.
Table 1.4 gives the equivalent EBCDIC and ASCII codes for the digits 0—9 and
characters A-Z. (See also Appendix VI). The main difference between the two
codes is in the bit patterns of the zone positions. The word LOVE will be
represented in these codes as:

L (0] \Y E
11010011 11010110 11100101 11000101 (EBCDIC)
(a string of 32 bits)

11001100 11001111 11010110 11000101 (ASCID)
(a string of 32 bits)

The size of byte in EBCDIC and ASCII codes is 8 bits. Now 8-bit byte has
become standard and a byte is always taken as of 8 bit. Remember, a byre
represents a character.

Binary codes find extensive use in various fields. They can be designed for
any type of discrete entities. Examples are: musical notes, colours and so on. They
are very useful in data communications, and several other applications as well.

We find from the above discussion that data, whether alphabetic or numeric,
are represented by strings of Os and Is. Then how does the computer
differentiate between numeric and character data? This is done by instructions
or commands. There are separate instructions for character data and numeric
data. If an instruction, designed for character data, references a string of 0s and
1s, then this will be taken as data of character type. Similarly, if an instruction,
designed for numeric data, references string of Os and 1s, then this string will
be interepretted to represent numeric data. The computer is a very precise and
exact instrument and does not allow any kind of ambiguity.

18 PASCAL PROGRAMMING FUNDAMENTALS
1.6 Modes of Computer System Operation

The common computer system modes of operation are:

® batch

® (ime-sharing

* multiprogramming
* multiprocessing.

(a) Batch Processing

In batch mode, each user prepares his program on an off-line device (generally)
and submits it to the computer centre. Several programs are read together by
the computer, and they are processed sequentially, that is, one after the other.
Generally, the program, the associated data, and other information are entered
through punched cards. Once a program is read into the computer, the user
cannot alter any statement of the program. If there is any mistake in a program,
that program does not run and the next program is processed automatically. As
the execution of programs takes place at a very fast speed, the batch mode is
most suited for programs that are long or require large computing time. For the
same reason, for small and short programs this mode is not desirable.

(b) Time-sharing Mode

In the time-sharing mode, the user communicates with the computer via a
terminal. The commonly used terminals are: teletypewriter and visual display.
Generally, the terminals are far away from the computer. They are connected to
the computer by cither telephone wires or microwave/satellite links. The terminal
serve both as input and output devices simultaneously as programs continue to
be processed while the input/output devices are busy dealing with other
information. Since there may be 30/40 (or more) terminals to a computer in the
time-sharing mode, several users can use the computer simultaneously,
independent of each other. Therefore, it is suitable for short programs. The
computer system operating in the time-sharing mode may be organized as
shown in Fig. 1.3. In this figure, TERM1, TERM2, TERM3, are terminals.
The arrows, pointing on both the sides («), indicate the two-way flow of
information. Disk1 and Disk2 are magnetic disks which form the secondary or
auxiliary storage area.

The time-sharing computer system can run programs in the batch mode as
well. But the operation is rather complex. During computer operation, there is
hardly any or no human intervention involved except for giving system
commands. This is all managed and run by another complicated set of programs
called the Operating System. These programs are supplied by the computer
manufacturer and the user is never concerned with them. The present-day
computers perform calculations at a tremendously fast rate (= 107—10%
arithmetic operations per second are common). But, the input and the output

INTRODUCTION 19
] (o] ()

Central computer unit Prinm

] ‘i =

Fig. 1.3: Time-sharing mode of computer operation

being via mechanical devices, are rather slow. Therefore, the time-sharing mode is
not recommended for long programs.

() Multiprogramming

The mismatch between the speed of input/output device and CPU, mentioned
above, leaves some resources of the computer system under-utilized,
However, if the computer system is working in the multiprogramming mode,
better utilization of the available equipment can be realized.

Multiprogramming refers to kecping several programs in different parts of the
main memory at the same. In this way, it is possible to keep all parts of the
computer system busy. For example, suppose a given program is being executed
until it demands an input/output service. Since these devices are slow compared
to the CPU, the device is initiated in its function and input/output starts, Then,
the CPU begins executing another different program (resident in memory) until
this program asks for input/output. When this happens, the CPU may begin
executing the first or third program (as the case may be), and this process
continues. Thus, in multiprogramming mode, when one program is waiting for
input or output operation, there is another program ready to use the CPU.

Multiprogramming is possible in both batch and time-sharing mode of
computer operations.

(d) Multiprocessing

Multiprocessing refers to the simultaneous processing of two or more parts of the
same program by two or more processing units, that is, CPUs. Now the
computer system consists of more than one CPU. Generally two or more CPUs
share common memory and input/output equipment. (The CPUs may have
independent resources as well, but they will be closely co-operating and sharing
each others resources). Multiprocessing mode of computer system operation

20 PASCAL PROGRAMMING FUNDAMENTALS

improves the performance and reliability of the system. If one CPU fails, other
CPUs can do the processing. There may be loss of efficiency, but the complete
system will not be down,

It is also possible to perform simultaneous processing of different programs
on a system with several CPUs (one program per CPU) sharing a common
memory. This is taken as an extension of multiprogramming rather than defined
as multiprocessing.

Multiprocessing computer systems are being increasingly designed now-a-days
due to the easy availability of cheap VLSI circuits and microprocessors.

We have described simple concepts about computers, computer system,
number systems and binary codes in this chapter. Next we go over to the
discussion of problem solving on computers and introduce the reader to the
basics of Pascal language.

Exercises 1

1.1. Complete the following es:

(a) A computer can perform..........operations and take.......... decisions.
.and.......

(b) The two types of computers are
(¢} The CPU of a computer system refers . .
(d) Semiconducting storage cell is actually the.......... circuil.
(¢) Information is written into ROM

(f) VLS] circuits are extensively used in.......... and.......... generation computers.
() Computers are available with words lengths as e

(h) All number SYSIEMS Are..........
(i) The base digits of hexa decimal systemare
(j) During conversion from blnn.ry to hexa representation, each groupof bits is
laced by the corresp digit
(k) Whlle converting decimal integer to octal weneedto......... the integer by
repeatedly until the quotientis..........
(1) Binary codes can be designed for any typeof.......... enlities.
(m) Multiprocessing refers to processing of two or more parts of the same
bytwoormere.......... . units.

1.2. Tick the cerrect words in the following sentences:

(a) Ali computations are done by the ALU/CU.
(b) VLSl circuits are prepared on the silicon/germanium chips.
(c) Knowledge Information Processing Systems are said to belong to fourth/fifth

{d) BCD/EBCDIC is an 8-bit system.

{e) A flip-Nlop circuit represents 1/4 binary bit(s).

{f) Conversion rules for decimal-hex-decimal system ore similar/disimilar 10
decimal-binary-decimal system,

() A binary-coded number and its equivalent binary-coded octal and hexa numbers have
identical/different bit arrangements.

(h) Programs are executed randomly/sequentially in batch processing mode of computer
system operation,

(i) Time-sharing mode of computer operation is more suitable for short/long programs.

(j) Better utilization of computer system resources is possible with uni/multi-
programming mode of computer system.

1.3
1.4,

L5.
1.6.

L10,

w

INTRODUCTION 21

(k) Multiprogramming may/maynot be implemented with the time-sharing mode of

computer operation.

(1) Operating System is a comy dependent/independ fl system.

{m) The P differenti b numeric and character type information by
appropriate instructions/data.

What is a computer? Explain briefly, the working principle of various types of compurers,

Describe the basic comy ts of a comg system. Prepare its complete diagram and
explain the function of each apart.

List the various computer generations, What are the basis of such characterizations?

What are the word sizes of c« | ilabl puters? Bring out the advantages of
large word sizes.

. Bring out the differences and similarities among binary, octal and hexadecimal number
systems.

. Explain the ion rules for bers for decimal-octal-decimal and binary-hexa-

binary sy Mustrate by pl

. Perform the following conversions:

(a) (1101); = ()
(b) (2016)s = (7)o
() (ABIF)js = ("ho
(d) (IE2C)ys =(?)
(e) (2460 =()s
(f) (4696)10 = (?he
(8) (1111 =(?)

Carry out the following transformations:

(i) (13.50) 0= (7)2= (") = ()

(i) (127.165) 0= (M= (M= (Ths
(iii) (LELOTL)y = (?)s0= (Mg = (e
(iv) (123.456) = (7h = (?)1s ™= (Do
) (TAFI2C) 6= (Mia= (T2 = (M.

What are the various binary computer codes? Bring out the need of having these coding
schemes.

. Explain the difference b binary ion and binary coding of decimal numbers.

Write the following numbers in binary and BCD codes.

(a) 13

(b) 1313
(c) 6303
(d) 1101

which is easier 10 write? Which one needs more bils?
Write tie following characters in 6-bit, EBCDIC and ASCII codes:

(a) 6543

(b) MAN

(c) PARTT

(d) YOUR NAME
(¢) A2B8

22 PASCAL PROGRAMMING FUNDAMENTALS

1.14. Explain the following

EBCDIC

ASCH

RAM

ROM

KIPS

Byte

Flipflop

Alphanumeric characters

Volatile and nonvolatile memories.

115, Describe the common modes of computer operation. How is time-sharing mode different
from batch mode of operation?

1.16. Explain the diff b multiprog ing and multif ing. How do they help
to utilize the computer system more efficiently?

Chapter 2

Problem Solving and Pascal

The term ‘problem’ is used to mean a task or job. Problem solving implies
carrying through the task to arrive at the right solution. Computers are the best
aid to solve problems. Problems arise in every field of human activity. People in
different professions have different problems to solve. For example, 2 doctor is
concerned with quick and correct diagnosis of the disease, an engineer is
involved with the design of buildings, dams, machines, etc., a space-scientist
may be involved with space problems and sending men to outerspace, while a
buisnessman wants to run his business to maximize his profits, and so on. In
fact, the list is unending. The computer can help to solve problems almost in
every field. It may be making matters simple and efficient, improving things or
exploring newer aspects.

Problem solving on computers is the task of expressing the solution of the
problem in terms of simple concepts, operations and computer code (program)
to obtain the results. To solve problem on computers, we need to:

® define the problem precisely,

¢ indicate the input data requirements and expected outputs,

® write the various steps to arrive at the solution (setting up an alogirithm)

® prepare a flowchart expressing the solution graphically as this can help to
prepare the computer codes quickly and document the solution pictorially
as well. -

® develop the computer code, that is, program

® test, debug and run the program on the computer to obtain the final results.

It is evident from the above that the problem solving involves the skills to
analyze the problem systematically and logically. Now problems may be solved
in various ways. It depends on the problem and the kind of procedure used. In
this chapter we shall study the process of problem solving on computers and use
that in our later study.
2.1 Algorithms .
A set of instructions to obtain the solution of a given problem is defined as the
Algorithm of that problem. The notion of algorithm, though known since ages,
has become very popular for problem solving on computers. Computers need
precise and well-defined instructions for finding solutions of problems. If there
is any ambiguity, the computer will not yield the right results. It is essential that
all the stages of solution of a given problem be specified in detail. correctly and

24 PASCAL PROGRAMMING FUNDAMENTALS

clearly. Moreover, the steps must also be organized rightly so that a unique
solution is obtained. Thus, any algorithm must have the following properties:

(1) It should be simple.

(2) It should be clear with no ambiguity.

(3) It should lead to a unique solution of the problem.

(4) It should involve a finite number of steps to arrive at a solution.

(5) It should have the capability to handle some unexpected situations which
may arise during the solution of a problem (for example, division by zero).

Algorithms may be set up for any type of problems; mathematical/scientific or
business. Normally, algorithms for mathematical and scientific problems involve
mathematical formula, but algorithms for business problems are generally
descriptive and have little use of formulas. We shall explain the process of
setting up of algorithms for both type of problems.

Example 2.1

Design an algorithm to obtain a book on computers from your college library.
(Assume that the library is on the fourth floor and your classroom is on the
ground floor)

The entire process may be specified as:

Algorithm 2.1

(1) Start from the classroom.

(2) Climb the stairs and reach the library.
(3) Search a book on computers.

(4) Have the book issued.

(5) Return to your classroom.

Your problem was to have a book on computers. You could solve it by getting it
from the library, Steps (1-5) specify the procedure. This is the algorithm. It has
been written in a simple and clear way. There is no ambiguity. If Step (2) is
written as “Climb the stairs”, then it is not clear what to do after having climbed
the stairs.

Example 2.2

Design an algorithm to calculate the compound interest, given the principle, rate
and time.

If P = Principle, T = Time in years, and R = Rate per cent, then compound
interest, I

I=Amount—P
=P(1+R/100)T =P (1)

We will not concern ourselves as to how relation (1) has been obtained, but
confine to the procedure of getting the compound interest using this formula.
An algorithm may be set-up as follows:

PROBLEM SOLVING AND PASCAL 25

Algorithm 2.2

(1) Specify the values of P,Rand T.
(2) Use relation (1) to calculate the compound interest.
(3) Write down the calculated values of compound interest.

Algorithm 2,2 assumes that time is given in years and rate is also expressed
yearly. This may not be so. Suppose, time is t months, but R is yearly. Then
before using the formula (1), t time will have to be converted into years.
Algorithm 2.2 will now appear as:

Modified Algorithm 2.2

(1) Specify the values of P,Rand t..

(2) Convert time t (in months) to years as T =t/12.

(3) Use relation (1) to calculate the compound interest.

(4) Write down the calculated values of compound interest.

Algorithms may be represented diagrammatically by flowcharts. Before we go
over 1o this discussion, we shall study some new concepts which will help to
understand the development of algorithms better.

2.2 Data Assignment

A variable is a symbol that may assume different values (data) at different times,
but at a given time, it will take only one value. When a variable is given a value,
it is said to be initialized or a value has been assigned to the variable. In
computer language, the name of variable is designed according to certain rules,
and refers to specific computer memory locations where its value is stored.

But here we shall indicate variables by capital English letters to distinguish
them from other letters and names. Thus A, B, X, W, V, N, or a
combination of these (as SUM) will be taken as variable names. Variable A may
be assigned a value, say 2, or 16.4 or 112.6 or any other value which you may
like. The assignment may be indicated as

A=2
or

A2

or

Store the value 2 in A
When we write

B=A (or B = A)

it implies: assign the value of “variable A 'to variable B". If A = 2, then B
assumes the value 2.
Let

A=30,B =067 C=23 D=40

26 PASCAL PROGRAMMING FUNDAMENTALS

If we write
E=A+B+C+D
then the value of variable E is

=3+67+23 +40
=16.0

ie. 16.0

The average of A, B,C,Dis

P = (A+B+C+D)/4

The value of P will be (3.0+6. 7+2. 3+4.0)/4 = 4.0

In Computer Science, the symbol = or + is referred to as the Assignment
symbol or Replacement operator. When a variable is assigned a new value, its;
old value is lost. This can be understood from the following.

We have seen above that E = 16.0. If we now write

E=A

then the value of E will be 3.0 (as A is 3.0) and not 16.0. Value of 16.0 has been.
replaced by 3.0. Now consider

P= P+ B
=40 + 6.7
= 10.7

Here, first the value of P+B is calculated by taking the old value of P ie. 4.0.
The sum P+B = 4.04+6.7 = 10.7. The new value 10.7 becomes the value of P,
while its old value 4.0 has been lost.

A variable may appear on the right or left of the assignment operator. The
value of variable which is used on the right side is its old value. The new value is
obtained after calculating the value of the right hand side. To start with, say N =
0.Then

N=N+1
(0+1)

makes N=1. Next
N=N+1
(1+1)
sets N = 2. Further, the statement

N=N+1
2+1)

assigns the value 3 to N. And so on. The variable N is called an Accumulator or
Counter. This is a very useful artifice and can be used in several programnting
applications.

Values can be assigned to variables only and not to the constants as a constant
is a value by itself.

PROBLEM SOLVING AND PASCAL 27
2.3 Flowcharts

A flowchart is a diagramatic representation of the algorithm or of the plan of
solution of a problem. It indicates the process of solution, the relevant
operations and computations, the point of decision and other information which
is a part of the solution. Flowcharts are of particular value for documenting a
program. They are constructed by using special geometrical symbols. Each
symbol represents an activity. The activity could be input/output of data,
computation/processing of data, taking a decision, terminating the solution, etc.
The symbols are joined by arrows to obain a complete flowchart.

Flowchart Symbols

Flowcharts are designed using standard symbols. There are symbols for various
steps of an algorithm. Most commonly used symbols are:

oo -

The oval symbol indicates the beginning or the end of a flowchart. Examples of

=D =

(b) Parallelogram

The parallelogram symbol denotes the input/output of information on any
device. For example, if we wish to indicate input for variables A, B, C, we may
show this with a flowchart as

(c) Decision 2 3

28 PASCAL PROGRAMMING FUNDAMENTALS

The decision symbol (diamond symbol) indicates the position of making
decision in a solution. The entry is indicated at corner 1, the decisions are
shown in the box, while the exit may be indicated at corners 2, 3, 4. An example
of its use is:

(in actual flowchart, numbers 1,2,3,4 of the corners are not indicated).

The above example implies the evaluation of the condition A > B first. If A is
greater than B, then the flow goes along the path indicated by YES. If A is not
greater than B, then the flow moves along the path shown by NO

Several of these symbols may also be combined to indicate the paths of
multiple decisions as shown below.

(d) Rectangle

The rectangle symbol indicates some kind of computations in the program. Say,
we wish to show the calculations

A=B+C+D

PROBLEM SOLVING AND PASCAL 29

i Find the sum of
This can be done as B,C,Dand
store in A

oras A=B+C+D

oras A~-B+C+D

An arrow appearing in the flowchart symbol implies assignment. The notation
A = B+ C+ D indicates: evaluate the sum of B + C + D first and assign it to
(A In our flowcharts, we shall adopt this notation.

(e) Arrow ;[T‘

The arrow symbol is used to connect the various flowchart symbols and
denote the direction of flow of program execution.

(f) Connector —)O (——O

The connector symbols show the connection between the various parts of a
flowchart. If in a flowchart the symbols are specified as

GEGENO

they represent the saine point.

(g) Comment
The symbol used to indicate comments on the contents of a symbol is

€—— Comment Comment —>

30 PASCAL PROGRAMMING FUNDAMENTALS

We shall illustrate the use of these symbols to prepare flowcharts and algorithms
of various problems.

Example, 2.3

Develop a flowchart for the algorithm of example 2.1.
The flowchart may appear as shown in Fig, 2.1

m |: Start]

) Climb the stairs
and reach the library

3 Search a book on
computers

4 Have the book
issued

\
(5) (Rct;lll;ﬂ“m)

Fig.2.1

It is a convention to use oval symbols at the start and end of flowchart. Numbers
of parentheses on left indicate the steps of Algorithm 2.1.

Example 2.4

Develop an algorithm and draw a flowchart to find the average of four numbers
stored in variables A, B, C, D.

Algorithm:2.4
(1) Start
(2) Read the values in variables A, B, C, D.

(3) Calculate the average from (A+B+C+D)/4 and store the result in
variable P.

(4) Write the number stored in P.
(5) Stop.

A nowchart for this algorithm may be drawn as shown in Fig 2.2. The numbers
of brackets on left indicate the steps of Algorithm 2.4 corresponding to each
symbol.

PROBLEM SOLVING AND PASCAL 31

(1)

® _
Value of A is
checked here

3)

P - fA+B+C+DV4

4 f f the value of 7 the average
and store in P

5
o G T
p

Fig.2.2

Stop
Fig. 2.3

Now, we impose a restriction that when the value of variable A is Zero, no
averaging is to be done. our algorithm shall take care of this condition.
Moreover, this condition should also be shown in the flowchart. Modified
algorithm and flowcharts will appear as:

Modified Algorithm 2.4

(1) Start.

(2) Read the values in variable A, B, C, D.

(3) Check, if the value of A is zero or not? If A =0, go to step (6), otherwise
continue with the next step 4.

(4) Calculate the average of A, B, C, D and store the result in variable P.

(5) Write the value of P.

(6) Stop.

The flowchart will be modified as shown in|Fig. 2.3
Symbol (3) ~ indicates the step (3) of the modified algorithm. In Fig. 2.3, value
of A is examined in diamond symbol. If the value is zero, the arrow marked Yes

32 PASCAL PROGRAMMING FUNDAMENTALS

goes to Stop. If the value is non-zero, the arrow marked No takes the flow to the
stage of further calculations.

The decision symbol is very useful where three criteria need be examined. We
give an example to illustrate this.

Example 2.5

Read a number. Draw a flowchart to examine if the number is positive, zero or
negative.

A number is positive, if it is greater than (>) zero. It is negative, if it is less
than (<) zero. This criteria can be used to prepare the flowchart. It may be

drawn as shown in Fig. 2.4.
(san)

[reaay [et ierue
in variable Y

Write Write / Write
Y is positive’ “Y is Zera™ iY is negauvef
(Stop ’

Fig. 2.4

_ In Fig. 2.4, when tne value of Y > 0 (that is positive), path (a) is followed.
When Y <0, path (b) is taken and when Y = 0, path (c) is followed. After
either of the paths, (a), (b), (c), the operation Write is performed and then the
Stop.

In Section 2.2, you learnt how a variable can be used as an accumulator. Such
a variable can act as a counter, that is, it can be used to perform counting. We
illustrate this by an example.

PROBLEM SOLVING AND PASCAL 33

Example 2.6
Let there be a set of numbers. It is not known as to how many numbers are there

in this set. Develop an algorithm and a flowchart to count them. Write their
values.

Algorithm 2.6
(1) Start.
(2) Define a variable M (say) which will act as a counter variable, Initialize it
to 0.
(3) Read the number of the given set in variable X (say).
(4) Increase the value of M by 1.
(5) Write the value of X and M.
(6) Gotostep 3.

A flowchart corresponding to algorithm 2.6 may be drawn as shown in Fig. 2.5.

@) M0
) M=M+1
(5 Write X, M
)
Fig. 2.5

You will see from steps (3) and (4) that when a value of X is read, M is
increased by 1. If 13 values of X are read, M will assume the value 13. This is
how M acts as a counter.

Let us examine Fig. 2.5 further. It may be seen that there is no termination
symbol. More and more data will be required as the control always goes back to
step (3). But there must be an end to reading of data. There may be many ways
of indicating this. One way of signalling end of data is by the use of a trailer datum.
A trailer datum is the last data item in a list. This may be specified by yourself.
Suppose it is 9999, (Tt could have been any other number which is not a part of

34 PASCAL PROGRAMMING FUNDAMENTALS

the given data). Store itin variable XMAX. This number must not be part of the
given set of values and should be specified as the last value. This will serve to
terminate the reading process. The algorithm of Example 2.6 will become now:
(1) Start.
(2) Introduce a variable M (say) which will act as a counter variable. Set it
equal to 0.
(3) Set the variable XMAX to 9999.
(4) Read a number of the given set in variable X (say).
(5) Compare X with XMAX. If X = XMAX, go to step 9, otherwise perform
step 6.
(6) Increase the value of M by 1.
(7) Write the value of X and M.
(8) Gotostep 4.
(9) Stop.
The flowchart of Fig. 2.5 will be modified and appear as shown in Fig, 2.6.

PROBLEM SOLVING AND PASCAL 35

The discussion and various examples of this chapter illustrate how to set up
an algorithm of a problem and represent it diagramatically. We shall learn how
to solve problems on a computer. In order to do this, it is essential that the
algorithm be coded in a language which the computer can ‘understand’. The
code is called a Program. A flowchart which represents the commands/
statements of a program is called a Program Flowchart.

There are no hard and fast rules about when to use the flowchart. It is usually
not worth while to draw the flowchart for small and simple problems; but, for
more involved and lengthy problems, flowcharts may save considerable time,
effort and trouble. Flowcharts are also of particular aid for documenting a
program which may be of general utility and is to be retained and used later on
either by the same person who prepared the computer code or some one else.

Remember: both algorithm and flowchart describe the procedure of problem
solution, the former is descriptive and notational while the later is its pictorial
represenation.

The next stage in problem solving on computers is the development of
computer codes for the algorithms/flowcharts and their execution on the
computers. This can be done by expressing the algorithm in a computer
programming language. In the following section, we shall introduce some of the
commonly used programming languages and describe Pascal in brief. Further
details of Pascal are going to be the subject matter of the succeeding chapters.

2.4 Programming Languages and Pascal

The algorithm of a problem has to be coded in a language which the computer
can ‘understand’. The computer needs precise instructions to perform any
operation. The instructions to the computer arc provided with the help of a
programming language by preparing a program. The language whose design is
governed by the circuitry and the structure of the machine is known as Machine
Language. This language is difficult to learn and use. It is specific to a given
computer and is different for different computers. Therefore, general programs
that can be run on various machines cannot be written in this language. Such a’
language is also referred to as Low Level Language. To overcome the difficulties
of a machine language, other computer languages have been designed. These are
particularly oriented towards describing the procedures for solving the problems
and are known as Algorithmic or Procedure oriented or High Level Languages.
A large number of high level languages have been developed for specific
requirements. They are easy to learn and programs may be written in these
languages with much less effort. However, the computer cannot ‘understand’
them and they need to be translated into the machine language with the help of
other programs known as Compilers or Translators.

Programming languages are available which meet the needs of any category of
users. Some of the commonly used languages for various applications are:

36 PASCAL PROGRAMMING FUNDAMENTALS

(a) Scientific and Engineering
BASIC Beginners All-purpose Symbolic Instruction
Code
FORTRAN FORmula TRANslator
APL A Programming Langauge

(b) Business

COBOL COmmon Business Oriented Language
BASIC

(c) Text Processing

LISP LISt Processing
SNOBOL StriNg Oriented symBOlic Language

(d) General Purpose

PL/1 Programming Language One
PASCAL

ALGOL 68

ADA

C
MODULA-2

(e) Artificial Intelligence (AI)

PROLOG PROgramming in LOGic
LISP

(f) Simulation

SIMULA
SIMSCRIPT

The implementation of a language on a computer depends on the computer
system. Some variations of the same language may be found on different
systems, The proper source of language implementation is always the
manufacturer’s manual.

The language Pascal was developed by Wirth in early 1970s. It was designed
to serve as a language for teaching computer programming as a systematic
discipline and also to develop reliable and efficient programs. Pascal is Algol-
based language and has many of the constructs of Algol. In fact, it includes
Algol 60 as a subset.

Computer programming languages may be characterized as: strongly typed,
typed, weakly typed and untyped or typeless. A language may be said to be
strongly typed when the following conditions are met:

(a) the types of all entities appearing in a program are defined prior to their use;
(b) every entity in the program is of unique type;
(c) mixing of types is not allowed;

PROBLEM SOLVING AND PASCAL 37

(d) value type conversion (changing the value from one type to another) is
possible only by using special functions.

An example of a strongly typed language is Ada. Languages, where conditions
(a) — (d) are not strictly fulfilled, but allow only minor but restricted violations,
are generally called typed. An example is Pascal. However, languages, where
these conditions are partly violated, may be categorized as weakly typed (an
example is Fortran 77) while those languages which do not insist on these
conditions are the typeless languages (e.g. Basic).

The advantages of having typing features in a language are discussed later in
Chapter 3.

Pascal is a typed language. It offers extensive error checking facilities during
compilation and execution phases. Moreover, there are available several data
types and a variety of programming structures. All this helps to develop
transparent, efficient and reliable programs. Moreover, program development is
simplified. It is easy to understand Pascal programs. They are easy to maintain
as well. Due to this, Pascal has grown in popularity and has been implemented
practically on all computers: personal, micro, mini, mainframe and
supercomputers. It is very popular in teaching and academic institutes.

Pascal has been used for Systems Programming as well. Systems programming
is concerned with the design, development and production of programs that are
required for the preparation, editing, translation, loading, supervision,
maintenance, control and running of computers and computer programs. Such
programs are called Systems Programs. Examples of such programs are:
Operating Systems (0.8.), Compilers, Editors, Assemblers, File Management
System, etc. Extended versions of Pascal include features to handle Concurrent
Programming as well. (Councurrent Programming refers to the design and
development of programs for parallel execution of several processes/tasks. Such
programs are used in multisuer O.S., multiprocessing systems, computer
networks and computer configurations with separate input/output processors).
Several of the features of Pascal have been included in the new programming
language Ada.

The Pascal language presented here will be the Standard Pascal version as
developed by Wirth and adopted by International Standards Organization (I1SO)
with slight modifications/alterations.

2.5 Source and Object Programs

A set of instructions of the high level language used to code a problem to find
its solution on a computer is referred to as Source Program. The computer
translates the source program into the machine language using a compiler. This
stage is the Compilation phase. All the testing of the source program as regards
the correct format of the instructions, is performed at this stage and errors, if
any, are printed. If there is no error, the source program is transformed into the
machine language program called Object Program. The object program is
executed to perform calculations. This stage is the Execution phase. Data, if

38 PASCAL PROGRAMMING FUNDAMENTALS

required by the program, are supplied now and the results are obtained on the
output device. We may indicate this process diagramatically as shown in Fig. 2.7.

Source Compil Machine
program i olﬂb’_mwm o pplicd.
l if necessary
Results
Fig. 2.7

We give below a simple example of a Pascal program which computes the area
of a triangle when its three sides A, B, C are given.

Pascal Program Example |
program TRIANGLE (input, output); (@
var A, B, C, S, AREA : real; (ii)
n (i)
readin (A, B, C); (iv)
S: = (A+B+C)/2.0;)
AREA:=sqrt (S*(S—A)*(S—B)*(S—CQ)); (vi)
writeln (AREA) (vii)
end. (viii)

This is a source program to calculate the area of a triangle. It has §
instructions numbered (i) to (viii) for reference convenience. The meaning of
these lines is explained below.

Line (i) : Indicates the name of the program as TRIANGLE and specifies
that the program will need input data and give results on an output
device.

Line (ii) : Declares variables A, B, C, S and AREA as of real type.

Line (iii) : Specifies the start of program execution.

Line (iv) : This instructs the computer to read data values for variables A, B,

Line(v) : Here half the sum of value of variables A, B, C is calculated and
stored in variable S.

Line (vi) : This line causes the calculation of square root of the quantity
$(S-A) (5-B) (8-C) and the result is assigned to variable AREA.

Line (vii) : The value of AREA'is written on the output device.

Line (viii) : It singles the end of the calculations.

Lines (i) to (viii) constitute a Program. Lines (iii) — (viii) form the body of the
program while line (ii) constitute the declaration part of the program. Line (i)
assigns name to the program.

Pascal programs must have this structure, that is, a program naming/heading

PROBLEM SOLVING AND PASCAL 39

~ statement, declaration and execution part, strictly in this order. We shall discuss
" more about these in later chapters.

Computer programs are made up of Statements. A statement specifies a step
of a program. The step may pertain to declaration, assigning data, reading of
data, writing of data, taking logical decisions, transfer of program execution
control, and so on. All statements are designed using some specific Pascal
word(s). In the illustration Program Example 1, Pascal words have been shown
as bold lower case. These are program, input, output, (line i); var, real (line ii);
begin (line iii); readln (line iv); writeln (line vii) and end (line viii). Such words
are refered to as Reserved words. A complete list of Pascal reserved words is
given in Appendix II. A reserved word gives a specific information to the Pascal
compiler. It mubt be spelt and used as defined by the language. Moreover,
reserved words are recognized only when they appear at the appropriate place
and proper context. They should be used only for the purpose they are defined
in the language. Pascal does not allow their redefinition,

In the text, we shall represent all reserved words by bold lower case letters,
while the user-defined letters/words will be denoted by capitals. Comments in a
Pascal program, enclosed within curly brackets | |, will include both lower and
upper case letters. This is the convention pursued by us. However, Pascal does
not put any restriction on the letter/words being lower or upper case. Even
mixing of lower and upper case letters is allowed in defining names, etc.

2.6 Features of Computer Programs

To solve any problem on a computer, its program has to be developed. All
computer programs, may be application; system or of any other type, are_
referred to as Software. (All electronic and mechanical components, forming the
computer system, are known as Hardware). The cost of software is increasing day
by day while that of hardware is decreasing. Software is becoming expensive due
to its enhanced sophistication and increasing cost of human labour and scarcity
of trained manpower. Hardware costs have come down because of great
advances in electronics technology.

Software systems (collection of computer programs that can cross-reference
and interact among themselves) have become very complex. Designing software
system is an activity that demands much intellectual capability, logical approach,
human efforts and resources. The discipline of planning, designing, creating,
managing, maintaining, etc. has come to be known as Software Engineering. It
also includes the development of techniques that reduce high software cost,
measure software performance, increase reliability and enhance portability, etc.
Programming language is a tool for the development of software systems. So any
language that is used should be such that the software system has the following
main qualities.

(i) Reliability
The software system must be reliable, that is, it should work as intended and

40 PASCAL PROGRAMMING FUNDAMENTALS

lead to correct results. Software is correct if it behaves according to
specifications.

(i) Maintainability

The software system should be such that it is easy to understand and fix the
occurrence of bugs whenever they occur. (Remember that a software system is
never bug free). It should be maintainable with reasonable resources and efforts.

(iii) Modifiability

Due to high costs of software systems, they cannot be easily dispensed with.
Existing software must be easily modifiable and expandable according to the
new and varying requirements.

(iv) Efficiency

This implies that the software system functions efficiently under the given
resources of time and memory. Normally, a software system is said to be
efficient if it occupies less memory and takes minimum execution time. If a
software system occupies less memory, it may take more execution time. On the
other hand, if it is to be executed fast, then it may need more memory.
Generally, it is difficult to satisfy these two requirements simultaneously and
they need considerable skill and time on the part of the programmer.

The above characteristics of a software system can be achieved by
appropriate software development strategies and programming languages. The
choice of progrmaming languages becomes very important as this has great
impact on the qualities of the programs. The computer programs (constitutents
of the software system), that are designed using the language, must have the
following essential features.

(a) Clarity: implies the easy readability of the program and proper
documentation.

(b) Security: refers to detection of errors in a program by the computer.
Errors may be detected during the compilation phase or the execution
phase. Earlier the errors are detected, better it is.

(c) Transparency: implies the ease with which we can understand a program
and know what it is doing. The more transparent a program, better it is.

(d) Integrity: refers to the accuracy of the computations and results.

(€) Modularity:implies that the programs be developed using simple units in
the form of modules and subprograms.

(f) Generality: means that the programs should be of general nature so that
they can be used under different situations and requirements.

(g) Efficiency: signifies that the program should be executed fast and occupy
less memory space.

(h) Structured design: implies that programs be designed using some basic
constructs of the language only.

PROBLEM SOLVING AND PASCAL 41

(i) Portability: refers to running the same program on different computer
systems without any or minor changes only,

If a program has the features (a) — (i), then the software system developed
using these programs as the components, is expected to meet the requirements
of realiability, maintainability, modifiability and efficiency. Some of the
properties (a) — (i) may have certain contrary specifications, and balance has
to be achieved for the development of a good software system.

Modern programming languages, such as Pascal, Ada, PL/I, C, Modula -2, etc.
help to design programs which may have features (a) — (i) to a sufficient
measure. Here, our aim will be to learn Pascal and use its features to develop
programs and illustrate how the characteristics (a) — (i) appear in the Pascal
programs.

We shall develop programs for simple problems to explain principles of
Pascal constructs and their use. There are always many ways to write a program
for the same problem. We shall be giving only one way of writing the program.
Sometimes, the given program may not emphasize features (&) — (i). We will be
doing so purposely to high light certain other features of the language.

Structured Programming is a methodology which is very commonly used to
develop programs and software systems. We shall attempt to follow this
technique as far as possible. For the present, you need not bother about it.
However, after having learnt control and iterative statements, you read Chapter
15 and understand Structured Programming.

2.7 Syntax Diagrams

The syntax of all the symbols, characters, and other entities, such as constants,
variables, statements, functions, and so on, occurring in Pascal language can be
described by Syntax Charts or Diagrams. They indicate completely the syntactic
specification of Pascal entities. Syntax diagrams are useful because they give
pictorial representation of the language constructs. We shall explain briefly the
design of syntax charts here so that they can be introduced in our discussion
later.

Every language, may be English, Hindi, Punjabi, French, etc. has its own
syntax. Syntax of a language is a set of rules by which various entities occuring in
that language are defined. For example, take the case of English. There are
words, sentences, paragraphs, etc. Words are made up of letters, sentences are
made up of words, punctuation marks. Similarly, paragraphs are designed by
sentences. Syntax diagrams may be used to show the design of words, sentences
and paragraphs. We demonstrate how these entities may be represented by
syntax diagrams and then go over to the syntax diagrams for Pascal.

English has its own alphabet consisting of letters A-Z, a-z, punctuation marks.
For convenience, we consider only the small letters and commonly used
punctuation marks , ;!.? -. We make the following convention for
representation:

(i) Every occurrence of the basic symbol, such as a letter, which cannot be

42 PASCAL PROGRAMMING FUNDAMENT. A!..S

defined in terms of other quantities/symbols, is represented in the syntax
diagram by an oval symbol.

(ii) Punctuation mark is represnted by enclosing it a circle.

(iii) The entities that are further defined by other diagrams are represented by
rectangles.

Thus, we use only three symbols shown in Fig 2.8.

C:O

Circle Rectangle

Fig. 2.8: Syntax diagram symbols
to prepare the syntax diagrams. These symbols are connected by arrows.

(iv) the repetition or recursion is represented in the chart by the graph that
traces back to itself. An illustration is given in Fig. 2.9(a).

(@))

—,

Fig. 2.9: Repetition and recursion in syntax charts

Diagram 2.9(a) implies that the repetition of A must take place at least once. For

the case that the repetition may or may not take place at all, Fig. 2.9(b) should
be used.

We apply the conventions (1) (iv) to represent entities in English language.
= You know that the letters i, 0, u, a, e are the vowels. We say that a vowel may
be i| o] u] a| e|. (The symbol | implies OR). These are the basic symbols so
we can represent a vowel by a syntax chart as shown in Fig. 2.10.

Vowel

Fig. 2.10: Syntax chart of a vowel

PROBLEM SOLVING AND PASCAL 43

This chart indicates that a vowel may beiorooruoraore.
= A word consists of repeated letters, so a word may be represented as shown

inFig.2.11.

<

Fig. 2.11: Syntax chart of a word
= An English sentence consists of words and punctuation marks. Consecutive
words are separated by spaces. For simplicity, we assume that blank space

(denote it by b) is also a punctuation symbol. The syntax diagram of
punctuation symbols may be drawn as showin in Fig. 2.12.

Punctuation mark

ITTITII

Fig. 2.12: Syntax chart of a punctuation mark

= The syntax chart of a sentence appears as (Fig. 2.13).

Sentence

Word

mark
.Fig. 2.13: Syntax diagram of an English sentence

A paragraph is a repeated collection of sentences, so its syntax chart is
straightward.

Thus, we observe that the structure of the common English language entities
and constructs can be easily described in terms of the syntax diagrams.

44 PASCAL PROGRAMMING FUNDAMENTALS

The syntax diagrams of Pascal language entities and constructs can also be
prepared similarly. In order to do so, let us see what constitutes Pascal
programs. Every Pascal program consists of

* reserved words

® operators and separators
® user-defined entities

These entities are combined or used according to well-defined rules of Pascal
language. These are the Syntax rules. (You will learn these while studying Pascal
language and program writing). All Pascal constructs are designed using the
above entities. In order to prepare syntax diagrams, we introduce the following
notation :

(a) Oval: to represent the Pascal reserved words

(b) Circle: to denote the characters of the Pascal character set (Chapter 3).

(c) Rectangle: to represent a syntactic entity which can be defined by another

syntax diagram.

The notation, introduced above, is similar to what we had for English
language, except that now entitics of Pascal language are to be used to design the
syntax charts.

We shall illustrate the design of syntax diagrams for a few entities here and
defer the description of others.

*Digits maybe 0| 1]2|3[4]...|9 in Pascal. Its syntax diagram is as shown
in Fig. 2.14.

03333338

Fig. 2.14: Syntax chart of a digit

* The syntax chart of an identifier appears as given in Fig. 2.15.

Identifier [| Letter h

Fig. 2.15: Syntax diagram of an identifier

W

PROBLEM SOLVING AND PASCAL 45

* The syntax diagram of a Pascal program is as shown in Fig. 2.16.

Fig. 2.16: Syntax diagram of Pascal Program

‘We shall describe the Pascal syntax diagrams further as we go along. As you
will note that such diagrams are a powerful tool for defining the language
constructs and other entities. The complete syntax diagrams of Pascal are also
given in Appendix V for ready reference.

Syntax diagrams help us to give the syntactic specifications of the language
entities and constructs. There is another way in which the syntactic
specifications may be described. This is what is known as the Backus—Naur
Form (BNF). BNF was originally developed by Backus and Peter Naur for the
specification of the syntax of Algol 60. This method of specification has been
widely used in the field of Computer Science since then. The various entitites
and constructs of Pascal can also be expressed in the BNF. We have given these
.12 Appendix 1V. The reader can understand it easily by going through it carefully.

The syntax diagrams and BNF descriptions of language syntax are
equivalent—the former is pictorial while the later is notational and descriptive
representation, The reader is urged to inderstand both of these.

In this chapter, we have explained the process of problem solving on
computers and other elementary concepts. The last step is the development of
computer programs and their execution. You have to learn Pascal and write
programs in this language. This is what is going to be covered in the subsequent
chapters.

Exercises 2
2.1. Complete the following es:

(a} A variable is 2 symbol which may assume different.......... at different times.

(b) A flowchartisa.......... representationofthe..........

(c) The most common symbols used to design flowchartsare..........

{d) The computer needs precise.......... to perform any task.

(e} The language, whose ﬂcslgn is governed by the circuitry and structure of the machine,
isknownas..........0T........eee language.

(f) High level languages are a.lso knownas............ [

(g) Pascalisa............language.

{h) Systems programming is concerned with............

46

PASCAL PROGRAMMING FUNDAMENTALS

(i) Concurrmt prugrml.mmg refers to the design and developmentof for....
of P /tasks.

{j) The computer translates the programinto.......... language usinga. ...

(k) Progn or imming is a tool to develop .. . systems.

(1) The discipline concerning phnmng. dﬂigrung. creating, managing, maintaining,
measuring software reliability and performance is knownas..........
(m}Thmpomtquﬂmuofmyw&mremlmﬂwuldbe aereaaaas weeen

e

2.2. Tick the correct words in the following sentences :

{a) The value of a constant/variable does not change in a program.

(b) The symbol used to indicate the start of a flow diagram is oval/rectangle.

fe) A algorithm/flowchart can be used to represent pictorially the procedure to solve a
problem.

(d) High level language programs are generally portable/unportable.

(=) Pascal offers good/poor error checking facilities during compilation and

phases.

[I'}Eucma.ld.nmare pplied to any program (if needed) during pilation/
phase.

{g) Pascal program has a pre/un-defined structure.

(h) A software system is said to be efficient if it occupies less/more memory and needs
large/small execution time.

(i) Accuracy of the computations and results is referred to integrity/security of a

program.

(i) Structured/modular design implies developing programs using only some basic
construmofthelanguagg.

{k) Clarity/ ¥ y imp easy dability and proper documentation of the

program.
(1) The syntactic specification of Pascal entities can be described by flow/syntax charts.
(m) The syntax disgrams and BNF descriptions of language syntax are equivalent/
different.

2.3. What do you understand by Problem Solving on Computers? Explain the various steps

involved in this process.

2.2. Define an algorithm of a problem. What should be its characteristics?

2.5. Develop an algorithm to host your birthday party at your residence.

2.6, Designan algorithm to make a long-distance telephone call to your girl/boy friend.

2.7. What do you understand by ‘data assignment to a variable’? Assign 7.8, 13.13, 113.13, - 2.3,

1313 to variables A, B, C, D, E respectively.

28 LetP=2.13,Q=-16.23,T= 1.806. Consider

R~ P+Q+T
P-P+T
T+~P+R
What will be the new values of P, R, T?

2.9 How can a variable be used as a counter? Illustrate by an example. What is the utility of such

a facility?

2.10. Draw the basic flowchart symbols. Explain the need and use of flowcharts.

2.11, Prepare flowcharts for exercises 2.5 and 2.6,

212

2.13.

2.14.

2.15.

2.16.

217
1.18.

2.19.

2.20.
2.21.
222,

2.24.

PROBLEM SOLVING AND PASCAL 47

‘The roots of a quadratic equation
axt+bx+c=0

are given as

x_-b+4'b:—-4nc

2a

Here a, b, ¢ are parameters whose values are given. Develop an algorithm and a flowchart 1o
calculate the real roots of the quadratic equation.

Develop an algorithm and a flowchart to find the L.CM. and H.C.F. of two positive integer
numbers.

Prepare an algorithm to prove that a parallelogram is a square if and only if its diagonals are
equal and are at right angles to each other. Draw the flowchart of your algorithm.
Who designed Pascal? What were the objectives behind its design? Mention its main areas of
applications.
Explain

Source Program

Object Program

Compilation phase

Execution phase

Reserved Word

Systems Programming

Concurrent Programming
BNF

What is a Software System? Describe the salient characteristics which any software system
must have.

Explain the important features that every program should have.

Bring out the f of gly typed 1 ges. Give examples of strongly typed, typed,
weakly typed and typeless p ing 1 Give the need of having Type featares in
a language.

What is a syntax diagram? Explain its singificance by giving examples.
What is a program? Give the structure of a Pascal program and draw its syntax chart.
Prepare syntax charts for the following:

(a) assume that a letter can be any of the capital letters A-Z or small letters a-z,
(b) un English language paragraph,

(c) colour which can be violet/indigo/blue/green/yellow/orange/red,

(d) binary digit,

(e) hexadecimal digit,

{f) an unsigned integer number.

Red the syntax diagram of a e using the symbols oval and circles only. Study this
diagram carefully and enumerate the type of sentences that can be designed with this chart.
Is there any type of English sentence that cannot be g d from this diagram?
Study the BNF representation of Pascal given in Appendix V. Use it to describe

{(a) digit (b) letter (c) constam

(d) variable {e) vowel () punctuation symbols

(g) English sentence

48 PASCAL PROGRAMMING FUNDAMENTALS

2.25. Explain the meaning of the following Pascal syntax charts :

(a)

Variable

(b) Ficld identificr

Simple expression

(e) | Torm |

kG)JI_-J

® O

2.26. Discuss the differences between syntax charts and flowcharts.

Chapter 3

Elementary Concepts and Primitive Data
Types

We have seen that a computer program can consist of many quantities (entities)-
constants, variables, functions, operators, and so on. Each quantity has a specific
meaning and can be used in a program according to pre-defined rules of the
language. Morever, all the quantities are designed according to certain syntax
rules. We shall introduce the basic quantities such as character set, numbers,
identifiers, data types, etc. and illustrate their use in the design of expressions,
statements and programs as we go along.

3.1 Character Set

Pascal is a written language. Like any other language, it has its own character set
or alphabet. All the quantities defined in Pascal are constructed using the
- characters from this alphabet. The character set is

Letters : A-Z (upper case)
a-z (lower case)

Digits : 0-9

Specialsymbols: + — * / = Ol <= = > 2
<> {}*blank (We shal] mdlcaie a blank space by the symbol
b in the text)

The characters do not have any significance by themselves. They are assigned
meaning when used in an appropriate defined context according to the rules of
Pascal language. As for example, the symbol / (slash) is interpreted as division
operator when it has operands preceding and following it as 13.13/5.0.

3.2 Numbers

A number is defined by using the digits and the decimal point (.). A number may
be positive or negative. A negative number is indicated by specifying the minus
sign (—) before it. Use of plus sign (+) before a positive number is optional. No
other special symbol is permitted to be used in a number.

Numbers may be of two kinds: integer and real.

50 PASCAL PROGRAMMING FUNDAMENTALS
Integer Number

An integer number is a number without a decimal point. It is a whole number,
no fractionai part. Examples of integers numbers are

Valid
7.

-13
27

+12493
1]

Invalid Reason

481 contains the decimal point
345,691 has the special character comma (,)

Real Number

A real number is a number with a decimal point. At least one digit must precede
and succeed the decimal point. Thus, the decimal point should never appear at
the start or end of the number. Examples of real numbers are:

Valid
0.2
—11.346
+23.45
123.0
~0.00067
Invalid Reason
456 decimal point missing
85. decimal at the end is not followed by at least one digit
4,326.3 special character comma (,) not allowed
3598.0- blank () in a number not permitted
A3 decimal at the start should have at least one digit

before it.

A real number can also be written in another form, called Exponent form. In
this form, a real number consists of two parts : a decimal part and an exporient
part. Consider

23.456 = 23.456 X 10°
= 2.3456 X 10!
= 0.2345 %X 10?
= 2345.6 X102

t 1
decimal exponent part
. part
and so on

ELEMENTARY CONCEPTS AND PRIMITIVE DATA TYPES 51

Here 23.456 is a number in the decimal form, while all other representations are
in exponent form. The exponent part is a scale factor expressed as an integral
power of 10. The power may be negative or positive. The part preceding
exponent part, that is decimal part, is called the Mantissa. The mantissa may or
may not carry the decimal point. When not specified, the decimal is assumed to
be after the last digit. Symbol E (or ¢) is used to denote the base 10 of the
exponent part. [llustrations of exponent form of real numbers are:

Valid

23.7E-8

3489E+12

13E7

—0.49e+13

Invalid Reason

7.E-5 decimal at the end of the mantissa not allowed by a digit
E9 mantissa missing

1.8E digits following E missing
43,123 E—-11 mantissa contains comma
—6.93e4.0 exponent must be an integer
16634 E-25 blank in mantissa not allowed

When the decimal in the mantissa appears at the leftomost position, the number
is said to be in a Normalized Exponent form. Examples are: 0.123E+6,
0.1934E—10, —0.627E+27, and so on. Real numbers in the computer memory
are stored in the normalized form as shown in Fig. 3.1.

Mantissa Exponent

t 1
Sign bit Sign bit
Fig. 3.1: Storing numbers in the normalized form

Mantissa and exponent part may have any sign, + or —. Their signs are
indicated in the computer storage according to the system of numeric data
representation in the computer memory.

3.3 Identifiers

Various entities such as constants, variables, types, functions, procedures,
records etc. occuring in a Pascal program can be assigned names. The names
serve 1o identify them. The technical word for name is Identifier.

An identifier is a sequence of letters and digits which must always begin with a

52 ' PASCAL PROGRAMMING FUNDAMENTALS

letter. Special symbols and blanks are not allowed to appear in an identifier. An
ideniifier may be as long as you wish, but actual Pascal implementations place
restriction on the length of the identifier. Normally, the first 8 characters of an
identifier are recognized by most Pascal compilers. Thus, identifiers denoting
different entities in a program must differ in their first 8 characters. (In the text,
we shall use identifiers consisting of any number of characters). Moreover,
there is no restriction on whether to use upper-case or lower-case letters while
writing identifiers. In fact, even mixing of lower and upper-casc letters is
allowed. This is a very useful facility available in Pascal and should be followed
as it increases the readability of the Pascal programs. For instance, the identifier
RateofInterest is more readable than either RATEOFINTEREST or rateof
interest. (However, in this book, we have indicated the user-defined identifiers
by capitals for convenience of explanation in the text and to avoid the confusion
which is likely to occur due to mixing of lower case words/names with other
matter.)
The syntax diagram of an identifier appears as down in Fig. 3.2.

= h
Letter L ,[I >

;Fig. 3.2: Syntax chart of an identifier
Reserved words are not allowed to be used as identificrs (Appendix IT).
Examples of valid and invalid identifiers are:
Valid
A22
Velocity
ROOT2
PAYROLL
TRIANGLE
INCOMTAX

Invalid Reason

3DOWN begins with a digit, the first character must be a letter
LIGHT-SPEED contains special symbol

BEGIN reserved word

AREA.4 decimal not permitted

Identifiers may be assigned certain attributes, such as integer, real, boolean, etc.
This is done by declaring them of particular type.

3.4 Data Types

You have seen that numbers may be integer or real. Numbers, such as 6, 61,

ELEMENTARY CONCEPTS AND PRIMITIVE DATA TYPES 53

—89, 1313,...... are integers and are referred to as of type integer. Similarly,
numbers 6.6, 71.29, —111.3, 0.39999 e+11, are real and are said to be of
type real. Various quantities such as constants, variables, etc. occuring in a
Pascal program must have a type associated with them. There can be one and
only one type associated with an entity. The type of an entity establishes the
following information about it:

e its meaning

e constraints applicable to it

© possible values that the entity can assume

e operations that can be performed with/on the entity

« functions that can be used with it

o mode of storage in the computer memory

Say, for example, PART is an identifier of type integer; then it can take only
integer numbers as its values and that too within a certain defined range of
numbers, depending on the Pascal compiler. Suppose the range is from
—9999999 to +9999999. If PART is assigned any other value, it will be treated
as a mistake.

Other examples of data types are boolean and character. Integer, real, boolean
and character types are referred to as Standard or Primitive data types. They are
automatically provided as part of the Pascal langauge. The user can also define
his own data types as per the requirements of his program and the specific needs
of the problem. Examples being subrange and enumerated data types (Chapter
6). This is a very important facility available in Pascal.

Data types may be characterized as Scalar and Structured type. Examples of
scalar data types are integer, real, boolean, character, subrange and enumerated
(Chapter 6). Structured data types are formed from scalar types. Arrays,
records, files and sets are examples of such data types. Pascal also supports
another data type called Pointer data type. All the data types available in Pascal
are summarized in Fig. 3.3. We shall confine our discussion to scalar
data types here and defer the discussion of structured and pointer data types to
later chapters.

Dm’T‘!Pﬁ
o - e
Armay Record File Set
Standard Uu:r-dlﬁned

| l
I N |

Integer Real Boolean Character E d

Fig. 3.3: Various data types available in Pascal

54 PASCAL PROGRAMMING FUNDAMENTALS

The existence of a large number of data types is quite useful. The user can
choose the right kind of data type or define a new one according to his
requirements. Pascal compiler imposes certain rules and restrictions on the use
and specification of data types. Due to this, Pascal is also called a ‘typed’
language. Major advantages of having the data type facility in a language are:

* Once the data type of an entity is defined, the compiler is automatically
informed of the possible attributes, values, and operations that are permitted
on that entity.

* The data types enforce discipline and consistency of use on the part of the

; programmer.

"‘IData types provide protection from certain programming errors.)

* Inconsistent use of data types is automatically pointed by the compiler. _

These concepts will get clarified as we go along and learn more about the use
of data types.

3.5 Type Declarations

The type of an identifier must be declared. This can be done with the type
declaration.

type
type-identifier-1, type-identifier-2, = type-specifier

oras

type
1type-identifier-1 = type-specifier-1 ;
1type-identifier-2 = type-specifier-2 ;
where
type-identifier user-defined identifer which can be used to define the
type of other entities.
type-specifier may be integer, real, boolean, char, user-defined

or other permitted Pascal type.
The sign of equality (=) separates the fype-identifierand the type-spécifier.
Let us first study the standard data types.
(a) The type integer

The type integer allows to represent, store and manipulate integer entities. We
can define constants, variables, functions or expressions of integer type. Pascal

ELEMENTARY CONCEPTS AND PRIMITIVE DATA TYPES 55

defines the various operations and operators allowed with integer type of
quantities. For example, the following arithmetic operators can be used with
integer type entities: *, + , —, divand mod (see Chapter 4 for more details).
An integer number may vary from — < as + o, but, you know that the
maximum number that can be stored in a computer memory, depends on the
word size. For example, a 16-bit word can store a maximum integer constant as
32767 while a 32-bit word can store 2*'—1=2147483647. Pascal defines an
implementation-dependent standard identifier maxint. The integer type
consists of all the values in the range:
—maxint to +maxint

Suppose we wish to define DAYS, EXPENSES of type integer. This can be
done as follows:

DAYS, EXPENSES = integer ;
(b) The type real

The type real allows to define, store and manipulate real entities, such as
constants, variables, functions, expressions, etc. Different opeators are also
defined for them. For example, the allowed arithmetic operators are: *, / , +,
and —, (for further discussions, see Chapter 4).

Suppose, we wish to declare identifier MONTH, AREA as of type real. This
can be done as:

type
MONTH, AREA = real ;
(c) Thetype boolean

The type boolean enables us to define, store and manipulate logical entities,
such as constants, variables, functions and expressions, etc. The operators
defined for such type of data are: and, or, not.

Say, we want to define identifiers IC, YES and TRUTHVALUE as of type
boolean. This can be done as;

1C, YES, TRUTHFALUE = boolean ;
(d) Thetype char
The type char (character) allows us to define and manipute character quantities:
constant, variables, functions, etc.

Suppose it is desired to declare BOOK, AUTHOR as identifiers of type
character. It can be done as follows: .

BOOK, AUTHOR = char ;

56 PASCAL PROGRAMMING FUNDAMENTALS

The type specification of the identifier only defines its type and nothing else.
The semicolon used after the type specifier signals the end of declaration and
acts as a separator. There may be several and different declarations on the same
line. As for example, the following declarations

type
A,B,C : integer; P,Q:real ; BB : boolean ;
on a single line are allowed.

3.6 Constants

A constant is an entity which remains unchanged during the execution of a
program. Pascal allows the following kind of constants as shown in Fig. 3.4

Constants

Numerical Logical String or
Character

Fig. 3.4: Type of constants

Numerical Constants

Numbers, integers or reals, are examples of numerical consants. Such constants
are used in arithmetic expressions and can be assigned to numeric variables
only.

Logical Constants

There are only two logical constants: true and false. These can be assigned to the
logical variables only.

Character Constants

A sequence of characters is called a String. The characters may be numeric,
letters, blank, special characters or a combination of these. Examples of strings
are : A1B/C, PAYINGBGUEST, RAM and so on. When a string is enclosed
within quotes, it is called a String or Character Constant. Examples of such
constants are:

‘A1B/C
‘PAYINGOGUEST’

If a quote appears in a string, such as
‘MY FRIEND'S FATHER’

ELEMENTARY CONCEFTS AND PRIMITIVE DATA TYPES 57
then an additional quote is inserted with the existing quote and the entire string
is further enclosed between quotes as

‘MY FRIEND"'S FATHER’

Constants may be assigned names as well. This is done in the declaration part
of the program by specifying the declaration const. Its format is

const
identifier= constant
where
identifier name by which the constant will be known in the
program
constant constant value

the equality sign which assigns the value to the identifier
Examples of constant declarations are

const
LIGHTVELOCITY = 3.0E+10; (real)
PIE = 3.14159 ; (real)
HEIGHT = 345 ; (integer)
AUTHORNAME = ‘NANAK SINGH'; (string)
OPERATOR =+, (string)
LOGICALCONSTANT = true; (boolean)

The type of the identifer is the same as that of the constant as indicated on the
right. In the same declaration, the following type of specification is not allowed:

const
X=20.13;
Y=X
Moreover, a name cannot be assigned to an expression consisting of constants,
such as

const
A=3%13

or a variation of this.

All the constant declarations must be given before variable declaration in a
Pascal program.

The use of constantidentifiers normally makes a program more readable. It also
helps in documentation of the program. Moreover, it enables the programmer to
club together special quantities (may be machine dependent or example
dependent) at one place at the beginning of the program where they can be
easily modified, added or deleted. This helps to make programs portable.

58 PASCAL PROGRAMMING FUNDAMENTALS
3.7 Variables

A variable is an identifier which always refers to the computer memory space
where some datum can be stored. This datum is said to be the value of the
variable, A variable can assume different values in a program at different stages
of the program execution.

All variable identifiers appearing in a program must be declared before their
use. The syntax of a variable declaration is:

var
list-1; type-specifier-1;
list-2 : type-specifier-2;
list-3 : type-specifier-3;

where
var keyword which indicates that the identifiers following
it are variables,)
list-1, list-2..... variable names scparated from each other by comma,
type-specifier type of identifiers; may be integer, real, boolean,

char, user- defined or some other allowed type.

list and type-specifier must always be scparated from each other by a colon (3).
The semicolon separates the different declarations.
Examples of variable declarations are

var
DAYSOFMONTH : integer ;
XY, Z : real ;
BOX, BYTE : boolean ;

MYNAME, YOURNAME : char

Here DAYSOFMONTH is an integer variable; X, Y, Z are of type real; BOX,
BYTE are boolean variables while MYNAME and YOURNAME are character
variables.

A value assigned to a variable should be of the same type as the type of the
variable, that is, twpe of value and variable should march, otherwise Pascal
compiler will give an error. However, there is one exception to this rule. Real
and integer type may be mixed under certain conditions as we shall see later.

A value may be assigned to a variable by an Assignment statement using the
assignment operator :=as (see Chapter 5 for more details).

DAYSOFMONTH := 30;
X = 103;
BYTE := true;
YOURNAME := ‘MONA’

ELEMENTARY CONCEPTS AND PRIMITIVE DATA TYPES 59

Thus, a character variable is assigned a string constant while a boolean variable
must be initialized to true or false values. In the case of numeric variables, there
is a little flexibility which is: a real variable may be assigned a real number or an
integer number as its value. When the value is integer, then it is converted inio
the real form and stored inside the computer memory at a place specified by the
variable name. It may be mentioned here that there is a distinction between an
integer number of type real and an integer number of type integer. For example,
5 is integer while 5.0 is real, though integer in value. The numbers 5 and 5.0
have different representations in the computer memory.

We have seen that an identifier may be assigned a type or in other words, a
type can be identified by an identifier. This rype identifier can be used to define
variables of that fype. This is as follows:

type
id-1l = ¢l;
id-2 = £2;

var
abc..... tid-1;
J N A 1id-2;

Here identifier id-1 is of type t-1 while id-2 is of type +2 and so on. Next, the
variables a, b, c..... have been declared to be of type id-1, that is 1, whereas
variables p, g..... have been declared of type id-2, that is, 2.

Types ¢-1, t-2 may be standard or user-defined. The above procedure is
an alterantive way of defining type of variables.

We have seen that Pascal allows the declaration of type, constants and
variables separately in a program. These declarations must be specified in the
order as:

const declaration
type declaration
var declaration

otherwise error will occur.

The reader should appreciate the differences between type declaration and var
(variable) declaration. With type specification, we can indicate the category/class
of identifiers (such as integer, real etc.) whereas the variable specification implies
the type of values which the variable name can assume. Moreover, the variable
identifier refers to the memory locations where the value of the variable is going to
be stored. There is no such thing associated with the type declaration.

60 PASCAL PROGRAMMING FUNDAMENTALS
3.8 Standard Built-in Functions

Several functions are supplied as part of the Pascal system. They are called
Built-in or Library functions. Such functions have pre-defined names. Each has
an argument which is always enclosed within parentheses. Functions are available
which operate on quantities of different types. Let us study them separately.

(a) Arithmetic built-in functions

(i) Functions for the real data type which produce real results (x is the
argument of the function which should be real)

o abs(x) | x|

® sqr(x) x?

e sin (x) sine of x X

® cos(x) cosine of x in

e arctan(x) tan~" (x) radians

e In(x) naturallogofx (x> 0)

o exp(x) e

e sqrt Jx (x=0)
(if) Functions that produce integer results (y is argument of the function

which should be integer)

® abs(y) Iyl

* sqr(y) y:

 trunc(x) x is real; trunc (x) returns intger part of x as its value while
decimal part is dropped; for example, trune (6.3) = 6 _
® round (x) x is real; round (x) rounds the value of x to the nearest
integer; for example,
round (3.6) = 4
round (—3.4)= —3

In fact, round (x) gives the same value as trunc (x+0.5). This is true for both
positive and nggative values of x.

(b) Boolean built-in functions

® odd(y) returns the value true if integer y is odd, otherwise value is
false

® eoln (F)t returns the value true if the end of a line in a file F has
been reached, otherwise value false is returned.

e eof (F)t returns the value true if the end of the file F has been
reached, otherwise value false is returned

$The reader may skip these functions for the present.

ELEMENTARY CONCEPTS AND PRIMITIVE DATA TYPES 61

(c) Character built-in functions
The characters in the character set are ordered according to a predefined
sequence during the Pascal implementation. This is referred to as the Collating

Sequence. This sequence may vary from computer to computer system. For
illustration purposes, we assume the following sequence:

® the lower case letters have the sequence: a, b, zsuch thata < b < ¢
<o <z

* the digits follow the natural sequence: 0,1, 2, 9,suchthat0 < 1 < 2
<....<9,

® the set of digits follows the set of letters,
Thus, we assume that the letters and digits have the sequence
a,b,c,...... ,2,0,1,2,3,........ 9

This enables us to define a one-to-one correspondence between the above
sequence and a set of integers as

a b ¢ d e 2 0 1 2 3 ...9
0 1 2 326 27 28 29 35 + ordinal values

Thus, each character has an integer number associated with it. This number is
called the Ordinal number or value. All characters in Pascal set have a unique
ordinal value which is implementation dependent. To obtain the precise ordinal
value of a given character, reference to the installation manual should be made.
However, for our discussion, we shall assume the above ordinal values.
Moreover, boolean constants false and true are also ordinal. false precedes true.

Pascal defines functions which enable to find the ordinal numbers of
characters in a character set or the reverse of this. It is also possible to locate the
succeeding and preceding characters/numbers in a set. Such functions are
discussed below:

® ord (‘character) takes a character argument and returns an integer
value which represents the ordinal value of that

character,
Examples are
ord (') =0
ord (‘d)=3
ord (9) =35
e chr (J) takes the integer ordinal number J as its value and
returns the character corresponding to that ordinal
: value.
Examples are ue
chr(3) =d
chr (35) =9’

chr (6) =g

62 PASCAL PROGRAMMING FUNDAMENTALS

In general, if Cis a character, then
chr (ord (C)) = C

If Jis an integer in the range of ordinal values corresponding to the character set,

then
ord (chr (J)) = J
We have seen that integer, real, boolean, character or enumerated-type can be

of scalar or structured type. Further, we can associate ordinal numbers with -
integer, boolean, character and enumerated data types only. Due to this, these are -
also known as Ordinal Data types. Why can't we associate an ordinal number .
with real data type (?). Each value of a given ordinal type has a unique
predecesser and a unique successor. This can be obtained by the use of two built-

in functions. These are

® the predecessor function
pred (x)
where x the argument whose type may be an integer, character or boolean. The
function pred (x) returns the value preceding x.
Example of pred function are:
pred (b’)="a’
pred (5)=4
® the successor function

succ (x)

where x the argument whose type may be an integer, char or boolean; the function
suce (x) returns the character succeeding character indicated by the argument x.
Example are :

succ ('b") = ‘¢’

succ (8)=9

The following relationships exist between the character functions

pred (x) =chr (ord (x)— 1)
succ (x) =chr (ord (x) + 1)

The function pred and succ can have integer and boolean arguments as well. In
the case of boolean constants, true succeeds false. As for example.

pred (10)=9

succ (25) =26

pred (true)= false

pred (false) = not defined

ELEMENTARY CONCEPTS AND PRIMITIVE DATA TYPES 63

The actions of these functions are summarized below:

Function Ideniifier Argument type Result type
ordinal ord character integer
character chr integer character
predecessor pred character/integer character/integer
successor succ character/integer character/integer

The names of built-in functions are reserved words and should not be used as
identifiers. While developing programs, built-in functions should be employed
wherever required. They save coding effort and computing time as they have
been developed by experts and written in an efficient way.

In this chapter, we have considered the standard data types as defined in
Pascal language and are automatically available to the user. As mentioned
earlier, the user can define his own data types as well. Most of the built-in
functions are applicable to the user-defined data types also. We shall defer the
discussion of such data types to Chapter 6. Next, we go over to describe the
use of constants, variables and standard functions to design expressions and
their evaluation.

Exercises 3

3.1. Tick the correct answers in the following lines:

(i) Aninteger number is a number with/without a decimal.
(ii) The decimal point must/must not appear at the start or end of the number.
(iii} In a normalized form of the real number, the decimal point is at the extreme right/left
position of the number,
(iv) Reserved words can/cannot be used as identifers.
(v) Data type is a good/bad facility available in Pascal.
(vi) Constants can/cannot be assigned names in Pascal.
(vii) String constants are same/different from the character constants.
(viii) Type of each variable must/need not be given in a Pascal program.
{ix) The operator : = and = are same/different.
(x) Ch in the char set are implemented on a computer system in a ordered/
random way.

3.2, Answer as true or false:

(a) Pascal does not allow the use of lower case letters. (T/F)
(b) The ordinal numbers of the boolean constants true and false arc identical (T/F)
(¢) Extremely small numbers cannot be written in the exponent form. (T/F)
(d) Blanks are allowed in an identifier.(T/F)
(e) Pascal does not allow the use of any other data type except scalar. (T/F)
(f) Constant declaration may follow the variable declaration (T/F)
() All characters in Pascal character set have been assigned ordinal values. (T/F)
(h) Type of a variable must be defined before its use. (T/F)
(i) The built-in functions are applicable to the standard data types only. (T/F)
(i) Pascal does not allow the user to define his own data types. (T/F)
33 Explamthesl,gmﬁumeuldmraﬂermofa guage. C the ch set of Pascal

(as given in the text) with the character set as available on ynur system. List all the characters
of your terminal which are not part of the standard alphabet.

64 PASCAL PROGRAMMING FUNDAMENTALS
34, What is a number? Prepare its syntax diagram. Explain the difference between integer and
real numbers. [llustrate by examples.

3.5. Describe the ad ges of repr ing real numbers in the exponent form. How are such
numbers stored in the computer memory?

36. Separate the valid and invalid bers form the following list. Write the corrected form of
invalid numbers.

+1313

123,456

113,

7b86.0

.189

19.E+11

ES
=1LIIE+6.0
+2781w9E+15

3.7. What do you understand by the term identifier? Give the Pascal language rules to design an
identifier. lllustrate by examples. (An identifier can consist of how many characters on your
system?).

38. What do you understand by Data Type? List all the data types available in Pascal. Give
reasons for their existence.

39. Explain the differences between constants and variables. How are they defined? Give
examples.

3.10. Consider the declarations

(a) const
SELDOM = false ;
TEN= 10;
. DOT=".";
How does the Pascal compiler know that SELDOM is of boolean type, TEN is of integer
type while DOT is of character type?

(®) const
TEN = 10;
X =TEN;
Is it valid to write like this?
3.11. Identify errors in the following declarations:

(i) const
MAXVALUE : 10000;
PIE = 22/7;

(i) type
X, Y =real;

Y, Z = integer;

(iii) var
P, Q =char;

7 R:integer;
T = boolean;

3.12. (a) Declare the following variables of the type indicated:

JK,L - integer,
A,B,C - real,

313,

3.14.

3.15.

3.17.

318,

3.19.

321
322,

ELEMENTARY CONCEPTS AND PRIMITIVE DATA TYPES 65

LEG, LOG - boolean,
X,Y - character

and make the appropriate assignments (to any variable) with the constants:
. 6, ‘HORSE', 1515, 9.8, 81, false,
‘BABY", 1313, — 66.77, true

(b) Explain the difference between

CH:=P

CH:=P"
(c) Bring out the differences of declarring variable type with type and var

declarations.

Explain the concept and importance of built-in functions. Prepare a list of all the arithmetic
functions for real and integer data arguments.
When are the functions trunc and round generally used? Find the value of the following:

(i) abs (trunc (—36.9))
(ii) round (+ 14.6)
(iii) trunc (sqrt (round (3.4)))
(iv) abs (round (13.46)—round (18.67))

Explain the action of the following functions :
* odd ()
® eoln (file-name)
* eof (file-name)
® ord (character)
® chr (ordinal-number)

. What are the type of arguments for which the functions pred and succ are defined?

Ilustrate their use by examples.
State the result of the followiny :

ord (F)

ord ('5")

chr(13) _

pred (ord (9)))

suce (true)

succ (9)

chr (trunc (sqrt (66.0))

suce (round (5.7))

chr(ord ("a") + 3)
What do you understand by ordinal ber of a ch ? Find the ordinal numbers of all
the characters as available on your system.

Explain the ing of collati q of ch s in a character se1? Is it same fou all

systems or it can vary?

. List all the built-in functions which can take character data as their arguments. Explain their

meaning and use.
Explain the advantage of writing const and var declarations separately and independently.

Indicate the order in which type, constant and variable declarations are given in a Pascal
program.

Chapter 4

Expressions

Expressions are formed using constants, variables and functions along with
operators and other symbols. An expression always has a value and this value
can be obtained by following the rules of expression evaluation. The value may
be numeric, logical, string or a set constant. Expressions, which yield numeric
value, are the arithmetic expressions; the expressions, which return logical
values, are the boolean expressions, while the character expressions give
character constants and the set expressions yield sct constants as their
values.

We shall study the construction and evaluation of arithmetic and logical
expressions in this chapter and defer the discussion of other type of expressions
to later chapters.

4.1 Arithmetic Expressions

A valid arithmetic constant, a variable, a function or a combination of these,
formed using arithmetic operators, according to rules of Pascal language, defines
an arithmetic expression. The following type of arithmetic expressions may be
defined:

* integer mode expressions

® recal mode expressions

® mixed mode expressions
Let us study each of these separately.

Integer mode expressions

Such expressions are formed using integei' type constants, variables, functions
and operators. The operators defined for integer data types are

Addition +
subtraction -
multiplication *
integer division div
modulus mod

The operator mod operates as follows: let a and b be two integer quantities.
Thena mod b gives the remainder after dividing a by b. Thus

7 mod 2=1
—7 mod 2=—1 (quotientis —3)
7 mod (—2)=1 (quotientis —3)
(=7)mod (—2)=—1 (quotientis+ 3)

EXPRESSIONS 67

The operator mod is quite useful for applications involving circular counting,
as for example, counting time or number of months in a year. In time, the value
of 59 minutes is followed by 1 hour 0 minutes. Similarly, the value of 11 months
is followed by 1 year and 0 months.

Let us declare
var
J, K, P, NUMBER : integer;
Examples of integer expressions are

-6
7
K+P*NUMBER
15div5+13*J
—=250+20*12
sqr (J) + abs (K)
The operator div must have integer operands, otherwise error will occur.
 Real mode expressions

Real expressions are formed using real mode quantities: constants, variables,
functions and operators. The operators defined for real data types are:

addition +
substration -
multiplication *
division /

Assume that X, Y, Z, PRICE are real variables:

yar
X, Y, Z, PRICE: real;
Examples ¢f real mode expressions are

13.13
7.1+49.8*3.0
X-Y/Z
PRICE / X+Y* sqrt (Z)
exp (X+Y)+ sqr (PRICE)
See that only real mode quantities have been used in these expressions.

Mixed mode expressions
Pascal permits mixing of integer and real quantities in an expression. Such an
expression may be characterized as mixed mode expression. Examples are

6+7.0

J=-X*P

In (Y)+ sqr (K)

PRICE/9.2+6div4

68 PASCAL PROGRAMMING FUNDAMENTALS

Further examples of writing Pascal expressions for algebraic expressions, using
the following declarations:

-var
H, M, N, K :integer;
C,P,Q, X :real;
are
Algebraic expression Pascal expression t
24 2.4/(—3+4.2)
-3+42
u—? -Jq M *P/X —sqrt (Q)
hsin (p) + log. (x} H*sin (P) +In (X)
Let us consider the algebraic expression
pm+k7+ 7.0

Pascal does not define the exponentiation operator. So this expression cannot be
translated into Pascal expression stralghtwa)r as was done earlier. The exponent
terms are translated into Pascal form using log function. If a" =y, then b. (log a)

=logy,ory=exp [b. (log a)]. Thus
p™ = exp (m log p)

and
k”=exp (7 logk)

Hence the expression
Pk + 70

is translated into Pascal as
exp(M*In(P))+exp(7*In(K))/7.0

We have seen that several operators may appear in an expression. Pascal
demands that two operators must never appear side by side in an expression.
This can be avoided by the use of parentheses. The following examples illustrate
the correct and incorrect use of operators.

Invalid Valid
b+—a b+(—a) or —atb
i*—k j* (k) or —k%j
p/—q P/ (-9
-Here we have used the same variable name in Pascal expression . it ‘r,. d in alget

upuaaon.Iltsonlvformnunme.\'ouémusemywhdvamhlcmmthePuul
expression.

EXPRESSIONS 69

4.2 Evaluation of Arithmetic Expressions

All the variables appearing in an expression must have been assigned values
before the evaluation of an expression is performed. The computer scans the
expression from left to right and finds its value. The value is obtained by
combining the values of the items that constitute the expression. For instance,
the value of the expression 3.1 + 4.5 is 7.6. It is obtained by adding the constant
4.5 to the constant 3.1. Assume a = 10.0, b = 15.0, ¢ = 7.5, Consider the

expression a+b/c

The value of this expression is 10.0415.0/7.5 = 10.042.0 = 12.0. First, b/c is
computed and the result is added to the value of a.
Parentheses may be used in an expression. An example is
(a+b*c)—(e/f—g)

v e

i if
‘When parentheses are used, the number of the opening parentheses must be
equal to the number of closing parentheses.

In the above example, first the expression in paretheses (i) is evaluated and
then the expression in parentheses (i) is computed. The calculated result of (ii)
is then subtracted from the result of (i). This is an example where one set of
parentheses does not contain another set of parentheses. When such is the case,
the evaluation of parentheses proceeds from left to right.

Parentheses may also be contained within one another. This is called Nesting.
An example is (x+((a+b)*c/d)—p*q)

[

®

(i)

(iii)
Parentheses (i) are nested within parentheses (ji), while parentheses (ii) are
nested in parentheses (iii). First, the expression in parentheses (i) is evaluated;
then the expression in (i) is computed; and last of all, the contents of
parentheses (iii) are calculated. Thus, when parentheses are nested, their
evaluation is carried out from the innermost set, going outwards.

When a function appears in an expression, it is evaluated first and then the
above procedure of expression evaluation is followed. Consider the expression:
a+b*sqrt(c)
Value of sqrt (c) is calculated first. It is multiplied by the value of variable b.
The result of computations of b * sqrt (c) is added to the value of variable a.
It is obvious from the above examples of expressions that several operators
may appear in an expression. When this is the case, how does one know as to

which operator is to operate first, which one to operate next, and so on. Look at
the expression

4+43*2

70 PASCAL PROGRAMMING FUNDAMENTALS

Its value is 10. This is because multiplication was performed first and then
addition. If addition is carried out first and then multiplication, result would be
14 (?). What result is obtained depends on the order of operation of the
operator. The priority of operator operation in an expression is decided by
hierarchy rules. These rules for arithmetic operators are given below:

mod : first priority
* / div : second priority
+ - : third priority

Evaluation of integer mode expressions

We know that integer entities and operators occur in integer expressions. The
result obtained is also an integer quantity. To illustrate the process of expression
evaluation, we proceed as follows. Assume

var
K, P, M, N, I: integer;
and
K=1 P=2 M=3 N=4andJ=35
(symbol L indicates evaluation, (n) gives order)
Integer expression Evaluation
K+P*M 1+ 2+ 3
K*2+Jmod M 1 22 4+ 5 mod 3
o] l__l
2
P+N)*4div] 2+4) * 4 div s
o
6
@
24

(6]
4 (remainder 4 is dropped)

EXPRESSIONS n

M*P div (J+N) 3 s 2 av (5+49)

1
6 9

(remainder 6 is dropped)

N'l 45+ 4%4*4*4*4—~ 1024
repeated multiplication

Generally, exponents of integer quantities are evaluated by repeated
multiplication.
Evaluation of real mode expressions

These expressions involve real mode quantities and the final value of the
expression is a real constant. Evaluation of a real expression follows the same
procedure as for the integer mode expressions. However, in this case, fraction of
a number is not dropped during the division process as was the case with integer
mode division.
Expressions of the form

) fractional quantity

" (~base)
are not permitted in Pascal. This is because negative quantity raised to a fraction
is not defined for real quantities. Moroever, remember that complex numbers
and variables are not defined in Pascal. Their manipulation is explained in

Chapter 11.
Assume
var
A, B, C, D : real;
and
A=50, B=8.0, C=30, D=20
Real expression Evaluation
A+D/B*C+sgrt (B/D) 50 + 20/80 . 30 + sqn (8.0/20)
| [€)] | I m I
025 4.0
L@ | @
0.75 20

(6)
175

72 PASCAL PROGRAMMING FUNDAMENTALS

B/(A+C) * trunc (A/D) 80 / (5.0+30) = trunc (5.0/2.0)
| 3)] (1)
8.0 25
@ | @)
1.0 2.0
| () |
20

Evaluation of mixed mode expressions

In such expressions both integer and real entities occur. Mixed mode
expressions are the only exception where mixing of data types is permitted.
Evaluation of mixed mode expressions may be sometimes confusing and should
be understood clearly.

Let us define the variables as

var
J, K, P : integer;
A, B, C: real,

AssumeJ=2, K=3, P=4 and A=2.5, B=3.5 and C=45
Consider the arithmetic expression
A+]

It is evaluated in the following way. Prior to taking the sum, the integer value 2
is automatically converted into the real value 2.0 and then the sum 2.5 + 2.0 =
4.5 is obtained. The value of J, that is 2, which is stored in the computer memory,
remains in the integer mode. Conversion of the integer value to the real mode
takes place only at the time of performing an operation. Further examples of
mixed mode expression evaluation are: (symbol | indicates conversion)

Expression Evaluation
J*K*P+C 2 .3 « 4 + 45
Lo
6

@

24

240

@)

285

EXPRESSIONS 73

S5divP+B*20—A 5 div 4 4+ 35 e 20 - 25
I) | I @ I
1 70
10
]
8.0
| “@
55
KdivP*(A+13*P) 3 dv 4 . (25+13%4)
| 3 |
(0) ﬂ‘f]
¥ m
00 52
2)
| @ 7
00
K/P*(A+13*P) iu . 77
3'0V
40
1
0.75
o |
5.775

‘What do you infer by comparing the evaluation of the last two expressions?
Remember, real mode and mixed mode expressions yield real values while
integer mode expressions give integer values after their evaluation.

4.3 Boolean Expressions

You have learnt that there are two logical values: true and false. These values
are always obtained from boolean (logical) expressions. The simplest form of a
logical expression is a single logical constant, a single logical variable or a
function. More complicated boolean expressions are constructed from the
combination of these quantities using logical operators. Logical expressions can
also be formed by joining arithmetic expressions with relational operators.

74 PASCAL PROGRAMMING FUNDAMENTALS
Logical Operators
Logical operators available in Pascal are: not, and, or. The definition and

meaning of these operators are given below. (Assume that X and Y are boolean
quantities).

Logical Operator Meaning

not If X is true, then not X has the value
false. If X is false, then not X is true

and If X and Y are both true, then X and Y

has the value true. If either X or Y is
false, then X and Y is false.

or If either X or Y or both are true, then X
or Y has the value true. f both X and Y
are false, then X or Y is false.

These operations of logical operators are summarized in Table 4.2,

Table 4.2: Action of logical operators

X false false true true
Y false true false true
not X true true false false
Xand Y false false false true
XorY false true true true

Operators and and or always join two logical expressions, while the operator
not has only one logical expression following it. Operators and and not, or
and not may appear together in an expression)

When only these logical operators appear in an expression, their hierarchy of
operations is as:

Operaior Priority Explanation

not first Logical expression after not is evaluated first.
and second Nextlogical expressions around and are evaluated.
or third Last of all, expressions around or are computed.

Boolean expressions using logical operators

Letus declare, B, P, Q, R, T as the boolean variables

var
B, P, Q, R, T :boolean;

EXPRESSIONS 75

Examples of boolean expressions are:

false

PandQ

QorT

true

P

(P and T) or (not Q)
(not R) and (not B)

Parentheses may also be used in boolean expressions, just as in arithmetic
expressions, to indicate operator priority in the evaluation process and for
clarity.

We present below some examples to illustrate the evaluation of logical
expressions. Assume that the logical variables P, Q, R, T have the following
values:

P = true, Q = false, R=Tfalse, T = true

Boolean Expression Evaluation
Pand TornotR true and true or not false
| (2) I (U]
true true
[o |
true
not (T and R) not true and false
U]
false
2)
trec
not TorQ not true or false
| (1) \
false

@)

false

4.4 Relational Expressions

There are six relational operators available in Pascal. These operators can be
used to compare the magnitude and ordering of quantities. Expressions formed

76 PASCAL PROGRAMMING FUNDAMENTALS

by using them are called Relational Expressions. Such expressions return the
logical values: true or false.

The relational operators, along with their meaning and hierarchy of
operations, are given below:

Relational Operator Meaning Priority
- equal to highest
<>(#) not equal to
< less than |
<= less than equal to
> greater than
> = greater than equal to lowest .

The form of the relational expression becomes

expression-1 B expression-2

where Bis any of the above relational operators, Expressions on cither side of
relational operator may be either arithmetic expressions or character
expressions and may be of any desired degree of complexity. However, it is
necessary that the type of the two expressions must be identical. Relational
boolean expressions are also referred to simply as Boolean expressions.
Examples of relational boolean expressions using arithmetic expressions are

given below:
Let us declare variables
var
Q, M, N : integer;

A, B, C, D : real;

Examples of relational expressions are

4>3

A+C<>B

Q*M—Ndiv6>=M*"N+13

(A/2.0+ B/3.5)*D+6 <=sqr (D) *3.4E + 02
To illustrate the process of evaluation of relational expressions, let us assume
that the values of variables are as:

Q=7 M=4, N=3

A=20, B=4.0, C=6.0, D=170;
Relational expression Evaluation
(i) MdivN <> Q-5 4 dv 3 <> 7-5

L |

1 2

L |

EXPRESSIONS 77

(i) N*Q >=3*M+C/A 3 ¢« 7 sa 3 « 4 + 6020
I'_lil l_ﬂ—, 30
21.0 14{0 |

| 150

true
(ii) A+ (B*C)=M+Q—N 20 4+ (40%60) = 4 4+ 7 - 3

240 11

3
v
i}

false

You will observe from example (i) that integer and real expressions are being
compared. When this is the case, the integer value is first converted to real and
then comparison is made. Remember, the evaluation of relational expressions
goes as follows: first, the expressions appearing on the two sides of the relational
operator are evaluated according to the usual rules of calculating the arithmetic
expressions and then the relational operator operates.

Examples of boolean expressions using both types of above operators and
their evaluation have been brought out by the following illustrations.

We declare variables as

var
M, N, K: integer;
A, B, C: real;

P, Q, R. T:boolean;

and suppose their valuesareas M =2, N=3 K=4 A= 10,B=20,C=
3.0 and P = true, Q = false, R = true, T = false.

Logical Expression Evaluation
A>BandT 10 > 20 and false
false

false

78 PASCAL PROGRAMMING FUNDAMENTALS

C <=Nand A+B=C+K 30 < 3 and 10 4 20=30+4
\ v I
30 30 40
false
7.0
false
|
false
not R and not (K <=B) not tue and ot (4 <=20)
40 ‘
Talse
T
false

You have observed that a variety of operators can be used in expressions. The-
order in which operations are performed is summarized below:

not

* / div mod and

+ —or

= <> <, <= >, >=

“in (see Chapter 13)

The sequence of operations within an expression is from left to right following
the above hierarchy rules.

We have described the construction and evaluation of expressions involving
arithmetic and logical quantities. Expressions may also involve character,
enumeration or set type of data. The presentation of these is deferred to later
chapters.

Exercises 4

4.). Tick the correct answers:

(a) An expression always has a single/multiple value(s).

(b) The mod operator can/cannot be used with real quantities.

(c) The value returned by a mixed mode expression is of the type real/integer.

(d) Exponentiation operator is available/not available in Pascal,

() Two arithmetic operators may/may not appear next to each other in an expression.
(N Evaluation.of arithmetic expressions starts from left/right.

4.2,

4.3.

4.4,

4.5

4.6.

41

EXPRESSIONS 79

11 A/ dieall q

(g) Nesting of parentheses in an expression is
(h} The operators and not may/may not appear together.

(i) The relational operators join two logical/arithmetic expressions.
(i) “The real and integer mode expressions can/cannot be compared.

Complete the following es
(i) Expressions can be formed with................0o0in and...iiiiiiiiiiian
using Pascal ...

(i) Arithmetic expressions vield ...
(iii) Boolean expressions yield

(iv) The mode of arithmetic expressions maybe ,............ yand,
{v) When pamnthms are nested, their evaluation is carridd owt from0
(vi) E:‘r{);;'umzsofmwguqmnuuumcw]umdby vees
(vii) Nﬁxuuofdaqueuallwedonlym e expmsloms.
(viii) Bool pressions may be desigs ’us'u:gmd
operators.
(ix) The value of a function appearing in an expression is evaluated..............of ail,
(x) Theoperatordivisusedfor................couevnns division.

Define an expression. Describe the various types of arithmetic and boolean expressions
available in Pascal.
(a) Explain the action of mod and div operators.

(b) Evaluate

(—47)div4

(—47)mod 4

{—47) mod (—4)

(—29) mod (—15)
Design equivalent Pascal expressions for the following algebraic expressions. (Take a, b, :,
d, g, 1, x as distinct symbols of real type)

abc +t+x

sin (qt — Jab) log (x + bc)
at—(ab + c+xt)

’a+b .
[m] (g(x=1) * (x~4))
ah'
Let i, j, k be integer variables with values 5, 4, 3 respectively Find the values of the
expressions :

idivj+7

jdivk—8

i+6%=(i+j+k)

jmod k

i*jdivkmod 3

(7 div 2) div 2
Evaluate the following integer exp

44(7-5)*3
9div2+ 15 mod 6

3% 5+ suce (16 mod 31 diva
pred (18 mod 4) + sqr (suce (3))
S+(9*10div3+(6-2)*7)

80

4.8.

4.9,
4.10.
4.11,

4.12.

4.13.

PASCAL PROGRAMMING FUNDAMENTALS

Assume that the variables X, Y, G, F, H are real and their values are: X = 2.0, Y = 3.0,F =
4.0,G = 5.0 and H = 1.0. Evaluate the following expressions:

G + trunc (F/X) + 8.8

17 mod (—5) + X * F/ sqrt (F)
F—F*Y (L0/G — trunc (F+6.7))
X + Y round (F/2.5)— G/F

sqrt (F + (X+YV/F — 1.0)
Tdiv3*F+Y/X

List the various boolean and relational operators available in Pascal. Explain their meaning,
How are relational expressions formed? Mlustrate by examples.
Assume the following declarations

var
BQ,T:real;
1, K, L :boolean;
Find mistakes in the following expressions, if any, and write their correct forms appropriately.

Pand]
(P+Q) > T/ 213
JandKnotL
not (P+Q <> K)
PdivQ>=-T/-F
Take the following declarations and values:

var
A,B,C:boolean;
X, Y, Z:real;
M, N : integer;
A =true, B=true, C=false; X =20, Y= 30 andZ=40; M=6, N=7

Evaluate the expressions give below:

AsndCorB

not Bor C

(X< Y)and(Y+Z < > X—6)
not(Z—2*X/Y < 20°Y*2)

not A and not C and not B

not odd (N) and E

(X5 30)or(Y > 40)and (Z > X)

Evaluate the following real and mixed mode expressions:

24*50+abs (162 —4.0%6.1)
LO+2.0*3.0/ 5.0+ trune (~18.0/4.0)
2+ 3 div 2+ pred (10 mod 4)/5.0
Itsqr(40)*3

round (sqrt (28.0/5)

ord (‘D) * pred (7)/9.0

. What do you understand by hierarchy of Pascal Operators? Compare it as given in the text

and the Pascal system implemented on your computer system. Bring out the importance of
operator hierarchy.

Chapter 5

Simple Statements and Programs

Variables occur extensively in expressions. They must be assigned values before
the expressions can be evaluated. When a variable has been given a value, it is
said to be defined or initialized. Computers give an error message if any variable
in a program is undefined during the execution phase. Thus, all variables
occuring in a program must be carefully defined. A variable is defined either by
an assignement statement or by an input statement. The input statement reads
value for the variable from an input device. The assignment statement assigns a
value to the variable after evaluating an expression.

We shall examine the assignment and input/output statements in this chapter.
Labels and comments will also be introduced here. This will enable us to
develop simple programs at an early stage. All Pascal programs have a specific
structure and is explained below:

5.1 Structure of a Pascal Program
Every Pascal program must have three parts:
® program heading
® declaration part
® execution part
‘These must appear in the order indicated.
(a) Program Heading

The program heading consists of a single statement whose format is

program name (fi, fo......)

where
program reserved word,
name user-defined name by which the program will be
known
1 S names of external data files used by the program to

communicate with the outside environment; their
specification is optional.

The reserved words input and output are standard file names. They are used to

82 PASCAL PROGRAMMING FUNDAMENTALS

specify that the program needs input (data) and will yield output (results) on the
output device. Thus, an example of statement program is

program INTEREST (input, output)
Here INTEREST is the name of the program which needs input data and will
give output. ¥

The program name statement may be used without indicating input, output
specification. This would imply that the program does not need input data and

will not yield output on the external device. If no input data is required, but
output results are expected we can specify

program SUM (output)
(b) Declaration Part

All the constants, variables, identifiers, labels, subprograms, etc., appearing in a
program, must be declared and specified prior to their use in the execution part
of the program. This is done in the declaration part of the program which must
immediately follow the statement program. The declarations which appear in
the declaration part are: label, const (constant), type, var (variable), function
and procedure. Thus, the declaration part appears are

label declarations; (1)
const declarations; (ii)
type declarations; (iii)
var declarations; (iv)
function declarations; v)
procedure declarations; (vi)

There are six declaratons and they must appear in the order indicated except
that function and procedure may be interchanged. You have learnt about var
declaration and will be learning about others as we go along. Semicolon follows
all declarations to separate them from each other.-

In the declaration part of the program, we specify information about the data
types, attributes of data objects, value of a data object (if it is a constant), name
of the data object, labels and so on. The declaration part serves to communicate
to the Pascal compiler information about the various entitics needed during
execution in the program body and the possible operations associated with
them. This enables the compiler to:

¢ perform type checking,

® determine the optimum representation for the data objects,

® organize more efficient storage management,

® determine the meaning of the operator symbols when the same symbol is
used with different data types, as for example “+" is used for arithmetic
addition and set union.

SIMPLE STATEMENTS AND PROGRAMS 83
(c) Execution Part

The execution part of the program consists of all the executable statements. All
computations/processing are performed in this part. Data are supplied here, used
in computations, and results obtained. The start of this section is indicated by
the reserved word begin and end by the reserved word end which is followed by
the period (.) Denoting any statement by the letter S, the structure of the
execution part appears as

begin
Sii
.Szi

S"
end.

Each statement is followed by a semicolon. In the case of the last statement,
8w it is optional. Remember: semicolon is used as a separator and not as a
terminator of a statement { declaration. Moreover, there is no semicolon afier rh.e
begin or before theend words.

Let us indicate declarations appearing in a program by D's.

The complete structure of a Pascal program may be represented as
progeam name (....,...,..2)}

|}

Dy

end.

Declarations and statements may be placed, either one or more than one, on a
single line.

program name(....,.....):
Dy Dyl
begin &,; §,: ;.

SJ. & s ag Sn eﬂd.

84 PASCAL PROGRAMMING FUNDAMENTALS

The reserved word/identifier or the number must not be divided between
lines. If there is not enough space on a line for the complete identifier or number,
this may be started on the next line. All blanks in a statement/declaration are
ignored except within the names and numbers.

The declarations, D, and statements, S, may be indented to make the program
better readable and clear. This will become clear as we go along.

The above structure of Pascal program offers many advantages, such as:

¢ structure of all Pascal programs is uniform,

¢ any changes in the execution part do not affect the declaration part,

® program efficiency enhances as the compiler can decide the storage
mangement and execution strategies at the compile time itself based on the
information specified in the declaration part,

® program modifiability improves,

¢ communication with the outside environment is only via the program
heading statement specification,

® program portability (from one computer system to another) enhances as
most of the changes are’ generally required to be made in the declaration
part and that is easy to do,

® program development process is also simplified as the programmer can
plan the declaration and execution parts separately and then join them
appropriately.

5.2 Comments in a Program

-Explanatory notes may be introduced into a program. They may identify the
various parts of a large program, help the reader in understanding the flow of
the program and what is being calculated at various stages.

Comments in a program are specified with the use of braces { }. Its form is

o | e |
An example is
{ This program computes the roots of a quadratic equation. }

The text does not_have to be enclosed within quotes. The matter enclosed
between { } is ignored by the Pascal compiler. It is meant for readers as a
documentation aid.

In some Pascal implementations, symbols (* are used for left and *) for right
braces. However, we shall always use braces to denote comments in a program.

5.3 The Assignment Statement

The form of an assignment statement is:

v 1= gn expression

SIMPLE STATEMENTS AND PROGRAMS 85

where v represents an unsigned simple or subscripted variable. The symbol : =
is called the Assignment operator.
The expression appearing on the right hand of sign : = may be

® an arithmetic expression

® aboolean expression

® acharacter expression

® aset expression
When the expression is arithmetic, then we have an arithmetic assignment
statement. When the expression is boolean, then the statement is boolean
assignment statement. Similarly, for the case of character and set expressions.

The operator := (appearing between the variable of left side and the
- expression on the right side) assigns the value, obtained by evaluating the
expression, to the variable. Any previous value of the variable is lost. The type
of variable must be same as the type of expression, except for one exception
which you will see.

The assignment statement is separated from other statements by a semicolon.

Arithmetic Assignment Statement
This is specified as

. v = an arithmetic expression

v represents an arithmetic variable identifier, may be simple or subscripted.
‘ Declare
‘ var
X, A, B, C_: real ;
J :integer ;
Examples of arithmetic assignment statement are:
e X:=34;
The number 3.4 is made the value of X.
® Ar=20+30%40;

The expression 2.0+30 * 4.0 is evaluated. Its value is 14.0. This value is assigned
to variable A.
e |:=3div2*4,;
The value of expression 3 div 2 * 4 = 4 is assigned to J.
Now consider

A:=36; @ -
B:=20*A—12; (ii)
C:=34; (uii)
A:=A+B+C; (iv)

86 PASCAL PROGRAMMING FUNDAMENTALS

Here, statements (i) — (iv) are assignment statements. In line (i), A is assigned
the value 3.6. Thus, A is initialized to 3.6. In line (ii), value of the expression
2*A — 12 =20 X 3.6 — 1.2 = 7.2-1.2 = 6.0. This becomes the value of B.
Next, C is set to the value 3.4 in line (iii). In line (iv), the expression A+B+C =
3.6+6.0+3.4 has the value of = 13.0. This value is given to variable A. The
previous value of A (ie.s3.6) has been lost. If now onwards, variable A
appears in an expression, its value will be 13.0.

The reader will note that two actions take place when an assignment statement
is executed. First, the value of the expression on the right is obtained and then
this value is assigned to the variable on the left. It can happen that the mode of
value of the expression and the mode of the variable identifer are different. The
variable may be of integer type and expression of real type and vice versa. This
is the only type exception allowed in Pascal about which we talked earlier.
However, the mode of storage of the value in the computer memory is
determined by the type of variable, irrespective of in what mode the value of the
arithmetic expression is obtained.

A word of caution here. There is no difficulty when the variable is real while
the value of the expression is integer. The integer value will be transformed into
the real mode. But when the value is real and the variable is integer, then the
value may be assigned either after truncation or rounding. What happens exactly
may be ascertained by reference to the installation Pascal manual.

The value of a variable is changed only when it appears on the left-hand of an
assignment statement. Its appearance on the right-hand side does not alter its
value, but the value is used in the expression. For instance, consider the
statement

J=J41

Here the variable J occurs on the left and in the expression on the right hand
side. As there are two separate actions performed by the assignment statement,
so this statement is executed as : first the expression J + 1 is computed using the
current value of J. The new value, obtained thus, is assigned to J. The previous
value of J is no more available. We can represent all this as:

new valuc of J=old value of J+ 1

Boolean Assignment Statement

The form of this statement is

v :=a boolean expression

where vrepresents a logical variable, simple or subscripted.
Letus declare X, Y, Z, W as boolean variables and A, B, C as real:
var C

X, Y,Z, W: boolean ;
A, B,C:real

SIMPLE STATEMENTS AND PROGRAMS 87

Examples of boolean assignment statements are:

X:=true;

Y: = false ;

Z:=not(XandY);

W:=(A+B*C > A*5.0—B/C)or (A*B*C <= A*B—C)

A program is run to perform computations and process data on the computer.
During its execution the program may need data and generate results of the
calculations. The data required by the program can be supplied by input
statements while the results of processing/computations can be obtained with
the help of output statements, Thus, data transmission between the computer
and the peripheral devices is carried out with input/output statements. The input
operations are performed with two statements-read and readln, while output
operations arc carried out with write and writeln statements. In order to
introduce the student to the process of writing programs at an early stage, we
shall discuss the output statements first and then go over to the input statements.
Moreover, we shall always assume that a visual display unit (VDU) with a
keyboard, is used for input of data while for output, both printer and VDU are
available.

5.4 Data Output Statements

As explained earlier, the output statements provide a means of obtaining
information from the computer on an output device. This information may be in
the printed form, displayed on the screen, and so on. We can also have the
output information in a properly formatted form. All this is done with the output
statements write and writeln. Let us first study write statement.

The write statement

A form of this statement is

write (output, lisf)
where
write is the key word
output is the keyword which indicates that the values to be output
form an output file; its use is optional
list may be constants, variables, expressions, messages (text),

separated by comma.

The keyword output and the fist must be enclosed within parentheses.
Specification of output and /ist is optional and may be omitted when no output is
desired.

When the write statement is executed, the values of items appearing in the fist -

88 PASCAL PROGRAMMING FUNDAMENTALS

are _written in the same order, as they are specified in the lis;, on the output
device.
Consider the statement
write (output, 3,—4.4,13.13)
According to this statement, the constants 3, —4.4, 13,13 are written on the
output device in the order .
36—44513.13
on the same line. Each value is separated from the other by a single space (b).
The statement
write (A, SUM, 5.15)
will write the values of variables A, SUM and constant 5.15 on one line.
With the statement
write (TIME FOR TEA’, 7,"AM.)
the output will appear as:
TIME FOR TEA 7 AM.

Expressions may be used in the /ist of write statement. Values of expressions are
obtained first and then written.

The statement

write (3+4*5, sqrt (8.0*2.0) + trunc (6.7))
will gixe the output as

23 100

See that 23 is the value of expression 3+4*5 and 10.0 is the value of (sqrt
(8.0*2.0)+trunc (6.7)).

The write statement operatres as follows. The data to be output are stored in a
memory buffer. When the write statement is executed, its contents are
transferred to the output device. The output appears on a single line. If the
values exceed a line, the output goes to the next line. The write statement does
not automatically cause the return carriage so that output from the next: write
statement can begin from a new line. For instance, consider the appearance of
the two write statements in a program as:

write (‘A =",2.0,'B=",3.0,'C="7.56 'SUM =’, 2+3+7.56) ;

SIMPLE STATEMENTS AND PROGRAMS 89

write (CALCULATION OF INCOME TAX');

the output will appear as

A=20B=30 C=756 SUM=12.56 CALCULATION OF
INCOME TAX

This is a limitation of the write statement which has been overcome by a slight
variant of this, that is, writeln statement.

The writeln (write line) statement is same as write statement with the
additional feature that carriage return is generated automatically when a line has
been written on the output device from the memory buffer. The new data
automatically goes to the next line.

The statement

writeln (output, lisf)

is equivalent to
write (lisr) ;
writeln
Examples of writeln statements are
(i) writeln (A=",10*104, J="13+12);
(ii) writeln (SUM OF FIRST 10 PRIME NUMBERS IS 101Y)
Output of line (i) appears as
A=104 b J=25
and that of line (ii) as
SUM OF FIRST 10 PRIME NUMBERS IS 101

When the writeln statement is specified without arguments, then a single line is
skipped by its use. Suppose, you wish to skip three lines, then use writeln
statement three times as:

writeln ;
writeln ;
writeln

Thus, the writeln statement also helps to control the vertical arrangement of
lines in the output.
Let us write a program and illustrate the use of write statement.

90 PASCAL PROGRAMMING FUNDAMENTALS
Example 5.1

The distance, d, travelled by an object moving with a velocity, v, having
acceleration g, after time, t, is given by
d=vt+ gt
Develop a program which computes the distance travelled when v = 25.0
metres/sec, t = 50.0 seconds and g = 9.8 metres/sec®
The process of developing the program may be as follows:

(i) assign a name to the program.
(ii) declare the variables: d, v, t and g as real (because the given values are in
real mode)

var D, V, T, G : real
(iii) assign values to the variables v, t, g as
V=250; T=50.0; G=98
(iv) prepare Pascal expression for the relation vt + § g t%
V*T+0.5*G*sqr (T)
oras
V*T+05*G*T*T
(v) write the assignment statement as:
Di=V*T + 05*G + sqr (T)
(vi) write the values of V, T, G and D using the output statement writeln
including appropriate titles.
Thus, the complete program appears as:
Program 5.1
program DISTANCE (output) ;

var
D,V,T,G:real;

{ Assign values to variables }
V:=25.0;
T:=500;
G:= 98;
writeln (‘VELOCITY =", V),
writeln (TIME =" T);
writeln CACCELERATION =", G);
D:=V*T+05*G *sqr (T);
writeln (‘DISTANCE =', D)

end.

SIMPLE STATEMENTS AND PROGRAMS 91

Sample owutput

VELOCITY =16 2.500000E + 01

TIME = b 5.000000 E + 01
ACCELERATION = b 9.800000 E + 00
DISTANCE =b 1.350000E + 04

The above output has been shown upto six places so the right of the decimal.
This may vary from system to system.

5.5 Formatting of Output Data

Look at the integer number 23456. It has five digits. We say its width is 5.
Similarly, width of the number —1698134 is 8 (including the minus sign). Width
of a number is counted along with its sign. Plus sign may or may not be counted.
The width of a character constant will be the number of characters in the
constant, including the blank space, if any.

Sometimes, it may be desired that the integer number be written upto a
certain width. This can be done with a write statement by indicating the width,
w, of the constant or variable, within the parentheses, as

write (expression-1: w,, expression-2: wy, ...}
or
writeln (expression-1: wy, expression-2: w,...)

wis called the field width. It must be separated from the expression by a colon

"(:)- w may be. an integer constant, variable or an expression. Now w,
controls the field width of value of expression-1, wy controls the width of value of
expression-2, and so on. The width of each number is indicated by a separate
width factor.

Consider the example
write (180 * 15: 5)

This will output the number as
52790 w=S$§

that is, a blank is inserted at the leftmost position to make the field width 5.
If we had specified

write (180*15: 3)
the number written will be
700

that is, the leftmost digit 2 is truncated.
Let us consider the example

write (SUM: 6, NUMBER: 8)

92 PASCAL PROGRAMMING FUNDAMENTALS

This would write the value of variable SUM consisting of 6 digits and that of
variable NUMBER having 8 digits (taking into account sign as well). The
variables SUM and NUMBER have been assumed to be of integer type.

In the case of real numbers, there is a decimal part as well. For instance, in the
number 13.267, .267 is the decimal part. For this number, width is 6 (including
the decimal) while the number of digits to the right of decimal point is 3. Let us
indicate the width of a real number by w (including sign and decimal) and the -
number of digits to the right of the decimal by 4. When the numbers are written
as per the given specifications, the output is said to be Formatted. We can have
the real numbers written with a desired width and number of decimal places,
with a write statement. The format of write/In statement is, then,

write (expression-1:w,:d,, expression-2:ws:d,,.....)

w and d must be integer expressions and w > d. Look at the statement
write (4.0/3.0:6:3)

The output obtained will be

61333 (w=6,d=23)
Similarly, the output of the statement

write (5.0* 10.5/4.00:4*2:4) {w=4*2 = 8, d=4| «— w is an expression

will be

513.1250

Remember: wand d may be integer constants or expressions.
The arithmetic results are right justified, that is, truncation or addition of
blanks/zeroes takes place on the leftmost side.
When it is desired that the real number be printed in the exponent form, then
the specification : d is not used. In that case, the write/In statement appears as

write (expression-1: w,, expression-2: wy,. . . .)

The output value is obtained in exponent form in such a way that there are a
total of w characters, mcludmg the sngn of the number and the exponent. (In
some implementations, the positive sign may be suppressed and replaced by a
blank). As an illustration, look at the statement

writeln (20.0/6.0: 12)
The output appears as

3.333333E+00 {w=12)
Another illustrative example is

write (—sqrt (13.0* trunc (5.3)) : 15)

SIMPLE STATEMENTS AND PROGRAMS 93

Its output appears as
b5 4.242640E + 00 {w=15}

The accuracy upto which a real number, in exponent form, is written depends
on the computer system. Here, we have assumed that 6 places to the right of the
decimal point are retained.

The formatted form of wruefhl statements help to control the spacing
between the output values. Thi$ is brought out further by the following
examples.

The output of the statement

writeln (1000:4,99:2)
will be
1000 699

one blank between the value 1000 and 99 is automatically supplied by the
Pascal compiler. Suppose, you want that there should be 6 blanks. This can be
done as

writeln (1000: 4, 99:7)

Here, the output will be
10005BBHBH9
w=4 w=17
this blank is inserted by the default option

This way any horizontal spacing can be generated. Another method is by the
use of blanks in character strings. For example, the output of the statement

write (ALPHA =, 5*150: 5,55 &', BETA =’, 100)
appears as
ALPHA=b557506555BETA = 100

Example 5.2

Given a data value 7.62 feet. Convert this into inches and centimeters. and
output your result in a formatted form. One value should be written on one line.

Program 5.2

program CONVERSION ' (output) ;
{ declare the variables |

var
FEET, INCHES, CM : real ;
begin

94 PASCAL PROGRAMMING FUNDAMENTALS

FEET: = 762;

INCHES : = FEET * 12.0;

CM : = INCHES * 2.54;

writeln (FEET = °, FEET: 5:2);
writeln (TNCHES = ', INCHES: 6:2);
writeln (CMS =), CM: 7:2)

end.
Sample output

FEET =b 7.62
INCHES = 591.44
CMS =1234.25

This program is self-explanatory and the reader should run it on his system.
5.6 Data Input Statements

We have seen how variables can be initialized by assignment statements. An-
other way of doing so is by the input statements. With the latter, data values are
supplied via an input device. Statements read and readin are used for this

purpose.
The read statement
A format of the read statement is

read (inpud, fisr)
where
read is the keyword
input a keyword which indicates that incoming data form an input file;
its use is optional
list indicates variables, separated from each other by comma.
An example of read statement is: ¢
read (A, B, C) [0)

This statement indicates that variables A, B, C will obtain thelr values from the
input device. Similarly, the statement

read (input, ALPHA, BETA, GAMA) (i)

implies that values of variables ALPHA, BETA, GAMA are to be supplied via
an input device. Suppose these variables are to be initialized to the values 67,
78,131 (assuming them to be integer variables). We can supply the values as :

676786131

SIMPLE STATEMENTS AND PROGRAMS 95

oras
67 |~ (Thesymbol |- indicates carriage return)
78 |-
131

When the read statement (i) is executed, variable ALPHA gets the value 67,
variable BETA is assigned the value 78 while variable GAMA is set to the value
131. The data values are always read in the order in which they are specified on
the terminal (of input device). Values for the different variables are normally
separated by blanks; alternately, one value may be written on one line. The
pressing of carriage Return Key (|-) transfers data from the terminal to the
computer memory.

In Pascal, the incoming data forms an input file. This file is ‘divided’ into lines.
Data are ‘written’ on each line when the carriage return key is pressed. The
consecutive data appearing on the lines become the value of consecutive
variables specified in the list of the read statement.

Assume two read statements are specified as:

read (X, Y); (iii)

read (P,Q,R) (iv)
and we specify the data on the terminal as

34bH45656

6.7b7.85H89

then the variables will get the values as X =34, Y =45 P=56,0=67,R=
7.8. Here you will sce that data item 5.6 appears on the first line but is still being
used by a variable P of the second read statement. The two read statements (iii)
and (iv) are equivalent to a single statement as

read (X, Y,P,Q,R)

Thus, while reading data with read staement, it is immaterial on which line data
appears. However, the number.of data values supplied must not be less than the
number of variables in the list of the read statement

Another form of read statement is

readin (input, fist)

This statement is essentially the same as the read statement with the difference
that any value after the data value, which is assigned to the last variable in the list
of the readln statement, is ignored. For example consider the statements

readin (XX, YY,2Z7) ;)
readin (PP) (vi)

96 PASCAL PROGRAMMING FUNDAMENTALS

and the data are typed as
=13.66 151.67 56.123 94.1248

The variables XX, YY, ZZ will be assigned the values: —13.66, 151.67, 56.123
respectively when the readln statement (v) is executed. After this, the data line is
skipped. When the statement (vi) is executed, no more data are available as the
data of previous line becomes inaccessible.

These concepts are further illustrated by the following example. Suppose data
values have been written as

34567
8 9

‘When the statements

read (A,B,C);

read (E,F,G)
are executed, then the values assigned to the variables are A = 3, B=4,C =
5,E =6, F =7, G = 8. However, if the statements executed are

readln (A, B,C);
readin (A, B,C);

then assignments are A = 3,B=4,C =5 E = 8, F = 9 and there won’t be any
value available to be assigned to variable G.

The read/write statements may be used to input/output numeric, boolean
or character data. These are illustrated by the following examples:

A,B:real;
U, W : boolean ;

Suppose we wish to initialize A, B to 1.121 and —13.08 ; V, W to true and false ;
and S, R to THE and BOOK respectively.
A possible form of read statement could be

readin (A, B, V, W, S, R)
and the values will be presented on the input device as
1.1215-13.08 b true b false ® THE b BOOK

With the read statement, the type of data supplied must match the type of
variable, otherwise error will occur
The output may be specified (say) as:

writeln (S, V,A:5:3);
writeln (W,R,B:6:2);

SIMPLE STATEMENTS AND PROGRAMS 97

The printout of these two statements appears as
THE®b true 51.121
false 5BOOK 5—13.08

Example 5.3

Read any positive integer number < 15. Determine whether it is odd or even.
If the number is odd, print the result as TRUE, but if the number is even, output
the result as FALSE. Obtain the binary representation of the number.

We can find whether the number is odd or even by using the odd function.
The binary representation is obtained by the method of successive division by 2.
As for example, suppose the number read is 13, Its binary representation will be
givenby Ry Ry R; R; where R's are:

13+ 2 = 2*6-+1 remainder (R,)

6+ 2 =2*3+0 remainder (R,)

3+2=2*1+1 remainder (R;)

1-+2=2%0+1 remainder (Ry)
Thus (13)0=(1101),

The program appears as given below:
Program 5.3

program ODDEVEN (input, output) ;
{ Program to find whether the given
number is odd or even and its
binary representation |
var

W: boolean;
N, Q1,Q2,Q3,Q4 :integer;
R1,R2,R3, R4 :integer;

begin
writeln (‘Enter the number <=15");
readin (N);
W:=o0dd (N);
writeln (N, ‘is odd:’, W);
{ Conversion to binary |
Ql:=Ndiv 2;
R1:= N mod 2;
Q2:=Q1div2;
R2:=Ql mod?2;
Q3:=Q2div 2;
R3:=02mod 2:
Q4:=Q3div2;
R4:=Q3mod 2;

98 PASCAL PROGRAMMING FUNDAMENTALS

writeln (‘Decimal number =’, N);
writeln (‘Binary representation =, R4, R3, R2, R1)

Sample inputioutput
Enter the number <=15

13-

13 isodd: true

Decimal number = 13

Binary representation=1101

We have written the Program 5.3 in a simple way. It has some drawbacks,
though output obtained is correct. In order to remove them we need to learn
more Pascal statements. We shall return to this program again and again to
remove its faults ‘and illustrate the process of program refinement using Pascal
language features. You try to locate the possible drawbacks here.

5.7 The label declaration
Any statement may be labelled. The label must be an unsigned integer number

whose value may lie between 1 to 9999 (that is, a maximum of 4 digits). Labels
must be declared in a declaration part as:

label 4, b.....

where [, b, are the integer constants of length 1 to 4 digits. Only these can
be used as labels in the program. Labels are separated from a statement by a
colon (:) as

1 : statement

Examples are

13: writeln (X, Y);
37: AREA:=sqr (LENGTH);

Here 13 is the label of statement writeln (X, Y) and 37 is the label of the
assignment statement AREA = sqr (LENGTH).

SIMPLE STATEMENTS AND PROGRAMS 99

It is not necessary to maintain any kind of numerical order for the labels, but
labels must be unique. For instance, it is wrong to write.
23 : read (RADIUS);
23 : write. (RADIUS) ;
Statement label serves as an identifier and helps to transfer control in a program
to the desired point. A label may or may not be referred to in a program.
Normally, labels are used with a goto statement (chapter 7) , however, the use of -
this statement is always discouraged (Section . . .) The declaration label is
optional, but if given, it must immediately follow the program heading

declaration.
5.8 The Compound Statement

A set of statements enclosed within the reserved words begin and end is referred
to as a Compound statement. Its structure appears as

begin
S8,
end,

where §, S;... .5, are the Pascal statements.
An example is
begin
readin (P, Q, R);
SUM :=P+Q+R ;
writeln (P, Q, R, SUM)
end,

Each of the statements §,, S,, s,, may again be compound statements. An
illustration is

- begin
83
AT
begin

SnsSinSa.... — compound statement

end
Sis

L End:

100 PASCAL PROGRAMMING FUNDAMENTALS

The symbols begin and end are always specified in pairs, like the left and right
brackets, as shown above. A compound statement may be labelled like any
other statement. All statements within a compound statement are executable
and no declarations are specified. It is supposed that all declarations have
already been given in the declaration part of the program.

Example 5.4

You know that the roots of the quadratic equation

ax*+bx+c=0 (1)
are given by

x; = (—b+ jb™=4ac)/2a 2

x;*E—b—.(E’—f-‘lac)/Za ((3))

Develop a program which evaluates the roots x, and x; for a = 2.0, b = 5.0,
c=10.

The computation of roots can be performed easily using equations (2) and
(3) after assigning values to the parameters a, b, ¢. For illustration, we group the
statements that calculate the roots in a compound statement. The program may
be as follows,

Program 5.4

program QUADFROOT (input, output);
{ Program to calculate the roots of a quadratic equation }
label 13,14,15.16,17;

const
TWO =20,
var
A, B, C, D, DISC, ROOT1,ROOT? : real;
begin
writeln (‘Give values of A, B, C so that the discriminant is non negative’)
readin (A, B, C);
{ Roots are calculated below }

13: begin

14: DISC: =(B*B —4.0* A *C);

15:D:=A*TWO;

16:ROOT1 : = sqrt (— B + DISC) / D;

17:ROOT2 :=sqrt (—B —DISC)/D
end;

SIMPLE STATEMENTS AND PROGRAMS 101

writeln ;
writeln (‘A= A:4:1, ‘B=,B:4:1,'C=, C:4:1);
writeln;
writeln (ROOT1 =", RO0T1:6:3);
writeln (‘ROOT2 =", RO0OT2:6:3)
end,

Sample input

Give values of A, B, C so that the discriminant is non negative
20 50 1.0

Output
A=20 B=50 C=10

ROOT1=-0.219
ROOT2 =-2.280

The reader should appreciate the presence of the compound statement labelled
13 (for convenience) in Program 5.4. Say, for example, if any difficulty
occurs in the program while computing the roots, we may refer to the
compound statement, examine its statements first and then go to other parts of
the program.

Control of program execution can be transferred out of the compound
statement by the control statements but not into it from outside. Let us denote a
compound statement as

I: (— begin

end;

.

where [is its label. Then the valid and invalid transfers are shown below:

13 begin I:—— begin I ——— begin .
A
L}
"
c H
!' " H
- 4 H
’ "' :
'c' H ;
i end; i b——end; y ——end;
. . L]
8 Nl “.ZLZ.':IZZ
Valid transfer Invalid transfer Valid transfer

These transfers are further illustrated in Chapter 7.
Compound statements are useful to group statements which are to pcrform

102 PASCAL PROGRAMMING FUNDAMENTALS

some set of computations in a program. Use of compound statements, thus,
imparts a sort of structure to the program body which is easy to understand,
thereby, increasing the program transparency.

The compound statement, though a single statement, refers to a group of
statements. Due to this, use of compound statements with transfer (Chapter 7)
and iterative constructs (Chapter 8), greatly increases their utility and
versatility and this further facilitates the structured design of computer
programs (Chapter 15).

There is one big disadvantage also with compound statements. Statement/(s)
within the compound statement cannot be accessed or.referred to from outside.
Refer to Program 5.4, Say, for instance, you want to reach statement labelled 15
by a transfer statement, this is not allowed. To reach any of the statements 14,
15, 16, 17 entry will have to be made at label 13. This involves execution of
statements which we may not want. Thus, compound statements may introduce
redunancy in a program but this may be avoided by duplicating that particular
statement outside the compound statement, if the logic of the program permits.

In this chapter, we discussed the use of standard data types to develop
programs. Before we take up the study of the control and iterative statements we
would like to discuss next the availability of user-defined scalar data type in
Pascal and illustrate their use in later chapters.

Exercises 5

5.1, Answeras True or False:

(a) A variable must be initialized before it is used in any expression during
phase.(T/F)

(b} A variable cannot be initialized by an input statement.(T/F)

(e) The assignment symbol used in Pascal assignment stalements is =.(T/F)

(d) Values output by write statement are not separated by any space.(T/F)

(e) The width of a number, to be output by a write statement, can be controlled.(T/F)

() The accuracy, upto which a real ber can be rep 1 in computer memory,
does not depend on the computer word size.(T/F).

(g) Thedeclaration part of a program can follow the execution part.(T/F)

(h) The writeln statement can be used to control the vertical spacing of the program
output.(T/F)

(i) Lablesina program need not be unique.(T/F)

() The semicolon acts as a separator between statements. (T/F).

(k) Transfer to any within a It is allowed. (T/F).

5.2. Complete the following sentences with correct words.

(@) The first statement of a Pascal program must always bé
{b) The execution part of a program is always enclosed between the keywords
and

(€ Al in /declarations are ignored by the Pascal
compiler.

(d) The label of a statement mustbean |, number and is
separated from the statementbya ...,

{e) The const declarations always come d.. the var

declarations.

SIMPLE STATEMENTS AND PROGRAMS 103

(f) The constant identifier is separated from the constant value by thesign.............
® Thc compound statement is always designed using the Keywodsooouvvviennrans
......................... and does not contain anyovvunniuans
53. Explum the ways of intializing a variable in a program. What happens when an assignment
statement is executed?
5.4. Look at the following declarations:
var
A,B,C: real;
X, Y. Z: boolean;
JK.L: integer;
(a) Indicate the values assumed by the variables in the following assignment statements:
Ar=3+10%2;
Jim= A0,

K:=4+(7-5)*3;

(= Odiv2+ 15mod6—J;

=] > K

=Xand (A < B);

t= A+B—JdivK

:-nnt(.Ymd'X]ur(ord(B')> ord (A')) ;

= pred (J)— suce (K} ;

{b) Indicate which of the following statements are in error. Correct them.

=K+L;

1= 7/2+abs (J-K);
= Zand L
=A>Z;

= (A<B)andC;
i (2* X =Y);

. CNO<xE

bl t o

5.5. How are indicated in a Pascal program? Explain the utility of having comments in
4 program.

5.6. Explain the functions of the write and writeln statements in a program. Write their formats
and illustrate by examples.

5.7 Give the values and organization of the output obtained with the following statements.

(i) write (17 div 2, sqrt (abs (18 —9°6.0)) ;
(ii) write (16%8:5,3/7:8:2);
(iii) write (9, 15, 20.4);
write (—8, 7 * 5);
(iv) writeln (output."ANSWER =, pred (36)/7.0) ;
{v) writeln;
write (5.5:6:2,19:6);
write (15, 28);
writeln ;
write (— 35 mod 4);

5.8. Prepare a program to convert the teperature 370° Celeius into its equivalent Fahrenheit.

5.9. Develop a program to find the number of 50 paise, 25 paise, 10 paise, 5 paise and | paise
coins in the amount Rs.113.99,

5.10. The floor of a room is 15 feet long and 12 feet wide. It is required to fix tiles 4 inches by 3
inches on the floor. Develop an alogirthm and a program which can tell us as to how many
tiles are required?

104 PASCAL PROGRAMMING FUNDAMENTALS:

5.1, What do you understand by formatting of output data? Describe the way it is done in Pascal.
5.12. Explain the difference between read and readin statements. [llustrate by examples.
5.13. Consider the following data on the screen of a display unit:
4 9 -3 6 85
What valu s are assigned to integer variables J, K, L, M, N by the following statements:

(i) read (1, K, L);
(ii) read (L, M, N),
(iii) readin (J, K, L, M, N);
(iv) read (J,K):
readin (L, M, N)

5.14. Describe the structure of declaration part of a Pascal program, giving the function and form
of each of the specification.

5.15. Eaxplain the concept of labels and their specification in a program.

5.16." Is it possible to assign names to constant quantities? Give examples. How is the type of the
identifier determined?

5.17 Develop a program to compute the mean of 4 real numbers read from the input device, Obtain
the hexa representation of its integer part.

5.18. Given the hexa number (12),,. Write a program to obtain its octal system representation.

5.19. Develop a program to find the area of a circle. Read the value of radius from the input
device. Write the results as

RADIUS OF CIRCLE =
AREA OF CIRCLE =

5.20. Modify your program of Exercise 5.9 in such a way that you read data from the input de-vit_:‘e:
and prepare the output as

THE GIVEN AMOUNT IS Rs, =

NUMBER OF 50-p COINS =
NUMBER OF 25-p COINS =
NUMBER OF 10-p COINS =
NUMBER OF 5-p COINS =
NUMBER OF 1-p COINS =

5.21. What do you understand by a compound statement? How is it different from a simple
s:alernenl" Bring out the advnnugmdlsndvnmngcs which acerue from the facility of having
comp in a language. Prepare a syntax chart of a compound statement.

5.22. Summarize the complete structure of a Pascal program. Is it useful to have fixed structure of
a program? Comment,

Chapter 6

Enumerated and Subrange Data Types

You have learnt about standard data types which are available as part of the
Pascal language. They are built-in data types. Pascal also provides a facility for
declaring and defining new data types by the user according to the problem and
programming needs. Such data types are referred to as Enumerated Data types.
Morcover, facility is also available whereby a data type can be created from a
subset of the existing integer or enumerated type, which is applicable over a
range. Such data types are known as Subrange type. Enumerated and subrange
data types extend the typing capability of Pascal enormously and help to
develop self-documented programs. They also provide protection from common
programming errors and capability for compile and run-time checking of the
program execution. We shall study these new data types now.

6.1 Enumerated Data Types

An enumerated data type is a user-defined data type. For such data types,

*® allowed values are specified in a list,
® permitted operators are assignment and relational operators only.

An enumerated data type may be declared as

type

enumerated-type-identifier= (i, i, is. ... Jin)

where
enumerated-type-identifier indicate the identifier of enumerated type,

Ty fageenn oy are the identifiers which form the item-list.

The item-list = i), i3,, constitutes the allowed values (domain) which the
enumerated type variable can assume. These can only be characters or
identifiers. The list must be enclosed within parentheses as shown.

Variables of enumerated type can be defined as

var
Ve Wrei.o.. , V,: enumerated-type-ideniifier

106 PASCAL PROGRAMMING FUNDAMENTALS
where v, ¥, , v, are variable names which are declared as of enumerated

Ei;amplcs of enumerated type and variables are given below:

Suppose we wish to have variables which can assume months of the year as
their values. Pascal does not permit such variables as standard, so we have to
define these ourself. This can be done as:

type
MONTHS = (JAN, FEB, MAR, APR, MAY, JUNE, JULY, AUG, SEP,
OCT, NOV, DEC) @

This defines the type called MONTHS which has 12 elements or items making
up its domain. Variables of type MONTHS can be defined as

var
A,B,P:MONTHS

Here A, B, P are enumerated type variables. We can perform the following
operations with these variables.
(i) Assignment
A= H
B:=JAN;
(ii) Comparison using the relational operator as:

A>B

The order in which the items are listed in the domain of an enumerated type,
determines the order of the items. As for example, JAN precedes FEB, FEB -
precedes MAR, and so on. This allows the definition of the relational operators,
such as

and the functions predecessor (pred), successor (succ) for the enumerated type
entities as well.

The Pascal compiler automatically assigns ordinal numbers to the elements of
the domain. Thus, in example (i), the ordinal numbers of the various items in the
list are :

JAN FEB MAR..... OCT NOV DEC B
1 2 3 10 11 12 « ordinal number

(In some Pascal implementations, numbering may start from 0). Thus

JAN > FEB = FALSE
OCT < DEC = TRUL

(NOV) = OCT
pred (APR) = MAR
suce (FEB) = MAR
suce (DEC) = undefined

ENUMERATED AND SUBRANGE DATA TYPES 107

Further, examples of enumerated data type and variables are:
type

RAINBOW= (VOILET, INDIGO, BLUE, GREEN, YELLOW,
ORANGE, RED);
PLANETS = (EARTH, MOON, JUPITER, SATURN, MARS,
NEPTUNE);
SAREE = (NYLON, COTTON, SILK, SHIFFON);
var
X,Y : RAINBOW;
Q,T,H : PLANETS;
PARTYDRESS: SAREE;

Variables X, Y are of type RAINBOW and can assume value from the. list:
(VIOLET, INDIGO, BLUE, GREEN, YELLOW, ORANGE, RED). Similarly,
variables Q, T, H are of type PLANETS and they can be assigned values from
the list: (EARTH, MOON, JUPITER, SATURN, MARS, NEPTUNE), whereas
the variable PARTYDRESS is of type SAREE and can assume data items
NYLON, COTTON, SILK and SHIFFON as its values.

Variables of enumerated type can also be declared straightaway as:

var
il! iz. IIJ, anes '.({fem'ﬁsf)
where
iy bapenes variable identifiers
item-list items which define the domain

Examples of declaring enumerated type variables this way are :
var
WEEKDAY: (SUN, MON, TUES, WED, THURS, FRI, SAT);
VEHICLE:{CYCLE, SCOOTER, VICKY, CAR, BUS, TRUCK);
The variable WEEKDAY can be assigned any value from the list SUN, MON,
TUES, WED, THR, FRI, SAT. Similarly, for variable, VEHICLE, any
element from its domain can be assigned to it.
The same domain of items can belong to more than one variable. Thus, for the
declaration,
var
COLDRINK, HOTDRINK :(CAMPA, LIMCA, TEA, COFFEE, JUICE);

variables COLDDRINK, HOTDRINK have the same domain. You can assign
values as :

COLDDRINK :=CAMPA;
HOTDRINK := COFFEE;

108 PASCAL PROGRAMMING FUNDAMENTALS

Enumerated type variables cannot be used in read/write statements. They can
only be initialized by the assignment statment. As for example, it is incorrect to
state

readln (HOTDRINK);
writeln (COLDDRINK);

The same item should not belong to the domain of two enumerated type
variables. For instance, it is wrong to indicate:

var
BOOKS : (ENGLISH, PUNJABI, HINDI, URDU, SINDHI);
SUBJECTS : (ENGLISH, PHYSICS, CHEMISTRY, MATHS) ;

because the item ENGLISH appears in the list of both variables BOOKS and
SUBIJECTS.
The standard type boolean is also an enumerated type, defined as

type
boolean = (false, true);
where false < true. As boolean is a standard type, so there is no need to define
it.
The function ord is defined for the enumerated data types. It gives the place
of the item in the domain, starting with 1 (or 0 depending on the Pascal
implementation). Example 6.1 illustrates this :

Example 6.1

Define an enumerated type variable, PARTICLE, as:

PARTICLE : (ELECTRON, POSITRON, PROTON, NEUTRON,
PHOTON)

Obtain the ordinal numbers of each of the items in the list and compute their
sum.

Program 6.1

program ORDNUM (output);

{ To compute the ordinal numbers of items of a list in an enumerated type
variable |

var
PARTICLE : (ELECTRON, POSITRON, PROTON, NEUTRON,
PHOTON);

A, B, C D E, S : integer;

ENUMERATED AND SUBRANGE DATA TYPES 109

n

:=ord (ELECTRON);

:=ord (POSITRON) ;

:=ord (PROTON);

:=ord (NEUTRON);

:= ord (PHOTON) ;

1= A+B+C+D+E ;
writeln (A, B,C,D,E);
writeln (‘SUM =, §)

end.

menGJ}g

Output

12345
SUM = 15
This is a simple example and illustrates finding the ordinal numbers of items of
enumerated type variables.
The domain of enumerated type identifiers cannot consist of numeric or
character constants. For example, the following is not permitted.

type
NUMBER =(1,3,5,7,9,11,13);

The reason being that 1, 3, 5, 7, 9, 11, 13 are of integer type. By using numbers
in the domain of the enumerated type, we are redefining the type and this is
illegal. Similarly, the declaration.

l:gARACTER =(‘A,‘B,‘'C,'D,‘E")
is not allowed but
type
KARACTER = (A, B,C,D,E)
is allowed. See that A, B, C, D, E are not same as ‘A, ‘B, ‘C’, ‘D", 'E",
The variables of an enumerated type can be used as selectors in case

statement (Chapter 7), as control variables in iterative statements (Chapter 8)

and to design relational expressions.
The definition and use of enumerated data types is simple and it enhances the

expressive power. The programs are better documented and readable.

6.2 Subrange Data Types

Several times, we want that a variable should assume values which lie within a
certain range only. For example, consider that the age of adult population of a
census data lies between 18 to 100 years. We define a variable as

var
CENSAGE : integer

110 PASCAL PROGRAMMING FUNDAMENTALS

and want that the variable CENSAGE should assume values only from 18 to
100 (both mcluswe) and no other value. If any other value, say 101, is assigned,
it should immediately be pointed out. This means that the values which the
variable CENSAGE can assume are restricted to the range 18 to 100. Such
variables are said to be of Subrange type. The values in a subrange are restricted
to a set of values. The variable CENSAGE, of subrange type, is declared as

var
CENSAGE:18..100

Pascal allows the definition of both subrange type and subrange variables. The
form of subrange type is:

type-identifier = lowerlimit . . upperlimit

The lowerlimit and upperlimit must be constants, or previously defined constar.
identifiers (0f type integer) or items of an enumerated-type-list. Moreover,
lowerlimit is always less than the upperlimit. The specification lowerlimit . .
upperilimit is referred to as the range of allowed values which a variable of
subrange type can assume.

Examples of subrarige type declaration are

const
N=13;
M=213;
type
NUMBER=1.,100;
VALUE =N, M;
LETTER =‘A’..'Z’;
Here NUMBER, VALUE, LETTER define subrange types. Variables of these
types may be declared as

var

RESULT, ANSWER : NUMBER;
X, Y,Z:VALUE;
W:LETTER

This defines variables RESULT, ANSWER of subrange type NUMBER. Values,
which these variables can assume, must lie within 1 to 100 (both limits
inclusive). Similarly X, Y, Z are subrange type variables with their allowed
values restricted to the range defined by the previously defined constants N
(=13) and M (=213). Variable W is of type LETTER and can assume any
value from the list : ‘A, ‘B,,'Z"

Subrange variables can also be defined directly as

ENUMERATED AND SUBRANGE DATA TYPES 111

var
TEMPERATURE : 89..293;
PRESSURE : 1..1000;
OHM, VOLT : 1..25;

Subrange type can be created from a subset of an already defined enumerated

type as well.
The following example illustrates this :

MONTHS = (JAN, FEB, MAR, APR, MAY, JUN, JUL,
AUG, SEP, OCT, NOV, DEC);

SUMMERMONTHS = MAY..AUG;

SPRINGMONTHS = FEB..APR;

RAINYMONTHS = JUL..AUG;

But declaration of the type

WINTERMONTHS = NOV .. JAN;

is not allowed, because NOV > JAN (7).
The declaration

var
XX, YY : SUMMERMONTHS;

defines variables XX and YY as of type SUMMERMONTHS. These variables
can assume values from the list : MAY, JUN, JULY, AUG.

We have seen that a variable of subrange type can assume integer, character or
enumerated type of values. When we declare

var
NUMBER : — 100 .. 100;

the values of variable NUMBER must lic between tne limits —100 to 100 The
values are of type integer, though range is —100 to 100. Thus, the host data type
is integer. Similarly, in the example

type
SYMBOL="A’, .'P}

the host is of character type.
Example6.2

Refer to Example 5.3. Rewrite this program using the subrange data type for

. the integer variables.

Program 6.2

We rewrite the declaration part only

program ODDEVEN (input, output);

112 PASCAL PROGRAMMING FUNDAMENTALS

var
W boolean;
N:0..15:

Q1,02,03,0Q4:0..7;
R1,R2,R3,R4 :0..1;

begin

{ Execution part is as given in Program 5.3 |
end.

Let us study_the declaration parts of Program 5.3 and Program 6.2. In
Program 5.3, variables N, Q1, Q3, Q4, Rl, R2, R3, R4 were of integer
type and could assume any integer value. Suppose, we give the value 23 to N.
The program will run but the result obtained will be wrong. Thus, the correctness
of the result is lost. The user has to keep a watch on the correctness of the input
data himself or use other statements (such as control statements) to ensure the
accuracy of the input values. The disadvatage of using more statements here
would be that the program needs more memory and execution time and hence
tends to be inefficient. An alternative way to build in the check on the values of
the variables N, Q1, . ,Q4,R1, . .,R4 is by declaring them of subrange type, as
done in the declaration’ part of Program 6.2. Now.,if the value of N lies outside
the range 0 . . 15, an error message will appear and the program will not run. QI,
-+ Q4 can assume values between 0-7 and R1, . .., R4 can take values O or 1.

The operators and functions defined for the host data type items are also
applicable to the subrange type items. Moreover, the result produced by
applying an operation to operands of a subrange type may or may not lie in the
same subrange. It may belong to the host range. Consider the following example:

program PROD (output);
type
X=1..100;
var
LK, LLM:X;
N :integer;

begin
readin (J,K,L);
N:=]*K*L;
writeln (N: 4)
end.
Here variables I, K, L are of subrange type with values lying in the range 1. . 100.
Suppose, values read for J, K, L are as: 10, 15, 20. Then N assumes the value 10
X 15 X 20 = 3000. This is allowed because N can assume any integer values.
However, if we specify

M:=J*K*L
then M would assume the value 3000, which is not permitted, because values

assinged to M must lie in the range 1 .. 100.
The subrange type is not defined for real data (?).

ENUMERATED AND SUBRANGE DATA TYPES 113
6.3 Uses and Limitations of Subrange Data Types

Subrange type variables offer the following advantages:

® the machine can check that all values, assigned to the subrange type of .
variables, lie within the given range,

® cnable to save computer memory,

® program is better documented,

* help to develop a correct program.

As mentioned in the introduction of this chapter that the availability of
enumerated and subrange data types are quite useful features. They help us to
express a program in a more natural way, better documented, and provide more
information to the compiler as well. This also yields advantages of transparency,
security and efficiency of program, the features we had mentioned in Chapter 2.

Recall that the transparency of a program implies the clarity and ease with
which we can understand a program and follow its execution. This gives us more
confidence as to what the program is doing, how it is-doing, and whether it is
doing what we want it to do. Debugging of programs also becomes easier,

Security of a program concerns the detection of errors by the computer.
Errors may occur during the compilation as well as execution phase. 1t 1s much
easter and economical to correct errors detected at compile-time, than at the
run-time. Subrange data type help to locate more errors at-the compile time,
thus enhancing the program security.

Let us again consider the statement

M:=J*K*L

Here M is a variable of subrange type. During execution, attempt will be made

to assign the value 3000 to M. The compiler can not detect this subrange

violation at compile time. Thus, there will always be subrange violations which

cannot be detected until run-time. This, no doubt, reduces the program security.
Suppose we make the assignments

Ji=135;
K:=-80;

Syntactically, these are correct statements and some Pascal compilers may not
point out these as subrange errors at compile time, but good compilers should
report this. Similarly, the assignment

J:=K—-M

may be legal or not, depending on the values of K and M. It may be legal as long
as K > M, otherwise illegal. Occurrence of this type of situations in a program
should be avoided as far as possible.

Program efficiency concerns the amount of memory space and time that the
program needs for execution. These two requirements are generally
contradictory. Programs written to take up less memory, normally need more
time and vice versa and so there is often a trade-off between the two. Similarly,

114 PASCAL PROGRAMMING FUNDAMENTALS

there is a trade off between efficiency and security. Run-time checks increase
security but increase execution time. Use of enumerated and sub-range types
can help to increase the security of a program without affecting its efficiency. In
fact, in some situations, it has been observed that efficiency improves. However,
remember that efficiency is a system dependent quantity and may vary from one
compiler to another.

Exercises 6

6.1. Tick the correct answers:

(a) Enumerated data types are standard/user-defined data types.
{b) Values for enumerated variables can/cannot be read with read statements,
(c) The standard boolean type is/not an enumerated type.
(d) The lower-limit of a subrange variable can/cannot be greater than the upper limit.
(e) The subrange type can/cannot be of enumerated type.
(f) The operators defined for the host data type are/not applicable to the subrange type
items.
_(g) The subrange type can/cannot be of real type.
(h) The domain of enumerated type can/cannot be of numeric type.

6.2. Complete the following sentences {

(1) numbers are associated with items appearing in the
enumerated list,

(ili) Enumerated type variables can only be initialized by the
statements.

(iv) The domain of enumerated type identifers cannotbeof............... type.

{v) The subrange type identifier must have limi

{vi) Program is better documented with type identifiers.
(vii) The items appearing in the list constitute the of enumerated type
identifiers.
6.3, Explain the concept of enumerated data type. Give examples and illustrate their utility in
program development,

6.4. Define data types and variables which can take on the values:

(i) BEER,RUM, WINE, WHISKY, GIN
(ii) DELHI, BOMBAY, MADRAS, CALCUTTA, CHANDIGARH, KASHMIR
(iii)y MORNING, NOON, EVENING, NIGHT, MIDNIGHT
(iv) STATEBANK, CANARABANK, BANKOFINDIA, GRINDLASYBANK,
BANKOFBARODA, RESERVEBANK, PNBANK

6.5. Determine which of the following are in error. Correct them after giving reasons for errors.

type
FAMILY = (FATHER, MOTHER, SON, DAUGHTER,GRANDFATHER,
DIRECTION = (EAST, WEST, NORTH, SOUTH) ;
INDEX = (~=13..113);
NUM =(7,8,9..15);

ENUMERATED AND SUBRANGE DATA TYPES 115

M, MEMBER : FAMILY ;
HIGHWAY :S0UTH;

MASS 177..50;
XY : BOOLEAN;
begin

MEMBER :=21;
M, ;=pred(13);
HIGHWAY :=NORTH;

X :=suce (SON) + pred (13);
Y : = ord (EAST) — ord (SOUTH);

6.6. Refer 10 Exercise 6.4, Write a program to display the
various domains.

6.7. What operators and functions are defined for d data types? List them and explain
their use using the data of Exercise 6.4.

6.8. Describe the design and use of subrange data types. What operations are allowed on them?
6.9. Define the following:

(i) Subrange type for the numerals 20 to 35.

(i) data type for the animals (both pet and wild) and then subrange type for pet and wild
animals.

(iii) enumerated type for the names of television sets (both black and colour) and then
subrange type for coloured sets.

(iv} data type which can assume the values as AND, OR, NOT, XOR, NAND, NOR and
then as NOT, NAND and NOR alone.

6.10. Read a positive integer number lying between the limits 0 to 100. Write a program to
convert it into octal system. Print your results with proper headings.

6.11. Look at the following example :
program TEST (output);
var

A:20..30;

B:40..60:

C:80..120;

D: integer ;

n

Arm 20346,

B: = sgrt (100* A);

Comsqrt (100° A)

Di=A"B*D;

writeln (A, B,C,D)

end.
Run this program on your system. What do you get as the output? Are the results correct?
Analyze the output and make the program run.
6.12. Indicate

pred (false) =

suce {true) =

ord (false) — ord (true) =

of the items of the

Chapter 7

Program Execution Control

Normally, a computer executes statements of a program sequentially, that is, one
after another in the serial order. In actual problems, this is seldom the case and
the sequence of statement execution may be required to be changed due to
several factors and conditions of the solution. The order of statement execution
can be controlled by means of various control commands. These commands
help to jump from one part of the program to another. This transfer of control
may be based on certain conditions or may be unconditional. We shall discuss
the control statements which help to do so and the related concepts,in this
chapter.

7.1 The if Statement
The if statement is the simplest form of control statement. It is very frequently

used in decision making and altering the flow of program execution. A simple
form of an if statement is

if test-condition then S

where
test-condition a boolean/relational expression
S a statement, may be simple or compound

We shall refer to this form of if statement as if-then form. The if-then statement
operates as follows” When the fest-condition is true, then the statement S is
executed, but when the test-condition is false, statement § is skipped, and the
statement immediately following if statement is executed. Schematically, we can
show the action of the if-then statement as given in Fig. 7.1.

Introduce the declarations
var
A,B,C,D, T, X, Y: real;
P,Q, U: boolean;
M, N : integer;
ALPHABET,LETTER: char
An example of if-then statement is

if A< 10.0 then X:=3.0+sqrt (9.0%4.0);
X:=A*130;

PROGRAM EXECUTION CONTROL 117

test-condition

Execute statement
after if-statement

Fig. 7.1: Action of if-then statement

This if statement specifies that when the test-condition A < 10.0 is true, then
execute the statement X : = 3.0 + sqrt (9.0*4.0), otherwise, the control of
program execution should go to the statement immediately following it, that is,
X:=A*130,

Further examples of if-then statements are

if A+B*C =D *sin(T) then writeln (X,Y);
if Q or P thenread (A,B,C,D);
if (M > N) and (X+Y'< A)thenN:=N+1;

The statement S may be a simple or compound statement. We can specify an if-
then statement as

if X <> Y then
begin
if A=B then C:=A+B-C
end ;

The test-condition in an if statement may be formed with enumerated or
character data as well. Consider

type
WEEK = (MON, TUES, WED, THRS, FRI, SAT, SUN);
WEEKDAYS = (MON ..FRI) ;
var
DAY: WEEKDAYS;
RATE :real;
n
if DAY =SUN then RATE:=50.0;
if DAY <> SUN then RATE :=20.0;

118 PASCAL PROGRAMMING FUNDAMENTALS

Here, WEEKDAYS is an enumerated subrange date type and DAY is a
variable of this type. In the first if-then statement, when the content of variable
DAY is SUN, then rate is initialized to value 50.0, otherwise control goes to
the next if-then statement. Here, if the value of variable DAY is < > SUN,
value 20.0 is assigned to the variable RATE.

Example 7.1

Read a real number. Evaluate and write its square root. If the number is
negative, do not perform any computations but print the message that the
number is negative,

Program 7.1
program POSNUM (input, output) ;
{ To find the square root of a number }

var
A,B:real;

begin
readln (A);

if A < 0.0 then writeln (‘Number is Negative') ;
if A > =0,0then

B:=sqrt (A);
writeln (‘Sqr. Root=",B:5:2)
end

end.
Sample input
=70
Output
Number is Negative

Let us go back to Program 7.1 and study it more carefully. Two if-then
statements have been used and the test-conditions have to be evaluated twice.
Now the test-condition A < 0.0 is automatically true if A >= 0.0 is false. If
we could have this provision, our program will become more cfficient. Pascal *
allows to handle this type of situations by another more general form of if

- statement. Its form is

if test-condirion then S, else S,

PROGRAM EXECUTION CONTROL 119

where S, and S; are other statements. Statement S; must not be followed by a
semicolon. We shall refer to this form of if statement as if-then-else form. It
operates as follows: when the fest-condition is true, then statement S, is executed
and S, is skipped; on the otherhand, when the test condition is false, then S, is
bypassed and statement S, is executed. Schematically, we can represent this as
shown in Fig. 7.2.

ecule stalement
after if-statement

Fig. 7.2: Action of if-then-else statement

Execution control always passes on to the statement after the if-then-else
statement whether S, or S; is executed. Statement S, and S; may be simple or
compound. S; should never be followed by a semicolon, while S; should be.

An example of if-then-else statement is

if A+B <> C*4.0 then D:=A+B+C
else D:=A—B—C;
This statement instructs the computer to check if A+B and C*4.0 are unequal.
If they are not equal, then the variable D should be set equal to A+B+C,
otherwise, D should be initialized to the value of the expression A—B—C.
Now look at
if P and Q then U:=true
else writeln (P,Q);

According to this statement, U is assigned the value true when the boolean
expression P and Q is true. If this expression is false, then the statement writeln
(P. Q) is executed.
Let us rewrite the execution part of Program 7.1 using the if-then-else
statement. This becomes
begi

n
readin (A);
if A < 0.0 then writeln ("Number is Negative')
else begin
B:=sqrt(A); writeln (‘Sqr.Root=",B:5:2)
end

end.

120 PASCAL PROGRAMMING FUNDAMENTALS

The reader should appreciate that the use of if-then-else statement makes the
program more compact, better readable and efficient.

Next, refer to Program 5.3. We had put the condition that N should lie in the
range 0-15. One technique of ensuring this is by the use of subrange data type
(Program 6.1) and the other is by the use of if statement :

if N>=0or N <= 15 then.........

Thus, limits and type of values of a variable can be examined/controlled in two
ways: use of subrange type and control statements. Subrange type technique is
more efficient as it is used in the declaration part of the program and checked
during compilation phase, whereas the control statement technique is used in
the execution part of the program and is operative during the execution phase of
the program. However, there is one limitation. Subrange type technique cannot
be used with real data type, while the control statement can be used for any data
types.

The test-condition may be designed with arithmetic, boolean, character or
user-defined data items as discussed earlier. For instance, in the following
statement:

if (LETTER < ‘A") or (LETTER > ‘Z)
then ALPHABET : = false
else
ALPHABET : = true

the fest-condition is based on the use of character data. Similarly, we can write
as

if (DAY =SAT) or (DAY = SUN) then RATE : = 50.0
else RATE: = 20.0;

Now the test-condition has been designed using enumerated data types.

The if-then-else statement also enables us to specify multiple actions in a single
instruction. As for instance, when this statement is written as

if test-condition-1 then S,

else (if rest-condition-2 then S,
else S])

then two test-conditions are being examined. Schematically, we can show this as
given in Fig. 7.3,

We shall call this as a nested if statement. Example 72 illustrates the use of
nested if statements.

Example 7.2

Develop a program to compute the real roots of the quadratic equation
ax’+bx+c=0 0

PROGRAM EXECUTION CONTROL 121

Fig. 7.3: Nested if statement

The program should be such that it accepts only nonzero positive values of co-
efficients, a, b, c.
As mentioned earlier, the roots of the quadratic equation (1) are given by

X 2= (_b t J(b2_4acl,/23

(b*—4ac) is the discriminant of the equation. If (b*—4ac) 2 0, the roots are real.
Program' 7.2, given below, takes care of all the above restrictions imposed
on the values of a, b, ¢, and the nature of roots.

Program 7.2
program QUAD (input, output) ;
const
TWO=20;

var
A, B,C,D,DISC, R,ROOT1, ROOT2 :real ;

n
readin (A, B, C);
{ Check the validity of values of A, B, C}
if (A=0.0) and (B=0.0) and (C=0.0)
then writeln (A=, A,'B=,B,'C='"Q)
elseif (A < 0.0)and (B < 0.0)and (C < 0.0)
then writeln (A, B, C))
else
begin
D:=TWO*A;
DISC :=B*B—4.0*A*C
end;

122 PASCAL PROGRAMMING FUNDAMENTALS

if (DISC >=0.0) then

begin

R:= sqrt (DISC);

ROOT1:= (=B+R)/D;

ROOT2:= (-B—R)/D;
writeln ((A="_A:4:1,'B="B:4:1,'C=,C:4:1)
writeln (‘Root 1 =", ROOT1 :6: 2, ‘Root2=", ROOT2:6:2)

end

end.

Sample input

=20 30 6.0

QOutput

A=-2.0 B= 3.0 C= 6.0
Rootl =bH—1.13 Root2 =552.63

Suppose we wish to repeat the execution of program 7.2 for more sets of data of
the variables A, B, C. The program, as developed above, cannot do so. For being
able to do so, control must be transfered back to the beginning at the statement
readin (A,B,C,). We have not learnt how to do this so far. The if statements do
not permit jumping from one part of the program to another. Moreover, program
execution flow always goes in the forward direction with their use. Transfer of
program execution control from one part to another is possible with the use of
goto statements. This is described in Seclion 7.3.

Example Program 7.2 illustrates the use of nested if-then-else statements.
Though the program is more compact, but transparency may be effected if any
further nesting is carried out.

Pascal allows nesting to any level, however, it may depend on Pascal
implementation on a particular system. Experience shows that most commonly
used forms of if statement are if-then and simple forms of if-then-else. Only
in situations where multiple decisions are required, the more complex forms of
if-then-else statement are useful. However, most of the programs may be
written with the help of simple forms of if statements. Such programs arc easy to
understand and debug.

7.2 The case Statement

We have seen that if statement enables us to design multiple-way decisions in
a program. This can also be achieved by another statemcent, called case
statement. The format of this statement is

PROGRAM EXECUTION CONTROL 123

hh,.... 0, labels, referred to as case labels

Su82,...5: Pascal statements

expr an expression and is known as-case selector or

case index.

The case labels are different from the labels of statements as defined in Pascal
(Section 5.8). case labels may be integers, characters, boolean or enumerated
data items. Moreover, each of the statements S, S,, S,, may have one or
more than one case label associated with it. As for example,

I|.l::S];

!5! ;?tll : SZ;

The case index may assume values which correspond to the case labels. The
case statement always has an end associated with it.

The case statement operates as follows: first the value of the case expression,
that is, the selector is obtained and compared with each of the case labels. The
statement whose label matches with the selector is executed and then control
goes to the statement immediately following the case end. When no match
occurs, program execution control is transferred to the statement after the
case end. (Remember, each case statement must have its associated end word).
This action of the case can be represented schematically as shown in Fig. 7.4,

or

—

Execute statement | Eip:7.4: Action of case statement

124 PASCAL PROGRAMMING FUNDAMENTALS

An example of case statement is

J o
1:K:i= K+1;
2: K= K+2;
3 :K:= K+3;
4:K:= K+4

end;

According to this case statement, statement labelled 1 is executed when J = 1
and statement 2 is executed for J = 2. When J = 3 and 4, statements labelled 3
and 4 respectively, are executed.

The case labels must be distinct. For example, it is wrong to write

2:K:=K+2;
2:K:;=K+3;

as then the machine does not know where to transfer the execution control.
The case-selector may be integer, boolean, character, subrange or enumerated
type, but not of real type. This is illustrated by the following examples.

type
FIGURE = (SQUARE,CUBE, RECTANGLE, TRIANGLE) ;

var
GEOFIGURE : FIGURE ;
LENGTH, BREADTH, AREA.: real ;
S,A,B,C:real;

case GEOFIGURE of

SQUARE : AREA : = LENGTH * LENGTH; 0]
RECTANGLE : AREA : = LENGTH * BREADTH; (if)
CUBE : AREA : =LENGTH * LENGTH * LENGTH; (iii)
TRIANGLE : AREA := sqrt (5* (S—A)* (S—B)* (5—C)) (iv)

end;

Here the variable GEOFIGURE is the case-index or selector. GEOFIGURE is
an enumerated type of variable which can assume the values: SQUARE, CUBE,
RECTANGLE and TRIANGLE. When its value is CUBE, the statement
identified as (iii) is executed. When the value happens to be TRIANGLE
statement (iv) is executed, and then control goes to the statement following end.
The type of selector-variable and the label must match. As for example, in the
above case statement, the value of selector-variable GEOFIGURE is of
enumerated type and all the case labels are also of the same type.

PROGRAM EXECUTION CONTROL 125

The reader may note that the if-then-else statement is a special case of case
statement as shown below.
Consider

if test-condition then S, else S, ;

This is equivalent to
case lest-condition of
true :S,;
false : S,
end;

Example 7.3 illustrates the use of a case statement in an actual program. You
know that there are four arithmetic operations: +, —, *, / (division). Any of these
operations can be selected in a program with a case statement by choosing the
case-index to be of character type. One way of writing the program is given in
example 7.3.

Example7.3

Design a program which simulates the four arithmetic operations for real
numbers.

Let A and B be two real variables. The four arithmetic operations performed
on these are A+B, A—B, A*B, A/B. The program which we write below selects
the appropriate expression using case statement.

Program 7.3
program ARITHOP (input, Output);

yar
A, B, C:real;
OPR : char;
begin
writeln (‘Enter the two numbers") ;
readln (A,B);
writeln (‘Specify the operator’) ;
readin (OPR);
case OPR of
“+":C:=A+B;
*:C:=A'B;
=" C:=A-B;
Y Ci=A/B
end ;| case }
writeln (‘The answer is) ;
writeln (C:4:1)
end.

126 PASCAL PROGRAMMING FUNDAMENTALS
Sample inputioutput

Enter the two numbers
4-0 2.0

Specify the operator
+

The answer is

6.0

We have seen that many case labels may appear with a statement within a:
case statcment. This allows the execution of the same statement for a variety of
values of the case expression. The case stawcraent is particularly useful when
selecting from various options based on the values which are not in sequence,
but are random.

Any statement, simple or compound, may be used within the case statement.
The following example illustrates the case of if-then-else statement within a
case statement. Suppose, we wish to determine the number of days in the month
for a particular year. This may be programmed as:

m .
MONTH : (JAN, FEB, MAR, APR,MAY, JUN, JULY, AUG, SEPT,
OCT,NOV, DEC);
YEAR, DAYS: integer;

case MONTH of
JAN, MAR, MAY, JUL, AUG, OCT, DEC: DAYS := 31 ;
APR, JUN, SEP, NOV: DAYS = 30;
FEB: begin
if (YEAR mod 4) = 0 and (YEAR mod 100 <> 0)
then DAYS : =29
else DAYS:=28
. end
end; { of case }
writeln (DAYS);

7.3 The goto Statement

This statement causes the transfer of program execution control from one
statement to another unconditionally. Its form is

goto n

PROGRAM EXECUTION CONTROL 127

where
n label of a statement to which control is to be passed on.
n must be an unsigned integer label whose value can be from 1 to 9999,

Examples of goto statement are:
goto 20;
goto 113;

Labels may be used in goto statements which appear before or after this
statement. The same label may be specified in any number of goto statements,

The if and goto statements may be used in the compound statement to
transfer control out of the compound statement, but it is illegal to transfer
control into it. Following examples illustrate this:

(a) begin
if A > B then goto 100;

end;

100: D = A+B+C;

The specification of form (a) is allowed.
(b) The following form is not permitted

128 PASCAL PROGRAMMING FUNDAMENTALS

However, entry into a compound statement can be made at the beginning
of the statement. For instance, the following transfer is valid

case label should never be used with the goto statements as such labels are
distinct from the Pascal labels of statements.

Refer to Program 7.2. As mentioned there, more computations can be
repeated for different sets of data values for A, B, C, provided we transfer the
program execution control to the beginning of the program. Now this is possible
with a goto statement. We rewrite the outline of Program 7.2 and introduce
the use of goto statement as illustrated below.

Program 7.2 (rewritten)
program QUAD (input, output);

label 77,
const TWO=2.0;

var
A,B,C,D,DISC,R, ROOT1, ROOT?2 :real ;
X:char;

77 :readin (A, B,C) ;

writeln (‘Do you want to enter more data? (Y/N)')
readin (X);
if X="Y" thengoto 77;
writeln (‘Stop”)
end.
Now the sample input/output may appear as

0.0 0.0 0.0
A=00 B=00 C=00

PROGRAM EXECUTION CONTROL 129

Do you want to enter more data? (Y/N)

Y

60 25 30

Do you want to enter more data? (Y/N)
N

Stop

This mode of program execution is referred to as Interactive mode. Another
technique of developing interactive programs is described in Chapter 8.
Statements considered so far have been simple and easy to understand. They
are adequate to write several interesting and general programs. We illustrate
their use further by another example.
‘We consider the example of generating Fibonacci series. This is a sequence of
numbers;

0 1, 1, 2, 3, 5 8 13,
Each term is obtained from the sum of the proceeding two terms, that is:

0+1=1
141 =2
1+2=3
243=5
3+5=8
54+8=13
8+13=21
13+21 =34

This number sequence has several practical applications in areas such as
electrical network theory, biological systems, etc. The following program has
been developed using the if and goto control statements. This program can be
developed using iterative constructs (Chapter 8) and recursively (Chapter 10) as
well. This we will do later an.

Example 7.4

Develop a program to generate the Fibonacci series using the control
statements only.

Program 74 has been written following the above process of Fibonacci
sequence generation.

130 PASCAL PROGRAMMING FUNDAMENTALS
Program 7.4
program FIB (input, output) ;

{ Calculation of Fibonacci sequence using control statement only }

label 20 ;
var 1LJ,K,L, N :integer;
begin
{ Initialize variables }
readln (N); { N = No. of terms in the series }
writeln ;
K :=0 ; writeln (K);I :=1; writeln (I);
K:=K+1;J:=1; writeln (J);
{ 1,7, L, give successive terms. |
20 : K :=K + 1; L :=T+J;writeln (L);
K =K+1;1: -J J:=L;
if K < N thengoto 20,
{ K keeps count of the no. of terms }
writeln (‘The above are the’, N, ‘terms of the Fibonacci sequence’)
end.

Sample inputioutput

h b B = = D

The above are the 6 terms of Fibonacci sequence

We have discussed in detail the format and use of control statements as
gyat]ablc in standard Pascal. A variety of programs, simple as well complex, can
be developed using them. The if-then-else and case statements are very
powerful and form the basis of structured design of computer programs.
Decisions, based on logical reasoning, can be easily built into a program using
if-then-else statements. Appropriate nesting of these statements cnables to
design quite versatile programs. if statements can also be used to perform
repetitive computations in a program, as you have seen. However, such
computations can be better implemented using Pascal’s iterative constructs which
are discussed in the following chapter.

PROGRAM EXECUTION CONTROL 131

Exercises 7
71. Tick the correct answer:
(a) Su in a program are Iy executed lly/randomly
{b) The test-condition in an if statement can/cannot be d ‘, d using ated data

(c) if mtcmenrs can/cannot be nested.

(d) The type of case index must/need not match the case lahel.

(e) The case selector can/cannot be of real type.

(f) Every case statement must/need not have its own end word.

{g) Same/different labels must be used with statements in a program.

(h) A compound statement may,/may not appear within the case statement.

72. Complete the foll

P

(i) The order of ion of in a program can be lledbythe.........
stalements.
(ii) The test-condition appearing in the i st may be designed with or..
Y S OF uivennins data items,
(iii) Mulhple decisions in a program may be easily implemented using
statement

(iv) case labels mustnotbeoftype..........ccvueee
v) The statement S, appearing afier the keyword then in the if-then-else statement may

............ or.
(vi} The action oﬂl’-theﬂ-ehe mtemem can be simulated by the.. .. slatement.
(vii) Enumerated data items can be used as labelsina.. ualemenl..

7.3. Write the different constructs of if statements available in Pascal. Draw their syntax charts.
Explain their action by examples.
74, Assume the following types of variables:
var
AB.CD: real;
PQ: boolean;
JK : integer;

Determine errors, if any, in each of the following statements. Correct them.

(i) ifA> B then A=='true ;
(ii) if P and Q then A:=2.0*sqrt (B);
else A= 3.0*trunc (B);
(iii) if A+B+C < 100.0 then else B=C/D
(iv) if C= D then
10 : begin
Ar=50;
B:=6.0
end
else
20: begin
Az=10.0;
B:=13.0
end;
(v) case Jof
AK=K+1;
B K= K43,
'C i K:i=K+5 end;

132

7.5

6.
7.7

7.8,

9.
710,

AR

12

713"

714,

7135,

Tl

PASCAL PROGRAMMING FUNDAMENTALS

Multiple-branch decision in a program may be coded either by il or case statements. When and
which option would you prefer? Illustrate by examples,

Explain the action of a case statement. Write its format and give examples.

How are case labels different from statement labels? Is it possible 1o refer to the case labels
by a goto statement? Explain your answer.

Look at the following two case statements:

and
(ii) case J of
4.6:
7,9:K:=1] div 2
end;
which of these has the correct format? What can be the possible values of K?

Generate the action of ithen-else statement using goto and if-then statements.
The series
1= 13+ /5= /T +......% 1/2n+1

converges to the value of n/4. Develop a program 1o obtain the value of ;t from this series.
How many terms are needed to obtain the value as 3.1416.

Develop a program 1o read a character. If it is a letter, output should appear as
ITIS A CHARACTER

If the character is a digit, message should be
IT1S ADIGIT

while if the character is some other symbol, then display
ITIS ASPECIAL CHARACTER

Develop a program to determine whether the given integer number represents a leap year
(Note: the integer number must be positive).

Prepar-e a program to compute the sum of prime bers lying b two
and 200,

Develop a program, using case statement, which evaluates the function f(x) (x is an integer)

s, say, 0

f(x)=1+x+x? 0€x<4
-] —x+x 4€£x<7
-1 4+x—x 7T€x<10

Design a program to compute and print n! (factorial of n) as long as n! < 10°, Print the value
of n for which this limit is reached,

Develop a flowchart and a program to locate the largest positive integer such that
P42 43+ 4+ +n € 100

PROGRAM EXECUTION CONTROL 133

711 Prepare an algorithm and a program which reads two positive numbers m and n and prints all
powers of n which are less than m.

718. Develop a prog to pute the value of n for the sum
2
L Il
=0
to converge to 2.71828,

719. Develop a program which converts decimal integers into their equivalent binary, octal and
hexadecimal rep ion using case

720. A computer manual has the following information about the diagonistics issued by the

system:
Code Error
0 All correct
1 invalid input
2 data values incomplete
34 WIQRE Syntax
56,7 division by zero
8,9 error undefined

Prepare two programs using (i) case and (ii) iFthen-else statements. Which program is
easier to write and efficient to execute?

721, Define a data type and variable which can take on the values FIAT, AMBASSADOR,
MONTANA, STANDARD, MARUTI, CONTESSA, NE118. Write a program 1o ask a
person to reply YES or NO to questions indicating which car he is thinking of?

'722. Develop a program to prepare the truth tables of NOT, OR, AND logical operators.

Chapter 8

Repetitive Computations

Often in our computations, we need to repeat a set of calculations many times.
This can be done with the help of if statements. However, there are other ways
also by which repetitive computations (looping) may be performed in a
program. This is with the help of for-do, while-do and repeat-until statements.
They are also referred to as Looping or Iterative Constructs. These statements
enable us to make best use of structured data type — such as arrays — in varied
applications like iterative computing, matrix manipulations, large scale data
processing, business applications, and so on. We shall discuss these statements,
their use and applications here.

8.1 The for-do Statement

The format of this statement is
for v:= [to] do S
or Vi= g dmw €3
where _
v variable of ordinal type,
€, expressions,
S statement, may be simple or compound

Variable vis called the Control or Index variable. The expression e, represents
the initial value of v while e, is the final value which the control variable can
assume. These expressions must be of ordinal type (that is, integer, boolean,
character, subrange or enumerated) and their type must match the type of
control variable. The symbol | | indicates that either of the options to or down
to is to be specified. Thus,

The for-do statement may have the form

forvi=¢ toe,do$ (i)
or
for v:= ¢, downto ¢; do S (ii)

Let us first examine the action of form (i). According to this form of for
statement, execute statement S, for v= ¢, = p, (say), v=succ (p,) = p; (say), v
= succ (p;) = p, (say), till v equals the value e,. Here py, ps, ps, are the
values which the variable vcan assume. When the value of v > e,, the statement

REPETITIVE COMPUTATIONS 135

S is not executed. We can represent this action of for-do statement as given in

Fig.8.1.
U] .L [¥)]

Ve g B Y
vEe;

ve suee(e) - fop
® <
6

| s I |Execute statement
after for-do

Fig. 8.1: Action of for-do statement

The machine calculates the value of expressions e, and ¢; only once in the
beginning. The control variable is assigned the value of ¢, [box (1)]. Machine
examines whether this value is < e, If the value of v € e, statement S is
executed [box (3) | and vis assigned the next (succeeding) value of e, | box (4)].
This value is obtained by the use of the function succ automatically by the
system. The new value of v is again compared with the value of e, | box (2)]. If v
> ey, statement S is not executed and control passes to the statement following
the for statement, otherwise, the previous process is repeated. This goes on as
longas v € e,.

e syntax chart of the for-do statement appears as shown in Fig. 8.2,

for statement

Fig. 8.2: Syntax chart of for-do statement

An example of for-to-do statement is

for J: =1 to 10 do write(J) ;
Here the control variable is J, ¢, = 1 and e; = 10. According to this statement,
execute the statement write (J) for J=1, 2, 3,4 ... 10. We will obtain the printed
valuesas1 23456 7 8 9 10. Consuicr

forK :=M to N do
J:=M*N+K;

136 PASCAL PROGRAMMING FUNDAMENTALS

The statement J : = M * N + K is executed for K=M, M+1 M+2, ..., N. If
K > N at the start, then statement J : = M * N+K is not executed even once.
The action of form (ii) of for-do statement, that is, of

for v:=¢,downto e, do S

is similar to that of for-to-do form, except that now the statement S is executed
for v= ¢, = v, (say), then v= pred (v,) = v,, ..., till value of control variable
< e,. The statement S isexecuted for ¢; 2 e.

Examples of for-downto statement are

for NUMBER := 10 downto 5 do readln (PRICE);
for TAX :=MAX downto MIN do

begin
readln (RATE);
writeln (RATE * (MAX—MIN)/2.0—TAX)
end;
In the second statement, there is a compound statement following de. This
compound statement will be executed for TAX = MAX, MAX — 1, MAX —
3, tll TAX = MIN. Here it is assumed that TAX, MAX, MIN are
integer variables.
The following statement illustrates the calculation of sum of odd and even
numbers from 1 to 100.

forJ:=1 to 100 do
if((Jdiv2)*2-1)=0
then EVEN :=EVEN+]
else ODD :=0ODD++IJ ;

assuming that variables EVEN and ODD had been initialized to zero
previously.
Program 8.1

Develop a program to compute the value of natural logarithm base, e, from
the relation :

e=3 1/n! n=0,1,2,...

Here, symbol ! indicates factorial and implies n! = n. (n—1). (n—2).... 1. Also
0!= 1, Print the sum of successive terms forn=0, 1, 2,..., 10.

Program 8.1

program NATLOGBASE (output) ;
var E :real ; K, N : integer ;

REPETITIVE COMPUTATIONS 137,

E:=1;{N=0term}

K:=1;

writeln (‘'N’, ‘656b’, ‘Sum’) ;

writeln (N:3,E:16:6);

for N:=1to 10 do { loop to add terms }
begin

K :=K*N ;{ factorial is calculated and storedin K }
E:=E + 1.0/K
{ sum of successive terms is stored in E }
writeln (N:3,E:16:6)
end;
writeln (‘Valueofe=",E:10:6)
end.

g
z 3§

Sum

1.000000
2.000000
2.500000
2.666667
2.708333
2.716667
2.718056
2.718254
2.718278
2718278
2.718278

SWI L AW =D

[

Value of e = 2718278

The statement S following the keyword do may be simple or compound. S is
also referred to as the Body or Range of the for-do statement. The values of
control variable, expressions €, and e, must not be modified or redefined in the
range of the for-do statement. The following example illustrates this:

for J:= M to N do
n
101 : P : = M+N+J;

103:J:=7,

138 PASCAL PROGRAMMING FUNDAMENTALS

In statement labelled 101, the sum of values of M, N, J is assigned to variable P.
The values of variables M, N, J are not modified. This is allowed. However, in
statements, labelled 102 and 103, value of M and control variable J are altered.
This is not permitted. Thus, the control variable may be used in other statements
provided its value is not changed. When the for-do loop is completed, the value
of control variable is undefined.

It is possible that the control leaves the range of for-do because of execution
of a goto or if statement. In that case, the current value of control variable is
saved and can be used outside the range of the for-do statement. This is made
evident by the following illustration.

for K:=P to T do

Here the for-do statement has a compound statement as its range. When the
condition X>Y is satisfied, execution control is transferred to statement
labelled 13, outside the range. In such situations, the control variable K will
retain the value it assumed before initiating the execution of the compound
statement. This value may be used in any other expression/statement as desired.
Further examples of for-do statement, using other ordinal data types are :

for LETTER := ‘A’ to ‘Z’ do
writeln (LETTER);

for MONTH :=JAN to DEC do
case MONTH of
JAN, MAR, MAY, JUL, AUG, GCT, DEC : DAYS:=31;
APR, JUN, SEP, NOV :DAYS:=30;
FEB : DAYS:=28
end;

for LOJIK := false to truedo
if LOJIK and true
then writeln (LOJIK)
else B:= not LOJIK;

According to the last statement, value of variable LOJIK will be written if the
expression LOJIK and true gives the true value, otherwise the boolean variable
B is assigned the value not LOJIK.

REPETITIVE COMPUTATIONS 139

The for-do loops may be nested. When so, the variables, that control the
loops must be distinct. An example is

for J:=1 to 4 do
for K:= 4 downto 1 do
SUM := SUM+J*K ;

This is referred to as Nesting of loops. Loops may be nested to any extent.
8.2 The while-do Statement

You have seen that the value of the control variable governs the repeated
execution of statements in the for-do statement. In several applications this
mode of repetitive computations may not be convenient and we may desire that
the calculations should be carried on till some test-condition is satisfied. This is
possible with the while-do and repeat-until statements. We consider the
while-do statement here and take up the discussion of repeat-until in the next
section.

The format of while-do statement is

while test-condition do S

where
test-condition a boolean or relational expression whose value may
be true or false,
S a statement, may be simple or compound.

The action of the while-do statement is as: execute statement S as long as the
test-condition is true. Schematically, we can show this action as given in Fig. 8.3.

Execute 5
statement after
while-do

Fig. 8.3: Action of while-do statement

First, the value of the tesr-condition is obtained. If the value is true, S is
executed and control goes back. Again the fest-condition is evaluated and its
value tested. If the value is true, S is executed, otherwise control goes to the

140 PASCAL PROGRAMMING FUNDAMENTALS

statement immediately after the while-do statement. Thus, the execution of the
while-do statement is conipleted only when the test-condition is found to be

false. If the test-condition is false at the start, the statement S is not executed
€even once.

The syntax chart of while-do statement appears as given in Fig. 8.4.

while statemeni

Fig. 8.4: Snytax chart of while-do statement.

An example of while-do statement is
while X > 0Odo
begin
SUM: = SUM+X;
Xi=X=-20 Compound statement
end;

According to this statement, the compound statement is executed as long as
the value of X is positive and non-zero. When X becomes less or equal to zero,
the compound statement will not be executed.

Other examples of while-do statement are.

while not eof (input) do
while (KARACKTER <> PERIOD) do........

Example 8,2

Read the characters of a sentence one by one. Count the number of vowels.
The program should stop when the character fullstop (.) is encountered.

Program 8.2

program VOWEL (input, output) ;
| To count the number of vowels in a sentence |

var
CH : char;
KOUNT : integer ;
in
KOUNT :=0;
readln (CH);
while (CH <> *.")do
begin
if (CH="T) or (CH="0") or (CH="U") or (CH="A") or
(CH="E")

REPETITIVE COMPUTATIONS 141

then
KOUNT :=KOUNT+1;
readln (CH)
end;
writeln (‘The number of vowels in the sentence =", KOUNT)
end { of the program |,

Sample input

mzZon

Output

The number of vowels in the sentence = 2

The statement (simple or compound) following the test-condition may be
referred to as the Range of the while-do statement. Let us consider the case when
the range consists of a compound statement as

while test-condition do

Similarly, we can represent the for-do statement with a compound statement
as its range as:

range

end

The following rules apply to the use of ranges of while-do and for-do in a
program.

142 PASCAL PROGRAMMING FUNDAMENTALS

(i) the ranges may be nested as

while-1 ‘while-1
begin-1 begin-1
while-2
while-2 begin-2
begin-2
end-2
while-3
end-2 begin-3

(iii) Jumping out of the range is allowed but jumping in is forbidden. This is
depicted below

while while

begin begin
J‘ ‘z
(L_end | Y
'.Jumpi.ngoul '..

Jumping into the range

LY

&

Allowed Disallowed

REPETITIVE COMPUTATIONS 143

If it is necessary that entry must be made in the range, then it should be made at
the while-do or for-do statement.

‘We learnt about Fibonacci number sequence and their generation in Example
7.4. The program of this example was developed using control statements. Now
we devise that program using while-do constructs.

Example 8.3

Develop a program to print the Fibonacci number sequence using while-do
statement.

Program 8.3

program FIB (input, output);
{Calculation of Fibonacci sequence using while-do statement}

var
K,LJ, L, N :integer;
{ Main program begins }

begin ,
readin (N) | N is number of terms }
K:=0;1:=0;
writeln (T} ;

{ Increment K and initialize J }

Ki=K+1;J:=1;

writeln (J) ;

K:=K+1;

{1, J, L give three successive Fibonacci numbers |

{ while loop begins, K is counter for number of terms }

while K <= N do
in
L:=1+1J;{ calculation of next term }
writeln (L);
K:=K+1;I:=J;J:=L

end
end.

Sample input
6

Ouiput

LA L b e e

Rewrite the program of Example 8.1 using while-do construct.

144 PASCAL PROGRAMMING FUNDAMENTALS
8.3, The repeat-until Statement

This is another statement by which repetitive computations may be performed
in a program. It also makes use of a test-condition like the while-do, but the test-
condition is invoked at the end. With the availability of this statement, repetitive
constructs in Pascal allow to program any type of situation without the use of
goto statement. The format of the repeat-until statement is

repeat
813

Sa;
. range

sn
until test-condition;

where

$,S...,5, statements, may be simple or compound and form the range
of the repeat-until statement.

The repeat-until statement operates as follows :

The statements S;, S,, S, are executed first and then the test-condition is
examined. If this value is false, statements S, S;, S, are executed again.
This goes on till the value of the test-condition is true. Then control goes to the
statement following the until keyword. Schematically, we can depict this action

as shown in Fig. 8.5,

[susisio.s |

Execute statement afier
until-test-condition

Fig. 8.5: Action of repeat-until statement.

REPETITIVE COMPUTATIONS 145

The reader should draw the syntax chart of repeat-until statement himself.
An example of a repeat-until statement is

repeat
SUM:=S"M+X;
Xi=X-—-2

until X < =0;

Suppose, we wish to read 10 values of a number and write its squares. This can
be easily done by the following loop :

count : = 1;
repeat
readln (NUMBER);
writeln (NUMBER * NUMBER);
COUNT : = COUNT + 1
until COUNT > 10;

‘We illustrate further the use of repeat-until construct by an example wherein
the method of iterations is used to compute the square root of a number.

Program 8.4

Develop an interactive program to compute the square root of a given positive
real number by the method of iterations.

The method of iterations, also known as the Newton's method, to evaluate the
square root of a number is as follows.

Let x be a number and y, be its approximate root. Then a better
approximation for the root is given by the equation:

¥y = (1 +x/y)/2.0
A still better value is obtained by substituting y, for each y; on the right hand

side as :

ya=(y: +x/y;)/2.0
And in general.

Yat1 = (Yo + X/y2)/2.0

Calculation of y, is continued till y,4; = ¥, upto to the desired accuracy. In
our program, we impose the condition [a4 — ¥a] € 1075

The process is started by assuming some approximate value of y; to begin with.
We shall take y, = x/2.0.

146 PASCAL PROGRAMMING FUNDAMENTALS

Program 8.4
program ROOT (input, output);

{ Computation of square roots of real positive numbers by Newton's
iteration method }

var
X, YN, YN1, DIFR : real;
CH : char;
begin
repeat
writeln (‘Enter the number’) ;
readin H
if X > 0.0 then

YN : = 0.5*X;
repeat
YN1:=05*(YN+X/YN);
DIFR :=YN1-YN;
YN: = YNI1
until (abs (DIFR) <=1.0E—05) ;
writeln (‘Squrerootof, X:3:1 =", YN);
writeln
end;
write (‘Do you want the root of another number? (Y/N)) ;
readln (CH) ;

until (CHR ="N");
writeln (‘Stop”)

end.
‘Sample inputioutput

Enter the number

70

Square root of 7.0 = 2.64575 E + 00

Do you want the root of another number? (Y/N)
Y

Enter the number

13.0

Square root of 13.0 = 3.60555 E + 00

Do you want the root of another number? (Y/N)
N

Stop

REPETITIVE COMPUTATIONS 147

The rules which applied to the ranges of for-do and while-do statements, also
apply to the range of repeat-until statement. The range of this statement may
. consist of both simple and compound statements. Recall, that the ranges of the
- other two statements (for- and while-) can consist of either simple or compound
statements, never both.
- The ranges of the three repetitive statements may be nested among one
! another. Ilustrations are

repeat __while for
begin begin
_while _for epeat
begin begin
| end uﬂ;_ |_until __
o . while
begin begin
end unitl end
until end end
But crossing of ranges as
repeat
while
begin
until
end

is generally disallowed.
When loops are nested, the innermost is executed fastest.

We observe that repetitive computations in a‘program may be performed, as
governed by the values of logical expressions, using while-do and repeat-until
constructs. The while-do and repeat-until statements are used quite extensively
in developing programs. However; the following distinctions between these two
statements should be kept in mind.

148 PASCAL PROGRAMMING FUNDAMENTALS
8.4 Differences between while-do and repeat-until statements

(i) The test-condition is examined, before the start of each loop execution, in
the while-do statement, whereas in the repeat-until statement, the test-condition
is tested after each execution of the range. This fact is emphasized in Pascal by
specifying the test-condition with while at the start while the position of the test-
condition is at the end with the repeat statement.

(ii) The while statement continues to be operative as long as the test-
condition is true, but the repeat statement operates till the test-condition is false.
Thus, the two statements examine the test-condition from opposite views.

(iii) The repeat loop is executed at least once, but the while loop may not be
exccuted at all.

(iv) The repeat keyword is followed by a group of statements (one or more
than one; each statement may be simple or compound) but the group appearing
after the while-do always has only one statement which may be simple or
compound.

The reader should note that the for-do loop is a deterministic loop, that is, the
range is executed for a fixed number of times (decided before the execution
starts), whereas while-do and repeat-until loops are indeterministic loops and
their execution depends on certain test conditions.

.The iterative constructs are very useful and are one of the building blocks for
developing structured programs {Chapter 15). They, along with the arrays, are
powerful tools to manipulate matrices, handle tables and large scale data
processing applications.

Exercises 8
8.1, Complete the following sentences :

type.
(¢) Innested for-do loops, control variables mustbe. ... i

(d) The test-condition needs to be satisfied intheo and
............................. iterative statements.

() The while-do statement is notexecuted even 0. oo if the
test-conditionis at the start,

(f) The range of repeat-until statement can consist of both simpleand
statements.

{g) The execution of the repeat-until statement is compleie only when the test-condition
isfoundtobe..........ooooiiiiiiiinni

{h) The ranges of two different iterative construetscanbe ...
K.2. Answer the following as true or false :

(i) The walue of the index variable in the for-do statement can either increase or
decrease. (T/F)

(ii) The valuc of the test-condition in the while-do statement is computed only once at the
start. (T/F)

REPETITIVE COMPUTATIONS 149

(iii) The statement appearing in the for-do construct must be simple. (1/F)
(iv) When the for-do loop is completed, the value of the control variable is always
unknown. (T/F) -)
(v) Transfer out of program execution from the range of repetitive statements is
allowed. (T/F)
(vi) The use of enumerated type data is not allowed in the test-condition of statements
while-do and repeat-until. (T/F)
(vii) Nesting of various iterative constructs is allowed. (T/F)
(viii} The crossing of ranges is generally not permitted. (T/F)
8.3. What are the various repetitive stalements available in Pascal? Give and explain their
formats and syntax diagrams.

8.4, Bring out the differences between while-do and repeat-until statements. Imagine and list the
situations where one should be preferred over the other.

8.5, Can the action of a while-do statement be simulated by if-then or if-then-else statements?
Ilfustrate by an example.

8.6. Explain the concept of range of a repetitive statement, Summarize the rules which govern the
specification of ranges of such statements.

8.7. It is said that the control variable of the for-do statement should be of ordinal type. Bring
out your reasons for and against this restriction,

8.8. Develop two program segments, using while-do and repe.ﬂ umil statements, which read in
1000 data values or until a negative value is d, h comes first. Can you
perform this action using for-do statements? How?

89. (a) Look at the following statements?

J =0

readin (K, N):
repeat
J:=I+K;
M:=Nmodl];

until M = 0 ;

Write a program segment using while-do construct to perform this action,
{b) Write the equivalent of
for J:=1toNdoy, :
using while-do construct.

8.10. Point out mistakes in the following statements. Write their correct forms.

(i) while no eol do
S5 55......end;

(i) for J: = M down N do §,;

(iii) until X>Y.....

repeat S;; Sy ... end
(iv) for A=2.5to 13.0do 5,
(v) for I : = 1to 10do

for J : = 5 downto | do
write (J):

150

811

8.12.
8.13.

8.14,
8.15.
8.16.

8.17.
8,18,

8.19.

8.20.
8.21.
8.22,

PASCAL PROGRAMMING FUNDAMENTALS

What outputs are obtained when the following program segments are executed (Here, J, K,
M, N, P are assumed to be integer variables),

(a) forJ:=1te$5
for K:=1 do J
writeln (J, K);

(b) for M:=5downto 1 do
for N:=1to M
for P:=1to N
writeln (M, N, M * N * P);
() k=1
repeat
M:=Jdiv2;
Ki=J*J];
JimJ41,

writeln (J, M, K)
until J> 25;

Design a simple program to find the product of 1, 3, 9, 15, 21, 27, 33, 39,

Prepare a program that asks a question requiring the answer as Yes or No. Use the character
Y for a yes and N for a no. Print the appropriate for the
Design a program to print next year's calendar,

Develop a p 10 comp themulmeansqumo[autofpvmrealnumbersmahst
Use eof function for deciding the end of data values. Find also the number of data values in
the list.

Read a positive number N and print a list of all those integers from 1 to N which are perfect
squares,

¥

Develop programs for Exercises 7.10, 7.17, 7.19 using any of the repetitive constructs.
‘The probability function of the Poisson distribution with f A, is given by

fix} = i— et

Develop a program to compute f(x) for x=0, 1, 2, 3, 4, 5, taking A (lamda) = x/2.0. Print
your results as

VALUE OF LAMDA =
X FX)

Prepare a flowchart and a program to determine whether a given number contains any
duplicate digits (For example, 12 has no duplicate digit. while 233 has 3 occuring as a
duplicate).

Devise a Pascal program to draw a square and an equilateral triangle of arbitrary size.
Design a program to draw a straight line AB and then another line CD parallel 1o it.

Design programs to compute n! using the three looping constructs. Comment on the program
as regards their length, efficiency and clarity.

REPETITIVE COMPUTATIONS 151

. 8.23. Develop an algorithm and a program to compute the value of integral:

[108 (x1ax
1

using Trapezoidal rule, upto five decimals without using arrays. (see also Example 9.1).

8.24. Prepare a program to compute
1

)
1 X

Vi1

correct upto six decimals. Obtain the ber of terms fed to attain this accuracy. Which
iterative construct is most appropriate to design this program and why?

8.25. Design aninmteractive program for Example 7.2 using repeat-until construct only.

Chapter 9

Structured Data Type: Arrays

We have studied integer, real, boolean and character data type. These are the
standard data types. The user-defined data types have been subrange and
enumerated. All these are also referred to as Scalar Data types. Moreover,
variables considered so far are called Simple or Unsubscripted variables. Such
variables are not adequate to handle collections of data, tables, vectors/matrices,
etc. Manipulation of tables and matrices is required in several applications, may
be from statistics, engineering, science, mathematics, humanities, business, etc.
This can be done with the help of subscripted variables and arrays. Subscripted
variables may be used in programs in the same way as the simple variables.

An ordered collection of subscripted variables having the same name and
other attributes defines an Array. An array is an example of Structured data type.
Other varieties of structured data types available in Pascal are: Records, Files
and Sets. Here, we shall consider arrays and subscripted variables and defer the
discussion of other structured data types to later chapters.

9.1 Subscripted Variables

In mathematics, we are familiar with the notation: x;, X3, X3, Xip. Here 1,
2,3..... , 10 are the subscripts of variable x. We also say that variable x has 10
elements or components. These are different identifiers. In Pascal, we can
represent them as x1, x2, x3 ...x10,.... (or by some other name). Suppose x
has 100 elements as: X;, X, Xip0- To use them in a Pascal program, we shall
have to design 100 different variable names. This is not convenient. Pascal
provides another way to represent such type of variables. This is done by placing
the subscripts between two square brackets as: x[1], x|2), x[3], X|100]. Such
variables are referred to as Subscripted variables. Other examples of these
variables are: SUM[10], B[25], TAB|1000] and so on. Each of these is a
different variable. Contents of the square brackets are the subscripts and the
characters appearing before the left square bracket constitute the name of the
variable. Pascal allows any number of subcripts with a variable name. The
general form may be specified as:

name| sy, 52,53,.....]

where

nhame is the name of the subscripted variable,
51,852, 830 eenn are the subscripts,

STRUCTURED DATA TYPE: ARRAYS 153

name of a subscripted variable is formed according to the rules of constructing
variable identifiers. The subscripts sy, 52, §3, must be separatea from
- each other by commas, enclosed within square brackets. Value of the subscript
. may be negative, positive or zero.

The subscripts of a variable may be

® integer constants
® simple or subscripted integer variables or integer expressions
® variables of subrange or enumerated type.

These points are illustrated by the syntax chart of Fig. 9.1.

an integer expression
subrange type variable
enumerated type

Fig. 9.1: Syntax chart of subscript

9.2 Arrays

In the beginning of this chapter, we had given the definition of an array as: an
ordered collection of subscripted variables having the same name and other
attributes such as real, integer, character, boolean, etc. Let us understand it
further by a simple example.

Consider the set of subscripted variables: A|l] Al2], A‘[3] Al4], Al5]. The
name A is common to all. A is called an array. A[l], A[2 , A[3] are its
elements. A[1] is its first element and A[S5] is the last element. 1, 2.3,4,5 are the
subscripts. When the elements of an array have single subscript, the array is
called a Linear or one dimensional array or a List. Here A is a linear array. A
vector is another example of a linear array.

In a two dimensional array, each element has two subscripts; for a three
dimensional array, there are three subscripts with each element, and so on.
Pascal does not put any limit on the number of subscripts, though their number
inay be implementation dependent.

We have seen that the type of every variable used in a Pascal program must be
declared. This type declaration has to be specified for an array as well. Moreover,
the Pascal compiler has to be supplied information about the number of
elements in &n array (or the size of an array) and their type. This can be done by
defining array type and array variables.

154 PASCAL PROGRAMMING FUNDAMENTALS

The general form of type declaration of one-dimensional array is

type
array-type-identifier = array (] of 5 (1]
where
array-type-identifier indicates the type name
h specifies the data type of the values to be
used as subscripts; it must be a scalar data
type except real
b indicates the type of values that are going to

be stored in the array elements, that is, it
specifies the type of array elements; it may be of
any type real, boolean, integer, char, subrange or
enumerated.

An example of array type declaration is

type
TABLE = array [1 .. 25] of integer (I

Here -the subscript is of subrange type and elements of array are of type
integer. The identifier TABLE can be used to define array variables. This is
illustrated in the following.

Once we have defined an array data type, we can create actual array variables,
that is arrays, using the declaration var as

var
Vi, W, .. ool Grray-type-identifier

where vy, va, are the variable names and array-type-identifier is the

identifier which has been defined under the type declarations for an array, as in

.
Suppose we wish to declare A as an array of 25 elements of integers. This can
be done as

var
A : TABLE

In other words, A is an array variable of type TABLE defined in (II) above.

The first element of A is accessed as A[l], second element as A[2], third as
Af3],..... and 25th element as A[25]. If you specify A[26] or A[0], there will be
an error because the subscript can lie only in the range 1 to 25.

STRUCTURED DATA TYPE: ARRAYS 155

Now consider the following example :

type

CURRENT = array, [-10..10] of real;
var

I,]: CURRENT;

Here I and J are array variables of type CURRENT. Their elements are I[—10],
1[-9}, {[~8], ... 1[0}, 9], ,J[10], that is, 21 elements. Similarly, for J. Values
assumed by the elements of arrays I and J must be of type real.

The type of subscripts can also be character, boolean, enumerated or subrange.
Look at the example

type
CHRX = array [char] of 1..64:

var
X : CHRX;
Here X is an array of type CHRX whose clements can be accessed as: X[A]],
X[BY, X[C], . . ., X[Z], X[0], X[1], . . . X[9] if char indicates the

characters A} ‘B;...., Z,'0"*1,...,'9".
However, values which the elements of array X can assume must lie in the
range 1..64. We can specify, for instance,
for M: = A'to'Z do
X [M]:=ord [M};
where M has been assumed to be a variable of type char.
In the example
type
FF = array [FLOWER] of boolean;
var
RED, WHITE : FF;
RED and WHITE are array variables of type FF. Suppose FLOWER is of
enumerated type, that is,

FLOWER = (ROSE, LILY, NARGIS)
then the elements of array RED and WHITE will the RED [ROSE], RED [LILY],
RED [NARG!S| and WHITE [ROSE], WHITE [LILY], WHITE [NARGIS]
respectively. The values that these elements may be assigned must either be true
or false. Let us specify
RED [ROSE] := true ; RED [LILY] :=false ;
Consider the following statement
if RED [ROSE]| and RED [LILY] then
WHITE [NARGIS] := RED [ROSE]
else
WHITE [ROSE] : = RED[LIY];

156 PASCAL PROGRAMMING FUNDAMENTALS

Here, element WHITE [ROSE] is initialized to false as the test-condition
RED [ROSE] and RED [LILY] i false.
Arrays (or array variables) may be defined directly as

Vi, ¥y, ... array [f] of 1 (1)

where v, and w are the array variables; #; and £ have the same significance as
defined earlier with type declaration. Examples are

var
VOLTAGE : array [1.. 10] of real;
VECTOR : array [1..100]of —10..10;
PAGE : array [1..25] of char;

In the declaration (I) and (III), r, and ¢, either or both, can be either data type
names or data type definitions.
To understand this, look at the following example

type
COLOUR = (RED, BLUE, WHITE, GREEN) ;
P=array |[COLOUR] of integer ; Iv)

Instead of declaring type P as above, it can also be specified as:

pe
P = array [(RED, BLUE, WHITE, GREEN)] of integer; (V)

In definition (IV), data type name COLOUR has been used, while in (V), data
type definitions have been specified. This type of declarations are also accepted
by Pascal. The array variables can be declared, [as of type P, in (IV))] in the usual
way under the declaration var.

Arrays and their sizes may also be declared as

const N=100;
type INDEX=1..N;
var A:array [INDEX] ofinteger;
‘Now array A has 100 elements as N = 100. By changing N, elements of array can
be varied.
We further illustrate the declaration and use of arrays by a simple example.
Suppose there are 10 data values of (ype real. We want to store them under a
common name and compute the sum of these. The program segment for this
- appears as:
program SUM (input, output) ;
{ Declare identifier X of array type |

type
X =array [1.. 10] of real;

STRUCTURED DATA TYPE: ARRAYS 157

var
LIST : X ;{ LIST is an array variable having 10 clements }
M : integer; S:real;

S$:=0.0
forM:=1to 10do
in
readin (LIST M]);
S:=8+LIST [M] { Value of sum s stored in § }
end;
writeln (‘Total of 10 data values = §)
end.
Next we demonstrate the use of arrays by an example of numerical integration.
The simplest way to carry out integration of any smoothly varying function is the
trapezoidal method. This method is explained below and its program developed

using arrays.
Example 9.1.
Dt:zelop a program to evaluate the following integral
'[x{x+1}dx
by !.h; trapezoidal rule. Divide the interval [0 — 4.0] in 100 equal steps,

b
According to the trapezoidal rule, the integral J- fix)dx is approximated as:
b . *
1= [fx)dx =4 X by +y. | (1
. i=1

where y; are the values of the function f(x) at points x;. Here h; = x4, — x; is
the spacing between points x4, and x; ; a, b are the lower and upper limits
respectively. Equation (1) is general. When the spacing is equal, it becomes

O Y e R T R @

b (tveer) [20+ [ty + oo 4w | (3)

where, for equally spaced values of x, y; are the values of f(x) at a, a + h, a +
2h...,b=a+ nh. Now h = (b—a)/n.
The program for Example 9.1 may appear as follows :

158 PASCAL PROGRAMMING FUNDAMENTALS

Program 9.

program TRAPEZ (input, output) ;
{ To integrate X * (X + 1) by trapezoidal 1ule between the limits 0 — 4.0 }

{ Store integrand in array Y. Say, A = lower limit, B = upper limit, N =
number of steps }

const
MAX =400,

var
Y:array [1.. MAX] of real;
J,M, N :integer;
A, B, SUM, X, VAL, H, YIYM : real;
begin
writeln (‘Enter values of A, B,N") ;
readin (A, B, N);
H:=(B—A)/N ;| step size }
M:=N+1;
X:=A,
J:=1;
repeat
YIp=X*X+1)
X:=X+H;
J=J+1
until J > M;

YIYM:=(Y [1]+Y[M])*05:
SUM:=0.0;
for]:=2toNdo
SUM :=SUM + YJi| ;
VAL :=(SUM+YIYM)*H;
writeln (Lower limit =", A:6:2);
writeln (‘Upper limit =B:6:2);
writeln (‘Stepsize=",H:6:2);
writeln (‘The integralis =", VAL : 8 : 4)
end.

Sampie inputioutput

Enter values of A, B,N

0.0 4.0 100

Lower limit = 550.00
Upper limit = 554.00

Step size = Hb0.04

The integral is = 529.3344

Run this program for N = 200, 300 and 400. Compare the values of integrals.
Which is the most accurate ?

STRUCTURED DATA TYPE: ARRAYS 159
9.3 Two-dimensional Arrays

Two-dimensional arrays have two subscrips. The first subscript represents rows
and the second subscript refers to the columns (this is by convention). Thus, if B
is a two-dimensional array having two rows and three columns, then its elements
may be indicated as

B[,1]° B[L2 B[1,3]
rows
E B2,11 B[22 B[2,3|
1 4

4

columns

Due to this representation, a two-dimensional array is also called a Table or a
Rectangular array. Matrices are very good examples of two-dimensional arrays.
Two-dimensional arrays may be declared as

array-type-identifier = array [, &) of t;
var
Vi V2...: array-type-identifier

or as

where array-type-identifier, 1, &, t; and variables v, v, .. have the same
meaning as before, except that now, one more type, indicated by &, has been
added. 4 is also called Base type and specifies the type of clements of array
variable. The first subscript of the array should be of type ¢ while the second is
to be of type t,. Types 1,, 1,, ; may be identical or different.

Suppose, we wish to define the above mentioned array B as a two-dimensional
array, whose elements can store real data. This may e done as :

type
XTWO =array[1..2,1..3] ofreal;

var
B: XTWO;

or directly as

var
B:array|[1..2,1.. 3] ofreal;

160 PASCAL PROGRAMMING FUNDAMENTALS

or as

const M=2 ;N=3;

type S1=1..M;
§2=1..N;

var B:array [S1,52] of real ;

" Now look at the declarations

type
SUBJECTS = (HINDI, PUNJABIJI, BENGALI TELUGU, TAMIL) ;
TAB =array [1..25,SUBJECTS] of char ;
var
X, Y : TAB;
LANGUAGE : SUBJECTS;

Here, X and Y are array variables of type TAB (two-dimensional), while
LANGUAGE is a simple enumerated type variable. The first subscript of arrays
X and Y can vary from 1 to 25, while the second can assume the values HINDI,
PUNJABI, BENGALI TELUGU and TAMIL. The reader should note here that
the two subscripts are of different type. In fact, the subscripts of an array
variable need not be of the same type. This facility makes Pascal programs better
documented as the subscripts—type and name-can be selected according to the
application. This will further become clear as we proceed. Other examples of
- two-dimensional array declarations are :

var
STUDENT : array [1..1000, SUBJECTS| ofinteger;
MATRIX : array [1..25,1..10] of real;
DAYSINYEAR : array [MONTHS, 1..N] of 28..31;
APAGE :array [LINE, WORDS] of char ;

Thus, the reader should observe that there is no restriction at all on the subscript
type of an array, however, all the elements of an array must be assigned data
according to the element type. So, while using arrays, care must be taken about

(i) the values which the subscript or index can assume,
(ii) the values which the array elements can take.

We exptlain this point by an example of a one-dimensional array for reasons of
simplicity and clarity.

type
MONTH = (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SER OCT, NOV, DEC);

var
DAYS : armay [MONTH] of 28..31;
MONTHNAME : MONTH;

STRUCTURED DATA TYPE: ARRAYS 161

Here DAYS is a one-dimensional array. Its elements are DAYS [JAN], DAYS

[FEB}, DAYS [MAR], DAYS [DEC]. Values which these elements can
assume must lie between 28 to 31 (inclusive of 28 and 31). We may specify

DAYS [JAN] :=31

DAYS [FEB| :=28

DAYS [MAR] := 31

DAYS [DEC| = 31
Suppose you wish to find the total number of days in a non-leap year. A simple
statement for this may be as:
TOTALDAYS : = (;
for MONTHNAME = JAN to DEC do
TOTALDAYS : = TOTALDAYS + DAYS [MONTHNAME};

Example 9.2

Given two matrices MATX and MATY with elements defined as:
MATX (J,LK) = J+K J=12...5
MATY (JJK) =1 *K K=12...,5
The elements of product matrix MATZ are defined as
MATZ (J,K) -ZL MATX (J, L) * MATY (L,K)

Develop a program to compute MATZ. Print the values of elements of matrices
MATX, MATY, MATZ in a tabular form with appropriate headings.
A simple program to obtain the product of the given matrices is as follows:

Program 9.2

program MATMUL (input, output) ;

var
MATX, MATY, MATZ :array |1 .. 10, 1 .. 10] of integer;
I,JLK,L,M, N, SUM : integer;

begin

{ Compute the elements of matrices MATX and MATY |

for J:=1to5do
forK:1to5do

n
MATX |[J K] :=T+K;
MATY [}, K] :=J*K
end;

162 PASCAL PROGRAMMING FUNDAMENTALS

{ Computation of product of matrices MATX and MATY }
forJ:=1to5do
forK:=1to5do
begin
SUM:=0);
forL:=1to5do
SUM : = SUM + MATX [J, L] * MATY [L,K] ;
MATZ [J,K] : = SUM
end ; { MATZ contains the product]
{ the values of matrices are written below }
writeln;
writeln (* MATX);
writeln ¢ ----)
writeln;
forJ:=1to5do

begin
forK:=1to5do
write (MATX [J,K]: 5);
writeln
end;
wirteln; writeln (* MATY");
writeln (" 77 7); writeln;
forJ:=1to5do
n
forK:=1to5do
write (MATY [3,K]: 5);
writeln
end:
writeln; writeln; ¢ MATZ);
writeln (---7);
writeln;
forJ:=1to5do

forK:=1to5do
write (MATZ[J,K] :5);
writeln

end
end.

Sample outpur

= =T = R T N
=N N Y]
SO

—

STRUCTURED DATA TYPE: ARRAYS 163

MATY
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8§ 12 16 20
5 10 15 20 25
MATZ

70 140 210 280 350
85 170 255 340 425
100 200 300 400 500
15 230 345 460 575
130 260 390 520 650

The example Program 9.2 illustrates the generation, multiplication and output
of matrices (tables) in a simple way. We have considered only 5 X 5 square
matrices in the example. The program can be written in such a way that product
is formed for any size of two matrices, provided the number of columns of first
matrix is equal to the number of rows of the second matrix. The student is urged
to modify Program 9.2 to compute the product of two matrices A and B of
arbitrary size. The Program should have built-in check to examine whether the
above requirement is satisfied and only then product is calculated.

9.4 Multidimensional Arrays

In many engineering, scientificand other applications, we need todeal with three-,
four, or higher dimensional arrays. Such arrays allow greater and more compact
representation of interrelationships between data objects. Pascal allows arrays
upto any dimensions, however, restriction may be imposed during its
implementation on a particular computer system. Multidimensional arrays may
be declared in a program in a similar way as we discussed the declaration of 1-
and 2- dimensional arrays above. The general format is

type
array-type-identifier = array [t,, £3, 3,.. ...] of ¢
var
Vis Wy eeennns array-nype-identifier;
Here f, b, 13, indicate the type of subscripts. They may be identical or

different. t specifies the base type. It may be same as #, 2, f3... ..« or different.

164 PASCAL PROGRAMMING FUNDAMENTALS

An example of 3-dimensional declaration is

type

ROOM = array [LENGTH, BREADTH, HEIGHT] of 10.. 15;
var

ROOMX, ROOMY, ROOMZ : ROOM ;
Another illustration is

const
PAGES = 500; LINES = 40; WORDS = 13;
var
BOOK : array [1..PAGES, 1. .LINES,1.. WORDS] of integer ;
If we specify
BOOK [13,7,9]

it specifies 13th page, 7th line on that page and 9th word in that line.
Further example is

type

GALAXY = array [1..100,(MOON, SUN, EARTH, MARS,
JUPITER, NEPTUNE), (HOT, COLD, WARM) | of integer;

var
TIME, DISTANCE : GALAXY ;

Here TIME and DISTANCE are arrays of type GALAXY. Each has three
subscripts and hence are three-dimensional arrays.
Examples of indicating some elements are :

DISTANCE [1, MOON, COLD]

Higher dimensional arrays can be defined in the same way as explained above.
The elements of an array can be simple or arrays themselves. Thus, it is valid
to define

STRUCTURED DATA TYPE: ARRAYS 165
type
TABLE =array |1 .. M] ofarray [1..N] ofinteger;
This is equivalent to
TABLE = array [1..M,1..N] ofinteger;

Thus, TABLE is a two-dimensional array. An alternative specification of a
two-dimensional array may also be given as

type
array-type-identifier= array |#,] of array [#] of 1,

and, in general, we can specify a multi-dimensional array type as

type
array-type-identifier = array |1,| of array] of array [s]....of s

This is the same as given earlier as
array-type-identifier = array |1,,15, t1,... Jof 1
9.5 Compatible Arrays

Arrays are compatible when they are of identical type. Such arrays may be
declared with the same type declaration or with the same variable declaration.
Consider the example

type
DATAINPUT =array |1 .. 80] of char;
DATAOUTPUT = array |1 .. 132] of char;

var

INPUTLINE], INPUTLINE2 : DATAINPUT ;
OUTPUTLINE1, OUTPULINE2 : DATAOUTPUT;

Here array variables INPUTLINE1 and INPUTLINE?2 are of identical type and
hence are compatible. Similarly, arrays OUTPUTLINE1 and OUTPUTLINE2
are compatible, For compatible arrays, an assignment of the type

INPUTLINE2 := INPUTLINEI1

is allowed. This statement assigns the values of each clement of array
INPUTLINE1 to the corresponding element of array INPUTLINEZ2. In fact, this
is equivalent to
for K:=1to 80do
INPUTLINE2 [K]: = INPUTLINEI1 [K};

166 PASCAL PROGRAMMING FUNDAMENTALS

Compatible arrays are useful to transfer data from one array to another array.
This makes program compact and more efficient.

We illustrate the use of compatible arrays (though simple) and bring out the
necessity of array data structure for solving certain kind of problems. This
concerns sorting of data. We explain the procedure first and then develop a
program. For explanation purposes, we have taken the data to be numeric, but
the algorithm is applicable to non-numeric data as well.

Consider the following list of numbers :
6,5,8,4

‘When these are arranged as
8,6,5,4

they are in descending order. If we write them as
4,5,6,8

they are in ascending sequence.

Ordering of data as given above is referred to as Sorting. The problem of
sorting is encountered in several applications, such as finding the median of
statistical data, arranging words alphabetically, etc. There are many methods to
sort data, but the simplest of all is the method of interchanges. The various steps
involved in this procedure to arrange numbers in ascending sequence are :

1. Scan the list of numbers from left to right-
2. Compare every number with its right-hand neighbour.
3. If the number on the right is smaller than the number on the left,
interchange them, otherwise leave them as they are.
4. Carryout steps 1-3 till all the numbers have been arranged.
The above procedure is explained further by an example. Look at the numbers

6,5,84
Scan 1

(a) Compare 6 and 5. As 6 is greater than 5; interchange them, The list is now
5,6,8,4

(b) Now compare 6 and 8. As 6 is less than 8, do not interchange them. The
list remains

5,6,8,4

(c) Next compare 8 and 4. As 8 is greater than 4, interchange them. The list
becomes

5,6,4,8

STRUCTURED DATA TYPE: ARRAYS 167

Thus, the largest number has moved to the extreme right position in one scan,
Note that, as there are four numbers in the list, three comparisons are required
as indicated by steps (a), (b), (c).

Scan 2

Now repeat the above process with the new list

5,6,4,8
assuming that 8 has been ‘deleted’. It requires only two comparisons, as we need
to arrange 5, 6, 4 only, At its conclusion, the list appear as

5.4,6,8
Scan 3

Next, perform the same process as in Scan 2, assuming 6 and 8 have been
‘deleted’, that is, they need not be compared as they are already in the ascending
order. Now comparison is to be made between 5 and 4 only. There is only one
comparison. The final list becomes.

4,5,6,8

Thus, the four numbers are arranged in the ascending order in three scans. In
general, if there n numbers in the list, then (n—1) scans are required to place
them in the ascending/descending sequence.

We see that the numbers to be sorted must be available together in a list. This
is done by reading all the numbers in an array. Here is an example of a problem
where use of arrays is must.

Implementation of exchange algorithm is described below.

Example 9.3

Given a list of numbers (say, 7)
6,4,5,12,1,13,-5
Develop a general program to do the folléwing :

(i) store the unsorted numbers in array A.
(i) sort the numbers in ascending sequence and store in array B.

N
(if) compute 3 (| Ai—By)
Let us define two arrays A and B, each having (say) 500 elements. Data are

read into array A. Next, data are transferred into array B and then B is used for
sorting routine.

168 PASCAL PROGRAMMING FUNDAMENTALS

Program 9.3

program EXCHSORT (input, output) ;
{ Sorting of data by exchange alogrithm }
var
L1, K,N, TEMP, SUM : integer ;
A,B:array[1..500] of integer ;
write (‘Number of elements in the list =") ;
readln (N) ; writeln ;
writeln (‘The unsorted listis’) ; writeln ;
for J:=1toNdo
read (A [J]):{ array A contains the original data }
B := A:{array B is initialized to array A ; A and B are compatible arrays }
{ Data are sorted below and stored in array B }
for J:=1toNdo

n
for K:=1toN—1 do
begin
if BK] > B[K+1] then
begin { elements are interchanged below }
TEMP := B[K+1];
BK]:=B[K+1];
B[K+ 1] := TEMP
end
end ; { sorting is complete }
writeln
end;
writeln (‘The sorted list is) ; writeln ;
for J:=1 to N do write (BJp, (V)):
{ computation of sum of absolute differences of corresponding elements }
SUM:=0;
for J:=1toNdo
SUM := SUM-+abs (A[J]-B[J]) ;
writeln (‘Sum of absolute differences =, SUM)
end.

Sample inputioutput

Number of elements in the list=7
The unsorted list is

6 4 5 12 1 13 =5
The sorted list is

-5 1 4 5 6 12 13
Sum of absolute differences = 46

STRUCTURED DATA TYPE: ARRAYS 169
9.6 Packed Arrays

Normally, characters, truth values (false and true) etc. are stored in such a way
that each item occupies one storage unit (normally a word). This is referred to as
Unpacked mode of data storage. As an illustration, let us see how the word
BEAUTY is stored. Assuming each unit (word) contains 4 bytes and each byte
represents one character, then storage of BEAUTY appears as shown in
Fig. 9.2(a) One byte of each memory word is used while three other bytes
remain unused. Thus, this mode of data storage, that is, unpacked mode, is
uneconomical and considerable amount of storage goes as unutilized. Storage is
fully utilized if characters are stored in consecutive bytes as shown in Fig. 9.2(b).
This mode of data storage is referred to as Packed mode.

REEER

R (b) Packed mode

Bytes
(2) Unpacked mode
Fig. 9.2: Data storage mode (each square represents a byte)

Pascal allows the array data to be stored in packed mode. The declaration to
do so has the form:

type
array-type-identifier = packed array [t,, t5,....]] of t;
var
Viy V3, : array-type-identifier ;
or as
var

VigWayeenns :packed array [1, &2, ...] of £;

170 PASCAL PROGRAMMING FUNDAMENTALS

where array-type-identifier, t, 1> ..., tand v, vy, have the same meaning as
described in Section 9.4. Now the attribute packed has been added before the
keyword array. The attribute packed may be used with any type of data; integer,
real, boolean, char, or user-defined.

An example of packed array declaration is :

type

PP = packed array [1..M] of boolean ;
var

X,Y:PP;

or alternatively as

var
X,Y : packed array |1 .. M| of boolean;

Variables X and Y are arrays which can store boolean data values for the
elements in a packed mode. Similarly, if we declare

var
MAT1, MAT2 : packed array [L .. M, 1..N] of integer;

then values (integer) of elements of arrays MAT1 and MAT2 are stored in
packed form.

Attribute packed may be used with an array of any dimension.

User is not concerned with how the values are packed and stored. It is the
responsibility of the Pascal compiler. It will automatically pack the values and
store them in memory. Individual elements of packed arrays can be accessed in
the same way as of unpacked arrays, except that the access time is increased for
packed array elements. However, advantage of using packed arrays is that storage
space is saved. Generally, the attribute packed is used when memory size
constraints are there, which normally arise for large dimensioned variables.
Moreover, packed arrays of type char and boolean find applications in many
areas, such as word processing, stock inventories, mailing list, ctc.

Data stored in a packed array may be assigned to an unpacked array. For
example, consider

var h
X : packed array [1 .. 100] of integer;
Y : array [1..100] of integer;

If we write
for J:=1to 100 do
Y =X

then values of packed array X are stored in array Y in an unpacked form.
Some Pascal implementations may provide a single instruction that performs
the conversion operations, that is, packed to unpacked and unpacked to packed

172 PASCAL PROGRAMMING FUNDAMENTALS

offer the facility of defining string data type; associated operators and functions.
Reference to the computer centre manual may be made to ascertain the correct
format of declaring the string data type.

Packed array offer an alternative facility to define strings. A linear packed
array of characters is defined as a String. The number of characters that can be
stored in such an array is equal to the number of elements of the array.

An example of a string is

var
NAME : packed array [1 .. 15] of char;

Here NAME is a string which can consi’t of 15 characters. Further examples are

var
TEXTBOOKI1, TEXTBOOK?2 : packed array [1.. 10] of char;

Here TEXTBOOKI1 and TEXTBOOK?2 are the string variables, each of length
10 characters. We may make assignments to these via string constants. An
example is

TEXTBOOKI1 = ‘PHYSICS';
TEXTBOOK?2 = ‘MATHEMATICS';

In the case of string constant ‘PHYSICS', length is 7, so when PHYSICS is
stored as the value of variable TEXTBOOK], the system adds three blanks on
the right as indicated in Fig.9.3(a).

This is referred to as Padding. It is always done on the right side. The various
elements of array TEXTBOOK! have the values as shown in Fig.9.3(b).

pIlH|Y |[s]1]c]|s]|s[®6]%s P TEXTBOOK (1]
H TEXTBOOK [2]
Fig. 9.3(a) ¥ TEXTBOOK [3]
" .
H
]
i
]
i i
1]
L}
H
i
s TEXTBOOK [7]
1}
5 :
i
] :
B TEXTBOOK [10}

Fig. 9.3(b)

STRUCTURED DATA TYPE: ARRAYS 173

The length of the constant ‘MATHEMATICS' is 11, so when this is stored as
the value of the variable, TEXTBOOK2, the stored data appear as:

M A T H E M A T 1 C

The rightmost character § is truncated. The reader should list the values of
various elements of array TEXTBOOK2.

9.8 Operations on Strings

Many operations may be performed on strings, such as comparison,
concatenation (joining of strings), splitting of strings, finding patterns in a string,
presence of a substring in another string, and so on. This is also referred to as
String processing. Strings may be processed by storing character data in linear
packed arrays. Any clement of array can be accessed, altered or deleted.

Strings may be compared using the relational operators in the same way as we
compare individual characters, however, the strings to be compared should be of
the same length. Strings are treated as units for such operations. During
comparison of strings, the Pascal compiler automatically checks the alphabetical
ordering. If the strings are not identical, then the first pair of characters in the
corresponding positions of the two arrays, which differ, is the pair that decides
the relationship. This depends on the collating sequence of charactrers available
in a computer.

For the ASCII character set (see Appendix VI),

‘RAMLAL" > ‘RAMIJEE’
because ‘L’ follows ‘J. Similarly,

‘456" < ‘576
is true (7). However, ‘RAM' < ‘SHAM’ is not allowed as the strings are of
different length. Thus, remember, comparison of only packed character arrays,
which are compatible, is allowed. (Some Pascal version may not insist on this
requirement.)

Any operation allowed on an array variable is also permitted on a string

because it is a packed character array. Moreover, it should be noted that the
name of the packed character array variable is the name of the string.

Strings cannot be rzad with read statement, but they can be written with write
statement on the output device. For example, we cannot specify

read (TEXTBOOK1)
but the statement
write (TEXTBOOK1)
is allowed. However, if an array of type character is to be read, then it is

174 PASCAL PROGRAMMING FUNDAMENTALS

necessary to do so character by character, testing all the time whether the end of
line has been reached. These points are illustrated by the program of Example
9.4.

Pascal does not define a concatenation operator to concatenate strings. A
concatenated string can be obtained from shorter strings by copying the smaller
strings, character by character, into a larger string, i.e. packed character array.
This is illustrated by the example given below.

var
STRING : packed array [1 .. 10] of char;
STR1,STR2 : packed array [1.. 5] of char;
J : integer;

for] == 1to5do
STRING [J]:= STR1 [J];

for] = 6to 10do)
STRING [J]: =STR2 [J - 5];

These statements transfer the values of elements of array STR1 into the first 5
elements of composite string STRING. Next, the values of elements of array
STR2 are transferred into the elements 6, 7, 8, 9, 10th of array ST'RING

The above technique can also be used to select a substring of a bigger string. A
substring is defined as the consecutive characters in a string. For instance, in the
string,

‘ALWAYS SPEAK THE TRUTH’

ALWAYS, WAYS, SPEAK, THE, TRUTH or RUTH, and so on, can be
substrings as they consist of consecutive characters. But combinations of isolated
characters, such as WASTE, are not substrings of the above string.

The methoc to select a substring of a string is to copy the required portion of a
string, again character by character, into another string. This is illustrated by the
following example:

var

STRING : packed array [1 .. 10} of char;
SUBSTRING : packed array [1 .. 4] of char;

The characters 3-6 of array STRING may be transferred into array SUBSTRING
by the following statement

for J:=3to6do
SUBSTRING [J-2] :=STRING [J] ;

Next, we present an example which illustrates the search and count of a substring
in a given text.

STRUCTURED DATA TYPE: ARRAYS 175
Example 9.4

Develop a program which reads a paragraph (terminated by an asterisk, *,
symbol) and then searches the occurrence and frequency of a given substring in
the paragraph.

Program 9.4

program SUBSTR (input, output) ;
{ Program to count the number of times a substring occurs in a string of
character }

const
MAXSUBSTR = 20; { gives maximum length of the substring }
MAXPARA = 1000; { gives maximum length of the paragraph }

var
I, J,M, N, COUNT : integer;
SUBSTRING : packed array [1.. MAXSUBSTR]| of char;
PARA : packed array [1.. MAXPARA]| of char;
FLAG : boolean ; OPTION : char ;
begin
writeln;
writeln; (‘Enter the paragraph. Terminate it with *);
M:=1;
read (PARA [M]);
while (PARA [M] < > *) do
begin
M:=M+1;
read (PARA [M])
end; | T he paragraph has been read in array PARA |

repeat
writeln (‘Enter the substring. Terminate it with *") ;
N:=1;
read (SUBSTRING [N]);
while (SUBSTRING [N] < > **') do
n

N:=N+1;
read (SUBSTRING [N])
end;
{ T he substring is searched below |
N:=N-1;
I:=0; COUNT:=0;
while (I < =M)do

176 FASCAL PROGRAMMING FUNDAMENTALS

begin
I:=I+1;
FLAG : = true;
J:=1
while (FLAG and] <=N) do
begin
if (PARA [T} = SUBSTRING [J}) then
begin
I:=1+1;
J:=J41;
if(J > N)then
if PARA[l] <> * "and
(PARA I <> ‘.")and
(PARA[I] <> *,") then
FLAG : =false
end;
end; else FLAG : false

if (FLAG = true) then COUNT := COUNT + 1
else while (PARA [I] <> * ’)and
(PARA I} <>) and
(PARA[I) <> (V) do
I:=1+1
end;

write (‘The number of times’) ;
forI:=1 to N do
write (SUBSTRING [I]) ;
write (‘occurs’, COUNT, ");
writeln;
writeln (‘Do you wish to give another substring? [Y/N]');
readln (OPTION)
until (OPTION =N’
writeln (‘Stop”)
end.

Sample inputioutpur

Enter the paragraph. Terminate it with *

HOW ARE YOU? FINE. WE ARE MEETING AFTER A VERY LONG
TIME. TRUST, YOU AND OTHER MEMBERS OF YOUR FAMILY
HAVE BEEN FINE. *

Enter the substring. Terminate it with *

FINE *

178

9.2,

9.3.

9.4,

PASCAL PROGRAMMING FUNDAMENTALS

(d) All elements of an array need not be of identical type. (T/F).

{e) Any element of an array must be accessed sequentially. (T/F)

(f) The type of array identifier and subscript identifiers must be same. (T/F)
(g) Compatible arrays need not be of identical type. (T/F)

{h) Packed arrays help to save computer memory, (T/F)

(i) Packed array data cannot be assigned to unpacked arrays. (T/F)

(j) Strings are handled in Pascal via packed character arrays. (T/F)

(k) Data type name and data type definitions are same. (T/F)

Complete the foll

(i) The value'of subscripts of a variable canbe...... paennarnar
(i) Alinear arrayisalsocalled..........
(iil) Amatrixisa........... array.
(iv) An ordered collection of subscripted variables having the same and other
......... iscalledan..........
(v) The indices of subscripted variables are always enclosed between........... brackets.
{vi) Attribute packed is used when..........constraints are there.
(vii) A character variable can store onlyone..........
(viii) The Pascal compiler automatically examines during comparison of strings.
(ix) In the unpacked mode of character storage, each character occupies of
computer memory.
(x) The packed data can be changed into the unpacked form using the
statement, ’

Explain the difference between subscripted variables and arrays. Give examples of 1- 2-, 3-
dimensional arrays.

How are 2-dimensional array variables defined? Declare A and B as 5 X 10 matrices.
Initialize all their elements to 1 using for-do, while-do and repeat-until constructs.

9.5.(i) Declare PLANET as a linear integer array whose elements can be accessed using EARTH,

MERCURY, MARS, MOON, NEPTUNE and SATURN as subscripts.

(ii) Define BIRDS as a two dimensional character array whose elements can be accessed using

9.6.
9.7

9.8,
9.9.

9.10.

9.1

9.12.

WATER, GROUND and AIR for the first subscript and SPARROW, CROW, PEACOCOK,
HEN, COCK, PENGUIN, DUCK as the second subscript.

Explain the concept of compatible arrays. Give examples and their uses.

How is packed array different from unpacked array? Give the relative advantages of the two.
Describe the action of the procedures pack and unpack.

Give the different ways of defining character strings. Illustrate by examples.

What do you understand by String Processing? Explain the various operations (by examples)
and their implementation in Pascal.

Design a program 1o find the complete collating sequence of various characters in the
character set of Pascal as available on your system

Write a program 1o compute the multiplication table for the numbers 1 to 10 using a
2-dimensional array. Print your results in a tabular form.

Develop a program which accepts the data

NATIONAL PHYSICAL LABORATORY

and gives the output as N.P.L.

180

9.25.

9.26.

9.21.

9.28.

PASCAL PROGRAMMING FUNDAMENTALS

Write a program that will read a sequence of integer numbers and finds whether it contains
any duplicates.

Develop a program which prepares the following pattern @

1
2*2
3+ & » 3
4 % % 5 v x4
3 % = 3
2% 2
1

The character which is to appear at the farthest point of the figure, as 4 in the above pattern,
shoulc be given as the input value,

Consider the differential equation

dy

& " ey .
with the initial condition y(x,} = ¥, Choose an interval h, which is sufficiently small, and
construct a set of equal spaced points x, = x, + th(i=0,1,2..........). The solution of

Eq. (1) ¥(x) = y;, can be obtained in a simple way as
Yier = ¥ + hf{x.y)
This is known as Euler's method to solve the differential equation.

Develop a flowchart and a prpgram to compute the solution of the differential equation

b gy
with W0} = 0, over the interval (0, 1). Choose the step size in such a way that the solution is
obtained to an accuracy of 107,

Design an algorithm and an efficient program to find the real root of the equation

] l’ l‘ l'.,

X
R Tar ey s "0

by the method of iterations correct to seven decimal places. Print the number of iterations after
which the solution converges. Write the program using and without using arrays. Which code
is better in your opinion?

{Hint: Rewrite the given equation as

3 X ‘9

X X
X1 RF TR ey sy @
Neglecting all powers of x, higher than first, we find an approximate value of x to be 1.
Assume this as the starting value of x, substitute it on the right-side of Eq. (2). This gives a
next approximation to x, say it is x', Substitute x*' in Eq. (2) on rh.s. and get the new
approximation, say, it is x'*. This way continue and obtain x x™ till x"- " = xi=
correct to seven decimal places).

1-

. The co-efficient of rank correlation is defined as

673 o

rel- nin*=1)

STRUCTURED DATA TYPE: ARRAYS 1ai

where d, = rank difference and n = number of data values, Assume that the following
observations are made about 10 students as regards their rank in a Physics class.

6 4 29 9

Writtenpaper : 10 7 9 7 8
798821810

Pracitcal paper : 8 5

‘The rank achi of the stud must lie between 1 and 10, Moreover, the number of
students cannot be 0 or 1.

Develop a general program to compute the co-efficient of rank correlation taking into
account the appropriate constraints,

9.30. Read Programs (a) and (b) carefully, Program (b) uses arrays, while (a) does not.

(a) program COMPARE] (output);
const N=100 ;

var LIK,S:integer;
begin

Si=0;
for 1=1to Ndo
forJ=1toldo
forK=1toJdo
S:=5+Kdiv 100;
writeln (SUM=', S}
end.

(b} program COMPARE?2 (output) ;
cost N=100;
var L1, K, S integer;
Acarray [1..N,1..N, 1..N]ofinteger;
begin
S:=0;
for I=1toNdo
forJ=1toldo

forK=1toJdo

begin
AL, K]:=Kdiv 100 ;
S:=S+A|LJ K]

end;
writeln (‘SUM =", 5)

Run programs COMPARE! and COMPARE?2 on your system and note the execution times in
each case. Next, rewrite programs {a) and (b) using while-do and repeat-until constructs. Again
record the ion times. If permit, redo the entire experiment for N=150, 200.

Record your time of observations in a tabular form as : N

N for-do while-do repeat-until
(a) ® @ (b) (2 ®)

100
150
200

‘What are your conclusions as regards efficiency of the different versions of the programs with and
without arrays? (N.B. if there are any limitations on the choice of value of N, you may try your own
values).

Chapter 10

Subprograms: Functions and Procedures

We have seen how declarations, expressions and various kinds of statements
are combined to design a computer program. Many times, it may be desired to
express a program into smaller units called Subprograms. A subprogram is a
program unit/part which performs a particular task. It has its own labels,
constants, variables and statements. These are local to the subprograim and have’
no connection with those appearing in any other program/subprogram. The
smaller program units, that is, subprograms may be developed with relatively
lesser debugging effort and ease. There is more clarity in their design.
Subprograms may be combined to form larger programs. This is referred to
Modular Design of programs. A subprogram acts as a module. Libraries of
subprograms may be prepared. These program units may be used by others and
thereby save program writing time and effort. Moreover, subprograms are
written by experienced programmers and thus are designed in an efficient way.

A subprogram may be invoked by a subprogram/program which is called the
Calling program. A subprogram is entered at the beginning and after completing
the execution of the subprogram, control goes back to the calling program. Also
more than one calling program may use the same subprogram. We may depict
the invoking of a subprogram by a schematic diagram as shown in Fig. 10.1.

Main program

>
-
]
1]
L
L)
1
3 .

B w€----

g
t
g
E

wadm=%

- L &.mmml
e G .y* D '

’

-

-2 H S E ® " .

{ F - -

Fig. 10.1: Invoking subprograms

Subprogram [is referred to in the Main program. Subprogram I is invoked
at point A. After the execution of subprogram I, control goes back to the Main
program at point B immediately after A (or to the point A itself, depending on
the type of the subprogram invoked). At point C, subprogram II is invoked
which further invokes the subprogram III at point G. After the subprogram III
has been executed, control returns to subprogram I at point H and after

SUBPROGRAMS: FUNCTIONS AND PROCEDURES 183

completing the execution of the remaining part of subprogram I, control comes
to point D. Now subprogram II became the calling program for subprogram IIL
Subprogram I is further invoked by the Main program at point E.

Pascal allows all possibilities of invoking subprograms. For example,
subprograms IT may invoke I, subprogram I may invoke II or III, and so on.
When a subprogram invokes itself, it is called Recursive Call and the process is
referred to as Recursion (Section 10.8).

The following kinds of subprograms are available in Pascal:.

(a) Function subprograms

(b) Procedure subprograms

We shall discuss the rules to design and use these subprograms in developing
programs in the following sections.

10.1 Functions
A function is an independent unit in a Pascal program. It has its own

declarations and execution part. The execution part is also referred to as the
body of the function subprogram, The format of a function subprogram is:

function name (argument-list-1: 1, ; argumenis-list-2:175......): I}

local declarations

begin —
S
83

mm;e: = an expression ;| body

.

.

end; —_
Here

name is an identifier which is the name of the function and
is designed according to the Pascal rules to construct
identifiers.

argument-list-1, ¢ indicates identifiers separated from each other by

argument-list-2, comma also called Formal parameters or identifiers

e

¢ use of formal parameters is optional

184 PASCAL PROGRAMMING FUNDAMENTALS

® are the types which may be standard data types or
user-defined or subrange type; may be same or
different.

* is the type (may be standard, user-defined scalar or
subrange) which applies to the name of the
function; it should never be of structured type.

¢ type of function name may be same or different
from the type of the arguments.

local declarations ® refer to declarations (label, const, type, var,
function, procedure) which are applicable in the
body of function only

S1,82,...58, ® statements, may be simple or compound

The body of the function is the place where all computations are done. It may
consist of any valid statement (simple or compound). There must be an
assignment statement of the type.

hame := an expression

in the body which assigns a value to the function name. This value is returned as
the result of exccution of the function subprogram upon completion of the
function. The last statement in the body must be an end statement. .

The formal parameter argument-list appearing in the function statement may
be

*® simple or subscripted variables
® array names (or of other structured data type)
® subprogram names
® but never constants, labels and type identifiers.
An example of function statement or function heading is :
function POLYNOMIAL (A, B: real; J, K: integer) : real

Here POLYNOMIAL is the name of the function; A, B, J, K are the formal
parameters (A, B are of type real and J, K are of type integer). The type of name
POLYNOMIAL is real and it can assume real value. Some more examples of
function statement are:

function TEXT (P,L, T : char; LAG: boolean; M,N :1..13) char;
function CHECKLIST : boolean + (no formal parameters)

Now consider
‘function PAGE (X, Y : TABLE) : real;
where TABLE may have the type defined as

type
TABLE : packed array [1..25] of char;

SUBPROGRAMS: FUNCTIONS AND PROCEDURES 185

Now the formal parameters X, Y are array names. The use of subprogram
name is allowed as a formal parameter. An example is

function FORMAT (TEXT : char) : boolean ;

Recall that TEXT was the name of the function (defined above) and is being
used as a formal parameter where its type is specified. (see Section 10.7),

The formmal parameters specify variables (along with their type) which
constitute the input to the function subprogram. There can be any number of
formal parameters of the type explained above, including none at all.

Let us see the design of a function subprogram. Suppose, we wish to compute
A*B*C*D/4.0. A function subprogram for this may be written as:

function PRODUCT :real; { No formal parameters with the function
name PRODUCT }
const
FOUR:=4.0;

var
A,B,C,D : real;

n
readin (A, B, C, D);
PRODUCT :=(A*B*C*D)/FOUR;
writeln (PRODUCT)

end { function PRODUCT } ;

Here no formal parameters have been indicated with the function name
PRODUCT. Values of variables A, B, C, D are read in the subprogram body
and result is assigned to PRODUCT and then written. The reader should note
that the body of a subprogram must have the word end, followed by a semicolon
(and not period), as the last keyword.
As the subprogram is an independent unit (with its own declarations, type
i body, etc) then how does it establish link with the calling program unit? This is
- done via formal parameters. These parameters also serve to supply input
values to the body of the subprogram. Values are passed on to a subprogram via
formal paramters when it is invoked by the calling program. This concept is
explained in the following section.

Invoking a function subprogram

When a function subprogram is invoked in a statement of a calling
unit, arguments appearing with the name of the function, are called the Actual
arguments.

An actual argument may be

® 3 constant

¢ asimple or subscripted variable

¢ an expression

¢ a subprogram name

SUBPROGRAMS: FUNCTIONS AND PROCEDURES 187

appear after the declaration var. The complete structure of 'a Pascal program
may be shown schematically as given in Fig. 10.2.

program...... [. ; { start and the name of the main program }

] main program declarations

o subprogram-1 declarations:

var .
function/procedure . .. ;
{ subprogram-2 }

i subprogram-2 declarations

...... body of subprogram-3

......... ‘body of subprogram-2

""" '] body of main program

Fig. 10.2: Common Structure of a Pascal Program

i
SUBPROGRAMS: FUNCTIONS AND PROCEDURES 189

L], K, NEXTWORD, LENGTH, LSUB, COUNT, POSITION : integer;
EQUAL : boolean;

WORD : packed array [1 .. 10] of char;

SENTENCE : packed array [1..100] of char;

writeln (* Enter the sentence ending it witha *);
writeln ;

writeln (* The sentence is’);
POSITION:=0;

EQUAL : true ;

read (LETTER):
NEXTWORD:=1;
SENTENCE [1]:=LETTER;
Ji=2

LENGTH:=1;
COUNT:=0;

while LETTER < > ‘*’do

begin
read (LETTER);
SENTENCE [J]:=LETTER;
Ji=J+1
end;
I:=1;
writeln;
writeln (‘Enter the word to be searched ending it with a bladk’);
writeln ;
read (SUBSTRING);

t

WORD [I} : = SUBSTRING;

I:=I+1;

read (SUBSTRING)
until SUBSTRING =" ’;
LSUB:=I-1;
writeln;
Ji=2:
while SENTENCE [J] < > “*' do
begin

if SENTENCE [J—1]="* ‘and (SENTENCE[J]] <> * ")then
NEXTWORD :=1J;
if POSITION =0 then

begin
if SENTENCE [J]=*) or (SENTENCE [J|="*") then
COUNT : = COUNT + 1;

LENGTH : = J-NEXTWORD;
if LSUB = LENGTH then

190 PASCAL PROGRAMMING FUNDAMENTALS

Ti=1;
K : = NEXTWORD;
while (I <=LSUB)and (EQUAL = true) do

if WORD [I] = SENTENCE [K] then

Ii=1+1;
K:=K+1
end
else
EQUAL :=false
end;
if EQUAL = true then
POSITION : = COUNT;
EQUAL : = true
end
end
end;
Ji=J+1
end;
writeln;
INDEX : = POSITION;
end; { of function INDEX }

wn{dmpmmi
X :=INDEX;

writeln;
if X =0 then
writeln (‘The given word is not in the sentence”)
else
writeln ("The given word is present in the sentence at position’)
end.

Sample inputioutput
Enter the sentence ending it witha *

The sentence is

STRONGLY TYPED LANGUAGES ALLOW TYPE CORRECTNESS
TO BE CHECKED AT TRANSLATION TIME *

Enter the word to bé searched ending it with a blank

TYPE
The given word is present in the sentence at position 5

192 PASCAL PROGRAMMING FUNDAMENTALS

var
S:real;
= (X+Y+Z)/20;
AREA : = sqrt (S* (5-X)*(5-Y)*(8-Z))
end; { procedure ends here |
The area is calculated and stored in variable AREA. The procedure TRIAREA
can be invoked in a program by indicating its name and the actual arguments. A
complete program which invokes this procedure TRTAREA is given below:

Example 10.2

Read data for the three sides of a triangle. Examine the validity of the data
read (that is, magnitude of sides should be such that a triangle is formed) and
compute the area of the triangle. Make use of procedure TRIAREA discussed
above.

A triangle is not formed when any of its side is zero or when sum of any two
sides is less than the third side. We shall use this criterian to examine the validity
of the input data. In the following program, data are read in the main program
and above test is applied.

Program 10.2
program AREATRY (input, output);
var
A B,C,D:real;
TEST : char; .
pmcedureTRIAREA(X,'Y, Z:real ; var AREA :real);
formal parameters

var
S :real;

begin
S:=(X+Y+2)/2.0;
AREA :=sqrt (S*(S-X)* (S-Y)* (S-Z))
end ; { of procedure TRIAREA |

begin { main program }
repeat
writeln (‘Enter data for the sides);
read (A, B, C);
if ((A=0.0) or (B=0.0) or (C=0.0)) then
| begin writeln : writeln (‘Invalid data') end
else
begin
f A>B+Clor B> (C+A)or
C> (A+B) then

SUBPROGRAMS: FUNCTIONS AND PROCEDURES 193

begin writeln ; writeln (Invalid data’) end
else { invoke procedure } .
TRIAREA (A, B, C, D) :{ procedure TRIAREA invoked }

writeln (‘Area of triangle =", D : 8 : 4)
end
until A *B=sgr (C); | program stops when A = B = C};
writeln (‘Stop”)
end {program AREATRY }.
Sample inputioutput
Enter data for the sides

43.0 34.0 23.0
Area of triangle = 388.8444

Enter data for the sides
23.00.0120
Invalid data

Enter data for the sides
304050

Area of triangle = 556.0000
Enter data for the sides
3.03.03.0

Area of triangle = 553.8971
Stop '

The above examples illustrate the specification and use of functions and
procedures in complete programs. However, there are certain differences
between these subprograms which are listed below.

® Function is invoked by specifying its name in an expression, whereas a

procedure is invoked by means of a single independent statement.

® The function name acts-like a variable which can be assigned a value and

used in expressions/statements, while the procedure name is merely an
identifier and does not have any value.

¢ Type of the function name is always declared while this is not so for the

procedure name.

10.3 Block Structure
We have seen that the format of a general Pascal program is as

program{(.....iiananl)s

194 PASCAL PROGRAMMING FUNDAMENTALS

statements which constitute the body of the program. The body of a program is
always enclosed between the reserved words begin and end.

A Block is defined as consisting of declarations part and body section. This is
shown above.

A program may consist of subprograms (functions and procedures) which
have their own declarations and body sections. For instance, look at the
following example :

procedure name (arguments);

declarations
begin

Block| -.... & procedure-body
end;

In this case, declarations and procedure-body constitute a Block. As
subprograms are placed in the declaration part of a main program, so the block
corresponding to a subprogram will be contained in the block of the main
program. Moreover, a subprogram may contain another subprogram in its
declaration part, and so on. This is further brought out by Fig. 10.3.
Program A, (.......ooenieiad)s

— DuiDiaiDisi D, H

procedure A(..............);
— DyiDuniDng..... H
procedure Ay (..........ooepennn)i
Dy 3Dy D0 Dagseee H
B | B; | B,

end; { procedure A, |

begin
S1i80:80: 805

L. end ; {procedure A,}

n
L ITH P TR H
L—end . | of main program A, }

Fig. 10.3: Nesting of blocks

Here A, refers to the main program, while A, and A refer to the procedures.
Procedure A; is defined in procedure A;, while A, is defined in main program

SUBPROGRAMS: FUNCTIONS AND PROCEDURES 195

A,. In other words A; is contained in A, which is further contained in A,. This
is called Nesting of subprograms. Here B,, B, and B, are blocks. Block B, is
contained in block B; while block B, is enclosed within block B,. Or, in other
* words, B, is the outermost block and B, is the innermost block. Each of the
blocks B,, B; and B; has its own declarations and statements. These are: Dy,

D2, D3 Dygy e

and S,), 82, 8,3 . . . for By; Dy, Dy, D33, Dy, . . . and

« 821, S22, 823, 24 . . . for By and Dyy, Dyg, D33, Das and 83, S33, 833, for

block B;.

+ Wedonote a block by a square bracket as

D (declarations)

E (end)

where D indicates the beginning of declarations part of a block and E is its end.
With this notation, the structure of a Pascal program may be represented in
terms of blocks as shown in Fig. 10.4.

Main program statement

B,

B,

E;

Fig: 10.4: Block structure of Pascal program

or a variation of this.

196 PASCAL PROGRAMMING FUNDAMENTALS
10.4 Local and Global Identifiers

Identifiers (labels, constants, type, variables, procedures/functions) declared
in a block are said to belong to that block and are referred to as Local
identifiers. Values of local identifiers are available only in that block and not
outside it. Identifiers declared in the declarations of the main program block,
that is, outermost block, are called Global identifiers. Their values are available
throughout the program and in every block of the program.

Consider the following simple program outline:

program VOLUME (input, output) ;

VOL, X, Y,Z:realy
function FIG: integer ;

var

A, B, C:integer;

i B,
B, .

end ; { function FIG | ——

readin (X, Y,Z);
VOL:=FIG(X,Y,Z);
writeln (VOL)

L— end. { program VOLUME |}

In this program, B, is the inner and B, is the outer block. Variables A, B, C
. are declared in B,. while VOL, X, Y, Z have been declared in block B,. Variables
A, B, C are the local variables while VOL, X,Y, Z are the global variables.

Names of local and global identifiers may be same or different. Let us
consider two blocks B, and B, as shown in Fig. 10.5. B; is subordinate to B,.
Block B, contains declarations of variables A, B, C and P, Q, T ; while block B,
has declarations for other variables. These variables may be same as declared in
B, or different. Suppose the variables declared in B, are : P, Q, T, and X, Y, Z
"and the arrangement appears as shown in Fig, 10.5,

Variables P, Q, T and X, Y, Z are the local variables of block B,. These
variables can be used in statements defined in B, only. In addition to this, a
statement in block B, can also use the variables of block B,, that is A, B, C.
Variables like A, B, C are non local to B,.)

Statements of B,, which lie outside block B,, cannot use the variables Y, X, Z.
This is because the variables of the inner block are not defined in the outer
block. Furthermore, the variables P, Q, T which arc declared in B, have no
connection with the variables P, Q, T declared in B, Different memory spaces
are assigned to all of them. The variables P, Q. T of block B, are not valid in B,

SUBPROGRAMS: FUNCTIONS AND PROCEDURES 199

BI B_;

B,

E,
Fig. 10.7:Nested and paraliel blocks

Identifier Scope Rules

® An identifier is available only in that block in which it is declared and the
blocks which are further contained in it.

* An identifier of an inner block is not defined in the outer block.

® The identifier of parallel blocks are not available to one other.

Identifiers declared in different blocks may have the same name, but they
are all treated as independent.

® Once the statements of a block have been executed and block exited, all
identifiers declared inside the block cease to exist. The computer memory is
released and can be used for other purposes.

® Identifiers_of a block are assigned storage only at the time of execution of
‘the block.

"# The same identifier should not be used to denote two different quantities (as
for instance, a variable and a constant) within the same block. However, it is
permitted to use same identifier for different quantities in different blocks. It
may stand for a simple variable in one block, an array in second block, a
constant in third block, and so on. Declarations may be same or different.

The nesting of blocks may be cpntinued to any level. However, there is little to
be gained from complicating the block structure of a program. It is advisable to
keep the nesting to two/three levels

10.5 Value and Variable Parameters

Correspondence between the formal and actual parameters may be
established via two mechanisms—commonly referred to as Call-by-Value and

200 PASCAL PROGRAMMING FUNDAMENTALS

Call-by-Reference. In call-by-value, values of actual parameters are transferred
to the formal variables, whereas in call-by-reference, it is the address of actual
parameter which also becomes the address of the formal parameter. Each of
these modes of information exchange between the subprograms and calling
program unit has been implemented in Pascal and are explained below .

Call-by-Value

We have seen that when a function/procedure-is invoked, there is establislied
a correspondence between the formal and actual parameters. A temporary
storage location is created where the value of the actual parameter is stored. The
formal parameter picks up its value from this storage area. This mechanism of
data transfer, between the actual and formal parameters, allows the actual
parameters to be an expression, functions, arrays, records, files, sets, etc. Such
parameters are called Value parameters and mechanism of data transfer is
referred to as Call-by-Value. In our discussion so far, we have been considering
this type of parameter correspondence. The corresponding formal parameter
represents a local variable in the called subprogram. The current value of the
corresponding actual parameter becomes the initial value of the formal
parameter. The value of formal parameter may then be changed in the body of
the subprogram by assignment or input statements. This will not change the
value of the actual parameter. It is explained by the following example.

program CORRESP (output) ;
var X, Y : integer ;
procedure PARAM (A, B : integer) ;

writeln (A, B); (1)
B:=A+B)
writeln (B) 3)
end ; { procedure PARM |}
begin

X:=3;

Y:=4; :l g

PARAM (X, Y); @)

writeln (X, Y) (5)

end. { program CORRES }

Here the procedure PARAM is invoked in statement (4) and correspondence
between the actual parameters, X, Y and formal parameters A and B is
established. Parameter A is initialized to value 3 (initial value of actual
parameter X) and B to the value 4. The writeln statement (1) writes the values
of Aand B as

3 4

SUBPROGRAMS: FUNCTIONS AND PROCEDURES 203

Both kinds of parameter calls may be used in subprogram arguments. The
differences between call-by-value-and call-by-reference are summarized below:

Call-by-value

the formal parameter assumes ~ *
only the value of the actual
parameter

the formal and actual parameters *
are two distinct variables

when the value of the formal (or *
actual parameter is changed, the
corresponding value of actual (or
formal) parameter is not changed
automatically

Cali-by-reference

the formal parameter (always
proceeded by the declaration var)
assumes the address of the actual
parameter.

the formal and actual variables are
identical, though their names may
be different.

the value of the formal (or actual)
parameter automatically changes
when the value of actual (or
formal) parameter is modified.

do not allow the transfer of values * values may be returned from the
from the subprogram to the calling subprogram to the calling program
program part.
the actual parameter may beany * the actual parameter must be a
expression (constant, variable, variable.
function, or a combination of
these) having the appropriate type

* canbeused forstructured data * cannot be used with structured
types data types.

As a general rule, remember the following: use call-by-value, that is, value:
parameters to pass values into a subprogram and call-by-reference, that is,
variable parameters to return the values from the subprogram.

10.6 Arrays as Subprogram Parameters

You have seen that many kinds of arguments may be used with the
subprograms. Now we illustrate further the use of arrays as the parameters of

subprograms.
Suppose we want to compute the mean of N data values : x,, x;,

mean is defined as

Mean = (Ex‘)KN

The program to compute the mean, using function subprogram, may be as
follows :

204 PASCAL PROGRAMMING FUNDAMENTALS

program AVERAGE (input, output) ;
{ Program to compute mean of data }
var
M :integer; Y : array [1..100] ofinteger;
function MEAN (N : integer ; X : array [1 .. N] of integer) : real ;

var
_J,SUM :integer ;

SUM:=0:
for J:=1toNdo
SUM:=SUM+X [J];
MEAN :=SUM/N
end;
readin (M) ;
for J:=1toMdo
readin Y [J];
writeln MEAN (M, Y) { Function MEAN is invoked }
end.

" HereMand Y are actual parameters. Y is an array.
The formal argument of the function MEAN has been specified as an array,

by the array variable X :
X:array [1..N] ofinteger

in the usual way. Alternatively, we can also specify as
X:VALUETYPE

where VALUETYPE must have been defined earlier as

VALUETYPE =array [1 .. N] of integer

Similarly, we can use arrays as arguments with procedures.

The arrays used as parameters may be of any allowed dimensions or any type.
Moreover, the arrays may be specified as value parameters or variable
parameters,

Next we develop a program to add two matrices and illustrate the
specification of arrays of varying sizes.

Example 10.3

Let there be two matrices with elements Ajand By (i=1,...,m,j=1,..n).
The sum matrix with elements C;

Cy=Ay+By

SUBPROGRAMS: FUNCTIONS AND PROCEDURES 207

The reader should appreciate that because of restriction (a), the way one
procedure passed as a parameter to another, can communicate results back, is
via global variables. (7)

Stadard Pascal does not allow standard functions/procedures to be used as
argument, though some implementations of Pascal may allow this.

10.8 Recursion

We have seen that a subprogram may cali another subprogram. When a
subprogram calls itself, it is referred to as Recursive Call and the process is
known as Recursion. To understand the concept of recursion, let us study the
following examples.

(i) Factorial of a number, n, (denoted as n!) is defined as

nl=n (n-1)!
=n (n-1) (n-2)!
=n (n-1) (n-2) (n-3)!
=n (n-1) (n-2) (n-3) (n-4) !
=n (n-1) (n-2) (n-3) (n-4) (0-5) !

=n(n-1) (n-2) (n-3)...... 1
with =1
Thus, to-calculate n !, we should compute (n-1) ! ; to evaluate (n-1) !, we need to
compute (n-2) !, and so on. The method to computen!, (n-1) ! or (n-2)!,..... .
is identical. A specific example is
41=4Xx3!
=4X3IX2!
=4xX3X2X1
The_factorial is defined in terms of itself. This is known as Recursive
definition. ')
A function program to compute the factorial of a number N may be written
as:

function FACTORIAL (N : integer) : integer ;
begin
if N:= 0 then FACTORIAL :=1
else’
RIAL := N * FACTORIAL (N-1)
end‘??f;[.l?cnon FACTORIAL }

The function name FACTORIAL is appearing in the body of the function also,
that is, the function is invoking itself.
Another example of recursion is provided by the Fibonacci number sequence:

0, l 1,2,3,5,8,13,21, 34,.....,.....

208 PASCAL PROGRAMMING FUNDAMENTALS

Each number is the sum of the two preceding numbers, starting with 0 and 1. |
We can rewrite the above series as

f,=0 ifn=1
f=1 ifn=2
fn-fn-l-'-fst-l n>2

Thus, the computation of the nth (n > 2) Fibonacci number, f (n), needs two
earlier numbers f,, and f,—;. Consider f;s = f, + f;.

fo=f, + f,

) |
f3+f; fy+f,
i
£+,

Thus, the procedure to compute any term (n 2 3)is identical.
A recursive function to compute the Fibonacci number sequence appears as :

function FIB (N :integer) : integer ;
begin
ifN=1thenFIB=0
else if N=2 then FIB : =1
else

FIB : = FIB (N-1) + FIB (N-2) ;
end ;

The function FIB is being invoked twice in the statement
FIB : = FIB (N-1) + FIB (N-2)
As another illustration of recursive subprograms, we develop a complete
program to evaluate the plynomial
Pa () =apx"+ax" +a,x" 2+ a, x+a, ()]

Here a,, a,, a,, are the co-efficients and n gives the degree of the
polynomial. The polynomial can be evaluated for a given value of x, provided a,,
a),8,..... are known.

The polynomial (I) may be rewritten as
Pa (X) =X pa-1(x) + 2,
where
Pr1(X) = 2o x™' +a, x™2+ .+ 252 X+ 8-
=XPn2t 2

and so on. Thus to evaluate p,(x), we need to compute p,—; (x) and to find p,—; (x)
weshould calculate p,-,(x), and so on. This is a recursive design of algorithm.

SUBPROGRAMS: FUNCTIONS AND PROCEDURES 209

Example 10.4

Develop a program to evaluate the polynomial (I) for n = 3, x = 2.0 and a, =
1,a,=2,a,=3,a,=4,a,= 5, a,= 6 using the recursive algorithm.
A program to evaluate the given polynomial may be designed as follows:

Program 10.4

program POLY (input, output) ;
{ Computation of a polynomial by recursive algorithm }
const M=10;
var
J,N: integer ;
X, VALUE :real ;
A: array[0..M] of real ;

function P (N : integer ; X : real) : real ;
begin

if N =0 then
P:=A[0]
else
P:=X*P|N-1,X]+A[N]
end ; { of function }

begin { main program }
write (‘Enter the degree of the polynomial (integer mode).... ’);
readin (N);
write (‘Enter the value of X (real mode).... ’;
readin (X);
writeln (‘Enter the values of a0, al,a2, (inreal mode));
for J:=0 to N do

read (A [1]); writeln ;
VALUE :=P (N,X);
writeln (‘Value of the given polynomial =", VALUE : 8 : 3)
end.

Sample input/output

Enter the degree of the polynomial (imegcr mode) ..
Enter the value of X (real mode)...

Enter the values of a0, al,a2.... (Inl‘ealmode)
1.0 20 30 40 50 60

Value of the given polynomial is = 120.000

The polynomial can also be evaluated using the technique called Nesting or
Horner's rule. This is an iterative method which can be described as follows:
bo=1ag
by = x.bi+as, i=0.1,...,n-1

SUBPROGRAMS: FUNCTIONS AND PROCEDURES 211

Exercises 12

10.1. Complete the following sentences :
(a) A subprogramisa..........which pedonnsapaﬂicular task.

(b) Subprograms are the basis for the desigu of ... pmgmns.

(c) The body »f a subprogram is the phl:c where s]l . are done.

(d) The actual arg) must pondin,......... e aaaes and............ 10]
the corresp ng formal p in rhe function/procedure

(e) A block is defined as consistingof.......... and.........

(f) Identifiers declared in a block are said to be ...

(g) The nesting of blocks may be continuedto Ievel

(h) The var formal parameterisa.......... ‘parameter and its valueis.......... on exit
from the subprogram.

(i) The type of the function name must not be of Iype.
(j) Names of local and global identifiers may be........
{k)Irnhe Call-by-Value, the actual parameters muyhawlhell‘va]uesas

type.
('I}The pn.rmeters of subprograms, which are themselves specified as parameters, must
notbeof .. e type.

10.2. Tick the correct answers.
{a) The |denn.ﬁers appcarmg ina subpmgam are related/unrelated to those appearing in

(b) Suhpmgmms savafdo not save pmgmm development effort,

(c) A subprogram can/cannot be compiled independently.

(d) The function name has/ has/does not have a type.

(e) Subprograms in a program must appear after/before the var declaration.

{1} The name of a function/procedure always returns a value,

(g) Identifiers declared in the outer most block are local/global identifiers.

(h) The same identifier can/cannot be used to denote two different entities within the
same block,

(i) The formal p is assigned the address/value of the actual parameter in the
case of var parameter.

(j) Recursion allows/disallows the self invoking by a subprogram.

{k)The specification of arguments with function and procedure subprogram is required/
optional.

103, (a) What are function and procedure subpmmm“ Write and explain their formats.
(b) Draw the syntax di of fi and procedure declarations.

10.4. What are formal nrgument.s? What correspondence exists between the actval and formal
arguments? Explain the difference between Call-by-Value and Call-by-Reference.

10.5. Summarize the rule for specifying arg ts in a function. Can a function make use of
variables that do not appear as arguments? Support your answer by examples.

10.6. Point out mistakes, if any, i the following and wrile the carrect format :

(a) function RAINBOW (A, B : char; x : integer) ;

(b) procedure CLOUD (P : boolean ; function (var y : integer)) ;

(c) procedure ROM (AA, BB : integer) : real ;

(d) funetion XX (YY :array (1.. 10) of real) : packed array (1.25)

(e) procedure PP (Q : MATRIX) ; of char ;

(f) function TT (R :integer ; var § : array (1 .. 100) of char) : bollean ;

212

end.
) pmu P3 (COLOUR = (RED, BLUE, ORANGE, GREEN));
label: 5 ;
var KOLOR : COLOUR ;

10.7. Consider the following program outline :

program PM (input, output) ;
label : 5, 10 ;
const

Cl=5;C2=10;

var
A.B,C:real;

function F1 :real ;
const 15 ;

Yar
B,C,D:real;

end;|of Fl}|
function F2:real ;
Yar
C.D.E:real;
P
const 25 ;

SUBPROGRAMS: FUNCTIONS AND PROCEDURES 213

var
D,Fireal;

end. (of program PM)
Give the scope of Iabels, constants and variables indicated in this program.
10.8. What is the output of the following :

program RESULT (Output) ;

M :integer;
function NUM (J : integer) :

begin
NUM : = 1+J+1*J-M

end :

n
M:=13;
for K:= 1 to 5do
writeln (M, NUM (K))
end.

10.9. Consider the following progr
program TALK (output);
label:2,3,4;
var

Xireal;
function RAM (var Y : real): real;
label:1;

1 : writeln (Y):
RAM:=X+Y;
Y:=X*X

end ;
begin
=40,
2:writeln (RAM (X))
3 : writeln (X),
4= writeln (Y);
end.

What will be the output given by writeln statements labelled as 1,2, 3, 4?

b

214 PASCAL PROGRAMMING FUNDAMENTALS

10.10. Develop a function subpraogram to produce absolute value of a real number.

10.11, Bring out the diff b function and proced bprog Niustrate by
examples.
10.12. (i) Explain the concept of a Block in a Pascal program. What are the rules which should be
obeyed while using different blocks in a program?
(ii) Describe the utility of Pascal being a block-structured language.
(iii) Explain the difference between compound statement and a block.
(iv) Prepare a syntax diagram of a block.

10.13. Write a function subprogram to compute the effect of NOT (A OR B) operator. This
operator is referred to as NOR. Develop the complete program to print the NOR table using
this function subprogram. Here A and B are logical qualities, while NOT, OR, NOR are the

logical operators.

10.14. Refer to Example 9.1, mmwmwammwmmm
the interval into 100 steps, Now develop a program using fu to integr
fumumnllanmucyoflﬂ*uobumedbyhamgdﬂfmluzpm?nmtheanm
and the step size.

10.15. Prepare a complete interactive program (using function subprogram) to compute the value of

Ny
e -P.:.,‘k._' x<1)

upto 6th place of decimal (using function subprogram) for x = 0.1, 0.2, . .. 1.0. How many
terms are needed to achieve the given accuracy in each case. Print your result in a tabular

form as
X EXP(X) N

10.16. Develop a function subprogram to compute - test (chi square test) value, defined as

= ((frg)/) + (EgV/ B oo+ (g Y
where)
{; = observed frequency of occurrence of i thitem
g = expected frequency of occurrence of i th item from theory.

Use this subprogram to evaluate ? for the following sample data
item: o 1 2 3 a4 5 6 7
Observed frequency : 10 61 198 335 363 219 79 15
expected frequency : 10 70 210 350 350 210 70 10

10.17. Develop a program package, using subprograms, (o perform the following matrix operations :
® sum, difference and product of two matrics
® Trace, norm, transpose of any matrix
® inversion of a matrix

Your package should be able 1o handle matrices of arbitrary size and take care of the
necessary conditions which are imposed on any operation. For instance, for matrix

SUBPROGRAMS: FUNCTIONS AND PROCEDURES 215

multiplication, the number of columns of first matrix must be equal 10 the number of rows of
the second matrix.).

10.18. Write an interactive program using procedure which computes the chord, if any, where two
circles intersect.

10.19. Design a recursive function subprogram to find the greatest common divisor of two positive
integers using Euclid’s algorithm. (Hint : The greatest common divisor (ged) function is
defined as

ged (k.) ifk > j
ged(jk) = { if k=o
ged (k, mod (, k)) ifk > o0

10.20. An integer is said to be palindromic if it reads the same forwards as backwards, e.g. 232,
1331, 63436.

For an positive integer, J, the following sequence usually (not necessarily) converges to a
planidromic number:

J,=1

Jo=(Jo+1m) n=1,2,3,.....

where J,_, is the integer constructed by writing the digits of J,, in the reverse order. An
illustration is:

Jo=28
Jy=28+82=~110
Jy=110+011=121
Jy= 1214121 =242

Design a complete i i , using subprogr which reads an arbitrary integer

numbermdﬁndsomndmherxtludsmpaﬁndmmmmmbﬂuqum?rmmﬂn
palindromic numbers which may be generated by the given integer.

10.21, I‘repana gram Lo g te the function of a Binary Full Adder. l‘riutlheuutputfwlhe
mmdhmunmmmA,BCdeﬁmdu
A B c SUM CARRY
0 0 0 '
] 0 1
0 1 0
] 1 1
1 0 0
1 0 1
1 3 0
1 1 1

' 10.22. Develop-a procedure named CONVERT which can take two arguments, one an integer and

other declared as packed array |1 . . 10] of char, and converts the integer value inlo a
character string. Write a comp} having procedure CONVERT as its component.
Ruulhispmgmfarnrbmnmpledlu)

10.23. Design a p lure 10 the ch of any string which is passed on to it as an

Use this p dure in a program to transform
'SITA RAM’ to ‘RAM SITA’

216 PASCAL PROGRAMMING FUNDAMENTALS

10.24. The Ackermann’s function is defined as

n+l if m=o
alm,n) = { a(m—1,1) if =0
a(m—1,a(m,n—1) otherwise

Designa ive function subprogram to compute the Ackermann function for m=n=3.

10.25. There may be many ways in which a positive integer number can be rep d as the sum
of its integer parts. For example, the number 4 can be represented as

4 =4
=341
=2+1+1
-2+2
-14+1+141

Similarly

S =5
-a+l
=3+1+1
-3+2
- 24241
=2+1+1+1
= 1+1+1+1+1

Let us denote the number of partitions of any positive integer n as p(n). Thus, p(4] 5 p(S)
= 7. Develop a Pascal program, using procedure, to determine p(n) for n=1, 2, 3,.

10.26. There is a conjecture that “every even number larger than 2 can be written as ll!e sum ot two
.prime numbers”. For example, 4 = 2+2, 6=3+3, 8=5+3, 10=5+5, 12=5+7, 14=7+7,
16=11+5,and so on. Design a Pascal program, using subprograms, that reads a number,
N, dﬂemmwhcthcrmsevenmodd,:nlheram 1w IDIJ And then finds the two prime
numbers J and K such that N=J+K.

10.27. The values of the hyperbolic sine and cosine may be obtained from
(i) power series expansion as :

- =1

. X
sioh (x) = .E. (2&— 1!

comw) = T 2 m

where — @ < x < @,

(ii) the recurrence relations as
sinh (x) = ¥ u,
k=1

-

X
BTE e T ke ™

cosh(x) = & w
k=1

K:
2k+1)2k+2) "

Vo= 1 ¥ =

SUBPROGRAMS: FUNCTIONS AND PROCEDURES 217

Design a Pascal progr using to eval unh{ld)uptosmhplaceof
decmalbylhema]pmhm()md(l) Print the number of terms necded in the two cases.
Plot the sinh and cosh functions, Compare the approximate time needed to obiain the
desired accuracy.

10.28. Develop a program that will obtain the value of a complex number raised to a real power.
(Hint : make use of de Movier's theorem).

10.29.1f p is the probability that an event will take place in any single trial and g=1—p is the
probability that it will not take place in any single trial, then the probability that the event
wﬂluhepboemcllymliﬂminnuim.isgiwnby:

P(m) = mp q (U]

where m=0, 1,2,, n. Eq. (I) represents a discrete probability distribution and 15 called
the Binomial distribution. P(m]uﬂubunmmldlsmbuuonfunwm
Develop an algorithm and a prog programs, to plot Blnomial distribution
for p=0,0.1,02,0.3 . wmddlﬁﬂmtvamesnfuwdm.(ll‘ywpmgmmdocsnm
wkfothrgenluuofn,mmpmemvaluemlhcmlmm

n!s f2xn 0%e™

10.30.1t is said “subprograms enhance program readability and maintainability™ Justify this
statement.

Chapter 11

Record Data Types

We are all familiar with data. Data are a collection of facts that are generally in
an ‘unorganized' or ‘raw’ form. In order that some information can be derived
from this, data must be processed. In fact, Data processing implies putting the
data into an organized and useful form. We can perform several operations on
data, such as recording, storing, retrieving, verification, classification, sorting/
merging, and so on. And obviously, computer is the most powerful tool to carry
out these operations. It helps to process data at a very fast speed and accurately.
Processed data is also referred to as Information. In order that data are easily
and efficiently processed, it is organized into the form of Records and Files. Let
us first understand the concepts of records and files and then go to their
definition and manipulation using the facilities as available in Pascal.

11.1 Record and Files

We know that all quantities in a program are expressed in terms of characters
of the Pascal character set. We define a data item as the basic unit of data. It is
treated as the primary unit for processing of data. An elementary data item is also
known as Field. Examples of data items (fields) are : names (may be of persons,
objects, or any other item), addresses (may be of persons, offices, companys,
etc.), date of birth, rates, length, invoice number, and so on. Each data item is
identificd by a unique identifier. A collection of related fields (data items),
treated as a unit, is called a Record; whereas a set of related records is referred
to as a File. To illustrate these concepts we design a file of students in a class.
Let there be 30 students in the class MCA-L. Each student will have its own
details. Let-us write down the particulars of one student. Say, these are as

Role Number 113

Name : Pauli

Class : MCA-I
Department : Computer Science
Telephone 12912791

Here Role Number, Name, Class, Department, Telephone are the names of data
items or field identifiers. Collection of these five fields forms a Record. A record
may be assigned a name. Let us call this record by the name STD-REC. Ifs
organization may appear as '

RECORD DATA TYPES 219

Roll Number Name Class Department Telephone
STD-REC —>»
———— e e —
field field field

Fig. 11.1: A record

Here 13, PAULI, MCA-I, Computer Science, 2912791 are the values of fields
or field contents. The number of characters in the value of a field defines its
length, also referred to as Field Width. Thus, width of various fields in the STD-
RECare:

Field Value Width
13 2
PAULI 5
MCA-I 5
COMPUTER b SCIENCE 16
2912791 7

The number of fields in a record defines the size of a record. In the above
example, size of the record is 5 fields and occupies a space of 2+5+5+16+7 =
35 characters. Size of a record may be fixed—called Fixed Records or variable-
Teferred to as Variable Records. The arrangement of fields in a record
defines its Format. Every record has a particular format. In our example,
the format of STD-REC has been defined by Fig. 11.1. The record may consist
of any number of fields, minimum being one field.

There is one record for each student. There are 30 students in the class, so
there will be 30 records. Let us call these records by the names STD-REC-1,
STD-REC-2, STD-REC-30. We know that a collection of related
records forms a File. Thus, the records of 30 students constitute a file. In other
words, we say that the file of students of MCA-I class has 30 records. Similarly,
we can define files for MCA-II class. Let us call the student file of MCA-I class
as MCA-I-FILE. In practice, we come across files of several kinds such as
inventory file (contains inventory records for items in stock), hospital patient file
(contains records of patients in a hospital), sale-transaction file, payroll file, and
so on. In fact, each file refers to a set of related records of that particular
discipline/area. _)

In Pascal, there is generally one record format for any particular file; however,
different files can have different record formats. Record format is decided by
the specific application as to how many and how the fields in a record are going
to be included and organized. Files may consist of fixed length or variable length
records. With fixed length records, there is need to specify the maximum space
for storing data at the start whereas with the variable length length records, only
the required space nceded by data is specified at the start and not the
maximum.(?). - -

220 PASCAL PROGRAMMING FUNDAMENTALS

A file is a collection of related records. In other words, records constitute a
file or are the components of a file. (A record may consist of a single field even.
In that case, components of the file will be fields). All components of a file must
be of the same type. Records (components) are organized serially in a file. An
illustration is

STD-REC-1 STD-REC-2 STD-REG3 ocecnon--- STD-REC-30

--------- & MCA-I-FILE

Records in a file may be reached (more appropriately accessed) either
sequentially or randomly. Files which allow only sequential access are the
Sequential files whereas those which permit both sequential and random access
to its records are known as Random or Direct access files. Files and records play
an important role in business data processing applications as it is very
convenient to manipulate and process data organized in records and files. All
input/output operations are performed using records/files between user
programs and the peripheral devices. The data in the form of files can be easily
retrieved, updated, deleted or sorted.

Pascal offers facilities to define record and file data types. Both of these are
structured data types. In this chapter, we shall study the record data types. their
usage and applications and defer the presentation of file'data types to the next
chapter.

11.2 Record Data Types
We have seen that a record consists of fields. The fields may be of the same or

different types, that is, may be numeric or non-numeric. The type of a field may
be declared as usual. The record type is defined as follows :

type
record-type-identifier = record
f| H f| o

bt

where

record-type-identifier the user-defined type name,
1 field identifiers

RECORD DATA TYPES 221

Bybyesiesnnnss indicate the type of the fields ; may be standard,
enumerated, subrange, arrays or records

Let us refer to the STD-REC-1 defined in Section 11.1. In this record,
fields Name and Telephone are numeric (integer type) while ail others are
non-numeric. In fact, we have taken them to be of character type. A record
type consisting of these fields may be defined as

type

STDREC = record
ROLLNUMBER :integer;
NAME : packed array (1 .. 15] of char;
CLASS : packed array [1..5] of char;
DEPARTMENT :packed array [1..15] of char;
TELPHONE integer

end;

Here identifier STDREC defines the record-type. The type of each field
has also been defined. Fields of identical type can also be declared in a
single declaration. The above record type may also be specified as

type
STDREC = record
ROLLNUMBER, TELEPHONE : integer;
NAME, DEPARTMENT : packed array [1..15] of char ;
CLASS : packed array [1..5] of char;
end;

Another example of defining the record type is

type
DATEOFBIRTH= record
DAY:1..30;
MONTH:1..12;
YEAR :integer
end;

Here the identifier, DATEOFBIRTH, defines record type while DATE,
MONTH, YEAR are the fields. The fields DATE and MONTH are of subrange
type and the field YEAR is of type integer.

The record variables may be defined in the usual way as

var

Vi W, : record-type-identifier

where v, ,..... are variable identifiers.
Again refer to our example of STDREC. The identifier STDREC defines a

222 PASCAL PROGRAMMING FUNDAMENTALS

type of a record. Suppose we wish to define variables STDREC1, STDREC2,
STDRECS3 of this type. It can.be done as

var
STDREC1, STDREC?2, STDREC3 : STDREC

Next, say we want to declare record variables TODAY and TOMORROW of
type DATEOFBIRTH. This may be done as

var
TODAY, TOMORROW : DATEOFBIRTH

The fields of the variable TODAY are

€— TODAY

DAY MONTH YEAR

Similarly, fields of record variable TOMORROW are
TOMORROW

DAY MONTH YEAR

Another example is
type
EMPREC = record

NAME : packed array [1 .. 25] of char ;
DEPTT : packed array [1..10] of char;
SALARY :real;
DUTYDAY : (L(ON, TUES, WED, THRS, FRI)
end;
var
NAMEX, NAMEY, NAMEZ : EMPREC

Here variables NAMEX, NAMEY, NAMEZ are the record variables of type
EMPREC. The fields of the records are NAME, DEPTT, SALARY,
DUTYDAY, with the types indicated.

NAMEX, NAMEY, NAMEZ have identical record structures with four fields
as their components.

Record variables may be defined in a variable declaration directly as well. An
example is

224 PASCAL PROGRAMMING FUNDAMENTALS
if (ADDRESS - COLONY = ‘VAISHALT then
ADDRESS + LOCALITY = ‘PITAMPURA")

else
ADDRESS - LOCALITY = ‘SHALIMAR BAGH’;

writeln (ADDRESS + COLONY, ADDRESS + LOCALITY);
11.4 Hierarchical Records

The field(s) of a record may be another record(s), whose field (s) may be
record(s) further, and so on. This may be indicated as

type
record-type-identifier = record
fittys
f, = record
fthys
Sore i b
foa ¢ record
AR
f_}z Chas

end
end;
fih;

end;

where ¢'s indicate type and fs denote field identifiers. Here f, f2, f5,« are
fields of record, specified by record-type-identifier, in which f, is a record.
Similaﬂy. f;[, fn, fz; are the fields of record fz. Further, fzj is also record whose
fields are f;, f;;, and so on.

The record variables of record-type-identifier can be defined in the usual way as :

RECORD DATA TYPES 225
These concepts are illustrated by the following examples.
Suppose, details of a student in a class are ;
Name

__——Hostel

Address =
T —————Room Number

Class

Date
Enrolment date { onth
-Year

Diagramatically, we can represent the structure of these details as :

Name Address Class Enrolmentdate
Room
Hostel Numt Day Month Year

This is a Record. Let us name it STUDENTREC. Name, Address, Class and
Enrolementdate are the fields of STUDENTREC. Fields Address and
Enrolmentdate are records further. A Pascal description of the STUDENTREC

may be prepared as :

type
STUDENTREC = record
NAME : packed array [1..20] ofchar;
ADDRESS : record
ROOMNO : integer ;
HOSTEL : packed array |1 .. 15] of char
end ;
CLASS : (LILULIV,V);
ENROLMENTDATE = record
DATE :1..20;
MONTH:1..12;
YEAR : integer
end
end;

Further, weé can define record variables of type STUDENTREC as :
STUDENT1, STUDENT?2, STUDENT3: STUDENTREC ;

Here STUDENTI, STUDENT2, STUDENT3 arc record variables of type
STUDENTREC., The component fields of these variables are :

226 PASCAL PROGRAMMING FUNDAMENTALS

NAME

ADDRESS (a record)

CLASS

ENROLMENTDATE (a record)

Records, as defined above, are referred to as Hierarchical records. Remember
in hierarchical records, the fields themselves may be records. This is also
referred to as Nesting of Records and is quite useful to define new data
structures.

Fields of hicrarchical records can be accessed in the same way as discussed
earlier by the use of period. Suppose, we wish to refer to the field ROOMNO of
record ADDRESS of record variable STUDENT1. This can be done as

STUDENT1 . ADDRESS . ROOMNO

Similarly, the field MONTH of record ENROLMENTDATE of record
variable STUDENT2 may be accessed as

STUDENT2 - ENROLMENTDATE + MONTH

Same procedure is adopted for other component fields.
Example 11.1

Develop a program which can perform the arithmetic operations—addition,
substraction, multiplication and division—with two complex numbers.

Let A = a,+ib, and B = a,+ib, be two complex numbers. a, and a, are the
real parts while b, and b, are the imaginary parts. The symbol i = J-1. The
arithmetic operations for complex numbers are defined as :

A + B=a +ib, +a, +ib,
=(a, +a) +i(b, + b,)
A-B=(a,—a,) +i(b,—b,)
AXB= (a, +ib)(a, + ib;)
=(a,a,—b;by) +ifa; by + by ay)
a; + lbz
_ &t b b, .bay,—ab,
a; + b; a: + bl

The Pascal program to implement the four complex arithmetic operations may
be as follows : .

RECORD DATA TYPES

Program 11.1

program COMPLEXOPR (input, output) ;

L3

{ program for complex arithmetic operations }
type

COMPLEX = record | record is introduced herc |

A,B :real
end ;
var
X,Y,Z: COMPLEX ;
C :real;
CH, OPERATOR : char;
begin { read the complex numbers |

227

writeln (‘Enter the complex number : first real part and then imaginary

readin (X.A, X.B);
readin (YA, Y.B);

repeat
write (‘Enter the operator?’) ;
readln (OPERATOR);
case OPERATOR of

: begin

Z.A=X.A+Y.A;
Z.B:=X.B+Y.B;

writeln (‘Sum of complex numbers’) ;
end;{ + |

begin
Z.A=X.A-Y. A}
Z.B:=X.B-Y.B;
writeln (‘Difference of complex numbers’)
end;| — |

begin
Z.A:=X.A*Y.A-X.B*Y.B;
Z.B:=X.A*Y.B+X.B*Y.A;
writeln (‘Product of complex numbers’)
end;{*}

*/" : begin

C:=Y.A*Y.A+Y.B*Y.B;
Z.A:-(X.A’Y.A+X.B'Y.B)/C:
Z.B:-(X.B‘Y.A—X.A’Y.B)/C;
writeln (‘Division of complex numbers’)

end;{/}

part),

RECORD DATA TYPES 229

var
COMPLEX1, COMPLEX2, COMPLEX3 : record
REALPART : real ;
IMAGPART : real
end;

Now COMPLEXI, COMPLEX2, COMPLEX3 are shared type record
variables; their fields are REALPART and IMAGPART. Suppose, we initialize

COMPLEX]1 « REALPART : = 13.0;
COMPLEX1 + IMAGPART :=3.0;

then an assignment statement of the type
COMPLEX2 : = COMPLEX1;
will intialize the fields of record COMPLEX2 as

COMPLEX2 . REALPART = 13.0
COMPLEX2 . IMAGPART - 3.0

" Record variables may be used as formal and actual parameters _of
subprograms, provided they are of shared type. Moreover, their usage may be as
value parameters or as variable parameters. These concepts are illustrated by
the following examples and implemented in Program 11.2,

11.6 Arrays of Records

We can define an array of records as well. This allows the creation of new data
structures. An example is

type
CLASS = record
LASTNAME : packed array |1 .. 10] of char
FIRSTNAME, MIDNAME : char ;
TEST1, TEST2, TEST3, PERCENTMARKS :real
end;
var
MUSIC : array [1..50] of CLASS ;

Here MUSIC is an array whose each clement is a record of type CLASS. The
first element of array MUSIC is MUSIC [1]. MUSIC [1] is a record with
component fields as : LASTNAME, FIRSTNAME, MIDNAME, TESTI,
TEST2, TEST3, PERCENTMARKS. We may represent this as

MUSIC [1]

LASTNAME FIRSTNAME MIDNAME TEST1 TEST2 TESTS PERCENTMARKS

|

RECORD DATA TYPES 233

writeln (‘Number of boys in arts =", A[4]) ;

writeln ;

TOTAL:=0;

forI:=1to 5 do TOTAL: =TOTAL + Y[I}. SCI.BOYNUM
A[5]:=TOTAL;

writeln (‘quberofboysinscicnce-',A[S]);

writeln ;

TOTAL:=0;

for1:=1to 5do TOTAL :=TOTAL+Y[l]. COM.BOYNUM;
A|6]:=TOTAL;

writeln (‘Number of boys in commerce =", A[6]) ;

writeln ;

TOTAL:=0;

forI:=1to 5 do TOTAL :=TOTAL+Y][l]. ARTS . GIRLNUM ;
All]:=TOTAL;

writeln (‘Number of girls in arts =", A[1]) ;

TOTAL:=0;

forl:=1to 5 do TOTAL := TOTAL + Y[I]. SCI. GIRLNUM ;
A[2]:=TOTAL;

writeln ;

writeln (‘Number of girls in science =", A[2]) ;

writeln ;

TOTAL ;=0;

for1:=1to5do TOTAL: =TOTAL + Y[I} . COM . GIRLNUM ;
Ap3]:=TOTAL ;

writeln (‘Number of girls in commerce =", A[3]) ;

writeln ;

for I:= 1 to 35 do write () ;

writeln ;

TOTAL : =0;

forI:=1 tnﬁdoTOTAL =TOTAL + A[l] ;

writeln (‘Total number of students in college =', TOTAL);
writeln ;

for 1:=1to 35 do write (") ;

writeln

end 3 {end of QUERY2}
procedure QUERY3;

{ This procedure determines the stream in which there are maximum number of
boys |
{ and the stream in which there are maximum number of girls }

var BOYMAX, GIRLMAX : integer ;

FINDMAX (4, 6, A, BOYMAX);
. FINDMAX (1, 3, A, GIRLMAX) ;
case BOYMAX of

236 PASCAL PROGRAMMING FUNDAMENTALS

If we use the with statenient, then name of the record has not to be specified
with each field. It appears only once after the keyword with.
The format of with statement is

with vdo §

where vis-the name of record type variable and S is a statement which may be
simple or compound. § is called the scope of the with statement. Pascal allows
more general form of with statement as :

with v, v, w..... L v,do §

which is equivalent to

with v, do
with 1, do
with v, do

with v, do §

Suppose records R1 and R2 use same identifier, say A, for a particular field,
and we specify the following nesting :

with R1 do

with R2 do
A=B+C;

This identifier A is the one associated with record R2. To perform any
operation on the field A of record R1, an explicit reference as R2 . A will be
required. ’
The general format is used with nested records. Its use is illustrated by more
examples in the following sections.

The use of the with statement reduces the length of the program code and
increases its readability. It may also produce an efficient program code.

11.8 Variant Records

In many applications, it may be desired to introduce different field(s) in a
record depending on some values/conditions, and so its (their) type must be
defined accordingly. To illustrate this, let us design a record of a person when
the following information is available:

Name

Address (house number, name of colony, city, pincode)
Sex (male, female)

Age (20..60)

Job (emp, unemp, unknown)

RECORD DATA TYPES 237

Call this record by the name EMPREC. The Pascal record may be defined as:
var
EMPREC = record

NAME : packed array|1 .. 25| of char ;
ADDRESS : record
HOUSENUMB:: integer ;
COLONY, CITY : packed array [1 ..25] of char;
PINCODE : integer

end;

SEX:(MALE, FEMALE);

AGE :(20..60)

JOB : (EMP, UNEMP, UNKNOWN)

end;

Now, suppose if field JOB is EMP, then we wish to know the name of the
employer, but if JOB is UNEMP, then we may like to know since when has the
person been unemployed. However, if field JOB is UNKNOWN, then the record
may be closed. In order to build this requirement into a record, use of case
statement is made in place of field JOB as :

case JOB :(EMP, UNEMP, UNKNOWN) of
EMP: (EMPLOYER : packed array [1 .. 20| of char ;
UNEMP : (LASTEMP : array |1.. 10] of char) ;
UNKNOWN : (CLOSE : packed array [1 . 5] of char)
end;
Thus, the complete record EMPREC appears as
var
EMPREC = record
|'— NAME : packed array [1 .. 25] of char;
ADDRESS : record
HOUSENUMBER : integer ;
Invariant fields COLONY, CITY : packed array [1..25] of char;
PINCODE : integer
end;
SEX:(MALE,FEMALE);
— AGE:(20..60);

[— case JOB: (EMP, UNEMP. UNKNOWN) of
EMP : (EMPLOYER : packed array [1.. 20L.:‘char);
Variantfield | UNEMP:(LASTEMP :array [1..10] of ¢
Unl:’IKNOWN :(CLOSE : packed array [1. S]ufchm')
e] M

See that the record has two parts: fixed (invariant) and variant. The variant part
depends on the value of the field such as field JOB in the above example. If the
value of field JOB is EMP, then the record has the field named EMPLOYER of
type packed array; if the value of the field JOB is UNEMP, then the record has a

238 PASCAL PROGRAMMING FUNDAMENTALS

field called LASTEMP, while for the case when JOB value is UNKNOWN, the
field CLOSE will exist in the record. The user must note that the type of each of
the new fields EMPLOYER, LASTEMP and CLOSE has been indicated.

The field of a record which is set up using a case statement, as given above, is
referred to as the Variant field, while the entire record is called a Variant record.
Thus, EMPREC is a Variant record.

As another example, let us design a record for a book according to the
following information:

Author

Publisher

Year of publication
Price

Status

‘We wish that the field, Status, should entail the information as:

if the book is sold, then Status is true and we should know the saleprice
and month of sale; if the book is not sold, its Status is false.

The record can be designed as
var
BOOK =record
AUTHOR, PUBLISHER: packed array [1 ..20] of char ;
Invariant fields [PRICE, YEAR : integer ;
STATUS : boolean ;

Field Status case STATUS of
has been defined | true: SALEPRICE :integer ;
as of invariant type MONTH : integer ;
false : (SOLD : boolean)
end;

Thus, when STATUS is true, two additional fields—SALEPRICE and MONTH
will exist while if STATUS is false, only one field SOLD will be there in the
record. The reader should note that new fields may be introduced into a record
during the program execution via variant part of the record depending on
certain conditions, of course.

Fields indicated in the variant part may be accessed in the usual way. If
STATUS is true, then we can reach the fields SALEPRICE and MONTH as

BOOK . SALEPRICE
BOOK . MONTH

However, when STATUS is false, then the field, SOLD is part of the record and
can be reached as BOOK. SOLD.

The field which appears with a case statement is called the Tag field. In our
above examples, JOB and STATUS are the tag fields.

RECORD DATA TYPES 239

The general format of the variant part (field) of the record appears as

case rag-field : type of
rag-value-1 : (field-list-1);
tag-value-2 : (field-list-2) ;

tag-value-n :(field-list-n) ;

where field-lisi-1, field-list-2, . . . indicate the newer fields introduced alongwith
their type. The field-list must be enclosed within parentheses. rag-value-1,
tag-value-2, . . . are the values which the tag-ficld can assume. The tag-field must
always be ordinal constants. By examining the tag-field, we are able to determine
which data fields have been used, and, hence, the structure of the record.

The use of keyword case has different syntax here than in the case statement.
There is no end associated with the present case word as the end of the record
also serves its end.

It may also be required not to indicate any field after a tag-value. In such a
case, specify the parentheses as (). Moreover, a record may consist of only a
variant part. An example is

type
VEHICLE = (SCOOTER, CAR, BUS, TRUCK, CYCLE, VAN) ;

var
CONVEYANCE =record

case LICENSE : VEHICLE of

CYCLE :(}{ empty | Variant part
SCOOTER, CAR: (CATEGORY :1..2); only

BUS, VAN, TRUCK : (WEIGHT : 100 . . 1000)

end ;

Here CONVEYANCE is a record which consists only of the variant part.

The variant part must be specified after specifying the invariant part of the
record. However, there can be only one variant field, though variants may be
nested.

We have seen that the purpose of the tag-field is to specify a value which
indicates the alternative of the variant which is in effect. Pascal allows the
optional use of the field. An example is

record
case boolean of
false : (X :real);
true : (LIMIT: 1..128)
end;

240 PASCAL PROGRAMMING FUNDAMENTALS

The type boolean is choosen as the selector of the case because it defines two
possible values which is what is required to specify the two alternatives.

In variant records, all fields of the variant part do not automatically become
component of the record. The variant specified by the case constant becomes
the part of the record. This is the Active while all others are the Inactive
variants. The values of inactive variants are not defined. It is an error to attempt
to use an inactive variant.

The total storage occupied by a record is the size of the fixed part plus its
longest variant part.

We explain this concept and the reference to tag-field of variant records by the
following example.

FIGURE = (SQUARE, RECTANGLE, TRIANGLE) ;
GEOFIGURE = record
X,Y:real; :
case FIG : FIGURE of
SQUARE : (LENGTH : real);
RECTANGLE : (LENGTH, BREAUI'H real) ;
TRIANGLE : (SIDEA, SIDEB, SIDEC : real)
end;

var FIGVAR: GEOFIGURE ;

Now FIGVAR is a record variable of type GEOFIGURE. This record
definition contains a fixed part as well as a variant part with tag-ficld FIG.

The storage allocated is for the two real variables X, Y, of the fixed part of the
record, the tag-field FIG and the three variables SIDEA, SIDEB, SIDEC of the
field TRIANGLE (the largest field) The other ficlds SQUARE and
RECTANGLE require less storage than this field. The arrangement of storage
allocation for record variable FIGVAR may appear as showin in Fig. 11.2(a)

The tag-field can also be referenced in the same way as other fields. An
example is FIGVAR . FIG. List the values that can be assigned to this variable
in the above example.

It is poss:b[c that the types of fields in the variant part of the record are

different. For instance, consider the example on Page 238 of variant record
BOOK. Now the arra.ngement of storage allocation appears as given in Fig. 11.2(b)

Pascal does not permit reading a record from input unit nor writing a record
on the output unit. Only fields of the record may be read/written provided
these operations are defined for the field. For example, we can neither read nor
write fields of an enumerated type.

11.9 Packed Records
The data constituting a record may also be stored in the computer memory in

the packed mode. This may be done by using the reserved word packed before
the word record as illustrated below :

tag field —

RECORD DATA TYPES

241

Memory Memory Memory
space space space
X X X
Y Y Y
FIG oras FIG aras FIG
LENGTH LENGTH SIDEA
BREADTH SDEB
SIDEC
FIG=SQUARE FIG=RECTANGLE FIG=TRIANGLE
(a) Record FIGVAR Memory Memory
Space Space
AUTHOR AUTHOR
PUBLISHER PUBLISHER
PRICE PRICE
YEAR YEAR
tag field — STATUS STATUS
SALE PRICE SOLD
MONTH
(®) Record BOOK | STATUS=true STATUS=false

Fig. 11.2: Storage allocation for (a) record variable FIGVAR, and (b) record BOOK'

242 PASCAL PROGRAMMING FUNDAMENTALS

record-type ideniifier = packed record
fiths

The system will automatically allot space to the various fields f;, f,, in
the packed mode. Other concepts, as discussed with packed arrays, are
applicable to packed records as well.

11.10 Differences between Arrays and Records

Arrays and records are structured data types. Both refer to a collection of
elements. However, there are certain differences between them and are given
below.

*all components (elements) of an array are of identical type, while
components (ficlds) of a record may be of identical or different types.

* components of an array are referenced by indices which may be constants,
variables or expressions, whereas the fields of a record are referenced by
names as:

record-variable-name . field-name

* a record may be of variant type, while there is no such concept associated
with arrays.

* arrays may be of 1-, 2-,3-,..... dimensions whereas this is not applicable
to records.

* the with statement is defined for record data structure, while there is no
such statement for array data structure,

After having studied records structure, next we go over to the study of file
data types.

Exercises 11

1.1, Tick the correct answers in the following sentences.

{a) Files are/are not useful for data processing.

(b) A record consists of fields which may/maynot be of differem types.

() Scalar fields of a record can/cannot be assigned values by an input statement.
{d) Shared type records are of same/dissimilar type.

(e) Actual parameters of a subprogram may/may not be of record type.

(f) Fields of a record may be simple/structure/both type of variables.

(g) The with statement can/cannot be followed by a compound statement.

RECORD DATA TYPES 245

11.12. Bring out the significance and role of a tag-field in a variant record. Can this field be
omitted? Suppose it is so, what difficulties do you envisage?

11.13. Compare and contrast the structured data type arrays and records. Give examples in support .
of your answer.

11.14, Prepare a record structure for a triangle which consists of the lollowing fields

SIDEA, SIDEB, SIDEC, ANGLE

Call this record TRIRECORD. Using this record and for the given data values of the sides
and angles, develop a program to find the type of the triangle.

1L15. Using the record TRIRECORD, write a procedure lhl.l accepts as input the record variable
and returns the type of the triangle. Then prep I program and test it for a
sample data.

1L.16. Develop a program, using records, that converts cartesian co-ordinates to polar co-ordinates
and vice versa,

11.17. Define two arrays A and B of compatible records. Design a program which deletes a record
from array A and appends it to arruy B,

Chapter 12

File Types

We learnt about files in the previous chapter. Pascal supports only sequential
files. The components in such files are arranged in a serial order, one after
another. Programs communicate with each other and outside environment via
files. You will recall that in the statement, program, arguments are as input,
output or names of some other files. These serve to establish a link between the
program and external media. input and output arc the standard file names. We
can define our own files as well.

Pascal treats the incoming data to a program from input devices (terminals,
tapes, disks, etc.) or outgoing data from a program to the output devices, as files.
All these devices are different, but Pascal deals with them as of the same kind of
logical devices. This means that though the input/output devices are physically
dissimilar, but no distinction need be made in the read/write statements in a
program. The Pascal system will automatically establish contact with the
appropriate device as indicated by the system commands. Moreover, you know
that data are represented differently on different devices. For instance, data on
cards, terminals or tapes, etc, have different physical or external
representations. When data are read by the Pascal system, they are transformed
into the internal, also called Logical representation. Similarly, data in the
internal form are changed to the external form, when results are to be output, by
the Pascal system. Such conversions are affected automatically by the system
and the user is not concerned with this.

Data resident on external devices form the external files, while those inside
the computer memory, constitute internal files. Names can be assigned to the
files and referenced. Access to components of external files is rather slow as
they are stored externally, but access to internal files is extremely fast (f).

A file, that is created outside the Pascal program, can be passed on into the
program by specifying the name of the file as a parameter with the program
statement. Similarly, a file which is created in a program (internal file), can be
passed on to the outside environment by indicating its name in the parameter
list of statement program. Such files are called Scratch or Temporary files and
are automatically deleted when the program is terminated or completed.

We can define file type and variables just like those for arrays/records. There
are available standard functions/procedures that operate on files. We propose to
discuss all these and the use of files in programs in this chapter.

12.1 File Data Type
A file consists of a sequence of components which must be of uniform type. A

FILE TYPES 247

file's type is determined by the type of its components, The components form a
base of a file. The type of base is always declared. File data type may be defined
as:

type
file-type-identifier = file of base-type

where base-type indicates the type of the components which constitute the file.
The file may consist of components of any allowed type, that is, integer, real,
char, boolean, enumerated, subrange, record, arrays, and sets except another file
type.

Variables of file type can be created by the declaration

var
Vs Poyennns : file-type-identifier
where v, v are the variable identifiers of file type. Examples of defining

file types and file variables are

NUMBERFILE = file of real ;
INTEGERFILE = file of integer ;
LOGICALFILE = file of boolean ;

var
ALPHA,BETA : NUMBERFILE ;
GAMMA : INTEGERFILE ;
DELTA : LOGICALFILE ;

here ALPHA, BETA are defined as file variables of type NUMBERFILE and
the components of file are all of real type. Similarly, GAMMA is a file variable
of type INTEGERFILE and the clements of the file are of type integer. Here
DELTA is a file variable of type LOGICALFILE with elements of boolean

pe.
Components of a file can be arrays and records. This is illustrated by the
following example.

type
CLASSFILE = file of record
LASTNAME : packed array |1..10] of char ;
INITIALS, GRADE : char;
TEST1, TEST2, TEST3, MEAN :real ;
end;
DATAFILE = file of array [1.. 4] of integer ;

var
SECTIONI1, SECTION2, SECTION3 : CLASSFILE ;
SCORE :DATAFILE ;

248 PASCAL PROGRAMMING FUNDAMENTALS

Here, variables SECTION1, SECTION2, SECTION3, are file variables of type
CLASSFILE and their components are records with the fields LASTNAME,
INITIALS, GRADE, TEST1, TESTZ2, TEST3, MEAN, Similarly, SCORE is a
file variable of type DATAFILE with the components being intcger arrays, each
having 4 clements. Schematically we can show the SCORE file as

SCORE file

EEEEEEEEEEEEEEER

mee | N L

The number of components in a file can be varied, that is, a file can be of
variable length. Components may be added or deleted. End of a file is indicated
by the end of file marker. Further examples of file declarations are :

type
FLOWERFILE =file of (ROSE, LILY, NARGIS, DAISY,
PANSY, PRIMROSE) ;
VEHICLEFILE = file of (CYCLE, SCOOTER, CAR, BUS, TRUCK)
SETFILE =file of setof ['A’.."Z'];

PARTS =record

PARTNUM : integer ;
PARTDESC : packed array [1..10] of char;
PARTSIZE : char

end ;
PARTFILE = file of PARTS ;
File variables of the above type may be created as :
Yar
WHITE, RED : FLOWERFILE ; { file of enumerated type
CONVEYANCE : VEHICLEFILE ;- components |
BOOK : SETFILE ; ~ file of sets
MOTOPARTS : PARTFILE ; - file of records

A file of files is not allowed. Moreover, the specification of files as elements of
other structured data types is also implementation dependent. This may be
ascertained by reference to the installation Pascal manual.

12.2 File Buffer Variable

Let us indicate the components of a file as comp-1, comp-2, comp-3,
comp-n. We can represent a file consisting of these components as

250 PASCAL PROGRAMMING FUNDAMENTALS

Y! =isareal variable.

Pt =is an array of 4 elements : its individual elements are P1 [1], P1[2],
P1[3], Pt[4] ; each of the elements is of integer type.

Qt =is a record with fields PARTNUM, PARTDESC, PARTSIZE

The fields of variable Qt can be referred to as

Qt-PARTNUM |type integer}
Qt - PARTDESC [1], Qt - PARTDESC [2],.... Qt - PARTDESC [10}]{ type char
Qt - PARTSIZE { type char }

Whenenver, we perform a read/write operation, we actually manipulate the
file buffer variable. Similarly, the buffer variables may be used in expressions
and statements exactly in the same manner, as other variables, according to the
allowed rules of Pascal language.

12.3 Communication with Files

The buffer indicator always points to a particular component of a file. It can
move from one component to the other. This movement is always forward,
never in the back direction, except in the case where buffer is to be set to the
first component of the file. All communications between the program and the
file are done through the file buffer using the following standard functions/
procedures provided by Pascal.

eof {endoffile}
rewrite
reset

get
put

These functions/procedures help to read/write and access any component of
a file. Their meaning and use are explained below :

(a) The eof function
This is a standard Pascal function and is specified as

eof (file-identifier)

Here file-identifier indicates the user-defined file name.
An example of use is

eof (F)

where F is the name of file,
The value of this function is true if the buffer pointer has moved beyond the
end of file, otherwise, false. Schematically, we can show the action of eof (F) as

FILE TYPES 253

variable and move the buffer indicator to the next component of the file, It is
specified as

get (filé-identifer)

An example is

get (NUMFILE)
suppose we wish to read the current component of NUMFILE in X and have
the buffer pointer advance to the next component, we can do this using the
following code :

yar

NUMFILE : file of integer ;

X : integer ;

begin

X:=NUMFILE t;

get (NUMFILE) ; { buffer indicator goes to the next element of file

‘NUMFILE}

end ;

This is precisely what the read statement does. Its action is explained further by
the following illustration.
Now, let us suppose, we wish to read component X from file variable named
NUMEFILE. This is specified as
read (NUMFILE, X)
1 t
file-name component to be read

After an element has been read, the indicator moves to the next component of
the file. This is illustrated below.

Before reading
......... - Fm
L.
indicator
Afer reading
e s 4~ NUMFILE
~
indicator moves

10 next component

254 PASCAL PROGRAMMING FUNDAMENTALS

Remember, whenever any data element is to be read ffom a file, the file must be
prepared by the reset command. An exception to this !'ule. is the _standa:d file
input. The system automatically carries out the operation reset (input) at the
start of the program when input is specified as 2 parameter In the program
statement. The statement read (file-name, componens) fails if the indicator is
already at the end of the file.

(e) The put procedure

The put procedure is used to append the current content of the buffer
variable to the end of the file. It is specified as

put (file-identifier)
An example is

put (NUMFILE)
With this, the following operations get specified:

» the buffer variable NUMFILE ! points to an element which gets added as
the last element of the file NUMFILE.
e data can be written into this component.

For instance, if specify
NUMFILE t:=X; put (NUMFILE);

then value of variable X is written as the last element of file NUMFILE.

The above objective may also be achieved with a write statement as explained
below:

Suppose, we wish to write a component X in a file MASTERFILE. It may be
specified as
write (MASTERFILE, X)
t t
filc-name component
This statement appends the component X to the file named MASTERFILE and

moves the writing position of the indicator to the new end-of-file as indicated
below schematically.

MASTERFILE before writing o
MASTERFILE after writing Wriing position
Component
- mm A - - % | Xhasbeen
appended
-~
new writing

FILE TYPES 255

The following example illustrates the use of get and put procedures.
Suppose we read data from input file and go on writing on output file, till the
colon (:) character is encountered. The code for this may be

while input t < > " do

n
output ! :=input 1;
put (output)
get (input)
end;

As another example, consider a file of integer numbers. Name it as
INTEGERFILE. Compute the product of all the components. See that the
product does not exceed maxint. When the end of the file is reached, print the
answer. A program for this may be developed as follows :

program PRODUCT (INTEGERFILE, output) ;
var
INTEGERFILE : file of integer ;
J,PROD :integer ;

reset (INTEGERFILE) ;
PROD:=1;
while not (eof INTEGERFILE)) and maxint > PROD do

.

n
read (INTEGERFILE, J) ;
PROD :=PROD*J
end ;
writeln (‘PRODUCT =", PROD)
end.

The following points may be kept in mind about files:

* File is a structured data type.

* Files may be defined as internal or external to the main memory.

* External files can exist on secondary storage, independent of any program.

* External files can hold much larger volume of data than any other data

e.

* All files that exist independently of the program, but are to be used in the
program, must be listed as program parameters in the statement program,

* Internal files are created and used within the program. Their names are not
listed in the program parameters if they are not to communicate with
environment. These are the Scratch or Temporary files. They are deleted
as soon as the program terminates.

Remember input and output are predefined files in Pascal. They must never
be declared in the program. These are automatically included in the program
when specified as parameters with statement program.

256 PASCAL PROGRAMMING FUNDAMENTALS

12.4 Files as Parameters in Subprograms

File variabels can be used as actual arguments of standard and user-defined
subprograms. However, when used with subprograms, they must be declared as
var parameters in the formal argument list. We illustrate this by an example.

Let there be four files, each containing integer components. We wish to
compute the sum of all the elements in each file.

* Define four files containing integer elements.
* Introduce a procedure which computes the sum of the elements
* Invoke this procedure to compute the sum for every file.

The program may be as follows:
program SUM (AFILE, BFILE, CFILE, DFILE, output) ;
type

INTEGERFILE = file of integer ;
var
AFILE, BFILE, CFILE, DFILE : INTEGERFILE ;
procedure COMPONENTSUM (var XFILE : INTEGERFILE) :
var
J,SUM :integer ;

reset (XFILE) ; { every file must be reset |
SUM:=0;
while not eof (XFILE) do

begin
read (XFILE,J);
SUM :=SUM+J
end;
writeln (‘SUM =', SUM)
end;

{ Assume that the files have already integer data elements'}
COMPONENTSUM (AFILE) ;
COMPONENTSUM (BFILE) ;
COMPONENTSUM (CFILE) ;
COMPONENTSUM (DFILE)
end.

Pascal does not allow any operation on the file variables, even assignment.
There are no file constants. Moreover, files cannot be used as value parameters
even (?).

FILE TYPES 257

Develop a program to do the following:

@

(i)
(i)
W)

prepare a master file;

separate the numeric and non-numeric characters and store themin two
separate files;

sort the non-numeric characters alphabetically,

obtain the frequency of occurrence of different non-numeric characters

Program 12.1

program FILEHANDLING (input, F, CHARFILE, NUMFILE, output) ;
{ Program to separate and store integer numbers and characters, present in
a master file, in two other files NUMFILE and CHARFILE. Then
alphabetize the characters and find the frequency of occurrence of each
character }

PA =array [1..50] of char;
ORIGFILE = file of char ;

CHA = array [1 .. 50] of char ;
INTFILE = file of integer ;

var
FILENAME : string | system command }
F : ORIGFILE ;{ stores input records }
CHARFILE : ORIGFILE ; | stores characters present in master file }
NUMEFILE : ORIGFILE ; | Stores integer numbers present in master
file as characters }
TEMP : char;
CH :CHA ;
A,Z,M : char;
I, J, T, INTEMP : integer;
IFILE : INTFILE; { stores integers corresponding to integer
characters present in master file }

procedure SORTLIST (var DATA : CHA ; N :integer) ;
{ Procedure to sort the characters present in a file }

var
I, J :integer ; { Loop indices }
MIN : char ;
begin
for I:=1 to (N—1) do
begin .
for J:=1to (N—1)do

if (DATAJJ] > DATA [J+1]) then

258 PASCAL PROGRAMMING FUNDAMENTALS
in

MIN:=DATA [J] ;

DATA [J]:=DATA [J+1];

DATA [J+1]:=MIN

end
end
end
end ; { of procedure SOR’I‘ITIST }

procedure FREQUENCY (DATA : CHA ; M :integer) ;
{ Procedure to calculate the frequency }
var
I,J :integer ; { loop indices }
FREQ : integer ; { stores frequency of occurrence }
begin
for I'=1toMdo
begin
FREQ:=1;
if DATA[l] <> “* then

n
for J:=(I+1) to M do
n
if DATA[J] <> “ then

if (DATA [I[] =DATA[]]) then
begin

FREQ:=FREQ+1;
DATA [J]:=*
end
end

end .
writeln (DATA[I: 10, FREQ:19)
e
end

end ; { of procedure FREQUENCY |

procedure WRITEFILE (var OUTDATA : ORIGFILE) ;

{ Procedure to write the contents of a file |
yar

I:integer ;
begin

while not (eof (OUTDATA)) do

n
TEMP:=0QUTDATAt;

FILE TYPES 259

write (TEMP,) ;
get (OUTDATA)
end ; writéln
end ; { of procedure WRITEFILE }

{ Main program begins now }
begin

{ creation of master file }

FILENAME : = ‘MASTERFILE’;

assign (F, FILENAME); { this command is not a Pascal statement but
system command }

rewrite (F);

writeln (‘Key in the data . . . characters spaced by blank . . .To end, type

-);
read (TEMP);
while TEMP <> “*“"do

Ft :=TEMP;

put (F);
read (TEMP)

{ Creation of NUMFILE |

FILENAME : = ‘NFILE’; _
assign (NUMFILE, FILENAME) ; { system command }
FILENAME : = ‘FILEINT ;
assign (IFILE, FILENAME) ; { system command }
J :==0;
writeln (‘Give lower and upper limits of the char sct) ;
read (A);readln (Z);
rewrite (IFILE);
rewrite (NUMFILE);
while not (eof (F)) do
begin
TEMP :=F1; _
if (ord (TEMP) > = ord (‘A’)and (ord (TEMP) <=ord (Z")) then
begin
Ti=J41;
CHYJ|:= TEMP
end
else

260 PASCAL PROGRAMMING FUNDAMENTALS

begin
NUMFILE t i=TEMP;
put (NUMFILE) ;
INTEMP := ord (TEMP) ;
IFILE t ;= INTEMP:
put (IFILE)
end;
get (F)
end ;
Ta=1J;
{ Invoke the procedure SORTLIST }
SORTLIST(CH,T);
{

{ Creation of CHARFILE |}
FILENAME : = ‘CHILE’;
(CHARFILE, FILENAME);
rewrite (CHARFILE);
for I:=1toTdo
begin
TEMP := CH[I| ;
CHARFILE t :=TEMP ;

writeln (‘The master ﬁle is");

WRITEFILE (F) ; writeln ;

writeln (‘Digits present in the master file are’) ;

WRITEFILE (NUMFILE); writeln ;

writeln' (‘Characters (alphabetized) present in the master file are’) ;
WRITEFILE (CHARFILE) ; writeln ;

writeln (‘Frequency of occurrence of different characters’) ;
writeln (‘\CHARACTER FREQUEN ;
FREQUENCY (CH, T) N

end.

Sample inputioutput

 Keyin the data . .. characters spaced by blank ... To end, type *

ASG456CA37TKDS5SG2C9A*
Give lower and upper limits of the character set
AZ

The master file is
ASG456CA37KDS5SSG2C9A™"
Digits present in the master file are
45637529

FILE TYPES 261

Characters (alphabetized) in the master file are

AAACCDGGKSS
Frequency of occurrence of different characters
CHARACTER FREQUENCY
A 3
C 2
D 1
G 2
K 1
s 2
12.5 Text Files

A text file consists of lines of characters. Each line is terminated by a end-of-
line (e.0.l) marker. Schematically, we can show this as.

CCrCiChenniannsnny Cal a2
R T R o Ga2

ClCICiCanenrnnnrsd Cas

‘Here Cly €2y Clyevnnn represent any Pascal character. The lines constituting the
files can be of any length. We see that the text file is a character file. Such a file
can be declared as

type
file-type-identifier = file of char

In place of this, Pascal allows the declarations of a character file as

type .
fle-ype-identifier = text :

where text is a keyword and indicates ‘file of char’. Examples of declaring text
files are '

type
AUTHORFILE = text ;
NAMEFILE = text ;
File variables of these type may be defined as
var

BOOK : AUTHORFILE ;
CLASS :NAMEFILE ;

262 PASCAL PROGRAMMING FUNDAMENTALS

or as
var

BOOK, CLASS : text ;

input and output are the standard text files where lines are manipulated. In
fact, these are

var
input, output ; text;

These two standard file variables (or simply files) refer to the two standard input
and output media of a computer system, say, for example, a terminal, VDU,
printer, etc., The file input can be examined only so the file procedure get is
applicable to it. Similarly, the file output can be generated only, that is why, file
procedure put is used with it.

We use read/write statements in every program. These, in fact, are the
abbreviations introduced for input and output of data :

read (v) = v=inputt;
get (input) ;
write (¢) = outputt:=¢e;
put (output) ;
where vis a variable and e is an expression. Similarly, eof indicates eof (input).
As described above, text files are divided into lines. The statements writeln,

readln, eoln can be used to control the line-by-line arrangement of input and
output files. More explicitly, the function of these statements is:

writeln = terminates the current line of the output textfile and writes the
end-of-line mark.

readln = e skips to the start of the next line of the input textile
® the first character of the next line is obtained from input 1

eoln =gives the value true when the end of the current line of the
textfile input has been reached.

The reader should understand carefully the above significance of the writeln,
readin and eoln statements which have been used in our programs.

You will observe that text file, though a character file, is distinct from the file
of char, in'the following respects:

* A textfile is divided into lines, each terminated by a special end-of-line
marker. These markers are written only with the writeln procedure.

* file declared as file of character is not divided into lines and there are no
end-of-line markers,

® end-of-line: marker is a special character which cannot be inserted into the
file in the same way as other characters, but is done automatically by the
system.

® read, readln, write and writeln procedures are used with the text files,
whereas get and put procedures are employed with the non-text files.

FILE TYPES - 263

Exercises 12

12.1. Complete the foll

-3

(1) Pascal supports only..........files.

(b) Pascal progr icate with the outside envi Vid,

(c) External files are always residenton.......... devices.

(d) A Pascal file consists of whose type must be defined.

(e) The declaration of a file variable avtomatically introduces a called file

() The value of a file component.can be read/written with the helpofa..........

(2) The movement of the buffer indicator is alwaysinthe.......... direction.

(h) The input and outputare.......... files in Pascal.

(i) File variables can be used as actual arguments in subprograms, provided thn:'y are
declaredas.......... parametersinthe..........argument list.

(i) A file is generated by writing components to it using the standard procedures

{k) The componenl.s of a file can be read by a program using the standard procedures . ..

12.2. Tick the correct answer in the following:

(a) File variables can/cannot be used in assignment statements.
(b) Files can/cannot be specified as value parameters.
(c) A buffer is always/never associated with a file.
(d). During the read/write operations, it is the file variable/buffer which is mnn.pulam!.
() An entire file can/cannot be ferred to a subprogam as a var p
(f) A text file is comprised of single/multiple lines of character-type data.
(g) File components may/maynot be of structured type.
(h) The buffer variables have the same/different name as the file.
(i) A file of files is allowed/disallowed.
(i) Data items comprising the components of a file are of the same/different type as the
buffer variable.

12.3. Point out mistakes, if any, in the following :

type
DATA = packed file of real ;
CHAIN = file of array |1.. 10} char;
TELEFILE = file of

NAME : file of char ;

ADDR : packed array |1..25] of char ;
TELENUM : integer

end ;

12.4. Indicate completely the buffer variables associated with the following file variables :

var
==X : file of integer ;
Y : file of array |1 .. 5] of char;
Z : file of
record
REALPART : real;
IMAGPART : real
end -

264 PASCAL PROGRAMMING FUNDAMENTALS

12.5 State the rules for defining file-type and file-type variable. Give examples.

12.6. Explain the concept of buffer variable. Iil your by ples and di the
use of such variables for communication with files.

12.7. Give the standard Pascal functions/procedures that can be used with files. Explain their
formats and use. '

12.8. What is Text file? How is it defined? Give examples.

llﬂ.Exphhﬂﬁdﬁmhmmmwﬂumwmmﬁhbwt
and output.

12.10. Describe the purpose and use of the procedures readin, writeln and eoln.
12.1 l.degunlthe-l_iiﬂ'uenmbem

(i) Text file and file of char
(i) get and read procedures
(iii) put and write procedures
(iv) Internal file and external file
(v) eofand eoln

12.12. Explain, in words, the meaning of the following declarations:
(a)

Yar
OBSERVATIONS : file of real ;

(b) var
NAME, ADDRESS : text ;

(c) type
SAVINGSACCOUNT = 1..20000;
CURRENTACCOUNT = 20001 .. 25000 ;

var
SAVACTFILE : file of SAVINGSACCOUNT;
CURACTFILE : file of CURRENTACCOUNT;

(d) type
ROWS = array | 1..M | of integer ;
MAT = file of ROWS ;

var
TWODIM : MAT ;

Can you say that TWODIM is a matrix? If yes, what is its size?

(¢) type
SIZE - armay 1.
NUM -1..99999;
PERSON = record
NAME, ADDR :SIZE ;
TELEPHONE :NUM
end ;

. 25) of char ;

var
PERSONFILE : file of PERSON ;

() X:array [1..100] of real ;
Y : file of real ;)

FILE TYPES 265

(g) begin
while not eoln (file-name) do
get (file-name) ;
get (file-name)
(h) begin
write (file-name, variable-1, variable-2,);
write (file-name)
end;

12.13. Look at the following declarations :

CLASSTYPE = (MA, MSC, MTECH, MPHIL, PHD);

STDRECTYPE = record
NAME :pck.dm'qp“l[llold-;
CLASS :CLASSTYPE
YEAR 'p.ckulmny[l . 3] of char ;
ENROLNO : integer
end ;

STDFILETYPE = file of STORECTYPE ;

var
CLASSX :STDFILETYPE ;
Prepare a schematic representation of the complex file CLASSX.

12.14, Assume that a file contains negative and positive integers. Develop a program which does
the following (a) counis the number of negative and positive integers, (b) prepares two files,
one for each negative and positive integers arranged in descending sequence using the
merge-sort algorithm.

12.15. Given two sets of real data obtained from an experiment. Develop a program to do the
following:

(a) (i) Prepare two files MFILE and NFILE.
(ii) Sort the files in ascending sequence and then merge them in ascending order into a
file PFILE.
(iii) Print the output as ;
NFILE : .
{b) Next, prepare another program that reads data in arrays M and N. Arrange the
data in ascending sequence and merge the arrays into another ordered array P.
Prepare the outpul as
MARRAY @

NARRAY : .
PARRAY :

Compare and the program designed using files and arrays.
12.16. Given a book record of the following type :

type
BOOK = record
TITLE : packed array |1 .. 100] of char ;

FILE TYPES 267

12.18. Prepare a Pascal file for the following text :

Sometimes, people argue that hardwork and honesty do not always pay. This is wrong. It is
only horiesty and hardwork that bring pleasures into life. Can we evaluate pleasures?

Develp a program to transfer this text to another file line-by-line.

Chapter 13

Set Operations and Data Type

We have studied the structured data type arrays, records, and files. They
consist of a group of components. Each component can be accessed and
manipulated, but the entire array, record or file cannot be processed by a single
operation. Operators, which operate on the complete arrays, records or files, are
not defined in Pascal. However, Pascal defines another data type—called
Set—which is a structured data type and consists of a collection of components.
The set can be manipulated either as a complete unit or as a subunit. The
subunit may consist of one or more elements. Such data are frequently, used in
mathematical applications involving sets or in situations where there may be
several possible events, and a track of exactly which event takes place, or
otherwise, has to be maintained. Moreover, sometimes development of
programs may be more logical and appropriate using sets than otherwise. We
shall study the data type sets and their use in the following sections.

13.1 Set definition and Elementary Operations

A set is defined as a collection of elements or items, all of the same type. The
elements which constitute the set are called its Members. Sets are generally
represented by writing its members within braces { }, but we shall use the square
brackets, [], as is the notation in Pascal. The set of square brackets is referred to
as Set Constructor.

Suppose A, B, C, D, E, Fis a collection of elements. Then
[A,B,C,D,E, F}
is a set whose members are A, B, C,D,E,F.
Similarly if 1, 3, 5,7, 9, 11, 13 is a group of odd integers, then
(1,3,5,7,9,11,13]
is a set of odd integers consisting of 7 members. In other words, set elements are
1,3,5,7,9,11,13.

A set may consist of any number of members, but all of the members must be
of the same type. Other examples of sets are

[A,LLO,UE|] setof vowels

[RED, BLUE, GREEN, BLACK| set of colours

[EARTH, MARS, NEPTUNE, MOON, MERCURY, SATURN,
JUPITER] set of planets

SET OPERATIONS AND DATA TYPE 269

[FATHER, MOTHER, SON, DAUGHTER] set of family members
[SYNERR, EXECERR, EXPOVERFLOW, EXPUNDERFLOW,
DEVICERR] setof errors

and so on. Some important characteristics of sets and operations allowed on
them are:

¢ the number of members in a set defines its size. Thus, the size of set [A, B,
C,D]is 4,

¢ the order in which the set members are listed is immaterial. For example,
the set

[A,B,C,D,E, F|
may be written as
[A,B,E,C,F,D|
oras
[D,E,A,B,F,C]
or a variation of this. All arrangements refer to the same set.

® repetition of some members does not affect the size of the set. For
instance, the set

[A,B,A,C,C|
is the same as
[A,B,C]
®a slet ivith no member is referred to as an Empty set and is simply specified

as| |

Let us define three sets X, Y and Z as:
X=[A,B,C,D], Y=|A,B,C,D]
Z=[A,C,D,E,F]

The following operations are defined on sets

® Set equality
Two sets are equal if they have the same number and type of elements.
Thus, sets X and Y are equal.
o Set union
Two sets may be joined. The resultant union is a set of all clements
which are members of the individual sets. For example, the union of sets
X and Z is the set

|A,B,C,D,E,F]
while the union of sets X and Y is [A, B, C, D}, that is, same as X or Y.

270 PASCAL PROGRAMMING FUNDAMENTALS

® Set difference
The difference of two sets is defined as a set which consists of elements
which are not common to either set. For instance, the difference set for the

sets Xand Z is

[B,E,F]
® Set intersection
The intersection of two sets is defined as a set which consists of all
clements common to both the sets. For example, the intersection of set X
and Z is the set

[A,C,D|

o Set inclusion
A set P is said to be included in set Q, if all items in P are also in Q, but
not necessarily vice versa. For instance, consider
P=]1,2,3]
0=[1,2,3,4,5|
Then set P is included in set Q. Set P is referred to as subset of Q.
Remember: an empty set is included in every set. Moreover, an clement
is cither a member of a given set or is not.

13.2 Set Constants

Members of a set are said to constitute its Base. All the members must
be of the same type. Set constants are defined in Pascal by enclosing the
members between square brackets and separating the members by comma.
Examples of set constants are:

[lA!‘ iBI’ (Cl‘ IDI’ lEl, IF]

[4,6,8, 10, 14, 16]

[TRUE, FALSE]

|[APR, MAY, JUN, JUL, AUG]|

Set constants can also be defined using arithmetic integer expressions as
[K+1,3+2,J*L)

assuming that K, J, L are integer identifers which have been defined earlier.
The Base type of a set constant must be an ordinal data type, that is,
integer, bodlean, char, enumerated and subrange type. This restriction
allows an efficient implementation of Pascal.
An example of set constant using subrange type is

[1..13,23,29]

The members of the set constantare 1,2, 3,..13,23, 29,
Pascal docs not allow a set to be declared in the const declaration.

272 PASCAL PROGRAMMING FUNDAMENTALS

Here RAINBOW is a set variable and its base consists of VOILET, INDIGO, .
..RED as its members. Another example is

var
RANK : set of (FIRST, SECOND, THIRD) ;

The set variable RANK can assume any of the following set values

[FIRST, SECOND, THIRD]
. SECOND)]
[SECOND, THIRD)

[THIRD, FIRST]
[SECOND]
[1]]

Standard Pascal does not put any limit on the number of members a set may
have, however, restriction may be imposed due to the computer hardware.
Many compilers limit the number of members of a set to 256.

When defining a set type with integer and character as base-fype, then base-
type must be a continuous subrange of integers or characters. Commas are not
allowed to be used with these. For example, the following type declarations are
not permitted:

type
LETTERSET =set of ‘A", ‘B', ‘'C’, ‘D", ‘E’;
DIGITSET =setof 1,2,3,4,5,6,7 ;

The correct type declaration is

type
LETTERSET =setof ‘A’. .'E’;
DIGITSET =setof1..7;

Comma can only be used with the set declaration of enumeration base type. The
following declaration is allowed:

type
OPSET =setof (+, =,/,*);
VOWELS =setof (A,E,L,O,U);
The reader should note that A, E, I, O, U are not enclosed with quotes. They will
not be treated as characters but simply as symbols
Assignment statement can be used to assign a set constant to a set variable.

Examples are
WORKINGDAYS Je- [MON, TUES, WED, THRS, FRI| ;
PRIMENUMBERS := [1,3,5,7,11,13,17,19,23];
COMPUTERSIZE := [MICRO, MINIL, MAINFRAME, SUPER] ;
LANGUAGES := [APL, PASCAL, FORTRAN, BASIC, COBOL,
LISP, PROLOG, ADA] ;

SET OPERATIONS AND DATA TYPE 273

13.4 Set Operators and Expressions

Set constants and variables can be combined to design set expressions by the
use of set operators. The following operators are available in Pascal which can

be used with sets.

Operator Set function
+ Union
- difference
* intersection
= equality
<> . inequality
<= >= inclusion
in membership
In order to use these operators with sets, it is necessary that two set types are
compatible.

Two set types are said to be compatible when the following conditions are
satisfied:
® both have the same base type,
® the base types are subranges of the same type,
® one: of the base types is a subrange of the other.

Following examples illustrate the use of set operators:
‘We define two compatible set variables S1 and 52 as
S1l= rA" ‘B', -C-’ o 'E'] ;
S2=[A"T,'0,U,'E];
Fhe union operator, +, joins the two sets and gives a new set § (say) as
§:=851+82 = [A*B,'C",'D’, T,'0, ‘U]
The set difference operator, —, yields the set X
x — Sl —_ sz = rB" ‘C', .Dt‘ ar‘ 500’ ‘Ufl

With the set intersection operator, *, the result of
S1*82
is a set ['A", E]
The set equality operator, =, when used with sets S1 and S2 as
§1=52
yields the result as false, because sets S1 and S2 are not identical.
With the set inequality operator, the expression

S1 <> 82

274 PASCAL PROGRAMMING FUNDAMENTALS

yields the result as true because sets S1 and S2 are unequal.
With the set inclusion operator, <=, if we specify

set X <=set Y
this implies that set X is a subset of set Y ; while if we use
set X>=setY
then it indicates that set Y is a subset of set X. Hence,
S1 <=82 false
§1>=82 false

The operator in enables to determine whether a given item is a member of a set.
The result of this operation is boolean type. The operator in is used as

item-x in set-x

where item-x is the element to be searched in set-x. If the ifem-x is present in set-x,
the result of in operation is true, otherwise false.

For example,

‘A'inS1 = true
whereas

‘P'inS1 = falsc

The left operand of operator in must be an ordinal type and its right operand
must be of a set type having elements of that (same) ordinal type.

The reader should note that the operators +, —, * yield the result as another
set, while operators =, < >, <=, >=and in lead to boolean constants as their
result.

Suppose a student is eligible to be admitted to a course only if his age is
between 17 and 25 years and he has scored marks in the reange 60-100. This
condition can be expressed as

(17 > = AGE) and (AGE <= 25) and (60 >=MARKS)
and (MARKS < = 100)
This can be expressed more easily by using sets as
(AGEin[17..25])and (MARKS in [60 .. 100])
Any subrange, whose beginning value is larger than its ending value, is

considered to contain no elements, 5o that

l I - iz‘ .. iA‘
is true

Use of sets helps to write programs in a simpler way. To illustrate this, we
consider the following example

276 PASCAL PROGRAMMING FUNDAMENTALS

Program 13.1

program HEXADECI (output) ;
{ Program to convert a hexa number to decimal form }

l-I.EXCH, NO:char;

DECINUM, SUM : integer ;

DIGSET, LETSET : set of char ;
begin

SUM:=0;

DIGSET :=[0"..9");

LETSET:=[A’..F];

{ Read a character }
repeat
write (Enter the hexa digit? ..) ;
_readin
if (HEXCH in DIGSET) or (HEXCH in LETSET) then
begin
if HEXCH in DIGSET then
DECINUM : = ord (HEXCH)—ord ('0")
else

DECINUM : = (ord (HEXCH)—ord (‘A")) + 10;
SUM:=SUM* 16 + DECINUM .
end;

writeln (‘Decimal equivalent of hexa digit =', DECINUM) ;
write (‘Do you want to enter the next hexa digit? (Y/N)..) ;
readln (NO)
until (NO =N');
writeln 3
writeln (‘Decimal equivalent of the complete hexa number =', SUM) ;
writeln (‘Stop”)
end.

Sample inputioutput

Enter the hexa digit?... 3
Decimal equivalent of the hexa digit= 3
Do you want to enter the next hexa digit? (Y/N)..Y
Enter the hexa digit?... A
Decimal equivalent of the hexa digit =10
Doyou want to enter the next hexa digit? (Y/N)..Y
Enter the hexa digit?...6

/Decimal equivalent of the hexa digit =6
Do you want to enter the next hexa digit) (Y/N)..N
Decimal equivalent of the complete hexa number = 934
Stop

278 PASCAL PROGRAMMING FUNDAMENTALS
Sample inputioutput

Enter the values of J, K, L,M

5 11 30 3

Number of elements in the set. ... 25
Enter the values of J, K, L, M

5 14 50 2

Number of elements in the set. ... 44
Enter the values of J, K, L, M

0—=1 0 0

Number of elements in the set.... 0
Stop

13.5 Set Operator Hierarchy

A set expression may be designed using set constants, variables and operators.
When several opeators appear in an expression, priority of the set operators is
as:

Intersection *
Union +
Difference -

Membership in

Expressions are evaluated from left to right as usual.
Let us illustrate these rules further.

Let set
X =1,3,5,7,9,11, 13|
Y =[2,4,6,8,10,12]
Z=3,4,5.7]
The expression
X+Y*Z
is evaluated as:
® first compute intersection of sets Y and Z, thatisfind Y * Z; s:ay, the result
isset W ;

¢ next find the union of set X and set W ;
® the result is the set which is the value of the given set expression X + Y *Z

The student is urged to write the value of the set expression X +Y * Z.

Many useful programs may be designed using sets. An important application
is in data processing. It is commonly required to examine whether the data being
input to a program is correct and lies in the given range. This is checking the
validity of the input data.

The following program code goes on reading character data and storing in
array CHARRAY till any of the character **, '/,), =, ‘(' is encountered in
the data.

SET OPERATIONS AND DATA TYPE 279

CHARRAY : packed array [1 .. N] of char;

J:=1;
repeat
readln (CH);
while CHin[A"..Z',",‘?", "] do

n
CHARRAY [J]:=CH
Ji=J41
end
until CHin [*,*/,7,'="*C]
end.

The set type data structure provides a convenient way to carry out several kinds
of checks, such as membership testing, error checking, simplifying boolean
expressions designed using several or operators, and so on.

Exercises 13
13.1. Tick the correct answers.

(i) Set is a simple/structured data type.
(ii)} The base of a set may consist similar/disimilar types.
(iii) Set constants can/cannot be deﬁnod usm; arithmatic integer upressmns
(iv) The operator = implies equality/ t of values.
(¥) The in operator needs one/two opmnds
(vi) The value d by the of +,—, *is boolean/set.
(vii) Value of a set can/cannot be read by read statements.
(viii) Set expressions can be designed using set/arithmetic/both constants,
(ix) Built-in functions are/not defined for sets.
(x) Record fields can/cannot consist of sets.

13.2. Complete the following

{a) A setisdefined g5 a collectionof.......... called type.
(b) The square brackets | |arecalled..........
{c) lnirﬁngoftwumisrefcrredw“‘.m.m.
(d) Set may be constructed using.......... statemetns.
(€) The number of elements in the base of the set VEHICLE : =
[CAR, CYCLE, SCOOTER, BUS. VAN TRUCK. AEROPLANE,
BULLUCKCART, TONGA]is.
(D The allowed set operatorsare..........
{g) A null set consists of
(h) Settypeis definedas..
(i) Two sets type are said mbecmnpauble when ..
(j) Logical operators may be used with.......... expmssions.

280 PASCAL PROGRAMMING FUNDAMENTALS

13.3. Define a set. Give examples and determine the size of each set.

13.4. Explain the various operations which are allowed on/between sets.

13.5. How is a set constant defined? [llustate by examples.

13.6. What do you understand by the base of a set? Given the base types permitted in Pascal.
13.7. Define set Type and Variables. What rules must be observed while defining the base-type?
13.8. Let P, Q, R be set variables which have been assigned the following values :

P:=(1..510..5]:
Q:=|5..10};
R:=|1..10,13..15];

Evaluate each of the following expressions :

(i) P+Q*'R
(i) P*O*R
(i) (P-Q)* (Q-R)
(v) (P+Q)*R
(v) (8In Q) or (13inP)
(vi} P <=(Q+R)
(vii) 11inQ*R

13.9. Below are given correct and incorrect set expressions. Separate them and correct the
incorrect expressions.
(i) ‘A’ notin A’ .. 'H
(i} mot ‘A’ In"A’..."H'
(i) [-5..+3)*+5..10]
(iv) [MON, TUES, WED| + |A,E, 1,0, U]
v) [1..4]=(1,2,3,4]
i) [A]in[A". Z]

13.10. What is the difference between the following :

(a) type
X=setoll..13;
Y=1..13;

(b) type
A=setofl (0. .9
B=setof0..9;

13.14. Prepare a statement using sets for the following :
You can join army only if you are between the age of 21 to 28, your height is between 165-
190 ¢m and weight lies in the range 50-70 Kg.

13.12.(8) Suppose a variable NUMBERSYSTEMS is defined as :

var
NUMBERSYSTEMS : set of [BINARY, OCTAL, DECIMAL, HEXA] ;

How many possible values can this variable assume?
{b) Give the total number of members of theset H=5..13,17,29.. 40].

13.13.Dita consisting of characters, digits and other special symbols are being entered from the
keyboard. We want to count the number of (i) vowels (ii) consonamts, (jii} digits and .(iv)
special symbols in the incoming stream of characters. Develop a program which does this.

13.14.Prepare a file of Pascal reserved words, standard functions, operators and character set
symbols. Develop a program which prints all the reserved words and standard functions.

SET OPERATIONS AND DATA TYPE 281

13.15. Develop an algorithm and a program to prepare the concordance (a list of words in
alphabetical order and their frequency) of all user-defined identifiers in a given program.

13.16. Define varinbles of record type, file type and set type. Try to read and write values for such
variables. List the error messages obtained on your system.

13.17. How many members may be in a set on your computer system? Does it allow a declaration
of the kind set of char?

15.18. Develop a program, using sets, uut/wi]lmkcasequenceofunegersmdfmdﬂnpmsenu,or
otherwise, of duplicates, Display the duplicates.

13.19. Suppose there are data isting of numbers and ch ,(}?*/. You are required 1o
compute the sum of bers only. Develop a prog tndolhis Your program should
poimuu;mdmmwhmmyufﬂm:ymbolsisdetm (Think of applications of such
programs).

13.20. Design an algorithm and a program (using procedure subprogram) that reads a letter and

decides whether it is an upper case or lower case letter. If it is a lower case letter, change it
into a upper case letter.

13.21. Prepare a general Pascal program that reads ch s from keyboard and counts the
number of consonants, vowels and integer digits. Make use of set data structure.

13.22. Develop an algorithm and a program which finds the frequency of different letters contained
in a given word of arbitrary length. Generate a table which lists the results as :

THE WORD IS

FREQUENCY

13.23. Devise a program for Exercise 7.11 using sets.

Chapter 14

Pointers and Dynamic Data Structures

You are aware that memory is allocated to variables in a program block at the
time when the block execution is to begin. Moreover, it remains i existence as
long as the block is executing. Such variables are referred to as Static Variables,
Static variables are referenced by user-defined names. Storage assigned for such
variabels cannot be altered during the execution of program. This has the.
disadvantage that if an excess memory has been assigned in the beginning, some
of the memory will remain unutilized, while if the memory assigned happens to
be less, the program will have to be recompiled after deciding the appropriate
size of the memory.

In order to avoid either of these conditions, and have better control on
memory allocation, we define what are called Dynamic variables. They may be
simple or structured. With dynamic variables, memory can be allotted or
released during program execution. Such variables are not introduced by user-
defined names but by Pointers. In Pascal, pointer is a data type with which
pointer variables (also called dynamic variables) can be declared. We shall study
pointer data types and their use to define new data structures.

14.1 Pointer Data Type
Such data type are declared as

pointer-type-identifier=1 base-type

The pointer type is defined by prefixing the up-arrow (1) with the base-
type. The base-type defines the type of data items. A pointer variable, that is
declared to be of a certain type, can only point to data items of the type
specified by the base-type.

Once a pointer type has been defined, we can use the var declaration to
declare pointer variables :

Consider the example

type
POINTER =1 real ;

var -

A,B:POINTER ;

POINTERS AND DYNAMIC DATA STRUCTURES 283

Here variables A and B have been defined as pointer -variables of type
POINTER. The type of data items, to which the pointer points, is real.
Further examples are

type
LINKPOINTER = 1 integer ;

var
P,Q, T:LINKPOINTER ;

Here P, Q, T have been defined as pointer variables, or simply pointers, of
type LINKPOINTER. These pointer variables contain the address of the
memory locations which store integer data. Here base-fype is integer.
Schematically, we can show this as

T 131313 M;

Here M;, M,, M;, are memory locations and can store data of integer type. P,
Q, T are the pointers (or pointer variables) which store the addresses of
locations M;, M3, M.

In other words, these pointers point to locations M, M, Ms. Thus, the value
associated with the pointer variables is not the content of the memory locations,
to which it points, but the address of that location. In other words, pointer is an
address of some memory location.

Data values are stored in locations to which the pointer variables point. To
refer to this information, the pointer variable name, followed by an up-arrow (1)
is specified. It is called a Reference Variable or Associated Variable.

Pointer variable t = Reference or associated variable

Thus, the associated variables with the pointers P, Q, T are Pt, Qt, Tt. These
are the Reference variables.

The values stored in locations, to which the pointer points or refers to, can be
assigned to the associated variables. For instance, if 13, 1313, 131313 are the
values stored in the locations M;, M;, M3, then

Pt:=13;
Qt:=1313:
Tt:= 131313;

“The reference variables, such as Pt, Qt, T1, act like the regular variable

POINTFRS AND DYNAMIC DATA STRUCTURES 285

DATE has three fields (scalar) DAY, MONTH and YEAR. These fields may be
accessed as

Z1.DAY :=13;
Z1.MONTH :=4;
Zt.YEAR :=1986;

But, it is illegal to specify
Z.DAY:=13;

because Z is a pointer variable and not a regular variable.

Refer to type RPTR. Here two types called RPTR and DATE have been
introduced. DATE is of record type while RPTR is of pointer type as indicated
by the uparrow. It is important to note that the type DATE occurs with RPFTR
before it is defined. This is referred to as Forward reference. The specification with
pointers is one of the few places where such a reference is allowed in Pascal.

Another example of forward reference is

ype
NEXTNODE =1t NODE;
NODE =record
NUMBER = integer ;
NEXT =NEXTNODE
end ;

Now two types NEXTNODE (pointer type) and NODE have been defined
together and afterwards NODE is defined as of record type. Moreover, NEXT
is of type NEXTNODE. Such data types are useful to define linked lists and
other data structures (Section 14.5)

Every pointer type includes nil amongst its possible values. This is a default
option. Moreover, nil points to no element at all.

14.2 Operations on Pointers

Let J and K be pointer variables, and suppose the values stored in the
locations, to which they point,areaand b :

; ¥
The following operations may be performed on the pointers J and K..
= Assignment
J:=K (1))
this implies that J and K point to the same location and may be indicated as :

s[e]
k-]

286 PASCAL PROGRAMMING FUNDAMENTALS

The location to which J was pointing is ‘freed’ and is no more accessible to the
program.)
A pointer can be assigned the value nil as

K:=nil;
when the pointer points nowhere. Remember nil is a Pascal reserved word.

The values stored in locations pointed at by J and K can be assigned to the
associated variables as :

Jti=a,
Kt:=b;
If we specify
Jt:=Kt an

then the value a is replaced by the value b.
Pictorially, this implies

The reader should note carefully the difference between the assignment (I)
and (II). In (I), the address is assigned to J while in (II), value is assigned to. .I’f

It is illegal to specify
Jt:=K;
or
J--KT .

because types mismatch. J and K are pointers (or pointer variables) while Jtand
Kt are associated or reference variables.

Remember, a pointer value may be assigned to another pointer of the same
type, while nil may be assigned to any pointer.

= Comparison

Only two comparison operators = and < > are allowed to be used with
pointers.
The expression

J=K
compares the addresses as specified by the pointers J and K while
J<>K

POINTERS AND DYNAMIC DATA STRUCTURES 289

Suppose, we wish to create an unnamed real variable and store the pointer to
it in (pointer) variable X. We can do so as

new (X)

Thus, the new created reference variable is Xt. We can assign a real value to
variable X1. In fact, X! can be used at every place where real variables can be

employed.
If we specify

new (Y)

We create a new record variable Yt of type DATEPOINTER. The fields of
variable Y1 can be accessed as

Yt .DAY, Yt.MONTH, Yt.YEAR

Next, suppose we wish to destroy the dynamic variables X t and Y 1. We need
to specify
dispose (X);
dispose (Y);

Remember, the arguments of the procedures new and dispose must be pointer
variables and not reference variables.

The reader should keep in mind that memory space for the reference variable is
allocated only afier the specification of the procedure new. Similarly, memory
thaai!ocafedaﬁarhemofdisposeprocedm

The pointer variables and the above two procedures find extensive use with
data structures such as lists, trees and stacks. Such data strucutres may be more
efficient in certain applications as compared to the standard ones. As for
example, linked lists are more efficient as compared to the sequential lists where
frequent insertions and deletions are made. However, linked lists need more
memory space than the corresponding sequential list.

"The actual effect of dispose procedure may depend on the Pascal
implementation which may use dispose to destroy storage or just retrieve it.

The pointer data types offer the following conveniences :

—the storage size can be adjusted dynamicaly as desired by the program,

—storage may be shared among several variables,

—complex data structures may be designed, updated and manipulated
selectively

" while the possible drawbacks are

—an attempt to update/reference a location, which has already been disposed
of, might create problems as the storage may have been allocated for some
other use,

—an attempt to refer to the contents of a storage location to. which a pointer
has not been set up, causes an execution error.

292 PASCAL PROGRAMMING FUNDAMENTALS

Insertion and deletion of elements in a linked list is illustrated by the following
diagrams :

Start 1 2 3 4 5
[3 3 T T
Node inserted between
nodes 3 and 4
Stant 1 2 a 4 5
CH{ [T 44 [-]
ot deeod

The insertions and deletions of nodes may be anywhere in the linked list.

The components of the linked list considered above are linked together in a
sequential manner. This is the simplest type of linked list. Other kinds of lists
can also be defined. Examples are circular lists, doubly linked lists, doubly
linked circular lists and so on.

A circular list (ring structure) is a linear list having no start and no end. It may
look as

Stan

[[[lj

In a doubly linked list, there are two pointers associated with each node - a
forward ponter and a backward pointer. The structure of such a list may appear
as:

Start

S s B |
| I |

Here cross x indicates nil. The double set of pointers enables us to traverse the
list in either direction, that is, from start to the end or vice versa.

There are available several other kinds of data structures in computer science,
such as stackes, queues, trees and so on.

POINTERS AND DYNAMIC DATA STRUCTURES 293

(b) Stack
A stack is a linear structure in which items may be added or removed only at
one end. We show diagramatically a stack as (where P is a stack pointer)

added at the Top element deleted

The last item added to a stack is the first item to be removed. Due to this stacks
are also called Last-In First-Out (LIFO) list.

Let us define the nodes of the stack as

tsrl)Se'I‘KPOINTER =1 STKNODE ;
STKNODE = record
INFMORM : type-identifier ;
NEXT : STKPOINTER
end ;
Yar
P, T:STKPOINTER ;

An element with information Y may be loaded on the stack with the following
statements :

new (T);
Tt.INFORM :=Y;
Tt.NEXT:=P;
P:=T;

Similarly, we can remove the top element of the stack and put the data into Y
as

294 PASCAL PROGRAMMING FUNDAMENTALS

if P =nil then writeln('stack is empty")

else begin
Y:=P1t -INFORM ;
P:=S§1t "NEXT
end ;
These two stack operation are shown in the above stack figures.
(c) Queue

A queue is a linear list of items in which items can be added only at one end
(rear) while items can be removed only at the other end (front). As the first item
in a queue will be the first item to be moved out of the queue, so queues are also
called first-in-first out (FIFO) lists. (Compare queue with a stack).

(d) Tree
A tree is a data structure which consists of nodes and branches. These are

organized in such a way that they represent some structuring of data. An
exampleofatreeisgivenbeluw

| Aot

o

‘When every node has two branches, it is called a Binary tree.

Data structure arrays, lists, stacks and queues are also characterized as of
linear type, whereas the data structure tree is a nonlinear data structure.

You have seen that anonymous memory locations may be created/destroyed
at anytime during program execution by pointers. Elements may be added/
removed to a data structure as and when required at run time. Such structures
are said to be Dynamic data structures. Examples of dynamic data structures are:
lists, stacks, queues, trees, graphs, etc. They differ from static data structures
(arrays, records, files, sets) in that the number of components can be altered and
even the relationship among them may be adjusted. Morcover, static data
structures are defined by the language while the dynamic data structures may be
defined, designed and implemented by the user via pointer data types.

Here, we have described simple type of dynamic data structures. A variety of
data structures can be designed using these structures or others. Design of a data
structure depends on how the information is to be organized. Data structures
are very powerful means of information representation.

Pointer data types help us to implement the various kinds of data structures,
We shall not go into these details as these are covered in separate books on data
structures.

POINTERS AND DYNAMIC DATA STRUCTURES 295
We shall illustrate the use of pointers and linked list by a program. You are
already familiar with searching algorithm by the method of exchanges. This can
also be implemented via pointers and linked lists. The following program
example illustrates this.
Example 14.1

Design a program, using pointers and linked list, to sort a given list of
numbers in ascending sequence using the method of exchanges.

program 14.1.
program EXCHSORT (input, output) ;
type

POINTER = tNODERECORD ;
NODERECORD = trecord

DATA :integer ;
LINK : POINTER ;
end ;
DATAARRAY=array [1..20] of integer ;
var
ARRAYOFDATA : DATAARRAY ;
DATAPOINTS : integer ; { Stores the no. of points to be linked }
I,J:integer ; { Loop control variables }
P,P1,K,PTR:POINTER ;
LIST :POINTER ; { External points to the list }
BACK : POINTER ; ;{ Keeps track of the node prior to one being examined }
CURRENT: PO[N'I‘ER { Pointer pointing to node being examined }

begin { main program body starts }
writeln (‘Enter the number of data points’) ;
read (DATAPOINTS) ;
writeln (‘The unsorted listis’) ;
for I:=1to DATAPOINTS do
read (DATAARRAY[I]);
writeln ; |

{ Create the linked list }
new (LIST);

LIST 1. DATA : = (DATAPOINT-J) do
new);

PTR 1. DATA :=DATAARRAY [2];
LIST1.LINK:=PTR;
CURRENT:=PTR;

for 1:= 3 to DATAPOINTS do

296 PASCAL PROGRAMMING FUNDAMENTALS

begin
new (PTR);
PTR . DATA :=DATAARRAY I} ;
CURRENT t.LINK : =PTR ;
CURRENT:=PTR;
end ; { for loop for creating list }
CURRENT 1. LINK : =nil ;

forJ :=1to (DATAPOINTS=1) do
begin

for I=1 to (DATAPOINTS—J) do

BACK :=LIST;
P1:=LIST 1, LINK;
while P1 <> nildo
begin
ifP1 1. DATA < BACK t.DATA
then
begin { interchange the points in the two nodes }
new ;

K1.DATA :=P11.DATA :
P11.DATA:=BACK 1. DATA ;
BACK 1. DATA :=K 1. DATA ;

dispose (K)
end ; | of interchange }
P1:=P11.LINK;
BACK t :=BACK t.LINK
end {while}.
end {inner for }
end ; { outer for }
writeln (‘The sorted list is").;
P:=LIST;
while (P < > nil) do
begin

writeln (P 1. DATA);
P:=Pt.LINK
end {print list }
end. { main }

Sample inputioutput

Enter the number of data points

8

The unsorted list is

12 56 90 0 45 76 81 92
The sorted list is
0 12 45 56 76 B1 90 92

POINTERS AND DYNAMIC DATA STRUCTURES 297

Compare the program of Example 14.1 with the simple sort-exchange program
given in Program 9.3.

The reader should appreciate that programs developed using pointers and lists
are generally lengthy and need more memory space. However, they offer the
advantage of flexibility, creating new and relevant (to the problem) data
structures.

Pointer data types have been ofien used to implement and design various data
structures and solve problems in varied areas such as recursion, sparse matrices,
polynomial arithmetic, error-correcting codes, systems programming, and so on.
Dynamic data structures enable better memory management and efficient access
to memory space.

Exercises 14

14.1. Complete the following sentences

(2} Memory is allocated to variables in a program block at the time when the block
..... is to begin.
(b) Storageassignedio........... variable cannot be altered during program execution.
() M y can be all d during......... execution with
variables.
(d)data type is used to define dynamic variables,
(e) Variables associated with the pointers are also called variables.
() Pointers can be associated withboth and.......... data types.
(g) Every pointer type includes........... amongst its possible values.
{(h) A pointer value may be assigned to another ofthe........... type.
(i) The comparison operators allowed with pointersare.......... and...........
(i) Pointer variable canbe........... and..........as and when desired.

14.2. Tick the correct answers

{2) Dynamic variables help to have better/poorer control over computer main memory
allpcation.
(b) Forward/backward reference is allowed with pointer specifications.
{c) Null pointer points to no/last element of a list.
(d) Pointer variable can/cannot be passed as a | inp Jure arg
{€) A function can/cannot have pointer as its result.
(f) A pointer always points to an auonymous.-"‘lmown variable,
(g) Static variables are ref d by T 5.

14.3. What is a pointer? How is it defined? Illustrate by two examples.
14.4. Explain the way pointer and referenced variables are related to each other.

14.5. Ilustrate, by examples, the association of pointers to scalar and structured data types.
14.6. What do you understand by Forward reference in Pascal? Give examples.

14.7. Deseribe the various operations that can be performed on the pointer variables. Give two
examples for each,

14.8. Bring out the differences between static and dynamic variables. Explain their advatnages and
disadvantages.

14.9. Which Pascal procedures are used to create and annihilate (destroy) pointer variables?
Explain their formats and give examples.

298 PASCAL PROGRAMMING FUNDAMENTALS

14.10. Discuss the possible ad and drawbacks of having pointer data types in a language.

14.11. Design a procedure which makes pointer P to point to the same location to which Q points,
and releases the memory location to which P pointed previously.

14.12. Explain the following :
(a) List (b) Stack (c) Queue (d) Tree
14.13. Consider the following declarati

e

type
SIZE = (SMALL, MEDIUM, LARGE) ;

POINTER =t SHIRT ;
SHIRT = record
TSHIRT" SIZE ;
NEXTSIZE : POINTER
end;
var
MEN, BOYS : POINTER ;
List the following :

(a) Type of data items SMALL, MEDIUM and LARGE,
(b) Reference variable names.

(c) Type of reference variables and their structure.

(d) Pointer type variables.

(e) Reference to fields TSHIRT and NEXTSIZE.

(f) Which are the static and dynamic variables?

14.14. Refer to Exercise 14.13. Explain the action of the following statements :

(a) ifMEN = BOYS then MEN : = nil

(b) IfMENT = BOYS! then MEN : = nil

(c) IfBOYS = nil then MEN 1, TSHIRT : = LARGE ;

(d) ifMEN 1. TSHIRT <> SMALL then MEN 1, TSHIRT : = MEDIUM ;

14.15.What is a circular linked list? Design a program to generate it.

14.16. Draw the doubly linked circular list and prepare a Pascal program to create it.

14.17. Explain the differences and similarities between linear arrays and linked lists.

4.18. T_'m",a, gram (g) to two linked lists, (b) to divide a linked list in two linked

Entry

14.19. Develop a program to find 4

the path through a maze.

A maze is a rectangular
array of cells, coloured
white and black, as shown
in the adjoining figure:

Yod commpmd

refmm=qf-mm-t-> Exit

el s Gt

Tl Taa)

POINTERS AND DYNAMIC DATA STRUCTURES 299
There are designated entry and exit cells. Movement from one white 1o an adjacent
(horizontally or vertically) white cell is allowed. Generally, mazes have multiple paths from
the entrance cell, with all but one of them terminating in a dead end. You are required to
find one-path that hes the exit successfully. The reader should appreciate that the basic
problem is to search for a solution among several alternatives.
14.20. Develop an algorithm and design a program, via stacks and pointers, to sort the following
data.

2, 6,1, 8 9, 2 13, 4 7, 8
in descending sequence by Quicksort procedure.

14.21. ‘Towers of Hanoi Game' is played with three rods A, B, C and a certain number of disks of
varying diameters having holes in the centre. The disks 1,2, 3,4,......are putona

A B

Z 1
rod in order of decreasing size,making a sort of tower, This is known as “Tower of Hanoi’,

and, hence the name of the game. The purpose of the game is to transfer the tower on rod A
to rod B, making use of rod C as an intermediary. Finally, the arrangement should appear as

A B

S=E)

shown above. The rules of the game are: (i) only one move is to be made 1o take a disk from
thelopofonemermdplmllon another rod to form another tower, (ii) it is not allowed
to put the disk on the ground or above h ller disk.

Algnmhmfurdnspmemybedewlopeddthﬂ'bymmmormumv: techniques.
Design prcgrams for these algorithms using pointers and compare their efficiency. (There is
a surmise that the game of Towers of Hanoi was first played by Pandits of Benaras).

Chapter 15

Structured Program Design Concepts

Computer program design refers to developing programs using a programming
language and certain techniques which help to prepare programs in a consistent
way that are easy to write and understand. Moreover, the program should be
modifiable, maintainable with resonable efforts and upgradable as well. If the
problem is small and simple, preparing the program is straightforward, however,
for complex and difficult problems, programs are lengthy and involve lot of effort
for their development.

It is always an involved but creative process to design good programs and
software systems. Program development has become very expensive and attempt
is always made to write programs which are general in design and portable.
Testing, debugging and implementation of programs should involve minimal
effort as far as possible. To achieve these objectives, several program design
strategies have been suggested and used in practice. Commonly used
methodologies have been modular design, structured programming, top-down
approach, bottom-up technique, and so on. These techniques have been used to
meet the above design goals of a software system and have better productivity of
programmers. Such studies form part of the Software Engineering field in
Computer Science. Here, we shall present a brief overview of the modular and
structured design techniques for developing programs and urge the reader to
supplement the presentation by making reference to a book.on Software
Engineering.

Program development strategles are not unique but only empirical approaches.
You may come across some variations as well. However, the present in
will help you do appreciate and use these techniques while developing large
programs and software packages.

In the earlier chapters, we introduced concepts of algorithms, flowcharts and
program development. Flowcharts constitute a pictorial language and are easy to
understand and prepare. There has been another mode of representation/
expression of algorithms. This is the pseudocode representation. Such codes
have been popularly used to denote the control structures of structured
programming, algorithms of problems, and so on. The pseudocode
representation enables the user to express his ideas about program logic in a
natural, English-like form. We shall discuss first pseudocode representation
and then go over to the study of modular and structured programming,

15.1 Pseudocode
We have seen that the algorithm of a problem can be expressed either in

STRUCTURED PROGRAM DESIGN CONCEPTS 301

English or as a flowchart. The algorithm is translated into the programming
language for solving the problem on the computers. There is another notation
for expressing the algorithm, and this is by using English words/sentences and
commonly used computer programming language words such as IF, THEN,
ELSE, DO, WHILE, REPEAT, STOP, END, OTHERWISE, and so on. Such a
notation is referred to as a Pseudocode. The pseudocode of a problem solution
is somewhere in between English and the programming language. We illustrate
this by an example.

When it is cold, wear woollen shirt, however, if it is not, wear cotton shirt.
This statement can be expressed as:

IF cold,

wear woollen shirt
OTHERWISE

use cotton shirt ;

The latter statement may be said to be in pseudocode.

As another example, consider a right quadrilateral having its adjacent sides as
A and B. If A=B, then it is a square, if A+ B, then it is a rectangle. We can
express this in a pseudocode as

IF sides A and B are equal,
THEN the right qudrilateral is square
OTHERWISE it is a rectangle ;

Alternately, the pseudcode may also be written as

IF side A=sideB
THEN square
ELSE rectangle ;

or a variation of this.

All symbols used in a pseudocode must be defined and properly documented
so that the code can be understood by any other person.

We shall indicate the end of a statement or step in a pseudocode by a
semicolon (;), though you may come across some different notation as well in
literature.

The data assignment concepts and rules, as discussed in Section 2.2, are also
applicable to variables used in pseudocodes, and we shall use them to prepare
codes for various examples.

We can express the complete solution of a problem in pseudocode. As a
simple illustration, we take the example of evaluating the area of a rectangle
when its lergth and breadth are given. Its pseudocode may appear as :

READ data for variables Length, Breadth ;
COMPUTE Length * Breadth ;

STORE the product in variable Area ;
PRINT the value of Area ;

302 PASCAL PROGRAMMING FUNDAMENTALS

oras

SET variables Length and Breadth to initial values ;
MULTIPLY Length and Breadth ;

STORE the product in variable Area H

PRINT Area;

oras

READ Length, Breadth ;
Area — Length * Breadth ;
PRINT Area;

and so on.

There are no hard and fast rules to write pseudocodes. It is a notation that
allows us to express the logic of problem solution in a somewhat formalized way
without being familiar with the syntax of a specific programming language. There
are no formal syntactical rules to remember to prepare pseudocodes.

The pseudocode clearly describes the function to be performed, how to be
performed, and can be directly translated into any of the computer
programming languages. The advantages of preparing pseudocode are :

® aconvenient way to code the problem solution

® translation into any programming language is straightforward

* documentation at every stage is automatic

¢ changes into the code can be made easily

® provides a detailed description of the complete source program

® thought processes can be better expressed

e better co-ordination between different programs as the code is in English-
like language.

The pseudocode has also been termed as a Program Development Language
(PDL) which is at a level higher than the programming language. However, it
differs from computer programming in following respects :

(a) There are no formal rules to prepare pseudocodes.

(b) Operations can be specified at any level of simplicity or complexity. For

example, statements of the type

® Compare the velocity of two objects

® Economic factor =y +a/b+(c(tan® +1n (x+y)))
can be freely used in pseudocodes.

(c) Pseudocode is much easy to understand while the source program (written
' in a computer programming language) may not be so.

Flowcharts are the pictorial representation of algorithms. We can prepare
flowcharts for pseudocodes and vice versa. In our subsequent discussion, we -
shall illustrate the concepts of modular and structured programming using
flowcharts and give pseudocodes as well for illustration.

STRUCTURED PROGRAM DESIGN CONCEPTS 303
15.2 Modular Design

Modular design refer to the division of the entire program into subtasks or
modules. A module may be defined as a logically self-contained unit of a larger
program. Thus, a complete program is a collection of modules which have been
integrated suitably to achieve the desired objectives. Every module is expected to
have the following characteristics :

® contain instructions and processing logic

® s distinct and logically separate

¢ performs a well-defined task in a program

® has one-entry and one-exit

® can be tested, debugged and compiled separately

® can use other modules

® is of general design and can be integrated with different kinds of

appropriate programs/software systems.

There may be some violations but these provide the general guidelines to design
modules. Examples of modules are procedures, functions, subroutines, Pascal
blocks, a collection of instructions which perform a well-defined task, such as
input/output of data, validation of data, and so on. A module should normally
consist of 25-50 lines of program code. Smaller modules are, generally, a waste
of time, while larger modules may be difficult to debug and integrate into a
complete program. Attempt should be made to develop modules in a general
way, so that they can be integrated with various programs and run on different
machines.

An illustrative example of developing a software system using the modular
approach is the design of a software package for implementing the various
matrix operations or function integration routines. Recall, that the various
operations which can be performed on matrices are :

® addition, subtraction, multiplication, division, transpose, inversion, finding
the norm of a matrix, ...

A function/procedure subprogram can be developed for each operation. This
will be a module. Similarly, code can be written for reading of data, checking of
data and writing of data. Program codes for each operations may also be
referred to as a module. They can be subprograms by themselves. The complete
program for the implementation of all matrix operations can be modularized in
this way. Example 10.3 illustrates the modular design strategy as given above.

At times, it may be difficult to decide as to how to divide the program into
modules and how to put them together. There are no hard and fast rules for this
and we learn much from experience. There are several advantages of writing
programs in modular form :

® A single module is easier to write, debug and test than the entire program
atatime,
* A module may be used in other programs as well, if it is prepared in a

304 PASCAL PROGRAMMING FUNDAMENTALS

general way and performs a common task. Thus, a library of standard and
most commonly used modules can be prepared.

* Modifications can be incorporated in a single module with much less effort
than in the entire program.

* Bugs can be easily located and isolated in a single module.

® A team of programmers can be employed to develop a complete system by
modularization. Each programmer may be assigned the task of developing
independent modules. The progress of a program, when written in modular
form, can be assessed more easily.

® The interaction between parts of a program can be restricted to the
interaction between the modules. This considerably -simplifies the

understanding of the program and its working.
* Maintenance of a program becomes easy when written in modules.

Modular design of software has advantages, no doubt, but there are some
disadvantages as well. These are :

® Fitting the various modules into one program may be a difficult task,
especially when different people are working on different modules.

® Debugging and testing the modules separately may not be easy, because
other modules may produce the data used by the module being debugged.
This necessitates the writing of “driver” programs which produce sample
data and test the programs. These driver programs need extra
programming effort.

® At times, it may be difficult to modularize programs in a reasonable way. If
a program is modularized poorly, integration of modules will be a tough
task.

* Generally, modular programs need extra time and memory, because the
separate modules may repeat certain functions and involve some overheads
as well.

Thus, the reader should appreciate that while modular design is certainly an
improvement over conventional way of writing the entire program from the start,
it does have some drawbacks as well. However, in spite of this, modular design
has been playing an important role in the development of large software projects.

15.3 Structured Programming

In modular design, we develop the complete program in modules and then
integrate them to form a complete unit. Next, the question arises as how to
develop modules to keep them distinct, easily understandable, modifiable and
prevent them from interacting with one another. Further, how to ensure the clear
and concise sequence of operations in a module and isolate errors.

One possible answer to this has been proposed by Dijkstra. He advocated that
the use of unconditional transfer statements (e.g. goto) in a program should be
climinated. He further reported—“the ease of reading and undrestanding
program listings becomes inversely proportional to the number of unconditional

STRUCTURED PROGRAM DESIGN CONCEPTS 305

transfers of control which they contained”. This has been found to be quite
plausible and due to this, modern practices of program development insist that
the use of goto statements in a program must be kept to a minimum or avoided
completely as far as possible. It has been proved that every program, however,
complicated can be rewritten in an equivalent form using only three types of
basic structures :

(1) sequential

(2) selection

(3) iteration
Each of these constructs has only one entry point and one exit point. We can
design flowcharts, pseudocodes or program using these three constructs. They are
called respectively structured flowcharts, structured pseudocodes and structured
programs. We shall refer to structures (1), (2), (3) as the basic logic structures or
constructs in our discussion. Design and use of these logic constructs is
explained below.

15.4 Basic Structured Constructs

(i) The Sequential Construct

‘When statement(s)/modules are executed in sequence, they are said to form
sequential construct. A flowchart for this is shown in Fig. 15.1 There is only one
entry and one exit point.

Entry

Exit
Fig. 15.1: Sequential Construct

Here B, B,, B; denote block names. A block may consist of one or more
statements. When a block name is enclosed in a rectangle, it would imply
‘execute’ or ‘process’ the block. Thus B, implies the execution of block B,. The
pseudocode for Fig. 15.1 may appear as

execute B, ;
execute B, ;
execute B, ;

STRUCTURED PROGRAM DESIGN CONCEPTS 307

statements while some condition is satisfied. Diagramatically, it can be shown as
given in Fig. 15.3.

Fig. 15.3: Tterative Construct

Here, as long as the test-condition is true, block B, is executed, otherwise exit is
made, The iteration construct also has single entry and single exit.
The pseudocode for iterative construct may be designed as :

WHILE test-condition TRUE DO
execute B, ;

The use of word DO implies that the block following it is to be executed

repeatedly.
An example of this construct from Pascal is :

while C > 0 do

F:=A+B;

D:=A-B;

writeln (F, D)
end ;

The repetitive construct has been
implemented via repeat-until statements as
well. It has also single-entry and single-
exit and its flowchart is shown in Fig. 15.4.

Exit
Fig. 15.4 : Repeat-Unitil-Construct

308 PASCAL PROGRAMMING FUNDAMENTALS

The pseudocode for Fig. 15.4 may be as :
L, :execute B, ;
IF test-condition FALSE
THEN goto L,
ELSE exit;
Here L, has been used as a label.
However, a more appropriate code is

REPEAT
execute B,

UNTIL test-condition TRUE ;
Both the above iterative constructs have been used by programmers, though
WHILE-DO was suggested originally.

The three basic constructs may be combined to generate bigger designs. An
example is given in Fig. 15.5.

e mmm——————

R — |

Fig. 15.5: Combination of logical constructs

The complete logic of-this figure has a single-entry and single-exit. The
pscudocode may be developed as
IF test-condition-1 TRUE

THEN (WHILE test-condition-2 TRUE DO execute B; ;)
ELSE execute B;

execute B, ;

STRUCTURED PROGRAM DESIGN CONCEPTS 309

15.5 Structured Programs

Programs designed using the three constructs—sequence, selection and
iteration—are sdid to be structured programs and the approach is called Structured
Programming. We shall illustrate and implement the program development
process using structured programming constructs via flowcharts as they are more
transparent, instructive and easy to understand. Actual writing of a program in a
computer programming language, corresponding to the flowchart, is then a
straightforward process.

‘We have seen that the valid combination of the logical constructs leads to
structured programs. Any violation of this leads to unstructured programs. We
examine both the unstructured and structured program designs and illustrate the
conversion of unstructured programs to structured ones in the following.

Let there be five blocks of B,, B;, B3, By, Bs and we want to execute them in
the sequence

B, - B,~ B, ~ B, =~ B;~ B, ~ B, ~ B,

One way of arranging their execution may be as shown in Fig. 15.6(a). (Numbers
indicate the order of flow of execution).

(a)

P

s

Fig. 15.6: (a) Unstructured and (b) structured design of sequence constructs

310 PASCAL PROGRAMMING FUNDAMENTALS

The arrangement of Fig. 15.6(a) is unstructured because there are double entries
to blocks B4, B, and Bs. Moreover, there is unrestricted unconditional transfer of
execution control among the blocks. This males it very difficult to keep track
of program flow. Structured design demands that there should be single-entry
and single-exit to the blocks and minimal use of unconditional transfers.

The structured version of Fig. 15.6(a) is shown in Fig. 15.6(b). Now there is
single-entry single exit for every block,.but execution of blocks B;, By, Bs has
been repeated. This duplication of codes becomes essential many times while
writing structured programs and is a drawback of this methodology. But the
advantage of structured design is the ease of understanding the program.

Another example of unstructured diagram is given in Fig. 15.7.

Fig. 15.7: Unstructured diagram
Here, you may notice that block B; has double entry and there are two entries
at L, as well.
The pseudocode for Fig. 15.7 may appear as :

IF test-condition-1 TRUE
THEN execute B,
L;:execute B,
GOTOL,
ELSE execute B, ;
L, : IF test-condition-2 TRUE
THEN execute B,
GOTO L,
ELSE next-step ;

STRUCTURED PROGRAM DESIGN CONCEPTS 311

The student should appreciate the presence of forward and backward jumps in
this code.
The structured version of Fig. 15.7 may appear as :

L e e

-
Il
1t
1
'

)
g/‘
-

L e e e e m e e e ———————————— e

Fig. 15.8: Structured version of Fig. 15.7

Now block B; has been duplicated to avoid unconditional back transfer from
block B, to B;. This keeps the program execution flow in the forward direction.
The pseudocode for Fig. 15.8 is :

IF test-condition-1 TRUE
THEN execute B;
execute B;
ELSE execute B, ;
WHILE test-condition-2 TRUE DO
execute B,
execute By ;

312 PASCAL PROGRAMMING FUNDAMENTALS

A further example of unstructured program may be as given in Fig, 15.9.

Exit

Fig. 15.9: Unstructured diagram with multiple exits
Do you know why it is unstructured? '

15.6 Extension of structured constructs and use of goto statement

As mentioned before, any program

can be developed using the three L
basic constructs—sequence, detision
and repetition. However, the case case-index=?

construct is often included as the
fourth permissible logic structure for
preparing programs® This construct h 4 h L ek
allows multibranch in a program. Its

representation is given in Fig. 15.10. n “ n ____ 3

Exit

Fig. 15.10: Case Construct

STRUCTURED PROGRAM DESIGN CONCEPTS 313
If case-index equals

I, block B, is executed
1, block B, is executed

I, block B, is executed

After the execution of any of the blocks B, B,, By, exit is made and control
goes to the following block B,

‘We have already studied the format and use of case construct in Pascal. While
developing structured programs in Pascal, you may use the following constructs :
if-then, if-then-else, case, for-do, while-do and repeat-until. The structures if-then
and for-do are special cases of selection and repetitive constructs. This flexibility
offers more convenience to the programmer to write purely structured programs.

Structured programming has also been termed, sometimes, as ‘goto-less’
programming, but now this concept has changed. Appropriate use (though
limited) of goto statement may be made along with the other structured
programming constructs to design programs which are well designed and easy to
understand. While using goto statement, control should generally be passed on
in the forward direction as far as possible. Most of the modern programming
languages, such as Pascal, Modula-2, Ada, Fortran 77, Basic, Cobol, C, provide
enough language constructs to prepare structured programs. Attempt should
always be made to develop programs following structured programming
methodology.

Example 15.1

We develop two programs for solving simultaneous equations by Gauss-Jordan'
method. Program 15.1(a) has been designed in a conventional way without any
consideration for use of structured constructs or goto statements. This is an
unstructured programs. Program 15.1(a) uses the constructs of structured
program design and try to keep the use of goto statements to a minimal.

Program 15.1 (a)
program GAUSSJORDAN (input, output) ;

{ Unstructured version of the program | ;
label 100, 200, 300, 400, 500, 600,

var
LLJ,K,L,M, N, NPLUS1, NMINUS]1 : integer ;
Ac:array [1..10,1..10] ofreal;
X:array |1..10] ofreal ;
TEMP : real ;
tAlgorithm for Gauss-Jordan method is standard and may be found in a book on Numerical
Analysis.

316 PASCAL PROGRAMMING FUNDAMENTALS

{Read in the system of equations }

{ Right hand side of the equations is the (n + 1)th
column of the matrix }

for I:=1toNdo

begin
for J:=1to NPLUS1 do
read (A[LJ]);
readin
end;

{ Print the system of equations }
for I:=1toNdo

for J:=1to NPLUS1 do
write (A[I,J]};
writeln

end ;

{ Main program segment |
K:=1;
{Checkifthediagonalelementofmemauixiszcro}
while (K <=N) do
begin

if (A[K,K]=0.0) then

begin

FLAG :=true ;
L:=K+1;
for I:=1toNdo

if ((A[LK] <> 0.0)and FLAG) then
begin

for J:=1 to NPLUS1 do
{ Swapping of rows is done here }
begin

TEMP:=ALJ];

A[LJ]:=AK,J];

AIKs-'I:-T.Em/
end ;

FLAG :=false
end

end
end ;

if (FLAG) then

writeln (‘The method fails for this set of equations’) ; -
l—goto&ﬂo fThismtemenlhasbeenusedtoexitfromLhcprogram: -

end
else { If diagonal element is not zero, proceed }

STRUCTURED PROGRAM DESIGN CONCEPTS 317

begin
TEMP:=A[K,K];
for J:=1to NPLUS1 do
AKJ:=A[KJ/TEMP;
for I:=1toNdo

begin
if @ <> K) then
begin

TEMP:=A|[LK];
for J : =K to NPLUS1 do
MA[LJ]FAI'LJ]—A[K-J]'TEMP

end
end;
K:=K+1
end;
{ Print the solutions }
writeln (‘T he solutionis'};
for I:=1toNdo
y writeln (X[,L,] =", A[I, NPLUS1]);
600:
end.

Let us compare the two versions of the GAUSSIORDAN program as given in
15.1(a) and 15.1(b). Flow of program execution in the Main program segment is
indicated by arrows. The flow moves forward and backward haphazardly in
version 15.1(a). This makes program debugging very difficult. It would have been
far better if the program flow was in the forward direction and there is no ‘cris-
crossing’. Program 15.1(b) avoids this. Use of goto statements has been
eliminated, except one, by the proper use of structured constructs while-do, for-
do, if-then and if-then-else. The goto statement has been used only once to exit
from the program. Such use of goto statements has been recommended as it
helps to make the program more compact and clear. We could have avoided this
use of goto statement as well by using appropriate programming techniques, but
that would make the program unnecessarily long and complex. Judicious use of
goto statement will always help to write more efficient and transparent programs.

-

15.7 Structured Modular Programming

We know that the complete computer program of a software project may
consist of many modules. The whole program may be structured with respect to
its modules as well. We illustrate the conversion of an unstructured modular
program to a structured modular program in the following. It is assumed that each
program module has been written using the constructs of structured
programming,

Suppose that a program has been split into modules and these modules have

318 PASCAL PROGRAMMING FUNDAMENTALS

been organized as shown in Fig.15.11. Numbers 1, 2, ..., 9 indicate the modules
(We had used the notation B;, B;, B,, to denote blocks).

Fig. 15.11: Unstructured program

This program is unstructured because each box does not correspond to the one-
entry one exit rule. There is more than one ‘branch’ (each arrow indicates
branching) to the boxes. Let us see what type of difficulties may be encountered
in such a program.)

Consider module 5. We can enter this module from module 2 and module 3. Its
correct execution depends on the various things such as constants, variables,
statements and some other conditions, depending on its design. Values of
variables needed in module 5 may have been defined in modules 2 and 3. we
cannot determine the execution of module 5 without knowing what has
happened in module 2 and 3. The situation is much more complicated in
succeeding modules. For instance, consider module 9. Here there are many
possible paths of entry. Execution of module depends as to what happens in the
previous modules, i.e. in modules 7 and 8 which further depends on what
happens in modules 1, 2, 3, 4, 5 and 6. Now, when there is some problem in
module 9, we cannot locate the bug easily, as the bug may have been in one of
the earlier modules from where execution has reached module 9.

In order to convert the unstructured program of Fig. 15.11, we duplicate
those modules that may be entered from more than one place. Fig. 15.11 may
be restructured as shown in Fig. 15.12. Now module 5 has been duplicated
while modules 7 and 8 have been triplicated to ensure the condition of single-
entry single-exit for the modules as well.

STRUCTURED PROGRAM DESIGN CONCEPTS 319

Fig. 15.12: Structured modular program

Now each module has one-entry one-exit, except the last module 9, which
could have been simply the end of the program or it may also be duplicated.

There is clearly a disadvantage of duplicating the modules/codes. It requires
more memory than the original unstructured design. If the modules/codes are
small, it is well worth the cost of duplicating the code to generate a structure that
can be broken as shown in Fig. 15.12. If the modules involve a substantial
amount of coding, e.g. 50 or more statements, then the problem may be solved
by making them callable procedures. but it is important that they be developed
as procedures with formal arguments, so that their correctness can be
determined without regard to the context in which they are executed. If this
approach is taken, we will have multiple calls to a single copy of a pmcedure.
This procedure also involves certain amount of overheads and hence inefficiency.
Conversion of unstnictured diagrams of Fig. 15.11 to structured diagram of
Fig. 15.12 has followed one particular way. You may think your own procedure
for conversion and implementation of structured methodology. Recall that the
structured design approach is not unique and there can be enough variations,
though we must try to adhere to the use of structured constructs and the single-
entry single-exit principles as far as possible.

15.8 Advantages and Disadvantages of Structured Programming
We have seen that structured programs are written using certain constructs

which are fairly commonly accepted. However, structured programs have their
own advantages and disadvantages. These are summarized below.

STRUCTURED PROGRAM DESIGN CONCEPTS 321

(g) The single-entry single-exit rule is essential for structured programming. (T/F)

(h) A structured program should never contain a goto statement. (T/F)

(i) Structured programming can implement multibranch situations in a program. (T/F)

(i) The logic of all programs cannot be exp d as a bination of three basic logic
constructs. (T/F).

(k) A structured program is always free of logic errors. (T/F).

(1) The case structure helps to implement multibranch situations in a program. (T/F)

(m) An unstructured program cannot be transformed into a structured form. (T/F)

(m) Smumdnrpo—lnnpcoymmmme.(r/ﬂ

(o) Str d may involve repetition of statements. (T/F)

(2] mmmmmmm@ummﬂm

15.2. Complete the following sentences :

(a) Pmndwodcuuale\el .. than the common programming languages.

(b) Pseud hasoomnmnlymccpwd .. rules.

(c)Adn;i:mdnleisuﬂam and
time.

(d) It is always preferable to have the module lengthas of lines.

(e) Functions/procedures are examples of ..

mﬁmmdamﬂmmmmmmmmwmmd

(g) The basic logic constructs for preparing structured programs are. [
(h)AmoduSemustbe and.......... separate.
. (i) Modular and i llyneed.......... memory space.

(i) The productivity ofnpmgnl.mmer is lmprmed byusing.......... and
programming techniques.

(k) Modificationof..........programs is very time consuming.

() Maintenance of programs becomes easy when writtenin.......... and..........
form.

(m) Pascal is among the most suitable languages for designing.......... programs.

{n) All languages may not have constructs mnmllyusnd todesign..........

programs.
15.3 What do you understand by pseudocode? lllustrate by an example. Give advantages of
preparing pseudocodes for problem solving. .

15.4. Develop a pseudocode for deciding whether the given calendar year is leap year or not.

15.5. Design a flowchart and a pseudocode to compute the roorts of a quadratic equation, taking
due care for complex roots and trivial solution.

13.6. Explain the concept of a module. What should be its desirable features?

15.7. What do you understand by structured programming? Explain the meaning and significance
of various structures used to design structured programs.

158, Prepuc n summary of formats of basic logic structured constructs as available in the
g languages : Ada, Modul 2, Fortran 77, Basic, C, Cobol, Algol, APL

15.9. Bring out the diff b dular and str d programming Describe their
and disad

15.10, Study the prog of the worked examples in the book. List the structured and
unstructured programs. Transform the unstructured programs to structured design.

15.11. Du,grnm of Fig. 159 |s unstructured. Why? Prepare its structured format and -write
les for both

STRUCTURED PROGRAM DESIGN CONCEPTS 323
15.14, Look at the flowchart of Fig. 15.14 carefully:
Csan)

test-condition-2
B,

=]

®
Fig. 15.14

d
P asir OF unstr

Doesit i program? Prepare its pseudocode.
15.15. Refer to Exercise 15,14, Choose your own realistic sample for the blocks B,, B,
B;, B,. Code the program in Basic, Fortran 77 and Pascal. Run the programs on your system.
Study the compactness and efficiency of the three implementations.
15.16. Using the principles of modular and str d progr ing, develop a soft k in
Pascal, to evatuate the following integral :
13

J fix)d x

by (i) Rectangle rule, (i) Trapezoidal formula (iii) Simpson’s rule (iv) Newton's three-cigths

rule (iv) Romberg's procedure.
{N.B. Algorithms for these methods may be found in books on Numerical Analysis). Your
program should also esti errors p in each method.”
Use this package to compute the integral
J s____:n : dx
o x*+1

accurate to 107 by various methods.

STRUCTURED PROGRAM DESIGN CONCEPTS 325

15.18. Develop a software package, in Pascal, using the modular and structured programming
concepts to perform the following string operations :

* Reads a string of text.

Computes the length of the complete string.

Searches and replaces (if needed) a given substring within the string.

* Concatenates two strings,

* Finds the location of a substring in the string.

* Computes the frequency of occurrence of a given word in the string,

Finds the number of vowels which have been used independently in the sentence, such as A
and L.

* Calculates the length of each word in the sentence and tells the number of words with length
equalto 1,2,3,...,25.

* Matches two smngs

® Arranges the words of the stringin nlphabe‘ucal order.

*® Locates the p of p and finds their totals.
Replaces the given wordfcharmer by the desired word/chracter.

. Doubles/halves the spacing ive words,
(N.B. A word processing package or word processor is designed on the same pattern,
though it may offer many more capabilities, such as screen formatting, margin
adjustments, and 5o on.)

15.19. Which structure is used for multibranch situation in a program? Explain its function. Study
the format and implementation of this construct in Pascal, Cobol, Fortran 77, Basic and C
languages.

15.20. Sometimes, it is said that structured programming is "goto-less”™ programming. Would
you agree with this statement? If not, illustrate your answer by an example where use of
goto statement may be essential to design an efficient and compact program.

Appendix 1

Pascal Operators and their Precedence

® Arithmetic
+ — * / div mod
® Boolean
and or not
® Relational
= <> < <= > >= in

® Operator Procedence (highest to lowest)

not (highest)

* / div mod and

+ — or

= <> < <= > >= in (lowest)

Thmmayappenrtwoormorethantwoopmmm,nﬂzmmq
level, in ah expression. In that case, successive operations are carried out from
left to right. '

(a) Standard Identifiers

abs
boolean
char
dispose
eof
false
get

maxint
new
odd
pack
read
sin
text
unpack
write

arctan
chr

eoln

minint

ord

page
readln

sqr
true

writeln

(b) Reserved Words

and
begin
case
div
else
file
goto
if
label
meod
nil

of
packed
record

array
const
do

end
for

not

Appendix Il

Standard Identifiers and Pascal Reserved Words

exp

output
pred put
real reset rewrite
sqrt succ
trune
set
then to
until
down to var
while with
function

procedure program

repeat

(a) Functions

Appendix Il

Pascal supplied Functions and Procedures

In the following, we shall denote the argument of a function by x. (Function
names have been organised alphabetically).

Function Argument type Result type

abs (x) integer/real
arctan (x) integer/real
chr (x) integer

cos (x) integer/real
eof (x) file
eoln(x) file
exp(x) integer/real

In (x) integer/real
odd (x) integer

ord (x) character

pred (x) integer/
character or
boolean

round (x) real

sin (x) integer/real
sqr (x) integer/real
sqrt(x) integer/real

same as X
real
character

real
boolean

boolean

boolean

integer

same as x

integer

same as x

Purpose

Finds the absolute value of x.
Computes arctangent of x.

Determines the character represented
by x.

Evaluates the cosine of x; the argument
must be in radians.

Determines whether an end-of-file
mark is there. ’
Determines whether an end-of-line
mark is there.

Computes e*.

Evaluates natural log of x (x > 0).

Finds whether x is odd or even; if x is
odd, value returned is true, otherwise
false.

Finds the integer number
corresponding to argument x in ASCII
representation,

Determines the precedessor of x.

Rounds the'value of x to the nearest
integer.

Calculates the sine of x (x in radians).
Computes the square of x.

Evaluates the square rootofx (x 2 0). ~

330
succ (x) integer/
character/
boolean or
enumerated

trunc (x) real

(b) Procedures
Name Argument
type

dispose (x) Pointer

get (x) File
new (x) Pointer

pack (a,i, a,b:arrays
b) izinteger

read(...)
readin (.. .)

reset(x) File
rewrite (x) File

unpack a,b:arrays
(b,a,i) i: integer
write (...)

writeln (...)

APPENDICES

sameasx Determines the successor to x.

integer Truncates X to return integer value.

Purpose

Deletes the dynamic variables referenced by the
pointer x.

Adbvances file buffer to the next component and
places the value of the component in the buffer.
Creates a dynamic variable that is accessed through
pointer x.

Takes the elements starting at subscript position i of
array a and copies then into array b, starting at the
first subscript position, in the packed mode.

Read data items from an input file, but do not skip to
the next line.

Read data items from an input file, then skip to the
next line.

Sets file x at the start for reading.

Prepares a file for writing.

Takes the elements starting at the first subscript.
position of packed array b and copies them into array
a starting from position i.
Write data items to an output file without skipping to
the next line.

Write data items to an output file, then skips to the
next line.

332 APPENDICES

statements, etc. in BNF are given below. They represent the most general
definition and should be interpreted as has been explained above.

(letter) :: = alb] .. .|x|y|z|A|B|.. |X|Y].. |Z
(letter or digit):: = (letten){(digit)
(identifier) : : = (letter) { (letter or digit)}
(constant identifier):: = (identifier)
(string) : : = (character)
(constant) ::= (constant identifer)|(unsigned number)| (sign) {constant
identifier) |(sign) (unsigned number) | (string) | nil
(variable) : : = (variable) [(component variable} | {referenced variable)
(variable):: = (variable identifier)
{variable identifier) : : = {identifier)
(function desginator) ::= (function identifier) | (function identifier) ((actual
parameter){, (actual parameter)}}
(function identifer) :: = (identifer)
(actual parameter) : : = (expression) | {(variable)| {(procedure-identifer) | {function
identifier)
{procedure identifer) : : = (identifier)
{factor) : : = {variable} (unsigned constant) | { {expression}) (function designator)
| not {factor)|(set)
(set):: = [(element list)]
(element list) : : = (element) { {element)} | (empty)
(element):: = (expresslon)l(expressmn) . {expression)
{empty)::
<mu.ltiplying operator) :: = *|/|divjmod|and
(term):: = {factor)|{termXmultiplying operator) {factor)
{adding operator):: = +|—|or
(simple expression):: = (term)| (sign) | {term)|
(sunplecxpxus:on) (adding operator) (term) | {simple expression) (adding

operator) {term)
{relation operator):: = < | €|=[>|2]|>[in
*({expression) : : = (simple expression) | (simple expression) {relational operator)
(simple expression)
(statement) : : = (unlabelled statement) | (label) : {(unlabelled statement)
{urilabelled statement) : : = (simple statement) | (structured statement)
{simple statement) : : = (assignment statement) | (procedure statement}) |
(go to statement) | (empty statement)
(empty statcment) :: = {(empty)
({assignment statement) : : = (variable) : = {expression)| (function identifier) : =
{expression)
(structured statement) : : = (compound statement) | {conditional statement} |
(repetitive statement) (with statement)
{compound statement) :: = begin (statement) { ; (statement) | end
(conditional statement) : : = (if statement) | {case statement)
(if statement) :: = if (expression) then (statement) if (expression) then (statement)
else (statement)

APPENDICES 333

(case statement) : : = case (expression) of (case list element) | : (case list
element) | end
(case list element) : : = (case label list) : (statement)|(empty)
{case label list) : : = (case label){, (case label) }
(case label) :: = constant
(repetitive statement) : : = (while statement)|(repeat statement)| {for statement)
(while statement) : : = while (expression) do (statement)
(repeat statement) : : = repeat (statement) { : (statement) } until «xpression)
(type definition): : = {identifier) = (type)
(simpletype):: = (scalar type)|(subrange type) | (type identifier)
(type 1der.mﬁer) : = (identifier’
(scalar type): : = ((identifier){, (identifier) })
(subrange typc):: = (constant). . (constant}
(constant definition part) : = (empty) | const {constant definition) { : (constant
definition) }
(constant definition) : : = (identifier) = {constant)
(variable declaration part) : : = (empty) | var (variable declaration) {, (variable
declaration) }
(variable declaration) : : = (identifier) {, (identifier) } : {type)
(structured type) :: = (unpacked structured type) | packed (unpacked
structured type)
(unpacked structured type) : : = (array type) | (record type) | (set tweg | (file.

(array type) :: = array [(index type) { (index type) }] of (component type)
(index type) :: = (simple type)
(component type) :: = (type)
(component variable) : : = {indexed variable) | {field designator) | (file buffer)
{(indexed variable) : : = (array variable) | (expression) {, (expression) }].
(array variable) : : = (variable)
(for statment) :: = for (control variable) : = (for-list) do (statement)
(for-list) :: = (initial value) do (final value)
(initial value) downto (final value)
(control varaible) : : = (identifier)
(initial value) : : = (expression)
(final value) :: = {expression)
(record type):: = record (field list) end
(field list) : : = (fixed part) | {fixed part) : (variant part) | variant part)

(fixed part) : : = (record section) {, {field identifier) } : {type) | (empty)
(variant part):: = case (tag field) (type identifer) of (variant) { ; (variant) }
(tag field) : : = {field identifier): | (empty)
(variant):: = {case label list) : {(field list)) | (empty)
(field designator): : = (record variable) : {field identifer)
(record variable) : : = (variable)
(field identifer) : : = (identifier)
(with statement) : : = with (record variable list) do (statement)

yntax Diagrams

R

336 APPENDICES

ll
Unsigned integer

_....__..I Constant identifier I—-—-_-.
Unsigned numb

[Fern
(i)

0 .Chmncr l 0

Variable
Variable identifi

Field identifier

APPENDICES 337

Fal'll)l‘ ﬁ
._IUmignodr 1 "
~{Varibie }— —

Subprogram
identifier

."
Sxpréssion
O

Function identifier

Term

R

Simple type

APPENDICES 339

Parameter list
N
Ua
Type 5
C Identifier | identifier
’
Yar
function ’
procedure 1dentifier
Variant part

i }—O ?

" t . C | Field list p]

340 APPENDICES

Subprogram definition

Function)——‘—[Idcntiﬁcr list :

procedure)—-l Identifier Ili::m
C- Declarations begin Statement end)——

Declarations

Identifier

APPENDICES 341

()-Eret (@) ~5 —

Appendix VI

ASCII and EBCDIC Character Sets

The word ASCII stands for American Standards Code for Information
Interchange whereas EBCDIC denotes Extended Binary Code Decimal
Interchange Code. These codes are commonly used to represent characters in
computers. ASCII is used virtually in all microcomputers and several of others,
while EBCDIC is popular in IBM computers.

Table A shows commonly used characters of ASCII character set. There
is a numerical value associated with each character. It can be obtained from the
sum of its row number and the column number. For instance, the ASCII value
of A is 64 (row) + 1 (column) = 65; value for T is 80 (row) + 4 (column) and
so on. The collating sequence of the characters is determined by the
corresponding value associated with that character. Thus, in ascending
sequence, characters appear as b (32), ! (33), “(34), # (35),5(36)....... .
P (80),Q (81),...... ,a(97),b(98),c(99),..... »2(122),.....

Table A : ASCII character set

0 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
16

2y ! *» * S % & ()y * + , - /
48 |0 1 2 3 4 5 6 7 8 9 H < =, > 7
64 |@ A B C D E F HI J K L MNDO
80 (P Q R 8§ T U V W X Y Z | ~]| t -—
96 a b ¢ d e f g h i j k 1 m n o
m2|p q r s t u v w x y z | | | ~

344 APPENDICES

Table B shows a part of the EBCDIC character set. Now the lower case
letters precede the upper case letters which in turn precede the numeric digits.

Table B : EBCDIC character set

0 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14
16

32

48

64 | b z . < (+
80 | & rs)y
9% | — / , % - >
112 I : + @ -—
128 a b ¢ d e f g h i

144 j k | m n [4] p q r

160 s ot u v W X y z

176 |

192 | { A B C D E F G H I

208/} J K L M N O P Q R

224 | 1\ $ T U V W X Y Z

2400 1 2 3 4 5 6 7 8 9

AWN

L]

11.
12.
13.
14.

Bibliography

. Wirth, N and Jensen, K.: Pascal-User Manual and Report (Springer-Verlag,

1975).

. Wirth, N.: Systematic Programming (Prentice-Hall, 1973).

Dormey, R: How to Solve it on the Computer (Prentice-Hall, 1976).

. Schneider, GM. and Bruell, S. Advanced Programming and Problem

Solving with Pascal (Wiley, 1981).

. Kernighan, B.W. and Plauger, PJ.: (a) The Elements of Programming Style

(McGraw-Hill, 1974).

(b) Software tools in Pascal (Addison-Wesley, 1981).

Singh Bhagat and Naps T.L.. Introduction to Data Structures (Tata
McGraw-Hill, 1986).

. Zeigler, C.A.: Programming System Methodologies (Prentice-Hall, 1983).

. Kruse RL.: Data Structures and Program Design (Prentice-Hall, 1987).

. Dijkstra, E.W: A Discipline of Programming (Prentice-Hall, 1976).

. Grover, P.S.: Essentials of Algol Programming (Allied Publishers, New -

Delhi, 1982).

Bentley, J.L.: Writing Efficient Programs (Prentice-Hall, 1982).
Shooman, M.L.: Software. Engineering (McGraw-Hill, 1983).

Chivers, LD.: A Practical Introduction to Standard Pascal (Wiley, 1986).
Rajaraman, V : Computer Programming in Pascal (PHI, 1982).

Index

Bold words are Pascal reserved identifiers

computer codes, 13
decimal conversion, 1
digits, 7

hexadecimal conversion, 12
number representation, 7
ctal conversion, 12

348

memory, 4

program, 39

system, 2
Conditional statement, 116
Concatenation of strings, 174
Concurrent programming, 37
Control variable, 134
cos, 60
const declaration, 57
Constant, 56
Control unit, 3
CPU, 3

Data
assignment, 25
_types, 52
Decaration part, §2
Digital, 1
dispose, 288
div (operator), 66
downto, 136
Dynamic
data structures, 290
variables, 287

EBCDIC, 5

Editor, 37

Efficiency, 40

Encoder, 2

end, 83

End-of-line, 261

Enumerated data type, 105

#ol, 60

eoln, 60

Exchange sort, 295

Execution phase, 37

exp, 60

Exponent, 51

Expression
arithmetic, 66
boolean, 73
evaluation, 69
relational, 75
set, 273

External file, 246

Factorial function, 207
false (boolean value), 73
Fibonacci sequence, 129
Field, 218
Field width specification, 91
File, 219

buffer, 248

buffer variable, 249

communication, 250

data type, 246

external, 246

input, 262

internal, 246
sequential, 220
subprogram parameter, 256
text, 261

Hierarchy of operators, 78
Identifier, 51

boolean, 55

char, 55

global, 196

interger, 54

local, 196

real, 35

scope, 198
if-then statement, 116
if-then-else statement, 118
in (operator) 273
Index variable, 134
Input statement, 94
Input-output devices, 2
Integer

data type, 54

function, &)

operators, 66

variables, 38
Integrity, 40
Interative construct, 306
Interactive computing, 129
Internal file, 246

KB, &
KIPS, &

Label declaration, 198
Library
functions, 60

Magnetic core,
Main memory unit (MMU), 3
Maintainability, 40

size, 6
Mixed mode expressions, 72

INDEX 349

mod (operator), 66
Modifiability, 40

Modula-2, 36

Modular design, 303
Modular programming, 303
Modularity, 40

Module, 303
Multidimensional array; 163
Multiprocessing, 19
Multiprogramming, 19

Nested if statement, 122
new, 288
nibble, 6
nil, 286
Node, 291
Normalized number form, 51
not (operator), 74
Numbers, 42
Number systems, &
inary, 7
hexadecimal, 13
octal, 11

Object program, 37
Octal

binary conversion, 12
decimal conversion, 11
digits, 11
hexadecimal conversion, 11
system, 11
odd, 60
Operating system, 37
Operators
arithmetic, 66
boolean, 74
precedence, 18
relational, 76
set, 273
or (operator), 74
ord, 61
Ordinal
data type, 62
number, 61
Output data formatting, 21
Qutput file, 262
Output statement, 87

pack, 171

Packed
array, 169
record, 240

Parameter

actual, 186
formal, 183

data type, 282
operations, 285
variable, 283
Portability, 41
pred, 62
Problem solving, 23
Procedure, 191
as subprogram parameter, 206
body, 191
declaration, 191
invocation, 192
parameters, 191
Program

declaration part, 82
design, 300
development language, 302
execution part, 83
flowchart, 35
features, 39
heading, 81
object, 37
source, 60
structure, 81
Prop_'lmming languages, 35
artificial intelligence, 36
business, 36
general purpose, 36
scientific/engineering, 36
simulation, 36
lext processing, 36
Prolog, 36
Pseudocode, 300
put, 254

uses and limitations, 113
Subscript, 152

Syntax diagram, 41
Systems programming, 37

Tag field, 239

mode, 18
Towers of Hanoi, 299

351

PASCAL Prog ing Fund Is provides an introduction to the
Paml language a modern computer programming language, which has been

d on all I micro, mini, midi and mainframe computer
smcms Pascal is being widely used to teach modem programming techniques
and style. It has been accepted as one of the most important ingredicnts
of all the Computer Science Courses.

The presem book covers the Standard Pascal language. The statements

and prog| pts have been explained in a simple way. There
are a large number of worked examples and illustrations in the book. All
the examples have been tested and computer rup. Exercises having objective
type and review questions and p devel i at the end

'ofea.chdmptﬂmnmth:mdettnemmmehmundemndmand

design of his own programs.
This book will be of interest to ! b and
anybody else who wants to know about Pascal, use its features to understand

the program development process and the current techniques of programming.

Dr. PS. Grover is a well-known author of books on computers and -

programming languages. He is a highly successful teacher and popular writer
as well. At present, he is Professor in the Department of Computer Science,
University of Delhi, Deﬂu,nndalsol'hndoﬁhobepamm He has been

among the | P and trai in the country and
has contributed "“and fessi ",mthechvelopmwnmd
adwnmlofwmpuwrmwua ber of many ed
and forums.
Professor Grover has published many rl:scarch papers in national/
international journals and supervised and proj
Rs. 165.00

ALLIED PUBLISHERS LIMITED

NEW DELHI MUMBAI KOLKATA CHENNAI NAGPUR
AHMEDABAD BANGALORE HYDERABAD LUCKNOW

