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PREFACE

Quhen a word fales to be divyded at the end of a lyne,
the partition must be made at the end of a syllab.

— ALEXANDER HUME, Orthographie ... of the Britan Tongue (c.1620)

THIS BOOKLET contains draft material that I'm circulating to experts in the
field, in hopes that they can help remove its most egregious errors before too
many other people see it. I am also, however, posting it on the Internet for
courageous and/or random readers who don’t mind the risk of reading a few
pages that have not yet reached a very mature state. Beware: This material has
not yet been proofread as thoroughly as the manuscripts of Volumes 1, 2, and 3
were at the time of their first printings. And those carefully-checked volumes,
alas, were subsequently found to contain thousands of mistakes.

Given this caveat, I hope that my errors this time will not be so numerous
and/or obtrusive that you will be discouraged from reading the material carefully.
I did try to make it both interesting and authoritative, as far as it goes. But the
field is so vast, I cannot hope to have surrounded it enough to corral it completely.
Therefore I beg you to let me know about any deficiencies you discover.

To put the material in context, this pre-fascicle contains Sections 7.2.1.4
and 7.2.1.5 of a long, long chapter on combinatorial algorithms. Chapter 7 will
eventually fill three volumes (namely Volumes 4A, 4B, and 4C), assuming that
I'm able to remain healthy. It will begin with a short review of graph theory, with
emphasis on some highlights of significant graphs in The Stanford GraphBase,
from which I will be drawing many examples. Then comes Section 7.1, which
deals with the topic of bitwise manipulations. (I drafted about 60 pages about
that subject in 1977, but those pages need extensive revision; meanwhile I've
decided to work for awhile on the material that follows it, so that I can get a
better feel for how much to cut.) Section 7.2 is about generating all possibilities,
and it begins with Section 7.2.1: Generating Basic Combinatorial Patterns—
which, in turn, begins with Section 7.2.1.1, “Generating all n-tuples,” Section
7.2.1.2, “Generating all permutations,” and Section 7.2.1.3, “Generating all com-
binations.” (Readers of the present booklet should have already looked at those
sections, drafts of which are available as Pre-Fascicles 2A, 2B, and 3A.) The stage
is now set for the main contents of this booklet, Section 7.2.1.4: “Generating all
partitions,” and Section 7.2.1.5: “Generating all set partitions.” Then will come
Section 7.2.1.6 (about trees), etc. Section 7.2.2 will deal with backtracking in
general. And so it will go on, if all goes well; an outline of the entire Chapter 7
as currently envisaged appears on the taocp webpage that is cited on page ii.
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iv PREFACE

Even the apparently lowly topic of partition generation turns out to be
surprisingly rich, with ties to Sections 1.2.5, 1.2.6, 1.2.9, 1.2.10, 1.2.11.2, 1.3.3,
2.3.3,2.34.2,2344,234.5,3.3.2, 333, 34.1,4.54,4.6.2,4.7,5,5.1.1, 5.1.2,
5.1.3, 5.1.4, 5.2.2, 5.2.3, and 5.2.5 of the first three volumes. I strongly believe
in building up a firm foundation, so I have discussed this topic much more
thoroughly than I will be able to do with material that is newer or less basic.
Indeed, the theory of partitions is one of the nicest chapters in all of mathematics.
To my surprise, I came up with 154 exercises, even though — believe it or not —
I had to eliminate quite a bit of the interesting material that appears in my files.

Some of the things presented are new, to the best of my knowledge, although
I will not be at all surprised to learn that my own little “discoveries” have
been discovered before. Please look, for example, at the exercises that T've
classed as research problems (rated with difficulty level 46 or higher), namely
exercises 7.2.1.4 51, 62, 63, 71, and 7.2.1.5 18, 66, 74, 77; I've also implicitly
posed additional unsolved questions in the answers to exercises 7.2.1.4 48 and
69. Are those problems still open? Please let me know if you know of a solution
to any of these intriguing questions. And of course if no solution is known today
but you do make progress on any of them in the future, T hope you’ll let me
know.

I urgently need your help also with respect to some exercises that I made
up as I was preparing this material. I certainly don’t like to get credit for things
that have already been published by others, and most of these results are quite
natural “fruits” that were just waiting to be “plucked.” Therefore please tell
me if you know who I should have credited, with respect to the ideas found in
exercises 7.2.1.4 20, 27, 48, 49, 50, 56; 7.2.1.5 2, 6, 8, 9, 25, 26, 35, 38(e), 47,
50, 52, 56, and/or 76.

I shall happily pay a finder’s fee of $2.56 for each error in this draft when it is
first reported to me, whether that error be typographical, technical, or historical.
The same reward holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32¢ each. (Furthermore, if
you find a better solution to an exercise, I'll actually reward you with immortal
glory instead of mere money, by publishing your name in the eventual book:—)

Cross references to yet-unwritten material sometimes appear as ‘00’; this
impossible value is a placeholder for the actual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.
14 February 2004



0 COMBINATORIAL ALGORITHMS (F3B)

7.2.1.4. Generating all partitions. Richard Stanley’s magnificent book Enu-
merative Combinatorics (1986) begins by discussing The Twelvefold Way, a
2 x 2 x 3 array of basic combinatorial problems that arise frequently in practice
(see Table 1). All twelve of Stanley’s basic problems can be described in terms
of the ways that a given number of balls can be placed into a given number of
urns. For example, there are nine ways to put 2 balls into 3 urns if the balls and
urns are labeled:

00, 9,2 29

C A B C

O @ O @0
A B C ¢ A B C A B C A B C A B C A B C

(The order of balls within an urn is ignored.) But if the balls are unlabeled,
some of these arrangements are indistinguishable, so only six different ways are
possible:

o L9 Loo LLB.

QC}; Q Al Bl C A

c B

If the urns are unlabeled, arrangements like @@ ' and @ @ are essentially
the same, hence only two of the original nine arrangements are distinguishable.
And if we have three labeled balls, the only distinct ways to place them into
three unlabeled urns are

3 el Bl bE bed.

Finally, if neither balls nor urns are labeled, these five possibilities reduce to only
three:

§ 80 000 (3)

The Twelvefold Way considers all arrangements that are possible when balls and
urns are labeled or unlabeled, and when the urns may optionally be required to
contain at least one ball or at most one ball.

Table 1
THE TWELVEFOLD WAY
balls per urn unrestricted <1 >1
n labeled balls, n-tuples n-permutations | partitions of {1,...,n}
m labeled urns of m things of m things into m ordered parts
n unlabeled balls, | n-multicombinations | n-combinations compositions of n
m labeled urns of m things of m things into m parts

n labeled balls, | partitions of {1,...,n} n pigeons partitions of {1,...,n}
m unlabeled urns into < m parts into m holes into m parts

n unlabeled balls, partitions of n n pigeons partitions of n
m unlabeled urns into < m parts into m holes into m parts
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We’ve learned about n-tuples, permutations, combinations, and composi-
tions in previous sections of this chapter; and two of the twelve entries in Table 1
are trivial (namely the ones related to “pigeons”). So we can complete our
study of classical combinatorial mathematics by learning about the remaining
five entries in the table, which all involve partitions.

Let us begin by acknowledging that the word “partition”

has numerous meanings in mathematics.

Any time a division of some object into subobjects is undertaken,
the word partition is likely to pop up.

— GEORGE ANDREWS, The Theory of Partitions (1976)

Two quite different concepts share the same name: The partitions of a set
are the ways to subdivide it into disjoint subsets; thus (2) illustrates the five
partitions of {1,2, 3}, namely

{1,2,3}, {1243}, {1,342}, {123}, {1H{2H{3}. (v)

And the partitions of an integer are the ways to write it as a sum of positive
integers, disregarding order; thus (3) illustrates the three partitions of 3, namely

3, 241, 1+141. (5)

We shall follow the common practice of referring to integer partitions as simply
“partitions,” without any qualifying adjective; the other kind will be called
“set partitions” in what follows, to make the distinction clear. Both kinds of
partitions are important, so we’ll study each of them in turn.

Generating all partitions of an integer. A partition of n can be defined

formally as a sequence of nonnegative integers a; > ag > --- such that n =
ay + ag + - -; for example, one partition of 7 has a; = a3 = 3, ag = 1, and
as = ag = --- = 0. The number of nonzero terms is called the number of parts,

and the zero terms are usually suppressed. Thus we write 7 = 3 +3 + 1, or
simply 331 to save space when the context is clear.

The simplest way to generate all partitions, and one of the fastest, is to visit
them in reverse lexicographic order, starting with ‘n’ and ending with ‘11...1".
For example, the partitions of 8 are

8, 71,62, 611, 53, 521, 5111, 44, 431, 422, 4211, 41111, 332, 3311,
3221, 32111, 311111, 2222, 22211, 221111, 2111111, 11111111, (6)

when listed in this order.

If a partition isn’t all 1s, it ends with (z+1) followed by zero or more 1s,
for some x > 1; therefore the next smallest partition in lexicographic order
is obtained by replacing the suffix (z+1)1...1 by ...z for some appropriate
remainder r < x. The process is quite efficient if we keep track of the largest sub-
script ¢ such that a, # 1, as suggested by J. K. S. McKay [CACM 13 (1970), 52]:
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Algorithm P (Partitions in reverse lezicographic order). This algorithm gen-
erates all partitions a; > ay > -+ > a,, > 1 with a; + a2+ --- 4+ a,, = n and
1 < m < n, assuming that n > 1.

P1. [Initialize.] Set ag < 0 and m « 1.

P2. [Store the final part.] Set a,, + n and ¢ + m — [n=1].

P3. [Visit.] Visit the partition ajas...an,. Then go to P5 if a, # 2.

P4. [Change 2 to 1+1.] Set ag 1, g < ¢—1, m < m+1, ap, < 1, and return
to P3.

P5. [Decrease a,.] Terminate the algorithm if ¢ = 0. Otherwise set x < ay — 1,
gz, n+m—q+1,and m < g+ 1.

P6. [Copy z if necessary.] If n < x, return to step P2. Otherwise set a,, + =,
m < m+ 1, n < n — x, and repeat this step. |

Notice that the operation of going from one partition to the next is particularly
easy if a 2 is present; then step P4 simply changes the rightmost 2 to a 1 and ap-
pends another 1 at the right. This happy situation is, fortunately, the most com-
mon case. For example, nearly 79% of all partitions contain a 2 when n = 100.
Another simple algorithm is available when we want to generate all partitions
of n into a fixed number of parts. The following method, which was featured
in C. F. Hindenburg’s 18th-century dissertation [Infinitinomii Dignitatum Ex-
ponentis Indeterminati (Gottingen, 1779), 73-91], visits the partitions in colezx
order, namely in lexicographic order of the reflected sequence a,, ...aza;:

Algorithm H (Partitions into m parts). This algorithm generates all integer
m-tuples ay . ..a,, such that ay > --- > a,, > 1and ay +- - - + a,, = n, assuming
that n > m > 2.

H1. [Initialize.] Set a; <~ n—m+1and a; < 1 for 1 < j < m. Also set
Q41 < —1.

H2. [Visit.] Visit the partition aj ...a,,. Then go to H4 if ag > a; — 1.

H3. [Tweak a1 and as.] Set a1 < a1 — 1, as < az + 1, and return to H2.

H4. [Find j.] Set j < 3 and s < a; +a2—1. Then, ifa; > a1 —1, set s < s+a;,
j < j+1, and repeat until a; < @ — 1. (Now s =a;s +---+a;_1 — 1.)

HS5. [Increase a;.] Terminate if j > m. Otherwise set < a; + 1, a; + =,
j—j—1L

H6. [Tweak a;...a;.] While j > 1, set aj <z, s < s—z, and j « j — L
Finally set a; < s and return to H2. |

For example, when n = 11 and m = 4 the successive partitions visited are

8111, 7211, 6311, 5411, 6221, 5321, 4421, 4331, 5222, 4322, 3332.  (7)

The basic idea is that colex order goes from one partition ay . .. a,, to the next by
finding the smallest j such that a; can be increased without changing a;41 ... ap.

The new partition a} ...a;, will have a} > --->a} =a;+1and a} +---+a; =
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a; + -+ + a;, and these conditions are achievable if and only if a; < a; — 1.
Furthermore, the smallest such partition aj ...al, in colex order has af, = --- =
ajy=a;+1.

Step H3 handles the simple case j = 2, which is by far the most common.
And indeed, the value of j almost always turns out to be quite small; we will
prove later that the total running time of Algorithm H is at most a small constant
times the number of partitions visited, plus O(m).

Other representations of partitions. We've defined a partition as a sequence
of nonnegative integers ajas... with a; > as > --- and a; + as + --- = n, but
we can also regard it as an n-tuple of nonnegative integers cics . .. c, such that

c1+2co+---+nc, = n. (8)

Here c¢; is the number of times the integer j appears in the sequence ajas...;
for example, the partition 331 corresponds to the counts ¢; = 1, ¢ =0, c3 = 2,
¢4 = c5 = cg = ¢y = 0. The number of parts is then ¢y +co+- - -+¢,. A procedure
analogous to Algorithm P can readily be devised to generate partitions in part-
count form; see exercise 5.

We have already seen the part-count representation implicitly in formulas
like Eq. 1.2.9 (38), which expresses the symmetric function

hy, = E Ty Ty -« - T, (9)
N2dp2>--2d22>d1 21

as

(&3] C2 C

E Sl SZ . Snn (10)
1c1ey! 2¢2¢4! neney!’

€1,C2,.-5Cn >

c14+2co+ - 4nc,=n
where S; is the symmetric function T{ + ’I‘% + -+ va The sum in (9) is
essentially taken over all n-multicombinations of N, while the sum in (10) is
taken over all partitions of n. Thus, for example, hy = + S} + %5152 + %53, and

~— 6
when N = 2 we have
2+ 2Py +ay’ +y° = fz+ ) + s+ )@ +07) + 527+ 97).

Other sums over partitions appear in exercises 1.2.5-21, 1.2.9-10, 1.2.9-11,
1.2.10-12, etc.; for this reason partitions are of central importance in the study of
symmetric functions, a class of functions that pervades mathematics in general.
[Chapter 7 of Richard Stanley’s Enumerative Combinatorics 2 (1999) is an
excellent introduction to advanced aspects of symmetric function theory.]
Partitions can be visualized in an appealing way by considering an array
of n dots, having a; dots in the top row and a9 in the next row, etc. Such an
arrangement, of dots is called the Ferrers diagram of the partition, in honor of
N. M. Ferrers [see Philosophical Mag. 5 (1853), 199 202]; and the largest square
subarray of dots that it contains is called the Durfee square, after W. P. Durfee
[see Johns Hopkins Univ. Circular 2 (December 1882), 23]. For example, the
Ferrers diagram of 8887211 is shown with its 4 x 4 Durfee square in Fig. 28(a).
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© 0 06 0.0 06 0 o © 0 06 0.0 0 O
© 0 0 0.0 06 0 ©o e 0 o o.06
© 06 06 6.0 © 0 © o 0 o o Fig. 28. The Ferrers
e.0.0. .00 00 °.0.0.° diagrams and Durfee
o o © o 0o o .
o 0 0 o o squares of two conju-
° o0 00 gate partitions.
o o o
(a) 8887211 (b) 75444443

The Durfee square contains k? dots when k is the largest subscript such that
ar > k; we may call k the trace of the partition.

If « is any partition ajas..., its conjugate a” = biby... is obtained by
transposing the rows and columns of the corresponding Ferrers diagram. For
example, Fig. 28(b) shows that (8887211)7 = 75444443. When 8 = ol we
obviously have o« = BT; the partition 8 has a; parts and « has by parts. Indeed,
there’s a simple relation between the part-count representation c; ... c, of a and
the conjugate partition bybs ..., namely

bj —bjt1 = ¢j for all j > 1. (11)

This relation makes it easy to compute the conjugate of a given partition, or to
write it down by inspection (see exercise 6).

The notion of conjugation often explains properties of partitions that would
otherwise be quite mysterious. For example, now that we know the definition of
a” . we can easily see that the value of j — 1 in step H5 of Algorithm H is just
the second-smallest part of the conjugate partition (ag ...a;,)T. Therefore the
average amount of work that needs to be done in steps H4 and HG6 is essentially
proportional to the average size of the second-smallest part of a random partition
whose largest part is m. And we will see below that the second-smallest part is
almost always quite small.

Moreover, Algorithm H produces partitions in lexicographic order of their
conjugates. For example, the respective conjugates of (7) are

41111111, 4211111, 422111, 42221, 431111,
43211, 4322, 4331, 44111, 4421, 443; (12)

these are the partitions of n = 11 with largest part 4. One way to generate all
partitions of n is to start with the trivial partition ‘n’, then run Algorithm H for
m = 2,3, ..., n in turn; this process yields all o in lexicographic order of a7
(see exercise 7). Thus Algorithm H can be regarded as a dual of Algorithm P.

There is at least one more useful way to represent partitions, called the
rim representation. Suppose we replace the dots of a Ferrers diagram by boxes,
thereby obtaining a tableau shape as we did in Section 5.1.4; for example, the
partition 8887211 of Fig. 28(a) becomes

(13)
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The right-hand boundary of this shape can be regarded as a path from the lower
left corner to the upper right corner of an n x n square, and we know from Table
7.2.1.3-1 that such a path corresponds to an (n,n)-combination.

For example, (13) corresponds to the 70-bit string

0...01001011111010001...1 = 0%1'0%1'0'1°0'1'0%1%", (14)

where we place enough Os at the beginning and 1s at the end to make exactly n of
each. The 0s represent upward steps of the path, and the 1s represent rightward
steps. It is easy to see that the bit string defined in this way has exactly n
inversions; conversely, every permutation of the multiset {n -0, n - 1} that has
exactly n inversions corresponds to a partition of n. When the partition has ¢
different parts, its bit string can be written in the form

O N TR TP ()91 P2 ()92 | 1Pt (9 1"*111*1)2*“'*11:7 (15)

where the exponents p; and g; are positive integers. Then the partition’s stan-
dard representation is

a1y ... = (p1 + - +pt)lh (p1 + - +pt71)qt71 ce. (pl)ql, (16)
namely (1+1+5+1)(14+1+5)!(1+1)'(1)? = 8887211 in our example.

The number of partitions. Inspired by a question that was posed to him by
Philipp Naudé in 1740, Leonhard Euler wrote two fundamental papers in which
he counted partitions of various kinds by studying their generating functions
[Commentarii Academiz Scientiarum Petropolitanze 13 (1741), 64 93; Novi
Comment. Acad. Sci. Pet. 3 (1750), 125-169]. He observed that the coefficient
of z™ in the infinite product

(1+Z+22+---+zj+---)(1+22+Z4+---+Z2k+---)(1+23+26+---+Z3l+---)...

is the number of nonnegative integer solutions to the equation j+2k+3l+--- = n;
and 1+ 2™ + 22™ + ..+ is 1/(1 — 2™). Therefore if we write

Pe) =[] o = Sopm=", (27

m=1

the number of partitions of n is p(n). This function P(z) turns out to have an
amazing number of subtle mathematical properties.

For example, Fuler discovered that massive cancellation occurs when the
denominator of P(z) is multiplied out:

(1—2)(1—22)(1—23) oo=1—2z— 22 —+ 25 + 27 — 212 — 215 + 222 + 226 — ...
= D (e (18)
—oo<n<oc

A combinatorial proof of this remarkable identity, based on Ferrers diagrams,
appears in exercise 5.1.1-14; we can also prove it by setting v = z and v = 22 in
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the even more remarkable identity of Jacobi,

H dF P (1 - bR (1 bty = 3 (C1aBo(F)) (i)
k=1 n=-—oc
because the left-hand side becomes [[r— (1 — 23¥72)(1 — 23k=1)(1 — 23F); see
exercise 5.1.1-20. Euler’s identity (18) implies that the partition numbers satisfy
the recurrence

p(n) =p(n-1)+p(n-2) — p(n-5) — p(n-7) + p(n—12) + p(n—15) — ---, (20)

from which we can compute their values more rapidly than by performing the
power series calculations in (17):

n=0 1 2 3 4 5 6 7 8§ 9 10 11 12 13 14 15
pn)=1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176

We know from Section 1.2.8 that solutions to the Fibonacci recurrence
f(n) = f(n—1) + f(n — 2) grow exponentially, with f(n) = ©(¢™) when f(0)
and f(1) are positive. The additional terms ‘— p(n—5) — p(n—7)" in (20) have a
dampening effect on partition numbers, however; in fact, if we were to stop the
recurrence there, the resulting sequence would oscillate between positive and neg-
ative values. Further terms ‘4 p(n—12) +p(n—15)’ reinstate exponential growth.

The actual growth rate of p(n) turns out to be of order AV"/n for a certain
constant A. For example, exercise 33 proves directly that p(n) grows at least as
fast as ezﬁ/n. And one fairly easy way to obtain a decent upper bound is to
take logarithms in (17),

and then to look at the behavior near z = 1 by setting z = ¢

—t.

—mnt

e 1 1 1 2
IDP(G_t): Z " == Em<2m:$ (22)

m,n>1 n>1 n>1

Consequently, since p(n) < p(n+1) <p(n+2) <--- and e* > 1, we have

P S k) = Pty < O ()
k

for all ¢ > 0. Setting t = 1/{(2)/n gives

p(n) < Ce2°Vn/\/n, where C = /((2) = 7//6. (24)

We can obtain more accurate information about the size of In P(e™*) by
using Euler’s summation formula (Section 1.2.11.2) or Mellin transforms (Sec-
tion 5.2.2); see exercise 25. But the methods we have seen so far aren’t powerful
enough to deduce the precise behavior of P(e™t), so it is time for us to add a
new weapon to our arsenal of techniques.
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Euler’s generating function P(z) is ideally suited to the Poisson summation
formula [J. Ecole Royale Polytechnique 12 (1823), 404-509, §63], according to
which

0o M oo
0 = 1 2mmi6 —2mmiy d
3 sro = m 3 / Ty, ()

whenever f is a “well-behaved” function. This formula is based on the fact

that the left-hand side is a periodic function of 6, and the right-hand side is the
expansion of that function as a Fourier series. The function f is sufficiently nice
if, for example, [ |f(y)‘ dy < oo and either

oo

i) f(n + 6) is an analytic function of the complex variable 6 in the region
|$0| < € for some € > 0 and 0 < RO < 1, and the left-hand side converges
uniformly in that rectangle; or

i) f(0) = Llimeo(f(0 —€) + f(0 +€)) = g(f) — h(6) for all real numbers 6,

where gQand h are monotone increasing and g(+oc), h(£oo) are finite.
[See Peter Henrici, Applied and Computational Complex Analysis 2 (New York:
Wiley, 1977), Theorem 10.6.2.] Poisson’s formula is not a panacea for summation
problems of every kind; but when it does apply the results can be spectacular,
as we will see.

Let us multiply Euler’s formula (18) by z
square”:

1/24 in order to “complete the

21/24 s 3 142
Py = 2 CunatT (26)
z

n=—oo

Then for all t > 0 we have e ¥/?4/P(e™t) = 3¢ f(n), where

fly) = e #0F8) cosmy; (27)

and this function f qualifies for Poisson’s summation formula under both of the
criteria (i) and (ii) stated above. Therefore we can try to integrate e =2 f(y),
and for m = 0 the result is

° T 2
/ fly)dy = ,/ﬁe /6t (28)
To this we must add

Z/ ("M 4 ¢ 2TmiV) £(0) dy = QZ/ f(y)cos2mmydy;  (29)
m=1 Y~ m=1 "%

again the integral turns out to be doable. And the results (see exercise 27) fit
together quite beautifully, giving

e—t/24 2 o7 e T /6t

s > 2 142
= Y (et = S
P(e™") v e e

Surprise! We have proved another remarkable fact about P(z):
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Theorem D. The generating function (17) for partitions satisfies the functional
relation

2 1 t t 2
o P(e™) = # tohg —5t In P(e~*7 /) (31)

when Rt > 0. |

This theorem was discovered by Richard Dedekind [Crelle 83 (1877), 265-292,
§6], who wrote 5(7) for the function z'/24/P(z) when z = ¢*™7; his proof was
based on a much more complicated theory of elliptic functions. Notice that when
t is a small positive number, In P(e*4”2/t) is extremely tiny; for example, when
t = 0.1 we have exp(—4n?/t) ~ 3.5 x 10772, Therefore Theorem D tells us
essentially everything we need to know about the value of P(z) when z is near 1.

G. H. Hardy and S. Ramanujan used this knowledge to deduce the asymp-
totic behavior of p(n) for large n, and their work was extended many years later
by Hans Rademacher, who discovered a series that is not only asymptotic but
convergent [Proc. London Math. Soc. (2) 17 (1918), 75-115; 43 (1937), 241-
254]. The Hardy—Ramanujan-Rademacher formula for p(n) is surely one of the
most astonishing identities ever discovered; it states that

™ 2. Ap(n) 2w
p(n) = 25/433/4(71_1/24)3/4; kk I3/2 <\/;E\/”_1/24)- (32)

Here I3/, denotes the modified spherical Bessel function

AT 1 (z%/4)%  [2z (coshz sinhz)
La2(2) = <§> ZF(k+5/2) k! \/;( z 22 ) (33)

k=0

and the coefficient Ag(n) is defined by the formula

Ag(n) = :zé[hJ_k] exp <2ri<w — %)) (34)

where o (h, k,0) is the Dedekind sum defined in Eq. 3.3.3-(16). We have

(24n + 1)
gt T T

Ai(n) =1, Asz(n) = (—1)", Asz(n) = 2co T ,

(35)
and in general Ag(n) lies between —k and k.

A proof of (32) would take us far afield, but the basic idea is to use the
“saddle point method” discussed in Section 7.2.1.5. The term for k = 1 is derived
from the behavior of P(z) when z is near 1; and the next term is derived from
the behavior when z is near —1, where a transformation similar to (31) can be
applied. In general, the kth term of (32) takes account of the way P(z) behaves
when z approaches 2™/ for irreducible fractions h/k with denominator k;
every kth root of unity is a pole of each of the factors 1/(1 — 2*), 1/(1 — 22F),
1/(1 — 2%F), ... in the infinite product for P(z).
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The leading term of (32) can be simplified greatly, if we merely want a rough

approximation:
e™V 2n/3

p(n) = W(l +0(n"1%). (36)

Or, if we choose to retain a few more details,

ewm 6 !
o0 = s (1 e ) (106 V). wmne g

For example, p(100) has the exact value 190,569,292; formula (36) tells us that
p(100) ~ 1.993 x 108, while (37) gives the far better estimate 190,568,944.783.

Andrew Odlyzko has observed that, when n is large, the Hardy Ramanujan
Rademacher formula actually gives a near-optimum way to compute the precise
value of p(n), because the arithmetic operations can be carried out in nearly
O(logp(n)) = O(n'/?) steps. The first few terms of (32) give the main contri-
bution; then the series settles down to terms that are of order k—3/2 and usually
of order k~2. Furthermore, about half of the coefficients Ag(n) turn out to be
zero (see exercise 28). For example, when n = 10°, the terms for k = 1, 2,
and 3 are &~ 1.47 x 10197, 1.23 x 10%°°, and —1.23 x 10364, respectively. The
sum of the first 250 terms is ~ 1471684986 . ..73818.01, while the true value is
1471684986 . ..73818; and 123 of those 250 terms are zero.

The number of parts. It is convenient to introduce the notation

‘ZI‘ (38)

for the number of partitions of n that have exactly m parts. Then the recurrence
n n—1 n—m
= + (39)
m m—1 m

holds for all integers m and n, because ‘:;_11‘ counts the partitions whose smallest

part is 1 and |";m| counts the others. (If the smallest part is 2 or more, we can
subtract 1 from each part and get a partition of n —m into m parts.) By similar
reasoning we can conclude that |m;g"| is the number of partitions of n into at most
m parts, namely into m nonnegative summands. We also know, by considering
Ferrers diagrams, that ‘SL‘ is the number of partitions of n whose largest part
is m. Thus ‘SL‘ is a good number to know. The boundary conditions

‘g‘:(sno and ‘:0 form<0Oorn<0 (40)

‘ n
m
make it easy to tabulate ‘::L| for small values of the parameters, and we obtain
an array of numbers analogous to the familiar triangles for (Z)? [m, {:I}, and
<7"n> that we’ve seen before; see Table 2. The generating function is

Z‘n
m
n

Zm

T—2)(1—2%)...(1—2m) (41)

T
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Table 2
PARTITION NUMBERS

n n n n n n n n n n n n
o Lol 131515 Tl T T6H 71050 15l 1ol [52]
0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0 0 0 0 0
3 0 1 1 1 0 0 0 0 0 0 0 0
4 0 1 2 1 1 0 0 0 0 0 0 0
5 0 1 2 2 1 1 0 0 0 0 0 0
6 0 1 3 3 2 1 1 0 0 0 0 0
7 0 1 3 4 3 2 1 1 0 0 0 0
8 0 1 4 5 5 3 2 1 1 0 0 0
9 0 1 4 7 6 5 3 2 1 1 0 0
10 0 1 5 8 9 7 5 3 2 1 1 0
11 0 1 5 10 11 10 7 5 3 2 1 1

Almost all partitions of n have ©(y/nlogn) parts. This fact, discovered by
P. Erdds and J. Lehner [Duke Math. J. 8 (1941), 335-345], has a very instructive
proof:

Theorem E. Let C = /6 and m = 5=+/nlnn + zy/n + O(1). Then

1 Im+n

— = F(z)(14O0(n /%t 42
| = F@ e ome) (42)
for all e > 0 and all fixed x as n — oo, where
—Czx
F(z) = e /9 (43)

This function F(z) approaches 0 quite rapidly when z — —oc, and it rapidly
increases to 1 when & — 4o00; so it is a probability distribution function. Fig-

ure 29(b) shows that the corresponding density function f(z) = F’(x) is largely
m—14n

concentrated in the region —2 < z < 4. The values of ‘Tm = |mm+"‘ -

| are

shown in Fig. 29(a) for comparison when n = 100; in this case %\/ﬁlnn ~ 18.
Proof. We will use the fact that |m;z"‘ is the number of partitions of n whose

largest part is < m. Then, by the principle of inclusion and exclusion, Eq. 1.3.3—
(29), we have

=p(n)=Y_ pn—i)+ > pn—ji—j2)— Y pn—jr—ja—js)+ -,

‘m—i—n‘
j>m J2>j1>m J3>J2>j1>m

because p(n — j1 — -+ — j,) is the number of partitions of n that use each of the

parts {j1,...,jr} at least once. Let us write this as

1= =)
p(n)

1 |m+n P(n*j
— =1-3 Yo —X e P— .
() ‘ ‘ 1+ 29 3+, E (44)

Jr>>31>m

10
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a) ‘100‘: j

b) f(=): _,«(f((

—2 ~1 0 1 2 3 4 x
Fig. 29. Partitions of n with m parts, when (a) n = 100; (b) n — oco. (See Theorem E.)

In order to evaluate X, we need to have a good estimate of the ratio
p(n —t)/p(n). And we're in luck, because Eq. (36) implies that
L — 1
% =exp(2CVn—t—In(n—t)+ O((n - t)_l/z) —2Cy/n+1Inn)
p(n

= exp(fCtn*l/2 + O(n71/2+26)) if 0 <t < nl/2te, (45)

Furthermore, if t > n'/?*¢ we have p(n — t)/p(n) < p(n — n'/?%€)/p(n) ~

exp(—Cn®), a value that is asymptotically smaller than any power of n. Therefore
we may safely use the approximation

p(n—1) t

~ o, a = exp —Cn'/? , 46
o ( ) (46)
for all values of ¢ > 0. For example, we have
p(n—j) _ o™t —1/2+2 p(n —j)
¥ = = 1+0(n 9) + - L
D e i Er A R Py
j>m n>j>nl/2+
—Cxz

(14 0(n~1/242)) 4 O(ne ™),

because a/(1 — a) = n'/?/C + O(1) and ™ = n~'/2¢~C*%, A similar argument
(see exercise 36) proves that, if r = O(logn),

efcrz 5

L= G Ao ) Lo, (47)

Finally — and this is a wonderful property of the inclusion-exclusion princi-
ple in general —the partial sums of (44) always “bracket” the true value, in the
sense that

1
1-31+Y— =Yg 1 < ——
p(n)
for all 7. (See exercise 37.) When 2r is near Inn and n is large, the term Xy, is
extremely tiny; therefore we obtain (42), except with 2¢ in place of €. |

m-+n

m ‘ <1-3143;— - —Xgr_1+ X2 (48)

11
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0 NN

V/n

2/

Fig. 30. Temperley’s curve (49) for the
limiting shape of a random partition.

Theorem E tells us that the largest part of a random partition almost always
is %\/ﬁlnn + O(y/n), and when n is reasonably large the other parts tend to
be predictable as well. Suppose, for example, that we take all the partitions
of 25 and superimpose their Ferrers diagrams, changing dots to boxes as in the
rim representation. Which cells are occupied most often? Figure 30 shows the
result: A random partition tends to have a typical shape that approaches a
limiting curve as n — oo.

H. N. V. Temperley [Proc. Cambridge Philos. Soc. 48 (1952), 683-697]
gave heuristic reasons to believe that most parts a; of a large random partition
ai ...a, will satisfy the approximate law

e~CRIVA | o=Cax/Vi o (49)

and his formula has subsequently been verified in a strong form. For example, a
theorem of Boris Pittel [Advances in Applied Math. 18 (1997), 432—-488] allows
us to conclude that the trace of a random partition is almost always 1“72\/5 R
0.541/n, in accordance with (49), with an error of at most O(y/n Inn)'/?; thus
about 29% of all the Ferrers dots tend to lie in the Durfee square.
If, on the other hand, we look only at partitions of n with m parts, where
m is fixed, the limiting shape is rather different: Almost all such partitions have
ap ~ %ln %, (50)
if m is reasonably large. Figure 31 illustrates the case n = 50, m = 5. In fact,
the same limit holds when m grows with n, but at a slower rate than /n [see
Vershik and Yakubovich, Moscow Math. J. 1 (2001), 457-468].

0 n/m 2n/m

p—

Fig. 31. The limiting shape (50) when there are m parts.

12
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The rim representation of partitions gives us further information about par-
titions that are doubly bounded, in the sense that we not only restrict the number
of parts but also the size of each part. A partition that has at most m parts,
each of size at most [, fits inside an m x [ box. All such partitions correspond
to permutations of the multiset {m -0, [ - 1} that have exactly n inversions, and
we have studied the inversions of multiset permutations in exercise 5.1.2-16. In
particular, that exercise derives a nonobvious formula for the number of ways
n inversions can happen:

Theorem C. The number of partitions of n that have no more than m parts
and no part larger than [ is

(L m (L= (1= 2h2) (1= gt
M( m ) i s e Ty Ry e a (51)
This result is due to A. Cauchy, Comptes Rendus Acad. Sci. 17 (Paris, 1843),

523-531. Notice that when | — oc the numerator becomes simply 1. An interest-
ing combinatorial proof of a more general result appears in exercise 39 below. |

Analysis of the algorithms. Now we know more than enough about the
quantitative aspects of partitions to deduce the behavior of Algorithm P quite
precisely. Suppose steps P1, ..., P6 of that algorithm are executed respectively
Ti(n), ..., Te(n) times. We obviously have Ty (n) = 1 and T3(n) = p(n); further-
more Kirchhoff’s law tells us that Ta(n) = T5(n) and Ty(n) +T5(n) = T3(n). We
get to step P4 once for each partition that contains a 2; and this is clearly p(n—2).

Thus the only possible mystery about the running time of Algorithm P is
the number of times we must perform step P6, which loops back to itself. A
moment’s thought, however, reveals that the algorithm stores a value > 2 into

the array ajas... only in steps P2 and P6; and every such value is eventually
decreased by 1, either in step P4 or step P5. Therefore
T3 (n) + Ts(n) = p(n) -1, (52)

where Ty (n) is the number of times step P2 sets a,, to a value > 2. Let Ty(n) =
T5(n) + T4 (n), so that Th(n) is the number of times step P2 sets a,, < 1. Then
T4 (n) + T4(n) is the number of partitions that end in 1, hence

Ty(n) + Ta(n) =p(n—1). (53)

Aha! We've found enough equations to determine all of the required quantities:
(Tl(n), P ,Te(n)) =

(1, p(n) = p(n—2), p(n), p(n-2), p(n) —p(n—-2), p(n-1) —1). (54)

And from the asymptotics of p(n) we also know the average amount of compu-
tation per partition:

<T1(n) Te(n)> (0 2C L1 2C 2C ) C ) n O(l) (55)
PRI = s T by LT T /=y T =y T T~ — ) 55

) o) A "

where C' = 7/v/6 ~ 1.283. (See exercise 45.) The total number of memory

accesses per partition therefore comes to only 4 — 3C/+/n + O(1/n).

13
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Whoever wants to go about generating all partitions
not only immerses himself in immense labor,

but also must take pains to keep fully attentive,

so as not to be grossly deceived.

— LEONHARD EULER, De Partitione Numerorum (1750)

Algorithm H is more difficult to analyze, but we can at least prove a decent
upper bound on its running time. The key quantity is the value of 7, the smallest
subscript for which a; < a; — 1. The successive values of j when m = 4 and
n = 11 are (2,2,2,3,2,2,3,4,2,3,5), and we have observed that 7 = b; 1 +1
when b; ... b; is the conjugate partition (a; .. .a.;,)T. (See (7) and (12).) Step H3
singles out the case j = 2, because this case is not only the most common, it is
also especially easy to handle.

Let ¢ (n) be the accumulated total value of j — 1, summed over all of the
‘7"n| partitions generated by Algorithm H. For example, ¢4(11) =1+ 1+1+2+
1+1+24+3+14+2+4=19. We can regard cm(n)/m‘ as a good indication
of the running time per partition, because the time to perform the most costly
steps, H4 and H6, is roughly proportional to j — 2. This ratio (’m(n)/m‘ is not
bounded, because ¢,,(m) = m while m‘ = 1. But the following theorem shows
that Algorithm H is efficient nonetheless:

Theorem H. The cost measure c,,(n) for Algorithm H is at most 3‘;‘ + m.

Proof. We can readily verify that ¢,,(n) satisfies the same recurrence as ‘m,
namely

cm(n) = Cmfl(ni 1) + Cm(nfm)a for m,n 2 ]-7 (56)

if we artificially define ¢,,(n) =1 when 1 < n < m; see (39). But the boundary
conditions are now different:

em(0) = [m>0]; co(n) = 0. (57)

Table 3 shows how ¢, (n) behaves when m and n are small.
To prove the theorem, we will actually prove a stronger result,

cm(n)§3‘n‘+2mfnfl forn >m > 2. (58)
m

Exercise 50 shows that this inequality holds when m < n < 2m, so the proof
will be complete if we can prove it when n > 2m. In the latter case we have

em(n) =ci(n—m)+ca(n—m)+ecs(n—m)+- -+ cp(n—m)
<1+ (3", +3-n+m) + (3" +5-n+m) + -
+ (3", + 2m—1—n+m)
=3 43", 4+ 437 =34 m2 = (m —1)(n—m)
=3"|+2m?* —m— (m—1)n-3

by induction; and 2m? —m — (m—1)n—3 < 2m —n—1 because n > 2m+1. 1

14
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Table 3
COSTS IN ALGORITHM H
n | co(n) ci(n) ca(n) cs(n) ca(n) cs(n) cs(n) cz(n) cs(n) co(n) cio(n) cii(n)
0 0 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1 1 1
2 0 1 2 1 1 1 1 1 1 1 1 1
3 0 1 2 3 1 1 1 1 1 1 1 1
4 0 1 3 3 4 1 1 1 1 1 1 1
5 0 1 3 4 4 5 1 1 1 1 1 1
6 0 1 4 6 5 5 6 1 1 1 1 1
7 0 1 4 7 7 6 6 7 1 1 1 1
8 0 1 5 8 11 8 7 7 8 1 1 1
9 0 1 5 11 12 12 9 8 8 9 1 1
10 0 1 6 12 16 17 13 10 9 9 10 1
11 0 1 6 14 19 21 18 14 11 10 10 11

*A Gray code for partitions. When partitions are generated in part-count
form c; ...c, as in exercise 5, at most four of the c; values change at each step.
But we might prefer to minimize the changes to the individual parts, generating
partitions in such a way that the successor of ajas...a, is always obtained by
simply setting a; <— a;+1 and a;, < aj—1 for some j and k, as in the “revolving
door” algorithms of Section 7.2.1.3. It turns out that this is always possible; in
fact, there is a unique way to do it when n = 6:

111111, 21111, 3111, 2211, 222, 321, 33, 42, 411, 51, 6. (59)

And in general, the |m;;"‘ partitions of n into at most m parts can always be
generated by a suitable Gray path.

Notice that @ — (3 is an allowable transition from one partition to another
if and only if we get the Ferrers diagram for 8 by moving just one dot in the
Ferrers diagram for . Therefore o — 87 is also an allowable transition. It
follows that every Gray code for partitions into at most m parts corresponds to
a Gray code for partitions into parts that do not exceed m. We shall work with
the latter constraint.

The total number of Gray codes for partitions is vast: There are 52 when
n = 7, and 652 when n = 8; there are 298,896 when n = 9, and 2,291,100,484
when n = 10. But no really simple construction is known. The reason is probably
that a few partitions have only two neighbors, namely the partitions d™/¢ when
1 < d < n and d is a divisor of n. Such partitions must be preceded and followed
by {(d+1)d"/4=2(d—1), d"/?=1(d—1)1}, and this requirement seems to rule out
any simple recursive approach.

Carla D. Savage [J. Algorithms 10 (1989), 577 595] found a way to surmount
the difficulties with only a modest amount of complexity. Let

[n/m]
—_———
p(m,n) = m m ... m (nmodm) (60)

15



16 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.4

be the lexicographically largest partition of n with parts < m; our goal will
be to construct recursively defined Gray paths L(m,n) and M(m,n) from the
partition 1" to p(m,n), where L(m,n) runs through all partitions whose parts
are bounded by m while M (m,n) runs through those partitions and a few more:
M(m,n) also includes partitions whose largest part is m + 1, provided that
the other parts are all strictly less than m. For example, L(3,8) is 11111111,
2111111, 311111, 221111, 22211, 2222, 3221, 32111, 3311, 332, while M (3,8) is

11111111, 2111111, 221111, 22211, 2222, 3221,
3311, 32111, 311111, 41111, 4211, 422, 332; (61)

the additional partitions starting with 4 will give us “wiggle room” in other
parts of the recursion. We will define L(m,n) for all n > 0, but M(m,n) only
for n > 2m.

The following construction, illustrated for m = 5 to simplify the notation,
almost works:

L(3)
L(3) 4L(2)" M(4)
L(5) = { 4L(co)Ry ifn <7y {OL2) Rigp =8 {5an(a)RY ifn >0,
5L(c0) 151 55L(5)
44 (62)
53
L(4) L(4)
5L(4)% 5M(4)F
M(5) = { 6L(3) if 11 <n < 13; 6L(4) ifn>14.  (63)
64L(co)f 554L(4)F
55L(c0) 555L(5)

Here the parameter n in L(m,n) and M(m,n) has been omitted because it can
be deduced from the context; each L or M is supposed to generate partitions of
whatever amount remains after previous parts have been subtracted. Thus, for
example, (63) specifies that

M(5,14) = L(4,14), 5M(4,9)%, 6L(4,8), 554L(4,0)%, 555L(5,—1);

the sequence L(5,—1) is actually empty, and L(4,0) is the empty string, so the
final partition of M (5,14) is 554 = pu(5,14) as it should be. The notation L(oco)
stands for L(co,n) = L(n,n), the Gray path of all partitions of n, starting with
1™ and ending with n!.

In general, L(m) and M(m) are defined for all m > 3 by essentially the
same rules, if we replace the digits 2, 3, 4, 5, and 6 in (62) and (63) by m—3,
m—2, m—1, m, and m+1, respectively. The ranges n <7, n =8, n > 9 become
n<2m-3,n=2m—2,n>2m—1; the ranges 11 < n < 13 and n > 14 become
2m+1<n <3m—2and n > 3m — 1. The sequences L(0), L(1), L(2) have
obvious definitions because the paths are unique when m < 2. The sequence
M(2) is 17, 21772, 3173 221774 2221776 ... u(2,n) for n > 5.

16
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Theorem S. Gray paths L'(m,n) form,n > 0 and M'(m,n) forn > 2m+1>5
exist for all partitions with the properties described above, except in the case
L'(4,6). Furthermore, L' and M' obey the mutual recursions (62) and (63)
except in a few cases.

Proof. We noted above that (62) and (63) almost work; the reader may verify
that the only glitch occurs in the case L(4,6), when (62) gives

L(4,6) = L(2,6), 3L(1,3)%, 4L(1,2), 321, 33, 42
= 111111, 21111, 2211, 222, 3111, 411, 321, 33, 42. (64)

If m > 4, we're OK because the transition from the end of L(m—2,2m—2) to
the beginning of (m—1)L(m—3, m—1)% is from (m—2)(m—2)2 to (m—1)(m—3)2.
There is no satisfactory path L(4,6), because all Gray codes through those nine
partitions must end with either 411, 33, 3111, 222, or 2211.

In order to neutralize this anomaly we need to patch the definitions of
L(m,n) and M(m,n) at eight places where the “buggy subroutine” L(4,6) is
invoked. One simple way is to make the following definitions:

L'(4,6) = 111111, 21111, 3111, 411, 321, 33, 42;
L'(3,5) = 11111, 2111, 221, 311, 32.
Thus, we omit 222 and 2211 from L(4,6); we also reprogram L(3,5) so that 2111

is adjacent to 221. Then exercise 60 shows that it is always easy to “splice in”
the two partitions that are missing from L(4,6). |

(65)

EXERCISES

1. [M21] Give formulas for the total number of possibilities in each problem of The
Twelvefold Way. For example, the number of n-tuples of m things is m™. (Use the
notation (38) when appropriate, and be careful to make your formulas correct even
when m =0 or n=0.)

2. [20] Show that a small change to step H1 yields an algorithm that will generate
all partitions of n into at most m parts.

3. [M17] A partition a1 + - -+ 4+ am of n into m parts a; > --- > am, is optimally
balanced if |a; —a;| < 1 for 1 < 4,7 < m. Prove that there is exactly one such partition,
whenever n > m > 1, and give a simple formula that expresses the jth part a; as a
function of j, m, and n.

4. [M22] (Gideon Ehrlich, 1974.) What is the lexicographically smallest partition
of n in which all parts are > r? For example, when n = 19 and r = 5 the answer is 766.

5. [28] Design an algorithm that generates all partitions of n in the part-count form

c1...cn of (8). Generate them in colex order, namely in the lexicographic order of
Cn -..C1, which is equivalent to lexicographic order of the corresponding partitions

aiasz . ... For efficiency, maintain also a table of links lpl1 ...I, so that, if the distinct
values of k for which ¢, > 0 are k1 < - -+ < k¢, we have
lO:kh lk] :k27 lk:t,l :kt7 lk:t =0.

(Thus the partition 331 would be represented by c1 ...c7 = 1020000, lp = 1, I; = 3,
and [3 = 0; the other links I3, l4, l5, l7 can be set to any convenient values.)

17
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6. [20] Design an algorithm to compute b1bz ... = (a1az... )T, given aias . .. .

7. [M20] Suppose aj ...a, and aj ...a, are partitions of n with a; > --- > a,, >0
and ay > --- > a;, > 0, and let their respective conjugates be b, ...b, = (a;...a,)7,
by ...b, = (a}...a,)T. Show that by...b, < by...b, ifandonlyifa,...a; <ay,...aj.

8. [15] When (p1...pt,q1...q:) is the rim representation of a partition aias ... as
in (15) and (16), what is the conjugate partition (a1az...)T =biby...?

9. [22] Ifaiaz...am and biby...by = (a102. .. am)T are conjugate partitions, show
that the multisets {a1 +1,a2+2,...,am+m} and {b1+1,b2+2,...,b,, + m} are equal.

10. [21] Two simple kinds of binary trees are sometimes helpful for reasoning about
partitions: (a) a tree that includes all partitions of all integers, and (b) a tree that
includes all partitions of a given integer n, illustrated here for n = 8:

11111111

2111111
221111 311111

Deduce the general rules underlying these constructions. What order of tree traversal
corresponds to lexicographic order of the partitions?

11. [M22] How many ways are there to pay one euro, using coins worth 1, 2, 5, 10,
20, 50, and/or 100 cents? What if you are allowed to use at most two of each coin?

12. [M21] (L. Euler, 1750.) Use generating functions to prove that the number of
ways to partition n into distinct parts is the number of ways to partition n into odd
parts. For example, 5=4+1=3+2; 5=3+14+1=14+1+1+1+1.

[Note: The next two exercises use combinatorial techniques to prove extensions of
this famous theorem.]

13. [M22] (F. Franklin, 1882.) Find a one-to-one correspondence between partitions
of n that have exactly k parts repeated more than once and partitions of n that have
exactly k even parts. (The case k = 0 corresponds to Euler’s result.)

14. [M28] (J. J. Sylvester, 1882.) Find a one-to-one correspondence between parti-
tions of n into distinct parts a1 > a2 > --- > a, that have exactly k “gaps” where
a; > aj4+1 + 1, and partitions of n into odd parts that have exactly k£ + 1 different
values. (For example, when k = 0 this construction proves that the number of ways to
write n as a sum of consecutive integers is the number of odd divisors of n.)

15. [M20] (J. J. Sylvester.) Find a generating function for the number of partitions
that are self-conjugate (namely, partitions such that o = o).

16. [M21] Find the generating function for partitions of trace k, and sum it on k to
obtain a nontrivial identity.

18
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17. [M26] A joint partition of m is a pair of sequences (ai,...,ar; b1,...,bs) of
positive integers for which we have

ar>--->ap, bi>--->bs, and a1+ - +ar+bi+- -+bs=n.

Thus it is an ordinary partition if s = 0, and a partition into distinct parts if » = 0.
a) Find a simple formula for the generating function 3 u"**v®2", summed over all
joint partitions of n with r ordinary parts a; and s distinct parts b;.
b) Similarly, find a simple formula for Y v°2™ when the sum is over all joint partitions
that have exactly r + s =t total parts, given the value of ¢.

¢) What identity do you deduce?
» 18. [M23] (Doron Zeilberger.) Show that there is a one-to-one correspondence be-

tween pairs of integer sequences (a1, az,...,ar; b1,ba,...,bs) such that
ay > az > -+ > Qp, by > ba > -+ > bs,
and pairs of integer sequences (c1,c2,...,Crts; d1,da2,...,drys) such that
c1>C2 > > Crys, dj € {0,1} for1<j<r+s,

related by the multiset equations
{a1,az2,...,ar} ={c; | dj =0} and {bi,ba,...,bs}={cj+r+s—j]d;=1}

Consequently we obtain the interesting identity

Z B AL L. Z ulp®it e ert tept+(t—1)dy+-Fdy 1
ay>--2ar>0 c12-2¢t>0
by>->bs>0 dy,...,d;€{0,1}

19. [M21] (E. Heine, 1847.) Prove the four-parameter identity

& kfl) k

—wz™ —wTyzm 1 22) . (1=2F)(1—wz) (1—w2?2) ... (1—wzk)

= (1—wz (1-wyz™ (z—2 z—2" Y (y—1)(y—2)...(y—2 z
71—:[151 )() Y kZ:O ) ( Jy—D(y—2)...(y

Hint: Carry out the sum over either k£ or [ in the formula

uFol oo (z—az)(z —az?)...(z —az®) (z = b2) (2 = b2?) ... (z — b2})
k,%:o (1-2)(1-22)...(1-2F) (1-2)(1—22)...(1-2)

and consider the simplifications that occur when b = auz.

v

20. [M21] Approximately how long does it take to compute a table of the partition
numbers p(n) for 1 < n < N, using Euler’s recurrence (20)?

21. [M21] (L. Euler.) Let g(n) be the number of partitions into distinct parts. What
is a good way to compute g(n) if you already know the values of p(1), ..., p(n)?

22. [HM21] (L. Euler.) Let o(n) be the sum of all positive divisors of the positive
integer n. Thus, o(n) = n + 1 when n is prime, and o(n) can be significantly larger
than n when n is highly composite. Prove that, in spite of this rather chaotic behavior,
o(n) satisfies almost the same recurrence (20) as the partition numbers:

o(n) = o(n—1) + 0(n—2) — 6(n=5) — o(n—7) + 6(n—12) + 6(n—15) —

for n > 1, except that when a term on the right is ‘c(0)’ the value ‘n’ is used instead.
For example, o(11) = 14+ 11 = 0(10) + 0(9) — 0(6) — 0(4) = 18 + 13 — 12 — T;
0(12) =14+2434+44+6+12=0(11)+0(10) —0(7) —0o(5) +12=124+18 -8 -6+ 12.

19
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23. [HM25] Use Jacobi’s triple product identity (19) to prove another formula that
he discovered:
- k3 3 6 10 = n .
[JTa-2° = 1-82452° —72° 492 — . = Y (—1)"@2n+1)21 2 ).
k=1 n=0
24. [M26] (S. Ramanujan, 1919.) Let A(z) = [[po, (1 — 2*)*.
a) Prove that [2"] A(z) is a multiple of 5 when n mod 5 = 4.
b) Prove that [2"] A(z)B(z)® has the same property, if B is any power series with
integer coefficients.
c¢) Therefore p(n) is a multiple of 5 when n mod 5 = 4.
25. [HM27] Improve on (22) by using (a) Euler’s summation formula and (b) Mellin
transforms to estimate In P(e™"). Hint: The dilogarithm function Lis(z) = x/1% +
x?2/2% + £%/3% + ... satisfies Liz(z) + Li2(1 — z) = ¢(2) — (Inz) In(1 — z).
26. [HM22] In exercises 5.2.2-44 and 5.2.2-51 we studied two ways to prove that
Ze_kz/n = %(\/ﬂnfl)—FO(n_M) for all M > 0.

k=1
Show that Poisson’s summation formula gives a much stronger result.
27. [HM23] Evaluate (29) and complete the calculations leading to Theorem D.
28. [HM42] (D. H. Lehmer.) Show that the Hardy Ramanujan Rademacher coeffi-
cients Ag(n) defined in (34) have the following remarkable properties:
a) If k is odd, then Agy(km + 4n + (k* —1)/8) = Aa(m) Ax(n).
b) If p is prime, p¢ > 2, and k L 2p, then

Ager(RPm + p%n — (4™ — 1)/24) = (~1) = Ay (m) As(n).

In this formula k% + p?¢ — 1 is a multiple of 24 if p or k is divisible by 2 or 3;
otherwise division by 24 should be done modulo p®k.

c) If p is prime, |Aye(n)| < 2[P>2pe/2,

d) If p is prime, Ape(n) # 0 if and only if 1 — 24n is a quadratic residue modulo p
and either e = 1 or 24n mod p # 1.

e) The probability that Ax(n) = 0, when k is divisible by exactly ¢ primes > 5 and
n is a random integer, is approximately 1 — 27%.

29. [M16] Generalizing (41), evaluate the sum 3 o o o, - 272" .. 25,
30. [M17] Find closed forms for the sums
n —km
(a) Z and (b) Z

m—1
k>0 k>0

n
m—k ‘
(which are finite, because the terms being summed are zero when k is large).
31. [M24] (A. De Morgan, 1843.) Show that ‘g‘ = |n/2] and ‘731‘ = [ (n® +6)/12];
find a similar formula for |Z|
32. [M15] Prove that ‘:1‘ < p(n —m) for all m,n > 0. When does equality hold?

33. [HM20] Use the fact that there are exactly (:;11) compositions of n into m parts,

Eq. 7.2.1.3—(9), to prove a lower bound on ‘::L‘ Then set m = [y/n | to obtain an ele-
mentary lower bound on p(n).

20
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> 34. [HM21] Show that ‘"77"(271)/2‘ is the number of partitions of n into m distinct
parts. Consequently

m—1 3
‘n‘ = n7(1+0<m—)) when m < n'/3.
m m!(m — 1)! n

35. [HM21] In the Erdés—Lehner probability distribution (43), what value of z is
(a) most probable? (b) the median? (c) the mean? (d) What is the standard deviation?
36. [HM24] Prove the key estimate (47) that is needed in Theorem E.

37. [M22] Prove the inclusion-exclusion bracketing lemma (48), by analyzing how
many times a partition that has exactly g different parts exceeding m is counted in the
rth partial sum.

38. [M20] What is the generating function for the partitions of n that have exactly
m parts, and largest part 1?7

» 39. [M25] (F. Franklin.) Generalizing Theorem C, show that, for 0 < k < m,
"] (12N (1 - 2R
(1—-2)(1—-22)...(1=2m)
is the number of partitions ajas ... of n into m or fewer parts with the property that
a1 < ag+1 + L.

40. [M22] (A. Cauchy.) What is the generating function for partitions into m parts,
all distinct and less than [?

41. [HM42] Extend the Hardy-Ramanujan-Rademacher formula (32) to obtain a
convergent series for partitions of n into at most m parts, with no part exceeding .

42. [HM42] Find the limiting shape, analogous to (49), for random partitions of n
into at most 64/n parts, with no part exceeding p+/n, assuming that fp > 1.

43. [M21] Given n and k, how many partitions of n have a1 > a2 > -+ > ax?

> 44. [M22] How many partitions of n have their two smallest parts equal?
45. [HM21] Compute the asymptotic value of p(n—1) /p(n), with relative error O(n"?).
46. [M20] In the text’s analysis of Algorithm P, which is larger, T5(n) or Ty'(n)?

» 47. [HM22] (A. Nijenhuis and H. S. Wilf, 1975.) The following simple algorithm,
based on a table of the partition numbers p(0), p(1), ..., p(n), generates a random
partition of n using the part-count representation ci . .. ¢, of (8). Prove that it produces
each partition with equal probability.

N1. [Initialize.] Set m <~ nand ¢1...c, < 0...0.
N2. [Done?] Terminate if m = 0.
N3. [Generate.] Generate a random integer M in the range 0 < M < mp(m).

N4. [Choose parts.] Set s « 0. Then for j = 1, 2, ..., n and for k = 1, 2,
.., lm/j], repeatedly set s < s + kp(m — jk) until s > M.

N5. [Update.] Set cx < cx +j, m < m — jk, and return to N2. |
Hint: Step N4, which is based on the identity

> > kp(m — jk) = mp(m),

j=1 k=

chooses each particular pair of values (j, k) with probability kp(m — jk)/(mp(m)).
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48. [HM40] Analyze the running time of the algorithm in the previous exercise.
> 49. [HM26] (a) What is the generating function F'(z) for the sum of the smallest parts
of all partitions of n? (The series begins z + 32% + 52% +92* 4+ 122° + ... )
(b) Find the asymptotic value of [z"] F(z), with relative error O(n*').

50. [HM33] Let c¢(m) = c¢m(2m) in the recurrence (56), (57).

a) Prove that c.o(m + k) =m — k + ¢(k) for 0 < k < m.

b) Consequently (58) holds for m < n < 2m if ¢(m) < 3p(m) for all m.

c¢) Show that c¢(m) — m is the sum of the second-smallest parts of all partitions of m.
d) Find a one-to-one correspondence between all partitions of n with second-smallest

part k and all partitions of numbers < n with smallest part k + 1.
e) Describe the generating function ) . c(m)z™
f) Conclude that c¢(m) < 3p(m) for all m > 0.

51. [M46] Make a detailed analysis of Algorithm H.

» 52. [M21] What is the millionth partition generated by Algorithm P when n = 647
Hint: p(64) = 1741630 = 1000000 + 15| + 3] + [5'| + [ + [ + [5] + ¥ + [
» 53. [M21] What is the millionth partition generated by Algorithm H when m = 32
and n = 1007 Hint: 999999 = [3] + 35| + 7] + ] + [ + 7] + %]
» 54. [M30] The partition & = aqaz... is said to majorize the partition 8 = b1bs ...,
written a > Sor 8 R a, if a1 + -4+ ar > b1 + -+ by for all £ > 0.
a) True or false: o = 3 implies a > (3 (lexicographically).
b) True or false: a = (3 implies 87 = aT.
c) Show that any two partitions of n have a greatest lower bound a A 8 such that
a > v and B > v if and only if a A 8 > ~. Explain how to compute a A S.
d) Similarly, explain how to compute a least upper bound a V g such that v > o and
v = B if and only if v = a V .
e) If a has | parts and 8 has m parts, how many parts do @ A 8 and a V 3 have?
f) True or false: If a has distinct parts and 8 has distinct parts, then so do a A 8
and a V .

» 55. [M37] Continuing the previous exercise, say that a covers 8 if a = B8, a # £,
and « > v > (B implies v = a or 7 = . For example, Fig. 32 illustrates the covering
relations between partitions of 12.

a) Let us write a > B if & = aiaz... and B = biby... are partitions for which
b = ar — [k=1]+[k=1+1] for all K > 1 and some [ > 1. Prove that « covers 3
if and only if a & 8 or BT + aT.

b) Show that there is an easy way to tell if a covers 8 by looking at the rim
representations of a and S.

c) Let n = ("22) + ("11) where na > n; > 0. Show that no partition of n covers more
than no — 2 partitions.

d) Say that the partition u is minimal if there is no partition A with u = A. Prove
that p is minimal if and only if #7 has distinct parts.

e) Suppose & = ag - ay b -+ ap and @ = aj - o) -+ >+ a},, where oy, and
o}, are minimal partitions. Prove that k = k' and o = aj,.

f) Explain how to compute the lexicographically smallest partition into distinct parts
that majorizes a given partition a.

g) Describe A, the lexicographically smallest partition of n into distinct parts. What
is the length of all paths nt=aogai b /\Z?

22



7.2.1.4 GENERATING ALL PARTITIONS 23

(5211111 [@32111 (42222 [3332])
43111171 [42521ﬂ[33311ﬂ (33222
(42211171 (832211
(421111171 (3321111 (322221
(83111111 (3222111 (222222
(32211111 (2222211
(321111111 (22221117
Fig. 32. The majorization [3111111111] [222111111]
lattice for .partitions of 12. CRIRNABERE)
(See exercises 54 58.) OTeEetaties
111111111117

(51111117

(411111117

h) What are the lengths of the longest and shortest paths of the form n' = aq, a1,
., ap = 1", where a; covers a1 for 0 < 5 <17

» 56. [M27] Design an algorithm to generate all partitions « such that A < a < pu,
given partitions A and g with A < u.

Note: Such an algorithm has numerous applications. For example, to generate all
partitions that have m parts and no part exceeding [, we can let A be the smallest such
partition, namely [n/m]...|n/m| as in exercise 3, and let p be the largest, namely
((n—m+1)1™"*) A (I17/1)(n mod )). Similarly, according to a well-known theorem of
H. G. Landau [Bull. Math. Biophysics 15 (1953), 143-148], the partitions of (') such

2
that
lm/2] [ g — 1 | Fm/2]
{%J {mz IJ < a < (m-1)(m-2)...21

are the possible “score vectors” of a round-robin tournament, namely the partitions
a1 ...am such that the jth strongest player wins a; games.

23
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57. [M22] Suppose a matrix (ai;) of Os and 1s has row sums r; =} a;; and column
sums ¢; = Zl a;j. Then A = rqira... and p = cica ... are partitions of n = >,
Prove that such a matrix exists if and only if A < u7.

ij Ajj.
58. [M23] (Symmetrical means.) Let o = ai...am and = by ...bn be partitions
of n. Prove that the inequality

1 1 b b
LS > L e
m! m!

holds for all nonnegative values of the variables (z1, ..., Zm), where the sums range over
all m! permutations of {1,...,m}, if and only if @ > 8. (For example, this inequality
reduces to (y1 + -+ + yn)/n > (Y1...Yn)'/™ in the special case m = n, a = n0...0,
B=11...1,a;=y'")

59. [M22] The Gray path (59) is symmetrical in the sense that the reversed sequence

6, 51, ..., 111111 is the same as conjugate sequence (111111)7, (21111)7, ..., (6)7.
Find all Gray paths ai, ..., apy) that are symmetrical in this way.

60. [23] Complete the proof of Theorem S by modifying the definitions of L(m,n)
and M(m,n) in all places where L(4,6) is called in (62) and (63).

61. [26] Implement a partition-generation scheme based on Theorem S, always speci-
fying the two parts that have changed between visits.

62. [46] Prove or disprove: For all sufficiently large integers n and 3 < m < n such
that n mod m # 0, and for all partitions a of n with a1 < m, there is a Gray path
for all partitions with parts < m, beginning at 1" and ending at «, unless @« = 1" or
a=21"""2

63. [47] For which partitions A and p is there a Gray code through all partitions a
such that A < o < u?

64. [32] (Binary partitions.) Design a loopless algorithm that visits all partitions of n
into powers of 2, where each step replaces 2k + 2k by 2k+1 or vice versa.

65. [23] It is well known that every commutative group of m elements can be repre-
sented as a discrete torus T(myq,..., m,) with the addition operation of 7.2.1.3 (66),
where m = m;y ... m, and m; is a multiple of m 4 for 1 < j < n. For example, when
m = 360 = 2% . 3%. 5" there are six such groups, corresponding to the factorizations
(m1,ma, ms) = (30,6,2), (60,6,1), (90,2,2), (120,3,1), (180,2,1), and (360,1,1).

FExplain how to generate all such factorizations systematically with an algorithm
that changes exactly two of the factors m; at each step.

66. [M25] (P-partitions.) Instead of insisting that a1 > a2 > ---, suppose we want
to consider all nonnegative compositions of n that satisfy a given partial order. For
example, P. A. MacMahon observed that all solutions to the “up-down” inequalities
as < az > az < aq can be divided into five nonoverlapping types:

a1 > az > az > as4; ap > az > aq > as;

a2z > a1 > a3 > aq4; Q2 >0ai > aq > asz; a2 > a4 > ai > as.

Each of these types is easily enumerated since, for example, as > a1 > a4 > a3 is
equivalent to az — 2 > a1 — 1 > aq4 — 1 > as; the number of solutions with az > 0 and
a1+az~+as+as = n is the number of partitions of n—1—2—-0—1 into at most four parts.

Explain how to solve a general problem of this kind: Given any partial order
relation < on m elements, consider all m-tuples a; ... a,, with the property that a; > a,

24
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when j < k. Assuming that the subscripts have been chosen so that j < k implies j < k,
show that all of the desired m-tuples fall into exactly N classes, one for each of the out-
puts of the topological sorting algorithm 7.2.1.2V. What is the generating function for
all such a; ... an, that are nonnegative and sum to n? How could you generate them all?

67. [M25] (P. A. MacMahon, 1886.) A perfect partition of n is a multiset that has
exactly n+1 submultisets, and these multisets are partitions of the integers 0, 1, ..., n.
For example, the multisets {1,1,1,1,1}, {2,2,1}, and {3,1,1} are perfect partitions of 5.
Explain how to construct the perfect partitions of n that have fewest elements.
68. [M23] What partition of n into m parts has the largest product a; ...am, when
(a) m is given; (b) m is arbitrary?
69. [M30] Find all n < 10° such that the equation 1 + 22 + -+ + Tn = T1T2 ... Tn
has only one solution in positive integers 1 > z2 > --- > z,,. (There is, for example,
only one solution when n = 2, 3, or 4; but 5+2+1+1+1=5-2-1-1-1 and
3+34+1+14+41=3-3-1-1-1and24+2+24+141=2-2-2-1-1.)
70. [M30] (“Bulgarian solitaire.”) Take n cards and divide them arbitrarily into one
or more piles. Then repeatedly remove one card from each pile and form a new pile.
Show that if n = 1+ 24 - -+ m, this process always reaches a self-repeating state
with piles of sizes {m,m — 1,...,1}. For example, if n = 10 and if we start with piles
whose sizes are {3,3,2,2}, we get the sequence of partitions

3322 — 42211 — 5311 — 442 — 3331 — 4222 — 43111 — 532 — 4321 — 4321 — - - -.

What cycles of states are possible for other values of n?
71. [M46] Continuing the previous problem, what is the maximum number of steps
that can occur before n-card Bulgarian solitaire reaches a cyclic state?

72. [M25] Suppose we write down all partitions of n, for example

6, 51, 42, 411, 33, 321, 3111, 222, 2211, 21111, 111111
when n = 6, and change each jth occurrence of k to j:

1, 11, 11, 112, 12, 111, 1123, 123, 1212, 11234, 123456.

a) Prove that this operation yields a permutation of the individual elements.
b) How many times does the element k appear altogether?

7.2.1.5. Generating all set partitions. Now let’s shift gears and concentrate
on a rather different kind of partition. The partitions of a set are the ways
to regard that set as a union of nonempty, disjoint subsets called blocks. For
example, we listed the five essentially different partitions of {1,2,3} at the
beginning of the previous section, in 7.2.1.4—(2) and 7.2.1.4—(4). Those five
partitions can also be written more compactly in the form

123, 12(3, 13[2, 123, 1/2/3, (1)

using a vertical line to separate one block from another. In this list the elements
of each block could have been written in any order, and so could the blocks
themselves, because ‘13|2” and ‘31]2’ and ‘2|13’ and ‘2|31’ all represent the same
partition. But we can standardize the representation by agreeing, for example,
to list the elements of each block in increasing order, and to arrange the blocks in
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increasing order of their smallest elements. With this convention the partitions
of {1,2,3,4} are

1234, 1234, 124|3, 12|34, 12|34, 134]2, 13]24, 13|2/4,

2
14]23, 1|234, 1]23]4, 14[2|3, 1|24]3, 1]2]34, 1]2/3/4, (2)

obtained by placing 4 among the blocks of (1) in all possible ways.

Set partitions arise in many different contexts. Political scientists and
economists, for example, often see them as “coalitions”; computer system de-
signers may consider them to be “cache-hit patterns” for memory accesses;
poets know them as “rhyme schemes” (see exercises 34-37). We saw in Section
2.3.3 that any equivalence relation between objects namely any binary relation
that is reflexive, symmetric, and transitive  defines a partition of those objects
into so-called “equivalence classes.” Conversely, every set partition defines an
equivalence relation: If IT is a partition of {1,2,...,n} we can write

j = k (modulo IT) (3)

whenever j and k belong to the same block of IT.

One of the most convenient ways to represent a set partition inside a com-
puter is to encode it as a restricted growth string, namely as a string ajas ... a,
in which we have

a1 =0 and ajy1 <1+ max(a,...,a;)forl<j<mn. (4)

The idea is to set a; = a if and only if j = k, and to choose the smallest
available number for a; whenever j is smallest in its block. For example, the
restricted growth strings for the fifteen partitions in (2) are respectively

0000, 0001, 0010, 0011, 0012, 0100, 0101, 0102,
0110, 0111, 0112, 0120, 0121, 0122, 0123.

(5)

This convention suggests the following simple generation scheme, due to George
Hutchinson [CACM 6 (1963), 613 614]:

Algorithm H (Restricted growth strings in lezicographic order). Given n > 2,
this algorithm generates all partitions of {1,2,...,n} by visiting all strings
ajas...a, that satisfy the restricted growth condition (4). We maintain an
auxiliary array bibs...b,, where bj1; = 1+ max(as,...,a;); the value of b, is
actually kept in a separate variable, m, for efficiency.

H1. [Initialize.] Set aj...anp < 0...0,by...by—1 < 1...1, and m « 1.

H2. [Visit.] Visit the restricted growth string a;...a,, which represents a
partition into m + [a,, = m] blocks. Then go to H4 if a,, = m.

H3. [Increase a,.] Set a, < a, + 1 and return to H2.

H4. [Find j.] Set j < n — 1; then, while a; = b;, set j < j — 1.
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H5. [Increase a;.] Terminate if j = 1. Otherwise set a; + a; + 1.

H6. [Zero out ajt1...a,.] Set m < b; + [a; =b;] and j < j + 1. Then, while
Jj<m,set a;j <0, bj <~ m, and j < j + 1. Finally set a,, <~ 0 and go back
to H2. 1|

Exercise 47 proves that steps H4-H6 are rarely necessary, and that the loops
in H4 and H6 are almost always short. A linked-list variant of this algorithm
appears in exercise 2.

Gray codes for set partitions. One way to pass quickly through all set
partitions is to change just one digit of the restricted growth string ay ...a, at
each step, because a change to a; simply means that element 5 moves from one
block to another. An elegant way to arrange such a list was proposed by Gideon
Ehrlich [JACM 20 (1973), 507-508]: We can successively append the digits

0,m, m—1, ..., 1 or 1, ...,m—1,m,0 (6)

to each string a;...a,_1 in the list for partitions of n — 1 elements, where
m = 1+ max(a,...,a,_1), alternating between the two cases. Thus the list ‘00,
01’ for n = 2 becomes ‘000, 001, 011, 012, 010’ for n = 3; and that list becomes

0000, 0001, 0011, 0012, 0010, 0110, 0112, 0111,

0121, 0122, 0123, 0120, 0100, 0102, 0101 (7

when we extend it to the case n = 4. Exercise 14 shows that Ehrlich’s scheme
leads to a simple algorithm that achieves this Gray-code order without doing
much more work than Algorithm H.

Suppose, however, that we aren’t interested in all of the partitions; we might
want only the ones that have exactly m blocks. Can we run through this smaller
collection of restricted growth strings, still changing only one digit at a time?
Yes; a very pretty way to generate such a list has been discovered by Frank
Ruskey [Lecture Notes in Comp. Sci. 762 (1993), 205-206]. He defined two
such sequences, A,,,, and A, ., both of which start with the lexicographically
smallest m-block string 0"~™01...(m—1). The difference between them, if
n > m + 1, is that A,,, ends with 01...(m—1)0"""™ while A}, ends with

0m~™=101...(m—1)0. Here are Ruskey’s recursive rules, when 1 < m < n:

A (m=1), AR (m-1),..., AR 1 A, 0, if m is even;
An(ntr) = S " w (8)
Al S(m=1), A, (m=1),...,AE 1,40, if m is odd;

(mfl) mn mn

(m—1),A,,,(m—1),...,A,,,1, AR 0, if m is even;

) mn I mn =)

Al
(m—1)n
A:n(n+1) = { (9)

A(mil)n(mfl), AR (m—1),...,A,,,1,AE 0, if mis odd.

) mmn =)

Of course the base cases are simply one-element lists,

Ay, =A, ={0" and A, ={01...(n—1)}. (10)
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28 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.5

With these definitions the {g} = 25 partitions of {1,2,3,4,5} into three blocks
are
00012, 00112, 01112, 01012, 01002, 01102, 00102,
00122, 01122, 01022, 01222, 01212, 01202,
01201, 01211, 01221, 01021, 01121, 00121,
00120, 01120, 01020, 01220, 01210, 01200.

(See exercise 17 for an efficient implementation.)

In Ehrlich’s scheme (7) the rightmost digits of a1 ...a, vary most rapidly,
but in Ruskey’s scheme most of the changes occur near the left. In both cases,
however, each step affects just one digit a;, and the changes are quite simple:
Either a; changes by +1, or it jumps between the two extreme values 0 and
1+ max(ai,...,a;j—1). Under the same constraints, the sequence A,,, A5, ...,

A! . runs through all partitions, in increasing order of the number of blocks.

(11)

The number of set partitions. We’ve seen that there are 5 partitions of
{1,2,3} and 15 of {1,2,3,4}. A quick way to compute these counts was dis-
covered by C. S. Peirce, who presented the following triangle of numbers in the
American Journal of Mathematics 3 (1880), page 48:

1
2 1
5 3 2

15 10 7 5 (12)

52 37 27 20 15
203 151 114 87 67 52

Here the entries w,,1, @2, ..., @Wnn of the nth row obey the simple recurrence
Wnk = T(n-1)k+Tnk+1) if 1 <k < n; Wnn = @W(n-1)1 if n > 1 (13)

and wi; = 1. Peirce’s triangle has many remarkable properties, some of which
are surveyed in exercises 26-31. For example, w,; is the number of partitions
of {1,2,...,n} in which k is the smallest of its block.

The entries on the diagonal and in the first column of Peirce’s triangle, which
tell us the total number of set partitions, are commonly known as Bell numbers,
because E. T. Bell wrote several influential papers about them [AMM 41 (1934),
411-419; Annals of Math. 35 (1934), 258-277; 39 (1938), 539-557]. We shall
denote Bell numbers by w,,, following the lead of Louis Comtet, in order to avoid
confusion with the Bernoulli numbers B,,. The first few cases are

n=01234 5 6 7 8 9 10 11 12
wp,=11 2 5 15 52 203 877 4140 21147 115975 678570 4213597

Notice that this sequence grows rapidly, but not as fast as n!; we will prove below
that w,, = ©(n/logn)™.
The Bell numbers w,, = @, for n > 0 must satisfy the recurrence formula

v = =t (ot (s = S (mne
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7.2.1.5 GENERATING ALL SET PARTITIONS 29

because every partition of {1,...,n + 1} is obtained by choosing k elements of
{1,...,n} to put in the block containing n+1 and by partitioning the remaining
elements in w,,_j ways, for some k. This recurrence, found by Yoshisuke Matsu-
naga in the 18th century (see Section 7.2.1.7), leads to a nice generating function,

ad 2" o
M) = 3w = e (15)
n=0 :

discovered by W. A. Whitworth [Choice and Chance, 3rd edition (1878), 3.XXIV].
For if we multiply both sides of (14) by z"/n! and sum on n we get

, e prg e Zk o ,m
— I ~ I R
IT'(z) = an+1 ol (Z k!) <Z wmm!) = e*1I(2),
n=0 k=0 m=0

and (15) is the solution to this differential equation with I7(0) = 1.

The numbers w,, had been studied for many years because of their curious
properties related to this formula, long before Whitworth pointed out their
combinatorial connection with set partitions. For example, we have

nl n!nmekz 1 k™
w, = —[2"]e Z;[Z]kz_%k!ZEZE (16)

e
k=0

[Mat. Sbornik 3 (1868), 62; 4 (1869), 39; G. Dobinski, Archiv der Math. und
Physik 61 (1877), 333-336; 63 (1879), 108-110]. Christian Kramp discussed
the expansion of e¢” in Der polynomische Lehrsatz, ed. by C. F. Hindenburg
(Leipzig: 1796), 112-113; he mentioned two ways to compute the coefficients,
namely either to use (14) or to use a summation of p(n) terms, one for each
ordinary partition of n. (See Arbogast’s formula, exercise 1.2.5 21. Kramp,
who came close to discovering that formula, seemed to prefer his partition-based
method, not realizing that it would require more than polynomial time as n got
larger and larger; and he computed 116015, not 115975, for the coefficient of 21°.)

* Asymptotic estimates. We can learn how fast w,, grows by using one of the
most basic principles of complex residue theory: If the power series > ;- apz®
converges whenever |z| < r, then

1 ag + a1z + agz? + - -

In_1 = — d
Ap—1 o on 2, (17)

if the integral is taken along a simple closed path that goes counterclockwise
around the origin and stays inside the circle [2| = r. Let f(2) = Y jo,agz® ™"
be the integrand. We're free to choose any such path, but special techniques
often apply when the path goes through a point zg at which the derivative f’(zq)
is zero, because we have

f”(ZO)

flzo+e€e®) = flzo0) + 'TEQCM) +0(€) (18)

in the vicinity of such a point. If, for example, f(z9) and f"(zo) are real and
positive, say f(z9) = w and f”(z9) = 2v, this formula says that the value of
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30 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.5

Rf(z0)
) Fig. 33. The behavior of an analytic
z0—¢€, /.Z}—-HE . function near a saddle point.
20 zo+€
zZo—1€

f(z0 £ €) is approximately u + ve? while f(zq % ie€) is approximately u — veZ. If 2
moves from zg — i€ to zg + i€, the value of f(z) rises to a maximum value u, then
falls again; but the larger value «+wve? occurs both to the left and to the right of
this path. In other words, a mountaineer who goes hiking on the complex plane,
when the altitude at point z is Rf(2), encounters a “pass” at zp; the terrain
looks like a saddle at that point. The overall integral of f(z) will be the same
if taken around any path, but a path that doesn’t go through the pass won’t be
as nice because it will have to cancel out some higher values of f(z) that could
have been avoided. Therefore we tend to get best results by choosing a path that
goes through zg, in the direction of increasing imaginary part. This important
technique, due to P. Debye [Math. Annalen 67 (1909), 535 558], is called the
“saddle point method.”

Let’s get familiar with the saddle point method by starting with an example
for which we already know the answer:

1 1 e
— = — ¢ —dz. 1
(n—1)! omi | o 7 (19)
Our goal is to find a good approximation for the value of the integral on the right
when n is large. It will be convenient to deal with f(z) = e%/2" by writing it as
e9(*) where g(z) = z—nln z; then the saddle point occurs where ¢'(z9) = 1-n/z
is zero, namely at zg = n. If z = n + ¢t we have

+Z
2 it t4 it®

= — 1 R R RN —
o 2n+3n2+4n3 5n4

q(k)

because g*¥)(2) = (=1)¥(k — 1)!n/2* when k > 2. Let’s integrate f(z) on a
rectangular path from n — 4m to n +im to —nm + im to —n — im to n — im:
1 —n
— :—/ f(n+it) df—i—— f(t+im)dt
i

2ms "

—m

, 1 [ .
+§ f(—n+lt)dt+%/_nf(t—zm)dt.
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7.2.1.5 GENERATING ALL SET PARTITIONS 31

Clearly | f(z)| <27 f(n) on the last three sides of this path if we choose m = 2n,
because |e*| = ™% and |z| > max(Rz, Iz); so we're left with

1 idz — i " eg(n+it)dt_+_0<nen )

% " 21 2npn

Now we fall back on a technique that we’ve used several times before —
for example to derive Eq. 5.1.4 (53): If f(¢) is a good approximation to f(t)
when ¢ € A, and if the sums ZteB\A f(t) and ZtEC\A f(t) are both small, then

Ztecf( ) is a good approximation to »,.p f(t). The same idea applies to
integrals as well as sums. [This general method, introduced by Laplace in 1782,
is often called “trading tails”; see CMath §9.4.] If |t| < n'/?*¢ we have

. t2 't3
eg(n+zt) — exp(g(n) - 4+ w + .- )

2n  3n2
n t2 t3 t4
— e_exp<7__+_ ¢ +—+O( 5e¢— 3/2))
n" 3n?

n 13 4 6
_ &t en) (1 n L n L _F O(n%*sm))_
And when |t| > n!/?*¢ we have

—2e
00 < (a4 in /) = O o ( 21 e )) = 0( S
e n+in = mexp(—5n n = s .
Furthermore the incomplete gamma function

[e’e] 2e
/ o=t/ (2n)k gy _ Q(k—l)/Qn(k-i-l)/?F(k t1n ) = OmOWe=r*72)
1/2+e 2 72

is negligible. Thus we can trade tails and obtain the approximation

z n o] 43 4 6
L e ds — e / e_t2/(2n) <1 + it 4 t— t + O( 95—3/2)) dt

omi | zn 2rnn 3n? 4n3 18n4

e <I+i1+11
2 \0 T 3p2 73 T g3t 184

where [, = ffcoc et/ ¢k gt Of course I, = 0 when k is odd. Otherwise we
can evaluate I by using the well-known fact that

[ D(@+1)/2)

— _I4+0(n 9573/2)>_/

20 g,
. 7 dt = a(21+1)/2 2(1 (2l+1)/2 H (20)
when a > 0; see exercise 39. Putting everything together gives us, for all € > 0,
the asymptotic estimate

L = e’ i _ E 9e¢—3/2 )
(n—1)"  /2rpn—1/2 <1 +0+ +0(n )); (21)

dn  18n
this result agrees perfectly with Stirling’s approximation, which we derived by
quite different methods in 1.2.11.2—(1g). Further terms in the expansion of
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32 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.5

g(n + it) would allow us to prove that the true error in (21) is only O(n~?2),
because the same procedure yields an asymptotic series of the general form
e/ (V2rn" V) (1 + c1/n+ca/n? + -+ + ¢y /0™ + O(n~™71)) for all m.

Our derivation of this result has glossed over an important technicality: The
function In z is not single-valued along the path of integration, because it grows
by 2mi when we loop around the origin. Indeed, this fact underlies the basic
mechanism that makes the residue theorem work. But our reasoning was valid
because the ambiguity of the logarithm does not affect the integrand f(z) =
e?/z" when n is an integer. Furthermore, if n were not an integer, we could
have adapted the argument and kept it rigorous by choosing to carry out the
integral (19) along a path that starts at —oo, circles the origin counterclockwise
and returns to —oc. That would have given us Hankel’s integral for the gamma
function, Eq. 1.2.5 (17); we could thereby have derived the asymptotic formula

”” 1

1 1 e e
L (L o)
[(z) 27”37{2-” ‘ \/271'.7#‘*1/2( s TOET) (22)

valid for all real z as z — oc.

So the saddle point method seems to work although it isn’t the simplest
way to get this particular result. Let’s apply it now to deduce the approximate
size of the Bell numbers:

o/ e S S 8 .
(n—1)! ZWie%e dz,  g(z) =€ —nlnz. (23)

A saddle point now occurs at the point zg = £ > 0, where

tet = n. (24)

(We should actually write £(n) to indicate that £ depends on n; but that would
clutter up the formulas below.) Let’s assume for the moment that a little bird
has told us the value of £&. Then we want to integrate on a path where z = £ +it,
and we have

@rers @¢-2 (@Es,

g(f—}—it):ef*n(lnf* TR 31 &3 41 ¢

By integrating on a suitable rectangular path, we can prove as above that the
integral in (23) is well approximated by

ne—1/2

k—1 k
/ 1/2eg(f)fnagtz7nia3t3+na4t4+--- dt, ag = 5 +(_1) (k_1>'
J—nE—

P i (25)

kefk/2)

see exercise 43. Noting that axt* is O(n inside this integral, we obtain an

asymptotic expansion of the form

ef—1
- 1! b b bm 1 m+1
o= e (4 e e ()

e 1 a1 1) nm
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where (¢ + 1)%Fby is a polynomial of degree 4k in &. (See exercise 44.) For
example,

261 —36% —2062 — 186 +2

by =—

1 24(£+1)3 3 (27)
. 4€8 —156£7 — 69566 —696£° +109264 4+2916£3 +197262 726 +4 (28)

= . 2

? 1152(£+1)8

Stirling’s approximation (21) can be used in (26) to prove that
1 1 log n\2
Wp_1 :exp(n(f— 1+ g) —&— Eln(f—kl) —1- % +O< Orgln> >; (29)

and exercise 45 proves the similar formula

Wn :exp<n<§— 1+ %) - %ln(§+ 1)—-1- % _|_O<107g1n>2>. (30)

Consequently we have w,, /@,_1 ~ ¢ = n/¢. More precisely,

= 2(1vo(3), o

But what is the asymptotic value of £? The definition (24) implies that
E=lnn—Iné=Inn—In(Inn —1n¢)

zlnnflnlnn+0<10glﬂ); (32)
logn

and we can go on in this vein, as shown in exercise 49. But the asymptotic
series for £ developed in this way never gives better accuracy than O(1/(logn)™)
for larger and larger m; so it is hugely inaccurate when multiplied by n in
formula (29) for @, _1 or formula (30) for w,.

Thus if we want to use (29) or (30) to calculate good numerical approxima-
tions to Bell numbers, our best strategy is to start by computing a good numerical
value for &, without using a slowly convergent series. Newton’s rootfinding
method, discussed in the remarks preceding Algorithm 4.7N, yields the efficient
iterative scheme

&k
&+ 1

which converges rapidly to the correct value. For example, when n = 100 the
fifth iterate

& = 3.38563 01402 90050 18488 82443 64529 72686 74917— (34)

& = lnn, Shy1 = (14+& —In&), (33)

is already correct to 40 decimal places. Using this value in (29) gives us successive
approximations

(1.6176088053...,1.6187421339...,1.6187065391 ...,1.6187060254...) x 10

when we take terms up to bg, by, ba, b3 into account; the true value of wgg is the
115-digit integer 16187060274460 . ..20741.
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. - 100
Fig. 34. The Stirling numbers { ™ }
are greatest near m = 28 and m = 29.
m 0 10 20 30 40 50 60 70 80 90

Now that we know the number of set partitions w,,, let’s try to figure out
how many of them have exactly m blocks. It turns out that nearly all partitions
of {1,...,n} have roughly n/¢ = e¢ blocks, with about ¢ elements per block.
For example, Fig. 34 shows a histogram of the numbers {::L} when n = 100 and
et ~ 29.54.

We can investigate the size of {:I} by applying the saddle point method to
formula 1.2.9-(23), which states that

n n! n z m n! 1 mln(e*—1)—(n nz
{1} =2 - Zmﬁf‘fl( DEmz e (35)

Let a = (n+ 1)/m. The function g(z) = a !In(e* — 1) — In 2z has a saddle point

at o > 0 when
o

LA 6
T = @ (36)

Notice that a > 1 for 1 < m < n. This special value o is given by
c=a—-p#, B=T(ae "), (37)

where T is the tree function of Eq. 2.3.4.4—(30). Indeed, 3 is the value between
0 and 1 for which we have
Be P = ae™®; (38)

the function ze ® increases from 0 to e ! when z increases from 0 to 1, then it

decreases to 0 again. Therefore § is uniquely defined, and we have

- «
e = - 39
3 (39)
All such pairs a and S are obtainable by using the inverse formulas
oe? o
a=—— b= (40)

for example, the values @ = In4 and 8 = In 2 correspond to o = In 2.
We can show as above that the integral in (35) is asymptotically equivalent to
an integral of e("t1)9(2) dz over the path z = o +it. (See exercise 58.) Exercise 56

100
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proves that the Taylor series about z = o,

2 1— 0 i\ k
oo +it) = (o)~ S0P R o), (41)
k=3
has the property that
|g(k)(g)‘ <2k —1)!(1-B)/c" for all k& > 0. (42)

Therefore we can conveniently remove a factor of N = (n + 1)(1 — ) from the
power series (n + 1)g(z), and the saddle point method leads to the formula

(o= e (o))

as N — oo, where (1 — 3)?*b;, is a polynomial in a and B. (The quantity
(@ — B)"~™B™ in the denominator comes from the fact that (e — 1)™/o™ =

(/B —1)"/(a— B)", by (37) and (39).) For example,

6— 8% —40f? — a?f  5(2— B — ap)?
8(1-5) 24(1-p)
Exercise 57 proves that N — oo if and only if n — m — oco. An asymptotic ex-

pansion for {T"n} similar to (43), but somewhat more complicated, was first
obtained by Leo Moser and Max Wyman, Duke Math. J. 25 (1957), 29-43.
Formula (43) looks a bit scary because it is designed to apply over the

by = (44)

entire range of block counts m. Significant simplifications are possible when m
is relatively small or relatively large (see exercises 60 and 61); but the simplified
formulas don’t give accurate results in the important cases when {;} is largest.
Let’s look at those crucial cases more closely now, so that we can account for
the sharp peak illustrated in Fig. 34.

Let £eé = n as in (24), and suppose m = exp(€ + r/v/n) = ne™/V7 /¢: we
will assume that |r| < n¢, so that m is near ef. The leading term of (43) can be
rewritten

n! 1

m!(a =B mpm\2x(n+ 1)1 - B)
m® (n+ 1n)J!r1 ent! ( _ ﬁ)mfﬂ e (45)
m! (n+1)" " \/27(n + 1) a V1-p

and Stirling’s approximation for (n 4 1)! is evidently ripe for cancellation in the
midst of this expression. With the help of computer algebra we find

mt 1 exp<n<§fl+l)*%<§+r2+ﬁ)

m! V2T £ 3
r3 r3 1 . )
(3% " 5e) 77 rorth);
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and the relevant quantities related to « and (3 are

B_¢ g
o n nyn

+O(En* )

2
e*ﬂm — exp(—{ _ % + 0(631’},2671));

<1 - §>mfn = exp<§ -1+ 77“(52 :/57 D) + O(fgn%*l)).

Therefore the overall result is

{e£+:l/ﬁ}:\/%—ﬁexp<n<§—l+é> —5_1
7§+1<T+3§(2§+3)+(5+2
2¢ 6(¢ + 1)v/n

The squared expression on the last line is zero when

__ &((26+3)
2(6+1)v/n

thus the maximum occurs when the number of blocks is

n 3+2£+O<£>.

)T2)2+O(§3n4571)>. (46)

_|_ 0(5271_3/2);

£ 242

By comparing (47) to (30) we see that the largest Stirling number {:l} for a

- (47)

given value of n is approximately equal to {w, /v 2mn.

The saddle point method applies to problems that are considerably more
difficult than the ones we have considered here. Excellent expositions of advanced
techniques can be found in several books: N. G. de Bruijn, Asymptotic Methods
in Analysis (1958), Chapters 5 and 6; F. W. J. Olver, Asymptotics and Special
Functions (1974), Chapter 4; R. Wong, Asymptotic Approximations of Integrals
(2001), Chapters 2 and 7.

*Random set partitions. The sizes of blocks in a partition of {1,...,n}
constitute by themselves an ordinary partition of the number n. Therefore
we might wonder what sort of partition they are likely to be. Figure 30 in
Section 7.2.1.4 showed the result of superimposing the Ferrers diagrams of all
p(25) = 1958 partitions of 25; those partitions tended to follow the symmetrical
curve of Eq. 7.2.1.4—(49). By contrast, Fig. 35 shows what happens when we
superimpose the corresponding diagrams of all w5 ~ 4.6386 x 10'® partitions
of the set {1,...,25}. Evidently the “shape” of a random set partition is quite
different from the shape of a random integer partition.

This change is due to the fact that some integer partitions occur only a few
times as block sizes of set partitions, while others are extremely common. For
example, the partition n = 14+ 14 --- + 1 arises in only one way, but if n is
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ef — 11

Fig. 35. The shape of a random
set partition when n = 25.

even the partition n =242+ .- 42 arises in (n — 1)(n — 3) ... (1) ways. When
n = 25, the integer partition

25 = 4+4+3+3+3+2+2+2+1+1

actually occurs in more than 2% of all possible set partitions. (This particular
partition turns out to be most common in the case n = 25. The answer to
exercise 1.2.5-21 explains that exactly

n!

1ot gl 20e2 ¢ I plen (48)

set partitions correspond to the integer partitionn =cy-14¢o- 2+ 4 ¢, n.)
We can easily determine the average number of k-blocks in a random par-

tition of {1,...,n}: If we write out all w,, of the possibilities, every particular
k-element block occurs exactly w,, _ times. Therefore the average number is
n\ wWn—k
( & ) : (49)
wWp

An extension of Eq. (31) above, proved in exercise 64, shows moreover that
Wn—k 5)’“( kE(kE +k+1) <k3>> . 9
= (= 1+ —————+0(—= fk<n?/3
W, <n + 2(&4+1)2n + n?2 BEsn (50)
where £ is defined in (24). Therefore if, say, k < n¢, formula (49) simplifies to

SO (el - Soror

n n

There are, on average, about ¢ blocks of size 1, and £2/2! blocks of size 2, etc.

The variance of these quantities is small (see exercise 65), and it turns out
that a random partition behaves essentially as if the number of k-blocks were
a Poisson deviate with mean ¢¥/k!. The smooth curve shown in Fig. 35 runs
through the points (f(k) k) in Ferrers-like coordinates, where

Fk) = €Y (k+ 1)1+ €42/ (k +2)1 + €49/ (k +3)! + - (52)
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is the approximate distance from the top line corresponding to block size k > 0.
(This curve becomes more nearly vertical when n is larger.)

The largest block tends to contain approximately e£ elements. Furthermore,
the probability that the block containing element 1 has size less than & + a/€
approaches the probability that a normal deviate is less than a. [See John
Haigh, J. Combinatorial Theory A13 (1972), 287-295; V. N. Sachkov, Prob-
abilistic Methods in Combinatorial Analysis (1997), Chapter 4, translated from
a Russian book published in 1978; Yu. Yakubovich, J. Mathematical Sciences 87
(1997), 4124 4137, translated from a Russian paper published in 1995; B. Pittel,
J. Combinatorial Theory AT9 (1997), 326-359.]

A nice way to generate random partitions of {1,2,...,n} was introduced by
A. J. Stam in the Journal of Combinatorial Theory A35 (1983), 231-240: Let
M be a random integer that takes the value m with probability

m"

e (53)

these probabilities sum to 1 because of (16). Once M has been chosen, generate
a random n-tuple X; X5 ... X,,, where each X; is uniformly and independently
distributed between 0 and M — 1. Then let ¢ = j in the partition if and only if
X; = X;. This procedure works because each k-block partition is obtained with
probability 3" _ (m%/m™)pp, = 1/w,.

For example, if n = 25 we have

pg ~ .00000372 Py ~ 15689865 p14 ~ .04093663 P19 ~ .00006068
ps ~ 00019696 Pp1o ~ .21855285 p1s ~ .01531445 pao ~ .00001094
pe ~ 00313161 p11 ~ .21526871 p1e ~ .00480507 pa21 ~ .00000176
pr ~ .02110279 p12 ~ 15794784 p17 ~ 00128669 P22 ~ .00000026
ps ~ .07431024 p13 ~ .08987171 p1s ~ .00029839 pa23 ~ .00000003

and the other probabilities are negligible. So we can usually get a random
partition of 25 elements by looking at a random 25-digit integer in radix 9, 10,
11, or 12. The number M can be generated using 3.4.1-(3); it tends to be
approximately n/¢ = e¢ (see exercise 67).

*Partitions of a multiset. The partitions of an integer and the partitions of
a set are just the extreme cases of a far more general problem, the partitions of
a multiset. Indeed, the partitions of n are essentially the same as the partitions
of {1,1,...,1}, where there are n 1s.

From this standpoint there are essentially p(n) different multisets with n el-
ements. For example, five different cases of multiset partitions arise when n = 4:
1234, 123|4, 1243, 12|34, 12|3|4, 134|2, 13|24, 13|2/4,
14]23, 14(2|3, 1234, 1]23]4, 1/24/3, 1]2|34, 1/2|3]4;
1123, 112(3, 113[2, 11[23, 1123, 1231, 12]13, 12|1]3, 13|1]2, 11|23, 1/1|2]3;
1122, 112[2, 11|22, 11]2|2, 122|1, 12|12, 12[1]2, 1/1]22, 1|1|2|2;
1112, 111[2, 112[1, 11]12, 11]1)2, 12[1|1, 1|1|1[2;
1111, 11101, 1111, 1111, 1111 (54)
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When the multiset contains m distinct elements, with nq of one kind, ny of
another, ..., and n,, of the last, we write p(ni,na,...,ny,) for the total number
of partitions. Thus the examples in (54) show that

p(1,1,1,1) =15, p(2,1,1) =11, p(2,2)=9, p3,1)=7, p(4)=5. (55)

Partitions with m = 2 are often called “bipartitions”; those with m = 3 are
“tripartitions”; and in general these combinatorial objects are known as multi-
partitions. The study of multipartitions was inaugurated long ago by P. A.
MacMahon [Philosophical Transactions 181 (1890), 481 536; 217 (1917), 81
113; Proc. Cambridge Philos. Soc. 22 (1925), 951-963]; but the subject is so vast
that many unsolved problems remain. In the remainder of this section and in
the exercises below we shall take a glimpse at some of the most interesting and
instructive aspects of the theory that have been discovered so far.

In the first place it is important to notice that multipartitions are essentially
the partitions of vectors with nonnegative integer components, namely the ways
to decompose such a vector as a sum of such vectors. For example, the nine
partitions of {1,1,2,2} listed in (54) are the same as the nine partitions of the
bipartite column vector 2, namely
2 20 20 200

11 11

0
2> ’ 02 0 1

. 0011 (56)
(We drop the + signs for brevity, as in the case of one-dimensional integer
partitions.) Each partition can be written in canonical form if we list its parts
in nonincreasing lexicographic order.

A simple algorithm suffices to generate the partitions of any given multiset.
In the following procedure we represent partitions on a stack that contains triples
of elements (¢, u,v), where ¢ denotes a component number, u > 0 denotes the
yet-unpartitioned amount remaining in component ¢, and v < u denotes the
¢ component of the current part. Triples are actually kept in three arrays
(co,c1y...), (ug,u1,...), and (vg,v1,...) for convenience, and a “stack frame”
array (fo, f1,-..) is also maintained so that the (I + 1)st vector of the partition
consists of elements f; through f;11 — 1 in the ¢, u, and v arrays. For example,

the following arrays would represent the bipartition 3221199:

11 11 11 11
3 20 11> 101> 00

jlo 12 3/4/5 6|7 8|9 10
;1 21 2/ 11 2/ 1 2 2 2
w; 9 9. 6 8 42 6 1 5 4 1
v, '3 1,2 22 1 1 1 1|3 1 (57)
o —
=) [a] Al 0 ~ =] —
I I I I HRER
S N Qe - e ey

Algorithm M (Multipartitions in decreasing lexicographic order). Given a

multiset {nq - 1,...,n,, - m}, this algorithm visits all of its partitions using
arrays fofi...fn, CoC1...Cn, UgUy...Upn, and vouy...v, as described above,
where n = ny + - - - + n,,. We assume that m > 0 and nq,...,n, > 0.
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M1. [Initialize.] Set ¢; <= j + 1 and u; < v; < nj4q for 0 < j < m; also set
foa<+ 1<+ 0and f; + b+ m. (In the following steps, the current
stack frame runs from a to b — 1, inclusive.)

M2. [Subtract v from w.] (At this point we want to find all partitions of the
vector u in the current frame, into parts that are lexicographically < v.
First we will use v itself.) Set j « a and k < b. Then while j < b do the
following: Set uy <= u; —v;, and if up, > v; set ¢y <= ¢j, vp < v, k < k+1,
J < j+ 1. But if uy is less than v; after it has been decreased, the action
changes: First set ¢y < cj, vp + ug, and k <= k + 1 if u; was nonzero;
then set j < j + 1. While j < b, set uy < u; — vj, c < ¢j, v < ug, and
k < k+1if uj # v;; then again j < j + 1, until j = b.

M3. [Push if nonzero.] If k > b, set a < b, b+ k, l + 1+ 1, fij11 + b, and
return to M2.

MA4. [Visit a partition.] Visit the partition represented by the | + 1 vectors
currently in the stack. (For 0 < k <, the vector has v, in component c;,
for fr <j < frt1.)

MS5. [Decrease v.] Set j <—b—1, and if v; = 0 set j < j — 1 until v; > 0. Then
if j = a and v; = 1, go to M6. Otherwise set v; < v; — 1, and v < uy, for
j <k <b. Return to M2.

MS6. [Backtrack.] Terminate if I = 0. Otherwise set | < 1 — 1, b« a, a + fi,
and return to M5. |

The key to this algorithm is step M2, which decreases the current residual vector,
u, by the largest permissible part, v; that step also decreases v, if necessary, to
the lexicographically largest vector < v that is less than or equal to the new
residual amount in every component.

Let us conclude this section by discussing an amusing connection between
multipartitions and the least-significant-digit-first procedure for radix sorting
(Algorithm 5.2.5R). The idea is best understood by considering an example. See
Table 1, where Step (0) shows nine 4-partite column vectors in lexicographic
order. Serial numbers (1)—(@ have been attached at the bottom for identifica-
tion. Step (1) performs a stable sort of the vectors, bringing their fourth (least
significant) entries into decreasing order; similarly, Steps (2), (3), and (4) do a
stable sort on the third, second, and top rows. The theory of radix sorting tells
us that the original lexicographic order is thereby restored.

Suppose the serial number sequences after these stable sorting operations are
respectively ay, asay, asaszay, and ajasasay, where the o’s are permutations;
Table 1 shows the values of oy, a3, as, and a; in parentheses. And now comes
the point: Wherever the permutation a; has a descent, the numbers in row j
after sorting must also have a descent, because the sorting is stable. (These
descents are indicated by caret marks in the table.) For example, where a3 has
8 followed by 7, we have 5 followed by 3 in row 3. Therefore the entries a; ... ag in
row 3 after Step (2) are not an arbitrary partition of their sum; they must satisfy

ay > az > a3 > aq4 > as > dg > a7 > ag > dg. (58)
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Table 1
RADIX SORTING AND MULTIPARTITIONS

Step (0): Original partition Step (1): Sort row 4 Step (2): Sort row 3
655432100 064350521 065251430
321045642 230424156 232516044
66311520T7 761160352 766532110
421331125 543322111 542111332
DPEVWEEOE® OOOBREGE® OOROROOWEE
as=(9,145,28367) az=(12528,79,346)

Step (3): Sort row 2 Step (4): Sort row 1

123060554 6554,3,2,100

6,544,3,2210 321045642

251067631 663115207

113245213 421331125

OEGOROORE® OPRVWEEOE®

a=(6,489,2,1357) a1r=(57289,3,2,146)

But the numbers (a1 —2, as—2, a5 —2, a4—2, as—1, ag—1, az, ag, ag) do form an
essentially arbitrary partition of the original sum, minus (4+ 6). The amount of
decrease, 4 + 6, is the sum of the indices where descents occur; this number is
what we called ind a3, the “index” of ag, in Section 5.1.1.

Thus we see that any given partition of an m-partite number into at most r
parts, with extra zeros added so that the number of columns is exactly », can
be encoded as a sequence of permutations i, ..., o, of {1,...,r} such that
the product ajy ... a,, is the identity, together with a sequence of ordinary one-
dimensional partitions of the numbers (ny — inday, ..., n, — ind ay,) into at
most r parts. For example, the vectors in Table 1 represent a partition of
(26,27,31,22) into 9 parts; the permutations a;, ..., oy appear in the table,
and we have (ind a1, ...,ind ay) = (15,10, 10, 11); the partitions are respectively

26—15 = (322111100), 27—10 = (332222210),
31—-10 = (544321110), 22—11 = (221111111).

Conversely, any such permutations and partitions will yield a multipartition
of (n1,...,ny). If r and m are small, it can be helpful to consider these
rI™~1 sequences of one-dimensional partitions when listing or reasoning about
multipartitions, especially in the bipartite case. [This construction is due to
Basil Gordon, J. London Math. Soc. 38 (1963), 459-464.]

A good summary of early work on multipartitions, including studies of
partitions into distinct parts and/or strictly positive parts, appears in a paper
by M. S. Cheema and T. S. Motzkin, Proc. Symp. Pure Math. 19 (Amer. Math.
Soc., 1971), 39-70.

EXERCISES
1. [20] (G. Hutchinson.) Show that a simple modification to Algorithm H will
generate all partitions of {1,...,n} into at most r blocks, given n and r > 2.
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> 2. [22] When set partitions are used in practice, we often want to link the elements
of each block together. Thus it is convenient to have an array of links Iy ...[,, and an
array of headers hi ...h: so that the elements of the jth block of a ¢t-block partition
are 73 > --- > i, where

i1 = hj, ’i2 = lil-, ey ik = lik—l? and lik = 0.

For example, the representation of 137|25|489|6 would have t = 4, l1 ...lg = 001020348,
and hl . h4 = 7596.

Design a variant of Algorithm H that generates partitions using this representation.

3. [M23] What is the millionth partition of {1,...,12} generated by Algorithm H?

v

4. [21] If z1...z, is any string, let p(z1...zn) be the restricted growth string that
corresponds to the equivalence relation j = k <= x; = z). Classify each of the
five-letter English words in the Stanford GraphBase by applying this p function; for
example, p(tooth) = 01102. How many of the 52 set partitions of five elements are rep-
resentable by English words in this way? What’s the most common word of each type?

5. [22] Guess the next elements of the following two sequences: (a) 0, 1, 1, 1, 12, 12,
12, 12, 12, 12, 100, 121, 122, 123, 123, ...; (b) 0, 1, 12, 100, 112, 121, 122, 123, ...

v

6. [25] Suggest an algorithm to generate all partitions of {1,...,n} in which there
are exactly c¢; blocks of size 1, ca blocks of size 2, etc.

7. [M20] How many permutations ai...an of {1,...,n} have the property that
ak—1 > ar > a; implies 7 > k?

8. [20] Suggest a way to generate all permutations of {1,...,n} that have exactly
m left-to-right minima.

9. [M20] How many restricted growth strings a1 .. .a, contain exactly k; occurrences
of j, given the integers ko, k1, ..., kn—17

10. [25] A semilabeled tree is an oriented tree in which the leaves are labeled with the
integers {1,...,k}, but the other nodes are unlabeled. Thus there are 15 semilabeled
trees with 5 vertices:

LA ARBIEAS A QDD D

Find a one-to-one correspondence between partitions of {1,...,n} and semilabeled
trees with n + 1 vertices.

> 11. [28] We observed in Section 7.2.1.2 that Dudeney’s famous problem send-+more =
money is a “pure” alphametic, namely an alphametic with a unique solution. His puzzle
corresponds to a set partition on 13 digit positions, for which the restricted growth
string p(sendmoremoney) is 0123456145217; and we might wonder how lucky he had to
be in order to come up with such a construction. How many restricted growth strings of
length 13 define pure alphametics of the form aiazasza4 + asasaras = agaipaiiaizaiz?

12. [MS31] (The partition lattice.) If IT and II' are partitions of the same set, we write
IT <X IT' if z = y (modulo IT) whenever z = y (modulo IT'). In other words, IT < IT'
means that IT’ is a “refinement” of IT, obtained by partitioning zero or more of the
latter’s blocks; and II is a “crudification” or coalescence of II', obtained by merging
zero or more blocks together. This partial ordering is easily seen to be a lattice, with
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IT v IT' the greatest common refinement of IT and IT', and with IT A IT' their least
common coalescence. For example, the lattice of partitions of {1,2, 3,4} is

if we represent partitions by restricted growth strings aia2aszas; upward paths in this
diagram take each partition into its refinements. Partitions with ¢ blocks appear on
level ¢ from the bottom, and their descendants form the partition lattice of {1,...,t}.

a) Explain how to compute IT V IT', given a; ...a, and a} ...a;,.

b) Explain how to compute IT A IT', given a, . ..a,, and aj ...a,.

c) When does IT' cover IT in this lattice? (See exercise 7.2.1.4 55.)

d) If IT has t blocks of sizes s1, ..., s¢, how many partitions does it cover?
e) If IT has t blocks of sizes s1, ..., st, how many partitions cover it?

f) True or false: If I1 V II' covers II, then II' covers II A I1'.

g) True or false: If IT' covers IT A IT', then IT V IT' covers II.

h) Let b(IT) denote the number of blocks of IT. Prove that

b(IT) + b(IT') < b(ITV II') + b(IT A IT').

13. [M28] (Stephen C. Milne, 1977.) If A is a set of partitions of {1,...,n}, its
shadow OA is the set of all partitions IT" such that IT covers IT' for some IT € A. (We
considered the analogous concept for the subset lattice in 7.2.1.3—(54).)

Let ITy, I, ... be the partitions of {1,...,n} into ¢ blocks, in lexicographic order
of their restricted growth strings; and let ITj, ITy, ... be the (t — 1)-block partitions,
also in lexicographic order. Prove that there is a function f,:(N) such that

8{]]1’.”7]]]\,}:{H{,.--,H}m(N)} fOI‘OSNS{Z‘}'

Hint: The diagram in exercise 12 shows that (f43(0),..., f13(6)) = (0,3,5,7,7,7,7).
14. [23] Design an algorithm to generate set partitions in Gray-code order like (7).
15. [M21] What is the final partition generated by the algorithm of exercise 147
16. [16] The list (11) is Ruskey’s Ass; what is Aj55?

17. [26] Implement Ruskey’s Gray code (8) for all m-block partitions of {1,...,n}.

18. [M46] For which n is it possible to generate all restricted growth strings a; ...an
in such a way that some a; changes by +1 at each step?

19. [28] Prove that there’s a Gray code for restricted growth strings in which, at each
step, some a; changes by either +1 or +2, when (a) we want to generate all w,, strings
a1 ...an; or (b) we want to generate only the {::L} cases with max(ai,...,an) = m—1.
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20. [17] Tf IT is a partition of {1,...,n}, its conjugate ITT is defined by the rule
j =k (modulo ITT) = n+l—j=n+1—-k (modulo IT).
Suppose IT has the restricted growth string 001010202013; what is the restricted growth
string of 1177
21. [M27] How many partitions of {1,...,n} are self-conjugate?
22. [M23] If X is a random variable with a given distribution, the expected value of
X" is called the nth moment of that distribution. What is the nth moment when X is
(a) a Poisson deviate with mean 1 (Eq. 3.4.1-(40))? (b) the number of fixed points of
a random permutation of {1,...,m}, when m > n (Eq. 1.3.3—(27))?
23. [HMS30] If f(z) =3 axz® is a polynomial, let f(w) stand for 3 axws.
a) Prove the symbolic formula f(w + 1) = wf(w). (For example, if f(x) is the
polynomial z?, this formula states that ws 4 201 + wo = ws.)
b) Similarly, prove that f(w + k) = @® f(w) for all positive integers k.
c) If p is prime, prove that w,1p = @n + @Wn41 (modulo p). Hint: Show first that
2 = 2P — .
d) Consequently w,+n = @, (modulo p) when N = pP Tl pP 24 4 p+1.
24. [HM35] Continuing the previous exercise, prove that the Bell numbers satisfy the
periodic law @,, | ,e—1 5 = @, (modulo p®), if p is an odd prime. Hint: Show that

2 = ge(x)+1 (modulo p°, p*~ g1 (x), ..., and pge_1(z)), where g;(z) = (:vpf:(;fl)pj.
25. [M27] Prove that @, /wn—1 < @Wnt1/@n < @n/wn-1+ 1.

26. [M22] According to the recurrence equations (13), the numbers wyj in Peirce’s
triangle count the paths from @k to @D in the infinite directed graph

Explain why each path from @D to @D corresponds to a partition of {1,...,n}.
27. [M385] A “vacillating tableau loop” of order n is a sequence of integer partitions
Ak = Qk10k20k3 - - . With ag1 > aka > ags > - -+ for 0 < k < 2n, such that Ao = A2, = €o
and \p = A\p_1 + (fl)ketk for 1 < k < 2n and for some tr > 0; here e; denotes the
unit vector 0°"110" "t when t > 0, and eg is all zeros.
a) List all the vacillating tableau loops of order 4. [Hint: There are 15 altogether.]
b) Prove that exactly w, vacillating tableau loops of order n have t2p_1 = 0.

28. [M25] (Generalized rook polynomials.) Consider an arrangement of a; + - - - + am
square cells in rows and columns, where row k contains cells in columns 1, ..., ag.
Place zero or more “rooks” into the cells, with at most one rook in each row and at
most one in each column. An empty cell is called “free” if there is no rook to its right
and no rook below. For example, Fig. 35 shows two such placements, one with four
rooks in rows of lengths (3,1,4,1,5,9,2,6,5), and another with nine on a 9 X 9 square
board. Rooks are indicated by solid circles; hollow circles have been placed above and
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to the left of each rook, thereby leaving the free cells blank.

olo| | olololofolo]e]o]o

o olo|eloolo| |olo

ole[ o] olololojole| |olo

: o|lo Z Z Z ; z ol|o : Z Fig' 35. Rook placements

olololelo] [ | || ole o o and free cells.
olololo|o|ofo|o]e

ololofofe] | ° o
ololofo]e

Let R(a1,...,an) be the polynomial in z and y obtained by summing z"y* over all

legal rook placements, where r is the number of rooks and f is the number of free cells;
for example, the left-hand placement in Fig. 35 contributes z*y'” to the polynomial
R(3,1,4,1,5,9,2,6,5).
a) Prove that we have R(ai,...,am) = R(ai,...,aj-1,0j41,05,0j4+2,...,am); In
other words, the order of the row lengths is irrelevant, and we can assume that
a; > -+ > an, as in a Ferrers diagram like 7.2.1.4—(13).

b) Ifai > -+ > am and if b1 ...b, = (a1 .. .am)T is the conjugate partition, prove
that R(al, e ,am) = R(bl, e ,bn)
¢) Find a recurrence for evaluating R(a1,...,amn) and use it to compute R(3,2,1).

d) Generalize Peirce’s triangle (12) by changing the addition rule (13) to
wnk(myy) = mzﬂ(’nfl)k(mvy) + YWn(k+1) (my)a 1< kE<n.

Thus le(xay) = T+Y, w32 (may) = $+£Cy+y2, W31($, y) = $2+2$y+$y2+y3, etc.
Prove that the resulting quantity wpx (z,y) is the rook polynomial R(a1,. .., an_1)
where a; =n —j — [j <k].

e) The polynomial wy1(z,y) in part (d) can be regarded as a generalized Bell number
wn(z,y), representing paths from @) to (1D in the digraph of exercise 26 that have
a given number of “x steps” to the northeast and a given number of “y steps” to
the east. Prove that

wn(m,y) — Z mn—l—max(al,...,an)ya1+---+an
ay...an
summed over all restricted growth strings a; ... a, of length n.

29. [M26] Continuing the previous exercise, let Rr(a1,...,am) = [z"] R(a1,...,am)
be the polynomial in y that enumerates free cells when r rooks are placed.
a) Show that the number of ways to place n rooks on an n X n board, leaving f cells
free, is the number of permutations of {1,...,n} that have f inversions. Thus, by
Eq. 5.1.1-(8) and exercise 5.1.2-16, we have

n

—N— _
Rn(n,...,n):n!y:H(1—|—y—|—---—|—yk .
k=1
. f_/H . .
b) What is R.(n,...,n), the generating function for r rooks on an m x n board?
c) If a1 > -+ > an, and t is a nonnegative integer, prove the general formula
LA ya3+mfj+t m t!,,
-4 000000 = ——— Ry k(ar,...,am).
I1 1—y g(tfk)!y k(@ ---ram)

j=1 k=0
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[Note: The quantity ¢!y /(t—k)!y = H?;&((l—yt’j)/(l—y)) is zero when k > ¢ > 0.
Thus, for example, when ¢ = 0 the right-hand side reduces to Ry, (a1,...,am). We

can compute Rpm, Rm—1, ..., Ro by successively setting t =0, 1, ..., m.]
d) Ifa, >ay > -+ >a, >0andad} > a) > --- > aj, > 0, show that we
have R(ay,ay...,a,) = R(al,ay,...,an,) if and only if the associated multisets

{a;+m,ay+m—1,...,a,+1} and {aj+m,ay+m—1,...,a;,+1} are the same.
30. [HM30] The generalized Stirling number {::L}q is defined by the recurrence

P AR Sl PSS Pl A

Thus {:L}q is a polynomial in ¢; and {::,}1 is the ordinary Stirling number {:L}, because
it satisfies the recurrence relation in Eq. 1.2.6-(46).
a) Prove that the generalized Bell number @, (z,y) = R(n—1,...,1) of exercise 28(e)
has the explicit form

et = D"

b) Show that generalized Stirling numbers also obey the recurrence

R A R ) L e e D (9L 42

¢) Find generating functions for {::;,}q’ generalizing 1.2.9—(23) and 1.2.9—(28).

31. [HM23] Generalizing (15), show that the elements of Peirce’s triangle have a
simple generating function, if we compute the sum

k Zk71

;w"’“ (n—k) (k-1

32. [M22] Let 6, be the number of restricted growth strings ai ...a, for which the
sum a1 + - - -+ an is even minus the number for which a1 + - + a, is odd. Prove that

on =(1,0,—1,-1,0,1) when nmod 6 = (1,2,3,4,5,0).

Hint: See exercise 28(e).
33. [M21] How many partitions of {1,2,...,n} have 1 £2,2#3, ..., k—1Zk?

34. [14] Many poetic forms involve rhyme schemes, which are partitions of the lines
of a stanza with the property that j = k if and only if line 7 rhymes with line k. For
example, a “limerick” is generally a 5-line poem with certain rhythmic constraints and
with a rhyme scheme described by the restricted growth string 00110.

What rhyme schemes were used in the classical sonnets by (a) Guittone d’Arezzo
(c. 1270)? (b) Petrarch (c. 1350)? (c) Spenser (1595)? (d) Shakespeare (1609)7
(e) Elizabeth Barrett Browning (1850)7

35. [M21] Let =, be the number of schemes for n-line poems that are “completely
rhymed,” in the sense that every line rhymes with at least one other. Thus we have
{(wg, @, @y, ...) = (1,0, 1,1, 4, 11, 41, ...). Give a combinatorial proof of the fact
that @;, + @y 11 = @n.

36. [M22] Continuing exercise 35, what is the generating function Y ,2"/n!?
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37. [M18] Alexander Pushkin adopted an elaborate structure in his poetic novel
Eugene Onegin (1833), based not only on “masculine” rhymes in which the sounds of
accented final syllables agree with each other (pain gain, form warm, pun fun, bucks
crux), but also on “feminine” rhymes in which one or two unstressed syllables also par-
ticipate (humor—tumor, tetrameter—pentameter, lecture-conjecture, iguana-piranha).
Every stanza of Eugene Onegin is a sonnet with the strict scheme 01012233455477,
where the rhyme is feminine or masculine according as the digit is even or odd. Several
modern translators of Pushkin’s novel have also succeeded in retaining the same form
in English and German.

How do | justify this stanza? / These feminine rhymes? My wrinkled muse?
This whole passé extravaganza? / How can | (careless of time) use

The dusty bread molds of Onegin / In the brave bakery of Reagan?

The loaves will surely fail to rise / Or else go stale before my eyes.

The truth is, | can't justify it. / But as no shroud of critical terms

Can save my corpse from boring worms, / | may as well have fun and try it.
If it works, good; and if not, well, / A theory won't postpone its knell.

— VIKRAM SETH, The Golden Gate (1986)

A 14-line poem might have any of wi, = 24,011,157 complete rhyme schemes,
according to exercise 35. But how many schemes are possible if we are allowed to
specify, for each block, whether its rhyme is to be feminine or masculine?

> 38. [M30] Let o be the cyclic permutation (1,2,...,k). The object of this exercise
is to study the sequences kika...ky, called o-cycles, for which o, 0k, ...0k, is the

n

identity permutation. For example, when n = 4 there are exactly 15 o-cycles, namely

1111,1122,1212,1221,1333,2112, 2121, 2211, 2222, 2323, 3133, 3232, 3313, 3331, 4444.

a) Find a one-to-one correspondence between partitions of {1,2,...,n} and o-cycles
of length n.

b) How many o-cycles of length n have 1 < k1, ..., k, < m, given m and n?

¢) How many o-cycles of length n have k; = j, given 7, j, and n?

d) How many o-cycles of length n have k1, ..., k, > 27

e) How many partitions of {1,...,n} have 12 2,2#3,...,n—1Zn,and n Z17

_¢pt1

39. [HM16] Evaluate [~ e

See exercise 1.2.5-20.

40. [HM20] Suppose the saddle point method is used to estimate [z" ']e®*. The
text’s derivation of (21) from (1g9) deals with the case ¢ = 1; how should that derivation
change if ¢ is an arbitrary positive constant?

t?dt when p and g are nonnegative integers. Hint:

41. [HM21] Solve the previous exercise when ¢ = —1.

42. [HM23] Use the saddle point method to estimate [z" '] ¢*’ with relative error
Oo(1/n?).

43. [HM22] Justify replacing the integral in (23) by (25).

44. [HM?22] Explain how to compute by, ba, ... in (26) from az, as, ... in (25).

> 45. [HM23] Show that, in addition to (26), we also have the expansion
ef—1 1 b/ b/ b/ 1
Wp = #(14__1_}_22_1_..._1__:’;_1_0(7”__“)),
&/ 2mn(§+ 1) n.on n n

where b} = —(2¢* 4+ 9¢% + 16€> + 6¢ +2)/(24(¢ + 1)?).

47



v

v

48 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.5

46. [HM25] Estimate the value of wy in Peirce’s triangle when n — oo.
47. [M21] Analyze the running time of Algorithm H.

48. [HM25] If n is not an integer, the integral in (23) can be taken over a Hankel
contour to define a generalized Bell number w,, for all real z > 0. Show that, as in (16),

1 o= k™
k=0
49. [HMS35] Prove that, for large n, the number £ defined in Eq. (24) is equal to

j+k} ;B* 1 Inlnn

Inn—Inlnn+ Y =y —__1 5= .

nn nnﬂ+.k>0[j+1 @ k!’ @ Inn’ B Inn
ErZ

50. [HM21] 1f £(n)e™ = n and £(n) > 0, how does &(n + k) relate to £(n)?

51. [HM27] Use the saddle point method to estimate ¢, = n![z"] ez+22/2, the number
of involutions on n elements (aka partitions of {1,...,n} into blocks of sizes < 2).
52. [HM22] The cumulants of a probability distribution are defined in Eq. 1.2.10-
(23). What are the cumulants, when the probability that a random integer equals k is
(a) et = wi*/k!? (b) 3, {¥} ee  -1-i/k!?
53. [HM30] Let G(z) = >.7°,pkz" be the generating function for a discrete prob-
ability distribution, converging for |z| < 1+ d; thus the coefficients p; are non-
negative, G(1) = 1, and the mean and variance are respectively p = G'(1) and
o> =G"(1)+G'(1) - G'(1)% If X1, ..., X, are independent random variables having
this distribution, the probability that Xy + --- + X,, = m is [z"] G(z)", and we often
want to estimate this probability when m is near the mean value pun.

Assume that po # 0 and that no integer d > 1 is a common divisor of all
subscripts k& with pr # 0; this assumption means that m does not have to satisfy
any special congruence conditions mod d when n is large. Prove that

e e 1
[z ]G(2)" = W—I—O(E) as n — oo,
when pn + r is an integer. Hint: Integrate G(z)"/2*"*" on the circle |z| = 1.
54. [HM20] If o and 3 are defined by (40), show that their arithmetic and geometric
means are respectively "‘2& = scoths and Va8 = scsch s, where s = /2.
55. [HM20] Suggest a good way to compute the number 8 needed in (43).
56. [HM26] Let g(2) =a'In(e* —1) —Inz and 6 = a — B as in (37).
a) Prove that (—o)" g™t (o) = n! - 357, (M a*B"~*, where the Eulerian num-
bers (}) are defined in Section 5.1.3.
b) Prove that Sn! < Y"1 (?)a*8" % < nlforall o > 0. Hint: See exercise 5.1.3-25.
¢) Now verify the inequality (42).
57. [HM22] In the notation of (43), prove that (a) n+1—m < 2N; (b) N< 2(n+1—m).
58. [HM31] Complete the proof of (43) as follows.

a) Show that for all o > 0 there is a number 7 > 20 such that 7 is a multiple of 27
and |e” T — 1|/|o + it| is monotone decreasing for 0 < t < 7.

b) Prove that [7_exp((n + 1)g(o + it)) dt leads to (43).

c) Show that the corresponding integrals over the straight-line paths z = ¢t &+ i7 for
—n<t<oand z=-—n=xit for —7 <t < 7 are negligible.
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» 59. [HM23] What does (43) predict for the approximate value of {2}7
60. [HM25] (a) Show that the partial sums in the identity

n m" m— 1) m—2)" m 0"
{m} - mi1(!(m—)1)!+2(!(m—)2)!7”'+(71) m! 0!

alternately overestimate and underestimate the final value. (b) Conclude that

{ " } = m—(l — O(ne_ne)) when m < n'"¢.

m m!
(c) Derive a similar result from (43).
61. [HM26] Prove that if m =n —r where r < n® and € < n'/?, Eq. (43) yields

(.7} = a0 0(3))

62. [HM40] Prove rigorously that if £ef = n, the maximum {::L} occurs either when

m = |e® — 1| or when m = [e® — 1].
» 63. [M35] (J.Pitman.) Prove that there is an elementary way to locate the maximum
Stirling numbers, and many similar quantities, as follows: Suppose 0 < p; < 1.

a) Let f(z) = (14pi(z—1))...(1+pn(1—2)) and ap = [2*] f(2); thus ay is the proba-
bility that k heads turn up after n independent coin flips with the respective prob-

abilities p1, ..., pn. Prove that ax_1 < ar whenever k < = p1+---+pn, ar # 0.
b) Similarly, prove that axy1 < ar whenever k > p and aj # 0.
c) If f(z) = ao + a1z + -+ + anaz™ is any nonzero polynomial with nonnegative

coefficients and with n real roots, prove that ax_1 < ar when k < p and ar+1 < ax
when k > p, where u = f'(1)/f(1). Therefore if am = max(ao,...,an) we must
have either m = || or m = [u].

d) Under the hypotheses of (c), and with a;j = 0 when j < 0 or 5 > n, show that
there are indices s < t, such that axy1 —ar < ar —ar—1 if and only if s < k < t.
(Thus, a histogram of the sequence (ao,a1,...,an) is always “bell-shaped.”)

e) What do these results tell us about Stirling numbers?

64. [HM21] Prove the approximate ratio (50), using (30) and exercise 50.
» 65. [HM22] What is the variance of the number of blocks of size k in a random
partition of {1,...,n}?
66. [M46] What partition of n leads to the most partitions of {1,...,n}?
67. [HM20] What are the mean and variance of M in Stam’s method (53)7?
68. [20] How large can the stack get in Algorithm M, when it is generating all
p(ni1,...,nm) partitions of {ny - 1,...,nm - m}?
> 69. [21] Modify Algorithm M so that it produces only partitions into at most r parts.
» 70. [M22] Analyze the number of r-block partitions possible in the n-element multi-
sets (a) {0,...,0,1}; (b) {1,2,...,n — 1,n — 1}. What is the total, summed over r?
71. [M20] How many partitions of {n1 - 1,...,nm, - m} have exactly 2 parts?
72. [M26] Can p(n,n) be evaluated in polynomial time?
> 73. [M32] Can p(2,...,2) be evaluated in polynomial time when there are n 2s?
74. [M46] Can p(n,...,n) be evaluated in polynomial time when there are n ns?
75. [HM41] Find the asymptotic value of p(n,n).
76. [HM36] Find the asymptotic value of p(2,...,2) when there are n 2s.
77. [HM46] Find the asymptotic value of p(n,...,n) when there are n ns.
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78. [20] What partition of (15,10,10,11) leads to the permutations a1, a2, as, and
a4 shown in Table 17

79. [22] A sequence u1, ua, us, ... is called universal for partitions of {1,...,n} if
its subsequences (Um41, Um+42, ..., Um+n) for 0 < m < wy, represent all possible set
partitions under the convention “j = k if and only if um4j; = um+r.” For example,
(0,0,0,1,0,2,2) is a universal sequence for partitions of {1,2,3}.

Write a program to find all universal sequences for partitions of {1,2,3,4} with
the properties that (i) u1 = uz = us = us = 0; (ii) the sequence has restricted growth;
(iii) 0 < u; < 3; and (iv) u1e = w17 = u1s = 0 (hence the sequence is essentially cyclic).

80. [M28] Prove that universal cycles for partitions of {1,2,...,n} exist in the sense
of the previous exercise whenever n > 4.

81. [29] Find a way to arrange an ordinary deck of 52 playing cards so that the fol-
lowing trick is possible: Five players each cut the deck (applying a cyclic permutation)
as often as they like. Then each player takes a card from the top. A magician tells
them to look at their cards and to form affinity groups, joining with others who hold
the same suit: Everybody with clubs gets together, everybody with diamonds forms
another group, and so on. (The Jack of Spades is, however, considered to be a “joker”;
its holder, if any, should remain aloof.)

Observing the affinity groups, but not being told any of the suits, the magician
can name all five cards, if the cards were suitably arranged in the first place.

82. [22] In how many ways can the following 15 dominoes, optionally rotated, be
partitioned into three sets of five having the same sum when regarded as fractions?

B E B 0 B HBEEBE BB BAH
+ o+ - B B — B BD 4 BE 4 ED B — BN B0 B BN 4
R0 EHE B B EBEM
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SECTION 7.2.1.4

L. m" m= m! {:1}
+n—1 -1
(™ W) | Gon)
{3+ {0} [ [m=n] | {3}
" [m>n]| |5
m m
2. In general, given any integers x; > --- > x,,, we obtain all integer m-tuples
ai...amsuchthatay > - > am, a1+ - +am =14+ +2m,and am ... a1 > Ty ... T1
by initializing a1 ...am < Z1...Zym and amy1 < T, — 2. In particular, if ¢ is any
integer constant, we obtain all integer m-tuples such that a1 > --- > a, > ¢ and

a1+ -+ am = n by initializing a1 < n—mc+ ¢, aj < cfor 1 < j < m, and
Am+1 4 ¢ — 2, assuming that n > em.

3. aj=|(n+m—3j)/m]=[(n+1-j)/m], for 1 <j < m; see CMath §3.4.

4. We must have a., > a1 — 1; therefore a; = | (n+m — j)/m] for 1 < j < m, where
m is the largest integer with [n/m]| > r, namely m = |n/r|.

5. [See Eugene M. Klimko, BIT 13 (1973), 38 49.]

C1. [Initialize.] Set co < 1, ¢1 < n, ca...cn  0...0, lo + 1, 11 «+ 0. (We
assume that n > 0.)

C2. [Visit.] Visit the partition represented by part counts c¢i...c, and links
lol1 ... 1.

C3. [Branch.] Set j + lp and k < ;. If ¢; = 1, go to C6; otherwise, if j > 1, go
to C5.

C4. [Change 141 to 2.] Set ¢c1 < c1 — 2, ca ¢ ca + 1. Then if ¢1 = 0, set lg + 2,
and set Iy < l1 if k #2. If c1 > 0 and k # 2, set I3 < [1 and I; < 2. Return
to C2.

C5. [Change j - ¢; to (j+1)+1+---+1.] Set ¢1 + j(¢; —1) — 1 and go to CT.

C6. [Change k -cr + 7 to (k+1) + 1+ --- + 1.] Terminate if kK = 0. Otherwise set
cj < 0; then set c1 < k(ck, — 1)+ 7 — 1,7 < k, and k « Ij.

C7. [Adjust links.] If ¢1 > 0, set lo < 1, l1 + j + 1; otherwise set lo + j + 1.
Then set ¢; — 0 and ¢j11 < ¢j41 + 1. If & # j + 1, set lj41 < k. Return
to C2. 1

Notice that this algorithm is loopless; but it isn’t really faster than Algorithm P. Steps
C4, C5, and C6 are performed respectively p(n — 2), 2p(n) — p(n + 1) — p(n — 2), and
p(n + 1) — p(n) times; thus step C4 is most important when n is large. (See exercise
45 and the detailed analysis by Fenner and Loizou in Acta Inf. 16 (1981), 237-252.)

6. Set k < a1 and j < 1. Then, while & > aj41, set by < 7 and k& < k — 1 until
k=ajy1. If k>0, set j « j+ 1 and repeat until £k = 0. (We have used (11) in the
dual form a; — aj+1 = dj, where d; ...d, is the part-count representation of b1bs ... .
Notice that the running time of this algorithm is essentially proportional to a; + b1,
the length of the output plus the length of the input.)

7. We have by ...b, =n%"(n—1)%-17%  ,1917920" "% by the dual of (11).

8. Transposing the Ferrers diagram corresponds to reflecting and complementing the
bit string (15). So we simply interchange and reverse the p’s and ¢’s, getting the
partition biba... = (gt 4+ - +q1)P (g + -+ q2)7? ... (q)"t.
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9. By induction: If a, =1 —1 and b; = k — 1, increasing aj, and b; preserves equality.

10. (a) The left child of each node is obtained by appending ‘1’. The right child is
obtained by increasing the rightmost digit; this child exists if and only if the parent node
ends with unequal digits. All partitions of n appear on level n in lexicographic order.
(b) The left child is obtained by changing ‘11’ to ‘2’; it exists if and only if the
parent node contains at least two 1s. The right child is obtained by deleting a 1 and
increasing the smallest part that exceeds 1; it exists if and only if there is at least one 1
and the smallest larger part appears exactly once. All partitions of n into m parts ap-
pear on level n—m in lexicographic order; preorder of the entire tree gives lexicographic
order of the whole. [T. I. Fenner and G. Loizou, Comp. J. 23 (1980), 332-337.]
11. [21991/((1 — 2)(1 — 2*)(1 — 2°)(1 — 2'°) (1 — 22°)(1 — 2°%)(1 — 2'%%)) = 4563; and
21 (14 24+22) A+ 224+ 2*) ... (14210 + 229°) = 7. [See G. Pélya, AMM 63 (1956),
689-697.] In the infinite series [], (1 + 2% 4+ 22%)(1 + 22k 4 24k)(1 + 25k 4 210k), the
coefficient of 210" is 2" — 1, and the coefficient of 210" -1 is 2",

12. To prove that (14 2)(1+2*)(1+2%)... = 1/((1 — 2)(1 — 2*)(1 — 2°)...), write
the left-hand side as

(1-2%)(1-2%(1-2%

(1—2) (1—22)(1—23)"""
and cancel common factors from numerator and denominator. Alternatively, replace z
by 2z, 2%, 25, ... in the identity (1 + 2)(1 + 2*)(1 + 2*)(1 4+ 2®*)... = 1/(1 — 2) and
multiply the results together. [Novi Comment. Acad. Sci. Pet. 3 (1750), 125-169, §47.]
13. Map the partition c¢1-1+c2-2+--- into [c1/2]-24+ |c2/2]-4+ -+ 7r1- 1471334,
where 7, = (cm mod 2) + 2(c2m mod 2) + 4(cam mod 2) + - - -. [Johns Hopkins Univ.
Circular 2 (1882), 72.

14. Sylvester’s correspondence is best understood as a diagram in which the dots of
the odd permutation are centered and divided into disjoint hooks. For example, the
partition 17+ 154+ 15+9+9+9+ 9+ 5+ 5+ 3 + 3, having five different odd parts,

corresponds via the diagram

i

to the all-distinct partition 19 + 18 + 16 + 13+ 12+ 9+ 5 4+ 4 4+ 3 with four gaps.

Conversely, a partition into 2¢ distinct nonnegative parts can be written uniquely
in the form (a1+b1—1)+(a14+b2—2)+ (a2+b2—3)+ (az+bs—4)+- - -+ (ar—1+b: —2t+2) +
(at+bt—2t—|—1) + (at+bt+1—2t) where a Z az Z Z at Z t and b1 2 b2 Z Z bt Z
biy1 = t. It corresponds to (2a1—1)+---+(2a; — 1)+ (241 — 1) +-- -+ (24, — 1), where
Ai+---+ A, is the conjugate of (by—t)+ -+ (bs—t). The value of ¢ is essentially the
size of a “Durfee rectangle.”

The relevant odd-parts partitions when n =10 are 9+1, 7+3, 7+14+1+1, 545,
5+34+14+1,54+14+1+14+14+1,3+34+34+1,3+34+14+1+14+1,3+1+---+1,
1+ ---+1, corresponding respectively to the distinct-parts partitions 6 +4, 5+4 + 1,
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743,443 4241,643+1,842 54342 74+2+1,9+1,10. [See Sylvester’s
remarkable paper in Amer. J. Math. 5 (1882), 251-330; 6 (1883), 334-336.]

15. Every self-conjugate partition of trace k corresponds to a partition of n into k
distinct odd parts (“hooks”). Therefore we can write the generating function either as
the product (1+2)(1423)(142%)... or as the sum 1+2"/(1—2%)+2*/((1-2)(1—2*)) +
2°/((1—2%)(1—2*)(1—2%)) + ---. [Johns Hopkins Univ. Circular 3 (1883), 42-43.]

16. The Durfee square contains k> dots, and the remaining dots correspond to two
independent partitions with largest part < k. Thus, if we use w to count parts and
z to count dots, we find

oo oo k k2

1 w"z
H 1—wzm Z(1—z)(l—z"’)...(l—zk)(l—wz)(l—wzz)...(l—wzk)'

m=1 k=0

[This impressive-looking formula turns out to be just the special case x = y = 0 of the
even more impressive identity of exercise 19.]

17. (a) ((1 4 wv2)(1 4+ wwz?)(1 +wvz) .. ) /(1 — uz)(1 —uz?)(1 —uz?)...).

(b) A joint partition can be represented by a generalized Ferrers o eeee e o o4
diagram in which we merge all the parts together, putting a; above : : : : : : : :
b; if a; > bj, then mark the rightmost dot of each b;. For example, ee oo e o4
the joint partition (8,8,5; 9,7,5,2) has the diagram illustrated here, § ¢ ¢ :;
with marked dots shown as ‘4’. Marks appear only in corners; thus e-¢
the transposed diagram corresponds to another joint partition, which in this case is
(7,6,6,4,3; 7,6,4,1). [See J. T. Joichi and D. Stanton, Pacific J. Math. 127 (1987),
103-120; S. Corteel and J. Lovejoy, Trans. Amer. Math. Soc. 356 (2004), 1623-1635;
Igor Pak, “Partition bijections, a survey,” to appear in The Ramanujan Journal.)

Every joint partition with ¢ > 0 parts corresponds in this way to a “conjugate”
in which the largest part is . And the generating function for such joint partitions is
(1 +wz)...(1+v2""")) /(1= 2)...(1 = 2")) times (v2" + 2"), where vz’ corresponds
to the case that b; = t, and 2t corresponds to the case that r = 0 or by < ¢).

(c) Thus we obtain a form of the general z-nomial theorem in answer 1.2.6-58:

(1 + wvz) (1 + uvz?) (1 + uvz®) _ i (1+v) (14 vz2) (14+wvzt1) st
(1—wuz) (1—-wu2z?) (1—wuz3) = (1—-2) (1-22) (1= 2t) '

18. The equations obviously determine the a’s and b’s when the ¢’s and d’s are given,
so we want to show that the ¢’s and d’s are uniquely determined from the a’s and b’s.
The following algorithm determines the ¢’s and d’s from right to left:

A1l. [Initialize.] Set i <— 7, j < s, k < 0, and ag + bo < oo.
A2. [Branch.] Stop if i + j = 0. Otherwise go to A4 if a; > b; — k.
A3. [Absorb a;.] Set ¢itj < as, diyj < 0,74 i—1, k < k+ 1, and return to A2.

A4. [Absorb b;.] Set ¢ipj + bj —k, dix; <+ 1,5+ j—1,k + k+ 1, and return
to A2. |

There’s also a left-to-right method:
B1. [Initialize.] Set i < 1, j < 1, k < r+ s, and ary1 ¢ bsy1 < —o0.
B2. [Branch.] Stop if K = 0. Otherwise set k <— k— 1, then go to B4 if a; < b; — k.
B3. [Absorb a;.] Set citj—1 ¢ ai, diyj—1 < 0,4 < i+ 1, and return to B2.
B4. [Absorb b;.] Set citj—1 < bj—k, diyj—1 < 1, j < j+1, and return to B2. |
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In both cases the branching is forced and the resulting sequence satisfiesci > -+ > crys.
Notice that ¢;4+s = min(a,, bs) and ¢1 = max(a1,b1—r—s+1).

We have thereby proved the identity of exercise 17(c) in a different way. Extensions
of this idea lead to a combinatorial proof of Ramanujan’s “remarkable formula with
many parameters,”

Z H 1 bz*+m H (1-a7'bz")1—a '™ 2T (1 —awz®) (1251
= 1—azktn (1—a=tbw=1zk)(1—a " 12k+1)(1—azk)(1—wzk)
[References: G. H. Hardy, Ramanujan (1940), Eq. (12.12.2); D. Zeilberger, Europ. J.
Combinatorics 8 (1987), 461-463; A. J. Yee, J. Comb. Theory A105 (2004), 63-77.]

19. [Crelle 34 (1847), 285-328.] By exercise 17(c), the hinted sum over k is

(Zvl(szz)...(szzl) (1—wz)...(1—uzh )ﬁ 1—auz™

L (=2 (1=2) (1—auz)...(1—auz)) LT

and the sum over [ is similar but with u <> v, a <> b, k <> [. Furthermore the sum over
both k and [ reduces to

ﬁ (1 — wwz™) (1 — auz™)
(1 —uzm)(1—vzm)
m=1

when b = auz. Now let u = wzy, v = 1/(yz), a = 1/z, and b = wyz; equate this
infinite product to the sum over [.

20. To get p(n) we need to add or subtract approximately 1/8n/3 of the previous
entries, and most of those entries are O(y/n) bits long. Therefore p(n) is computed in
O(n) steps and the total time is ©(n?).

(A straightforward use of (17) would take ©(n®/?) steps.)

21. Since 3.7° 1 q(n)z" = (1 +2)(1 4+ 2%)... is equal to (1 — 2%)(1 — 2*)... P(z) =
(1—22 =2+ 210 421 — 22 — ... ) P(2), we have

q(n) = p(n) — p(n —2) — p(n — 4) + p(n — 10) + p(n — 14) — p(n — 24) —

[There is also a “pure recurrence” in the ¢’s alone, analogous to the recurrence for o(n)
in the next exercise.]

22. From (21) wehave 3777 o(n)2" =37, o, mz"" = =zLnP(z) = (2422°—52°—
72" +-) /(1 — 2z — 22 + 2° + 27 4+ ...). [Bibliothéque Impartiale 3 (1751), 10-31.]
23. Set v = w and v = z/w to get

[e%s}

[T - 2wy - 2w)a -2 = Y (~1)"w"2""D%/(1 - w)

n=-—oc

N e

S @ w1 )
2.

These manipulations are legitimate when |z| < 1 and w is near 1. Now set w = 1.
[See §57 of Sylvester’s paper cited in answer 14. Jacobi’s proof is in §66 of his
monograph Fundamenta Nova Theorize Functionum Ellipticarum (1829).]
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24. (a) By (18) and exercise 23, [2"] A(2) = S (=1)7T*(2k+1)[35% + j + k* + k=2n)],
summed over all integers j and k. When nmod5 = 4, the contributions all have
jmod 5 =4 and k mod 5 = 2; but then (2k + 1) mod 5 = 0.

(b) B(2)? = B(2?) (modulo p) when p is prime, by Eq. 4.6.2—(5).

(c) Take B(z) = P(z), since A(z) = P(2)™*. [Proc. Cambridge Philos. Soc. 19
(1919), 207 210. A similar proof shows that p(n) is a multiple of 7 when n mod 7 = 5.
Ramanujan went on to obtain the beautiful formulas p(5n + 4)/5 = [2™] P(2)%/P(2°);
p(Tn +5)/7 = [2"] (P(2)*/P(2")® + 72 P(2)®/ P(z")"). Atkin and Swinnerton-Dyer, in
Proc. London Math. Soc. (3) 4 (1953), 84 106, showed that the partitions of 5n + 4
and 7n + 5 can be divided into equal-size classes according to the respective values
of (largest part — number of parts) mod 5 or mod 7, as conjectured by F. Dyson.
A slightly more complicated combinatorial statistic proves also that p(n) mod 11 = 0
when n mod 11 = 6; see F. G. Garvan, Trans. Amer. Math. Soc. 305 (1988), 47-77.]

25. [The hint can be proved by differentiating both sides of the stated identity. It is
the special case y = 1 — z of a beautiful formula discovered by N. H. Abel in 1826:

. . Y\ _ gy Y _ _ _
Liz(z) + Li2(y) = L12<1_y) +L12(1_ ) LI2<(1—m)(1—y)> In(1—z) In(1—y).
See Abel’s (Euvres Complétes 2 (Christiania: Gr;zmdahl 1881), 189-193.]

(a) Let f(z) =In(1/(1 — e *")). Then [ f(z)dz = —Liz(e **)/t and f")(z) =
e S, (1) M/ (e — 1)", so Euler’s %ummatlon formula gives Lis(e™%)/t +
In(1/(1 —e™*)) + O(1) = (¢(2) + tIn(1 —e™") — Lio(1 —e™"))/t — 3 Int + O(1

(2)/t+ 2 Int+ O(1), as t — 0.
(b) Wehave 3, -, e ™ n = ;L Y omn>1 11jii;°:(mnt)7zf'(z) dz/n, which sums
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to oL [T ¢(z + 1)¢(2)t *T'(2)dz. The pole at z = 1 gives ((2)/t; the double
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5
(e

pole at z = 0 gives —((0)Int + ¢'(0) = %lnt — %ln27r; the pole at z = —1 gives
—((—-1)¢(0)t = By B1t = —t/24. Zeros of {(z + 1)((z) cancel the other poles of I'(z),
so the result is In P(e™") = ((2)/t + 3 In(t/27) — t/24 + O(t"") for arbitrarily large M.

26. Let Fi(n) =37, e ¥’/" We can use (25) either with f(z) = 6712/"[.?3 > 0]+ 1440,

or with f(z) = e==%n for all z because 2F(n) +1 =372 ___ e *°/"_ Let’s choose the
latter alternative; then the right-hand side of (25), for 8 = 0, is the rapidly convergent

M )
. —2rmiy—y?/n
lim e dy =
M—o0
m=—M"Y —®

if we substitute u = y + wmni; and the integral is \/n. [This result is formula (15) on
page 420 of Poisson’s original paper.]

27. Let g, = \/7r/6te_"2"2/6f‘ cos 2%, Then [ f(y)cos2rmydy = gomi1 + gom—1,
so we have

e}

oo
.2 2 2 2
E e’rm"/ e " dy

m=—o0 -

e 1/24

Pl

= 01 +971+22(92m+1 + gom—1) = 2 Z g2m+1-

m=1 m=—o0

The terms gen+1 and g—en—1 combine to give the nth term of (30). [See M. I. Knopp,
Modular Functions in Analytic Number Theory (1970), Chapter 3.]
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28. (a,b,c,d) See Trans. Amer. Math. Soc. 43 (1938), 271-295. In fact, Lehmer found
explicit formulas for A,e(n), in terms of the Jacobi symbol of exercise 4.5.4-23:

1 — 24n (modulo 2°73);

Ase(n) = (71)8(%)22/2 sin ;T;, if (3m)?

e m\ 2 _./;0 . 4mm
Age(n) = (—1) +1<§)ﬁ3 2 sin SGT’

2(%)})5/2 cos 47rem7 if (24m)? = 1 — 24n (modulo p°®), p > 5,
P and 24n mod p # 1;

if (8m)? =1 — 24n (modulo 3°T");

Ape(n) =
(]%)peﬂ[e:”’ if 2dnmodp =1 and p > 5.

(e) f n = 2°3%pSt .. .p¢* for 3 < p1 < --- < p; and e; ...e; # 0, the probability
that Agx(n) £ 0is 27 (1 + (=)= /py) . (1 + (=)= /py).
29. 2123 .. .zm/((l —z1)(1 —z122) ... (1 — z122 ... zm)).
30. (a) |"’;:1‘ and (b) ‘m:;"’|, by (39)-
31. First solution [Marshall Hall, Jr., Combinatorial Theory (1967), §4.1]: From the
recurrence (39), we can show directly that, for 0 < r < k!, there is a polynomial
frr(n) = nk=1/(k!(k—1)!) + O(n*~?) such that |}| = fa.nmod ki(n).

Second solution: Since (1 —z)...(1 —2™) = [, (1 - e?mip/az)m/al - where
the product is over all reduced fractions p/q with 0 < p < ¢, the coefficient of 2"
in (41) can be expressed as a sum of roots of unity times polynomials in n, namely as
dplq e?™Pn/af () where fpe(n) is a polynomial of degree less than m/q. Thus there
exist constants such that ‘g‘ =ain+az + (—1)"as; |73'| = bin? + ban + by + (—1)"bs +
w"bs + w "bg, where w = €*™/3; etc. The constants are determined by the values for
small n, and the first two cases are

R
It follows that m is the nearest integer to n?/12. Similarly, m is the nearest integer
to (n® +3n? — 9n [nodd])/144.

[Exact formulas for m, |73’|, and m, without the simplification of floor functions,
were first found by G. F. Malfatti, Memorie di Mat. e Fis. Societa Italiana 3 (1786),
571 663. W. J. A. Colman, in Fibonacci Quarterly 21 (1983), 272 284, showed that
|7| is the nearest integer to (n*+10n®+10n” — 75n — 45n(—1)") /2880, and gave similar
formulas for m and |77L|]

32. Since ‘mf;"| < p(n), with equality if and only if m > n, we have ‘SL‘ < p(n —m)
with equality if and only if 2m > n.

33. A partition into m parts corresponds to at most m! compositions; hence (:;11) <
m! |::L| Comnsequently p(n) > (n — 1)!/((n — m)!m!(m — 1)!), and when m = /n
Stirling’s approximation proves that Inp(n) > 2y/n —Inn — % — In 27.

34. a1 >az > -+ >am >0ifand only ifag —m+1>az—m+2>--- > am > 1. And
partitions into m distinct parts correspond to m! compositions. Thus, by the previous
answer, we have

() <[]« (),

ml\m—1 m)! m—1
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[See H. Gupta, Proc. Indian Acad. Sci. A16 (1942), 101-102. A detailed asymptotic
formula for || when n = ©(m?®) appears in exercise 3.3.2-30.]

35. (a) z=%Int ~ —0.194.

c
(b) z=%5In% — £ 1InIn2 ~ 0.092; in general we have z = &(In 5 —Inln ﬁ)
(c) [ zdF(z) = [*(Cu) *(Inu)e /©Ydu = —% [*(InC + Inv)e "dv =

(y—InC)/C =~ 0.256.
(d) Similarly, [*_z%e”“* exp(—e~“*/C)dz = (v’ +((2)—2yInC+(In C)*)/C?
1.0656. So the variance is C(Q)/C’2 =1, exactly(!).

[The probability distribution e—e* T/ g commonly called the Fisher—Tippett
distribution; see Proc. Cambridge Phil. Soc. 24 (1928), 180 190.]

36. The sum over j, — (m+7r—1)>--->jo— (m+1) > j1 — m > 1 gives

Q

r p(n)

Et:trm:(rl)/Z p(n —t)

2 r
«a «a o rm - e
= 1—a1—a2'”1—oﬂa (1—|—O(n 1/2+2 ))+E
—1/2 —-1/2 —1/2
- oznﬂ 1 JLQ —1 Cﬁr — exp(=Cra+ O(rn™ /7729 4+ 1,

where E is an error term that accounts for the cases t > n'/?*¢. The leading factor
n~ Y2 /(@I —1)is J%(1-+—O(j7fl/2)). And it is easy to verify that E = O(n!°8"e™“""),

even if we use the crude upper bound |t7”"77’r(T*1)/2 ‘ < t", because

Z tre N = O(/ tre N dt) =O(N""z"e ™ */(1 — r/x)),
N

t>axN
where N = ©(y/n), z = O(n), r = O(logn).
37. Such a partition is counted once in g, ¢ times in X, (g) times in g, ...; so

it is counted exactly Z]T.:O(fl)j(‘;) = (=1)7(?.") times in the partial sum that ends
with (—=1)"%,. This count is at most 40 when r is odd, at least d;0 when r is even.
[A similar argument shows that the generalized principle of exercise 1.3.3-26 also has
this bracketing property. Reference: C. Bonferroni, Pubblicazioni del Reale Istituto

Superiore de Scienze Economiche e Commerciale di Firenze 8 (1936), 3-62.]
38, tm~! (l+m72)z =TTl -2 1A/ - 2) . (1 2mT).

m—1
39. If @ = a1...am is a partition with at most m parts, let f(a) = oo if a1 < I,
otherwise f(a) = min{j | a1 > [ + aj41}. Let gr be the generating function for
partitions with f(a) > k. Partitions with f(a) = k < oo are characterized by the
inequalities
ay >az > - >ap>a1 —1>app1 >0 > amgpr = 0.
Thus aiaz...am = (bp+Hl+1)(bi+1)...(bk—1+1)bkst1...bm, where f(b1...bm) > k;
and the converse is also true. It follows that g = gr—1 — zl+kgk,1.
[See American J. Math. 5 (1882), 254 257.]

40. Zmm+1)/2 (Tln) =(z-2) -2 ... (2" =2)/(1-2)(1—-2%)...(1—2™)). This
formula is essentially the z-nomial theorem of exercise 1.2.6 58.

41. See G. Almkvist and G. E. Andrews, J. Number Theory 38 (1991), 135-144.

z
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42. A. Vershik [Functional Anal. Applic. 30 (1996), 90-105, Theorem 4.7] has stated
the formula 0
1-e ™  —er/vm l-e ™  —ca/va
1-— efc(9+go) € + 1-— efc(9+go) € ~ 1"
where the constant ¢ must be chosen as a function of § and ¢ so that the area of the
shape is n. This constant c is negative if 6 < 2, positive if 6 > 2; the shape reduces

to a straight line
k ax

ovn o
when fp = 2. If ¢ = co we have ¢ = V/Liz(t) where ¢ satisfies § = (In 12)/v/Li2(t).

43. We have a1 > a2 > -+ > ay if and only if the conjugate partition includes
each of the the parts 1, 2, ..., k — 1 at least once. The number of such partitions is
p(n — k(k — 1)/2); this total includes ‘"_(k_kli(lk_z)/z‘ cases with ay = 0.

44. Assume that n > 0. The number with smallest parts unequal (or with only one
part) is p(n + 1) — p(n), the number of partitions of n+ 1 that don’t end in 1, because
we get the former from the latter by changing the smallest part. Therefore the answer
is 2p(n) —p(n+1). [See R. J. Boscovich, Giornale de’ Letterati (Rome, 1748), 15. The
number of partitions whose smallest three parts are equal is 3p(n) —p(n+1)—2p(n+2)+
p(n + 3); similar formulas can be derived for other constraints on the smallest parts.]

45. By Eq. (37) we have p(n — j)/p(n) = 1 — Cjn~"/% + (C*5% + 2)/(2n) — (8C%° +
60Cj2 + Cj + 12C715)/(48n3/2) + O(54n2).
46. If n > 1, Ty(n) = p(n — 1) — p(n — 2) < p(n) — p(n — 1) = Ty'(n), because

p(n) —p(n —1) is the number of partitions of n that don’t end in 1; every such partition
of n — 1 yields one for n if we increase the largest part. But the difference is rather
small: (T3 (n) — Ts(n))/p(n) = C¥n+ O(n=3/?).

47. The identity in the hint follows by differentiating (21); see exercise 22. The
probability of obtaining the part-counts ¢;...c, when ¢1 +2c2 + -« +ne, =n is

~
~

Pr(ci...cn) = ;; %(*n)?k) Pr((31 co.cp—1(ck—37)Crt1 - ..cn)
Nk 1
=L e

k=1 j=1
by induction on n. [Combinatorial Algorithms (Academic Press, 1975), Chapter 10.]

48. The probability that j has a particular fixed value in step N5 is 6/(w257) +
O(nil/z), and the average value of jk is order \/n. The average time spent in step N4
is ©(n), so the average running time is of order n’/2. (A more precise analysis would
be desirable.)

49. (a) We have F(z) = > .7, Fx(z), where Fy(z) is the generating function for all
partitions whose smallest part is > k, namely 1/((1 — 2*)(1 — 2**)...) - 1.

(b) et fu(n) = [="] Fi()/p(n). Then fi(n) = 1; fa(n) = 1 — p(n—1)/p(n) =
On V2 £.0(n"): fs(n) = (p(n) — p(n — 1) — p(n — 2) + pln — 3))/p(n) = 20*n " 4
O(n™%?); and fi(n) = 6C°n=3/? + O(n™2). (See exercise 45.) It turns out that
fri1(n) = k' CFn=%/2 4 O(n=*+Y/2); in particular, fs(n) = O(n~2). Hence fs(n) +
<o fn(n) = O(n™"), because fri1(n) < fr(n).

Adding everything up yields [2"] F(z) = p(n)(1 + C/v/n+O0(n™")).
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50. (a) em(Mm+ k) = cm—1(m —14+k) + cm(k) = m —1—k + c(k) + 1 by induction
when 0 < k < m.

(b) Because |m7:k‘ = p(k) for 0 < k < m.

(c) When n = 2m, Algorithm H essentially generates the partitions of m, and
we know that j — 1 is the second-smallest part in the conjugate of the partition just
generated —except when j — 1 = m, just after the partition 1...1 whose conjugate has
only one part.

(d) If all parts of a exceed k, let ak?'j correspond to a (k+1).

(e) The generating function G (z) for all partitions whose second-smallest part is
> kis (24 A2 Fr(2) + Fr(2)—25/(1—2) = Fry1(2)/(1—2), where Fy(2) is defined
in the previous exercise. Consequently C(z) = (F(2) — Fi(2))/(1 —2) +2/(1 — 2)°.

(f) We can show as in the previous exercise that [2"] Gx(n)/p(n) = O(n~*/?) for
k < 5; hence c¢(m)/p(m) = 14+ O(m~2). The ratios (c(m) + 1)/p(m), which are
readily computed for small m, reach a maximum of 2.6 at m = 7 and decrease steadily
thereafter. So a rigorous attention to asymptotic error bounds will complete the proof.

Note: B. Fristedt [Trans. Amer. Math. Soc. 337 (1993), 703-735] has proved,

among other things, that the number of k’s in a random partition of n is greater than
Cz+/n with asymptotic probability e™™.
52. In lexicographic order, ‘64;;13‘ partitions of 64 have a; < 13; ‘50;;10‘ of them have
a1 = 14 and as < 10; etc. Therefore, by the hint, the partition 14 11 9 6 4 3 2 1'° is
preceded by exactly p(64) — 1000000 partitions in lexicographic order, making it the
millionth in reverse lexicographic order.

53. As in the previous answer, |fg‘ partitions of 100 have a1 = 32 and a2 < 12, etc.;
so the lexicographically millionth partition in which a; = 321is 3213128 76 5 5 1'2,
Algorithm H produces its conjugate, namely 20 8 8 8 6 54 333 32 17,

54. (a) Obviously true. This question was just a warmup.
(b) True, but not so obvious. If a” = a%a} ... we have

a4+ Fap+al+---+ap < n—kl when k < a]

by considering the Ferrers diagram, with equality when k& = a}. Thus if « = B and
ay+---+aj; > by +---+b) for some I, with [ minimum, we have n — kl = by +---+ b, +
i+ +b<ay+--+a,+al+ - +a) <n—kl when k = b}, a contradiction.

(c) The recurrence ¢ = min(a; +---+ag, b1+ +bk) — (c1 +-- -+ cr—1) clearly
defines a greatest lower bound, if cica ... is a partition. And it is; for if ¢4 4+ -+ -4+ ¢, =
a1 +---+ar we have 0 < min(ar+1, br+1) < chr1 < akt1 < ap =ck—(c1 4+ -+ cp—1)—
(a1 + -+ ar—1) < ck.

(d) aVv B = (T ABT)T. (Double conjugation is needed because a max-oriented
recurrence analogous to the one in part (c) can fail.)

(e) a A B has max(l, m) parts and « V 8 has min(l, m) parts. (Consider the first
components of their conjugates.)

(f) True for a A B, by the derivation in part (c). False for a vV 8 (although true in
Fig. 32); for example, (17165432)V (179876) = (1716554).

Reference: T. Brylawski, Discrete Mathematics 6 (1973), 201-219.

55. (a) If @« = B and @ = v = B, where v = cic2..., we have a1 + --- + ap =
c1+---+ck =br+---+ b for all k except K =1 and k = [ + 1; thus «a covers (.
Therefore 5T covers aT.

Conversely, if & = 8 and o # 8 we can find v > 8 such that @ > v or 47 > a7,

as follows: Find the smallest & with ar > br, and the smallest | with ar > aj41. If
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a; > ajy1+1, definey =cicp... by ey = ar—[k=1]+[k=1+1]. If a; = a;4+1+1, find
the smallest I’ with a;41 > ap 1 and let e = ar—[k=1"1+[k=1"+ 1] ifay > apy1+1,
otherwise ¢y, = a, — [k=1] + [k=1"+1].

(b) Consider o and S to be strings of n 0s and n 1s, as in (15). Then « » 3 if
and only if @« — 8, and BT a7 if and only if a = 3, where ‘—’ denotes replacing a
substring of the form 011910 by 101901 and ‘=’ denotes replacing a substring of the
form 010910 by 100901, for some q > 0.

(c) A partition covers at most [a1 >az] + -+ + [@m—1> am] + [am > 2] others.
The partition o = (n2+n1—1)(n2—2)(n2—3) ... 21 maximizes this quantity in the case
am = 1; cases with a,, > 2 give no improvement. (The conjugate partition, namely
(na—1)(n2—2)...21™ %! is just as good. Therefore both « and a” are also covered by
the maximum number of others.)

(d) Equivalently, consecutive parts of p differ by at most 1, and the smallest part
is 1; the rim representation has no consecutive 1s.

(e) Use rim representations and replace > by the relation —. If @ — «; and
a — oy we can easily show the existence of a string 3 such that ay — 8 and o} — B;

for example,
10190111710

01191011"10 10191011701.
~ 01191101701 7

Let 8= 82 > -+ > By where B,, is minimal. Then, by induction on max(k, k'), we
have k = m and ay = Bm; also k' = m and o}, = Bm.

(f) Set B < aT; then repeatedly set 8 < B’ until 8 is minimal, using any
convenient partition 3’ such that 8 & 3’. The desired partition is 87 .

Proof: Let u(a) be the common value oy, = ), in part (e); we must prove that
a = B implies p(a) > pu(B). There is a sequence @ = ao, ..., ar = B where a; = aj41
or aj = ajyq for 0 < j < k. If ap — a1 we have p(a) = p(a); thus it suffices to prove
that a = 8 and @ — o' implies o’ = u(B). But we have, for example,

10070111710
01071011710 10071011701

01091101701 — 01097110011701

because we may assume that ¢ > 0; and the other cases are similar.

(g) The parts of A\, are ar = na + [k <ni] — k for 1 < k < ng; the parts of AT are
b =n2 — k+[n2 —k<ni] for 1 <k < ny. The algorithm of (f) reaches AT from n'
after ("23'1'1) - ("2;"1) steps, because each step increases Y kby = (a’“;l) by 1.

(h) The path n, (n—1)1, (n—2)2, (n—2)11, (n—3)21, ..., 321"75, 3173, 221"74,
21™72, 1™, of length 2n — 4 when n > 3, is shortest.

It can be shown that the longest path has m = 2("32) +n1(n2—1) steps. One such
path has the form aq, ..., ax, ..., @i, ..., @m where ap = n'; a;, = A\,; a; = \I;
a; b ajpg for0§j<l;andaf+1Pa?fork§j<m.

Reference: C. Greene and D. J. Kleitman, Europ. J. Combinatorics 7 (1986), 1 10.

56. Suppose A = uj...um and g = vi...vm. The following (unoptimized) algo-
rithm applies the theory of exercise 54 to generate the partitions in colex order,
maintaining @ = aia2...am <X p as well as a7 = biby...by X AT. To find the
successor of a, we first find the largest j such that b; can be increased. Then we have
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B="b1...bj—1(bj+1)1...1 < AT, hence the desired successor is ST A . The algorithm
maintains auxiliary tables r; = bj+---4+b;, s; = vi+---4vj,and t; = wj+wjp1+---,
where \T = wiws . ...

Ma1. [Initialize.] Set ¢ < 0, k « wuy. For 7 = 1, ..., m, while uj11 < k set
tr < q< q+7and k < k — 1. Then set ¢ + 0 again, and for j =1, ..., m
set a;j < vj, s; < q < q+ a;. Then set g < 0 yet again, and k < [ < a;.
Forj=1,...,m,whileaj;1 < kset by < j, rpx < q<q+7j,and k < k—1.
Finally, set t1 < 0, bo 0, b_y « —1.

M2. [Visit.] Visit the partition a; ...am and/or its conjugate by ... b;.

Ma3. [Find j.] Let j be the largest integer < I such that rj4 1 > t;41 and b; # b;_1.
Terminate the algorithm if j = 0.

M4. [Increase bj.] Set © < 141 — 1, k < bj, bj + k+ 1, and art1 « j. (The
previous value of ax4+1 was j — 1. Now we're going to update a; ...ax using
essentially the method of exercise 54(c) to distribute z dots into columns
j+1,5+2,....)

MS5. [Majorize.] Set z < 0 and then do the following for 7 = 1, ..., k: Set
T x+J,y <+ min(x,s;), a;  y—2z, 2z y;if it =1setl < p < a; and
g+ 0;ifs>1whilep>a;setby<—i—1,rp¢q+qg+i—1,p+p—1.
Finally, while p > j set b, < k, rp < q < q¢+k, p < p—1. Return to M2. |

57. If A = u” there obviously is only one such matrix, essentially the Ferrers diagram
of A\. And the condition A\ < u7T is necessary, for if uT = by1ba ... we have by +---+bp =
min(ci1, k) + min(ca, k) + - - -, and this quantity must not be less than the number of 1s
in the first k& rows. Finally, if there is a matrix for A and p and if A covers «, we can
readily construct a matrix for @ and g by moving a 1 from any specified row to another
that has fewer 1s.

Notes: This result is often called the Gale Ryser theorem, because of well-known
papers by D. Gale [Pacific J. Math. 7 (1957), 1073-1082] and H. J. Ryser [Canadian
J. Math. 9 (1957), 371-377]. But the number of 0—1 matrices with row sums A and
column sums p is the coefficient of the monomial symmetric function ) :(::11 :(::22 ... in
the product of elementary symmetric functions e,, er, ..., where

er = [2"](1+ z12)(1 + 222)(1 + 232) .. ..

In this context the result has been known at least since the 1930s; see D. E. Littlewood’s
formula for Hm’n>0(1 + ZmYn) in Proc. London Math. Soc. (2) 40 (1936), 40-70.
[Cayley had shown much earlier, in Philosophical Trans. 147 (1857), 489-499, that the
lexicographic condition A < p7T is necessary.]

58. [R. F. Muirhead, Proc. Edinburgh Math. Soc. 21 (1903), 144-157.] The condition
«a »~ [ is necessary, because we can set z1 = -+ = xp =z and Tpy1 = - = T, = 1
and let x — oo. It is sufficient because we need only prove it when a covers 3. Then
if, say, parts (a1,a2) become (a1 — 1,a2 + 1), the left-hand side is the right-hand side
plus the nonnegative quantity

1 a
2 _aj Aoy, a;—ag—1 a);—ag—1
2ml E Ty Ty -+ Tpom (T ~ Tpy )(Zpy = Tpy ).

[Historical notes: Muirhead’s paper is the earliest known appearance of the concept
now known as majorization; shortly afterward, an equivalent definition was given
by M. O. Lorenz, Quarterly Publ. Amer. Stat. Assoc. 9 (1905), 209 219, who was
interested in measuring nonuniform distribution of wealth. Yet another equivalent
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concept was formulated by I. Schur in Sitzungsberichte Berliner Math. Gesellschaft
22 (1923), 9-20. “Majorization” was named by Hardy, Littlewood, and Pélya, who
established its most basic properties in Messenger of Math. 58 (1929), 145 152; see
exercise 2.3.4.5-17. An excellent book, Inequalities by A. W. Marshall and 1. Olkin
(Academic Press, 1979), is entirely devoted to the subject.]
59. The unique paths for n = 0, 1, 2, 3, 4, and 6 must have the stated symmetry.
There is one such path for n = 5, namely 11111, 2111, 221, 311, 32, 41, 5. And there
are four for n = 7:
1111111, 211111, 22111, 2221, 322, 3211, 31111, 4111, 511, 421, 331, 43, 52, 61, 7;
1111111, 211111, 22111, 2221, 322, 421, 511, 4111, 31111, 3211, 331, 43, 52, 61, 7;
1111111, 211111, 31111, 22111, 2221, 322, 3211, 4111, 421, 331, 43, 52, 511, 61, 7;
1111111, 211111, 31111, 22111, 2221, 322, 421, 4111, 3211, 331, 43, 52, 511, 61, 7.

There are no others, because at least two self-conjugate partitions exist for all n > 8
(see exercise 16).
60. For L(6,6), use (59); otherwise use L'(4,6) and L'(3,5) everywhere.

In M(4,18), insert 444222, 4442211 between 443322 and 4432221.

In M(5,11), insert 52211, 5222 between 62111 and 6221.

In M(5,20), insert 5542211, 554222 between 5552111 and 555221.

In M(6,13), insert 72211, 7222 between 62221 and 6322.

In L(4,14), insert 44222, 442211 between 43322 and 432221.

In L(5,15), insert 542211, 54222 between 552111 and 55221.

In L(7,12), insert 62211, 6222 between 72111 and 7221.
62. The statement holds for n = 7, 8, and 9, except in two cases: n = 8, m = 3,
a=3221;n=9,m =4, a = 432.
64. If n = 2"q where ¢ is odd, let w, denote the partition (2¥)?, namely g parts equal
to 2%, The recursive rule

B(n) = B(n—1)%1, 2 x B(n/2)

for n > 0, where 2Xx B(n/2) denotes doubling all parts of B(n/2) (or the empty sequence
if n is odd), defines a pleasant Gray path that begins with w,—11 and ends with wy, if
we let B(0) be the unique partition of 0. Thus,

B(1) =1; B(2)=11,2; B(3)=21,111; B(4)=1111,211,22,4.
Among the remarkable properties satisfied by this sequence is the fact that
B(n) = (2 x B(0))1™, (2x B(1))1" 2, (2x B(2))1™*, ..., (2 x B(n/2))1°,
when n is even; for example,
B(8) = 11111111,2111111, 221111, 41111, 4211, 22211, 2222, 422, 44, 8.

The following algorithm generates B(n) looplessly when n > 2:

K1. [Initialize.] Set co < po < 0, p1 < 1. If n is even, set ¢1 < n, t < 1; other-
wise let n — 1 = 2%¢ where q is odd and set ¢; < 1, cz < ¢, p2 < 2%, t « 2.

K2. [Even visit.] Visit the partition pgt ...pt. (Now ¢t + -+ c¢1 is even.)

K3. [Change the largest part.] If ¢; = 1, split the largest part: If p; # 2ps—1, set
ct < 2, pt < pt/2, otherwise set ¢t_1 < c—1 +2,t + t—1. But if ¢ > 1,
merge two of the largest parts: If ¢; = 2, set ¢; < 1, pr < 2p;, otherwise set
ctct—2,¢c41 1, pry1 < 2ps, t—t+ 1.
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K4. [Odd visit.] Visit the partition pg* ...pJt. (Now ¢t 4 «- -+ ¢1 is odd.)

K5. [Change the next-largest part.] Now we wish to apply the following transfor-
mation: “Remove ¢; — [t is even] of the largest parts temporarily, then apply
step K3, then restore the removed parts.” More precisely, there are nine
cases: (la) If ¢; is odd and t = 1, terminate. (1bl) If ¢; is odd, ¢;—1 = 1, and
Pt—1 = 2pt72, set ci_2 ¢ ct—2 + 2, Ct—1 ¢ Cty, Pt—1 < Dt , t — t — 1. (1b2) If
ct is odd, ct—1 = 1, and pr—1 # 2pi—2, set ci—1 + 2, pr—1  pi—1/2. (1cl) If
ctisodd, ct—1 =2, and pr = 2pi_1,set c—1 <—ct + 1, pi—1 < pt, t —t— 1.
(1c2) If ¢ is odd, ct—1 = 2, and p; # 2pi—1, set ci—1 < 1, pr—1 < 2ps_1.
(1d1) If ¢; is odd, ct—1 > 2, and pr = 2ps—1, set ci—1 < cr—1 — 2, ¢t ¢t + 1.
(1d2) If ¢ is odd, ci—1 > 2, and p; # 2pi—1, S€t Crp1 < Ct, Prg1 < Pty Gt < 1,
Dt < 2pi—1, Ct—1 < ct—1 — 2, t + t+ 1. (2a) If ¢; is even and p; = 2p;_1,
set ¢t < ¢t — 1, ct—1 « ci—1 + 2. (2b) If ¢ is even and p; # 2pi—1, set
Ci1 < Ct — 1, pry1 < pi, ¢t < 2, pr < pt/2,t + t+ 1. Return to K2. |

[The transformations in K3 and K5 undo themselves when performed twice in a row.
This construction is due to T. Colthurst and M. Kleber, “A Gray path on binary
partitions,” to appear. Kuler considered the number of such partitions in §50 of his
paper in 1750.]

65. If p;*...p;" is the prime factorization of m, the number of such factorizations is
p(e1) ...p(er), and we can let n = max(e1, ..., e,r). Indeed, for each r-tuple (z1,...,z,)
with 0 < z, < p(ex) we can let m; = pi'7 ...pi"7, where ag1 ... ak, is the (zx + 1)st
partition of ex. Thus we can use a reflected Gray code for r-tuples together with a
Gray code for partitions.

66. Let ai...am be an m-tuple that satisfies the specified inequalities. We can sort it
into nonincreasing order az, > ‘- > ag,,, where the permutation z; ...z, is uniquely
determined if we require the sorting to be stable; see Eq. 5-(2).

If 5 < k, we have a; > aj, hence j appears to the left of k in the permutation
ZT1...%m. Therefore z; ...z, is one of the permutations output by Algorithm 7.2.1.2V.
Moreover, j will be left of k also when a; = ax and j < k, by stability. Hence a; is
strictly greater than Az, when z; > z;4+1 is a “descent.”

To generate all the relevant partitions of n, take each topological permutation
Z1...%;, and generate the partitions y1 ...ym of n —t where t is the index of z1 ...z,
(see Section 5.1.1). For 1 < j < m set ax; < y; +t;, where ; is the number of descents
to the right of z; in z1...2zm.

For example, if x; ...z, = 314592687 we want to generate all cases with as >
a1 > ag > as > ag > az > ag > as > az. In this case t = 14+ 5+ 8 = 14; so we set
a1 < Y2+2,a2 < ys+1,a3 < y1+3, as < ys+2, a5 < ya+2, as + yr +1, ar < yo,
as < ys+1, and ag < ys5 + 2. The generalized generating function Y 27" ... zg® in the
sense of exercise 29 is

2125232325 2628 %

(1 — 23)(1 — 2321)(1 - 232124)(1 — 23212425) . (1 — 232124252922262827) ’

When < is any given partial ordering, the ordinary generating function for all such
partitions of n is therefore 3 2™4?/((1 — 2)(1 — 2?)... (1 — 2™)), where the sum is over
all outputs a of Algorithm 7.2.1.2V.

[See R. P. Stanley, Memoirs Amer. Math. Soc. 119 (1972), for significant extensions
and applications of these ideas. See also L. Carlitz, Studies in Foundations and
Combinatorics (New York: Academic Press, 1978), 101-129, for information about
up-down partitions.]
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67. f n+1 = q1...q,, where the factors ¢, ..., ¢ are all > 2, we get a perfect
partition {(q1—1)-1,(g2—1) - q1,(g3—1) - q1q2, ..., (g-—1) - q1 . . . gr—1} that corresponds
in an obvious way to mixed radix notation. (The order of the factors g; is significant.)

Conversely, all perfect partitions arise in this way. Suppose the multiset M =
{k1-p1,...,km - pm} is a perfect partition, where p1 < --- < p;,; then we must have
pj = (k1+1) ... (kj—1+1) for 1 < j < m, because p; is the smallest sum of a submultiset
of M that is not a submultiset of {k1 - p1,...,kj—1-Dj—1}

The perfect partitions of n with fewest elements occur if and only if the g; are all
prime, because pg — 1 > (p—1) 4+ (g—1) whenever p > 1 and ¢ > 1. Thus, for example,
the minimal perfect partitions of 11 correspond to the ordered factorizations 2 -2 - 3,
2-3-2,and 3-2-2. Reference: Quarterly Journal of Mathematics 21 (1886), 367-373.
68. (a) If a; +1 < a; — 1 for some ¢ and j we can change {a;,a;} to {a;+1,a;—1},
thereby increasing the product by a; —a; — 1 > 0. Thus the optimum occurs only in
the optimally balanced partition of exercise 3. [L. Oettinger and J. Derbes, Nouv. Ann.
Math. 18 (1859), 442; 19 (1860), 117-118.]

(b) No part is 1; and if a; > 4 we can change it to 2 + (a;—2) without decreasing

the product. Thus we can assume that all parts are 2 or 3. We get an improvement by
changing 2 + 2 + 2 to 3 4+ 3, hence there are at most two 2s. The optimum therefore is
37/3 when nmod 3 is 0; 4 - 3(n=4)/3 = 3(n—4)/3. 2.2 = (4/34/3)37/3 when nmod 3
is 1; 3(n=2)/3 .2 = (2/32/3)37/3 when mnmod3 is 2. [O. Meifiner, Mathematisch-
naturwissenschaftliche Blatter 4 (1907), 85.]
69. Alln > 2 have the solution (n,2,1,...,1). We can “sieve out” the other cases < N
by starting with so...sy < 1...1 and then setting sqx—p < 0 whenever ak —b < N,
wherea=z;...2: — 1, b=z14+---+x: —t—1, k> 21 > --- > x4+, and a > 1, because
k+xzi+---+z+(ak—b—t—1) = kzy...x:. The sequence (z1,...,7:) needs to be
considered only when (z1 ...z —1)z1 — (z1+---+x¢) < N —t; we can also continue to
decrease N so that sy = 1. In this way only (32766, 1486539, 254887,1511,937,478,4)
sequences (z1,...,%:) need to be tried when N is initially 23°, and the only survivors
turn out to be 2, 3, 4, 6, 24, 114, 174, and 444. [See E. Trost, Elemente der Math. 11
(1956), 135; M. Misiurewicz, Elemente der Math. 21 (1966), 90.]

Notes: No new survivors are likely as N — oc, but a new idea will be needed to rule
them out. The simplest sequences (z1,...,2¢) = (3) and (2, 2) already exclude alln > 5
with n mod 6 # 0; this fact can be used to speed up the computation by a factor of 6.
The sequences (6) and (3,2) exclude 40% of the remainder (namely all n of the forms
5k — 4 and 5k — 2); the sequences (8), (4,2), and (2, 2, 2) exclude 3/7 of the remainder;
the sequences with ¢ = 1 imply that n — 1 must be prime; the sequences in which
Z1...x¢ = 2" exclude about p(r) residues of n mod (2" —1); sequences in which z; ... x¢
is the product of r distinct primes will exclude about @, residues of n mod (z1 ... z:—1).
70. Each step takes one partition of n into another, so we must eventually reach a
repeating cycle. Many partitions simply perform a cyclic shift on each northeast-to-
southwest diagonal of the Ferrers diagram, changing it

Tr1 T2 T4 X7 T11 T16 .- - X1 I3 Te 10 15 T21 .- -
T3 Ts Tg T12 T17 T23 ... T2 T4 T7 T11 Tie T22...
Te T9 T13 T18 T24 T31 . .- Ts Ty T12 Ti7 T23 T30- - -
from T10 T14 T19 T25 T32 T40 - - - to Ty X13 T1s T24 T31 T39- .- |
T15 T20 T26 T33 T41 T50 - . - T14 19 T25 T32 T40 T49 - . .

T21 27 T34 T42 T51 T61 - - - 20 T26 £33 T41 T50 L60 - - -
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in other words, they apply the permutation p = (1)(23)(456)(78910)... to the cells.
Exceptions occur only when p introduces an empty cell above a dot; for example, 19
might be empty when x11 isn’t. But we can get the correct new diagram by moving
the top row down, sorting it into its proper place after applying p in such cases. Such a
move always reduces the number of occupied diagonals, so it cannot be part of a cycle.
Thus every cycle consists entirely of permutations by p.

If any element of a diagonal is empty in a cyclic partition, all elements of the
next diagonal must be empty. For if, say, x5 is empty, repeated application of p will
make x5 adjacent to each of the cells z7, xs, x9, x10 of the next diagonal. Therefore
if n = ("22) + ("1‘) with na > n; > 0 the cyclic states are precisely those with ny — 1
completely filled diagonals and ni dots in the next. [This result is due to J. Brandt,
Proc. Amer. Math. Soc. 85 (1982), 483-486. The origin of the problem is unknown;
see Martin Gardner, The Last Recreations (1997), Chapter 2.]

71. When n = 1+ .-+ m > 1, the starting partition (m—1)(m—1)(m—2)...211
has distance m(m — 1) from the cyclic state, and this is maximum. [K. Igusa, Math.
Magazine 58 (1985), 259-271; G. Etienne, J. Combin. Theory A58 (1991), 181-197.]
In the general case, Griggs and Ho [Advances in Appl. Math. 21 (1998), 205-227] have
conjectured that the maximum distance to a cycle is max(2n+2—ni(n2+1),n+na+1,
ni1(n2+1))—2n, for all n > 1; their conjecture has been verified for n < 100. Moreover,
the worst-case starting partition appears to be unique when n, = 2n4 + {—1,0, 2}.

72. (a) Swap the jth occurrence of k in the partition n = j - k + a with the kth
occurrence of j in k - j + «, for every partition « of n — jk. For example, when n = 6
the swaps are

6, 51, 42, 411, 33, 321, 3111, 222, 2211, 21111, 111111.
a bl fg clg hi jkl dlkh n2i m2ln elmjf ledcba

(b) p(n—k) + p(n—2k) + p(n—3k) +---. [A. H. M. Hoare, AMM 93 (1986), 475-476.]

SECTION 7.2.1.5

1. Whenever m is set equal to r in step H6, change it back to r — 1.

2. L1. [Initialize.] Set l; « 7 — 1 and a; < 0 for 1 < j < n. Also set hy + n, t + 1,
and set g to any convenient nonzero value.

L2. [Visit.] Visit the t-block partition represented by Iy ...1, and hy...h;. (The
restricted growth string corresponding to this partition is a1 .. .an.)
L3. [Find j.] Set j < n; then, while [; =0, set j < j—1 and ¢t < t — 1.
L4. [Move j to the next block.] Terminate if j = 0. Otherwise set k « a; + 1,
hi < lj,a; < k. If k=1t,set t < t+ 1 and [; < 0; otherwise set [; < hgy1.
Finally set ]’Lk+1 < ]
L5. [Move j+ 1, ..., n to block 1.] While j < n, set j + 7+ 1, 1; < h1, aj < 0,
and hi <+ 7. Return to L2. |
3. Let 7(k,n) be the number of strings a; ...a, that satisfy the condition 0 < a; <
1+ max(k—1,a1,...,a;-1) for 1 < j < n; thus 7(k,0) = 1, 7(0,n) = @y, and 7(k,n) =
kr(k,n—1)+7(k+1,n—1). [S. G. Williamson has called 7(k,n) a “tail coefficient”; see
SICOMP 5 (1976), 602—617.] The number of strings that are generated by Algorithm H
before a given restricted growth string ai...an is 327 a;7(bj,n — j), where b; =
14+ max(a1,...,aj—1). Working backwards with the help of a precomputed table of the
tail coefficients, we find that this formula yields 999999 when a1 . ..a12 = 010220345041.
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4. The most common representatives of each type, subscripted by the number of
corresponding occurrences in the GraphBase, are zzzzzg, oooohp, xxxixg, xxXii,
ooops,, 1llullp, llalag, eelerp, iittiop, xxiiip, ccxxvg, eerie;, llama;, xxviio,
oozeds, uhuuug, mamma;, puppy,s, ananap, heheeg, vivid;s, rarers, etext;, amassy,
again,,,, ahhaag, esses;, teethss, yaaay,, ahhhhsy, pssst,, seems7, addeds, 1lxxiio,
booksis4, swiss3, senseip, endeds, checkigo, levelis, tepee,, slyly,, neverisq,
sellsg, mottog;, whoooy, treesssy, going,,, whichysi, there;zy, threeigo, theirsgss.
(See S. Golomb, Math. Mag. 53 (1980), 219-221. Words with only two distinct letters
are, of course, rare. The 18 representatives listed here with subscript 0 can be found
in larger dictionaries or in English-language pages of the Internet.)

5. (a) 112 = p(0225). The sequence is 7(0), r(1), 7(4), r(9), r(16), ..., where r(n) is
obtained by expressing n in decimal notation (with one or more leading zeros), applying
the p function of exercise 4, then deleting the leading zeros. Notice that n/9 < r(n) < n.

(b) 1012 = 7(45%). The sequence is the same as (a), but sorted into order and with
duplicates removed. (Who knew that 882 = 7744, 212% = 44944, and 264* = 69696?)

6. Use the topological sorting approach of Algorithm 7.2.1.2V, with an appropriate
partial ordering: Include ¢; chains of length j, with their least elements ordered. For
example, if n = 20, ¢ = 3, and ¢3 = ¢4 = 2, we use that algorithm to find all
permutations ap ...a20 of {1,...,20} such that 1 < 2,3 < 4,5 <6,1 <3 <5,
7<8<9,10 <11 <12, 7 <10, 13 < 14 < 15 < 16, 17 < 18 < 19 < 20,
13 < 17, forming the restricted growth strings p(f(a1) ... f(az0)), where p is defined
in exercise 4 and (f(1),..., f(20)) =(1,1,2,2,3,3,4,4,4,5,5,5,6,6,6,6,7,7,7,7). The
total number of outputs is, of course, given by (48).

7. Exactly w,,. They are the permutations we get by reversing the left-right order of
the blocks in (2) and dropping the ‘|’ symbols: 1234, 4123, 3124, 3412, ..., 4321.
[See A. Claesson, European J. Combinatorics 22 (2001), 961-971. S. Kitaev, in
“Partially ordered generalized patterns,” Discrete Math., to appear, has discovered a
far-reaching generalization: Let 7 be a permutation of {0,...,7}, let g», be the number
of permutations a; ...a, of {1,...,n} such that ax—or > ak—1x > -++ > Gh—rx > q;
implies j > k, and let f,, be the number of permutations ai...a, for which the
pattern ax_ox > Gg—1x > -+ > ar_rr is avoided altogether for r < & < n. Then
2o gn2"/nl = exp(zn21 frn—12"/nl).]

8. For each partition of {1,...,n} into m blocks, arrange the blocks in decreasing
order of their smallest elements, and permute the non-smallest block elements in all
possible ways. If n =9 and m = 3, for example, the partition 126/38/4579 would yield
457938126 and eleven other cases obtained by permuting {5,7,9} and {2,6} among
themselves. (Essentially the same method generates all permutations that have exactly
k cycles; see the “unusual correspondence” of Section 1.3.3.)

9. Among the permutations of the multiset {ko - 0,k1-1,...,kn—1 - (n—1)}, exactly

ko + ki + -+ kno1 ko k1
ko, k1, .., kn_1

1

(ko+ki+- 4+ kn1) (b1 +- +kno1)’ n—1

kn
k

have restricted growth, since k;/(kj + -+ 4+ kn—1) is the probability that j precedes
{j+1,....,n—1}.
The average number of 0s, if n > 0, is 1 + (n — 1)wn_1/wn = O(logn), because

the total number of Os among all w,, cases is Y ,_, k(z:i)wn,k =wn+(n—1)wn_1.

10. Given a partition of {1,..., n}, construct an oriented tree on {0, 1,...,n} by letting

7 — 1 be the parent of all members of a block whose least member is j. Then relabel
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the leaves, preserving order, and erase the other labels. For example, the 15 partitions
in (2) correspond respectively to
A&ﬁ\glé\lﬂg\g/@2ﬁ]¢3/{\ 2
1234
3 2 23 1 13 12 12 123 1 2
2 2 1 1 12 1

To reverse the process, take a semilabeled tree and assign new numbers to its nodes
by considering the nodes first encountered on the path from the root to the smallest
leaf, then on the path from the root to the second-smallest leaf, etc. The number of
leaves is m + 1 minus the number of blocks. [This construction is closely related to
exercise 2.3.4.4-18 and to many enumerations in that section. See P. L. Erdds and
L. A. Székely, Advances in Applied Math. 10 (1989), 488-496.]

11. We get pure alphametics from 900 of the 64855 set partitions into at most 10
blocks for which p(a;...a13) = p(as...asa1...a4a9...a13), and from 563,527 of the
13,788,536 for which p(a1...a13) < p(as...asai...asa9...a13). The first examples
are aaaa + aaaa = baaac, aaaa + aaaa = bbbbc, and aaaa + aaab = baaac; the
last are abcd + efgd = dceab (goat + newt = tango) and abcd + efgd = dceaf
(clad + nerd = dance). [The idea of hooking a partition generator to an alphametic
solver is due to Alan Sutcliffe.]

12. (a) Form p((a1a}) ... (anay)), where p is defined in exercise 4, since we have z = y
(modulo I7 Vv IT') if and only if z = y (modulo IT) and z = y (modulo IT").

(b) Represent IT by links as in exercise 2; represent /1’ as in Algorithm 2.3.3E;
and use that algorithm to make j = [; whenever l; # 0. (For efficiency, we can assume
that IT has at least as many blocks as IT'.)

(c) When one block of IT has been split into two parts; that is, when two blocks
of IT' have been merged together.

(@) (2 () (2 = 1) (2% = 1),

(f) True: Let I1VII' have blocks By |Ba| - - |By, where II = B1B3|Bs|-- - |B;. Then
IT' is essentially a partition of {Bi,..., B} with By # B, and IT A IT' is obtained by
merging the block of IT' that contains B; with the block that contains Bs. [A finite
lattice that satisfies this condition is called lower semimodular; see G. Birkhoff, Lattice
Theory (1940), §1.8. The majorization lattice of exercise 7.2.1.4-54 does not have this
property when, for example, @ = 4111 and o' = 331.]

(g) False: For example, let IT = 0011, IT" = 0101.

(h) The blocks of IT and IT’ are unions of the blocks of IT V IT', so we can assume
that IT v II' = {1,...,t}. Asin part (b), merge j with [; to get IT in r steps, when IT
has ¢t — 7 blocks. These merges applied to II' will each reduce the number of blocks by
0 or 1. Hence b(IT') —b(IT AIT') < r = b(IT Vv IT') — b(IT).

[In Algebra Universalis 10 (1980), 74 95, P. Pudldk and J. Tuma proved that every
finite lattice is a sublattice of the partition lattice of {1,...,n}, for suitably large n.]
13. [See Advances in Math. 26 (1977), 290 305.] If the j largest elements of a ¢-block
partition appear in singleton blocks, but the next element n — j does not, let us say
that the partition has order ¢ — j. Define the “Stirling string” X,: to be the sequence
of orders of the t-block partitions II1, Ila, ...; for example, Y43 = 122333. Then
Y4 = 0, and we get X(,41); from Xp; by replacing each digit d in the latter by the
string d%(d+1)?*' ... t* of length (H;) - (‘;); for example,

Y53 = 1223332233322333333333333.
A A A A A
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The basic idea is to consider the lexicographic generation process of Algorithm H.
Suppose Il = ay ...a, is a t-block partition of order j; then it is the lexicographically
smallest ¢-block partition whose restricted growth string begins with a1 ...an—+y;. The
partitions covered by IT are, in lexicographic order, Ili2, Il13, 23, 1114, T34, 1134,

.., II(;_1);, where II,, means “coalesce blocks r and s of IT” (that is, “change all
occurrences of s — 1 to r — 1 and then apply p to get a restricted growth string”). If
IT' is any of the last (;) - (;) of these, from IT;(; 1) onwards, then IT is the smallest
t-block partition following IT’. For example, if IT = 001012034, then n = 9, ¢t = 5,
j = 3, and the relevant partitions IT' are p(001012004), p(001012014), p(001012024),
p(001012030), p(001012031), p(001012032), p(001012033).

Therefore frnt(N) = fn:(N — 1) + (;) — (%), where j is the Nth digit of X,;.

14. E1. [Initialize.] Set aj +~ 0 and b; +— d; + 1 for 1 < j < n.

E2. [Visit.] Visit the restricted growth string a1 ... a,.

E3. [Find j.] Set j < n; then, while a; =d;, set dj + 1 —d; and j « j — 1.

E4. [Done?] Terminate if j = 1. Otherwise go to E6 if d; = 0.

E5. [Move down.] If a; = 0, set aj < b;, m < a; + 1, and go to E7. Otherwise if

aj = bj, set aj < b; — 1, m < b;, and go to E7. Otherwise set a; ¢~ a; — 1
and return to E2.

E6. [Move up.] If a; = b; — 1, set aj « bj, m < a; + 1, and go to E7. Otherwise
if a; = bj, set a; < 0, m < b;, and go to E7. Otherwise set a; < a; + 1 and
return to E2.

ET7. [Fix bj41...b,.] Set by < m for k=341, ..., n. Return to E2. |

[This algorithm can be extensively optimized because, as in Algorithm H, j is almost
always equal to n.]

15. It corresponds to the first n digits of the infinite binary string 01011011011...,
because w,_1 is even if and only if n mod 3 = 0 (see exercise 23).

16. 00012, 01012, 01112, 00112, 00102, 01102, 01002, 01202, 01212, 01222, 01022,
01122, 00122, 00121, 01121, 01021, 01221, 01211, 01201, 01200, 01210, 01220, 01020,
01120, 00120.

17. The following solution uses two mutually recursive procedures, f(u,v,o) and
b(p,v,0), for “forward” and “backward” generation of A,, when o = 0 and of A},
when 0 = 1. To start the process, assuming that 1 < m < n, first set a; < 0 for
1<j<n—mand an—m4j; < j—1for 1 <j < m, then call f(m,n,0).

Procedure f(u,v,o): If u = 2, visit a1...a,; otherwise call f(u — 1,v — 1,
(u+o) mod 2). Then, if v = p + 1, do the following: Change a, from 0 to p — 1,
and visit a1 ...an; repeatedly set a, < a, — 1 and visit a; ...an,, until a, = 0. But if
v > p+ 1, change a,_1 (if p+o is odd) or a, (if u+o is even) from 0 to u — 1; then
call b(p,v—1,0) if a, + o is odd, f(u,v—1,0) if a, + o is even; and while a, > 0, set
ay < a, — 1 and call b(p,v—1,0) or f(p,v—1,0) again in the same way until a, = 0.

Procedure b(u,v,0): If v = pu+ 1, first do the following: Repeatedly visit a; ... an
and set a, < a, + 1, until a, = p — 1; then visit a1 ...a, and change a, from p —1
to 0. But if v > p+ 1, call f(u,v—1,0) if ay, + o is odd, b(p,v—1,0) if a, + o is even;
then while a, < p— 1, set a, < a, + 1 and call f(u,v—1,0) or b(u,r—1,0) again in
the same way until a, = p — 1; finally change a,_1 (if p+o is odd) or a, (if p+o is
even) from g — 1 to 0. And finally, in both cases, if u = 2 visit a; ... an, otherwise call
b(p—1,v — 1, (u+0) mod 2).
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Most of the running time is actually spent handing the case yu = 2; faster routines
based on Gray binary code (and deviating from Ruskey’s actual sequences) could be
substituted for this case. A streamlined procedure could also be used when y = v — 1.

18. The sequence must begin (or end) with 01...(n—1). By exercise 32, no such Gray
code can exist when 0 # §,, # (1)0+1+"'+("71), namely when n mod 12 is 4, 6, 7, or 9.

The cases n = 1, 2, 3, are easily solved; and 1,927,683,326 solutions exist when
n = 5. Thus there probably are zillions of solutions for all n > 8 except for the cases
already excluded. Indeed, we can probably find such a Gray path through all @, of the
strings considered in answer 28(e) below, except when n = 2k+(2,4,5,7) (modulo 12).

Note: The generalized Stirling number {:1}71 in exercise 30 exceeds 1 for 2 <

m < n, so there can be no such Gray code for the partitions of {1,...,n} into m
blocks.
19. (a) Change (6) to the pattern 0, 2, ..., m, ..., 3, 1 or its reverse, as in endo-order

(7.2.1.3-(45))-
(b) We can generalize (8) and (g) to obtain sequences A,,,, and Al,,, that

begin with 0"~ ™01...(m—1) and end with 01...(m—1)a and 0" ™ '01...(m—1)a,
respectively, where 0 < a < m—2 and « is any string a1 ... an—m with 0 < a; < m—2.
When 2 < m < n the new rules are

R . .
" Al 1yn(68)T1: AmnpT1 AmnaZ2, - - - Apnam, if m is even;
m(n+1)(aa) = R . .
I(mfl)nbmlv Amnaxlv Amnam27 ceey Amnaxma if m is Odda
‘ 21, Apppr1, AR AR if m i ;
’ (m—1)nb1ly “AmnaLl, mnBL2s -+ AmppTm, I m 18 even;
A (n+1)a R R . .
Alm—1)n68)T1r Amna®1; AmngT2, - - s ApngTm, if m is odd;
here b=m — 3, 3=0""", and (z1,...,Zm) is a path from 21 = m — 1 to z,» = a.

20. 012323212122; in general (a1 ...a,)" = p(ay ... a1), in the notation of exercise 4.

21. The numbers (so, s1,82,...) = (1,1,2,3,7,12,31,59, 164, 339,999, .. .) satisfy the
reCuITences Sznt1 = (Z) San—2k; Sznt2 = D}, (Z) (2k + 1)s2n—2k, because of the way
the middle elements relate to the others. Therefore s2, = n![2"] exp((e**—1)/2+e*—1)
and sa,41 = n! [2"] exp((e®* —1)/2+ e + z — 1). By considering set partitions on the
first half we also have san = ), {Z}azk and S2pnq1 = Y, {":l}xk_l, where =, =
2Zn_1+ (0 — 1)2Zn_2 = n! [2"] exp(22z + 2°/2). [T. S. Motzkin considered the sequence
(s2n) in Proc. Symp. Pure Math. 19 (1971), 173.]

22, (a) S22 k" Pr(X=k)=e"" 322, k"/k! = w, by (16). (b) S50, k" Pr(X=k) =
DI D (2)(~1)?7*/5!, and we can extend the inner sum to j = oo because
Sk () (=1)*k™ = 0 when j > n. Thus we get > po (K"/k!) 372, (—1)/1l = wn. [See
J. O. Irwin, J. Royal Stat. Soc. A118 (1955), 389-404; J. Pitman, AMM 104 (1997),
201-209.]

23. (a) The formula holds whenever f(z) = =", by (14), so it holds in general. (Thus
we also have Y 7 | f(k)/k! = e f(w), by (16).)

(b) Suppose we have proved the relation for k, and let h(z) = (z—1)%f(z), g(z) =
f(z+1). Then f(w+k+1) = g(w+k) = whg(w) = h(w+1) = wh(w) = o f(w).
[See J. Touchard, Ann. Soc. Sci. Bruxelles 53 (1933), 21-31. This symbolic “umbral
calculus,” invented by John Blissard in Quart. J. Pure and Applied Math. 4 (1861),
279-305, is quite useful; but it must be handled carefully because f(w) = g(w) does
not imply that f(w)h(w) = g(w)h(w).]
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(c) The hint is a special case of exercise 4.6.2-16(c). Setting f(z) = z™ and k =p
n (b) th
( ) Modulo p, the polynomial 2V — 1 is divisible by g(z) = 2P — & — 1, because
=2+kand 2V = 2P =22 = 2P — 2z = 1 (modulo g(z) and p). Thus 1fh( ) =
( 1)z"/g(z) we have h(w) = h(w + p) = wlh(w) = (w? — w)h(w); and 0 =
g(w ) (w) =™ ™™ — " (modulo p)

en yields w, = wp4n — w1+n

24. The hint follows by induction on e, because z2° = Pz - kpefl)’i. We can
also prove by induction on n that 2™ = r,(z) (modulo g;(z) and p) implies
e—1 e—1
2 " =r,(z)?  (modulo ge(z), pge—1(x), ..., p° 'g1(x), and p°).

Hence 27 N = 14 ho() ge (z) + pha(2) ge—1(z) +- -+ p° " he—1(2) g1 (@) + phe (z) for

certain polynomials hy(z) with integer coefficients. Modulo p® we have ho(w)@” =

ho(w + p°) (w + p°)" = w= ho(w)w" = (ge(w) + 1) ho(w)=™; hence

1
P Nt oy ho(w@)ge(w)@w" + phi(w@)ge—1(w)@"™ + - w”.

[A similar derivation applies when p = 2, but we let g;11(z) = g;(z)? + 2[j =2], and

we obtain wy, = wpy3.2¢ (modulo 2°). These results are due to Marshall Hall; see Bull.

Amer. Math. Soc. 40 (1934), 387; Amer. J. Math. 70 (1948), 387-388. For further

information see W. F. Lunnon, P. A. B. Pleasants, and N. M. Stephens, Acta Arith.
5 (1979), 1-16.]

25. The first inequality follows by applying a much more general principle to the tree
of restricted growth strings: In any tree for which deg(p) > deg(parent(p)) for all non-
root nodes p, we have wy/wi_1 < wgy1/wr when wy, is the total number of nodes on
level k. For if the m = wi_1 nodes on level k— 1 have respectively a1, ..., an children,
they have at least aj + - - - 4 a2, grandchildren; hence wy_jwg1 > m(al + - +a2) >
(ay 4+ - +a,)? =wi.

For the second inequality, note that wp1 — @, = EZ:O((Z) - (::i))wn,k; thus

n—1 n—1
@nt1 o Z(n—l)wn k < (n_l)wnfkfl _ _@n
TWn k Wn-1 Wn-1

k=0 k=0

because, for example, wy_3/wn = (Wn—3/@n—2)(@Wn—2/@n—1)(wn—1/wn) is less than
or equal to (wn—4a/@n-3)(Wn-3/@n-2)(@Wn-2/n-1) = Wn-a/n—1.

26. There are (2:1) rightward paths from @D to (#); we can represent them by 0s and
1s, where 0 means “go right,” 1 means “go up,” and the positions of the 1s tell us which
n—t of the elements are in the block with 1. The next step, if ¢ > 1, is to another vertex
at the far left; so we continue with a path that defines a partition on the remaining ¢ —1
elements. For example, the partition 14|2|3 corresponds to the path 0010 under these
conventions, where the respective bits mean that 1 # 2, 1 £ 3,1 =4, 2 # 3. [Many
other interpretations are possible. The convention suggested here shows that w,k
enumerates partitions with 1 # 2, ..., 1 # k, a combinatorial property discovered by
H. W. Becker; see AMM 51 (1944), 47, and Mathematics Magazine 22 (1948), 23-26.]
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27. (a) In general, Ag = A1 = A2pn—1 = A2n = 0. The following list shows also the
restricted growth strings that correspond to each loop via the algorithm of part (b):

0,0,0,0,0,0,0,0,0 0123  0,0,1,0,0,0,0,0,0 0012 0,0,1,1,1,0,0,0,0 0102
0,0,0,0,0,0,1,0,0 0122  0,0,1,0,0,0,1,0,0 0011 0,0,1,1,1,0,1,0,0 0100
0,0,0,0,1,0,0,0,0 0112  0,0,1,0,1,0,0,0,0 0001 0,0,1,1,1,1,1,0,0 0120
0,0,0,0,1,0,1,0,0 0111  0,0,1,0,1,0,1,0,0 0000  0,0,1,1,11,1,1,0,0 0101
0,0,0,0,1,1,1,0,0 0121  0,0,1,0,1,1,1,0,0 0010  0,0,1,1,2,1,1,0,0 0110

(b) The name “tableau” suggests a connection to Section 5.1.4, and indeed the
theory developed there leads to an interesting one-to-one correspondence. We can

represent set partitions on a triangular chessboard by putting elg"

a rook in column [; of row n + 1 — j whenever [; # 0 in the it
linked list representation of exercise 2 (see the answer to exercise ° ‘
5.1.3 19). For example, the rook representation of 135|27|489|6 6
is shown here. Equivalently, the nonzero links can be specified in °
a two-line array, such as (3222%); see 5.1.4—(11).
Consider the path of length 2n that begins at the lower left |[®! |
corner of this triangular diagram and follows the right boundary :—
edges, ending at the upper right corner: The points of this path 1
are z, = (|k/2],[k/2]) for 0 < k < 2n. Moreover, the rectangle above and to the left
of zr contains precisely the rooks that contribute coordinate pairs } to the two-line
array when ¢ < |k/2] and j > [k/2]; in our example, there are just two such rooks
when 9 < k < 12, namely (gg) Theorem 5.1.4A tells us that such two-line arrays are
equivalent to tableaux (P, Q%), where the elements of P come from the lower line
and the elements of Qx come from the upper line, and where both P, and Q have the
same shape. It is advantageous to use decreasing order in the P tableaux but increasing

order in the @ tableaux, so that in our example they are respectively

|

w|

kP Qk E P Qr k' P Q
2 7 12

(o] [a[ee]

3 3] [1] 8 [8]5] [2]3] 13
7] 4]
4 71 [ 9 [8] [2] 14 [8] [4]
7l 4
5 (71 [2] 10 [8] [2] 15
7] 4
6 [7[5] [2]3] 1 8] [2] 16 [9] [8]
7 4

while P, and Q are empty for £k =0, 1, 17, and 18.

In this way every set partition leads to a vacillating tableau loop Ao, A1, ..., A2n,
if we let Ax be the integer partition that specifies the common shape of P, and Q.
(The loop is 0, 0, 1, 1, 11, 1, 2, 2, 21, 11, 11, 11, 11, 1, 1, 0, 1, 0, O in our example.)
Moreover, tar—1 = 0 if and only if row n 4+ 1 — k contains no rook, if and only if & is
smallest in its block.

Conversely, the elements of P, and Q can be uniquely reconstructed from the
sequence of shapes A\x. Namely, Qr = Qr—1 if tx = 0. Otherwise, if k is even, Qx is Qr—1
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with the number k/2 placed in a new cell at the right of row ¢;; if k is odd, Q& is obtained
from Qk—1 by using Algorithm 5.1.4D to delete the rightmost entry of row #;. A similar
procedure defines Py from the values of Pyy1 and tx41, so we can work back from P,
to Po. Thus the sequence of shapes A\r is enough to tell us where to place the rooks.

Vacillating tableau loops were introduced in the paper “Crossings and nestings of
matchings and partitions” by W. Y. C. Chen, E. Y. P. Deng, R. R. X. Du, R. P. Stanley,
and C. H. Yan (preprint, 2005), who showed that the construction has significant
(and surprising) consequences. For example, if the set partition IT corresponds to
the vacillating tableau loop Ao, A1, ..., A2n, let’s say that its dual ITP is the set
partition that corresponds to the sequence of transposed shapes A, AT, ..., A\T..
Then, by exercise 5.1.4-7, Il contains a “k-crossing at [,” namely a sequence of indices
with 47 < -+ < 4 < I < j1 < - < Jr and 41 = J1, ..., ik = Jk (modulo H),
if and only if ITP contains a “k-nesting at [,” which is a sequence of indices with
i< < <l<gi<---<jiandiy =341, ..., i} = ji (modulo ITP). Notice also
that an involution is essentially a set partition in which all blocks have size 1 or 2; the
dual of an involution is an involution having the same singleton sets. In particular, the
dual of a perfect matching (when there are no singleton sets) is a perfect matching.

Furthermore, an analogous construction applies to rook placements in any Ferrers
diagram, not only in the stairstep shapes that correspond to set partitions. Given a
Ferrers diagram that has at most m parts, all of size < n, we simply consider the path
z0 = (0,0), z1, ..., Zm+n = (n,m) that hugs the right edge of the diagram, and stipulate
that Ay = Ag—1 +e¢, when 2z = zr—1 +(1,0), A = Ae—1 — e, when 2 = 2,1+ (0,1).
The proof we gave for stairstep shapes shows also that every placement of rooks in the
Ferrers diagram, with at most one rook in each row and at most one in each column,
corresponds to a unique tableau loop of this kind.

[And much more is true, besides! See S. Fomin, J. Combin. Theory A72 (1995),
277-292; M. van Leeuwen, Electronic J. Combinatorics 3,2 (1996), paper #R15.]

28. (a) Define a one-to-one correspondence between rook placements, by interchanging
the positions of rooks in rows j and j+1 if and only if there’s a rook in the “panhandle”
of the longer row:

olofo[o|o[o[o]e] | olofe

P s
olole olololo|olo[o]e] |
ole| |o [ T 1] ole| o

<~ .
ololo|e ololo|e [T 1]

(b) This relation is obvious from the definition, by transposing all the rooks.
(c) Suppose a1 > a2 > --- and ax > ak+1. Then we have

R(ai,a2,...) =zR(a1—1,...,ax_1—1,ak41,...) + yR(a1,....,ak—1,ar—1,ap41,...)

because the first term counts cases where a rook is in row k and column ar. Also
R(0) = 1 because of the empty placement. From these recurrences we find

R1)=z+y; R(2)=R1,1)=z+zy+vy°; R3)=R(1,1,1) =z + 2y + zy° + ¢°;
2,1) = 2° 4 2zy + zy® + ¢

3,1) = R(2,2) = R(2,1,1) = 2° + 2°y + 2y + 22¢° + 2¢° + v

3,1,1) = R(3,2) = R(2,2,1) = 2° + 22°y + 2°y° + 2zy* + 22¢” + 23" + o°;

3,2,1 )_T —|—3Ty+3ry —|—Ty —|—3Ty —|—2Ty —|—Ty —|—y

oo~~~V =)

(
(
(
(
(
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(d) For example, the formula wrs(z,y) = xwes(,y) + ywra(x,y) is equivalent
to R(5,4,4,3,2,1) = zR(4,3,3,2,1) + yR(5,4,3,3,2,1), a special case of (c); and
@Wnn(z,y) = R(n — 2,...,0) is obviously equal to @(,—1)1(z,y) = R(n — 2,...,1).

(e) In fact y" ‘wnk(z,y) is the stated sum over all restricted growth strings
ai ...an for which ag >0, ..., ax > 0.

29. (a) If the rooks are respectively in columns (cy, ..., cn), the number of free cells is
the number of inversions of the permutation (n+1—¢;1)...(n+1—¢,). [Rotate the
right-hand example of Fig. 35 by 180° and compare the result to the illustration
following Eq. 5.1.1—(5).]

(b) Each r x 7 configuration can be placed in, say, rows i1 < - -+ < 7, and columns
Jj1 < -+ < jr, yielding (m—r)(n—r) free cells in the unchosen rows and columns; there
are (ig—i1+1) +2(iz—i2—1)+-- -+ (r—1)(ir—ir—1—1) + r(m—i,) in the unchosen rows
and chosen columns, and a similar number in the chosen rows and unchosen columns.
Furthermore

Z y(i27i1+1)+2(i371'271)+---+(r71)(i,«7i,‘,171)+r(m7iT)

1<i1 < <ip<m

may be regarded as the sum of y® T2 Fam—r gyer all partitions r > a3 > ap > --- >
Am—r > 0, s0 it is (TT”) by Theorem C. The polynomial r!, generates free cells for the

chosen rows and columns, by (a). Therefore the answer is y(™~" ("~ T)(T)y(:)yr!y =

y(miT)(nir)m!yn!y/((m —r)ly(n —r)lyrly).

(c) The left-hand side is the generating function Ry, (t + a1,...,t + am) for the
Ferrers diagram with ¢ additional columns of height m. For there are t + a,, ways to
put a rook in row m, yielding 14+y+---+¢" o1 = (1 —y'+9m) /(1 —1y) free cells with
respect to those choices; then there are ¢t 4+ a,,—1 — 1 available cells in row m — 1, etc.

The right-hand side, likewise, equals R, (t + a1,...,t + a,n,). For if m — k rooks
are placed into columns > ¢, we must put k rooks into columns < t of the k£ unused
rows; and we have seen that t!, /(¢ — k)!y is the generating function for free cells when
k rooks are placed on a k x t board.

[The formula proved here can be regarded as a polynomial identity in the variables
y and y'; therefore it is valid for arbitrary ¢, although our proof assumed that ¢ is a
nonnegative integer. This result was discovered in the case y = 1 by J. Goldman,
J. Joichi, and D. White, Proc. Amer. Math. Soc. 52 (1975), 485-492. The general case
was established by A. M. Garsia and J. B. Remmel, J. Combinatorial Theory A41
(1986), 246275, who used a similar argument to prove the additional formula

i:: ﬁ Zm <1_Zyz)...(ﬁ)}%m,k(al,...,am).

(d) This statement, which follows immediately from (c), also implies that we have
R(ay,...,a,) = R(a},...,al,) if and only if equality holds for all z and for any nonzero
value of y. The Peirce polynomial @y (z,y) of exercise 28(d) is the rook polynomial for
(Z:i) different Ferrers diagrams; for example, wes(x,y) enumerates rook placements
for the shapes 43321, 44221, 44311, 4432, 53221, 53311, 5332, 54211, 5422, and 5431.
30. (a) We have @y, (z,y) =Y, =" ™ Apn, where Ay = Ry—m(n—1,...,1) satisfies
a simple law: If we don’t place a rook in row 1 of the shape (n —1,...,1), that row
has m — 1 free cells because of the n — m rooks in other rows. But if we do put a rook

a]+m J+t
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there, we leave 0 or 1 or - -- or m — 1 of its cells free. Hence A, = ymflA(m_l)(n_l) +
(I1+y+-+y™ ")Amm_1). and it follows by induction that A, = ym(mfl)ﬂ{:;}y.
(b) The formula wnt1(z,y) =3, (})2" *y*wi(z,y) yields
n\ k
Am(nt1) = Z(k) Y Alm—1)k-
k
(c) From (a) and (b) we have

n

P kY k.
A-2)(1-(0+92).. . A—(0+tat-+q=1)2) :Z{n}qz ’

k

k

k q

[The second formula is proved by induction on n, because both sides satisfy the
differential equation G, 1(2) = (1 + g+ -+ + ¢")e*Gn(gz); exercise 1.2.6-58 proves
equality when z = 0.]

Historical note: Leonard Carlitz introduced g-Stirling numbers in Transactions of
the Amer. Math. Soc. 33 (1933), 127 129. Then in Duke Math. J. 15 (1948), 987 1000,
he derived (among other things) an appropriate generalization of Eq. 1.2.6—(45):

“1vn n 5 mly
At a™ )" = zk:{k}qq()(mfk)!q'

31. exp(e¥* 4+ w — 1); therefore @ = (w+1)"*w* ! = @' *(w—-1)*"" in the
umbral notation of exercise 23. [L. Moser and M. Wyman, Trans. Royal Soc. Canada
(3) 43 (1954), Section 3, 31-37.] In fact, the numbers wy,k(x, 1) of exercise 28(d) are
generated by exp((e*“ 1% — 1)/z + zw).

32. We have 6,, = @, (1, —1), and a simple pattern is easily perceived in the generalized
Peirce triangle of exercise 28(d) when z = 1 and y = —1: We have |w,,(1,—-1)| < 1
and @y (p41)(1, —1) = war(1, —1) + (=1)" (modulo 3) for 1 < k < n. [In JACM 20
(1973), 512-513, Gideon Ehrlich gave a combinatorial proof of an equivalent result.]

33. Representing set partitions by rook placements as in answer 27 leads to the answer
Wk, by setting = y = 1 in exercise 28(d). [The case k = n was discovered by
H. Prodinger, Fibonacci Quarterly 19 (1981), 463-465.]

34. (a) Guittone’s Sonetti included 149 of scheme 01010101232323, 64 of scheme
01010101234234, two of scheme 01010101234342, seven with schemes used only once
(like 01100110234432), and 29 poems that we would no longer consider to be sonnets
because they do not have 14 lines.

(b) Petrarch’s Canzoniere included 115 sonnets of scheme 01100110234234, 109 of
scheme 01100110232323, 66 of scheme 01100110234324, 7 of scheme 01100110232232,
and 20 others of schemes like 01010101232323 used at most three times each.

(c) In Spenser’s Amoretti, 83 of 89 sonnets used the scheme 01011212232344; the
exception (number 8) was “Shakespearean.”

(d) Shakespeare’s 154 sonnets all used the rather easy scheme 01012323454566,
except that two of them (99 and 126) didn’t have 14 lines.

(e) Browning’s 44 Sonnets From the Portuguese obeyed the Petrarchan scheme

01100110232323.
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Sometimes the lines would rhyme (by chance?) even when they didn’t need to; for
example, Browning’s final sonnet actually had the scheme 01100110121212.

Incidentally, the lengthy cantos in Dante’s Divine Comedy used an interlocking
scheme of rhymes in which 1 =3 and 3n—1=3n+1=3n+3forn=1, 2, ....

35. Every incomplete n-line rhyme scheme IT corresponds to a singleton-free partition
of {1,...,n+1} in which (n+1) is grouped with all of II’s singletons. [H. W. Becker
gave an algebraic proof in AMM 48 (1941), 702. Notice that @), = >, (})(—1)" *ws,
by the principle of inclusion and exclusion, and w, = >, (Z) w},; we can in fact write
w' = @ — 1 in the umbral notation of exercise 23. J. O. Shallit has suggested extending
Peirce’s triangle by setting @,,(, ;1) = @n; see exercises 38(e) and 33. In fact, wpr
is the number of partitions of {1,...,n} with the property that 1, ..., K — 1 are not
singletons; see H. W. Becker, Bull. Amer. Math. Soc. 58 (1954), 63.]

36. exp(e® — 1 — z). (In general, if ¥, is the number of partitions of {1,...,n}
into subsets of allowable sizes s1 < s2 < -, the exponential generating function
>, Unz"/nl is exp(2°'/s1! + 2°2/s2! + -+ +), because (2°'/s1! + 2°2/sa! + -+ )F is the
exponential generating function for partitions into exactly k parts.)

37. There are ), (})wiw,_; possibilities of length n, hence 784,071,966 when n = 14.
(But Pushkin’s scheme is hard to beat.)

38. (a) Imagine starting with z122 ...z, = 01...(n—1), then successively removing
some element b; and placing it at the left, for j = 1, 2, ..., n. Then z; will be the
kth most recently moved element, for 1 < k < [{b1,...,bn}|; see exercise 5.2.3-36.
Consequently the array xi ...z, will return to its original state if and only if b, ... b1
is a restricted growth string. [Robbins and Bolker, £quat. Math. 22 (1981), 281-282.]

In other words, let ai...a, be a restricted growth string. Set b_; < j and
bjt+1 < an—; for 0 < j < n. Then for 1 < j < n, define k; by the rule that b; is the k;th
distinct element of the sequence b;_1, bj_2, .... For example, the string a:...a16 =
0123032303456745 corresponds in this way to the o-cycle 6688448628232384.

(b) Such paths correspond to restricted growth strings with max(ai,...,as) < m,
so the answer is {g} + {’1’} 4+ 4 {:’}

(c) We may assume that i = 1, because the sequence ks ...knk1 is a o-cycle
whenever kiks ...k, is. Thus the answer is the number of restricted growth strings
with a, = j — 1, namely {?:11} + {";1} + {?;11} R

(d) If the answer is fn, we must have Y, (})fx = w@n, since o1 is the identity
permutation. Therefore f, = w,, the number of set partitions without singletons
(exercise 35).

(e) Again w,,, by (a) and (d). [Consequently @), mod p = 1 when p is prime.]

39. Set u = t"*! to obtain 7 [ ety laP)/ (P4 gy — ().

40. We have g(z) = cz—nln z, so the saddle point occurs at n/c. The rectangular path
now has corners at +n/c & mi/c; and exp g(n/c +it) = (e™c"/n") exp(—t*c*/(2n) +
it*c®/(3n%) 4 ). The final result is e (¢/n)""!/v/27n times 1 +n/12 + O(n™?).

(Of course we could have obtained this result more quickly by letting w = ¢z in
the integral. But the answer given here applies the saddle point method mechanically,
without attempting to be clever.)

41. Again the net result is just to multiply (21) by ¢"~!; but in this case the left edge
of the rectangular path is significant instead of the right edge. (Incidentally, when
¢ = —1 we cannot derive an analog of (22) using Hankel’s contour when z is real and
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positive, because the integral on that path diverges. But with the usual definition of 2%,
a suitable path of integration does yield the formula —(cos7z)/T'(z) when n = z > 0.)

42. We have § ezzdz/z" = 0 when n is even. Otherwise both left and right edges of
the rectangle with corners +4/n/2 & in contribute approximately

n/2 0o )3 93/2 \4
e—/ exp<72t2fﬂ2—+@7--->dt,
2n(n/2)7/? J_ 3 nl/? n

when n is large. We can restrict |t| < n° to show that this integral is Io + (Is — 516)/n
with relative error O(n9573/2), where I, = ffooc e 2"tk dt. As before, the relative error

is actually O(n~?); we deduce the answer

1 en/? 1 1
(n—1)/2)! — Van(n/2)"/? (1 T O(E))’ n odd.
(The analog of (22) is (sin Z2)?/T'((z — 1)/2) when n = 2 > 0.)

43. Let f(z) = e¢/z". When z = —n+it we have |f(z)| < en™"; when z = t + 2min +
tm/2 we have |f(z)] = |z|7" < (27n)”". So the integral is negligible except on a path
z = £ +it; and on that path |f| decreases as |t| increases from 0 to 7. Already when
t = n“"Y? we have |f(2)|/f(€) = O(exp(—n?/(logn)?)). And when |t| > 7 we have
[F(2)/F(&) < 1/11+im/€]" = exp(— 5 In(1 + 7°/€?)).

44. Set u = nast® in (25) to obtain R [ e " exp(n™ 2z (—u)*? + n" ea(—u)? +
n"3 25 (—u)®? + - ) du/vVnagu where ¢, = (2/(E+1)*2 (e + (=D)F (k= 1)) /k! =

k/2 . .
ar/ay’ . This expression leads to

b < 1)”_’" ek ek hs
1= E —— ——— =
2 k1! ka! k3!
ey +2ko+3kg+-- =21

ki+kat+kz+--=m
k1,k2,k3,... >

a sum over partitions of 2. For example, by = %64 — %c%.

45. To get wn/n! we replace g(z) by € — (n + 1)Inz in the derivation of (26).
This change multiplies the integrand in the previous answer by 1/(1 + it/£), which

is 1/(1 — n=1/2a(—u)1/2) where a = —/2/(€ + 1). Thus we get

1\ Em ek ke ks
b — (,_) kC Ca G
! > 2 G R Bl Ryl

k+ki+2ko+3ks+---=21
kit+kotkz+--=m
k,k1,k2,k3,...>0

a sum of p(21) + p(2l — 1) + --- + p(0) terms; by = 2cs — 1o¢3 + 3acs — 3a*. [The

coefficient by was obtained in a different way by L. Moser and M. Wyman, Trans.
Royal Soc. Canada (3) 49, Section 3 (1955), 49 54, who were the first to deduce an
asymptotic series for w,. Their approximation is slightly less accurate than the result
of (26) with n changed to n + 1, because it doesn’t pass exactly through the saddle
point. Formula (26) is due to I. J. Good, Iranian J. Science and Tech. 4 (1975), 77 83.]

46. Egs. (13) and (31) show that w.r = (1 — &/n)*@,.(1 + O(n™")) for fixed k as
n — oo. And this approximation also holds when & = n, but with relative error
O((logn)*/n).
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47. Steps (H1, ..., H6) are performed respectively (1,wwn,@n — @Wn—1, @Wn—-1, @n—1,
wn—1 — 1) times. The loop in H4 sets j + j — 1 a total of wy_2 + wp_3 + - + @1
times; the loop in H6 sets b; + m a total of (wn—2 — 1)+ -+ (w1 — 1) times. The
ratio wy_1/wx is approximately (Inn)/n, and (wn—_2 + - -+ + w1) /ws & (Inn)*/n.

48. We can easily verify the interchange of summation and integration in

ey 1 et 1 2. ke
x _ dz — d
Tw+1) 2mi) z=+1 2m‘?£; kel zot %
=1 1 ek =1 k°
= - dz = il
gk' omi | ze+1 &7 ;k' I(z+1)

49. If ¢ = Inn — Inlnn + =, we have 8 = 1 — e ® — ax. Therefore by Lagrange’s
inversion formula (exercise 4.7-8),

= SR () = e e (T e,

J

where f(t) =t/(1 —e™"). So the result follows from the handy identity

(172672)7“ - i{mmn} (mfl)(ij)...(mfn)'

(This identity should be interpreted carefully when n > m; the coefficient of 2™ is a
polynomial in m of degree n, as explained in CMath equation (7.59).)

The formula in this exercise is due to L. Comtet, Comptes Rendus Acad. Sci.
(A) 270 (Paris, 1970), 1085 1088, who identified the coefficients previously computed
by N. G. de Bruijn, Asymptotic Methods in Analysis (1958), 25-28. Convergence for
n > e was shown by Jeffrey, Corless, Hare, and Knuth, Comptes Rendus Acad. Sci. (I)
320 (1995), 1449 1452, who also derived a formula that converges somewhat faster.

(The equation ¢e® = n has complex roots as well. We can obtain them all by
using Inn + 27im in place of Inn in the formula of this exercise; the sum converges
rapidly when m # 0. See Corless, Gonnet, Hare, Jeffrey, and Knuth, Advances in
Computational Math. 5 (1996), 347-350.)

50. Let £ = £(n). Then &'(n) = £/((€ + 1)n), and the Taylor series

2
Ent k) = E+KE () + 8 )+

can be shown to converge for |k| < n + 1/e.

Indeed, much more is true, because the function £(n) = —T'(—n) is obtained from
the tree function T'(z) by analytic continuation to the negative real axis. (The tree
function has a quadratic singularity at z = e™'; after going around this singularity
we encounter a logarithmic singularity at z = 0, as part of an interesting multi-level
Riemann surface on which the quadratic singularity appears only at level 0.) The
derivatives of the tree function satisfy z*T®*)(2) = R(2)*pr(R(2)), where R(z) =
T(z)/(1 — T(z)) and pg(z) is the polynomial of degree k — 1 defined by p,,,(z) =
(1 + z)2p(z) + k(2 + x)ps (). For example,

pi(z) =1, po(z) =2+, ps(x) =9+ 10z + 32>, pa(x) = 64 + 113z + 702> + 152°.
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(The coefficients of pi(x), incidentally, enumerate certain phylogenetic trees called
Greg trees: [z7]pg(z) is the number of oriented trees with j unlabeled nodes and
k labeled nodes, where leaves must be labeled and unlabeled nodes must have at
least two children. See J. Felsenstein, Systematic Zoology 27 (1978), 27-33; L. R.
Foulds and R. W. Robinson, Lecture Notes in Math. 829 (1980), 110-126; C. Flight,
Manuscripta 34 (1990), 122-128.) If gx(z) = pr(—=x), we can prove by induction that
(—1)mq,(cm) (x) > 0 for 0 < = < 1. Therefore gi(z) decreases monotonically from k*~*
to (k — 1)! as z goes from 0 to 1, for all k,m > 1. It follows that

where the partial sums alternately overshoot and undershoot the correct value if k& > 0.

51. There are two saddle points, ¢ = 4/n+5/4—1/2 and ¢’ = —1—0. Integration on a
rectangular path with corners at o 44m and ¢’ &im shows that only o is relevant as n —
oo (although o' contributes a relative error of roughly e=v7, which can be significant
when n is small). Arguing almost as in (25), but with g(z) = z 4+ 2%/2 — (n 4+ 1) In 2,
we find that ¢, is well approximated by

ne

eg(g)*a2t2+ﬂ3it3+---+al(*it)lJrO(n(“r])‘7(171)/2)dt_/ ap = o+1 + [k_Z].
kok—1 2

n!
or

_ne
The integral expands as in exercise 44 to

nle(nto)/?

20mt1, /Tas
This time ¢, = (6 + 1)0'*(1 4+ 1/(20)) %%k for k > 3, hence (20 + 1)*c*by, is a
polynomial in o of degree 2k; for example,

b 3 15 , 862 +To —1
= —C — —C = —/—F .
YTa™ 167 T 120(20 4+ 1)3

(I4bi+ba+- +bm+O0n ™).

In particular, Stirling’s approximation and the by term yield

by =

1 a2 7n/2+ﬁ71/4< T _i)2 119 4 7933 _3/» —2 )
— 1+ — — — O

N t o 52" ~aaro” TO)
after we plug in the formula for 0 — a result substantially more accurate than equation
5.1.4—(53), and obtained with considerably less labor.

52. Let G(z) = 3, Pr(X = k)z*, so that the jth cumulant x; is j![t/] InG(e'). In

£z _

case (a) we have G(z) = e**"—¢*; hence

t t > k
lnG(et) =ef —ef = 65(65(2 -1 —-1) = et Z(et _1)ki_!v Kj = et Z{Ij}gkb#m

k=1 k
Case (b) is sort of a dual situation: Here k = j = w; [j # 0] because

k 2—1 _ _—1\j
_ et kY —;= _ el (e —e ) _ e*Tl
Gz)=e Z{j}e e Zﬁ—e .
ik J
[If £e¢ = 1 in case (a) we have k; = ew [j#0]. But if £e§ = n in that case, the
mean is k1 = n and the variance 62 is (€ +1)n. Thus, the formula in exercise 45 states
that the mean value n occurs with approximate probability 1/v/27wo and relative error

O(1/n). This observation leads to another way to prove that formula.]
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53. We can write InG(e') = pt + o2t?/2 + H3t3/3! + - as in Eq. 1.2.10—(23), and
there is a positive constant & such that } 77 [x;]|/j! < o?t?/6 when |t| < §. Hence, if
0 < e < 1/2, we can prove that

[z‘un_H]G(z)n _ 1 /7r G(eit)n dt

E . eit(pn+r)
nefl/Z 2,2
1 t _ _en2€
_1 exp(firt T L o 1/2)) dt + 0=
21 J_e-1/2

as n — oo, for some constant ¢ > 0: The integrand for n~ /2 < |t| < § is bounded in

absolute value by exp(—o?n?%/3); and when § < |t| < 7 its magnitude is at most o™,

where a = max |G(e™)] is less than 1 because the individual terms pre*** don’t all lie
on a straight line by our assumption. Thus

1 [ o*t?n

2“1 G(2)" = . exp(—irt -

U .

+ O(n3571/2)> dt + 0(676"25)

—oo

2

oo 2 ; 2 €
oo 5 o) o
T ) oo

o3n 202n

2 2
e T /(20°n) 31
= 4+0(n°* .
oV 2mn ( )
By taking account of k3, k4, ... in a similar way we can refine the estimate to O(n™™)
for arbitrarily large m; thus the result is valid also for € = 0. [In fact, such refinements
lead to the “Edgeworth expansion,” according to which [z#"*"] G(2)" is asymptotic to

2 2
e " /(20°n) (_1)3(2l+m)2_s T2l+m72s 1 <K}3 >k1 <K,4 )kz .
o/ 2mn Z gdlt2m=2s9sgl plim-—s L 1k) ..\ 3! 4! Y
k1+2ko+3kz+---=m
ki+kot+kz+---=1
k1,k2,k3,...20
0<s<Il4+m/2

the absolute error is 0(77,71"/2)7 where the constant hidden in the O depends only on p
and G but not on r or n, if we restrict the sum to cases with m < p — 1. For example,
when p = 3 we get

oty = o (1 (1) 4 () ) o)
2z z - —_— — — | = — | — [
oV 2mn 204 \n 606 \ n2 n3/2 )’
and there are seven more terms when p = 4. See P. L. Chebyshev, Zapiski Imp. Akad.
Nauk 55 (1887), No. 6, 1 16; Acta Math. 14 (1890), 305 315; F. Y. Edgeworth,

Trans. Cambridge Phil. Soc. 20 (1905), 36-65, 113-141; H. Cramér, Skandinavisk
Aktuarietidsskrift 11 (1928), 13-74, 141-180.]

54. Formula (40) is equivalent to & = scoths + s, 8 = scoths — s.

55. Let ¢ = ae™®. The Newtonian iteration fo = ¢, Brr1 = (1 — Bi)ce’ /(1 — ce P*)
rises rapidly to the correct value, unless « is extremely close to 1. For example, (7
differs from In 2 by less than 10™7® when o = In4.

> k=0 <Z>e(nik)z n! )

a(er — 1)+l ot

56. (a) By induction on n, g™ (2) = (71)"<
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(b) Yo (Myer/nl = fgl e fol exp(lur + -+ un o) dus ... du,
< fol . fol exp((ur + -+ +un)o)dus ...du, = (e”—1)"/a™.
The lower bound is similar, since |uy + -+ 4+ un| > us + -+ +up — 1.

(c) Thus n! (1-B/a) < (—o)"g™*Y (o) < 0, and we need only verify that 1—3/a <
2(1 — ), namely that 2a8 < a+ 3. But af < 1 and a + 8 > 2, by exercise 54.

57. () n+1-m=(n+1)(1-1/a)< (n+1)(1 —B/a) = (n+1)o/a < 2N as in
answer 56(c). (b) The quantity o + af increases as a increases, because its derivative
with respect toais 1+ 8+ 8(1 —a)/(1—8)=(1 - aB)/(1 — B) + B8 > 0. Therefore
1-B8<2(1-1/a).

58. (a) The derivative of [e? T — 1|%/|o 4+ it|* = (e7T% — 1)(e” " — 1) /(0 + t*) with
respect to ¢ is (o> +¢*)sint — t(2sin £)2 — (2sinh £)2¢ times a positive function. This
derivative is always negative for 0 < t < 27, because it is less than ¢2sint —¢(2 sin é)2 =
8usinu cos u(u — tan u) where t = 2u.

Let s = 2sinh . When o > 7 and 2r < ¢ < 4, the derivative is still negative,
because we have t < 47 < s — 0?/(2w) < s® — ¢%/t. Similarly, when ¢ > 27 the
derivative remains negative for 47 < t < 1687; the proof gets easier and easier.

(b) Let ¢ = uo/V/N. Then (41) and (42) prove that

/T (D g(otit) gy

-7

2 (—iu)das (—iu)'a

(e —1)™ [N u (I4+1)e—(1—-1)/2
ConVN _NeEXP(77+W+M+W+O(N ))du’

where (1 — 8)ay is a polynomial of degree k — 1 in a and B, with 0 < ax < 2/k. (For
example, 6as = (2 — B(a + B))/(1 — f) and 24as = (6 — f(a” + 4af + %)) /(1 - §).)
The monotonicity of the integrand shows that the integral over the rest of the range is
negligible. Now trade tails, extend the integral over —oo < u < oo, and use the formula
of answer 44 with c, = Zk/zak to define by, ba, ... .

(c) We will prove that |e* — 1|t /((e” — 1)™|2|™*!) is exponentially small on

those three paths. If o < 1, this quantity is less than 1/(27)"*! (because, for example,
e” —1>0). If 0 > 1, we have 0 < 2|z| and |e* — 1| < e” — 1.
59. In this extreme case, a =1+ntand B=1—n""'+ %nfz +O(n"?); hence N =
1+ in7"+0(n?). The leading term 8~ "/v/27N is e/V/2m times 1 — in~' 4+ O(n"?).
(Notice that e//2m = 1.0844.) The quantity a; in answer 58(b) turns out to be
1/k+O(n™ ). So the correction terms, to first order, are

G = Fen(-3 i) +o(3)
N = Fle ;%(%71) TO\%)

namely the terms in the (divergent) series corresponding to Stirling’s approximation

AU TR RO N N
1! Vo 12 288 51840 2488320

60. (a) The number of m-ary strings of length n in which all m digits appear is m! {:l},

and the inclusion-exclusion principle expresses this quantity as (7(';) m" — (T) (m-1)"+
--+. Now see exercise 7.2.1.4-37.
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(b) We have (m —1)"/(m —1)! = (m"*/m!)mexp(nin(l —1/m)), and In(1 — 1/m)
is less than —ne—1.

(c) Tn this case a > n® and 8 = ae *e” < ae'™®. Therefore 1 < (1—8/a)™ " <
exp(nO(e™%)); and 1 > e Bm = e-(nt1)B/a > exp(—nO(e~%)). So (45) becomes
(m™/m) (1 + O(n™1) + O(ne—"%)).

61. Nowa =1+~ + Om** ) and f=1- Z+ O(n*2). Thus N = r + O(n?* 1),
and the case [ = 0 of Eq. (43) reduces to

n" (g)fﬁﬁ O™ + o(%))

(This approximation meshes well with identities such as { ",} = (3) and { ",} =
2(2) + (njl); indeed, we have

2r
{ " }: n (1—1—0(1)) as n — oo
n—r 277! n

when r is constant, according to formulas (6.42) and (6.43) of CMath.)

62. The assertion is true for 1 < n < 10000 (with m = |e® — 1] in 5648 of those
cases). E. R. Canfield and C. Pomerance, in a paper that nicely surveys previous work
on related problems, have shown that the statement holds for all sufficiently large n,

and that the maximum occurs in both cases only if e® mod 1 is extremely close to %

[Integers 2 (2002), A1, 1-13.]

63. (a) The result holds when p1 = -+ = p,, = p, because ax_1/ar = (k/(n+1-k)) x
((n—w)/u) <(n—p)/(n+1—p) < 1. It is also true by induction when p, = 0 or 1.
For the general case, consider the minimum of a, — ax—1 over all choices of (p1,...,pn)
with p1 + - +p, = p: f0 < p1 <p2 <1, let py =p; — & and ph) = py + I, and notice
that aj, —ajy_; = ax — ax_1 +38(p1 — p2 — ) a for some a depending only on ps, ..., pn.
At a minimum point we must have a = 0; thus we can choose § so that either pj = 0
or p5=1. The minimum can therefore be achieved when all p; have one of three values
{0,1,p}. But we have proved that ay — ax_1 > 0 in such cases.

(b) Changing each p; to 1 — p; changes u to n — p and ag to an_.

(c) No roots of f(z) are positive. Hence f(z)/f(1) has the form in (a) and (b).

(d) Let C(f) be the number of sign changes in the sequence of coefficients of f;
we want to show that C((1 — z)2f) = 2. In fact, C((1 — z)™f) = m for all m > 0.
For C((1 —2)™) = m, and C((a + bz)f) < C(f) when a and b are positive; hence
C((1—=x)™f) <m. And if f(z) is any nonzero polynomial whatsoever, C((1 — z)f) >
C(f); hence C((1 —z)™f) > m.

(e) Since 3, [¢]z* = z(z+1)...(z+n—1), part (c) applies directly with y = H,,.
And for the polynomials fr(z) = >, {"}azk we can use part (¢) with g = @wp41/wn—1,
if f,(x) has n real roots. The latter statement follows by induction because f,,+1(z) =

z(fn(z) + fr(z)): If @ > 0 and if f(z) has n real roots, so does the function g(z) =
e* f(z). And g(z) — 0 as z — —oo; hence ¢'(z) = e**(af(z) + f'(z)) also has n real
roots (namely, one at the far left, and n — 1 between the roots of g(z)).

[See E. Laguerre, J. de Math. (3) 9 (1883), 99-146; W. Hoeffding, Annals Math.
Stat. 27 (1956), 713-721; J. N. Darroch, Annals Math. Stat. 35 (1964), 1317-1321;
J. Pitman, J. Combinatorial Theory AT7 (1997), 297 303.]

64. We need only use computer algebra to subtract In o, from Inw,_p.
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65. It is w, ' times the number of occurrences of k-blocks plus the number of occur-
rences of ordered pairs of k-blocks in the list of all set partitions, namely ((:) Wn—k +

(M) (" *)@n—2t)/wn, minus the square of (49). Asymptotically, (¢¥/k!)(1+O(n*™1)).
66. (The maximum of (48) when n = 100 is achieved for the partitions 7*6%5%4537261*
and 7'625%463%2513.)

67. The expected value of M* is Wn+tk/@n. By (50), the mean is therefore wy,11/wyn =
n/€+&/(2(€ +1)%) + O(n™"), and the variance is

e (2 (1 o) = gy o

68. The maximum number of nonzero components in all parts of a partition is n =

n1 + -+ + nm; it occurs if and only if all component parts are 0 or 1. The maximum
level is also equal to n.

69. At the beginning of step M3, if k > band l =r—1, go to M5. In step M5, if j = a
and (v; —1)(r — 1) < u;, go to M6 instead of decreasing v;.
70. (a) ‘::11‘ + |T::f| +--+ |::i , since ‘::ﬂ contain the block {0,...,0,1} with k Os.
The total, also known as p(n — 1,1), is p(n — 1) + - - - + p(1) + p(0).

(b) Exactly N = {":1}4—{::;} of the r-block partitions of {1,...,n—1,n} are the
same if we interchange n—1 <+ n. So the answer is N—l—%({:}—N) = %({:}—I—N) which
is also the number of restricted growth strings ay ...a, with max(as,...,an) =7 —1

and an_1 < an. And the total is %(wn + W1 + @Wn-2).

71. [2(n1+1)...(nm+1)— 1], because there are (n1+1) ... (nm+1)—2 compositions
into two parts, and half of those compositions fail to be in lexicographic order unless
all n; are even. (See exercise 7.2.1.4 31. Formulas for up to 5 parts have been worked

out by E. M. Wright, Proc. London Math. Soc. (3) 11 (1961), 499-510.)
72. Yes. The following algorithm computes a;x = p(j, k) for 0 < j,k < n in ©(n*)

steps: Start with aj, < 1 for all j and k. Then for l =0, 1, ..., n and m = 0,
1, ..., n (in any order), if [ +m > 1 set ajr < ajr + a(j—1y(k—m) for j =1, ..., n and
k=m, ..., n (in increasing order).

(See Table A-1. A similar method computes p(n1, ..., nm) in O(ny ...nm,)? steps.
Cheema and Motzkin, in the cited paper, have derived the recurrence relation

n1p(Niy...,Nm) = Z Z kip(ni — kil ... 0 — kml),

1=1 ky,....,km>0

but this interesting formula is helpful for computation only in certain cases.)

Table A-1
MULTIPARTITION NUMBERS
n 0123 4 5 6 n 0 1 2 3 4 5
pOn) 1 1 23 5 711 POmn) 1 2 9 66 712 10457
p(l,n) 1 2 4 7 12 19 30 P(l,n) 1 4 26 249 3274 56135
p(2,m) 2 4 916 29 47 77 P(2,n) 2 11 92 1075 16601 325269
p(3,n) 3 71631 57 97 162 P(S,n) 5 36 371 5133 91226 2014321
p(4,n) 51229 57 109 189 323 P(4,n) 15 135 1663 26683 537813 13241402
p(5,n) 7 19 47 97 189 339 589 P(5,n) 52 566 8155 149410 3376696 91914202
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73. Yes. Let P(m,n) = p(1,...,1,2,...,2) when there are m 1s and n 2s; then
P(m,0) = w,,, and we can use the recurrence

2P(myn+1) = P(m+2,n)+ P(m+1,n)+ Z(:)P(m,k).

This recurrence can be proved by considering what happens when we replace a pair
of z’s in the multiset for P(m,n + 1) by two distinct elements =z and z'. We get
2P(m,n + 1) partitions, representing P(m + 2,n), except in the P(m + 1,n) cases
where z and z’ belong to the same block, or in (:)P(m, n — k) cases where the blocks
containing x and z’ are identical and have k additional elements.

Notes: See Table A-1. Another recurrence, less useful for computation, is

P(m+1,n) = Z(:) (”_ ];_+m>P(j,k).

5

The sequence P(0,n) was first investigated by E. K. Lloyd, Proc. Cambridge Philos.
Soc. 103 (1988), 277-284, and by G. Labelle, Discrete Math. 217 (2000), 237-248, who
computed it by completely different methods. Exercise 70(b) showed that P(m,1) =
(@m + Wm+1 + @m+2)/2; in general P(m,n) can be written in the umbral notation
w™qn(w), where g,(z) is a polynomial of degree 2n defined by the generating function
32 an(z)2"/n! = exp((e” + (z + 2°)z — 1)/2). Thus, by exercise 31,

o0 n oo k
> P(m, n)—z' = (VY w(2k+m4;1k)<k+m+1) 2"

n. H
n=0 k=0

Labelle proved, as a special case of much more general results, that the number of
partitions of {1,1,...,n,n} into exactly r blocks is

s k
r.n 7z+12(ez71)/2 zk(k+1)/2m
nlz"z"] e E e e

k=0
75. The saddle point method yields CeA”2/3+B"1/3/n55/36, where A = 3((3)1/3, B =
72¢(3)71/3/2, and C = ¢(3)1°/%5(27) /63712 exp(1/3 + B4 + ¢'(2)/(272) — v/12).
[F. C. Auluck, Proc. Cambridge Philos. Soc. 49 (1953), 72-83; E. M. Wright, American
J. Math. 80 (1958), 643 658.]

76. Using the fact that p(ni,n2,ns,...) > p(n1 + n2,ns,...), hence P(m + 2,n) >
P(m,n+1), one can prove by induction that P(m,n+1) > (m+n+1)P(m,n). Thus

2P(m,n) < Pm+2,n—-1)4+P(m+1,n—1)+eP(m,n—1).

Iterating this inequality shows that 2" P(0,n) = (@® + @)™ + O(n(w?® + w)"™!) =
(n@an—1+w@2,)(1+0((logn)?/n)). (A more precise asymptotic formula can be obtained
from the generating function in the answer to exercise 75.)

78.333321000
100022320 (because the encoded partitions
221002102 must all be (000000000))
210220013

79. There are 432 such cycles. But they yield only 304 different cycles of set partitions,
since different cycles might describe the same sequence of partitions. For example,
(000012022332321) and (000012022112123) are partitionwise equivalent.
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80. [See F. Chung, P. Diaconis, and R. Graham, Discrete Mathematics 110 (1992),
52-55.] Construct a digraph with w,_1 vertices and w,, arcs; each restricted growth
string a1 .. .an defines an arc from vertex a1 ...an—1 to vertex p(az...an), where p is
the function of exercise 4. (For example, arc 01001213 runs from 0100121 to 0110203.)
Every universal cycle defines an Eulerian trail in this digraph; conversely, every Eulerian
trail can be used to define one or more universal sequences of restricted growth on the
elements {0,1,...,n —1}.

An Eulerian trail exists by the method of Section 2.3.4.2, if we let the last exit
from every nonzero vertex ai ...an—1 be through arc a;...an_1an-1. The sequence
might not be cyclic, however. For example, no universal cycle exists when n < 4; and
when n = 4 the universal sequence 000012030110100222 defines a cycle of set partitions
that does not correspond to any universal cycle.

The existence of a cycle can be proved for n > 6 if we start with an Eulerian
trail that begins 0" zyz" " 3u(uv) (" =2/21 " 24l for some distinct elements {u, v, z,y}.
This pattern is possible if we alter the last exit of 0¥121" 3% from 0%~1121" 2% to
0¥=1121" 7372 for 2 < k < n—4, and let the last exits of 0121"~* and 01"~ >2 be respec-
tively 010" *1 and 0"~%10. Now if we choose numbers of the cycle backwards, thereby
determining u and v, we can let z and y be the smallest elements distinct from {0, u, v}.

We can conclude in fact that the number of universal cycles having this extremely
special type is huge —at least

n—1

(H(k! (n - k)){"?})/((n 1)l (n—2)%32"%2%),  whenn > 6.

k=2
Yet none of them are known to be readily decodable. See below for the case n = 5.

81. Noting that ws = 52, we use a universal cycle for {1,2,3,4,5} in which the
elements are 13 clubs, 13 diamonds, 13 hearts, 12 spades, and a joker. One such cycle,
found by trial and error using Eulerian trails as in the previous answer, is

CYYYYY TAVRE IAVT Y ¥ XORvE XY TR XV IvE T Y X R°F BT Y Y SAvIVIE SvIvIVE Y TR R

(In fact, there are essentially 114,056 such cycles if we branch to ar = ax_1 as a last
resort and if we introduce the joker as soon as possible.) The trick still works with
probability % if we call the joker a spade.

82. There are 13644 solutions, although this number reduces to 1981 if we regard

I E:E’ !:g, !:E.

The smallest common sum is 5/2, and the largest is 25/2; the remarkable solution

B D W B B _HB B B A EH_H B H H H
BE'E TR ATETR ETE BTRTRATETR

is one of only two essentially distinct ways to get the common sum 118/15. [This
problem was posed by B. A. Kordemsky in Matematicheskaia Smekalka (1954); it is
number 78 in the English translation, The Moscow Puzzles (1972).]
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When an index entry refers to a page containing a relevant exercise, see also the answer to
that exercise for further information. An answer page is not indexed here unless it refers to a
topic not included in the statement of the exercise.

0-1 matrices, 61.

7 (circle ratio), as “random” example,
44-45, 63.

wn, 28, see Bell numbers.

w!, (singleton-free partitions), 46.

p(o): restricted growth string function, 42.

o-cycles, 47.

o(n): sum of divisors, 19.

Abel, Niels Henrik, 55.

Abelian groups, 24.

Almkvist, Gert Einar Torsten, 57.

Alphametics, 42.

Analysis of algorithms, 13—15, 22, 48.

Andrews, George W. Eyre, 1, 57.

Arbogast, Louis Frangois Antoine, 29.

Arithmetic mean, 24, 48.

Asymptotic methods, 6-12, 2022,
29-36, 47-49.

Atkin, Arthur Oliver Lonsdale, 55.

Auluck, Faqir Chand (3

Balanced partitions, 17.
Balls, 0.
Becker, Harold W., 70, 75.
Bell, Eric Temple, 28.
numbers, 28-29, 44-48, 64.
numbers, asymptotic value, 32-33, 47-48.
Bell-shaped curve, 34, 38, 48.
Bell-shaped sequence, 49.
Bernoulli, Jacques (= Jakob = James)
numbers, 28, 55.
Bessel, Friedrich Wilhelm, function, 8.
Binary partitions, 24.
Binary relations, 26.
Bipartitions, 39-41, 82-83.
Birkhoff, Garrett, 67.
Blissard, John, 69.
Blocks, 25.
Bolker, Ethan David, 75.
Bonferroni, Carlo Emilio, 57.
Boskovi¢, Ruder Josip (Bomkosuh, Pyhep
Jocun = Boscovich, Ruggiero Giuseppe
= Roger Joseph), 58.
Brandt, Jgrgen, 65.
Browning, Elizabeth Barrett, 46.
Bruijn, Nicolaas Govert de, 36, 77.
Brylawski, Thomas Henry, 59.
Bulgarian solitaire, 25.

Cache-hit patterns, 26.
Canfield, Earl Rodney, 81.

THIT T A{TF), 83.
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Carlitz, Leonard, 63, 74.

Cauchy, Augustin Louis, 13, 21.

Cayley, Arthur, 61.

Change-making, 18.

Chebyshev (= Tschebyscheff), Pafnutii
Lvovich (Ye6bimes, [Madbuyruit
JIeBoBMu), 79.

Cheema, Mohindar Singh (Ffgs¥ fag
), 41, 82.

Chen, William Yong-Chuan ([ 7k J1]), 72.

Chung Graham, Fan Rong King
(3 4 3% 7). 84.

Claesson, Anders Karl, 66.

Coalescence, 42.

Coalitions, 26.

Coins, 18.

Colex order, 2, 17, 60.

Colman, Walter John Alexander, 56.

Colthurst, Thomas Wallace, 63.

Column sums, 24.

Combinations, 0.

with repetitions, 0, 3.

Combinatorial number system, 22, 65.

Commutative groups, 24.

Completing the square, 7, 79.

Compositions, 0, 20, 82.

Comtet, Louis, 28, 77.

Conjugate, 4, 18, 22, 24, 52, 58, 59.

of a joint partition, 53.
of a set partition, 44.

Consecutive integers, 18.

Contingency tables, 24.

Contour integration, 29-34.

Corless, Robert Malcolm, 77.

Corteel, Sylvie Marie-Claude, 53.

Covering in a lattice, 22, 43.

Cramér, Carl Harald, 79.

Crossings in a set partition, 72.

Cumulants of a distribution, 48, 79.

Cycles of a permutation, 66.

Cyclic permutations, 47.

Dante Alighieri, 75.

Darroch, John Newton, 81.

de Bruijn, Nicolaas Govert, 36, 77.

De Morgan, Augustus, 20.

Debye, Peter Joseph William (= Debije,
Petrus Josephus Wilhelmus), 30.

Decimal notation, 66.

Dedekind, Julius Wilhelm Richard, 8.

sums, 8.
Deng, Eva Yu-Ping (Xf & “F), 72.
Derbes, Joseph, 64.
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Descents of a permutation, 40, 63.
Diaconis, Persi Warren, 84.
Diamond lemma, 60.
Dilogarithm function, 20, 55, 58.
Discrete torus, 24.
Distinct parts, 18, 19, 21, 22, 41.
Divisors, sum of, 19.
Dobinski, G., 29.
Dominoes, 50.
Doubly bounded partitions, 13, 21, 23.
Du, Rosena Ruo-Xia (%5 &), 72.
Dudeney, Henry Ernest, 42.
Durfee, William Pitt, 3.

rectangle, 52.

square, 3—4, 12, 53.
Dyson, Freeman John, 55.

e, as “random” example, 75.
Edgeworth, Francis Ysidro, expansion, 79.
Ehrlich, Gideon (79 nW), 17, 27, 28, 74.
Elementary symmetric functions, 61.
Elliptic functions, 8.
Endo-order, 69.
Enveloping series, 11, 21, 49, 78.
Equivalence relations, 26, 42.
Erdés, Pal (= Paul), 10, 21.
Erdés, Péter L., 67.
Etienne, Gwihen, 65.
Euler, Leonhard (Eitneps, Jleonapas =
Siinep, Jleonapn), 5, 14, 18, 19, 63.
summation formula, 6, 20.
FEulerian numbers, 48, 55.
Eulerian trails, 84.
Evolutionary trees, 78.
Exponential generating functions, 29,
46, 75, 83.
Exponential growth, 6.

Felsenstein, Joseph, 78.
Fenner, Trevor lan, 51, 52.
Ferrers, Norman Macleod, 3.
diagrams, 3—4, 9, 12, 15, 36, 45, 59,
61, 64, 72.
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Fibonacci, Leonardo, of Pisa [= Leonardo
filio Bonacci Pisano], recurrence, 6.
Fisher, Ronald Aylmer, 57.
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Fixed points of a permutation, 44.
Flight, Colin, 78.
Foulds, Leslie Richard, 78.
Fourier, Jean Baptiste Joseph, series, 7.
Franklin, Fabian, 18, 21.
Fristedt, Bert, 59.

Gale, David, 61.

Gamma function, 31-32, 55.
Gaps, 18.

Gardner, Martin, 65.

Garsia, Adriano Mario, 73.

Garvan, Francis Gerard, 55.

Generalized Bell numbers, 45, 48.

Generalized Stirling numbers, 46, 69.

Generating functions, 5, 9, 18-19, 21,

25, 29, 46, 75, 83.

Geometric mean, 24, 48.

Goldman, Alan Joseph, 73.

Golomb, Solomon Wolf, 66.

Gonnet Haas, Gaston Henry, 77.

Good, Irving John, 76.

Gordon, Basil, 41.

Graham, Ronald Lewis (5 3.1H), 84.

Gray, Frank, binary code, 69.
codes for binary partitions, 62.
codes for partitions, 15-17, 24, 63.
codes for set partitions, 2728, 43.
codes, reflected, 63.

Greene, Curtis, 60.

Greg, Walter Wilson, trees, 78.

Griggs, Jerrold Robinson, 65.

Groups, commutative, 24.

Guittone d’Arezzo, 46.
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see Fisher.

Gupta, Hansraj (89S J<T), 57.

Haigh, John, 38.

Hall, Marshall, Jr., 56, 70.

Handy identity, 77.

Hankel, Hermann, 32, 75.
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Hardy, Godfrey Harold, 8, 9, 20, 21, 54, 62.

Hare, David Edwin George, 77.
Heine, Heinrich Eduard, 19.
Henrici, Peter Karl Eugen, 7.
Hindenburg, Carl Friedrich, 2, 29.
Ho, Chih-Chang Daniel (fi & &), 65.
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Hoeffding, Wassily, 81.

Hooks, 52-53.

Hume, Alexander, iii.

Hutchinson, George Allen, 26, 41.
Hyperbolic functions, 48.

Igusa, Kiyoshi (3 B #), 65.

Inclusion-exclusion principle, 10, 21, 75, 80.

Incomplete gamma function, 31.

ind a: the index of «, 41.

Index of a permutation, 41, 63.
Integer partitions, 1-25, 38-41, 44, 71.
Inversions of a permutation, 5, 45.
Involutions, 48, 72.

Irwin, Joseph Oscar, 69.

Jacobi, Carl Gustav Jacob, 6, 20.
symbol, 56.

Jeffrey, David John, 77.

Joichi, James Tomei (3% T B HH), 53, 73.
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86



Kirchhoff, Gustav Robert, law, 13.

Kitaev, Sergey Vladimirovich (Kuraes,
Cepreit Bnagumuposuu), 66.

Kleber, Michael Steven, 63.

Kleitman, Daniel J (Isaiah Solomon), 60.
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Laguerre, Edmond Nicolas, 81.
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Marquis de, 31.
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Lattices of partitions, 22 23, 42 43.
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Lehmer, Derrick Henry, 20, 56.

Lehner, Joseph, 10, 21.
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39 41, 43, 59.

Liz (dilogarithm), 20, 55, 58.

Limericks, 46.

Linked lists, 17, 42.

Littlewood, John Edensor, 61, 62.

Lloyd, Edward Keith, 83.

Logarithm, as a multivalued function,
32, 77.

Loizou, Georghios (Aotov, Tedpyrog), 51, 52.

Loopless algorithm, 51.

Lorenz, Max Otto, 61.

Lovejoy, Jeremy Kenneth, 53.

Lunnon, William Frederick, 70.

MacMahon, Percy Alexander, 24, 25, 39.
Magic trick, 50.
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lattice, 22-24, 67.
Malfatti, Giovanni Francesco Giuseppe, 56.
Marshall, Albert Waldron, 62.
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Mean values, 24, 48.
Meifiner, Otto, 64.
Mellin, Robert Hjalmar, transforms, 6, 20.
Mems, 13.
Milne, Stephen Carl, 43.
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Mixed radix notation, 64.
MMIX, ii.
modulo 17, 26.
Moments of a distribution, 44, 82.
Monomial symmetric functions, 61.
Moser, Leo, 35, 74, 76.
Most recently used replacement, 75.
Motzkin, Theodor Samuel
(Ppxm Sxmv MMNom), 41, 69, 82.
Mountain passes, 30.
Muirhead, Robert Franklin, 61.
Multicombinations: Combinations with
repetions, 0, 3.
Multipartition numbers, tables, 82.
Multipartitions: Partitions of a multiset,
39-41, 49, 84.
Multiset permutations, 5.

n-tuples, 0.

Naudé, Philippe (= Philipp), der jiingere, 5.
Nestings in a set partition, 72.

Newton, Isaac, rootfinding method, 33, 79.
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Normal distribution, 38.

Odlyzko, Andrew Michael, 9.
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Olver, Frank William John, 36.
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Order of a set partition, 67.
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Overpartitions, see Joint partitions.
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Mapxkosnu), 53.
Part-count form, 3, 17, 42.
Partial order, 24.
Partition lattice, 42 43.
Partition numbers, 5-11, 19-21.
tables of, 6, 10, 82.
Partitions, 0-50.
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doubly bounded, 13, 21, 23.
of a multiset, 38—41, 49, 84.
of a set, 1, 25-50.
of an integer, 1-25, 38—41, 44, 71.
random, 10 12, 21, 36 38.
sums over, 3, 29, 76, 79.
with distinct parts, 18, 19, 21, 22, 41.
without singletons, 9, 46, 58, 72, 75.
Paths on a grid, 5.
Patterns in permutations, 66.
Peirce, Charles Santiago Sanders, 28.
triangle, 28, 44-46, 48, 73, 75, 83.
Pentagonal numbers, 5, 19.
Perfect partitions, 25.
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Permutations, 0, 42.
balanced,
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g-nomial coefficients, 73.
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Rademacher, Hans, 8, 9, 20, 21.
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Random partitions, 10 12.

generating, 21.
Random set partitions, 36 38.
generating, 38.
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Real roots, 49.

Recurrences, 6, 14, 19, 82.

Recursive procedures, 68.
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Reflected Gray code, 63.

Remmel, Jeffrey Brian, 73.

Residue theorem, 29, 32.
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70, 71, 75, 82.

Revolving door algorithm, 15.

Rhyme schemes, 26, 46-47.
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Robbins, David Peter, 75.
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Rook polynomials, 44 45.

Rooks, nonattacking, 44 45, 71 72.
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Schur, Issai, 62.
Score vectors, 23.
Second-smallest parts, 22.
Self-conjugate partitions, 18, 44, 62.
Semilabeled trees, 42.
Semimodular lattices, 67.
Sequences, totally useless, 42.
Set partitions, 1, 25-50.

conjugate of, 44.

dual of, 72.

Gray codes for, 27 28, 43.

order of, 67.

random, 36-38.

shadow of, 43.
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Shadow of a set partition, 43.
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Shallit, Jeffrey Outlaw, 75.
Shape of a random partition, 12, 21.
Shape of a random set partition, 36-37.
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Stable sorting, 40-41, 63.
Stack frames, 39.
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Stanley, Richard Peter, 0, 3, 63, 72.
Stanton, Dennis Warren, 53.
Stephens, Nelson Malcolm, 70.
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approximation, 31, 33, 35, 80.
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subset numbers, asymptotic value, 34-36.
subset numbers, generalized 46, 69.
Stirling strings, 67.
Sums over all partitions, 3, 29, 76, 79.
Sutcliffe, Alan, 67.
Swinnerton-Dyer, Henry Peter Francis, 55.
Sylvester, James Joseph, 18, 54.
Symmetric functions, 3, 61.
Symmetrical mean values, 24.
Székely, Lészlé Aladar, 67.

88



Tableau shapes, 4, 44, see Ferrers diagrams.
Tail coefficients, 65.
Taylor, Brook, series, 35, 77.
Temperley, Harold Neville Vazeille, 12.
Tippett, Leonard Henry Caleb, 57.
Topological sorting, 25, 66.
Touchard, Jacques, 69.
Tournament, 23.
Trace, 4, 12, 18, 53.
Trading tails, 31, 80.
Transitive relations, 26.
Tree of partitions, 18.

of restricted growth strings, 70.
Tree function, 34, 77.
Tree traversal, 18.
Trick, magic, 50.
Tripartitions, 39.
Triple product identity, 6, 20.
Trost, Ernst, 64.
Tuama, Jifi, 67.
Twelvefold Way, 0, 17.
Two-line arrays, 71-72.

Umbral notation, 69, 74, 75, 83.
Union-find algorithm, 67.

Universal sequences for partitions, 50.
Unlabeled objects, 0, 42, 78.
Unranking a partition, 22.
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Unranking a set partition, 42.
Unusual correspondence, 66.
Up-down partitions, 24, 63.
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Vector partitions, 39 41, 49.
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