THE ART OF
COMPUTER PROGRAMMING

PRE-FASCICLE 2B

A DRAFT OF SECTION 7.2.1.2:
GENERATING ALL PERMUTATIONS

DONALD E. KNUTH Stanford University

A
ADDISON-WESLEY \A4

Internet page http://www-cs-faculty.stanford.edu/ knuth/taocp.html contains
current information about this book and related books.

See also http://www-cs—-faculty.stanford.edu/ knuth/sgb.html for information
about The Stanford GraphBase, including downloadable software for dealing with the
graphs used in many of the examples in Chapter 7.

See also http://www-cs-faculty.stanford.edu/ knuth/mmixware.html for down-
loadable software to simulate the MMIX computer.

Copyright © 2002 by Addison—Wesley

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior consent of the publisher, except
that the official electronic file may be used to print single copies for personal (not
commercial) use.

Zeroth printing (revision 12), 10 December 2004

PREFACE

| thought it worth a Dayes labour,
to write something on this Art or Science,
that the Rules thereof might not be lost and obscured.

— RICHARD DUCKWORTH, Tintinnalogia (1668)

THIS BOOKLET contains draft material that I'm circulating to experts in the
field, in hopes that they can help remove its most egregious errors before too
many other people see it. I am also, however, posting it on the Internet for
courageous and/or random readers who don’t mind the risk of reading a few
pages that have not yet reached a very mature state. Beware: This material has
not yet been proofread as thoroughly as the manuscripts of Volumes 1, 2, and 3
were at the time of their first printings. And those carefully-checked volumes,
alas, were subsequently found to contain thousands of mistakes.

Given this caveat, I hope that my errors this time will not be so numerous
and/or obtrusive that you will be discouraged from reading the material carefully.
I did try to make it both interesting and authoritative, as far as it goes. But the
field is so vast, I cannot hope to have surrounded it enough to corral it completely.
Therefore I beg you to let me know about any deficiencies you discover.

To put the material in context, this is Section 7.2.1.2 of a long, long chapter
on combinatorial algorithms. Chapter 7 will eventually fill three volumes (namely
Volumes 4A, 4B, and 4C), assuming that I'm able to remain healthy. It will
begin with a short review of graph theory, with emphasis on some highlights
of significant graphs in The Stanford GraphBase (from which I will be drawing
many examples). Then comes Section 7.1, which deals with the topic of bitwise
manipulations. (I drafted about 60 pages about that subject in 1977, but those
pages need extensive revision; meanwhile I’ve decided to work for awhile on
the material that follows it, so that I can get a better feel for how much to
cut.) Section 7.2 is about generating all possibilities, and it begins with Section
7.2.1: Generating Basic Combinatorial Patterns — which, in turn, begins with
Section 7.2.1.1, “Generating all n-tuples.” (Readers of the present booklet should
have already looked at Section 7.2.1.1, a draft of which is available as Pre-
Fascicle 2A.) That sets the stage for the main contents of this booklet, Section
7.2.1.2: “Generating all permutations.” Then will come Section 7.2.1.3 (about
combinations), etc. Section 7.2.2 will deal with backtracking in general. And
so it will go on, if all goes well; an outline of the entire Chapter 7 as currently
envisaged appears on the taocp webpage that is cited on page ii.

iii

iv PREFACE

Even the apparently lowly topic of permutation generation turns out to be
surprisingly rich, with ties to Sections 1.2.9, 1.3.3, 2.2.3, 2.3.4.2, 3.4.2, 4.1, 5.1.1,
5.1.2, 5.1.4, 5.2.1, 5.2.2, 5.3.1, and 6.1 of the first three volumes. There also is
material related to the MMIX computer, defined in Section 1.3.1’ of Fascicle 1.
I strongly believe in building up a firm foundation, so I have discussed this topic
much more thoroughly than I will be able to do with material that is newer or
less basic. To my surprise, I came up with 112 exercises, even though—believe
it or not —1I had to eliminate quite a bit of the interesting material that appears
in my files.

Some of the things presented are new, to the best of my knowledge, although
I will not be at all surprised to learn that my own little “discoveries” have been
discovered before. Please look, for example, at the exercises that I’ve classed as
research problems (rated with difficulty level 46 or higher), namely exercises 71
and 109; I've also implicitly posed additional unsolved questions in the answers
to exercises 28, 58, 63, 67, 100, 106, and 112. Are those problems still open?
Please let me know if you know of a solution to any of these intriguing questions.
And of course if no solution is known today but you do make progress on any of
them in the future, I hope you’ll let me know.

I urgently need your help also with respect to some exercises that I made
up as I was preparing this material. I certainly don’t like to get credit for things
that have already been published by others, and most of these results are quite
natural “fruits” that were just waiting to be “plucked.” Therefore please tell
me if you know who I should have credited, with respect to the ideas found in
exercises 6, 7, 20, 25, 41, 55, 60, 65, 66, 67, 69, 70, 76, 89, 99, 104, and/or 106.

I shall happily pay a finder’s fee of $2.56 for each error in this draft when it is
first reported to me, whether that error be typographical, technical, or historical.
The same reward holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32¢ each. (Furthermore, if
you find a better solution to an exercise, I’ll actually reward you with immortal
glory instead of mere money, by publishing your name in the eventual book:—)

Cross references to yet-unwritten material sometimes appear as ‘00’; this
impossible value is a placeholder for the actual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.
81 December 2001

7.2.1.2 GENERATING ALL PERMUTATIONS 1

Tin tan din dan bim bam bom bo—
tan tin din dan bam bim bo bom—
tin tan dan din bim bam bom bo—
tan tin dan din bam bim bo bom—
tan dan tin bam din bo bim bom—

Tin tan din dan bim bam bom bo.

— DOROTHY L. SAYERS, The Nine Tailors (1934)

A permutation on the ten decimal digits is simply a 10 digit decimal number
in which all digits are distinct. Hence all we need to do is to produce

all 10 digit numbers and select only those whose digits are distinct.

Isn’t it wonderful how high speed computing saves us from

the drudgery of thinking! We simply program k +1 — k

and examine the digits of k for undesirable equalities.

This gives us the permutations in dictionary order too!

On second sober thought ... we do need to think of something else.

— D. H. LEHMER (1957)

7.2.1.2. Generating all permutations. After n-tuples, the next most im-
portant item on nearly everybody’s wish list for combinatorial generation is the
task of visiting all permutations of some given set or multiset. Many different
ways have been devised to solve this problem. In fact, almost as many different
algorithms have been published for unsorting as for sorting! We will study the
most important permutation generators in this section, beginning with a classical
method that is both simple and flexible:

Algorithm L (Lexicographic permutation generation). Given a sequence of n
elements ajas ... a,, initially sorted so that

a; <az <--- <ap, (1)

this algorithm generates all permutations of {ai,as,...,a,}, visiting them in
lexicographic order. (For example, the permutations of {1,2,2, 3} are

1223, 1232, 1322, 2123, 2132, 2213, 2231, 2312, 2321, 3122, 3212, 3221,

ordered lexicographically.) An auxiliary element ag is assumed to be present for
convenience; ag must be strictly less than the largest element a,,.

L1. [Visit.] Visit the permutation aias .. .ay,.

2 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

L2. [Find j.] Set j < n— 1. If a; > a;j1, decrease j by 1 repeatedly until
a; < aj+1. Terminate the algorithm if j = 0. (At this point j is the smallest
subscript such that we have already visited all permutations beginning with
ap ...a;. Therefore the lexicographically next permutation will increase the
value of a;.)

L3. [Increase a;.| Set I < n. If a; > a;, decrease [by 1 repeatedly until a; < a;.
Then interchange a; < a;. (Since Gjt1 > -+ > ap, element a; is the
smallest element greater than a; that can legitimately follow a; ...a;_1 in a
permutation. Before the interchange we had aj41 > -+ > a;j—1 > a; > a; >
@jy1 > -+ > ap; after the interchange, we have aj;1 > --- > a;—1 > a; >
ar> a1 > > ap.)

L4. [Reverse ajy1...an.] Set k <— j+ 1 and [< n. Then, if k¥ <, interchange
ag <> aj,set k< k+1,1< 1 —1, and repeat until £ > [. Return to L1. |

This algorithm goes back to Narayana Pandita in 14th-century India (see Section
7.2.1.7); it also appeared in C. F. Hindenburg’s preface to Specimen Analyticum
de Lineis Curvis Secundi Ordinis by C. F. Riidiger (Leipzig: 1784), xlvi—xlvii,
and it has been frequently rediscovered ever since. The parenthetical remarks in
steps L2 and L3 explain why it works.

In general, the lexicographic successor of any combinatorial pattern a;g ... a,
is obtainable by a three-step procedure:

1) Find the largest j such that a; can be increased.

2) Increase a; by the smallest feasible amount.

3) Find the lexicographically least way to extend the new as ... a; to a complete
pattern.

Algorithm L follows this general procedure in the case of permutation generation,
just as Algorithm 7.2.1.1M followed it in the case of n-tuple generation; we will
see numerous further instances later, as we consider other kinds of combinatorial
patterns. Notice that we have a;4; > --- > a, at the beginning of step L4.
Therefore the first permutation beginning with the current prefix a;...a; is
ai...QjGy...a;41, and step L4 produces it by doing |(n — j)/2| interchanges.
In practice, step L2 finds j = n — 1 half of the time when the elements are
distinct, because exactly n!/2 of the n! permutations have a,,_1 < a,. Therefore
Algorithm L can be speeded up by recognizing this special case, without making
it significantly more complicated. (See exercise 1.) Similarly, the probability
that j < n—tis only 1/¢! when the a’s are distinct; hence the loops in steps L2
L4 usually go very fast. Exercise 6 analyzes the running time in general, showing
that Algorithm L is reasonably efficient even when equal elements are present,
unless some values appear much more often than others do in the multiset

{al,az,...,an}.

Adjacent interchanges. We saw in Section 7.2.1.1 that Gray codes are ad-
vantageous for generating n-tuples, and similar considerations apply when we
want to generate permutations. The simplest possible change to a permutation
is to interchange adjacent elements, and we know from Chapter 5 that any

7.2.1.2 GENERATING ALL PERMUTATIONS 3

permutation can be sorted into order if we make a suitable sequence of such
interchanges. (For example, Algorithm 5.2.2B works in this way.) Hence we can
go backward and obtain any desired permutation, by starting with all elements
in order and then exchanging appropriate pairs of adjacent elements.

A natural question now arises: Is it possible to run through all permutations
of a given multiset in such a way that only two adjacent elements change places
at every step? If so, the overall program that is examining all permutations will
often be simpler and faster, because it will only need to calculate the effect of
an exchange instead of to reprocess an entirely new array a; ...a, each time.

Alas, when the multiset has repeated elements, we can’t always find such
a Gray-like sequence. For example, the six permutations of {1,1,2,2} are con-
nected to each other in the following way by adjacent interchanges:

2112
1122 — 1212 1991 2121 — 2211; (2)

this graph has no Hamiltonian path.

But most applications deal with permutations of distinct elements, and for
this case there is good news: A simple algorithm makes it possible to generate
all n! permutations by making just n! — 1 adjacent interchanges. Furthermore,
another such interchange returns to the starting point, so we have a Hamiltonian
cycle analogous to Gray binary code.

The idea is to take such a sequence for {1,...,n — 1} and to insert the
number n into each permutation in all ways. For example, if n = 4 the sequence
(123,132, 312, 321, 231, 213) leads to the columns of the array

1234 1324 3124 3214 2314 2134

1243 1342 3142 3241 2341 2143 (3)
1423 1432 3412 3421 2431 2413 3
4123 4132 4312 4321 4231 4213

when 4 is inserted in all four possible positions. Now we obtain the desired
sequence by reading downwards in the first column, upwards in the second, down-
wards in the third, ..., upwards in the last: (1234,1243,1423,4123,4132, 1432,
1342,1324,3124,3142, . .., 2143, 2134).

In Section 5.1.1 we studied the inversions of a permutation, namely the pairs
of elements (not necessarily adjacent) that are out of order. Every interchange
of adjacent elements changes the total number of inversions by +1. In fact, when
we consider the so-called inversion table c; ...c, of exercise 5.1.1-7, where ¢; is
the number of elements lying to the right of j that are less than j, we find that
the permutations in (3) have the following inversion tables:

0000 0010 0020 0120 0110 0100
0001 0011 0021 0121 0111 0101 (1)
0002 0012 0022 0122 0112 0102 4
0003 0013 0023 0123 0113 0103

And if we read these columns alternately down and up as before, we obtain
precisely the reflected Gray code for mixed radices (1, 2, 3,4), as in Egs. (46)—(51)

4 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

of Section 7.2.1.1. The same property holds for all n, as noticed by E. W. Dijkstra
[Acta Informatica 6 (1976), 357-359], and it leads us to the following formulation:

Algorithm P (Plain changes). Given a sequence aias...a, of n distinct
elements, this algorithm generates all of their permutations by repeatedly inter-
changing adjacent pairs. It uses an auxiliary array cjcs...c,, which represents
inversions as described above, running through all sequences of integers such that

0<¢i<j for1<j<m. (5)

Another array 0102 ...0, governs the directions by which the entries ¢; change.
P1. [Initialize.] Set ¢; <— 0 and 0j +— 1 for 1 < j <mn.
P2. [Visit.] Visit the permutation aias ... ay.

P3. [Prepare for change.] Set j + n and s < 0. (The following steps determine
the coordinate j for which ¢; is about to change, preserving (5); variable s
is the number of indices k > j such that ¢, =k — 1.)

P4. [Ready to change?] Set g < ¢; +o0;. If ¢ <0, go to P7; if ¢ = j, go to P6.
P5. [Change.] Interchange @j_c;+s ¢ aj_qts- Thenset c; < gand return to P2.
P6. [Increase s.] Terminate if j = 1; otherwise set s « s+ 1.

P7. [Switch direction.] Set 0; <— —o0;, j - j — 1, and go back to P4. |

This procedure, which clearly works for all n > 1, originated in 17th-century
England, when bell ringers began the delightful custom of ringing a set of bells
in all possible permutations. They called Algorithm P the method of plain
changes. Figure 18(a) illustrates the “Cambridge Forty-Eight,” an irregular
and ad hoc sequence of 48 permutations on 5 bells that had been used in
the early 1600s, before the plain-change principle revealed how to achieve all
5! = 120 possibilities. The venerable history of Algorithm P has been traced to
a manuscript by Peter Mundy now in the Bodleian Library, written about 1653
and transcribed by Ernest Morris in The History and Art of Change Ringing
(1931), 29-30. Shortly afterwards, a famous book called Tintinnalogia, published
anonymously in 1668 but now known to have been written by Richard Duckworth
and Fabian Stedman, devoted its first 60 pages to a detailed description of plain
changes, working up from n = 3 to the case of arbitrarily large n.

Cambridge Forty-eight, for many years,

was the greatest Peal that was Rang or invented; but now,

neither Forty-eight, nor a Hundred, nor Seven-hundred and twenty,

nor any Number can confine us; for we can Ring Changes, Ad infinitum.
. On four Bells, there are Twenty four several Changes,

in Ringing of which, there is one Bell called the Hunt,

and the other three are Extream Bells;

the Hunt moves, and hunts up and down continually ...;

two of the Extream Bells makes a Change

every time the Hunt comes before or behind them.

— DUCKWORTH and STEDMAN, Tintinnalogia (1668)

7.2.1.2 GENERATING ALL PERMUTATIONS 5

% E /’\/’\;&m (incomplete)
(a) The Cambridge Forty-Eight.
Y P g g— P P g
SR AN o S e '__/—’_\&-’_’ AN
(b) Plain Changes.

7 NN NN /'\< / / TN/ /'\< ')%w(
AN AN O N N S AN e

(c¢) Grandsire Doubles.

PN RN OO CRNARI A

(d) Stedman Doubles.

Fig. 18. Four patterns used to ring five church-bells
in 17th-century England. Pattern (b) corresponds to
Algorithm P.

British bellringing enthusiasts soon went on to develop more complicated
schemes in which two or more pairs of bells change places simultaneously. For
example, they devised the pattern in Fig. 18(c) known as Grandsire Doubles,
“the best and most ingenious Peal that ever was composed, to be rang on five
bells” [Tintinnalogia, page 95]. Such fancier methods are more interesting than
Algorithm P from a musical or mathematical standpoint, but they are less useful
in computer applications, so we shall not dwell on them here. Interested readers
can learn more by reading W. G. Wilson’s book, Change Ringing (1965); see
also A. T. White, AMM 103 (1996), 771-778.

H. F. Trotter published the first computer implementation of plain changes
in CACM 5 (1962), 434-435. The algorithm is quite efficient, especially when it
is streamlined as in exercise 16, because n — 1 out of every n permutations are
generated without using steps P6 and P7. By contrast, Algorithm L enjoys its
best case only about half of the time.

The fact that Algorithm P does exactly one interchange per visit means that
the permutations it generates are alternately even and odd (see exercise 5.1.1-
13). Therefore we can generate all the even permutations by simply bypassing
the odd ones. In fact, the c and o tables make it easy to keep track of the current
total number of inversions, ¢; + - -+ + ¢,, as we go.

Many programs need to generate the same permutations repeatedly, and in
such cases we needn’t run through the steps of Algorithm P each time. We can
simply prepare a list of suitable transitions, using the following method:

Algorithm T (Plain change transitions). This algorithm computes a table ¢[1],
t[2], ..., t[n! — 1] such that the actions of Algorithm P are equivalent to the
successive interchanges a;) <> ayxj41 for 1 < k < n!. We assume that n > 2.

T1. [Initialize.] Set N < n!, d + N/2, t[d] + 1, and m « 2.

6 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

T2. [Loop on m.] Terminate if m = n. Otherwise set m < m + 1, d < d/m,
and k < 0. (We maintain the condition d = n!/m!.)

T3. [Hunt down.] Set k < k+d and j < m — 1. Then while j > 0, set t[k] < 7,
j<j—1 and k< k+d, until 5 =0.

T4. [Offset.] Set t[k] < t[k] + 1 and k < k + d.

T5. [Hunt up.] While j <m—1, set j « j+1, t[k] « j, and k + k+d. Return
to T3 if kK < N, otherwise return to T2. |

For example, if n = 4 we get the table (¢[1],¢[2],...,¢[23]) = (3,2,1,3,1,2,3,1,

3,2,1,3,1,2,3,1,3,2,1,3,1,2,3).

Alphametics. Now let’s consider a simple kind of puzzle in which permutations
are useful: How can the pattern

SEND
+ MORE (6)

MONEY
represent a correct sum, if every letter stands for a different decimal digit?
[H. E. Dudeney, Strand 68 (1924), 97, 214.] Such puzzles are often called
“alphametics,” a word coined by J. A. H. Hunter [Globe and Mail (Toronto:
27 October 1955), 27]; another term, “cryptarithm,” has also been suggested by

S. Vatriquant [Sphinx 1 (May 1931), 50].

The classic alphametic (6) can easily be solved by hand (see exercise 21). But
let’s suppose we want to deal with a large set of complicated alphametics, some
of which may be unsolvable while others may have dozens of solutions. Then we
can save time by programming a computer to try out all permutations of digits

that match a given pattern, seeing which permutations yield a correct sum.
[A computer program for solving alphametics was published by John Beidler in
Creative Computing 4,6 (November—December 1978), 110-113.]

We might as well raise our sights slightly and consider additive alphametics
in general, dealing not only with simple sums like (6) but also with examples like

VIOLIN 4 VIOLIN 4 VIOLA = TRIO 4 SONATA.
Equivalently, we want to solve puzzles such as
2(VIOLIN) + VIOLA — TRIO — SONATA = O, (7)

where a sum of terms with integer coefficients is given and the goal is to obtain
zero by substituting distinct decimal digits for the different letters. Each letter
in such a problem has a “signature” obtained by substituting 1 for that letter
and 0 for the others; for example, the signature for I in (7) is

2(010010) + 01000 — 0010 — 000000,

namely 21010. If we arbitrarily assign the codes (1,2,...,10) to the letters
(v,1,0,L,N,A,T,R, S, X), the respective signatures corresponding to (7) are
5= 210000, 5, =21010, 5= 790, 53 =210, 5= =998, o
s¢ = —100, s7=—1010, sg=—100, s9=—100000, s10 = 0.

7.2.1.2 GENERATING ALL PERMUTATIONS 7

(An additional letter, X, has been added because we need ten of them.) The
problem now is to find all permutations aj ... a1 of {0,1,...,9} such that

10
a-s = Zajsj = 0. (9)
j=1

There also is a side condition, because the numbers in alphametics should not
have zero as a leading digit. For example, the sums

7316 5731 6524 2817
+ 0823 and + 0647 and + 0735 and + 0368
08139 06378 07259 03185

and numerous others are not considered to be valid solutions of (6). In general
there is a set F' of first letters such that we must have

a; #0 for all j € F; (10)

the set F' corresponding to (7) and (8) is {1,7,9}.

One way to tackle a family of additive alphametics is to start by using
Algorithm T to prepare a table of 10! —1 transitions ¢[k]. Then, for each problem
defined by a signature sequence (s1,...,810) and a first-letter set F, we can
exhaustively look for solutions as follows:

A1. [Initialize.] Set ajag...a19 < 01...9, v « 2;0:1(] —1)sj, k < 1, and
5]- — Sj+1 — S5 for 1 <j < 10.
A2. [Test.] If v =0 and if (10) holds, output the solution a; ...a1o.
A3. [Swap.] Stop if £ = 10!. Otherwise set j < tlk], v < v — (a;4+1 — a;)0;
ajt+1 <> aj, k< k41, and return to A2. |
Step A3 is justified by the fact that swapping a; with a;11 simply decreases a - s
by (aj+1 — a;)(sj+1 — s;). Even though 10! is 3,628,800, a fairly large number,
the operations in step A3 are so simple that the whole job takes only a fraction
of a second on a modern computer.
An alphametic is said to be pure if it has a unique solution. Unfortunately
(7) is not pure; the permutations 1764802539 and 3546281970 both solve (9) and

(10), hence we have both
176478 + 176478 + 17640 = 2576 + 368020

and
354652 + 354652 + 35468 1954 4 742818.

Furthermore sg = sg in (8), so we can obtain two more solutions by interchanging
the digits assigned to A and R.

On the other hand (6) is pure, yet the method we have described will find
two different permutations that solve it. The reason is that (6) involves only
eight distinct letters, hence we will set it up for solution by using two dummy
signatures sg = s;9 = 0. In general, an alphametic with m distinct letters will
have 10 — m dummy signatures Spy,4+1 = -+ = s190 = 0, and each of its solutions
will be found (10 — m)! times unless we insist that, say, am+1 < -+ < a1o.

8 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

A general framework. A great many algorithms have been proposed for
generating permutations of distinct objects, and the best way to understand
them is to apply the multiplicative properties of permutations that we studied
in Section 1.3.3. For this purpose we will change our notation slightly, by using
0O-origin indexing and writing agas .. .a,_1 for permutations of {0,1,...,n — 1}
instead of writing ajas . . . a,, for permutations of {1, 2,...,n}. More importantly,
we will consider schemes for generating permutations in which most of the action
takes place at the left, so that all permutations of {0,1,...,k — 1} will be
generated during the first k! steps, for 1 < k < n. For example, one such
scheme for n =4 is

0123, 1023, 0213, 2013, 1203, 2103, 0132, 1032, 0312, 3012, 1302, 3102,
0231, 2031, 0321, 3021, 2301, 3201, 1230, 2130, 1320, 3120, 2310, 3210;)

this is called “reverse colex order,” because if we reflect the strings from right
to left we get 3210, 3201, 3120, ..., 0123, the reverse of lexicographic order.
Another way to think of (11) is to view the entries as (n—ay,) ... (n—az2)(n—a1),
where ajas . . . a,, runs lexicographically through the permutations of {1,2,...,n}.

Let’s recall from Section 1.3.3 that a permutation like o = 250143 can be
written either in the two-line form

B <012345)
*~ \ 250143

or in the more compact cycle form
a=(02)(153),

with the meaning that o takes 0 — 2, 1 — 5, 2 — 0, 3 — 1, 4 — 4, and
5 — 3; a 1-cycle like (4)’ need not be indicated. Since 4 is a fixed point of this
permutation we say that “a fixes 4.” We also write 0 = 2, la = 5, and so on,
saying that ja is “the image of j under a.” Multiplication of permutations, like
a times B where 8 = 543210, is readily carried out either in the two-line form

. (012345) (012345) - (012345) (250143) - (012345)
=\ 250143/ \ 543210/ = \ 250143/ \305412/) =~ \ 305412

or in the cycle form
aBf=(02)(153) - (05)(14)(23) = (0341)(25).

Notice that the image of 1 under af is 1(af) = (1a)B = 58 = 0, etc. Warning:
About half of all books that deal with permutations multiply them the other way
(from right to left), imagining that a8 means that 5 should be applied before a.
The reason is that traditional functional notation, in which one writes a(1) = 5,
makes it natural to think that a3(1) should mean a(8(1)) = a(4) = 4. However,
the present book subscribes to the other philosophy, and we shall always multiply
permutations from left to right.

The order of multiplication needs to be understood carefully when permu-
tations are represented by arrays of numbers. For example, if we “apply” the
reflection 5 = 543210 to the permutation @ = 250143, the result 341052 is not a3

7.2.1.2 GENERATING ALL PERMUTATIONS 9

but Sa. In general, the operation of replacing a permutation o = agay ... an_1
by some rearrangement aggaig...an_1)g takes k — ags = kBa. Permuting
the positions by B corresponds to premultiplication by (, changing a to Sa;
permuting the values by 8 corresponds to postmultiplication by (, changing «
to af. Thus, for example, a permutation generator that interchanges a; <> as is
premultiplying the current permutation by (1 2), postmultiplying it by (a1 a2).

Following a proposal made by Evariste Galois in 1830, a nonempty set G
of permutations is said to form a group if it is closed under multiplication, that
is, if the product af is in G whenever o and 8 are elements of G [see Ecrits
et Mémoires Mathématiques d’Evariste Galois (Paris: 1962), 47]. Consider, for
example, the 4-cube represented as a 4 X 4 torus

1302

4576

dfe (12)
a

as in exercise 7.2.1.1-17, and let G be the set of all permutations of the vertices
{0,1,...,f} that preserve adjacency: A permutation « is in G if and only if
u — v implies ua — va in the 4-cube. (Here we are using hexadecimal
digits (0,1,...,f) to stand for the integers (0,1,...,15). The labels in (12)
are chosen so that u — v if and only if u and v differ in only one bit position.)
This set G is obviously a group, and its elements are called the symmetries or
“automorphisms” of the 4-cube.

Groups of permutations G are conveniently represented inside a computer by
means of a Sims table, introduced by Charles C. Sims [Computational Methods
in Abstract Algebra (Oxford: Pergamon, 1970), 169-183], which is a family of
subsets S, Sa, ... of G having the following property: Sy contains exactly one
permutation og; that takes k — j and fixes the values of all elements greater
than k, whenever G contains such a permutation. We let oxr be the identity
permutation, which is always present in G; but when 0 < j < k, any suitable
permutation can be selected to play the role of o3;. The main advantage of a
Sims table is that it provides a convenient representation of the entire group:

Lemma S. Let Sy, S, ..., Sn—1 be a Sims table for a group G of permutations
on {0,1,...,n — 1}. Then every element o of G has a unique representation
o =0102...0,_1, where o, € S; for 1 <k < n. (13)

Proof. If a has such a representation and if 05,1 is the permutation o(,_1); €
Sn_1, then a takes n — 1 — j, because all elements of S; U---U S,,_o fix the
value of n — 1. Conversely, if o takes n — 1 — j we have a = o/0(,,_1);, where

Vi —
o =ac)
(n—1)j

is a permutation of G that fixes n — 1. (As in Section 1.3.3, o~ denotes the
inverse of ¢.) The set G’ of all such permutations is a group, and Sy, ..., Sp_2
is a Sims table for G'; therefore the result follows by induction on n. |

10 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

For example, a bit of calculation shows that one possible Sims table for the
automorphism group of the 4-cube is

St = {(), (01)(23)(45)(67)(89)(ab)(cd)(ef), ...,
(0f)(1e)(2d)(3c)(4b)(52)(69)(78)};

Se ={(), (12)(86)(9a)(de), (14)(36)(9¢c)(be), (18)(32)(5c)(Te)};
Sa={(), (24)(35)(ac)(bd), (28)(39)(6c)(7d)}; (14)
Se={0};

Sv ={(), (48)(59)(62)(7b)};

Sa=S8y=-=8={0)

here S¢ contains 16 permutations o¢; for 0 < j < 15, which respectively take
i 1@ (15— j) for 0 < 7 < 15. The set S, contains only four permutations,
because an automorphism that fixes £ must take e into a neighbor of £; thus the
image of e must be either e or d or b or 7. The set S. contains only the identity
permutation, because an automorphism that fixes f, e, and d must also fix c.
Most groups have Sy = {()} for all small values of k, as in this example; hence a
Sims table usually needs to contain only a fairly small number of permutations
although the group itself might be quite large.

The Sims representation (13) makes it easy to test if a given permutation o
lies in G: First we determine 0, 1 = 0(n_1);, where a takes n — 1~ j, and we
let o/ = ao,,_;; then we determine o, 3 = 0(,_2);s, where o/ takes n — 2~ j/,
and we let o = o/o,,_,; and so on. If at any stage the required ox; does not
exist in Sk, the original permutation a does not belong to G. In the case of (14),
this process must reduce o to the identity after finding o¢, 0e, 04, 0¢, and oy,.

For example, let a be the permutation (14)(28)(3c)(69)(7d)(be), which cor-
responds to transposing (12) about its main diagonal {0, 5, f,a}. Since « fixes f,
o¢ will be the identity permutation (), and o/ = a. Then o, is the member of S,
that takes e — b, namely (14)(36)(9c)(be), and we find o’ = (28)(39)(6¢)(7d).
This permutation belongs to Sy, so « is indeed an automorphism of the 4-cube.

Conversely, (13) also makes it easy to generate all elements of the corre-
sponding group. We simply run through all permutations of the form

o(l,c1)0(2,¢2)...0(n—1,¢cp_1),

where o(k,ci) is the (cx + 1)st element of Si for 0 < ¢ < s = |Sk| and
1 <k < n, using any algorithm of Section 7.2.1.1 that runs through all (n — 1)-
tuples (c1,...,cn—1) for the respective radices (s1,...,8p—1).

Using the general framework. Our chief concern is the group of all permuta-
tionson {0,1,...,n—1}, and in this case every set Sy, of a Sims table will contain
k+1 elements {o(k,0),0(k,1),...,0(k,k)}, where o(k,0) is the identity and the
others take k to the values {0, ..., k—1} in some order. (The permutation o(k, j)
need not be the same as o, and it usually is different.) Every such Sims table
leads to a permutation generator, according to the following outline:

10

7.2.1.2 GENERATING ALL PERMUTATIONS 11

Algorithm G (General permutation generator). Given a Sims table (Sy, S,

...,Spn—1) where each Sy has k + 1 elements o(k,j) as just described, this

algorithm generates all permutations aga;...an—1 of {0,1,...,n — 1}, using

an auxiliary control table ¢, ...cacq.

G1. [Initialize.] Set a; < j and ¢j41 < 0 for 0 < j < n.

G2. [Visit.] (At this point the mixed-radix number [c"n*’l’ Y % | is the number
of permutations visited so far.) Visit the permutation aga; .. .an 1.

G3.[Add 1 to cy...coc1.] Set k < 1. If ¢ = k, set ¢ «+ 0, k + k+ 1,
and repeat until ¢ < k. Terminate the algorithm if k& = n; otherwise set
cr < ¢, + 1.
G4. [Permute.] Apply the permutation 7(k,cg)w(k — 1)~ to apay...an_1, as
explained below, and return to G2. |
Applying a permutation 7 to aga; ...a,—1 means replacing a; by a;, for
0 < j < m; this corresponds to premultiplication by 7 as explained earlier. Let
us define
m(k,j) =o(k,j)o(k,j—1)7 for 1 <j<k; (15)
w(k) =0(1,1)...0(k, k). (16)
Then steps G3 and G4 maintain the property that
apaj . ..an_1 is the permutation o(1,¢1)0(2,¢2)...0(n—1,¢cn-1), (17)

and Lemma S proves that every permutation is visited exactly once.

Fig. 19. Algorithm G implicitly traverses this tree when n = 4.

The tree in Fig. 19 illustrates Algorithm G in the case n = 4. According
to (17), every permutation agajazas of {0,1,2,3} corresponds to a three-digit
control string czcacr, with 0 < 3 < 3,0 < ¢y <2,and 0 < ¢; < 1. Some nodes
of the tree are labeled by a single digit c3; these correspond to the permutations
0(3, c3) of the Sims table being used. Other nodes, labeled with two digits csca,
correspond to the permutations (2, cz)o(3,c3). A heavy line connects node c3
to node c30 and node cscy to node czez0, because o(2,0) and o(1,0) are the
identity permutation and these nodes are essentially equivalent. Adding 1 to the
mixed-radix number czcoc; in step G3 corresponds to moving from one node of
Fig. 19 to its successor in preorder, and the transformation in step G4 changes
the permutations accordingly. For example, when czcaocy changes from 121 to
200, step G4 premultiplies the current permutation by

7(3,2)w(2)” =7(3,2)0(2,2)"0(1,1)7;

11

12 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

premultiplying by o(1,1)” takes us from node 121 to node 12, premultiplying
by 0(2,2)” takes us from node 12 to node 1, and premultiplying by 7(3,2) =
0(3,2)0(3,1)~ takes us from node 1 to node 2 = 200, which is the preorder suc-
cessor of node 121. Stating this another way, premultiplication by 7(3,2)w(2)~
is exactly what is needed to change o(1,1)0(2,2)0(3,1) to o(1,0)c(2,0)0(3,2),
preserving (17).

Algorithm G defines a huge number of permutation generators (see exer-
cise 37), so it is no wonder that many of its special cases have appeared in the
literature. Of course some of its variants are much more efficient than others,
and we want to find examples where the operations are particularly well suited
to the computer we are using.

We can, for instance, obtain permutations in reverse colex order as a special
case of Algorithm G (see (11)), by letting o(k, j) be the (j + 1)-cycle

o(k,j) = (k—j k—j+1 ... k). (18)

The reason is that o(k, j) should be the permutation that corresponds to ¢, ... ¢y
in reverse colex order when ¢y = j and ¢; = 0 for i # k, and this permutation
apay ...an_1 18 01...(k—j—1)(k—j5+1)...(k)(k—j)(k+1)...(n—1). For exam-
ple, when n = 8 and ¢, ...c; = 00030000 the corresponding reverse colex
permutation is 01345267, which is (2345) in cycle form. When o(k, j) is given
by (18), Egs. (15) and (16) lead to the formulas

7(k,j) = (k=3 k); (19)
w(k) = (01)(012)...(01 ... k)= (0k)(1k=1)(2k—2) ... = ¢(k); (20)

here ¢(k) is the “(k+1)-flip” that changes ag ... af to ai . .. ag. In this case w(k)
turns out to be the same as w(k)~, because ¢(k)? = ().

Equations (19) and (20) are implicitly present behind the scenes in Algo-
rithm L and in its reverse colex equivalent (exercise 2), where step L3 essentially
applies a transposition and step L4 does a flip. Step G4 actually does the flip
first; but the identity

(h=j K)$(k—1) = (k—1)(j—1 k) (1)

shows that a flip followed by a transposition is the same as a (different) trans-
position followed by the flip.
In fact, equation (21) is a special case of the important identity

7 (J1Je .- Jo)m = (am Jomr ... i), (22)

which is valid for any permutation m and any t¢-cycle (ji j2 ... jt). On the
left of (22) we have, for example, jim — j1 — ja — jam, in agreement with
the cycle on the right. Therefore if o and 7 are any permutations whatsoever,
the permutation 7~ am (called the conjugate of a by m) has exactly the same
cycle structure as «; we simply replace each element j in each cycle by j=.
Another significant special case of Algorithm G was introduced by R. J.
Ord-Smith [CACM 10 (1967), 452; 12 (1969), 638; see also Comp. J. 14 (1971),

12

7.2.1.2 GENERATING ALL PERMUTATIONS 13

136-139], whose algorithm is obtained by setting

o(k,j)=(k ... 10)%. (23)
Now it is clear from (15) that
7(k,j) = (k ... 10); (24)

and once again we have
wk)=(0k)(1 k-1)(2k-2)... = ¢(k), (25)

because o(k,k) = (0 1 ... k) is the same as before. The nice thing about this
method is that the permutation needed in step G4, namely 7(k,cx)w(k — 1),
does not depend on cy:

(b, Hwlk—1)" = (k ... 10)p(k—1)" = $(k). (26)

Thus, Ord-Smith’s algorithm is the special case of Algorithm G in which step G4
simply interchanges ag < ag, a1 <> ax_1, -..; this operation is usually quick,
because k is small, and it saves some of the work of Algorithm L. (See exercise 38
and the reference to G. S. Kliigel in Section 7.2.1.7.)

We can do even better by rigging things so that step G4 needs to do only a
single transposition each time, somewhat as in Algorithm P but not necessarily
on adjacent elements. Many such schemes are possible. The best is probably

to let
(k 0), if k is even,

k,j)wlk—1)" = 2
(k.)wlk=1) { (k j—1), ifkis odd, (=7)
as suggested by B. R. Heap [Comp. J. 6 (1963), 293—294]. Notice that Heap’s
method always transposes ag <> ag except when k = 3, 5, ... ; and the value of k,
in 5 of every 6 steps, is either 1 or 2. Exercise 40 proves that Heap’s method
does indeed generate all permutations.

Bypassing unwanted blocks. One noteworthy advantage of Algorithm G is
that it runs through all permutations of ag ...ag_1 before touching ag; then it
performs another k! cycles before changing ay again, and so on. Therefore if at
any time we reach a setting of the final elements a . ..a,—1 that is unimportant
to the problem we’re working on, we can skip quickly over all permutations that
end with the undesirable suffix. More precisely, we could replace step G2 by the
following substeps:

G2.0. [Acceptable?] If ag . ..an—1 is not an acceptable suffix, go to G2.1. Oth-
erwise set k < k — 1. Then if k > 0, repeat this step; if K = 0, proceed to
step G2.2.

G2.1. [Skip this suffix.] If ¢, = k, apply o(k, k)™ to ag...an—1, set ¢ < 0,
k < k + 1, and repeat until ¢ < k. Terminate if k& = n; otherwise set
ck « ¢+ 1, apply 7(k,ck) to ag . ..an—_1, and return to G2.0.

G2.2. [Visit.] Visit the permutation ag ...ap—1. |

Step G1 should also set £ < n — 1. Notice that the new steps are careful to

preserve condition (17). The algorithm has become more complicated, because

13

14 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

we need to know the permutations 7(k, 7) and o(k, k) in addition to the permu-
tations 7(k,j)w(k — 1)~ that appear in G4. But the additional complications
are often worth the effort, because the resulting program might run significantly
faster.

Fig. 20. Unwanted branches can be pruned from the
tree of Fig. 19, if Algorithm G is suitably extended.

For example, Fig. 20 shows what happens to the tree of Fig. 19 when
the suffixes of agajasaz that correspond to nodes 00, 11, 121, and 2 are not
acceptable. (BEach suffix ai...an—1 of the permutation aq...a,—1 corresponds
to a prefix ¢, ...cp of the control string c,...c;, because the permutations
o(l,c1)...0(k —1,cx_1) do not affect ag...a, 1.) Step G2.1 premultiplies by
7(k, j) to move from node ¢, _1...cg41] to its right sibling ¢, 1. ..cxr1(5+1),
and it premultiplies by o(k,k)” to move up from node c,—1...cpp1k to its
parent ¢p_1...ck4+1. Thus, to get from the rejected prefix 121 to its preorder
successor, the algorithm premultiplies by o(1,1)~, 0(2,2) ™, and 7(3, 2), thereby
moving from node 121 to 12 to 1 to 2. (This is a somewhat exceptional case,
because a prefix with k = 1 is rejected only if we don’t want to visit the unique
permutation agay ...a,—1 that has suffix a; ...an—_1.) After node 2 is rejected,
7(3, 3) takes us to node 3, etc.

Notice, incidentally, that bypassing a suffix ax...a,_1 in this extension
of Algorithm G is essentially the same as bypassing a prefix a;...a; in our
original notation, if we go back to the idea of generating permutations a; ... ay,
of {1,...,n} and doing most of the work at the right-hand end. Our original
notation corresponds to choosing aq first, then as, ..., then a,; the notation
in Algorithm G essentially chooses a,_; first, then a,_s, ..., then ap. Algo-
rithm G’s conventions may seem backward, but they make the formulas for Sims
table manipulation a lot simpler. A good programmer soon learns to switch
without difficulty from one viewpoint to another.

We can apply these ideas to alphametics, because it is clear for example that
most choices of the values for the letters D, E, and Y will make it impossible for
SEND plus MORE to equal MONEY: We need to have (D+E — Y) mod 10 = 0 in that
problem. Therefore many permutations can be eliminated from consideration.

In general, if ry is the maximum power of 10 that divides the signature
value si, we can sort the letters and assign codes {0,1,...,9} so that ro >
r1 > -+ > r9. For example, to solve the trio sonata problem (7), we could use
(0,1,...,9) respectively for (X,S,V,A,R,I,L,T,0,N), obtaining the signatures

so=0, s3=—100000, sy=210000, s3=—100, s4=—100,
s5 = 21010, sg =210, s;=—1010, sg=—7901, sg = —998;

14

7.2.1.2 GENERATING ALL PERMUTATIONS 15

hence (rg,...,r9) = (00,5,4,2,2,1,1,1,0,0). Now if we get to step G2.0 for a
value of k with rg_; # 1, we can say that the suffix ag...ag is unacceptable
unless ags + - -+ + agSg is a multiple of 10™-1. Also, (10) tells us that ay . .. ag
is unacceptable if a = 0 and k € F; the first-letter set F' is now {1,2,7}.

Our previous approach to alphametics with steps A1-A3 above used brute
force to run through 10! possibilities. It operated rather fast under the circum-
stances, since the adjacent-transposition method allowed it to get by with only
6 memory references per permutation; but still, 10! is 3,628,800, so the entire
process cost almost 22 megamems, regardless of the alphametic being solved.
By contrast, the extended Algorithm G with Heap’s method and the cutoffs just
described will find all four solutions to (7) with fewer than 128 kilomems! Thus
the suffix-skipping technique runs more than 170 times faster than the previous
method, which simply blasted away blindly.

Most of the 128 kilomems in the new approach are spent applying 7(k, ck)
in step G2.1. The other memory references come primarily from applications of
o(k,k)” in that step, but 7 is needed 7812 times while o~ is needed only 2162
times. The reason is easy to understand from Fig. 20, because the “shortcut
move” 7(k,ck)w(k — 1)~ in step G4 hardly ever applies; in this case it is used
only four times, once for each solution. Thus, preorder traversal of the tree is
accomplished almost entirely by 7 steps that move to the right and o~ steps
that move upward. The T steps dominate in a problem like this, where very
few complete permutations are actually visited, because each step o(k, k)™ is
preceded by k steps 7(k, 1), 7(k,2), ..., 7(k, k).

This analysis reveals that Heap’s method —which goes to great lengths to
optimize the permutations 7(k,j)w(k — 1)~ so that each transition in step G4
is a simple transposition —is not especially good for the extended Algorithm G
unless comparatively few suffixes are rejected in step G2.0. The simpler reverse
colex order, for which 7(k, j) itself is always a simple transposition, is now much
more attractive (see (19)). Indeed, Algorithm G with reverse colex order solves
the alphametic (7) with only 97 kilomems.

Similar results occur with respect to other alphametic problems. For ex-
ample, if we apply the extended Algorithm G to the alphametics in exercise 24,
parts (a) through (h), the computations involve respectively

(551, 110, 14, 8, 350, 84, 153, 1598) kilomems with Heap’s method; (28)
(429, 84,10, 5, 256, 63, 117, 1189) kilomems with reverse colex.

The speedup factor for reverse colex in these examples, compared to brute force
with Algorithm T, ranges from 18 in case (h) to 4200 in case (d), and it is about
80 on the average; Heap’s method gives an average speedup of about 60.

We know from Algorithm L, however, that lexicographic order is easily han-
dled without the complication of the control table ¢, ...c; used by Algorithm G.
And a closer look at Algorithm L shows that we can improve its behavior when
permutations are frequently being skipped, by using a linked list instead of a
sequential array. The improved algorithm is well-suited to a wide variety of
algorithms that wish to generate restricted classes of permutations:

15

16 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

Algorithm X (Lezicographic permutations with restricted prefizes). This al-
gorithm generates all permutations ajaz . ..ay of {1,2,...,n} that pass a given
sequence of tests

tl(al), t2(alaa2)a ceey tn(alaa21"'1an)a

visiting them in lexicographic order. It uses an auxiliary table of links Iy, I1,
.., lp to maintain a cyclic list of unused elements, so that if the currently
available elements are

{1,...,n} \ {a1,...,ax} = {b1,. .., bk}, where by < -+ < bp_g, (29)

then we have
lo=0b1, lpyy=>bjy1 for1<j<n—k, and I, _, =0. (30)
It also uses an auxiliary table u;...u, to undo operations that have been
performed on the [array.
X1. [Initialize.] Set Iy + k+ 1 for 0 < k < n, and I, + 0. Then set k + 1.
X2. [Enter level k.] Set p + 0, g < lo.
X3. [Test ay ...ak.] Set ax < q. If tx(ay,...,ax) is false, go to X5. Otherwise,
if k = n, visit a; ...a, and go to X6.

X4. [Increase k.| Set ug < p, I, < lg, k < k + 1, and return to X2.
X5. [Increase ay.] Set p <— g, ¢ < Il,. If ¢ # 0 return to X3.

X6. [Decrease k.] Set k < k— 1, and terminate if k = 0. Otherwise set p + ug,
q < ag, l, + g, and go to X5. 1

The basic idea of this elegant algorithm is due to M. C. Er [Comp. J. 30 (1987),
282]. We can apply it to alphametics by changing notation slightly, obtaining
permutations ag . .. ag of {0, ...,9} and letting l;¢ play the former role of [y. The
resulting algorithm needs only 49 kilomems to solve the trio-sonata problem (7),
and it solves the alphametics of exercise 24(a)—(h) in

(248, 38, 4, 3, 122, 30, 55, 553) kilomems, (31)

respectively. Thus it runs about 165 times faster than the brute-force approach.
Another way to apply Algorithm X to alphametics is often faster yet (see
exercise 49).

Fig. 21. The tree implicitly traversed by Algorithm X when n = 4, if all permu-
tations are visited except those beginning with 132, 14, 2, 314, or 4312.

16

7.2.1.2 GENERATING ALL PERMUTATIONS 17

*Dual methods. If Sy, ..., S,_1 is a Sims table for a permutation group G,
we learned in Lemma S that every element of G can be expressed uniquely as
a product o1 ...0,_1, where oy € Si; see (13). Exercise 50 shows that every
element « can also be expressed uniquely in the dual form

a=0, 1...0507, where o, € S for 1 <k < n, (32)

and this fact leads to another large family of permutation generators. In par-
ticular, when G is the group of all n! permutations, every permutation can be
written

U(n_ 17Cn—1)_ ...0'(2,02)_0'(1,61)_, (33)
where 0 < ¢ < k for 1 < k < n and the permutations o(k,j) are the same as
in Algorithm G. Now, however, we want to vary c,_; most rapidly and c; least
rapidly, so we arrive at an algorithm of a different kind:

Algorithm H (Dual permutation generator). Given a Sims table as in Algo-
rithm G, this algorithm generates all permutations ag . ..an—1 of {0,...,n—1},
using an auxiliary table cg...cp—1.

H1. [Initialize.] Set a; - j and ¢; - 0 for 0 < j < n.

H2. [Visit.] (At this point the mixed-radix number [’ %~ “»~1] is the number

N) eeey

of permutations visited so far.) Visit the permutation aga; .. .an 1.

H3. [Add 1tococy...cno1.] Set k< n—1. Ifcy, =k, set ¢ + 0,k + k—1, and
repeat until £ = 0 or ¢x < k. Terminate the algorithm if & = 0; otherwise
set cp < ¢ + 1.

H4. [Permute.] Apply the permutation 7(k,cx)w(k + 1)~ to agpay ...an_1, as
explained below, and return to H2. |

Although this algorithm looks almost identical to Algorithm G, the permutations

7 and w that it needs in step H4 are quite different from those needed in step G4.

The new rules, which replace (15) and (16), are

T(ka.j) = U(kaj)io-(kaj - 1)7 for 1 <j <k, (34)
wk)=0cn—-1,n—-1)"0cn—-2,n—-2)"...0(k, k). (35)

The number of possibilities is just as vast as it was for Algorithm G, so we
will confine our attention to a few cases that have special merit. One natural
case to try is, of course, the Sims table that makes Algorithm G produce reverse
colex order, namely

olk,j) = (k—j k—j+1 ... k) (36)

as in (18). The resulting permutation generator turns out to be very nearly the
same as the method of plain changes; so we can say that Algorithms L and P
are essentially dual to each other. (See exercise 52.)

Another natural idea is to construct a Sims table for which step H4 always
makes a single transposition of two elements, by analogy with the construction
of (27) that achieves maximum efficiency in step G4. But such a mission now
turns out to be impossible: We cannot achieve it even when n = 4. For if

17

18 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

we start with the identity permutation agajasas = 0123, the transitions that
take us from control table cocicacz = 0000 to 0001 to 0002 to 0003 must move
the 3; so, if they are transpositions, they must be (3a), (ab), and (bc) for some
permutation abe of {0,1,2}. The permutation corresponding to cgcicacs = 0003
is now o(3,3)” = (bc)(ab)(3a) = (3abc); and the next permutation, which
corresponds to cpcicacs = 0010, will be 0(2,1), which must fix the element 3.
The only suitable transposition is (3¢), hence ¢(2,1) must be (3¢)(3abc) =
(abc). Similarly we find that ¢(2,2)” must be (acb), and the permutation
corresponding to cocicacz = 0023 will be (3abc)(acb) = (3¢). Step H4 is now
supposed to convert this to the permutation o(1,1)~, which corresponds to the
control table 0100 that follows 0023. But the only transposition that will convert
(3 ¢) into a permutation that fixes 2 and 3 is (3 ¢); and the resulting permutation
also fixes 1, so it cannot be o(1,1)".

The proof in the preceding paragraph shows that we cannot use Algorithm H
to generate all permutations with the minimum number of transpositions. But it
also suggests a simple generation scheme that comes very close to the minimum,
and the resulting algorithm is quite attractive because it needs to do extra work
only once per n(n — 1) steps. (See exercise 53.)

Finally, let’s consider the dual of Ord-Smith’s method, when

o(k,j) = (k ... 10)7 (37)
as in (23). Once again the value of 7(k, j) is independent of j,
k)= (01 ... k), (39)

and this fact is particularly advantageous in Algorithm H because it allows us
to dispense with the control table cpcy ...c, 1. The reason is that ¢, ;1 =0 in
step H3 if and only if a,—1 = n — 1, because of (32); and indeed, when ¢; = 0
for k < j < n in step H3 we have ¢y = 0 if and only if a, = k. Therefore we can
reformulate this variant of Algorithm H as follows.

Algorithm C (Permutation generation by cyclic shifts). This algorithm visits

all permutations a; .. .a, of the distinct elements {z1,...,z,}.

C1. [Initialize.] Set a; +— x; for 1 < j < n.

C2. [Visit.] Visit the permutation a; ... a,, and set k < n.

C3. [Shift.] Replace ajas...ax by the cyclic shift ay...agas, and return to C2
if ag # xg-

C4. [Decrease k.] Set k + k — 1, and go back to C3 if k> 1. 1|

For example, the successive permutations of {1, 2,3, 4} generated when n = 4 are

1234, 2341, 3412, 4123, (1234),
2314, 3142, 1423, 4231, (2314),
3124, 1243, 2431, 4312, (3124), (1234),

2134, 1342, 3421, 4213, (2134),

1324, 3241, 2413, 4132, (1324),

3214, 2143, 1432, 4321, (3214), (2134), (1234),

NN AN N N N

18

7.2.1.2 GENERATING ALL PERMUTATIONS 19

with unvisited intermediate permutations shown in parentheses. This algorithm
may well be the simplest permutation generator of all, in terms of minimum
program length. It is due to G. G. Langdon, Jr. [CACM 10 (1967), 298-299;
11 (1968), 392]; similar methods had been published previously by C. Tompkins
[Proc. Symp. Applied Math. 6 (1956), 202-205] and, more explicitly, by R. Seitz
[Unternehmensforschung 6 (1962), 2-15]. The procedure is particularly well
suited to applications in which cyclic shifting is efficient, for example when suc-
cessive permutations are being kept in a machine register instead of in an array.

The main disadvantage of dual methods is that they usually do not adapt
well to situations where large blocks of permutations need to be skipped, be-
cause the set of all permutations with a given value of the first control entries
cocCy -.-ck—1 is usually not of importance. The special case (36) is, however,
sometimes an exception, because the n!/k! permutations with cocy...cp-1 =
00...0 in that case are precisely those agaj...an—1 in which 0 precedes 1,
1 precedes 2, ..., and k — 2 precedes k — 1.

*Ehrlich’s swap method. Gideon Ehrlich has discovered a completely different
approach to permutation generation, based on yet another way to use a control
table ¢y ...c,_1. His method obtains each permutation from its predecessor by
interchanging the leftmost element with another:

Algorithm E (Ehrlich swaps). This algorithm generates all permutations of the
distinct elements ag .. .a, 1 by using auxiliary tables bg...b, 1 and ¢; ...cy,.

E1. [Initialize.] Set b; <— j and ¢j11 < 0 for 0 < j < n.
E2. [Visit.] Visit the permutation ag .. .an_1.

E3. [Find k.] Set k + 1. Then if ¢, =k, set ¢ + 0, k + k+1, and repeat until
cx < k. Terminate if k = n, otherwise set ¢ < ¢ + 1.

E4. [Swap.] Interchange ag <> ay, .

E5. [Flip.] Set j < 1, k < k — 1. If j < k, interchange b; <> by, set j < j+ 1,
k < k — 1, and repeat until j > k. Return to E2. |

Notice that steps E2 and E3 are identical to steps G2 and G3 of Algorithm G.
The most amazing thing about this algorithm, which Ehrlich communicated to
Martin Gardner in 1987, is that it works; exercise 55 contains a proof. A similar
method, which simplifies the operations of step E5, can be validated in the same
way (see exercise 56). The average number of interchanges performed in step E5
is less than 0.18 (see exercise 57).

As it stands, Algorithm E isn’t faster than other methods we have seen. But
it has the nice property that it changes each permutation in a minimal way, using
only n — 1 different kinds of transpositions. Whereas Algorithm P used adjacent
interchanges, a;—1 <> a;, Algorithm E uses first-element swaps, ag < a;, also
called star transpositions, for some well-chosen sequence of indices ¢[1], ¢[2], ...,
t[n! — 1]. And if we are generating permutations repeatedly for the same fairly
small value of n, we can precompute this sequence, as we did in Algorithm T

19

20 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

for the index sequence of Algorithm P. Notice that star transpositions have an
advantage over adjacent interchanges, because we always know the value of ag
from the previous swap; we need not read it from memory.

Let E, be the sequence of n! — 1 indices ¢ such that Algorithm E swaps ag
with a; in step E4. Since E,; begins with E,, we can regard E,, as the first
n! — 1 elements of an infinite sequence

E =121213212123121213212124313132131312.... (39)

For example, if n = 4 and agajazaz = 1234, the permutations visited by
Algorithm E are
1234, 2134, 3124, 1324, 2314, 3214,
4213, 1243, 2143, 4123, 1423, 2413,
3412, 4312, 1342, 3142, 4132, 1432,
2431, 3421, 4321, 2341, 3241, 4231.

(40)

*Using fewer generators. After seeing Algorithms P and E, we might naturally
ask whether all permutations can be obtained by using just two basic operations,
instead of n — 1. For example, Nijenhuis and Wilf [Combinatorial Algorithms
(1975), Exercise 6] noticed that all permutations can be generated for n = 4
if we replace aiasas...a, at each step by either asas...a,a; or asaqas...ay,
and they wondered whether such a method exists for all n.

In general, if G is any group of permutations and if aj, ..., a are ele-
ments of G, the Cayley graph for G with generators (az,...,ax) is the directed
graph whose vertices are the permutations 7 of G and whose arcs go from =«
to aqm, ..., ogm. [Arthur Cayley, American J. Math. 1 (1878), 174-176.] The
question of Nijenhuis and Wilf is equivalent to asking whether the Cayley graph
for all permutations of {1,2,...,n}, with generators o and 7 where ¢ is the cyclic
permutation (12 ... n) and 7 is the transposition (1 2), has a Hamiltonian path.

A basic theorem due to R. A. Rankin [Proc. Cambridge Philos. Soc. 44
(1948), 17-25] allows us to conclude in many cases that Cayley graphs with two
generators do not have a Hamiltonian cycle:

Theorem R. Let G be a group consisting of g permutations. If the Cayley graph
for G with generators (o, 8) has a Hamiltonian cycle, and if the permutations
(a, B,a7) are respectively of order (a,b, c), then either c is even or g/a and g/b
are odd.

(The order of a permutation « is the least positive integer a such that a® is the
identity.)

Proof. See exercise 73. |

In particular, when @ = o and 8 = 7 as above, we have g = n!, a = n, b = 2, and
c=n—1,because 07~ = (2 ... n). Therefore we conclude that no Hamiltonian
cycle is possible when n > 4 is even. However, a Hamiltonian path is easy to

20

7.2.1.2 GENERATING ALL PERMUTATIONS 21

construct when n = 4, because we can join up the 12-cycles

1234 — 2341 — 3412 — 4312 — 3124 — 1243 — 2431
— 4231 — 2314 — 3142 — 1423 — 4123 — 1234,

2134 — 1342 — 3421 — 4321 — 3214 — 2143 — 1432 (41)
— 4132 — 1324 — 3241 — 2413 — 4213 — 2134,

by starting at 2341 and jumping from 1234 to 2134, ending at 4213.

Ruskey, Jiang, and Weston [Discrete Applied Math. 57 (1995), 75-83] un-
dertook an exhaustive search in the o—r graph for n = 5 and discovered that
it has five essentially distinct Hamiltonian cycles, one of which (the “most
beautiful”) is illustrated in Fig. 22(a). They also found a Hamiltonian path
for n = 6; this was a difficult feat, because it is the outcome of a 720-stage
binary decision tree. Unfortunately the solution they discovered has no apparent
logical structure. A somewhat less complex path is described in exercise 70, but
even that path cannot be called simple. Therefore a o—7 approach will probably
not be of practical interest for larger values of n unless a new construction
is discovered. R. C. Compton and S. G. Williamson [Linear and Multilinear
Algebra 35 (1993), 237-293] have proved that Hamiltonian cycles exist for all n
if the three generators o, 0, and 7 are allowed instead of just o and 7; their
cycles have the interesting property that every nth transformation is 7, and the
intervening n — 1 transformations are either all o or all ¢~. But their method is
too complicated to explain in a short space.

Exercise 69 describes a general permutation algorithm that is reasonably
simple and needs only three generators, each of order 2. Figure 22(b) illustrates
the case n = 5 of this method, which was motivated by examples of bell-ringing.

AV A A

(a) Using only transitions (12345) and (12).

ANGNGNTNT OGSO TENGNGNGN

(b) Using only transitions (12)(34), (23)(45), and (34).

Fig. 22. Hamiltonian cycles for 5! permutations.

Faster, faster. What is the fastest way to generate permutations? This question
has often been raised in computer publications, because people who examine n!
possibilities want to keep the running time as small as possible. But the answers
have generally been contradictory, because there are many different ways to
formulate the question. Let’s try to understand the related issues by studying
how permutations might be generated most rapidly on the MMIX computer.

Suppose first that our goal is to produce permutations in an array of n
consecutive memory words (octabytes). The fastest way to do this, of all those
we’ve seen in this section, is to streamline Heap’s method (27), as suggested by
R. Sedgewick [Computing Surveys 9 (1977), 157-160].

21

22 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

The key idea is to optimize the code for the most common cases of steps G2
and G3, namely the cases in which all activity occurs at the beginning of the
array. If registers u, v, and w contain the contents of the first three words, and
if the next six permutations to be generated involve permuting those words in
all six possible ways, we can clearly do the job as follows:

PUSHJ 0,Visit

STO v,A0; STO u,Al; PUSHJ 0,Visit

STO w,A0; STO v,A2; PUSHJ 0,Visit

STO u,A0; STO w,Al; PUSHJ 0,Visit (42)

STO v,A0; STO u,A2; PUSHJ 0,Visit

STO w,A0; STO v,Al; PUSHJ 0,Visit
(Here AO is the address of octabyte ag, etc.) A complete permutation program,
which takes care of getting the right things into u, v, and w, appears in exer-
cise 77, but the other instructions are less important because they need to be
performed only % of the time. The total cost per permutation, not counting the
4v needed for PUSHJ and POP on each call to Visit, comes to approximately
2.77u + 5.69v with this approach. If we use four registers u, v, w, z, and if
we expand (42) to 24 calls on Visit, the running time per permutation drops
to about 2.19u + 3.07v. And with r registers and r! Visits, exercise 78 shows
that the cost is (2 + O(1/7!))(u + v), which is very nearly the cost of two STO
instructions.

The latter is, of course, the minimum possible time for any method that
generates all permutations in a sequential array. ...Or is it? We have assumed
that the visiting routine wants to see permutations in consecutive locations, but
perhaps that routine is able to read the permutations from different starting
points. Then we can arrange to keep a,_1 fixed and to keep two copies of the
other elements in its vicinity:

apgady ...0p_20pn_100071 ...0np_2. (43)

If we now let agaj ... an—2 run through (n — 1)! permutations, always changing
both copies simultaneously by doing two STO commands instead of one, we can
let every call to Visit look at the n permutations

apat ...-Aanp—1, at...anpn—10ap, ceey an—-100 ..-Ap—2, (44)

which all appear consecutively. The cost per permutation is now reduced to the
cost of three simple instructions like ADD, CMP, PBNZ, plus O(1/n). [See Varol
and Rotem, Comp. J. 24 (1981), 173-176.]

Furthermore, we might not want to waste time storing permutations into
memory at all. Suppose, for example, that our goal is to generate all permuta-
tions of {0,1,...,n — 1}. The value of n will probably be at most 16, because
16! = 20,922,789,888,000 and 17! = 355,687,428,096,000. Therefore an entire
permutation will fit in the 16 nybbles of an octabyte, and we can keep it in a
single register. This will be advantageous only if the visiting routine doesn’t
need to unpack the individual nybbles; but let’s suppose that it doesn’t. How
fast can we generate permutations in the nybbles of a 64-bit register?

22

7.2.1.2 GENERATING ALL PERMUTATIONS 23

One idea, suggested by a technique due to A. J. Goldstein [U. S. Patent
3383661 (14 May 1968)], is to precompute the table (¢[1],...,%[5039]) of plain-
change transitions for seven elements, using Algorithm T. These numbers ¢[k] lie
between 1 and 6, so we can pack 20 of them into a 64-bit word. It is convenient
to put the number iozl 23k=1¢[205 + k] into word j of an auxiliary table, for
0 < j < 252, with ¢[5040] = 1; for example, the table begins with the codeword

00001010011100101110100110101/100011/010001/110001010011100101/11000.

The following program reads such codes efficiently:

Perm (Set register a to the first permutation)

OH LDA p,T p ¢ address of first codeword.
JMP 3F
1H (Visit the permutation in register a)

(Swap the nybbles of a that lie t bits from the right)
SRU c¢,c,3 c+c> 3.

2H AND t,c,#lc t< cA (11100)s. (45)
PBNZ t,1B Branch if ¢ # 0.
ADD p,p,8

3H LDO c,p,0 ¢ <+ next codeword.
PBNZ c,2B (The final codeword is followed by 0.)

(If not done, advance the leading n — 7 nybbles and return to 0B)

Exercise 79 shows how to (Swap the nybbles ...) with seven instructions, using
bit manipulation operations that are found on most computers. Therefore the
cost per permutation is just a bit more than 10v. (The instructions that fetch
new codewords cost only (p + 5v)/20; and the instructions that advance the
leading n— 7 nybbles are even more negligible since their cost is divided by 5040.)
Notice that there is now no need for PUSHJ and POP as there was with (42); we
ignored those instructions before, but they did cost 4v.

We can, however, do even better by adapting Langdon’s cyclic-shift method,
Algorithm C. Suppose we start with the lexicographically largest permutation
and operate as follows:

GREG @
OH OCTA #fedcba9876543210& (1<<(4*N)-1)
Perm LDOU a,0OB Set a + #...3210.
JMP 2F
1H SRU a,a,4*(16-N) a + |a/16'7"].
OR a,a,t a<+aVt. (46)
2H (Visit the permutation in register a)
SRU t,a,4*(N-1) t <+ |a/16™71].
SLU a,a,4x(17-N) a + 16" "a mod 16'6.
PBNZ t,1B To 1B if t # 0.

(Continue with Langdon’s method)

The running time per permutation is now only 5v + O(1/n), again without the
need for PUSHJ and POP. See exercise 81 for an interesting way to extend (46) to
a complete program, obtaining a remarkably short and fast routine.

23

24 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

Fast permutation generators are amusing, but in practice we can usually
save more time by streamlining the visiting routine than by speeding up the
generator.

Topological sorting. Instead of working with all n! permutations of {1, ...,n},
we often want to look only at permutations that obey certain restrictions. For
example, we might be interested only in permutations for which 1 precedes 3,
2 precedes 3, and 2 precedes 4; there are five such permutations of {1, 2, 3,4},
namely

1234, 1243, 2134, 2143, 2413. (47)

The problem of topological sorting, which we studied in Section 2.2.3 as a first
example of nontrivial data structures, is the general problem of finding a permu-
tation that satisfies m such conditions 1 < y1, - - ., Tm < Ym, Where x < y means
that x should precede y in the permutation. This problem arises frequently in
practice, so it has several different names; for example, it is often called the linear
embedding problem, because we want to arrange objects in a line while preserving
certain order relationships. It is also the problem of extending a partial ordering
to a total ordering (see exercise 2.2.3-14).

Our goal in Section 2.2.3 was to find a single permutation that satisfies
all the relations. But now we want rather to find all such permutations, all
topological sorts. Indeed, we will assume in the present section that the elements
z and y on which the relations are defined are integers between 1 and n, and
that we have x < y whenever z < y. Consequently the permutation 12...n
will always be topologically correct. (If this simplifying assumption is not met,
we can preprocess the data by using Algorithm 2.2.3T to rename the objects

appropriately.)
Many important classes of permutations are special cases of this topological
ordering problem. For example, the permutations of {1,...,8} such that

1<2, 2<3, 3<4, 6<7, 7<8

are equivalent to permutations of the multiset {1,1,1,1,2,3,3,3}, because we
can map {1,2,3,4} — 1, 5 — 2, and {6,7,8} — 3. We know how to generate
permutations of a multiset using Algorithm L, but now we will learn another way.

Notice that = precedes y in a permutation a, ...a, if and only if a; < a; in
the inverse permutation af .. .a},. Therefore the algorithm we are about to study
will also find all permutations a} ...a;, such that a} < aj whenever j < k. For
example, we learned in Section 5.1.4 that a Young tableau is an arrangement of
{1,...,n} in rows and columns so that each row is increasing from left to right
and each column is increasing from top to bottom. The problem of generating all
3 x 3 Young tableaux is therefore equivalent to generating all a} ... ag such that

al <ah<ay, ay<al<ag ab<ag<ag,

(48)
ah <ay <ay, ah<af<ag af<ag<ag,

and this is a special kind of topological sorting.

24

7.2.1.2 GENERATING ALL PERMUTATIONS 25

‘We might also want to find all matchings of 2n elements, namely all ways to
partition {1,...,2n} into n pairs. There are (2n—1)(2n—3)...(1) = (2n)!/(2"n!)
ways to do this, and they correspond to permutations that satisfy

7 ! ! i ! ! ! ! 7
a; <Gy, a3< Qg ..., Qup_7 < Ggp, ay<azg<---<dag, 1. (49)

An elegant algorithm for exhaustive topological sorting was discovered by
Y. L. Varol and D. Rotem [Comp. J. 24 (1981), 83-84], who realized that a
method analogous to plain changes (Algorithm P) can be used. Suppose we
have found a way to arrange {1,...,n — 1} topologically, so that a;...ap_1
satisfies all the conditions that do not involve n. Then we can easily write down
all the allowable ways to insert the final element n without changing the relative
order of @y ...an_1: We simply start with a; ...an,_1n, then shift n left one step
at a time, until it cannot move further. Applying this idea recursively yields the
following straightforward procedure.

Algorithm V (All topological sorts). Given a relation < on {1,...,n} with the

property that z < y implies x < y, this algorithm generates all permutations

ay --.a, and their inverses aj ...a;, with the property that a} < aj whenever

7 < k. We assume for convenience that ag = 0 and that 0 < k for 1 < k < n.

V1. [Initialize.] Set a; +- j and aj j for 0 < j <m.

V2. [Visit.] Visit the permutation a, ...a, and its inverse a ...a,. Then set
k < n.

V3. [Can k move left?] Set j < aj, and [<~ a;_;. If | <k, go to V5.

V4. [Yes, move it.] Set a;_; < k, a; + 1, a, <~ j — 1, and aj « j. Go to V2.
V5. [No, put k back.] While j < k, set | <~ a;,, a; + [, aj + j,and j « j+1.
Then set a,, < a}, < k. Decrease k by 1 and return to V3 if &k > 0. 1|
For example, Theorem 5.1.4H tells us that there are exactly 42 Young tableaux
of size 3 x 3. If we apply Algorithm V to the relations (48) and write the inverse

permutation in array form

! ! i
ayazas
1 1 !
4050 |, (50)

ar agag

we get the following 42 results:

123|(123||123||123||123| (124|124 ||124||124||124||125||125||125||125
456||457||458||467||468|(356||357||358||367||368||367||368||346||347
78916891679 (589|(579||789||689||679]||589|(5679]|489]|479]||789||689

125|(126||126||127||126| (126 |127||134||134||134||134||134||135||135
348|(347||348|(348||357(|358|[358|(256||257|[258||267||268||267||268
679589579 |569|(489]|479]|[469|(789]|689||679|(589]|579] 489|479

145|(145||135(|135|(135||136(|136||137||136||136||137||146||146| 147
267|(268||246|(247|(248(|247||248||248||257||258||258||257||258||258
389|379 |789]|689||679||589||579|(569| 489|479 [469]||389|[379]||369

25

26 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

Let t, be the number of topological sorts for which the final n — r elements
are in their initial position a; = j for » < j < n. Equivalently, ¢, is the number
of topological sorts ay ...a, of {1,...,7}, when we ignore the relations involving
elements greater than r. Then the recursive mechanism underlying Algorithm V
shows that step V2 is performed N times and step V3 is performed M times,
where

M=t,+ -+t and N = t,. (51)

Also, step V4 and the loop operations of V5 are performed N — 1 times; the rest
of step V5 is done M — N + 1 times. Therefore the total running time of the
algorithm is a linear combination of M, N, and n.

If the element labels are chosen poorly, M might be much larger than N.
For example, if the constraints input to Algorithm V are

2<3, 3<4, ..., n—1<n, (52)

then t; = j for 1 < j < n and we have M = %(n2 +n), N = n. But those
constraints are also equivalent to

1<2, 2<3, ..., mn—2<n-—1, (53)

under renaming of the elements; then M is reduced to 2n — 1 =2N — 1.
Exercise 89 shows that a simple preprocessing step will find element labels

so that a slight modification of Algorithm V is able to generate all topological

sorts in O(N + n) steps. Thus topological sorting can always be done efficiently.

Think twice before you permute. We have seen several attractive algorithms
for permutation generation in this section, but many algorithms are known by
which permutations that are optimum for particular purposes can be found
without running through all possibilities. For example, Theorem 6.1S showed
that we can find the best way to arrange records on a sequential storage simply
by sorting them with respect to a certain cost criterion, and this process takes
only O(nlogn) steps. In Section 7.5.2 we will study the assignment problem,
which asks how to permute the columns of a square matrix so that the sum of
the diagonal elements is maximized. That problem can be solved in at most
O(n?®) operations, so it would be foolish to use a method of order n! unless n
is extremely small. Even in cases like the traveling salesrep problem, when no
efficient algorithm is known, we can usually find a much better approach than
to examine every possible solution. Permutation generation is best used when
there is good reason to look at each permutation individually.

EXERCISES

1. [20] Explain how to make Algorithm L run faster, by streamlining its operations
when the value of j is near n.

2. [20] Rewrite Algorithm L so that it produces all permutations of ai...an in
reverse colex order. (In other words, the values of the reflections an ...a;1 should be
lexicographically decreasing, as in (11). This form of the algorithm is often simpler
and faster than the original, because fewer calculations depend on the value of n.)

26

7.2.1.2 GENERATING ALL PERMUTATIONS 27

» 3. [M21] The rank of a combinatorial arrangement X with respect to a generation
algorithm is the number of other arrangements that the algorithm visits prior to X.
Explain how to compute the rank of a given permutation ai...a, with respect to
Algorithm L, if {a1,...,an} = {1,...,n}. What is the rank of 3145926877

4. [M23] Generalizing exercise 3, explain how to compute the rank of a; ...a, with
respect to Algorithm L when {ai,...,an} is the multiset {ni - z1,...,ns - z}; here
ni+---+n; =nand z1 < --- < z¢. (The total number of permutations is, of course,
the multinomial coefficient

n _ n!)
(nl,...,nt) Tl ong!’

see Eq. 5.1.2—(3).) What is the rank of 3141592657

5. [HM25] Compute the mean and variance of the number of comparisons made by
Algorithm L in (a) step L2, (b) step L3, when the elements {a1,...,an} are distinct.

6. [HM34] Derive generating functions for the mean number of comparisons made
by Algorithm L in (a) step L2, (b) step L3, when {a1,...,an} is a general multiset
as in exercise 4. Also give the results in closed form when {a1,...,a,} is the binary
multiset {s-0,(n —s)-1}.

7. [HM385] What is the limit as ¢ — oo of the average number of comparisons
made per permutation in step L2 when Algorithm L is being applied to the multiset
(@) {2-1,2.2,...,2:¢}2 (b) {1-1,2-2,...,¢-£}? (c) {2-1,4-2, ..., 2t - £}?

» 8. [21] The variations of a multiset are the permutations of all its submultisets. For
example, the variations of {1,2, 2,3} are

e, 1,12, 122, 1223, 123, 1232, 13, 132, 1322,
2, 21, 212, 2123, 213, 2132, 22, 221, 2213, 223, 2231, 23, 231, 2312, 232, 2321,
3, 31, 312, 3122, 32, 321, 3212, 322, 3221

Show that simple changes to Algorithm L will generate all variations of a given multiset
{al,az, e 7(J,n}.

9. [22] Continuing the previous exercise, design an algorithm to generate all r-
variations of a given multiset {a1,as,...,an}, also called its r-permutations, namely all
permutations of its r-element submultisets. (For example, the solution to an alphametic
with 7 distinct letters is an r-variation of {0,1,...,9}.)

10. [20] What are the values of a1az...an, c1¢2...cn, and 0102 ...0, at the end of
Algorithm P, if a1a2...an = 12...n at the beginning?
11. [M22] How many times is each step of Algorithm P performed? (Assume that
n>2.)

> 12. [M238] What is the 1000000th permutation visited by (a) Algorithm L, (b) Algo-
rithm P, (c) Algorithm C, if {a1,...,an} = {0,...,9}? Hint: In mixed-radix notation

72 6,6,25,1,2,2,0,0] _0,0,1,2,3,0,2,7,1, 0
we have 1000000—[10, 9,8,7, 6,5, 4,3, 2,1]—[1, 2,3,4,5,6,7, 8,09, 10]'

13. [M21] (Martin Gardner, 1974.) True or false: If aiasz...an is initially 12...n,
Algorithm P begins by visiting all n!/2 permutations in which 1 precedes 2; then the
next permutation is n...21.

14. [M22] Trueor false: If a1as ... an is initially 122 . . . z, in Algorithm P, we always
have a;j_c;+s = x; at the beginning of step P5.

27

28 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

15. [M23] (Selmer Johnson, 1963.) Show that the offset variable s never exceeds 2 in
Algorithm P.

16. [21] Explain how to make Algorithm P run faster, by streamlining its operations
when the value of j is near n. (This problem is analogous to exercise 1.)

» 17. [20] Extend Algorithm P so that the inverse permutation aj ... as, is available for

processing when a1 . .. a, is visited in step P2. (The inverse satisfies a;, = j if and only
ifa; =k.)
18. [21] (Rosary permutations.) Devise an efficient way to generate (n —1)!/2 permu-
tations that represent all possible undirected cycles on the vertices {1,...,n}; that is,
no cyclic shift of a1 ...an or an...a1 will be generated if a1 ...a, is generated. The
permutations (1234, 1324, 3124) could, for example, be used when n = 4.

19. [25] Construct an algorithm that generates all permutations of n distinct elements
looplessly in the spirit of Algorithm 7.2.1.1L.

» 20. [20] The n-cube has 2" n! symmetries, one for each way to permute and/or com-
plement the coordinates. Such a symmetry is conveniently represented as a signed
permutation, namely a permutation with optional signs attached to the elements. For
example, 231 is a signed permutation that transforms the vertices of the 3-cube by
changing ziz2z3 to z2x3T1, so that 000 — 001, 001 — 011, ..., 111 — 110. Design
a simple algorithm that generates all signed permutations of {1,2,...,n}, where each
step either interchanges two adjacent elements or negates the first element.

21. [M21] (E. P. McCravy, 1971.) How many solutions does the alphametic (6) have
in radix b7
22. [M15] True or false: If an alphametic has a solution in radix b, it has a solution
in radix b+ 1.
23. [M20] True or false: A pure alphametic cannot have two identical signatures
sj = sk # 0 when j # k.
24. [25] Solve the following alphametics by hand or by computer:

a) SEND + A + TAD + MORE = MONEY.

b) ZEROES + ONES = BINARY. (Peter MacDonald, 1977)
c) DCLIX + DLXVI = MCCXXV. (Willy Enggren, 1972)
d) COUPLE + COUPLE = QUARTET. (Michael R. W. Buckley, 1977)
e) FISH+ N+ CHIPS = SUPPER. (Bob Vinnicombe, 1978)
f) SATURN + URANUS + NEPTUNE + PLUTO = PLANETS. (Willy Enggren, 1968)
g) EARTH + AIR + FIRE + WATER = NATURE. (Herman Nijon, 1977)

h) AN 4 ACCELERATING 4 INFERENTIAL + ENGINEERING 4 TALE + ELITE 4 GRANT 4 FEE +
ET + CETERA = ARTIFICIAL + INTELLIGENCE.
i) HARDY + NESTS = NASTY 4 HERDS.

» 25. [M21] Devise a fast way to compute min(a - s) and max(a - s) over all valid
permutations ai ...a1o of {0,...,9}, given the signature vector s = (s1,...,510) and
the first-letter set F' of an alphametic problem. (Such a procedure makes it possible
to rule out many cases quickly when a large family of alphametics is being considered,
as in several of the exercises that follow, because a solution can exist only when
min(a - s) <0 < max(a - s).)

26. [25] What is the unique alphametic solution to
NIIHAU + KAUAT =4 OAHU + MOLOKAT + LANAT 4 MAUT &+ HAWAII = 07

27. [30] Construct pure additive alphametics in which all words have five letters.

28

7.2.1.2 GENERATING ALL PERMUTATIONS 29

28. [M25] A partition of the integer n is an expression of the form n = n1+- - -4+n; with
ny > -+ >ng > 0. Such a partition is called doubly true if a(n) = a(n1)+---+a(n:) is
also a pure alphametic, where a(n) is the “name” of n in some language. Doubly true
partitions were introduced by Alan Wayne in AMM 54 (1947), 38, 412-414, where he
suggested solving TWENTY = SEVEN + SEVEN + SIX and a few others.
a) Find all partitions that are doubly true in English when 1 < n < 20.
b) Wayne also gave the example EIGHTY = FIFTY + TWENTY + NINE + ONE. Find all
doubly true partitions for 1 < n < 100 in which the parts are distinct, using the
names ONE, TWO, ..., NINETYNINE, ONEHUNDRED.

> 29. [M25] Continuing the previous exercise, find all equations of the form n; +--- +
ny = nj + - -- + n}, that are both mathematically and alphametically true in English,
when {n;,...,ny,n1,...,n}} are distinct positive integers less than 20. For example,

TWELVE + NINE 4 TWO = ELEVEN + SEVEN + FIVE;

the alphametics should all be pure.
30. [25] Solve these multiplicative alphametics by hand or by computer:

a) TWO x TWO = SQUARE. (H. E. Dudeney, 1929)
b) HIP x HIP = HURRAY. (Willy Enggren, 1970)
c) PI xR X R = AREA. (Brian Barwell, 1981)
d) NORTH/SOUTH = EAST/WEST. (Nob Yoshigahara, 1995)
e) NAUGHT x NAUGHT = ZERO x ZERO x ZERO. (Alan Wayne, 2003)

31. [M22] (Nob Yoshigahara.) What is the unique solution to A/BC+D/EF+G/HI =1,
when {4,...,I} =4{1,...,9}7
32. [M25] (H. E. Dudeney, 1901.) Find all ways to represent 100 by inserting a

plus sign and a slash into a permutation of the digits {1,...,9}. For example, 100 =
91 4+ 5742/638. The plus sign should precede the slash.

33. [25] Continuing the previous exercise, find all positive integers less than 150 that
(a) cannot be represented in such a fashion; (b) have a unique representation.

34. [M26] Make the equation EVEN + 0DD + PRIME = z doubly true when (a) z is a
perfect 5th power; (b) z is a perfect Tth power.

» 35. [M20] The automorphisms of a 4-cube have many different Sims tables, only one
of which is shown in (14). How many different Sims tables are possible for that group,
when the vertices are numbered as in (12)?

36. [M23] Find a Sims table for the group of all automorphisms of the 4 x 4 tic-tac-toe
board

0123
4567
89abl|’
cdef

namely the permutations that take lines into lines, where a “line” is a set of four
elements that belong to a row, column, or diagonal.

> 37. [HM22] How many Sims tables can be used with Algorithms G or H? Estimate
the logarithm of this number as n — oco.

38. [HM21] Prove that the average number of transpositions per permutation when
using Ord-Smith’s algorithm (26) is approximately sinh 1 & 1.175.

29

30 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

39. [16] Write down the 24 permutations generated for n = 4 by (a) Ord-Smith’s
method (26); (b) Heap’s method (27).

40. [M23] Show that Heap’s method (27) corresponds to a valid Sims table.

> 41. [M33] Design an algorithm that generates all r-variations of {0,1,...,n — 1} by
interchanging just two elements when going from one variation to the next. (See
exercise 9.) Hint: Generalize Heap’s method (27), obtaining the results in positions
Qn—r -..0Gn_1 Of an array aop ...a,—1. For example, one solution when n =5 and r = 2
uses the final two elements of the respective permutations 01234, 31204, 30214, 30124,
40123, 20143, 24103, 24013, 34012, 14032, 13042, 13402, 23401, 03421, 02431, 02341,
12340, 42310, 41320, 41230.

42. [M20] Construct a Sims table for all permutations in which every o(k,j) and
every 7(k,j) for 1 < j < k is a cycle of length < 3.

43. [M24] Coustruct a Sims table for all permutations in which every o(k,k), w(k),
and 7(k,j)w(k —1)" for 1 < j < k is a cycle of length < 3.

44. [20] When blocks of unwanted permutations are being skipped by the extended
Algorithm G, is the Sims table of Ord-Smith’s method (23) superior to the Sims table
of the reverse colex method (18)7

45. [20] (a) What are the indices u; ... u9 when Algorithm X visits the permutation
3145926877 (b) What permutation is visited when us ...us = 3141577007

46. [20] True or false: When Algorithm X visits a1 . ..an, we have ux > ug41 if and
only if ax > apy1, for 1 <k < n.

> 47. [M21] Express the number of times that each step of Algorithm X is performed
in terms of the numbers Ng, N1, ..., Np, where Ng is the number of prefixes a; ... ag
that satisfy t;(a1,...,a;) for 1 < j <k.

> 48. [M25] Compare the running times of Algorithm X and Algorithm L, in the case
when the tests t1(a1), t2(a1,az), .., tn(a1,as,...,a,) always are true.

> 49. [28] The text’s suggested method for solving additive alphametics with Algo-
rithm X essentially chooses digits from right to left; in other words, it assigns tentative
values to the least significant digits before considering digits that correspond to higher
powers of 10.
Explore an alternative approach that chooses digits from left to right. For example,
such a method will deduce immediately that M = 1 when SEND + MORE = MONEY. Hint:
See exercise 25.

50. [M15] Explain why the dual formula (32) follows from (13).
51. [M16] True or false: If the sets Sy = {o(k,0),...,0(k,k)} form a Sims table for
the group of all permutations, so also do the sets S, = {o(k,0)™,...,0(k, k)" }.

» 52. [M22] What permutations 7(k, j) and w(k) arise when Algorithm H is used with
the Sims table (36)? Compare the resulting generator with Algorithm P.

» 53. [M26] (F. M. Ives.) Construct a Sims table for which Algorithm H will generate
all permutations by making only n! + O((n — 2)!) transpositions.
54. [20] Would Algorithm C work properly if step C3 did a right-cyclic shift, setting
ai...Qx—10k ¢ axai ...ax—1, instead of a left-cyclic shift?
55. [M27] Consider the factorial ruler function

pr(m) = max{k | m mod k! = 0}.

30

7.2.1.2 GENERATING ALL PERMUTATIONS 31

Let or and 7 be permutations of the nonnegative integers such that o;7% = 7x0;
whenever j < k. Let ap and o be the identity permutation, and for m > 0 define

Ay = ﬁ;—lTp!(m)ﬂm—lam—ly Bm = O'p!(m)ﬁm—l-

For example, if o is the flip operation (1 k—1)(2k—2)... = (0 k) #(k) and if 7, = (0 k),
and if Algorithm E is started with a; = j for 0 < j < n, then a, and B,, are the
contents of ag ...an—1 and bg ...b,_1 after step E5 has been performed m times.

a) Prove that Bnt1)1 ¥nt1yt = 0n+10;7'n+17';(,3n!0‘n!)n+1-
b) Use the result of (a) to establish the validity of Algorithm E.
56. [M22] Prove that Algorithm E remains valid if step E5 is replaced by
E5'. [Transpose pairs.] If k > 2, interchange bj41 <> bj for j =k —2,k—4, ...,
(2 or 1). Return to E2. |
57. [HM22] What is the average number of interchanges made in step E5?

58. [M21] True or false: If Algorithm E begins with ao...an—1 = z1 ...z, then the
final permutation visited begins with ag = zr,.

59. [M20] Some authors define the arcs of a Cayley graph as running from 7 to way;
instead of from 7 to a;;m. Are the two definitions essentially different?

» 60. [21] A Gray cycle for permutations is a cycle (mo,m1,...,Tp—1) that includes
every permutation of {1,2,...,n} and has the property that 7y differs from 7(x41) mod n!
by an adjacent transposition. It can also be described as a Hamiltonian cycle on the
Cayley graph for the group of all permutations on {1,2,...,n}, with the n—1 generators
((12),(23),...,(n—1n)). The delta sequence of such a Gray cycle is the sequence of
integers 0001 . ..dn1—1 such that

T(k+1) modn! = (Ok Ox+1) k.

(See 7.2.1.1—(24), which describes the analogous situation for binary n-tuples.) For
example, Fig. 23 illustrates the Gray cycle defined by plain changes when n = 4; its
delta sequence is (32131231)°.

a) Find all Gray cycles for permutations of {1,2,3,4}.

b) Two Gray cycles are considered to be equivalent if their delta sequences can be
obtained from each other by cyclic shifting (k. ..dn1—100 - ..0x—1) and/or reversal
(6n1—1-..6100) and/or complementation ((n—dg)(n—¥d1)...(n—0n1—1)). Which of
the Gray cycles in (a) are equivalent?

Fig. 23. Algorithm P traces out
this Hamiltonian cycle on the
truncated octahedron of Fig. 5-
1.

31

32 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

61. [21] Continuing the previous exercise, a Gray code for permutations is like a Gray
cycle except that the final permutation 7,11 is not required to be adjacent to the initial
permutation mg. Study the set of all Gray codes for n = 4 that start with 1234.

» 62. [M23] What permutations can be reached as the final element of a Gray code
that starts at 12...n?

63. [M25] Estimate the total number of Gray cycles for permutations of {1,2,3,4,5}.

64. [23] A “doubly Gray” code for permutations is a Gray cycle with the additional
property that dxy1 = & =1 for all k. Compton and Williamson have proved that such
codes exist for all n > 3. How many doubly Gray codes exist for n = 57

65. [M25] For which integers N is there a Gray path through the N lexicographically
smallest permutations of {1,...,n}? (Exercise 7.2.1.1-26 solves the analogous problem
for binary n-tuples.)

66. [22] Ehrlich’s swap method suggests another type of Gray cycle for permutations,
in which the n — 1 generators are the star transpositions (1 2), (1 3), ..., (1 n). For
example, Fig. 24 shows the relevant graph when n = 4. Analyze the Hamiltonian cycles
of this graph.

Fig. 24. The Cayley graph for permutations of {1,2, 3,4}, generated by the
star transpositions (12), (13), and (14), drawn as a twisted torus.

67. [26] Continuing the previous exercise, find a first-element-swap Gray cycle for
n =5 in which each star transposition (1 j) occurs 30 times, for 2 < j < 5.
68. [M30] (Kompel’'makher and Liskovets, 1975.) Let G be the Cayley graph for all
permutations of {1,...,n}, with generators (au,...,ar) where each «; is a transpo-
sition (u; v;); also let A be the graph with vertices {1,...,n} and edges u; — v;
for 1 < j < k. Prove that G has a Hamiltonian cycle if and only if A is connected.
(Figure 23 is the special case when A is a path; Figure 24 is the special case when A
is a “star.”)

> 69. [28] If n > 4, the following algorithm generates all permutations A; Az As ... A,
of {1,2,3,...,n} using only three transformations,

p=(12)(34)(56)..., o= (23)45)(67)..., T=(34)(56)(78)...,

never applying p and 7 next to each other. Explain why it works.

Z1. [Initialize.] Set A; + j for 1 < j < n. Also set a; < 2j for j < n/2 and
an—j < 2j + 1 for 7 < n/2. Then invoke Algorithm P, but with parameter
n — 1 instead of n. We will treat that algorithm as a coroutine, which should

32

7.2.1.2 GENERATING ALL PERMUTATIONS 33

return control to us whenever it “visits” ai ...an—1 in step P2. We will also
share its variables (except n).

Z2. [Set z and y.| Invoke Algorithm P again, obtaining a new permutation
a1...an—1 and a new value of j. If j = 2, interchange a1+s <> as+s (thereby
undoing the effect of step P5) and repeat this step; in such a case we are at the
halfway point of Algorithm P. If j = 1 (so that Algorithm P has terminated),
set £ < y < 0 and go to Z3. Otherwise set

T Qjcj+st+loj=—1]> Y Q5 cits—[oj=+1]
these are the two elements most recently interchanged in step P5.
Z3. [Visit.] Visit the permutation A; ... A,. Then go to Z5 if Ay = z and Az = y.

Z4. [Apply p, then o.] Interchange A; < As, As < A4, As <> Ag, Visit
A;...A,. Then interchange Az > A3z, As > As, A <> Az, Terminate
if A;...A, =1...n, otherwise return to Z3.

Z5. [Apply 7, then o.] Interchange Az ¢ A4, As <> Ag, A7 <> As, Visit
Aj...A,. Then interchange Ay > As, Ay <> As, Ag < Az, ..., and return
to Z2. |

Hint: Show first that the algorithm works if modified so that A; <~ n+ 1 — j and
aj < j in step Z1, and if the “flip” permutations

pP=1n)2n-1)..., d=2n)@Bn-1)..., 7T=(2n-1)(3n-2)...

are used instead of p, o, 7 in steps Z4 and Z5. In this modification, step Z3 should go
to Z5if Ay =z and A, = vy.

> 70. [M338] The two 12-cycles (41) can be regarded as o—7 cycles for the twelve per-
mutations of {1,1,3,4}:

1134 — 1341 — 3411 — 4311 — 3114 — 1143 — 1431
— 4131 — 1314 — 3141 — 1413 — 4113 — 1134.

Replacing {1,1} by {1, 2} yields disjoint cycles, and we obtained a Hamiltonian path by
jumping from one to the other. Can a o—r path for all permutations of 6 elements be
formed in a similar way, based on a 360-cycle for the permutations of {1,1,3,4,5,6}7

71. [48] Does the Cayley graph with generators 0 = (12 ... n) and 7 = (12) have a
Hamiltonian cycle whenever n > 3 is odd?

72. [M21] Given a Cayley graph with generators (a1,...,ax), assume that each o;
takes z — y. (For example, both o and 7 in exercise 71 take 1 — 2.) Prove that any
Hamiltonian path starting at 12...7n in G must end at a permutation that takes y — z.

> 73. [M30] Let o, B, and o be permutations of a set X, where X = AU B. Assume
that zo = za when = € A and zo = z8 when = € B, and that the order of o8~ is odd.
a) Prove that all three permutations «, 3, o have the same sign; that is, they are all
even or all odd. Hint: A permutation has odd order if and only if its cycles all
have odd length.

b) Derive Theorem R from part (a).
74. [M30] (R. A. Rankin.) Assuming that o8 = B« in Theorem R, prove that a
Hamiltonian cycle exists if and only if there is a number k such that 0 < k < g/c and

t+k L c, where B9/¢ = 4t v = a8~. Hint: Represent elements of the group in the
form BI~F.

33

34 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

75. [M25] The directed torus Cy, x Cy, has mn vertices (z,y) for 0 <z <m,0<y <

n, and arcs (z,y) — (z,y)a = ((z+1) mod m,y), (z,y) — (z,y)8 = (z, (y+1) mod n).

Prove that, if m > 1 and n > 1, the number of Hamiltonian cycles of this digraph is
d—1

Z(Z) [gcd((d — k)m, kn) = d], d = ged(m,n).

k=1

76. [MBI] The cells numbered 0,]., caey 63 29092411914 149|44 |39 |34
in Fig. 25 illustrate a northeasterly knight’s
tour on an 8 X 8 torus: If k appears in cell 5853|4843 138| 9 | 4163
(zk, Yx), then (zr41, Yet1) = (Te + 2, Y% +1) 23|18 (13| 8 | 3 |62|33|28

or (i +1,yx+2), modulo 8, and (zes, yes) = oo T 47T 4o 37 32| 27 | 22 | 57
(z0,y0). How many such tours are possible
on an m X n torus, when m,n > 37 17112} 7 | 2 | 61|56 | 51|46

6 |41(36(31(26|21|16|11
35|30 1 |60 (|55]|50]|45|40
Fig. 25. A northeasterly knight’s tour. | 0 [59|54|25[20|15|10]| 5

» 77. [22] Complete the MMIX program whose inner loop appears in (42), using Heap’s
method (27).

78. [M23] Analyze the running time of the program in exercise 77, generalizing it so
that the inner loop does r! visits (with ag . ..ar—1 in global registers).

79. [20] What seven MMIX instructions will (Swap the nybbles ...) as (45) requires?
For example, if register t contains the value 4 and register a contains the nybbles
#12345678, register a should change to #12345687.

80. [21] Solve the previous exercise with only five MMIX instructions. Hint: Use MXOR.

» 81. [22] Complete the MMIX program (46) by specifying how to (Continue with Lang-
don’s method).

82. [M21] Analyze the running time of the program in exercise 81.

83. [22] Use the o—7 path of exercise 70 to design an MMIX routine analogous to (42)
that generates all permutations of #123456 in register a.

84. [20] Suggest a good way to generate all n! permutations of {1,...,n} on p pro-
cessors that are running in parallel.

> 85. [25] Assume that n is small enough that n! fits in a computer word. What’s a
good way to convert a given permutation o = a1...an of {1,...,n} into an integer
k = r(a) in the range 0 < k < n!? Both functions k = r(a) and o = r[=1(k) should
be computable in only O(n) steps.

86. [20] A partial order relation is supposed to be transitive; that is, z < y and y < 2
should imply z < z. But Algorithm V does not require its input relation to satisfy this
condition.

Show that if x < y and y < z, Algorithm V will produce identical results whether
or not z < z.

87. [20] (F. Ruskey.) Consider the inversion tables c¢;...c, of the permutations
visited by Algorithm V. What noteworthy property do they have? (Compare with
the inversion tables (4) in Algorithm P.)

34

7.2.1.2 GENERATING ALL PERMUTATIONS 35

88. [21] Show that Algorithm V can be used to generate all ways to partition the
digits {0,1,...,9} into two 3-element sets and two 2-element sets.

» 89. [M30] Consider the numbers to, t1, ..., t, in (51). Clearly to = ¢t1 = 1.

a) Say that index j is “trivial” if t; = ¢;_1. For example, 9 is trivial with respect to
the Young tableau relations (48). Explain how to modify Algorithm V so that the
variable k takes on only nontrivial values.

b) Analyze the running time of the modified algorithm. What formulas replace (51)?

c) Say that the interval [j..k] is not a chain if we do not have ! < [+1 for j <[< k.
Prove that in such a case tx > 2t;_1.

d) Every inverse topological sort aj...a; defines a labeling that corresponds to
relations a}, < ay,, ..., aj_ < ay_, which are equivalent to the original relations
j1 < k1, ..., jm < km. Explain how to find a labeling such that [j..k] is not a
chain when j and k are consecutive nontrivial indices.

e) Prove that with such a labeling, M < 4N in the formulas of part (b).

90. [M21] Algorithm V can be used to produce all permutations that are h-ordered
for all h in a given set, namely all a; ...a; such that a} < @}, for 1 < j<n-—h
(see Section 5.2.1). Analyze the running time of Algorithm V when it generates all
permutations that are both 2-ordered and 3-ordered.

91. [HM21] Analyze the running time of Algorithm V when it is used with the
relations (49) to find matchings.

92. [M18] How many permutations is Algorithm V likely to visit, in a “random”
case? Let P, be the number of partial orderings on {1,...,n}, namely the number
of relations that are reflexive, antisymmetric, and transitive. Let @, be the number
of such relations with the additional property that j < k whenever j < k. Express
the expected number of ways to sort n elements topologically, averaged over all partial
orderings, in terms of P, and Q.
93. [85] Prove that all topological sorts can be generated in such a way that only
one or two adjacent transpositions are made at each step. (The example 1 < 2, 3 < 4
shows that a single transposition per step cannot always be achieved, even if we allow
nonadjacent swaps, because only two of the six relevant permutations are odd.)

> 94. [25] Show that in the case of matchings, using the relations in (49), all topological
sorts can be generated with just one transposition per step.
95. [21] Discuss how to generate all up-down permutations of {1,...,n}, namely those
ai...an such that a1 <az >az3 <aqg > ---.
96. [21] Discuss how to generate all cyclic permutations of {1,...,n}, namely those
ai ...an whose cycle representation consists of a single n-cycle.
97. [21] Discuss how to generate all derangements of {1,...,n}, namely those a; ... an
such that a1 # 1, a2 #2,a3 #3,
98. [HM23] Analyze the asymptotic running time of the method in the previous
exercise.
99. [M30] Given n > 3, show that all derangements of {1,...,n} can be generated
by making at most two transpositions between visits.

100. [21] Discuss how to generate all indecomposable permutations of {1,...,n},
namely those ai ...an such that {a1,...,a;} #{1,...,j} for 1 < j < n.

101. [21] Discuss how to generate all involutions of {1,...,n}, namely those permu-
tations aj ...an with ag, ... aq, =1...0.

35

36 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2

102. [M30] Show that all involutions of {1,...,n} can be generated by making at
most two transpositions between visits.

103. [M32] Show that all even permutations of {1,...,n} can be generated by suc-
cessive rotations of three consecutive elements.

> 104. [M22] A permutation a;...an of {1,...,n} is well-balanced if

Zkak = Z(n—‘r 1—k)ag.
k=1 k=1

For example, 3142 is well-balanced when n = 4.
a) Prove that no permutation is well-balanced when n mod 4 = 2.
b) Prove that if a; .. .a, is well-balanced, so are its reversal an, . . . a1, its complement
(n+1—a1)...(n+1—ax), and its inverse a} . ..ay,.
¢) Determine the number of well-balanced permutations for small values of n.
> 105. [26] A weak order is a relation =< that is transitive (z < y and y < z implies
z < z) and complete (z < y or y <X z always holds). We can write z = y if z < y and
y=z;z <yif x X yand y A z. There are thirteen weak orders on three elements
{1, 2,3}, namely
1=2=3, 1=2<3, 1<2=3, 1<2<3, 1=3<2, 1<3<2,
2<1=3, 2<1<3, 2=3<1, 2<3<1, 3<1=2, 3<1<2 3<2<1.
a) Explain how to generate all weak orders of {1, ...,n} systematically, as sequences
of digits separated by the symbols = or <.
b) A weak order can also be represented as a sequence a; ...an where a; = k if j
is preceded by k < signs. For example, the thirteen weak orders on {1,2,3} are

respectively 000, 001, 011, 012, 010, 021, 101, 102, 100, 201, 110, 120, 210 in this
form. Find a simple way to generate all such sequences of length n.

106. [M40] Can exercise 105(b) be solved with a Gray-like code?

» 107. [30] (John H. Conway, 1973.) To play the solitaire game of “topswops,” start
by shuffling a pack of n cards labeled {1,...,n} and place them face up in a pile. Then
if the top card is £ > 1, deal out the top k cards and put them back on top of the pile,
thereby changing the permutation from a1 ...an to ak ...a1ak+1 - - . an. Continue until
the top card is 1. For example, the 7-step sequence

31452 — 41352 — 53142 — 24135 — 42135 — 31245 — 21345 — 12345

might occur when n = 5. What is the longest sequence possible when n = 137

108. [M27] If the longest n-card game of topswops has length f(n), prove that f(n) <
Fn+1 — 1.

109. [M47] Find good upper and lower bounds on the topswops function f(n).
» 110. [25] Find all permutations ag . ..ag of {0,...,9} such that
{ag,a2,as,a7} = {2,5,7,8},
{a1,a4,as} = {0,3,6},
{a1,as,ar,as} = {3,4,5,7},
{ao,as,as} = {0,7,8}.
Also suggest an algorithm for solving large problems of this type.

7.2.1.2 GENERATING ALL PERMUTATIONS 37

> 111. [M25] Several permutation-oriented analogs of de Bruijn cycles have been pro-
posed. The simplest and nicest of these is the notion of a universal cycle of permu-
tations, introduced by B. W. Jackson in Discrete Math. 117 (1993), 141-150, namely
a cycle of n! digits such that each permutation of {1,...,n} occurs exactly once as a
block of n — 1 consecutive digits (with its redundant final element suppressed). For
example, (121323) is a universal cycle of permutations for n = 3, and it is essentially
the only such cycle.
Find a universal cycle of permutations for n = 4, and prove that such cycles exist
for all n > 2.

» 112. [HM/43] Exactly how many universal cycles exist, for permutations of <9 objects?

37

38 ANSWERS TO EXERCISES 7.2.1.2

SECTION 7.2.1.2

1. [J. P. N. Phillips, Comp. J. 10 (1967), 311.] Assuming that n > 3, we can replace

steps L2-14 by:
L2'. [Easiest case?] Set y « an—1 and z < an. If y < 2, set an—1 + 2z, an < v,
and return to L1.
L2.1'. [Next easiest case?] Set z < a,—2. If £ > y, go on to step L2.2'. Otherwise
set (an—2,an-1,an) < (z,z,y) if z < z, (y, z,z) if z > 2. Return to L1.
L2.2'. [Find j.] Set j« n—3and y<+a;. fy>z,set j+ j— 1,z y, y < aj,
and repeat until y < z. Terminate if 7 = 0.
L3'. [Easy increase?] If y < z, set a;j « z, aj4+1 < Y, an < =, and go to L4.1'.
L3.1'. [Increase a;.] Set | + n—1; if y > a;, repeatedly decrease [by 1 until y < a;.
Then set a; < a; and a; < y.
L4'. [Begin to reverse.] Set an < aj+1 and aji1 2.
L4.1". [Reverse aj+1...an—1.] Set k + j+ 2,1+ n— 1. Then, if k < [, interchange
ar > ar,set k< k+1,1+ 1 —1, and repeat until £ > [. Return to L1. |
The program might run still faster if a; is stored in memory location A[n — t] for
0 <t < n, or if reverse colex order is used as in the following exercise.

2. Again we assume that a1 < az < --- < a, initially; the permutations generated
from {1,2,2,3} will, however, be 1223, 2123, 2213, ..., 2321, 3221. Let an,+1 be an
auxiliary element, larger than a.

L1. [Visit.] Visit the permutation aiaz...an.

L2. [Find j.] Set j < 2. If aj_1 > a;, increase j by 1 until aj_1 < a;. Terminate
if j > n.

L3. [Decrease aj.] Set I < 1. If a; > aj, increase ! until a; < a;. Then swap
ap < aj.

L4. [Reverse a1 ...aj_1.] Set k+ 1 and [+ j — 1. Then, if k < [, swap ar > a,
set k< k+ 1,1+ [—1, and repeat until £ > . Return to L1. |

3. Let Cy...Cp, = cqy ...Cq, be the inversion table, as in exercise 5.1.1-7. Then
rank(as ...an) is the mixed-radix number [C;Ll o 0"2—1’ Cl"] [See H. A. Rothe, Samm-
lung combinatorisch-analytischer Abhandlungen 2 (1800), 263-264; and see also the
pioneering work of Narayana cited in Section 7.2.1.7.] For example, 314592687 has
rank [2> 0 0 009 %0 0] = 2.8 4+ 6! 4 5! + 4 41 + 1! = 81577; this is the factorial

9,8,7,6,5 4,321
number system featured in Eq. 4.1-(10).

4. Use the recurrence rank(as ...an) = = Z;zl njlz; < a1](+rank(az...an).

For example, rank(314159265) is
%(2,1,1,?,2,1,1) +0+ %(1,1,1’,,2,1,1) +0+ %(1,2?1,1) + %(1,1‘,11,1) +0+ %(121) = 30991.

5. (a) Step L2 is performed n! times. The probability that exactly k¥ comparisons are
made is gk — gk+1, where g; is the probability that an—¢+1 > - -+ > an, namely [t <n]/t!.
Therefore the mean is > k(gx — qk+1) =q1+ -+ gn = [nle]/n!l — 1 e— 1~ 1.718,
and the variance is

z:kz(qk—qk+1)—meaun2 =q+3g2+ - +(2n—1)gn—(q1+ - -+gn)” = e(3—e) ~ 0.766.

")
N1y Nt

[For higher moments, see R. Kemp, Acta Informatica 35 (1998), 17-89, Theorem 4.]

38

7.2.1.2 ANSWERS TO EXERCISES 39

Incidentally, the average number of interchange operations in step L4 is therefore
S1k/2](qk — qr+1) = g2+ qa+---~coshl —1= (e+e ' —2)/2 ~ 0.543, a result due
to R. J. Ord-Smith [Comp. J. 13 (1970), 152-155].

(b) Step L3 is performed only n! — 1 times, but we will assume for convenience
that it occurs once more (with 0 comparisons). Then the probability that exactly k
comparisons are made is Z?=k+1 1/j! for 1 < k < n and 1/n! for £ = 0. Hence the
mean is 3 2;2_02 1/j! = e/2 =~ 1.359; exercise 1 reduces this number by 2. The variance
is 3 E;”:_OS 1/5'+ 3 ZJT.”:_OZ 1/5! — mean® ~ Se — 1e? x 0.418.

6. (a) Let en(2) = Yp_,2"/k!; then the number of different prefixes a;...a; is
j![7?] en, (2) ... €n;(2). Thisis N = (nl,_’_l_’nt) times the probability g,—; that at least
n—j comparisons are made in step L2. Therefore the mean is ~w(en, (2) ... en,(2))—1,
where w(3 zx2¥/k!) = 3 k. In the binary case the mean is M/ (%) — 1, where M =

—s+l (k\ __ —s+1+1\ __ +2 _ s n—s
ZIS:O Z:ls (l) - ZIS:O (n ls+1) - (::+1) -1= (Z) (2 + n—s+1 + s+—1) - L
(b) If {a1,...,a;} = {n}-z1,...,n; 2}, the prefix a; ...a; contributes altogether
Y1 <k<i<t(Mr —ni)[ny < nj] to the total number of comparisons made in step L.3. Thus

the mean is + Di<h<ist w(fri(2)), where

fia(2) = (11 enm(z>> (Z(nk E)—,)()
b =
= en, (2) ... en; (2) (g — 278 (2))71(2), where r¢(2) = ez:;izz(;j)'

In the two-valued case this formula reduces to ~w((ses(2) — zes—1(2))en—s—1(2)) =
#EH) -0 -F(C -+) = 5(=s -1+ (7)) = 2255 - 57

7. In the notation of the previous answer, the quantity xw(en,(2)...en,(2)) — 1 is

- 1.

ny+---+ng n (ninz +ning + -+ ng—1ng) + ni(ni—1) + - -+ + ng(ne—1) .
n n(n —1)
One can show using Eq. 1.2.9—(38) that the limit is —1 + exp Y, rx/k, where 7 =
lims oo (¥ + -+« +nF)/(n1 + -+ + n¢)*. In cases (a) and (b) we have ry = [k=1],
so the limit is e — 1 ~ 1.71828. In case (c) we have r = 1/(2* — 1), so the limit is
—1+expY s, 1/(k(2" — 1)) ~ 2.46275.
8. Assume that j is initially zero, and change step L1 to
L1'. [Visit.] Visit the variation a1 ...a;. If j < n, set j < j + 1 and repeat this
step. |1

This algorithm is due to L. J. Fischer and K. C. Krause, Lehrbuch der Combinations-
lehre und der Arithmetik (Dresden: 1812), 55-57.

Incidentally, the total number of variations is w(en, (2)...en,(2)) in the notation
of answer 6. This counting problem was first treated by James Bernoulli in Ars
Comnjectandi (1713), Part 2, Chapter 9.

9. R1. [Visit.] Visit the variation a1 ...a,. (At this point a1 < -+ < ap.)

R2. [Easy case?]| If ar < an, interchange a,- <> a; where j is the smallest subscript
such that 7 > r and a; > a,, and return to R1.

R3. [Reverse.] Set (ar41,-.-,an) < (@n,-..,art1) as in step L4.

39

40 ANSWERS TO EXERCISES 7.2.1.2

R4. [Find j.] Set j « r — 1. If a; > ajt1, decrease j by 1 repeatedly until
aj < ajy1. Terminate if j = 0.

R5. [Increase a;.] Set | < n. If a; > a;, decrease [by 1 repeatedly until a; < a;.
Then interchange a; < a;.

R6. [Reverse again.] Set (aj+1,.-.,an) < (@n,-.-,a;+1) as in step L4, and return
toR1. |

The number of outputs is 7! [27] en, (2) . . . €n,(2); this is, of course, n” when the elements
are distinct.
10. ai1az...an =213...n, c1c2...cn =010...0, 0102...0, = 1(—1)1...1,if n > 2.
11. Step (P1, ..., P7) is performed (1,n!,nl,n! + z,,nl, (zn + 3)/2,z,) times, where
Tp = :;11 k!, because P7 is performed (j — 1)! times when 2 < j < n.
12. We want the permutation of rank 999999. The answers are (a) 2783915460, by
exercise 3; (b) 8750426319, because the reflected mixed-radix number corresponding
0,0,1,2,3,0,2,7,0, 97 :_0,0,1,3-2, 3, 5-0, 2, 7, 8—0, 9—9 .
to [1, 2,3,4,5,6,7,8,09, 10] 18 [1, 2,3, 4, 5 6, 7,8 9, 10] by 7.2.1.1-(50); (c) the
product (01 ... 9)°(01 ... 8)°(01 ... 7)7(01 ... 6)%...(012)", namely 9703156248.
13. The first statement is true for all n > 2. But when 2 crosses 1, namely when
c2 changes from 0 to 1, we have ¢3 = 2, c4 = 3, ¢c5 = -+ = ¢n = 0, and the next
permutation when n > 5 is 432156...n. [See Time Travel (1988), page 74.]
14. True at the beginning of steps P4, P5, and P6, because exactly j—1—c;+s elements
lie to the left of z;, namely j — 1 — ¢; from {z1,...,2;-1} and s from {zj41,...,Zn}.
(In a sense, this formula is the main point of Algorithm P.)
15. If [b"fl’ o t;?] corresponds to the reflected Gray code [Cll’ T on], we get to step P6
if and only if by = k— 1 for j < k < n and B,_j41 is even, by 7.2.1.1-(50). But
bp—x = k — 1 for 5 < k < n implies that B,_; is odd for 7 < k < m. Therefore
s = [cjr1=7] + [cj42=J + 1] = [0j41 < 0] + [0j+2 < 0] in step P5. [See Math. Comp.
17 (1963), 282-285.]
16. P1'. [Initialize.] Set ¢; < j and 0j < —1 for 1 < j < n; also set z < an.
P2'. [Visit.] Visit a1 ...an. Then go to P3.5' if a1 = 2.
P3'. [Hunt down.] For j < n—1,n—2, ..., 1 (in this order), set aj+1 < aj,
a;j < z, and visit a1 ...a,. Then set j < n — 1, s < 1, and go to P4'.
P3.5'. [Hunt up.] For j < 1,2, ..., n — 1 (in this order), set a; < aj+1, aj4+1 + z,
and visit a1 ...a,. Thenset j < n—1, s+ 0.
P4'. [Ready to change?] Set g + c¢; + 0. If ¢ =0, go to P6'; if ¢ > j, go to P7’.
P5'. [Change.] Interchange Gc;+s <> gt+s. Then set c; < ¢ and return to P2,
P6'. [Increase s.] Terminate if j = 1; otherwise set s < s+ 1.
P7'. [Switch direction.] Set o; +— —o0j, j + j — 1, and go back to P4’. |
17. Initially a; < aj < j for 1 < j < n. Step P5 should now set t + j —c; + s,
U J—q+ 8, V4 ay, a; + U, ay <+ t, a, < j, aj < u, ¢; + q. (See exercise 14.)
But with the inverse required and available we can actually simplify the algorithm
significantly, avoiding the offset variable s and letting the control table c; ... ¢, count
only downwards, as noted by G. Ehrlich [JACM 20 (1973), 505-506]:
Q1. [Initialize.] Set a; < aj < j, c; < j—1, and d; + —1 for 1 < j < n. Also
set ¢g = —1.

40

7.2.1.2 ANSWERS TO EXERCISES 41

Q2. [Visit.] Visit the permutation a; . ..a, and its inverse aj . .. ay,.
Q3. [Find k.] Set k + n. Then if ¢, =0, set cx +— k—1, ok < —ok, k< k—1,
and repeat until ¢ # 0. Terminate if £ = 0.
Q4. [Change.] Set cx < cx — 1, j < a), and i = j + ox. Then set t <+ a;, a; < k,
a; +t, ay < j, ay, < 1, and return to Q2. |
18. Set an + n, and use (n —1)!/2 iterations of Algorithm P to generate all permuta-
tions of {1,...,n — 1} such that 1 precedes 2. [M. K. Roy, CACM 16 (1973), 312-313;
see also exercise 13.]

19. For example, we can use the idea of Algorithm P, with the n-tuples c¢i...cn
changing as in Algorithm 7.2.1.1H with respect to the radices (1,2,...,n). That
algorithm maintains the directions correctly, although it numbers subscripts differently.
The offset s needed by Algorithm P can be computed as in the answer to exercise 15, or
the inverse permutation can be maintained as in exercise 17. [See G. Ehrlich, CACM
16 (1973), 690-691.] Other algorithms, like that of Heap, can also be implemented
looplessly.

(Note: In most applications of permutation generation we are interested in mini-
mizing the total running time, not the maximum time between successive visits; from
this standpoint looplessness is usually undesirable, except on a parallel computer. Yet
there’s something intellectually satisfying about the fact that a loopless algorithm
exists, whether practical or not.)

20. For example, when n = 3 we can begin 123, 132, 312, 312, 132, 123, 213, ...,

213,213, If the delta sequence for n is (§102 . . . §ann1), the corresponding sequence
for n + 1 is (And1And2... And2nnr), where A, is the sequence of 2n — 1 operations
nn—1 ... 1—1 ... n—1n; here 6 = j means a; < a;j+1 and dx = — means
a1 < —ai.

(Signed permutations appear in another guise in exercises 5.1.4-43 and 44. The
set of all signed permutations is called the octahedral group.)

21. Clearly M = 1, hence 0 must be 0 and S must be b—1. Then N=E+1,R=0b— 2,
and D+ E = b+ Y. This leaves exactly max(0,b — 7 — k) choices for E when Y =k > 2,
hence a total of Y0_ 7 (b—7—k) = (°3®) solutions when b > 8. [Math. Mag. 45 (1972),
48-49. Incidentally, D. Eppstein has proved that the task of solving alphametics with

a given radix is NP-complete; see SIGACT News 18,3 (1987), 38-40.]
22. (XY) + (XX)s = (XYX), is solvable only when b = 2.

23. Almost true, because the number of solutions will be even, unless [j € F'| # [k € F].
(Consider the ternary alphametic X + (XX)s + (YY)s + (XZ)3 = (X¥X)3.)
24. (a) 9283 + 7 + 473 + 1062 = 10825. (b) 698392 + 3192 = 701584. (c) 63952 +
69275 = 133227, (d) 653924 + 653924 = 1307848. (e) 5718 + 3 + 98741 = 104462. (f)
127503+ 502351+4-3947539+46578 = 4623971. (g) 674324 704+8046+97364 = 173546.
(h) 59 + 577404251698 + 69342491650 + 49869442698 + 1504 + 40614 + 82591 + 344 +
41 + 741425 = 5216367650 + 691400684974. [All solutions are unique. References for
(b)—(g): J. Recreational Math. 10 (1977), 115; 5 (1972), 296; 10 (1977), 41; 10 (1978),
274; 12 (1979), 133-134; 9 (1977), 207.]

(i) In this case there are %10! = 2903040 solutions, because every permutation of
{0,1,...,9} works except those that assign H or N to 0. (A well-written general additive
alphametic solver will be careful to reduce the amount of output in such cases.)

25. We may assume that s; < -+ < s10. Let 7 be the least index ¢ F, and set
a; < 0; then set the remaining elements a; in order of increasing j. A proof like that

41

42 ANSWERS TO EXERCISES 7.2.1.2

of Theorem 6.1S shows that this procedure maximizes a - s. A similar procedure yields
the minimum, because min(a - s) = — max(a - (—s)).

26. 400739 + 63930 — 2379 — 1252630 + 53430 — 1390 4 738300.

27. Readers can probably improve upon the following examples: BLOOD + SWEAT +
TEARS = LATER; EARTH + WATER + WRATH = HELLO + WORLD; AWAIT 4 ROBOT +4 ERROR =
SOBER + WORDS; CHILD + THEME + PEACE +ETHIC — IDEAL + ALPHA + METIC. (This exercise
was inspired by WHERE + SEDGE + GRASS + GROWS = MARSH [A. W. Johnson, Jr., J. Recr.
Math. 15 (1982), 51], which would be marvelously pure except that D and 0 have the
same signature.)

28. (a) 11 =34+3+2+2+1,20=11+34+3+3,20 =114+3+3+2+1,
20=1143+3+14+1+1,20=8+8+2+1+1,20=7T+7+6,20=T+7T+2+2+2,
20=7+7+2+14+14+141,20=7+54+54+24+1,20=7+5+2+2+24+1+4+1, 20 =
T+5+2+2+1+14+141, 20 = 7T4+3434242+1+1+1, 20 = 74+34+-34+14+14+14+14+14+1+1,
20 = 5+3+3+3+3+3. [These fourteen solutions were first computed by Roy Childs
in 1999. The next doubly partitionable values of n are 30 (in 20 ways), then 40 (in 94
ways), 41 (in 67), 42 (in 57), 50 (in 190 ways, including 50 = 2 + 2+ - - - + 2), etc.]

(b) 51 =20+ 15+14+2,51 =15+14+10+9+3,61 =19+ 16+ 11+ 9+ 6,
65 =17+164+15+9+7+1,66=204+194+164+64+5,69 =184+ 17+ 164 10+ 8,
70=30+204+104+7+3,70=204+16+12+9+7+6,70 =20+ 154+ 124114745,
80 =504+204+9+1,90 =50+124+114+9+5+2+1,91 =45+19+114+10+5+1. [The
two 51s are due to Steven Kahan; see his book Have Some Sums To Solve (Farmingdale,
New York: Baywood, 1978), 36-37, 84, 112. Amazing examples with seventeen distinct
terms in Italian and fifty-eight distinct terms in Roman numerals have been found by
Giulio Cesare, J. Recr. Math. 30 (1999), 63.]

Notes: The beautiful example THREE = TWO-+0NE+ZERO [Richard L. Breisch, Recre-
ational Math. Magazine 12 (December 1962), 24] is unfortunately ruled out by our con-
ventions. The total number of doubly true partitions into distinct parts is probably fi-
nite, in English, although nomenclature for arbitrarily large integers is not standard. Is
there an example bigger than NINETYNINENONILLIONNINETYNINESEXTILLIONSIXTYONE =
NINETYNINENONILLIONNINETYNINESEXTILLIONNINETEEN +SIXTEEN+ELEVEN+4NINE4-SIX
(suggested by G. Gonzélez-Morris)?

29. 10+74+1=9+6+3,11+10=8+7+6,12+7+6+5=11+10+09, ...,
19+ 10+ 3 =14+ 13+ 4+ 1 (31 examples in all).

30. (a) 5677 = 321489, 807% = 651249, or 854% = 729316. (b) 958% = 917764.
(c) 96 x 7> = 4704. (d) 51304/61904 = 7260/8760. (e) 3285097 = 4761°. [Strand 78
(1929), 91, 208; J. Recr. Math 3 (1970), 43; 13 (1981), 212; 27 (1995), 137; 31 (2003),
133. The solutions to (b), (c), (d), and (e) are unique. With a right-to-left approach
based on Algorithm X, the answers are found in (14, 13, 11, 3423, 42) kilomems,
respectively. Nob also noticed that NORTH/SOUTH = WEST/EAST has the unique solution
67104/27504 = 9320/3820.]

31. 5/34 4+ 7/68 + 9/12(!). One can verify uniqueness with Algorithm X using the
side condition A < D < G, in about 265 Ku. [Quark Visual Science Magazine, No. 136
(Tokyo: Kodansha, October 1993).] Curiously, a very similar puzzle also has a unique
solution: 1/(3 X 6) +5/(8 x 9) + 7/(2 x 4) = 1; see Scot Morris, Omni 17,4 (January
1995), 97.

32. There are eleven ways, of which the most surprising is 3 + 69258/714. [See The
Weekly Dispatch (9 and 23 June 1901); Amusements in Mathematics (1917), 158-159.]

42

7.2.1.2 ANSWERS TO EXERCISES 43

33. (a) 1, 2, 3, 4, 15, 18, 118, 146. (b) 6, 9, 16, 20, 27, 126, 127, 129, 136, 145. [The
Weekly Dispatch (11 and 30 November, 1902); Amusements in Math. (1917), 159.]

In this case one suitable strategy is to find all variations where ay ...a;—1/a; ... a9
is an integer, then to record solutions for all permutations of aj...ar—1. There are
exactly 164959 integers with a unique solution, the largest being 9876533. There are
solutions for all years in the 21st century except 2091. The most solutions (125) occur
when n = 6443; the longest stretch of representable n’s is 5109 < n < 7060. Dudeney
was able to get the correct answers by hand for small n by “casting out nines.”

34. (a)z = 105, 7378+4155+92467 = 7T178+3554+92467 = 1016+4-733+98251 = 100000.
(b) z = 47, 3036 + 455 4+ 12893 = 16384 is unique. The fastest way to resolve this
problem is probably to start with a list of the 2529 primes that consist of five distinct
digits (namely 10243, 10247, ..., 98731) and to permute the five remaining digits.

Incidentally, the unrestricted alphametic EVEN 4 ODD = PRIME has ten solutions;
both 0DD and PRIME are prime in just one of them. [See M. Arisawa, J. Recr. Math. 8
(1975), 153.]

35. In general, if s = |Sk| for 1 < k < n, there are s; ... sk_1 ways to choose each of
the nonidentity elements of Si. Hence the answer is [[}_, (Hf;ll s;’“_l), which in this
case is 2% - 6% - 24"° = 436196692474023836123136.

(But if the vertices are renumbered, the s; values may change. For example,
if vertices (0,3,5) of (12) are interchanged with (e,d, c), we have s14 = 1, s13 = 6,
s12 =4, s11 = 1, and 4° - 245 Sims tables.)
36. Since each of {0,3,5,6,9,a,c,f} lies on three lines, but every other element lies
on only two, it is clear that we may let Sz = {(),0,0%,0%, a, a0, ac?,ac®}, where ¢ =
(03fc)(17e4)(2bd4)(56a9) is a 90° rotation and o = (05)(14)(27)(36)(8d)(9¢c)(af)(be)
is an inside-out twist. Also Se = {(),8,7,57}, where 8 = (14)(28)(3¢c)(69)(be) is a
transposition and v = (12)(48)(5a)(69)(7b)(de) is another twist; Sq = --- = S1 = {()}.
(There are 4" — 1 alternative answers.)

37. The set S can be chosen in k!*~' ways (see exercise 35), and its nonidentity
elements can be assigned to o(k,1), ..., o(k,k) in k! further ways. So the answer is

Ap = T2 k% = 03/ T2, k(). For example, Ao ~ 6.256 x 10'4%. We have

n—1

1

6n3 Inn + O(n®)

(g)lnk: %/ z(z — 1) Inz dz + O(n’logn) =
1

k=1

by Euler’s summation formula; thus In A, = 1n®Inn+ O(n®).

38. The probability that ¢(k) is needed in step G4 is 1/k! — 1/(k + 1)!, for 1 <
k < n; the probability is 1/n! that we don’t get to step G4 at all. Since ¢(k) does
[k/2] transpositions, the average is Y r_; (1/k! — 1/(k + 1)))[k/2] = SrZ1 ([k/2] —
[(k—1)/21)/k! = [(n — 1)/2]/n! = 355 gaq 1/ + O(1/(n — 1))).

39. (a) 0123, 1023, 2013, 0213, 1203, 2103, 3012, 0312, 1302, 3102, 0132, 1032, 2301,
3201, 0231, 2031, 3021, 0321, 1230, 2130, 3120, 1320, 2310, 3210; (b) 0123, 1023, 2013,
0213, 1203, 2103, 3102, 1302, 0312, 3012, 1032, 0132, 0231, 2031, 3021, 0321, 2301,
3201, 3210, 2310, 1320, 3120, 2130, 1230.

40. By induction we find o(1,1) = (0 1), 0(2,2) = (0 1 2),
(0k)(k—1 k-2 ... 1), if £ > 3 is odd,
(0k—1k—21 ... k=3 k), ifk>4iseven;

o(k, k) = {

43

44 ANSWERS TO EXERCISES 7.2.1.2

also w(k) = (0 k) when k is even, w(k) = (0 k—2 ... 1 k—1 k) when k& > 3 is odd.
Thus when k£ > 3is odd, o(k,1) = (k k—10) and o(k, j) takes k — j—1for 1 < j < k;
when k > 4 is even, o(k,j) = (0 k k—3 ... 1 k—2k—1) for 1 <j < k.

Notes: The first scheme that causes Algorithm G to generate all permutations by
single transpositions was devised by Mark Wells [Math. Comp. 15 (1961), 192-195],
but it was considerably more complicated. W. Lipski, Jr., studied such schemes in
general and found a variety of additional methods [Computing 23 (1979), 357-365].

41. We may assume that 7 < n. Algorithm G will generate r-variations for any Sims
table if we simply change ‘k < 1’ to ‘k < n — 7’ in step G3, provided that we redefine
w(k) to be o(n —r,n—r)...0(k, k) instead of using (16).

If n — 7 is odd, the method of (27) is still valid, although the formulas in answer 40
need to be revised when k < n—r+2. The new formulas are o(k,j) = (kj—1 ... 10)
and w(k)=(k ... 10) when k=n—r; o(k,j)=(k ... 10) when k=n —r + 1.

If n — r is even, we can use (27) with even and odd reversed, if r < 3. But when
7 > 4 a more complex scheme is needed, because a fixed transposition like (k 0) can
be used for odd k only if w(k — 1) is a k-cycle, which means that w(k — 1) must be an
even permutation; but w(k) is odd for k > n —r + 2.

The following scheme works when n — r is even: Let 7(k,j)w(k — 1) = (k k—j)

for 1 <j <k =n—r, and use (27) when k > n—r. Then, when £k = n—r+1, we have
w(k—1)=(01 ... k—1), hence o(k,j) takes k — (2j — 1) mod k for 1 < j < k, and
o(k,k)=(kk=1k=3 ... 0k=2 ... 1), w(k)=(k ... 10), 0(k+1,7) = (k+1 ... 0)7.
42. If o(k,j) = (k j—1) we have 7(k,1) = (k 0) and 7(k,j) = (k j—1)(k j—2) =
(k j—1j—2) for 2 < j < k.
43. Of course w(1l) = o(1,1) = 7(1,1) = (0 1). The following construction makes
w(k) = (k—2 k—1k) for all k > 2: Let a(k,j) = 7(k,j)w(k—1)", where «(2,1) = (2 0),
@(2,2)=(201), «(3,1) = «(3,3) = (3 1), @(3,2) = (310); this makes 6(2,2) = (0 2),
0(3,3) = (0 3 1). Then for k > 4, let

kmod3 =0 kmod3 =1 kmod3 =2
a(k,k—2) = (kk-20) or (kk-30) or (kk-10),
a(k,k—1) = (kk—2k-3) or (k k—3) or (kk-1k-3),
ak,k) = (kk-2) or (kk-3k-2) or (k k—2);

this makes o(k, k) = (k—3 k k—2) as required.

44. No, because 7(k, j) is a (k + 1)-cycle, not a transposition. (See (19) and (24).)
45. (a) 202280070, since ux, = max ({0,1,...,ax—1}\{a1,...,ax_1}). (Actually u, is
never set by the algorithm, but we can assume that it is zero.) (b) 425368917.

46. True (assuming that u, = 0). If either ur > up41 or ar > axy1 we must have
g > Uk 2 Qk4+1 > Uk+1-

47. Steps (X1,X2,...,X6) are performed respectively (1, A, B, A—1, B— Ny, A) times,
WheI‘eA:No-i-----i-Nn,l and B:nN0+(n—1)N1+~--+an,1.

48. Steps (X2,X3,X4,X5,X6) are performed respectively A, + (1,n!,0,0,1) times,
where A, = S p_i n¥ = n! 3771 1/k! ~ n!(e — 1). Assuming that they cost respec-
tively (1,1,3,1,3) mems, for operations involving a;, l;, or u;, the total cost is about
9e — 8 &~ 16.46 mems per permutation.

Algorithm L uses approximately (e, 2+ ¢/2,2e + 2¢~! — 4) mems per permutation
in steps (L2,13,1.4), for a total of 3.5¢ 4+ 2e™ — 2 ~ 8.25 (see exercise 5).

44

7.2.1.2 ANSWERS TO EXERCISES 45

Algorithm X could be tuned up for this case by streamlining the code when k is
near n. But so can Algorithm L, as shown in exercise 1.

49. Order the signatures so that |so| > -+ > |sg|; also prepare tables wp...wg,
Zo...Tg, Yo...Yo, so that the signatures {sg,...,s9} are wy, < --- < w,,. For
example, when SEND + MORE = MONEY we have (so,...,s9) = (—9000,1000,-900,91,
—90,10,1, —1,0, 0) for the respective letters (M, S,0,E,N,R,D, Y, A, B); also (wq, ..., ws) =
(—9000, —900, -90,-1,0,0,1,10,91,1000), and zo...ze = 0112233344, yo...ys =
9988776554. Yet another table fo... fo has f; = 1 if the digit corresponding to w;
cannot be zero; in this case fo...fo = 1000000001. These tables make it easy to
compute the largest and smallest values of

SkQk + '+ + Soag

over all choices ay . ..ag of the remaining digits, using the method of exercise 25, since
the links I; tell us those digits in increasing order.

This method requires a rather expensive computation at each node of the search
tree, but it often succeeds in keeping that tree small. For example, it solves the first
eight alphametics of exercise 24 with costs of only 7, 13, 7, 9, 5, 343, 44, and 89
kilomems; this is a substantial improvement in cases (a), (b), (e), and (h), although
case (f) comes out significantly worse. Another bad case is the ‘CHILD’ example of
answer 27, where left-to-right needs 2947 kilomems compared to 588 for the right-to-
left approach. Left-to-right does, however, fare better on BLOOD + SWEAT + TEARS (73
versus 360) and HELLO + WORLD (340 versus 410).

50. If o is in a permutation group, so are all its powers o, o®, ..., including ™! =

a”, where m is the order of « (the least common multiple of its cycle lengths). And
(32) is equivalent to @™ = 0102 ...0n-1.

51. False. For example, o(k,7)” and o(k,)~ might both take k£ — 0.
52, 7(k,j) = (k—j k—j+1) is an adjacent interchange, and

wk) = (n=1 ... 0)(n—2 ... 0)...(k ... 0) = ¢(n—1)p(k — 1)

is a k-flip followed by an n-flip. The permutation corresponding to control table
co...cn—1 in Algorithm H has c¢; elements to the right of j that are less than j,
for 0 < j < n; so it is the same as the permutation corresponding to ci...c, in
Algorithm P, except that subscripts are shifted by 1.

The only essential difference between Algorithm P and this version of Algorithm H
is that Algorithm P uses a reflected Gray code to run through all possibilities of its
control table, while Algorithm H runs through those mixed-radix numbers in ascending
(lexicographic) order.

Indeed, Gray code can be used with any Sims table, by modifying either Algo-
rithm G or Algorithm H. Then all transitions are by 7(k,j) or by 7(k,j) , and the
permutations w(k) are irrelevant.

53. The text’s proof that n! — 1 transpositions cannot be achieved for n = 4 also shows
that we can reduce the problem from n to n — 2 at the cost of a single transposition
(n—1 n—2), which was called ‘(3¢)’ in the notation of that proof.

Thus we can generate all permutations by making the following transformation
in step H4: If k = n—1or k = n — 2, transpose @;j modn * @(j—1) modn, Where
j=cn—1—1. If k=n—3 or k =n—4, transpose a,—1 <+ an—2 and also a; moq (n—2) +*
@(j—1) mod (n—2), Where j = c,—3—1. And in general if k =n—2t—1ork=n—2t—2,

45

46 ANSWERS TO EXERCISES 7.2.1.2

transpose an—2i+1 ¢+ @n—2; for 1 < ¢ < ¢ and also @ mod (n—2t) > A(j—1) mod (n—2t)»
where j = cn_2:—1 — 1. [See CACM 19 (1976), 68-72.]

The corresponding Sims table permutations can be written down as follows, al-
though they don’t appear explicitly in the algorithm itself:

o (01 ... j-1k), ifn—kisodd;
ki) = { .

01 ... k)7, if n — k is even.
The value of a; mod (n—2¢) Will be n — 2t — 1 after the interchange. For efficiency we
can also use the fact that k usually equals n — 1. The total number of transpositions
is Yl/2 (0 — 2t)1 — /2] — 1.
54. Yes; the transformation can be any k-cycle on positions {1,...,k}.
55. (a) Since pi(m) = pr(m mod n!) when n > pi(m), we have pi(n! + m) = p(m)
for 0 < m < n-n! = (n+1)! —nl. Therefore Bnitm = Op (nt4m) - --Tp (nt+1)Bnt =
Opi(m) -+ Tpy(1) Bt = BmPnr for 0 < m < n -n!, and we have in particular

- 1
ﬂ(n+1)! = Un+1,3(n+1)!—1 = 0n+1,3n!—1ﬁ::! = On+10n ,33'4_ :

Similarly a1y = Bp0mBriom for 0 <m < n -nl.
Since Bn1 commutes with 7, and 7,41 we find an) = Thani—1, and

Qlng1)! = Tnt1¥nt1)1-1 = Tnt1BuiQnt1)1—1—nBn1@ny = - -
= Tn+41 /B;!nan!—l (ﬂn!an!)n
—_n—1 — 1
= :Bn!n Tn+1Tn (:Bn!an!)n+

_ _ _ +1
= ﬁ(n+1)!0n+1 On Tn4+1Tn (ﬂn!an!)n .

(b) In this case 0,110, = (nn—1 ... 1) and 7,417, = (n+1 n 0), and we have
Bnt1)1@mt1y = (n+1n ... 0) by induction. Therefore o,y = Bl am(n ... 0)7
for 0 < j < nand 0 < m < nl. All permutations of {0,...,n} are achieved because
Boiam fixesn and (n ... 0)? takes n— n — j.

56. If we set o, = (k—1 k—2)(k—3 k—4) ... in the previous exercise, we find by induc-
tion that Bnran is the (n+1)-cycle (0 nn—1n—3 ... (2or1) (1 or2) ... n—4 n—2).
57. Arguing as in answer 5, we obtain Y_p_[kodd]/k! — (|n/2] —1)/n! = sinh1—1—
o(1/(n—1).

58. True. By the formulas of exercise 55 we have a,,;_, = (0 n)3,,(n ... 0), and
this takes 0 — n — 1 because By fixes n. (Consequently Algorithm E will define a
Hamiltonian cycle on the graph of exercise 66 if and only if 8,1 = (n—1 ... 2 1), and
this holds if and only if the length of every cycle of B(n_1) is a divisor of n. The latter
is true for n = 2, 3, 4, 6, 12, 20, and 40, but for no other n < 250,000.)

59. The Cayley graph with generators (a1, . .., ax) in the text’s definition is isomorphic
to the Cayley graph with generators (ay,...,q;) in the alternative definition, since

7 — a7 in the former if and only if 7~ — 7~ a; in the latter.

60. There are 88 delta sequences, which reduce to four classes: P = (32131231)* (plain
changes, represented by 8 different delta sequences); Q = (32121232) (a doubly Gray
variant of plain changes, with 8 representatives); R = (121232321232)2 (a doubly Gray
code with 24 representatives); S = 2a3a®, a = 12321312121 (48 representatives).
Classes P and @ are cyclic shifts of their complements; classes P, @), and S are shifts
of their reversals; class R is a shifted reversal of its complement. [See A. L. Leigh Silver,
Math. Gazette 48 (1964), 1-16.]

46

7.2.1.2 ANSWERS TO EXERCISES 47

61. There are respectively (26, 36, 20, 26, 28, 40, 40, 20, 26, 28, 28, 26) such paths ending
at (1243,1324, 1432, 2134, 2341, 2413, 3142, 3214, 3421, 4123, 4231, 4312).

62. There are only two paths when n = 3, ending respectively at 132 and 213.
But when n > 4 there are Gray codes leading from 12...n to any odd permuta-
tion aiaz...a,. Exercise 61 establishes this when n = 4, and we can prove it by
induction for n > 4 as follows.

Let A(j) be the set of all permutations that begin with j, and let A(j,k) be
those that begin with jk. If (ao,a1,...,an) are any odd permutations such that
aj € A(zj,zj41), then (12)a; is an even permutation in A(zj41,z;). Consequently, if

Z1Zz...Tn is a permutation of {1,2,...,n}, there is at least one Hamiltonian path of
the form
12)ag— -+ —a1—(12)ar— - —as— - — (12)apn_1— - — n;

the subpath from (12)a;_1 to «; includes all elements of A(z;).

This construction solves the problem in at least (n—2)!"/2"~! distinct ways when
a1 # 1, because we can take ap = 21...n and an = a1z . .. an; there are (n —2)! ways
to choose 2 ...zp—1, and (n — 2)!/2 ways to choose each of a1, ..., an_1.

Finally, if a1 = 1, take any path 12...n — --- — a1a2 . ..a, that runs through
all of A(1), and choose any step o — o’ with a € A(1,5) and o’ € A(1,;') for some
j # j'. Replace that step by

a—(12)ay —+ —ay—-- - —(12)ap_1— - —an,—a,

using a construction like the Hamiltonian path above but now with a1 = a, an =
(12)d’, z1 =1, 22 = j, 2o = j', and zp41 = 1. (In this case the permutations a1,
..., an might all be even.)

63. Monte Carlo estimates using the techniques of Section 7.2.3 suggest that the total
number of equivalence classes will be roughly 1.2 x 10?'; most of those classes will
contain 480 Gray cycles.

64. Exactly 2,005,200 delta sequences have the doubly Gray property; they belong to
4206 equivalence classes under cyclic shift, reversal, and/or complementation. Nine
classes, such as the code 2a2a® where

a = 12343234321232121232321232121234343212123432123432121232321,

are shifts of their reversal; 48 classes are composed of repeated 60-cycles. One of the
most interesting of the latter type is aa where

o = B2B4B4AB4RL, B = 32121232123.

65. Such a path exists for any given N < n!: Let the Nth permutation be @« = a; ... an,
and let j = a1. Also let II; be the set of all permutations 8 = b1 ... b, for which b = k&
and 8 < a. By induction on N there is a Gray path P, for II;. We can then construct
Gray paths Py for II; UIl; U.-- UIlx_q for 2 < k < 7, successively combining Pr_1
with a Gray cycle for IT;_;. (See the “absorption” construction of answer 62. In fact,
P; will be a Gray cycle when N is a multiple of 6.)

66. Defining the delta sequence by the rule 7(x4+1) mod nt = (1 &) 7k, we find exactly 36
such sequences, all of which are cyclic shifts of a pattern like (zyzyzyzzyzyz)®>. (The
next case, n = 5, probably has about 10'® solutions that are inequivalent with respect
to cyclic shifting, reversal, and permutation of coordinates, thus about 6 x 102! different

47

48 ANSWERS TO EXERCISES 7.2.1.2

delta sequences.) Incidentally, Igor Pak has shown that the Cayley graph generated by
star transpositions is an (n — 2)-dimensional torus in general.

67. If we let w be equivalent to w(12345), we get a reduced graph on 24 vertices that has
40768 Hamiltonian cycles, 240 of which lead to delta sequences of the form o in which
« uses each transposition 6 times (for example, a = 354232534234532454352452). The
total number of solutions to this problem is probably about 10'€.

68. If A isn’t connected, neither is G. If A is connected, we can assume that it is a free
tree. Moreover, in this case we can prove a generalization of the result in exercise 62:
For n > 4 there is a Hamiltonian path in G from the identity permutation to any odd
permutation. For we can assume without loss of generality that A contains the edge
1—2 where 1 is a leaf of the tree, and a proof like that of exercise 62 applies.

[This elegant construction is due to M. Tchuente, Ars Combinatoria 14 (1982),
115-122. Extensive generalizations have been discussed by Ruskey and Savage in STAM
J. Discrete Math. 6 (1993), 152-166. See also the original Russian publication in
Kibernetika 11,3 (1975), 17-25; English translation, Cybernetics 11 (1975), 362-366.]

69. Following the hint, the modified algorithm behaves like this when n = 5:

1234 1243 1423 4123 4132 1432 1342 1324 3124 3142 3412 4312
4) 4 t 4 t 4 t 4 T 4 T
54321 24351 24153 54123 14523 14325 24315 24513 54213 14253 14352 54312
12345 15342 35142 32145 32541 52341 51342 31542 31245 35241 25341 21345
15342 12435 32415 35412¢-31452 51432 52431 32451435421 31425 21435 25431
23451 53421 51423 2145325413 23415 13425 15423—12453 52413 53412 13452
21543 51243 53241 23541 23145 25143 15243 13245 13542 53142 52143 12543
34512 34215 14235 14532 54132 34152 34251 54231 24531 24135 34125 34521
3215435124 1532412354 52314 32514+-31524 51324 2135425314 3521431254
45123442153 42351445321 41325 4152342513 42315 45312441352 4125345213
43215 43512441532 41235 4523143251 4315245132 42135 4253143521 43125
51234 21534523514 53214 1325415234 25134423154 53124 1352412534 52134

{) 1 + 1 + 1 + { T { T

Here the columns represent sets of permutations that are cyclically rotated and/or
reflected in all 2n ways; therefore each column contains exactly one “rosary permuta-
tion” (exercise 18). We can use Algorithm P to run through the rosary permutations
systematically, knowing that the pair zy will occur before yz in its column, at which
time 7' instead of p’ will move us to the right or to the left. Step Z2 omits the
interchange a1 <> a2, thereby causing the permutations a; . ..a,—1 to repeat themselves
going backwards. (We implicitly use the fact that ¢[k] = t[n! — k] in the output of
Algorithm T.)

Now if we replace 1...n by 24...31 and change A;...An to A1AnA2An_1...,
we get the unmodified algorithm whose results are shown in Fig. 22(b).

This method was inspired by a (nonconstructive) theorem of E. S. Rapoport,
Scripta Math. 24 (1959), 51-58. It illustrates a more general fact observed by Carla
Savage in 1989, namely that the Cayley graph for any group generated by three
involutions p, o, 7 has a Hamiltonian cycle when pT = 7p [see 1. Pak and R. Radoi¢i¢,
“Hamiltonian paths in Cayley graphs,” to appear].

70. No; the longest cycle in that digraph has length 358. But there do exist pairs of
disjoint 180-cycles from which a Hamiltonian path of length 720 can be derived. For

7.2.1.2 ANSWERS TO EXERCISES 49

example, consider the cycles aofo and yoo where

5 5 3 2 5 3 2 5 5 92 3 1_5 5 5 3 1_1_3 2 1_1
a=T10°10°T0°T0O TO TO " TO T T0 TO TO TO TO TO TO TOTO TO TO TO TO TO

3 5 2 2 5 2 3 1_1_5 1_3 5 5 3 2 1_2 3 1_1_3 2 4
B =o°to’ro 0 0 T0 T0 TO TO TO TO TO TO TO TO TO TO TOTO TO TO TO TO TO

5.5 3 1_1_3 2 5 92 3 5 1 5 3 2 1_2 3 1_1_3 2
Y =0T TO TOTO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO

2 2 1 1 2 1_ 2
T0'5T0'57'0'5T0'3T0'5T0' TO'5TO' ’7'0'3 57'0' T0'3T0'37'0'5’7'0'5T0' TO'5TO' 7'0'3’7'0' TO .

ro'rolro
If we start with 134526 and follow awo 37 we reach 163452; then follow yor and reach
126345; then follow oy7 and reach 152634; then follow Soa, ending at 415263.

71. Brendan McKay and Frank Ruskey have found such cycles by computer when
n =17,9, and 11, but no nice structure was apparent.

72. Any Hamiltonian path includes (n — 1)! vertices that take y — z, each of which (if
not the last) is followed by a vertex that takes z — z. So one must be last; otherwise
(n — 1)! + 1 vertices would take z — z.

73. (a) Assume first that 3 is the identity permutation (). Then every cycle of « that
contains an element of A lies entirely within A. Hence the cycles of o are obtained by
omitting all cycles of a that contain no element of A. All remaining cycles have odd
length, so o is an even permutation.

If B is not the identity, we apply this argument to o/ = o8~, 8 = (),and o' = o837,
concluding that o' is an even permutation; thus o and 8 have the same sign.

Similarly, o and « have the same sign, because Sa~ = (a8~)~ has the same order
as af”.

(b) Let X be the vertices of the Cayley graph in Theorem R, and let a be the
permutation of X that takes a vertex 7 into am; this permutation has g/a cycles of
length a. Define the permutation 8 similarly. Then a8~ has g/c cycles of length c.
If ¢ is odd, any Hamiltonian cycle in the graph defines a cycle o that contains all the
vertices and satisfies the hypotheses of (a). Therefore o and 8 have an odd number of
cycles, because the sign of a permutation on n elements with r cycles is (—1)"~" (see
exercise 5.2.2-2).

[This proof, which shows that X cannot be the union of any odd number of cycles,
was presented by Rankin in Proc. Cambridge Phil. Soc. 62 (1966), 15-16.]

74. The representation 87~v* is unique if we require 0 < j < g/cand 0 < k < c¢. For
if we had 87 = 4* for some j with 0 < j < g/c, the group would have at most jc
elements. It follows that 89/¢ = 4* for some t.

Let o be a Hamiltonian cycle, as in the previous answer. If xo = xa then zyo
must be zya, because zy8 = a. And if zo = zB then zyo cannot be xya, because
that would imply zy°c = z7y°a. Thus the elements z+v* all have equivalent behavior
with respect to their successors in o.

Notice that if j > 0 there is a k < j such that zo? = za*87 7% = £87+*. Therefore
t+k is equivalent to z, and the same behavior will repeat. We return to =
for the first time in g steps if and only if ¢ + & is relatively prime to c.

z9/¢ = zvy

75. Apply the previous exercise with g = mn, a = m, b = n, ¢ = mn/d. The number ¢
satisfies t = 0 (modulo m), t +d = 0 (modulo n); and it follows that k + ¢ L ¢ if and
only if (d — k)m/d L kn/d.

Notes: The modular Gray code of exercise 7.2.1.1-78 is a Hamiltonian path from
(0,0) to (m—1, (—m) mod n), so it is a Hamiltonian cycle if and only if m is a multiple
of n. It is natural to conjecture (falsely) that at least one Hamiltonian cycle exists
whenever d > 1. But P. Erd8s and W. T. Trotter have observed [J. Graph Theory 2

49

50

(1978), 137-142] that if p and 2p+ 1 are odd prime numbers, no suitable k exists when
m=p(2p+1)(3p+1) and n=(3p+1) Hsil glaisprimella7plla72p+1]
See J. A. Gallian, Mathematical Intelligencer 13,3 (Summer 1991), 40-43, for

ANSWERS TO EXERCISES

interesting facts about other kinds of cycles in Cy, X Ch,.

76. We may assume that the tour begins in the lower left corner. There are no solutions
when m and n are both divisible by 3, because 2/3 of the cells are unreachable in that
case. Otherwise, letting d = gcd(m, n) and arguing as in the previous exercise but with
(z,y)a = ((z+2) mod m, (y + 1) mod n) and (z,y)B8 = ((z+ 1) mod m, (y + 2) mod n),

we find the answer

d—1

Z(Z) [ged((2d—k)m, (k+d)n) =d or (mn L 3 and ged((2d—k)m, (k+d)n) = 3d)].

k=1

77. 01
02
03
04
05
06
07

08
09
10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31

32
33
34

35
36

*
N
t
J
k

< B

1H

OH

Permutation generator \‘a la Heap

IS
IS
IS
IS
IS
IS

LOC
GREG
IS
IS
IS
LOC
GREG
LOC
0CTA
GREG
GREG
GREG

LOC
STCO
INCL
LDO
CMP
BZ
BN
LDO
ADD
STO
AND
CSz
LDO
STO
CSZ
SUB
CSZ

10

$255

$0

$1

$2

$3
Data_Segment
(c]

Q

Q+8

@+16
Q+8*N
@-8%3
Q-8*3+8*N

The value of n (3 or more, not large)

8j
8k

Base address for ag ...an_1

Space for ag...an—1

Location of 8co

8cs ...8¢cp_1, initially zero

8cn = —1, a convenient sentinel
Contents of ag, except in inner loop
Contents of a1, except in inner loop
Contents of a2, except in inner loop

A cr < 0.
A k< k+1.
7 Ck.

Loop if ¢, = k.
Terminate if cx < 0 (k = n).

A —1 Fetch ag.

A-1
A-1 ck < 7+ 1.
A-1
A-1

A—1 Fetch a;.

A—1 j+j—1.

Set j < 0 if k is even.

Replace it by a.
Set u + ax if 7 = 0.

Set v« ar if 7 = 0.

50

7.2.1.2 ANSWERS TO EXERCISES 51

37 SUB §,j,8 A-1 j«j—1
38 CSZ w,j,ak A—1 Setw<+arifj=0.
39 STO aj,a,k A —1 Replace ar by what was a;.
40 Inner PUSHJ 0,Visit A
e (See (42))
55 PUSHJ 0,Visit A
56 SET t,u A Swap u < w.
57 SET u,w A
58 SET w,t A
59 SET k,8%3 A k « 3.
60 JMP OB A
61 Main LDO u,A0 1
62 LDO v,Al 1
63 LDO w,A2 1
64 JMP Inner 1 1

78. Lines 31-38 become 2r — 1 instructions, lines 61-63 become r, and lines 56—58
become 3 + (r — 2)[r even] instructions (see w(r — 1) in answer 40). The total running
time is therefore ((2r!4+2)A+2B+r—5)pu+((2r!+2r+74(r—2)[r even]) A+7B—r—4)v,
where A =n!/r! and B =n!(1/r!+ .-+ 1/n!).

79. SLU u, [#f],t; SLU t,a,4; XOR t,t,a; AND t,t,u; SRU u,t,4; OR t,t,u;
XOR a,a,t; here, as in the answer to exercise 1.3.1'-34, the notation ‘[#f]’ denotes a
register that contains the constant value #f.

80. SLUu,a,t; MXORu, [#8844221188442211] ,u; AND u,u, [#£f£000000]; SRUu,u,t;
XOR a,a,u. This cheats, since it transforms #12345678 to *13245678 when t = 4, but
(45) still works.

Even faster and trickier would be a routine analogous to (42): Consider

PUSHJ O0,Visit; MXOR a,a,cl; PUSHJ O,Visit; ... MXOR a,a,cb; PUSHJ 0,Visit

where c1, ..., c5 are constants that would cause #12345678 to become successively
#12783456, # 12567834, 12563478, #*12785634, #12347856. Other instructions, exe-
cuted only 1/6 or 1/24 as often, can take care of shuffling nybbles within and between
bytes. Very clever, but it doesn’t beat (46) in view of the PUSHJ/POP overhead.

81. t IS $255 ;k IS $0 ;kk IS $1 ;c IS $2 ;d IS $3
SET k,1 k<« 1.
3H SRU d,a,60 d < leftmost nybble.
SLU a,a,4 a < 16amod 166.
CMP c,d,k
SLU kk,k,2
SLU d,d,kk
OR t,t,d t+« t+16"7d.
PBNZ c,1B Return to main loop if d # k.
INCL k,1 k<« k+1.
PBNZ a,3B Return to second loop if k < n. |

82. p+(5n!+11A— (n—1)!1+6)v = ((5+10/n)v + O(n~?))n!, plus the visiting time,
where A = Z:;i k! is the number of times the loop at 3H is used.

83. With suitable initialization and a 13-octabyte table, only about a dozen MMIX
instructions are needed:

51

52 ANSWERS TO EXERCISES 7.2.1.2

magic GREG #8844221188442211
OH (Visit register a)
PBN c,Sigma
Tau MXOR t,magic,a; ANDNL t,#ffff; JMP 1F
Sigma SRU t,a,20; SLU a,a,4; ANDNML a,#f00

1H X0R a,a,t; SLU c,c,1
2H PBNZ c,0B; INCL p,8
3H LDOU c,p,0; PBNZ c,0B 1

84. Assuming that the processors all have essentially the same speed, we can let the
kth processor generate all permutations of rank r for (k — 1)n!/p < r < kn!/p, using
any method based on control tables ¢ ...c,. The starting and ending control tables
are easily computed by converting their ranks to mixed-radix notation (exercise 12).

85. We can use a technique like that of Algorithm 3.4.2P: To compute k = r(«), first
set a'a]. + j for 1 < j < n (the inverse permutation). Then set k < 0, and for j = n,
n —1, ..., 2 (in this order) set t < aj, k + kj +t—1, a; + a;, ag; + t. To
compute 71" (k), start with a; - 1. Then for j =2, ..., n — 1, n (in this order) set
t+ (kmodj)+1, a; « at, ar < j, k < |k/j|. [See S. Pleszczyniski, Inf. Proc. Letters
3 (1975), 180-183; W. Myrvold and F. Ruskey, Inf. Proc. Letters 79 (2001), 281-284.]

Another method is preferable if we want to rank and unrank only the n™ variations
ai...am of {1,...,n}: To compute k = (a1 ...am), start with by ...b, « by ...b;, <
1...n; then for j =1, ..., m (in this order) set t < b, by ¢ bnt1—j, and b}, < t;
finally set k < 0 and for j = m, ..., 1 (in this order) set k <= k x (n+1—j) +b,, — 1.
To compute 7"[71](16)7 start with b1 ...b, < 1...n; thenfor j =1, ..., m (in this order)
set t < (kmod (n+1— 7))+ 1, aj < by, by « bug1_j, k < [k/(n+1—35)]|. (See
exercise 3.4.2-15 for cases with large n and small m.)

86. If x < y and y < z, the algorithm will never move y to the left of z, nor z to the
left of y, so it will never test = versus z.

87. They appear in lexicographic order; Algorithm P used a reflected Gray order.

88. Generate inverse permutations with aj < a} < a4, a3 < ay < at, ag < ay, ag < ag,
ap < aj, ag < ag.

89. (a) Let dy = max{j | 0 < j < k and j is nontrivial}, where 0 is considered
nontrivial. This table is easily precomputed, because j is trivial if and only if it must
follow {1,...,5—1}. Set k < d, in step V2 and k < di—1 in step V5. (Assume d, > 0.)

(b) Now M = E;":l t;[j is nontrivial].

(c) There are at least two topological sorts a; . .. ax of the set {j, ..., k}, and either
of them can be placed after any topological sort a; ...aj—1 of {1,...,5 — 1}.

(d) Algorithm 2.2.3T repeatedly outputs minimal elements (elements with no
predecessors), removing them from the relation graph. We use it in reverse, repeatedly
removing and giving the highest labels to mazimal elements (elements with no succes-
sors). If only one maximal element exists, it is trivial. If k£ and ! are both maximal,
they both are output before any element = with x < k£ or < [, because steps T5
and T7 keep maximal elements in a queue (not a stack). Thus if k£ is nontrivial and
output first, element [might become trivial, but the next nontrivial element j will not
be output before I; and k is unrelated to .

(e) Let the nontrivial t’s be s1 < s2 < --- < s, = N. Then we have s; > 2s;_2,
by (c). Consequently M = sa+--+s, < sp(1+5+3+-)+ (1+14+3+--1) < 4s,.

52

7.2.1.2 ANSWERS TO EXERCISES 53

(A sharper estimate is in fact true, as observed by M. Peczarski: Let so = 1, let
the nontrivial indices be 0 = k1 < k2 < --- < kr, and let k; = max{k | 1 < k < kj,
k £ k;} for j > 1. Then kj > k; ;. There are s; topological sorts of {1,...,k;y1} that
end with k;11; and there are at least s;_; that end with k;-_,_l, since each of the s;_;
topological sorts of {1,...,k; — 1} can be extended. Hence

Sj+1 > 8; +8j—1 fori1<j<r.

Now let Yo = 0, Y1 :F2+"'+Fr, and Yi :yj_2+yj_1 —F7-+1 for 1 <j < r. Then

r—1
Fr+1(31 +-+ Sr) + Zyj (3r+1—j — Sp—j — Sr—l—j) = (Fz + -+ Fr+1)8r7
i+l
and each y; = Fr11 — 2F; + (—1)"FT+1,]- is nonnegative. Hence s1 + +- + s, <

((F2 + -+ FT+1)/F7~+1)S7~ = 2.6s,. The following exercise shows that this bound is
best possible.)

90. The number N of such permutations is Fj,41 by exercise 5.2.1-25. Therefore
M=Fo1+--+F=F,3—-2~ ¢2N . Notice incidentally that all such permutations
satisfy a; ...a, = a ...a;,. They can be arranged in a Gray path (exercise 7.2.1.1-89).

91. Since t; = (j —1)(j —3)...(2 or 1), we find M = (1 +2/v/7n+ O(1/n))N.
Note: The inversion tables c; .. .con for permutations satisfying (49) are charac-
terized by the conditions ¢1 =0, 0 < cor < c2k—1, 0 < cokt1 < cop—1 + 1.

92. The total number of pairs (R, S), where R is a partial ordering and S is a linear
ordering that includes R, is equal to P, times the expected number of topological sorts;
it is also @Qn times n!. So the answer is n! Qn/Phs.

We will discuss the computation of P, and @, in Section 7.2.3. For 1 < n < 12
the expectation turns out to be approximately

(1, 1.33, 2.21, 4.38, 10.1, 26.7, 79.3, 262, 950, 3760, 16200, 74800).

Asymptotic values as n — oo have been deduced by Brightwell, Promel, and Steger
[J. Combinatorial Theory A73 (1996), 193-206], but the limiting behavior is quite
different from what happens when n is in a practical range. The values of Q,, were first
determined for n < 5 by S. P. Avann [#quationes Math. 8 (1972), 95-102].

93. The basic idea is to introduce dummy elements n + 1 and n 4+ 2 with j < n+1
and j < n+ 2 for 1 < j < n, and to find all topological sorts of such an extended
relation via adjacent interchanges; then take every second permutation, suppressing
the dummy elements. An algorithm similar to Algorithm V can be used, but with a
recursion that reduces n to n — 2 by inserting n — 1 and n among a; ...an—2 in all
possible ways, assuming that n — 1 £ n, occasionally swapping n + 1 with n 4+ 2. [See
G. Pruesse and F. Ruskey, SICOMP 23 (1994), 373-386. A loopless implementation
has been described by Canfield and Williamson, Order 12 (1995), 57-75.]

94. The case n = 3 illustrates the general idea of a pattern that begins with 1...(2n)
and ends with 1(2n)2(2n—1)...n(n+1): 123456, 123546, 123645, 132645, 132546,
132456, 142356, 142536, 142635, 152634, 152436, 152346, 162345, 162435, 162534.

Matchings can also be regarded as involutions of {1,...,2n} that have n cycles.
With that representation this pattern involves two transpositions per step.

Notice that the C inversion tables of the permutations just listed are respectively
000000, 000100, 000200, 010200, 010100, 010000, 020000, 020100, 020200, 030200,
030100, 030000, 040000, 040100, 040200. In general, C; = C3 = --- = Cp—1 = 0

53

54 ANSWERS TO EXERCISES 7.2.1.2

and the n-tuples (C2,Cy,...,Ca,) run through a reflected Gray code on the radices
(2n — 1,2n — 3,...,1). Thus the generation process can easily be made loopless if
desired. [See Timothy Walsh, J. Combinatorial Math. and Combinatorial Computing
36 (2001), 95-118, Section 1.]

Note: Algorithms to generate all matchings go back to J. F. Pfaff [Abhandlungen
Akad. Wissenschaften (Berlin: 1814-1815), 124-125], who described two such proce-
dures: His first method was lexicographic, which also corresponds to lexicographic
order of the C inversion tables; his second method corresponds to colex order of those
tables. Even and odd permutations alternate in both cases.

95. Generate inverse permutations with a} < a, > a5 < a,_; > ---, using Algo-
rithm V. (See exercise 5.1.4-23 for the number of solutions.)

96. For example, we can start with a1...an—10n = 2...n1 and bib2...bpbpt1 =
12...n1, and use Algorithm P to generate the (n — 1)! permutations bs...b, of
{2,...,n}. Just after that algorithm swaps b; > bit1, we set ap,_, < b;, ap, bit1,
ap,,, bit2, and visit a1 .. .an.

97. Use Algorithm X, with tx(a1,...,ax) = ‘ax Z k.

98. Using the notation of exercise 47, we have N =) (?)(—l)j(n —)*=4 by the
method of inclusion and exclusion (exercise 1.3.3-26). If k = O(logn) then N,_, =
(nle™ k! (1 4+ O(logn)?/n); hence A/n! ~ (e — 1)/e and B/n! ~ 1. The number of
memory references, under the assumptions of answer 48, is therefore ~ A+ B + 3A +
B — N, +3A~n!(9— %)~ 6.06n!, about 16.5 per derangement. [See S. G. Akl, BIT
20 (1980), 27, for a similar method.]

99. Suppose L, generates D, UD,_1, beginning with (12 ... n), then (21 ... n), and
ending with (1 ... n—1); for example, Lz = (12 3), (21 3), (1 2). Then we can generate
Dyy1 as Knn, - .., Kna, Kn1, where Ky = (12 ... n)_k(n n+1)Ln(12 ... n)k; for
example, Dy is

(1234), (2134), (12)(34), (3124), (1324), (31)(24), (2314), (3214), (23)(14).

Notice that K,r begins with the cycle (k+1 ... n 1 ... k n+1) and ends with
(k+1 ... n1 ... k—1)(k n+1); so premultiplication by (k—1 k) takes us from K,
to Ky, (k—1). Also, premultiplication by (1 n) will return from the last element of Dy
to the first. Premultiplication by (1 2 n+1) takes us from the last element of Dy 41 to
(213 ... n), from which we can return to (1 2 ... n) by following the cycle for D,
backwards, thereby completing the list L,+1 as desired.

100. Use Algorithm X, with tx(a1,...,ax) =‘p>0or lg] # k + 1"

Notes: The number of indecomposable permutations is [2"] (1 — 1/ Y32, k!2¥);
see L. Comtet, Comptes Rendus Acad. Sci. A275 (Paris, 1972), 569-572. It appears
likely that the indecomposable permutations can be generated by adjacent transposi-
tions; for example, when n = 4 they are 3142, 3412, 3421, 3241, 2341, 2431, 4231, 4321,
4312, 4132, 4123, 4213, 2413.

101. Here is a lexicographic involution generator analogous to Algorithm X.
Y1. [Initialize.] Set ax < k and 1 < k for 1 < k < n. Then set I, + 0, k + 1.

Y2. [Enter level k.] If £ > n, visit a1...an and go to Y3. Otherwise set p + o,
Uk < D, lo < lp, k + k + 1, and repeat this step. (We have decided to let

ap = p.)

54

7.2.1.2 ANSWERS TO EXERCISES 55

Y3. [Decrease k.] Set k < k— 1, and terminate if £ = 0. Otherwise set ¢ < ux and
paq. fp=g,setlo+ q,q+ 0,7 < lp, and k + k+ 1 (preparing to make
ap > p). Otherwise set l,, , < g, 7 < l; (preparing to make a, > gq).

Y4. [Increase ap.] If 7 = 0 go to Y5. Otherwise set lg < I, ug—1 < q, up < r,
Gp < T,0q < ¢, ar < p, k< k+1,and go to Y2.

Y5. [Restore ap.] Set lg < p, ap < p, aqg < g, k < k — 1, and return to Y3. |

Let th+1 = tn + ntn—1, @ny1 = 1+ an + nan—1,to = t1 =1, a0 =0, a1 = 1. (See
Eq. 5.1.4—(40).) Step Y2 is performed ¢, times with ¥ > n and a, times with k£ < n.
Step Y3 is performed a, times with p = ¢ and a, + ¢, times altogether. Step Y4 is
performed t, —1 times; step Y5, a, times. The total number of mems for all ¢, outputs
is therefore approximately 11a, + 12t,, where a, < 1.25331414¢t,. (Optimizations are
clearly possible if speed is essential.)

102. We construct a list L, that begins with () and ends with (n—1 n), starting with
Ly = (), (12),(13), (23). If nisodd, Lny1 is Ly, K, Kno,y ..., K2, where
Kur,=(k ... n) " Lp—1(k ...n)(k n+1). For example,

Ly = (), (12),(13),(23),(23)(14),(14),(24),(13)(24), (12)(34),(34).

If n is even, Lny1 is Ln, K(n_1), Knin_y> - > Kn1, (1 n—2) L1 (1 n—2)(n n+1).
For further developments, see the article by Walsh cited in answer 94.

103. The following elegant solution by Carla Savage needs only n — 2 different op-
erations p;, for 1 < j < n, where p; replaces aj_1aja;41 by ajri1a;_1a; when j is
even, a;jaj+1aj—1 when j is odd. We may assume that n > 4; let Ay = (papap2p3)®.
In general A, will begin and end with p,—_1, and it will contain 2n — 2 occurrences
of pn—1 altogether. To get A,i1, replace the kth p,—1 of A, by p, AL p,, where
k=1,2,4 ...,2n—2ifnisevenand k =1, 3, ..., 2n — 3, 2n — 2 if n is
odd, and where A, is A, with its first or last element deleted. Then, if we begin
with a1...an = 1...n, the operations p,—1 of A, will cause position a, to run
through the successive values n — p1 - n — p2 — -+ — pn_1 — n, where
P1...pn—1 = (n—1 — [neven])...4213...(n—1 — [nodd]); the final permutation will
again be 1...n.

104. (a) A well-balanced permutation has >, kar = n(n + 1)/4, an integer.

(b) Replace k by ar when summing over k.

(c) A fairly fast way to count, when n is not too large, can be based on the
streamlined plain-change algorithm of exercise 16, because the quantity > kar changes
in a simple way with each adjacent interchange, and because n — 1 of every n steps
are “hunts” that can be done rapidly. We can save half the work by considering only
permutations in which 1 precedes 2. The values for 1 <n < 15are 0, 0, 0, 2, 6, 0, 184,
936, 6688, 0, 420480, 4298664, 44405142, 0, 6732621476.

105. (a) For each permutation ai ...an, insert < between a; and aj4+1 if a; > aj41;
insert either = or < between them if a; < ajy1. (A permutation with k “ascents”
therefore yields 2% weak orders. Weak orders are sometimes called “preferential arrange-
ments; exercise 5.3.1-4 shows that there are approximately n!/(2(In2)™*!) of them. A
Gray code for weak orders, in which each step changes < <» = and/or a; ¢+ a;+1, can
be obtained by combining Algorithm P with Gray binary code at the ascents.

(b) Start with a1...anan+1 = 0...00 and ag = —1. Perform Algorithm L
until it stops with 7 = 0. Find k such that a1 > --- > ar = ax+1, and terminate if
k = n. Otherwise set a; < ax4+1 + 1 for 1 < [< k and go to step L4. [See M. Mor

55

56 ANSWERS TO EXERCISES 7.2.1.2

and A. S. Fraenkel, Discrete Math. 48 (1984), 101-112. Weak ordering sequences are
characterized by the property that, if k appears and k£ > 0, then k — 1 also appears.]

106. All weak ordering sequences can be obtained by a sequence of elementary oper-
ations a; <> a;j or a; < a;. (Perhaps one could actually restrict the transformations
further, allowing only a; <+ aj+1 or a; < aj4+1 for 1 < j < n.)

107. Every step increases the quantity >_p_, 2*[ax = k], as noted by H. S. Wilf, so
the game must terminate. At least three approaches to the solution are plausible: one
bad, one good, and one better.

The bad one is to play the game on all 13! shuffles and to record the longest.
This method does produce the correct answer; but 13! is 6,227,020,800, and the average
game lasts ~ 8.728 steps.

The good one [A. Pepperdine, Math. Gazette 73 (1989), 131-133] is to play
backwards, starting with the final position 1x...* where * denotes a card that is face
down; we will turn a card up only when its value becomes relevant. To move backward
from a given position aj . ..an, consider all £ > 1 such that either ar = k or ax = * and
k has not yet turned up. Thus the next-to-last positions are 21s%...%, 3xl%...%, ...,
n%...%1. Some positions (like 6+%213 for n = 6) have no predecessors, even though we
haven’t turned all the cards up. It is easy to explore the tree of potential backwards
games systematically, and one can in fact show that the number of nodes with ¢ *’s is
exactly (n — 1)!/¢!. Hence the total number of nodes considered is exactly |(n —1)!e].
When n = 13 this is 1,302,061,345.

The better one is to play forwards, starting with initial position *...* and turning
over the top card when it is face down, running through all (n — 1)! permutations of
{2,...,n} as cards are turned. If the bottom n — m cards are known to be equal
to (m+1)(m+2)...n, in that order, at most f(m) further moves are possible; thus we
need not pursue a line of play any further if it cannot last long enough to be interesting.
A permutation generator like Algorithm X allows us to share the computation for all
permutations with the same prefix and to reject unimportant prefixes. The card in posi-
tion j need not take the value j when it is turned. When n = 13 this method needs to
consider only respectively (1,11,940,6960, 44745, 245083, 1118216, 4112676, 11798207,
26541611, 44380227,37417359) branches at levels (1,2,...,12) and to make a total of
only 482,663,902 forward moves. Although it repeats some lines of play, the early cutoffs
of unprofitable branches make it run more than 11 times faster than the backward
method when n = 13.

The unique way to attain length 80 is to start with 294511121018 1336 7.

108. This result holds for any game in which
al...an — AkQp(k,2) - - - Ap(k,k—1)A10k4+1 - - - An

when a1 = k, where p(k,2)...p(k,k — 1) is an arbitrary permutation of {2,...,k —1}.
Suppose a1 takes on exactly m distinct values d(1) < --- < d(m) during a play of
the game; we will prove that at most F,,+1 permutations occur, including the initial
shuffle. This assertion is obvious when m = 1.

Let d(j) be the initial value of ag(m), where j < m, and suppose a4(m) changes on
step r. If d(j) = 1, the number of permutations is r + 1 < F;;, + 1 < Fppy1. Otherwise
r < Fm—_1, and at most F),, further permutations follow step 7. [SIAM Review 19
(1977), 239-241.]

The values of f(n) for 1 <n <16 are (0, 1, 2, 4, 7, 10, 16, 22, 30, 38, 51, 65, 80,
101, 113, 139), and they are attainable in respectively (1, 1, 2, 2,1, 5,2, 1,1, 1, 1, 1,

56

7.2.1.2 ANSWERS TO EXERCISES 57

1, 4, 6, 1) ways. The unique longest-winded permutation for n = 16 is
9126721481111354 1516 10 3.

109. The forward method of answer 107 suggests that f(n) probably grows at least
as fast as nlogn (by comparison with coupon collecting).

110. For 0 < j < 9 construct the bit vectors A; = [a; € S1]...[a; € Sm] and B; =
[€8S1]-..[4 € Sm]- Then the number of j such that A; = v must equal the number
of k such that By = v, for all bit vectors v. And if so, the values {a; | A; = v} should
be assigned to permutations of {k | By = v} in all possible ways.

For example, the bit vectors in the given problem are

(AO7' . '7A9) = (976787b7 5747 07 a727 0)7 (B07"'7B9) = (570787 6727 a747b7 970)7

in hexadecimal notation; hence ao . ..a9 = 8327061549 or 8327069541.

In a larger problem we would keep the bit vectors in a hash table. It would be
better to give the answer in terms of equivalence classes, not permutations; indeed, this
problem has comparatively little to do with permutations.

111. In the directed graph with n!/2 vertices a1 ...an—2 and n! arcs a1...an—2 —
a2 ...an—1 (one for each permutation a; ...an), each vertex has in-degree 2 and out-
degree 2. Furthermore, from paths like a1...an—2 — a2...an—1 — a3z...an —
Q4...0p02 — A5...0p,0201 — *++ — Q20103 ...0p,_2, WE Can see that any vertex is
reachable from any other. Therefore an Eulerian trail exists by Theorem 2.3.4.2D, and
such a trail clearly is equivalent to a universal cycle of permutations. The lexicograph-
ically smallest example when n = 4 is (123124132134214324314234).

112. By exercise 2.3.4.2-22 it suffices to count the oriented trees rooted at 12. .. (n—2),
in the digraph of the preceding answer; and those trees can be counted by exercise
2.3.4.2-19. For n < 6 the numbers U, turn out to be tantalizingly simple: Uy = 1,
Us =3,Us =273, Us = 2% .3%.5%, Uy = 2'9°.3%9 . 533, (Here we consider (121323)
to be the same cycle as (213231), but different from (131232).)

Mark Cooke has discovered the following instructive way to compute these values
efficiently: Notice first that a universal cycle of permutations is also equivalent to a
Hamiltonian cycle on the Cayley graph with generators ¢ = (1 2 ... n) and p =

(12 ... n—1). For example, the cycle in the previous answer for n = 4 corresponds to
the cycle a®p*apa?p’a®pa’p’apap.
Now consider the n! x n! matrix M = 2] — R — S, where R+ = [=7p] and

Sant = [7' =mo]. There is a matrix H such that H~RH and H~ SH each have block
diagonal form consisting of k copies of kx X kx matrices Ry and S), for each partition A
of n, where k is n! divided by the product of the hook lengths of shape A (Theorem
5.1.4H), and where Ry and S, are matrix representations of p and o based on Young
tableaux. [A proof can be found in Bruce Sagan, The Symmetric Group (Pacific Grove,
Calif.: Wadsworth & Brooks/Cole, 1991).] For example, when n = 3 we have

000100 010000 11 1 -11 0
000001 001000 11 -10 0 -1
000010 100000 11 0 1 -1 1
R= 100000’5_ OOOOIO’H_ 1-1-11 0 1|’
001000 000001 1-11 0 1 -1
010000 000100 1-10 -1-10

57

58 ANSWERS TO EXERCISES 7.2.1.2

1 0 0000 100 0 0 O
0-10000 010 0 0O
_ 0 00100 - 000-10 0
H RH= 001000}’ H SH= 001-10 0
0 00001 000 0 0 -1
000010 000 0 1 -1

when rows and columns are indexed by the respective permutations 1, o, o2, p, po,
poz; here k3 = k111 = 1 and k21 = 2. Therefore the eigenvalues of M are the union,
over A, of ky-fold repeated eigenvalues of the kx x kx matrices 2I — Ry — Sx. In the
example, the eigenvalues of (0), (2), and (°,) twice are {0}, {2}, and {2, 3} twice.

The eigenvalues of M are directly related to those of the matrix A in exercise
2.3.4.2-19. Indeed, each eigenvector of A yields an eigenvector of M, if we equate the
components for permutations m and wpo~, because rows m and wpo~ of R+ S are
equal. For example,

2 -1 -1 1 1 1
A=| -1 2 —1| haseigenvectors | 1 |,| —-1], 0 for eigenvalues 0, 3, 3,
-1 -1 2 1 0 —1

yielding the eigenvectors (1,1,1,1,1,1)%, (1,-1,0,0,-1,1)%, (1,0,-1,-1,0,1)T of M
for the same eigenvalues. And M has n!/2 additional eigenvectors, with all components
zero except those indexed by m and wo ~p for some 7, because only rows mp~ and mo™
of R+ S have nonzero entries in columns 7 and wo ~p; such vectors yield n!/2 additional
eigenvalues, all equal to 2.

Therefore U,, which is 2/n! times the product of the nonzero eigenvalues of A,
is 217™/2/n! times the product of the nonzero eigenvalues of M.

Unfortunately the small-prime-factor phenomenon does not continue; U7 equals
Q12173123 5119751 12843357320792110935 and Uy is divisible by 59229013196333168.

At least one of these cycles must almost surely be easy to describe and to
compute, as we did for de Bruijn cycles in Section 7.2.1.1. But no simple construction
has yet been found.

58

INDEX AND GLOSSARY

When an index entry refers to a page containing a relevant exercise, see also the answer to
that exercise for further information. An answer page is not indexed here unless it refers to a
topic not included in the statement of the exercise.

0-origin indexing, 8.

4-cube, 9-10.

Ku: see Kilomems.

Mypy: see Megamems.

m (circle ratio), 27, 30, 36.
o—7 path, 20-21, 33.

¢(k) permutation, 12-13, 31.

Additive alphametics, 6-7, 14-15, 30.
Adjacent interchanges, 2-7, 31, 35, 54, 55.
Akl, Selim George (J& zs> pali), 54.
Alphametics, 6.

additive, 6-7, 14-15, 30.

doubly true, 29.

multiplicative, 29.

pure, 7, 28-29.
Alternating group, 5, 36.
Analysis of algorithms, 26-31, 34-35.
Applying a permutation, 8-10.
Arisawa, Makoto (45 £ i), 43.
Artificial intelligence, 28.
Ascents, 55.
Assignment problem, 26.
Automorphisms, 9-10, 28, 29.
Avann, Sherwin Parker, 53.

Balanced permutation, 36.
Barwell, Brian Robert, 29.
Beidler, John Anthony, 6.
Bell ringing, 1, 4-5, 21.

Bernoulli, Jacques (= Jakob = James), 39.

Breisch, Richard Lewis, 42.

Brightwell, Graham Richard, 53.

Bruijn, Nicolaas Govert de, cycle, 37, 58.

Bubble sort, 3.

Buckley, Michael R. W., 28.

Bypassing blocks of permutations,
13-16, 30, 54.

Cambridge Forty-Eight, 4, 5.

Canfield, Earl Rodney, 53.

Casting out nines, 43.

Cayley, Arthur, 20.

graphs, 20, 31-34, 48, 57.

Cesare, Giulio (pen name of Dani Ferrari,
Luigi Rafaiani, Luigi Morelli, and
Dario Uri), 42.

Chain, 35.

Change ringing, 1, 4-5, 21.

Childs, Roy Sydney, 42.

Colex order, 54; see also Reverse
colex order.

Complete relation, 36.

59

Compton, Robert Christopher, 21, 32.
Comtet, Louis, 54.

Conjugate permutation, 12.

Conway, John Horton, 36.

Cooke, Raymond Mark, 57.
Coroutine, 33.

Coupon collecting, 57.

Cryptarithms, 6.

Cycle structure of a permutation, 8, 12.
Cycle, undirected, 28.

Cyclic permutation, 35.

Cyclic shift, 18, 20, 23, 30.

de Bruijn, Nicolaas Govert, cycle, 37, 58.
Delta sequence, 31.

Derangements, 35.

Dijkstra, Edsger Wijbe, 4.

Directed torus, 34.

Doubly Gray code, 32.

Doubly true alphametic, 29.

Dual permutation generation, 17-19, 30.
Duckworth, Richard, iii, 4.

Dudeney, Henry Ernest, 6, 29, 43.

Ehrlich, Gideon (79I W), 19, 32, 40, 41.
swap method, 19-20, 31-32.

Eigenvalues and eigenvectors, 58.

Enggren, Willy, 28, 29.

Eppstein, David Arthur, 41.

Er, Meng Chiau (£ B Hf), 16.

Erdés, P4l (= Paul), 49.

Euler, Leonhard (Eiiseps, Jleorapab
= Diisep, Jleorapn), summation
formula, 43.

Eulerian trails in a directed graph, 57.

Even permutation, 5, 36.

Exclusive or, 51.

Exponential series, partial sums of, 39.

Extending a partial order, 24.

Factorial number system, 38.

Factorial ruler function, 30.

Ferrari, Dani, 59.

Fibonacci, Leonardo, of Pisa, numbers,
36, 53.

First-element swaps, 1920, 32.

Fischer, Ludwig Joseph, 39.

Five-letter words, 28.

Flip operation, 12-13, 31, 33, 36, 45.

Fraenkel, Aviezri S (9p219 »1yaN), 56.

59

60 INDEX AND GLOSSARY

Gallian, Joseph Anthony, 50.

Galois, Evariste, 9.

Gardner, Martin, 19, 27.

General permutation generator, 10-13,
22-23, 29-30.

Generating functions, techniques for
using, 27, 39-40, 54.

Goldstein, Alan Jay, 23.

Gonzalez-Morris, German Antonio, 42.

Grandsire Doubles, 5.

Gray, Frank, binary code, 3.

Gray code for matchings, 53-54.

Gray code for mixed radices, 3, 40,
45, 49, 54.

Gray code for permutations, 31-32, 53-55.

Gray code for weak orders, 55-56.

Group of permutations, 9-10, 20, 45.

h-ordered permutation, 35.
Hamilton, William Rowan, cycle, 3,
20-21, 31-34, 48, 57.

path, 3, 2021, 32-33, 47-48.
Hawaii, 28.
Heap, Brian Richard, 13, 15, 21, 30, 34, 41.
Hexadecimal digits, 9, 57.
Hindenburg, Carl Friedrich, 2.
Hook lengths, 57.
Hunter, James Alston Hope, 6.

Identity permutation, 9.

Image of an element, 8.

Inclusion and exclusion, 54.
Indecomposable permutation, 35.
Internet, ii, iii.

Inverse permutation, 24-25, 28, 52.
Inversion tables, 3, 38, 53.
Inversions of a permutation, 3, 5.
Involutions, 35-36, 48, 53.

Ives, Frederick Malcolm, 30.

Jackson, Bradley Warren, 37.
Jiang, Ming (2%), 21.
Johnson, Allan William, Jr., 42.
Johnson, Selmer Martin, 28.

Kahan, Steven Jay, 42.

Kemp, Rainer, 38.

Kent Treble Bob Major, 1.

Kilomem: One thousand memory accesses.

Kliigel, Georg Simon, 13.

Knight’s tour, northeasterly, 34.

Knuth, Donald Ervin (& f&4Y), i, iv.

Kompel’'makher, Vladimir Leont’evich
(Komnensmaxep, Bragumup
JleonTneBmu), 32.

Krause, Karl Christian Friedrich, 39.

Langdon, Glen George, Jr., 19, 23, 34.
Lehmer, Derrick Henry, 1.
Lexicographic order, 1, 8.

Lexicographic permutation generation,

12, 15, 26-27.
for involutions, 54.

Lexicographic successor, 2.

Linear embedding, 24.

Linked lists, 15-16, 54.

Lipski, Witold, Jr., 44.

Liskovets, Valery Anisimovich (JImckose,
Basiepuit Arncumosuu), 32.

Loopless generation, 28, 41, 54.

MacDonald, Peter S., 28.
Matchings, 25, 35.

Matrix tree theorem, 57.
Maximal element, 52.

McCravy, Edwin Parker, Jr., 28.
McKay, Brendan Damien, 49.
Megamem: One million memory accesses.
Minimal element, 52.
Mixed-radix number, 17, 27, 38.
MMIX computer , ii, iv, 21-23, 34.
Modular Gray code for mixed radices, 49.
Monte Carlo estimates, 47.

Mor, Moshe (M0 Nwn), 55.
Morelli, Luigi, 59.

Morris, Ernest, 4.

Morris, Scot Anderson, 42.
Multinomial coefficient, 27.
Multiplication of permutations, 8.
Multiplicative alphametics, 29.
Multisets, 1, 3, 24, 27, 33.
Mundy, Peter, 4.

MXOR (multiple exclusive-or), 34.
Myrvold, Wendy Joanne, 52.

n-cube, 9-10, 28.

Narayana Pandita (TXrger qfved), 2, 38.
Nijenhuis, Albert, 20.

Nijon, Herman, 28.

Northeasterly knight’s tour, 34.
NP-complete problem, 41.

Nybble: A 4-bit quantity, 22—23.

Octahedral group, 41.
Odd permutation, 5, 47-48.
Ord-Smith, Richard Albert James

(= Jimmy), 12, 13, 18, 29, 30, 39.
Order of a group element, 20, 45.
Organ pipe order, 48, 55.

Pak, Igor Markovich (ITax, Urops
Mapkosnr4), 48.

Pan-digital puzzles, 29.

Parallel computation, 34, 41.

Partial ordering, 24, 34, 35.

Partitions of a number, 29, 57.

Peczarski, Marcin Piotr, 53.

Pepperdine, Andrew Howard, 56.

60

Permutation generation, 1-37.
cyclic shift method, 18, 20, 23, 30.
dual, 17-19, 30.

Ehrlich swap method, 19-20, 31-32.
fastest, 21-24.
general, 10-13, 2223, 29-30.
lexicographic, 12, 15, 26-27.
lexicographic with restricted prefixes,
16, 30, 53.
plain changes, 4-7, 17, 23, 25,
27-28, 33, 55.
when to use, 26.

Permutations, 1-37.
applying, 8-10.
conjugate, 12.
cycles of, 8, 12.
cyclic, 35.
derangements, 35.
even, 5, 36.
groups of, 9-10, 20, 45.

Gray codes for, 31-32, 53-55.
h-ordered, 35.
indecomposable, 35.
inverse, 2425, 28, 52.
inversions of, 3, 5.
involutions, 35-36, 53.
multiplication of, 8.
notations for, 8.

odd, 5, 47-48.

of a multiset, 1-2, 24.
r-element, 27, 30.
rank of, 27, 34, 52.
sign of, 5, 33.

signed, 28.

universal cycle of, 37.
up-down, 35.
well-balanced, 36.

Pfaff, Johann Friedrich, 54.

Phillips, John Patrick Norman, 38.

Pi (), 27, 30, 36.

Plain changes, 4-7, 17, 23, 25, 27-28, 33, 55.

Pleszczynski, Stefan, 52.
Postmultiplication, 9.

Preferential arrangements, 55.
Premultiplication, 9, 11-12, 14, 54.
Preorder in a tree, 11, 14.

Promel, Hans Jirgen, 53.

Pruesse, Gara, 53.

Pure alphametics, 7, 28—-29.

Queue, 52.

Radoic¢ié, Rados, 48.

Rafaiani, Luigi, 59.

Ranking a permutation, 27, 34, 52.

Rankin, Robert Alexander, 20, 33, 49.

Rapoport, Elvira Strasser, 48.

Reflected Gray code for mixed radices,
3, 40, 45, 54.

Reversal of a string, 31, 36.

INDEX AND GLOSSARY 61

Reverse colex order, 8, 12, 15, 17, 26, 38.
Reversing, 2, 38, 40, see also Flip operation.
Roman numerals, 42.

Rosary permutations, 28, 48.

Rotem, Doron (DN NNT), 22, 25.

Rothe, Heinrich August, 38.

Roy, Mohit Kumar (¢If&® IR Im), 41.
Ridiger, Christian Friedrich, 2.

Ruskey, Frank, 21, 34, 48, 49, 52, 53.

Sagan, Bruce Eli, 57.
Savage, Carla Diane, 48, 55.
Sayers, Dorothy Leigh, 1.
Sedgewick, Robert, 21.
Seitz, Richard, 19.
Sign of a permutation, 5, 33.
Signature of an alphametic, 6.
Signed permutation, 28.
Silver, Alfred Lindsey Leigh, 46.
Sims, Charles Coffin, 9.

tables, 9-15, 17-18, 29-30.
Skipping blocks of permutations,

13-16, 30, 54.

Star graph, 32.
Star transpositions, 19-20, 32.
Stedman, Fabian, 4.

Doubles, 5.
Steger, Angelika, 53.
Swapping with the first element, 19-20, 32.
Symmetries, 9-10, 28, 29.

Tableaux, 24-25, 57.

Tchuente, Maurice, 47.
Tic-tac-toe board, 29.

Tompkins, Charles Brown, 19.
Topological sorting, 24-26, 34-35.
Topswops, 36.

Torus, 9.
directed, 34.
twisted, 32.

Total ordering, 24.

Transitive relation, 34, 36.

Transposing adjacent elements, 2-7,
31, 35, 54, 55.

Traveling salesrep problem, 26.

Trotter, Hale Freeman, 5.

Trotter, William Thomas, 49.

Twisted torus, 32.

Two-line form of permutation, 8.

Undirected cycle, 28.

Undoing, 16, 54.

Universal cycle of permutations, 37.
Unranking a permutation, 27, 34, 52.
Up-down permutation, 35.

Uri, Dario, 59.

Variations, 27, 30, 43, 52.

Varol, Yaakov Leon (Y0 N> 2py»), 22, 25.
Vatriquant, Simon, 6.

Vinnicombe, Robert Ian James, 28.

61

62 INDEX AND GLOSSARY

Walsh, Timothy Robert Stephen, 54, 55.
Wayne, Alan, 29.

Weak orders, 36.

Well-balanced permutation, 36.

Wells, Mark Brimhall, 44.

Weston, Andrew, 21.

White, Arthur Thomas, II, 5.

Wilf, Herbert Saul, 20, 56.

Williamson, Stanley Gill, 21, 32, 53.

Wilson, Wilfrid George, 5.
XOR (bitwise exclusive-or), 51.

Yoshigahara, Nobuyuki (= Nob)

(& » i), 29, 42.
Young, Alfred, tableaux, 24-25, 57.

62

