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PREFACE
Quhen a word fales to be divyded at the end of a lyne,the partition must be made at the end of a syllab.| ALEXANDER HUME, Orthographie : : : of the Britan Tongue (
. 1620)

This booklet 
ontains draft material that I'm 
ir
ulating to experts in the�eld, in hopes that they 
an help remove its most egregious errors before toomany other people see it. I am also, however, posting it on the Internet for
ourageous and/or random readers who don't mind the risk of reading a fewpages that have not yet rea
hed a very mature state. Beware: This material hasnot yet been proofread as thoroughly as the manus
ripts of Volumes 1, 2, and 3were at the time of their �rst printings. And those 
arefully-
he
ked volumes,alas, were subsequently found to 
ontain thousands of mistakes.Given this 
aveat, I hope that my errors this time will not be so numerousand/or obtrusive that you will be dis
ouraged from reading the material 
arefully.I did try to make it both interesting and authoritative, as far as it goes. But the�eld is so vast, I 
annot hope to have surrounded it enough to 
orral it 
ompletely.Therefore I beg you to let me know about any de�
ien
ies you dis
over.To put the material in 
ontext, this pre-fas
i
le 
ontains Se
tions 7.2.1.4and 7.2.1.5 of a long, long 
hapter on 
ombinatorial algorithms. Chapter 7 willeventually �ll three volumes (namely Volumes 4A, 4B, and 4C), assuming thatI'm able to remain healthy. It will begin with a short review of graph theory, withemphasis on some highlights of signi�
ant graphs in The Stanford GraphBase,from whi
h I will be drawing many examples. Then 
omes Se
tion 7.1, whi
hdeals with the topi
 of bitwise manipulations. (I drafted about 60 pages aboutthat subje
t in 1977, but those pages need extensive revision; meanwhile I'vede
ided to work for awhile on the material that follows it, so that I 
an get abetter feel for how mu
h to 
ut.) Se
tion 7.2 is about generating all possibilities,and it begins with Se
tion 7.2.1: Generating Basi
 Combinatorial Patterns|whi
h, in turn, begins with Se
tion 7.2.1.1, \Generating all n-tuples," Se
tion7.2.1.2, \Generating all permutations," and Se
tion 7.2.1.3, \Generating all 
om-binations." (Readers of the present booklet should have already looked at thosese
tions, drafts of whi
h are available as Pre-Fas
i
les 2A, 2B, and 3A.) The stageis now set for the main 
ontents of this booklet, Se
tion 7.2.1.4: \Generating allpartitions," and Se
tion 7.2.1.5: \Generating all set partitions." Then will 
omeSe
tion 7.2.1.6 (about trees), et
. Se
tion 7.2.2 will deal with ba
ktra
king ingeneral. And so it will go on, if all goes well; an outline of the entire Chapter 7as 
urrently envisaged appears on the tao
p webpage that is 
ited on page ii.iii
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iv PREFACEEven the apparently lowly topi
 of partition generation turns out to besurprisingly ri
h, with ties to Se
tions 1.2.5, 1.2.6, 1.2.9, 1.2.10, 1.2.11.2, 1.3.3,2.3.3, 2.3.4.2, 2.3.4.4, 2.3.4.5, 3.3.2, 3.3.3, 3.4.1, 4.5.4, 4.6.2, 4.7, 5, 5.1.1, 5.1.2,5.1.3, 5.1.4, 5.2.2, 5.2.3, and 5.2.5 of the �rst three volumes. I strongly believein building up a �rm foundation, so I have dis
ussed this topi
 mu
h morethoroughly than I will be able to do with material that is newer or less basi
.Indeed, the theory of partitions is one of the ni
est 
hapters in all of mathemati
s.To my surprise, I 
ame up with 154 exer
ises, even though|believe it or not|I had to eliminate quite a bit of the interesting material that appears in my �les.Some of the things presented are new, to the best of my knowledge, althoughI will not be at all surprised to learn that my own little \dis
overies" havebeen dis
overed before. Please look, for example, at the exer
ises that I've
lassed as resear
h problems (rated with diÆ
ulty level 46 or higher), namelyexer
ises 7.2.1.4{51, 62, 63, 71, and 7.2.1.5{18, 66, 74, 77; I've also impli
itlyposed additional unsolved questions in the answers to exer
ises 7.2.1.4{48 and69. Are those problems still open? Please let me know if you know of a solutionto any of these intriguing questions. And of 
ourse if no solution is known todaybut you do make progress on any of them in the future, I hope you'll let meknow.I urgently need your help also with respe
t to some exer
ises that I madeup as I was preparing this material. I 
ertainly don't like to get 
redit for thingsthat have already been published by others, and most of these results are quitenatural \fruits" that were just waiting to be \plu
ked." Therefore please tellme if you know who I should have 
redited, with respe
t to the ideas found inexer
ises 7.2.1.4{20, 27, 48, 49, 50, 56; 7.2.1.5{2, 6, 8, 9, 25, 26, 35, 38(e), 47,50, 52, 56, and/or 76.I shall happily pay a �nder's fee of $2.56 for ea
h error in this draft when it is�rst reported to me, whether that error be typographi
al, te
hni
al, or histori
al.The same reward holds for items that I forgot to put in the index. And valuablesuggestions for improvements to the text are worth 32/
 ea
h. (Furthermore, ifyou �nd a better solution to an exer
ise, I'll a
tually reward you with immortalglory instead of mere money, by publishing your name in the eventual book:�)Cross referen
es to yet-unwritten material sometimes appear as `00'; thisimpossible value is a pla
eholder for the a
tual numbers to be supplied later.Happy reading!Stanford, California D. E. K.14 February 2004
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0 COMBINATORIAL ALGORITHMS (F3B)7.2.1.4. Generating all partitions. Ri
hard Stanley's magni�
ent book Enu-merative Combinatori
s (1986) begins by dis
ussing The Twelvefold Way, a2� 2� 3 array of basi
 
ombinatorial problems that arise frequently in pra
ti
e(see Table 1). All twelve of Stanley's basi
 problems 
an be des
ribed in termsof the ways that a given number of balls 
an be pla
ed into a given number ofurns. For example, there are nine ways to put 2 balls into 3 urns if the balls andurns are labeled:
A B C12 A B C1 2 A B C1 2 A B C12 A B C12 A B C1 2 A B C12 A B C12 A B C12(The order of balls within an urn is ignored.) But if the balls are unlabeled,some of these arrangements are indistinguishable, so only six di�erent ways arepossible:

A B C A B C A B C A B C A B C A B C : (1)
If the urns are unlabeled, arrangements like 1 2 and 12 are essentiallythe same, hen
e only two of the original nine arrangements are distinguishable.And if we have three labeled balls, the only distin
t ways to pla
e them intothree unlabeled urns are123 12 3 13 2 1 23 1 2 3 : (2)Finally, if neither balls nor urns are labeled, these �ve possibilities redu
e to onlythree: : (3)The Twelvefold Way 
onsiders all arrangements that are possible when balls andurns are labeled or unlabeled, and when the urns may optionally be required to
ontain at least one ball or at most one ball.Table 1THE TWELVEFOLD WAYballs per urn unrestri
ted � 1 � 1n labeled balls,m labeled urns n-tuplesof m things n-permutationsof m things partitions of f1; : : : ; nginto m ordered partsn unlabeled balls,m labeled urns n-multi
ombinationsof m things n-
ombinationsof m things 
ompositions of ninto m partsn labeled balls,m unlabeled urns partitions of f1; : : : ; nginto � m parts n pigeonsinto m holes partitions of f1; : : : ; nginto m partsn unlabeled balls,m unlabeled urns partitions of ninto � m parts n pigeonsinto m holes partitions of ninto m parts
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7.2.1.4 GENERATING ALL PARTITIONS 1We've learned about n-tuples, permutations, 
ombinations, and 
omposi-tions in previous se
tions of this 
hapter; and two of the twelve entries in Table 1are trivial (namely the ones related to \pigeons"). So we 
an 
omplete ourstudy of 
lassi
al 
ombinatorial mathemati
s by learning about the remaining�ve entries in the table, whi
h all involve partitions.Let us begin by a
knowledging that the word \partition"has numerous meanings in mathemati
s.Any time a division of some obje
t into subobje
ts is undertaken,the word partition is likely to pop up.| GEORGE ANDREWS, The Theory of Partitions (1976)Two quite di�erent 
on
epts share the same name: The partitions of a setare the ways to subdivide it into disjoint subsets; thus (2) illustrates the �vepartitions of f1; 2; 3g, namelyf1; 2; 3g; f1; 2gf3g; f1; 3gf2g; f1gf2; 3g; f1gf2gf3g: (4)And the partitions of an integer are the ways to write it as a sum of positiveintegers, disregarding order; thus (3) illustrates the three partitions of 3, namely3; 2 + 1; 1 + 1 + 1: (5)We shall follow the 
ommon pra
ti
e of referring to integer partitions as simply\partitions," without any qualifying adje
tive; the other kind will be 
alled\set partitions" in what follows, to make the distin
tion 
lear. Both kinds ofpartitions are important, so we'll study ea
h of them in turn.Generating all partitions of an integer. A partition of n 
an be de�nedformally as a sequen
e of nonnegative integers a1 � a2 � � � � su
h that n =a1 + a2 + � � � ; for example, one partition of 7 has a1 = a2 = 3, a3 = 1, anda4 = a5 = � � � = 0. The number of nonzero terms is 
alled the number of parts,and the zero terms are usually suppressed. Thus we write 7 = 3 + 3 + 1, orsimply 331 to save spa
e when the 
ontext is 
lear.The simplest way to generate all partitions, and one of the fastest, is to visitthem in reverse lexi
ographi
 order, starting with `n' and ending with `11 : : : 1'.For example, the partitions of 8 are8; 71; 62; 611; 53; 521; 5111; 44; 431; 422; 4211; 41111; 332; 3311;3221; 32111; 311111; 2222; 22211; 221111; 2111111; 11111111; (6)when listed in this order.If a partition isn't all 1s, it ends with (x+1) followed by zero or more 1s,for some x � 1; therefore the next smallest partition in lexi
ographi
 orderis obtained by repla
ing the suÆx (x+1)1 : : : 1 by x : : : xr for some appropriateremainder r � x. The pro
ess is quite eÆ
ient if we keep tra
k of the largest sub-s
ript q su
h that aq 6= 1, as suggested by J. K. S. M
Kay [CACM 13 (1970), 52℄:
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2 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.4Algorithm P (Partitions in reverse lexi
ographi
 order). This algorithm gen-erates all partitions a1 � a2 � � � � � am � 1 with a1 + a2 + � � � + am = n and1 � m � n, assuming that n � 1.P1. [Initialize.℄ Set a0  0 and m 1.P2. [Store the �nal part.℄ Set am  n and q  m� [n=1℄.P3. [Visit.℄ Visit the partition a1a2 : : : am. Then go to P5 if aq 6= 2.P4. [Change 2 to 1+1.℄ Set aq  1, q  q� 1, m m+1, am  1, and returnto P3.P5. [De
rease aq.℄ Terminate the algorithm if q = 0. Otherwise set x aq � 1,aq  x, n m� q + 1, and m q + 1.P6. [Copy x if ne
essary.℄ If n � x, return to step P2. Otherwise set am  x,m m+ 1, n n� x, and repeat this step.Noti
e that the operation of going from one partition to the next is parti
ularlyeasy if a 2 is present; then step P4 simply 
hanges the rightmost 2 to a 1 and ap-pends another 1 at the right. This happy situation is, fortunately, the most 
om-mon 
ase. For example, nearly 79% of all partitions 
ontain a 2 when n = 100.Another simple algorithm is available when we want to generate all partitionsof n into a �xed number of parts. The following method, whi
h was featuredin C. F. Hindenburg's 18th-
entury dissertation [In�nitinomii Dignitatum Ex-ponentis Indeterminati (G�ottingen, 1779), 73{91℄, visits the partitions in 
olexorder, namely in lexi
ographi
 order of the re
e
ted sequen
e am : : : a2a1:Algorithm H (Partitions into m parts). This algorithm generates all integerm-tuples a1 : : : am su
h that a1 � � � � � am � 1 and a1+ � � �+am = n, assumingthat n � m � 2.H1. [Initialize.℄ Set a1  n � m + 1 and aj  1 for 1 < j � m. Also setam+1  �1.H2. [Visit.℄ Visit the partition a1 : : : am. Then go to H4 if a2 � a1 � 1.H3. [Tweak a1 and a2.℄ Set a1  a1 � 1, a2  a2 + 1, and return to H2.H4. [Find j.℄ Set j  3 and s a1+a2�1. Then, if aj � a1�1, set s s+aj ,j  j + 1, and repeat until aj < a1 � 1. (Now s = a1 + � � �+ aj�1 � 1.)H5. [In
rease aj .℄ Terminate if j > m. Otherwise set x  aj + 1, aj  x,j  j � 1.H6. [Tweak a1 : : : aj .℄ While j > 1, set aj  x, s  s � x, and j  j � 1.Finally set a1  s and return to H2.For example, when n = 11 and m = 4 the su

essive partitions visited are8111; 7211; 6311; 5411; 6221; 5321; 4421; 4331; 5222; 4322; 3332: (7)The basi
 idea is that 
olex order goes from one partition a1 : : : am to the next by�nding the smallest j su
h that aj 
an be in
reased without 
hanging aj+1 : : : am.The new partition a01 : : : a0m will have a01 � � � � � a0j = aj +1 and a01+ � � �+ a0j =
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7.2.1.4 GENERATING ALL PARTITIONS 3a1 + � � � + aj , and these 
onditions are a
hievable if and only if aj < a1 � 1.Furthermore, the smallest su
h partition a01 : : : a0m in 
olex order has a02 = � � � =a0j = aj + 1.Step H3 handles the simple 
ase j = 2, whi
h is by far the most 
ommon.And indeed, the value of j almost always turns out to be quite small; we willprove later that the total running time of Algorithm H is at most a small 
onstanttimes the number of partitions visited, plus O(m).Other representations of partitions. We've de�ned a partition as a sequen
eof nonnegative integers a1a2 : : : with a1 � a2 � � � � and a1 + a2 + � � � = n, butwe 
an also regard it as an n-tuple of nonnegative integers 
1
2 : : : 
n su
h that
1 + 2
2 + � � �+ n
n = n: (8)Here 
j is the number of times the integer j appears in the sequen
e a1a2 : : : ;for example, the partition 331 
orresponds to the 
ounts 
1 = 1, 
2 = 0, 
3 = 2,
4 = 
5 = 
6 = 
7 = 0. The number of parts is then 
1+
2+� � �+
n. A pro
edureanalogous to Algorithm P 
an readily be devised to generate partitions in part-
ount form; see exer
ise 5.We have already seen the part-
ount representation impli
itly in formulaslike Eq. 1.2.9{(38), whi
h expresses the symmetri
 fun
tionhn = XN�dn�����d2�d1�1xd1xd2 : : : xdn (9)as X
1;
2;:::;
n�0
1+2
2+���+n
n=n S
111
1
1! S
222
2
2! � � � S
nnn
n
n! ; (10)
where Sj is the symmetri
 fun
tion xj1 + xj2 + � � � + xjN . The sum in (9) isessentially taken over all n-multi
ombinations of N , while the sum in (10) istaken over all partitions of n. Thus, for example, h3 = 16S31 + 12S1S2 + 13S3, andwhen N = 2 we havex3 + x2y + xy2 + y3 = 16 (x+ y)3 + 12 (x+ y)(x2 + y2) + 13 (x3 + y3):Other sums over partitions appear in exer
ises 1.2.5{21, 1.2.9{10, 1.2.9{11,1.2.10{12, et
.; for this reason partitions are of 
entral importan
e in the study ofsymmetri
 fun
tions, a 
lass of fun
tions that pervades mathemati
s in general.[Chapter 7 of Ri
hard Stanley's Enumerative Combinatori
s 2 (1999) is anex
ellent introdu
tion to advan
ed aspe
ts of symmetri
 fun
tion theory.℄Partitions 
an be visualized in an appealing way by 
onsidering an arrayof n dots, having a1 dots in the top row and a2 in the next row, et
. Su
h anarrangement of dots is 
alled the Ferrers diagram of the partition, in honor ofN. M. Ferrers [see Philosophi
al Mag. 5 (1853), 199{202℄; and the largest squaresubarray of dots that it 
ontains is 
alled the Durfee square, after W. P. Durfee[see Johns Hopkins Univ. Cir
ular 2 (De
ember 1882), 23℄. For example, theFerrers diagram of 8887211 is shown with its 4� 4 Durfee square in Fig. 28(a).
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4 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.4

(a) 8887211 (b) 75444443
Fig. 28. The Ferrersdiagrams and Durfeesquares of two 
onju-gate partitions.

The Durfee square 
ontains k2 dots when k is the largest subs
ript su
h thatak � k ; we may 
all k the tra
e of the partition.If � is any partition a1a2 : : : , its 
onjugate �T = b1b2 : : : is obtained bytransposing the rows and 
olumns of the 
orresponding Ferrers diagram. Forexample, Fig. 28(b) shows that (8887211)T = 75444443. When � = �T weobviously have � = �T ; the partition � has a1 parts and � has b1 parts. Indeed,there's a simple relation between the part-
ount representation 
1 : : : 
n of � andthe 
onjugate partition b1b2 : : : , namelybj � bj+1 = 
j for all j � 1. (11)This relation makes it easy to 
ompute the 
onjugate of a given partition, or towrite it down by inspe
tion (see exer
ise 6).The notion of 
onjugation often explains properties of partitions that wouldotherwise be quite mysterious. For example, now that we know the de�nition of�T , we 
an easily see that the value of j � 1 in step H5 of Algorithm H is justthe se
ond-smallest part of the 
onjugate partition (a1 : : : am)T . Therefore theaverage amount of work that needs to be done in steps H4 and H6 is essentiallyproportional to the average size of the se
ond-smallest part of a random partitionwhose largest part is m. And we will see below that the se
ond-smallest part isalmost always quite small.Moreover, Algorithm H produ
es partitions in lexi
ographi
 order of their
onjugates. For example, the respe
tive 
onjugates of (7) are41111111; 4211111; 422111; 42221; 431111;43211; 4322; 4331; 44111; 4421; 443; (12)these are the partitions of n = 11 with largest part 4. One way to generate allpartitions of n is to start with the trivial partition `n', then run Algorithm H form = 2, 3, : : : , n in turn; this pro
ess yields all � in lexi
ographi
 order of �T(see exer
ise 7). Thus Algorithm H 
an be regarded as a dual of Algorithm P.There is at least one more useful way to represent partitions, 
alled therim representation. Suppose we repla
e the dots of a Ferrers diagram by boxes,thereby obtaining a tableau shape as we did in Se
tion 5.1.4; for example, thepartition 8887211 of Fig. 28(a) be
omes
: (13)
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7.2.1.4 GENERATING ALL PARTITIONS 5The right-hand boundary of this shape 
an be regarded as a path from the lowerleft 
orner to the upper right 
orner of an n�n square, and we know from Table7.2.1.3{1 that su
h a path 
orresponds to an (n; n)-
ombination.For example, (13) 
orresponds to the 70-bit string0 : : : 01001011111010001 : : : 1 = 0281102110115011103127; (14)where we pla
e enough 0s at the beginning and 1s at the end to make exa
tly n ofea
h. The 0s represent upward steps of the path, and the 1s represent rightwardsteps. It is easy to see that the bit string de�ned in this way has exa
tly ninversions; 
onversely, every permutation of the multiset fn � 0; n � 1g that hasexa
tly n inversions 
orresponds to a partition of n. When the partition has tdi�erent parts, its bit string 
an be written in the form0n�q1�q2�����qt 1p1 0q1 1p2 0q2 : : : 1pt 0qt 1n�p1�p2�����pt ; (15)where the exponents pj and qj are positive integers. Then the partition's stan-dard representation isa1a2 : : : = (p1 + � � �+ pt)qt (p1 + � � �+ pt�1)qt�1 : : : (p1)q1 ; (16)namely (1+1+5+1)3(1+1+5)1(1+1)1(1)2 = 8887211 in our example.The number of partitions. Inspired by a question that was posed to him byPhilipp Naud�e in 1740, Leonhard Euler wrote two fundamental papers in whi
hhe 
ounted partitions of various kinds by studying their generating fun
tions[Commentarii A
ademi� S
ientiarum Petropolitan� 13 (1741), 64{93; NoviComment. A
ad. S
i. Pet. 3 (1750), 125{169℄. He observed that the 
oeÆ
ientof zn in the in�nite produ
t(1+z+z2+� � �+zj+� � � )(1+z2+z4+� � �+z2k+� � � )(1+z3+z6+� � �+z3l+� � � ) : : :is the number of nonnegative integer solutions to the equation j+2k+3l+� � � = n;and 1 + zm + z2m + � � � is 1=(1� zm). Therefore if we writeP (z) = 1Ym=1 11� zm = 1Xn=0 p(n)zn; (17)the number of partitions of n is p(n). This fun
tion P (z) turns out to have anamazing number of subtle mathemati
al properties.For example, Euler dis
overed that massive 
an
ellation o

urs when thedenominator of P (z) is multiplied out:(1�z)(1�z2)(1�z3) : : : = 1� z � z2 + z5 + z7 � z12 � z15 + z22 + z26 � � � �= X�1<n<1(�1)nz(3n2+n)=2: (18)A 
ombinatorial proof of this remarkable identity, based on Ferrers diagrams,appears in exer
ise 5.1.1{14; we 
an also prove it by setting u = z and v = z2 in

5



6 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.4the even more remarkable identity of Ja
obi,1Yk=1(1� ukvk�1)(1� uk�1vk)(1� ukvk) = 1Xn=�1(�1)nu(n2)v(�n2 ); (19)be
ause the left-hand side be
omes Q1k=1(1 � z3k�2)(1 � z3k�1)(1 � z3k); seeexer
ise 5.1.1{20. Euler's identity (18) implies that the partition numbers satisfythe re
urren
ep(n) = p(n�1) + p(n�2)� p(n�5)� p(n�7) + p(n�12) + p(n�15)� � � � ; (20)from whi
h we 
an 
ompute their values more rapidly than by performing thepower series 
al
ulations in (17):n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15p(n) = 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176We know from Se
tion 1.2.8 that solutions to the Fibona

i re
urren
ef(n) = f(n � 1) + f(n � 2) grow exponentially, with f(n) = �(�n) when f(0)and f(1) are positive. The additional terms `� p(n�5)� p(n�7)' in (20) have adampening e�e
t on partition numbers, however; in fa
t, if we were to stop there
urren
e there, the resulting sequen
e would os
illate between positive and neg-ative values. Further terms `+p(n�12)+p(n�15)' reinstate exponential growth.The a
tual growth rate of p(n) turns out to be of order Apn=n for a 
ertain
onstant A. For example, exer
ise 33 proves dire
tly that p(n) grows at least asfast as e2pn=n. And one fairly easy way to obtain a de
ent upper bound is totake logarithms in (17),lnP (z) = 1Xm=1 ln 11� zm = 1Xm=1 1Xn=1 zmnn ; (21)and then to look at the behavior near z = 1 by setting z = e�t :lnP (e�t) = Xm;n�1 e�mntn = Xn�1 1n 1etn � 1 < Xn�1 1n2t = �(2)t : (22)Consequently, sin
e p(n) � p(n+ 1) < p(n+ 2) < � � � and et > 1, we havep(n)1� e�t < 1Xk=0 p(k)e(n�k)t = entP (e�t) < ent+�(2)=t (23)for all t > 0. Setting t =p�(2)=n givesp(n) < Ce2Cpn=pn; where C =p�(2) = �=p6. (24)We 
an obtain more a

urate information about the size of lnP (e�t) byusing Euler's summation formula (Se
tion 1.2.11.2) or Mellin transforms (Se
-tion 5.2.2); see exer
ise 25. But the methods we have seen so far aren't powerfulenough to dedu
e the pre
ise behavior of P (e�t), so it is time for us to add anew weapon to our arsenal of te
hniques.
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7.2.1.4 GENERATING ALL PARTITIONS 7Euler's generating fun
tion P (z) is ideally suited to the Poisson summationformula [J. �E
ole Royale Polyte
hnique 12 (1823), 404{509, x63℄, a

ording towhi
h 1Xn=�1 f(n+ �) = limM!1 MXm=�M e2�mi� Z 1�1 e�2�miyf(y) dy; (25)whenever f is a \well-behaved" fun
tion. This formula is based on the fa
tthat the left-hand side is a periodi
 fun
tion of �, and the right-hand side is theexpansion of that fun
tion as a Fourier series. The fun
tion f is suÆ
iently ni
eif, for example, R 1�1��f(y)�� dy <1 and eitheri) f(n + �) is an analyti
 fun
tion of the 
omplex variable � in the regionj=�j � � for some � > 0 and 0 � <� � 1, and the left-hand side 
onvergesuniformly in that re
tangle; orii) f(�) = 12 lim�!0�f(� � �) + f(� + �)� = g(�) � h(�) for all real numbers �,where g and h are monotone in
reasing and g(�1), h(�1) are �nite.[See Peter Henri
i, Applied and Computational Complex Analysis 2 (New York:Wiley, 1977), Theorem 10.6.2.℄ Poisson's formula is not a pana
ea for summationproblems of every kind; but when it does apply the results 
an be spe
ta
ular,as we will see.Let us multiply Euler's formula (18) by z1=24 in order to \
omplete thesquare": z1=24P (z) = 1Xn=�1(�1)n z 32 (n+ 16 )2 : (26)Then for all t > 0 we have e�t=24=P (e�t) =P1n=�1 f(n), wheref(y) = e� 32 t(y+ 16 )2 
os�y ; (27)and this fun
tion f quali�es for Poisson's summation formula under both of the
riteria (i) and (ii) stated above. Therefore we 
an try to integrate e�2�miyf(y),and for m = 0 the result isZ 1�1 f(y) dy = r �2t e��2=6t: (28)To this we must add1Xm=1 Z 1�1(e2�miy + e�2�miy) f(y) dy = 2 1Xm=1 Z 1�1 f(y) 
os 2�my dy; (29)again the integral turns out to be doable. And the results (see exer
ise 27) �ttogether quite beautifully, givinge�t=24P (e�t) = r2�t 1Xn=�1(�1)ne�6�2(n+ 16 )2=t = r2�t e��2=6tP (e�4�2=t) : (30)Surprise! We have proved another remarkable fa
t about P (z):
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8 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.4Theorem D. The generating fun
tion (17) for partitions satis�es the fun
tionalrelation lnP (e�t) = �(2)t + 12 ln t2� � t24 + lnP (e�4�2=t) (31)when <t > 0.This theorem was dis
overed by Ri
hard Dedekind [Crelle 83 (1877), 265{292,x6℄, who wrote �(�) for the fun
tion z1=24=P (z) when z = e2�i� ; his proof wasbased on a mu
h more 
ompli
ated theory of ellipti
 fun
tions. Noti
e that whent is a small positive number, lnP (e�4�2=t) is extremely tiny; for example, whent = 0:1 we have exp(�4�2=t) � 3:5 � 10�172. Therefore Theorem D tells usessentially everything we need to know about the value of P (z) when z is near 1.G. H. Hardy and S. Ramanujan used this knowledge to dedu
e the asymp-toti
 behavior of p(n) for large n, and their work was extended many years laterby Hans Radema
her, who dis
overed a series that is not only asymptoti
 but
onvergent [Pro
. London Math. So
. (2) 17 (1918), 75{115; 43 (1937), 241{254℄. The Hardy{Ramanujan{Radema
her formula for p(n) is surely one of themost astonishing identities ever dis
overed; it states thatp(n) = �25=433=4(n� 1=24)3=4 1Xk=1 Ak(n)k I3=2�r23 �kpn� 1=24�: (32)Here I3=2 denotes the modi�ed spheri
al Bessel fun
tionI3=2(z) = �z2�3=2 1Xk=0 1�(k + 5=2) (z2=4)kk! = r2z� �
osh zz � sinh zz2 �; (33)
and the 
oeÆ
ient Ak(n) is de�ned by the formula

Ak(n) = k�1Xh=0 [h? k℄ exp�2�i��(h; k; 0)24 � nhk �� (34)
where �(h; k; 0) is the Dedekind sum de�ned in Eq. 3.3.3{(16). We haveA1(n) = 1; A2(n) = (�1)n; A3(n) = 2 
os (24n+ 1)�18 ; (35)and in general Ak(n) lies between �k and k.A proof of (32) would take us far a�eld, but the basi
 idea is to use the\saddle point method" dis
ussed in Se
tion 7.2.1.5. The term for k = 1 is derivedfrom the behavior of P (z) when z is near 1; and the next term is derived fromthe behavior when z is near �1, where a transformation similar to (31) 
an beapplied. In general, the kth term of (32) takes a

ount of the way P (z) behaveswhen z approa
hes e2�ih=k for irredu
ible fra
tions h=k with denominator k;every kth root of unity is a pole of ea
h of the fa
tors 1=(1 � zk), 1=(1 � z2k),1=(1� z3k), : : : in the in�nite produ
t for P (z).

8



7.2.1.4 GENERATING ALL PARTITIONS 9The leading term of (32) 
an be simpli�ed greatly, if we merely want a roughapproximation: p(n) = e�p2n=34np3 �1 +O(n�1=2)�: (36)Or, if we 
hoose to retain a few more details,p(n) = e�p2n0=34n0p3 �1� 1�r 32n0 ��1 +O�e��pn=6��; n0 = n� 124 : (37)For example, p(100) has the exa
t value 190,569,292; formula (36) tells us thatp(100) � 1:993� 108, while (37) gives the far better estimate 190,568,944.783.Andrew Odlyzko has observed that, when n is large, the Hardy{Ramanujan{Radema
her formula a
tually gives a near-optimum way to 
ompute the pre
isevalue of p(n), be
ause the arithmeti
 operations 
an be 
arried out in nearlyO�log p(n)� = O(n1=2) steps. The �rst few terms of (32) give the main 
ontri-bution; then the series settles down to terms that are of order k�3=2 and usuallyof order k�2. Furthermore, about half of the 
oeÆ
ients Ak(n) turn out to bezero (see exer
ise 28). For example, when n = 106, the terms for k = 1, 2,and 3 are � 1:47 � 101107, 1:23 � 10550, and �1:23 � 10364, respe
tively. Thesum of the �rst 250 terms is � 1471684986 : : : 73818:01, while the true value is1471684986 : : : 73818; and 123 of those 250 terms are zero.The number of parts. It is 
onvenient to introdu
e the notation��� nm ��� (38)for the number of partitions of n that have exa
tlym parts. Then the re
urren
e��� nm ��� = ��� n� 1m� 1 ���+ ���n�mm ��� (39)holds for all integersm and n, be
ause ��n�1m�1�� 
ounts the partitions whose smallestpart is 1 and ��n�mm �� 
ounts the others. (If the smallest part is 2 or more, we 
ansubtra
t 1 from ea
h part and get a partition of n�m into m parts.) By similarreasoning we 
an 
on
lude that ��m+nm �� is the number of partitions of n into at mostm parts, namely into m nonnegative summands. We also know, by 
onsideringFerrers diagrams, that ��nm�� is the number of partitions of n whose largest partis m. Thus ��nm�� is a good number to know. The boundary 
onditions���n0 ��� = Æn0 and ��� nm ��� = 0 for m < 0 or n < 0 (40)make it easy to tabulate ��nm�� for small values of the parameters, and we obtainan array of numbers analogous to the familiar triangles for �nm�, �nm�, �nm	, and
nm� that we've seen before; see Table 2. The generating fun
tion isXn ��� nm ���zn = zm(1� z)(1� z2) : : : (1� zm) : (41)
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10 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.4Table 2PARTITION NUMBERSn ���n0 ��� ���n1 ��� ���n2 ��� ���n3 ��� ���n4 ��� ���n5 ��� ���n6 ��� ���n7 ��� ���n8 ��� ���n9 ��� ��� n10 ��� ��� n11 ���0 1 0 0 0 0 0 0 0 0 0 0 01 0 1 0 0 0 0 0 0 0 0 0 02 0 1 1 0 0 0 0 0 0 0 0 03 0 1 1 1 0 0 0 0 0 0 0 04 0 1 2 1 1 0 0 0 0 0 0 05 0 1 2 2 1 1 0 0 0 0 0 06 0 1 3 3 2 1 1 0 0 0 0 07 0 1 3 4 3 2 1 1 0 0 0 08 0 1 4 5 5 3 2 1 1 0 0 09 0 1 4 7 6 5 3 2 1 1 0 010 0 1 5 8 9 7 5 3 2 1 1 011 0 1 5 10 11 10 7 5 3 2 1 1Almost all partitions of n have �(pn logn) parts. This fa
t, dis
overed byP. Erd}os and J. Lehner [Duke Math. J. 8 (1941), 335{345℄, has a very instru
tiveproof:Theorem E. Let C = �=p6 and m = 12Cpn lnn+ xpn+O(1). Then1p(n)���m+ nm ��� = F (x)�1 +O(n�1=2+�)� (42)for all � > 0 and all �xed x as n!1, whereF (x) = e�e�Cx=C : (43)This fun
tion F (x) approa
hes 0 quite rapidly when x ! �1, and it rapidlyin
reases to 1 when x ! +1; so it is a probability distribution fun
tion. Fig-ure 29(b) shows that the 
orresponding density fun
tion f(x) = F 0(x) is largely
on
entrated in the region �2 � x � 4. The values of ��nm�� = ��m+nm ��� ��m�1+nm�1 �� areshown in Fig. 29(a) for 
omparison when n = 100; in this 
ase 12Cpn lnn � 18.Proof. We will use the fa
t that ��m+nm �� is the number of partitions of n whoselargest part is � m. Then, by the prin
iple of in
lusion and ex
lusion, Eq. 1.3.3{(29), we have���m+nm ��� = p(n)�Xj>m p(n�j)+ Xj2>j1>mp(n�j1�j2)� Xj3>j2>j1>mp(n�j1�j2�j3)+ � � � ;be
ause p(n� j1 � � � � � jr) is the number of partitions of n that use ea
h of theparts fj1; : : : ; jrg at least on
e. Let us write this as1p(n)���m+nm ��� = 1��1+�2��3+ � � � ; �r = Xjr>���>j1>mp(n�j1� � � � �jr)p(n) : (44)
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7.2.1.4 GENERATING ALL PARTITIONS 11
a) ��100m ��: 0 8 18 28 38 48 58 m
b) f(x): �2 �1 0 1 2 3 4 xFig. 29. Partitions of n withm parts, when (a) n = 100; (b) n!1. (See Theorem E.)In order to evaluate �r we need to have a good estimate of the ratiop(n� t)=p(n). And we're in lu
k, be
ause Eq. (36) implies thatp(n� t)p(n) = exp�2Cpn� t� ln(n� t) +O�(n� t)�1=2�� 2Cpn+ lnn�= exp��Ctn�1=2 +O(n�1=2+2�)� if 0 � t � n1=2+�: (45)Furthermore, if t � n1=2+� we have p(n � t)=p(n) � p(n � n1=2+�)=p(n) �exp(�Cn�), a value that is asymptoti
ally smaller than any power of n. Thereforewe may safely use the approximationp(n� t)p(n) � �t; � = exp(�Cn�1=2); (46)for all values of t � 0. For example, we have�1 = Xj>m p(n� j)p(n) = �m+11� � �1 +O(n�1=2+2�)�+ Xn�j>n1=2+�p(n� j)p(n)= e�CxC �1 +O(n�1=2+2�)�+O(ne�Cn�);be
ause �=(1� �) = n1=2=C + O(1) and �m = n�1=2e�Cx. A similar argument(see exer
ise 36) proves that, if r = O(logn),�r = e�CrxCrr! �1 +O(n�1=2+2�)�+O(e�n�=2): (47)Finally|and this is a wonderful property of the in
lusion-ex
lusion prin
i-ple in general| the partial sums of (44) always \bra
ket" the true value, in thesense that1��1+�2�� � ���2r�1 � 1p(n)���m+nm ��� � 1��1+�2�� � ���2r�1+�2r (48)for all r. (See exer
ise 37.) When 2r is near lnn and n is large, the term �2r isextremely tiny; therefore we obtain (42), ex
ept with 2� in pla
e of �.
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12 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.40 pn 2pn
pn2pn

Fig. 30. Temperley's 
urve (49) for thelimiting shape of a random partition.
Theorem E tells us that the largest part of a random partition almost alwaysis 12Cpn lnn + O(pn ), and when n is reasonably large the other parts tend tobe predi
table as well. Suppose, for example, that we take all the partitionsof 25 and superimpose their Ferrers diagrams, 
hanging dots to boxes as in therim representation. Whi
h 
ells are o

upied most often? Figure 30 shows theresult: A random partition tends to have a typi
al shape that approa
hes alimiting 
urve as n!1.H. N. V. Temperley [Pro
. Cambridge Philos. So
. 48 (1952), 683{697℄gave heuristi
 reasons to believe that most parts ak of a large random partitiona1 : : : am will satisfy the approximate lawe�Ck=pn + e�Cak=pn � 1; (49)and his formula has subsequently been veri�ed in a strong form. For example, atheorem of Boris Pittel [Advan
es in Applied Math. 18 (1997), 432{488℄ allowsus to 
on
lude that the tra
e of a random partition is almost always ln 2C pn �0:54pn, in a

ordan
e with (49), with an error of at most O(pn lnn)1=2; thusabout 29% of all the Ferrers dots tend to lie in the Durfee square.If, on the other hand, we look only at partitions of n with m parts, wherem is �xed, the limiting shape is rather di�erent: Almost all su
h partitions haveak � nm ln mk ; (50)if m is reasonably large. Figure 31 illustrates the 
ase n = 50, m = 5. In fa
t,the same limit holds when m grows with n, but at a slower rate than pn [seeVershik and Yakubovi
h, Mos
ow Math. J. 1 (2001), 457{468℄.0 n=m 2n=m
m Fig. 31. The limiting shape (50) when there are m parts.
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7.2.1.4 GENERATING ALL PARTITIONS 13The rim representation of partitions gives us further information about par-titions that are doubly bounded, in the sense that we not only restri
t the numberof parts but also the size of ea
h part. A partition that has at most m parts,ea
h of size at most l, �ts inside an m � l box. All su
h partitions 
orrespondto permutations of the multiset fm � 0; l � 1g that have exa
tly n inversions, andwe have studied the inversions of multiset permutations in exer
ise 5.1.2{16. Inparti
ular, that exer
ise derives a nonobvious formula for the number of waysn inversions 
an happen:Theorem C. The number of partitions of n that have no more than m partsand no part larger than l is[zn℄� l +mm �z = [zn℄ (1� zl+1)(1� z) (1� zl+2)(1� z2) : : : (1� zl+m)(1� zm) : (51)This result is due to A. Cau
hy, Comptes Rendus A
ad. S
i. 17 (Paris, 1843),523{531. Noti
e that when l!1 the numerator be
omes simply 1. An interest-ing 
ombinatorial proof of a more general result appears in exer
ise 39 below.Analysis of the algorithms. Now we know more than enough about thequantitative aspe
ts of partitions to dedu
e the behavior of Algorithm P quitepre
isely. Suppose steps P1, : : : , P6 of that algorithm are exe
uted respe
tivelyT1(n), : : : , T6(n) times. We obviously have T1(n) = 1 and T3(n) = p(n); further-more Kir
hho�'s law tells us that T2(n) = T5(n) and T4(n)+T5(n) = T3(n). Weget to step P4 on
e for ea
h partition that 
ontains a 2; and this is 
learly p(n�2).Thus the only possible mystery about the running time of Algorithm P isthe number of times we must perform step P6, whi
h loops ba
k to itself. Amoment's thought, however, reveals that the algorithm stores a value � 2 intothe array a1a2 : : : only in steps P2 and P6; and every su
h value is eventuallyde
reased by 1, either in step P4 or step P5. ThereforeT 002 (n) + T6(n) = p(n)� 1; (52)where T 002 (n) is the number of times step P2 sets am to a value � 2. Let T2(n) =T 02(n)+ T 002 (n), so that T 02(n) is the number of times step P2 sets am  1. ThenT 02(n) + T4(n) is the number of partitions that end in 1, hen
eT 02(n) + T4(n) = p(n� 1): (53)Aha! We've found enough equations to determine all of the required quantities:�T1(n); : : : ; T6(n)� =�1; p(n)� p(n�2); p(n); p(n�2); p(n)� p(n�2); p(n�1)� 1�: (54)And from the asymptoti
s of p(n) we also know the average amount of 
ompu-tation per partition:�T1(n)p(n) ; : : : ; T6(n)p(n) � = �0; 2Cpn; 1; 1� 2Cpn; 2Cpn; 1� Cpn� + O� 1n�; (55)where C = �=p6 � 1:283. (See exer
ise 45.) The total number of memorya

esses per partition therefore 
omes to only 4� 3C=pn+O(1=n).
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14 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.4Whoever wants to go about generating all partitionsnot only immerses himself in immense labor,but also must take pains to keep fully attentive,so as not to be grossly de
eived.| LEONHARD EULER, De Partitione Numerorum (1750)Algorithm H is more diÆ
ult to analyze, but we 
an at least prove a de
entupper bound on its running time. The key quantity is the value of j, the smallestsubs
ript for whi
h aj < a1 � 1. The su

essive values of j when m = 4 andn = 11 are (2; 2; 2; 3; 2; 2; 3; 4; 2; 3; 5), and we have observed that j = b l�1 + 1when b1 : : : bl is the 
onjugate partition (a1 : : : am)T . (See (7) and (12).) Step H3singles out the 
ase j = 2, be
ause this 
ase is not only the most 
ommon, it isalso espe
ially easy to handle.Let 
m(n) be the a

umulated total value of j � 1, summed over all of the��nm�� partitions generated by Algorithm H. For example, 
4(11) = 1+ 1+ 1+ 2+1 + 1 + 2 + 3 + 1 + 2 + 4 = 19. We 
an regard 
m(n)=��nm�� as a good indi
ationof the running time per partition, be
ause the time to perform the most 
ostlysteps, H4 and H6, is roughly proportional to j � 2. This ratio 
m(n)=��nm�� is notbounded, be
ause 
m(m) = m while ��mm�� = 1. But the following theorem showsthat Algorithm H is eÆ
ient nonetheless:Theorem H. The 
ost measure 
m(n) for Algorithm H is at most 3��nm��+m.Proof. We 
an readily verify that 
m(n) satis�es the same re
urren
e as ��nm��,namely 
m(n) = 
m�1(n� 1) + 
m(n�m); for m;n � 1; (56)if we arti�
ially de�ne 
m(n) = 1 when 1 � n < m; see (39). But the boundary
onditions are now di�erent:
m(0) = [m> 0℄; 
0(n) = 0: (57)Table 3 shows how 
m(n) behaves when m and n are small.To prove the theorem, we will a
tually prove a stronger result,
m(n) � 3 ��� nm ���+ 2m� n� 1 for n � m � 2. (58)Exer
ise 50 shows that this inequality holds when m � n � 2m, so the proofwill be 
omplete if we 
an prove it when n > 2m. In the latter 
ase we have
m(n) = 
1(n�m) + 
2(n�m) + 
3(n�m) + � � �+ 
m(n�m)� 1 + �3��n�m2 ��+ 3�n+m�+ �3��n�m3 ��+ 5�n+m�+ � � �+ �3��n�mm ��+ 2m�1�n+m�= 3��n�m1 ��+ 3��n�m2 ��+ � � �+ 3��n�mm ��� 3 +m2 � (m� 1)(n�m)= 3��nm��+ 2m2 �m� (m� 1)n� 3by indu
tion; and 2m2�m� (m�1)n�3 � 2m�n�1 be
ause n � 2m+1.
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7.2.1.4 GENERATING ALL PARTITIONS 15Table 3COSTS IN ALGORITHM Hn 
0(n) 
1(n) 
2(n) 
3(n) 
4(n) 
5(n) 
6(n) 
7(n) 
8(n) 
9(n) 
10(n) 
11(n)0 0 1 1 1 1 1 1 1 1 1 1 11 0 1 1 1 1 1 1 1 1 1 1 12 0 1 2 1 1 1 1 1 1 1 1 13 0 1 2 3 1 1 1 1 1 1 1 14 0 1 3 3 4 1 1 1 1 1 1 15 0 1 3 4 4 5 1 1 1 1 1 16 0 1 4 6 5 5 6 1 1 1 1 17 0 1 4 7 7 6 6 7 1 1 1 18 0 1 5 8 11 8 7 7 8 1 1 19 0 1 5 11 12 12 9 8 8 9 1 110 0 1 6 12 16 17 13 10 9 9 10 111 0 1 6 14 19 21 18 14 11 10 10 11*A Gray 
ode for partitions. When partitions are generated in part-
ountform 
1 : : : 
n as in exer
ise 5, at most four of the 
j values 
hange at ea
h step.But we might prefer to minimize the 
hanges to the individual parts, generatingpartitions in su
h a way that the su

essor of a1a2 : : : an is always obtained bysimply setting aj  aj+1 and ak  ak�1 for some j and k, as in the \revolvingdoor" algorithms of Se
tion 7.2.1.3. It turns out that this is always possible; infa
t, there is a unique way to do it when n = 6:111111; 21111; 3111; 2211; 222; 321; 33; 42; 411; 51; 6: (59)And in general, the ��m+nm �� partitions of n into at most m parts 
an always begenerated by a suitable Gray path.Noti
e that � ! � is an allowable transition from one partition to anotherif and only if we get the Ferrers diagram for � by moving just one dot in theFerrers diagram for �. Therefore �T ! �T is also an allowable transition. Itfollows that every Gray 
ode for partitions into at most m parts 
orresponds toa Gray 
ode for partitions into parts that do not ex
eed m. We shall work withthe latter 
onstraint.The total number of Gray 
odes for partitions is vast: There are 52 whenn = 7, and 652 when n = 8; there are 298,896 when n = 9, and 2,291,100,484when n = 10. But no really simple 
onstru
tion is known. The reason is probablythat a few partitions have only two neighbors, namely the partitions dn=d when1 < d < n and d is a divisor of n. Su
h partitions must be pre
eded and followedby f(d+1)dn=d�2(d�1); dn=d�1(d�1)1g, and this requirement seems to rule outany simple re
ursive approa
h.Carla D. Savage [J. Algorithms 10 (1989), 577{595℄ found a way to surmountthe diÆ
ulties with only a modest amount of 
omplexity. Let
�(m;n) = bn=m
z }| {m m : : : m (nmodm) (60)
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16 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.4be the lexi
ographi
ally largest partition of n with parts � m; our goal willbe to 
onstru
t re
ursively de�ned Gray paths L(m;n) and M(m;n) from thepartition 1n to �(m;n), where L(m;n) runs through all partitions whose partsare bounded by m while M(m;n) runs through those partitions and a few more:M(m;n) also in
ludes partitions whose largest part is m + 1, provided thatthe other parts are all stri
tly less than m. For example, L(3; 8) is 11111111,2111111, 311111, 221111, 22211, 2222, 3221, 32111, 3311, 332, while M(3; 8) is11111111; 2111111; 221111; 22211; 2222; 3221;3311; 32111; 311111; 41111; 4211; 422; 332; (61)the additional partitions starting with 4 will give us \wiggle room" in otherparts of the re
ursion. We will de�ne L(m;n) for all n � 0, but M(m;n) onlyfor n > 2m.The following 
onstru
tion, illustrated for m = 5 to simplify the notation,almost works:
L(5) = 8<:L(3)4L(1)R5L(1)

9=; if n � 7;
8>>>>><>>>>>:
L(3)4L(2)R5L(2)4314453

9>>>>>=>>>>>; if n = 8; 8<:M(4)54L(4)R55L(5)
9=; if n � 9;(62)

M(5) = 8>>><>>>:
L(4)5L(4)R6L(3)64L(1)R55L(1)

9>>>=>>>; if 11 � n � 13; 8>>><>>>:
L(4)5M(4)R6L(4)554L(4)R555L(5)

9>>>=>>>; if n � 14. (63)
Here the parameter n in L(m;n) and M(m;n) has been omitted be
ause it 
anbe dedu
ed from the 
ontext; ea
h L or M is supposed to generate partitions ofwhatever amount remains after previous parts have been subtra
ted. Thus, forexample, (63) spe
i�es thatM(5; 14) = L(4; 14); 5M(4; 9)R; 6L(4; 8); 554L(4; 0)R; 555L(5;�1);the sequen
e L(5;�1) is a
tually empty, and L(4; 0) is the empty string, so the�nal partition of M(5; 14) is 554 = �(5; 14) as it should be. The notation L(1)stands for L(1; n) = L(n; n), the Gray path of all partitions of n, starting with1n and ending with n1.In general, L(m) and M(m) are de�ned for all m � 3 by essentially thesame rules, if we repla
e the digits 2, 3, 4, 5, and 6 in (62) and (63) by m�3,m�2, m�1, m, and m+1, respe
tively. The ranges n � 7, n = 8, n � 9 be
omen � 2m�3, n = 2m�2, n � 2m�1; the ranges 11 � n � 13 and n � 14 be
ome2m + 1 � n � 3m � 2 and n � 3m � 1. The sequen
es L(0), L(1), L(2) haveobvious de�nitions be
ause the paths are unique when m � 2. The sequen
eM(2) is 1n, 21n�2, 31n�3, 221n�4, 2221n�6, : : : , �(2; n) for n � 5.
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7.2.1.4 GENERATING ALL PARTITIONS 17Theorem S. Gray paths L0(m;n) form;n � 0 andM 0(m;n) for n � 2m+1 � 5exist for all partitions with the properties des
ribed above, ex
ept in the 
aseL0(4; 6). Furthermore, L0 and M 0 obey the mutual re
ursions (62) and (63)ex
ept in a few 
ases.Proof. We noted above that (62) and (63) almost work; the reader may verifythat the only glit
h o

urs in the 
ase L(4; 6), when (62) givesL(4; 6) = L(2; 6); 3L(1; 3)R; 4L(1; 2); 321; 33; 42= 111111; 21111; 2211; 222; 3111; 411; 321; 33; 42: (64)If m > 4, we're OK be
ause the transition from the end of L(m�2; 2m�2) tothe beginning of (m�1)L(m�3;m�1)R is from (m�2)(m�2)2 to (m�1)(m�3)2.There is no satisfa
tory path L(4; 6), be
ause all Gray 
odes through those ninepartitions must end with either 411, 33, 3111, 222, or 2211.In order to neutralize this anomaly we need to pat
h the de�nitions ofL(m;n) and M(m;n) at eight pla
es where the \buggy subroutine" L(4; 6) isinvoked. One simple way is to make the following de�nitions:L0(4; 6) = 111111; 21111; 3111; 411; 321; 33; 42;L0(3; 5) = 11111; 2111; 221; 311; 32: (65)Thus, we omit 222 and 2211 from L(4; 6); we also reprogram L(3; 5) so that 2111is adja
ent to 221. Then exer
ise 60 shows that it is always easy to \spli
e in"the two partitions that are missing from L(4; 6).EXERCISESx 1. [M21 ℄ Give formulas for the total number of possibilities in ea
h problem of TheTwelvefold Way. For example, the number of n-tuples of m things is mn. (Use thenotation (38) when appropriate, and be 
areful to make your formulas 
orre
t evenwhen m = 0 or n = 0.)x 2. [20 ℄ Show that a small 
hange to step H1 yields an algorithm that will generateall partitions of n into at most m parts.3. [M17 ℄ A partition a1 + � � � + am of n into m parts a1 � � � � � am is optimallybalan
ed if jai�aj j � 1 for 1 � i; j � m. Prove that there is exa
tly one su
h partition,whenever n � m � 1, and give a simple formula that expresses the jth part aj as afun
tion of j, m, and n.4. [M22 ℄ (Gideon Ehrli
h, 1974.) What is the lexi
ographi
ally smallest partitionof n in whi
h all parts are � r? For example, when n = 19 and r = 5 the answer is 766.x 5. [23 ℄ Design an algorithm that generates all partitions of n in the part-
ount form
1 : : : 
n of (8). Generate them in 
olex order, namely in the lexi
ographi
 order of
n : : : 
1, whi
h is equivalent to lexi
ographi
 order of the 
orresponding partitionsa1a2 : : : . For eÆ
ien
y, maintain also a table of links l0 l1 : : : ln so that, if the distin
tvalues of k for whi
h 
k > 0 are k1 < � � � < kt, we havel0 = k1; lk1 = k2; : : : ; lkt�1 = kt; lkt = 0:(Thus the partition 331 would be represented by 
1 : : : 
7 = 1020000, l0 = 1, l1 = 3,and l3 = 0; the other links l2, l4, l5, l7 
an be set to any 
onvenient values.)
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18 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.46. [20 ℄ Design an algorithm to 
ompute b1b2 : : : = (a1a2 : : : )T , given a1a2 : : : .7. [M20 ℄ Suppose a1 : : : an and a01 : : : a0n are partitions of n with a1 � � � � � an � 0and a01 � � � � � a0n � 0, and let their respe
tive 
onjugates be b1 : : : bn = (a1 : : : an)T ,b01 : : : b0n = (a01 : : : a0n)T . Show that b1 : : : bn < b01 : : : b0n if and only if an : : : a1 < a0n : : : a01.8. [15 ℄ When (p1 : : : pt; q1 : : : qt) is the rim representation of a partition a1a2 : : : asin (15) and (16), what is the 
onjugate partition (a1a2 : : : )T = b1b2 : : : ?9. [22 ℄ If a1a2 : : : am and b1b2 : : : bm = (a1a2 : : : am)T are 
onjugate partitions, showthat the multisets fa1+1; a2+2; : : : ; am+mg and fb1+1; b2+2; : : : ; bm+mg are equal.10. [21 ℄ Two simple kinds of binary trees are sometimes helpful for reasoning aboutpartitions: (a) a tree that in
ludes all partitions of all integers, and (b) a tree thatin
ludes all partitions of a given integer n, illustrated here for n = 8:�111 2111 21 31111 211 22 31 411111 2111 221 311 32 41 5
111111112111111221111 31111122211 32111 411112222 3221 3311 4211 5111332 422 431 521 61144 53 62 71 8(a) (b)Dedu
e the general rules underlying these 
onstru
tions. What order of tree traversal
orresponds to lexi
ographi
 order of the partitions?11. [M22 ℄ How many ways are there to pay one euro, using 
oins worth 1, 2, 5, 10,20, 50, and/or 100 
ents? What if you are allowed to use at most two of ea
h 
oin?x 12. [M21 ℄ (L. Euler, 1750.) Use generating fun
tions to prove that the number ofways to partition n into distin
t parts is the number of ways to partition n into oddparts. For example, 5 = 4 + 1 = 3 + 2; 5 = 3 + 1 + 1 = 1 + 1 + 1 + 1 + 1.[Note: The next two exer
ises use 
ombinatorial te
hniques to prove extensions ofthis famous theorem.℄x 13. [M22 ℄ (F. Franklin, 1882.) Find a one-to-one 
orresponden
e between partitionsof n that have exa
tly k parts repeated more than on
e and partitions of n that haveexa
tly k even parts. (The 
ase k = 0 
orresponds to Euler's result.)x 14. [M28 ℄ (J. J. Sylvester, 1882.) Find a one-to-one 
orresponden
e between parti-tions of n into distin
t parts a1 > a2 > � � � > am that have exa
tly k \gaps" whereaj > aj+1 + 1, and partitions of n into odd parts that have exa
tly k + 1 di�erentvalues. (For example, when k = 0 this 
onstru
tion proves that the number of ways towrite n as a sum of 
onse
utive integers is the number of odd divisors of n.)15. [M20 ℄ (J. J. Sylvester.) Find a generating fun
tion for the number of partitionsthat are self-
onjugate (namely, partitions su
h that � = �T ).16. [M21 ℄ Find the generating fun
tion for partitions of tra
e k, and sum it on k toobtain a nontrivial identity.
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7.2.1.4 GENERATING ALL PARTITIONS 1917. [M26 ℄ A joint partition of n is a pair of sequen
es (a1; : : : ; ar; b1; : : : ; bs) ofpositive integers for whi
h we havea1 � � � � � ar; b1 > � � � > bs; and a1 + � � �+ ar + b1 + � � �+ bs = n:Thus it is an ordinary partition if s = 0, and a partition into distin
t parts if r = 0.a) Find a simple formula for the generating fun
tion Pur+svszn, summed over alljoint partitions of n with r ordinary parts ai and s distin
t parts bj .b) Similarly, �nd a simple formula forP vszn when the sum is over all joint partitionsthat have exa
tly r + s = t total parts, given the value of t.
) What identity do you dedu
e?x 18. [M23 ℄ (Doron Zeilberger.) Show that there is a one-to-one 
orresponden
e be-tween pairs of integer sequen
es (a1; a2; : : : ; ar; b1; b2; : : : ; bs) su
h thata1 � a2 � � � � � ar; b1 > b2 > � � � > bs;and pairs of integer sequen
es (
1; 
2; : : : ; 
r+s; d1; d2; : : : ; dr+s) su
h that
1 � 
2 � � � � � 
r+s; dj 2 f0; 1g for 1 � j � r + s;related by the multiset equationsfa1; a2; : : : ; arg = f
j j dj = 0g and fb1; b2; : : : ; bsg = f
j + r + s� j j dj = 1g:Consequently we obtain the interesting identityXa1�����ar>0b1>���>bs>0ur+svsza1+���+ar+b1+���+bs =
X
1�����
t>0d1;:::;dt2f0;1gutvd1+���+dtz
1+���+
t+(t�1)d1+���+dt�1 :

19. [M21 ℄ (E. Heine, 1847.) Prove the four-parameter identity1Ym=1 (1�wxzm)(1�wyzm)(1�wzm)(1�wxyzm) = 1Xk=0 wk(x�1)(x�z) : : : (x�zk�1)(y�1)(y�z) : : : (y�zk�1)zk(1�z)(1�z2) : : : (1�zk)(1�wz)(1�wz2) : : : (1�wzk) .Hint: Carry out the sum over either k or l in the formulaXk;l�0ukvlzkl (z � az)(z � az2) : : : (z � azk)(1� z)(1� z2) : : : (1� zk) (z � bz)(z � bz2) : : : (z � bzl)(1� z)(1� z2) : : : (1� zl)and 
onsider the simpli�
ations that o

ur when b = auz.x 20. [M21 ℄ Approximately how long does it take to 
ompute a table of the partitionnumbers p(n) for 1 � n � N , using Euler's re
urren
e (20)?21. [M21 ℄ (L. Euler.) Let q(n) be the number of partitions into distin
t parts. Whatis a good way to 
ompute q(n) if you already know the values of p(1), : : : , p(n)?22. [HM21 ℄ (L. Euler.) Let �(n) be the sum of all positive divisors of the positiveinteger n. Thus, �(n) = n + 1 when n is prime, and �(n) 
an be signi�
antly largerthan n when n is highly 
omposite. Prove that, in spite of this rather 
haoti
 behavior,�(n) satis�es almost the same re
urren
e (20) as the partition numbers:�(n) = �(n�1) + �(n�2)� �(n�5)� �(n�7) + �(n�12) + �(n�15)� � � �for n � 1, ex
ept that when a term on the right is `�(0)' the value `n' is used instead.For example, �(11) = 1 + 11 = �(10) + �(9) � �(6) � �(4) = 18 + 13 � 12 � 7;�(12) = 1+2+3+4+6+12 = �(11)+�(10)��(7)��(5)+12 = 12+18�8�6+12.
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20 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.423. [HM25 ℄ Use Ja
obi's triple produ
t identity (19) to prove another formula thathe dis
overed:1Yk=1(1� zk)3 = 1� 3z + 5z3 � 7z6 + 9z10 � � � � = 1Xn=0(�1)n(2n+ 1)z(n+12 ):24. [M26 ℄ (S. Ramanujan, 1919.) Let A(z) = Q1k=1(1� zk)4.a) Prove that [zn℄A(z) is a multiple of 5 when nmod 5 = 4.b) Prove that [zn℄A(z)B(z)5 has the same property, if B is any power series withinteger 
oeÆ
ients.
) Therefore p(n) is a multiple of 5 when nmod 5 = 4.25. [HM27 ℄ Improve on (22) by using (a) Euler's summation formula and (b) Mellintransforms to estimate lnP (e�t). Hint: The dilogarithm fun
tion Li2(x) = x=12 +x2=22 + x3=32 + � � � satis�es Li2(x) + Li2(1� x) = �(2)� (lnx) ln(1� x).26. [HM22 ℄ In exer
ises 5.2.2{44 and 5.2.2{51 we studied two ways to prove that1Xk=1 e�k2=n = 12(p�n� 1) +O(n�M ) for all M > 0.Show that Poisson's summation formula gives a mu
h stronger result.27. [HM23 ℄ Evaluate (29) and 
omplete the 
al
ulations leading to Theorem D.28. [HM42 ℄ (D. H. Lehmer.) Show that the Hardy{Ramanujan{Radema
her 
oeÆ-
ients Ak(n) de�ned in (34) have the following remarkable properties:a) If k is odd, then A2k(km+ 4n+ (k2 � 1)=8) = A2(m)Ak(n).b) If p is prime, pe > 2, and k ? 2p, thenApek(k2m+ p2en� (k2 + p2e � 1)=24) = (�1)[pe=4℄Ape(m)Ak(n):In this formula k2 + p2e � 1 is a multiple of 24 if p or k is divisible by 2 or 3;otherwise division by 24 should be done modulo pek.
) If p is prime, jApe(n)j < 2[p>2℄pe=2.d) If p is prime, Ape(n) 6= 0 if and only if 1 � 24n is a quadrati
 residue modulo pand either e = 1 or 24nmod p 6= 1.e) The probability that Ak(n) = 0, when k is divisible by exa
tly t primes � 5 andn is a random integer, is approximately 1� 2�t.x 29. [M16 ℄ Generalizing (41), evaluate the sum Pa1�a2�����am�1 za11 za22 : : : zamm .30. [M17 ℄ Find 
losed forms for the sums(a) Xk�0 ���n� kmm� 1 ��� and (b) Xk�0 ��� nm� k ���(whi
h are �nite, be
ause the terms being summed are zero when k is large).31. [M24 ℄ (A. De Morgan, 1843.) Show that ��n2�� = bn=2
 and ��n3�� = b(n2 + 6)=12
;�nd a similar formula for ��n4��.32. [M15 ℄ Prove that ��nm�� � p(n�m) for all m;n � 0. When does equality hold?33. [HM20 ℄ Use the fa
t that there are exa
tly �n�1m�1� 
ompositions of n into m parts,Eq. 7.2.1.3{(9), to prove a lower bound on ��nm��. Then set m = bpn 
 to obtain an ele-mentary lower bound on p(n).
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7.2.1.4 GENERATING ALL PARTITIONS 21x 34. [HM21 ℄ Show that ��n�m(m�1)=2m �� is the number of partitions of n into m distin
tparts. Consequently��� nm ��� = nm�1m! (m� 1)!�1 +O�m3n �� when m � n1=3.35. [HM21 ℄ In the Erd}os{Lehner probability distribution (43), what value of x is(a) most probable? (b) the median? (
) the mean? (d) What is the standard deviation?36. [HM24 ℄ Prove the key estimate (47) that is needed in Theorem E.37. [M22 ℄ Prove the in
lusion-ex
lusion bra
keting lemma (48), by analyzing howmany times a partition that has exa
tly q di�erent parts ex
eeding m is 
ounted in therth partial sum.38. [M20 ℄ What is the generating fun
tion for the partitions of n that have exa
tlym parts, and largest part l?x 39. [M25 ℄ (F. Franklin.) Generalizing Theorem C, show that, for 0 � k � m,[zn℄ (1� zl+1) : : : (1� zl+k)(1� z)(1� z2) : : : (1� zm)is the number of partitions a1a2 : : : of n into m or fewer parts with the property thata1 � ak+1 + l.40. [M22 ℄ (A. Cau
hy.) What is the generating fun
tion for partitions into m parts,all distin
t and less than l?41. [HM42 ℄ Extend the Hardy{Ramanujan{Radema
her formula (32) to obtain a
onvergent series for partitions of n into at most m parts, with no part ex
eeding l.42. [HM42 ℄ Find the limiting shape, analogous to (49), for random partitions of ninto at most �pn parts, with no part ex
eeding 'pn, assuming that �' > 1.43. [M21 ℄ Given n and k, how many partitions of n have a1 > a2 > � � � > ak?x 44. [M22 ℄ How many partitions of n have their two smallest parts equal?45. [HM21 ℄ Compute the asymptoti
 value of p(n�1)=p(n), with relative errorO(n�2).46. [M20 ℄ In the text's analysis of Algorithm P, whi
h is larger, T 02(n) or T 002 (n)?x 47. [HM22 ℄ (A. Nijenhuis and H. S. Wilf, 1975.) The following simple algorithm,based on a table of the partition numbers p(0), p(1), : : : , p(n), generates a randompartition of n using the part-
ount representation 
1 : : : 
n of (8). Prove that it produ
esea
h partition with equal probability.N1. [Initialize.℄ Set m n and 
1 : : : 
n  0 : : : 0.N2. [Done?℄ Terminate if m = 0.N3. [Generate.℄ Generate a random integer M in the range 0 �M < mp(m).N4. [Choose parts.℄ Set s  0. Then for j = 1, 2, : : : , n and for k = 1, 2,: : : , bm=j
, repeatedly set s s+ kp(m� jk) until s > M .N5. [Update.℄ Set 
k  
k + j, m m� jk, and return to N2.Hint: Step N4, whi
h is based on the identitymXj=1 bm=j
Xk=1 kp(m� jk) = mp(m);
hooses ea
h parti
ular pair of values (j; k) with probability kp(m� jk)=(mp(m)).
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22 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.448. [HM40 ℄ Analyze the running time of the algorithm in the previous exer
ise.x 49. [HM26 ℄ (a) What is the generating fun
tion F (z) for the sum of the smallest partsof all partitions of n? (The series begins z + 3z2 + 5z3 + 9z4 + 12z5 + � � � .)(b) Find the asymptoti
 value of [zn℄F (z), with relative error O(n�1).50. [HM33 ℄ Let 
(m) = 
m(2m) in the re
urren
e (56), (57).a) Prove that 
m(m+ k) = m� k + 
(k) for 0 � k � m.b) Consequently (58) holds for m � n � 2m if 
(m) < 3p(m) for all m.
) Show that 
(m)�m is the sum of the se
ond-smallest parts of all partitions of m.d) Find a one-to-one 
orresponden
e between all partitions of n with se
ond-smallestpart k and all partitions of numbers � n with smallest part k + 1.e) Des
ribe the generating fun
tion Pm�0 
(m)zm.f) Con
lude that 
(m) < 3p(m) for all m � 0.51. [M46 ℄ Make a detailed analysis of Algorithm H.x 52. [M21 ℄ What is the millionth partition generated by Algorithm P when n = 64?Hint: p(64) = 1741630 = 1000000 + ��7713��+ ��6010��+ ��478 ��+ ��355 ��+ ��273 ��+ ��222 ��+ ��181 ��+ ��150 ��.x 53. [M21 ℄ What is the millionth partition generated by Algorithm H when m = 32and n = 100? Hint: 999999 = ��8012��+ ��6611��+ ��507 ��+ ��416 ��+ ��335 ��+ ��264 ��+ ��214 ��.x 54. [M30 ℄ The partition � = a1a2 : : : is said to majorize the partition � = b1b2 : : : ,written � � � or � � �, if a1 + � � �+ ak � b1 + � � �+ bk for all k � 0.a) True or false: � � � implies � � � (lexi
ographi
ally).b) True or false: � � � implies �T � �T .
) Show that any two partitions of n have a greatest lower bound � ^ � su
h that� � 
 and � � 
 if and only if � ^ � � 
. Explain how to 
ompute � ^ �.d) Similarly, explain how to 
ompute a least upper bound �_� su
h that 
 � � and
 � � if and only if 
 � � _ �.e) If � has l parts and � has m parts, how many parts do � ^ � and � _ � have?f) True or false: If � has distin
t parts and � has distin
t parts, then so do � ^ �and � _ �.x 55. [M37 ℄ Continuing the previous exer
ise, say that � 
overs � if � � �, � 6= �,and � � 
 � � implies 
 = � or 
 = �. For example, Fig. 32 illustrates the 
overingrelations between partitions of 12.a) Let us write � � � if � = a1a2 : : : and � = b1b2 : : : are partitions for whi
hbk = ak � [k= l℄ + [k= l + 1℄ for all k � 1 and some l � 1. Prove that � 
overs �if and only if � � � or �T � �T .b) Show that there is an easy way to tell if � 
overs � by looking at the rimrepresentations of � and �.
) Let n = �n22 �+ �n11 � where n2 > n1 � 0. Show that no partition of n 
overs morethan n2 � 2 partitions.d) Say that the partition � is minimal if there is no partition � with � � �. Provethat � is minimal if and only if �T has distin
t parts.e) Suppose � = �0 � �1 � � � � � �k and � = �00 � �01 � � � � � �0k0 , where �k and�0k0 are minimal partitions. Prove that k = k0 and �k = �0k0 .f) Explain how to 
ompute the lexi
ographi
ally smallest partition into distin
t partsthat majorizes a given partition �.g) Des
ribe �n, the lexi
ographi
ally smallest partition of n into distin
t parts. Whatis the length of all paths n1 = �0 � �1 � � � � � �Tn?
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7.2.1.4 GENERATING ALL PARTITIONS 23

Fig. 32. The majorizationlatti
e for partitions of 12.(See exer
ises 54{58.) 11111111111121111111111221111111122211111122221111 2222222222211311111111132111111132211111 3222111322221331111113321111 332211 33222333111 333213333

41111111142111111 4221111422211 422224311111 432111 4322143311 4332441111 4421144224431444

511111115211111522111 52221531111 53211 5322533154111 5421 5435511 552

6111111621111 62211 622263111 6321 6336411 642651 66

71111172111 72217311732 741 75
811118211 822831 849111 921 9310 11 10 211 112

h) What are the lengths of the longest and shortest paths of the form n1 = �0, �1,: : : , �l = 1n, where �j 
overs �j+1 for 0 � j < l?x 56. [M27 ℄ Design an algorithm to generate all partitions � su
h that � � � � �,given partitions � and � with � � �.Note: Su
h an algorithm has numerous appli
ations. For example, to generate allpartitions that have m parts and no part ex
eeding l, we 
an let � be the smallest su
hpartition, namely dn=me : : : bn=m
 as in exer
ise 3, and let � be the largest, namely((n�m+1)1m�1) ^ (lbn=l
(nmod l)). Similarly, a

ording to a well-known theorem ofH. G. Landau [Bull. Math. Biophysi
s 15 (1953), 143{148℄, the partitions of �m2 � su
hthat jm2 kbm=2
jm� 12 kdm=2e � � � (m�1)(m�2) : : : 21are the possible \s
ore ve
tors" of a round-robin tournament, namely the partitionsa1 : : : am su
h that the jth strongest player wins aj games.
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24 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.457. [M22 ℄ Suppose a matrix (aij) of 0s and 1s has row sums ri =Pj aij and 
olumnsums 
j = Pi aij . Then � = r1r2 : : : and � = 
1
2 : : : are partitions of n = Pi;j aij .Prove that su
h a matrix exists if and only if � � �T .58. [M23 ℄ (Symmetri
al means.) Let � = a1 : : : am and � = b1 : : : bm be partitionsof n. Prove that the inequality1m!Xxa1p1 : : : xampm � 1m!Xxb1p1 : : : xbmpmholds for all nonnegative values of the variables (x1; : : : ; xm), where the sums range overall m! permutations of f1; : : : ;mg, if and only if � � �. (For example, this inequalityredu
es to (y1 + � � � + yn)=n � (y1 : : : yn)1=n in the spe
ial 
ase m = n, � = n0 : : : 0,� = 11 : : : 1, xj = y1=nj .)59. [M22 ℄ The Gray path (59) is symmetri
al in the sense that the reversed sequen
e6, 51, : : : , 111111 is the same as 
onjugate sequen
e (111111)T , (21111)T , : : : , (6)T .Find all Gray paths �1, : : : , �p(n) that are symmetri
al in this way.60. [23 ℄ Complete the proof of Theorem S by modifying the de�nitions of L(m;n)and M(m;n) in all pla
es where L(4; 6) is 
alled in (62) and (63).61. [26 ℄ Implement a partition-generation s
heme based on Theorem S, always spe
i-fying the two parts that have 
hanged between visits.62. [46 ℄ Prove or disprove: For all suÆ
iently large integers n and 3 � m < n su
hthat nmodm 6= 0, and for all partitions � of n with a1 � m, there is a Gray pathfor all partitions with parts � m, beginning at 1n and ending at �, unless � = 1n or� = 21n�2.63. [47 ℄ For whi
h partitions � and � is there a Gray 
ode through all partitions �su
h that � � � � �?x 64. [32 ℄ (Binary partitions.) Design a loopless algorithm that visits all partitions of ninto powers of 2, where ea
h step repla
es 2k + 2k by 2k+1 or vi
e versa.65. [23 ℄ It is well known that every 
ommutative group of m elements 
an be repre-sented as a dis
rete torus T (m1; : : : ;mn) with the addition operation of 7.2.1.3{(66),where m = m1 : : :mn and mj is a multiple of mj+1 for 1 � j < n. For example, whenm = 360 = 23 � 32 � 51 there are six su
h groups, 
orresponding to the fa
torizations(m1;m2;m3) = (30; 6; 2), (60; 6; 1), (90; 2; 2), (120; 3; 1), (180; 2; 1), and (360; 1; 1).Explain how to generate all su
h fa
torizations systemati
ally with an algorithmthat 
hanges exa
tly two of the fa
tors mj at ea
h step.x 66. [M25 ℄ (P-partitions.) Instead of insisting that a1 � a2 � � � � , suppose we wantto 
onsider all nonnegative 
ompositions of n that satisfy a given partial order. Forexample, P. A. Ma
Mahon observed that all solutions to the \up-down" inequalitiesa4 � a2 � a3 � a1 
an be divided into �ve nonoverlapping types:a1 � a2 � a3 � a4; a1 � a2 � a4 > a3;a2 > a1 � a3 � a4; a2 > a1 � a4 > a3; a2 � a4 > a1 � a3:Ea
h of these types is easily enumerated sin
e, for example, a2 > a1 � a4 > a3 isequivalent to a2 � 2 � a1 � 1 � a4 � 1 � a3; the number of solutions with a3 � 0 anda1+a2+a3+a4 = n is the number of partitions of n�1�2�0�1 into at most four parts.Explain how to solve a general problem of this kind: Given any partial orderrelation � onm elements, 
onsider allm-tuples a1 : : : am with the property that aj � ak
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7.2.1.5 GENERATING ALL SET PARTITIONS 25when j � k. Assuming that the subs
ripts have been 
hosen so that j � k implies j � k,show that all of the desired m-tuples fall into exa
tly N 
lasses, one for ea
h of the out-puts of the topologi
al sorting algorithm 7.2.1.2V. What is the generating fun
tion forall su
h a1 : : : am that are nonnegative and sum to n? How 
ould you generate them all?67. [M25 ℄ (P. A. Ma
Mahon, 1886.) A perfe
t partition of n is a multiset that hasexa
tly n+1 submultisets, and these multisets are partitions of the integers 0, 1, : : : , n.For example, the multisets f1;1;1;1;1g, f2;2;1g, and f3;1;1g are perfe
t partitions of 5.Explain how to 
onstru
t the perfe
t partitions of n that have fewest elements.68. [M23 ℄ What partition of n into m parts has the largest produ
t a1 : : : am, when(a) m is given; (b) m is arbitrary?69. [M30 ℄ Find all n < 109 su
h that the equation x1 + x2 + � � � + xn = x1x2 : : : xnhas only one solution in positive integers x1 � x2 � � � � � xn. (There is, for example,only one solution when n = 2, 3, or 4; but 5 + 2 + 1 + 1 + 1 = 5 � 2 � 1 � 1 � 1 and3 + 3 + 1 + 1 + 1 = 3 � 3 � 1 � 1 � 1 and 2 + 2 + 2 + 1 + 1 = 2 � 2 � 2 � 1 � 1.)70. [M30 ℄ (\Bulgarian solitaire.") Take n 
ards and divide them arbitrarily into oneor more piles. Then repeatedly remove one 
ard from ea
h pile and form a new pile.Show that if n = 1+2+ � � �+m, this pro
ess always rea
hes a self-repeating statewith piles of sizes fm;m � 1; : : : ; 1g. For example, if n = 10 and if we start with pileswhose sizes are f3; 3; 2; 2g, we get the sequen
e of partitions3322! 42211! 5311! 442! 3331! 4222! 43111! 532! 4321! 4321! � � � :What 
y
les of states are possible for other values of n?71. [M46 ℄ Continuing the previous problem, what is the maximum number of stepsthat 
an o

ur before n-
ard Bulgarian solitaire rea
hes a 
y
li
 state?72. [M25 ℄ Suppose we write down all partitions of n, for example6; 51; 42; 411; 33; 321; 3111; 222; 2211; 21111; 111111when n = 6, and 
hange ea
h jth o

urren
e of k to j:1; 11; 11; 112; 12; 111; 1123; 123; 1212; 11234; 123456:a) Prove that this operation yields a permutation of the individual elements.b) How many times does the element k appear altogether?7.2.1.5. Generating all set partitions. Now let's shift gears and 
on
entrateon a rather di�erent kind of partition. The partitions of a set are the waysto regard that set as a union of nonempty, disjoint subsets 
alled blo
ks. Forexample, we listed the �ve essentially di�erent partitions of f1; 2; 3g at thebeginning of the previous se
tion, in 7.2.1.4{(2) and 7.2.1.4{(4). Those �vepartitions 
an also be written more 
ompa
tly in the form123; 12j3; 13j2; 1j23; 1j2j3; (1)using a verti
al line to separate one blo
k from another. In this list the elementsof ea
h blo
k 
ould have been written in any order, and so 
ould the blo
ksthemselves, be
ause `13j2' and `31j2' and `2j13' and `2j31' all represent the samepartition. But we 
an standardize the representation by agreeing, for example,to list the elements of ea
h blo
k in in
reasing order, and to arrange the blo
ks in
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26 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.5in
reasing order of their smallest elements. With this 
onvention the partitionsof f1; 2; 3; 4g are1234; 123j4; 124j3; 12j34; 12j3j4; 134j2; 13j24; 13j2j4;14j23; 1j234; 1j23j4; 14j2j3; 1j24j3; 1j2j34; 1j2j3j4; (2)obtained by pla
ing 4 among the blo
ks of (1) in all possible ways.Set partitions arise in many di�erent 
ontexts. Politi
al s
ientists ande
onomists, for example, often see them as \
oalitions"; 
omputer system de-signers may 
onsider them to be \
a
he-hit patterns" for memory a

esses;poets know them as \rhyme s
hemes" (see exer
ises 34{37). We saw in Se
tion2.3.3 that any equivalen
e relation between obje
ts|namely any binary relationthat is re
exive, symmetri
, and transitive|de�nes a partition of those obje
tsinto so-
alled \equivalen
e 
lasses." Conversely, every set partition de�nes anequivalen
e relation: If � is a partition of f1; 2; : : : ; ng we 
an writej � k (modulo �) (3)whenever j and k belong to the same blo
k of �.One of the most 
onvenient ways to represent a set partition inside a 
om-puter is to en
ode it as a restri
ted growth string, namely as a string a1a2 : : : anin whi
h we havea1 = 0 and aj+1 � 1 + max(a1; : : : ; aj) for 1 � j < n. (4)The idea is to set aj = ak if and only if j � k, and to 
hoose the smallestavailable number for aj whenever j is smallest in its blo
k. For example, therestri
ted growth strings for the �fteen partitions in (2) are respe
tively0000; 0001; 0010; 0011; 0012; 0100; 0101; 0102;0110; 0111; 0112; 0120; 0121; 0122; 0123: (5)This 
onvention suggests the following simple generation s
heme, due to GeorgeHut
hinson [CACM 6 (1963), 613{614℄:Algorithm H (Restri
ted growth strings in lexi
ographi
 order). Given n � 2,this algorithm generates all partitions of f1; 2; : : : ; ng by visiting all stringsa1a2 : : : an that satisfy the restri
ted growth 
ondition (4). We maintain anauxiliary array b1b2 : : : bn, where bj+1 = 1 + max(a1; : : : ; aj); the value of bn isa
tually kept in a separate variable, m, for eÆ
ien
y.H1. [Initialize.℄ Set a1 : : : an  0 : : : 0, b1 : : : bn�1  1 : : : 1, and m 1.H2. [Visit.℄ Visit the restri
ted growth string a1 : : : an, whi
h represents apartition into m+ [an=m℄ blo
ks. Then go to H4 if an = m.H3. [In
rease an.℄ Set an  an + 1 and return to H2.H4. [Find j.℄ Set j  n� 1; then, while aj = bj , set j  j � 1.
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7.2.1.5 GENERATING ALL SET PARTITIONS 27H5. [In
rease aj .℄ Terminate if j = 1. Otherwise set aj  aj + 1.H6. [Zero out aj+1 : : : an.℄ Set m  bj + [aj = bj ℄ and j  j + 1. Then, whilej < n, set aj  0, bj  m, and j  j + 1. Finally set an  0 and go ba
kto H2.Exer
ise 47 proves that steps H4{H6 are rarely ne
essary, and that the loopsin H4 and H6 are almost always short. A linked-list variant of this algorithmappears in exer
ise 2.Gray 
odes for set partitions. One way to pass qui
kly through all setpartitions is to 
hange just one digit of the restri
ted growth string a1 : : : an atea
h step, be
ause a 
hange to aj simply means that element j moves from oneblo
k to another. An elegant way to arrange su
h a list was proposed by GideonEhrli
h [JACM 20 (1973), 507{508℄: We 
an su

essively append the digits0; m; m� 1; : : : ; 1 or 1; : : : ; m� 1; m; 0 (6)to ea
h string a1 : : : an�1 in the list for partitions of n � 1 elements, wherem = 1+max(a1; : : : ; an�1), alternating between the two 
ases. Thus the list `00,01' for n = 2 be
omes `000, 001, 011, 012, 010' for n = 3; and that list be
omes0000; 0001; 0011; 0012; 0010; 0110; 0112; 0111;0121; 0122; 0123; 0120; 0100; 0102; 0101 (7)when we extend it to the 
ase n = 4. Exer
ise 14 shows that Ehrli
h's s
hemeleads to a simple algorithm that a
hieves this Gray-
ode order without doingmu
h more work than Algorithm H.Suppose, however, that we aren't interested in all of the partitions; we mightwant only the ones that have exa
tly m blo
ks. Can we run through this smaller
olle
tion of restri
ted growth strings, still 
hanging only one digit at a time?Yes; a very pretty way to generate su
h a list has been dis
overed by FrankRuskey [Le
ture Notes in Comp. S
i. 762 (1993), 205{206℄. He de�ned twosu
h sequen
es, Amn and A0mn, both of whi
h start with the lexi
ographi
allysmallest m-blo
k string 0n�m01 : : : (m�1). The di�eren
e between them, ifn > m + 1, is that Amn ends with 01 : : : (m�1)0n�m while A0mn ends with0n�m�101 : : : (m�1)0. Here are Ruskey's re
ursive rules, when 1 < m < n:Am(n+1) = (A(m�1)n(m�1); ARmn(m�1); : : : ; ARmn1; Amn0; if m is even;A0(m�1)n(m�1); Amn(m�1); : : : ; ARmn1; Amn0; if m is odd; (8)
A0m(n+1) = (A0(m�1)n(m�1); Amn(m�1); : : : ; Amn1; ARmn0; if m is even;A(m�1)n(m�1); ARmn(m�1); : : : ; Amn1; ARmn0; if m is odd. (9)Of 
ourse the base 
ases are simply one-element lists,A1n = A01n = f0ng and Ann = f01 : : : (n�1)g: (10)
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28 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.5With these de�nitions the �53	 = 25 partitions of f1; 2; 3; 4; 5g into three blo
ksare 00012; 00112; 01112; 01012; 01002; 01102; 00102;00122; 01122; 01022; 01222; 01212; 01202;01201; 01211; 01221; 01021; 01121; 00121;00120; 01120; 01020; 01220; 01210; 01200: (11)
(See exer
ise 17 for an eÆ
ient implementation.)In Ehrli
h's s
heme (7) the rightmost digits of a1 : : : an vary most rapidly,but in Ruskey's s
heme most of the 
hanges o

ur near the left. In both 
ases,however, ea
h step a�e
ts just one digit aj , and the 
hanges are quite simple:Either aj 
hanges by �1, or it jumps between the two extreme values 0 and1+max(a1; : : : ; aj�1). Under the same 
onstraints, the sequen
e A01n, A02n, : : : ,A0nn runs through all partitions, in in
reasing order of the number of blo
ks.The number of set partitions. We've seen that there are 5 partitions off1; 2; 3g and 15 of f1; 2; 3; 4g. A qui
k way to 
ompute these 
ounts was dis-
overed by C. S. Peir
e, who presented the following triangle of numbers in theAmeri
an Journal of Mathemati
s 3 (1880), page 48:12 15 3 215 10 7 552 37 27 20 15203 151 114 87 67 52

(12)
Here the entries $n1, $n2, : : : , $nn of the nth row obey the simple re
urren
e$nk = $(n�1)k+$n(k+1) if 1 � k < n; $nn = $(n�1)1 if n > 1; (13)and $11 = 1. Peir
e's triangle has many remarkable properties, some of whi
hare surveyed in exer
ises 26{31. For example, $nk is the number of partitionsof f1; 2; : : : ; ng in whi
h k is the smallest of its blo
k.The entries on the diagonal and in the �rst 
olumn of Peir
e's triangle, whi
htell us the total number of set partitions, are 
ommonly known as Bell numbers,be
ause E. T. Bell wrote several in
uential papers about them [AMM 41 (1934),411{419; Annals of Math. 35 (1934), 258{277; 39 (1938), 539{557℄. We shalldenote Bell numbers by $n, following the lead of Louis Comtet, in order to avoid
onfusion with the Bernoulli numbers Bn. The �rst few 
ases aren = 0 1 2 3 4 5 6 7 8 9 10 11 12$n = 1 1 2 5 15 52 203 877 4140 21147 115975 678570 4213597Noti
e that this sequen
e grows rapidly, but not as fast as n!; we will prove belowthat $n = �(n=logn)n.The Bell numbers $n = $n1 for n � 0 must satisfy the re
urren
e formula$n+1 = $n + �n1�$n�1 + �n2�$n�2 + � � � = Xk �nk�$n�k; (14)
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7.2.1.5 GENERATING ALL SET PARTITIONS 29be
ause every partition of f1; : : : ; n + 1g is obtained by 
hoosing k elements off1; : : : ; ng to put in the blo
k 
ontaining n+1 and by partitioning the remainingelements in $n�k ways, for some k. This re
urren
e, found by Yoshisuke Matsu-naga in the 18th 
entury (see Se
tion 7.2.1.7), leads to a ni
e generating fun
tion,�(z) = 1Xn=0 $n znn! = eez�1; (15)dis
overed by W. A. Whitworth [Choi
e and Chan
e, 3rd edition (1878), 3.XXIV℄.For if we multiply both sides of (14) by zn=n! and sum on n we get� 0(z) = 1Xn=0$n+1 znn! = � 1Xk=0 zkk! �� 1Xm=0$m zmm!� = ez�(z);and (15) is the solution to this di�erential equation with �(0) = 1.The numbers $n had been studied for many years be
ause of their 
uriousproperties related to this formula, long before Whitworth pointed out their
ombinatorial 
onne
tion with set partitions. For example, we have$n = n!e [zn℄ eez = n!e [zn℄ 1Xk=0 ekzk! = 1e 1Xk=0 knk! (16)[Mat. Sbornik 3 (1868), 62; 4 (1869), 39; G. Dobi�nski, Ar
hiv der Math. undPhysik 61 (1877), 333{336; 63 (1879), 108{110℄. Christian Kramp dis
ussedthe expansion of eez in Der polynomis
he Lehrsatz, ed. by C. F. Hindenburg(Leipzig: 1796), 112{113; he mentioned two ways to 
ompute the 
oeÆ
ients,namely either to use (14) or to use a summation of p(n) terms, one for ea
hordinary partition of n. (See Arbogast's formula, exer
ise 1.2.5{21. Kramp,who 
ame 
lose to dis
overing that formula, seemed to prefer his partition-basedmethod, not realizing that it would require more than polynomial time as n gotlarger and larger; and he 
omputed 116015, not 115975, for the 
oeÆ
ient of z10.)*Asymptoti
 estimates. We 
an learn how fast $n grows by using one of themost basi
 prin
iples of 
omplex residue theory: If the power series P1k=0 akzk
onverges whenever jzj < r, thenan�1 = 12�i I a0 + a1z + a2z2 + � � �zn dz; (17)if the integral is taken along a simple 
losed path that goes 
ounter
lo
kwisearound the origin and stays inside the 
ir
le jzj = r. Let f(z) = P1k=0 akzk�nbe the integrand. We're free to 
hoose any su
h path, but spe
ial te
hniquesoften apply when the path goes through a point z0 at whi
h the derivative f 0(z0)is zero, be
ause we havef(z0 + �ei�) = f(z0) + f 00(z0)2 �2e2i� +O(�3) (18)in the vi
inity of su
h a point. If, for example, f(z0) and f 00(z0) are real andpositive, say f(z0) = u and f 00(z0) = 2v, this formula says that the value of
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30 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.5
<f(z0)

z0 z0+�z0+i�z0�� z0�i�
Fig. 33. The behavior of an analyti
fun
tion near a saddle point.

f(z0� �) is approximately u+ v�2 while f(z0� i�) is approximately u� v�2. If zmoves from z0� i� to z0+ i�, the value of f(z) rises to a maximum value u, thenfalls again; but the larger value u+v�2 o

urs both to the left and to the right ofthis path. In other words, a mountaineer who goes hiking on the 
omplex plane,when the altitude at point z is <f(z), en
ounters a \pass" at z0; the terrainlooks like a saddle at that point. The overall integral of f(z) will be the sameif taken around any path, but a path that doesn't go through the pass won't beas ni
e be
ause it will have to 
an
el out some higher values of f(z) that 
ouldhave been avoided. Therefore we tend to get best results by 
hoosing a path thatgoes through z0, in the dire
tion of in
reasing imaginary part. This importantte
hnique, due to P. Debye [Math. Annalen 67 (1909), 535{558℄, is 
alled the\saddle point method."Let's get familiar with the saddle point method by starting with an examplefor whi
h we already know the answer:1(n� 1)! = 12�i I ezzn dz: (19)Our goal is to �nd a good approximation for the value of the integral on the rightwhen n is large. It will be 
onvenient to deal with f(z) = ez=zn by writing it aseg(z) where g(z) = z�n ln z; then the saddle point o

urs where g0(z0) = 1�n=z0is zero, namely at z0 = n. If z = n+ it we haveg(z) = g(n) + 1Xk=2 g(k)(n)k! (it)k
= n� n lnn� t22n + it33n2 + t44n3 � it55n4 + � � �be
ause g(k)(z) = (�1)k(k � 1)!n=zk when k � 2. Let's integrate f(z) on are
tangular path from n� im to n+ im to �n+ im to �n� im to n� im:12�i I ezzn dz = 12� Z m�m f(n+ it) dt+ 12�i Z �nn f(t+ im) dt+ 12� Z �mm f(�n+ it) dt+ 12�i Z n�n f(t� im) dt:
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7.2.1.5 GENERATING ALL SET PARTITIONS 31Clearly jf(z)j � 2�nf(n) on the last three sides of this path if we 
hoose m = 2n,be
ause jez j = e<z and jzj � max(<z;=z); so we're left with12�i I ezzn dz = 12� Z m�m eg(n+it) dt+O� nen2nnn�:Now we fall ba
k on a te
hnique that we've used several times before|for example to derive Eq. 5.1.4{(53): If f̂(t) is a good approximation to f(t)when t 2 A, and if the sums Pt2BnA f(t) andPt2CnA f̂(t) are both small, thenPt2C f̂(t) is a good approximation to Pt2B f(t). The same idea applies tointegrals as well as sums. [This general method, introdu
ed by Lapla
e in 1782,is often 
alled \trading tails"; see CMath x9.4.℄ If jtj � n1=2+� we haveeg(n+it) = exp�g(n)� t22n + it33n2 + � � ��= ennn exp�� t22n + it33n2 + t44n3 +O(n5��3=2)�= ennn e�t2=(2n)�1 + it33n2 + t44n3 � t618n4 +O(n9��3=2)�:And when jtj > n1=2+� we havejeg(n+it)j < jf(n+ in1=2+�)j = ennn exp��n2 ln(1 + n2��1)� = O�en�n�2�=2nn �:Furthermore the in
omplete gamma fun
tionZ 1n1=2+� e�t2=(2n)tk dt = 2(k�1)=2n(k+1)=2 ��k + 12 ; n2�2 � = O(nO(1)e�n2�=2)is negligible. Thus we 
an trade tails and obtain the approximation12�i I ezzn dz = en2�nn Z 1�1 e�t2=(2n)�1 + it33n2 + t44n3 � t618n4 +O(n9��3=2)�dt= en2�nn�I0 + i3n2 I3 + 14n3 I4 � 118n4 I6 +O(n9��3=2)�;where Ik = R1�1 e�t2=(2n)tk dt. Of 
ourse Ik = 0 when k is odd. Otherwise we
an evaluate Ik by using the well-known fa
t thatZ 1�1 e�at2t2l dt = ��(2l + 1)=2�a(2l+1)=2 = p2�(2a)(2l+1)=2 lYj=1(2j � 1) (20)when a > 0; see exer
ise 39. Putting everything together gives us, for all � > 0,the asymptoti
 estimate1(n� 1)! = enp2�nn�1=2�1 + 0 + 34n � 1518n +O(n9��3=2)�; (21)this result agrees perfe
tly with Stirling's approximation, whi
h we derived byquite di�erent methods in 1.2.11.2{(19). Further terms in the expansion of
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32 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.5g(n + it) would allow us to prove that the true error in (21) is only O(n�2),be
ause the same pro
edure yields an asymptoti
 series of the general formen=(p2�nn�1=2)�1 + 
1=n+ 
2=n2 + � � �+ 
m=nm +O(n�m�1)� for all m.Our derivation of this result has glossed over an important te
hni
ality: Thefun
tion ln z is not single-valued along the path of integration, be
ause it growsby 2�i when we loop around the origin. Indeed, this fa
t underlies the basi
me
hanism that makes the residue theorem work. But our reasoning was validbe
ause the ambiguity of the logarithm does not a�e
t the integrand f(z) =ez=zn when n is an integer. Furthermore, if n were not an integer, we 
ouldhave adapted the argument and kept it rigorous by 
hoosing to 
arry out theintegral (19) along a path that starts at �1, 
ir
les the origin 
ounter
lo
kwiseand returns to �1. That would have given us Hankel's integral for the gammafun
tion, Eq. 1.2.5{(17); we 
ould thereby have derived the asymptoti
 formula1�(x) = 12�i I ezzx dz = exp2�xx�1=2�1� 112x +O(x�2)�; (22)valid for all real x as x!1.So the saddle point method seems to work|although it isn't the simplestway to get this parti
ular result. Let's apply it now to dedu
e the approximatesize of the Bell numbers:$n�1(n� 1)! = 12�ie I eg(z) dz; g(z) = ez � n ln z: (23)A saddle point now o

urs at the point z0 = � > 0, where�e� = n: (24)(We should a
tually write �(n) to indi
ate that � depends on n; but that would
lutter up the formulas below.) Let's assume for the moment that a little birdhas told us the value of �. Then we want to integrate on a path where z = �+ it,and we haveg(� + it) = e� � n�ln � � (it)22! � + 1�2 � (it)33! �2 � 2!�3 � (it)44! �3 + 3!�4 + � � ��:By integrating on a suitable re
tangular path, we 
an prove as above that theintegral in (23) is well approximated byZ n��1=2�n��1=2eg(�)�na2t2�nia3t3+na4t4+��� dt; ak = �k�1+(�1)k(k�1)!k! �k ; (25)see exer
ise 43. Noting that aktk is O(nk��k=2) inside this integral, we obtain anasymptoti
 expansion of the form$n�1 = ee��1(n� 1)!�n�1p2�n(� + 1)�1 + b1n + b2n2 + � � �+ bmnm +O� lognn �m+1�; (26)
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7.2.1.5 GENERATING ALL SET PARTITIONS 33where (� + 1)3kbk is a polynomial of degree 4k in �. (See exer
ise 44.) Forexample,b1 = �2�4�3�3�20�2�18�+224(�+1)3 ; (27)b2 = 4�8�156�7�695�6�696�5+1092�4+2916�3+1972�2�72�+41152(�+1)6 : (28)Stirling's approximation (21) 
an be used in (26) to prove that$n�1 = exp�n�� � 1 + 1��� � � 12 ln(� + 1)� 1� �12n +O� lognn �2�; (29)and exer
ise 45 proves the similar formula$n = exp�n�� � 1 + 1��� 12 ln(� + 1)� 1� �12n +O� lognn �2�: (30)Consequently we have $n=$n�1 � e� = n=�. More pre
isely,$n�1$n = �n�1 +O� 1n��: (31)But what is the asymptoti
 value of �? The de�nition (24) implies that� = lnn� ln � = lnn� ln(lnn� ln �)= lnn� ln lnn+O� log lognlogn �; (32)and we 
an go on in this vein, as shown in exer
ise 49. But the asymptoti
series for � developed in this way never gives better a

ura
y than O(1=(logn)m)for larger and larger m; so it is hugely ina

urate when multiplied by n informula (29) for $n�1 or formula (30) for $n.Thus if we want to use (29) or (30) to 
al
ulate good numeri
al approxima-tions to Bell numbers, our best strategy is to start by 
omputing a good numeri
alvalue for �, without using a slowly 
onvergent series. Newton's root�ndingmethod, dis
ussed in the remarks pre
eding Algorithm 4.7N, yields the eÆ
ientiterative s
heme �0 = lnn; �k+1 = �k�k + 1(1 + �0 � ln �k); (33)whi
h 
onverges rapidly to the 
orre
t value. For example, when n = 100 the�fth iterate�5 = 3:38563 01402 90050 18488 82443 64529 72686 74917� (34)is already 
orre
t to 40 de
imal pla
es. Using this value in (29) gives us su

essiveapproximations(1:6176088053 : : : ; 1:6187421339 : : : ; 1:6187065391 : : : ; 1:6187060254 : : : )� 10114when we take terms up to b0, b1, b2, b3 into a

ount; the true value of $99 is the115-digit integer 16187060274460 : : : 20741.
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34 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.5

0 10 20 30 40 50 60 70 80 90 100m
5� 10114 Fig. 34. The Stirling numbers �100m 	are greatest near m = 28 and m = 29.

Now that we know the number of set partitions $n, let's try to �gure outhow many of them have exa
tly m blo
ks. It turns out that nearly all partitionsof f1; : : : ; ng have roughly n=� = e� blo
ks, with about � elements per blo
k.For example, Fig. 34 shows a histogram of the numbers �nm	 when n = 100 ande� � 29:54.We 
an investigate the size of �nm	 by applying the saddle point method toformula 1.2.9{(23), whi
h states thatn nmo = n!m! [zn℄ (ez � 1)m = n!m! 12�i I em ln(ez�1)�(n+1) ln z dz: (35)Let � = (n+1)=m. The fun
tion g(z) = ��1 ln(ez � 1)� ln z has a saddle pointat � > 0 when �1� e�� = �: (36)Noti
e that � > 1 for 1 � m � n. This spe
ial value � is given by� = �� �; � = T (�e��); (37)where T is the tree fun
tion of Eq. 2.3.4.4{(30). Indeed, � is the value between0 and 1 for whi
h we have �e�� = �e��; (38)the fun
tion xe�x in
reases from 0 to e�1 when x in
reases from 0 to 1, then itde
reases to 0 again. Therefore � is uniquely de�ned, and we havee� = �� : (39)All su
h pairs � and � are obtainable by using the inverse formulas� = �e�e� � 1 ; � = �e� � 1 ; (40)for example, the values � = ln 4 and � = ln 2 
orrespond to � = ln 2.We 
an show as above that the integral in (35) is asymptoti
ally equivalent toan integral of e(n+1)g(z) dz over the path z = �+it. (See exer
ise 58.) Exer
ise 56
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7.2.1.5 GENERATING ALL SET PARTITIONS 35proves that the Taylor series about z = �,g(� + it) = g(�)� t2(1� �)2�2 � 1Xk=3 (it)kk! g(k)(�); (41)has the property thatjg(k)(�)j < 2(k � 1)! (1� �)=�k for all k > 0. (42)Therefore we 
an 
onveniently remove a fa
tor of N = (n + 1)(1 � �) from thepower series (n+ 1)g(z), and the saddle point method leads to the formulan nmo = n!m! 1(�� �)n�m�mp2�N �1+ b1N + b2N2 + � � �+ blN l +O� 1N l+1�� (43)as N ! 1, where (1 � �)2kbk is a polynomial in � and �. (The quantity(� � �)n�m�m in the denominator 
omes from the fa
t that (e� � 1)m=�n =(�=� � 1)m=(�� �)n, by (37) and (39).) For example,b1 = 6� �3 � 4��2 � �2�8(1� �) � 5(2� �2 � ��)224(1� �)2 : (44)Exer
ise 57 proves that N ! 1 if and only if n�m ! 1. An asymptoti
 ex-pansion for �nm	 similar to (43), but somewhat more 
ompli
ated, was �rstobtained by Leo Moser and Max Wyman, Duke Math. J. 25 (1957), 29{43.Formula (43) looks a bit s
ary be
ause it is designed to apply over theentire range of blo
k 
ounts m. Signi�
ant simpli�
ations are possible when mis relatively small or relatively large (see exer
ises 60 and 61); but the simpli�edformulas don't give a

urate results in the important 
ases when �nm	 is largest.Let's look at those 
ru
ial 
ases more 
losely now, so that we 
an a

ount forthe sharp peak illustrated in Fig. 34.Let �e� = n as in (24), and suppose m = exp(� + r=pn) = ner=pn=�; wewill assume that jrj � n�, so that m is near e�. The leading term of (43) 
an berewrittenn!m! 1(�� �)n�m�mp2�(n+ 1)(1� �) =mnm! (n+ 1)!(n+ 1)n+1 en+1p2�(n+ 1)�1� ���m�n e��mp1� � ; (45)and Stirling's approximation for (n+ 1)! is evidently ripe for 
an
ellation in themidst of this expression. With the help of 
omputer algebra we �ndmnm! = 1p2� exp�n�� � 1 + 1��� 12�� + r2 + r2� �� �r2 + r36 + r33�� 1pn +O(n4��1)�;
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36 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.5and the relevant quantities related to � and � are�� = �n + r�2npn +O(�3n2��2);
e��m = exp��� � r�2pn +O(�3n2��1)�;�1� ���m�n = exp�� � 1 + r(�2 � � � 1)pn +O(�3n2��1)�:Therefore the overall result isn ne�+r=pno = 1p2� exp�n�� � 1 + 1��� �2 � 1
� � + 12� �r + 3�(2� + 3) + (� + 2)r26(� + 1)pn �2 +O(�3n4��1)�: (46)The squared expression on the last line is zero whenr = � �(2� + 3)2(� + 1)pn +O(�2n�3=2);thus the maximum o

urs when the number of blo
ks ism = n� � 3 + 2�2 + 2� +O� �n�: (47)By 
omparing (47) to (30) we see that the largest Stirling number �nm	 for agiven value of n is approximately equal to �$n=p2�n.The saddle point method applies to problems that are 
onsiderably morediÆ
ult than the ones we have 
onsidered here. Ex
ellent expositions of advan
edte
hniques 
an be found in several books: N. G. de Bruijn, Asymptoti
 Methodsin Analysis (1958), Chapters 5 and 6; F. W. J. Olver, Asymptoti
s and Spe
ialFun
tions (1974), Chapter 4; R. Wong, Asymptoti
 Approximations of Integrals(2001), Chapters 2 and 7.*Random set partitions. The sizes of blo
ks in a partition of f1; : : : ; ng
onstitute by themselves an ordinary partition of the number n. Thereforewe might wonder what sort of partition they are likely to be. Figure 30 inSe
tion 7.2.1.4 showed the result of superimposing the Ferrers diagrams of allp(25) = 1958 partitions of 25; those partitions tended to follow the symmetri
al
urve of Eq. 7.2.1.4{(49). By 
ontrast, Fig. 35 shows what happens when wesuperimpose the 
orresponding diagrams of all $25 � 4:6386 � 1018 partitionsof the set f1; : : : ; 25g. Evidently the \shape" of a random set partition is quitedi�erent from the shape of a random integer partition.This 
hange is due to the fa
t that some integer partitions o

ur only a fewtimes as blo
k sizes of set partitions, while others are extremely 
ommon. Forexample, the partition n = 1 + 1 + � � � + 1 arises in only one way, but if n is
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7.2.1.5 GENERATING ALL SET PARTITIONS 370 � e��
e� � 1

Fig. 35. The shape of a randomset partition when n = 25.
even the partition n = 2+2+ � � �+2 arises in (n� 1)(n� 3) : : : (1) ways. Whenn = 25, the integer partition25 = 4 + 4 + 3 + 3 + 3 + 2 + 2 + 2 + 1 + 1a
tually o

urs in more than 2% of all possible set partitions. (This parti
ularpartition turns out to be most 
ommon in the 
ase n = 25. The answer toexer
ise 1.2.5{21 explains that exa
tly n!
1! 1!
1 
2! 2!
2 : : : 
n!n!
n (48)set partitions 
orrespond to the integer partition n = 
1 � 1+ 
2 � 2+ � � �+ 
n �n.)We 
an easily determine the average number of k-blo
ks in a random par-tition of f1; : : : ; ng: If we write out all $n of the possibilities, every parti
ulark-element blo
k o

urs exa
tly $n�k times. Therefore the average number is�nk�$n�k$n : (49)An extension of Eq. (31) above, proved in exer
ise 64, shows moreover that$n�k$n = � �n�k�1 + k�(k� + k + 1)2(� + 1)2n +O�k3n2�� if k � n2=3, (50)where � is de�ned in (24). Therefore if, say, k � n�, formula (49) simpli�es tonkk! � �n�k�1 +O� 1n�� = �kk! �1 +O(n2��1)�: (51)There are, on average, about � blo
ks of size 1, and �2=2! blo
ks of size 2, et
.The varian
e of these quantities is small (see exer
ise 65), and it turns outthat a random partition behaves essentially as if the number of k-blo
ks werea Poisson deviate with mean �k=k!. The smooth 
urve shown in Fig. 35 runsthrough the points �f(k); k� in Ferrers-like 
oordinates, wheref(k) = �k+1=(k + 1)! + �k+2=(k + 2)! + �k+3=(k + 3)! + � � � (52)
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38 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.5is the approximate distan
e from the top line 
orresponding to blo
k size k � 0.(This 
urve be
omes more nearly verti
al when n is larger.)The largest blo
k tends to 
ontain approximately e� elements. Furthermore,the probability that the blo
k 
ontaining element 1 has size less than � + ap�approa
hes the probability that a normal deviate is less than a. [See JohnHaigh, J. Combinatorial Theory A13 (1972), 287{295; V. N. Sa
hkov, Prob-abilisti
 Methods in Combinatorial Analysis (1997), Chapter 4, translated froma Russian book published in 1978; Yu. Yakubovi
h, J. Mathemati
al S
ien
es 87(1997), 4124{4137, translated from a Russian paper published in 1995; B. Pittel,J. Combinatorial Theory A79 (1997), 326{359.℄A ni
e way to generate random partitions of f1; 2; : : : ; ng was introdu
ed byA. J. Stam in the Journal of Combinatorial Theory A35 (1983), 231{240: LetM be a random integer that takes the value m with probabilitypm = mnem!$n ; (53)these probabilities sum to 1 be
ause of (16). On
e M has been 
hosen, generatea random n-tuple X1X2 : : : Xn, where ea
h Xj is uniformly and independentlydistributed between 0 and M � 1. Then let i � j in the partition if and only ifXi = Xj . This pro
edure works be
ause ea
h k-blo
k partition is obtained withprobability Pm�0(mk=mn)pm = 1=$n.For example, if n = 25 we havep4 � :00000372p5 � :00019696p6 � :00313161p7 � :02110279p8 � :07431024
p9 � :15689865p10 � :21855285p11 � :21526871p12 � :15794784p13 � :08987171

p14 � :04093663p15 � :01531445p16 � :00480507p17 � :00128669p18 � :00029839
p19 � :00006068p20 � :00001094p21 � :00000176p22 � :00000026p23 � :00000003and the other probabilities are negligible. So we 
an usually get a randompartition of 25 elements by looking at a random 25-digit integer in radix 9, 10,11, or 12. The number M 
an be generated using 3.4.1{(3); it tends to beapproximately n=� = e� (see exer
ise 67).*Partitions of a multiset. The partitions of an integer and the partitions ofa set are just the extreme 
ases of a far more general problem, the partitions ofa multiset. Indeed, the partitions of n are essentially the same as the partitionsof f1; 1; : : : ; 1g, where there are n 1s.From this standpoint there are essentially p(n) di�erent multisets with n el-ements. For example, �ve di�erent 
ases of multiset partitions arise when n = 4:1234; 123j4; 124j3; 12j34; 12j3j4; 134j2; 13j24; 13j2j4;14j23; 14j2j3; 1j234; 1j23j4; 1j24j3; 1j2j34; 1j2j3j4;1123; 112j3; 113j2; 11j23; 11j2j3; 123j1; 12j13; 12j1j3; 13j1j2; 1j1j23; 1j1j2j3;1122; 112j2; 11j22; 11j2j2; 122j1; 12j12; 12j1j2; 1j1j22; 1j1j2j2;1112; 111j2; 112j1; 11j12; 11j1j2; 12j1j1; 1j1j1j2;1111; 111j1; 11j11; 11j1j1; 1j1j1j1: (54)
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7.2.1.5 GENERATING ALL SET PARTITIONS 39When the multiset 
ontains m distin
t elements, with n1 of one kind, n2 ofanother, : : : , and nm of the last, we write p(n1; n2; : : : ; nm) for the total numberof partitions. Thus the examples in (54) show thatp(1; 1; 1; 1) = 15; p(2; 1; 1) = 11; p(2; 2) = 9; p(3; 1) = 7; p(4) = 5: (55)Partitions with m = 2 are often 
alled \bipartitions"; those with m = 3 are\tripartitions"; and in general these 
ombinatorial obje
ts are known as multi-partitions. The study of multipartitions was inaugurated long ago by P. A.Ma
Mahon [Philosophi
al Transa
tions 181 (1890), 481{536; 217 (1917), 81{113; Pro
. Cambridge Philos. So
. 22 (1925), 951{963℄; but the subje
t is so vastthat many unsolved problems remain. In the remainder of this se
tion and inthe exer
ises below we shall take a glimpse at some of the most interesting andinstru
tive aspe
ts of the theory that have been dis
overed so far.In the �rst pla
e it is important to noti
e that multipartitions are essentiallythe partitions of ve
tors with nonnegative integer 
omponents, namely the waysto de
ompose su
h a ve
tor as a sum of su
h ve
tors. For example, the ninepartitions of f1; 1; 2; 2g listed in (54) are the same as the nine partitions of thebipartite 
olumn ve
tor 22, namely22 ; 21 01 ; 20 02 ; 20 01 01 ; 12 10 ; 11 11 ; 11 10 01 ; 10 10 02 ; 10 10 01 01 : (56)(We drop the + signs for brevity, as in the 
ase of one-dimensional integerpartitions.) Ea
h partition 
an be written in 
anoni
al form if we list its partsin nonin
reasing lexi
ographi
 order.A simple algorithm suÆ
es to generate the partitions of any given multiset.In the following pro
edure we represent partitions on a sta
k that 
ontains triplesof elements (
; u; v), where 
 denotes a 
omponent number, u > 0 denotes theyet-unpartitioned amount remaining in 
omponent 
, and v � u denotes the
 
omponent of the 
urrent part. Triples are a
tually kept in three arrays(
0; 
1; : : : ), (u0; u1; : : : ), and (v0; v1; : : : ) for 
onvenien
e, and a \sta
k frame"array (f0; f1; : : : ) is also maintained so that the (l + 1)st ve
tor of the partition
onsists of elements fl through fl+1 � 1 in the 
, u, and v arrays. For example,the following arrays would represent the bipartition 31 22 20 11 11 03 01:j 0 1 2 3 4 5 6 7 8 9 10
j 1 2 1 2 1 1 2 1 2 2 2uj 9 9 6 8 4 2 6 1 5 4 1vj 3 1 2 2 2 1 1 1 1 3 1
f 0=0 f 1=2 f 2=4 f 3=5 f 4=7 f 5=9 f 6=10 f 7=11

(57)
Algorithm M (Multipartitions in de
reasing lexi
ographi
 order). Given amultiset fn1 � 1; : : : ; nm � mg, this algorithm visits all of its partitions usingarrays f0f1 : : : fn, 
0
1 : : : 
n, u0u1 : : : un, and v0v1 : : : vn as des
ribed above,where n = n1 + � � �+ nm. We assume that m > 0 and n1; : : : ; nm > 0.
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40 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.5M1. [Initialize.℄ Set 
j  j + 1 and uj  vj  nj+1 for 0 � j < m; also setf0  a  l  0 and f1  b  m. (In the following steps, the 
urrentsta
k frame runs from a to b� 1, in
lusive.)M2. [Subtra
t v from u.℄ (At this point we want to �nd all partitions of theve
tor u in the 
urrent frame, into parts that are lexi
ographi
ally � v.First we will use v itself.) Set j  a and k  b. Then while j < b do thefollowing: Set uk  uj�vj , and if uk � vj set 
k  
j , vk  vj , k  k+1,j  j + 1. But if uk is less than vj after it has been de
reased, the a
tion
hanges: First set 
k  
j , vk  uk, and k  k + 1 if uk was nonzero;then set j  j + 1. While j < b, set uk  uj � vj , 
k  
j , vk  uk, andk  k + 1 if uj 6= vj ; then again j  j + 1, until j = b.M3. [Push if nonzero.℄ If k > b, set a  b, b  k, l  l + 1, fl+1  b, andreturn to M2.M4. [Visit a partition.℄ Visit the partition represented by the l + 1 ve
tors
urrently in the sta
k. (For 0 � k � l, the ve
tor has vj in 
omponent 
j ,for fk � j < fk+1.)M5. [De
rease v.℄ Set j  b� 1, and if vj = 0 set j  j � 1 until vj > 0. Thenif j = a and vj = 1, go to M6. Otherwise set vj  vj � 1, and vk  uk forj < k < b. Return to M2.M6. [Ba
ktra
k.℄ Terminate if l = 0. Otherwise set l  l � 1, b  a, a  fl,and return to M5.The key to this algorithm is step M2, whi
h de
reases the 
urrent residual ve
tor,u, by the largest permissible part, v; that step also de
reases v, if ne
essary, tothe lexi
ographi
ally largest ve
tor � v that is less than or equal to the newresidual amount in every 
omponent.Let us 
on
lude this se
tion by dis
ussing an amusing 
onne
tion betweenmultipartitions and the least-signi�
ant-digit-�rst pro
edure for radix sorting(Algorithm 5.2.5R). The idea is best understood by 
onsidering an example. SeeTable 1, where Step (0) shows nine 4-partite 
olumn ve
tors in lexi
ographi
order. Serial numbers 1
{ 9
 have been atta
hed at the bottom for identi�
a-tion. Step (1) performs a stable sort of the ve
tors, bringing their fourth (leastsigni�
ant) entries into de
reasing order; similarly, Steps (2), (3), and (4) do astable sort on the third, se
ond, and top rows. The theory of radix sorting tellsus that the original lexi
ographi
 order is thereby restored.Suppose the serial number sequen
es after these stable sorting operations arerespe
tively �4, �3�4, �2�3�4, and �1�2�3�4, where the �'s are permutations;Table 1 shows the values of �4, �3, �2, and �1 in parentheses. And now 
omesthe point: Wherever the permutation �j has a des
ent, the numbers in row jafter sorting must also have a des
ent, be
ause the sorting is stable. (Thesedes
ents are indi
ated by 
aret marks in the table.) For example, where �3 has8 followed by 7, we have 5 followed by 3 in row 3. Therefore the entries a1 : : : a9 inrow 3 after Step (2) are not an arbitrary partition of their sum; they must satisfya1 � a2 � a3 � a4 > a5 � a6 > a7 � a8 � a9: (58)
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7.2.1.5 GENERATING ALL SET PARTITIONS 41Table 1RADIX SORTING AND MULTIPARTITIONSStep (0): Original partition63641

52622

51313

40134

34135

25516

16217

04028

02759
 �4 = (

Step (1): Sort row 402759
9^̂
63641
1
40134
4
34135
5^̂
52622
2
04028
8^̂
51313
3
25516
6
16217
7 ) �3 = (

Step (2): Sort row 302759
1
63641
2
52622
5
25516
8
^
^
51313
7
16217
9
^
^
40134
3
34135
4
04028
6 )

�2 = (
Step (3): Sort row 216217
6
^
^
25516
4
34135
8
04028
9
^
^
63641
2
^
^
02759
1
52622
3
51313
5
40134
7 ) �1 = (

Step (4): Sort row 163641
5
52622
7
51313
8
40134
9
^
^
34135
3
^
^
25516
2
^
^
16217
1
04028
4
02759
6 )But the numbers (a1�2; a2�2; a3�2; a4�2; a5�1; a6�1; a7; a8; a9) do form anessentially arbitrary partition of the original sum, minus (4+6). The amount ofde
rease, 4 + 6, is the sum of the indi
es where des
ents o

ur; this number iswhat we 
alled ind�3, the \index" of �3, in Se
tion 5.1.1.Thus we see that any given partition of an m-partite number into at most rparts, with extra zeros added so that the number of 
olumns is exa
tly r, 
anbe en
oded as a sequen
e of permutations �1, : : : , �m of f1; : : : ; rg su
h thatthe produ
t �1 : : : �m is the identity, together with a sequen
e of ordinary one-dimensional partitions of the numbers (n1 � ind�1, : : : , nm � ind�m) into atmost r parts. For example, the ve
tors in Table 1 represent a partition of(26; 27; 31; 22) into 9 parts; the permutations �1, : : : , �4 appear in the table,and we have (ind�1; : : : ; ind�4) = (15; 10; 10; 11); the partitions are respe
tively26�15 = (322111100); 27�10 = (332222210);31�10 = (544321110); 22�11 = (221111111):Conversely, any su
h permutations and partitions will yield a multipartitionof (n1; : : : ; nm). If r and m are small, it 
an be helpful to 
onsider theser!m�1 sequen
es of one-dimensional partitions when listing or reasoning aboutmultipartitions, espe
ially in the bipartite 
ase. [This 
onstru
tion is due toBasil Gordon, J. London Math. So
. 38 (1963), 459{464.℄A good summary of early work on multipartitions, in
luding studies ofpartitions into distin
t parts and/or stri
tly positive parts, appears in a paperby M. S. Cheema and T. S. Motzkin, Pro
. Symp. Pure Math. 19 (Amer. Math.So
., 1971), 39{70.EXERCISES1. [20 ℄ (G. Hut
hinson.) Show that a simple modi�
ation to Algorithm H willgenerate all partitions of f1; : : : ; ng into at most r blo
ks, given n and r � 2.
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42 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.5x 2. [22 ℄ When set partitions are used in pra
ti
e, we often want to link the elementsof ea
h blo
k together. Thus it is 
onvenient to have an array of links l1 : : : ln and anarray of headers h1 : : : ht so that the elements of the jth blo
k of a t-blo
k partitionare i1 > � � � > ik, wherei1 = hj ; i2 = li1 ; : : : ; ik = lik�1 ; and lik = 0:For example, the representation of 137j25j489j6 would have t = 4, l1 : : : l9 = 001020348,and h1 : : : h4 = 7596.Design a variant of Algorithm H that generates partitions using this representation.3. [M23 ℄ What is the millionth partition of f1; : : : ; 12g generated by Algorithm H?x 4. [21 ℄ If x1 : : : xn is any string, let �(x1 : : : xn) be the restri
ted growth string that
orresponds to the equivalen
e relation j � k () xj = xk. Classify ea
h of the�ve-letter English words in the Stanford GraphBase by applying this � fun
tion; forexample, �(tooth) = 01102. How many of the 52 set partitions of �ve elements are rep-resentable by English words in this way? What's the most 
ommon word of ea
h type?5. [22 ℄ Guess the next elements of the following two sequen
es: (a) 0, 1, 1, 1, 12, 12,12, 12, 12, 12, 100, 121, 122, 123, 123, : : : ; (b) 0, 1, 12, 100, 112, 121, 122, 123, : : : .x 6. [25 ℄ Suggest an algorithm to generate all partitions of f1; : : : ; ng in whi
h thereare exa
tly 
1 blo
ks of size 1, 
2 blo
ks of size 2, et
.7. [M20 ℄ How many permutations a1 : : : an of f1; : : : ; ng have the property thatak�1 > ak > aj implies j > k?8. [20 ℄ Suggest a way to generate all permutations of f1; : : : ; ng that have exa
tlym left-to-right minima.9. [M20 ℄ How many restri
ted growth strings a1 : : : an 
ontain exa
tly kj o

urren
esof j, given the integers k0, k1, : : : , kn�1?10. [25 ℄ A semilabeled tree is an oriented tree in whi
h the leaves are labeled with theintegers f1; : : : ; kg, but the other nodes are unlabeled. Thus there are 15 semilabeledtrees with 5 verti
es:
1 1 2 1 2 1 2 1 2 3 1 2 1 2 1 2 1 2 3 21 3 31 2 1 2 3 1 2 3 1 2 3 1 2 3 4

Find a one-to-one 
orresponden
e between partitions of f1; : : : ; ng and semilabeledtrees with n+ 1 verti
es.x 11. [28 ℄ We observed in Se
tion 7.2.1.2 that Dudeney's famous problem send+more =money is a \pure" alphameti
, namely an alphameti
 with a unique solution. His puzzle
orresponds to a set partition on 13 digit positions, for whi
h the restri
ted growthstring �(sendmoremoney) is 0123456145217; and we might wonder how lu
ky he had tobe in order to 
ome up with su
h a 
onstru
tion. How many restri
ted growth strings oflength 13 de�ne pure alphameti
s of the form a1a2a3a4 + a5a6a7a8 = a9a10a11a12a13?12. [M31 ℄ (The partition latti
e.) If � and � 0 are partitions of the same set, we write� � � 0 if x � y (modulo �) whenever x � y (modulo � 0). In other words, � � � 0means that � 0 is a \re�nement" of �, obtained by partitioning zero or more of thelatter's blo
ks; and � is a \
rudi�
ation" or 
oales
en
e of � 0, obtained by mergingzero or more blo
ks together. This partial ordering is easily seen to be a latti
e, with
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7.2.1.5 GENERATING ALL SET PARTITIONS 43� _ � 0 the greatest 
ommon re�nement of � and � 0, and with � ^ � 0 their least
ommon 
oales
en
e. For example, the latti
e of partitions of f1; 2; 3; 4g is

00000001 0010 00110012 0100 01010102 0110 01110112 0120 0121 01220123

if we represent partitions by restri
ted growth strings a1a2a3a4; upward paths in thisdiagram take ea
h partition into its re�nements. Partitions with t blo
ks appear onlevel t from the bottom, and their des
endants form the partition latti
e of f1; : : : ; tg.a) Explain how to 
ompute � _� 0, given a1 : : : an and a01 : : : a0n.b) Explain how to 
ompute � ^� 0, given a1 : : : an and a01 : : : a0n.
) When does � 0 
over � in this latti
e? (See exer
ise 7.2.1.4{55.)d) If � has t blo
ks of sizes s1, : : : , st, how many partitions does it 
over?e) If � has t blo
ks of sizes s1, : : : , st, how many partitions 
over it?f) True or false: If � _� 0 
overs �, then � 0 
overs � ^� 0.g) True or false: If � 0 
overs � ^� 0, then � _� 0 
overs �.h) Let b(�) denote the number of blo
ks of �. Prove thatb(�) + b(� 0) � b(� _� 0) + b(� ^� 0):13. [M28 ℄ (Stephen C. Milne, 1977.) If A is a set of partitions of f1; : : : ; ng, itsshadow �A is the set of all partitions � 0 su
h that � 
overs � 0 for some � 2 A. (We
onsidered the analogous 
on
ept for the subset latti
e in 7.2.1.3{(54).)Let �1, �2, : : : be the partitions of f1; : : : ; ng into t blo
ks, in lexi
ographi
 orderof their restri
ted growth strings; and let � 01, � 02, : : : be the (t � 1)-blo
k partitions,also in lexi
ographi
 order. Prove that there is a fun
tion fnt(N) su
h that�f�1; : : : ; �Ng = f� 01; : : : ;� 0fnt(N)g for 0 � N � nnt o.Hint: The diagram in exer
ise 12 shows that (f43(0); : : : ; f43(6)) = (0; 3; 5; 7; 7; 7; 7).14. [23 ℄ Design an algorithm to generate set partitions in Gray-
ode order like (7).15. [M21 ℄ What is the �nal partition generated by the algorithm of exer
ise 14?16. [16 ℄ The list (11) is Ruskey's A35; what is A035?17. [26 ℄ Implement Ruskey's Gray 
ode (8) for all m-blo
k partitions of f1; : : : ; ng.18. [M46 ℄ For whi
h n is it possible to generate all restri
ted growth strings a1 : : : anin su
h a way that some aj 
hanges by �1 at ea
h step?19. [28 ℄ Prove that there's a Gray 
ode for restri
ted growth strings in whi
h, at ea
hstep, some aj 
hanges by either �1 or �2, when (a) we want to generate all $n stringsa1 : : : an; or (b) we want to generate only the �nm	 
ases with max(a1; : : : ; an) = m�1.
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44 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.520. [17 ℄ If � is a partition of f1; : : : ; ng, its 
onjugate �T is de�ned by the rulej � k (modulo �T ) () n+ 1� j � n+ 1� k (modulo �):Suppose � has the restri
ted growth string 001010202013; what is the restri
ted growthstring of �T ?21. [M27 ℄ How many partitions of f1; : : : ; ng are self-
onjugate?22. [M23 ℄ If X is a random variable with a given distribution, the expe
ted value ofXn is 
alled the nth moment of that distribution. What is the nth moment when X is(a) a Poisson deviate with mean 1 (Eq. 3.4.1{(40))? (b) the number of �xed points ofa random permutation of f1; : : : ;mg, when m � n (Eq. 1.3.3{(27))?23. [HM30 ℄ If f(x) =P akxk is a polynomial, let f($) stand for P ak$k.a) Prove the symboli
 formula f($ + 1) = $f($). (For example, if f(x) is thepolynomial x2, this formula states that $2 + 2$1 +$0 = $3.)b) Similarly, prove that f($ + k) = $kf($) for all positive integers k.
) If p is prime, prove that $n+p � $n + $n+1 (modulo p). Hint: Show �rst thatxp � xp � x.d) Consequently $n+N � $n (modulo p) when N = pp�1 + pp�2 + � � �+ p+ 1.24. [HM35 ℄ Continuing the previous exer
ise, prove that the Bell numbers satisfy theperiodi
 law $n+pe�1N � $n (modulo pe), if p is an odd prime. Hint: Show thatxpe � ge(x)+1 (modulo pe, pe�1g1(x), : : : , and pge�1(x)); where gj(x) = (xp�x�1)pj.25. [M27 ℄ Prove that $n=$n�1 � $n+1=$n � $n=$n�1 + 1.x 26. [M22 ℄ A

ording to the re
urren
e equations (13), the numbers $nk in Peir
e'striangle 
ount the paths from nk to 11 in the in�nite dire
ted graph1121 2231 32 3341 42 43 44Explain why ea
h path from n1 to 11 
orresponds to a partition of f1; : : : ; ng.x 27. [M35 ℄ A \va
illating tableau loop" of order n is a sequen
e of integer partitions�k = ak1ak2ak3 : : : with ak1 � ak2 � ak3 � � � � for 0 � k � 2n, su
h that �0 = �2n = e0and �k = �k�1 + (�1)ketk for 1 � k � 2n and for some tk � 0; here et denotes theunit ve
tor 0t�110n�t when t > 0, and e0 is all zeros.a) List all the va
illating tableau loops of order 4. [Hint: There are 15 altogether.℄b) Prove that exa
tly $nk va
illating tableau loops of order n have t2k�1 = 0.x 28. [M25 ℄ (Generalized rook polynomials.) Consider an arrangement of a1 + � � �+ amsquare 
ells in rows and 
olumns, where row k 
ontains 
ells in 
olumns 1, : : : , ak.Pla
e zero or more \rooks" into the 
ells, with at most one rook in ea
h row and atmost one in ea
h 
olumn. An empty 
ell is 
alled \free" if there is no rook to its rightand no rook below. For example, Fig. 35 shows two su
h pla
ements, one with fourrooks in rows of lengths (3,1,4,1,5,9,2,6,5), and another with nine on a 9 � 9 squareboard. Rooks are indi
ated by solid 
ir
les; hollow 
ir
les have been pla
ed above and
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7.2.1.5 GENERATING ALL SET PARTITIONS 45to the left of ea
h rook, thereby leaving the free 
ells blank.

��
� �
Æ Æ Æ ÆÆ Æ Æ ÆÆ ÆÆ ÆÆÆ Æ

�� �� �� �� �

Æ Æ Æ Æ ÆÆ Æ Æ Æ Æ Æ Æ ÆÆ Æ ÆÆ Æ Æ Æ Æ Æ Æ ÆÆ Æ Æ Æ Æ ÆÆ Æ Æ Æ Æ Æ ÆÆ Æ Æ Æ Æ Æ ÆÆ Æ Æ Æ Æ Æ Æ Æ
Fig. 35. Rook pla
ementsand free 
ells.

Let R(a1; : : : ; am) be the polynomial in x and y obtained by summing xryf over alllegal rook pla
ements, where r is the number of rooks and f is the number of free 
ells;for example, the left-hand pla
ement in Fig. 35 
ontributes x4y17 to the polynomialR(3; 1; 4; 1; 5; 9; 2; 6; 5).a) Prove that we have R(a1; : : : ; am) = R(a1; : : : ; aj�1; aj+1; aj ; aj+2; : : : ; am); inother words, the order of the row lengths is irrelevant, and we 
an assume thata1 � � � � � am as in a Ferrers diagram like 7.2.1.4{(13).b) If a1 � � � � � am and if b1 : : : bn = (a1 : : : am)T is the 
onjugate partition, provethat R(a1; : : : ; am) = R(b1; : : : ; bn).
) Find a re
urren
e for evaluating R(a1; : : : ; am) and use it to 
ompute R(3; 2; 1).d) Generalize Peir
e's triangle (12) by 
hanging the addition rule (13) to$nk(x; y) = x$(n�1)k(x; y) + y$n(k+1)(x; y); 1 � k < n:Thus$21(x; y) = x+y, $32(x; y) = x+xy+y2, $31(x; y) = x2+2xy+xy2+y3, et
.Prove that the resulting quantity$nk(x; y) is the rook polynomial R(a1; : : : ; an�1)where aj = n� j � [j < k ℄.e) The polynomial$n1(x; y) in part (d) 
an be regarded as a generalized Bell number$n(x; y), representing paths from n1 to 11 in the digraph of exer
ise 26 that havea given number of \x steps" to the northeast and a given number of \y steps" tothe east. Prove that$n(x; y) = Xa1:::an xn�1�max(a1;:::;an)ya1+���+ansummed over all restri
ted growth strings a1 : : : an of length n.29. [M26 ℄ Continuing the previous exer
ise, let Rr(a1; : : : ; am) = [xr℄R(a1; : : : ; am)be the polynomial in y that enumerates free 
ells when r rooks are pla
ed.a) Show that the number of ways to pla
e n rooks on an n� n board, leaving f 
ellsfree, is the number of permutations of f1; : : : ; ng that have f inversions. Thus, byEq. 5.1.1{(8) and exer
ise 5.1.2{16, we haveRn( nz }| {n; : : : ; n) = n!y = nYk=1(1 + y + � � �+ yk�1):
b) What is Rr( mz }| {n; : : : ; n), the generating fun
tion for r rooks on an m� n board?
) If a1 � � � � � am and t is a nonnegative integer, prove the general formulamYj=1 1� yaj+m�j+t1� y = mXk=0 t!y(t� k)!y Rm�k(a1; : : : ; am):
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46 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.5[Note: The quantity t!y=(t�k)!y =Qk�1j=0 ((1�yt�j)=(1�y)) is zero when k > t � 0.Thus, for example, when t = 0 the right-hand side redu
es to Rm(a1; : : : ; am). We
an 
ompute Rm, Rm�1, : : : , R0 by su

essively setting t = 0, 1, : : : , m.℄d) If a1 � a2 � � � � � am � 0 and a01 � a02 � � � � � a0m � 0, show that wehave R(a1; a2 : : : ; am) = R(a01; a02; : : : ; a0m) if and only if the asso
iated multisetsfa1+m;a2+m�1; : : : ; am+1g and fa01+m; a02+m�1; : : : ; a0m+1g are the same.30. [HM30 ℄ The generalized Stirling number �nm	q is de�ned by the re
urren
enn+ 1m oq = (1 + q + � � �+ qm�1)n nmoq + n nm� 1oq; n 0moq = Æm0 :Thus �nm	q is a polynomial in q; and �nm	1 is the ordinary Stirling number �nm	, be
auseit satis�es the re
urren
e relation in Eq. 1.2.6{(46).a) Prove that the generalized Bell number $n(x; y) = R(n�1; : : : ; 1) of exer
ise 28(e)has the expli
it form $n(x; y) = nXm=0xn�my(m2 )n nmoy:b) Show that generalized Stirling numbers also obey the re
urren
eqmn n+ 1m+ 1oq = qnn nmoq + �n1�qn�1nn� 1m oq + � � � = Xk �nk�qkn kmoq:
) Find generating fun
tions for �nm	q , generalizing 1.2.9{(23) and 1.2.9{(28).31. [HM23 ℄ Generalizing (15), show that the elements of Peir
e's triangle have asimple generating fun
tion, if we 
ompute the sumXn;k $nk wn�k(n� k)! zk�1(k � 1)! :32. [M22 ℄ Let Æn be the number of restri
ted growth strings a1 : : : an for whi
h thesum a1 + � � �+ an is even minus the number for whi
h a1 + � � �+ an is odd. Prove thatÆn = (1; 0;�1;�1; 0; 1) when nmod 6 = (1; 2; 3; 4; 5; 0):Hint: See exer
ise 28(e).33. [M21 ℄ How many partitions of f1; 2; : : : ; ng have 1 6� 2, 2 6� 3, : : : , k � 1 6� k?34. [14 ℄ Many poeti
 forms involve rhyme s
hemes, whi
h are partitions of the linesof a stanza with the property that j � k if and only if line j rhymes with line k. Forexample, a \limeri
k" is generally a 5-line poem with 
ertain rhythmi
 
onstraints andwith a rhyme s
heme des
ribed by the restri
ted growth string 00110.What rhyme s
hemes were used in the 
lassi
al sonnets by (a) Guittone d'Arezzo(
. 1270)? (b) Petrar
h (
. 1350)? (
) Spenser (1595)? (d) Shakespeare (1609)?(e) Elizabeth Barrett Browning (1850)?35. [M21 ℄ Let $0n be the number of s
hemes for n-line poems that are \
ompletelyrhymed," in the sense that every line rhymes with at least one other. Thus we haveh$00, $01, $02, : : : i = h1, 0, 1, 1, 4, 11, 41, : : : i. Give a 
ombinatorial proof of the fa
tthat $0n +$0n+1 = $n.36. [M22 ℄ Continuing exer
ise 35, what is the generating fun
tion Pn$0nzn=n!?
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7.2.1.5 GENERATING ALL SET PARTITIONS 4737. [M18 ℄ Alexander Pushkin adopted an elaborate stru
ture in his poeti
 novelEugene Onegin (1833), based not only on \mas
uline" rhymes in whi
h the sounds ofa

ented �nal syllables agree with ea
h other (pain{gain, form{warm, pun{fun, bu
ks{
rux), but also on \feminine" rhymes in whi
h one or two unstressed syllables also par-ti
ipate (humor{tumor, tetrameter{pentameter, le
ture{
onje
ture, iguana{piranha).Every stanza of Eugene Onegin is a sonnet with the stri
t s
heme 01012233455477,where the rhyme is feminine or mas
uline a

ording as the digit is even or odd. Severalmodern translators of Pushkin's novel have also su

eeded in retaining the same formin English and German.How do I justify this stanza? / These feminine rhymes? My wrinkled muse?This whole pass�e extravaganza? / How 
an I (
areless of time) useThe dusty bread molds of Onegin / In the brave bakery of Reagan?The loaves will surely fail to rise / Or else go stale before my eyes.The truth is, I 
an't justify it. / But as no shroud of 
riti
al termsCan save my 
orpse from boring worms, / I may as well have fun and try it.If it works, good; and if not, well, / A theory won't postpone its knell.| VIKRAM SETH, The Golden Gate (1986)A 14-line poem might have any of $014 = 24;011;157 
omplete rhyme s
hemes,a

ording to exer
ise 35. But how many s
hemes are possible if we are allowed tospe
ify, for ea
h blo
k, whether its rhyme is to be feminine or mas
uline?x 38. [M30 ℄ Let �k be the 
y
li
 permutation (1; 2; : : : ; k). The obje
t of this exer
iseis to study the sequen
es k1k2 : : : kn, 
alled �-
y
les, for whi
h �k1�k2 : : : �kn is theidentity permutation. For example, when n = 4 there are exa
tly 15 �-
y
les, namely1111; 1122; 1212; 1221; 1333; 2112; 2121; 2211; 2222; 2323; 3133; 3232; 3313; 3331; 4444:a) Find a one-to-one 
orresponden
e between partitions of f1; 2; : : : ; ng and �-
y
lesof length n.b) How many �-
y
les of length n have 1 � k1, : : : , kn � m, given m and n?
) How many �-
y
les of length n have ki = j, given i, j, and n?d) How many �-
y
les of length n have k1, : : : , kn � 2?e) How many partitions of f1; : : : ; ng have 1 6� 2, 2 6� 3, : : : , n� 1 6� n, and n 6� 1?39. [HM16 ℄ Evaluate R10 e�tp+1 tq dt when p and q are nonnegative integers. Hint:See exer
ise 1.2.5{20.40. [HM20 ℄ Suppose the saddle point method is used to estimate [zn�1℄ e
z. Thetext's derivation of (21) from (19) deals with the 
ase 
 = 1; how should that derivation
hange if 
 is an arbitrary positive 
onstant?41. [HM21 ℄ Solve the previous exer
ise when 
 = �1.42. [HM23 ℄ Use the saddle point method to estimate [zn�1℄ ez2 with relative errorO(1=n2).43. [HM22 ℄ Justify repla
ing the integral in (23) by (25).44. [HM22 ℄ Explain how to 
ompute b1, b2, : : : in (26) from a2, a3, : : : in (25).x 45. [HM23 ℄ Show that, in addition to (26), we also have the expansion$n = ee��1n!�np2�n(� + 1)�1 + b01n + b02n2 + � � �+ b0mnm +O� 1nm+1��;where b01 = �(2�4 + 9�3 + 16�2 + 6� + 2)=(24(� + 1)3).
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48 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.546. [HM25 ℄ Estimate the value of $nk in Peir
e's triangle when n!1.47. [M21 ℄ Analyze the running time of Algorithm H.48. [HM25 ℄ If n is not an integer, the integral in (23) 
an be taken over a Hankel
ontour to de�ne a generalized Bell number $x for all real x > 0. Show that, as in (16),$x = 1e 1Xk=0 kxk! :x 49. [HM35 ℄ Prove that, for large n, the number � de�ned in Eq. (24) is equal tolnn� ln lnn+ Xj;k�0 h j + kj + 1 i�j �kk! ; � = � 1lnn; � = ln lnnlnn :x 50. [HM21 ℄ If �(n)e�(n) = n and �(n) > 0, how does �(n+ k) relate to �(n)?51. [HM27 ℄ Use the saddle point method to estimate tn = n! [zn℄ ez+z2=2, the numberof involutions on n elements (aka partitions of f1; : : : ; ng into blo
ks of sizes � 2).52. [HM22 ℄ The 
umulants of a probability distribution are de�ned in Eq. 1.2.10{(23). What are the 
umulants, when the probability that a random integer equals k is(a) e1�e�$k�k=k!? (b) Pj �kj	 ee�1�1�j=k!?x 53. [HM30 ℄ Let G(z) = P1k=0 pkzk be the generating fun
tion for a dis
rete prob-ability distribution, 
onverging for jzj < 1 + Æ; thus the 
oeÆ
ients pk are non-negative, G(1) = 1, and the mean and varian
e are respe
tively � = G0(1) and�2 = G00(1) +G0(1)�G0(1)2. If X1, : : : , Xn are independent random variables havingthis distribution, the probability that X1 + � � � +Xn = m is [zm℄G(z)n, and we oftenwant to estimate this probability when m is near the mean value �n.Assume that p0 6= 0 and that no integer d > 1 is a 
ommon divisor of allsubs
ripts k with pk 6= 0; this assumption means that m does not have to satisfyany spe
ial 
ongruen
e 
onditions mod d when n is large. Prove that[z�n+r℄G(z)n = e�r2=(2�2n)�p2�n +O� 1n� as n!1;when �n+ r is an integer. Hint: Integrate G(z)n=z�n+r on the 
ir
le jzj = 1.54. [HM20 ℄ If � and � are de�ned by (40), show that their arithmeti
 and geometri
means are respe
tively �+�2 = s 
oth s and p�� = s 
s
h s, where s = �=2.55. [HM20 ℄ Suggest a good way to 
ompute the number � needed in (43).x 56. [HM26 ℄ Let g(z) = ��1 ln(ez � 1)� ln z and � = �� � as in (37).a) Prove that (��)n+1g(n+1)(�) = n! �Pnk=0 
nk��k�n�k, where the Eulerian num-bers 
nk� are de�ned in Se
tion 5.1.3.b) Prove that ��n! <Pnk=0 
nk��k�n�k < n! for all � > 0. Hint: See exer
ise 5.1.3{25.
) Now verify the inequality (42).57. [HM22 ℄ In the notation of (43), prove that (a) n+1�m < 2N ; (b)N< 2(n+1�m).58. [HM31 ℄ Complete the proof of (43) as follows.a) Show that for all � > 0 there is a number � � 2� su
h that � is a multiple of 2�and je�+it � 1j=j� + itj is monotone de
reasing for 0 � t � � .b) Prove that R ��� exp((n+ 1)g(� + it)) dt leads to (43).
) Show that the 
orresponding integrals over the straight-line paths z = t � i� for�n � t � � and z = �n� it for �� � t � � are negligible.
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7.2.1.5 GENERATING ALL SET PARTITIONS 49x 59. [HM23 ℄ What does (43) predi
t for the approximate value of �nn	?60. [HM25 ℄ (a) Show that the partial sums in the identityn nmo = mnm! � (m� 1)n1! (m� 1)! + (m� 2)n2! (m� 2)! � � � �+ (�1)m 0nm! 0!alternately overestimate and underestimate the �nal value. (b) Con
lude thatn nmo = mnm! (1�O(ne�n�)) when m � n1��.(
) Derive a similar result from (43).61. [HM26 ℄ Prove that if m = n� r where r � n� and � � n1=2, Eq. (43) yieldsn nn� ro = n2r2rr!�1 +O(n2��1) +O�1r��:62. [HM40 ℄ Prove rigorously that if �e� = n, the maximum �nm	 o

urs either whenm = be� � 1
 or when m = de� � 1e.x 63. [M35 ℄ (J. Pitman.) Prove that there is an elementary way to lo
ate the maximumStirling numbers, and many similar quantities, as follows: Suppose 0 � pj � 1.a) Let f(z) = (1+p1(z�1)) : : : (1+pn(1�z)) and ak = [zk℄ f(z); thus ak is the proba-bility that k heads turn up after n independent 
oin 
ips with the respe
tive prob-abilities p1, : : : , pn. Prove that ak�1 < ak whenever k � � = p1+ � � �+pn, ak 6= 0.b) Similarly, prove that ak+1 < ak whenever k � � and ak 6= 0.
) If f(x) = a0 + a1x + � � � + anxn is any nonzero polynomial with nonnegative
oeÆ
ients and with n real roots, prove that ak�1 < ak when k � � and ak+1 < akwhen k � �, where � = f 0(1)=f(1). Therefore if am = max(a0; : : : ; an) we musthave either m = b�
 or m = d�e.d) Under the hypotheses of (
), and with aj = 0 when j < 0 or j > n, show thatthere are indi
es s � t, su
h that ak+1 � ak < ak � ak�1 if and only if s � k � t.(Thus, a histogram of the sequen
e (a0; a1; : : : ; an) is always \bell-shaped.")e) What do these results tell us about Stirling numbers?64. [HM21 ℄ Prove the approximate ratio (50), using (30) and exer
ise 50.x 65. [HM22 ℄ What is the varian
e of the number of blo
ks of size k in a randompartition of f1; : : : ; ng?66. [M46 ℄ What partition of n leads to the most partitions of f1; : : : ; ng?67. [HM20 ℄ What are the mean and varian
e of M in Stam's method (53)?68. [20 ℄ How large 
an the sta
k get in Algorithm M, when it is generating allp(n1; : : : ; nm) partitions of fn1 � 1; : : : ; nm �mg?x 69. [21 ℄ Modify Algorithm M so that it produ
es only partitions into at most r parts.x 70. [M22 ℄ Analyze the number of r-blo
k partitions possible in the n-element multi-sets (a) f0; : : : ; 0; 1g; (b) f1; 2; : : : ; n� 1; n� 1g. What is the total, summed over r?71. [M20 ℄ How many partitions of fn1 � 1; : : : ; nm �mg have exa
tly 2 parts?72. [M26 ℄ Can p(n;n) be evaluated in polynomial time?x 73. [M32 ℄ Can p(2; : : : ; 2) be evaluated in polynomial time when there are n 2s?74. [M46 ℄ Can p(n; : : : ; n) be evaluated in polynomial time when there are n ns?75. [HM41 ℄ Find the asymptoti
 value of p(n; n).76. [HM36 ℄ Find the asymptoti
 value of p(2; : : : ; 2) when there are n 2s.77. [HM46 ℄ Find the asymptoti
 value of p(n; : : : ; n) when there are n ns.
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50 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.578. [20 ℄ What partition of (15; 10; 10; 11) leads to the permutations �1, �2, �3, and�4 shown in Table 1?79. [22 ℄ A sequen
e u1, u2, u3, : : : is 
alled universal for partitions of f1; : : : ; ng ifits subsequen
es (um+1; um+2; : : : ; um+n) for 0 � m < $n represent all possible setpartitions under the 
onvention \j � k if and only if um+j = um+k." For example,(0; 0; 0; 1; 0; 2; 2) is a universal sequen
e for partitions of f1; 2; 3g.Write a program to �nd all universal sequen
es for partitions of f1; 2; 3; 4g withthe properties that (i) u1 = u2 = u3 = u4 = 0; (ii) the sequen
e has restri
ted growth;(iii) 0 � uj � 3; and (iv) u16 = u17 = u18 = 0 (hen
e the sequen
e is essentially 
y
li
).80. [M28 ℄ Prove that universal 
y
les for partitions of f1; 2; : : : ; ng exist in the senseof the previous exer
ise whenever n � 4.81. [29 ℄ Find a way to arrange an ordinary de
k of 52 playing 
ards so that the fol-lowing tri
k is possible: Five players ea
h 
ut the de
k (applying a 
y
li
 permutation)as often as they like. Then ea
h player takes a 
ard from the top. A magi
ian tellsthem to look at their 
ards and to form aÆnity groups, joining with others who holdthe same suit: Everybody with 
lubs gets together, everybody with diamonds formsanother group, and so on. (The Ja
k of Spades is, however, 
onsidered to be a \joker";its holder, if any, should remain aloof.)Observing the aÆnity groups, but not being told any of the suits, the magi
ian
an name all �ve 
ards, if the 
ards were suitably arranged in the �rst pla
e.82. [22 ℄ In how many ways 
an the following 15 dominoes, optionally rotated, bepartitioned into three sets of �ve having the same sum when regarded as fra
tions?12+13+41+15+16 = 23+42+25+43+45 = 26+53+36+64+65
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7.2.1.4 ANSWERS TO EXERCISES 51SECTION 7.2.1.41. mn mn m!�nm	�m+n�1n � �mn� � n�1n�m��n0	+ � � �+ �nm	 [m�n℄ �nm	��m+nm �� [m�n℄ ��nm��2. In general, given any integers x1 � � � � � xm, we obtain all integer m-tuplesa1 : : : am su
h that a1 � � � � � am, a1+� � �+am = x1+� � �+xm, and am : : : a1 � xm : : : x1by initializing a1 : : : am  x1 : : : xm and am+1  xm � 2. In parti
ular, if 
 is anyinteger 
onstant, we obtain all integer m-tuples su
h that a1 � � � � � am � 
 anda1 + � � � + am = n by initializing a1  n � m
 + 
, aj  
 for 1 < j � m, andam+1  
� 2, assuming that n � 
m.3. aj = b(n+m� j)=m
 = d(n+ 1� j)=me, for 1 � j � m; see CMath x3.4.4. We must have am � a1 � 1; therefore aj = b(n+m� j)=m
 for 1 � j � m, wherem is the largest integer with bn=m
 � r, namely m = bn=r
.5. [See Eugene M. Klimko, BIT 13 (1973), 38{49.℄C1. [Initialize.℄ Set 
0  1, 
1  n, 
2 : : : 
n  0 : : : 0, l0  1, l1  0. (Weassume that n > 0.)C2. [Visit.℄ Visit the partition represented by part 
ounts 
1 : : : 
n and linksl0l1 : : : ln.C3. [Bran
h.℄ Set j  l0 and k  lj . If 
j = 1, go to C6; otherwise, if j > 1, goto C5.C4. [Change 1+1 to 2.℄ Set 
1  
1 � 2, 
2  
2 + 1. Then if 
1 = 0, set l0  2,and set l2  l1 if k 6= 2. If 
1 > 0 and k 6= 2, set l2  l1 and l1  2. Returnto C2.C5. [Change j � 
j to (j+1) + 1 + � � �+ 1.℄ Set 
1  j(
j � 1)� 1 and go to C7.C6. [Change k � 
k + j to (k+1) + 1 + � � �+ 1.℄ Terminate if k = 0. Otherwise set
j  0; then set 
1  k(
k � 1) + j � 1, j  k, and k  lk.C7. [Adjust links.℄ If 
1 > 0, set l0  1, l1  j + 1; otherwise set l0  j + 1.Then set 
j  0 and 
j+1  
j+1 + 1. If k 6= j + 1, set lj+1  k. Returnto C2.Noti
e that this algorithm is loopless; but it isn't really faster than Algorithm P. StepsC4, C5, and C6 are performed respe
tively p(n� 2), 2p(n)� p(n+ 1)� p(n� 2), andp(n + 1) � p(n) times; thus step C4 is most important when n is large. (See exer
ise45 and the detailed analysis by Fenner and Loizou in A
ta Inf. 16 (1981), 237{252.)6. Set k  a1 and j  1. Then, while k > aj+1, set bk  j and k  k � 1 untilk = aj+1. If k > 0, set j  j + 1 and repeat until k = 0. (We have used (11) in thedual form aj � aj+1 = dj , where d1 : : : dn is the part-
ount representation of b1b2 : : : .Noti
e that the running time of this algorithm is essentially proportional to a1 + b1,the length of the output plus the length of the input.)7. We have b1 : : : bn = nan(n�1)an�1�an : : : 1a1�a20n�a1 , by the dual of (11).8. Transposing the Ferrers diagram 
orresponds to re
e
ting and 
omplementing thebit string (15). So we simply inter
hange and reverse the p's and q's, getting thepartition b1b2 : : : = (qt + � � �+ q1)p1 (qt + � � �+ q2)p2 : : : (qt)pt .
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52 ANSWERS TO EXERCISES 7.2.1.49. By indu
tion: If ak = l� 1 and bl = k� 1, in
reasing ak and bl preserves equality.10. (a) The left 
hild of ea
h node is obtained by appending `1'. The right 
hild isobtained by in
reasing the rightmost digit; this 
hild exists if and only if the parent nodeends with unequal digits. All partitions of n appear on level n in lexi
ographi
 order.(b) The left 
hild is obtained by 
hanging `11' to `2'; it exists if and only if theparent node 
ontains at least two 1s. The right 
hild is obtained by deleting a 1 andin
reasing the smallest part that ex
eeds 1; it exists if and only if there is at least one 1and the smallest larger part appears exa
tly on
e. All partitions of n into m parts ap-pear on level n�m in lexi
ographi
 order; preorder of the entire tree gives lexi
ographi
order of the whole. [T. I. Fenner and G. Loizou, Comp. J. 23 (1980), 332{337.℄11. [z100℄ 1=((1� z)(1� z2)(1� z5)(1� z10)(1� z20)(1� z50)(1� z100)) = 4563; and[z100℄ (1+ z+ z2)(1+ z2+ z4) : : : (1+ z100+ z200) = 7. [See G. P�olya, AMM 63 (1956),689{697.℄ In the in�nite series Qk�1(1 + zk + z2k)(1 + z2k + z4k)(1 + z5k + z10k), the
oeÆ
ient of z10n is 2n+1 � 1, and the 
oeÆ
ient of z10n�1 is 2n.12. To prove that (1 + z)(1 + z2)(1 + z3) : : : = 1=((1 � z)(1 � z3)(1 � z5) : : : ), writethe left-hand side as (1� z2)(1� z) (1� z4)(1� z2) (1� z6)(1� z3) : : :and 
an
el 
ommon fa
tors from numerator and denominator. Alternatively, repla
e zby z1, z3, z5, : : : in the identity (1 + z)(1 + z2)(1 + z4)(1 + z8) : : : = 1=(1 � z) andmultiply the results together. [Novi Comment. A
ad. S
i. Pet. 3 (1750), 125{169, x47.℄13. Map the partition 
1�1+ 
2�2+ � � � into b
1=2
�2+ b
2=2
�4+ � � �+ r1�1+ r3�3+ � � � ,where rm = (
m mod 2) + 2(
2m mod 2) + 4(
4m mod 2) + � � � . [Johns Hopkins Univ.Cir
ular 2 (1882), 72.℄14. Sylvester's 
orresponden
e is best understood as a diagram in whi
h the dots ofthe odd permutation are 
entered and divided into disjoint hooks. For example, thepartition 17 + 15 + 15 + 9 + 9 + 9 + 9 + 5 + 5 + 3 + 3, having �ve di�erent odd parts,
orresponds via the diagram

to the all-distin
t partition 19 + 18 + 16 + 13 + 12 + 9 + 5 + 4 + 3 with four gaps.Conversely, a partition into 2t distin
t nonnegative parts 
an be written uniquelyin the form (a1+b1�1)+(a1+b2�2)+(a2+b2�3)+(a2+b3�4)+� � �+(at�1+bt�2t+2)+(at+bt�2t+1) + (at+bt+1�2t) where a1 � a2 � � � � � at � t and b1 � b2 � � � � � bt �bt+1 = t. It 
orresponds to (2a1�1)+ � � �+(2at�1)+(2A1�1)+ � � �+(2Ar�1), whereA1 + � � �+Ar is the 
onjugate of (b1�t) + � � �+ (bt�t). The value of t is essentially thesize of a \Durfee re
tangle."The relevant odd-parts partitions when n = 10 are 9+1, 7+3, 7+1+1+1, 5+5,5 + 3+ 1+ 1, 5 + 1+ 1+ 1+ 1+ 1, 3 + 3+ 3+ 1, 3 + 3+ 1+ 1+ 1+ 1, 3 + 1+ � � �+ 1,1 + � � �+ 1, 
orresponding respe
tively to the distin
t-parts partitions 6 + 4, 5 + 4 + 1,
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7.2.1.4 ANSWERS TO EXERCISES 537 + 3, 4 + 3 + 2 + 1, 6 + 3 + 1, 8 + 2, 5 + 3 + 2, 7 + 2 + 1, 9 + 1, 10. [See Sylvester'sremarkable paper in Amer. J. Math. 5 (1882), 251{330; 6 (1883), 334{336.℄15. Every self-
onjugate partition of tra
e k 
orresponds to a partition of n into kdistin
t odd parts (\hooks"). Therefore we 
an write the generating fun
tion either asthe produ
t (1+z)(1+z3)(1+z5) : : : or as the sum 1+z1=(1�z2)+z4=((1�z2)(1�z4))+z9=((1�z2)(1�z4)(1�z6)) + � � � . [Johns Hopkins Univ. Cir
ular 3 (1883), 42{43.℄16. The Durfee square 
ontains k2 dots, and the remaining dots 
orrespond to twoindependent partitions with largest part � k. Thus, if we use w to 
ount parts andz to 
ount dots, we �nd1Ym=1 11� wzm = 1Xk=0 wkzk2(1� z)(1� z2) : : : (1� zk)(1� wz)(1� wz2) : : : (1� wzk) :[This impressive-looking formula turns out to be just the spe
ial 
ase x = y = 0 of theeven more impressive identity of exer
ise 19.℄17. (a) ((1 + uvz)(1 + uvz2)(1 + uvz3) : : : )/((1� uz)(1� uz2)(1� uz3) : : : ).� � � � � � � �+�� � � � � � � �� � � � � � � �� � � � � �+�� � � � �� � � �+��+�
(b) A joint partition 
an be represented by a generalized Ferrersdiagram in whi
h we merge all the parts together, putting ai abovebj if ai � bj , then mark the rightmost dot of ea
h bj . For example,the joint partition (8; 8; 5; 9; 7; 5; 2) has the diagram illustrated here,with marked dots shown as `+� '. Marks appear only in 
orners; thusthe transposed diagram 
orresponds to another joint partition, whi
h in this 
ase is(7; 6; 6; 4; 3; 7; 6; 4; 1). [See J. T. Joi
hi and D. Stanton, Pa
i�
 J. Math. 127 (1987),103{120; S. Corteel and J. Lovejoy, Trans. Amer. Math. So
. 356 (2004), 1623{1635;Igor Pak, \Partition bije
tions, a survey," to appear in The Ramanujan Journal.)Every joint partition with t > 0 parts 
orresponds in this way to a \
onjugate"in whi
h the largest part is t. And the generating fun
tion for su
h joint partitions is((1 + vz) : : : (1 + vzt�1))/((1� z) : : : (1� zt)) times (vzt + zt), where vzt 
orrespondsto the 
ase that b1 = t, and zt 
orresponds to the 
ase that r = 0 or b1 < t).(
) Thus we obtain a form of the general z-nomial theorem in answer 1.2.6{58:(1 + uvz)(1� uz) (1 + uvz2)(1� uz2) (1 + uvz3)(1� uz3) : : : = 1Xt=0 (1 + v)(1� z) (1 + vz)(1� z2) : : : (1 + vzt�1)(1� zt) utzt:18. The equations obviously determine the a's and b's when the 
's and d's are given,so we want to show that the 
's and d's are uniquely determined from the a's and b's.The following algorithm determines the 
's and d's from right to left:A1. [Initialize.℄ Set i r, j  s, k  0, and a0  b0  1.A2. [Bran
h.℄ Stop if i+ j = 0. Otherwise go to A4 if ai � bj � k.A3. [Absorb ai.℄ Set 
i+j  ai, di+j  0, i i� 1, k  k+1, and return to A2.A4. [Absorb bj .℄ Set 
i+j  bj � k, di+j  1, j  j � 1, k  k + 1, and returnto A2.There's also a left-to-right method:B1. [Initialize.℄ Set i 1, j  1, k  r + s, and ar+1  bs+1  �1.B2. [Bran
h.℄ Stop if k = 0. Otherwise set k  k�1, then go to B4 if ai � bj�k.B3. [Absorb ai.℄ Set 
i+j�1  ai, di+j�1  0, i i+ 1, and return to B2.B4. [Absorb bj .℄ Set 
i+j�1  bj�k, di+j�1  1, j  j+1, and return to B2.
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54 ANSWERS TO EXERCISES 7.2.1.4In both 
ases the bran
hing is for
ed and the resulting sequen
e satis�es 
1 � � � � � 
r+s.Noti
e that 
r+s = min(ar; bs) and 
1 = max(a1; b1�r�s+1).We have thereby proved the identity of exer
ise 17(
) in a di�erent way. Extensionsof this idea lead to a 
ombinatorial proof of Ramanujan's \remarkable formula withmany parameters,"1Xn=�1wn 1Yk=0 1� bzk+n1� azk+n = 1Yk=0 (1�a�1bzk)(1�a�1w�1zk+1)(1�awzk)(1�zk+1)(1�a�1bw�1zk)(1�a�1zk+1)(1�azk)(1�wzk) :[Referen
es: G. H. Hardy, Ramanujan (1940), Eq. (12.12.2); D. Zeilberger, Europ. J.Combinatori
s 8 (1987), 461{463; A. J. Yee, J. Comb. Theory A105 (2004), 63{77.℄19. [Crelle 34 (1847), 285{328.℄ By exer
ise 17(
), the hinted sum over k is�Xl�0 vl (z � bz) : : : (z � bz l)(1� z) : : : (1� z l) (1� uz) : : : (1� uz l)(1� auz) : : : (1� auz l)� � 1Ym=1 1� auzm1� uzm ;and the sum over l is similar but with u$ v, a$ b, k $ l. Furthermore the sum overboth k and l redu
es to 1Ym=1 (1� uvzm+1)(1� auzm)(1� uzm)(1� vzm)when b = auz. Now let u = wxy, v = 1=(yz), a = 1=x, and b = wyz; equate thisin�nite produ
t to the sum over l.20. To get p(n) we need to add or subtra
t approximately p8n=3 of the previousentries, and most of those entries are �(pn ) bits long. Therefore p(n) is 
omputed in�(n) steps and the total time is �(n2).(A straightforward use of (17) would take �(n5=2) steps.)21. Sin
e P1n=0 q(n)zn = (1 + z)(1 + z2) : : : is equal to (1 � z2)(1 � z4) : : : P (z) =(1� z2 � z4 + z10 + z14 � z24 � � � � )P (z), we haveq(n) = p(n)� p(n� 2)� p(n� 4) + p(n� 10) + p(n� 14)� p(n� 24)� � � � :[There is also a \pure re
urren
e" in the q's alone, analogous to the re
urren
e for �(n)in the next exer
ise.℄22. From (21) we haveP1n=1 �(n)zn =Pm;n�1mzmn = z ddz lnP (z) = (z+2z2�5z5�7z7 + � � � )=(1� z � z2 + z5 + z7 + � � � ). [Biblioth�eque Impartiale 3 (1751), 10{31.℄23. Set u = w and v = z=w to get1Yk=1(1� zkw)(1� zk=w)(1� zk) = 1Xn=�1(�1)nwnzn(n+1)=2=(1� w)
= 1Xn=0(�1)n(w�n � wn+1)zn(n+1)=2=(1� w)
= 1Xn=0(�1)n(w�n + � � �+ wn)zn(n+1)=2:These manipulations are legitimate when jzj < 1 and w is near 1. Now set w = 1.[See x57 of Sylvester's paper 
ited in answer 14. Ja
obi's proof is in x66 of hismonograph Fundamenta Nova Theori� Fun
tionum Ellipti
arum (1829).℄
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7.2.1.4 ANSWERS TO EXERCISES 5524. (a) By (18) and exer
ise 23, [zn℄A(z) =P(�1)j+k(2k+1)[3j2 + j + k2 + k=2n℄,summed over all integers j and k. When nmod 5 = 4, the 
ontributions all havej mod 5 = 4 and kmod 5 = 2; but then (2k + 1) mod 5 = 0.(b) B(z)p � B(zp) (modulo p) when p is prime, by Eq. 4.6.2{(5).(
) Take B(z) = P (z), sin
e A(z) = P (z)�4. [Pro
. Cambridge Philos. So
. 19(1919), 207{210. A similar proof shows that p(n) is a multiple of 7 when nmod 7 = 5.Ramanujan went on to obtain the beautiful formulas p(5n + 4)=5 = [zn℄P (z)6=P (z5);p(7n + 5)=7 = [zn℄ (P (z)4=P (z7)3 + 7zP (z)8=P (z7)7). Atkin and Swinnerton-Dyer, inPro
. London Math. So
. (3) 4 (1953), 84{106, showed that the partitions of 5n + 4and 7n + 5 
an be divided into equal-size 
lasses a

ording to the respe
tive valuesof (largest part � number of parts) mod 5 or mod 7, as 
onje
tured by F. Dyson.A slightly more 
ompli
ated 
ombinatorial statisti
 proves also that p(n) mod 11 = 0when nmod 11 = 6; see F. G. Garvan, Trans. Amer. Math. So
. 305 (1988), 47{77.℄25. [The hint 
an be proved by di�erentiating both sides of the stated identity. It isthe spe
ial 
ase y = 1� x of a beautiful formula dis
overed by N. H. Abel in 1826:Li2(x) + Li2(y) = Li2� x1�y�+ Li2� y1�x�� Li2� xy(1�x)(1�y)�� ln(1�x) ln(1�y):See Abel's �uvres Compl�etes 2 (Christiania: Gr�ndahl, 1881), 189{193.℄(a) Let f(x) = ln(1=(1� e�xt)). Then R x1 f(x) dx = �Li2(e�tx)=t and f (n)(x) =(�t)netxPk 
n�1k � ektx=(etx � 1)n, so Euler's summation formula gives Li2(e�t)=t +12 ln(1=(1 � e�t)) + O(1) = (�(2) + t ln(1 � e�t) � Li2(1 � e�t))=t � 12 ln t + O(1) =�(2)=t+ 12 ln t+O(1), as t! 0.(b) We havePm;n�1 e�mnt=n = 12�iPm;n�1 R 1+i11�i1 (mnt)�z�(z) dz=n, whi
h sumsto 12�i R 1+i11�i1 �(z + 1)�(z)t�z�(z) dz. The pole at z = 1 gives �(2)=t; the doublepole at z = 0 gives ��(0) ln t + � 0(0) = 12 ln t � 12 ln 2�; the pole at z = �1 gives��(�1)�(0)t = B2B1t = �t=24. Zeros of �(z + 1)�(z) 
an
el the other poles of �(z),so the result is lnP (e�t) = �(2)=t+ 12 ln(t=2�)� t=24+O(tM ) for arbitrarily large M .26. Let F (n) =P1k=1 e�k2=n. We 
an use (25) either with f(x) = e�x2=n[x> 0℄+ 12Æx0,or with f(x) = e�x2=n for all x be
ause 2F (n) + 1 =P1k=�1 e�k2=n. Let's 
hoose thelatter alternative; then the right-hand side of (25), for � = 0, is the rapidly 
onvergentlimM!1 MXm=�M Z 1�1 e�2�miy�y2=ndy = 1Xm=�1 e��2m2n2 Z 1�1 e�u2=n du
if we substitute u = y+ �mni; and the integral is p�n. [This result is formula (15) onpage 420 of Poisson's original paper.℄27. Let gn = p�=6t e�n2�2=6t 
os n�6 . Then R1�1 f(y) 
os 2�my dy = g2m+1 + g2m�1,so we have e�t=24P (e�t) = g1 + g�1 + 2 1Xm=1(g2m+1 + g2m�1) = 2 1Xm=�1 g2m+1:The terms g6n+1 and g�6n�1 
ombine to give the nth term of (30). [See M. I. Knopp,Modular Fun
tions in Analyti
 Number Theory (1970), Chapter 3.℄
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56 ANSWERS TO EXERCISES 7.2.1.428. (a,b,
,d) See Trans. Amer. Math. So
. 43 (1938), 271{295. In fa
t, Lehmer foundexpli
it formulas for Ape(n), in terms of the Ja
obi symbol of exer
ise 4.5.4{23:A2e(n) = (�1)e��1m �2e=2 sin 4�m2e+3 ; if (3m)2 � 1� 24n (modulo 2e+3);A3e(n) = (�1)e+1�m3 � 2p33e=2 sin 4�m3e+1 ; if (8m)2 � 1� 24n (modulo 3e+1);2� 3pe�pe=2 
os 4�mpe ; if (24m)2 � 1� 24n (modulo pe), p � 5,and 24nmod p 6= 1;Ape(n) =
8>>>><>>>>:� 3pe�pe=2 [e=1℄; if 24nmod p = 1 and p � 5.(e) If n = 2a3bpe11 : : : pett for 3 < p1 < � � � < pt and e1 : : : et 6= 0, the probabilitythat Ak(n) 6= 0 is 2�t(1 + (�1)[e1=1℄=p1) : : : (1 + (�1)[et=1℄=pt).29. z1z2 : : : zm=((1� z1)(1� z1z2) : : : (1� z1z2 : : : zm)).30. (a) ��n+1m �� and (b) ��m+nm ��, by (39).31. First solution [Marshall Hall, Jr., Combinatorial Theory (1967), x4.1℄: From there
urren
e (39), we 
an show dire
tly that, for 0 � r < k!, there is a polynomialfk;r(n) = nk�1=(k!(k�1)!) +O(nk�2) su
h that ��nk�� = fn;nmod k!(n).Se
ond solution: Sin
e (1 � z) : : : (1 � zm) = Qp?q(1 � e2�ip=qz)bm=q
, wherethe produ
t is over all redu
ed fra
tions p=q with 0 � p < q, the 
oeÆ
ient of znin (41) 
an be expressed as a sum of roots of unity times polynomials in n, namely asPp?q e2�ipn=qfpq(n) where fpq(n) is a polynomial of degree less than m=q. Thus thereexist 
onstants su
h that ��n2�� = a1n+ a2 + (�1)na3; ��n3�� = b1n2 + b2n+ b3 + (�1)nb4 +!nb5 + !�nb6, where ! = e2�i=3; et
. The 
onstants are determined by the values forsmall n, and the �rst two 
ases are���n2 ��� = 12n� 14 + 14(�1)n; ���n3 ��� = 112n2 � 772 � 18(�1)n + 19!n + 19!�n:It follows that ��n3�� is the nearest integer to n2=12. Similarly, ��n4�� is the nearest integerto (n3 + 3n2 � 9n [n odd℄)=144.[Exa
t formulas for ��n2��, ��n3��, and ��n4��, without the simpli�
ation of 
oor fun
tions,were �rst found by G. F. Malfatti, Memorie di Mat. e Fis. So
iet�a Italiana 3 (1786),571{663. W. J. A. Colman, in Fibona

i Quarterly 21 (1983), 272{284, showed that��n5�� is the nearest integer to (n4+10n3+10n2�75n�45n(�1)n)=2880, and gave similarformulas for ��n6�� and ��n7��.℄32. Sin
e ��m+nm �� � p(n), with equality if and only if m � n, we have ��nm�� � p(n �m)with equality if and only if 2m � n.33. A partition into m parts 
orresponds to at most m! 
ompositions; hen
e �n�1m�1� �m! ��nm��. Consequently p(n) � (n � 1)!=((n � m)!m! (m � 1)!), and when m = pnStirling's approximation proves that ln p(n) � 2pn� lnn� 12 � ln 2�.34. a1 > a2 > � � � > am > 0 if and only if a1�m+1 � a2�m+2 � � � � � am � 1. Andpartitions into m distin
t parts 
orrespond to m! 
ompositions. Thus, by the previousanswer, we have 1m!� n� 1m� 1� � ��� nm ��� � 1m!�n+m(m� 1)=2m� 1 �:
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7.2.1.4 ANSWERS TO EXERCISES 57[See H. Gupta, Pro
. Indian A
ad. S
i. A16 (1942), 101{102. A detailed asymptoti
formula for ��nm�� when n = �(m3) appears in exer
ise 3.3.2{30.℄35. (a) x = 1C ln 1C � �0:194.(b) x = 1C ln 1C � 1C ln ln 2 � 0:092; in general we have x = 1C (ln 1C � ln ln 1F (x) ).(
) R 1�1 x dF (x) = R10 (Cu)�2(lnu)e�1=(Cu) du = � 1C R 10 (lnC + ln v)e�v dv =(
 � lnC)=C � 0:256:(d) Similarly, R 1�1 x2e�Cx exp(�e�Cx=C)dx = (
2+�(2)�2
 lnC+(lnC)2)=C2 �1:0656. So the varian
e is �(2)=C2 = 1, exa
tly(!).[The probability distribution e�e(a�x)=b is 
ommonly 
alled the Fisher{Tippettdistribution; see Pro
. Cambridge Phil. So
. 24 (1928), 180{190.℄36. The sum over jr � (m+ r � 1) � � � � � j2 � (m+ 1) � j1 �m � 1 gives�r =Xt ��� t� rm� r(r � 1)=2r ���p(n� t)p(n)= �1� � �21� �2 : : : �r1� �r �rm(1 +O(n�1=2+2�))+ E= n�1=2��1 � 1 n�1=2��2 � 1 : : : n�1=2��r � 1 exp(�Crx+O(rn�1=2+2�))+ E;where E is an error term that a

ounts for the 
ases t > n1=2+�. The leading fa
torn�1=2=(��j�1) is 1jC (1+O(jn�1=2)). And it is easy to verify that E = O(nlogne�Cn�),even if we use the 
rude upper bound ��t�rm�r(r�1)=2r �� � tr, be
auseXt�xN tre�t=N = O�Z 1xN tre�t=N dt� = O(Nr+1xre�x=(1� r=x));where N = �(pn), x = �(n�), r = O(logn).37. Su
h a partition is 
ounted on
e in �0, q times in �1, �q2� times in �2, : : : ; soit is 
ounted exa
tly Prj=0(�1)j�qj� = (�1)r�q�1r � times in the partial sum that endswith (�1)r�r. This 
ount is at most Æq0 when r is odd, at least Æq0 when r is even.[A similar argument shows that the generalized prin
iple of exer
ise 1.3.3{26 also hasthis bra
keting property. Referen
e: C. Bonferroni, Pubbli
azioni del Reale IstitutoSuperiore de S
ienze E
onomi
he e Commer
iale di Firenze 8 (1936), 3{62.℄38. zl+m�1�l+m�2m�1 �z = zl+m�1(1� zl) : : : (1� zl+m�2)=((1� z) : : : (1� zm�1)).39. If � = a1 : : : am is a partition with at most m parts, let f(�) = 1 if a1 � l,otherwise f(�) = minfj j a1 > l + aj+1g. Let gk be the generating fun
tion forpartitions with f(�) > k. Partitions with f(�) = k < 1 are 
hara
terized by theinequalities a1 � a2 � � � � � ak � a1 � l > ak+1 � � � � � am+1 = 0:Thus a1a2 : : : am = (bk+l+1)(b1+1) : : : (bk�1+1)bk+1 : : : bm, where f(b1 : : : bm) � k;and the 
onverse is also true. It follows that gk = gk�1 � zl+kgk�1.[See Ameri
an J. Math. 5 (1882), 254{257.℄40. zm(m+1)=2� lm�z = (z� zl)(z2� zl) : : : (zm� zl)=((1� z)(1� z2) : : : (1� zm)). Thisformula is essentially the z-nomial theorem of exer
ise 1.2.6{58.41. See G. Almkvist and G. E. Andrews, J. Number Theory 38 (1991), 135{144.
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58 ANSWERS TO EXERCISES 7.2.1.442. A. Vershik [Fun
tional Anal. Appli
. 30 (1996), 90{105, Theorem 4.7℄ has statedthe formula 1� e�
'1� e�
(�+') e�
k=pn + 1� e�
�1� e�
(�+') e�
ak=pn � 1;where the 
onstant 
 must be 
hosen as a fun
tion of � and ' so that the area of theshape is n. This 
onstant 
 is negative if �' < 2, positive if �' > 2; the shape redu
esto a straight line k�pn + ak'pn � 1when �' = 2. If ' =1 we have 
 = pLi2(t) where t satis�es � = (ln 11�t )=pLi2(t).43. We have a1 > a2 > � � � > ak if and only if the 
onjugate partition in
ludesea
h of the the parts 1, 2, : : : , k � 1 at least on
e. The number of su
h partitions isp(n� k(k � 1)=2); this total in
ludes ��n�(k�1)(k�2)=2k�1 �� 
ases with ak = 0.44. Assume that n > 0. The number with smallest parts unequal (or with only onepart) is p(n+1)� p(n), the number of partitions of n+1 that don't end in 1, be
ausewe get the former from the latter by 
hanging the smallest part. Therefore the answeris 2p(n)� p(n+1). [See R. J. Bos
ovi
h, Giornale de' Letterati (Rome, 1748), 15. Thenumber of partitions whose smallest three parts are equal is 3p(n)�p(n+1)�2p(n+2)+p(n+ 3); similar formulas 
an be derived for other 
onstraints on the smallest parts.℄45. By Eq. (37) we have p(n� j)=p(n) = 1�Cjn�1=2+ (C2j2 + 2j)=(2n)� (8C3j3 +60Cj2 + Cj + 12C�1j)=(48n3=2) +O(j4n�2).46. If n > 1, T 02(n) = p(n � 1) � p(n � 2) � p(n) � p(n � 1) = T 002 (n), be
ausep(n)�p(n�1) is the number of partitions of n that don't end in 1; every su
h partitionof n � 1 yields one for n if we in
rease the largest part. But the di�eren
e is rathersmall: (T 002 (n)� T 02(n))=p(n) = C2=n+O(n�3=2).47. The identity in the hint follows by di�erentiating (21); see exer
ise 22. Theprobability of obtaining the part-
ounts 
1 : : : 
n when 
1 + 2
2 + � � �+ n
n = n isPr(
1 : : : 
n) = nXk=1 
kXj=1 kp(n� jk)np(n) Pr(
1 : : : 
k�1(
k�j)
k+1 : : : 
n)
= nXk=1 
kXj=1 knp(n) = 1p(n) ;by indu
tion on n. [Combinatorial Algorithms (A
ademi
 Press, 1975), Chapter 10.℄48. The probability that j has a parti
ular �xed value in step N5 is 6=(�2j2) +O(n�1=2), and the average value of jk is order pn. The average time spent in step N4is �(n), so the average running time is of order n3=2. (A more pre
ise analysis wouldbe desirable.)49. (a) We have F (z) = P1k=1 Fk(z), where Fk(z) is the generating fun
tion for allpartitions whose smallest part is � k, namely 1=((1� zk)(1� zk+1) : : : )� 1.(b) Let fk(n) = [zn℄Fk(z)=p(n). Then f1(n) = 1; f2(n) = 1 � p(n�1)=p(n) =Cn�1=2 + O(n�1); f3(n) = (p(n)� p(n � 1) � p(n � 2) + p(n � 3))=p(n) = 2C2n�1 +O(n�3=2); and f4(n) = 6C3n�3=2 + O(n�2). (See exer
ise 45.) It turns out thatfk+1(n) = k!Ckn�k=2 + O(n�(k+1)=2); in parti
ular, f5(n) = O(n�2). Hen
e f5(n) +� � �+ fn(n) = O(n�1), be
ause fk+1(n) � fk(n).Adding everything up yields [zn℄F (z) = p(n)(1 + C=pn+O(n�1)).
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7.2.1.4 ANSWERS TO EXERCISES 5950. (a) 
m(m + k) = 
m�1(m � 1 + k) + 
m(k) = m � 1 � k + 
(k) + 1 by indu
tionwhen 0 � k < m.(b) Be
ause ��m+km �� = p(k) for 0 � k � m.(
) When n = 2m, Algorithm H essentially generates the partitions of m, andwe know that j � 1 is the se
ond-smallest part in the 
onjugate of the partition justgenerated|ex
ept when j�1 = m, just after the partition 1 : : : 1 whose 
onjugate hasonly one part.(d) If all parts of � ex
eed k, let �kq+1j 
orrespond to � (k+1).(e) The generating fun
tion Gk(z) for all partitions whose se
ond-smallest part is� k is (z+� � �+zk�1)Fk(z)+Fk(z)�zk=(1�z) = Fk+1(z)=(1�z), where Fk(z) is de�nedin the previous exer
ise. Consequently C(z) = (F (z)� F1(z))=(1� z) + z=(1� z)2.(f) We 
an show as in the previous exer
ise that [zn℄Gk(n)=p(n) = O(n�k=2) fork � 5; hen
e 
(m)=p(m) = 1 + O(m�1=2). The ratios (
(m) + 1)=p(m), whi
h arereadily 
omputed for small m, rea
h a maximum of 2.6 at m = 7 and de
rease steadilythereafter. So a rigorous attention to asymptoti
 error bounds will 
omplete the proof.Note: B. Fristedt [Trans. Amer. Math. So
. 337 (1993), 703{735℄ has proved,among other things, that the number of k's in a random partition of n is greater thanCxpn with asymptoti
 probability e�x.52. In lexi
ographi
 order, ��64+1313 �� partitions of 64 have a1 � 13; ��50+1010 �� of them havea1 = 14 and a2 � 10; et
. Therefore, by the hint, the partition 14 11 9 6 4 3 2 115 ispre
eded by exa
tly p(64) � 1000000 partitions in lexi
ographi
 order, making it themillionth in reverse lexi
ographi
 order.53. As in the previous answer, ��8012�� partitions of 100 have a1 = 32 and a2 � 12, et
.;so the lexi
ographi
ally millionth partition in whi
h a1 = 32 is 32 13 12 8 7 6 5 5 112.Algorithm H produ
es its 
onjugate, namely 20 8 8 8 6 5 4 3 3 3 3 2 119.54. (a) Obviously true. This question was just a warmup.(b) True, but not so obvious. If �T = a01a02 : : : we havea1 + � � �+ ak + a01 + � � �+ a0k � n� kl when k � a0lby 
onsidering the Ferrers diagram, with equality when k = a0l. Thus if � � � anda01+ � � �+a0l > b01+ � � �+ b0l for some l, with l minimum, we have n�kl = b1+ � � �+ bk+b01 + � � �+ b0l < a1 + � � �+ ak + a01 + � � �+ a0l � n� kl when k = b0l, a 
ontradi
tion.(
) The re
urren
e 
k = min(a1+ � � �+ak; b1+ � � �+ bk)� (
1+ � � �+ 
k�1) 
learlyde�nes a greatest lower bound, if 
1
2 : : : is a partition. And it is; for if 
1+ � � �+ 
k =a1+ � � �+ak we have 0 � min(ak+1; bk+1) � 
k+1 � ak+1 � ak = 
k�(
1+ � � �+
k�1)�(a1 + � � �+ ak�1) � 
k.(d) � _ � = (�T ^ �T )T . (Double 
onjugation is needed be
ause a max-orientedre
urren
e analogous to the one in part (
) 
an fail.)(e) � ^ � has max(l;m) parts and � _ � has min(l;m) parts. (Consider the �rst
omponents of their 
onjugates.)(f) True for � ^ �, by the derivation in part (
). False for � _ � (although true inFig. 32); for example, (17 16 5 4 3 2) _ (17 9 8 7 6) = (17 16 5 5 4):Referen
e: T. Brylawski, Dis
rete Mathemati
s 6 (1973), 201{219.55. (a) If � � � and � � 
 � �, where 
 = 
1
2 : : : , we have a1 + � � � + ak =
1 + � � � + 
k = b1 + � � � + bk for all k ex
ept k = l and k = l + 1; thus � 
overs �.Therefore �T 
overs �T .Conversely, if � � � and � 6= � we 
an �nd 
 � � su
h that � � 
 or 
T � �T ,as follows: Find the smallest k with ak > bk, and the smallest l with ak > al+1. If
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60 ANSWERS TO EXERCISES 7.2.1.4al > al+1+1, de�ne 
 = 
1
2 : : : by 
k = ak� [k= l℄+[k= l + 1℄. If al = al+1+1, �ndthe smallest l0 with al+1 > al0+1 and let 
k = ak�[k= l0 ℄+[k= l0 + 1℄ if al0 > al0+1+1,otherwise 
k = ak � [k= l℄ + [k= l0 + 1℄.(b) Consider � and � to be strings of n 0s and n 1s, as in (15). Then � � � ifand only if � ! �, and �T � �T if and only if � ) �, where `!' denotes repla
ing asubstring of the form 011q10 by 101q01 and `)' denotes repla
ing a substring of theform 010q10 by 100q01, for some q � 0.(
) A partition 
overs at most [a1>a2 ℄ + � � � + [am�1>am ℄ + [am� 2℄ others.The partition � = (n2+n1�1)(n2�2)(n2�3) : : : 21 maximizes this quantity in the 
aseam = 1; 
ases with am � 2 give no improvement. (The 
onjugate partition, namely(n2�1)(n2�2) : : : 21n1+1, is just as good. Therefore both � and �T are also 
overed bythe maximum number of others.)(d) Equivalently, 
onse
utive parts of � di�er by at most 1, and the smallest partis 1; the rim representation has no 
onse
utive 1s.(e) Use rim representations and repla
e � by the relation !. If � ! �1 and�! �01 we 
an easily show the existen
e of a string � su
h that �1 ! � and �01 ! �;for example, 101q0111r10% &011q1011r10 101q1011r01:& %011q1101r01Let � = �2 � � � � � �m where �m is minimal. Then, by indu
tion on max(k; k0), wehave k = m and �k = �m; also k0 = m and �0k0 = �m.(f) Set �  �T ; then repeatedly set �  �0 until � is minimal, using any
onvenient partition �0 su
h that � � �0. The desired partition is �T .Proof: Let �(�) be the 
ommon value �k = �0k0 in part (e); we must prove that� � � implies �(�) � �(�). There is a sequen
e � = �0, : : : , �k = � where �j ! �j+1or �j ) �j+1 for 0 � j < k. If �0 ! �1 we have �(�) = �(�1); thus it suÆ
es to provethat �) � and �! �0 implies �0 � �(�). But we have, for example,100q0111r10=) &010q1011r10 100q1011r01& =)010q1101r01! 010q�110011r01be
ause we may assume that q > 0; and the other 
ases are similar.(g) The parts of �n are ak = n2 + [k�n1 ℄� k for 1 � k < n2; the parts of �Tn arebk = n2 � k + [n2 � k <n1 ℄ for 1 � k � n2. The algorithm of (f) rea
hes �Tn from n1after �n2+13 �� �n2�n12 � steps, be
ause ea
h step in
reases P kbk =P�ak+12 � by 1.(h) The path n, (n�1)1, (n�2)2, (n�2)11, (n�3)21, : : : , 321n�5, 31n�3, 221n�4,21n�2, 1n, of length 2n� 4 when n � 3, is shortest.It 
an be shown that the longest path has m = 2�n23 �+n1(n2�1) steps. One su
hpath has the form �0, : : : , �k, : : : , �l, : : : , �m where �0 = n1; �k = �n; �l = �Tn ;�j � �j+1 for 0 � j < l; and �Tj+1 � �Tj for k � j < m.Referen
e: C. Greene and D. J. Kleitman, Europ. J. Combinatori
s 7 (1986), 1{10.56. Suppose � = u1 : : : um and � = v1 : : : vm. The following (unoptimized) algo-rithm applies the theory of exer
ise 54 to generate the partitions in 
olex order,maintaining � = a1a2 : : : am � � as well as �T = b1b2 : : : bl � �T . To �nd thesu

essor of �, we �rst �nd the largest j su
h that bj 
an be in
reased. Then we have
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7.2.1.4 ANSWERS TO EXERCISES 61� = b1 : : : bj�1(bj+1)1 : : : 1 � �T , hen
e the desired su

essor is �T ^�. The algorithmmaintains auxiliary tables rj = bj+ � � �+bl, sj = v1+ � � �+vj , and tj = wj+wj+1+ � � � ,where �T = w1w2 : : : .M1. [Initialize.℄ Set q  0, k  u1. For j = 1, : : : , m, while uj+1 < k settk  q  q + j and k  k � 1. Then set q  0 again, and for j = 1, : : : , mset aj  vj , sj  q  q + aj . Then set q  0 yet again, and k  l  a1.For j = 1, : : : , m, while aj+1 < k set bk  j, rk  q  q+ j, and k  k�1.Finally, set t1  0, b0  0, b�1  �1.M2. [Visit.℄ Visit the partition a1 : : : am and/or its 
onjugate b1 : : : bl.M3. [Find j.℄ Let j be the largest integer < l su
h that rj+1 > tj+1 and bj 6= bj�1.Terminate the algorithm if j = 0.M4. [In
rease bj .℄ Set x  rj+1 � 1, k  bj , bj  k + 1, and ak+1  j. (Theprevious value of ak+1 was j � 1. Now we're going to update a1 : : : ak usingessentially the method of exer
ise 54(
) to distribute x dots into 
olumnsj + 1, j + 2, : : : .)M5. [Majorize.℄ Set z  0 and then do the following for i = 1, : : : , k: Setx  x + j, y  min(x; si), ai  y � z, z  y; if i = 1 set l  p  a1 andq  0; if i > 1 while p > ai set bp  i � 1, rp  q  q + i � 1, p  p � 1.Finally, while p > j set bp  k, rp  q  q+k, p p�1. Return to M2.57. If � = �T there obviously is only one su
h matrix, essentially the Ferrers diagramof �. And the 
ondition � � �T is ne
essary, for if �T = b1b2 : : : we have b1+ � � �+bk =min(
1; k)+min(
2; k)+ � � � , and this quantity must not be less than the number of 1sin the �rst k rows. Finally, if there is a matrix for � and � and if � 
overs �, we 
anreadily 
onstru
t a matrix for � and � by moving a 1 from any spe
i�ed row to anotherthat has fewer 1s.Notes: This result is often 
alled the Gale{Ryser theorem, be
ause of well-knownpapers by D. Gale [Pa
i�
 J. Math. 7 (1957), 1073{1082℄ and H. J. Ryser [CanadianJ. Math. 9 (1957), 371{377℄. But the number of 0{1 matri
es with row sums � and
olumn sums � is the 
oeÆ
ient of the monomial symmetri
 fun
tion Px
1i1 x
2i2 : : : inthe produ
t of elementary symmetri
 fun
tions er1er2 : : : , whereer = [zr℄ (1 + x1z)(1 + x2z)(1 + x3z) : : : :In this 
ontext the result has been known at least sin
e the 1930s; see D. E. Littlewood'sformula for Qm;n�0(1 + xmyn) in Pro
. London Math. So
. (2) 40 (1936), 40{70.[Cayley had shown mu
h earlier, in Philosophi
al Trans. 147 (1857), 489{499, that thelexi
ographi
 
ondition � � �T is ne
essary.℄58. [R. F. Muirhead, Pro
. Edinburgh Math. So
. 21 (1903), 144-157.℄ The 
ondition� � � is ne
essary, be
ause we 
an set x1 = � � � = xk = x and xk+1 = � � � = xn = 1and let x ! 1. It is suÆ
ient be
ause we need only prove it when � 
overs �. Thenif, say, parts (a1; a2) be
ome (a1 � 1; a2 + 1), the left-hand side is the right-hand sideplus the nonnegative quantity12m!Xxa2p1xa2p2 : : : xampm (xa1�a2�1p1 � xa1�a2�1p2 )(xp1 � xp2):[Histori
al notes: Muirhead's paper is the earliest known appearan
e of the 
on
eptnow known as majorization; shortly afterward, an equivalent de�nition was givenby M. O. Lorenz, Quarterly Publ. Amer. Stat. Asso
. 9 (1905), 209{219, who wasinterested in measuring nonuniform distribution of wealth. Yet another equivalent
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62 ANSWERS TO EXERCISES 7.2.1.4
on
ept was formulated by I. S
hur in Sitzungsberi
hte Berliner Math. Gesells
haft22 (1923), 9{20. \Majorization" was named by Hardy, Littlewood, and P�olya, whoestablished its most basi
 properties in Messenger of Math. 58 (1929), 145{152; seeexer
ise 2.3.4.5{17. An ex
ellent book, Inequalities by A. W. Marshall and I. Olkin(A
ademi
 Press, 1979), is entirely devoted to the subje
t.℄59. The unique paths for n = 0, 1, 2, 3, 4, and 6 must have the stated symmetry.There is one su
h path for n = 5, namely 11111, 2111, 221, 311, 32, 41, 5. And thereare four for n = 7:1111111; 211111; 22111; 2221; 322; 3211; 31111; 4111; 511; 421; 331; 43; 52; 61; 7;1111111; 211111; 22111; 2221; 322; 421; 511; 4111; 31111; 3211; 331; 43; 52; 61; 7;1111111; 211111; 31111; 22111; 2221; 322; 3211; 4111; 421; 331; 43; 52; 511; 61; 7;1111111; 211111; 31111; 22111; 2221; 322; 421; 4111; 3211; 331; 43; 52; 511; 61; 7:There are no others, be
ause at least two self-
onjugate partitions exist for all n � 8(see exer
ise 16).60. For L(6; 6), use (59); otherwise use L0(4; 6) and L0(3; 5) everywhere.In M(4; 18), insert 444222, 4442211 between 443322 and 4432221.In M(5; 11), insert 52211, 5222 between 62111 and 6221.In M(5; 20), insert 5542211, 554222 between 5552111 and 555221.In M(6; 13), insert 72211, 7222 between 62221 and 6322.In L(4; 14), insert 44222, 442211 between 43322 and 432221.In L(5; 15), insert 542211, 54222 between 552111 and 55221.In L(7; 12), insert 62211, 6222 between 72111 and 7221.62. The statement holds for n = 7, 8, and 9, ex
ept in two 
ases: n = 8, m = 3,� = 3221; n = 9, m = 4, � = 432.64. If n = 2kq where q is odd, let !n denote the partition (2k)q, namely q parts equalto 2k. The re
ursive rule B(n) = B(n� 1)R1; 2�B(n=2)for n > 0, where 2�B(n=2) denotes doubling all parts of B(n=2) (or the empty sequen
eif n is odd), de�nes a pleasant Gray path that begins with !n�11 and ends with !n, ifwe let B(0) be the unique partition of 0. Thus,B(1) = 1; B(2) = 11; 2; B(3) = 21; 111; B(4) = 1111; 211; 22; 4:Among the remarkable properties satis�ed by this sequen
e is the fa
t thatB(n) = (2� B(0))1n; (2� B(1))1n�2; (2�B(2))1n�4; : : : ; (2�B(n=2))10;when n is even; for example,B(8) = 11111111; 2111111; 221111; 41111; 4211; 22211; 2222; 422; 44; 8:The following algorithm generates B(n) looplessly when n � 2:K1. [Initialize.℄ Set 
0  p0  0, p1  1. If n is even, set 
1  n, t  1; other-wise let n� 1 = 2kq where q is odd and set 
1  1, 
2  q, p2  2k, t 2.K2. [Even visit.℄ Visit the partition p
tt : : : p
11 . (Now 
t + � � �+ 
1 is even.)K3. [Change the largest part.℄ If 
t = 1, split the largest part: If pt 6= 2pt�1, set
t  2, pt  pt=2, otherwise set 
t�1  
t�1 + 2, t  t � 1. But if 
t > 1,merge two of the largest parts: If 
t = 2, set 
t  1, pt  2pt, otherwise set
t  
t � 2, 
t+1  1, pt+1  2pt, t t+ 1.
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7.2.1.4 ANSWERS TO EXERCISES 63K4. [Odd visit.℄ Visit the partition p
tt : : : p
11 . (Now 
t + � � �+ 
1 is odd.)K5. [Change the next-largest part.℄ Now we wish to apply the following transfor-mation: \Remove 
t � [t is even℄ of the largest parts temporarily, then applystep K3, then restore the removed parts." More pre
isely, there are nine
ases: (1a) If 
t is odd and t = 1, terminate. (1b1) If 
t is odd, 
t�1 = 1, andpt�1 = 2pt�2, set 
t�2  
t�2 + 2, 
t�1  
t, pt�1  pt, t  t � 1. (1b2) If
t is odd, 
t�1 = 1, and pt�1 6= 2pt�2, set 
t�1  2, pt�1  pt�1=2. (1
1) If
t is odd, 
t�1 = 2, and pt = 2pt�1, set 
t�1  
t + 1, pt�1  pt, t  t � 1.(1
2) If 
t is odd, 
t�1 = 2, and pt 6= 2pt�1, set 
t�1  1, pt�1  2pt�1.(1d1) If 
t is odd, 
t�1 > 2, and pt = 2pt�1, set 
t�1  
t�1 � 2, 
t  
t + 1.(1d2) If 
t is odd, 
t�1 > 2, and pt 6= 2pt�1, set 
t+1  
t, pt+1  pt, 
t  1,pt  2pt�1, 
t�1  
t�1 � 2, t  t + 1. (2a) If 
t is even and pt = 2pt�1,set 
t  
t � 1, 
t�1  
t�1 + 2. (2b) If 
t is even and pt 6= 2pt�1, set
t+1  
t � 1, pt+1  pt, 
t  2, pt  pt=2, t t+ 1. Return to K2.[The transformations in K3 and K5 undo themselves when performed twi
e in a row.This 
onstru
tion is due to T. Colthurst and M. Kleber, \A Gray path on binarypartitions," to appear. Euler 
onsidered the number of su
h partitions in x50 of hispaper in 1750.℄65. If pe11 : : : perr is the prime fa
torization of m, the number of su
h fa
torizations isp(e1) : : : p(er), and we 
an let n = max(e1; : : : ; er). Indeed, for ea
h r-tuple (x1; : : : ; xr)with 0 � xk < p(ek) we 
an let mj = pa1j1 : : : parjr , where ak1 : : : akn is the (xk + 1)stpartition of ek. Thus we 
an use a re
e
ted Gray 
ode for r-tuples together with aGray 
ode for partitions.66. Let a1 : : : am be an m-tuple that satis�es the spe
i�ed inequalities. We 
an sort itinto nonin
reasing order ax1 � � � � � axm , where the permutation x1 : : : xm is uniquelydetermined if we require the sorting to be stable; see Eq. 5{(2).If j � k, we have aj � ak, hen
e j appears to the left of k in the permutationx1 : : : xm. Therefore x1 : : : xm is one of the permutations output by Algorithm 7.2.1.2V.Moreover, j will be left of k also when aj = ak and j < k, by stability. Hen
e axi isstri
tly greater than axi+1 when xi > xi+1 is a \des
ent."To generate all the relevant partitions of n, take ea
h topologi
al permutationx1 : : : xm and generate the partitions y1 : : : ym of n� t where t is the index of x1 : : : xm(see Se
tion 5.1.1). For 1 � j � m set axj  yj+ tj , where tj is the number of des
entsto the right of xj in x1 : : : xm.For example, if x1 : : : xm = 314592687 we want to generate all 
ases with a3 >a1 � a4 � a5 � a9 > a2 � a6 � a8 > a7. In this 
ase t = 1 + 5 + 8 = 14; so we seta1  y2+2, a2  y6+1, a3  y1+3, a4  y3+2, a5  y4+2, a6  y7+1, a7  y9,a8  y8+1, and a9  y5+2. The generalized generating fun
tionP za11 : : : za99 in thesense of exer
ise 29 is z21z2z33z24z25z6z8z29(1� z3)(1� z3z1)(1� z3z1z4)(1� z3z1z4z5) : : : (1� z3z1z4z5z9z2z6z8z7) :When � is any given partial ordering, the ordinary generating fun
tion for all su
hpartitions of n is thereforeP zind�=((1� z)(1� z2) : : : (1� zm)), where the sum is overall outputs � of Algorithm 7.2.1.2V.[See R. P. Stanley,Memoirs Amer. Math. So
. 119 (1972), for signi�
ant extensionsand appli
ations of these ideas. See also L. Carlitz, Studies in Foundations andCombinatori
s (New York: A
ademi
 Press, 1978), 101{129, for information aboutup-down partitions.℄
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64 ANSWERS TO EXERCISES 7.2.1.467. If n + 1 = q1 : : : qr, where the fa
tors q1, : : : , qr are all � 2, we get a perfe
tpartition f(q1�1) � 1; (q2�1) � q1; (q3�1) � q1q2; : : : ; (qr�1) � q1 : : : qr�1g that 
orrespondsin an obvious way to mixed radix notation. (The order of the fa
tors qj is signi�
ant.)Conversely, all perfe
t partitions arise in this way. Suppose the multiset M =fk1 � p1; : : : ; km � pmg is a perfe
t partition, where p1 < � � � < pm; then we must havepj = (k1+1) : : : (kj�1+1) for 1 � j � m, be
ause pj is the smallest sum of a submultisetof M that is not a submultiset of fk1 � p1; : : : ; kj�1 � pj�1g.The perfe
t partitions of n with fewest elements o

ur if and only if the qj are allprime, be
ause pq � 1 > (p�1) + (q�1) whenever p > 1 and q > 1. Thus, for example,the minimal perfe
t partitions of 11 
orrespond to the ordered fa
torizations 2 � 2 � 3,2 � 3 � 2, and 3 � 2 � 2. Referen
e: Quarterly Journal of Mathemati
s 21 (1886), 367{373.68. (a) If ai + 1 � aj � 1 for some i and j we 
an 
hange fai; ajg to fai+1; aj�1g,thereby in
reasing the produ
t by aj � ai � 1 > 0. Thus the optimum o

urs only inthe optimally balan
ed partition of exer
ise 3. [L. Oettinger and J. Derb�es, Nouv. Ann.Math. 18 (1859), 442; 19 (1860), 117{118.℄(b) No part is 1; and if aj � 4 we 
an 
hange it to 2 + (aj�2) without de
reasingthe produ
t. Thus we 
an assume that all parts are 2 or 3. We get an improvement by
hanging 2 + 2 + 2 to 3 + 3, hen
e there are at most two 2s. The optimum therefore is3n=3 when nmod 3 is 0; 4 � 3(n�4)=3 = 3(n�4)=3 � 2 � 2 = (4=34=3)3n=3 when nmod 3is 1; 3(n�2)=3 � 2 = (2=32=3)3n=3 when nmod 3 is 2. [O. Mei�ner, Mathematis
h-naturwissens
haftli
he Bl�atter 4 (1907), 85.℄69. All n > 2 have the solution (n; 2; 1; : : : ; 1). We 
an \sieve out" the other 
ases � Nby starting with s2 : : : sN  1 : : : 1 and then setting sak�b  0 whenever ak � b � N ,where a = x1 : : : xt� 1, b = x1+ � � �+xt� t� 1, k � x1 � � � � � xt, and a > 1, be
ausek + x1 + � � �+ xt + (ak � b� t� 1) = kx1 : : : xt. The sequen
e (x1; : : : ; xt) needs to be
onsidered only when (x1 : : : xt�1)x1� (x1+ � � �+xt) < N � t; we 
an also 
ontinue tode
rease N so that sN = 1. In this way only (32766; 1486539;254887; 1511; 937; 478; 4)sequen
es (x1; : : : ; xt) need to be tried when N is initially 230, and the only survivorsturn out to be 2, 3, 4, 6, 24, 114, 174, and 444. [See E. Trost, Elemente der Math. 11(1956), 135; M. Misiurewi
z, Elemente der Math. 21 (1966), 90.℄Notes: No new survivors are likely asN !1, but a new idea will be needed to rulethem out. The simplest sequen
es (x1; : : : ; xt) = (3) and (2; 2) already ex
lude all n > 5with nmod 6 6= 0; this fa
t 
an be used to speed up the 
omputation by a fa
tor of 6.The sequen
es (6) and (3; 2) ex
lude 40% of the remainder (namely all n of the forms5k� 4 and 5k� 2); the sequen
es (8), (4; 2), and (2; 2; 2) ex
lude 3/7 of the remainder;the sequen
es with t = 1 imply that n � 1 must be prime; the sequen
es in whi
hx1 : : : xt = 2r ex
lude about p(r) residues of nmod (2r�1); sequen
es in whi
h x1 : : : xtis the produ
t of r distin
t primes will ex
lude about$r residues of nmod (x1 : : : xt�1).70. Ea
h step takes one partition of n into another, so we must eventually rea
h arepeating 
y
le. Many partitions simply perform a 
y
li
 shift on ea
h northeast-to-southwest diagonal of the Ferrers diagram, 
hanging it
from

x1 x2 x4 x7 x11 x16 : : :x3 x5 x8 x12 x17 x23 : : :x6 x9 x13 x18 x24 x31 : : :x10 x14 x19 x25 x32 x40 : : :x15 x20 x26 x33 x41 x50 : : :x21 x27 x34 x42 x51 x61 : : :... ... ... ... ... ...
to

x1 x3 x6 x10 x15 x21 : : :x2 x4 x7 x11 x16 x22 : : :x5 x8 x12 x17 x23 x30 : : :x9 x13 x18 x24 x31 x39 : : :x14 x19 x25 x32 x40 x49 : : :x20 x26 x33 x41 x50 x60 : : :... ... ... ... ... ...
;

64



7.2.1.5 ANSWERS TO EXERCISES 65in other words, they apply the permutation � = (1)(2 3)(4 5 6)(7 8 9 10) : : : to the 
ells.Ex
eptions o

ur only when � introdu
es an empty 
ell above a dot; for example, x10might be empty when x11 isn't. But we 
an get the 
orre
t new diagram by movingthe top row down, sorting it into its proper pla
e after applying � in su
h 
ases. Su
h amove always redu
es the number of o

upied diagonals, so it 
annot be part of a 
y
le.Thus every 
y
le 
onsists entirely of permutations by �.If any element of a diagonal is empty in a 
y
li
 partition, all elements of thenext diagonal must be empty. For if, say, x5 is empty, repeated appli
ation of � willmake x5 adja
ent to ea
h of the 
ells x7, x8, x9, x10 of the next diagonal. Thereforeif n = �n22 � + �n11 � with n2 > n1 � 0 the 
y
li
 states are pre
isely those with n2 � 1
ompletely �lled diagonals and n1 dots in the next. [This result is due to J. Brandt,Pro
. Amer. Math. So
. 85 (1982), 483{486. The origin of the problem is unknown;see Martin Gardner, The Last Re
reations (1997), Chapter 2.℄71. When n = 1 + � � � + m > 1, the starting partition (m�1)(m�1)(m�2) : : : 211has distan
e m(m � 1) from the 
y
li
 state, and this is maximum. [K. Igusa, Math.Magazine 58 (1985), 259{271; G. Etienne, J. Combin. Theory A58 (1991), 181{197.℄In the general 
ase, Griggs and Ho [Advan
es in Appl. Math. 21 (1998), 205{227℄ have
onje
tured that the maximum distan
e to a 
y
le is max(2n+2�n1(n2+1); n+n2+1;n1(n2+1))�2n2 for all n > 1; their 
onje
ture has been veri�ed for n � 100. Moreover,the worst-
ase starting partition appears to be unique when n2 = 2n1 + f�1; 0; 2g.72. (a) Swap the jth o

urren
e of k in the partition n = j � k + � with the ktho

urren
e of j in k � j + �, for every partition � of n� jk. For example, when n = 6the swaps are6a; 5b11; 4f2g; 4
111g; 3h3i; 3j2k11; 3d111k1h; 2n222i; 2m22111n; 2e111m1j1f; 111e1d1
1b1a:(b) p(n�k) + p(n�2k)+ p(n�3k)+ � � � . [A. H. M. Hoare, AMM 93 (1986), 475{476.℄SECTION 7.2.1.51. Whenever m is set equal to r in step H6, 
hange it ba
k to r � 1.2. L1. [Initialize.℄ Set lj  j � 1 and aj  0 for 1 � j � n. Also set h1  n, t 1,and set l0 to any 
onvenient nonzero value.L2. [Visit.℄ Visit the t-blo
k partition represented by l1 : : : ln and h1 : : : ht. (Therestri
ted growth string 
orresponding to this partition is a1 : : : an.)L3. [Find j.℄ Set j  n; then, while lj = 0, set j  j � 1 and t t� 1.L4. [Move j to the next blo
k.℄ Terminate if j = 0. Otherwise set k  aj + 1,hk  lj , aj  k. If k = t, set t t+ 1 and lj  0; otherwise set lj  hk+1.Finally set hk+1  j.L5. [Move j + 1, : : : , n to blo
k 1.℄ While j < n, set j  j + 1, lj  h1, aj  0,and h1  j. Return to L2.3. Let �(k; n) be the number of strings a1 : : : an that satisfy the 
ondition 0 � aj �1+max(k�1; a1; : : : ; aj�1) for 1 � j � n; thus �(k; 0) = 1, �(0; n) = $n, and �(k; n) =k�(k; n�1)+�(k+1; n�1). [S. G. Williamson has 
alled �(k; n) a \tail 
oeÆ
ient"; seeSICOMP 5 (1976), 602{617.℄ The number of strings that are generated by Algorithm Hbefore a given restri
ted growth string a1 : : : an is Pnj=1 aj�(bj ; n � j), where bj =1+max(a1; : : : ; aj�1). Working ba
kwards with the help of a pre
omputed table of thetail 
oeÆ
ients, we �nd that this formula yields 999999 when a1 : : : a12 = 010220345041.
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66 ANSWERS TO EXERCISES 7.2.1.54. The most 
ommon representatives of ea
h type, subs
ripted by the number of
orresponding o

urren
es in the GraphBase, are zzzzz0, ooooh0, xxxix0, xxxii0,ooops0, llull0, llala0, eeler0, iitti0, xxiii0, 

xxv0, eerie1, llama1, xxvii0,oozed5, uhuuu0, mamma1, puppy28, anana0, hehee0, vivid15, rarer3, etext1, amass2,again137, ahhaa0, esses1, teeth25, yaaay0, ahhhh2, pssst2, seems7, added6, lxxii0,books184, swiss3, sense10, ended3, 
he
k160, level18, tepee4, slyly5, never154,sells6, motto21, whooo2, trees384, going307, whi
h151, there174, three100, their3834.(See S. Golomb, Math. Mag. 53 (1980), 219{221. Words with only two distin
t lettersare, of 
ourse, rare. The 18 representatives listed here with subs
ript 0 
an be foundin larger di
tionaries or in English-language pages of the Internet.)5. (a) 112 = �(0225). The sequen
e is r(0), r(1), r(4), r(9), r(16), : : : , where r(n) isobtained by expressing n in de
imal notation (with one or more leading zeros), applyingthe � fun
tion of exer
ise 4, then deleting the leading zeros. Noti
e that n=9 � r(n) � n.(b) 1012 = r(452). The sequen
e is the same as (a), but sorted into order and withdupli
ates removed. (Who knew that 882 = 7744, 2122 = 44944, and 2642 = 69696?)6. Use the topologi
al sorting approa
h of Algorithm 7.2.1.2V, with an appropriatepartial ordering: In
lude 
j 
hains of length j, with their least elements ordered. Forexample, if n = 20, 
2 = 3, and 
3 = 
4 = 2, we use that algorithm to �nd allpermutations a1 : : : a20 of f1; : : : ; 20g su
h that 1 � 2, 3 � 4, 5 � 6, 1 � 3 � 5,7 � 8 � 9, 10 � 11 � 12, 7 � 10, 13 � 14 � 15 � 16, 17 � 18 � 19 � 20,13 � 17, forming the restri
ted growth strings �(f(a1) : : : f(a20)), where � is de�nedin exer
ise 4 and (f(1); : : : ; f(20)) = (1; 1; 2; 2; 3; 3; 4; 4; 4; 5; 5; 5; 6; 6; 6; 6; 7; 7; 7; 7). Thetotal number of outputs is, of 
ourse, given by (48).7. Exa
tly $n. They are the permutations we get by reversing the left-right order ofthe blo
ks in (2) and dropping the `j' symbols: 1234, 4123, 3124, 3412, : : : , 4321.[See A. Claesson, European J. Combinatori
s 22 (2001), 961{971. S. Kitaev, in\Partially ordered generalized patterns," Dis
rete Math., to appear, has dis
overed afar-rea
hing generalization: Let � be a permutation of f0; : : : ; rg, let gn be the numberof permutations a1 : : : an of f1; : : : ; ng su
h that ak�0� > ak�1� > � � � > ak�r� > ajimplies j > k, and let fn be the number of permutations a1 : : : an for whi
h thepattern ak�0� > ak�1� > � � � > ak�r� is avoided altogether for r < k � n. ThenPn�0 gnzn=n! = exp(Pn�1 fn�1zn=n!).℄8. For ea
h partition of f1; : : : ; ng into m blo
ks, arrange the blo
ks in de
reasingorder of their smallest elements, and permute the non-smallest blo
k elements in allpossible ways. If n = 9 and m = 3, for example, the partition 126j38j4579 would yield457938126 and eleven other 
ases obtained by permuting f5; 7; 9g and f2; 6g amongthemselves. (Essentially the same method generates all permutations that have exa
tlyk 
y
les; see the \unusual 
orresponden
e" of Se
tion 1.3.3.)9. Among the permutations of the multiset fk0 � 0; k1 � 1; : : : ; kn�1 � (n�1)g, exa
tly k0 + k1 + � � �+ kn�1k0; k1; : : : ; kn�1 ! k0(k0 + k1 + � � �+ kn�1) k1(k1 + � � �+ kn�1) : : : kn�1kn�1have restri
ted growth, sin
e kj=(kj + � � � + kn�1) is the probability that j pre
edesfj + 1; : : : ; n� 1g.The average number of 0s, if n > 0, is 1 + (n � 1)$n�1=$n = �(logn), be
ausethe total number of 0s among all $n 
ases isPnk=1 k�n�1k�1�$n�k = $n + (n� 1)$n�1.10. Given a partition of f1; : : : ; ng, 
onstru
t an oriented tree on f0; 1; : : : ; ng by lettingj � 1 be the parent of all members of a blo
k whose least member is j. Then relabel
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7.2.1.5 ANSWERS TO EXERCISES 67the leaves, preserving order, and erase the other labels. For example, the 15 partitionsin (2) 
orrespond respe
tively to1 2 3 4 1 2 3 1 2 3 1 2 3 1 2 1 2 3 21 3 1 2 31 2 1 2 3 1 2 1 2 1 2 1 2 1To reverse the pro
ess, take a semilabeled tree and assign new numbers to its nodesby 
onsidering the nodes �rst en
ountered on the path from the root to the smallestleaf, then on the path from the root to the se
ond-smallest leaf, et
. The number ofleaves is n + 1 minus the number of blo
ks. [This 
onstru
tion is 
losely related toexer
ise 2.3.4.4{18 and to many enumerations in that se
tion. See P. L. Erd}os andL. A. Sz�ekely, Advan
es in Applied Math. 10 (1989), 488{496.℄11. We get pure alphameti
s from 900 of the 64855 set partitions into at most 10blo
ks for whi
h �(a1 : : : a13) = �(a5 : : : a8a1 : : : a4a9 : : : a13), and from 563,527 of the13,788,536 for whi
h �(a1 : : : a13) < �(a5 : : : a8a1 : : : a4a9 : : : a13). The �rst examplesare aaaa + aaaa = baaa
, aaaa + aaaa = bbbb
, and aaaa + aaab = baaa
; thelast are ab
d + efgd = d
eab (goat + newt = tango) and ab
d + efgd = d
eaf(
lad + nerd = dan
e). [The idea of hooking a partition generator to an alphameti
solver is due to Alan Sut
li�e.℄12. (a) Form �((a1a01) : : : (ana0n)), where � is de�ned in exer
ise 4, sin
e we have x � y(modulo � _� 0) if and only if x � y (modulo �) and x � y (modulo � 0).(b) Represent � by links as in exer
ise 2; represent � 0 as in Algorithm 2.3.3E;and use that algorithm to make j � lj whenever lj 6= 0. (For eÆ
ien
y, we 
an assumethat � has at least as many blo
ks as � 0.)(
) When one blo
k of � has been split into two parts; that is, when two blo
ksof � 0 have been merged together.(d) �t2�; (e) (2s1�1 � 1) + � � �+ (2st�1 � 1).(f) True: Let�_� 0 have blo
ks B1jB2j � � � jBt, where� = B1B2jB3j � � � jBt. Then� 0 is essentially a partition of fB1; : : : ; Btg with B1 6� B2, and � ^� 0 is obtained bymerging the blo
k of � 0 that 
ontains B1 with the blo
k that 
ontains B2. [A �nitelatti
e that satis�es this 
ondition is 
alled lower semimodular ; see G. Birkho�, Latti
eTheory (1940), xI.8. The majorization latti
e of exer
ise 7.2.1.4{54 does not have thisproperty when, for example, � = 4111 and �0 = 331.℄(g) False: For example, let � = 0011, � 0 = 0101.(h) The blo
ks of � and � 0 are unions of the blo
ks of � _� 0, so we 
an assumethat � _� 0 = f1; : : : ; tg. As in part (b), merge j with lj to get � in r steps, when �has t� r blo
ks. These merges applied to � 0 will ea
h redu
e the number of blo
ks by0 or 1. Hen
e b(� 0)� b(� ^� 0) � r = b(� _� 0)� b(�).[In Algebra Universalis 10 (1980), 74{95, P. Pudl�ak and J. T�uma proved that every�nite latti
e is a sublatti
e of the partition latti
e of f1; : : : ; ng, for suitably large n.℄13. [See Advan
es in Math. 26 (1977), 290{305.℄ If the j largest elements of a t-blo
kpartition appear in singleton blo
ks, but the next element n � j does not, let us saythat the partition has order t� j. De�ne the \Stirling string" �nt to be the sequen
eof orders of the t-blo
k partitions �1, �2, : : : ; for example, �43 = 122333. Then�tt = 0, and we get �(n+1)t from �nt by repla
ing ea
h digit d in the latter by thestring dd(d+1)d+1 : : : tt of length �t+12 �� �d2�; for example,�53 = 122333̂22333̂22333̂333̂333̂333:
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68 ANSWERS TO EXERCISES 7.2.1.5The basi
 idea is to 
onsider the lexi
ographi
 generation pro
ess of Algorithm H.Suppose � = a1 : : : an is a t-blo
k partition of order j; then it is the lexi
ographi
allysmallest t-blo
k partition whose restri
ted growth string begins with a1 : : : an�t+j . Thepartitions 
overed by � are, in lexi
ographi
 order, �12, �13, �23, �14, �24, �34,: : : , �(t�1)t, where �rs means \
oales
e blo
ks r and s of �" (that is, \
hange allo

urren
es of s � 1 to r � 1 and then apply � to get a restri
ted growth string"). If� 0 is any of the last �t2� � �j2� of these, from �1(j+1) onwards, then � is the smallestt-blo
k partition following � 0. For example, if � = 001012034, then n = 9, t = 5,j = 3, and the relevant partitions � 0 are �(001012004), �(001012014), �(001012024),�(001012030), �(001012031), �(001012032), �(001012033).Therefore fnt(N) = fnt(N � 1) + �t2�� �j2�, where j is the Nth digit of �nt.14. E1. [Initialize.℄ Set aj  0 and bj  dj  1 for 1 � j � n.E2. [Visit.℄ Visit the restri
ted growth string a1 : : : an.E3. [Find j.℄ Set j  n; then, while aj = dj , set dj  1� dj and j  j � 1.E4. [Done?℄ Terminate if j = 1. Otherwise go to E6 if dj = 0.E5. [Move down.℄ If aj = 0, set aj  bj , m aj + 1, and go to E7. Otherwise ifaj = bj , set aj  bj � 1, m  bj , and go to E7. Otherwise set aj  aj � 1and return to E2.E6. [Move up.℄ If aj = bj � 1, set aj  bj , m aj + 1, and go to E7. Otherwiseif aj = bj , set aj  0, m bj , and go to E7. Otherwise set aj  aj + 1 andreturn to E2.E7. [Fix bj+1 : : : bn.℄ Set bk  m for k = j + 1, : : : , n. Return to E2.[This algorithm 
an be extensively optimized be
ause, as in Algorithm H, j is almostalways equal to n.℄15. It 
orresponds to the �rst n digits of the in�nite binary string 01011011011 : : : ,be
ause $n�1 is even if and only if nmod 3 = 0 (see exer
ise 23).16. 00012, 01012, 01112, 00112, 00102, 01102, 01002, 01202, 01212, 01222, 01022,01122, 00122, 00121, 01121, 01021, 01221, 01211, 01201, 01200, 01210, 01220, 01020,01120, 00120.17. The following solution uses two mutually re
ursive pro
edures, f(�; �; �) andb(�; �; �), for \forward" and \ba
kward" generation of A�� when � = 0 and of A0��when � = 1. To start the pro
ess, assuming that 1 < m < n, �rst set aj  0 for1 � j � n�m and an�m+j  j � 1 for 1 � j � m, then 
all f(m;n; 0).Pro
edure f(�; �; �): If � = 2, visit a1 : : : an; otherwise 
all f(� � 1; � � 1;(�+�) mod 2). Then, if � = � + 1, do the following: Change a� from 0 to � � 1,and visit a1 : : : an; repeatedly set a�  a� � 1 and visit a1 : : : an, until a� = 0. But if� > � + 1, 
hange a��1 (if �+� is odd) or a� (if �+� is even) from 0 to � � 1; then
all b(�; ��1; 0) if a� + � is odd, f(�; ��1; 0) if a� + � is even; and while a� > 0, seta�  a� � 1 and 
all b(�; ��1; 0) or f(�; ��1; 0) again in the same way until a� = 0.Pro
edure b(�; �; �): If � = �+1, �rst do the following: Repeatedly visit a1 : : : anand set a�  a� + 1, until a� = � � 1; then visit a1 : : : an and 
hange a� from � � 1to 0. But if � > �+ 1, 
all f(�; ��1; 0) if a� + � is odd, b(�; ��1; 0) if a� + � is even;then while a� < � � 1, set a�  a� + 1 and 
all f(�; ��1; 0) or b(�; ��1; 0) again inthe same way until a� = � � 1; �nally 
hange a��1 (if �+� is odd) or a� (if �+� iseven) from �� 1 to 0. And �nally, in both 
ases, if � = 2 visit a1 : : : an, otherwise 
allb(�� 1; � � 1; (�+�) mod 2).
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7.2.1.5 ANSWERS TO EXERCISES 69Most of the running time is a
tually spent handing the 
ase � = 2; faster routinesbased on Gray binary 
ode (and deviating from Ruskey's a
tual sequen
es) 
ould besubstituted for this 
ase. A streamlined pro
edure 
ould also be used when � = � � 1.18. The sequen
e must begin (or end) with 01 : : : (n�1). By exer
ise 32, no su
h Gray
ode 
an exist when 0 6= Æn 6= (1)0+1+���+(n�1), namely when nmod 12 is 4, 6, 7, or 9.The 
ases n = 1, 2, 3, are easily solved; and 1,927,683,326 solutions exist whenn = 5. Thus there probably are zillions of solutions for all n � 8 ex
ept for the 
asesalready ex
luded. Indeed, we 
an probably �nd su
h a Gray path through all$nk of thestrings 
onsidered in answer 28(e) below, ex
ept when n � 2k+(2; 4; 5; 7) (modulo 12).Note: The generalized Stirling number �nm	�1 in exer
ise 30 ex
eeds 1 for 2 <m < n, so there 
an be no su
h Gray 
ode for the partitions of f1; : : : ; ng into mblo
ks.19. (a) Change (6) to the pattern 0, 2, : : : , m, : : : , 3, 1 or its reverse, as in endo-order(7.2.1.3{(45)).(b) We 
an generalize (8) and (9) to obtain sequen
es Amn� and A0mna thatbegin with 0n�m01 : : : (m�1) and end with 01 : : : (m�1)� and 0n�m�101 : : : (m�1)a,respe
tively, where 0 � a � m�2 and � is any string a1 : : : an�m with 0 � aj � m�2.When 2 < m < n the new rules areAm(n+1)(�a) = (A(m�1)n(b�)x1; ARmn�x1; Amn�x2; : : : ; Amn�xm; if m is even;A0(m�1)nbx1; Amn�x1; ARmn�x2; : : : ; Amn�xm; if m is odd;A0m(n+1)a = (A0(m�1)nbx1; Amn�x1; ARmn�x2; : : : ; ARmn�xm; if m is even;A(m�1)n(b�)x1; ARmn�x1; Amn�x2; : : : ; ARmn�xm; if m is odd;here b = m� 3, � = bn�m, and (x1; : : : ; xm) is a path from x1 = m� 1 to xm = a.20. 012323212122; in general (a1 : : : an)T = �(an : : : a1), in the notation of exer
ise 4.21. The numbers hs0; s1; s2; : : : i = h1; 1; 2; 3; 7; 12; 31; 59; 164; 339; 999; : : : i satisfy there
urren
es s2n+1 =Pk �nk�s2n�2k, s2n+2 =Pk �nk�(2k + 1)s2n�2k, be
ause of the waythe middle elements relate to the others. Therefore s2n = n! [zn℄ exp((e2z�1)=2+ez�1)and s2n+1 = n! [zn℄ exp((e2z � 1)=2+ ez + z � 1). By 
onsidering set partitions on the�rst half we also have s2n = Pk �nk	xk and s2n+1 = Pk �n+1k 	xk�1, where xn =2xn�1 + (n� 1)xn�2 = n! [zn℄ exp(2z + z2=2). [T. S. Motzkin 
onsidered the sequen
ehs2ni in Pro
. Symp. Pure Math. 19 (1971), 173.℄22. (a)P1k=0 kn Pr(X=k) = e�1P1k=0 kn=k! = $n by (16). (b)P1k=0 kn Pr(X=k) =P1k=0 knPmj=0 �jk�(�1)j�k=j!, and we 
an extend the inner sum to j = 1 be
ausePk �jk�(�1)kkn = 0 when j > n. Thus we get P1k=0(kn=k!)P1l=0(�1)l=l! = $n. [SeeJ. O. Irwin, J. Royal Stat. So
. A118 (1955), 389{404; J. Pitman, AMM 104 (1997),201{209.℄23. (a) The formula holds whenever f(x) = xn, by (14), so it holds in general. (Thuswe also have P1k=0 f(k)=k! = ef($), by (16).)(b) Suppose we have proved the relation for k, and let h(x) = (x�1)kf(x), g(x) =f(x+1). Then f($+k+1) = g($+k) = $kg($) = h($+1) = $h($) = $k+1f($).[See J. Tou
hard, Ann. So
. S
i. Bruxelles 53 (1933), 21{31. This symboli
 \umbral
al
ulus," invented by John Blissard in Quart. J. Pure and Applied Math. 4 (1861),279{305, is quite useful; but it must be handled 
arefully be
ause f($) = g($) doesnot imply that f($)h($) = g($)h($).℄
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70 ANSWERS TO EXERCISES 7.2.1.5(
) The hint is a spe
ial 
ase of exer
ise 4.6.2{16(
). Setting f(x) = xn and k = pin (b) then yields $n � $p+n �$1+n.(d) Modulo p, the polynomial xN � 1 is divisible by g(x) = xp � x � 1, be
ausexpk � x + k and xN � xp � xp � xp � x � 1 (modulo g(x) and p). Thus if h(x) =(xN � 1)xn=g(x) we have h($) � h($ + p) = $ph($) � ($p � $)h($); and 0 �g($)h($) = $N+n �$n (modulo p).24. The hint follows by indu
tion on e, be
ause xpe = Qp�1k=0(x� kpe�1)pe�1 . We 
analso prove by indu
tion on n that xn � rn(x) (modulo g1(x) and p) impliesxpe�1n � rn(x)pe�1 (modulo ge(x), pge�1(x), : : : , pe�1g1(x), and pe):Hen
e xpe�1N = 1+h0(x)ge(x)+ph1(x)ge�1(x)+ � � �+pe�1he�1(x)g1(x)+pehe(x) for
ertain polynomials hk(x) with integer 
oeÆ
ients. Modulo pe we have h0($)$n �h0($ + pe)($ + pe)n = $peh0($)$n � (ge($) + 1)h0($)$n; hen
e$pe�1N+n = $n + h0($)ge($)$n + ph1($)ge�1($)$n + � � � � $n:[A similar derivation applies when p = 2, but we let gj+1(x) = gj(x)2 + 2[j=2℄, andwe obtain $n � $n+3�2e (modulo 2e). These results are due to Marshall Hall; see Bull.Amer. Math. So
. 40 (1934), 387; Amer. J. Math. 70 (1948), 387{388. For furtherinformation see W. F. Lunnon, P. A. B. Pleasants, and N. M. Stephens, A
ta Arith.35 (1979), 1{16.℄25. The �rst inequality follows by applying a mu
h more general prin
iple to the treeof restri
ted growth strings: In any tree for whi
h deg(p) � deg(parent(p)) for all non-root nodes p, we have wk=wk�1 � wk+1=wk when wk is the total number of nodes onlevel k. For if the m = wk�1 nodes on level k�1 have respe
tively a1, : : : , am 
hildren,they have at least a21 + � � �+ a2m grand
hildren; hen
e wk�1wk+1 � m(a21 + � � �+ a2m) �(a1 + � � �+ am)2 = w2k.For the se
ond inequality, note that $n+1 �$n =Pnk=0(�nk�� �n�1k�1�)$n�k; thus$n+1$n � 1 = n�1Xk=0�n� 1k �$n�k$n � n�1Xk=0�n� 1k �$n�k�1$n�1 = $n$n�1be
ause, for example, $n�3=$n = ($n�3=$n�2)($n�2=$n�1)($n�1=$n) is less thanor equal to ($n�4=$n�3)($n�3=$n�2)($n�2=$n�1) = $n�4=$n�1.26. There are �n�1n�t� rightward paths from n1 to tt ; we 
an represent them by 0s and1s, where 0 means \go right," 1 means \go up," and the positions of the 1s tell us whi
hn�t of the elements are in the blo
k with 1. The next step, if t > 1, is to another vertexat the far left; so we 
ontinue with a path that de�nes a partition on the remaining t�1elements. For example, the partition 14j2j3 
orresponds to the path 0010 under these
onventions, where the respe
tive bits mean that 1 6� 2, 1 6� 3, 1 � 4, 2 6� 3. [Manyother interpretations are possible. The 
onvention suggested here shows that $nkenumerates partitions with 1 6� 2, : : : , 1 6� k, a 
ombinatorial property dis
overed byH. W. Be
ker; see AMM 51 (1944), 47, and Mathemati
s Magazine 22 (1948), 23{26.℄
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7.2.1.5 ANSWERS TO EXERCISES 7127. (a) In general, �0 = �1 = �2n�1 = �2n = 0. The following list shows also therestri
ted growth strings that 
orrespond to ea
h loop via the algorithm of part (b):0;0;0;0;0;0;0;0;0 01230;0;0;0;0;0;1;0;0 01220;0;0;0;1;0;0;0;0 01120;0;0;0;1;0;1;0;0 01110;0;0;0;1;1;1;0;0 0121
0;0;1;0;0;0;0;0;0 00120;0;1;0;0;0;1;0;0 00110;0;1;0;1;0;0;0;0 00010;0;1;0;1;0;1;0;0 00000;0;1;0;1;1;1;0;0 0010

0;0;1;1;1;0;0;0;0 01020;0;1;1;1;0;1;0;0 01000;0;1;1;1;1;1;0;0 01200;0;1;1;11;1;1;0;0 01010;0;1;1;2;1;1;0;0 0110(b) The name \tableau" suggests a 
onne
tion to Se
tion 5.1.4, and indeed thetheory developed there leads to an interesting one-to-one 
orresponden
e. We 
anrepresent set partitions on a triangular 
hessboard by puttinga rook in 
olumn lj of row n + 1 � j whenever lj 6= 0 in thelinked list representation of exer
ise 2 (see the answer to exer
ise5.1.3{19). For example, the rook representation of 135j27j489j6is shown here. Equivalently, the nonzero links 
an be spe
i�ed ina two-line array, su
h as �1 2 3 4 83 7 5 8 9�; see 5.1.4{(11). �
� � �

�

01 23 45 67 89 1011 1213 1415 1617 18

1 2 3 4 5 6 7 8 9
Consider the path of length 2n that begins at the lower left
orner of this triangular diagram and follows the right boundaryedges, ending at the upper right 
orner: The points of this pathare zk = (bk=2
; dk=2e) for 0 � k � 2n. Moreover, the re
tangle above and to the leftof zk 
ontains pre
isely the rooks that 
ontribute 
oordinate pairs ij to the two-linearray when i � bk=2
 and j > dk=2e; in our example, there are just two su
h rookswhen 9 � k � 12, namely �2 47 8�. Theorem 5.1.4A tells us that su
h two-line arrays areequivalent to tableaux (Pk; Qk), where the elements of Pk 
ome from the lower lineand the elements of Qk 
ome from the upper line, and where both Pk and Qk have thesame shape. It is advantageous to use de
reasing order in the P tableaux but in
reasingorder in the Q tableaux, so that in our example they are respe
tivelyk Pk Qk2 3 13 3 14 73 125 7 26 7 5 2 3

k Pk Qk7 7 5 2 38 8 57 2 349 87 2410 87 2411 87 24

k Pk Qk12 87 2413 8 414 8 415 � �16 9 8while Pk and Qk are empty for k = 0, 1, 17, and 18.In this way every set partition leads to a va
illating tableau loop �0, �1, : : : , �2n,if we let �k be the integer partition that spe
i�es the 
ommon shape of Pk and Qk.(The loop is 0, 0, 1, 1, 11, 1, 2, 2, 21, 11, 11, 11, 11, 1, 1, 0, 1, 0, 0 in our example.)Moreover, t2k�1 = 0 if and only if row n + 1 � k 
ontains no rook, if and only if k issmallest in its blo
k.Conversely, the elements of Pk and Qk 
an be uniquely re
onstru
ted from thesequen
e of shapes �k. Namely,Qk = Qk�1 if tk = 0. Otherwise, if k is even, Qk isQk�1
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72 ANSWERS TO EXERCISES 7.2.1.5with the number k=2 pla
ed in a new 
ell at the right of row tk; if k is odd, Qk is obtainedfrom Qk�1 by using Algorithm 5.1.4D to delete the rightmost entry of row tk. A similarpro
edure de�nes Pk from the values of Pk+1 and tk+1, so we 
an work ba
k from P2nto P0. Thus the sequen
e of shapes �k is enough to tell us where to pla
e the rooks.Va
illating tableau loops were introdu
ed in the paper \Crossings and nestings ofmat
hings and partitions" by W. Y. C. Chen, E. Y. P. Deng, R. R. X. Du, R. P. Stanley,and C. H. Yan (preprint, 2005), who showed that the 
onstru
tion has signi�
ant(and surprising) 
onsequen
es. For example, if the set partition � 
orresponds tothe va
illating tableau loop �0, �1, : : : , �2n, let's say that its dual �D is the setpartition that 
orresponds to the sequen
e of transposed shapes �T0 , �T1 , : : : , �T2n.Then, by exer
ise 5.1.4{7, � 
ontains a \k-
rossing at l," namely a sequen
e of indi
eswith i1 < � � � < ik � l < j1 < � � � < jk and i1 � j1, : : : , ik � jk (modulo �),if and only if �D 
ontains a \k-nesting at l," whi
h is a sequen
e of indi
es withi01 < � � � < i0k � l < j0k < � � � < j01 and i01 � j01, : : : , i0k � j0k (modulo �D). Noti
e alsothat an involution is essentially a set partition in whi
h all blo
ks have size 1 or 2; thedual of an involution is an involution having the same singleton sets. In parti
ular, thedual of a perfe
t mat
hing (when there are no singleton sets) is a perfe
t mat
hing.Furthermore, an analogous 
onstru
tion applies to rook pla
ements in any Ferrersdiagram, not only in the stairstep shapes that 
orrespond to set partitions. Given aFerrers diagram that has at most m parts, all of size � n, we simply 
onsider the pathz0 = (0; 0), z1, : : : , zm+n = (n;m) that hugs the right edge of the diagram, and stipulatethat �k = �k�1+ etk when zk = zk�1+(1; 0), �k = �k�1� etk when zk = zk�1+(0; 1).The proof we gave for stairstep shapes shows also that every pla
ement of rooks in theFerrers diagram, with at most one rook in ea
h row and at most one in ea
h 
olumn,
orresponds to a unique tableau loop of this kind.[And mu
h more is true, besides! See S. Fomin, J. Combin. Theory A72 (1995),277{292; M. van Leeuwen, Ele
troni
 J. Combinatori
s 3, 2 (1996), paper #R15.℄28. (a) De�ne a one-to-one 
orresponden
e between rook pla
ements, by inter
hangingthe positions of rooks in rows j and j+1 if and only if there's a rook in the \panhandle"of the longer row: � �ÆÆ ÆÆÆÆÆÆÆ () � �ÆÆ ÆÆÆÆÆÆÆ ;
�� ÆÆÆ ÆÆ () �� ÆÆÆ ÆÆ :(b) This relation is obvious from the de�nition, by transposing all the rooks.(
) Suppose a1 � a2 � � � � and ak > ak+1. Then we haveR(a1; a2; : : : ) = xR(a1�1; : : : ; ak�1�1; ak+1; : : : ) + yR(a1; : : : ; ak�1; ak�1; ak+1; : : : )be
ause the �rst term 
ounts 
ases where a rook is in row k and 
olumn ak. AlsoR(0) = 1 be
ause of the empty pla
ement. From these re
urren
es we �ndR(1) = x+ y; R(2) = R(1; 1) = x+ xy + y2; R(3) = R(1; 1; 1) = x+ xy + xy2 + y3;R(2; 1) = x2 + 2xy + xy2 + y3;R(3; 1) = R(2; 2) = R(2; 1; 1) = x2 + x2y + xy + 2xy2 + xy3 + y4;R(3; 1; 1) = R(3; 2) = R(2; 2; 1) = x2 + 2x2y + x2y2 + 2xy2 + 2xy3 + xy4 + y5;R(3; 2; 1) = x3 + 3x2y + 3x2y2 + x2y3 + 3xy3 + 2xy4 + xy5 + y6:
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7.2.1.5 ANSWERS TO EXERCISES 73(d) For example, the formula $73(x; y) = x$63(x; y) + y$74(x; y) is equivalentto R(5; 4; 4; 3; 2; 1) = xR(4; 3; 3; 2; 1) + yR(5; 4; 3; 3; 2; 1), a spe
ial 
ase of (
); and$nn(x; y) = R(n� 2; : : : ; 0) is obviously equal to $(n�1)1(x; y) = R(n� 2; : : : ; 1).(e) In fa
t yk�1$nk(x; y) is the stated sum over all restri
ted growth stringsa1 : : : an for whi
h a2 > 0, : : : , ak > 0.29. (a) If the rooks are respe
tively in 
olumns (
1; : : : ; 
n), the number of free 
ells isthe number of inversions of the permutation (n+1�
1) : : : (n+1�
n). [Rotate theright-hand example of Fig. 35 by 180Æ and 
ompare the result to the illustrationfollowing Eq. 5.1.1{(5).℄(b) Ea
h r� r 
on�guration 
an be pla
ed in, say, rows i1 < � � � < ir and 
olumnsj1 < � � � < jr, yielding (m�r)(n�r) free 
ells in the un
hosen rows and 
olumns; thereare (i2�i1+1)+2(i3�i2�1)+ � � �+(r�1)(ir�ir�1�1)+ r(m�ir) in the un
hosen rowsand 
hosen 
olumns, and a similar number in the 
hosen rows and un
hosen 
olumns.Furthermore X1�i1<���<ir�m y(i2�i1+1)+2(i3�i2�1)+���+(r�1)(ir�ir�1�1)+r(m�ir)
may be regarded as the sum of ya1+a2+���+am�r over all partitions r � a1 � a2 � � � � �am�r � 0, so it is �mr �y by Theorem C. The polynomial r!y generates free 
ells for the
hosen rows and 
olumns, by (a). Therefore the answer is y(m�r)(n�r)�mr �y�nr�y r!y =y(m�r)(n�r)m!yn!y=((m� r)!y(n� r)!yr!y).(
) The left-hand side is the generating fun
tion Rm(t + a1; : : : ; t + am) for theFerrers diagram with t additional 
olumns of height m. For there are t + am ways toput a rook in row m, yielding 1+y+ � � �+yt+am�1 = (1�yt+am)=(1�y) free 
ells withrespe
t to those 
hoi
es; then there are t+ am�1 � 1 available 
ells in row m� 1, et
.The right-hand side, likewise, equals Rm(t + a1; : : : ; t + am). For if m � k rooksare pla
ed into 
olumns > t, we must put k rooks into 
olumns � t of the k unusedrows; and we have seen that t!y=(t� k)!y is the generating fun
tion for free 
ells whenk rooks are pla
ed on a k � t board.[The formula proved here 
an be regarded as a polynomial identity in the variablesy and yt; therefore it is valid for arbitrary t, although our proof assumed that t is anonnegative integer. This result was dis
overed in the 
ase y = 1 by J. Goldman,J. Joi
hi, and D. White, Pro
. Amer. Math. So
. 52 (1975), 485{492. The general 
asewas established by A. M. Garsia and J. B. Remmel, J. Combinatorial Theory A41(1986), 246{275, who used a similar argument to prove the additional formula1Xt=0 zt mYj=1 1� yaj+m�j+t1� y = nXk=0 k!y � z1� yz� : : :� z1� ykz�Rm�k(a1; : : : ; am):(d) This statement, whi
h follows immediately from (
), also implies that we haveR(a1; : : : ; am) = R(a01; : : : ; a0m) if and only if equality holds for all x and for any nonzerovalue of y. The Peir
e polynomial $nk(x; y) of exer
ise 28(d) is the rook polynomial for�n�1k�1� di�erent Ferrers diagrams; for example, $63(x; y) enumerates rook pla
ementsfor the shapes 43321, 44221, 44311, 4432, 53221, 53311, 5332, 54211, 5422, and 5431.30. (a) We have $n(x; y) =Pm xn�mAmn, where Amn = Rn�m(n�1; : : : ; 1) satis�esa simple law: If we don't pla
e a rook in row 1 of the shape (n � 1; : : : ; 1), that rowhas m� 1 free 
ells be
ause of the n�m rooks in other rows. But if we do put a rook
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74 ANSWERS TO EXERCISES 7.2.1.5there, we leave 0 or 1 or � � � or m�1 of its 
ells free. Hen
e Amn = ym�1A(m�1)(n�1)+(1+ y+ � � �+ ym�1)Am(n�1), and it follows by indu
tion that Amn = ym(m�1)=2�nm	y .(b) The formula $n+1(x; y) =Pk �nk�xn�kyk$k(x; y) yieldsAm(n+1) =Xk �nk� ykA(m�1)k:(
) From (a) and (b) we havezn(1� z)(1� (1 + q)z) : : : (1� (1 + q + � � �+ qn�1)z) =Xk nknoqzk;Xk �nk�q(�1)kq(k2)e(1+q+���+qn�k�1)z = q(n2) n!q Xk nknoq zkk! :[The se
ond formula is proved by indu
tion on n, be
ause both sides satisfy thedi�erential equation G0n+1(z) = (1 + q + � � � + qn)ezGn(qz); exer
ise 1.2.6{58 provesequality when z = 0.℄Histori
al note: Leonard Carlitz introdu
ed q-Stirling numbers in Transa
tions ofthe Amer. Math. So
. 33 (1933), 127{129. Then in Duke Math. J. 15 (1948), 987{1000,he derived (among other things) an appropriate generalization of Eq. 1.2.6{(45):(1 + q + � � �+ qm�1)n = Xk nnkoqq(k2) m!q(m� k)!q :31. exp(ew+z +w� 1); therefore $nk = ($+1)n�k$k�1 = $n+1�k($� 1)k�1 in theumbral notation of exer
ise 23. [L. Moser and M. Wyman, Trans. Royal So
. Canada(3) 43 (1954), Se
tion 3, 31{37.℄ In fa
t, the numbers $nk(x; 1) of exer
ise 28(d) aregenerated by exp((exw+xz � 1)=x+ xw).32. We have Æn = $n(1;�1), and a simple pattern is easily per
eived in the generalizedPeir
e triangle of exer
ise 28(d) when x = 1 and y = �1: We have j$nk(1;�1)j � 1and $n(k+1)(1;�1) � $nk(1;�1) + (�1)n (modulo 3) for 1 � k < n. [In JACM 20(1973), 512{513, Gideon Ehrli
h gave a 
ombinatorial proof of an equivalent result.℄33. Representing set partitions by rook pla
ements as in answer 27 leads to the answer$nk, by setting x = y = 1 in exer
ise 28(d). [The 
ase k = n was dis
overed byH. Prodinger, Fibona

i Quarterly 19 (1981), 463{465.℄34. (a) Guittone's Sonetti in
luded 149 of s
heme 01010101232323, 64 of s
heme01010101234234, two of s
heme 01010101234342, seven with s
hemes used only on
e(like 01100110234432), and 29 poems that we would no longer 
onsider to be sonnetsbe
ause they do not have 14 lines.(b) Petrar
h's Canzoniere in
luded 115 sonnets of s
heme 01100110234234, 109 ofs
heme 01100110232323, 66 of s
heme 01100110234324, 7 of s
heme 01100110232232,and 20 others of s
hemes like 01010101232323 used at most three times ea
h.(
) In Spenser's Amoretti, 88 of 89 sonnets used the s
heme 01011212232344; theex
eption (number 8) was \Shakespearean."(d) Shakespeare's 154 sonnets all used the rather easy s
heme 01012323454566,ex
ept that two of them (99 and 126) didn't have 14 lines.(e) Browning's 44 Sonnets From the Portuguese obeyed the Petrar
han s
heme01100110232323.
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7.2.1.5 ANSWERS TO EXERCISES 75Sometimes the lines would rhyme (by 
han
e?) even when they didn't need to; forexample, Browning's �nal sonnet a
tually had the s
heme 01100110121212.In
identally, the lengthy 
antos in Dante's Divine Comedy used an interlo
kings
heme of rhymes in whi
h 1 � 3 and 3n� 1 � 3n+ 1 � 3n+ 3 for n = 1, 2, : : : .35. Every in
omplete n-line rhyme s
heme � 
orresponds to a singleton-free partitionof f1; : : : ; n+1g in whi
h (n+1) is grouped with all of �'s singletons. [H. W. Be
kergave an algebrai
 proof in AMM 48 (1941), 702. Noti
e that $0n =Pk�nk�(�1)n�k$k,by the prin
iple of in
lusion and ex
lusion, and $n =Pk�nk�$0k; we 
an in fa
t write$0 = $�1 in the umbral notation of exer
ise 23. J. O. Shallit has suggested extendingPeir
e's triangle by setting $n(n+1) = $0n; see exer
ises 38(e) and 33. In fa
t, $nkis the number of partitions of f1; : : : ; ng with the property that 1, : : : , k � 1 are notsingletons; see H. W. Be
ker, Bull. Amer. Math. So
. 58 (1954), 63.℄36. exp(ez � 1 � z). (In general, if #n is the number of partitions of f1; : : : ; nginto subsets of allowable sizes s1 < s2 < � � � , the exponential generating fun
tionPn #nzn=n! is exp(zs1=s1! + zs2=s2! + � � � ), be
ause (zs1=s1! + zs2=s2! + � � � )k is theexponential generating fun
tion for partitions into exa
tly k parts.)37. There arePk�nk�$0k$0n�k possibilities of length n, hen
e 784,071,966 when n = 14.(But Pushkin's s
heme is hard to beat.)38. (a) Imagine starting with x1x2 : : : xn = 01 : : : (n�1), then su

essively removingsome element bj and pla
ing it at the left, for j = 1, 2, : : : , n. Then xk will be thekth most re
ently moved element, for 1 � k � jfb1; : : : ; bngj; see exer
ise 5.2.3{36.Consequently the array x1 : : : xn will return to its original state if and only if bn : : : b1is a restri
ted growth string. [Robbins and Bolker, �quat. Math. 22 (1981), 281{282.℄In other words, let a1 : : : an be a restri
ted growth string. Set b�j  j andbj+1  an�j for 0 � j < n. Then for 1 � j � n, de�ne kj by the rule that bj is the kjthdistin
t element of the sequen
e bj�1, bj�2, : : : . For example, the string a1 : : : a16 =0123032303456745 
orresponds in this way to the �-
y
le 6688448628232384.(b) Su
h paths 
orrespond to restri
ted growth strings with max(a1; : : : ; an) � m,so the answer is �n0	+ �n1	+ � � �+ �nm	.(
) We may assume that i = 1, be
ause the sequen
e k2 : : : knk1 is a �-
y
lewhenever k1k2 : : : kn is. Thus the answer is the number of restri
ted growth stringswith an = j � 1, namely �n�1j�1	+ �n�1j 	+ �n�1j+1	+ � � � .(d) If the answer is fn we must have Pk �nk�fk = $n, sin
e �1 is the identitypermutation. Therefore fn = $0n, the number of set partitions without singletons(exer
ise 35).(e) Again $0n, by (a) and (d). [Consequently $0p mod p = 1 when p is prime.℄39. Set u = tp+1 to obtain 1p+1 R10 e�uu(q�p)=(p+1) du = 1p+1�( q+1p+1 ).40. We have g(z) = 
z�n ln z, so the saddle point o

urs at n=
. The re
tangular pathnow has 
orners at �n=
 � mi=
; and exp g(n=
 + it) = (en
n=nn) exp(�t2
2=(2n) +it3
3=(3n2) + � � � ). The �nal result is en(
=n)n�1=p2�n times 1 + n=12 +O(n�2).(Of 
ourse we 
ould have obtained this result more qui
kly by letting w = 
z inthe integral. But the answer given here applies the saddle point method me
hani
ally,without attempting to be 
lever.)41. Again the net result is just to multiply (21) by 
n�1; but in this 
ase the left edgeof the re
tangular path is signi�
ant instead of the right edge. (In
identally, when
 = �1 we 
annot derive an analog of (22) using Hankel's 
ontour when x is real and

75



76 ANSWERS TO EXERCISES 7.2.1.5positive, be
ause the integral on that path diverges. But with the usual de�nition of zx,a suitable path of integration does yield the formula �(
os�x)=�(x) when n = x > 0.)42. We have H ez2dz=zn = 0 when n is even. Otherwise both left and right edges ofthe re
tangle with 
orners �pn=2� in 
ontribute approximatelyen=22�(n=2)n=2 Z 1�1 exp��2t2 � (�it)33 23=2n1=2 + (it)4n � � � �� dt;when n is large. We 
an restri
t jtj � n� to show that this integral is I0+ (I4 � 49I6)=nwith relative error O(n9��3=2), where Ik = R1�1 e�2t2tk dt. As before, the relative erroris a
tually O(n�2); we dedu
e the answer1((n� 1)=2)! = en=2p2�(n=2)n=2�1 + 112n +O� 1n2��; n odd:(The analog of (22) is (sin �x2 )2=�((x� 1)=2) when n = x > 0.)43. Let f(z) = eez=zn. When z = �n+ it we have jf(z)j < en�n; when z = t+2�in+i�=2 we have jf(z)j = jzj�n < (2�n)�n. So the integral is negligible ex
ept on a pathz = � + it; and on that path jf j de
reases as jtj in
reases from 0 to �. Already whent = n��1=2 we have jf(z)j=f(�) = O(exp(�n2�=(logn)2)). And when jtj > � we havejf(z)j=f(�) < 1=j1 + i�=�jn = exp(�n2 ln(1 + �2=�2)).44. Set u = na2t2 in (25) to obtain < R10 e�u exp(n�1=2
3(�u)3=2 + n�1
4(�u)2 +n�3=2
5(�u)5=2+ � � � ) du=pna2u where 
k = (2=(�+1))k=2(�k�1+(�1)k(k�1)!)=k! =ak=ak=22 . This expression leads tobl = Xk1+2k2+3k3+���=2lk1+k2+k3+���=mk1;k2;k3;:::�0
��12�l+m 
k13k1! 
k24k2! 
k35k3! : : : ;

a sum over partitions of 2l. For example, b1 = 34 
4 � 1516 
23.45. To get $n=n! we repla
e g(z) by ez � (n + 1) ln z in the derivation of (26).This 
hange multiplies the integrand in the previous answer by 1=(1 + it=�), whi
his 1=(1� n�1=2a(�u)1=2) where a = �p2=(� + 1). Thus we getb0l = Xk+k1+2k2+3k3+���=2lk1+k2+k3+���=mk;k1;k2;k3;:::�0
��12�l+m ak 
k13k1! 
k24k2! 
k35k3! : : : ;

a sum of p(2l) + p(2l � 1) + � � � + p(0) terms; b01 = 34
4 � 1516 
23 + 34a
3 � 12a2. [The
oeÆ
ient b01 was obtained in a di�erent way by L. Moser and M. Wyman, Trans.Royal So
. Canada (3) 49, Se
tion 3 (1955), 49{54, who were the �rst to dedu
e anasymptoti
 series for $n. Their approximation is slightly less a

urate than the resultof (26) with n 
hanged to n + 1, be
ause it doesn't pass exa
tly through the saddlepoint. Formula (26) is due to I. J. Good, Iranian J. S
ien
e and Te
h. 4 (1975), 77{83.℄46. Eqs. (13) and (31) show that $nk = (1 � �=n)k$n(1 + O(n�1)) for �xed k asn ! 1. And this approximation also holds when k = n, but with relative errorO((logn)2=n).
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7.2.1.5 ANSWERS TO EXERCISES 7747. Steps (H1, : : : , H6) are performed respe
tively (1;$n;$n � $n�1;$n�1;$n�1;$n�1 � 1) times. The loop in H4 sets j  j � 1 a total of $n�2 + $n�3 + � � � + $1times; the loop in H6 sets bj  m a total of ($n�2 � 1) + � � � + ($1 � 1) times. Theratio $n�1=$n is approximately (lnn)=n, and ($n�2 + � � �+$1)=$n � (lnn)2=n2.48. We 
an easily verify the inter
hange of summation and integration ine$x�(x+ 1) = 12�i I eezzx+1 dz = 12�i I 1Xk=0 ekxk! zx+1 dz= 1Xk=0 1k! 12�i I ekzzx+1 dz = 1Xk=0 1k! kx�(x+ 1) :49. If � = lnn � ln lnn + x, we have � = 1 � e�x � �x. Therefore by Lagrange'sinversion formula (exer
ise 4.7{8),x = 1Xk=1 �kk [tk�1℄� f(t)1� �f(t)�k = 1Xk=1 1Xj=0 �kk �j�k + j � 1j � [tk�1℄ f(t)j+k;where f(t) = t=(1� e�t). So the result follows from the handy identity� z1� e�z �m = 1Xn=0 h mm� ni zn(m� 1)(m� 2) : : : (m� n) :(This identity should be interpreted 
arefully when n � m; the 
oeÆ
ient of zn is apolynomial in m of degree n, as explained in CMath equation (7.59).)The formula in this exer
ise is due to L. Comtet, Comptes Rendus A
ad. S
i.(A) 270 (Paris, 1970), 1085{1088, who identi�ed the 
oeÆ
ients previously 
omputedby N. G. de Bruijn, Asymptoti
 Methods in Analysis (1958), 25{28. Convergen
e forn � e was shown by Je�rey, Corless, Hare, and Knuth, Comptes Rendus A
ad. S
i. (I)320 (1995), 1449{1452, who also derived a formula that 
onverges somewhat faster.(The equation �e� = n has 
omplex roots as well. We 
an obtain them all byusing lnn + 2�im in pla
e of lnn in the formula of this exer
ise; the sum 
onvergesrapidly when m 6= 0. See Corless, Gonnet, Hare, Je�rey, and Knuth, Advan
es inComputational Math. 5 (1996), 347{350.)50. Let � = �(n). Then �0(n) = �=((� + 1)n), and the Taylor series�(n+ k) = � + k�0(n) + k22 �00(n) + � � �
an be shown to 
onverge for jkj < n+ 1=e.Indeed, mu
h more is true, be
ause the fun
tion �(n) = �T (�n) is obtained fromthe tree fun
tion T (z) by analyti
 
ontinuation to the negative real axis. (The treefun
tion has a quadrati
 singularity at z = e�1; after going around this singularitywe en
ounter a logarithmi
 singularity at z = 0, as part of an interesting multi-levelRiemann surfa
e on whi
h the quadrati
 singularity appears only at level 0.) Thederivatives of the tree fun
tion satisfy zkT (k)(z) = R(z)k pk(R(z)), where R(z) =T (z)=(1 � T (z)) and pk(x) is the polynomial of degree k � 1 de�ned by pk+1(x) =(1 + x)2p0k(x) + k(2 + x)pk(x). For example,p1(x) = 1; p2(x) = 2 + x; p3(x) = 9 + 10x+ 3x2; p4(x) = 64 + 113x+ 70x2 + 15x3:
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78 ANSWERS TO EXERCISES 7.2.1.5(The 
oeÆ
ients of pk(x), in
identally, enumerate 
ertain phylogeneti
 trees 
alledGreg trees: [xj ℄ pk(x) is the number of oriented trees with j unlabeled nodes andk labeled nodes, where leaves must be labeled and unlabeled nodes must have atleast two 
hildren. See J. Felsenstein, Systemati
 Zoology 27 (1978), 27{33; L. R.Foulds and R. W. Robinson, Le
ture Notes in Math. 829 (1980), 110{126; C. Flight,Manus
ripta 34 (1990), 122{128.) If qk(x) = pk(�x), we 
an prove by indu
tion that(�1)mq(m)k (x) � 0 for 0 � x � 1. Therefore qk(x) de
reases monotoni
ally from kk�1to (k � 1)! as x goes from 0 to 1, for all k;m � 1. It follows that�(n+ k) = � + kxn � �kxn �2 q2(x)2! + �kxn �3 q3(x)3! � � � � ; x = �� + 1 ;where the partial sums alternately overshoot and undershoot the 
orre
t value if k > 0.51. There are two saddle points, � =pn+5=4�1=2 and �0 = �1��. Integration on are
tangular path with 
orners at ��im and �0�im shows that only � is relevant as n!1 (although �0 
ontributes a relative error of roughly e�pn, whi
h 
an be signi�
antwhen n is small). Arguing almost as in (25), but with g(z) = z + z2=2 � (n + 1) ln z,we �nd that tn is well approximated byn!2� Z n��n� eg(�)�a2t2+a3it3+���+al(�it)l+O(n(l+1)��(l�1)=2)dt; ak = � + 1k�k�1 + [k=2℄2 :The integral expands as in exer
ise 44 ton! e(n+�)=22�n+1p�a2 (1 + b1 + b2 + � � �+ bm +O(n�m�1)):This time 
k = (� + 1)�1�k(1 + 1=(2�))�k=2=k for k � 3, hen
e (2� + 1)3k�kbk is apolynomial in � of degree 2k; for example,b1 = 34 
4 � 1516 
23 = 8�2 + 7� � 112�(2� + 1)3 :In parti
ular, Stirling's approximation and the b1 term yieldtn = 1p2nn=2e�n=2+pn�1=4�1 + 724n�1=2 � 1191152n�1 � 7933414720n�3=2 +O(n�2)�after we plug in the formula for �|a result substantially more a

urate than equation5.1.4{(53), and obtained with 
onsiderably less labor.52. Let G(z) = Pk Pr(X = k)zk, so that the jth 
umulant �j is j! [tj ℄ lnG(et). In
ase (a) we have G(z) = ee�z�e�; hen
elnG(et) = e�et�e� = e�(e�(et�1)�1) = e� 1Xk=1(et�1)k �kk! ; �j = e�Xk nkj o�k[j 6=0℄:Case (b) is sort of a dual situation: Here � = j = $j [j 6=0℄ be
auseG(z) = ee�1�1Xj;k nkj oe�j zkk! = ee�1�1Xj (ez�1 � e�1)jj! = eez�1�1:[If �e� = 1 in 
ase (a) we have �j = e$ [j 6=0℄. But if �e� = n in that 
ase, themean is �1 = n and the varian
e �2 is (�+1)n. Thus, the formula in exer
ise 45 statesthat the mean value n o

urs with approximate probability 1=p2�� and relative errorO(1=n). This observation leads to another way to prove that formula.℄
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7.2.1.5 ANSWERS TO EXERCISES 7953. We 
an write lnG(et) = �t + �2t2=2 + �3t3=3! + � � � as in Eq. 1.2.10{(23), andthere is a positive 
onstant Æ su
h thatP1j=3 j�j j tj=j! < �2t2=6 when jtj � Æ. Hen
e, if0 < � < 1=2, we 
an prove that[z�n+r℄G(z)n = 12� Z ��� G(eit)ndteit(�n+r)= 12� Z n��1=2�n��1=2 exp��irt� �2t2n2 +O(n3��1=2)� dt+O(e�
n2�)as n!1, for some 
onstant 
 > 0: The integrand for n��1=2 � jtj � Æ is bounded inabsolute value by exp(��2n2�=3); and when Æ � jtj � � its magnitude is at most �n,where � = max jG(eit)j is less than 1 be
ause the individual terms pkekit don't all lieon a straight line by our assumption. Thus[z�n+r℄G(z)n = 12� Z 1�1 exp��irt� �2t2n2 +O(n3��1=2)� dt+O(e�
n2�)= 12� Z 1�1exp���2n2 �t+ ir�2n�2� r22�2n +O(n3��1=2)� dt+O(e�
n2�)
= e�r2=(2�2n)�p2�n +O(n3��1):By taking a

ount of �3, �4, : : : in a similar way we 
an re�ne the estimate to O(n�m)for arbitrarily large m; thus the result is valid also for � = 0. [In fa
t, su
h re�nementslead to the \Edgeworth expansion," a

ording to whi
h [z�n+r℄G(z)n is asymptoti
 toe�r2=(2�2n)�p2�n Xk1+2k2+3k3+���=mk1+k2+k3+���=lk1;k2;k3;:::�00�s�l+m=2

(�1)s(2l +m)2s�4l+2m�2s2ss! r2l+m�2snl+m�s 1k1! k2! : : : ��33! �k1��44! �k2 : : : ;
the absolute error is O(n�p=2), where the 
onstant hidden in the O depends only on pand G but not on r or n, if we restri
t the sum to 
ases with m < p� 1. For example,when p = 3 we get[z�n+r℄G(z)n = e�r2=(2�2n)�p2�n �1� �32�4� rn�+ �36�6� r3n2��+O� 1n3=2�;and there are seven more terms when p = 4. See P. L. Chebyshev, Zapiski Imp. Akad.Nauk 55 (1887), No. 6, 1{16; A
ta Math. 14 (1890), 305{315; F. Y. Edgeworth,Trans. Cambridge Phil. So
. 20 (1905), 36{65, 113{141; H. Cram�er, SkandinaviskAktuarietidsskrift 11 (1928), 13{74, 141{180.℄54. Formula (40) is equivalent to � = s 
oth s+ s, � = s 
oth s� s.55. Let 
 = �e��. The Newtonian iteration �0 = 
, �k+1 = (1� �k)
e�k=(1� 
e��k )rises rapidly to the 
orre
t value, unless � is extremely 
lose to 1. For example, �7di�ers from ln 2 by less than 10�75 when � = ln 4.56. (a) By indu
tion on n, g(n+1)(z) = (�1)n�Pnk=0 
nk�e(n�k)z�(ez � 1)n+1 � n!zn+1�.
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80 ANSWERS TO EXERCISES 7.2.1.5
(b) Pnk=0 
nk�ek�=n! = R 10 : : : R 10 exp(bu1 + � � �+ un
�) du1 : : : dun< R 10 : : : R 10 exp((u1 + � � �+ un)�) du1 : : : dun = (e��1)n=�n:The lower bound is similar, sin
e bu1 + � � �+ un
 > u1 + � � �+ un � 1.(
) Thus n! (1��=�) < (��)ng(n+1)(�) < 0, and we need only verify that 1��=� <2(1� �), namely that 2�� < �+ �. But �� < 1 and �+ � > 2, by exer
ise 54.57. (a) n + 1 �m = (n + 1)(1 � 1=�) < (n + 1)(1 � �=�) = (n + 1)�=� � 2N as inanswer 56(
). (b) The quantity �+ �� in
reases as � in
reases, be
ause its derivativewith respe
t to � is 1 + � + �(1 � �)=(1 � �) = (1 � ��)=(1� �) + � > 0. Therefore1� � < 2(1� 1=�).58. (a) The derivative of je�+it � 1j2=j� + itj2 = (e�+it � 1)(e��it � 1)=(�2 + t2) withrespe
t to t is (�2 + t2) sin t� t(2 sin t2 )2� (2 sinh �2 )2 t times a positive fun
tion. Thisderivative is always negative for 0 < t � 2�, be
ause it is less than t2 sin t�t(2 sin t2 )2 =8u sinu 
osu(u� tanu) where t = 2u.Let s = 2 sinh �2 . When � � � and 2� � t � 4�, the derivative is still negative,be
ause we have t � 4� � s2 � �2=(2�) � s2 � �2=t. Similarly, when � � 2� thederivative remains negative for 4� � t � 168�; the proof gets easier and easier.(b) Let t = u�=pN . Then (41) and (42) prove thatZ ��� e(n+1)g(�+it) dt =(e� � 1)m�npN Z N��N� exp��u22 + (�iu)3a3N 1=2 + � � �+ (�iu)lalN l=2�1 +O(N (l+1)��(l�1)=2)�du;where (1 � �)ak is a polynomial of degree k � 1 in � and �, with 0 � ak � 2=k. (Forexample, 6a3 = (2 � �(� + �))=(1� �) and 24a4 = (6 � �(�2 + 4�� + �2))=(1 � �).)The monotoni
ity of the integrand shows that the integral over the rest of the range isnegligible. Now trade tails, extend the integral over �1 < u <1, and use the formulaof answer 44 with 
k = 2k=2ak to de�ne b1, b2, : : : .(
) We will prove that jez � 1jm�n+1=((e� � 1)mjzjn+1) is exponentially small onthose three paths. If � � 1, this quantity is less than 1=(2�)n+1 (be
ause, for example,e� � 1 > �). If � > 1, we have � < 2jzj and jez � 1j � e� � 1.59. In this extreme 
ase, � = 1+ n�1 and � = 1� n�1 + 23n�2 +O(n�3); hen
e N =1+ 13n�1+O(n�2). The leading term ��n=p2�N is e=p2� times 1� 13n�1+O(n�2).(Noti
e that e=p2� � 1:0844.) The quantity ak in answer 58(b) turns out to be1=k +O(n�1). So the 
orre
tion terms, to �rst order, arebjN j = [zj ℄ exp�� 1Xk=1 B2kz2k�12k(2k � 1)�+O� 1n�;namely the terms in the (divergent) series 
orresponding to Stirling's approximation11! � ep2��1� 112 + 1288 + 13951840 � 5712488320 � � � ��:60. (a) The number ofm-ary strings of length n in whi
h allm digits appear ism!�nm	,and the in
lusion-ex
lusion prin
iple expresses this quantity as �m0 �mn��m1 �(m�1)n+� � � . Now see exer
ise 7.2.1.4{37.
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7.2.1.5 ANSWERS TO EXERCISES 81(b) We have (m� 1)n=(m� 1)! = (mn=m!)m exp(n ln(1� 1=m)), and ln(1� 1=m)is less than �n��1.(
) In this 
ase � > n� and � = �e��e� < �e1��. Therefore 1 < (1��=�)m�n <exp(nO(e��)); and 1 > e��m = e�(n+1)�=� > exp(�nO(e��)). So (45) be
omes(mn=m!)(1 +O(n�1) +O(ne�n�)).61. Now � = 1 + rn + O(n2��2) and � = 1� rn + O(n2��2). Thus N = r + O(n2��1),and the 
ase l = 0 of Eq. (43) redu
es tonr �n2�r errrp2�r�1 +O(n2��1) +O�1r��:(This approximation meshes well with identities su
h as � nn�1	 = �n2� and � nn�2	 =2�n4�+ �n+14 �; indeed, we haven nn� ro = n2r2rr!�1 +O� 1n�� as n!1when r is 
onstant, a

ording to formulas (6.42) and (6.43) of CMath.)62. The assertion is true for 1 � n � 10000 (with m = be� � 1
 in 5648 of those
ases). E. R. Can�eld and C. Pomeran
e, in a paper that ni
ely surveys previous workon related problems, have shown that the statement holds for all suÆ
iently large n,and that the maximum o

urs in both 
ases only if e� mod 1 is extremely 
lose to 12 .[Integers 2 (2002), A1, 1{13.℄63. (a) The result holds when p1 = � � � = pn = p, be
ause ak�1=ak = (k=(n+1�k))�((n� �)=�) � (n� �)=(n+ 1� �) < 1. It is also true by indu
tion when pn = 0 or 1.For the general 
ase, 
onsider the minimum of ak�ak�1 over all 
hoi
es of (p1; : : : ; pn)with p1 + � � �+ pn = �: If 0 < p1 < p2 < 1, let p01 = p1 � Æ and p02 = p2 + Æ, and noti
ethat a0k�a0k�1 = ak�ak�1+ Æ(p1�p2� Æ)� for some � depending only on p3, : : : , pn.At a minimum point we must have � = 0; thus we 
an 
hoose Æ so that either p01 = 0or p02=1. The minimum 
an therefore be a
hieved when all pj have one of three valuesf0; 1; pg. But we have proved that ak � ak�1 > 0 in su
h 
ases.(b) Changing ea
h pj to 1� pj 
hanges � to n� � and ak to an�k.(
) No roots of f(x) are positive. Hen
e f(z)=f(1) has the form in (a) and (b).(d) Let C(f) be the number of sign 
hanges in the sequen
e of 
oeÆ
ients of f ;we want to show that C((1 � x)2f) = 2. In fa
t, C((1 � x)mf) = m for all m � 0.For C((1 � x)m) = m, and C((a + bx)f) � C(f) when a and b are positive; hen
eC((1� x)mf) � m. And if f(x) is any nonzero polynomial whatsoever, C((1� x)f) >C(f); hen
e C((1� x)mf) � m.(e) Sin
ePk �nk�xk = x(x+1) : : : (x+n�1), part (
) applies dire
tly with � = Hn.And for the polynomials fn(x) =Pk �nk	xk, we 
an use part (
) with � = $n+1=$n�1,if fn(x) has n real roots. The latter statement follows by indu
tion be
ause fn+1(x) =x(fn(x) + f 0n(x)): If a > 0 and if f(x) has n real roots, so does the fun
tion g(x) =eaxf(x). And g(x)! 0 as x ! �1; hen
e g0(x) = eax(af(x) + f 0(x)) also has n realroots (namely, one at the far left, and n� 1 between the roots of g(x)).[See E. Laguerre, J. de Math. (3) 9 (1883), 99{146; W. Hoe�ding, Annals Math.Stat. 27 (1956), 713{721; J. N. Darro
h, Annals Math. Stat. 35 (1964), 1317{1321;J. Pitman, J. Combinatorial Theory A77 (1997), 297{303.℄64. We need only use 
omputer algebra to subtra
t ln$n from ln$n�k.
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82 ANSWERS TO EXERCISES 7.2.1.565. It is $�1n times the number of o

urren
es of k-blo
ks plus the number of o

ur-ren
es of ordered pairs of k-blo
ks in the list of all set partitions, namely (�nk�$n�k +�nk��n�kk �$n�2k)=$n, minus the square of (49). Asymptoti
ally, (�k=k!)(1+O(n4��1)).66. (The maximum of (48) when n = 100 is a
hieved for the partitions 71625446372614and 71625446382513.)67. The expe
ted value ofMk is$n+k=$n. By (50), the mean is therefore$n+1=$n =n=� + �=(2(� + 1)2)+O(n�1), and the varian
e is$n+2$n � $2n+1$2n = �n� �2�1+ �(2� + 1)(� + 1)2n �1� �2(� + 1)2n +O� 1n2�� = n�(� + 1) +O(1):68. The maximum number of nonzero 
omponents in all parts of a partition is n =n1 + � � � + nm; it o

urs if and only if all 
omponent parts are 0 or 1. The maximumlevel is also equal to n.69. At the beginning of step M3, if k > b and l = r�1, go to M5. In step M5, if j = aand (vj � 1)(r � l) < uj , go to M6 instead of de
reasing vj .70. (a) ��n�1r�1��+ ��n�2r�1��+ � � �+ ��r�1r�1��, sin
e ��n�kr�1�� 
ontain the blo
k f0; : : : ; 0; 1g with k 0s.The total, also known as p(n� 1; 1), is p(n� 1) + � � �+ p(1) + p(0).(b) Exa
tly N = �n�1r 	+�n�2r�2	 of the r-blo
k partitions of f1; : : : ; n�1; ng are thesame if we inter
hange n�1$ n. So the answer isN+ 12 (�nr	�N) = 12 (�nr	+N), whi
his also the number of restri
ted growth strings a1 : : : an with max(a1; : : : ; an) = r � 1and an�1 � an. And the total is 12 ($n +$n�1 +$n�2).71. b 12 (n1+1) : : : (nm+1)� 12
, be
ause there are (n1+1) : : : (nm+1)�2 
ompositionsinto two parts, and half of those 
ompositions fail to be in lexi
ographi
 order unlessall nj are even. (See exer
ise 7.2.1.4{31. Formulas for up to 5 parts have been workedout by E. M. Wright, Pro
. London Math. So
. (3) 11 (1961), 499{510.)72. Yes. The following algorithm 
omputes ajk = p(j; k) for 0 � j; k � n in �(n4)steps: Start with ajk  1 for all j and k. Then for l = 0, 1, : : : , n and m = 0,1, : : : , n (in any order), if l +m > 1 set ajk  ajk + a(j�l)(k�m) for j = l, : : : , n andk = m, : : : , n (in in
reasing order).(See Table A-1. A similar method 
omputes p(n1; : : : ; nm) in O(n1 : : : nm)2 steps.Cheema and Motzkin, in the 
ited paper, have derived the re
urren
e relationn1p(n1; : : : ; nm) = 1Xl=1 Xk1;:::;km�0 k1p(n1 � k1l; : : : ; nm � kml);but this interesting formula is helpful for 
omputation only in 
ertain 
ases.)Table A-1MULTIPARTITION NUMBERSn 0 1 2 3 4 5 6p(0; n) 1 1 2 3 5 7 11p(1; n) 1 2 4 7 12 19 30p(2; n) 2 4 9 16 29 47 77p(3; n) 3 7 16 31 57 97 162p(4; n) 5 12 29 57 109 189 323p(5; n) 7 19 47 97 189 339 589
n 0 1 2 3 4 5P (0; n) 1 2 9 66 712 10457P (1; n) 1 4 26 249 3274 56135P (2; n) 2 11 92 1075 16601 325269P (3; n) 5 36 371 5133 91226 2014321P (4; n) 15 135 1663 26683 537813 13241402P (5; n) 52 566 8155 149410 3376696 91914202
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7.2.1.5 ANSWERS TO EXERCISES 8373. Yes. Let P (m;n) = p(1; : : : ; 1; 2; : : : ; 2) when there are m 1s and n 2s; thenP (m; 0) = $m, and we 
an use the re
urren
e2P (m;n+ 1) = P (m+ 2; n) + P (m+ 1; n) +Xk �nk�P (m;k):This re
urren
e 
an be proved by 
onsidering what happens when we repla
e a pairof x's in the multiset for P (m;n + 1) by two distin
t elements x and x0. We get2P (m;n + 1) partitions, representing P (m + 2; n), ex
ept in the P (m + 1; n) 
aseswhere x and x0 belong to the same blo
k, or in �nk�P (m;n� k) 
ases where the blo
ks
ontaining x and x0 are identi
al and have k additional elements.Notes: See Table A-1. Another re
urren
e, less useful for 
omputation, isP (m+ 1; n) = Xj;k �nk��n� k +mj �P (j; k):The sequen
e P (0; n) was �rst investigated by E. K. Lloyd, Pro
. Cambridge Philos.So
. 103 (1988), 277{284, and by G. Labelle, Dis
rete Math. 217 (2000), 237{248, who
omputed it by 
ompletely di�erent methods. Exer
ise 70(b) showed that P (m; 1) =($m + $m+1 + $m+2)=2; in general P (m;n) 
an be written in the umbral notation$mqn($), where qn(x) is a polynomial of degree 2n de�ned by the generating fun
tionP1n=0 qn(x)zn=n! = exp((ez + (x+ x2)z � 1)=2). Thus, by exer
ise 31,1Xn=0P (m;n)znn! = e(ez�1)=2 1Xk=0 $(2k+m+1)(k+m+1)2k zkk! :Labelle proved, as a spe
ial 
ase of mu
h more general results, that the number ofpartitions of f1; 1; : : : ; n; ng into exa
tly r blo
ks isn! [xrzn℄ e�x+x2(ez�1)=2 1Xk=0 ezk(k+1)=2 xkk! :75. The saddle point method yields CeAn2=3+Bn1=3=n55=36, where A = 3�(3)1=3, B =�2�(3)�1=3=2, and C = �(3)19=36(2�)�5=63�1=2 exp(1=3 + B2=4 + � 0(2)=(2�2) � 
=12).[F. C. Aulu
k, Pro
. Cambridge Philos. So
. 49 (1953), 72{83; E. M. Wright, Ameri
anJ. Math. 80 (1958), 643{658.℄76. Using the fa
t that p(n1; n2; n3; : : : ) � p(n1 + n2; n3; : : : ), hen
e P (m + 2; n) �P (m;n+1), one 
an prove by indu
tion that P (m;n+1) � (m+n+1)P (m;n). Thus2P (m;n) � P (m+ 2; n� 1) + P (m+ 1; n� 1) + eP (m;n� 1):Iterating this inequality shows that 2nP (0; n) = ($2 + $)n + O(n($2 + $)n�1) =(n$2n�1+$2n)(1+O((logn)3=n)). (A more pre
ise asymptoti
 formula 
an be obtainedfrom the generating fun
tion in the answer to exer
ise 75.)78. 3 3 3 3 2 1 0 0 01 0 0 0 2 2 3 2 0 (be
ause the en
oded partitions2 2 1 0 0 2 1 0 2 must all be (000000000))2 1 0 2 2 0 0 1 379. There are 432 su
h 
y
les. But they yield only 304 di�erent 
y
les of set partitions,sin
e di�erent 
y
les might des
ribe the same sequen
e of partitions. For example,(000012022332321) and (000012022112123) are partitionwise equivalent.
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84 ANSWERS TO EXERCISES 7.2.1.580. [See F. Chung, P. Dia
onis, and R. Graham, Dis
rete Mathemati
s 110 (1992),52{55.℄ Constru
t a digraph with $n�1 verti
es and $n ar
s; ea
h restri
ted growthstring a1 : : : an de�nes an ar
 from vertex a1 : : : an�1 to vertex �(a2 : : : an), where � isthe fun
tion of exer
ise 4. (For example, ar
 01001213 runs from 0100121 to 0110203.)Every universal 
y
le de�nes an Eulerian trail in this digraph; 
onversely, every Euleriantrail 
an be used to de�ne one or more universal sequen
es of restri
ted growth on theelements f0; 1; : : : ; n� 1g.An Eulerian trail exists by the method of Se
tion 2.3.4.2, if we let the last exitfrom every nonzero vertex a1 : : : an�1 be through ar
 a1 : : : an�1an�1. The sequen
emight not be 
y
li
, however. For example, no universal 
y
le exists when n < 4; andwhen n = 4 the universal sequen
e 000012030110100222 de�nes a 
y
le of set partitionsthat does not 
orrespond to any universal 
y
le.The existen
e of a 
y
le 
an be proved for n � 6 if we start with an Euleriantrail that begins 0nxyxn�3u(uv)b(n�2)=2
u[n odd℄ for some distin
t elements fu; v; x; yg.This pattern is possible if we alter the last exit of 0k121n�3�k from 0k�1121n�2�k to0k�1121n�3�k2 for 2 � k � n�4, and let the last exits of 0121n�4 and 01n�32 be respe
-tively 010n�41 and 0n�310. Now if we 
hoose numbers of the 
y
le ba
kwards, therebydetermining u and v, we 
an let x and y be the smallest elements distin
t from f0; u; vg.We 
an 
on
lude in fa
t that the number of universal 
y
les having this extremelyspe
ial type is huge|at least�n�1Yk=2(k! (n� k))fn�1k g�/((n� 1)! (n� 2)332n�522); when n � 6.Yet none of them are known to be readily de
odable. See below for the 
ase n = 5.81. Noting that $5 = 52, we use a universal 
y
le for f1; 2; 3; 4; 5g in whi
h theelements are 13 
lubs, 13 diamonds, 13 hearts, 12 spades, and a joker. One su
h 
y
le,found by trial and error using Eulerian trails as in the previous answer, is(�����|}~J|~}~�||}~|}|~}}|~|~|�||}|}}|}��}~~~�~~~��}}):(In fa
t, there are essentially 114,056 su
h 
y
les if we bran
h to ak = ak�1 as a lastresort and if we introdu
e the joker as soon as possible.) The tri
k still works withprobability 4752 if we 
all the joker a spade.82. There are 13644 solutions, although this number redu
es to 1981 if we regard12 � 24 � 36 ; 13 � 26 ; 23 � 46 :The smallest 
ommon sum is 5/2, and the largest is 25/2; the remarkable solution21+15+42+53+63 = 13+61+25+26+45 = 41+23+43+46+65is one of only two essentially distin
t ways to get the 
ommon sum 118/15. [Thisproblem was posed by B. A. Kordemsky in Matemati
heska��a Smekalka (1954); it isnumber 78 in the English translation, The Mos
ow Puzzles (1972).℄
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INDEX AND GLOSSARYWhen an index entry refers to a page 
ontaining a relevant exer
ise, see also the answer tothat exer
ise for further information. An answer page is not indexed here unless it refers to atopi
 not in
luded in the statement of the exer
ise.0{1 matri
es, 61.� (
ir
le ratio), as \random" example,44{45, 63.$n, 28, see Bell numbers.$0n (singleton-free partitions), 46.�(�): restri
ted growth string fun
tion, 42.�-
y
les, 47.�(n): sum of divisors, 19.Abel, Niels Henrik, 55.Abelian groups, 24.Almkvist, Gert Einar Torsten, 57.Alphameti
s, 42.Analysis of algorithms, 13{15, 22, 48.Andrews, George W. Eyre, 1, 57.Arbogast, Louis Fran�
ois Antoine, 29.Arithmeti
 mean, 24, 48.Asymptoti
 methods, 6{12, 20{22,29{36, 47{49.Atkin, Arthur Oliver Lonsdale, 55.Aulu
k, Faqir Chand ('kFr 
�d aOlk), 83.Balan
ed partitions, 17.Balls, 0.Be
ker, Harold W., 70, 75.Bell, Eri
 Temple, 28.numbers, 28{29, 44{48, 64.numbers, asymptoti
 value, 32{33, 47-48.Bell-shaped 
urve, 34, 38, 48.Bell-shaped sequen
e, 49.Bernoulli, Ja
ques (= Jakob = James),numbers, 28, 55.Bessel, Friedri
h Wilhelm, fun
tion, 8.Binary partitions, 24.Binary relations, 26.Bipartitions, 39{41, 82{83.Birkho�, Garrett, 67.Blissard, John, 69.Blo
ks, 25.Bolker, Ethan David, 75.Bonferroni, Carlo Emilio, 57.Bo�skovi�
, Ruder Josip (Boxkovi�, RuÆerJosip = Bos
ovi
h, Ruggiero Giuseppe= Roger Joseph), 58.Brandt, J�rgen, 65.Browning, Elizabeth Barrett, 46.Bruijn, Ni
olaas Govert de, 36, 77.Brylawski, Thomas Henry, 59.Bulgarian solitaire, 25.Ca
he-hit patterns, 26.Can�eld, Earl Rodney, 81.

Carlitz, Leonard, 63, 74.Cau
hy, Augustin Louis, 13, 21.Cayley, Arthur, 61.Change-making, 18.Chebyshev (= Ts
hebys
he�), PafnutiiLvovi
h (Qebyxev, Pafnuti�L~voviq), 79.Cheema, Mohindar Singh (moEh�dr Es�h
FmA), 41, 82.Chen, William Yong-Chuan ( ), 72.Chung Graham, Fan Rong King( ), 84.Claesson, Anders Karl, 66.Coales
en
e, 42.Coalitions, 26.Coins, 18.Colex order, 2, 17, 60.Colman, Walter John Alexander, 56.Colthurst, Thomas Walla
e, 63.Column sums, 24.Combinations, 0.with repetitions, 0, 3.Combinatorial number system, 22, 65.Commutative groups, 24.Completing the square, 7, 79.Compositions, 0, 20, 82.Comtet, Louis, 28, 77.Conjugate, 4, 18, 22, 24, 52, 58, 59.of a joint partition, 53.of a set partition, 44.Conse
utive integers, 18.Contingen
y tables, 24.Contour integration, 29{34.Corless, Robert Mal
olm, 77.Corteel, Sylvie Marie-Claude, 53.Covering in a latti
e, 22, 43.Cram�er, Carl Harald, 79.Crossings in a set partition, 72.Cumulants of a distribution, 48, 79.Cy
les of a permutation, 66.Cy
li
 permutations, 47.Dante Alighieri, 75.Darro
h, John Newton, 81.de Bruijn, Ni
olaas Govert, 36, 77.De Morgan, Augustus, 20.Debye, Peter Joseph William (= Debije,Petrus Josephus Wilhelmus), 30.De
imal notation, 66.Dedekind, Julius Wilhelm Ri
hard, 8.sums, 8.Deng, Eva Yu-Ping ( ), 72.Derb�es, Joseph, 64.85
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ents of a permutation, 40, 63.Dia
onis, Persi Warren, 84.Diamond lemma, 60.Dilogarithm fun
tion, 20, 55, 58.Dis
rete torus, 24.Distin
t parts, 18, 19, 21, 22, 41.Divisors, sum of, 19.Dobi�nski, G., 29.Dominoes, 50.Doubly bounded partitions, 13, 21, 23.Du, Rosena Ruo-Xia ( ), 72.Dudeney, Henry Ernest, 42.Durfee, William Pitt, 3.re
tangle, 52.square, 3{4, 12, 53.Dyson, Freeman John, 55.e, as \random" example, 75.Edgeworth, Fran
is Ysidro, expansion, 79.Ehrli
h, Gideon (JILX� OERCB), 17, 27, 28, 74.Elementary symmetri
 fun
tions, 61.Ellipti
 fun
tions, 8.Endo-order, 69.Enveloping series, 11, 21, 49, 78.Equivalen
e relations, 26, 42.Erd}os, P�al (= Paul), 10, 21.Erd}os, P�eter L., 67.Etienne, Gwihen, 65.Euler, Leonhard (E�ler�, Leonard� =��ler, Leonard), 5, 14, 18, 19, 63.summation formula, 6, 20.Eulerian numbers, 48, 55.Eulerian trails, 84.Evolutionary trees, 78.Exponential generating fun
tions, 29,46, 75, 83.Exponential growth, 6.Felsenstein, Joseph, 78.Fenner, Trevor Ian, 51, 52.Ferrers, Norman Ma
leod, 3.diagrams, 3{4, 9, 12, 15, 36, 45, 59,61, 64, 72.diagrams, generalized, 53.Fibona

i, Leonardo, of Pisa [= Leonardo�lio Bona

i Pisano℄, re
urren
e, 6.Fisher, Ronald Aylmer, 57.Five-letter English words, 42.Fixed points of a permutation, 44.Flight, Colin, 78.Foulds, Leslie Ri
hard, 78.Fourier, Jean Baptiste Joseph, series, 7.Franklin, Fabian, 18, 21.Fristedt, Bert, 59.Gale, David, 61.Gamma fun
tion, 31{32, 55.Gaps, 18.Gardner, Martin, 65.

Garsia, Adriano Mario, 73.Garvan, Fran
is Gerard, 55.Generalized Bell numbers, 45, 48.Generalized Stirling numbers, 46, 69.Generating fun
tions, 5, 9, 18{19, 21,25, 29, 46, 75, 83.Geometri
 mean, 24, 48.Goldman, Alan Joseph, 73.Golomb, Solomon Wolf, 66.Gonnet Haas, Gaston Henry, 77.Good, Irving John, 76.Gordon, Basil, 41.Graham, Ronald Lewis ( ), 84.Gray, Frank, binary 
ode, 69.
odes for binary partitions, 62.
odes for partitions, 15{17, 24, 63.
odes for set partitions, 27{28, 43.
odes, re
e
ted, 63.Greene, Curtis, 60.Greg, Walter Wilson, trees, 78.Griggs, Jerrold Robinson, 65.Groups, 
ommutative, 24.Guittone d'Arezzo, 46.Gumbel, Emil Julius, distribution,see Fisher.Gupta, Hansraj (h�srAj g� =tA), 57.Haigh, John, 38.Hall, Marshall, Jr., 56, 70.Handy identity, 77.Hankel, Hermann, 32, 75.
ontour, 48.Hardy, Godfrey Harold, 8, 9, 20, 21, 54, 62.Hare, David Edwin George, 77.Heine, Heinri
h Eduard, 19.Henri
i, Peter Karl Eugen, 7.Hindenburg, Carl Friedri
h, 2, 29.Ho, Chih-Chang Daniel ( ), 65.Hoare, Arthur Howard Malortie, 65.Hoe�ding, Wassily, 81.Hooks, 52{53.Hume, Alexander, iii.Hut
hinson, George Allen, 26, 41.Hyperboli
 fun
tions, 48.Igusa, Kiyoshi ( ), 65.In
lusion-ex
lusion prin
iple, 10, 21, 75, 80.In
omplete gamma fun
tion, 31.ind �: the index of �, 41.Index of a permutation, 41, 63.Integer partitions, 1{25, 38{41, 44, 71.Internet, ii, iii, 66.Inversions of a permutation, 5, 45.Involutions, 48, 72.Irwin, Joseph Os
ar, 69.Ja
obi, Carl Gustav Ja
ob, 6, 20.symbol, 56.Je�rey, David John, 77.Joi
hi, James Tomei ( ), 53, 73.Joint partitions, 19.
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hho�, Gustav Robert, law, 13.Kitaev, Sergey Vladimirovi
h (Kitaev,Serge� Vladimiroviq), 66.Kleber, Mi
hael Steven, 63.Kleitman, Daniel J (Isaiah Solomon), 60.Klimko, Eugene Martin, 51.Knopp, Marvin Isadore, 55.Knuth, Donald Ervin ( ), i, iv, 77.Kordemsky, Boris Anastas'evi
h(Kordemski�, Boris Anastas~eviq),84.Kramp, Christian, 29.Labeled obje
ts, 0, 42, 78.Labelle, Gilbert, 83.Lagrange (= de la Grange), Joseph Louis,Comte, inversion formula, 77.Laguerre, Edmond Ni
olas, 81.Landau, Hyman Garshin, 23.Lapla
e (= de la Pla
e), Pierre Simon,Marquis de, 31.Latti
e paths, 5.Latti
es of partitions, 22{23, 42{43.Law of large numbers, 48.Least re
ently used repla
ement, 75.Left-to-right minima, 42.Lehmer, Derri
k Henry, 20, 56.Lehner, Joseph, 10, 21.Lexi
ographi
 order, 1{2, 4, 17{18, 26,39{41, 43, 59.Li2 (dilogarithm), 20, 55, 58.Limeri
ks, 46.Linked lists, 17, 42.Littlewood, John Edensor, 61, 62.Lloyd, Edward Keith, 83.Logarithm, as a multivalued fun
tion,32, 77.Loizou, Georghios (Loòzou, Ge¸rgio
), 51, 52.Loopless algorithm, 51.Lorenz, Max Otto, 61.Lovejoy, Jeremy Kenneth, 53.Lunnon, William Frederi
k, 70.Ma
Mahon, Per
y Alexander, 24, 25, 39.Magi
 tri
k, 50.Majorization, 61.latti
e, 22{24, 67.Malfatti, Giovanni Fran
es
o Giuseppe, 56.Marshall, Albert Waldron, 62.Mat
hings, perfe
t, 72.Matsunaga, Yoshisuke ( ), 29.M
Kay, John Keith Stuart, 1.Mean values, 24, 48.Mei�ner, Otto, 64.Mellin, Robert Hjalmar, transforms, 6, 20.Mems, 13.Milne, Stephen Carl, 43.Minimal partition, 22.Misiurewi
z, Mi
ha l, 64.

Mixed radix notation, 64.MMIX, ii.modulo �, 26.Moments of a distribution, 44, 82.Monomial symmetri
 fun
tions, 61.Moser, Leo, 35, 74, 76.Most re
ently used repla
ement, 75.Motzkin, Theodor Samuel(OIWVEN L�ENY XECE�IZ), 41, 69, 82.Mountain passes, 30.Muirhead, Robert Franklin, 61.Multi
ombinations: Combinations withrepetions, 0, 3.Multipartition numbers, tables, 82.Multipartitions: Partitions of a multiset,39{41, 49, 84.Multiset permutations, 5.n-tuples, 0.Naud�e, Philippe (= Philipp), der j�ungere, 5.Nestings in a set partition, 72.Newton, Isaa
, root�nding method, 33, 79.Nijenhuis, Albert, 21.Normal distribution, 38.Odlyzko, Andrew Mi
hael, 9.Oettinger, Ludwig, 64.Olkin, Ingram, 62.Olver, Frank William John, 36.Onegin, Eugene (On+gin�, Evgen��), 47.Order of a set partition, 67.Ordered fa
torizations, 64.Oriented trees, 42, 78.Overpartitions, see Joint partitions.P -partitions, 24.Pak, Igor Markovi
h (Pak, Igor~Markoviq), 53.Part-
ount form, 3, 17, 42.Partial order, 24.Partition latti
e, 42{43.Partition numbers, 5{11, 19{21.tables of, 6, 10, 82.Partitions, 0{50.balan
ed, 17.doubly bounded, 13, 21, 23.of a multiset, 38{41, 49, 84.of a set, 1, 25{50.of an integer, 1{25, 38{41, 44, 71.random, 10{12, 21, 36{38.sums over, 3, 29, 76, 79.with distin
t parts, 18, 19, 21, 22, 41.without singletons, 9, 46, 58, 72, 75.Paths on a grid, 5.Patterns in permutations, 66.Peir
e, Charles Santiago Sanders, 28.triangle, 28, 44{46, 48, 73, 75, 83.Pentagonal numbers, 5, 19.Perfe
t partitions, 25.
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88 INDEX AND GLOSSARYPermutations, 0, 42.balan
ed,of a multiset, 64.Petrar
a, Fran
es
o (= Petrar
h), 46.Phylogeneti
 trees, 78.Pi (�), as \random" example, 44{45, 63.Pigeons, 0{1.Pitman, James William, 49, 69, 81.Pittel, Boris Gershon (Pittel~, BorisGerxonoviq), 38.Playing 
ards, 50.Pleasants, Peter Arthur Barry, 70.Poetry, 46{47.Poisson, Sim�eon Denis, 55.distribution, 37, 44.summation formula, 7, 20.P�olya, Gy�orgy (= George), 52, 62.Pomeran
e, Carl, 81.Powers of 2, 24.Probability distribution fun
tions,10, 38, 44, 48.Prodinger, Helmut, 74.Pudl�ak, Pavel, 67.Pure alphameti
s, 42.Pushkin, Alexander Sergeevi
h (Puxkin�,Aleksandr� Serg+eviq�), 47.q-Stirling numbers, 46, 69.q-nomial 
oeÆ
ients, 73.q-nomial theorem, 53, 57.Radema
her, Hans, 8, 9, 20, 21.Radix sorting, 40{41.Ramanujan Iyengar, Srinivasa (ÿ��W��W�WÈ{h I�axWm), 8, 9, 20,21, 54, 55.Random partitions, 10{12.generating, 21.Random set partitions, 36{38.generating, 38.Reagan, Ronald Wilson, 47.Real roots, 49.Re
urren
es, 6, 14, 19, 82.Re
ursive pro
edures, 68.Re�nement, 42.Re
e
ted Gray 
ode, 63.Remmel, Je�rey Brian, 73.Residue theorem, 29, 32.Restri
ted growth strings, 26{28, 42,70, 71, 75, 82.Revolving door algorithm, 15.Rhyme s
hemes, 26, 46{47.Riemann, Georg Friedri
h Bernhard,surfa
e, 77.Rim representation, 4{5, 12, 18, 22.Robbins, David Peter, 75.Robinson, Robert William, 78.Rook polynomials, 44{45.Rooks, nonatta
king, 44{45, 71{72.

Roots of a polynomial, 49.Roots of unity, 8, 56.Round-robin tournaments, 23.Row sums, 24.Ruskey, Frank, 27, 43.Ryser, Herbert John, 61.Sa
hkov, Vladimir Nikolaevi
h (Saqkov,Vladimir Nikolaeviq), 38.Saddle point method, 8, 29{36, 47{49, 83.Savage, Carla Diane, 15.S
hur, Issai, 62.S
ore ve
tors, 23.Se
ond-smallest parts, 22.Self-
onjugate partitions, 18, 44, 62.Semilabeled trees, 42.Semimodular latti
es, 67.Sequen
es, totally useless, 42.Set partitions, 1, 25-50.
onjugate of, 44.dual of, 72.Gray 
odes for, 27{28, 43.order of, 67.random, 36{38.shadow of, 43.Seth, Vikram (ib�m ex#), ii, 47.Shadow of a set partition, 43.Shakespeare (= Shakspere), William, 46.Shallit, Je�rey Outlaw, 75.Shape of a random partition, 12, 21.Shape of a random set partition, 36{37.Sieve method, 64.Smallest parts, 21, 22.Sonnets, 46.Spenser, Edmund, 46.Stable sorting, 40{41, 63.Sta
k frames, 39.Stam, Aart Johannes, 38, 49.Stanford GraphBase, ii, iii, 42.Stanley, Ri
hard Peter, 0, 3, 63, 72.Stanton, Dennis Warren, 53.Stephens, Nelson Mal
olm, 70.Stirling, James,approximation, 31, 33, 35, 80.
y
le numbers, 81.subset numbers, asymptoti
 value, 34{36.subset numbers, generalized 46, 69.Stirling strings, 67.Sums over all partitions, 3, 29, 76, 79.Sut
li�e, Alan, 67.Swinnerton-Dyer, Henry Peter Fran
is, 55.Sylvester, James Joseph, 18, 54.Symmetri
 fun
tions, 3, 61.Symmetri
al mean values, 24.Sz�ekely, L�aszl�o Alad�ar, 67.
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INDEX AND GLOSSARY 89Tableau shapes, 4, 44, see Ferrers diagrams.Tail 
oeÆ
ients, 65.Taylor, Brook, series, 35, 77.Temperley, Harold Neville Vazeille, 12.Tippett, Leonard Henry Caleb, 57.Topologi
al sorting, 25, 66.Tou
hard, Ja
ques, 69.Tournament, 23.Tra
e, 4, 12, 18, 53.Trading tails, 31, 80.Transitive relations, 26.Tree of partitions, 18.of restri
ted growth strings, 70.Tree fun
tion, 34, 77.Tree traversal, 18.Tri
k, magi
, 50.Tripartitions, 39.Triple produ
t identity, 6, 20.Trost, Ernst, 64.T�uma, Ji�r��, 67.Twelvefold Way, 0, 17.Two-line arrays, 71{72.Umbral notation, 69, 74, 75, 83.Union-�nd algorithm, 67.Universal sequen
es for partitions, 50.Unlabeled obje
ts, 0, 42, 78.Unranking a partition, 22.

Unranking a set partition, 42.Unusual 
orresponden
e, 66.Up-down partitions, 24, 63.Urns, 0.Useless sequen
es, 42.Va
illating tableau loops, 44.Ve
tor partitions, 39{41, 49.Vershik, Anatoly Moiseevi
h (Verxik,Anatoli� Moiseeviq), 12, 58.White, Dennis Edward, 73.Whitworth, William Allen, 29.Wilf, Herbert Saul, 21.Williamson, Stanley Gill, 65.Wong, Roderi
k Sue-Chuen ( ), 36.Wright, Edward Maitland, 82, 83.Wyman, Max, 35, 74, 76.Yakubovi
h, Yuri Vladimirovi
h (�kuboviq,�ri� Vladimiroviq), 12, 38.Yan, Catherine Huafei ( ), 72.Yee, Ae Ja ( ), 54.z-nomial theorem, 53, 57.Zeilberger, Doron (XBXALIIV OEXEC), 19, 54.Zeta fun
tion, 6, 55, 83.
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