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PREFACE
fas�
i�
le /fas_ ek el /n : : : 1: a small bundle : : : an in
ores
en
e 
onsisting ofa 
ompa
ted 
yme less 
apitate than a glomerule: : : 2: one of the divisions of a book published in parts| P. B. GOVE, Webster's Third New International Di
tionary (1961)

This is the first of a series of updates that I plan to make available atregular intervals as I 
ontinue working toward the ultimate editions of The Artof Computer Programming.I was inspired to prepare fas
i
les like this by the example of Charles Di
kens,who issued his novels in serial form; he published a dozen installments of OliverTwist before having any idea what would be
ome of Bill Sikes! I was thinkingalso of James Murray, who began to publish 350-page portions of the OxfordEnglish Di
tionary in 1884, �nishing the letter B in 1888 and the letter C in1895. (Murray died in 1915 while working on the letter T; my task is, fortunately,mu
h simpler than his.)Unlike Di
kens and Murray, I have 
omputers to help me edit the material,so that I 
an easily make 
hanges before putting everything together in its �nalform. Although I'm trying my best to write 
omprehensive a

ounts that needno further revision, I know that every page brings me hundreds of opportunitiesto make mistakes and to miss important ideas. My �les are bursting with notesabout beautiful algorithms that have been dis
overed, but 
omputer s
ien
e hasgrown to the point where I 
annot hope to be an authority on all the materialI wish to 
over. Therefore I need extensive feedba
k from readers before I 
an�nalize the oÆ
ial volumes.In other words, I think these fas
i
les will 
ontain a lot of Good Stu�, and I'mex
ited about the opportunity to present everything I write to whoever wantsto read it, but I also expe
t that beta-testers like you 
an help me make itWay Better. As usual, I will gratefully pay a reward of $2.56 to the �rstperson who reports anything that is te
hni
ally, histori
ally, typographi
ally,or politi
ally in
orre
t.Charles Di
kens usually published his work on
e a month, sometimes on
ea week; James Murray tended to �nish a 350-page installment about on
e every18 months. My goal, God willing, is to produ
e two 128-page fas
i
les per year.Most of the fas
i
les will represent new material destined for Volumes 4 andhigher; but sometimes I will be presenting amendments to one or more of theearlier volumes. For example, Volume 4 will need to refer to topi
s that belongin Volume 3, but weren't invented when Volume 3 �rst 
ame out. With lu
k,the entire work will make sense eventually.iii
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iv PREFACEFas
i
le Number One is about MMIX, the long-promised repla
ement for MIX.Thirty years have passed sin
e the MIX 
omputer was designed, and 
omputerar
hite
ture has been 
onverging during those years towards a rather di�erentstyle of ma
hine. Therefore I de
ided in 1990 to repla
e MIX with a new 
omputerthat would 
ontain even less saturated fat than its prede
essor.Exer
ise 1.3.1{25 in the �rst three editions of Volume 1 spoke of an ex-tended MIX 
alled MixMaster, whi
h was upward 
ompatible with the old version.But MixMaster itself has long been hopelessly obsolete. It allowed for severalgigabytes of memory, but one 
ouldn't even use it with ASCII 
ode to printlower
ase letters. And ou
h, its standard subroutine 
alling 
onvention wasirrevo
ably based on self-modifying instru
tions! De
imal arithmeti
 and self-modifying 
ode were popular in 1962, but they sure have disappeared qui
klyas ma
hines have gotten bigger and faster. Fortunately the new RISC ma
hineshave a very appealing stru
ture, so I've had a 
han
e to design a new 
omputerthat is not only up to date but also fun.Many readers are no doubt thinking, \Why does Knuth repla
e MIX byanother ma
hine instead of just sti
king to a high-level programming language?Hardly anybody uses assemblers these days." Su
h people are entitled to theiropinions, and they need not bother reading the ma
hine-language parts of mybooks. But the reasons for ma
hine language that I gave in the prefa
e toVolume 1, written in the early 1960s, remain valid today:� One of the prin
ipal goals of my books is to show how high-level 
onstru
-tions are a
tually implemented in ma
hines, not simply to show how theyare applied. I explain 
oroutine linkage, tree stru
tures, random numbergeneration, high-pre
ision arithmeti
, radix 
onversion, pa
king of data,
ombinatorial sear
hing, re
ursion, et
., from the ground up.� The programs needed in my books are generally so short that their mainpoints 
an be grasped easily.� People who are more than 
asually interested in 
omputers should have atleast some idea of what the underlying hardware is like. Otherwise theprograms they write will be pretty weird.� Ma
hine language is ne
essary in any 
ase, as output of some of the softwarethat I des
ribe.� Expressing basi
 methods like algorithms for sorting and sear
hing in ma-
hine language makes it possible to 
arry out meaningful studies of the e�e
tsof 
a
he and RAM size and other hardware 
hara
teristi
s (memory speed,pipelining, multiple issue, lookaside bu�ers, the size of 
a
he blo
ks, et
.)when 
omparing di�erent s
hemes.Moreover, if I did use a high-level language, what language should it be? Inthe 1960s I would probably have 
hosen Algol W; in the 1970s, I would thenhave had to rewrite my books using Pas
al; in the 1980s, I would surely have
hanged everything to C; in the 1990s, I would have had to swit
h to C++ andthen probably to Java. In the 2000s, yet another language will no doubt be de
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PREFACE vrigueur. I 
annot a�ord the time to rewrite my books as languages go in andout of fashion; languages aren't the point of my books, the point is rather whatyou 
an do in your favorite language. My books fo
us on timeless truths.Therefore I will 
ontinue to use English as the high-level language in The Artof Computer Programming, and I will 
ontinue to use a low-level languageto indi
ate how ma
hines a
tually 
ompute. Readers who only want to seealgorithms that are already pa
kaged in a plug-in way, using a trendy language,should buy other people's books.The good news is that programming for MMIX is pleasant and simple. Thisfas
i
le presents1) a programmer's introdu
tion to the ma
hine (repla
ing Se
tion 1.3.1 ofVolume 1);2) the MMIX assembly language (repla
ing Se
tion 1.3.2);3) new material on subroutines, 
oroutines, and interpretive routines (repla
ingSe
tions 1.4.1, 1.4.2, and 1.4.3).Of 
ourse, MIX appears in many pla
es throughout Volumes 1{3, and dozens ofprograms need to be rewritten for MMIX. Readers who would like to help withthis 
onversion pro
ess are en
ouraged to join the MMIXmasters, a happy groupof volunteers based at mmixmasters.sour
eforge.net.I am extremely grateful to all the people who helped me with the designof MMIX. In parti
ular, John Hennessy and Ri
hard L. Sites deserve spe
ialthanks for their a
tive parti
ipation and substantial 
ontributions. Thanks alsoto Vladimir Ivanovi�
 for volunteering to be the MMIX grandmaster/webmaster.Stanford, California D. E. K.May 1999
You 
an, if you want, rewrite forever.| NEIL SIMON, Rewrites: A Memoir (1996)
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2 BASIC CONCEPTS 1.3�1.3�. MMIXIn many pla
es throughout this book we will have o

asion to refer to a 
om-puter's internal ma
hine language. The ma
hine we use is a mythi
al 
omputer
alled \MMIX." MMIX|pronoun
ed EM-mi
ks|is very mu
h like nearly everygeneral-purpose 
omputer designed sin
e 1985, ex
ept that it is, perhaps, ni
er.The language of MMIX is powerful enough to allow brief programs to be writtenfor most algorithms, yet simple enough so that its operations are easily learned.The reader is urged to study this se
tion 
arefully, sin
e MMIX languageappears in so many parts of this book. There should be no hesitation aboutlearning a ma
hine language; indeed, the author on
e found it not un
ommon tobe writing programs in a half dozen di�erent ma
hine languages during the sameweek! Everyone with more than a 
asual interest in 
omputers will probably getto know at least one ma
hine language sooner or later. Ma
hine language helpsprogrammers understand what really goes on inside their 
omputers. And on
eone ma
hine language has been learned, the 
hara
teristi
s of another are easyto assimilate. Computer s
ien
e is largely 
on
erned with an understanding ofhow low-level details make it possible to a
hieve high-level goals.Software for running MMIX programs on almost any real 
omputer 
an bedownloaded from the website for this book (see page ii). The 
omplete sour
e
ode for the author's MMIX routines appears in the book MMIXware [Le
ture Notesin Computer S
ien
e 1750 (1999)℄; that book will be 
alled \the MMIXwaredo
ument" in the following pages.1.3.1�. Des
ription of MMIXMMIX is a polyunsaturated, 100% natural 
omputer. Like most ma
hines, it hasan identifying number|the 2009. This number was found by taking 14 a
tual
omputers very similar to MMIX and on whi
h MMIX 
ould easily be simulated,then averaging their numbers with equal weight:�Cray I + IBM801 + RISCII + ClipperC300 + AMD29K + Motorola 88K+ IBM601 + Intel i960 + Alpha21164 + POWER2 + MIPSR4000+ Hita
hi SuperH4 + StrongARM110 + Spar
 64�=14= 28126=14 = 2009: (1)The same number may also be obtained in a simpler way by taking Romannumerals.Bits and bytes. MMIX works with patterns of 0s and 1s, 
ommonly 
alledbinary digits or bits, and it usually deals with 64 bits at a time. For example,the 64-bit quantity1001111000110111011110011011100101111111010010100111110000010110 (2)is a typi
al pattern that the ma
hine might en
ounter. Long patterns like this
an be expressed more 
onveniently if we group the bits four at a time and use

2



1.3.1� DESCRIPTION OF MMIX 3hexade
imal digits to represent ea
h group. The sixteen hexade
imal digits are0 = 0000;1 = 0001;2 = 0010;3 = 0011;
4 = 0100;5 = 0101;6 = 0110;7 = 0111;

8 = 1000;9 = 1001;a = 1010;b = 1011;

 = 1100;d = 1101;e = 1110;f = 1111: (3)

We shall always use a distin
tive typefa
e for hexade
imal digits, as shown here,so that they won't be 
onfused with the de
imal digits 0{9; and we will usuallyalso put the symbol # just before a hexade
imal number, to make the distin
tioneven 
learer. For example, (2) be
omes#9e3779b97f4a7
16 (4)in hexade
imalese. Upper
ase digits ABCDEF are often used instead of ab
def,be
ause #9E3779B97F4A7C16 looks better than #9e3779b97f4a7
16 in some
ontexts; there is no di�eren
e in meaning.A sequen
e of eight bits, or two hexade
imal digits, is 
ommonly 
alleda byte. Most 
omputers now 
onsider bytes to be their basi
, individuallyaddressable units of information; we will see that an MMIX program 
an referto as many as 264 bytes, ea
h with its own address from #0000000000000000 to#ffffffffffffffff. Letters, digits, and pun
tuation marks of languages likeEnglish are often represented with one byte per 
hara
ter, using the Ameri
anStandard Code for Information Inter
hange (ASCII). For example, the ASCIIequivalent of MMIX is #4d4d4958. ASCII is a
tually a 7-bit 
ode with 
ontrol
hara
ters #00{#1f, printing 
hara
ters #20{#7e, and a \delete" 
hara
ter #7f[see CACM 8 (1965), 207{214; 11 (1968), 849{852; 12 (1969), 166{178℄. Itwas extended during the 1980s to an international standard 8-bit 
ode known asLatin-1 or ISO8859-1, thereby en
oding a

ented letters: pât�e is #70e274e9.
\Of the 256th squadron?"\Of the �ghting 256th Squadron," Yossarian replied.: : : \That's two to the �ghting eighth power."| JOSEPH HELLER, Cat
h-22 (1961)

A 16-bit 
ode that supports nearly every modern language be
ame an inter-national standard during the 1990s. This 
ode, known as Uni
ode or ISO/IEC10646 UCS-2, in
ludes not only Greek letters like S and s (#03a3 and #03
3),Cyrilli
 letters like W and w (#0429 and #0449), Armenian letters like and(#0547 and #0577), Hebrew letters like Y (#05e9), Arabi
 letters like �(#0634), and Indian letters like f (#0936) or x (#09b6) or S (#0b36) or �(#0bb7), et
., but also tens of thousands of East Asian ideographs su
h as theChinese 
hara
ter for mathemati
s and 
omputing, (#7b97). It even hasspe
ial 
odes for Roman numerals: MMIX = #216f216f21602169. OrdinaryASCII or Latin-1 
hara
ters are represented by simply giving them a leadingbyte of zero: pât�e is #007000e2007400e9, �a l'Uni
ode.
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4 BASIC CONCEPTS 1.3.1�We will use the 
onvenient term wyde to des
ribe a 16-bit quantity like thewide 
hara
ters of Uni
ode, be
ause two-byte quantities are quite important inpra
ti
e. We also need 
onvenient names for four-byte and eight-byte quantities,whi
h we shall 
all tetrabytes (or \tetras") and o
tabytes (or \o
tas"). Thus2 bytes = 1 wyde;2 wydes = 1 tetra;2 tetras = 1 o
ta:One o
tabyte equals four wydes equals eight bytes equals sixty-four bits.Bytes and multibyte quantities 
an, of 
ourse, represent numbers as well asalphabeti
 
hara
ters. Using the binary number system,an unsigned byte 
an express the numbers 0 : : 255;an unsigned wyde 
an express the numbers 0 : : 65,535;an unsigned tetra 
an express the numbers 0 : : 4,294,967,295;an unsigned o
ta 
an express the numbers 0 : : 18,446,744,073,709,551,615.Integers are also 
ommonly represented by using two's 
omplement notation, inwhi
h the leftmost bit indi
ates the sign: If the leading bit is 1, we subtra
t 2n toget the integer 
orresponding to an n-bit number in this notation. For example,�1 is the signed byte #ff; it is also the signed wyde #ffff, the signed tetrabyte#ffffffff, and the signed o
tabyte #ffffffffffffffff. In this waya signed byte 
an express the numbers �128 : : 127;a signed wyde 
an express the numbers �32;768 : : 32,767;a signed tetra 
an express the numbers �2;147;483;648 : : 2,147,483,647;a signed o
ta 
an express the numbers �9;223;372;036;854;775;808 : :9,223,372,036,854,775,807.Memory and registers. From a programmer's standpoint, an MMIX 
omputerhas 264 
ells of memory and 28 general-purpose registers, together with 25spe
ial registers (see Fig. 13). Data is transferred from the memory to theregisters, transformed in the registers, and transferred from the registers to thememory. The 
ells of memory are 
alled M[0℄, M[1℄, : : : , M[264 � 1℄; thus if x isany o
tabyte, M[x℄ is a byte of memory. The general-purpose registers are 
alled$0, $1, : : : , $255; thus if x is any byte, $x is an o
tabyte.The 264 bytes of memory are grouped into 263 wydes, M2[0℄ = M2[1℄ =M[0℄M[1℄, M2[2℄ = M2[3℄ = M[2℄M[3℄, : : : ; ea
h wyde 
onsists of two 
onse
utivebytes M[2k℄M[2k+1℄ = M[2k℄� 28+M[2k+1℄, and is denoted either by M2[2k℄or by M2[2k + 1℄. Similarly there are 262 tetrabytesM4[4k℄ = M4[4k + 1℄ = � � � = M4[4k + 3℄ = M[4k℄M[4k + 1℄ : : :M[4k + 3℄;and 261 o
tabytesM8[8k℄ = M8[8k + 1℄ = � � � = M8[8k + 7℄ = M[8k℄M[8k + 1℄ : : :M[8k + 7℄:In general if x is any o
tabyte, the notations M2[x℄, M4[x℄, and M8[x℄ denotethe wyde, the tetra, and the o
ta that 
ontain byte M[x℄; we ignore the least
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1.3.1� DESCRIPTION OF MMIX 5

$0:$1:$2: ... ... ... ... ... ... ... ...$254:$255:rA:rB: ... ... ... ... ... ... ... ...rZZ:M[0℄ M[1℄ M[2℄ M[3℄ M[4℄ M[5℄ M[6℄ M[7℄ M[8℄ M[264�1℄M[264�2℄M[264�3℄M[264�4℄M[264�5℄M[264�6℄M[264�7℄M[264�8℄M[264�9℄Fig. 13. The MMIX 
omputer, as seen by a programmer, has 256 general-purposeregisters and 32 spe
ial-purpose registers, together with 264 bytes of virtual memory.Ea
h register holds 64 bits of data.signi�
ant lg t bits of x when referring to Mt[x℄. For 
ompleteness, we also writeM1[x℄ = M[x℄, and we de�ne M[x℄ = M[xmod 264℄ when x < 0 or x � 264.The 32 spe
ial registers of MMIX are 
alled rA, rB, : : : , rZ, rBB, rTT,rWW, rXX, rYY, and rZZ. Like their general-purpose 
ousins, they ea
h holdan o
tabyte. Their uses will be explained later; for example, we will see thatrA 
ontrols arithmeti
 interrupts while rR holds the remainder after division.Instru
tions. MMIX's memory 
ontains instru
tions as well as data. An in-stru
tion or \
ommand" is a tetrabyte whose four bytes are 
onventionally 
alledOP, X, Y, and Z. OP is the operation 
ode (or \op
ode," for short); X, Y, and Zspe
ify the operands. For example, #20010203 is an instru
tion with OP = #20,X = #01, Y = #02, and Z = #03, and it means \Set $1 to the sum of $2 and$3." The operand bytes are always regarded as unsigned integers.Ea
h of the 256 possible op
odes has a symboli
 form that is easy to re-member. For example, op
ode #20 is ADD. We will deal almost ex
lusively withsymboli
 op
odes; the numeri
 equivalents 
an be found, if needed, in Table 1below, and also in the endpapers of this book.The X, Y, and Z bytes also have symboli
 representations, 
onsistent withthe assembly language that we will dis
uss in Se
tion 1.3.2�. For example,the instru
tion #20010203 is 
onventionally written `ADD $1,$2,$3', and theaddition instru
tion in general is written `ADD $X,$Y,$Z'. Most instru
tions havethree operands, but some of them have only two, and a few have only one. Whenthere are two operands, the �rst is X and the se
ond is the two-byte quantity YZ;the symboli
 notation then has only one 
omma. For example, the instru
tion
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6 BASIC CONCEPTS 1.3.1�`INCL $X,YZ' in
reases register $X by the amount YZ. When there is only oneoperand, it is the unsigned three-byte number XYZ, and the symboli
 notationhas no 
omma at all. For example, we will see that `JMP �+4*XYZ' tells MMIXto �nd its next instru
tion by skipping ahead XYZ tetrabytes; the instru
tion`JMP �+1000000' has the hexade
imal form #f003d090, be
ause JMP = #f0 and250000 = #03d090.We will des
ribe ea
h MMIX instru
tion both informally and formally. Forexample, the informal meaning of `ADD $X,$Y,$Z' is \Set $X to the sum of $Yand $Z"; the formal de�nition is `s($X) s($Y)+ s($Z)'. Here s(x) denotes thesigned integer 
orresponding to the bit pattern x, a

ording to the 
onventionsof two's 
omplement notation. An assignment like s(x) N means that x is tobe set to the bit pattern for whi
h s(x) = N . (Su
h an assignment 
auses integerover
ow if N is too large or too small to �t in x. For example, an ADD willover
ow if s($Y) + s($Z) is less than �263 or greater than 263 � 1. When we'redis
ussing an instru
tion informally, we will often gloss over the possibility ofover
ow; the formal de�nition, however, will make everything pre
ise. In generalthe assignment s(x) N sets x to the binary representation of N mod 2n, wheren is the number of bits in x, and it signals over
ow if N < �2n�1 or N � 2n�1;see exer
ise 5.)Loading and storing. Although MMIX has 256 di�erent op
odes, we will seethat they fall into a few easily learned 
ategories. Let's start with the instru
tionsthat transfer information between the registers and the memory.Ea
h of the following instru
tions has a memory address A obtained byadding $Y to $Z. Formally,A = �u($Y) + u($Z)�mod 264 (5)is the sum of the unsigned integers represented by $Y and $Z, redu
ed to a 64-bitnumber by ignoring any 
arry that o

urs at the left when those two integers areadded. In this formula the notation u(x) is analogous to s(x), but it 
onsiders xto be an unsigned binary number.� LDB $X,$Y,$Z (load byte): s($X) s�M1[A℄�.� LDW $X,$Y,$Z (load wyde): s($X) s�M2[A℄�.� LDT $X,$Y,$Z (load tetra): s($X) s�M4[A℄�.� LDO $X,$Y,$Z (load o
ta): s($X) s�M8[A℄�.These instru
tions bring data from memory into register $X, 
hanging the dataif ne
essary from a signed byte, wyde, or tetrabyte to a signed o
tabyte of thesame value. For example, suppose the o
tabyte M8[1002℄ = M8[1000℄ isM[1000℄M[1001℄ : : :M[1007℄ = #0123456789ab
def: (6)Then if $2 = 1000 and $3 = 2, we have A = 1002, andLDB $1,$2,$3 sets $1 #0000000000000045 ;LDW $1,$2,$3 sets $1 #0000000000004567 ;LDT $1,$2,$3 sets $1 #0000000001234567 ;LDO $1,$2,$3 sets $1 #0123456789ab
def :
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1.3.1� DESCRIPTION OF MMIX 7But if $3 = 5, so that A = 1005,LDB $1,$2,$3 sets $1 #ffffffffffffffab ;LDW $1,$2,$3 sets $1 #ffffffffffff89ab ;LDT $1,$2,$3 sets $1 #ffffffff89ab
def ;LDO $1,$2,$3 sets $1 #0123456789ab
def :When a signed byte or wyde or tetra is 
onverted to a signed o
ta, its sign bitis \extended" into all positions to the left.� LDBU $X,$Y,$Z (load byte unsigned): u($X) u�M1[A℄�.� LDWU $X,$Y,$Z (load wyde unsigned): u($X) u�M2[A℄�.� LDTU $X,$Y,$Z (load tetra unsigned): u($X) u�M4[A℄�.� LDOU $X,$Y,$Z (load o
ta unsigned): u($X) u�M8[A℄�.These instru
tions are analogous to LDB, LDW, LDT, and LDO, but they treat thememory data as unsigned ; bit positions at the left of the register are set tozero when a short quantity is being lengthened. Thus, in the example above,LDBU $1,$2,$3 with $2 + $3 = 1005 would set $1 #00000000000000ab.The instru
tions LDO and LDOU a
tually have exa
tly the same behavior,be
ause no sign extension or padding with zeros is ne
essary when an o
tabyteis loaded into a register. But a good programmer will use LDO when the signis relevant and LDOU when it is not; then readers of the program 
an betterunderstand the signi�
an
e of what is being loaded.� LDHT $X,$Y,$Z (load high tetra): u($X) u�M4[A℄�� 232.Here the tetrabyte M4[A℄ is loaded into the left half of $X, and the right halfis set to zero. For example, LDHT $1,$2,$3 sets $1  #89ab
def00000000,assuming (6) with $2 + $3 = 1005.� LDA $X,$Y,$Z (load address): u($X) A.This instru
tion, whi
h puts a memory address into a register, is essentiallythe same as the ADDU instru
tion des
ribed below. Sometimes the words \loadaddress" des
ribe its purpose better than the words \add unsigned."� STB $X,$Y,$Z (store byte): s�M1[A℄� s($X).� STW $X,$Y,$Z (store wyde): s�M2[A℄� s($X).� STT $X,$Y,$Z (store tetra): s�M4[A℄� s($X).� STO $X,$Y,$Z (store o
ta): s�M8[A℄� s($X).These instru
tions go the other way, pla
ing register data into the memory.Over
ow is possible if the (signed) number in the register lies outside the rangeof the memory �eld. For example, suppose register $1 
ontains the number�65536 = #ffffffffffff0000 . Then if $2 = 1000, $3 = 2, and (6) holds,STB $1,$2,$3 sets M8[1000℄ #0123006789ab
def (with over
ow);STW $1,$2,$3 sets M8[1000℄ #0123000089ab
def (with over
ow);STT $1,$2,$3 sets M8[1000℄ #ffff000089ab
def ;STO $1,$2,$3 sets M8[1000℄ #ffffffffffff0000 :
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8 BASIC CONCEPTS 1.3.1�� STBU $X,$Y,$Z (store byte unsigned):u�M1[A℄� u($X) mod 28.� STWU $X,$Y,$Z (store wyde unsigned):u�M2[A℄� u($X) mod 216.� STTU $X,$Y,$Z (store tetra unsigned):u�M4[A℄� u($X) mod 232.� STOU $X,$Y,$Z (store o
ta unsigned): u�M8[A℄� u($X).These instru
tions have exa
tly the same e�e
t on memory as their signed
ounterparts STB, STW, STT, and STO, but over
ow never o

urs.� STHT $X,$Y,$Z (store high tetra): u�M4[A℄� �u($X)=232�.The left half of register $X is stored in memory tetrabyte M4[A℄.� STCO X,$Y,$Z (store 
onstant o
tabyte): u�M8[A℄� X.A 
onstant between 0 and 255 is stored in memory o
tabyte M8[A℄.Arithmeti
 operators. Most of MMIX's operations take pla
e stri
tly betweenregisters. We might as well begin our study of the register-to-register opera-tions by 
onsidering addition, subtra
tion, multipli
ation, and division, be
ause
omputers are supposed to be able to 
ompute.� ADD $X,$Y,$Z (add): s($X) s($Y) + s($Z).� SUB $X,$Y,$Z (subtra
t): s($X) s($Y)� s($Z).� MUL $X,$Y,$Z (multiply): s($X) s($Y)� s($Z).� DIV $X,$Y,$Z (divide): s($X) �s($Y)=s($Z)� [$Z 6=0℄, ands(rR) s($Y) mod s($Z).Sums, di�eren
es, and produ
ts need no further dis
ussion. The DIV 
ommandforms the quotient and remainder as de�ned in Se
tion 1.2.4; the remainder goesinto the spe
ial remainder register rR, where it 
an be examined by using theinstru
tion GET $X,rR des
ribed below. If the divisor $Z is zero, DIV sets $X 0and rR $Y (see Eq. 1.2.4{(1)); an \integer divide 
he
k" also o

urs.� ADDU $X,$Y,$Z (add unsigned): u($X) �u($Y) + u($Z)�mod 264.� SUBU $X,$Y,$Z (subtra
t unsigned): u($X) �u($Y)� u($Z)�mod 264.� MULU $X,$Y,$Z (multiply unsigned): u(rH $X) u($Y)� u($Z).� DIVU $X,$Y,$Z (divide unsigned): u($X)  �u(rD $Y)=u($Z)�, u(rR)  u(rD $Y) mod u($Z), if u($Z) > u(rD); otherwise $X rD, rR $Y.Arithmeti
 on unsigned numbers never 
auses over
ow. A full 16-byte produ
tis formed by the MULU 
ommand, and the upper half goes into the spe
ial himultregister rH. For example, when the unsigned number #9e3779b97f4a7
16 in(2) and (4) above is multiplied by itself we getrH #61
8864680b583ea; $X #1bb32095

dd51e4: (7)In this 
ase the value of rH has turned out to be exa
tly 264 minus the originalnumber #9e3779b97f4a7
16; this is not a 
oin
iden
e! The reason is that (2)a
tually gives the �rst 64 bits of the binary representation of the golden ratio��1 = � � 1, if we pla
e a binary radix point at the left. (See Table 2 inAppendix A.) Squaring gives us an approximation to the binary representationof ��2 = 1� ��1, with the radix point now at the left of rH.
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1.3.1� DESCRIPTION OF MMIX 9Division with DIVU yields the 8-byte quotient and remainder of a 16-bytedividend with respe
t to an 8-byte divisor. The upper half of the dividendappears in the spe
ial dividend register rD, whi
h is zero at the beginning ofa program; this register 
an be set to any desired value with the 
ommandPUT rD,$Z des
ribed below. If rD is greater than or equal to the divisor,DIVU $X,$Y,$Z simply sets $X  rD and rR  $Y. (This 
ase always ariseswhen $Z is zero.) But DIVU never 
auses an integer divide 
he
k.The ADDU instru
tion 
omputes a memory address A, a

ording to de�ni-tion (5); therefore, as dis
ussed earlier, we sometimes give ADDU the alternativename LDA. The following related 
ommands also help with address 
al
ulation.� 2ADDU $X,$Y,$Z (times 2 and add unsigned):u($X) �u($Y)� 2 + u($Z)�mod 264.� 4ADDU $X,$Y,$Z (times 4 and add unsigned):u($X) �u($Y)� 4 + u($Z)�mod 264.� 8ADDU $X,$Y,$Z (times 8 and add unsigned):u($X) �u($Y)� 8 + u($Z)�mod 264.� 16ADDU $X,$Y,$Z (times 16 and add unsigned):u($X) �u($Y)� 16 + u($Z)�mod 264.It is faster to exe
ute the 
ommand 2ADDU $X,$Y,$Y than to multiply by 3, ifover
ow is not an issue.� NEG $X,Y,$Z (negate): s($X) Y � s($Z).� NEGU $X,Y,$Z (negate unsigned): u($X) �Y � u($Z)�mod 264.In these 
ommands Y is simply an unsigned 
onstant, not a register number(just as X was an unsigned 
onstant in the STCO instru
tion). Usually Y is zero,in whi
h 
ase we 
an write simply NEG $X,$Z or NEGU $X,$Z.� SL $X,$Y,$Z (shift left): s($X) s($Y)� 2u($Z).� SLU $X,$Y,$Z (shift left unsigned): u($X) �u($Y)� 2u($Z)�mod 264.� SR $X,$Y,$Z (shift right): s($X) �s($Y)=2u($Z)�.� SRU $X,$Y,$Z (shift right unsigned): u($X) �u($Y)=2u($Z)�.SL and SLU both produ
e the same result in $X, but SL might over
ow whileSLU never does. SR extends the sign when shifting right, but SRU shifts zeros infrom the left. Therefore SR and SRU produ
e the same result in $X if and onlyif $Y is nonnegative or $Z is zero. The SL and SR instru
tions are mu
h fasterthan MUL and DIV by powers of 2. An SLU instru
tion is mu
h faster than MULUby a power of 2, although it does not a�e
t rH as MULU does. An SRU instru
tionis mu
h faster than DIVU by a power of 2, although it is not a�e
ted by rD. Thenotation y � z is often used to denote the result of shifting a binary value y tothe left by z bits; similarly, y � z denotes shifting to the right.� CMP $X,$Y,$Z (
ompare):s($X) �s($Y) > s($Z)�� �s($Y) < s($Z)�.� CMPU $X,$Y,$Z (
ompare unsigned):s($X) �u($Y) > u($Z)�� �u($Y) < u($Z)�.These instru
tions ea
h set $X to either �1, 0, or 1, depending on whetherregister $Y is less than, equal to, or greater than register $Z.
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10 BASIC CONCEPTS 1.3.1�Conditional instru
tions. Several instru
tions base their a
tions on whethera register is positive, or negative, or zero, et
.� CSN $X,$Y,$Z (
onditional set if negative): if s($Y) < 0, set $X $Z.� CSZ $X,$Y,$Z (
onditional set if zero): if $Y = 0, set $X $Z.� CSP $X,$Y,$Z (
onditional set if positive): if s($Y) > 0, set $X $Z.� CSOD $X,$Y,$Z (
onditional set if odd): if s($Y) mod 2 = 1, set $X $Z.� CSNN $X,$Y,$Z (
onditional set if nonnegative): if s($Y) � 0, set $X $Z.� CSNZ $X,$Y,$Z (
onditional set if nonzero): if $Y 6= 0, set $X $Z.� CSNP $X,$Y,$Z (
onditional set if nonpositive): if s($Y) � 0, set $X $Z.� CSEV $X,$Y,$Z (
onditional set if even): if s($Y) mod 2 = 0, set $X $Z.If register $Y satis�es the stated 
ondition, register $Z is 
opied to register $X;otherwise nothing happens. A register is negative if and only if its leading(leftmost) bit is 1. A register is odd if and only if its trailing (rightmost) bit is 1.� ZSN $X,$Y,$Z (zero or set if negative): $X $Z [s($Y)< 0℄.� ZSZ $X,$Y,$Z (zero or set if zero): $X $Z [$Y=0℄.� ZSP $X,$Y,$Z (zero or set if positive): $X $Z [s($Y)> 0℄.� ZSOD $X,$Y,$Z (zero or set if odd): $X $Z [s($Y) mod 2=1℄.� ZSNN $X,$Y,$Z (zero or set if nonnegative): $X $Z [s($Y)� 0℄.� ZSNZ $X,$Y,$Z (zero or set if nonzero): $X $Z [$Y 6=0℄.� ZSNP $X,$Y,$Z (zero or set if nonpositive): $X $Z [s($Y)� 0℄.� ZSEV $X,$Y,$Z (zero or set if even): $X $Z [s($Y) mod 2=0℄.If register $Y satis�es the stated 
ondition, register $Z is 
opied to register $X;otherwise register $X is set to zero.Bitwise operations. We often �nd it useful to think of an o
tabyte x as ave
tor v(x) of 64 individual bits, and to perform operations simultaneously onea
h 
omponent of two su
h ve
tors.� AND $X,$Y,$Z (bitwise and): v($X) v($Y) ^ v($Z).� OR $X,$Y,$Z (bitwise or): v($X) v($Y) _ v($Z).� XOR $X,$Y,$Z (bitwise ex
lusive-or): v($X) v($Y)� v($Z).� ANDN $X,$Y,$Z (bitwise and-not): v($X) v($Y) ^ �v($Z).� ORN $X,$Y,$Z (bitwise or-not): v($X) v($Y) _ �v($Z).� NAND $X,$Y,$Z (bitwise not-and): �v($X) v($Y) ^ v($Z).� NOR $X,$Y,$Z (bitwise not-or): �v($X) v($Y) _ v($Z).� NXOR $X,$Y,$Z (bitwise not-ex
lusive-or): �v($X) v($Y)� v($Z).Here �v denotes the 
omplement of ve
tor v, obtained by 
hanging 0 to 1 and1 to 0. The binary operations ^, _, and �, de�ned by the rules0 ^ 0 = 0;0 ^ 1 = 0;1 ^ 0 = 0;1 ^ 1 = 1;
0 _ 0 = 0;0 _ 1 = 1;1 _ 0 = 1;1 _ 1 = 1;

0� 0 = 0;0� 1 = 1;1� 0 = 1;1� 1 = 0; (8)
are applied independently to ea
h bit. Anding is the same as multiplying ortaking the minimum; oring is the same as taking the maximum. Ex
lusive-oringis the same as adding mod 2.
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1.3.1� DESCRIPTION OF MMIX 11� MUX $X,$Y,$Z (bitwise multiplex): v($X) �v($Y)^v(rM)�_�v($Z)^�v(rM)�.The MUX operation 
ombines two bit ve
tors by looking at the spe
ial multiplexmask register rM, 
hoosing bits of $Y where rM is 1 and bits of $Z where rM is 0.� SADD $X,$Y,$Z (sideways add): s($X) s�P�v($Y) ^ �v($Z)��.The SADD operation 
ounts the number of bit positions in whi
h register $Y hasa 1 while register $Z has a 0.Bytewise operations. Similarly, we 
an regard an o
tabyte x as a ve
tor b(x)of eight individual bytes, ea
h of whi
h is an integer between 0 and 255; or we
an think of it as a ve
tor w(x) of four individual wydes, or a ve
tor t(x) of twounsigned tetras. The following operations deal with all 
omponents at on
e.� BDIF $X,$Y,$Z (byte di�eren
e): b($X) b($Y) .� b($Z).� WDIF $X,$Y,$Z (wyde di�eren
e): w($X) w($Y) .� w($Z).� TDIF $X,$Y,$Z (tetra di�eren
e): t($X) t($Y) .� t($Z).� ODIF $X,$Y,$Z (o
ta di�eren
e): u($X) u($Y) .� u($Z).Here .� denotes the operation of saturating subtra
tion,y .� z = max(0; y � z): (9)These operations have important appli
ations to text pro
essing, as well as to
omputer graphi
s (when the bytes or wydes represent pixel values). Exer
ises27{30 dis
uss some of their basi
 properties.We 
an also regard an o
tabyte as an 8 � 8 Boolean matrix, that is, as an8�8 array of 0s and 1s. Let m(x) be the matrix whose rows from top to bottomare the bytes of x from left to right; and let mT(x) be the transposed matrix,whose 
olumns are the bytes of x. For example, if x = #9e3779b97f4a7
16 isthe o
tabyte (2), we have
m(x) =

0BBBBBBBBB�
1 0 0 1 1 1 1 00 0 1 1 0 1 1 10 1 1 1 1 0 0 11 0 1 1 1 0 0 10 1 1 1 1 1 1 10 1 0 0 1 0 1 00 1 1 1 1 1 0 00 0 0 1 0 1 1 0

1CCCCCCCCCA; mT(x) =
0BBBBBBBBB�
1 0 0 1 0 0 0 00 0 1 0 1 1 1 00 1 1 1 1 0 1 01 1 1 1 1 0 1 11 0 1 1 1 1 1 01 1 0 0 1 0 1 11 1 0 0 1 1 0 10 1 1 1 1 0 0 0

1CCCCCCCCCA: (10)
This interpretation of o
tabytes suggests two operations that are quite familiarto mathemati
ians, but we will pause a moment to de�ne them from s
rat
h.If A is an m� n matrix and B is an n� s matrix, and if Æ and � are binaryoperations, the generalized matrix produ
t A Æ� B is the m� s matrix C de�nedby Cij = (Ai1 �B1j) Æ (Ai2 �B2j) Æ � � � Æ (Ain �Bnj) (11)for 1 � i � m and 1 � j � s. [See K. E. Iverson, A Programming Language(Wiley, 1962), 23{24; we assume that Æ is asso
iative.℄ An ordinary matrixprodu
t is obtained when Æ is + and � is �, but we obtain important operations
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12 BASIC CONCEPTS 1.3.1�on Boolean matri
es if we let Æ be _ or �:(A _� B)ij = Ai1B1j _Ai2B2j _ � � � _AinBnj ; (12)(A �� B)ij = Ai1B1j �Ai2B2j � � � � �AinBnj : (13)Noti
e that if the rows of A ea
h 
ontain at most one 1, at most one term in (12)or (13) is nonzero. The same is true if the 
olumns of B ea
h 
ontain at mostone 1. Therefore A _�B and A��B both turn out to be the same as the ordinarymatrix produ
t A +� B = AB in su
h 
ases.� MOR $X,$Y,$Z (multiple or): mT($X) mT($Y) _� mT($Z);equivalently, m($X) m($Z) _� m($Y). (See exer
ise 32.)� MXOR $X,$Y,$Z (multiple ex
lusive-or): mT($X) mT($Y) �� mT($Z);equivalently, m($X) m($Z) �� m($Y).These operations essentially set ea
h byte of $X by looking at the 
orrespondingbyte of $Z and using its bits to sele
t bytes of $Y; the sele
ted bytes are thenored or xored together. If, for example, we have$Z = #0102040810204080; (14)then both MOR and MXOR will set register $X to the byte reversal of register $Y:The kth byte from the left of $X will be set to the kth byte from the right of $Y,for 1 � k � 8. On the other hand if $Z = #00000000000000ff, MOR and MXORwill set all bytes of $X to zero ex
ept for the rightmost byte, whi
h will be
omeeither the OR or the XOR of all eight bytes of $Y. Exer
ises 33{37 illustrate someof the many pra
ti
al appli
ations of these versatile 
ommands.Floating point operators. MMIX in
ludes a full implementation of the famousIEEE/ANSI Standard 754 for 
oating point arithmeti
. Complete details of the
oating point operations appear in Se
tion 4.2 and in the MMIXware do
ument;a rough summary will suÆ
e for our purposes here.Every o
tabyte x represents a 
oating binary number f(x) determined asfollows: The leftmost bit of x is the sign (0 = `+', 1 = `�'); the next 11 bits arethe exponent E; the remaining 52 bits are the fra
tion F. The value representedis then �0:0, if E = F = 0 (zero);�2�1074F, if E = 0 and F 6= 0 (denormal);�2E�1023(1 + F=252), if 0 < E < 2047 (normal);�1, if E = 2047 and F = 0 (in�nite);�NaN(F=252), if E = 2047 and F 6= 0 (Not-a-Number).The \short" 
oating point number f(t) represented by a tetrabyte t is similar,but its exponent part has only 8 bits and its fra
tion has only 23; the normal
ase 0 < E < 255 of a short 
oat represents �2E�127(1 + F=223).� FADD $X,$Y,$Z (
oating add): f($X) f($Y) + f($Z).� FSUB $X,$Y,$Z (
oating subtra
t): f($X) f($Y)� f($Z).� FMUL $X,$Y,$Z (
oating multiply): f($X) f($Y)� f($Z).� FDIV $X,$Y,$Z (
oating divide): f($X) f($Y)=f($Z).

12



1.3.1� DESCRIPTION OF MMIX 13� FREM $X,$Y,$Z (
oating remainder): f($X) f($Y) rem f($Z).� FSQRT $X,$Z or FSQRT $X,Y,$Z (
oating square root): f($X) f($Z)1=2.� FINT $X,$Z or FINT $X,Y,$Z (
oating integer): f($X) int f($Z).� FCMP $X,$Y,$Z (
oating 
ompare): s($X) [f($Y) > f($Z)℄�[f($Y) < f($Z)℄.� FEQL $X,$Y,$Z (
oating equal to): s($X) [f($Y) = f($Z)℄.� FUN $X,$Y,$Z (
oating unordered): s($X) [f($Y) k f($Z)℄.� FCMPE $X,$Y,$Z (
oating 
ompare with respe
t to epsilon):s($X) �f($Y) � f($Z) �f(rE)��� �f($Y) � f($Z) �f(rE)��, see 4.2.2{(21).� FEQLE $X,$Y,$Z (
oating equivalent with respe
t to epsilon):s($X) �f($Y) � f($Z) �f(rE)��, see 4.2.2{(24).� FUNE $X,$Y,$Z (
oating unordered with respe
t to epsilon):s($X) �f($Y) k f($Z) �f(rE)��.� FIX $X,$Z or FIX $X,Y,$Z (
onvert 
oating to �xed): s($X) int f($Z).� FIXU $X,$Z or FIXU $X,Y,$Z (
onvert 
oating to �xed unsigned):u($X) �int f($Z)�mod 264.� FLOT $X,$Z or FLOT $X,Y,$Z (
onvert �xed to 
oating): f($X) s($Z).� FLOTU $X,$Z or FLOTU $X,Y,$Z (
onvert �xed to 
oating unsigned):f($X) u($Z).� SFLOT $X,$Z or SFLOT $X,Y,$Z (
onvert �xed to short 
oat):f($X) f(T) s($Z).� SFLOTU $X,$Z or SFLOTU $X,Y,$Z (
onvert �xed to short 
oat unsigned):f($X) f(T) u($Z).� LDSF $X,$Y,$Z or LDSF $X,A (load short 
oat): f($X) f(M4[A℄).� STSF $X,$Y,$Z or STSF $X,A (store short 
oat): f(M4[A℄) f($X).Assignment to a 
oating point quantity uses the 
urrent rounding mode todetermine the appropriate value when an exa
t value 
annot be assigned. Fourrounding modes are supported: 1 (ROUND_OFF), 2 (ROUND_UP), 3 (ROUND_DOWN),and 4 (ROUND_NEAR). The Y �eld of FSQRT, FINT, FIX, FIXU, FLOT, FLOTU, SFLOT,and SFLOTU 
an be used to spe
ify a rounding mode other than the 
urrent one,if desired. For example, FIX $X,ROUND_UP,$Z sets s($X) �f($Z)�. OperationsSFLOT and SFLOTU �rst round as if storing into an anonymous tetrabyte T, thenthey 
onvert that number to o
tabyte form.The `int' operation rounds to an integer. The operation y rem z is de�nedto be y � nz, where n is the nearest integer to y=z, or the nearest even integerin 
ase of a tie. Spe
ial rules apply when the operands are in�nite or NaN, andspe
ial 
onventions govern the sign of a zero result. The values +0:0 and �0:0have di�erent 
oating point representations, but FEQL 
alls them equal. All su
hte
hni
alities are explained in the MMIXware do
ument, and Se
tion 4.2 explainswhy the te
hni
alities are important.Immediate 
onstants. Programs often need to deal with small 
onstantnumbers. For example, we might want to add or subtra
t 1 from a register,or we might want to shift by 32, et
. In su
h 
ases it's a nuisan
e to load thesmall 
onstant from memory into another register. So MMIX provides a generalme
hanism by whi
h su
h 
onstants 
an be obtained \immediately" from an

13



14 BASIC CONCEPTS 1.3.1�instru
tion itself: Every instru
tion we have dis
ussed so far has a variant inwhi
h $Z is repla
ed by the number Z, unless the instru
tion treats $Z as a
oating point number.For example, `ADD $X,$Y,$Z' has a 
ounterpart `ADD $X,$Y,Z', meanings($X)  s($Y) + Z; `SRU $X,$Y,$Z' has a 
ounterpart `SRU $X,$Y,Z', meaningu($X)  �u($Y)=2Z�; `FLOT $X,$Z' has a 
ounterpart `FLOT $X,Z', meaningf($X) Z. But `FADD $X,$Y,$Z' has no immediate 
ounterpart.The op
ode for `ADD $X,$Y,$Z' is #20 and the op
ode for `ADD $X,$Y,Z'is #21; we use the same symbol ADD in both 
ases for simpli
ity. In general theop
ode for the immediate variant of an operation is one greater than the op
odefor the register variant.Several instru
tions also feature wyde immediate 
onstants, whi
h rangefrom #0000 = 0 to #ffff = 65535. These 
onstants, whi
h appear in the YZbytes, 
an be shifted into the high, medium high, medium low, or low wydepositions of an o
tabyte.� SETH $X,YZ (set high wyde): u($X) YZ� 248.� SETMH $X,YZ (set medium high wyde): u($X) YZ� 232.� SETML $X,YZ (set medium low wyde): u($X) YZ� 216.� SETL $X,YZ (set low wyde): u($X) YZ.� INCH $X,YZ (in
rease by high wyde): u($X) �u($X) + YZ� 248�mod 264.� INCMH $X,YZ (in
rease by medium high wyde):u($X) �u($X) + YZ� 232�mod 264.� INCML $X,YZ (in
rease by medium low wyde):u($X) �u($X) + YZ� 216�mod 264.� INCL $X,YZ (in
rease by low wyde): u($X) �u($X) + YZ�mod 264.� ORH $X,YZ (bitwise or with high wyde): v($X) v($X) _ v(YZ� 48).� ORMH $X,YZ (bitwise or with medium high wyde):v($X) v($X) _ v(YZ� 32).� ORML $X,YZ (bitwise or with medium low wyde):v($X) v($X) _ v(YZ� 16).� ORL $X,YZ (bitwise or with low wyde): v($X) v($X) _ v(YZ).� ANDNH $X,YZ (bitwise and-not high wyde): v($X) v($X) ^ �v(YZ� 48).� ANDNMH $X,YZ (bitwise and-not medium high wyde):v($X) v($X) ^ �v(YZ� 32).� ANDNML $X,YZ (bitwise and-not medium low wyde):v($X) v($X) ^ �v(YZ� 16).� ANDNL $X,YZ (bitwise and-not low wyde): v($X) v($X) ^ �v(YZ).Using at most four of these instru
tions, we 
an get any desired o
tabyte into aregister without loading anything from the memory. For example, the 
ommandsSETH $0,#0123; INCMH $0,#4567; INCML $0,#89ab; INCL $0,#
defput #0123456789ab
def into register $0.The MMIX assembly language allows us to write SET as an abbreviation forSETL, and SET $X,$Y as an abbreviation for the 
ommon operation OR $X,$Y,0.
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1.3.1� DESCRIPTION OF MMIX 15Jumps and bran
hes. Instru
tions are normally exe
uted in their naturalsequen
e. In other words, the 
ommand that is performed after MMIX has obeyedthe tetrabyte in memory lo
ation � is normally the tetrabyte found in memorylo
ation � + 4. (The symbol � denotes the pla
e where we're \at.") But jumpand bran
h instru
tions allow this sequen
e to be interrupted.� JMP RA (jump): � RA.Here RA denotes a three-byte relative address, whi
h 
ould be written moreexpli
itly as �+4�XYZ, namely XYZ tetrabytes following the 
urrent lo
ation �.For example, `JMP �+4*2' is a symboli
 form for the tetrabyte #f0000002; if thisinstru
tion appears in lo
ation #1000, the next instru
tion to be exe
uted willbe the one in lo
ation #1008. We might in fa
t write `JMP #1008'; but then thevalue of XYZ would depend on the lo
ation jumped from.Relative o�sets 
an also be negative, in whi
h 
ase the op
ode in
reasesby 1 and XYZ is the o�set plus 224. For example, `JMP �-4*2' is the tetrabyte#f1fffffe. Op
ode #f0 tells the 
omputer to \jump forward" and op
ode #f1tells it to \jump ba
kward," but we write both as JMP. In fa
t, we usuallywrite simply `JMP Addr' when we want to jump to lo
ation Addr, and the MMIXassembly program �gures out the appropriate op
ode and the appropriate valueof XYZ. Su
h a jump will be possible unless we try to stray more than about 67million bytes from our present lo
ation.� GO $X,$Y,$Z (go): u($X) �+ 4, then � A.The GO instru
tion allows us to jump to an absolute address, anywhere in mem-ory; this address A is 
al
ulated by formula (5), exa
tly as in the load and store
ommands. Before going to the spe
i�ed address, the lo
ation of the instru
tionthat would ordinarily have 
ome next is pla
ed into register $X. Therefore we
ould return to that lo
ation later by saying, for example, `GO $X,$X,0', withZ = 0 as an immediate 
onstant.� BN $X,RA (bran
h if negative): if s($X) < 0, set � RA.� BZ $X,RA (bran
h if zero): if $X = 0, set � RA.� BP $X,RA (bran
h if positive): if s($X) > 0, set � RA.� BOD $X,RA (bran
h if odd): if s($X) mod 2 = 1, set � RA.� BNN $X,RA (bran
h if nonnegative): if s($X) � 0, set � RA.� BNZ $X,RA (bran
h if nonzero): if $X 6= 0, set � RA.� BNP $X,RA (bran
h if nonpositive): if s($X) � 0, set � RA.� BEV $X,RA (bran
h if even): if s($X) mod 2 = 0, set � RA.A bran
h instru
tion is a 
onditional jump that depends on the 
ontents ofregister $X. The range of destination addresses RA is more limited than it waswith JMP, be
ause only two bytes are available to express the relative o�set; butstill we 
an bran
h to any tetrabyte between �� 218 and � + 218 � 4.� PBN $X,RA (probable bran
h if negative): if s($X) < 0, set � RA.� PBZ $X,RA (probable bran
h if zero): if $X = 0, set � RA.� PBP $X,RA (probable bran
h if positive): if s($X) > 0, set � RA.� PBOD $X,RA (probable bran
h if odd): if s($X) mod 2 = 1, set � RA.� PBNN $X,RA (probable bran
h if nonnegative): if s($X) � 0, set � RA.
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16 BASIC CONCEPTS 1.3.1�� PBNZ $X,RA (probable bran
h if nonzero): if $X 6= 0, set � RA.� PBNP $X,RA (probable bran
h if nonpositive): if s($X) � 0, set � RA.� PBEV $X,RA (probable bran
h if even): if s($X) mod 2 = 0, set � RA.High-speed 
omputers usually work fastest if they 
an anti
ipate when a bran
hwill be taken, be
ause foreknowledge helps them look ahead and get ready forfuture instru
tions. Therefore MMIX en
ourages programmers to give hints aboutwhether bran
hing is likely or not. Whenever a bran
h is expe
ted to be takenmore than half of the time, a wise programmer will say PB instead of B.*Subroutine 
alls. MMIX also has several instru
tions that fa
ilitate eÆ
ient
ommuni
ation between subprograms, via a register sta
k. The details are some-what te
hni
al and we will defer them until Se
tion 1.4�; an informal des
riptionwill suÆ
e here. Short programs do not need to use these features.� PUSHJ $X,RA (push registers and jump): push(X) and set rJ  � + 4, thenset � RA.� PUSHGO $X,$Y,$Z (push registers and go): push(X) and set rJ �+ 4, thenset � A.The spe
ial return-jump register rJ is set to the address of the tetrabyte followingthe PUSH 
ommand. The a
tion \push(X)" means, roughly speaking, that lo
alregisters $0 through $X are saved and made temporarily ina

essible. Whatused to be $(X+1) is now $0, what used to be $(X+2) is now $1, et
. Butall registers $k for k � rG remain un
hanged; rG is the spe
ial global thresholdregister, whose value always lies between 32 and 255, in
lusive.Register $k is 
alled global if k � rG. It is 
alled lo
al if k < rL; here rL is thespe
ial lo
al threshold register, whi
h tells how many lo
al registers are 
urrentlya
tive. Otherwise, namely if rL � k < rG, register $k is 
alled marginal, and$k is equal to zero whenever it is used as a sour
e operand in a 
ommand. Ifa marginal register $k is used as a destination operand in a 
ommand, rL isautomati
ally in
reased to k + 1 before the 
ommand is performed, therebymaking $k lo
al.� POP X,YZ (pop registers and return): pop(X), then � rJ + 4 �YZ.Here \pop(X)" means, roughly speaking, that all but X of the 
urrent lo
alregisters be
ome marginal, and then the lo
al registers hidden by the most re
ent\push" that has not yet been \popped" are restored to their former values. Fulldetails appear in Se
tion 1.4�, together with numerous examples.� SAVE $X,0 (save pro
ess state): u($X) 
ontext.� UNSAVE $Z (restore pro
ess state): 
ontext u($Z).The SAVE instru
tion stores all 
urrent registers in memory at the top of theregister sta
k, and puts the address of the topmost stored o
tabyte into u($X).Register $X must be global; that is, X must be � rG. All of the 
urrently lo
aland global registers are saved, together with spe
ial registers like rA, rD, rE,rG, rH, rJ, rM, rR, and several others that we have not yet dis
ussed. TheUNSAVE instru
tion takes the address of su
h a topmost o
tabyte and restoresthe asso
iated 
ontext, essentially undoing a previous SAVE. The value of rL isset to zero by SAVE, but restored by UNSAVE. MMIX has spe
ial registers 
alled
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1.3.1� DESCRIPTION OF MMIX 17the register sta
k o�set (rO) and register sta
k pointer (rS), whi
h 
ontrol thePUSH, POP, SAVE, and UNSAVE operations. (Again, full details 
an be found inSe
tion 1.4�.)*System 
onsiderations. Several op
odes, intended primarily for ultrafastand/or parallel versions of the MMIX ar
hite
ture, are of interest only to ad-van
ed users, but we should at least mention them here. Some of the asso
iatedoperations are similar to the \probable bran
h" 
ommands, in the sense thatthey give hints to the ma
hine about how to plan ahead for maximum eÆ
ien
y.Most programmers do not need to use these instru
tions, ex
ept perhaps SYNCID.� LDUNC $X,$Y,$Z (load o
ta un
a
hed): s($X) s�M8[A℄�.� STUNC $X,$Y,$Z (store o
ta un
a
hed): s�M8[A℄� s($X).These 
ommands perform the same operations as LDO and STO, but they alsoinform the ma
hine that the loaded or stored o
tabyte and its near neighborswill probably not be read or written in the near future.� PRELD X,$Y,$Z (preload data).Says that many of the bytes M[A℄ through M[A+X℄ will probably be loaded orstored in the near future.� PREST X,$Y,$Z (prestore data).Says that all of the bytes M[A℄ through M[A + X℄ will de�nitely be written(stored) before they are next read (loaded).� PREGO X,$Y,$Z (prefet
h to go).Says that many of the bytes M[A℄ through M[A + X℄ will probably be used asinstru
tions in the near future.� SYNCID X,$Y,$Z (syn
hronize instru
tions and data).Says that all of the bytes M[A℄ through M[A +X℄ must be fet
hed again beforebeing interpreted as instru
tions. MMIX is allowed to assume that a program'sinstru
tions do not 
hange after the program has begun, unless the instru
tionshave been prepared by SYNCID. (See exer
ise 57.)� SYNCD X,$Y,$Z (syn
hronize data).Says that all of bytes M[A℄ through M[A + X℄ must be brought up to date inthe physi
al memory, so that other 
omputers and input/output devi
es 
anread them.� SYNC XYZ (syn
hronize).Restri
ts parallel a
tivities so that di�erent pro
essors 
an 
ooperate reliably;see MMIXware for details. XYZ must be 0, 1, 2, or 3.� CSWAP $X,$Y,$Z (
ompare and swap o
tabytes).If u(M8[A℄) = u(rP), where rP is the spe
ial predi
tion register, set u(M8[A℄) u($X) and u($X)  1. Otherwise set u(rP)  u(M8[A℄) and u($X)  0. Thisis an atomi
 (indivisible) operation, useful when independent 
omputers share a
ommon memory.� LDVTS $X,$Y,$Z (load virtual translation status).This instru
tion, des
ribed in MMIXware, is for the operating system only.
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18 BASIC CONCEPTS 1.3.1�*Interrupts. The normal 
ow of instru
tions from one tetrabyte to the next
an be 
hanged not only by jumps and bran
hes but also by less predi
tableevents like over
ow or external signals. Real-world ma
hines must also 
opewith su
h things as se
urity violations and hardware failures. MMIX distinguishestwo kinds of program interruptions: \trips" and \traps." A trip sends 
ontrolto a trip handler, whi
h is part of the user's program; a trap sends 
ontrol to atrap handler, whi
h is part of the operating system.Eight kinds of ex
eptional 
onditions 
an arise when MMIX is doing arith-meti
, namely integer divide 
he
k (D), integer over
ow (V), 
oat-to-�x over-
ow (W), invalid 
oating operation (I), 
oating over
ow (O), 
oating under-
ow (U), 
oating division by zero (Z), and 
oating inexa
t (X). The spe
ialarithmeti
 status register rA holds 
urrent information about all these ex
ep-tions. The eight bits of its rightmost byte are 
alled its event bits, and they arenamed D_BIT (#80), V_BIT (#40), : : : , X_BIT (#01), in order DVWIOUZX.The eight bits just to the left of the event bits in rA are 
alled the enablebits; they appear in the same order DVWIOUZX. When an ex
eptional 
ondi-tion o

urs during some arithmeti
 operation, MMIX looks at the 
orrespondingenable bit before pro
eeding to the next instru
tion. If the enable bit is 0, the
orresponding event bit is set to 1; otherwise the ma
hine invokes a trip handlerby \tripping" to lo
ation #10 for ex
eption D, #20 for ex
eption V, : : : , #80for ex
eption X. Thus the event bits of rA re
ord the ex
eptions that have not
aused trips. (If more than one enabled ex
eption o

urs, the leftmost one takespre
eden
e. For example, simultaneous O and X is handled by O.)The two bits of rA just to the left of the enable bits hold the 
urrent roundingmode, mod 4. The other 46 bits of rA should be zero. A program 
an 
hangethe setting of rA at any time, using the PUT 
ommand dis
ussed below.� TRIP X,Y,Z or TRIP X,YZ or TRIP XYZ (trip).This 
ommand for
es a trip to the handler at lo
ation #00.Whenever a trip o

urs, MMIX uses �ve spe
ial registers to re
ord the 
urrentstate: the bootstrap register rB, the where-interrupted register rW, the exe
utionregister rX, the Y operand register rY, and the Z operand register rZ. First rBis set to $255, then $255 is set to rJ, and rW is set to �+ 4. The left half of rXis set to #80000000, and the right half is set to the instru
tion that tripped. Ifthe interrupted instru
tion was not a store 
ommand, rY is set to $Y and rZ isset to $Z (or to Z in 
ase of an immediate 
onstant); otherwise rY is set to A(the memory address of the store 
ommand) and rZ is set to $X (the quantityto be stored). Finally 
ontrol passes to the handler by setting � to the handleraddress (#00 or #10 or � � � or #80).� TRAP X,Y,Z or TRAP X,YZ or TRAP XYZ (trap).This 
ommand is analogous to TRIP, but it for
es a trap to the operating system.Spe
ial registers rBB, rWW, rXX, rYY, and rZZ take the pla
e of rB, rW, rX,rY, and rZ; the spe
ial trap address register rT supplies the address of the traphandler, whi
h is pla
ed in �. Se
tion 1.3.2� des
ribes several TRAP 
ommandsthat provide simple input/output operations. The normal way to 
on
lude a
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1.3.1� DESCRIPTION OF MMIX 19program is to say `TRAP 0'; this instru
tion is the tetrabyte #00000000, so youmight run into it by mistake.The MMIXware do
ument gives further details about external interrupts,whi
h are governed by the spe
ial interrupt mask register rK and interruptrequest register rQ. Dynami
 traps, whi
h arise when rK ^ rQ 6= 0, are handledat address rTT instead of rT.� RESUME 0 (resume after interrupt).If s(rX) is negative, MMIX simply sets �  rW and takes its next instru
tionfrom there. Otherwise, if the leading byte of rX is zero, MMIX sets �  rW � 4and exe
utes the instru
tion in the lower half of rX as if it had appeared inthat lo
ation. (This feature 
an be used even if no interrupt has o

urred.The inserted instru
tion must not itself be RESUME.) Otherwise MMIX performsspe
ial a
tions des
ribed in the MMIXware do
ument and of interest primarily tothe operating system; see exer
ise 1.4.3�{14.The 
omplete instru
tion set. Table 1 shows the symboli
 names of all 256op
odes, arranged by their numeri
 values in hexade
imal notation. For example,ADD appears in the upper half of the row labeled #2x and in the 
olumn labeled#0 at the top, so ADD is op
ode #20; ORL appears in the lower half of the rowlabeled #Ex and in the 
olumn labeled #B at the bottom, so ORL is op
ode #EB.Table 1 a
tually says `ADD[I℄', not `ADD', be
ause the symbol ADD reallystands for two op
odes. Op
ode #20 arises from ADD $X,$Y,$Z using register $Z,while op
ode #21 arises from ADD $X,$Y,Z using the immediate 
onstant Z.When a distin
tion is ne
essary, we say that op
ode #20 is ADD and op
ode #21is ADDI (\add immediate"); similarly, #F0 is JMP and #F1 is JMPB (\jump ba
k-ward"). This gives every op
ode a unique name. However, the extra I and B aregenerally dropped for 
onvenien
e when we write MMIX programs.We have dis
ussed nearly all of MMIX's op
odes. Two of the stragglers are� GET $X,Z (get from spe
ial register): u($X) u(g[Z℄), where 0 � Z < 32.� PUT X,$Z (put into spe
ial register): u(g[X℄) u($Z), where 0 � X < 32.Ea
h spe
ial register has a 
ode number between 0 and 31. We speak of registersrA, rB, : : : , as aids to human understanding; but register rA is really g[21℄ fromthe ma
hine's point of view, and register rB is really g[0℄, et
. The 
ode numbersappear in Table 2 on page 21.GET 
ommands are unrestri
ted, but 
ertain things 
annot be PUT: No value
an be put into rG that is greater than 255, less than 32, or less than the 
urrentsetting of rL. No value 
an be put into rA that is greater than #3ffff. If aprogram tries to in
rease rL with the PUT 
ommand, rL will stay un
hanged.Moreover, a program 
annot PUT anything into rC, rN, rO, rS, rI, rT, rTT, rK,rQ, rU, or rV; these \extraspe
ial" registers have 
ode numbers in the range 8{18.Most of the spe
ial registers have already been mentioned in 
onne
tion withspe
i�
 instru
tions, but MMIX also has a \
lo
k register" or 
y
le 
ounter, rC,whi
h keeps advan
ing; an interval 
ounter, rI, whi
h keeps de
reasing, andwhi
h requests an interrupt when it rea
hes zero; a serial number register, rN,whi
h gives ea
h MMIX ma
hine a unique number; a usage 
ounter, rU, whi
h

19



20 BASIC CONCEPTS 1.3.1�Table 1THE OPCODES OF MMIX#0 #1 #2 #3 #4 #5 #6 #7TRAP 5� FCMP � FUN � FEQL � FADD 4� FIX 4� FSUB 4� FIXU 4�#0x #0xFLOT[I℄ 4� FLOTU[I℄ 4� SFLOT[I℄ 4� SFLOTU[I℄ 4�FMUL 4� FCMPE 4� FUNE � FEQLE 4� FDIV 40� FSQRT 40� FREM 4� FINT 4�#1x #1xMUL[I℄ 10� MULU[I℄ 10� DIV[I℄ 60� DIVU[I℄ 60�ADD[I℄ � ADDU[I℄ � SUB[I℄ � SUBU[I℄ �#2x #2x2ADDU[I℄ � 4ADDU[I℄ � 8ADDU[I℄ � 16ADDU[I℄ �CMP[I℄ � CMPU[I℄ � NEG[I℄ � NEGU[I℄ �#3x #3xSL[I℄ � SLU[I℄ � SR[I℄ � SRU[I℄ �BN[B℄ �+� BZ[B℄ �+� BP[B℄ �+� BOD[B℄ �+�#4x #4xBNN[B℄ �+� BNZ[B℄ �+� BNP[B℄ �+� BEV[B℄ �+�PBN[B℄ 3��� PBZ[B℄ 3��� PBP[B℄ 3��� PBOD[B℄ 3���#5x #5xPBNN[B℄ 3��� PBNZ[B℄ 3��� PBNP[B℄ 3��� PBEV[B℄ 3���CSN[I℄ � CSZ[I℄ � CSP[I℄ � CSOD[I℄ �#6x #6xCSNN[I℄ � CSNZ[I℄ � CSNP[I℄ � CSEV[I℄ �ZSN[I℄ � ZSZ[I℄ � ZSP[I℄ � ZSOD[I℄ �#7x #7xZSNN[I℄ � ZSNZ[I℄ � ZSNP[I℄ � ZSEV[I℄ �LDB[I℄ �+� LDBU[I℄ �+� LDW[I℄ �+� LDWU[I℄ �+�#8x #8xLDT[I℄ �+� LDTU[I℄ �+� LDO[I℄ �+� LDOU[I℄ �+�LDSF[I℄ �+� LDHT[I℄ �+� CSWAP[I℄ 2�+2� LDUNC[I℄ �+�#9x #9xLDVTS[I℄ � PRELD[I℄ � PREGO[I℄ � GO[I℄ 3�STB[I℄ �+� STBU[I℄ �+� STW[I℄ �+� STWU[I℄ �+�#Ax #AxSTT[I℄ �+� STTU[I℄ �+� STO[I℄ �+� STOU[I℄ �+�STSF[I℄ �+� STHT[I℄ �+� STCO[I℄ �+� STUNC[I℄ �+�#Bx #BxSYNCD[I℄ � PREST[I℄ � SYNCID[I℄ � PUSHGO[I℄ 3�OR[I℄ � ORN[I℄ � NOR[I℄ � XOR[I℄ �#Cx #CxAND[I℄ � ANDN[I℄ � NAND[I℄ � NXOR[I℄ �BDIF[I℄ � WDIF[I℄ � TDIF[I℄ � ODIF[I℄ �#Dx #DxMUX[I℄ � SADD[I℄ � MOR[I℄ � MXOR[I℄ �SETH � SETMH � SETML � SETL � INCH � INCMH � INCML � INCL �#Ex #ExORH � ORMH � ORML � ORL � ANDNH � ANDNMH � ANDNML � ANDNL �JMP[B℄ � PUSHJ[B℄ � GETA[B℄ � PUT[I℄ �#Fx #FxPOP 3� RESUME 5� [UN℄SAVE 20�+� SYNC � SWYM � GET � TRIP 5�#8 #9 #A #B #C #D #E #F� = 2� if the bran
h is taken, � = 0 if the bran
h is not takenin
reases by 1 whenever spe
i�ed op
odes are exe
uted; and a virtual translationregister, rV, whi
h de�nes a mapping from the \virtual" 64-bit addresses used inprograms to the \a
tual" physi
al lo
ations of installed memory. These spe
ialregisters help make MMIX a 
omplete, viable ma
hine that 
ould a
tually bebuilt and run su

essfully; but they are not of importan
e to us in this book.The MMIXware do
ument explains them fully.� GETA $X,RA (get address): u($X) RA.This instru
tion loads a relative address into register $X, using the same 
on-ventions as the relative addresses in bran
h 
ommands. For example, GETA $0,�will set $0 to the address of the instru
tion itself.
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1.3.1� DESCRIPTION OF MMIX 21Table 2SPECIAL REGISTERS OF MMIX 
ode saved? put?rA arithmeti
 status register . . . . . . . . . . . . 21 p prB bootstrap register (trip) . . . . . . . . . . . . . 0 p prC 
y
le 
ounter . . . . . . . . . . . . . . . . . . 8rD dividend register . . . . . . . . . . . . . . . . 1 p prE epsilon register . . . . . . . . . . . . . . . . . 2 p prF failure lo
ation register . . . . . . . . . . . . . 22 prG global threshold register . . . . . . . . . . . . . 19 p prH himult register . . . . . . . . . . . . . . . . . 3 p prI interval 
ounter . . . . . . . . . . . . . . . . . 12rJ return-jump register . . . . . . . . . . . . . . . 4 p prK interrupt mask register . . . . . . . . . . . . . 15rL lo
al threshold register . . . . . . . . . . . . . . 20 p prM multiplex mask register . . . . . . . . . . . . . 5 p prN serial number . . . . . . . . . . . . . . . . . . 9rO register sta
k o�set . . . . . . . . . . . . . . . 10rP predi
tion register . . . . . . . . . . . . . . . . 23 p prQ interrupt request register . . . . . . . . . . . . . 16rR remainder register . . . . . . . . . . . . . . . . 6 p prS register sta
k pointer . . . . . . . . . . . . . . 11rT trap address register . . . . . . . . . . . . . . . 13rU usage 
ounter . . . . . . . . . . . . . . . . . . 17rV virtual translation register . . . . . . . . . . . . 18rW where-interrupted register (trip) . . . . . . . . . 24 p prX exe
ution register (trip) . . . . . . . . . . . . . 25 p prY Y operand (trip) . . . . . . . . . . . . . . . . 26 p prZ Z operand (trip) . . . . . . . . . . . . . . . . 27 p prBB bootstrap register (trap) . . . . . . . . . . . . . 7 prTT dynami
 trap address register . . . . . . . . . . . 14rWW where-interrupted register (trap) . . . . . . . . . 28 prXX exe
ution register (trap) . . . . . . . . . . . . . 29 prYY Y operand (trap) . . . . . . . . . . . . . . . . 30 prZZ Z operand (trap) . . . . . . . . . . . . . . . . 31 p
� SWYM X,Y,Z or SWYM X,YZ or SWYM XYZ (sympathize with your ma
hinery).The last of MMIX's 256 op
odes is, fortunately, the simplest of all. In fa
t, itis often 
alled a no-op, be
ause it performs no operation. It does, however,keep the ma
hine running smoothly, just as real-world swimming helps to keepprogrammers healthy. Bytes X, Y, and Z are ignored.Timing. In later parts of this book we will often want to 
ompare di�erentMMIX programs to see whi
h is faster. Su
h 
omparisons aren't easy to make,in general, be
ause the MMIX ar
hite
ture 
an be implemented in many di�erentways. Although MMIX is a mythi
al ma
hine, its mythi
al hardware exists in
heap, slow versions as well as in 
ostly high-performan
e models. The runningtime of a program depends not only on the 
lo
k rate but also on the number of
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22 BASIC CONCEPTS 1.3.1�fun
tional units that 
an be a
tive simultaneously and the degree to whi
h theyare pipelined; it depends on the te
hniques used to prefet
h instru
tions beforethey are exe
uted; it depends on the size of the random-a

ess memory that isused to give the illusion of 264 virtual bytes; and it depends on the sizes andallo
ation strategies of 
a
hes and other bu�ers, et
., et
.For pra
ti
al purposes, the running time of an MMIX program 
an often beestimated satisfa
torily by assigning a �xed 
ost to ea
h operation, based onthe approximate running time that would be obtained on a high-performan
ema
hine with lots of main memory; so that's what we will do. Ea
h operationwill be assumed to take an integer number of �, where � (pronoun
ed \oops")*is a unit that represents the 
lo
k 
y
le time in a pipelined implementation.Although the value of � de
reases as te
hnology improves, we always keep up withthe latest advan
es be
ause we measure time in units of �, not in nanose
onds.The running time in our estimates will also be assumed to depend on the numberof memory referen
es or mems that a program uses; this is the number of loadand store instru
tions. For example, we will assume that ea
h LDO (load o
ta)instru
tion 
osts �+ �, where � is the average 
ost of a memory referen
e. Thetotal running time of a program might be reported as, say, 35�+1000�, meaning\35 mems plus 1000 oops." The ratio �=� has been in
reasing steadily for manyyears; nobody knows for sure whether this trend will 
ontinue, but experien
ehas shown that � and � deserve to be 
onsidered independently.Table 1, whi
h is repeated also in the endpapers of this book, displays theassumed running time together with ea
h op
ode. Noti
e that most instru
tionstake just 1�, while loads and stores take �+�. A bran
h or probable bran
h takes1� if predi
ted 
orre
tly, 3� if predi
ted in
orre
tly. Floating point operationsusually take 4� ea
h, although FDIV and FSQRT 
ost 40�. Integer multipli
ationtakes 10�; integer division weighs in at 60�.Even though we will often use the assumptions of Table 1 for seat-of-the-pants estimates of running time, we must remember that the a
tual running timemight be quite sensitive to the ordering of instru
tions. For example, integerdivision might 
ost only one 
y
le if we 
an �nd 60 other things to do betweenthe time we issue the 
ommand and the time we need the result. Several LDB(load byte) instru
tions might need to referen
e memory only on
e, if they referto the same o
tabyte. Yet the result of a load 
ommand is usually not readyfor use in the immediately following instru
tion. Experien
e has shown thatsome algorithms work well with 
a
he memory, and others do not; therefore �is not really 
onstant. Even the lo
ation of instru
tions in memory 
an havea signi�
ant e�e
t on performan
e, be
ause some instru
tions 
an be fet
hedtogether with others. Therefore the MMIXware pa
kage in
ludes not only a simplesimulator, whi
h 
al
ulates running times by the rules of Table 1, but also a
omprehensive meta-simulator, whi
h runs MMIX programs under a wide range ofdi�erent te
hnologi
al assumptions. Users of the meta-simulator 
an spe
ify the* The Greek letter upsilon (�) is wider than an itali
 letter vee (v), but the author admitsthat this distin
tion is rather subtle. Readers who prefer to say vee instead of oops are free todo as they wish. The symbol is, however, an upsilon.
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1.3.1� DESCRIPTION OF MMIX 23
hara
teristi
s of the memory bus and the parameters of su
h things as 
a
hes forinstru
tions and data, virtual address translation, pipelining and simultaneousinstru
tion issue, bran
h predi
tion, et
. Given a 
on�guration �le and a program�le, the meta-simulator determines pre
isely how long the spe
i�ed hardwarewould need to run the program. Only the meta-simulator 
an be trusted to givereliable information about a program's a
tual behavior in pra
ti
e; but su
hresults 
an be diÆ
ult to interpret, be
ause in�nitely many 
on�gurations arepossible. That's why we often resort to the mu
h simpler estimates of Table 1.No ben
hmark result should ever be taken at fa
e value.| BRIAN KERNIGHAN and CHRISTOPHER VAN WYK (1998)MMIX versus reality. A person who understands the rudiments of MMIXprogramming has a pretty good idea of what today's general-purpose 
omputers
an do easily; MMIX is very mu
h like all of them. But MMIX has been idealizedin several ways, partly be
ause the author has tried to design a ma
hine thatis somewhat \ahead of its time" so that it won't be
ome obsolete too qui
kly.Therefore a brief 
omparison between MMIX and the 
omputers a
tually beingbuilt at the turn of the millennium is appropriate. The main di�eren
es betweenMMIX and those ma
hines are:� Commer
ial ma
hines do not ignore the low-order bits of memory addresses,as MMIX does when a

essing M8[A℄; they usually insist that A be a multipleof 8. (We will �nd many uses for those pre
ious low-order bits.)� Commer
ial ma
hines are usually de�
ient in their support of integer arith-meti
. For example, they almost never produ
e the true quotient bx=y
 andtrue remainder xmod y when x is negative or y is negative; they often throwaway the upper half of a produ
t. They don't treat left and right shifts asstri
t equivalents of multipli
ation and division by powers of 2. Sometimesthey do not implement division in hardware at all; and when they do handledivision, they usually assume that the upper half of the 128-bit dividend iszero. Su
h restri
tions make high-pre
ision 
al
ulations more diÆ
ult.� Commer
ial ma
hines do not perform FINT and FREM eÆ
iently.� Commer
ial ma
hines do not (yet?) have the powerful MOR and MXOR opera-tions. They usually have a half dozen or so ad ho
 instru
tions that handleonly the most 
ommon spe
ial 
ases of MOR.� Commer
ial ma
hines rarely have more than 64 general-purpose registers. The256 registers of MMIX signi�
antly de
rease program length, be
ause manyvariables and 
onstants of a program 
an live entirely in those registersinstead of in memory. Furthermore, MMIX's register sta
k is more 
exiblethan the 
omparable me
hanisms in existing 
omputers.All of these pluses for MMIX have asso
iated minuses, be
ause 
omputer designalways involves tradeo�s. The primary design goal for MMIX was to keep thema
hine as simple and 
lean and 
onsistent and forward-looking as possible,without sa
ri�
ing speed and realism too greatly.
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24 BASIC CONCEPTS 1.3.1�And now I see with eye sereneThe very pulse of the ma
hine.| WILLIAM WORDSWORTH, She Was a Phantom of Delight (1804)
Summary. MMIX is a programmer-friendly 
omputer that operates on 64-bitquantities 
alled o
tabytes. It has the general 
hara
teristi
s of a so-
alled RISC(\redu
ed instru
tion set 
omputer"); that is, its instru
tions have only a fewdi�erent formats (OP X,Y, Z or OP X,YZ or OP XYZ), and ea
h instru
tioneither transfers data between memory and a register or involves only registers.Table 1 summarizes the 256 op
odes and their default running times; Table 2summarizes the spe
ial registers that are sometimes important.The following exer
ises give a qui
k review of the material in this se
tion.Most of them are quite simple, and the reader should try to do nearly all of them.EXERCISES1. [00 ℄ The binary form of 2009 is (11111011001)2; what is 2009 in hexade
imal?2. [05 ℄ Whi
h of the letters fA; B; C; D; E; F; a; b; 
; d; e; fg are odd when 
onsidered as(a) hexade
imal digits? (b) ASCII 
hara
ters?3. [10 ℄ Four-bit quantities | half-bytes, or hexade
imal digits | are often 
allednybbles. Suggest a good name for two-bit quantities, so that we have a 
omplete binarynomen
lature ranging from bits to o
tabytes.4. [15 ℄ A kilobyte (kB or KB) is 1000 bytes, and a megabyte (MB) is 1000 kB. Whatare the oÆ
ial names and abbreviations for larger numbers of bytes?5. [M13 ℄ If � is any string of 0s and 1s, let s(�) and u(�) be the integers that itrepresents when regarded as a signed or unsigned binary number. Prove that, if x isany integer, we havex = s(�) if and only if x � u(�) (modulo 2n) and �2n�1 � x < 2n�1;where n is the length of �.x 6. [M20 ℄ Prove or disprove the following rule for negating an n-bit number in two's
omplement notation: \Complement all the bits, then add 1." (For example, #0 : : : 01be
omes #f : : : fe, then #f : : : ff; also #f : : : ff be
omes #0 : : : 00, then #0 : : : 01.)7. [M15 ℄ Could the formal de�nitions of LDHT and STHT have been stated ass($X) s(M4[A℄)� 232 and s(M4[A℄) bs($X)=232
;thus treating the numbers as signed rather than unsigned?8. [10 ℄ If registers $Y and $Z represent numbers between 0 and 1 in whi
h the binaryradix point is assumed to be at the left of ea
h register, (7) illustrates the fa
t that MULUforms a produ
t in whi
h the assumed radix point appears at the left of register rH.Suppose, on the other hand, that $Z is an integer, with the radix point assumed at itsright, while $Y is a fra
tion between 0 and 1 as before. Where does the radix point lieafter MULU in su
h a 
ase?9. [M10 ℄ Does the equation s($Y) = s($X) � s($Z) + s(rR) always hold after theinstru
tion DIV $X,$Y,$Z has been performed?
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1.3.1� DESCRIPTION OF MMIX 2510. [M16 ℄ Give an example of DIV in whi
h over
ow o

urs.11. [M16 ℄ True or false: (a) Both MUL $X,$Y,$Z and MULU $X,$Y,$Z produ
e the sameresult in $X. (b) If register rD is zero, both DIV $X,$Y,$Z and DIVU $X,$Y,$Z produ
ethe same result in $X.x 12. [M20 ℄ Although ADDU $X,$Y,$Z never signals over
ow, we might want to know ifa 
arry o

urs at the left when adding $Y to $Z. Show that the 
arry 
an be 
omputedwith two further instru
tions.13. [M21 ℄ Suppose MMIX had no ADD 
ommand, only its unsigned 
ounterpart ADDU.How 
ould a programmer tell whether over
ow o

urred when 
omputing s($Y)+s($Z)?14. [M21 ℄ Suppose MMIX had no SUB 
ommand, only its unsigned 
ounterpart SUBU.How 
ould a programmer tell whether over
ow o

urred when 
omputing s($Y)�s($Z)?15. [M25 ℄ The produ
t of two signed o
tabytes always lies between �2126 and 2126,so it 
an always be expressed as a signed 16-byte quantity. Explain how to 
al
ulatethe upper half of su
h a signed produ
t.16. [M23 ℄ Suppose MMIX had no MUL 
ommand, only its unsigned 
ounterpart MULU.How 
ould a programmer tell whether over
ow o

urred when 
omputing s($Y)�s($Z)?x 17. [M22 ℄ Prove that unsigned integer division by 3 
an always be done by multipli-
ation: If register $Y 
ontains any unsigned integer y, and if register $1 
ontains the
onstant #aaaaaaaaaaaaaaab, then the sequen
eMULU $0,$Y,$1; GET $0,rH; SRU $X,$0,1puts by=3
 into register $X.18. [M23 ℄ Continuing the previous exer
ise, prove or disprove that the instru
tionsMULU $0,$Y,$1; GET $0,rH; SRU $X,$0,2put by=5
 in $X if $1 is an appropriate 
onstant.x 19. [M26 ℄ Continuing exer
ises 17 and 18, prove or disprove the following statement:Unsigned integer division by a 
onstant 
an always be done using \high multipli
ation"followed by a right shift. More pre
isely, if 2e < z < 2e+1 we 
an 
ompute by=z
 by
omputing bay=264+e
, where a = d264+e=ze, for 0 � y < 264.20. [16 ℄ Show that two 
leverly 
hosen MMIX instru
tions will multiply by 25 fasterthan the single instru
tion MUL $X,$Y,25, if we assume that over
ow will not o

ur.21. [15 ℄ Des
ribe the e�e
ts of SL, SLU, SR, and SRU when the unsigned value inregister $Z is 64 or more.x 22. [15 ℄ Mr. B. C. Dull wrote a program in whi
h he wanted to bran
h to lo
ationCase1 if the signed number in register $1 was less than the signed number in register $2.His solution was to write `SUB $0,$1,$2; BN $0,Case1'.What terrible mistake did he make? What should he have written instead?x 23. [10 ℄ Continuing the previous exer
ise, what should Dull have written if his prob-lem had been to bran
h if s($1) was less than or equal to s($2)?24. [M10 ℄ If we represent a subset S of f0; 1; : : : ; 63g by the bit ve
tor([02S ℄; [12S ℄; : : : ; [632S ℄);the bitwise operations ^ and _ 
orrespond respe
tively to set interse
tion (S \ T ) andset union (S [ T ). Whi
h bitwise operation 
orresponds to set di�eren
e (S n T )?
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26 BASIC CONCEPTS 1.3.1�25. [10 ℄ The Hamming distan
e between two bit ve
tors is the number of positionsin whi
h they di�er. Show that two MMIX instru
tions suÆ
e to set register $X equalto the Hamming distan
e between v($Y) and v($Z).26. [10 ℄ What's a good way to 
ompute 64 bit di�eren
es, v($X) v($Y) .� v($Z)?x 27. [20 ℄ Show how to use BDIF to 
ompute the maximum and minimum of eight bytesat a time: b($X) max(b($Y); b($Z)), b($W) min(b($Y); b($Z)).28. [16 ℄ How would you 
al
ulate eight absolute pixel di�eren
es jb($Y) � b($Z)jsimultaneously?29. [21 ℄ The operation of saturating addition on n-bit pixels is de�ned by the formulay _+ z = min(2n � 1; y + z):Show that a sequen
e of three MMIX instru
tions will set b($X) b($Y) _+ b($Z).x 30. [25 ℄ Suppose register $0 
ontains eight ASCII 
hara
ters. Find a sequen
e of threeMMIX instru
tions that 
ounts the number of blank spa
es among those 
hara
ters. (Youmay assume that auxiliary 
onstants have been preloaded into other registers. A blankspa
e is ASCII 
ode #20.)31. [22 ℄ Continuing the previous exer
ise, show how to 
ount the number of 
hara
tersin $0 that have odd parity (an odd number of 1 bits).32. [M20 ℄ True or false: If C = A Æ� B then CT = BT Æ� AT. (See (11).)33. [20 ℄ What is the shortest sequen
e of MMIX instru
tions that will 
y
li
ally shifta register eight bits to the right? For example, #9e3779b97f4a7
16 would be
ome#169e3779b97f4a7
.x 34. [21 ℄ Given eight bytes of ASCII 
hara
ters in $Z, explain how to 
onvert them tothe 
orresponding eight wyde 
hara
ters of Uni
ode, using only two MMIX instru
tionsto pla
e the results in $X and $Y. How would you go the other way (ba
k to ASCII)?x 35. [22 ℄ Show that two 
leverly 
hosen MOR instru
tions will reverse the left-to-rightorder of all 64 bits in a given register $Y.x 36. [20 ℄ Using only two instru
tions, 
reate a mask that has #ff in all byte positionswhere $Y di�ers from $Z, #00 in all byte positions where $Y equals $Z.x 37. [HM30 ℄ (Finite �elds.) Explain how to use MXOR for arithmeti
 in a �eld of 256elements; ea
h element of the �eld should be represented by a suitable o
tabyte.38. [20 ℄ What does the following little program do?SETL $1,0; SR $2,$0,56; ADD $1,$1,$2; SLU $0,$0,8; PBNZ $0,�-4*3.x 39. [20 ℄ Whi
h of the following equivalent sequen
es of 
ode is faster, based on thetiming information of Table 1?a) BN $0,�+4*2; ADDU $1,$2,$3 versus ADDU $4,$2,$3; CSNN $1,$0,$4.b) BN $0,�+4*3; SET $1,$2; JMP �+4*2; SET $1,$3 versusCSNN $1,$0,$2; CSN $1,$0,$3.
) BN $0,�+4*3; ADDU $1,$2,$3; JMP �+4*2; ADDU $1,$4,$5 versusADDU $1,$2,$3; ADDU $6,$4,$5; CSN $1,$0,$6.d, e, f) Same as (a), (b), and (
), but with PBN in pla
e of BN.40. [10 ℄ What happens if you GO to an address that is not a multiple of 4?
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1.3.1� DESCRIPTION OF MMIX 2741. [20 ℄ True or false:a) The instru
tions CSOD $X,$Y,0 and ZSEV $X,$Y,$X have exa
tly the same e�e
t.b) The instru
tions CMPU $X,$Y,0 and ZSNZ $X,$Y,1 have exa
tly the same e�e
t.
) The instru
tions MOR $X,$Y,1 and AND $X,$Y,#ff have exa
tly the same e�e
t.d) The instru
tions MXOR $X,$Y,#80 and SR $X,$Y,56 have exa
tly the same e�e
t.42. [20 ℄ What is the best way to set register $1 to the absolute value of the numberin register $0, if $0 holds (a) a signed integer? (b) a 
oating point number?x 43. [28 ℄ Given a nonzero o
tabyte in $Z, what is the fastest way to 
ount how manyleading and trailing zero bits it has? (For example, #13fd8124f32434a2 has threeleading zeros and one trailing zero.)x 44. [M25 ℄ Suppose you want to emulate 32-bit arithmeti
 with MMIX. Show that it iseasy to add, subtra
t, multiply, and divide signed tetrabytes, with over
ow o

urringwhenever the result does not lie in the interval [�231 : : 231).45. [10 ℄ Think of a way to remember the sequen
e DVWIOUZX.46. [05 ℄ The all-zeros tetrabyte #00000000 halts a program when it o

urs as an MMIXinstru
tion. What does the all-ones tetrabyte #ffffffff do?47. [05 ℄ What are the symboli
 names of op
odes #DF and #55?48. [11 ℄ The text points out that op
odes LDO and LDOU perform exa
tly the sameoperation, with the same eÆ
ien
y, regardless of the operand bytes X, Y, and Z. Whatother pairs of op
odes are equivalent in this sense?x 49. [22 ℄ After the following \number one" program has been exe
uted, what 
hangesto registers and memory have taken pla
e? (For example, what is the �nal settingof $1? of rA? of rB?)NEG $1,1STCO 1,$1,1CMPU $1,$1,1STB $1,$1,$1LDOU $1,$1,$1INCH $1,116ADDU $1,$1,$1MULU $1,$1,$1PUT rA,1STW $1,$1,1SADD $1,$1,1FLOT $1,$1PUT rB,$1XOR $1,$1,1PBOD $1,�-4*1NOR $1,$1,$1SR $1,$1,1SRU $1,$1,1x 50. [14 ℄ What is the exe
ution time of the program in the pre
eding exer
ise?51. [14 ℄ Convert the \number one" program of exer
ise 49 to a sequen
e of tetrabytesin hexade
imal notation.52. [22 ℄ For ea
h MMIX op
ode, 
onsider whether there is a way to set the X, Y, and Zbytes so that the result of the instru
tion is pre
isely equivalent to SWYM (ex
ept that
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28 BASIC CONCEPTS 1.3.1�the exe
ution time may be longer). Assume that nothing is known about the 
ontentsof any registers or any memory lo
ations. Whenever it is possible to produ
e a no-op,state how it 
an be done. Examples: INCL is a no-op if X = 255 and Y = Z = 0. BZ isa no-op if Y = 0 and Z = 1. MULU 
an never be a no-op, sin
e it a�e
ts rH.53. [15 ℄ List all MMIX op
odes that 
an possibly 
hange the value of rH.54. [20 ℄ List all MMIX op
odes that 
an possibly 
hange the value of rA.55. [21 ℄ List all MMIX op
odes that 
an possibly 
hange the value of rL.x 56. [28 ℄ Lo
ation #2000000000000000 
ontains a signed integer number, x. Writetwo programs that 
ompute x13 in register $0. One program should use the minimumnumber of MMIXmemory lo
ations; the other should use the minimum possible exe
utiontime. Assume that x13 �ts into a single o
tabyte, and that all ne
essary 
onstants havebeen preloaded into global registers.x 57. [20 ℄ When a program 
hanges one or more of its own instru
tions in memory, it issaid to have self-modifying 
ode. MMIX insists that a SYNCID 
ommand be issued beforesu
h modi�ed 
ommands are exe
uted. Explain why self-modifying 
ode is usuallyundesirable in a modern 
omputer.58. [50 ℄ Write a book about operating systems, whi
h in
ludes the 
omplete designof an NNIX kernel for the MMIX ar
hite
ture.
Them fellers is a-mommixin' everything.| V. RANDOLPH and G. P. WILSON, Down in the Holler (1953)1.3.2�. The MMIX Assembly LanguageA symboli
 language is used to make MMIX programs 
onsiderably easier to readand to write, and to save the programmer from worrying about tedious 
leri
aldetails that often lead to unne
essary errors. This language, MMIXAL (\MMIXAssembly Language"), is an extension of the notation used for instru
tions inthe previous se
tion. Its main features are the optional use of alphabeti
 namesto stand for numbers, and a label �eld to asso
iate names with memory lo
ationsand register numbers.MMIXAL 
an readily be 
omprehended if we 
onsider �rst a simple example.The following 
ode is part of a larger program; it is a subroutine to �nd themaximum of n elements X[1℄, : : : , X[n℄, a

ording to Algorithm 1.2.10M.Program M (Find the maximum). Initially n is in register $0, and the addressof X[0℄ is in register x0, a global register de�ned elsewhere.Assembled 
ode Line no. LABEL OP EXPR Times Remarks01 j IS $0 j02 m IS $1 m03 kk IS $2 8k04 xk IS $3 X[k℄05 t IS $255 Temp storage06 LOC #100#100: #39 02 00 03 07 Maximum SL kk,$0,3 1 M1. Initialize. k  n, j  n.#104: #8
 01 fe 02 08 LDO m,x0,kk 1 m X[n℄.#108: #f0 00 00 06 09 JMP De
rK 1 To M2 with k  n� 1.

28



1.3.2� THE MMIX ASSEMBLY LANGUAGE 29#10
: #8
 03 fe 02 10 Loop LDO xk,x0,kk n� 1 M3. Compare.#110: #30 ff 03 01 11 CMP t,xk,m n� 1 t [X[k℄ > m℄� [X[k ℄ < m℄.#114: #5
 ff 00 03 12 PBNP t,De
rK n� 1 To M5 if X[k℄ � m.#118: #
1 01 03 00 13 ChangeM SET m,xk A M4. Change m. m X[k℄.#11
: #3d 00 02 03 14 SR j,kk,3 A j  k.#120: #25 02 02 08 15 De
rK SUB kk,kk,8 n M5. De
rease k. k  k � 1.#124: #55 00 ff fa 16 PBP kk,Loop n M2. All tested? To M3 if k>0.#128: #f8 02 00 00 17 POP 2,0 1 Return to main program.This program is an example of several things simultaneously:a) The 
olumns headed \LABEL", \OP", and \EXPR" are of prin
ipal interest;they 
ontain a program in the MMIXAL symboli
 ma
hine language, and we shallexplain the details of this program below.b) The 
olumn headed \Assembled 
ode" shows the a
tual numeri
 ma
hinelanguage that 
orresponds to the MMIXAL program. MMIXAL has been designedso that any MMIXAL program 
an easily be translated into numeri
 ma
hinelanguage; the translation is usually 
arried out by another 
omputer program
alled an assembly program or assembler. Thus, programmers 
an do all of theirma
hine language programming in MMIXAL, never bothering to determine theequivalent numeri
 
odes by hand. Virtually all MMIX programs in this book arewritten in MMIXAL.
) The 
olumn headed \Line no." is not an essential part of the MMIXAL pro-gram; it is merely in
luded with MMIXAL examples in this book so that we 
anreadily refer to parts of the program.d) The 
olumn headed \Remarks" gives explanatory information about theprogram, and it is 
ross-referen
ed to the steps of Algorithm 1.2.10M. The readershould 
ompare that algorithm (page 96) with the program above. Noti
e that alittle \programmer's li
ense" was used during the trans
ription into MMIX 
ode;for example, step M2 has been put last.e) The 
olumn headed \Times" will be instru
tive in many of the MMIX pro-grams we will be studying in this book; it represents the pro�le, the numberof times the instru
tion on that line will be exe
uted during the 
ourse of theprogram. Thus, line 10 will be performed n�1 times, et
. From this informationwe 
an determine the length of time required to perform the subroutine; it isn� + (5n + 4A + 5)�, where A is the quantity that was analyzed 
arefully inSe
tion 1.2.10. (The PBNP instru
tion 
osts (n� 1 + 2A)�.)Now let's dis
uss the MMIXAL part of Program M. Line 01, `j IS $0', saysthat symbol j stands for register $0; lines 02{05 are similar. The e�e
t of lines01 and 03 
an be seen on line 14, where the numeri
 equivalent of the instru
tion`SR j,kk,3' appears as #3d 00 02 03, that is, `SR $0,$2,3'.Line 06 says that the lo
ations for su

eeding lines should be 
hosen sequen-tially, beginning with #100. Therefore the symbol Maximum that appears in thelabel �eld of line 07 be
omes equivalent to the number #100; the symbol Loopin line 10 is three tetrabytes further along, so it is equivalent to #10
.On lines 07 through 17 the OP �eld 
ontains the symboli
 names of MMIXinstru
tions: SL, LDO, et
. But the symboli
 names IS and LOC, found in
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30 BASIC CONCEPTS 1.3.2�the OP 
olumn of lines 01{06, are somewhat di�erent; IS and LOC are 
alledpseudo-operations, be
ause they are operators of MMIXAL but not operators ofMMIX. Pseudo-operations provide spe
ial information about a symboli
 program,without being instru
tions of the program itself. Thus the line `j IS $0' onlytalks about Program M; it does not signify that any variable is to be set equal tothe 
ontents of register $0 when the program is run. Noti
e that no instru
tionsare assembled for lines 01{06.Line 07 is a \shift left" instru
tion that sets k  n by setting kk 8n. Thisprogram works with the value of 8k, not k, be
ause 8k is needed for o
tabyteaddresses in lines 08 and 10.Line 09 jumps the 
ontrol to line 15. The assembler, knowing that this JMPinstru
tion is in lo
ation #108 and that De
rK is equivalent to #120, 
omputesthe relative o�set (#120�#108)=4 = 6. Similar relative addresses are 
omputedfor the bran
h 
ommands in lines 12 and 16.The rest of the symboli
 
ode is self-explanatory. As mentioned earlier,Program M is intended to be part of a larger program; elsewhere the sequen
eSET $2,100PUSHJ $1,MaximumSTO $1,Maxwould, for example, jump to Program M with n set to 100. Program M wouldthen �nd the largest of the elements X[1℄, : : : , X[100℄ and would return to theinstru
tion `STO $1,Max' with the maximum value in $1 and with its position, j,in $2. (See exer
ise 3.)Let's look now at a program that is 
omplete, not merely a subroutine. If thefollowing program is named Hello, it will print out the famous message `Hello,world' and stop.Program H (Hail the world).Assembled 
ode Line LABEL OP EXPR Remarks01 argv IS $1 The argument ve
tor02 LOC #100#100: #8f ff 01 00 03 Main LDOU $255,argv,0 $255 address of program name.#104: #00 00 07 01 04 TRAP 0,Fputs,StdOut Print that name.#108: #f4 ff 00 03 05 GETA $255,String $255 address of ", world".#10
: #00 00 07 01 06 TRAP 0,Fputs,StdOut Print that string.#110: #00 00 00 00 07 TRAP 0,Halt,0 Stop.#114: #2
 20 77 6f 08 String BYTE ", world",#a,0 String of 
hara
ters#118: #72 6
 64 0a 09 with newline#11
: #00 10 and terminatorReaders who have a

ess to an MMIX assembler and simulator should take amoment to prepare a short 
omputer �le 
ontaining the LABEL OP EXPR portionsof Program H before reading further. Name the �le `Hello.mms' and assembleit by saying, for example, `mmixal Hello.mms'. (The assembler will produ
e a�le 
alled `Hello.mmo'; the suÆx .mms means \MMIX symboli
" and .mmo means\MMIX obje
t.") Now invoke the simulator by saying `mmix Hello'.
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1.3.2� THE MMIX ASSEMBLY LANGUAGE 31The MMIX simulator implements some of the simplest features of a hypo-theti
al operating system 
alled NNIX. If an obje
t �le 
alled, say, foo.mmo ispresent, NNIX will laun
h it when a 
ommand line su
h asfoo bar xyzzy (1)is given. You 
an obtain the 
orresponding behavior by invoking the simulatorwith the 
ommand line `mmix hoptionsi foo bar xyzzy', where hoptionsi is asequen
e of zero or more spe
ial requests. For example, option -P will print apro�le of the program after it has halted.An MMIX program always begins at symboli
 lo
ation Main. At that timeregister $0 
ontains the number of 
ommand line arguments, namely the numberof words on the 
ommand line. Register $1 
ontains the memory address of the�rst su
h argument, whi
h is always the name of the program. The operatingsystem has pla
ed all of the arguments into 
onse
utive o
tabytes, starting atthe address in $1 and ending with an o
tabyte of all zeros. Ea
h argument isrepresented as a string, meaning that it is the address in memory of a sequen
eof zero or more nonzero bytes followed by a byte that is zero; the nonzero bytesare the 
hara
ters of the string.For example, the 
ommand line (1) would 
ause $0 to be initially 3, and wemight have $1=#4000000000000008 Pointer to the �rst stringM8[#4000000000000008℄ =#4000000000000028 First argument, the string "foo"M8[#4000000000000010℄ =#4000000000000030 Se
ond argument, the string "bar"M8[#4000000000000018℄ =#4000000000000038 Third argument, the string "xyzzy"M8[#4000000000000020℄ =#0000000000000000 Null pointer after the last argumentM8[#4000000000000028℄ =#666f6f0000000000 'f','o','o',0,0,0,0,0M8[#4000000000000030℄ =#6261720000000000 'b','a','r',0,0,0,0,0M8[#4000000000000038℄ =#78797a7a79000000 'x','y','z','z','y',0,0,0NNIX sets up ea
h argument string so that its 
hara
ters begin at an o
tabyteboundary; strings in general 
an, however, start anywhere within an o
tabyte.The �rst instru
tion of Program H, in line 03, puts the string pointer M8[$1℄into register $255; this string is the program name `Hello'. Line 04 is a spe
ialTRAP instru
tion, whi
h asks the operating system to put string $255 into thestandard output �le. Similarly, lines 05 and 06 ask NNIX to 
ontribute `, world'and a newline 
hara
ter to the standard output. The symbol Fputs is prede�nedto equal 7, and the symbol StdOut is prede�ned to equal 1. Line 07, `TRAP0,Halt,0', is the normal way to terminate a program. We will dis
uss all su
hspe
ial TRAP 
ommands at the end of this se
tion.The 
hara
ters of the string output by lines 05 and 06 are generated bythe BYTE 
ommand in line 08. BYTE is a pseudo-operation of MMIXAL, not anoperation of MMIX; but BYTE is di�erent from pseudo-ops like IS and LOC, be
auseit does assemble data into memory. In general, BYTE assembles a sequen
e ofexpressions into one-byte 
onstants. The 
onstru
tion ", world" in line 08 isMMIXAL's shorthand for the list',',' ','w','o','r','l','d'
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32 BASIC CONCEPTS 1.3.2�of seven one-
hara
ter 
onstants. The 
onstant #a on line 08 is the ASCII newline
hara
ter, whi
h 
auses a new line to begin when it appears in a �le being printed.The �nal `,0' on line 08 terminates the string. Thus line 08 is a list of nineexpressions, and it leads to the nine bytes shown at the left of lines 08{10.Our third example introdu
es a few more features of the assembly language.The obje
t is to 
ompute and print a table of the �rst 500 prime numbers, with10 
olumns of 50 numbers ea
h. The table should appear as follows, when thestandard output of our program is listed as a text �le:First Five Hundred Primes0002 0233 0547 0877 1229 1597 1993 2371 2749 31870003 0239 0557 0881 1231 1601 1997 2377 2753 31910005 0241 0563 0883 1237 1607 1999 2381 2767 3203... ...0229 0541 0863 1223 1583 1987 2357 2741 3181 3571We will use the following method.Algorithm P (Print table of 500 primes). This algorithm has two distin
tparts: Steps P1{P8 prepare an internal table of 500 primes, and steps P9{P11print the answer in the form shown above.P1. [Start table.℄ Set PRIME[1℄  2, n  3, j  1. (In this program, n runsthrough the odd numbers that are 
andidates for primes; j keeps tra
k ofhow many primes have been found so far.)P2. [n is prime.℄ Set j  j + 1, PRIME[j℄ n.P3. [500 found?℄ If j = 500, go to step P9.P4. [Advan
e n.℄ Set n n+ 2.P5. [k  2.℄ Set k  2. (PRIME[k℄ will run through n's possible primedivisors.)P6. [PRIME[k℄nn?℄ Divide n by PRIME[k℄; let q be the quotient and r theremainder. If r = 0 (hen
e n is not prime), go to P4.P7. [PRIME[k℄ large?℄ If q � PRIME[k℄, go to P2. (In su
h a 
ase, n mustbe prime; the proof of this fa
t is interesting and a little unusual| seeexer
ise 11.)P8. [Advan
e k.℄ In
rease k by 1, and go to P6.P9. [Print title.℄ Now we are ready to print the table. Output the title lineand set m 1.P10. [Print line.℄ Output a line that 
ontains PRIME[m℄, PRIME[50 +m℄, : : : ,PRIME[450 +m℄ in the proper format.P11. [500 printed?℄ In
rease m by 1. If m � 50, return to P10; otherwise thealgorithm terminates.Program P (Print table of 500 primes). This program has deliberately beenwritten in a slightly 
lumsy fashion in order to illustrate most of the features ofMMIXAL in a single program.
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1.3.2� THE MMIX ASSEMBLY LANGUAGE 33
P1. Start table
P2. n is prime
P3. 500 found? P4. Advan
e n P5. k 2

P6. PRIME[k℄nn?P7. PRIME[k℄ large?
P8. Advan
e k

P9. Print title P10. Print line P11. 500 printed?Yes
Yes

No NoYes
YesNoNo

Fig. 14. Algorithm P.01 % Example program ... Table of primes02 L IS 500 The number of primes to �nd03 t IS $255 Temporary storage04 n GREG 0 Prime 
andidate05 q GREG 0 Quotient06 r GREG 0 Remainder07 jj GREG 0 Index for PRIME[j℄08 kk GREG 0 Index for PRIME[k℄09 pk GREG 0 Value of PRIME[k℄10 mm IS kk Index for output lines11 LOC Data_Segment12 PRIME1 WYDE 2 PRIME[1℄ = 213 LOC PRIME1+2*L14 ptop GREG � Address of PRIME[501℄15 j0 GREG PRIME1+2-� Initial value of jj16 BUF OCTA 0 Pla
e to form de
imal string1718 LOC #10019 Main SET n,3 P1. Start table. n 3.20 SET jj,j0 j  1.21 2H STWU n,ptop,jj P2. n is prime. PRIME[j+1℄ n.22 INCL jj,2 j  j + 1.23 3H BZ jj,2F P3. 500 found?24 4H INCL n,2 P4. Advan
e n.25 5H SET kk,j0 P5. k  2.26 6H LDWU pk,ptop,kk P6. PRIME[k℄nn?27 DIV q,n,pk q  bn=PRIME[k℄
.28 GET r,rR r  nmod PRIME[k℄.29 BZ r,4B To P4 if r = 0.30 7H CMP t,q,pk P7. PRIME[k℄ large?31 BNP t,2B To P2 if q � PRIME[k℄.32 8H INCL kk,2 P8. Advan
e k. k  k + 1.33 JMP 6B To P6.
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34 BASIC CONCEPTS 1.3.2�34 GREG � Base address35 Title BYTE "First Five Hundred Primes"36 NewLn BYTE #a,0 Newline and string terminator37 Blanks BYTE " ",0 String of three blanks38 2H LDA t,Title P9. Print title.39 TRAP 0,Fputs,StdOut40 NEG mm,2 Initialize m.41 3H ADD mm,mm,j0 P10. Print line.42 LDA t,Blanks Output " ".43 TRAP 0,Fputs,StdOut44 2H LDWU pk,ptop,mm pk prime to be printed.45 0H GREG #2030303030000000 " 0000",0,0,046 STOU 0B,BUF Prepare bu�er for de
imal 
onversion.47 LDA t,BUF+4 t position of units digit.48 1H DIV pk,pk,10 pk bpk=10
.49 GET r,rR r  next digit.50 INCL r,'0' r  ASCII digit r.51 STBU r,t,0 Store r in the bu�er.52 SUB t,t,1 Move one byte to the left.53 PBNZ pk,1B Repeat on remaining digits.54 LDA t,BUF Output " " and four digits.55 TRAP 0,Fputs,StdOut56 INCL mm,2*L/10 Advan
e by 50 wydes.57 PBN mm,2B58 LDA t,NewLn Output a newline.59 TRAP 0,Fputs,StdOut60 CMP t,mm,2*(L/10-1) P11. 500 printed?61 PBNZ t,3B To P10 if not done.62 TRAP 0,Halt,0The following points of interest should be noted about this program:1. Line 01 begins with a per
ent sign and line 17 is blank. Su
h \
omment"lines are merely explanatory; they have no e�e
t on the assembled program.Ea
h non-
omment line has three �elds 
alled LABEL, OP, and EXPR, sep-arated by spa
es. The EXPR �eld 
ontains one or more symboli
 expressionsseparated by 
ommas. Comments may follow the EXPR �eld.2. As in ProgramM, the pseudo-operation IS sets the equivalent of a symbol.For example, in line 02 the equivalent of L is set to 500, whi
h is the number ofprimes to be 
omputed. Noti
e that in line 03, the equivalent of t is set to $255,a register number, while L's equivalent was 500, a pure number. Some symbolshave register number equivalents, ranging from $0 to $255; others have pureequivalents, whi
h are o
tabytes. We will generally use symboli
 names thatbegin with a lower
ase letter to denote registers, and names that begin with anupper
ase letter to denote pure values, although MMIXAL does not enfor
e this
onvention.3. The pseudo-op GREG on line 04 allo
ates a global register. Register $255is always global; the �rst GREG 
auses $254 to be global, and the next GREG does

34



1.3.2� THE MMIX ASSEMBLY LANGUAGE 35the same for $253, et
. Lines 04{09 therefore allo
ate six global registers, andthey 
ause the symbols n, q, r, jj, kk, pk to be respe
tively equivalent to $254,$253, $252, $251, $250, $249. Line 10 makes mm equivalent to $250.If the EXPR �eld of a GREG de�nition is zero, as it is on lines 04{09, the globalregister is assumed to have a dynami
ally varying value when the program is run.But if a nonzero expression is given, as on lines 14, 15, 34, and 45, the globalregister is assumed to be 
onstant throughout a program's exe
ution. MMIXALuses su
h global registers as base addresses when subsequent instru
tions referto memory. For example, 
onsider the instru
tion `LDA t,BUF+4' in line 47.MMIXAL is able to dis
over that global register ptop holds the address of BUF;therefore `LDA t,BUF+4' 
an be assembled as `LDA t,ptop,4'. Similarly, theLDA instru
tions on lines 38, 42, and 58 make use of the nameless base addressintrodu
ed by the instru
tion `GREG �' on line 34. (Re
all from Se
tion 1.3.1�that � denotes the 
urrent lo
ation.)4. A good assembly language should mimi
 the way a programmer thinksabout ma
hine programs. One example of this philosophy is the automati
allo
ation of global registers and base addresses. Another example is the idea oflo
al symbols su
h as the symbol 2H, whi
h appears in the label �eld of lines 21,38, and 44.Lo
al symbols are spe
ial symbols whose equivalents 
an be rede�ned asmany times as desired. A global symbol like PRIME1 has but one signi�
an
ethroughout a program, and if it were to appear in the label �eld of more thanone line an error would be indi
ated by the assembler. But lo
al symbols havea di�erent nature; we write, for example, 2H (\2 here") in the LABEL �eld, and2F (\2 forward") or 2B (\2 ba
kward") in the EXPR �eld of an MMIXAL line:2B means the 
losest previous label 2H;2F means the 
losest following label 2H.Thus the 2F in line 23 refers to line 38; the 2B in line 31 refers ba
k to line 21;and the 2B in line 57 refers to line 44. The symbols 2F and 2B never refer totheir own line. For example, the MMIXAL instru
tions2H IS $102H BZ 2B,2F2H IS 2B-4are virtually equivalent to the single instru
tionBZ $10,�-4 :The symbols 2F and 2B should never be used in the LABEL �eld; the symbol2H should never be used in the EXPR �eld. If 2B o

urs before any appearan
eof 2H, it denotes zero. There are ten lo
al symbols, whi
h 
an be obtained byrepla
ing `2' in these examples by any digit from 0 to 9.The idea of lo
al symbols was introdu
ed by M. E. Conway in 1958, in
onne
tion with an assembly program for the UNIVAC I. Lo
al symbols free usfrom the obligation to 
hoose a symboli
 name when we merely want to refer to
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36 BASIC CONCEPTS 1.3.2�an instru
tion a few lines away. There often is no appropriate name for nearbylo
ations, so programmers have tended to introdu
e meaningless symbols likeX1, X2, X3, et
., with the potential danger of dupli
ation.5. The referen
e to Data_Segment on line 11 introdu
es another new idea. Inmost embodiments of MMIX, the 264-byte virtual address spa
e is broken into twoparts, 
alled user spa
e (addresses #0000000000000000 : : #7fffffffffffffff)and kernel spa
e (addresses #8000000000000000 : : #ffffffffffffffff). The\negative" addresses of kernel spa
e are reserved for the operating system.User spa
e is further subdivided into four segments of 261 bytes ea
h. First
omes the text segment ; the user's program generally resides here. Then 
omesthe data segment, beginning at virtual address #2000000000000000 ; this is forvariables whose memory lo
ations are allo
ated on
e and for all by the assembler,and for other variables allo
ated by the user without the help of the systemlibrary. Next is the pool segment, beginning at #4000000000000000 ; 
ommandline arguments and other dynami
ally allo
ated data go here. Finally the sta
ksegment, whi
h starts at #6000000000000000, is used by the MMIX hardware tomaintain the register sta
k governed by PUSH, POP, SAVE, and UNSAVE. Threesymbols, Data_Segment = #2000000000000000;Pool_Segment = #4000000000000000;Sta
k_Segment = #6000000000000000;are prede�ned for 
onvenien
e in MMIXAL. Nothing should be assembled intothe pool segment or the sta
k segment, although a program may refer to datafound there. Referen
es to addresses near the beginning of a segment mightbe more eÆ
ient than referen
es to addresses that 
ome near the end; for ex-ample, MMIX might not be able to a

ess the last byte of the text segment,M[#1fffffffffffffff ℄, as fast as it 
an read the �rst byte of the data segment.Our programs for MMIX will always 
onsider the text segment to be read-only : Everything in memory lo
ations less than #2000000000000000 will remain
onstant on
e a program has been assembled and loaded. Therefore Program Pputs the prime table and the output bu�er into the data segment.6. The text and data segments are entirely zero at the beginning of aprogram, ex
ept for instru
tions and data that have been loaded in a

ordan
ewith the MMIXAL spe
i�
ation of the program. If two or more bytes of data aredestined for the same 
ell of memory, the loader will �ll that 
ell with theirbitwise ex
lusive-or.7. The symboli
 expression `PRIME1+2*L' on line 13 indi
ates that MMIXALhas the ability to do arithmeti
 on o
tabytes. See also the more elaborateexample `2*(L/10-1)' on line 60.8. As a �nal note about Program P, we 
an observe that its instru
tionshave been organized so that registers are 
ounted towards zero, and tested againstzero, whenever possible. For example, register jj holds a quantity that is relatedto the positive variable j of Algorithm P, but jj is normally negative; this 
hange
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1.3.2� THE MMIX ASSEMBLY LANGUAGE 37makes it easy for the ma
hine to de
ide when j has rea
hed 500 (line 23). Lines40{61 are parti
ularly noteworthy in this regard, although perhaps a bit tri
ky.The binary-to-de
imal 
onversion routine in lines 45{55, based on division by 10,is simple but not the fastest possible. More eÆ
ient methods are dis
ussed inSe
tion 4.4.It may be of interest to note a few of the statisti
s observed when Program Pwas a
tually run. The division instru
tion in line 27 was exe
uted 9538 times.The total time to perform steps P1{P8 (lines 19{33) was 10036�+641543�; stepsP9{P11 
ost an additional 2804�+124559�, not 
ounting the time taken by theoperating system to handle TRAP requests.Language summary. Now that we have seen three examples of what 
anbe done in MMIXAL, it is time to dis
uss the rules more 
arefully, observing inparti
ular the things that 
annot be done. The following 
omparatively few rulesde�ne the language.1. A symbol is a string of letters and/or digits, beginning with a letter. Theunders
ore 
hara
ter `_' is regarded as a letter, for purposes of this de�nition,and so are all Uni
ode 
hara
ters whose 
ode value ex
eeds 126. Examples:PRIME1, Data_Segment, Main, __, pât�e.The spe
ial 
onstru
tions dH, dF, and dB, where d is a single digit, are ef-fe
tively repla
ed by unique symbols a

ording to the \lo
al symbol" 
onventionexplained above.2. A 
onstant is eithera) a de
imal 
onstant, 
onsisting of one or more de
imal digits f0; 1; 2; 3; 4;5; 6; 7; 8; 9g, representing an unsigned o
tabyte in radix 10 notation; orb) a hexade
imal 
onstant, 
onsisting of a hash mark # followed by one ormore hexade
imal digits f0; 1; 2; 3; 4; 5; 6; 7; 8; 9; a; b; 
; d; e; f; A; B; C; D; E; Fg,representing an unsigned o
tabyte in radix 16 notation; or
) a 
hara
ter 
onstant, 
onsisting of a quote 
hara
ter ' followed by any
hara
ter other than newline, followed by another quote '; this representsthe ASCII or Uni
ode value of the quoted 
hara
ter.Examples: 65, #41, 'A', 39, #27, ''', 31639, #7B97, ' '.A string 
onstant is a double-quote 
hara
ter " followed by one or more
hara
ters other than newline or double-quote, followed by another double-quote ". This 
onstru
tion is equivalent to a sequen
e of 
hara
ter 
onstantsfor the individual 
hara
ters, separated by 
ommas.3. Ea
h appearan
e of a symbol in an MMIXAL program is said to be eithera \de�ned symbol" or a \future referen
e." A de�ned symbol is a symbol thathas appeared in the LABEL �eld of a pre
eding line of this MMIXAL program. Afuture referen
e is a symbol that has not yet been de�ned in this way.A few symbols, like rR and ROUND_NEAR and V_BIT and W_Handler andFputs, are prede�ned be
ause they refer to 
onstants asso
iated with the MMIX
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38 BASIC CONCEPTS 1.3.2�hardware or with its rudimentary operating system. Su
h symbols 
an be re-de�ned, be
ause MMIXAL does not assume that every programmer knows all theirnames. But no symbol should appear as a label more than on
e.Every de�ned symbol has an equivalent value, whi
h is either pure (anunsigned o
tabyte) or a register number ($0 or $1 or : : : or $255).4. A primary is eithera) a symbol; orb) a 
onstant; or
) the 
hara
ter �, denoting the 
urrent lo
ation; ord) an expression en
losed in parentheses; ore) a unary operator followed by a primary.The unary operators are + (aÆrmation, whi
h does nothing), - (negation,whi
h subtra
ts from zero), ~ (
omplementation, whi
h 
hanges all 64 bits), and$ (registerization, whi
h 
onverts a pure value to a register number).5. A term is a sequen
e of one or more primaries separated by strong binaryoperators; an expression is a sequen
e of one or more terms separated by weakbinary operators. The strong binary operators are * (multipli
ation), / (divi-sion), // (fra
tional division), % (remainder), << (left shift), >> (right shift), and& (bitwise and). The weak binary operators are + (addition), - (subtra
tion),| (bitwise or), and ^ (bitwise ex
lusive-or). These operations a
t on unsignedo
tabytes; x==y denotes b264x=y
 if x < y, and it is unde�ned if x � y. Binaryoperators of the same strength are performed from left to right; thus a/b/
 is(a/b)/
 and a-b+
 is (a-b)+
.Example: #ab<<32+k&~(k-1) is an expression, the sum of terms #ab<<32and k&~(k-1). The latter term is the bitwise and of primaries k and ~(k-1).The latter primary is the 
omplement of (k-1), a parenthesized expression thatis the di�eren
e of two terms k and 1. The term 1 is also a primary, and also a
onstant, in fa
t it is a de
imal 
onstant. If symbol k is equivalent to #
def00,say, the entire expression #ab<<32+k&~(k-1) is equivalent to #ab00000100.Binary operations are allowed only on pure numbers, ex
ept in 
ases like$1+2 = $3 and $3�$1 = 2. Future referen
es 
annot be 
ombined with anythingelse; an expression like 2F+1 is always illegal, be
ause 2F never 
orresponds to ade�ned symbol.6. An instru
tion 
onsists of three �elds:a) the LABEL �eld, whi
h is either blank or a symbol;b) the OP �eld, whi
h is either an MMIX op
ode or an MMIXAL pseudo-op;
) the EXPR �eld, whi
h is a list of one or more expressions separated by
ommas. The EXPR �eld 
an also be blank, in whi
h 
ase it is equivalent tothe single expression 0.7. Assembly of an instru
tion takes pla
e in three steps:
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1.3.2� THE MMIX ASSEMBLY LANGUAGE 39a) The 
urrent lo
ation � is aligned, if ne
essary, by in
reasing it to the nextmultiple of 8, if OP is OCTA;4, if OP is TETRA or an MMIX op
ode;2, if OP is WYDE.b) The symbol in LABEL, if present, is de�ned to be �, unless OP = IS orOP = GREG.
) If OP is a pseudo-operation, see rule 8. Otherwise OP is an MMIX instru
tion;the OP and EXPR �elds de�ne a tetrabyte as explained in Se
tion 1.3.1�, and� advan
es by 4. Some MMIX op
odes have three operands in the EXPR �eld,others have two, and others have only one.If OP is ADD, say, MMIXAL will expe
t three operands, and will 
he
k that the�rst and se
ond operands are register numbers. If the third operand is pure,MMIXAL will 
hange the op
ode from #20 (\add") to #21 (\add immediate"),and will 
he
k that the immediate value is less than 256.If OP is SETH, say, MMIXAL will expe
t two operands. The �rst operand shouldbe a register number; the se
ond should be a pure value less than 65536.An OP like BNZ takes two operands: a register and a pure number. The purenumber should be expressible as a relative address; in other words, its valueshould be expressible as �+ 4k where �65536 � k < 65536.Any OP that refers to memory, like LDB or GO, has a two-operand form $X,Aas well as the three-operand forms $X,$Y,$Z or $X,$Y,Z. The two-operandoption 
an be used when the memory address A is expressible as the sum $Y+Zof a base address and a one-byte value; see rule 8(b).8. MMIXAL in
ludes the following pseudo-operations.a) OP = IS: The EXPR should be a single expression; the symbol in LABEL, ifpresent, is made equivalent to the value of this expression.b) OP = GREG: The EXPR should be a single expression with a pure equivalent, x.The symbol in LABEL, if present, is made equivalent to the largest previouslyunallo
ated global register number, and this global register will 
ontain xwhen the program begins. If x 6= 0, the value of x is 
onsidered to be a baseaddress, and the program should not 
hange that global register.
) OP = LOC: The EXPR should be a single expression with a pure equivalent, x.The value of � is set to x. For example, the instru
tion `T LOC �+1000'de�nes symbol T to be the address of the �rst of a sequen
e of 1000 bytes,and advan
es � to the byte following that sequen
e.d) OP = BYTE, WYDE, TETRA, or OCTA: The EXPR �eld should be a list of pureexpressions that ea
h �t in 1, 2, 4, or 8 bytes, respe
tively.9. MMIXAL restri
ts future referen
es so that the assembly pro
ess 
an workqui
kly in one pass over the program. A future referen
e is permitted onlya) in a relative address: as the operand of JMP, or as the se
ond operand of abran
h, probable bran
h, PUSHJ, or GETA; orb) in an expression assembled by OCTA.
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40 BASIC CONCEPTS 1.3.2�% Example program ... Table of primesL IS 500 The number of primes to findt IS $255 Temporary storagen GREG ;; Prime 
andidateq GREG /* Quotient */r GREG // Remainderjj GREG 0 Index for PRIME[j℄...PBN mm,2BLDA t,NewLn; TRAP 0,Fputs,StdOutCMP t,mm,2*(L/10-1) ; PBNZ t,3B; TRAP 0,Halt,0Fig. 15. Program P as a 
omputer �le: The assembler tolerates many formats.MMIXAL also has a few additional features relevant to system programmingthat do not 
on
ern us here. Complete details of the full language appear in theMMIXware do
ument, together with the 
omplete logi
 of a working assembler.A free format 
an be used when presenting an MMIXAL program to theassembler (see Fig. 15). The LABEL �eld starts at the beginning of a line and
ontinues up to the �rst blank spa
e. The next nonblank 
hara
ter begins the OP�eld, whi
h 
ontinues to the next blank, et
. The whole line is a 
omment if the�rst nonblank 
hara
ter is not a letter or digit; otherwise 
omments start afterthe EXPR �eld. Noti
e that the GREG de�nitions for n, q, and r in Fig. 15 have ablank EXPR �eld (whi
h is equivalent to the single expression `0'); therefore the
omments on those lines need to be introdu
ed by some sort of spe
ial delimiter.But no su
h delimiter is ne
essary on the GREG line for jj, be
ause an expli
itEXPR of 0 appears there.The �nal lines of Fig. 15 illustrate the fa
t that two or more instru
tions
an be pla
ed on a single line of input to the assembler, if they are separatedby semi
olons. If an instru
tion following a semi
olon has a nonblank label, thelabel must immediately follow the `;'.A 
onsistent format would obviously be better than the hodgepodge ofdi�erent styles shown in Fig. 15, be
ause 
omputer �les are easier to read whenthey aren't so 
haoti
. But the assembler itself is very forgiving; it doesn't mindo

asional sloppiness.Primitive input and output. Let us 
on
lude this se
tion by dis
ussingthe spe
ial TRAP operations supported by the MMIX simulator. These operationsprovide basi
 input and output fun
tions on whi
h fa
ilities at a mu
h higherlevel 
ould be built. A two-instru
tion sequen
e of the formSET $255,hargi; TRAP 0,hfun
tioni,hhandlei (2)is usually used to invoke su
h a fun
tion, where hargi points to a parameter andhhandlei identi�es the relevant �le. For example, Program H usesGETA $255,String; TRAP 0,Fputs,StdOutto put a string into the standard output �le, and Program P is similar.
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1.3.2� THE MMIX ASSEMBLY LANGUAGE 41After the TRAP has been servi
ed by the operating system, register $255will 
ontain a return value. In ea
h 
ase this value will be negative if and onlyif an error o

urred. Programs H and P do not 
he
k for �le errors, be
ausethey assume that the 
orre
tness or in
orre
tness of the standard output willspeak for itself; but error dete
tion and error re
overy are usually important inwell-written programs.� Fopen(handle ;name ;mode ). Ea
h of the ten primitive input/output trapsapplies to a handle, whi
h is a one-byte integer. Fopen asso
iates handle withan external �le whose name is the string name , and prepares to do input and/oroutput on that �le. The third parameter, mode , must be one of the valuesTextRead, TextWrite, BinaryRead, BinaryWrite, or BinaryReadWrite, all ofwhi
h are prede�ned in MMIXAL. In the three ...Write modes, any previous �le
ontents are dis
arded. The value returned is 0 if the handle was su

essfullyopened, otherwise �1.The 
alling sequen
e for Fopen isLDA $255,Arg; TRAP 0,Fopen,hhandlei (3)where Arg is a two-o
tabyte sequen
eArg OCTA hnamei,hmodei (4)that has been pla
ed elsewhere in memory. For example, to 
all the fun
tionFopen(5; "foo"; BinaryWrite) in an MMIXAL program, we 
ould putArg OCTA 1F,BinaryWrite1H BYTE "foo",0into, say, the data segment, and then give the instru
tionsLDA $255,Arg; TRAP 0,Fopen,5 :This would open handle 5 for writing a new �le of binary output,* to be named"foo".Three handles are already open at the beginning of ea
h program: Thestandard input �le StdIn (handle 0) has mode TextRead; the standard output�le StdOut (handle 1) has mode TextWrite; the standard error �le StdErr(handle 2) also has mode TextWrite.� F
lose(handle ). If handle has been opened, F
lose 
auses it to be 
losed,hen
e no longer asso
iated with any �le. Again the result is 0 if su

essful, or�1 if the �le was already 
losed or un
losable. The 
alling sequen
e is simplyTRAP 0,F
lose,hhandlei (5)be
ause there is no need to put anything in $255.* Di�erent 
omputer systems have di�erent notions of what 
onstitutes a text �le and what
onstitutes a binary �le. Ea
h MMIX simulator adopts the 
onventions of the operating systemon whi
h it resides.
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42 BASIC CONCEPTS 1.3.2�� Fread(handle ; bu�er ; size ). The �le handle should have been opened withmode TextRead, BinaryRead, or BinaryReadWrite. The next size bytes areread from the �le into MMIX's memory starting at address bu�er . The valuen� size is returned, where n is the number of bytes su

essfully read and stored,or �1� size if an error o

urred. The 
alling sequen
e isLDA $255,Arg; TRAP 0,Fread,hhandlei (6)with two o
tabytes for the other argumentsArg OCTA hbu�eri,hsizei (7)as in (3) and (4).� Fgets(handle ; bu�er ; size ). The �le handle should have been opened withmode TextRead, BinaryRead, or BinaryReadWrite. One-byte 
hara
ters areread into MMIX's memory starting at address bu�er , until either size�1 
hara
tershave been read and stored or a newline 
hara
ter has been read and stored; thenext byte in memory is then set to zero. If an error or end of �le o

urs beforereading is 
omplete, the memory 
ontents are unde�ned and the value �1 isreturned; otherwise the number of 
hara
ters su

essfully read and stored isreturned. The 
alling sequen
e is the same as (6) and (7), ex
ept of 
ourse thatFgets repla
es Fread in (6).� Fgetws(handle ; bu�er ; size ). This 
ommand is the same as Fgets, ex
eptthat it applies to wyde 
hara
ters instead of one-byte 
hara
ters. Up to size � 1wyde 
hara
ters are read; a wyde newline is #000a.� Fwrite(handle ; bu�er ; size ). The �le handle should have been opened withone of the modes TextWrite, BinaryWrite, or BinaryReadWrite. The nextsize bytes are written from MMIX's memory starting at address bu�er . The valuen � size is returned, where n is the number of bytes su

essfully written. The
alling sequen
e is analogous to (6) and (7).� Fputs(handle ; string ). The �le handle should have been opened with modeTextWrite, BinaryWrite, or BinaryReadWrite. One-byte 
hara
ters are writ-ten from MMIX's memory to the �le, starting at address string , up to but notin
luding the �rst byte equal to zero. The number of bytes written is returned,or �1 on error. The 
alling sequen
e isSET $255,hstringi; TRAP 0,Fputs,hhandlei. (8)� Fputws(handle ; string ). This 
ommand is the same as Fputs, ex
ept thatit applies to wyde 
hara
ters instead of one-byte 
hara
ters.� Fseek(handle ; o�set ). The �le handle should have been opened with modeBinaryRead, BinaryWrite, or BinaryReadWrite. This operation 
auses thenext input or output operation to begin at o�set bytes from the beginning ofthe �le, if o�set � 0, or at�o�set�1 bytes before the end of the �le, if o�set < 0.(For example, o�set = 0 \rewinds" the �le to its very beginning; o�set = �1
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1.3.2� THE MMIX ASSEMBLY LANGUAGE 43moves forward all the way to the end.) The result is 0 if su

essful, or �1 if thestated positioning 
ould not be done. The 
alling sequen
e isSET $255,ho�seti; TRAP 0,Fseek,hhandlei. (9)An Fseek 
ommand must be given when swit
hing from input to output or fromoutput to input in BinaryReadWrite mode.� Ftell(handle ). The given �le handle should have been opened with modeBinaryRead, BinaryWrite, or BinaryReadWrite. This operation returns the
urrent �le position, measured in bytes from the beginning, or �1 if an error haso

urred. The 
alling sequen
e is simplyTRAP 0,Ftell,hhandlei : (10)Complete details about all ten of these input/output fun
tions appear in theMMIXware do
ument, together with a referen
e implementation. The symbolsFopen = 1;F
lose = 2;Fread = 3;Fgets = 4;Fgetws = 5;
Fwrite = 6;Fputs = 7;Fputws = 8;Fseek = 9;Ftell = 10;

TextRead = 0;TextWrite = 1;BinaryRead = 2;BinaryWrite = 3;BinaryReadWrite = 4 (11)
are prede�ned in MMIXAL; also Halt = 0.EXERCISES|First set1. [05 ℄ (a) What is the meaning of `4B' in line 29 of Program P? (b) Would theprogram still work if the label of line 24 were 
hanged to `2H' and the EXPR �eld ofline 29 were 
hanged to `r,2B'?2. [10 ℄ Explain what happens if an MMIXAL program 
ontains several instan
es of theline 9H IS 9B+1and no other o

urren
es of 9H.x 3. [23 ℄ What is the e�e
t of the following program?LOC Data_SegmentX0 IS �N IS 100x0 GREG X0h Insert Program M here iMain GETA t,9F; TRAP 0,Fread,StdInSET $0,N<<31H SR $2,$0,3; PUSHJ $1,MaximumLDO $3,x0,$0SL $2,$2,3STO $1,x0,$0; STO $3,x0,$2SUB $0,$0,1<<3; PBNZ $0,1BGETA t,9F; TRAP 0,Fwrite,StdOutTRAP 0,Halt,09H OCTA X0+1<<3,N<<3
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44 BASIC CONCEPTS 1.3.2�4. [10 ℄ What is the value of the 
onstant #112233445566778899?5. [11 ℄ What do you get from `BYTE 3+"pills"+6'?x 6. [15 ℄ True or false: The single instru
tion TETRA hexpr1i,hexpr2i always has thesame e�e
t as the pair of instru
tions TETRA hexpr1i; TETRA hexpr2i.7. [05 ℄ John H. Qui
k (a student) was sho
ked, sho
ked to �nd that the instru
tionGETA $0,�+1 gave the same result as GETA $0,�. Explain why he should not have beensurprised.x 8. [15 ℄ What's a good way to align the 
urrent lo
ation � so that it is a multipleof 16, in
reasing it by 0 : : 15 as ne
essary?9. [10 ℄ What 
hanges to Program P will make it print a table of 600 primes?x 10. [25 ℄ Assemble Program P by hand. (It won't take as long as you think.) Whatare the a
tual numeri
al 
ontents of memory, 
orresponding to that symboli
 program?11. [HM20 ℄ (a) Show that every nonprime n > 1 has a divisor d with 1 < d � pn.(b) Use this fa
t to show that n is prime if it passes the test in step P7 of Algorithm P.12. [15 ℄ The GREG instru
tion on line 34 of Program P de�nes a base address that isused for the string 
onstants Title, NewLn, and Blank on lines 38, 42, and 58. Suggesta way to avoid using this extra global register, without making the program run slower.13. [20 ℄ Uni
ode 
hara
ters make it possible to print the �rst 500 primes astÛ¿×Ä
 Ên·�Ä
 unÛË �Ì� ¾×
3187 2749 2371 1993 1597 1229 0877 0547 0233 00023191 2753 2377 1997 1601 1231 0881 0557 0239 00033203 2767 2381 1999 1607 1237 0883 0563 0241 0005... ...3571 3181 2741 2357 1987 1583 1223 0863 0541 0229with \authenti
" Arabi
 numerals. One simply uses wyde 
hara
ters instead of bytes,translating the English title and then substituting Arabi
-Indi
 digits #0660 {#0669for the ASCII digits #30 {#39. (Arabi
 s
ript is written from right to left, but numbersstill appear with their least signi�
ant digits at the right. The bidire
tional presentationrules of Uni
ode automati
ally take 
are of the ne
essary reversals when the output isformatted.) What 
hanges to Program P will a

omplish this?x 14. [21 ℄ Change Program P so that it uses 
oating point arithmeti
 for the divisibilitytest in step P6. (The FREM instru
tion always gives an exa
t result.) Use pn insteadof q in step P7. Do these 
hanges in
rease or de
rease the running time?x 15. [22 ℄ What does the following program do? (Do not run it on a 
omputer, �gureit out by hand!)* Mystery Programa GREG '*'b GREG ' '
 GREG Data_SegmentLOC #100Main NEG $1,1,75SET $2,02H ADD $3,$1,753H STB b,
,$2ADD $2,$2,1
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1.3.2� THE MMIX ASSEMBLY LANGUAGE 45SUB $3,$3,1PBP $3,3BSTB a,
,$2INCL $2,1INCL $1,1PBN $1,2BSET $255,
; TRAP 0,Fputs,StdOutTRAP 0,Halt,016. [46 ℄ MMIXAL was designed with simpli
ity and eÆ
ien
y in mind, so that people 
aneasily prepare ma
hine language programs for MMIX when those programs are relativelyshort. Longer programs are usually written in a higher-level language like C or Java,ignoring details at the ma
hine level. But sometimes there is a need to write large-s
aleprograms spe
i�
ally for a parti
ular ma
hine, and to have pre
ise 
ontrol over ea
hinstru
tion. In su
h 
ases we ought to have a ma
hine-oriented language with a mu
hri
her stru
ture than the line-for-line approa
h of a traditional assembler.Design and implement a language 
alled PL/MMIX, whi
h is analogous to NiklausWirth's PL/360 language [JACM 15 (1968), 37{74℄. Your language should also in
or-porate the ideas of literate programming [D. E. Knuth, Literate Programming (1992)℄.EXERCISES|Se
ond setThe next exer
ises are short programming problems, representing typi
al 
omputerappli
ations and 
overing a wide range of te
hniques. Every reader is en
ouraged to
hoose a few of these problems in order to get some experien
e using MMIX, as wellas to pra
ti
e basi
 programming skills. If desired, these exer
ises may be worked
on
urrently as the rest of Chapter 1 is being read. The following list indi
ates thetypes of programming te
hniques that are involved:The use of swit
hing tables for multiway de
isions: exer
ise 17.Computation with two-dimensional arrays: exer
ises 18, 28, and 35.Text and string manipulation: exer
ises 24, 25, and 35.Integer and s
aled de
imal arithmeti
: exer
ises 21, 27, 30, and 32.Elementary 
oating point arithmeti
: exer
ises 27 and 32.The use of subroutines: exer
ises 23, 24, 32, 33, 34, and 35.List pro
essing: exer
ise 29.Real-time 
ontrol: exer
ise 34.Typographi
 display: exer
ise 35.Loop and pipeline optimization: exer
ises 23 and 26.Whenever an exer
ise in this book says \write an MMIX program" or \write anMMIX subroutine," you need only write symboli
 MMIXAL 
ode for what is asked. This
ode will not be 
omplete in itself; it will merely be a fragment of a (hypotheti
al)
omplete program. No input or output need be done in a 
ode fragment, if the datais to be supplied externally; one need write only LABEL, OP, and EXPR �elds of MMIXALinstru
tions, together with appropriate remarks. The numeri
 ma
hine language, linenumber, and \Times" 
olumns (see Program M) are not required unless spe
i�
allyrequested, nor will there be a Main label.On the other hand, if an exer
ise says \write a 
omplete MMIX program," it impliesthat an exe
utable program should be written in MMIXAL, in
luding in parti
ular theMain label. Su
h programs should preferably be tested with the help of an MMIXassembler and simulator.
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46 BASIC CONCEPTS 1.3.2�x 17. [25 ℄ Register $0 
ontains the address of a tetrabyte that purportedly is a valid,unprivileged MMIX instru
tion. (This means that $0 � 0 and that the X, Y, and Z bytesof M4[$0℄ obey all restri
tions imposed by the OP byte, a

ording to the rules of Se
tion1.3.1�. For example, a valid instru
tion with op
ode FIX will have Y � ROUND_NEAR;a valid instru
tion with op
ode PUT will have Y = 0 and either X < 8 or 18 < X < 32.The op
ode LDVTS is always privileged, for use by the operating system only. But mostop
odes de�ne instru
tions that are valid and unprivileged for all X, Y, and Z.) Writean MMIX subroutine that 
he
ks the given tetrabyte for validity in this sense; try tomake your program as eÆ
ient as possible.Note: Inexperien
ed programmers tend to ta
kle a problem like this by writinga long series of tests on the OP byte, su
h as \SR op,tetra,24; CMP t,op,#18;BN t,1F; CMP t,op,#98; BN t,2F; : : : ". This is not good pra
ti
e! The best wayto make multiway de
isions is to prepare an auxiliary table 
ontaining informationthat en
apsulates the desired logi
. For example, a table of 256 o
tabytes, one forea
h op
ode, 
ould be a

essed by saying \SR t,tetra,21; LDO t,Table,t", followedperhaps by a GO instru
tion if many di�erent kinds of a
tions need to be done. Atabular approa
h often makes a program dramati
ally faster and more 
exible.x 18. [31 ℄ Assume that a 9� 8 matrix of signed one-byte elements0BBBB�
a11 a12 a13 : : : a18a21 a22 a23 : : : a28... ...a91 a92 a93 : : : a98

1CCCCA
has been stored so that aij is in lo
ation A + 8i + j for some 
onstant A. The matrixtherefore appears as follows in MMIX's memory:0BBBB�

M[A+ 9℄ M[A+ 10℄ M[A+ 11℄ : : : M[A+ 16℄M[A+ 17℄ M[A+ 18℄ M[A+ 19℄ : : : M[A+ 24℄... ...M[A+ 73℄ M[A+ 74℄ M[A+ 75℄ : : : M[A+ 80℄
1CCCCA :

An m� n matrix is said to have a \saddle point" if some position is the smallestvalue in its row and the largest value in its 
olumn. In symbols, aij is a saddle point ifaij = min1�k�n aik = max1�k�m akj :Write an MMIX program that 
omputes the lo
ation of a saddle point (if there is at leastone) or zero (if there is no saddle point), and puts this value in register $0.19. [M29 ℄ What is the probability that the matrix in the pre
eding exer
ise has asaddle point, assuming that the 72 elements are distin
t and assuming that all 72!permutations are equally likely? What is the 
orresponding probability if we assumeinstead that the elements of the matrix are zeros and ones, and that all 272 su
hmatri
es are equally likely?20. [HM42 ℄ Two solutions are given for exer
ise 18 (see page 102), and a third issuggested; it is not 
lear whi
h of them is better. Analyze the algorithms, using ea
hof the assumptions of exer
ise 19, and de
ide whi
h is the better method.
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1.3.2� THE MMIX ASSEMBLY LANGUAGE 4721. [25 ℄ The as
ending sequen
e of all redu
ed fra
tions between 0 and 1 that havedenominators � n is 
alled the \Farey series of order n." For example, the Farey seriesof order 7 is01 ; 17 ; 16 ; 15 ; 14 ; 27 ; 13 ; 25 ; 37 ; 12 ; 47 ; 35 ; 23 ; 57 ; 34 ; 45 ; 56 ; 67 ; 11 :If we denote this series by x0=y0, x1=y1, x2=y2, : : : , exer
ise 22 proves thatx0 = 0; y0 = 1; x1 = 1; y1 = n;xk+2 = b(yk + n)=yk+1
xk+1 � xk;yk+2 = b(yk + n)=yk+1
yk+1 � yk:Write an MMIX subroutine that 
omputes the Farey series of order n, by storing thevalues of xk and yk in tetrabytes X+4k and Y+4k, respe
tively. (The total number ofterms in the series is approximately 3n2=�2; thus we may assume that n < 232.)22. [M30 ℄ (a) Show that the numbers xk and yk de�ned by the re
urren
e in thepre
eding exer
ise satisfy the relation xk+1yk�xkyk+1 = 1. (b) Show that the fra
tionsxk=yk are indeed the Farey series of order n, using the fa
t proved in (a).23. [25 ℄ Write an MMIX subroutine that sets n 
onse
utive bytes of memory to zero,given a starting address in $0 and an integer n � 0 in $1. Try to make your subroutineblazingly fast, when n is large; use an MMIX pipeline simulator to obtain realisti
running-time statisti
s.x 24. [30 ℄ Write an MMIX subroutine that 
opies a string, starting at the address in $0, tobytes of memory starting at the address in $1. Strings are terminated by null 
hara
ters(that is, bytes equal to zero). Assume that there will be no overlap in memory betweenthe string and its 
opy. Your routine should minimize the number of memory referen
esby loading and storing eight bytes at a time when possible, so that long strings are
opied eÆ
iently. Compare your program to the trivial byte-at-a-time 
odeSUBU $1,$1,$0;1H LDBU $2,$0,0; STBU $2,$0,$1; INCL $0,1; PBNZ $2,1Bwhi
h takes (2n+ 2)�+ (4n+ 7)� to 
opy a string of length n.25. [26 ℄ A 
ryptanalyst wants to 
ount how often ea
h 
hara
ter o

urs in a longstring of 
iphertext. Write an MMIX program that 
omputes 255 frequen
y 
ounts, onefor ea
h nonnull 
hara
ter; the �rst null byte ends the given string. Try for a solutionthat is eÆ
ient in terms of the \mems and oops" 
riteria of Table 1 in Se
tion 1.3.1�.x 26. [32 ℄ Improve the solution to the previous exer
ise by optimizing its performan
ewith respe
t to realisti
 
on�gurations of the MMIX pipeline simulator.27. [26 ℄ (Fibona

i approximations.) Equation 1.2.8{(15) states that the formulaFn = round(�n=p5) holds for all n � 0, where `round' denotes rounding to the nearestinteger. (a) Write a 
omplete MMIX program to test how well this formula behaveswith respe
t to 
oating point arithmeti
: Compute straightforward approximations to�n=p5 for n = 0, 1, 2, : : : , and �nd the smallest n for whi
h the approximation does notround to Fn. (b) Exer
ise 1.2.8{28 proves that Fn = round(�Fn�1) for all n � 3. Findthe smallest n � 3 for whi
h this equation fails when we 
ompute �Fn�1 approximatelyby �xed point multipli
ation of unsigned o
tabytes. (See Eq. 1.3.1�{(7).)28. [26 ℄ A magi
 square of order n is an arrangement of the numbers 1 through n2 ina square array in su
h a way that the sum of ea
h row and 
olumn is n(n2 +1)=2, andso is the sum of the two main diagonals. Figure 16 shows a magi
 square of order 7.
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48 BASIC CONCEPTS 1.3.2�
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Fig. 16. A magi
 square. Fig. 17. Josephus's problem, n = 8, m = 4.The rule for generating it is easily seen: Start with 1 just below the middle square,then go down and to the right diagonally until rea
hing a �lled square; if you run o�the edge, \wrap around" by imagining an entire plane tiled with squares. When yourea
h a nonempty position, drop down two spa
es from the most-re
ently-�lled squareand 
ontinue. This method works whenever n is odd.Using memory allo
ated in a fashion like that of exer
ise 18, write a 
ompleteMMIX program to generate a 19� 19 magi
 square by the method above, and to formatthe result in the standard output �le. [This algorithm is due to Ibn al-Haytham, whowas born in Basra about 965 and died in Cairo about 1040. Many other magi
 square
onstru
tions make good programming exer
ises; see W. W. Rouse Ball, Mathemati
alRe
reations and Essays, revised by H. S. M. Coxeter (New York: Ma
millan, 1939),Chapter 7.℄29. [30 ℄ (The Josephus problem.) There are n men arranged in a 
ir
le. Beginningat a parti
ular position, we 
ount around the 
ir
le and brutally exe
ute every mthman; the 
ir
le 
loses as men die. For example, the exe
ution order when n = 8 andm = 4 is 54613872, as shown in Fig. 17: The �rst man is �fth to go, the se
ond manis fourth, et
. Write a 
omplete MMIX program that prints out the order of exe
utionwhen n = 24, m = 11. Try to design a 
lever algorithm that works at high speedwhen m and n are large (it may save your life). Referen
e: W. Ahrens, Mathematis
heUnterhaltungen und Spiele 2 (Leipzig: Teubner, 1918), Chapter 15.30. [31 ℄ We showed in Se
tion 1.2.7 that the sum 1 + 12 + 13 + � � � be
omes in�nitelylarge. But if it is 
al
ulated with �nite a

ura
y by a 
omputer, the sum a
tuallyexists, in some sense, be
ause the terms eventually get so small that they 
ontributenothing to the sum if added one by one. For example, suppose we 
al
ulate the sumby rounding to one de
imal pla
e; then we have 1 + 0:5 + 0:3 + 0:2 + 0:2 + 0:2 + 0:1 +0:1 + 0:1 + 0:1 + 0:1 + 0:1 + 0:1 + 0:1 + 0:1 + 0:1 + 0:1 + 0:1 + 0:1 + 0:0 + � � � = 3:7.More pre
isely, let rn(x) be the number x rounded to n de
imal pla
es, roundingto an even digit in 
ase of ties. For the purposes of this problem we 
an use the formularn(x) = d10nx� 12e=10n. Then we wish to �ndSn = rn(1) + rn( 12 )+ rn( 13 )+ � � � ;we know that S1 = 3:7, and the problem is to write a 
omplete MMIX program that
al
ulates and prints Sn for 1 � n � 10.
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1.3.2� THE MMIX ASSEMBLY LANGUAGE 49Note: There is a mu
h faster way to do this than the simple pro
edure of addingrn(1=m), one number at a time, until rn(1=m) be
omes zero. For example, we haver5(1=m) = 0:00001 for all values of m from 66667 to 199999; it's wise to avoid
al
ulating 1=m all 133333 times! An algorithm along the following lines is better.H1. Start with m1 = 1, S  1, k  1.H2. Cal
ulate r  rn(1=(mk + 1)), and stop if r = 0.H3. Find mk+1, the largest m for whi
h rn(1=m) = r.H4. Set S  S + (mk+1 �mk)r, k  k + 1, and return to H2.31. [HM30 ℄ Using the notation of the pre
eding exer
ise, prove or disprove the formulalimn!1(Sn+1 � Sn) = ln 10:x 32. [31 ℄ The following algorithm, due to the Neapolitan astronomer Aloysius Liliusand the German Jesuit mathemati
ian Christopher Clavius in the late 16th 
entury, isused by most Western 
hur
hes to determine the date of Easter Sunday for any yearafter 1582.Algorithm E (Date of Easter). Let Y be the year for whi
h Easter date is desired.E1. [Golden number.℄ Set G  (Y mod 19) + 1. (G is the so-
alled \goldennumber" of the year in the 19-year Metoni
 
y
le.)E2. [Century.℄ Set C  bY=100
 + 1. (When Y is not a multiple of 100, C is the
entury number; for example, 1984 is in the twentieth 
entury.)E3. [Corre
tions.℄ Set X  b3C=4
 � 12, Z  b(8C + 5)=25
 � 5. (Here X is thenumber of years, su
h as 1900, in whi
h leap year was dropped in order tokeep in step with the sun; Z is a spe
ial 
orre
tion designed to syn
hronizeEaster with the moon's orbit.)E4. [Find Sunday.℄ Set D  b5Y=4
�X�10. (Mar
h ((�D) mod 7) will a
tuallybe a Sunday.)E5. [Epa
t.℄ Set E  (11G + 20 + Z � X) mod 30. If E = 25 and the goldennumber G is greater than 11, or if E = 24, in
rease E by 1. (This number Eis the epa
t, whi
h spe
i�es when a full moon o

urs.)E6. [Find full moon.℄ Set N  44�E. If N < 21 then set N  N + 30. (Easteris supposedly the �rst Sunday following the �rst full moon that o

urs on orafter Mar
h 21. A
tually perturbations in the moon's orbit do not make thisstri
tly true, but we are 
on
erned here with the \
alendar moon" rather thanthe a
tual moon. The Nth of Mar
h is a 
alendar full moon.)E7. [Advan
e to Sunday.℄ Set N  N + 7� ((D +N) mod 7).E8. [Get month.℄ If N > 31, the date is (N � 31) APRIL; otherwise the date isN MARCH.Write a subroutine to 
al
ulate and print Easter date given the year, assumingthat the year is less than 100000. The output should have the form \dd MONTH, yyyyy"where dd is the day and yyyyy is the year. Write a 
omplete MMIX program that usesthis subroutine to prepare a table of the dates of Easter from 1950 through 2000.33. [M30 ℄ Some 
omputers|not MMIX!|give a negative remainder when a negativenumber is divided by a positive number. Therefore a program for 
al
ulating thedate of Easter by the algorithm in the previous exer
ise might fail when the quantity(11G + 20 + Z �X) in step E5 is negative. For example, in the year 14250 we obtainG = 1, X = 95, Z = 40; so if we had E = �24 instead of E = +6 we would get
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50 BASIC CONCEPTS 1.3.2�the ridi
ulous answer \42 APRIL". [See CACM 5 (1962), 556.℄ Write a 
omplete MMIXprogram that �nds the earliest year for whi
h this error would a
tually 
ause the wrongdate to be 
al
ulated for Easter.x 34. [33 ℄ Assume that an MMIX 
omputer has been wired up to the traÆ
 signalsat the 
orner of Del Mar Boulevard and Berkeley Avenue, via spe
ial \�les" named/dev/lights and /dev/sensor. The 
omputer a
tivates the lights by outputting onebyte to /dev/lights, spe
ifying the sum of four two-bit 
odes as follows:Del Mar traÆ
 light: #00 o�, #40 green, #80 amber, #
0 red;Berkeley traÆ
 light: #00 o�, #10 green, #20 amber, #30 red;Del Mar pedestrian light: #00 o�, #04 WALK, #0
 DON'T WALK;Berkeley pedestrian light: #00 o�, #01 WALK, #03 DON'T WALK.Cars or pedestrians wishing to travel on Berkeley a
ross the boulevard must a
tivate asensor; if this 
ondition never o

urs, the light for Del Mar should remain green. WhenMMIX reads a byte from /dev/sensor, the input is nonzero if and only if the sensor hasbeen a
tivated sin
e the previous input.Cy
le times are as follows:Del Mar traÆ
 light is green � 30 se
, amber 8 se
;Berkeley traÆ
 light is green 20 se
, amber 5 se
.When a traÆ
 light is green or amber for one dire
tion, the other dire
tion has a redlight. When the traÆ
 light is green, the 
orresponding WALK light is on, ex
ept thatDON'T WALK 
ashes for 12 se
 just before a green light turns to amber, as follows:DON'T WALK 12 se
o� 12 se
� repeat 8 times;DON'T WALK 4 se
 (and remains on through amber and red 
y
les).If the sensor is a
tivated while the Berkeley light is green, the 
ar or pedestrianwill pass on that 
y
le. But if it is a
tivated during the amber or red portions, another
y
le will be ne
essary after the Del Mar traÆ
 has passed.Write a 
omplete MMIX program that 
ontrols these lights, following the statedproto
ol. Assume that the spe
ial 
lo
k register rC in
reases by 1 exa
tly � times perse
ond, where the integer � is a given 
onstant.35. [37 ℄ This exer
ise is designed to give some experien
e in the many appli
ations of
omputers for whi
h the output is to be displayed graphi
ally rather than in the usualtabular form. The obje
t is to \draw" a 
rossword puzzle diagram.You are given as input a matrix of zeros andones. An entry of zero indi
ates a white square; aone indi
ates a bla
k square. The output should gen-erate a diagram of the puzzle, with the appropriatesquares numbered for words a
ross and down.For example, given the matrix0BBBBB�
1 0 0 0 0 10 0 1 0 0 00 0 0 0 1 00 1 0 0 0 00 0 0 1 0 01 0 0 0 0 1

1CCCCCA ;

1 2 34 5 67 89 1011 12 1314Fig. 18. Diagram 
orrespondingto the matrix in exer
ise 35.
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1.3.3� APPLICATIONS TO PERMUTATIONS 51the 
orresponding puzzle diagram would be as shown in Fig. 18. A square is numberedif it is a white square and either (a) the square below it is white and there is no whitesquare immediately above, or (b) the square to its right is white and there is no whitesquare immediately to its left. If bla
k squares o

ur at the edges, they should beremoved from the diagram. This is illustrated in Fig. 18, where the bla
k squares atthe 
orners were dropped. A simple way to a

omplish this is to arti�
ially insert rowsand 
olumns of �1's at the top, bottom, and sides of the given input matrix, then to
hange every +1 that is adja
ent to a �1 into a �1 until no +1 remains next to any �1.Figure 18 was produ
ed by the METAPOST program shown in Fig. 19. Simple
hanges to the uses of line and bla
k, and to the 
oordinates in the for loop, willprodu
e any desired diagram.Write a 
omplete MMIX program that reads a 25 � 25 matrix of zeros and onesin the standard input �le and writes a suitable METAPOST program on the standardoutput �le. The input should 
onsist of 25 lines, ea
h 
onsisting of 25 digits followedby \newline"; for example, the �rst line 
orresponding to the matrix above would be`1000011111111111111111111', using extra 1s to extend the original 6 � 6 array. Thediagram will not ne
essarily be symmetri
al, and it might have long paths of bla
ksquares that are 
onne
ted to the outside in strange ways.beginfig(18)transform t; t=identity rotated -90 s
aled 17pt;def line(expr i,j,ii,jj) =draw ((i,j)--(ii,jj)) transformed t;enddef;def bla
k(expr i,j) =fill ((i,j)--(i+1,j)--(i+1,j+1)--(i,j+1)--
y
le) transformed t;enddef;line (1,2,1,6); line (2,1,2,7); line (3,1,3,7); line (4,1,4,7);line (5,1,5,7); line (6,1,6,7); line (7,2,7,6);line (2,1,6,1); line (1,2,7,2); line (1,3,7,3); line (1,4,7,4);line (1,5,7,5); line (1,6,7,6); line (2,7,6,7);numeri
 n; n=0;for p = (1,2),(1,4),(1,5), (2,1),(2,4),(2,6),(3,1),(3,3), (4,3),(4,5), (5,1),(5,2),(5,5), (6,2):n:=n+1; label.lrt(de
imal n infont "
mr8", p transformed t);endforbla
k(2,3); bla
k(3,5); bla
k(4,2); bla
k(5,4);endfig;Fig. 19. The METAPOST program that generated Fig. 18.
1.3.3�. Appli
ations to PermutationsThe MIX programs in the former Se
tion 1.3.3 will all be 
onverted to MMIXprograms, and so will the MIX programs in Chapters 2, 3, 4, 5, and 6. Anyonewho wishes to help with this instru
tive 
onversion proje
t is invited to join theMMIXmasters (see page v).
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52 BASIC CONCEPTS 1.4�1.4�. SOME FUNDAMENTAL PROGRAMMING TECHNIQUES1.4.1�. SubroutinesWhen a 
ertain task is to be performed at several di�erent pla
es in a pro-gram, we usually don't want to repeat the 
oding over and over. To avoid thissituation, the 
oding (
alled a subroutine) 
an be put into one pla
e only, anda few extra instru
tions 
an be added to restart the main routine properly afterthe subroutine is �nished. Transfer of 
ontrol between subroutines and mainprograms is 
alled subroutine linkage.Ea
h ma
hine has its own pe
uliar way to a
hieve eÆ
ient subroutine link-age, usually by using spe
ial instru
tions. Our dis
ussion will be based on MMIXma
hine language, but similar remarks will apply to subroutine linkage on mostother general-purpose 
omputers.Subroutines are used to save spa
e in a program. They do not save anytime, other than the time impli
itly saved by having less spa
e| for example,less time to load the program, and better use of high-speed memory on ma
hineswith several grades of memory. The extra time taken to enter and leave asubroutine is usually negligible, ex
ept in 
riti
al innermost loops.Subroutines have several other advantages. They make it easier to visualizethe stru
ture of a large and 
omplex program; they form a logi
al segmentationof the entire problem, and this usually makes debugging of the program easier.Many subroutines have additional value be
ause they 
an be used by peopleother than the programmer of the subroutine.Most 
omputer installations have built up a large library of useful sub-routines, and su
h a library greatly fa
ilitates the programming of standard
omputer appli
ations that arise. A programmer should not think of this as theonly purpose of subroutines, however; subroutines should not always be regardedas general-purpose programs to be used by the 
ommunity. Spe
ial-purposesubroutines are just as important, even when they are intended to appear inonly one program. Se
tion 1.4.3� 
ontains several typi
al examples.The simplest subroutines are those that have only one entran
e and one exit,su
h as the Maximum subroutine we have already 
onsidered (see Program M inSe
tion 1.3.2� and exer
ise 1.3.2�{3). Let's look at that program again, re
astingit slightly so that a �xed number of 
ells, 100, is sear
hed for the maximum:* Maximum of X[1..100℄j IS $0 ;m IS $1 ;kk IS $2 ;xk IS $3Max100 SETL kk,100*8 M1. Initialize.LDO m,x0,kkJMP 1F3H LDO xk,x0,kk M3. Compare.CMP t,xk,mPBNP t,5F4H SET m,xk M4. Change m.1H SR j,kk,35H SUB kk,kk,8 M5. De
rease k.PBP kk,3B M2. All tested?6H POP 2,0 Return to main program.
(1)
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1.4.1� SUBROUTINES 53This subroutine is assumed to be part of a larger program in whi
h the symbol thas been de�ned to stand for register $255, and the symbol x0 has been de�nedto stand for a global register su
h that X[k℄ appears in lo
ation x0+8k. In thatlarger program, the single instru
tion \PUSHJ $1,Max100" will 
ause register $1to be set to the 
urrent maximum value of fX[1℄; : : : ;X[100℄g, and the positionof the maximum will appear in $2. Linkage in this 
ase is a
hieved by thePUSHJ instru
tion that invokes the subroutine, together with \POP 2,0" at thesubroutine's end. These MMIX instru
tions 
ause lo
al registers to be renumberedwhile the subroutine is a
tive; furthermore, the PUSHJ inserts a return addressinto spe
ial register rJ, and the POP jumps to this lo
ation.We 
an also a

omplish subroutine linkage in a simpler, rather di�erent way,by using MMIX's GO instru
tion instead of pushing and popping. We might, forinstan
e, use the following 
ode in pla
e of (1):* Maximum of X[1..100℄j GREG ;m GREG ;kk GREG ;xk GREGGREG � Base addressGoMax100 SETL kk,100*8 M1. Initialize.LDO m,x0,kkJMP 1F3H ... (Continue as in (1))PBP kk,3B M2. All tested?6H GO kk,$0,0 Return to main program.
(2)

Now the instru
tion \GO $0,GoMax100" will transfer 
ontrol to the subrou-tine, pla
ing the address of the following instru
tion into $0; the subsequent\GO kk,$0,0" at the subroutine's end will return to this address. In this 
asethe maximum value will appear in global register m, and its lo
ation will be inglobal register j. Two additional global registers, kk and xk, have also beenset aside for use by this subroutine. Furthermore, the \GREG �" provides abase address so that we 
an GO to GoMax100 in a single instru
tion; otherwisea two-step sequen
e like \GETA $0,GoMax100; GO $0,$0,0" would be ne
essary.Subroutine linkage like (2) is 
ommonly used on ma
hines that have no built-inregister sta
k me
hanism.It is not hard to obtain quantitative statements about the amount of 
odesaved and the amount of time lost when subroutines are used. Suppose thata pie
e of 
oding requires k tetrabytes and that it appears in m pla
es in theprogram. Rewriting this as a subroutine, we need a PUSHJ or GO instru
tionin ea
h of the m pla
es where the subroutine is 
alled, plus a single POP or GOinstru
tion to return 
ontrol. This gives a total of m+ k + 1 tetrabytes, ratherthan mk, so the amount saved is(m� 1) (k � 1)� 2: (3)If k is 1 or m is 1 we 
annot possibly save any spa
e by using subroutines; this,of 
ourse, is obvious. If k is 2, m must be greater than 3 in order to gain, et
.The amount of time lost is the time taken for the PUSHJ, POP, and/or GOinstru
tions in the linkage. If the subroutine is invoked t times during a run of the
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54 BASIC CONCEPTS 1.4.1�program, and if we assume that running time is governed by the approximationsin Table 1.3.1�{1, the extra 
ost is 4t� in 
ase (1), or 6t� in 
ase (2).These estimates must be taken with a grain of salt, be
ause they were givenfor an idealized situation. Many subroutines 
annot be 
alled simply with a singlePUSHJ or GO instru
tion. Furthermore, if 
ode is repli
ated in many parts of aprogram without using a subroutine approa
h, ea
h instan
e 
an be 
ustomizedto take advantage of spe
ial 
hara
teristi
s of the parti
ular part of the programin whi
h it lies. With a subroutine, on the other hand, the 
ode must be writtenfor the most general 
ase; this will often add several additional instru
tions.When a subroutine is written to handle a general 
ase, it is expressed interms of parameters. Parameters are values that govern a subroutine's a
tions;they are subje
t to 
hange from one 
all of the subroutine to another.The 
oding in the outside program that transfers 
ontrol to a subroutineand gets it properly started is known as the 
alling sequen
e. Parti
ular valuesof parameters, supplied when the subroutine is 
alled, are known as arguments.With our GoMax100 subroutine, the 
alling sequen
e is simply \GO $0,GoMax100",but a longer 
alling sequen
e is generally ne
essary when arguments must besupplied.For example, we might want to generalize (2) to a subroutine that �nds themaximum of the �rst n elements of an array, given any 
onstant n, by pla
ing nin the instru
tion stream with the two-step 
alling sequen
eGO $0,GoMax; TETRA n: (4)The GoMax subroutine 
ould then take the form* Maximum of X[1..n℄j GREG ;m GREG ;kk GREG ;xk GREGGREG � Base addressGoMax LDT kk,$0,0 Fet
h the argument.SL kk,kk,3LDO m,x0,kkJMP 1F3H ... (Continue as in (1))PBP kk,3B6H GO kk,$0,4 Return to 
aller.
(5)

Still better would be to 
ommuni
ate the parameter n by putting it into aregister. We 
ould, for example, use the two-step 
alling sequen
eSET $1,n; GO $0,GoMax (6)together with a subroutine of the formGoMax SL kk,$1,3 Fet
h the argument.LDO m,x0,kk...6H GO kk,$0,0 Return. (7)
This variation is faster than (5), and it allows n to vary dynami
ally withoutmodifying the instru
tion stream.

54



1.4.1� SUBROUTINES 55Noti
e that the address of array element X[0℄ is also essentially a parameterto subroutines (1), (2), (5), and (7). The operation of putting this address intoregister x0 may be regarded as part of the 
alling sequen
e, in 
ases when thearray is di�erent ea
h time.If the 
alling sequen
e o

upies 
 tetrabytes of memory, formula (3) for theamount of spa
e saved 
hanges to(m� 1) (k � 
)� 
onstant (8)and the time lost for subroutine linkage is slightly in
reased.A further 
orre
tion to the formulas above 
an be ne
essary be
ause 
ertainregisters might need to be saved and restored. For example, in the GoMaxsubroutine we must remember that by writing \SET $1,n; GO $0,GoMax" weare not only 
omputing the maximum value in register m and its position inregister j, we are also 
hanging the values of global registers kk and xk. Wehave implemented (2), (5), and (7) with the impli
it assumption that registerskk and xk are for the ex
lusive use of the maximum-�nding routine, but many
omputers are not blessed with a large number of registers. Even MMIX will runout of registers if a lot of subroutines are present simultaneously. We mighttherefore want to revise (7) so that it will work with kk � $2 and xk � $3, say,without 
lobbering the 
ontents of those registers. We 
ould do this by writingj GREG ;m GREG ;kk IS $2 ;xk IS $3GREG � Base addressGoMax STO kk,Tempkk Save previous register 
ontents.STO xk,TempxkSL kk,$1,3 Fet
h the argument.LDO m,x0,kk...LDO kk,Tempkk Restore previous register 
ontents.LDO xk,Tempxk6H GO $0,$0,0 Return.
(9)

and by setting aside two o
tabytes 
alled Tempkk and Tempxk in the data segment.Of 
ourse this 
hange adds potentially signi�
ant overhead 
ost to ea
h use ofthe subroutine.A subroutine may be regarded as an extension of the 
omputer's ma
hinelanguage. For example, whenever the GoMax subroutine is present in memory wehave a single ma
hine instru
tion (namely, \GO $0,GoMax") that is a maximum-�nder. It is important to de�ne the e�e
t of ea
h subroutine just as 
arefullyas the ma
hine language operators themselves have been de�ned; a programmershould therefore be sure to write down the relevant 
hara
teristi
s, even thoughnobody else will be making use of the routine or its spe
i�
ation. In the 
ase ofGoMax as given in (7) or (9), the 
hara
teristi
s are as follows:Calling sequen
e: GO $0,GoMax.Entry 
onditions: $1 = n � 1; x0 = address of X[0℄.Exit 
onditions: m = max1�k�nX[k℄ = X[j℄. (10)
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56 BASIC CONCEPTS 1.4.1�A spe
i�
ation should mention all 
hanges to quantities that are external to thesubroutine. If registers kk and xk are not 
onsidered \private" to the variant ofGoMax in (7), we should in
lude the fa
t that those registers are a�e
ted, as part ofthat subroutine's exit 
onditions. The subroutine also 
hanges register t, namelyregister $255; but that register is 
onventionally used for temporary quantitiesof only momentary signi�
an
e, so we needn't bother to list it expli
itly.Now let's 
onsider multiple entran
es to subroutines. Suppose we have aprogram that requires the general subroutine GoMax, but it usually wants to usethe spe
ial 
ase GoMax100 in whi
h n = 100. The two 
an be 
ombined as follows:GoMax100 SET $1,100 First entran
eGoMax ... Se
ond entran
e; 
ontinue as in (7) or (9). (11)We 
ould also add a third entran
e, say GoMax50, by putting the 
odeGoMax50 SET $1,50; JMP GoMaxin some 
onvenient pla
e.A subroutine might also have multiple exits, meaning that it is supposed toreturn to one of several di�erent lo
ations, depending on 
onditions that it hasdete
ted. For example, we 
an extend subroutine (11) yet again by assumingthat an upper bound parameter is given in global register b; the subroutine isnow supposed to exit to one of the two tetrabytes following the GO instru
tionthat 
alls it:Calling sequen
e for general n Calling sequen
e for n = 100SET $1,n; GO $0,GoMax GO $0,GoMax100Exit here if m � 0 or m � b. Exit here if m � 0 or m � b.Exit here if 0 < m < b. Exit here if 0 < m < b.(In other words, we skip the tetrabyte after the GO when the maximum valueis positive and less than the upper bound. A subroutine like this would beuseful in a program that often needs to make su
h distin
tions after 
omputinga maximum value.) The implementation is easy:* Maximum of X[1..n℄ with bounds 
he
kj GREG ;m GREG ;kk GREG ;xk GREGGREG � Base addressGoMax100 SET $1,100 Entran
e for n = 100GoMax SL kk,$1,3 Entran
e for general nLDO m,x0,kkJMP 1F3H ... (Continue as in (1))PBP kk,3BBNP m,1F Bran
h if m � 0.CMP kk,m,bBN kk,2F Bran
h if m < b.1H GO kk,$0,0 Take �rst exit if m � 0 or m � b.2H GO kk,$0,4 Otherwise take se
ond exit.

(12)
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1.4.1� SUBROUTINES 57Noti
e that this program 
ombines the instru
tion-stream linking te
hnique of (5)with the register-setting te
hnique of (7). The lo
ation to whi
h a subroutine ex-its is, stri
tly speaking, a parameter; hen
e the lo
ations of multiple exits must besupplied as arguments. When a subroutine a

esses one of its parameters all thetime, the 
orresponding argument is best passed in a register, but when an argu-ment is 
onstant and not always needed it is best kept in the instru
tion stream.Subroutines may 
all on other subroutines. Indeed, 
ompli
ated programsoften have subroutine 
alls nested more than �ve deep. The only restri
tionthat must be followed when using the GO-type linkage des
ribed above is that alltemporary storage lo
ations and registers must be distin
t; thus no subroutinemay 
all on any other subroutine that is (dire
tly or indire
tly) 
alling on it. Forexample, 
onsider the following s
enario:[Main program℄ [Subroutine A℄ [Subroutine B℄ [Subroutine C℄A B C... ... ... ...GO $0,A GO $1,B GO $2,C GO $0,A... ... ... ...GO $0,$0,0 GO $1,$1,0 GO $2,$2,0
(13)

If the main program 
alls A, whi
h 
alls B, whi
h 
alls C, and then C 
alls on A,the address in $0 referring to the main program is destroyed, and there is no wayto return to that program.Using a memory sta
k. Re
ursive situations like (13) do not often arisein simple programs, but a great many important appli
ations do have a nat-ural re
ursive stru
ture. Fortunately there is a straightforward way to avoidinterferen
e between subroutine 
alls, by letting ea
h subroutine keep its lo
alvariables on a sta
k. For example, we 
an set aside a global register 
alled sp(the \sta
k pointer") and use GO $0,Sub to invoke ea
h subroutine. If the 
odefor the subroutine has the formSub STO $0,sp,0ADD sp,sp,8...SUB sp,sp,8LDO $0,sp,0GO $0,$0,0 (14)
register $0 will always 
ontain the proper return address; the problem of (13) nolonger arises. (Initially we set sp to an address in the data segment, following allother memory lo
ations needed.) Moreover, the STO/ADD and SUB/LDO instru
-tions of (14) 
an be omitted if Sub is a so-
alled leaf subroutine|a subroutinethat doesn't 
all any other subroutines.A sta
k 
an be used to hold parameters and other lo
al variables besidesthe return addresses stored in (14). Suppose, for example, that subroutine Subneeds 20 o
tabytes of lo
al data, in addition to the return address; then we 
an
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58 BASIC CONCEPTS 1.4.1�use a s
heme like this:Sub STO fp,sp,0 Save the old frame pointer.SET fp,sp Establish a new frame pointer.INCL sp,8*22 Advan
e the sta
k pointer.STO $0,fp,8 Save the return address....LDO $0,fp,8 Restore the return address.SET sp,fp Restore the sta
k pointer.LDO fp,sp,0 Restore the frame pointer.GO $0,$0,0 Return to 
aller.
(15)

Here fp is a global register 
alled the frame pointer. Within the \..." part ofthe subroutine, lo
al quantity number k is equivalent to the o
tabyte in memorylo
ation fp+ 8k + 8, for 1 � k � 20. The instru
tions at the beginning are saidto \push" lo
al quantities onto the \top" of the sta
k; the instru
tions at theend \pop" those quantities o�, leaving the sta
k in the 
ondition it had whenthe subroutine was entered.Using the register sta
k. We have dis
ussed GO-type subroutine linkageat length be
ause many 
omputers have no better alternative. But MMIX hasbuilt-in instru
tions PUSHJ and POP, whi
h handle subroutine linkage in a moreeÆ
ient way, avoiding most of the overhead in s
hemes like (9) and (15). Theseinstru
tions allow us to keep most parameters and lo
al variables entirely inregisters, instead of storing them into a memory sta
k and loading them againlater. With PUSHJ and POP, most of the details of sta
k maintenan
e are doneautomati
ally by the ma
hine.The basi
 idea is quite simple, on
e the general idea of a sta
k is understood.MMIX has a register sta
k 
onsisting of o
tabytes S[0℄, S[1℄, : : : , S[� � 1℄ forsome number � � 0. The topmost L o
tabytes in the sta
k (namely S[� � L℄,S[��L+1℄, : : : , S[��1℄) are the 
urrent lo
al registers $0, $1, : : : , $(L�1); theother � �L o
tabytes of the sta
k are 
urrently ina

essible to the program, andwe say they have been \pushed down." The 
urrent number of lo
al registers,L, is kept in MMIX's spe
ial register rL, although a programmer rarely needs toknow this. Initially L = 2, � = 2, and lo
al registers $0 and $1 represent the
ommand line as in Program 1.3.2�H.MMIX also has global registers, namely $G, $(G+1), : : : , $255; the value of Gis kept in spe
ial register rG, and we always have 0 � L � G � 255. (In fa
t, wealso always have G � 32.) Global registers are not part of the register sta
k.Registers that are neither lo
al nor global are 
alled marginal. These regis-ters, namely $L, $(L+ 1), : : : , $(G� 1), have the value zero whenever they areused as input operands to an MMIX instru
tion.The register sta
k grows when a marginal register is given a value. Thismarginal register be
omes lo
al, and so do all marginal registers with smallernumbers. For example, if eight lo
al registers are 
urrently in use, the instru
tionADD $10,$20,5 
auses $8, $9, and $10 to be
ome lo
al; more pre
isely, if rL = 8,the instru
tion ADD $10,$20,5 sets $8  0, $9  0, $10  5, and rL  11.(Register $20 remains marginal.)
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1.4.1� SUBROUTINES 59If $X is a lo
al register, the instru
tion PUSHJ $X,Sub de
reases the numberof lo
al registers and 
hanges their e�e
tive register numbers: Lo
al registerspreviously 
alled $(X+1), $(X+2), : : : , $(L�1) are 
alled $0, $1, : : : , $(L�X�2)inside the subroutine, and the value of L de
reases by X + 1. Thus the registersta
k remains un
hanged, but X + 1 of its entries have be
ome ina

essible; thesubroutine 
annot damage those entries, and it has X+1 newly marginal registersto play with.If X � G, so that $X is a global register, the a
tion of PUSHJ $X,Sub issimilar, but a new entry is pla
ed on the register sta
k and then L+1 registers arepushed down instead of X+1. In this 
ase L is zero when the subroutine begins;all of the formerly lo
al registers have been pushed down, and the subroutinestarts out with a 
lean slate.The register sta
k shrinks only when a POP instru
tion is given, or whena program expli
itly de
reases the number of lo
al registers with an instru
tionsu
h as PUT rL,5. The purpose of POP X,YZ is to make the items pushed down bythe most re
ent PUSHJ a

essible again, as they were before, and to remove itemsfrom the register sta
k if they are no longer ne
essary. In general the X �eld of aPOP instru
tion is the number of values \returned" by the subroutine, if X � L.If X > 0, the main value returned is $(X � 1); this value is removed from theregister sta
k, together with all entries above it, and the return value is pla
edin the position spe
i�ed by the PUSHJ 
ommand that invoked the subroutine.The behavior of POP is similar when X > L, but in this 
ase the register sta
kremains inta
t and zero is pla
ed in the position of the PUSHJ.The rules we have just stated are a bit 
ompli
ated, be
ause many di�erent
ases 
an arise in pra
ti
e. A few examples will, however, make everything 
lear.Suppose we are writing a routine A and we want to 
all subroutine B; supposefurther that routine A has 5 lo
al registers that should not be a

essible to B.These registers are $0, $1, $2, $3, and $4. We reserve the next register, $5, for themain result of subroutine B. If B has, say, three parameters, we set $6  arg0,$7 arg1, and $8 arg2, then issue the 
ommand PUSHJ $5,B; this invokes Band the arguments are now found in $0, $1, and $2.If B returns no result, it will 
on
lude with the 
ommand POP 0,YZ; thiswill restore $0, $1, $2, $3, and $4 to their former values and set L 5.If B returns a single result x, it will pla
e x in $0 and 
on
lude with the
ommand POP 1,YZ. This will restore $0, $1, $2, $3, and $4 as before; it willalso set $5 x and L 6.If B returns two results x and a, it will pla
e the main result x in $1 andthe auxiliary result a in $0. Then POP 2,YZ will restore $0 through $4 and set$5 x, $6 a, L 7. Similarly, if B returns ten results (x; a0; : : : ; a8), it willpla
e the main result x in $9 and the others in the �rst nine registers: $0 a0,$1  a1, : : : , $8  a8. Then POP 10,YZ will restore $0 through $4 and set$5  x, $6  a0, : : : , $14  a8. (The 
urious permutation of registers thatarises when two or more results are returned may seem strange at �rst. But itmakes sense, be
ause it leaves the register sta
k un
hanged ex
ept for the mainresult. For example, if subroutine B wants arg0, arg1, and arg2 to reappear in
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60 BASIC CONCEPTS 1.4.1�$6, $7, and $8 after it has �nished its work, it 
an leave them as auxiliary resultsin $0, $1, and $2 and then say POP 4,YZ.)The YZ �eld of a POP instru
tion is usually zero, but in general the instru
-tion POP X,YZ returns to the instru
tion that is YZ+1 tetrabytes after the PUSHJthat invoked the 
urrent subroutine. This generality is useful for subroutineswith multiple exits. More pre
isely, a PUSHJ subroutine in lo
ation � sets spe
ialregister rJ to � + 4 before jumping to the subroutine; a POP instru
tion thenreturns to lo
ation rJ + 4YZ.We 
an now re
ast the programs previously written with GO linkage so thatthey use PUSH/POP linkage instead. For example, the two-entran
e, two-exitsubroutine for maximum-�nding in (12) takes the following form when MMIX'sregister sta
k me
hanism is used:* Maximum of X[1..n℄ with bounds 
he
kj IS $0 ;m IS $1 ;kk IS $2 ;xk IS $3Max100 SET $0,100 Entran
e for n = 100Max SL kk,$0,3 Entran
e for general nLDO m,x0,kkJMP 1F... (Continue as in (12))BNZ kk,2F1H POP 2,0 Take �rst exit if max � 0 or max � b.2H POP 2,1 Otherwise take se
ond exit.
(16)

Calling sequen
e for general n Calling sequen
e for n = 100SET $A,n; PUSHJ $R,Max (A = R+1) PUSHJ $R,Max100Exit here if $R � 0 or $R � b. Exit here if $R � 0 or $R � b.Exit here if 0 < $R < b. Exit here if 0 < $R < b.The lo
al result register $R in the PUSHJ of this 
alling sequen
e is arbitrary,depending on the number of lo
al variables the 
aller wishes to retain. Thelo
al argument register $A is then $(R + 1). After the 
all, $R will 
ontain themain result (the maximum value) and $A will 
ontain the auxiliary result (thearray index of that maximum). If there are several arguments and/or auxiliaries,they are 
onventionally 
alled A0, A1, : : : , and we 
onventionally assume thatA0 = R+1, A1 = R+2, : : : when PUSH/POP 
alling sequen
es are written down.A 
omparison of (12) and (16) shows only mild advantages for (16): Thenew form does not need to allo
ate global registers for j, m, kk, and xk, nordoes it need a global base register for the address of the GO 
ommand. (Re
allfrom Se
tion 1.3.1� that GO takes an absolute address, while PUSHJ has a relativeaddress.) A GO instru
tion is slightly slower than PUSHJ; it is no slower thanPOP, a

ording to Table 1.3.1�{1, although high-speed implementations of MMIX
ould implement POP more eÆ
iently. Programs (12) and (16) both have thesame length.The advantages of PUSH/POP linkage over GO linkage begin to manifest them-selves when we have non-leaf subroutines (namely, subroutines that 
all othersubroutines, possibly themselves). Then the GO-based 
ode of (14) 
an be re-

60



1.4.1� SUBROUTINES 61pla
ed by Sub GET retadd,rJ...PUT rJ,retaddPOP X,0 (17)
where retadd is a lo
al register. (For example, retadd might be $5; its registernumber is generally greater than or equal to the number of returned results X,so the POP instru
tion will automati
ally remove it from the register sta
k.) Nowthe 
ostly memory referen
es of (14) are avoided.A non-leaf subroutine with many lo
al variables and/or parameters is signi�-
antly better o� with a register sta
k than with the memory sta
k s
heme of (15),be
ause we 
an often perform the 
omputations entirely in registers. We shouldnote, however, that MMIX's register sta
k applies only to lo
al variables that ares
alar, not to lo
al array variables that must be a

essed by address 
omputation.Subroutines that need non-s
alar lo
al variables should use a s
heme like (15) forall su
h variables, while keeping s
alars on the register sta
k. Both approa
hes
an be used simultaneously, with fp and sp updated only by subroutines thatneed a memory sta
k.If the register sta
k be
omes extremely large, MMIX will automati
ally storeits bottom entries in the sta
k segment of memory, using a behind-the-s
enespro
edure that we will study in Se
tion 1.4.3�. (Re
all from Se
tion 1.3.2� thatthe sta
k segment begins at address #6000000000000000.) MMIX stores registersta
k items in memory also when a SAVE 
ommand saves a program's entire
urrent 
ontext. Saved sta
k items are automati
ally restored from memorywhen a POP 
ommand needs them or when an UNSAVE 
ommand restores a saved
ontext. But in most 
ases MMIX is able to push and pop lo
al registers withouta
tually a

essing memory, and without a
tually 
hanging the 
ontents of verymany internal ma
hine registers.Sta
ks have many other uses in 
omputer programs; we will study their basi
properties in Se
tion 2.2.1. We will get a further taste of nested subroutinesand re
ursive pro
edures in Se
tion 2.3, when we 
onsider operations on trees.Chapter 8 studies re
ursion in detail.*Assembly language features. The MMIX assembly language supports thewriting of subroutines in three ways that were not mentioned in Se
tion 1.3.2�.The most important of these is the PREFIX operation, whi
h makes it easy tode�ne \private" symbols that will not interfere with symbols de�ned elsewherein a large program. The basi
 idea is that a symbol 
an have a stru
tured formlike Sub:X (meaning symbol X of subroutine Sub), possibly 
arried to severallevels like Lib:Sub:X (meaning symbol X of subroutine Sub in library Lib).Stru
tured symbols are a

ommodated by extending rule 1 of MMIXAL inSe
tion 1.3.2� slightly, allowing the 
olon 
hara
ter `:' to be regarded as a\letter" that 
an be used to 
onstru
t symbols. Every symbol that does notbegin with a 
olon is impli
itly extended by pla
ing the 
urrent pre�x in frontof it. The 
urrent pre�x is initially `:', but the user 
an 
hange it with the
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62 BASIC CONCEPTS 1.4.1�PREFIX 
ommand. For example,ADD x,y,z means ADD :x,:y,:zPREFIX Foo: 
urrent pre�x is :Foo:ADD x,y,z means ADD :Foo:x,:Foo:y,:Foo:zPREFIX Bar: 
urrent pre�x is :Foo:Bar:ADD :x,y,:z means ADD :x,:Foo:Bar:y,:zPREFIX : 
urrent pre�x reverts to :ADD x,Foo:Bar:y,Foo:z means ADD :x,:Foo:Bar:y,:Foo:zOne way to use this idea is to repla
e the opening lines of (16) byPREFIX Max:j IS $0 ;m IS $1 ;kk IS $2 ;xk IS $3x0 IS :x0 ;b IS :b ;t IS :t External symbols:Max100 SET $0,100 Entran
e for n = 100:Max SL kk,$0,3 Entran
e for general nLDO m,x0,kkJMP 1F... (Continue as in (16))
(18)

and to add \PREFIX :" at the end. Then the symbols j, m, kk, and xk arefree for use in the rest of the program or in the de�nition of other subroutines.Further examples of the use of pre�xes appear in Se
tion 1.4.3�.MMIXAL also in
ludes a pseudo-operation 
alled LOCAL. The assembly 
om-mand \LOCAL $40" means, for example, that an error message should be givenat the end of assembly if GREG 
ommands allo
ate so many registers that $40will be global. (This feature is needed only when a subroutine uses more than32 lo
al registers, be
ause \LOCAL $31" is always impli
itly true.)A third feature for subroutine support, BSPEC : : : ESPEC, is also provided.It allows information to be passed to the obje
t �le so that debugging routinesand other system programs know what kind of linkage is being used by ea
hsubroutine. This feature is dis
ussed in the MMIXware do
ument; it is primarilyof interest in the output of 
ompilers.Strategi
 
onsiderations. When ad ho
 subroutines are written for spe
ial-purpose use, we 
an a�ord to use GREG instru
tions liberally, so that plenty ofglobal registers are �lled with basi
 
onstants that make our program run fast.Comparatively few lo
al registers are needed, unless the subroutines are usedre
ursively.But when dozens or hundreds of general-purpose subroutines are written forin
lusion in a large library, with the idea of allowing any user program to in
ludewhatever subroutines it needs, we obviously 
an't allow ea
h subroutine toallo
ate a substantial number of globals. Even one global variable per subroutinemight be too mu
h.Thus we want to use GREG generously when we have only a few subroutines,but we want to use it sparingly when the number of subroutines is potentiallyhuge. In the latter 
ase we probably 
an make good use of lo
al variables withouttoo mu
h loss of eÆ
ien
y.
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1.4.1� SUBROUTINES 63Let's 
on
lude this se
tion by dis
ussing brie
y how we might go aboutwriting a 
omplex and lengthy program. How 
an we de
ide what kind ofsubroutines we will need? What 
alling sequen
es should be used? One su

essfulway to determine this is to use an iterative pro
edure:Step 0 (Initial idea). First we de
ide vaguely upon the general plan ofatta
k that the program will use.Step 1 (A rough sket
h of the program). We start now by writing the \outerlevels" of the program, in any 
onvenient language. A somewhat systemati
 wayto go about this has been des
ribed very ni
ely by E. W. Dijkstra, Stru
turedProgramming (A
ademi
 Press, 1972), Chapter 1, and by N. Wirth, CACM14 (1971), 221{227. First we break the whole program into a small number ofpie
es, whi
h might be thought of temporarily as subroutines although they are
alled only on
e. These pie
es are su

essively re�ned into smaller and smallerparts, having 
orrespondingly simpler jobs to do. Whenever some 
omputationaltask arises that seems likely to o

ur elsewhere or that has already o

urredelsewhere, we de�ne a subroutine (a real one) to do that job. We do not writethe subroutine at this point; we 
ontinue writing the main program, assumingthat the subroutine has performed its task. Finally, when the main programhas been sket
hed, we ta
kle the subroutines in turn, trying to take the most
omplex subroutines �rst and then their sub-subroutines, et
. In this manner wewill 
ome up with a list of subroutines. The a
tual fun
tion of ea
h subroutinehas probably already 
hanged several times, so that the �rst parts of our sket
hwill by now be in
orre
t; but that is no problem, sin
e we are merely making asket
h. We now have a reasonably good idea about how ea
h subroutine will be
alled and how general-purpose it should be. We should 
onsider extending thegenerality of ea
h subroutine, at least a little.Step 2 (First working program). The next step goes in the opposite dire
-tion from step 1. We now write in 
omputer language, say MMIXAL or PL/MMIXor|most probably|a higher-level language. We start this time with the lowestlevel subroutines, and do the main program last. As far as possible, we try neverto write any instru
tions that 
all a subroutine before the subroutine itself hasbeen 
oded. (In step 1, we tried the opposite, never 
onsidering a subroutineuntil all of its 
alls had been written.)As more and more subroutines are written during this pro
ess, our 
on-�den
e gradually grows, sin
e we are 
ontinually extending the power of thema
hine we are programming. After an individual subroutine is 
oded, we shouldimmediately prepare a 
omplete des
ription of what it does, and what its 
allingsequen
es are, as in (10). It is also important to be sure that global variablesare not used for two 
on
i
ting purposes at the same time; when preparing thesket
h in step 1, we didn't have to worry about su
h problems.Step 3 (Reexamination). The result of step 2 should be very nearly aworking program, but we may be able to improve it. A good way is to reversedire
tion again, studying for ea
h subroutine all of the pla
es it is 
alled. Perhapsthe subroutine should be enlarged to do some of the more 
ommon things that
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64 BASIC CONCEPTS 1.4.1�are always done by the outside routine just before or after the subroutine is
alled. Perhaps several subroutines should be merged into one; or perhaps asubroutine is 
alled only on
e and should not be a subroutine at all. Perhaps asubroutine is never 
alled and 
an be dispensed with entirely.At this point, it is often a good idea to s
rap everything and start overagain at step 1, or even at step 0! This is not intended to be a fa
etious remark;the time spent in getting this far has not been wasted, for we have learned agreat deal about the problem. With hindsight, we will probably have dis
overedseveral improvements that 
ould be made to the program's overall organization.There's no reason to be afraid to go ba
k to step 1| it will be mu
h easier to gothrough steps 2 and 3 again, now that a similar program has been done already.Moreover, we will quite probably save as mu
h debugging time later on as it willtake to rewrite everything. Some of the best 
omputer programs ever writtenowe mu
h of their su

ess to the fa
t that all the work was unintentionally lost,at about this stage, and the authors were for
ed to begin again.On the other hand, there is probably never a point when a 
omplex 
omputerprogram 
annot be improved somehow, so steps 1 and 2 should not be repeatedinde�nitely. When signi�
ant improvements 
an 
learly be made, the additionaltime required to start over is well spent, but eventually a point of diminishingreturns is rea
hed.Step 4 (Debugging). After a �nal polishing of the program, in
ludingperhaps the allo
ation of storage and other last-minute details, it is time tolook at it in still another dire
tion from the three that were used in steps 1, 2,and 3: Now we study the program in the order in whi
h the 
omputer willperform it. This may be done by hand or, of 
ourse, by ma
hine. The authorhas found it quite helpful at this point to make use of system routines that tra
eea
h instru
tion the �rst two times it is exe
uted; it is important to rethink theideas underlying the program and to 
he
k that everything is a
tually takingpla
e as expe
ted.Debugging is an art that needs mu
h further study, and the way to approa
hit is highly dependent on the fa
ilities available at ea
h 
omputer installation.A good start towards e�e
tive debugging is often the preparation of appropriatetest data. The most su

essful debugging te
hniques are typi
ally designed andbuilt into the program itself: Many of today's best programmers devote nearlyhalf of their programs to fa
ilitating the debugging pro
ess in the other half. The�rst half, whi
h usually 
onsists of fairly straightforward routines that displayrelevant information in a readable format, will eventually be of little importan
e,but the net result is a surprising gain in produ
tivity.Another good debugging pra
ti
e is to keep a re
ord of every mistake made.Even though this will probably be quite embarrassing, su
h information is in-valuable to anyone doing resear
h on the debugging problem, and it will alsohelp you learn how to 
ope with future errors.Note: The author wrote most of the pre
eding 
omments in 1964, after hehad su

essfully 
ompleted several medium-sized software proje
ts but beforehe had developed a mature programming style. Later, during the 1980s, he
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1.4.1� SUBROUTINES 65learned that an additional te
hnique, 
alled stru
tured do
umentation or literateprogramming, is probably even more important. A summary of his 
urrentbeliefs about the best way to write programs of all kinds appears in the bookLiterate Programming (Cambridge University Press, �rst published in 1992).In
identally, Chapter 11 of that book 
ontains a detailed re
ord of all bugsremoved from the TEX program during the period 1978{1991.Up to a point it is better to let the snags [bugs℄ be therethan to spend su
h time in design that there are none(how many de
ades would this 
ourse take?).| A. M. TURING, Proposals for ACE (1945)EXERCISES1. [20 ℄ Write a subroutine GoMaxR that generalizes Algorithm 1.2.10M by �nding themaximum value of fX[a℄; X[a + r℄; X[a + 2r℄; : : : ; X[n℄g, where r and n are positiveparameters and a is the smallest positive number with a � n (modulo r), namelya = 1 + (n � 1) mod r. Give a spe
ial entran
e GoMax for the 
ase r = 1, using aGO-style 
alling sequen
e so that your subroutine is a generalization of (7).2. [20 ℄ Convert the subroutine of exer
ise 1 from GO linkage to PUSHJ/POP linkage.3. [15 ℄ How 
an s
heme (15) be simpli�ed when Sub is a leaf subroutine?4. [15 ℄ The text in this se
tion speaks often of PUSHJ, but Se
tion 1.3.1� mentionsalso a 
ommand 
alled PUSHGO. What is the di�eren
e between PUSHJ and PUSHGO?5. [0 ℄ True or false: The number of marginal registers is G� L.6. [10 ℄ What is the e�e
t of the instru
tion DIVU $5,$5,$5 if $5 is a marginalregister?7. [10 ℄ What is the e�e
t of the instru
tion INCML $5,#ab
d if $5 is a marginalregister?8. [15 ℄ Suppose the instru
tion SET $15,0 is performed when there are 10 lo
alregisters. This in
reases the number of lo
al registers to 16; but the newly lo
al registers(in
luding $15) are all zero, so they still behave essentially as if they were marginal. Isthe instru
tion SET $15,0 therefore entirely redundant in su
h a 
ase?9. [20 ℄ When a trip interrupt has been been enabled for some ex
eptional 
onditionlike arithmeti
 over
ow, the trip handler might be 
alled into a
tion at unpredi
tabletimes. We don't want to 
lobber any of the interrupted program's registers; yet a triphandler 
an't do mu
h unless it has \elbow room." Explain how to use PUSHJ and POPso that plenty of lo
al registers are safely available to a handler.x 10. [20 ℄ True or false: If an MMIX program never uses the instru
tions PUSHJ, PUSHGO,POP, SAVE, or UNSAVE, all 256 registers $0, $1, : : : , $255 are essentially equivalent, inthe sense that the distin
tion between lo
al, global, and marginal registers is irrelevant.11. [20 ℄ Guess what happens if a program issues more POP instru
tions than PUSHinstru
tions.x 12. [10 ℄ True or false:a) The 
urrent pre�x in an MMIXAL program always begins with a 
olon.b) The 
urrent pre�x in an MMIXAL program always ends with a 
olon.
) The symbols : and :: are equivalent in MMIXAL programs.
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66 BASIC CONCEPTS 1.4.1�x 13. [21 ℄ Write two MMIX subroutines to 
al
ulate the Fibona

i number Fn mod 264,given n. The �rst subroutine should 
all itself re
ursively, using the de�nitionFn = n if n � 1; Fn = Fn�1 + Fn�2 if n > 1:The se
ond subroutine should not be re
ursive. Both subroutines should use PUSH/POPlinkage and should avoid global variables entirely.x 14. [M21 ℄ What is the running time of the subroutines in exer
ise 13?x 15. [21 ℄ Convert the re
ursive subroutine of exer
ise 13 to GO-style linkage, using amemory sta
k as in (15) instead of MMIX's register sta
k. Compare the eÆ
ien
y of thetwo versions.x 16. [25 ℄ (Nonlo
al goto statements.) Sometimes we want to jump out of a subroutine,to a lo
ation that is not in the 
alling routine. For example, suppose subroutine A 
allssubroutine B, whi
h 
alls subroutine C, whi
h 
alls itself re
ursively a number of timesbefore de
iding that it wants to exit dire
tly to A. Explain how to handle su
h situationswhen using MMIX's register sta
k. (We 
an't simply JMP from C to A; the sta
k must beproperly popped.)1.4.2�. CoroutinesSubroutines are spe
ial 
ases of more general program 
omponents, 
alled 
o-routines. In 
ontrast to the unsymmetri
 relationship between a main routineand a subroutine, there is 
omplete symmetry between 
oroutines, whi
h 
all onea
h other.To understand the 
oroutine 
on
ept, let us 
onsider another way of thinkingabout subroutines. The viewpoint adopted in the previous se
tion was that asubroutine was merely an extension of the 
omputer hardware, introdu
ed to savelines of 
oding. This may be true, but another point of view is also possible:We may 
onsider the main program and the subroutine as a team of programs,ea
h member of the team having a 
ertain job to do. The main program, inthe 
ourse of doing its job, will a
tivate the subprogram; the subprogram willperform its own fun
tion and then a
tivate the main program. We might stret
hour imagination to believe that, from the subroutine's point of view, when itexits it is 
alling the main routine; the main routine 
ontinues to perform itsduty, then \exits" to the subroutine. The subroutine a
ts, then 
alls the mainroutine again.This egalitarian philosophy may sound far-fet
hed, but it a
tually ringstrue with respe
t to 
oroutines. There is no way to distinguish whi
h of two
oroutines is subordinate to the other. Suppose a program 
onsists of 
oroutinesA and B; when programming A, we may think of B as our subroutine, but whenprogramming B, we may think of A as our subroutine. Whenever a 
oroutine isa
tivated, it resumes exe
ution of its program at the point where the a
tion waslast suspended.The 
oroutines A and B might, for example, be two programs that play 
hess.We 
an 
ombine them so that they will play against ea
h other.Su
h 
oroutine linkage is easy to a
hieve with MMIX if we set aside twoglobal registers, a and b. In 
oroutine A, the instru
tion \GO a,b,0" is used to
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1.4.2� COROUTINES 67a
tivate 
oroutine B; in 
oroutine B, the instru
tion \GO b,a,0" is used to a
tivate
oroutine A. This s
heme requires only 3� of time to transfer 
ontrol ea
h way.The essential di�eren
e between routine-subroutine and 
oroutine-
oroutinelinkage 
an be seen by 
omparing the GO-type linkage of the previous se
tionwith the present s
heme: A subroutine is always initiated at its beginning, whi
his usually a �xed pla
e; the main routine or a 
oroutine is always initiated at thepla
e following where it last terminated.Coroutines arise most naturally in pra
ti
e when they are 
onne
ted withalgorithms for input and output. For example, suppose it is the duty of 
orou-tine A to read a �le and to perform some transformation on the input, redu
ingit to a sequen
e of items. Another 
oroutine, whi
h we will 
all B, does furtherpro
essing of those items, and outputs the answers; B will periodi
ally 
all forthe su

essive input items found by A. Thus, 
oroutine B jumps to A whenever itwants the next input item, and 
oroutine A jumps to B whenever an input itemhas been found. The reader may say, \Well, B is the main program and A ismerely a subroutine for doing the input." This, however, be
omes less true whenthe pro
ess A is very 
ompli
ated; indeed, we 
an imagine A as the main routineand B as a subroutine for doing the output, and the above des
ription remainsvalid. The usefulness of the 
oroutine idea emerges midway between these twoextremes, when both A and B are 
ompli
ated and ea
h one 
alls the other innumerous pla
es. It is not easy to �nd short, simple examples of 
oroutines thatillustrate the importan
e of the idea; the most useful 
oroutine appli
ations aregenerally quite lengthy.In order to study 
oroutines in a
tion, let us 
onsider a 
ontrived example.Suppose we want to write a program that translates one 
ode into another. Theinput 
ode to be translated is a sequen
e of 8-bit 
hara
ters terminated by aperiod, su
h as a2b5e3426fg0zyw3210pq89r. (1)This 
ode appears on the standard input �le, interspersed with whitespa
e
hara
ters in an arbitrary fashion. For our purposes a \whitespa
e 
hara
ter"will be any byte whose value is less than or equal to #20, the ASCII 
ode for ' '.All whitespa
e 
hara
ters in the input are ignored; the other 
hara
ters should beinterpreted as follows, when they are read in sequen
e: (1) If the next 
hara
teris one of the de
imal digits 0 or 1 or � � � or 9, say n, it indi
ates (n+1) repetitionsof the following 
hara
ter, whether the following 
hara
ter is a digit or not. (2) Anondigit simply denotes itself. The output of our program is to 
onsist of theresulting sequen
e separated into groups of three 
hara
ters ea
h, until a periodappears; the last group may have fewer than three 
hara
ters. For example, (1)should be translated intoabb bee eee e44 446 66f gzy w22 220 0pq 999 999 999 r. (2)Noti
e that 3426f does not mean 3427 repetitions of the letter f; it means 4fours and 3 sixes followed by f. If the input sequen
e is `1.', the output issimply `.', not `..', be
ause the �rst period terminates the output. The goal of
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68 BASIC CONCEPTS 1.4.2�our program is to produ
e a sequen
e of lines on the standard output �le, with16 three-
hara
ter groups per line (ex
ept, of 
ourse, that the �nal line might beshorter). The three-
hara
ter groups should be separated by blank spa
es, andea
h line should end as usual with the ASCII newline 
hara
ter #a.To a

omplish this translation, we will write two 
oroutines and a subrou-tine. The program begins by giving symboli
 names to three global registers,one for temporary storage and the others for 
oroutine linkage.01 * An example of 
oroutines02 t IS $255 Temporary data of short duration03 in GREG 0 Address for resuming the �rst 
oroutine04 out GREG 0 Address for resuming the se
ond 
oroutineThe next step is to set aside the memory lo
ations used for working storage.05 * Input and output buffers06 LOC Data_Segment07 GREG � Base address08 OutBuf TETRA " ",#a,0 (see exer
ise 3)09 Period BYTE '.'10 InArgs OCTA InBuf,100011 InBuf LOC #100Now we turn to the program itself. The subroutine we need, 
alled NextChar,is designed to �nd non-whitespa
e 
hara
ters of the input, and to return the nextsu
h 
hara
ter:12 * Subroutine for 
hara
ter input13 inptr GREG 0 (the 
urrent input position)14 1H LDA t,InArgs Fill the input bu�er.15 TRAP 0,Fgets,StdIn16 LDA inptr,InBuf Start at beginning of bu�er.17 0H GREG Period18 CSN inptr,t,0B If error o

urred, read a '.'.19 NextChar LDBU $0,inptr,0 Fet
h the next 
hara
ter.20 INCL inptr,121 BZ $0,1B Bran
h if at end of bu�er.22 CMPU t,$0,' '23 BNP t,NextChar Bran
h if 
hara
ter is whitespa
e.24 POP 1,0 Return to 
aller.This subroutine has the following 
hara
teristi
s:Calling sequen
e: PUSHJ $R,NextChar.Entry 
onditions: inptr points to the �rst unread 
hara
ter.Exit 
onditions: $R = next non-whitespa
e 
hara
ter of input;inptr is ready for the next entry to NextChar.The subroutine also 
hanges register t, namely register $255; but we usuallyomit that register from su
h spe
i�
ations, as we did in 1.4.1�{(10).
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1.4.2� COROUTINES 69Our �rst 
oroutine, 
alled In, �nds the 
hara
ters of the input 
ode withthe proper repli
ation. It begins initially at lo
ation In1:25 * First 
oroutine26 
ount GREG 0 (the repetition 
ounter)27 1H GO in,out,0 Send a 
hara
ter to the Out 
oroutine.28 In1 PUSHJ $0,NextChar Get a new 
hara
ter.29 CMPU t,$0,'9'30 PBP t,1B Bran
h if it ex
eeds '9'.31 SUB 
ount,$0,'0'32 BN 
ount,1B Bran
h if it is less than '0'.33 PUSHJ $0,NextChar Get another 
hara
ter.34 1H GO in,out,0 Send it to Out.35 SUB 
ount,
ount,1 De
rease the repetition 
ounter.36 PBNN 
ount,1B Repeat if ne
essary.37 JMP In1 Otherwise begin a new 
y
le.This 
oroutine has the following 
hara
teristi
s:Calling sequen
e (from Out): GO out,in,0.Exit 
onditions (to Out): $0 = next input 
hara
ter with proper repli
ation.Entry 
onditions(upon return): $0 un
hanged from its value at exit.Register 
ount is private to In and need not be mentioned.The other 
oroutine, 
alled Out, puts the 
ode into three-
hara
ter groupsand sends them to the standard output �le. It begins initially at Out1:38 * Se
ond 
oroutine39 outptr GREG 0 (the 
urrent output position)40 1H LDA t,OutBuf Empty the output bu�er.41 TRAP 0,Fputs,StdOut42 Out1 LDA outptr,OutBuf Start at beginning of bu�er.43 2H GO out,in,0 Get a new 
hara
ter from In.44 STBU $0,outptr,0 Store it as the �rst of three.45 CMP t,$0,'.'46 BZ t,1F Bran
h if it was '.'.47 GO out,in,0 Otherwise get another 
hara
ter.48 STBU $0,outptr,1 Store it as the se
ond of three.49 CMP t,$0,'.'50 BZ t,2F Bran
h if it was '.'.51 GO out,in,0 Otherwise get another 
hara
ter.52 STBU $0,outptr,2 Store it as the third of three.53 CMP t,$0,'.'54 BZ t,3F Bran
h if it was '.'.55 INCL outptr,4 Otherwise advan
e to next group.56 0H GREG OutBuf+4*1657 CMP t,outptr,0B58 PBNZ t,2B Bran
h if fewer than 16 groups.59 JMP 1B Otherwise �nish the line.
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70 BASIC CONCEPTS 1.4.2�60 3H INCL outptr,1 Move past a stored 
hara
ter.61 2H INCL outptr,1 Move past a stored 
hara
ter.62 0H GREG #a (newline 
hara
ter)63 1H STBU 0B,outptr,1 Store newline after period.64 0H GREG 0 (null 
hara
ter)65 STBU 0B,outptr,2 Store null after newline.66 LDA t,OutBuf67 TRAP 0,Fputs,StdOut Output the �nal line.68 TRAP 0,Halt,0 Terminate the program.The 
hara
teristi
s of Out are designed to 
omplement those of In:Calling sequen
e (from In): GO in,out,0.Exit 
onditions (to In): $0 un
hanged from its value at entry.Entry 
onditions(upon return): $0 = next input 
hara
ter with proper repli
ation.To 
omplete the program, we need to get everything o� to a good start.Initialization of 
oroutines tends to be a little tri
ky, although not really diÆ
ult.69 * Initialization70 Main LDA inptr,InBuf Initialize NextChar.71 GETA in,In1 Initialize In.72 JMP Out1 Start with Out (see exer
ise 2).This 
ompletes the program. The reader should study it 
arefully, noting inparti
ular how ea
h 
oroutine 
an be read and written independently as thoughthe other 
oroutine were its subroutine.We learned in Se
tion 1.4.1� that MMIX's PUSHJ and POP instru
tions aresuperior to the GO 
ommand with respe
t to subroutine linkage. But with
oroutines the opposite is true: Pushing and popping are quite unsymmetri
al,and MMIX's register sta
k 
an get hopelessly entangled if two or more 
oroutinestry to use it simultaneously. (See exer
ise 6.)There is an important relation between 
oroutines and multipass algorithms.For example, the translation pro
ess we have just des
ribed 
ould have been donein two distin
t passes: We 
ould �rst have done just the In 
oroutine, applyingit to the entire input and writing ea
h 
hara
ter with the proper amount ofrepli
ation into an intermediate �le. After this was �nished, we 
ould haveread that �le and done just the Out 
oroutine, taking the 
hara
ters in groups ofthree. This would be 
alled a \two-pass" pro
ess. (Intuitively, a \pass" denotes a
omplete s
an of the input. This de�nition is not pre
ise, and in many algorithmsthe number of passes taken is not at all 
lear; but the intuitive 
on
ept of \pass"is useful in spite of its vagueness.)Figure 22(a) illustrates a four-pass pro
ess. Quite often we will �nd thatthe same pro
ess 
an be done in just one pass, as shown in part (b) of the �gure,if we substitute four 
oroutines A, B, C, D for the respe
tive passes A, B, C, D.Coroutine A will jump to B when pass A would have written an item of outputon File 1; 
oroutine B will jump to A when pass B would have read an item ofinput from File 1, and B will jump to C when pass B would have written an item

70



1.4.2� COROUTINES 71of output on File 2; et
. UNIX R
 users will re
ognize this as a \pipe," denoted by\PassA | PassB | PassC | PassD". The programs for passes B, C, and D aresometimes referred to as \�lters."
Input Pass A File 1
File 1 Pass B File 2
File 2 Pass C File 3
File 3 Pass D Output

Input Coroutine A
Coroutine B
Coroutine C
Coroutine D OutputFig. 22. Passes: (a) a four-pass algorithm, and (b) a one-pass algorithm.Conversely, a pro
ess done by n 
oroutines 
an often be transformed into ann-pass pro
ess. Due to this 
orresponden
e it is worthwhile to 
ompare multipassalgorithms with one-pass algorithms.a) Psy
hologi
al di�eren
e. A multipass algorithm is generally easier to 
reateand to understand than a one-pass algorithm for the same problem. A pro
essthat has been broken into a sequen
e of small steps, whi
h happen one afterthe other, is easier to 
omprehend than an involved pro
ess in whi
h manytransformations take pla
e simultaneously.Also, if a very large problem is being ta
kled and if many people are supposedto 
ooperate in produ
ing a 
omputer program, a multipass algorithm providesa natural way to divide up the job.These advantages of a multipass algorithm are present in 
oroutines as well,sin
e ea
h 
oroutine 
an be written essentially separate from the others. Thelinkage makes an apparently multipass algorithm into a single-pass pro
ess.b) Time di�eren
e. The time required to pa
k, write, read, and unpa
k theintermediate data that 
ows between passes (for example, the information inthe �les of Fig. 22) is avoided in a one-pass algorithm. For this reason, a one-pass algorithm will be faster.
) Spa
e di�eren
e. The one-pass algorithm requires spa
e to hold all theprograms in memory simultaneously, while a multipass algorithm requires spa
efor only one at a time. This requirement may a�e
t the speed, even to a greaterextent than indi
ated in statement (b). For example, many 
omputers have alimited amount of \fast memory" and a larger amount of slower memory; if ea
h
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72 BASIC CONCEPTS 1.4.2�pass just barely �ts into the fast memory, the result will be 
onsiderably fasterthan if we use 
oroutines in a single pass (sin
e the use of 
oroutines wouldpresumably for
e most of the program to appear in the slower memory or to berepeatedly swapped in and out of fast memory).O

asionally there is a need to design algorithms for several 
omputer 
on-�gurations at on
e, some of whi
h have larger memory 
apa
ity than others. Insu
h 
ases it is possible to write the program in terms of 
oroutines, and to letthe memory size govern the number of passes: Load together as many 
oroutinesas feasible, and supply input or output subroutines for the missing links.Although this relationship between 
oroutines and passes is important, weshould keep in mind that 
oroutine appli
ations 
annot always be split intomultipass algorithms. If 
oroutine B gets input from A and also sends ba
k
ru
ial information to A, as in the example of 
hess play mentioned earlier, thesequen
e of a
tions 
an't be 
onverted into pass A followed by pass B.Conversely, it is 
lear that some multipass algorithms 
annot be 
onvertedto 
oroutines. Some algorithms are inherently multipass; for example, the se
ondpass may require 
umulative information from the �rst pass, like the total numberof o

urren
es of a 
ertain word in the input. There is an old joke worth notingin this regard:Little old lady, riding a bus. \Little boy, 
an you tell me how to get o�at Pasadena Street?"Little boy. \Just wat
h me, and get o� two stops before I do."(The joke is that the little boy gives a two-pass algorithm.)So mu
h for multipass algorithms. Coroutines also play an important role indis
rete system simulation; see Se
tion 2.2.5. When several more-or-less indepen-dent 
oroutines are 
ontrolled by a master pro
ess, they are often 
alled threadsof a 
omputation. We will see further examples of 
oroutines in numerous pla
esthroughout this series of books. The important idea of repli
ated 
oroutines isdis
ussed in Chapter 8, and some interesting appli
ations of this idea may befound in Chapter 10.EXERCISES1. [10 ℄ Explain why short, simple examples of 
oroutines are hard for the author ofa textbook to �nd.x 2. [20 ℄ The program in the text starts up the Out 
oroutine �rst. What wouldhappen if In were the �rst to be exe
uted instead|that is, if lines 71 and 72 were
hanged to \GETA out,Out1; JMP In1"?3. [15 ℄ Explain the TETRA instru
tion on line 08 of the program in the text. (Thereare exa
tly �fteen blank spa
es between the double-quote marks.)4. [20 ℄ Suppose two 
oroutines A and B want to treat MMIX's remainder register rRas if it were their private property, although both 
oroutines do division. (In otherwords, when one 
oroutine jumps to the other, it wants to be able to assume that the
ontents of rR will not have been altered when the other 
oroutine returns.) Devise a
oroutine linkage that allows them this freedom.
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1.4.3� INTERPRETIVE ROUTINES 735. [20 ℄ Could MMIX do reasonably eÆ
ient 
oroutine linkage by using its PUSH andPOP instru
tions, without any GO 
ommands?6. [20 ℄ The program in the text uses MMIX's register sta
k only in a very limited way,namely when In 
alls NextChar. Dis
uss to what extent two 
ooperating 
oroutines
ould both make use of the register sta
k.x 7. [30 ℄ Write an MMIX program that reverses the translation done by the program inthe text. That is, your program should 
onvert a �le 
ontaining three-
hara
ter groupslike (2) into a �le 
ontaining 
ode like (1). The output should be as short a stringof 
hara
ters as possible, ex
ept for newlines; thus, for example, the zero before the zin (1) would not really be produ
ed from (2).1.4.3�. Interpretive RoutinesIn this se
tion we will investigate a 
ommon type of program known as aninterpretive routine, often 
alled an interpreter for short. An interpretive routineis a 
omputer program that performs the instru
tions of another program, wherethe other program is written in some ma
hine-like language. By a ma
hine-likelanguage, we mean a way of representing instru
tions, where the instru
tionstypi
ally have operation 
odes, addresses, et
. (This de�nition, like most def-initions of today's 
omputer terms, is not pre
ise, nor should it be; we 
annotdraw the line exa
tly and say just whi
h programs are interpreters and whi
hare not.)Histori
ally, the �rst interpreters were built around ma
hine-like languagesdesigned spe
ially for simple programming; su
h languages were easier to usethan a real ma
hine language. The rise of symboli
 languages for programmingsoon eliminated the need for interpretive routines of that kind, but interpretershave by no means begun to die out. On the 
ontrary, their use has 
ontinuedto grow, to the extent that an e�e
tive use of interpretive routines may beregarded as one of the essential 
hara
teristi
s of modern programming. Thenew appli
ations of interpreters are made 
hie
y for the following reasons:a) a ma
hine-like language is able to represent a 
ompli
ated sequen
e of de
i-sions and a
tions in a 
ompa
t, eÆ
ient manner; andb) su
h a representation provides an ex
ellent way to 
ommuni
ate betweenpasses of a multipass pro
ess.In su
h 
ases, spe
ial purpose ma
hine-like languages are developed for use ina parti
ular program, and programs in those languages are often generated onlyby 
omputers. (Today's expert programmers are also good ma
hine designers:They not only 
reate an interpretive routine, they also de�ne a virtual ma
hinewhose language is to be interpreted.)The interpretive te
hnique has the further advantage of being relativelyma
hine-independent, sin
e only the interpreter must be revised when 
hanging
omputers. Furthermore, helpful debugging aids 
an readily be built into aninterpretive system.Examples of type (a) interpreters appear in several pla
es later in this seriesof books; see, for example, the re
ursive interpreter in Chapter 8 and the \Parsing
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74 BASIC CONCEPTS 1.4.3�Ma
hine" in Chapter 10. We typi
ally need to deal with situations in whi
h agreat many spe
ial 
ases arise, all similar, but having no really simple pattern.For example, 
onsider writing an algebrai
 
ompiler in whi
h we want to gen-erate eÆ
ient ma
hine-language instru
tions that add two quantities together.There might be ten 
lasses of quantities (
onstants, simple variables, subs
riptedvariables, �xed or 
oating point, signed or unsigned, et
.) and the 
ombinationof all pairs yields 100 di�erent 
ases. A long program would be required to do theproper thing in ea
h 
ase. The interpretive solution to this problem is to make upan ad ho
 language whose \instru
tions" �t in one byte. Then we simply preparea table of 100 \programs" in this language, where ea
h program ideally �ts ina single word. The idea is then to pi
k out the appropriate table entry and toperform the program found there. This te
hnique is simple and eÆ
ient.An example interpreter of type (b) appears in the arti
le \Computer-DrawnFlow
harts" by D. E. Knuth, CACM 6 (1963), 555{563. In a multipass program,the earlier passes must transmit information to the later passes. This informationis often transmitted most eÆ
iently in a ma
hine-like language, as a set ofinstru
tions for the later pass; the later pass is then nothing but a spe
ial purposeinterpretive routine, and the earlier pass is a spe
ial purpose \
ompiler." Thisphilosophy of multipass operation may be 
hara
terized as telling the later passwhat to do, whenever possible, rather than simply presenting it with a lot offa
ts and asking it to �gure out what to do.Another example of a type-(b) interpreter o

urs in 
onne
tion with 
om-pilers for spe
ial languages. If the language in
ludes many features that are noteasily done on the ma
hine ex
ept by subroutine, the resulting obje
t programswill be very long sequen
es of subroutine 
alls. This would happen, for example,if the language were 
on
erned primarily with multiple pre
ision arithmeti
. Insu
h a 
ase the obje
t program would be 
onsiderably shorter if it were expressedin an interpretive language. See, for example, the book ALGOL 60 Implementa-tion, by B. Randell and L. J. Russell (New York: A
ademi
 Press, 1964), whi
hdes
ribes a 
ompiler to translate from ALGOL 60 into an interpretive language,and whi
h also des
ribes the interpreter for that language; and see \An ALGOL60 Compiler," by Arthur Evans, Jr., Ann. Rev. Auto. Programming 4 (1964),87{124, for examples of interpretive routines used within a 
ompiler. The rise ofmi
roprogrammed ma
hines and of spe
ial-purpose integrated 
ir
uit 
hips hasmade this interpretive approa
h even more valuable.The TEX program, whi
h produ
ed the pages of the book you are nowreading, 
onverted a �le that 
ontained the text of this se
tion into an interpretivelanguage 
alled DVI format, designed by D. R. Fu
hs in 1979. [See D. E.Knuth, TEX: The Program (Reading, Mass.: Addison{Wesley, 1986), Part 31.℄The DVI �le that TEX produ
ed was then pro
essed by an interpreter 
alleddvips, written by T. G. Roki
ki, and 
onverted to a �le of instru
tions inanother interpretive language 
alled PostS
ript R
 [Adobe Systems In
., PostS
riptLanguage Referen
e, 3rd edition (Reading, Mass.: Addison{Wesley, 1999)℄. ThePostS
ript �le was sent to the publisher, who sent it to a 
ommer
ial printer,who used a PostS
ript interpreter to produ
e printing plates. This three-pass
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1.4.3� INTERPRETIVE ROUTINES 75operation illustrates interpreters of type (b); TEX itself also in
ludes a smallinterpreter of type (a) to pro
ess the so-
alled ligature and kerning informationfor 
hara
ters that are being printed [TEX: The Program, x545℄.There is another way to look at a program written in interpretive language:It may be regarded as a series of subroutine 
alls, one after another. Su
h a pro-gram may in fa
t be expanded into a long sequen
e of 
alls on subroutines, and,
onversely, su
h a sequen
e 
an usually be pa
ked into a 
oded form that is read-ily interpreted. The advantages of interpretive te
hniques are the 
ompa
tness ofrepresentation, the ma
hine independen
e, and the in
reased diagnosti
 
apabil-ity. An interpreter 
an often be written so that the amount of time spent in inter-pretation of the 
ode itself and bran
hing to the appropriate routine is negligible.*An MMIX simulator. When the language presented to an interpretive routineis the ma
hine language of another 
omputer, the interpreter is often 
alled asimulator (or sometimes an emulator).In the author's opinion, entirely too mu
h programmers' time has beenspent in writing su
h simulators and entirely too mu
h 
omputer time has beenwasted in using them. The motivation for simulators is simple: A 
omputerinstallation buys a new ma
hine and still wants to run programs written forthe old ma
hine (rather than rewriting the programs). However, this usually
osts more and gives poorer results than if a spe
ial task for
e of programmerswere given temporary employment to do the reprogramming. For example, theauthor on
e parti
ipated in su
h a reprogramming proje
t, and a serious errorwas dis
overed in the original program, whi
h had been in use for several years;the new program worked at �ve times the speed of the old, besides giving theright answers for a 
hange! (Not all simulators are bad; for example, it is usuallyadvantageous for a 
omputer manufa
turer to simulate a new ma
hine before ithas been built, so that software for the new ma
hine may be developed as soon aspossible. But that is a very spe
ialized appli
ation.) An extreme example of theineÆ
ient use of 
omputer simulators is the true story of ma
hine A simulatingma
hine B running a program that simulates ma
hine C . This is the way tomake a large, expensive 
omputer give poorer results than its 
heaper 
ousin.In view of all this, why should su
h a simulator rear its ugly head in thisbook? There are three reasons:a) The simulator we will des
ribe below is a good example of a typi
al interpre-tive routine; the basi
 te
hniques employed in interpreters are illustrated here.It also illustrates the use of subroutines in a moderately long program.b) We will des
ribe a simulator of the MMIX 
omputer, written in (of all things)the MMIX language. This will reinfor
e our knowledge of the ma
hine. It also willfa
ilitate the writing of MMIX simulators for other 
omputers, although we willnot plunge deeply into the details of 64-bit integer or 
oating point arithmeti
.
) Our simulation of MMIX explains how the register sta
k 
an be implementedeÆ
iently in hardware, so that pushing and popping are a

omplished with verylittle work. Similarly, the simulator presented here 
lari�es the SAVE and UNSAVEoperators, and it provides details about the behavior of trip interrupts. Su
h
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76 BASIC CONCEPTS 1.4.3�things are best understood by looking at a referen
e implementation, so that we
an see how the ma
hine really works.Computer simulators as des
ribed in this se
tion should be distinguishedfrom dis
rete system simulators. Dis
rete system simulators are important pro-grams that will be dis
ussed in Se
tion 2.2.5.Now let's turn to the task of writing an MMIX simulator. We begin bymaking a tremendous simpli�
ation: Instead of attempting to simulate all thethings that happen simultaneously in a pipelined 
omputer, we will interpretonly one instru
tion at a time. Pipeline pro
essing is extremely instru
tive andimportant, but it is beyond the s
ope of this book; interested readers 
an �nd a
omplete program for a full-
edged pipeline \meta-simulator" in the MMIXwaredo
ument. We will 
ontent ourselves here with a simulator that is blithelyunaware of su
h things as 
a
he memory, virtual address translation, dynami
instru
tion s
heduling, reorder bu�ers, et
., et
. Moreover, we will simulate onlythe instru
tions that ordinary MMIX user programs 
an do; privileged instru
tionslike LDVTS, whi
h are reserved for the operating system, will be 
onsiderederroneous if they arise. Trap interrupts will not be simulated by our programunless they perform rudimentary input or output as des
ribed in Se
tion 1.3.2�.The input to our program will be a binary �le that spe
i�es the initial
ontents of memory, just as the memory would be set up by an operating systemwhen running a user program (in
luding 
ommand line data). We want to mimi
the behavior of MMIX's hardware, pretending that MMIX itself is interpreting theinstru
tions that begin at symboli
 lo
ation Main; thus, we want to implementthe spe
i�
ations that were laid down in Se
tion 1.3.1�, in the run-time envi-ronment that was dis
ussed in Se
tion 1.3.2�. Our program will, for example,maintain an array of 256 o
tabytes g[0℄, g[1℄, : : : , g[255℄ for the simulated globalregisters. The �rst 32 elements of this array will be the spe
ial registers listed inTable 1.3.1�{2; one of those spe
ial registers will be the simulated 
lo
k, rC. Wewill assume that ea
h instru
tion takes a �xed amount of time, as spe
i�ed byTable 1.3.1�{1; the simulated rC will in
rease by 232 for ea
h � and by 1 for ea
h �.Thus, for example, after we have simulated Program 1.3.2�P, the simulated rCwill 
ontain #00003228000bb091, whi
h represents 12840�+ 766097�.The program is rather long, but it has many points of interest and we willstudy it in short easy pie
es. It begins as usual by de�ning a few symbols and byspe
ifying the 
ontents of the data segment. We put the array of 256 simulatedglobal registers �rst in that segment; for example, the simulated $255 will be theo
tabyte g[255℄, in memory lo
ation Global+8*255. This global array is followedby a similar array 
alled the lo
al register ring, where we will keep the top itemsof the simulated register sta
k. The size of this ring is set to 256, although 512or any higher power of 2 would also work. (A large ring of lo
al registers 
ostsmore, but it might be noti
eably faster when a program uses the register sta
kheavily. One of the purposes of a simulator is to �nd out whether additionalhardware would be worth the expense.) The main portion of the data segment,starting at Chunk0, will be devoted to the simulated memory.
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1.4.3� INTERPRETIVE ROUTINES 77001 * MMIX Simulator (Simplified)002 t IS $255 Volatile register for temporary info003 lring_size IS 256 Size of the lo
al register ring004 LOC Data_Segment Start at lo
ation #2000000000000000005 Global LOC �+8*256 256 o
tabytes for global registers006 g GREG Global Base address for globals007 Lo
al LOC �+8*lring_size lring_size o
tabytes for lo
al registers008 l GREG Lo
al Base address for lo
als009 GREG � Base address for IOArgs and Chunk0010 IOArgs OCTA 0,BinaryRead (See exer
ise 20)011 Chunk0 IS � Beginning of simulated memory area012 LOC #100 Put everything else in the text segment.One of the key subroutines we will need is 
alled MemFind. Given a 64-bitaddress A, this subroutine returns the resulting address R where the simulated
ontents of M8[A℄ 
an be found. Of 
ourse 264 bytes of simulated memory
annot be squeezed into a 261-byte data segment; but the simulator remembersall addresses that have o

urred before, and it assumes that all lo
ations not yeten
ountered are equal to zero.Memory is divided into \
hunks" of 212 bytes ea
h. MemFind looks at theleading 64� 12 = 52 bits of A to see what 
hunk it belongs to, and extends thelist of known 
hunks, if ne
essary. Then it 
omputes R by adding the trailing 12bits of A to the starting address of the relevant simulated 
hunk. (The 
hunk size
ould be any power of 2, as long as ea
h 
hunk 
ontains at least one o
tabyte.Small 
hunks 
ause MemFind to sear
h through longer lists of 
hunks-in-hand;large 
hunks 
ause MemFind to waste spa
e for bytes that will never be a

essed.)Ea
h simulated 
hunk is en
apsulated in a \node," whi
h o

upies 212 + 24bytes of memory. The �rst o
tabyte of su
h a node, 
alled the KEY, identi�es thesimulated address of the �rst byte in the 
hunk. The se
ond o
tabyte, 
alled theLINK, points to the next node on MemFind's list; it is zero on the last node ofthe list. The LINK is followed by 212 bytes of simulated memory 
alled the DATA.Finally, ea
h node ends with eight all-zero bytes, whi
h are used as padding inthe implementation of input-output (see exer
ises 15{17).MemFind maintains its list of 
hunk nodes in order of use: The �rst node,pointed to by head, is the one that MemFind found on the previous 
all, and itlinks to the next-most-re
ently-used 
hunk, et
. If the future is like the past,MemFind will therefore not have to sear
h far down its list. (Se
tion 6.1 dis
ussessu
h \self-organizing" list sear
hes in detail.) Initially head points to Chunk0,whose KEY and LINK and DATA are all zero. The allo
ation pointer allo
 is setinitially to the pla
e where the next 
hunk node will appear when it is needed,namely Chunk0+nodesize.We implement MemFind with the PREFIX operation of MMIXAL dis
ussed inSe
tion 1.4.1�, so that the private symbols head, key, addr, et
., will not 
on
i
twith any symbols in the rest of the program. The 
alling sequen
e will beSET arg,A; PUSHJ res,MemFind (1)after whi
h the resulting address R will appear in register res.
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78 BASIC CONCEPTS 1.4.3�013 PREFIX :Mem: (Begin private symbols for MemFind)014 head GREG 0 Address of �rst 
hunk015 
urkey GREG 0 KEY(head)016 allo
 GREG 0 Address of next 
hunk to allo
ate017 Chunk IS #1000 Bytes per 
hunk, must be a power of 2018 addr IS $0 The given address A019 key IS $1 Its 
hunk address020 test IS $2 Temporary register for key sear
h021 newlink IS $3 The se
ond most re
ently used node022 p IS $4 Temporary pointer register023 t IS :t External temporary register024 KEY IS 0025 LINK IS 8026 DATA IS 16027 nodesize GREG Chunk+3*8028 mask GREG Chunk-1029 :MemFind ANDN key,addr,mask030 CMPU t,key,
urkey031 PBZ t,4F Bran
h if head is the right 
hunk.032 BN addr,:Error Disallow negative addresses A.033 SET newlink,head Prepare for the sear
h loop.034 1H SET p,head p head:035 LDOU head,p,LINK head LINK(p).036 PBNZ head,2F Bran
h if head 6= 0.037 SET head,allo
 Otherwise allo
ate a new node.038 STOU key,head,KEY039 ADDU allo
,allo
,nodesize040 JMP 3F041 2H LDOU test,head,KEY042 CMPU t,test,key043 BNZ t,1B Loop ba
k if KEY(head) 6= key.044 3H LDOU t,head,LINK Adjust pointers: t LINK(head),045 STOU newlink,head,LINK LINK(head) newlink,046 SET 
urkey,key 
urkey key,047 STOU t,p,LINK LINK(p) t.048 4H SUBU t,addr,key t 
hunk o�set.049 LDA $0,head,DATA $0 address of DATA(head).050 ADDU $0,t,$0051 POP 1,0 Return R.052 PREFIX : (End of the `:Mem:' pre�x)053 res IS $2 Result register for PUSHJ054 arg IS res+1 Argument register for PUSHJWe 
ome next to the most interesting aspe
t of the simulator, the imple-mentation of MMIX's register sta
k. Re
all from Se
tion 1.4.1� that the registersta
k is 
on
eptually a list of � items S[0℄, S[1℄, : : : , S[� � 1℄. The �nal itemS[� � 1℄ is said to be at the \top" of the sta
k, and MMIX's lo
al registers $0, $1,: : : , $(L�1) are the topmost L items S[� �L℄, S[� �L+1℄, : : : , S[� �1℄; here Lis the value of spe
ial register rL. We 
ould simulate the sta
k by simply keeping
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1.4.3� INTERPRETIVE ROUTINES 79it entirely in the simulated memory; but an eÆ
ient ma
hine wants its registersto be instantly a

essible, not in a relatively slow memory unit. Therefore wewill simulate an eÆ
ient design that keeps the topmost sta
k items in an arrayof internal registers 
alled the lo
al register ring.The basi
 idea is quite simple. Suppose the lo
al register ring has � elements,l[0℄, l[1℄, : : : , l[�� 1℄. Then we keep lo
al register $k in l[(� + k) mod �℄, where� is an appropriate o�set. (The value of � is 
hosen to be a power of 2, so thatremainders mod � require no expensive 
omputation. Furthermore we want �to be at least 256, so that there is room for all of the lo
al registers.) A PUSHoperation, whi
h renumbers the lo
al registers so that what on
e was, say, $3 isnow 
alled $0, simply in
reases the value of � by 3; a POP operation restores theprevious state by de
reasing �. Although the registers 
hange their numbers, nodata a
tually needs to be pushed down or popped up.Of 
ourse we need to use memory as a ba
kup when the register sta
k getslarge. The status of the ring at any time is best visualized in terms of threevariables, �, �, and 
:

�
�


 L (2)
Elements l[�℄, l[� + 1℄, : : : , l[� � 1℄ of the ring are the 
urrent lo
al registers$0, $1, : : : , $(L � 1); elements l[�℄, l[� + 1℄, : : : , l[
 � 1℄ are 
urrently unused;and elements l[
℄, l[
 + 1℄, : : : , l[� � 1℄ 
ontain items of the register sta
k thathave been pushed down. If 
 6= �, we 
an in
rease 
 by 1 if we �rst store l[
℄in memory. If 
 6= �, we 
an de
rease 
 by 1 if we then load l[
℄. MMIX has twospe
ial registers 
alled the sta
k pointer rS and the sta
k o�set rO, whi
h holdthe memory addresses where l[
℄ and l[�℄ will be stored, if ne
essary. The valuesof �, �, and 
 are related to rL, rS, and rO by the formulas� = (rO=8) mod �; � = (�+ rL) mod �; 
 = (rS=8) mod �: (3)The simulator keeps most of MMIX's spe
ial registers in the �rst 32 positionsof the global register array. For example, the simulated remainder register rR isthe o
tabyte in lo
ation Global+8*rR . But eight of the spe
ial registers, in
lud-ing rS, rO, rL, and rG, are potentially relevant to every simulated instru
tion,so the simulator maintains them separately in its own global registers. Thus, forexample, register ss holds the simulated value of rS, and register ll holds eighttimes the simulated value of rL:055 ss GREG 0 The simulated sta
k pointer, rS056 oo GREG 0 The simulated sta
k o�set, rO057 ll GREG 0 The simulated lo
al threshold register, rL, times 8058 gg GREG 0 The simulated global threshold register, rG, times 8

79



80 BASIC CONCEPTS 1.4.3�059 aa GREG 0 The simulated arithmeti
 status register, rA060 ii GREG 0 The simulated interval 
ounter, rI061 uu GREG 0 The simulated usage 
ounter, rU062 

 GREG 0 The simulated 
y
le 
ounter, rCHere is a subroutine that obtains the 
urrent value of the simulated register$k, given k. The 
alling sequen
e isSLU arg,k,3; PUSHJ res,GetReg (4)after whi
h the desired value will be in res.063 lring_mask GREG 8*lring_size-1064 :GetReg CMPU t,$0,gg Subroutine to get $k:065 BN t,1F Bran
h if k < G.066 LDOU $0,g,$0 Otherwise $k is global; load g[k℄.067 POP 1,0 Return the result.068 1H CMPU t,$0,ll t [$k is lo
al℄.069 ADDU $0,$0,oo070 AND $0,$0,lring_mask071 LDOU $0,l,$0 Load l[(�+ k) mod �℄.072 CSNN $0,t,0 Zero it if $k is marginal.073 POP 1,0 Return the result.Noti
e the 
olon in the label �eld of line 064. This 
olon is redundant, be
ause the
urrent pre�x is `:' (see line 052); the 
olon on line 029 was, however, ne
essaryfor the external symbol MemFind, be
ause at that time the 
urrent pre�x was`:Mem:'. Colons in the label �eld, redundant or not, give us a handy way toadvertise the fa
t that a subroutine is being de�ned.The next subroutines, Sta
kStore and Sta
kLoad, simulate the operationsof in
reasing 
 by 1 and de
reasing 
 by 1 in the diagram (2). They returnno result. Sta
kStore is 
alled only when 
 6= �; Sta
kLoad is 
alled onlywhen 
 6= �. Both of them must save and restore rJ, be
ause they are not leafsubroutines.074 :Sta
kStore GET $0,rJ Save the return address.075 AND t,ss,lring_mask076 LDOU $1,l,t $1 l[
℄.077 SET arg,ss078 PUSHJ res,MemFind079 STOU $1,res,0 M8[rS℄ $1.080 ADDU ss,ss,8 In
rease rS by 8.081 PUT rJ,$0 Restore the return address.082 POP 0 Return to 
aller.083 :Sta
kLoad GET $0,rJ Save the return address.084 SUBU ss,ss,8 De
rease rS by 8.085 SET arg,ss086 PUSHJ res,MemFind087 LDOU $1,res,0 $1 M8[rS℄.088 AND t,ss,lring_mask
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1.4.3� INTERPRETIVE ROUTINES 81089 STOU $1,l,t l[
℄ $1.090 PUT rJ,$0 Restore the return address.091 POP 0 Return to 
aller.(Register rJ on lines 074, 081, 083, and 090 is, of 
ourse, the real rJ, not thesimulated rJ. When we simulate a ma
hine on itself, we have to remember tokeep su
h things straight!)The Sta
kRoom subroutine is 
alled when we have just in
reased �. It 
he
kswhether � = 
 and, if so, it in
reases 
.092 :Sta
kRoom SUBU t,ss,oo093 SUBU t,t,ll094 AND t,t,lring_mask095 PBNZ t,1F Bran
h if (rS�rO)=8 6� rL (modulo �).096 GET $0,rJ Oops, we're not a leaf subroutine.097 PUSHJ res,Sta
kStore Advan
e rS.098 PUT rJ,$0 Restore the return address.099 1H POP 0 Return to 
aller.Now we 
ome to the heart of the simulator, its main simulation loop. An in-terpretive routine generally has a 
entral 
ontrol se
tion that is 
alled into a
tionbetween interpreted instru
tions. In our 
ase, the program transfers to lo
ationFet
h when it is ready to simulate a new 
ommand. We keep the address � ofthe next simulated instru
tion in the global register inst_ptr. Fet
h usuallysets lo
  inst_ptr and advan
es inst_ptr by 4; but if we are simulatinga RESUME 
ommand that inserts the simulated rX into the instru
tion stream,Fet
h sets lo
 inst_ptr�4 and leaves inst_ptr un
hanged. This simulator
onsiders an instru
tion to be ineligible for exe
ution unless its lo
ation lo
 isin the text segment (that is, lo
 < #2000000000000000).100 * The main loop101 lo
 GREG 0 Where the simulator is at102 inst_ptr GREG 0 Where the simulator will be next103 inst GREG 0 The 
urrent instru
tion being simulated104 resuming GREG 0 Are we resuming an instru
tion in rX?105 Fet
h PBZ resuming,1F Bran
h if not resuming.106 SUBU lo
,inst_ptr,4 lo
 inst_ptr� 4.107 LDTU inst,g,8*rX+4 inst right half of rX.108 JMP 2F109 1H SET lo
,inst_ptr lo
 inst_ptr.110 SET arg,lo
111 PUSHJ res,MemFind112 LDTU inst,res,0 inst M4[lo
℄.113 ADDU inst_ptr,lo
,4 inst_ptr lo
+ 4.114 2H CMPU t,lo
,g115 BNN t,Error Bran
h if lo
 � Data_Segment.The main 
ontrol routine does the things 
ommon to all instru
tions. Itunpa
ks the 
urrent instru
tion into its various parts and puts the parts into
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82 BASIC CONCEPTS 1.4.3�
onvenient registers for later use. Most importantly, it sets global register f to64 bits of \info" 
orresponding to the 
urrent op
ode. A master table, whi
hstarts at lo
ation Info, 
ontains su
h information for ea
h of MMIX's 256 op
odes.(See Table 1 on page 88.) For example, f is set to an odd value if and only if theZ �eld of the 
urrent op
ode is an \immediate" operand or the op
ode is JMP;similarly f ^ #40 is nonzero if and only if the instru
tion has a relative address.Later steps of the simulator will be able to de
ide qui
kly what needs to be donewith respe
t to the 
urrent instru
tion be
ause most of the relevant informationappears in register f.116 op GREG 0 Op
ode of the 
urrent instru
tion117 xx GREG 0 X �eld of the 
urrent instru
tion118 yy GREG 0 Y �eld of the 
urrent instru
tion119 zz GREG 0 Z �eld of the 
urrent instru
tion120 yz GREG 0 YZ �eld of the 
urrent instru
tion121 f GREG 0 Pa
ked information about the 
urrent op
ode122 xxx GREG 0 X �eld times 8123 x GREG 0 X operand and/or result124 y GREG 0 Y operand125 z GREG 0 Z operand126 xptr GREG 0 Lo
ation where x should be stored127 ex
 GREG 0 Arithmeti
 ex
eptions128 Z_is_immed_bit IS #1 Flag bits possibly set in f129 Z_is_sour
e_bit IS #2130 Y_is_immed_bit IS #4131 Y_is_sour
e_bit IS #8132 X_is_sour
e_bit IS #10133 X_is_dest_bit IS #20134 Rel_addr_bit IS #40135 Mem_bit IS #80136 Info IS #1000137 Done IS Info+8*256138 info GREG Info (Base address for the master info table)139 
255 GREG 8*255 (A handy 
onstant)140 
256 GREG 8*256 (Another handy 
onstant)141 MOR op,inst,#8 op inst� 24.142 MOR xx,inst,#4 xx (inst� 16) ^ #ff.143 MOR yy,inst,#2 yy (inst� 8) ^ #ff.144 MOR zz,inst,#1 zz inst ^ #ff.145 0H GREG -#10000146 ANDN yz,inst,0B147 SLU xxx,xx,3148 SLU t,op,3149 LDOU f,info,t f Info[op℄.150 SET x,0 x 0 (default value).151 SET y,0 y 0 (default value).152 SET z,0 z 0 (default value).153 SET ex
,0 ex
 0 (default value).
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1.4.3� INTERPRETIVE ROUTINES 83The �rst thing we do, after having unpa
ked the instru
tion into its various�elds, is 
onvert a relative address to an absolute address if ne
essary.154 AND t,f,Rel_addr_bit155 PBZ t,1F Bran
h if not a relative address.156 PBEV f,2F Bran
h if op isn't JMP or JMPB.157 9H GREG -#1000000158 ANDN yz,inst,9B yz inst ^ #ffffff (namely XYZ).159 ADDU t,yz,9B t XYZ� 224.160 JMP 3F161 2H ADDU t,yz,0B t YZ� 216.162 3H CSOD yz,op,t Set yz t if op is odd (\ba
kward").163 SL t,yz,2164 ADDU yz,lo
,t yz lo
+ yz� 2.The next task is 
riti
al for most instru
tions: We install the operandsspe
i�ed by the Y and Z �elds into global registers y and z. Sometimes we alsoinstall a third operand into global register x, spe
i�ed by the X �eld or 
omingfrom a spe
ial register like the simulated rD or rM.165 1H PBNN resuming,Install_X Bran
h unless resuming < 0.... (See exer
ise 14.)174 Install_X AND t,f,X_is_sour
e_bit175 PBZ t,1F Bran
h unless $X is a sour
e.176 SET arg,xxx177 PUSHJ res,GetReg178 SET x,res x $X.179 1H SRU t,f,5180 AND t,t,#f8 t spe
ial register number, times 8.181 PBZ t,Install_Z182 LDOU x,g,t If t 6= 0, set x g[t℄.183 Install_Z AND t,f,Z_is_sour
e_bit184 PBZ t,1F Bran
h unless $Z is a sour
e.185 SLU arg,zz,3186 PUSHJ res,GetReg187 SET z,res z $Z.188 JMP Install_Y189 1H CSOD z,f,zz If Z is immediate, z Z.190 AND t,op,#f0191 CMPU t,t,#e0192 PBNZ t,Install_Y Bran
h unless #e0 � op < #f0.193 AND t,op,#3194 NEG t,3,t195 SLU t,t,4196 SLU z,yz,t z yz� (48; 32; 16; or 0).197 SET y,x y x.198 Install_Y AND t,f,Y_is_immed_bit199 PBZ t,1F Bran
h unless Y is immediate.200 SET y,yy y Y.201 SLU t,yy,40202 ADDU f,f,t Insert Y into left half of f.
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84 BASIC CONCEPTS 1.4.3�203 1H AND t,f,Y_is_sour
e_bit204 BZ t,1F Bran
h unless $Y is a sour
e.205 SLU arg,yy,3206 PUSHJ res,GetReg207 SET y,res y $Y.When the X �eld spe
i�es a destination register, we set xptr to the memoryaddress where we will eventually store the simulated result; this address will beeither in the Global array or the Lo
al ring. The simulated register sta
k growsat this point if the destination register must be 
hanged from marginal to lo
al.208 1H AND t,f,X_is_dest_bit209 BZ t,1F Bran
h unless $X is a destination.210 XDest CMPU t,xxx,gg211 BN t,3F Bran
h if $X is not global.212 LDA xptr,g,xxx xptr address of g[X℄.213 JMP 1F214 2H ADDU t,oo,ll215 AND t,t,lring_mask216 STCO 0,l,t l[(�+ L) mod �℄ 0.217 INCL ll,8 L L+ 1. ($L be
omes lo
al.)218 PUSHJ res,Sta
kRoom Make sure � 6= 
.219 3H CMPU t,xxx,ll220 BNN t,2B Bran
h if $X is not lo
al.221 ADD t,xxx,oo222 AND t,t,lring_mask223 LDA xptr,l,t xptr address of l[(�+X) mod �℄.Finally we rea
h the 
limax of the main 
ontrol 
y
le: We simulate the
urrent instru
tion by essentially doing a 256-way bran
h, based on the 
urrentop
ode. The left half of register f is, in fa
t, an MMIX instru
tion that we performat this point, by inserting it into the instru
tion stream via a RESUME 
ommand.For example, if we are simulating an ADD 
ommand, we put \ADD x,y,z" intothe right half of rX and 
lear the ex
eption bits of rA; the RESUME 
ommandwill then 
ause the sum of registers y and z to be pla
ed in register x, and rAwill re
ord whether over
ow o

urred. After the RESUME, 
ontrol will pass tolo
ation Done, unless the inserted instru
tion was a bran
h or jump.224 1H AND t,f,Mem_bit225 PBZ t,1F Bran
h unless inst a

esses memory.226 ADDU arg,y,z227 CMPU t,op,#A0 t [op is a load instru
tion℄.228 BN t,2F229 CMPU t,arg,g230 BN t,Error Error if storing into the text segment.231 2H PUSHJ res,MemFind res address of M[y+ z℄.232 1H SRU t,f,32233 PUT rX,t rX left half of f.234 PUT rM,x rM x (prepare for MUX).235 PUT rE,x rE x (prepare for FCMPE, FUNE, FEQLE).
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1.4.3� INTERPRETIVE ROUTINES 85236 0H GREG #30000237 AND t,aa,0B t 
urrent rounding mode.238 ORL t,U_BIT<<8 Enable under
ow trip (see below).239 PUT rA,t Prepare rA for arithmeti
.240 0H GREG Done241 PUT rW,0B rW Done.242 RESUME 0 Exe
ute the instru
tion in rX.Some instru
tions 
an't be simulated by simply \performing themselves" likean ADD 
ommand and jumping to Done. For example, a MULU 
ommand mustinsert the high half of its 
omputed produ
t into the simulated rH. A bran
h
ommand must 
hange inst_ptr if the bran
h is taken. A PUSHJ 
ommandmust push the simulated register sta
k, and a POP 
ommand must pop it. SAVE,UNSAVE, RESUME, TRAP, et
., all need spe
ial 
are; therefore the next part of thesimulator deals with all 
ases that don't �t the ni
e \x equals y op z" pattern.Let's start with multipli
ation and division, sin
e they are easy:243 MulU MULU x,y,z Multiply y by z, unsigned.244 GET t,rH Set t upper half of the produ
t.245 STOU t,g,8*rH g[rH℄ upper half produ
t.246 JMP XDone Finish by storing x.247 Div DIV x,y,z... (For division, see exer
ise 6.)If the simulated instru
tion was a bran
h 
ommand, say \BZ $X,RA", themain 
ontrol routine will have 
onverted the relative address RA to an absoluteaddress in register yz (line 164), and it will also have pla
ed the 
ontents of thesimulated $X into register x (line 178). The RESUME 
ommand will then exe
utethe instru
tion \BZ x,BTaken" (line 242); and 
ontrol will pass to BTaken insteadof Done if the simulated bran
h is taken. BTaken adds 2� to the simulatedrunning time, 
hanges inst_ptr, and jumps to Update.254 BTaken ADDU 

,

,4 In
rease rC by 4�.255 PBTaken SUBU 

,

,2 De
rease rC by 2�.256 SET inst_ptr,yz inst_ptr bran
h address.257 JMP Update Finish the 
ommand.258 Go SET x,inst_ptr GO instru
tion: Set x lo
+ 4.259 ADDU inst_ptr,y,z inst_ptr (y+ z) mod 264.260 JMP XDone Finish by storing x.(Line 257 
ould have jumped to Done, but that would be slower; a short
ut toUpdate is justi�ed be
ause a bran
h 
ommand doesn't store x and 
annot 
ausean arithmeti
 ex
eption. See lines 500{541 below.)A PUSHJ or PUSHGO 
ommand pushes the simulated register sta
k down byin
reasing the � pointer of (2); this means in
reasing the simulated rO, namelyregister oo. If the 
ommand is \PUSHJ $X,RA" and if $X is lo
al, we push X+ 1o
tabytes down by �rst setting $X  X and then in
reasing oo by 8(X + 1).(The value we have put in $X will be used later by POP to determine how torestore oo to its former value. Simulated register $X will then be set to the
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86 BASIC CONCEPTS 1.4.3�result of the subroutine, as explained in Se
tion 1.4.1�.) If $X is global, we pushrL + 1 o
tabytes down in a similar way.261 PushGo ADDU yz,y,z yz (y+ z) mod 264.262 PushJ SET inst_ptr,yz inst_ptr yz.263 CMPU t,xxx,gg264 PBN t,1F Bran
h if $X is lo
al.265 SET xxx,ll Pretend that X = rL.266 SRU xx,xxx,3267 INCL ll,8 In
rease rL by 1.268 PUSHJ 0,Sta
kRoom Make sure � 6= 
 in (2).269 1H ADDU t,xxx,oo270 AND t,t,lring_mask271 STOU xx,l,t l[(�+X) mod �℄ X.272 ADDU t,lo
,4273 STOU t,g,8*rJ g[rJ℄ lo
+ 4.274 INCL xxx,8275 SUBU ll,ll,xxx De
rease rL by X + 1.276 ADDU oo,oo,xxx In
rease rO by 8(X + 1).277 JMP Update Finish the 
ommand.Spe
ial routines are needed also to simulate POP, SAVE, UNSAVE, and severalother op
odes in
luding RESUME. Those routines deal with interesting detailsabout MMIX, and we will 
onsider them in the exer
ises; but we'll skip them fornow, sin
e they do not involve any te
hniques related to interpretive routinesthat we haven't seen already.We might as well present the 
ode for SYNC and TRIP, however, sin
e thoseroutines are so simple. (Indeed, there's nothing to do for \SYNC XYZ" ex
ept to
he
k that XYZ � 3, sin
e we aren't simulating 
a
he memory.) Furthermore,we will take a look at the 
ode for TRAP, whi
h is interesting be
ause it illustratesthe important te
hnique of a jump table for multiway swit
hing:278 Syn
 BNZ xx,Error Bran
h if X 6= 0.279 CMPU t,yz,4280 BNN t,Error Bran
h if YZ � 4.281 JMP Update Finish the 
ommand.282 Trip SET xx,0 Initiate a trip to lo
ation 0.283 JMP TakeTrip (See exer
ise 13.)284 Trap STOU inst_ptr,g,8*rWW g[rWW℄ inst_ptr.285 0H GREG #8000000000000000286 ADDU t,inst,0B287 STOU t,g,8*rXX g[rXX℄ inst+ 263.288 STOU y,g,8*rYY g[rYY℄ y.289 STOU z,g,8*rZZ g[rZZ℄ z.290 SRU y,inst,6291 CMPU t,y,4*11292 BNN t,Error Bran
h if X 6= 0 or Y > Ftell.293 LDOU t,g,
255 t g[255℄.
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1.4.3� INTERPRETIVE ROUTINES 87294 0H GREG �+4295 GO y,0B,y Jump to � + 4 + 4Y.296 JMP SimHalt Y = Halt: Jump to SimHalt.297 JMP SimFopen Y = Fopen: Jump to SimFopen.298 JMP SimF
lose Y = F
lose: Jump to SimF
lose.299 JMP SimFread Y = Fread: Jump to SimFread.300 JMP SimFgets Y = Fgets: Jump to SimFgets.301 JMP SimFgetws Y = Fgetws: Jump to SimFgetws.302 JMP SimFwrite Y = Fwrite: Jump to SimFwrite.303 JMP SimFputs Y = Fputs: Jump to SimFputs.304 JMP SimFputws Y = Fputws: Jump to SimFputws.305 JMP SimFseek Y = Fseek: Jump to SimFseek.306 JMP SimFtell Y = Ftell: Jump to SimFtell.307 TrapDone STO t,g,8*rBB Set g[rBB℄ t.308 STO t,g,
255 A trap ends with g[255℄ g[rBB℄.309 JMP Update Finish the 
ommand.(See exer
ises 15{17 for SimFopen, SimF
lose, SimFread, et
.)Now let's look at the master Info table (Table 1), whi
h allows the simulatorto deal rather painlessly with 256 di�erent op
odes. Ea
h table entry is ano
tabyte 
onsisting of (i) a four-byte MMIX instru
tion, whi
h will be invokedby the RESUME instru
tion on line 242; (ii) two bytes that de�ne the simulatedrunning time, one byte for � and one byte for � ; (iii) a byte that names a spe
ialregister, if su
h a register ought to be loaded into x on line 182; and (iv) a bytethat is the sum of eight 1-bit 
ags, expressing spe
ial properties of the op
ode.For example, the info for op
ode FIX isFIX x,0,z; BYTE 0,4,0,#26 ;it means that (i) the instru
tion FIX x,0,z should be performed, to round a
oating point number to a �xed point integer; (ii) the simulated running timeshould be in
reased by 0� + 4� ; (iii) no spe
ial register is needed as an inputoperand; and (iv) the 
ag byte#26 = X_is_dest_bit + Y_is_immed_bit + Z_is_sour
e_bitdetermines the treatment of registers x, y, and z. (The Y_is_immed_bit a
tually
auses the Y �eld of the simulated instru
tion to be inserted into the Y �eld of\FIX x,0,z"; see line 202.)One interesting aspe
t of the Info table is that the RESUME 
ommand ofline 242 exe
utes the instru
tion as if it were in lo
ation Done-4, sin
e rW =Done. Therefore, if the instru
tion is a JMP, the address must be relative toDone-4; but MMIXAL always assembles JMP 
ommands with an address relativeto the assembled lo
ation �. We tri
k the assembler into doing the right thingby writing, for example, \JMP Trap+�-O", where O is de�ned to equal Done-4.Then the RESUME 
ommand will indeed jump to lo
ation Trap as desired.After we have exe
uted the spe
ial instru
tion inserted by RESUME, we nor-mally get to lo
ation Done. From here on everything is anti
lima
ti
; but
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88 BASIC CONCEPTS 1.4.3�Table 1MASTER INFORMATION TABLE FOR SIMULATOR CONTROLO IS Done-4LOC InfoJMP Trap+�-O; BYTE 0,5,0,#0a (TRAP)FCMP x,y,z; BYTE 0,1,0,#2a (FCMP)FUN x,y,z; BYTE 0,1,0,#2a (FUN)FEQL x,y,z; BYTE 0,1,0,#2a (FEQL)FADD x,y,z; BYTE 0,4,0,#2a (FADD)FIX x,0,z; BYTE 0,4,0,#26 (FIX)FSUB x,y,z; BYTE 0,4,0,#2a (FSUB)FIXU x,0,z; BYTE 0,4,0,#26 (FIXU)FLOT x,0,z; BYTE 0,4,0,#26 (FLOT)FLOT x,0,z; BYTE 0,4,0,#25 (FLOTI)FLOTU x,0,z; BYTE 0,4,0,#26 (FLOTU)...FMUL x,y,z; BYTE 0,4,0,#2a (FMUL)FCMPE x,y,z; BYTE 0,4,rE,#2a (FCMPE)FUNE x,y,z; BYTE 0,1,rE,#2a (FUNE)FEQLE x,y,z; BYTE 0,4,rE,#2a (FEQLE)FDIV x,y,z; BYTE 0,40,0,#2a (FDIV)FSQRT x,0,z; BYTE 0,40,0,#26 (FSQRT)FREM x,y,z; BYTE 0,4,0,#2a (FREM)FINT x,0,z; BYTE 0,4,0,#26 (FINT)MUL x,y,z; BYTE 0,10,0,#2a (MUL)MUL x,y,z; BYTE 0,10,0,#29 (MULI)JMP MulU+�-O; BYTE 0,10,0,#2a (MULU)JMP MulU+�-O; BYTE 0,10,0,#29 (MULUI)JMP Div+�-O; BYTE 0,60,0,#2a (DIV)JMP Div+�-O; BYTE 0,60,0,#29 (DIVI)JMP DivU+�-O; BYTE 0,60,rD,#2a (DIVU)JMP DivU+�-O; BYTE 0,60,rD,#29 (DIVUI)ADD x,y,z; BYTE 0,1,0,#2a (ADD)ADD x,y,z; BYTE 0,1,0,#29 (ADDI)ADDU x,y,z; BYTE 0,1,0,#2a (ADDU)...CMPU x,y,z; BYTE 0,1,0,#29 (CMPUI)NEG x,0,z; BYTE 0,1,0,#26 (NEG)NEG x,0,z; BYTE 0,1,0,#25 (NEGI)NEGU x,0,z; BYTE 0,1,0,#26 (NEGU)NEGU x,0,z; BYTE 0,1,0,#25 (NEGUI)SL x,y,z; BYTE 0,1,0,#2a (SL)...BN x,BTaken+�-O; BYTE 0,1,0,#50 (BN)BN x,BTaken+�-O; BYTE 0,1,0,#50 (BNB)BZ x,BTaken+�-O; BYTE 0,1,0,#50 (BZ)...PBNP x,PBTaken+�-O; BYTE 0,3,0,#50 (PBNPB)PBEV x,PBTaken+�-O; BYTE 0,3,0,#50 (PBEV)PBEV x,PBTaken+�-O; BYTE 0,3,0,#50 (PBEVB)CSN x,y,z; BYTE 0,1,0,#3a (CSN)CSN x,y,z; BYTE 0,1,0,#39 (CSNI)...ZSEV x,y,z; BYTE 0,1,0,#2a (ZSEV)ZSEV x,y,z; BYTE 0,1,0,#29 (ZSEVI)

LDB x,res,0; BYTE 1,1,0,#aa (LDB)LDB x,res,0; BYTE 1,1,0,#a9 (LDBI)...JMP Cswap+�-O; BYTE 2,2,0,#ba (CSWAP)JMP Cswap+�-O; BYTE 2,2,0,#b9 (CSWAPI)LDUNC x,res,0; BYTE 1,1,0,#aa (LDUNC)LDUNC x,res,0; BYTE 1,1,0,#a9 (LDUNCI)JMP Error+�-O; BYTE 0,1,0,#2a (LDVTS)JMP Error+�-O; BYTE 0,1,0,#29 (LDVTSI)SWYM 0; BYTE 0,1,0,#0a (PRELD)SWYM 0; BYTE 0,1,0,#09 (PRELDI)SWYM 0; BYTE 0,1,0,#0a (PREGO)SWYM 0; BYTE 0,1,0,#09 (PREGOI)JMP Go+�-O; BYTE 0,3,0,#2a (GO)JMP Go+�-O; BYTE 0,3,0,#29 (GOI)STB x,res,0; BYTE 1,1,0,#9a (STB)STB x,res,0; BYTE 1,1,0,#99 (STBI)...STO xx,res,0; BYTE 1,1,0,#8a (STCO)STO xx,res,0; BYTE 1,1,0,#89 (STCOI)STUNC x,res,0; BYTE 1,1,0,#9a (STUNC)STUNC x,res,0; BYTE 1,1,0,#99 (STUNCI)SWYM 0; BYTE 0,1,0,#0a (SYNCD)SWYM 0; BYTE 0,1,0,#09 (SYNCDI)SWYM 0; BYTE 0,1,0,#0a (PREST)SWYM 0; BYTE 0,1,0,#09 (PRESTI)SWYM 0; BYTE 0,1,0,#0a (SYNCID)SWYM 0; BYTE 0,1,0,#09 (SYNCIDI)JMP PushGo+�-O; BYTE 0,3,0,#2a (PUSHGO)JMP PushGo+�-O; BYTE 0,3,0,#29 (PUSHGOI)OR x,y,z; BYTE 0,1,0,#2a (OR)OR x,y,z; BYTE 0,1,0,#29 (ORI)...SET x,z; BYTE 0,1,0,#20 (SETH)SET x,z; BYTE 0,1,0,#20 (SETMH)...ANDN x,x,z; BYTE 0,1,0,#30 (ANDNL)SET inst_ptr,yz; BYTE 0,1,0,#41 (JMP)SET inst_ptr,yz; BYTE 0,1,0,#41 (JMPB)JMP PushJ+�-O; BYTE 0,1,0,#60 (PUSHJ)JMP PushJ+�-O; BYTE 0,1,0,#60 (PUSHJB)SET x,yz; BYTE 0,1,0,#60 (GETA)SET x,yz; BYTE 0,1,0,#60 (GETAB)JMP Put+�-O; BYTE 0,1,0,#02 (PUT)JMP Put+�-O; BYTE 0,1,0,#01 (PUTI)JMP Pop+�-O; BYTE 0,3,rJ,#00 (POP)JMP Resume+�-O; BYTE 0,5,0,#00 (RESUME)JMP Save+�-O; BYTE 20,1,0,#20 (SAVE)JMP Unsave+�-O; BYTE 20,1,0,#02 (UNSAVE)JMP Syn
+�-O; BYTE 0,1,0,#01 (SYNC)SWYM x,y,z; BYTE 0,1,0,#00 (SWYM)JMP Get+�-O; BYTE 0,1,0,#20 (GET)JMP Trip+�-O; BYTE 0,5,0,#0a (TRIP)Entries not shown here expli
itly follow a pattern that is easily dedu
ed from theexamples shown. (See, for example, exer
ise 1.)
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1.4.3� INTERPRETIVE ROUTINES 89we 
an take satisfa
tion in the fa
t that an instru
tion has been simulatedsu

essfully and the 
urrent 
y
le is nearly �nished. Only a few details stillneed to be wrapped up: We must store the result x in the appropriate pla
e, ifthe X_is_dest_bit 
ag is present, and we must 
he
k if an arithmeti
 ex
eptionhas triggered a trip interrupt:500 Done AND t,f,X_is_dest_bit501 BZ t,1F Bran
h unless $X is a destination.502 XDone STOU x,xptr,0 Store x in simulated $X.503 1H GET t,rA504 AND t,t,#ff t new arithmeti
 ex
eptions.505 OR ex
,ex
,t ex
 ex
 _ t.506 AND t,ex
,U_BIT+X_BIT507 CMPU t,t,U_BIT508 PBNZ t,1F Bran
h unless under
ow is exa
t.509 0H GREG U_BIT<<8510 AND t,aa,0B511 BNZ t,1F Bran
h if under
ow is enabled.512 ANDNL ex
,U_BIT Ignore U if exa
t and not enabled.513 1H PBZ ex
,Update514 SRU t,aa,8515 AND t,t,ex
516 PBZ t,4F Bran
h unless trip interrupt needed.... (See exer
ise 13.)539 4H OR aa,aa,ex
 Re
ord new ex
eptions in rA.Line number 500 is used here for 
onvenien
e, although several hundred instru
-tions and the entire Info table a
tually intervene between line 309 and this partof the program. In
identally, the label Done on line 500 does not 
on
i
t withthe label Done on line 137, be
ause both of them de�ne the same equivalent valuefor this symbol.After line 505, register ex
 
ontains the bit 
odes for all arithmeti
 ex
ep-tions triggered by the instru
tion just simulated. At this point we must deal witha 
urious asymmetry in the rules for IEEE standard 
oating point arithmeti
:An under
ow ex
eption (U) is suppressed unless the under
ow trip has beenenabled in rA or unless an inexa
t ex
eption (X) has also o

urred. (We had toenable the under
ow trip in line 238 for pre
isely this reason; the simulator endswith the 
ommandsLOC U_Handler; ORL ex
,U_BIT; JMP Done (5)so that ex
 will properly re
ord under
ow ex
eptions in 
ases where a 
oatingpoint 
omputation was exa
t but produ
ed a denormal result.)Finally|Hurray!|we are able to 
lose the 
y
le of operations that beganlong ago at lo
ation Fet
h. We update the runtime 
lo
ks, take a deep breath,and return to Fet
h again:540 0H GREG #0000000800000004541 Update MOR t,f,0B 232mems + oops
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90 BASIC CONCEPTS 1.4.3�542 ADDU 

,

,t In
rease the simulated 
lo
k, rC.543 ADDU uu,uu,1 In
rease the usage 
ounter, rU.544 SUBU ii,ii,1 De
rease the interval 
ounter, rI.545 AllDone PBZ resuming,Fet
h Go to Fet
h if resuming = 0.546 CMPU t,op,#F9 Otherwise set t [op= RESUME℄.547 CSNZ resuming,t,0 Clear resuming if not resuming,548 JMP Fet
h and go to Fet
h.Our simulation program is now 
omplete, ex
ept that we still must initializeeverything properly. We assume that the simulator will be run with a 
ommandline that names a binary �le. Exer
ise 20 explains the simple format of that�le, whi
h spe
i�es what should be loaded into the simulated memory beforesimulation begins. On
e the program has been loaded, we laun
h it as follows:At line 576 below, register lo
 will 
ontain a lo
ation from whi
h a simulatedUNSAVE 
ommand will get the program o� to a good start. (In fa
t, we simulatean UNSAVE that is being simulated by a simulated RESUME. The 
ode is tri
ky,perhaps, but it works.)549 Infile IS 3 (Handle for binary input �le)550 Main LDA Mem:head,Chunk0 Initialize MemFind.551 ADDU Mem:allo
,Mem:head,Mem:nodesize552 GET t,rN553 INCL t,1554 STOU t,g,8*rN g[rN℄ (our rN) + 1.555 LDOU t,$1,8 t binary �le name (argv [1℄).556 STOU t,IOArgs557 LDA t,IOArgs (See line 010)558 TRAP 0,Fopen,Infile Open the binary �le.559 BN t,Error... Now load the �le (see exer
ise 20).576 STOU lo
,g,
255 g[255℄ pla
e to UNSAVE.577 SUBU arg,lo
,8*13 arg pla
e where $255 appears.578 PUSHJ res,MemFind579 LDOU inst_ptr,res,0 inst_ptr Main.580 SET arg,#90581 PUSHJ res,MemFind582 LDTU x,res,0 x M4[#90℄.583 SET resuming,1 resuming 1.584 CSNZ inst_ptr,x,#90 If x 6= 0, set inst_ptr #90.585 0H GREG #FB<<24+255586 STOU 0B,g,8*rX g[rX℄ \UNSAVE $255".587 SET gg,
255 G 255.588 JMP Fet
h Start the ball rolling.589 Error NEG t,22 t �22 for error exit.590 Exit TRAP 0,Halt,0 End of simulation.591 LOC Global+8*rK; OCTA -1592 LOC Global+8*rT; OCTA #8000000500000000593 LOC Global+8*rTT; OCTA #8000000600000000594 LOC Global+8*rV; OCTA #369
200400000000
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1.4.3� INTERPRETIVE ROUTINES 91The simulated program's Main starting address will be in the simulated register$255 after the simulated UNSAVE. Lines 580{584 of this 
ode implement afeature that wasn't mentioned in Se
tion 1.3.2�: If an instru
tion is loaded intolo
ation #90, the program begins there instead of at Main. (This feature allowsa subroutine library to initialize itself before starting a user program at Main.)Lines 591{594 initialize the simulated rK, rT, rTT, and rV to appropriate
onstant values. Then the program is �nished; it ends with the trip-handlerinstru
tions of (5).Whew! Our simulator has turned out to be pretty long| longer, in fa
t,than any other program that we will en
ounter in this book. But in spite of itslength, the program above is in
omplete in several respe
ts be
ause the authordid not want to make it even longer:a) Several parts of the 
ode have been left as exer
ises.b) The program simply bran
hes to Error and quits, when it dete
ts a problem.A de
ent simulator would distinguish between di�erent types of error, andwould have a way to keep going.
) The program doesn't gather any statisti
s, ex
ept for the total runningtime (

) and the total number of instru
tions simulated (uu). A more
omplete program would, for example, remember how often the user guessed
orre
tly with respe
t to bran
hes versus probable bran
hes; it would alsore
ord the number of times the Sta
kLoad and Sta
kStore subroutinesneed to a

ess simulated memory. It might also analyze its own algorithms,studying for example the eÆ
ien
y of the self-organizing sear
h te
hniqueused by MemFind.d) The program has no diagnosti
 fa
ilities. A useful simulator would, forexample, allow intera
tive debugging, and would output sele
ted snapshotsof the simulated program's exe
ution; su
h features would not be diÆ
ultto add. The ability to monitor a program easily is, in fa
t, one of the mainreasons for the importan
e of interpretive routines in general.EXERCISES1. [20 ℄ Table 1 shows the Info entries only for sele
ted op
odes. What entries areappropriate for (a) op
ode#3F (SRUI)? (b) op
ode#55 (PBPB)? (
) op
ode#D9 (MUXI)?(d) op
ode#E6 (INCML)?x 2. [26 ℄ How mu
h time does it take the simulator to simulate the instru
tions(a) ADDU $255,$Y,$Z; (b) STHT $X,$Y,0; (
) PBNZ $X,�-4?3. [23 ℄ Explain why 
 6= � when Sta
kRoom 
alls Sta
kStore on line 097.x 4. [20 ℄ Criti
ize the fa
t that MemFind never 
he
ks to see if allo
 has gotten toolarge. Is this a serious blunder?x 5. [20 ℄ If the MemFind subroutine bran
hes to Error, it does not pop the registersta
k. How many items might be on the register sta
k at su
h a time?6. [20 ℄ Complete the simulation of DIV and DIVU instru
tions, by �lling in the missing
ode of lines 248{253.7. [21 ℄ Complete the simulation of CSWAP instru
tions, by writing appropriate 
ode.
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92 BASIC CONCEPTS 1.4.3�8. [22 ℄ Complete the simulation of GET instru
tions, by writing appropriate 
ode.9. [23 ℄ Complete the simulation of PUT instru
tions, by writing appropriate 
ode.10. [24 ℄ Complete the simulation of POP instru
tions, by writing appropriate 
ode.Note: If the normal a
tion of POP as des
ribed in Se
tion 1.4.1� would leave rL > rG,MMIX will pop entries o� the top of the register sta
k so that rL = rG. For example, ifthe user pushes 250 registers down with PUSHJ and then says \PUT rG,32; POP", only32 of the pushed-down registers will survive.11. [25 ℄ Complete the simulation of SAVE instru
tions, by writing appropriate 
ode.Note: SAVE pushes all the lo
al registers down and stores the entire register sta
k inmemory, followed by $G, $(G + 1), : : : , $255, followed by rB, rD, rE, rH, rJ, rM, rR,rP, rW, rX, rY, and rZ (in that order), followed by the o
tabyte 256rG + rA.12. [26 ℄ Complete the simulation of UNSAVE instru
tions, by writing appropriate 
ode.Note: The very �rst simulated UNSAVE is part of the initial loading pro
ess (see lines583{588), so it should not update the simulated 
lo
ks.13. [27 ℄ Complete the simulation of trip interrupts, by �lling in the missing 
ode oflines 517{538.14. [28 ℄ Complete the simulation of RESUME instru
tions, by writing appropriate 
ode.Note: When rX is nonnegative, its most signi�
ant byte is 
alled the \rop
ode";rop
odes 0, 1, 2 are available for user programs. Line 242 of the simulator usesrop
ode 0, whi
h simply inserts the lower half of rX into the instru
tion stream.Rop
ode 1 is similar, but the instru
tion in rX is performed with y rY and z rZin pla
e of the normal operands; this variant is allowed only when the �rst hexade
imaldigit of the inserted op
ode is #0, #1, #2, #3, #6, #7, #C, #D, or #E. Rop
ode 2sets $X  rZ and ex
  Q, where X is the third byte from the right of rX and Q isthe third byte from the left; this makes it possible to set the value of a register andsimultaneously raise any subset of the arithmeti
 ex
eptions DVWIOUZX. Rop
odes1 and 2 
an be used only when $X is not marginal. Your solution to this exer
iseshould 
ause RESUME to set resuming  0 if the simulated rX is negative, otherwiseresuming (1;�1;�2) for rop
odes (0; 1; 2). You should also supply the 
ode that ismissing from lines 166{173.x 15. [25 ℄ Write the routine SimFputs, whi
h simulates the operation of outputting astring to the �le 
orresponding to a given handle.x 16. [25 ℄ Write the routine SimFopen, whi
h opens a �le 
orresponding to a givenhandle. (The simulator 
an use the same handle number as the user program.)x 17. [25 ℄ Continuing the previous exer
ises, write the routine SimFread , whi
h readsa given number of bytes from a �le 
orresponding to a given handle.x 18. [21 ℄ Would this simulator be of any use if lring_size were less than 256, for ex-ample if lring_size = 32?19. [14 ℄ Study all the uses of the Sta
kRoom subroutine (namely in line 218, line 268,and in the answer to exer
ise 11). Can you suggest a better way to organize the 
ode?(See step 3 in the dis
ussion at the end of Se
tion 1.4.1�.)20. [20 ℄ The binary �les input by the simulator 
onsist of one or more groups ofo
tabytes ea
h having the simple form�; x0; x1; : : : ; xl�1; 0
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1.4.3� INTERPRETIVE ROUTINES 93for some l � 0, where x0, x1, : : : , and xl�1 are nonzero; the meaning isM8[�+ 8k℄  xk; for 0 � k < l.The �le ends after the last group. Complete the simulator by writing MMIX 
ode to loadsu
h input (lines 560{575 of the program). The �nal value of register lo
 should bethe lo
ation of the last o
tabyte loaded, namely �+ 8(l � 1).x 21. [20 ℄ Is the simulation program of this se
tion able to simulate itself? If so, is itable to simulate itself simulating itself? And if so, is it � � � ?x 22. [40 ℄ Implement an eÆ
ient jump tra
e routine for MMIX. This is a program thatre
ords all transfers of 
ontrol in the exe
ution of another given program by re
ordinga sequen
e of pairs (x1; y1), (x2; y2), : : : , meaning that the given program jumped fromlo
ation x1 to y1, then (after performing the instru
tions in lo
ations y1; y1+1; : : : ; x2)it jumped from x2 to y2, et
. [From this information it is possible for a subsequentroutine to re
onstru
t the 
ow of the program and to dedu
e how frequently ea
hinstru
tion was performed.℄A tra
e routine di�ers from a simulator be
ause it allows the tra
ed program too

upy its normal memory lo
ations. A jump tra
e modi�es the instru
tion streamin memory, but does so only to the extent ne
essary to retain 
ontrol. Otherwise itallows the ma
hine to exe
ute arithmeti
 and memory instru
tions at full speed. Somerestri
tions are ne
essary; for example, the program being tra
ed shouldn't modifyitself. But you should try to keep su
h restri
tions to a minimum.
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ANSWERS TO EXERCISES
SECTION 1.3.1�1. #7d9 or #7D9.2. (a) fB; D; F; b; d; fg. (b) fA; C; E; a; 
; eg. An odd fa
t of life.3. (Solution by Gregor N. Purdy.) 2 bits = 1 nyp; 2 nyps = 1 nybble; 2 nybbles =1 byte. In
identally, the word \byte" was 
oined in 1956 by members of IBM's Stret
h
omputer proje
t; see W. Bu
hholz, BYTE 2, 2 (February 1977), 144.4. 1000 MB = 1 gigabyte (GB), 1000 GB = 1 terabyte (TB), 1000 TB = 1 petabyte(PB), 1000 PB = 1 exabyte (EB), 1000 EB = 1 zettabyte (ZB), 1000 ZB = 1 yottabyte(YB), a

ording to the 19th Conf�eren
e G�en�erale des Poids et Mesures (1990).(Some people, however, use 210 instead of 1000 in these formulas, 
laiming forexample that a kilobyte is 1024 bytes. To resolve the ambiguity, su
h units shouldpreferably be 
alled large kilobytes, large megabytes, et
., and denoted by KKB, MMB,: : : to indi
ate their binary nature.)5. If �2n�1 � x < 2n�1, then �2n < x � s(�) < 2n; hen
e x 6= s(�) implies thatx 6� s(�) (modulo 2n). But s(�) = u(�)� 2n[� begins with 1℄ � u(�) (modulo 2n).6. Using the notation of the previous exer
ise, we have u(��) = 2n � 1� u(�); hen
eu(��) + 1 � �u(�) (modulo 2n), and it follows that s(��) + 1 = �s(�). Over
ow mighto

ur, however, when adding 1. In that 
ase � = 10 : : : 0, s(�) = �2n�1, and �s(�) isnot representable.7. Yes. (See the dis
ussion of shifting.)8. The radix point now falls between rH and $X. (In general, if the binary radixpoint is m positions from the end of $Y and n positions from the end of $Z, it is m+npositions from the end of the produ
t.)9. Yes, ex
ept when X = Y, or X = Z, or over
ow o

urs.10. $Y = #8000000000000000, $Z = #ffffffffffffffff is the only example!11. (a) True, be
ause s($Y) � u($Y) and s($Z) � u($Z) (modulo 264) by exer
ise 5.(b) Clearly true if s($Y) � 0 and s($Z) � 0, be
ause s($Y) = u($Y) and s($Z) = u($Z)in su
h a 
ase. Also true if $Z = 0 or $Z = 1 or $Z = $Y or $Y = 0. Otherwise false.12. If X 6= Y, say `ADDU $X,$Y,$Z; CMPU 
arry,$X,$Y; ZSN 
arry,
arry,1'. But ifX = Y = Z, say `ZSN 
arry,$X,1; ADDU $X,$X,$X'.13. Over
ow o

urs on signed addition if and only if $Y and $Z have the same signbut their unsigned sum has the opposite sign. ThusXOR $0,$Y,$Z; ADDU $X,$Y,$Z; XOR $1,$X,$Y; ANDN $1,$1,$0; ZSN ovfl,$1,1determines the presen
e or absen
e of over
ow when X 6= Y.94
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1.3.1� ANSWERS TO EXERCISES 9514. Inter
hange X and Y in the previous answer. (Over
ow o

urs when 
omputingx = y � z if and only if it o

urs when 
omputing y = x+ z.)15. Let _y and _z be the sign bits of y and z, so that s(y) = y�264 _y and s(z) = z�264 _z;we want to 
al
ulate s(y)s(z) mod 2128 = (yz � 264( _yz + y _z))mod 2128. Thus theprogram MULU $X,$Y,$Z; GET $0,rH; ZSN $1,$Y,$Z; SUBU $0,$0,$1; ZSN $1,$Z,$Y;SUBU $0,$0,$1 puts the desired o
tabyte in $0.16. After the instru
tions in the previous answer, 
he
k that the upper half is the signextension of the lower half, by saying `SR $1,$X,63; CMP $1,$0,$1; ZSNZ ovfl,$1,1'.17. Let a be the stated 
onstant, whi
h is (265+1)=3. Then ay=265 = y=3+y=(3 �265),so bay=265
 = by=3
 for 0 � y < 265.18. By a similar argument, bay=266
 = by=5
 for 0 � y < 266 when a = (266 + 1)=5 =#














d.19. This statement is widely believed, and it has been implemented by 
ompiler writerswho did not 
he
k the math. But it is false when z = 7, 21, 23, 25, 29, 31, 39, 47, 49,53, 55, 61, 63, 71, 81, 89, : : : , and in fa
t for 189 odd divisors z less than 1000!Let � = ay=264+e � y=z = (z � r)y=(264+ez), where r = 264+e mod z. Then0 < � < 2=z, hen
e trouble 
an arise only when y � �1 (modulo z) and � � 1=z.It follows that the formula bay=264+e
 = by=z
 holds for all unsigned o
tabytes y,0 � y < 264, if and only if it holds for the single value y = 264 � 1� (264 mod z).(The formula is, however, always 
orre
t in the restri
ted range 0 � y < 263.And Mi
hael Yoder observes that high-multipli
ation by d264+e+1=ze�264, followed byaddition of y and right-shift by e+ 1, does work in general.)20. 4ADDU $X,$Y,$Y; 4ADDU $X,$X,$X.21. SL sets $X to zero, over
owing if $Y was nonzero. SLU and SRU set $X to zero. SRsets $X to 64 
opies of the sign bit of $Y, namely to �[$Y< 0℄. (Noti
e that shiftingleft by �1 does not shift right.)22. Dull's program takes the wrong bran
h when the SUB instru
tion 
auses over
ow.For example, it treats every nonnegative number as less than �263; it treats 263 � 1 asless than every negative number. Although no error arises when $1 and $2 have thesame sign, or when the numbers in $1 and $2 are both less than 262 in absolute value,the 
orre
t formulation `CMP $0,$1,$2; BN $0,Case1' is mu
h better. (Similar errorshave been made by programmers and 
ompiler writers sin
e the 1950s, often 
ausingsigni�
ant and mysterious failures.)23. CMP $0,$1,$2; BNP $0,Case1.24. ANDN.25. XOR $X,$Y,$Z; SADD $X,$X,0.26. ANDN $X,$Y,$Z.27. BDIF $W,$Y,$Z; ADDU $X,$Z,$W; SUBU $W,$Y,$W.28. BDIF $0,$Y,$Z; BDIF $X,$Z,$Y; OR $X,$0,$X.29. NOR $0,$Y,0; BDIF $0,$0,$Z; NOR $X,$0,0. (This sequen
e 
omputes 2n � 1�max(0; (2n � 1� y)� z) in ea
h byte position.)30. XOR $1,$0,$2; BDIF $1,$3,$1; SADD $1,$1,0 when $2 = #2020202020202020and $3 = #0101010101010101.31. MXOR $1,$4,$0; SADD $1,$1,0 when $4 = #0101010101010101.32. CTji = Cij = (AT1i � BTj1) Æ � � � Æ (ATni �BTjn) = (BT Æ� AT)ji if � is 
ommutative.
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96 ANSWERS TO EXERCISES 1.3.1�33. MOR (or MXOR) with the 
onstant #0180402010080402.34. MOR $X,$Z,[#0080004000200010℄; MOR $Y,$Z,[#0008000400020001℄. (Here weuse bra
kets to denote registers that 
ontain auxiliary 
onstants.)To go ba
k, also 
he
king that an 8-bit 
ode is suÆ
ient:PUT rM,[#00ff00ff00ff00ff℄MOR $0,$X,[#4020100804020180℄MUX $1,$0,$YBNZ $1,BadCaseMUX $1,$Y,$0MOR $Z,$1,[#8020080240100401℄35. MOR $X,$Y,$Z; MOR $X,$Z,$X; here $Z is the 
onstant (14).36. XOR $0,$Y,$Z; MOR $0,[-1℄,$0. Notes: Changing XOR to BDIF gives a mask forthe bytes where $Y ex
eeds $Z. Given su
h a mask, AND it with #8040201008040201and MOR with #ff to get a one-byte en
oding of the relevant byte positions.37. Let the elements of the �eld be polynomials in the Boolean matrix0BBBBBBBB�
0 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 00 0 0 0 0 0 0 11 0 0 0 1 1 1 0

1CCCCCCCCA :
For example, this matrix is m(#402010080402018e), and if we square it with MXOR weget the matrix m(#2010080402018e47). The sum and produ
t of su
h �eld elementsare then obtained by XOR and MXOR, respe
tively.(A �eld with 2k elements for 2 � k � 7 is obtained in a similar way from poly-nomials in the matri
es #0103, #020105, #04020109, #0804020112, #100804020121,#20100804020141. Matri
es of size up to 16� 16 
an be represented as four o
tabytes;then multipli
ation requires eight MXORs and four XORs. We 
an, however, do multipli-
ation in a �eld of 216 elements by performing only �ve MXORs and three XORs, if werepresent the large �eld as a quadrati
 extension of the �eld of 28 elements.)38. It sets $1 to the sum of the eight signed bytes initially in $0; it also sets $2 tothe rightmost nonzero su
h byte, or zero; and it sets $0 to zero. (Changing SR to SRUwould treat the bytes as unsigned. Changing SLU to SL would often over
ow.)39. The assumed running times are (a) (3� or 2�) versus 2�; (b) (4� or 3�) versus 2�;(
) (4� or 3�) versus 3�; (d) (� or 4�) versus 2�; (e) (2� or 5�) versus 2�; (f) (2� or5�) versus 3�. So we should use the 
onditional instru
tions in 
ases (a, d) and (
, f),unless $0 is negative with probability > 2=3; in the latter 
ase we should use the PBNvariants, (d) and (f). The 
onditionals always win in 
ases (b, e).If the ADDU 
ommands had been ADD, the instru
tions would not have been equiv-alent, be
ause of possible over
ows.40. Suppose you GO to address #101; this sets � #101. The tetrabyte M4[#101℄ isthe same as the tetrabyte M4[#100℄. If the op
ode of that instru
tion is, say, PUSHJ,register rJ will be set to #105. Similarly, if that instru
tion is GETA $0,�, register $0will be set to #101. In su
h situations the value for � in MMIX assembly language isslightly di�erent from the a
tual value during program exe
ution.
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1.3.1� ANSWERS TO EXERCISES 97Programmers 
ould use these prin
iples to send some sort of signal to a subroutine,based on the two trailing bits of �. (Tri
ky, but hey, why not use the bits we've got?)41. (a) True. (b) True. (
) True. (d) False, but true with SRU in pla
e of SR.42. (a) NEGU $1,$0; CSNN $1,$0,$0. (b) ANDN $1,$0,[#8000000000000000℄.43. Trailing zeros (solution by J. Dallos): SUBU $0,$Z,1; SADD $0,$0,$Z.Leading zeros: FLOTU $0,1,$Z; SRU $0,$0,52; SUB $0,[1086℄,$0. (If $Z 
ouldbe zero, add the 
ommand CSZ $0,$Z,64.) This is the shortest program, but not thefastest; we save 2� if we reverse all bits (exer
ise 35) and 
ount trailing zeros.44. Use \high tetra arithmeti
," in whi
h ea
h 32-bit number appears in the left halfof a register. LDHT and STHT load and store su
h quantities (see exer
ise 7); SETMHloads an immediate 
onstant. To add, subtra
t, multiply, or divide high tetras $Yand $Z, produ
ing a high tetra $X with 
orre
t attention to integer over
ow and divide
he
k, the following 
ommands work perfe
tly: (a) ADD $X,$Y,$Z. (b) SUB $X,$Y,$Z.(
) SR $X,$Z,32; MUL $X,$Y,$X (assuming that we have X 6= Y). (d) DIV $X,$Y,$Z;SL $X,$X,32; now rR is the high tetra remainder.46. It 
auses a trip to lo
ation 0.47. #DF is MXORI (\multiple ex
lusive-or immediate"); #55 is PBPB (\probable bran
hpositive ba
kward"). But in a program we use the names MXOR and PBP; the assemblersilently adds the I and B when required.48. STO and STOU; also the \immediate" variants LDOI and LDOUI, STOI and STOUI;also NEGI and NEGUI, although NEG is not equivalent to NEGU; also any two of the fourop
odes FLOTI, FLOTUI, SFLOTI, and SFLOTUI.(Every MMIX operation on signed numbers has a 
orresponding operation on un-signed numbers, obtained by adding 2 to the op
ode. This 
onsisten
y makes thema
hine design easier to learn, the ma
hine easier to build, and the 
ompilers easier towrite. But of 
ourse it also makes the ma
hine less versatile, be
ause it leaves no roomfor other operations that might be desired.)49. O
tabyte M8[0℄ is set to #0000010000000001; rH is set to #0000012343210000;M2[#0244420000000122℄ is set to #0121; rA is set to #00041 (be
ause over
ow o

urson the STW); rB is set to f(7) = #401
000000000000; and $1 #6ff8ffffffffffff.(Also rL 2, if rL was originally 0 or 1.) We assume that the program is not lo
atedin su
h a pla
e that the STCO, STB, or STW instru
tions 
ould 
lobber it.50. 4�+34� = �+ (�+�) + �+ (�+�)+ (�+�)+ �+ �+10�+ �+ (�+�)+ �+4�+� + � + � + � + 3� + � + � + �.51. 35010001b501010133010101 a00101018e010101e4010001 2e0101011a010101f7150001 a5010101db01010108010001 f6000001
70101015701ffff 
40101013d0101013f01010152. Op
odes ADDI, ADDUI, SUBI, SUBUI, SLI, SLUI, SRI, SRUI, ORI, XORI, ANDNI, BDIFI,WDIFI, TDIFI, ODIFI: X = Y = 255, Z = 0. Op
ode MULI: X = Y = 255, Z = 1.Op
odes INCH, INCMH, INCML, INCL, ORH, ORMH, ORML, ORL, ANDNH, ANDNMH, ANDNML,ANDNL: X = 255, Y = Z = 0. Op
odes OR, AND, MUX: X = Y = Z = 255. Op
odes CSN,CSZ, : : : , CSEV: X = Z = 255, Y arbitrary. Op
odes BN, BZ, : : : , PBEV: X arbitrary,Y = 0, Z = 1. Op
ode JMP: X = Y = 0, Z = 1. Op
odes PRELD, PRELDI, PREGO,PREGOI, SWYM: X, Y, Z arbitrary. (Subtle point: An instru
tion that sets register $Xis not a no-op when X is marginal, be
ause it 
auses rL to in
rease; and all registersex
ept $255 are marginal when rL = 0 and rG = 255.)
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98 ANSWERS TO EXERCISES 1.3.1�53. MULU, MULUI, PUT, PUTI, UNSAVE.54. FCMP, FADD, FIX, FSUB, : : : , FCMPE, FEQLE, : : : , FINT, MUL, MULI, DIV, DIVI, ADD,ADDI, SUB, SUBI, NEG, SL, SLI, STB, STBI, STW, STWI, STT, STTI, STSF, STSFI, PUT, PUTI,UNSAVE. (This was not quite a fair question, be
ause the 
omplete rules for 
oatingpoint operations appear only elsewhere. One �ne point is that FCMP might 
hange theI_BIT of rA, if $Y or $Z is Not-a-Number, but FEQL and FUN never 
ause ex
eptions.)55. FCMP, FUN, : : : , SRUI, CSN, CSNI, : : : , LDUNCI, GO, GOI, PUSHGO, PUSHGOI, OR, ORI,: : : , ANDNL, PUSHJ, PUSHJB, GETA, GETAB, PUT, PUTI, POP, SAVE, UNSAVE, GET.56. Minimum spa
e: LDO $1,xSET $0,$1SETL $2,12 MUL $0,$0,$1SUB $2,$2,1PBP $2,�-4*2Spa
e = 6� 4 = 24 bytes, time = �+ 149�. Faster solutions are possible.Minimum time: The assumption that jx13j � 263 implies that jxj < 25 and x8 <239. The following solution, based on an idea of Y. N. Patt, exploits this fa
t.LDO $0,x $0 = xMUL $1,$0,$0 $1 = x2MUL $1,$1,$1 $1 = x4SL $2,$1,25 $2 = 225x4SL $3,$0,39 $3 = 239xADD $3,$3,$1 $3 = 239x+ x4MULU $1,$3,$2 u($1) = 225x8, rH = x5 + 225x4 [x< 0℄GET $2,rH $2 � x5 (modulo 225)PUT rM,[#1ffffff℄MUX $2,$2,$0 $2 = x5SRU $1,$1,25 $1 = x8MUL $0,$1,$2 $0 = x13Spa
e = 12�4 = 48 bytes, time = �+48�. At least �ve multipli
ations are \ne
essary,"a

ording to the theory developed in Se
tion 4.6.3; yet this program uses only four!And in fa
t there is a way to avoid multipli
ation altogether.True minimum time: As R. W. Floyd points out, we have jxj � 28, so the minimumexe
ution time is a
hieved by referring to a table (unless � > 45�):LDO $0,x $0 = x8ADDU $0,$0,[Table℄LDO $0,$0,8*28 $0 = x13...Table OCTA -28*28*28*28*28*28*28*28*28*28*28*28*28OCTA -27*27*27*27*27*27*27*27*27*27*27*27*27...OCTA 28*28*28*28*28*28*28*28*28*28*28*28*28Spa
e = 3� 4 + 57� 8 = 468 bytes, time = 2�+ 3�.57. (1) An operating system 
an allo
ate high-speed memory more eÆ
iently if pro-gram blo
ks are known to be \read-only." (2) An instru
tion 
a
he in hardware will befaster and less expensive if instru
tions 
annot 
hange. (3) Same as (2), with \pipeline"in pla
e of \
a
he." If an instru
tion is modi�ed after entering a pipeline, the pipelineneeds to be 
ushed; the 
ir
uitry needed to 
he
k this 
ondition is 
omplex and time-
onsuming. (4) Self-modifying 
ode 
annot be used by more than one pro
ess at on
e.(5) Self-modifying 
ode 
an defeat te
hniques for \pro�ling" (that is, for 
omputingthe number of times ea
h instru
tion is exe
uted).
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1.3.2� ANSWERS TO EXERCISES 99SECTION 1.3.2�1. (a) It refers to the label of line 24. (b) No indeed. Line 23 would refer to line 24instead of line 38; line 31 would refer to line 24 instead of line 21.2. The 
urrent value of 9B will be a running 
ount of the number of su
h lines thathave appeared earlier.3. Read in 100 o
tabytes from standard input; ex
hange their maximum with thelast of them; ex
hange the maximum of the remaining 99 with the last of those; et
.Eventually the 100 o
tabytes will be
ome 
ompletely sorted into nonde
reasing order.The result is then written to the standard output. (Compare with Algorithm 5.2.3S.)4. #2233445566778899. (Large values are redu
ed mod 264.)5. BYTE "silly"; but this tri
k is not re
ommended.6. False; TETRA �,� is not the same as TETRA �; TETRA �.7. He forgot that relative addresses are to tetrabyte lo
ations; the two trailing bitsare ignored.8. LOC 16*((�+15)/16) or LOC -�/16*-16 or LOC (�+15)&-16, et
.9. Change 500 to 600 on line 02; 
hange Five to Six on line 35. (Five-digit numbersare not needed unless 1230 or more primes are to be printed. Ea
h of the �rst 6542primes will �t in a single wyde.)10. M2[#2000000000000000℄ = #0002, and the following nonzero data goes into thetext segment: #100: #e3 fe 00 03#104: #
1 fb f7 00#108: #a6 fe f8 fb#10
: #e7 fb 00 02#110: #42 fb 00 13#114: #e7 fe 00 02#118: #
1 fa f7 00#11
: #86 f9 f8 fa#120: #1
 fd fe f9#124: #fe f
 00 06#128: #43 f
 ff fb#12
: #30 ff fd f9#130: #4d ff ff f6#134: #e7 fa 00 02#138: #f1 ff ff f9#13
: #46 69 72 73#140: #74 20 46 69#144: #76 65 20 48#148: #75 6e 64 72#14
: #65 64 20 50#150: #72 69 6d 65#154: #73 0a 00 20#158: #20 20 00 00

#15
: #23 ff f6 00#160: #00 00 07 01#164: #35 fa 00 02#168: #20 fa fa f7#16
: #23 ff f6 1b#170: #00 00 07 01#174: #86 f9 f8 fa#178: #af f5 f8 00#17
: #23 ff f8 04#180: #1d f9 f9 0a#184: #fe f
 00 06#188: #e7 f
 00 30#18
: #a3 f
 ff 00#190: #25 ff ff 01#194: #5b f9 ff fb#198: #23 ff f8 00#19
: #00 00 07 01#1a0: #e7 fa 00 64#1a4: #51 fa ff f4#1a8: #23 ff f6 19#1a
: #00 00 07 01#1b0: #31 ff fa 62#1b4: #5b ff ff ed(Noti
e that SET be
omes SETL in #100, but ORI in #104. The 
urrent lo
ation � isaligned to #15
 at line 38, a

ording to rule 7(a).) When the program begins, rG willbe #f5, and we will have $248 = #20000000000003e8, $247 = #fffffffffffff
1a,$246 = #13
, $245 = #2030303030000000.
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100 ANSWERS TO EXERCISES 1.3.2�11. (a) If n is not prime, by de�nition n has a divisor d with 1 < d < n. If d > pn,then n=d is a divisor with 1 < n=d < pn. (b) If n is not prime, n has a primedivisor d with 1 < d � pn. The algorithm has veri�ed that n has no prime divisors �p = PRIME[k℄; also n = pq + r < pq + p � p2 + p < (p+ 1)2. Any prime divisor of n istherefore greater than p+ 1 > pn.We must also prove that there will be a suÆ
iently large prime less than n when nis prime, namely that the (k + 1)st prime pk+1 is less than p2k + pk; otherwise k wouldex
eed j and PRIME[k℄ would be zero when we needed it to be large. The ne
essaryproof follows from \Bertrand's postulate": If p is prime there is a larger prime lessthan 2p.12. We 
ould move Title, NewLn, and Blank to the data segment following BUF, wherethey 
ould use ptop as their base address. Or we 
ould 
hange the LDA instru
tions onlines 38, 42, and 58 to SETL, knowing that the string addresses happen to �t in twobytes be
ause this program is short. Or we 
ould 
hange LDA to GETA; but in that 
asewe would have to align ea
h string modulo 4, for example by sayingTitle BYTE "First Five Hundred Primes",#a,0LOC (�+3)&-4NewLn BYTE #a,0LOC (�+3)&-4Blanks BYTE " ",0(See exer
ises 7 and 8.)13. Line 35 gets the new title; 
hange BYTE to WYDE on lines 35{37. Change Fputs toFputws in lines 39, 43, 55, 59. Change the 
onstant in line 45 to #0020066006600660.Change BUF+4 to BUF+2*4 on line 47. And 
hange lines 50{52 toINCL r,'0'; STWU r,t,0; SUB t,t,2 :In
identally, the new title line might look likeTitle WYDE "tÛ¿×Ä
 Ên·�Ä
 unÛË �Ì� ¾×
"when it is printed bidire
tionally, but in the 
omputer �le the individual 
hara
tersa
tually appear in \logi
al" order without ligatures. Thus a spelled-out sequen
e likeTitle WYDE '
','×','¾',' ','�','Ê','�',' ',...,'¾','Ý','s'would give an equivalent result, by the rule for string 
onstants (rule 2).14. We 
an, for example, repla
e lines 26{30 of Program P byfn GREG 0sqrtn GREG 0FLOT fn,nFSQRT sqrtn,fn6H LDWU pk,ptop,kkFLOT t,pkFREM r,fn,tBZ r,4B7H FCMP t,sqrtn,tThe new FREM instru
tion is performed 9597 times, not 9538, be
ause the new test instep P7 is not quite as e�e
tive as before. In spite of this, the 
oating point 
al
ulationsredu
e the running time by 426192� � 59�, a notable improvement (unless of 
ourse
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1.3.2� ANSWERS TO EXERCISES 101�=� > 7000). An additional savings of 38169� 
an be a
hieved if the primes are storedas short 
oats instead of as unsigned wydes.The number of divisibility tests 
an a
tually be redu
ed to 9357 if we repla
e qby pn� 1:9999 in step P7 (see the answer to exer
ise 11). But the extra subtra
tions
ost more than they save, unless �=� > 15.15. It prints a string 
onsisting of a blank spa
e followed by an asterisk followed bytwo blanks followed by an asterisk : : : followed by k blanks followed by an asterisk : : :followed by 74 blanks followed by an asterisk; a total of 2+3+� � �+75 = �762 ��1 = 2849
hara
ters. The total e�e
t is one of OP art.17. The following subroutine returns zero if and only if the instru
tion is OK.a IS #ffffffff Table entry when anything goesb IS #ffff04ff Table entry when Y � ROUND_NEAR
 IS #001f00ff Table entry for PUT and PUTId IS #ff000000 Table entry for RESUMEe IS #ffff0000 Table entry for SAVEf IS #ff0000ff Table entry for UNSAVEg IS #ff000003 Table entry for SYNCh IS #ffff001f Table entry for GETtable GREG �TETRA a,a,a,a,a,b,a,b,b,b,b,b,b,b,b,b 0xTETRA a,a,a,a,a,b,a,b,a,a,a,a,a,a,a,a 1xTETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a 2xTETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a 3xTETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a 4xTETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a 5xTETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a 6xTETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a 7xTETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a 8xTETRA a,a,a,a,a,a,a,a,0,0,a,a,a,a,a,a 9xTETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a AxTETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a BxTETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a CxTETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a DxTETRA a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a ExTETRA a,a,a,a,a,a,
,
,a,d,e,f,g,a,h,a Fxtetra IS $1maxXYZ IS $2InstTest BN $0,9F Invalid if address is negative.LDTU tetra,$0,0 Fet
h the tetrabyte.SR $0,tetra,22 Extra
t its op
ode (times 4).LDT maxXYZ,table,$0 Get Xmax;Ymax;Zmax.BDIF $0,tetra,maxXYZ Che
k if any max is ex
eeded.PBNP maxXYZ,9F If not a PUT, we are done.ANDNML $0,#ff00 Zero out the OP byte.BNZ $0,9F Bran
h if any max is ex
eeded.MOR tetra,tetra,#4 Extra
t the X byte.CMP $0,tetra,18CSP tetra,$0,0 Set X 0 if 18 < X < 32.
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102 ANSWERS TO EXERCISES 1.3.2�ODIF $0,tetra,7 Set $0 X .� 7.9H POP 1,0 Return $0 as the answer.This solution does not 
onsider a tetrabyte to be invalid if it would jump to a negativeaddress, nor is `SAVE $0,0' 
alled invalid (although $0 
an never be a global register).18. The 
at
h to this problem is that there may be several pla
es in a row or 
olumnwhere the minimum or maximum o

urs, and ea
h is a potential saddle point.Solution 1: In this solution we run through ea
h row in turn, making a list of all
olumns in whi
h the row minimum o

urs and then 
he
king ea
h 
olumn on the listto see if the row minimum is also a 
olumn maximum. Noti
e that in all 
ases theterminating 
ondition for a loop is that a register is � 0.* Solution 1t IS $255a00 GREG Data_Segment Address of \a00"a10 GREG Data_Segment+8 Address of \a10"ij IS $0 Element index and return registerj GREG 0 Column indexk GREG 0 Size of list of minimum indi
esx GREG 0 Current minimum valuey GREG 0 Current elementSaddle SET ij,9*8RowMin SET j,8LDB x,a10,ij Candidate for row minimum2H SET k,0 Set list empty.4H INCL k,1STB j,a00,k Put 
olumn index in list.1H SUB ij,ij,1 Go left one.SUB j,j,1BZ j,ColMax Done with row?3H LDB y,a10,ijSUB t,x,yPBN t,1B Is x still minimum?SET x,yPBP t,2B New minimum?JMP 4B Remember another minimum.ColMax LDB $1,a00,k Get 
olumn from list.ADD j,$1,9*8-81H LDB y,a10,jCMP t,x,yPBN t,No Is row min < 
olumn element?SUB j,j,8PBP j,1B Done with 
olumn?Yes ADD ij,ij,$1 Yes; ij index of saddle.LDA ij,a10,ijPOP 1,0No SUB k,k,1 Is list empty?BP k,ColMax If not, try again.PBP ij,RowMin Have all rows been tried?POP 1,0 Yes; $0 = 0, no saddle.
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1.3.2� ANSWERS TO EXERCISES 103Solution 2: An infusion of mathemati
s gives a di�erent algorithm.Theorem. Let R(i) = minj aij , C(j) = maxi aij . The element ai0j0 is a saddle pointif and only if R(i0) = maxiR(i) = C(j0) = minj C(j).Proof. If ai0j0 is a saddle point, then for any �xed i, R(i0) = C(j0) � aij0 � R(i); soR(i0) = maxiR(i). Similarly C(j0) = minj C(j). Conversely, we have R(i) � aij �C(j) for all i and j; hen
e R(i0) = C(j0) implies that ai0j0 is a saddle point.(This proof shows that we always have maxiR(i) � minj C(j). So there is nosaddle point if and only if all the R's are less than all the C's.)A

ording to the theorem, it suÆ
es to �nd the smallest 
olumn maximum, thento sear
h for an equal row minimum.* Solution 2t IS $255a00 GREG Data_Segment Address of \a00"a10 GREG Data_Segment+8 Address of \a10"a20 GREG Data_Segment+8*2 Address of \a20"ij GREG 0 Element indexii GREG 0 Row index times 8j GREG 0 Column indexx GREG 0 Current maximumy GREG 0 Current elementz GREG 0 Current min maxans IS $0 Return registerPhase1 SET j,8 Start at 
olumn 8.SET z,1000 z 1 (more or less).3H ADD ij,j,9*8-2*8LDB x,a20,ij1H LDB y,a10,ijCMP t,x,y Is x < y?CSN x,t,y If so, update the maximum.2H SUB ij,ij,8 Move up one.PBP ij,1BSTB x,a10,ij Store 
olumn maximum.CMP t,x,z Is x < z?CSN z,t,x If so, update the min max.SUB j,j,1 Move left a 
olumn.PBP j,3BPhase2 SET ii,9*8-8 (At this point z = minj C(j).)3H ADD ij,ii,8 Prepare to sear
h a row.SET j,81H LDB x,a10,ijSUB t,z,x Is z > aij?PBP t,No There's no saddle in this row.PBN t,2FLDB x,a00,j Is aij = C(j)?CMP t,x,zCSZ ans,t,ij If so, remember a possible saddle point.
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104 ANSWERS TO EXERCISES 1.3.2�2H SUB j,j,1 Move left in row.SUB ij,ij,1PBP j,1BLDA ans,a10,ans A saddle point was found here.POP 1,0No SUB ii,ii,8PBP ii,3B Try another row.SET ans,0POP 1,0 ans = 0; no saddle.We leave it to the reader to invent a still better solution in whi
h Phase 1 re
ordsall possible rows that are 
andidates for the row sear
h in Phase 2. It is not ne
essaryto sear
h all rows, just those i0 for whi
h C(j0) = minj C(j) implies ai0j0 = C(j0).Usually there is at most one su
h row.In some trial runs with elements sele
ted at random from f�2;�1; 0; 1; 2g, So-lution 1 required approximately 147� + 863� to run, while Solution 2 took about95�+510�. Given a matrix of all zeros, Solution 1 found a saddle point in 26�+188�,Solution 2 in 96�+ 517�.If an m � n matrix has distin
t elements, and m � n, we 
an solve the problemby looking at only O(m + n) of them and doing O(m log n) auxiliary operations. SeeBiensto
k, Chung, Fredman, S
h�a�er, Shor, and Suri, AMM 98 (1991), 418{419.19. Assume an m � n matrix. (a) By the theorem in the answer to exer
ise 18, allsaddle points of a matrix have the same value, so (under our assumption of distin
telements) there is at most one saddle point. By symmetry the desired probability ismn times the probability that a11 is a saddle point. This latter is 1=(mn)! times thenumber of permutations with a12 > a11, : : : , a1n > a11, a11 > a21, : : : , a11 > am1; andthis is 1=(m+n�1)! times the number of permutations of m+n�1 elements in whi
hthe �rst is greater than the next (m� 1) and less than the remaining (n� 1), namely(m� 1)! (n� 1)!. The answer is thereforemn(m� 1)! (n� 1)!=(m+ n� 1)! = (m+ n).�m+ nn �:In our 
ase this is 17=�178 �, only one 
han
e in 1430. (b) Under the se
ond assumption,an entirely di�erent method must be used sin
e there 
an be multiple saddle points;in fa
t either a whole row or whole 
olumn must 
onsist entirely of saddle points. Theprobability equals the probability that there is a saddle point with value zero plus theprobability that there is a saddle point with value one. The former is the probabilitythat there is at least one 
olumn of zeros; the latter is the probability that there is atleast one row of ones. The answer is (1� (1� 2�m)n)+ (1� (1� 2�n)m); in our 
ase,924744796234036231/18446744073709551616, about 1 in 19.9. An approximate answeris n2�m +m2�n.20. M. Hofri and P. Ja
quet [Algorithmi
a 22 (1998), 516{528℄ have analyzed the
ase when the m � n matrix entries are distin
t and in random order. The runningtimes of the two MMIX programs are then (mn+mHn + 2m+ 1+ (m+ 1)=(n� 1))�+(6mn+7mHn +5m+11+ 7(m+1)=(n� 1))�+O((m+n)2=�m+nm �) and (m+1)n�+(5mn+ 6m+ 4n+ 7Hn + 8)� +O(1=n) +O((log n)2=m), respe
tively, as m!1 andn!1, assuming that (log n)=m! 0.21. Farey SET y,1; : : : POP.
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1.3.2� ANSWERS TO EXERCISES 105This answer is the �rst of many in Volumes 1{3 for whi
h MMIXmasters are beingasked to 
ontribute elegant solutions. (See the website information on page ii.)The fourth edition of this book will present the best parts of the best programssubmitted. Note: Please reveal your full name, in
luding all middle names, if youenter this 
ompetition, so that proper 
redit 
an be given!22. (a) Indu
tion. (b) Let k � 0 and X = axk+1 � xk, Y = ayk+1 � yk, wherea = b(yk + n)=yk+1
. By part (a) and the fa
t that 0 < Y � n, we have X ? Y andX=Y > xk+1=yk+1. So if X=Y 6= xk+2=yk+2 we have, by de�nition, X=Y > xk+2=yk+2.But this implies that 1Y yk+1 = Xyk+1 � Y xk+1Y yk+1 = XY � xk+1yk+1= �XY � xk+2yk+2�+ �xk+2yk+2 � xk+1yk+1�� 1Y yk+2 + 1yk+1yk+2 = yk+1 + YY yk+1yk+2> nY yk+1yk+2 � 1Y yk+1 :Histori
al notes: C. Haros gave a (more 
ompli
ated) rule for 
onstru
ting su
hsequen
es, in J. de l' �E
ole Polyte
hnique 4, 11 (1802), 364{368; his method was 
orre
t,but his proof was inadequate. Several years later, the geologist John Farey indepen-dently 
onje
tured that xk=yk is always equal to (xk�1 + xk+1)=(yk�1 + yk+1) [Philos.Magazine and Journal 47 (1816), 385{386℄; a proof was supplied shortly afterwards byA. Cau
hy [Bull. So
i�et�e Philomathique de Paris (3) 3 (1816), 133{135℄, who atta
hedFarey's name to the series. For more of its interesting properties, see G. H. Hardy andE. M. Wright, An Introdu
tion to the Theory of Numbers, Chapter 3.23. The following routine should do reasonably well on most pipeline and 
a
he 
on-�gurations.a IS $0n IS $1z IS $2t IS $2551H STB z,a,0SUB n,n,1ADD a,a,1Zero BZ n,9FSET z,0AND t,a,7BNZ t,1BCMP t,n,64PBNN t,3FJMP 5F2H STCO 0,a,0

SUB n,n,8ADD a,a,83H AND t,a,63PBNZ t,2BCMP t,n,64BN t,5F4H PREST 63,a,0SUB n,n,64CMP t,n,64STCO 0,a,0STCO 0,a,8STCO 0,a,16STCO 0,a,24STCO 0,a,32STCO 0,a,40STCO 0,a,48

STCO 0,a,56ADD a,a,64PBNN t,4B5H CMP t,n,8BN t,7F6H STCO 0,a,0SUB n,n,8ADD a,a,8CMP t,n,8PBNN t,6B7H BZ n,9F8H STB z,a,0SUB n,n,1ADD a,a,1PBNZ n,8B9H POP24. The following routine merits 
areful study; 
omments are left to the reader. Afaster program would be possible if we treated $0 � $1 (modulo 8) as a spe
ial 
ase.
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106 ANSWERS TO EXERCISES 1.3.2�in IS $2out IS $3r IS $4l IS $5m IS $6t IS $7mm IS $8tt IS $9flip GREG #0102040810204080ones GREG #0101010101010101LOC #100StrCpy AND in,$0,#7SLU in,in,3AND out,$1,#7SLU out,out,3SUB r,out,inLDOU out,$1,0SUB $1,$1,$0NEG m,0,1SRU m,m,inLDOU in,$0,0PUT rM,mNEG mm,0,1BN r,1FNEG l,64,rSLU tt,out,rMUX in,in,ttBDIF t,ones,inAND t,t,mSRU mm,mm,rPUT rM,mmJMP 4F1H NEG l,0,rINCL r,64

SUB $1,$1,8SRU out,out,lMUX in,in,outBDIF t,ones,inAND t,t,mSRU mm,mm,rPUT rM,mmPBZ t,2FJMP 5F3H MUX out,tt,outSTOU out,$0,$12H SLU out,in,lLDOU in,$0,8INCL $0,8BDIF t,ones,in4H SRU tt,in,rPBZ t,3BSRU mm,t,rMUX out,tt,outBNZ mm,1FSTOU out,$0,$15H INCL $0,8SLU out,in,lSLU mm,t,l1H LDOU in,$0,$1MOR mm,mm,flipSUBU t,mm,1ANDN mm,mm,tMOR mm,mm,flipSUBU mm,mm,1PUT rM,mmMUX in,in,outSTOU in,$0,$1POP 0The running time, approximately (n=4 + 4)� + (n + 40)� plus the time to POP, is lessthan the 
ost of the trivial 
ode when n � 8 and � � �.25. We assume that register p initially 
ontains the address of the �rst byte, and thatthis address is a multiple of 8. Other lo
al or global registers a, b, : : : have also beende
lared. The following solution starts by 
ounting the wyde frequen
ies �rst, sin
ethis requires only half as many operations as it takes to 
ount byte frequen
ies. Thenthe byte frequen
ies are obtained as row and 
olumn sums of a 256� 256 matrix.* Cryptanalysis Problem (CLASSIFIED)LOC Data_Segment
ount GREG � Base address for wyde 
ountsLOC �+8*(1<<16) Spa
e for the wyde frequen
iesfreq GREG � Base address for byte 
ountsLOC �+8*(1<<8) Spa
e for the byte frequen
iesp GREG �BYTE "abra
adabraa",0,"ab
" Trivial test data
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1.3.2� ANSWERS TO EXERCISES 107ones GREG #0101010101010101LOC #1002H SRU b,a,45 Isolate next wyde.LDO 
,
ount,b Load old 
ount.INCL 
,1STO 
,
ount,b Store new 
ount.SLU a,a,16 Delete one wyde.PBNZ a,2B Done with o
tabyte?
9>>>>>>=>>>>>>;

mainloop,shouldrun asfast aspossiblePhase1 LDOU a,p,0 Start here: Fet
h the next eight bytes.INCL p,8BDIF t,ones,a Test if there's a zero byte.PBZ t,2B Do main loop, unless near the end.2H SRU b,a,45 Isolate next wyde.LDO 
,
ount,b Load old 
ount.INCL 
,1STO 
,
ount,b Store new 
ount.SRU b,t,48SLU a,a,16BDIF t,ones,aPBZ b,2B Continue unless done.Phase2 SET p,8*255 Now get ready to sum rows and 
olumns.1H SL a,p,8LDA a,
ount,a a address of row p.SET b,8*255LDO 
,a,0SET t,p2H INCL t,#800LDO x,
ount,t Element of 
olumn pLDO y,a,b Element of row pADD 
,
,xADD 
,
,ySUB b,b,8PBP b,2BSTO 
,freq,pSUB p,p,8PBP p,1BPOPHow long is \long"? This two-phase method is inferior to a simple one-phase approa
hwhen the string length n is less than 217, but it takes only about 10/17 as mu
h timeas the one-phase s
heme when n � 106. A slightly faster routine 
an be obtained by\unrolling" the inner loop, as in the next answer.Another approa
h, whi
h uses a jump table and keeps the 
ounts in 128 registers,is worthy of 
onsideration when �=� is large.[This problem has a long history. See, for example, Charles P. Bourne andDonald F. Ford, \A study of the statisti
s of letters in English words," Informationand Control 4 (1961), 48{67.℄26. The wyde-
ounting tri
k in the previous solution will ba
k�re if the ma
hine'sprimary 
a
he holds fewer than 219 bytes, unless 
omparatively few of the wyde 
ounts

107



108 ANSWERS TO EXERCISES 1.3.2�are nonzero. Therefore the following program 
omputes only one-byte frequen
ies. This
ode avoids stalls, in a 
onventional pipeline, by never using the result of a LDO in theimmediately following instru
tion.Start LDOU a,p,0INCL p,8BDIF t,ones,aBNZ t,3F2H SRU b,a,53LDO 
,freq,bSLU bb,a,8INCL 
,1SRU bb,bb,53STO 
,freq,bLDO 
,freq,bbSLU b,a,16INCL 
,1SRU b,b,53STO 
,freq,bbLDO 
,freq,b...SLU bb,a,56

INCL 
,1SRU bb,bb,53STO 
,freq,bLDO 
,freq,bbLDOU a,p,0INCL p,8INCL 
,1BDIF t,ones,aSTO 
,freq,bbPBZ t,2B3H SRU b,a,53LDO 
,freq,bINCL 
,1STO 
,freq,bSRU b,b,3SLU a,a,8PBNZ b,3BPOPAnother solution works better on a supers
alar ma
hine that issues two instru
-tions simultaneously:Start LDOU a,p,0INCL p,8BDIF t,ones,aSLU bb,a,8BNZ t,3F2H SRU b,a,53SRU bb,bb,53LDO 
,freq,bLDO 

,freqq,bbSLU bbb,a,16SLU bbbb,a,24INCL 
,1INCL 

,1SRU bbb,bbb,53SRU bbbb,bbbb,53STO 
,freq,bSTO 

,freqq,bbLDO 
,freq,bbbLDO 

,freqq,bbbbSLU b,a,32SLU bb,a,40...

SLU bbb,a,48SLU bbbb,a,56INCL 
,1INCL 

,1SRU bbb,bbb,53SRU bbbb,bbbb,53STO 
,freq,bSTO 

,freqq,bbLDO 
,freq,bbbLDO 

,freqq,bbbbLDOU a,p,0INCL p,8INCL 
,1INCL 

,1BDIF t,ones,aSLU bb,a,8STO 
,freq,bbbSTO 

,freqq,bbbbPBZ t,2B3H SRU b,a,53...In this 
ase we must keep two separate frequen
y tables (and 
ombine them at theend); otherwise an \aliasing" problem would lead to in
orre
t results in 
ases where band bb both represent the same 
hara
ter.
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1.3.2� ANSWERS TO EXERCISES 10927. (a)t IS $255n IS $0new GREGold GREGphi GREGrt5 GREGa

 GREGf GREGLOC #100Main FLOT t,5FSQRT rt5,tFLOT t,1FADD phi,t,rt5INCH phi,#fff0FDIV a

,phi,rt5SET n,1SET new,11H ADDU new,new,oldINCL n,1CMPU t,new,oldBN t,9FSUBU old,new,oldFMUL a

,a

,phiFIXU f,a

CMP t,f,newPBZ t,1BSET t,19H TRAP 0,Halt,0

(b)t IS $255n IS $0new GREGold GREGphii GREG #9e3779b97f4a7
16lo GREGhi GREGhihi GREGLOC #100Main SET n,2SET old,1SET new,11H ADDU new,new,oldINCL n,1CMPU t,new,oldBN t,9FSUBU old,new,oldMULU lo,old,phiiGET hi,rHADDU hi,hi,oldADDU hihi,hi,1CSN hi,lo,hihiCMP t,hi,newPBZ t,1BSET t,19H TRAP 0,Halt,0
Program (a) halts with t = 1 and n = 71; the 
oating point representation of �is slightly high, hen
e errors ultimately a

umulate until �71=p5 is approximatedby F71 + :7, whi
h rounds to F71 + 1. Program (b) halts with t = �1 and n = 94;unsigned over
ow o

urs before the approximation fails. (Indeed, F93 < 264 < F94.)29. The last man is in position 15. The total time before output is : : :MMIXmasters, please help! What is the neatest program that is analogous to thesolution to exer
ise 1.3.2{22 in the third edition? Also, what would D. Ingalls doin the new situation? (Find a tri
k analogous to his previous s
heme, but do not useself-modifying 
ode.)An asymptoti
ally faster method appears in exer
ise 5.1.1{5.30. Work with s
aled numbers, Rn = 10nrn. Then Rn(1=m) = R if and only if10n=(R+ 12 ) � m < 10n=(R � 12 ); thus we �nd mk+1 = b(2 � 10n � 1)=(2R � 1)
.* Sum of Rounded Harmoni
 SeriesMaxN IS 10a GREG 0 A

umulator
 GREG 0 2 � 10nd GREG 0 Divisor or digitr GREG 0 S
aled re
ipro
al
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110 ANSWERS TO EXERCISES 1.3.2�s GREG 0 S
aled summ GREG 0 mkmm GREG 0 mk+1nn GREG 0 n� MaxNLOC Data_Segmentde
 GREG �+3 De
imal point lo
ationBYTE " ."LOC #100Main NEG nn,MaxN-1 n 1.SET 
,201H SET m,1SR s,
,1 S  10n.JMP 2F3H SUB a,
,1SL d,r,1SUB d,d,1DIV mm,a,d4H SUB a,mm,mMUL a,r,aADD s,s,aSET m,mm k  k + 1.2H ADD a,
,m2ADDU d,m,2DIV r,a,dPBNZ r,3B5H ADD a,nn,MaxN+1SET d,#a NewlineJMP 7F6H DIV s,s,10 Convert digits.GET d,rRINCL d,'0'7H STB d,de
,aSUB a,a,1BZ a,�-4PBNZ s,6B8H SUB $255,de
,3TRAP 0,Fputs,StdOut9H INCL nn,1 n n+ 1.MUL 
,
,10PBNP nn,1BTRAP 0,Halt,0The outputs are respe
tively 3.7, 6.13, 8.445, 10.7504, 13.05357, 15.356255, 17.6588268,19.96140681, 22.263991769, 24.5665766342, in 82�+40659359�. The 
al
ulation wouldwork for n up to 17 without over
ow, but the running time is of order 10n=2. (We
ould save about half the time by 
al
ulating Rn(1=m) dire
tly when m < 10n=2, andby using the fa
t that Rn(mk+1) = Rn(mk � 1) for larger values of m.)31. LetN = b2�10n=(2m+1)
. Then Sn = HN+O(N=10n)+Pmk=1(d2�10n=(2k�1)e�d2 � 10n=(2k + 1)e)k=10n = HN + O(m�1) + O(m=10n)� 1 + 2H2m �Hm = n ln 10 +2
 � 1 + 2 ln 2 +O(10�n=2) if we sum by parts and set m � 10n=2.
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1.3.2� ANSWERS TO EXERCISES 111Our approximation to S10 is � 24:5665766209, whi
h is 
loser than predi
ted.32. To make the problem more 
hallenging, the following ingenious solution due inpart to uses a lot of tri
kery in order to redu
e exe
ution time. Can the readersqueeze out any more nanose
onds?MMIXmasters: Please help �ll in the blanks! Note, for example, that remaindersmod 7, 19, and 30 are most rapidly 
omputed by FREM; division by 100 
an beredu
ed to multipli
ation by 1//100+1 (see exer
ise 1.3.1�{19); et
.[To 
al
ulate Easter in years � 1582, see CACM 5 (1962), 209{210. The �rstsystemati
 algorithm for 
al
ulating the date of Easter was the 
anon pas
halis due toVi
torius of Aquitania (A.D. 457). There are many indi
ations that the sole nontrivialappli
ation of arithmeti
 in Europe during the Middle Ages was the 
al
ulation ofEaster date, hen
e su
h algorithms are histori
ally signi�
ant. See Puzzles and Para-doxes by T. H. O'Beirne (London: Oxford University Press, 1965), Chapter 10, forfurther 
ommentary; and see the book Calendri
al Cal
ulations by E. M. Reingold andN. Dershowitz (Cambridge Univ. Press, 2001) for date-oriented algorithms of all kinds.℄33. The �rst su
h year is A.D. 10317, although the error almost leads to failure inA.D. 10108 + 19k for 0 � k � 10.In
identally, T. H. O'Beirne pointed out that the date of Easter repeats witha period of exa
tly 5,700,000 years. Cal
ulations by Robert Hill show that the most
ommon date is April 19 (220400 times per period), while the earliest and least 
ommonis Mar
h 22 (27550 times); the latest, and next-to-least 
ommon, is April 25 (42000times). Hill found a ni
e explanation for the 
urious fa
t that the number of times anyparti
ular day o

urs in the period is always a multiple of 25.34. The following program follows the proto
ol to within a dozen or so � ; this is morethan suÆ
iently a

urate, sin
e � is typi
ally more than 108, and �� = 1 se
. All
omputation takes pla
e in registers, ex
ept when a byte is input.* Traffi
 Signal Problemrho GREG 250000000 Assume 250 MHz 
lo
k ratet IS $255Sensor_Buf IS Data_SegmentGREG Sensor_BufLOC #100Lights IS 3 Handle for /dev/lightsSensor IS 4 Handle for /dev/sensorLights_Name BYTE "/dev/lights",0Sensor_Name BYTE "/dev/sensor",0Lights_Args OCTA Lights_Name,BinaryWriteSensor_Args OCTA Sensor_Name,BinaryReadRead_Sensor OCTA Sensor_Buf,1Boulevard BYTE #77,0 Green/red, WALK/DON'TBYTE #7f,0 Green/red, DON'T/DON'TBYTE #73,0 Green/red, o�/DON'TBYTE #bf,0 Amber/red, DON'T/DON'TAvenue BYTE #dd,0 Red/green, DON'T/WALKBYTE #df,0 Red/green, DON'T/DON'TBYTE #d
,0 Red/green, DON'T/o�BYTE #ef,0 Red/amber, DON'T/DON'T

111



112 ANSWERS TO EXERCISES 1.3.2�goal GREG 0 Transition time for lightsMain GETA t,Lights_Args Open the �les: Fopen(Lights,TRAP 0,Fopen,Lights "/dev/lights",BinaryWrite)GETA t,Sensor_Args Fopen(Sensor,TRAP 0,Fopen,Sensor "/dev/sensor",BinaryRead)GET goal,rCJMP 2FGREG �delay_go GREGDelay GET t,rC Subroutine for busy-waiting:SUBU t,t,goal (N.B. Not CMPU; see below)PBN t,Delay Repeat until rC passes goal.GO delay_go,delay_go,0 Return to 
aller.flash_go GREGn GREG 0 Iteration 
ountergreen GREG 0 Boulevard or Avenuetemp GREGFlash SET n,8 Subroutine to 
ash the lights:1H ADD t,green,2*1TRAP 0,Fputs,Lights DON'T WALKADD temp,goal,rhoSR t,rho,1ADDU goal,goal,tGO delay_go,DelayADD t,green,2*2TRAP 0,Fputs,Lights (o�)SET goal,tempGO delay_go,DelaySUB n,n,1PBP n,1B Repeat eight times.ADD t,green,2*1TRAP 0,Fputs,Lights DON'T WALKMUL t,rho,4ADDU goal,goal,tGO delay_go,Delay Hold for 4 se
.ADD t,green,2*3TRAP 0,Fputs,Lights DON'T WALK, amberGO flash_go,flash_go,0 Return to 
aller.Wait GET goal,rC Extend the 18 se
 green.1H GETA t,Read_SensorTRAP 0,Fread,SensorLDB t,Sensor_BufBZ t,Wait Repeat until sensor is nonzero.GETA green,BoulevardGO flash_go,Flash Finish the boulevard 
y
le.MUL t,rho,8ADDU goal,goal,tGO delay_go,Delay Amber for 8 se
.
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1.4.1� ANSWERS TO EXERCISES 113GETA t,AvenueTRAP 0,Fputs,Lights Green light for Berkeley.MUL t,rho,8ADDU goal,goal,tGO delay_go,DelayGETA green,AvenueGO flash_go,Flash Finish the avenue 
y
le.GETA t,Read_SensorTRAP 0,Fread,Sensor Ignore sensor during green time.MUL t,rho,5ADDU goal,goal,tGO delay_go,Delay Amber for 5 se
.2H GETA t,BoulevardTRAP 0,Fputs,Lights Green light for Del Mar.MUL t,rho,18ADDU goal,goal,tGO delay_go,Delay At least 18 se
 to WALK.JMP 1BThe SUBU instru
tion in the Delay subroutine is an interesting example of a 
ase wherethe 
omparison should be done with SUBU, not with CMPU, in spite of the 
omments inexer
ise 1.3.1�{22. The reason is that the two quantities being 
ompared, rC and goal,\wrap around" modulo 264.SECTION 1.4.1�1. j GREG ;m GREG ;kk GREG ;xk GREG ;rr GREGGREG � Base addressGoMax SET $2,1 Spe
ial entran
e for r = 1GoMaxR SL rr,$2,3 Multiply arguments by 8.SL kk,$1,3LDO m,x0,kk... (Continue as in (1))5H SUB kk,kk,rr k  k � r.PBP kk,3B Repeat if k > 0.6H GO kk,$0,0 Return to 
aller.The 
alling sequen
e for the general 
ase is SET $2,r; SET $1,n; GO $0,GoMaxR.2. j IS $0 ;m IS $1 ;kk IS $2 ;xk IS $3 ;rr IS $4Max100 SET $0,100 Spe
ial entran
e for n = 100 and r = 1Max SET $1,1 Spe
ial entran
e for r = 1MaxR SL rr,$1,3 Multiply arguments by 8.SL kk,$0,3LDO m,x0,kk... (Continue as in (1))5H SUB kk,kk,rr k  k � r.PBP kk,3B Repeat if k > 0.6H POP 2,0 Return to 
aller.In this 
ase the general 
alling sequen
e is SET $A1,r; SET $A0,n; PUSHJ $R,MaxR,where A0 = R + 1 and A1 = R+ 2.3. Just Sub ...; GO $0,$0,0. The lo
al variables 
an be kept entirely in registers.
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114 ANSWERS TO EXERCISES 1.4.1�4. PUSHJ $X,RA has a relative address, allowing us to jump to any subroutine within�218 bytes of our 
urrent lo
ation. PUSHGO $X,$Y,$Z or PUSHGO $X,A has an absoluteaddress, allowing us to jump to any desired pla
e.5. True. There are 256�G globals and L lo
als.6. $5  rD and rR  0 and rL  6. All other newly lo
al registers are also set tozero; for example, if rL was 3, this DIVU instru
tion would set $3 0 and $4 0.7. $L 0, : : : , $4 0, $5 #ab
d0000, rL 6.8. Usually su
h an instru
tion has no essential impa
t, ex
ept that 
ontext swit
hingwith SAVE and UNSAVE generally take longer when fewer marginal registers are present.However, an important di�eren
e 
an arise in 
ertain s
enarios. For example, a subse-quent PUSHJ $255,Sub followed by POP 1,0 would leave a result in $16 instead of $10.9. PUSHJ $255,Handler will make at least 32 marginal registers available (be
auseG � 32); then POP 0 will restore the previous lo
al registers, and two additional instru
-tions \GET $255,rB; RESUME" will restart the program as if nothing had happened.10. Basi
ally true. MMIX will start a program with rG set to 255 minus the numberof assembled GREG operations, and with rL set to 2. Then, in the absen
e of PUSHJ,PUSHGO, POP, SAVE, UNSAVE, GET, and PUT, the value of rG will never 
hange. Thevalue of rL will in
rease if the program puts anything into $2, $3, : : : , or $(rG � 1),but the e�e
t will be the same as if all registers were equivalent. The only registerwith slightly di�erent behavior is $255, whi
h is a�e
ted by trip interrupts and usedfor 
ommuni
ation in I/O traps. We 
ould permute register numbers $2, $3, : : : , $254arbitrarily in any PUSH/POP/SAVE/UNSAVE/RESUME-free program that does not GET rLor PUT anything into rL or rG; the permuted program would produ
e identi
al results.The distin
tion between lo
al, global, and marginal is irrelevant also with respe
tto SAVE, UNSAVE, and RESUME, in the absen
e of PUSH and POP, ex
ept that the destina-tion register of SAVE must be global and the destination register of 
ertain instru
tionsinserted by RESUME mustn't be marginal (see exer
ise 1.4.3�{14).11. The ma
hine tries to a

ess virtual address #5ffffffffffffff8, whi
h is justbelow the sta
k segment. Nothing has been stored there, so a \page fault" o

urs andthe operating system aborts the program.(The behavior is, however, mu
h more bizarre if a POP is given just after a SAVE,be
ause SAVE essentially begins a new register sta
k immediately following the saved
ontext. Anybody who tries su
h things is asking for trouble.)12. (a) True. (Similarly, the name of the 
urrent \working dire
tory" in a UNIX shellalways begins with a slash.) (b) False. But 
onfusion 
an arise if su
h pre�xes arede�ned, so their use is dis
ouraged. (
) False. (In this respe
t MMIXAL's stru
turedsymbols are not analogous to UNIX dire
tory names.)13. Fib CMP $1,$0,2PBN $1,1FGET $1,rJSUB $3,$0,1PUSHJ $2,FibSUB $4,$0,2PUSHJ $3,FibADDU $0,$2,$3PUT rJ,$11H POP 1,0

Fib1 CMP $1,$0,2BN $1,1FSUB $2,$0,1SET $0,1SET $1,02H ADDU $0,$0,$1SUBU $1,$0,$1SUB $2,$2,1PBNZ $2,2B1H POP 1,0

Fib2 CMP $1,$0,1BNP $1,1FSUB $2,$0,1SET $0,02H ADDU $0,$0,$1ADDU $1,$0,$1SUB $2,$2,2PBP $2,2BCSZ $0,$2,$11H POP 1,0
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1.4.2� ANSWERS TO EXERCISES 115Here Fib2 is a faster alternative to Fib1. In ea
h 
ase the 
alling sequen
e has the form\SET $A,n; PUSHJ $R,Fib...", where A = R+ 1.14. Mathemati
al indu
tion shows that the POP instru
tion in Fib is exe
uted exa
tly2Fn+1 � 1 times and the ADDU instru
tion is exe
uted Fn+1 � 1 times. The instru
tionat 2H is performed n� [n 6=0℄ times in Fib1, bn=2
 times in Fib2. Thus the total 
ost,in
luding the two instru
tions in the 
alling sequen
e, 
omes to (19Fn+1�12)� for Fib,(4n+ 8)� for Fib1, and (4bn=2
+ 12)� for Fib2, assuming that n > 1.(The re
ursive subroutine Fib is a terrible way to 
ompute Fibona

i numbers,be
ause it forgets the values it has already 
omputed. It spends more than 1022� unitsof time just to 
ompute F100.)15. n GREGfn IS nGREG �Fib CMP $1,n,2PBN $1,1FSTO fp,sp,0SET fp,spINCL sp,8*4STO $0,fp,8STO n,fp,16SUB n,n,1

GO $0,FibSTO fn,fp,24LDO n,fp,16SUB n,n,2GO $0,FibLDO $0,fp,24ADDU fn,fn,$0LDO $0,fp,8SET sp,fpLDO fp,sp,01H GO $0,$0,0The 
alling sequen
e is SET n,n; GO $0,Fib; the answer is returned in global register fn.The running time 
omes to (8Fn+1 � 8)� + (32Fn+1 � 23)�, so the ratio between thisversion and the register sta
k subroutine of exer
ise 13 is approximately (8�=�+32)=19.(Although exer
ise 14 points out that we shouldn't really 
al
ulate Fibona

i numbersre
ursively, this analysis does demonstrate the advantage of a register sta
k. Even ifwe are generous and assume that � = �, the memory sta
k 
osts more than twi
e asmu
h in this example. A similar behavior o

urs with respe
t to other subroutines,but the analysis for Fib is parti
ularly simple.)In the spe
ial 
ase of Fib we 
an do without the frame pointer, be
ause fp isalways a �xed distan
e from sp. A memory-sta
k subroutine based on this observationruns about (6�=� + 29)=19 slower than the register-sta
k version; it's better than theversion with general frames, but still not very good.16. This is an ideal setup for a subroutine with two exits. Let's assume for 
onvenien
ethat B and C do not return any value, and that they ea
h save rJ in $1 (be
ause they arenot leaf subroutines). Then we 
an pro
eed as follows: A 
alls B by saying PUSHJ $R,Bas usual. B 
alls C by saying PUSHJ $R,C; PUT rJ,$1; POP 0,0 (with perhaps a di�erentvalue of R than used by subroutine A). C 
alls itself by saying PUSHJ $R,C; PUT rJ,$1;POP 0,0 (with perhaps a di�erent value of R than used by B). C jumps to A by sayingPUT rJ,$1; POP 0,0. C exits normally by saying PUT rJ,$1; POP 0,2.Extensions of this idea, in whi
h values are returned and an arbitrary jump address
an be part of the returned information, are 
learly possible. Similar s
hemes apply tothe GO-oriented memory sta
k proto
ol of (15).SECTION 1.4.2�1. If one 
oroutine 
alls the other only on
e, it is nothing but a subroutine; so weneed an appli
ation in whi
h ea
h 
oroutine 
alls the other in at least two distin
tpla
es. Even then, it is often easy to set some sort of swit
h or to use some property
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116 ANSWERS TO EXERCISES 1.4.2�of the data, so that upon entry to a �xed pla
e within one 
oroutine it is possible tobran
h to one of two desired pla
es; again, nothing more than a subroutine would berequired. Coroutines be
ome 
orrespondingly more useful as the number of referen
esbetween them grows larger.2. The �rst 
hara
ter found by In would be lost.3. This is an MMIXAL tri
k to make OutBuf 
ontain �fteen tetrabytes TETRA ' ',followed by TETRA #a, followed by zero; and TETRA ' ' is equivalent to BYTE 0,0,0,' '.The output bu�er is therefore set up to re
eive a line of 16 three-
hara
ter groupsseparated by blank spa
es.4. If we in
lude the 
ode rR_A GREGrR_B GREGGREG �A GET rR_B,rRPUT rR,rR_AGO t,a,0B GET rR_A,rRPUT rR,rR_BGO t,b,0then A 
an invoke B by \GO a,B" and B 
an invoke A by \GO b,A".5. If we in
lude the 
ode a GREGb GREGGREG �A GET b,rJPUT rJ,aPOP 0B GET a,rJPUT rJ,bPOP 0then A 
an invoke B by \PUSHJ $255,B" and B 
an invoke A by \PUSHJ $255,A". Noti
ethe similarity between this answer and the previous one. The 
oroutines should notuse the register sta
k for other purposes ex
ept as permitted by the following exer
ise.6. Suppose 
oroutine A has something in the register sta
k when invoking B. Then Bis obliged to return the sta
k to the same state before returning to A, although B mightpush and pop any number of items in the meantime.Coroutines might, of 
ourse, be suÆ
iently 
ompli
ated that they ea
h do requirea register sta
k of their own. In su
h 
ases MMIX's SAVE and UNSAVE operations 
an beused, with 
are, to save and restore the 
ontext needed by ea
h 
oroutine.SECTION 1.4.3�1. (a) SRU x,y,z; BYTE 0,1,0,#29 . (b) PBP x,PBTaken+�-O; BYTE 0,3,0,#50 .(
) MUX x,y,z; BYTE 0,1,rM,#29 . (d) ADDU x,x,z; BYTE 0,1,0,#30 .2. The running time of MemFind is 9�+(2�+8�)C+(3�+6�)U+(2�+11�)A, whereC is the number of key 
omparisons on line 042, U = [key 6= 
urkey℄, and A = [newnode needed℄. The running time of GetReg is � + 6� + 6�L, where L = [$k is lo
al℄.
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1.4.3� ANSWERS TO EXERCISES 117If we assume that C = U = A = L = 0 on ea
h 
all, the time for simulation 
an bebroken down as follows: (a) (b) (
)fet
hing (lines 105{115) �+ 17� �+ 17� �+ 17�unpa
king (lines 141{153) �+ 12� �+ 12� �+ 12�relating (lines 154{164) 2� 2� 9�installing X (lines 174{182) 7� �+ 17� �+ 17�installing Z (lines 183{197) �+ 13� 6� 6�installing Y (lines 198{207) �+ 13� �+ 13� 6�destining (lines 208{231) 8� 23� 6�resuming (lines 232{242) 14� �+ 14� 16� � �postpro
essing (lines 243{539) �+ 10� 11� 11� � 4�updating (lines 540{548) 5� 5� 5�total 5�+ 101� 5�+ 120� 3�+ 105� � 5�To these times we must add 6� for ea
h o

urren
e of a lo
al register as a sour
e,plus penalties for the times when MemFind doesn't immediately have the 
orre
t 
hunk.In 
ase (b), MemFind must miss on line 231, and again on line 111 when fet
hing thefollowing instru
tion. (We would be better o� with two MemFind routines, one for dataand one for instru
tions.) The most optimisti
 net 
ost of (b) is therefore obtainedby taking C = A = 2, for a total running time of 13� + 158�. (On long runs ofthe simulator simulating itself, the empiri
al average values per 
all of MemFind wereC � :29, U � :00001, A � :16.)3. We have � = 
 and L > 0 on line 097. Thus � = 
 
an arise, but only inextreme 
ir
umstan
es when L = 256 (see line 268 and exer
ise 11). Lu
kily L willsoon be
ome 0 in that 
ase.4. No problem 
an o

ur until a node invades the pool segment, whi
h begins ataddress #4000000000000000 ; then remnants of the 
ommand line might interfere withthe program's assumption that a newly allo
ated node is initially zero. But the datasegment is able to a

ommodate b(261 � 212 � 24)=(212 + 24)
 = 559;670;633;304;293nodes, so we will not live long enough to experien
e any problem from this \bug."5. Line 218 
alls Sta
kRoom 
alls Sta
kStore 
alls MemFind; this is as deep as it gets.Line 218 has pushed 3 registers down; Sta
kRoom has pushed only 2 (sin
e rL = 1on line 097); Sta
kStore has pushed 3. The value of rL on line 032 is 2 (althoughrL in
reases to 5 on line 034). Hen
e the register sta
k 
ontains 3 + 2 + 3 + 2 = 10unpopped items in the worst 
ase.The program halts shortly after bran
hing to Error; and even if it were to 
ontinue,the extra garbage at the bottom of the sta
k won't hurt anything|we 
ould simplyignore it. However, we 
ould 
lear the sta
k by providing se
ond exits as in exer
ise1.4.1�{16. A simpler way to 
ush an entire sta
k is to pop repeatedly until rO equalsits initial value, Sta
k_Segment.6. 247 Div DIV x,y,z Divide y by z, signed.248 JMP 1F249 DivU PUT rD,x Put simulated rD into real rD.250 DIVU x,y,z Divide y by z, unsigned.251 1H GET t,rR252 STO t,g,8*rR g[rR℄ remainder.253 JMP XDone Finish by storing x.
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118 ANSWERS TO EXERCISES 1.4.3�7. (The following instru
tions should be inserted between line 309 of the text andthe Info table, together with the answers to the next several exer
ises.)Cswap LDOU z,g,8*rPLDOU y,res,0CMPU t,y,zBNZ t,1F Bran
h if M8[A℄ 6= g[rP℄.STOU x,res,0 Otherwise set M8[A℄ $X.JMP 2F1H STOU y,g,8*rP Set g[rP℄ M8[A℄.2H ZSZ x,t,1 x result of equality test.JMP XDone Finish by storing x.8. Here we store the simulated registers that we're keeping in a
tual registers. (Thisapproa
h is better than a 32-way bran
h to see whi
h register is being gotten; it's alsobetter than the alternative of storing the registers every time we 
hange them.)Get CMPU t,yz,32BNN t,Error Make sure that YZ < 32.STOU ii,g,8*rI Put the 
orre
t value into g[rI℄.STOU 

,g,8*rC Put the 
orre
t value into g[rC℄.STOU oo,g,8*rO Put the 
orre
t value into g[rO℄.STOU ss,g,8*rS Put the 
orre
t value into g[rS℄.STOU uu,g,8*rU Put the 
orre
t value into g[rU℄.STOU aa,g,8*rA Put the 
orre
t value into g[rA℄.SR t,ll,3STOU t,g,8*rL Put the 
orre
t value into g[rL℄.SR t,gg,3STOU t,g,8*rG Put the 
orre
t value into g[rG℄.SLU t,zz,3LDOU x,g,t Set x g[Z℄.JMP XDone Finish by storing x.9. Put BNZ yy,Error Make sure that Y = 0.CMPU t,xx,32BNN t,Error Make sure that X < 32.CMPU t,xx,rCBN t,PutOK Bran
h if X < 8.CMPU t,xx,rFBN t,1F Bran
h if X < 22.PutOK STOU z,g,xxx Set g[X℄ z.JMP Update Finish the 
ommand.1H CMPU t,xx,rGBN t,Error Bran
h if X < 19.SUB t,xx,rLPBP t,PutA Bran
h if X = rA.BN t,PutG Bran
h if X = rG.PutL SLU z,z,3 Otherwise X = rL.CMPU t,z,llCSN ll,t,z Set rL min(z; rL).JMP Update Finish the 
ommand.0H GREG #40000
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1.4.3� ANSWERS TO EXERCISES 119PutA CMPU t,z,0BBNN t,Error Make sure z � #3ffff.SET aa,z Set rA z.JMP Update Finish the 
ommand.PutG SRU t,z,8BNZ t,Error Make sure z < 256.CMPU t,z,32BN t,Error Make sure z � 32.SLU z,z,3CMPU t,z,llBN t,Error Make sure z � rL.JMP 2F1H SUBU gg,gg,8 G G� 1. ($G be
omes global.)STCO 0,g,gg g[G℄ 0. (Compare with line 216.)2H CMPU t,z,ggPBN t,1B Bran
h if G < z.SET gg,z Set rG z.JMP Update Finish the 
ommand.In this 
ase the nine 
ommands that bran
h to either PutOK, PutA, PutG, PutL, orError are tedious, yet still preferable to a 32-way swit
hing table.10. Pop SUBU oo,oo,8BZ xx,1F Bran
h if X = 0.CMPU t,ll,xxxBN t,1F Bran
h if X > L.ADDU t,xxx,ooAND t,t,lring_maskLDOU y,l,t y result to return.1H CMPU t,oo,ssPBNN t,1F Bran
h unless � = 
.PUSHJ 0,Sta
kLoad1H AND t,oo,lring_maskLDOU z,l,t z number of additional registers to pop.AND z,z,#ff Make sure z � 255 (in 
ase of weird error).SLU z,z,31H SUBU t,oo,ssCMPU t,t,zPBNN t,1F Bran
h unless z registers not all in the ring.PUSHJ 0,Sta
kLoad (See note below.)JMP 1B Repeat until all ne
essary registers are loaded.1H ADDU ll,ll,8CMPU t,xxx,llCSN ll,t,xxx Set L min(X; L+ 1).ADDU ll,ll,z Then in
rease L by z.CMPU t,gg,llCSN ll,t,gg Set L min(L;G).CMPU t,z,llBNN t,1F Bran
h if returned result should be dis
arded.AND t,oo,lring_maskSTOU y,l,t Otherwise set l[(�� 1) mod �℄ y.
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120 ANSWERS TO EXERCISES 1.4.3�1H LDOU y,g,8*rJSUBU oo,oo,z De
rease � by 1 + z.4ADDU inst_ptr,yz,y Set inst_ptr g[rJ℄ + 4YZ.JMP Update Finish the 
ommand.Here it is 
onvenient to de
rease oo in two steps, �rst by 8 and then by 8 times z. Theprogram is 
ompli
ated in general, but in most 
ases 
omparatively little 
omputationa
tually needs to be done. If � = 
 when the se
ond Sta
kLoad 
all is given, weimpli
itly de
rease � by 1 (thereby dis
arding the topmost item of the register sta
k).That item will not be needed unless it is the value being returned, but the latter valuehas already been pla
ed in y.11. Save BNZ yz,Error Make sure YZ = 0.CMPU t,xxx,ggBN t,Error Make sure $X is global.ADDU t,oo,llAND t,t,lring_maskSRU y,ll,3STOU y,l,t Set $L L, 
onsidering $L to be lo
al.INCL ll,8PUSHJ 0,Sta
kRoom Make sure � 6= 
.ADDU oo,oo,llSET ll,0 Push down all lo
al registers and set rL 0.1H PUSHJ 0,Sta
kStoreCMPU t,ss,ooPBNZ t,1B Store all pushed down registers in memory.SUBU y,gg,8 Set k  G� 1. (Here y � 8k.)4H ADDU y,y,8 In
rease k by 1.1H SET arg,ssPUSHJ res,MemFindCMPU t,y,8*(rZ+1)LDOU z,g,y Set z g[k℄.PBNZ t,2FSLU z,gg,56-3ADDU z,z,aa If k = rZ+ 1, set z 256rG + rA.2H STOU z,res,0 Store z in M8[rS℄.INCL ss,8 In
rease rS by 8.BNZ t,1F Bran
h if we just stored rG and rA.CMPU t,y,
255BZ t,2F Bran
h if we just stored $255.CMPU t,y,8*rRPBNZ t,4B Bran
h unless we just stored rR.SET y,8*rP Set k  rP.JMP 1B2H SET y,8*rB Set k  rB.JMP 1B1H SET oo,ss rO rS.SUBU x,oo,8 x rO� 8.JMP XDone Finish by storing x.(The spe
ial registers saved are those with 
odes 0{6 and 23{27, plus (rG; rA).)
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1.4.3� ANSWERS TO EXERCISES 12112. Unsave BNZ xx,Error Make sure X = 0.BNZ yy,Error Make sure Y = 0.ANDNL z,#7 Make sure z is a multiple of 8.ADDU ss,z,8 Set rS z+ 8.SET y,8*(rZ+2) Set k  rZ+ 2. (y � 8k)1H SUBU y,y,8 De
rease k by 1.4H SUBU ss,ss,8 De
rease rS by 8.SET arg,ssPUSHJ res,MemFindLDOU x,res,0 Set x M8[rS℄.CMPU t,y,8*(rZ+1)PBNZ t,2FSRU gg,x,56-3 If k = rZ+ 1, initialize rG and rA.SLU aa,x,64-18SRU aa,aa,64-18JMP 1B2H STOU x,g,y Otherwise set g[k℄ x.3H CMPU t,y,8*rPCSZ y,t,8*(rR+1) If k = rP, set k  rR+ 1.CSZ y,y,
256 If k = rB, set k  256.CMPU t,y,ggPBNZ t,1B Repeat the loop unless k = G.PUSHJ 0,Sta
kLoadAND t,ss,lring_maskLDOU x,l,t x the number of lo
al registers.AND x,x,#ff Make sure x � 255 (in 
ase of weird error).BZ x,1FSET y,x Now load x lo
al registers into the ring.2H PUSHJ 0,Sta
kLoadSUBU y,y,1PBNZ y,2BSLU x,x,31H SET ll,xCMPU t,gg,xCSN ll,t,gg Set rL min(x; rG).SET oo,ss Set rO rS.PBNZ uu,Update Bran
h, if not the �rst time.BZ resuming,Update Bran
h, if �rst 
ommand is UNSAVE.JMP AllDone Otherwise 
lear resuming and �nish.

A straightforward answeris as good as a kiss of friendship.| Proverbs 24 : 26
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122 ANSWERS TO EXERCISES 1.4.3�13. 517 SET xx,0518 SLU t,t,55 Loop to �nd highest trip bit.519 2H INCL xx,1520 SLU t,t,1521 PBNN t,2B522 SET t,#100 Now xx = index of trip bit.523 SRU t,t,xx t 
orresponding event bit.524 ANDN ex
,ex
,t Remove t from ex
.525 TakeTrip STOU inst_ptr,g,8*rW g[rW℄ inst_ptr.526 SLU inst_ptr,xx,4 inst_ptr xx� 4.527 INCH inst,#8000528 STOU inst,g,8*rX g[rX℄ inst+ 263.529 AND t,f,Mem_bit530 PBZ t,1F Bran
h if op doesn't a

ess memory.531 ADDU y,y,z Otherwise set y (y+ z) mod 264,532 SET z,x z x.533 1H STOU y,g,8*rY g[rY℄ y.534 STOU z,g,8*rZ g[rZ℄ z.535 LDOU t,g,
255536 STOU t,g,8*rB g[rB℄ g[255℄.537 LDOU t,g,8*rJ538 STOU t,g,
255 g[255℄ g[rJ℄.14. Resume SLU t,inst,40BNZ t,Error Make sure XYZ = 0.LDOU inst_ptr,g,8*rW inst_ptr g[rW℄.LDOU x,g,8*rXBN x,Update Finish the 
ommand if rX is negative.SRU xx,x,56 Otherwise let xx be the rop
ode.SUBU t,xx,2BNN t,1F Bran
h if the rop
ode is � 2.PBZ xx,2F Bran
h if the rop
ode is 0.SRU y,x,28 Otherwise the rop
ode is 1:AND y,y,#f y k, the leading nybble of the op
ode.SET z,1SLU z,z,y z 2k.ANDNL z,#70
f Zero out the a

eptable values of z.BNZ z,Error Make sure the op
ode is \normal."1H BP t,Error Make sure the rop
ode is � 2.SRU t,x,13AND t,t,
255CMPU y,t,llBN y,2F Bran
h if $X is lo
al.CMPU y,t,ggBN y,Error Otherwise make sure $X is global.2H MOR t,x,#8CMPU t,t,#F9 Make sure the op
ode isn't RESUME.BZ t,ErrorNEG resuming,xx
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1.4.3� ANSWERS TO EXERCISES 123CSNN resuming,resuming,1 Set resuming as spe
i�ed.JMP Update Finish the 
ommand.166 LDOU y,g,8*rY y g[rY℄.167 LDOU z,g,8*rZ z g[rZ℄.168 BOD resuming,Install_Y Bran
h if rop
ode was 1.169 0H GREG #C1<<56+(x-$0)<<48+(z-$0)<<40+1<<16+X_is_dest_bit170 SET f,0B Otherwise 
hange f to an ORI instru
tion.171 LDOU ex
,g,8*rX172 MOR ex
,ex
,#20 ex
 third-from-left byte of rX.173 JMP XDest Continue as for ORI.15. We need to deal with the fa
t that the string to be output might be split a
rosstwo or more 
hunks of the simulated memory. One solution is to output eight bytes ata time with Fwrite until rea
hing the last o
tabyte of the string; but that approa
his 
ompli
ated by the fa
t that the string might start in the middle of an o
tabyte.Alternatively, we 
ould simply Fwrite only one byte at a time; but that would bealmost obs
enely slow. The following method is mu
h better:SimFputs SET xx,0 (xx will be the number of bytes written)SET z,t Set z virtual address of string.1H SET arg,zPUSHJ res,MemFindSET t,res Set t a
tual address of string.GO $0,DoInst (See below.)BN t,TrapDone If error o

urred, pass the error to user.BZ t,1F Bran
h if the string was empty.ADD xx,xx,t Otherwise a

umulate the number of bytes.ADDU z,z,t Find the address following the string output.AND t,z,Mem:maskBZ t,1B Continue if string ended at 
hunk boundary.1H SET t,xx t number of bytes su

essfully put.JMP TrapDone Finish the operation.Here DoInst is a little subroutine that inserts inst into the instru
tion stream. Weprovide it with additional entran
es that will be useful in the next answers:GREG � Base address:SimInst LDA t,IOArgs DoInst to IOArgs and return.JMP DoInstSimFinish LDA t,IOArgs DoInst to IOArgs and �nish.SimF
lose GETA $0,TrapDone DoInst and �nish.:DoInst PUT rW,$0 Put return address into rW.PUT rX,inst Put inst into rX.RESUME 0 And do it.16. Again we need to worry about 
hunk boundaries (see the previous answer), but abyte-at-a-time method is tolerable sin
e �le names tend to be fairly short.SimFopen PUSHJ 0,GetArgs (See below.)ADDU xx,Mem:allo
,Mem:nodesizeSTOU xx,IOArgsSET x,xx (We'll 
opy the �le name into this open spa
e.)1H SET arg,zPUSHJ res,MemFind
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124 ANSWERS TO EXERCISES 1.4.3�LDBU t,res,0STBU t,x,0 Copy byte M[z℄.INCL x,1INCL z,1PBNZ t,1B Repeat until the string has ended.GO $0,SimInst Now open the �le.3H STCO 0,x,0 Now zero out the 
opied string.CMPU z,xx,xSUB x,x,8PBN z,3B Repeat until it is surely obliterated.JMP TrapDone Pass the result t to the user.Here GetArgs is a subroutine that will be useful also in the implementation of otherI/O 
ommands. It sets up IOArgs and 
omputes several other useful results in globalregisters.:GetArgs GET $0,rJ Save the return address.SET y,t y g[255℄.SET arg,tPUSHJ res,MemFindLDOU z,res,0 z virtual address of �rst argument.SET arg,zPUSHJ res,MemFindSET x,res x internal address of �rst argument.STO x,IOArgsSET xx,Mem:ChunkAND zz,x,Mem:maskSUB xx,xx,zz xx bytes from x to 
hunk end.ADDU arg,y,8PUSHJ res,MemFindLDOU zz,res,0 zz se
ond argument.STOU zz,IOArgs+8 Convert IOArgs to internal form.PUT rJ,$0 Restore the return address.POP 017. This solution, whi
h uses the subroutines above, works also for SimFwrite(!).SimFread PUSHJ 0,GetArgs Massage the input arguments.SET y,zz y number of bytes to read.1H CMP t,xx,yPBNN t,SimFinish Bran
h if we 
an stay in one 
hunk.STO xx,IOArgs+8 Oops, we have to work pie
ewise.SUB y,y,xxGO $0,SimInstBN t,1F Bran
h if an error o

urs.ADD z,z,xxSET arg,zPUSHJ res,MemFindSTOU res,IOArgs Redu
e to the previous problem.STO y,IOArgs+8ADD xx,Mem:mask,1JMP 1B
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1.4.3� ANSWERS TO EXERCISES 1251H SUB t,t,y Compute the 
orre
t number of missing bytes.JMP TrapDoneSimFwrite IS SimFread ;SimFseek IS SimF
lose ;SimFtell IS SimF
lose(The program assumes that no �le-reading error will o

ur if the �rst Fread wassu

essful.) Analogous routines for SimFgets, SimFgetws, and SimFputws 
an be foundin the �le sim.mms, whi
h is one of many demonstration �les in
luded with the author'sMMIXware programs.18. The stated algorithms will work with any MMIX program for whi
h the number oflo
al registers, L, never ex
eeds �� 1, where � is the lring_size.19. In all three 
ases the pre
eding instru
tion is INCL ll,8, and a value is stored inlo
ation l+ ((oo+ ll) ^ lring_mask). So we 
ould shorten the program slightly.20. 560 1H GETA t,O
taArgs561 TRAP 0,Fread,Infile Input � into g[255℄.562 BN t,9F Bran
h if end of �le.563 LDOU lo
,g,
255 lo
 �.564 2H GETA t,O
taArgs565 TRAP 0,Fread,Infile Input an o
tabyte x into g[255℄.566 LDOU x,g,
255567 BN t,Error Bran
h on unexpe
ted end of �le.568 SET arg,lo
569 BZ x,1B Start a new sequen
e if x = 0.570 PUSHJ res,MemFind571 STOU x,res,0 Otherwise store x in M8[lo
℄.572 INCL lo
,8 In
rease lo
 by 8.573 JMP 2B Repeat until en
ountering a zero.574 9H TRAP 0,F
lose,Infile Close the input �le.575 SUBU lo
,lo
,8 De
rease lo
 by 8.Also put \O
taArgs OCTA Global+8*255,8" in some 
onvenient pla
e.21. Yes it is, up to a point; but the question is interesting and nontrivial.To analyze it quantitatively, let sim.mms be the simulator in MMIXAL, and letsim.mmo be the 
orresponding obje
t �le produ
ed by the assembler. Let Hello.mmobe the obje
t �le 
orresponding to Program 1.3.2�H. Then the 
ommand line `Hello'presented to MMIX's operating system will output `Hello, world' and stop after �+17� ,not 
ounting the time taken by the operating system to load it and to take 
are ofinput/output operations.Let Hello0.mmb be the binary �le that 
orresponds to the 
ommand line `Hello',in the format of exer
ise 20. (This �le is 176 bytes long.) Then the 
ommand line `simHello0.mmb' will output `Hello, world' and stop after 168�+ 1699�.Let Hello1.mmb be the binary �le that 
orresponds to the 
ommand line `simHello0.mmb'. (This �le is 5768 bytes long.) Then the 
ommand line `sim Hello1.mmb'will output `Hello, world' and stop after 10549�+ 169505�.Let Hello2.mmb be the binary �le that 
orresponds to the 
ommand line `simHello1.mmb'. (This �le also turns out to be 5768 bytes long.) Then the 
ommand line`sim Hello2.mmb' will output `Hello, world' and stop after 789739� + 15117686�.Let Hello3.mmb be the binary �le that 
orresponds to the 
ommand line `simHello2.mmb'. (Again, 5768 bytes.) Then the 
ommand line `sim Hello3.mmb' willoutput `Hello, world' if we wait suÆ
iently long.
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126 ANSWERS TO EXERCISES 1.4.3�Now let re
urse.mmb be the binary �le that 
orresponds to the 
ommand line`sim re
urse.mmb'. Then the 
ommand line `sim re
urse.mmb' runs the simulatorsimulating itself simulating itself simulating itself � � � ad in�nitum. The �le handleInfile is �rst opened at time 3� + 13�, when re
urse.mmb begins to be read by thesimulator at level 1. That handle is 
losed at time 1464� + 16438� when loading is
omplete; but the simulated simulator at level 2 opens it at time 1800�+ 19689�, andbegins to load re
urse.mmb into simulated simulated memory. The handle is 
losedagain at time 99650�+1484347�, then reopened by the simulated simulated simulatorat time 116999� + 1794455�. The third level �nishes loading at time 6827574� +131658624� and the fourth level starts at time 8216888� + 159327275�.But the re
ursion 
annot go on forever; indeed, the simulator running itself isa �nite-state system, and a �nite-state system 
annot produ
e Fopen{F
lose eventsat exponentially longer and longer intervals. Eventually the memory will �ll up (seeexer
ise 4) and the simulation will go awry. When will this happen? The exa
t answeris not easy to determine, but we 
an estimate it as follows: If the kth level simulatorneeds nk 
hunks of memory to load the (k + 1)st level simulator, the value of nk+1 isat most 4+ d(212 +16+ (212 +24)nk)=212e, with n0 = 0. We have nk = 6k for k < 30,but this sequen
e eventually grows exponentially; it �rst surpasses 261 when k = 6066.Thus we 
an simulate at least 1006065 instru
tions before any problem arises, if weassume that ea
h level of simulation introdu
es a fa
tor of at least 100 (see exer
ise 2).22. The pairs (xk; yk) 
an be stored in memory following the tra
e program itself,whi
h should appear after all other instru
tions in the text segment of the programbeing tra
ed. (The operating system will give the tra
e routine permission to modifythe text segment.) The main idea is to s
an ahead from the 
urrent lo
ation inthe tra
ed program to the next bran
h or GO or PUSH or POP or JMP or RESUME orTRIP instru
tion, then to repla
e that instru
tion temporarily in memory with a TRIP
ommand. The tetrabytes in lo
ations #0, #10, #20, : : : , #80 of the tra
ed programare 
hanged so that they jump to appropriate lo
ations within the tra
e routine; thenall 
ontrol transfers will be tra
ed, in
luding transfers due to arithmeti
 interrupts.The original instru
tions in those lo
ations 
an be tra
ed via RESUME, as long as theyare not themselves RESUME 
ommands.
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INDEX AND GLOSSARYWhen an index entry refers to a page 
ontaining a relevant exer
ise, see also the answer tothat exer
ise for further information. An answer page is not indexed here unless it refers to atopi
 not in
luded in the statement of the exer
ise.: (
olon), 61{62, 65, 80." (double-quote), 31, 37, 44, 72, 100._ (unders
ore), 37.� (at sign), 15, 35, 38, 81.$0, 31, 58.$1, 31, 58.2ADDU (times 2 and add unsigned), 9.4ADDU (times 4 and add unsigned), 9.8ADDU (times 8 and add unsigned), 9.16ADDU (times 16 and add unsigned), 9.$255, 34, 40{43, 56, 68, 114.� (average memory a

ess time), 22.� (golden ratio), 8, 47.� (instru
tion 
y
le time), 22.Absolute address, 15.Absolute di�eren
e, 26.Absolute value, 26, 27.ACE 
omputer, 65.ADD, 8.Addition, 8, 12, 14, 25.Addition 
hains, 98.ADDU (add unsigned), 8.Adobe Systems, 74.Ahrens, Wilhelm Ernst Martin Georg, 48.ALGOL language, 74.Algol W language, iv.Alhazen, see Ibn al-Haytham.Aliasing, 108.Alignment, 39, 44.Alpha 21164 
omputer, 2.AMD 29000 
omputer, 2.AND (bitwise and), 10.ANDN (bitwise and-not), 10.ANDNH (bitwise and-not high wyde), 14.ANDNL (bitwise and-not low wyde), 14.ANDNMH (bitwise and-not medium highwyde), 14.ANDNML (bitwise and-not medium lowwyde), 14.ANSI: The Ameri
an National StandardsInstitute, 12.Arabi
 numerals, 44.Arabi
 s
ript, 44, 100.Arguments, 54.Arithmeti
 ex
eptions, 18, 89.Arithmeti
 operators of MMIX, 8{9.Arithmeti
 over
ow, 6, 7, 18, 25, 27,65, 84, 95, 109.Arithmeti
 status register, 18.ASCII: Ameri
an Standard Code forInformation Inter
hange, iv, 3, 26,32, 34, 37, 44, 67.

Assembly language for MMIX, 28{44.Assembly program, 29, 30, 40.Asso
iative law: (a Æ b) Æ 
 = a Æ (b Æ 
), 11.At sign (�), 15, 35, 38, 81.Atomi
 instru
tion, 17.b(x), 11.Ball, Walter William Rouse, 48.Base address, 35, 39.BDIF (byte di�eren
e), 11, 26, 101.Bertrand, Joseph Louis Fran�
ois,postulate, 100.BEV (bran
h if even), 15.Bidire
tional typesetting, 44.Biensto
k, Daniel, 104.Big-endian 
onvention: Most signi�
antbyte �rst, 4{7, 116.Binary �le, 41.for programs, 90, 92{93, 125.Binary number system, 4.Binary operators in MMIXAL, 38.Binary radix point, 8, 24.Binary-to-de
imal 
onversion, 37.BinaryRead mode, 43.BinaryReadWrite mode, 43.BinaryWrite mode, 43.Bit: \Binary digit", either zero or unity, 2.Bit di�eren
e, 26.Bit reversal, 26, 97.Bit ve
tors, 10.Bitwise di�eren
e, 14.Bitwise operators of MMIX, 10, 14, 25.Blank spa
e, 26, 40, 67.BN (bran
h if negative), 15.BNN (bran
h if nonnegative), 15.BNP (bran
h if nonpositive), 15.BNZ (bran
h if nonzero), 15.BOD (bran
h if odd), 15.Boolean matrix, 11, 96.Bootstrap register, 18.Bourne, Charles Per
y, 107.BP (bran
h if positive), 15.Bran
h operators of MMIX, 15, 85.BSPEC (begin spe
ial data), 62.Bu
hholz, Werner, 94.Byte: An 8-bit quantity, 3, 24, 94.Byte di�eren
e, 11, 26.BYTE operator, 31, 39.Byte reversal, 12.BZ (bran
h if zero), 15.127
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128 INDEX AND GLOSSARYC language, iv, 45.C++ language, iv.Ca
he memory, 17, 22{23, 72, 98, 105, 107.Calendar, 49.Calling sequen
e, 54{56, 60, 68{70.Carry, 25.Cau
hy, Augustin Louis, 105.Ceiling, 13.Chara
ter 
onstant, 37.Chess, 66.Chung, Fan Rong King ( ), 104.Chunks, 77, 123.Clavius, Christopher, 49.Clipper C300 
omputer, 2.Clo
k register, 19, 76, 112.CMP (
ompare), 9.CMPU (
ompare unsigned), 9, 113.Colon (:), 61, 65, 80.Command line arguments, 31, 90, 125.Comments, 29.Commutative law: a Æ b = b Æ a, 95.Comparison operators of MMIX, 9,13, 25, 113.Compiler algorithms, 62, 74.Complement, 10, 24.Complete MMIX program, 30, 45.Conditional operators of MMIX, 10, 26.Conversion operators of MMIX, 13.Conway, Melvin Edward, 35.Copying a string, 47.Coroutines, 66{73.linkage, 66, 72{73.Counting bits, 11.Coxeter, Harold S
ott Ma
donald, 48.CRAY I 
omputer, 2.Crossword puzzle, 50{51.Cryptanalysis, 47.CSEV (
onditional set if even), 10.CSN (
onditional set if negative), 10.CSNN (
onditional set if nonnegative), 10.CSNP (
onditional set if nonpositive), 10.CSNZ (
onditional set if nonzero), 10.CSOD (
onditional set if odd), 10.CSP (
onditional set if positive), 10.CSWAP (
ompare and swap), 17, 91.CSZ (
onditional set if zero), 10.Current pre�x, 61, 65.Cy
le 
ounter, 19.Cy
li
 shift, 26.D_BIT (integer divide 
he
k bit), 18.Dallos, J�ozsef, 97.Data segment of memory, 36, 57,76{77, 81, 117.Debugging, 64{65, 73, 91.De
imal 
onstant, 37.De�ned symbol, 37.Denormal 
oating point number, 12, 89.Dershowitz, Na
hum (UIAEYXC MEGP), 111.

Di
kens, Charles John Hu�am, iii.Di
tionaries, iii.Dijkstra, Edsger Wijbe, 63.Dis
rete system simulators, 76.DIV (divide), 8, 24{25.Divide 
he
k, 8, 18.Dividend register, 9.Division, 9, 13, 24{25, 49, 91.by small 
onstants, 25.by zero, 18.
onverted to multipli
ation, 25, 111.DIVU (divide unsigned), 8.Double-quote ("), 31, 37, 44, 72, 100.Dull, Brutus Cy
lops, 25.DVWIOUZX, 18, 27, 89, 92.Dynami
 traps, 19.Easter date, 49.Emulator, 75.Enable bits, 18, 85.Ending a program, 19, 31.Entran
es to subroutines, 52{57, 123.Epsilon register, 13.Equivalent of MMIXAL symbol, 38.Error re
overy, 91.ESPEC (end spe
ial data), 62.Evaluation of powers, 28, 98.Evans, Arthur, Jr., 74.Event bits, 18, 85.Exabyte, 94.Ex
eptions, 18, 89.Exe
ution register, 18.Exiting from a program, 19, 31.Exits from subroutines, 52{57, 115.Exponent of a 
oating point number, 12.Exponentiation, 28.EXPR �eld of MMIXAL line, 29, 38.Expression, in MMIXAL, 38.Extending the sign bit, 7, 9, 95.f(x), 12.FADD (
oating add), 12.Falla
ies, 95.Farey, John, 105.series, 47.Fas
i
les, iii.F
lose operation, 41, 43.FCMP (
oating 
ompare), 13, 98.FCMPE (
oating 
ompare with respe
tto epsilon), 13.FDIV (
oating divide), 12.FEQL (
oating equal to), 13, 98.FEQLE (
oating equivalent with respe
tto epsilon), 13.Fgets operation, 42, 43.Fgetws operation, 42, 43.Fibona

i, Leonardo, of Pisa.numbers, 47, 66.Filters, 71.Finite �elds, 26.
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INDEX AND GLOSSARY 129FINT (
oating integer), 13, 23.FIX (
onvert 
oating to �xed), 13.Fixed point arithmeti
, 45.FIXU (
onvert 
oating to �xed unsigned), 13.Flag bits, 82, 87.Floating binary number, 12.Floating point arithmeti
, 12{13, 44, 45, 89.Floating point operators of MMIX, 12{13.FLOT (
onvert �xed to 
oating), 13.FLOTU (
onvert �xed to 
oating unsigned),13, 97.Floyd, Robert W, 98.FMUL (
oating multiply), 12.Fopen operation, 41, 43, 92.Ford, Donald Floyd, 107.Forward referen
e, see Future referen
e.Fputs operation, 42, 43, 92.Fputws operation, 42, 43.Fra
tion of a 
oating point number, 12.Frame pointer, 58, 115.Fread operation, 42, 43, 92.Fredman, Mi
hael Lawren
e, 104.FREM (
oating remainder), 13, 23, 44, 111.Fseek operation, 42, 43.FSQRT (
oating square root), 13.FSUB (
oating subtra
t), 12.Ftell operation, 43.Fu
hs, David Raymond, 27, 74.FUN (
oating unordered), 13, 98.FUNE (
oating unordered with respe
tto epsilon), 13.Future referen
e, 37, 39.Fwrite operation, 42, 43, 124.Generalized matrix produ
t, 11, 26.GET (get from spe
ial register), 19, 92.GETA (get address), 20, 100.Gigabyte, 94.Global registers, 16, 34, 58, 65, 79,80, 84, 92.Global threshold register, 16.GO, 15, 26, 53{58.Gove, Philip Bab
o
k, iii.Graphi
al display, 50{51.Graphi
s, 11, 26.GREG (allo
ate global register), 34{35, 39, 62.Half-bytes, 24.Halt operation, 31, 43.Handles, 41.Handlers, 18, 65, 89.Hardy, Godfrey Harold, 105.Harmoni
 
onvergen
e, 48.Harmoni
 series, 48{49.Haros, C., 105.Heller, Joseph, 3.Hello, world, 30{32, 125.Hennessy, John LeRoy, v.Hexade
imal 
onstants, 37.

Hexade
imal digits, 3, 24.Hexade
imal notation, 3, 19.High tetra arithmeti
, 97.Hill, Robert, 111.Himult register, 8.Hints to MMIX, 16{17.Hita
hi SuperH4 
omputer, 2.Hofri, Mi
ha (IXTG DKIN), 104.
I_BIT (invalid 
oating operation bit), 18, 98.IBM 601 
omputer, 2.IBM 801 
omputer, 2.Ibn al-Haytham, Ab�u `Al� al-H. asan (=Alhazen, Í{ÛÔ¿m Ñp Ñ��¿m ÞÀ« Øp
), 48.IEC: The International Ele
trote
hni
alCommission, 3.IEEE: The Institute of Ele
tri
al andEle
troni
s Engineers.
oating point standard, 12, 89.Immediate 
onstants, 13{14, 19.INCH (in
rease by high wyde), 14.INCL (in
rease by low wyde), 14.INCMH (in
rease by medium high wyde), 14.INCML (in
rease by medium low wyde), 14.Inexa
t ex
eption, 18, 89.Ingalls, Daniel Henry Holmes, 109.Initialization, 31, 91.of 
oroutines, 70.In�nite 
oating point number, 12.int x, 13.Input-output operations, 19, 31, 40{43, 92.Instru
tion, ma
hine language: A 
odethat, when interpreted by the 
ir
uitryof a 
omputer, 
auses the 
omputerto perform some a
tion.in MMIX, 5{28.numeri
 form, 27{29, 44.symboli
 form, 28{40.Integer over
ow, 6, 7, 18, 25, 27, 65,84, 95, 109.Intel i960 
omputer, 2.Internet, ii, v.Interpreter, 73{75.Interrupt mask register, 19.Interrupt request register, 19.Interrupts, 18{19, 86, 89, 92.Interval 
ounter, 19.Invalid 
oating operation, 18.IS, 30, 34, 39.ISO: The International Organization forStandardization, 3.Ivanovi�
, Vladimir Gresham, v.Iverson, Kenneth Eugene, 11.
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130 INDEX AND GLOSSARYJa
quet, Philippe Pierre, 104.Java language, iv, 45.JMP (jump), 15.Joke, 72.Josephus, Flavius, son of Matthias(DIZZN OA SQEI = Fl�bio
 >I¸shpo
Matj�ou), problem, 48.Jump operators of MMIX, 15.Jump table, 86{87.Jump tra
e, 93.Kernel spa
e, 36.Kernighan, Brian Wilson, 23.Kilobyte, 24, 94.KKB (large kilobyte), 94.Knuth, Donald Ervin ( ), i, v,45, 65, 74, 89.LABEL �eld of MMIXAL line, 29, 38.Large kilobyte, 94.Large programs, 63{65.LDA (load address), 7, 9, 100.LDB (load byte), 6.LDBU (load byte unsigned), 7.LDHT (load high tetra), 7, 24, 97.LDO (load o
ta), 6.LDOU (load o
ta unsigned), 7.LDSF (load short 
oat), 13.LDT (load tetra), 6.LDTU (load tetra unsigned), 7.LDUNC (load o
ta un
a
hed), 17.LDVTS (load virtual translation status), 17.LDW (load wyde), 6.LDWU (load wyde unsigned), 7.Leaf subroutine, 57, 65, 80.Library of subroutines, 52, 61, 62, 91.Lilius, Aloysius, 49.Linked allo
ation, 77{78.Literate programming, 45, 65.Little-endian 
onvention: Least signi�
antbyte �rst, see Bidire
tional typesetting,Byte reversal.Loader, 36.Loading operators of MMIX, 6{7.LOC (
hange lo
ation), 30, 39.LOCAL (guarantee lo
ality), 62.Lo
al registers, 16, 58, 65, 80, 84, 92.ring of, 76, 79{81, 92.Lo
al symbols, 35{37, 43.Lo
al threshold register, 16.Loop optimization, 115.m(x), 11.Ma
hine language, 2.Magi
 squares, 47{48.Main lo
ation, 31, 91.Marginal registers, 16, 58, 65, 80, 84, 97.Matrix: A two-dimensional array, 46, 106.Matrix multipli
ation, generalized, 11, 26.

Maximum, 26.subroutine, 28{29, 52{56.Megabyte, 24, 94.MemFind subroutine, 77{78, 91, 116{117.Memory: Part of a 
omputer systemused to store data, 4{6.address, 6.hierar
hy, 17, 22{23, 72, 98, 105, 107.Memory sta
k, 57{58, 115.Mems: Memory a

esses, 22.Meta-simulator, 22{23, 47, 76.METAPOST language, 51.Minimum, 26.Minus zero, 13.MIPS 4000 
omputer, 2.MIX 
omputer, iv..mmb (MMIX binary �le), 125.MMB (Large megabyte), 94.MMIX 
omputer, iv, 2{28.MMIX simulator, 22{23, 30.in MMIX, 75{93.MMIXAL: MMIX Assembly Language,28{44, 61{62.MMIXmasters, v, 51, 105, 111.MMIXware do
ument, 2..mmo (MMIX obje
t �le), 30, 125..mms (MMIX symboli
 �le), 30, 125.MOR (multiple or), 12, 23, 26.Motorola 88000 
omputer, 2.Move-to-front heuristi
, 77{78.Mu (�), 22.MUL (multiply), 8.Multipass algorithms, 70{72, 74.Multiple entran
es, 56, 123.Multiple exits, 56{57, 60, 115.Multiplex mask register, 11.Multipli
ation, 8, 12, 25, 85.by small 
onstants, 9, 25.Multiway de
isions, 45, 46, 82, 86{88, 119.MULU (multiply unsigned), 8, 25.Murray, James Augustus Henry, iii.MUX (multiplex), 11.MXOR (multiple ex
lusive-or), 12, 23, 26.NaN (Not-a-Number), 12, 98.NAND (bitwise not-and), 10.NEG (negate), 9.Negation, 9, 24.NEGU (negate unsigned), 9.Newline, 32, 42.NNIX operating system, 28, 31.No-op, 21, 28.Nonlo
al goto statements, 66, 91, 117.NOR (bitwise not-or), 10.Normal 
oating point number, 12.Not-a-Number, 12, 98.
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INDEX AND GLOSSARY 131Notational 
onventions:b(x), 11.f(x), 12.int x, 13.m(x), 11.s(x), 6, 24.t(x), 11.u(x), 6, 24.v(x), 10.�v(x), 10.w(x), 11.x .� y, 11.x � y, 9.x � y, 9.x ^ y, 10.x _ y, 10.x � y, 10.x rem y, 13.XYZ, 6.YZ, 5{6.NXOR (bitwise not-ex
lusive-or), 10.Nybble: A 4-bit quantity, 24.Nyp: A 2-bit quantity, 94.O_BIT (
oating over
ow bit), 18.O'Beirne, Thomas Hay, 111.Obje
t �le, 30{31, 125.O
ta: Short form of \o
tabyte", 4.OCTA operator, 39.O
tabyte: A 64-bit quantity, 4.ODIF (o
ta di�eren
e), 11, 102.Oops, 22.OP �eld of MMIXAL line, 29, 38.Op
ode: Operation 
ode, 5, 19.
hart, 20.Operands, 5, 83{84.Operating system, 28, 36, 40{43.Optimization of loops, 47.OR (bitwise or), 10.ORH (bitwise or with high wyde), 14.ORL (bitwise or with low wyde), 14.ORMH (bitwise or with medium highwyde), 14.ORML (bitwise or with medium low wyde), 14.ORN (bitwise or-not), 10.Over
ow, 6, 7, 18, 25, 27, 65, 84, 95, 109.Oxford English Di
tionary, iii.Pa
ked data, 82, 87{88.Page fault, 114.Parameters, 54.Parity, 26.Pas
al language, iv.Pass, in a program, 70{72.Patt, Yale Nan
e, 98.PBEV (probable bran
h if even), 16.PBN (probable bran
h if negative), 15.PBNN (probable bran
h if nonnegative), 15.PBNP (probable bran
h if nonpositive), 16.

PBNZ (probable bran
h if nonzero), 16.PBOD (probable bran
h if odd), 15.PBP (probable bran
h if positive), 15.PBZ (probable bran
h if zero), 15.Petabyte, 94.Phi (�), 8, 47.Pipe, 71.Pipeline, 22, 47, 76, 98.Pixel values, 11, 26.PL/360 language, 45.PL/MMIX language, 45, 63.Pool segment of memory, 36, 117.POP (pop registers and return), 16,53, 59, 73, 92.Population 
ounting, 11.PostS
ript language, 74.POWER 2 
omputer, 2.Power of number, evaluation, 28.Prede�ned symbols, 36{38, 43.Predi
tion register, 17.PREFIX spe
i�
ation, 61{62, 65, 77{78, 80.Prefet
hing, 17, 22.Pre�xes for units of measure, 94.PREGO (prefet
h to go), 17.PRELD (preload data), 17.PREST (prestore data), 17.Primary, in MMIXAL, 38.Prime numbers, program to 
ompute,32{34, 37.Privileged instru
tions, 46, 76.Probable bran
h, 15{16, 22, 26, 85.Pro�le of a program: The number oftimes ea
h instru
tion is performed,29, 31, 93, 98.Program 
onstru
tion, 63{65.Programming languages, iv, 63.Pseudo-operations, 30{31.Purdy, Gregor Neal, 94.PUSHGO (push registers and go), 16,65, 73, 85{86.PUSHJ (push registers and jump), 16,53, 59, 73, 85{86.PUT (put into spe
ial register), 19, 92.Qui
k, Jonathan Horatio, 44.rA (arithmeti
 status register), 18, 28.RA (relative address), 15.Radix point, 8, 24.Randell, Brian, 74.Randolph, Van
e, 28.Rational numbers, 47.rB (bootstrap register for trips), 18.rBB (bootstrap register for traps), 18.rC (
y
le 
ounter), 19, 112.rD (dividend register), 9.rE (epsilon register), 13.Rea
hability, 51.Read-only a

ess, 36.
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132 INDEX AND GLOSSARYRe
ursive use of subroutines, 57, 66,125{126.Register $0, 31, 58.Register $1, 31, 58.Register $255, 34, 40{43, 56, 68, 114.Register number, 34, 58.Register sta
k, 16, 58{61, 65{66, 70, 73,78{81, 84{86, 115.Register sta
k o�set, 17.Register sta
k pointer, 17.Registers: Portions of a 
omputer'sinternal 
ir
uitry in whi
h data ismost a

essible.of MMIX, 4{5, 21, 23, 76, 79.saving and restoring, 55; see alsoSAVE, UNSAVE.Reingold, Edward Martin (CLEBPIIX,MIIG OA DYN WGVI), 111.Relative addresses, 15{16, 20, 30, 83, 87, 99.Remainder, 8, 13, 49.Remainder register, 8.Repli
ated 
oroutines, 72.Reprogramming, 75.RESUME (resume after interrupt), 19,84, 92, 114, 126.Return-jump register, 16.Reversal of bits and bytes, 12, 26, 97.Rewinding a �le, 42.Rewrites, v, 64.rG (global threshold register), 16, 58, 92.rH (himult register), 8, 28, 85, 94.rI (interval 
ounter), 19.Ring of lo
al registers, 76, 79{81, 92.RISC: Redu
ed Instru
tion SetComputer, 24.RISC II 
omputer, 2.rJ (return-jump register), 16, 60, 80, 81.rK (interrupt mask register), 19, 90{91.rL (lo
al threshold register), 16, 28, 58,79, 92, 97, 117.rM (multiplex mask register), 11.rN (serial number), 19.rO (register sta
k o�set), 17, 79.Roki
ki, Tomas Gerhard, 74.Roman numerals, 2, 3.Rop
odes, 19, 92.ROUND_DOWN mode, 13.ROUND_NEAR mode, 13, 37.ROUND_OFF mode, 13.ROUND_UP mode, 13.Rounding, 13, 18, 47, 48.Row major order, 46.rP (predi
tion register), 17.rQ (interrupt request register), 19.rR (remainder register), 8.rS (register sta
k pointer), 17, 79.rT (trap address register), 18, 90{91.rTT (dynami
 trap address register),19, 90{91.

rU (usage 
ounter), 19.Running time, 20{23.Russell, Lawford John, 74.rV (virtual translation register), 20, 90{91.rW (where-interrupted register for trips), 18.rWW (where-interrupted register fortraps), 18.rX (exe
ution register for trips), 18.rXX (exe
ution register for traps), 18.rY (Y operand register for trips), 18.rYY (Y operand register for traps), 18.rZ (Z operand register for trips), 18.rZZ (Z operand register for traps), 18.s(x), 6, 24.SADD (sideways add), 11.Saddle point, 46.Saturating addition, 26.Saturating subtra
tion, 11.SAVE (save pro
ess state), 16, 61, 92,114, 116.Saving and restoring registers, 55; seealso SAVE, UNSAVE.S
alar variables, 61.S
h�a�er, Alejandro Alberto, 104.Segments of user spa
e, 36.Self-modifying 
ode, iv, 28, 93.Self-organizing list sear
h, 77{78.Self-referen
e, 126, 132.Sequential array allo
ation, 46.Serial number register, 19.SET, 14, 99.Set di�eren
e, 25.Set interse
tion, 25.Set union, 25.SETH (set high wyde), 14.SETL (set low wyde), 14, 100.SETMH (set medium high wyde), 14, 97.SETML (set medium low wyde), 14.SFLOT (
onvert �xed to short 
oat), 13.SFLOTU (
onvert �xed to short 
oatunsigned), 13.Shift operators of MMIX, 9.Shor, Peter Williston, 104.Short 
oat format, 12{13.Sideways addition, 11.Sign extension, 7, 9, 95.Sign of 
oating point number, 12.Signed integers, 4, 6{7, 25.Sikes, William, iii.Simon, Marvin Neil, v.Simulation of 
omputers, 75{76.Sites, Ri
hard Lee, v.SL (shift left), 9, 25.SLU (shift left unsigned), 9, 25.Small 
onstant numbers, 9, 13.division by, 25.multipli
ation by, 9, 25.Spar
 64 
omputer, 2.Spe
ial registers of MMIX, 5, 19, 21, 76, 118.
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INDEX AND GLOSSARY 133Square root, 13.SR (shift right), 9, 25.SRU (shift right unsigned), 9, 25.Sta
k o�set register, 79.Sta
k operators of MMIX, 16{17.Sta
k pointer register, 57{58, 79.Sta
k segment of memory, 36, 61, 114, 117.Sta
ks, seeMemory sta
k, Register sta
k.Stalling a pipeline, 108.Standard error �le, 41.Standard input �le, 41.Standard output �le, 31, 41.Starting a program, 31, 70, 91.STB (store byte), 7.STBU (store byte unsigned), 8.STCO (store 
onstant o
tabyte), 8.StdErr (standard error �le), 41.StdIn (standard input �le), 41.StdOut (standard output �le), 30{31, 41.STHT (store high tetra), 8, 24, 97.STO (store o
ta), 7.Storing operators of MMIX, 7{8.STOU (store o
ta unsigned), 8.Stret
h 
omputer, 94.String 
onstant in MMIXAL, 31, 37, 100.String manipulation, 26, 47.Strong binary operators, 38.StrongArm 110 
omputer, 2.Stru
tured symbols, 61{62, 65, 77{78, 80.STSF (store short 
oat), 13.STT (store tetra), 7.STTU (store tetra unsigned), 8.STUNC (store o
ta un
a
hed), 17.STW (store wyde), 7.STWU (store wyde unsigned), 8.SUB (subtra
t), 8.Subroutines, 30, 45, 52{70, 75, 77{81, 92.linkage of, 52{61.Subsets, representation of, 25.Subtra
tion, 8, 12, 25.SUBU (subtra
t unsigned), 8.Supers
alar ma
hine, 108.Suri, Subhash (s� BAq s�rF), 104.Swit
hing tables, 45, 46, 82, 86{88, 119.SWYM (sympathize with your ma
hinery), 21.SYNC (syn
hronize), 17, 86.SYNCD (syn
hronize data), 17.SYNCID (syn
hronize instru
tions anddata), 17, 28.System operators of MMIX, 17.System/360 
omputer, 45.t(x), 11.Table-driven 
omputation, 45, 46, 82,86{88, 119.TDIF (tetra di�eren
e), 11.Terabyte, 94.Term, in MMIXAL, 38.Terminating a program, 19, 31.

Tetra: Short form of \tetrabyte", 4.Tetra di�eren
e, 11.TETRA operator, 39, 72.Tetrabyte: A 32-bit quantity, 4.Tetrabyte arithmeti
, 27.TEX, 65, 74{75.Text �le, 41.Text segment of memory, 36, 77, 81.TextRead mode, 43.TextWrite mode, 43.Threads, 72.Tra
e routine, 64, 93.TraÆ
 signals, 50.TRAP (for
e trap interrupt), 18{19, 40, 86{87.Trap address register, 18.Trap handlers, 18{19.TRIP (for
e trip interrupt), 18, 86.Trip handlers, 18, 89.Trip interrupts, 65, 92.Turing, Alan Mathison, 65.Twist, Oliver, iii.Two's 
omplement notation, 4, 24.u(x), 6, 24.U_BIT (
oating under
ow bit), 18, 85, 89.U_Handler: Address of an under
ow trip, 89.UCS: Universal Multiple-O
tet CodedChara
ter Set, 3.Under
ow, 18, 89.Unders
ore (_), 37.Uni
ode, 3, 26, 37, 44.Units of measure, 94.UNIVAC I 
omputer, 35.UNIX operating system, 71, 114.Unpa
king, 82.Unrolling a loop, 107.UNSAVE (restore pro
ess state), 16, 61,90, 92, 116.Unsigned integers, 4, 6{8.Upsilon (�), 22.Usage 
ounter, 19.User spa
e, 36.v(x), �v(x), 10.V_BIT (integer over
ow bit), 18.Valid MMIX instru
tion, 46.Van Wyk, Christopher John, 23.Ve
tor, 10.Vi
torius of Aquitania, 111.Virtual address translation, 17.Virtual ma
hine, 73.Virtual translation register, 20.
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134 INDEX AND GLOSSARYw(x), 11.W_BIT (
oat-to-�x over
ow bit), 18.W_Handler: Address of a 
oat-to-�xover
ow trip, 37.WDIF (wyde di�eren
e), 11.Weak binary operators, 38.Webster, Noah, iii.Where-interrupted register, 18.Whitespa
e 
hara
ter, 67.Wide strings, 42.Wilson, George Pi
kett, 28.Wirth, Niklaus Emil, 45, 63.Wordsworth, William, 24.Wright, Edward Maitland, 105.Wyde: A 16-bit quantity, 4.Wyde di�eren
e, 11.Wyde immediate, 14.WYDE operator, 39.X �eld of MMIX instru
tion, 5.X_BIT (
oating inexa
t bit), 18, 89.XOR (bitwise ex
lusive-or), 10.XYZ �eld of MMIX instru
tion, 6.

Y �eld of MMIX instru
tion, 5.Y operand register, 18.Yoder, Mi
hael Franz, 95.Yossarian, John, 3.Yottabyte, 94.YZ �eld of MMIX instru
tion, 5{6.Z �eld of MMIX instru
tion, 5.as immediate 
onstant, 14.Z operand register, 18.Z_BIT (
oating division by zero bit), 18.Zero or set instru
tions of MMIX, 10.Zettabyte, 94.ZSEV (zero or set if even), 10.ZSN (zero or set if negative), 10.ZSNN (zero or set if nonnegative), 10.ZSNP (zero or set if nonpositive), 10.ZSNZ (zero or set if nonzero), 10.ZSOD (zero or set if odd), 10.ZSP (zero or set if positive), 10.ZSZ (zero or set if zero), 10.
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ASCII CHARACTERS#0 #1 #2 #3 #4 #5 #6 #7 #8 #9 #a #b #
 #d #e #f#2x ! " # $ % & ' ( ) * + , - . / #2x#3x 0 1 2 3 4 5 6 7 8 9 : ; < = > ? #3x#4x � A B C D E F G H I J K L M N O #4x#5x P Q R S T U V W X Y Z [ \ ℄ ^ _ #5x#6x ` a b 
 d e f g h i j k l m n o #6x#7x p q r s t u v w x y z { | } ~ #7x#0 #1 #2 #3 #4 #5 #6 #7 #8 #9 #a #b #
 #d #e #fMMIX OPERATION CODES#0 #1 #2 #3 #4 #5 #6 #7TRAP 5� FCMP � FUN � FEQL � FADD 4� FIX 4� FSUB 4� FIXU 4�#0x #0xFLOT[I℄ 4� FLOTU[I℄ 4� SFLOT[I℄ 4� SFLOTU[I℄ 4�FMUL 4� FCMPE 4� FUNE � FEQLE 4� FDIV 40� FSQRT 40� FREM 4� FINT 4�#1x #1xMUL[I℄ 10� MULU[I℄ 10� DIV[I℄ 60� DIVU[I℄ 60�ADD[I℄ � ADDU[I℄ � SUB[I℄ � SUBU[I℄ �#2x #2x2ADDU[I℄ � 4ADDU[I℄ � 8ADDU[I℄ � 16ADDU[I℄ �CMP[I℄ � CMPU[I℄ � NEG[I℄ � NEGU[I℄ �#3x #3xSL[I℄ � SLU[I℄ � SR[I℄ � SRU[I℄ �BN[B℄ �+� BZ[B℄ �+� BP[B℄ �+� BOD[B℄ �+�#4x #4xBNN[B℄ �+� BNZ[B℄ �+� BNP[B℄ �+� BEV[B℄ �+�PBN[B℄ 3��� PBZ[B℄ 3��� PBP[B℄ 3��� PBOD[B℄ 3���#5x #5xPBNN[B℄ 3��� PBNZ[B℄ 3��� PBNP[B℄ 3��� PBEV[B℄ 3���CSN[I℄ � CSZ[I℄ � CSP[I℄ � CSOD[I℄ �#6x #6xCSNN[I℄ � CSNZ[I℄ � CSNP[I℄ � CSEV[I℄ �ZSN[I℄ � ZSZ[I℄ � ZSP[I℄ � ZSOD[I℄ �#7x #7xZSNN[I℄ � ZSNZ[I℄ � ZSNP[I℄ � ZSEV[I℄ �LDB[I℄ �+� LDBU[I℄ �+� LDW[I℄ �+� LDWU[I℄ �+�#8x #8xLDT[I℄ �+� LDTU[I℄ �+� LDO[I℄ �+� LDOU[I℄ �+�LDSF[I℄ �+� LDHT[I℄ �+� CSWAP[I℄ 2�+2� LDUNC[I℄ �+�#9x #9xLDVTS[I℄ � PRELD[I℄ � PREGO[I℄ � GO[I℄ 3�STB[I℄ �+� STBU[I℄ �+� STW[I℄ �+� STWU[I℄ �+�#Ax #AxSTT[I℄ �+� STTU[I℄ �+� STO[I℄ �+� STOU[I℄ �+�STSF[I℄ �+� STHT[I℄ �+� STCO[I℄ �+� STUNC[I℄ �+�#Bx #BxSYNCD[I℄ � PREST[I℄ � SYNCID[I℄ � PUSHGO[I℄ 3�OR[I℄ � ORN[I℄ � NOR[I℄ � XOR[I℄ �#Cx #CxAND[I℄ � ANDN[I℄ � NAND[I℄ � NXOR[I℄ �BDIF[I℄ � WDIF[I℄ � TDIF[I℄ � ODIF[I℄ �#Dx #DxMUX[I℄ � SADD[I℄ � MOR[I℄ � MXOR[I℄ �SETH � SETMH � SETML � SETL � INCH � INCMH � INCML � INCL �#Ex #ExORH � ORMH � ORML � ORL � ANDNH � ANDNMH � ANDNML � ANDNL �JMP[B℄ � PUSHJ[B℄ � GETA[B℄ � PUT[I℄ �#Fx #FxPOP 3� RESUME 5� [UN℄SAVE 20�+� SYNC � SWYM � GET � TRIP 5�#8 #9 #A #B #C #D #E #F� = 2� if the bran
h is taken, � = 0 if the bran
h is not taken


