Programming

Copyright © 1997 New Age International (P) Ltd.. Publishers
Reprint 1999

NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS
4835/24, Ansari Road, Daryaganj,
New Delhi - 110 002

Offices ar:
Bangalore, Calcutta, Chennai. Guwahati, Hyderabad.
Lucknow and Mumbai

This book or any part thereof may not be
reproduced in any form without the
written permission of the publisher

ISBN : 81-224-1096-0

3 45 6 7 89 10

Printed in India at Hindustan Offset Printers, Delhi 110 032 and
published by H.5. Poplai for New Age International (P) Lid.,
4835/24, Ansari Road, Daryaganj, New Delhi - 110 002.

CONTENTS

Preface
Acknowledgement

Chapter

1 INTRODUCTION
Structured language
Modularity
Teaching language
Future language

History of Pascal language
Compilers available for Pascal

Type definition
Variables
Procedures and functions
Statements
ifi
Reserved words
Expression
Operators
Arithmetic operators
Relational operators
Logical operators
Exponent
Assignment statement
Data types
Standard data type
User defined data type
Structured data type

Pointer data type

WM = -

bbb EBEoromme nr

Chapter Page

Readin 18
Writeln 19
Various stages of program 20
and_write & writeln 21
Exercises 24
Solved Programs 26
4, = CONTROL STATEMENTS 27
Sequential structure 27
Selective structure 27
Repetitive structure 27
Simple if statement 28
Simple if-else statement 28
Block if statement 32
Block if-else statament
Looping structure 38
While-do loop 38
Repeat-until locp 40
For loop 42
Comparative study of the loop 46
Case statement 46
Goto statement 50
Exercises 51
Solved Programs 57
5 ARRAYS 62
One dimensional array 62
Traversing an array 67
Searching an element 68
Inserting an slement 69
Dsleting an element 70
Character array A
Two - dimensional array 74
Multi - dimensional array 82
Exercises 85
Solved Programs 86

6 PROCEDURES AND FUNCTIONS @9
Advantages of sub-programs 99
Procedures

Chapter

-
Y]

=]
1]

Parameter communication between
procedure and main
Value parameter
Variable parameter
Passing an array to procedure
Procedure within procedure
Eunctions
Functions with arrays
Library functions
Numeric functions
String functions
Becursion
Exercises

Solved Programs

7 RECORDS
Record declaration
Accessing member of a record
With structure
Array of records
Arrays within record
Passing a record to a procedure
Nested records
Variant racords
Exercises
8 EILES
Organisation of files
Typed binary file
Text file
Bandom files
Untyped binary files
Copying the content of file to
another file

Passing a file variable as a
parameter to procedure

Exercises

Solved Programs

9 USER DEFINED DATA TYPES,
SETS AND UNITS
Enumerated data type
Subrange

BEE BER B BHEERR BREEERBRER RBRREEEERBERER

Chapter Page
Sets 191
Set operators 192
Units 197
Redirecting output to printer 199
10 POINTERS 200
Declaration of pointer variable 200
Singly linked list 201
Implementation of stack 206
Implementation of queue using linked list 213
Doubly linked list 219
Exercises 220
11 GRAPHICS 222
Startup procedure for graphics 222
Placing a pixel in a graphic mode 225
Drawing figures 226
Printing text message in graphics mode 230
Solved Programs 234
12 AN INTRODUCTION TO OBJECT
ORIENTED PROGRAMMING 237
Syntax for object class 238
i 241
Defining an object subclass 241
Polymorphism 244
APPENDIX - A
Reserved words 250
APPENDIX - B
Predefined identifiers 251
BIBLIOGRAPHY 253
{NDEX 254

LIST OF PASCAL PROGRAMS

SLNo Program name Page
__1. | Area of the triangle 20
2. | Reversing a number 26
3. | Calculation of petrol cost 26
4. | Largest of three numbers 29
5. | Sales commission problem using 'if' statement 30
6. | Program using logical constant 31
7. | Program using standard identifiers as variables 32
8. | Result calculting problem using 'if' statement 34
9. | Income tax calculation using nested 'if’ statement as
10. | Result calculating problem using nested ‘i statement 36
11. | Sum of odd numbers using nested ‘if' statedment 39
12. | Program demonstrating an infinite loop 39
13. | Sum of the series using repeat-until loop 40
14. | Sum of the digits using repeat-until loop 41
15. | Finding prime number using for loop 43
16. | Factorial of a number using for-downto loop 44
17. | Program which overrules the for loop rules 45
18. | Program illustarting the for loop 45
19. | Program using case statement 47
20. | Programe using block construct in case statement 49
21 | Roots of a quadratic equation 57
22. | Sum of the given series 58
23. | Power of a positive integer 58
24. | Top check whether the middle digit is humerically
equal to the sum of the other two digits 59
25. | Sum of the given series 60
26. | Program testing divisibility of a number by given members 60
27. | Program to find x*for a given x 61
28. | Program tinding maximum no. and its position in an array 63
29. | Program illustrating bubble sort method 66
30 | Program to show how array elements can be viewed
(program to view the array elements) 67

xiv List of Pascal Programs

SI.No Program name Page
31. | Program using 'exit' statement 68
32. | Program to insert an element in an array 69
33 | Program to delete an element in an array 70
3:1. Program to display the array element 72
35. | Program to check a palindrome 72
36. | Program using two dimensional array 74
37. | Addition of two matrices 76
38. | Program to perform fundamental array manipulations 78
39. | Program for sorting two dimensional array 80
40. | Program using three dimensional array 82
41. | Program to generate fibonacci series 86
42. | Program to tind no. of elements present in a range 87
43. | Program to print a pascal triangle 88
44, | Program to merge two lists 89
45, | Program to find mode and its frequency 20
46, | Program to copy an array into another in reverse order 9N
47. | Program to create arrays 92
48. | Program to convert decimal to binary 94
49, | Program to compute average .ncome a5
50. | Program to alphabetize the given names 95
51. | Program to exchange the contents of two arrays 97
§2. | Write a program to convert twe dimensional array into

one dimensional array 98
53. | Program using procedures 100
54. | Program to find the cube of a number using procedures 101
55. | Programe to find the cub of a number by pass

parameter to procedure 102
56. | Program to illustrate the usage of formal and

actual parameters 103
57. | Program to call a procedure by value 104
58. | Program to call a procedure by reference 108
59. | Program to sort the given numbers using procedure 108
60. | Program to call a procedure within another procedure 110
61. | Program - using function 112

List of Pascal Programs xv

SI.No Program name Page
62. | Program to find binomial coefficient 114
63. | Program to find biggest of three numbers using function 115
64. | Program to check whether the given numbers are

in ascending order 116
65. | Program using concatenation 121
66. | Program using the string function ‘copy’' 122
67. | Program using the string function length’ 123
68. | Program using the string function 'pos’ 123
69. | Program using the string procedure ‘insert’ 124
70. | Program using the string procedure 'delete’ 125
71. | Program using the string procedure ‘val' 126
72. | Program using the string procedure ‘str' 126
73. | Program to explain the recursion concapt 128
74. | Program to delete all vowels from a sentence 133
75. | Program to find the product of matrices 134
76. | Program to search a number in an array 136
77. | Program to find the position of an element in an array 137
78. | Program using record 142
79. | Program using with structure 144
BO. | Program using array of records 146
81. | Program to sort the records 148
B2. | Program using arrays within a record 150
B3 | Program to pass a record to a procedure 151
B4. | Program using nested records 153
B5. | Program using variant records 155
86. | Program using structured data type 157
87. | Creation of a mark list file 166
88. | Processing file for mark list 167
89. | File to add a record 10 an existing file 170
90. | File to write a text message 17
91. | A text file to count the number of vowels 172
92. | Creation of random file 174
93. | Processing of the random file 175

xvi List of Pascal Programs

SL.No Program name Page
94, | Program to copy a file cantent into another file 178
95. | Program to pass the file variables to procedure 179,
96. | Sequential file to eliminate the duplicate records 183
97. | Program to replace every occurrence of a

character by ancther character 184
98. | Program to beautify the text file 185
99. | Program using all user defined data types 189
100. | Program using subrange data type 190
101. | Program using all the sel operators 193
102. | Program using all the set comparison operators 195
103. | Program to count the number of vowels in a string 196
104. | Program to insert a record using pointers 203
105. | Program to delete a record using pointers 205
106. | Program to display a record using pointers 206
107. | Implementation of stack using linked list 210
108, | Implementation of queue using linked list 216
109. | Program to print text message in graphics mode 230
110. | Program involving the four font tiles 232
111. | Program to illustrate the object declaration 239
112. | Program which uses two objects (one inheriting

from the other) 242
113, | Program to explain the concept of polymorphism 246

CHAPTER - 1

INTRODUCTION

Three discoveries were supposed to be the greatest in human civilisation:
Speech, Wheel and Electricity. As the twentieth century draws to a
close, the maxim changes — there are four great discoveries. Needless
to say, the fourth greatest discovery is Computer. Computer is like a
servant. As the servant obeys our request, Computer obeys our orders.
Orders are also called “Instructions” and a set of instruction is called a
“Program”.

To interact with Computers we need a medium through which Computers
can understand. For that, we use computer languages. The language
similar to our English language is called High Level Language. There
are about 600 high level languagesn the field. Some of them are
obsolete and some of them are for specific purposes. Languages are
classified as Scientific purpose languages, Commercial purpose lan-
guages and all purpose languages. ’

For Scientific Purposes we use FORTRAN'(FORmula TRANslation). it
was developed by a crew led by JOHN BACKUS in 1952-58 at the
International Business Machine (IBM). It mostly finds its usefulness in
Scientific problems. For commercial purposes we use COBOL (COmmon
Business Oriented Language). Its presence in business organisation is
vital because of its file handling facility. It was developed in a conference
(CODASYL) attended by System programmers and Industrialists at
Pentagon in early 1960's. Then there was a need for a language which
satisfies both the ends, and it was fulfiled by JOHN KEMENY. and
THOMOS KURTZ who developed the BASIC (Beginners All Purpose
Symbolic Instruction Code) at Darimouth College, New Hampshire in
1964. The ease of this language made both the scientific -and
commercial areas flourishing.

Now one may raise his eyebrow as to why we learn PASCAL while we
have BASIC already. The reasons for choosing PASCAL as our
programming language are as follows.

STRUCTURED LANGUAGE

The program flow can be divided into three viz., sequential flow, selective
flow and repetitive flow. Normally in other languages (BASIC and
FORTRAN) we use goto statement to byepass a group of statements.
The usage of goto is inevitable as there are no alternative statements -
available in these languages. But Pascal supports many looping and

2 PASCAL PROGRAMMING

various forms of decision making statements and made us not to use
goto in most of the circumstances. By using these statements one can
write a structured program although there are no specific rules for it. The
word “Structured” was coined by a famous algorithmist Dijkstra, who
quoted in one of his papers as, “Goto should be completely abolished
from all high level languages”. In Pascal we may avoid GOTO in most
of the situations. This not only enhances the program but also leads to
a neat program flow. The language which uses goto abundantly is called
‘Sphaghetti language' as shown in Fig. 1.1.

P —

S :

Fig. 1.1.

MODULARITY

It is also one of the special features that is not available in other
languages when Pascal comes into the field. We can divide a very big
program into many subprograms (or modules) which enable us to code
and trace the program very easily. This feature also avoids the
redundancy of coding and this feature is clearly explained in Chapter 6.

TEACHING LANGUAGE

We need a structured language to be taught at the graduate level, and
PASCAL is the best choice. The easy flow of the language helps every
one to write programs comfortably.)

FUTURE LANGUAGE

PASCAL is considered as a Future language because of the growing
demand for an all purpose language in the computer world. The pro-
grams written in those days by using non-structured languages such as
BASIC and FORTRAN are rewritten by using PASCAL. Hence it be-
comes the choice of a new generation.

HISTORY OF PASCAL LANGUAGE

Like many languages PASCAL also originated from ALGOL-60. In 1970
a famous scientist and algorithmist Nikalus Wirth developed this
wonderful language at the Technical University, Zurich, Switzerland. He

Introduction 3

developed this language to cater to the needs of both scientific and
commercial demands. He wanted a suitable name for his language and
to honour the scientist BLAISE PASCAL (One who developed the first
Adding machine in 1642) he named his language as PASCAL. Initially
the cost of the compiler was too high and one could not afford to buy
it. Later when Borland International Inc..entered into the market and
marketed its TURBO PASCAL, suddenly the cost of the compiler came
down from 500% to 508% and hence the language was picked up by all
universities and research centres.

COMPILERS AVAILABLE FOR PASCAL

The program which is written by a programmer is called source program.
But, computers understand only the machine language form, so it is
necessary to use compilers to convert high level language to machine
language and the converted program is called object program.

Of all the compilers available for PASCAL, quite few are widely used and
accepted by the programmers. Turbo Pascal from Borland Inc., and
Quick Pascal from Microsoft are to name a few.

CHAPTER - 2

FUNDAMENTALS OF PASCAL

As we have already seen high level languages are English like. They
use the same alphabets of English. The characters set used by
PASCAL language is given below.

Alphabets - AtoZ atoz
Numbers : 0-9
Special characters : +="1, .= {}()><"

Pascal is not a case sensitive language, and it takes AREA, Area, area
to be one and the same.

STRUCTURE OF PASCAL

How can one differentiate pascal from other high fevel languages?. Only
structure of a language can distinguish it from other languages. So, it
is very important to understand the structure of Pascal before writing a

program in it.
The prototype of a pascal program is given below.

PROGRAM Prog. Name (Input, Output};
label
Const
Type definition
! Variables
: Procedures
Function
{main starts)
Begin
Statements;
End.
1. Header

Every product in this world has its own identity, why not our programs?,
The header of the Pascal program looks like
PROGRAM Prog.Name (INPUT, OUTPUT);

PROGRAM is a reserved word supported by the language compiler, and
Prog. Name is given by the user {i.e.Programmer). The rules for framing
Prog. Name are as follows.

. Fundamentals of Pascal &
. The first letter must be an alphabet.

-

. The following letlters may be either numbers or alphabets.

No special characters should be used including blank space.

A O N

. Underscore may be used for better readability but it must be
embedded.

5. The maximum length is 63 characters. (In case you exceed 63
characters PASCAL will consider only the first 63 characters)

INPUT, OUTPUT given within parentheses indicates that the program
receives some input from the user and in retum, it supplies some useful
result to the user. The “; " used here is for statement separator.

The following are some examples for header.

PROGRAM area (INPUT, OUTPUT);
PROGRAM AREA (OQUTPUT, INPUT);
PROGRAM area ;

The header is optional in TURBO PASCAL and it is compulsory for some
variants of PASCAL.

ll. BLOCK

The block is divided into declaration part and statement part. In BASIC
and FORTRAN there is no need to declare the variable used in it.
Whereas a structured language like PASCAL expects all the variables
used in the program to be declared before it executes any computation.

The declaration takes the following form.

a. Label

Even though GOTO should be avoided in many situations, there are
some circumstances where GOTO is necessary for program clarity.
Before using GOTO it should be declared in the Label part, and
declaration of label is as follows.

LABEL
100, 200 ;

The above stalement indicates that there are two GOTO statements in
the program and uses 100 and 200 as ils label. Also note that labels
may be alphanumeric, whereas other languagss lack this facility. Here
is an example which uses alphanumeric as label.

6 PASCAL PROGRAMMING

LABEL
paral, para2 ;

The readers are advised to avoid GOTO as far'as possible since undue
use of GOTO may lead to confusion.

b. Constant

It is defined as the value of a quantity which does not vary during the
program execution. - Suppose in one of our program we want to have
dollar as a constant in many places, it is accomplished simply by defining
it in the constant area.

CONST
dollar = 31.50;

By making this definition, wherever dollar occurs in the program, it is
assigned the value 31.50. The important note to the programmer is that,
the value of a constant should not be varied in the program i.e. it is
neither incremented nor decremented. Also it leads to error when an
expression is used instead of a constant term. Let us see this through
some definition.

An invalid constant definition
CONST
PHI = 22/7 ;
A valid constant definition
CONST
PHI = 3.1428 ;

c. Type Definition

Beside the standard types available in PASCAL, type definition allows
the user to define their own data types. It will be discussed more
elaborately in Chapter 6.

d. Variables

It is defined as the value of a quantity which varies during the program
execution.

PASCAL supports the following variable types.

Integer

Fundamentals of Pascal 7

Real
Char
Boolean
Let us see them one by one with examples.

Integer

Integer is the number without a fractional part. The rules to be foliowed
while defining an integer are as follows.

i. Commas cannot appear anywhere in a number.

ii. Every number must be preceded by sign (+,-) and it is assumed
to be positive if there is no sign.

iii. The Integer range is
—-32768 lo +32767

It occupies 2 bytes in Memory.

Valid Integer. Invalid Integer.

1234 1,000

~7680 +890
654.89

Assume that we want to use a,b.c as integer variable in our program.
Then the declaration takes the following form

VAR
ab,c : integer ;

In addition to the above types the latest version of TURBO PASCAL
provides few more types to facilitate the program. They are

Longint
"i. The range is from ~2147483648 fo +2147483647.

ii. It occupies four bytes of memory.

Shortint
i. The range for this type is from —-128 to +127.

ii. It occupies one byte of memory.

8 PASCAL PROGRAMMING
Byte
i. The range is from 0 to 255 (unsigned shortint).
ii. The memory required to store this type is same as shortint.
Word
i. The range is from 0 to 65535 (unsigned imager}.
ii. The memory required to store this type is same as integer.
an example declaration is
VAR
: integer ;
: longint ;
: Word ;

: Shortint ;
: byte ;

oo To

Real

Numbers with fractional part are known as real. The rules for defining
the real are same as those for integer.

Valid Real Invalid Real
123,45 8,900.87
- 56.45 = — B44.65

The value .5 or 5. is valid in some languages whereas it is invalid in
PASCAL. Here decimal point is always embedded.

So, .5 should be wrilten as 0.5
and 5. should be written as 5.0

When considering storage, it occupies six bytes in memory with 11 digits
of accuracy. For example, if we want to use x,y,z as real variables, then
our declaration might look like

VAR
xy.z : real ;

Like integer which has few modifiers, real also has few more modifiers
and it mainly depends on math co-processor.

Fundamentals of Pascal 9
Single
i. The range is from 1.5 * 10 to 3.4 * 10%,
ii. It occupies four bytes of memory with 7 or 8 digits of accuracy.
Double
i. The range is from 5.0 * 10°% to 1.7 * 10°%,

ii. It occuples eight bytes of memory and provides 15 or 16 digits of
accuracy.
Extended
i. The range is 1.9 * 107" to 11.1 * 10*=,

ii. It occupies ten bytes of memory and provides 19 or 20 digits of
accuracy.

Comp
i. The range is from —2% +1 to 2% -1,
ii. Itoccupies eight bytes of memory with accuracy equal to real type.
Char
It is defined as single character enclosed within single quote (')
‘?" ‘a' ‘¥ are some of the valid char constants.

The declarations of char variable are as follows, provided i,k are as-
sumed to be char variables.

VAR
Lj.k : Char,;
Boolean

There are some circumstances where we want to have a logical value
instead of an arithmetic one. The Boolean type makes it easier and allow -
us to store either true or false in it. It occupies one byte in memory. The
Hdoclaralm ion of Boolean type for making p.q,r as boolean variables is as

VAR
p.q.r : Boolean;

10 PASCAL PROGRAMMING

PROCEDURES AND FUNCTIONS

Procedures and Functions have all the properties as the main program
has but it can be executed only from the main program though it is a self
contained program. Hence it is referred as a sub—program. The main
advantage of using Structured programming is thai we can spiit up a
program into several individual modules (Procedures and Functions) and
each one ha. ng a specific purpose. This will help us to scan and debug
the program. So, any Procedure or Function which takes part in the
program should also be defined before the main program starts. The
Procedure and Function can be seen in detail in Chapter 6.

STATEMENTS

It is the place where all of our actions take place i.e. Read, Write and
decision-—Cmaking.

The structure that we have seen in the first page of this chapter clearly
depicts how a typical Pascal program looks like.

Identifier
It is nothing but a program element which may be a

Program name
Function name
Constant name
Variable name.

and the rules for framing such a name will be the same as that of the
program name. Some of the valid and invalid identifiers along with
reasons are given below:

Valid Identifiers
area, volume, tax_rate, incometax, string80

Invalid Identifiers

1tree (First letter must be an alphabet)
tax+rate (Special characters are not allowed)
special price (here blank is not allowed between special and price)

Pascal also supports some standard (predefined) identifiers for specific
purposes. The program may loose its charm if we redefine standard
identifiers in our program and hence it is avoided. The list of standard
identifiers are given below for reference.

Dseg

PREDEFINED IDENTIFIERS
Addr EOF
Append EOLN
ArcTan Erase
Assign Execute

- Aux Exit
AuxinPtr Exp
AuxQutPtr False
Black Filepos
BlockRead Filesize
BlockWrite Fillchar
Blue Flush
Boolean Frac
Brown GetDir
Buflen GetMem
Byte GotoXY
Chain GraphBack ground
Char GraphColorMode
Chdir Graphmode
Chr GraphWindow
Close Green
CIrEOL Halt
Clrscr HeapPtr
Con Hi
ConinPtr Hires
ConOutPtr HiResColor
Concat IOresult
ConstPtr Input
Copy Insline
Cos Insert
CrtExit Int
Crtinit integer
CSeg Intr
Cyan Kbd
Darkgray KeyPressed
Delline Length
Delay LightBiue
Delete LightCyan
Draw LightGray

LightGreen

Fundamentals of Pascal 11

LightMagenta
LightRed
Ln

lo

Long File Pos
Long File Seek
Long Seek
Low Video
Lst

Lst OutPtr
Magenta
Mark
Maxint
Mem
MemW
Memavail
Mkdir
Move
MsDos
New
NormVideo
Odd

Ofs

Ord
Output
Ovrpath
Palette

Pi

Plot

Port
PortW

Pos

Pred

Ptr
Random
Randomize
Read
ReadIn
Real

Red
Release
Rename
Reset
Rewrite
Rmdir
Round
Seek

Seg
SeekEof
SeekEoln
Sin
Sizeof
Sqr

Sqnt

Str

SSet
Succ
Swap
Text
Textbackground
TextColor
Textmode
Trm

True
Trunc
UpCase
Usr
UsrinPtr
UsrOutPir
Val
WhereX
WhereY
White
Wirite
Writeln
Yellow

12 PASCAL PROGRAMMING

RESERVED WORDS

The following is a list of reserved words in Turbo Pascal, and they should
not be redefined by the programmer,

absolute external nil shi
and file not shr
array forward overlay string
begin for of then
case function or type
const goto packed to
div inline procedure until
do if program var
downto in record while
else label repeat with
end mod set xor
EXPRESSION

It is a collection of variables, constants and operalors. Consider the
following arithmetic expression

¥4+ 5x+6
The above expression consists of X as variable and 2, 5 and 6 as
constants and these are connected by + operator.
Strings
It is a sequence of letters enclosed in a single quote. Number of letters
in the string varies from implementation to implementation and most of
the system will have an upper limit as 255, Some examples of string
constants are given below.

‘Cray XMP-14'

‘Madurai-625 001’
A string without characlers is considered to be a null string or empty
string and such a string will be used to initialise the string variables.

TURBO PASCAL also supports fixed length string and it assumes to be
255 if the length is mot given in the declaration.

VAR
str : String ;
str1 : String [10];

In the above declaration str can hold a maximum of 255 characters and
str1 will have only 10 characters in it. [Turbo Pascal Version 3.0 allows
only fixed length string]

Fundamentals of Pascal 13

Operators

Pascal is equipped primarily with three types of operators. They are:
arithmetic operator, relational operator and logical operator, and they are
given in the following table.

Operators
|
v W D 2
Arithmetic operator Relational operator Logical operator
+ (addition) = (equal to) And
— (subtraction) > (greater than) Oor
* (multiplication) >= (greater than or equal to) Not
I (division) < (less than)
Mod <= (less than or equal to)
Div) <> (not equal to)
IN

In arithmetic operators, Med and Div are the only two with which we are
not much familiar. Now let us discuss about these two operators with
suitable examples.

MOD :
It is used to get Remainder after division in integer operands
examples:

5MOD 3 leads to 2
3MOD § leadsto 3

Div
It is used to gel quotient in integer operands.
Examples: .

S5DIV 3 leads to 1
3 DIV 5 leads 1o 0

In relational operators the only operator which we are not aware is IN,
it is used only in set comparison and it will be discussed in Chapter 9.

There are two types of arithmetic in Pascal since there are two data
types existing for numbers. They are integer arithmetic and real

14 PASCAL PROGRAMMING

arithmetic. Following table will clearly show a path of how it should be
properly used to get a correct result.

Integer Arithmetic
Operands Operator Resultant type
Integer + Integer
eg.5+3=8
Integer - Integer
eg.5-3=2
Integer * . Integer
eg.5"3=15
Integer / Real
e.g. 53 = 1.66
Integer MOD Integer
eg 5MOD3=2
Integer DIV Integer
eg.5DIV3=1
Real Arithmetic
Operands Operator Resultont type
Real ' + Real
e.g. 50+ 3.0 =80
Real - Real

eg. 50-3.0=20

Real . Real
eg. 50"3.0=150

Real ! ' Real

e.g. 5.0/ 3.0 = 1.66

Again the readers are reminded that the operators MOD and DIV should
be used only in conjunction with integer operands and will yield
compilation error if it is used with reals.

EXPONENT

In Turbo Pascal exponentiation is done in a different way. Usually BASIC
and FORTRAN have an operator for it. Here exponentiation is carried

Fundamentals of Pascal 15

out by using library functions (Built in functions). The functions involved
in this process are Log and Exp. For example to find x* the following
conversion should be used.

x> = exp (5°In(X))
and for
x%5 = exp (0.5"In(X))

The function for finding the natural logarithm (base €) is Ln() in Turbo
Pascal.

Assignment Statement

In declaration part we have seen how to declare integer, real, char and
boolean variables. Initially all the variables just declared will have some
arbitrary value in memory. So a variable should be defined with
appropriate value before it takes part in any calculation. This can be
accomplished by the assignment statement and it takes the following
general form.

Var := expression ;

e.9.
amount := 8790 ;
area := 22.0/7.0 * radius * radius ;
Yesno := "Y' ;
paid := true ;

Compilation error will occur when real value is assigned to integer vari-
able and character is assigned to real. Also note that the symbol := is
used to define a value 1o a variable and it should not be confused with
the relational operator = which means equal to.

Data types
Pascal comes with three data types and they are as follows :
I Simple data type
N k g
Standard data type User defined data type
(Scalar data type)
a) Integer ' a) Enumerated
b) Real b) Subrange
¢) Character
d) Boclean

The standard type data is also called fundamental data type.

16 PASCAL PROGRAMMING

li. Structured data type

a) Arrays
b) Records
c) Files

d) Sets

lil. Pointer data type

In this chapter we have seen only Standard type data and remaining will

be seen in the coming chapters in more detail.

Exercises

1. r[;escn:he different data types used in PASCAL ? Give an example
r each.

2. What is an identifier ? Give the rules to define an identifier.

3. What is the value of | calculated in the following assignment state-
ment?

J=3, K=6
) l=J* 2DIV3+KDIV4+6-J*J*JDIVS
i) '=JDIV2*"4+3DIV8+J*J"J

4. Explain why the following identifiers are incorrect

a) 1/4 b) 40,943.65 c) RS-PS d) CONST
e) 3DOWN f) LIGHT - SPEED g) BEGIN h) AREA4
i) Taxrate) ARRAY H) LAST WORD

5. What will be the value of the Pascal Expression:
4+6DIV3*"2-2
6. Identify errors, if any in the following

a) CONST
TEN
X

b) CONST
A=3°3;

¢) LABEL
st,ak,25.5

d) VAR
X,Y,IF : Integer ;

10 ;
TEN :

10.

1.
12.

13.

14.

Fundamentals of Pascal 17
Evaluate the following expressions

a) 9DIV2+ 15 MOD 6
b) 10 MOD 3 + 5 MOD 2

Summarize the complete structure of a PASCAL program.

It is expected to get the value of 8¢ which of the following expres-
sions is correct?

a. 8" 06
b. In (0.6 "exp (8))
c. exp (0.6%In(8))

What is ‘an expression ? When it is called

i) an arithmetic expression
i) a boolean expression

What are the various basic declaration statements in Pascal?
Evaluate the expression with a=10, c=7, p='d’

i) a+103 div sqr (a—c)

ii) Chr (succ (ord(p)))

Explain the Pros and Cons of using structural data types in
programming.

Can Literals and Constants be freely mixed with variables to form
expressions?

CHAPTER - 3

INPUT-OUTPUT STATEMENTS

The purpose of writing a Computer program is to get correct result by
entering relevant data for it. To feed data or lo receive results from the
Computer, the input and output statements are essential. Pascal is
provided with some standard identifiers for this purpose and it will be
discussed in the following sections.

READ, READLN are the two standard identifiers used to feed data to a
program. The simplest form of these two standard identifiers are as
follows.

READ (Var.list);
READLN (Var.list) ;

e.g.

READ (b,h};
READLN (p,n,r);

WRITE, WRITELN are other two standard identifiers used to receive
results from the system. The general form for these two standard
identifiers are as follows.

WRITE (Var. list) ;

WRITELN (Var. list);
e.g.

WRITE (i,3.k);

WRITELN (1,m,n);

At this moment, we will consider only READLN for input and WRITELN
for output and later in this Chapter the difference between READ, READLN
and WRITE, WRITELN will be dealt with.

READLN

Consider the following Readin statement.

Readln (a,b,c);

Assume that if a, b and ¢ were integers and if they take 10, 20 and 30
respectively as values then we have to enter values for a, b and ¢ in the
following form.

10 20 30
Here a blank space is used to separate the values.

Input Output Statements 19

If a, b and ¢ were real and have the values 10, 34.6 and 67.89 then the
entering of values to comresponding variables is as follows.

10 34.6 67.89

Please note that the first value (10) is entered as integer even though
the variable a is real and decimal point is optional for reals if it has only
integral part.

WRITELN
Consider the following Writeln statement.

Writeln(x,vy,z); e

If x, y and z were integers and the values for x, y and z were 123, 456
and 789, then it will display the result in the following manner.

123 456 -789

if X, y and z were reals with the same values the output will be in the
following form.

1.2300000000E+02 4.5600000000E+02-7.8300000000E+02

Note that reals are always displayed in an exponential form, and format-
ted output if needed, the following general form is used for reals.

Var-name: total-width:no-of-decimals

if the value of P is 789.762 and it is asked to print the value in the
following form

Writeln (p:8:2);
then the output will be
789.76

it is time for us to write a simple program by using the above rudiments.
The simple rules to be followed while writing a program are as follows.

i. First analyse the problem.

ii. Convert the algebraic expression into Pascal expression if there is
any expression involved in the program. '

iii. Write a program and test it with different set of values.

The example program taken here is, to find the area of a triangle using
the formula

20 PASCAL PROGRAMMING
area = 1/2bh

Here the input to the program is the base(b) and height(h) and the resuit
is area.

First convert the formula into Pascal form
area = 0.5 * base * height

Since fractional part appears in the formula the result (area) should be
in real form.

First stage of our program

Readln(base, height});
area:= 0.5 * base * height ;
Writeln(area);

The above statements are in simple form and we have to make it into
compound form and it is done by using begin and end.

Second stage

begin
Readln (base, height};
area:= 0.5 * base * height ;
Writeln (area);

end.

As we know already, every variable taking part in the program should be
declared in the declaration part. Our program turns into the following
form.

Tm'rd stage

var
area, base, height : real;
begin '
Readln(base, height) ;
area:= 0.5 * base * height ;
Writeln(area);
end.

Finally the program should be rewritten after including the header. The
complete program takes the following form.

Final stage

Program findarea (input, output);

Input Output Statements 21

var
area, base, height : real;
begin
Readln(base, height) ;
area:= 0.5 * base * height ;
Writeln{area) ;
and.

Output
125
3.0000000000E+01

The result obtained in the above program is in the exponential form. The
formatted output can be obtained by changing the

Writeln(area) ;
into

Writeln (area:8:2);

The above output statement will print area in the format as 8:2, i.e. the
total width of the area is 8 and number of decimal places after the
decimal point is 2.

Output.
125
30.00
Comment entry

We can also have some meaningful heading to our program and such
a comment entry (remarks) is given in two different ways.

i) by enclosing comments in (* %)
i) by enclosing within { }
Examples

(* Program to find area of a triangle *)
{Calculation of Income tax for the salaried people}

MORE ABOUT READ, READLN AND WRITE, WRITELN

Now we will discuss about the differences between Read, Readin and
Write, Writeln.

22 PASCAL PROGRAMMING

READ, READLN
Let us consider the values arranged in the following fashion.

1234586 data line 1
10 118 9 data line 2
7 12 13 data line 3

and if the Read statements are

Read {a.b.,c);
Read (d,e,f);
Read (1,73);

If the Read statement is execuled it continues to assign the values to
the subsequent Read also. Then the values to the above Read state-
ments are given below.

a=1, b=2, c=3, d=4, e=5, =6, i=10, and j=11
Now if all the three Read statements are changed into Readin as follows,

Readlnia,b,c);
Readln{d,e, f);
Readln{i,j);

Then after assigning a=1, b=2 and c=3 the remaining values in the first
data line are skipped. Now d,e and f get 10,11 and 8 respectively. As
readin is executed the remaining value in the second data line is also
skipped. Finally i and j receive their values 7 and 12 from the third data
line. From this one can understand that if readin is executed it will
consider only that number of values as required by that readin statement.

What happens if both read and readin is executed as in the following
segment

Read {a,b);
Readln (d,e);
Read(f, g}
Readln (i,7);

Now value allocation to the above variables is as follows.

The variables a and b are assigned to 1 and 2 from the first data line.
As read statement is executed it continues to supply the values in the
current data line 1o the subsequent readin statement. Thus d and e

Input Output Statements 23

received 3 and 4 respectively. After executing this readin, the remaining
values are skipped. The third read statement receives the value 10 and
11 for f and g from second data line. The same process repeats and
i and j get their values from the current data line as 8 and 9.

Write, Writeln
Assume the following assignments to the variables,
a=1, b=2, ¢=3, d=8, e=9, =10, i=23 and j=89
The effect after executing the following write statements are as follows.

Write(a:2,b:2);

Write (c¢:2,d:2);

Write (e:2,£:3);
Qutpat

1 2 3 8 9 10

The values for a{=1) and b(=2) are printed in the first line, and the values
for subsequent output statements will also be on the first line. Hence
all the values of the variables will be printed in a single line as above.
Normally integer values wili be printed continuously without leaving any
space. To get a formated output as in real type it is given as above.

Instead of Write statements above if it were Writeln, then the output will
be

Writeln(a:2,b:2);

Writeln(c:2,d:2);

Writeln(e:2,£:2);
Output

12
3 8
9 10

Now the values for a(=1) and b(=2) will be on the first line and after
execution the spaces in first line will be skipped. Then the values for
¢ and d will be printed in second line and finally the values for e and f
will be on the third line.

From above it is observed that if Writeln is executed the spaces after
printing values for the Writeln will be skipped.

24 PASCAL PROGRAMMING

Now let us see the effect what if both Write and Writeln were mixed as
given below.

Write (a:2,b:2);
Writeln(c:2,d:2);
Write(e:3,£:3);

Writeln(i:3,3:3);

In this case the values for a and b will be printed in the first line and
only after printing the values for ¢ and d in the same line the spaces in
the first line will be skipped as Writeln is executed. The second line
consists values for e, f, i and j. By using the above rules, the output will
fook like

12 3 8

9 10 23 89
if a blank line is required between the two output statements a’ blank
writeln is used to perform the same.

Writeln(a:2,b:2);
Writeln;
Writeln{c:2,d: 2);

Then the output will be
12
38

Some meaningful message can also be added to the Writeln statement
within single quotes to enhance the output format. If a = 23 and the
output statement is

Writeln('The Value of a is’,a);
Then the output will be

The Value of a is 23

Some additional forms of both Read, ReadIn and Write, Writeln are also
available and they will be seen in greater detail in next Chapters.

Exercises

1. Write down the differences between READ, READLN and WRITE,
WRITELN with suitable examples.

2. Write a program which prints.

Input Oulput Slatements 25

a) the area of a rectangle of sides a and b
b) the volume of a sphere of radius r

With usual notations, the formula for compound interest is given by
A =P (1+ 1HOO)NIf it is known that P = Rs 6780, | = 14 and
N = 8. Write a program to find A.

Write a note on Pascal output statements.

In the following program what can one say about the assignment
statement a:=b?

Program Test;

Var

b : Real;
x : Integer; *

begin

end.

. It causes a runtime error. b) it causes compile-time error.
. the variable x gets value 9. d) the variable x gets value 10.

[z

10.

b :
X :

9.6;
b;

"won

What will happen when a READLN statement is preceded by a
READ statement? Give an example.

Write a program which reads the co—ordinates of the vertices of a
triangle and outputs the area of the triangle.

Write a program to read the radius and the height of a cylinder and
find the area and the volume of the cylinder. The formulae are given
below (r = 22/7)

area of the curved suface =2 *n*r*h
totalouterarea =2 *wx *r * (r + h)
Volume =xn*r*r*h

Write a Program segment to read values of variable a, b from card
one and c, d from next card and output the values according to
the format.

Value of a = xo0d Value of b = x0x
Value of e = ooodlf Value of d = 00

How do you represent a compound statement in Pascal.

26 PASCAL PROGRAMMING

SOLVED PROGRAMS
1. Write a Program to reverse a given 5 digit Integer number.

Program Example (Input, Output);
Var
N,A,B,C,D,E : integer;
Begin
Writeln (‘'Enter No To Reverse');
Readln(N) ;
:= N mod 10;
(N div 10) mod 10;
(N div 100) mod 10;
(N div 1000) mod 10y
N div 10000;
erteln (*Reversed No');
Writeln (A,B,C,D,E);
End.

Woowy
wowon

Output

Enter No To Reverse
12345

Reversed No

54321

2. A motorcycle covers a distance of 48 km per litre of petrol consump-
tion. The cost of petrol is 20.30 per litre. Write a program in
PASCAL to calculate the cost of petrol to travel a distance of 145
km.

Program Example (Input, Output});

var
TotCost, CostPerLitre : Real;
TotKm, KmPerLitre : Integer;
Begin
CostPerLitre = 20.30;
KmPerLitre = 48;
TotKm = 145;

TotCost := Toth/KmPerthre * CostperLitre:
WriteLn (‘'Total Charge, TotCost:6:2);

CHAPTER — 4

CONTROL STATEMENTS

Pascal is considered to be the first successful structured programming
language. The reason for calling it so is that, it supports a variety of 'if*
and looping constructs.

The control statements are widely used to support decision making
processes. They largely depend upon a conditional test that determines
the decision.

Basically the program structure falls into the following three categories.
They are '
_ 1. SEQUENTIAL STRUCTURE

In this structure, statements are executed in a sequential manner and
there is no deviation in any part of the program. The programs we have
discussed so far fall under this category.

Il. SELECTIVE STRUCTURE

In this structure we can alter the flow of the program either conditionally
or un—conditionally. The statements used for this purpose are called
branching statements. If the program flow deviates after checking some
condition then that flow is said to be a conditional flow and if the transfer
takes place blindly without checking any condition then it is said to be
an un-conditional flow.

lil. REPETITIVE STRUCTURE

This structure is also called as looping structure. If we want to execute
a group of statements many times the above said construct is used.

IF statement:

This is one of the most powerful conditional control statements. The if
statement can be used in different modes, depending upon the nature
of the conditional test. The different forms of 'Iif' statements are:

i) Simple if
ii) Block if
iiiy Nested if

28 PASCAL PROGRAMMING -
We shall discuss different ‘if' constructs in the coming sections.

Simple IF statement
The syntax of a simple |F statement is

if (boolean expression) then
statement;

Here, the boolean expression is one which returns its result by logical
values i.e., either true or false. If the boolean expression returns true
then the following statement is executed and for false the execution
starts from the next statement.

(e.9.)
if (a > b) then .
Writeln (' a is greater than b ‘);
If (Sales <= 1000) then
Commn := sales * 2/100;
Simple if-else statement

We can also include an optional clause “else” along with the simple if
statement. The general form is

if (boolean expression) then
statement

else
statement;

(e.g)

if (English>=40)then

Writeln ('Pass in English’)
else

Writeln (‘Fail in English’);

Please note that there is no semicolon before else and else is
considered as an identifier if there is a semicolon before it.

The logical operators not, and, or are used to connect one boolean
expression with another boolean expression.

Contrel Starements 29

(e.9.)

. if (units>100) and (units =<=200)
Charge = units * 0.70;

Write a program to find the largest of given three numbers.

Program Example (Input, Output};
var
a,b,c : Integer;
Begin
Writeln (‘Enter 3 Values');
Readln (a,b,c);
If (a > Db) and (a > c) then
Writeln (* A is largest’);
If (b > a) ard (b > ¢)then
Writeln (‘B is largest’);
If (c > a) and (c > b) then
Writeln ('C is largest');

Output

Enter 3 Values
4 5 2

B is largest
Enter 3 Values

4 3 2
A is largest

Enter 3 Values

3 4 5
C is largest

Another example- follows to calculate the sales commission using If
statement.

Calculate the sales commission for the given criteria :

Sales amount in Rs. Sales commission
less than or equal to 1000 No commission
above 1000 but less than or equal to 2000 3% of sales

abave 2000 but less than or equal to 5000 5% of sales

30 PASCAL PROGRAMMING

above 5000 8% of sales
Program Example (Input, Output);
Var
Sales, Commm: Real;
Begin
Writeln (‘Enter Sales Value');
Readln(Sales) ;
If (Sales <=1000) then
Commn:=0;
If (sales > 1000) and (Sales <=2000)then
Commm: =Sales*3/100; -
If (sales > 2000) and (Sales <=5000) then
Commn:=Sales *5/100;
1f (Sales > S000) then
' Commn:=Sales*8/100;
Writeln (‘Commission Value : ',Commm:8:2);
End.
Output
Enter Sales Value
500

Commission Value : 0.00
Enter Sales Value

1500

Commission Value : 45.00
Enter Sales Value

2500

Commission Value : 125.00
Enter Sales Value

5500

Commission Value : 440,00

Logical constants are also assigned to variables provided if they are
declared as boolean.

Assume that a, b and c are boolean variables

a:=60 > 90; will assign false to a
b:=(a) or (true); will assign true to b
c:=(a) and (b); will assign false to ¢

Consider the following output statement,

Control Statements 31
Writeln (100 > 10);
the result for the above is true.
Now let us consider another set of statements when a = 34 and b = 90

Writeln(a>b);
Writeln(a<b);

Writeln(a=b);
The output for the above statements is
false
true
false

The following example program illustrates the usage of logical constants
in more detail.

Program Example (Input, Output);
Var
Tam, Eng, Mat : Integer;
a,b,c : Boolean;
Begin
Writeln (‘Enter Tam, Eng, Mat Marks');
Readln (Tam, Eng, Mat);
a:=Tam >=40;
b:=Eng >=40;
c:=Mat >=35;
If (a) and (b) and (c) then
Writeln (‘'Pass In Exam’)
Else
Writeln (‘Fail In Exam');
End.
Outpet

Enter Tam, Eng, Mat Marks
45 56 65
Pass In Exam

Enter Tam, Eng, Mat, Marks
20 25 30
Fail In Exam

Also note that True and False are standard identifiers and they may also
be used as variables. The following program illustrates how it can be
redefined in a program.

32 PASCAL PROGRAMMING

Program Example (Input, Output);
Var

True : Boolean;
Begin

True := False:

If (True) then

Writeln (‘Failure’)
Else
Writeln (‘Success’);

Output

Success.
Here first True is declared as boolean variable and defined as false.
When this value is substituted in ‘If’ construct, the boolean expression
returns to false. So, THEN pan of the ‘If' construct will not be executed
and ELSE part of the ‘IF’ construct will be executed to print the message
‘Success’.
Block if Statement
Here a group of statements will be executed if the boolean expression

" evaluates to true. The group of statements must be enclosed between

Begin and End.
The General form is

if (boolean expression) then

begin
statements;
end;
(e.g.1)
if (salary >»= 12000} then
begin
itax := salary * 9/100;
ptax := salary * 8/100;
end;

here, if salary is greater than or equal to 12000 then itax is computed
as 9% of salary and ptax as 8% of salary.

Control Statements 33

(e.9.2)
if (mat »= 35) and (com >=35) and (eco >= 35)then
begin
Writeln (‘Pass in Exam’);
total :=mat + eco + com;
average := total /3;
Writeln (‘Total Marks :' , total);
Writeln (‘Average is :' ,average:5:2);
end;

In the above 'block if' construct, if all the three subjects are greater than
or equal to 35 then the sequences of statements within the begin and
end are executed.

In both the examples, if boolean expression evaluates to false then the
control will be transferred to statement next to end.

Block if-else statement

This one is identical to a simple if-else, except that a group of state-
ments follow the boolean expression.

The general form is

if (boolean expression) then
begin
statements;
end
else
begin
statements;
end;

(e.g)

if (pcode=10)then
begin
coml :
inel :
end
else
begin
coml :=sales * 4/100;
inecl := sales * 2/100;
end;

sales * 5/100;
sales * 3/100;

34 PASCAL PROGRAMMING

Here the boolean expression is tested. [f it evaluates to true then the
group of statements followed by if are executed. If it is false then the
group of statements followed by else part are executed.

Program Example (Input, Output);

Var
Tam, Eng,Mat,Tot : Integer;
Ave : Real;
Begin

Writeln (‘Enter Tam, Eng, Mat Marks');
Readln (Tam,Eng,Mat);
If (Tam >=40) and (Eng >=40) and (Mat>=35) then
Begin
Writeln (‘Pass In Exam’);
Tot := Tam + Eng + Mat ;
Ave := Tot / 3;

Writeln ("Total :* , Tot);
Writeln (‘Average :' , Ave:5:2);
End
Else
. Writeln {*Fail In Exam ‘);
End
Quiput
Enter Tam, Eng, Mat Mérks
50 60 70
Pass In Exam
Total : 180
Average: 60.00

Enter Tam, Eng, Mat Marks
20 25 30
Fail In Exam

Nested if statement

This is the most imporiant aspect of the “if’ statement, and it may lead
to confusion if not properly used.

The general form of nested if is

if (boolean expression) then
statement

Control Statements 35

else if (boolean expression) then
statement

else

statement;

A careful understanding is required to know which “else” associates with
which “if', and it can be achieved by indenting a program. That is why,
it was said earlier that misused nested if may lead to chaos.

Here is a program to ilustrate the same.

Problem.

Write a program to calculate the income tax for the individuals.
The criteria is given below.

Where the total income
does not exceed Rs. 28,000 Nif

Where the lotal income exceeds 20% of the amount by which
Rs. 28,000 but does not exceed the total income exceeds

(1)

@

®

@)

Rs. 50,000

Rs. 28,000

Where the total income exceeds Rs. 4,400 plus 30% of the
Rs. 50,000 but does not exceed amount by which the total
Rs. 1,00,000 income exceeds Rs 50,000

Where the total income exceeds Rs. 19,400 plus 30% of the

Rs. 1,00,000 amount by which the total

income exceeds Rs. 1,00,000

Program Example (Input, Output);

Var

Incame, Tax : Real ;

Begin

Writein (‘'Enter Income'};
Readln(Income) ;
If (Income <= 28000.00) then

Tax := 0
Elze If (Income <=50000.00) then

Tax := (Income - 28000.00) = 207100
Else If (Incame <=100000.00) then

Tax := (Income - 50000.00) * 30/100 + 4400
Else

Tax := (Income - 100000.00) * 40 /100 + 19400;

36 PASCAL PROGRAMMING

Writeln ('Tax Amount * ,Tax :8:2);
End.
Output

Enter Income
20000
Tax Amount 0.00

Enter Income
30000
Tax Amount 400.00

Enter Income
75000.00
Tax Amount 11900.00

Enter income
125000.00
Tax Amount 29400.00

Block nested if

This is similar to the previous form, except that a block of statements
follow the boolean expression.

The general form is

if (boolean expression) then
begin
statements;
end
else if (boolean expression) then
begin
statements;
end
else
begin
statements;
end;

Example program to illustrate the block nested if follows.

Program Ekample {Input, Output});
var
Examno, Code, S1,52,83,54,55, Tot : Integer;

Control Statements 37

Begin
Writeln (‘Examno‘};
Readln (Examno);
Writeln('Enter Code 1 For 3 Subjects, 2 For 4 Subjects, 3 For 5 Subjects’) ;
Readln (Code);
If (Code=1)Then

Begin
Writeln (‘Enter 3 Subjects Marks ');
Readln (S1,52,53);
Tot:=81+52+483;
End
Else If (Code=2) Then
Begin
Writeln('Enter 4 Subjects Marks');
Readln(Sl,S2,83,84);
Tot :=S1+82+S3+S4;
End
Else
Begin
Writeln (‘Enter 5 Subjects Marks');
Readln (S1,52,53,54,55);
Tot :=S1+S2+53+84+85;
End;
Writeln ('Examno : ‘,Examno);
Writeln (‘'Total : ‘,Tot};
End.
Output
Examno
101

Enter Code 1 For 3 Subjects, 2 For 4 Subjects, 3 For 5 subjects
1

Enter 3 Subjects Marks

50 60 70

Examno:101

Total :180

Examno

201

gnlet Code 1 For 2 Subjects, 2 For 4 Subjects, 3 For 5 Subjecis
Enfer 4 Subjects marks

50 60 70 80

Examno: 201

38 PASCAL PROGRAMMING
Total : 260

Examno

a0l

Enter Code 1 For 3 Subjects, 2 For 4 Subjects, 3 For 5 Subjects
3

Enter 5 Subjects Marks

50 60 70 80 90

Examno:301

Total:350

Note that how coding has been reduced when the program is written
using nested if. In this nested IF, if any of the boolean expression is
evaluated to be true then the statement following it will be executed and
control will be transferred to the last line of the if statement.

Looping Structure

Now let us turn our attention towards the looping constructs available in
Pascal and how it helps to facilitate the program constructs.

In Pascal there are three types of looping structures available and we
will scan it one by one with suitable illustrations.

i. WHILE-DO loop

This type of loop is also called an entry controlled loop statement, i.e.,
the boolean expression is evaluated and if it is true then the body of the
loop is executed. This process is repeated until the boolean expression
becomes false. Once it becomes false, the control is transferred out of
the loop.

The general form of while—do loop is in Flow chart form

While (boolean expression) do False
begin
statements; True
' BODY OF THE LOOP |
end; y
False “ o

NEXT STATEMENT

Control Statements
Now let us see what we have discussed, through an example:

Program to sum the series comprising of odd number.

39

14345+7...100
Program Example {Input, Output);
Var :
I,S5um:Integer;
Begin
I:=1;
Sum:=0;
While (I <=100)do
Begin
Sum:=Sum+I;
I:=I+2;
End;
Writeln (‘The Sum of odd Numbers Between 1-100 ', Sum);
End.
Outpat

The Sum of Odd Numbers Between 1-100 = 2500

Here the sum and I are initialised, before it enters into the loop, first
boolean expression is tested, if it returns true then the statements within
begin and end will be executed. Note that 1 gets incremented by 2 inside
the loop, if it is missing then the loop is an infinite one as 1 is always less

than 100.

Now consider the following While—do loop structure in which the loop is

executed infinitely

a:=true;
While (a) do

Begin
Statements;
End;

The following program demonstrates how an infinite loop is used in

Pascal.

Program Example (Input, Output);
Var

40 PASCAL PROGRAMMING

A:Boolean;
Begin
A:= True;
While_{k) do
writeln (‘Welcome To Turbo Pascal’);
End.
Output

Welcome to Turbo Pascal
Welcome to Turbo Pascal
Welcome to Turbo Pascal
Welcome to Turbo Pascal

Here we have to use unconditional statement (GO TO) to make exit from
such a loop.
il REPEAT — UNTIL Loop

In REPEAT-UNTIL loop, the boolean expression is evaluated only after
performing the body of the loop. If the condition is false then it executes
the body of the loop again and again until the loop expression becomes
true.

The simplest form of this loop is In Flow chart from

.

Repeat
Statements; 1 | ooy oF THe Loor |
Until (Boolean expression); False
+ B.E.
True

The following program is to find the sum of the series given below
10+11+12+13 + ...+ 25

Program Example({Input,Output]);
Var

N, Sum:Real;
Begin

N:=1;

Sum:=0;

Control Statements 41

Repeat
Sum:=Sum + N;
N := N+ 0.1;

Until (N>=2.5);
Writeln (‘The Series Sum is: ',S5um:6:2);
End.

Outpet
The Series Sum is: 28.00

Here the statements between Repeat-Until are executed first, and then
the boolean expression is tested. So, there is a possibility of executing
the statments between Repeat-Until at least once, even if the boolean
expression does not satisfy the condition and this is the very basic
difference between while—do and repeat-until loop.

Please note that there is no.Begin and End between Repeat-Until loop
because Repeat-Until itself acts as a bracket and hence no more Begin
and End are needed.

Here is another program to illustrate the above construct in more detail.
Program to find the sum of the digits of a given number

Program Example (input,Output);
Var
: No,A,Sum :Integer;
Begin .
Writeln (‘Enter Your Number ‘);
Readln (No);
Sum:=0;
Repeat
A:=No Mod 10;
Sum :=Sum + A;
No :=No Div 10 ;
Until (No <1);
Writeln ('The sumof thedigits of a given number °,Sum);
End.

Output

Enter Your Number

156

The sum of the digits of a given number is :12

42 PASCAL PROGRAMMING

lii FOR loop

The For loop is used to repeat a single statement or group of statements
for a specific number of times. Pascal has 2 types of For loop and we
will discuss one by one.

a. FOR With TO Option
The general form of this type of loop is
For Index :=Initial-Value to Final-Value do
Statement;
Where

Index can be an integer or character or boolean variable and it
cannot be a real variable. Index is also called as a running variable.

Initial-Value is the initial value for the index variable.
Final-Value is the final value for the index variable

For example to sum the numbers between 1 and 100 the following
program construct may be used.

Sum:=0;
for i:= 1 to 100 do
Sum := Sum + 1i;
The following steps involved in the above program are:

1. Initialisation
(i.e. Assign initial-value to index)

2. Condition checking
(if the initial-value is less than the final-value)

3. Execute the statement following do if the condition check-
ing returns true.

4, Increment the index by 1

5. Repeat the process from step 2. If the condition checking
returns false then come out of the loop

Control Statements 43

More than one statement may also be added by adding Begin and End
after do and the general form is as follows.

For Index :=initial-value to final-value do
Begin
statements;
End;

Example program to check whether the given number is Prime or Not.

Program Example (Input,Output);

Var
No,A,I :Integer;
Begin
Writeln(‘Enter No To Check’);
Readln(No) ;
For 1:=2 to No-1 do
Begin
2:=No Mod I ;
If (A =0) then
Begin
Writeln ('Given No is not a prime No ');
Exit;
End;
End;
Writeln ('Given No is Prime No ‘};
End.
Ouiput
Enter No To Check
7

Given No is Prime No
Enter No To Check

9
Given No is Not a Prime No

Once it is found that the given number is not a prime number after
printing an appropriate message, the program should come to an end.

GO TO may be used to perform the above task. To avoid GO TO here
EXIT (Predefined Identifier) is used to do the same job. '

b. FOR With DOWNTO-DO Option

As we have said already, 'For’ loops come in two forms and we have
seen so far the first type. Here is the second type which is used to

44 PASCAL PROGRAMMING
decrement the index by one.
The general form of “for-downto—do “ is
For index :=Final-Value downto Initial-Value do
Statement;
Let us see ior-downto—do” through an example
Program to find out the factorial of a given number.

Program Example (Input,Output);

Var
Fact,No,I: integer;
Begin
Writeln (‘'Enter Number to find factorial ‘);
Readln(No) ;
Fact:=1;

For I:=No downto 1 do
Fact:=Fact * I;
Writeln (‘The Factorial of a Given Number is * , fact);
End.

Output

Enter Number to find factorial
5
The Factorial of a Given Number is 120

Here also, more than one statement can be added by adding begin and
end after do and the general form is as follows.

For Index :=Final-value downto Initial-value do
Begin
Statements;
End;
Rules to be observed in For loops

"1. The value of an index should not be changed within the body of
the for loop, i.e., it cannot be either incremented or decremented.
We will see what happens if we overrule this rule through an
exampie program.

Control Statements 45

Program Example ({Input, Cutput);

Var
I:Integer;
Begin
For I:= 1 to 10 do
Begin
I:=I+1;
Writeln ('Welcome To Pascal Ver 5.5 ');
End;
End.
Output

Welcome To Pascal Ver 5.5
Welcome To Pascal Ver 5.5
Welcome To Pascal Ver 5.5
Welcome To Paseal Ver 5.5
Welcome To Pascal Ver 5.5

Here the message 'Welcome To Pascal Ver 5.5' will be printed 5 times
instead of 10 as the loop counter is altered within the body of the loop.
Hence it is avoided.

2. In BASIC language, the loop will come out only if the index vari-
able’is greater than ‘he final value, but it is not the case in
PASCAL's for’ loop. The value of index variable is the same even
after the completion of the loop. This will be demonstrated by the
following program. :

Program Example (Input,Output);

Var .
I:Integer;
Begin
For I:=1 to 5 do
Writeln (‘Welcome');
Writeln (1i);
End.
Outpui
Welcome
Welcome
Weicome
Welcome

Welcome

46 PASCAL PROGRAMMING
The value of 1 in the above is only-5 and it is not 6 as expected by you.

3. There should be atleast one executable statement associated with
the loop. If there is no action statements then the loop is said to
be a “Time Delay Loop" or “Software Delay”. This Kind of loop will
be occasionally used to pause the program for a specific time.

For I:=1 to 1000 do;

Comparative study of the loop

It is upto the programmer’s choice to choose the type of the loop. But
before choosing the particular type, the following points should be con-
sidered. If the increment or decrement is either real or integer then we
can use While—do or Repeat until loop. And also we want to execute
the loop atleast once even though the condition is false’ then definitely
we have to use Repeat-until loop. The for loop should be used only when
the increment or decrement is 1 and it is very useful in Arrays.

CASE statement

This is a multiple branching control statement, and this type is very
useful for decision making when more than one case is involved.

The general form of the CASE statement is
CASE expression of

Label 1:
Begin
statements;
End;

Label 2:
Begin
statements;
End;

Label 3:
Begin
statements;
End;

Label n:
Begin
statements;
End;

Control Statements 47

else
Begin
statements;
End;
End;

The expression is either integer type or char type. When the Case
statement is executed, the value of expression is compared with the
label 1, label 2 etc., upto label n. If the value of expression matches with
the label, then the sequence of statements that follow the label are
executed. The Else statement is executed if no matches are found and
it is optional.

Example program to illustrate the Case Statement.

Program Example (Input, OQutput);

Var
Cho :Char;
V1,V2:Integer;
Begin
Writeln (‘Enter Your Choice + , -, *, / ');
Readln (Cho);
Writeln (‘Enter Two Values ‘);
Readln (V1,V2);
Ccase Cho of
‘+' : Writeln (‘The result is ', V1 + V2);
= : Writeln (‘The result is *, V1 - V2);
‘*! : Writeln (‘'The result is ‘', V1 * V2);
/'t Writeln (‘The result is ', V1 / V2 :7:2)
Else
Writeln ('Invalid choice. Try again ‘);
End;l
Readln;
End.
Outpet
Enter Your Choice +,-,"*,/
+
Enter Two Values
52
The result is 7

Enter Your Choice + ,~,*, /

48 PASCAL PROGRAMMING

Enter Two Values
52
The result is 3

El\‘IOIYO\lChO‘cO"'.'.'./

Enter Two Values
52
The result is 10

Enter Your Choice +,-, ",/

/
Enter Two Values
§2

The result is 2.50

First we have to enter our choice of operators (+,~,*./), and it is received
by a character variable cho. Now we have to supply two operands to
process. If entered choice does not belong to any one of the above four,
the ELSE part of the Case statement is execu(ed to display the message
“Invalid Choice, Try again”. -

Please note that;Cho in the case stale‘fnént should not be of real type.

The following program. segment is invalid one.)
Case orh; of
1.0 : ... F
2.0 : ... ;
3.0 : ... ;
end;

Now consider the following code

Case x of

1 yiy*T;
3,5 :Y:=Y-2;
2,3,4 @ Y:=Y+10;

end;

In the above segment when x=1, y is multiplied by 7 and it is stored in
y. When x=3 or x=5, y is subtracted by 2 and it is stored in y itself. If
X=2 or X=3 or X=4, y is incremented by 10 and stored in y. From this

Control Statements 49

example it is seen that the labels may also be combined to execute the
same set of statements.

Another program which uses block construct in the CASE statement.

Program Example (Input,Qutput);

Var
Centi, Fahren : Real;
opt : Integer;
Begin X
Writeln (‘Enter 1l for Centigrade to Fahrenheit ‘);
Writeln (' 2 for Fahrenheit to Centigrade ');
Readln (Opt);
Case Opt of
1: Begin
Writeln (‘Enter Centigrade ‘'};
Readln (Centi) ;
Fahren := 9/5 * centi + 32;
Writeln (‘Fahrenheit Temperature is:, Fahren:6:2);
End;
2: Begin)
Writeln (‘Enter Fahrenheit ‘);
Readln (Fahren);
Centi := 5/9 * (Fahren - 32);
Writeln (‘Centigrade Temperatureis : ', Centi:6:2);
End;
End;
End.
Output

Enter 1 for Centigrade to Fahrenheit
2. for Fahrenheit fo Centigrade

1

Enter Centigrade

40 .

Fahrenheit Temperature is: 104.00

Enter 1 for Centigrade to Fahrenheit
2 for Fahrenheit fo Centigrade

50 PASCAL PROGRAMMING

2

Enter Fahrenheit

104

Centigrade Temperature is: 40.00

Goto statement

This is the only unconditional statement available in Turbo Pascal. Our
main aim in the structured programming is to avoid unusual goto which
may lead to confusion. But, the goto statement may be used to exit from
several layers of nesting. The general form of Goto statement is

Goto label;

where label may be numeric or alphanumeric, and it is declared before
the const declaration, e.g.

Program example ;

label 100;
Const

X = 25;
begin

goto 100;
100:
end.

The use of 'goto’ is not encouraged since more number of ‘goto’ means
more confusion.

Control Statements 51
Exercises
1. Narrate the structure and functions of IF statement.
2. Write a program to list first 100 prime’ numbers.

3. Wirite a program in Pascal to find roots of a quadratic equation
using CASE statement.

4., Wirite the equivalent of
FOR J:=1TO N DO
BEGIN

<STATEMENTS>

END;

Using while-do construct.

5. Explain the REPEAT-UNTIL structure. How does it differ from the
WHILE-DO structure? Explain with suitable examples.

6. Program test;

var
j:integer;
begin
ji=1;
while (j < 50) do
begin
writeln (‘Welcome’);
Ji=i*+1;
end;
end

How many times will ‘Welcome' be printed ?

7. Program test;

var
i,j.k,i, c:integer;
begin
i:=1;
c:=0;
ji=1;
k:=10;

c:=100;

52 PASCAL PROGRAMMING

for I:= 1 to k*k do
begin
k:=k+20;
c:=c+l;
end;
writeln (c);
end.

What will be the output when the program is executed?

8. To be included in a cricket team the age should not be less than
20 and should not be greater than 25.

The program segment to accomplish this is

a) if (age >=20) or (age<=25)then
writeIn('included'’);

b) if (((age —20)*(age -25)) < 0) then
writeln(‘included *);

c) if (((age -20)*(age -25)) < 0) then
writeln(‘included °);

d) if (((age —20)*(age —25)) < 0) then
writeln(‘included *);

-

9. Program test;
var
m,n:integer;
begin
m:=0;
n:=o;
while(n <= 60) do
begin
m:=m+2;
if { m > 20)then
begin
writeln(n);
exit;
end;
end;
writeln(n);
end.

What will be the output when the program is executed?

Control Statements

10. Program test;
var
m,n:integer;
begin
m:=5;
for n:=1 to m do
begin
m:=4;
writeln{'m’);
end;
end.
What will be the output when the program is executed?

11. Program test;
var
i,j.k,m,:integer;
begin
m:=0;
§:=10;
k:=1;
for i:= 1 to j do
begin
k:= -2;
m:=m+i;
i:=i+k;
end;
writeln(m);
end.
What will be the output when the program is executed?

12. Program test;
var
s,m:integer;
begin
s :=5;
for m:= 100 downto 0
begin
S:=8+3;
S:=8-2;
end;
writeln(m);
end.
What will be the output when the program Is executed?

53

54 PASCAL PROGRAMMING

13, program test;

var
a,b,c,d:real;
begin
a:=6.9;
b:=2.4;
c:=10;
d:=5;
if (a > 6.9) then c:=c+d;
if (e <= 25) then d:=d-c;
if (¢ =10) then b:=a+c;
if (d <=0) then b:=d+a;
Writeln (c:5:2,d:5:2});
end.

What will be the output when the program is executed?
14. Consider the following program block.

a:=2;
b:=1.5+a;
c:=a/(b+0.5);
for i:= 1 to 3 do
begin
a:=a+c;
writeln(c:10:3,a:10:3);
end;
What will be the output when the program is executed?

15. Consider the following program block.

begin
writeln (‘welcome’);
end;
When a program using this segment is executed, how many times will
the message ‘welcome’ be executed?

16. Consider the following program

Program test;
var

j: Integer;
Begin

Control Statements 55

for j:= 1 to 10 deo
begin
ji= §+1;
writeln (‘welcome to pascal '};
end;
End

How many times will the string ‘welcome to pascal * be printed?

17. Consider the following program

If c < 0
then
begin
ifd<o
then
d:=d+1
else
ci=a+l;
end;

What is the value of c after the above segment is executed, if initially
c=9andd=89.

18.

19.

20.
21,

22.

23.

Write a PASCAL program which calculates
1M+ 18 +1/5 +1/7 ... 121

Write a program in Pascal to find the sum of the N terms of the
series.

S=1+X+X2+ X3+ ... XNtor the given value of X.
Write a'program to print the multiplication table of order N.

Write a Pascal program to print the factorial value of numbers from
5to 15.

Write a Pascal program to print the sum of the first 20 multiples
of 12.)

Suppose that H, M and N are variables of the type integer, identify
the job of the following compound statement is designed to do.

BEGIN
WHILE (M <> Q) AND (N <> Q0 } DO
IF (M < N) THEN N:= N MOD M
ELSE M:= M MOD N
IF (M = O) THEN H:= N ELSE H:= M

56 PASCAL PROGRAMMING
Explain your answer by choosing suitable specific values for M and N.
24. Write a Pascal program to evaluate the series
x2 x4 x5
+ -
2211 242120 26313

s=1

25. Specify the syntax of the case statement. Also specify the impor-
tant rules associated with the statement. Explain its logic.

26. Consider the following program segment.

i := 6728 ;
j =5
While (({ i mod j) = 0) Do
Begin
i
i
End;
What is the value of | after the above segment is executed?

i div j;
jo+1

27. In the following Pascal program segment, what is the value of X
after the execution of the program segment.

X :=-10; Y =20,
ifX>YTHENIF X < 0then X :=abs (X) else X :=2" X
a) 10 b)-20 ¢)-10 d) None of the above.

28. Assume that X and Y are nonzero positive integers. What does
the following Pascal program segment do?

While X <> Y do
if X » Y then

X : X~-Y%
else

Y := ¥ - X;
write (X);

a) Compute the LCM of two numbers

b) Divide the larger number by the smaller number
c¢) Compute the GCD of two numbers

d) None of the above.

Control Statements 57
SOLVED PROBLEMS

"1, Write a Pascal program to find the roots of a quadratic equation.
Include all possibilities.

Program Example (Input,OQutput);
Var
A,B,C,Disc, Rootl,Root2: Real;
Begin ’
Writeln (‘Enter A,B,C ‘);
Readln(A,B.C);
Disc := B*B -4*A*C;
If (Disc < 0) then
Begin
Writeln (‘Real and Positive Roots ‘);
Rootl := (~B + Sgrt (Disc)) / (2 * A);
Root2 := (-B - Sgrt (Disc)) /7 (2 *A);
Writeln ('Rootl= ' ,Rootl:8:2, Rootl:8:2, Root2=' Root2:8:2):

End
Else If (Disc = 0) then
Begin
Writeln (‘Equal Roots ‘);
Rootl := -B/ {2 *A);
Root2 := kootl ;
Writeln ('Rootl = * ,Rootl:8:2, Root2= ', Root2:8:2);
End
Else
Begin
Writeln (‘Complex Roots ');
Disec := - Disc;-
Rootl := Sqgrt (Disc) / (2.0 * A };
Root2 := =B/ (2.0 * A);
Writeln ('Rootl = ' ,Rootl:8:2, Root2= ', Root2:8:2);
End;
End.
Output
Enter A, B, C
345
Complex rools

Rootl = 1.11 Root2 = ~0.67 -

58 PASCAL PROGRAMMING

Enter A, B, C

263

Real and Positive Rools -
Rootl = -0.63 Root2 = -2.37

Enter A, B, C

242

Equal Roots

Root1 = -1.00 Root2 = -1.00

2. Wirite a Pascal Program that sum up the following series.

-1, +2, -4, +8, =16, +1024

Program Example (Input , Output};

var
N, Sum, Sign, Prod : Integer;
Begin
Prod : 1 ;
Sum : 0 ;
Sign := -1 ;
While (Prod <= 1024) do
Begin
Sum := Sum + Sign * Prod ;
Sign := -Sign ;
Prod := Prod *2 ;
End;
Writeln ('The sum of The Series’', Sum };
End.
Output

The Sum of The Series — 683

3. Wirite Pascal statements for computing the value of a real variable
‘m’ to the power of a positive integer ‘n’.

Program Example (Input, Output);
Var
M,5um : Real;
N,I : Integer;
Begin
Writeln ('Enter Value ‘};
Readln (m};
Writeln (‘Enter Power ');
Readln (N});

Control Statements 59

Sum :=1;
I :=1;
While (I <=N } do
begin
sum := Sum *M ;
I:=1=1;
end;

Writeln {'M To The power of apositive integer M Is, ‘Sum:8:2};

End.

Ouiput

Enter Value

4

Enter power

2

M To The power of a positive integer N Is 16.00

4, Develop an interactive program in Pascal which prompts the user
for a 3 digit integer and checks whether the middle digit is
numerically equal to the sum of the other two digits and prints an
appropriate response.

Program Example (Input,Output);

Var
No, A,B,C : Intager;
Begin
Writeln (‘Enter No'};
Readln(Nc) ;

A:=No Mcd 10;
B:=(Ne Div 10) Mod O;
C:=No Div 100;
If (B = (A+C) then
Writeln('Extreme Numbers Are Numerically Equal ToMiddlaNo*)
Else
Writeln (‘ExtremsNumbers Are Not Numerically Equal To MiddieNo' | ;
End.

OQuiput

Enter No
132 '
Extreme Numbers Are Numerically Equal To Middle No

60 PASCAL PROGRAMMING

Enter No
456
Extreme Numbers Are Numerically Equal To Middle No

5. Write a Program to calculate the sum of the series

1/2 + 3/4 + 5/6 + — ...+ 99/100
Program Example (Input, Output);
Var
I,J : Integer;
Sum : Real;
Begin
Sum := 0;
I =1 ; J:=2;
While (I <= 99} And (J <= 100) Do
Begin
Sum := Sum + I/J;
I o:= I42;
J = J+2;
End;
Writeln (‘The Sum is ', Sum :8:4};
End.
Ouiput

The Sum Iis 47.7504

6. Write a program to test the divisibility by both 3 and 7 of a number
(between 1-100)

Program Example {(Input, Output);

Var
I,J,K : Integer;
Begin
For I := 1 to 100 Do
Begin
J := I Mod 3;
K :=1IMd?7;
If (J=0) And (K=0) Then
Writeln (I);
End;

_Conrro! Statements

Ouipui

21
42
63
84

7. Write a program to find X' for a given X.

Program Example (Input, Output);

var
X,R,5um : Real;
Begin
Writeln ('Enter Value for X ‘'):
Readln (X);
R := 1;
Sum := 0;
While (R <= 10) Do
Begin
Sum := Sum + Exp (R * In (X});
R:= R+!;
End;
Writeln (‘The Sum is ', Sum : 7:2);
End.
Output
Enter Value for X
2

The sum is 2046.00

61

CHAPTER - 5

ARRAYS

So far, we have oriented ourselves to Simple Data Types and have
learned about control statements. Now, we can move to the next data
type called “Structured”.

Structured data type consists of Arrays, Records, Files and Sets. In this
chapter we will discuss the advantages of using Arrays.

Usually, all simple data type variable can store only one value at a time
and if we want to store a new value in the same variable then we have
to erase the previous one. But there are occasions where we want to
store more than one value to a particular variable. This could be
accomplished by using Arrays.

An array is a collection of variables of the same data type and it is
referenced by a common name. Let us consider a real time situation
where it is fully utilised. In our class there are 20 students and every
body takes physics examination. Now we want to assign 20 values for
the variable physics. Here the marks obtained by the students are
different but all of them are referred by the same variable 'Physics'. In
this situation we are in need of Arrays and the general form of an Array
is

Var
Array—name: ARRAY [Lower-Bound .. Upper-Bound) of DATA TYPE;
So, our declaration for the above case takes the form as

Var
PHYSICS : ARRAY [1..20] of Integer;

On executing the above declaration, the system will reserve 20 memory
location for the identifier Physics and it is represented as follows:

Physics [1] Physics [2] Physics[20]

Here the index starts from 1 and goes upto 20.

Arrays 63

The above type of ARRAY is called a one-dimensional array, and it is
also called a “List”. This means that an element in an array can be
accessed by just giving an index or subscript. Arrays may have one to
several dimensions and we will discuss each in detail later.

Several examples showing the one-dimensional array declaration are
given below;

Var

AVeRaGE : ARray [1...10] of Real;

Declares the average as an array containing 10 real elements.
Var

Resulr : ARRAY [1..10] of Char ;

Declares the Result as a character array containing 10 character
elements.

Var
Name : ARRAY [1..10] of Staing [20];

Declares location for 10 names and each one will have 20 characters
in it.

Let us see through an example program.
Problem:
To find the maximum number and its position in an array.

Program Example (Input,Output);
Var
N : Array [1..10]of Integer;
I,Max, Maxpos : Integer
Begin
Writeln {'Enter 10 numbers 1 by 1 ‘};
For i:=1 to 10 do
Readln (N[I]);
Max:=MN[1];
Maxpos :=1 ;
For i:=2 toc 10 do
if (max < N[{i]} then
begin
Max :=N[i];

64 PASCAL PROGRAMMING

Mawpos := i;
end;
Writeln ('The Maximum Number is *, Max, ' Its position is ', maxpos);
End.

Output

Enter 10 numbers 1 by 1
345

76

12

786

87

112

324

562

478

512

The Maximum Number is 786 lts position is 4

Explanation
The algorithmic approach is given below :

Step 1 : read the 10 elements one by one.
step 2 : Initialise

Max = N[1]

Maxpos = 1
Step 3 : Repeat Step 4 Varying I from 2 to 10
Step 4 : If max , N (l) then

Max = N [I]

Maxpos =1
Step 5 : Print max, maxpos

Here is yet another example to illustrate the usage of arrays in everyday
affairs. Iif we want to arrange 10 names or numbers in a required manner
i.e. either in ascending sequence or in descending sequence we can
make use of the capabilities of arrays. For doing such a process we
need a sorting algorithm, and sorting is a method of arranging a list of
quantities (of the same data type) in a desired manner.

Arrays 65

At present many algorithms are available for doing the above job. The
most popular and important algorithms are given below :

1. Quick Sort

2. Bubble Sort
3. Shell Sort

4. Insertion Sort
5. Selection Sort

Here we are considering the Bubble sort method for illustration.

Assume that we are provided with two numbers say, 17 and 33. For this
no sorting process is required as it is trivial to arrange them either in
ascending or descending order. Now consider the case where there are
three numbers, to be arranged in an ascending order

14 89 12

Here, first we are comparing the first number with the second one i.e.
14 with 89 and find that they are in ascending order. Now we compare
the first number with the third number i.e. 14 with 12. They are not in
ascending sequence and in this case we interchange their position as
follows :

1289 14

We have got the lowest number in the first position after performing two
comparisons. Our job will be over if we place the next lowest number
in the second position. Now we compare the second number with the
third number i.e., 89 with 14. Here also the numbers are not in
ascending sequence and we therefore interchange the positions as
before. Thus the final display will be as follows :

12 14 89

The same approach will be followed even if we sort N numbers. It is to
our benefit that we understand how interchanging takes place. The
process of changing the values between two variables is called swap-

ping.

For example, if
a=12andb =89

and if we want our output as
a=8%andb =12

66 PASCAL PROGRAMMING

We use a third variable 't' as a temporary one. Then the following will
be the sequence of coding to exchange the values between the two

variables.
t:=a ;
a:=b ;
b:=t;

The first line of coding will assign the value of a(=12) to the temporary
variable t. The second line of coding will assign the value of b(=89) to
‘a’ after erasing the previous value of a i.e., 12. The last line of coding
will assign the temporary value (=12) to b after erasing the previous
value of b i.e. 89. And the output will be

a=8%and b=12

Now let us code a Pascal program to arrange 5 numbers by implement-
ing the Bubble sort method.

Program Example (Input,Qutput);
Var
N: Array [1..5] of Integer;
1,J,K,Temp : Integer;
Begin
Writeln('Enter 5 numbers ‘};
For i:= 1 to 5 do
Readln(N[i]);
For i:= 1 to 4 do
For j:= i+l to 5 do
if (N[i] = N[]j]) then

begin
Temp := N[i];
N[i] ;= N(j1:
N[]] ;= Temp;
end;

Writeln('The Sorted Nos are ‘);
For i:= 1 to § do
Writeln (N[i]);
End.

Output

Enter 5 numbers
874
234

Arrays 67

112
87
23

The Sorted Nos are
87

93

112

234

874

Let us now discuss about the four fundamental operations on linear
Arrays (One dimensional arrays)

I. Traversing an array
It is nothing but scanning or viewing an entire array contents.

The following program will show how array elements can be viewed.

Program Example (Input, Output);

Var
N ; Array [1..5] of integer;
i : integer;
Begin
Writeln('Enter 5 Numbers');
For i = 1 toe 5 do
Readln(N([i]);
Writeln('The Entered Numbers are');
For i:=1 to 5 do
Write (N[i] :5);
End.
Output
Enter 5 Numbers
56
78
M
12
&5

The Entered Numbers are
56 78 34 12 &5

68 PASCAL PROGRAMMING
2. Searching an element in an Array

Ofcourse there are many algorithms available for searching an element
in a linear array. We are confined to linear search. Initially, elements
for an array were entered. Then search element required say, X should
be entered. Now scanning starts from the first location to the end of the
array. If the search element coincides with an array element then the
control immediately come out of the loop after displaying the message
“The Search number is found".If the search element is not found in the
array, then the message “The Search number is not found" is displayed.

Here we are using the standard identifier “Exit" to come out of the loop,
as it has been emphasized several times the importance of not using
GOTO.

Program Example (Input,Cutput);

Var
A: Array [1..10] of integer;
I,Searchno, N: Integer;
Begin
Writeln ('Enter How many Numbers do you want to enter ‘'};
Readln(n);
Writeln('Enter ',N, 'Numbers ');
For i:= 1 to n do
Readln(A[i]);
Writeln ('Enter Search Number ‘);
Readln(Searchno);
For i:= 1 to N do
if (A[i] = Searchno} then
begin
Writeln ('The Search number is present ');
Exit;
end;
Writeln('The Search Number is not present‘);
End.
Ouiput
Enter How many Numbers do you want to enter
5
Enter 5§ Numbers
456
123
987

543

Arrays 69

Enter Search Number
987
The Search number is present

Enter How many Numbers do you want to enter
5 .

Enter 5 Numbers -

100

200

300

400

500

Enter Search Number
150
The Search Number is not present

3:Inserting an element in an array

It is one of the important tasks in linear arrays, and the principle which
we are going to adopt here will be discussed in detail in the latter part
of this chapter.

At the start we should supply N elements for the array. Then an insertion
position (P) and the value (V) should be fed. The algorithm behind this
problem is as follows.

We have to move the last element to the location one above that. This
process continues till the index reaches the position that we entered.
Now we have the same element in the desired position and also in the
index one above. At this stage the element which we want to insert is
inserted at the current location. The elements below this position will not
be perturbed. Finally we will have N+1 elements to display.

Program Example (Input, Output);
var
N : Array [1..10] of Integer;
I,P,V,K : Integer;
Begin
Writeln ('Enter Howmany numbers do you want to feed ');
Readln (K);
Writeln ('Enter' ,K, 'Numbers' };
For i := 1 to k do
Readln(N[i]);

70 PASCAL PROGRAMMING

Writeln{ 'Enter Position to insert and its value);

Readln(P,V);

For i := K down to P do
N[i+1] := N[i];

N[i] := V;

Writeln ('Elements in an array after insertion ‘);
For i:= 1 to k+1 do
Writeln (N[i]};
End.

Output

Enter How many numbers do you want to leed
5

Enter 5 Numbers

456

123

987

45

Enter Position to insert and its value
3 345

Elements in an array after insertion
456

123

345

987

76

45

4, Deleting an element in an Array

In this case after entering 'n’ elements for the array, it is enough that we
feed the position (P) where we want to delete an element from the array.
The detailed algorithm is given below for better understanding.

The elements in position P + 1 should be moved to the location P. Thus
by decreasing one location for all elements till the index reaches total
number of locations, we will have N -~ 1 elements to be displayed.

Program Example- (Input, Output);
Var
N:Array[l..10] of Integer;
I,P,K :Integer;
Begin
Writeln ('Enter How many numbers do you want to feed);

Arrays 71

Readln(X);
Writeln ('Enter' ,K, 'Numbers');
For i := 1 to K do
Readln(N[i]};
Writeln ('Enter position to delete ‘);
Readln (P);

For i := P to K do
N(i]:= N[i+1];
Writeln ('Elements in an array after deletion' };
For i := 1 to K -1 do
Writeln (N[i]);
End.

Ouiput

Enter How many numbers do you want to feed
5

Enter § numbers

87

98

12

45

67

Enter Position to delete
3

Elements in an anray after deletion
87

98

45

67

Character Array

We are already familiar with the char, and now let us discuss the
character array in much detail.

An array of character is called a “String". Suppose we want to store 10
names and each one having the maximum of 20 characters then the
declaration for the above is as follows:

Var

Stdname : ARRAY [1...10] OF Swring[20];

72 PASCAL PROGRAMMING

Hera is an example which shows how character arrays can be handled.
The example program is just to receive 5 name and to display entered
5 names.

Program Example (Input,Output);

Var
name : Array [1..5] of String([20];
. i : integer;
Begin
Writeln ('Enter 5 Names ');
For i := 1 to 5 do
Readln (Name(i]);
Writeln('The Entered Names are');
For i:= 1 to 5 do
Writeln(Name[i]);
End.
Quiput
Enter 5 names
Dysan
Prinsel
Profile
Amkette
Maxell

The Entered Names are....
Dysan

Pinsel

Profile

Amkette

Maxell

Now we will see yet another example in which individual characters are
accessed, though it is entered as a string. To illustrate the said process
we are going to write a program to check whether the given word is a
palindrome or not. (Palindrome is a sequence of characters that reads
the same backward and forward. MALAYALAM is a palindrome)

Program Example(Input,output);
Var
Givstr,Revstr ; String;
I : Integer;
Begin

Arrays 73

Writeln ('Enter String to Check' };

Readln(Givstr);

Revstr := '' ;

For i:= Length (Givstr) downto 1 do
Revstr :=Revstr + Givstr[i];

if (Giwvstr = Rewvstr) then
Writeln ('Given string is Palindrome')
alse
Writeln ('Given string is not a Palindrome'};
End.

Outpui

Enter String to Check
malayalam
Given string is Palindrome

Enter String to check
Sivayavasi
Given string is not a Palindrome

Enter String to Check
able was i saw elba
Given stiing is Palindrome

Unlike BASIC where character in a string can be accessed only by using
some of the built in functions (RIGHT$,MID$,LEFTS). here it is accessed
by simply using its index _(subscript).

Explanation about the Program.

M o] [L] M A [[A])

Initially we have to pass a word to the program which we want to check.
Then a second string is initialised with ** (Null). The only function used
here is length, and the purpose of doing, so is to find the length of the
given string. Here ‘For-Downto’ loop is used from the length of the
given string to 1 and the character relating to index is stored in the
second string. Finally, after completing the loop the comparison takes
place between the first string with the second one. If they were found
to be equal then the entered string is palindrome otherwise it is not.
From the above discussion it is seen that in Pascal, a character in a
string can be accessed through its index.

74 PASCAL PROGRAMMING
Two-dimensional Array

We have already seen one—dimensional array in the previous section
with suitable examples. In Turbo Pascal, we can have arrays more than
one dimension, and the declaration of a two dimensional array takes the
following form

VAR

Anray—name :ARRAY]LB..UB,LB..UB] of Data—type;

Here the data type may be integer, real, char or boolean.
For example the following declaration

VAR

A: ARRAY [1..3, 1..3] of Integen;

. will reserve 9 memory location in the form "of three rows and three
columns, and it is represented as

Al1,1], A[1.,2], A[1,3]
Al2,1], Al2,2], Al2,3]
A[3,1], Af3,2], A[33]

We may also call two dimensional array as a Table, since they store as
table of values. Any element in the two dimensional array can be
referred by giving the corresponding row subscript and column subscript.

Now let us consider the following example which illustrates how to
receive elements for a two dimensional array and how to output the
same.

Program Example{Input, Output);
Var

Arrays 75

A : Array [1..3,1..3) of Integer;
1,J : Integer; '

Begin
Writeln ('Enter 9 Elements for A Matrix ');
For i=1 to 3 do
For j:= 1 to 3 do
Readlnf{ai,jl);
Writeln('Output Matrix');
For i:= 1 to 3 do
begin
For j:=1 to 3 do
Write (A[i,j]:5);
Writeln;
end;
End.
Outpui
Enter 9 Elements for A Matix
n
12
13
14
15
16
17
18
19
Qutput Matrix
11 12 13
14 15 16
17 18 19
Explanation

For one dimensional arrays it is just enough to have anly one subscript.
Whereas in this case as we have already mentioned any element in a
two dimensional array can be referenced by a row index followed by a
column index. Here we have used i as the row index and j as the column
index.

The above program receives values from the used in the following
fashion,

76 PASCAL PROGRAMMING

ALY, A2, AL
Al2,1], Al2,2] , A[2,3]
A[3,1], Al3,2] , A[3,3]

We may like to have the output of the matrix also in the above form.
Again consider the following segment

For i:= 1 to 3 do

Begin
For j:= 1 to 3 do
Write (A[i,3]:4);
WritelIn;
End;

Initially, the value of | and J are set to one. The program prints the
values in the locations A[1,1], A{1,2] and A[1,3] in the same line as
‘Write' is used to print the values. Next Writeln is used here to leave
space in the current line and bring the pointer to next line. Thus we will
get the matrix in the above form.

One fine example to illustrate the use of two dimensional array is matrix
addition. In this program we have supplied nine elements for both A
Matrix and B matrix. The resultant matrix C is obtained by using the
following form

Cli.j] := Ali.j]+ BIi.jl;
here both i and j runs from 1 to 3
Here is a program to perform this task.

Program Example (Input,Output);
Var
A,B,C : Array[1l..3,1..3] of Integer;
I,J : Integer;
Begin
Writeln('Enter 9 Elements for A Matrix ‘I,
For i:= 1 to 3 do
For j:= 1 to 3 do
Readln (A(i,j1);:

Writeln('Enter 9 Elements for B Matrix ‘);
For i:= 1 to 3 do

For j:= 1 to 3 do
Readln (B[i,31);

For i:= 1 to 3 do
for j:= 1 to 3 do

Arrays 77

cli,jl:= A[i,3)+Bl1i,3];

Writeln ('The Output C matrix ‘};
v For i:= 1 to 3 do
Begin
For j:=1 to 3 do
Write (C[i,]j]:5);

Writeln;
End;

End.
Outpui
Enter 9 Elements for A Matrix
1
2
3
4
5
6
7
8
9
Enter ¢ Elements for B Matrix
1 p
2
3
4
5
6
7
8
9
The Output C matrix

2 4 &

8 10 12

14 16 18

Here is another prégram for those who are not much familiar with
mathematics. This program also illustrates all the fundamental array
manipulations.

The fundamental array manipulations are

78 PASCAL PROGRAMMING
1. Sum all the elements
. Row wise sum
. Column wise sum
. Sum of Main diagonal elements
. Sum of off diagonal elements
Here is a program to perform all the above tasks.

Program Example (Input, Output);
Var
A : Array[1..3,1..3] of Integer;
Allsum,I,J,Rowsum, Colsum,Diasum:Integer;
Begin
Writeln ('Enter 9 Elements '};
For i:= 1 to 3 do
For j:= 1 to 3 do
Readln (A[i,31);
{Print the Given Elements}
Writeln ('The Given Elements are ...');
For i:= 1 to 3 do
begin
For j:= 1 to 3 do
Write (A[i,j]1:5);
Writeln;
End;

{Sum of all elements}
Allsum:=0;
For i:= 1 to 3 do
For j:= 1 to 3 do
Allsum := Allsum + A[i,j};
Writeln ('The Sum of All elements’', Allsum);

{Sum Row wise}
for i:= 1 to 3 do

Begin
Rowsum := 0;
For j := 1 to 3 do
Rowsum := Rowsum + A[i,j];
Writeln('Row no : * , I , *Sum = ' ,Rowsum);

End;

Arrays 79

{Sum column wise)}

{Sum main

For i:= 1 to 3 do
begin
Colsum := 0;
For j:= 1 to 3 do
Colsum := Colsum + A[j,1];
WriteIn('Column no :',I,'Sum =',6Colsum};
end;

diagonal elements}
:= 0;

For i:= 1 to 3 do

Diasum := Diasum + A[i,i];
Writeln ('Diagonal Sum ' , Diasum);

{sum off diagonal elements}

:= 0;

For i:= 1 to 3 do

begin
j =4 -i,;
Diasum := Diasum + A[i,j];

end;

Writeln ('Off Diagonal Sum *, Diasum);
End.
Output
Enter 9 Elements
33
12
21
56
64
78
99
43
19 .
The Given Elements are...
33 12 21
5 64 78

99 43 19

80 PASCAL PROGRAMMING
The Sum of All elements 425

Row no: 1 Sum = 66
Row no: 2 Sum = 198
Row no: 3 Sum = 161

Column no : 1 Sum = 188
Column no : 2 Sum = 119
Columnno : 3 Sum =118

Diagonal Sum 116
Off Diagonal Sum 184

Two-dimensional sorting

We can also have Two-dimensional sorting, and this is similar to one-
dimensional sorting. A practical example which uses this technique is
listed below.

Program Example (Input,Output);
Var
A : Array [1..20,1..20] of Integer;
I,J,K,Temp,Order : Integer;

Begin”’
Writeln ('Enter Order of the Matrix ');
Readln (Order);

Writeln('Enter *,Order*Order,' elements 1 by 1'};
For i=1 to Order do
For j:= 1 to order do
Readln{a[i,j1);

{Cutput the given matrix}
Writeln('The given matrix is ‘);
For i:= 1 to Order do
begin
For j:= 1 to order do
Write (A[i,3]1:5);
Writeln;
end; '

{Sorting the number is columnwise}
For 1i:= 1 to order do
For j:= 1 to order -1 do

If alj.i] > a[k,i] then

Arrays

For k:= J+1 to Order de

begin
Tarp := Alj,1];
Alj,i):= A[k,i];
Aflk, i) := Tamp;
end;

{Printing the Sorted matrix}
erteln(Sorted cutput Matrix “);
For i:= 1 to Order do
beg)n
For j:= 1 to order do
Write(A{i,3]1:5);

Writeln;
end;

End.
Ouiput
Enter Order of the Matrix
3
Enter 9 elements 1 by 1
34
12
67
89
11
9
7
5
56
The given matrix is

34 12 &7

8 11 9

7 5 56
Sorted Output matrix
7 5 9
34 11 56
89 12 67

81

In the above program we have confined to sort two-dimensional square

matrix columnwise and the algorithmic approach is as follows:

1. Read the order of matrix

82 PASCAL PROGRAMMING
. Read the elements of the matrix
. Display the given matrix

. Repeat step 5 to step 7 varying i from 1 by 1 until i > order

2
3
4
5. R&eat step 5 to step 7 varying j from 1 by 1 until j > order —1.
6. Repeat step 7 varying K from J + 1 by 1 until K > order

7. If Afj,i] > Alk,i] then interchange A[j,i], Alk,i]

8. Print the columnwise sorted matrix A

Multi-dimensional Arrays

Turbo Pascal allows more than two dimsensions. As the maximum
number of dimension allowed varies from system to system, for the
maximum dimensions one should refer to the Turbo Pascal manual. It
is adviceable not to use more than three dimensions, as it occupies more
memory space.

For example
Var

ABC : Anmay [1..10,1..10,1..10,1..10] of Inreqen;
Will occupy 10,000 locations in memory space.

In the following example we consider a case where there are 2 divisions
in a departmental store Divn1, Divn2. Each division has 3 sections. The
total sales of each section in a division is the sum of the sales of 5 days.

This is an example for a three dimensional array with
Two divisions
Three sections / division
Four days sales / section

Program Example (Input,output);
Var .
’ sales : Array[l1..2,1..3,1..4] of Integer;

I,J,K,Divsale, Totsale, Secsale : LongInt;
Begin
For I:= 1 to 2 do

Arrays 83

Begin
Writeln ('sales for division ‘',1i);
For J:= 1 to 3 do
begin
Writeln { 'Enter 4 days sales for section’, :3);
For K: 1 to 4 do
Readln(Sales[i,j,kl);
end;
End;
Totsale :=0;
For I:= 1 to 2 do
begin
Divsale := 0;
Writeln;
Writeln('Division *,1i);
Writeln('Sec Sales’);
For J := 1 to 3 dec
begin
Secsale := 0;
For K := 1 to 4 do
Secsale := Secsale + Sales[i,i,k];
Writeln(j:3,Secsale:7);
Divsale :=Divsale + Secsale;
end;
Writeln('Total sales in ', i, Division ', divsale);
Totsale := Totsale + Divsale;

end;

Writeln;
Writeln('Grand Total ', Totsale);
End.
Output

Sales for division |

Enter 4 days sales for Section 1
1450

2980

450

6780

Enter 4 days sales for Section 2
4500

5200

1800

3450

84 PASCAL PROGRAMMING

Enter 4 days sales for Section 3
8790

10900

7650

3900

Sales for division 2

Enter 4 days sales for Sectinn 1
3450

1890

2480

3250

Enter 4 days sales for Secfion 2
5600

8900

7560

9750

Enter 4 days sales for Section 3
9800

12100

8740

10100

Division 1

Sec Sales

1 11660

2 14950

3 31240

Total Sales in 1 division 57850

Division 2
Sec Sales
1 11070
2 31810
3 40740
Total Sales in 2 division 83620

Grand Total 141470
In the above sections we have discussed various forms of arrays, and

their properties with suitable examples. The solved problems in the
forthcoming pages will add new dimensions to the arrays.

Arrays 85

Exercises
What is an array?
Write a program to find the smallest of a given set of numbers.

3. Atypical element Ai. of a two dimensional array is the saddle point
it A is the smalles& element in Row i and the largest element in
Column j. Given matrix, write a PASCAL program to find a saddle
point of the matrix, if one exist.

4, Write a program to find the second largest number in a given list
of numbers and the position where they occur.

5. Write a program to arrange a given set of numbers in ascending
order and descending order without writing two separate pro-
grams. Use CASE statement to perform the program.

6. Write a Pascal program to read a square matrix and to

i) Check whether it is a symmetric matrix. A matrix is symmetric
if a; =ay for all values of i and j.

ii)y Find the norm of a matrix. The norm is defined as a square ~
root of the sum of squares of all the elements in the matrix.

7. Write a program to read a set of quantities, count them and find
the largest and the smallest quantities in the list. In addition, the
program should count the number of quantities which are greater
than 1000 and print all such quantities.

8. Write a program for processing examination marks. The output
should give the list of

i) Passed candidates and
ii) Failed candidates

(Assume that there are 5 papers and passing minimum is
40%)

9. Write a Pascal program to find the total number of +ve numbers,
-ve numbers and zeros out of a set of 10 real numbers.

10. Write a program to find the volume of 10 different cylinders and
to print out their radii, heights, volume in a serial order with a
suitable heading.

11. Write a program which reads the names of three sales persons
into a one-dimensional array and their sales figure in each of six
months into a two dimensional array. The program then must print

86 PASCAL PROGRAMMING

the total sales for each sales person and the grand total for the
six month as well.

12. Write a Pascal program to find the mean, variance and standard
deviation of a given set of numbers.

SOLVED PROBLEMS

1. Write a program to generate Fibonacci series.

Fibonacci numbers is equal to the sum of the previous two, and
it is given by

Fozﬂ

F1:::1

Fo=F, _,+F ,n>1

Accept the number of rows to be printed as a result.

Program Example (Input,Output);

Var .
A : Array [1..100] of longint;
N,I : Integer;
Eegin
Writeln('Enter How many terms doyou want ‘};
Readln(N);
Afl]}:=0;
Al2] :=1;
For I:= 3 to N do
A[i] := A[i-1] + A[i-2);
Writeln({'The Fibcnacci Series are ..');
For i:= 1 to N do
Write (Af[i]:6);
End.
Output

Enter How many terms do you want
20
The Fibonacci Series are ..
011235 813 21 34 55 89 144
233 377 610 987 1567 2584 4181

Arrays 87

2. Write a program to find the number of numbers occur in the
following range for a given 10 numbers.

Range 1 = 0-8

Range 2 = 9-15

Range 3 = > 15

Program Example (Input,Output};
Var

A: Array[l..10]) of Integer;
R,R2,R3,I : Integer;

Begin
Writeln ('Enter 10 elements’);
For i;= 1 to 10 do
ReadIn(A[i]);
Rl := 0; R2 := 0; R3 :=0;
For i:= 1 te 10 do
If (A[i] == 8) then Inc (R1)
Else if (A(i] <=15) then Inc (RZ)
Else Inc(R3);
Writeln ('No of elements less than 0-8 is = ‘', ,R1};
Writeln ('No of elements fall between 9-15 is =", R2);
Writeln ('No of =lements greater than 15 is = ', R3)
End.
Ouiput
Enter 10 elements
12
4
7
15
19
2
]
9
13
20

No of elements less than 0-8 is = 4
No of elements [all between 9-15 is = 4
No of elements greater than 15 is = 2

88 PASCAL PROGRAMMING
3. Write a program in PASCAL to print the PASCAL triangle given by

1
1 2 1

1 3 3 1

1 4 6 4 1

Accept the number of rows to be printed as result.

Program Example (Input,Output);
Var
A: Array(l..10,1..10) of Integer;

I,J,C,N: Integer;
Begin
Writeln({'Enter How many lines deo you want ');
Readln(N};
All,1} := 1;
Writeln{A[l,11:5);
Al2,11:=1; A[2,2]:=2; A[2,3]:=1;
Writeln(a[2,1]:5,A(2,2]:5,A[2,3):5);
For I := 3 to N do
begin
Ali,1):=1; *
Write(Af{i,1]:5);
J:=2; C:= 3;
While (J <=I) do
begin |
Ali,j] := A[i-1,c-1)+A[i-1,c-2];
Write(a(i,j]:5):
C:=c+l;
Je=j+1;
end;
Ali,31:=1;
Writeln(A{i,j1:5);
end;
End.

Ouiput

Enter How many lines do you want
7

Arrays 89

1

3 1

4 1

10 10 5 1

15 20 15 6 1

21 35 35 21 7 1

— o o o -
N N
o

4. Assume that there are two lists. List A contains M items and list
B contains N items. The values of m and n are not necessarily
identical. Write a program in pascal that merges all items of A and
B into a single list C containing all elements of A and B.

Program Example (Input,Output);
Var
A,B,C : Array [1..100] of Integer;
M, 1,S: Integer;
Begin
Writeln('How many elements do you want to enter for array ')
Readln (M) ;
Writeln('Now enter *,M,' elements for array A');
For I:= 1 to M do
Readln(A[i]);

Writeln('Howmany elements do you want to enter for arrayB');
Readln(N) ;
Writeln('Now enter ',N,’' elements for array B');
For I:= 1 to N do

Readln(B([1]);

For I:= 1 to m do

Cli}:= A[i);
S:=M;
For i:= 1 to N do
begin
S:=8+1;
Cls]:=B[i];
end;

Writeln({'The Output list C contains, after merging ‘);
For i:= 1 to s do

Write(C[i] :5);
End.

90 PASCAL PROGRAMMING
Output

How many elements do you want to enter for ammay A
4

Now enter 4 elements for array A

34 .

12

98

65

How many elements do you want to enter for array B
5

Now enter 5 elements for array B

76

54

123

86

24

The output list C contains, after merging
34 1298 657654 12386 24

5. Write a program to find Mode and its frequency.

Program Example (Input,Output);

var
A : Array([l..100] of Integer;
N,I1,J,7T,Freq,Max,Mode : Integer;
Begin
Writeln('Enter How many numbers Do you want to enter '};
Readln(N);

Writeln({'Enter ', N, 'Numbers ‘');

For I :=1 to n do
Readln(A([i]);

{Sorting the numbers by using bubble sort method}
For I := 1 to N-1 do
For J:= I+1 to N do
IE{A[Li] <= A[j])} then

begin
T := A[i]
Ali]l := Al3);
A[j) :=T;

end;

‘Finding the frequency of a number}

Max := 0;

For I := 1 to N-1 do

If (A[i] <> A[i+1]) then
Freq := 0

else If (A[i] = A[i+1]) then
Freq := Freq + 1;

if (freq > max) then

begin
Max := Freq:
Mode := A[i];
end;
Writeln('Mode : ‘', Mode);
Writeln('frequency : ', ,Max+l);
End.
Output

Enter How Many Numbers Do You Want To Enter
5
Enter 5 Numbers

4

6

4

9

4

Mode :4
Frequency :3

91

6. Wirite a program to copy the contents of an array called A into a
array called B, Placing the numbers in the reverse order of whic
they occupied in the original array. That is B(5) will contain A(1.

B(4) will contain A(2) etc.

Program Example (Input,Output);
Var
A,B : Array [1..5] of Integer;
I,J : Integer;
Begin
Writeln('Enter 5 Elements '};
For i:= 1 to 5 do
Readln(A[i]);

92 PASCAL PROGRAMMING

J:=1;
For i:= 5 downto 1 do
begin
B[1] := A{j];
J:= J+1;
end;
Writeln ('7 ter transferring elements '};
Writeln ('L.cation A B');

Writeln;

For i:= 1 to 5 do
Writeln(i:4,A(i]:8,B[1i]:8);

End.

Outpui

Enter 5 elements

78

65

49

98

45

After translerring elements
Llocation A B

1 78 45
2 65 98
3 49 49
4 98 &5
5 45 78

7. Let Name and Sex be two arrays that contain name and sex of
the 5 members of a certain club. Male and Female are denoted
by ‘M’ and 'F’ respectively. Write a program which creates two new
arrays, MALE and FEMALE such that MALE contains the names
of all males and FEMALE contains the names of all the females.

Program Example (Input,Qutput);
Var
Name,Male,Female : Array(l..10) of String;
Sex: Array([l..10] of String;
NcM,NoF,I : Integer;

Arrays

Begin
For I:= 1 to 5 do
Begin

Writeln('Enter Name');
Readln(Name[i]);
Writeln('Sex Code M /F *);
Readln(Sex[i]);
End;
NoM:=0; NoF:=0;
For i:= 1 to 5 do

Begin
If (Sex[i]j='F') then
Begin
NoF := NoF + 1 ;
Female[NoF] := name[i];
End
Else
Begin
NoM 1= NoM + 1;
Male[NoM] 1= Name(I];
End;
End;
Writeln(‘Number of ',NoM, ', Names are ..');
For I := 1 to Nom do
Writeln(Male([i]};
Writeln;
Writeln('Number of Females ',NoF, ', HNames are ..');

For I := 1 to NoM do
Writeln (Female[i]);
End.

Quiput

Enter Name
Maxell

Sex Code M / F
M

Enter Name

Dysan

Sex Code M / F
F

Enter Name
Amkette

93

94 PASCAL PROGRAMMING

Sex Code M / F

M

Enter Name

Nipha

Sex Code M / F

F

Enter Name

Pinsel

Sex Code M / F

M

Number of Males 3 Names are ...
Maxell

Amkette

Pinsel

Number of Femaies 2 Names are ...
Dysan

Nipha

8. Write a program 1o convert decimal to binary.

Program Example({Input,Output);
Var

A : Array[l..20) of Integer;
N,I,J :Integer;

Begin
Writeln(' Enter Mumber To Convert Binary ');
Readln (N} ;
I :=0;
Repeat
I:=I+1;
Afi]:=N Mod 2;
N:=trunc(n/2);
Until (n <1);
Writeln (* Output in Binary form is .. ‘);
For J:= I Downto 1 do
Write (A[31);
End.
Output
Enter Number To Convert Binary
65

Output in Binary form is..
1000001

Arrays 95

(Hint. Here Integer Function Trunc() is to round the real number.
For example if x=2.4 then after truncation it gives 2 and if x = 3.5
it gives 3)

9. Two sets of data relating to 100 persons, namely age [100], and
income [100] are available (both integer arrays). Write a program
to compute the. average income of person aged between 25 years
and 30 years (both inclusive).

Program Example (Input,Output);
Var
Age,Income : Array(l..S5] of Integer ;
No,I,TotInc : Integer;
AvelInc : Real :
Begin
Writeln (‘'Enter Age, income for 5 persons 1 by 1 '};
TotInc := 0 ;
No := 0}
For I:= 1 to 5 do
If (Agel[i] »= 25) And (Age[i] <=30) then
Begin
TotInc := TotInc + Income[i]:
No := No + 1;
End;
AveInc := TotInc / No ;
Writeln {‘'Average income For Age between 25-30 is *, Avelnc :7:2);
End.

Ouiput

Enter Age, Income for § Persons 1 by 1
18 1250
27 2000
31 4500
29 7800
30 5600

Average Income For Age Between 25-30 is 5133.33

10. Write a Pascal program to aiphabetize the given 5 names
OR

96 PASCAL PROGRAMMING

Develop a Pascal program that would sort and display a given
arbitrary array of names in the ascending order.

Program Example (Input,Qutput);

Var
Name : Array[l..5] of string;
Temp : String;
I,J : Integer ;
Begin
Writeln ('Enter 5 Names 1 by 1');
For I :=1 to 5 do
Readln (Name[i]);
For 1 := 1 to 4 do
For J := i+l to 5 do
If (Name(i] > Name[j]) then
Begin
Temp := Name[i] ;
Mame[i] := Name[j] ;
Name([]] := Temp;
End;
Writeln({ 'Sorted names are ...');
For I :=1 to 5 do
Writeln(Name[i]);
End.
Output
Enter 5 Names 1 by 1
Pascal
Lisp
Cobol
Ada
Basic
Sorted Names are ...
Ada
Basic
Cobol
Lisp

Pascal

Arrays 97
11. Wirite a program to exchange the contents of two arrays.

Program Example(Input,Output);

Var
A,B,T : ARRAY [1..5] of Integer;
I : Integer ;

Begin
Writeln('Enter 5 Elements for Array A ');
For I :=1 to § do
Readln(a[i]);
Writeln('Enter 5 Elements for Array B ‘');
For I :=1 to 5 do
Readln(B[1i]);
{Swaping}
T:=4;
A:=B;
B:=T;
Writeln('The Elements in Array A After Swaping ')
For I:= 1 te 5 do
Write(Al[i]:5);
Writeln;
Writeln (‘The Elements in Array B after Swaping ‘);
For I:=1 to S do
Write(B[1]1:5);
End.
Output
Enter 5 Elements for Array A
23
45
&7
89
34
Enter 5 Elements for Array B
65
74
82
90
123

The Elements in Amrray A after Swaping
65 74 82 90 123

The Elements in Amray B after Swaping
23 45 97 B89 34

98 PASCAL PROGRAMMING

12. Write a Program to convert Two dimensional into One dimensional
Array

Program Example({Input,Output);

var
A : Array [1..3,1..3] of integer ;
B : Array [1..9] of integer;
K,1,J7 : Integer ; '
Begin
Writeln(‘Enter 9 elements 1 by 1');
For I:= 1 to 3 do
For J:= 1 te 3 do
Readln(A[I,J]);
K:=0;
For I:= 1 to 3 do
For J:= 1 to 3 do
Begin
K := K+1;
B[K] := A[I,J};
End;

Writeln('Output in one dimension'});

For 1:=1 to 9 do
write(B[i]:3);

Writeln;

End.

Output

Enter 9 elements 1 by 1
4

6

8

9

2

5

°

7

1

Output in one dimension
4 6 89252971

CHAPTER - 6
PROCEDURES AND FUNCTIONS

Every language has its own features and properties. For example, in
BASIC it is line numbers. In FORTRAN it is Format statements and in
COBOL it is divisions. Similarly there is no Pascal without Procedures.

Programs are classified into two. One is the main program, and it is one
which executes by itself i.e. without expecting any help from any other
source. The other is the sub-program, which executes only from the main
program. Eventhough a sub-program has almost all the features of the
main program, it cannot execute independently and it has lo execute
only from the main program. Here we call such a sub-program as
Modules. One of the property of a structured programming aspect is to
break a large program into several individual modules, to enable the user
to scan the program and to remove errors easily.

Advantage of Using Sub-Programs

There are occasions where we may want to do a particular action
repetitively in a program. If we code it repeatedly in our main program
it will not look nice, and the program may also become 1oo lengthy.
Suppose in one of our program we want to find the area of a triangle for
different sets of values, it is not possible for us o code the program
wherever it was warranted. Developing one such sub-program, we can
call this wherever necessary by supplying suitable values.

This feature can be used in the development of large programs where
separate sub-programs of the large program need to be developed
individually.)

In this Chapter, we will see how to use Procedures and Funclions
effectively. In addition to that we will see the difference between the
Procedures and Functions. Now let us plunge into Procedures which
make Pascal, a glorified language in the spectrum of computer language.

PROCEDURES

There are two general format available for procedures, and the first one
is

Procedure Proc.name;
Label ;

const ;

Var ;

100 PASCAL PROGRAMMING

Procedure ;
function ;
begin

statements ;
end;

By using the above prototype let us write a procedure to display a
message 'Welcome'

Procedure Wel ;
begin

Writeln ('Welcome') ;
end;

Now there are two questions in front of us. One is that where can we
place this procedure? and another is how can we invoke this procedure?.
The structure of Pascal comes to rescue us in this stage. We have
seen that Procedure or Function, if any, should be defined before the
beginning of the main program. Thus, our Program turns into the
following form :

Program Example (Input, Output);
Var
I : Integer;
Procedure Wel;
begin
Writeln ('Welcome'});
end;
{Main Starts}
begin i
For I =1 to 5 do
Wel;

end
Output

Welcome
Welcome
Welcome
Welcome
Welcome

To invoke the procedure it is just enough to mention the name of the
procedure where it is necessary. On encountering this, the control is
transferred to the procedure pan. After executing the Procedure, control
returns to the next statement following the Procedure name.

Procedures and Functions 101

Now let us see another program to find the cube of a given nhumber, to
understand the concept of procedure still better.

Program Example (Input, Output);
Var

N : Integer;
Procedure Cube;

Var
X : Integer;
begin
X:=N*N™*N;
Writeln ('The cube of the given number is ',X);
end;
{Main Starts})
begin
Writeln ('Enter number to find cube');
Readln(N) ;
Cube;
end.
Output
Enter number to find cube
4

The cube of the given number is 64
Enter number to find cube

23

The cube of the given number is 12167

Initially we have to feed the value of N for which we need to calculate
the cube value. We invoke the Procedure Cube. As N is declared outside
of this procedure, the value of N is retained in the procedure. So, after
printing the cube of a given number the program comes to an end.

Global Variables and Local Variables

In the above program, we have used the value of N in the procedure
without any declaration in the procedure. Such a variable .is called a
global variable. It is defined as a variable which is declared outside of
any procedure or function. The scope of those variables is throughout
the program so that we can make use of those variables without
redefining in any procedure or function. On the contrary the variables
declared inside of any procedure or function are said to be local
variables.

102 PASCAL PROGRAMMING

The values of these variables ceases immediately when we come out of
the procedure.

Passing Parameter to a Procedure

In the above two examples we are passing variables to procedures by
declaring them as global ones. There is yet another way in which we can
pass variables. Here we pass the variables along with fhe procedure call.
The purpose of doing so is to make our procedure, not specitic (generic)
to a particular program, where the variables are declared as global
variables. This can be achieved by using a second form of the
procedure.

The general format is

Procedure Proc.name(var list and its type);
Label
Const ;
var ;
Procedure ;
Function ;
begin
Statements;
end;

Now we will rewrite the previous example by passing the variables to the
procedure, along with the Procedure call.

Program Example {(Input, Output);

Var
N : Integer;
Procedure Cube (Y : Integer);
Var
¥ @ Integer;
begin
X:=sX*¥Y*Y;
Writeln ('The cube of the given number is ',X)
end;
{Main Starts}
begin
Writeln('Enter n r to find cube '};
Readln (M)
cube (N)

end.

Procedures and Functions 103

Outpui

Enter number to find cube

5

The cube of the given number is 125
Enter number to find cube

98

The cube of the given number is 23688

Here, after receiving the value for N, the Procedure Cube is invoked
along with the variable N. The value of N is transferred to Y by the
Procedure declaration. Thus we can pass the value of N to Y in this way.
The variables in the procedure call are called as actual parameters and
the variable in the procedure declaration are called as formal param-
sters.

Now, consider the following example where the same variable is de-
clared in the main, as well as in the procedure.

Program Example (Input,Qutput);

Var
X : Integer;
Procedure Test(Y :Integer);
Var
X : Integer;
Begin
X :=9;
Writeln('The Value of x inside the Procedure is ', x I1;
Y:=Y* X,
Writeln('The Value of X * Y is ',Y);
End;
{ Main starts)
Begin
X := 5;
Writeln({'The Value of X in Main is ‘', X);
Test (X);
Writeln('The Value of X inMain after executing procedure is ', X);
End.
Quiput

The Vaiue of X in Main is 5
The Value of X Iinside the Procedure Is 9

104 PASCAL PROGRAMMING

The Value of X * Y is 45
The Value of X in Main after executing procedure is 5

Here X is declared in the main and it is defined as 5. The value of X is
transferred to the procedure where again, X is declared as local variable.
Inside the procedure, X is initialised as 9 and it is used to multiply Y.
Thus the above example vividly explains that if the same identifier is
declared both in the main and in the procedurs, the procedure considers
only the local variable. When the procedure is completed the value as
defined in the main will come in to being.

Parameter Communication Between Procedure and Main

Let us have a closer look over the communication of parameters
between a Procedure and the main.

There are two modes of transferring variables between procedure and
main and they are

1. Value Parameter
2. Variable -Parameter
We will see the above two types with suitable examples one by one.

Value Parameter

In this mode of communication, only the values of actual parameters of
the Procedure call are transferred to the formal parameters of procedure
declaration. So, changes taking place inside the procedure will not affect
the corresponding parameters in the procedure call. Hence this way of
communication is also called as “Call by Value”.

The following example will illustrate the above principle.

Program Example(Input,Output);
Var
A,B,C : Integer;
Procedure Test(X,Y,Z : Integer);
Begin
X :=X*X ;Y :=¥Y*Y ; 2 :=2 *Z;
Writeln('The Values of A,B,C in Procedureis *,X:4,Y¥:4,2:4);
End;
{ Main starts }
Begin
Writeln('Enter 3 Values ‘);
Readln(A,B,C);
¥Writeln(‘'The Values of A,B,Cbefore entering Procedure is',A:4,B:4,C:4);
Test (A,B,C);

Procedures and Functions 105

Writeln('The Values of A,-‘B,C after executing Procedure is' A:4,B:4,C:4);
End.

Outpui

Enter 3 Values

456

The Values of A,B,C before entering Procedure is 4 5 6
The Values of A,B,C in Procedure is 16 25 36

The Values of A,B,C after executing Procedure is 4 5 6

Variable Parameter

In this mode, not only the value of the actual parameter of the procedure
call is passed to the formal parameter of procedure declaration but also
the variable reference. If any changes take place inside the procedure,
it will automatically influence the corresponding variables in the proce-
dure call. So, it is also called as a “Variable Parameter”. This effect can
be achieved simply by adding Var before any formal parameters in the
procedure declaration. The example program follows to fulfill the above
idea.

Program Example(Input,Output);
Var
A,B,C : Integer;
Procedure Test(Var X,Y,Z : Integer);
Begin
’ X=X *X; Y¥Y:=Y¥Y*Y ; 2 :=2 *Z;
Writeln('The Values of A,B,C in Procedure is * ,X:4,Y:4,Z:4);
End;
{ Main starts }
Begin
Writeln({'Enter 3 Values ');
Readln(A,B,C);
Writeln('The Values of A, B,C before entering Procedure is' A:4,B:4,C:4);
Test (A,B,C);
Writeln('The Values of A, B, C after executing Procedure is ' A:4,B:4,C:4);
End.

Output

Enter 3 Values
456
The Values of A,B,C before entering Procedure is 4 5 6

106 PASCAL PROGRAMMING

The Values of A,B,C in Procedure is 16 25 36
The Values of A,B,C after executing Procedure is 16 25 36

From the above two examples it is seen that in the Value Parameter the
value before and after executing the procedure remains the same and
it changes only inside the procedure. In Variable Parameter, the values
inside the Procedure is same even after executing the procedure.

The choice of using the above techniques is left with the programmers,
and the choice may be depending on the requirement of the programs.
If we want to pass just the value of parameters to the Procedures, value
parameters are enough. If we need any change to be done inside the
procedures, then Variable parameters are preferred.

From the above two cases it is clear that in the Procedure the transfer
of value between Procedure and Main is only through its Parameters,

Let us see some tips and tricks.
Consider the following Procedure declaration.

Procedure 3iggest(X,Y,Z2 : Integer)};

then the Procedure call may be either of the following two ways.

Biggest (A,B,C);
or
Biggest(10,20,30);

In both cases, these values are transferred to the Procedure and the
Procedure returns the corract result for which it is intended.

Now consider the second way of Procedure declaration

Procedure Biggest (Var X,Y¥,Z : Integer);

In this case the Procedure Call should definitely be
Biggest (A,B,C) ;

It is becauss, in the above Procedure the formal parameters are de-
clared as Variable Parameters, which returns the final result of the formal
parameter in the Procedure to the main program. So, it is essential that
to pass a result to the main, there should be variables in the Procedure
call statement.

From the above two cases it is immaculate that Procedure call can have

Procedures and Functions 107

either constant or variable as an aclual parameter provided that the
formal parameters are not variable parameters. Whereas there should
be variables when the formal parameters are of variable type.

It is also evident that variables are the only nexus between Procedures
and the main Program.

Passing an array to a Procedure

Similar to passing an element to a procedure we can also transier entire
arrays to a procedure.

For example to pass an array A which is having 5 integer elements to
the procedure Max, the procedure call might look like

Max(A);

To pass an array, it is enough to refer the name of the array along with
the procedure call.

Consider the following call

Max (A[101});

In the above call only the value of A[10] is passed to the Procedure Max
and not an the entire array.

Let us see how a Procedure declaration might look when it is used to
receive an array.

Consider the following invalid declaration.

Procedure Max({ ¥ : array [1..10] of Integer);

It is so because, in Procedure declaration only simple data types should
be passed and not structured data types.

A type declaration statement may also be used to transfer arrays to a
Procedure.

Consider the declaration

Type
W = Array (1..10) of Integer;

In the above declaration W is a user defined type to denote an array of

108 PASCAL PROGRAMMING

10 integer elements. So, whenever we want to declare an array of 10
integer elements the user defined type W is used in variable declaration
as shown below :

Type

W = Array(l..10] of Integer ;
Var

A : W ;

The above declaration is same as

Var
A : Array(l..10] of Integer;

Now we can use this same method to the Procedure declaration also and
the correct form of Procedure declaration is

Procedure Sort Array (X.: ﬁ}:

Where W is the user defined data type for Array type and it is declared
before the variable declaration,

Let us get more used to this technique through a practical example
illustrated below:

Program to Sort the given 5 numbers using Procedure.

Program Example (Input, Output);
Type

W = Array[1l..5] of Integer ;
Var

AW ;

I : Integer;
Procedure SortArray {(Var X : W) ;
Var

I,J,T : Integer ;
Begin

For I := 1 to 4 do
For J := i+l to 5 do
If { X[i] > X[]])} then

T := X[i];

Procedures and Functions

X[i] := X(3);
X[1] = T;
End;

End;

{ Main Starts }

Begin
Writeln(‘'Enter 5 Numbers 1 by 1 *)
For I :=1 to 5 do

Readln(A[i]};
SortArray(A);
Writeln('Sorted Array Contains ... ‘);
For I :=1 to 5 do
Writeln(A[i]);

End.

Output

Enter 5§ Numbers 1 by 1

34

56

12

33

98

Sorted Array Contains ...

12

a3

34

56

98

Explanation

109

Initially the user has to enter 5 numbers, which he wants to sort in the
array. Then the procedure call SortArray(A) will transfer the entire array
to the Procedure SortArray. In the Procedure declaration array X is
declared as a variable parameter, the changes will be transferred to
array A in main program. The array gets sorted by using the method
which we have seen already in the previous chapter. Finally, the sorted

array X is transferred to A of the procedure call.
Procedure Within Procedure

‘As seen from the general form of the Procedure any number of Proce-

110 PASCAL PROGRAMMING

dures can be included within a procedure. \

The following program will illustrate how one procedure can be included
within another procedure.

Program Example (Input, Output);

Type
W = Array[l..5] of Integer ;
Var
Ao W
I : Integer ;
Procedure SortArray (Var X : W) ;
Var

I,J : Integer ;
Procedure Swap (Var P,Q : Integer) ;

var
T Integer;
Begir
T =P ;
p =0
Q=T
End;
{Procedure SortArray Starts}
Begin
For I := 1 to 4 do
For J := I+l te 5 do
If (X[I] = X [J]) then
Swap (X{I1], X[J));
End;

{Main Starts}

Begin
Writeln('Enter 5 Numbers 1 by 1'});
Fer I := 1 to 5 do
Readln(&[I]);
SortArray (A);
Writeln('Sorted Array Contains ...');
For I :=1 to 5 do
Writeln (A({I]);
End.
Output

Enter 5 Numbeis 1 by 1

Procedures and Functions 111

34
56
123
44
98
Sorted Array Contains ...
34
44
56
98
123

Explanation

The above example program is same as the previous one except that
in Procedure SortArray we have used another Procedure Swap to
exchange the values between the variables. Procedure Swap uses the
variable Parameters P and Q so that the resultant would affect the actual
Parameters X[i] and X[j]. Thus procedures can also be nested by using
the above method.

in the above sections we have discussed various forms of procedures,
their properties etc. Let us have our discussion through more elaborated
problems in the solved problem section.

Functions

it has been mentioned earlier that one main advantage and strong factor
of Pascal is the use of procedure and function. The Pascal functions can
be divided into Library functions or Built in functions and user defined
functions. The difference between these two is that library functions are
built functions. These are not developed by the user. On the other hand
a user defined function has to be developed by the user. The Pascal
functions are not only very easy but also very versatile. In the previous
section, procedures were used to return one value or more than one
value 1o the main. But functions should be used to return only one value
to main. This is where procedure and function differ from one another.
In this section, we shall discuss how function is defined and how to use
them along with the main program to make Pascal program as a more
structured one. We will be discussing about library functions later in this
chapter.

The simplest form of the user defined function is

Function Function. Mame (Var list) : Data type;
Const;

112 PASCAL PROGRAMMING

Var;
Begin
statements ;
Functicon.name := result;
End;

Function is a reserved word and function name is an identifier given by
the user followed by formal parameters and their types. As we have
already observed that function return only one value. We know the data
type of the value it retums. This should also be given along with the
declaration. Inside the function usual declaration like Const and Var
followed by a group of statements enclosed by Begin and End fust be
given.

Let us write a simple function to calculate the area of the triangle.
Formula to compute the area of a triangle is

Area = 22/7 * Base * Height

Function Area (Base, Height : Real) : Real ;
Begin

Area := 0.5 * Base * Height ;
End;

The function name is Area. Formal parameters are separated by a
comma that receive the values when the function is called from main
program.

Inside the function, the computed value is assigned to a function name
Area. The important point to be noted here is that value from the function
returns only through the name of the function. Here again procedure
deviates, where the communication between main and procedure are
through arguments only. In the case of functions after receiving a value
to the function name it returns to the main where it is used.

Now we will complete a program by incorporating the above function

Program Example (Input, Output);

Var

B,H,TriArea : Real
Function Area (Base, Height : Real) : Real ;
Begin

Area : = 0.5 * Base * Height ;
End;

Procedures and Functions 113

{ Main Starts }

Begin
Writeln('Enter Base, Height');
Readln (B, H);
TriArea : = Area(B,H):;
Writeln('Area of a Triangle is ',TriArea:8:2);

End. ’

Output

Enter Base, Height

45 78

- Area of a Triangle is 1755.00
Explanation

Here Base and Height receive their values through the identifiers B, H
respectively. Then the function Area is called along with the received
arguments B and H, and the returned value is assigned to TriArea and
it is displayed.

In the above program function is called through an assignment
statement. It is also referenced by any one of the following ways.

i. As a part of an output statement
eg.
Writeln('Area of a Triangle is ', Triarea(B,H) : 8:2)
ii. As a part of an expression
e
Totarea := Triarea(B,H) * 12;
ii. As a part of a comparison
eg.

If (TriArea(B,H) > 100} then
Writeln ('Area is too high');

Thus the function can be invoked by using any one of the above
methods.

Let us have a closer look over the function by coding another program
using a Function.

114 PASCAL PROGRAMMING
Program to find Binomial Coefficient using the formula
NR=N!/RI!*(N-R)!

Program Example (Input, Output);

Var
N,k : Integer; .
Einrc : Real;
! Punction Fact (X : Integer} : Integer;
! Var
I,Prod : Integer;
Begin
Prod : = 1;
For I : = 1 te X do
Prod : = Prod * I;
Fact : = Prod;
End;
{Main sStarts}
Begin
Writeln{'Enter Values for N, R');
Readln (N,R);
Bino : = Fact (N) / Fact {(R) * Fact (N - R}):
. Writeln ('Binomial Coefficient ',Bino:8:2);
End. '
Output
Enter Values for N, R
53

Binomial Coefficient 10.00

€xplanation

Initially we have to key in the values for N and R for which we want
to find out the Binomial coefficient. Then by making use of these
variables, function Fact with N is called first. Thus the value of the
actual parameter N is transferred to the formal parameter X of the
function declaration.

Upon scanning the function, one (FORTRAN programmers) might ask
why do we use a temporary identifier (Prod) instead of using Fact
directly. As we have said earlier that the value of the function returns

Procedures and Functions 115

only through its name and it should not be initialised more than once, we
are in need of temporary variable to find the result and it is assigned to
function name before the function ceases. So, in every function, the
function name should appear atieast once in the left hand side of an
assignment statement, whereas in the case of procedure it is not
necessary.

Functions with Arrays

So far we have been discussing about passing values of variables 1o
function. It is also possible to pass the values of an array to function,
the process is similar to that in the case of procedures.

For example the function call

Max = Biggest (A}

Will pass all the elements in the array to function Biggest, and the
function declaration of the same would be

Function Biggest (X : W) : Integer;

Where W is the user defined data type for an array of 10 Integer
quantities. As structured data types are not permitled in the function
declaration, the property is identical as in procedure. An example pro-
gram is given below.

Program Example (Input, OCutput);
Type
W = Array [1..5] of Integer;
var
A W,
I, Max : Integer;
Functicn Biggest (X : W) : Integer;

Var

I,M : Integer;
Begin

M o= XI[1];

For I := 2 to 5 do

If M < X[I]) then M := X[I];
Biggest := M;
End;

116 PASCAL PROGRAMMING

{Main Starts)

Begin
Writeln{'Enter 5 Numbers 1 by 1');
For I := 1 te 5 do
Readln(A(il});
Max := Biggest(Aa);
Writeln('The Maximum No is ' ,Max);
End.
Output
Enter 5 Numbers 1 by 1
45
123
98
‘76
| 54

| The Maximum No is 123

Explanation

Initially the user has to enter the numbers among with he wants to find
the maximum, as the given array. Then the statement

Max : =Biggest (A)

will transfer all these elements of the array A to the function Biggest. In
function Biggest, the maximum number is obtained by using the method
which we have already seen in the previous chapter (Arrays). The value
of Biggest is returned to the main and the same is displayed.

The examples so far have shown how to use function to return numeric
values. Sometime you may just want to know whether the entered array
of elements are in an ascending order or not. To perform this we have
used function which return boolean as its value i.e. True or False in the
following program.

Program Example (Input, Output);

Type

W = Array({l..5]) of Integer;
Var

X W;

I : Integer;
Function AscOrder(A : W) : Beoolean;

Var

Procedures and Functions 117

Check : Boolean;
I : Integer ;

Begin
Check := True ;
I:= 1;
While ((I < 5) and (Check)) do
Begin
If (A[i] > A[i+1]) Then Check := False;
ir=1i+1;
End;
AscOrder := Check ;
End;

{ Main starts }

Begin
. Writeln(‘'Enter 5 Numbers 1 by 1 ‘);
For i:= 1 to 5 do
Readln(X{i]);
If (AscOrder(X)) Then
ertelnl‘qiﬁenﬂumhars are in Ascending Order ° |}
alse
Writeln|{ 'Given Numbers arenot in Ascending Order ' };
End.
Output
Enter 5§ Numbers 1 by 1
23
45
87
98
123

Given Numbers are in Ascending Order
Enter 5 Numbers 1 by 1

87

65

99

110

123

Given Numbers are not in Ascending Order

Explanation
After getting the values for the array X, the elements are transferred to

118 PASCAL PROGRAMMING

function AscOrder. Inside the function, boolean variable Check is
initialised to True and it is used to find whether the element in the array
are in an order. Index starts from 1 and it is compared with the value
in the next location. If the first location value is greater than the second
location the boolean variable Check takes its value as False, and the
loop terminates. If not the index goes upto 4 so as to compare with the
next one. Finally after completing the comparison Check, it is assigned
to the function name AscOrder, which is used as a part of the compar-
ison statement in main. If it evaluates to True, then the entered numbers
are in ascending order, if not they are not in proper order.

Library Functions

Pascal is enriched with many built in functions to-cater to the needs of
scientific and graphic fields. Let us see some of its important built in
functions category wise.

I. NUMERIC FUNCTIONS
a. Abs(x)

To find the absolute value of x, where x may be real or integer. If the

value of x is less than 0 then Abs(x) changes the sign of x and displays
the value of x.

X := 5.6; X : ==6.7;
Writeln(Abs(x):5:2); Writeln(Abs(x):5:2);
Output

56 6.7

b. Arctan(x)

To find the trigonometric arctangent of x , value of X may be either
integer or real but it is expressed in radians.

c. Cos(x)

To find the cosine of x. Here also x may be an integer or a real and it
is expressed in radians. For example to find cos (45) the following
program segment may be used.

Degree:=45;
Radian:=3.14/180%*Degree;
Writeln(Cos(Radian):8:3};

Procedures and Functions 119
Output
0.707

d. Exp(x)

To find the exponent value of x. It is inverse of Ln(x) function. The value
of E is 2.718282. Here x may be real or integer.

For example

Exp(3) is equal to 2.718282°

e. Frac(x) -
To extract the fractional part from the real value(x).

For example
X:=34.567;
Writeln(Frac(x));
will retum
0.567
1. Int(x)
It is used to return the integral part of x. The result is always integer.
For example
x:=87.99;
Writeln(Int(x):8:3);
will return
87.000
9.Ln(x)

To find the natural logarithm of base e. Here x may be real or integet
and it is the inverse of Ln(x).

For example

To compute natural To compute natural
logarithm (base e) logarithm (base 10)

120 PASCAL PROGRAMMING

x 1= 20; x = 20;
Writeln({In(x):8:3}; Writeln(Ln(x)/Ln(10):8:3);
will retum

2.996 1.301

h. Pi

It is used to return the value of I1

Writeln(Pi:8:3);
will return -

3.142

i. Random

It is one of the functions which does not have any arguments. It is used
to return a value which lies between 0 and 1, hence the result is always
real.

j. Random{(x)

Here x must be an integer value which lies between 0 to 65535. This
function returns an integer less than x.

K. Sin(x) .

To find the sine of x. Here x may be integer or real and it is expressed

in radians. For example to find Sin(45) the following program segment
may be used.

Degree:=45;
Radian:=3.14/180*Degree;
Writeln{sSin(Radian):8:3);

will return
0.707

1. Sqr(x)
To find the square of x where x may be real or integer

m. Sqrt(x)
To find the square root of x where x may be real or integer.

Procedures and Functions 121

n. Round(x)

It is used to convert real value(x) to an integer by rounding, x must be
real and the result is an integer.

x:=98.5;
Writeln(Round(x));

will return

99

0. Trunc(x)

it is used to convert a real value to an integer by eliminating the decimal
part. Here x must be real.

x:=98.5;
Writeln(Trunc(x));

will return

98
The above two functions are used to return only Integer values.

Il. STRING FUNCTIONS

Next to BASIC, Turbo Pascal is well equipped with numerous String
Functions and String Procedures and these functions and procedures
are very easy and are ready to use.

String Functions

a. Contact (Str1, Str2,, StrN) :

This function is used to add any number of strings Str1, Str2, Str3, étc.
The general form is

ResultantString : = Concat (Strt, Str2,...., StrN)

(e.9)

Program Example (Input, Output);
var

Strl, Str2, Str3, Strd : String;
Begin

122 PASCAL PROGRAMMING

strl := 'God';
Str2 := 'Bless';
Str3 := 'You';
Str4 := Concat (Strl, Str2, str3);
Writeln(strd);
Readln;
End.
Outpat
God Bless You

The same could also be achieved by the rollc;wing program wi;lmti! using.
the Concat() function. '

sStrd := Strl + Str2 + Str3;

and the Output is

God Bless You
Concat means linking. Thus we can link strings to form a resultant string.

b. Copy (SourceStr, StartingPoint, NoOfChars) :

The counterpart for the above function in Basic is Mid$. It is used to
extract a string from another string, provided that the starting point of the
string and the number of characters to be extracted from that point are
given. The general form is

ResultantString:=Copy (Sourcestr,StartingPoint,NoOfChars) ;
(e.g)
Program Example {Input, Output);

Var
SourceString, ResultantString: string;

begin
SourceString := 'Cray XMP-14';
ResultantString := copy (SourcesString,6,3,);
Writeln(ResultantString);

and.

Output

XMP

Procedures and Functions 123

Starting from the 5™ character three characters of the source string are
printed.

By implicit the above two functions return string values.
Next we will see the String Functions which return an integer value.

c. Length(Str) :

The above string is used to count the number of characters given in the
string.

The general form is

Len := Length(Str);

(e.9.)

Program Example (Input, Output);

Var
Str:string;
Len:integer;

begin
Str := 'Nikalus Wirth';
Len := Length(Str);
Writeln(Len);

end.

Output

13

d. Pos(PatternStr, SourceStr) :

If pattern string appears within source string, the function returns the
position of the first character of the match. The function retums zero, if
no match is found.

The general form is

Locn := Pos (PatternStr, SourceStr);

eg)

124 PASCAL PROGRAMMING

Program Example (Input, COutput);

Var
PatternStr, SourceStr:string;
Locen: integer;

begin
PatternsStr := 'Perfect’;
fwurceStr := 'Be Perfect and Sincere';
7 cn := Pos(PatternStr, SourceStr);
Writeln(Locn);

end.

Output

4

String Procedures

Turbo Pascal has some of the unique string procedures which make

string manipulation very easier than in other languages.

a. Inser (SourceStr, DestinationStr, Position) :

This procedure allows us to insert a Source string into a Destination
string at a desired location (Position).

SourceStr Source String Specifying the string to insert
DestinationStr Destination String where the insertion takes place
Position An integer denotes the character position in destination

where the insertion begins.

Program Example {(Input, Output);

Var

begin

end.

Output

SourceStr, DestinationStr : strihg;

Position:integer;

ScurceStr := 'Love’';
DestinationStr := 'I India‘':
Position := 3;

Insert (SourceStr, DestinationStr,
Writeln(Destinationstr);

| Love India

Position);

Procedures and Functions 125

b. Delete (DestinationStr, Position, NoOfChars) :

This procedure eliminates a substring from another string. The deletion
begins at Position of the Deslination string and it stops only after elim-
inating NoOfChars. Thus the length of resulting string (DestinationStr) is
less than the original string.

DestinationStr The string where the deletion takes place

Position An integer denotes the character position in destination
where the deletion begins

NoOfChars An integer representing the number of characters to
delete from the DestinationStr

(e.q))
Program Example (Input, Output)
Var ’
DestinationStr:string;
. Positicn, NoOfChars:integer;
begin
DestinationStr := 'Turbo 2000 Plus‘;
Position := 7;
NoOfChars := §;
Delete (DestinationsStr, Position, NoCfChars);
Writeln(Destinationstr);
end.
Output
Turbo Plus

c. Val(StringValue, NumericVariable, ErrorCode) :

There are occasions where we may get a numeric value in the form of
string. If in the same program we want to convert this string into numeric
value, we can use this procedure Val.

StringValue A String but consists only numerals

NumericVariable This may be either real or integer variable. The
string is converted to a number and it is stored in
Numeric Variable.

ErrorCode While in conversion if any error occurs ErrorCode
contains the position of the error within the string.

126 PASCAL PROGRAMMING

If there is no error, the value of EmrorCode is 0.
EmorCode is an integer variable.

(e.) _
Program Example (Input, Output);
Var
ErrorCeode : Integer;
stringValue : string;
NumVar : Real;
begin
StringValue : = '2346.78";
Val(StringValue, NumVar, ErrorCode);
Writeln(NumVar:8:2)
end.
- Ouiput
2346.78

d. Str (NumericValue, StringVariable) :

The above procedure is the reverse of the procedure Val. It is used to
convert a Numeric Value into a String Variable.

NumericValue It may be a numeric constant, numeric variable. It
can be either real or integer.

StringVariable A string Variable.

(e.g)

Program Example (Input, Output);

Var
st : string;
Number : Integer;

Begin
Number := 5688;
str (Number, St);
Writeln(st);
Writeln(st;

End.

Output

5688

The above program upon execution will give '5688' as its result.

Procedures and Functions 127
RECURSION

So far we have seen some of the uses of procedures and functions. We
have to bear in mind that in all the procedures and functions we have
never fried to invoke the same procedure or function, with which we are
working. Turbo Pascal also provides us a chance of calling the procedure
and function by itself and this is called Recursion. When the procedure
or function is properly called by itself, it reduces Program coding and in
some cases it increases the efficiency of the Program. Thus, a recursion
is a valuable tool for Programming. In this section, we shall see some
of the pros and cons of recursion, when should we use, and not use
recursion. ‘

Now consider the following program code.

Function Fact (X : Integer) : Integer;
Begin
If (X=1) then

Fact := 1
Else
Fact := X * Fact(X-1);
End;

Recursion process is also called as "Back Substitution”. Now let us see
how this process works.

For example let us consider N=5

Since the value of N is not equal to 1, the function call

M : = fact(5)
fact(5) = 5 * fact(4)
Subsequently,
4 * fact(3)
3 * fact(2)

2 * fact(1)

128 PASCAL PROGRAMMING

and when n=1, the function returns the value as 1, and, therefore the fact
=5"4*3"2"1

Here is a complete program to demonstrate the concept of recursion.

Prolgram Example (Input, Output);

Var
N, M : Integer;
Function Fact{ X : Integer) : Integer;
Begin
If (¥=1) then
Fact i= 1
Else
Fact := X * Fact(X-1);
End;
{ Main Starts }
Begin
Writeln('Enter Number to Find Factorial ');
Readln(N)
M := Fact(N};
Writeln('The Factorial * ', M);
End.
Output
Enter Number to Find Factorial
5

The Factorial : 120

Wherever result is expressed in terms of successful application of the
same solution to subsets of the problem, Recursion is found to work very
successfully.

The important point to remember while developing a program (which
uses the recursive feature is) the program should have an end condition
which is usually done by using If statement. Failure to include the end
condition will bring the system into crash.

The advantage of using recursion is, to redtice the program coding which
will automatically make our program very clear to understand. Ofcourse
most of the programs which employ the recursive feature can also be
carried out by using the iterative concept, but, there are some programs
which really expected to include this feature to make the programs so
powerful and to provide elegance to the programs.

Procedures and Functions 129

Exercises

Write a Procedure that interchanges the values of two variables.

a) Write a procedure in Pascal that will compute the trace of a
matrix. The trace is defined as the sum o(the diagonal elements
of a matrix.

b) Write a Pascal procedure to read N X N matrix and print the
transpose of it.

A is a linear array containing at most N elements, Write a procedure
which

i) finds the largest value among the first K elements
i) Computes the sum of the first N elements.
Wirite a Pascal program which uses the above procedure.

Write a program to return the minimum value in an array of reals
using Procedure.

Construct a Pascal procedure to accept a number of unordered
names from the keyboard and print the same in an alphabetical
order on the display unit.

Using procedure, write a Pascal program that reads a sequence of
characters into an array and counts the number of words that text
contains. A word is any sequence of non-blank characters bounded
on either side by at least one blank.

Wirite a procedure to encrept a sentence using the strategy of
replacing a letter by the previous letter in its collating sequence, i.e.
avery A will be replaced by Z, every B by A and so on. Blanks are
left undisturbed.

Write a Pascal program to count the number of characters anﬂ'pﬂnt
the number of occurences of each vowel present in a given text.

What are formal parameters 7 What is the parameter passing
convention followed in Pascal.

Using procedure, write a program in Pascal to input a sequence of
integers info an array and print five numbers per line.

. What are global and Iocal variables ? Discuss the scope of these

variables ?.

130 PASCAL PROGRAMMING

12.
13.
14.

15.

16.

17.

18.

19.

20.
21,

22.

Write a function which returns the area of a triangle.
What is a function ? Give the syntax of function subprogram.

Wirite a function 1o find the factorial of a given number and to find
the value of

NCR = NV(NI(N-R}!).
Write a Program 1o find the sum of series of
Sin(x) = x=x¥31+)%/5!- upto n terms.

Explain the function of Chr and Ord clearly specifying the type of
parameters they accept and the type of value they retum.

Write short notes on
1. Value Parameter 2. Variable Parameter

Wirite a Pascal program to check the given square matrix of order
N X N is singular or not.

Write similarities and dissimilarities between procedure and
functions.

Whit is a recursion? Explain its execution process.

Write function subprogram to print the terms of the Fibonacci series
1,1,2,358.

What is the value of X printed by the following program?

Program Example (Input, Output);

Var

X : Integer;

Procedure Find (X : Real);

begin
X := sqgrt(X);

end;

{main starts}

begin
X :=3;
Find(X);
Writeln(X);

end.

132 PASCAL PROGRAMMING

29.

30.

31.

32.

35.

Given two one-dimensional arrays A and B which sorted in
ascending order. Write a program to merge them into a single
sorted array C.

Write a program which will read a string and rewrite it in the
alphabetical order. For example, the word STRING should be
written as GINRST.

Write a recursive function subprogram to compute Schermann
function for m=n=3.

a (m,n) = n+1, if m=0
= a{m-1) if n=0
= a(m-1),a(m,n—1), otherwise

Write a subprogram to find the digits of a given number and use the
subprogram to write a program to find if the given number contains
any duplicate digits.

How the function and procedure differ, when called in the main
program?

What is the type matching rule for a parameter of a procedure?

Explain the method of using global variable to pass a value to a
procedure.

Procedures and Functions 133

SOLVED PROBLEMS

1. Write a program to delete all vowels from a sentence. Assume that
the sentence is nor more than 80 characters long.

Program Example { Input,Output);
Type
StrType = String ;
Var
InStr,Outstr : StrType;
Procedure DeleteVowel |(Strl : StrType;
Var Str2 : StrType)

Var
I : Integer ;
X : Char;
Begin :
Str2 :='";
For I := 1 to Length(strl) do
Begin
X := Upcase(Strl[i]};
If (X <> 'A') And (X <> "E’) And (X <> 'I"}
And (X <> *0') And (X <> ‘U’) Then
S5tr2 := Str2 + Stril[i];
End;
End;

{ Main sStarts }

Begin
Writeln(‘Enter String ‘);
Readln(InStr};
DeleteVowel (InStr,Outstr);
Writeln;
Writeln('The String After Removing Vowels is ...'};
Writeln;
Writeln(outstr);

End.

Ouiput

Enter String

Colour meets colour as if challenging each other
The String After Removing Vowels is ...
Cir mits cir s f chiingng ch thr

134 PASCAL PROGRAMMING

2. Wirite a Program to find the product of matrices of order 3 X 3

using Procedure
Program Example (Input,Output);
Type
W = Array(l..3,1..3] of Integer ;
vVar
A,B,C : W;
Procedure MatGet (Var X : W);
var
I,J : Integer ;
Begin
For I :=1 to 3 do
For J := 1 teo 3 do
Readln(X[i,j]);
End;
Procedure MatMult(X, Y : W ;
Var 2 : W);
Var
I,J,K : Integer ;
Begin
For I := 1 to 3 do
For J := 1 to 3 do
Begin
2[i,3]1 := 0 ;
For K :=1 to 3 do
z[i,31 := 2(i,3 1+ X[i,k1 * ¥ik, 3] ¢
BEnd;
Endg;
Procedure MatPrint(X : W);
vVar
I,J : Integer ;
Begin
Writeln(‘The OQutput Matrix is ... ‘);
For I :=1 te 3 do
Begin
For J := 1 to 3 do
Write(X([i,31:5);°
Writeln;
End;
End;

{ Main Starts }

Procedures and Functions 135

Begin
Writeln(‘'Enter 9 Elements for Array A ‘);
MatGet (R) ;
Writeln('Enter 9 Elements for Array B ');
MatGet (B) ;
MatMult (A,B,C);
MatPrint(c);

End.

Output
Enter ¢ Elements for Array A

nter ¢ Elements for Array B

VENOCVMALEWUN=MOONOUMLEWN—-

H

Ouiput Matrix Is
30 36 42
66 81 96
102 126 150

3. Write a Recursive function to sum integer numbers between 1-
100.

Program Example (Input,Cutput);
Var
Sum : Integer ;
Function Sumltol00 (N : integer)} : Integer ;

136 PASCAL PROGRAMMING

Begin
If (n=1) then
Sumltol00 := n
Else
Sumltol00 := n+sumltol0O0(n—1);
End;
{Main Starts}
Begin
Sum:=Sumltol00({100);
Writeln('Sum 1 to 100 is ' ,Sum);
End.
Output

Sum 1 to 100 is 5050

4. Write a program to search whether the given number is present or
not by using function.

Program Example (Input, Output);

Type
W = Arrayl[l..5] of Integer;
Var
A : W;
I,X : Integer;
Function Lsearch (Var N : W; M : Integer) : Boolean;
Var :
J : Integer
E : Boolean;
Begin
J :=1; B := true;
While ((J<=5) and (B}) do
Begin
If (n{J] = X} then
B:=False;
J:=J+1;
End;
If (B) then

Lsearch:=False
else
Lsearch:=True;

Procedures and Functions 137

{Main Starts)

Begin
Writeln('Enter 5 Numbers 1 by 1');
For I:=1 to 5 do
Readln(a[I);
Writeln('Enter Search No'};
Readln(X);
If (Lsearch(A,X) Then
Writeln('The Given Number Is There');
else
Writeln('The Given Number Is Not There');
End.
Output
Enter 5 Numbers 1 by 1
3
56
12
887
233
Enter Search No
12

The Given Number Is There

Enter 5 Numbers 1 by 1
123

453

674

987

342

Enter Search No

888

The Given Number is Not There

5. Wirite a function to find whether given value is available in an array
of size 100 integers arranged in the ascending order using binary
search method print the position of the value in the array if the value
is found, otherwise print 0.

138 PASCAL PROGRAMMING

Program Example (Input,Output);
Type

W = Array[l1..100] of Integer ;
Var

A H

I,N,\size : Integer ;
Function Sear ‘hNo (X : W ;

No,ArrySize : Integer) :Integer ;

Var

High,Low,Mid : Integer ;

{Procedure Selection Sort Begins }

Procedure SelectionSort Var Y : W ;
NoOfElmnts : Integer };

Var
I,J,5mall : Integer ;
{ Procedure For Swap }
Procedure Swap (Var P,Q : Integer });
Var
T : Integer ;
Begin
T:=P ; P:=0Q ;Q :=1T ;
End;
Begin
For I := 1 to NoOfElmnts-1 do
Begin
Small := I ;
For J := 1+1 to NoOfElmnts do
If (Y[J] < Y[Small]) then
Smwall :=J ;
Swap (Y[I],Y[Small]);
End;
End;

{ Function Main For Search }
Begin
SelectionSort (X,ArrySize);
Low := 0;
High := ArrySize;
High := High = 1 ;

Procedures and Functions

while (High <> Low + 1) do
Begin
Mid := (Low + High) Div 2;
If (X[Mid] <= No) then

Low := Mid
else
High := Mid;
End;
If (X[(Low] = No) then
‘SearchNo := 1
else

SearchNo := 0;
End;

{Main Starts}

Begin
Writeln('How Many Nos Are You Going to Enter');
Readln(Asize);
Writeln('Enter', Asize, 'Elements 1 by 1°');
For I := 1 to Asize do
Readln (A[I]);
Writeln('Enter Search No');
Readln(N) ;
If (SearchNo(A,N,Asize}=1} then
Writeln('Given Number is Present in the Array')
Else

139

Writeln('Given Number is Not Present in the Array');

End.

Output

How Many Nos Are you Going to Enter
5

Enter § Elements 1 by 1

78

54

987

764

566

Enter Search No
987 :

140 PASCAL PROGRAMMING

Given Number is Present in the Amay
How Many Nos Are you Going to Enter
4

Enter 4 Elements 1 by 1
87

34

342

12

Enter Search No
100
Given Number is Not Present in the Amay

CHAPTER - 7

RECORDS

So far we have seen simple data types, such as int, real, char and
boolean. In this chapter, we switch our concentration to a special data
type called Record which will open our way to enter into modern pro-
gramming concepts. It follows Array in structured data type category.

A Record is a collection of variables. The variables in a Record can be of
different types such as Char, Int, Real or Boolean. it deviates from array
in this aspect wherein all the variables must be of the same data type.
Elements in a record are called the members of the structure. We will
discuss the features of a rgcord in the forthcoming sections.

Record Declaration

Record can be declared in two ways either through type declaration or
through variable declaration. Let us see how a record can be declared
through type declaration.

Record_Name = Record

Members and their data type ;

End ;
We begin with a record that contains three variables — a string, an
integer and a real. This record represents a student record in a class.
The structure is as follows.

Stdrec = Record

Name : string ;

Examno : Integer ;

Ave : Real ;

End ;
The keyword record introduces the specifier. Here the record name is
Stdrec. As it is merely a declaration, it does not occupy any space in
the memory. It is to show how a record variable will look when it is
defined.

Defining a Record Variable

Before assigning any value to the members of the record, it should be
defined as a record variable. Consider the following construct

142 PASCAL PROGRAMMING

var
Markrec : Stdrec ;

This defines Markrec as a variable of type Stdrec. This definition causes
to reserve sufficient space in memory for Markrec.

Accessing Member of a Record

Once a record variable has been defined, its members can be accessed
using a period (.), also called the dot or member operator. The following
illustration will show how a value is assigned 1o the members in a record.

‘Markrec. Name := 'Thiagarajar‘' ;
Markrec.No := 1234;
Markrec.Ave := 89.67;

From the above it can be seen that the member in a record can be
accessed through its record name. The syntax for accessing an element
in a record is as follows.

RecordName . MemberName;

Here is a simple program to illustrate how a record can be used in a
program. '

Program Example (Input, Output);

Type
Stdrec = Record
Name : String;
Tam, Eng, Mat : Integer ;
End;
Var
Markrec : Stdrec ;
Tot : Integer ;
Ave : Real;
Begin

Writeln ('Enter Student Name ');

Readln (Markrec.Name) ;

Writeln ('Enter Marks for Tamil, English , Maths *);
Readln (Markrec.Tam,Markrec.Eng , Markrec.Mat) ;
Tot := Markrec.Tam + Markrec.Eng + Markrec.Mat;

Ave := Tot / 3 ;

Writeln ('Student Name : ' Markrec.Name) ;
Writeln ('Total Marks : ',Tot) ;
Writeln (‘'Average : ',Ave:5:2) ;

End.

Records 143

Output

Enter Student Name

Sivakumar

Enter Marks for Tamil , English , Maths
768189

Student Name: Sivakumar

Total Marks : 246

Average : 82.00

Another method for declaring a record variable is through variable
declaration.

The declaration is as follows.

Var
Markrec : Record

Name : String;
Tam, Eng,Mat : Integer ;
End;
Tot : Integer ;
Ave : Real;

The above method declares record variable directly. This method of
declaration may be used as an advantage, when there is no need to pass
a Record to a Procedure or Function.

With Structure

In previous program we have used a record consists of 4 fields and it
is possible to refer the variables through the dot operator. However we
may have situations wherein we have more number of fields in a Record.
To overcome this shortcoming Turbo Pascal provides us the
with structure. The usage of this structure is as follows.

With RecordVariable Do *
Begin
End;

Now, let us record the nutshell of the first program using the with
structure.

With Markrec do

144 PASCAL PROGRAMMING

Begin
Writeln('Enter Student Name ‘);
Readln (Name) ;
Writeln('Enter Marks for Tamil , English , Maths *);
Readln (Tam, Eng,Mat) ;
Tot :=Tam + Eng + Mat;
Ave := Tot / 3 ;
End;

In the above program , inside the with structure the statement
Readln(Name) is equivalent {0 Readln(Markrec.Name); and

Readln(Tam, Eng,Mat) is equivalent to

Readln(Markrec.Tam, Markrec.Eng, Markrec.Mat);

We will now write a complete program by incorporating all the things that
we have seen so far.

Program Example (Input,Output);
Type
Stdrec = Record
Name : String;
Tam,Eng,Mat : Integer ;
End;
Var
Markrec : Stdrec ;
Tot : Integer ;
Ave : Real;
Begin
With Markrec do
Begin
Writeln(‘Enter Student Name ‘);
Readln (Name) ; .
Writeln(‘Enter Marks for Tamil , English , Maths ');
Readln (Tam,Eng, Mat);
Tot Tam + Eng + Mat;
Ave Tot / 3 ;
End;

Records 145

Writeln ('Student Name : ',Markrec.Name);
Writeln ('Total Marks : ',Tot);
Writeln (‘'Average : ',Ave:5:2) ;

End.

Output

Enter Student Name

Premkumar

Enter Marks for Tamil , English , Maths

78 87 69)

Student Name : Premkumar
Total Marks : 234
Average : 78.00

Array of Records

Similar to the case where we have array of integers or reals, we also
have array of records. It finds useful application in record manipulations
such as to compare records, to arrange records in a particular sequence
etc.,. The declaration of array of records is similar to that of declaration
of simple data type.

The declaration is

Var .
Markrec : Array [l1..5] of Stdrec ;

This creates 5 sets of record that are organised as defined in the record
Stdrec, where stdrec is already declared through a type declaration
statement ;

Stdrec = Record

Name : String;
Tam, Eng,Mat : Integer ;
End;

Accessing of a member from such an array of records also follows the
same rules as in the case of simple data type array declarations.

For example, to access the fields Name,Tam,Eng and Mat of the first
record, the following code is used :

Readln (Stdrec([i].Name);
Readln (Stdrec [i].Tam,Stdrec(i].Eng,Stdrec(i].Mat);

146 PASCAL PROGRAMMING

The program coding for receiving the details of the marks of the §
students, using the above statement in a with structure, embedded within
a for loop is as follows

The program is also designed to find the total marks and the average
marks for the given 5 students.

Program Example (Input,Output);

Type
Stdrec = Record
Name :String;
Tam,Eng,Mat : Integer ;
End;
Var
Markrec : Array(l..5] of Stdrec ;
Tot : Array[l..5] of Integer ;
ARve : Array([l..5])of Real;
I : Integer ;
Begin

For I:= 1 to 5 do
With Markrec (i) do
Begin
Writeln('Enter Student Name —> ');
Readln(Name) ;
Writeln('Enter Marks for Tamil , English , Maths —>');
Readln (Tam,Eng,Mat);

Tot[i] := Tam + Eng + Mat;
Ave[i] := Tor[il / 3 ;
End;
Writeln;
Writeln{' Student Name Total Average');
Writeln;

For I:= 1 to 5 do
Writeln(Markrec[i].Name:15, ', Tot[i]:5,' ' Ave[i]):5:2);
End.

Output

Enter Student Name —> Ramesh

Enter Marks for Tamil , English , Maths —> 89 68 79
Enter Student Name —-> Rajan

Enter Marks for Tamil , English , Maths —> 62 75 78
Enter Student Name —-> Kishore

Enter Marks for Tamil , English , Maths —> 71 93 91
Enter Student Name —> Sivakumar

Records 147

Enter Marks for Tamil , English , Maths ——> 67 98 91
Enter Student Name ——> Ramalingam
Enter Marks for Tamil , English , Maths —— 67 62 71

Student Name Total Average
Ramesh 236 78.67
Rajan 215 71.67
Kishore 255 85.00
Sivakumar 256 85.33
Ramalingam 200 66.67

Let us further dig into array of records by another example. The following
program is an example to arrange a set of records in a particular fashion.
The record consists of the following details.

EmpName Employee Name

Bp Basic Pay

Da Dearness Allowance
Allo Other Allowances
Dedn Deductions

The Program uses Tolpay as a Key field and it is calculated as
Totpay = BP + Da + Allo — Dedn

Program Example (Input,Qutput) ;

Type
Salrec = Record
EmpName : String ;
Bp,Da,Allo,Dedn : Integer ;
End ;
Var
Emprec : Array [1..5] of salrec ;
Totpay : Array [1..5] of Integer ;
I1,J,Temppay : Integer ;
Temprac : Salrec;
Begin
For I := 1 to 5 do

With Enprec [I] do

148 PASCAL PROGRAMMING

Begin

Write('Enter Employee Name : '} ;

Readln (EmpName)

Write ('Enter Bp,Da,Allo,Dehn : ');

Readln (Bp,Da,Allo,Dedn);
Totpay[I] := Bo + Da + Allo - Dedn ;

End;
{Sorting Begins}

For I:= 1 to 4 do

For J:= i+l to 5 do

If (Totpay([I] ,Totpay[J]) then

Begin
Temprec
Enprec(I]
Bmprec(J]
Tenppay :=
Totpay[I] :
Totpay[J]) :
End;
Writeln;
Writeln (' Sored output as Follows
Writeln;
Writeln(' Name Totpay') ;
Writeln;
For I := 1 to 5 do

Writeln (Emprec(I] .EmpName:15,'
End.

Output

Enter Employee Name : Karthikeyan
Enter Bp,Da,Allo,Dedn : 1250 240 125 250
Enter Employee Name : Kathirvelan
Enter Bp,Da,Allo,Dedn : 2050 300 100 325
Enter Employee Name : Kannan

Enter Bp,Da,Allo,Dedn : 1750 400 125 350
Enter Employee Name : Kalaichelvan
Enter Bp,Da,Allo,Dedn : 2100 300 150 180
Enter Employee Name : Saravanan

Enter Bp,Da,Allo,Dedn : 1800 250 100 230

: Emprec [I);
:= Emprec|[Jd];
:= Temprec;

Totpay[I];
Totpay [J] ;
Temppay';

o

") og

' Totpay[I]

:5)

’

150 PASCAL PROGRAMMING

The statement ,

Markrec([2].Sub(2)]

refers to the 2" markrecord and the marks obtained in 2" subject. The
program following will explain how arrays are used within a record.

Program Example (Input,Output);

Type
Stdrec = Record
Name : String;
Subs : Array([l..2] of integer ;
End;
Var

Markrec : Array([l..2] of Stdrec ;
Tot : Arrayll..2] of Integer ;
I,J : Integer ;

Begin
For I:= 1 te 2 do
With Markrec [i] do
Begin
Writeln('Enter Name : ‘);
Readln (Name) ;
Tot(i]:= O;
Writeln('Enter 2 Marks ‘);
For J :=1 toc 2 do
Begin
Readln(Subs{j]);
Tot[i] := Tot[i] + Subs[j];
End;
End;
Writeln; .
Writeln(* Name Sub-1 Sub-2 Total ‘};

For I:= 1 to 2 do
wWith Markrec [(i] do

Begin
Write(Name:15);
For j := 1 to 2 do

Write(Subs([j]:12);
Writeln(Tot([i]:12);
End;
End.

152 PASCAL PROGRAMMING

Readln(Author) ;
Writeln('Price’) ;-
Readln(Price);
End;
End;

Procedure PutBookDetail(TBook : Book);

Begin
With TBook Do
Begin
Writeln('Book Name : ',Title);
Writeln('Author Name : ', Author);
Writeln(* Price : ',Price:5:2);
End;
End:

{ Main Starts }

Begin
GetBookDetail (Bookrec) ;
Writeln;
PutBookDetail (Bookrec) ;

End.

Output - .

Enter Book Name
Basic Programming
Author Name

E. Balagurusamy
Price

63.00

Book Name : Basic Programming
Author Name : E. Balagurusamy
Price : 63.00

The procedure GetBookDetail is used to receive details of the book
from the user. Please note that in the declaration of the record variable,
Book is declared as a variable parameter. Hence , it can pass whatever
be the information received by this procedure , to the main program for
future reference,.

The procedure PutDetailBook is used to display, information regarding
the book in a neat format. Here, the record variable Book, is declared

Records 153

as a value parameter as there is no need to pass anything to the main
program.

Nested Records

A record can also act as an element in another record and such struc-
tures are called Nested records. Consider the following declaration

Dob = Record
Date : Integer ;
Month : String ;
Year : Integer ;
End;

Dob (Data of Birth) is a record type which contains date, month and year
as elements. It is substituted in another record named Stdinfo, as
Bday(Birthday) and a complete declaration is as follows.

Stdlnfo = Record
Name: String;
Age : Integer ;
Bday: Dob;
End;

Before using Stdinfo in our program, it is declared as a record variable
as usual in the variable section.

var
StdlnfoRec : sStdinfo ;

Now the record variable StdinfoRec will have nams, age, date, month
and year as its members.

The members Name and Age of the StdinfoRec, are accessed by using
normal dot operator. The fields in Bday such as date, month and year
are accessed by linking all the record variable (from outer record to the
inner record) using the dot operator.

The program which uses the above structure is as follows.

Program Example (Input, Output) ;
Type
Dob = Record
Date : Integer ;
Month : String;
Year : Integer ;
End;

154 PASCAL PROGRAMMING

Stdlnfeo = Record
Mame : String;
Age : Integer ;

Bday : Dob;
End;
Var
stdlnfoRec : Stdlnfec ;
Begin
With sStdlnfoRec do
Begin

Writeln ('Enter Name '});
Readln (Name);
Writeln ('Rge’);
Readln (Age) ;
With Bday do
Begin
Writeln ('Enter Date ');
Readln (Date) ;
Writeln ('Menth');
Readln (Month) ;
Writeln ('Year');
Readln (Year) ;
End;
End;
Writeln;

Writeln ('The Given Information .. ');

Writeln ('Name : ' , StdlnfoRec.Name) ;
Writeln ('Age : ' , stdlnfoRec.Age) ;
Writeln ('Date : ' , StdinfoRec.Date) ;
Writeln ('Menth : ' , sStdlnfoRec.Month) ;
Writeln ('Year : ' , StdlnfoRec.Year) ;

End.

Output

Enter Name

Ramesh

Age

23

Enter Date

24

Month

Records 155

Sept
Year
1971
The Given Information

Name : Ramesh
Age : 23

Date : 24

Month : Sept
Year : 1971
Variant Records

It is one of the special features which make Pascal very powerful among
the computer language. Though the name sounds strange to BASIC or
FORTRAN programmers, it is a powerful programming tool. It has the
property to vary its fields depending on the type of the data to be stored
and hence the name. The general format is as follows.

Record-Name = Record
Declaraticn ;
Case tag-identifier = Data type of

Case label_1 : (field declaration) ;
Case label_2 : (field declaration) ;
End;

Depending upon the tag-identifier, field declaration will be taken into
account.

Now let us see how it is realised through an example program.

The program is designed to receive an option first. If the option is equal
to 1, the user has to enter 2 subjects and if the option is equal to 2, then
the user has to feed 3 subjects.

Program Example (Input, Output) ;
Var
Stdrec : Record
Name : String ;
Case Option : Integer of
1 : (Tamil,English : Integer) ;
2 : (Hindi,Malayalam, Telugu:Integer);
End;

156 PASCAL PROGRAMMING

Tot : Integer ;

Begin
With Stdrec do
Begin
Writeln({ ‘Enter Name ‘});
Readln(Name) ;
Writeln{'Type 1 For 2 Papers and 2 For 2 Papers '};
Readln(Option) ;
If (Cption=1) Then
Begin
Writeln('Enter Marks For Tamil,English ');
Readln(Tamil, English);
Tot := Tamil + English ;
End
Else
Begin
Writeln('Enter Marks For Hindi,Telugu & Malayalam
Readln(Hindi, Telugu,Malayalam) ;
Tot := Hindi + Telugu + Malayalam ;
End;
End;
Writeln;
Writeln('Name : ', Stdrec.Name);
Writeln({' Total : *,Tot);
End.
Qutput
Enter Name
Raja

Type 1 For 2 Papers and 2 For 3 Papers
1

Enter Marks For Tamil,English

62 78

Name : Rajd
Total : 140

Enter Nome
Jothi
Type 1 For 2 Papers and 2 For 3 Papers

“):

158 PASCAL PROGRAMMING

For i :=1 tec 4 do
Begin
Readln (Ceah [i]) ;
Tot := Tot + Ceah [i] ;

End;
End;
End;
. Writeln;
Writeln (‘Name : ',Stdrec.Name) ;
Writeln { 'Total : ',Tot) -
End.
Output
Enter Name
Anbu

Type' 1 for 3 Subjects and 2 For 4 Subjects
1
Enter Marks For Maths, Physics, Chemistry 1 by 1

67

72

91

Naome : Anbu
Total : 230
Enter Name
Rajkumar

Type 1 For 3 Subjects and 2 For 4 Subjects
2

Enter Marks For Com, Eco, Acc, His 1 by 1
71

82

78

91

Name : Rajkumar

Total : 322

Now we can understand the concept of records and are familiar with the
With structure, Array of records, Arrays within record, Passing a record
to a procedure, Nested records and Variant records through some
example programs.

Records 159

Exercises

1.
2.

What is meant by Record. Write the rules for defining a record type.

What is the purpose of With structure. Summarise the rules for
using With structure.

Define a Record structure for storing a complete home address.
Declare a structure with following fields

Employee number - an integer quantity

Employee name - a string of characters

Age - integer

Designation - string of characters

Write Pascal statements to assign values to the various fields and
print them out with appropriate messages.

What is a variant record structure. What are the rules to be followed
while creating such structure.

Write a Pascal program to read a set of names and print them in
the alphabetical order using records within records.

Describe how variable size records are defined in Pascal. Explain
any 2 situations where variable size records are needed.

Write a program in Pascal using records to read a set of students
names and their marks in a neat tabular format.

Using the scope rules of Pascal determine the declarations that
apply to each occurrence of the names A and B in the following
program segment.

Procedure T { U,?,X,Y : Integer) ;

Var

A : Record
A,B : Integer :

end ;

B : Record

E,A : Integer;
end;

Records

13. What is the total memory in bytes required to store S1.

Type

Studrec =record

Var 51 :

name : array[l..20] of char;
id : integer
case financeaid of
true : amount : real;
total : real,
false : pastaid : boolean;
end;
Studrec

161

CHAPTER - B
FILES

The study of any language will be completed only after knowing about
the file handling capability of the language. If we want to process small
volume of data then the methods we have seen so far will be enough.
A significant drawback of the earlier methods is that once the program
is over the data may no longer be alive. But we may want to store the
information for a quite long time. So, to overcome this difficulty and as
well as to process huge volume of records we require files.

In this chapter we shall see how files are used to facilitate our
requirement, through numerous examples.

Organisation of files .
File organisation falls into two categories in Turbo Pascal. They are

i. Sequential Organisation
ii. Random Organisation

In sequential organisation, the records have to be entered in a proper
sequence. During processing, the records get processed in the same
sequence as they were entered. Let us assume that we are having 10
records and we have entered them one by one. During the processing
of these records, the first record entered will be rolled out first, then the
second record and so on. This method is called First in First out (Fifo).
In this organisation it is not possible to process intermediate records
without disturbing the neighbouring records. This type of processing will
be much used where all the records need to be processed. A typical
example for such an organisation is the Cassette Recorder in which we
hear prerecorded songs one after the other.

In random organisation we can enter records in any arbitrary manner.
During processing it is quire possible o process the intermediate records
without disturbing the other records. This method of organisation is found
to be very useful where processing of records require an arbitrary inanner.
A typical example for such an organisation is the Record Player where
we can direclly access any of our desired song by simply moving the
stylus. Hence, this method of organisation is also called Direct Access
method.

Files 163

Turbo Pascal provides basically two types of disk files

i) Binary files
i) Text files

The method of storing data in binary files follows the same format as that
which is stored in computer's internal memory. It is not possible to read
the contents of the data file as it contains non printable characters. It is
further classified into typed and untyped file. In typed binary file, the data
can be read from an existing file and written to another file regardiess
of its data type as it does-not have any specific data type.

Turbo Pascal also supports a special type of file handling facility called
Text file handling. This method is very useful in processing of text
matters such as to print text message, to count or to replace a particular
character or word, etc. The latter pant of this chapter is devoted to deal
with this, in greater detail with examples.

Typed Binary file

Now let us see how typed binary files can be used to enhance the file
handling. To start with we have to declare a file variable. The declaration
of typed binary file variable is exactly to other variable declarations.

The general form is as follows :

Var
Var .Name : File of data-type ;
Here

Variable name is the typed binary file's variable name. The data
type which is defined already may be integer or real or even a
record type.

Once the file variable id defined, the next step is the opening of the file.
The file is opened by using a procedure called Assign and the general
form is as follows:

Assign (file variable, file name);
here

file variable is also called as internal reference to the file which is
declared previously in the declaration part.

164 PASCAL PROGRAMMING

file name is also called as external reference or directory reference to
the file.

The rules to be followed while naming a file is that, a file name (also
called primary name) should not contain more than eight characters. A
file'may or may not have an extension name (also called secondary
name). If it has, it should not exceed three characters, which is used to
identify the type of the file. Some of the valid file names are shown
below:

TEMP.DAT STDREC.DAT SALES.FIL BUDGET94.TXT

It is not adviceable to give extension name such as .C, .FOR, .BAS,
.COB , .PAS as they confuse with source code for that corresponding
languages.

Note that in an Assign procedure we have given both the internal
reference and the external reference for a file. Within the program
whenever we want to refer the external reference it is enough that we
refer the internal reference of the particular file.

Normally when a file is opened the basic operation we are going to do
with the file is as follows:

i) Add information to a fresh file.
ii) Read information from an existing file.
iy Append Information to an existing file.

To add information (records) to a fresh file, we are using another
procedure named as Rewrite and the general form for Rewrite is given
below

Rewrite(file variable};
It is the variable for the file to be opened.

The above procedure should be used very carefully, beéause if this
procedure is used with an already existing file, the Rewrite procedure will
flush out the contents of the existing file and make the file a fresh one.

To read information (records) from an existing file, the procedure Reset
will be used. The syntax is as follows.

Reset (file variable) ;

It is the variable for the file to be opened.

Files 165

If this procedure is used without having an external reference in the
Assign procedure, Reset will issue an error message during run time.

To-add information to an existing file we may use the append procedure.
This procedure is only applicable to text file and will be seen in the later
part of this book.

Now we will see how a record (data items) can be written to a file. For
this, we have another procedure in the name of Write and the syntax is
as follows:

Write (file variable,Record name);

Here, file variable is a variable to which the file can write the data. Here
data items can also be written individually, separating them bv commas
or we can directly write all the data items through its record name.

Similar to that of Write procedure for writing data items to a file, we have
a ptocedure called Read, which is used to read a record (data items)
from an existing file. The general form for this procedure is as follows:

Read (file variable, Record name);

Where file variable is a variable from which the file can read the data.
Here, instead of reading data items one by one it is quite possible to read
complete record directly just by giving its record name. This also gives
clarity to the program.

All files opened for processing should be closed after completing nec-
essary action. Failure to close a file will invite catastrophic-effect. The
general form to close a file is as follows:

Close (file variable) ;
where file variable is the variable for the file to be closed.

Now, let us develop a file which uses sequential file organisation. In file
handling, we have to develop two programs. The first program is used
to receive data items from the user and no calculations are performed
in this program. The second program is used to process the entered
data. All calculations are carried out only in the processing file.

Let us create a data entry program. The program is designed in such a
way to receive data items from the use until the user desires to stop. This
is carried out by using a variable 'Cont', and it is initialised as 'Y'.The
Do-while loop is used for the job to receive the data items from the user
until "Cont’ retains the value 'Y".

Files

Readln(English) ;
Write(' Maths : ');

Readln (Maths) ;
Write(Infile, Markrec);
End;
Write('Want Te Proceed (Y/H) '});
Readln(Cont) ;
End;
Clese(Infile) ;
End.
Output
Enter Name : Manian
Examno : 1001
Tamil : 56
English : 78
Maths : 98
Want To Proceed (Y/N) Y
Enter Name : Suresh
Examno : 1002
Tamil : 44
English : 67
Maths : 78

Want to Proceed (Y/N) Y

Enter Name : Jayakumar
Examno : 1003

Tamil : 65

English : 87

Maths 91

Want To Proceed (Y/N) N

167

Now our job is to process the entered data in desired manner. The
following program reads the content of the above entered file and
computes the total and average mark for every student. The following
program also employs a special boolean function Eof (); which returns
either true or false while processing. It returns true after processing the
contents of the given file variable, if not, it returms false till the record
pointer reaches end of file. Here is a program which demonstrates the

same.
Program Example (Input,Cutput)
Type

Stdrec = Record

168 PASCAL PROGRAMMING

Name : String ;
Exarmo : Integer ;
Tamil : Integer ;
English : Integer ;

Mal : Integer ;
End;
var
Markrec: Stdrec ;
Infile : File of Stdrec;
Tot : Integer ;
Ave : Real;
Begin . :
Assign(Infile, 'Mark.Dat’);
Reset (Infile);
While Not Eof(Infile) Do
Begin
With Markrec Do
Begin
Read {Infile,Markrec) ;
Tot:= Tamil + English + Maths ;
Ave := Tot/ 3;
Writeln(‘Name 1 ', Name);
Writeln(‘Exam No : ‘',Examo);
Writeln('Tamil : ', Tamil);
Writeln('‘English : ‘,English);
Writeln('Maths : ', ,Maths);
Writeln('Total : ', Tot);
Writeln(‘Average : ‘,Ave:5:2);
Writeln;
End;
Write(‘'Press Any Key To Proceed ');
Readln;
Writeln;
End;
Close(Infile);
End.
Output
Name : Manian
Exam No : 1001
Tamil : 56

English : 78

Files 169

Maths : 98
Total : 232
Average : 77.33

Press Any Key To Proceed

Name : Suresh
Exam No : 1002
Tamil 1 44
English : 67
Maths 1 78
Total : 189

Average : 63.00
Press Any Key To Proceed

Name : Jayakumar
Exam No : 1003

Tamil : 65

English : 87

Maths N

Total . 243

Average : 81.00
Press Any Key To Proceed

From the above two illustrations we have seen how to create a binary
file and also to process the same. Now we focus our attention on how
to add a record to an existing binary file. It is nothing but a process of
adding a record at the end of an existing file, Although the procedure
Append is avallable, it is intended only for the handling of Text file. So,
we have to write our own routine to perform the above mentioned
processing.

In this process the file should be opened by using the standard proce-
dure Assign followed by Reset. Then the following routine is used to
move the record pointer to the end of the file.

While not eof(infile) do
Read(infile,Markrec);

After this, the usual procedure starts to add records to the end of the
file as long as it is desired. Here is a complete program to demenstrate
the above concept clearly.

170 PASCAL PROGRAMMING

Program Example {Input,Output);

Type
Stdrec = Record
Name : String ;
Bamo : Integer ;
Tamil : Integer ;
English : Integer ;
Maths : Integer ;
End;
Var

Markrec : Stdrec ;
Infile : File of Stdrec;
Cont : Char;
Begin
Assign(Infile, 'Mark.Dat’);
Reset (Infile);
While Not eof(Infile) do
Read(infile,Markrec) ;
Cont := ‘Y’' ;
While (Cont = ‘'¥’) Do
Begin
With Markrec Do
Begin
Write('Enter Name : ');
Readln (Name) ;
Write(* Examo : ');
Readln(Exammo) ;
Write(* Tamil : *);
Readln(Tamil) ;
Write(* English : ');
Readln(English) ;
Write(* Maths : ‘);
Readln(Maths) ;
Writeln(Infile,Markrec);
End;
Write(‘Want To Proceed (Y/N)');
Readln(Cont) ;
End;
Close({Infile);
End.

To get the output for the above program run the processing file of the
previous one.

Files 171

TEXT FILE

it is one of the special features which is not found in other languages
such as BASIC, FORTRAN. This one is mainly used to handle the
manipulation of text. For example, if we wish to count the number of
vowels in a file or to replace a particular character with another one, this
text file may be used. In this case, the file variable is declared as Text
as we are going to enter only text messages. The other keywords for
opening a file, closing a file and mode setting are the same as the binary
file. Here Writeln is used to write the messages to a file though Write
is also permitted. The difference is, messages in a file is continuous if
we use Write, and it is line by line if we use Writeln. Ofcourse, it is our
choice to choose according to our needs. Similarly, while reading a
message from a file, ReadlIn is used just as we used Writeln in the data
entry file.

Here is a complete program to write a text message to a file.

Program Example (Input,Cutput) ;
Var
Tfile : Text ;
Contsent : Char ;
Str255 : String ;
Begin
Assign (Tfile, 'Pers.Doc') ;
Rewrite (Tfile) ;

Contsent := 'Y' ;
While (Contsent='Y') do
Begin

Writeln ('Enter Message '} ;
Readln/Str255) ;
Writeln(Tfile, Str255) ;
Writeln;
Writeln{'Want to Continue (Y/N)} '} ;
Readln(Contesent) ;
Writeln;
End;
Close(Tfile) ;
End.

Output

Enter Message
in the scenario of rapid innovation, fast changing technologies

Files 173

Output

Number of A’s 14
Number of E's 17
Number of I's 17
Number of O's 12
Number of U's 1

In the above illustration, the text in a file is read line by line using Readin.
The For loop is used to count the vowels in every line. The function
Length() is used to count the number of letters in a line. If the letter is
found to be a vowel, the corresponding variable is incremented by one
through inc() function. Thus the process repeats until all the lines in a
file are read.

Few more examples regarding the text file will be seen in the solved
problem section also.

RANDOM FILES

So far we have seen sequential access method in which all the records
in a file are processed sequentially. There may be some instance where
we want to process a particular record without disturbing the other
records in a file. In such occasions, Random files are found to be most
useful.

In this case, the normal procedure to open a file, close a file, write a
record into a file and read a record from a file are the same as sequential
access. The only difference is that before entering a record we must
specify its record pointer, which of course is an integer. Only after
entering the record pointer the information relevant to that record is fed.
Similarly during processing, the record pointer for the record which we
want to process is first entered. The corresponding record for that record
pointer is read and then processed as per our requirements.

To read or to write a record in a file at any particular position we are
using a standard procedure seek. The Syntax for this procedure is as
follows.

Seek(file variable , Position) ;

Here, file variable is the typed binary file's variable (a file which contains
non-printable characters). Position is an integer variable and also a
record number to move the file variable.

174 PASCAL PROGRAMMING

The Example program consists of three fields and the structure is as
follows.
Emprec = Record
Empno : Integer ;
EmpName : String ;
Desgn : String ;
End;
In this program we are using EmpNe as our record pointer.
Program Example(Input,Output);
Type
Emprec = Record
' Empno : Integer ;
EmpName : String ;
Desgn : String ;

End;
Var
Empinfo : Emprec ;
Empfile : File of Emprec;
Yesno : Char ;
Begin

Assign(Empfile, 'Emp.Dat’);
Rewrite(Empfile);
Yesno := ‘Y’ ;
While (Yesno='Y') Do
Begin
With Empinfo Do
Begin
Write(‘Enter Employee Number : ‘);
Readln (Empno) ;
Seek (Empfile, Bnpno) ;
Write('Enter Employee Name : ‘);
Readln (BrpName) ;
Write('Enter Designation : ‘);
Readln (Desgn) ;
Write(Empfile, Empinfo) ;
End;
Writeln;
Write('Want To Continue (Y/N} : ‘};
Readln(Yesno) ;
Writeln;
End;
Close(Empfile);

Files

Output
Enter Employee Number : 101
Enter Employee Name : Hussain

Enter Designation
Want To Continue (Y/N)

System Programmer
Y

Enter Employee Number : 110

Enter Employee Name : Jayasankar
Enter Designation System Analyst
Want To Continue (Y/N) Y

Enter Employee Number : 120

Enter Employee Name : Sabarjit

Enter Designation : Programmer
Want To Continue (Y/N) : N

175

Program file for accessing a particular record using Empno as key

Program Example {Input,Output);

Type
Emprec = Record
Empno Integer ;
EmpName string ;
Desgn String ;
End;
Var

Empinfo : Emprec ;
File of Emprec;

Empfile :
Yesno : Char ;

Begin

Assign(Empfile, 'Emp.Dat’);

Reset (Empfile);

Yesno := ‘Y’ ;

While (Yesno='Y') Do

Begin

Write('Enter Employee Number :

Readln{Empinfo.Empno) ;
Seek (Empfile, Empinfo.Bmpno) ;
Read (Empfile, Empinfo) ;

‘)

176 PASCAL PROGRAMMING

Writeln('Evployee Name : 'BEmpinfo.EmpName) ;
Writeln('Designation : ',Empinfo.Desgn) ;

Writeln;
Write('wWant To Continue (Y/N) : ') ;
Readln(Yesno) ;
Writeln;
End;
Close(Enpfile);
End.
Output

Enter Employee Number : 110
Employee Name : Jayasankar
Designation : System Analyst
Want To Continue (Y/N) : Y

Enter Employee Number : 101
Employee Name : Hussain
Designation : System Programmer
Want To Continue (Y/N) : N

UNTYPED BINARY FILES

Similar to that of the typed binary file, it is also possible to store data
as an untyped binary file. Since this type of file does not have any
specific data type, data can be read from and written to the file as a
buffer. These untyped binary file stores information in buffer areas.

The method for creating such an untyped binary file is identical to the
typed binary file. The general format for opening and closing afile is the
same as that of a text file.

Here the file variable declared as 'File’ that indicates it is an untyped
file. The syntax for such declaration takes the following form.

Var
Identifier : File :
The identifier is the untyped binary file variable's name.

The next step is to specify whether the file has been opened for
Reading or writing data 1o a file. This can be carried out by using a usual

178 PASCAL PROGRAMMING

To demonstrate the above features we have considered the
following example program which copies the content of one file to
another one.

Program Example(Input,Output);
Var
Buffer : Array[1l..1024] of char;
Sfile,Tfile : File;
gfilel,Tfilel : String;
byteread,bytewrite : Integer ;
Begin
Write (‘Enter Source File Name : ‘');
Readln(sfilel);
Write('Enter Target File Name : ‘);
Readln(Tfilel);

Assign(sSfile,sfilel);
Reset(Sfile,l);

Assign(Tfile,Tfilel);
Rewrite(Tfile,1);

Repeat
Blockread (Sfile, buffer,1024,byteread);
Blockwrite(Tfile,buffer,byteread,bytewrite);
Until(Byteread = 0) or (byteread <> bytewrite);

Close{Sfile);
Close(Tfile);
End.

Outpui

Enter Source File Name : 8ex1.Pas
Enter Target File Name : test.Pas

Note that in the procedures Reset and Rewrite, there is an extra entry
followed by its file reference. This extra argument is called the record
size for the untyped binary file and it is optional. If it is omitted, a default
record size (128) will be taken for the untyped binary file.

To verify, whether the source file has been copied into target file, type
the target file against the DOS prompt.

Some advanced file handling commands can also be seen in the solved
problem sections.

Files 179

Passing a file variable as a parameter to procedure

Though the title may sound strange, it is somewhat similar to passing
an ordinary variable to a procedure. This enables the programmer to
write procedures that redirect both input and output.

The only difference from the ordinary variable is, in the procedure the
file variable is declared as a variable parameter.

Here is an example program to explore the concept of passing of file
variable to a procedure.

Program Example (Input,Output) ;
Type
Watchrec = Record
Make : String ;
Model : String ;
Price : Integer ;
End; .
Watchfile = File of Watchrec;
Var
Wrec : Watchrec;
Wfile : Watchfile;
Procedure Getrecord (Var Wfilel : Watchfile ;
Wrecl : Watchrec);

Var
Yesno : Char ;
Begin
Yesno := 'Y' ;
While (Yesno = 'Y') do
Begin
With Wrecl do
Begin
Write ('Enter Brand Name : '});
Readln(Make) ;
Write('Model Name : ‘'};
Readln(Model) ;
Write('Price: '};
Readln(Price) ;
Write(Wfilel,Wrecl);
End;
Writeln;

Write('Want To Continue [(Y/N] ');
Readln(Yesno) ;

180 PASCAL PROGRAMMING

End;

{Main Starts}

Begin
Assign({Wfile,wWatch.Dat ‘};
Rewrite(Wfile);
Getrecord(Wfile,Wrec);
Close(Wfile);

End.

Output

Enter Brand Name : HMT

Model Name ¢ Vijay

Price : 450

Want To Continue (Y/N)Y

Enter Brand Name : Titan
Model Name : Classique
Price : 1100

Want To Continue (Y/N)Y

Enter Brand Name : Timex
Model Name : Aquara
Price : 800

Want to Continue (Y/N) N

Files 181

Exercises

1.
2.

Differentiate sequential access and direct access of a file.

What are the advantages of a sequential data file compared with
a random data file?

What is a text file in PASCAL? lllustrate with examples.

Write a program to create 2 files, one {o store odd numbers and
another to store even numbers in the range 1-100.

Write a Pascal program to create sequential data file with the
following informations. Piayer name, Team name, Batting average.
Using this data file, write another program to print a teamwise list
containing names of players with their batting average.

Write a function to convert all lower case English to upper case
letters in a file.

A data file contains the following details
Name of Student 30 chars
Register number Integer

Marks in Mathematics, Integer
Physics, Chemistry

declare an appropriate structure and process the file to get the print
out of Register number, Name, Marks in Mathematics, Physics,
Chemistry and the average of the three marks. Also find the number
of students who have scored less than 40, 40 to 60 and above 60
on the average.

Write a function to find the length of each line of input and find the
average length of a line in a given text file.

A hospital keeps a file of blood donors in which each record has the
form

Name String[30]
Address String[40]
Age Integer

Blood group Char [A,B,O]

182 PASCAL PROGRAMMING

10.

11.

12.

13.

14,

15.

16.

17.

i) Write a program to create a data file for N blood donors.

i} Use the data file to print out all the blood donors whose age is
below 35 and blood is of 'O ype.

Develop a Pascal Program that would create a file to process
student’s mark list. How do you append a new record into a sequen-
tial file. :

Explain the file associated statements used in Pascal with
examples.

Write a Pascal program that produces total marks for each student
and overall class average from a student's file containing student
number, 5 subjects marks for each student.

A disk file STUDENT.DAT contains records of various students.
Each student record consists of register number "91-CS-0001" to
"91-CS-0099", name first and last separately, each having not more
than 30 chars, marks of 5 different subjects as integers. Write a
PASCAL program to read STUDENT.DAT file and to display the
contents with total and pass status.

Write a PASCAL program to create sequential variable record size
file "EMPLOYEE.INF" having appropriate fields such as
EMPNO EMP-NAME , MARRIED-STATUS. If MARRIED-STATUS =
'YES'then PARTNER-NAME, DATE-MARRIED, CHILDREN, should-
be given as input.

Write a program to create a text file and copy the contents of this
file to another file.

Write a program which will read a text file and count all occurrences
of a particular word.

A file "marks.int" is a data file defined as an integer type. It contains
the marks of 10 students. Read this file and find the average marks.
Also write a program to append a file.

Files 183

SOLVED PROBLEMS
1. If the data to a program file is

Rama 101
Anumar 105
Rama 101
Kosalai 103
Kaikegi 104
Anumar 105
Rama 101
Dhasarathan 109
Bharathan 108
Lakshmanan 107

Write a sequential file to eliminate the duplicate records. The
name of the input file is ‘Sort .Dat’. The output should be written
to another file in the name of ‘Sort1.Dat’.

Program Example (Input,Output);

Type
Stdrec = Record
Name : String([20];
No : Integer ;
End;
Var

Markrec : Array [1..10] of Stdrec;
Temp : Stdrec;
SortFile, SortOoutFile : File of Stdrec;
I,N,J : Integer;
Begin
Assign(Sortfile, ‘Sort.Dat’);
Reset (SortFile);
Assign(SortOutFile, ‘Sortl.Dat');
Rewrite({SortOutFile);
N:=0;
While Not Eof (Sortfile) do
Begin
N:=N+1;
With martkrec[N] do
Read (SortFile,Markrec([N]) ;
End;

184 PASCAL PROGRAMMING

-t

For I :=1 to N-1 do
For J:=I+1 to N do
If (Markrec(I].No > Markrec(J]. No) then
Begin
Temp : =Markrec([1];
Markrec([I] :=Markrec[J];
Markrec([J] :=Temp;
. End;
For I:=1 to N-1 4o
If (Markrec [I].No < > Markrec [I+1].No) then
Begin
Write (SortOutFile,Markrec([I]);
Writeln (Markrec[I].Name:20 Markrec[I].No:10);
End;
Write (SortOutFile, Markrec[I] };
Close (SortFile) ;
Close (SortoutFile) ;
End.

Output

Rama 101
Kosalai 103
Kaikegi 104
Anumar 105
Lakshmanan 107
Bharathan 108

2. Write a Pascal program to find a particular character and replace
every occurrence of it by another character. [Replace o with a]

Input File Contains

Oracle is one of the mest exciting programs for microcomputers
systems on the market today.

Program Example;

Var
Filel, File2 : Text;
FindChar, RepChar : Char;
Str80 : String;
I : Integer;

Begin

186 PASCAL PROGRAMMING

Token : Array [1..100] of string;

I, J, 11, 12, K, Len, Le, 1, Lm, Rm : Integer;
Begin

Clrscr;

Write ('Enter the input file name : ') ;

Readla (Fnamel) ;

Assic¢ 1 (Fl1, Fnamel) ;

Reset (Fl) ;

Write ('Enter the output file name : ') ;

Readln (Fname2) ;

Assign (F2, Fname2) ;

Rewrite (F2) ;

Write ('Enter the left margin value : ') ;

Readln (Lm) ;

Write ('Enter the right margin value : ') ;

Readln (Rm) ;

For I1 := 1 to Lm do

Write (F2,' ') ;

L := Lm;
While not ecf (F1) do
Begin
J := 0;
I:=1;
Readln (F1, line) ;
Line := Line + ' * ;

Len := Length (Line} ;
While (I < len) do
Begin
Tok := ' ' ;
While (line[I] <> ' ') and (line[I] <>
char (13)) do
Begin
Tok :=
I :=1
End;)
If line[I] = char (13) then I := I + 1;
While line(I] = * ‘do

Tok + Line[I] ;
+ 1; .

Begin
I:=1+1;
J = J + 1;
Token(J] := Tok;
End;

Begin
Le := Length(Token[K])
If e <= (rm-1} then
Begin
Write (F2, Token(k]) ;
Write (F2, ' ') ;
1 := le+l+l;
End
Else
Begin
wWriteln (F2) ;
Write (F2, * ' : 1lm) ;
1 := 1m;
Write (F2, Token [K]) ;
Write (F2, * ') ;
1 := l+lm+1;
* End;
End;
End;

187

Writeln (******** margin-setting is completed **¥@***+» + };

Close(Fl), ;
Close(F2) ;
End.

Output

Enter the input file name : TEST

Enter the output file name : TEST1

Enter the left margin value : 10

Enter the right margin vaiue : 50

ssssesses margin seffing is completed *********

CHAPTER — 9

USER DEFINED DATA TYPES, SETS AND
UNITS

We have already seen in the second chapter that the standard type has
two branches viz., Simple type data and user defined data type. Also,
in Procedures and Function we have abundantly used user defined data
type to pass an array to Procedures and Functions.

In this chapter, we will explore some of the advanced topics in the user
defined data types. The user defined data type is furthe, divided into
Enumerated data type and Subrange. We shall explain them one by one
in detail.

Enumerated Data Type

The items given in a particular order is called Enum. The value in the
list starts from 0 to n—-1, where n is the total number of items given
in the list. Consider the following example

Type
Brand = ({Nexus, Dcm, Hecl, Siva);
Var
Computer : Brand;

In the above case, we have 4 items in the list. Each item in the list can
be accessed by subtracting one from the positional value of an identifier.

Advantage of using the above type is that we referenced the members
in computer type by giving the name of the computer.

Program Example (Input, Output);

Type

Brand = (Nexus, Decm, Hcl, Siva);
Var

Computer : Brand;
Begin

Computer := NeXxus;
Case Computer of
Nexus : Writeln (‘Well known for LAN *);
Dcm : Writeln (* Best in Mini Computers ‘);
Hcl : Writeln (' Famous for its Busybee systems ‘};
Siva : Writeln (' Dominating PC field ');
Else

190 PASCAL PROGRAMMING

Writeln (‘'Given system not found in the library ');
End;
End.

Ouipui
Well Known for LAN

As there is no input and output statement associated with this type, the
brand name ‘Nexus’ is assigned to Computer.

Subrange

We know that an integer data type allows the range from —32768 to
+32767. For instance, if we want to enter numbers between 1 to 100
for an integer variable, it is likely that the user may enter numbers which
are out of the range also. To restrict the user from entering numbers
other than those within the specified range, subrange is used. Thus
subrange data type is very useful in data validation.

The methen! f defining a subrange is as follows :
Type
Mark = 1..100;
Var
51, 52, S3 : Mark;

The integer variable S1, S2 and S3 will take only integer numbers that
fall between 1 to 100. It gives a runtime error, if we attempt to give a
mark that lies outside the specified range.

Here is a program, to clarify the above concept.

{$r+}
Program Example (Input,Output);
Type
Mark = 1..100;
Var
S1, sS2, S3 : Mark;
Tot : Integer ;
Begin

Writeln(‘Enter 3 Marks ');
Readln(s1,52,583);

Tot := S1 + S2 + S3 ;

Writeln (‘Total Marks : ‘',Tot});

User Defined Data Types, Sets and Units 191

Ouiput

Enter 3 Marks
34 55 333
Runtime error 201 at 1DEF:0084.

Enter 3 Marks
34 44 55
Total Marks : 133

In the above program, we have noticed the change in the very first line,
i.e., we have introduced a symbol {$r+) and it is called as compiler
directive. It is used here for range checking purposes, so that the user
is protected from entering numbers other than those within the specified
range.

SETS

To make Pascal a distinguished language among all high level languag-
es, the developers of Pascal have adorned it with yet another branch in
structured data type called SETS. A Pascal SET is a collection of
elements, and is formed by combining members of an ordinal data type
or Subrange of ordinal data type, and it is very much similar to a set in
mathematics.

We can declare Pascal set either through type declaration or through Var
statement.

* To declare a set data type through type declaration

Type
Identifier = Set of ordinal data type ;

* To declare a set data type through var statement

Var
Identifier : Set of Ordinal data type ;

Here, Identifier is the usual data type identifier. The Sat of ordinal data
type is also called as base type. it may be an integer, real, char, boolean
or a user defined data type. Now we will see how a set may be defined.

To create a set of numeric digits from 0 to 10 the following declaration
may be used.

Type
NoOtol0 = Set of 0..10;

192 PASCAL PROGRAMMING

To create a set of characters comprising vowels, the declaration is
Type

Vowels = Set of (‘'A‘, ‘'a‘, 'B', ‘e', ‘I', *i’', ‘0', ‘o', 'U', *u');

From the above declarations it is seen that the elements in a set must
be drawn from the same base type.

Set Operators
The following is a list of set operators that are operated with the same
base type.

+ Union
— Difference
* Intersection

The Pascal set union operator (+) returns the result that contains the
elements of one set expression with the elements of another set expres-
sion.

The syntax for using Union operator is

Set expression + set expression
For example

Set A Contains the elements a, b, ¢, d and e. Set B contains the
elements b, c, d, e, f and g. On performing the Union operator, the
resultant SetC contains a, b, ¢, d, e, f and g.

The Pascal set difference operator (-} returns the result that contains
elements of a second set expression removed from a first set expres-
sion.
The syntax for using Difference operator is

set expression - set expression

For exarmie SetA contains the elements a, b, ¢, d, e and SetB contains
the elements b, ¢, d, e, f, g then the resultant set, SetC will have only
‘a’ as its element.

The Pascal sel intersection operator (*) returns a set of elements,
that are formed by combining common elements from both of the set
expressions, on which it is operated.

User Defined Data Types, Sets and Units 193

The syntax for using Intersection operator Is

set expression * set expression

For example, let SetC contains the elements a,b,c and SetB contains the
elements b, c, d, e, f. The resultant set of SetC* SetB will take b and
c as it is common to both the sets.

The following example program will demonstrate the usage of all the
above set operators in a complete manner.

Program Example (Input,Qutput);
Type
Lowcase = ‘a’ .. 'z';
‘Setofchar = set of Lowcase ;
Var
SetA, SetB, SetC, SetD : Setofchar;

Procedure Writeset (Charin : Setofchar);

Var
Charindex : Char;

Begin
For Charindex := 'a’' to ‘'z’ do
if (charindex in charin)} then

Write (Charindex :3);

Writeln;

End;

{Main Starts)

Begin .
SetA := [‘a' .. ‘e'];
SetB := ['b' .. 'g'l;
SetC := [*a’ .. ‘c'];
SetD := [‘b’ ‘£);

Writeln ('Set Union Operation (+) ‘);
Writeset (SetA+SetB);
Writeln (‘'Set Union Operation (=) ‘');
Writeset (SetA-SetB);
Writeln (‘'Set Union Operation (*) ‘);
Writeset (SetC*SetD);

194 PASCAL PROGRAMMING

Set Union Operation (+)
abcdefg

Set Subtraction Operation (=)
a -

Set Intersection Operation (*)
bc

In the above example, we have used a procedure Writeset to point the
resultant of set operation, since, Turbo Pascal does not support any
standard procedure to print the set type values.

The following is a list of Pascal set operators that can be used to
compare sets in boolean expression.

= Equals

<>. Not equals

>= |s a superset of (Set greater than or equal to)
<= |s a subset of (Set less than or equal to)_

IN Membership of

The ‘Set equal to’ operator (=) retumns either true or false upon com-
parison. The resultant will be true if two set expressions are equal,
otherwise the set equal to operator returns false.

The syntax for using ‘set equal to' operator is

Boolean Identifier := set expression = set expression;

The ‘Set not equal to’ operator (<>) returns true if the set expressions
are not equal with one another. If the set expressions are equal in value,
the ‘set not equal to’ operator returns false.

The syntax for using ‘set not equal to’ operator is

Boolean Identifier := set expression <> set expression :

The Pascal ‘set greater than or equal to’ operator (>=) returns true if
the first set contains all the elements which are present in the second

User Defined Data Types, Sets and Units 195
set expression also. Otherwise, the Pascal set greater than or equal
to' operator returns false.

The syntax for using Pascal ‘set greater than or equal to' operator is

Boolean Identifier := set expression »= set expression ;

The Pascal ‘set less than or equal to’ operator (<=) returns true if all
elements in the second set expression, contains the elements of first set
expression. Otherwise, the Pascal ‘set less than or equal to’ operator
returns false.

The syntax for using Pascal set less than or equal to operator is
Boolean Identifier ;= set expression <= set expression;

The following program demonstrates the usage of set comparison oper-
ators in detail.

Program Example(Input,Qutput);

Type
Lowcase = 'a’' .. ‘'z’ ;
Setofchar = Set of Lowcase;
Var
SethA, SetB, SetC, SetD : Set of char;
Begin
SetA := [‘a’ ‘el
SetB := ['b’ gl
SetC := [‘a’ ‘et
SatD := ['b” *£01:

Writeln ('Set Equal to Operation (=)} SetA=S5SstB is ')
Writeln (SetA=SetB);
Writeln ('Set Not Equal to Operation (<>} Setfh<>=SetB is '|:
Writeln (SetA<>SetB);
Writeln {'Set Greater than or Equal to Operation (>=)SetDe=SetBis');
Writeln (SetD>=SetB);
Writeln ('Set Less than or Equal to Operation (<=} SetB<=SetD in "};
Writeln (SetB <= SetD);

End.

Output

Set Equal to Operation (=) SetA=SetB is

FALSE

Set Not Equal to Operation (<>) SetA<>SetB is
TRUE

User Defined Data Types, Sets and Units 197

checking takes pflace. By the above method, we have avoided double
checking. We have used INC() function to increment the number of
vowsls by one.

UNITS

The good old programmers of Turbo Pascal finds it an embellishment to
the new version. They find it very difficult to repeat certain set of
programming code in their program, as it makes the program too lengthy.
It is also a very tedious job to debug such programs.

One way of alleviating the above problem is to write procedures and
functions. Note that inclusion of such procedures and functions will only
reduce the repeated coding in a particular program where it appears.
Assume that there are number of programmers who are using the same
set of coding for a particular task in their programs. Then each one has
to incorporate the same code in their program.

The other way is by wriling the same code only once and making it
available as a global one. Such an arrangement can be accomplished
by using UNITS.

Turbo. Pascal also provides some of the procedures through its units.

For example, if we want to clear the screen, we have to include a unit
called CRT, in which there is a procedure called clrscr, using which we
can clear the screen. Similarly, for positioning the text message on the
screen, the same unit provides us with yet another procedure, by name
gotoxy(). Also we have directed our output only to the screen; if we
want to pass our result to the printer, then we have to include another
unit called PRINTER. We shall see how these units can be invoked in
our program.

In Pascal, there is a keyword USES, to activate the specific unit. It is
placed immediately after the program header and the general form is as
follows :

USES
Unitnames;
for example,
) Uses
CRT, PRINIER;

We can also include more than one unit in the same program and
separate them by commas as shown above.

198 PASCAL PROGRAMMING

Now we shall focus our attention on how to develop similar units to
facilitate our programming.

The structure of any Pascal Unit takes the following form

UNIT Unitnames;
Interface

Procedure headings and function headings
Implementation

Source code procedure and function

Begin
Initialisatien code
End.
The entire unit can be involved just by referring its unit name. It follows

the interface, here we can declare variables, constants and prototypes
of procedures and functions which take part in the main program.

The penultimate section of a unit is implementation. Here, we can
declare any variables and other data type, that would.not be available
to the main program. It is also used to include procedures and functions
both as private and public.

The last section of a Pascal unit is the initialisation code. In this, we are
using period (.) instead of semicolon (;) to end the initialisation code,

The following example unit is, to display a message in a particular
location. Let us see-how a unit can be created, compiled and executed.

Type the following program in the editor :

Unit Uniti;
Interface . =
Procedure Writemessxy(X,Y : Integer ; Givstring : String);
Implementation
Uses CRT;
Procedure Writemessxy ;
Begin
Gotoxy (%,¥):
Write (Givstring);
End;

Begin
End.

CHAPTER - 10

POINTERS

Pointer data type is perhaps the most important and advanced topic of
this book. Readers who are familiar with BASIC and FORTRAN often
find this topic to be a strange one. A pointer is nothing but a variable
which stores the address of another variable. The variable we have
declared in the declaration part will have a unique address in the mem-
ory. So far, we have not bothered about the addresses of these vari-
ables. In this topic we are taking into account, the addresses of memory
variables to extract the fullest capacity of Turbo Pascal.

First of all let us see the advantages of using pointers. For example,
arrays and pointer data type have a close relationship with one another.
Assume that a linear array is having 10 elements and we want to insert
a new element in the middle of the list. Then we have to shift all the
elements by one position till the desired position is reached as we did
in Chapter 5. Ofcourse it is fairly simple if we have less number of
elements in an array. Imagine a situation where we are having elements
of the order of thousands. In that case shifting will take a lot of time and
also it will not be considered as a good algorithm.

Another difficulty which we face during the array manipulation is, that the
size of an array is fixed and it cannot be varied according to our wish.
These shortcomings are overriden by using pointers, the topic on which
we are focusing our concentration at present.

Pointers are used in building more complex data structures like linked
lists, stacks, queues and binary trees. Unlike files and arrays these
complex data structures can increase or decrease in size. The maxi-
mum size of such data structures need not be declared. A pointer
variable is capable of having the address of a dynamic variable. Here
dynamic means, the memory space of the variable allocated during the
execution time.

Declaration of Pointer Variable

Like all other variables the pointer variable also needs to be declared well
before it takes any action. To declare a pointer the character (circumflex
or caret) is used. The following general form is used for declaration of
pointers.

Var
Identifier : “data type ;

Pointers 201

We can explain the above through an exampie,

var
Ptrl : ~Integer;

Here Ptr1 is a pointer to an integer. This value may be stored in memory
somewhere.

Singly Linked List

In singly linked list each node has atleast one data field and address field
(or link field). The address field contains the address of the next node
in the structure.

Let us consider the following linked list structure:
Head XX YY AA cc

[| {appie[vv—| sanana [aaf—{sack fcc |3 orance|niL|

Head pointer points to the first node in the linked list. The link field of
the last node has a NIL in it, to signify that it points to none. we can
access any node provided we know the location of the first node.
Whenever head = NIL, we say that the list is empty.

To insert a new node

HEAD XX YY ©AA cc

E—)l APPLE Iw |BANANA qu Jncx ccl—* 0RANGE|NIL|

anme
To delete a node
HEAD XX YY Qa AA cc

|

XX 13| APPLE { Q@)X BANANA | |XPGRAPE|AA| —pJACK [CC| —F ORANGE | NIL

Pointers 203

Markrec® .Name := ‘Nikalus Wirth';
Markrec” .ExamNo := 1234 ;

The above can also be rewritten by using with structure to ease the
coding as shown below.

With Markrec® do

Begin
Name : = ‘Nikalus Wirth-’;
ExamNo :- = *1234°;
End;

Turbo Pascal provides another reserved word NIL which should be used
when all the elements are added to the list, the link field of the last record
should be assigned this value.

Markrec”.Link := Nil ;

thus not leaving the link field of the last recoid abruptly.
Now let us first develop a procedure to insert a record.

Procedure InsertRecord(Var Markrec : Iyear);
Var
Front,Rear, Next : Iyear ;
Present : Boolean ;
Begin
New(Front) ;
Write('*Enter Examno : '}
Readln(Front”.ExamNo) ;
Write (* MName : ‘);
Readln(Front” . Name) ;
Rear := Nil ;
Next := Markrec ;
Present := False ;
while (Next <> Nil) and Not Present do
If (Next”.Examno > Front*.Examno)} then

Present := True
Else
Begin
Rear := next ;
Next := Next”.Link;
End;

Front”.Link := Next ;

204 PASCAL PROGRAMMING

If Rear = Nil then

Markrec := Front
Else
Rear”.Link := Front ;

End;

To begin with, the procedure creates a memory location for Front by
using a predeclared procedure New. After allocating the memory loca-
tion the user has to enter Examno and Name for the corresponding
record. Now the procedure scans the linked list until an examno is found
that is greater than the examno to be inserted. Since there is no record
in the linked list initially the pointer Rear is initialised to Nil. Also our
program has a facility to insert a record both at the beginning and at the
end. Assuming that there will not be any record in the list when the
procedure Insert Record is invoked at first. So, the Next pointer is set
to point the markrec of the list.

Moreover, our program should monitor whether the examno is greater
than the examno to be added has been found. To make room for this
provision we are initialising False to the boolean variable present in the
beginning.

Now the while loop is used to traverse the entire list and the loop
terminates only when the following conditions are satisfied. When the
end of the list has been attained, Next is initialised to Nil. Also the loop
will terminate if the place for the insertion has been found within the list
by making present to be true.

Before completing the loop, the following assignments have to be done.
Firstly, the Rear should point the element before the added element.
Secondly, Next should point the element after the added element.

So far, we have not made any provision to add an element as first
element of the list. There are two options infront of us to do the above
task. Either by modifying the pointer markrec or by modifying the link
pointer of previous element in the list. Also note that the value of the
rear was set to Nil at the beginning of the search. Suppose the inserted
element is the first element of the list then the value of Rear is set to
Nil at the end of the search.

Now let us develop a procedure to delete a record from a linked list,

Here the procedure DISPOSE is used to release the heap space taken
up by a dynamic variable when it is no longer needed.

Pointers 205

Procedure DeleteRecord(Var Markrec : Iyear);
Var
Rear,Next : Iyear ;
TempExamMNo : Integer ;
Present : Boolean ;
Begin
Write (‘Enter ExamNo To delete ');
Readln (TempExamlNao) ;
If (Markrec”.ExamNo = TempExamNo)Then
Markrec := markrec”.Link
Else
Begin
Rear := markrec ;
next := Markrec®.Link;
Present := False ;
While (Next <> Nil) and Not Present do
Begin
If (Next”~.ExanNo = TempExanmNo) Then
Begin
Present := True ;
Rear”.Link := Next".Link;

End
Else

Begin
Rear := Next ;
Next := Next®.Link;

End;

End;
End;

Dispose (Markrec) ;
End:

After receiving the Examno to be deleted from the linked list, we have
to locate the position of the element to be deleted.

Suppose if we want to delete the first element of the linked list. It is to
be checked first. If our choice is not the first element, then we have to
initialize the pointer Rear to the markrec. Note the pointer Next is
assigned the value of the pointer of the first element in the list.

A while loop is used to traverse the entire list to locate the position for
. deletion so as to change the links. In case if we enter the Examno which

is not found in the linked list, we should exit from procedure without doing

anything. For accomplishing this, we are using a boolaan variable

208 PASCAL PROGRAMMING

stack size is initialised as 5 and the declaration is as follows.

Const
MaxStackSize = 5;
Type
Sptr ="sSdata ;
Sdata = Record
SName : String;
Next : Sptr ;
End;

Here the variables are declared globally as follows :

Var
Top,VPtr,Node : Sptr;
Res,Item : String;
Choice,Count : Integer;
Stack : Sdata;

Initially in the main program
Top = Mil

" Which signifies an empty stack.
To insert a new item in the top of the stack the Procedure Push is used.

Procedure Push ;
Begin
If (Count = MaxStackSize) Then
Begin
Writeln('Stack full’);
Writeln('Data cammot be pushed further’);

-

End
Else
Begin
New (Node) ;
Writeln('Enter the character Data ‘);
Readln(Itam);
Nede”.SName := Item ;
Node™.next := Top ;
Top := Node;
Count := Count + 1 ;
End;
End;
Whenever the Procedure Push is called a new node is created and it is

210 PASCAL PROGRAMMING

Procedure View;
Begin
Clrscr;
Vptr := Top;
If {(Top = nil) Then
Writeln('Empty Stack'}

Else
Begin
While (Vptr <> Nil) Do
Begin
Item := Vptr®.Spname ;
Writeln(Item);
Vptr := Vptr”~.Next ;
End;
End;

End;

The complete program is presented below.

Program Example(Input, Output);
Uses Cret:
Const

MaxStackSize = 5;

Type
Sptr ="Sdata ;
Sdata = Record
SName : String;
Next : Sptr;
End;
Jar

Top,VPtr,Node : Sptr;
rRes, Item : String;
Cholice,Count : Integer;
Stack : Sdata;
rocedurs Push
Begin
If (Count = MaxStackSize) Then
Bagin
Writeln (*Stack Full’);
Writeln('Data cannot be pushed further’);
End

Pointers 211

Else
Begin
New (Node) ;
Writeln('Enter the Character Data ‘);
Readln(Item);
Node” .SName := Item ;
Node™.Next := Top;

Top := Node ;
Count := Count + 1 ;
End;
End;
Procedure pop;
Begin
If (Top <> Nil)} Then
Begin
item := Top”.Sname;
Writeln (‘PoPPed data : ‘,Item);
Node := Top;
Top := Top®.Next ;
Dispose(Ncode) ;
Count := Count — 1 ;
End
Else
Begin
Writeln('Data camnot be Popped ');
Writeln('Bmpty Stack ');
End;
End;

Procedure View ;

Begin
Clrscr;
Vptr := Top;
If (Top = Nil) Then
Writeln ('Empty Stack ')
Else
Begin
While {Vptr <> Nil)} Do
Begin
Item := Vptr~.Sname ;
Writeln(Item);

212 PASCAL PROGRAMMING

Vptr := Vptr®.Next ;
End;
End;

{Main Program Starts}

Begin
Count := 0;
Top := Nil
Repeat
Clrscr ;
Writeln('Linked List Implementation of Stack ‘);
Writeln('l. push);

Writeln;
Writeln('2. pop ‘);
Writeln;
Writeln('3. View ');
Writeln;
Writeln('4.Exit '};
Writeln;
Readln(Choice) ;

Case choice of
1:
Begin
Clrscr:
Writeln ('Push Operation’);
Push;
End;

Bagin
Clrscr:
Writeln ('Pop Cperation’);
Pap;

End;

Begin
Clrscr:
Writeln (‘View Operation’);
View;

End;

Pointers 213

Begin
Clrscr:
BExit;
End;
End;

Writeln('Want To continue [Y/N] ‘);
Readln(Res) ;
Until (Res= ‘N');
End.

For output execute the above program.
Implementation of Queue using Linked List

Queues are FIFO data structures and they can be implemented by
means of Linked list.

In a Queue insertion is done at the end of the Queue by means of REAR
pointer. Deletion is done at the beginning of the Queue by means of
FRONT pointer.

) REAR
Queue representation. I_"'T_l
FRONT H
E*—_p| ONE | KK }_-_->| ™WO |HH I—.ITHREE NIL]
REAR
AFTER AN INSPECTION OPERATION : I%ﬂ
FRONT
I XX |-——-| 0NE|KK |—.[Two |HH I-—blTHFlEElNILI——I FOUR NILl
AFTER A DELETE OPEHATlON : REAR
| MM |
FRONT XX KK HH MM ¢

l KK l—i(--l ONEIKK |:|.—|Two |HH HTHHEEINIL]—.‘ FOUR NILI

Pointers 215

Rear” .Next := Node ;
Rear := Node ;
End;

End;

When adding the first element, the Rear pointer and the Front pointer
are made to point to the first node.

During the next subsequent addition, the new node is added at the Rear
end of the Queue. The Rear pointer always points to the last element
in the Queus.

Procedure Delete is used to delete an element from the Front end of the
Queue.

Procedure Delete ;

Begin
CIrscr ;
If (Front <> Nil) then
Begin
Item := Front”.Qname ;
Writeln ('Deleted item is ', Item);
Node := Front;
Front := Front”.Next;
Dispose (Node) ;
End
Else
Writeln('Queue Empty ');
BEnd;

The above procedure checks the conditions for empty Queue. A tem-
porary pointer is made to point to the first node in the Queue. The Front
is made to point to the Next node in the Queue.

ie.,

Node : = Front;
Front : = Front”.Next;

Finally the memory occupied by the deleted node is returned by means
of the Dispose procedure. When Front points to NIL, Queue becomes
empty and further deletion cannot be performed.

The procedure View is to traverse through the FIFO structure, until
Vptr” .Next := Nil

This procedure also checks the condition for empty Queue. Here Vptr

216 PASCAL PROGRAMMING

is used to traverse through the Queue.

Procedure View;
Begin
Clrscr;
Vptr :=Front;
If (Front = Nil) Then
Begin
Writeln ('Data cammot be viewed ');
Writeln (‘Empty Queue ‘});

End
Else
Begin
While (Vptr <> Nil) DO
Begin
Item := Vptr~.Qname ;
Writeln(Item);
Vptr := Vptr~.Next ;
End;
End;

End;

The Complete program is presented below.

Program Example (Input,Output);
Uses
crt;
Type
QOptr ="Qdata;
Qdata =Record
Qname : String;
Next : Qptr ;
End;
Var
Item,Res : String ;
Front,Vptr,Rear,Node : Qptr;
Choice : Integer;
Procedure Insert;
Begin
Clrscr;
New (Node) ;
With Node® Do
Begin

Writeln('Enter the Names ‘);

Readln{Item) ;
Qname := Item;
Next :=Nil;
End;
If (Front = Nil) Then
Begin
Front := Node;
Rear := Node;
End
Else
Begin

Rear™ .Next := Node ;
Rear := Node ;
End;
End;

Procedure Delete ;

Pointers 217

Begin
CIrscr;
If (Front <> Nil) Then
Begin
Item := Front”.Qname ;
Writeln (‘'Deleted item is ‘', Item);
Node := Front;
Front := Front” .Next;
Dispose (Node):;
End
Else
Writeln('Queue Empty ‘);
End;

Procedure View;
Begin'
Clrsecr;
Vptr := Front;
If (Front = Nil) Then
Begin

Writeln (‘'Data cannot be Viewed '});

Writeln (‘Empty Queue ‘);
End
Else
Begin

220 PASCAL PROGRAMMING

So, far we have seen some of the fundamental concepts related to
pointers. It will help us to design and implementing the problem involving
dynamic data structure.

Exercises
1. Define each of these terms :

a. stack
b. queue

2. Compare the advantages and disadvantages of implementing a
stack as an array with implementing a stack as a linked list

3. Write a program in Pascal to perform the following operations in the
linear linked list data structure.

a. add an item

b. delete an item

c. search an item

d. display all the items
e. replacing an item

4. Write a program in Pascal to perform the following operations in a
queue as the queue is represented as a linear linked list data
structure.

a. add an item

b. delete an item

c. search an item

d. display all the items
e. replacing an item

5. Write a program to create a linked list of nodes, each having 2
fields,

character field ‘Name', and
pointer field, to next node
and to perform all the fundamental manipulations.

Pointers 221

6. What are dynamic variables?

7. Name the standard functions in Pascal, to create and destroy
dynamic variables.

CHAPTER - 11

GRAPHICS

In this chapter, we are focussing our attention towards the most fasci-
nating topic of this book — Graphics. We may want to present our
application program or syslem program in a very attractive form.
Eventhough our program will do best for its purpose it requires some frills
to cater to all. Moreover, pull-down and pop-up menus are quite popular
nowadays. In order to do the above tasks one must know Graphics
which plays a vital role in languages such as BASIC, Pascal and C.

In this chapter we will discuss some of the special features of Turbo
Pascal Graphics and how it should be used to make our program a more
pleasing one. Here we are considering the Turbo Pascal Version 5.5.

Startup Procedure for Graphics

The figures and text in the graphics mode are made up of picture
elements which are also called Pels or Pixels. Even in the text mode
pixels are used to form the characters that appear on the screen. In Text
mode we do not worry about them, because the video adapters provide
built-in support for ASCIi characters which are constructed by using
pixels. The formation of characters, in the text mode is totally hidden to
the programmers, whereas in the graphics mode the programmer has
the freedom to manipulate individual pixels on the screen, to form figures
and text.

Before writing a graphics program, it is essential to know the resolution
of the Monitor one uses. The resolution of some of the monitors in use
are given below for reference.

Graphics Driver Graphics Mode Mode Value Resolution

CGA CGACO 0 320 * 200
CGAC1 0 320 * 200
CGAC2 0 320 " 200
CGAC3 0 320 * 200
CGAHiI 0 320 " 200

Graphics 223

Graphics Driver Graphics Mode Mode Value Resolution
EGA EGALo 0 640 * 200
EGAHiI 1 640 * 200
EGAB4Lo 0 640 * 200
EGAB4HiI 1 640 * 200
EGAMonoHi 3 640 ° 200
$ EGAMonoHi 640 * 200
HERC HercMonoHi 0 720 * 348
VGA VGALo 0 640 * 200
VGAMed 1 640 * 350
VGAHI 2 640 " 480
64 K on EGA Mono card
$ 256 K on EGA Mono card

We get very shamp images on the screen if we use monitors having
higher resolution (i.e. moniters having more number of pixels).

One cannot draw figures or use graphics commands in the text mode.
Before the graphics are executed, the screen must be prepared to
accept the graphics commands. This is initiated by specifying the
correct video driver of the system. Turbo Pascal makes this job easier
by supplying video drivers which convert text mode to graphics mode.
Here is a list of the video drivers (files) supported by Borland. The file
names end with an extension. BGI which stand for Borland Graphics

Interface.

Driver File Name

ATT.BGI
CGA.BGI
EGAVGA.BGI

Video Adapters Supported
AT & T 6300 (400 line)

IBM CGA, MCGA, and compatibles
IBM EGA, VGA, and compatibles

Graphics 225

Note that in the first statement we have used a standard unit provided
by Turbo Pascal which contains more than 70 graphics procedures and
functions. Before starting any of the graphics routine GRAPH.TPU is
included - similar to using CRT when we intend to use Clrscr in the
program in order to clear the screen.

Placing a Pixel in a Graphics Mode

Let us begin our graphics tour with placing a pixel in the screen. To
place a pixel in a screen at particular coordinates we use the procedure
Putpixel.

Syntax
Procedure PutPixel(X,Y : Integer; PixelColor : Word);
Explanation

Plots a pixel at X,Y. The color of the pixel drawn is determined by
pixelColor.

Example
PutPixel(200,200,4);

Will piot a pixel at (100,100) and the color of the pixel is Red. The list
-of color constant is given below.

Color ~ Value
Black 0
Blue

-

Green
Cyan

Red
Magenta
Brown
LightGray
DarkGray

©® N e v AW N

226 PASCAL PROGRAMMING

LightBlue 9
LightGreen 10
LightCyan 1
LightRed 12
LightMagenta 13
Yellow 14
White 15

Next we will see how to get a pixel at a particular coordinate.
The function used for this purpose is GetPixel.

Syntax

Function GetPixel(X,Y : Integer) : Word;
Explanation

Gets the color value of the pixel at X,Y.

Example

Color := Getpixel(50,50});"

Will return the color value of the pixel at coordinates at (50, 50) to the
identifier, color.

Drawing Figures

Turbo Pascal supports plenty of procedures to draw figures such as line,
circle, arc and rectangle.

Let us examine some of the routines one by one in the following sections.
Line

Syntax

Procedure Line(X1,Y1,X2,Y2 : Integer);

Explanation

Draws a line from (x1,y1) to (x2,y2)

228 PASCAL PROGRAMMING

Explanation

By using the current fill style and color the procedure draws a three
dimensional cube. The coordinates (x1,y1) and (x2,y2) define the upper
left and lower right positions of the cube. Here the parameter depth
specifies the depth of the cube, in terms of pixels. If the boolean
identifier Top is true (i.e. Topon), then the cube has a top with the same
fill pattern and color as the face. There would not be a top if the boolean
identifier is set to false (i.e. Topoff).

Example
Bar3d(50,50,150,75, 20, Topon) ;

Will draw a 3d cube by using the coordinates (50,50) and (150,75) as
the upper left and lower right position of the cube. The depth of the cube
is 20 and the cube has a top with the same fill pattern and color, as the
boolean identifier is set to True.

Circle
Syntax

Procedure Circle (X,Y: integer ;
Radius : Word);
Explanation

Draws a circle using (X.Y) as the centre point.
Example
Cirele (320,106,50);

Will draw a circle of radius 50 using (320,100) as centre point.

Arc
Syntax
Procedure Arc (X,Y : Integer ; StAngle,
EndAngle, Radius : Word);
Explanation

Draws a circular arc from start angle to end angle, using (x, y) as the
centre point.

Example

230 ‘PASCAL PROGRAMMING

Explanation
Fills a bounded region with the current fill pattern and color.
Example

Circle {(100,100,20);
FloodFill (100,100, GetMaxColor);

In this case we will get a circle of radius 20, with (100,100} as the centre
point. Here the floodfill is used to fill the circle and the color is the
maximum color available by the system. For example CGA monitors
supports 16 colors. It is different for VGA and EGA type of monitors.

Printing Text Message in a Graphics Mode

Now let us demonstrate how a text message can be displayed in a
graphics mode. To print text message the conventional procedure Write
or Writeln can not be used. In graphics mode we use Outtext and
Outtextxy to display the text message. The usage of the above
procedures is given below.

OutText (TextString) ;

and

OutTextXY (X, Y, TextString) ;

Where XY are Integer

The above two procedures send a string to the output device. The only
difference is that latter displays the iext string in the specified location
given as X.Y.

In graphics ﬁwda we are considering the positions in terms of pixels
rather than row and column as in gotoxy.

Here is a program to demonstrate the above two procedures.

Program Example;
Uses Graph;
Var
Gd,Gm : Integer;
Begin
3d : = Detect ;
Initgraph(Gd,Gm, " ');

Graphics 231

Outtext(‘Welcome T¢ Turbe Pascal Graphics ');
Outtextxy {340, 5¢, 'Welcome To Turbo Pascal Graphics’ o
Readln;

End.

In the above program, the procedure outtext will display the message
‘Welcome To Turbo Pascal Graphics’ in the upper left corner whereas
the second procedure Outtextxy will display the same message in the
position (300,50) given as x and y.

The above two routines Outtext() and Outtextxy() will display the
message in normal mode. The letters formed through this mode is also
not so pleasing. Turbo Pascal provides some graphic character (fonts)
handling files which enhance the output text in a more attractive way.
The Font files will have an extension name as .CHR. The list of font files
that are supported by Turbo Pascal along with their constant value is
given below. To specify a particular font in a program we can give its
corresponding value instead of the font name.

& Eé;@tfﬁile'__- s . Font fg‘rpuida'd i Value
“GOTHCHR | Stroked Gothic)
LITT.CHR Stroked Small Character 2
SANS.CHR Stroked Sansserif 3
TRIPS.CHR Stroked Triplex 1

In addition to the above, Turbo Pascal also supports the default font
which will have 0 as the constant value.

The procedure related to handle these font files is Settextstyle which
expects three parameters. The general form is given below.

Procedure SetTextStyle(Font,
Direction: Wred;
Charsize : Word);
Where

Font is the font file name or the constant value or any one of the file
mentioned above.

Direction is the number either 0 or 1 which makes the output to display
in Horizontal direction or in Vertical direction.

232 PASCAL PROGRAMMING

The constant value for Horizontal direction and Vertical direction is given
below.

Direction Value
HorizDir 0
VertDir 1

The third parameter to the procedure SettextStyle is the character size
or magnification factor and it also varies from 1 to 10

Here is an example to call the above procedure

SetTexsStyle(triplexfont, Horizdir,4);
outtextxy (50,10, ‘Turbo pascal’);

The above call will display the message ‘Turbo Pascal' in Horizontal
direction by using a triplex font file and character magnification
size in 4

Here is an Example program which involves all the four font files.

Program Example ({Input,Output);
Uses graph;
Var
5d,Gm : Integer;
Begin
Gd :=Detect;
Initgraph(Gd,Gm, '’);

SetTextStyle(Smallfont, Horizdir,5);
Outtextxy (25,10, ‘Turbo Pascal in Small font');

SetTextStyle(Gothicfont,Horizdir,5);

Guttextxy (25,20, ‘Turbo Pascal in Gothic font');
SetTextStyle(Sansseriffont,Horizdir,5);
Outtextxy (25,60, ‘Turbo Pascal in Sansserif font’);

SetTextStyle(Triplexfont, Horizdir,5);
outtextxy (25,100, ‘Turbo Pascal in Triplex font');

SetTextStyla(Defaultfont,Horizdir,5);
Cuttextxy (25,150, ‘Turbo Pascal in Default font’);

Readln;
Closegraph;

End.

Graphics 233

Output

JU0] Yo[(LI], U [ease 0gan]
U0} J1/BSSuog Ul

4

JU0j J[NEJap UL [BISEY anh=h_

—
 —

0|

|

0} 08 10 K} oga

WD} [[BUS Ul [EdSEq 0Gn]

234 PASCAL PROGRAMMING

As most of the programs in this chapter are screen oriented, execute the
program to get a clear idea.

So far, we have seen some of the graphic functions and procedures
which make our programming life a little more intresting.

Programming is an art and it is more so especially in graphics program-
ming. The graph unit supports more than 70 routines in Turbo Pascal
Ver 5.5 and still more in version 6.0. It is impossible to brows all the
routines available in the graph unit. The purpose of this chapter is to
induce an interest in Graphics. So, the rest of this topic is left to the
programmers who wish to improve their skills in the art of programming.

SOLVED PROBLEMS
1. Program to print Olympic circle.
Program Example (input, Output);

Uses crt, graph;

Var

Gd, gm: integer;

Begin
Initgraph (gd, gm,' '};
Gd: = detect;
Settextstyle (triplexfont, horizdir,d4)
Outtextxy (200,0, 'Olympic 19%&6');
Settextstyle (triplexfont, horizdir, 2);
outtextxy (250, 35, 'at atlanta');
Circle (150,100,100);
Circle (300,100,100)
Circle (450G,100,100);
Circle (225,145,100);
Ccircle (375,145,100);

Readln

End.

Graphics 235

Output

Olympic 1996
at atlanta

2. Program to print Doordarshan symbol.

{ Program written by using CGA monitor
Make appropriate changes for other monitors }

Program Example (Input, Output);

Uses graph;

Var
Gd,gm:integer;

Begin
Gd:=detect;
Initgraph (gd, gm,'');
Circle ({305,100,70)
Settextstyle (Gothicfont, Horizdir, 5);
Outextxy (275,75, 'DD');
Arc (320,100,0,180,200);
Arc (350,100,0,180,170);
Arc (150,100,180,360,30);
Arc (290,100,180,360,200);
Arc (260,100,180,360,170);

236 PASCAL PROGRAMMING

Arc (460,100,0,180,30);
Readln;
Closegraph;

End

- Quiput

BB

CHAPTER -12

AN INTRODUCTION TO
OBJECT ORIENTED PROGRAMMING

Revolution takes place not only in history, but also in the evolution of
programming languages as is the case with OOP- the hottest topic the
field of programming languages have ever seen. In this chapter, let us
introduce some of the paradigm of object oriented programming and see,
as to what makes us to deviate from conventional ways of coding to the
modern trend. .

Languages such as BASIC, C, FORTRAN and Pascal (earlier Versions)
are called Procedural languages. The statements in these languages
are coded to perform certain specific tasks such as to get input from the
user, doing some calculation and output the result. For smaller tasks,
such as the one mentioned above these procedural languages work fine
without much difficulty.

When the program becomes a little bit complex we use the principle of
dividing a ‘program into smaller pieces which is otherwise called a
procedure or a function. It also makes our program into, a more
structured one. :

As programs grow larger and more complex, the languages so far seen
{even structured programming languages) find it difficult to manage and
OOP comses into rescue, and solves the problem.

The main reason for a switch from procedural language to object
oriented language is, the way they treat the data. In a procedural
language program gets precedence over the data, i.e., data is given a
second class status, whereas in the object oriented programs data plays
a vital role. In addition, code and data are considered as equal partners.

The history of OOP dates back to 1960 when research started through
Simula programming language. The real credit goes to Smalltalk- the
first successful and complete object oriented programming language
developed at Xerox corporation's PARC (Palo Alto Research Centre),
which took nearly 10 years to complete. Today more than 100
languages support OOP features which indicates that a language can
not withstand in the field of programming languages if it lacks the OOP
feature.

Let us now consider the OOP features through Turbo Pascal. It is a
blend of the best features taken from Apple's Object Pascal and AT &
T's C++ Programming language. Thus Turbo Pascal Version 5.5 paves

238 PASCAL PROGRAMMING

a way to this exciting feature and in version 6.0 it is further refined to
a more spectacular way.

Syntax for object class

The term Obiject is nothing but an extension of record. In record, we
declare only the members (fields), whereas in an object, in addition to
the member declaration, we also declare procedures and functions used
in the program. The member declaration in an object is called ‘Instance
variables'. The functions and procedures in an object are called
‘Methods'. Combining all the above into a single*object class is called
encapsulation. ’

The syntax for the object class is as follows :

Type
Class name ; Object
Field declaration;

:
r

method declaration;
and;

Here the object, class name, is the object class identifier and the naming
of class follow the same rules as that for any identifier. The field
declaration is member declaration and method declaration is procedure
or function declaration.

The object class is defined similar to a record. The field declaration in
an object is similar to field declaration in a record.

Next we will see how methods (procedures and functions) are declared
inside an Object.

The general form for the procedure declaration inside an object is

procedure cbject class.method name(Variable list);
Bagin

Statement;

/ ;
statemeht;
End;

Here the object class is the object class name and method name Is
nothing but a particular procedure (method) name. It is followed by
variable list to be passed to the procedure.

The general form of the function declaration inside an object is

Object Oriented Programming 239

Function object class.method name(Var.list): Data type;
Begin
Statement;
/
Statement;
End;

Here the object class is the object class name and method name is
nothing but a particular function (method) name. It is followed by a
variable list to be passed to the functions. Since it is a function it returns
only one value to the main. The data type returmned by such a function
should also be given in the function declaration itself.

Before an object could be used, it shoulkd be declared in the Var section
as a record type declared as a record variable. The declaration takes
the following form

Var

Object Name : Object Class;

Here object name is an identifier which we are going to use in the main
program and the object class is the one which we have already declared
as an object in the type declaration itself.

Consider the following object declaration.

Type
Stdrec = Object
StdName : String;
StdNo : Integer;
Tam,Eng,Mat : Integer;
Procedure GetInput;
Procedure DisOutput;
End;

In the above object declaration StdName,StdNo,Tam,Eng, and Mat are
called as Instance variables. The procedures Getinput and DispOutput
are called Methods.

Now consider the toﬁowhg program which uses the above object.

Program Example (Input,COutput);
Uses Crt;

Type

240 PASCAL PROGRAMMING

Stdrec = Object
StdName : String;
Stdio : Integer;
Tam,Eng,Mat : Integer;
Proceclure GetInput;
Procedure DisOutput;
End;

Procedure Stdrec.GetInput;
Begin :
Clrscr;
Writeln (‘Enter Student Name ‘);
Readln (StdName);
Writeln('Enter ExamNo ');
Readln(sStdNo) ;
Writeln('Enter Tam,Eng,Mat Marks ‘);
Readln (Tam, Eng,Mat) ;
End;

Procedure Stdrec.DisCutput;

Var
Tot : Integer;
Beqgin
Writeln (‘Name of The Student : ‘',StdName);
Writeln (' Exam No : ‘,StdNo);
Tot := Tam + Eng + Mat ;
Writeln (' Total Marks : ', Tot);
End;
var
Markrec : Stdrec ;
Begin

Markrec.GetInput;
Markrec.DisOutput;
Readln;

End.

Ouiput

Enter Student Name
Rajesh

Enter ExamNo

202

Enter Tam, Eng, Mat Marks

Object Oriented Programming 241

6778 N

Name of The Student: Rajesh
Exam No : 202
Total marks : 236

The program starts by calling the method Getlnput of markrec. In this
method user has to give name, stdno and marks for the three subjects.
Then the methud Dispoutput of markrec is called. In this method the
marks are added and it is displayed along with the name and exam no.

The above program is a very good example to illustrate the concept of
encapsulation which is considered as one of the important properties of
the object oriented programming.

Now, we will see another important property of OOP — Inheritance.
Inheritance

If a child resembles in some of the characteristics of histher parent, say
for example, in appearance or behaviour, we say that the child has
inherited the characteristics of his/her parent, Similarly in OOP, for
example, if we have an object A and we want to declare two more objects
by name B and C which contain some of the instance variables and
methods that are present in the object A, then instead of declaring
individual objects it is enough that we declare the first object which
contains the common fields of both the objects and then the fields
pertaining to object B and C alone, thus by making use of the property
— Inheritance. Here we call the object A as the parent class. The objects
B and C are called as subclasses.

Defining on object subclass
Here is the general form for defining an object subclass.

type
Classname = cbject (parent class)
field declaraticn ;
/
field declaration ;

method declaration ;
/
method declaration ;
end;
Here class name is the new object subclass's identifier and parent class
is the name of the subclass's parent class. The field declaration and
method declaration are usual declarations found in the object.

242 PASCAL PROGRAMMING

Further, consider the following two objects — the latter one being inher-
ited from the former.

Type

Stdrec = Object
Stdname : string ;
ExamNe : Integer ;
Procedure Init;
Procedure GetName;
Procedure GetExamNo;
End;

Result = Object (Stdrec)
TotMarks : Integer:
Procedure GetMarks ;
Procedure Class;
End;

In the above declaration we have stdrec as a parent object and the
purpose of this object is, to receive Name and ExamNo for the student
record. Also we have another object Result, which has inherited two
fields such as Name and Examno from the Object Stdrec. Here the
instance variables and methods available to the subclass (Result) are a
superset of the parent class’s(Stdrec) instance variables and methods.

Now let us consider the complete program to demonstrate the above
concept.

Program Example{Input,Output);

lises Crt;

Type

Stdrec = Object
Stdname : string ;
ExamNo : Integer ;
Procedure Init;
Procedure GetName;
Procedure GetExamio:
End;

Result = Object (Stdrec)
TotMarks : Integer ;
Procedure GetMarks ;

Object Oriented Programming

Procedure Class;
End;

Procedure Stdrec.Init;

Var

Begin
StdName : = ' *;
ExamNo : = 0;

[l

End;

Procedure Stdrec.GetName;
Begin
Writeln('Enter MName ');
Readln(sStdName) ;
End;

Procedure Stdrec.GetExamNo;
Begin
Writeln(*Enter ExamNo ');
Readln{ExamNo) ;
End;

Procedure Result.GetMarks;
Begin
Writeln('Enter Marks ‘);
Readln(TotMarks) ;
End;

Procedure Result.Class;

Var
C : String;
Begin
If TotMarks < 300 Then
C := ‘Second '
Else
C := ‘First’;
Writeln(' Name : ', 3tdName);
Writeln(* Ne¢ : ', ExamNo};
Writeln(* Marks : ‘', TotMarks);
Writeln(* Class : *, C);
End;

Resultobj : Result ;

Begin

243

244 PASCAL PROGRAMMING

Clrscr;

Resultobj. Init;

Resultobj. GetName;

ResultObj. GetExamNo;

ResultObj. GetMarks;

ResultObj. Class;
End.

Quiput.

Enter Name
Lavan

Enter ExamNo
1001

Enter Marks
450

Name : Lavan
No : 1001
Marks : 450
Class ; First

Enter Name
Kusan)
Enter ExamNo
1002

Enter Marks
250

Name : Kusan
No : 1002
Marks ; 250
Class : Second

First of all note that in the variable declaration of the main we have
declared ResultObj of the type Result. The object stdrec is used as a
parent class to the subclass of Resuit.

Now let us discuss yet another important feature of OOP -
Polymorphism.

In the previous section we saw that a subclass can inherit some of the
instance variables and methods of the parent class, in addition to its own
instance variables and methods. While inheriting some of the methods
from the parent class, we also have a choice to modify the methods of
the parent class. Polymorphism provides the ability of doing so. Thus

246 PASCAL PROGRAMMING

Result = Object (Stdrec)
TotMarks : Integer ;
Constructor Init;
Procedure GetMarks;
Procedure Display ; Virtual
End;

The next task before us is to know how we can call an inherited virtual
method.

Here is a syntax diagram to solve the above problem.

Parent class.methodname(argument.list);

The following example method will clearly make the task of our under-
standing very easy.

Procedure stdrec.Display;

Begin
Writeln(' Name : ', StdName);
Writeln('No : ‘', ExamNo);
End;

Procedure Result.Display ;

Begin

Stdrec.Display;

Writeln('Marks : ', TotMarks);
End;

In the above procedure, within the procedure Resull.Display we call the
method display, by preceding method name with the parent class’name
and a period(.).

Here is a complete program to demonstrate the concept of polymor-
phism.

Program Example (Input,Output);
Uses Crt; -
Type
Stdrec = Object
StdName : String;
ExamNo : Integer;
Constructor Init;
Procedure GetName;

248 PASCAL PROGRAMMING

Readln(TotMarks) ;
End;

Procedure Result.Display ;

Var
C : String ;
Begin
if TotMarks <300 Then
C := ‘Second '
Else
C := ‘First’ ;
Stdrec.Display;
Writeln(*Marks :', TotMarks);
Writeln('Class : *,C);
End;
var
ResultObj : Result;
Begin
Clrscr;
ResultObj.Init;
ResultObj.GetName;
ResultObj.GetExamiNo ;
Resultobj.GetMarks;
Resultobj.Display;
Readln;
End.
Output.
Enter Name
Seetha
Enter ExamNo
1001
Enter Marks
678
Name : Seetha
No : 1001
Marks : 678
Class: First

Final thought : Though the example programs that we have
encountered so far seem to be very easy, the real world of OOP is
anything but simple. There are many features which make the language

Object Oriented Programming 249

to support OOP, here we have seen only some of the important features
of the OOP. The object of this chapter is to make our voyage to OOP
a comfortable one. The remaining features are left to the court of
programmers who are considered as best judges for analysing the pros
and cons of the language.

APPENDIX

APPENDIX - A
RESERVED WORDS

The following words are reserved in Turbo Pascal. They may not be
redefined by the program.

absolute external nil shi
and file) not shr
array forward overlay string
begin for of then
case function or type
const goto packed to

div inline procedure until
do if ' program var
downto in record while
else . lable repeat with

end mod set xor

APPENDIX - B
PREDEFINED IDENTIFIERS.

The following identifiers are predefined and meant for specific purposes.
If we redefine these identifiers, we may lose the original feature. It is
better to leave as it is.

Addr Darkgray HiResColor Mode
Append Delline |0result Mkdir
ArcTan Delay Input MsDos
Assign " Delete Insline New
Aux Draw Insert NormVideo
AuxinPtr Dseg int
AuxOutPtr Integer Odd
EOF Intr Ofs
Black EOLN Ord
BlockRead Erase kbd Output
BlockWrite Execute keyPressed Ovrpath
Blue Exit
Boolean Exp Length Paletle
Brown LightBlue Pi
Bufien False LightCyan Plot
Byte Filepos LightGray Port
Fileszie LightGreen PortW
Chain Fillchar LightMagenta pos
Char Flush LightRed Pred
Chdir Frac Ln Ptr
Chr Lo
Close GetDir LongFilePos Random
ClrEol GetMem LongFileSeek Randomize
Clrscr GotoXY LongSeek Read
Con GraphBack- LowVideo Readin
ConlInPtr ground Lst Real
ConOQutPtr GraphColor LstOutptr Rmdir
Concat Graphmode Round
ConstPtr GraphWindow Move Red
Copy Green Magenta Release
Cos Maxint Rename
GCrtExit Halt Mark Reset
Crtinit HeapPtr Mem Rewrite
CSeg Hi MemW

Cyan Hires Memavail Seek

ABS (X) 118
ARCTAN (X) 118
Accessing a Record 142

Advantages of Sub-programs 99

Analysis of Functions 111
Analysis of Arrays 62
Analysis of Recursion 127
Arc 228

Array of Records 145
Arrays within Record 149
Assignment Statement 15

Bar in Graphics 227
Bar3d in Graphics 227
Basic 1
Block-If-Statement 32
Blockread 177
Blockwrite 177
Boolean 9

Byte 8

Concat () 121
Copy () 121

Cos (X) 118

Case Statement 46
Char 9

Character Array 71
Circle 228

Codasyl 1

Comp 2

Constant 6

DIV 13

Data Types 15

Delete () 124 .
Deletion in an Array 70
Double 2

INDEX

EXP (X) 119

Ellipse 229

Enumerated Data Type 189
Exponent 14

Expression 12

Extended 2

FRAC (X) 119

Floodfill 229

Font Files 231

For Loop 42

For with Downto - Do 43
Fortran 1

Function with Amays 115

Getpixel 220

Global & Local Variables 99
Goto Statement 50

GotoXY () 197

Header 4

IBM 1

INT (X) 119

insert () 124

Insertion in an Array 69
Integer Arithmetic 14
Integers

LENGTH (STR) 123
LN (X) 119

Label 5

Line in Graphics 226
Longint 7

MOD 13
Modules 2

PASCAL PROGRAMMING

The field of Computer Science, today finds itself in a plethora
of programming languages. Pascal has proved to be one of the
fastest growing, versatile and much sought after language. The
logical approach supported by Pascal, provides for a better
understanding even to the first time user.

This book provides an excellent introduction to the syntax and
syntax related concepts of Pascal for beginners. The systematic
approach aded by a simple and lucid style together with 112
solved problems provides for a complete understanding of Pascal
even for beginners.

Chapters on Graphics and OOP (Object Onented Programming)
provide an insight for the reader into the fascinating program
application capabilities of Pascal.

P. RADHA GANESHAN is a programmer in Thiagarajar College.
Madurai and 1s associated with the field of Computers for over
a decade He has authored a good number of books relating
to the field of Computer Science- and Computer Programming.
His books are known for their simple and lucid style

NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS

New Delhi @ Bangalore @ Calcutta @ Chennai @ Guwahati
Hyderabad » Lucknow @ Mumbai

ISBN 81-224-1096-0

