THE ART OF
COMPUTER PROGRAMMING

PRE-FASCICLE 2A

A DRAFT OF SECTION 7.2.1.1:
GENERATING ALL n-TUPLES

DONALD E. KNUTH Stanford University

A
ADDISON-WESLEY \A4

Internet page http://www-cs-faculty.stanford.edu/ knuth/taocp.html contains
current information about this book and related books.

See also http://wuw-cs—faculty.stanford.edu/ knuth/sgb.html for information
about The Stanford GraphBase, including downloadable software for dealing with the
graphs used in many of the examples in Chapter 7.

Copyright © 2001 by Addison—Wesley

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior consent of the publisher, except
that the official electronic file may be used to print single copies for personal (not
commercial) use.

Zeroth printing (revision 14), 10 December 2004

PREFACE

| am grateful to all my friends,

and record here and now my most especial appreciation
to those friends who, after a decent interval,

stopped asking me, “How’s the book coming?”

— PETER J. GOMES, The Good Book (1996)

THIS BOOKLET contains draft material that I'm circulating to experts in the
field, in hopes that they can help remove its most egregious errors before too
many other people see it. I am also, however, posting it on the Internet for
courageous and/or random readers who don’t mind the risk of reading a few
pages that have not yet reached a very mature state. Beware: This material has
not yet been proofread as thoroughly as the manuscripts of Volumes 1, 2, and 3
were at the time of their first printings. And those carefully-checked volumes,
alas, were subsequently found to contain thousands of mistakes.

Given this caveat, I hope that my errors this time will not be so numerous
and/or obtrusive that you will be discouraged from reading the material carefully.
I did try to make it both interesting and authoritative, as far as it goes. But the
field is so vast, I cannot hope to have surrounded it enough to corral it completely.
Therefore I beg you to let me know about any deficiencies you discover.

To put the material in context, this is Section 7.2.1.1 of a long, long chapter
on combinatorial algorithms. Chapter 7 will eventually fill three volumes (namely
Volumes 4A, 4B, and 4C), assuming that I'm able to remain healthy. It will
begin with a short review of graph theory, with emphasis on some highlights
of significant graphs in The Stanford GraphBase (from which I will be drawing
many examples). Then comes Section 7.1, which deals with the topic of bitwise
manipulations. (I drafted about 60 pages about that subject in 1977, but those
pages need extensive revision; meanwhile I’ve decided to work for awhile on the
material that follows it, so that I can get a better feel for how much to cut.)
Section 7.2 is about generating all possibilities, and it begins with Section 7.2.1:
Generating Basic Combinatorial Patterns. That sets the stage for the main
contents of this booklet, Section 7.2.1.1, where I get the ball rolling at last by
dealing with the generation of n-tuples. Then will come Section 7.2.1.2 (about
permutations), Section 7.2.1.3 (about combinations), etc. Section 7.2.2 will deal
with backtracking in general. And so it will go on, if all goes well; an outline of
the entire Chapter 7 as currently envisaged appears on the taocp webpage that
is cited on page ii.

iii

iv PREFACE

Even the apparently lowly topic of n-tuple generation turns out to be sur-
prisingly rich, with ties to Sections 1.2.4, 1.3.3, 2.3.1, 2.3.4.2, 3.2.2, 3.5, 4.1,
4.3.1, 4.5.2, 45.3, 4.6.1, 4.6.2, 4.6.4, 5.2.1, and 6.3 of the first three volumes.
I strongly believe in building up a firm foundation, so I have discussed this topic
much more thoroughly than I will be able to do with material that is newer or
less basic. To my surprise, I came up with 112 exercises, a new record, even
though—believe it or not —1I had to eliminate quite a bit of the interesting
material that appears in my files.

Some of the material is new, to the best of my knowledge, although I will not
be at all surprised to learn that my own little “discoveries” have been discovered
before. Please look, for example, at the exercises that I've classed as research
problems (rated with difficulty level 46 or higher), namely exercises 43, 46, 47,
53, 55, and 62. Are these problems still open? The question in exercise 53
might not have been posed previously, but it seems to deserve attention. Other
problems, like exercises 66 and 83, suggest additional research topics. Please let
me know if you know of a solution to any of these intriguing problems. And of
course if no solution is known today but you do make progress on any of them
in the future, I hope you’ll let me know.

I urgently need your help also with respect to some exercises that I made
up as I was preparing this material. I certainly don’t like to get credit for things
that have already been published by others, and most of these results are quite
natural “fruits” that were just waiting to be “plucked.” Therefore please tell
me if you know who I should have credited, with respect to the ideas found in
exercises 15, 16, 31, 37, 38, 69, 73, 76, 86, 87, 89, 90, and/or 109.

I shall happily pay a finder’s fee of $2.56 for each error in this draft when it is
first reported to me, whether that error be typographical, technical, or historical.
The same reward holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32¢ each. (Furthermore, if
you find a better solution to an exercise, I’ll actually reward you with immortal
glory instead of mere money, by publishing your name in the eventual book:—)

I wish to thank Yoichi Hariguchi for helping me to build and rebuild the
computer on which this book was written. And I also want to thank Frank
Ruskey for bravely foisting this material on college students, and for providing
valuable feedback about his classroom experiences.

Cross references to yet-unwritten material sometimes appear as ‘00’; this
impossible value is a placeholder for the actual numbers to be supplied later.

Happy reading!

Stanford, California D.E. K.
August 2001 (revised, September 2001)

7.2.1.1 GENERATING ALL n-TUPLES 1

7.2. GENERATING ALL POSSIBILITIES

All present or accounted for, sir.
— Traditional American military saying

All present and correct, sir.
— Traditional British military saying

7.2.1. Generating Basic Combinatorial Patterns

OUR GOAL in this section is to study methods for running through all of the
possibilities in some combinatorial universe, because we often face problems
in which an exhaustive examination of all cases is necessary or desirable. For
example, we might want to look at all permutations of a given set.

Some authors call this the task of enumerating all of the possibilities; but
that’s not quite the right word, because “enumeration” most often means that
we merely want to count the total number of cases, not that we actually want
to look at them all. If somebody asks you to enumerate the permutations of
{1, 2,3}, you are quite justified in replying that the answer is 3! = 6; you needn’t
give the more complete answer {123,132,213,231, 312, 321}.

Other authors speak of listing all the possibilities; but that’s not such a great
word either. No sensible person would want to make a list of the 10! = 3,628,800
permutations of {0,1,2,3,4,5,6,7,8,9} by printing them out on thousands of
sheets of paper, nor even by writing them all in a computer file. All we really
want is to have them present momentarily in some data structure, so that a
program can examine each permutation one at a time.

So we will speak of generating all of the combinatorial objects that we need,
and wvisiting each object in turn. Just as we studied algorithms for tree traversal
in Section 2.3.1, where the goal was to visit every node of a tree, we turn now
to algorithms that systematically traverse a combinatorial space of possibilities.

He'’s got 'em on the list—

he’s got 'em on the list;

And they’ll none of 'em be missed—
they’ll none of 'em be missed.

— WILLIAM S. GILBERT, The Mikado (1885)

7.2.1.1. Generating all n-tuples. Let’s start small, by considering how to
run through all 2™ strings that consist of n binary digits. Equivalently, we want
to visit all n-tuples (a1,...,a,) where each a; is either 0 or 1. This task is
also, in essence, equivalent to examining all subsets of a given set {z1,...,z,},
because we can say that x; is in the subset if and only if a; = 1.

Of course such a problem has an absurdly simple solution. All we need to
do is start with the binary number (0...00)2 = 0 and repeatedly add 1 until
we reach (1...11)2 = 2"— 1. We will see, however, that even this utterly trivial
problem has astonishing points of interest when we look into it more deeply. And
our study of n-tuples will pay off later when we turn to the generation of more
difficult kinds of patterns.

2 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

In the first place, we can see that the binary-notation trick extends to other
kinds of n-tuples. If we want, for example, to generate all (ay,...,ay) in which
each a; is one of the decimal digits {0, 1,2,3,4,5,6,7,8,9}, we can simply count
from (0...00)10 = 0 to (9...99);0 = 10™ — 1 in the decimal number system.
And if we want more generally to run through all cases in which

0<a; <my for 1 <j<n, (1)

where the upper limits m; might be different in different components of the
vector (ay,...,a,), the task is essentially the same as repeatedly adding unity

to the number
ai, a2, --., Qn
[] (2)
myi, M2, ..., Mnp
in a mixed-radix number system; see Eq. 4.1-(9) and exercise 4.3.1-9.
We might as well pause to describe the process more formally:

Algorithm M (Mized-radiz generation). This algorithm visits all n-tuples
that satisfy (1), by repeatedly adding 1 to the mixed-radix number in (2) until
overflow occurs. Auxiliary variables ag and mg are introduced for convenience.

M1. [Initialize.] Set a; < 0 for 0 < j < n, and set mq < 2.

MZ2. [Visit.] Visit the n-tuple (a1,...,a,). (The program that wants to examine
all n-tuples now does its thing.)

M3. [Prepare to add one.] Set j + n.

Ma4. [Carry if necessary.] If a; =m; — 1, set a; <~ 0, j - j — 1, and repeat this
step.

MS5. [Increase, unless done.] If j = 0, terminate the algorithm. Otherwise set
a; < a; + 1 and go back to step M2. 1|

Algorithm M is simple and straightforward, but we shouldn’t forget that
nested loops are even simpler, when n is a fairly small constant. When n = 4,
we could for example write out the following instructions:

For a; =0, 1, ..., my — 1 (in this order) do the following:
For a; =0, 1, ..., mg — 1 (in this order) do the following:
For a3 =0, 1, ..., mg — 1 (in this order) do the following: (3)
For ay =0, 1, ..., my — 1 (in this order) do the following:

Visit (al, as, as, a4).

These instructions are equivalent to Algorithm M, and they are easily expressed
in any programming language.

Gray binary code. Algorithm M runs through all (a4, ..., a,) in lexicographic
order, as in a dictionary. But there are many situations in which we prefer to visit
those n-tuples in some other order. The most famous alternative arrangement is
the so-called Gray binary code, which lists all 2" strings of n bits in such a way

7.2.1.1 GENERATING ALL n-TUPLES 3

11 %%

0,

*0
To To
1*10
1110

Fig. 10. (a) Lexicographic binary code. (b) Gray binary code.

that only one bit changes each time, in a simple and regular way. For example,
the Gray binary code for n = 4 is

0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100,
1100,1101, 1111, 1110, 1010, 1011, 1001, 1000. (1)

Such codes are especially important in applications where analog information
is being converted to digital or vice versa. For example, suppose we want to
identify our current position on a rotating disk that has been divided into 16
sectors, using four sensors that each distinguish black from white. If we use
lexicographic order to mark the tracks from 0000 to 1111, as in Fig. 10(a), wildly
inaccurate measurements can occur at the boundaries between sectors; but the
code in Fig. 10(b) never gives a bad reading.

Gray binary code can be defined in many equivalent ways. For example,
if I', stands for the Gray binary sequence of n-bit strings, we can define I',
recursively by the two rules

T'o=¢;

Ipy =0T, 1ITE. (5)

Here € denotes the empty string, OI',, denotes the sequence I',, with O prefixed to
each string, and 1T2 denotes the sequence T',, in reverse order with 1 prefixed
to each string. Since the last string of T',, equals the first string of T'E, it is clear
from (5) that exactly one bit changes in every step of I, ; if I, enjoys the same
property.

Another way to define the sequence I',, = g(0), g(1), ..., g(2"—1) is to give
an explicit formula for its individual elements g(k). Indeed, since I',,1; begins
with 0T, the infinite sequence

Too = 9(0),9(1),9(2),9(3),9(4), - - -
= (0)z, (1)2, (11)2, (10)2, (110)a, ...

is a permutation of all the nonnegative integers, if we regard each string of Os
and 1s as a binary integer with optional leading Os. Then I', consists of the first
2" elements of (6), converted to n-bit strings by inserting Os at the left if needed.

(6)

4 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

When k = 2" 4+ r, where 0 < r < 2", relation (5) tells us that g(k) is equal
to 2" 4+ g(2"— 1 —r). Therefore we can prove by induction on n that the integer
k whose binary representation is (... bab1bg)2 has a Gray binary equivalent g(k)
with the representation (...aza1a9)2, where

a; = b; ®bji1, for 5 > 0. (7)

(See exercise 6.) For example, g((111001000011);) = (100101100010);. Con-
versely, if g(k) = (... aga1a0)2 is given, we can find k = (...bab1bg)2 by inverting
the system of equations (7), obtaining

bj=aj@0j+1@aj+2®"'a for j > 0; (8)

this infinite sum is really finite because a;; = 0 for all large ¢.
One of the many pleasant consequences of Eq. (7) is that g(k) can be com-
puted very easily with bitwise arithmetic:

g9(k) = k@ |k/2]. (9)
Similarly, the inverse function in (8) satisfies
O =te /2 e|l/4e- (10)

this function, however, requires more computation (see exercise 7.1-00). We can
also deduce from (7) that, if £ and k' are any nonnegative integers,

gk k') = g(k) & g(k). (11)
Yet another consequence is that the (n+ 1)-bit Gray binary code can be written
I'ny1 = 0Ty, (0T',)®110...0;

this pattern is evident, for example, in (4). Comparing with (5), we see that
reversing the order of Gray binary code is equivalent to complementing the first
. n—1
bit: i
r,="T,410...0. (12)

The exercises below show that the function g(k) defined in (7), and its inverse
gl=1 defined in (8), have many further properties and applications of interest.
Sometimes we think of these as functions taking binary strings to binary strings;
at other times we regard them as functions from integers to integers, via binary
notation, with leading zeros irrelevant.

Gray binary code is named after Frank Gray, a physicist who became fa-
mous for helping to devise the method long used for compatible color television
broadcasting [Bell System Tech. J. 13 (1934), 464-515]. He invented T',, for
applications to pulse code modulation, a method for analog transmission of dig-
ital signals [see Bell System Tech. J. 30 (1951), 38-40; U.S. Patent 2632058 (17
March 1953); W. R. Bennett, Introduction to Signal Transmission (1971), 238—
240]. But the idea of “Gray binary code” was known long before he worked on it;
for example, it appeared in U.S. Patent 2307868 by George Stibitz (12 January
1943). More significantly, I's was used in a telegraph machine demonstrated
in 1878 by Emile Baudot, after whom the term “baud” was later named. At

7.2.1.1 GENERATING ALL n-TUPLES 5

about the same time, a similar but less systematic code for telegraphy was
independently devised by Otto Schéffler [see Journal Télégraphique 4 (1878),
252-253; Annales Télégraphiques 6 (1879), 361, 382-383].*

In fact, Gray binary code is implicitly present in a classic toy that has
fascinated people for centuries, now generally known as the “Chinese ring puzzle”
in English, although Englishmen used to call it the “tiring irons.” Figure 11
shows a seven-ring example. The challenge is to remove the rings from the bar,
and the rings are interlocked in such a way that only two basic types of move are
possible (although this may not be immediately apparent from the illustration):

a) The rightmost ring can be removed or replaced at any time;
b) Any other ring can be removed or replaced if and only if the ring to its right
is on the bar and all rings to the right of that one are off.

We can represent the current state of the puzzle in binary notation, writing 1
if a ring is on the bar and 0 if it is off; thus Fig. 11 shows the rings in state
1011000. (The second ring from the left is encoded as 0, because it lies entirely
above the bar.)

e <
ﬁ?‘g{l@@-ﬁ‘\“

CIL

Fig. 11.
The Chinese ring puzzle.

L
0
)

A French magistrate named Louis Gros demonstrated an explicit connection
between Chinese rings and binary numbers, in a booklet called Théorie du
Baguenodier [sic] (Lyon: Aimé Vingtrinier, 1872) that was published anony-
mously. If the rings are in state a,_1 ...ag, and if we define the binary number
k= (bp_1...bo)2 by Eq. (8), he showed that exactly k more steps are necessary
and sufficient to solve the puzzle. Thus Gros is the true inventor of Gray binary
code.

Certainly no home should be without
this fascinating, historic, and instructive puzzle.

— HENRY E. DUDENEY (1901)

When the rings are in any state other than 00...0 or 10...0, exactly two
moves are possible, one of type (a) and one of type (b). Only one of these moves
advances toward the desired goal; the other is a step backward that will need to
be undone. A type (a) move changes k to k & 1; thus we want to do it when
k is odd, since this will decrease k. A type (b) move from a position that ends
in (10771)y for 1 < j < n changes k to k@ (1771)y = k& (277! — 1). When k

* Some authors have asserted that Gray code was invented by Elisha Gray, who developed a
printing telegraph machine at the same time as Baudot and Schéaffler. Such claims are untrue,
although Elisha did get a raw deal with respect to priority for inventing the telephone [see
L. W. Taylor, Amer. Physics Teacher 5 (1937), 243—-251].

6 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

is even, we want k @ (2771 — 1) to equal k — 1, which means that k must be a
multiple of 27 but not a multiple of 291!; in other words,

i = p(k), (13)
where p is the “ruler function” of Eq. 7.1-(00). Therefore the rings follow a nice
pattern when the puzzle is solved properly: If we number them 0, 1, ..., n—1

(starting at the free end), the sequence of ring moves on or off the bar is the
sequence of numbers that ends with ..., p(4), p(3), p(2), p(1).

Going backwards, successively putting rings on or off until we reach the
ultimate state 10...0 (which, as John Wallis observed in 1693, is more difficult to
reach than the supposedly harder state 11...1), yields an algorithm for counting
in Gray binary code:

Algorithm G (Gray binary generation). This algorithm visits all binary n-
tuples (an—1,...,a1,a0) by starting with (0,...,0,0) and changing only one bit
at a time, also maintaining a parity bit as, such that
Uoo = Up—1 D - D ag D ap. (14)

Tt successively complements bits p(1), p(2), p(3), ..., p(2"— 1) and then stops.
G1. [Initialize.] Set a; < 0 for 0 < j < n; also set as ¢ 0.
G2. [Visit.] Visit the n-tuple (a_1,...,a1,a0).
G3. [Change parity.] Set aoo 1 — Goo-
G4. [Choose j.] If ax = 1, set j + 0. Otherwise let j > 1 be minimum such

that a; 1 = 1. (After the kth time we have performed this step, j = p(k).)
G5. [Complement coordinate j.] Terminate if j = n; otherwise set a; «— 1 — a;

and return to G2. |
The parity bit ao, comes in handy if we are computing a sum like

Xooo — Xoo01 — Xo10 + Xo11 — X100 + X101 + X110 — X111
X(Z) - Xa - Xb + Xab - Xc + Xac + Xbc - Xabc:

where the sign depends on the parity of a binary string or the number of elements
in a subset. Such sums arise frequently in “inclusion-exclusion” formulas such
as Eq. 1.3.3—(29). The parity bit is also necessary, for efficiency: Without it we
could not easily choose between the two ways of determining j, which correspond
to performing a type (a) or type (b) move in the Chinese ring puzzle. But the
most important feature of Algorithm G is that step G5 makes only a single
coordinate change. Therefore only a simple change is usually needed to the
terms X that we are summing, or to whatever other structures we are concerned
with as we visit each n-tuple.

or

It is impossible, of course, to remove all ambiguity in the lowest-order digit
except by a scheme like one the Irish railways are said to have used

of removing the last car of every train

because it is too susceptible to collision damage.

— G. R. STIBITZ and J. A. LARRIVEE, Mathematics and Computers (1957)

7.2.1.1 GENERATING ALL n-TUPLES 7

wo()

wq(z)

wo()

ws(2)

wy(2)

ws(z)

Fig. 12. Walsh functions wi(z) for
0 < k < 8, with the analogous trigo- we(2)
nometric functions v/2 cos kma shown
in gray for comparison. g=0 z=; z=3; z=37 z=1

Another key property of Gray binary code was discovered by J. L. Walsh
in connection with an important sequence of functions now known as Walsh
functions [see Amer. J. Math. 45 (1923), 5-24]. Let wo(xz) = 1 for all real
numbers x, and

wi(x) = (—1)L22 [k/ﬂka/zJ (2z), for k > 0. (15)

For example, wy(z) = (—1)!2%] changes sign whenever x is an integer or an
integer plus 3. It follows that wy(z) = w(z + 1) for all k, and that wy(z) = +1
for all z. More significantly, w(0) = 1 and wi(z) has exactly k sign changes in
the interval (0..1), so that it approaches (—1)* as = approaches 1 from the left.
Therefore wg(z) behaves rather like a trigonometric function cos kmz or sin knz,
and we can represent other functions as a linear combination of Walsh functions
in much the same way as they are traditionally represented as Fourier series. This
fact, together with the simple discrete nature of wg(z), makes Walsh functions
extremely useful in computer calculations related to information transmission,
image processing, and many other applications.

Figure 12 shows the first eight Walsh functions together with their trigono-
metric cousins. Engineers commonly call wg(z) the Walsh function of sequency
k, by analogy with the fact that cos kwz and sin kmz have frequency k/2. [See,
for example, the book Sequency Theory: Foundations and Applications (New
York: Academic Press, 1977), by H. F. Harmuth.]

8 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

Although Eq. (15) may look formidable at first glance, it actually provides an
easy way to see by induction why wy(z) has exactly & sign changes as claimed. If
k is even, say k = 2, we have wy(z) = wi(2z) for 0 < z < %; the effect is simply
to compress the function w;(z) into half the space, so we(z) has accumulated
| sign changes so far. Then wy(z) = (—1)'w;(2z) = (=1)'w;(2z — 1) in the

1

range 5 < x < 1; this concatenates another copy of w;(2x), flipping the sign if

necessary to avoid a sign change at © = % The function wy41(x) is similar, but
it forces a sign change when x = %

What does this have to do with Gray binary code? Walsh discovered that
his functions could all be expressed neatly in terms of simpler functions called

Rademacher functions [Hans Rademacher, Math. Annalen 87 (1922), 112-138],
(o) = (-1, (16)

which take the value (—1)°—* when (...cac1¢p.c_1¢—_2 . ..)2 is the binary represen-
tation of z. Indeed, we have wi(z) = r1(z), wa(z) = r1(z)r2(z), ws(z) = r2(x),
and in general

wi(x) = [[i1 (@)?®%+ when k = (bp_1...b1bo)a. (17)

j=0

(See exercise 33.) Thus the exponent of r;1(z) in wi(x) is the jth bit of the
Gray binary number g(k), according to (7), and we have

wi(z) = 7pk)+1(T) wp_1(z), for k£ > 0. (18)
Equation (17) implies the handy formula

wy(z) wys (z) = wkeak'(l')v (19)

which is much simpler than the corresponding product formulas for sines and
cosines. This identity follows easily because r;(z)? = 1 for all j and z, hence
7;(2)*®® = r;(x)2*®. It implies in particular that w(z) is orthogonal to wy: ()
when k # k', in the sense that the average value of wy(z)wy (z) is zero. We also
can use (17) to define wg(z) for fractional values of k like 1/2 or 13/8.

The Walsh transform of 2™ numbers (X, ..., Xan_1) is the vector defined by
the equation (zg,...,Tan_1)T = W, (Xo, ..., Xan_1)T, where W, is the 2" x 2"
matrix having w;(k/2") in row j and column k, for 0 < j, k < 2". For example,
Fig. 12 tells us that the Walsh transform when n = 3 is

000 111 11111 XOOO
001 1 1 1 1 T T T T XOOl
Z010 1 1 T I I T 1 1 XOlO
Zo11 11 T I 11 T T X011
T100 - 1 T T 11 T T 1 X100 (20)
I101 1 T T 1 T 1 1 T X101
T110 1 I 1 I I 1 I 1 X110
T111 1 I 1 I 1 I 1 I X111

7.2.1.1 GENERATING ALL n-TUPLES 9

(Here 1 stands for —1, and the subscripts are conveniently regarded as binary
strings 000-111 instead of as the integers 0-7.) The Hadamard transform is
defined similarly, but with the matrix H,, in place of W,,, where H,, has (—1)/*
in row j and column k; here ‘j - k’ denotes the dot product a,_1bp_1+- -+ agbg
of the binary representations j = (an_1...a0)2 and k = (bp_1...bg)2. For
example, the Hadamard transform for n = 3 is

Zhoo 1111111 1\ /X
Thoy 1 T111711T71)|(Xom
Thio 111111 71T/ Xow
o [_[1 T T 11171 1] Xon (21)
=00 1111 1T71TT1T1 X100 |-
o1 1 T 1171171 1] X0
‘1.,110 1 11111 1 1 X110
‘7“’111 1 T T 1 T 1 1 T X111

This is the same as the discrete Fourier transform on an n-dimensional cube,
Eq. 4.6.4—(38), and we can evaluate it quickly “in place” by adapting the method
of Yates discussed in Section 4.6.4:

Given First step Second step Third step

Xooo Xooo+Xoo1 Xooo+Xoo1+Xo10+Xo11 Xooo+Xoo1+Xo10+Xo11+X100+X101+X110+X111
Xoo1 Xooo—Xoo1 Xooo—Xoo1+Xo10—Xo11 Xooo—Xo01+Xo10—Xo11+X100—X101+X110— X111
Xo10 Xo10+Xo11 Xooo+Xoo1—Xo10—Xo11 Xooo+Xoo1—Xo10—Xo11+X100+X101—X110—X111
Xo11 Xo10—Xo11 Xooo—Xoo01—Xo10+Xo011 Xooo—Xo001—Xo10+Xo11+X100—X101—X110+X111
X100 X100+X101 Xio0+X101+X110+X111 Xooo+Xoo1+Xo10+Xo11—X100—X101—X110—X111
X101 X100—X101 X100—X101+X110—X111 Xooo—Xo01+Xo10—Xo011—X100+X101—X110+X111
X110 Xi110+X111 Xi100+Xi101—X110—X111 Xooo+Xoo1—Xo10—Xo11 —X100—X101+X110+X111
X111 X110—X111 X100—X101—X110+X111 Xooo—Xo01—Xo10+Xo011—X100+X101+X110— X111

Notice that the rows of H3 are a permutation of the rows of Wj3. This is true in
general, so we can obtain the Walsh transform by permuting the elements of the
Hadamard transform. Exercise 36 discusses the details.

Going faster. When we’re running through 2™ possibilities, we usually want
to reduce the computation time as much as possible. Algorithm G needs to
complement only one bit a; per visit to (an_1,...,a0), but it loops in step G4
while choosing an appropriate value of j. Another approach has been suggested
by Gideon Ehrlich [JACM 20 (1973), 500-513], who introduced the notion of
loopless combinatorial generation: With a loopless algorithm, the number of
operations performed between successive visits is required to be bounded in
advance, so there never is a long wait before a new pattern has been generated.

We learned some tricks in Section 7.1 about quick ways to determine the
number of leading or trailing Os in a binary number. Those methods could be
used in step G4 to make Algorithm G loopless, assuming that n isn’t unreason-
ably large. But Ehrlich’s method is quite different, and much more versatile,
so it provides us with a new weapon in our arsenal of techniques for efficient
computation. Here is how his approach can be used to generate binary n-tuples

[see Bitner, Ehrlich, and Reingold, CACM 19 (1976), 517-521]:

10 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

Algorithm L (Loopless Gray binary generation). This algorithm, like Algo-

rithm G, visits all binary n-tuples (ap—1,...,a0) in the order of the Gray binary

code. But instead of maintaining a parity bit, it uses an array of “focus pointers”

(fn,---,fo), whose significance is discussed below.

L1. [Initialize.]| Set a; <= 0 and f; < j for 0 < j < n; also set f, + n. (A
loopless algorithm is allowed to have loops in its initialization step, as long

as the initial setup is reasonably efficient; after all, every program needs to
be loaded and launched.)

L2. [Visit.] Visit the n-tuple (ap—1,...,a1, ao).

L3. [Choose j.] Set j < fo, fo < 0. (If this is the kth time we are performing
the present step, j is now equal to p(k).) Terminate if j = n; otherwise set
fi< fi+1and fip1 5+ 1.

L4. [Complement coordinate j.] Set a;j < 1 — a; and return to L2. 1

For example, the computation proceeds as follows when n = 4. Elements a; have

been underlined in this table if the corresponding bit b; is 1 in the binary string
b3b2b1b0 such that agaszaiapg = g(b3b2b1b0):

a3 00000000111 11111
aa 00001 11111110000
az 00 1 1110000111100
a 01 1 0011001100110
fs 3333 333344443333
f2 222 2332222224422
fil121113111211141
fo 0102 01030102010 4

Although the binary number k = (b,_1...bo)2 never appears explicitly in Al-
gorithm L, the focus pointers f; represent it implicitly in a clever way, so that
we can repeatedly form g(k) = (an_1...a0)2 by complementing bit a,) as we
should. Let’s say that a; is passive when it is underlined, active otherwise. Then
the focus pointers satisfy the following invariant relations:

1) If a; is passive and a;_; is active, then f; is the smallest index j' > j such
that aj/ is active. (Bits a, and a_; are considered to be active for purposes
of this rule, although they aren’t really present in the algorithm.)

2) Otherwise f; = j.

Thus, the rightmost element a; of a block of passive elements a;_1...a;1+1a;,
with decreasing subscripts, has a focus f; that points to the element a; just to
the left of that block. All other elements a; have f; pointing to themselves.

In these terms, the first two operations ‘j + fo, fo < 0’ in step L3 are
equivalent to saying, “Set j to the index of the rightmost active element, and
activate all elements to the right of a;.” Notice that if fo = 0, the operation
fo < 0isredundant; but it doesn’t do any harm. The other two operations of L3,
‘fi < fj+1, fj+1 < 7+ 1, are equivalent to saying, “Make a; passive,” because
we know that a; and a;_, are both active at this point in the computation.

10

7.2.1.1 GENERATING ALL n-TUPLES 11

(Again the operation fji1 < j + 1 might be harmlessly redundant.) The net
effect of activation and passivation is therefore equivalent to counting in binary
notation, as in Algorithm M, with 1-bits passive and 0-bits active.

Algorithm L is almost blindingly fast, because it does only five assignment
operations and one test for termination between each visit to a generated n-tuple.
But we can do even better. In order to see how, let’s consider an application
to recreational linguistics: Rudolph Castown, in Word Ways 1 (1968), 165—
169, noted that all 16 of the ways to intermix the letters of sins with the
corresponding letters of fate produce words that are found in a sufficiently large
dictionary of English: sine, sits, site, etc.; and all but three of those words
(namely fane, fite, and sats) are sufficiently common as to be unquestionably
part of standard English. Therefore it is natural to ask the analogous question
for five-letter words: What two strings of five letters will produce the maximum
number of words in the Stanford GraphBase, when letters in corresponding
positions are swapped in all 32 possible ways?

To answer this question, we need not examine all (%)° = 3,625,908,203,125
essentially different pairs of strings; it suffices to look at all (57257) = 16,568,646
pairs of words in the GraphBase, provided that at least one of those pairs
produces at least 17 words, because every set of 17 or more five-letter words
obtainable from two five-letter strings must contain two that are “antipodal”
(with no corresponding letters in common). For every antipodal pair, we want
to determine as rapidly as possible whether the 32 possible subset-swaps produce
a significant number of English words.

Every 5-letter word can be represented as a 25-bit number using 5 bits per
letter, from "a" = 00000 to "z" = 11001. A table of 22% bits or bytes will then
determine quickly whether a given five-letter string is a word. So the problem
is reduced to generating the bit patterns of the 32 potential words obtainable
by mixing the letters of two given words, and looking those patterns up in the
table. We can proceed as follows, for each pair of 25-bit words w and w':

W1. [Check the difference.] Set z < w @ w’. Reject the word pair (w,w’) if
((z—m)®z®m)Am’ # 0, where m = 220421542104 25+ 1 and m’/ = 2°m;
this test eliminates cases where w and w’ have a common letter in some
position. (See 7.1-(00); it turns out that 10,614,085 of the 16,568,646 word
pairs have no such common letters.)

W2. [Form individual masks.] Set mg + z A (2° — 1), my < z A (210 — 25),
mg < z A (215 — 210) my < 2 A (220 — 215) and my <+ z A (225 — 220), in
preparation for the next step.

W3. [Count words.] Set ! <— 1 and Ag < w; the variable [will count how many
words starting with w we have found so far. Then perform the operations
swap(4) defined below.

WA4. [Print a record-setting solution.] If I exceeds or equals the current maxi-
mum, print A; for 0 < j <. 1

The heart of this high-speed method is the sequence of operations swap(4), which

should be expanded inline (for example with a macro-processor) to eliminate all

11

12 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

unnecessary overhead. It is defined in terms of the basic operation
sw(j): Set w <~ w @ m;. Then if w is a word, set A; <— w and [<[+ 1.

Given sw(j), which flips the letters in position j, we define

; (22)

Thus swap(4) expands into a sequence of 31 steps sw(0), sw(1), sw(0), sw(2),
., sw(0) = sw(p(1)), sw(p(2)), ..., sw(p(31)); these steps will be used 10
million times. We clearly gain speed by embedding the ruler function values
p(k) directly into our program, instead of recomputing them repeatedly for each
word pair via Algorithm M, G, or L.
The winning pair of words generates a set of 21, namely

ducks ducky duces dunes dunks dinks dinky
dines dices dicey dicky dicks picks picky (23)
pines piney pinky pinks punks punky pucks

If, for example, w = ducks and w’ = piney, then mo = s @y, so the first
operation sw(0) changes ducks to ducky, which is seen to be a word. The next
operation sw(1) applies m1, which is k @ e in the next-to-last letter position, so
it produces the nonword ducey. Another application of sw(0) changes ducey to
duces (a legal term generally followed by the word tecum). And so on. All word
pairs can be processed by this method in at most a few seconds.

Further streamlining is also possible. For example, once we have found
a pair that yields £ words, we can reject later pairs as soon as they generate
33 — k nonwords. But the method we’ve discussed is already quite fast, and it
demonstrates the fact that even the loopless Algorithm L can be beaten.

Fans of Algorithm L may, of course, complain that we have speeded up
the process only in the small special case n = 5, while Algorithm L solves the
generation problem for n in general. A similar idea does, however, work also
for general values of n > 5: We can expand out a program so that it rapidly
generates all 32 settings of the rightmost bits asaszazaiag, as above; then we can
apply Algorithm L after every 32 steps, using it to generate successive changes
to the other bits a,_; ...as. This approach reduces the amount of unnecessary
work done by Algorithm L by nearly a factor of 32.

Other binary Gray codes. The Gray binary code ¢(0), ¢g(1), ..., g(2"—1) is
only one of many ways to traverse all possible n-bit strings while changing only
a single bit at each step. Let us say that, in general, a “Gray cycle” on binary
n-tuples is any sequence (vg, v1,...,v2n_1) that includes every n-tuple and has
the property that vy differs from v(x41)mod2» in just one bit position. Thus,
in the terminology of graph theory, a Gray cycle is an oriented Hamiltonian

12

7.2.1.1 GENERATING ALL n-TUPLES 13

1013
101+

A o
& FE A %$0
N N = - %
~ o e
Fig. 13. (a) Complementary Gray code. (b) Balanced Gray code.

cycle on the n-cube. We can assume that subscripts have been chosen so that
Vo = 0...0.
If we think of the v’s as binary numbers, there are integers dg . ..d2n»_1 such
that
U(k+1) mod 2 = Uk D 2%, for 0 < k < 2™ (24)

this so-called “delta sequence” is another way to describe a Gray cycle. For
example, the delta sequence for standard Gray binary when n = 3 is 01020102;
it is essentially the ruler function d; = p(k + 1) of (13), but the final value dan_1
is n — 1 instead of n, so that the cycle closes. The individual elements §; always
lie in the range 0 < §x < n, and they are called “coordinates.”

Let d(n) be the number of different delta sequences that define an n-bit
Gray cycle, and let ¢(n) be the number of “canonical” delta sequences in which
each coordinate k appears before the first appearance of k + 1. Then d(n) =
n! c(n), because every permutation of the coordinate numbers in a delta sequence
obviously produces another delta sequence. The only possible canonical delta
sequences for n < 3 are easily seen to be

00; 0101; 01020102 and 01210121. (25)

Therefore ¢(1) = ¢(2) = 1, ¢(3) = 2; d(1) = 1, d(2) = 2, and d(3) = 12. A
straightforward computer calculation, using techniques for the enumeration of
Hamiltonian cycles that we will study later, establishes the next values,

c(4) = 112; d(4) = 2688;

26
¢(5) = 15,109,096 d(5) = 1,813,091,520. (26)

No simple pattern is evident, and the numbers grow quite rapidly (see exer-
cise 45); therefore it’s a fairly safe bet that nobody will ever know the exact
values of ¢(8) and d(8).

Since the number of possibilities is so huge, people have been encouraged
to look for Gray cycles that have additional useful properties. For example,
Fig. 13(a) shows a 4-bit Gray cycle in which every string azaza;ao is diametrically
opposite to its complement @za@;a1dg. Such coding schemes are possible whenever
the number of bits is even (see exercise 49).

13

14 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

An even more interesting Gray cycle, found by G. C. Tootill [Proc. IEE 103,
Part B Supplement (1956), 435], is shown in Fig. 13(b). This one has the same
number of changes in each of the four coordinate tracks, hence all coordinates
share equally in the activities. Gray cycles that are balanced in a similar way can
in fact be constructed for all larger values of n, by using the following versatile
method to extend a cycle from n bits to n + 2 bits:

Theorem D. Let a;j1az7js---a;j; be a delta sequence for an n-bit Gray cycle,
where each ji is a single coordinate, each oy is a possibly empty sequence of
coordinates, and [is odd. Then

oy (n+1)afina,
jragna(ntl)ay joaz(ntl)adinag ... ji_1oq(n+l)alfing, (27)
(n+l)aftj, jofty...05 1o n
is the delta sequence of an (n + 2)-bit Gray cycle.

For example, if we start with the sequence 01020102 for n = 3 and let the three
underlined elements be j1, j2, js, the new sequence (27) for a 5-bit cycle is

01410301020131024201043401020103. (=8)

Proof. Let aj have length my and let vg; be the vertex reached if we start at

0...0 and apply the coordinate changes a17j1...ar_1jx—1 and the first ¢ of ay.

We need to prove that all vertices 00vg, 01vgs, 10vg, and 11vg; occur when (27)

is used, for 1 <k <l and 0 <t < mg. (The leftmost coordinate is n+1.)
Starting with 000...0 = 00v19, we proceed to obtain the vertices

00’1)11, ey OOvlml, 10’01m1, ey].0’010, 111}10, ey]-]-Ulml;
then j; yields 11vgg, which is followed by
].].’1)21, ey 11U2m2,].O’Ugmz, ey 101}20, 001]20, ey OOUQmZ;

then comes 00vs30, etc., and we eventually reach 11v;,,,. The glorious finale then
uses the third line of (27) to generate all the missing vertices 01vyy,,, ..., 0lvig
and take us back to 000...0. |

The transition counts (co, . ..,cn_1) of a delta sequence are defined by letting
¢; be the number of times 0 = j. For example, (28) has transition counts
(12,8,4,4,4), and it arose from a sequence with transition counts (4, 2,2). If we
choose the original delta sequence carefully and underline appropriate elements
Jk, We can obtain transition counts that are as equal as possible:

Corollary B. For all n > 1, there is an n-bit Gray cycle with transition counts
(co,c1y---,Cn1) that satisfy the condition

lej —ck] < 2 for0<j<k<n. (29)

(This is the best possible balance condition, because each c; must be an even
number, and we must have ¢g + ¢1 + -+ + ¢p—1 = 2™. Indeed, condition (29)

14

7.2.1.1 GENERATING ALL n-TUPLES 15

holds if and only if n — r of the counts are equal to 2¢q and r are equal to 2¢q + 2,
where ¢ = |2""!/n] and r = 2"~! mod n.)

Proof. Given a delta sequence for an n-bit Gray cycle with transition counts
(coy---,Cn—1), the counts for cycle (27) are obtained by starting with the values
(o5 +»Cn—1sCnyCny1) = (4Cg, - - -, 4¢, 1,141, 1+1), then subtracting 2 from cj,
for 1 < k <l and subtracting 4 from c;-l. For example, when n = 3 we can obtain
a balanced 5-bit Gray cycle having transition counts (8 — 2,16 — 10,8,6,6) =
(6,6,8,6,6) if we apply Theorem D to the delta sequence 01210121. Exercise 51

works out the details for other values of n. |

Another important class of n-bit Gray cycles in which each of the coordinate
tracks has equal responsibility arises when we consider run lengths, namely the
distances between consecutive appearances of the same § value. Standard Gray
binary code has run length 2 in the least significant position, and this can lead to
a loss of accuracy when precise measurements need to be made [see, for example,
the discussion by G. M. Lawrence and W. E. McClintock, Proc. SPIE 2831
(1996), 104-111]. But all runs have length 4 or more in the remarkable 5-bit
Gray cycle whose delta sequence is

(0123042103210423)2. (30)

Let 7(n) be the maximum value 7 such that an n-bit Gray cycle can be
found in which all runs have length > r. Clearly 7(1) = 1, and 7(2) = r(3) =
r(4) = 2; and it is easy to see that r(n) must be less than n when n > 2, hence
(30) proves that r(5) = 4. Exhaustive computer searches establish the values
r(6) = 4 and 7(7) = 5. Indeed, a fairly straightforward backtrack calculation
for the case n = 7 needs a tree of only about 60 million nodes to determine
that r(7) < 6, and exercise 61(a) constructs a 7-bit cycle with no run shorter
than 5. The exact values of r(n) are unknown for n > 8; but r(10) is almost
certainly 8, and interesting constructions are known by which we can prove that
r(n) =n — O(logn) as n — co. (See exercises 60-64.)

*Binary Gray paths. We have defined an n-bit Gray cycle as a way to arrange
all binary m-tuples into a sequence (vg,v1,...,van_1) with the property that
vk is adjacent to vg41 in the n-cube for 0 < k& < 2", and such that von_; is
also adjacent to vg. The cyclic property is nice, but not always essential; and
sometimes we can do better without it. Therefore we say that an n-bit Gray path,
also commonly called a Gray code, is any sequence that satisfies the conditions
of a Gray cycle except that the last element need not be adjacent to the first. In
other words, a Gray cycle is a Hamiltonian cycle on the vertices of the n-cube,
but a Gray code is simply a Hamiltonian path on that graph.

The most important binary Gray paths that are not also Gray cycles are
n-bit sequences (vg,v1,...,v2n_1) that are monotonic, in the sense that

v(vg) < v(vgys) for0<k<2"—2. (31)

(Here, as elsewhere, we use v to denote the “weight” or the “sideways sum” of a
binary string, namely the number of 1s that it has.) Trial and error shows that

15

16

COMBINATORIAL ALGORITHMS (F2A)

7.2.1.1

Fig. 14. Examples of
8-bit Gray codes:

a) standard;

b) balanced;

c¢) complementary;
d) long-run;

e) nonlocal;

f) monotonic;

g) trend-free.

7.2.1.1 GENERATING ALL n-TUPLES 17

there are essentially only two monotonic n-bit Gray codes for each n < 4, one
starting with 0" and the other starting with 0"~11. The two for n = 3 are

000, 001, 011, 010, 110, 100, 101, 111; (32)
001, 000, 010, 110, 100, 101, 111, 011. (33)

The two for n = 4 are slightly less obvious, but not really difficult to discover.

Since v(vg+1) = v(vk) £ 1 whenever vy is adjacent to vgy1, we obviously
can’t strengthen (31) to the requirement that all n-tuples be strictly sorted by
weight. But relation (31) is strong enough to determine the weight of each vy,
given k and the weight of vy, because we know that exactly (?) of the n-tuples
have weight j.

Figure 14 summarizes our discussions so far, by illustrating seven of the
zillions of Gray codes that make a grand tour through all 256 of the possible
8-bit bytes. Black squares represent ones and white squares represent zeros.
Figure 14(a) is the standard Gray binary code, while Fig. 14(b) is balanced with
exactly 256/8 = 32 transitions in each coordinate position. Fig.14(c) is a Gray
code analogous to Fig.13(a), in which the bottom 128 codes are complements
of the top 128. In Fig.14(d), the transitions in each coordinate position never
occur closer than five steps apart; in other words, all run lengths are at least 5.
The cycle in Fig.14(e) is nonlocal in the sense of exercise 59. Fig. 14(f) shows
a monotonic path for n = 8; notice how black it gets near the bottom. Finally,
Fig. 14(g) illustrates a Gray code that is totally nonmonotonic, in the sense that
the center of gravity of the black squares lies exactly at the halfway point in each
column. Standard Gray binary code has this property in seven of the coordinate
positions, but Fig. 14(g) achieves perfect black-white weight balance in all eight.
Such codes are called trend-free; they are important in the design of agricultural
and other experiments (see exercises 75 and 76).

Carla Savage and Peter Winkler [J. Combinatorial Theory A70 (1995), 230
248] found an elegant way to construct monotonic binary Gray codes for all n > 0.
Such paths are necessarily built from subpaths P,; in which all transitions are
between n-tuples of weights j and j + 1. Savage and Winkler defined suitable
subpaths recursively by letting P;g = 0,1 and, for all n > 0,

Pint1); = 1P _1ys 0Fn; (34)
P,j=0 ifj<0orj>n. (35)

Here 7, is a permutation of the coordinates that we will specify later, and the
notation P™ means that every element a,,_1 ... ajag of the sequence P is replaced
by bnp_1...b1bo, where bjr = a;. (We don’t define P™ by letting b; = ajr,
because we want (27)™ to be 29™.) It follows, for example, that

P20 = 0P10 = OO, 01 (36)
because P(_1) is vacuous; also

P21 =].Plﬂbl =].0, 11 (37)

17

18 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

because Pj; is vacuous and m; must be the identity permutation. In general,
P,; is a sequence of n-bit strings containing exactly (";1) strings of weight j
interleaved with (";1) strings of weight 7 + 1.

Let oy, and wy; be the first and last elements of P,;. Then we easily find

Wpj = QPI=117+1, for 0 < j < m; (38)
oo = 0™, for n > 0; (39)
Qnj = 10427:1)(]_71), for1<j<n. (40)

In particular, ay,; always has weight j, and wy,; always has weight j 4 1. We will
define permutations m, of {0,1,...,n — 1} so that both of the sequences

P, PR P, PR .. (41)
and PR P, PR P., .. (42)
are monotonic binary Gray paths for n =1, 2, 3, In fact, the monotonicity

is clear, so only the Grayness is in doubt; and the sequences (41), (42) link up
nicely because the adjacencies

Ao —— Qnl1 — "~ Un(n-1) Wno ——Wnp1 — """~ Wn(n-1) (43)

follow immediately from (34), regardless of the permutations m,. Thus the
crucial point is the transition at the comma in formula (34), which makes P, 11);
a Gray subpath if and only if

W = a . for0<j<n. (44)

n(j—1) nj

For example, when n = 2 and j = 1 we need (01)™ = ag; = 10, by (38)-
(40); hence m2 must transpose coordinates 0 and 1. The general formula (see
exercise 71) turns out to be

Tn = O'nﬂ-rzz—lv (45)
where o, is the n-cycle (n—1 ... 10). The first few cases are therefore
T = (0), T4 — (03),
m = (01), ™5 = (04321),
73 = (021), me = (06562413);

no simple “closed form” for the magic permutations 7, is apparent. Exercise 73
shows that the Savage—Winkler codes can be generated efficiently.

Nonbinary Gray codes. We have studied the case of binary n-tuples in
great detail, because it is the simplest, most classical, most applicable, and
most thoroughly explored part of the subject. But of course there are numerous
applications in which we want to generate (ai,...,a,) with coordinates in the
more general ranges 0 < a; < m, as in Algorithm M. Gray codes apply nicely
to this case as well.

Consider, for example, decimal digits, where we want 0 < a; < 10 for
each j. Is there a decimal way to count that is analogous to the Gray binary
code, changing only one digit at a time? Yes; in fact, two natural schemes are

18

7.2.1.1 GENERATING ALL n-TUPLES 19

available. In the first, called reflected Gray decimal, the sequence for counting
up to a thousand with 3-digit strings has the form

000, 001, . ..,009,019,018, ...,011,010, 020,021, ...,091,090, 190, 191, . . ., 900,

with each coordinate moving alternately from 0 up to 9 and then back down from
9 to 0. In the second, called modular Gray decimal, the digits always increase
by 1 mod 10, therefore they “wrap around” from 9 to 0:

000, 001, . .., 009,019,010, . ..,017, 018,028,029, . . ., 099, 090, 190, 191, . . ., 900.

In both cases the digit that changes on step k is determined by the radix-ten
ruler function p1o(k), the largest power of 10 that divides k. Therefore each
n-tuple of digits occurs exactly once: We generate 107 different settings of the
rightmost j digits before changing any of the others, for 1 < 5 < n.

In general, the reflected Gray code in any mixed-radix system can be re-
garded as a permutation of the nonnegative integers, a function that maps an
ordinary mixed-radix number

bn_1, ---, b1, b
k = [n—1 P b 0] =by_1Mp_2...mimo+---+bymg + by (46)
Mn—1, ..., M1, Mo
into its reflected-Gray equivalent
~ Ap—1y -.-5 A1, AQ
(k) = [e] = Gn—1Mn—2---Mamo + -+ +a1mo +ao, (47)
mn—1,...,M1, Mo

just as (7) does this in the special case of binary numbers. Let

Aj:[an,l,...,aj}’ Bj:[bnil,.“’bj], (48)

Mp—1,y...,My Mp—1y...,My
with A, = B,, = 0, so that when 0 < j < n we have
Aj = m]'Aj+1 + a; and B; =m;jBjq1 +0b;. (49)
The rule connecting the a’s and b’s is not difficult to derive by induction:

{ b, if Bjy1 is even;
a; =

m; —1—b;, if Bj,y is odd. (50)

(Here we are numbering the coordinates of the n-tuples (a,_1,-..,a1,a0) and
(bn—1,--.,b1,b0) from right to left, for consistency with (7) and the conven-
tions of mixed-radix notation in Eq. 4.1—(9). Readers who prefer notations like
(a1,...,ayn) can change j to n — j in all the formulas if they wish.) Going the
other way, we have
aj;, ifaj41 +ajp2+--- is even;
b; = {) . (51)
m; —1—a;, ifaji1+ajp2+---isodd
Curiously, rule (50) and its inverse in (51) are exactly the same when all of the
radices m; are odd. In Gray ternary code, for example, when mg = my = --- = 3,
we have §((10010211012)3) = (12210211010)5 and also §((12210211010)3) =

19

20 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

(10010211012)3. Exercise 78 proves (50) and (51), and discusses similar formulas
that hold in the modular case.

We can in fact generate such Gray sequences looplessly, generalizing Algo-
rithms M and L:

Algorithm H (Loopless reflected mized-radiz Gray generation). This algorithm
visits all n-tuples (an—1,...,a0) such that 0 < a; < m; for 0 < j < n, changing
only one coordinate by 41 at each step. It maintains an array of focus pointers
(fn,---,fo) to control the actions as in Algorithm L, together with an array of
directions (0p_1,...,00). We assume that each radix m; is > 2.

H1. [Initialize.] Set a;j <— 0, f; < j, and 0; < 1, for 0 < j < n; also set f, < n.

H2. [Visit.] Visit the n-tuple (an—1,...,a1,a0).

H3. [Choose j.] Set j < fo and fo « 0. (Asin Algorithm L, j was the rightmost
active coordinate; all elements to its right have now been reactivated.)

H4. [Change coordinate j.] Terminate if j = n; otherwise set a; < a; + o,.

HS5. [Reflect?] If a; = 0 or a; = m; — 1, set 0; + —o,, f; < fj+1, and
fj+1 < j + 1. (Coordinate j has thus become passive.) Return to H2. |

A similar algorithm generates the modular variation (see exercise 77).

*Subforests. An interesting and instructive generalization of Algorithm H,
discovered by Y. Koda and F. Ruskey [J. Algorithms 15 (1993), 324-340], sheds
further light on the subject of Gray codes and loopless generation. Suppose we
have a forest of n nodes, and we want to visit all of its “principal subforests,”
namely all subsets of nodes S such that if z is in S and z is not a root, the
parent of z is also in S. For example, the 7-node forest {4k has 33 such subsets,
corresponding to the black nodes in the following 33 diagrams:

RS S S D D S SED SR SR ST SRS

IJ}% IJ}% 30}0 Xo}. Xok IJ}\O IJ}\O M}\. 3J>\. IJ}% 33}% (52)

RS SR S D R S D S S S S
Notice that if we read the top row from left to right, the middle row from right
to left, and the bottom row from left to right, the status of exactly one node
changes at each step.

If the given forest consists of degenerate nonbranching trees, the principal
subforests are equivalent to mixed-radix numbers. For example, a forest like

g O g O
has 3 x 2 x 4 X 2 principal subforests, corresponding to 4-tuples (z1,z2, 3, T4)

such that 0 <z < 3,0 <22 < 2,0 <23 <4, and 0 < x4 < 2; the value of z;
is the number of nodes selected in the jth forest. When the algorithm of Koda

20

7.2.1.1 GENERATING ALL n-TUPLES 21

and Ruskey is applied to such a forest, it will visit the subforests in the same
order as the reflected Gray code on radices (3,2,4,2).

Algorithm K (Loopless reflected subforest generation). Given a forest whose
nodes are (1,...,n) when arranged in postorder, this algorithm visits all binary
n-tuples (ai,...,a,) such that a, > a, whenever p is a parent of g. (Thus,
ap = 1 means that p is a node in the current subforest.) Exactly one bit a;
changes between one visit and the next. Focus pointers (fo, f1, .. ., fn) analogous
to those of Algorithm L are used together with additional arrays of pointers
(0,11, ...,1,) and (ro,71,...,7), which represent a doubly linked list called the
“current fringe.” The current fringe contains all nodes of the current subforest
and their children; r¢ points to its leftmost node and [y to its rightmost.

An auxiliary array (co,ci,-..,c,) defines the forest as follows: If p has no
children, ¢, = 0; otherwise ¢, is the leftmost (smallest) child of p. Also ¢ is the
leftmost root of the forest itself. When the algorithm begins, we assume that
rp = g and [, = p whenever p and g are consecutive children of the same family.
Thus, for example, the forest in (52) has the postorder numbering

e

therefore we should have (co, . (2,0,1,0,0,0,4,3) and 7o = 7, Iy = 2,

rg =6,lg =3, 74 =0>5,and ls = 4 at the beglnmng of step Kl in this case.

K1. [Initialize.] Set a;j <— 0 and f; < j for 1 < j < n, thereby making the initial
subforest empty and all nodes active. Set fo < 0, lg < n, r, < 0, 7o < co,
and ., < 0, thereby putting all roots into the current fringe.

K2. [Visit.] Visit the subforest defined by (a1,...,ax).

K3. [Choose p.] Set g < lo, p + fq. (Now p is the rightmost active node of the
fringe.) Also set fq < ¢ (thereby activating all nodes to p’s right).

K4. [Check a,.] Terminate the algorithm if p = 0. Otherwise go to K6 if a, = 1.

K5. [Insert p’s children.] Set a, <— 1. Then, if ¢, # 0, set ¢ < rp, g < p—1,
Tp—1 4 G, Tp < Cp, lc, < p (thereby putting p’s children to the right of p
in the fringe). Go to KT7.

K6. [Delete p’s children.] Set a, < 0. Then, if ¢, # 0, set g < rp_1, Tp < ¢,
lq < p (thereby removing p’s children from the fringe).

K7. [Make p passive.] (At this point we know that p is active.) Set f, < fi,
and fi, < l,. Return to K2. 1

The reader is encouraged to play through this algorithm on examples like (52),
in order to understand the beautiful mechanism by which the fringe grows and
shrinks at just the right times.

21

22 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

*Shift register sequences. A completely different way to generate all n-tuples of
m-ary digits is also possible: We can generate one digit at a time, and repeatedly
work with the n most recently generated digits, thus passing from one n-tuple
(zo,Z1,-..,Zn—1) to another one (x1,...,Zn_1,2,) by shifting an appropriate
new digit in at the right. For example, Fig. 15 shows how all 5-bit numbers can
be obtained as blocks of 5 consecutive bits in a certain cyclic pattern of length 32.
This general idea has already been discussed in some of the exercises of Sections
2.3.4.2 and 3.2.2, and we now are ready to explore it further.

—
A2 =229
A D~ O
%, 222358
o, D@ NS S

Fig. 15.

<3 v OV <,
.. S’y 0@
A de Bruijn cycle N § § S % O\Oz %

M o
for 5-bit numbers. S 2 o

Algorithm S (Generic shift register generation). This algorithm visits all n-
tuples (a1,...,a,) such that 0 < a; < m for 1 < j < n, provided that a suitable
function f is used in step S3.

S1. [Initialize.] Set a; - 0 for —n < j < 0 and k + 1.

S2. [Visit.] Visit the n-tuple (ag—_n,-..,ak—1). Terminate if k = m™.

S3. [Advance.] Set ax « f(ag—n,.-.,ak-1), k < k + 1, and return to S2. |

Every function f that makes Algorithm S valid corresponds to a cycle of
m™ radix-m digits such that every combination of n digits occurs consecutively
in the cycle. For example, the case m = 2 and n = 5 illustrated in Fig. 15
corresponds to the binary cycle

00000100011001010011101011011111; (53)
and the first m? digits of the infinite sequence
0011021220313233041424344 ... (54)

yield an appropriate cycle for n = 2 and arbitrary m. Such cycles are commonly
called m-ary de Bruijn cycles, because N. G. de Bruijn treated the binary case
for arbitrary n in Indagationes Mathematice 8 (1946), 461-467.

Exercise 2.3.4.2-23 proves that exactly m!m"_l/m" functions f have the
required properties. That’s a huge number, but only a few of those functions are
known to be efficiently computable. We will discuss three kinds of f that appear
to be the most useful.

22

7.2.1.1 GENERATING ALL n-TUPLES 23

Table 1
PARAMETERS FOR ALGORITHM A
3:1 8:1,5 13:1,3 18:7 23:5 28 : 3
4:1 9:4 14:1,11 19:1,5 24:1,3 29 : 2
5:2 10:3 15:1 20:3 25:3 30:1,15
6:1 11:2 16:2,3 21:2 26:1,7 31:3
7:1 12:3,4 17:3 22:1,7 27:1,7 32:1,27

The entries ‘n : s’ or ‘n : 5,¢’ mean that the polynomials ™ + z* + 1 or ™ + (z°® + 1)(z + 1)
are primitive modulo 2. Additional values up to n = 168 have been tabulated by W. Stahnke,
Math. Comp. 27 (1973), 977-980.

The first important case occurs when m is a prime number, and f is the
almost-linear recurrence

i, if (z1,z2,...,2,) = (0,0,...,0);
f(z1,--.,2n) =< 0, if (z1,z2,...,2,) = (1,0,...,0); (55)
(c1z1 + coza + -+ - + cpx,) mod m, otherwise.
Here the coefficients (cy,...,c,) must be such that
" —cpr™ T — o — (56)

is a primitive polynomial modulo m, in the sense discussed following Eq. 3.2.2—
(9). The number of such polynomials is ¢(m™ — 1)/n, large enough to allow us
to find one in which only a few of the ¢’s are nonzero. [This construction goes
back to a pioneering paper of Willem Mantel, Nieuw Archief voor Wiskunde (2)
1 (1897), 172-184.]

For example, suppose m = 2. We can generate binary n-tuples with a very
simple loopless procedure:

Algorithm A (Almost-linear bit-shift generation). This algorithm visits all n-

bit vectors, by using either a special offset s [Case 1] or two special offsets s and ¢

[Case 2], as found in Table 1.

A1. [Initialize.] Set (zo,Z1,...,Zn-1) + (1,0,...,0) and k < 0, j + s. In
Case 2, also set 2 <t and h < s+ t.

A2. [Visit.] Visit the n-tuple (zx_1,...,%0, Tn_1,---,Tkt1,Tk)-

A3. [Test for end.] If z4 # 0, set r < 0; otherwise set r < r + 1, and go to A6
if r =n — 1. (We have just seen r consecutive zeros.)

A4, [Shift.] Set k < (k—1)modn and j + (j — 1) modn. In Case 2 also set
1<+ (i—1)modn and h < (h — 1) mod n.

A5, [Compute a new bit.] Set zy, < z1 ® x; [Case 1] or z « zr B z; B z; D zh
[Case 2]. Return to A2.

A6. [Finish.] Visit (0,...,0) and terminate. |

Appropriate offset parameters s and possibly ¢ almost certainly exist for all n,

because primitive polynomials are so abundant; for example, eight different
choices of (s,t) would work when n = 32, and Table 1 merely lists the smallest.

23

24 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

However, a rigorous proof of existence in all cases lies well beyond the present
state of mathematical knowledge.

Our first construction of de Bruijn cycles, in (55), was algebraic, relying for
its validity on the theory of finite fields. A similar method that works when m
is not a prime number appears in exercise 3.2.2-21. Our next construction, by
contrast, will be purely combinatorial. In fact, it is strongly related to the idea
of modular Gray m-ary codes.

Algorithm R (Recursive de Bruijn cycle generation). Suppose f() is a coroutine
that will output the successive digits of an m-ary de Bruijn cycle of length m",
beginning with n zeros, when it is invoked repeatedly. This algorithm is a similar
coroutine that outputs a cycle of length m™*!, provided that n > 2. It maintains
three private variables x, y, and t¢; variable x should initially be zero.

R1. [Output.] Output z. Go to R3 if z # 0 and ¢t > n.

R2. [Invoke f.] Set y « f().

R3. [Count ones.] If y = 1, set t + t + 1; otherwise set ¢t + 0.
RA4. [Skip one?] If t = n and z # 0, go back to R2.

R5. [Adjust z.] Set z «+ (z + y) mod m and return to R1. |

For example, let m = 3 and n = 2. If f() produces the infinite 9-cycle
001102122 001102122 O..., (57)
then Algorithm R will produce the following infinite 27-cycle at step R1:

y = 001021220011110212200102122 001 ...
t= 001001000012340010000100100 001...
z =000110102220120020211122121 0001...

The proof that Algorithm R works correctly is interesting and instructive (see
exercise 93). And the proof of the next algorithm, which doubles the window
size n, is even more so (see exercise 95).

Algorithm D (Doubly recursive de Bruijn cycle generation). Suppose f()
and f'() are coroutines that each will output the successive digits of an m-ary
de Bruijn cycle of length m™ when invoked repeatedly, beginning with n zeros.
(The two cycles are identical, but they must be generated by independent corou-
tines, because we will consume their values at different rates.) This algorithm is
a similar coroutine that outputs a cycle of length m2™. It maintains six private
variables z, y, t, ', v/, and t'; variables = and z’ should initially be m.

The special parameter r must be set to a constant value such that

0<r<m and ged(m™ —r, m™ 4+ r) = 2. (58)
The best choice is usually 7 = 1 when m is odd and r = 2 when m is even.
D1. [Possibly invoke f.] If t Z#n or > r, set y « f().
D2. [Count repeats.] If z # y, set £ < y and ¢t < 1. Otherwise set ¢t <+ ¢ + 1.
D3. [Output from f.] Output the current value of z.

24

7.2.1.1 GENERATING ALL n-TUPLES 25

D4. [Invoke f'.] Set y' « f'().

D5. [Count repeats.] If &' # ¢/, set 2’ < y’ and ¢’ < 1. Otherwise set ¢’ « ¢’ +1.

D6. [Possibly reject f'.] If # = n and 2’ < r and either t < n or 2’ < z, go to
D4. If ! =n and ¢’ < r and ' = z, go to D3.

D7. [Output from f’.] Output the current value of z’. Return to D3 if ¢’ = n
and z’ < r; otherwise return to D1. |

The basic idea of Algorithm D is to output from f() and f’() alternately, making
special adjustments when either sequence generates n consecutive z’s for z < r.
For example, when f() and f'() produce the 9-cycle (57), we take r = 1 and get

t in step D2: 12 31211112 12312111 12123121 11121231 21111212
z in step D3: 00001102122 00011021 22000110 21220001 102122000 ...
t' in step D6: 121211112121211112121211112121211112121211112121 ...

' in step D7: 0 11021220 11021220 11021220 11021220 11021220 1...;

so the 81-cycle produced in steps D3 and D7 is 00001011012 ...2222 00001....

The case m = 2 of Algorithm R was discovered by Abraham Lempel [IEEE
Trans. C-19 (1970), 1204-1209]; Algorithm D was not discovered until more than
25 years later [C. J. Mitchell, T. Etzion, and K. G. Paterson, IEEE Trans. IT-
42 (1996), 1472-1478]. By using them together, starting with simple coroutines
for n = 2 based on (54), we can build up an interesting family of cooperating
coroutines that will generate a de Bruijn cycle of length m™ for any desired m > 2
and n > 2, using only O(logn) simple computations for each digit of output.
(See exercise 96.) Furthermore, in the simplest case m = 2, this combination
“R&D method” has the property that its kth output can be computed directly,
as a function of k, by doing O(nlogn) simple operations on n-bit numbers.
Conversely, given any n-bit pattern 3, the position of 8 in the cycle can also be
computed in O(nlogn) steps. (See exercises 97-99.) No other family of binary
de Bruijn cycles is presently known to have the latter property.

Our third construction of de Bruijn cycles is based on the theory of prime
strings, which will be of great importance to us when we study pattern matching
in Chapter 9. Suppose v = af3 is the concatenation of two strings; we say that
a is a prefix of v and B is a suffixz. A prefix or suffix of v is called proper if its
length is positive but less than the length of . Thus S is a proper suffix of af3
if and only if @ # € and B # e.

Definition P. A string is prime if it is nonempty and (lexicographically) less
than all of its proper suffixes.

For example, 01101 is not prime, because it is greater than 01; but 01102 is
prime, because it is less than 1102, 102, 02, and 2. (We assume that strings are
composed of letters, digits, or other symbols from a linearly ordered alphabet.
Lexicographic or dictionary order is the normal way to compare strings, so we
write a < and say that « is less than 8 when « is lexicographically less than 3.
In particular, we always have o < af3, and a < af if and only if 8 # €.)

’

25

26 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

Prime strings have often been called Lyndon words, because they were
introduced by R. C. Lyndon [Trans. Amer. Math. Soc. 77 (1954), 202-215];
Lyndon called them “standard sequences.” The simpler term “prime” is justified
because of the fundamental factorization theorem in exercise 101. We will,
however, continue to pay respect to Lyndon implicitly by often using the letter A
to denote strings that are prime.

Several of the most important properties of prime strings were derived by
Chen, Fox, and Lyndon in an important paper on group theory [Annals of Math.
68 (1958), 81-95], including the following easy but basic result:

Theorem P. A nonempty string that is less than all its cyclic shifts is prime.
(The cyclic shifts of a; ...a, are az...anai, az...a,a1a2, ..., Apai ...Gn_1.)

Proof. Suppose v = af is not prime, because o # € and v > 8 # €; but suppose
~ is also less than its cyclic shift Sa. Then the conditions 8 < v < Sa imply
that v = B0 for some string 8 < «. Therefore, if 7y is also less than its cyclic
shift 8, we have § < a < aff < 8. But that is impossible, because a and 6
have the same length. |

Let L., (n) be the number of m-ary primes of length n. Every string a; . .. ap,
together with its cyclic shifts, yields d distinct strings for some divisor d of n,
corresponding to exactly one prime of length d. For example, from 010010 we
get also 100100 and 001001 by cyclic shifting, and the smallest of the periodic
parts {010, 100,001} is the prime 001. Therefore we must have

> dLn(d) = m®, forall m,n> 1. (59)
d\n
This family of equations can be solved for L,,(n) using exercise 4.5.3-28(a), and
we obtain .
Lm(n) = = > p(d)ym™*. (60)
n d\n
During the 1970s, Harold Fredricksen and James Maiorana discovered a
beautifully simple way to generate all of the m-ary primes of length n or less,
in increasing order [Discrete Math. 23 (1978), 207-210]. Before we are ready to
understand their algorithm, we need to consider the n-extension of a nonempty
string A, namely the first n characters of the infinite string A For example,
the 10-extension of 123 is 1231231231. In general if |A\| = k, its n-extension is
Aln/k] N where X is the prefix of A whose length is n mod k.

Definition Q. A string is preprime if it is a nonempty prefix of a prime, on
some alphabet.

Theorem Q. A string of length n > 0 is preprime if and only if it is the n-
extension of a prime string A of length k < n. This prime string is uniquely
determined.

Proof. See exercise 105. |

26

7.2.1.1 GENERATING ALL n-TUPLES 27

Theorem Q) states, in essence, that there is a one-to-one correspondence between
primes of length < n and preprimes of length n. The following algorithm
generates all of the m-ary instances, in increasing order.

Algorithm F (Prime and preprime string generation). This algorithm visits

all m-ary n-tuples (a1, ..., a,) such that the string a; ... a, is preprime. It also

identifies the index j such that a; .. .a, is the n-extension of the prime a; ...a;.

F1. [Initialize.] Set ay < -+ ¢ a, + 0 and j <+ 1; also set ap + —1.

F2. [Visit.] Visit (ay,...,a,) with index j.

F3. [Prepare to increase.] Set j <— n. Then if a; = m — 1, decrease j until
finding a; <m — 1.

F4. [Add one.] Terminate if j = 0. Otherwise set a; < a; +1. (Now a;...a; is
prime, by exercise 105(a).)

F5. [Make n-extension.] For k <— j+ 1, ..., n (in this order) set ax ak_;.
Return to F2. 1

For example, Algorithm F visits 32 ternary preprimes when m = 3 and n = 4:

0000 0011 0022 0111 0122 0212 1111 1212
0001 0012 0101 0112 0202 0220 1112 1221
0002, 0020 0102 0120 0210 0221 1121 1222
0010 0021 0110 0121 0211 0222 1122 2222

(61)

(The digits preceding ¢ are the prime strings 0, 0001, 0002, 001, 0011, ..., 2)

Theorem () explains why this algorithm is correct, because steps F3 and F4
obviously find the smallest m-ary prime of length < n that exceeds the previous
preprime aj ...a,. Notice that after a; increases from 0 to 1, the algorithm
proceeds to visit all the (m — 1)-ary primes and preprimes, increased by 1...1.

Algorithm F is quite beautiful, but what does it have to do with de Bruijn
cycles? Here now comes the punch line: If we output the digits ay, ..., a; in
step F2 whenever j is a divisor of n, the sequence of all such digits forms a de
Bruijn cycle! For example, in the case m = 3 and n = 4, the following 81 digits
are output:

00001 00020011 00120021 002201 01020111 0112
01210122020211021202210222111121122121222 2. (62)

(We omit the primes 001, 002, 011, ..., 122 of (61) because their length does
not divide 4.) The reasons underlying this almost magical property are explored
in exercise 108. Notice that the cycle has the correct length, by (59).

There is a sense in which the outputs of this procedure are actually equiva-
lent to the “granddaddy” of all de Bruijn cycle constructions that work for all m
and n, namely the construction first published by M. H. Martin in Bull. Amer.
Math. Soc. 40 (1934), 859-864: Martin’s original cycle for m = 3 and n = 4
was 2222122202211 . ..10000, the twos’ complement of (62). In fact, Fredricksen
and Maiorana discovered Algorithm F almost by accident while looking for a

27

28 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

simple way to generate Martin’s sequence. The explicit connection between
their algorithm and preprime strings was not noticed until many years later,
when Ruskey, Savage, and Wang carried out a careful analysis of the running
time [J. Algorithms 13 (1992), 414-430]. The principal results of that analysis
appear in exercise 107, namely
i) The average value of n — j in steps F3 and F5 is approximately 1/(m — 1).
ii) The total running time to produce a de Bruijn cycle like (62) is O(m™).

EXERCISES
1. [10] Explain how to generate all n-tuples (a1, ...,an) in which I; < a; < u;, given
lower bounds [/; and upper bounds u; for each coordinate. (Assume that I; < u;.)

2. [15] What is the 1000000th n-tuple visited by Algorithm M if n = 10 and m; = j

for 1 <j<n? Hint: [$3 2252271 01 = 1000000.

» 3. [M20] How many times does Algorithm M perform step M47

» 4. [18] On most computers it is faster to count down to O rather than up to m.
Revise Algorithm M so that it visits all n-tuples in the opposite order, starting with
(m1—1,...,my — 1) and finishing with (0,...,0).

» 5. [20] Algorithms such as the “fast Fourier transform” (exercise 4.6.4-14) often
end with an array of answers in bit-reflected order, having A[(bo ... bn—_1)2] in the place
where A[(bn—1...bo)z2] is desired. What is a good way to rearrange the answers into
proper order? [Hint: Reflect Algorithm M.]

6. [M17] Prove (7), the basic formula for Gray binary code.

7. [20] Figure 10(b) shows the Gray binary code for a disk that is divided into 16
sectors. What would be a good Gray-like code to use if the number of sectors were 12
or 60 (for hours or minutes on a clock), or 360 (for degrees in a circle)?

8. [15] What’s an easy way to run through all n-bit strings of even parity, changing
only two bits at each step?

9. [16] What move should follow Fig. 11, when solving the Chinese ring puzzle?

» 10. [M21] Find a simple formula for the total number of steps A, or B, in which a
ring is (a) removed or (b) replaced, in the shortest procedure for removing n Chinese
rings. For example, A3 =4 and Bz = 1.

11. [M22] (H. J. Purkiss, 1865.) The two smallest rings of the Chinese ring puzzle
can actually be taken on or off the bar simultaneously. How many steps does the puzzle
require when such accelerated moves are permitted?

» 12. [25] The compositions of n are the sequences of positive integers that sum to n.
For example, the compositions of 4 are 1111, 112, 121, 13, 211, 22, 31, and 4. An integer
n has exactly 2"~' compositions, corresponding to all subsets of the points {1,...,n—1}
that might be used to break the interval (0..n) into integer-sized subintervals.

a) Design a loopless algorithm to generate all compositions of n, representing each
composition as a sequential array of integers siss ... s;.

b) Similarly, design a loopless algorithm that represents the compositions implicitly
in an array of pointers qoqi ...q:, where the elements of the composition are
(go — q1)(¢1 — ¢2) ---(gt—1 — q¢) and we have go = n, g¢ = 0. For example, the
composition 211 would be represented under this scheme by the pointers go = 4,
¢1=2,q2=1, g3 =0, and with ¢t = 3.

28

7.2.1.1 GENERATING ALL n-TUPLES 29

13. [21] Continuing the previous exercise, compute also the multinomial coefficient
C= (sl,f.,sj) for use as the composition s; ... s; is being visited.

14. [20] Design an algorithm to generate all strings a1 ...a; such that 0 < j < n and
0 < a; <m; for 1 <1< j, in lexicographic order. For example, if m; = my = n = 2,
your algorithm should successively visit €, 0, 00, 01, 1, 10, 11.

> 15. [25] Design a loopless algorithm to generate the strings of the previous exercise.
All strings of the same length should be visited in lexicographic order as before, but
strings of different lengths can be intermixed in any convenient way. For example,
0, 00, 01, €, 10, 11, 1 is an acceptable order when m1 = m2 = n = 2.

16. [23] A loopless algorithm obviously cannot generate all binary vectors (a1, - .., an)
in lexicographic order, because the number of coordinates a; that need to change
between successive visits is not bounded. Show, however, that loopless lexicographic
generation does become possible if a linked representation is used instead of a sequential
one: Suppose there are 2n + 1 nodes {0,1,...,2n}, each containing a LINK field. The
binary n-tuple (a1,...,an) is represented by letting

LINK(0) = 1 + naz;
LINK(j — 1 + naj—1) = j + naj, for 1 <j<my
LINK(n + nan) = 0;

the other n LINK fields can have any convenient values.

17. [20] A well-known construction called the Karnaugh map [M. Karnaugh, Amer.
Inst. Elect. Eng. Trans. 72, part I (1953), 593-599] uses Gray binary code in two
dimensions to display all 4-bit numbers in a 4 X 4 torus:

0000 0001 0011 0010
0100 0101 0111 0110
1100 1101 1111 1110
1000 1001 1011 1010

(The entries of a torus “wrap around” at the left and right and also at the top and
bottom — just as if they were tiles, replicated infinitely often in a plane.) Show that,
similarly, all 6-bit numbers can be arranged in an 8 X 8 torus so that only one coordinate
changes when we move north, south, east, or west from any point.

> 18. [20] The Lee weight of a vector u = (u1,...,un), where each component satisfies
0 < u; < my, is defined to be

n
vi(u) =) min(u;,m; — u;);
j=1

and the Lee distance between two such vectors v and v is
dr(u,v) =vi(u—v), where ©u — v = ((u1 —wvi1) mod my, ..., (un — vp) mod mn).

(This is the minimum number of steps needed to change u to v if we adjust some
component u; by +1 (modulo m;) in each step.)

A quaternary vector has m; = 4 for 1 < j < n, and a binary vector has all m; = 2.
Find a simple one-to-one correspondence between quaternary vectors u = (uq,...,u,)
and binary vectors v’ = (uj,...,u5,), with the property that vi(u) = v(u') and
dr(u,v) =v(u' ®v').

29

30 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

19. [21] (The octacode.) Let g(z) = x> 4 22% + = — 1.
a) Use one of the algorithms in this section to evaluate Y zug zu; Zus Zus Zuy Zus Zug Zuce »
summed over all 256 polynomials

(vo+viz+ vox? + vng)g(m) mod 4 = ug 4+ urz +usz? +usz® + ugzt + usz® + ugz®
for 0 < vo,v1,v2,v3 < 4, where us is chosen so that 0 < ue < 4 and (uo + u1 +
u2 + uz + ug + us + g + uoe) mod 4 = 0.

b) Construct a set of 256 16-bit numbers that differ from each other in at least six
different bit positions. (Such a set, first discovered by Nordstrom and Robinson
[Information and Control 11 (1967), 613-616], is essentially unique.)

20. [M36] The 16-bit codewords in the previous exercise can be used to transmit 8
bits of information, allowing transmission errors to be corrected if any one or two bits
are corrupted; furthermore, mistakes will be detected (but not necessarily correctable)
if any three bits are received incorrectly. Devise an algorithm that either finds the
nearest codeword to a given 16-bit number u' or determines that at least three bits of
u’ are erroneous. How does your algorithm decode the number (1100100100001111)?
[Hint: Use the facts that 27 = 1 (modulo g(z) and 4), and that every quaternary
polynomial of degree < 3 is congruent to zJ + 2z*¥ (modulo g(z) and 4) for some
Jj,k€{0,1,2,3,4,5,6,00}, where 2™ = 0.]
21. [M30] A t-subcube of an n-cube can be represented by a string like ##x10%x0x,
containing ¢ asterisks and n — t specified bits. If all 2" binary n-tuples are written in
lexicographic order, the elements belonging to such a subcube appear in 2t' clusters
of consecutive entries, where t' is the number of asterisks that lie to the left of the
rightmost specified bit. (In the example given, n = 8, t = 5, and t' = 4.) But if the
n-tuples are written in Gray binary order, the number of clusters might be reduced.
For example, the (n — 1)-subcubes *...*0 and *...*1 occur in only 2”2 41 and 2"2
clusters, respectively, when Gray binary order is used, not in 2™~ of them.

a) Explain how to compute C (), the number of Gray binary clusters of the subcube

defined by a given string « of asterisks, 0s, and 1s. What is C(**10%%0%)?
b) Prove that C(«) always lies between 2t'—1 and 2¢', inclusive.
c) What is the average value of C(a), over all 2" *("}) possible ¢-subcubes?

22. [22] A “right subcube” is a subcube such as 0110#* in which all the asterisks
appear after all the specified digits. Any binary trie (Section 6.3) can be regarded as a
way to partition a cube into disjoint right subcubes, as in Fig. 16(a). If we interchange
the left and right subtries of every right subtrie, proceeding downward from the root,
we obtain a Gray binary trie, as in Fig. 16(b).

Prove that if the “lieves” of a Gray binary trie are traversed in order, from left to
right, consecutive lieves correspond to adjacent subcubes. (Subcubes are adjacent if
they contain adjacent vertices. For example, 00** is adjacent to 011% because the first
contains 0010 and the second contains 0110; but 011x is not adjacent to 10%sx.)

00xx* 11%x 00%x

010% 011% 100=% 011 010% 100*
1010 1011 1010 1011
Fig. 16. (a) Normal binary trie. (b) Gray binary trie.

30

7.2.1.1 GENERATING ALL n-TUPLES 31

23. [20] Suppose g(k) ® 27 = g(I). What is a simple way to find I, given j and k?
24. [M21] Counsider extending the Gray binary function g to all 2-adic integers (see
exercise 4.1-31). What is the corresponding inverse function gt~ 1?

> 25. [M25] Prove that if g(k) and g(I) differ in ¢ > 0 bits, and if 0 < k,l < 27, then
[2/3] < |k —1] < 2" — [29/3].
26. [25] (Frank Ruskey.) For which integers N is it possible to generate all of the

nonnegative integers less than N in such a way that only one bit of the binary repre-
sentation changes at each step?

> 27. [20] Let So = {1} and Spy1 =1/(2+ Sn) U1/(2 — Sp); thus, for example,

1 1 1 1 313
Se = = —. =.=.1
2 1 ’ 1) 1 72 1 {773757 }7

2 2 -
+2+1 +2—1 241 2—-1

and S, has 2" elements that lie between % and 1. Compute the 10*°th smallest element
Of SlOO-

28. [M27] A median of n-bit strings {a1,...,a:}, where as has the binary represen-
tation ax = a@x(n—1).--ako, is a string & = an—1...a0 whose bits a; for 0 < j < n
agree with the majority of the bits ax; for 1 < k < t. (If ¢ is even and the bits
ay; are half 0 and half 1, the median bit a; can be either 0 or 1.) For example, the
strings {0010,0100,0101,1110} have two medians, 0100 and 0110, which we can denote
by 01x0.
a) Find a simple way to describe the medians of Gy = {g(0),...,g(t — 1)}, the first ¢
Gray binary strings, when 0 < ¢t < 2".
b) Prove that if & = a@,,_;...ao is such a median, and if 2! < ¢ < 2", then the
string B obtained from a by complementing any bit a; is also an element of G;.

29. [M24] If integer values k are transmitted as n-bit Gray binary codes g(k) and
received with errors described by a bit pattern p = (pn—1 ... po)2, the average numerical

error is
271
1
on
k=0

(¢ (k) @ p) — K|,

assuming that all values of k£ are equally likely. Show that this sum is equal to
2’:01 (k @ p) — k|/2", just as if Gray binary code were not used, and evaluate it
explicitly.
> 30. [M27] (Gray permutation.) Design a one-pass algorithm to replace the array
elements (Xo, X1, X2,...,Xon_1) by (Xg(0), Xg(1)) Xg(2),-- -, Xg(2n—1)), using only a
constant amount of auxiliary storage. Hint: Considering the function g(n) as a per-
mutation of all nonnegative integers, show that the set

L ={0,1,(10)2, (100)2, (100%)2, (100%0)2, (100%0%)2, . .. }

is the set of cycle leaders (the smallest elements of the cycles).

31. [HM35] (Gray fields.) Let fn(z) = g(rn(z)) denote the operation of reflecting
the bits of an n-bit binary string as in exercise 5 and then converting to Gray binary
code. For example, the operation f3(z) takes (001)2 — (110)2 — (010)2 — (011)2 —
(101)2 — (111)2 — (100)2 — (001)2, hence all of the nonzero possibilities appear in

31

32 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

a single cycle. Therefore we can use f3 to define a field of 8 elements, with @ as the
addition operator and with multiplication defined by the rule

1) x 159 = 57790 = 1571 (57).
The functions fa, f5, and fe¢ have the same nice property. But fs does not, because
f4((1011)2) = (1011)a.
Find all n < 100 for which f, defines a field of 2" elements.
32. [M20] True or false: Walsh functions satisfy wi(—z) = (—1)*wi (z).
» 33. [M20] Prove the Rademacher-to-Walsh law (17).
34. [M21] The Paley functions pi(z) are defined by

po(@=1 and pi(@) = (~1)* piyye (22).
Show that px(z) has a simple expression in terms of Rademacher functions, analogous
to (17), and relate Paley functions to Walsh functions.

35. [HM23] The 2" x 2" Paley matrix P, is obtained from Paley functions just as
the Walsh matrix W, is obtained from Walsh functions. (See (20).) Find interesting
relations between P,,, W,, and the Hadamard matrix H,. Prove that all three matrices
are symmetric.

36. [21] Spell out the details of an efficient algorithm to compute the Walsh transform
(.’13(]7 . ,CCzn_l) of a given vector ()(07 ey X2"—1)-

37. [HM23] Let zi; be the location of the [th sign change in wg(z), for 1 <1 < k and
0 < 2z < 1. Prove that |zx; — I/(k + 1)| = O((log k) /k).

38. [M25] Devise a ternary generalization of Walsh functions.

39. [HM30] (J. J. Sylvester.) The rows of (¢) are orthogonal to each other and
have the same magnitude; therefore the matrix identity

AN) @G)G ()

(Aa + Bb Ab— Ba) <aA+bB>

vV

bA —aB

implies the sum-of-two-squares identity (a® + 5%)(A4%+ B?) = (aA+bB)? + (bA — aB)?.
Similarly, the matrix
a b c d

d ¢ —-b -—a
¢c —d —a b
leads to the sum-of-four-squares identity
(@®+b° 4+ +d*) (A’ + B> +C°+D?) = (aA+bB+cC+dD)* 4 (bA—aB+dC —cD)?
+ (dA+ ¢B — bC — aD)® + (cA — dB — aC + bD)>.
a) Attach the signs of the matrix H3 in (21) to the symbols {a,b,c,d,e, f,g,h},

obtaining a matrix with orthogonal rows and a sum-of-eight-squares identity.
b) Generalize to Hs and higher-order matrices.

> 40. [21] Would the text’s five-letter word computation scheme produce correct an-
swers also if the masks in step W2 were computed as m; = z A (257 — 1) for 0 < j < 57

32

7.2.1.1 GENERATING ALL n-TUPLES 33

41. [25] If we restrict the five-letter word problem to the most common 3000 words—
thereby eliminating ducky, duces, dunks, dinks, dinky, dices, dicey, dicky, dicks,
picky, pinky, punky, and pucks from (23) —how many valid words can still be gener-
ated from a single pair?

42. [35] (M. L. Fredman.) Algorithm L uses ©(nlogn) bits of auxiliary memory for
focus pointers as it decides what Gray binary bit a; should be complemented next.
On each step L3 it examines O(logn) of the auxiliary bits, and it occasionally changes
Q(logn) of them.

Show that, from a theoretical standpoint, we can do better: The n-bit Gray binary
code can be generated by changing at most 2 auxiliary bits between visits. (We still
allow ourselves to examine O(logn) of the auxiliary bits on each step, so that we know
which of them should be changed.)

43. [47] Determine d(6), the number of 6-bit Gray cycles.

44. [M37] Show that arbitrary delta sequences for Gray cycles on n — 1 or n — 2 bits
can be used to construct a large number of delta sequences for n-bit Gray cycles with
the property that exactly (a) one or (b) two of the coordinate names occur only twice.
45. [M25] Prove that the sequence d(n) has doubly exponential growth: There is a
constant A > 1 such that d(n) = Q(A2").

46. [HM48] Determine the asymptotic behavior of d(n)'/?" as n — co.

47. [M46] (Silverman, Vickers, and Sampson.) Let Sk = {g(0),...,9(k — 1)} be the
first k elements of the standard Gray binary code, and let H(k,v) be the number
of Hamiltonian paths in S; that begin with 0 and end with v. Prove or disprove:
H(k,v) < H(k,g(k — 1)) for all v € S that are adjacent to g(k).

48. [36] Prove that d(n) < 4(n/2)*" if the conjecture in the previous exercise is true.
[Hint: Let d(n, k) be the number of n-bit Gray cycles that begin with g(0)...g(k —1);
the conjecture implies that d(n) < cn1...cnk-1)d(n, k), where cui is the number of
vertices adjacent to g(k — 1) in the n-cube but not in Sk.]

49. [20] Prove that for all n > 1 there is a 2n-bit Gray cycle in which vy 42n—1 is the
complement of v, for all £ > 0.

50. [21] Find a construction like that of Theorem D but with [even.

51. [M24] Complete the proof of Corollary B to Theorem D.

52. [M20] Prove that if the transition counts of an n-bit Gray cycle satisfy co < c1 <
-+ < ¢n—1, we must have co + - -+ 4+ ¢j—1 > 27, with equality when j = n.

53. [M46] If the numbers (co,...,cn—1) are even and satisfy the condition of the
previous exercise, is there always an n-bit Gray cycle with these transition counts?

54. [M20] (H.S. Shapiro, 1953.) Show that if a sequence of integers (a1, ..., asn) con-
tains only n distinct values, then there is a subsequence whose product ax+1ax+2 .- . a;
is a perfect square, for some 0 < k < [< 2". However, this conclusion might not be
true if we disallow the case [= 2™.

55. [47] (F. Ruskey and C. Savage, 1993.) If (vo,...,van_1) is an n-bit Gray cycle,
the pairs { {vak,vart+1} | 0 < k < 2"~' } form a perfect matching between the vertices
of even and odd parity in the n-cube. Conversely, does every such perfect matching
arise as “half” of some n-bit Gray cycle?

56. [M30] (E.N. Gilbert, 1958.) Say that two Gray cycles are equivalent if their delta
sequences can be made equal by permuting the coordinate names, or by reversing the

33

34 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

cycle and/or starting the cycle at a different place. Show that the 2688 different 4-bit
Gray cycles fall into just 9 equivalence classes.

57. [82] Consider a graph whose vertices are the 2688 possible 4-bit Gray cycles,
where two such cycles are adjacent if they are related by one of the following simple

transformations:
o o

Before After Type 1 After Type 2 After Type 3 After Type 4

(Type 1 changes arise when the cycle can be broken into two parts and reassembled
with one part reversed. Types 2, 3, and 4 arise when the cycle can be broken into three
parts and reassembled after reversing 0, 1, or 2 of the parts. The parts need not have
equal size. Such transformations of Hamiltonian cycles are often possible.)

Write a program to discover which 4-bit Gray cycles are transformable into each
other, by finding the connected components of the graph; restrict consideration to only
one of the four types at a time.

» 58. [21] Let « be the delta sequence of an n-bit Gray cycle, and obtain g8 from a by
changing g occurrences of 0 to n, where g is odd. Prove that 83 is the delta sequence
of an (n + 1)-bit Gray cycle.

59. [22] The 5-bit Gray cycle of (30) is nonlocal in the sense that no 2* consecutive
elements belong to a single t-subcube, for 1 < t < n. Prove that nonlocal n-bit Gray
cycles exist for all n > 5. [Hint: See the previous exercise.]

60. [20] Show that the run-length-bound function satisfies r(n + 1) > r(n).

61. [M30] Show that r(m +n) > r(m)+r(n) —1if (a) m =2 and 2 < r(n) < 8; or
(b) m < n and r(n) < 2™3.

62. [46] Does r(8) =67

63. [30] (Luis Goddyn.) Prove that r(10) > 8.

» 64. [HM35] (L. Goddyn and P. Gvozdjak.) An n-bit Gray stream is a sequence of
permutations (09,01, ...,01-1) where each o is a permutation of the vertices of the
n-cube, taking every vertex to one of its neighbors.

a) Suppose (ug,- - .,uzm_1) is an m-bit Gray cycle and (00,01, ...,02m_1) is an n-bit
Gray stream. Let vo = 0...0 and vg+1 = vxOk, where o = Ok mod 2m if k > 2™.
Under what conditions is the sequence

W = (uovo, o1, U1V1, U1V2, - . -, Ugmin—1_1Vsmitn—1_1, Ugmtn—1_1VUpm+n—1)

an (m + n)-bit Gray cycle?
b) Show that if m is sufficiently large, there is an n-bit Gray stream satisfying the
conditions of (a) for which all run lengths of the sequence (vo, v1,...) are > n — 2.
c) Apply these results to prove that r(n) > n — O(logn).

65. [30] (Brett Stevens.) In Samuel Beckett’s play Quad, the stage begins and ends
empty; n actors enter and exit one at a time, running through all 2™ possible subsets,
and the actor who leaves is always the one whose previous entrance was earliest. When
n = 4, as in the actual play, some subsets are necessarily repeated. Show, however,
that there is a perfect pattern with exactly 2" entrances and exits when n = 5.

34

7.2.1.1 GENERATING ALL n-TUPLES 35

66. [40] Is there a perfect Beckett—Gray pattern for 8 actors?

67. [20] Sometimes it is desirable to run through all n-bit binary strings by changing
as many bits as possible from one step to the next, for example when testing a physical
circuit for reliable behavior in worst-case conditions. Explain how to traverse all binary
n-tuples in such a way that each step changes n or n — 1 bits, alternately.

68. [21] Rufus Q. Perverse decided to construct an anti-Gray ternary code, in which
each n-trit number differs from its neighbors in every digit position. Is such a code
possible for all n?

> 69. [M25] Modify the definition of Gray binary code (7) by letting
h(k) = (.. (be @ bs) (bs @ bs) (bs D b3 @ bz @ bo) (bs @ bo) (b2 @ by & bo)bl)27

When k = (.. b5b4bsbzb1bo)2.
a) Show that the sequence h(0), h(1), ..., h(2" — 1) runs through all n-bit numbers
in such a way that exactly 3 bits change each time, when n > 3.
b) Generalize this rule to obtain sequences in which exactly ¢ bits change at each
step, when t is odd and n > t.
70. [21] How many monotonic n-bit Gray codes exist for n =5 and n = 67
71. [M22] Derive (45), the recurrence that defines the Savage~Winkler permutations.
72. [20] What is the Savage-Winkler code from 00000 to 111117

> 73. [82] Design an efficient algorithm to construct the delta sequence of an n-bit
monotonic Gray code.

74. [M25] (Savage and Winkler.) How far apart can adjacent vertices of the n-cube
be, in a monotonic Gray code?

75. [82] Find all 5-bit Gray paths vo, ..., vs1 that are trend-free, in the sense that
21 k(=1)"" = 0 in each coordinate position j.
76. [M25] Prove that trend-free n-bit Gray codes exist for all n > 5.

77. [21] Modify Algorithm H in order to visit mixed-radix n-tuples in modular Gray
order.

78. [M26] Prove the conversion formulas (50) and (51) for reflected mixed-radix Gray
codes, and derive analogous formulas for the modular case.

> 79. [M22] When is the last n-tuple of the (a) reflected (b) modular mixed-radix Gray
code adjacent to the first?

80. [M20] Explain how to run through all divisors of a number, given its prime
factorization p3'...p;?, repeatedly multiplying or dividing by a single prime at each
step.

81. [M21] Let (ao,bo), (a1,b1), ..., (@m2_1,bm2_1) be the 2-digit m-ary modular
Gray code. Show that, if m > 2, every edge (z,y) — (=, (y + 1) mod m) and (z,y) —
((z + 1) mod m,y) occurs in one of the two cycles

(@0,b0) — (a1,b1) —+++—(@m2_1,bpm2_1) — (ao, bo),
(bo,a0) — (b1,a1) —+++— (bp2_1,@pn2_1) — (bo, ao).

> 82. [M25] (G. Ringel, 1956.) Use the previous exercise to deduce that there exist four
8-bit Gray cycles that, together, cover all edges of the 8-cube.

83. [41] Can four balanced 8-bit Gray cycles cover all edges of the 8-cube?

35

36 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

> 84. [25] (Howard L. Dyckman.) Figure 17 shows a fascinating puzzle called Loony
Loop or the Gordian Knot, in which the object is to remove a flexible cord from the
rigid loops that surround it. Show that the solution to this puzzle is inherently related
to the reflected Gray ternary code.

Fig. 17. The Loony Loop puzzle.

» 85. [M25] (Dana Richards.) IfI" = (ap, ..., @;_1) is a sequence of ¢ strings of length n
and I = (ap,...,a}_,) is a sequence of t' strings of length n', the boustrophedon
product T®T" is the sequence of tt' strings of length n + n’ that begins

’ / / ! / ! !
(Co0igy -+ -y QOO 1501 O/ 15+ o5 OOy Clp 0Ly - - vy Qi Q! 1, O30T 15 - - -)

and ends with oy_;af if t is even, a;_ja}/_q if t is odd. For example, the basic definition
of Gray binary code in (5) can be expressed in this notation as I, = (0,1)®I',_1 when
n > 0. Prove that the operation ® is associative, hence I'yy4n = 'y ® Ty

» 86. [26] Define an infinite Gray code that runs through all possible nonnegative
integer n-tuples (a1,...,a,) in such a way that max(ay,...,a,) < max(ai,...,ar)
when (ay,...,a,) is followed by (ai,...,an).

87. [27] Continuing the previous exercise, define an infinite Gray code that runs
through all integer n-tuples (ai,...,an), in such a way that max(|ai],-..,|as|) <
max(|ay],-- ., |ay|) when (aq,...,a,) is followed by (ai,...,ay).

> 88. [25] After Algorithm K has terminated in step K4, what would happen if we
immediately restarted it in step K27

> 89. [25] (Gray code for Morse code.) The Morse code words of length n (exercise
4.5.3-32) are strings of dots and dashes, where n is the number of dots plus twice the
number of dashes.

a) Show that it is possible to generate all Morse code words of length n by successively
changing a dash to two dots or vice versa. For example, the path for n = 3 must
be « —, ese, —« or its reverse.

b) What string follows « — — e+« — —+—« in your sequence for n = 157

90. [26] For what values of n can the Morse code words be arranged in a cycle, under
the ground rules of exercise 897 [Hint: The number of code words is Fry1.]

» 91. [34] Design a loopless algorithm to visit all binary n-tuples (a1,...,a,) such that
a1 < a2 > az < ag > ---. [The number of such n-tuples is Fi,y2.]

92. [M30] Is there an infinite sequence ®, whose first m" elements form an m-ary
de Bruijn cycle, for all m? [The case n = 2 is solved in (54).]
> 93. [M28] Prove that Algorithm R outputs a de Bruijn cycle as advertised.

94. [22] What is the output of Algorithm D when m = 5, n = 1, and r = 3, if the
coroutines f() and f'() generate the trivial cycles 01234 01234 01...?

36

7.2.1.1 GENERATING ALL n-TUPLES 37

> 95. [M23] Suppose an infinite sequence agaias ... of period p is interleaved with an
infinite sequence bob1b2 ... of period ¢ to form the infinite cyclic sequence

CpC1C2C3C4C5 ... = aoboalblazbz e

a) Under what circumstances does cocica ... have period pg? (The “period” of a
sequence apaids - - ., for the purposes of this exercise, is the smallest integer p > 0
such that ax = ag4p for all £ > 0.)

b) Which 2n-tuples would occur as consecutive outputs of Algorithm D if step D6
were changed to say simply “If # =n and z’ < r, go to D4”?

c) Prove that Algorithm D outputs a de Bruijn cycle as advertised.

> 96. [M23] Suppose a family of coroutines has been set up to generate a de Bruijn

cycle of length m™ using Algorithms R and D, based recursively on simple coroutines
for the base case n = 2.

a) How many coroutines of each type will there be?

b) What is the maximum number of coroutine activations needed to get one top-level

digit of output?

97. [M29] The purpose of this exercise is to analyze the de Bruijn cycles constructed
by Algorithms R and D in the important special case m = 2. Let fn(k) be the (k+1)st
bit of the 2"-cycle, so that f,(k) =0 for 0 < k < n. Also let j, be the index such that
0<jn<2"and fo(k) =1for jn < k< jn+n.

a) Write out the cycles (fn(0)... fa(2"— 1)) for n = 2, 3, 4, and 5.

b) Prove that, for all even values of n, there is a number 6, = +1 such that we have

f (k):{zfn(k)v lf0<k5]n or 2"—|—jn<ks2n+17
n+1 - 1+ Efn(k+6n)7 lfjn <k < 2n+jn7

where the congruence is modulo 2. (In this formula X f stands for the summation
function X f (k) = Z;:g f(j).) Hence jn41 = 2" — 6, when n is even.

c) Let (¢n(0)en(1)...ca(2*"— 5)) be the cycle produced when the simplified version
of Algorithm D in exercise 95(b) is applied to fn(). Where do the (2n — 1)-tuples
12771 and (01)™710 occur in this cycle?

d) Use the results of (c) to express fan(k) in terms of fr().

e) Find a (somewhat) simple formula for j, as a function of n.

98. [M34] Continuing the previous exercise, design an efficient algorithm to compute
fn(k), given n > 2 and k& > 0.

» 99. [M23] Exploit the technology of the previous exercises to design an efficient
algorithm that locates any given n-bit string in the cycle (f»(0) fa(1)... fo(2" = 1)).
100. [40] Do the de Bruijn cycles of exercise 97 provide a useful source of pseudo-
random bits when n is large?

» 101. [M30] (Unique factorization of strings into nonincreasing primes.)

a) Prove that if A and)\’ are prime, then A\’ is prime if A < X
b) Consequently every string o can be written in the form

a=AAz2...)\, AL > A > >)y, where each)\; is prime.

¢) In fact, only one such factorization is possible. Hint: Show that A\; must be the
lexicographically smallest nonempty suffix of a.

d) True or false: A1 is the longest prime prefix of a.

e) What are the prime factors of 31415926535897932384626433832795028841977

37

38 COMBINATORIAL ALGORITHMS (F2A) 7.2.1.1

102. [HM28] Deduce the number of m-ary primes of length n from the unique fac-
torization theorem in the previous exercise.

103. [M20] Use Eq.(59) to prove Fermat’s theorem that m? = m (modulo p).

104. [17] According to formula (60), about 1/n of all n-letter words are prime. How
many of the 5757 five-letter GraphBase words are prime? Which of them is the smallest
nonprime? The largest prime?
105. [M31] Let o be a preprime string of length n on an infinite alphabet.
a) Show that if the final letter of « is increased, the resulting string is prime.
b) If o has been factored as in exercise 101, show that it is the n-extension of A;.
¢) Furthermore a cannot be the n-extension of two different primes.

106. [M30] By reverse-engineering Algorithm F, design an algorithm that visits all
m-ary primes and preprimes in decreasing order.

107. [HMS30] Analyze the running time of Algorithm F.

108. [M35] Let A1 < -+ < A; be the m-ary prime strings whose lengths divide n, and
let a1 ...an, be any m-ary string. The object of this exercise is to prove that a1 ...an
appears in A1 ...A:A1A2; hence A1 ... is a de Bruijn cycle (since it has length m™).
For convenience we may assume that m = 10 and that strings correspond to decimal
numbers; the same arguments will apply for arbitrary m > 2.

a) Show that if a1 ...an = af is distinct from all its cyclic shifts, and if Ba = Ay is
prime, then af is a substring of A Aky1, unless o = 97 for some j > 1.

b) Where does af8 appear in Ay ...\ if B« is prime and « consists of all 9s? Hint:
Show that if apg1_;...an = 9' in step F2 for some I > 0, and if j is not a divisor
of n, the previous step F2 had an—;...a, = gitt,

¢) Now consider n-tuples of the form (af)¢, where d > 1 is a divisor of n and
Ba = A is prime.

d) Where do 899135, 997879, 913131, 090909, 909090, and 911911 occur when n=67

e) Is Ay ...\ the lexicographically least m-ary de Bruijn cycle of length m™?

109. [M22] An m-ary de Bruijn torus of size m> x m? for 2 x 2 windows is a matrix
of m-ary digits a:; such that each of the m* submatrices
(@ij Gi(j+1)) , 0<i,j<m?
A@i+1)j A(+1)(G+1)
is different, where subscripts wrap around modulo m?. Thus every possible m-ary 2 x 2

submatrix occurs exactly once; Ian Stewart [Game, Set, and Math (Oxford: Blackwell,
1989), Chapter 4] has therefore called it an m-ary ourotorus. For example,

0 0 10
0 0 01
01 1 1
1 011

is a binary ourotorus; indeed, it is essentially the only such matrix when m = 2, except
for shifting and/or transposition.
Consider the infinite matrix A whose entry in row 7 = (...az2a1a0)2 and column
Jj=(--.b2b1bo)2 is aij = (...cac100)2, where
co = (ao ® bo) (a1 @ b1) P by;
ck = (azrao ® bzk)bo ® (azk+1a0 ® b2rt1)(bo ® 1), for k > 0.

Show that the upper left 22" x 22" submatrix of A is a 2"-ary ourotorus for all n > 0.

38

7.2.1.1 GENERATING ALL n-TUPLES 39

110. [M25] Continuing the previous exercise, construct m-ary ourotoruses for all m.

111. [20] We can obtain the number 100 in twelve ways by inserting + and — signs
into the sequence 123456789; for example, 100 = 1 4+ 23 —4+54+64+78 -9 =
123 -45-67+89=-14+2-3+4+5+6+T78+09.
a) What is the smallest positive integer that cannot be represented in such a way?
b) Consider also inserting signs into the 10-digit sequence 9876543210.

» 112. [25] Continuing the previous exercise, how far can we go by inserting signs into
123456789876543217 For example, 100 = —1234 — 5 — 6 + 7898 — 7 — 6543 — 2 — 1.

39

ANSWERS TO EXERCISES

All that heard him were astonished
at his understanding and answers.

— Luke 2:47

SECTION 7.2.1.1

1. Let m; = u; —l; +1, and visit (a1 +11,...,an + 1) instead of visiting (a1,...,an)
in Algorithm M. Or, change ‘a; < 0’ to ‘a; < [;’ and ‘a; = m; — 1’ to ‘a; = u;’ in
that algorithm, and set lop < 0, ug < 1 in step M1.

2. (0,0,1,2,3,0,2,7,0,9).

3. Step M4 is performed mims...m; times when j = k; therefore the total is
> o H;c:l m; = my...mp(l+1/mp+1/mpmp_1+ -+ 1/mp...m1). If all m;
are 2 or more, this is less than 2m; ... m,. [Thus, we should keep in mind that fancy
Gray-code methods, which change only one digit per visit, actually reduce the total
number of digit changes by at most a factor of 2.]

4. N1. [Initialize.] Set a; < m; — 1 for 0 < j < n, where mo = 2.

N2. [Visit.] Visit the n-tuple (a1,...,an).

N3. [Prepare to subtract one.] Set j + n.

N4. [Borrow if necessary.] If a; = 0, set a; « m; — 1, j < j — 1, and repeat this
step.

NS5. [Decrease, unless done.] If 7 = 0, terminate the algorithm. Otherwise set
aj < a; — 1 and go back to step N2. 1|

5. Bit reflection is easy on a machine like MMIX, but on other computers we can
proceed as follows:

R1. [Initialize.] Set j < k < 0.

R2. [Swap.| Interchange A[j + 1] <+ A[k + 2"7']. Also, if j > k, interchange
A[j] & Alk] and A[j + 2" + 1] & Ak + 2" +1].

R3. [Advance k.] Set k < k + 2, and terminate if £ > 21,

R4. [Advance j.] Set h + 272, If j > h, repeatedly set j 7 — h and h < h/2
untilj < h. Then set] < J+h (NOW] = (bo N bn—1)2 ifk = (b'n—l c. bo)z.)
Return to R2. |

6. Ifg((an—l blbo)):((b2®b1)(b1®b0)) then g((lbn 1- b1b0)2) =
2" —I— g((Obn_l blbo) = (bz @ bl)(bl @ bo))z, where b =b @ 1
40

40

7.2.1.1 ANSWERS TO EXERCISES 41

7. To accommodate 2r sectors one can use g(k) for 2" —r < k < 2" + r, where
n = [lgr], because g(2" —7) ® g(2" + r — 1) = 2" by (5). [G. C. Tootill, Proc. IEE
103, Part B Supplement (1956), 434.] See also exercise 26.

8. Use Algorithm G with n < n—1 and include the parity bit ac at the right. (This
yields ¢(0), g(2), g(4), -...)

9. Replace the rightmost ring, since ~(1011000) is odd.

10. A, + B, =g¢"1(2" —1) = |2"*Y/3| and A, = B, + n. Hence A, = |2"/3+n/2]
and B, = |2"/3 —n/2].

Historical notes: The early Japanese mathematician Yoriyuki Arima (1714-1783)
treated this problem in his Shaki Sanpé (1769), Problem 44, observing that the n-
ring puzzle reduces to an (n — 1)-ring puzzle after a certain number of steps. Let
C, = A, — A, 1 = B, — B,_1 + 1 be the number of rings removed during this
reduction. Arima noticed that C, = 2Cn_1 — [n even]; thus he could compute A, =
Ci1+Cy+ -+ C, for n =9 without actually knowing the formula C,, = |'2”_1/ 3].

More than two centuries earlier, Cardano had already mentioned the “complicati
annuli” in his De Subtilitate Libri XXI (Nuremberg: 1550), Book 15. He wrote that
they are “useless yet admirably subtle,” stating erroneously that 95 moves are needed
to remove seven rings and 95 more to put them back. John Wallis devoted seven
pages to this puzzle in the Latin edition of his Algebra 2 (Oxford: 1693), Chapter 111,
presenting detailed but nonoptimum methods for the nine-ring case. He included the
operation of sliding a ring through the bar as well as putting it on or off, and he hinted
that shortcuts were available, but he did not attempt to find a shortest solution.

11. The solution to S, = Sp—2 + 1+ Sp—2 + Sp—1 when S; = S» = 11is S, =
2"~ — [n even|. [Math. Quest. Educational Times 3 (1865), 66-67.]

12. (a) The theory of n — 1 Chinese rings proves that Gray binary code yields the
compositions in a convenient order (4, 31, 211, 22, 112, 1111, 121, 13):

A1l. [Initialize.] Set t < 0, j < 1, s1 < n. (We assume that n > 1.)

A2, [Visit.] Visit s1...s;. Then set t < 1 — ¢, and go to A4 if t = 0.

A3. [Odd step.] If s; > 1, set s; « s; — 1, sj+1 < 1, j < j + 1; otherwise set
j 4+ j—1and s; < s; +1. Return to A2.

A4. [Even step.] If sj_1>1,set sj—1 ¢ sj—1—1, sSj41 4 85,8; 1, j+1;
otherwise set j « j — 1, s; < sjt1, Sj—1 < Sj—1 + 1 (but terminate if
j—1=0). Return to A2. 1|

(b) Now g1, ..., q:—1 represent rings on the bar:

B1. [Initialize.] Set t <— 1, go <— n. (We assume that n > 1.)

B2. [Visit.] Set g:+ < 0 and visit (go — g1) ---(g:—1 — q¢). Go to B4 if ¢ is even.

B3. [Odd step.] If g;—1 = 1, set t « t — 1; otherwise set ¢ + 1 and ¢ < ¢+ 1.
Return to step B2.

B4. [Even step.] If g:—2 = g+—1 + 1, set gs—2 < q+—1 and t < ¢ — 1 (but terminate
if t = 2); otherwise set ¢; « ¢q:—1, gt—1 + ¢: + 1, t < t+ 1. Return to B2. |

These algorithms [see J. Misra, ACM Trans. Math. Software 1 (1975), 285] are loopless
even in their initialization steps.

13. In step Al, also set C < 1. In step A3, set C + s;C if s; > 1, otherwise
C + C/(sj—1+1). Instep A4, set C <+ s;—1C if s;_1 > 1, otherwise C + C/(sj—2+1).

41

42 ANSWERS TO EXERCISES 7.2.1.1

Similar modifications apply to steps B1, B3, B4. Sufficient precision is needed to
accommodate the value C = n! for the composition 1...1; we are stretching the
definition of looplessness by assuming that arithmetic operations take unit time.

14. S1. [Initialize.] Set j + 0.
S2. [Visit.] Visit the string a; ... a;.
S3. [Lengthen.] If j < m, set j + j + 1, a; < 0, and return to S2.
S4. [Increase.| If a; < m; — 1, set a; < a; + 1 and return to S2.
S5. [Shorten.] Set j < j — 1, and return to S4 if j > 0. |

15. T1. [Initialize.] Set j < 0.
T2. [Even visit.] If j is even, visit the string a, .. .a;.
T3. [Lengthen.] If j < n, set j + j + 1, a; < 0, and return to T2.
T4. [Odd visit.] If j is odd, visit the string a; .. .a;.
T5. |
T6. |

Increase.] If a; < m; — 1, set a;j < a; + 1 and return to T2.
Shorten.] Set j « j — 1, and return to T4 if j > 0. |

This algorithm is loopless, although it may appear at first glance to contain loops; at
most four steps separate consecutive visits. The basic idea is related to exercise 2.3.1-5
and to “prepostorder” traversal (Algorithm 7.2.1.6Q).

16. Suppose LINK(j —1) = j+nbj for 1 < j<nand LINK(j —1+n) =7+ n(l—b;)
for 1 < j < n. These links represent (a1, ...,a,) if and only if g(b1...bn) = a1 ...an,
so we can use a loopless Gray binary generator to achieve the desired result.

17. Put the concatenation of 3-bit codes (g(j),g(k)) in row j and column k, for 0 <
J,k < 8. [It is not difficult to prove that this is essentially the only solution, except
for permuting and/or complementing coordinates and/or rotating rows, because the
coordinate that changes when moving north or south depends only on the row, and a
similar statement applies to columns. Karnaugh’s isomorphism between the 4-cube and
the 4 X 4 torus can be traced back to The Design of Switching Circuits by W. Keister,
A. E. Ritchie, and S. H. Washburn (1951), page 174. Incidentally, Keister went on to
design an ingenious variant of Chinese rings called SpinOut, and a generalization called
The Hexadecimal Puzzle, U.S. Patents 3637215-3637216 (1972).]

18. Use 2-bit Gray code to represent the digits u; = (0,1, 2, 3) respectively as the bit
pairs up;_qup; = (00,01,11,10). [C. Y. Lee introduced his metric in IEEE Trans. IT-4
(1958), 77-82. A similar m/2-bit encoding works for even values of m; for example,
when m = 8 we can represent (0, 1,2,3,4,5,6,7) by (0000,0001,0011,0111,1111,1110,
1100,1000). But such a scheme leaves out some of the binary patterns when m > 4.
19. (a) A modular Gray quaternary algorithm needs slightly less computation than
Algorithm M, but it doesn’t matter because 256 is so small. The result is z§ + 2§ +
28 + 28 + 14(2825 + 2123) + 5620212223 (28 + 23) (23 + 23).

(b) Replacing (zo, z1, 22, 23) by (1,z,2%,2) gives 1 + 11225 4+ 302% + 1122"° + 2'6;
thus all of the nonzero Lee weights are > 6. Now use the construction in the previous
exercise to convert each (uo,u1,uz,us, us, Us, Us, Uso) into a 16-bit number.

20. Recover the quaternary vector (uo,u1,u2,us, u4, Us, Us, Uoo) from u’, and use Al-
gorithm 4.6.1D to find the remainder of ug + u1z + - - - +uex® divided by g(z), mod 4;
that algorithm can be used in spite of the fact that the coefficients do not belong to a
field, because g(z) is monic. Express the remainder as 7 + 2z* (modulo g(z) and 4),
and let d = (k— j) mod 7, s = (uo + - - - + u6 + Uoco) mod 4.

42

7.2.1.1 ANSWERS TO EXERCISES 43

Case 1, s = 1: If k = oo, the error was z7 (in other words, the correct vector has
u;j + (u; — 1) mod 4); otherwise there were three or more errors.

Case 2, s = 3: If j = k the error was —z’; otherwise > 3 errors occurred.

Case 3, s = 0: If j = k = oo, no errors were made; if j = oo and k£ < oo,
at least four errors were made. Otherwise the errors were z® — z°, where a = G+
(00,6,5,2,3,1,4,0)) mod 7 according as d = (0, 1,2,3,4,5,6,00), and b = (j+2d) mod 7.

Case 4, s = 2: If j = co the errors were 2z*. Otherwise the errors were

zd + 2%, if k = oo;
—zd — g™, ifd=0;

z® + 2P if d € {1,2,4}, a = (j — 3d) mod 7, b = (j — 2d) mod T;
—z% — b if d € {3,5,6}, a= (j —3d)mod 7, b= (j — d) mod 7.

Given ' = (1100100100001111), we have u = (2,0,3,1,0,0,2,2) and 2 + 32° +
224+ 225 =14+ 32+ 322 = 2% + 2m6; also s = 2. Thus the errors are z2 + a:3, and
the nearest errorfree codeword is (2,0,2,0,0,0,2,2). Algorithm 4.6.1D tells us that
2+ 22> +22° = (2+ 22+ 22°) g(z) (modulo 4); so the eight information bits correspond
to (vo,v1,v2,v3) = (2,2,0,2). [A more intelligent algorithm would also say, “Aha: The
first 16 bits of 7.”]

For generalizations to other efficient coding schemes based on quaternary vectors,
see the classic paper by Hammons, Kumar, Calderbank, Sloane, and Solé, IEEE Trans.
IT-40 (1994), 301-319.

21. (a) C(e) = 1, C(0a) = C(la) = C(a), and C(xa) = 2C(a) — [10...0€ a].

Iterating this recurrence gives C(a) = 2t — ot 7le, — 2726, 4 — ... — 2061, where
e; = [10...0 € a;] and «; is the suffix of « following the jth asterisk. In the example
we have a; = *10%%0%, cvg = 10%*%0%, ..., a5 = €; thuse; = 0,e2 =1,e3 =1, e4 =0,

and es = 1 (by convention), hence C(*#10%%0%) = 2° — 2% — 22 — 21 — 10.

(b) We may remove trailing asterisks so that ¢ = t'. Then e; = 1 implies e;—1 =
-+ =-e; = 0. [The case C(a) = 2t'-1 occurs if and only if a ends in 107+ .]

(c) To compute the sum of C(a) over all t-subcubes, note that (7) clusters begin at
the n-tuple 0...0, and (nzl) begin at each succeeding n-tuple (namely one cluster for
each t-subcube containing that n-tuple and specifying the bit that changed). Thus the
average is ((7)+ (2" —1)(";"))/2"7*(}) = 2'(1—t/n) +2*~"(t/n). [The formula in (c)
holds for any n-bit Gray path, but (a) and (b) are specific to the reflected Gray binary
code. These results are due to C. Faloutsos, IEEE Trans. SE-14 (1988), 1381-1393.]

22. Let ax’ and B** be consecutive lieves of a Gray binary trie, where o and j are
binary strings and j < k. Then the last £ — j bits of a are a string o’ such that «
and Ba’ are consecutive elements of Gray binary code, hence adjacent. [Interesting
applications of this property to cube-connected message-passing concurrent computers
are discussed in A VLSI Architecture for Concurrent Data Structures by William J.
Dally (Kluwer, 1987), Chapter 3.]

23. 27 = g(k) @ g(I) = g(k ®) implies that | = k ® g"1(29) = k@ (27t —1). In
other words, if k = (bp_1...bo)2 we have | = (bp_1...bj11b;j...bo)2.

24. Defining g(k) = k @ |k/2]| as usual, we find g(k) = g(—1 — k); hence there are two
2-adic integers k such that g(k) has a given 2-adic value I. One of them is even, the
other is odd. We can conveniently define gl =Y to be the solution that is even; then
(8) is replaced by b; = a;—1 @ --- ® ao, for j > 0. For example, g[*l](l) = —2 by this
definition; when [is a normal integer, the “sign” of g{="(l) is the parity of I.

43

44 ANSWERS TO EXERCISES 7.2.1.1

25. Let p = k @ I; exercise 7.1-00 tells us that 2821+l _ 5 < k=1 < p. We

have v(g(p)) = V(g(k) @ g(1)) = t if and only if there are positive integers j1, ..., j
such that p = (171072192 .., (0 or 1)?*);. The largest possible p < 2" occurs when
ji=n+1—tand jo =--- = j; = 1, yielding p = 2™ — [2%/3]. The smallest possible
ollepl+1 _ o\ — (1]‘20]‘3...(1 or 0)7)y + 1 occurs when j, = .-+ = j, = 1, yielding

p = [2Y/3]. [C. K. Yuen, IEEE Trans. IT-20 (1974), 668; S. R. Cavior, IEEE Trans.
IT-21 (1975), 596.]

26. Let N = 2"t + ---+ 2" where ny > --- > ny > 0; also, let I';, be any Gray code
for {0,1,...,2"— 1} that begins at 0 and ends at 1, except that I'g is simply 0. Use

DR 2™ 4T, 1y ooy 2% e 234 TR 2™ 4 42" 4T, i s even;
Tp,, 2™ +TR oo, 2% e 42" TR 2™ 4 42" 4 T, if ¢ is odd.
27. In general, if K = (bn—1...bo)2, the (k+ 1)st largest element of S, is equal to

1/@2- ()" /(2= /2= (=D"/2 - (=D™))...),

corresponding to the sign pattern g(k) = (an—1-..ao)2. Thus we can compute any ele-
ment of S, in O(n) steps, given its rank. Setting & = 2'°° —10'® and n = 100 yields the
answer 373065177/1113604409. [Whenever f(z) is a positive and monotonic function,
the 2" elements f(+f(...+f(£z)...)) are ordered according to Gray binary code, as
observed by H. E. Salzer, CACM 16 (1973), 180. In this particular case there is, how-
ever, another way to get the answer, because we also have S, = //2,£2,...,+2,%+1//
using the notation of Section 4.5.3; continued fractions in this form are ordered by
complementing alternate bits of k.]

28. (a) Ast=1, 2, ..., bit a; of median(G;) runs through the periodic sequence
0,...,0,%,1,...,1,%0,...,0,%,...

with asterisks at every 2'*7th step. Thus the strings that correspond to the binary
representations of | (¢ — 1)/2] and |t/2]| are medians. And those strings are in fact
“extreme” cases, in the sense that all medians agree with the common bits of | (t—1)/2]
and |t/2], hence asterisks appear where they disagree. For example, when ¢t = 100 =
(01100100)2 and n = 8, we have median(G1ioo0) = 001100%x*.

(b) Since Ga: = 2G: U (2G: + 1), we may assume that ¢t = (an—2...a1a0l)2 is
odd. If a is g(p) and B is g(g) in Gray binary, we have p = (pp—1...po)2 and ¢ =
(Pn-1---Pj+1Dj - - -Po)2; and @n_1an_2 = 01 = pp_1pn_2. We cannot have p < ¢t < g,
because this would imply that j = n — 1 and pp—3 = pn—4a = --- = po = 1. [See A. J.
Bernstein, K. Steiglitz, and J. E. Hopcroft, IEEE Trans. IT-12 (1966), 425-430.]

29. Assuming that p # 0, let | = |lgp] and So = {s | 2'a < s < 2/(a + 1)} for
0<a< 2" Then (k@® p) — k has a constant sign for all k& € S,, and

>

(k@p)—k‘ — 2|8, | = 2

k€Sa
Also g (g(k) ®p) = k® ¢! (p), and |lgg" " (p)] = |lgp]. Therefore

21 2n—l_y 2n—l_1
L amon - = & S5 fwodon 4= &3 2=

a=0 k€S,

[See Morgan M. Buchner, Jr., Bell System Tech. J. 48 (1969), 3113-3130.]

44

7.2.1.1 ANSWERS TO EXERCISES 45

30. The cycle containing k > 1 has length 2U%88%1+1 hecause it is easy to show from
Eq. (7) that if k = (bp—1-...bo)2 we have

1
9[2](k) = (Cn_l e 00)2, where cj = bj (&) bj+l+1.

To permute all elements k such that |lgk| = t, there are two cases: If ¢ is a power of 2,
the cycle containing 2| k/2| also contains 2|k/2]+1, so we must double the cycle leaders
for t — 1. Otherwise the cycle containing 2|k/2] is disjoint from the cycle containing
2|k/2] +1, so Ly = (2L4—1) U (2Ls—1 + 1) = (L4_1%)2. This argument, discovered by
Jorg Arndt in 2001, establishes the hint and yields the following algorithm:

P1. [Initialize.] Set t < 1, m < 0. (We may assume that n > 2.)

P2. [Loop through leaders.] Set 7 < m. Perform Algorithm Q with k = 2* + r;
then if r > 0, set r - (7 —1) Am and repeat until » = 0. [See exercise 7.1-00.]

P3. [Increase lgk.] Set t + ¢t + 1. Terminate if ¢ is now equal to n; otherwise set
m + 2m + [t A (¢ — 1) #0] and return to P2. |

Q1. [Begin a cycle.] Set s + X, l < k, j + 1D [1/2].

Q2. [Follow the cycle.] If j # k set X; < X, 1 < 7, j < 1 ® [I/2], and repeat
until j = k. Then set X; < s. |

31. We get a field from f, if and only if we get one from f,[f’], which takes (an—1...a0)2
to ((an,l @ an—2)(an-1® an-3)(an-2 D an_4)...(a2 ® ao)(al))z. Let c,(z) be the
characteristic polynomial of the matrix A defining this transformation, mod 2; then
ci(x) =z 41, co(x) = 2 + . + 1, and ¢j11(z) = zcj(z) + ¢j_1(x). Since c,(A) is the
zero matrix, by the Cayley—Hamilton theorem, a field is obtained if and only if ¢, (z) is
a primitive polynomial, and this condition can be tested as in Section 3.2.2. The first
such values of n are 1, 2, 3, 5, 6, 9, 11, 14, 23, 26, 29, 30, 33, 35, 39, 41, 51, 53, 65, 69,
74, 81, 83, 86, 89, 90, 95.

[Running the recurrence backwards shows that c_;_1(z) = ¢;j(z), hence c;j(z)
divides ¢(2j4+1)k+;(x); for example, cap41(x) is always a multiple of 2+ 1. All numbers n
of the form 2jk + j + k are therefore excluded when j > 0 and k£ > 0. The polynomials
c18(x), cs0(z), cos(z), and cgg(z) are irreducible but not primitive.]

32. Mostly true, but false at the points where wy(z) changes sign. (Walsh originally
suggested that wi(z) should be zero at such points; but the convention adopted here
is better, because it makes simple formulas like (15)—(19) valid for all z.)

33. By induction on k, we have
wi () = wik/2) (22) =711 (2m)b1+b21“2(2m)b2+b3 . =T (m)b°+b1 r2($)51+b27"3(m)b2+63 ..

for 0 < z < 1, because r;(2z) = rj;1(z) and r1(z) = 1 in this range. And when
% <z<l,

wi(z) = (1) ¥y o) (22 — 1) = 71 (2)20F 0 7y (22 — 1)P1 P02 (22 — 1)P210

)b0+b1)b1+b2)b2+b3 L

=ri(z ro(z r3(z

because [k/2] = bo + b1 (modulo 2) and r;(2z — 1) = rj11(z — 3) = rjq1(z) for j > 1.

b,
34. pi(z) = [I;50 75%1; hence wi(z) = pi(z)p|k/2) () = Pg(r) (). [R. E. A. C. Paley,
Proc. London Math. Soc. (2) 34 (1932), 241-279.]

45

46 ANSWERS TO EXERCISES 7.2.1.1

35. If j = (an—1..-@0)2 and k = (bp—1...bo)2, the element in row j and column k is
(=1)f@8) where f(j, k) is the sum of all a,bs such that: r = s (Hadamard); 7+s = n—1
(Paley); r+ s =mn or n — 1 (Walsh).

Let R,, F,, and G, be permutation matrices for the permutations that take
j = (an_l...ao)z to k = (ao...an_l)z, k=2"-1—-j = (ﬁn_l...ao)z, and k =
g7 () = ((an-1)...(an—1 @ -+ @ ao)),, respectively. Then, using the Kronecker
product of matrices, we have the recursive formulas

(R, ®(10) _ 01 _(Ga 0
Rn+1_<Rn®(01)>7 F’n+1—Fn®(l 0)7 Gn+1—(0 GnFn>,

_ 11 _(Pa®(11) _ W, ® (11)
H"+1_H"®<1 T)’ P"“_(Pn@(lT))’ Wn+1_<Fan®(lT) '

Thus W,, = GYP, = P,G,; H, = P,R, = R,P,; and P, = W,GY = G,W, =

H,R, = R,H,.

36. W1. [Hadamard transform.] For k =0, 1, ..., n— 1, replace the pair (X;, X;42+)
by (X; + Xj42%, X; — Xj42k) for all j with |5j/2%] even, 0 < j < 2. (These
operations effectively set X7 < H,X".)

W2. [Bit reversal.] Apply the algorithm of exercise 5 to the vector X. (These
operations effectively set X7 < R, X7, in the notation of exercise 35.)

W3. [Gray binary permutation.] Apply the algorithm of exercise 30 to the vec-
tor X. (These operations effectively set X7 < GZX7T) 1

If n has one of the special values in exercise 31, it may be faster to combine steps W2
and W3 into a single permutation step.

37. Ifk=2°"4...42° withe; > --- > e; > 0, the sign changes occur at Se, U - -US,,,

where
1 13 2 +1 e
=1{- == 2t S = <j<2¢b.
5o {2} 5 {4’4}’ _ { 2¢ ‘0—J< }

Therefore the number of sign changes in (0..z) is Z;=1 |2¢z+1]. Settingz =1/(k+1)
gives [+O(t) changes; so the [th is at a distance of at most O(v(k))/28* from 1/(k+1).

[This argument makes it plausible that infinitely many pairs (k,l) exist with
|zt — 1/(k + 1)] = Q((logk)/k). But no explicit construction of such “bad” pairs
is immediately apparent.]

38. Let to(z) = 1 and tx(z) = w32 rzk/s-‘th/gj (3z), where w = €2™/3, Then ty(z)
winds around the origin 2k times as z increases from 0 to 1. If si(z) = wl3*z] is the
ternary analog of the Rademacher function ry(z), we have tx(z) = [[;5, si+1 (z)b5~bi+
when k = (bn—1...bo)s, as in the modular ternary Gray code.

39. Let’s call the symbols {zo,z1,...,2z7} instead of {a,b,c,d,e, f,g,h}. We want to
find a permutation p of {0,1,...,7} such that the matrix with (—1)7 "%z, r in row j
and column k has orthogonal rows; this condition is equivalent to requiring that

(G+7) - (pG) +p()) =1 (modulo 2), for 0 < j < j <8.

One solution is p(0) ...p(7) = 01725634, yielding the identity (a® + b* + ¢® + d* +
62+f2+g2+h2)(A2+BZ+C2+D2+E2+F2+G2+H2):A2+B2—|—C2—|—'D2+

46

7.2.1.1 ANSWERS TO EXERCISES 47

E% 4+ F? 4+ G® 4+ M2, where

A a b c d e f g h A
B b —a d - f —-e h —g B
C h g —-f —-e d c —=b —-a C
Dl _ c —d —a b g —-h —e f D
El | f e h —b —-a -d -c E
F g -h e —f — d —-a b F
g d ¢ —-b —-a —-h —-g f G
H e —f —g h —a b c —d H

[This identity was discovered by C. F. Degen, Mémoires de I’Acad. Sci. St. Petersbourg
(5) 8 (1818), 207-219. The related octonions are discussed in an interesting survey by
J. C. Baez, Bull. Amer. Math. Soc. 39 (2002), 145-205.]

(b) There s no 16 x 16 solution. The closest one can come is
p(0)...p(15) = 0111214151349107 1256 3 8,

which fails if and only if j @ j' = 5. (See Philos. Mag. 34 (1867), 461-475. In §9, §10,
811, and §13 of this paper, Sylvester stated and proved the basic results about what
has somehow come to be known as the Hadamard transform —although Hadamard
himself gave credit to Sylvester [Bull. des Sciences Mathématiques (2) 17 (1893), 240—
246]. Moreover, Sylvester introduced transforms of m™ elements in §14, using mth
roots of unity.)

40. Yes; this change would in fact run through the swapped subsets in lexicographic
binary order rather than in Gray binary order. (Any 5 x 5 matrix of Os and 1s that
is nonsingular mod 2 will generate all 32 possibilities when we run through all linear
combinations of its rows.) The most important thing is the appearance of the ruler
function, or some other Gray code delta sequence, not the fact that only one a; changes
per step, in cases like this where any number of the a; can be changed simultaneously
at the same cost.

41. At most 16; for example, fired, fires, finds, fines, fined, fares, fared, wares,
wards, wands, wanes, waned, wines, winds, wires, wired. We also get 16 from paced/
links and paled/mints; perhaps also from a word mixed with an antipodal nonword.

42. Suppose n < 22" fr4 1, and let s = 2". We use an auxiliary table of 2"t bits f;
for 0 < j < 2% and 0 < k < s, representing focus pointers as in Algorithm L, together
with an auxiliary s-bit “register” j = (js—1 - .. jo)2 and an (r+2)-bit “program counter”
p = (pr+1...p0)2. At each step we examine the program counter and possibly the j
register and one of the f bits; then, based on the bits seen, we complement a bit of the
Gray code, complement a bit of the program counter, and possibly change a j or f bit,
thereby emulating step L3 with respect to the most significant n — r — 2 bits.
For example, here is the construction when r = 1:

p2pipo Change Set p2p1po Change Set

000 ao,po jo ¢ foo } - 110 ao,po fio < fi+1)0 }
g — i f
001 ai,p1 J1 < fOl J fO 111 ai,p1 fj1 < f(j+1)1 f] f'7+1

011 aog,po foo+ 0 } 101 ao,po f+10 < (G+1)o } ;
«~0 . ji+1 < j+1
010 az,p2 for< 0 fo 100 ajt3,p2 fj41)1 + (F+1)1 fitr s

The process stops when it attempts to change bit a.,.

47

48 ANSWERS TO EXERCISES 7.2.1.1

[In fact, we need change only one auxiliary bit per step if we allow ourselves to
examine some Gray binary bits as well as the auxiliary bits, because pr ...po = ar . . . ao,
and we can set fo < 0 in a more clever way when j doesn’t have its final value 2° — 1.
This construction, suggested by Fredman in 2001, improves on another that he had
published in SICOMP 7 (1978), 134-146. With a more elaborate construction it is
possible to reduce the number of auxiliary bits to O(n).]

43. This number was estimated by Silverman, Vickers, and Sampson [IEEE Trans. IT-
29 (1983), 894-901] to be about 7 x 10%?. Exact calculation might be feasible because
every 6-bit Gray cycle has only five or fewer segments that lie in a 5-cube corresponding
to at least one of the six coordinates. (In unpublished work, Steve Winker had used a
similar idea to evaluate d(5) in less than 15 minutes on a “generic” computer in 1972.)

44. All (n + 1)-bit delta sequences with just two occurrences of the coordinate j are
produced by the following construction: Let d1 ...d2»_1 and €1 ...e2n_1 be n-bit delta
sequences for Gray paths, with 21 @ --- @ 2%2"-1 = 2°1 @ ... @ 2°2"-1_ Form the cycle

5k+1 ...(Sgnflnf;‘l ...Egn,1n51 6k

for some k with 0 < k£ < 2", then interchange n < j.

All (n + 2)-bit delta sequences with just two occurrences of coordinates h and j
(with h before j) are, similarly, produced from four n-bit sequences 91 ...d2n_1, ...,
M1 ...n2n_1 where 2%1 @ ... @ 2™"-1 =0, by interchanging n <> h and n+1 ¢ j in

5k+1 . 5271,171,61 ... E2n_1 (n+1)C1 - C2n,1’n771 ce.TM2n 1 (n—|—1)51 e 51‘:

Let a(n) and b(n) be the number of n-bit cycles defined in parts (a) and (b); then
(a(1),...,a(5))=(1,0,0,1920,318996480) and (b(1),...,b(5)) = (0,2, 12, 384, 4200960).
The constructions above prove that a(n+1)+2b(n+1) = 2" (n+1)A(n) and b(n+2) =
2" (n+2)(n+1)B(n), if there are A(n) and B(n) ways to choose the respective sequences
4, €, ¢, and 7. If we restrict ourselves to cases where the Gray paths are extendible to
Gray cycles, with §o = g0 = (o = 710, we get a’(n + 1) and b'(n + 2) sequences where
a(n+1)+20'(n+1)=2"(n+ l)d(n)z/n and b'(n+2) =2"(n+2)(n+ 1)d(n)4/n3.
45. We have d(n+1) > 2"d(n)?*/n, because 2"d(n)?/n is a lower bound on the number
of (n+1)-bit delta sequences with exactly two appearances of 0. Hence d(n+1)*/ CEEREN
d(n)1/2"; and d(n) > Za2" for n > 5, where a = (22d(5))"/*? ~ 2.06.

Indeed, we can establish even faster growth by using the previous exercise, because
din+1)>a'(n+1)+b(n+1) and ¥'(n+ 1) < 22(n + 1)d(n)*/n for n > 5. Hence
d(n+1) > (2" — 2)(n+1)d(n)*/n for n > 5, and iteration of this relation shows that

1/27+1 1/27+1
_ 25) <"+1) ~ 2.3606.

64

n

. 1/2™ 1/32 o1 (o
Tim d(n)/*" > d(5) 1:[5(2

[See R. J. Douglas, Disc. Math. 17 (1977), 143-146; M. Mollard, European J. Comb.
9 (1988), 49-52.] The true value of this limit, however, is probably oc.

46. Leo Moser (unpublished) has conjectured that it is ~ n/e. So far only an upper
bound of about n/ V/2 has been established; see the references in the previous answer.

48. If d(n, k,v) of the cycles begin with ¢(0)...g(k — 1)v, the conjecture implies that
d(n,k,v) < d(n,k,g(k)), because the reverse of a Gray cycle is a Gray cycle. Thus the

48

7.2.1.1 ANSWERS TO EXERCISES 49

hint follows from d(n) = d(n,1) and

d(n, k) = Z{ d(n,k,v) |v—g(k —1),v ¢ Sk } < cnrd(n, k,g(k)) = d(n,k + 1).

Finally, d(n,2") = 1, hence d(n) < [I2-1* car = [17y k() = n[T7_2 (k(n—k))(R)/2 <
n 1122 (n/2)(8) = n(n/2)?" 2. [IEEE Trans. IT-29 (1983), 894-901.]
49. Take any Hamiltonian path P from 0...0 to 1...1 in the (2n — 1)-cube, such

as the Savage-Winkler code, and use 0P, 1P. (All such cycles are obtained by this
construction when n =1 or n = 2, but many more possibilities exist when n > 2.)

50. ai(n+l)afnagjiaznod(ntl)a,...j_1gqnal(n+1l)analj_, ... j1afn.

51. We can assume that n > 3 and that we have an n-bit Gray cycle with transition
counts ¢; = 2| (2" " + j)/n]; we want to construct an (n 4 2)-bit cycle with transition
counts ¢ = 2[(2"*" + j)/(n + 2)|. If 2"t mod (n + 2) > 2, we can use Theorem D
with [= 2[2""Y/(n + 2)| + 1, underlining b; copies of j where b; = 4| (2"~ + j)/n] —
(2" +5)/(n+2)] —[j = 0] and putting an underlined 0 last. This is always easy to do
because |b; —2"1?/n(n+2)| < 5. A similar construction works if 2"*! mod (n+2) < n,
with £ = 22"/ (n+2)] —1 and b, = 4[(2"~ +§)/n] — | 2"+ ++2)/(n+2)] —[j =0].
In fact, 2"™! mod (n +2) is always < n [see K. Kedlaya, Electronic J. Combinatorics 3
(1996), comment on #R25 (9 April 1997)]. The basic idea of this proof is due to J. P.
Robinson and M. Cohn [IEEE Trans. C-30 (1981), 17-23].

52. The number of different code patterns in the smallest j coordinate positions is at
most co +---+cj—1.

53. Notice that Theorem D produces only cycles with ¢; = cj4+1 for some j, so it
cannot produce the counts (2,4,6,8,12). The extension in exercise 50 gives also
¢; = ¢j+1 — 2, but it cannot produce (6,10,14,18,22,26,32). The sets of numbers
satisfying the conditions of exercise 52 are precisely those obtainable by starting with
{2,2,4,...,2" '} and repeatedly replacing some pair {c;, cx} for which ¢; < ¢ by the
pair {¢; +2,cx — 2}.

54. Suppose the values are {p1,...,pn}, and let z;i be the number of times p; occurs
in (a1,...,ar). We must have (21, . . ., Tnk) = (211, - - -, Tn1) (modulo 2) for some k < 1.
But if the p’s are prime numbers, varying as the delta sequence of an n-bit Gray cycle,
the only solution is k =0 and | = 2". [AMM 60 (1953), 418; 83 (1976), 54.]

56. [Bell System Tech. J. 37 (1958), 815-826.] The 112 canonical delta sequences yield

Class Example t Class Example t Class Example t
A 0102101302012023 2 D 0102013201020132 4 G 0102030201020302 8
B 0102303132101232 2 E 0102032021202302 4 H 0102101301021013 8
C 0102030130321013 2 F' 0102013102010232 4 I 0102013121012132 1

Here B is the balanced code (Fig. 13(b)), G is standard Gray binary (Fig. 10(b)), and
H is the complementary code (Fig. 13(a)). Class H is also equivalent to the modular
(4,4) Gray code under the correspondence of exercise 18. A class with ¢t automorphisms
corresponds to 32 x 24/t of the 2688 different delta sequences dgd1 . . . d15.

Similarly (see exercise 7.2.3-00), the 5-bit Gray cycles fall into 237,675 different
equivalence classes.

57. With Type 1 only, 480 vertices are isolated, namely those of classes D, F', G in the
previous answer. With Type 2 only, the graph has 384 components, 288 of which are

49

50 ANSWERS TO EXERCISES 7.2.1.1

isolated vertices of classes F' and G. There are 64 components of size 9, each containing
3 vertices from E and 6 from A; 16 components of size 30, each with 6 from H and 24
from C'; and 16 components of size 84, each with 12 from D, 24 from B, 48 from I. With
Type 3 (or Type 4) only, the entire graph is connected. [Similarly, all 91,392 of the 4-bit
Gray paths are connected if path o is considered adjacent to path o®8. Vickers and
Silverman, IEEE Trans. C-29 (1980), 329-331, have conjectured that Type 3 changes
will suffice to connect the graph of n-bit Gray cycles for all n > 3.]

58. If some nonempty substring of 883 involves each coordinate an even number of
times, that substring cannot have length |3|, so some cyclic shift of 8 has a prefix
with the same evenness property. But then a doesn’t define a Gray cycle, because we
could change each n of v back to 0.

59. If « is nonlocal in exercise 58, so is 83, provided that ¢ > 1 and that 0 occurs
more than ¢ + 1 times in a. Therefore, starting with the o of (30) but with 0 and 1
interchanged, we obtain nonlocal cycles for n > 5 in which coordinate 0 changes exactly
6 times. [Mark Ramras, Discrete Math. 85 (1990), 329-331.] On the other hand, a 4-
bit Gray cycle cannot be nonlocal because it always has a run of length 2; if §; = dx42,
elements {vk—1, Uk, Vk+1, Uk+2} form a 2-subcube.

60. Use the construction of exercise 58 with ¢ = 1.

61. The idea is to interleave an m-bit cycle U = (uo,u1,u2,...) with an n-bit cycle
V = (vo,v1,v2,...), by forming concatenations

W = (wigVjo, UirVjy, WigVjzs «--), ik=0o+ ++8k-1, Jk=ao+ -+akr-1,
where agaias ... is a periodic string of control bits aaca...; we advance to the next

element of U when ar = 0, otherwise to the next element of V.

If « is any string of length 2™ < 2", containing s bits that are 0 and ¢t = 2™ — s
bits that are 1, W will be an (m + n)-bit Gray cycle if s and ¢t are odd. For we have
ik+1 = 9% (modulo 2™) and jx4+1 = jk (modulo 2") only if [is a multiple of 2™, since
ik + jx = k. Suppose | = 2™¢; then jr41 = jk + tec, so ¢ is a multiple of 2".

(a) Let @ = 0111; then runs of length 8 occur in the left 2 bits and runs of length
> | 37(n)] occur in the right n bits.

(b) Let s be the largest odd number < 2™r(m)/(r(m)+r(n)). Alsolet t =2 —s
and ar = |(k + 1)t/2™] — |kt/2™], so that i = [ks/2™] and j, = |kt/2™]. If
a run of length [occurs in the left m bits, we have ixy;4+1 > ix + 7(m) + 1, hence
l4+1>2Mr(m)/s > r(m)+r(n). And if it occurs in the right n bits we have jgti41 >
jk +r(n) + 1, hence

I+1>2™r(n)/t > 2™r(n)/(2"r(n)/(r(m) + r(n)) + 2)

2(r(m) + r(n))’
2mr(n) 4 2(r(m) +r(n))

=r(m)+r(n)— >r(m)+r(n) -1
because r(m) < r(n).

The construction often works also in less restricted cases. See the paper that

introduced the study of Gray-code runs: L. Goddyn, G. M. Lawrence, and E. Nemeth,
Utilitas Math. 34 (1988), 179-192.
63. Set ar « kmod4 for 0 < k < 2'°, except that ax = 4 when kmod 16 = 15 or
kmod 64 = 42 or kmod 256 = 133. Also set (jo, j1,J2,73,74) < (0,2,4,6,8). Then
for k =0, 1, ..., 1023, set §x < jao, and jo, < 1+ 4ar — Jao,- (This construction
generalizes the method of exercise 61.)

50

7.2.1.1 ANSWERS TO EXERCISES 51

64. (a) Each element ux appears together with {vk,vkiam,..., Vg qom@n-1_1y} and
{Vk+1,Vk+142m, . .., Vg p149m(en-1_1)}. Thus the permutation o ...o2m_1 must be a
2™ !_cycle containing the n-bit vertices of even parity, times an arbitrary permutation
of the other vertices. This condition is also sufficient.

(b) Let 7; be the permutation that takes v — v @® 27, and let m;(u,w) be the
permutation (vw)7;. fu®w = 2¢ 4+ 29 then m;(u, w) takes u — u®2' and w — w2,
while v — v @ 27 for all other vertices v, so it takes each vertex to a neighbor.

If S is any set C {0,...,n — 1}, let o(S) be the stream of all permutations 7; for
all 5 €{0,...,n—1}\ S, in increasing order of j, repeated twice; for example, if n =5
we have 0({1,2}) = 7o7374707374. Then the Gray stream

53, 4,u) = o({i, 5}) i (u, u®2'®27) 0 ({3, 5}) 0 ({5})

consists of 6n — 8 permutations whose product is the transposition (u u®2'®27).
Moreover, when this stream is applied to any n-bit vertex v, its runs all have length
n — 2 or more.

We may assume that n > 5. Let Jp...d2n_1 be the delta sequence for an n-bit
Gray cycle (vo,v1,...,v2n_1) with all runs of length 3 or more. Then the product of
all permutations in

on—1_3
Y= H (2(52k—1,52k,v2k—1) 2(52k,52k+1,vzk))

k=1

is (’Ul ’1)3)(’1)2 ’1)4) . (U2n73 U2n71)(’l)2n72 ’Uo) = (’Uznfl . 1}1)(1]2"72 . ’Uo), so it satisﬁes
the cycle condition of (a).

Moreover, all powers (o(#)X)* produce runs of length > n — 2 when applied to
any vertex v. By repeating individual factors o({z,5}) or o({sj}) in ¥ as many times
as we wish, we can adjust the length of o(0)%, obtaining 2n + (2"~ — 1)(12n — 16) +
2(n—2)a+2(n—1)b for any integers a,b > 0; thus we can increase its length to exactly
2™ provided that 2™ > 2n+(2"~'—1)(12n —16) +2(n”— 5n+6), by exercise 5.2.1- 21.

(¢) The bound r(n) > n — 41lgn + 8 can be proved for n > 5 as follows. First
we observe that it holds for 5 < n < 33 by the methods of exercises 60—63. Then we
observe that every integer N > 33 can be written as N = m+nor N =m+n+1, for
some m > 20, where

n=m— |4lgm]| + 10.

If m > 20, 2™ is sufficiently large for the construction in part (b) to be valid; hence

r(N) > r(m +n) > 2min(r(m),n — 2) > 2(m — |4lgm| + 8)
=m+n+1—|4lglm+n)—1+¢€| +38
>N —4lgN +8

where € = 4lg(2m/(m + n)) < 1. [Electronic Journal of Combinatorics 10 (2003),
#R27, 1-10.] Recursive use of (b) gives, in fact, r(1024) > 1000.

65. A computer search reveals that eight essentially different patterns (and their
reverses) are possible. One of them has the delta sequence 01020314203024041234
214103234103, and it is close to two of the others.

66. (Solution by Mark Cooke.) One suitable delta sequence is 012345607012132435
65760710213534626701537412362567017314262065701342146560573102464537
57102043537614073630464273703564027132750541210275641502403654250136

51

52 ANSWERS TO EXERCISES 7.2.1.1

02541615604312576032572043157624321760452041751635476703564757062543
7242132624161523417514367143164314. (Solutions for n > 8 are still unknown.)
67. Let vag+1 = U2k and var = Oug, where (uo,u1,...,u2n_1) is any (n — 1)-bit Gray
cycle. [See Robinson and Cohn, IEEE Trans. C-30 (1981), 17-23.]
68. Yes. The simplest way is probably to take (n — 1)-trit modular Gray ternary code
and add 0...0,1...1, 2...2 to each string (modulo 3). For example, when n = 3 the
code is 000, 111, 222, 001, 112, 220, 002, 110, 221, 012, 120, 201, ..., 020, 101, 212.
69. (a) We need only verify the change in h when bits b;j_1 ...bo are simultaneously
complemented, for j =1, 2, ...; and these changes are respectively (1110)z, (1101),,
(0111), (1011)2, (10011)2, (100011)s, To prove that every m-tuple occurs, note
that 0 < h(k) < 2" when 0 < k < 2" and n > 3; also h[_l]((an_l ... ao)z) =
(bn—l---b0)27 where bg = ao @ a1 D az O ey, by = ao, by = a2 @ as ® as @ Tty
bs=ao® a1 ®az®---,and b; =a; ®aj+1D--- for j > 4.

(b) Let h(k) = (.. a2a1a0)2 where a; = bj (&) bj+1 (&) bo[] < t] (&) bt_l[t —-1<5< t].
70. Asin (32) and (33), we can remove a factor of n! by assuming that the strings of
weight 1 occur in order. Then there are 14 solutions for n = 5 starting with 00000, and
21 starting with 00001. When n = 6 there are 46,935 of each type (related by reversal
and complementation). When n = 7 the number is much, much larger, yet very small
by comparison with the total number of 7-bit Gray codes.

71. Suppose that an(;41) differs from ay,; in coordinate t;, for 0 < j < n — 1. Then
tj = jmn, by (44) and (38). Now Eq. (34) tells us that {o =n—1;and if 0 < j <n—1
we have t; = ((j — 1)Tn—1)Tn—1 by (40). Thus t; = jo,m> ; for 0 < j < n — 1, and
the value of (n — 1), is whatever is left. (Notations for permutations are notoriously
confusing, so it is always wise to check a few small cases carefully.)

72. The delta sequence is 0102132430201234012313041021323.
73. Let Q,; = P and denote the sequences (41), (42) by S, and T,. Thus S, =
ProQn1Pr2 ... and T, = QnoPriQn2 - .., if we omit the commas; and we have

Snt1 = 0Ppo 0Qn1 1Qno 1P71 0Ppy 0Qn3 1Qns 1P3 0Py ...,

Tnt1 = 0Qno 1Ppo 0Pp1 0Qn2 1Qn1 1Pp5 0Fp3 0Qng 1Qn3 - .-,

where m = 7, revealing a reasonably simple joint recursion between the delta sequences
A, and E, of S,, and T;,. Namely, if we write

Ap=¢1a1d2az...0n—1an-1bn, En=v1b1vY2ba...Yn_1bn_1vn,
where each ¢; and v; is a string of length 2(';:;) — 1, the next sequences are
Ant1 = ¢1 a1 2 n P17 bimw Yo 1 P3 a3z Ga n Paw baw Yaw M . L.
FEnt1 =1 n ¢1m n P2 by Y3 n o aom Psm N s ba s N pam aam PsT 0 L ..
For example, we have A3 = 0102101 and E3 = 0212021, if we underline the a’s
and b’s to distinguish them from the ¢’s and %’s; and
Ay=0102130727 1727 0r3131r=010213210123130,
EFs=030mr31202130m2r 17 0r1r=032312021321020;
here as¢s and bsips are empty. Elements have been underlined for the next step.

Thus we can compute the delta sequences in memory as follows. Here p[j| = jmn
for 1 < j < n; sk = Ok, tk = €k, and ur = [0k and e, are underlined], for 0 < k < 2"—1.

52

7.2.1.1 ANSWERS TO EXERCISES 53

R1. [Initialize.] Set n <+ 1, p[0] + 0, so < to < ug < 0.

R2. [Advance n.] Perform Algorithm S below, which computes the arrays s’, t',
and u’ for the next value of n; then set n < n + 1.

R3. [Ready?] If n is sufficiently large, the desired delta sequence A,, is in array s';
terminate. Otherwise keep going.

RA4. [Compute 7,.] Set p'[0] =n — 1, and p'[j] = p[p[j — 1]] for 1 < j < n.

R5. [Prepare to advance.] Set p[j] < p'[j] for 0 < j < n; set s < sk, tp < &k,
and wuy < uj, for 0 < k < 2" — 1. Return to R2. |

In the following steps, “Transmit stuff(l,;) while u; = 0” is an abbreviation for “If
u; = 0, repeatedly stuff(l,5),l <1+ 1, j + 7+ 1, until u; # 0.”

S1. [Prepare to compute A, y1.] Set j « k < [+ 0 and ugn_1 + —1.

S2. [Advance j.| Transmit s} « s; and uj < 0 while u; = 0. Then go to S5 if
u; < 0.

S3. [Advance j and k.] Set s} < s;, uj < 1,1 < 1+1, j < j+1. Then transmit
s) < s; and u) < 0 while u; = 0. Then set s < n, uj < 0, [< I+ 1. Then
transmit sj < p[tx] and uj < 0 while uy, = 0. Then set s} « p[tg], uj + 1,
l+<1+4+1,k+ k+ 1. And once again transmit s} < p[tx] and u} + 0 while
ur = 0.

S4. [Done with Ap41?] If ur < 0, go to S6. Otherwise set s} < n, u} < 0,
l<1l+1,j«<7+1,k+ k+1, and return to S2.

S5. [Finish A,y1.] Set s < n, uj < 1,1 < [+ 1. Then transmit sj < p[t[k]] and
u} < 0 while ug = 0.

S6. [Prepare to compute E,t1.] Set j < k < | + 0. Transmit ¢; < ¢, while
ur = 0. Then set ¢} < n, [«+ [+ 1.

S7. [Advance j.] Transmit t; < p[s;] while u; = 0. Then terminate if u; < 0;
otherwise set tj < n, I+ I +1,j+ j+1, k+ k+1.

S8. [Advance k.] Transmit ¢; < t;, while ux = 0. Then go to S10 if ux < 0.

S9. [Advance k and j.] Set t; « tx, l < 1+ 1, k < k+ 1. Then transmit ¢} < ¢,

while ux = 0. Then set t; « n, I < [+ 1. Then transmit ¢; < p[s;] while
uj = 0. Then set t} < p[s;], L < I+ 1, j < j+ 1. Return to S7.

S10. [Finish En41.] Set ¢; < n, + [+1. Then transmit ¢; + p[s;] while u; = 0. |

To generate the monotonic Savage—Winkler code for fairly large n, one can first generate
Ai1o and FEig, say, or even Agp and Fao. Using these tables, a suitable recursive pro-
cedure will then be able to reach higher values of n with very little computational
overhead per step, on the average.

74. If the monotonic path is v, ..., van_1 and if vy has weight j, we have
n . n '
2;(], ")+ (G v mod 2) < k < 2;(]_ ")+ (G4 (o) mod 2) -2

Therefore the maximum distance between vertices of respective weights j7 and j + 1
is 2((7;:11) + ("J_l) + (7;_7_11)) — 1. The maximum value, approximately 3 - 2"//27n,
occurs when j is approximately n/2. [This is only about three times the smallest value
achievable in any ordering of the vertices, which is Z;:Ol (L].jz J) by exercise 7.10-00.]

53

54 ANSWERS TO EXERCISES 7.2.1.1

75. There are only five essentially distinct solutions, all of which turn out in fact to
be Gray cycles. The delta sequences are

0123012421032101210321040123012(1)
0123012421032101301230141032103(1)
0123012421032102032103242301230(2)
0123012423012302012301242301230(2)
0123410121030143210301410123410(3)

76. If vg, ..., van_1 is trend-free, so is the (n+ 1)-bit cycle Ovg, 1vo, 1v1, Ov1, Ova, 1va,
..., luagn_y1, Ovan_y1. Figure 14(g) shows a somewhat more interesting construction,
which generalizes the first solution of exercise 75 to an (n + 2)-bit cycle

oor”®, o1r'%®, 11rv, 10r”, 1or, 11", oir”’%, ocor®

where I' is the n-bit sequence g(1), ..., g(2") and I = ' ® g(1), I = ' @ g(2" 1),
" =T @ g(2" ! 4+ 1). [An n-bit trend-free design that is almost a Gray code, having
just four steps in which v(vk @ vk4+1) = 2, was found for all n > 3 by C. S. Cheng,
Proc. Berkeley Conf. Neyman and Kiefer 2 (Hayward, Calif.: Inst. of Math. Statistics,
1985), 619-633.]

77. Replace the array (on—_1,...,00) by an array of sentinel values (sn—_1, ..., So0), with
sj ¢ m; — 1 in step H1. Set a; + (a; + 1) mod m; in step H4. If a; = s; in step H5,
set 8j (Sj — 1) mod myj, fj < fj+1, f]'+1 < j + 1.

78. For (50), notice that Bjii is the number of times reflection has occurred in
coordinate j, because we bypass coordinate j on steps that are multiples of m; ... mq.
Hence, if b; < mj, an increase of b; by 1 causes a; to increase or decrease by 1 as
appropriate. Furthermore, if b; = m; — 1 for 0 < 7 < j, changing all these b; to 0 when
incrementing b; will increase each of By, ..., B; by 1, thereby leaving the values ao,
..., aj—1 unchanged in (50).

For (51), note that Bj = ijj+1 + bj = ijj+1 +a; + (mj — 1)Bj+1 = aj +Bj+1
(modulo 2); hence Bj = aj + aj4+1 + - -, and (51) is obviously equivalent to (50).

In the modular Gray code for general radices (mn—1,...,mo), let

an—1, ..., @2, a1, a0:|
mMmn—1y..., M2, M1, Mo

atk) = |

when k is given by (46). Then a; = (b; — Bj+1) mod mj, because coordinate j has
increased modulo m; exactly B; — Bjy1 times if we start at (0,...,0). The inverse
function, which determines the b’s from the modular Gray a’s, is b; = (a; + aj+1 +
Gj+2 + -+) mod m; in the special case that each m; is a divisor of m;41 (for example,
if all m; are equal). But the inverse has no simple form in general; it can be computed
by using the recurrences b; = (a; + Bj+1) mod mj, Bj = m;jBjy1 + b; for j = n —1,
..., 0, starting with B,, = 0.

[Reflected Gray codes for radix m > 2 were introduced by Ivan Flores in IRE
Trans. EC-5 (1956), 79-82; he derived (50) and (51) in the case that all m; are
equal. Modular Gray codes with general mixed radices were implicitly discussed by
Joseph Rosenbaum in AMM 45 (1938), 694—-696, but without the conversion formulas;
conversion formulas when all m; have a common value m were published by Martin
Cohn, Info. and Control 6 (1963), 70-78.]

54

7.2.1.1 ANSWERS TO EXERCISES 55

79. (a) The last n-tuple always has an—1 = mn—1 — 1, so it is one step from (0,...,0)
only if mp—1 = 2. And this condition suffices to make the final n-tuple (1,0,...,0).
[Similarly, the final subforest output by Algorithm K is adjacent to the initial one if
and only if the leftmost tree is an isolated vertex.]

(b) The last n-tuple is (mp—1—1,0,...,0) if and only if m,_1 ... mj41 mod m; =0
for 0 < j <n—1, because b; =m; —1and B = mp_1...m; — 1.

t

80. Run through pi!...p;* using reflected Gray code with radices m; = e; + 1.

81. The first cycle contains the edge from (z,y) to (z,(y + 1) mod m) if and only if
(z 4+ y) mod m # m — 1 if and only if the second cycle contains the edge from (z,y) to
((z + 1) mod m, y).

82. There are two 4-bit Gray cycles (uo, - .., u1s5) and (vo, ..., v1s) that cover all edges
of the 4-cube. (Indeed, the non-edges of classes A, B, D, H, and I in exercise 56 form
Gray cycles, in the same classes as their complements.) Therefore with 16-ary modular
Gray code we can form the four desired cycles (uouo, uou1, - . ., UoU1s, U1U1s, - . ., U15U0),
(uouo, ULUQy - - -, UI5UQ, UI5UL, - - - ,uouls), (’UoUo, . ,1)151}0)7 (1)01}0, ca ,1)01]15).

In a similar way we can show that n/2 edge-disjoint n-bit Gray cycles exist when
n is 16, 32, 64, etc. [Abhandlungen Math. Sem. Hamburg 20 (1956), 13-16.] J. Aubert
and B. Schneider [Discrete Math. 38 (1982), 7-16] have proved that the same property
holds for all even values of n > 4, but no simple construction is known.

83. Mark Cooke found the following totally unsymmetric solution in December, 2002:

(1) 2737465057320265612316546743610525106052042416314372145101421737
2506246064173213107351607103156205713172463452102434643207054702
4147356146737625047350745130620656415073123731427376432561240264
3016735467532402524637475217640270736065105215106073575463253105;

(2) 0616713417232175171671540460247164742473202531621673531632736052
6710141503047313570615453627623241426465272021632075363710750740
3157674761545652756510451024023107353424651230406545306213710537
2620501752453406703437343531502602463045627674152752406021610434;

(3) 3701063751507131236243765735103012042353747207410473621617247324
6505132565057121565024570473247421427640231034362703262764130574
0560620341745613151756314702721725205613212604053506260460173642
6717641743513401245360241730636545061563027414535676432625745051;

(4) 6706546435672147236210405432054510737405170532145431636430504673
4560621206416201320742373627204506473140171020514126107452343672
1320452752353410515426370601363567307105420163151210535061731236
4272537165617217542510760215462375452674257037346403647376271657.

(Each of these delta sequences should start from the same vertex of the cube.) Is there
a symmetrical way to do the job?

84. Calling the initial position (2,2), the 8-step solution in Fig. A-1 shows how the
sequence progresses down to (0,0). In the first move, for example, the front half of the
cord passes around and behind the right comb, then through the large right loop. The
middle line should be read from right to left. The generalization to n pairs of loops
would, similarly, take 3" — 1 steps.

[The origin of this delightful puzzle is obscure. The Book of Ingenious & Diabolical
Puzzles by Jerry Slocum and Jack Botermans (1994) shows a 2-loop version carved from
horn, probably made in China about 1850 [page 101], and a modern 6-loop version

55

ot

6

ANSWERS TO EXERCISES

~

/

7.2.1.1

(00

W

N

(2,2)

Step 1: U

(2,1)

S

Step 2:

U/

aa

¥
-

(1,2)

W

Step 4: v

(1,1

(00

-

W

Step 3:

' 0

—_
—_
—_
—

—_
—_
—_
—

Y

%

%

Step 6: N\ (0,2) Step T7: N\ (0,1)

Fig. A-1.

Step 8: U/ (0,0)

made in Malaysia about 1988 [page 93]. Slocum also owns a 4-loop version made from
bamboo in England about 1884. He has found it listed in Henry Novra’s Catalogue of
Conjuring Tricks and Puzzles (1858 or 1859) and W. H. Cremer’s Games, Amusements,
Pastimes and Magic (1867), as well as in Hamley’s catalog of 1895, under the name
“Marvellous Canoe Puzzle.” Dyckman noted its connection to reflected Gray ternary

in a letter to Martin Gardner, dated 2 August 1972.]
85. By (50), element ;’, :’,I] of P'rIY is o, ol if §(i’, ;’:]) =[y ':,I] in the reflected Gray
code for radices (t,t'). We can now show that element [% v b”] of both (=)= T

)
t, !, t!

and I'm (I"=I") is a ol all, if g([i” i’: ;’,I:]) = [z ‘t‘,’ ‘t‘,’,l] in the reflected Gray code for

radices (¢,t',t"”). See exercise 4.1-10, and note also the mixed-radix law

[zl, e, m"} . {ml—l—ml,...,m"—l—mn

mi... My —1— =

mi, ..., Mn my, ceey mMn

In general, the reflected Gray code for radices (mi,...,m,) is (0,...,m1 —1)R---®

(0,...,myn —1). [Information Processing Letters 22 (1986), 201-205.]

86. Let I';,n be the reflected m-ary Gray code, which can be defined by I';,0 = € and
Fm(n+1):(0,1,...,m—1)IZIan, ’I’LZO

This path runs from (0,0, ...,0) to (m—1,0,...,0) when m is even. Consider the Gray
path II,,, defined by Il,,0 = @ and

I 0,1,...
mnt) 0,1,...,m)xIL,,, mlE,.,

ym—1)RIL,,, mL(, 1), ifm isodd;

if m is even.

56

7.2.1.1 ANSWERS TO EXERCISES 57

This path traverses all of the (m + 1)" — m"™ nonnegative integer n-tuples for which
max(a1,...,an) = m, starting with (0,...,0,m) and ending with (m,0,...,0). The
desired infinite Gray path is IIy,, IIY,, O, I, ...

87. This is impossible when n is odd, because the n-tuples with max(|ai|,...,|an|) =1
include 1 (3" + 1) with odd parity and % (3" — 3) with even parity. When n = 2 we
can use a spiral ¥o, X1, 3, ..., where X, winds counterclockwise from (m,1 — m)
to (m,—m) when m > 0. For even values of n > 2, if T, is a path of n-tuples from
(m,1-m,m—-1,1-m,...,m—1,1—m) to (m,—m,m,—m,...,m,—m), we can use
Ym ®(To, -, Tm-1), (X0, -, Xm) 8 T, for (n + 2)-tuples with the same property,
where X is the dual operation

F_F’ _ ! ! 7 ! 7 7 !
X = (O{oao, ey O 100,017y, , OpOlg,y .. . s O 100, O 13, ...)

[Infinite n-dimensional Gray codes without the magnitude constraint were first con-
structed by E. Vazsonyi, Acta Litterarum ac Scientiarum, sectio Scientiarum Mathe-
maticarum 9 (Szeged: 1938), 163-173.]

88. It would visit all the subforests again, but in reverse order, ending with (0,...,0)
and returning to the state it had after the initialization step K1. (This reflection
principle is, in fact, the key to understanding how Algorithm K works.)

89. (a) Let Mo =€, M1 = », and Mp42 = -M,ﬁ_l, — MFE. This construction works
because the last element of M,ﬁ_l is the first element of M, 41, namely a dot followed
by the first element of ME.

(b) Given a string ds ...d; where each d; is « or —, we can find its successor by
letting k = I — [d; = «] and proceeding as follows: If k is odd and dy = e, change drdi+1
to —; if k is even and dr = —, change di to «+; otherwise decrease k by 1 and repeat

until either making a change or reaching £ = 0. The successor of the given word is

90. A cycle can exist only when the number of code words is even, since the number
of dashes changes by +1 at each step. Thus we must have n mod 3 = 2. The Gray
paths M, of exercise 89 are not suitable; they begin with (- —)L"/?’J .nmed3 and end
with (—e)ln/3] [nmed3=1] _[nmed3=2] gyt pr, .\ MIi— is a Hamiltonian cycle in
the Morse code graph when n = 3k + 2.

91. Equivalently, the n-tuples ai1d2a3as ... have no two consecutive 1s. Such n-tuples
correspond to Morse code sequences of length n + 1, if we append 0 and then represent
- and «— respectively by 0 and 10. Under this correspondence we can convert the path
Mp41 of exercise 89 into a procedure like Algorithm K, with the fringe containing the
indices where each dot or dash begins (except for a final dot):

Q1. [Initialize.] Set a; + |((j — 1) mod 6)/3] and f; + j for 1 < j < n. Also set
fo+ 0,70 < 1,11 - 0, 7; < j+(j mod 3) and I (j moas) + j for 1 < j <mn,
except if j+ (j mod 3) > nset 7; + 0 and lo « j. (The “fringe” now contains
1,2,4,5,7,8,....)

Q2. [Visit.] Visit the n-tuple (a1, ...,an).

Q3. [Choose p.] Set g + lo, p < fq, fa < q-

Q4. [Check ap.] Terminate the algorithm if p = 0. Otherwise set ap, + 1 —a, and
go to Q6 if ap + p is now even.

Q5. [Insert p+1.] If p < n,set g < 1p, lg < p+1, 7pt1 < q, 7p P+ 1, lpt1 < p.
Go to QT.

57

58 ANSWERS TO EXERCISES 7.2.1.1

Q6. [Delete p+ 1.] If p < n, set g < rpt1, Tp < ¢, lg < P.
Q7. [Make p passive.] Set f, < fi, and fi, < l,. Return to Q2. |

This algorithm can also be derived as a special case of a considerably more general
method due to Gang Li, Frank Ruskey, and D. E. Knuth, which extends Algorithm K
by allowing the user to specify either ap > aq or ap < aq for each (parent, child) pair
(p,q). [See Knuth and Ruskey, Lecture Notes in Computer Science 2635 (2004), 183—
204.] A generalization in another direction, which produces all strings of length n that
do not contain certain substrings, has been discovered by M. B. Squire, Electronic J.
Combinatorics 3 (1996), #R17, 1-29.

Incidentally, it is amusing to note that the mapping k — g(k)/2 is a one-to-one
correspondence between all binary n-tuples with no odd-length runs of 1s and all binary
n-tuples with no two consecutive 1s.

92. Yes, because the digraph of all (n—1)-tuples (z1,...,zp—1) with z1,...,2p,—1 <m
and with arcs (z1,...,Zn-1) = (z2,...,Zn) whenever max(z1,...,zn) = m is con-
nected and balanced; see Theorem 2.3.4.2G. Indeed, we get such a sequence from
Algorithm F if we note that the final £" elements of the prime strings of length
dividing n, when subtracted from m — 1, are the same for all m > k. When n = 4, for
example, the first 81 digits of the sequence ®4 are 2 — a® = 00001010011..., where
o is the string (62). [There also are infinite m-ary sequences whose first m™ elements
are de Bruijn cycles for all n, given any fixed m > 3. See L. J. Cummings and D.
Wiedemann, Cong. Numerantium 53 (1986), 155-160.]

93. The cycle generated by f() is a cyclic permutation of a1, where « has length m™ —1
and ends with 1", The cycle generated by Algorithm R is a cyclic permutation of
Y = Co-.-Cpnt+i_q, where ¢ = (co + bo + -+- + bg—1) modm and bo...bnt1_, =
B=am1™.

If zo...zn occurs in v, say ; = cr4; for 0 < j < n, then y; = bpy; for 0 < j < n,
where y; = (241 — ;) mod m. [This is the connection with modular m-ary Gray code;
see exercise 78.] Now if yo...yn—1 = 1" we have m" —m—n <k <m't!—n;
otherwise there is an index k' such that —n < k' < m™ —n and yo...yn—_1 occurs in
B at positions k = (k' + r(m™ — 1)) mod m™** for 0 < » < m. In both cases the m
choices of k£ have different values of xg, because the sum of all elements in v is m — 1
(modulo m) when n > 2. [Algorithm R is valid also for n = 1 if m mod 4 # 2, because
m L Y «in that case.]

94. 0010203041121314223243344. (The underlined digits are effectively inserted

into the interleaving of 00112234 with 34. Algorithm D can be used in general when
n=1and r =m — 2 > 0; but it is pointless to do so, in view of (54).)

95. (a) Let cocica ... have period r. If r is odd we have p = ¢ = r, so 7 = pq only in
the trivial case when p = ¢ = 1 and ao = bg. Otherwise r/2 = lem(p, q) = pg/ged(p, q)
by 4.5.2—(10), hence ged(p,q) = 2. In the latter case the 2n-tuples ciciq1 ... Ciyan—1
that occur are a;bg .. .aj4n—1bktn—1 for 0 < j < p, 0 < k < g, j = k (modulo 2), and
bkaj ... bktn—1aj4n—1 for 0 < j < p, 0< k < g, j Z k (modulo 2).

(b) The output would interleave two sequences aqgas - .. and bob; ... whose periods
are respectively m™ 4 and m™ —r; the a’s are the cycle of f() with ™ changed to ™!
and the b’s are the cycle of f'() with ™ changed to 2™ !, for 0 < z < r. By (58) and
part (a), the period length is m*™ — 2, and every 2n-tuple occurs with the exception
of (zy)" for 0 < z,y < 7.

58

7.2.1.1 ANSWERS TO EXERCISES 59

(c) The real step D6 alters the behavior of (b) by going to D3 when ¢t > n, t' = n,
and 0 < 2’ = ¢ < r; this change emits an extra z at the time when z®"~! has just
been output and b is about to be emitted, where b is the digit following z™ in the cycle.
D6 also allows control to pass to D7 and then D3 with t' = n in the case that ¢ > n and
z < 2’ < r; this behavior emits an extra z’z at the time when (zz')" 'z has just been
output and b will be next. These r? extra bits provide the r* missing 2n-tuples of (b).

96. (a) The recurrences Sz = 1, Sant1 = S2n = 2Sn, R2 = 0, Rony1 = 1 + Rap,
R = 2R,, D2 = 0, Dapy1 = D2, = 1+ 2D, have the solution S, = 2“57”_1,
R,=n-2S,,D,=S,—1. Thus S, + R, + D, =n —1.

(b) Each top-level output usually involves |lgn| — 1 D-activations and v(n) — 1
R-activations, plus one basic activation at the bottom level. But there are exceptions:
Algorithm R might invoke its f() twice, if the first activation completed a sequence 1";
and sometimes Algorithm R doesn’t need to invoke f() at all. Algorithm D might
invoke its f'() twice, if the first activation completed a sequence (z')™; but sometimes
Algorithm D doesn’t need to invoke either f() or f().

Algorithm R completes a sequence z™t' if and only if its child f() has just
completed a sequence 0". Algorithm D completes a sequence z°" for z < r if and
only if it has just jumped from D6 to D3 without invoking any child.

From these observations we can conclude that at most |lgn|+v(n)+1 activations
are possible per top-level output, if 7 > 1; such a case happens when Algorithm D
for n = 6 goes from D6 to D4. But when r = 1 we can have as many as 2|lgn| + 3
activations, for example when Algorithm R for n = 25 goes from R4 to R2.

97. (a) (0011), (00011101), (0000101001111011), and (00000110001011011111
001110101001). Thus jo = 2, js = 3, js = 9, js = 15.

(b) We obviously have fnt1(k) = Xfn(k) mod2 for 0 < k < jn, + n. The next
value, frnt1(jn + n), depends on whether step R4 jumps to R2 after computing y =
fa(dn+n—1). If it does (namely, if fni1(jn+n—1) # 0), we have fni1(k) = 1+X(k+1)
for jn +n < k < 2"+ j, + n; otherwise we have f,y1(k) = 1+ 2(k — 1) for those
values of k. In particular, fn41(k) = 1 when 2" < k+ 6, < 2"+ n. The stated formula,
which has simpler ranges for the index k, holds because 1 + X(k £ 1) = X (k) when
Jn <k <jnt+mnor2'+j, <k<2"+ ju+n.

(c) The interleaved cycle has c,(2k) = f;¥ (k) and ¢, (2k + 1) = f, (k), where

£ (k) = fa(k=1), if 0 <k < jut1; o) = Fu(k+1), if 0 < k < jn;
P fa(k=2), if a1l < k<2742 TN | fa(k+2), if jn < k<22

(k) = £t (kmod (2" +2)), fn (k) = f7 (kmod (2" — 2)). Therefore the subsequence
1**~ begins at position k, = (27" — 2)(2"+ 2) + 2jn + 2 in the ¢, cycle; this will
make jo, odd. The subsequence (01)"~'0 begins at position I, = (27" +1)(jn — 1) if
jnmodd =1, at I = (2"~1 + 1)(2"+ jn — 3) if jn mod 4 = 3. Also ks = 6, I = 2.

(d) Algorithm D inserts four elements into the ¢, cycle; hence

when j, mod 4<3 (I, <kn): when j, mod 4=3 (kn<ln):
en(k—1), if 0<k<ln+2; en(k—1), if 0<k<kn+1;
Fan(k) =X cn(k—3), if ln+2<k<kn+3; =X cn(k—2), if kn+1<k<ln+3;
en(k—4), if kn+3<k<2°" cn(k—4), if I, +3<k<2%™.

(e) Consequently jan = kn + 1 + 2[jn mod 4 < 3]. Indeed, the elements preceding
consist of 2”72 — 1 complete periods of f;() interleaved with 2”72 complete
periods of f, (), with one 0 inserted and also with 10 inserted if I, < ky, followed

12n

59

60 ANSWERS TO EXERCISES 7.2.1.1

by fn(1) fa(1) fn(2) fn(2) ... fa(jn —1) fa(jn —1). The sum of all these elements is odd,
unless I, < kn; therefore d2p, =1 — 2[j, mod 4=3].

Let n = 2'q, where q is odd and n > 2. The recurrences imply that, if ¢ = 1, we
have j, = 2"~ '+ b; where b; = 2//3 — (—=1)¥/3. And if ¢ > 1 we have j, = 2" '+ by o,
where the + sign is chosen if and only if [lgq| + [|4g/28% | =5] is even.

98. If f(k) = g(k) when k lies in a certain range, there’s a constant C' such that
Y f(k) = C + Xg(k) for k in that range. We can therefore continue almost mindlessly
to derive additional recurrences: If n > 1 we have

Y fon(k), when j, mod4 < 3 (I, < k»): when j, mod4 =3 (kn, <ln):
Sen(k—1), if0<k <lnt+2; Sen(k—1), if0<k<knt1;

= { 14Scn(k—3), if ln+2 <k <kn+3; = { 14+ 3en(k—2), if kn+1 < k < 1, +3;
Sen(k—4), if ka+3 < k<22 Yen(k—4), ifl,+3<k< 2%,

Sen(k) = Sfa ([k/2]) + Sfa (k/2])-

Sfalk—1), if 0<k<jn+1; ~ Sfa(k+1), if 0<k<jn;
spfg={ kD, o o spe={ D, 0Sk<n
14+ fn(k—2), if jn+1<k<2"+2; 145 fn(k+2), if jn<k<2"—2;
SfE(k) = [k/(2" £2)] + SfE (kmod (2" £2)); Sfn(k) = Sfn(kmod 2™).
5 fanpa (k) = { Z5an(k), if 0 < k < jon or 2°" 4 jon < k < 2277
P Z N 4k + S5 fan(k + 6an), i jon < k < 22" + jon.
23 fan(k), when j, mod 4<3 (In<kn): when j, mod 4=3 (kn<ln):
Y¥en(k—1), if 0<k<ln+2; Y¥en(k—1), if 0<k<kn+1;
=1 14+k+33cn(k—3), if ln+2<k<k,+3; =Q 1+k+3ca(k—2), if kn+1<k<l,+3;
Y¥cn(k—4), if kn+3<k<2™; 14+ X%, (k—4), ifl,+3<k<2™.

B3 fan (k) = [jn mod 4 < 3]|k/2°"] + B fon (k mod 2°7).

And then, aha, there is closure:
Y¥en(2k) = fT(k), TXea(2k+1) = T, (k).

If n = 2*q where ¢ is odd, the running time to evaluate f,(k) by this system of
recursive formulas is O(t + S(q)), where S(1) =1, S(2k) =1+ 2S(k), and S(2k+1) =
1+ S(k). Clearly S(k) < 2k, so the evaluations involve at most O(n) simple operations
on n-bit numbers. In fact, the method is often significantly faster: If we average S(k)
over all k with |lgk| = s we get (3°7! —2°%1)/2° which is less than 3k'8(/?) < 3§°%-5°,
(Incidentally, if k = 25t _ 1 — (257 4+ 2°7°2 + ... 4 2°7°) we have S(k) = s+ 1+
et +2e;_1+4eq_2+ -+ 2t61-)

99. A string that starts at position k in f,() starts at position k* = k+1+[k > j,] in
F¥() and at position k= = k — 1 — [k > j,] in f7 (), except that 0™ and 1™ occur twice
in £;7() but not at all in f, ().

To find v = aobo . ..an—1bn—1 in the cycle fon(), let @ = ao...an—1 and B =
bo...bp—1. Suppose « starts at position j and B at position k in f,(), and assume
that neither a nor § is 0™ or 1™. If j* = kT (modulo 2), let 1/2 be a solution to the
equation j7 + (2"+ 2)z = k™ + (2" — 2)y; we may take [/2 = k + (2" — 2)(2"73(j — k)
mod (2" ! + 1)) if j > k, otherwise 1/2 = j + (2" + 2)(2" 3(k — j) mod (2" ' — 1)).
Otherwise let (I —1)/2 = k™ + (2"+2)z = j~ + (2" — 2)y. Then v starts at position [
in the cycle ¢, (); hence it starts at position [+ 1+[l > k,]+2[l >,] in the cycle fan()-

60

7.2.1.1 ANSWERS TO EXERCISES 61

Similar formulas hold when o € {0",1"} or 8 € {0",1"} (but not both). Finally,
0%™, 1™, (01)™, and (10)™ start respectively in positions 0, jon, ln + 1 + [kn <], and
In + 24 [kn <ln].

To find B = boby...bn in frny1() when n is even, suppose that the n-bit string
(bo ® b1)...(bn—1 @ by) starts at position j in fn(). Then S starts at position k =
7= 6n[7>n]+ 2"[j=Jn][0n = 1] if fay1(k) = bo, otherwise at position k + (2" — J,,
0n, 2"+ 8,) according as (j<jn,Jj=jn,J>jn)-

The running time of this recursion satisfies T(n) = O(n) + 2T(|n/2]), so it is
O(nlogn). [Exercises 97-99 are based on the work of J. Tuliani, who also has developed
methods for certain larger values of m; see Discrete Math. 226 (2001), 313-336.]

100. No obvious defects are apparent, but extensive testing should be done before any
sequence can be recommended. By contrast, the de Bruijn cycle produced implicitly
by Algorithm F is a terrible source of supposedly random bits, even though it is n-
distributed in the sense of Definition 3.5D, because Os predominate at the beginning.
Indeed, when n is prime, bits tn + 1 of that sequence are zero for 0 < ¢t < (2" — 2)/n.

101. (a) Let B be a proper suffix of A\’ with 8 < A)X'. Either 8 is a suffix of \’, whence
A< X <B,or 8=a) and we have A < a < 3.

Now X < 8 < A)X implies that 8 = A\ for some v < \’. But 7 is a suffix of 8 with
1< |v] = 18] — |A| < |X'|; hence 7 is a proper suffix of X', and X’ < . Contradiction.

(b) Any string of length 1 is prime. Combine adjacent primes by (a), in any
order, until no further combination is possible. [See the more general results of M. P.
Schiitzenberger, Proc. Amer. Math. Soc. 16 (1965), 21-24.]

(c) If t # 0, let A be the smallest suffix of A1 ... A:. Then) is prime by definition,
and it has the form B~ where 8 is a nonempty suffix of some A;. Therefore A; < \; <
B < By =A<)\, so we must have A = ;. Remove A; and repeat until ¢t = 0.

(d) True. For if we had @ = AB for some prime A with |A| > |\1], we could
append the factors of 3 to obtain another factorization of a.

(e) 3 -1415926535897932384626433832795 - 02884197. (An efficient algorithm
appears in exercise 106. Knowing more digits of m would not change the first two
factors. The infinite decimal expansion of any number that is “normal” in the sense of
Borel (see Section 3.5) factors into primes of finite length.)

102. We must have 1/(1 — mz) = 1/[[>,(1 — 2™)*=(™. This implies (60) as in
exercise 4.6.2—4.

103. When n = p is prime, (59) tells us that Ly, (1) + pLm(p) = m?, and we also
have Ly, (1) = m. [This combinatorial proof provides an interesting contrast to the
traditional algebraic proof of Theorem 1.2.4F.]

104. The 4483 nonprimes are abaca, agora, ahead, . ..; the 1274 primes are . .., rusts,
rusty, rutty. (Since prime isn’t prime, we should perhaps call prime strings lowly.)

105. (a) Let o' be o with its last letter increased, and suppose o' = 84" where a = B~
and (B # €, v # €. Let 6 be the prefix of o with |§| = |y|. By hypothesis there is a string
w such that aw is prime; hence < aw < yw, so we must have § < . Consequently
0 < v', and we have o/ < v'.

(b) Let @« = M8 = a1...an where A\1fw is prime. The condition A\;1fw < fw
implies that a; < a4, for 1 < j < n—r, where r = |A1|. But we cannot have a; < ajr;
otherwise a would begin with a prime longer than A1, contradicting exercise 101(d).

(c) If « is the n-extension of both A and X', where |[A\| > |\'|, we must have
A = ())90 where 0 is a nonempty prefix of \'. But then § <\ <\ < 6.

61

62 ANSWERS TO EXERCISES 7.2.1.1

106. B1. [Initialize.] Set a1 « -+ ¢ an < m— 1, an41 < —1, and j + 1.
B2. [Visit.] Visit (a1,...,an) with index j.

B3. [Subtract one.] Terminate if a;j = 0. Otherwise set a; + a; — 1, and
ar < m—1for j <k <n.

B4. [Prepare to factor.] (According to exercise 105(b), we now want to find the
first prime factor A1 of a1 ...an.) Set j < 1 and k + 2.

B5. [Find the new j.] (Now aj...ax—1 is the (k — 1)-extension of the prime
ai...a;.) If ax—; > ax, return to B2. Otherwise, if ar—; < ag, set j < k.
Then increase k by 1 and repeat this step. |

The efficient factoring algorithm in steps B4 and B5 is due to J. P. Duval, J. Algorithms
4 (1983), 363-381. For further information, see Cattell, Ruskey, Sawada, Serra, and
Miers, J. Algorithms 37 (2000), 267—282.

107. The number of n-tuples visited is Pr(n) = >7_; Lm(j). Since Lm(n) = rm" +
O(m™'?/n), we have Pm(n) = Q(m,n) + O(Q(y/m,n)), where

n

k n
Q(m,m) =Y 7 = 7 R(m,n);

k=1
n

-1 _k n/2 k

R(m,n) = Z lT—k/n = ; % + O(nm™™/?)

= g%;{?}mlfll)ﬁo(””-

Thus P (n) ~ m™/((m — 1)n). The main contributions to the running time come
from the loops in steps F3 and F5, which cost n — j for each prime of length j, hence
a total of nPm(n) — 327 jLm(j) = m™ T (1/((m — 1)®n) + O(1/(mn?))). This is less
than the time needed to output the m™ individual digits of the de Bruijn cycle.

108. (a) f @ #9...9, we have Agy1 < B9!*!, because the latter is prime.

(b) We can assume that 3 is not all Os, since 970" Jisa substring of Ai_1 AtA1 A2 =
89™0"1. Let k be minimal with 8 < A\g; then \x < Ba, so B is a prefix of Ag. Since 8
is a preprime, it is the |3|-extension of some prime 8’ < . The preprime visited by
Algorithm F just before 8’ is (8’ — 1)9”_|B'|, by exercise 106, where 8’ — 1 denotes the
decimal number that is one less than 8’. Thus, if 8’ is not A\x_1, the hint (which also
follows from exercise 106) implies that Ax_1 ends with at least n — |3'| > n — |B]| 9s,
and « is a suffix of Ax_1. On the other hand if 8’ = A\x_1, « is a suffix of A\y_2, and 3
is a prefix of A\g_1 k.

(c) If a # 9...9, we have A1 < (Ba)*"189%!, because the latter is prime.
Otherwise A\;_1 ends with at least (d — 1)|Ba| 9s, and A\gy1 < (Ba)?719!82 5o (aB)?
is a substring of Ag—1 A Ak+1-

(d) Within the primes 135899135914, 787899 787979,12999913131314,09090911,
089999 09090911, 118999 119119122.

(e) Yes: In all cases, the position of a; . .. a, precedes the position of the substring
ai ...an—1(an + 1), if 0 < an, < 9 (and if we assume that strings like 970" occur at
the beginning). Furthermore 970" 7~ occurs only after 970" 7a has appeared for
1< a <9, so we must not place 0 after 970771,

62

7.2.1.1 ANSWERS TO EXERCISES 63

109. Suppose we want to locate the submatrix
(wn_l ...w1w0)2 (iBn_l ...151(50)2
(Yn-1...11%)2 (Zn-1...2120)2)

The binary case n = 1 is the given example, and if n > 1 we can assume by induction
that we only need to determine the leading bits azn—1, a2n—2, b2n—1, and bzn—2. The
case n = 3 is typical: We must solve

by = wo, by =z2, asDbs =vy2, ag®by=z22, ifag=0,by=0;
by = wa, bs =2, as Dby =1y2, as Dby =22, ifag=0,by=1;
as @ bs = w2, a4 @by = xa, bs = ya, by = 22, ifag =1, bo=0;
ay @by = wa, as® by =2, by = y2, bs = 2o, ifag=1,bo=1;

here b5 = bs @ babsbaby takes account of carrying when j becomes j + 1.

110. Let aqa, ...a,2_; be an m-ary de Bruijn cycle, such as the first m? elements of
(54)- If m is odd, let a;; = a; when i is even, a;j; = G(j1+(;—1)/2) mod m2 When i is odd.
[The first of many people to discover this construction seems to have been John C.
Cock, who also constructed de Bruijn toruses of other shapes and sizes in Discrete
Math. 70 (1988), 209-210.]

If m = m'm” where m’ L m"”, we use the Chinese remainder theorem to define

a;; = aj; (modulo m') and a;; = ag; (modulo m'")

in terms of matrices that solve the problem for m' and m'”. Thus the previous exercise
leads to a solution for arbitrary m.

Another interesting solution for even values of m was found by Zoltidn Té6th
[2nd Conf. Automata, Languages, and Programming Systems (1988), 165-172; see also
Hurlbert and Tsaak, Contemp. Math. 178 (1994), 153-160]. The first m?> elements a;
of the infinite sequence

0011 021331203223 041524355342514054450617263746577564 . .. 0766708 . ..

define a de Bruijn cycle with the property that the distance between the appearances
of ab and ba is always even. Then we can let a;; = a; if i + j is even, a;; = a; if 1 4+ j
is odd. For example, when m = 4 we have

0010021220302232
0001020320212223

0010001030203020
0001020301000203

0111031321312333
1011121330313233
0010021220302232
0203000122232021
0111031321312333
1213101132333031
0010021220302232
2021222300010203
0111031321312333
3031323310111213
0010021220302232
2223202102030001
0111031321312333
3233303112131011

(exercise 109);

0111011131213121
1011121311101213
0010001030203020
2021222321202223
0111011131213121
3031323331303233
0313031333233323
1011121311101213
0212021232223222
0001020301000203
0313031333233323
2021222321202223
0212021232223222
3031323331303233

(Téth).

63

64 ANSWERS TO EXERCISES 7.2.1.1

111. (a) Letdj =jand 0<a; < 3for1<j<9,as# 0. Form sequences s;, t; by the
rules s1 =0, t1 = dy; tj+1 = djt1 + 10tj[aj :0] for 1<j5<9; sjt1 =35+ (O,t]‘, —tj)
for a; = (0,1,2) and 1 < j < 9. Then sy is a possible result; we need only remember
the smallish values that occur. More than half the work is saved by disallowing a; = 2
when s = 0, then using |s10| instead of s10. Since fewer than 3% = 6561 possibilities
need to be tried, brute force via the ternary version of Algorithm M works well; fewer
than 24,000 mems and 1600 multiplications are needed to deduce that all integers less
than 211 are representable, but 211 is not.

Another approach, using Gray code to vary the signs after breaking the digits
into blocks in 28 possible ways, reduces the number of multiplications to 255, but at
the cost of about 500 additional mems. Therefore Gray code is not advantageous in
this application.

(b) Now (with 73,000 mems and 4900 multiplications) we can reach all numbers
less than 241, but not 241. There are 46 ways to represent 100, including the remarkable
9—87+6+5—43+ 210.

[H. E. Dudeney introduced his “century” problem in The Weekly Dispatch (4 and
18 June 1899). See also The Numerology of Dr. Matrix by Martin Gardner, Chapter 6;
Steven Kahan, J. Recreational Math. 23 (1991), 19-25.]

112. The method of exercise 111 now needs more than 167 million mems and 10 million
multiplications, because 3'® is so much larger than 3%. We can do much better (10.4
million mems, 1100 mults) by first tabulating the possibilities obtainable from the first
k and last k digits, for 1 < k < 9, then considering all blocks of digits that use the 9.
There are 60,318 ways to represent 100, and the first unreachable number is 16,040.

64

INDEX AND GLOSSARY

When an index entry refers to a page containing a relevant exercise, see also the answer to
that exercise for further information. An answer page is not indexed here unless it refers to a
topic not included in the statement of the exercise.

2-adic numbers, 31.

4-cube, 42, 55.

8-cube, 17, 35.

v(k), see Lee weight, Sideways sum.
m (circle ratio), 30, 43, 61.

p(k), see Ruler function.

Almost-linear recurrence, 23.
Analog-to-digital conversion, 34, 15.
Analysis of algorithms, 28, 37, 38.
Anti-Gray code, 35.

Antipodal words, 11.

Arima, Yoriyuki (45 5 §H &), 41.
Arndt, Jorg, 45.

Artificial intelligence, 43.

Aubert, Jacques, 55.
Automorphisms, 49.

Baez, John Carlos, 47.
Balanced Gray code, 14-17, 35, 49.
Bandwidth of n-cube, 35.
baud: One transmission unit (e.g., one
bit) per second, 4.
Baudot, Jean Maurice Emile, 4-5.
Beckett, Samuel Barclay, 34-35.
Bennett, William Ralph, 4.
Bernstein, Arthur Jay, 44.
Binary Gray codes, 12-17, 33-35.
Binary number system, 1, 4.
Binary recurrences, 43, 60.
Binary trie, 30.
Bit reversal, 28, 31.
Bitner, James Richard, 9.
Bitwise operations, 4, 11-12, 32, 45.
Borel, Emile Félix Edouard Justin, 61.
Borrow, 40.
Botermans, Jacobus (= Jack) Petrus
Hermana, 55.

Boustrophedon product, 36, 57.
Bruijn, Nicolaas Govert de, 22.

cycles, 22-27, 36-38, 63.

toruses, 38.
Buchner, Morgan Mallory, Jr., 44.

Calderbank, Arthur Robert, 43.

Canoe puzzle, 56.

Canonical delta sequence, 13, 49.

Cardano, Girolamo (= Hieronymus
Cardanus), 41.

Carry, 2, 63.

Castown, Rudolph W., 11.

Cattell, Kevin Michael, 62.

Cavior, Stephan Robert, 44.

65

Cayley, Arthur, Hamilton theorem, 45.

Center of gravity, 17.

Characteristic polynomial, 45.

Chen, Kuo-Tsai ([[1), 26.

Cheng, Ching-Shui (& ¥& 7K), 54.

Chinese remainder theorem, 63.

Chinese ring puzzle, 5-6, 28, 41-42.

Cock, John Crowle, 63.

Cohn, Martin, 49, 52, 54.

Complementary Gray codes, 13, 16-17,
33, 49.

Compositions, 28—-29.

Concatenation, 25, 35, 49.

Concurrent computing, 43.

Connected components, 34.

Cooke, Raymond Mark, 51, 55.

Coordinates, 13.

Coroutines, recursive, 24—25.

Cremer, William Henry, Jr., 56.

Cube, seen-cube.

Cube-connected computers, 43.

Cummings, Larry Jean, 58.

Cycle leaders, 31.

Cyclic shifts, 26.

Dally, William James, 43.
de Bruijn, Nicolaas Govert, 22.
cycles, 2227, 36-38, 63.
toruses, 38.
Decimal number system, 2, 18-19, 39.
Degen, Carl Ferdinand, 47.
Delta sequence, 13.
Dilation of embedded graph, 35.
Discrete Fourier transform, 9, 27, 47.
Divisors of a number, 35.
Doubly linked list, 21, 57-58.
Douglas, Robert James, 48.
Dual boustrophedon product, 57.
Dudeney, Henry Ernest, 5, 64.
Duval, Jean Pierre, 62.
Dyckman, Howard Lloyd, 36, 56.

Edge covering, 35.

Ehrlich, Gideon (7YX W), 9.
Enumeration, 1.

Equivalent Gray codes, 33—-34.
Error-correcting codes, 30.

Etzion, Tuvi ()XY >0, born 187170 »1w0), 25.
Extension, 26.

65

66 INDEX AND GLOSSARY

Factorization of strings, 37.
algorithm for, 62.
Faloutsos, Christos (®Palodteog, Xpniotog), 43.
Fast Fourier transform, 28.
Fast Walsh transform, 32.
Fermat, Pierre de, theorem, 38.
Fibonacci, Leonardo, of Pisa, numbers, 36.
Field, finite, 32.
Five-letter words, 11, 32—-33, 38.
Flores, Ivan, 54.
Focus pointers, 10-11, 20-21, 57.
Forest, 20-21.
Fourier, Jean Baptiste Joseph,
series, 7.
transform, discrete, 9, 28, 47.
Fox, Ralph Hartzler, 26.
Fredman, Michael Lawrence, 33, 48.
Fredricksen, Harold Marvin, 26, 27.
Fringe, 21, 57.

Gardner, Martin, 56, 64.
Generating functions, 61.
Generation, 1.
constant amortized time, 40.
loopless, 9-12, 20, 28, 29, 36, 42.
Gilbert, Edgar Nelson, 33.
Gilbert, William Schwenck, 1.
Goddyn de la Vega, Luis Armando, 34, 50.
Gomes, Peter John, iii.
Gordian Knot puzzle, 35.
Gray, Elisha, 5.
Gray, Frank, 4.
Gray binary code, 2-12, 16, 28—-33, 36, 58.
permutation, 3, 31.
Gray binary trie, 30.
Gray code: A sequence of adjacent objects.
Gray code for n-tuples, 12, 15, 18.
advantages of, 6, 11-12.
binary, see Binary Gray codes, Gray
binary code.
limitations of, 40, 64.
nonbinary, 18-20, 35-36, 46, 52, 54—56.
Gray cycle: A cyclic Gray code, 12, 15.
Gray fields, 31.
Gray path, 15, see Gray code.
Gray stream, 34.
Gray ternary code, 19, 36.
Gros, Luc Agathon Louis, 5.
Gvozdjak, Pavol, 34.

Hadamard, Jacques Salomon, 47.
transform, 9, 32, 46, 47.
Hamilton, William Rowan, see Cayley.
cycle, 13, 34.
path, 15, 33, 49.
Hamley, William, and sons, 56.
Hammons, Arthur Roger, Jr., 43.
Hariguchi, Yoichi (3% [5 —), iv.
Harmuth, Henning Friedolf, 7.
Hexadecimal puzzle, 42.

Hopcroft, John Edward, 44.
Hurlbert, Glenn Howland, 63.

in situ permutation, 28, 31.

in situ transformation, 9.

Inclusion and exclusion principle, 6.
Inline expansion, 11-12.
Interleaving, 37, 50, 63.

Inverse function, 4, 31.

Isaak, Garth Timothy, 63.
Isomorphic Gray cycles, 33-34.
Iteration of functions, 32, 45.

Japanese mathematics, 41.

Kahan, Steven Jay, 64.
Karnaugh, Maurice, 29.
Kedlaya, Kiran Sridhara, 49.
Keister, William, 42.
Kiefer, Jack Carl, 54.
Knuth, Donald Ervin (& & 44), i, iv, 58.
Koda, Yasunori (3 H £ &), 20-21.
Kronecker, Leopold, product, 46.
Kumar, Panganamala Vijay

(83780 da& $5576), 43.

Larrivee, Jules Alphonse, 6.
Lawrence, George Melvin, 15, 50.
Lee, Chester Chi Yuan (2= f j&) = Chi
Lee (Z= %), 42.
distance, 29.
weight, 29.
Lempel, Abraham (591> D1YIN), 25.
Lexicographic order, 2-3, 25, 29, 47.
Li, Gang (= Kenny) (Z=4X), 58.
Lieves, 30.
Linked allocation, 28, 29.
Listing, 1.
Loony Loop, 35-36.
Loopless generation, 9-12, 20, 28, 29, 36, 42.
Luke, Saint (“Ayiog Aovxdg 6 Edayyekiotrc),
40.
Lyndon, Roger Conant, 26.
words, 26, see Prime strings.

m-ary digit: An integer between 0 and
m — 1, inclusive, 2, 22.

Macro-processor, 11.

Maiorana, James Anthony, 26, 27.

Mantel, Willem, 23.

Martin, Monroe Harnish, 27-28.

Matching, 33.

Matrix (Bush), Irving Joshua, 64.

McClintock, William Edward, 15.

Median, 31.

Miers, Charles Robert, 62.

Military sayings, 1.

Misra, Jayadev (@960 94), 41.

Mitchell, Christopher John, 25.

Mixed-radix number system, 2, 19-21,
35, 54, 56.

66

MMIX, 40.
Modular Gray codes, 19-20, 35, 54.
decimal, 19.
m-ary, 24, 55, 58.
quaternary, 42, 49.
ternary, 46, 52.
Mollard, Michel, 48.
Monic polynomial, 42.
Monotonic binary Gray codes, 15-18, 35.
Morse, Samuel Finley Breese, code, 36, 57.
Moser, Leo, 48.
Multinomial coefficient, 29.

n-cube: The graph of n-bit strings,
adjacent when they differ in only one
position, 13, 15, 33-34.

subcubes of, 30-31.

n-distributed sequence, 61.

n-extension, 26.

n-tuple: a sequence or string of
length n, 1-2.

Nemeth, Evelyn (= Evi) Hollister Pratt, 50.

Neyman, Jerzy, 54.

Nonbinary Gray codes, 18-20, 35-36,
46, 52, 54-56.

Nonlocal Gray codes, 16—17, 34.

Nordstrom, Alan Wayne, 30.

Normal numbers, 61.

Novra, Henry, 56.

Octacode, 30.

Octonions, 47.
Odd-length runs, 58.
Orthogonal vectors, 8, 32.
Ourotoruses, 38-39.

Paley, Raymond Edward Alan Christopher,
45.
functions, 32.
Pan-digital puzzles, 39.
Parity bit, 6, 28, 29.
Paterson, Kenneth Graham, 25.
Perverse, Rufus Quentin, 35.
Pi (), 30, 43, 61.
Prefix of a string, 25.
Prepostorder, 42.
Preprime strings, 26-28, 37.
Prime strings, 25—28, 37.
factorization, 37, 62.
Primitive polynomials modulo p, 23, 45.
Principal subforests, 20—21.
Proper prefixes or suffixes, 25.
Pseudorandom bits, 37.
Pulse code modulation, 4.
Purkiss, Henry John, 28.

Quaternary n-tuples, 29, 49.
Quaternions and octonions, 32.

INDEX AND GLOSSARY 67

R&D method, 25, 37.
Rademacher, Hans, 8.
functions, 8, 32, 46.
Ramras, Mark Bernard, 50.
Random number generation, 37.
Ranking an n-tuple, 4, 19, 35.
Reflected Gray codes, 19-21, 35, 54, 56.
decimal, 19.
ternary, 36.
Reingold, Edward Martin (750,
D»N 12 YN PNYd), 9.
Reversing bits, 28, 31.
Richards, Dana Scott, 36.
Right subcube, 30.
Ringel, Gerhard, 35.
Ritchie, Alistair English, 42.
Robinson, John Paul, 30, 49, 52.
Rosenbaum, Joseph, 54.
Ruler function, 6, 8, 12, 13, 47.
decimal, 19.
Run lengths, 15-17, 34, 50, 58.
Ruskey, Frank, iv, 20, 21, 28, 31, 33, 58, 62.

Salzer, Herbert Ellis, 44.

Sampson, John Laurence, 33, 48.

Savage, Carla Diane, 17-18, 28, 33, 35, 49.
Sawada, Joseph James, 62.

Schéffler, Otto, 5.

Schneider, Bernadette, 55.
Schiitzenberger, Marcel Paul, 61.
Sequency, 7.

Serra, Micaela, 62.

Shapiro, Harold Seymour, 33.

Shift register sequences, 2228, 36-38.
Sideways sum, 15, 44.

Silverman, Jerry, 33, 48-50.

Sloane, Neil James Alexander, 43.
Slocum, Gerald Kenneth (= Jerry), 55-56.
Solé, Patrick, 43.

SpinOut puzzle, 42.

Squire, Matthew Blaze, 58.

Stahnke, Wayne Lee, 23.

Standard sequences, 26.

Steiglitz, Kenneth, 44.
Stevens, Brett, 34.

Stewart, Ian Nicholas, 38.
Stibitz, George Robert, 4, 6.
Stringology, 25—-28, 37-38.
Subcubes, 30-31.
Subforests, 20—21, 36.
Subsets, 1, 6.

Suffix of a string, 25.

Sums of squares, 32.
Sylvester, James Joseph, 32, 47.

67

68 INDEX AND GLOSSARY

Tangle puzzle, see Loony Loop.

Taylor, Lloyd William, 5.

Telephone, 5.

Television, 4.

Ternary n-tuples, 19, 26-27, 35, 36,
46, 52, 64.

Tiring irons, 5.

Tootill, Geoffrey Colin, 14, 41.

Torture test, 35.

Torus, 29, 38, 42.

Téth, Zoltén, 63.

Transition counts, 14, 33.

Traversal, 1.

Trend-free Gray codes, 16-17, 35.

Trie, 30.

Tuliani, Jonathan R., 61.

Tuple: A sequence containing a given
number of elements.

Unranking an n-tuple, 34, 19, 28, 35.

Up-down sequence, 36.

Véazsonyi, Endre, 57.
Vickers, Virgil Eugene, 33, 48-50.
Visitation, 1.

Wallis, John, 6, 41.

‘Walsh, Joseph Leonard, 7, 8, 45.
functions, 7-9, 32.
transform, 8-9, 32.

Wang, Terry Min Yih (E H %), 28.

‘Washburn, Seth Harwood, 42.
‘Weight enumeration, 42.
‘Wiedemann, Douglas Henry, 58.
Winker, Steven Karl, 48.

Winkler, Peter Mann, 17-18, 35, 49.

Wrapping around, 19, 29, 38.

Yates, Frank, 9.
Yuen, Chung Kwong (Bt 5% Jf), 44.

68

