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PREFACE

To put all the good stuff into one book is patently impossible,
and attempting even to be reasonably comprehensive
about certain aspects of the subject is likely to lead to runaway growth.

— GERALD B. FOLLAND, “Editor’s Corner” (2005)

La derniére chose qu’on trouve en faisant un ouvrage
est de savoir celle qu’il faut mettre la premiére.

— BLAISE PASCAL, Pensées 740 (c.1660)

THIS BOOKLET contains draft material that I'm circulating to experts in the
field, in hopes that they can help remove its most egregious errors before too
many other people see it. I am also, however, posting it on the Internet for
courageous and/or random readers who don’t mind the risk of reading a few
pages that have not yet reached a very mature state. Beware: This material has
not yet been proofread as thoroughly as the manuscripts of Volumes 1, 2, and 3
were at the time of their first printings. And those carefully-checked volumes,
alas, were subsequently found to contain thousands of mistakes.

Given this caveat, I hope that my errors this time will not be so numerous
and/or obtrusive that you will be discouraged from reading the material carefully.
I did try to make the text both interesting and authoritative, as far as it goes.
But the field is vast; I cannot hope to have surrounded it enough to corral it
completely. So I beg you to let me know about any deficiencies that you discover.

To put the material in context, this pre-fascicle contains the opening remarks
intended to launch a long, long chapter on combinatorial algorithms. Chapter 7
is planned to be by far the longest single chapter of The Art of Computer
Programming; it will eventually fill at least three volumes (namely Volumes
4A, 4B, and 4C), assuming that I'm able to remain healthy. Like the second-
longest chapter (Chapter 5), it begins with pump-priming introductory material
that comes before the main text, including dozens of exercises to get the ball
rolling. A long voyage lies ahead, and some important provisions need to be
brought on board before we embark. Furthermore I want to minimize the shock
of transition between Chapter 6 and the new chapter, because Chapter 6 was
originally written and published more than thirty years ago.

Chapter 7 proper, which follows the material in the present pre-fascicle,
begins with Section 7.1: Zeros and Ones. Section 7.1 is another sort of intro-
duction, at a different level; it has four subsections about Boolean and bitwise
computations, appearing respectively in pre-fascicles Ob, Oc, la, and 1b. The
next part, 7.2, is about generating all possibilities, and it begins with Section
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iv PREFACE

7.2.1: Generating Basic Combinatorial Patterns. Fascicles for Section 7.2.1 have
already appeared in print. Section 7.2.2 will deal with backtracking in general.
And so it will go on, if all goes well; an outline of the entire Chapter 7 as currently
envisaged appears on the taocp webpage that is cited on page ii.

This introductory section has turned out to have more than twice as many
exercises as I had originally planned. But many of them are quite simple, in-
tended to reinforce the reader’s understanding of basic definitions, or to acquaint
readers with the joys of The Stanford GraphBase. Other exercises were simply
irresistible, as they cried out to be included here —although, believe it or not, I
did reject more potential leads than I actually followed up.

My notes on combinatorial algorithms have been accumulating for more than
forty years, so I fear that in several respects my knowledge is woefully behind
the times. Please look, for example, at the exercises that I've classed as research
problems (rated with difficulty level 46 or higher), namely exercises 15, 16, 67,
and 125; I've also implicitly mentioned or posed additional unsolved questions
in the answers to exercises 7 and 133(m). Are those problems still open? Please
inform me if you know of a solution to any of these intriguing questions. And of
course if no solution is known today but you do make progress on any of them
in the future, I hope you'll let me know.

I urgently need your help also with respect to some exercises that I made
up as I was preparing this material. I certainly don’t like to receive credit for
things that have already been published by others, and most of these results
are quite natural “fruits” that were just waiting to be “plucked.” Therefore
please tell me if you know who deserves to be credited, with respect to the ideas
found in exercises 3, 25, 32, 35, 72, 84, 108, 116, and 135, and/or the answer to
exercises 105.

Thanks to Jeff Dean of Google for letting me look at the statistics of five-
letter words in the Internet at the beginning of 2004, and to Robin Wilson of
the Open University for his careful reading and many detailed suggestions.

I shall happily pay a finder’s fee of $2.56 for each error in this draft when it is
first reported to me, whether that error be typographical, technical, or historical.
The same reward holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32¢ each. (Furthermore, if
you find a better solution to an exercise, I'll actually reward you with immortal
glory instead of mere money, by publishing your name in the eventual book:—)

Cross references to yet-unwritten material sometimes appear as ‘00’; this
impossible value is a placeholder for the actual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.
28 April 2007

The author is especially grateful to the Addison—Wesley Publishing Company
for its patience in waiting a full decade for this manuscript
from the date the contract was signed.

— FRANK HARARY, Graph Theory (1968)
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Preface to Volume 4 (draft)

THE TITLE of Volume 4 is Combinatorial Algorithms, and when I proposed it
I was strongly inclined to add a subtitle: The Kind of Programming I Like Best.
My editors have decided to tone down such exuberance, but the fact remains
that programs with a combinatorial flavor have always been my favorites.

On the other hand I've often been surprised to find that, in many people’s
minds, the word “combinatorial” is linked with computational difficulty. Indeed,
Samuel Johnson, in his famous dictionary of the English language (1755), said
that the corresponding noun “is now generally used in an ill sense.” Colleagues
tell me tales of woe, in which they report that “the combinatorics of the sit-
uation defeated us.” Why is it that, for me, combinatorics arouses feelings of
pure pleasure, yet for many others it evokes pure panic?

It’s true that combinatorial problems are often associated with humongously
large numbers. Johnson’s dictionary entry also included a quote from Ephraim
Chambers, who had stated that the total number of words of length 24 or less,
in a 24-letter alphabet, is 1,391,724,288,887,252,999,425,128,493,402,200. The
corresponding number for a 10-letter alphabet is 11,111,111,110; and it’s only
3905 when the number of letters is 5. Thus a “combinatorial explosion” certainly
does occur as the size of the alphabet grows from 5 to 10 to 24 and beyond.

Computing machines have become tremendously more powerful throughout
my life. As I write these words, I know that they are being processed by a
computer whose speed is more than 100,000 times faster than the IBM Type 650
computer to which I'm dedicating these books, and whose memory capacity is
also more than 100,000 times greater. Tomorrow’s machines will be even faster
and more capacious. But these amazing advances have not diminished people’s
craving for answers to combinatorial questions; quite the contrary. Our once-
unimaginable ability to compute so rapidly has raised our expectations, and
whetted our appetite for more —because, in fact, the size of a combinatorial
problem can increase more than 100,000-fold when n simply increases by 1.

Combinatorial algorithms can be defined informally as techniques for the
high-speed manipulation of combinatorial objects such as permutations or graphs.
We typically try to find patterns or arrangements that are the best possible ways
to satisfy certain constraints. The number of such problems is vast, and the art
of writing such programs is especially important and appealing because a single
good idea can save years or even centuries of computer time.

Indeed, the fact that good algorithms for combinatorial problems can have a
terrific payoff has led to terrific advances in the state of the art. Many problems
that once were thought to be intractable can now be polished off with ease, and
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vi PREFACE TO VOLUME 4 (DRAFT)

many algorithms that once were known to be good have now become better.
Starting about 1970, computer scientists began to experience a phenomenon
that we called “Floyd’s Lemma”: Problems that seemed to need n® operations
could actually be solved in O(n?); problems that seemed to require n? could be
handled in O(nlogn); and nlogn was often reducible to O(n). More difficult
problems saw a reduction in running time from O(2") to O(1.5") to O(1.3"),
etc. Other problems remained difficult in general, but they were found to have
important special cases that are much simpler. Many combinatorial questions
that I once thought would never be answered have now been resolved, and these
breakthroughs are due mainly to improvements in algorithms rather than to
improvements in processor speeds.

By 1975, such research was advancing so rapidly that a substantial fraction
of the papers published in leading journals of computer science were devoted
to combinatorial algorithms. And the advances weren’t being made only by
people in the core of computer science; significant contributions were coming
from workers in electrical engineering, artificial intelligence, operations research,
mathematics, physics, statistics, and other fields. I was trying to complete
Volume 4 of The Art of Computer Programming, but instead I felt like I was
sitting on the lid of a boiling kettle: I was confronted with a combinatorial
explosion of another kind, a prodigious explosion of new ideas!

This series of books was born at the beginning of 1962, when I naively
wrote out a list of tentative chapter titles for a 12-chapter book. At that time
I decided to include a brief chapter about combinatorial algorithms, just for
fun. “Hey look, most people use computers to deal with numbers, but we can
also write programs that deal with patterns.” In those days it was easy to give
a fairly complete description of just about every combinatorial algorithm that
was known. And even by 1966, when I'd finished a first draft of about 3000
handwritten pages for that already-overgrown book, fewer than 100 of those
pages belonged to Chapter 7. I had absolutely no idea that what I’d foreseen as
a sort of “salad course” would eventually turn out to be the main dish.

The great combinatorial fermentation of 1975 has continued to churn, as
more and more people have begun to participate. New ideas improve upon the
older ones, but rarely replace them or make them obsolete. So of course I've had
to abandon any hopes that I once had of being able to surround the field, to write
a definitive book that sets everything in order and provides one-stop shopping
for everyone who has combinatorial problems to solve. It’s almost never possible
to discuss a subtopic and say, “Here’s the final solution: end of story.” Instead,
I must restrict myself to explaining the most important principles that seem to
underlie all of the efficient combinatorial methods that I've encountered so far.
At present I've accumulated more than twice as much raw material for Volume 4
as for all of Volumes 1-3 combined.

This sheer mass of material implies that the once-planned “Volume 4” must
actually become several physical volumes. You are now looking at Volume 4A.
Volumes 4B and 4C will exist someday, assuming that I'm able to remain healthy;
and (who knows?) there may also be Volumes 4D, 4E, ...; but surely not 4Z.

Floyd’s Lemma
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My plan is to go systematically through the files that I’ve amassed since 1962
and to tell the stories that I believe are still waiting to be told, to the best of
my ability. I can’t aspire to completeness, but I do want to give proper credit to
all of the pioneers who have been responsible for key ideas; so I won’t scrimp on
historical details. Furthermore, whenever I learn something that I think is likely
to remain important 50 years from now, something that can also be explained
elegantly in a paragraph or two, I can’t bear to leave it out. Conversely, difficult
material that requires a lengthy proof is beyond the scope of these books, unless
the subject matter is truly fundamental.

OK, it’s clear that the field of Combinatorial Algorithms is vast, and I can’t
cover it all. What are the most important things that I'm leaving out? My
biggest blind spot, I think, is geometry, because I've always been much better at
visualizing and manipulating algebraic formulas than objects in space. Therefore
I don’t attempt to deal in these books with combinatorial problems that are re-
lated to computational geometry, such as close packing of spheres, or clustering of
data points in n-dimensional Euclidean space, or even the Steiner tree problem in
the plane. More significantly, I tend to shy away from polyhedral combinatorics,
and from approaches that are based primarily on linear programming, integer
programming, or semidefinite programming. Those topics are treated well in
many other books on the subject, but they rely on geometrical intuition. Purely
combinatorial developments are easier for me to understand.

I also must confess a bias against algorithms that are efficient only in
an asymptotic sense, algorithms whose superior performance doesn’t begin to
“kick in” until the size of the problem exceeds the size of the universe. A great
many publications nowadays are devoted to algorithms of that kind. I can
understand why the contemplation of ultimate limits has intellectual appeal and
carries an academic cachet; but in The Art of Computer Programming 1 tend
to give short shrift to any methods that I would never consider using myself in
an actual program. (There are, of course, exceptions to this rule, especially with
respect to basic concepts in the core of the subject. Some impractical methods
are simply too beautiful and/or too insightful to be excluded; others provide
instructive examples of what not to do.)

Furthermore, as in earlier volumes of this series, I'm intentionally concen-
trating almost entirely on sequential algorithms, even though computers are
increasingly able to carry out activities in parallel. I’'m unable to judge what
ideas about parallelism are likely to be useful five or ten years from now, let
alone fifty, so I happily leave such questions to others who are wiser than I.
Sequential methods, by themselves, already test the limits of my own ability to
discern what the artful programmers of tomorrow will want to know.

The main decision that I needed to make when planning how to present this
material was whether to organize it by problems or by techniques. Chapter 5
in Volume 3, for example, was devoted to a single problem, the sorting of data
into order; more than two dozen techniques were applied to different aspects
of that problem. Combinatorial algorithms, by contrast, involve many different
problems, which tend to be attacked with a smaller repertoire of techniques. I
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finally decided that a mixed strategy would work better than any pure approach.
Thus, for example, these books treat the problem of finding shortest paths
in Section 7.3, and problems of connectivity in Section 7.4.1; but many other
sections are devoted to basic techniques, such as the use of Boolean algebra
(Section 7.1), backtracking (Section 7.2), matroid theory (Section 7.6), or dy-
namic programming (Section 7.7). The famous Traveling Salesrep Problem, and
other classic combinatorial tasks related to covering, coloring, and packing, have
no sections of their own, but they come up several times in different places as
they are treated by different methods.

I’ve mentioned great progress in the art of combinatorial computing, but I
don’t mean to imply that all combinatorial problems have actually been tamed.
When the running time of a computer program goes ballistic, its programmers
shouldn’t expect to find a silver bullet for their needs in this book. The methods
described here will often work a great deal faster than the first approaches that
a programmer tries; but let’s face it: Combinatorial problems get huge very
quickly. We can even prove rigorously that a certain small, natural problem will
never have a feasible solution in the real world, although it is solvable in principle
(see the theorem of Stockmeyer and Meyer in Section 7.1.2). In other cases we
cannot prove as yet that no decent algorithm for a given problem exists, but
we know that such methods are unlikely, because any efficient algorithm would
yield a good way to solve thousands of other problems that have stumped the
world’s greatest experts (see the discussion of NP-completeness in Section 7.9).

Experience suggests that new combinatorial algorithms will continue to be
invented, for new combinatorial problems and for newly identified variations or
special cases of old ones; and that people’s appetite for such algorithms will also
continue to grow. The art of computer programming continually reaches new
heights when programmers are faced with challenges such as these. Yet today’s
methods are also likely to remain relevant.

Most of this book is self-contained, although there are frequent tie-ins with
the topics discussed in Volumes 1-3. Low-level details of machine language
programming have been covered extensively in those volumes, so the algorithms
in the present book are usually specified only at an abstract level, independent of
any machine. However, some aspects of combinatorial programming are heavily
dependent on low-level details that didn’t arise before; in such cases, all examples
in this book are based on the MMIX computer, which supersedes the MIX machine
that was defined in early editions of Volume 1. Details about MMIX appear in
a paperback supplement to that volume called The Art of Computer Program-
ming, Volume 1, Fascicle 1; they’re also available on the Internet, together with
downloadable assemblers and simulators.

Another downloadable resource, a collection of programs and data called The
Stanford GraphBase, is cited extensively in the examples of this book. Readers
are encouraged to play with it, in order to learn about combinatorial algorithms
in what I think will be the most efficient and most enjoyable way.

Incidentally, while writing the introductory material at the beginning of
Chapter 7, I was pleased to note that it was natural to mention some work of
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my Ph.D. thesis advisor, Marshall Hall, Jr. (1910-1990), as well as some work
of his thesis advisor, Oystein Ore (1899-1968), as well as some work of his thesis
advisor, Thoralf Skolem (1887-1963). Skolem’s advisor, Axel Thue (1863-1922),
was already present in Chapter 6.

I’'m immensely grateful to the hundreds of readers who have helped me to
ferret out numerous mistakes that I made in early drafts of this volume, which
were originally posted on the Internet and subsequently printed in paperback
fascicles. But I fear that other errors still lurk among the details collected here,
and I want to correct them as soon as possible. Therefore I will cheerfully pay
$2.56 to the first finder of each technical, typographical, or historical error. The
taocp webpage cited on page ii contains a current listing of all corrections that
have been reported to me.

Stanford, California D.E. K.
April 2007

Naturally, | am responsible for the remaining errors—
although, in my opinion, my friends could have caught a few more.

— CHRISTOS H. PAPADIMITRIOU, Computational Complexity (1995)

A note on references. References to IEEE Transactions include a letter code
for the type of transactions, in boldface preceding the volume number. For
example, ‘IEEE Trans. C-35" means the IEEE Transactions on Computers,
volume 35. The IEEE no longer uses these convenient letter codes, but the
codes aren’t too hard to decipher: ‘EC’ once stood for “Electronic Computers,”
‘IT’ for “Information Theory,” ‘SE’ for “Software Engineering,” and ‘SP’ for
“Signal Processing,” etc.; ‘CAD’ meant “Computer-Aided Design of Integrated
Circuits and Systems.”
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CHAPTER SEVEN

COMBINATORIAL SEARCHING

You shall seeke all day ere you finde them,
& when you have them, they are not worth the search.

— BASSANIO, in The Merchant of Venice (Act I, Scene 1, Line 117)

Amid the action and reaction of so dense a swarm of humanity,
every possible combination of events may be expected to take place,
and many a little problem will be presented which may be striking and bizarre.

— SHERLOCK HOLMES, in The Adventure of the Blue Carbuncle (1892)

The field of combinatorial algorithms is too vast to cover
in a single paper or even in a single book.

— ROBERT E. TARJAN (1976)

While jostling against all manner of people

it has been impressed upon my mind that the successful ones
are those who have a natural faculty for solving puzzies.

Life is full of puzzles, and we are called upon

to solve such as fate throws our way.

— SAM LOYD, JR. (1927)

COMBINATORICS is the study of the ways in which discrete objects can be
arranged into various kinds of patterns. For example, the objects might be 2n
numbers {1,1,2,2,...,n,n}, and we might want to place them in a row so that
exactly & numbers occur between the two appearances of each digit k. When
n = 3 there is essentially only one way to arrange such “Langford pairs,” namely
231213 (and its left-right reversal); similarly, there’s also a unique solution when
n = 4. Many other types of combinatorial patterns are discussed below.

Five basic types of questions typically arise when combinatorial problems
are studied, some more difficult than others.

i) Existence: Are there any arrangements X that conform to the pattern?

ii) Construction: If so, can such an X be found quickly?

iii) Enumeration: How many different arrangements X exist?

iv) Generation: Can all arrangements X7, Xs, ... be visited systematically?

v) Optimization: What arrangements maximize or minimize f(X), given an
objective function f?

Each of these questions turns out to be interesting with respect to Langford pairs.
1
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2 COMBINATORIAL ALGORITHMS (F0A) 7

For example, consider the question of existence. Trial and error quickly
reveals that, when n = 5, we cannot place {1,1,2,2,...,5,5} properly into ten
positions. The two 1s must both go into even-numbered slots, or both into odd-
numbered slots; similarly, the 3s and 5s must choose between two evens or two
odds; but the 2s and 4s use one of each. Thus we can’t fill exactly five slots of
each parity. This reasoning also proves that the problem has no solution when
n = 6, or in general whenever the number of odd values in {1,2,...,n} is odd.

In other words, Langford pairings can exist only when n = 4m—1 or n = 4m,
for some integer m. Conversely, when n does have this form, Roy O. Davies has
found an elegant way to construct a suitable placement (see exercise 1).

How many essentially different pairings, L, exist? Lots, when n grows:

L3 =1; Ly=1;
L, = 26; Lg = 150;
Ly =17,792; L,5 =108,144;
L15 = 39,809,640; Lq¢ = 326,721,800; (1)
L9 = 256,814,891,280; Loy = 2,636,337,861,200;

Los = 3,799,455,042,515,488; Loy = 46,845,158,056,515,936.

[The values of Ly and Lag were determined by M. Krajecki, C. Jaillet, and A. Bui
in 2004 and 2005; see Studia Informatica Universalis 4 (2005), 151-190.] A seat-
of-the-pants calculation suggests that L,, might be roughly of order (4n/e3)"+1/2
when it is nonzero (see exercise 5); and in fact this prediction turns out to be
basically correct in all known cases. But no simple formula is apparent.

The problem of Langford arrangements is a simple special case of a general
class of combinatorial challenges called exact cover problems. In Section 7.2.2.1
we shall study an algorithm called “dancing links,” which is a convenient way to
generate all solutions to such problems. When n = 16, for example, that method
needs to perform only about 3200 memory accesses for each Langford pair
arrangement that it finds. Thus the value of L,¢ can be computed in a reasonable
amount of time by simply generating all of the pairings and counting them.

Notice, however, that Loy is a huge number — roughly 5x 10, or about 1500
MIP-years. (Recall that a “MIP-year” is the number of instructions executed
per year by a machine that carries out a million instructions per second, namely
31,556,952,000,000.) Therefore it’s clear that the exact value of Los was deter-
mined by some technique that did not involve generating all of the arrangements.
Indeed, there is a much, much faster way to compute L,, using polynomial
algebra. The instructive method described in exercise 6 needs O(4™n) operations,
which may seem inefficient; but it beats the generate-and-count method by a
whopping factor of order ©((n/e®)"~/2), and even when n = 16 it runs about
20 times faster. On the other hand, the exact value of Ljgp will probably never
be known, even as computers become faster and faster.

We can also consider Langford pairings that are optimum in various ways.
For example, it’s possible to arrange sixteen pairs of weights {1,1,2,2,...,16,16}
that satisfy Langford’s condition and have the additional property of being “well-
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7 COMBINATORIAL SEARCHING 3

balanced,” in the sense that they won’t tip a balance beam when they are placed
in the appropriate order:

il o8, DDHHHHHHHH L olalafal

166 9152 3 8 2 6 31310912148 11161151 5107134125 11144 7 . (2)
L 1 | | | | | S 1 1 | 1 ‘
S — I L T I | [ |

! % 1 % % I ‘

In other words, 15.5-16+14.5-6+---40.5-8 = 0.5-114---+14.5-4+15.5-7; and
in this particular example we also have another kind of balance, 164+6+---4+8 =
11+16+---47, hence also 16-16+15-6+---+1-8=1-11+4---415-4416-7.

Moreover, the arrangement in (2) has minimum width among all Langford
pairings of order 16: The connecting lines at the bottom of the diagram show
that no more than seven pairs are incomplete at any point, as we read from left
to right; and one can show that a width of six is impossible. (See exercise 7.)

What arrangements ajaz...ase of {1,1,...,16,16} are the least balanced,
in the sense that 222:1 kay, is maximized? The maximum possible value turns
out to be 5268. One such pairing— there are 12,016 of them —is

2342131416131551479611512108761391615141181012. (3)

A more interesting question is to ask for the Langford pairings that are
smallest and largest in lexicographic order. The answers for n = 24 are

{abacbdecfgdoersfpgqtuwxvjklonhmirpsjqkhltiunmwvx,

xvwsquntkigrdapaodgiknqsvxwutmrpohljcfbecbhmfejl} (4)
if we use the letters a, b, ..., w, x instead of the numbers 1, 2, ..., 23, 24.
We shall discuss many techniques for combinatorial optimization in later sec-
tions of this chapter. Our goal, of course, will be to solve such problems without
examining more than a tiny portion of the space of all possible arrangements.

Orthogonal latin squares. Let’s look back for a moment at the early days of
combinatorics. A posthumous edition of Jacques Ozanam’s Recreations math-
ematiques et physiques (Paris: 1725) included an amusing puzzle in volume 4,
page 434: “Take all the aces, kings, queens, and jacks from an ordinary deck of
playing cards and arrange them in a square so that each row and each column
contains all four values and all four suits.” Can you do it? Ozanam’s solution,
shown in Fig. 1 on the next page, does even more: It exhibits the full panoply
of values and of suits also on both main diagonals. (Please don’t turn the page
until you’ve given this problem a try.)

By 1779 a similar puzzle was making the rounds of St. Petersburg, and it
came to the attention of the great mathematician Leonhard Euler. “Thirty-six
officers of six different ranks, taken from six different regiments, want to march
in a 6 x 6 formation so that each row and each column will contain one officer of
each rank and one of each regiment. How can they do it?” Nobody was able to
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4 COMBINATORIAL ALGORITHMS (F0A) 7

Fig. 1. Disorder in the court cards:
No agreement in any line of four.
(This configuration is one of many
ways to solve a popular eighteenth-
century problem.)

find a satisfactory marching order. So Euler decided to resolve the riddle—even
though he had become nearly blind in 1771 and was dictating all of his work
to assistants. He wrote a major paper on the subject [eventually published in
Verhandelingen uitgegeven door het Zeeuwsch Genootschap der Wetenschappen
te Vlissingen 9 (1782), 85-239], in which he constructed suitable arrangements
for the analogous task with n ranks and n regiments when n =1, 3,4, 5, 7, 8,
9,11, 12, 13, 15, 16, ...; only the cases with n mod 4 = 2 eluded him.

There’s obviously no solution when n = 2. But Euler was stumped when n =
6, after having examined a “very considerable number” of square arrangements
that didn’t work. He showed that any actual solution would lead to many others
that look different, and he couldn’t believe that all such solutions had escaped
his attention. Therefore he said, “I do not hesitate to conclude that one cannot
produce a complete square of 36 cells, and that the same impossibility extends
to the cases n =10, » = 14 ... in general to all oddly even numbers.”

Euler named the 36 officers ac, af3, av, ad, ae, a, ba, bS, by, bd, be, b(,
Ca’ Cﬂ’ 077 057 ce’ CC’ da’ dIB’ d’Ya d(s’ de’ dC’ ea’ eﬂ, e’Ya 661 665 GC? fa, fﬁ’ f’y’
fé, fe, f¢, based on their regiments and ranks. He observed that any solution
would amount to having two separate squares, one for Latin letters and another
for Greek. Each of those squares is supposed to have distinct entries in rows and
columns; so he began by studying the possible configurations for {a, b, ¢, d, €, f},
which he called Latin squares. A Latin square can be paired up with a Greek
square to form a “Graeco-Latin square” only if the squares are orthogonal to each
other, meaning that no (Latin, Greek) pair of letters can be found together in
more than one place when the squares are superimposed. For example, if we let
a=AMb=K c=Q,d=J,a=&,6=®8,7=<,and 6§ = Q, Fig. 1 is equivalent

Graco-Latin square
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to the Latin, Greek, and Graco-Latin squares

d a b c ¥y 0 B « dy ad b8 ca
c b a d B a v § cB ba ay db
a d ¢c b)) la B & v’ and ace df cd by |’ (5)
b ¢ d a d v a B b6 ¢y da af

Of course we can use any n distinct symbols in an n xn Latin square; all that
matters is that no symbol occurs twice in any row or twice in any column. So
we might as well use numeric values {0,1,...,n—1} for the entries. Furthermore
we’ll just refer to “latin squares” (with a lowercase “”), instead of categorizing
a square as either Latin or Greek, because orthogonality is a symmetric relation.

Euler’s assertion that two 6 x 6 latin squares cannot be orthogonal was
verified by Thomas Clausen, who reduced the problem to an examination of 17
fundamentally different cases, according to a letter from H. C. Schumacher to
C. F. Gauss dated 10 August 1842. But Clausen did not publish his analysis.
The first demonstration to appear in print was by G. Tarry [Comptes rendus,
Association francaise pour I’avancement des sciences 29, part 2 (1901), 170-203],
who discovered in his own way that 6 x 6 latin squares can be classified into 17
different families. (In Section 7.2.3 we shall study how to decompose a problem
into combinatorially inequivalent classes of arrangements.)

Euler’s conjecture about the remaining cases n = 10, n = 14, ... was
“proved” three times, by J. Petersen [Annuaire des mathématiciens (Paris: 1902),
413-427], by P. Wernicke [Jahresbericht der Deutschen Math.-Vereinigung 19
(1910), 264-267], and by H. F. MacNeish [Annals of Math. 23 (1922), 221-227].
Flaws in all three arguments became known, however; and the question was still
unsettled when computers became available many years later. One of the very
first combinatorial problems to be tackled by machine was therefore the enigma
of 10 x 10 Grzeco-Latin squares: Do they exist or not?

In 1957, L. J. Paige and C. B. Tompkins programmed the SWAC computer to
search for a counterexample to Euler’s prediction. They selected one particular
10 x 10 latin square “almost at random,” and their program tried to find another
square that would be orthogonal to it. But the results were discouraging, and
they decided to shut the machine off after five hours. Already the program
had generated enough data for them to predict that at least 4.8 x 10! hours of
computer time would be needed to finish the run!

Shortly afterwards, three mathematicians made a breakthrough that put
latin squares onto page one of major world newspapers: R. C. Bose, S. S. Shri-
khande, and E. T. Parker found a remarkable series of constructions that yield
orthogonal n X n squares for all n > 6 [Proc. Nat. Acad. Sci. 45 (1959), 734-737,
859-862; Canadian J. Math. 12 (1960), 189-203]. Thus, after resisting attacks
for 180 years, Euler’s conjecture turned out to be almost entirely wrong.

Their discovery was made without computer help. But Parker worked for
UNIVAC, and he soon brought programming skills into the picture by solving the
problem of Paige and Tompkins in less than an hour, on a UNIVAC 1206 Military
Computer. [See Proc. Symp. Applied Math. 10 (1960), 71-83; 15 (1963), 73-81.]

Clausen
Schumacher
Gauss
Tarry
Petersen
Wernicke
MacNeish
Paige
Tompkins
SWAC
Bose
Shrikhande
Parker
UNIVAC 1206 Military Computer
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Let’s take a closer look at what the earlier programmers did, and how
Parker dramatically trumped their approach. Paige and Tompkins began with
the following 10 x 10 square L and its unknown orthogonal mate(s) M:

2 678 0

0123456789 UL LUUUUL U UL
1832547690 luvuvuouuouuuu
2956308471 2UuUuUuUuUUUUU
37098615214 JuvuuuUuuUUUuU
4675290813 4 uuuUuuUuuUuUuUUuyU
L=1509a783162| 2 M=|5 iiouuu| ©
6547132908 buuuuuuuuu
7418029356 TuLuuUuUULUU
8360915247 Suuuuuuuuu
9281674035 uuuuuuuuu

We can assume without loss of generality that the rows of M begin with 0, 1,
..., 9, as shown. The problem is to fill in the remaining 90 blank entries, and the
original SWAC program proceeded from top to bottom, left to right. The top left
u can’t be filled with 0, since 0 has already occurred in the top row of M. And it
can’t be 1 either, because the pair (1, 1) already occurs at the left of the next row
in (L, M). We can, however, tentatively insert a 2. The digit 1 can be placed
next; and pretty soon we find the lexicographically smallest top row that might
work for M, namely 0214365897. Similarly, the smallest rows that fit below
0214365897 are 1023456789 and 2108537946; and the smallest legitimate row
below them is 3540619278. Now, unfortunately, the going gets tougher: There’s
no way to complete another row without coming into conflict with a previous
choice. So we change 3540619278 to 3540629178 (but that doesn’t work either),
then to 3540698172, and so on for several more steps, until finally 3546109278
can be followed by 4397028651 before we get stuck again.

In Section 7.2.3, we’ll study ways to estimate the behavior of such searches,
without actually performing them. Such estimates tell us in this case that
the Paige-Tompkins method essentially traverses an implicit search tree that
contains about 2.5 x 10'® nodes. Most of those nodes belong to only a few levels
of the tree; more than half of them deal with choices on the right half of the
sixth row of M, after about 50 of the 90 blanks have been tentatively filled in.
A typical node of the search tree probably requires about 75 mems (memory
accesses) for processing, to check validity. Therefore the total running time on a
modern computer would be roughly the time needed to perform 2 x 10%° mems.

Parker, on the other hand, went back to the method that Euler had originally
used to search for orthogonal mates in 1779. First he found all of the so-called
transversals of L, namely all ways to choose some of its elements so that there’s
exactly one element in each row, one in each column, and one of each value. For
example, one transversal is 0859734216, in Euler’s notation, meaning that we
choose the 0 in column 0, the 8 in column 1, ..., the 6 in column 9. Each transver-
sal that includes the k in L’s leftmost column represents a legitimate way to place
the ten k’s into square M. The task of finding transversals is, in fact, rather
easy, and the given matrix L turns out to have exactly 808 of them; there are
respectively (79,96, 76, 87,70, 84,83,75,95,63) transversals for k = (0,1,...,9).

Parker

Paige

Tompkins

SWAC

search tree

mems (memory accesses)
Euler

transversals+
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Once the transversals are known, we’re left with an exact cover problem of
10 stages, which is much simpler than the original 90-stage problem in (6). All we
need to do is cover the square with ten transversals that don’t intersect — because
every such set of ten is equivalent to a latin square M that is orthogonal to L.

The particular square L in (6) has, in fact, exactly one orthogonal mate:

012 5 0 5914 61
1

HFNWOOOO O
B UTONWORFROIO
ONWOFOU RO
W UITO O N O 0
RO WORFO UTI N
WNUTTONHFH OO
DAWHNOONO RO
HONNOUUR oW
OO NWIITIOD
NFRERWODHI0O U
QN0 ONF—,ROW
NN R WO~ ON

HFOWONKRTtooNW
OO0 WU

OO U WN
NWHRITOHJO 0~
VOB ONOUTWw
QOO NWHER—=O©
OO U WN =
O OUTO N WO

7

The dancing links algorithm finds it, and proves its uniqueness, after doing only
about 1.7 x 108 mems of computation, given the 808 transversals. Furthermore,
the cost of the transversal-finding phase, about 5 million mems, is negligible by
comparison. Thus the original running time of 2 x 102 mems — which once was
regarded as the inevitable cost of solving a problem for which there are 109 ways
to fill in the blanks — has been reduced by a further factor of more than 10*2(!).

We will see later that advances have also been made in methods for solving
90-level problems like (6). Indeed, (6) turns out to be representable directly
as an exact cover problem (see exercise 17), which the dancing links procedure
of Section 7.2.2.1 solves after expending only 1.3 x 10! mems. Even so, the
Euler—Parker approach remains about a thousand times better than the Paige—
Tompkins approach. By “factoring” the problem into two separate phases, one
for transversal-finding and one for transversal-combining, Euler and Parker es-
sentially reduced the computational cost from a product, 1175, to a sum, 1) +75.

The moral of this story is clear: Combinatorial problems might confront us
with a huge universe of possibilities, yet we shouldn’t give up too easily. A single
good idea can reduce the amount of computation by many orders of magnitude.

Puzzles versus the real world. Many of the combinatorial problems we shall
study in this chapter, like Langford’s problem of pairs or Ozanam’s problem
of the sixteen honor cards, originated as amusing puzzles or “brain twisters.”
Some readers might be put off by this emphasis on recreational topics, which
they regard as a frivolous waste of time. Shouldn’t computers really be doing
useful work? And shouldn’t textbooks about computers be primarily concerned
with significant applications to industry and/or world progress?

Well, the author of the textbook you are reading has absolutely no objections
to useful work and human progress. But he believes strongly that a book such as
this should stress methods of problem solving, together with mathematical ideas
and models that help to solve many different problems, rather than focusing on
the reasons why those methods and models might be useful. We shall learn many
beautiful and powerful ways to attack combinatorial problems, and the elegance

exact cover problem
dancing links
Euler

Parker

Paige
Tompkins
—combinatorics
puzzles++
Langford
Ozanam
recreation
Knuth
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of those methods will be our main motivation for studying them. Combinatorial
challenges pop up everywhere, and new ways to apply the techniques discussed
in this chapter arise every day. So let’s not limit our horizons by attempting to
catalog in advance what the ideas are good for.

For example, it turns out that orthogonal latin squares are enormously
useful, particularly in the design of experiments. Already in 1788, Francois
Cretté de Palluel used a 4x4 latin square to study what happens when sixteen
sheep —four each from four different breeds— were fed four different diets and
harvested at four different times. [Mémoires d’Agriculture (Paris: Société Royale
d’Agriculture, trimestre d’été, 1788), 17-23.] The latin square allowed him to do
this with 16 sheep instead of 64; with a Graco-Latin square he could also have
varied another parameter by trying, say, four different quantities of food or four
different grazing paradigms.

But if we had focused our discussion on his approach to animal husbandry,
we might well have gotten bogged down in details about breeding, about root
vegetables versus grains and the costs of growing them, etc. Readers who aren’t
farmers might therefore have decided to skip the whole topic, even though latin
square designs apply to a wide range of studies. (Think about testing five kinds
of pills, on patients in five stages of some disease, five age brackets, and five
weight groups.) Moreover, a concentration on experimental design could lead
readers to miss the fact that latin squares also have important applications to
coding and cryptography (see exercises 18-24).

Even the topic of Langford pairing, which seems at first to be purely recre-
ational, turns out to have practical importance. T. Skolem used Langford se-
quences to construct Steiner triple systems, which we have applied to database
queries in Section 6.5 [see Math. Scandinavica 6 (1958), 273-280]; and in the
1960s, E. J. Groth of Motorola Corporation applied Langford pairs to the design
of circuits for multiplication. Furthermore, the algorithms that efficiently find
Langford pairs and latin square transversals, such as the method of dancing links,
apply to exact cover problems in general; and the problem of exact covering has
great relevance to crucial problems such as the equitable apportionment of voter
precincts to electoral districts, etc.

The applications are not the most important thing, and neither are the
puzzles. Our primary goal is rather to get basic concepts into our brains, like
the notions of latin squares and exact covering. Such notions give us the building
blocks, vocabulary, and insights that tomorrow’s problems will need.

Still, it’s foolish to discuss problem solving without actually solving any
problems. We need good problems to stimulate our creative juices, to light up
our grey cells in a more or less organized fashion, and to make the basic concepts
familiar. Mind-bending puzzles are often ideal for this purpose, because they can
be presented in a few words, needing no complicated background knowledge.

Vaéclav Havel once remarked that the complexities of life are vast: “There
is too much to know... We have to abandon the arrogant belief that the world
is merely a puzzle to be solved, a machine with instructions for use waiting to
be discovered, a body of information to be fed into a computer.” He called

Cretté de Palluel

sheep

Graco-Latin square
—orthogonal latin squares
—latin squares

Langford pairing

Skolem

Steiner triple systems
Groth

multiplication

exact cover problems
apportionment

electoral districts

Havel (playwright and statesman)
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for an increased sense of justice and responsibility; for taste, courage, and
compassion. His words were filled with great wisdom. Yet thank goodness we
do also have puzzles that can be solved! Puzzles deserve to be counted among
the great pleasures of life, to be enjoyed in moderation like all other treats.

Of course, Langford and Ozanam directed their puzzles to human beings, not
to computers. Aren’t we missing the point if we merely shuffle such questions off
to machines, to be solved by brute force instead of by rational thought? George
Brewster, writing to Martin Gardner in 1963, expressed a widely held view as
follows: “Feeding a recreational puzzle into a computer is no more than a step
above dynamiting a trout stream. Succumbing to instant recreation.”

Yes, but that view misses another important point: Simple puzzles often
have generalizations that go beyond human ability and arouse our curiosity. The
study of those generalizations often suggests instructive methods that apply to
numerous other problems and have surprising consequences. Indeed, many of the
key techniques that we shall study were born when people were trying to solve
various puzzles. While writing this chapter, the author couldn’t help relishing
the fact that puzzles are now more fun than ever, as computers get faster and
faster, because we keep getting more powerful dynamite to play with. [Further
comments appear in the author’s essay, “Can toy problems be useful?”, originally
written in 1976; see Selected Papers on Computer Science (1996), 169-183.]

Puzzles do have the danger that they can be too elegant. Good puzzles tend
to be mathematically clean and well-structured, but we also need to learn how
to deal systematically with the messy, chaotic, organic stuff that surrounds us
every day. Indeed, some computational techniques are important chiefly because
they provide powerful ways to cope with such complexities. That is why, for
example, the arcane rules of library-card alphabetization were presented at the
beginning of Chapter 5, and an actual elevator system was discussed at length
to illustrate simulation techniques in Section 2.2.5.

A collection of programs and data called the Stanford GraphBase (SGB) has
been prepared so that experiments with combinatorial algorithms can readily be
performed on a variety of real-world examples. SGB includes, for example, data
about American highways, and an input-output model of the U.S. economy; it
records the casts of characters in Homer’s Iliad, Tolstoy’s Anna Karenina, and
several other novels; it encapsulates the structure of Roget’s Thesaurus of 1879;
it documents hundreds of college football scores; it specifies the gray-value pixels
of Leonardo da Vinci’s Gioconda (Mona Lisa). And perhaps most importantly,
SGB contains a collection of five-letter words, which we shall discuss next.

The five-letter words of English. Many of the examples in this chapter will
be based on the following list of five-letter words:

aargh, abaca, abaci, aback, abaft, abase, abash, ..., zooms, zowie. (8)

(There are 5757 words altogether— too many to display here; but those that are
missing can readily be imagined.) It’s a personal list, collected by the author
between 1972 and 1992, beginning when he realized that such words would make
ideal data for testing many kinds of combinatorial algorithms.

Langford
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Gardner

Knuth

Stanford GraphBase
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five-letter words+-++
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The list has intentionally been restricted to words that are truly part of the
English language, in the sense that the author has encountered them in actual
use. Unabridged dictionaries contain thousands of entries that are much more
esoteric, like aalii, abamp, ..., zymin, and zyxst; words like that are useful
primarily to Scrabble® players. But unfamiliar words tend to spoil the fun
for anybody who doesn’t know them. Therefore, for twenty years, the author
systematically took note of all words that seemed right for the expository goals
of The Art of Computer Programming.

Finally it was necessary to freeze the collection, in order to have a fixed
point for reproducible experiments. The English language will always be evolv-
ing, but the 5757 SGB words will therefore always stay the same — even though
the author has been tempted at times to add a few words that he didn’t know in
1992, such as chads, stent, blogs, ditzy, phish, bling, and possibly tetch.
Noj; noway. The time for any changes to SGB has long since ended: finis.

The following Glossary is intended to contain all well-known English words
. which may be used in good society, and which can serve as Links.
. There must be a stent to the admission of spick words.

— LEWIS CARROLL, Doublets: A Word-Puzzle (1879)

If there is such a verb as to tetch, Mr. Lillywaite tetched.
— ROBERT BARNARD, Corpse in a Gilded Cage (1984)

Proper names like Knuth are not considered to be legitimate words. But
gauss and hardy are valid, because “gauss” is a unit of magnetic induction and
“hardy” is hardy. In fact, SGB words are composed entirely of ordinary lowercase
letters; the list contains no hyphenated words, contractions, or terms like blasé
that require an accent. Thus each word can also be regarded as a vector, which
has five components in the range [0..26). In the vector sense, the words yucca
and abuzz are furthest apart: The Euclidean distance between them is

11(24,20,2,2,0) — (0,1,20,25,25)|2 = /242 + 192 + 182 4 232 + 252 = /2415,

The entire Stanford GraphBase, including all of its programs and data sets,
is easy to download from the author’s website (see page ii). And the list of all
SGB words is even easier to obtain, because it is in the file ‘sgb-words.txt’ at
the same place. That file contains 5757 lines with one word per line, beginning
with ‘which’ and ending with ‘pupal’. The words appear in a default order,
corresponding to frequency of usage; for example, the words of rank 1000, 2000,
3000, 4000, and 5000 are respectively ditch, galls, visas, faker, and pismo.
The notation ‘WORDS(n)’ will be used in this chapter to stand for the n most
common words, according to this ranking.

Incidentally, five-letter words include many plurals of four-letter words, and
it should be noted that no Victorian-style censorship was done. Potentially offen-
sive vocabulary has been expurgated from The Official Scrabble® Players Dic-
tionary, but not from the SGB. One way to ensure that semantically unsuitable

dictionaries

Scrabble®
CARROLL
Lillywaite
BARNARD
Euclidean distance
Stanford GraphBase
Internet

frequency of usage
WORDS(n)++
censorship
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terms will not appear in a professional paper based on the SGB wordlist is to
restrict consideration to WORDS(n) where n is, say, 3000.

Exercises 26—37 below can be used as warmups for initial explorations of the
SGB words, which we’ll see in many different combinatorial contexts throughout
this chapter. For example, while covering problems are still on our minds, we
might as well note that the four words ‘third flock began jumps’ cover 20 of
the first 21 letters of the alphabet. Five words can, however, cover at most 24
different letters, as in {becks, fjord, glitz,nymph, squaw} — unless we resort to
a rare non-SGB word like waqfs (Islamic endowments), which can be combined
with {gyved,bronx, chimp, klutz} to cover 25.

Simple words from WORDS(400) suffice to make a word square:

class
light

agree . (9)
sheep

steps
We need to go almost to WORDS(3000), however, to obtain a word cube,

types yeast pasta ester start
yeast earth armor stove three
pasta armor smoke token arena , (10)
ester stove token event rents
start three arena rents tease

in which every 5 x 5 “slice” is a word square. With a simple extension of the
basic dancing links algorithm (see Section 7.2.2.2), one can show after performing
about 390 billion mems of computation that WORDS(3000) supports only three
symmetric word cubes such as (10); exercise 36 reveals the other two. Surpris-
ingly, 83,576 symmetrical cubes can be made from the full set, WORDS(5757).

Graphs from words. It’s interesting and important to arrange objects into
rows, squares, cubes, and other designs; but in practical applications another
kind of combinatorial structure is even more interesting and important, namely
a graph. Recall from Section 2.3.4.1 that a graph is a set of points called
vertices, together with a set of lines called edges, which connect certain pairs
of vertices. Graphs are ubiquitous, and many beautiful graph algorithms have
been discovered, so graphs will naturally be the primary focus of many sections
in this chapter. In fact, the Stanford GraphBase is primarily about graphs, as
its name implies; and the SGB words were collected chiefly because they can be
used to define interesting and instructive graphs.

Lewis Carroll blazed the trail by inventing a game that he called Word-
Links or Doublets, at the end of 1877. [See Martin Gardner, The Universe in
a Handkerchief (1996), Chapter 6.] Carroll’s idea, which soon became quite
popular, was to transform one word to another by changing a letter at a time:

tears — sears — stars— stare— stale—stile—smile. (11)

covering
word square
word cube
dancing links
graphs—
Carroll
Doublets
Gardner
smile

N
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The shortest such transformation is the shortest path in a graph, where the
vertices of the graph are English words and the edges join pairs of words that
have “Hamming distance 1”7 (meaning that they disagree in just one place).
When restricted to SGB words, Carroll’s rule produces a graph of the
Stanford GraphBase whose official name is words(5757,0,0,0). Every graph
defined by SGB has a unique identifier called its id, and the graphs that are
derived in Carrollian fashion from SGB words are identified by ids of the form
words(n,l,t,s). Here n is the number of vertices; [ is either 0 or a list of weights,
used to emphasize various kinds of vocabulary; t is a threshold so that low-weight
words can be disallowed; and s is the seed for any pseudorandom numbers that
might be needed to break ties between words of equal weight. The full details
needn’t concern us, but a few examples will give the general idea:
e words(n,0,0,0) is precisely the graph that arises when Carroll’s idea is
applied to WORDS(n), for 1 < n < 5757.
e words (1000, {0,0,0,0,0,0,0,0,0},0, s) contains 1000 randomly chosen SGB
words, usually different for different values of s.
e words(766,{0,0,0,0,0,0,0,1,0},1,0) contains all of the five-letter words
that appear in the author’s books about TEX and METAFONT.
There are only 766 words in the latter graph, so we can’t form very many long
paths like (11), although

basic —Dbasis — bases — based

— baked — naked — named — names — games (12)

is one noteworthy example.

Of course there are many other ways to define the edges of a graph when the
vertices represent five-letter words. We could, for example, require the Euclidean
distance to be small, instead of the Hamming distance. Or we could declare two
words to be adjacent whenever they share a subword of length four; that strategy
would substantially enrich the graph, making it possible for chaos to yield peace,
even when confined to the 766 words that are related to TEX:

chaos — chose — whose — whole — holes — hopes — copes — scope

— score — store — stare — spare — space — paces — peace. (13)

(In this rule we remove a letter, then insert another, possibly in a different place.)
Or we might choose a totally different strategy, like putting an edge between word
vectors ajasazasas and byibabsbsbs if and only if their dot product a1by + azbs +
azbs + a4bs + asbs is a multiple of some parameter m. Graph algorithms thrive
on different kinds of data.

SGB words lead also to an interesting family of directed graphs, if we write
a1a20a3a405 — b1b2b3b4b5 when {az,a3,a4, a5} g {bl,bg,b3,b4, b5} as multisets.
(Remove the first letter, insert another, and rearrange.) With this rule we can,
for example, transform words to graph via a shortest oriented path of length six:

words — dross — soars — orcas — crash — sharp — graph. (14)

shortest path
Hamming distance
Stanford GraphBase
id

words+

seed

pseudorandom
Carroll

Knuth

TEX
METAFONT
Euclidean distance
Hamming distance
subword

TeX

dot product
directed graphs
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Theory is the first term in the Taylor series of practice.
— THOMAS M. COVER (1992)

The number of systems of terminology presently used in graph theory
is equal, to a close approximation, to the number of graph theorists.

— RICHARD P. STANLEY (1986)

Graph theory: The basics. A graph G consists of a set V' of vertices together
with a set E of edges, which are pairs of distinct vertices. We will assume that
V and E are finite sets unless otherwise specified. We write u — v if u and v
are vertices with {u,v} € E, and u—/~v if u and v are vertices with {u,v} ¢ E.
Vertices with u— v are called “neighbors,” and they’re also said to be “adjacent”
in G. One consequence of this definition is that we have © — v if and only if
v—u. Another consequence is that v - v, for all v € V; that is, no vertex is
adjacent to itself. (We shall, however, discuss multigraphs below, in which loops
from a vertex to itself are permitted.)

The graph G' = (V', E') is a subgraph of G = (V,E)if V' CV and E' C E.
It’s a spanning subgraph of G if, in fact, V' = V. And it’s an induced subgraph
of G if E' has as many edges as possible, when V' is a given subset of the
vertices. In other words, when V' C V the subgraph of G = (V, E) induced by
V'is G' = (V',E'), where

B = {{u,v}|ueV’,v€V',and{u,v}€E}. (15)

This subgraph G’ is denoted by G |V, and often called “G restricted to V'.” In
the common case where V' = V'\ {v}, we write simply G\ v (“G minus vertex v”)
as an abbreviation for G | (V' \ {v}). The similar notation G \ e is used when
e € E to denote the subgraph G’ = (V, E'\ {e}), obtained by removing an edge
instead of a vertex. Notice that all of the SGB graphs known as words(n,l,t, s),
described earlier, are induced subgraphs of the main graph words(5757,0,0,0);
only the vocabulary changes in those graphs, not the rule for adjacency.

A graph with n vertices and e edges is said to have order n and size e. The
simplest and most important graphs of order n are the complete graph K,, the
path Py, and the cycle C,. Suppose the vertices are V = {1,2,...,n}. Then

e K, has (}) = in(n — 1) edges u — v for 1 < u < v < n; every n-vertex
graph is a spanning subgraph of K.
e P, has n — 1 edges v — (v+1) for 1 < v < m, when n > 1; it is a path
of length n—1 from 1 to n.
e C,, has n edges v — ((vmod n)+1) for 1 < v < n; it is a graph only when
n=0orn >3 (but C; and C; are multigraphs).
We could actually have defined K,,, P,, and C), on the vertices {0,1,...,n—1},
or on any n-element set V instead of {1,2,...,n}, because two graphs that differ
only in the names of their vertices but not in the structure of their edges are
combinatorially equivalent.
Formally, we say that graphs G = (V, E) and G’ = (V', E’) are isomorphic
if there is a one-to-one correspondence ¢ from V to V' such that u—wv in G if

Theory meets practice
Taylor series
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and only if ¢(u) — ¢(v) in G'. The notation G = G’ is often used to indicate
that G and G’ are isomorphic; but we shall often be less precise, by treating
isomorphic graphs as if they were equal, and by occasionally writing G = G’
even when the vertex sets of G and G’ aren’t strictly identical.

Small graphs can be defined by simply drawing a diagram, in which the
vertices are small circles and the edges are lines between them. Figure 2 illus-
trates several important examples, whose properties we will be studying later.
The Petersen graph in Figure 2(e) is named after Julius Petersen, an early
graph theorist who used it to disprove a plausible conjecture [L’Intermédiaire
des Mathématiciens 5 (1898), 225-227]; it is, in fact, a remarkable configuration
that serves as a counterexample to many optimistic predictions about what might
be true for graphs in general. The Chvatal graph, Figure 2(f), was introduced
by Véclav Chvétal in J. Combinatorial Theory 9 (1970), 93-94.

(a) (b) (c) (d) (e)
Ps Cs 3-cube Petersen graph Chvatal graph

Fig. 2. Six example graphs, which have respectively (5,5,5,8,10,12) vertices and
(4,5,10,12,15,24) edges.

The lines of a graph diagram are allowed to cross each other at points that
aren’t vertices. For example, the center point of Fig. 2(f) is not a vertex of
Chvétal’s graph. A graph is called planar if there’s a way to draw it without
any crossings. Clearly P, and C,, are always planar; Fig. 2(d) shows that the
3-cube is also planar. But K5 has too many edges to be planar (see exercise 46).

The degree of a vertex is the number of neighbors that it has. If all vertices
have the same degree, the graph is said to be regular. In Fig. 2, for example, Ps
is irregular because it has two vertices of degree 1 and three of degree 2. But
the other five graphs are regular, of degrees (2,4, 3, 3,4) respectively. A regular
graph of degree 3 is often called “cubic” or “trivalent.”

There are many ways to draw a given graph, some of which are much more
perspicuous than others. For example, each of the six diagrams

I 5 =]

is isomorphic to the 3-cube, Fig. 2(d). The layout of Chvétal’s graph that appears
in Fig. 2(f) was discovered by Adrlan Bondy many years after Chvétal’s paper
was published, thereby revealing unexpected symmetries.

The symmetries of a graph, also known as its automorphisms, are the permu-
tations of its vertices that preserve adjacency. In other words, the permutation
¢ is an automorphism of G if we have ¢(u) — ¢(v) whenever u — v in G. A

notation G = G’
isomorphic
diagram

Petersen graph
Petersen

Chvétal graph
Chvétal

planar

degree

valency, see degree
regular

cubic

trivalent

Bondy
symmetries
automorphisms
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well-chosen drawing like Fig. 2(f) can reveal underlying symmetry, but a single
diagram isn’t always able to display all the symmetries that exist. For example,
the 3-cube has 48 automorphisms, and the Petersen graph has 120. We'll study
algorithms that deal with isomorphisms and automorphisms in Section 7.2.3.
Symmetries can often be exploited to avoid unnecessary computations, mak-
ing an algorithm almost k times faster when it operates on a graph that has
k automorphisms.

Graphs that have evolved in the real world tend to be rather different from
the mathematically pristine graphs of Figure 2. For example, here’s a familiar
graph that has no symmetry whatsoever, although it does have the virtue of
being planar:

@K)—AR) (TN —VA)
NN
NN
It represents the contiguous United States of America, and we’ll be using it later

in several examples. The 49 vertices of this diagram have been labeled with two-
letter postal codes for convenience, instead of being reduced to empty circles.

Paths and cycles. A spanning path of a graph is called a Hamiltonian path,
and a spanning cycle is called a Hamiltonian cycle, because W. R. Hamilton
invented and sold a puzzle in 1859 whose goal was to find such paths and cycles
on the edges of a dodecahedron. T. P. Kirkman had independently studied the
problem for polyhedra in general, in Philosophical Transactions 148 (1858),
145-161. [See Graph Theory 1736-1936 by N. L. Biggs, E. K. Lloyd, and R. J.
Wilson (1998), Chapter 2.] The task of finding a spanning path or cycle is,
however, much older —indeed, we can legitimately consider it to be the oldest
combinatorial problem of all, because paths and tours of a knight on a chessboard
have a continuous history going back to ninth-century India (see Section 7.3.3).
A graph is called Hamiltonian if it has a Hamiltonian cycle. (The Petersen
graph, incidentally, is the smallest 3-regular graph that is neither planar nor
Hamiltonian; see C. de Polignac, Bull. Soc. Math. de France 27 (1899), 142-145.)

The girth of a graph is the length of its shortest cycle; the girth is infinite if
the graph is acyclic (containing no cycles). For example, the six graphs of Fig. 2
have girths (00,5, 3,4, 5, 4), respectively. It’s not difficult to prove that a graph
of minimum degree k and girth 5 must have at least k2 4+ 1 vertices. Further
analysis shows in fact that this minimum value is achievable only if k = 2 (Cj),
k = 3 (Petersen), k = 7, or perhaps k = 57. (See exercises 63 and 65.)

planar
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The distance d(u,v) between two vertices u and v is the minimum length
of a path from u to v in the graph; it is infinite if there’s no such path. Clearly
d(v,v) =0, and d(u,v) = d(v,u). We also have the triangle inequality

d(u,v) +d(v,w) > d(u,w). (18)
For if d(u,v) = p and d(v,w) = ¢ and p < oo and g < 0o, there are paths
U=u—u—--—u,=v and v=v9—uvi—- - —y;=w, (19)
and we can find the least subscript r such that u, = v; for some s. Then
Ug— U — =+ — Up_] — Vg — Vg1 — - — Vg (=0)

is a path of length < p + ¢ from u to w.

The diameter of a graph is the maximum of d(u,v), over all vertices u and v.
The graph is connected if its diameter is finite. The vertices of a graph can always
be partitioned into connected components, where two vertices u and v belong to
the same component if and only if d(u,v) < co.

In the graph words(5757,0,0,0), for example, we have d(tears, smile) = 6,
because (11) is a shortest path from tears to smile. Also d(tears,happy) = 6,
and d(smile,happy) = 10, and d(world, court) = 6. But d(world,happy) =
oo; the graph isn’t connected. In fact, it contains 671 words like aloof, which
have no neighbors and form connected components of order 1 all by themselves.
Word pairs such as alpha — aloha, droid — druid, and opium — odium
account for 103 further components of order 2. Some components of order 3,
like chain — chair — choir, are paths; others, like {getup, letup, setup},
are cycles. A few more small components are also present, like the curious path

login— logic— yogic — yogis — yogas — togas, (21)

whose words have no other neighbors. But the vast majority of all five-letter
words belong to a giant component of order 4493. If you can go two steps away
from a given word, the odds are better than 15 to 1 that your word is connected
to everything in the giant component.

Similarly, the graph words(n,0,0,0) has a giant component of order (3825,
2986, 2056, 1198, 224) when n = (5000, 4000, 3000, 2000, 1000), respectively. But
if n is small, there aren’t enough edges to provide much connectivity. For exam-
ple, words(500,0,0,0) has 327 different components, none of order 15 or more.

The concept of distance can be generalized to d(vy,va,...,vg) for any value
of k, meaning the minimum number of edges in a connected subgraph that
contains the vertices {v1, v, ..., v; }. For example, d(blood, sweat, tears) turns
out be 15, because the subgraph

blood — brood — broad — bread — tread — treed — tweed

tears — teams — trams — trims — tries — trees  tweet (22)

sweat — sweet

has 15 edges, and there’s no suitable 14-edge subgraph.

distance

shortest path

triangle inequality
diameter

connected
components

5-letter wds

smile

giant component
distance, generalized+
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We noted in Section 2.3.4.1 that a connected graph with fewest edges is
called a free tree. A subgraph that corresponds to the generalized distance
d(vi,...,vx) will always be a free tree. It is misleadingly called a Steiner tree,
because Jacob Steiner once mentioned the case k = 3 for points {vy,vs,vs} in
the Euclidean plane [Crelle 13 (1835), 362-363]. Franz Heinen had solved that
problem in Uber Systeme von Kriften (1834); Gauss extended the analysis to
k =4 in a letter to Schumacher (21 March 1836).

Coloring. A graph is said to be k-partite or k-colorable if its vertices can be
partitioned into k or fewer parts, with the endpoints of each edge belonging to
different parts — or equivalently, if there’s a way to paint its vertices with at most
k different colors, never assigning the same color to two adjacent vertices. The fa-
mous Four Color Theorem, conjectured by F. Guthrie in 1852 and finally proved
with massive computer aid by K. Appel, W. Haken, and J. Koch [Illinois J. Math.
21 (1977), 429-567|, states that every planar graph is 4-colorable. No simple
proof is known, but special cases like (17) can be colored at sight (see exercise 45);
and O(n?) steps suffice to 4-color a planar graph in general [N. Robertson, D. P.
Sanders, P. Seymour, and R. Thomas, STOC 28 (1996), 571-575].

The case of 2-colorable graphs is especially important in practice. A 2-
partite graph is generally called bipartite, or simply a “bigraph”; every edge of
such a graph has one endpoint in each part.

Theorem B. A graph is bipartite if and only if it contains no cycle of odd length.

Proof. [See D. Kénig, Math. Annalen 77 (1916), 453-454.] Every subgraph of
a k-partite graph is k-partite. Therefore the cycle C, can be a subgraph of a
bipartite graph only if C,, itself is a bigraph, in which case n must be even.

Conversely, if a graph contains no odd cycles we can color its vertices with
the two colors {0,1} by carrying out the following procedure: Begin with all
vertices uncolored. If all neighbors of colored vertices are already colored, choose
an uncolored vertex w, and color it 0. Otherwise choose a colored vertex u that
has an uncolored neighbor v; assign to v the opposite color. Exercise 48 proves
that a valid 2-coloring is eventually obtained. |

The complete bipartite graph K,,, is the largest bipartite graph whose
vertices have two parts of sizes m and n. We can define it on the vertex set
{1,2,...,m+n} by saying that u — v whenever 1 < u < m < v < m+n.
In other words, K, , has mn edges, one for each way to choose one vertex in
the first part and another in the second part. Similarly, the complete k-partite
graph Ky, . n, has N = n; + -+ + ny vertices partitioned into parts of sizes
{n1,...,nk}, and it has edges between any two vertices that don’t belong to the
same part. Here are some examples when N = 6:

*; M%%s @g@ (23)

Notice that K7 , is a free tree; it is popularly called the star graph of order n4-1.
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From now on say “digraph” instead of “directed graph.”
It is clear and short and it will catch on.

— GEORGE POLYA, letter to Frank Harary (c.1954)

Directed graphs. In Section 2.3.4.2 we defined directed graphs (or digraphs),
which are very much like graphs except that they have arcs instead of edges.
An arc v — v runs from one vertex to another, while an edge u — v joins
two vertices without distinguishing between them. Furthermore, digraphs are
allowed to have self-loops v — v from a vertex to itself, and more than one arc
u— v may be present between the same vertices u and v.

Formally, a digraph D = (V, A) of order n and size m is a set V of n vertices
and a multiset A of m ordered pairs (u,v), where u € V and v € V. The ordered
pairs are called arcs, and we write u — v when (u,v) € A. The digraph is called
simple if A is actually a set instead of a general multiset — namely, if there’s at
most one arc (u,v) for all u and v. Each arc (u,v) has an initial vertex u and a
final vertex v, also called its “tip.” Each vertex has an out-degree d*(v), the num-
ber of arcs for which v is the initial vertex, and an in-degree d~ (v), the number of
arcs for which v is the tip. A vertex with in-degree 0 is called a “source”; a vertex
with out-degree 0 is called a “sink.” Notice that Y. .\ dT(v) = >, o d7 (v),
because both sums are equal to m, the total number of arcs.

Most of the notions we’ve defined for graphs carry over to digraphs in a nat-
ural way, if we just insert the word “directed” or “oriented” (or the syllable “di”)
when it’s necessary to distinguish between edges and arcs. For example, digraphs
have subdigraphs, which can be spanning or induced or neither. An isomorphism
between digraphs D = (V, A) and D' = (V', A’) is a one-to-one correspondence ¢
from V to V' for which the number of arcs u — v in D equals the number of
arcs ¢(u) — p(v) in D', for all u,v € V.

Diagrams for digraphs use arrows between the vertices, instead of unadorned
lines. The simplest and most important digraphs of order n are directed variants
of the graphs K,,, P,,, and C,,, namely the transitive tournament K,;, the oriented
path Py, and the oriented cycle C;. They can be schematically indicated by the

following diagrams for n = 5:
SN (24)

K3 Py Cs

There’s also the complete digraph J,, which is the largest simple digraph on n
vertices; it has n? arcs u— v, one for each choice of u and wv.

Figure 3 shows a more elaborate diagram, for a digraph of order 17 that
we might call “expressly oriented”: It is the directed graph described by Her-
cule Poirot in Agatha Christie’s novel Murder on the Orient Express (1934).
Vertices correspond to the berths of the Stamboul-Calais coach in that story,
and an arc v — v means that the occupant of berth u has corroborated the
alibi of the person in berth v. This example has six connected components,
namely {0,1,3,6,8,12,13,14,15,16}, {2}, {4,5}, {7}, {9}, and {10, 11}, because
connectivity in a digraph is determined by treating arcs as edges.
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2: Samuel Edward Ratchett, the deceased American
3: Caroline Martha Hubbard, the American matron
4: Edward Henry Masterman, the British valet
5: Antonio Foscarelli, the Italian automobile salesman
6: Hector MacQueen, the American secretary
7: Harvey Harris, the Englishman who didn’t show up
8: Hildegarde Schmidt, the German lady’s maid
9: (vacancy)
10: Greta Ohlsson, the Swedish nurse
11: Mary Hermione Debenham, the English governess
12: Helena Maria Andrenyi, the beautiful countess
13: Rudolph Andrenyi, the Hungarian count/diplomat

LEGEND 14: Natalia Dragomiroff, the Russian princess dowager
0: Pierre Michel, the French conductor 15: Colonel Arbuthnot, the British officer from India
1: Hercule Poirot, the Belgian detective 16: Cyrus Bettman Hardman, the American detective

Fig. 3. A digraph of order 17 and size 18, devised by Agatha Christie.

Two arcs are consecutive if the tip of the first is the initial vertex of the
second. A sequence of consecutive arcs (a1, ag, . .. ,ax) is called a walk of length k;
it can be symbolized by showing the vertices as well as the arcs:

ay asz (2
Vg —> V1 —> Vg v Vgp_1 — Ug. (25)

In a simple digraph it’s sufficient merely to specify the vertices; for example,
1—0—8-—14—8-—3 is a walk in Fig. 3. The walk in (25) is an oriented
path when the vertices {vo,v1,..., v} are distinct; it’s an oriented cycle when
they are distinct except that vy = vg.

In a digraph, the directed distance d(u,v) is the number of arcs in the short-
est oriented path from w to v, which is also the length of the shortest walk from
u to v. It may differ from d(v,u); but the triangle inequality (18) remains valid.

Every graph can be regarded as a digraph, because an edge u — v is
essentially equivalent to a matched pair of arcs, u — v and v— u. The digraph
obtained in this way retains all the properties of the original graph; for example,
the degree of each vertex in the graph becomes its out-degree in the digraph,
and also its in-degree in the digraph. Furthermore, distances remain the same.

A multigraph (V, E) is like a graph except that its edges E can be any
multiset of pairs {u,v}; edges v — v that loop from a vertex to itself, which
correspond to “multipairs” {v, v}, are also permitted. For example,

DO—2=GD (26)

is a multigraph of order 3 with six edges, {1,1}, {1,2}, {2,3}, {2,3}, {3,3}, and
{3,3}. The vertex degrees in this example are d(1) = d(2) = 3 and d(3) = 6,
because each loop contributes 2 to the degree of its vertex. An edge loop v—wv
becomes two arc loops v — v when a multigraph is regarded as a digraph.

Representation of graphs and digraphs. Any digraph, and therefore any
graph or multigraph, is completely described by its adjacency matriz A = (ayy),
which has n rows and n columns when there are n vertices. Each entry a., of
this matrix specifies the number of arcs from u to v. For example, the adjacency
matrices for K3, P35, C5, Js, and (26) are respectively

- 011 B 010 . 010 111 210
K3 = (001), P3= (001), C3= (001), J3 = <111), A= (102). (27)
000 000 100 111 024
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The powerful mathematical tools of matrix theory make it possible to prove
many nontrivial results about graphs by studying their adjacency matrices;
exercise 65 provides a particularly striking example of what can be done. One
of the main reasons is that matrix multiplication has a simple interpretation in
the context of digraphs. Consider the square of A, where the element in row u
and column v is

(A%, = Z Oy Qoo (=8)

by definition. Since a,,, is the number of arcs from u to w, we see that @y Gwy
is the number of walks of the form u — w — v. Therefore (A?),, is the total
number of walks of length 2 from u to v. Similarly, the entries of A tell us the
total number of walks of length k& between any ordered pair of vertices, for all
k > 0. For example, the matrix A in (27) satisfies
210 5 2 2 12 9 12
A:(102), A2=(258), A3=(91842); (29)
0 2 4 2 8 20 12 42 96
there are 12 walks of length 3 from the vertex 1 of the multigraph (26) to vertex 3,
and 18 such walks from vertex 2 to itself.
Reordering of the vertices changes an adjacency matrix from A to P"AP,
where P is a permutation matrix (a 0—1 matrix with exactly one 1 in each row
and column), and P~ = P7T is the matrix for the inverse permutation. Thus

210 201 012 021 402 420
(102), (042), (120), (240), (021), and (201) (30)
024 120 204 102 210 012

are all adjacency matrices for (26), and there are no others.

There are more than 2"("_1)/2/n! graphs of order n, when n > 1, and
almost all of them require Q(n?) bits of data in their most economical encoding.
Consequently the best way to represent the vast majority of all possible graphs
inside a computer, from the standpoint of memory usage, is essentially to work
with their adjacency matrices.

But the graphs that actually arise in practical problems have quite different
characteristics from graphs that are chosen at random from the set of all possi-
bilities. A real-life graph usually turns out to be “sparse,” having say O(nlogn)
edges instead of (n?), unless n is rather small, because Q(n?) bits of data are
difficult to generate. For example, suppose the vertices correspond to people,
and the edges correspond to friendships. If we consider 5 billion people, few
of them will have more than 10000 friends. But even if everybody had 10000
friends, on average, the graph would still have only 2.5 x 10'® edges, while almost
all graphs of order 5 billion have approximately 6.25 x 10'® edges.

Thus the best way to represent a graph inside a machine usually turns out
to be rather different than to record n? values a,, of adjacency matrix elements.
Instead, the algorithms of the Stanford GraphBase were developed with a data
structure akin to the linked representation of sparse matrices discussed in Section
2.2.6, though somewhat simplified. That approach has proved to be not only
versatile and efficient, but also easy to use.

matrix multiplication

walks

permutation matrix
—1 matrix

sparse

Stanford GraphBase
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The SGB representation of a digraph is a combination of sequential and
linked allocation, using nodes of two basic types. Some nodes represent vertices,
other nodes represent arcs. (There’s also a third type of node, which represents
an entire graph, for algorithms that deal with several graphs at once. But each
graph needs only one graph node, so the vertex and arc nodes predominate.)

Here’s how it works: Every SGB digraph of order n and size m is built
upon a sequential array of n vertex nodes, making it easy to access vertex k
for 0 < k < n. The m arc nodes, by contrast, are linked together within a
general memory pool that is essentially unstructured. Each vertex node typically
occupies 32 bytes, and each arc node occupies 20 (and the graph node occupies
220); but the node sizes can be modified without difficulty. A few fields of each
node have a fixed, definite meaning in all cases; the remaining fields can be used
for different purposes in different algorithms or in different phases of a single
algorithm. The fixed-purpose parts of a node are called its “standard fields,”
and the multipurpose parts are called its “utility fields.”

Every vertex node has two standard fields called NAME and ARCS. If v is a
variable that points to a vertex node, we’ll call it a vertex variable. Then NAME (v)
points to a string of characters that can be used to identify the corresponding
vertex in human-oriented output; for example, the 49 vertices of graph (17) have
names like CA, WA, OR, ..., RI. The other standard field, ARCS(v), is far more
important in algorithms: It points to an arc node, the first in a singly linked list
of length d*(v), with one node for each arc that emanates from vertex v.

Every arc node has two standard fields called TIP and NEXT; a variable a that
points to an arc node is called an arc variable. TIP(a) points to the vertex node
that represents the tip of arc a; NEXT(a) points to the arc node that represents
the next arc whose initial vertex agrees with that of a.

A vertex v with out-degree 0 is represented by letting ARCS(v) = A (the null
pointer). Otherwise if, say, the out-degree is 3, the data structure contains three
arc nodes with ARCS(v) = a1, NEXT(a1) = ag, NEXT(a3) = a3, and NEXT (a3) =
A; and the three arcs from v lead to TIP(ay), TIP(a3), TIP(a3).

Suppose, for example, that we want to compute the out-degree of vertex v,
and store it in a utility field called ODEG. It’s easy:

Set a + ARCS(v) and d <+ 0.
While a # A, set d < d + 1 and a < NEXT(a). (31)
Set ODEG(v) <« d.

When a graph or a multigraph is considered to be a digraph, as mentioned
above, its edges u— v are each equivalent to two arcs, u — v and v — u. These
arcs are called “mates”; and they occupy two arc nodes, say a and a’, where a
appears in the list of arcs from u and a’ appears in the list of arcs from v. Then
TIP(a) = v and TIP(a') = u. We'll also write

MATE(a) =a’ and  MATE(d') =a, (32)

in algorithms that want to move rapidly from one list to another. However, we
usually won’t need to store an explicit pointer from an arc to its mate, or to have

SGB representation of a digraph
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a utility field called MATE within each arc node, because the necessary link can
be deduced implicitly when the data structure has been constructed cleverly.

The implicit-mate trick works like this: While creating each edge u — v

of an undirected graph or multigraph, we introduce consecutive arc nodes for

u—v and v—> u. For example, if there are 20 bytes per arc node, we’ll reserve

40 consecutive bytes for each new pair. We can also make sure that the memory

address of the first byte is a multiple of 8. Then if the arc node a is in memory
location «, its mate is in location
a+20, ifamod8=0

{a—ZO, ifamod8=4}

Such tricks are valuable in combinatorial problems, when operations might

be performed a trillion times, because every way to save 3.6 nanoseconds per

operation will make such a computation finish an hour sooner. But (33) isn’t

directly “portable” from one implementation to another. If the size of an arc

node were changed from 20 to 24, for example, we would have to change the

numbers 40, 20, 8, and 4 in (33) to 48, 24, 16, and 8.
The algorithms in this book will make no assumptions about node sizes.
Instead, we’ll adopt a convention of the C programming language and its de-

= a—20+ (40& ((a&4)—1)). (33)

scendants, so that if a points to an arc node, ‘a + 1’ denotes a pointer to the arc
node that follows it in memory. And in general

LOC(NODE(a + k)) = LOC(NODE(a)) + kc, (34)

when there are ¢ bytes in each arc node. Similarly, if v is a vertex variable, ‘v+k’
will stand for the kth vertex node following node v; the actual memory location
of that node will be v plus k times the size of a vertex node.

The standard fields of a graph node g include M(g), the total number of arcs;
N(g), the total number of vertices; VERTICES(g), a pointer to the first vertex
node in the sequential list of all vertex nodes; ID(g), the graph’s identification,
which is a string like words(5757,0,0,0); and some other fields needed for the
allocation and recycling of memory when the graph grows or shrinks, or for
exporting a graph to external formats that interface with other users and other
graph-manipulation systems. But we will rarely need to refer to any of these
graph node fields, nor will it be necessary to give a complete description of SGB
format here, since we shall describe almost all of the graph algorithms in this
chapter by sticking to an English-language description at a fairly abstract level
instead of descending to the bit level of machine programs.

A simple graph algorithm. To illustrate a medium-high-level algorithm of
the kind that will appear later, let’s convert the proof of Theorem B into a
step-by-step procedure that paints the vertices of a given graph with two colors
whenever that graph is bipartite.

Algorithm B (Bipartiteness testing). Given a graph represented in SGB format,
this algorithm either finds a 2-coloring with COLOR(v) € {0,1} in each vertex v,
or it terminates unsuccessfully when no valid 2-coloring is possible. Here COLOR
is a utility field in each vertex node. Another vertex utility field, LINK(v), is a

implicitly
bitwise AND
portable

C

Lac

graph node
M(g)

N(g)
VERTICES (g)
ID(g)

id

—directed graphs
bipartiteness testing+
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vertex pointer used to maintain a stack of all colored vertices whose neighbors
have not yet been examined. An auxiliary vertex variable s points to the top of
this stack. The algorithm also uses variables u, v, w for vertices and a for arcs.
The vertex nodes are assumed to be vg + k for 0 < k < n.

B1. [Initialize.] Set COLOR(vg + k) < —1 for 0 < k < n. (Now all vertices are
uncolored.) Then set w < vg + n.

B2. [Done?] (At this point all vertices > w have been colored, and so have the
neighbors of all colored vertices.) Terminate the algorithm successfully if
w = vg. Otherwise set w < w — 1, the next lower vertex node.

B3. [Color w if necessary.] If COLOR(w) > 0, return to B2. Otherwise set
COLOR(w) « 0, LINK(w) < A, and s <+ w.

B4. [Stack = u.] Set u < s, s < LINK(s), a < ARCS(u). (We will examine all
neighbors of the colored vertex u.)

B5. [Done with u?] If a = A, go to B8. Otherwise set v  TIP(a).

B6. [Process v.] If COLOR(v) < 0, set COLOR(v) < 1 — COLOR(u), LINK(v) <+ s,
and s < v. Otherwise if COLOR(v) = COLOR (), terminate unsuccessfully.

B7. [Loop on a.] Set a < NEXT(a) and return to B5.
BS8. [Stack nonempty?] If s # A, return to B4. Otherwise return to B2. |

This algorithm is a variant of a general graph traversal procedure called “depth-
first search,” which we will study in detail in Section 7.4.1. Its running time is
O(m + n) when there are m arcs and n vertices (see exercise 70); therefore it
is well adapted to the common case of sparse graphs. With small changes we
can make it output an odd-length cycle whenever it terminates unsuccessfully,
thereby proving the impossibility of a 2-coloring (see exercise 72).

Examples of graphs. The Stanford GraphBase includes a library of more than
three dozen generator routines, capable of producing a great variety of graphs
and digraphs for use in experiments. We’ve already discussed words; now let’s
look at a few of the others, in order to get a feeling for some of the possibilities.

e roget(1022,0,0,0) is a directed graph with 1022 vertices and 5075 arcs. The
vertices represent the categories of words or concepts that P. M. Roget and J. L.
Roget included in their famous 19th-century Thesaurus (London: Longmans,
Green, 1879). The arcs are the cross references between categories, as found
in that book. For example, typical arcs are water — moisture, discovery —
truth, preparation— learning, vulgarity —ugliness, wit — amusement.

e book("jean",80,0,1,356,0,0,0) is a graph with 80 vertices and 254 edges.
The vertices represent the characters of Victor Hugo’s Les Misérables; the edges
connect characters who encounter each other in that novel. Typical edges are
Fantine — Javert, Cosette — Thénardier.

e bi_book("jean",80,0,1,356,0,0,0) is a bipartite graph with 804356 vertices
and 727 edges. The vertices represent characters or chapters in Les Misérables;
the edges connect characters with the chapters in which they appear (for in-
stance, Napoleon—2.1.8, Marius—4.14. 4).

stack

vertex variable
arc variable
depth-first search
sparse graphs
—arcs

Stanford GraphBase+-+
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e plane_miles(128,0,0,0,1,0,0) is a planar graph with 129 vertices and 381
edges. The vertices represent 128 cities in the United States or Canada, plus
a special vertex INF for a “point at infinity.” The edges define the so-called
Delaunay triangulation of those cities, based on latitude and longitude in a
plane; this means that w — v if and only if the smallest circle that passes
through v and v does not enclose any other vertex. Edges also run between INF
and all vertices that lie on the convex hull of all city locations. Typical edges are
Seattle, WA — Vancouver, BC — INF; Toronto, ON— Rochester, NY.

e plane_lisa(360, 250, 15,0, 360, 0, 250, 0, 0, 2295000) is a planar graph that has
3027 vertices and 5967 edges. It is obtained by starting with a digitized image of
Leonardo da Vinci’s Mona Lisa, having 360 rows and 250 columns of pixels, then
rounding the pixel intensities to 16 levels of gray from 0 (black) to 15 (white).
The resulting 3027 rookwise connected regions of constant brightness are then
considered to be neighbors when they share a pixel boundary. (See Fig. 4.)

[;u{j ool

Fig. 4. A digital rendition of Mona Lisa, with a closeup detail (best viewed from afar).

o bi_lisa(360, 250, 0, 360, 0,250,8192, 0) is a bipartite graph with 360 + 250 =
610 vertices and 40923 edges. It’s another takeoff on Leonardo’s famous painting,
this time linking rows and columns where the brightness level is at least 1/8. For
example, the edge r102 — c113 occurs right in the middle of Lisa’s “smile.”

e raman(31,23,3,1) is a graph with quite a different nature from the SGB
graphs in previous examples. Instead of being linked to language, literature,
or other outgrowths of human culture, it’s a so-called “Ramanujan expander
graph,” based on strict mathematical principles. Each of its (23% —23)/2 = 6072
vertices has degree 32; hence it has 97152 edges. The vertices correspond to
equivalence classes of 2 X 2 matrices that are nonsingular modulo 23; a typical
edge is (2,7;1,1) — (4,6;1,3). Ramanujan graphs are important chiefly
because they have unusually high girth and low diameter for their size and degree.
This one has girth 4 and diameter 4.
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infinity
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e raman(5,37,4,1), similarly, is a regular graph of degree 6 with 50616 vertices
and 151848 edges. It has girth 10, diameter 10, and happens also to be bipartite.

e random_graph(1000,5000,0,0,0,0,0,0,0,s) is a graph with 1000 vertices,
5000 edges, and seed s. It “evolved” by starting with no edges, then by repeatedly
choosing pseudorandom vertex numbers 0 < u,v < 1000 and adding the edge
u — v, unless u = v or that edge was already present. When s = 0, all vertices
belong to a giant component of order 999, except for the isolated vertex 908.

e random_graph(1000,5000,0,0,1,0,0,0,0,0) is a digraph with 1000 vertices
and 5000 arcs, obtained via a similar sort of evolution. (In fact, each of its arcs
happens to be part also of random_graph(1000,5000,0,0,0,0,0,0,0,0).)

o subsets(5,1,—10,0,0,0,#1,0) is a graph with (151) = 462 vertices, one for
every five-element subset of {0,1,...,10}. Two vertices are adjacent whenever
the corresponding subsets are disjoint; thus, the graph is regular of degree 6,
and it has 1386 edges. We can consider it to be a generalization of the Petersen
graph, which has subsets(2,1,—4,0,0,0,#1,0) as one of its SGB names.

e subsets(5,1,—10,0,0,0,#10,0) has the same 462 vertices, but now they are
adjacent if the corresponding subsets have four elements in common. This graph
is regular of degree 30, and it has 6930 edges.

e parts(30,10,30,0) is another SGB graph with a mathematical basis. It has
3590 vertices, one for each partition of 30 into at most 10 parts. Two partitions
are adjacent when one is obtained by subdividing a part of the other; this rule
defines 31377 edges. The digraph parts(30, 10,30, 1) is similar, but its 31377 arcs
point from shorter to longer partitions (for example, 13+7+7+3 — 7+7+7+6+3).

e simpler(10,10,10,10,10,0,0) is a graph with 286 vertices and 1320 edges.
Its vertices are the integer solutions to 1 +x3+z3+x4 = 10 with z; > 0, namely
the “compositions of 10 into four nonnegative parts”; they can also be regarded
as barycentric coordinates for points inside a tetrahedron. The edges, such as
3,1,4,2—3,0,4,3, connect compositions that are as close together as possible.

e board(8,8,0,0,5,0,0) and board(8,8,0,0,—2,0,0) are graphs on 64 vertices
whose 168 or 280 edges correspond to the moves of a knight or bishop in chess.
And zillions of further examples are obtainable by varying the parameters to the
SGB graph generators. For example, Fig. 5 shows two simple variants of board
and simplex; the somewhat arcane rules of board are explained in exercise 75.

}1 "}‘g',“" """""'.‘ A
o\‘\V‘QQ‘QQ‘QQiQQ“GDOQ;o X A

LB,

'» 4‘Q‘Q‘Q‘Q‘Q‘é\

board(6,9,0,0,5,0,0)
(Knight moves on a 6 x 9 chessboard)

simplez(10,8,7,6,0,0,0)
(A truncated triangular grid)

Fig. 5. Samples of SGB graphs related to board games.
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Graph algebra. We can also obtain new graphs by operating on the graphs
that we already have. For example, if G = (V, E) is any graph, its complement
G = (V, E) is obtained by letting

u—wvin G = u# v and u—v in G. (35)
Thus, non-edges become edges, and vice versa. Notice that 5_: G, and that K,
has no edges. The corresponding adjacency matrices A and A satisfy

A+ A = J-1; (36)

here J is the matrix of all 1s, and [ is the identity matrix, so J and J — I are
respectively the adjacency matrices of J,, and K,, when G has order n.

Furthermore, every graph G = (V, E) leads to a line graph L(G), whose
vertices are the edges E; two edges are adjacent in L(QG) if they have a common
vertex. Thus, for example, the line graph L(K,,) has (}) vertices, and it is regular
of degree 2n — 4 when n > 2 (see exercise 82). A graph is called k-edge-colorable
when its line graph is k-colorable.

Given two graphs G = (U,E) and H = (V, F), their union G U H is the
graph (UUV, EUF) obtained by combining the vertices and edges. For example,
suppose G and H are the graphs of rook and bishop moves in chess; then GU H
is the graph of queen moves, and its official SGB name is

gunion (board(8,8,0,0,—1,0,0), board (8,8,0,0,—2,0,0),0,0). (37)

In the special case where the vertex sets U and V are disjoint, the union
GUH doesn’t require the vertices to be identified in any consistent way for cross-
correlation; we get a diagram for GU H by simply drawing a diagram of G next
to a diagram of H. This special case is called the “juxtaposition” or direct sum
of G and H, and we shall denote it by G @ H. For example, it’s easy to see that

Km®Kn = Knon, (38)

and that every graph is the direct sum of its connected components.
Equation (38) is a special case of the general formula

Kn1 7] an S---D Knk = Knl,nz,---,ﬂka (39)

which holds for complete k-partite graphs whenever k > 2. But (39) fails when
k = 1, because of a scandalous fact: The standard graph-theoretic notation
for complete graphs is inconsistent! Indeed, K, , denotes a complete 2-partite
graph, but K,, does not denote a complete 1-partite graph. Somehow graph the-
orists have been able to live with this anomaly for decades without going berserk.
Another important way to combine disjoint graphs G and H is to form their
join, G— H, which consists of G & H together with all edges u— v for u € U
and v € V. [See A. A. Zykov, Mat. Sbornik 24 (1949), 163-188, §1.3.] And
if G and H are disjoint digraphs, their directed join G — H is similar, but it
supplements G @ H by adding only the one-way arcs u— v from U to V.
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The direct sum of two matrices A and B is obtained by placing B diagonally
below and to the right of A:

AGBB:(g g), (40)

where each O in this example is a matrix of all zeros, with the proper number of
rows and columns to make everything line up correctly. Our notation G & H for
the direct sum of graphs is easy to remember because the adjacency matrix for
G@H is precisely the direct sum of the respective adjacency matrices A and B for
G and H. Similarly, the adjacency matrices for G—H, G— H, and G<+— H are

A J A J A O
im (A ameo(A0) acso (4 %) w

respectively, where J is an all-1s matrix as in (36). These operations are asso-
ciative, and related by complementation:
Ao (BaC)=(AeB)aC, A—(B—C)=(A—B)—C;
A— (B—C)=(A—B)—C, A+— (B+—C)=(A«—B)«+C;
A®B=A—B, A—B = A B;
AS5B-4« B, Ac—B-A4A—B;
(A®@B)+ (A—B) = (A—B) + (A« B).

S~
o

N N N N
S H>
D >
— N ~— N —

Notice that, by combining (39) with (42) and (44), we have
Kny gy = Kny—Kny— -+ — Ky, (47)
when k > 2. Also
Kn=K —K——K and Kf=K —K — K, (48

with 7 copies of K1, showing that K,, = Kj 1. 1 is a complete n-partite graph.

Direct sums and joins are analogous to addition, because we have K,, ® K,, =
Kpyn and Ky, — K, = K. We can also combine graphs with algebraic
operations that are analogous to multiplication. For example, the Cartesian
product operation forms a graph GO H of order mn from a graph G = (U, E) of
order m and a graph H = (V, F) of order n. The vertices of GO H are ordered
pairs (u,v), where u € U and v € V; the edges are (u,v) — (u’,v) when u— '
in G, together with (u,v) — (u,v’) when v — v in H. In other words, GO H
is formed by replacing each vertex of G by a copy of H, and replacing each edge
of G by edges between corresponding vertices of the appropriate copies:

WDY:

direct sum of two matrices

direct sum of graphs
adjacency matrix

associative

complementation

transitive tournament
-

K,

Cartesian product
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As usual, the simplest special cases of this general construction turn out to
be especially important in practice. When both G and H are paths or cycles, we
get “graph-paper graphs,” namely the m X n grid P, 0PF,, the m X n cylinder
P,,0C,, and the m x n torus C,, 0C,, illustrated here for m = 3 and n = 4:

ascs
Seises

PsOP, P;oCy C30Cy
(3 x 4 grid) (3 x 4 cylinder) (3 x 4 torus)

(50)

Four other noteworthy ways to define products of graphs have also proved to
be useful. In each case the vertices of the product graph are ordered pairs (u,v).

e The direct product G® H, also called the “conjunction” of G and H, or their
“categorical product,” has (u,v) — (v/,v') when u— ' in G and v— ' in H.

e The strong product GRH combines the edges of GO H with those of GQ H.

e The odd product G A H has (u,v) — (u’,v') when we have either u — o’
in G or v— v’ in H, but not both.

e The lexicographic product G o H, also called the “composition” of G and H,
has (u,v) — (u',v') when u—w’ in G, and (u,v) — (u,v’) when v—+' in H.
All five of these operations extend naturally to products of k& > 2 graphs G; =
(V1, En), ..., Gy = (Vk, Ex), whose vertices are the ordered k-tuples (vy,...,vg)
with v; € V; for 1 < j < k. For example, when k = 3, the Cartesian products
G10(G20G3) and (G10G2) 0G5 are isomorphic, if we consider the compound
vertices (v1, (v2,v3)) and ((v1,v2),v3) to be the same as (v, vq,vs). Therefore
we can write this Cartesian product without parentheses, as Gy 0 Gy 0G3. The
most important example of a Cartesian product with k factors is the k-cube,

Koo Keo-- 0Ky (51)

its 2% vertices (v1, ..., vx) are adjacent when their Hamming distance is 1.
In general, suppose v = (vq,...,v;) and v/ = (v{,...,v;) are k-tuples of
vertices, where we have v; — v;- in G; for exactly a of the subscripts j, and

v; = v;- for exactly b of the subscripts. Then we have:

e v—v inGyO---0Gy if and only if a =1 and b = k — 1;

e v—v' inG;® - ® Gy if and only if @ = k and b = 0;

e v—v in Gi®---RGy if and only if a +b = k and a > 0;

e v— v in Gy A--- A Gy if and only if a is odd.
The lexicographic product is somewhat different, because it isn’t commutative;
in Gy o0 Gy we have v—1' for v # v if and only if v; — v, where j is the
minimum subscript with v; # v;-.

Exercises 91-102 explore some of the basic properties of graph products.

See also the book Product Graphs by Wilfried Imrich and Sandi Klavzar (2000),
which contains a comprehensive introduction to the general theory, including
algorithms for factorization of a given graph into “prime” subgraphs.
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*Graphical degree sequences. A sequence dids...d, of nonnegative integers
is called graphical if there’s at least one graph on vertices {1,2,...,n} such that
vertex k has degree dr. We can assume that dy > ds > --- > d,. Clearly dy <n
in any such graph; and the sum m = d; +ds + - - - +d,, of any graphical sequence
is always even, because it is twice the number of edges. Furthermore, it’s easy to
see that the sequence 3311 is not graphical; therefore graphical sequences must
also satisfy additional conditions. What are they?

A simple way to decide if a given sequence dyds...d, is graphical, and to
construct such a graph if one exists, was discovered by V. Havel [C’asopis pro
Péstovani Matematiky 80 (1955), 477-479]. We begin with an empty tableau,
having dj cells in row k; these cells represent “slots” into which we’ll place the
neighbors of vertex k in the constructed graph. Let c; be the number of cells in
column j; thus ¢; > ¢y > -+, and when 1 < k < n we have ¢; > k if and only if
dy, > j. For example, suppose n = 8 and dj ...ds = 55544322; then

OO Ot WN -
—~
(@5
N
~—

is the initial tableau, and we have ¢ ...c5 = 88653. Havel’s idea is to pair up
vertex n with d, of the highest-degree vertices. In this case, for example, we
create the two edges 8 — 3 and 8 — 2, and the tableau takes the following form:

0| co

00 ~JO UL ix WK =
—~
(S
w
=

213

(We don’t want 8 — 1, because the empty slots should continue to form a tableau
shape; the cells of each column must be filled from the bottom up.) Next we set
n < 7 and create two further edges, 7— 1 and 7— 5. And then come three
more, 6 —4, 6 — 3, 6 — 2, making the tableau almost half full:
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8
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We’ve reduced the problem to finding a graph with degree sequence dj ...ds =
43333; at this point we also have c¢; ...cq4 = 5551. The reader is encouraged to
fill in the remaining blanks, before looking at the answer in exercise 103.

Algorithm H (Graph generator for specified degrees). Given dy > --- > d, >
dnt+1 = 0, this algorithm creates edges between the vertices {1,...,n} in such
a way that exactly di edges touch vertex k, for 1 < k < n, unless the sequence
d;...d, isn’t graphical. An array c; ...cq, is used for auxiliary storage.

H1. [Set the ¢’s.] Start with k < d; and j < 0. Then while k£ > 0 do the follow-
ing operations: Set j <— j+ 1; while k > d;11, set ¢t < j and k < k — 1.

H2. [Find n.] Set n < ¢;. Terminate successfully if n = 0; terminate unsuccess-
fully if dy > n > 0.

H3. [Loop on j.] Set i < 1, t < dy, and r « ¢;. Do step H4 for j = d,, d, — 1,
..., 1; then return to H2.

H4. [Generate a new edge.] Set ¢j «— ¢; —1 and k < ¢;. Create the edge k—mn,
andset dy <+ dx—1, ¢+ k—1. lf k=14,set i r+1,t <+ d;, and 7 ¢ ¢;.
(See exercise 104.) 1

When Algorithm H succeeds, it certainly has constructed a graph with the
desired degrees. But when it fails, how can we be sure that its mission was
impossible? The key fact is based on an important concept called “majorization”:
If d,...d, and dj ...d], are two partitions of the same integer (that is, if d; >
cvo>d,andd] >--->d and d; +---+d, =dj +---+d,), we say that
dy...d, majorizes dy...d, ifdy +---+d,>dj+---+d for 1<k <mn.

Lemma M. Ifd;...d,
di...d] is also graphical.

is graphical and d, ...d, majorizes dj...d}, then

* o

Proof. 1t is sufficient to prove the claim when d,...d, and dj...d! differ in
only two places,

' = d— [k=i]+[k=j] wherei< j, (55)

because any sequence majorized by di...d, can be obtained by repeatedly
performing mini-majorizations such as this. (Exercise 7.2.1.4-55 discusses ma-
jorization in detail.)

Condition (55) implies that d; > d; > d;,; > d; > d;. So any graph
with degree sequence dj .. .d, contains a vertex v such that v — ¢ and v - j.
Deleting the edge v — 4 and adding the edge v — j yields a graph with degree
sequence d] ...d, , as desired. |

Corollary H. Algorithm H succeeds whenever dj .. .d, is graphical.

Proof. We may assume that n > 1. Suppose G is any graph on {1,...,n} with
degree sequence d; . ..d,, and let G’ be the subgraph induced by {1,...,n —1};
in other words, obtain G’ by removing vertex n and the d,, edges that it touches.
The degree sequence d ...d,, ; of G’ is obtained from d;...d,,_; by reducing
some d,, of the entries by 1 and sorting them into nonincreasing order. By

majorization
partitions
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definition, d] ...d],_, is graphical. The new degree sequence dy . ..d!._, produced
by the strategy of steps H3 and H4 is designed to be majorized by every such
dy...d, _q, because it reduces the largest possible d,, entries by 1. Thus the new
dy ...d!_, is graphical. Algorithm H, which sets dy...d,, 1 + d}...dll_;, will
therefore succeed by induction on n. |

The running time of Algorithm H is roughly proportional to the number
of edges generated, which can be of order n?. Exercise 105 presents a faster
method, which decides in O(n) steps whether or not a given sequence d; . ..d,
is graphical (without constructing any graph).

Beyond graphs. When the vertices and/or arcs of a graph or digraph are
decorated with additional data, we call it a network. For example, every vertex of
words (5757,0,0,0) has an associated rank, which corresponds to the popularity
of the corresponding five-letter word. Every vertex of plane_lisa (360,250, 15,
0,360, 0, 250, 0,0,2295000) has an associated pixel density, between 0 and 15.
Every arc of board(8,8,0,0,—2,0,0) has an associated length, which reflects
the distance of a piece’s motion on the board: A bishop’s move from corner to
corner has length 7. The Stanford GraphBase includes several further generators
that were not mentioned above, because they are primarily used to generate
interesting networks, rather than to generate graphs with interesting structure:

e miles(128,0,0,0,0,127,0) is a network with 128 vertices, corresponding to
the same North American cities as the graph plane_miles described earlier. But
miles, unlike plane_miles, is a complete graph with (1%8) edges. Every edge has
an integer length, which represents the distance that a car or truck would have
needed to travel in 1949 when going from one given city to another. For example,

‘Vancouver, BC’ is 3496 miles from ‘West Palm Beach, FL’ in the miles network.

e econ(81,0,0,0) is a network with 81 vertices and 4902 arcs. Its vertices
represent sectors of the United States economy, and its arcs represent the flow of
money from one sector to another during the year 1985, measured in millions of
dollars. For example, the flow value from Apparel to Household furniture is 44,
meaning that the furniture industry paid $44,000,000 to the apparel industry in
that year. The sum of flows coming into each vertex is equal to the sum of flows
going out. An arc appears only when the flow is nonzero. A special vertex called
Users receives the flows that represent total demand for a product; a few of these
end-user flows are negative, because of the way imported goods are treated by
government economists.

e games(120,0,0,0,0,0,128,0) is a network with 120 vertices and 1276 arcs.
Its vertices represent football teams at American colleges and universities. Arcs
run between teams that played each other during the exciting 1990 season,
and they are labeled with the number of points scored. For example, the arc
Stanford — California has value 27, and the arc California — Stanford
has value 25, because the Stanford Cardinal defeated the U. C. Berkeley Golden
Bears by a score of 27-25 on 17 November 1990.

e risc(16) is a network of an entirely different kind. It has 3240 vertices and
7878 arcs, which define a directed acyclic graph or “dag” —namely, a digraph

network

words

plane_lisa

pixel

board

bishop

Stanford GraphBase
miles
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highways

econ

flow of money
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that contains no oriented cycles. The vertices represent gates that have Boolean
values; an arc such as Z45 — RO:7~ means that the value of gate Z45 is an
input to gate R0:7~. Each gate has a type code (AND, OR, XOR, NOT, latch,
or external input); each arc has a length, denoting an amount of delay. The
network contains the complete logic for a miniature RISC chip that is able to
obey simple commands governing sixteen registers, each 16 bits wide.

Complete details about all the SGB generators can be found in the author’s
book The Stanford GraphBase (New York: ACM Press, 1993), together with
dozens of short example programs that explain how to manipulate the graphs and
networks that the generators produce. For example, a program called LADDERS
shows how to find a shortest path between one five-letter word and another. A
program called TAKE RISC demonstrates how to put a nanocomputer through
its paces by simulating the actions of a network built from the gates of risc(16).

Hypergraphs. Graphs and networks can be utterly fascinating, but they aren’t
the end of the story by any means. Lots of important combinatorial algorithms
are designed to work with hypergraphs, which are more general than graphs
because their edges are allowed to be arbitrary subsets of the vertices.

For example, we might have seven vertices, identified by nonzero binary
strings v = ajazag, together with seven edges, identified by bracketed nonzero
binary strings e = [b1babs], with v € e if and only if (a1b1 +a2ba+asbsz) mod 2 = 0.
Each of these edges contains exactly three vertices:

[001] = {010,100, 110}; [010] = {001,100,101}; [011] = {011,100, 111};
[100] = {001,010,011}; [101] = {010,101, 111};
[110] = {001,110, 111}; [111] = {011,101, 110}. (56)

And by symmetry, each vertex belongs to exactly three edges. (Edges that
contain three or more vertices are sometimes called “hyperedges,” to distinguish
them from the edges of an ordinary graph. But it’s OK to call them just “edges.”)

A hypergraph is said to be r-uniform if every edge contains exactly r vertices.
Thus (56) is a 3-uniform hypergraph, and a 2-uniform hypergraph is an ordinary
graph. The complete r-uniform hypergraph K,(f) has n vertices and (:) edges.

Most of the basic concepts of graph theory can be extended to hypergraphs
in a natural way. For example, if H = (V| E) is a hypergraph and if U C V, the
subhypergraph H | U induced by U has the edges {e | e € E and e C U}. The
complement H of an r-uniform hypergraph has the edges of K,(f) that aren’t
edges of H. A k-coloring of a hypergraph is an assignment of colors to the
vertices so that no edge is monochromatic. And so on.

Hypergraphs go by many other names, because the same properties can be
formulated in many different ways. For example, every hypergraph H = (V, E)
is essentially a family of sets, because each edge is a subset of V. A 3-uniform
hypergraph is also called a triple system. A hypergraph is also equivalent to
a matrix B of Os and 1s, with one row for each vertex v and one column for
each edge e; row v and column e of this matrix contains the value b, = [v €e].

oriented cycles

Acyclic: Containing no cycles

RISC: Reduced Instruction Set Computer
gates

Boolean values
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OR

XOR
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Knuth

Stanford GraphBase: complete guide to
LADDERS
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Matrix B is called the incidence matriz of H, and we say that “v is incident
with €” when v € e. Furthermore, a hypergraph is equivalent to a bipartite
graph, with vertex set V U E and with the edge v — e whenever v is incident
with e. The hypergraph is said to be connected if and only if the corresponding
bipartite graph is connected. A cycle of length k in a hypergraph is defined to
be a cycle of length 2k in the corresponding bipartite graph.

For example, the hypergraph (56) can be defined by an equivalent incidence
matrix or an equivalent bipartite graph as follows:

[001] [010] [011] [100] [101] [110] [111] [010] 001

oor /O 1 O 1 0 1 O

ool 1 0 O 1 1 0 O 010

o1 | O O 1 1 0 0 1

w|1 1 1 0 0 0 0 o1} (57)
1] 0 1 0 O 1 0 1

mw|1 0 0 0 0 1 1 h

111 \0 O 1 0 1 1 0

[111] o011

It contains 28 cycles of length 3, such as
[101] — 101 —[010] — 001 — [100] — 010 — [101]. (58)

The dual HT of a hypergraph H is obtained by interchanging the roles
of vertices and edges, but retaining the incidence relation. In other words, it
corresponds to transposing the incidence matrix. Notice, for example, that the
dual of an r-regular graph is an r-uniform hypergraph.

Incidence matrices and bipartite graphs might correspond to hypergraphs in
which some edges occur more than once, because distinct columns of the matrix
might be equal. When a hypergraph H = (V| E) does not have any repeated
edges, it corresponds also to yet another combinatorial object, namely a Boolean
function. For if, say, the vertex set V is {1,2,...,n}, the function

h(xlaxb"'awn) = [{j|$]=1}€E] (59)
characterizes the edges of H. For example, the Boolean formula

(1 @z B xa) N (2 D23 P x5) A (23D 24 D 6) A (T4 B x5 D 7) (60)
A(zs ®xe Dx1) A (T6 D27 D x2) A (T7 D31 D 33) A (T1 VT2V T3)

is another way to describe the hypergraph of (56) and (57).

The fact that combinatorial objects can be viewed in so many ways can
be mind-boggling. But it’s also extremely helpful, because it suggests different
ways to solve equivalent problems. When we look at a problem from different
perspectives, our brains naturally think of different ways to attack it. Sometimes
we get the best insights by thinking about how to manipulate rows and columns
in a matrix. Sometimes we make progress by imagining vertices and paths, or
by visualizing clusters of points in space. Sometimes Boolean algebra is just the
thing. If we’re stuck in one domain, another might come to our rescue.

incidence matrix
bipartite graph
connected

cycle

dual

transposing
regular

distinct columns
Boolean function
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Covering and independence. If H = (V, E) is a graph or hypergraph, a set
U of vertices is said to cover H if every edge contains at least one member of U.
A set W of vertices is said to be independent (or “stable”) in H if no edge is
completely contained in W.

From the standpoint of the incidence matrix, a covering is a set of rows
whose sum is nonzero in every column. And in the special case that H is a
graph, every column of the matrix contains just two 1s; hence an independent
set in a graph corresponds to a set of rows that are mutually orthogonal — that
is, a set for which the dot product of any two different rows is zero.

These concepts are opposite sides of the same coin. If U covers H, then
W = V \ U is independent in H; conversely, if W is independent in H, then
U =V \ W covers H. Both statements are equivalent to saying that the induced
hypergraph H | W has no edges.

This dual relationship between covering and independence, which was per-
haps first noted by Claude Berge [Proc. National Acad. Sci. 43 (1957), 842-844],
is somewhat paradoxical. Although it’s logically obvious and easy to verify, it’s
also intuitively surprising. When we look at a graph and try to find a large
independent set, we tend to have rather different thoughts from when we look at
the same graph and try to find a small vertex cover; yet both goals are the same.

A covering set U is minimal if U \ u fails to be a cover for all v € U.
Similarly, an independent set W is mazimal if W Uw fails to be independent for
all w ¢ W. Here, for example, is a minimal cover of the 49-vertex graph of the
contiguous United States, (17), and the corresponding maximal independent set:

Minimal vertex cover, Maximal independent set,
with 38 vertices with 11 vertices

A covering is called minimum if it has the smallest possible size, and an
independent set is called mazimum if it has the largest possible size. For example,
with graph (17) we can do much better than (61):

0‘ o
o‘o‘oﬁ&n.“
AN (62)
N_DNAS N
TN
Minimum vertex cover, Maximum independent set,
with 30 vertices with 19 vertices

Notice the subtle distinction between “minimal” and “minimum” here: In gen-
eral (but in contrast to most dictionaries of English), people who work with
combinatorial algorithms use ‘-al’ words like “minimal” or “optimal” to refer

cover
independent

stable

orthogonal

dot product

Berge

minimal

maximal

contiguous United States
dictionaries of English
minimal versus minimum-+
maximal versus maximum-+
optimal versus optimum
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to combinatorial configurations that are locally best, in the sense that small
changes don’t improve them. The corresponding ‘-um’ words, “minimum” or
“optimum,” are reserved for configurations that are globally best, considered
over all possibilities. It’s easy to find solutions to any optimization problem
that are merely optimal, in the weak local sense, by climbing repeatedly until
reaching the top of a hill. But it’s usually much harder to find solutions that
are truly optimum. For example, we’ll see in Section 7.9 that the problem of
finding a maximum independent set in a given graph belongs to a class of difficult
problems that are called NP-complete.

Even when a problem is NP-complete, we needn’t despair. We’ll discuss
techniques for finding minimum covers in several parts of this chapter, and those
methods work fine on smallish problems; the optimum solution in (62) was found
in less than a second, after examining only a tiny fraction of the 24° possibilities.
Furthermore, special cases of NP-complete problems often turn out to be simpler
than the general case. In Section 7.5.1 we’ll see that a minimum vertex cover can
be discovered quickly in any bipartite graph, or in any hypergraph that is the dual
of a graph. And in Section 7.5.5 we’ll study efficient ways to discover a maximum
matching, which is a maximum independent set in the line graph of a given graph.

The problem of maximizing the size of an independent set occurs sufficiently
often that it has acquired a special notation: If H is any hypergraph, the number

o(H) = max{|W| | W is an independent set of vertices in H} (63)
is called the independence number (or the stability number) of H. Similarly,
X(H) = min{k | H is k-colorable} (64)

is called the chromatic number of H. Notice that x(H) is the size of a mini-
mum covering of H by independent sets, because the vertices that receive any
particular color must be independent according to our definitions.

These definitions of a(H) and x(H) apply in particular to the case when
H is an ordinary graph, but of course we usually write a(G) and x(G) in such
situations. Graphs have another important number called their clique number,

w(@) = max{|X| | X is a clique in G}, (65)
where a “clique” is a set of mutually adjacent vertices. Clearly
w(G) = a(G), (66)

because a clique in G is an independent set in the complementary graph. Sim-
ilarly we can see that x(G) is the minimum size of a “clique cover,” which is a
set of cliques that exactly covers all of the vertices.

Several instances of “exact cover problems” were mentioned earlier in this
section, without an explanation of exactly what such a problem really signifies.
Finally we're ready for the definition: Given the incidence matrix of a hyper-
graph H, an ezact cover of H is a set of rows whose sum is (11 ... 1). In other
words, an exact cover is a set of vertices that touches each hyperedge exactly

once; an ordinary cover is only required to touch each hyperedge at least once.

locally

globally
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NP-complete
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dual
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EXERCISES

1. [25] Suppose n = 4m — 1. Construct arrangements of Langford pairs for the
numbers {1,1,...,n,n}, with the property that we also obtain a solution for n = 4m
by changing the first ‘2m—1’ to ‘4m’ and appending ‘2m—1 4m’ at the right. Hint:
Put the m — 1 even numbers 4m—4, 4m—6, ..., 2m at the left.

2. [18] For which n can {0,0,1,1,...,n—1,n—1} be arranged as Langford pairs?

3. [22] Suppose we arrange the numbers {0,0,1,1,...,n—1,n—1} in a circle, instead
of a straight line, with distance k£ between the two k’s. Do we get solutions that are
essentially distinct from those of exercise 27

4. [M20] (T.Skolem, 1957.) Show that the Fibonacci string Se = babbababbabba . . .
of exercise 1.2.8-36 leads directly to an infinite sequence 0012132453674 . .. of Langford
pairs for the set of all nonnegative integers, if we simply replace the a’s and b’s
independently by 0, 1, 2, etc., from left to right.

» 5. [HM22] If a permutation of {1,1,2,2,...,n,n} is chosen at random, what is the
probability that the two k’s are exactly k positions apart, given k? Use this formula
to guess the size of the Langford numbers L, in (1).

» 6. [M28] (M. Godfrey, 2002.) Let f(z1,...,Z2n) = [[1; (Z6Tntx E?z;k_lxjmj+k+1).

a) Prove that Ew1,---,€vzn€{—1,+1} f(z1,...,220) = 92ntir,

b) Explain how to evaluate this sum in O(4"n) steps. How many bits of precision
are needed for the arithmetic?

¢) Gain a factor of eight by exploiting the identities

f(m17"'7$2n):f(—$1,...

7. [M22] Prove that every Langford pairing of {1,1,...,16,16} must have seven
uncompleted pairs at some point, when read from left to right.

) —[Ezn) = f(mzn, I ,.’El) = f(l‘l, —Z2,...,T2n—1, —mzn).

8. [23] The simplest Langford sequence is not only well-balanced; it’s planar, in the
sense that its pairs can be connected up without crossing lines as in (2):

231213,
(el
Find all of the planar Langford pairings for which n < 8.
9. [24] (Langford triples.) In how many ways can {1,1,1,2,2,2,...,9,9,9} be ar-
ranged in a row so that consecutive k’s are k apart, for 1 < k < 97
10. [M20] Explain how to construct a magic square directly from Fig. 1. (Convert

each card into a number between 1 and 16, in such a way that the rows, columns, and
main diagonals all sum to 34.)

11. [20] Extend (5) to a “Hebraic-Greeco-Latin” square by appending one of the
letters {N,3,,7} to the two-letter string in each compartment. No letter pair (Latin,
Greek), (Latin, Hebrew), or (Greek, Hebrew) should appear in more than one place.

» 12, [M21] (L. Euler.) Let L;; = (i+j) mod n for 0 < i,5 < n be the addition table for
integers mod n. Prove that a latin square orthogonal to L exists if and only if n is odd.

13. [M25] A 10 x 10 square can be divided into four quarters of size 5 x 5. A 10 x 10
latin square formed from the digits {0,1,...,9} has k “intruders” if its upper left
quarter has exactly k elements > 5. (See exercise 14(e) for an example with k£ = 3.)
Prove that the square has no orthogonal mate unless there are at least three intruders.

Langford pairs
Skolem
Fibonacci string
Godfrey
well-balanced
planar
Langford triples
magic square
Graco-Latin
Hebrew

Euler

addition table
intruders
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14. [29] Find all orthogonal mates of the following latin squares:

(a) (b) (¢) (d) (e)

3145926870 2718459036 0572164938 1680397425 7823456019
2819763504 0287135649 6051298473 8346512097 8234067195
9452307168 7524093168 4867039215 9805761342 2340178956
6208451793 1435962780 1439807652 2754689130 3401289567

8364095217, 6390718425. 8324756091. 0538976214. 4012395678
5981274036° 4069271853 ° 7203941586° 4963820571’ 5678912340°

4627530981 3102684597 5610473829 7192034658 6789523401
0576148329 9871546302 9148625307 6219405783 0195634782
1730689452 8956307214 2795380164 3471258906 1956740823
7093812645 5643820971 3986512740 5027143869 9567801234

15. [50] Find three 10 x 10 latin squares that are mutually orthogonal to each other.

16. [48] (H.J. Ryser, 1967.) A latin square is said to be of “order n” if it has n rows,
n columns, and n symbols. Does every latin square of odd order have a transversal?

17. [25] Let L be a latin square with elements L;; for 0 < 4,5 < n. Show that the
problems of (a) finding all the transversals of L, and (b) finding all the orthogonal
mates of L, are special cases of the general exact cover problem.

18. [M23] The string z1z3...zy is called “n-ary” if each element z; belongs to the
set {0,1,...,n—1} of n-ary digits. Two strings z1z2...zny and y1y2 ...yn are said to
be orthogonal if the N pairs (z;,y;) are distinct for 1 < j < N. (Consequently, two
n-ary strings cannot be orthogonal if their length N exceeds n®.) An m-ary matrix
with m rows and n? columns whose rows are orthogonal to each other is called an
orthogonal array of order n and depth m.

Find a correspondence between orthogonal arrays of depth m and lists of m — 2
mutually orthogonal latin squares. What orthogonal array corresponds to exercise 117

19. [M25] Continuing exercise 18, prove that an orthogonal array of order n > 1 and
depth m is possible only if m < n + 1. Show that this upper limit is achievable when
n is a prime number p. Write out an example when p = 5.

20. [HM20] Show that if each element k in an orthogonal array is replaced by e2mki/n

the rows become orthogonal vectors in the usual sense (their dot product is zero).

21. [M21] A geometric net is a system of points and lines that obeys three axioms:
i) Each line is a set of points.
ii) Distinct lines have at most one point in common.
iii) If p is a point and L is a line with p ¢ L, then there is exactly one line M such
that p€ M and LN M = .
If LN M = 0 we say that L is parallel to M, and write L || M.
a) Prove that the lines of a geometric net can be partitioned into equivalence classes,
with two lines in the same class if and only if they are equal or parallel.
b) Show that if there are at least two classes of parallel lines, every line contains the
same number of points as the other lines in its class.
¢) Furthermore, if there are at least three classes, there are numbers m and n such
that all points belong to exactly m lines and all lines contain exactly n points.

22. [M22] Show that every orthogonal array can be regarded as a geometric net. Is
the converse also true?

23. [M21] (Error-correcting codes.) The “Hamming distance” d(z,y) between two
strings * = z1...xn5 and y = y1 ...yn is the number of positions j where z; # y;. A

mutually orthogonal
Ryser

order N

Order of a latin square
latin square
transversals
orthogonal mates
exact cover problem
Nn-ary

orthogonal

orthogonal array
orthogonal vectors

dot product

geometric net

parallel
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b-ary code with n information digits and v check digits is a set C(b,n,r) of b™ strings
T=21...Tntr, Where 0 < z; < bfor 1 < j < mn+r. When a codeword z is transmitted
and the message y is received, d(z,y) is the number of transmission errors. The code
is called t-error correcting if we can reconstruct the value of z whenever a message y
is received with d(z,y) < t. The distance of the code is the minimum value of d(z,z’),
taken over all pairs of codewords = # z'.
a) Prove that a code is t-error correcting if and only if its distance exceeds 2t.
b) Prove that a single-error correcting b-ary code with 2 information digits and 2 check
digits is equivalent to a pair of orthogonal latin squares of order b.
c¢) Furthermore, a code C(b, 2, r) with distance r+1 is equivalent to a set of » mutually
orthogonal latin squares of order b.

> 24. [M30] A geometric net with N points and R lines leads naturally to the binary

code C(2, N, R) with codewords z1 ...ZNZN+1 ... 2ZN+r defined by the parity bits

TNtk = fr(z1,...,zn) = (3 {z; | point j lies on line k}) mod 2.

a) If the net has m classes of parallel lines, prove that this code has distance m + 1.
b) Find an efficient way to correct up to ¢ errors with this code, assuming that m = 2t.
Illustrate the decoding process in the case N =25, R = 30, t = 3.

25. [27] Find a latin square whose rows and columns are five-letter words. (For this
exercise you’ll need to dig out the big dictionaries.)

> 26. [25]

27. [20] How many SGB words contain exactly k distinct letters, for 1 < k < 57

28. [20]

29. [20] Find all SGB words that are palindromes (equal to their reflection), or mirror
pairs (like regal lager).

» 30. [20] The letters of first are in alphabetic order from left to right. What is the
lexicographically first such five-letter word? What is the last?

31. [21] (C. McManus.) Find all sets of three SGB words that are in arithmetic
progression but have no common letters in any fixed position. (One such example is
{power, slugs, visit}.)

Compose a meaningful English sentence that contains only five-letter words.

Are there any pairs of SGB word vectors that differ by +1 in each component?

32. [23] Does the English language contain any 10-letter words aoas - . .ag for which

both apazasaeas and aiaszasarag are SGB words?
33. [20] (Scot Morris.) Complete the following list of 26 interesting SGB words:

about, bacon, faced, under, chief, ..., pizza.

» 34. [21] For each SGB word that doesn’t include the letter y, obtain a 5-bit binary
number by changing the vowels {a, e, i,0,u} to 1 and the other letters to 0. What are
the most common words for each of the 32 binary outcomes?

> 35. [26] Sixteen well-chosen elements of WORDS(1000) lead to the branching pattern

sheet‘ shell‘ ’short‘ ’shows ’stall ’start‘ ’steam‘ ’steep‘

codewords, b-ary
distance of a code
geometric net

parity bits

latin square

word square
dictionaries
palindromes

mirror pairs
alphabetic order
lexicographically
McManus
arithmetic progression
perfect shuffle
Morris

vowels
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complete binary trie
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which is a complete binary trie of words that begin with the letter s. But there’s no such
pattern of words beginning with a, even if we consider the full collection WORDS(5757).

What letters of the alphabet can be used as the starting letter of sixteen words
that form a complete binary trie within WORDS(n), given n?

36. [M17] Explain the symmetries that appear in the word cube (10). Also show that
two more such cubes can be obtained by changing only the two words {stove, event}.

37. [20] Which vertices of the graph words(5757,0,0,0) have maximum degree?

38. [22] Using the digraph rule in (14), change tears to smile in just three steps,
without computer assistance.

39. [M00] Is G\ e an induced subgraph of G? Is it a spanning subgraph?

40. [M15] How many (a) spanning (b) induced subgraphs does a graph G = (V, E)
have, when |V| =n and |E| = e?

41. [M10] For which integers n do we have (a) K, = P,?7 (b) K, = Cp?

42. [15] (D. H. Lehmer.) Let G be a graph with 13 vertices, in which every vertex
has degree 5. Make a nontrivial statement about G.

43. [23] Are any of the following graphs the same as the Petersen graph?

% @ W ®

44. [M23] How many symmetries does Chvdtal’s graph have? (See Fig. 2(f).)
45. [20] Find an easy way to 4-color the planar graph (17). Would 3 colors suffice?

46. [M25] Let G be a graph with n > 3 vertices, defined by a planar diagram that
is “maximal,” in the sense that no additional lines can be drawn between nonadjacent
vertices without crossing an existing edge.

a) Prove that the diagram partitions the plane into regions that each have exactly
three vertices on their boundary. (One of these regions is the set of all points that
lie outside the diagram.)

b) Therefore G has exactly 3n — 6 edges.

47. [M22] Prove that the complete bigraph K3 3 isn’t planar.

48. [M25] Complete the proof of Theorem B by showing that the stated procedure
never gives the same color to two adjacent vertices.

49. [18] Draw diagrams of all the cubic graphs with at most 6 vertices.
50. [M24] Find all bipartite graphs that can be 3-colored in exactly 24 ways.

51. [M22] Given a geometric net as described in exercise 21, construct the bipartite
graph whose vertices are the points p and the lines L of the net, with p — L if and
only if p € L. What is the girth of this graph?

52. [M16] Find a simple inequality that relates the diameter of a graph to its girth.
(How small can the diameter be, if the girth is large?)

53. [15] Which of the words world and happy belongs to the giant component of the
graph words(5757,0,0,0)7
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> 54. [21] The 49 postal codes in graph (17) are AL, AR, AZ, CA, CO, CT, DC, DE, FL, GA,
IA, ID, IL, IN, KS, KY, LA, MA, MD, ME, MI, MN, MO, MS, MT, NC, ND, NE, NH, NJ, NM, NV,
NY, OH, OK, OR, PA, RI, SC, SD, TN, TX, UT, VA, VT, WA, WI, WV, WY, in alphabetical order.
a) Suppose we consider two states to be adjacent if their postal codes agree in one
place (namely AL — AR — OR — OH, etc.). What are the components of this graph?

b) Now form a directed graph with XY — YZ (for example, AL — LA — AR, etc.).
What are the strongly connected components of this digraph? (See Section 2.3.4.2.)

¢) The United States has additional postal codes AA, AE, AK, AP, AS, FM, GU, HI, MH,
MP, PW, PR, VI, besides those in (17). Reconsider question (b), using all 62 codes.

55. [M20] How many edges are in the complete k-partite graph Kn, .. n,?

» 56. [M10] True or false: A multigraph is a graph if and only if the corresponding
digraph is simple.
57. [M10] True or false: Vertices u and v are in the same connected component of a
directed graph if and only if either d(u,v) < oo or d(v,u) < co.

58. [M17] Describe all (a) graphs (b) multigraphs that are regular of degree 2.

» 59. [M238] A tournament of order n is a digraph on n vertices that has exactly (;)
arcs, either u— v or v— u for every pair of distinct vertices {u, v}.
a) Prove that every tournament contains an oriented spanning path vy —---—vs,.
b) Consider the tournament on vertices {0,1,2, 3,4} for which u — v if and only if
(u —v) mod 5 > 3. How many oriented spanning paths does it have?
c¢) Is Ky the only tournament of order n that has a unique oriented spanning path?

> 60. [M22] Let u be a vertex of greatest out-degree in a tournament, and let v be any
other vertex. Prove that d(u,v) < 2.

61. [M16] Construct a digraph that has k walks of length k from vertex 1 to vertex 2.

62. [M21] A permutation digraph is a directed graph in which every vertex has out-
degree 1 and in-degree 1; therefore its components are oriented cycles. If it has
n vertices and k components, we call it even if n — k is even, odd if n — k is odd.
a) Let G be a directed graph with adjacency matrix A. Prove that the number of
spanning permutation digraphs of G is per A, the permanent of A.
b) Interpret the determinant, det A, in terms of spanning permutation digraphs.

63. [M23] Let G be a graph of girth g in which every vertex has at least d neighbors.
Prove that G has at least N vertices, where

1+20§k<1d(d_1)k7 if g=2t+1;
1+(d—1)"+ Eogkq d(d - 1)k7 if g =2t+ 2.

» 64. [M21] Continuing exercise 63, show that there’s a unique graph of girth 4, mini-
mum degree d, and order 2d, for each d > 2.

» 65. [HMS31] Suppose graph G has girth 5, minimum degree d, and N = d*>+1 vertices.
a) Prove that the adjacency matrix A of G satisfies the equation A*>+A = (d—1)I+J.
b) Since A is a symmetric matrix, it has N orthogonal eigenvectors z;, with corre-
sponding eigenvalues A;, such that Az; = A\jz; for 1 < j < N. Prove that each
A; is either d or (—1 £ +/4d — 3)/2.
¢) Show that if v/4d — 3 is irrational, then d = 2. Hint: A1+ -+ Ay = trace(A) = 0.
d) And if v/4d — 3 is rational, d € {3,7,57}.

66. [M30] Continuing exercise 65, construct such a graph when d = 7.
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67. [M/8] Is there a regular graph of degree 57, order 3250, and girth 57
68. [M20] How many different adjacency matrices does a graph G on n vertices have?

» 69. [20] Extending (31), explain how to calculate both out-degree ODEG(v) and in-
degree IDEG(v) for all vertices v in a graph that has been represented in SGB format.

> 70. [M20] How often is each step of Algorithm B performed, when that algorithm
successfully 2-colors a graph with m arcs and n vertices?

71. [26] Implement Algorithm B for the MMIX computer, using the MMIXAL assembly
language. Assume that, when your program begins, register vO points to the first vertex
node and register n contains the number of vertices.

72. [M22] When COLOR(v) is set in step B6, call u the parent of v; but when COLOR (w)
is set in step B3, say that w has no parent. Define the ancestors of vertex v, recursively,
to be v together with the ancestors of v’s parent (if any).
a) Prove that if v is below u in the stack during Algorithm B, the parent of v is an
ancestor of u.
b) Furthermore, if COLOR(v) = COLOR(u) in step B6, v is currently in the stack.
c¢) Use these facts to extend Algorithm B so that, if the given graph is not bipartite,
the names of vertices in a cycle of odd length are output.

73. [15] What’s another name for random_graph(10,45,0,0,0,0,0,0,0,0)?
74. [21] What vertex of roget(1022,0,0,0) has the largest out-degree?

75. [22] The SGB graph generator board(ni,nz,ns,ns,p,w,0) creates a graph whose
vertices are the t-dimensional integer vectors (z1,...,z:) for 0 < z; < b;, determined
by the first four parameters (n1, n2, ns, n4) as follows: Set ns < 0 and let j > 0 be min-
imum such that nj;1 < 0. If § =0, set by < b2 < 8 and t < 2; this is the default 8 x 8
board. Otherwise if nj41 =0, set b; < n; for 1 < i < jand ¢t = j. Finally, if n;41 <0,

set t « |njy1|, and set b; to the ith element of the periodic sequence (ni,...,n;,
ni,...,Mj,n1,...). (For example, the specification (ni,n2,ns,n4) = (2,3,5,—7) is
about as tricky as you can get; it produces a 7-dimensional board with (b1,...,b7) =

(2,3,5,2,3,5,2), hence a graph with 2-3-5-2-3-5-2 = 1800 vertices.)

The remaining parameters (p, w, 0), for “piece, wrap, and orientation,” determine
the arcs of the graph. Suppose first that w = 0 = 0. If p > 0, we have (z1,...,7¢) —
(y1,...,9y) if and only if y; = x; + §; for 1 < ¢ < ¢, where (d4,...,d;) is an integer
solution to the equation 67 + -+- + 67 = |p|. And if p < 0, we allow also y; = z; + ké;
for k > 1, corresponding to k moves in the same direction.

If w#0, let w= (w...w1)2 in binary notation. Then we allow “wraparound,”
yi = (zs + 6;) mod b; or y; = (z; + kd;) mod b;, in each coordinate 4 for which w; = 1.

If 0 # 0, the graph is directed; offsets (d1,. .., d:) produce arcs only when they are
lexicographically greater than (0,...,0). But if o = 0, the graph is undirected.

Find settings of (n1,n2,ns3,n4,p, w, o) for which board will produce the following
fundamental graphs: (a) the complete graph Ky,; (b) the path P,; (c) the cycle Cy;
(d) the transitive tournament K,; (e) the oriented path Py; (f) the oriented cycle Cy};
(g) the m x n grid P, 0P,; (h) the m x n cylinder P,0Cy; (i) the m x n torus Cp, OCh;
(j) the m x n rook graph K, 0Kp; (k) the m x n directed torus Cy, OCy’; (1) the null
graph K,,; (m) the n-cube P, 0---0 P, with 2" vertices.

76. [20] Can board(ni,n2,ns,na,p,w,o) produce loops, or parallel (repeated) edges?
77. [M20] If graph G has diameter > 3, prove that G has diameter < 3.
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78. [M26] Let G = (V,E) be a graph with |V| = n and G = G. (In other words, G
is self-complementary: There’s a permutation ¢ of V such that w — v if and only if
¢(u) - ¢(v) and u # v. We can imagine that the edges of K, have been painted black
or white; the white edges define a graph that’s isomorphic to the graph of black edges.)
a) Prove that nmod 4 = 0 or 1. Draw diagrams for all such graphs with n < 8.
b) Prove that if n mod 4 = 0, every cycle of the permutation ¢ has a length that is a
multiple of 4.
c) Conversely, every permutation ¢ with such cycles arises in some such graph G.
d) Extend these results to the case n mod 4 = 1.

79. [M22] Given k > 0, construct a graph on the vertices {0,1,...,4k} that is both
regular and self-complementary.

80. [M22] A self-complementary graph must have diameter 2 or 3, by exercise 77.
Given k > 2, construct self-complementary graphs of both possible diameters, when
(a) V={1,2,...,4k}; (b) V ={0,1,2,...,4k}.
81. [20] The complement of a simple digraph without loops is defined by extending
(35) and (36), so that we have u — v in D if and only if u # v and u 4 v in D. What
are the self-complementary digraphs of order 37

82. [M21] Are the following statements about line graphs true or false?
a) If G is contained in G, then L(G) is an induced subgraph of L(G").
b) If G is a regular graph, so is L(G).
¢) L(Km,») is regular, for all m,n > 0.

d) L(Km,n,r) is regular, for all m,n,r > 0.

e) L(Kmn) 2 K 0OKn.

f) L(K4) = Ko.z.2.

g) L(Pn+1) = Pn.

h) The graphs G and L(G) both have the same number of components.

83. [16] Draw the graph L(K5).

84. [M21] Is L(K3,3) self-complementary?

85. [M22] (O. Ore, 1962.) For which graphs G do we have G 2 L(G)?

86. [M20] (R.J. Wilson.) Find a graph G of order 6 for which G = L(G).

87. [20] Is the Petersen graph (a) 3-colorable? (b) 3-edge-colorable?

88. [M20] The graph W, = K1 —Cr_1 is called the wheel of order n, @
when n > 4. How many cycles does it contain as subgraphs?
89. [M20] Prove the associative laws, (42) and (43). W
90. [M24] A graph is called a cograph if it can be constructed algebraically from
l-element graphs by means of complementation and/or direct sum operations. For
example, there are four nonisomorphic graphs of order 3, and they all are cographs:
Ks; = K1 ® K1 @ K1 and its complement, K3; K12 = K1 @ K> and its complement,
K1,2, where Kz = Kl @Kl

Exhaustive enumeration shows that there are 11 nonisomorphic graphs of order 4.
Give algebraic formulas to prove that 10 of them are cographs. Which one isn’t?

91. [20] Draw diagrams for the 4-vertex graphs (a) K20OK3; (b) K2 @ Ka; (¢) K2R Ko;

(d) KzAKz; (e) Kg OKZ; (f) EOKz; (g) Kz OKZ.
92. [21] The five types of graph products defined in the text work fine for simple

digraphs as well as for ordinary graphs. Draw diagrams for the 4-vertex digraphs
(a) K2 0Ky (b) K@ K3'; (¢) K ® K5 (d) K3'a Ky'; (e) K3'o K3
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self-complementary graph
diameter

complement of a simple digraph
line graphs

induced subgraph
regular graph
components

Ore

Wilson

Petersen graph
edge-colorable

wheel

cycles

associative laws
cograph
complementation
direct sum

graphs of order 4
graph algebra++
graph products+
Cartesian product++
direct product+

strong product++

odd product+
lexicographic product+
digraphs



v

7 COMBINATORIAL SEARCHING 43

93. [15] Which of the five graph products takes K, and K, into Km,?
94. [10] Are the SGB words graphs induced subgraphs of Pse O Pag O Pag O Pag O P ?

95. [M20] If vertex u of G has degree d, and vertex v of H has degree d,, what is
the degree of vertex (u,v) in (a) GOH? (b) G H? (c) GRH? (d) GaH? () GoH?
96. [M22] Let A be an m x m’' matrix with a,,/ in row u and column u'; let B be
an n X n' matrix with b,,, in row v and column v’. The direct product A ® B is an
mn X m'n’ matrix with @,/ by, in row (u,v) and column (u',v'). Thus A ® B is the
adjacency matrix of G ® H, if A and B are the adjacency matrices of G and H.

Find analogous formulas for the adjacency matrices of (a) GO H; (b) Gr H;
(¢) GaH; (d) Go H.
97. [M25] Find as many interesting algebraic relations between graph sums and prod-
ucts as you can. (For example, the distributive law (A®B)®C = (AQC)® (B®C) for
direct sums and products of matrices implies that (G®G') @ H = (G H)® (G' ® H).
We also have K, 0H = H® --- ® H, with m copies of H, etc.)

98. [M20] If the graph G has k components and the graph H has [ components, how
many components are in the graphs GO H and GrR H?

99. [M20] Let dc(u,u') be the distance from vertex u to vertex u’' in graph G.
Prove that deom((u,v), (v',v')) = de(u,u’) + du(v,v"), and find a similar formula
for dGzH((U, ’U), (ulv vl))'

100. [M21] For which connected graphs is G ® H connected?

101. [M25] Find all connected graphs G and H such that GO H 2 G® H.

102. [M20] What’s a simple algebraic formula for the graph of king moves (which
take one step horizontally, vertically, or diagonally) on an m X n board?

103. [20] Complete tableau (54). Also apply Algorithm H to the sequence 866444444.
104. [18] Explain the manipulation of variables 4, ¢, and r in steps H3 and H4.

105. [M34] Suppose dy > --- > dn >0, and let ¢1 > --- > cq, be its conjugate as in
Algorithm H. Prove that di ...d, is graphical if and only if di + --- + d5, is even and
di+--+dp<c1+-:-++cp—kfor 1 <k <s, where s is maximal such that ds > s.

106. [20] True or false: If dy = - = dn, = d < n and nd is even, Algorithm H
constructs a connected graph.

107. [M21] Prove that the degree sequence d;...d, of a self-complementary graph
satisfies d; + dny1—; =n — 1 and doj_1 = dpj for 1 < j < n/2.

108. [M23] Design an algorithm analogous to Algorithm H that constructs a simple
directed graph on vertices {1, ...,n}, having specified values d;; and d;c" for the in-degree
and out-degree of each vertex k, whenever at least one such graph exists.

109. [M20] Design an algorithm analogous to Algorithm H that constructs a bipartite
graph on vertices {1,...,m + n}, having specified degrees d; for each vertex k£ when
possible; all edges j — k should have j < m and k > m.

110. [M22] Without using Algorithm H, show by a direct construction that the se-
quence dj .. .dy, is graphical whenn > dy > --- > d, > di—1and d1 +---+d, is even.
111. [25] Let G be a graph on vertices V = {1,...,n}, with di the degree of k and
max(di, . ..,dn) = d. Prove that there’s an integer N with n < N < 2n and a graph H
on vertices {1,..., N}, such that H is regular of degree d and H |V = G. Explain how
to construct such a regular graph with IV as small as possible.
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> 112. [20] Does the network miles(128,0,0,0,0,127,0) have three equidistant cities?
If not, what three cities come closest to an equilateral triangle?

113. [05] When H is a hypergraph with m edges and n vertices, how many rows and
columns does its incidence matrix have?

114. [M20] Suppose the multigraph (26) is regarded as a hypergraph. What is the
corresponding incidence matrix? What is the corresponding bipartite graph?

115. [M20] When B is the incidence matrix of a graph G, explain the significance of
the symmetric matrices BTB and BBT.

116. [M17] Describe the edges of the complete bipartite r-uniform hypergraph Kg,)n.

117. [M22] How many nonisomorphic 1-uniform hypergraphs have m edges and n ver-
tices? (Edges may be repeated.) List them all when m =4 and n = 3.

118. [M20] A “hyperforest” is a hypergraph that contains no cycles. If a hyperforest
has m edges, n vertices, and p components, what’s the sum of the degrees of its vertices?

119. [M18] What hypergraph corresponds to (60) without the final term (Z1VZ2VZ3)?
120. [M20] Define directed hypergraphs, by generalizing the concept of directed graphs.
121. [M19] Given a hypergraph H = (V, E), let I(H) = (V, F), where F is the family
of all maximal independent sets of H. Express x(H) in terms of |V, |F|, and a(I(H)T).

122. [M24] Find a maximum independent set and a minimum coloring of the following
triple systems: (a) the hypergraph (56); (b) the dual of the Petersen graph.

123. [17] Show that the optimum colorings of K, 0K, are equivalent to the solutions
of a famous combinatorial problem.

124. [M22] What is the chromatic number of the Chvétal graph, Fig. 2(f)?
125. [M48] For what values of g is there a 4-regular, 4-chromatic graph of girth g?
126. [M22] Find optimum colorings of the “kingwise torus,” Cp,®Cy, when m,n > 3.

127. [M22] Prove that (a) x(G) + x(G) < n+1 and (b) x(G)x(G) > n when G is a
graph of order n, and find graphs for which equality holds.

128. [M18] Express x(GOH) in terms of x(G) and x(H), when G and H are graphs.
129. [23] Describe the maximal cliques of the 8 x 8 queen graph (37).
[

130. [M20] How many maximal cliques are in a complete k-partite graph?

O
-[

131. [M30] Let N(n) be the largest number of maximal cliques that an n-vertex graph
can have. Prove that 3"/3) < N(n) < 3[/31,

132. [M20] We call G tightly colorable if x(G) = w(G). Prove that x(Gx H) =
x(G)x(H) whenever G and H are tightly colorable.

133. [21] The “musical graph” illustrated here pro-
vides a nice way to review numerous definitions
that were given in this section, because its proper-
ties are easily analyzed. Determine its (a) order;

(b) size; (c) girth; (d) diameter; (e) independ-
ence number, a(G); (f) chromatic number, x(G);

(g) edge-chromatic number, x(L(G)); (h) clique
number, w(G); (i) algebraic formula as a product

of well-known smaller graphs. What is the size

of (j) a minimum vertex cover? (k) a maximum
matching? Is G (1) regular? (m) planar? (n) con-
nected? (o) directed? (p) a free tree? (q) Hamiltonian?
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134. [M22] How many automorphisms does the musical graph have?

> 135. [HM26] Suppose a composer takes a random walk in the musical graph, starting
at vertex C and then making five equally likely choices at each step. Show that after
an even number of steps, the walk is more likely to end at vertex C than at any other
vertex. What is the exact probability of going from C to C in a 12-step walk?

136. [HM23] A Cayley digraph is a directed graph whose vertices V are the elements
of a group and whose arcs are v — wva; for 1 < 5 < d and all vertices v, where
(a1,...,aq) are fixed elements of the group. A Cayley graph is a Cayley digraph that
is also a graph. Is the Petersen graph a Cayley graph?

(7] (7]

3 3
8112 5|8 11 2 5[8 11 2 5 258&2%8&25
4 7101|4 710 1|4 7101 10[1 af7]io[1 4[7]10
0369|03609|03609 6 9 0]3[6 9 0]3|6 9 0]
8112 58112 5[8 11 2 5 8'1'1258112#8&2’3[
47101[4 71014 7101 1 a[7]o[L_4[7o[T_4[7]0
03609]03609]03609 316 9 0]3[6 9 0]3[6 9 0]
8112 5|8 11 2 5|8 11 2 5 8112 5]811 2 5]8 11 2 5
471014 71014 7101 14[—10’%4—10’%4—10
0369|03609|03609 6 90| [690] |690]

> 137. [M25] (Generalized toruses.) An m X n torus can be regarded as a tiling of the
plane. For example, we can imagine that infinitely many copies of the 3 x 4 torus
in (50) have been placed together gridwise, as indicated in the left-hand illustration
above; from each vertex we can move north, south, east, or west to another vertex of the
torus. The vertices have been numbered here so that a northward move from v goes to
(v+4) mod 12, and an eastward move to (v+3) mod 12, etc. The right-hand illustration
shows the same torus, but with a differently shaped tile; any way to choose twelve cells
numbered {0,1,...,11} will tile the plane, with exactly the same underlying graph.
Shifted copies of a single shape will also tile the plane if they form a generalized
torus, in which cell (z,y) corresponds to the same vertex as cells (z + a,y + b) and
(z + ¢,y + d), where (a,b) and (c,d) are integer vectors and n = ad — bc > 0. The
generalized torus will then have n points. These vectors (a,b) and (c,d) are (4,0) and
(0,3) in the 3 x 4 example above; and when they are respectively (5,2) and (1, 3) we get

4
9 1011 12]0
567 819
1 2 314 5
0 1
8(9 1

4 5

Here n = 13, and a northward move from v goes to (v + 4) mod 13; an eastward move
goes to (v + 1) mod 13.

Prove that if gcd(a, b, ¢, d) = 1, the vertices of such a generalized torus can always
be assigned integer labels {0,1,...,n—1} in such a way that the neighbors of v are
(v £ p) modn and (v £ q) mod n, for some integers p and gq.
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138. [HM27] Continuing exercise 137, what is a good way to label k-dimensional
vertices z = (z1,...,Zxr), when integer vectors «; are given such that each vector z
is equivalent to « + a; for 1 < j < k7?7 Illustrate your method in the case k = 3,
o1 =(3,1,1), an = (1,3,1), as = (1,1,3).
139. [M22] Let H be a fixed graph of order h, and let #(H:G) be the number of times
that H occurs as an induced subgraph of a given graph G. If G is chosen at random
from the set of all 2*("~1)/2 graphs on the vertices V = {1,2,...,n}, what is the average
value of #(H:G) when H is (a) Kp; (b) Pa, for h > 1; (¢c) Ch, for h > 2; (d) arbitrary?
140. [M30] A graph G is called proportional if its induced subgraph counts #(K3:G),
#(K3:G), and #(P3:G) each agree with the expected values derived in exercise 139.

a) Show that the wheel graph Ws of exercise 88 is proportional in this sense.

b) Prove that G is proportional if and only if #(K3:G) = %(g) and the degree

sequence di .. .d, of its vertices satisfies the identities
n nin
d1+---+dn:(2), d?+---+di:§(2). (%)

141. [26] The conditions of exercise 140(b) can hold only if nmod 16 € {0,1,8}.
Write a program to find all of the proportional graphs that have n = 8 vertices.

142. [M30] (S. Janson and J. Kratochvil, 1991.) Prove that no graph G on 4 or more
vertices can be “extraproportional,” in the sense that its subgraph counts #(H:G) agree
with the expected values in exercise 139 for each of the eleven nonisomorphic graphs H
of order 4. Hint: (n — 3)#(K3G) = 4#(K4G) =+ 2#(K171,2:G) =+ #(KleaKgG)

143. [M25] Let A be any matrix with m > 1 distinct rows, and n > m columns. Prove
that at least one column of A can be deleted, without making any two rows equal.

144. [21] Let X be an m X n matrix whose entries z;; are either 0, 1, or *. A
“completion” of X is a matrix X ™ in which every * has been replaced by either 0 or 1.
Show that the problem of finding a completion with fewest distinct rows is equivalent
to the problem of finding the chromatic number of a graph.

145. [25] (R.S. Boyer and J. S. Moore, 1980.) Suppose the array a; ...an contains a
magjority element, namely a value that occurs more than n/2 times. Design an algorithm
that finds it after making fewer than n comparisons. Hint: If n > 3 and an—1 # an,
the majority element of a; ...a, is also the majority element of a; ...an—2.
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wheel graph
degree sequence
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ANSWERS TO EXERCISES

Answer not a fool according to his folly,
lest thou also be like unto him.

— Proverbs 26:4

SECTION 7

1. Following the hint, we’ll want the second ‘4m—4’ to be immediately followed by the
first ‘2m—1’. The desired arrangements can be deduced from the first four examples,
given in hexadecimal notation: 231213, 46171435623725, 86a31b1368597a425b2479,
ca8eb31f1358ac7db9e6427£2469bd. [R. O. Davies, Math. Gazette 43 (1959), 2537255.]

2. Such arrangements exist if and only if n mod 4 = 0 or 1. This condition is necessary
because there must be an even number of odd items. And it is sufficient because we
can place ‘00’ in front of the solutions in the previous exercise.

Notes: This question was first raised by Marshall Hall in 1951, and solved the
following year by F. T. Leahy, Jr., in unpublished work [Armed Forces Security Agency
report 343 (28 January 1952)]. It was independently posed and resolved by T. Skolem
and T. Bang, Math. Scandinavica 5 (1957), 57-58. For other intervals of numbers, see
the complete solution by J. E. Simpson, Discrete Math. 44 (1983), 97-104.

3. Yes. For example, the cycle (0072362435714165) can’t be broken up.

4. The kth occurrence of b is in position |k¢| from the left, and the kth occurrence
of a is in position |k¢?|. Clearly |k¢?| — |k¢| = k, because ¢® = ¢+ 1. (The integers
|k¢| form the “spectrum” of ¢; see exercise 3.13 of CMath.)

5. 2n—k — 1 of the (2;) equally likely pairs of positions satisfy the stated condition.

If these probabilities were independent (but they aren’t), the value of L, would be
2n - (2n)?n(n — 1)
2n—1-k)/()) =
(2,2,...,2) kl;[l(( " 1/ (5)) nl(2n)n+1(2n — 1)nH

4n wen 1
:exp(nlne—s—kln«/T +0(n ))

6. (a) When the products are expanded, we obtain a polynomial of (2n —2)!/(n — 2)!
terms, each of degree 4n. There’s a term z3...z3, for each Langford pairing; every
other term has at least one variable of degree 1. Summing over z1,...,z2, € {—1,+1}
therefore cancels out all the bad terms, but gives 22" for the good terms. An extra factor
of 2 arises because there are 2L,, Langford pairings (including left-right reversals).
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(b) Let fr = E?Z;k_lxjmj+k+1 be the main part of the kth factor. We can run
through all 4™ cases z1,...,Z2n € {—1,4+1} in Gray-code order (Algorithm 7.2.1.1L),
negating only one of the z; each time. A change in z; causes at most two adjustments
to each fi; so each Gray-code step costs O(n).

We needn’t compute the sum exactly; it suffices to work mod 2V, where 2V com-
fortably exceeds 2°" ' L,,. Even better, when n = 24, would be to do the computations
mod 2% — 1, or mod both 23° — 1 and 23° + 1. One can also save [n/2] bits of precision
by exploiting the fact that fx =k + 1 (modulo 2).

(c¢) The third equality is actually valid only when n mod 4 = 0 or 3; but those are
the interesting n’s. The sum can be carried out in n phases, where phase p for p < n

involves the cases where zn_1 = Tp42, Tn—2 = Tn43, .-, Tnp+1 = Tntp, Tn—p = Tp =
Znt1 = +1, and Znypr1 = —1; it has an outer loop that chooses (zn—pt1,---,Zn-1) in
all 227! ways, and an inner loop that chooses (21, -, Zn—p—1,Tntpt2,-- -, Tan) in all
22"2~2 ways. (The inner loop uses Gray binary code, preferably with “organ-pipe

order” to prioritize the subscripts so that z; and z2, vary most rapidly. The outer
loop need not be especially efficient.) Phase n covers the 2" ! palindromic cases with
Tj = Toant1—j for 1 < j < n and zn, = Zn41 = +1. If s, denotes the sum in phase p,
then s +--- 4+ sn_1 + %sn =922y .

A substantial fraction of the terms turn out be zero. For example, when n = 16,
zeros appear about 76% of the time (in 408,838,754 cases out of 22°4+2'*). This fact can
be used to avoid many multiplications in the inner loop. (Only fi, fs, ... can be zero.)

7. Let di be the number of incomplete pairs after k£ characters have been read; thus
do = don = 0, and dx = dx—1 =1 for 1 < k < 2n. The largest such sequence in
which di never exceeds 6 is (0,1,2,3,4,5,6,5,6,...,5,6,5,4,3,2,1,0). This sequence
has 2221 dr = 11n — 30. But EZZI de = > pi(k+1) = ("'2"1) + n in any Langford
pairing. Hence ("'2"1) +n < 11n — 30, and n < 15. (In fact, width 6 is also impossible
when n = 15. The largest and smallest possible width are unknown in general.)

8. There are no solutions when n = 4 or n = 7. When n = 8 there are four:

1317538642572468; 1418634753268257; 4275248635713168; 5286235743681417.
=] = =]] =] |L=]

(This problem makes a pleasant mechanical puzzle, using gadgets of width k + 1 and
height [k/2] for piece k. In his original note [Math. Gazette 42 (1958), 228], C. Dudley
Langford illustrated similar pieces, and exhibited a planar solution for n = 12. The
question can be cast as an exact cover problem, with nonprimary columns representing
places where two gadgets are not allowed to intersect; see exercise 7.2.2.1-00. Jean
Brette has devised a somewhat similar puzzle, based on Skolem’s variant of the problem
and using width instead of planarity; he gave a copy to David Singmaster in 1992.)

9. Just three ways: 181915267285296475384639743, 191218246279458634753968357,
191618257269258476354938743 (and their reversals). [First found in 1969 by G. Baron;
see Combinatorial Theory and Its Applications (Budapest: 1970), 81-92. The “dancing
links” method of Section 7.2.2.1 resolves this question by traversing a search tree that
has only 360 nodes, given an exact cover problem with 132 rows.]

10. For example,let A=12,K=8,0=4,J=0,8=4,0=3,0 =2, & =1; add.
[In this connection, orthogonal latin squares equivalent to Fig. 1 were implicitly

present already in medieval Islamic talismans illustrated by Ibn al-Hajj in his Kitab

Shumus al-Anwar (Cairo: 1322); he also gave a 5X5 example. See E. Doutté, Magie
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et Religion dans I’Afrique du Nord (Algiers: 1909), 193-194, 214, 247; W. Ahrens,
Der Islam 7 (1917), 228-238. See also an article on the history of latin squares being
prepared by Lars D. Andersen.]

dyR ad1 bBY  cal
cf1 banN ay1 d®
acd dBT N bya
b1 cyy doa aBN

[Joseph Sauveur presented the earliest known ex-
ample of such squares in Mémoires de I’Académie
Royale des Sciences (Paris, 1710), 92-138, §83.]

11.

12. If n is odd, we can let M;; = (¢ — j)modn. But if n is even, there are no
transversals: For if {(t0+0) modmn,...,(tn—1+n—1) mod n} is a transversal, we have
otk = Y p_o (tk + k) (modulo n), hence 37— k = 2n(n — 1) is a multiple of n.

13. Replace each element [ by [I/5] to get a matrix of Os and 1s. Let the four quarters
be named (& 5 ); then A and D each contain exactly k 1s, while B and C' each contain
exactly k 0s. Suppose the original matrix has ten disjoint transversals. If £ < 2, at most
four of them go through a 1in A or D, and at most four go through a 0 in B or C. Thus
at least two of them hit only Os in A and D, only 1s in B and C. But such a transversal
has an even number of 0s (not five), because it intersects A and D equally often.

Similarly, a latin square of order 4m + 2 with an orthogonal mate must have more
than m intruders in each of its (2m + 1) x (2m + 1) submatrices, under all renamings
of the elements. [H. B. Mann, Bull. Amer. Math. Soc. (2) 50 (1944), 249-257.]

14. Cases (b) and (d) have no mates. Cases (a), (c), and (e) have respectively 2, 6,
and 12265168(!), of which the lexicographically first and last are

(a) (a) () () (e) ()
0456987213 0691534782 0362498571 0986271435 0214365897 0987645321
1305629847 1308257964 1408327695 1354068792 1025973468 1795402638
2043798165 2169340578 2673519408 2741853960 2690587143 2506913874
3289176504 3250879416 3521970846 3572690814 3857694201 3154067289
4518263790 4587902631, 4890253167 4630789251, 4168730925 4231850967
5167432089 5412763890’ 5736841920’ 5218947306’ 5473829016° 5348276190
6894015372 6945081327 6259784013 6095324178 6942158730 6820394715
7920341658 7836425109 7915602384 7869512043 7309216584 7069128543
8731504926 8723196045 8147036259 8407136529 8531402679 8412739056
9672850431 9074618253 9084165732 9123405687 9786041352 9673581402

Notes: Squares (a), (b), (c), and (d) were obtained from the decimal digits of =, e,
v, and ¢, by discarding each digit that is inconsistent with a completed latin square.
Although they aren’t truly random, they’re probably typical of 10 x 10 latin squares
in general, roughly half of which appear to have orthogonal mates. Parker constructed
square (e) in order to obtain an unusually large number of transversals; it has 5504 of
them. (Euler had studied a similar example of order 6, therefore “just missing” the
discovery of a 10 x 10 pair.)

15. Parker was dismayed to discover that none of the mates of square 14(e) are
orthogonal to each other. With J. W. Brown and A. S. Hedayat [J. Combinatorics, Inf.
and System Sci. 18 (1993), 113-115], he later found two 10x10s that have four disjoint
common transversals (but not ten). [See also B. Ganter, R. Mathon, and A. Rosa,
Congressus Numerantium 20 (1978), 383-398; 22 (1979), 181-204.] While pursuing
an idea of L. Weisner [Canadian Math. Bull. 6 (1963), 61-63], the author accidentally
noticed some squares that come even closer to a mutually orthogonal trio: The square
below is orthogonal to its transpose; and it has five diagonally symmetric transver-
sals, in cells (0,p0), ..., (9,p9) for po...pe = 0132674598, 2301457689, 3210896745,
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4897065312, and 6528410937, which are almost disjoint: They cover 49 cells.

ANSWERS TO EXERCISES

0234567891 0368145972
3192708546 2157690438
6528139407 3925874160
8753241960 4283907615
1689473025 5712489306 R
4970852613 6034758291 - ’
5047986132 7891326054
9416320758 8549061723
7361095284 9406213587
2805614379 1670532849

Extensive computations by B. D. McKay, A. Meynert, and W. Myrvold [J. Comb.
Designs 15 (2007), 98-119] prove that no 10 x 10 latin square with nontrivial symmetry
has two mates orthogonal to each other. Three mutually orthogonal latin squares are
known to exist for all orders n > 10 [see S. M. P. Wang and R. M. Wilson, Congressus
Numerantium 21 (1978), 688; D. T. Todorov, Ars Combinatoria 20 (1985), 45-47].

16. See R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory (Cambridge
University Press, 1991), §8.2.

17. (a) Let there be 3n columns r;, c;, v; for 0 < j < n, and n? rows; row (i,j) has
1 in columns 7, ¢;, and v;, where | = L;;, for 0 < 4,57 < n.
(b) Let there be 4n* columns 7;, cij, i, ¥i; for 0 < i,j < n, and n® —n?+n rows;
row (%,J,k) has 1 in columns ri, cjk, Zij, and yix, where | = L;j;, for 0 < 4,5,k < n
and (1 =k or j > 0).
18. Given an orthogonal array A with rows A; for 1 < i < m, define latin square
Li = (L”k) for 1 S 7 S m— 2 by setting Lijk = A.,;q when A(m—l)q :] and Amq = k,
for 0 < 5,k < n. (The value of g is uniquely determined by the values of j and k.)
Permuting the columns of the array does not change the corresponding latin squares.
This construction can also be reversed, to produce orthogonal arrays of order n
from mutually orthogonal latin squares of order n. In exercise 11, for example, we can
leta=a=N=0,b==2=1,c=+v=3=2, and d =6 = 7= 3, obtaining

3012210303211230
2310102301323201
A= 0123103223013210
0000111122223333
0123012301230123

(The concept of an orthogonal array is mathematically “cleaner” than the concept
of orthogonal latin squares, because it accounts better for the underlying symmetries.
Notice, for example, that an n Xn matrix L is a latin square if and only if it is orthogonal
to two particular non-latin squares, namely

1 1 ... 1 1 2 ... n
2 2 ... 2 1 2 ... n
L L .. . and L L .. .
n n ... n 1 2 ... n

Therefore Latin squares, Graeco-Latin squares, Hebraic-Graeco-Latin squares, etc., are
equivalent to orthogonal arrays of depth 3, 4, 5, .... Moreover, the orthogonal arrays
considered here are merely the special case t = 2 and A = 1 of a more general concept
of n-ary m x An® arrays having “strength ¢’ and “index \,” introduced by C. R. Rao
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in Proc. Edinburgh Math. Soc. 8 (1949), 119-125; see the book Orthogonal Arrays by
A. S. Hedayat, N. J. A. Sloane, and J. Stufken (Springer, 1999).)

19. We can rearrange the columns so that the first row is 01" ... (n—1)". Then we
can renumber the elements of the other rows so that they begin with 01...(n—1). The
elements in each remaining column must then be distinct, in all rows but the first.

To achieve the upper bound when n = p, let each column be indexed by two
numbers z and y, where 0 < z,y < p, and put the numbers y, z, (z + y) mod p,
(z+2y)mod p, ..., (z+ (p—1)y) mod p into that column. For example, when p =5 we
get the following orthogonal array, equivalent to four mutually orthogonal latin squares:

0000011111222223333344444
0123401234012340123401234
0123412340234013401240123
0123423401401231234034012
0123434012123404012323401
0123440123340122340112340

[Essentially the same idea works when n is a prime power, using the finite field GF(p®);
see E. H. Moore, American Journal of Mathematics 18 (1896), 264-303, §15(1). These
arrays are equivalent to finite projective planes; see Marshall Hall, Jr., Combinatorial
Theory (Blaisdell, 1967), Chapters 12 and 13.]

20. Let w = ¢*™*/™, and suppose a1 ...a,2 and by ...b,> are the vectors in different
rows. Then a1by + -+ ap2bp2 =3 o< ycn wItk = 0 because E:;é Wk =o0.

21. (a) To show that equality-or-parallelism is an equivalence relation, we need to
verify the transitive law: If L || M and M || N and L # N, then we must have L || N.
Otherwise there would be a point p with LN N = {p}, by (ii); and p would lie on two
different lines parallel to M, contradicting (iii).

(b) Let {L1,...,Ln} be a class of parallel lines, and assume that M is a line of
another class. Then each L; intersects M in a unique point p;; and every point of M
is encountered in this way, because every point of the geometry lies on exactly one line
of each class, by (iii). Thus M contains exactly n points.

(c) We’ve already observed that every point belongs to m lines when there are m
classes. If lines L, M, and N belong to three different classes, then M and N have the
same number of points as the number of lines in L’s class. So there’s a common line
size n, and in fact the total number of points is n’>. (Of course n might be infinite.)

22. Given an orthogonal array A of order n and depth m, define a geometric net with
n? points and m classes of parallel lines by regarding the columns of A as points; line j
of class k is the set of columns where symbol j appears in row k of A.

All finite geometric nets with m > 3 classes arise in this way. But a geometric net
with only one class is trivially a partition of the points into disjoint subsets. A geometric
net with m = 2 classes has nn' points (z,z’), where there are n lines ‘z = constant’ in
one class and n' lines ‘z’ = constant’ in the other. [For further information, see R. H.
Bruck, Canadian J. Math. 3 (1951), 94-107; Pacific J. Math. 13 (1963), 421-457]

23. (a) If d(z,y) <t and d(z',y) <t and = # ', then d(z,z’) < 2t. Thus a code with
distance > 2t between codewords allows the correction of up to ¢ errors—at least in
principle, although the computations might be complex. Conversely, if d(z,z') < 2t
and = # ', there’s an element y with d(z,y) < t and d(z',y) < t; hence we can’t
reconstruct z uniquely when y is received.

(b,c) Let m = r + 2, and observe that a set of b*> b-ary m-tuples has Hamming
distance > m — 1 between all pairs of elements if and only if it forms the columns of a
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b-ary orthogonal array of depth m. [See S. W. Golomb and E. C. Posner, IEEE Trans.
IT-10 (1964), 196-208. The literature of coding theory often denotes a code C(b,n,r)
of distance d by the symbol (n + r,b",d),. Thus, a b-ary orthogonal array of depth m
is essentially an (m,b%,m — 1), code.]

24. (a) Suppose z; Z zj for 1 < j<land z; =« for | < j < N. We have z =z’
if I = 0. Otherwise consider the parity bits that correspond to the m lines through
point 1. At most [ — 1 of those bits correspond to lines that touch the points {2,...,}.
Hence z’ has at least m — (I—1) parity changes, and d(z,z’) > I+ (m— (I-1)) = m+ 1.

(b) Let Ip1, ..., lpm be the index numbers of the lines through point p. After
receiving a message ¥i ...Yn+r, compute x, for 1 < p < N by taking the majority
value of the m + 1 “witness bits” {ypo,---,Ypm}, Where yyo = yp and

Ypk = (yN-Hpk + > {y; | j # p and point j lies on line l,x}) mod 2, for 1 <k < m.

This method works because each received bit y; affects at most one of the witness bits.
For example, in the 25-point geometry of exercise 19, suppose the parity bit
T26+5i+; of each codeword corresponds to line j of row ¢, for 0 < ¢ < 5 and 0 <
j < 5; thus z26 = 1 @ 2 @ 3 © T4 ® =5, T2r = T6 O T7 O 23 ® T9 O Z10, ...,
55 = T5 D 6 D T12 D T18 ® x24. Given message y1 . ..yss, we decode bit z1 (say) by
computing the majority of the seven bits y1, Y26 Dy DysByaDYs, Y31 DYs DY11 DY16DY21,
Y36 D Y10 © Y14 D Y18 D Y22, Ya1 @ Yo D Y12 D Y20 D Y23, Y46 D yYs © y15 @ y17 D Y24,
ys1 D Y7 D Y13 D y19 D ya25. [Section 7.1.2 explains how to calculate majority functions
efficiently. Notice that we can eliminate the last 10 bits if we only wish to correct up to
two errors, and the last 20 if single-error correction is sufficient. See M. Y. Hsiao, D. C.
Bossen, and R. T. Chien, IBM J. Research and Development 14 (1970), 390-394.]

25. By considering anagrams of {1, e, a, s, t} (see exercise 5-21), we’re led to the square

stela
telas
elast ,
laste
astel

and the cyclic rotations of its rows. Here telas are Spanish fabrics; elast is a prefix
meaning flexible; and laste is an imperative Chaucerian verb. (Of course just about
every pronounceable combination of five letters has been used to spell or misspell
something somewhere, at some point in history.)

26. “every night, young video buffs catch rerun fever forty years after those
great shows first aired.” [Robert Leighton, GAMES 16,6 (December 1992), 34, 47.]

27. (0,4,163,1756,3834) for k = (1,2, 3,4,5); mamma and esses give a “full house.”

28. Yes, 38 pairs altogether. The “most common” solution is needs (rank 180) and
offer (rank 384). Only three cases differ consistently by +1 (adder beefs, sheer
tiffs, sneer toffs). Other memorable examples are ghost hints and strut rusts.
One word of the pair ends with the letter s except in four cases, such as robed spade.
[See Leonard J. Gordon, Word Ways 23 (1990), 59-61.]

29. There are 18 palindromes, from level (rank 184) to dewed (rank 5688). Some of
the 34 mirror pairs are ‘devil lived’, ‘knits stink’, ‘smart trams’, ‘faced decaf’.
30. Among 105 such words in the SGB, first, below, floor, begin, cells, empty,
and hills are the most common; abbey and pssst are lexicographically first and last.
(If you don’t like pssst, the next-to-last is mossy.) Only 37 words, from mecca to
zoned, have their letters in reverse order; but they are, of course, wrong answers.
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31. The middle word is the average of the other two, so the extreme words must be
congruent mod 2; this observation reduces the number of dictionary lookups by a factor
of about 32. There are 119 such triples in WORDS(5757), but only two in WORDS(2000):
marry, photo, solve; risky, tempo, vague. [Word Ways 25 (1992), 13-15.]

32. The only reasonably common example seems to be peopleless.

33. chief, fight, right, which, ouija, jokes, ankle, films, hymns, known, crops,
pique, quart, first, first, study, mauve, vowel, waxes, proxy, crazy, pizza. (The
idea is to find the most common word in which z is followed by (z + 1) mod 26, for
z=a(0),z=0b (1), ...,z =z (25). We also minimize the intervening distance, thus
preferring bacon to the more common word black. In the one case where no such word
exists, crazy seems most rational. See OMNI 16,8 (May 1994), 94.)

34. The top two (and total number) in each category are: pssst and pffft (2), schwa
and schmo (2), threw and throw (36), three and spree (5), which and think (709),
there and these (234), their and great (291), whooo and wheee (3), words and first
(628), large and since (376), water and never (1313), value and radio (84), would
and could (460), house and voice (101), quiet and queen (25), queue only (1), ahhhh
and ankhs (4), angle and extra (20), other and after (227), agree and issue (20),
along and using (124), above and alone (92), about and again (58), adieu and aquae
(2), earth and eight (16), eagle and ounce (8), outer and eaten (42), eerie and
audio (4), (0), ouija and aioli (2), (0), (0); years and every are the most common of
the 868 omitted words. [To fill the three holes, Internet usage suggests ooops, ooooh,
and ooooo. See P. M. Cohen, Word Ways 10 (1977), 221-223.]

35. Consider the collection WORDS(n) forn =1, 2, ..., 5757. The illustrated trie, rooted
at s, first becomes possible when n reaches 978 (the rank of stalk). The next root
letter to support such a trie is ¢, which acquires enough branching in its descendants
when n = 2503 (the rank of craze). Subsequent breakthroughs occur when n = 2730
(bulks), 3999 (ducky), 4230 (panty), 4459 (minis), 4709 (whooo), 4782 (lardy), 4824
(herem), 4840 (firma), 4924 (ridgy), 5343 (taxol).

(A breakthrough occurs when a top-level trie acquires Horton—Strahler number 4;
see exercise 7.2.1.6-124. Amusing sets of words, suggestive of a new kind of poetry, arise
also when the branching is right-to-left instead of left-to-right: black, slack, crack,
track, click, slick, brick, trick, blank, plank, crank, drank, blink, clink, brink,
drink. In fact, right-to-left branching yields a complete ternary trie with 81 leaves:
males, sales, tales, files, miles, piles, holes, ..., tests, costs, hosts, posts.)

36. Denoting the elements of the cube by a;jx for 1 < 4,5,k < 5, the symmetry
condition is aijr = @ik; = @jik = Gjki = Grij = Ggji- In general an nxnXn cube has
3n? words, obtained by fixing two coordinates and letting the third range from 1 to n;
but the symmetry condition means that we need only ("'ZH) words. Hence when n =5
the number of necessary words is reduced from 75 to 15. [Jeff Grant was able to find 75
suitable words in the Oxford English Dictionary; see Word Ways 11 (1978), 156-157.]
Changing (stove,event) to (store,erect) or (stole,elect) gives two more.

37. The densest part of the graph, which we might call its “bare core,” contains the
vertices named bares and cores, which each have degree 25.

38. tears — raise — aisle — smile; the second word might also be reals. [Going
from tears to smile as in (11) was one of Lewis Carroll’s first five-letter examples. He
would have been delighted to learn that the directed rule makes it more difficult to go
from smile to tears, because four steps are needed in that direction.]
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39. Always spanning, never induced.

40. (a) 2%, (b) 2™, one for each subset of E or V.

41. (a) n=1 and n = 2; Py is undefined. (b) n =0 and n = 3.

42. G has 65/2 edges (hence it doesn’t exist).

43. Yes: The first three are isomorphic to Fig. 2(e). [The left-hand diagram is, in fact,
identical to the earliest known appearance of the Petersen graph in print: See A. B.
Kempe, Philosophical Transactions 177 (1886), 1-70, especially Fig. 13 in §59.] But
the right-hand graph is definitely different; it is planar, Hamiltonian, and has girth 4.
44. Any automorphism must take a corner point into a corner point, because three
distinct paths of length 2 can be found only between certain pairs of non-corner points.
Therefore the graph has only the eight symmetries of Cj.

45. All edges of this graph connect vertices of the same row or adjacent rows. Therefore
we can use the colors 0 and 2 alternately in even-numbered rows, 1 and 3 alternately in
odd-numbered rows. The neighbors of NV form a 5-cycle, hence four colors are necessary.
46. (a) Every vertex has degree > 2, and its neighbors have a well-defined cyclic order
corresponding to the incoming lines. If u — v and ©u — w, where v and w are cyclically
consecutive neighbors of u, we must have v — w. Thus all points in the vicinity of any
vertex u belong to a unique triangular region.

(b) The formula holds when n = 3. If n > 3, shrink any edge to a point; this

transformation removes one vertex and three edges. (If u— v shrinks, suppose it was
part of the triangles t — v — v — z and y — u — v — y. We lose vertex v and
edges {z — v, u— v, y—v}; all other edges of the form w—v become w— u.)
47. A planar diagram would divide the plane into regions, with either 4 or 6 vertices in
the boundary of each region (because K3 3 has no odd cycles). If there are fs and fs of
each kind, we must have 4f, + 6fs = 18, since there are 9 edges; hence (f4, fs) = (3,1)
or (0,3). We could also triangulate the graph by adding f4 + 3 f¢ more edges; but then
it would have at least 15 edges, contradicting exercise 46.

[The fact that K33 is nonplanar goes back to a puzzle about connecting three
houses to three utilities (water, gas, and electricity), without crossing pipes. Its origin
is unknown; H. E. Dudeney called it “ancient” in Strand 46 (1913), 110.]

48. If u, v, w are vertices and v — v, we must have d(w,u) #Z d(w,v) (modulo 2);
otherwise shortest paths from w to v and from w to v would yield an odd cycle. After
w is colored 0, the procedure therefore assigns the color d(w,v) mod 2 to each new
uncolored vertex v that is adjacent to a colored vertex u; and every vertex v with
d(w,v) < oo is colored before a new w is chosen.

49. There are only three: K4, K33, and @ (which is UG)

50. The graph must be connected, because the number of 3-colorings is divisible by
3" when there are r components. It must also be contained in a complete bipartite
graph Ky, n, which can be 3-colored in 3(2™ + 2™ — 2) ways. Deleting edges from
Kpm,n does not decrease the number of colorings; hence 2™ + 2" — 2 < 8, and we have
{m,n} ={1,1}, {1,2}, {1, 3}, or {2,2}. So the only possibilities are the claw K 3 and
the path Pj.
51. A 4-cycle p» — L1 — ps — L2 — p1 would correspond to two distinct lines
{L1, L2} with two common points {p1,p2}, contradicting (ii). So the girth is at least 6.
If there’s only one class of parallel lines, the girth is co; if there are two classes, it
is 8. (See answer 22.) Otherwise we can find a 6-cycle by making a triangle from three
lines that are chosen from different classes.

Kempe
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52. If the diameter is d and the girth is g, then d > |g/2|, unless g = oco.
53. happy (which is connected to tears and sweat, but not to world).

54. (a) It’s a single, highly connected component. (Incidentally, this graph is the
line graph of the bipartite graph in which one part corresponds to the initial letters
{4,C,D,F,G,...,W} and the other to the final letters {A,C,D,E,H,...,Z}.)

(b) Vertex WY is isolated. The other vertices with in-degree zero, namely FL, GA,
PA, UT, WA, WI, and WV, form strong components by themselves; they all precede a giant
strong component, which is followed by each of the remaining single-vertex strong
components with out-degree zero: AZ, DE, KY, ME, NE, NH, NJ, NY, OH, TX.

(c) Now the strong component {GU} precedes {UT}; NH, OH, PA, WA, WI, and WV join
the giant strong component; {FM} precedes it; {AE} and {WY} follow it.

55. (N) — (%) == ("), where N =ny + -+ + n.

2 2
56. True. Note that J, is simple, but it doesn’t correspond to any multigraph.

57. False, in the connected digraph « — w<+—wv. (But u and v are in the same strongly
connected component if and only if d(u,v) < oo and d(v,u) < co; see Section 2.3.4.2.)

58. Each component is a cycle whose order is at least (a) 3 (b) 1.

59. (a) By induction on n, we can use straight insertion sorting: Suppose v —---—
VUn—1. Then either v, — v1 or vp_1 — v, OF Vx—1 —> Uy, —> Vg, Where k is minimum
such that v, — vg. [L. Rédei, Acta litterarum ac scientiarum 7 (Szeged, 1934), 39-43.]
(b) 15: 01234, 02341, 02413, and their cyclic shifts. [The number of such oriented
paths is always odd; see T. Szele, Matematikai és Fizikai Lapok 50 (1943), 223-256.]
(¢) Yes. (By induction: If there’s only one place to insert v, as in part (a), the
tournament is transitive.)

60. Set A={z|u—z},B={z|z—v},C={z|v—z}. fv¢g Aand ANB=10
we have |A|+|B| = |AUB| < n—2, because u ¢ AUB and v ¢ AUB. But |B|+|C| =
n — 1; hence |A| < |C|. [H. G. Landau, Bull. Math. Biophysics 15 (1953), 148.]

61. 1—1,1—2,2—2; then A= ([1J i) and A* = ((1311“) for all integers k.

62. (a) Suppose the vertices are {1,...,n}. Each of the n! terms aip, ...@anp, in the
expansion of the permanent is the number of spanning permutation digraphs that have
arcs j— pj;. (b) A similar argument shows that det A is the number of even spanning
permutation digraphs minus the number of odd ones. [See F. Harary, SIAM Review 4
(1962), 202-210, where permutation digraphs are called “linear subgraphs.”]

63. Let v be any vertex. If g = 2t+1, at least d(d—1)*~" vertices « satisfy d(v, ) = k,
for 1 <k <t If g=2t+2 and v’ is any neighbor of v, there also are at least (d — 1)
vertices z for which d(v,z) =t+ 1 and d(v',z) = t.

64. To achieve the lower bound in answer 63, every vertex v must have degree d, and
the d neighbors of v must all be adjacent to the remaining d — 1 vertices. This graph
is, in fact, Kq,q4.

65. (a) By answer 63, G must be regular of degree d, and there must be exactly one
path of length < 2 between any two distinct vertices.

(b) We may take A = d, with z; = (1...1)T. All other eigenvectors satisfy
Jzj=(0...0)T; hence A2 + \; =d—1for 1 <j < N.

() IfAe =" =Xp =(—14+v4d-3)/2and Appy1 = - - = Ay = (—1—4/4d-3) /2,
we must have m — 1 = N — m. With this value we find A\ + -+ Ay =d — d2/2.
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(d) If 4d — 3 = s* and m is as in (c), the eigenvalues sum to

s+1
1— 2r-
+ m) 2

2 2 2
s“+3 s—1 (s +3)
;- T ( 16
which is 15/32 plus a multiple of s. Hence s must be a divisor of 15.

[These results are due to A. J. Hoffman and R. R. Singleton, IBM J. Research and
Development 4 (1960), 497-504, who also proved that the graph for d = 7 is unique.]

66. Denote the 50 vertices by [a,b] and (a,b) for 0 < a,b < 5, and define three kinds
of edges, using arithmetic mod 5:

[a,b] —[a + 1,b]; (a,b) — (a + 2, b); (a,b) —[a+be,c] for 0 < a,b,c < 5.

[See W. G. Brown, Canadian J. Math. 19 (1967), 644—-648; J. London Math. Soc. 42
(1967), 514-520. Without the edges of the first two kinds, the graph has girth 6 and cor-
responds to a geometric net as in exercise 51, using the orthogonal array in answer 19.]

67. Certain possibilities have been ruled out by Michael Aschbacher in Journal of
Algebra 19 (1971), 538-540.

68. If G has s automorphisms, it has n!/s adjacency matrices, because there are s
permutation matrices P such that PTAP = A.

69. First set IDEG(v) < O for all vertices v. Then perform (31) for all v, also setting
u < TIP(a) and IDEG(u) < IDEG(u) + 1 in the second line of that mini-algorithm.

To do something “for all v” using the SGB format, first set v < VERTICES(g);
then while v < VERTICES(g) + N(g), do the operation and set v < v + 1.

70. Step B1 is performed once (but it takes O(n) units of time). Steps (B2, B3, ...,
B8) are performed respectively (n+1,n,n, m+n, m,m,n) times, each with O(1) cost.

71. Many choices are possible. Here we use 32-bit pointers, all relative to a symbolic
address Pool, which lies in the Data_Segment. The following declarations provide one
way to establish conventions for dealing with basic SGB data structures.

VSIZE IS 32 ;ASIZE IS 24 Node sizes
ARCS IS O ;COLOR IS 8 ;LINK IS 12 Offsets of vertex fields
TIP IS O ;NEXT IS 4 Offsets of arc fields

arcs GREG Pool+ARCS ;color GREG Pool+COLOR ;link GREG Pool+LINK
tip GREG Pool+TIP ;next GREG Pool+NEXT
u GREG ;v GREG ;w GREG ;s GREG ;a GREG ;mone GREG -1

AlgB BZ n,Success Exit if the graph is null.
MUL $0,n,VSIZE B1. Initialize.
ADDU  v,vO0,$0 V< vo + n.
SET w,v0 w < vo.

1H STT mone,color,w COLOR(w) «+ —1.
ADDU  w,w,VSIZE w—w+ 1.
CMP $0,w,v
PBNZ  $0,1B Repeat until w = v.

OH SUBU w,w,VSIZE w4 w—1.

3H LDT $0,color,w B3. Color w _if necessary.
PBNN $0,2F To B2 if COLOR(w) > 0.
STCO 0,link,w COLOR(w) « 0, LINK(w) <+ A.
SET sS,w S — w.

4H SET u,s B4. Stack = u. Set u < s.
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LDTU s,link,s s < LINK(s).
LDT $1,color,u
NEG $1,1,$1 $1 < 1 — COLOR(u).
LDTU a,arcs,u a < ARCS(u).
S5H BZ a,8F B5. Done with u? To B8 if a = A.
5H LDTU  v,tip,a v < TIP(a).
6H LDT $0,color,v B6. Process v.
CMP $2,$0,%$1 (Here the program is slightly clever)
PBZ $2,7F To BT if COLOR(v) =1 — COLOR(w).
BNN $0,Failure Fail if COLOR (v) = COLOR(u).
STT $1,color,v COLOR(v) < 1 — COLOR (u).
STTU s,link,v LINK(v) < s.
SET s,V 8§ < v.
TH LDTU a,next,a B7. Loop on a. Set a < NEXT(a).
PBNZ a,5B To B5 if a # A.
8H PBNZ s,4B B8. Stack nonempty? To B4 if s # A.
2H CMP $0,w,v0 B2. Done?
PBNZ $0,0B If w # wvo, decrease w and go to B3.
Success LOC e (Successful termination) |

72. (a) This condition clearly remains invariant as vertices enter or leave the stack.
(b) Vertex v has been colored but not yet explored, because the neighbors of every
explored vertex have the proper color.
(c) Just before setting s < v in step B6, set PARENT(v) ¢ u, where PARENT is
a new utility field. And just before terminating unsuccessfully in that step, do the
following: “Repeatedly output NAME (u) and set u < PARENT (u), until v = PARENT (v);
then output NAME (u) and NAME(v).”

73. Kio. (And random_graph(10,100,0,1,1,0,0,0,0,0) is J1o.)
74. badness has out-degree 22; no other vertices have out-degree > 20.

75. Let the parameters (ni,n2,ns,n4,p, w,0) be respectively (a) (n,0,0,0,—1,0,0);

0,0)
(b) (n,0,0,0,1,0,0); (c) (n,0,0,0,1,1,0); (d) (»,0,0,0,-1,0,1); (e) (n,0,0,0,1,0,1);
(f) (n,0,0,0,1,1,1); (g) (m,n,0,0,1,0,0); (h) (m,n,0,0,1,2,0); (i) (m,n,0,0,1,3,0);
@) (m,n,0,0,~1,0,0); (k) (m,n,0,0,1,3,1); (1) (n,0,0,0,2,0,0); (m) (2,-n,0,0,1,0,0).

76. Yes, for example from C; and C> in answer 75(c). (But no self-loops can occur
when p < 0, because arcs © —y = = + kd are generated for k =1, 2, ... until y is out
of range or y = z.)

77. Suppose z and y are vertices with d(z,y) > 2. Thus z -/ y; and if v is any other
vertex we must have either v -/~ = or v -/~ y. These facts yield a path of length at
most 3 in G between any two vertices v and v.

78. (a) The number of edges, (7)/2, must be an integer. The smallest examples are
KQ, Kl, 1347 Cs, and \A/.

(b) If ¢ is any odd number, we have v — v if and only if p%(u) -/ ¢%(v). Therefore
p? cannot have two fixed points, nor can it contain a 2-cycle.

(c) Such a permutation of V also defines a permutation @ of the edges of Kp,
taking {u,v} — @ = {p(u), p(v)}, and it’s easy to see that the cycle lengths of & are
all multiples of 4. If 3 has t cycles, we obtain 2* self-complementary graphs by painting
the edges of each cycle with alternating colors.

utility field

JIn
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(d) In this case ¢ has a unique fixed point v, and G’ = G\ v is self-complementary.
Suppose ¢ has r cycles in addition to (v); then @ has r cycles involving the edges that
touch vertex v, and there are 2" ways to extend G’ to a graph G.

[References: H. Sachs, Publicationes Mathematicae 9 (Debrecen, 1962), 270-288,;
G. Ringel, Archiv der Mathematik 14 (1963), 354-358.]

79. Solution 1, by H. Sachs, with ¢ = (12 ... 4k): Let u — v when v > v > 0 and
% +vmod4 < 1; also 0— v when v mod 2 = 0.

Solution 2, with ¢ = (a1 b1 c1d1) ... (ak br ck di), where a; = 45 — 3, b; = 4j — 2,
c;g =45 —1,and dj = 4j: Let 0—b; — a;j —c¢;j — d;j — 0 for 1 < j < k, and
ai—aj—b,-—dj—ci—cj—di—bj—a,-,for1§i<j§k.

80. (Solution by G. Ringel.) Let ¢ be as in answer 79, solution 2. Let Ey be the 3k
edges b —a; —c; —d; for 1 < j < k; let E4 be the 8(’;) edges between {a;, bs, i, d;}
and {b;,d;} for 1 < ¢ < j < k; let E; be the 8(’;) edges between {a;,b;,c;,d;} and
{aj,c;j} for 1 <i < j <k. In case (a), Eo U E; gives diameter 2; Ey U E5 gives diam-
eter 3. Case (b) is similar, but we add 2k edges b; — 0—d; to E1, a; — 0—c¢; to Es.

81. (5, K3, D = o—ag=0, and DT = oo, (The converse DT of a digraph D
is obtained by reversing the direction of its arcs. There are 16 nonisomorphic simple
digraphs of order 3 without loops, 10 of which are self-converse, including C5” and K3%.)

82. (a) True, by definition. (b) True: If every vertex has d neighbors, every edge
u—v has d — 1 neighbors u — w and d — 1 neighbors w — v. (c) True: {a;,b;} has
m + n — 2 neighbors, for 0 <4 <m and 0 < j < n. (d) False: L(K;,1,2) has 5 vertices
and 8 edges. (e) True. (f) True: The only nonadjacent edges are {0,1} -~ {2,3},
{0,2} -+ {1,3}, {0,3} +{1,2}. (g) True, for all n > 0. (h) False, unless G has no
isolated vertices.

83. It is the Petersen graph. [A. Kowalewski, Sitzungsberichte der Akademie der
Wissenschaften in Wien, Mathematisch-Nat. Klasse, Abteilung IIa, 126 (1917), 67-90.]

84. Yes: Let ‘P({auy bv}) = {a(u+v) mod37b(u—v) mod 3} for 0 < u,v < 3.

85. Let the vertex degrees be {d1,...,dn}. Then G has 3(d1 + -+ + dn) edges, and
L(G) has %(d1(d1 —1)+++-+dn(dn —1)). Thus G and L(G) both have exactly n edges
if and only if (d1 —2)% +- - -4 (dn — 2)® = 0. Consequently exercise 58 gives the answer.
[See V. V. Menon, Canadian Math. Bull. 8 (1965), 7-15.]

86. If G = ) then G = £) = L(G).

87. (a) Yes, easily. [In fact, R. L. Brooks has proved that every connected graph with
maximum vertex degree d > 2 is d-colorable, except for the complete graph Kg1; see
Proc. Cambridge Phil. Soc. 37 (1941), 194-197.]

(b) No. There’s essentially only one way to 3-color the edges of the outer 5-cycle
in Fig. 2(e); this forces a conflict on the inner 5-cycle. [Petersen proved this in 1898.]

88. One cycle doesn’t use the center vertex, and there are (n—1)(n —2) cycles that do
(namely, one for every ordered pair of distinct vertices on the rim). We don’t count Cy.

A O O AJ J A J J A O O

89. Both sides equal (O B O), (J B J), (O B J), (J B O), respectively.
OO0 C J JC O o0C J J C

90. K4 and E, K171,2 and K171,2; K272 = C4 and szz; K1,3 and K173; Kl (&) Kl,g

and its complement; all graphs K, are cographs by (47). Missing is Py = P;. (All
connected subgraphs of a cograph have diameter < 2; W5 is a cograph, but not Ws.)
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91. (a) [1; (b) ¢ (o) D5 () [5 (e) B (D11 (8) X (In general we
have Ko ~AH = (K2 OH) U (K2 ® H), and Ko o H = H— H. Thus the coincidences
Ky;ArH =K,0H and Ky o H= K;® H occur if and only if H is a complete graph.)
Mnemonics: Our notations GO H and G & H nicely match diagrams (a) and (c),
as suggested by J. NeSetfil, Lecture Notes in Comp. Sci. 118 (1981), 94-102. His
analogous recommendation to write G x H for (b) is also tempting; but it wasn’t
adopted here, because hundreds of authors have used G X H to denote GO H.

92. (@) [; ()75 (s (R (.

93. Kz, ® K, =KpoKy = Knpn.

94. No; they’re induced subgraphs of Ko 0 K26 O K26 O K26 O Ko26.-

95. (a) du+dy. (b) dudy. (¢) dudy+du+dy. (d) du(n—dy)+(Mm—du)dy. () dun+d,.

96. (a) AOB = A®I+I®B. (b) ARB = AnB+A®B. (c) AsB = AQJ+J@B-2A®B.
(d) AoB = A®J+IQB. (Formulas (a), (b), and (d) define graph products of arbitrary
digraphs and multigraphs. Formula (c) is valid in general for simple digraphs; but
negative entries can occur when A and B contain values > 1.)

Historical notes: The direct product of matrices is often called the Kronecker
product, because K. Hensel [Crelle 105 (1889), 329-344] said he had heard it in Kro-
necker’s lectures; however, Kronecker never actually published anything about it. Its
first known appearance was in a paper by J. G. Zehfuss [Zeitschrift fir Math. und Physik
3 (1858), 298-301], who proved that det(A® B) = (det A)™(det B)™ when m = m' and
n =n'. The basic formulas (A® B)T = AT® BT, (A® B)(A'® B') = AA' ® BB’, and
(A® B) 1 - A1 ® B! are due to A. Hurwitz [Math. Annalen 45 (1894), 381-404].
97. Operations on adjacency matrices prove that (G® G')o0H = (GO H) ® (G'O0H);
(GoG@)rH = (GrH)® (G'xwH); (GOG)oH = (GoH)® (G'o H). Since
GOH>~HOG, GRH>2HQ®G, and GRH = HxG, we also have right-distributive
laws GO (H® H') 2 (GoH)® (GoH'); G (HOH') 2 (G®H)® (G® H');
Gr(H®H')= (GrH)® (GrH'). The lexicographic product satisfies G o H = G o H;
also K;poH = H— .- — H, hence KoK, = Kn,...,n. Furthermore GoK,, = GRKy;
Kn®Kpn=KnOK,=L(Kmnn)-

98. There are kl components (because of the distributive laws in the previous exercise,
and the facts that GO H and G H are connected when G and H are connected).

99. Every path from (u,v) to (v/,v') in GO H must use at least dg(u,u’) “G-steps”
and at least dg(v,v') “H-steps”; and that minimum is achievable. Similar reasoning
shows that dewm ((u,v), (v',v")) = max(dg(u,v'),dn (v,v")).

100. If G and H are connected, and if each of them has at least two vertices, G @ H
is disconnected if and only if G and H are bipartite. The “if” part is easy; conversely,
if there’s an odd cycle in G, we can get from (u,v) to (u’,v') as follows: First go to
(u",v"), where u" is any vertex of G that happens to be expedient. Then walk an even
number of steps in G from u” to u', while alternating in H between v’ and one of its
neighbors. [P. M. Weichsel, Proc. Amer. Math. Soc. 13 (1962), 47-52.]

101. Choose vertices u and v with maximum degree. Then d, + d, = du.d, by
exercise 95; so either G = H = Ki, or dy, = d, = 2. In the latter case, G = P,
or Cn,, and H = P, or C,,. But GO H is connected, so G or H must be nonbipartite,
say G. Then G O H is nonbipartite, so H must also be nonbipartite; thus G = C,,
and H = C,, with m and n both odd. The shortest cycle in C,, O C,, has length
min(m,n); in Cp, ® Cp it has length max(m,n); hence m = n. Conversely, if n > 3
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is odd, we have C,0C, 2 C, ® Cp, under the isomorphism that takes (u,v) —
((u + v) mod n, (u — v) mod n) for 0 < u,v < n. [D. J. Miller, Canadian J. Math. 20
(1968), 1511-1521.]

102. Py ®Py,. (It is planar only when min(m,n) <2 or m =n = 3.)

103. 1 [2]3]4[5[7] 1 [2]3][4]5]6][7[8]9]
2(1]/3]4]6|8| 2[1]3]4]6]8]9
3 [1]2]5]6]8] 3[1]2]5]6]8]9
4[1[2]5]6 4 [1]2][5]7
5(3|4[1]7 5(3]4[1]7
6 [2]3]4 6 [2]3[1]7
7[5]1 7 [4]5]6]1
8 [2]3 8 [2]3]1]9
9 [8]2]3]1

104. Edges must be created in a somewhat circuitous order, to maintain the tableau
shape. Variables r and ¢ mark the starting and ending row in column ¢. For example,
the second part of exercise 103 begins with ¢ <— 1, ¢t < 8, 7 <— 1; then 9—1, ¢ + 2,
t< 6,74 3;then 9—3,9—2, 1 4,t < 4, r + 8; then 9—8.

105. Notice that dx > k if and only if ¢x > k. When dx > k we have

e+ +cx = K +min(k,dry1) + min(k, dgy2) + - - + min(k, dn);
therefore the condition dq + -+ 4+ dx < c¢1 4+ -+ ¢k — k is equivalent to
di+---+di < f(k), where f(k) = k(k—1) 4+ min(k,dg+1) + --- + min(k,dn). (%)

If K > s we have f(k+ 1) — f(k) = 2k — dk+1 > dik+1; hence () holds for 1 < k < n
if and only if it holds for 1 < k < s. Condition (*) was discovered by P. Erdés and
T. Gallai [Matematikai Lapok 11 (1960), 264-274]. It is obviously necessary, if we
consider the edges between {1,...,k} and {k+1,...,n}.

Letar =di1+---+dr—c1—---—cr + k, and suppose that ar > 0 for some k < s
after steps H3 and H4 have acted. Let Aj;, C;, D;, N, and S be the numbers that
correspond to aj, ¢j, dj, n, and s before steps H3 and H4; thus N = n+ 1, D; =
d; + (0 or 1), etc. We want to prove that Ax > 0 for some K < S.

Steps H3 and H4 have removed the bottommost g cells in column ¢, for some
t > S, together with the rightmost cells in rows 1 through p, where ¢+ p = Dyn. Thus
Aj = a; for 1 < j < p; furthermore A; = a; when j > C;.

Let k£ be minimal with ax > 0, and let dx, = d; notice that ¢, < d. If d > t we have
k < p, hence Ay = ax, > 0. Therefore we may assume that d = ¢— (0 or 1), and Dy, = ¢.

Ifk<j<Ciwehaved; >Dj—1=t—1>d—-12>cx—12>c; — 1. Therefore
Ax = ak > ar when K = C¢; we may assume that C; > S.

Now Ds = Dgy1 =t,s0 S =1t. Also k = t; otherwise ¢, > S+1 >t > d.
Therefore s = S and d = t = ¢;. Further analysis shows that the only possibility with
Ay <0is Dj =t+[j>t]for 1 < j < N =t+2. Algorithm H does indeed change this
“good” sequence into a “bad” one; but D1 4+ -+ Dn = t? + 3t — 1 is odd.

106. False in the trivial cases when d < 1 and n > d + 2. Otherwise true: In fact, the
first n — 1 edges generated in step H4 contain no cycles, so they form a spanning tree.

107. The permutation ¢ of exercise 78 takes a vertex of degree d into a vertex of degree
n—1—d. And ¢? is an automorphism that pairs up two vertices of equal degree, except
for a possible fixed point of degree (n — 1)/2.

(Conversely, a somewhat intricate extension of Algorithm H will construct a self-
complementary graph from every graphical sequence that satisfies these conditions,
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provided that d(,_1)/2 = (n — 1)/2 when n is odd. See C. R. J. Clapham and D. J.
Kleitman, J. Combinatorial Theory B20 (1976), 67-74.)

108. We may assume that di > ... > dl; the in-degrees d, need not be in any
particular order. Apply Algorithm H to the sequence d; ...d, = di ...d}, but with
the following changes: Step H2 becomes “[Done?] Terminate successfully if dy = n = 0;
terminate unsuccessfully if d; > n.” After setting ¢, t, and r in step H3, terminate
unsuccessfully if d,; > c¢1; otherwise do step H4 for 1 < j < d,,, then set n < n—1 and
return to H2. In step H5, omit “c; < ¢; — 1,” and create the arc k— n instead of the
edge k—mn. An argument like Lemma M and Corollary H justifies this approach.
(Exercise 7.2.1.4-57 proves that such digraphs exist if and only if d] +---+d,, =
df +---4+df and dy...d, = {di,...,d,}, where d} > --- > d, and d}...d, is
majorized by the conjugate partition ¢y ...c, = (df ...d;)T. The variant where loops
v—> v are forbidden is harder; see D. R. Fulkerson, Pacific J. Math. 10 (1960), 831-836.)

109. It’s the same as exercise 108, if we put d;f = dx [k <m] and d = di[k >m)].

110. There are p vertices of degree d = d; and q vertices of degree d—1, where p+q = n.
Case 1, d = 2k + 1. Make u — v whenever (u —v)modn € {2,3,...,k+ 1,

n—k—1,...,n—3,n—2}; also add the p/2 edges 1—2,3—4, ..., (p—1)—p.
Case 2, d = 2k. Make u — v whenever (v —v)modn € {2,3,...,k,n—k,...,

n — 3,n — 2}; also add the edges 1—2, ..., (¢g—1) — g, as well as the path or cycle

(g=0?n:qg)— (g+1) — -+ — (n—1) — n. [D. L. Wang and D. J. Kleitman, in

Networks 3 (1973), 225-239, have proved that such graphs are highly connected.]

111. Suppose N =n+n'and V' ={n+1,...,N}. We want to construct ex = d — di,
edges between k and V', and additional edges within V', so that each vertex of V' has
degree d. Let s = e; + -+ + e,. This task is possible only if (i) n’ > max(e1,...,en);
(ii) n'd > s; (iii) n'd < s+ n'(n’ — 1); and (iv) (n+ n')d is even.

Such edges do exist whenever n' satisfies (i)—(iv): First, s suitable edges be-
tween V and V' can be created by cyclically choosing endpoints (n+1,n+2,...,n+n’,
n+1,...), because of (i). This process assigns either [s/n'| or [s/n'] edges to each
vertex of V'; we have [s/n'] < d by (ii), and d — |s/n’| < n' — 1 by (iii). Therefore
the additional edges needed inside V' are constructible by exercise 110 and (iv).

The choice n’ = n always works. Conversely, if G = K, (V) \ {1— 2}, condition
(iii) requires n’ > n when n > 4. [P. Erdés and P. Kelly, AMM 70 (1963), 1074-1075.]

112. The uniquely best triangle in the miles data is

748 746 748
Saint Louis, MO — Toronto, ON — Winston-Salem, NC — Saint Louis, MO.

113. By Murphy’s Law, it has n rows and m columns; so it’s n X m, not m X n.

114. A loop in a multigraph is an edge {a,a} with repeated vertices, and a multigraph
is a 2-uniform hypergraph. Thus we should allow the incidence matrix of a general hy-
pergraph to have entries greater than 1 when an edge contains a vertex more than once.
(A pedant would probably call this a “multihypergraph.”) With these considerations
in mind, the incidence matrix and bipartite graph corresponding to (26) are

210000
(011100); W
001122
115. The element in row e and column f of BTB is >, buebuys; so BTB is 2I plus the

adjacency matrix of L(G). Similarly, BBT is D plus the adjacency matrix of G, where
D is the diagonal matrix with d,, = degree of v. (See exercises 2.3.4.2-18, 19, and 20.)
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116. K,(,;)n =KD o K,(f), generalizing (38), for all r > 1.
117. The nonisomorphic multisets of singleton edges for m = 4 and V = {0, 1,2} are

{{0},{0},{0},{0}}, {{0},{0}, {0}, {1}}, {{0},{0},{1},{1}}, and {{0},{0},{1},{2}}.
The answer in general is the number of partitions of m into at most n parts, namely
|m;:'n|, using the notation explained in Section 7.2.1.4. (Of course, there’s little reason to
think of partitions as 1-uniform hypergraphs, except when answering strange exercises.)

118. Let d be the sum of the vertex degrees. The corresponding bipartite graph is
a forest with m + n vertices, d edges, and p components. Hence d = m + n — p, by
Theorem 2.3.4.1A.

119. Then there’s an additional edge, containing all seven vertices.

120. We could say that (hyper)arcs are arbitrary sequences of vertices, or sequences
of distinct vertices. But most authors seem to define hyperarcs to be A— v, where A
is an unordered set of vertices. When the best definition is found, it will probably be
the one that has the most important practical applications.

121. x(H) = |F| — o(I(H)T) is the size of a minimum cover of V' by sets of F.

122. (a) One can verify that there are just seven 3-element covers, namely the vertices
of an edge; so there are seven 4-element independent sets, namely the complements of
an edge. We can’t two-color the hypergraph, because one color would need to be used
4 times and the other three colors would be an edge. (Hypergraph (56) is essentially
the projective plane with seven points and seven lines.)

(b) Since we’re dualizing, let’s call the vertices and edges of the Petersen graph
“points” and “lines”; then the vertices and edges of the dual are lines and points,
respectively. Color red the five lines that join an outer point to an inner point. The
other ten lines are independent (they don’t contain all three of the lines touching any
point); so they can be colored green. No set of eleven lines can be independent, because
no four lines can touch all ten points. (Thus the Petersen dual is a bipartite hypergraph,
in spite of the fact that it contains cycles of length 5.)

123. They correspond to n X n latin squares, whose entries are the vertex colors.

124. Four colors easily suffice. If it were 3-colorable, there must be four vertices of
each color, since no five vertices are independent. Then two opposite corners must have
the same color, and a contradiction arises quickly.

125. The Chvétal graph is the smallest such graph with ¢ = 4. G. Brinkmann found
the smallest with ¢ = 5: It has 21 vertices aj, bj, ¢; for 0 < j < 7, with edges
a; — Qj42, aj —bj, a; —bj+1, b]‘ —Cy, bj —Cj+2, Cj — Cj43 and SubSCI‘iptS mod 7.
M. Meringer showed that there must be at least 35 vertices if g > 5. B. Griinbaum
conjectured that g can be arbitrarily large; but no further constructions are known.
[See AMM 77 (1970), 1088-1092; Graph Theory Notes of New York 32 (1997), 40-41.]

126. When m and n are even, both C,, and C,, are bipartite, and 4-coloring is easy.
Otherwise a 4-coloring is impossible. When m = n = 3, a 9-coloring is optimum by
exercise 93. When m = 3 and n = 4 or 5, at most two vertices are independent; it’s
easy to find an optimum 6- or 8-coloring. Otherwise we obtain a 5-coloring by painting
vertex (j, k) with (a; + 2bx) mod 5, where periodic sequences (a;) and (bx) exist with
period lengths m and n, respectively, such that a; — aj4+1 = £1 and by — bpy1 = £1
for all j and k. [K. Vesztergombi, Acta Cybernetica 4 (1978), 207-212.]

127. (_a) The result is true when n = 1. Otherwise let H = G\ v, where v is any vertex.
Then H = G\ v, and we have x(H)+x(H) < n by induction. Clearly x(G) < x(H)+1
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and x(G) < x(H) + 1; so there’s no problem unless equality holds in all three cases.
But that can’t happen; it implies that x(H) < d and x(H) < n— 1 — d, where d is the
degree of v in G. [E. A. Nordhaus and J. W. Gaddum, AMM 63 (1956), 175-177]
To get equality, let G = K, ® Kj, where ab > 0 and a+b = n. Then we have G =
K.— Ky, x(G) = a, and x(G) = b+ 1. [All graphs for which equality holds have been
found by H.-J. Finck, Wiss. Zeit. der Tech. Hochschule Ilmenau 12 (1966), 243—246.]
(b) A k-coloring of G has at least [n/k] vertices of some color; those vertices form
a clique in G. Hence x(G)x(G) > x(G)[n/x(G)] > n. Equality holds when G = K,.
(From (a) and (b) we deduce that x(G)+x(G) > 2y/n and x(G)x(G) < 3(n+1)%.)

128. x(GoH) = max(x(G),x(H)). This many colors is clearly necessary. And if the
functions a(u) and b(v) color G and H with the colors {0,1,...,k — 1}, we can color
GO H with ¢(u,v) = (a(u) + b(v)) mod k.

129. A complete row or column (16 cases); a complete diagonal of length 4 or more
(18 cases); a 5-cell pattern {(z,y),(z—a,y—a), (z—a,y+a), (z+a,y—a), (z+a,y+a)}
for a € {1,2,3} (36 + 16+ 4 cases); a 5-cell pattern {(z,y), (z—a,y), (z+a,y), (z,y—a),
(z,y+a)} for a € {1,2,3} (36 + 16 + 4 cases); a pattern containing four of those
five cells, when the fifth lies off the board (24 + 32 + 24 cases); or a 4-cell pattern
{(z,9), (+a,9), (v, y-+0), (w+a,y+a)} for a € {1,3,5,7} (49 + 25+ 9 + 1 cases).
Altogether 310 maximal cliques, with respectively (168,116, 4,4, 18) of size (4,5,6,7,8).

130. If graph G has p maximal cliques and graph H has g, then the join G— H has
pq, because the cliques of G— H are simply the unions of cliques from G and H.
Furthermore, the empty graph K, has n maximal cliques (namely its singleton sets).

Thus the complete k-partite graph with part sizes {n1,...,nx}, being the join of
empty graphs of those sizes, has n; ... n; maximal cliques.

131. Assume that n > 1. In a complete k-partite graph, the number n; ...ny is maxi-
mized when each part has size 3, except perhaps for one or two parts of size 2. (See exer-
cise 7.2.1.4-68(a).) So we must prove that N (n) cannot be larger than this in any graph.
Let m(v) be the number of maximal cliques that contain vertex v. If u— v and
m(u) < m(v), construct the graph G’ that is like G except that u is now adjacent to
all the neighbors of v instead of to its former neighbors. Every maximal clique U in
either graph belongs to one of three classes:
i) u € U; there are m(u) of these in G and m(v) of them in G'.
ii) v € U; there are m(v) of these in G and also in G'.
iii) u ¢ U and v ¢ U; such maximal cliques in G are also maximal in G'.
Therefore G’ has at least as many maximal cliques as G. And we can obtain a complete
k-partite graph by appropriately repeating the process.
[This argument, due to Paul Erdés, was presented by J. W. Moon and L. Moser
in Israel J. Math. 3 (1965), 23-25.]

132. The strong product of cliques in G and H is a clique in GRH, by exercise 93; hence
w(GrH) > w(G)w(H) = x(G)x(H). On the other hand, colorings a(u) and b(v) of G
and H lead to the coloring c¢(u, v) = (a(u), b(v)) of GRH; hence x(GrRH) < x(G)x(H).
And w(GrH) < x(GrH).

133. (a) 24; (b) 60; (c) 3; (d) 6; (e) 6; (f) 4; (g) 5; (h) 4; (i) K2®Crz; (j) 18; (k) 12.
(1) Yes, of degree 5. (m) No. [Can it be drawn with fewer than 12 crossings?] (n) Yes;
in fact, it is 4-connected (see Section 7.4.1). (o) Yes; we consider every graph to be
directed, with two arcs for each edge. (p) Of course not. (q) Yes, easily.
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[The musical graph represents simple modulations between key signatures. It
appears on page 73 of Graphs by R. J. Wilson and J. J. Watkins (1990).]

134. By rotating and/or swapping the inner and outer vertices, we can find an auto-
morphism that takes any vertex into C. If C is fixed, we can interchange the inner and
outer vertices of any subset of the remaining 11 pairs, and/or do a left-right reflection.
Therefore there are 24 x 2'' x 2 = 98,304 automorphisms altogether.

135. Let w = e*™/® and define the matrices @ = (gij), S = (si;), where ¢;; =
[7=(i+ 1) mod 12] and s;; = w*, for 0 < 7,5 < 12. By exercise 96(b), the adjacency
matrix of the musical graph K;xCh2 is A = (i i) R (I+Q+Q™)—I. Let T be the matrix

(i _i) ® S; then T~AT is a diagonal matrix D whose first 12 entries are 1 + 4 cos %’T

for 0 < j < 12, and whose other 12 entries are —1. Therefore A*™ = TD™T ", and it
follows that the number of 2m-step walks from C to (C, G, D, A,E, B, Fﬂ) respectively is

Cm = 25(25™ +2(13 + 4V3)™ + 3°™ 1! + 2(13 — 4v/3)™ + 16);
Gm = 5(25™ +V3(13+ 4V3)™ — V3(13 — 4v/3)™ — 1);

D = 2(25™ + (13 + 4V3)™ + (13 — 4V/3)™ — 3);

Ap = £ (25™ - 37" 1 9);

Em = 2(25™ — (134+4V3)™ — (13 — 4V3)™ + 1);

Bm = 5(25™ — V3(13 + 4v3)™ + v/3(13 — 4V/3)™ — 1);

Fi, = L (25™ — 2(13 + 4v/3)™ + 3™ — 2(13 — 4v/3)™);

also am = Cp—1, dm =Fm =€ =G, etc. In particular, (Cg, Gg, D¢, Ag, Eg, Be, Fg) =
(15462617, 14689116, 12784356, 10106096, 7560696, 5655936, 5015296), so the desired
probability is 15462617/5'? ~ 6.33%. As m — oo, the probabilities are all 21—4+O(0.8m).

136. No. Only two Cayley graphs of order 10 are cubic, namely K»0C5 (whose vertices
can be written {e, o, o?, a3, 0%, B, Ba, Ba?, Ba®, Ba’} where o® = B2 = (aB)? = e) and
the graph with vertices {0,1,...,9} and arcs v — (v£1) mod 10, v — (v+5) mod 10.
[See D. A. Holton and J. Sheehan, The Petersen Graph (1993), exercise 9.10. Inciden-
tally, the SGB graphs raman(p, ¢, t,0) are Cayley graphs.]

137. Let [z,y] denote the label of (z,y); we want [z,y] = [z 4+ a,y+ b] = [z + ¢,y + d]
for all z and y. If A is the matrix (‘; Z), the operation of adding ¢ times the bottom
row of A to the top row changes A to the matrix A" = (! ¢)A = (‘;,' gi), where
a =a+te, b =b+td, ¢ =c, d =d. The new condition [z,y] = [z + a/,y + ¥'] =
[z + ¢,y + d'] is equivalent to the old; and ged(a’,b',c’,d’) = ged(a,b,c,d). Similarly
we can premultiply A by (! ) without really changing the problem.

We can also operate on columns, replacing A by A” = A(} t) = (%, Y,), where

a’" =a,b’ =ta+b, " =c,d” = tct+d. This operation does alter the problem, but only
slightly: If we find a labeling that satisfies [z,y]] = [z + a",y + b"] = [z + ",y + d"]
for all z and y, then we’ll have [z,y] = [z+a,y+b] = [z +c,z+d] if [z,y] = [z, y+tz].
Similarly we can postmultiply A by (% (1)); the problem remains almost the same.

"ot

A series of such row and column operations will reduce A to the simple form
UAV = (} 2), where U and V are integer matrices with det U = detV = 1. And if we
have V = (: 'g), a labeling for the reduced problem that satisfies the simple conditions
[z,y]] = [z + 1,y] = [z, y + n]] will provide a solution to the original labeling problem
if we define [z,y] = [az + vy, Bz + dy].
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Finally, the reduced labeling problem is easy: We let [z,y]] = y mod n. Thus the
desired answer is to set p = 3, ¢ = 4.

138. Proceeding as before, but with a k x k£ matrix A, row and column operations
will reduce the problem to a diagonal matrix UAV. The diagonal entries (di,...,dx)
are characterized by the condition that d;...d; is the greatest common divisor of
the determinants of all j x j submatrices of A. [This is “Smith normal form”; see
H. J. S. Smith, Philosophical Transactions 151 (1861), 293-326, §14.] If the labeling
[z] satisfies the reduced problem, the original problem is satisfied by [z] = [zV]]. The
number of elements in the generalized torus is n = det A = d; . .. dk.

The reduced problem has a simple solution as before if dy = -+ = dx—1 = 1. But
in general the reduced labeling will be an r-dimensional ordinary torus of dimensions
(dk—r+1,---,dk), where dg—r41 > di—r = 1. (Here do = 1; we might have r = k.)

In the requested example, we find d1 = 1, d2 = 2, d3 = 10, n = 20; indeed,

1 -2 0 3 1 1 1 5 6 1 0 O
UAV = 0 1 -1 1 31 011 =10 2 0
-1 -1 4 1 1 3 0 01 0 0 10
Each point (z,y,z) now receives a two-dimensional label (u,v) = ((5z + y) mod 2,

(6z 4+ y + z) mod 10). The six neighbors of (u,v) are ((u+1) mod 2,v), ((v£ 1) mod 2,
(v+1) mod 10), (u, (v£1) mod 10). It’s a multigraph, since the first two neighbors are
identical; but it’s not the same as the multigraph C2 ® C1o, which has degree 8.

[Generalized toruses are essentially the Cayley graphs of Abelian groups; see
exercise 136. They have been proposed as convenient interconnection networks, in
which case it is desirable to minimize the diameter when k and n are given. See C. K.
Wong and D. Coppersmith, JACM 21 (1974), 392-402; C. M. Fiduccia, R. W. Forcade,
and J. S. Zito, SIAM J. Discrete Math. 11 (1998), 157-167.]

139. (This exercise helps clarify the distinction between labeled graphs G, in which the
vertices have definite names, and unlabeled graphs H such as those in Fig. 2.) If Ny is
the number of labeled graphs on {1,2,...,h} that are isomorphic to H, and if U is any
h-element subset of V, the probability that G | U is isomorphic to H is Ng/ oh(h=1)/2
Therefore the answer is (Z)NH/Zh(h_l)/z. We need only figure out the value of Ny,
which is: (a) 1; (b) h!/2; (¢) (h — 1)!/2; (d) h!/a, where H has a automorphisms.
140. (a) #(K3:Wy) = n—1 and #(Ps:W,) = (") for n > 5; also #(K3:Ws) = 7.

(b) G is proportional if and only if #(K3:G) = #(K3:G) = 1 (3) and #(Ps:G) =
#(P3:G) = 2(%). If G has e edges, we have (n—2)e = 3#(K3s:G)+2#(Ps:G)+#(Ps:G),
because every pair of vertices appears in n—2 induced subgraphs. If G has degree
sequence di ... dn, we have di +- - +dn = 2, (%) 4+ (%) = 3#(K3:G)+ #(Ps:G),
and di(n—1—d1)+- - +dn(n—1—dy,) = 2#(P5:G)+2#(Ps:G). Therefore a proportional
graph satisfies (x) —unless n = 2. (The exercise should have excluded that case.)

Conversely, if G satisfies (x) and has the correct #(K3:G), it also has the correct
#(Ps:G), #(Ps:GQ), and #(K3:G).

[References: S. Janson and J. Kratochvil, Random Structures & Algorithms 2
(1991), 209-224. In J. Combinatorial Theory B47 (1989), 125-145, A. D. Barbour,
M. Karonski, and A. Rucinski had shown that the variance of #(H:G) is proportional
to either n?"~2, n?"=3 or n?*~* where the first case occurs when H does not have

%(g) edges, and the third case occurs when H is a proportional graph.]

141. Only 8 degree sequences d; ...ds satisfy (%): 73333333 (1/2), 65433322 (26/64),
64444222 (2/10), 64443331 (8/22), 55543222 (8/20), 55533331 (2/10), 55444321 (26/64),
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and 44444440 (1/2). Each degree sequence is shown here with statistics (IN1/N), where
N nonisomorphic graphs have that sequence and N; of them are proportional. The last
three cases are complements of the first three. No graph of order 8 is both proportional
and self-complementary. Maximally symmetric examples of the first five cases are W,

Lt i Q) - =

142. The hint follows as in the previous answer; (n — 3)#(K3:G) and (n — 3)#(P3:G)
can also be expressed in terms of four-vertex counts. Furthermore, a graph with e
edges has (;) = #(P3 C Q) + #(K2 ® K2 C G), because any two edges form either P3
or K2 @ K3; in this formula, #(Ps C G) counts not-necessarily-induced subgraphs.

We have #(Ps C G) = #(Ps:G) + 3#(K35:G), and a similar formula expresses
#(K2 ® K2 C G) in terms of induced counts. Thus an extraproportional graph must
be proportional and satisfy e = (%), #(Ps C G) = 3(3), #(K2 ® K2 C G) = 2(}).
But these values contradict the formula for (;)

143. Consider the graph whose vertices are the rows of A, and whose edges u — v
signify that rows u and v agree except in one column, j. Label such an edge j.

If the graph contains a cycle, delete any edge of the cycle, and repeat the process
until no cycles remain. Notice that the label on every deleted edge appears elsewhere in
its cycle; hence the deletions don’t affect the set of edge labels. But we’re left with fewer
than m < n edges, by Theorem 2.3.4.1A; so there are fewer than n different labels.

[See J. A. Bondy, J. Combinatorial Theory B12 (1972), 201-202.]

144. Let G be the graph on vertices {1,...,m}, with edges ¢ — j if and only if
* # x4 # ;1 7 * for some [. This graph is k-colorable if and only if there is a completion
with at most k distinct rows. Conversely, if G is a graph on vertices {1,...,n}, with
adjacency matrix A, the n X n matrix X = A + %(J — I — A) has the property that
1 —j if and only if * # zy # xj1 # * for some [. [See M. Sauerhoff and I. Wegener,
IEEE Trans. CAD-15 (1996), 1435-1437.]

145. Set ¢ < 0 and repeat the following operations for 1 < j < n: If c =0, set z < a;
and ¢ < 1; otherwise if z = a;, set ¢ <~ ¢ + 1; otherwise set ¢ <~ ¢ — 1. Then z is
the answer. The idea is to keep track of a possible majority element xz, which occurs
¢ times in nondiscarded elements; we discard a; and one x whenever finding = # a;.
[See Automated Reasoning (Kluwer, 1991), 105-117. Extensions to find all elements
that occur more than n/k times, in O(nlogk) steps, have been discussed by J. Misra
and D. Gries, Science of Computer Programming 2 (1982), 143-152.]
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Arc lists, 21-22.
Arc variables, 21, 23.
Arcs, 18-23.

as edges, 18.
ARCS(v) (first arc of a vertex), 21.
Arithmetic progressions, 38.
Aschbacher, Michael George, 56.
Associative laws, 27, 28, 42.
Automorphisms, 14-15, 39, 45, 56,

60, 65-66.

Bach, Johann Sebastian, x.

Bang, Thgger Sophus Vilhelm, 47.
Barbour, Andrew David, 65.
Barnard, Robert, 10.

Baron, Gerd, 48.

Barycentric coordinates, 25.
Bassanio of Venice, 1.

Bears, California Golden, 31.

Berge, Claude, 34.

bi_book graphs, 23.

bi_lisa graphs, 24.

Biggs, Norman Linstead, 15.

Bigraphs, 17, see Bipartite graphs.

Bipartite graphs, 17, 22-25, 35, 39,
41, 43, 55, 62.

corresponding to hypergraphs, 33, 44.

Bipartite hypergraphs, 62.

Bipartiteness testing, 22—23.

Bishop moves on a chessboard, 25, 26, 31.

Bitwise AND operation, 22.

board graphs, 25, 26, 31, 41.

Bondy, John Adrian, 14, 66.

book graphs, 23.

Boolean functions, 33.

Boolean values, 32.

Bose, Raj Chandra (3% 5% %), 5.

Bossen, Douglas Craig, 52.

Boyer, Robert Stephen, 46.

Brette, Jean, 48.

Brewster, George, 9.

Brinkmann, Gunnar, 62.

Brooks, Rowland Leonard, 58.

Brown, John Wesley, 49.

Brown, William Gordon, 56.

Brualdi, Richard Anthony, 50.

Bruck, Richard Hubert, 51.

Bui, Alain, 2.

C language, 22.
Cr (cycle of order n), 13, 28, 39, 41.
Cr (oriented cycle of order n), 18, 41.
California Golden Bears, 31.
Cardinal, Stanford, 31.
Carroll, Lewis (= Dodgson, Charles
Lutwidge), 10-12, 53.
Cartesian product of graphs, 27-28,
4244, 59.
Categorical product of graphs, 28, see
Direct product of graphs.
Cayley, Arthur, digraphs, 45.
graphs, 45, 65.
Censorship, 10-11.
Chambers, Ephraim, v.
Chaucer, Geoffrey, 52.
Chessboard-like graphs,
bishop moves, 25, 26, 31.
generalized piece moves, 41.
king moves, 43.
knight moves, 15, 25.
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queen moves, 26, 44.
rook moves, 26, 41.

Chien, Robert Tien Wen ($£K[E), 52.

Christie Mallowan, Agatha Mary Clarissa
Miller, 18-19.

Chromatic index, see Edge-chromatic
number.

Chromatic number x(G), 35, 44, 46.

Chvétal, Vaclav, 14.

graph, 14, 39, 44, 62.

Clapham, Christopher Robert Jasper, 61.

Clausen, Thomas, 5.

Claw graph, 54.

Clique covers, 35.

Clique number w(G), 35, 44.

Cliques, 35, 44.

Clustering, vii.

CMath: Concrete Mathematics, a book
by R. L. Graham, D. E. Knuth,
and O. Patashnik.

Codewords, b-ary, 38.

Coding theory, 52.

Cographs, 42.

Cohen, Philip Michael, 53.

Colleges, 31.

Coloring of graphs, 17, 35, 42, 44, 46.

Coloring of hypergraphs, 32, 35, 44.

Combinatorial explosion, v.

Combinatorics, 1-7, see also Graphs.

Commutative laws, 28.

Complement, of a graph, 26, 27, 35,
41, 42, 59.

of a simple digraph, 42.
of an r-uniform hypergraph, 32.

Complete bigraphs (Km,»), 17, 26,
39, 42, 55.

Complete binary tries, 38-39.

Complete bipartite graphs, 17, 26,

39, 42, 55.

Complete digraphs (Jn), 18, 55, 57.

Complete graphs (Ky), 13, 26-27,
39, 41-43, 58.

Complete k-partite graphs, 17, 2627,
40, 44.

Complete r-uniform hypergraphs, 32.

bipartite, 44.

Complete ternary tries, 53.

Complete tripartite graphs (Km,n,r), 17, 42.

Completion of a matrix, 46.

Components, 16, 18, 26, 40, 42, 43.

Composition of graphs, 28, see
Lexicographic product of graphs.

Compositions of an integer, 25.

Conjugate of a partition, 29-30, 43, 61.

Conjunction of graphs, 28, see
Direct product of graphs.

Connected digraphs, 18.

Connected graphs, 16, 33, 43, 44.

Connectivity of a graph, viii, 63.

Consecutive arcs, 19.
Consonants, 38.
Contiguous United States of America,
15, 34, 39-40.
Converse of a digraph, 58.
Convex hull of points, 24.
Coppersmith, Don, 65.
Cover, Thomas Merrill, 13.
Covering problems, 11.
exact, 2, 7, 8, 35, 37, 48.
minimum, 34-35, 44.
Cretté de Palluel, Francois, 8.
Crossings in a diagram, 14, 63.
Cube graphs (k-cubes), 28, 41.
Cubic graphs, 14, 39, 64.
Cycle graph Cp, 13, 28, 39, 41.
Cycles, 13, 28, 39, 41, 42, 44.
in a hypergraph, 33.
of a permutation, 40, 42.
oriented, 18, 19, 32, 40, 41.
Cylinders, 28, 41.

dt(v) (out-degree of v), 18.
d~ (v) (in-degree of v), 18.
d(u,v) (distance in a graph), 16, 43.
directed, 19.
generalized, 16—17.
da Vinci, Leonardo, 9, 24.
Dags (directed acyclic graphs), 31-32.
Dancing links method, 2, 7, 8, 11, 48.
Davies, Roy Osborne, 2, 47.
de Palluel, Francois Cretté, 8.
de Polignac, Camille Armand Jules
Marie, 15.
Dean, Jeffrey Adgate, iv.
Degree of a vertex, 14, 19, 39, 43, 44, 61.
Degree sequences, 29-31, 43, 46, 65—66.
Delaunay, Boris Nikolaevich ([Jdenore, Bopuc
Huxonaesn4), triangulation, 24.
Depth-first search, 23, 41.
Determinants, 40, 59, 65.
Diagonal matrices, 64, 65.
Diagrams for digraphs, 18-19, 42.
Diagrams for graphs, 14-15, 26-28, 39, 42.
Diameter of a graph, 16, 24, 39, 41,
42, 44, 58.
Dictionaries of English, 10, 34, 38, 53.
Digitized image, 24.
Digraphs, 18, see Directed graphs.
Direct product of graphs, 28, 42—43.
Direct product of matrices, 43.
Direct sum of graphs, 2627, 42, 43.
Direct sum of matrices, 27, 43.
Directed acyclic graphs, 31-32.
Directed distance d(u,v), 19.



Directed graphs, 12, 18-22, 40, 42, 59.
complete, 18, 55, 57.
components of, 18.
converse of, 58.
random, 25.
representation of, 19-22.
strong components of, 40, 55.

Directed hypergraphs, 44.

Directed join of digraphs, 26-27.

Disjoint graphs, 26.

Disjoint sets, 25.

Distance d(u,v) in a graph, 16, 43.
generalized, 16-17.

Distance of a code, 38.

Distinct columns, 33.

Distinct rows, 46.

Distributive laws, 43, 59.

Dodecahedron, 15.

Dodgson, Charles Lutwidge (= Lewis

Carroll), 10-12, 53.

Don’t cares, 46.

Dot product of vectors, 12, 34, 37.

Doublets game, 11.

Doutté, Edmond, 48.

Doyle, Arthur Conan, 1.

Dual of a hypergraph, 33, 35, 44.

Dudeney, Henry Ernest, 54.

e, as source of “random” data, 49.

econ graphs, 31.

Edge-chromatic number x(L(G)), 44.

Edges as arcs, 19, 21-22.

Edges of a hypergraph, 32-35.

Eigenvalues of a matrix, 40.

Eigenvectors of a matrix, 40.

Electoral districts, 8.

Empty graphs (Kr), 26, 27, 41-43, 46, 63.

English language, 9-10.

Equidistant cities, 44.

Equivalence relations, 45—46, 51.

Erd8s, P4l (= Paul), 60, 61, 63.

Error-correcting codes, 37-38.

Euclidean distance, 10, 12.

Euclidean plane, 17.

Euler, Leonhard (Eiineps, Jleonapas =
Oiinep, Jleonapn), 3-7, 36, 49.

Even permutations, 40.

Evolution of random graphs, 25.

Exact cover problems, 2, 7, 8, 35, 37, 48.

Expander graphs, 24.

Factorization of a graph, 28.

Families of sets, 32, see Hypergraphs.
Fibonacci strings, 36.

Fiduccia, Charles Michael, 65.

Final vertex of an arc, 18.

Finck, Hans-Joachim, 63.

Finite fields, 51.

Five-letter words, iv, 9-12, 16, 38—39, 43.
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Flows of money, 31.

Floyd, Robert W, Lemma, vi.
Folland, Gerald Budge, iii.
Football scores, 31.

Forcade, Rodney Warring, 65.
Four Color Theorem, 17.

Free trees, 17, 44.

Frequency of usage in English, 10.
Fulkerson, Delbert Ray, 61.

Gaddum, Jerry William, 63.

Gallai, Tibor, 60.

games graphs, 31.

Ganter, Bernhard, 49.

Gardner, Martin, 9, 11.

Gates, networks of, 32.

Gauf3 (= Gauss), Johann Friderich Carl
(= Carl Friedrich), 5, 17.

Generalized toruses, 45—46.

Generator routines, 23—-26, 30-32, 41.

Geometric nets, 37-39.

Gherardini, Lisa, see Mona Lisa.
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Giant component of a graph, 16, 25, 39, 55.

Girth of a graph, 15, 24, 3941, 44.
Globally optimum solutions, 34-35.
Godfrey, Michael John, 36.
Golden Bears, California, 31.
Golomb, Solomon Wolf, 52.
Google, iv.
Gordon, Leonard Joseph, 52.
Graeco-Latin squares, 4-5, 8, 36, 50.
Graham, Ronald Lewis, 68.
Grant, Jeffrey Lloydd Jagton, 53.
Graph theory, introduction to, 13-19.
Graph-paper graphs, 28.
Graphical degree sequences, 29-31,
43, 46, 65—66.
Graphs, 11-35, 39-45.
algebra of, 26-28, 42—45.
bipartite, see Bipartite graphs.
complete, 13, 26-27, 39, 41-43, 58.
empty (null), 26, 27, 41-43, 46, 63.
generators for, 23-26, 30-32, 41.
labeled versus unlabeled, 15, 16, 65.
of orders 3 and 4, 42, 46.
products of, 2728, 4244, 59.
random, 25, 41, 46.
regarded as digraphs, 19-22.
regular, 14, 24-25, 33, 40—44.
representation of, 19-22.
Gray, Frank, binary code, 48.
Grid graphs, 28, 41.
triangular, 25, 58.
Gries, David Joseph, 66.
Groth, Edward John, Jr., 8.
Griinbaum, Branko, 62.
gunion (union of SGB graphs), 26.
Guthrie, Francis, 17.
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Haken, Wolfgang, 17.

Hall, Marshall, Jr., ix, 47, 51.

Hamilton, William Rowan, 15.

cycles and paths, 15.

Hamiltonian graphs, 15, 44, 54.

Hamming, Richard Wesley, distance,
12, 28, 37-38.

Harary, Frank, iv, 18, 55.

Havel, Viclav (mathematician), 29.

Havel, Véaclav (playwright and
statesman), 8.

Hebraic-Greaeco-Latin squares, 36, 50.

Hebrew letters, 36.

Hedayat, Samad (= Abdossamad,
culaa saallae), 49, 51.

Heinen, Franz, 17.

Hensel, Kurt Wilhelm Sebastian, 59.

Highways, 31.

Hoffman, Alan Jerome, 56.

Holmes, Thomas Sherlock Scott, 1.

Holton, Derek Alan, 64.

Homer (“Opnpog), 9.

Horton, Robert Elmer, 53.

Hsiao, Ben Mu-Yue (FEHeif = HaeE), 52

Hugo, Victor Marie, 23.
Hurwitz, Adolf, 59.
Hyperarcs, 62.
Hyperedges, 32.
Hyperforests, 44.
Hypergraphs, 32-35, 44.

I (identity matrix), 26, 59.

IBM Type 650 computer, v.

Ibn al-Hajj, Muhammad ibn Muhammad

id of an SGB graph, 12, 22.

ID(g), 22.

Identity matrix, 26.

Image, digitized, 24.

Implicit data structure, 21-22.

Imrich, Wilfried, 28.

In-degree of a vertex, 18, 19, 41, 43.

Incidence matrix of a graph or hypergraph,
33, 35, 44.

Independence number a(H) of a graph
or hypergraph, 35, 44.

Independent vertices, 34, 35, 44.

Induced subgraphs, 13, 18, 39, 42, 43, 46.

Induced subhypergraphs, 32.

Infinity, point at, 24.

Initial vertex of an arc, 18.

Integer programming, vii.

Internet, ii—iv, viii, ix, 10, 53.

Intruders, 36.

Inverse permutation, 20.

Inverter gates, 32.

Islamic mathematics, 48—49.

Isolated vertices: Vertices of degree 0,
25, 55, 58.

Isomorphic graphs, 13-15, 28, 39, 65-66.
directed, 18.

J (all-ones matrix), 26, 27, 58, 59.

Jn (complete digraph of order n), 18, 55, 57.

Jaillet, Christophe André Georges, 2.

Janson, Carl Svante, 46, 65.

Johnson, Samuel, v.

Join of graphs, 26-27, 63.

Juxtaposition of graphs, 26, see Direct
sum of graphs.

k-colorable graphs or hypergraphs, 17,
32, 35, 42, 44.

k-cubes, 28, 41.

k-edge-colorable graphs, 26, 42, 44.

k-partite graphs or hypergraphs, 17,
32, 35, 42, 44.

complete, 17, 26-27, 40, 44.

K, (complete graph of order n), 13,
26-27, 41-43, 58.

K,(LT) (complete r-uniform hypergraph), 32.

K, (transitive tournament of order n),
18, 27, 40, 41.

K33 (utilities graph), 17, 39, 42, 51.

Km,n (complete bipartite graph), 17,
26, 39, 42, 55.

Kyn'n (complete r-uniform bipartite
hypergraph), 44.

Kon,,...,n;, (complete k-partite graph),
17, 26, 40, 44.

Karonski, Michal, 65.

Kelly, Paul Joseph, 61.

Kempe, Alfred Bray, 54.

Kernel of a graph, see Maximal
independent sets.

King moves on a chessboard, 43.

Kingwise torus, 44.

Kirkman, Thomas Penyngton, 15.

Klavzar, Sandi, 28.

Kleitman, Daniel J (Isaiah Solomon), 61.

Knight moves on a chessboard, 15, 25.

Knuth, Donald Ervin (FEf#4)), i, iv, ix,
x, 7, 9-10, 12, 32, 49, 68.

Koch, John Allen, 17.

K&nig, Dénes, 17.

Kowalewski, Arnold, 58.

Krajecki, Michagl, 2.

Kratochvil, Jan, 46, 65.

Kronecker, Leopold, product, 59.

L(G) (line graph of G), 26, 42.
Labeled graphs, 15, 65.
LADDERS program, 32.
Landau, Hyman Garshin, 55.
Langford, Charles Dudley, 7, 9, 48.
pairs, 1-3, 8, 36.
triples, 36.
Latch gates, 32.
Latin squares, 3-8, 36—38, 50, 62.



Leahy, Francis Theodore, Jr. (= Ted), 47.

Lehmer, Derrick Henry, 39.

Leighton, Robert Eric, 52.

Leonardo da Vinci, 9, 24.

Lexicographic order, 3, 38, 41.

Lexicographic product of graphs, 28,
42-43, 59.

Lillywaite, Peregrine, 10.

Line graph of a graph, 26, 35, 42, 55, 59, 61.

Linear programming, vii.

Linear subgraphs, 55.

Linked allocation, 21.

Lloyd, Edward Keith, 15.

LOC (memory location), 22.

Locally optimal solutions, 34-35.

Loops from a vertex to itself, 13, 18,
19, 41, 61.

Loyd, Walter (= “Sam Loyd, Jr.”), 1.

mXn cylinders, 28, 41.

mXmn grids, 28, 41.

m X n rook graphs, 26, 41.

mXn toruses, 28, 41.

directed, 41.

M(g) (the number of arcs in an SGB
graph), 22.

MacNeish, Harris Franklin, 5.

Magic squares, 36.

Majority element, 46.

Majority function, 52.

Majorization, 30, 61.

Mann, Henry Berthold, 49.

Matching in a graph, 35, 44.

MATE (the converse arc), 21-22.

Mates of arcs, 21-22.

Mathon, Rudolf Anton, 49.

Matrix multiplication, 20, 59.

Maximal cliques, 44.

Maximal independent sets, 34, 44.

Maximal planar graphs, 39.

Maximal versus maximum, 34-35.

Maximum independent sets, 34-35.

Maximum matchings, 44.

McKay, Brendan Damien, 50.

McManus, Christopher DeCormis, 38.

Mems: Memory accesses, 2, 6.

Menon, Vairelil Vishwanath, 58.

Meringer, Markus Reinhard, 62.

METAFONT, 12.

Meyer, Albert Ronald da Silva, viii.

Meynert, Alison, 50.

miles graphs, 31, 44.

Miller, Donald John, 60.

Minimal versus minimum, 34-35.

Minimum vertex covers, 34-35, 44.

MIP-years, 2.

Mirror pairs, 38.

Misra, Jayadev (@060 74), 66.

MMIX computer, ii, viii, 41.
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MMIXAL assembly language, 41.
Mnemonics, 59.

Modular arithmetic, 48.

Mona Lisa, 9, 24, 31.

Moon, John Wesley, 63.

Moore, Eliakim Hastings, 51.

Moore, J Strother, 46.

Morris, Scot Anderson, 38.

Moser, Leo, 63.

Multigraphs, 13, 19-21, 40, 41, 44, 59, 65.
Multihypergraphs, 61.

Multipairs, 19.

Multisets, 18.

Murphy’s Law, 61.

Musical graph, 44, 45.

Mutually orthogonal latin squares, 37—38.
Myrvold, Wendy Joanne, 50.

n-ary strings, 37.
N(g) (the number of vertices in an SGB
graph), 22, 56.
NAME (v) (the name of a vertex), 21.
Nanocomputer simulation, 32.
Neighboring vertices, 13.
Nesetfil, Jaroslav, 59.
Networks: Graphs or digraphs together
with auxiliary data, 31-32, 44.
NEXT(a) (the next arc with the same
initial vertex), 21.
Nodes in SGB format, 21-23, 56.
Nordhaus, Edward Alfred, 63.
NOT gates, 32, 33.
Notation, 26, 59.
G (complementation), 26, 32, 42.
G > @' (isomorphism), 14.
G |V’ (induced subgraph), 13.
G \ e (edge removal), 13.
G \ v (vertex removal), 13.
Novels, 9, 23.
NP-complete problems, viii, 35.
Null graphs (Ky), 26, 27, 41-43, 46, 63.

O (all-zeros matrix), 27.
Odd permutations, 40.
Odd product of graphs, 28, 42-43, 59.
Optimal versus optimum, 34-35.
OR gates, 32, 33.
Order of a graph, 13, 18, 44.
Order of a latin square, 37.
Order of an orthogonal array, 37.
Ore, Qystein, ix, 42.
Organ-pipe order, 48.
Oriented cycles, 18, 19, 32, 40, 41.
Oriented paths, 18, 19, 41.
spanning, 40.
Orthogonal arrays, 37, 52.
generalized, 50-51.
Orthogonal latin squares, 3-8, 36-38.
Orthogonal strings, 37.
Orthogonal vectors, 34, 37.
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Out-degree of a vertex, 18, 19, 21,
40, 41, 43.
Ozanam, Jacques, 3, 7, 9.

P,, (path of order n), 13, 28, 39.

Py (oriented path of order n), 18, 41.
Paige, Lowell J., 5-7.

Palindromes, 38, 48.

Palluel, Frangois Cretté de, 8.
Papadimitriou, Christos Harilaos

(Maradnuntplov, Xpiotog Xapihdov), ix.

Parallel edges of a multigraph, 19, 41.
Parallel lines, 37.
Parity bits, 38.
Parker, Ernest Tilden, 5-7, 49.
Partitions of an integer, 25, 30, 62.
parts graphs, 25.
Pascal, Blaise, iii.
Patashnik, Oren, 68.
Path graph P,, 13, 28, 39.
Paths in a graph, 13, 41.
oriented, 18, 19, 41.
shortest, viii, 12, 16, 32.
Perfect shuffles, 38.
Permanent of a matrix, 40.
Permutation digraphs, 40.
Permutation matrices, 20, 56.
Petersen, Julius Peter Christian, 5, 14, 58.
graph, 14, 15, 25, 39, 42, 44, 45, 58.
Phi (¢), 47.
as source of “random” data, 49.
Pi (7), as source of “random” data, 49.
Pixels, 24, 31.

Planar graphs, 14, 15, 17, 24, 39, 44, 54, 60.

Planar Langford pairings, 36.

plane_lisa graphs, 24, 31.

plane_miles graphs, 24, 31.

Playing cards, 3—4.

Poetry, 53.

Pohl, Ira Sheldon, 3.

Poirot, Hercule, 18.

Polignac, Camille Armand Jules Marie
de, 15.

Pélya, Gyorgy (= George), 18.

Polyhedral combinatorics, vii.

Portable programs, 22.

Posner, Edward Charles, 52.

Postal codes, 15, 40.

Prime graphs, 28.

Products of digraphs and multigraphs, 59.

Products of graphs, 27-28, 42-44.

Projective planes, 51, 62.

Pseudorandom numbers, 12, 25.

Puzzles, 1, 3, 7-9, 15, 48, 54.

Queen moves on a chessboard, 26, 44.

r-uniform hypergraphs, 32.

RainBones puzzle, 48.

raman graphs, 24, 64.

Ramanujan Iyengar, Srinivasa
(urbesllaumen ooy @oadr @QuimITIT),
graphs, 24.

random_graph graphs, 25, 41.

Random graphs, 25, 41, 46.

Random walks, 45.

Rao, Calyampudi Radhakrishna
($egodr vwgy ©vd), 50-51.

Recreations, 7-9.

Rédei, Laszld, 55.

Regular graphs, 14, 24-25, 33, 40-44.

Representation of graphs and digraphs,
19-22.

Restriction of a graph, 13.

Ringel, Gerhard, 58.

risc graphs, 31-32.

RISC: Reduced Instruction Set
Computer, 32.

Robertson, George Neil, 17.

roget graphs, 23, 41.

Roget, John Lewis, 23.

Roget, Peter Mark, 9, 23.

Rook moves on a chessboard, 26, 41.

Rookwise connected pixels, 24.

Rosa, Alexander, 49.

Rucinski, Andrzej, 65.

Ryser, Herbert John, 37, 50.

Sachs, Horst, 58.

Sanders, Daniel Preston, 17.

Sauerhoff, Martin, 66.

Sauveur, Joseph, 49.

Scandalous fact, 26.

Schumacher, Heinrich Christian, 5, 17.

Scrabble®, 10.

Search trees, 6.

Seed value for pseudorandom numbers,
12, 25.

Self-complementary graphs, 42, 43, 66.

Self-converse graphs, 58.

Self-loops, 13, 18, 19, 41, 61.

Semidefinite programming, vii.

Sequential algorithms, vii.

Sequential allocation, 21.

Set systems, 32, see Hypergraphs.

Seymour, Paul Douglas, 17.

SGB, 9, see Stanford GraphBase.

Shakespeare (= Shakspere), William, 1.

Sheehan, John, 64.

Sheep, 8.

Shortest paths in a graph, viii, 12, 16, 32.

Shrikhande, Sharadchandra Shankar
(TETX uAT HEs), 5.

Shrinking an edge, 54.

Simple digraphs, 18, 19, 40, 43, 58, 59.

Simple graphs, see Graphs.



stmplexz graphs, 25.

Simpson, James Edward, 47.

Singleton, Robert Richmond, 56.

Singmaster, David Breyer, 48.

Sink vertex, 18.

Size of a digraph, 18.

Size of a graph, 13, 44.

Skolem, Albert Thoralf, ix, 8, 36, 47, 48.

Sloane, Neil James Alexander, 51.

smile, 11, 16, 24, 39.

Smith, Henry John Stephen, normal
form, 65.

Source vertex, 18.

Spanning subgraphs, 13, 15, 18, 39.

Sparse graphs, 20, 23.

Spectrum of an irrational number, 47.

Spheres, vii.

Stability number a(H) of a graph or
hypergraph, 35.

Stable sets, 34, see Independent vertices.

Stack structure, 23, 41.

Standard fields in SGB format, 21.

Stanford Cardinal, 31.

Stanford GraphBase, ii, iv, viii, 9-12,
20, 23-26, 31.

complete guide to, 32.

format for digraphs and graphs, 21-22, 41.

Stanley, Richard Peter, 13.
Star graphs, 17.
Steiner, Jacob, 17.

trees, vii, 17.

triple systems, 8.
Stockmeyer, Larry Joseph, viii.
Strahler, Arthur Newell, 53.
Straight insertion sorting, 55.
Strong product of graphs, 28, 42-44, 59, 64.
Strongly connected graphs, 40, 55.
Stufken, John, 51.
Subgraphs, 13, 17.
subsets graphs, 25.
Subwords, 12.
SWAC computer, 5—6.
Symmetric matrices, 40, 44.
Symmetries of a graph, 14-15, 39,

45, 60, 65-66.

Szele, Tibor, 55.

Tableaux, 29-30, 43.

TAKE_RISC program, 32.

Tarjan, Robert Endre, 1.

Tarry, Gaston, 5.

Taylor, Brook, series, 13.

Tensor product of graphs, see
Direct product of graphs.

Terminology, 13.

Tetrahedron, 25.

TEX, 12.

Theory meets practice, vii, 13.

Thomas, Robin, 17.

INDEX AND GLOSSARY 73

Thue, Axel, ix.
Tightly colorable graphs, 44.
Tilings of the plane, 45.
Tip of an arc, 18.
TIP(a) (final vertex), 21.
Todorov, Dobromir Todorov (Tomopos,
Ho6povup Tomopos), 50.
Tolstoy, Leo Nikolaevich, (Toscroii, Jles
Huxonaesn4), 9.
Tompkins, Charles Brown, 5-7.
Toruses, 28, 41.
generalized, 45—46.
kingwise, 44.
Tournaments, 40.
transitive, 18, 27, 40, 41.
Transitive laws, 51.
Translation, tiling by, 45—46.
Transposing a matrix, 20, 33, 50.
Transversals of a latin square, 6-7, 37, 49.
Traveling Salesrep Problem, viii.
Triangle inequality, 16, 19.
Triangular grids, 25, 58.
Tries, 38—39.
Triple systems, 8, 32, 44.
Trivalent graphs, 14, 39, 64.

Union of graphs, 26, see also Direct
sum of graphs.

United States of America, contiguous,
15, 34, 39-40.

UNIVAC 1206 Military Computer, 5.

Universities, 31.

Unlabeled graphs, 14, 65.

Utilities, 54.

Utility fields in SGB format, 21, 57.

Valency, see Degree of a vertex.

Variance, 65.

Vertex connectivity, 61.

Vertex covers, minimum, 34-35, 44.

Vertex variables, 21, 23.

VERTICES(g) (the first vertex node), 22, 56.
Vesztergombi, Katalin, 62.

Vinci, Leonardo da, 9, 24.

Vowels, 38.

Whr (wheel graph of order n), 42, 46, 58, 66.
Walks in a graph, 19-20, 40, 45.
Wang, Da-Lun (£ XAf), 61.

Wang, Shinmin Patrick (EHE), 50.
‘Watkins, John Jaeger, 64.

Wegener, Ingo Werner, 66.

‘Weichsel, Paul Morris, 59.

‘Weisner, Louis, 49.

Well-balanced Langford pairings, 2, 36.
Wernicke, August Ludwig Paul, 5.
‘Wheel graphs, 42, 46, 58, 66.

Width of a Langford pairing, 3, 48.
‘Wilson, Richard Michael, 50.

Wilson, Robin James, iv, 15, 42, 64.
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Witness bits, 52.

Wong, Chak-Kuen (¥{E#), 65.

Word cubes, 11, 39.

Word ladders, 11-12, 32.

‘Word squares, 11, 38.

words graphs, 12-13, 31, 39, 42.

WORDS(n), the n most common five-letter
words of English, 10-12.

Wraparound, 41.
XOR gates, 32, 33.

Zehfuss, Johann Georg, 59.

Zito, Jennifer Snyder, 65.

Zykov, Aleksander Aleksandrovich (3bixos,
Anekcannp Anekcanaposud), 26.



